King Saud University Faculty of Science Chemistry Department

General Practical Chemistry EXPERIMENTS REOPRTS 101 Chem & 104 Chem

<u>Text Book:</u> <u>Practical General Chemistry</u> By Dr. Ahmad Al-Owais & Dr. Abdulaziz Al-Wassil

1

LIST OF EXPERIMENTS

Week Date		Experiment		
		Experiment	Page	
1		Determination of a Liquid Density	131 - 133	
2		Preparation of a Standard Solution of Sodium Carbonate	63 - 86	
3		Determination of Organic Indicators for Acid Base Titrations	95 - 98	
		Determination of Sodium Hydroxide Concentration By		
4		Titrations With A Standard Solution of Hydrochloric Acid	99 - 109	
		+Quiz 1		
5		Determination of Acetic Acid Concentration By Titrations	00 100	
5		With A Standard Solution of Sodium Hydroxide	99 - 109	
6		Determination of Hydrochloric Acid Concentration By	97 02	
0		Titrations With A Standard Solution of Sodium Carbonate	07 - 95	
7		First Exam		
8		Measurement of Gas Diffusion (Graham's Law of Diffusion)	137 - 140	
9		Determination of Critical Solution Temperature+ Quiz 2	177 - 180	
10		Hess's Law	197 - 203	
11		Effect of Concentration on Reaction Rate	183 - 190	
10		Determination of The Molar Mass of An Organic Compound	205 216	
12		by The Depression of Its Freezing Point	205 - 216	
12		Determination of The Molar Mass of An Organic Compound	101 104	
15		by The Steam Distillation+ Quiz 3	191 - 190	
14		Second Exam		

EXPERIMENT (1) Determination of a Liquid Density

DATE: STUDENT'S NAME: STUDENT'S NUMBER:

Symbols

Mass of the empty beaker in $g = m_1$ Mass of the beaker and the liquid in $g = m_2$ Mass of the liquid $(m_2 - m_1)$ in g = mVolume of the liquid in $cm^3 = V$ Density of liquid $(\frac{m}{V})$ in $g / cm^3 = d$

Notes:

The liquid used in this experiment is:

Results and Calculations:

1. Calculate the liquid's density in all cases and put in the following table:

V (cm ³)				
m ₂ (g)				
m ₁ (g)				
m (g)				
d (g / cm ³)				

2. Plot the relationship between the mass of the liquid (m) on the Y-axis versus its volume (V) on the X-axis, and find the liquid's density from the slope.

slope = d = $\frac{\Delta m}{\Delta V}$ - = -----= =

Created with

m

v

d

Experiment (1) Graphical relation between mass of liquid (m) and its volume (V)

EXPERIMENT (2) Preparation of a Standard Solution of Sodium Carbonate

DATE: STUDENT'S NAME: STUDENT'S NUMBER:

EXPERIMENT (3) <u>Determination of Organic Indicators for Acid Base</u> <u>Titration</u>s

DATE: STUDENT'S NAME: STUDENT'S NUMBER:

A) <u>Titration of a strong acid (HCl) with a strong base (NaOH)</u> <u>using the pH meter</u>

Molar masses (g mol ^{-1}): H = 1	, O = 16	, Na = 23
---	----------	-----------

Results & calculation:

Volume of base added (V _{base})	0	5	10	15	20	22.5	24	24.5	24.8	25	26	28	30
Calculated pH	1.2	1.3	1.4	1.6	1.9	2.3	2.8	3.3	3.6	9.7	11	11.4	11.6
Measured pH													

 $\begin{array}{ll} HCl \mbox{ molarity} = M = & molar \\ HCl \mbox{ volume} = V = & mL \\ NaOH \mbox{ molarity} = M' = & molar \\ NaOH \mbox{ volume} \mbox{ (from diagram)} = V' = & mL \\ \end{array}$

 Knowing that the pH range for methyl orange indicator (M.O.) is from 3.1 to 4.4, and for phenol phethaline indicator (Ph.Ph.) is from 8 to 10, plot pH (on the Y-axis) against V_{base} (on the X-axis).

