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Introductory Remarks 
 
 
These notes were developed to support an introductory graduate level course on transport 
phenomena at Clarkson University that I taught for many years, and later also used to supplement 
material from the textbook by R.B. Bird, W.E. Stewart, and E.N. Lightfoot titled “Transport 
Phenomena” in my undergraduate elective course on the subject.  The notes should not be 
construed as complete in the sense of being useful as a textbook for any course.  Rather, they 
contain a variety of sections that I wrote over the years to provide supplemental material for 
students taking my courses, and only reflect my style and bias in presenting topics. 
 
Because of the manner in which these notes were formulated and modified over the last three 
decades, the various parts were written nearly independently of each other, and each section 
contains its own set of references. 
 
In preparing and refining these notes, I have learned much from the students who took my courses 
as well as colleagues at Clarkson and elsewhere, to whom I shall remain grateful forever. 
 
Any errors in this document are entirely my responsibility.  I can be reached at 
 
 
R. Shankar Subramanian 
Professor Emeritus 
Department of Chemical and Biomolecular Engineering 
Clarkson University 
Potsdam, New York 13699 
subramanian@clarkson.edu  
 
July 2020 
Update 1, August 2020 (minor edits in Section II) 
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Introduction to Vectors and Tensors 
 
Some useful references for learning about vectors and tensors are the books listed as references at 
the end. 
 
Some Basics   
 
We encounter physical entities such as position, velocity, momentum, stress, temperature, heat 
flux, concentration, and mass flux in transport problems - there is a need to describe them in 
mathematical terms and manipulate the representations in various ways.  This requires the tools of 
tensor analysis. 
 
Scalars 
 
An entity such as temperature or concentration that has a magnitude (and some units that need not 
concern us right now), but no sense of direction, is represented by a scalar. 
 
Vectors 
 
In contrast, consider the velocity of a particle or element of fluid;  to describe it fully, we need to 
specify both its magnitude ( in some suitable units) and its instantaneous spatial direction.  Other 
examples are momentum, heat flux, and mass flux.  These quantities are described by vectors.  In 
books, vectors are printed in boldface.  In ordinary writing, we may represent a vector in different 
ways. 
 
  , ,v v v                  or     iv  

        Gibbs notation           index notation 
 
The last requires comment.  Whereas we represent the vectorial quantity with a symbol, we often 
know it only via its components in some basis set.  Note that the vector as an entity has an invariant 
identity independent of the basis set in which we choose to represent it. 
 
In index notation, the subscript “i” is a free index - that is, it is allowed to take on any of the three 
values 1, 2, 3, in 3-dimensional space.  Thus, iv  really stands for the ordered set ( )1 2 3, ,v v v . 
 
Basis Sets 
 
The most common basis set in three-dimensional space is the orthogonal triad ( ), ,i j k    
corresponding to a rectangular Cartesian coordinate system.  i  stands for a unit vector in the x −
direction and j  and k  represent unit vectors in the y  and  z − directions respectively.  Note that 
this is not a unique basis set.  The directions of , ,i j k  depend on our choice of the coordinate 
directions. 
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There is no reason for the basis set to be composed of orthogonal vectors.  The only requirement 
is that the three vectors chosen do not lie in a plane.  Orthogonal sets are the most convenient, 
however. 
 
We find the components of a vector in the directions of the base vectors by taking inner (dot) 
products. 
  , ,x y zv v i v v j v v k= ⋅ = ⋅ = ⋅  
 
Then, x y zv v i v j v k= + +  
 
You can verify the consistency of the above by taking inner products of both sides of the equation 
with the base vectors and recognizing that the base vectors are orthogonal.  
 

0i j j k k i⋅ = ⋅ = ⋅ ≡  
 
The order of the vectors in the inner product is unimportant.   
 
 a b b a⋅ = ⋅  
 
Scalar and Vector Fields 
 
In practice the temperature, velocity, and concentration in a fluid vary from point to point (and 
often with time).  Thus, we think of fields - temperature field, velocity field, etc. 
 
In the case of a vector field such as the velocity in a fluid, we need to represent the velocity at 
every point in space in the domain of interest.  The advantage of the rectangular Cartesian basis 
set ( ), ,i j k  is that it is invariant as we translate the triad to any point in space.  That is, not only 
are these base vectors of unit length, but they never change direction as we move from one point 
to another, once we have chosen our , ,x y  and z  directions. 
 
Vector Operations 
 
The entity v  has an identity of its own.  Its length and spatial direction are independent of the 
basis set we choose.  As the vectors in the basis set change, the components of v  change according 
to standard rules. 
 
Vectors can be added; the results are new vectors.  If we use component representation, we simply 
add each component.  Subtraction works in a similar manner. 
 
Vectors also can be multiplied, but there is more than one way to do it.  We define the dot and 
cross products, also known as inner (or scalar) and vector products, respectively, as shown below. 
 

x x y y z za b a b a b a b⋅ = + +  is a scalar.  We commonly use a numerical subscript for the components; 
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in this case, the basis set is the orthogonal triad ( ) ( ) ( )( )1 2 3, ,e e e .  Let  

 
 ( ) ( ) ( )1 2 31 2 3a a e a e a e= + +  
 
Then,  
 
 1 1 2 2 3 3a b a b a b a b⋅ = + +  
 

          
3

1
i i

i
a b

=

= ∑  

In the above, we usually omit 
3

1i=
∑ .  When an index is repeated, summation over that index is 

implied. 
 
 i ia b a b⋅ =   This is called the Einstein summation convention 
 
 22 or i ia a a a a a⋅ = =  
 
where a  is the length of  a  and is invariant; “invariant” means that the entity does not change as 
the basis set is altered.   
 

ba × is the vector product.  As implied by the name, it is a vector; it is normal to the plane 
containing a  and b .     ( , ,a b a b× ) form a right-handed system (this is an arbitrary convention , 
but we have to choose one or the other, so we choose “right”).  The order is important, for,  
 
  a b b a× = − ×  
 
that is, b a×  points opposite to a b× . 
 
We can write 
 

 

321

321

)3()2()1(

bbb
aaa
eee

ba =×  

 
There is a compact representation of a determinant that helps us write 
 
  ijk i ja b a bε× =  
 
(Note that k  is a free index.   The actual symbol chosen for it is not important; what matters is 
that the right side has one free index, making it a vector) 
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ijkε  is called the permutation symbol 

 
0ijkε =  if any two of the indices are the same 

 
      1 if , ,i j k= +  form an even permutation of 1, 2, 3 [example: 1,2,3] 
 
      1 if , ,i j k= −  form an odd permutation of 1, 2, 3 [example: 2, 1, 3]  
 
We can assign a geometric interpretation to anda b a b⋅ × .  If the angle between the two vectors 

and is , thena b θ  
 
   cosa b a b θ⋅ =  
 
and the length of  is sina b ab θ× .  You may recognize sina b θ  as the area of the parallelogram 
formed by a  and b  as two adjacent sides.  Given this, it is straightforward to see that 
 
  ijk i j ka b c a b cε⋅ × =  
 
is the volume of the parallelepiped with sides , , and ca b .  This is called the triple scalar product. 
 
Second Order Tensors 
 
Note that we did not define vector division.  The closest we come is in the definition of second-
order tensors! 
 
 
Imagine 
 

  a
b

= Τ  

 
Instead, we write 
 
  a b= Τ⋅  
 
A tensor (unless explicitly stated otherwise we’ll only be talking about “second-order” and shall 
therefore omit saying it every time) “operates” on a vector to yield another vector.  It is very useful 
to think of tensors as operators as you’ll see later. 
 
Note the “dot” product above.  Using ideas from vectors, we can see how the above equation may 
be written in index notation. 
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  i ij ja b= Τ  
 
It is important to note that b ⋅Τ  would be i ijb Τ  and would be different from bΤ⋅  in general. 
 
The two underbars in Τ  now take on a clear significance; we are referring to a doubly subscripted 
entity.  We can think of a tensor as a sum of components in the same way as a vector.  For this, we 
use the following result. 
  

( ) ( ) iji je e⋅Τ ⋅ = Τ  Scalar 
We’re not using index notation on the left side of the above equality. 
 
Thus, to get 23Τ  we would find ( ) ( )2 3e e⋅Τ ⋅ .  We can then think of T as a sum. 
 
  ( ) ( ) ( ) ( ) ( ) ( )11 12 131 1 1 2 1 3e e e e e eΤ = Τ + Τ + Τ  
 
       ( ) ( ) ( ) ( ) ( ) ( )21 22 232 1 2 2 2 3e e e e e e+Τ + Τ + Τ  
 
       ( ) ( ) ( ) ( ) ( ) ( )31 32 333 1 3 2 3 3e e e e e e+Τ + Τ + Τ  
 
What are the quantities ( ) ( )1 2e e  and others like them?  They are called dyads.  They are a basis 
set for representing tensors.  Each is a tensor that only has one component in this basis set.  Note 
that ( ) ( ) ( ) ( )i j j ie e e e≠ .  A dyadic product is a third way in which we can multiply two vectors. 
 
You can see that tensors and matrices have a lot in common! 
 
In fact, we commonly write the components of a tensor as the elements of a 3 x 3 matrix. 
 

  
11 12 13

21 22 23

31 32 33

Τ Τ Τ 
 Τ Τ Τ 
 Τ Τ Τ 

 

 
Naturally, as we change our basis set, the components of a given tensor will change, but the entity 
itself does not change.  Of course, unlike vectors, we cannot visualize tensors – we only “know” 
them by what they do to vectors that we “feed” them! 
 
A good example of a tensor in fluid mechanics is the stress at a point.  To completely specify the 
stress vector, we not only need to specify the point, but also the orientation of the area element.  
At a given point, we can orient the area in infinitely many directions, and for each orientation, the 
stress vector would, in general be different. 
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  ForceStress
Area

=   
has magnitude and direction
has magnitude and direction

←
←

 

In fact, we can show that stress is indeed a tensor (for proof, see Aris, p. 101).  So, we get 

 t n= ⋅Τ  

        
The symbol n  represents the unit normal (vector) to the area element, and t  is the stress vector 
acting on that element.  The second-order tensor Τ  completely describes the state of stress at a 
point. By convention, t  is the stress exerted by the fluid into which n  points on the fluid adjoining 
it. 
 
Just as a vector has one invariant (its length), a tensor has three invariants.  They are defined as 
follows. 
Let or ijA A  be the tensor. 

                                                  ↓ abbreviation 
  { } { }traceA iiI A tr A A= = =  

  21
2A A AII I II = −   where 

  { }AII tr A A= ⋅   Note: A A⋅  is the tensor ij jkA A  

  AIII =  Determinant of { }DetA A=  

          1 2 3ijk i j kA A Aε=  

           2 3ijk il j kA A Aε=  

t
n

 

 



10 
 

As the basis set is changed, the invariants do not change even though the components of the tensor 
may change.  For more details, consult Aris, p. 26, 27 or Slattery, p. 47, 48. 
 
A symmetric tensor ijA  is one for which ij jiA A= .  Thus, there are only six independent 
components.  Stress is a symmetric tensor (except in unusual fluids).  Symmetric tensors with real 
elements are self-adjoint operators, a concept about which you can learn more in advanced work. 
 
A skew-symmetric tensor ijA  is one for which ij jiA A= − .  You can see immediately that the 
diagonal elements must be zero ( )because ii iiA A= − .  Skew-symmetric tensors have only three 
independent components.  Vorticity is an example of a skew symmetric tensor.  
 
If we write a skew-symmetric tensor ijA  in the form 

  
3 2

3 1

2 1

0
0

0

a a
a a

a a

− 
 − 
 − 

 

We can see that there is a vector a   that can be formed using the elements of ijA .  The two are 
related by the following result, which is useful in the context of the physical significance of 
vorticity. 
 
  A x x a⋅ = ×  

Any second order tensor can be decomposed into the sum of a symmetric tensor and a skew-
symmetric tensor. 
 

( ) ( )
Symmetric Tensor Skew-Symmetric Tensor

1 1
2 2ij ij ji ij jiA A A A A= + + −
 

 or in Gibbs notation, ( ) ( )
Symmetric Tensor Skew-Symmetric Tensor

1 1
2 2

T TA A A A A= + + −
 

  

 
Here, TA  is the transpose of the tensor A .  TA has components that form a matrix whose columns 
are the rows of the matrix of components of A . 
 
There is a special tensor that leaves a vector undisturbed.  It is called the identity or unit tensor I
.  

  
1 0 0
0 1 0
0 0 1

I
 
 =  
 
 

  
for any 
I x x

x
⋅ =

 

In index notation, we write I  as ijδ , the Kronecker delta. 
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Symmetric tensors have a very special property.  Remember that we define a tensor as the 
representation of some field at a point; at that point, there are three special directions, orthogonal 
to each other, associated with a symmetric tensor.  When the tensor operates on a vector in one 
of these directions, it returns another vector pointing in the same (or exactly opposite) direction!  
The new vector, however, will have a different length in general.  This multiplication factor in the 
length is called the principal value or eigenvalue of the tensor.  If the eigenvalue is negative, the 
output vector from the operation will point opposite to the input vector. 
 
Because there are, in general, three directions that are special, there are usually three distinct 
principal values, one associated with each direction.  Even for tensors that are not symmetric, there 
are three principal values; however these need not all be real.  Sometimes, two are complex.  Even 
when the principal values are real, the directions associated with them need not be orthogonal if 
the tensor is not symmetric. 
 
The problem for the principal or eigenvalues of A  is 

  A x x I xλ λ⋅ = ≡ ⋅  

Therefore,  

  0A I xλ − ⋅ =   

From linear algebra, for non-trivial solutions of the above system to exist, we must have 

  det 0A Iλ − =   

The resulting third degree equation for the eigenvalues is 

  3 2 0A A AI II IIIλ λ λ− + − + =  

and has three roots 1 2,,λ λ and 3λ .  When these roots are each used, in turn, and we solve for x , 
we obtain an eigenvector that is known only to within an arbitrary multiplicative constant.  
Commonly, the eigenvector is normalized so that it has unit length. 
  
From the above, you can see that corresponding to a symmetric tensor, there is a special rectangular 
Cartesian set of basis vectors of unit length.  If we choose this as the basis set, the tensor will have 
a simple diagonal form with the diagonal components being the eigenvalues. 
 
If you’re wondering what happens when two eigenvalues are identical, it is easy to show that any 
vector in the plane normal to the third eigenvector (corresponding to the third eigenvalue) is 
acceptable as an eigenvector.  In other words, on that plane, the tensor operating on a vector in any 
direction will yield a vector in the same direction with a magnification factor corresponding to the 
repeated eigenvalue. 
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If all three eigenvalues are identical, then any direction in space will be acceptable as the direction 
of the eigenvectors.  Such a tensor is called isotropic for this reason.  I  is an isotropic tensor with 
eigenvalues equal to unity.  Any scalar multiple of I  also is isotropic. 
 

Vector Calculus 

If we consider a scalar field such as temperature, we find the rate of change with distance in some 
direction, x , by calculating x∂Τ ∂ .  How can we represent the rate of change in three-dimensional 
space without specifying a particular direction?  We do this via the gradient operator.  The entity 
∇Τ  [we call it “grad T”] is a vector field.  In index notation we write the gradient operator as 

/ ix∂ ∂  where i  is a free index, so that / iT x∇Τ = ∂ ∂ . 
 
At a given point in space, the vector ∇Τ  points in the direction of greatest change of T.  To obtain 
the rate of change of  T at that point in any specified direction, n , we simply “project” ∇Τ  in that 
direction. 
 

  
unit vector

n
n

∂Τ
= ∇Τ⋅

∂  

Surfaces in space on which a field has the same value everywhere are level surfaces.  In the case 
of temperature fields, these surfaces are called isotherms.   Along such a surface, the temperature 
cannot change.  Therefore, the ∇Τ  vector is everywhere normal to isothermal surfaces since it 
must yield a value of zero when projected onto such surfaces.   
 
It is straightforward to establish from the definition that  

  ( ) ( ) ( )1 2 3
1 2 3

e e e
x x x
∂ ∂ ∂

∇ ≡ + +
∂ ∂ ∂

 

in a rectangular Cartesian coordinate system ( )1 2 3, ,x x x . 

Note that ∇  is an operator and not a vector.  So, you should exercise care in manipulating it. 
 
The ∇  operator is the generalization of a derivative.  We can differentiate vector fields in more 
than one way. 
 
Divergence 
 

v∇ ⋅  or div v  is called the divergence of the vector field v  .  If the rectangular Cartesian 
components of v  are 1, 2 3, ,v v v then 

  31 2

1 2 3

i

i

v vv vv
x x x x

∂ ∂∂ ∂
∇ ⋅ = + + =

∂ ∂ ∂ ∂
 in index notation 



13 
 

 
As you can see, the result is a scalar field.  It can be shown that the divergence of a vector field at 
any point represents the outflow of the field. 
 
Curl 
 

v∇×  or curl v  is a vector field.  As the name implies, it measures the “rotation” of the vector v
.  Again, in ( )1, 2 3,x x x  coordinates, 

  

( ) ( ) ( )1 2 3

1 2 3

1 2 3

e e e

v
x x x

v v v

∂ ∂ ∂
∇× =

∂ ∂ ∂   k
ijk

j

v
x

ε ∂
=

∂
 in index notation. 

The term “curl” implies rotation, and the curl of a vector field is indeed related to rotation as will 
be evident when we discuss fluid mechanics later. 
 
There are two important theorems you should know.  They are simply stated here without proof. 
 
Divergence Theorem 
 
If the volume V  in space is bounded by the surface S , 
 
   

V S

a dV dS a∇ ⋅ = ⋅∫ ∫   

    

V

S

dS
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The vector field a  should be continuous and differentiable.  The symbol dS  represents a vector 
surface element.  If n  is the unit normal to the surface, 
 
  dS n dS=  
 
The entity dV is a volume element.  In the theorem, the left side is a volume integral and the right 
side is an integral over the surface that bounds the volume.  Finally, a  need not be a vector field, 
but can be a tensor field of any order. 
  
The divergence theorem, also known as Green’s transformation, is a very useful result that 
permits us to convert volume integrals into surface integrals.  By applying it to an infinitesimal 
volume, you can visualize the physical significance of the divergence of a vector field at a point 
as the outward “flow” of the field from that point. 
 
Stokes Theorem 
 
This permits the conversion of integrals over a surface to those around a bounding curve. Imagine 
a surface that does not completely enclose a volume, but rather is open, such as a baseball cap.  Let 
S be the surface and C, the curve that bounds it. 
 
 
 

     
 
 
 
If a vector field a  is defined everywhere necessary, and is continuous and differentiable, Stokes 
theorem states: 
    ( )

C
S

a dS a t ds∇× ⋅ = ⋅∫ ∫    

where dS is a vector area element on the surface S , ds  is a scalar line element on the bounding 

curve C, and t  is a  unit tangent vector on C. 

S
t

C
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The integral on the right side is known as the circulation of a  around the closed curve C.  The 
field a appearing in the theorem can be replaced by a tensor field of any desired order. 
 

   
 
By imagining the surface S to lie completely on the plane of the paper as shown, you can visualize 
the physical significance of  a∇× .  If you make S shrink to an infinitesimal area, the area integral 
on the left side becomes the product of the component of a∇×  normal to the plane of the paper 
and the area.  The line integral is still the circulation around an infinitesimal closed loop 
surrounding the point.   If a  is the velocity field  v , by making the boundary an infinitesimal 
circle of radius ε , the right side can be seen to be approximately vπε2  , where v is the magnitude 
of the velocity around the loop.  The left side is approximately nv ⋅×∇ )(2πε  where n is the unit 

normal to the plane of the paper.   Therefore,  
ε
vnv ≈⋅×∇ )(

2
1 , which becomes the instantaneous 

angular velocity of the fluid at the point on the plane of the paper as 0→ε .  Because there is 

nothing unique about the choice of the plane of the paper, we can see that )(
2
1 v×∇  in fact 

represents the instantaneous angular velocity vector of a fluid element at a given point, the 
component of which in any direction is obtained by projecting in that direction. 
  
  

S
C
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The Gradient of a Vector Field 
 
Just as we defined the gradient of a scalar field, it is possible to define the gradient of a vector or 
tensor field.  If v  is a vector field, v∇  is a second-order tensor field.  The rate of change of v  in 
any direction n  is given by 
 

  v v n
n

∂
= ∇ ⋅

∂
 

Concluding Remark 
 
In this section of the notes, we have used symbols for vectors and tensors that are convenient for 
handwritten work.  In the remainder of these notes, we shall use the standard boldface 
representation of vectors and tensors found in books. 
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Continuity Equation: Principle of Conservation of Mass 
 

Based on observation, one can postulate the idea that mass is neither created nor destroyed.  In 
other words, it is conserved. This is termed the Principle of Conservation of Mass.  This principle 
is applied to a fixed volume of arbitrary shape in space that contains fluid.  This volume is called 
a “Control Volume.”  Fluid is permitted to enter or leave the control volume.  
 
A control volume V  is shown in the sketch. 
 

    
 
Also marked on the sketch is the bounding surface S of this control volume, called the control 
surface; an element of surface area dS  and the unit outward normal (vector) to that area element, 
n  are shown as well. The vector symbol dSdS = n  is used to represent a directed differential 
area element on the surface.   
 
Just like the principle of conservation of mass, one can make similar statements about energy and 
momentum, being careful to accommodate ways in which energy or momentum can enter or leave 
a fixed volume in space occupied by a fluid.  These conservation statements are put in 
mathematical form and termed “integral balances.”  These balances are useful in a variety of 
problems.  Here, we shall apply the principle of conservation of mass to the control volume shown 
in the sketch, and eventually obtain a partial differential equation commonly known as the 
continuity equation.  We begin with a verbal statement of the principle of conservation of mass. 
 
Rate of increase of mass of material within the control volume = Net rate at which mass 
enters the control volume. 

n

dS

dV

V S
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Let us write a mathematical representation of the above statement.  To determine the rate of 
accumulation of mass in the control volume, we begin with the mass content in the differential 
volume element dV , because the density ρ  of the fluid can depend on position.  Multiplying the 
differential volume by the density at that location gives the amount of mass in the differential 
volume element, and the total mass M  in the control volume V  is obtained by integrating this 
product over the entire control volume.  Therefore, 

V

M dVρ= ∫   

The time rate of change of this mass content in the control volume is /dM dt .  Because the control 
volume is fixed in space, the time derivate can be taken inside the integral and becomes a partial 
derivate in time, obtained when keeping spatial coordinates fixed.  Thus, the left side in the verbal 

statement of the principle of conservation of mass is  
V

dV
t

ρ∂
∂∫ , where t  represents time. 

 
Now, we need to develop a result for the net rate of entry of mass into the control volume through 
the control surface.  For this, we consider the differential area element dS .  Now, let us define the 
mass flux through space as the vector MN .  Then the rate of entry of mass into the control volume 
through the area element dS  is ( )M dS− •N n , which is ( )M− •N dS .  The total rate of entry of 

mass over the entire surface can be written as the integral ( )M
S

− •∫ N dS .  This is the right side in 

the verbal statement of the principle of conservation of mass.  Equating the two sides yields the 
following result. 
 

M
V S

dV
t

ρ∂
= − •

∂∫ ∫ N dS    or  0M
V S

dV
t

ρ∂
+ • =

∂∫ ∫ N dS   

 
A theorem that applies to vector fields permits us to convert a surface integral such as the one in 
the above equation into a volume integral.  It is known as the Gauss divergence theorem or Green’s 
theorem.  The vector field must satisfy conditions regarding continuity of derivatives, and all the 
fields that we encounter are assumed to satisfy these conditions.  Using this theorem, we can write 
the following result. 
 

( )M M
S V

dV• = ∇ •∫ ∫N dS N   

 
Using this equality, we can rewrite the principle of conservation of mass as 
 

0M
V

dV
t

ρ∂ + ∇ • = ∂ ∫ N   
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We wish to conclude that at every point in the fluid, the integrand of the above result must be zero.  
To do this we need to use two important ideas.  One is that our control volume is arbitrary in shape 
and location. The second is that the fields ρ , MN , and their derivatives are all continuous 
functions of position.  Thus, the integrand is a continuous function of position.  This means that if 
the integrand is non-zero at any point in space, we are guaranteed a neighborhood of that point in 
which it retains the same sign.  Then, we can consider that specific neighborhood the control 
volume, in which case the integral will be non-zero, violating the integral balance stated above.  
This precludes the integrand being non-zero anywhere in the fluid.  Thus, it must be zero at every 
point in the fluid. 
 

0Mt
ρ∂

+ ∇ • =
∂

N  

 
The mass flux is the product of the density and the volume flux, which is the velocity. 
 

M ρ=N v   
 
Substituting this result in the partial differential equation yields the continuity equation. 
 

( ) 0
t

ρ ρ∂
+ ∇ • =

∂
v   

 
By working out the divergence of the product, we can rewrite this as 
 

( ) 0
t

ρ ρ ρ∂
+ •∇ + ∇ • =

∂
v v   

 
It is common practice to combine the first two terms in the left side and write the result as the 
material derivative of density with respect to time. 
 
d
dt t
ρ ρ ρ∂

= + •∇
∂

v   

Bird et al. (1) use the symbol 
D
Dt

ρ
 for the material derivative.  We shall use 

d
dt
ρ

in our work.  The 

material derivative is the time derivative taken while keeping the material coordinates fixed.  
Physically, this means that it is the time derivative obtained while moving with a material particle, 
i.e. moving with the flow. 
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Thus, the continuity equation is rewritten as 
 

( ) 0d
dt
ρ ρ+ ∇ • =v   

 
The assumption of incompressible flow, implying that the density of an element of fluid does not 
change with a change in pressure, is used commonly. With this assumption, the continuity equation 
reduces to 
 

0∇ • =v   
 
In rectangular Cartesian coordinates ( ), ,x y z  this is written as follows. 
 

0yx z
vv v

x y z
∂∂ ∂

+ + =
∂ ∂ ∂

  

 
Appropriate representations in other coordinate systems can be found in textbooks such as that by 
Bird et al. (1). 
 
The Assumption of Incompressible Flow 
 
Incompressible flow implies that the variation in the density of an element of fluid due to changes 
in pressure can be considered negligible.  Because pressure variations are encountered in fluids, 
one might wonder about the limits on the validity of this assumption.  Liquids are virtually 
incompressible, displaying very small variations in density in response to pressure changes, so that 
incompressible flow is almost always an excellent assumption in liquids.  Gases, on the other hand, 
undergo a significant density change when the pressure is changed. In the flow of gases, the 
assumption of incompressible flow can be used so long as 
 

1ρ
ρ

∆
   

  
where ρ∆  represents a typical change in density encountered in the flow, and the symbol   stands 
for “much less than.” 
 
As shown in pages 9-11 of Schlichting (2) this condition implies that the square of the ratio of a 
characteristic velocity in the fluid 0v  to the speed of sound c  in the fluid, is much less than unity. 
 

2
0 1v
c

 
 
 

   
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The Mach number M  is defined as  
 

0vM
c

=   

 
so that the requirement is that 2 1.M    In practical terms, this means that the assumption of 
incompressible flow in a gas is good so long as the Mach number is relatively small, that is, so 
long as the typical flow velocities are much smaller than the speed of sound in the fluid. 
 
A more detailed discussion of the conditions for the validity of the assumption of incompressible 
flow, accounting also for thermal expansion, can be found in pages 167-171 of Batchelor (3). 
 
References 
 
1. R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, Wiley, 2007.  
  
2. H. Schlichting, Boundary Layer Theory, McGraw-Hill, 1968.  
 
3. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 1967. 
 
  



23 
 

Kinematics of Fluid Motion 
 
Kinematics is the study of motion without dealing with the forces that affect motion.  The 
discussion here is of limited scope and for more details, the reader is encouraged to consult any of 
the references listed at the end.  The notation used and the details of the development in many 
places are directly borrowed from Aris (1) and Batchelor (2).  Our focus here is on fluid motion.  
We shall use rectangular Cartesian coordinates ( ), ,x y z , along with the associated basis set of 
mutually orthogonal unit vectors ( ), ,i j k .  The position vector is  labeled x . 
 
Imagine a tiny line element dx , labeled PQ  in the sketch, at some instant of time.  After a small 
amount of time dt , the two ends have moved to new locations because of fluid motion, and the 
new line element is labeled P Q′ ′ . 
 
 
 
 
 
 
 
 
 
 
We can see that if the velocity were to be the same at both ends of the element, it would change 
neither its length, nor its orientation.  Therefore, in a uniform velocity field, there is simple 
translation of fluid elements with no deformation or rotation.  To cause either, the velocity ( )v x
must be non-uniform.  To understand the nature of the changes in fluid elements brought about by 
the flow, we must, therefore, investigate the velocity gradient, ∇v , which is a second order tensor. 
 
From calculus, we know that the differential change xdv can be written as 

x x x
x

v v vdv dx dy dz
x y z

∂ ∂ ∂
= + +

∂ ∂ ∂
 

and similar results can be written for the changes ydv  and zdv .  It follows that the differential 
change in the vector velocity, dv , is given by 

y y yx x x z z z

y y yx x xz z z

d dv dv dv
v v vv v v v v vdx dy dz dx dy dz dx dy dz

x y z x y z x y z

v v vv v vv v vdx dy dz
x x x y y y z z z

+ +

∂ ∂ ∂    ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

∂ ∂ ∂     ∂ ∂ ∂∂ ∂ ∂
= + + + + + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

∂
=

x x zv = i j k

i j k

i j k i j k i j k

dx dy dz d
x y z

∂ ∂
+ + = ∇ •

∂ ∂ ∂
v v v v x

 

P

Q

Q′

P′
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 Thus, the relative velocity of a point a distance dx  from any given location is given by the dot 
product of the tensor ∇v  and the differential line element dx .  This tensor can be written as 
follows.   
 

x x x

y y y

z z z

v v v
x y z
v v v
x y z
v v v
x y z

∂ ∂ ∂ 
 ∂ ∂ ∂ 

∂ ∂ ∂ 
∇ =  ∂ ∂ ∂ 

 ∂ ∂ ∂
 ∂ ∂ ∂ 

v  

 
Any tensor can be written as the sum of a symmetric and an antisymmetric tensor.  Let us  do this 
with the velocity gradient tensor, writing it as 
 
∇ = +v E Ω  
 
where the (symmetric) rate of strain or rate of deformation tensor E  is given by 
 

( )1
2

= ∇ ∇ TE v + v  

 
and the (antisymmetric) vorticity tensor Ω  is given by  
 

( )1=
2

∇ ∇ Tv - vΩ  

 
The action of each of these contributions to the velocity gradient will be explored in detail next.  
First, we consider the vorticity tensor. 
 

Vorticity Tensor Ω  
 
The vorticity tensor Ω  is a skew-symmetric tensor.  We can write its components in terms of the 
components of the velocity gradient as follows. 
 

1 10
2 2

1 10
2 2

1 1 0
2 2

yx x z

y yx z

yxz z

vv v v
y x z x

v vv v
x y z y

vvv v
x z y z

 ∂  ∂ ∂ ∂ − −    ∂ ∂ ∂ ∂   
 ∂ ∂   ∂ ∂ = − −   ∂ ∂ ∂ ∂    
 

∂ ∂∂ ∂  − −   ∂ ∂ ∂ ∂    

Ω  
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A skew-symmetric tensor ijA can be formed from a vector ka by writing ij ijk kA aε= .  The vector 

associated with the vorticity tensor in this manner is 1
2

− ω , where = ∇×vω  is known as the 

vorticity vector. Using the relationship between Ω  and  1
2

− ω , we obtain 

1
2ij j ijk j kdx dxε ωΩ = −  or in Gibbs notation, 1 1

2 2
• = − × = ×dx dx dxΩ ω ω    

 
This means that the relative motion that is contributed by the vorticity tensor at a point an 
infinitesimal distance away from a reference point in a fluid is that caused by a rigid rotation with 

an angular velocity equal to 1
2

ω .   

 
Because a fluid does not usually rotate as a rigid body in the manner that a solid does, we should 
interpret the above statement as implying that the average angular velocity of a fluid element 
located at a point is one-half the vorticity vector at that point (2).  To prove this claim, consider a 
surface formed by an infinitesimal circle of radius a  located at a point x . Let the unit normal 
vector to the surface (perpendicular to the plane of the paper) be n , and the unit tangent vector to 
the circle at any point be t . 
 
 
 
 
 
 
 
 
 
 
Apply Stokes’s theorem to the velocity field in this circle. 

( )
S C

dS ds∇× • = •∫ ∫v n v t  

Here, dS is an area element on the surface of the circle S and ds is a line element along the circle 
C.   Because •v t is the component of the velocity along the periphery of the circle, we can write 

the average linear velocity along the circle as 1
2 C

ds
aπ

•∫ v t and therefore the average angular 

velocity as 2

1
2 C

ds
aπ

•∫ v t .  From Stokes’s theorem, we see that this is equal to the average value 

of 1
2

 ∇× • 
 

v n  over the surface of the circle.  Thus, in the limit as the radius of the circle 

approaches zero, we find that the average angular velocity around the circle approaches the value 
of one-half the component of the vorticity vector in a direction perpendicular to the surface of the 
circle.  We also can show (see Batchelor, page 82) that the angular momentum of a spherical 

a

t
n
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element of fluid is equal to one-half the vorticity times the moment of inertia of the fluid, just as it 
is for a rigid body. 
 
Vorticity Vector 
 
The vorticity = ∇×vω , is an important entity in fluid mechanics.  It is transported from one place 
to another in a fluid by convective and molecular means, just as energy and species are, and an 
appropriate partial differential equation that governs its transport can be written.  In addition, 
vorticity also is intensified by the stretching of vortex lines, a mechanism that is not present in the 
transport of energy and species.  One reason for working with the equations of vorticity transport 
is that pressure is absent as a dependent variable in those equations. It can be shown that if a fluid 
mass begins with zero vorticity, and the fluid is inviscid (meaning the viscosity is zero), the 
vorticity will remain zero in that fluid mass.  A flow in which the vorticity is zero is known as an 
irrotational flow. 
 
Vorticity is generated at fluid-solid interfaces and at fluid-fluid interfaces. Vorticity cannot be 
generated internally within an incompressible fluid.  This is the reason why, in a high Reynolds 
number flow (implying weak viscous effects) past a rigid body, most of the flow can be described 
by using the equations that apply to irrotational flow, with the vorticity being confined to a 
boundary layer near the surface of the body. 
 
Vortex Lines and Tubes 
 
Just as a streamline is a curve to which the velocity vector is tangent everywhere, we can define a 
vortex line as a curve to which the vorticity is tangent everywhere.   If the components of  the 
vorticity = ∇× vω  are ( ), ,x y zω ω ω , then we can write the equations of the space curves that are 
vortex lines as 
 

x y z

dx dy dz
ω ω ω

= = . 

 
The surface that is formed by all the vortex lines passing through a closed reducible curve is known 
as a vortex tube.  If we construct an open surface S bounded by this closed curve C, we can define 

the strength of the vortex tube as  
S

•∫dS ω .  By using Stokes’s theorem, we can see that this is the 

circulation 
C

ds•∫ v t  where C  is any closed curve around the vortex tube, t  is a unit tangent vector 

to the curve at any point, and ds is a line element.   
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Rate of Strain or Rate of Deformation Tensor E  
 
From the above discussion of the vorticity tensor, you can see that the role of that tensor is to 
describe the instantaneous angular velocity of a fluid element, but that it contributes nothing to 
deformation of elements.  Now, we move on to discuss the significance of the rate of strain tensor, 
which contains all the information about the deformation. 
 
The rate of strain tensor is a symmetric tensor.  We can write its components in terms of the 
components of the velocity gradient as follows. 
 

1 1
2 2

1 1
2 2

1 1
2 2

yx x x z

y y yx z

yxz z z

vv v v v
x y x z x

v v vv v
x y y z y

vvv v v
x z y z z

 ∂  ∂ ∂ ∂ ∂ + +    ∂ ∂ ∂ ∂ ∂   
 ∂ ∂ ∂   ∂ ∂ = + +   ∂ ∂ ∂ ∂ ∂    
 

∂ ∂∂ ∂ ∂  + +   ∂ ∂ ∂ ∂ ∂    

Ε  

 
The diagonal elements of E 
 
Following Aris (1) closely, consider a line element dx with a length ds . 
 

( ) ( )2d dds d d
dt dt

= •x x  

 

Using the fact that d d
dt

=
x v , the above result can be rewritten as 

 

( ) ( )2 2 2 2 2dds ds d d d d d d d d
dt

= • • ∇ • = • • • •x v = x v x x E x + x xΩ  

 
The second term in the far-right-side is zero because Ω  is an antisymmetric tensor.  To see this, 
we write 
  

ij i j ji j i ij i jd d dx dx dx dx dx dx• • Ω = Ω = − Ωx x =Ω  so that 0ij i jdx dxΩ = . 
 
In the above result, after writing the result in index notation, we first exchange the indices i  and 
j  to obtain an intermediate result, and then use the antisymmetry property to write ij jiΩ = − Ω .   

 
Therefore, we find that 
 

( )dds ds d d
dt

= • •x E x  from which, by dividing through by 2ds   we can write 
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( )1 d d dds
ds dt ds ds

= • •
x xE  

 
The vector /d dsx  is a unit vector pointing in the direction of the infinitesimal vector dx . 
Therefore, we can think of the right side of the above result as the “double projection” of the tensor 
E  in that direction.  The term “projection” is used in a loose sense here.  The physical meaning is 
clear.  The rate of strain of a line element pointing in any direction at a given point (which is the 
time rate of change of length, divided by the length) is the dot product of a unit vector in that 
direction with the dot product of the rate of strain tensor with the same unit vector. Let us choose 
the direction to be the x − direction.  In this case, the rate of strain of a line element in that direction 

is simply 11E , which is equal to xv
x

∂
∂

.  In a like manner, the rate of strain of a line element in the 

y − direction is yv
y

∂

∂
, and that in the z − direction is zv

z
∂
∂

.  This is the physical interpretation of the 

diagonal elements of the rate of strain tensor.   
 
The sum of the diagonal elements of E , known as the trace of E  is ∇ • v . This is known as the 
rate of dilatation of a fluid element at the given location.  To see why, consider a material body 
occupying a volume V  enclosed by the surface S .   Let us inquire how  V  changes with time.  
We can write the rate of change of the volume of a material body with time as the integral of d •S v  
over the surface. 
 

S V

dV d dV
dt

= • = ∇ •∫ ∫S v v  by the divergence theorem.   

 

From the above, we can see that  
0 0

1 1lim lim
V V

V

dV dV =
V dt V→ →

= ∇ • ∇ •∫ v v .  So, the trace of E  is the 

rate of increase in the volume of an infinitesimal element, divided by its volume, and is called the 
rate of dilatation.  When the flow is incompressible, the rate of dilatation is zero. 
The off-diagonal elements of E  
 
Now, consider two line elements dx  and d ′x  at a given point x  and let the angle between them 
be θ . 
 
 
 
 
 
 
 
 
Let us investigate the time rate of change of the dot product of the vectors dx  and d ′x . 
 

P

Q

Q′
θ

dx

d ′x
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( ) ( )cos i i i i

i i
j i j i

j j

d dds ds d d dv dx dx dv
dt dt

v vdx dx dx dx
x x

θ ′ ′′ ′= • = +

∂ ∂′ ′= +
∂ ∂

x x
 

In writing the result in the second term in the second line, we have used the fact that the 
infinitesimal change idv ′ is the change in the velocity over an infinitesimal distance in the direction 
of the vector d ′x .  Interchanging the indices i  and j  in that second term permits us to combine 
the two terms. 
 

( )cos 2ji
i j ij i j

j i

vvd ds ds dx dx E dx dx
dt x x

θ
 ∂∂ ′ ′′ = + =  ∂ ∂ 

 

 
Dividing both sides by ds ds′  yields 
 

( )1 cos 2 2ji
ij

dxdxd d dds ds E
ds ds dt ds ds ds ds

θ
′ ′

′ = = • •
′ ′ ′

x xE  

 
So, we see that if we take the dot product of E  with unit vectors in two different directions in 
succession (the order is immaterial because E  is symmetric), the result is the left side of the above 
equation.  Let us work out the differentiation in the left side. 
 

( ) ( ) ( )1 1 1cos cos sind d d dds ds ds ds
ds ds dt ds dt ds dt dt

θθ θ θ ′ ′= + − ′ ′ 
 

 
The term in square brackets in the right side is the sum of the individual rates of strain of the two 
line elements.  We can see that the above result reduces to the earlier result we obtained when the 
two vectors idx  and idx ′  are the same.  Let us consider the case when the two vectors are 
orthogonal to each other.  In this case, we obtain 
 
d d
ds ds

′
• • =

′
x xE 1

2
d
dt
θ

−  

 
So, the sequential dot products of E  with unit vectors in two orthogonal directions yields one-half 
the rate of decrease of the angle between the unit vectors in those directions.  If we choose these 
two orthogonal directions to coincide with any two coordinate directions, then the dot products 
yield the off-diagonal elements of E .  For example, if we use x  and y −  directions, the element 
is ( )12 21E E= .  Similar physical interpretations can be given to the other off-diagonal elements of 
the rate of strain tensor.  Thus, the off-diagonal elements describe shear deformation of the fluid. 
 
There are three mutually orthogonal directions associated with the symmetric tensor E   that are 
known as its eigenvector or principal directions.  We can use a basis set built from these principal 
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directions to describe the components of the tensor.  If we do, the tensor will be diagonal.  The off-
diagonal elements will be zero, so that the rate of change of the angles between the principal 
directions is zero; of course the entire set of principal axes can rotate, and in fact it does, with the 

angular velocity 1 1
2 2

∇×ω = v . 

 
Instantaneous Deformation of a Fluid Element 

 
Based on all of the above material on kinematics, we can conclude that in a flow, an infinitesimal 
spherical element of fluid undergoes translation, rotation, and deformation in general.  It deforms 
into an ellipsoid whose axes are aligned with the principal axes of the rate of strain tensor.  This 
ellipsoid also rotates with an instantaneous angular velocity that is equal to the one-half of the 
vorticity of the fluid at the given point. 
 
Some good sources for further study are listed below. 
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Navier-Stokes Equation: Principle of Conservation of Momentum 
 

Newton formulated the principle of conservation of momentum for rigid bodies.  It took some time 
for the corresponding version for a continuum, representing a fluid, to be developed.  The result is 
attributed to Cauchy, and is known as Cauchy’s equation (1).  A derivation of Cauchy’s equation 
is given first.   Then, by using a Newtonian constitutive equation to relate stress to rate of strain, 
the Navier-Stokes equation is derived.   
 
The principle of conservation of momentum is applied to a fixed volume of arbitrary shape in 
space that contains fluid.  This volume is called a “Control Volume.”  Fluid is permitted to enter 
or leave the control volume.   A control volume V  is shown in the sketch. 
 

    
 
 
Also marked on the sketch is the bounding surface S of this control volume, called the control 
surface; an element of surface area dS  and the unit outward normal (vector) to that area element, 
n  are shown as well. In addition, the vector stress t  exerted by the neighboring fluid on the fluid 
in the control volume on the area element dS  also is displayed.  The stress vector will be discussed 
in more detail shortly.  We note that the vector symbol dSdS = n  is used to represent a directed 
differential area element on the surface.    
 

n

dS

dV

V S

t
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We begin with a verbal statement of the principle of conservation of momentum. 
 
Rate of increase of momentum of material within the control volume = Net rate at which 
momentum enters the control volume with the flowing fluid + Sum of the forces acting on 
the fluid in the control volume 
 
Next, we shall develop a mathematical representation of the above statement. Because the density 
ρ  of the fluid and the velocity v  can both depend on position, to determine the rate of increase 
of momentum in the control volume, first it is necessary to determine the mass content in the 
differential volume element dV .  Multiplying the differential volume by the density at that 
location gives the amount of mass in the differential volume element as dVρ , and multiplying 
this mass by the velocity at that location gives the momentum content of the fluid in the differential 
volume element.  The total momentum in the control volume V  is obtained by integrating this 
product over the entire control volume.  Therefore, 

Momentum content of the fluid in the control volume 
V

dVρ= v∫   

The time rate of change of this momentum content of the fluid in the control volume is obtained 
by differentiating the above result with respect to time.  Because the control volume is fixed in 
space, the time derivative can be taken inside the integral and becomes a partial derivative in time, 
obtained while keeping spatial coordinates fixed. Thus, the left side in the verbal statement of the 

principle of conservation of momentum is  ( )
V

dV
t

ρ∂
∂∫ v , where t  represents time. 

 
Next, we need to develop a result for the net rate of entry of momentum with the fluid flowing into 
and out of the control volume through the control surface.  For this, we need to consider the 
differential area element dS .  The rate of influx of mass into the control volume through this 
differential area is given by ( ) dSρ− •v n .  Therefore, the rate of influx of momentum with the 

fluid flowing into the control volume through the area element is ( ) dSρ− •v v n .  Integrating this 
result over the entire control surface leads to the following result. 
 
Net rate of influx of momentum into the control volume with the flow =  

                                              ( ) ( )
S S

dSρ ρ− • = − •∫ ∫v v n vv dS  

Using the divergence theorem, the right side of the above equation becomes ( ) d Vρ− ∇ • vv
V
∫ . 

Now, we turn our attention to summing the forces acting on the fluid in the control volume.  These 
can be broadly divided into body forces and contact forces.  Body forces act on every volume 
element within the fluid occupying the control volume at any given instant, and do not need contact 
with the material to exert their influence.  The most common example of a body force is the 
gravitational force on objects.  Other examples include electrical or magnetic forces.  Let us use 
the symbol f  to designate the body force per unit mass acting on the fluid in the control volume.  
In the case of the gravitational force exerted by Earth on objects, =f g , where g  is the 
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acceleration due to gravity vector, pointed toward the center of mass of Earth.  It is straightforward 
to work out the result for the body force on the fluid in the control volume.  Once again, we begin 
with the differential volume element dV .  The mass of fluid in this volume element is dVρ  so 
that the body force on this mass is dVρ f .  Adding up all the contributions from such volume 
elements in the control volume we obtain the following result. 

Body force acting on the fluid in the control volume 
V

dVρ= f∫   

The contact force on the fluid located at the surface of the control volume arises from 
intermolecular forces exerted by the molecules on the outside of the surface on the molecules on 
the inside of the surface.  This force, expressed as a result per unit area, is termed the stress t .  The 
magnitude and direction of this vector will, in general, depend on the location, as well as the 
orientation of the area element, given by the direction of the unit normal n . Multiplying the stress 
t  by the area dS  yields a contact force on the area element that is equal to dSt .  Adding up all 
the contributions over the surface of the control volume leads to the following result for the total 
contact force acting on the fluid in the control volume. 

Contact force acting on the fluid in the control volume 
S

dS= ∫ t   

Therefore, the principle of conservation of momentum can be cast in mathematical form as 
follows: 
 

( ) ( )
V

dV d V
t

ρ ρ∂
= − ∇ •

∂∫ v vv
V V

dVρ+∫ f
S

dS+∫ ∫ t   

 
Now, consider shrinking V  to zero, and achieving this by permitting a characteristic length scale 
  to approach zero.  The volume integrals will approach zero proportional to 3

 , whereas the 
surface area will approach zero proportional to 2

 .  Therefore, if we divide through by the surface 
area, we can write 
 

( ) ( )
0

1lim 0
V

dV
S t

ρ ρ ρ
→

 ∂ + ∇ • − =  ∂  
∫



v vv f   

 
Hence, we can conclude that  
 

0

1lim 0
S

dS
S→

 
= 

 
∫



t   

This implies that the stresses on a fluid are in local equilibrium.  This result can be used to establish 
that the stress vector on an area element at any location in a fluid is given by the equation ,= •t n T
where T  is a second order tensor, called the stress tensor in the fluid at that point.  For details 
regarding how this can be established, you can consult pages 99-101 of Aris (1).  Furthermore, by 
invoking the principle of conservation of angular momentum, it can be shown that except in rare 
cases that need not concern us, the stress tensor is symmetric.  Substituting this new result for the 
stress vector allows us to rewrite the result for the total contact force acting on the fluid in the 
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control volume as 
S

dS•∫ n T , or 
S

•∫dS T .  Upon using the divergence theorem, this can be shown 

to be equal to the volume integral d V∇ •T
V
∫ .   

Using the results developed above, we can write the following mathematical statement 
representing the principle of conservation of momentum applied to a control volume. 
 

 ( ) ( )
V

dV d V
t

ρ ρ∂
= − ∇ •

∂∫ v vv
V V

dVρ+∫ f d V+ ∇ •∫ T
V
∫  

 
This result can be rewritten as follows. 
 

( ) ( )
V

dV
t

ρ ρ ρ∂ + ∇ • − − ∇ • = ∂ ∫ 0v vv f T   

 
We wish to conclude that at every point in the fluid, the integrand of the above result must be zero. 
To do this we can use the same arguments employed in deriving the equation of conservation of 
mass.  That is, the control volume is arbitrary, and the integrand is a continuous vector function of 
position.  Thus, with each component of the vector function, we can argue that if it is non-zero at 
any location in the fluid, then the control volume can be selected as the neighborhood of that point 
in which it retains the same sign, leading to a violation of the above integral balance. Therefore, 
the integrand must be zero at every point in in the fluid.   

( ) ( )
t

ρ ρ ρ∂
+ ∇ • − − ∇ • =

∂
0v vv f T   

or  

( ) ( )
t

ρ ρ ρ∂
+ ∇ • = + ∇ •

∂
v vv f T  

 
This is known as Cauchy’s equation.   We can combine the two terms in the left side.  Using index 
notation for convenience,  

( ) ( ) ( ) ( )

( )

i j i
j

i i
i i j j

j j

v v v
t t x

v vv v v v
t t x x

ρ ρ ρ ρ

ρ ρ ρ ρ

∂ ∂ ∂
+ ∇ • = +

∂ ∂ ∂

∂ ∂∂ ∂
= + + +

∂ ∂ ∂ ∂

v vv

  

( ) i i
i j j

j j

v vv v v
t x t x

ρ ρ ρ
   ∂ ∂∂ ∂

= + + +   
∂ ∂ ∂ ∂      

  

( )
t

ρ ρ∂
= + ∇ •

∂
v v

t
ρ

  ∂ + + •∇   ∂  

v v v   

where the first term in square brackets is zero because of the continuity equation.  Thus, we find 
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( ) ( ) d
t t dt

ρ ρ ρ ρ∂ ∂ + ∇ • = + •∇ = ∂ ∂ 
v vv vv v v   

where d
dt t

∂
= + •∇

∂
v v v v  is the material derivative of the velocity, namely, the derivative with 

respect to time taken while travelling with the fluid at any given point.  Therefore, Cauchy’s 
equation can be rewritten as 
 

d
dt

ρ ρ= + ∇ •
v f T   

 
When the body force is Earth’s gravity, we can write Cauchy’s equation as 
 

d
dt

ρ ρ= + ∇ •
v g T   

 
where g  was defined earlier as the acceleration due to gravity vector. 
 
In index notation, Cauchy’s equation is written as follows. 
 

j ij
j

i

dv T
f

dt x
ρ ρ

∂
= +

∂
  

 
Navier-Stokes Equation 
 
The continuity (or conservation of mass) equation and Cauchy’s equation are insufficient by 
themselves, because we have too many unknowns.  The density and the components of the velocity 
vector field constitute four unknowns, while the scalar conservation of mass equation and the 
vector conservation of momentum equation provide four scalar balances.  But, we also have six 
unknown components of the symmetric stress tensor in the conservation of momentum equation.  
Thus, in order to pose a solvable system of equations, we need to have additional information.  
There is no other conservation principle we can use.  Therefore, we must resort to a “constitutive 
equation” known as a phenomenological model, to describe the connection between the stress 
tensor and the components of the velocity vector.  It seems plausible to postulate that the stress in 
a fluid T  is related to the velocity gradient ∇v , which can be written as the sum of a symmetric 
tensor, namely the rate of deformation E , and an antisymmetric tensor, namely the vorticity Ω .  
Most derivations postulate that the stress must only depend upon the rate of deformation E , 
because the vorticity in a fluid Ω  describes only the instantaneous angular motion of an element 
of fluid, and does not have anything to do with deformation.  Others argue that a “principle of 
material frame indifference” requires that the same constitutive equation apply to a fluid whether 
one considers a laboratory reference frame or one that is instantaneously rotating at the local 
angular velocity at a point in the fluid.  This argument has been contested in the literature.  Aris 
(1) and Batchelor (2) provide an alternative viewpoint, postulating a general tensorial connection 
between T  and ∇v , and showing that isotropy arguments lead to the exclusion of Ω  from the 
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relationship, leading to a dependence of the state of stress only on the rate of deformation. In any 
case, this is where we begin our development, namely, by postulating that T  is some function of 
E .  As discussed in Aris (1) and Slattery (3), one can take advantage of the fact that both the stress 
and rate of deformation are symmetric tensors, and write the most general connection between two 
symmetric tensors in the following form. 
 

0 1 2 :χ χ χ= + +T I E E E   
 
Here, 1 2, , andoχ χ χ  are functions of the three invariants of the tensor E .  If you are wondering 
about higher order terms in what appears to be an expansion in power series, it is shown in Aris 
(1) that higher powers of E  can be reduced to results that depend only on the lower powers 
included here and the three invariants of E . 
 
The task now is to establish the nature of the functions in the relationship between T  and .E   Here, 
we simplify the problem greatly by assuming that the elements of the stress tensor depend only 
linearly on the elements of the rate of deformation tensor.  This is known as a Newtonian 
relationship, to honor Newton who first postulated a linear dependence of the shear stress on the 
velocity gradient in a one-dimensional context.  The first invariant of E  is the trace of E , which 
we know is the divergence of the velocity field ∇ • v .  This, of course, is linear in the elements of 
E .  The second invariant is quadratic in the elements of E , and the third invariant, which is the 
determinant of E , is cubic in the elements of E .  Thus, neither the second nor the third invariant 
can appear in the relationship between the stress and the rate of deformation for a Newtonian fluid.  
Furthermore, we can see that the function 2χ  must be zero because of the quadratic dependence 
of :E E  on the elements of E , 1χ  has to be a scalar constant independent of the elements of E , 
and 0χ  can, at best, be a linear function of ∇ • v .  Using this information, the Newtonian 
constitutive equation is written as follows. 
 

[ ] + 2p λ µ= − + ∇ •T v I E   
 
Here, p  will be seen to be the pressure field in the fluid shortly, and λ  and µ  are identified as 
physical properties of a given fluid.  The symbol µ stands for a physical property known as the 
coefficient of shear viscosity, or simply viscosity.  Sometimes, it is called dynamic viscosity to 
distinguish it from another property known as kinematic viscosity. There appears to be no specific 

name for the property represented by the symbol λ , but there is a name for 2 .
3

κ λ µ= +   It is 

called the coefficient of bulk viscosity and is used to account for dissipation that occurs in a fluid 
that is rapidly expanded and contracted.  In incompressible flow, the velocity field is solenoidal so 
that this type of dissipation does not occur, making the value of the coefficient of bulk viscosity 
moot.  Historically, the so-called Stokes hypothesis assumed that 0κ = , but this is not necessarily 
true.  In any case, the value of κ  will prove to be unimportant for incompressible flow, which 
implies 0∇ • =v . 
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We can see that in the absence of motion ≡ 0v , so that ≡ 0E  as well.  Thus, the result for the 
stress reduces to  
 

p= −T I   
 
That is, the state of stress in a stationary fluid is isotropic. The stress vector on any area element 
at a given location is given by 
 

( )p p= • = − • = −t n T n I n   
 
At a given point, regardless of the orientation of the area element, the stress is of the same 
magnitude p , termed pressure.  Pressure is usually positive, so that the stress in a stationary fluid 
points in the direction opposite to the normal vector to the area element.  Thus, a positive pressure 
results in compressive stress on an element of fluid at any given location in the fluid. 
 
To describe the more general case of a moving fluid, we first need to insert the Newtonian 
constitutive equation into the Cauchy equation.  Thus, we write 
 

[ ]{ } ( ) ( )+ 2 2p pλ µ λ µ∇ • = ∇ • − + ∇ • = − ∇ + ∇ ∇ • + ∇ •T v I E v E    
 
The viscosity µ  is commonly assumed to be a constant to simplify the governing equation.  We 
find ∇ • E  as follows. 
 

1
2

ij ji

i i j i i

E vv
x x x x x

  ∂ ∂ ∂∂ ∂
∇ • = = +     ∂ ∂ ∂ ∂ ∂    

E   

         ( ) ( )1 1
2 2

ji

j i i i

vv
x x x x

 ∂   ∂∂ ∂
= + = ∇ ∇ • + ∇ • ∇       ∂ ∂ ∂ ∂     

v v    

 
We shall only be concerned with incompressible flow so that we can set 0∇ • =v .  Substituting 
for ∇ • E  in the result for ∇ •T  and using the assumptions stated here yields 
 

( ) 2p pµ µ∇ • = − ∇ + ∇ • ∇ = − ∇ + ∇T v v   
 
Now, we can return to the Cauchy equation and substitute the above result for ∇ •T  in the right 
side to obtain the following version of the principle of conservation of momentum that we shall 
use extensively. 
 

2d p
dt

ρ ρ µ= − ∇ + + ∇
v g v   or alternatively 
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 


2

viscouspressure gravitational
forceforce forceinertia force

( ) p
t

ρ ρ µ∂ + •∇ = −∇ + ∇ ∂ 


v v v + g v   

 
This equation was first derived by Navier using molecular arguments, and later by Stokes for a 
continuum. Thus, it is known as the Navier-Stokes equation for incompressible flow and constant 
viscosity.  It is a vector balance in which each term has the dimensions of force per unit volume.  
The left side is the inertia force.  The first term in the right side represents the pressure force, the 
second the gravitational force, and the third, the viscous force.  The viscosity is a physical property, 
and therefore depends on the thermodynamic state of the fluid.  It is sensitive to temperature in 
both gases and liquids, and relatively insensitive to pressure under commonly encountered 
conditions, with the exception of unusually large pressures.  For more information, you can consult 
Bird et al. (4).  Also you will find a good introduction to non-Newtonian constitutive relations in 
Chapter 8 of Bird et al.  
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Standard procedure for posing and solving a fluid mechanics problem 
 
The equation of continuity and the Navier-Stokes equation are called the “governing equations” in 
fluid mechanics problems, and form the starting point for posing a variety of such problems.   A 
typical approach for setting up and solving a fluid mechanics problem is outlined below. 
 
1. Choose a natural coordinate system in which the boundaries of the domain can be described in 
a simple manner.  The simplest description of a boundary is that it is a surface at which one of the 
coordinates is constant.  As examples, for flow between parallel plates, we might choose a 
rectangular coordinate system, for flow in a circular tube, a cylindrical polar coordinate system, 
and for flow over a sphere, a spherical polar coordinate system. 
 
2. Write the governing equations in component form. 
 
3. Write initial and boundary conditions on the velocity field.   
 
4. If the viscosity (or density) is a function of position through its dependence on pressure, 
additional equations stating the relationship should be written. If the viscosity (or density) depends 
on temperature or composition, the appropriate governing equations and initial and boundary 
conditions for those fields as well as the connection between the viscosity (or density) and 
temperature or composition should be written.   
 
5. Make physically sound simplifying assumptions and eliminate terms in the equations that are 
zero, or close to zero.  
 
6. Now, proceed to solve the resulting system of equations for the velocity and pressure fields. 
 
From the solution, we can calculate entities of interest, such as how the velocity varies with 
position and time, the force exerted on the boundaries of the domain, and average and maximum 
velocities for flow in confined domains such as a channel.  The velocity distribution in a tube or 
channel, or in flow over an object, is an important entity when solving the associated heat or mass 
transport problems and is often sought for that reason. 
 
In the next few pages, the component forms of the governing equations in the most common 
coordinate systems are given.  
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The Equation of Continuity for incompressible flow 
 
 
 
Rectangular coordinates ( ), ,x y z  
 
 

0yx z
vv v

x y z
∂∂ ∂

+ + =
∂ ∂ ∂

   

 
 
Cylindrical polar coordinates ( ), ,r zθ  
 
 

( )1 1 0z
r

v vrv
r r r z

θ

θ
∂ ∂∂

+ + =
∂ ∂ ∂

 

 
 
Spherical polar coordinates ( ), ,r θ φ  
 
 

( ) ( ) ( )2
2

1 1 1sin 0
sin sinrr v v v

t r r r rθ φ
ρ ρ ρ θ ρ

θ θ θ φ
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



41 
 

The Navier-Stokes equations in rectangular coordinates ( ), ,x y z  
(for incompressible Newtonian flow with constant viscosity µ ) 

 
 
 
 
 
 
 
x − component 
 
 

2 2 2

2 2 2
x x x x x x x

x y z x
v v v v v v vpv v v g
t x y z x x y z

ρ ρ µ
  ∂ ∂ ∂ ∂ ∂ ∂ ∂∂

+ + + = − + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

 
 
y −  component 
 
 

2 2 2

2 2 2
y y y y y y y

x y z y

v v v v v v vpv v v g
t x y z y x y z

ρ ρ µ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂  ∂

+ + + = − + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

 
 
z −  component 
 
 

2 2 2

2 2 2
z z z z z z z

x y z z
v v v v v v vpv v v g
t x y z z x y z

ρ ρ µ
  ∂ ∂ ∂ ∂ ∂ ∂ ∂∂

+ + + = − + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
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The Navier-Stokes equations in cylindrical polar coordinates ( ), ,r zθ  
(for incompressible Newtonian flow with constant viscosity µ ) 

 
 
 
 
 
 
 
 
r − component 
 
 

( )
2 2 2

2 2 2 2

1 1 2r r r r r r
r z r r

v v vv v v v v vpv v rv g
t r r r z r r r r r r z

θ θ θρ µ ρ
θ θ θ

   ∂∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ + + − + = − + + − + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

 
θ − component 
 
 

( )
2 2

2 2 2 2

1 1 1 2r r
r z

v v v v v v v v vvpv v rv g
t r r r z r r r r r r z
θ θ θ θ θ θ θ θ

θ θρ µ ρ
θ θ θ θ

 ∂ ∂ ∂ ∂ ∂ ∂∂∂ ∂ ∂   + + + + = − + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 

 
z −  component 
 
 

2 2

2 2 2

1 1z z z z z z z
r z z

vv v v v v v vpv v r g
t r r z z r r r r z

θρ µ ρ
θ θ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂   + + + = − + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
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The Navier-Stokes equations in spherical polar coordinates ( ), ,r θ φ  
(for incompressible Newtonian flow with constant viscosity µ ) 

 
 
 
 
 
r − component 
 
 

( )

2 2

22
2

2 2 2 2 2 2

sin

1 1 1sin
sin sin

r r r r
r

r r
r r

v v vvv v v v pv
t r r r r r

v vr v g
r r r r

φ θ φθρ
θ θ φ

µ θ ρ
θ θ θ θ φ

 +∂ ∂ ∂ ∂ ∂
+ + + − = −  ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂∂ ∂  + + + +  ∂ ∂ ∂ ∂  

 

 
 
θ − component 
 
 

( )

2

2
2

2 2 2 2 2 2 2

cot 1
sin

1 1 1 1 2 2 cotsin
sin sin sin

r
r

r

v vv v v v v v v pv
t r r r r r r

vv v vr v g
r r r r r r r

φ φθ θ θ θ θ θ

φθ θ
θ θ

θ
ρ

θ θ φ θ

θµ θ ρ
θ θ θ θ φ θ θ φ

 ∂ ∂ ∂ ∂ ∂
+ + + + − = −  ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂∂ ∂ ∂   + + + + − +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

 
φ − component 
 
 

( )
2

2
2 2 2 2 2 2 2

1cot
sin sin

1 1 1 1 2 2 cotsin
sin sin sin sin

r
r

r

v v v v v v v v vv pv
t r r r r r r

v v vvr v g
r r r r r r r

φ φ φ φ φ φ θ φθ

φ φ θ
φ φ

ρ θ
θ θ φ θ φ

θµ θ ρ
θ θ θ θ φ θ φ θ φ

∂ ∂ ∂ ∂  ∂
+ + + + + = − ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂  ∂∂∂ ∂ ∂ + + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
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Boundary Conditions in Fluid Mechanics 
 
 
The governing equations for the velocity and pressure fields are partial differential equations that 
are applicable at every point in a fluid that is being modeled as a continuum.  When they are 
integrated in any given situation, we can expect to see arbitrary functions or constants appear in 
the solution.  To evaluate these, we need additional statements about the velocity field and possibly 
its gradient at the natural boundaries of the flow domain.  Such statements are known as boundary 
conditions.  Usually, the specification of the pressure at one point in the system suffices to establish 
the pressure fields so that we shall only discuss boundary conditions on the velocity field here.  
For a more detailed discussion of various aspects, the reader is encouraged to consult either Leal 
(1) or Batchelor (2). 
 
Conditions at a rigid boundary 
 
It is convenient for the purpose of discussion to identify two types of boundaries.  One is that at 
the interface between a fluid and a rigid surface.  At such a surface, we shall require that the 
tangential component of the velocity of the fluid be the same as the tangential component of the 
velocity of the surface, and similarly the normal component of the velocity of the fluid be the same 
as the normal component of the velocity of the surface.  The former is known as the “no slip” 
boundary condition, and has been found to be successful in describing most practical situations. It 
was a subject of controversy in the eighteenth and nineteenth centuries, and was finally accepted 
because predictions based on assuming it were found to be consistent with observations of 
macroscopic quantities such as the flow rate through a circular capillary under a given pressure 
drop.  If we designate the velocity of the rigid surface as V and that of the fluid as v , and select a 
unit normal vector to the surface pointing into the fluid at a given location as n , the no-slip 
boundary condition can be stated as 
 

( ) ( )− • = − •v n v n V n V n    on a rigid surface (no slip) 
 
When there is no mass transfer across the boundary, a purely kinematical consequence is that the  
normal component of the fluid velocity at the boundary must equal the normal component of the 
velocity of the rigid surface. 
 
      • = •v n V n      on a rigid surface (kinematic condition)  
 
As a consequence of the two conditions, we arrive at the conclusion that the fluid velocity must be 
equal to the velocity of the rigid surface at every point on it. 
 

=v V   on a rigid surface 
 
The no-slip condition has been found to be inapplicable in special circumstances such as at a 
moving contact line when a drop spreads over a solid surface, or in flow of a rarefied gas through 
a pore of diameter of the same order of magnitude as the mean free path of the gas molecules.  For 
the types of problems that we shall encounter, it is an adequate boundary condition. 
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Conditions at a fluid-fluid interface 
 
Sometimes, we encounter a boundary between two fluids.  A common example occurs when a 
liquid film flows down an inclined plane.  The surface of the liquid film in contact with the 
surrounding gas is a fluid-fluid interface.  Other examples include the interface between a liquid 
drop and the surrounding continuous phase or that between two liquid layers.  It is convenient to 
designate the two fluid phases in contact as phase I  and phase II . 
 

      
 
The unit normal vector n  points into phase I  here. 
 
It so happens that the velocity fields in fluids I  and II  are continuous across the interface so long 
as there is no mass transfer across the interface.   This vector condition also can be viewed as being 
in two parts, one on the continuity of the tangential component of the two velocities, analogous to 
the no-slip boundary condition at a rigid boundary. 
 

( ) ( )− • = − •I I II IIv n v n v n v n  at a fluid-fluid interface (continuity of tangential velocity) 
 
If the interface is in motion, we can describe it using the equation ( ), , , 0F t x y z =  where t  is time 
and F  represents some function of time and position represented in Cartesian coordinates here 
just for convenience.  Because 0F =  on the interface at all times, the derivative with respect to 
time following a material particle on the interface, also known as the material derivative, must be 
zero.  That is,  
 

0dF F F
dt t

∂
= + •∇ =

∂
v  on the interface.   

 
Assuming that F  is defined such that F∇  is directed into phase I, the unit normal shown in the 
sketch is given by /F F= ∇ ∇n  so that F F•∇ = • ∇v v n  where the velocity v  is that of the 
interface.  In the absence of mass transfer, the normal velocity is continuous across the interface 
and equal to the velocity of the interface normal to itself, as a kinematical consequence.  Thus, the 
boundary condition on the normal velocity may be stated as follows. 
 
 

1 F
F t

∂
• = • −

∇ ∂I IIv n v n =  at a fluid-fluid interface (kinematic condition) 

 

n

I
II
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If the interface is fixed in space, F  is independent of time so that 0F
t

∂
=

∂
.  In this case the above 

result simplifies to 
 
 0• = •I IIv n v n =  at a fluid-fluid interface 
 
Notice that we have two unknown vector fields Iv  and IIv  now, and therefore need twice as many 
boundary conditions.  Therefore, it is not sufficient to write just the above no-slip and kinematic 
conditions at a fluid-fluid interface.  We also need to write a boundary condition connecting the 
state of stress in each fluid at the interface.  This boundary condition is obtained from the principle 
that the forces on an element of interfacial area of arbitrary shape and size must be in equilibrium 
because the interface is assumed to have zero thickness and therefore zero mass.  The following 
derivation is based on the development given by Leal (1). 
 
Let us use the symbol A  to designate the area of an interfacial element of some arbitrary shape 
and size, and C  to designate the closed curve that forms its boundary.  Let the local normal to C  
be labeled Cn .  This normal vector to C  lies on the tangent plane to the surface at each point.  
Then, the condition that the total force on the area element must be zero can be written as follows. 
 

[ ]I II C
A C

dA dsσ• − + =∫ ∫ 0n T T n   

In the above equation, the symbols IT  and IIT  represent the stress tensor in each fluid, n  is the 
unit normal pointing into fluid I , dA  is a differential area element in A , σ  is the interfacial 
tension, which can depend on position, and ds  is a differential arc length on the closed curve C .  
Using a version of Stokes theorem, the line integral can be converted to an area integral, permitting 
us to rewrite the above balance as 

[ ] { }( )I II s
A

dAσ σ• − + ∇ − ∇ • =∫ 0n T T n n   

In this result, s∇  is the surface gradient operator which can be written as ( )∇ − •∇n n .  That is, 
we remove the part of the gradient vector that is normal to the surface.   Because the integrand is 
a continuous function of position on the interface and the interfacial element chosen is of arbitrary 
size and shape, we can show that the integrand must be zero at every point on the interface.  If any 
component of the vector integrand is non-zero at any point, then there must exist a neighborhood 
of that point on the interface in which that component of the  integrand would be of the same sign, 
and the integration could be performed over that neighborhood to yield a non-zero result for that 
component of the force, thus violating the above equation.  Therefore, we obtain the following 
result, which must be satisfied at every point on a fluid-fluid interface. 
 

[ ] ( )I II sσ σ• − = ∇ • − ∇n T T n n   
 
The divergence of the unit normal is related to the mean curvature H  of the interface. 
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1 2

1 12H
R R

 
∇ • = = + 

 
n   

 
where 1R  and 2R  are the principal radii of curvature of the interface at a given point.  For more 
details about surface geometry, the reader may wish to consult a book such as that by Weatherburn 
(3).  Using the above result, the following equation, called the jump condition on the stress, at a 
fluid-fluid interface, can be written. 
 

[ ] 2I II sHσ σ• − = − ∇n T T n  at a fluid-fluid interface (jump condition on the stress) 
 
To summarize, in the stress boundary condition, the symbols IT  and IIT  represent the stress tensor 
in each fluid, H  is the mean curvature of the interface at the point where the condition is being 
applied, σ  is the interfacial tension of the fluid-fluid interface, and s∇  is the surface gradient 
operator.  The left side in the stress boundary condition is the difference between the stress vectors 
in fluids I  and II  at the interface, or the “jump” in stress.  This is the reason for the choice of 
terminology used in describing this condition.  The resulting vector is decomposed into a part that 
is normal to the interface, namely the first term in the right side, and a part that is tangential to the 
interface, given in the second term in the right side.  Sometimes, the condition is written as two 
separate scalar boundary conditions by writing the tangential and the normal parts separately.  In 
that case, we call the two boundary conditions the “tangential stress balance” and the “normal 
stress balance.” 
 
Tangential Stress Balance 
 
In the types of problems that we shall encounter, the stress boundary condition can be simplified.   
The interfacial tension at a fluid-fluid interface depends on the temperature and the composition 
of the interface.  If we assume these to be uniform, then the gradient of interfacial tension will 
vanish everywhere on the interface.  This means that the tangential stress is continuous across the 
interface because the jump in it is zero.  Recall that the tangential stress is purely viscous in origin.  
If tτ  represents this stress component, we can write 
 

I IIt tτ τ=  at a fluid-fluid interface (tangential stress balance) 
 
At a liquid-gas interface, we can further simplify the tangential stress balance.  Consider the 
surface of a liquid film flowing down an inclined plane.  Let us assume that the flow is steady and 
that the film surface is parallel to the inclined plane.  In this situation, the normal velocity at the 
free surface of the liquid is zero in both the liquid and the gas.  The sketch depicts the situation.  
 

     

x
z

Liquid

Gas 
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Because the normal velocity is zero at the free surface, the tangential stress balance simplifies to 
the following result where the subscripts l  and g  represent the liquid and gas, respectively. 
 

,, z gz l
l g

vv
x x

µ µ
∂∂

=
∂ ∂

 at the free surface 

 
The symbol µ  in the above result stands for the dynamic viscosity.  If we divide through by the 
dynamic viscosity of the liquid, we obtain 
 

,, g z gz l

l

vv
x x

µ
µ

∂∂
=

∂ ∂
 at the free surface 

 
Because the dynamic viscosity of a gas is small compared with that of a liquid, the right side of 
the above equation is small, and can be considered negligible.  This allows us to write 
 

, 0z lv
x

∂
≈

∂
 at the free surface 

 
Sometimes, this condition is represented as that of vanishing shear stress at a free liquid surface.  
Note that this approximation of the tangential stress condition can be used only when the 
motivating force for the motion of the liquid is not the motion of the gas.  When a gas drags a 
liquid along, as is the case on a windy day when the wind causes motion in a puddle of liquid, the 
correct boundary condition equating the tangential stresses must be used.  
 
Normal Stress Balance 
 
The normal stress jump boundary condition actually determines the curvature of the interface at 
the point in question, and therefore the shape of the entire fluid-fluid interface.  This shape is 
distorted by the flow.  Thus, the boundary condition must be applied at an unknown boundary 
whose shape must be obtained as part of the solution.  Fluid mechanical problems involving the 
application of the normal stress balance at a boundary are complicated, and must be solved 
numerically unless one assumes the shape distortion to be very small or of a particularly simple 
form.  
 
For an illustration of a rather simple application of the balance of normal stress, consider a 
stationary system with no flow, so that I II= = 0v v .  If we assume the surface tension to be 
uniform, the jump condition on the stress reduces to just a balance of normal stresses as follows. 
 

[ ] 2I II Hσ• − =n T T n   
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The stress tensor in stationary fluids is simple.  I Ip= −T I   and II IIp= −T I , where p  is the 
pressure, so that the left side becomes ( )II Ip p− n .  Thus, the normal stress balance reduces to 
the scalar result 
 

1 2

1 12II Ip p H
R R

σ σ
 

− = = + 
 

  

 
which is well-known.  Consider a spherical liquid drop or gas bubble that is stationary inside 
another fluid.  For a sphere of radius R , the curvature is uniform, so that 1 2R R R= = .  Neglecting 
hydrostatic variation of pressure, we can then write 
 

 2
II Ip p

R
σ

− =   

 
a result that relates the excess pressure within a spherical bubble or drop to the surface tension and 
the radius. 
 
In the problems that we shall analyze, we shall always assume the shape of the interface to be the 
static shape and as being specified.  Therefore, we shall not be able to necessarily satisfy the 
balance of normal stress.   
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Part III 
 
 

Example Problems in Fluid Flow 
 
Flow in a Falling Liquid Film 
Flow Through a Circular Tube  
Flow Between Rotating Cylinders 
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Example 1. Flow in a Falling Liquid Film (from Bird et al. Section 2.2) 
 
This first example is adapted from a worked-out problem in the textbook by Bird, Stewart, and 
Lightfoot.  We consider laminar flow in a liquid film that flows down the inclined surface of a 
wide plate.  Such flows are encountered in applications such as mass transfer from a gas to a liquid, 
and evaporation and condensation heat transfer.  Our objective is to construct a simple model of 
this flow situation by making assumptions.  Even though liquid films can have waves appearing 
on their surface, this is too much of a complication to accommodate at this stage.  So, we shall 
assume that the flow is sufficiently slow that the free surface of the film is planar.  For this 
geometry, rectangular Cartesian coordinates are an appropriate choice for convenience in 
satisfying the boundary conditions.  A sketch of the system is given below.   
 

 
 
 
 
 
Bird et al. use a shell balance approach to obtain the equation governing the velocity field.  Here, 
we shall make a set of simplifying assumptions that will permit us to obtain the same governing 
equation from the full Navier-Stokes equations in component form.  The advantage of our 
approach is that when we are finished, we’ll know the specific assumptions that permit us to 
discard terms in the Navier-Stokes equations.  Then, if we decide to relax one of these assumptions 
later, we can include the terms that were neglected based on that assumption.  Also, the shell 
balance approach is limited in scope, as explained by Bird et al. in Section 2.1. 
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Assumptions 
 

1. Steady laminar flow:  
t

∂
≡

∂
0v  

 
2. Incompressible flow (implies constant density ρ ): the continuity equation reduces to 0∇ • =v
. 
 
3. Newtonian flow at constant viscosity µ : this implies isothermal conditions and constant 
composition.  In a problem involving heat or mass transport, the variation of viscosity because of 
any variations in temperature or composition should be relatively small for this to be a good 
assumption. 
 
4. Negligible edge effects: this implies a system that is wide in the y − direction, normal to the 
plane of the paper in the sketch on the previous page.  By neglecting edge effects, we are able to 

set 0;yv
y

∂
≡ ≡

∂
0v . 

 
5. Neglect end effects: this permits us to assume that the flow is fully developed.  In the present 
situation, this means that the velocity distribution does not change with axial location along the 

film.  Therefore, 
z

∂
≡

∂
0v . 

 
Note the use of the “identically equal to” sign in several places in this first example.   This is done 
to highlight the fact that we can differentiate the left side with respect to a variable such as a 
position coordinate, and expect the derivative also to be zero everywhere.  After we become 
comfortable with these assumptions, we can start using a simple equality sign. 
 
Now, we begin by simplifying the continuity equation.  In rectangular Cartesian coordinates, it is 
 

4 5

yx vv
x y

∂∂
+

∂ ∂
zv

z
∂

+
∂

0=
 

 
Note that we have crossed out the second and third terms.  The reason for each is a specific 
assumption, the number assigned to which is shown above the term that is being crossed out.   We 
see that continuity reduces to  
 

0xv
x

∂
=

∂
 

Now, from assumptions 1, 4, and 5, we already know that xv  cannot depend on t , y , and z , 
respectively, and therefore it is only a function of x .  Now, we see that it can at best be just a 
constant.  To establish the value of this constant, we invoke the kinematic boundary condition at 
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the bottom of the film, corresponding to x δ= , namely, ( ) 0xv δ = .  Because xv  must be a constant 
across the film, its value is zero everywhere. 
 

0xv ≡  
 
Now, we proceed to simplify the (vector) Navier-Stokes equation written in component form in 
rectangular Cartesian coordinates, subject to assumptions 2 and 3.  First, consider the x −
momentum equation. 
 
 

1 continuity 4 5 continuity

xv
t

ρ ∂
∂ xv+ x x

y
v vv
x y

∂ ∂
+

∂ ∂
x

z
vv
z

∂
+

∂

2
x

x

vp g
x

ρ µ
  ∂∂

= − + +   ∂ 

2

2
xv

x
∂

+
∂

2

2
xv

y
∂

+
∂ 2z

 
  ∂ 

 

 
Note that all the inertia terms are zero.  The reason for setting each to zero is indicated above the 
term being crossed out.  You’ll find that sometimes it is possible to set a term to zero for more 
than one reason.  On the right side, all the viscous terms are zero because, from continuity, 0xv ≡
.  In homework assignments and exams, it is important to always indicate the reason for crossing 
out any term as shown here. 
 
The x − momentum equation reduces to a simple hydrostatic balance. 
 

x
p g
x

ρ∂
=

∂
 

 
This should not be a surprise, because there is no velocity component in the  x − direction.  Because 

sinxg g β= , we can rewrite the above result as 
 

sinp g
x

ρ β∂
=

∂
 

 
Likewise, the y − momentum equation also reduces to a hydrostatic balance. 
 

1 4 4 4 4 4 4

yv
t

ρ
∂

∂
y

x

v
v

∂
+

y
y

v
v

x

∂
+

∂
y

z

v
v

y

∂
+

∂

2
y

y

vp g
z y

ρ µ
  ∂∂  = − + +
 ∂ ∂ 

2

2

yv

x

∂
+

∂

2

2

yv

y

∂
+

∂ 2z

 
 
 ∂ 

 

y
p g
y

ρ∂
=

∂
 

 



54 
 

If the y − direction is normal to the gravity vector, 0yg = , so that the pressure will be independent 
of the y − coordinate.   Noting that pressure is also independent of time because of the assumption 
of steady state, we see that at best, ( ),p p x z=  only.  By integrating / sinp x gρ β∂ ∂ = , we obtain 
 

( ) ( )0, sinp x z p z g xρ β= +   
 
where 0p  can depend on z  in general.  By evaluating the pressure field at 0x = , we see that 

( )0p z  is the pressure in the liquid at the free surface.  Because the interface is flat, this is also the 
pressure in the gas phase at the free surface.  There will be a slight hydrostatic variation in the gas 
pressure along the free surface because of the change in elevation, but given the very small density 
of a gas, we can ignore such variation in the present context.  Therefore, the gas pressure at 0x =  
is uniform in the z − direction. Thus, we conclude that 0p  is the (constant) atmospheric pressure 

above the liquid film, and is independent of z .  This means that p
z

∂
∂

 in the z − momentum equation 

can be set equal to zero. 
 
Now, we proceed to the important component of the Navier-Stokes equation, namely the z −
component. 
 

1 continuity 4 5 shown above 4 5

zv
t

ρ ∂
∂ xv+ z z

y
v vv
x y

∂ ∂
+

∂ ∂
z

z
vv
z

∂
+

∂
p
z

  ∂
= −   ∂ 

2 2

2 2
z z

z
v vg
x y

ρ µ ∂ ∂
+ + +

∂ ∂

2

2
zv

z
∂

+
∂

 
  
 

 

 
The component of the gravity vector in the z − direction is cosg β  so that the above equation can 
be rewritten as 
 

2

2

coszd v g
dx

ρ β
µ

= −  

 
You’ll note that we have replaced the partial derivative sign in the z − component momentum 
equation with the ordinary derivative sign because zv  can depend only upon x .  The reason is that 
from assumptions 1,4, and 5, it is independent of t , y , and z , respectively.  Also note that the 
entire right side of the above differential equation for zv  is a constant.  Therefore, we can integrate 
this equation twice in a straightforward manner to yield 
 

( ) 2
1 2

cos
2z

gv x x C x Cρ β
µ

= − + +  

 
The two constants of integration can be evaluated using boundary conditions on the velocity field.  
The no-slip condition can be used at the interface with the solid, and at the free gas-liquid interface, 
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the velocity gradient (and therefore, the shear stress) is negligible.  Therefore, the following 
boundary conditions can be written. 
 

( ) 0 no slipzv δ =  
 

( )0 0 negligible shear stresszdv
dx

=  

 
Note how we write the physical reason for each boundary condition immediately after it.  This will 
serve to remind us in a compact manner why each boundary condition is valid. 
 
Applying these boundary conditions leads to the following velocity distribution in the liquid film. 
 

( )
2 2

2

cos 1
2z

g xv x ρ δ β
µ δ

 
= − 

 
 

 
The textbook provides a sketch of the velocity profile across the film, as well as a sketch of the 
shear stress.    
 
The volumetric flow rate of liquid is a quantity of interest.   The elementary volumetric flow rate 
dQ  across an area element of depth dx  and width W  in the y − direction is the product of the 
velocity at that location ( )zv x  and the area of the element Wdx .  Adding up all the elementary 
volumetric flow rates across the depth of the film gives the total volumetric flow rate.  This 
summation process for differential elements is simply an integration over the depth of the film.   
The total volumetric flow rate Q  can be written as 
 

( )
3

0

cos
3z

g WQ v x Wdx
δ ρ δ β

µ
= =∫  

 
Note that the volumetric flow rate is proportional to the cube of the film thickness.  Such 
relationships are called “scalings” in a given situation, and are valuable pieces of information about 
a physical system.   Sometimes, it is possible to infer such scalings from dimensional arguments.   
 
The average velocity is defined as the ratio of the volumetric flow rate to the cross-sectional area 
available for flow.  Therefore,  
 

2

,
cos

3z avg
Q gv

W
ρ δ β

δ µ
= =    

 
It is interesting to note that the maximum velocity in the film occurs at the free surface where the 
slope of the velocity field is zero.  From calculus, we know that the maximum or minimum of a 
function occurs at a location where the slope is zero.  But we need to be careful here, because the 
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maximum actually occurs at the end point of the interval in x .  It is not necessary for the slope to 
be equal to zero for the maximum (or minimum) of a function to be reached at an end point of the 
interval in which the function is defined. 
 
By evaluating the result for the velocity distribution at 0x = , we find the maximum velocity to be 
 

2

,
cos

2z max
gv ρ δ β

µ
=  

 
so that the average velocity in the film is 2/3 the maximum value.  This result also holds true for 
steady, fully developed, incompressible Newtonian laminar flow between two parallel plates.  The 
reason is that the velocity profile in that problem between one of the plates and the central plane 
is precisely the same as the one we have established for the film.  This is because the governing 
equation for the velocity distribution is identical to that we obtained here, and the boundary 
conditions at one of the solid surfaces and the central plane are also identical to those applicable 
to the film flow problem. 
 
Here are some questions to ponder. 
 
1. How would the model be affected in the presence of standing waves on the surface?  How about 
moving waves? 
 
2. How far from the inlet and the exit do we have to be for this analysis of fully developed flow to 
be valid?  How does this distance depend on the properties of the fluid and the average velocity? 
 
3. In a like manner, how far from the edges do we need to go for the assumption of negligible edge 
effects to be valid? 
 
4. In photographic film manufacture, multiple liquid layers are commonly encountered.  Try 
posing the problem for two liquid layers flowing down an inclined plate.  
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Example 2. Flow Through a Circular Tube (from Bird et al. Section 2.3) 
 
This example is adapted from a worked-out problem in the textbook by Bird, Stewart, and 
Lightfoot.  The objective is to obtain a description of the details of the laminar flow that occurs in 
a straight circular tube under the action of a dynamic pressure difference between the inlet and the 
exit.  Circular tubes in which flow occurs are found a variety of applications, starting from 
household plumbing to industrial pipes.  Also, the blood in our bodies flows through vessels that 
can be roughly approximated as circular tubes. In the present problem, we make several 
simplifying assumptions that make the problem tractable at this stage.   Nevertheless, the results 
are of some practical use.  A sketch of the system is given below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The dynamic pressure is 0P  at the inlet 0z = , and LP  at the exit z L= .  As in Example 1, Bird et 
al. use a shell balance approach to obtain the equation governing the velocity field.  Here, we shall 
make a set of simplifying assumptions that will permit us to obtain the same governing equation 
from the full Navier-Stokes equations in component form. 
 
Assumptions   
 

1. Steady laminar flow:  
t

∂
≡

∂
0v  

 
2. Incompressible flow (implies constant density ρ ): the continuity equation reduces to 0∇ • =v
. 
 
3. Newtonian flow at constant viscosity µ : this implies isothermal conditions and constant 
composition.   
 

R

z
r

LP

0P

Flow
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4. Symmetry about the axis.   0; 0vθ θ
∂

≡ ≡
∂

v  

 
5. System is long in the z − direction – therefore, neglect end effects.  This permits us to assume 
that the flow is fully developed.  This means that the velocity distribution does not change with 

axial position along the tube.  Therefore, 
z

∂
≡

∂
0v . 

 
First, we simplify the continuity equation.   

( )

4 5

1 1
r

v
rv

r r r
θ∂∂

+
∂

zv
zθ

∂
+

∂ ∂
0=

 

 
Therefore, we conclude that the product rrv  must be independent of the radial coordinate r .  
Because of assumptions 1, 4, and 5, rv  is independent of time and the spatial coordinates θ  and 
z , and therefore rrv  must be a constant. From the kinematic condition at the tube wall, ( ) 0rv R =

.  Hence the function rrv  is zero at the wall, and must assume this value everywhere.   Therefore, 
we conclude that 0rv ≡  everywhere. We already know that 0vθ ≡  from assumption 4.  Therefore, 
this is a unidirectional flow with the velocity given by zv=v k , where k  is a unit vector in the z −
direction. 
 
Now, we proceed to simplify the components of the Navier-Stokes equation in cylindrical polar 
coordinates.   
 
r − component of the Navier-Stokes equation 
 

1 continuity 4 continuity

rv
t

ρ ∂
∂

r
r

v
v

∂
+ rvv

r r
θ

∂
+

∂

2vθ

θ
−

∂
r

z

v
v

r
∂

+

continuity 4 continuity

1
r

z

P r v
r r r r

µ

 
  =

∂  

∂ ∂ ∂
− +

∂ ∂ ∂
( )

2

2

1 rv
r

∂  + 
  2 2

2 v
r

θ

θ
∂

−
∂

2
rv

θ
∂

+
∂ 2z

 
 

∂  

 

 

Therefore, we conclude that 0P
r

∂
=

∂
, where P  is the dynamic pressure. 
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θ − component of the Navier-Stokes equation 
 

1 4 4 4 4

v
t
θρ ∂

∂ r

v
v θ∂

+
vv

r r
θθ

∂
+

∂
rv vθ

θ
+

∂ z

v
v

r
θ∂

+

4 4 continuity 4

1 1

z

P r v
r r r r θµ

θ

 
= 

∂  

∂ ∂ ∂
− +

∂ ∂ ∂
( )

2

2

1 v
r

θ∂  + 
  2 2

2 rv
rθ

∂
+

∂

2 vθ

θ
∂

+
∂ 2z

 
 

∂  

 

  

Hence, 0P
θ

∂
=

∂
. 

 
z − component of the Navier-Stokes equation 
 
 

1 continuity 4 5

zv
t

ρ ∂
∂ rv+ z

vv
r

θ∂
+

∂
z z

z
v vv

r zθ
∂ ∂

+
∂ ∂

2

2 2

4 5

1 1z zv vP r
z r r r r

µ
θ

 
= 

  

∂ ∂∂ ∂  − + + ∂ ∂ ∂ ∂ 

2

2
zv

z
∂

+
∂

 
 
  

 

Recognizing from assumptions 1, 4, and 5 that ( )z zv v r=  only, and from assumption 1 and the r  

and θ − components of the Navier-Stokes equation that ( )P P z=  only, we are able to write the 
following equation, where the partial derivatives have been replaced by ordinary derivatives. 
 

1 zdvd dPr
r dr dr dz

µ   = 
 

 

 
Note that the left side can depend only on r , whereas the right side can depend only on z .  This 
is possible only if each side is a constant that is independent of either r  or z .  Therefore,  
 

1 zdvd dPr A
r dr dr dz

µ   = = 
 

 

where A  is a constant.   This means that the dynamic pressure must vary linearly with z  in the 
tube, with a constant slope A .  We can determine this slope as  

0LP P PA
L L
− ∆

= = −  
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where 0 LP P P∆ = − .  Hence the differential equation satisfied by the velocity distribution can be 
written as 
1 zdvd Pr
r dr dr Lµ

∆  = − 
 

 

 
One integration is performed after rewriting the equation as 
 

zdvd Pr r
dr dr Lµ

∆  = − 
 

 

to yield  
2

12
zdv Pr r c

dr Lµ
∆

= − +  

where 1c  is a constant of integration.   Rearrange this equation as 1

2
zdv cP r

dr L rµ
∆

= − +  and 

integrate once more to obtain 

( ) 2
1 2ln

4z
Pv r r c r c
Lµ

∆
= − + +  

where we have introduced a second constant of integration 2c . We’ll need two boundary conditions 
to evaluate these constants.  The boundary conditions are 
 

( )0 is finitezv  

( ) 0zv R =  No slip at the wall 
The condition at the centerline is sufficient to eliminate one of the constants of integration.  An 
alternative boundary condition that is used at the centerline is 

( )0 0zdv
dr

=  

This is called a “symmetry condition.”  This condition can be derived by examining the force  
balance on a cylinder of fluid of radius ε  sharing the same axis as the tube.  The sum of the forces 
acting on this cylinder must be zero, because there is no acceleration.  The two forces acting on it 
are the pressure force 2P πε∆ × and the shear exerted by the adjacent fluid over the surface of the 
cylinder, which is given by ( ) 2rz Lτ ε πε× .  Setting the sum of these forces to zero, and substituting  

z
rz

dv
dr

τ µ= ,  we obtain the following result. 

 

( )
2

zdv P
dr L

ε ε
µ

∆
= −  

 
By taking the limit as 0ε → , we obtain the alternative boundary condition given earlier. 
 
Integrating the governing differential equation for ( )zv r  and applying the two boundary 
conditions leads to the following velocity profile.  A sketch can be found in Fig. 2.3-2 in the text.  
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( )
2 2

21
4z
PR rv r

L Rµ
 ∆

= − 
 

 

 
Maximum velocity 
 
Because of the symmetry in the system, which requires the velocity to increase from a value of 
zero at the tube wall toward the centerline in the same manner for all values of θ , it is evident that 
the maximum velocity occurs at the centerline, 0r = .  This can also be observed by examining the 
dependence of the velocity distribution on the radial coordinate.   
 
The result for the maximum velocity is 
 

2

, max 4z
PRv

Lµ
∆

=  

 

Note that the argument that the derivative zdv
dr

 can be set equal to zero to find the location of the 

maximum velocity cannot be used here.  This is because the maximum occurs at a boundary of the 
domain, 0r = , and the slope at the boundary need not be zero for an extremum in a function to 
occur at the boundary. 
 
Volumetric and Mass Flow Rates 

The volumetric flow rate is obtained by using z
A

Q v dA= ∫  where A  is the cross-sectional area.   

 

( )
4

0

2
8

R

z
PRQ v r rdr

L
ππ

µ
∆

= =∫  

 
The mass flow rate is given as w Qρ= . 
 
Average Velocity 
 
The average velocity is the ratio of the volumetric flow rate to the cross-sectional area. 
 

( )4 2

, 2 2

/ 8
8z avg

PR LQ PRv
R R L

π µ
π π µ

∆ ∆
= = =  

 
Note that in the case of the circular tube, the average velocity is one-half the maximum, whereas 
in the case of flow between parallel plates (and in a film flowing down a solid surface) the average 
is two-third of the maximum.  These are simply the quirks of the geometries involved. 
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Example 3. Flow Between Rotating Cylinders (from Bird et al. Example 3.6-3) 
 
This example is similar to that worked out in the textbook by Bird, Stewart, and Lightfoot.  We 
consider laminar flow in a fluid that occupies the annular space between two concentric vertical 
cylinders.  The outer cylinder is rotated at a constant angular speed oΩ while the inner cylinder is 
rotated at a constant angular speed iΩ . Such flows are encountered in viscometers, which are used 
for measuring the viscosity of fluids. As in Example 1, our objective is to construct a simple model 
of this flow situation by making assumptions.  For this geometry, cylindrical polar coordinates are 
an appropriate choice for convenience in satisfying the boundary conditions.  A sketch of a side 
view of the system is given below.  You can also consult the textbook for additional sketches, such 
as a plan view.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next, we list a set of simplifying assumptions. 
 
Assumptions 
 

1. Steady laminar flow:  
t

∂
≡

∂
0v  

 
2. Incompressible flow (implies constant density ρ ): the continuity equation reduces to 0∇ • =v
. 

Rκ

z
r

RL

θ
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3. Newtonian flow at constant viscosity µ : this implies isothermal conditions and constant 
composition.   If the viscosity of the fluid is large and the shear rate is large, viscous dissipation 
can lead to heating of the fluid.  The viscometer will need to be kept in a thermostat in such a 
situation to maintain isothermal conditions. 
 
4. The flow is symmetrical about the axis.  This, of course, requires that the inner cylinder be 

perfectly centered within the outer cylinder.  With this assumption, we are able to set 
θ

∂
≡

∂
0v .  

Also, the dynamic pressure will be independent of the angular coordinate θ . 
 
5. Neglect end effects: this means that there should be no z − component of the velocity, and 
furthermore that the velocity distribution does not change with axial location along the annulus.  

Therefore, 0zv ≡ ;  
z

∂
≡

∂
0v . 

 
Now, we begin by simplifying the continuity equation.  In cylindrical polar coordinates, it is 
 

( )

4 5

1 1
r

vrv
r r r

θ

θ
∂∂

+
∂ ∂

zv
z

∂
+

∂
0=

 

 
Note that we have crossed out the second and third terms.  The specific assumption used for 
crossing out a given term is listed above that term.  Continuity reduces to  
 

( )1 0rrv
r r

∂
=

∂
 

 
From assumptions 1, 4, and 5, we already know that rv  cannot depend on t , θ , and z , 
respectively, and therefore it is only a function of r . We can integrate the above simplified version 
of the continuity equation to obtain the following result. 
 

rrv C=  
 
Here, C  is just a constant.  To establish the value of this constant, we invoke the kinematic 
boundary condition at either of the two boundaries in the radial coordinate.  Choosing r R=  for 
this purpose, we can write ( ) 0rv R = .   Therefore, the constant 0C = .  You can see, of course, 
that the same result would have been obtained if we had invoked the kinematic boundary condition 
at the other boundary r Rκ= .  As a consequence, we find that the radial component of the velocity 
field is identically zero. 
 

0rv ≡  
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Note that from assumption 5, the axial component 0zv ≡ .  Therefore, the only non-zero component 
is vθ .  From assumptions 1, 4, and 5, we can see that vθ  is independent of time t  and the position 
coordinates θ  and z , respectively.  Therefore, ( )v v rθ θ=  only, and our quest now is to establish 
the nature of this dependence.  For this, we need to go to the Navier-Stokes equations in component 
form in cylindrical polar coordinates.  Given assumptions 2 and 3, we can look up these component 
equations from Table B.6 of Bird et al.  First, we briefly consider the components in the r  and z  
directions.  In the momentum equations, we use P  to designate the dynamic pressure.  The r −
momentum equation is simplified as follows. 
 

1 continuity 4 5

rv
t

ρ ∂
∂ rv+ r rvv v

r r
θ

θ
∂ ∂

+
∂ ∂

2
r

z
v vv
r z
θ ∂

− +
∂

( )

continuity continuity 4     continuity

1
rrv

r r r r
µ

 
= 

 

∂ ∂ ∂
− +

∂ ∂ ∂
P 2

2

1 rv
r

∂ 
+ 

 
2 2

2 v
r

θ

θ θ
∂

−
∂ ∂

2
rv∂

+ 2z

 
 

∂  

 

 
The r − momentum equation reduces to a gyrostatic balance. 
 

2v
r r

θρ∂
=

∂
P  

 
You might wonder why there is a pressure gradient in the radial direction.  Recall that Newton’s 
law tells us that a body will move at a constant velocity in a straight line unless acted upon by an 
external force.  Fluid elements in the annular space are not moving in straight lines, but rather 
along circular paths.  Some force has to act on a fluid element that pushes it radially inward so that 
it will move along a circle.  This force arises from this pressure gradient, which develops naturally 
in this geometry.  The dynamic pressure increases radially outward at precisely the rate needed to 
keep the fluid going around along circular streamlines. 
 
Now, consider the z − momentum equation. 
 

1 5 5 5

zv
t

ρ ∂
∂

z
r

v
v

∂
+ zvv

r r
θ

∂
+

∂ zv
θ

+
∂

zv∂

5 5 5

1 z

z

v
r

z r r
µ

 
= 

∂  

∂∂ ∂
− +

∂ ∂
P 2

2

1 zv
r r

  ∂
+  ∂ 

2

2
zv

θ
∂

+
∂ 2z

 
 

∂  
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It simplifies to 
 

0
z

∂
=

∂
P  

 
Therefore, the dynamic pressure is uniform in the z − direction, or the only variation of the actual 
pressure in that direction is hydrostatic. 
 
Finally, we proceed to the θ − component of the Navier-Stokes equation. 
 

1 continuity 4 continuity 5

v
t
θρ ∂

∂ rv+
v v v
r r
θ θ θ

θ
∂ ∂

+
∂ ∂

rv
+ z

v
v

r
θ +

4 4 continuity 5

1

v
z

r

θ

θ

 ∂
= 

∂  

∂
−

∂
P ( )

2

2 2

1 1 vrv
r r r r

θ
θµ

θ
∂∂ ∂ + + ∂ ∂ ∂  2

2 rv
r

∂
+

2

2

v
z

θ

θ
∂

+
∂ ∂

 
 
  

 

 
Therefore, the θ − component simplifies to 
 

( )1 0d d rv
dr r dr θ

  = 
 

 

 
You’ll note that we have replaced the partial derivative sign in the θ − component momentum 
equation with the ordinary derivative sign.  The first integral of this equation is  

( ) 1
1 d rv C
r dr θ =  

 
A second integration yields 
 

1 2

2
C Cv r

rθ = +  

 
The two boundary conditions on the velocity field are  
 

( ) no slipiv R Rθ κ κ= Ω  

( ) no slipov R Rθ = Ω  
 
The two constants of integration can be evaluated using these boundary conditions.  The values 
are 
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2
2 2

1 22 22
1 1
o i i oC C Rκ κ

κ κ
Ω − Ω Ω − Ω

= =
− −

 

 
Substituting these results into the velocity distribution and rearranging leads to the following 
solution for the velocity field. 
 

( ) ( ) ( )2 2
21 o i i o

R r Rv r
R rθ κ κ

κ
 = Ω − Ω + Ω − Ω −  

 

 
Try sketching the velocity distribution qualitatively correctly.  This means that the end values 
should be correct and that the slope should vary across the gap in the correct manner. 
 
In a viscometer, typically one cylinder is held fixed while the other is rotated.  The torque required 
to hold the chosen cylinder fixed is measured, and using the theoretical result, the viscosity can be 
evaluated.  Let us assume the inner cylinder is held fixed and the torque acting on it is measured.  
In this case, we can set 0iΩ =  in the velocity distribution to obtain 
 

( )
2

21
oR r Rv r

R rθ
κ

κ
 Ω

= − −  
 

 
In the present case, the measured torque is that exerted by the shear force acting on the surface of 
the inner cylinder about the axis.  If the magnitude of the force is F , then the magnitude of the 
torque is given by T RFκ= .   
 
To find the shear force on the inner cylinder, we first evaluate the shear stress.  A general result 
for the shear stress r rθ θτ τ=  can be found from Table B.1 in the textbook. 
 

1 r
r r

v vr
r r r

θ
θ θτ τ µ

θ
 ∂∂  = = +  ∂ ∂  

 

  
Note that our sign convention for stress is the opposite of that used by Bird et al.  This is the reason 
for removing the negative sign in the result in Table B.1.  Because 0rv ≡ , the above result for the 
shear stress simplifies to 
 

2 2

2 22
1r o

v Rr
r r r

θ
θ

κτ µ µ
κ

 ∂  = = Ω  ∂ −  
 

 
Even though we only need the shear stress at the surface of the inner cylinder for evaluating the 
desired torque, let us, for the present, make a general evaluation of the torque on a cylinder of 
radius r  anywhere in the annular gap. 
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The area on which the shear stress acts is 2 rLπ , and the lever arm is r , so that the torque is given 
by 
 

2
2 2

22 4
1r oT r L R Lθ

κπ τ πµ
κ

= = Ω
−

 

 
We see that this torque is independent of the radius of the cylinder to which it is applied, and is 
uniform across the gap.   
 
Bird et al. give a good discussion of some issues associated with this flow as the Reynolds number 
is gradually increased.  For example, the assumption that 0zv ≡ , while  plausible, is not consistent 
with observation when the angular velocity exceeds a critical value for a given fluid and 
geometrical parameters.  A secondary flow appears that causes the flow to break into cells, known 
as Taylor vortices.  This fact points to an important consequence of the non-linearity of the Navier-
Stokes equation.  Non-linear equations can have multiple solutions, and which of these is realized 
physically depends on the stability of each solution to small perturbations that are always present.  
To learn more about this problem, you can consult the book by Koschmieder (1993). 
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Part IV 
 

Mathematical Techniques: Solution of 
Partial Differential Equations 
 
Separation of Variables 
Combination of Variables 
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Solution of Partial Differential Equations 
 

Separation of Variables 
 

 
 
Introduction and Problem Statement 
 
We encounter partial differential equations routinely in transport phenomena.  Some examples are 
unsteady flow in a channel, steady heat transfer to a fluid flowing through a pipe, and mass 
transport to a falling liquid film.  Here, we shall learn a powerful method for solving many of these 
partial differential equations.   We shall also learn when the method can be used.  The model 
problem we consider is the motion induced in fluid contained between two long and wide parallel 
plates placed with a distance b  between them as shown in the sketch below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The fluid is initially assumed to be at rest.  Motion is initiated by suddenly moving the bottom 
plate at a constant velocity of magnitude U  in the x − direction.  The velocity of the bottom plate 
is maintained at that value for all future values of time t  while the  top plate is held fixed in place.  
There is no applied pressure gradient, with motion being caused strictly by the movement of the 
bottom plate.  
 
We shall assume the flow to be incompressible with a constant density ρ and Newtonian with a 
constant viscosity µ .  We neglect edge effects in the z − direction so that we can set 0zv = and 

0
z

∂
=

∂
v , and assume fully developed flow, implying 0

x
∂

=
∂
v . Here, v stands for the velocity vector, 

and the subscripts denote components.   
 

 

 
 

 
x

y
b

U
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It can be established from the continuity equation and the kinematic condition at one of the walls 
that 0yv = .  Therefore, the only non-zero velocity component is ( ),xv t y , which can be shown to 
satisfy the following partial differential equation. 
 

 
2

2
x xv v
t y

ν∂ ∂
=

∂ ∂
 (1) 

 
In Equation (1), t  represents time, and ν  is the kinematic viscosity.  The initial condition is 
 ( )0, 0xv y =  (2) 
and the boundary conditions are 
 ( ),0xv t U=  (3) 
and 
 ( ), 0xv t b =  (4) 
 
It is convenient to work with scaled variables.  Scaling minimizes the number of parameters in the 
problem, and helps us identify the true (dimensionless) parameters so that we can perform 
asymptotic analyses where desired.  Whenever possible, we use a reference quantity, termed a 
“scale” for the variable involved, that will normalize that variable, meaning that the range of values 
assumed by the dimensionless variable will be from 0 to 1. The natural variables that normalize 
the velocity and the y − coordinate in this problem are U and b , respectively.  Therefore, we define 

a scaled velocity xvV
U

=  and a scaled distance variable yY
b

= .   Introducing these definitions into 

the differential equation, we obtain 
 

 
2

2 2

V V
t b Y

ν∂ ∂
=

∂ ∂
 (5) 

 

which suggests that we might choose the time scale as 2 /b ν , defining a scaled time 2

tT
b
ν

= .  

Thus, Equation (5) can be rewritten as 
   

 
2

2

V V
T Y

∂ ∂
=

∂ ∂
 (6) 

 
and the initial and boundary conditions become 
  
 ( )0, 0V Y =  (7) 
 ( ),0 1V T =  (8) 
 ( ),1 0V T =  (9) 
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Now, we are ready to learn the mathematical technique of  “Separation of Variables.”  The usual 
way to solve a partial differential equation is to find a technique to convert it to a system of ordinary 
differential equations.  Then, we can use methods available for solving ordinary differential 
equations.   One important requirement for separation of variables to work is that the governing 
partial differential equation and initial and boundary conditions be linear.  Another is that for the 
class of partial differential equation represented by Equation (6), the boundary conditions in the 
Y − coordinate be homogeneous.  This means that any constant times the dependent variable 
should satisfy the same boundary condition.  Also, the differential equation itself should be 
homogeneous.   A condition in which the variable or a linear combination of the variable and its 
spatial or time derivative is set equal to 0 can be seen to be a homogeneous condition.   
 
 We see that Equation (6) is homogeneous because a constant times V  will satisfy the same 
equation.  Equation (9) is homogeneous as well, but Equation (8) is not.  Therefore, we must first 
define a new problem in which homogeneous boundary conditions can be written.  The approach 
we follow is based on the physical aspects of the problem.   Consider the same fluid mechanical 
problem at steady state, wherein we set the time derivative of the velocity equal to zero.  This 
means that we can no longer expect to satisfy the initial condition, but the boundary conditions 
still hold.  The resulting steady velocity field ( )sV Y  can be seen from Equations (6), (8), and (9) 
to satisfy 

 
2

2 0sd V
dY

=  (10) 

 ( )0 1sV =  (11) 
 ( )1 0sV =  (12) 
 
The solution is seen to be  
 ( ) 1sV Y Y= −  (13) 
 
Now, write the solution of Equations (6) - (9) as the sum of  the above steady solution and a 
transient contribution that we expect will decay to zero as T → ∞ .  
 
 ( ) ( ) ( ), ,s tV T Y V Y V T Y= +  (14) 
 
Equation (14) is substituted into Equations (6) - (9), and use is made of Equations (10) -(12).  This 
yields the governing equation and the initial and boundary conditions for the transient field 

( ),tV T Y . 

 
2

2
t tV V

T Y
∂ ∂

=
∂ ∂

 (15) 

 ( ) ( )0,t sV Y V Y= −  (16) 
 ( ),0 0tV T =  (17) 
 ( ),1 0tV T =  (18) 
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It is seen that the inhomogeneity in the boundary condition for ( ),0V T  has been taken up by ( )0sV

, leaving us with a homogeneous boundary condition for ( ),0tV T .  If the governing differential 
equation had a time-independent inhomogeneity, we can expect the same will happen.  That 
inhomogeneity will be included in the governing equation for the steady field, leaving the 
governing equation for the transient field homogeneous. 
 
Product Class Solution 
 
Now, we attempt a solution of Equation (15) in the form of a product 
 
 ( ) ( ) ( ),tV T Y G T Yφ=  (19) 
 
This is not to suggest that the final solution will be exactly like this.  It is a trial solution, just like 
the trial solution mxe  that is used in the case of a linear ordinary differential equation with constant 
coefficients.  The approach will be to substitute this trial solution in the governing equation and 
the initial and boundary conditions to see if it might possibly satisfy them.  First inserting it into 
Equation (15) yields 
 
 G Gφ φ′ ′′=  (20) 
 
where we have used primes to denote differentiation with respect to the argument of the function.  
Thus, G′  stands for /dG dT  whereas φ′′connotes 2 2/d dYφ .  Divide both sides of Equation (20) 
by Gφ .  This yields  

 G
G

φ
φ

′ ′′
=  (21) 

But, the left side of the above equation can depend only on T , whereas the right side can depend 
only on Y .  How can it be possible for a function of only T to be equal to a function of only Y ?  
The answer is: Never, unless we force both functions to be a constant that is independent of T and 
Y .  For reasons that will become clear later, we require this “constant of separation” to be negative.  
So, we set it equal to 2λ−  where λ  is a real number. 
 

 2G
G

φ λ
φ

′ ′′
= = −  (22) 

 
So we see that we have made a lot of progress.  We now have two ordinary differential equations 
in place of the partial differential equation.  They are 
 
 2 0G Gλ′ + =  (23) 
and  
 2 0φ λ φ′′ + =  (24) 
 
The solution of Equation (23) can be written as 
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 ( ) 2expG T Tα λ = −   (25) 
 
where α  is a constant of integration.  Notice that Equation (25) implies that as T → ∞ , 0G → , 
which is consistent with our idea that the transient solution will decay as T → ∞ .   The general 
solution of Equation (24) for ( )Yφ  can be written as 
 
 ( ) 1 2sin cosY c Y c Yφ λ λ= +  (26) 
 
where 1c and 2c  are constants of integration.   Because the boundary conditions on tV  at 0Y =  and 

1Y =  that are given in Equations (17) and (18), respectively, are both homogeneous, they can be 
satisfied by setting 
 
 ( )0 0φ =  (27) 
 ( )1 0φ =  (28) 
 
Application of these boundary conditions yields the following results. 
 
 2 0c =  (29) 
 1 sin 0c λ =  (30) 
 
If we try to satisfy Equation (30) with the choice 1 0c = , we obtain the result that ( ) 0Yφ ≡ .  This 
yields the trivial solution 0tV = .  This is incorrect because it does not satisfy the initial condition 
on tV  given in Equation (16).  Therefore, we must choose the alternative 
 
 sin 0λ =  (31) 
 
This equation has an infinite number of roots that occur in pairs. 
 
 , 0,1, 2,n n nλ λ π= = ± =   (32) 
 
First, we note that the case 0n =  can be discarded because it again leads to the trivial solution that 
is unacceptable.  Second, the negative roots do not yield an independent solution because 

( ) ( )sin sinn Y n Yπ π− = − .  Therefore, we can write the solution for ( )Yφ  as 
 
 ( ) ( ) sinn n nY Y c Yφ φ λ= =  (33) 
 
with 
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 , 1, 2,3,n n nλ π= =   (34) 
Note that we have replaced the single constant 1c with a subscripted constant nc  to underscore the 
fact that each of these acceptable solutions can be multiplied by a different arbitrary constant. 
 
The net result of the exercise has been to produce an infinite set of product class solutions for tV .  
By representing the product of the arbitrary constants α  and nc using a new constant nA , we can 

write the n ’th solution as 
2

sinnT
n nA e Yλ λ− .   At 0T = , this becomes sinn nA Yλ . This is a periodic 

function and does not at all look like the function ( )sV Y− , which happens to be a straight line in 

the interval [ ]0,1 .  Fortunately, because the governing equation and boundary conditions are linear 
and homogeneous, we can add all of these solutions and try to see if the sum can be used to satisfy 
the initial condition by judicious choice of the constants nA .  Therefore, we write 
 

 ( )
1

,t n
n

V T Y A
∞

=

= ∑
2

sinnT
ne Yλ λ−  (35) 

 
Notice that there is no problem when we add a finite number of solutions, but when the upper limit 
of summation is infinity, we need to concerned with the issue of whether the right side converges.  
Such mathematical issues are considered in detail in Weinberger [1].  Here, we assume that the 
sum uniformly converges for all values of scaled time T and all values of Y in the interval [ ]0,1 .  
By applying the initial condition given in Equation (16), we obtain 
 

 ( )
1

sins n n
n

V Y A Yλ
∞

=

− = ∑  (36) 

 
Equation (36) represents the expansion of an arbitrary function ( ( )sV Y− ) in a Fourier series, 
named after the scientist Fourier who studied such expansions a long time ago.  Fourier series do 
not necessarily have to be expansions in trigonometric functions, and you can learn more about 
them from Weinberger [1].  The most important aspect of such an expansion is that the set of 
functions { }sin nYλ is orthogonal in the interval [ ]0,1 .  That is 
 

 
1

0

sin sin 0,m nY Y dY m nλ λ = ≠∫  (37) 

 
Of course, when m n= , the integral is not zero, but is given by 
 

 
1

2

0

1sin
2nY dYλ =∫  (38) 
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Therefore, we can use the following recipe for calculating the expansion coefficients nA .  Multiply 
both sides of Equation (36) by sin mYλ where m  is a specific integer, and integrate from 0Y =  to 
1.  Every term in the infinite series will reduce to zero because of Equation (37), with the exception 
of the term that involves an integral that is of the form of Equation (38) with the index n  replaced 
by m .  As a result, we obtain 
 
 

 ( )( )
1 1

2

0 0

sin sin
2
m

s m m n
AV Y Y dY A Y dYλ λ− = =∫ ∫  (39) 

 
so that we can write 
 

 ( )( )
1

0

2 sinn s nA V Y Y dYλ= −∫  (40) 

 
where we have replaced the index m , which is just a placeholder, with the index n .   When the 
result for ( )sV Y  given in Equation (13) is used and the integration is performed, we ultimately 
find 
 

 2
nA

nπ
= −  (41) 

 
The final result for ( ),V T Y can be written as follows. 
 

 ( )
2 2

1

exp2, 1 sin
n

n T
V T Y Y n Y

n
π

π
π

∞

=

 − = − − ∑  (42) 

 
We can infer how long it will take to achieve steady state.  Of course, the correct answer is infinite 
time because the exponential functions in the infinite series are never quite zero approaching that 
value only when T → ∞ .  But as a practical matter, we can see that when 1,T =  which corresponds 
to physical time 2 /t b ν= , the contribution from the infinite series will be negligible, except in a 
situation where we wish to be extremely  precise.  We refer to this “time scale”  2 /b ν  as the time 
it takes for momentum to diffuse a distance b .  Analogous time scales can be defined for diffusion 
of thermal energy or diffusion of species by replacing the kinematic viscosity by the thermal 
diffusivity or the mass diffusivity, respectively. 
 
Summary 
 
Here is a brief summary of the method of “Separation of Variables.”  It may be used to find 
solutions of linear partial differential equations.  After identifying the governing partial differential 
equation and the initial and boundary conditions for our physical system, we 
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1. scaled the problem by using suitable reference quantities; 
 
2. found a solution of the steady-state problem; 
 
3. expressed the solution of the original problem as the sum of the steady-state solution and a 
transient contribution, in that process formulating a partial differential equation and the initial and 
boundary conditions for the transient contribution; 
 
4. found a solution of the transient problem by assuming a product form for that solution; 
 
5. invoked the principle of superposition to express the general solution of the transient problem 
as an infinite sum; 
 
6. used the orthogonality of the basis functions (sines in our problem) to obtain the coefficients 
that appear in the general transient solution; 
 
7. wrote the complete solution as the sum of the steady and transient solutions. 
 
The method of “Separation of Variables” also can be used to find the solution of other linear 
problems such as steady-state multi-dimensional conduction or diffusion problems.  In such a case, 
we would not have an initial condition, but there would be more boundary conditions. 
 
Concluding Remarks 
 
If the process for finding the expansion coefficients nA  reminds you of the process we use for 
expanding spatial vectors in an orthogonal basis set, the resemblance is not superficial.  The idea 
of geometrical orthogonality, which we can visualize in three-dimensional space, is extended to 
an infinite-dimensional “function space” in developing a basis set for expanding functions.  The 
dot product that we use with spatial vectors is generalized to the “inner product” which is defined 
as the integral over the interval that we used, for example, in Equation (37).  Just as the 
eigenvectors of a real symmetric tensor can be used to generate an orthogonal set of basis vectors, 
a certain type of differential operator, called a self-adjoint operator, is used to generate a basis set 
of  “orthogonal eigenfunctions” in the context of expanding arbitrary functions.  You can learn 
more about such ideas from Greenberg [2]. 
 
It is worthy of note that the problem of unsteady heat conduction in a solid slab (or a quiescent 
liquid layer) of thickness b  when the temperature at the surface y b=  is maintained at the same 
value that it is initially everywhere in the slab, while the temperature at the surface 0y =  is 
changed to a new value, is described by the same governing equations and boundary conditions in 
scaled form.  The assumptions are that there are no sources or sinks, heat transport occurs only by 
conduction with a constant thermal conductivity, the density and specific heat of the material are 
constant, and that the slab is very long and very wide so that end effects and edge effects can be 
neglected.   By analogy, it can be seen that the same equations also describe unsteady diffusion in 
a similar situation.  Other boundary conditions are possible in these problems.  For example, one 
can prescribe the heat or mass flux at a boundary instead of prescribing the temperature, or write 
the flux at a boundary as being proportional to the temperature difference between the surface and 
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a constant ambient temperature.  All of these cases can continue to be handled by the same solution 
method, which gives you some idea about the versatility of the mathematical technique in the case 
of this type of partial differential equation and boundary conditions.  As noted  in the summary, 
the method also can be used with other types of linear partial differential equations such as the 
Laplace equation or the convective diffusion equation that arise in heat or mass transport. 
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Solution of Partial Differential Equations 
 

Combination of Variables 
 

 
Introduction and Problem Statement    
  
We encounter partial differential equations routinely in transport phenomena.  Some examples are 
unsteady flow in a channel, steady heat transfer to a fluid flowing through a pipe, and mass 
transport to a falling liquid film.  Here, we shall learn a method for solving partial differential 
equations that complements the technique of separation of variables.  We shall also learn when the 
method can be used.  We consider the same model problem, namely the motion induced in fluid 
contained between two long and wide parallel plates placed with a distance b  between them as 
shown in the sketch below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The fluid is initially assumed to be at rest.  Motion is initiated by suddenly moving the bottom 
plate at a constant velocity of magnitude U  in the x − direction.  The velocity of the bottom plate 
is maintained at that value for all future values of time t  while the  top plate is held fixed in place.  
There is no applied pressure gradient, with motion being caused strictly by the movement of the 
bottom plate.  
 
We shall assume the flow to be incompressible with a constant density ρ  and Newtonian with a 
constant viscosity µ .  We neglect edge effects in the z − direction so that we can set 0zv = and 

0
z

∂
=

∂
v , and assume fully developed flow, implying 0

x
∂

=
∂
v .  Here, v  stands for the velocity 

vector, and the subscripts denote components.   
 

 

 
 

 

x

y
b
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It can be established from the continuity equation and the kinematic condition at one of the walls 
that 0yv = .  Therefore, the only non-zero velocity component is ( ),xv t y , which can be shown to 
satisfy the following partial differential equation. 
 

 
2

2
x xv v
t y

ν∂ ∂
=

∂ ∂
 (1) 

 
In Equation (1), t  represents time, and ν  is the kinematic viscosity.  The initial condition is 
 ( )0, 0xv y =  (2) 
and the boundary conditions are 
 ( ),0xv t U=  (3) 
and 
 ( ), 0xv t b =  (4) 
 
Using separation of variables, we obtained a solution of these equations that can be written as 
follows. 
 

 ( )
2 2

2

1

exp, 21 sinx

n

tnv t y y n yb
U b n b

νπ
π

π

∞

=

 −    = − −  
 

∑  (5) 

 
The infinite series in Equation (5) is uniformly convergent for all values of time t .  The exponential 
factor plays a strong role in assuring that the terms decrease rapidly with increasing values of n  
so that only a few terms are necessary to calculate an accurate value of the velocity at moderate to 
large values of time, corresponding to the scaled time 2/t bν  not being too small compared to 
unity.  But, if we attempt to calculate the sum numerically for small values of time ( 2/t bν  small 
compared with unity) when the exponential factor is not as helpful, we find that a large number of 
terms needs to be included to obtain a sufficiently accurate answer.   Therefore, in this module we 
seek a solution technique that will permit us to calculate the velocity field accurately without too 
much labor for small values of time. 
 
Physically, at values of time t  for which the scaled time 2/t bν  is small compared to unity, the 
effect of the motion of the bottom plate is only felt by the fluid up to a small distance (depth of 
penetration) from the moving plate.  Outside of this region of influence, the fluid is practically 
stationary.  Therefore, one might approximate the system for such small values of time by another 
in which the top plate is absent.  This problem was first considered by Lord Rayleigh, and therefore 
is known as Rayleigh’s problem.  Mathematically, we replace the boundary condition at the top 
plate, given in Equation (4), with 
 
 ( ), 0xv t ∞ =  (6) 
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Note that to be precise, we must write Equation (6) as ( ), 0xv t y → ∞ → , and the equation must 
be read to imply only such a meaning.  
 
A Speculation  
 
There is neither a natural length scale in the problem, nor a natural time scale.  We can use the 
reference velocity U as a natural scale for the velocity xv , but it is convenient to work with the 
remaining physical variables just as they are.  The solution of Equations (1) to (3) and (6) is 
qualitatively sketched below for two different values of time.   In the figure, the symbol v  is used 
to represent xv . 
 
 

 
 
 
The solid line corresponds to a small value of time, and the dashed line to a larger value of time.  
We can see how the change in velocity made at the bottom plate at time zero propagates deeper 
into the fluid with increasing time. It is tempting to speculate that these profiles are similar in 
shape.  By implying similarity of shape, we mean that scaling the distance variable with the 
thickness of the affected region ( )tδ  should lead to these two curves and others like them 
collapsing into a single universal curve. In mathematical language, if we define a certain 
combination of the original variables as a new variable ( )/y tη δ= , can we expect the velocity 

field ( ),xv t y  to become a function ( )Uφ η  that depends only on the single new variable?  This 
speculation is shown in the sketch below.   
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The transformation to η  is known as a “similarity transformation” and the variable η  is termed a 
“similarity variable.” 
 
Solution by Combination of Variables 
 
We now proceed to state the above speculation in mathematical form and follow through the 
consequences.  This is the method of “Combination of Variables.” 
 
Assume  
 ( ) ( ),xv t y Uφ η=  (7) 
where 

 
( )
y
t

η
δ

=  (8) 

and ( )tδ  is a function that is yet to be determined.  Note that we always can transform from two 
independent variables to two new independent variables, but to transform to a single new variable 
is not always possible.  Therefore, we need to insert Equations (7) and (8) into the governing 
equation and the initial and boundary conditions and see if the process leads to a consistent 
mathematical framework.   For this purpose, we shall use the chain rule of differentiation as 
needed. 
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 2
xv d y d d d dU U U
t t d dt d dt d

η φ δ φ η δ φ
η δ η δ η

∂ ∂
= = − = −

∂ ∂
 (9) 

 
Note that when writing the derivative of φ  with respect to η , we already have assumed that φ  can 
depend explicitly only on the single variable η  and used the ordinary derivative instead of the 
partial derivative.  If our conjecture proves to be incorrect, and φ  were to depend explicitly on 
both η  and t , the above chain rule result will need to be modified to include a partial derivative 
of φ  with respect to time. 
 
Let us now obtain expressions for the derivatives with respect to y . 
 

 xv d U dU
y y d d

η φ φ
η δ η

∂ ∂
= =

∂ ∂
 (10) 

and 

 

2

2

2

2 2

x xv v U d U d
y y y y d y d

U d d U d
y d d d

φ φ
δ η δ η

η φ φ
δ η η δ η

 ∂ ∂    ∂ ∂ ∂
= = =     ∂ ∂ ∂ ∂ ∂    

 ∂
= = ∂  

 (11) 

 
Substituting Equations (9) and (11) into the governing differential equation for xv  (Equation (1), 
leads to the following equation after slight rearrangement. 
 

 0δδφ η φ
ν

′ ′′ ′+ =  
 (12) 

 
In writing Equation (12), we have used the expedient of designating derivatives with respect to the 
argument of each function with primes.  Recall that we assumed that φ  explicitly depends only on 
the similarity variable η .  But, Equation (12) suggests that time also will explicitly appear in the 
result for φ  because of the presence of the time-dependent term δδ ′ .   We have not yet specified 

( )tδ , however.  Here is our chance to do so and eliminate the inconsistency at the same time.  We 
choose  
 
 Cδδ ν′ =  (13) 
 
where C  is an arbitrary constant.  Later, we shall see that the value of C  will affect the result for 

( )tδ , but will not affect the final solution for ( ),xv t y .  Therefore, for convenience, we set 2C =
, writing Equation (12) as 
 
 2 0φ η φ′′ ′+ =  (14) 
 



83 
 

We now need to transform the initial and boundary conditions.  Note that there are three conditions 
on the velocity field ( ),xv t y , but only a second order differential equation for ( )φ η .  The 
specification of the arbitrary constants that arise in the integration of the latter requires only two 
conditions.   
 
First, consider the boundary condition at the bottom surface 0y = , given in Equation (3).  This 
transforms in a straightforward manner to 
 
 ( )0 1φ =  (15) 
 
The fact that a quiescent condition is approached as y → ∞ , described by Equation (6), becomes 
  
 ( ) 0φ ∞ =  (16) 
 
The initial condition, given in Equation (2), transforms to 
 

 
( )

0
0

yφ
δ

 
=  

 
 (17) 

 
and we see that we have not completely eliminated the original variables from appearing 
explicitly in the problem statement for φ .  To remove this inconsistency, and at the same time 
select an initial condition for ( )tδ , we must set 
 
 ( )0 0δ =  (18) 
 
The choice in Equation (18) makes Equation (17) collapse into Equation (16); therefore, the three 
conditions on ( ),xv t y  yield two conditions on ( )φ η  and one initial condition on ( )tδ , and we 

have a completely consistent mathematical framework for the problems for ( )φ η  and ( )tδ .  Note 
that by this approach of “Combination of Variables” we have reduced the solution of the original 
partial differential equation to that of two ordinary differential equations for these two functions. 
 
First, the general solution of Equation (14) can be written as 
 

 ( ) 2

1 2
0

a a e d
η

γφ η γ−= + ∫  (19) 

where 1a  and 2a  are constants of integration that must be determined by applying the boundary 
conditions given in Equations (15) and (16).  Use of these conditions leads to the result 
 
 ( ) ( )erfcφ η η=  (20) 
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where “ erfc ” means “complementary error function.”  This function is defined as follows. 
 
 ( ) ( )erfc 1 erfη η= −  (21) 
 
where the “error function”  “ erf ” is defined as 
 

 ( )

2

2

2

0

0

0

2
e d

erf e d
e d

η
γ

η
γ

γ

γ
η γ

πγ

−

−
∞

−

= =
∫

∫
∫

 (22) 

 
You can find out more about the error function and the complementary error function from 
Abramowitz and Stegun [1]. 
 
The solution of Equation (13) with the constant 2C = , when specialized using the initial condition 
given in Equation (18), is  
 
 ( ) 2t tδ ν=  (23) 
When this result for ( )tδ  is used in Equation (8) in which η  is defined, the solution for the velocity 
field can be written as 

 ( ), erfc
2x

yv t y U
tν

 =  
 

 (24) 

  
If we had made a different choice of value for the constant C  that appears in Equation (13), it 
would have affected the results as follows. 
 

 ( ) 2 2
2
Ct C t tδ ν ν= =  (25) 

 
 

 ( )
2
Cerfcφ η η

 
=   

 
 (26) 

You can see that when the definition of η  given in Equation (8) is used in Equation (26), along 
with ( )tδ  from Equation (25), the factor / 2C  cancels out, leading to the same result for the 

velocity field given in Equation (24).  You may wonder about the uncertainty in the value of ( )tδ
, which is the thickness of the “affected region,” caused by the indeterminacy of the value of C .  
This is perfectly natural because in a diffusive process, the influence of a change is felt everywhere 
in the fluid instantaneously.  This means that there can be no unambiguous definition of a finite 
thickness for the affected region; only its scaling can be established uniquely.  The complementary 
error function assumes a value of 34.678 10−×   when its argument is 2 .  Therefore, at a distance 
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4y tν= , the velocity would be less than 0.5% of the value at the surface of the moving plate, 

and can be considered negligible for practical purposes.  Because of this, the estimate ( )4 tν  is 
sometimes used for the thickness of the region influenced by the sudden movement initiated at the 
boundary. 
 
Summary 
 
In this module, we have learned the method of combination of variables for solving partial 
differential equations; it complements the method of separation of variables.  First, we identified 
the governing partial differential equation and boundary conditions for our system.  Then we 
 
1. noted that the effect of a boundary condition imposed at time zero is felt in a region near that 
boundary that is small in extent for small values of time and used this fact to replace the boundary 
condition at the other boundary with one at infinity; 
 
2. assumed that the dependence of the velocity field on the two independent variables can be 
expressed as a dependence on a single new similarity variable; 
 
3. traced the consequences of this similarity hypothesis mathematically, requiring that the original 
independent variables not be allowed to appear explicitly in the problem posed in the new 
similarity variable; 
 
4. obtained an ordinary differential equation for the thickness of the affected region and another 
ordinary differential equation for the velocity field; 
 
5. collapsed the three boundary conditions on the velocity field into two on the velocity field as 
expressed in the similarity variable, also yielding an initial condition for the thickness of the 
affected region; 
 
6. solved these ordinary differential equations to obtain results for the thickness of the affected 
region and the velocity field; 
 
7. noted that the thickness of the affected region can only be defined to within a multiplicative 
arbitrary constant, whereas the velocity field is uniquely determined. 
 
The important features of the method are that the domain must be semi-infinite, and the boundary 
condition at infinity must be the same as the initial condition; even though the problem we posed 
is linear, the method is equally applicable to non-linear problems. 
 
Concluding Remarks 
 
The problem of unsteady one-dimensional heat conduction in a semi-infinite solid slab (or a 
quiescent liquid layer) in the y − direction, when the temperature at the surface 0y =  is changed 
to a new value at time zero, is described by the same governing equations and boundary conditions.  
The assumptions are that there are no sources or sinks, heat transport occurs only by conduction 
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with a constant thermal conductivity, the density and specific heat of the material are constant, and 
that the slab is very long and very wide so that end effects and edge effects can be neglected.   By 
analogy, it can be seen that the same equations also describe unsteady diffusion in a similar 
situation.  All of these cases can be handled by the same solution method.  Note that unlike 
separation of variables, combination of variables does not require the system of governing equation 
and boundary conditions to be linear.  This method has used successfully in solving the Navier-
Stokes equations including inertia (and therefore non-linear) in forced boundary layer flows, and 
also in solving problems of natural convection in boundary layers wherein the fluid mechanics and 
heat transport problems lead to coupled non-linear governing equations. 
 
Reference 
 
1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, 1965.  
  



87 
 

 

Part V 
 
Scaling of Navier-Stokes Equation  
Reynolds Number  
Laminar Boundary Layer Theory 
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Scaling of the Navier-Stokes Equation 
 
The purpose of scaling, or non-dimensionalization, of a problem is to identify the true parameters 
that influence the situation.  One might think that these parameters are already known – physical 
properties such as the density and the viscosity, geometrical parameters such as the diameter of an 
object or the width of a flow channel, and a typical velocity that characterizes the flow.   In reality, 
because the Navier-Stokes equation is concerned with a balance of forces, the true parameters that 
influence the behavior of solutions of the Navier-Stokes equation have no dimensions, and are 
ratios of characteristic forces in the system.  By scaling the Navier-Stokes equation, we identify 
them.  In the process, we also minimize the number of parameters.  You might have learnt from 
earlier courses that if a problem has M parameters and N dimensions (such as length, mass, and 
time), then the number of dimensionless parameters is M-N.   In the following, for simplicity, we 
assume the density ρ  to be constant. 
 
We begin with the Navier-Stokes equation   
 

2( ) p
t

ρ µ∂ + •∇ = − ∇ + ∇ ∂ 
v v v v  

 
where p  is the hydrodynamic pressure. By using this form, we have restricted consideration only 
to problems in which gravity does not play any role beyond producing a variation of pressure with 
depth. 
 
The first step in scaling is to choose reference quantities.  To be meaningful, these must be 
characteristic (or typical) entities that would prevail in the flow.    
 
Reference velocity:  0v ;   Reference length: D ;    Reference pressure difference: 0p  
 
For scaling pressure, we usually subtract a datum dp  and divide by 0p , which is established by 
consideration of whether viscous or inertial effects dominate the flow.  For scaling time t , at this 
stage let us just use a reference time 0t , and choose its definition later. 
 
As an example, for pressure driven flow through a tube, we may choose the reference velocity as 
the average or maximum velocity in the flow, and the reference length as the tube diameter or 
radius.  One possible reference pressure difference would be the pressure drop over the length of 
the tube, but we can make other choices as well.  For the problem of a sphere settling in a fluid, 
we might choose the sphere diameter as the reference length, and its settling velocity as the 
reference velocity. 

By defining scaled quantities 
0

*
v

=
vv ,  

0

* tt
t

= ,  and * D∇ = ∇ , we obtain the following scaled 

version of the Navier-Stokes equation, in which we have used the kinematic viscosity ν  = /µ ρ  
in some of the coefficients. 
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( )
2

20 0

0 0

* * * *
*

D Dv Dp p
t t vν ν µ

∂
+ •∇ = − ∇ + ∇  ∂

v* v* v* v*  

 
We can make different choices for the scale 0p .  In a flow dominated by viscous forces, a logical 
choice would be a viscous scale 0 0 /p v Dµ=  so that 

0

*
/

dp pp
v Dµ
−

=  

 
where dp  is a constant datum from which pressure is measured.  Substituting for *p  in the right 
side of the scaled Navier-Stokes equation, the first term becomes * *p−∇ .    On the other hand, if 
a flow situation is dominated by inertia, a more appropriate scale for pressure differences would 
be an inertial scale 2

0 0p vρ= .  In this case,  

2
0

* dp pp
vρ

−
=   

 
When this definition of scaled pressure is used in the first term in the right side of the scaled 
Navier-Stokes equation, the term becomes  
 

0 * *Dv p
ν

− ∇ .   

Regarding the reference time 0t , it is possible to make two different choices.  If we make the choice 
2

0 /t D ν= , then, the unsteady term in the scaled Navier-Stokes equation is multiplied by unity, 

while the convective acceleration term ( )*•∇  v* v*  is multiplied by the dimensionless group 

0 /Dv ν .  On the other hand, it is also possible to examine the flow phenomena on a time scale 

0 0/t D v= , in which case the unsteady term in the scaled Navier-Stokes equation is multiplied by 
the same group 0 /Dv ν  that also multiplies the convective acceleration term.  This distinction in 
the choice of a time scale is useful in unsteady problems in which the group 0 /Dv ν  is negligibly 
small.  It is a good idea now to investigate the physical meaning of the group 0 /Dv ν ,  known as 
the Reynolds number. 
 
Reynolds Number 
 
We define the Reynolds Number of the flow as  
 

0 0Re Dv Dvρ
µ ν

= =  

 
where /ν µ ρ=  is the kinematic viscosity. 
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The Reynolds Number multiplies the inertia term when the coefficient of the viscous term is unity.  
Therefore, it represents the ratio of the importance of the inertia force when compared with the 
viscous force.   Another way to see this is to write the definition of the Reynolds Number slightly 
differently. 
 

2
0 0

0

inertia forceRe
viscous force

Dv v
v
D

ρ ρ
µ µ

= = =  

 
An equivalent physical interpretation is 
 

Rateof ConvectiveTransport of MomentumRe
Rateof Molecular Transport of Momentum

=  

 
The Reynolds Number plays a central role in fluid mechanics.  It is important in establishing 
whether two flow situations are dynamically similar, and in determining conditions for the 
transition to turbulence.  Its magnitude in a given situation tells us whether inertia or viscous forces 
dominate the flow, or whether both are important. 
 
Some additional considerations 
 
Note that the specific choice of characteristic scales is not critical.  For example, for flow through 
a tube, we can choose either the radius or diameter of the tube for the length scale that characterizes 
the flow, and the average or maximum velocity as the velocity scale.  The numerical value of the 
Reynolds number will change depending upon the specific choice, but so long as the definitions 
are consistent, we can establish dynamic similarity between two flows by arranging for the 
Reynolds number to be the same in both cases.  Can you explain why the height of a classroom 
would not be a good choice for a characteristic length scale for flow around a settling dust particle 
in the atmosphere, just as the speed of an automobile on the street would not be a good choice for 
a characteristic velocity scale for flow through a tube, even though from the perspective of forming 
dimensionless quantities, these are perfectly acceptable choices?   A slightly more difficult 
question is to reason out why the length of a tube is not as good a choice as the diameter of the 
tube for flow through that tube. 
 
In the beginning, we stated that scaling allows us to establish the dimensionless ratios of 
characteristic forces in a flow.  Yet, we only identified a single dimensionless parameter, namely 
the Reynolds number,  upon scaling the Navier-Stokes equation.  Other dimensionless groups 
emerge as we include additional considerations.  For example, if we had retained the gradient of 
the pressure and the gravitational force separately, we should have obtained another dimensionless 
group from the Navier-Stokes equation.  It is the ratio of the Reynolds number to the Froude 
number Fr , defined as follows. 
 

2
0Fr v

Dg
=  
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In flow situations not involving free surfaces, the only contribution of the body force term ρ g in 
the Navier-Stokes equation is to cause an increase of pressure with distance in the direction of the 
gravity vector.  Because such a variation of pressure with height already occurs in a static fluid, it 
makes no contribution to the flow situation.  This is the reason why we started with the Navier-
Stokes equation using the dynamic pressure, gradients in which are directly related to the flow.   
But when free surfaces are present, such as for flow in a river, or flow in a partially filled pipeline, 
the Froude number can play an important role.  In addition, by consideration of the boundary 
conditions at a free surface, it can be shown that another important dimensionless group, known 
as the Capillary number, Ca , is important in determining the shape of the interface when viscous 
forces dominate. 
 

0 0 / viscous force
/ surface tension force

v v DCa
D

µ µ
σ σ

= = =  

 
The numerator is a measure of the viscous force tending to deform the surface (the associated 
deforming pressure force also scales in the same way in flow dominated by viscous forces) and 
the denominator is a measure of the surface tension force that tends to prevent the surface from 
deforming.  When the flow is dominated by inertia, a more appropriate choice is the Weber 
number, 2

0We = /Dvρ σ , which is the product of the Capillary number and the Reynolds number.  
The Weber number is the ratio of the deforming pressure force (from inertia) to the surface tension 
force. 
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Flow at Low Reynolds Number 
 
When the Reynolds number is small, the flow is dominated by viscous forces, with inertia playing 
a relatively unimportant role.  This can happen because of small length scales, small flow 
velocities, or large kinematic viscosity.  Such flows are important in the context of the motion of 
bacteria and cells in physiological systems, in the behavior of colloidal particles suspended in a 
fluid, and in microfluidics applications.  Flows in which inertia is completely neglected are known 
as Stokes flows. 
 
By completely neglecting inertia, we obtain the Stokes equation 
 

2 p∇ ∇v =  
 
which, along with the incompressible equation of continuity 
 

0∇ • =v  
 
forms the set of governing equations.  These equations are linear.  Therefore, the powerful principle 
of superposition can be used in solving them.  This makes numerous problems amenable to 
analysis.  You will find useful solutions in books by Happel and Brenner (1), Leal (2) and Kim 
and Karrila (3). 
 
Stokes flows (also known as creeping flows) are reversible in time, from which fact some useful 
information can be extracted about a situation without solving the problem in detail.   As an 
example, the drag on mirror image objects moving at the same velocity through a fluid in Stokes 
flow must be of the same magnitude.  This is because the simple substitution of −v  in place of v  
(which implies a flow in the reverse direction over the original object) leads to a solution with the 
dynamic pressure field being given by p−  where p  is the dynamic pressure field in the original 
problem.  For another example, consider a sphere that experiences a force parallel to a neighboring 
planar solid surface; it cannot drift toward or away from that planar surface, and must move parallel 
to it.  If it drifts one way or the other in the lateral direction normal to the planar surface, time-
reversing the motion of the sphere would lead to a drift in the opposite direction.  That cannot be 
correct, because symmetry dictates that if the sphere moves toward the planar surface in one case, 
it must also move toward it in the second case.  Thus, to satisfy symmetry and reversibility, a 
sphere moving parallel to a planar surface cannot drift laterally.   This argument can be extended 
to objects that are symmetrical in shape about a plane that is oriented normal to the planar surface 
in question. 
 
Also, it can be proved that, of all the possible velocity fields that satisfy the same boundary 
conditions in a given domain, the dissipation is minimum for Stokes flow.  One consequence, for 
example, is that the drag on an object moving through a fluid at a given velocity is larger when 
including inertia effects than when they are neglected. 
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Flow at Large Reynolds Number 
 
 
The viscosity of common fluids such as air and water is very small.  Therefore, flow in such fluids 
often occurs at large values of the Reynolds number.  In certain types of problems, it is permissible 
to neglect the relatively small role of viscosity altogether.  An example is the formation of waves 
on a free surface.  Such flows are known as inviscid flows.  Furthermore, it is possible to show 
that in a region of inviscid fluid in which the vorticity ω = ∇×v  is zero at some time, it will remain 
zero for all future values of time.  A flow in which the vorticity is zero is known as an irrotational 
flow. 
 
We know that a vector whose curl is zero can be written as the gradient of a scalar field.  Therefore, 
we can write φ= ∇v  for irrotational flow.  In an incompressible flow, the continuity equation 
reduces to 0∇ • =v .  Using this fact, we can see that the velocity potential φ satisfies Laplace’s 
equation 2 0φ∇ = .   
 
This equation is much easier to solve than the non-linear Navier-Stokes equation.  When the 
potential is known, we can obtain the velocity field from its gradient, and the inviscid Navier-
Stokes equation then is used  to infer the pressure field, if desired.  In the 19th century this approach 
was used successfully in solving several problems.  Unfortunately, potential flows exert no drag 
on an object moving through a fluid, no matter how large the value of the Reynolds number, in 
stark contrast with physical reality.  The reason is that when the viscous terms are set equal to zero, 
we lose the ability to satisfy some boundary conditions because the order of the governing 
equations is reduced.  As it happens, the boundary conditions far from an object as well as the 
kinematic condition at the surface of an object can be satisfied, but the no-slip boundary condition 
cannot.   
 
In 1903, in an important contribution, Prandtl showed that, no matter how large the value of the 
Reynolds number might be, one must account for viscous terms in the neighborhood of solid 
surfaces.  He showed how other simplifications can be made so that the Navier-Stokes equations 
are made amenable to solution.   
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Elements of Prandtl’s Boundary Layer Theory 
 
The failure of potential flow (incompressible irrotational flow) theory to predict drag on objects 
when a fluid flows past them provided the impetus for Prandtl to put forward a theory of the 
boundary layer adjacent to a rigid surface.  Prandtl’s principal assumptions are listed below.   
 
Assumptions 
 
1. When a fluid flows past an object at large values of the Reynolds number, the flow region can 
be divided into two parts.    
 
(i) Away from the surface of the object, viscous effects can be considered negligible, and potential 
flow can be assumed.   
 
(ii) In a thin region near the surface of the object, called the boundary layer, viscous effects cannot 
be neglected, and are as important as inertia.   
 
2. The pressure variation can be calculated from the potential flow solution along the surface of 
the object, neglecting viscous effects altogether, and assumed to be impressed upon the boundary 
layer.  

 
 
Transition from laminar to turbulent flow in the boundary layer on a flat plate occurs at  

5Re 5 10x ≈ × , where Rex
xU
ν

∞= .  Here, ν  is the kinematic viscosity of the fluid. 

Qualitative velocity profiles in a laminar boundary layer are displayed below. 
 

laminar turbulent

x

y

U∞
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The assumptions can be used to establish the order of magnitude of the boundary layer thickness. 
 
A typical inertia term in the Navier-Stokes equation in rectangular Cartesian coordinates is 

( )/u u xρ ∂ ∂ , and a typical viscous term is ( )2 2/u yµ ∂ ∂ .  Here, ( ),u v are the velocity components 

in the ( ),x y  directions, and ρ  and µ  are the density and the dynamic viscosity of the fluid.   
 
We can estimate the order of magnitude of each of these terms for a plate of length L  as follows. 
 

2Uuu
x L

ρ ρ ∞∂
∂
    

2

2 2

Uu
y

µ µ
δ

∞∂
∂

  

 
Because the viscous force in the boundary layer is of comparable order to the inertia force, these 
two order estimates must be comparable. 
 

2

2

U U
L

ρ µ
δ

∞ ∞
   or  2 L

U
µδ

ρ ∞


, which can be recast as 

 
1
ReLL

δ
  

where the Reynolds number based on the length of the plate ReL
LU

ν
∞= . 

  
This type of argument is called a scaling analysis.  It is a valuable tool in dealing with transport 
problems.  You can see that it provides not only an idea of the variables on which key quantities 
depend, but also the form of this dependence without having to solve the partial differential 
equations involved.   
 
In a like manner, we can find a scale estimate of the drag as well.  The shear stress at the plate 

surface is ( ),0w
u x
y

τ µ ∂
=

∂
.  We can estimate the order of this quantity as ( ) ( )/w x Uτ µ δ∞= .  

Because the shear stress is a local quantity, we should use an order of magnitude of the variation 
of the boundary layer thickness δ  with x .  From the order of magnitude argument used earlier, 
we can estimate it as ( ) / Re /xx x x Uδ ν ∞=  .  If the width of the plate in the z − direction 
is w , the drag on the plate surface is given by 
 

( )
3/ 2

1/ 2
0 0

L L

w
U dxD w x dx w

x
τ µ

ν
∞= =∫ ∫ . 

 
Ignoring the numerical factor of 2  that appears after performing the integration (because we are 
only estimating the order of magnitude), we can write 
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3D w U Lρ µ ∞  
 
A rigorous calculation from boundary layer theory yields the result 
 

30.664D w U Lρ µ ∞=  
 
confirming the correctness of our scaling argument. 
 
The Displacement Thickness 
 
The displacement thickness of the boundary layer is defined as the distance by which the potential 
flow streamlines are displaced by the presence of the boundary layer.  We can construct a 
mathematical definition in the case of the flat plate by recognizing that the displacement thickness 

1δ  is that thickness of the uniform stream that accounts for the “lost” flow because of the presence 
of the solid surface. 
 

( )1
0

U U u dyδ
∞

∞ = −∫  

or 

1
0

1 u dy
U

δ
∞

∞

 
= − 

 
∫  

 
Order of magnitude analysis of the continuity and Navier-Stokes Equations 
 
Now, we shall go through an order of magnitude analysis of the two-dimensional Navier-Stokes 
equations for steady incompressible Newtonian laminar flow over a flat plate and simplify them 
using Prandtl’s ideas.  For more details, you can consult Chapter VII from Schlichting (4). 
 
We shall use scaled variables, using L  as a reference length, and U∞  as a reference velocity.  The 
symbols x  and y  are used for the scaled counterparts of the physical coordinates in the sketch, 
and the symbols u  and v  are used for the dimensionless counterparts of the physical velocity 
components in the x  and y  directions, respectively.  The scaled incompressible version of the 
continuity equation is 
 

0u v
x y

∂ ∂
+ =

∂ ∂
 

 
From the scaling, we know that u  is ( )1O .  This means that the magnitude of  u  lies between 0
and a number that is of the order of unity.  In this particular case, because the maximum value of 
the physical velocity is that of the uniform stream approaching the plate, namely U∞ , the 
maximum value of u  is, in fact, precisely,1. But this is not necessarily the meaning implied by the 
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order symbol that we are using. Note that the order of  magnitude of a quantity is the same 
regardless of its sign. 
 
Because the velocity u  varies in the range mentioned above, while the scaled variable x  also 
varies from 0 to 1 (we say ( )1x O ), we can conclude that the derivative /u x∂ ∂  is ( )1O  as well.  
From the continuity equation, we see that  /u x∂ ∂  and /v y∂ ∂  must sum to zero;  this forces the 
derivative /v y∂ ∂  to be ( )1O .  We know that the variable ( )y O δ  where δ  represents the 
boundary layer thickness divided by the length L .  In other words, δ  is the scaled boundary layer 
thickness.  Because the derivative ( )/ 1v y O∂ ∂  , we must conclude that the change in the scaled 

velocity component v  across the boundary layer must be of ( )O δ .  We know from the kinematic 

condition that 0v =  at the surface 0y = .  Therefore, the magnitude of v  must of ( )O δ .  We note 
that δ  is a very small quantity when the Reynolds number Re 1.L    We express this fact by 
stating 1.δ     Therefore, the scaled velocity in the y − direction in the boundary is a very small 
quantity. 
 
Now, following Schlichting (4) we proceed to use similar arguments in the two components of the 
Navier-Stokes equation applicable to this situation.  First, consider the x − component. 
 

2 2

2 2

2
2

1
Re

1 11 1 1

L

u u p u uu v
x y x x y

δ δ
δ δ

 ∂ ∂ ∂ ∂ ∂
+ = − + + ∂ ∂ ∂ ∂ ∂   

 
Below each term in the equation, we have written the order of magnitude of that term.   We already 
have discussed the order of magnitude of ,u v , and /u x∂ ∂ .  To estimate the order of magnitude of 

/u y∂ ∂ , we first note that u  varies from 0 to 1 across the boundary layer, while the variable y  
varies from 0 to δ .  This is the reason for the estimate that ( )/ 1/u y O δ∂ ∂  .  To estimate the 
order of magnitude of the second derivatives, we must use similar arguments.  For example, 
consider the derivative 2 2/u x∂ ∂ .  We know that ( )/ 1u x O∂ ∂  .  So, this quantity must change 
from 0 to a magnitude of the order of unity in a scaled distance x  that also changes from 0 to 1.  
This is the reason for estimating the order of 2 2/u x∂ ∂ as being unity.  In a like manner, the 
derivative ( )/ 1/u y O δ∂ ∂  , which means that it varies from 0 to 1/δ  across the boundary layer, 

in a distance of the order δ .  Therefore, the second derivative ( )2 2 2/ 1/u y O δ∂ ∂  .  The order of 
magnitude of the Reynolds number was established earlier. 
 
Comparing the two viscous terms, we see that the viscous force in the x − direction is negligible 
when compared to that in the y − direction.  We need to retain all the other terms in the x −
component momentum equation because they are all of comparable order of magnitude. 
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Now, let us consider the y − component of the Navier-Stokes equation. 
 

2 2

2 2

2

1
Re

11 1

L

v v p v vu v
x y y x y

δ δ δ δ
δ

 ∂ ∂ ∂ ∂ ∂
+ = − + + ∂ ∂ ∂ ∂ ∂   

 
The order of magnitude of the derivatives has been estimated in the same manner as outlined 
earlier.  Once again, we see that the viscous transport of y − momentum in the x − direction is 
much weaker than that in the y − direction, and can be neglected.  The most important aspect of 
the above equation is that all the retained terms are of ( )O δ , so that the pressure gradient /p y∂ ∂  
must necessarily be of the same order (or smaller).  Because the variation of pressure in the y −

direction in the boundary layer must occur over a distance of ( )O δ , it is evident that the scaled 

pressure change across the thickness of the boundary layer ( )2p O δ∆  .  This is very small, and 
can be ignored, which is Prandtl’s assumption 2.  Because the pressure change across the boundary 
layer is negligible, the pressure distribution along the surface of the object, evaluated from the 
potential flow, can be assumed to be “impressed” on the boundary layer.   This means that /p x∂ ∂  
in the x − component momentum equation is a known inhomogeneity, and we can simply ignore 
the y − component momentum equation because all the terms are small.   
 
Summarizing the above, we have found from the scaling analysis that the viscous term in the main 
direction of flow ( )x  is negligible compared with the viscous term in the direction normal to the 
solid surface. Furthermore, the pressure gradient in the x − component momentum equation is 
established from potential flow theory and evaluated along the surface of the object, and the y −
component momentum equation is neglected.  Thus, we have two equations for the two unknown 
velocity components. 
 
Even though our analysis assumed a flat plate, you can see that for a thin boundary layer, the 
effects of curvature of the surface would be negligible at leading order. Therefore, as long as we 
define x  and y  as distance coordinates along and normal to a surface, respectively, the same 
equations can be written for flow past an object with a curved surface.  For convenience, Prandtl’s 
steady two-dimensional boundary layer equations for incompressible Newtonian flow are written 
in physical variables below.  To avoid clutter, we have retained the same symbols for the velocities 
and coordinates as those used earlier for scaled variables, but this should not be a source of 
confusion. 
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Continuity 
 

0u v
x y

∂ ∂
+ =

∂ ∂
 

 
Navier-Stokes Equation 
 

2

2

1u u p uu v
x y x y

ν
ρ

∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂
 

 
The simplest boundary layer theory problem is that of steady two-dimensional laminar 
incompressible Newtonian flow over a flat plate.  The term “two-dimensional” implies that the 
plate is wide in the z − direction normal to the plane of the paper. 
 
Boundary layer on a flat plate 
 
 
 
 
 
 
 
 
 
 
 
 
For the flat plate problem, the potential flow is simply u U∞= .  This means that the potential flow 
pressure gradient is zero.  Therefore, the Navier-Stokes equation simplifies to 

2

2

u u uu v
x y y

ν∂ ∂ ∂
+ =

∂ ∂ ∂
 

 
The boundary conditions are written as follows. 
 
    ( )0,u y U∞=  Specified uniform flow at 0x =  

( ),0 0u x =  No slip at the solid surface 

( ),0 0v x =  Kinematic condition at the solid surface 

( ),u x y U∞→ ∞ →   Free stream velocity as y → ∞   
 
Commonly, the last condition is replaced with ( ),u x U∞∞ = . 
 

x

y

U∞
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Asymptotic Analysis of Navier-Stokes Equation for Large Reynolds Number 
 
The simplified versions of the continuity and Navier-Stokes equations that we obtained for 
boundary layer flow over a flat plate using an order of magnitude analysis also can be obtained by 
a rigorous analysis of the governing equations in the asymptotic limit ReL → ∞ , where we define 
the Reynolds number as Re /L LU ν∞= . Here, L  is a reference length chosen as the length of the 
flat plate, the reference velocity U∞  is the uniform free stream velocity in the x −  direction in the 
fluid approaching the flat plate, and ν  is the kinematic viscosity of the fluid.  There are several 
good sources in which such an asymptotic analysis can be found.  The derivation given below is 
adapted from that of Leal (2).  We shall use the same scaled continuity and Navier-Stokes equation 
components that were used in the last section. 
 
Continuity 
 

0u v
x y

∂ ∂
+ =

∂ ∂
  

 
Navier-Stokes Equations 
 

2 2

2 2

1
ReL

u u p u uu v
x y x x y

 ∂ ∂ ∂ ∂ ∂
+ = − + + ∂ ∂ ∂ ∂ ∂ 

 

 
2 2

2 2

1
ReL

v v p v vu v
x y y x y

 ∂ ∂ ∂ ∂ ∂
+ = − + + ∂ ∂ ∂ ∂ ∂ 

  

 
We know that in the limit as ReL → ∞ , the viscous terms become vanishingly small, yielding the 
simple potential flow solution , 0u U v∞= = , and the pressure is uniform, so that 0p x∂ ∂ = .  This 
potential flow solution satisfies the continuity and Navier-Stokes equations in the limit ReL → ∞

, the boundary condition as y → ∞ , and the kinematic boundary condition ( ),0 0v x =  at the solid 
surface.  But, this solution does not satisfy the boundary condition of no slip at the solid surface, 
namely ( ),0 0u x = , and therefore is not uniformly valid everywhere.   This failure is a direct result 
of the neglect of the viscous terms in the Navier-Stokes equation.  The method that is used to 
accommodate these terms is known as matched asymptotic expansions, and you can learn about 
this method from books by Van Dyke (5), Nayfeh (6) or Kevorkian and Cole (7).  Here, we shall 
use the method in its simplest form applicable to the current situation.  The main idea is that, in 
order to retain the relevant viscous term, we must “magnify” the region near the solid boundary.  
Another term that is used to describe the process is “rescale” the y-coordinate in the boundary 
layer.  Because the Reynolds number is large, such rescaling is accomplished by postulating a new 
coordinate ReLy yα= , where we require the constant exponent 0α > .  The value of α  will be 
established as part of the analysis.  In the following, we shall use the term “leading order” to 



101 
 

designate the first term in an asymptotic expansion in the limit ReL → ∞ , which is the same as 
( )1 Re 0L → .  The derivatives in y  will transform as follows: 
 

ReL
u dy u u
y dy y y

α∂ ∂ ∂
= =

∂ ∂ ∂


 

 ,  
2 2

2
2 2Re ReL L
u u dy u dy u u

y y y dy y y dy y y y
α α     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= = = =     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 

   

  

 

ReL
v dy v v
y dy y y

α∂ ∂ ∂
= =

∂ ∂ ∂


 

 ,  
2 2

2
2 2Re ReL L
v v dy v dy v v

y y y dy y y dy y y y
α α     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= = = =     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 

   

  

 
Substituting the result for v y∂ ∂  in the equation of continuity yields the following transformed 
continuity equation in the new coordinates ( ),x y . 
 

Re 0L
u v
x y

α∂ ∂
+ =

∂ ∂
  

 
The two terms in the left side need to be of the same order of magnitude in order to add to a value 
of zero.  Because ReL

α → ∞   as ReL → ∞ , we must rescale the velocity component in the y −  
direction in the boundary layer by defining ReLv vα= .  This rescaling transforms the continuity 
equation in the boundary layer to 
 

0u v
x y

∂ ∂
+ =

∂ ∂




  

 
Now, consider the x − component of the Navier-Stokes equation.  Transforming to the new ( ),x y  
coordinates and using the transformed velocity component ( ),v x y  , we obtain the following 
transformed result. 
 

2 2
2

2 2

1Re Re Re
ReL L L

L

u u p u uu v
x y x x y

α α α−  ∂ ∂ ∂ ∂ ∂
+ = − + + ∂ ∂ ∂ ∂ ∂ 



 

  

 
or 
 

2 2
1 2 1

2 2Re ReL L
u u p u uu v
x y x x y

α− −∂ ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂


 

  

 
Considering the two viscous terms in the right side, the critical viscous term that must be retained 
in the governing differential equation in order to satisfy the no-slip boundary condition is 
( )2 1 2 2Re /L u yα − ∂ ∂ .  Recalling Prandtl’s assumption in the boundary layer that this viscous term 
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must be of the same order of magnitude as the inertia terms, we see that we must choose 1/ 2,α =  
leading to the following result. 

2 2
1

2 2ReL
u u p u uu v
x y x x y

−∂ ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂


 

  

 
In this transformed equation, if we take the limit ReL → ∞ , we obtain the leading order boundary 
layer equation for the x − component of the momentum. 
 

2

2

u u p uu v
x y x y

∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂


 

  

 
Likewise, we can transform the Navier-Stokes equation for the y − component of momentum.  

First, let us note that ( )Re Re ReL L L
v v v v
y y y y

α α α−∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
 

  

 .  The y − component of the momentum 

equation can be written as follows. 
  

2 2
1/2 1/2 1/2 1 1/2 1/2

2 2Re Re Re Re Re ReL L L L L L
v v p v vu v
x y y x y

− − − − ∂ ∂ ∂ ∂ ∂
+ = − + + ∂ ∂ ∂ ∂ ∂ 

   



  

  

 
In the above equation, we already have substituted the value of 1/ 2α = .  Multiply both sides of 
the equation by 1/2ReL

−  and rearrange to yield 
 

2 2
2 1

2 2Re ReL L
p v v v vu v
y x x y y

− −  ∂ ∂ ∂ ∂ ∂
= − + − ∂ ∂ ∂ ∂ ∂ 

   



  

  

 
Now, if we take the limit ReL → ∞ , the leading order boundary layer equation for the y −  
component of the momentum becomes simply 
 

0p
y

∂
=

∂
  

 
Thus, as Prandtl correctly postulated, the variation of pressure within the boundary layer is 
negligible, and the pressure at the “edge” of the boundary layer from the potential flow is 
“impressed” on the boundary layer.  The pressure gradient that appears in the x − component 
momentum equation is that evaluated from the potential flow at the edge of the boundary layer.  
However, on the scale of the potential flow, the boundary layer is of negligible thickness.  Thus, 
the pressure gradient from potential flow is actually evaluated at the solid surface 0y = , and used 
in the x − component momentum equation.  This argument can be made rigorous by using the tools 
of matched asymptotic expansions.   
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We see that we have recovered the same continuity and x − component momentum equation that 
we obtained earlier using a simple scaling argument. The no-slip condition, namely 

( ), 0 0u x y = =  can be satisfied, because the second derivative in y  is now retained in the x −
component momentum equation.  What about a second boundary condition on the velocity field 

( ),u x y ?  This is obtained from the “asymptotic matching principle” that is discussed in Van Dyke 
(5) or Nayfeh (6).  Basically, the matching principle requires that as the boundary layer coordinate 
y → ∞ , the boundary layer solution must approach the potential flow solution as the coordinate 

0y → .  For the case of flow over a flat plate, the potential flow solution is the uniform velocity 
field ( ),u x y U∞=  everywhere, so that we must require ( ),u x y U∞→ ∞ → .  We commonly write 
this condition simply as 
 

( ),u x U∞∞ =   
 
The continuity equation can be integrated to express the velocity component v  in the boundary 
layer in terms of an integral of /u x∂ ∂  as follows. 

( ) ( ) ( )
0

, ,0 ,
y uv x y v x x y dy

x
∂

= −
∂∫



     

and from the kinematic condition at the solid surface the first term on the right side of the above 
equation is zero.  Therefore, we can write 
 

( ) ( )
0

, ,
y uv x y x y dy

x
∂

= −
∂∫



     

 
Recall that we have used dimensionless variables in the above analysis.  Reverting to physical 
variables will lead to the same boundary layer equations that were obtained earlier using a scaling 
analysis. 
 
Summary 
 
In summary, note that  
 
1. The important nonlinear (inertial) terms have been retained. 
 
2. The number of differential equations has been reduced from three to two, consistent with the 
simplification that the pressure distribution is “known” from potential flow theory. 
 
3. Because the variation of pressure across the boundary layer is negligible to this order of 
approximation, the potential flow pressure distribution can be evaluated right at the solid surface 
and used as a known inhomogeneity in the boundary layer equations. 
 
The solution of the boundary layer equations for a flat plate was first obtained by the method of 
combination of variables (similarity) by Blasius as discussed in Schlichting (4). The calculation of 
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this solution will be part of a homework assignment.  The same equations also can be solved by 
an approximate technique, which we discuss next. 
Approximate method of Karman and Pohlhausen 
 
This method is also known as the integral method.  The highlights for the flat plate problem are 
presented below.  There are three main steps. 
 
1. Satisfy the governing equation for the velocity in the x − direction only on an average basis 
across the boundary layer.  The boundary layer thickness ( )xδ  is assumed to be finite and outside 

this region, the velocity is assumed to be U∞ .  This means that ( ),u x y Uδ ∞≥ = .  Thus, we shall 

use the following boundary conditions on ( ),u x y  when analyzing the boundary layer problem. 

( )0,u y U∞=   Specified uniform flow at 0x =  

( ),0 0u x =   No slip at the solid surface 

( ),u x Uδ ∞=  The free stream velocity is reached at the edge of the boundary layer ( )y xδ= ,  
 
2. Satisfy the boundary conditions by assuming a suitable velocity profile. 
 
3. Calculate ( )xδ  and the Drag D . 
 
For the integral method, we begin with the x − component of the Navier-Stokes equation for the 
boundary layer flow over a flat plate. First, the result for ( ),v x y  obtained by integrating the 
continuity equation, and using the kinematic condition ( ),0 0v x = , is substituted in this equation 
to yield 
 

 
2

2
0

yu u u uu dy
x x y y

µ
ρ

 ∂ ∂ ∂ ∂
− =  ∂ ∂ ∂ ∂ 

∫   

 
Step 1: Integrate the boundary layer equation of motion from 0y =  to h .  The position y h=  is 
assumed to lie outside the boundary layer everywhere, so that ( )h xδ>  over the entire length of 
the plate.  Later, we shall let h → ∞ .   
 

( )
0 0 0 0

,0
hyh h

wu u u u uu dy dy dy x
x x y y y

τµ µ
ρ ρ ρ

   ∂ ∂ ∂ ∂ ∂
− = = − = −    ∂ ∂ ∂ ∂ ∂  

∫ ∫ ∫   

 
As you can see, we have integrated the second derivative with respect to y  in the right side to 
yield the first derivative.  At the upper limit y h= , which is outside the boundary layer, the 

velocity profile is flat, so that ( ), 0u x h
y

∂
=

∂
, which leads to the final result in the right side.  The 
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symbol wτ  represents the tangential (or shear) stress exerted by the fluid on the wall, and is 
commonly termed the wall shear stress.  It is given by 

 ( ) ( ) ( ) ( ),0 ,0 ,0w
u v ux x x x
y x y

τ µ µ
 ∂ ∂ ∂

= + = ∂ ∂ ∂ 
 because ( ),0 0v x

x
∂

=
∂

.   

 
The second term in the left side is integrated by parts as follows. 
 

0 0 0 00

0 0

hy yh h

dVU
h h

u u u udy dy dy u u dy
x y x x

u uU dy u dy
x x∞

    ∂ ∂ ∂ ∂
− = − +       ∂ ∂ ∂ ∂     

∂ ∂
= − +

∂ ∂

∫ ∫ ∫ ∫

∫ ∫



   

Substitute into the left side of the integrated boundary layer equation to obtain the following result. 

( )
0

2
h

wuu U dy
x

τ
ρ∞

∂
− = −

∂∫    or  ( )2

0

h
wu U u dy

x
τ
ρ∞

∂ − = − ∂ ∫   

 
Rewrite after reversing signs on both sides as 
 

( )
0

h
wu U u dy

x
τ
ρ∞

∂
− = +  ∂ ∫   

 
which can be rearranged as 
 

2

0

1
h

wu uU dy
x U U

τ
ρ∞

∞ ∞

 ∂
− = ∂  

∫   

 
In the integral method, / 1u U∞ =  outside the boundary layer, that is for all ( )y xδ≥ .  Therefore, 
we can replace the upper limit h  in the integral in the left side with ∞ , because the addition to the 
integral due to this replacement is zero.  Thus, we obtain the  integral momentum balance. 
 

2 wdU
dx

τθ
ρ∞ =  

 
Here, the momentum thickness of the momentum boundary layer θ  is given by 
 

( )
0

1u ux dy
U U

θ
∞

∞ ∞

 
= − 

 
∫  

The physical meaning of the integral momentum balance is simple.  It states that the rate at which 
momentum is lost by the boundary layer fluid is equal to the rate at which it is transferred to the 
wall. 
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Step 2: Assume a suitable velocity profile.  Because there is no natural length scale in the y −  
direction, it is reasonable to expect similar profiles at different x − locations.  Thus, assume that 
the velocity distribution ( ) ( ),u x y U g η∞= , where ( )/y xη δ= .  Select ( )g η  such that, at a 

minimum, the boundary conditions on the velocity field ( ),0 0u x =  and ( ),u x Uδ ∞=  are satisfied.  

This implies that ( )0 0g =  and ( )1 1g = .  It is common to assume that ( )g η  is a low order 

polynomial in η .  The simplest is a straight line profile ( ) 1 2g a aη η= +   with two arbitrary 
constants 1a  and 2a  that can be determined by using the two boundary conditions given above. 

   
 
For higher order polynomials, we need additional boundary conditions.  A linear velocity profile 
will lead to a discontinuous slope at the edge of the boundary layer, so a third boundary condition 

one might use for achieving smoothness in the profile is ( ), 0u x
y

δ∂
=

∂
.  This means that we can 

set ( )1 0g′ = .   Higher order polynomials can be assumed, in which the constants are evaluated 
using additional boundary conditions obtained by evaluating the two sides of the differential 
equation for ( ),u x y .   For example, if you want to use a fourth order polynomial for ( )g η , two 

additional conditions obtained from the differential for ( ),u x y  by evaluation at the surface of the 
flat plate and at the edge of the boundary layer are  
 

( ) ( )
2 2

2 2,0 0; , 0u ux x
y y

δ∂ ∂
= =

∂ ∂
  

These two equations therefore lead to the additional conditions  ( ) ( )0 0; 1 0g g′′ ′′= =  that can be 

used to evaluate the constants in the polynomial form assumed for ( )g η . 
 

/g u U∞=

0
0

1

1

( )/y xη δ=

Profile outside the 
boundary layer

Straight line profile

Polynomial profile
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Step 3: By substituting ( ) ( ),u x y U g η∞=  in the definition of ( )xθ , we obtain ( ) ( )x xθ α δ=  

where the constant ( ) ( )
1

0

1g g dα η η η= −  ∫  . 

Similarly, ( ) ( ) ( )w
U Ux
x x

ρν µτ β β
δ δ

∞ ∞= =  where the constant ( )0gβ ′= . 

 
Using these results, the integral momentum balance reduces to 
 

( )2 2d
dx U

β νδ
α ∞

=  

 
and the boundary layer thickness satisfies ( )0 0δ = .  Integration of this simple ordinary differential 

equation, and use of the boundary condition on ( )xδ  yields 
 

( ) 2 xx
U

β νδ
α ∞

=  

The drag ( ) ( ) 3

0

2
x

wD x w x dx w U xτ α β ρµ ∞= =∫   where w  is the width of the plate.  We can 

define a drag coefficient ( )

( )

( )
2

2

2
1
2

D

D x D x
C

U wxU wx ρρ ∞
∞

= =
 
 
 

.  Using the above result for the drag 

leads to 1/2

8
ReD

x

C αβ
=   

 
As an example, choose ( ) 1 2g a aη η= + .  Upon using the two boundary conditions 

( ) ( )0 0, 1 1g g= = , this yields ( )g η η= .  Using the definitions of α  and β , we obtain 
1 , 1
6

α β= = .   Therefore, ( ) 3.46 /x x Uδ ν ∞=  and 30.58D w U xρµ ∞= .  This leads to 
1/21.155 / ReD xC = .  This is remarkably close to the correct result from the similarity solution, 

which is   1/21.328 / ReD xC = . A fourth order polynomial fit to the velocity profile yields 
1/21.372 / ReD xC = .  More details can be found in Chapter X, Section (a) from Schlichting (4). 

 
The integral method is easy to use, quick, and usually gives the correct scaling results.  Only the 
numerical coefficients are different from those from an exact solution.  As the velocity profile is 
more closely approximated, the estimate of the drag improves.  The method can be extended in a 
straightforward manner to accommodate physical property variations.  The integral method also is 
useful in heat transfer and mass transfer problems involving boundary layers.  The principal 
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disadvantage of this method is that it is not possible to know how accurate the predictions are 
without comparing either with an exact result, which would obviate the need for the approximate 
solution, or comparison with experimental results. 
 
Concluding Remarks 
 
1. Boundary layer theory is needed so that we can predict drag in high Reynolds number flow past 
an object, because potential theory, which is otherwise useful, cannot predict this drag. 
 
2. The theory can be used only up to the point of separation.  This is the location on the surface 
where the velocity gradient in the boundary layer becomes zero at the surface of the object.  This 
topic is further discussed in references (2) and (4). 
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Introduction to Energy Transport 
 
 
Transport of thermal energy in fluids occurs by three mechanisms. 
 
Conduction or molecular transport 
Convection or bulk transport 
Radiation 
 
Of these, the proper treatment of radiation is beyond the scope of our course.  Therefore, we shall 
only consider conduction and convection.     
 
Conservation of Energy 
 
The energy of a flowing fluid consists of internal and kinetic energy.  The rate of increase of the 
energy content of the fluid present within a control volume at a given instant is equal to the sum 
of the net flux of energy into the control volume and the work done on the fluid within the control 
volume by body forces and surface forces acting on it.  Bird et al. go through a careful derivation 
of the mathematical form of the equation of conservation of energy in Chapter 11.  The initial 
balance is written for the total energy and then the part involving the kinetic energy (known as the 
mechanical energy balance, obtained by taking a dot product of Cauchy’s equation with the 
velocity) is subtracted.  After using some thermodynamic relationships, the final form of the 
equation of conservation of thermal energy is obtained.  Various versions are given in Table 11.4-
1 of the book.  The most common version that we shall use assumes that the density ρ  and thermal 
conductivity k  are constant, and is given below. 
 

2
p v

TC T k T S
t

ρ µ∂ + •∇ = ∇ + Φ + ∂ 
v   

 
In the above equation,  T  is the temperature, pC  is the specific heat at constant pressure, t  is time, 
v  is the (vector) velocity, vµ Φ  stands for the rate of irreversible conversion of mechanical energy 
into internal energy per unit volume by viscous dissipation, and S  represents the rate of generation 
of energy per unit volume by sources such as electrical heating.  When the thermal energy equation 
is obtained for a multicomponent system, the rate of generation (or consumption) of energy per 
unit volume due to chemical reactions appears naturally in the energy equation when proper 
accounting is made of the enthalpies of the various species.  Detailed expressions for the 
dissipation function vΦ  in terms of derivatives of the velocity components in common coordinate 
systems can be found in Table B.7 of Bird et al.  In most situations, we can set the viscous 
dissipation term to zero with negligible error, the exceptions occurring when highly viscous fluids 
are subjected to large velocity gradients; an example where viscous heating is important is polymer 
processing.   
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There are two fluxes of thermal energy that appear in the energy equation (the prefix “thermal” 
will be omitted, but implied from here on).  One is molecular flux of energy and the other is 
convective flux of energy. 
 
Molecular transport or Conduction 
 
Molecular transport rates are adequately described for moderate temperature gradients by a linear 
relationship between the heat flux and the temperature gradient. The phenomenological 
relationship 
 

k T= − ∇q  
 
is known as Fourier’s law.  Here, q  is the (vector) heat flux, and T is the temperature field at a 
given point.  The negative sign tells us that heat flows in the direction opposite to that of the 
temperature gradient, namely from hot regions to cold regions.  The constant of proportionality in 
Fourier’s law, k  is known as the thermal conductivity and is a material property of the fluid.  The 
thermal conductivity depends on temperature and pressure in general, and Bird et al. provide some 
information regarding this subject in Chapter 9.  Table B.2 provides results for the components of 
q  in common coordinate systems. 
 
Convective or Bulk Transport 
 
Thermal energy also is transported by the physical movement of an element of fluid from one place 
to another.  This is known as convective transport.  In our simplified picture, the (vector) 
convective flux of thermal energy at a given point can be written as 
 

( )Flux p refC T Tρ= −v  
 
where refT  is a reference temperature that serves as a datum.  A more precise accounting of the 
convective flux of total energy, is given in Bird et al. in Section 9.7. 
 
 
Boundary Conditions 
 
At the interface between a solid and a fluid, or that between a fluid and another fluid, it is 
reasonable to expect thermodynamic equilibrium to prevail between the two phases adjoining the 
interface, except when the heat flux across the interface is extremely large.  A small portion of the 
interface between phases I and II is shown schematically in the sketch. 
  
 
 
 
 
 

n
I

II t
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The assumption of thermodynamic equilibrium at the interface leads to the boundary condition 
 

I IIT T=  
 
at the interface.  In addition, because the interface is assumed to have no mass, any heat flux 
crossing the interface from one phase must necessarily be transmitted to the other phase.   
Therefore, 
 

I II• = •n q n q  
 
at the interface.  The most general way to formulate a problem is to write the governing energy 
equation for each phase and the above pair of conditions at each phase interface, along with any 
other applicable initial and boundary conditions.  In practice, it is far more convenient to study 
heat transport in controlled conditions wherein the temperature at a solid boundary in contact with 
a fluid is prescribed, or the heat flux from the solid to the fluid is prescribed.  Experimentally, we 
can achieve a condition of prescribed uniform wall temperature in a pipe by choosing a highly 
conducting wall material and surrounding it with either a phase change system (such as condensing 
steam) or a segmented electrical heating system with a controller that maintains the temperature 
of the wall at a constant value. A uniform heat flux can be achieved most conveniently by using 
electrical heating. These two boundary conditions represent the two extremes of a family of 
boundary conditions that are common in heat transport problems. 
 
The heat transfer coefficient 
 
The heat transfer coefficient h  and its dimensionless counterpart, the Nusselt Number Nu , are in 
common use in engineering work.  Here, I discuss how the heat transfer coefficient is defined in 
typical situations. 
 
Consider a fluid at a temperature T∞  flowing at a uniform velocity U∞  that encounters a rigid wall, 
which is maintained at a uniform temperature wT .  Let us assume that wT T∞>  for the sake of 
definiteness; however, the results given below are equally valid when wT T∞< . 
 
 
 
 
 
 
 
 
 
 
Just as a momentum boundary layer forms at the wall and grows in thickness with distance x  
along the plate, a thermal boundary layer forms at the wall; the temperature of the fluid changes 

,U T∞ ∞

x

y

wT

tδ
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from wT  to T∞  in the thermal boundary layer.  The thickness of the thermal boundary layer tδ  also 
grows with distance x .  
   
At the rigid wall, the normal velocity is zero and the heat flux from the wall to the fluid consists 
only of the conduction flux yq .  From Fourier’s law, this can be written as 
 

( ) ( ),0w
Tq x k x
y

∂
= −

∂
 

 
Note that 0wq >  when wT T∞> , and 0wq <  when wT T∞< .  Even though wq  is purely a conduction 
flux, it is modified by flow.  As the velocity of the fluid increases, the ability of the fluid to carry 
away heat supplied by the plate increases, and the temperature gradient at the wall becomes 
sharper, consistent with a larger heat flux.   You can see that a sharper temperature gradient at the 
wall is consistent with a thinner thermal boundary layer. 
 
If we can solve the energy equation for the temperature distribution in the flowing fluid, the heat 
flux ( )wq x  can be evaluated as a function of x .  A heat transfer coefficient ( )h x  is defined for 
this system as follows. 
 

( ) ( )( )w wq x h x T T∞= −  
 
Therefore, the heat transfer coefficient is seen to be directly related to the temperature gradient at 
the wall. 
 

( )
( )

( )

,0

w

Tk x
yh x

T T∞

∂
−

∂=
−

 

 
This definition of ( )h x  holds regardless of the sign of ( )wT T∞− . 
 
The Nusselt number Nu  is a dimensionless version of the heat transfer coefficient.  It is defined 
in the above problem as follows. 
 

hLNu
k

=  

 
Here L  is a characteristic length scale, which can be taken as the axial distance x  or the length of 
the plate, depending on our needs. 
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Now, consider heat transfer to a fluid flowing through a pipe.  In this case, let the fluid enter the 
pipe at some temperature 0T , encountering a step change in wall temperature to wT .  A sketch of 
the system is given below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At any given axial position z , the heat flux from the wall to the fluid is given by 
 

( ),w
Tq k R z
r

∂
=

∂
 

 
Do you see why a positive sign is used in the right side?  It is because the heat flux from the wall 
to the fluid is in the negative r − direction. 
 
For defining the heat transfer coefficient, we need a driving force at any location z .  While it is 
possible to use ( )0wT T− , the more common choice is ( )w bT T−  where bT  is known as the bulk or 
cup-mixing average temperature.   The bulk average temperature is experimentally determined by 
collecting the fluid coming out of the system at a given axial location and mixing it completely, 
and then measuring its temperature.  The following mathematical definition directly follows from 
this physical definition. 
 

( )
0

0

2 ( ) ,

2 ( )

R

b R

rV r T r z dr
T

rV r dr

π

π
=

∫

∫
 

Here, ( )V r  represents the velocity field. 
 
The heat transfer coefficient in this system is defined as follows. 
 
      ( )( )w w bq h z T T= −  
 

Fluid at

0T

r

z
R

( ), wT R z T=
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so that we can evaluate ( )h z  using 
 

( )
( )

( )

,

w b

Tk R z
rh z

T T

∂
∂=

−
 

 
if we know the detailed temperature distribution in the fluid. 
 
We see from these two examples that the heat transfer coefficient will depend on position, the 
system parameters, and on time in unsteady state problems.  This concept of a heat transfer 
coefficient is extended to many practical heat transfer situations.  Typically, in any given system, 
heat transfer rates and suitably defined driving forces are both measured.  The ratio of the flux of 
thermal energy to the driving force expressed as a temperature difference is reported as the heat 
transfer coefficient. 
 

heat flux
driving force

h =  

 
We can think of the heat transfer coefficient as the conductance (using an electrical analogy) of 
the system.  Typically, spatial averages are easier to measure and report; it is not common in 
engineering design to use local values.   
 
In problems amenable to analysis from first principles, temperature distributions and heat fluxes 
can be calculated directly from the solution.  There is really no need to define a heat transfer 
coefficient.  But, to make it convenient to report and use the results, even in such problems, suitably 
defined heat transfer coefficients are calculated from the theoretical results and reported. 
 
Important dimensionless groups in heat transfer 
 
We already have defined a dimensionless group commonly used in engineering practice, namely, 
the Nusselt number Nu .  Considering it to be an average value for a given heat transfer setting 
such as heat transfer to fluid flowing through a circular pipe of diameter D , we can use 
dimensional analysis to identify the dimensionless groups on which Nu  will depend.  Thus, we 
obtain 
 

Re,Pr, LNu Nu
D

 =  
 

 

 

where hDNu
k

= , the Reynolds number Re UD
ν

= , and the Prandtl number Pr ν
α

= .  The velocity 

U  appearing in the Reynolds number is a characteristic velocity in the system such as the average 
velocity of flow, and ν  and α  are the kinematic viscosity and the thermal diffusivity of the fluid, 
respectively.   The thermal diffusivity ( )/ pk Cα ρ= .   The symbol L  stands for the length of the 
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pipe.  For non-circular cross-sections, the Nusselt number will also depend on additional aspect 
ratio parameters. 
 
The physical significance of the Nusselt number is simply that it represents a dimensionless heat 
flux at the wall or a ratio of the actual heat transfer rate to that prevailing in a hypothetical system 
in which the same driving force applied across the characteristic distance drives a conduction flux.  
We can see this by recasting it as follows. 
 

h TNu Tk
D

∆
=

∆
 

 
The Prandtl number 
 
To appreciate the physical significance of the Prandtl number, we note that it is the ratio of the 
intrinsic transport coefficients ν  and α for molecular transport of momentum and energy, 
respectively.  Consider a simple one-dimensional transport situation in which fluid flows in the 
x − direction with a velocity ( )xv y .  In this case, Newton’s law of viscosity for the momentum 
flux yxτ  (note that we are interpreting this symbol as the negative of the shear stress) can be written 
as  
 

x
yx

v
y

τ µ ∂
= −

∂
 

 
and in a similar one-dimensional conduction problem, Fourier’s law for the heat flux yq can be 
written as 
 

y
Tq k
y

∂
= −

∂
 

 
If we assume that the density and specific heat at constant pressure are constant, we can rewrite 
the above results in the following form. 
 

( )x
yx

v
y

ρ
τ ν

∂
= −

∂
 

{ }( )p ref
y

C T T
q

y

ρ
α

∂ −
= −

∂
 

 
The product xvρ  represents the amount of x − momentum in unit volume of fluid, and can be 
regarded as the concentration of x − momentum.  Therefore, we see that the flux of x − momentum 
is proportional to the gradient of the concentration of that momentum, and occurs in the direction 
opposite to that gradient.  The coefficient of proportionality is the kinematic viscosity ν .  In a like 
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manner, the flux of thermal energy is proportional to the gradient of the concentration of thermal 
energy, with a coefficient of proportionality equal to the thermal diffusivity α .  So, molecular 
transport leads to momentum and energy flowing “downhill” in the direction opposite to that of 
the concentration gradient of each, with coefficients of proportionality that represent the ability of 
the fluid to transport momentum or energy by molecular means.  This leads to the following 
physical interpretation of the Prandtl number. 
 

Ability of a fluid to transport momentum by molecular meansPr
Ability of that fluid to transport energy by molecular means

=  

 
Thus, in flow over an object, the relative thicknesses of the momentum and thermal boundary 
layers reflect the magnitude of the Prandtl number, as the examples given below show. 
 
Large Prandtl number, ( )Pr 1 ν α   
 
 
 
 
 
 
 
 
 
 
Small Prandtl number, ( )Pr 1 ν α   
 
 
 
 
 
 
 
 
 
 
 
For gases, the Prandtl number is typically of ( )1O , while for common liquids Prandtl numbers are 
found to vary from 10 to 1000.  The Prandtl numbers of very viscous liquids such as polymer melts 
can be even larger than 1000, reaching values of 510  or greater.   Because liquid metals are great 
conductors of thermal energy, Prandtl numbers for liquid metals are typically of ( )210O − .   
  

,U T∞ ∞

x

y

wT

tδ

mδ

,U T∞ ∞

x

y

wT

tδ

mδ
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Part VII 
 

Graetz Problem   
Lévêque Approximation 
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The Graetz Problem 
 
 
 
As a good model problem, we consider steady state heat transfer to fluid in steady flow through a 
tube.  The fluid enters the tube at a temperature 0T  and encounters a wall temperature at wT , which 
can be larger or smaller than 0T .  A simple version of this problem was first analyzed by Graetz 
(1883).  A sketch of the system is shown below.       
 
 
 
 
 
 
 
 
 
 
 
Objective 
 
To obtain the steady temperature distribution ( ),T r z  in the fluid, and to calculate the rate of heat 
transfer from the wall to the fluid 
 
Assumptions 
 
1. Steady fully developed laminar flow; steady temperature field. 
 
2. Constant physical properties , , , pk Cρ µ  -- This assumption also implies incompressible 
Newtonian flow. 
 

3. Axisymmetric temperature field   0T
ϕ

∂
⇒ ≡

∂
, where we are using the symbol ϕ  for the polar 

angle.  This is because we want to use the symbol θ  to represent dimensionless temperature later. 
 
4. Negligible viscous dissipation 
 
  

Fluid at

0T

r

z
R

( ), wT R z T=
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Velocity Field 
 
Poiseuille Flow 
 

0; 0rv vϕ= =  
 

( )
2

0 21z
rv r v
R

 
= − 

 
  0 :v  Maximum velocity existing at the centerline 

 
Energy Equation 
 
Subject to assumption (2), Equation (B.9.2) from Bird et al. (page 850) can be written as follows. 
 

  

1 0 0r

p

v v

TC
t

ϕ

ρ

= =

∂
∂ rv+

vT
r

ϕ∂
+

∂

2

2 2

3 4

1 1

z
T Tv

r z

T Tk r
r r r r

ϕ

ϕ

 ∂ ∂ +
∂ ∂  

∂ ∂ ∂ = + ∂ ∂ ∂ 

2

2 v
T

z
µ

 ∂
+ + Φ 

∂  

 

and therefore, simplified to 
 

2 2

0 2 2

11 r T T Tv r
R z r r r z

α
   ∂ ∂ ∂ ∂ − = +    ∂ ∂ ∂ ∂    

 

 
where ( )/ pk Cα ρ=  is the thermal diffusivity of the fluid. 
 
Boundary Conditions 
 
Inlet:   ( ) 0,0T r T=  
 
Wall:   ( ), wT R z T=  
 
Centerline:  ( )0,T z  is finite  

  or  ( )0, 0T z
r

∂
=

∂
 

Because of the appearance of the axial conduction term in the governing differential equation, we 
should write another boundary condition in the z − coordinate.  But actually, the inlet condition 
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written above is incompatible with the inclusion of axial conduction in the problem, because 
conduction will lead to some of the information about the step change in wall temperature at the 
inlet to propagate backward.  As we shall see shortly, we’ll neglect axial conduction, which will 
obviate the need for writing a second condition in the z − coordinate. 
 
Non-Dimensionalization 
 
We shall use the following scheme for scaling (or non-dimensionalizing) the variables. 
 

0

w

w

T T
T T

θ −
=

−
 , rY

R
= ,     zZ

R Pe
= ,   where  the Péclet Number 0RvPe

α
= . 

 
This permits us to transform the governing differential equation and boundary conditions to the 
following form. 
 

( )
2

2
2 2

1 11 Y Y
Z Y Y Y Pe Z
θ θ θ∂ ∂ ∂ ∂ − = + ∂ ∂ ∂ ∂ 

 

 
     ( ),0 1Yθ =  

     ( )1, 0Zθ =  

     ( )0, Zθ  is finite 

or ( )0, 0Z
Y
θ∂

=
∂

 

 
The Péclet Number 
 
The Péclet number plays the same role in heat transport as the Reynolds number does in fluid 
mechanics.  First, we note that the Péclet number is the product of the Reynolds and Prandtl 
numbers. 
 

0 0 Re PrRv RvPe ν
α ν α

= = × = ×  

 
The physical significance of the Péclet number can be inferred by recasting it slightly. 
 

0 Rate of energy transport by convection
Rate of energy transport by conduction

pv C T
Pe Tk

R

ρ ∆
= =

∆
 

Note that the numerator represents the order of magnitude of the convective flux in the main flow 
direction, whereas the denominator stands for the order of magnitude of the conduction flux in the 
radial direction.  If we wish to compare the rates of energy transport by these two mechanisms in 
the same direction, we can multiply the Péclet number by /L R  where L  is a characteristic length 
in the axial direction. 
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For large values of Pe , we can see that 2

1 1
Pe

 .  Therefore, in the scaled energy equation, the 

term involving axial conduction can be safely neglected.  Physically, there are  two mechanisms 
for transporting energy in the axial direction, namely, convection and conduction.  Because the 
Péclet number is large, we are able to neglect transport by conduction in comparison with transport 
by convection.  On the other hand, in the radial direction, there is only a single mechanism for 
transport of energy, namely conduction.  By performing calculations including conduction in the 
axial direction, it has been established that it is safe to neglect axial conduction for 100.Pe ≥    To 
learn about how to include axial conduction, you can consult the articles by Davis (1973), Acrivos 
(1980), and Papoutsakis et al. (1980).  
 
Let us make a sample calculation of the Péclet number for laminar flow heat transfer in a tube.   

The thermal diffusivity of common liquids is typically in the range 
2

7 710 2 10 m
s

− −− × , and we’ll 

use the larger limit.  Choose 
 

2
7

010 , 0.05 , 2 10m mR mm v
s s

α −= = = ×  

 
This yields, 2,500Pe = , which is much larger than 100.  We can check to see if the flow is laminar 

by calculating the Reynolds number.  If the fluid is water, 
2

610 m
s

ν −≈ , which yields a Prandtl 

number Pr 5ν
α

= = .  Therefore, the Reynolds number is Re 500= , which is comfortably in the 

laminar flow regime.   
 
The final version of the scaled energy equation is  
 

( )2 11 Y Y
Z Y Y Y
θ θ∂ ∂ ∂ − =  ∂ ∂ ∂ 

 

 
We can solve this equation by separation of variables, because the boundary conditions in the Y −
coordinate are homogeneous.  The method of separation of variables yields an infinite series 
solution for the scaled temperature field. 

( ) ( )2

1
, n Z

n n
n

Y Z A e Yλθ φ
∞

−

=

= ∑  

In the above solution, the functions ( )n Yφ  are the characteristic functions or eigenfunctions of a 
proper Sturm-Liouville system. 
 

( )2 21 1 0d dY Y
Y dY dY

φ λ φ  + − = 
 
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( ) ( )0 0 or 0d
dY

φ φ= is finite 

( )1 0φ =  
 
The above ordinary differential equation for ( )Yφ  can be solved by applying the following 
transformations to both the dependent and the independent variables (Lauwerier, 1951, Davis, 
1973). 

( ) ( )2 2
X

X Y W X e Yλ φ= =  
 
This leads to the following differential equation for ( )W X . 
 

( )
2

2

11 0
4 2

d W dWX X W
dX dX

λ + − + − = 
 

 

 
This is known as Kummer’s equation.   It has two linearly independent solutions, but only one is 
bounded at 0.X =   Because ( )0φ  must be bounded, we must require that ( )0W  also remain 
bounded.  This rules out the singular solution, leaving us with the regular solution 
 

( ) 1 , 1,
2 4

W X c M Xλ = − 
 

 

where c  is an arbitrary multiplicative constant. The function ( ), ,M a b X  is the confluent 
hypergeometric function, or Kummer function, and is discussed in Chapter 13 of the “Handbook 
of Mathematical Functions” by M. Abramowitz and I. A. Stegun,  It is an extension of the 
exponential function, and is written in the form of the following series. 

( ) ( )
( )

( ) ( )
( ) ( )

21
, , 1

1 2!

1 1
1 1 !

n

a aa XM a b X X
b b b

a a a n X
b b b n n

+
= + + +

+

+ + −
+ +

+ + −









 

You can see that when a b= ,  
 

( ), , XM a a X e=  
 
Application of the boundary condition at the tube wall, ( )1 0φ = , leads to the following 
transcendental equation for the eigenvalues. 
 

1 , 1, 0
2 4

M λ λ − = 
 
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The above equation has infinitely many discrete solutions for λ , which we designate as nλ , with 
n  assuming positive integer values beginning from 1.  Corresponding to each value nλ , there is 
an eigenfunction ( )n Yφ  given by 

( ) ( )
2

22
nY

n n nY e W Y
λ

φ λ
−

=  
 
The first few eigenvalues are reported in the table. 
 

n  
nλ  2

nλ  
1 2.7044 7.3136 
2 6.6790 44.609 
3 10.673 113.92 
4 14.671 215.24 
5 18.670 348.57 

Note that technically { }2
nλ  is the set of eigenvalues, even though we use the term loosely to 

designate { }nλ as that set for convenience.  
 
The most important property of a proper Sturm-Liouville system is that the eigenfunctions are 
orthogonal with respect to a weighting function that is specific to that system.  In the present case, 
the orthogonality property of the eigenfunctions can be stated as follows. 
 

( ) ( ) ( )
1

2

0

1 0,m nY Y Y Y dY m nφ φ − = ≠∫  

 
Using this orthogonality property, it is possible to obtain a result for the coefficients in the solution 
by separation variables. 
 

( ) ( )

( ) ( )

1
2

0
1

2 2

0

1

1

n

n

n

Y Y Y dY
A

Y Y Y dY

φ

φ

−
=

−

∫

∫
 

 
The Heat Transfer Coefficient 
 
The heat flux from the wall to the fluid, ( )wq z  is a function of axial position.  It can be calculated 
directly by using the result 
 

( ) ( ),w
Tq z k R z
r

∂
=

∂
 

but as we noted earlier, it is customary to define a heat transfer coefficient ( )h z  via 
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( ) ( )( )w w bq z h z T T= −  

 
where the bulk or cup-mixing average temperature bT  is introduced.   The way to experimentally 
determine the bulk average temperature is to collect the fluid coming out of the system at a given 
axial location, mix it completely, and measure its temperature.  The mathematical definition of the 
bulk average temperature was given in an earlier section. 
 

( )
0

0

2 ( ) ,

2 ( )

R

b R

rV r T r z dr
T

rV r dr

π

π
=

∫

∫
 

 
where the velocity field ( ) ( )2 2

0 1 /V r v r R= − .  You can see from the definition of the heat transfer 
coefficient that it is related to the temperature gradient at the tube wall in a simple manner. 

( )
( )

( )

,

w b

Tk R z
rh z

T T

∂
∂=

−
 

 
We can define a dimensionless heat transfer coefficient, which is known as the Nusselt number. 

( )
( )
( )

1,2 2
b

ZhR YNu Z
k Z

θ

θ

∂
∂= = −  

where bθ  is the dimensionless bulk average temperature. 
By substituting from the infinite series solution for both the numerator and the denominator, the 
Nusselt number can be written as follows. 
 

( )
( )

( ) ( )

2

2

1
1

2

1 0

1
2

4 1

n

n

Z n
n

n

Z
n n

n

dA e
dYNu Z

A e Y Y Y dY

λ

λ

φ

φ

∞
−

=
∞

−

=

= −
−

∑

∑ ∫
 

 
The denominator can be simplified by using the governing differential equation for ( )n Yφ , along 
with the boundary conditions, to finally yield the following result. 

( )

( )

2

2
1

2
1

1

2 1

n

n

Z n
n

n
Z

n
n

n n

dA e
dYNu

deA
dY

λ

λ

φ

φ
λ

∞
−

=
−∞

=

=
∑

∑
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We can see that for large Z , only the first term in the infinite series in the numerator, and likewise 
the first term in the infinite series in the denominator, is important.  Therefore, as Z → ∞ , 

2
1 3.656
2

Nu λ
→ = . 

 
The sketch qualitatively illustrates the behavior of the Nusselt number as a function of 
dimensionless axial position. 
 
 

 
 
 
A similar analysis is possible in the case of a uniform wall flux boundary condition.  Extensions 
of the Graetz solution by separation of variables have been made in a variety of ways, 
accommodating non-Newtonian flow, turbulent flow, and other geometries besides a circular tube. 
 
  

3.656

Nu

Dimensionless Axial Position Z0
0
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The Lévêque Approximation 
 
 The orthogonal function expansion solution obtained above is convergent at all values of the axial 
position, but convergence is very slow as the inlet is approached.  The main reason for this is the 
assistance provided by 

2
n Ze λ−  in accelerating convergence for sufficiently large values of Z .  

Lévêque (1928) considered the thermal entrance region in a tube and developed an alternative 
solution, which is useful precisely where the orthogonal function expansion converges too slowly.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We shall now construct the Lévêque solution which is built on the assumption that the thickness 
of the thermal boundary layer t Rδ  .  This assumption leads to the following simplifications. 
 
1. Curvature effects can be neglected in the radial conduction term.  This means that the derivative  
1 Tr
r r r

∂ ∂ 
 ∂ ∂ 

 can be approximated by 
2

2

1 T TR
R r r r

∂ ∂ ∂  = ∂ ∂ ∂ 
. 

 
2. Because we are only interested in the velocity distribution within the thermal boundary layer, 
we expand the velocity field in a Taylor series in distance measured from the tube wall and retain 
the first non-zero term. 
 
Defining x R r= − , we can rewrite the velocity distribution as 
 

( ) ( )2 2

0 0 02 21 2 2z

R x x x xv r v v v
R R R R

 −  
= − = − ≈       

 

 
Recall that a power series obtained by any method is a Taylor series.  The above approach is 
simpler than working out the derivatives of ( )zv r  in the x − coordinate, evaluating them at the 
wall, and constructing the Taylor series. 
 

Fluid at

0T

r

z
R

( ), wT R z T=

tδ
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3. Because the conditions outside the thermal boundary layer are those in the fluid entering the 
tube, we shall use the boundary condition ( ) 0T x T→ ∞ →  instead of the centerline boundary 
condition employed in obtaining the Graetz solution. 
 
Beginning with the simplified energy equation in which axial conduction has been neglected 
already, and invoking the above assumptions, we have the following governing equation for the 
temperature field. 
 

 
2

0 22 x T Tv
R z x

α∂ ∂
=

∂ ∂
 

 
where the chain rule has been used to transform the second derivative in r  to the second derivative 
in x .    
 
The temperature field ( ),T x z  satisfies the following boundary conditions. 

  ( ) 0,0T x T=  

  ( )0, wT z T=  

( ) 0,T z T∞ =  
We shall work with a dimensionless version of these equations.  For consistency, we scale the 
temperature and axial coordinate in the same manner as before. 
 

0

w

w

T T
T T

θ −
=

−
  zZ

R Pe
=  

 
We define a new scaled distance from the wall via /X x R= .  The scaled governing equation and 
boundary conditions are given below. 
 

2

22X
Z X
θ θ∂ ∂

=
∂ ∂

 

 
( ),0 1Xθ =  

( )0, 0Zθ =  

( ), 1Zθ ∞ =  
 
The similarity of this governing equation and boundary conditions to those in the fluid mechanical 
problem in which we solved for the velocity distribution between two plates when one of them is 
held fixed and the other is moved suddenly is not a coincidence.   For small values of time in the 
fluid mechanical problem, we replaced the boundary condition at the top plate with one at an 
infinite distance from the suddenly moved plate, and used the method of combination of variables 
to solve the equations.  It would be worthwhile for you to go back and review the notes on 
“combination of variables” at this stage. 
 



129 
 

By invoking ideas very similar to those used in the fluid mechanical problem, we postulate that a 
similarity solution exists for the temperature field in the present problem.  That is, we assume 

( ) ( ),X Z Fθ η=  where the similarity variable ( )/X Zη δ=  .  The variable ( )Zδ  represents the 
scaled thermal boundary layer thickness, and is unknown at this stage.  We make the necessary 
transformations using the chain rule. 
 

2

dF X d dF d dF
Z Z d dZ d dZ d
θ η δ η δ

η δ η δ η
∂ ∂  = = − = − ∂ ∂  

 

 
1dF dF

X X d d
θ η

η δ η
∂ ∂

= =
∂ ∂

 

 

( )
2 2

2 2 2

1 1 1 1dF dF d dF d F
X X Z d X d X d d d
θ η

δ η δ η δ η η δ η
     ∂ ∂ ∂ ∂

= = = =     ∂ ∂ ∂ ∂    
 

 
Using these results, the partial differential equation for ( ),X Zθ  is transformed to an ordinary 

differential equation for ( )F η . 
 

2
2 2

2 2 0d F d dF
d dZ d

δη δ
η η

 + = 
 

 

 
It is evident that the similarity hypothesis will fail unless the quantity inside the parentheses is 
required to be independent of Z , and therefore, a constant.  For convenience, we set this constant 
to 3/2.  Therefore, we have an ordinary differential equation for ( )F η  and another for ( )Zδ . 
 

2
2

2 3 0d F dF
d d

η
η η

+ =  

 
2 3

2
d
dZ

δδ =  

 
To derive the boundary conditions on these functions, we must go to the boundary conditions on 

( ),X Zθ .  In a straightforward way, we see that ( )0, 0Zθ =  yields ( )0 0F = , and ( ), 1Zθ ∞ =  

leads to ( ) 1F ∞ = .  The remaining (inlet) condition gives 
 

( ) ( )
,0 1

0
XX Fθ

δ
 

= =  
 
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By choosing ( )0 0δ = , this condition collapses into the condition ( ) 1F ∞ =  obtained already from 
the boundary condition on the scaled temperature field as X → ∞ . Summarizing the boundary 
conditions on ( )F η  and ( )Zδ , we have 

( ) ( )0 0, 1F F= ∞ = , and  

( )0 0δ =  

Integration yields the following solution for the scaled boundary layer thickness ( )Zδ . 
 

( )
1/39

2
Z Zδ  =  

 
 

 
The solution for ( )F η  is 

( ) ( )

3

3

3

0

0

0

1
4 / 3

e d
F e d

e d

η
γ

η
γ

γ

γ
η γ

γ

−

−
∞

−

= =
Γ

∫
∫

∫
 

 
Here, ( )xΓ  represents the Gamma function, discussed in the “Handbook of Mathematical 

Functions” by Abramowitz and Stegun.  The numerical value of ( )4 / 3 0.89298Γ ≈ , so that we 

can write ( )1/ 4 / 3 1.1199Γ ≈  or roughly 1.120. 
 
Heat Transfer Coefficient 
 
In the thermal entrance region, when the thermal boundary layer is thin, we can approximate the 
bulk average temperature bT  by the temperature of the fluid entering the tube 0T .  Therefore, we 
define the heat transfer coefficient in this entrance region by 
 

( ) ( )0,w w
Tq k R z h T T
r

∂
= = −

∂
 

 
Transforming to dimensionless variables, and defining a Nusselt number 2 /Nu hR k= , we can 
write 
 

( ) ( ) ( ) ( )22 0, 0dFNu Z Z
X Z d
θ

δ η
∂

= =
∂

 

 

By substituting for ( )Zδ  and ( )0dF
dη

, we obtain the following approximate result for the Nusselt 

number in the thermal entrance region. 
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( )
1/3

1/31.357 RNu Z Pe
z

 ≈  
 

 

 
Comparison with the exact solution shows this result is a good approximation in the range  
 

2500 50
Pe z Pe

R
 ≤ ≤ 
 
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Part VIII 
 

Thermal Boundary Layer 
Buoyant Convection 
Surface-Tension-Driven Flows 
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Thermal boundary layer over a flat plate 
 

The problem of laminar flow heat transfer between a flowing fluid and a flat plate that is wide and 
long is analyzed.  Suitable assumptions are made so that two-dimensional problems can be posed 
for both the fluid mechanical and heat transfer situations.  A sketch of the system is given below.   
 
 
 
 
 
 
 
 
 
 
As seen from the sketch, the fluid approaches the plate with a velocity U∞  and temperature T∞ .  
The surface of the plate is maintained at a uniform temperature wT .  Boundary layers form on the 
surface.  They represent regions in which the velocity and temperature change from the values at 
the surface of the plate to those in the free stream.  The relative thickness of the thermal boundary 
layer, ( )t xδ , when compared with the thickness of the momentum boundary layer ( )m xδ , will 
depend on the magnitude of the Prandtl number Pr /ν α= , where ν  is the kinematic viscosity and 
α  represents the thermal diffusivity of the fluid.  In the sketch shown, the Prandtl number is small 
compared with unity, so that the thermal boundary layer grows more rapidly with distance along 
the plate than the momentum boundary layer. 
 
A list of simplifying assumptions follows next. 
 
Assumptions 
 
1. Steady velocity and temperature fields 
 
2. Constant density ρ , viscosity µ , thermal conductivity k , and specific heat pC  
 
3. The system is wide in the z − direction, permitting edge effects to be neglected.  This implies 

that ; 0 ; 0T w
z z

∂ ∂
≡ ≡ ≡

∂ ∂
0 v . 

 
4. Conduction in the x − direction is negligible compared with convective transport in the same 
direction. 
 
5. Viscous dissipation is negligible, and there are no sources or sinks. 
 
6. All the assumptions of Prandtl’s boundary layer theory are applicable to the momentum 
transport problem.  It is assumed that the solution of that problem is available. 

,U T∞ ∞

x

y

wT

tδ

mδ
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Energy equation 
 
The simplification of the energy equation in rectangular Cartesian coordinates is shown below. 
 

1 3 4 3 5 5

p
TC
t

ρ ∂
∂ z

T T Tu v v
x y z

∂ ∂ ∂
+ + +

∂ ∂ ∂

2

2

Tk
x

  ∂
=  ∂ 

2 2

2 2

T T
y z

∂ ∂
+ +

∂ ∂ vµ
 

+ Φ  
 

S+
 

 
Therefore, the energy equation reduces to 
 

2

2

T T Tu v
x y y

α∂ ∂ ∂
+ =

∂ ∂ ∂
 

The boundary conditions on the temperature field are listed below. 
 

( )0,T y T∞=  Temperature of entering fluid is specified 

( ),0 wT x T=  Prescribed temperature at the surface of the plate 

( ),T x T∞∞ =  Temperature far from the wall is that of entering fluid 
 

The governing equation for a dimensionless temperature w

w

T T
T T

θ
∞

−
=

−
 is 

2

2u v
x y y
θ θ θα∂ ∂ ∂

+ =
∂ ∂ ∂

 

 
and the boundary conditions become 
 

( )0, 1yθ =  

( ),0 0xθ =  

( ), 1xθ ∞ =  
 
Now, let us examine the governing equation and boundary conditions for a dimensionless velocity 

( ), /U u x y U∞= . 
2

2

U U Uu v
x y y

ν∂ ∂ ∂
+ =

∂ ∂ ∂
 

( )0, 1U y =  

( ),0 0U x =  

( ), 1U x ∞ =  
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It is evident that the equations for ( ),U x y  are identical to those for ( ),x yθ , except for the 
appearance of the kinematic viscosity ν  in the momentum equation in place of the thermal 
diffusivity α  multiplying the molecular transport term in the energy equation.  If the Prandtl 
number were to be unity, the equations would indeed be identical. 
 
For an arbitrary value of the Prandtl number, the method of combination of variables that was 
employed in the momentum boundary layer problem can be employed for the solution of the 
energy equation.  If we let ( ) ( ),x y Hθ η=  where the similarity coordinate / /y x Uη ν ∞= , the 
chain rule can be used to transform the energy equation to 
 

( )
2

2

Pr 0
2

d H dHf
d d

η
η η

+ =  

along with ( )0 0H =  and ( ) 1H ∞ = ,  Here the function ( )f η  comes from the solution of the 

momentum boundary layer problem.  If we let ( ) ( ),U x y g η= , then  ( ) ( )
0

f g d
η

η γ γ= ∫ .   

The function ( )f η  satisfies 
2

2

1 0
2

d f dff
d dη η

+ =  

along with ( ) ( ) ( )0 0; 0 0; 1f f f′ ′= = ∞ = .  This solution is obtained numerically, and is available 
in textbooks on fluid mechanics. 
 
The solution for ( )H η  is given below. 

( )
( )

( )

0 0

0 0

Prexp
2

Prexp
2

f d d
H

f d d

η λ

λ

γ γ λ
η

γ γ λ
∞

 
− 

 =
 

− 
 

∫ ∫

∫ ∫
 

Nusselt number 
 
We can define a heat transfer coefficient xh  using the result for the local heat flux from the plate 
surface to the fluid. 
 

 ( ) ( ),0w x w
Tq k x h T T
y ∞

∂
= − = −

∂
 

 
The Nusselt number /x xNu h x k=  is given by 
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( )

( ) ( ) ( )1/ 2
,0

0 Re 0x x
w

Tx x
xU dHyNu H

T T dν η
∞

∞

∂
∂ ′= − = =

−
 where the Reynolds number 

Rex
xU
ν

∞= .  Therefore, we see that the heat transfer coefficient 1
xh

x
∝  for a laminar thermal 

boundary layer. 
 
From Kays and Crawford (1980), over a good range of moderate values of the Prandtl number 
( )0.5 Pr 15≤ ≤ , the result for ( )0H ′  can be fitted to yield 
 

1/ 2 1/30.332 Re Prx xNu =  
Special cases 
 
1.  Pr 1  
 
When the Prandtl number is very large, i.e., Pr 1 , the thermal boundary layer is very thin 
compared with the momentum boundary layer.  Therefore, the velocity distribution can be 
adequately approximated by a straight line within the thermal boundary layer.  In this case, 

analytical solution of the energy equation is possible, and yields ( ) ( ) 20
2

f
θ η η

′′
= .   From the 

momentum boundary layer equations, ( )0 0.3321.f ′′ =   As a result, we obtain 
 

1/ 2 1/30.339 Re Prx xNu ≈  
2. Pr 1  
 
In the case of liquid metals, which are excellent thermal conductors, the Prandtl number is typically 
of ( )210O − , and therefore satisfies the requirement Pr 1 .  In this situation, the thermal boundary 
layer is much thicker than the momentum boundary layer.  As a result, the velocity distribution is 
uniform with u U∞=  over most of the thermal boundary layer, with a deviation only in a thin 
region close to the flat plate.  By approximating u  by U∞  everywhere in the thermal boundary 
layer, an analytical solution can be obtained for the scaled temperature field.  From this, the 
following result can be obtained for the Nusselt number 
 

1/ 2 1/ 2 1/ 2
x0.565 Re Pr 0.565 Pex xNu ≈ =  

 
where Pe /x xU α∞=  is the Peclet number for heat transfer. 
Reference 
 
W.M. Kays and M.E. Crawford, Convective Heat and Mass Transfer, McGraw-Hill, 1980. 
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The Boussinesq Approximation 
 

 
 
When a fluid is heated, its density generally decreases.  When density variations occur in a fluid, 
and the temperature differences that cause these variations are generally small, the resulting 
variations in density are small compared with the density itself.  This permits one to make an 
important approximation in solving the problem.   This approximation, attributed to Boussinesq, 
is stated as follows.  The density of the fluid ρ  is treated as a constant everywhere in the governing 
equations with one exception.  That exception is made in the body force term in the Navier-Stokes 
equation.  Thus, the use of the Boussinesq approximation, in conjunction with the assumption that 
the physical properties are otherwise constant, leads to the following set of governing equations.   
 
 
Continuity  
 

0∇ • =v  
 
Navier-Stokes  
 

( ) 2
0

d p g
dt

ρ ρ µ= − ∇ + + ∇
v x v  

 
Energy 
 

2
0 p v

dTC k T S
dt

ρ µ= ∇ + Φ +  

 
 
Reference 
 
S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press, 1961 
(reprinted in 1981 by Dover). 
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Buoyant Convection 
 
“Natural” or “Buoyant” or “Free” convection is a very important mechanism that is operative in a 
variety of environments from cooling electronic circuit boards in computers to causing large scale 
circulation in the atmosphere as well as in lakes and oceans that influences the weather.   It is 
caused by the action of density gradients in conjunction with a gravitational field.  This is a brief 
introduction that will help you understand the qualitative features of a variety of situations you 
might encounter.  A good reference book for natural convection flows is that by Gebhart et al.   
 
There are two basic scenarios in the context of natural convection.  In one, a density gradient exists 
in a fluid in a direction that is parallel to the gravity vector or opposite to it.  Such situations can 
lead to “stable” or “unstable” density stratification of the fluid.  In a stable stratification, less dense 
fluid is at the top and more dense fluid at the bottom.  In the absence of other effects, convection 
will be absent, and we can treat the heat transfer problem as one of conduction.  In an unstable 
stratification, in which less dense fluid is at the bottom, and more dense fluid at the top, provided 
the density gradient is sufficiently large, cellular convection will start spontaneously. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
You should note that density gradients can arise not only from temperature gradients, but also from 
composition gradients even in an isothermal system.  Here, we restrict our discussion to the case 
when temperature gradients are the source of the density gradients. 
 
The more common situation that we encounter in heat transfer is one in which there is a density 
gradient perpendicular to the gravity vector.   Consider a burning candle.  The air next to the hot 
candle flame is hot, whereas the air laterally farther from it is relatively cooler.  This will set up a 
natural convection flow around the candle, in which the cool surrounding air approaches the 
surface of the candle, rises, and flows in a hot plume above the flame.  It is this flow that causes 
the visible flame to take the shape it does; by the way, the flame is simply gas at such a high 
temperature that it radiates visible light.  In the absence of gravity, a candle flame would be 
spherical.   
 

Fluid
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T∇
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Another example is the flow of air at the tip of a lit cigarette; in this case, the smoke from the 
cigarette actually traces that flow for us.  In a common technique used for home heating, the 
baseboard heater consists of a tube through which hot water flows, and the heater is placed close 
to the floor.  The tube is outfitted with fins to provide additional heat transfer surface.  The 
neighboring air is heated, and the hot air rises, with cooler air moving in toward the baseboard at 
floor level.  This natural convection circulation set up by the hot baseboard provides a simple 
mixing mechanism for the air in the room and helps us maintain a relatively uniform temperature 
everywhere.  Clearly, the convection helps the heat transfer process here. 
 
Natural Convection adjacent to a heated vertical surface 
 
Consider a hot vertical surface present in a fluid.  The surface is maintained at a temperature sT , 
which is larger than the ambient  temperature in the fluid eT .  Here is a sketch of the momentum 
boundary layer along the plate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in the sketch, the cold fluid rises along the plate surface, becoming heated in the process, 
and the momentum boundary layer grows in thickness with distance along the plate.  A sample 
velocity profile in the momentum boundary layer is shown.  Note that in this type of boundary 
layer, the velocity must be zero not only at the solid surface, but also at the edge of the boundary 
layer.  Because the profile was sketched free-hand in PowerPoint, I am unable to show the smooth 
approach to zero velocity with a zero slope at the edge of the boundary layer properly, but that is 
how the correct velocity profile would appear.  Compare this velocity profile with that in a 
momentum boundary layer that forms on a flat plate when fluid approaches it with a uniform 
velocity U∞ .  You should try to make a sketch of the thermal boundary layer on the same plate 
when the fluid is air, for example, and also when it is a viscous liquid with a Prandtl number that 
is large compared with unity. 
 
Now, let us consider a typical window in a home on a winter day when the outside air is at 10 F  
and the inside of the room is at a balmy 68 F .  What will the momentum boundary layers on 

mδ

sT eT



140 
 

either side of the window look like?  Try to sketch them yourself before looking at the figure. The 
arrows in the figure show the direction of air flow at the location where the air enters the boundary 
layer on the inside as well as on the outside, and the direction of air flow within the boundary layer.  
There is a slight transverse flow in each boundary layer, but on the scale of the picture, it is difficult 
to use the arrows to show it; therefore, I have drawn the flow in the boundary layers as being 
vertically downward or upward as appropriate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What will the thermal boundary layers look like?  Try sketching them.  Also, you should make a 
sketch of the temperature distribution along the interior and exterior surfaces of the window from 
the bottom to the top.  Will this permit you to explain why ice forms in a certain pattern on the 
outside surface of a window on really cold nights? 
 
The Grashof and Rayleigh Numbers 
 
In natural convection situations, an important dimensionless group is the Grashof number.  To 
provide some physical significance to this group prior to defining it, we use a simple order of 
magnitude estimate of the natural convection velocity in the above examples.  When fluid with a 

density ρ  moves at a velocity V , the kinetic energy per unit volume can be written as 21
2

Vρ .  

This must come from some other form of energy, namely, potential energy lost by the fluid.  Over 
a vertical distance L , the difference in potential energy between the less dense fluid in the 
boundary layer and the more dense fluid outside it can be approximately expressed as g Lρ∆ , 
where g  is the magnitude of the acceleration due to gravity, and ρ∆  is a characteristic density 

mδ

mδ
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difference between the boundary layer fluid and that far away.  We can equate these two order of 
magnitude estimates, and neglect the factor of 1/ 2 , because this is only an order of magnitude 
analysis.   
 

2V g Lρ ρ≈ ∆  
 
Therefore, a typical order of magnitude of the velocity arising from natural convection is 
 

V g Lρ
ρ

∆
≈  

 
Let us define a Reynolds number for the flowing fluid using this order of magnitude estimate. 
 

3

2ReL

g L
LV

ρ
ρ

ν ν

∆

= =   

so that  

3

2
2ReL

g Lρ
ρ

ν

∆

= .  This is a dimensionless group that occurs often in natural convection 

problems, and is given the name Grashof Number, abbreviated as Gr. 
 

3

2

g L
Gr

ρ
ρ

ν

∆

=  

 
The coefficient of volumetric expansion of a fluid β  is defined as 
 

1 1 1
P Pp

V
V T T T

ρβ ρ
ρ ρ

 ∂ ∂ ∂   = = = −    ∂ ∂ ∂    
where V  is the specific volume, T  is the temperature 

of the fluid and P  is its pressure.  Therefore, we can write 
 

p

T T
T

ρ ρ β
ρ ρ

∆ ∆ ∂ = − = ∆ ∂ 
 where we have used a minus sign in relating ρ∆  to T∆  because 

both are defined as being positive, and as temperature increases, density decreases. 
 
We can finally rewrite the definition of the Grashof number as follows. 
 

3

2

T g LGr β
ν

∆
=  
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The Grashof number is related to the Reynolds number, and in heat transfer, the Prandtl number 
plays a significant role.  Therefore, in natural convection heat transfer, we encounter another 
dimensionless group, called the Rayleigh number, abbreviated by Ra , which is the product of the 
Grashof and Prandtl numbers. 
 

3

Pr T g LRa Gr β
να

∆
= × =  

 
Here, α  is the thermal diffusivity of the fluid.  The Nusselt number in natural convection heat 
transfer situations is typically a function of the Rayleigh number, the Prandtl number, and aspect 
ratio parameters. 
 
A variety of problems involving flows driven by buoyancy are considered in the book by Gebhart 
et al. 
 
Reference 
 
B. Gebhart, Y. Jaluria, R.L. Mahajan, and B. Sammakia, Buoyancy-Induced Flows and Transport, 
Hemisphere (1988).  
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Buoyancy Driven Flow Between Two Wide and Tall Parallel Plates 
 
 
We analyze one of the simplest problems of flow driven by buoyancy.  It is laminar flow that 
occurs between two wide and tall parallel plates as shown in the sketch. The problem is discussed 
in Bird, Stewart, and Lightfoot (2007) in Section 10.9.  The treatment here is close to theirs, but 
based on the analysis given in Gebhart et al. (1988).  We shall use the same notation as that in Bird 
et al. wherever possible.  A sketch is given below.   
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The less dense fluid near the hot plate will rise and that near the cold plate will sink.  In a closed 
container, there will be a turning flow near the top and bottom, and if it is sufficiently tall, the 
influence of this turning flow will be confined only to small regions near the top and bottom of the 
same length scale as the width between the plates.  Away from these regions, we can consider the 
steady laminar flow as occurring only in the z − direction.  This is the flow that we shall analyze. 

y
z

1T2T

B

Hot Cold
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Assumptions  
 
1. Steady laminar Newtonian flow at constant viscosity µ .  Also, assume constant thermal 
conductivity k  and constant specific heat pC . 
 
2. The system is wide in the x − direction. Therefore, neglect edge effects ⇒  

0; 0; 0x
Tv

x x
∂ ∂

≡ ≡ ≡
∂ ∂
v . 

3. Neglect end effects.  Away from the top and bottom, 0yv ≡ .  Flow will occur only in the z −

direction.  Also, the temperature field will be independent of z ; that is ; 0T
z

∂
≡

∂
. 

4. Make the Boussinesq approximation.  This means that the density of the fluid is treated as a 
constant everywhere, except in the body force term. 
 
5. Neglect viscous dissipation.  There are no heat sources or sinks. 
 
 
Continuity 

2 3

xv∂ yv

x

∂
+

∂
0zv

y z
∂

+ =
∂ ∂

 

Therefore, zv  is independent of z .  From assumption 1, it is independent of time, and from 
assumption 2, it is independent of x .  Therefore, we conclude that ( )z zv v y=  only. 
 
Navier-Stokes Equations 
 
x − component 
 
From assumption 2, and from the fact that the gravity vector is oriented in the negative z −
direction, so that 0xg = , we obtain 

0p
x

∂
=

∂
 

y −  component 
 
From assumption 3, and from the fact that the gravity vector is oriented in the negative z −
direction, so that 0yg = , we obtain 

0p
y

∂
=

∂
 

Given the assumption of steady state, the pressure therefore depends only on z . 
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z −  component 
 

1 2 3 continuity 2 continuity

zv
t

ρ ∂
∂ xv+ z

y
v v
x

∂
+

∂
z z

z
v vv
y z

∂ ∂
+

∂ ∂

2

2
z

z
vp g

z x
ρ µ

  ∂∂
= − + +  ∂ ∂ 

2 2

2 2
z zv v

y z
∂ ∂

+ +
∂ ∂

 
  
 

 

Using the fact that zg g= − , we obtain 
 

2

2
zd v dp g

dy dz
µ ρ= +  

 
where we  have replaced the partial derivatives with ordinary derivatives because ( )z zv v y=  only 

and ( )p p z=  only.  Because there is flow occurring here, the pressure variation can be different 
from the simple hydrostatic variation that would occur in the absence of flow.  Later, we shall see 
that it is indeed hydrostatic, corresponding to the average density of the fluid in the space between 
the plates. 
 
To make further progress, we turn to the energy equation for the temperature field. 
 

1 2 3 3 2 3 5 5

p
TC
t

ρ ∂
∂ xv+ y

T v
x

∂
+

∂ z
T Tv
y z

∂ ∂
+

∂ ∂

2

2

Tk
x

  ∂
=  ∂ 

2 2

2 2

T T
y z

∂ ∂
+ +

∂ ∂ vµ
 

+ Φ  
 

S+
 

 
Therefore, the temperature field satisfies 
 

2

2 0d Tk
dy

=  

 
wherein we have replaced the partial derivative with the ordinary derivative, because the 
temperature field is independent of time (assumption 1), the x -coordinate (assumption 2), and the 
z − coordinate (assumption 3), implying ( )T T y=  only. 
 
The boundary conditions are: 
 

( ) 2T B T− =  Prescribed temperature on the left wall 

( ) 1T B T=  Prescribed temperature on the right wall 
 
The solution for the linear temperature field between the two plates can be written immediately. 
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2
T yT T

B
∆

= −  

where T  is the arithmetic mean temperature of the two plates given by ( )1 2
1
2

T T T= + , and 

2 1T T T∆ = − . 
 
Now that we have the temperature field, we can go back to the z − momentum equation after 
expressing the density of the fluid as a function of temperature.  For this, we shall expand the 
density in a Taylor series about the mean temperature T . 
 

( )
,p T T

T T
T
ρρ ρ

=

∂ = + − + ∂ 
  

where terms that are quadratic and higher order in the temperature difference ( )T T−  are 
represented by  , and we shall neglect them.  This is a good assumption for relatively small 
values of T∆ .  Note that the partial derivative of density with temperature is taken holding the 
pressure constant, and this derivative is then evaluated at the mean temperature. 
 
We define the coefficient of volume expansion β  as   
 

1 1
p p

V
V T T

ρβ
ρ

∂ ∂   = = −   ∂ ∂   
  where V  is the specific volume of the fluid and is related to 

density through 1Vρ = . 
 

Therefore, 
,p T TT

ρ ρβ
=

∂  = − ∂ 
 where the overbar designates evaluation at T T= , and the result 

for the density as a function of temperature becomes 
 

( )T Tρ ρ ρβ≈ − −  
 
The result is approximate, because we have neglected higher order terms in the Taylor series.  
Now, substitute for T T−  from the solution for the temperature field, and insert the expression for 
the density in the z − momentum equation to yield the following ordinary differential equation. 

2

2 1
2

zd v dp T yg
dy dz B

µ ρ β ∆ = + + 
 

 

Differentiate this equation once with respect to y  to eliminate the pressure gradient, yielding the 
third order differential equation 
 

3

3 2
zd v g T

dy B
ρβ

µ
∆

=  
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The expression on the right side is a constant.  Therefore, the third derivative of the velocity 
component zv  is a constant.  Thus, we should get a cubic function in y  as the solution for the 
velocity field.    
 

( ) 2 3
0 1 2 12z

g Tv y c c y c y y
B

ρβ
µ
∆

= + + +  

where 0 1 2, , andc c c  are constants of integration that need to be determined.  We need three 
conditions to evaluate them.  The two no slip boundary conditions are 

( )
( )

0

0
z

z

v B

v B

− =

=
 

 
These yield 

2 2
0 1 2 0

12
g Tc c B c B Bρβ
µ
∆

+ + + =  

 
2 2

0 1 2 0
12

g Tc c B c B Bρβ
µ
∆

− + − =  

 

so that 1 12
g Tc Bρβ
µ
∆

= − , and 2
0 2c c B= − .  Hence, we can rewrite the solution for the velocity field 

as follows. 
 

( ) ( )
2 3

2 2
2312z

g TB y yv y c y B
B B

ρβ
µ

 ∆
= − + − 

 
 

 
The third condition is obtained by noting that the mass flow rate across any section at an arbitrary 
value of z  must be zero. 
 

( ) 0
B

z
B

v y dyρ
−

=∫  

 
In applying this condition, when the result from the Taylor series for ρ  is used along with the 
solution for the temperature field, we obtain 
 

1
2 2

T y T y
B B

ρβ βρ ρ ρ
 ∆ ∆

= + = + 
 

 

 
 
Therefore,  
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( ) ( )
2 3

2 2
23

3
3

2

1
2 12

4
3 2 45

B B

z
B B

T y g TB y yv y dy c y B dy
B B B

T g TBc B

β ρβρ ρ
µ

β ρβρ
µ

− −

   ∆ ∆
= + − + −   

    
  ∆ ∆ = − + −   

    

∫ ∫
 

 
and setting the integral in the left side equal to zero yields 
 

2 2

2 120
g Tc ρβ

µ
∆

= −  

 
Because we only retained terms up to and including ( )O T∆  in the Taylor series, the above result 

for ( )2
2c O T∆  is considered negligible. Therefore, to within the order of our approximation, 

2 0c = .  The final solution for the velocity field is cast in dimensionless form below to illustrate 
the physical significance. 
 

( ) ( )3Gr
12

zBvY Y Yρφ
µ

= = −  

Here, the dimensionless coordinate /Y y B= , and the dimensionless group Gr  is defined as 
follows. 
 

2 3

2Gr gB Tρ β
µ

∆
=  

Pressure distribution 
 
We can evaluate the pressure gradient in the fluid by substituting the velocity distribution into the 

governing equation for ( )zv y .  We find that 
2

2 2
zd v g T y

dy B
ρβµ ∆

= .  This yields dp g
dz

ρ= − .  

Therefore, the pressure variation is indeed hydrostatic, and corresponds to that in a fluid of uniform 
density ρ . 
 
References 
 
1. R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, Wiley, 2007. 
 
2. B. Gebhart, Y. Jaluria, R.L. Mahajan, and B. Sammakia, Buoyancy-Induced Flows and 
Transport, Hemisphere (1988).  
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Physical Significance of the Grashof Number 
 
We can understand the significance of the Grashof number by considering two ratios, one being 
Gr / Re , and the other being 2Gr / Re . 
 
First, consider the ratio Gr / Re .  Let us use a length scale B  and a velocity scale V for defining 
the Reynolds number as 
 

Re BV ρ
µ

=  

It is understood that the properties ρ  and µ  are constants, and are evaluated at some mean 
temperature of the fluid. 
 
Using a characteristic temperature difference T∆ , The Grashof number can be defined as follows. 
 

2 3

2

gB TGr ρ β
µ

∆
=  

 
Here, β  is the coefficient of volumetric expansion of the fluid, and g  is the magnitude of the 
acceleration due to gravity. 
 
Now, consider first the ratio Gr / Re . 
 

( )
2Gr Buoyant Force

Re / Viscous Force
gB T gB

V V B
ρβ ρ

µ µ
∆ ∆

= = ≈  

 
The ratio 2Gr / Re  can be recast as follows. 
 

( )
( )

2 2

/Gr Gr 1 Buoyant Force
Re Re Re / Inertia Force

V BgB
V B V

µρ
µ ρ

∆
= × = ≈  

 
Thus, in a flow situation that involves forced and free convection, these ratios can be used to 
evaluate the relative importance of the buoyant force when compared with the viscous or the inertia 
force.  The Grashof number by itself represents the following ratio of forces. 
 

( )2
Buoyant Force Inertia Force

Viscous Force
Gr ×

≈  
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Surface-Tension-Driven Flows 
 

 
Earlier, we learned about buoyancy-driven flows, also known as “natural convection.”  Another 
type of natural convection is that driven by interfaces between fluids.  Consider a pool of a single-
component liquid in a container.  If the temperature is uniform along the free surface, the surface 
tension will be uniform as well.  On the other hand, if a variation of temperature exists along the 
surface, then the surface tension, being a function of temperature, will vary along the free surface.  
In a pure component fluid, the surface tension decreases with increasing temperature.  In a mixture, 
it is possible for the surface tension to increase with increasing temperature over some range of 
temperatures.  
 
You may recall the tangential stress balance which reads as follows when there is no surface 
tension gradient.   
 

I IIt tτ τ=  
 
Here, tτ  is the tangential component of the stress vector t  acting on the surface, and I and II  
refer to the two fluid phases in contact, with the sign convention being that the normal vector points 
into fluid I . If there is a surface tension gradient sσ∇  along the free surface, the tangential stress 
balance must be modified to read 
 
  

I IIt t sτ τ σ− = − ∇  
 
It is this inhomogeneity in the tangential stress balance that will lead to non-zero velocity fields in 
the adjoining fluids.  The sketch below illustrates a typical circulation pattern that is set up by 
surface tension gradients in a pool of a pure component liquid. 
 
 
 
 
 
 
 
 
 
It is assumed here that the temperature of the left boundary 1T  is larger than the temperature of the 
right boundary 2T .  Because the surface tension decreases with increasing temperature, the surface 
tension is larger at the right boundary.  If we consider a small element of fluid somewhere on the 
surface, it will experience a larger force pulling it toward the right than that pulling it toward the 
left.  It is this differential force acting on surface elements that exerts traction on the adjoining 
liquid, causing it to move as shown.  Of course, there will be a flow of the neighboring air as well, 
but it is not shown in the sketch.   
 

1T 2T

1 2T T>
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If the temperature gradient is in a direction normal to the interface, the temperature will be uniform 
along the surface and one might assume that there can be no motion driven by surface tension 
gradients; however, it so happens that there are always small disturbances occurring in any system.  
A small disturbance that brings relatively cooler fluid from the bulk to the surface will locally 
increase the surface tension, drawing fluid toward the location, and opposing the flow that 
originally brought interior fluid to the surface.  On the other hand, if the surface is cool and the 
fluid underneath is warmer, then a small disturbance that brings warm fluid to the surface will lead 
to that fluid being drawn away and the flow will continue.  Thus, we have to deal with the issue of 
stability in that case.  Both viscous effects and thermal conduction will tend to stabilize the system; 
therefore, for a given fluid, a critical temperature gradient in the direction normal to the interface 
will need to be exceeded for motion to set in.  This phenomenon is known as the Marangoni 
instability, and the onset of this type of instability was first  analyzed by Pearson (1958). Pearson 
showed that the cellular flow that is initiated consists of warm fluid rising toward the surface at 
the center of a cell, cooling as it moves out, and cooler fluid returning into the bulk around the 
edge of the cell.   The hexagonal cellular flow patterns observed in shallow layers of spermaceti 
heated from below and recorded by Bénard in 1900-1901 were initially thought by Lord Rayleigh 
to be driven by buoyancy, leading him to publish an analysis of the buoyancy driven instability 
problem.  Later, as pointed out by Pearson, it was recognized that the cellular flow in Bénard’s 
experiments was really driven by a surface-tension driven instability.  To learn more about the 
stability problem, two good books are available: Chandrasekhar (1981), and Koschmieder (1993).  
The stable and unstable cases are illustrated below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the orientation of the liquid film with respect to gravity is irrelevant.  We can turn the 
picture upside down or sideways, and the instability will occur in the situation on the right, where 
relatively cooler fluid is present on the surface.  Of course, in exceptional situations where the 
surface tension increases with increasing temperature, we would reverse the two pictures.  Also, 
note that surface tension depends on composition at the interface.  Therefore, analogous flows can 
be driven by composition gradients as well.  This happens in mass transfer situations. 
 
The relative importance of interfacial tension gradients versus buoyancy in driving natural 
convection has been discussed by Ostrach (1977), who defines a dynamic analog of the Bond 
number as follows. 
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2

dynamic
T

gLBo
T

ρ
σ

=
∆

 

 
Here, ρ  is the density of the fluid, and Tσ  is the rate of change of surface tension with temperature.  
The symbol L  represents a characteristic length scale, while T∆  is a characteristic temperature 
difference, and g  is the magnitude of the acceleration due to gravity.  The physical significance 
of the dynamic Bond number is that it represents the relative importance of buoyant forces in a 
fluid when compared with the force arising from interfacial tension gradients.  The smaller the 
value of this group, the more dominant will be the role of surface tension gradients in causing 
motion.  On Earth, in millimeter scale systems, surface tension forces dominate, but when 
experiments are performed in orbiting spacecraft or outer space probes, even on a length scale of 
10 cm, surface tension forces will dominate in driving fluid motion, when compared with the role 
of the residual gravitational field. 
 
Steady surface tension driven flow in a rectangular two-dimensional 
trough 
 
Consider a rectangular trough containing a layer of liquid.  If the trough is wide in the direction 
normal to the plane of the paper, we can treat the flow as two-dimensional, being uniform in the 
z − direction. 
 
 
 
 
 
 
 
 
 
 
Levich (1962) analyzed the steady surface tension driven flow that arises in the above situation 
because of the steady temperature difference 1 2T T−  along the free surface.  Levich assumed that 
the heat transport was dominated by conduction so that the temperature field is linear between the 
two walls.  He further postulated steady laminar Newtonian incompressible flow, and neglected 
end wall effects where the flow has to turn around.  Away from the two walls, the flow is rather 
simple, with the velocity field given as follows. 
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x
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Here, 1 2T TG
L
−

=  is the magnitude of the temperature gradient, and µ  is the dynamic viscosity of 

the liquid.  The velocity is maximum at the free surface as one might logically expect, and its value 

there is 
4
TG hσ

µ
.  The velocity is zero at the bottom surface, and also at 2 / 3y h= .   

 
When the flow is sufficiently rapid, convective heat transport, and inertia effects will need to be 
accommodated.  The flow eventually achieves boundary layer structure.  Such flows are discussed 
in detail in Carpenter and Homsy (1990) and references given therein. 
 
Motion of Bubbles and Drops in a Temperature Gradient 
 
A drop and a bubble are similar from a fluid mechanics perspective.  A drop consists of a liquid, 
and is suspended in another liquid or a gas.  A bubble contains gas or vapor, and is suspended in a 
liquid.  In both cases, the interface is normally mobile, which means that fluid elements can move 
along the interface.  This is in contrast to a rigid particle.   In the following, the term “drop” is used 
generically to designate liquid drops and gas bubbles.   
 
When a drop is placed in a continuous phase in which there is a temperature gradient, as depicted 
in the picture, the drop will move.   
 
 
 
 
 
 
 
 
 
 
 
 
 
The reason for this motion can be traced to the variation of interfacial tension with temperature. 
Because of the temperature variation in the continuous phase, the temperature along the interface, 
and within the drop, will vary with position.  In the figure, at the warm pole of the drop, the 
interfacial tension is normally smaller than that at the cold pole.  The resulting gradient of 
interfacial tension along the interface leads to a discontinuity in the tangential stress across the 
interface.  The tangential stress exerted on the continuous phase is in a direction such as to cause 
motion of this fluid toward the cold region.  As a reaction, the drop is propelled in the direction of 
the temperature gradient, namely, toward warm regions.  Because this motion is caused by 
temperature gradients, and involves the interface, it is called thermocapillary migration. 
 
Young, Goldstein, and Block (1959) performed definitive experiments in which they applied a 
downward temperature gradient in a liquid column held between the anvils of a micrometer.  Air 

Cool WarmDrop

T∞∇

Low High σ σ
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bubbles were introduced into the liquid, and the authors were able to hold them nearly motionless.  
They found that the temperature gradient required to hold a bubble nearly stationary was 
approximately proportional to its radius, consistent with their prediction.  In fact, they analyzed 
the problem of the motion of a drop in the limit of negligible convective transport of momentum 
(zero Reynolds number) and energy (zero Peclet number), and predicted the thermocapillary 
contribution to the velocity of the drop to be 
 

( )
( )( )

2
2 3 2

Tk R T
k k

σ
µ µ

∞− ∇
=

′ ′+ +
v  

 
Here, µ  is the dynamic viscosity of the continuous phase and k  is its thermal conductivity, and 
the primed quantities are the corresponding properties in the drop phase,  Tσ  stands for the rate of 
change of the interfacial tension with temperature, R  is the radius of the drop, and T∞∇  is the 
applied temperature gradient.  Because the interfacial tension  decreases with temperature for 
single component fluids,  the velocity of the drop points in the direction of the applied temperature 
gradient.  As noted earlier, it is possible in the case of mixtures for the interfacial tension to increase 
with increasing temperature over a certain range of temperatures.  This would lead to the motion 
of the drop toward relatively cooler regions in the continuous phase. 
 
Young et al. (1959) solved a linear problem, and therefore, the contributions to the motion from 
thermocapillarity and gravity are additive.  By summing the two contributions separately and 
setting the sum to zero, one can predict the temperature gradient necessary to hold a drop 
stationary. 
 
An important dimensionless group in thermocapillary migration problems is the Peclet number for 
heat transfer.  It is defined as  
 

0RvPe
κ

=  
 
where 0v  is a characteristic velocity and κ  is the thermal diffusivity of the continuous phase.   The 
characteristic velocity is estimated from the tangential stress balance (which is the motivating force 
for the motion of the drop) as 
 

0
T T R

v
σ

µ
∞∇

=  

when this result is used for the characteristic velocity, the Peclet number is called the Marangoni 
number. 
 

2
T T R

Ma
σ

µκ
∞∇

=  

The field of thermocapillary migration of drops and bubbles driven by a temperature gradient has 
matured substantially since the time of publication of the article by Young et al. particularly 
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because of the impetus of the space exploration program in the United States and abroad.  In the 
reduced gravity environment aboard rockets, satellites, the Space Shuttle, and the International 
Space Station, phenomena such as this, which do not depend on gravity for their action, become  
prominent.  You can learn more about the subject from Subramanian and Balasubramaniam 
(2001). 
 
Rigid particles also will move when placed in a fluid in which the temperature varies with position.  
They will migrate in the direction opposite to that of the local temperature gradient.  This 
phenomenon is known as thermophoresis.  It is responsible for the deposition of soot on the interior 
of the glass wall of an oil lamp. Thermophoresis is important in combustion devices, for example.  
In a gas, a simplistic explanation is that the hotter molecules of gas impart a greater momentum on 
average to the warm side of the particle than the cooler molecules on the cool side, causing net 
momentum transfer in the direction of cooler fluid.   In a liquid, where the molecules are not free 
to move about as in a gas, the explanation is based on the potential energy of attraction between 
the molecules of the liquid and the surface, and the gradient in pressure that develops along the 
surface of the particle as a consequence.  An excellent discussion of thermophoresis as well as 
other “phoretic” phenomena (meaning motion driven by interfacial forces) can be found in a 
review by Anderson (1989). 
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Introduction to Mass Transport 
 
First, we need to develop some definitions. Please consult the textbook by Bird et al. for additional 
information.     
 
Concentrations 
 

iρ  :  Mass concentration of the i ’th species is defined as 
 

Mass of Species
Unit Volume of Solutioni

iρ =  

 
 

ic  :  Molar concentration of the i ’th species is defined as  
 

i
i

i

c
M
ρ

=  where  iM  is the molecular weight of the i ’th species.  i
i

ρ ρ= ∑ , i
i

c c= ∑ . 

 
Here ρ  is the total mass density of the solution and c  is the total molar density of the solution. 
 
Velocities 
 

iv  : (vector) velocity of the i ’th species in the laboratory reference frame 
 
Mass average velocity  v  
 

 
i i

i i
i i i

i ii
i

ρ
ρ ω

ρ ρ
= = =

∑
∑ ∑∑

v
v v v  

Here, i
i

ρω
ρ

=  and is known as the mass fraction of the i ’th species in the solution. 

 
Molar average velocity *v  
 

i i
i i

i i i
i ii

i

c
c x

c c
= = =

∑
∑ ∑∑

v
v* v v  

Here, ix  is the mole fraction of the i ’th species in the solution. 
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Fluxes 
 
The (vector) mass flux of the i ’th species in the laboratory frame of reference is in . 
 

i i iρ=n v  
 
The (vector) mass flux of the i ’th species in a reference frame moving at the instantaneous mass 
average velocity is ij , which is termed the diffusive flux. 
 

( )i i i i iρ ρ= − = −j v v n v  
 
The individual diffusive fluxes ij  must add up to zero. 
 
 

( )i i i i i
i i i

ρ ρ ρ ρ= − = − =∑ ∑ ∑ 0j v v v v  

 
 

Binary Systems – Fick’s Law 
 
 
The constitutive equation describing binary diffusion is known as Fick’s law. 
 

A AB ADρ ω= − ∇j  
 
where ABD  is known as the binary molecular diffusivity of A in B.  For constant ρ , we can write 
 

A AB AD ρ= − ∇j  
 
It is straightforward to show that AB BAD D=  by writing Fick’s law for the mass flux of species B 
and combining the results for the two mass fluxes. 
 
We can write the mass flux of A in the laboratory reference frame as 
 

A A AB ADρ ρ ω= − ∇n v  
 
 ( )A A B AB ADω ρ ω= + − ∇n n  
   Convective flux   Diffusive flux 
 
 
 
In a like manner, the molar flux in the laboratory reference frame is 
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A A AB Ac c D x= − ∇N v*  

 
 ( )A A B AB Ax c D x= + − ∇N N   
    Convective flux     Diffusive flux 
 
The diffusivity that appears in this result is the same as that which appears in the mass flux form 
of Fick’s law. 
 
Diffusive fluxes in systems containing more than two components are generally termed 
“multicomponent diffusive fluxes” and are described using the Stefan-Maxwell equations.  For 
further information on multicomponent diffusion, you can consult Chapter 19 of the textbook by 
Bird et al. (1) as well as the book by Taylor and Krishna (2).  
 
At room temperature, the binary diffusivity ABD  is typically of the order of 5 210 /m s−  in gases at 
atmospheric pressure, and 9 210 /m s−  in liquids.  Techniques are available for predicting binary 
diffusivities from molecular parameters and are discussed in the textbook. 
 
Analogy among molecular transport models 
 
You may recall that when considering energy transport, in the discussion regarding the Prandtl 
number, we examined the analogy between momentum and energy transport in a one-dimensional 
context in which fluid flows in the x − direction with a velocity ( )xv y .  In this case, Newton’s law 
of viscosity for the momentum flux yxτ  (note that we are interpreting this symbol as the negative 
of the shear stress) can be written as  
 

x
yx

v
y

τ µ ∂
= −

∂
 

 
and in a similar one-dimensional conduction problem, Fourier’s law for the heat flux yq can be 
written as 
 

y
Tq k
y

∂
= −

∂
 

 
If we assume that the density and specific heat at constant pressure are constant, we can rewrite 
the above results in the following form. 
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( )

x - momentum
concentration

x
yx

v
y

ρ
τ ν

⇓

∂
= −

∂

 

 
 
 

{ }( )

energy
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p ref
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ρ
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∂ −
= −
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Likewise, we can write Fick’s law in its one-dimensional form as 
 

 

mass
concentration

A A
A y AB ABj D D

y y
ω ρρ

⇓
∂ ∂

= − = −
∂ ∂

 

 
Thus, we see that the molecular transport models all postulate a flux of an entity that is proportional 
to the concentration gradient of that entity.   
 
 
Flux = - Transport Coefficient × Gradient of Concentration  

 
Just as the Prandtl number, which is the ratio of the kinematic viscosity to the thermal diffusivity, 
permitted us to evaluate the relative rates of molecular transport of momentum and energy, a new 
ratio of the kinematic viscosity to molecular diffusivity, termed the Schmidt number, is useful in 
comparing relative rates of molecular transport of momentum and species.  The abbreviation for 
the Schmidt number is Sc. 
 

Ability of a fluid to transport momentum by molecular meansSc
Ability of that fluid to transport species by molecular meansABD

ν
= =   

 
In gases, molecular transport of momentum and species occur by similar means, namely, by 
molecules moving from one place to another.  While some momentum is transmitted through 
molecular interactions when two molecules come close to each other, the major contribution is 
from the movement of molecules themselves, which is the only mechanism for species transport 



161 
 

by molecular means.  Therefore, Schmidt numbers in gases are typically of the order unity.  In 
contrast, in a liquid, molecules are packed closely together, and diffusion is slow, as we know from 
the order of magnitude of diffusivities in liquids when compared with the order of magnitude in 
gases.  On the other hand, momentum is efficiently transmitted in liquids through molecular 
interactions with each other.  Therefore, Schmidt numbers in liquids are typically three orders of 
magnitude larger than those in gases. 
   

( )3
liquidSc 10O  

 
Thus, in flow over an object, the relative thicknesses of the momentum and concentration boundary 
layers reflect the magnitude of the Schmidt number, as the example given below for a liquid with 
a large Schmidt number ( )Sc 1 ABDν  . 
  
 
 
 
 
 
 
 
 
 
 
In gases, because the Schmidt number is close to unity, the two boundary layers are of comparable 
thicknesses. 
 
 

 
Conservation of Species 

 
The derivation of the equation of conservation of individual species is similar to the derivation of 
the equation of energy.  We obtain the following conservation equation. 
 

i
i irt

ρ∂
+ ∇ • =

∂
n  

 
Here, ir  is the rate at which the i ’th species is produced per unit time per unit volume.  The 
equation applies for each species in a multicomponent mixture.  If the individual species 
conservation equations are added up, we obtain  
 

( )
1 1 1

N N N
i

i i
i i i

r
t

ρ
= = =

∂
+ ∇ • =

∂∑ ∑ ∑n  
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y
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Dissolving plate



162 
 

or      0
t
ρ∂

+ ∇ • =
∂

n  

because the individual production rates must add up to zero net rate of mass production. 
Because ρ=n v , this becomes the continuity equation that was derived earlier. 
 
If we confine attention to a binary system containing A and B, Fick’s law can be used to relate 
the mass flux to the gradient of mass fraction of species A as follows. 
 

A A AB ADρ ρ ω= − ∇n v  
 

Substituting this result into the conservation equation for species A, we obtain 
 

( ) ( )A
A AB A AD r

t
ρ ρ ρ ω∂

+ ∇ • = ∇ • ∇ +
∂

v  

 
For constant density ρ  and diffusivity ABD , this can be simplified to the following form. 
 

2A
A AB A AD r

t
ρ ρ ρ∂

+ •∇ = ∇ +
∂

v  

 
This is usually the starting point in analyzing mass transport problems in binary systems where the 
stated assumptions hold.  Let us compare this conservation equation with that of conservation of 
energy for negligible viscous dissipation and constant thermal diffusivity α . 
 

    2

p

T ST T
t C

α
ρ

∂
+ •∇ = ∇ +

∂
v    

 
The analogy is evident.  Therefore, if a mass transport problem and a heat transport problem have 
the same initial and boundary conditions, the solutions for the concentration and temperature fields 
(suitably scaled) will be identical as well.  This also means that we can perform mass transport 
experiments to infer information about the corresponding heat transport problem and vice versa. 
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Boundary Conditions in Mass Transport 
 
In considering mass transport of species between two phases, there is the possibility that some 
species may adsorb on the interface.  Such species are called surface-active species or surfactants.  
We shall exclude them from discussion in this elementary approach to writing boundary conditions 
in mass transport problems. 
 
The first type of boundary condition arises from the assumption that thermodynamic equilibrium 
prevails between the two phases at the interface.  Therefore, the chemical potential of each species 
must be the same on either side of the interface.  In practice, we do not work with chemical 
potentials, but rather with concentrations of species expressed in a variety of units, such as mole 
fractions, mass fractions, molar concentrations, and mass concentrations.   Therefore, we can write 
the requirement of equilibrium at the interface in the form that the concentrations of each species 
on either side of the interface must be in equilibrium. 
 
A second condition we can write at an interface is that the mass flux of each species normal to the 
interface must be continuous across the interface.  If we assume that the interface is stationary, this 
simplifies to the statement  
 

, ,A I A II• = •n n n n  
 
where the subscript A refers to species A, and the subscripts I and II refer to phases I and II, 
respectively.  The unit normal n  is oriented normal to the interface, and by convention, points into 
phase I.  The same condition applies to each individual species in the mixture. 
 
At a fluid-fluid interface, where we are solving for the concentration fields in both phases, we must 
write both the equilibrium condition and the statement of continuity of normal flux.  At a solid-
fluid interface, typically we are not interested in describing diffusion through the solid, so that only 
the equilibrium condition is used when solving for the concentration field in the fluid. 
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Chemical Reactions in Mass Transport Problems 
 
Chemical reactions are classified in general as being either homogeneous or heterogeneous.  In a 
continuum context, a homogeneous reaction takes place in every volume element in a continuum, 
and the rate of production of  species i  per unit volume per unit time is represented by the symbol 

ir  in mass units and iR  in molar units.  The reaction rate can depend on position and time, and is 
usually obtained from a model of the kinetics.  Disappearance of species i  by homogeneous 
reaction simply implies a negative value of ir .   
 
A homogeneous reaction does not affect the boundary conditions.  In contrast, when a reaction is 
heterogeneous, it occurs on a bounding surface in the domain, and does not lead to a 
production/removal term in the governing conservation equation.  Instead, the boundary condition 
at the surface matches the flux of species i  to the surface with the rate at which species i  is being 
consumed by chemical reaction at the surface.  A good example of the way a heterogeneous 
chemical reaction is accommodated can be found in the worked out Example 18.3.1 in the textbook 
by Bird et al.   In this example, the authors assume a pseudo-first-order reaction at a catalyst 
surface, leading to the disappearance of species A.  The flux of A to the surface, in the z − direction, 
labeled AzN  is written as 
 

Az AN k c x=  
 
Here, k  is a pseudo-first-order rate constant for the disappearance of A, c  is the total molar 
concentration in the fluid at the surface, and Ax  is the mole fraction of A in the fluid at the surface.  
The fluid happens to be a gas in this example.   
 
In the problem considered in the main part of Section 18.3, a heterogeneous reaction occurs at a 
catalyst surface, but the rate of reaction is so large that Bird et al. assume that the reaction is 
instantaneous. In the context of the above boundary condition this implies that one must take the 
limit as k → ∞ .   In this limit, for a finite molar flux of A to the surface, we must require that the 
mole fraction of A vanish at the solid surface.   
 
Interestingly, in dealing with problems involving a porous catalyst, it is often convenient to use a 
pseudo-homogeneous model of transport of species in the catalyst.  This problem is considered in 
Section 18.7 in the textbook by Bird et al.  In this approach, no attempt is made to account for the 
fine-grain structure of the porous material, which consists of tortuous passages in a solid.  Instead, 
the porous medium is treated as a single continuum.  How do we accommodate a heterogeneous 
chemical reaction in this case? It is done through the use of a pseudo-homogeneous reaction 
approach, introducing a reaction term in the governing conservation equation for the continuum.  
For more details, you should study the worked-out problem in Section 18.7.  
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Part X 
 
Simple Example Problems in Mass 
Transport 
 
Evaporating Layer of Liquid 
 
Mass Transfer Between a Sphere  
and an Unbounded Fluid  
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Evaporating Layer of Liquid 
 

 
The one-dimensional transport of one gaseous species through another non-transferring species is 
a useful example from which one can learn about the important role played by convective transport 
that arises from diffusion.  This contribution is absent in the analogous one-dimensional 
conduction problem.  The present example is discussed in Section 18.2 of the textbook by Bird et 
al., and is somewhat incorrectly labeled as “Diffusion through a stagnant gas film.”  In fact, there 
is motion in the “gas film” as we shall see, and the correct title should have been the one noted in 
the first sentence of this paragraph.   
 
The sketch below illustrates the experiment that we plan to model.   
 

 
 
 
A small stationary pool of liquid is present in a container.  The liquid is sufficiently volatile that it 
exerts a significant vapor pressure at the prevailing room temperature.  A gentle flow of air is 
maintained at the top so that the vapor is carried away by air.  To keep the problem statement as 
general as possible, the air approaching the container is assumed to contain some vapor A and the 
remainder is non-transferring air (B). The liquid is assumed to be already saturated with air, so that 
there is no net transport of air through the air-vapor mixture above the liquid layer.   
 
It is assumed that the evaporation rate is sufficiently small that the mole fraction of A in the air 
stream remains virtually unchanged during its transit over the top of the container, and we label 

Liquid A

x
y

z

0z =

z L=

Gas B containing some A
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this mole fraction 2Ax .   At the surface of the liquid, equilibrium is assumed between the gas and 
the liquid phases, so that the partial pressure of the vapor A in the gas phase at the interface is 
equal to the vapor pressure of the liquid at the prevailing temperature.   We assume the gas mixture 
to be ideal and write 
 

( ) 10 A
A A

t

Px x
P

= =  

 
where AP  is the equilibrium vapor pressure of A and tP  is the total pressure in the gas, assumed 
uniform throughout the system. 
 
At steady state, the vapor A diffuses through the gas column because the mole fraction of A at the 
liquid-gas interface is larger than that at the top of the container.  As the liquid continues to 
evaporate, the height of the liquid column will gradually go down, and this change can be 
monitored with suitable optics.  By measuring the rate of evaporation of the liquid, we expect to 
be able to calculate the diffusivity of the vapor A in the non-transferring gas B. In order to do this, 
we construct a model of transport in the gas column above the liquid surface. 
 
The following assumptions are made to keep the problem simple, and yet retain the essential 
features. 
 
1. Neglect the change of liquid height with time; for slowly evaporating liquids, this is a good 
assumption. 
 
2. Steady one-dimensional transport in the z − direction; neglect gradients of concentration in the 
lateral directions x  and y . 
 
3. There are no chemical reactions in this system. 
 
4. The temperature and pressure are uniform; this means that the molar concentration in the gas 
phase is uniform. 
 
5. The binary diffusivity ABD  is constant. 
 
 
Because the molar concentration is uniform, it is sensible to use the molar form of the conservation 
equation for species A.  In rectangular Cartesian coordinates, 
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so that 0A zdN
dz

=  
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This means that constantA zN =  everywhere, because from assumption 1, the flux is independent 

of time and position coordinates x  and y .  Of course, we do not know the value of this constant 
molar flux of A.  To determine its value, we must proceed to use the component of Fick’s law in 
the z − direction. 
 

( ) A
A z A A z B z AB

dxN x N N c D
dz

= + −  

            Convective flux             Diffusive flux 
 
We had assumed that species B (air) is non-transferring.  This means that the steady flux of species 
B, 0B zN = .  As a result, Fick’s law can be simplified to the following form. 
 

1
1

1
A zA

A AB

Ndx C
x dz cD

= − =
−

, where 1C  is a constant.  

 
In the analogous one-dimensional heat transport problem, there would be no convective transport 
term, and the gradient of temperature in the z − direction is simply a constant, leading to a linear 
temperature profile. 
 
Integrating Fick’s law, we find 
 

( ) 1 2ln 1 Ax C z C− − = +  
 
where 2C  is a constant of integration.   By applying the boundary conditions  

( ) 10A Ax x=  

( ) 2A Ax L x=  
 
the two constants can be evaluated.  We find 
 

( )2 1ln 1 AC x= − −   1
1

2

11 ln
1

A

A

x
C

L x
 −

=   − 
 

 
Substituting in the solution, 
 

( ) ( )1
1

2

1
ln 1 ln ln 1

1
A

A A
A

xzx x
L x

 −
− − = − −  − 

 

which can be rewritten in the following convenient form. 
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/
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 −−
=   − − 

 

 
or equivalently as 
 

/

2

1 1

z L

BB

B B

xx
x x

 
=   

 
 

 
Recall that we are interested in the flux at the liquid surface.  We know from the solution that the 
flux A zN is independent of position z  in the column and is equal to 1ABcD C− .   
Therefore, 
 

1 1

2 2

1
ln ln

1
A BAB AB

A z
A B

x xc D c DN
L x L x

   −
= − = −      −   

 

 
This  can be recast as  
 

( )1 2
AB

A z A A
B m

c DN x x
L x

= −  

 
where 
 

B mx  is the log mean of the concentration of B over the diffusion path. 
 

2 1

2

1

ln

B B
B m

B
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x x
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x
x

−
=

 
  
 

 

 
In a dilute system, the mole fraction of A  will be small compared with that of B everywhere.  This 
means that we can write 1B mx ≈  in the result for the flux, so that the flux in a dilute system is 
approximated by 
 

( ) 1 2
1 2

A AAB
A z A A AB

c cc DN x x D
L L

−
≈ − =  

 
which is analogous to the result one would get in the one-dimensional conduction problem.  If we 
examine the origin of the appearance of B mx  in the result for the molar flux, we see that it is a 
consequence of including the convection or “drift” due to diffusion of A in the mixture.  Thus, we 
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conclude that in a dilute system, the role of the convective contribution arising from diffusion can 
be considered negligible.  
 
Because B mx  must be less than unity, we see that the flux of A  is enhanced by the convective drift 
arising from diffusion over that which would arise if this convection is ignored. 
 
Try sketching the composition profiles of A and B in the gas above the liquid layer.  We know that 
the mole fraction of A is relatively large at the liquid surface and decreases exponentially to the 
mole fraction prevalent in the stream of air at the top of the gas column.  Because the two mole 
fractions must add to unity everywhere, the mole fraction of B must be relatively large at the top 
and decrease as one approaches the liquid surface.  Therefore, there is clearly a gradient of 
composition of B.  This must lead to a diffusive flux of B toward the liquid surface, yet we said 
there is no net flux of B.  Is this a contradiction?  Try to figure out why the net flux is zero, even 
though the diffusive flux of B is not zero. 
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Mass Transfer Between a Sphere and an Unbounded Fluid 
 
When a single-component liquid drop evaporates into air, or when a solid, modeled as a single-
component sphere, dissolves in a liquid or sublimes into a gas, we can construct a simple model 
of the diffusive transport that occurs between the object and the surrounding fluid.  The model can 
help us calculate the rate of mass transfer, and eventually the rate of change of the radius of the 
sphere with time. 
 
  
 

     
 
 
Assumptions 
 
 1. The sphere contains a pure component A; therefore, we need to consider the mass transport 
process only in the surrounding fluid. 
 
2. The fluid is unbounded in extent and quiescent.  It contains only the diffusing species A and a 
non-transferring species B. 
 
3. The motion arising from diffusion can be neglected.  This requires that either the mixture in the 
fluid be dilute in species A, consisting primarily of the non-transferring species B, or that the rate 
of mass transport be small. 
 
4. The problem is spherically symmetric.  This means that in a spherical polar coordinate system 
( ), ,r θ φ there are no gradients in the polar angular coordinate θ , or in the azimuthal angular 
coordinate φ .   
 
5. After an initial transient, steady state is assumed to prevail.  This implies that the change in size 
of the sphere due to mass transfer occurs on a time scale that is very large compared with the time 
scale for the diffusion process for a given radius of the sphere to reach steady state. 
 
6. There are no chemical reactions. 

a

r
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Subject to the above assumptions, the equation of conservation of mass for species A in the fluid 
phase in spherical polar coordinates is simplified as follows. 
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+ +
∂ ∂
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∂
+

∂
( )A AN Rφ =

 

 
Because there are no gradients in the θ  and φ  directions, and there is no time-dependence, the 
flux ArN  depends only on r .  Thus, we can write 
 

( )2
2

1 0Ar
d r N

r dr
=  

 
Integration leads to the result  
 

2
1Arr N C= , which can be recast as  ( ) 1

2Ar
CN r
r

=  

 
where 1C  is an arbitrary constant of integration.  Now, we proceed to use Fick’s law. 
 

( ) A
Ar A Ar Br AB

dxN x N N c D
dr

= + −  

 
The first term in the right side corresponds to convective transport, which can be neglected in this 
problem because of assumptions 2 and 3.  Thus, we obtain the following first order ordinary 
differential equation for the mole fraction of species A in the fluid. 
 

1
2

1A

AB

dx C
dr c D r

= −  

 
Integration of this equation is straightforward, and leads to the following solution. 
 

( ) 1
2

1
A

AB

Cx r C
c D r

= +  

 
There are two arbitrary constants that need to be evaluated.  Therefore, we must write two 
boundary conditions.  At the surface of the sphere, we can assume equilibrium to prevail between 
the two phases.  For example, if species A is evaporating into a gas, the partial pressure of species 
A in the gas phase at the interface can be assumed to be equal to its equilibrium vapor pressure at 
the prevailing temperature.  If the gas mixture is assumed ideal, then the mole fraction of species 
A in the gas phase at the interface is the ratio between this equilibrium vapor pressure of A and 
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the prevailing total pressure in the gas phase.  In non-ideal cases, a corresponding result can be 
used to obtain the equilibrium mole fraction of species A in the gas phase at the interface.   
Likewise, for a solid dissolving in a liquid, or subliming into a gas, the equilibrium mole fraction 
of species A in the fluid at the interface can be obtained. 
 

( ) 1A Ax a x=  
 
Far from the sphere, we can assume the composition to approach that in the fluid in the absence of 
the sphere.  Thus, 
 

( ) 0Ax ∞ =  
 
Application of these two boundary conditions permits us to evaluate the constants 1C  and 2C  as 
 

1 1AB AC c D a x=   2 0C =  
 
Substituting these results in the solution leads to the following result for the radial distribution of 
the mole fraction of species A in the fluid. 
 

( )
1

A

A

x r a
x r

=  

 
The flux of species A is given by 
 

( ) 1 2

1
Ar AB AN r c D a x

r
=  

 
so that the molar rate of transport at the surface of the sphere can be written as 
 

( )2
1 14 4 4A Ar AB A AB AW a N a c D a x D a cπ π π= = =  

 
where we have used the fact that the product 1 1A Ac x c= , the molar concentration of A in the fluid 
at the interface.  Assuming that the molar rate of transport is relatively small, we can use a mass 
balance on the sphere to deduce the rate of change of its size with time.  Let the molecular weight 
of A be AM , and the density of the sphere be ρ .  Then, we can write 
 

3 2
1

4 4 4
3 AB A A

d daa a D M a c
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π ρ π ρ π  = = − 
 

 

 
which leads to a differential equation for the time-dependence of the radius of the sphere. 
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1AB A AD M cdaa
dt ρ

= −  

 
If the radius at time zero is 0a , then the solution can be written as 
 

( )2 2 1
0

2 AB A AD M ca t a t
ρ

= −  

 
The Quasi-Steady State Assumption 
 
Note that we assumed steady state to prevail in the diffusion problem, which, strictly speaking, 
requires the size of the sphere to remain unchanged.   As stated in assumption 5, this only requires 
that the time scale over which the sphere changes size appreciably is large compared with the time 
scale over which the diffusion process around a sphere of constant size reaches steady state.   Then, 
the rate of mass transfer from the sphere to the fluid can actually be used to calculate the time 
evolution of the size of the sphere.  This type of assumption is called a quasi-steady state 
assumption.  It is invoked commonly in transport problems where there are two very different time 
scales involved.  You may have encountered the quasi-steady assumption in the problem of 
calculating the rate of change of the height of liquid in a large storage tank through a small pipe at 
the bottom.  To calculate the velocity of flow out of the pipe and therefore the volumetric flow 
rate, we usually assume the level of the fluid in the tank to remain sensibly constant.  After 
obtaining such a volumetric flow rate from a steady-state model, it can be used in an unsteady 
mass balance on the contents of the tank to calculate the rate of change of height of the liquid in 
the tank. 
 
Reference 
 
R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, Wiley, 2007. 
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Part XI 
 
Film and Penetration Models 
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Film and Penetration Models 
 
In many situations, mass transfer problems are complicated because of the geometry.  Examples 
are absorption or distillation in a packed or tray column, liquid-liquid extraction, and adsorption 
and ion exchange.  It is difficult to model these situations directly from first principles because the 
geometries are too complex to describe using simple coordinate systems, and also because of the 
multiphase nature of these problems.  As a consequence, chemical engineers have developed 
empirical approaches for dealing with these mass transfer operations.  Two of the most commonly 
used models are the “Film Model” and the “Penetration Model.”   The transport theory is done 
from first principles in these idealized “model geometries” and extended to the actual operation by 
empirical means.  The film model is described first.   
 
The Film Model 
 
Consider, for example, gas absorption in a packed column.  The solvent (B) is admitted at the top 
and flows down the column, presumably in the form of a thin film that covers the surface of the 
packing material.  The gas, assumed here to be pure A, flows upward in the interstitial region in 
the packing where liquid is not present.  Exchange of the species A occurs between the gas and 
the liquid, and the objective is to be able to predict mass transfer rates.  If we consider the situation 
around a single particle of packing, and magnify it, we can represent it approximately by the 
sketch. 
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The surface of the packing particle is represented by the shaded region in the left.  The approach 
in the film model is to assume that most of the liquid is well mixed with some bulk concentration 
of the dissolving solute (A) that is given by bC .  All the concentration change in the liquid is 
assumed to occur in a stationary film of liquid of thickness δ .  This is a fictitious film.  It does 
not really exist because the liquid is flowing down the side of the packing and there is some 
appropriate velocity distribution in the liquid film covering the packing surface.  It certainly is not 
“stationary.”  This mass transfer “film” is not the liquid film, but an imaginary region in the vicinity 
of the phase interface.   Its thickness, to be established shortly, is adjusted so that the flux of A 
predicted from this “film model” in a simple situation matches the experimentally observed flux 
in the absorption column on average.  If the gas phase consists of an inert C and the dissolving 
species A, then we would postulate a similar “film” on the gas side of the interface as well. 
 
The  main idea in this model is that the fluid in the “film” is stationary; the fact that it is flowing 
is accommodated by fitting the “film thickness” to match experimental mass transfer rates.  
Diffusion occurs in the direction normal to the phase interface, and in this magnified picture, it 
occurs in a single direction, labeled x  in the drawing.  We assume equilibrium to exist between 
the two phases at the interface, leading to some equilibrium concentration *C  in the liquid at the 
interface.  This equilibrium concentration corresponds to the prevailing temperature and pressure 
and the composition of the gas phase.  At the other edge of the film, the concentration is assumed 
to be the uniform bulk concentration bC  as shown in the figure.  Also shown in the figure is an 
idealized concentration profile within the film in the limit of low mass transfer rates.  We shall see 
shortly why this is a straight line. 
 
We begin with the equation of conservation of mass in rectangular Cartesian coordinates.  
Assuming constant physical properties, steady unidirectional transport, and no chemical reactions, 
leads to the following result for the flux of A in the x -direction.   
 

0=
dx

dN xA  

 
This means that the flux xAN  is constant along the diffusion path.  We have used the molar flux 
and molar concentrations in posing this problem, but we can equally well use the mass flux and 
mass concentrations.  In this example, we assume low mass transfer rates (or a dilute solution), so 
that the drift in the fluid in the x -direction that occurs due to diffusion, and the resulting convective 
flux of A, can be neglected as a first approximation.  If  the concentration of A is low, the molecular 
weight of the mixture is approximately the same as that of the solvent, and remains constant 
throughout the diffusion path.  In this situation, both the total mass density and the molar 
concentration are constant, and we can simplify Fick’s law in molar units to 
 

dx
dCDN A

xA −=   

 
Because the variation of concentration is assumed to be one-dimensional, we have replaced the 
partial derivative with the ordinary derivative, and the symbol D  stands for the binary diffusivity 
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of A in B.   Knowing that xAN  is a constant, we can integrate the above equation, along with the 
boundary conditions  
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to obtain the linear concentration profile given below as the solution. 
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This profile is displayed in the sketch.  The molar flux of A is constant throughout the film and is 
given by 
 

( )bc
b

xA CCk
CC

DN −=
−

= *
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δ

  

 
where we have defined a mass transfer coefficient ck .  Therefore, the mass transfer coefficient is 
related to the film thickness in this example as follows. 
 

ck
D

=δ  

 
So, you can see that if you perform an experiment on a dilute system in a packed column at low 
mass transfer rates and obtain the mass transfer coefficient, you can estimate the fictitious film 
thickness corresponding to that experiment.  Of course, this is an average for the entire column.  If 

we cast this in terms of the Sherwood number 
D

Lk
Sh c= , where L  is a length scale used in the 

definition of the Sherwood number, then 
Sh
L

=δ .  Therefore, if we determine the Sherwood 

number as a function of the Reynolds and Schmidt numbers, for example, we’d know the 
dependence of the fictitious film thickness in terms of these parameters as well. 
 
Note that the mass transfer coefficient appears to be proportional to the first power of the 
diffusivity.  This is not the case with other models nor is it always the case in experiments.  To 
overcome this objection, proponents of the film model have suggested that the film thickness be 
allowed to depend on the diffusivity to a suitable power. 
 
So far, the film model has not been predictive.  That is, we have had to rely on experiments to 
infer the fictitious film thickness.  But now, if we want to estimate the mass transfer rates in the 
same column for other conditions such as for high mass transfer rates (where the convective 
transport of A arising from the motion due to diffusion cannot be ignored), or a reacting system, 
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or a multicomponent system where we must use the Maxwell-Stefan equations, we can use the 
film model in a predictive manner.  We can use the “known” film thickness inferred from 
experiments on a dilute non-reacting binary system in a film model of mass transport in which one 
or more of these additional effects are accommodated, and thereby predict the mass transfer rates. 
 
Illustration of the use of the Film Model – Homogeneous Chemical Reaction 
 
As an illustration, consider a case where we have the same situation as depicted in the sketch, but 
A is consumed in a first order chemical reaction.  In this case, the rate of production of A per unit 
volume, AR , can be written as  AA CkR −= , where k is a rate constant.  All the assumptions we 
already made apply here. Therefore, going through the simplification of the mass conservation 
equation for species A in the liquid film, and using Fick’s law, leads to  
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=− A
A Ck

xd
CdD  

 
The boundary conditions remain the same.   Permitting A to be present in the bulk liquid will cause 
an additional complication because the bulk concentration of A will depend upon the location in 
the main flow direction.  Therefore, we assume that there is no A present in the bulk liquid, so that 

.0=bC  
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The solution can be written in terms of exponential functions or hyperbolic functions, which are 
linear combinations of exponential functions.  It is convenient to choose the latter form, writing 
 

x
D
kCx

D
kCCA sinhcosh 21 +=   

 
Evaluating the constants using the boundary conditions eventually leads to 
 

[ ]XmmXmCxCA sinhcothcosh*)( −=  
 

where δ
D
km =  and 

δ
xX = . 

 
We can estimate the flux of A at the interface as 
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Here, we have used the assumption that the solution is dilute so that we can neglect the convective 
flux that arises from diffusion. 
 
For the same problem in the absence of reaction, we would have obtained  
 

( )XCCA −= 1*  and a flux ( )
δ

*0 CDN Ax = .  Therefore, the reaction causes an enhancement of 

the mass transfer rate.  We can define an enhancement factor E as the ratio of the flux of A at the 
interface in the presence of reaction to the flux of A when there is no reaction.  Then, we can write 
 

m
mmmmE

sinh
coshcoth ==  

 
Therefore, we can see that the film model is predictive here, suggesting a specific enhancement of 
mass transfer in the presence of a first order chemical reaction.  This can be tested by experiment. 
 
Another Illustration of the Use of the Film Model – High Mass Transfer Rates 
 
As a second illustration, consider the transport of a species A through a mixture of species A and 
B under conditions where the convective flux arising from diffusion cannot be ignored.  Assuming 
constant physical properties, steady unidirectional transport, and no chemical reactions, leads to 
the following result once again for the flux of A in the x-direction.   
 

0=
dx

dN xA  

 
This means that the flux xAN  is constant along the diffusion path.  We can show in a like manner 
that the flux xBN  will be a constant as well, and therefore the total molar flux tN  also is a constant. 
Now, we write Fick’s law as follows. 
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Then, the result from Fick’s law can be rewritten as the following differential equation for the 
mole fraction of A along the diffusion path. 
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Using the boundary conditions  
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the solution can be written as follows. 
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Note that we now have both a diffusive and a convective contribution to the flux of A.  The 
diffusive flux in this situation is labeled *

AJ .  It is given by 
 

* A
A

dxJ C D
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= −  

 
From the solution, we find that at the interface  0=x ,  
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whereas, in the dilute solution limit where we would have set the convective flux to zero, we would 
have obtained a diffusive flux given by 
 

)()0( 21
*
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Therefore, the influence of convective transport is to correct the diffusive flux by a multiplicative 

factor  
1)(exp −Φ

Φ  at the interface.  When 0tN > ,  0Φ > , and this correction is always less 

than unity.  Therefore, for mass transport into a stream, the convective drift correction reduces the 
diffusive flux of A.  As a corollary, for mass transfer out of the stream, 0tN < , the gradient is 
strengthened, and the correction is greater than unity.    
 
Of course, the total flux of A is made up of the diffusive and the convective contributions.  The 
total flux of A at the interface is  
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The Penetration Model 
 
In the penetration model of mass transfer, which is used for describing transport in a stirred vessel, 
we imagine an element of liquid that is present in the bulk being brought by the agitation to the 
interface with another fluid that can be a gas or liquid.  The element spends some amount of time 
at the interface, and mass transfer occurs between the two phases during this period.  Then, the 
element enters the bulk liquid again and the contents are dispersed.  The rate of transfer of a species 
A from the upper phase to the stirred liquid is estimated by considering a distribution of ages of 
the elements of liquid at the interface.  Crucial to this picture is the idea that a liquid element 
spends some specified amount of time being exposed to the other fluid.  If we presume the 
concentration of A at the interface to be given by C*, and imagine the depth of penetration of the 
diffusing species A into the liquid to be small compared with the thickness of the element in the 
direction of diffusion, it can be shown that the solution ),( xtCA  for unsteady one-dimensional 
transport, assuming a dilute system and constant physical properties, is given by 
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where x is the distance from the interface.  The diffusive flux of A into the liquid at the interface 
is given by 
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We can see that the mass transfer coefficient obtained from this flux is proportional to the square 
root of the diffusivity.  The penetration model correctly describes the mass transfer situation where 
a flowing liquid film is exposed to a gas and a species A is absorbed into the liquid.  This problem 
is discussed in detail in Section 18.5 of the text  by Bird et al. Other examples include transport to 
and from jets, and transport to and from drops and bubbles. 
 
The main features of the film and penetration models can be summarized as follows. 
 
The film model assumes transport to occur in a fictitious film at the phase interface.  Outside of 
this film, concentrations are uniform and assumed to be at the bulk values.  The film is assumed 
to be stationary regardless of the fact that the materials on either side of the interface are usually 
in motion.  Transport in the film occurs only by diffusion and only in the direction normal to the 
interface.  The effect of convective transport in the main flow direction is accommodated through 
the adjustment of the film thickness to match experimentally obtained mass transfer rates. The film 
model predicts that mass transfer rates are proportional to the first power of the diffusivity, even 
though this can be altered by making the film thickness depend on the diffusivity. The film model 
is commonly used to describe mass transfer in devices such as absorption and distillation columns 
and catalytic reactors, to cite a few examples.   
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In the penetration model, the idea is used that fluid elements at the interface are exposed to the 
fluid on the other side for a finite amount of time and in a reference frame riding with these 
elements, unsteady diffusion occurs in the direction normal to the interface.  It yields predictions 
for mass transfer rates that are proportional to the square root of the diffusivity.  Examples where 
the penetration model is used include mass transfer from a gas to a liquid in a stirred vessel, mass 
transfer in a falling liquid film or a jet of fluid, and mass transfer to and from drops and bubbles in 
absorption and extraction operations.   
 
Reference 
 
R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, Wiley, 2007. 
 
 
 
 
 

Concluding Comments 
 
 
In these notes, several topics have been omitted.  Some examples are 
 
1. Turbulent transport 
 
2. Radiative transport of energy 
 
3. Simultaneous Energy and Mass Transport 
 
4. Complex conduction or diffusion problems 
 
The aim has been to provide a brief introduction to the modeling and analysis of the transport of 
momentum, energy, and species, identifying the analogies among the three, and to illustrate some 
general methodology with example problems.  There has been no attempt to be comprehensive in 
the treatment of transport phenomena, as might be suitable for a textbook on the subject. 
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