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Preface

“Reading, after a certain age, diverts the mind too much from its creative pursuits.
Any man who reads too much and uses his own brain too little falls into lazy habits of
thinking.” (Albert Einstein)

“I wrote this book, and the person quoting me here is taking credit for it.” (xkcd)

IF, on a journey through life sciences, one leaves the beaten path of analyzing genes and genomes,
there is a good chance that one will get in contact with a particular analytical method: Mass

spectrometry. This analytical technique serves as a tool for the analysis of proteins, metabolites,
glycans, lipids, and sometimes even DNA and RNA. To give an idea, the PubMed database1 lists
21 395 articles published in 2018 that carry the terms “mass spectrometry”, “LC-MS”, or “GC-
MS” in title or abstract. This increased from 11 444 publications in 2000, with a growth rate of
about 8 % per year. Mass spectrometry is a high-throughput technique, and a single instrument
can produce gigabytes of data every day. On the other hand, interpreting mass spectra can be
involved, and manual interpretation through an expert may require a substantial amount of time.

The textbook Algorithmic Mass Spectrometry focuses on the automated analysis of mass
spectrometry data using algorithms, combinatorics, and statistical evaluation. On the application
side, the focus is on life science questions such as protein or metabolite identification. As
mass spectrometry is rapidly evolving, questions and paradigms for the algorithmic analysis
perpetually change. But certain aspects of this analysis remain constant, and certain algorithmic
techniques kept reappearing over the last decades. This textbook tries to provide algorithmic
techniques for efficiently solving such questions, and to show how these techniques can be used
for, say, peptide de novo sequencing.

This textbook (you may also call it “lecture notes”) is based on material that I have lectured
at Bielefeld University and the Friedrich-Schiller-University Jena. Several people contributed to
this textbook in one way or another, including (but not limited to) Andreas Hildebrandt, Anton
Pervukhin, Birte Kehr, Florian Rasche, Kai Dührkop, Marcel Martin, Marcus Ludwig, Markus
Fleischauer, Markus Fricke, Stefanie Dietrich, Tobias Marschall, Zsuzsanna Lipták, and many
students of the courses I have lectured. The data for Fig. 5.1 was provided by William S. Noble. I
thank all of you for your help!

This textbook is still work in progress. I have decided to release it into the wild now, as it
appears that I am not going to “completely finish” it, ever. You will find many bugs, inaccuracies
and inconsistencies throughout this textbook. If you find them, please send me an email, and
I will be happy to correct them! I thank Hannes Röst and Magnus Palmblad for contributing
comments, improvements, corrections and bug reports on previous versions of this textbook.

What this textbook is about

This textbook is about “combinatorial and algorithmic questions and solutions related to mass
spectrometry, with a slight hint of statistics and machine learning.” This would not make a good
textbook title, though, so the slightly more catchy title “Algorithmic Mass Spectrometry” made the
race. I would have much preferred to call it “Computational Mass Spectrometry”, compare to the

1https://www.ncbi.nlm.nih.gov/pubmed/
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fields of Computational Geometry or Computational Algebra. But in view of other computational
fields such as Computational Biology, which comprise more than just algorithmics, combinatorics
and machine learning, I have decided to use the more specific title.

In more detail, this textbook is about algorithms and combinatorics solutions that I found
clever and elegant. Very often, we need some algorithm to get from a given input to a desired
output; but also very often, this algorithm is mostly trivial. I have limited myself to cases where I
found the resulting algorithms particularly elegant. Sometimes, the problem is potentially mostly
irrelevant in practice (see for example glycan “sequencing” in Sec. 11) but the solution is elegant
and instructive, so I nevertheless included it. At the same time, this example demonstrates
the extent to which we can re-use ideas and concepts developed in this textbook. My selection
is obviously limited by what papers I have written or read; and although I have read several
hundreds papers in this field, that is still only a small fraction of what has been written. If you
know some interesting algorithm for a not-too-shabby application, please let me know; see also
Chapter 13.

All methods and algorithms are presented with the following requirements in mind:

Speci�cation. For each method presented in this textbook, we will define input and output as
unambiguously as possible. As an example, consider peptide de novo sequencing: The input
will be an (idealized) tandem mass spectrum in the form of a peak list, plus additional
information such as the precursor mass. The output will be a peptide sequence or a peptide
sequence with “mass gaps”, possibly with some kind of quality measurement. It is not
acceptable if a method for peptide sequencing will sometimes return a peptide sequence,
sometimes something completely different, and sometimes nothing at all.

Generalizability. The methods presented in this textbook, will work for all input data, given that
the input data stays within the defined borders. This does not mean that the results will
in all cases be useful: the “bullshit in, bullshit out” saying still holds true. But if the data
is of good quality, we do not want methods that might work for certain input, but fail for
the next; in particular, we do not want methods where we cannot even explain why the
method worked or failed. An example is a peptide de novo sequencing method that will
not return any peptide sequence for 90 % of the tandem mass spectra, even if all of them
are of excellent quality. The algorithmic mass spectrometry literature is full of “anecdotal”
methods that worked for a certain type of input, but the authors cannot proof that it will
work for all input; sometimes, the authors openly admit that the method will not work for
certain input, which is certainly preferable.

Correctness. For all methods and algorithms presented, we will proof that the method does what
it is supposed to do — or at least, we will indicate how it can be proven. Algorithmics
is actually a very formal science, where a proof is required, showing that a certain input
is transformed into a certain output in all cases. If a method ultimately joins, say, five
different methods from this textbook as subroutines, then it is not acceptable that any of
these subroutines might work for some data, and might fail for others.

Running time. This is an extremely important aspect of algorithmics: How fast will my algo-
rithm process the input? This is usually done in the form of a proven guarantee, stating
that for any input, the algorithm will not require more that this-and-this time. Only the
asymptotic behavior of the running time is reported (big-O notation, Landau symbols): All
algorithms tend to be sufficiently fast for small inputs; but what happens if the input gets
large?

You might argue that “algorithmic mass spectrometry” is rather a part of cheminformatics than
of bioinformatics. But most methods and concepts in algorithmic mass spectrometry have been
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developed by bioinformaticians who wanted to analyze biomolecules, such as proteins, peptides,
lipids, metabolites, glycans, or even DNA and RNA. In fact, one can say that “it all started with
peptide sequencing”, see Chapter 2.

Considering that some readers might not have a background in combinatorics and algorithmics,
I have included some “trivial” algorithms that show how you can transform a recurrence into an
algorithm, see for example Algorithms 2.1 and 3.1. This is done to convince the reader that these
algorithms are, well, trivial. In the same spirit, I have included algorithms on how to derive
optimal and suboptimal solutions from dynamic programming tables, see for example Alg. 2.2.
This should be well-known to bioinformatics students, as it is very similar to how you compute
pairwise sequence alignments. See also Sec. 14.4.

What this textbook is not about

There is an enormous amount of topics which are not covered in this textbook:

• As noted, this textbook is not about computational mass spectrometry in the general
meaning. For example, aspects such as signal processing, data storage and retrieval, web
technology, user interfaces, or file formats will be ignored. We assume that spectra have been
preprocessed, so that all we have to deal with are peak lists, where each peak is described
by its mass and intensity, and possibly other peak attributes such as “quality of fit”.

• Unfortunately, the lack of signal processing details implies that quantitative approaches are
not covered, either.

• The selection of problems and solutions presented is not a compilation of the ten (or so) most
important problems in algorithmics mass spectrometry. I do not even know how to rank
problems by application importance. In truth, the selection is extremely biased by my own
research interests.

• This textbook is not about machine learning. In machine learning (ML), we want to
automatically learn to recognize complex patterns, and make decisions based on data.
Successful applications of ML in computational mass spectrometry have been reported in
the literature, for topics such as predicting “proteotypic” peptides [97, 189], post-processing
database searches [141], clustering peaks [38] or mass spectra [289], or predicting tandem
mass spectra [1, 2, 313]. I might touch upon one or two such applications, but I will not
explain the ML machinery that is doing the work; to this end, the description has to stay
rather shallow.

• This textbook is not about rule-based approaches. Such approaches combine hand-crafted
sets of rules that have been collected from the MS literature over years or decades. Such
approaches have dominated metabolite mass spectrometry for some time. From an algorith-
mic point of view, this is rather boring; in addition, one might argue that it has not been
very successful.

• This textbook is not a mass spectrometry textbook. In contrast, we will only look at those MS
facts that are necessary to understand the task at hand, sometime deliberately ignoring the
complexity of the subject. Additional MS facts will be introduced only when we need them
and, hence, are scattered throughout this textbook. There exists a large number of textbooks
on mass spectrometry that the reader can choose from [59, 65, 116, 177, 274, 275, 301].

• This is not a chemistry textbook, and I am not a chemist. Sometimes, I will be rather careless
when it comes to chemical topics, such as molecular formulas. For example, I will write

vii



molecular formulas such as S87 or H-2O-1 even though quite obviously, no such molecules
can exist. But this textbook is about computing things, not about chemistry. Doing such
“tricks” will allow us to make calculations simpler and more comprehensible. Finance
mathematics has benefited a lot from writing things like $−10 although every school kid
knows that “minus ten dollars” cannot exist in reality. At some points , I will even deviate
from established definitions; for example, when it comes to “monoisotopic mass”.

I am not a statistician. I have included Chapters 5 and 6 on statistical significance because I
believe these are the bare (or bear) necessities you have to know if you want to do algorithmic
mass spectrometry. I have done my best not to write any humbug there. If you happen to be a
statistician, please be forgiving when you read these two chapters.

Finally, this textbook is not a review. Several review articles are written each year; as the field
is quickly developing, this textbook is most certainly not the right place for this. Rather, I will
stick with the essentials that keep reappearing over the years in this field, as well as questions
and applications which I find instructive or enjoyable. In the best case, both.

After this somewhat lengthy disclaimer, let’s get started. . .

A star (?) marks a hard exercise, a large star (F) marks a very hard exercise — which I might
not know the solution to.
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1 Introduction to Mass Spectrometry

“All science is either physics or stamp-collecting.” (Ernest Rutherford)

“The more I learn about experiments, the less I believe in them.” (Cédric Notredame)

GENOMICS and transcriptomics have been tremendously successful in the last 40 years.
Indispensable prerequisites for this success has been our capability to amplify DNA (via

polymerase chain reaction) and to read its sequence with low error rates. If we shift to proteomics
(the large-scale study of proteins) then it becomes eminent what the analytical problems are:
Firstly, there is no way to amplify proteins. Second, there is no experimental technique to
sequence proteins which could compete with classical Sanger sequencing [254], a method for
DNA sequencing which is more than 40 years old. Analysis is further complicated by the fact
that proteins fold to complex three-dimensional structures, and protein function can only be
understood if we take into account these structures. But even if we ignore the latter problem
— and we will do so throughout this textbook — it is understood that our situation is much worse
than for Genomics and DNA analysis. This is even more so the case for metabolite and glycan
analysis.

Here, mass spectrometry comes into play. This analytical technique has been developed
more than a century ago, and is routinely applied to biomolecules since the advent of “soft”
ionization techniques. Mass spectrometry has many advantages, such as high sensitivity when
measuring low-concentration molecules, high speed enabling high-throughput experiments, or
high accuracy that allows us to determine the mass of a molecule with outstanding precision.
But there is one peculiarity of mass spectrometry that makes its analysis quite different from,
say, genome sequencing data: We can only derive a single physical property of the molecules or
fragments under consideration, namely, their mass (or, more precisely, their mass-to-charge ratio).
Computing the mass of a known molecule is trivial. But how can we get back? How can we make
claims about the identity of molecules in our sample, when the only information we have available
is the mass of the molecule and, possibly, its fragments?

Computational mass spectrometry is a newly emerged field of research in bioinformatics with
connections to signal processing, database storage and retrieval, machine learning, sequence
analysis, statistics, discrete mathematics and graph theory, computational geometry, and others.
Computational mass spectrometry addresses the automated analysis of mass spectrometry data,
and is of fundamental importance due to the high-throughput nature of mass spectrometry data.

This chapter is meant as a short introduction, to get things started. It is not meant as a
reference that you can come back to in five to ten years, on a particular subject matter. Instead,
it introduces the “bare necessities” from chemistry and mass spectrometry, to provide somebody
from bioinformatics or computer science with enough information to dive into the application.
Many details have been simplified as much as possible, and you might want to look into the
literature to learn what is truly going on — in case this is already known. These simplifications
are made to set the focus on the computational side. Also, details can get extremely sophisticated,
and easily fill a textbook — and as it turns out, many textbook have been filled with these details
[59, 65, 116, 177, 274, 275, 301].
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1 Introduction to Mass Spectrometry

1.1 Atoms, elements, and molecules

I now give a very short and somewhat oversimplified introduction to atoms and elements. For
the moment, we limit ourselves to the pure essentials that are needed to get ourselves going. For
more details, in particular on isotopes and isotope distributions, see Chapter 7.

Atoms are the buildings blocks of matter that cannot be decomposed chemically. With the
exception of very particular environments such as neutron stars, all matter surrounding us is
composed of atoms. Atoms in turn are usually composed of three types of massive subatomic
particles: electrons which have a negative charge, protons which have a positive charge, and
neutrons which have no charge. Protons and neutrons make up the atomic nucleus and are called
nucleons. Atoms have no charge, and must contain the same number of protons and electrons; if
this identity is disrupted, the resulting particle is called an ion.

Atoms are classified by their atomic number, that is, the number of protons in the atom,
that defines which element the atom is. All atoms with identical atomic number share the
same chemical behavior and cannot be differentiated chemically. The elements most abundant
in biomolecules are hydrogen (symbol H) with atomic number 1, carbon (C, atomic number 6),
nitrogen (N, 7), oxygen (O, 8), phosphor (P, 15), and sulfur (S, 16). The “backbone” of all
biomolecules is made from carbon. Less abundant elements include bromine, fluorine, iodine,
silicon, copper, zinc, selenium, and tungsten.

Atoms of the same element can differ in their number of neutrons: Such atoms are called
isotopes of the element. Different isotopes occur naturally: For example, carbon can have six
or seven neutrons, with relative abundance 98.89% and 1.110% in nature, respectively. We will
ignore this problem for the moment, and come back to it in Chapter 7. For the moment, we
assume that all atoms of each element are monoisotopic: this is the isotope with highest natural
abundance, but compare to Chapter 7.

The mass of an atom is measured in “unified atomic mass units” with symbol “u”. In biochem-
istry and molecular biology, the term “Dalton” and the symbol “Da” are used for the same quantity,
and we will stick with this notation in the following. In 1961, the International Union of Pure and
Applied Chemistry defined 1 Dalton to be 1/12 of the mass of one atom of the carbon-12 isotope.1

An atom that contains n protons and neutrons will have a mass of roughly n Dalton. This is only
a rough estimate however, since it does not account for the mass contained in the binding energy
of an atom’s nucleus. This explains the mass defect, the difference between the atoms mass and
the larger sum of masses of the contained protons, neutrons, and electrons. See Table 1.1 for the
monoisotopic masses of the six elements most abundant in living beings. In this textbook, we will
often leave out the unit “Dalton”, in particular in the mathematical context of weighted alphabets.
It should be implicitly understood that all masses in this textbook are measured in Dalton, unless
explicitly stated otherwise.

A molecule consists of a stable system of two or more atoms. Molecules are the smallest particles
that retain the chemical properties of the pure chemical substance containing them. The atoms
in a molecule are joined by a chemical bond through shared pairs of electrons. The chemical
formula reflects the exact number of atoms that compose the molecule. A chemical formula may
also supply information about the types and spatial arrangement of bonds in the chemical. We
use the term molecular formula to indicate that we are solely interested in the number of atoms
that compose the molecule. Molecules with the same atoms in different arrangements are called
isomers. For example, the amino acids leucine and isoleucine are isomers. The nominal mass
(nucleon number) of a molecule is the sum of protons and neutrons of the constituting atoms. The
mass of a molecule is the sum of masses of the atoms it is composed of.

1Be warned that until 1961, physicists defined 1 amu (atomic mass unit) as 1/16 the mass of one oxygen-16 atom,
whereas chemists used the higher average mass of oxygen (the atomic weight) as their unit; see Chapter 7.
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1.2 A tiny primer on biomolecules

element symbol mass (Da)
hydrogen H 1.007825

carbon C 12.0
nitrogen N 14.003074

oxygen O 15.994915
phosphor P 30.973762

sulfur S 31.972071

Table 1.1: Six biologically important elements with monoisotopic masses in Dalton, rounded to
six digits. The proton mass is required to compute the mass of an ion (i.e., an ionized
molecule).

A chemical compound is somewhat similar to a molecule: Different from a molecule, it has
to be made from more than one element, so that O2 is a molecule but not a compound. More
importantly, compounds can be held together by other than covalent bonds, such as ionic or
metallic bonds. Measurement via mass spectrometry and soft ionization leaves (most) covalent
bonds intact, but ionic bonds are definitely broken. To this end, it is sometimes ambigious
if we talk about the compound present in the sample, or the molecule(s) measured in mass
spectrometry. For understanding this book, you can usually think of the terms “molecule” and
“compound” as interchangable.

1.2 A tiny primer on biomolecules

This section introduces the “players”: Computational mass spectrometry, to the largest extent,
deals with the analysis of biomolecules. For those who are not familiar with this subject matter, I
recapitulate some important facts. Everybody else immediately jumps to the next section.

The “manual of life” is written in deoxyribonucleic acids (DNA): it contains the genetic instruc-
tions specifying the biological development of all cellular forms of life.2 A DNA polymer is a
chemically linked chain of nucleotides, each of which consists of a sugar, a phosphate and one of
four kinds of bases, namely adenine, cytosine, guanine, and thymine. When encoding information,
DNA usually appears in the form of a double strand or double helix. The two strands of a DNA
double strand usually form a perfect reverse complement of each other. As a macromolecule, a
DNA molecule can have a length of several centimeters. The genome of an organism is, roughly
speaking, the total information that is encoded in the DNA of its cells. Every cell of an organism
carries a (mostly) identical copy of the genome, with few exceptions such as gametes or mutations.

There exist efficient experimental techniques for analyzing DNA, starting from Polymerase
Chain Reaction (PCR) that allows us to replicate DNA at an exponential rate [13], Sanger
Sequencing [254] that has been used to sequence the human genome and a few others, Next
Generation Sequencing (454 pyrosequencing by Roché, Solexa by Illumina, SOLiD by Applied
Biosystems) that can sequence several Gigabases of DNA per day and machine, to third generation
methods that are currently (2018) entering the market. Mass spectrometry never had a dominant
role for the analysis of DNA, unlike it has for proteins; with the advent of second and third
generation sequencing, this will be even more so. Apart from a few pioneering methods, to which
the author of this textbook has contributed to some extent [24, 82, 178], computational MS does
not and will not deal with the analysis of DNA molecules.

2Biology has few rules without exceptions: RNA viruses encode their genetic instructions in RNA.
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1 Introduction to Mass Spectrometry

Ribonucleic acids (RNA) are biochemically distinguished from DNA by the presence of an
additional hydroxyl group, and the use of uracil instead of thymine. A stretch of DNA can be
transcribed into RNA, such as messenger RNA (mRNA) encoding proteins. In eukaryotes, certain
parts of the RNA molecules are spliced out and the remaining parts are joined, respecting the
original order. Through this alternative splicing, one DNA sequence can be transcribed into
many different mRNA molecules. Other types of RNA exist that do not encode proteins, such
as transfer RNA (tRNA) or the famous microRNAs (miRNA) [176]. In the lab, there exist several
experimental techniques for analyzing RNA, such as next generation sequencing or microarrays.
Regarding RNA analysis and mass spectrometry, the same holds as for DNA and MS.

Finally, the mRNA is translated into a protein: Similar to a DNA strand that is a chain of
bases, a protein consists of amino acids joined by peptide bonds. An amino acid consists of a
carboxyl group, an amino group, and the side chain that is specific to each amino acid. Twenty
amino acids are encoded by the standard genetic code and are called proteogenic amino acids.
Often, amino acids are modified after translation, referred to as Post-Translational Modifications
(PTMs). These modifications are not encoded in the DNA or RNA template. The sequence of
amino acids constitutes the primary structure of the protein. Proteins fold into complex secondary
structures (alpha helix, beta sheet) and tertiary structures (spatial relationships in space) that
are crucial for their diverse functions. Proteins can also be part of a protein complex, sometimes
called quaternary structure. Proteins are essential to the structure and function of all living
cells and viruses. Many proteins are enzymes or subunits of enzymes, and catalyze chemical
reactions. Other proteins play structural or mechanical roles, are involved in immune response,
or the storage and transport of ligands.

Proteins range in size from below 100 amino acids to several thousand amino acids: the muscle
protein titin consists of a single amino acid chain of 27 000 residues. Short sequences of amino
acids, as well as parts of digested proteins (see below) are referred to as peptides. A variety of
PTMs exist in protein biosynthesis, such as the formation of disulfide bridges, or attachment
of biochemical functional groups by phosphorylation, acetylation, alkylation and methylation,
isoprenylation, glycosylation, and others. The presumably largest PTM is glycosylation, where
a (small or large) glycan is attached to one amino acid of the protein, see below.

Metabolites are the intermediates and products of metabolism which, in turn, is the entirety of
all chemical reactions that happen in living beings to maintain life. Metabolites are rather small,
with mass usually below 1000 Dalton. Examples of metabolites are amino acids, monosaccharides,
or adenosine-5’-triphosphate (ATP), the energy currency of the cell. Primary metabolites are di-
rectly involved in growth, development, and reproduction of a cell or organism; whereas secondary
metabolites are not directly involved in those processes. Most of the secondary metabolites in any
given higher eukaryote remain unknown. Unlike for proteins, genome sequencing usually does
not allow us to deduce the structure of the metabolites. Also unlike proteins or glycans that
are made from smaller monomer building blocks, the molecular structure of metabolites is not
restricted. This results in a huge variety and complexity of these molecules. We will come back to
metabolites in Chapters 9 and 10.

There are many sub-classes of metabolites that have particular structural restrictions: For
example, lipids include fats, waxes, sterols, and fat-soluble vitamins. Lipids may be broadly
defined as hydrophobic or amphiphilic small molecules. Other sub-classes of metabolites include
nucleotides, amino acids, monosaccharides, steroids, or terpenes. We will not further discuss or
utilize the peculiarities of these sub-classes.

Glycans are the third major class of biopolymers, and are built from simple sugars (monosac-
charides). A large number of monosaccharides exist, but only few are present for an individual
species or cell. Glycans can be assembled in a tree-like structure, making their primary structure
considerably more complex than that of proteins. Large glycans include starch, cellulose, and
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1.3 A short history of mass spectrometry

Figure 1.1: The Calutron, used for separating the isotopes of uranium. It was developed by
E.O. Lawrence during the Manhattan Project. In 1945, calutrons were used to
produced weapons-grade 235U to build the nuclear bomb [217, 308]. After the war,
gaseous diffusion technology and (even later) gas centrifuge technology replaced the
calutrons. Photograph taken from [308], photo source: Y-12 154.

chitin. Glycans can be attached to proteins or lipids, but may also be free molecules. Glycosylation,
the attachment of glycans to proteins, is presumably one of the most extensive and complex
protein PTM. Glycans are believed to play an important role in cell growth and development,
tumor growth and metastasis, or immune recognition and response. Like for metabolites, the
structure of glycans cannot be directly inferred from the genome sequence of an organism. We
will come back to glycans in Chapter 11.

1.3 A short history of mass spectrometry

Mass spectrometers constitute a large and diverse class of instruments. Their development began
at the end of the 19th century with the research on Kanalstrahlen. At that time, experiments
by Sir Joseph J. Thomson gave evidence of the existence of stable (non-radioactive) isotopes. In
the early 20th century, Francis W. Aston (who helped to design Thomson’s equipment) and Arthur
J. Dempster, along with many others, proved the existence of numerous isotopes, and provided
measurements of their abundances and masses. In the following years, mass spectrometry
transformed from a somewhat “esoteric” technique into routine instruments used in many labs
throughout the world. At the end of World War II, mass spectrometry was used to enrich
uranium-235 needed to build the infamous uranium bomb, see Fig. 1.1. The same techniques were
later used to provide researchers from physics, chemistry, biology, and medicine with separated
isotopes of nearly all the elements of the periodic table. After the war, two important new
mass analyzer were invented, namely Time-of-Flight analyzers by William E. Stephens, and
quadrupole analyzers by Wolfgang Paul and Hans G. Dehmelt. Also, mass spectrometry was
increasingly used to analyze complex organic molecules. Mass spectrometers were coupled to
separation techniques such as Gas Chromatography, pioneered by Roland S. Gohlke and Fred
W. McLafferty, a combination which is still frequently in use today. Development continued
throughout the following years: Tandem mass spectrometry, developed in 1966, coupled two or
more mass spectrometers where one machine served as a source for the next. In the same year,
peptide sequencing using mass spectrometry was pioneered by Biemann, Cone, Webster, and
Arsenault [22]. Even back then, the interpretation of the mass spectrum was supported by a
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1 Introduction to Mass Spectrometry

to 1900 early mass spectrometry
1919 observation of isotopes using MS
1946 Time-of-Flight MS (TOF)
1953 quadrupole analyzers
1956 Gas Chromatography MS (GC/MS)
1966 chemical ionization
1966 Tandem MS (MS2), peptide sequencing
1966 metabolomics
1968 Electrospray Ionization (ESI)
1968 Collision Induced Dissociation (CID)
1974 Fourier Transform Ion Cyclotron Resonance (FT-ICR)
1984 Quadrupole/Time-Of-Flight Mass Analyzer (QTOF)
1985 Matrix-Assisted Laser Desorption Ionization (MALDI)
1989 ESI on biomolecules
1993 oligonucleotide ladder sequencing
1999 quantitative proteomics and metabolomics with isotope labels
2000 Orbitrap
2004 Electron Transfer Dissociation (ETD)

Table 1.2: Short and incomplete list of important developments and inventions in the field of mass
spectrometry, tailored toward biomolecules. See the extensive overview at http://

masspec.scripps.edu/mshistory for much more information.

computer program. Fragmenting peptides by Collision Induced Dissociation (CID) was developed
in 1968 by Keith R. Jennings and Fred W. McLafferty and is, today, the standard technique for
peptide identification. Of particular interest for analyzing proteins and other biomolecules is
the development of “soft” ionization techniques, namely Electrospray Ionization (ESI) by John B.
Fenn, and Matrix-Assisted Laser Desorption Ionization (MALDI) by Michael Karas and Franz
Hillenkamp. In 1974, Melvin B. Comisarow and Alan G. Marshall developed Fourier Transform
Ion Cyclotron Resonance (FT-ICR) mass spectrometry, which is known for its high resolution and
mass accuracy (see below). The Orbitrap was invented by Alexander Makarov in 2000, based on
earlier work by Kenneth Hay Kingdon and R. D. Knight, and shows similar performance as an
FT-ICR, but without the need of a superconducting magnet. For an overview see Table 1.2.

Six Nobel laureates received their prize for discoveries and inventions in the field of mass
spectrometry: Joseph J. (“J.J.”) Thomson (1906, Physics), Francis W. Aston (1922, Chemistry),
Wolfgang Paul (1989, Physics), Hans G. Dehmelt (1989, Physics), John B. Fenn (2002, Chemistry),
and Koichi Tanaka (2002, Chemistry).

1.4 Mass spectrometry in a nutshell

To understand what an MS instrument is doing, think of a “parallel scale”. This is a bathroom
scale that you can step on, with a twist: Instead of weighting just a single person, we can measure
the weights of many people in parallel. Think of a giant scale, where a million people can step on
in parallel: Our parallel scale then tells us that 5000 people weighted 64.7 kg, and 12000 people
weighted 77.3 kg. We will come back to this example later.
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1.4 Mass spectrometry in a nutshell

1.4.1 Ions vs. molecules

To analyze molecules in an MS instrument, these molecules first have to be ionized: Only ions
will be affected by the electromagnetic field of the mass analyzer. Ionization can happen by
“attaching or removing protons or electrons”. Depending on the applied electromagnetic field, only
positively charged ions (positive mode) or negatively charged ions (negative mode) are recorded.
For example, soft ionization results in ions of the form [M+H]+ or [M−H]– where M is the molecule
(its molecular formula or mass, respectively), but only one type is recorded by the instrument.

For convenience, we will often talk about the analyzed molecules or fragments, not their charged
ion counterparts. Again, it must be understood that we can easily calculate the mass of a molecule
or fragment if we know the mass of the corresponding ion, as well the ionization type responsible
for the charge of the ion. As this is straightforward, we will usually completely ignore this point:
You can either add some constant number to all ion masses and then work with the corresponding
molecule and fragment masses, or you do it the other way round.

Throughout this textbook, we usually assume that the ion is charged through protonization.
There is a subtle problem here: Going from the molecule to its ion, do we “add a proton” to
its molecular formula; or, do we “add a hydrogen atom and remove an electron”? This has
very subtle consequences for our computations: The mass of a single proton (1.007276467)
differs from the mass of a monoisotopic hydrogen 1H minus the rest mass of an electron
(1.007825032 − 0.000548580 = 1.007276452); furthermore, a single hydrogen has an natural
isotope distribution (Chapter 7) whereas a proton does not. The differences between these two
approaches is so subtle (mass difference is 0.000000015) that you will hardly ever notice them in
practice. Nevertheless, we should keep our computations consistent. After lengthy discussions,
me and my group have teamed with the “add H, remove electron mass” side, following suggestions
by Ferrer and Thurman [93]. This has the conceptual advantage that we can keep calculations
consistent when considering adducts such as [M+Na]+.

1.4.2 Charge states

The charge z of an ion or molecule is a unit-free signed integer z ∈Z, where (unionized) molecules
have charge z = 0. MS instruments are unable to distinguish an ion with mass m and charge
z = 1, from an ion with mass 2m and charge z = 2 and, more generally, from any ion with mass
z ·m and charge z ∈N. So, we will not be able to record the masses of ions, but only the mass-to-
charge ratio m/z. It must be understood that in the vast majority of cases, charge state contains
little (if any) information about the ion; to this end, we usually just want to get rid of charges.
In many applications and, in particular, for all applications covered in this textbook, we may
safely assume that most or all of the ions have a single charge; in case multiple-charged ions
exist, these are considered annoyances and treated separately, but not considered in the general
computational setup. When we talk about recording the masses of ions in our sample, we in fact
mean recording the mass-to-charge ratio of the ions, then calculating the masses of the ions under
the assumption that, say, all ions are single charged. There exist applications such as measuring
intact proteins where this is not the case, and we have to deal with different and unknown charges
in one measurement. In theory, it is not complicated to determine the charge state of a molecule
from its isotope pattern (Chapter 7); in practice, it can be more complicated due to overlapping
isotope patterns.

1.4.3 General setup of mass spectrometry instruments

In principle, mass spectrometry can be thought of as a three step process: at first, the mixture
of molecules that we want to analyze (the analyte) has to be ionized in the ionization source.
Next, analyte ions are separated in the mass analyzer. Finally, they hit the detector and are
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1 Introduction to Mass Spectrometry

Figure 1.2: Schematic representation of a mass spectrometer.

recorded. A mass spectrum is then recorded by a computer. These three steps are depicted in
Fig. 1.2. Note that this separation into three steps is not true for all types of MS instruments: For
example, Orbitrap instruments do not separate mass analyzer and detector. But to understand the
principles, it is helpful to think of these steps as being separated; for the computational analysis,
it is usually not important. It should be noted that most MS instruments operate at very low
pressure, close to a vacuum, to minimize the random interaction of analyte ions and other particles
inside the instrument.

Let us come back to our example of a parallel scale, and talk about some of the limiting factors
of an MS analysis. First, assume that our scale tells us that there was a group of people weighting
77.3 kg; but in reality, these people weight 77.4 kg. This corresponds to the mass accuracy of the
measurement. Next, assume that there are two groups of people, one weighting 88.4 kg, the other
88.6 kg. In this case, our scale might wrongly measure only a single group of people with assumed
weight 88.5 kg. This corresponds to the resolution of the measurement, and gets important if there
are several ions with almost identical mass. Next, certain people might be “easier to detect” for
our scale than others, so we cannot trust the numbers of people in each group, and only say that
“there is a reasonably large group of people with weight 88.5 kg”. This corresponds to different
“ionization preferences” of different molecules. Finally, if there are not enough people on the scale,
we might get no measurement at all, corresponding to the sensitivity of the instrument.

Presumably the most important parameter that we have to take into account in our computa-
tional analysis, is the mass accuracy of the instrument. Mass accuracy is usually measured in
“parts per million” (ppm): If we observe a mass (more precisely, mass-to-charge) of 1300 and our
mass accuracy is 2 ppm, then the true mass is in the interval 1300±0.0026. Mass accuracy can
vastly differ between instruments, particularly between “high resolution” measurements (below
20 ppm) and “unit mass measurements”. For the later, we may assume that we can only measure
nominal masses of the ions. From the computational point of view, mass accuracy should be a
guarantee so that no measured mass ever falls outside the interval [314]; unfortunately, this is
not how all users understand the term, see Chapter 4. The mass accuracy of an instrument is
usually provided by the user as a parameter for our computations. Nevertheless, we may analyze
the experimental data to see if the given parameter value agrees with the data.

In comparison, the resolution of an instrument is usually much less important: It describes the
instrument’s capability to resolve two molecules with almost identical mass. For the applications
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1.4 Mass spectrometry in a nutshell

Figure 1.3: Ionization sources: Electrospray ionization (ESI, left) and matrix-assisted laser des-
orption/ionization (MALDI, right).

covered in this book, resolution is usually not an issue.3 It becomes an issue for experimental
setups where you cannot separate molecules prior to MS, for example in MS imaging.

The other central parameter of an instrument or instrument type, is much harder to grasp: It
is the sensitivity of the instrument. What peaks that an instrument should detect, will actually
end up in our input list of peak masses? How many false positive peaks will be in there, which do
not correspond to any molecule in the sample? Here, I use the term “sensitivity” in the computer
science meaning; but the instrument parameter “dynamic range” is also extremely important:
A large peak in the spectrum will lead to the non-detection of smaller peaks. If the largest
peak has intensity 100%, does the instrument still record all peaks at 0.1%? Unfortunately,
this parameter is much harder to grasp on the computational side. We should be aware, though,
that any experimental mass spectrum has “additional peaks” (peaks that we cannot explain even
if we know the “chemical truth”) and “missing peaks” (peaks that we expect to see, knowing the
“chemical truth”). For the different instrument types, it is usually assumed that Orbitrap and
FT-ICR are less sensitive.

You will sometimes here people referring to mass spectrometry as “mass spectroscopy”. Using
this term is not a good idea, as it might lead to confusion with light spectroscopy — and mass
spectrometry has nothing to do with light or radiated energy. Similarly, a mass spectrum has
nothing to do with a spectrum of light.

I now describe some ionization sources, mass analyzers, and ion detectors in slightly more
detail. This description is again vastly incomplete, and rather meant to introduce some important
techniques that one gets in touch with when analyzing MS data. See any MS textbook for more
details.

1.4.4 Ionization sources

In the ionization source, analyte molecules are converted into ions. Charge can be created by the
addition of removing of a proton, or by adding other adduct ions. When analyzing biomolecules,
the challenge is to create ions without shattering the analyte molecules: In particular proteins
are easily fragmented to uninformative pieces using “hard” ionization techniques.

3In principle, a very high resolution allows us to resolve the isotopologues of a molecules, see Chapter 7; in practice,
I am not aware of a computational method that uses these isotopologue patterns and, by doing so, consistently and
substantially outperforms computational methods which ignore isotopologues.
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ions

m/z small

m/z large

Figure 1.4: Ions in an electromagnetic field.

Electrospray Ionization (ESI) was developed in 1968 by John B. Fenn. The analyte, dissolved
in a large amount of solvent, is pushed through a tiny, highly charged capillary. This
liquid pushes itself out of the capillary and forms mist of small droplets. When the solvent
evaporates, the analyte molecules are forced closer together; as they have identical charge,
they repel each other and eventually break up the droplets. Repeating this process, the
droplets get smaller and smaller, until the analyte ions are free of solvent. ESI tends to
produce multiple-charged ions, in particular for large analyte molecules such as proteins.
See Fig. 1.3 (left), and Fenn et al. [90] for more details.

Matrix-Assisted Laser Desorption/Ionization (MALDI) was developed in 1985 by Michael
Karas and Franz Hillenkamp. The matrix consists of small organic molecules, that absorb
energy at the wavelength of the used laser. The method is based on the co-crystallization
of the matrix an the analyte components, so that analyte molecules get incorporated into
the crystals. The matrix has two functions: it absorbs the light that is fired from the laser,
leading to the ionization; and, it protects the molecules of the analyte from being fragmented
by the laser. Very large molecules can be ionized by MALDI without fragmenting them. See
Fig. 1.3 (right), and [147] for more details.

Electron Ionization (EI) was previously called Electron Impact (EI) ionization. It is mainly used
in conjunction with Gas Chromatography (see Sec. 1.6.2) for the analysis of small molecules
such as metabolites, see Chapter 10. A beam of energetic electrons is fired at the analyte
molecules, inducing ionization and fragmentation. EI is not a “soft” ionization technique, as
many of the analyte molecules get fragmented during ionization, often to an extent that no
peak is recorded for the mass of the analyte ion. Consequently, EI is practically never used
for the analysis of proteins and peptides. But the fragmentation of small molecules is well
understood (textbooks have been filled with the details) and the fragmentation spectrum
can be used to identify the small molecule by searching in a spectral library.

1.4.5 Mass analyzers

The second step of the mass spectrometry analysis is presumably the most important part, as
this determines the accuracy, sensitivity, resolution, and many other aspects of the machine. All
mass analyzers rely on the concept of sending the accelerated ions through an electromagnetic
field. In this field, the ions are deflected from their straight line of travel, see Fig. 1.4. The higher
the charge of the ion, the larger the force of deflection. On the other hand, ions of small mass
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1.4 Mass spectrometry in a nutshell
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stable trajectory

detector

ions

Figure 1.5: Mass analyzers: Quadrupole (left) and Time of Flight (TOF, right).

are easier to deflect than ions of large mass. The conceptually simplest mass analyzer is the
sector field mass analyzer, where ions fly in a curved tube; ions can pass the tube if and only if
the mass-to-charge ratio fits to the field intensity. By varying the field intensity, we can scan all
m/z-values.

In the following, I describe four mass analyzers that are, at present, very common for the
analysis of biomolecules.

• The Quadrupole mass analyzer consists of four circular and parallel rods, to which
oscillating electric fields are applied. The quadrupole is used to filter analyte ions, based on
their mass-to-charge ratio. Only ions of a particular mass-to-charge ratio can pass through
the quadrupole on a stable trajectory, compare to Fig. 1.5. By varying the current applied
to the rods, we scan through the range of mass-to-charge ratios. Quadrupole instruments
usually achieve rather low mass accuracy, such as 100 ppm or worse. See Miller and Denton
[196] for a detailed overview.

• Time of Flight (TOF) first accelerates ions in an electric field so that, in principle, all
ions have identical kinetic energy. Then, we measure the time ions need to fly through
a field-free drift tube, by sampling the current at the detector at discretized time steps.
The time-of-flight of an ion depends on its velocity reached during acceleration in the
electric field which, in turn, depends on the mass-to-charge ratio of the ions, see Fig. 1.5.
Orthogonal acceleration time-of-flight machines achieve high mass accuracy and resolution.
See Guilhaus [118] for a detailed overview.

• Fourier Transform Ion Cyclotron Resonance (FT-ICR) These “Penning traps” keep
the ions confined in the high magnetic field of a super-conducting magnet. The ions circle
with frequencies that are inversely proportional to their m/z ratio, see Fig. 1.6. This
circling induces an alternating current in the metal plates that make up the trap; this
time-varying current can be recorded, so FT-ICR does not require a separate ion detector.
The current constitutes a frequency spectrum of the ion motion, and is converted into
a mass spectrum using the Fourier Transform. FT-ICR instruments have outstanding
mass accuracy (sometimes below 1 ppm) and very high resolution. FT-ICR instruments
measure ions in a non-distractive fashion, something impossible for quadrupole and TOF
instruments.

• The Orbitrap is an ion trap where moving ions are trapped around an electrode. The elec-
trostatic attraction is compensated by centrifugal force arising from the initial tangential
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Figure 1.6: Mass analyzers: Fourier Transform Ion Cyclotron Resonance (FT-ICR, left) and Orbi-
trap (right).

velocity. Potential barriers created by end-electrodes confine the ions axially, see Fig. 1.6.
The crux is not so much the analyzer itself, which has been known in Mass Spectrometry for
some time, but rather how to get ions into this trap. The LTQ Orbitrap by Thermo Scientific
uses several “tricks” to achieve this. The Orbitrap mass analyzer is the first fundamentally
new mass analyzer introduced commercially in over 20 years. See Hu et al. [132], Perry
et al. [221] for more details. Orbitraps also measure ions in a non-distractive fashion.

It must be understood that there is no “perfect” mass analyzer: All come with there particular
advantages and disadvantages. For example, quadrupole MS may have a bad mass accuracy,
but outstanding sensitivity if we limit ourselves to “few interesting ions” (Multiple Reaction
Monitoring).

With regards to mass accuracy, which is presumably the most important parameter next to
sensitivity, we may assume QTOF MS reaches a mass accuracy of 10 ppm or better; Orbitrap
reaches 5 ppm or better; and FT-ICR measurements can have mass accuracy below 1 ppm. These
numbers are only rules of thumb of what one can expect from a “decently modern” instrument of
this type in an ordinary lab on an ordinary day, different from the “annecdotal mass accuracy”
mentioned in Sec. 4.5.

In the MS literature, there is always a race for “the best” MS instrument; and quite necessarily
so, as this drives the development of novel MS methods. But for the computational analysis,
we do not have the choice if the instrument that generates our data, is the spearhead in MS
instrumentation. Rather, we have to analyze the data at hand; or, estimate what mass accuracy
and other parameters are required to get the biological, biochemical, or chemical answers that we
are aiming for. The computational analysis of data from an antiquated instrument is obviously a
much harder task and, hence, also a bigger intellectual challenge than analyzing data from a top
flight instrument. At any given time, 99% of the MS instruments in operation will not be such
top flight instruments; so, there is good reason to develop methods for the other ones, too. In the
best case, our computational methods will already work for “low quality” data; but results will
hopefully get better for data of better quality.

1.4.6 Ion detectors

Finally, we have to record the ions that were separated in the mass analyzer. Detectors record
either the charge induced or the current produced when an ion passes by or hits a surface. The
number of ions that leave the mass analyzer for a particular m/z value is usually very small, so
the signal has to be amplified. Typical ion detectors include electron multiplier, Faraday cups, and
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1.5 Tandem mass spectrometry

microchannel plate detectors. We noted above that for FT-ICR and Orbitrap, the detector is part
of the mass analyzer.

It turns out that the actual make of the ion detector is usually not relevant for the computational
analysis. Hence, I omit all further details.

1.5 Tandem mass spectrometry

Tandem mass spectrometry describes numerous techniques where ions with a particular mass-
to-charge ratio are selected in a first mass analyzers, are introduced into a fragmentation cell.
The most prominent fragmentation technique is Collision Induced Dissociation (CID), where
molecules are passed through a collision cell containing some noble gas, such as helium or argon.
(Since noble gasses are rather expensive and sometimes hard to get, the collision cell is nowadays
often filled with nitrogen instead.) Fragmentation is achieved by collisions with the neutral atoms
of the noble gas.

Let us take a closer look at the collision. Whereas the picture of flying a space ship into an
asteroid field is appealing, it is unfortunately wrong: In fact, the fragmentation is rather a
chemical process than a physical one. By colliding with the neutral gas, some of the kinetic energy
of the molecule is transferred into internal energy. This energy then triggers a fragmentation
pathway which, unfortunately, is usually much more complicated than simply cutting some of the
bonds in the molecule.

We call the ion that gets fragmented, the parent ion or precursor ion; the ions in the frag-
mentation spectrum are called daughter ions, product ions or fragments. When a single charged
precursor ion is fragmented, the charge of the the ion can stay with either of the (usually two)
fragments. In this case, the other fragment is not detectable by the MS instrument, and is called
a loss.4 It depends on the size of the fragments and, in particular, their molecular structure,
which of the fragments is ionized and which is the loss. As we do not fragment a single ion
but instead, billions of identical copies, it is still possible that we can detect both fragments of
this fragmentation reaction. In case the fragmented ion is multiple charged, the charges are
distributed between its fragments. Again, the distribution of charges to the fragment depends on
their size and molecular structure.

In passing, I mention that there exist other fragmentation techniques such as electron transfer
dissociation (ETD). It must be understood that fragmentation spectra from different fragmen-
tation techniques can look vastly different when fragmenting the same molecule. Recall that
Electron Ionization (EI) also results in fragmentation of the precursor ion. In comparison to CID
and ETC, the fragmentation process behind EI are much better understood, and their description
fills books.

1.6 Sample preparation and separation

Before some molecules can actually be fed to an MS instrument and analyzed there, some steps
are taken to make this analysis as simple as possible. In principle, we could directly feed a
sample to the instrument, and try to make sense of the data we collect. But this limits the
power of our MS analysis, as we have to deal with contamination during the analysis of the data;

4Losses can either be neutral or radical. Neutral losses have even sum of valences (see Sec. 8.4) whereas radical losses
have an unpaired valence electron and odd sum of valences. Similarly, fragments can be radicals; radicals are highly
reactive. The majority of losses in tandem MS are neutral losses, but certain radical losses such as H·, O·, ·OH,
·CH3, CH3O·, ·C3H7, ·C4H9, or C6H5O· are “not so uncommon”. Clearly, this also depends on the compound class
you are fragmenting; for peptides, radical losses are considered rare. On the contrary, radical losses are commonly
observed for Electron Ionization fragmentation.
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1 Introduction to Mass Spectrometry

contaminant signals can superimpose the true signals, dampening or even completely eliminating
them. Clearly, it depends on the biological question what we are interested in, what we consider
to be “contaminants”: In a proteomics experiment, all metabolites are considered contaminants,
whereas the converse is true for a metabolomics experiment. As both the experimental setups
and the computational analysis of the data for these two fields are very different, it is practically
impossible to analyze them in one go. But as we will see below, separation is a crucial step for
a comprehensive analysis, so enriching the molecules we are interested in and getting rid of all
others, is always a good idea.

Furthermore, it is sometimes hard or even impossible to directly analyze the biomolecules at
hand: A prominent example are proteins, that are “too large” for MS analysis, at least if we
are interested in more than their mass alone. So, proteomics analysis requires us to break the
proteins into pieces (peptides) before analyzing them by MS.

I refrain from describing the experimental details that are needed, say, to extract proteins from
a cell. In most cases, these are not important for the computational analysis; in fact, I do not know
them. In certain situations, though, certain experimental details are relevant for our analysis:
An example are “fixed modifications” of amino acids in proteomics experiments (such as the
oxidization of methionine, see Sec. 2.7) which are due to the experimental setup, not biochemical
processes in the sample. Often, we can easily modify the computational approach to take
into account such peculiarities, and can safely ignore them when developing our computational
methods.

1.6.1 Tryptic digestion

For some time, there appeared to be a competition in the MS community regarding the largest
intact protein that could be analyzed by mass spectrometry. Apparently, this competition has
come to an end; a possible reason being that the mass of an intact protein does not tell you a lot
about the protein. Tandem MS of complete proteins is complicated due to various reasons that
are beyond the scope of this textbook [235]. So, the proteomics community came up with a trick:
Instead of analyzing a complete protein, one first cleaves the protein into shorter pieces, namely
peptides, then analyzes these peptides by (tandem) MS.

Proteins can be cleaved into peptides by chemical or enzymatic methods. To understand
enzymatic digestion, note that peptide bonds in proteins are metastable, meaning that they will
break spontaneously in the presence of water; but this process is extremely slow. Breaking peptide
bonds can be leveraged by proteolytic enzymes such as trypsin, V8, or chymotrypsin. At present,
the predominant method for protein cleavage is tryptic digestion: The serine protease trypsin
cleaves peptide bonds at the carboxy side of a lysine (K) and arginine (R) residue by hydrolysis,
adding a water molecule. This cleavage is inhibited if the lysine or arginine residue is followed by
a proline (P). The result of this cleavage are two peptides with sum formulas equal to that of the
initial protein, plus H2O. Unfortunately, digestion is not “perfect”, meaning that in some cases,
trypsin will miss a cleavage site or cleave at a non-standard site [246].

1.6.2 Separation by chromatography

Mixtures of biomolecules are often too complex to be directly fed into an MS instrument: The
abundant analyte ions would make it impossible to detect analyte ions that are less abundant
in the sample. To this end, these mixtures are usually separated before feeding them to the MS
instrument. Chromatography is the predominant separation technique to be coupled with MS:
The analyte molecules are dissolved in a fluid called the mobile phase, which carries it through a
column holding the stationary phase. Different molecules in the analyte travel at different speeds,
causing them to separate.
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1.7 Exercises

Figure 1.7: A three-dimensional (left) and a two-dimensional (right) LC-MS spectrum.

The mobile phase can either be a gas (gas chromatography, GC) or a liquid (liquid chromatog-
raphy, LC). Since sample molecules have to be heated, gas chromatography is not suitable for
larger molecules such as peptides or proteins, as these would be denatured. GC is usually coupled
with Electron Ionization MS for the analysis of small, volatile molecules. In contrast, liquid
chromatography is the predominant separation technique for peptides and proteins, but is also
increasingly used for the analysis of metabolites. Reversed-phase chromatography has a non-
polar stationary phase and an aqueous, moderately polar mobile phase. Here, retention times are
shorter for polar molecules and longer for less polar ones.

Each chromatographic peak may contain hundreds of molecules; the LC output is injected into
a mass spectrometer. Electrospray ionization (Sec. 1.4.4 is often used for ionization, as it can
handle the continuous sample flow. A spectrum is measured at each time step, and the resulting
data can be interpreted as a two-dimensional spectrum (Figure 1.6.2).

During the LC run, the instrument can select several high peaks form the mass spectrum
(termed “MS1” in this context) and acquire individual tandem mass spectra for each of them.
Unfortunately, there is not enough time to measure an individual tandem mass spectrum for
“each peak” in the MS1; in the extreme, we could suspect a peak at every position of the MS1, and
we would have to measure a tandem MS everywhere. To this end, only a few high-intensity peaks
in the MS1 spectrum are selected; we can also instruct the instruments to measure certain peaks
or to ignore others.

1.7 Exercises

1.1 Write a program that simulates protein cleavage by tryptic digestion.
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2 Peptide De Novo Sequencing

“Everything should be made as simple as possible, but not one bit simpler.” (Albert
Einstein)

COMPUTERS and computer programs have supported mass spectrometry experts in the inter-
pretation of peptide tandem mass spectra since at least the 1960’s: For example, Biemann,

Cone, Webster, and Arsenault [22] used a “computer interpretation” for the sequencing of peptides
back in 1966. Numerous such examples can be found in the mass spectrometry literature; they all
have in common that this development was not driven by the search for an efficient and general
solution of the underlying problem. Rather, programs, algorithms, and methods were developed
that analyzed the data at hand; the algorithms and methods themselves never were the objects of
investigation.

One can say that the history of computational mass spectrometry started in the years 1999
and 2000: At the Symposium on Discrete Algorithms, Chen, Kao, Tepel, Rush, and Church [48]
presented a dynamic programming approach for the peptide de novo sequencing problem using
tandem mass spectrometry. This problem was raised a year earlier by Dančík, Addona, Clauser,
Vath, and Pevzner [57] at the conference for Research in Computational Molecular Biology, see
[58] for the journal version. Some might argue that this history already started back in 1997,
when Taylor and Johnson [288] presented the program Lutefisk for the same purpose.1 Many
questions arising in the scope of this analysis, can serve as archetypal questions for computational
mass spectrometry.

Before the advent of mass spectrometry, proteins and peptides were sequenced using Edman
Degradation [79], developed by Pehr Edman in 1950. Amino acids are read step-by-step from the
N-terminus of the protein, then cleaved off. The method has certain shortcomings [279] and, in
comparison with mass spectrometry, it is very slow and work-intensive.

If you think that the task of peptide sequencing is a sensible thing to do, then you might want
to skip this paragraph. But some students might argue that sequencing peptides or proteins is
a rather futile task in the time of genome sequencing, since we can infer protein sequences from
the genome of an organism. This is a feasible argument, but it is wrong: We just mention a few
counter-arguments. In Eukaryotes, a single gene can correspond to ten thousands of proteins due
to alternative splicing. Most proteins are edited and modified after translation, and there exists
a huge variety of Post-Translational Modifications for this purpose. Certain proteins are not even
encoded in the genome, for example the antibiotic Actinomycin D. Not every species is sequenced,
not every gene and splice form is annotated. Proteogenomics, an emerging scientific field at the
intersection of proteomics and genomics, uses proteomic information from mass spectrometry to
improve gene annotations. Finally, tag-based approaches will sequence a short snippet (substring
with 3–6 characters) of the sequence before database searching, to improve running time [285].
This list is most likely incomplete, but it is sufficient to make the point.

And why are we sequencing peptides and not proteins? As we noted above, there is a simple
answer to this question: If we could sequence proteins, then we would sequence proteins; but we
cannot.

1Even others might argue that this history started with DENDRAL back in 1965 [174, 175], see Sec. 10.7; but I would
object, as DENDRAL projects did not care about specification, generalizability, correctness, or running time of the
developed algorithms.
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Figure 2.1: Fragmentation of a peptide into b and y ions.

Figure 2.2: Expert-annotated tandem mass spectrum of the tryptic peptide SNTDANQ-
[L/I]WT[L/I]K originating from a type II ribosome-inactivating protein isolated from
Ximenia americana. Figure taken from Seidler et al. [265].

2.1 Introduction and data

Tandem mass spectrometry, as introduced in Sec. 1.5, can be used to determine the amino acid
sequence of an unknown peptide: A first mass analyzer separates one peptide from many entering
the MS instrument. In the fragmentation cell, peptide ions collide with noble gas atoms, causing
them to fragment by collision-induced dissociation. A second mass analyzer records the masses
of the product ions corresponding to peptide fragments. For de novo sequencing, our task is to
reconstruct the amino acid sequence solely from this tandem mass spectrum.

See Fig. 2.1 on how peptides fragment. Many years ago, a nomenclature has been introduced in
the MS community to name the ions commonly resulting from peptide fragmentation. The most
common and informative ions are generated by fragmenting the amide bond between amino acids.
Resulting ions are called b ions or y ions: For b ions, the charge is retained by the amino-terminal
part of the peptide; for y ions, the charge is retained by the carboxy-terminal part. In subscript,
we can indicate the number of amino acid residues in the fragment.

See Fig. 2.2 for a tandem mass spectrum of a peptide that was hand-annotated by an expert.
Our task in this chapter is quite simple to describe: Derive an automated method that, given a
tandem mass spectrum of a peptide, annotates the spectrum and recovers the underlying peptide
sequence. The idea is that we do so solely based on the tandem mass spectrum, without access to
databases for, say, protein sequences.

2.2 Formal problem de�nition

We want to formalize the peptide de novo sequencing problem so that we can attack it by
combinatorial and algorithmic means. We start with an oversimplified, idealized version of the
problem that cannot be applied to experimental data. Only after finding an algorithmic solution
for the simple problem, we show in Sec. 2.5 how to get rid of our simplifying assumptions.
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2.2 Formal problem definition

symb. TLC amino acid molecular formula mass (Da)
A Ala alanine C3H5N1O1 71.037114
C Cys cysteine C3H5N1O1S1 103.009184
D Asp aspartic acid C4H5N1O3 115.026943
E Glu glutamic acid C5H7N1O3 129.042593
F Phe phenylalanine C9H9N1O1 147.068414
G Gly glycine C2H3N1O1 57.021464
H His histidine C6H7N3O1 137.058912
I Ile isoleucine C6H11N1O1 113.084064
K Lys lysine C6H12N2O1 128.094963
L Leu leucine C6H11N1O1 113.084064
M Met methionine C5H9N1O1S1 131.040485
N Asn asparagine C4H6N2O2 114.042927
P Pro proline C5H7N1O1 97.052764
Q Gln glutamine C5H8N2O2 128.058578
R Arg arginine C6H12N4O1 156.101111
S Ser serine C3H5N1O2 87.032028
T Thr threonine C4H7N1O2 101.047678
V Val valine C5H9N1O1 99.068414
W Trp tryptophan C11H10N2O1 186.079313
Y Tyr tyrosine C9H9N1O2 163.063329

Table 2.1: Proteogenic amino acids with symbol, 3-letter-code (TLC), molecular formula of the
residue, and monoisotopic mass of the residue. To obtain the molecular formula of the
corresponding amino acid, simply add H2O; to calculate its mass, add 18.010565 Da.
Note that isoleucine and leucine are isomers with identical molecular formula. Note
also that lysine and glutamine have small mass difference of only 0.036385 Da.

First, we recall some well-known definitions from computer science: A string s over the alphabet
Σ, denoted s ∈Σ∗, is a sequence of characters s = s1s2 . . . sl with si ∈Σ for all i = 1, . . . , l. Let |s| := l
denote length of s. The unique string of length zero is called empty string and denoted ε. We write
s = ab to indicate that we can concatenate strings a and b to get s. Any string a with s = ab is
called a prefix of s, any such string b is called a suffix of s. If s = abc holds for strings a,b, c then b
is called a substring of s. Deliberately, we did not excluded empty strings from these definitions:
We say that a string s′ is a proper prefix (suffix, substring) of s if s′ is a prefix (suffix, substring)
of s, but neither s nor the empty string, s′ ∉ {ε, s}. For the string s = s1s2 . . . sl , we will denote the
substring from position i to position j by s[i . . . j]= sisi+1 . . . s j−1s j.

The first thing we need is an alphabet Σ that our strings are made up from. Analyzing proteins,
an obvious choice for this alphabet is the set of all amino acid one-letter symbols,

Σ := {
A, C,D, E, F, G, H, I, K, L,M,N, P,Q, R, S, T, V,W,Y

}
.

But this is neither the only possible choice, nor the most reasonable for our application: Regarding
the latter point, we note that leucine (L) and isoleucine (I) have exactly the same molecular
formula and, hence, also identical mass. Consequently, we will not be able to tell these two apart
using mass spectrometry, and we will treat them as a single letter (usually denoted L). On the
other hand, we may include the methylated form of certain amino acids, such as methylated
arginine (R∗). We will come back to this issue in Sec. 2.7. For the remainder of this chapter, it is
sufficient to think of Σ as an arbitrary but fixed set of characters.
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2 Peptide De Novo Sequencing

For computational mass spectrometry, we have to determine the masses of molecules; for
analyzing peptides, we have to know the masses of the characters in our amino acid alphabet.
Formally, we assume that a mass function µ : Σ→ R>0 is given. To simplify the presentation, we
assume that all characters of the alphabet have different masses, so µ(z) 6= µ(z′) for z 6= z′. This is
not a real restriction: We can replace characters with identical mass by some artificial character,
and at a later stage, we replace this artificial character by any of the original characters.

What are masses µ(z) in application? When an amino acid is added to a peptide, a water
molecule H2O is released as the peptide bond is formed. (Chemically speaking, a peptide consists
of n amino acids minus n−1 water molecules.) To this end, we do not report masses of amino
acids, but rather amino acid residues. To calculate the molecular formula or mass of a peptide,
one has to add up the molecular formulas or masses of the constituting amino acid residues, and
add H2O or 18.010565 Da. For example, the peptide ESI has molecular formula

C5H7N1O3 +C3H5N1O2 +C6H11N1O1 +H2O=C14H25N3O7

and mass
129.042593+87.032028+113.084064+18.010565= 347.169250

Dalton. See Table 2.1 for the molecular formulas and masses of amino acid residues; we defer
further details to Chapter 7.

For the moment, we will deliberately ignore the additional water molecule which has to be
added to the molecular formula of the peptide: As we will see below, the true situation is slightly
more complicated but, nonetheless, requires only minor modifications to our model. This allows
us to define the mass of a string s = s1 . . . sn over Σ as µ(s) :=∑n

j=1µ(s j).
In the previous section, we have seen that tandem MS allows us to measure the masses of

both N-terminal fragments (b ions) and C-terminal fragments (y ions) of the unknown peptide s.
Computationally speaking, N-terminal fragments correspond to prefixes of s, whereas C-terminal
fragments correspond to suffixes of the peptide. To this end, we define the fragmentation spectrum
M (s) of a string s ∈Σ∗ as the set of masses of all prefixes and suffixes of s:

M (s) := {
µ(a),µ(b) : a is prefix of s, b is suffix of s

}
(2.1)

Sometimes, we will refer to M (s) as the ideal fragmentation spectrum, to distinguish between this
and the measured fragmentation spectrum. We will call the elements m ∈ M either masses or
peaks, depending on the context. The precursor mass M of a string s is simply its mass, M =µ(s).
We may assume that we know the precursor mass of the unknown peptide, as this is the mass
that we filtered for in the first mass analyzer.