From the graph:

- The pH range at the equivalent point is from () to ().
- The suitable indicator for this titration is ().
- 2. Calculation of the base molarity :

3. Calculation of the base concentration in g L^{-1} :

4. Calculation of pH, pOH, $[H^+]$ and $[OH^-]$:

	HCl solution	NaOH solution
pН		
рОН		
$[\mathrm{H}^{\!+}]$		
[OH ⁻]		

Experiment (3) A) Graphical relation between the (pH) and the volume of base added (V) (Titration of a strong acid with a strong base)

EXPERIMENT (3) <u>Determination of Organic Indicators for Acid Base</u> <u>Titrations</u>

DATE: STUDENT'S NAME: STUDENT'S NUMBER:

B) <u>Titration of a weak acid (CH₃COOH) with a strong base (NaOH)</u> <u>using the pH meter</u>

Molar masses (g mol ^{-1}): H = 1	, C = 12	O = 16
---	----------	--------

Results & calculation:

Volume of base added (V_{base})	0	2	4	6	8	10	12	14	16	17	17.5	18	18.5
Calculated pH	1.2	1.3	1.4	1.6	1.9	2.3	2.8	3.3	3.6	9.7	11	11.4	11.6
Measured pH													

 $\begin{array}{ll} CH_3COOH \ molarity = M = & molar \\ CH_3COOH \ volume = V = & mL \\ NaOH \ molarity = M' = & molar \\ NaOH \ volume \ (from \ diagram) = V' = & mL \end{array}$

Requirements:

1. Knowing that the pH range for methyl orange indicator (M.O.) is from 3.1 to 4.4, and for phenol phethaline indicator (Ph.Ph.) is from 8 to 10, plot pH (on the Y-axis) against V_{base} (on the X-axis).

From the graph:

- The pH range at the equivalent point is from () to ().
- The suitable indicator for this titration is ().
- 5. Calculation of the base molarity :

6. Calculation of the base concentration in g L^{-1} :

7. Calculation of pH, pOH, $[H^+]$ and $[OH^-]$:

	HCl solution	NaOH solution
рН		
рОН		
$[\mathrm{H}^{+}]$		
[OH ⁻]		

Experiment (3)

B) Graphical relation between the (pH) and the volume of base added (V) (Titration of a weak acid with a strong base)

EXPERIMENT (4) <u>Determination of Sodium Hydroxide Concentration By</u> <u>Titrations With A Standard Solution of Hydrochloric Acid</u> DATE: STUDENT'S NAME: STUDENT'S NUMBER:

Results:

FIRST: Volume of NaOH using Ph.Ph. as indicator:

Exp.	Initial reading	Final reading	Volume (V) mL	Average
1				
2				
3				

Calculations:

- 1. Volume of NaOH = V = mL
- 2. Volume of HCl = V' = mL
- 3. Molarity of $HCl = M' = mol L^{-1}$
- 4. The reaction equation is:

5. Calculation of the base molarity:

- Ph.Ph. indicator used is (
- pH range of indicator is from () to (
- At the end point the color of indicator changed from (

) to ().

).

).

• From the reaction equation using Ph .Ph. as indicator: n =

n' =

6 Calculation of the base concentration in g L^{-1} :

Exp.	Initial reading	Final reading	Volume (V) mL	Average
1				
2				
3				

SECOND: Volume of NaOH using M.O. as indicator:

Calculations:

- 1. Volume of NaOH = V = mL
- 2. Volume of HCl = V' = mL
- 3. Molarity of HCl = M' = $mol L^{-1}$
- 4. The reaction equation is:

5. Calculation of the base molarity:

- Indicator used is (
- pH range of indicator is from () to (
- At the end point the color of indicator changed from () to ().

).

).

- From the reaction equation using M.O. as indicator:
 - n =

n' =

6. Calculation of the base concentration in g L^{-1} :

EXPERIMENT (5) <u>Determination of Acetic Acid Concentration By Titrations</u> <u>With A Standard Solution of Sodium Hydroxide</u>

DATE: STUDENT'S NAME: STUDENT'S NUMBER:

Molar masses (g mol ⁻¹): $H = 1$, C = 12	O = 16
--	----------	--------

Results:

FIRST: Volume of NaOH using M.O. as indicator:

Exp.	Initial reading	Final reading	Volume (V) mL	Average
1				
2				
3				

Created with **nitro**^{ed} with downloade free trial online at nitrophic comprofessional downloade the free trial online at nitrophic comprofessional

Calculations:

- 1. Volume of NaOH = V = mL
- 2. Volume of $CH_3COOH = V' = mL$
- 3. Molarity of NaOH = M' = $mol L^{-1}$
- 4. The reaction equation is:
- 5. Calculation of the acid molarity:
 - Indicator used is ().
 - pH range of indicator is from () to ().
 - At the end point the color of indicator changed from () to (
 - From the reaction equation using M.O. as indicator:
 - n = n' =

6. Calculation of the acid concentration in g L^{-1} :

).

Exp.	Initial reading	Final reading	Volume (V) mL	Average
1				
2				
3				

SECOND: Volume of NaOH using Ph.Ph. as indicator:

Calculations:

- 1. Volume of NaOH = V = mL
- 2. Volume of $CH_3COOH = V' = mL$
- 3. Molarity of NaOH = $M' = mol L^{-1}$
- 4. The reaction equation is:
- 5. Calculation of the acid molarity:
 - Indicator used is (
 - pH range of indicator is from (

).) to (

).

- At the end point the color of indicator changed from (From the reaction equation using M.O. as indicator:
 - From the reaction equation using M.O. as indicator:
 n =
 n' =

).

) to (

6. Calculation of the acid concentration in g L^{-1} :

EXPERIMENT (6) <u>Determination of Hydrochloric Acid Concentration By</u> <u>Titrations With A Standard Solution of Sodium Carbonate</u> DATE: STUDENT'S NAME: STUDENT'S NUMBER:

	Molar masses (g mol ^{-1}): H = 1	, Cl = 35.45
--	---	--------------

Results:

Volume of HCl using M.O. as indicator:

Exp.	Initial reading	Final reading	Volume (V) mL	Average
1				
2				
3				

Created with **nitro**^{ed} with download the free trial online at nitroper comprofessional download the free trial online at nitroper comprofessional

Calculations:

- 1. Volume of HCl = V = mL
- 2. Volume of $Na_2CO_3 = V' = mL$
- 3. Molarity of $Na_2CO_3 = M' = mol L^{-1}$
- 4. The reaction equation is:
- 5. Calculation of the acid molarity:
 - Indicator used is ().
 - pH range of indicator is from () to ().
 - At the end point the color of indicator changed from () to (
 - From the reaction equation using M.O. as indicator:
 - n = n' =

6. Calculation of the acid concentration in g L^{-1} :

).

EXPERIMENT (7) <u>Measurement of Gas Diffusion</u> (Graham's Law of Diffusion)

STUDENT'S NAME: STUDENT'S NUMBER:

Molar masses (g mol⁻¹): H = 1 , N = 14 Cl = 35.45

 $\frac{\mathbf{r}_{\mathrm{N}\mathrm{H}_3}}{\mathbf{r}_{\mathrm{H}\mathrm{CI}}} = \frac{\sqrt{d_{\mathrm{H}\mathrm{CI}}}}{\sqrt{d_{\mathrm{N}\mathrm{H}_3}}} = \frac{\sqrt{M_{\mathrm{H}\mathrm{CI}}}}{\sqrt{M_{\mathrm{N}\mathrm{H}_3}}} \qquad (\mathrm{Graha})$

(Graham's law)

Results:

- 1. Distance moved by HCl gas $(L_{HCl}) =$ cm
- 2. Distance moved by NH_3 gas $(L_{NH_3}) =$ cm
- 3. Reaction equation:

Created with

Calculations:

- 1. The theoretical ratio between the molar masses of the two gases (Y):
- 2. The measured ratio between the molar masses for the two gases (X):
- 3. The practical molar mass of one of the two gases (M_Y) knowing the theoretical molar mass of the other gas and the values of L_{HCl} and L_{NH_3} using Graham's law:

$$\frac{L_{\rm NH_3}}{L_{\rm HCI}} = \frac{\sqrt{M_{\rm HCI}}}{\sqrt{M_{\rm NH_3}}}$$

- 4 Calculation of the theoretical molar mass of the same gas using the molar masses of its atoms (M_X) :
- 5 Error percentage:
 - First method:

 $Error \ percentage = \pm \ \frac{difference \ between \ theoretical \ and \ practical \ ratios}{theoretical \ ratio} \times \ 100$

Error percentage =
$$\pm \frac{Y - X}{Y} \times 100$$

Second method

 $Error \ percentage = \pm \frac{difference \ between theoretical \ and \ practical \ molar \ masses}{theoretical \ molar \ mass} \times 100$

Error percentage =
$$\pm \frac{M_{Y} - M_{X}}{M_{X}} \times 100$$

EXPERIMENT (8) Determination of Critical Solution Temperature

DATE: STUDENT'S NAME: STUDENT'S NUMBER:

Results:

Experimental results and calculations:

EXP. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mass of phenol (g)	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Mass of water (g)	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mass of solution (g)	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Mass % of water														
Mass % of phenol														
Miscibility temperature (°C)														

Calculations:

1. A SAMPLE CALCULATINN OF A MASS PERCNTAGE

Mass % of water = $\frac{\text{mass of water}}{\text{mass of mixture}} \times 100$	Mass % of phenol = $\frac{\text{mass of phenol}}{\text{mass of mixture}} \times 100$

- 2. From the graphical relation between miscibility temperature (Y-axis) and the mass percentage of phenol (X-axis):
 - The critical solution temperature (C.S.T) = °C
 - Mass % of phenol =
 - Mass % of water =

Experiment (8) Graphical relation between miscibility temperature and the mass percentage of phenol

EXPERIMENT (9) Hess's Law

DATE: STUDENT'S NAME: STUDENT'S NUMBER:

Diagrammatic illustration of Hess's law:

General Notes:

- 1. Density of NaOH solution = $d = 1 g / cm^3$
- 2. Specific heat of NaOH solution = $\rho_{solution}$ = 4.18 J / g °C
- 3. Specific heat for calorimeter (glass) = $\rho_{calorimeter}$ = 0.836 J / g °C
- 4. Volume of NaOH solutions used in all experiment = V = 50 mL
- 5. Mass of NaOH solutions in $g = m_{solution} = V \times d = 50 \times 1 = 50 g$
- 6. Mass of calorimeter (glass tube) in $g = m_{calorimeter}$
- 7. Initial temperature in $^{\circ}C = t_1$
- 8. Final temperature in $^{\circ}C = t_2$
- 9. Temperature change in $^{\circ}C = \Delta t$
- 10. Heat gained by solution in $J = q_1 = \rho_{solution} \times m_{solution} \times \Delta t$
- 11. Heat gained by calorimeter in $J = q_2 = \rho_{calorimeter} \times m_{calorimeter} \times \Delta t$
- 12. Total heat gained in $J = Q = q_1 + q_2$
- 13. Number of moles of NaOH used in:
 - experiment $1 = (n_{\text{NaOH}})_1 = \frac{(\text{mNaOH})_1}{\text{MNaOH}}$ • experiment $2 = (n_{\text{NaOH}})_2 = \frac{(\text{MNaOH})_2}{\text{MNaOH}}$
 - experiment $3 = (n_{NaOH})_3 = (molarity)_{NaOH} \times V_{NaOH}$

14. $\Delta H = \frac{\infty}{n_{NaOH}}$

Created with

26

Calculations and results:

	Experiment 1	Experiment 2	Experiment 3
t ₁ (°C)			
t ₂ (°C)			
Δt (°C)			
q1 (J)			
q ₂ (J)			
Q (J)			
n _{NaOH} (mol)			
$\Delta H (kJ mol^{-1})$			

Verification of Hess's law using thermochemical equations:

- 1)
- 2)
- *2*)
- 3)

EXPERIMENT (10) Effect of Concentration on Reaction Rate

(Determination of the order of the sodium thiosulphate and hydrochloric acid reaction)

DATE: STUDENT'S NAME: STUDENT'S NUMBER:

Reaction equation:

Rate law:

Arrhenius equation is:

Determination of the reaction order with respect to sodium thiosulphate:

• Symbols

- 1. Volume of $Na_2S_2O_3$ before dilution = $V_{Na_2S_2O_4}$
- 2. Volume of $Na_2S_2O_3$ After dilution = $V'_{Na_2S_2O_3} = 29 \text{ mL}$
- 3. Molarity of Na₂S₂O₃ before dilution = $M_{Na_2S_2O_3} = 0.15 \text{ mol } L^{-1}$ 4. Molarity of Na₂S₂O₃ after dilution = $M'_{Na_2S_2O_3} = \frac{M_{Na_2S_2O_3} \times V_{Na_2S_2O_3}}{V'_{Na_2S_2O_3}}$
- 5. Reaction time in seconds = t
- 6. Reaction rate in seconds⁻¹ = $\frac{1}{4}$

Created with

• <u>Calculatoins</u> 1. Calculation of $M'_{Na_2S_2O_3}$ in the reactions of $Na_2S_2O_3$ with HCl in 29 mL solution:

- $(M'_{Na_2S_2C_3})_1 =$
- $(M'_{Na_2S_2C_3})_2 =$
- $(M'_{Na_2S_2C_3})_3 =$
- $(M'_{Na_2S_2C_3})_4 =$
- $(M'_{Na_2S_2C_3})_5 =$

Exp.	$V_{Na_2S_2C_3}$	$V_{\rm H_2O}$	V _{HCI}	$M'_{Na_2S_2O_3}$	t	$\frac{1}{t}$	$-\log M'_{Na_2S_2O_3}$	$-\log \frac{1}{t}$
1	25	0	4					
2	20	5	4					
3	15	10	4					
4	10	15	4					
5	5	20	4					

2. Obtaining the order, n, from the plot of $\log \frac{1}{t}$ versus $\log M'_{Na_2S_2O_3}$ according to:

$$\log \frac{1}{t} = \log k + n \log M'_{Na_2S_2C_3}$$

slope =

n =

Determination of the reaction order with respect to hydrogen chloride:

Symbols •

- 1. Volume of HCl before dilution = V_{HCl}
- 2. Volume of HCl after dilution = V'_{HCl} = 15 mL
- 3. Molarity of HCl before dilution = $M_{HCl} = 1 \mod L^{-1}$ 4. Molarity of HCl after dilution = $M'_{HCl} = \frac{M_{HCl} \times V_{HCl}}{V'_{HCl}}$
- 5. Reaction time in seconds = t
- 6. Reaction rate in seconds⁻¹ = $\frac{1}{t}$

• calculatins

1. Calculation of M'_{HCI} in the reactions of HCl with Na₂S₂O₃ in 15 mL solution:

- $(M'_{HCI})_1 =$
- $(M'_{HCI})_2 =$
- $(M'_{HCI})_3 =$
- $(M'_{HCI})_4 =$
- $(M'_{HCI})_5 =$

Exp.	V _{HCI}	V_{H_2O}	$V_{Na_2S_2O_3}$	M' _{HCI}	t	$\frac{1}{t}$	$-\log M'_{HCI}$	$-\log \frac{1}{t}$
1	5	0	10					
2	4	1	10					
3	3	2	10					
4	2	3	10					
5	1	4	10					

2. Obtaining the order, n, from the plot of $\log \frac{1}{t}$ versus $\log M'_{HCI}$ according to the equation: $\log \frac{1}{t} = \log k + m \log \log M'_{HCI}$

slope =

n =

Rate law:

Rate constant:

k =

Experiment (10) Graphical relation between log $\frac{1}{t}$ and log $M'_{Na_2S_2O_3}$

Experiment (10) Graphical relation between $\log \frac{1}{t}$ and $\log M'_{HCl}$

32

EXPERIMENT (11) Determination of the Molar Mass of An Organic Compound By The Depression of Its Freezing Point

DATE: STUDENT'S NAME: STUDENT'S NUMBER:

Results:

	Unknown A	Unknown B
Mass of solvent m ₁ (g)		
Mass of solute $m_2(g)$		
t _{solvent} (°C)		
t _{solution} (°C)		
$\Delta t_{\rm f} = t_{\rm solvent} - t_{\rm solution} (^{\rm o}{\rm C})$		

Calculations:

- Molal freezng point edpression constant of solvent = $K_f = 1.86 \text{ °C molal}^{-1}$ Molar mass of solute in g mol⁻¹ = $M_2 = K_f \frac{m_2 \times 1000}{\Delta t_f \times m_2}$ •
- •

 $(M_2)_A =$

 $(M_2)_B =$

EXPERIMENT (12) <u>Determination of the Molar Mass of An Organic Compound</u> <u>By The Steam Distillation</u>

DATE: STUDENT'S NAME: STUDENT'S NUMBER:

Results:

1. Volume of water after distillation = V_{H_2O} = cm³ 2. Density of water = d_{H_2O} = 1 g cm⁻³

cm³

- 3. Volume of unknown liquid after distillation $V_{B} =$
- 4. Density of unknown liquid = $d_B = 1.106 \text{ g cm}^{-3}$
- 5. Atmosphere pressure in Riyadh $P^\circ = 720$ mmHg

6.

P _{water} (mmHg)	489.8	504.7	526.0
$T_{b, water}$ (°C)	88	89	90

7. $P_{total} = P^{\circ} = 720 \text{ mmHg}$

Calculationss:

- 1. Calculation of the unknown vapor pressure:
- 2. Calculation of the unknown molar mass:

