King Saud University
Faculty of Science
Chemistry Department

General Practical Chemistry EXPERIMENTS REOPRTS 101 Chem \& 104 Chem

Text Book:
Practical General Chemistry
By
Dr. Ahmad Al-Owais \& Dr. Abdulaziz Al-Wassil

LIST OF EXPERIMENTS

Week	Date	Experiment	Book Page
1		Determination of a Liquid Density	$131-133$
2		Preparation of a Standard Solution of Sodium Carbonate	$63-86$
3		Determination of Organic Indicators for Acid Base Titrations	$95-98$
4		Determination of Sodium Hydroxide Concentration By Titrations With A Standard Solution of Hydrochloric Acid +Quiz 1	$99-109$
5		Determination of Acetic Acid Concentration By Titrations With A Standard Solution of Sodium Hydroxide	$99-109$
6		Determination of Hydrochloric Acid Concentration By Titrations With A Standard Solution of Sodium Carbonate	$87-93$
7		First Exam	Measurement of Gas Diffusion (Graham's Law of Diffusion)
8		Determination of Critical Solution Temperature+ Quiz 2	$177-180$
9		Hess's Law	$197-203$
10		Effect of Concentration on Reaction Rate	$183-190$
11		Determination of The Molar Mass of An Organic Compound by The Depression of Its Freezing Point	$205-216$
12		Determination of The Molar Mass of An Organic Compound by The Steam Distillation+ Quiz 3	$191-196$
13		Second Exam	
14			

download the free trial online at nitropdf.com/professional

EXPERIMENT (1)
 Determination of a Liquid Density

DATE:

STUDENT'S NAME:
STUDENT'S NUMBER:

Symbols

Mass of the empty beaker in $\mathrm{g}=\mathrm{m}_{1}$
Mass of the beaker and the liquid in $\mathrm{g}=\mathrm{m}_{2}$
Mass of the liquid $\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right)$ in $\mathrm{g}=\mathrm{m}$
Volume of the liquid in $\mathrm{cm}^{3}=\mathrm{V}$
Density of liquid $\left(\frac{\mathrm{m}}{\mathrm{V}}\right)$ in $\mathrm{g} / \mathrm{cm}^{3}=\mathrm{d}$

Notes:

The liquid used in this experiment is:

Results and Calculations:

1. Calculate the liquid's density in all cases and put in the following table:

$\mathbf{V}\left(\mathbf{c m}^{\mathbf{3}}\right)$								
$\mathbf{m}_{2}(\mathrm{~g})$								
$\mathbf{m}_{1}(\mathrm{~g})$								
$\mathbf{m}(\mathrm{g})$								
$\mathbf{d}\left(\mathrm{g} / \mathrm{cm}^{\mathbf{3}}\right)$								

2. Plot the relationship between the mass of the liquid (m) on the Y-axis versus its volume (V) on the X -axis, and find the liquid's density from the slope.
slope $=\mathrm{d}=\frac{\Delta \mathrm{m}}{\Delta \mathrm{V}} \frac{-}{-}=$ \qquad

Experiment (1)

Graphical relation between mass of liquid (m) and its volume (V)

EXPERIMENT (2)
 Preparation of a Standard Solution of Sodium Carbonate

DATE:
STUDENT'S NAME:
STUDENT'S NUMBER:

Molar masses ($\mathbf{g ~ m o l}^{-1}$): $\mathrm{C}=12, \quad \mathrm{O}=16 \quad, \quad \mathrm{Na}=23$

Results \& calculation:

Molarity of sodium carbonate standard solution $=\mathrm{C}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=\quad \mathrm{mol} \mathrm{L}^{-1}$
Molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{M}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=\quad \mathrm{g} \mathrm{mol}^{-1}$
Volume of solution in $\mathrm{L}=\mathrm{V}=\quad \mathrm{L}$
Number of mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{n}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=\mathrm{C}_{\mathrm{Na}_{2} \mathrm{CO}_{3}} \times \mathrm{V}=\quad \times \quad=\mathrm{mol}$
Mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{m}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=\mathrm{n}_{\mathrm{Na}_{2} \mathrm{CO}_{3}} \times \mathrm{M}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=\quad \times \quad \mathrm{g}$

EXPERIMENT (3)

Determination of Organic Indicators for Acid Base Titrations
DATE:
STUDENT'S NAME:
STUDENT'S NUMBER:

A) Titration of a strong acid $(\mathbf{H C l})$ with a strong base $(\mathbf{N a O H})$ using the pH meter

Molar masses ($\mathbf{g ~ m o l}^{\mathbf{- 1}}$): $\mathrm{H}=1 \quad, \quad \mathrm{O}=16 \quad, \quad \mathrm{Na}=23$

Results \& calculation:

Volume of base added $\left(\mathrm{V}_{\text {base }}\right)$	0	5	10	15	20	22.5	24	24.5	24.8	25	26	28	30
Calculated pH	1.2	1.3	1.4	1.6	1.9	2.3	2.8	3.3	3.6	9.7	11	11.4	11.6
Measured pH													

HCl molarity $=\mathrm{M}=$ molar
HCl volume $=\mathrm{V}=\mathrm{mL}$
NaOH molarity $=\mathrm{M}^{\prime}=\quad$ molar
NaOH volume $($ from diagram $)=\mathrm{V}^{\prime}=\quad \mathrm{mL}$

1. Knowing that the pH range for methyl orange indicator (M.O.) is from 3.1 to 4.4 , and for phenol phethaline indicator ($\mathrm{Ph} . \mathrm{Ph}$.) is from 8 to 10 , plot pH (on the Y -axis) against $\mathrm{V}_{\text {base }}$ (on the X -axis).

Created with

From the graph:

- The pH range at the equivalent point is from () to () .
- The suitable indicator for this titration is ().

2. Calculation of the base molarity :
3. Calculation of the base concentration in $g \mathrm{~L}^{-1}$:
4. Calculation of $\mathrm{pH}, \mathrm{pOH},\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$:

	HCl solution	NaOH solution
pH		
pOH		
$\left[\mathrm{H}^{+}\right]$		
$\left[\mathrm{OH}^{-}\right]$		

download the free trial online at nitropdf.com/professional

Experiment (3)

A) Graphical relation between the (pH) and the volume of base added (V) (Titration of a strong acid with a strong base)

EXPERIMENT (3)
 Determination of Organic Indicators for Acid Base Titrations

DATE:

STUDENT'S NAME:
STUDENT'S NUMBER:

B) Titration of a weak acid $\left(\mathrm{CH}_{3} \underline{\mathrm{COOH}) \text { with a strong base }(\mathrm{NaOH})}\right.$ using the pH meter

| Molar masses $\left(\mathbf{g ~ m o l}^{-1}\right): ~$ | $\mathrm{H}=1 \quad \mathrm{C}=12$ | $\mathrm{O}=16$ |
| :--- | :--- | :--- | :--- |

Results \& calculation:

Volume of base added $\left(\mathrm{V}_{\text {base }}\right)$	0	2	4	6	8	10	12	14	16	17	17.5	18	18.5
Calculated pH	1.2	1.3	1.4	1.6	1.9	2.3	2.8	3.3	3.6	9.7	11	11.4	11.6
Measured pH													

$\mathrm{CH}_{3} \mathrm{COOH}$ molarity $=\mathrm{M}=$ molar
$\mathrm{CH}_{3} \mathrm{COOH}$ volume $=\mathrm{V}=\mathrm{mL}$
NaOH molarity $=\mathrm{M}^{\prime}=\quad$ molar
NaOH volume $($ from diagram $)=\mathrm{V}^{\prime}=\quad \mathrm{mL}$
Requirements:

1. Knowing that the pH range for methyl orange indicator (M.O.) is from 3.1 to 4.4 , and for phenol phethaline indicator ($\mathrm{Ph} . \mathrm{Ph}$.) is from 8 to 10 , plot pH (on the Y-axis) against $\mathrm{V}_{\text {base }}$ (on the X -axis).

Created with

From the graph:

- The pH range at the equivalent point is from () to ().
- The suitable indicator for this titration is ().

5. Calculation of the base molarity :
6. Calculation of the base concentration in g^{-1} :
7. Calculation of $\mathrm{pH}, \mathrm{pOH},\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$:

	HCl solution	NaOH solution
pH		
pOH		
$\left[\mathrm{H}^{+}\right]$		
$\left[\mathrm{OH}^{-}\right]$		

Experiment (3)
B) Graphical relation between the (pH) and the volume of base added (V) (Titration of a weak acid with a strong base)

EXPERIMENT (4)
 Determination of Sodium Hydroxide Concentration By Titrations With A Standard Solution of Hydrochloric Acid
 DATE:
 STUDENT'S NAME:
 STUDENT'S NUMBER:

Molar masses ($\mathbf{g ~ m o l}^{-1}$): $\mathrm{H}=1 \quad, \quad \mathrm{O}=16 \quad \mathrm{Na}=23$

Results:

FIRST: Volume of NaOH using Ph.Ph. as indicator:

Exp.	Initial reading	Final reading	Volume (V) mL	Average
1				
2				
3				

Calculations:

1. Volume of $\mathrm{NaOH}=\mathrm{V}=$
2. Volume of $\mathrm{HCl}=\mathrm{V}^{\prime}=$ mL
3. Molarity of $\mathrm{HCl}=\mathrm{M}^{\prime}=\quad \mathrm{mol} \mathrm{L}^{-1}$
4. The reaction equation is:
5. Calculation of the base molarity:

- Ph.Ph. indicator used is (
- pH range of indicator is from () to ().
- At the end point the color of indicator changed from () to ().
- From the reaction equation using Ph .Ph. as indicator:
$\mathrm{n}=$
$\mathrm{n}^{\prime}=$

6 Calculation of the base concentration in $\mathrm{g} \mathrm{L}^{-1}$:

SECOND: Volume of NaOH using M.O. as indicator:

Exp.	Initial reading	Final reading	Volume (V) mL	Average
1				
2				
3				

Calculations:

1. Volume of $\mathrm{NaOH}=\mathrm{V}=$
mL
2. Volume of $\mathrm{HCl}=\mathrm{V}^{\prime}=$ mL
3. Molarity of $\mathrm{HCl}=\mathrm{M}^{\prime}=\quad \mathrm{mol} \mathrm{L}^{-1}$
4. The reaction equation is:
5. Calculation of the base molarity:

- Indicator used is (
- pH range of indicator is from () to ().
- At the end point the color of indicator changed from () to ().
- From the reaction equation using M.O. as indicator:
$\mathrm{n}=$
$\mathrm{n}^{\prime}=$

6. Calculation of the base concentration in $g \mathrm{~L}^{-1}$:

EXPERIMENT (5)

Determination of Acetic Acid Concentration By Titrations With A Standard Solution of Sodium Hydroxide

DATE:
STUDENT'S NAME:
STUDENT'S NUMBER:

| Molar masses $\left(\mathbf{g ~ m o l}^{-1}\right): \mathrm{H}=1 \quad, \mathrm{C}=12$ | $\mathrm{O}=16$ |
| :--- | :--- | :--- | :--- |

Results:

FIRST: Volume of NaOH using M.O. as indicator:

Exp.	Initial reading	Final reading	Volume (V) mL	Average	
1					
2					
3					

Calculations:

1. Volume of $\mathrm{NaOH}=\mathrm{V}=$
mL
2. Volume of $\mathrm{CH}_{3} \mathrm{COOH}=\mathrm{V}^{\prime}=\quad \mathrm{mL}$
3. Molarity of $\mathrm{NaOH}=\mathrm{M}^{\prime}=\quad \mathrm{mol} \mathrm{L}{ }^{-1}$
4. The reaction equation is:
5. Calculation of the acid molarity:

- Indicator used is ().
- pH range of indicator is from () to ().
- At the end point the color of indicator changed from () to ().
- From the reaction equation using M.O. as indicator:
$\mathrm{n}=$
$\mathrm{n}^{\prime}=$

6. Calculation of the acid concentration in $g \mathrm{~L}^{-1}$:

SECOND: Volume of NaOH using $\mathrm{Ph} . \mathrm{Ph}$. as indicator:

Exp.	Initial reading	Final reading	Volume (V) mL	Average		
1						
2						
3						

Calculations:

1. Volume of $\mathrm{NaOH}=\mathrm{V}=\quad \mathrm{mL}$
2. Volume of $\mathrm{CH}_{3} \mathrm{COOH}=\mathrm{V}^{\prime}=\quad \mathrm{mL}$
3. Molarity of $\mathrm{NaOH}=\mathrm{M}^{\prime}=\quad \mathrm{mol} \mathrm{L}{ }^{-1}$
4. The reaction equation is:
5. Calculation of the acid molarity:

- Indicator used is ().
- pH range of indicator is from () to ().
- At the end point the color of indicator changed from (
) to ().
- From the reaction equation using M.O. as indicator:
$\mathrm{n}=$
$\mathrm{n}^{\prime}=$

6. Calculation of the acid concentration in $g \mathrm{~L}^{-1}$:

EXPERIMENT (6)

Determination of Hydrochloric Acid Concentration By Titrations With A Standard Solution of Sodium Carbonate
DATE:
STUDENT'S NAME:
STUDENT'S NUMBER:
Molar masses (g mol ${ }^{-\mathbf{1}}$): $\mathrm{H}=1 \quad, \quad \mathrm{Cl}=35.45$

Results:

Volume of HCl using M.O. as indicator:

Exp.	Initial reading	Final reading	Volume (V) mL	Average		
1						
2						
3						

Calculations:

1. Volume of $\mathrm{HCl}=\mathrm{V}=\mathrm{mL}$
2. Volume of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{V}^{\prime}=\quad \mathrm{mL}$
3. Molarity of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{M}^{\prime}=\quad \mathrm{mol} \mathrm{L}^{-1}$
4. The reaction equation is:
5. Calculation of the acid molarity:

- Indicator used is ().
- pH range of indicator is from () to ().
- At the end point the color of indicator changed from () to ().
- From the reaction equation using M.O. as indicator:
$\mathrm{n}=$
$\mathrm{n}^{\prime}=$

6. Calculation of the acid concentration in $\mathrm{g} \mathrm{L}^{-1}$:
download the free trial online at nitropdf.com/professional

EXPERIMENT (7)

 Measurement of Gas Diffusion(Graham's Law of Diffusion)

STUDENT'S NAME:

STUDENT'S NUMBER:
Molar masses (g mol ${ }^{-1}$): $\mathrm{H}=1 \quad, \mathrm{~N}=14 \quad \mathrm{Cl}=35.45$

$$
\frac{r_{\mathrm{NH}}^{3}}{r_{\mathrm{HCl}}}=\frac{\sqrt{\bar{d}_{\mathrm{HCl}}}}{\sqrt{\mathrm{~d}_{\mathrm{NH}_{3}}}}=\frac{\sqrt{\mathrm{M}_{\mathrm{HCl}}}}{\sqrt{\mathrm{M}_{\mathrm{NH}_{3}}}} \quad \text { (Graham's law) }
$$

Results:

1. Distance moved by HCl gas $\left(\mathrm{L}_{\mathrm{HCl}}\right)=$ cm
2. Distance moved by NH_{3} gas $\left(\mathrm{L}_{\mathrm{NH}_{3}}\right)=$ cm
3. Reaction equation:

Calculations:

1. The theoretical ratio between the molar masses of the two gases (Y) :
2. The measured ratio between the molar masses for the two gases (X):
3. The practical molar mass of one of the two gases $\left(\mathrm{M}_{\mathrm{Y}}\right)$ knowing the theoretical molar mass of the other gas and the values of $\mathrm{L}_{\mathrm{HCl}}$ and $\mathrm{L}_{\mathrm{NH}_{3}}$ using Graham's law:

$$
\frac{\mathrm{L}_{\mathrm{NH}_{3}}}{\mathrm{~L}_{\mathrm{HCl}}}=\frac{\sqrt{\mathrm{M}} \overline{\overline{\mathrm{HCl}}}}{\sqrt{\overline{\mathrm{NH}_{3}}}}
$$

4 Calculation of the theoretical molar mass of the same gas using the molar masses of its atoms $\left(\mathrm{M}_{\mathrm{X}}\right)$:

5 Error percentage:

- First method:

Error percentage $= \pm \frac{\text { difference betweentheoretical and practical ratios }}{\text { theoretical ratio }} \times 100$

$$
\text { Error percentage }= \pm \frac{Y-X}{Y} \times 100
$$

- Second method

Error percentage $= \pm \frac{\text { difference betweentheoretical and practical molarmasses }}{\text { theoretical molar mass }} \times 100$

$$
\text { Error percentage }= \pm \frac{M_{Y}-M_{X}}{M_{X}} \times 100
$$

download the free trial online at nitropdf.com/professional

EXPERIMENT (8)

Determination of Critical Solution Temperature

DATE:

STUDENT'S NAME:
STUDENT'S NUMBER:

Results:

Experimental results and calculations:

EXP. No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mass of phenol (g)	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Mass of water (g)	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mass of solution (g)	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Mass \% of water														
Mass \% of phenol														
Miscibility temperature $\left({ }^{\circ} \mathrm{C}\right)$														

Calculations:

1. A SAMPLE CALCULATINN OF A MASS PERCNTAGE

Mass $\%$ of water $=\frac{\text { mass of water }}{\text { massof mixture }} \times 100$	Mass $\%$ of phenol $=\frac{\text { mass of phenol }}{\text { massof mixture }} \times 100$

2. From the graphical relation between miscibility temperature (Y-axis) and the mass percentage of phenol (X-axis):

- The critical solution temperature (C.S.T) $=$
${ }^{\circ} \mathrm{C}$
- Mass \% of phenol =
- Mass \% of water =

Experiment (8)

Graphical relation between miscibility temperature and the mass percentage of phenol

EXPERIMENT (9)
 Hess's Law

DATE:
 STUDENT'S NAME:
 STUDENT'S NUMBER:

Diagrammatic illustration of Hess's law:

General Notes:

1. Density of NaOH solution $=\mathrm{d}=1 \mathrm{~g} / \mathrm{cm}^{3}$
2. Specific heat of NaOH solution $=\rho_{\text {solution }}=4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$
3. Specific heat for calorimeter (glass) $=\rho_{\text {calorimeter }}=0.836 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$
4. Volume of NaOH solutions used in all experiment $=\mathrm{V}=50 \mathrm{~mL}$
5. Mass of NaOH solutions in $\mathrm{g}=\mathrm{m}_{\text {solution }}=\mathrm{V} \times \mathrm{d}=50 \times 1=50 \mathrm{~g}$
6. Mass of calorimeter (glass tube) in $g=m_{\text {calorimeter }}$
7. Initial temperature in ${ }^{\circ} \mathrm{C}=\mathrm{t}_{1}$
8. Final temperature in ${ }^{\circ} \mathrm{C}=\mathrm{t}_{2}$
9. Temperature change in ${ }^{\circ} \mathrm{C}=\Delta \mathrm{t}$
10. Heat gained by solution in $J=q_{1}=\rho_{\text {solution }} \times \mathrm{m}_{\text {solution }} \times \Delta \mathrm{t}$
11. Heat gained by calorimeter in $\mathrm{J}=\mathrm{q}_{2}=\rho_{\text {calorimeter }} \times \mathrm{m}_{\text {calorimeter }} \times \Delta \mathrm{t}$
12. Total heat gained in $\mathrm{J}=\mathrm{Q}=\mathrm{q}_{1}+\mathrm{q}_{2}$
13. Number of moles of NaOH used in:

- experiment $1=\left(n_{\mathrm{NaOH}}\right)_{1}=\frac{\left(\mathrm{m}_{\mathrm{NaOH}) 1}\right.}{M_{\mathrm{NaOH}}}$
- experiment $2=\left(n_{\mathrm{NaOH}}\right)_{2}=\frac{\left(\mathrm{m}_{\mathrm{NaOH}) 2}\right.}{\mathrm{M}_{\mathrm{NaOH}}}$
- experiment $3=\left(\mathrm{n}_{\mathrm{NaOH}}\right)_{3}=(\text { molarity })_{\mathrm{NaOH}} \times \mathrm{V}_{\mathrm{NaOH}}$

14. $\Delta \mathrm{H}=\frac{\bullet \text { exper }}{\mathrm{n}_{\mathrm{NaOH}}}$

Calculations and results:

	Experiment 1	Experiment 2	Experiment 3
$\mathrm{t}_{1}\left({ }^{\circ} \mathrm{C}\right)$			
$\mathrm{t}_{2}\left({ }^{\circ} \mathrm{C}\right)$			
$\Delta \mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$			
$\mathrm{q}_{1}(\mathrm{~J})$			
$\mathrm{q}_{2}(\mathrm{~J})$			
$\mathrm{Q}(\mathrm{J})$			
$\mathrm{n}_{\text {NaOH }}(\mathrm{mol})$			
$\left.\mathrm{Hy} \mathrm{mol}{ }^{-1}\right)$			

Verification of Hess's law using thermochemical equations:

1)
2)
3)

EXPERIMENT (10)
 Effect of Concentration on Reaction Rate

(Determination of the order of the sodium thiosulphate and hydrochloric acid reaction)

DATE:
STUDENT'S NAME:
STUDENT'S NUMBER:

Reaction equation:

Rate law:

Arrhenius equation is:

The graphical plot:

Determination of the reaction order with respect to sodium thiosulphate:

- Symbols

1. Volume of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ before dilution $=\mathrm{V}_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}$
2. Volume of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ After dilution $=\mathrm{V}^{\prime} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=29 \mathrm{~mL}$
3. Molarity of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ before dilution $=\mathrm{M}_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}=0.15 \mathrm{~mol} \mathrm{~L}^{-1}$
4. Molarity of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ after dilution $=\mathrm{M}^{\prime} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=\frac{\mathrm{M}_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}} \times \mathrm{V}_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}^{\mathrm{V}^{\prime} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}}{}$
5. Reaction time in seconds $=\mathrm{t}$
6. Reaction rate in seconds ${ }^{-1}=\frac{1}{t}$

- Calculatoins

1. Calculation of $\mathrm{M}^{\prime} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in the reactions of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ with HCl in 29 mL solution:

- $\left(\mathrm{M}^{\prime} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)_{1}=$
- $\left(\mathrm{M}^{\prime} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}=$
- $\left(\mathrm{M}^{\prime} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)_{3}=$
- $\left(\mathrm{M}^{\prime} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)_{4}=$
- $\left(\mathrm{M}^{\prime} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)_{5}=$

Exp.	$\mathrm{V}_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}$	$\mathrm{~V}_{\mathrm{H}_{2} \mathrm{O}}$	$\mathrm{V}_{\mathrm{HCl}}$	$\mathrm{M}^{\prime}{ }_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}$	t	$\frac{1}{\mathrm{t}}$	$-\log \mathrm{M}^{\prime}{ }_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}$	$-\log \frac{1}{\mathrm{t}}$
1	25	0	4					
2	20	5	4					
3	15	10	4					
4	10	15	4					
5	5	20	4					

2. Obtaining the order, n, from the plot of $\log \frac{1}{\mathrm{t}}$ versus $\log \mathrm{M}_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}^{\prime}$ according to:

$$
\log \frac{1}{\mathrm{t}}=\log \mathrm{k}+\mathrm{n} \log \mathrm{M}_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}^{\prime}
$$

slope $=$
$\mathrm{n}=$
Determination of the reaction order with respect to hydrogen chloride:

- Symbols

1. Volume of HCl before dilution $=\mathrm{V}_{\mathrm{HCl}}$
2. Volume of HCl after dilution $=\mathrm{V}^{\prime} \mathrm{HCl}=15 \mathrm{~mL}$
3. Molarity of HCl before dilution $=\mathrm{M}_{\mathrm{HCl}}=1 \mathrm{~mol} \mathrm{~L}^{-1}$
4. Molarity of HCl after dilution $=\mathrm{M}_{\mathrm{HCl}}^{\prime}=\frac{\mathrm{M}_{\mathrm{HCl}} \times \mathrm{V}_{\mathrm{HCl}}}{\mathrm{V}^{\prime} \mathrm{HCl}}$
5. Reaction time in seconds $=\mathrm{t}$
6. Reaction rate in seconds ${ }^{-1}=\frac{1}{t}$

- calculatins

1. Calculation of $\mathrm{M}^{\prime}{ }_{\mathrm{HCl}}$ in the reactions of HCl with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in 15 mL solution:

- $\left(\mathrm{M}_{\mathrm{HCl}}^{\prime}\right)_{1}=$
- $\left(\mathrm{M}^{\prime} \mathrm{HCl}_{2}=\right.$
- $\left(\mathrm{M}^{\prime} \mathrm{HCl}_{3}=\right.$
- $\left(\mathrm{M}_{\mathrm{HCl}}^{\prime}\right)_{4}=$
- $\left(\mathrm{M}^{\prime} \mathrm{HCl}^{\prime}\right)_{5}=$

Exp.	$\mathrm{V}_{\mathrm{HCl}}$	$\mathrm{V}_{\mathrm{H}_{2} \mathrm{O}}$	$\mathrm{V}_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}$	$\mathrm{M}^{\prime} \mathrm{HCl}$	t	$\frac{1}{\mathrm{t}}$	$-\log \mathrm{M}_{\mathrm{HCl}}^{\prime}$	$-\log \frac{1}{\mathrm{t}}$
1	5	0	10					
2	4	1	10					
3	3	2	10					
4	2	3	10					
5	1	4	10					

2. Obtaining the order, n, from the plot of $\log \frac{1}{\mathrm{t}}$ versus $\log \mathrm{M}_{\mathrm{HCl}}^{\prime}$ according to the equation:

$$
\log \frac{1}{\mathrm{t}}=\log \mathrm{k}+\mathrm{m} \log \log \mathrm{M}_{\mathrm{HCl}}^{\prime}
$$

slope $=$
$\mathrm{n}=$

Rate law:

Rate constant:

$\mathrm{k}=$

Experiment (10)
Graphical relation between $\log \frac{1}{t}$ and $\log M_{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}^{\prime}$

Experiment (10)
Graphical relation between $\log \frac{1}{\mathrm{t}}$ and $\log \mathrm{M}_{\mathrm{HCl}}^{\prime}$

EXPERIMENT (11)
 Determination of the Molar Mass of An Organic Compound By The Depression of Its Freezing Point

DATE:
 STUDENT'S NAME:
 STUDENT'S NUMBER:

Results:

	Unknown A	Unknown B
Mass of solvent $\mathrm{m}_{1}(\mathrm{~g})$		
Mass of solute $\mathrm{m}_{2}(\mathrm{~g})$		
$\mathrm{t}_{\text {solvent }}\left({ }^{\circ} \mathrm{C}\right)$		
$\mathrm{t}_{\text {solution }}\left({ }^{\circ} \mathrm{C}\right)$		
$\Delta \mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\text {solvent }}-\mathrm{t}_{\text {solution }}\left({ }^{\circ} \mathrm{C}\right)$		

Calculations:

- Molal freezng point edpression constant of solvent $=\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} \mathrm{molal}^{-1}$
- Molar mass of solute in $\mathrm{g} \mathrm{mol}^{-1}=\mathrm{M}_{2_{-}}=\mathrm{K}_{\mathrm{f}} \frac{\mathrm{m}_{\mathrm{z}} \times 1000}{\Delta \mathrm{t}_{\mathrm{f}} \times \mathrm{m}_{\mathrm{z}}}$

$$
\left(\mathrm{M}_{2}\right)_{\mathrm{A}}=
$$

$$
\left(\mathrm{M}_{2}\right)_{\mathrm{B}}=
$$

EXPERIMENT (12)
 Determination of the Molar Mass of An Organic Compound By The Steam Distillation

DATE:

STUDENT'S NAME:
STUDENT'S NUMBER:

Results:

1. Volume of water after distillation $=\mathrm{V}_{\mathrm{H}_{2} \mathrm{O}}=\quad \mathrm{cm}^{3}$
2. Density of water $=d_{\mathrm{H}_{2} \mathrm{O}}=1 \mathrm{~g} \mathrm{~cm}^{-3}$
3. Volume of unknown liquid after distillation $V_{B}=\mathrm{cm}^{3}$
4. Density of unknown liquid $=d_{B}=1.106 \mathrm{~g} \mathrm{~cm}^{-3}$
5. Atmosphere pressure in Riyadh $\mathrm{P}^{\circ}=720 \mathrm{mmHg}$
6.

$\mathrm{P}_{\text {Water }}^{\circ}(\mathrm{mmHg})$	489.8	504.7	526.0
$\mathrm{~T}_{\mathrm{b}, \text { water }}\left({ }^{\circ} \mathrm{C}\right)$	88	89	90

7. $\mathrm{P}_{\text {total }}=\mathrm{P}^{\circ}=720 \mathrm{mmHg}$

Calculationss:

1. Calculation of the unknown vapor pressure:
2. Calculation of the unknown molar mass:
