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How to enrol for the course?

p Use the registration system of the Computer
Science department:

n You need your user account at the IT department (“cc
account”)

p If you cannot register yet, don’t worry: attend the
lectures and exercises; just register when you are
able to do so


https://ilmo.cs.helsinki.fi

Teachers

p Esa Pitkdnen, Department of Computer Science,
University of Helsinki

p Elja Arjas, Department of Mathematics and
Statistics, University of Helsinki

p Sami Kaski, Department of Information and
Computer Science, Helsinki University of
Technology

p Lauri Eronen, Department of Computer Science,
University of Helsinki (exercises)



|_ectures and exercises

p Lectures: Tuesday and Friday 14.15-16.00
Exactum C221

p Exercises: Tuesday 16.15-18.00 Exactum
C221

n First exercise session on Tue 9 September



Status & Prerequisites

p Advanced level course at the Department
of Computer Science, U. Helsinki

p 4 credits

p Prerequisites:

n Basic mathematics skills (probability calculus,
basic statistics)

n Familiarity with computers
n Basic programming skills recommended
n No biology background required



Course contents

What is bioinformatics?

Molecular biology primer

Biological words

Sequence assembly

Sequence alignment

Fast sequence alignment using FASTA and BLAST
Genome rearrangements

Motif finding (tentative)

Phylogenetic trees

Gene expression analysis
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How to pass the course?

p Recommended method:
n Attend the lectures (not obligatory though)
n Do the exercises
n Take the course exam
p Or:
n Take a separate exam



How to pass the course?

p EXxercises give you max. 12 points

n 0% completed assignments gives you O points,
80% gives 12 points, the rest by linear
interpolation

n “A completed assignment” means that

You are willing to present your solution in the
exercise session and

You return notes by e-mail to Lauri Eronen (see
course web page for contact info) describing the main
phases you took to solve the assignment

n Return notes at latest on Tuesdays 16.15

p Course exam gives you max. 48 points



How to pass the course?

p Grading: on the scale 0-5

n To get the lowest passing grade 1, you need to get at
least 30 points out of 60 maximum

p Course exam: Wed 15 October 16.00-19.00
Exactum Alll

p See course web page for separate exams

p Note: If you take the first separate exam, the
best of the following options will be considered:
n Exam gives you 48 points, exercises 12 points
n Exam gives you 60 points

p In second and subsequent separate exams, only
the 60 point option is In use
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Literature

p Deonier, Tavareé,

Waterman: Computational

Genome Analysis, an
Introduction. Springer,
2005

p Jones, Pevzner: An
Introduction to
Bioinformatics Algorithms.
MIT Press, 2004

p Slides for some lectures
will be available on the
course web page
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Computational
Genome Analysis
An Introduction

AN INTRODUCTION TO
BIOINFORMATICS ALGORITHMS




Additional literature

p Gusfield: Algorithms on
strings, trees and
sequences

p Griffiths et al: Introduction
to genetic analysis

p Alberts et al.: Molecular
biology of the cell

p Lodish et al.: Molecular cell
biology

p Check the course web site
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Questions about administrative &
practical stuff?




Master's Degree Programme In
Bioinformatics (MBI)

p Two-year MSc programme

p Admission for 2009-2010 in January 2009

n You need to have your Bachelor’s degree ready by
August 2009
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Admission ' Contact



http://www.cs.helsinki.fi/mbi

MBI programme organizers
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Department of Computer Science, Laboratory of Computer and
Department of Mathematics and Statistics Information Science, Laboratory of
Faculty of Science, Kumpula Campus, HY CS and Engineering, TKK

Faculty of Biosciences !
Faculty of Agriculture and Forestry
Viikki Campus, HY :

Faculty of Medicine, Meilahti Campus, HY
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Four MBI campuses
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MBI highlights

p You can take courses from both HY and
TKK

p Two biology courses tailored specifically
for MBI

p Bioinformatics is a new exciting field, with
a high demand for experts in job market

p Go to www.cs.helsinki.fi/mbi/careers to
find out what a bioinformatician could do

for living

17


http://www.cs.helsinki.fi/mbi/careersto

Admission

p Admission requirements

n Bachelor’s degree in a suitable field (e.g., computer
science, mathematics, statistics, biology or medicine)

n At least 60 ECTS credits in total in computer science,
mathematics and statistics

n Proficiency in English (standardized language test:
TOEFL, IELTS)

p Admission period opens in late Autumn 2009 and
closes in 2 February 2009

p Details on admission will be posted in
www.cs.helsinki.fi/mbi during this autumn

18


http://www.cs.helsinki.fi/mbiduringthisautumn

Bioinformatics courses in Helsinki
region: 1st period

P Compq,tatlonal genomlcs (4-7 credlts TKK)
P Semma& Neuromformatlcs (3 credlts Kumpula)

'p Seminar: Machine Learnlng in Blomformatlcs (3
~credits, Kumpufa) Y o

b Slgnal processmg-ln neuromforma:[r‘cs (5 credits,
' TKK) | 23



A good biology course for computer
scientists and mathematicians?

20

p Biology for methodological scientists (8 credits, Meilahti)

n

n

Course organized by the Faculties of Bioscience and Medicine
for the MBI programme

Introduction to basic concepts of microarrays, medical genetics
and developmental biology

Study group + book exam in | period (2 cr)
Three lectured modules, 2 cr each

Each module has an individual registration so you can
participate even if you missed the first module

www.cs.helsinki.fi/mbi/courses/08-09/bfms/


http://www.cs.helsinki.fi/mbi/courses/08-09/bfms/

Bioinformatics courses in Helsinki
region: 2nd period

P Bayesqjm paradlgm in genetic blomformatlcs (6

credlts Kumpula) -~ &
7. Bleloglcal Sequence AnaIyS|s (6 credlts Kumpula)
P Modellng of bloToglcal networks (5 _7 credits, TKK)

P Statistical methoels In genetlcs (6 8 _credlts
‘Kumpula) =



Bioinformatics courses in Helsinki
region: 3rd period

P Evolutlon and the theory of' games (5 credlts Kumpula)

P I—'Ilgh Throughput Blomformatlcs (5- 7 credlts TKK)
| Image Analysis. |n @\Ieuromformatlcs (5 credlts TKK)
.Practlcal Course |n Blodatabases (4- 5 credlts Kumpula)
p Seminar: Computatlonal systems bl@|0g)§‘ 3 credits,
"Kumpula) - W
'fl- Spatial models in ecology and evolution (8 credlts
P queual course in blomformatlcs I (3 7 credlts TKK)
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Bioinformatics courses in Helsinki region:

4th period

P Metab.llc Modellng (4 credits, Kumpula)

o thylogeﬂ‘letlc llata analyses (6 -8 Cred|ts
- Kumpdla) ==y = b

Teknillinen
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What 1s bioinformatics?

p Bioinformatics, n. The science of information
and information flow in biological systems,
esp. of the use of computational methods In
genetics and genomics. (Oxford English
Dictionary)

p "The mathematical, statistical and computing
methods that aim to solve biological problems
using DNA and amino acid sequences and
related information." -- Fredj Tekaia
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What 1s bioinformatics?

p "l do not think all biological computing is

26

bioinformatics, e.g. mathematical modelling is
not bioinformatics, even when connected with
biology-related problems. In my opinion,
bioinformatics has to do with management and
the subsequent use of biological mformatlon
particular

-- Richard Durbin



What 1s not bioinformatics?

p Biologically-inspired computation, e.g., genetic algorithms
and neural networks

p However, application of neural networks to solve some
biological problem, could be called bioinformatics

p What about DNA computing?

@ DNA malecule @ DNA input molecule @ Input and software molecules @ Input molecule hybridizes with a ® The enzyme ligase seals the
software molecule two molecules
o INPUT
X l"f/_f TR (il H
e TIPS L. WRNNY | | s R
el L TELENELd pARRN
@ The enzyme Fokl binds to the @ Fokl cleaves the input molecule . A new software molecule binds to @ The process repeats itself until an An "output detector" DNA molecule
combined molecule inside the next symbol the remaining input molecule "output" sequence, which represents binds to the output sequence,
the computation result, is exposed forming the output molecule
- ' 1 — THHH g A 1 -
ez s | ., s | ey, "™ B2
27 http://www.wisdom.we zmann.ac.iI/~Ibn/new_pa|gesNisuaI_Presentation.r tml



http://www.wisdom.weizmann.ac.il/~lbn/new_pages/Visual_Presentation.html

Computational biology

p Application of computing to biology (broad
definition)
p Often used interchangeably with bioinformatics

p Or: Biology that is done with computational
means

28



Biometry & biophysics

p Biometry: the statistical analysis of

n Sometimes also the field of identification of individuals
using biological traits (a more recent definition)
p Biophysics: "an interdisciplinary field which
applies techniques from the
to understanding
" -- British Biophysical Society

29



Mathematical biolo
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p Mathematical biology
“tackles biological
problems, but the methods
It uses to tackle them need
not be numerical and need
not be implemented in
software or hardware.”

-- Damian Counsell

Alan Turing

THE CHEMICAL BASIS OF MORPHOGENESIS

By A, M., TURING, F.R.5. Uniersity of Manchester

(Received 9 November 1951 —Revised 15 March 1952)

It 1s suggezled that a system of chemical substances, called murphn[.;r:ns, reaciing together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis,
Such a system, although it may originally be quite homogeneous, may later develop a pattern
or structure due to an instability of the homegeneous equilibrium, which is triggered off by
random disturbances, Such reaction-difTusion systems are considercd in some detail in the case
of an isolated ring of cells, 2 mathematically convenient, though biologically unusual system,
The investigation is chiefly concerned with the onset of instability. Tt is found that there are six
essentially different forms which this may take, In the most interesting form statipnary waves
appear on the ring. It is suggested that this might account, for instance, for the tentacle patterns
on Hydra and for whorled leaves. A system ol reactions and diffusion on a sphere is also con-
sidered. Such a system appears to account for gastrulation. Another reaction system in two
dimensions gives rise to patterns reminiscent of dappling. It is also suggested that stationary
waves in two dimensions could account for the phenomena of phyvilotaxdis.

The purpose of this paper is o discuss a ].){:lssihle mechanism b:«' which the genes ol a #ygote
may determine the anatomical structure of the resulting organism. The theory does not make any
new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account
for many of the facts. The full understanding of the paper requives a good knowledge of mathe-
matics, some biology, and some elementary chemistry, Since readers cannot be expected to be
experts in all of these subjects, a number of elermentary facts are explained, which can be found in
text-books, but whose omission would make the paper difficult rt:ading.

1. A MODEL OF THE EMBRY0O. MORPHOGENS

In this section a mathematical model of the growing embryo will be described. This model
will be a simplification and an idealization, and consequently a falsification. It is to be
hoped that the [eatures retained for discussion are those of greatest importance in the
present state of knowledge.

The model takes two slightly different forms. In one of them the cell theory is recognized
but the cells are idealized into geometrical points. In the other the matter of the organism
is imagined as continuously distributed. The cells are not, however, completely ignored,
for various physical and physico-chemical characteristics of the matter as a whole are
assumed to have values appropriate to the cellular matter,

With either of the models one proceeds as with a physical theory and defines an entity
called ‘the state of the system’. One then describes how that state is to be determined from
the state at a moment very shortly before. With either model the description of the state
consists of two parts, the mechanical and the chemical. The mechanical part of the state
describes the positions, masses, velocities and elastic properties of the cells, and the forces
between them. In the continuous [orm of the theory essentially the same information is
given in the form of the stress, velocity, density and elasticity of the matter, The chemical
part of the state is given (in the cell form of theory} as the chemical composition of each
scparate cell; the diffusibility of each substance between each two adjacent cells must also

Vou. 237. B. g1 (Price Bs.) 5 {Published 14 Auguast 10932



Turing on biological complexity

o)
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“It must be admitted that the which
It has been possible to give in the present paper are

This can be ascribed quite simply to the fact that

are usually
Taking this in combination with the relatively elementary
mathematics used in this paper one could hardly expect to
find thgt many observed biological phenomena would be
covered.

It is thought, however, that the
which have been treated, and the principles which
have been discussed, should be of some help in

— Alan Turing, The Chemical Basis of Morphogenesis, 1952



Related concepts

i METABOLIC PATHWAYS
n " BlOl Ogy Of netwo rk s” \ and Metabolism 2! Senobiotcs

n Integrating different levels
of information to
understand how biological
systems work

p Computational systems biology

gy E-nerg}'.
b Metabolism 7

Overview of metabolic pathwaysin
KEGG database, www.genome,jp/kegg/

01100 5/51/04
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http://www.genome.jp/kegg/

Why Is bioinformatics important?

p New measurement technigues produce
huge quantities of biological data

n Advanced data analysis methods are needed to
make sense of the data

n Typical data sources produce noisy data with a
lot of missing values

p Paradigm shift in biology to utilise
bioinformatics in research

33



Bioinformatician’s skill set

p Statistics, data analysis methods
n Lots of data
n High noise levels, missing values
n #attributes >> #data points

p Programming languages

n Scripting languages: Python, Perl, Ruby, ...

n Extensive use of text file formats: need
parsers

n Integration of both data and tools
p Data structures, databases

34



Bioinformatician’s skill set

p Modelling
n Discrete vs continuous domains
n -=> Systems biology

p Scientific computation packages
n R, Matlab/Octave, ...

p Communication skills!

35



Communication skills: case 1

? Biologist presents a problem
<— ‘ to computer scientists /

mathematicians

36



Communication skills: case 2

Bioinformatician is a part
of a group that consists
mostly of biologists.

N\
0000000000




Communication skills: case 2

...biologist/bioinformatician ratio is important!

38



Communication skills: case 3

‘ ‘ ‘ offers their services to

/ l Y}re than one group




Bioinformatician’s skill set

p How much biology you should know?



Bioinformatician’s skill set

Bioinformatics
Biology & Medicine * Biological sequence analysis
» Basics in molecular and * Biological databases
cell biology » Analysis of gene expression
» Measurement techniques » Modeling protein structure and
function
» Gene, protein and metabolic
networks

Computer Science
* Programming

» Databases

« Algorithmics

Mathematics and
statistics

e Calculus
 Probability calculus
e Linear algebra

Where would you be in this triangle?

41 Prof. Juho Rousu, 2006



A problem involving bioinformatics?

42
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- 7”1 found a fruit fly that is immune to all diseases!”

- 1t was one of these”

Pertti Jarla, http://www.hs.fi/fingerpori/


http://www.hs.fi/fingerpori/

Molecular biology primer

Molecular Biology Primer by Angela Brooks, Raymond Brown,

Calvin Chen, Mike Daly, Hoa Dinh, Erinn Hama, Robert Hinman,

Julio Ng, Michael Sneddon, Hoa Troung, Jerry Wang, Che Fung

Yung

Edited for Introduction to Bioinformatics (Autumn 2007, Summer
43 2008, Autumn 2008) by Esa Pitkanen



Molecular biology primer

44

p Part 1: What is life made of?

p Part 2: Where does the variation in
genomes come from?



Life begins with Cell

45

Plasma
membrane

Golgi vesicles
Mitochondrion
Peroxisome

Lysosome

endoplasmic \ / Secretory

reticulum e vesicle

p A cell is a smallest structural unit of an
organism that is capable of independent
functioning

p All cells have some common features



Cells

p of every living system.

p Every organism is composed of one of two radically different types of
cells:

n cells or
n cells.
P and are descended from the same
primitive cell.

n All prokaryotic and eukaryotic cells are the result of a total of 3.5
billion years of evolution.

46



Two types of cells: Prokaryotes and

Eukaryotes

47

¥ ribosomes
PE

cell capsue .,

wall All Right s Reserved
www.cellsallve. com

hics

microtubules chromatin

nuclear envelope
nuclear pore
nucleolus

mitochondrion nucleus

centriole .
Golgi complex

. lysosome
vesicle

cytosol
flagellum

plasma membrane

smooth
endoplasmic endoplasmic
reticulum ribosomes reticulum



Prokaryotes and Eukaryotes

o)
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According to the most
recent evidence, there EUKARYA
are three main
branches to the tree of
life

Prokaryotes include
Archaea (“ancient
ones”) and bacteria

Eukaryotes are
kingdom Eukarya and
Includes plants,
animals, fungi and

certain algae P Lecture: Phylogenetic trees

= Red algae
Slime molds
Entamoebae

Microsporidians

Trichomonads
Diplomonads




All Cells have common Cycles

Nondividing

cells Resting
cells
G,
@@ ONE,
RNA and
protein
M synthesis
Cell
division
DNA
RNA and replication S

protein
synthesis
G,

p Born, eat, replicate, and die
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Common features of organisms

Chemical energy is stored in ATP

Genetic information is encoded by DNA
Information is transcribed into RNA

There iIs a common triplet genetic code
Translation into proteins involves ribosomes
Shared metabolic pathways

Similar proteins among diverse groups of
organisms

O © © © T T ©

50



All Life depends on 3 critical molecules

p DNAs (Deoxyribonucleic acid)
n Hold information on how cell works

p RNAs (Ribonucleic acid)

n Act to transfer short pieces of information to different
parts of cell

n Provide templates to synthesize into protein

p Proteins

n Form enzymes that send signals to other cells and
regulate gene activity

n Form body’s major components (e.g. hair, skin, etc.)
n “Workhorses” of the cell

51



DNA: The Code of Life

Parental
strands

Daughter
strands

p The structure and the four genomic letters code for all living
organisms

p Adenine, Guanine, Thymine, and Cytosine which pair A-T and C-G
on complimentary strands.
Lecture: Genome sequencing
55 and assembly



Discovery of the structure of DNA

p 1952-1953 James D. Watson and Francis H. C. Crick
deduced the double helical structure of DNA from X-ray
diffraction images by Rosalind Franklin and data on amounts

of nucleotides in DNA

M

Franklin

James Watson and
Francis Crick
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DNA, continued

p DNA has a double helix
structure which is
composed of

n sugar molecule

n phosphate group

n and a base (A,C,G,T)

p By convention, we read
DNA strings in direction of
transcription: from 5’ end
to 3’ end

5 ATTTAGGCC &’

3’ TAAATCCGG %’



DNA 1S contalned N chromosomes

The Nucleospme  “Beads-on-a-8tring" Chromosome

/

p In eukaryotes, DNA is packed into chromatids

n In metaphase, the “X” structure consists of two identical
chromatids

p In prokaryotes, DNA is usually contained in a single,
circular chromosome

>5 http://en.wikipedia.org/wiki/lmage:Chromatin_Structures.png


http://en.wikipedia.org/wiki/Image:Chromatin_Structures.png

Human chromosomes

56

p Somatic cells in humans
have 2 pairs of 22
chromosomes + XX
(female) or XY (male) =
total of 46 chromosomes

p Germline cells have 22
chromosomes + either X or
Y = total of 23
chromosomes

I N ¥ oo%w

i " 5‘
xy

19 20 | 22

Karyogram of human male using Giemsa staining
(http://en.wikipedia.org/wiki/Karyotype)


http://en.wikipedia.org/wiki/Karyotype

Length of DNA and number of chromosomes

Organism

Prokayotic
Escherichia coli (bacterium)

Eukaryotic

Saccharomyces cerevisia (yeast)
Drosophila melanogaster (insect)
Homo sapiens (human)

Zea mays (corn / maize)

57

#base pairs

4x106

1.35x107
1.65x108
2.9x10°
5.0x10°

#chromosomes (germline)

17

23
10



61
121
181
241
301
361
421
481
541
601
661
721
781
841
901
961

1021
1081
1141
1201
1261
1321
1381
1441
1501
1561
1621
1681

at gagccaag
gt cggt aaag
aagaagcgga
gt ggaagaga
act ccggccc
gaaat cacct
cat agcgat a
agagcagcgg
cccggggaac
ccgagggggg
ccgcccaagc
tccgecgttcc
ggct gggcaa
tctctagcett
cgtgcgt cct
ccgaagagga
ggggt cgaca
at ccct ggct
ctccttgcat
ggttcacacc
t caacct cct
gctttctctt
atcctcccct
ccctcttcgce
tgtttcccag
ggtctctctc
ctctcccccc
cct cagt act

ag

Hepatitis delta virus, complete genome

ttccgaacaa
agcat t ggaa
tgaatttccc
aggaggcggg
gaagggttga
ccagaggacc
ggaggggat g

ggct agcagg
tcgacttatc

tgactttgaa
tccttccccc
atcctttctt
cattccgagg
cccagagaga
ccttcggatg
aagaaggacg
act ct gggga
tcceccttatg
gct ggggacg
cccaacctgc
aagttcctct

gttctcgagg
ggaaggcctc

cgggggagcc
ccagggat gt
gagttcctct
gcggtttttc
cttactcttt

ggattcgcgg
cgt cggagat
cat aacgcca
cctcccgatc
gagt acccca
ccttcagcga
ctaggagttg
tgggtgttcc
gtccccacat
cat t ggggac
caagggt cgc
acct gat ggc
ggaccgtccc
agcgagagaa
cccaggt cgg
cgagacgcaa
gaggagggag
t ccagt ccct
aagccgcccc
gggccggcta
tcctcctcct
gccttcecttce
ttcctaggtc
ccctctccat
t cat cct caa
aacttctttc
cttccttcgg
t ct gt aaaga

ggaggat aga
acaact ccca
gt gaaact ct

cgaggggccc
gagggaggaa
acagagagcg
ggggagaccg
gccccccgag
agcagactcc
cagt ggagcc
ccaggaat gg
cggcat ggtc
ctcggtaatg
aagt ggct ct
accgcgagga
acct gcgagt
ggt cggct gg
cccecggtccg
cgggcgctcc
ttcttctttc
t gct gaggtt
gtcggtgatc
cggagt ct ac
ccttatcttt
gtttcttgat
ttccgctcac
gccggcet cat
ggagact gct

t cagcgcccg
agaaggaaaa
aggaagggga

ggcggccaag
gccacacgga

cat cgcgaga
aagcgaggag
aggggacgag
cggaccccct
at gggat gct
cgggacccca
ccagcctcct
gcgaat ggga
cccttagcca
ggt ggagat g
ggaaacccgc
gaagagt at a
agt aaagggg
cctcgttcca
ccttctctcg
ctttcccccce
ctgcctctcc
ttccatctgg
ctttccgaga
tttcttctta
ccactgctcg
cttcgactag

ggccct gt cg

agaggggt ga
aagagaaagc
aagagggaag
tttggaggac
gt agaacaga
gggagt agac
gaaagcaaag
t gaggctt at
tt caaagt ga
cctcccgatt
ctct gcaggg
cgct ggcgcc
cccacaaatc
t ccgagt gga
ccat gccgac
tttattcact
tcctat ggga
gact ccggga
ccttcgaggg
tcttcctcgg
gccgat agct
ttgtcggtga
tccgttcggg
attcctttga
accttccgga
agaacctctt
aggcgacggt
cccaagttcg



RNA

p RNA is similar to DNA chemically. It is usually only a
single strand. T(hyamine) is replaced by U(racil)

p Several types of RNA exist for different functions in
the cell.

D loop

tRNA linear and 3D view: http://www.cgl.ucsf.edu/home/glasfeld/tutorial/trna/trna.gif
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http://www.cgl.ucsf.edu/home/glasfeld/tutorial/trna/trna.gif

DNA, RNA, and the Flow of
Information

_ "The central dogma”
Replication

.ACDNA can replicate.j
Translation .
RNA M Protein

A Is this true?

/

scription

|

' . 4 . . . ™
Information coded in the Information in RNA is pass
sequence of base pairs in DNA to proteingt never passes

kis passed to molecules of RNA.} k\frﬂm proteins to nucleic acids.

~

/

\4

Denis Noble: The principles of Systems Biology illustrated using the virtual heart
60 http://velblod.videolectures.net/2007/pascal/eccs07_dresden/noble_denis/eccs07_noble_psb_01.ppt


http://velblod.videolectures.net/2007/pascal/eccs07_dresden/noble_denis/eccs07_noble_psb_01.ppt

Proteins

p Proteins are polypeptides
(strings of amino acid
residues)

p Represented using strings
of letters from an alphabet
of 20: AEGLV..WKKLAG

p Typical length 50...1000
residues

61

Urease enzyme from Helicobacter pylori



AMmINo aclds

http://upload.wikimedia.org/wikipedia/commons/c/c5/Amino_acids_2.png
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How DNA/RNA codes for protein?

Second letter

a2 PIILL

p DNA alphabet contains four U C A G
. U
letters but must specify e PhengUCY Do) Tyosine |57 Cystene .
. . U alanine .

protein, or polypeptide i s | sopon [T ot A
sequence of 20 letters. UUG U XY stopcodon([UGG] Tryptophen |G
p Dinucleotides are not cuw ccU A e | CCU !
enough: 42 = 16 possible of| Y Leucine  {|°C [proine CCCl nine [
_ gn. ) P _1o|cua CCA o CCA| & A
dinucleotides £ []|<UC ccc cag| Clutamine |GG G
p Trinucleotides (triplets [ |[Au |, (el (U
3 — ( P ) z | {|atc| soleucine {[pce AAC| sparagine || pge| Sere o
a”OW 4 — 64 pOSS|bIe A AUA ACA Threonine " = A
trinucleotides AUG i ¢ ag|bsie  |[ygg| Argnine ¢
p Triplets are also called — - AU ssarc | GGU ‘é

COdOﬂS G Ll Valine QCC Alanine acid GQC Glycine
G B A [
a GAG| id Y G
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How DNA/RNA codes for protein?

Second letter

dajja] pIIy L

p Three of the possible U C A G
: £ g UUU] ppop. oAl ool o |U
trlpletS Spe,f:lfy stop : e :]l:lf‘:::{é ngs | Uac| Tyrosine | | Cysteine C
ermne
tranSIat|0n UUA Leucine E’gé Stop codon Stup codon A
p Translation usually starts o ' i 721 [UGG] Tryptophan |G
at triplet AUG (this codes cuu ccU CAU yitigine  |CGU !
for methionine) ¢ e [ lprne [ CCCl e |
. . 3 Egé Egé CA% Glutamine Egé : !
p Most amino acids may be i e G
specified by more than 1B I P MY e P e |1
. =1 ||AUC| Isoleucine AAC AGC C
triplet AllAuA A mhveonine
ACA AAA AGA A
- Methionine;||ACG Lysine Argini
p How to find a gene? Look AUG et AAG| Lysine | fagg| Arginine | &
for start and stop codons o o GAU [t U
(nOt that easy though) G ggﬁ Valine Egi Alanine (;AA aad ggg Glycine i
GUG GCG CAC i‘;‘fﬂ‘“i‘f GGG :
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Proteins: Workhorses of the Cell

p 20 different

n different chemical properties cause the protein chains to fold
up into specific three-dimensional structures that define their
particular functions in the cell.

p Proteins do all essential work for the cell
n build cellular structures
n digest nutrients
n execute metabolic functions
n mediate information flow within a cell and among cellular
communities.
p Proteins work together with other proteins or nucleic acids
as "molecular machines"
n structures that fit together and function in highly specific, lock-
and-key ways.

P Lecture 8: Proteomics

65



Genes

“A gene is a union of genomic sequences encoding a
coherent set of potentially overlapping functional products”

--Gerstein et al.

p A DNA segment whose information is expressed either as

5!
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an RNA molecule or protein

(translation)

ag\)gga o

—, (transcription)

[
»

MSG ...

(folding)

{at gagt gga ..

+ +

v

w

—t—act—cacct

5!

\ 4
http://fold.it


http://fold.it

FoldIt: Protein folding game

This protein is covered with ! Progress: I|

From now on, we'll hide the sidechains Level 2-2: Tons of Clashes
thataren't too red. Pull apart the > Ch
backbone, but nottoo much.

al

ttp://fold.it

§ Pull Mode
s o



http://fold.it

Genes & alleles

p A gene can have different variants
p The variants of the same gene are called

alleles
2 2
\)gg \)Gg
a\)ga@ — MSG - a\)ga@ — MSR
S atgagtl|glg a. S at gagt|c|lg a




Genes can be found on both strands




Exons and introns & splicing

Exons
S —L | | [ ] 3
3’ AN Za 5

Introns are removed from RNA after transcription

Exons are joined: [T

This process is called splicing

70



Alternative splicing

Different splice variants may be generated
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Where does the variation in genomes come

from?

p Prokaryotes are typically
haploid: they have a single
(circular) chromosome

p DNA is usually inherited
vertically (parent to
daughter)

p Inheritance is clonal

n Descendants are faithful
copies of an ancestral DNA

n Variation is introduced via
mutations, transposable
elements, and horizontal
transfer of DNA
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Chromosome map of S. dysenteriae, the nine rings

describe different properties of the genome
http://www.mgc.ac.cn/ShiBASE/circular_Sd197.htm


http://www.mgc.ac.cn/ShiBASE/circular_Sd197.htm

Causes of variation

p Mistakes in DNA replication
p Environmental agents (radiation, chemical
agents)

p Transposable elements (transposons)

n A part of DNA is moved or copied to another location in
genome

p Horizontal transfer of DNA

n Organism obtains genetic material from another
organism that is not its parent

n Utilized in genetic engineering
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Biological string manipulation

p Point mutation: substitution of a base
n ...ACGGCT... == ... ACGCCT...

p Deletion: removal of one or more contiguous
bases (substring)

n .. TGATCA... == .. TTTCA...

p Insertion: insertion of a substring
n ...GGCTAG... == ..GGTCAACTAG...

Lecture: Sequence alignment
Lecture: Genome rearrangements
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MelosIS

Daughter

p Sexual organisms are usually Nugiei I
d'plOld Daugl:lter @
. Nuclei
n Germline cells (gametes) q /
contain N chromosomes ~ ‘D
7N

p Meiosis: reduction of

75

n Somatic (body) cells have 2N
chromosomes

chromosome number from e mgis"
2N to N during reproductive Chromosomes
CyCIe Major events in meiosis

n One chromosome doubling is

... http://en.wikipedia.org/wiki/Meiosis
followed by two cell divisions

http://www.ncbi.nlm.nih.gov/About/Primer


http://en.wikipedia.org/wiki/Meiosis
http://www.ncbi.nlm.nih.gov/About/Primer

Recombination and variation

76

Recap: Allele is a viable DNA
coding occupying a given locus
(position in the genome)

In recombination, alleles from
parents become suffled in
offspring individuals via
chromosomal crossover over
Allele combinations in
offspring are usually different
from combinations found in
parents

Recombination errors lead into
additional variations

Daughter
Nuelei Il

s 'E)
wg)~0

Hamologous Meosis Il QE
Chromosomes

Fie. 65. Scheme to illustrate double crossing over.
Chromosomal crossover as described by
T. H. Morgan in 1916



Mitosis

sty =§ g w— "Fwa diploid
DNA
replication

l

MitOSIS

p Mitosis: growth and development of the organism

n One chromosome doubling is followed by one cell
division

& http://en.wikipedia.org/wiki/lmage:Major_events_in_mitosis.svg


http://en.wikipedia.org/wiki/Image:Major_events_in_mitosis.svg

Recombination frequency and linked genes

78

p Genetic marker: some DNA seqgquence of interest
(e.g., gene or a part of a gene)

p Recombination is more likely to separate two
distant markers than two close ones

p Linked markers: "tend” to be inherited together

p Marker distances measured Iin centimorgans: 1
centimorgan corresponds to 1% chance that two
markers are separated in recombination



Biological databases

p EXponential growth of
biological data 1e+11 T T

n New measurement
techniques

n Before we are able to use e
the data, we need to store
it efficiently -> biological
databases 10407 |

n Published data is b/
submitted to databases T

p General vs specialised 100000 L

0L/82  0L/85 OL/B8  0L/91 01/94  01/97 0100 DU/03  OL06 0108

databases dte (mmiyy)

p This topic is discussed
extensively in Practical
course in biodatabases (Il
period)

le+l0 b

1e+08 |

base pairs
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10 most important biodatabases... according
to ”Bloinformatics for dummies”

p GenBank/DDJB/EMBL www.ncbi.nlm.nih.gov
p Ensembl www.ensembl.org

p PubMed www.ncbi.nlm.nih.gov
p NR www.ncbi.nlm.nih.gov
p UniProt WWW.expasy.org

p InterPro www.ebi.ac.uk

p OMIM www.ncbi.nlm.nih.gov
p Enzymes WWW.expasy.org

p PDB www.rcsb.org/pdb/

p KEGG www.genome.ad.jp

80 Sophia Kossida, Introduction to Bioinformatics, Summer 2008

Nucleotide sequences
Human/mouse genome
Literature references
Protein sequences
Protein sequences
Protein domains
Genetic diseases
Enzymes

Protein structures
Metabolic pathways


http://www.ncbi.nlm.nih.gov
http://www.ensembl.org
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.expasy.org
http://www.ebi.ac.uk
http://www.ncbi.nlm.nih.gov
http://www.expasy.org
http://www.rcsb.org/pdb/
http://www.genome.ad.jp

FASTA format

p A simple format for DNA and protein sequence
data is FASTA

Header line,
begins with >

>Hepatitis delta virus, conpl ete genone

81

at gagccaagt t ccgaacaaggat t cgcggggaggat agat cagcgcccgagaggggt ga
gt cggt aaagagcat t ggaacgt cggagat acaact cccaagaaggaaaaaagagaaagc
aagaagcggat gaat t t ccccat aacgccagt gaaact ct aggaaggggaaagagggaag
gt ggaagagaaggaggcgggcct cccgat ccgaggggeccggeggecaagt t t ggaggac
act ccggcccgaagggt t gagagt accccagagggaggaagccacacggagt agaacaga
gaaat cacct ccagaggacccct t cagcgaacagagagcgcat cgcgagagggagt agac
cat agcgat aggaggggat gct aggagt t gggggagaccgaagcgaggaggaaagcaaag
agagcagcggggct agcaggt gggt gt t ccgccccccgagaggggacgagt gaggcet t at
cccggggaact cgactt at cgt ccccacat agcagact cccggaccccct tt caaagt ga



Introduction to
Bioinformatics

I
Biological words



Recap

83

p DNA codes information with alphabet of 4
letters: A, C, G, T

p INn proteins, the alphabet size is 20

p DNA -> RNA -> Protein (genetic code)

n Three DNA bases (triplet, codon) code for one
amino acid

n Redundancy, start and stop codons



Given a DNA sequence, we might ask a number of questions

— What sort of statistics should be used to describe the sequence?

What sort ‘of organism did this sequence come from?

Does the description of this'sequence differ from
the description of other DNA in the organism?

What sort ‘of sequence‘is this? What does it do?
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Biological words

p We can try to answer guestions like these
by considering the words in a sequence

p A k-word (or a k-tuple) is a string of length
k drawn from some alphabet

p A DNA k-word iIs a string of length k that
consists of letters A, C, G, T
n 1-words: individual nucleotides (bases)
n 2-words: dinucleotides (AA, AC, AG, AT, CA, ...)
n 3-words: codons (AAA, AAC, ..)
n 4-words and beyond
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1-words: base composition

p Typically DNA exists as duplex molecule
(two complementary strands)

5’ - GGATCGAAGCTAAGGGCT - 3°
3’ - CCTAGCTTCGATTCCCGA- 5’

Top strand: 7G,3C,5A,3T _
Bottom strand: 3G,7C,3A,5T These are something

Duplex molecule: 10G,10C,8A,8T we can determine
: experimentally.
Base frequencies: 10/36 10/36 8/36 8/36

fr(G + C) = 20/36, fr(A + T) = 1 — fr(G + C) = 16/36
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G+C content

87

p fr(G + C), or G+C content is a simple
statistics for describing genomes

p Notice that one value is enough
characterise fr(A), fr(C), fr(G) and fr(T)
for duplex DNA

p Is G+C content (= base composition) able
to tell the difference between genomes of
different organisms?

n Simple computational experiment, if we have
the genome sequences under study
(-> exercises)



G+C content and genome sizes (In
megabasepairs, Mb) for various organisms

88

p Mycoplasma genitalium 31.6% 0.585
p Escherichia coli K-12 50.7% 4.693
p Pseudomonas aeruginosa PAOl1 66.4% 6.264
p Pyrococcus abyssi 44.6% 1.765
p Thermoplasma volcanium 39.9% 1.585
p Caenorhabditis elegans 36%0 o7

p Arabidopsis thaliana 35% 125

p Homo sapiens 41% 3080



Base frequencies in duplex molecules

p Consider a DNA sequence generated randomly,
with probability of each letter being independent
of position In sequence

p You could expect to find a uniform distribution of
bases in genomes...

5" -. .. CGGATCGAAGCCTAAGGCELCT. . . - 3°
3" -...CCTAGCCTTCGATTCCCCA. . . -5’

p This is not, however, the case in genomes,
especially in prokaryotes
n This phenomena is called GC skew
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DNA replication fork

p When DNA is replicated Replication fork movement
’ <—
the molecule takes the

replication fork form

p New complementary
DNA is synthesised at
both strands of the
"fork”

p New strand in 5°-3’
direction corresponding
to replication fork
movement is called
leading strand and the
other lagging strand Lagging strand

Leading strand

Replication fork

90



DNA replication fork

91

p This process has Replication fork movement
specific starting
points in genome Leading strand
(origins of
replication)

p Observation: | |
Leading strands 3
have an excess of G
over C

p This can be

described by GC ;
skew statistics Lagging strand

O...
....
L

L)

Replication fork




GC skew

92

p GC skew Is defined as (#G - #C) / (#G +
#C)

p It Is calculated at successive positions in
Intervals (windows) of specific width

5’ GGATCGAAGCTAA(IIIiT
3’ TGCTTCGATT(%CCGA - 5’

(4-2)/(@4+2)=1/3

(3—-2)/(3+2)=1/5



G-C content & GC skew o
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2-words: dinucleotides

95

p Let’s consider a sequence L,,L,,...,L,
where each letter L, is drawn from the
DNA alphabet {A, C, G, T}

p We have 16 possible dinucleotides [il., ;:
AA, AC, AG, ..., TG, TT.



.1.d. model for nucleotides

p Assume that bases
n occur independently of each other

n bases at each position are identically
distributed

p Probability of the base A, C, G, T occuring

IS Pa, Pcs Pg, P71, respectively

n For example, we could use p,=p=ps;=p:=0.25
or estimate the values from known genome
data

n For example, P(TG) = p; pg
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2-words: IS what we see surprising?

p We can test whether a sequence is "unexpected”,
for example, with a x? test

p Test statistic for a particular dinucleotide r,r, Is
X? = (O — E)? / E where
n O Is the observed number of dinucleotide r,r,
n E Is the expected number of dinucleotide r,r,
n E=(n—-1)p,p,, under i.i.d. model

p Basic idea: high values of ¥2 indicate deviation

from the model
n Actual procedure is more detailed -> basic statistics

courses
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Refining the 1.1.d. model

98

p I.1.d. model describes some organisms well
(see Deonier’s book) but fails to
characterise many others

p We can refine the model by having the
DNA letter at some position depend on
letters at preceding positions

..TCGTGACGCCG ?

T Seqguence context to
consider



First-order Markov chains

Xy
|

..TCGTGACGCCG ?
|

Xt—l

p Lets assume that in sequence X the letter at
position t, X,, depends only on the previous letter
Xi.1 (first-order markov chain)

p Probability of letter j occuring at position t given
Xep = I Pij — PX¢ =11 X1 =1)

p We consider homogeneous markov chains:
probability p; Is independent of position t
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Estimating p;,

p We can estimate probabilities p; ("the probability
that j follows 1”) from observed dinucleotide
frequencies

Frequency

of dinucleotide AT
A C G T In sequence

N

Paa  Pac Pac Part

Pea+ Poc+ Pog + Per | «+— Base frequency
fr(C

Pea Pac Pas Por "

Pra Ptc Prc Prr

O 0>

..the values p,,, Pacs --+» Prgy PrrSUM tO 1
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ES'“ matl ng pIJ DinucleotidT frequency

v

P Py =P =11 Xea =1 =PX =], X = 1)

P(Xi.1 = 1)
/ "\

Probability of transition i -> j

Base frequency of nucleotide i,
fr(i)
0.052 7/ 0.345 = 0.151

T

A C G T ~A C G T

R
0. 146 0.052 0.058 0.089

0.423 0. 151 0.168 0. 258
0. 063 0.029 0.010 0. 056 0.399 0.184 0.063 0. 354
0. 050 0.030 0.028 0.051

0.314 0.189 0.176 0. 321
0. 086 0.047 0.063 0. 140 0.258 0.138 0.187 0.415

O 0>
O 0>

101 P(X; =1, X1 = 1) POX; =11 X, =1)



Simulating a DNA sequence

p From a transition matrix, it is easy to generate a
DNA sequence of length n:

n First, choose the starting base randomly according to
the base frequency distribution

n Then, choose next base according to the distribution
P(X, | X.,) until n bases have been chosen

TTCTTCAA A C G T

A 0.423 0.151 0. 168 0. 258
C 0.399 0.184 0.063 0. 354
(G|0.314 0.189 0.176 0. 321
1'|o.258 0.138 0.187 0.415

Look for R code in Deonier’s
book

102 PX¢ =11 Xea =1)



Simulating a DNA sequence

p Now we can quickly generate sequences of
arbitrary length...

ttcttcaaaat aaggat agt gattcttattggcttaagggat aacaatttagatcttttttcat gaatcatgtat gt caacgttaaaagttgaact gcaat aagttc
ttacacacgattgtttatctgcgtgcgaagcatttcactacatttgccgat gcagccaaaagtatttaacatttggtaaacaaattgacttaaatcgcgcacttaga
gtttgacgtttcatagttgatgcgtgtctaacaattacttttagttttttaaat gcgtttgtctacaatcattaatcagctctggaaaaacatt aatgcatttaaac
cacaatggat aattagttacttattttaaaattcacaaagtaattattcgaat agt gccct aagagagt act ggggt t aat ggcaaagaaaat t act gt agt gaaga
ttaagcctgttattatcacctgggtact ct ggt gaat gcacat aagcaaat gct act t cagt gt caaagcaaaaaaat t t act gat aggact aaaaaccctttattt
ttagaattt gt aaaaat gt gacctcttgcttataacatcatatttattgggtcgttctaggacactgtgattgecttctaactcttatttagcaaaaaattgtcata
gcttt gaggt cagacaaacaagt gaat ggaagacagaaaaagct cagcct agaat t agcat gt t t t gagt ggggaat t act t ggt t aact aaagt gt t cat gact gt
t cagcat at gat t gt t ggt gagcact acaaagat agaagagt t aaact aggt agt ggt gattt cgct aacacagttttcatacaagttctattttctcaatggtttt
ggat aagaaaacagcaaacaaatttagtattattttcct agt aaaaagcaaacat caaggagaaat t ggaagctgcttgttcagtttgcattaaattaaaaatttat
tt gaagt att cgagcaat gt t gacagt ct gcgtt ct t caaat aagcagcaaat cccct caaaat t gggcaaaaacct accct ggcttcttttt aaaaaaccaagaaa
agtcct at at aagcaacaaatttcaaaccttttgttaaaaattct gct gct gaat aaat aggcatt acagcaat gcaat t aggt gcaaaaaaggccatcctctttct
ttttttgtacaattgttcaagcaactttgaatttgcagattttaacccactgtctatatgggacttcgaattaaattgact ggtctgcatcacaaatttcaactgcc
caat gt aat cat at t ct agagt at t aaaaat acaaaaagt acaat t agt t at gcccat t ggcct ggcaatttatttactccactttccacgttttggggatatttta
actt gaat agt t cacaat caaaacat aggaaggat ct act gct aaaagcaaaagcgt at t ggaat gat aaaaaact tt gat gt t t aaaaaact acaacct t aat gaa
tt aaagtt gaaaaaat at t caaaaaaagaaat t cagtt ctt ggcgagt aat attttt gat gttt gagat cagggt t acaaaat aagt gcat gagat t aact ctt caa
at at aaactgatttaagtgtatttgctaataacattttcgaaaaggaat att at ggt aagaat t cat aaaaat gttt aat act gat acaactttcttttatatcctc
catttggccagaat act gt t gcacacaact aat t ggaaaaaaaat agaacgggt caat ct cagt gggaggagaagaaaaaagt t ggt gcaggaaat agttt ct act a
acct ggt at aaaaacat caagt aacat t caaat t gcaaat gaaaact aaccgat ct aagcattgattgatttttctcatgcctttcgectagttttaat aaacgcge
cccaactctcatcttcggttcaaatgatctattgtatttatgcactaacgtgettttatgttagecatttttcaccctgaagttccgagtcattggcgtcactcacaa
atgacattacaatttttctatgttttgttctgttgagtcaaagtgcat gcctacaattctttcttatat agaact agacaaaat agaaaaaggcacttttggagt ct
gaatgtcccttagttt caaaaaggaaattgttgaattttttgtggttagttaaattttgaacaaact agt at agt ggt gacaaacgat cacct t gagt cggt gact a
t aaaagaaaaaggagat t aaaaat acct gcggt gccacattttttgttacgggcatttaaggtttgcat gt gtt gagcaatt gaaacct acaact caat aagt catg
ttaagtcacttctttgaaaaaaaaaaagaccctttaagcaagctc
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Simulating a DNA sequence

104

aa
ac
ag
at

ca
cC
cg
ct

ga
gc
gg

ta
tc

tt

Dinucleotide frequencies
Simulated Observed

cNcNoNoNoNoNoNoNoNoNoNoNoNoNoNo!

145

. 050
. 055
. 092
. 065
. 028
. 011
. 058
. 048
. 032
. 029
. 050
. 084
. 052
. 064

138

146

. 052
. 058
. 089
. 063
. 029
. 010
. 056
. 050
. 030
. 028
. 051
. 086
. 047
. 063
. 0140

n = 10000



Simulating a DNA sequence

p The model is able to generate correct proportions
of 1- and 2-words in genomes...

p ...but fails with k=3 and beyond.

ttcttcaaaat aaggat agt gattcttattggcttaagggat aacaatttagatcttttttcat gaatcatgtat gt caacgttaaaagttgaact gcaat aagttc
ttacacacgattgtttatctgcgtgcgaagcatttcactacatttgccgat gcagccaaaagtatttaacatttggtaaacaaattgacttaaatcgcgcacttaga
gtttgacgtttcatagttgatgcgtgtctaacaattacttttagttttttaaat gcgtttgtctacaatcattaatcagctctggaaaaacatt aatgcatttaaac
cacaatggat aattagttacttattttaaaattcacaaagtaattattcgaat agt gccct aagagagt act ggggt t aat ggcaaagaaaat t act gt agt gaaga
ttaagcctgttattatcacctgggtact ct ggt gaat gcacat aagcaaat gct act t cagt gt caaagcaaaaaaat t t act gat aggact aaaaaccctttattt
ttagaattt gt aaaaat gt gacctcttgcttataacatcatatttattgggtcgttctaggacactgtgattgecttctaactcttatttagcaaaaaattgtcata
gcttt gaggt cagacaaacaagt gaat ggaagacagaaaaagct cagcct agaat t agcat gt t t t gagt ggggaat t act t ggt t aact aaagt gt t cat gact gt
t cagcat at gat t gt t ggt gagcact acaaagat agaagagt t aaact aggt agt ggt gattt cgct aacacagttttcatacaagttctattttctcaatggtttt
ggat aagaaaacagcaaacaaatttagtattattttcct agt aaaaagcaaacat caaggagaaat t ggaagctgcttgttcagtttgcattaaattaaaaatttat
tt gaagt att cgagcaat gt t gacagt ct gcgtt ct t caaat aagcagcaaat cccct caaaat t gggcaaaaacct accct ggcttcttttt aaaaaaccaagaaa
agtcct at at aagcaacaaatttcaaaccttttgttaaaaattct gct gct gaat aaat aggcatt acagcaat gcaat t aggt gcaaaaaaggccatcctctttct
ttttttgtacaattgttcaagcaactttgaatttgcagattttaacccactgtctatatgggacttcgaattaaattgact ggtctgcatcacaaatttcaactgcc
caat gt aat cat at t ct agagt at t aaaaat acaaaaagt acaat t agt t at gcccat t ggcct ggcaatttatttactccactttccacgttttggggatatttta
actt gaat agt t cacaat caaaacat aggaaggat ct act gct aaaagcaaaagcgt at t ggaat gat aaaaaact tt gat gt t t aaaaaact acaacct t aat gaa
tt aaagtt gaaaaaat at t caaaaaaagaaat t cagtt ctt ggcgagt aat attttt gat gttt gagat cagggt t acaaaat aagt gcat gagat t aact ctt caa
at at aaactgatttaagtgtatttgctaataacattttcgaaaaggaat att at ggt aagaat t cat aaaaat gttt aat act gat acaactttcttttatatcctc
catttggccagaat act gt t gcacacaact aat t ggaaaaaaaat agaacgggt caat ct cagt gggaggagaagaaaaaagt t ggt gcaggaaat agttt ct act a
acct ggt at aaaaacat caagt aacat t caaat t gcaaat gaaaact aaccgat ct aagcattgattgatttttctcatgcctttcgectagttttaat aaacgcge
cccaactctcatcttcggttcaaatgatctattgtatttatgcactaacgtgettttatgttagecatttttcaccctgaagttccgagtcattggcgtcactcacaa
atgacattacaatttttctatgttttgttctgttgagtcaaagtgcat gcctacaattctttcttatat agaact agacaaaat agaaaaaggcacttttggagt ct
gaatgtcccttagttt caaaaaggaaattgttgaattttttgtggttagttaaattttgaacaaact agt at agt ggt gacaaacgat cacct t gagt cggt gact a
t aaaagaaaaaggagat t aaaaat acct gcggt gccacattttttgttacgggcatttaaggtttgcat gt gtt gagcaatt gaaacct acaact caat aagt catg
ttaagtcacttctttgaaaaaaaaaaagaccctttaagcaagctc
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3-words: codons

p We can extend the previous method to 3-
words

p k=3 Is an important case in study of DNA
seguences because of genetic code

msgl..

3’ .LaCct Ccacct - 5’
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3-word probabilities

p Let’s again assume a seguence L of
Independent bases

p Probability of 3-word r,r,r; at position
1,I+1,I+2 In seguence L Is

P(Li=ry, Liss =T, Lo =13) =
P(L; = r)P(Li,; = ro)P(Liso = I3)
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3-words In Escherichia coli genome

Word
AAA
AAC
AAG
AAT
ACA
ACC
ACG
ACT
AGA
AGC
AGG
AGT
ATA
ATC
ATG
ATT

108

Count Observed Expected Word
. 02348
. 01780
. 01366
. 01789
. 01264
. 01614
. 01579
. 01075
. 01220
. 01743
. 01091
. 01073
. 01373
. 01864
. 01643
. 01797

108924

82582
63369
82995
58637
74897
73263
49865
56621
80860
50624
49772
63697
86486
76238
83398

oleolohoolololoeloeloelololollolele

oloNohololololoNolNolNololololelNe

. 01492
. 01541
. 01537
. 01490
. 01541
. 01591
. 01588
. 01539
. 01537
. 01588
. 01584
. 01536
. 01490
. 01539
. 01536
. 01489

CAA
CAC
CAG
CAT

76614
66751

104799

76985
86436
47775
87036
50426
70938

115695

86877
73160
26764
42733

102909

63655

eoloohoholololololololololololle

ololoholololololololololololole

Count Observed Expected
. 01651
. 01439
. 02259
. 01659
. 01863
. 01030
. 01876
. 01087
. 01529
. 02494
. 01872
. 01577
. 00577
. 00921
. 02218
. 01372

. 01541
. 01591
. 01588
. 01539
. 01591
. 01643
. 01640
. 01589
. 01588
. 01640
. 01636
. 01586
. 01539
. 01589
. 01586
. 01537



3-words In Escherichia coli genome

Word
GAA
GAC
GAG
GAT

109

Count Observed Expected Word
. 01800

. 01180
. 00915
. 01865
. 02070
. 02004
. 02471
. 01731
. 01211
. 01986
. 01024
. 01601
. 01135
. 01169
. 01425
. 01780

83494
54737
42465
86551
96028
92973

114632

80298
56197
92144
47495
74301
52672
54221
66117
82598

eololoholololololololololololelle

ololNoholololololoNolohoNololole

. 01537
. 01588
. 01584
. 01536
. 01588
. 01640
. 01636
. 01586
. 01584
. 01636
. 01632
. 01582
. 01536
. 01586
. 01582
. 01534

TAA
TAC
TAG
TAT
TCA
TCC
TCG
TCT
TGA
TGC
TGG
TGT
TTA
TTC
TTG
TTT

Count Observed Expected

68838
52592
27243
63288
84048
56028
71739
55472
83491
95232
85141
58375
68828
83848
76975

109831

ololohololololololoelololololeolle

. 01484
. 01134
. 00587
. 01364
. 01812
. 01208
. 01546
. 01196
. 01800
. 02053
. 01835
. 01258
. 01483
. 01807
. 01659
. 02367

eololoholololololololohoNolNololle

. 01490
. 01539
. 01536
. 01489
. 01539
. 01589
. 01586
. 01537
. 01536
. 01586
. 01582
. 01534
. 01489
. 01537
. 01534
. 01487



2nd order Markov Chains

p Markov chains readily generalise to higher orders

p In 2nd order markov chain, position t depends on
positions t-1 and t-2

p Transition matrix: AA
AC

AG
AT
CA

A C G T

p Probabilistic models for DNA and amino acid
sequences will be discussed in Biological
sequence analysis course (Il period)
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Codon Adaptation Index (CAI)

p Observation: cells prefer certain codons
over others in highly expressed genes

n Gene expression: DNA is transcribed into RNA
(and possibly translated into protein)

Moderately
_ / expressed
Amino

acid Codon Predicted Gene class | Gene class Il
Phe  TTT  0.493 0. 551 0.291 "\
TTC 0. 507 0. 449 0. 709 Highly
Al a GCT 0. 246 0. 145 0.275 expressed
GCC 0. 254 0. 276 0. 164 P
GCA 0. 246 0. 196 0. 240
GCG 0. 254 0. 382 0. 323
Asn AAT 0. 493 0. 409 0.172
AAC 0. 507 0. 591 0. 828

111 Codon frequencies for some genes in E. coli



Codon Adaptation Index (CAl)

p CAIl Is a statistic used to compare the
distribution of codons observed with the
preferred codons for highly expressed
genes

112



Codon Adaptation Index (CAI)

p Consider an amino acid sequence X = X;X,...X,

p Let p, be the probability that codon k is used in
highly expressed genes

p Let g, be the highest probability that a codon
coding for the same amino acid as codon k has

n For example, if codon k is "GCC”, the
corresponding amino acid is Alanine (see genetic
code table; also GCT, GCA, GCG code for Alanine)

n Assume that pgoc = 0.164, pger = 0.275, pgea =
0.240, pgeg =

n NOW Qgce = dger = Yeeca = Yocs =
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Codon Adaptation Index (CAI)

p CAIl is defined as

1/n

CAl = (IT py 7 ay )

k=1
p CAIl can be given also in log-odds form:

log(CAI) = (1/n) 2log(py/ ay)

k=1



CAl: example with an E. coli gene

M A L T K A E M S E Y L
ATG GCG CIT ACA AAA GCT GAA ATG TCA GAA TAT CIG
1. 00| 0. 47 0.02 0.45(0.80/0.47/0.79/1.00 0.43[0.79 0.19 0.02
0.06 0.02 0.47 0.20 0.06 0.21 0.32 0.210.81]0.02
0.28[0. 04/ 0. 04 0.28 0.03 0. 04
0.20/0.03 0.05 0. 20 0.01 0.03
0.01 0. 04 0.01
0. 89 0.18 0. 89
ATG GCT TTA ACT AAA GCT GAA ATG TCT GAA TAT TTA
GCC TTG ACC AAG GCC GAG TCC GAG TAC TTG
GCA CTT ACA GCA TCA CTT
GCG CTC ACG coc TCG CTC
CTA AGT CTA

CTG AGC CTG .,

[1.00 0.20 0.04 0.04 0.80 0.47 0.79 1.00 0.03 0.79 0. 19 0.89“}

1.00 0.47 0.89 0.47 0.80 0.47 0.79 1.00 0.43 0.79 0.81 0.89
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CAl: properties

p CAl = 1.0 : each codon was the most frequently
used codon in highly expressed genes

p Log-odds used to avoid numerical problems

n What happens if you multiply many values <1.0
together?

p In a sample of E.coli genes, CAIl ranged from 0.2
to 0.85

p CAI correlates with mRNA levels: can be used to
predict high expression levels
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Biological words: summary

p Simple 1-, 2- and 3-word models can
describe interesting properties of DNA
seguences
n GC skew can identify DNA replication origins

n It can also reveal genome rearrangement
events and lateral transfer of DNA

n GC content can be used to locate genes:
human genes are comparably GC-rich

n CAIl predicts high gene expression levels
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Biological words: summary

p k=3 models can help to identify correct
reading frames

n Reading frame starts from a start codon and
stops in a stop codon

n Consider what happens to translation when a
single extra base is introduced in a reading
frame

p Also word models for k = 3 have their
uses
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Next lecture

p Genome sequencing & assembly — where
do we get sequence data?
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Note on programming languages

p Working with probability distributions is
straightforward with R, for example

n Deonier’s book contains many computational
examples

n You can use R in CS Linux systems
p Python works too!
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Example Python code for generating

DNA sequence
#!/usr/bin/env python Markov chains

import sys, random

s with first-order

1 Initialisation: use packages ’'sys’ and 'random’,

121

n = int(sys.argv[1]) _J read sequence length from input.

tm ={'a': {'a' : 0.423, 'c' : 0.151, 'g’' : 0.168, 't' : 0.258%}, )
‘c' - {'a': 0.399, 'c': 0.184, 'g' : 0.063, 't' : 0.354},
'g':{'a":0.314, 'c' : 0.189, 'g’' : 0.176, 't' : 0.321},
't - {'a'": 0.258, 'c' : 0.138, 'g' : 0.187, 't' : 0.415}}

Transition matrix
> tm and initial
distribution pi.

pi = {'a’ : 0.345, 'c' : 0.158, ‘g’ : 0.159, 't' : 0.337} D

def choose(dist): )
r = random.randomy()
sum = 0.0
keys = dist.keys() Function choose(), returns

a key (here ’a’, ’'c’, 'g’ or

for k in keys: > 't") of the dictionary 'dist’ chosen randomly
sum += dist[k] according to probabilities in dictionary values.

if sum > r:
return k
return keys[-1] _/

¢ = choose(pi) M
for i in range(n - 1):
sys.stdout.write(c)
¢ = choose(tm|c])
sys.stdout.write(c)
sys.stdout.write(*'\n")

N Choose the first letter, then choose
next letter according to P(X; | Xi.1)-



Introduction to
Bioinformatics

[
Genome sequencing & assembly



Genome sequencing & assembly

p DNA sequencing
n How do we obtain DNA sequence information from
organisms?
p Genome assembly
n What is needed to put together DNA sequence
iInformation from sequencing?
p First statement of sequence assembly problem
(according to G. Myers):

n Peltola, Soderlund, Tarhio, Ukkonen: Algorithms for
some string matching problems arising in molecular
genetics. Proc. 9th IFIP World Computer Congress, 1983
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Recovery of shredded newspaper




DNA sequencing

p DNA sequencing: resolving a nucleotide
seguence (whole-genome or less)
p Many different methods developed
n Maxam-Gilbert method (1977)
n Sanger method (1977)
n High-throughput methods
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Sanger sequencing: sequencing by
synthesis

p A sequencing technique developed by Fred
Sanger

p Also called dideoxy sequencing
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DNA polymerase nucleoside
“ triphosphate

DNA polymerase

p A DNA polymerase is an
enzyme that catalyzes
DNA synthesis

p DNA polymerase needs

a primer N
n Synthesis proceeds ﬁ Proofreading
always in 5’->3’ direction on

127
http://en.wikipedia.org/wiki/DNA_polymerase


http://en.wikipedia.org/wiki/DNA_polymerase

Dideoxy sequencing

p INn Sanger sequencing, chain-terminating
dideoxynucleoside triphosphates (ddXTPs)
are employed
n ddATP, ddCTP, ddGTP, ddTTP lack the 3’-OH

tail of dXTPs

p A mixture of dXTPs with small amount of
ddXTPs is given to DNA polymerase with
DNA template and primer

p ddXTPs are given fluorescent labels
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Dideoxy sequencing

p When DNA polymerase encounters a
ddXTP, the synthesis cannot proceed

p The process yields copied sequences of
different lengths

p Each seguence is terminated by a labeled
ddXTP
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Determining the sequence

p Sequences are sorted
according to length by
capillary
electrophoresis

p Fluorescent signals
corresponding to
labels are registered

p Base calling:
Identifying which base
corresponds to each
position in a read Output sequences from
n Non-trivial problem! base calling are called

AAACAACTTOCGEGTAAGT ATA
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Reads are short!

p Modern Sanger sequencers can produce
quality reads up to —~750 bases?

n Instruments provide you with a quality file for
bases In reads, in addition to actual sequence
data

p Compare the read length against the size
of the human genome (2.9x10° bases)

p Reads have to be !

1 Nature Methods - 5, 16 - 18 (2008)
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Problems with sequencing

p Sanger sequencing error rate per base
varies from 1% to 3%o1

p Repeats in DNA

n For example, —~300 base Alu sequence
repeated is over million times in human
genome

n Repeats occur in different scales

p What happens if repeat length is longer
than read length?
n We will get back to this problem later

132 1 Jones, Pevzner (2004)



Shortest superstring problem

p Find the shortest string that "explains” the
reads

p Given a set of strings (reads), find a
shortest string that contains all of them
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Example: Shortest superstring

Set of strings: {000, 001, 010, 011, 100, 101, 110, 111}

Concetenation of strings: 000001010011100101110111

010
110
011
000
Shortest superstring: 0001110100
001
111
101
100

134



Shortest superstrings: Issues

p NP-complete problem: unlike to have an
efficient (exact) algorithm

p Reads may be from either strand of DNA

p Is the shortest string necessarily the
correct assembly?

p What about errors in reads?

p Low coverage -=> gaps in assembly

n Coverage: average number of times each base
occurs in the set of reads (e.g., 5x coverage)

135



Sequence assembly and combination
locks

p What is common with seguence assembly
and opening keypad locks?

136



Whole-genome shotgun sequence

p Whole-genome shotgun seguence
assembly starts with a large sample of
genomic DNA

1. Sample is randomly partitioned into inserts of
length = 500 bases

2. Inserts are multiplied by cloning them into a
vector which is used to infect bacteria

3. DNA is collected from bacteria and sequenced
4. Reads are assembled
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Assembly of reads with Overlap-Layout-
Consensus algorithm

p Overlap

n Finding potentially overlapping reads
p Layout

n Finding the order of reads along DNA

p Consensus (Multiple alignment)
n Deriving the DNA sequence from the layout

p Next, the method is described at a very
abstract level, skipping a lot of details

Kececioglu, J.D. and E.W. Myers. 1995. Combinatorial algorithms for
138 DNA sequence assembly. Algorithmica 13: 7-51.



Finding overlaps

p First, pairwise overlap

alignment of reads is acggagtcc

resolved agtccgcgctt
p Reads can be from

either DNA strand: r

The reverse .

complement r* of 5 ——ait-gagtgga

q)

c

o
~t

each read r has to be g———ta
considered )

r,

r,: tgagt, r,;": actca
r,: tccac, r,”: gtgga
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Example sequence to assemble

5 — CAGCGCGCTGCGTGACGAGTCTGACAAAGACGGTATGCGCATCG
TGATTGAAGTGAAACGCGATGCGGTCGGTCGGTGAAGTTGTGCT - 3

p 20 reads:

# Read Read* # Read Read*

1 CATCGICA TCACGATG 11 GGICGGTG CACCGACC
2 CGGIGAAG CTTCACCG 12 ATCGTGAT ATCACGAT
3 TATGCGCA TGCGCATA 13 GCCCTCCG CGCAGCGC
4 GACGAGTIC GACTCGIC 14  GCATCGIG CACGATGC
5 CTGACAAA TTTGTCAG 15  AGCGCCGCCT AGCGCGECT
6  ATGCGCAT ATGCGCAT 16  GAAGITGT ACAACTTC
7 ATGCCGGTC GACCGCAT 17 AGIGAAAC GITTCACT
g8  CTGCGIGA TCACGCAG 18 ACGCGATG CATCGCGT
9  GCGTGACG CGTCACGC 19 GCGCATCG CGATGCGC
10 GICGGTGA TCACCGAC 20  AAGTGAAA TTTCACTT
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Finding overlaps

o)

141

Overlap between two reads
can be found with a
dynamic programming
algorithm

n Errors can be taken into
account

Dynamic programming will
be discussed more on next
lecture

Overlap scores stored into
the overlap matrix
n Entries (i, J) below the

diagonal denote overlap of
read r; and r;”

Overlap(1, 6) = 3

6 ATGCG

1

12 |

CAT

C

AT

CGTCA

ATCGTGA

T

Overlap(1, 12) =7

6

12

3

~




Finding layout & consensus

p Method extends the

assembly greedily by Ambiguous bases
choosing the best /
overlaps

p Both orientations are
considered 14 GCATCGTG

p Sequence Is extended 1 CATCGTGA
as far as possible 12 ATCGTGAT

Consen
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Finding layout & consensus

p We move on to next best
overlaps and extend the
sequence from there

p The method stops when

there are no more overlaps 2 COEGTGAAG
to consider 10 GTCGGTGA

p A number of IS 11 GGICGGETG
produced

p Contig stands for
contiguous sequence,

resulting from merging ATGCCGGTCGGTGAAG

reads
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Whole-genome shotgun seqguencing;
summary

Original genome sequence

Reads P : :
Non-overlapping Overlapping reads
read => Contig

p Ordering of the reads is initially unknown
p Overlaps resolved by aligning the reads

p In a 3x10° bp genome with 500 bp reads and 5x
coverage, there are —~10’ reads and —107(107-1)/2
= ~5x1013 pairwise segquence comparisons
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Repeats iIn DNA and genome assembly

Two instances of the same repeat

Figure 2. Repeat
I rptiA I rpt1B Il sequence. The top
- —— [=— — represents the cor-
— = rect layout of three
DNA sequences. The
hottom shows a
repeat collapsed in
a misassembly.

Pop, Salzberg, Shumway (2002)
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Repeats in DNA cause problems in
sequence assembly

p Recap: If repeat length exceeds read
length, we might not get the correct
assembly

p This is a problem especially in eukaryotes

n —3.1% of genome consists of repeats in
Drosophila, —45%% Iin human

p Possible solutions
1. Increase read length — feasible?

2. Divide genome into smaller parts, with known
order, and sequence parts individually
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"Divide and conguer’” sequencing
approaches: BAC-by-BAC

Whole-genome shotgun sequencing

Genome
I | | | I . |
| | I | |
] ] | ] I ] | |
Divide-and-conquer
Genome
BAC library
“.—o’
-----------
““““““““““““
“““““““““
““““““““
l‘l |
| | | ] ] I |
] ] ] | I | |
] | | |



BAC-by-BAC sequencing

p Each BAC (Bacterial Artificial
Chromosome) is about 150 kbp

p Covering the human genome requires
~30000 BACs

p BACs shotgun-sequenced separately

n Number of repeats in each BAC is
than in the whole

genome...

n ...needs compared
to whole-genome shotgun sequencing
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Hybrid method

p Divide-and-conquer and whole-genome
shotgun approaches can be combined

n Obtain high coverage from whole-genome
shotgun sequencing for short contigs

n Generate of a set of BAC contigs with low
coverage

n Use BAC contigs to ”bin” short contigs to
correct places

p This approach was used to seguence the
brown Norway rat genome in 2004
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Paired end sequencing

p Paired end (or mate-pair) seguencing Is
technique where
n both ends of an insert are sequenced
n For each insert, we get two reads

n We know the distance between reads, and that
they are in opposite orientation

n Typically read length < insert length
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Paired end sequencing

p The key idea of paired end sequencing:

n Both reads from an insert are unlikely to be in repeat
regions

n If we know where the first read iIs, we know also
second’s location

Repeat region

p This technique helps to WGSS higher organisms

151



First whole-genome shotgun sequencing
project: Drosophila melanogaster

p Fruit fly is a common
model organism in
biological studies

p Whole-genome
assembly reported Iin
Eugene Myers, et al.,
A Whole-Genome
Assembly of
Drosophila, Science
24, 2000

p Genome size 120 Mbp

hﬁﬁ://en.wikipedia.org/wiki/DrosophiIa_melanogaster


http://en.wikipedia.org/wiki/Drosophila_melanogaster

Sequencing of the Human Genome

p The (draft) human
genome was published
In 2001

p Two efforts:

n Human Genome Project
(public consortium)

n Celera (private

HUMAN 2.
GENOME . 8 ™%

company) HGP: Nature 15 February 2001
p HGP: BAC-by-BAC Vol 409 Number 6822
approach

P Celera: WhOle—genome Celera: Science 16 February 2001
shotgun sequencing Vol 291, Issue 5507
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Genome assembly software

p phrap (Phil’s revised assembly program)

p AMOS (A Modular, Open-Source whole-
genome assembler)

p CAP3 / PCAP
p TIGR assembler
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Next generation sequencing techniques

p Sanger seguencing is the prominent first-
generation sequencing method

p Many new sequencing methods are
emerging

p See Lars Paulin’s slides (course web page)
for details
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Next-gen sequencing: 454

p Genome Sequencer FLX (454 Life Science
/ Roche)
n =100 Mb /7 7.5 h run
n Read length 250-300 bp
n =>99.5% accuracy / base in a single run
n =>99.99% accuracy / base in consensus
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Next-gen sequencing: lllumina Solexa

p lllumina / Solexa Genome Analyzer

n Read length 35 - 50 bp
n 1-2 Gb / 3-6 day run
n = 98.5% accuracy / base in a single run

n 99.99% accuracy / consensus with 3x
coverage

157



Next-gen sequencing: SOLID

p SOLID
n Read length 25-30 bp
n 1-2 Gb / 5-10 day run
n =>99.94% accuracy / base

n =>99.999% accuracy / consensus with 15x
coverage
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Next-gen sequencing: Helicos

p Helicos: Single Molecule Sequencer
n No amplification of sequences needed

n Read length up to 55 bp

» Accuracy does not decrease when read length is
Increased

» Instead, throughput goes down

n 25-90 Mb / h
n >2 Gb / day
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Next-gen sequencing: Pacific
Biosciences

p Pacific Biosciences

n Single-Molecule Real-Time (SMRT) DNA
sequencing technology

n Read length “
Should overcome most problems with repeats

n Throughput estimate:
n First instruments in 20107

160



EXercise groups

p 1st group: Tuesdays 16.15-18.00 C221
p 2nd group: Wednesday 14.15-16.00 B120

p You can choose freely which group you
want to attend to

p Send exercise notes before the 1st group
starts (Tue 16.15), even if you go to the
2nd group
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Introduction to
Bioinformatics

Lecture 3:
Sequence alignment



Sequence alignment

p The biological problem
p Global alignment

p Local alignment

p Multiple alignment
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Background: comparative genomics

p Basic question In biology: what properties
are shared among organisms?

p Genome sequencing allows comparison of
organisms at DNA and protein levels

p Comparisons can be used to

n Find evolutionary relationships between
organisms

n ldentify functionally conserved sequences

n ldentify corresponding genes in human and
model organisms: develop models for human
diseases
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Homologs

o)

165

Two genes (seguences in
general) gg and g,
evolved from the same
ancestor gene g, are
called homologs

Homologs usually exhibit
conserved functions

Close evolutionary
relationship => expect a
high number of homologs

0, = agtgtccgttaagtgegttc

g = agtgccgttaaagttgtacgtc

gc = ctgactgtttgtggttc



Sequence similarity

p We expect homologs to be "similar” to each other

p Intuitively, similarity of two sequences refers to
the degree of match between corresponding
positions in sequence

agtgccgttaaagttgtacgtc

ctgactgtttgtggttc

p What about sequences that differ in length?
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Similarity vs homology

p Seguence similarity Is not sequence

homology

n If the two sequences gz and g. have accumulated
enough mutations, the similarity between them is likely

to be low
#mutations #mutations
0 agtgtccgttaagtgcgttc 64 acagtccgttcgggctattg
1 agtgtccgttatagtgcgttc 128 cagagcactaccgc
2 agtgtccgcttatagtgcgttc 256 cacgagtaagatatagct
4  agtgtccgcttaagggcgttc 512 taatcgtgata
8 agtgtccgcttcaaggggcgt 1024 acccttatctacttcctggagtt
16 gggccgttcatgggggt 2048 agcgacctgcccaa
32 (cagggcgtcactgagggct 4096 caaac

Homology is more difficult to detect over greater
evolutionary distances.
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Similarity vs homology (2)

p Seguence similarity can occur by chance
n Similarity does not imply homology

p Consider comparing two short sequences
against each other
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Orthologs and paralogs

p We distinguish between two types of homology

n Orthologs: homologs from two different species,
separated by a speciation event

n Paralogs: homologs within a species, separated by a

gene duplication event Organism A
a Gene duplication event —— |

Organism B Organism C gs 9c| Paralogs

Ja 9a’

“

Orthologs
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Orthologs and paralogs (2)

p Orthologs typically retain the original function

p In paralogs, one copy is free to mutate and
acquire new function (no selective pressure)

Organism A

Organism B Organism C

Ja 9a

O Oc
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Paralogy example: hemoglobin

p Hemoglobin is a protein
complex which transports
oxygen

p In humans, hemoglobin
consists of four protein
subunits and four non-
protein heme groups

Sickle cell diseases
are caused by mutations
in hemoglobin genes

Hemoglobin A,
www.rcsb.org/pdb/explore.do?structureld=1GZX

171 http://en.wikipedia.org/wiki/lmage:Sicklecells.jpg


http://www.rcsb.org/pdb/explore.do?structureId=1GZX
http://en.wikipedia.org/wiki/Image:Sicklecells.jpg

Paralogy example: hemoglobin

p In adults, three types are
normally present

n Hemoglobin A: 2 alpha and
2 beta subunits

n Hemoglobin A2: 2 alpha
and 2 delta subunits

n Hemoglobin F: 2 alpha and
2 gamma subunits
p Each type of subunit
(alpha, beta, gamma,
delta) is encoded by a
separate gene

Hemoglobin A,
www.rcsb.org/pdb/explore.do?structureld=1GZX
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Paralogy example

- hemoglobin

p The subunit genes are

173

paralogs of each other, i.e.,
they have a common ancestor
gene

Exercise: hemoglobin human
paralogs in NCBI sequence

databases
http://www.ncbi.nlm.nih.gov/sites/entre
z?db=Nucleotide

n Find human hemoglobin alpha, beta,
gamma and delta

n Compare sequences

Hemoglobin A,
www.rcsb.org/pdb/explore.do?structureld=1GZX


http://www.ncbi.nlm.nih.gov/sites/entre
http://www.rcsb.org/pdb/explore.do?structureId=1GZX

Orthology example: insulin

p The genes coding for insulin In human
(Homo sapiens) and mouse (Mus
musculus) are orthologs:

n They have a common ancestor gene in the
ancestor species of human and mouse

n Exercise: find insulin orthologs from human
and mouse in NCBI sequence databases
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Sequence alignment

p Alignment specifies which positions in two
seguences match

175

acgt ct ag acgt ct ag acgt ct ag
act ct ag- - act ct ag ac-1ct ag
2 matches 5 matches 7 matches

5 mismatches 2 mismatches 0 mismatches
1 not aligned 1 not aligned 1 not aligned



Sequence alignment

p Maximum alignment length is the total length of
the two sequences

acgtctag-------  ------- acgt ct ag

-------- actctag actctag--------

0 matches 0 matches
0 mismatches 0 mismatches
15 not aligned 15 not aligned
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Mutations: Insertions, deletions and
substitutions

Indel: insertion or Mismatch: substitution
deletion of a base ||| (point mutation) of
with respect to the a single base
ancestor sequence

Q|
O
— —F
@)
—
QD
(@)

p Insertions and/or deletions are called

Indels

n We can’t tell whether the ancestor sequence
had a base or not at indel position!
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Problems

p What sorts of alignments should be considered?
p How to score alignments?
p How to find optimal or good scoring alignments?

p How to evaluate the statistical significance of
scores?

In this course, we discuss each of these problems
briefly.
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Sequence Alignment (chapter 6)

p The biological problem
p Global alignment

p Local alignment

p Multiple alignment
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Global alignment

p Problem: find optimal scoring alignment between
two sequences (Needleman & Wunsch 1970)

p Every position in both sequences is included In
the alignment

p We give score for each position in alignment

n ldentity (match) +1
n Substitution (mismatch) -
n Indel -0

p Total score: sum of position scores
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Scoring: Toy example

p Consider two sequences WHAT
with characters drawn | |
from the English
language alphabet: WH- Y
WHAT, WHY
S(WHATWH-Y)=1+1-85—-p
VWHAT
- VHY

S(WHAT/-WHY)=-0—-pu—pu—H
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Dynamic programming

p How to find the optimal alignment?

p We use previous solutions for optimal
alignments of smaller subsequences

p This general approach is known as
dynamic programming
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Introduction to dynamic programming:
the money change problem

p Suppose you buy a pen for 4.23€ and pay for
with a 5€ note

p You get 77 cents in change — what coins is the
cashier going to give you if he or she tries to
minimise the number of coins?

p The usual algorithm: start with largest coin
(denominator), proceed to smaller coins until no
change is left:

n 50, 20, 5 and 2 cents

p This greedy algorithm is incorrect, in the sense
that it does not always give you the correct
answer
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The money change problem

p

p

184

How else to compute the

7/
change? V ‘N
We could consider all possible

ways to reduce the amount of

27 of 12
o ZAVAN
Suppose we have 77 cents / ‘\\
change, and the following 7 22 7 37 52 22 52 67
coins: 50, 20, 5 cents

We can compute the change

with recursion p Many values are computed more
n C(n)=min{ C(n—50) + 1, than once!
C(h—-20)+1,C(n-5+1} p Thisleads to a correct but very
Figure shows the recursion Inefficient algorithm

tree for the example



The money change problem

p We can speed the computation up by
solving the change problem for all 1 = n

n Example: solve the problem for 9 cents with
available coins being 1, 2 and 5 cents

p Solve the problem in steps, first for 1
cent, then 2 cents, and so on

p In each step, utilise the solutions from the
previous steps
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The money change problem

Amount of

change left o 1 2 3 4 5 6 7 8 9

Number of 0 1 1 2
coins used

p Algorithm runs in time proportional to Md, where M is the
amount of change and d is the number of coin types

p The same technique of storing solutions of subproblems can
be utilised in aligning sequences
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Representing alignments and scores

Alignments can be
represented in the

following tabular form. - W H|A|T

Each alignment
corresponds to a path

through the table. \

H \_>
| |
Y



Representing alignments and scores

AT - IW|H|A|T
| |
- — ) =) =)
VY- -
Wl K '
WHAT- - -
¥ h '
- o
WHY - =>




Representing alignments and scores

VHAT

||
VWH Y

Global alignment
score Sz, = 2-0-H

2-0

2-0-|




Filling the alignment matrix

W

H

A

T

(

Case 1

ase 3

lase 2

S
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Consider the alignment process
at shaded square.

Case 1. Align H against H
(match)

Case 2. Align H in WHY against
— (indel) in WHAT

Case 3. Align H in WHAT
against — (indel) in WHY



Filling the alignment matrix (2)

W

H

A

T

(

Case 1

ase 3

lase 2

S

191

Scoring the alternatives.

Case 1. S,,=3S,, +5s(2, 2)
Case 2.5,,=S,,-0

Case 3.5,,=S,,—-0

s(i, J) = 1 for matching positions,
s(i, J) = - H for substitutions.

Choose the case (path) that
yields the maximum score.

Keep track of path choices.



Global alignment: formal

development

A =a;a,a,...4,,

B =Db,b,b;...b,
b, b, b, b, -
- - Ay 4

1 Any alignment can be written
as a unique path through the
matrix

1 Score for aligning A and B up
to positions i and j:

Si; = S(a,a,33...a;, bybybs...b)

192

al 1
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|

a, !




Scoring partial alignments

p Alignment of A = a,a,a;...a; with B = b, b,b;...b;
can be end in three possible ways
n Case 1: (a;a,...a,_1) &
(bybs...b, 1) by
n Case 2: (a;a,...a,_ 1) &
(byb,..o)) -
n Case 3: (a;a,...a) —
(byb,...b; ;) b,
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Scoring alignments

p Scores for each case:

+1if & =D,
n Case 1: (a;a,...;_;) 8, s(a;, bj) — { |
(b,b,...b; ;) b -\ otherwise
n Case 2: (a;a,...a, 1) &
(b;b,...b)) —
n Case 3: (a;a,...)) — s(a;, -) = s(-, by) =-0

(b,b,...b;.,) b,
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Scoring alignments (2)

p First row and first column
correspond to initial alignment
against indels:

S(i, 0)=-i &
S(0,))=-]0

p Optimal global alignment score
S(A,B)=S,,,

195
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-30




Algorithm for global alignment

Input sequences A, B, n=|A], m = |B|
Set S;, :=-0I for all |
Set Sy; :=-0) for all j
fori:=1ton
forj:=1tom
SRS maX{Si-l,j -0, Si 11t S(ai’bj)’ Sij1— O}
end
end

Algorithm takes O(nm) time
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Global alignment: example

—4 O O 4 >

- T G G T G
0| -2|-4|-6]|-8]-10
-2
-4
-6
-8




Global alignment: example

- T G
0=2 -2 - _v]_ __,!3

—4 O O 4 >
|
o




Global alignment: example (2)

SICIE R A
Tt
RN T I® P
SRS S Taw B
QIO F| P TP
R T .
NN R R
RE TS B B
V| | e
7 ~
or 7__ ..vA__.u.v R.u-Vom ..vm_




Sequence Alignment (chapter 6)

p The biological problem
p Global alignment

p Local alignment

p Multiple alignment
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p Otherwise dissimilar proteins may have local regions of
similarity
-> Proteins may share a function

Human bone
morphogenic protein
receptor type Il
precursor (left) has a
300 aa region that
resembles 291 aa
region in TGF-f3
receptor (right).

The shared function
here is protein kinase.
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Local alignment: rationale

: —

————

Regions of
similarity

p Global alignment would be inadequate

p Problem: find the highest scoring local alignment
between two sequences

p Previous algorithm with minor modifications solves this
problem (Smith & Waterman 1981)
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From global to local alignment

p Modifications to the global alignment
algorithm

n Look for the highest-scoring path in the
alignment matrix (not necessarily through the
matrix), or in other words:

n Allow preceding and trailing indels without
penalty

203



Scoring local alignments

A = a,a,a;...a,, B =b;b,b;...b,

Let | and J be intervals (substrings) of A and B, respectively:
T4 J=B

Best local alignment score:
M(A,B) =max{S(I,J): I C A, J C B}

where S(1, J) is the alignment score for substrings | and J.
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Allowing preceding and trailing

Indels

p First row and column
Initialised to zero:

Mio =Mp; =0

bl b2 b3
al
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1 2 3 4

b, |b, |by |by,
- ) C{ 0] 0]
a, \




Recursion for local alignment

p M: = max {
1j-1 + s(&, by,

o

i-1j — O
ij-1— O

Allow alignment to

start anywhere in
sequences

O I < Z¢
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Finding best local alignment

p Optimal score is the highest - T G G
value in the matrix

M(A,B) =max{S(I,J): I C A, J C B}

= max;; Mi,j

p Best local alignment can be

found by backtracking from the
highest value in M

R O O/O O
o] O | O] O] -

p What is the best local

o] O] O] O] O] ©
Rl O] O | O] O

4= & O 4 >

alignment in this example?

O k| O] O O] O] ®
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Local alignment: example

M;; = max {
Mi1j1 + s(&,
bi)!
M1~ 0,
Mij1 — 0,
0
}

Scoring (for example)
Match: +2

Mismatch: -1

Indel: -2
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Local alignment: example

M;; = max {
Mi1j1 + s(&,
bi)!
M1~ 0,
Mij1 — 0,
0
}

Scoring (for example)
Match: +2

Mismatch: -1

Indel: -2
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Multiple optimal alignments
Non-optimal, good-scoring alignments

0O 1 2 3 45 6 7 8 9 %

How can you find - IglglcITICIAIAITIC A
1. Optimal O - |00 |0 |0 (O O\-O \O 0 O\‘O
alignments if 1 A |0 |0 |O \_O 0 \.O 2 \2 \O \RO 2
more than one 2 C |0 |0 |02J042Yy0 |1 (1242yo
exist? a ~x “k
' 3 C |0 |0 |0 |2 ‘hl 2 |1 |0 \‘O 31
v
2. Non-optimal, 4 T |0 |0 |0 0422 \1 \EO 2 \_1 \2
gc_)od—scoring 5 A|O|O0O |0 |0 |23 4 U3—»1 |1 \3
alignments? 6 AloJo]o|o o1 5;-:4 +2 [3
¥ 3‘
7 G |02 \_2 O |0 (O 3* 4*; 5371
8 G|0(2|472 |0 |0 |1 |2 |3 |47T2
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Overlap alignment

p Overlap matrix used by Overlap-Layout-
Consensus algorithm can be computed with
dynamic programming

p Initialization: O;, = Oy ; = O for all 1, ]

p Recursion:

O;; = max {
Oi_1j-1 + s(&;, by,
Oi—l,j - 6,

Oi,j—l — 0,
¥

Best overlap: maximum value from rightmost
column and bottom row
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Non-uniform mismatch penalties

p We used uniform penalty for mismatches:
S(,A,’ 1C1) —_ S(’A” 1G1) —_ o —_ S(!Gl’ 7T1) —_ u
p Transition mutations (A->G, G-=>A, C->T, T-=C) are

approximately twice as frequent than transversions (A->T,

T-=A, A-=>C, G->T)
n use non-uniform mismatch
penalties collected into a

substitution matrix A C G T
A 1 -1 -0.5| -1
C -1 1 -1 |-0.5
G |[-0.5| -1 1 -1
T -1 |-0.5| -1 1
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Gaps In alignment

p Gap Is a succession of indels In alignment

CT|- A A
CTCGCAA

p Previous model scored a length k gap as
w(k) = -kd

p Replication processes may produce longer
stretches of insertions or deletions

n In coding regions, insertions or deletions of
codons may preserve functionality
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Gap open and extension penalties (2)

p We can design a score that allows the
penalty opening gap to be larger than
extending the gap:

w(k) = -a—-pB(k—-1)

p Gap open cost a, Gap extension cost 3

p Alignment algorithms can be extended to
use w(k) (not discussed on this course)
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Amino acid sequences

p We have discussed mainly DNA sequences

p AmIno acid seqguences can be aligned as
well

p However, the design of the substitution
matrix Is more involved because of the
larger alphabet

p More on the topic in the course Biological
seguence analysis
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Demonstration of the EBI web site

p European Bioinformatics Institute (EBI)
offers many biological databases and
bioinformatics tools at
http://www.ebi.ac.uk/

n Sequence alignment: Tools -> Sequence
Analysis -=> Align

217


http://www.ebi.ac.uk/

Sequence Alignment (chapter 6)

p The biological problem
p Global alignment

p Local alignment

p Multiple alignment
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Multiple alignment

p Consider a set of n sequences

on the right aggcgagctgcgagtgcta
n QOrthologous sequences from cgttagattgacgctgac
different organisms ttccggcectgegac
n Paralogs from multiple gacacggcgaacgga
duplications agtgtgcccgacgagcgaggac
p How can we study gcgggctgtgagegceta
relationships between these aagcggcctgtgtgeccta
sequences? atgctgctgccagtgta
agtcgagccccgagtgce
agtccgagtcc

actcggtgc
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Optimal alignment of three
sequences

p Alignment of A = a,;a,..a; and B = b,b,...b; can
end either in (-, b;), (a;, b;) or (a;, -)
p 22 — 1 = 3 alternatives

p Alignment of A, B and C = c¢,C,...c, can end in 23—
1 ways: (&, -, -), (-, b, =), (=, -, €, (= by, ¢,
(&, -, ¢, (&, by, -) or (&, by, ¢,)

p Solve the recursion using three-dimensional
dynamic programming matrix: O(n3) time and
space

p Generalizes to n sequences but impractical with
even a moderate number of sequences
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Multiple alignment In practice

p In practice, real-world multiple alignment
problems are usually solved with heuristics

p Progressive multiple alignment

n

n

221

Choose two sequences and align them

Choose third sequence w.r.t. two previous sequences
and align the third against them

Repeat until all sequences have been aligned

Different options how to choose sequences and score
alignments

Note the similarity to Overlap-Layout-Consensus



Multiple alignment In practice

p Profile-based progressive multiple
alignment: CLUSTALW

n Construct a distance matrix of all pairs of
sequences using dynamic programming

n Progressively align pairs in order of decreasing
similarity

n CLUSTALW uses various heuristics to
contribute to accuracy
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Additional material

p R. Durbin, S. Eddy, A. Krogh, G.
Mitchison: Biological sequence analysis

p N. C. Jones, P. A. Pevzner: An introduction
to bioinformatics algorithms

p Course Biological sequence analysis In
period Il, 2008
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Rapid alignment methods: FASTA and
BLAST

p The biological problem
p Search strategies

p FASTA

p BLAST
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The biological problem

p GIObaI and Iocal International Nuclentidfr??::t:‘ef:: BDatabase Collaboration
alignment algoritms are
slow in practice

p Consider the scenario of
aligning a query
sequence against a large
database of sequences

n New seqguence with

unknown function n NCBI GenBank size in January
2007 was 65 369 091 950
bases (61 132 599 sequences)

n Feb 2008: 85 759 586 764
bases (82 853 685 sequences)

SUDNIIG Ul BNEg SR G

Base Pars conlributed by GenBarkf—8 EMBL=— DOE)=N
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Problem with large amount of sequences

p Exponential growth in both number and
total length of sequences

p Possible solution: Compare against model
organisms only

p With large amount of sequences, chances
are that matches occur by random

n Need for statistical analysis
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Rapid alignment methods: FASTA and
BLAST

p The biological problem
p Search strategies

p FASTA

p BLAST
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FASTA

p FASTA is a multistep algorithm for sequence
alignment (Wilbur and Lipman, 1983)

p The sequence file format used by the FASTA
software iIs widely used by other sequence
analysis software

p Main idea:

n Choose regions of the two sequences (query and
database) that look promising (have some degree of
similarity)

n Compute local alignment using dynamic programming in
these regions
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FASTA outline

p FASTA algorithm has five steps:
n 1. ldentify common k-words between | and J

n 2. Score diagonals with k-word matches,
iIdentify 10 best diagonals

n 3. Rescore Initial regions with a substitution
score matrix

n 4. Join initial regions using gaps, penalise for
gaps

n 5. Perform dynamic programming to find final
alignments
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Search strategies

p How to speed up the computation?

n Find ways to limit the number of pairwise
comparisons

p Compare the sequences at word level to
find out common words

n Word means here a k-tuple (or a k-word), a
substring of length k
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Analyzing the word content

p Example query string I: TGATGATGAAGACATCAG

p For k = 8, the set of k-words (substring of length
k) of I is

TGATGATG
GATGATGA
ATGATGAA
TGATGAAG

GACATCAG
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Analyzing the word content

p There are n-k+1 k-words in a string of length n

p If at least one word of | is not found from
another string J, we know that | differs from J

p Need to consider statistical significance: | and J
might share words by chance only

p Let n=|I| and m=|J|
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Word lists and comparison by content

p The k-words of | can be arranged into a table of
word occurences L, (1)

p Consider the k-words when k=2 and
I=GCATCGGC:

GC, CA, AT, TC, CG, GG, GC
AT: 3

CA: 2

CG:5

GC: 1,7~ Start indecies of k-word GC in |
GG: 6

TC: 4 Building L, (1) takes O(n) time
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Common k-words

p Number of common k-words in | and J can
be computed using L, (1) and L,(J)

p For each word w in I, there are |L,(J)]
occurences in J

p Therefore 1 and J have 2_., [Luw(I)||Lw(J)]
common words

p This can be computed in O(n + m + 4k)
time
n O(n + m) time to build the lists

n O(4K) time to calculate the sum (in DNA
strings)
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Common k-words

pl = GCATCGGC
pdJd = CCATCGCCATCG

L.(1) L,(J)

AT: 3 AT:3,9

CA: 2 CA: 2, 8
CC:1,7

CG: 5 CG: 5,11

GC: 1,7 GC: 6

GG: 6

TC: 4 TC: 4,10
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Common words
2
2
0
2
2
0
2
1

O in total



Properties of the common word list

p Exact matches can be found using binary search
(e.g., where TCGT occurs in 1?)
n O(log 4%) time

p For large k, the table size is too large to compute
the common word count in the previous fashion

p Instead, an approach based on merge sort can be
utilised (details skipped)

p The common k-word technique can be combined
with the local alignment algorithm to yield a rapid

alignment approach
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FASTA outline

p FASTA algorithm has five steps:
n 1. ldentify common k-words between | and J

N

n 3. Rescore Initial regions with a substitution
score matrix

n 4. Join initial regions using gaps, penalise for
gaps

n 5. Perform dynamic programming to find final
alignments
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Dot matrix comparisons

p Word matches in two sequences | and J can be
represented as a dot matrix

p Dot matrix element (i, jJ) has "a dot”, if the word
starting at position i in | is identical to the word
starting at position j in J

p The dot matrix can be plotted for various k

i
...ATCCQ\TCA

.. TGGIGICAC ...
J
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Dot matrix (k=1,4,8,16) -
for two DNA sequences ..
X85973.1 (1875 bp)
Y11931.1 (2013 bp)
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Dot matrix
(k=1,4,8,16) for two
protein sequences
CAB51201.1 (531 aa)
CAA72681.1 (588 aa)

k=8 k=16

Shading indicates
now the match score
according to a

score matrix
(Blosum62 here)




Computing diagonal sums

p We would like to find high scoring diagonals of the dot
matrix

p Lets index diagonals by the offset, | =i - ]

J
CCATCGCCATCG
*

k=2

\ Diagonal | =i—)=-6

OO0OOO0O1>00
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Computing diagonal sums

p As an example, lets compute diagonal sums for
| = GCATCGGC, J = CCATCGCCATCG, k=2

p 1. Construct k-word list L, (J)

p 2. Diagonal sums S, are computed into a table,
Indexed with the offset and initialised to zero

|‘—10-9-8—7-6-5—4-3-2-10123456

&‘OOOOOOOOOOOOOOOOO
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Computing diagonal sums

p 3. Go through k-words of I, look for matches in
L, (J) and update diagonal sums

For the first 2-word in |,
GC, Lgc(Jd) = {6}.

CCATCIGCICATCG

We can then update

the sum of diagonal

* * l=i—j=1-6=-5t0

* * S, =S.+1=0+1=1

OOO0-d>00
*
*
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Computing diagonal sums

p 3. Go through k-words of I, look for matches in
L, (J) and update diagonal sums

Next 2-word in | is CA,
for which L-,(J) = {2, 8}.

CICAITCGCICAIT CG
*0

G - Two diagonal sums are
& * *’.‘ updated:
A i *o,. l1=i-j=2-2=0

T i ) Spi=S,+1=0+1=1
C + *.‘
G “| 1=i-j=2-8=-6
G * Sg=S5+1=0+1=1
C
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Computing diagonal sums

p 3. Go through k-words of I, look for matches in
L, (J) and update diagonal sums

Next 2-word in | is AT,
for which L,+(J) = {3, 9}.

CCIATICGCCIATICG
*0

G - Two diagonal sums are
C * *’.‘ updated:
A i Yo, 1=i-j=3-3=0

il * ) Spi=Sy+1=1+1=2
C + *0‘
G “| 1=i-j=3-9=-6
G * Sgi=Sg+l=1+1=2
C
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Computing diagonal sums

After going through the k-words of I, the result is:
I ’-10-9-8-7-6-5-4-3-2-10123456

3‘00004100004100000

J
CCATCGCCATCG
*

* *

OO0OOO0O1>00
*
*
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Algorithm for computing diagonal sum of scores

S :=0foralll—-m=<l<n-1
Compute L, (J) for all words w
fori:=1ton—-k—-1do
W = Bkl
for j e L,(J) do
| :=i—]
S:=S,+1 = Match score is here 1
end
end
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FASTA outline

p FASTA algorithm has five steps:
n 1. ldentify common k-words between | and J

n 2. Score diagonals with k-word matches,
iIdentify 10 best diagonals

N

N

n 5. Perform dynamic programming to find final
alignments
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Rescoring Initial regions

p Each high-scoring diagonal chosen in the
previous step Is rescored according to a score

matrix

p This is done to find subregions with identities
shorter than k

p Non-matching ends of the diagonal are trimmed

| :
J:

CCATCGCCATCG L S
CCAACGCAATCA 75% identity, no 4-word identities

|": CCATCIGCCATCG 339 identit 4-word identit
- AICATCIAAATAAA o identity, one 4-word identity
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Joining diagonals

p Two offset diagonals can be joined with a gap, if
the resulting alignment has a higher score

p Separate gap open and extension are used
p Find the best-scoring combination of diagonals

— High-scoring \
diagonals \

- / \\\\\
Twodiagonals |  \.....
joined by a gap \
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FASTA outline

p FASTA algorithm has five steps:
n 1. ldentify common k-words between | and J

n 2. Score diagonals with k-word matches,
iIdentify 10 best diagonals

n 3. Rescore Initial regions with a substitution
score matrix

n 4. Join initial regions using gaps, penalise for
gaps

N
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Local alignment in the highest-scoring
region

p

252

Last step of FASTA: perform local
alignment using dynamic
programming around the highest-
scoring

Region to be aligned covers —w and
+w offset diagonal to the highest-
scoring diagonals

With long sequences, this region is
typically very small compared to the
whole n x m matrix

Dynamic programming matrix
M filled only for the green region



Properties of FASTA

p Fast compared to local alignment using dynamic
programming only
n Only a narrow region of the full matrix is aligned

p Increasing parameter k decreases the number of
hits:
n Increases specificity
n Decreases sensitivity
n Decreases running time

p FASTA can be very specific when identifying long
regions of low similarity
n Specific method does not find many incorrect results
n Sensitive method finds many of the correct results
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Properties of FASTA

p FASTA looks for initial exact matches to
query seguence

n Two proteins can have very different amino
acid sequences and still be biologically similar

n This may lead into a lack of sensitivity with
diverged seqguences
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Demonstration of FASTA at EBI

p http://www.ebi.ac.uk/fasta/

p Note that parameter ktup in the software
corresponds to parameter Kk in lectures
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http://www.ebi.ac.uk/fasta/

Note on sequences and alignment
matrices in exercises

p Example solutions to alignment problems
will have sequences arranged like this:

n Perform global alignment of the sequences
» s = AGCTGCGTACT
>t = ATGAGCGTTA ATGAGCGTTA

So if you want to be able to
compare your solution easily
against the example, use this
convention.

1OV1909109V
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Rapid alignment methods: FASTA and
BLAST

p The biological problem
p Search strategies

p FASTA

p BLAST
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BLAST: Basic Local Alignment Search
Tool

p BLAST (Altschul et al., 1990) and its variants are
some of the most common sequence search tools
In use

p Roughly, the basic BLAST has three parts:

n 1. Find segment pairs between the query sequence and
a database sequence above score threshold ("seed hits™)

n 2. Extend seed hits into locally maximal segment pairs
n 3. Calculate p-values and a rank ordering of the local
alignments
p Gapped BLAST introduced in 1997 allows for gaps
In alignments
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Finding seed hits

p

First, we generate a set of neighborhood
seqguences for given k, match score matrix and
threshold T

p Neighborhood sequences of a k-word w include

p

259

all strings of length k that, when aligned against
w, have the alignment score at least T

For instance, let | = GCATCGGC, J =
CCATCGCCATCG and k = 5, match score be 1,
mismatch score be Oand T =4



Finding seed hits

p | = GCATCGGC, J = CCATCGCCATCG, k =5,
match score 1, mismatch score O, T =4

p This allows for one mismatch in each k-word
p The neighborhood of the first k-word of I, GCATC,

260

N

Is GCATC

T T G

and the 15 sequences

A A C A

GATC, GCSGIC, GCA< CC, GCATX

A
G

_|



Finding seed hits

p | = GCATCGGC has 4 k-words and thus 4x16 =

p

64 5-word patterns to locate in J
n Occurences of patterns in J are called seed hits

Patterns can be found using exact search in time
proportional to the sum of pattern lengths +
length of J + number of matches (Aho-Corasick
algorithm)

n Methods for pattern matching are developed on course
58093 String processing algorithms

p Compare this approach to FASTA
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Extending seed hits: original BLAST

p Initial seed hits are extended into \ AR N
locally maximal segment pairs
: i : NN
or High-scoring Segment Pairs \ \
(HSP) \
: N\
p Extensions do not add gaps to the N\
alignment
: : N D NN
p Seguence is extended until the N N\
alignment score drops below the . DN

maximum attained score minus a

threshold parameter value Extension
p All statistically significant HSPs TAATT
reported
[ FL T
T TCQTTI

Altschul, S.F., Gish, W., Miller, W., Myers, E. W. and
Lipman, D. J., J. Mol. Biol., 215, 403-410, 1990

Initial seed hit
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Extending seed hits: gapped BLAST

P

In a later version of BLAST, two
seed hits have to be found on the
same diagonal

n Hits have to be non-overlapping

n If the hits are closer than A
(additional parameter), then they
are joined into a HSP

Threshold value T is lowered to
achieve comparable sensitivity

If the resulting HSP achieves a
score at least S, a gapped
extension is triggered

Altschul SF, Madden TL, Schéaffer AA, Zhang J, Zhang Z, Miller W, and
Lipman DJ, Nucleic Acids Res. 1;25(17), 3389-402, 1997
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Gapped extensions of HSPs

p Local alignment is performed
starting from the HSP

p Dynamic programming matrix <
filled in "forward” and /
”"backward” directions (see \
figure) HSP/

p Skip cells where value would
be X, below the best

T
alignment score found so far / |

Region searched with score Region potentially searched
above cutoff parameter by the alignment algorithm
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Estimating the significance of results

p In general, we have a score S(D, X) = s for a
sequence X found in database D

p BLAST rank-orders the sequences found by p-
values

p The p-value for this hit is P(S(D, Y) =2 s) where Y
IS a random sequence
n Measures the amount of ”surprise” of finding sequence X

p A smaller p-value indicates more significant hit

n A p-value of 0.1 means that one-tenth of random
sequences would have as large score as our result
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Estimating the significance of results

p In BLAST, p-values are computed roughly as
follows

p There are nm places to begin an optimal
alignment in the n x m alignment matrix

p Optimal alignment is preceded by a mismatch
and has t matching (identical) letters
n (Assume match score 1 and mismatch/indel score -0)

p Let p = P(two random letters are equal)

p The probability of having a mismatch and then t
matches is (1-p)pt
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Estimating the significance of results

p We model this event by a Poisson dlstrlbutlon

(why?) with mean A = nm(1-p)pt

p P(there is local alignment t or longer)
= 1 — P(no such event)
=1 —e*=1—exp(-nm(1-p)p?) SN

p An equation of the same form is used in Blast

p E-value = P(S(D, Y) 2s) = 1 — exp(-nmy¢t) where
y=>0andO0O<¢<1

p Parameters y and ¢ are estimated from data
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Scoring amino acid
alignments

p We need a way to compute the
score S(D, X) for aligning the
sequence X against database D

p Scoring DNA alignments was
discussed previously

p Constructing a scoring model for
amino acids is more challenging

n 20 different amino acids vs. 4
bases

p Figure shows the molecular
structures of the 20 amino acids
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Scoring amino acid
alignments

o)
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Substitutions between chemically
similar amino acids are more
frequent than between dissimilar
amino acids

We can check our scoring model
against this
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Score matrices

p Scores s = S(D, X) are obtained from score
matrices

p Let A= A a,...a, and B = b,b,...b, be sequences
of equal length (no gaps allowed to simplify
things)

p To obtain a score for alignment of A and B, where
a; Is aligned against b;, we take the ratio of two
probabilities

n The probability of having A and B where the characters
match (match model M)

n The probability that A and B were chosen randomly
(random model R)
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Score matrices: random model

p Under the random model, the probability
of having X and Y is

P(A, B|R) — H,L Qai Hz b

where q,; Is the probability of occurence of
amino acid type X;

p Position where an amino acid occurs does
not affect its type
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Score matrices: match model

p

Let p,, be the probability of having amino acids
of type a and b aligned against each other given
they have evolved from the same ancestor c

p The probability is

272

P(Aa B‘M) — Hipa?:b?:



Score matrices: log-odds ratio score

p We obtain the score S by taking the ratio
of these two probabilities

P(A,BIM) _ 1l p%bz _1—[ Pa;b,
P(A,B|R) [1,4a; I1 ¥ Qa,;qb,

and taking a Iogarithm of the ratio

P(A,B|M . n
S = logy p(x i) = Lie1 1082 g = 2oim1 8(ai; bi)
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Score matrices: log-odds ratio score

P(A,B|M Pa;b,
S = logy p((A}BIIR)) — Z?:l log q%;é — Z?:l s(ai, bi)

p The score S is obtained by summing over
character pair-specific scores:

Pab
dadb

S(va b) = log,

p The probabilities q, and p,, are extracted
from data
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Calculating score matrices for amino
aclds

p Probabilities g, are in S(G,, b) = log, i“;b
principle easy to obtain:

n Count relative frequencies of
every amino acid in a sequence
database

275



Calculating score matrices for amino
acids

o)

276

To calculate p,, we can use a
known pool of alighed sequences

BLOCKS is a database of highly
conserved regions for proteins

It lists multiply aligned, ungapped
and conserved protein segments

Example from BLOCKS shows
genes related to human gene
associated with DNA-repair
defect xeroderma pigmentosum

Pab
dadb

S(CL, b) — 10g2

Block PRO0851A

ID XRODRMPGMNTB; BLOCK

AC PROO0851A, distance from previous block=(52,131)

DE Xeroderma pigmentosum group B protein signature

BL adapted; width=21; seqs=8; 99.5%=985; strength=1287
XPB_HUMAN| P19447 ( 74) RPLW/APDGHI FLEAFSPVYK 54
XPB_MOUSE| P49135 ( 74) RPLW/APDGHI FLEAFSPVYK 54
P91579 ( 80) RPLYLAPDGHI FLESFSPVYK 67
XPB_DROVE| Q02870 ( 84) RPLW/APNGHVFLESFSPVYK 79
RA25 YEAST| Q0578 ( 131) PLW SPSDGRI | LESFSPLAE 100
@8861 ( 52) RPLWACADGRI FLETFSPLYK 71

013768 ( 90) PLW NPI DGRl | LEAFSPLAE 100
Q00835 ( 79) RPI W/CPDGHI FLETFSAI YK 86
http.//blocks.fhcre.org
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BLOSUM matrix

o)

277

BLOSUM is a score matrix
for amino acid sequences
derived from BLOCKS data

First, count pairwise
matches f, , for every amino
acid type palr (X, )

For example, for column 3
and amino acids L and W,
we find 8 pairwise matches:

fiw=fwL=8

RHL
RHL
RHL

VWAPD
VW/APR
W/APN

PLW SPSD

RHL

WACAD

PLW NPI D

W/CPD




Creating a BLOSUM matrix

p Probability p,, is obtained by RELVWAPD
dividing f_,, with the total RPL WAPR
number of pairs (note
difference with course book): RALVW/APN

PLW SPSD

L 20 x RELWACAD
Pab — fa,b/ Z:r;:l Zyzl fa:y PL\W NPI D
REI WCPD

p We get probabilities g, by

L 20
Qo — p—1 Pab
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Creating a BLOSUM matrix

p The probabilities p,, and g, can now be plugged

INto
s(a,b) = logy -

to get a 20 x 20 matrix of scores s(a, b).

p Next slide presents the BLOSUM62 matrix
n Values scaled by factor of 2 and rounded to integers

n Additional step required to take into account expected
evolutionary distance

n Described in Deonier’s book in more detail
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Using BLOSUM®62 matrix

MOLEANADTSV

|| ]
L QEQAEAQGEM

_Zz 1 (a"u )

=2+5-3-4+4+0+4+0-2+0+
1

=7/



Demonstration of BLAST at NCBI

p http://www.ncbi.nlm.nih.gov/BLAST/


http://www.ncbi.nlm.nih.gov/BLAST/

Introduction to
Bioinformatics

| ecture 4:
Genome rearrangements



Why study genome rearrangements?

p Provide insight into evolution of species
p Fun algorithmic problem!

p Structure of this lecture:

284

n The biological phenomenon
n How to computationally model it?
n How to compute interesting things?

n Studying the phenomenon using existing tools
(continued In exercises)



(GGenome rearrangements as an
algorithmic problem
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Background

p Genome sequencing enables us to
compare genomes of two or more
different species

n -=> Comparative genomics

p Basic observation:

n Closely related species (such as human and
mouse) can be almost identical in terms of
genome contents...

n ...but the order of genomic segments can be
very different between species
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Synteny blocks and segments

p

P

p

287

Synteny — derived from Greek ’on the
same ribbon’ — means genomic segments
located on the same chromosome

n Genes, markers (any sequence)

Synteny block (or syntenic block)

n A set of genes or markers that co-occur
together in two species

Synteny segment (or syntenic segment)

n Syntenic block where the order of genes or
markers is preserved



Synteny blocks and segments

: : Homologs
Chromosome i, species B J

of the same
—————————————————— —/—% gene
ATETTRCET T PRI EEETRRETTTEETY <
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<
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Q

Chromosome j, species C
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Observations from sequencing

1. Large chromosome inversions and
translocations (we’ll get to these shortly)
are common
n ...Even between closely related species

2. Chromosome inversions are usually
symmetric around the origin of DNA
replication

3. Inversions are less common within
species...
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p RecA, Recombinase A,
IS a protein used to
repair chromosomal
damage

p It uses a duplicate
copy of the damaged
sequence as template

p Template is usually a
homologous sequence
on a sister
chromosome

Rec A Protein (E.C. 3.4.99.37)

Diarmaid Hughes: Evaluating genome dynamics: the constraints on

290 rearrangements within bacterial genomes, Genome Biology 2000, 1



Chromosomes: recap -

p Linear chromosomes
n Eukaryotes (mostly)

0,220 pm

(1) chromatid

p Circular chromosomes
ene 2
n Prokaryotes (mostly) )
gene 1

n Mitochondria
/ gene 3

Also double-stranded: genes can be
291 found on both strands (orientations)



What effects does RecA have on
genome?

p Repeated seguences cause RecA to fail to
choose correct recombination start
position

p This leads to
n Tandem duplications
n Translocations
n Inversions

Damaged sequence

o

_|

E—

Repeat 1 Repeat 2
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Original chromosome

(a) Tandem duplication

Origin
X b4 Z X Y 7
ab c d ab,c d
. : < < " : :/’
W : w < ;
: :
Tern"ninus +
X ab,c Y gq ZYy Z

X, Y, Zand W are repeats of

the same seqgquence.

a, b, c and d are sequences on genome

bounded by repeats.

293

In a tandem duplication example,
RecA recombines a sequence that
starts from Y instead of Z after Z.

This leads to duplication of segment Y-Z.

Diarmaid Hughes: Evaluating genome dynamics: the constraints on
rearrangements within bacterial genomes, Genome Biology 2000, 1



Original chromosome (b) Translocation
X Origin 7 % = b

ablc d % '

< ' > > i >

' W :i/ J
|
|

w :
I
I
Terminus
zrY
d
Recombination of two v
repeat sequences in the e abamh
|
same chromosome can ’ W |
lead to a fragment translocation |
Here sequence d is translocated ¥
X o b oo TIE
< , P N
WY I
I
d I
ZIY I
I

Diarmaid Hughes: Evaluating genome dynamics: the constraints on

294 rearrangements within bacterial genomes, Genome Biology 2000, 1



Original chromosome (c) Inversion

< a b : c . d >
W :
|
|
Tern;ninus

Inversion happens when two
sequences of opposite orientations
are recombined. W :

Diarmaid Hughes: Evaluating genome dynamics: the constraints on

295 rearrangements within bacterial genomes, Genome Biology 2000, 1



Example: human vs mouse genome

p Human and mouse genomes share
thousands of homologous genes, but they
are

n Arranged in different order
n Located in different chromosomes

p Examples

n Human chromosome 6 contains elements from
six different mouse chromosomes

n Analysis of X chromosome indicates that
rearrangements have happened primarily
within chromosome
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Fig. 5.1. Syntenic blocks conserved between human chromosome Hsa6 and mouse chromosomes. Broken lines indicate regions that
appear in inverted orders in the two organisms. Reprinted, with permission, from Gregory SG et al. (2002) Nature 418:743-750.
Copyright 2002 Nature Publishing Group.

297 Jones & Pevzner, 2004



g Human Chromosome X

N~ | | g

il

“v

=

o \ >

= o)
o
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(@)
£
o
ez
()

o [0)

2 =

|

= "l

0 Mb 50 Mb 100 Mb 149 Mb

Fig. 5.3. Synteny blocks shared by human and mouse X chromosomes. The arrow-
head for each block indicates the direction of increasing coordinate values for the
human X chromosome. Reprinted, with permission, from Pevzner P and Tesler G

(2003) Genome Research 13:37-45. Copyright 2003 Cold Spring Harbor Laboratory
298 Press.



Representing genome rearrangments

p When comparing two genomes, we can
find homologous segquences in both using
BLAST, for example

p This gives us a map between sequences In
both genomes
il
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Representing genome rearrangments

p

300

We assign numbers 1,...,n to Human Mouse
the found homologous 1 (gnat2) 12 (inppl)
sequences 2 (nras) 13 (cd28)
By convention, we number the 3 (ngf) 14 (fnl)
sequences in the first genome 4 (gba) 15 (pax3)
by their order of appearance 5 (pKir) 9 (il10)
INn chromosomes 6 (at3) -8 (pdc)
If the homolog of i is in 7 (lamel) -7 (lamci)
reverse orientation, it receives 8 (Pd°) 6 (at3)
number —i (signed data) 9 (i10)

For example, consider human

VS mouse gene numbering on

the right List order corresponds to

physical order on chromosomes!



Permutations

p The basic data structure in the study of
genome rearrangements is permutation

p A permutation of a sequence of n numbers
IS a reordering of the sequence

p For example, 4 1 3 2 5 iIs a permutation of
12345
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Genome rearrangement problem

p Given two genomes (set of markers), how
many
n duplications,
n inversions and
n translocations

do we need to do to transform the first
genome to the second?

Minimum number of operations?
What operations? Which order?
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Genome rearrangement problem

#duplications?
Hinversions?
Htranslocations?

612345 > 123456

— T -

AL

—  Hil—B 1 ——
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Genome rearrangement problem

Permutation

MiMoMgMyMgTg

612345 ............................... > 123456

Keep in mind, that the two genomes
have been evolved from a common
ancestor genome!
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(GGenome rearrangements using reversals
(=Inversions) only

p Lets consider a simpler problem where we just
study reversals with unsigned data

p A reversal p(i, J) reverses the order of the
segment IT; T, ;1 IT; (indexing starts from 1)
p For example, given permutation

612345 and reversal p(3, 5) we get
permutation 6 14325

— — e

o — T . ————

2o ...note that we do not care about exact positions on the genome



Reversal distance problem

p Find the shortest series of reversals that, given
a permutation [], transforms it to the identity
permutation (1, 2, ..., n)

p This quantity is denoted by d(1T)

p Reversal distance for a pair of chromosomes:
n Find synteny blocks in both
n Number blocks in the first chromosome to identity

n Set ] to correspond matching of second chromosome’s
blocks against the first

n Find reversal distance
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Reversal distance problem: discussion

p

p

307

If we can find the minimal series of
reversals for some pair of genomes

n Is that what happened during evolution?
n If not, is it the correct number of reversals?

In any case, reversal distance gives us a
measure of evolutionary distance between

the two genomes and species



Solving the problem by sorting

p Our first approach to solve the reversal
distance problem:
n Examine each position i of the permutation
n At each position, if T[; # i, do a reversal such
that TT, = |

p This Is a greedy approach: we try to
choose the best option at each step
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Simple reversal sort: example

61

-=

309

2345 -> 1|6 2

123456

345 -> 12

63

45 -> 1234

Reversal series: p(1,2), p(2,3), p(3,4), p(5,6)

Isd(612345) then 47

612345

54321

6->123456

D(612345)=2
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Pancake flipping problem

310

No pancake made by
the chef is of the
same size

Pancakes need to be
rearranged before
delivery

Flipping operation:
take some from the
top and flip them over

This corresponds to
always reversing the
sequence prefix

1236|445 ->

541236 ->

123456

632

145 ->

321

456 ->



How good Is simple reversal sort?

p Not so good actually

p It has to do at most n-1 reversals with
permutation of length n

p The algorithm can return a distance that is
as large as (n — 1)/2 times the correct
result d(IT)

n For example, if n = 1001, result can be as bad
as 500 x d(1T)
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Estimating reversal distance by cycle
decomposition

p We can estimate d(JT) by cycle
decomposition

p Lets represent permutation [T =12453
with the following graph

0—1—2—4—5—3—6

where edges correspond to adjacencies

( , )
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Estimating reversal distance by cycle
decomposition

p Cycle decomposition: a set of cycles that
n have edges with alternating colors

n do not share edges with other cycles (=cycles
are edge disjoint)

—~ Y

0—1 2 — 4 5— 3— 6

/\ A
1— 2 4 —5
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Cycle decompositions

p Let c(TT) the maximum number of alternating,
edge-disjoint cycles in the graph representation
of TI

p The following formula allows estimation of d(IT)

n d(TT) =2 n + 1 — c(IT), where n is the permutation length

0—1 2 — 4 5— 3— 6
d(lMM =5+1-4=2

1— 2 4 — 5

Claim in Deonier: equality holds for "most of the usual and
314 interesting biological systems.



Cycle decompositions

p Cycle decomposition iIs NP-complete

n We cannot solve the general problem exactly
for large instances

p However, with signhed data the problem
becomes easy

n Before going into signed data, lets discuss
another algorithm for the general case
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Computing reversals with breakpoints

p Lets investigate a better way to compute
reversal distance

p First, some concepts related to
permutation TT,TT, TT,.;TT,
n Breakpoint: two elements [[; and [],,, are a

breakpoint, if they are not consecutive
numbers

n Adjacency: If T, and [I;,, are consecutive, they
are called adjacency
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Breakpoints and adjacencies

This permutation contains
four breakpoints begin-2, 13, 58, 6-end and
five adjacencies 21, 34, 45, 87, 76

2|113458[7|6

N\

Breakpoints
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Breakpoints

p Each breakpoint in permutation needs to be
removed to get to the identity permutation (=our
target)

n ldentity permutation does not contain any breakpoints

2|1 3/4/5 8|76 b(TT) = 4

p First and last positions special cases

p Note that each reversal can remove at most two
breakpoints

p Denote the number of breakpoints by b(TT)
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Breakpoint reversal sort

p ldea: try to remove as many breakpoints
as possible (max 2) in every step

1. While b(TT) > O

2. Choose reversal p that removes most breakpoints
3. Perform reversal p to T]

4 Output TT

5. return
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Breakpoint removal: example

8 2

X

/765143

28

/765143

415678

b(TT) = 6
b(TT) =5
b(TT) = 3
b(TT) = 2

b(IT) =0



Breakpoint removal

p The previous algorithm needs refinement
to be correct

p Consider the following permutation:
15672348

p There Is no reversal that decreases the
number of breakpoints!

p See Jones & Pevzner for detailed
description on this
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Strip: maximal segment without breakpoints

- |Nncreasing strip

Breakpoint removal . pecreasing strip

p Reversal can only decrease breakpoint
count If permutation contains decreasing
strips

15672348

-> > > —
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Improved breakpoint reversal sort

1. While b(TT) = O

2 If TT has a decreasing strip

3 Do reversal p that removes most BPs
4. Else

5 Reverse an increasing strip

6 Output TT

7. return
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Is Improved BP removal enough?

p The algorithm works pretty well:

n It produces a result that is at most four times
worse than the optimal result

n ...1s this good?

p We considered only reversals
p What about translocations & duplications?
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Translocations via reversals

325

1

1

1

1

N

234

5678

Translocation of 2,3,4

56 7

8234

——  b@8)

4 3 2

P

234

8765
p(2,4)

8765

> p.8)

12345678



Genome rearrangements with reversals

p With unsigned data, the problem of finding
minimum reversal distances is NP-
complete

n Why is this so if sorting is easy?
p An algorithm has been developed that
achieves 1.375-approximation

p However, reversal distance in signed data
can be computed quickly!

n It takes linear time w.r.t. the length of
permutation (Bader, Moret, Yan, 2001)
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Cycle decomposition with signed data

p Consider the following two permutations
that include orientation of markers
nJ: +1+5-2+3 +4
nK:+1-3+2+4-5

p We modify this representation a bit to
Include both endpoints of each marker:
nJ': 0 1la 1lb 5a 5b 2b 2a 3a 3b 4a 4b 6
n K': 0 1a 1b 3b 3a 2a 2b 4a 4b 5b 5a 6
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Graph representation of J' and K’

p Drawn online in lecture!



Multiple chromosomes

p INn unichromosomal genomes, inversion
(reversal) Is the most common operation

p In multichromosomal genomes,
Inversions, translocations, fissions and

fusions are most common
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Multiple chromosomes

p Lets represent multichromosomal genome
as a set of permutations, with $ denoting
the boundary of a chromosome:

59$ Chr 1l
1328$ Chr 2
764$ Chr 3

This notation iIs frequently used in software
used to analyse genome rearrangements.
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Multiple chromosomes

p Note that when dealing with multiple
chromosomes, you need to specify
numbering for elements on both genomes
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Reversals & translocations

p Reversal p(TT, i, j)
o Translocation p(TT, o, i, j)

Translocation
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Fusions & fissions

p Fusion: merging of two chromosomes

p Fission: chromosome is split into two
chromosomes

p Both events can be represented with a
translocation
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Fusion

p Fusion by translocation p(IT, o, n+1, 1)

Il=n+1

l Fusion

— 4 —Ja— "



Empty chromosome

Fission /

/
p Fission by translocation p(IT, 9, i1, 1)

———\—:———

l Fission

—— —
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Algorithms for general genomic distance
problem

p Hannenhalli, Pevzner: Transforming Men into
Mice (polynomial algorithm for genomic distance
problem), 36th Annual IEEE Symposium on
Foundations of Computer Science, 1995
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Human & mouse revisited

p Human and mouse are separated by about
75-83 million years of evolutionary history

p Only a few hundred rearrangements have
happened after speciation from the
common ancestory

p Pevzner & Tesler identified in 2003 for 281
synteny blocks a rearrangement from
mouse to human with

n 149 inversions
n 93 translocations
n 9 fissions
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Discussion

p Genome rearrangement events are very
rare compared to, e.g., point mutations

n We can study rearrangement events further
back in the evolutionary history

p Rearrangements are easier to detect in
comparison to many other genomic events

p We cannot detect homologs 100%
correctly so the input permutation can
contain errors
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Discussion

p Genome rearrangement is to some degree
constrained by the number and size of
repeats in a genome
n Notice how the importance of genomic repeats

POPS Uup once again

p Seguencing gives us (usually) signed data

so we can utilize faster algorithms

p What if there are more than one optimal
solution?

339



Mouse
i -76 -10 9 -8 2 -11 -3 54

—.—c-zi-—»—q—-—-—c—wv—
-

— —

— —-
"

S— —_—
BB B -
i 2 3 4567 8 9 10 11
Human

Mouse
1 -76 -10 9 -8 2 -11
—_— ———l—p—a— - —————

B et

i1 2 3456 *7 8 9 10 11
Human

Two different genome rearrangement scenarios

giving the same result.
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GRIMM demonstration

GRIMM - Genome rearrangement algorithms

[Multiple genome form ]

Source genome:

Destination genome:

Chromosomes: Ocircular OClinear (directed) ® multichromosomal or undirected
Signs: @ signed Ounsigned
[ run ][ undo ][ clear form ] Or, choose sample data D

Formatting options

Report Style: One line per genome One column Two column before & after
(chromosomes concatenated) (chromosomes separated) (chromosomes separated)
® Horizontal O Yes O Show all chromosomes
O Verical O Only affected chromosomes

Show all possible initial steps of optimal scenarios O
Highlighting style:  Should operations (reversal, translocation, fission, fusion) be highlighted, and when?
Obefore Oafter @ between/both O no highlighting

Chromosome end  Onumeric (10) ® subscripts (Co) O omit
format:

Color coding: Zenes should be colored according to their chromosome inwhich genome:
Osource ® destination

[ run ] undao [ clear form ]

GRIMM 1.04 by Glenn Tesler, University of California, San Diego.
Copyright © 2001-2005, The University of California.
Contains code from GRAPPA, © 2000-2001, The University of Mew Mexico and The University of Texas at Alstin.

Glenn Tesler, GRIMM: genome rearrangements web server.
341 Bioinformatics, 2002,



GRIMM file format

# useful comment about first genome
# another useful comment about it
>name of first genome
1-42%#chromosome 1

-3 5 6 # chromosome 2

>name of second genome

5-3 %

6 $

2-41%

GRIMM supports analysis of
one, two or more genomes
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Introduction to
Bioinformatics

I
Phylogenetic trees



Inferring the Past. Phylogenetic
Trees

p The biological problem
p Parsimony and distance methods

p Models for mutations and estimation of
distances

p Maximum likelihood methods
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Phylogeny

p We want to study ancestor- -
descendant relationships, or
ohylogeny, among groups of
organisms

p Groups are called taxa (singular:
taxon) —

p Organisms are usually called
operational taxonomic units or
OTUs in the context of

phylogeny
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Phylogenetic trees

o)

Leaves (external nodes)
~ species, observed
(OTUs)

p Internal nodes —

346

ancestral
species/divergence
events, not observed

Unrooted tree does not
specify ancestor-
descendant relationships
beyond the observation
”leaves are not
ancestors”

Unrooted tree with 5
leaves and 3 internal
nodes.

Is node 7 ancestor of node
67?



Phylogenetic trees

p Rooting a tree specifies all
ancestor-descendant
relationships in the tree

p Root is the ancestor to the
other species

p There are n-1 ways to root
a tree with n nodes R1
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Questions

p Can we enumerate all possible
phylogenetic trees for n species (or
seguences?)

p How to score a phylogenetic tree with
respect to data?

p How to find the best phylogenetic tree
given data?
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Finding the best phylogenetic tree:
naive method

p How can we find the phylogenetic tree
that best represents the data?

p Nalve method: enumerate all possible
trees

p How many different trees are there of n
species”?
p Denote this number by b,
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Enumerating unordered trees
p Start with the only g e Q e

unordered tree with 3
leaves (b; = 1) 0 @) @)
3 (3

p Fourth node can be added
to 3 different branches
(edges), creating 1 new
iInternal branch

p Consider all ways to add p Total number of branches

a leaf node to this tree is n external and n — 3
internal branches

p Unrooted tree with n
leaves has 2n — 3 branches

350



Enumerating unordered trees

p Thus, we get the number of unrooted trees
lC)n — (2(” T 1) T 3)bn—l — (2ﬂ _ 5)bn—l
=(@2n-5*2n-=-7)*.*3*1
= (2n -5/ ((n-3)!12"3), n> 2
p Number of rooted trees b’ is

b’y = (2n —-3)b, = (2n - 3)! / ((n-2)!2n-2),
n>?2

that is, the number of unrooted trees times the
number of branches in the trees
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Number of possible rooted and
unrooted trees

n B, b’

3 1 3

4 3 15

5 15 105

6 105 945

7 954 10395

8 10395 135135

9 135135 2027025
10 2027025 34459425
20 2.22E+020 8.20E+021
30 8.69E+036 4.95E+038
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T0o0o many trees?

p We can’t construct and evaluate every
phylogenetic tree even for a smallish
number of species

p Better alternative iIs to

n Devise a way to evaluate an individual tree
against the data

n Guide the search using the evaluation criteria
to reduce the search space
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Inferring the Past. Phylogenetic
Trees (chapter 12)

p The biological problem
p Parsimony and distance methods

p Models for mutations and estimation of
distances

p Maximum likelihood methods



Parsimony method

p The parsimony method finds the tree that
explains the observed sequences with a
minimal number of substitutions

p Method has two steps

n Compute smallest number of substitutions for
a given tree with a parsimony algorithm

n Search for the tree with the minimal number of
substitutions
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Parsimony: an example

p Consider the following short sequences

1ACTTT
2 ACATT
3 AACGT
4 AATGT
SO AATTT

p There are 105 possible rooted trees for 5
seguences

p Example: which of the following trees
explains the sequences with least number
of substitutions?
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9 AATTT

A->C
T5G 7 AATTT

357

TosC ‘6 AATGT ‘ T->A ‘8 ACTTT ‘

3 4 S) 2 1
AACGT AATGT AATTT ACATT ACTTT

This tree explains the sequences
with 4 substitutions



9 AATTT

ubstitutions... oG S AATTT

First tree Is
AsC  more

TosC ‘GAATGT ‘

parsimonious!

T-5A ‘8 ACTTT ‘

3 4 5 2 1
AACGT AATGT  AATTT  ACATT  ACTTT
T-G 9 AATTT
6 o Asc | T-C 8 AATGT
substitutions... g>T| 7 AACGT
C->T ‘GACCTT ‘ C->A
1 2 3 4 5
ACTTT  ACATT  AACGT AATGT  AATTT

358



Computing parsimony

p Parsimony treats each site (position in a
sequence) independently

p IS the sum of parsimony
costs (=required substitutions) of each site

p We can compute the minimal parsimony cost for
a given tree by

n First finding out possible assignments at each node,
starting from leaves and proceeding towards the root

n Then, starting from the root, assign a letter at each
node, proceeding towards leaves
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Labelling tree nodes

p An unrooted tree with n leaves contains 2n-1
nodes altogether
p Assign the following labels to nodes in a rooted

tree

n leaf nodes: 1, 2, ..., n

n Internal nodes: n+1, n+2, ..., 2n-1 9
n root node: 2n-1

p The label of a child node is always
smaller than the label of the

parent node

6 7

O @ 6® @0 6
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Parsimony algorithm: first phase

p Find out possible assignments at every node for each
site u independently. Denote site u in sequence | by

Si,u.

Fori:=1, ..,ndo
Fi = {Si,u} % possible assignments at node |
L,:=0 % number of substitutions up to node i

Fori:=n+l, .., 2n-1do
Let j and k be the children of node i
IfFNF =0
thenl; =L+ L +1, F:=FUF
elsel;:=L;+L,F:=FnkF
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Parsimony algorithm: first phase

Choose u = 3 (for example, in general we do this for all sites)
F, = {T}
L, = |

9
F, = {A}
L, := ;
i T
Fai= ATk bas 3 4 5 2 1
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Parsimony algorithm: first phase

Fe:=F,UF,={C, T}
L=l +L,+1=1

9T
F, = FsnFy = {T} -
L=l +Llg=1 [AK
6 {C,T}> S1A, TJ-
Foi=F UF,={A T} £ | BITH|
Ly =L +L,+1=1 3 4 5 2 1

AACGT  AATGT  AATTT  ACATT  ACTTT
Fo = F, nFg={T}

= + = ) . .
Lo =ly+lg=2 = Parsimony cost for site 3 is 2
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Parsimony algorithm: second phase

p Backtrack from the root and assign X < F,
at each node

p If we assigned y at parent of node | and y
e F, then assigny

p Else assign x  F; by random
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Parsimony algorithm: second phase

At node 6, the |

algorithm assigns T oT

because T was

assigned to parent [al

node7and T € Fy,. 5 {QT}{ ‘ 8 AT) ‘

T is assigned to node 8

for the same reason. 3 4 = 2 1

AACGT AATGT AATTT ACATT ACTTT

The other nodes have
only one possible letter
to assign
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Parsimony algorithm

First and second phase are

repeated for each site in

the sequences,
summing the parsimony
costs at each site
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9T

7T

T

3
AACGT

4
AATGT

)
AATTT

T

2
ACATT

1
ACTTT



Properties of parsimony algorithm

p Parsimony algorithm requires that the sequences
are of same length

n First align the sequences against each other and,
optionally, remove indels

n Then compute parsimony for the resulting sequences
n Indels (if present) considered as characters

p Is the most parsimonious tree the correct tree?

n Not necessarily but it explains the sequences with least
number of substitutions

n We can assume that the probability of having fewer
mutations is higher than having many mutations
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Finding the most parsimonious tree

p Parsimony algorithm calculates the
parsimony cost for a given tree...

p ...but we still have the problem of finding
the tree with the lowest cost

p Exhaustive search (enumerating all trees)
IS In general impossible
p More efficient methods exist, for example

n Probabilistic search
n Branch and bound
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Branch and bound In parsimony

p We can exploit the fact that adding edges
to a tree can only increase the parsimony

cost T
i}
g -
1 2 3 1 2
AATGT AATTT AACGT AATGT AATTT

cost O cost 1
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Branch and bound In parsimony

Branch and bound is
a general search
strategy where

p Each solution is
potentially generated

p Track is kept of the
best solution found

p If a partial solution
cannot achieve better
score, we abandon
the current search
path

370

In parsimony...

o)

Start from a tree with 1
sequence

p Add a sequence to the tree

o)

and calculate parsimony
cost

If the tree is complete,
check if found the best tree
so far

If tree is not complete and
cost exceeds best tree
cost, do not continue
adding edges to this tree



Complete tree:

Branch and bound example [&@ =

Example with 4 sequences

EN ﬁl}fﬂ D [

N N el afrs

a
1 2 3 4

Ha--

Y
w

@

Partial tree:

Compute parsimony cost

‘ and compare against best
so far;

4 Do not continue expansion

if above cost of the best tree
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Distance methods

p The parsimony method works on sequence
(character string) data

p We can also build phylogenetic trees in a
more general setting

p Distance methods work on a set of
pairwise distances d; for the data

p Distances can be obtained from
ohenotypes as well as from genotypes
(seguences)
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Distances In a phylogenetic tree

p Distance matrix D = (dj)
gives pairwise distances
for leaves of the

phylogenetic tree !
p In addition, the ° 8
phylogenetic tree will 0 » @ @ 6

now specify distances

between leaves and Distance d; states how

internal nodes | far apart species i and j
n Denote these with d;; as are evolutionary (e.g.,
well number of mismatches in

aligned sequences)
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Distances In evolutionary context

p Distances d;; in evolutionary context
satisfy the following conditions

n Symmetry: d; = d;; for each i, j
n Distinguishability: d; # O if and only if i #]
n Triangle inequality: d; < d;, + d,; for each i, J, k
p Distances satisfying these conditions are called
metric

p In addition, evolutionary mechanisms may
Impose additional constraints on the distances

> additive and ultrametric distances
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Additive trees

p A tree Is called additive, If the distance

p

375

between any pair of leaves (i, j) is the
sum of the distances between the leaves

and a node k on the shortest path from i
to J In the tree

djj = djy + dj,

"Follow the path from the leaf | to the leaf
J to find the exact distance d; between the

leaves.”



Additive trees: example

A B C D

A |0 2 4 4

B |12 0 4 4



Ultrametric trees

p A rooted additive tree is called an ultrametric
tree, If the distances between any two leaves i
and j, and their common ancestor k are equal

dy = djk

p Edge length d; corresponds to the time elapsed
since divergence of i and j from the common
parent

p In other words, edge lengths are measured by a
molecular clock with a constant rate
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|dentifying ultrametric data

p We can identify distances to be ultrametric
by the three-point condition:

D corresponds to an ultrametric tree if
and only If for any three species i, j and
k, the distances satisfy d;; = max(d;, dy)

p If we find out that the data is ultrametric, we can
utilise a simple algorithm to find the
corresponding tree
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Ultrametric trees

Time
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Ultrametric trees

9
d8 9 .
! Only vertical segments of the
S tree have correspondence to
S 8 some distance d;:
- 7 Horizontal segments act as
connectors.
6
..... Ve b D DSETVALION time
5 4 3 2 1
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Ultrametric trees

9 |

di = d; for any two leaves

I, ] and any ancestor k of

| and j
O 8
=
" 7

6
..... VObservatlon tlme
5 4 3 2 1
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Ultrametric trees

Three-point condition: there are

O 8 no leafs i, j for which d; > max(d,, d;)
£ for some leaf k.
|_
2
6
..... Vo) OlSETVALION time
5 4 3 2 1
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UPGMA algorithm

p UPGMA (unweighted pair group method
using arithmetic averages) constructs a
phylogenetic tree via clustering

p The algorithm works by at the same time
n Merging two clusters
n Creating a new node on the tree

p The tree is built from leaves towards the
root

p UPGMA produces a ultrametric tree
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Cluster distances

p Let distance d;; between clusters C; and C;

be 1
di; = _ d
J |Ci||'-':j| Z rgq

peCigel;

that is, the average distance between
points (species) Iin the cluster.
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UPGMA algorithm

p Initialisation
n Assign each point i to its own cluster C,

n Define one leaf for each sequence, and place it at height
Zero

p lteration
n Find clusters 1 and j for which d;; is minimal
n Define new cluster k by C, = C; u C;, and define d,, for all |
n Define a node k with children i and J. Place k at height d;;/2
n Remove clusters i and j

p Termination:
n When only two clusters I and j remain, place root at height d;;/2
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UPGMA implementation

p IN naive implementation, each iteration
takes O(n2) time with n sequences ==
algorithm takes O(n3) time

p The algorithm can be implemented to take
only O(n?) time (see Gronau & Moran,
2006, for a survey)
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Problem solved?

p We now have a simple algorithm which finds a
ultrametric tree

n If the data is ultrametric, then there is exactly one

ultrametric tree corresponding to the data (we skip the
proof)

n The tree found is then the ”correct” solution to the
phylogeny problem, if the assumptions hold

p Unfortunately, the data is not ultrametric in
practice
n Measurement errors distort distances

n Basic assumption of a molecular clock does not hold
usually very well
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Incorrect reconstruction of non-
ultrametric data by UPGMA

5 3
4
1 1 4 2 3
Tree which corresponds Incorrect ultrametric reconstruction
to non-ultrametric by UPGMA algorithm

distances
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Checking for additivity

p How can we check if our data i1s additive?

p Let 1, J, k and | be four distinct species

p Compute 3 sums: d;; + dy, d; + d
+ oljk

dil

i
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Four-point condition
|~ dliy

N

p The sums are represented by the three figures
n Left and middle sum cover all edges, right sum does not

p Four-point condition: i, j, k and | satisfy the four-
point condition if two of the sums d;; + d, dy +

d;, d; + d;  are the same, and the third one is
smaller than these two
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Checking for additivity

p An N X n matrix D Is additive if and only if
the four point condition holds for every 4
distinct elements 1 <1, J, k, | =n
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Finding an additive phylogenetic tree

p Additive trees can be found with, for example,
the neighbor joining method (Saitou & Nei, 1987)

p The neighbor joining method produces unrooted
trees, which have to be rooted by other means
n A common way to root the tree is to use an outgroup

n Outgroup is a species that is known to be more distantly
related to every other species than they are to each
other

n Root node candidate: position where the outgroup would
join the phylogenetic tree

p However, In real-world data, even additivity
usually does not hold very well
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Neighbor joining algorithm

p Neighbor joining works in a similar fashion
to UPGMA

n Find clusters C, and C, that minimise a
function f(C,, C,)

n Join the two clusters C; and C, into a new
cluster C

n Add a node to the tree corresponding to C
n Assign distances to the new branches

p Differences In

n The choice of function f(C,, C,)
n How to assign the distances

398



Neighbor joining algorithm

p Recall that the distance d;; for clusters C; and C;
was 1

Gl 2

pel;.gel

d’f’j — ’ip-ir

p Let u(C;) be the separation of cluster C; from
other clusters defined by

1 .
w(Cy) = 15 ¢, di;
where n is the number of clusters.
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Neighbor joining algorithm

p Instead of trying to choose the clusters C,
and C; closest to each other, neighbor
joining at the same time

n Minimises the distance between clusters C, and
C; and

n Maximises the separation of both C; and C;
from other clusters
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Neighbor joining algorithm

p Initialisation as in UPGMA
p lteration
n Find clusters 1 and j for which d;; - u(C;) - u(C;) is minimal
n Define new cluster k by C, = C; u C;, and define d,, for all |
n Define a node k with edges to i1 and jJ. Remove clusters i and j
n Assign length 72 d;; + % (u(C;) - u(C;)) to the edge i —> k
n Assign length 2 d;; + % (u(C;) - u(C))) to the edge | -> k
p Termination:
n When only one cluster remains
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Neighbor joining algorithm: example

402

a b c d | ju(i)
a0 6 7 5 a |(6+7+5)/2 =9
b 011 9 b [ (6+11+9)/2 = 13
C 0O 6 c [(7+11+6)/2 = 12
d 0 d | (5+9+6)/2 = 10
L) [ dy - u(G) - u(G) ...
a, b I6I - Q 13 =.-16.-
a,c| 7 - 9 .12 = -14
2 2 1? _ 12 _ 1(2) ; 12 Ch_opse either pair
b, d 9 - 13 - 10 = -14 to join
c,d| 6 - 12 - 10 = -16.

Sggnt



Neighbor joining algorithm: example

403

a b c d | lu(l)

al0 6 7 5 a |(6+7+5)/2 = 9

b 011 9 b | (6+11+9)/2 = 13

C O 6 c | (7+11+6)/2 = 12

d 0 d [ (5+9+6)/2 = 10
L dy - u(G) - u(G) ... :
a, c [/ - 9 - 12 = -14
a,d| 5 - 9 - 10 = -14 a b c d
b,c| 11 - 13 - 12 = -14 d_=%6+%(9-13)=1
b, d 9 - 13 - 10 =-14 d . =%6+%(13-9)=5
c,d 6 - 12 - 10 = -16

This is the first step only...



Inferring the Past. Phylogenetic
Trees (chapter 12)

p The biological problem
p Parsimony and distance methods

p Models for mutations and estimation of
distances
p Maximum likelihood methods

n These parts of the book is skipped on this

course (see slides of 2007 course for material
on these topics)

n NO questions in exams on these topics!
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Problems with tree-building

p Assumptions
n Sites evolve independently of one other

n (Sites evolve according to the same stochastic
model; not really covered this year)

n The tree iIs rooted
n The sequences are aligned
n Vertical inheritance
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Additional material on phylogenetic
trees

p Durbin, Eddy, Krogh, Mitchison: Biological
seguence analysis

p Jones, Pevzner: An introduction to
bioinformatics algorithms

p Gusfield: Algorithms on strings, trees, and
sequences

p Course on phylogenetic analyses in Spring
2009
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Introduction to
Bioinformatics

[
Wrap-up
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Exams

p Course exam Wednesday 15 October
16.00-19.00 Exactum Alll

p Separate exams
n Tue 18 November 16.00-20.00 Exactum Al1ll
n Fri 16 January 16.00-20.00 Exactum All1l1l
n Tue 31 March 16.00-20.00 Exactum Al1l1l

p Check exam date and place before taking
the exam! (previous week or so)
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Exam regulations

p If you are late more than 30 min, you
cannot take the exam

p You are not allowed to bring material such
as books or lecture notes to the exam

p Allowed stuff: blank paper (distributed In
the exam), pencils, pens, erasers,
calculators, snacks

p Bring your student card or other id!
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Grading

p Grading: on the scale 0-5

n To get the lowest passing grade 1, you need to get at
least 30 points out of 60 maximum

p Course exam gives you maximum of 48 points

p Note: If you take the first separate exam, the
best of the following options will be considered:
n Exam gives you max 48 points, exercises max 12 points
n Exam gives you max 60 points

p In second and subsequent separate exams, only
the 60 point option is In use

411



EXxercise points

p Max. marks: 31
p 80% of 31 —= 24 marks -> 12 points

p 2 marks = 1 point
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Topics covered by exams

p Exams cover everything presented in lectures
(exception: biological background not covered)

p Word distributions and occurrences (course book
chapters 2-3)

p Genome rearrangements (chapter 5)
p Sequence alignment (chapter 6)

p Rapid alignment methods: FASTA and BLAST
(chapter 7)

p Sequencing and sequence assembly (chapter 8)
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Topics covered by exams

p Similarity, distance and clustering
(chapter 10)

p EXpression data analysis (chapter 11)
p Phylogenetic trees (chapter 12)

p Systems biology: modelling biological
networks (no chapter in course book)
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Bioinformatics courses in 2008

p Biological sequence analysis (Il period,
Kumpula)

n Focus on probabilistic methods: Hidden Markov
Models, Profile HMMs, finding regulatory
elements, ...

p Modeling of biological networks (20-
24.10., TKK)

n Biochemical network modelling and parameter
estimation in biochemical networks using
mechanistic differential equation models.
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Bioinformatics courses in autumn 2008

p Bayesian paradigm in genetic
bioinformatics (11 period, Kumpula)

n Applications of Bayesian approach in computer
programs and data analysis of
genetic past,
phylogenetics,
coalescence,
relatedness,
haplotype structure,
disease gene associations.
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Bioinformatics courses in autumn 2008

p Statistical methods in genetics (1l period,

Kumpula)

n Introduction to statistical methods in gene
mapping and genetic epidemiology.

n Basic concepts of linkage and association

analysis as well as some concepts of
population genetics will be covered.
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Bioinformatics courses in Spring 2009

p

p

p

Practical Course in Biodatabases (Il
period, Kumpula)

High-throughput bioinformatics (111-1V
periods, TKK)

Phylogenetic data analyses (1V period,

Kumpula)

n Maximum likelihood methods, Bayesian
methods, program packages

p Metabolic modelling (IV period, Kumpula)
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Genomes sequenced — all done?

p Sequencing Is just the beginning
n What do genes and proteins do?
Functional genomics

n How do they interact with other genes
and proteins?

Systems biology

Two sides of the same guestion!
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Bioinformatics (at least mathematical
biology) can exist outside molecular biology
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llkka Hanski and Otso Ovaskainen
Nature 404, 755-758(13 April 2000)



Metagenomics

p Metagenomics or environmental genomics

n "At the last count 1.8 million species were known to
science. That sounds like a lot, but in truth it's no big
deal. We may have done a reasonable job of describing
the larger stuff, but the fact remains that an average
teaspoon of water, soil or ice contains millions of micro-
organisms that have never been counted or named. ”

-- Henry Nicholls
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OoOmics

O 0O 0 © 0T © T T T T T
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Genome
Transcriptome
Metabolome
Metallome
Lipidome
Glycome
Interactome
Spliceome
ORFeome
Speechome
Mechanome

O 0O 0 © T © T U T T T

Phenome
Exposome
Textome
Receptorome
Kinome
Neurome
Cytome
Predictome
Omeome
Reactome
Connectome

http://en.wikipedia.org/wiki/-omics


http://en.wikipedia.org/wiki/-omics

Take-home messages

p Don’t trust biodatabases blindly!
n Annotation errors tend to accumulate

p Consider
n Statistical significance
n Sensitivity

of your results

p Think about the whole "bioinformatics workflow”:

n Biological phenomenon -> Modelling -> Computation ->
Validation of results

p Results from bioinformatics tools and methods
must be validated!

p Actively seek cooperation with experts
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Bioinformatics journals

[,

T O

424

Bioinformatics, http://bioinformatics.oupjournals.org/

BMC Bioinformatics,
http://www.biomedcentral.com/bmcbioinformatics

Journal of Bioinformatics and Computational Biology
(JBCB), http://www.worldscinet.com/jbcb/jbcb.shtml

Journal of Computational Biology,
http://www.liebertpub.com/CMB/

IEEE/ACM Transactions on Computational Biology and
Bioinformatics , http://www.computer.org/tcbb/

PLoS Computational Biology, www.ploscompbiol.org
In Silico Biology, http://www.bioinfo.de/isb/
Nature, Science (bedtime reading)


http://bioinformatics.oupjournals.org/
http://www.biomedcentral.com/bmcbioinformatics
http://www.worldscinet.com/jbcb/jbcb.shtml
http://www.liebertpub.com/CMB/
http://www.computer.org/tcbb/
http://www.ploscompbiol.org
http://www.bioinfo.de/isb/

Bioinformatics conferences

p ISMB, Intelligent Systems for
Molecular Biology (Toronto, July 2008)

p ICSB, International Conference on
Systems Biology (Goteborg, Sweden;
22-28 August)

p RECOMB, Research in Computational
Molecular Biology

p ECCB, European Conference on
Computational Biology

p WABI, Workshop on Algorithms in
Bioinformatics

p PSB, Pacific Symposium on
Biocomputing

January 5-9, 2009
The Big Island of Hawaii
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Master’s degree in bioinformatics?

p You can apply to MBI during the
application period November '08 — 2
February 09

n Bachelor’s degree in suitable field
n At least 60 ECTS credits in CS or mathstat
n English language certificate

p Passing this course gives you the first 4
credits for Bioinformatics MSc!

..... ‘e
g .
TSWMEL MBI MASTER'S DEGREE
Z7nSsf PROGRAMME IN BIOINFORMATICS
5',."";»‘\\\\' a
ve g N*
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Information session on MBI

p Wednesday 19.11. 13.00-15.00 Exactum
D122

p Www.cs.helsinki.fi/mbi/events/info0O8
p Talks In Finnish
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http://www.cs.helsinki.fi/mbi/events/info08

Mailing list for bioinformatics courses
and events

p MBI maintains a mailing list for
announcement on bioinformatics courses

and events

p Send email to bioinfo a t cs.helsinki.fi if
you want to subscribe to the list (you can
unsubscribe in the same way)

p List Is moderated
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The aim of this course

Biology & Medicine

Mathematics

Computer Science and Statistics

Where would you be in this triangle?

Has your position shifted during the course?
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Feedback

p Please give feedback on the course!

n https://ilmo.cs.helsinki.fi/kurssit/serviet/Valint
a?kieli=en

p Don’t worry about your grade — you can
give feedback anonymously
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https://ilmo.cs.helsinki.fi/kurssit/servlet/Valint

Thank you!

p | hope you enjoyed the course!

-
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Halichoerus grypus, Gray seal or harmaahylje in Finnish

431 taivasalla.net