We now present a first example that we will repeatedly use throughout this chapter. As the
masses of amino acids are rather “unwieldy”, we use an artificial alphabet with much smaller
integer masses, so that all calculations can be carried out using pen and paper. The masses from
Table 2.1 should be seen as a gentle reminder how the problem will look like for real-world data.

Example 2.1. Consider the alphabet Σ= {a,b,c,d} with mass function µ(a) = 2, µ(b) = 3, µ(c) = 7,
and µ(d) = 10. The string s = acab has prefixes acab, aca, ac, a, and ε with masses 14, 11, 9, 2,
and 0; and suffixes ε, b, ab, cab, acab with masses 0, 3, 5, 12, and 14. This corresponds to the
fragmentation spectrum

M :=M (s)= {
0,2,3,5,9,11,12,14

}
.

See Fig. 2.3 for the corresponding “mass spectrum”. Note that for this example, all proper prefixes
and suffixes have distinct masses.

Now, we can formally define the computational problem we are interested in:
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Figure 2.3: Fragmentation spectrum M (s) for s = acab from Example 2.1 with prefix peaks (red),
suffix peaks (blue), and precursor peak (black).

Peptide De Novo Sequencing problem. Given a set M of masses, find a string s ∈ Σ∗ such
that M (s)=M , or decide that no such string s exists.

It is important to understand that the challenging part of this problem, is the simultaneous
presence of both prefix peaks and suffix peaks. If only prefix peaks were present, then it is easy to
solve the problem even in the presence of additional peaks, see Exercise 2.8. The same holds true
if only suffix peaks were present, see Exercise 2.1. Finally, the problem is simple if we know, for
each peak, whether it is a prefix or a suffix peak. So, our task can also be described as assigning,
to each peak, a label “prefix” or “suffix”.

To make it easier for us to come up with an algorithm for the problem, we have made or will
make several simplifying assumptions. We will show in Section 2.5 how to get rid of all of these
assumptions. But for the moment, the assumptions help us to see the core of the problem, without
being distracted by “too many details”.

1. Besides the masses of the prefixes and suffixes of s, no other mass signals are recorded
by the instrument. In reality, we usually have to deal with additional peaks that cannot
be explained from peptide s, such as chemical noise; other peaks stem from fragmentation
events not captured by our simple fragmentation model, or are truly noise in the ion detector.
See Sec. 2.5.1.

2. All peaks of the fragmentation spectrum are recorded by the MS instrument, and none are
missing. In reality, many peaks that should be present are not detected in the measurement,
as they were “lost in the noise”: Certain fragmentation events happen too rarely to record
the corresponding ions; also, ionization preferences may lead to uncharged fragments that
are not detectable by MS. See Sec. 2.5.3.

3. Prefixes and suffixes have different masses: for every proper prefix a and every proper suffix
b of s we have µ(a) 6= µ(b). In reality, this assumption is less restrictive than it may appear.
But the idea behind this simplifying assumptions is fundamental for our computational
approach.

4. The mass of any fragment is simply the total mass of the constituent amino acid residues.
In reality, masses have to be modified with respect to the ion series a fragment stems from,
and mass modifications are different for the different ion series, see Sec. 2.6.
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2 Peptide De Novo Sequencing

5. The MS instrument records exact masses of peptide fragments. In reality, measured masses
will deviate from these theoretical and exact masses. This appears to be a simple problem
(check if

∣∣m−m′∣∣ is sufficiently small) but it comes with certain pitfall, see for example
Exercise 2.17. We will come back to this problem repeatedly throughout this textbook.

All of these assumptions are quite natural, except for one: To keep things simple, we initially do
not want to think about “ion series mass modification”, or the insufficiency of mass spectrometry
to record what it should record. But why Assumption 3? This is a somewhat strange assumption,
as it artificially limits the space of peptides that we can apply our method to, in contrast of our
aspiration for generalizability. Only when we come to the optimization version of our algorithm,
we can explain why this assumption makes sense, and how we can drop it while simultaneously
avoiding the resulting pitfalls. This will be discussed in Sec. 2.5.4.

We now collect several observations regarding our idealized model of fragmentation spectra.

1. Consider a string s = s1 . . . sn and its inverse s−1 = snsn−1 . . . s1, then M (s) = M (s−1). So, a
string and its inverse string cannot be told apart using their fragmentation spectra.

2. Let M := M (s) be the fragmentation spectrum of some string s. Then, for each x ∈ M we
also have M− x ∈M .

3. In view of Assumption 3 we have M
2 ∉ M (s), as this would result in a prefix and suffix of

identical mass.

4. A non-empty string s generates exactly 2 |s| masses in M (s): The string s has |s|−1 proper
prefixes and |s|−1 proper suffixes, plus masses 0 for the empty string and M for the complete
string.

We have to differentiate between observations that only hold for our idealized model, and those
that will also hold in application. It turns out that none of these observations holds for real-world
data. Still and all, Observations 2 and 4 will help us to come up with an algorithm for the idealized
problem and, later, also for peptide de novo sequencing in practice.

2.3 Spectrum graphs

We are given a set of masses M ; our task is to solve the PEPTIDE DE NOVO SEQUENCING problem
by finding a string s with M (s) = M . To this end, we introduce a novel data structure, called
spectrum graph, that allows us to process the data in the spectrum M more readily. Before we
start, let us recall some basic definitions from computational graph theory.

A directed graph G = (V ,E) consists of a set of nodes V and a set of edges E ⊆ V ×V . We say
that e = (u,v) ∈ E is an edge from u to v, and we write e = uv for short. A path in G is a sequence
p = u0u1 . . .ul of nodes of G, such that ui−1ui is an edge of G for all i = 1, . . . , l.2 We say that p is
a path from u = u0 to v = ul . Let |p| := l denote the length of p. A path is called trivial if it has
length zero, and non-trivial otherwise.

A cycle in a directed graph G = (V ,E) is a non-trivial path from v to v, for some node v ∈ V . A
directed graph is acyclic if it does not contain any cycles. Informally speaking, “acyclic” means
that we cannot walk away from some node v of the graph along directed edges, and ultimately end
up in v again. A directed, acyclic graph is called a DAG.

After we have introduced the necessary prerequisites from graph theory, let us come back to
the de novo sequencing problem. Given a set of masses M , the corresponding spectrum graph

2Some authors in graph theory call this a “walk”, whereas “path” is then reserved to walks where all nodes are distinct
— except possibly the first and last node.
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2.3 Spectrum graphs

Figure 2.4: Spectrum graph for Example 2.1. Bold edges show the valid path corresponding to
string s = acab.

G := G(M ) is a DAG G = (V ,E) with node set V := M , and there is an edge uv for u,v ∈ V if and
only if there exists some z ∈Σ such that u+µ(z)= v. We say that edge uv is labeled by character z.
For each node u, all edges leaving u are labeled differently. It is easy to check that the spectrum
graph is acyclic; in fact, its nodes are ordered, and an edge from node u to v can only exist if u < v.
The spectrum graph for the mass spectrum M from Example 2.1 is shown in Fig. 2.4. Note that
M := maxM is the precursor mass of the unknown string. Node 0 is a source of the graph as it
has not incoming edges; node M is a sink of the graph as it has no outgoing edges.

Assuming ideal data, we first use Observation 4: In case |M | is odd, we can immediately reject
the instance. Otherwise, choose n such that |M | = 2n+ 2. Then, we can name the masses in
V =M as M = {

x0, x1, . . . , xn−1, xn, yn, yn−1, . . . , y1, y0
}

with x0 = 0, y0 = M, and

x0 < x1 < ·· · < xn−1 < xn < yn < yn−1 < ·· · < y1 < y0. (2.2)

By Observation 2, we infer that x j+ yj = M holds for all j = 1, . . . ,n; otherwise, we can again reject
the instance. From the application standpoint, we note that for every prefix fragment (b ion) we
can find the complementing suffix fragment (y ion), and these two add up to the precursor mass.
We also infer that the length of the string s that we want to reconstruct, is |s| = n+1.

Any path in the spectrum graph corresponds to a unique string, constructed by concatenating
the edge labels of the edges that we visit along the path. In particular, a path from source 0
to sink M corresponds to a string of mass M. Assume that we know the correct string s with
M (s) =M . Then, this string describes a path v0v1 . . .vn through the spectrum graph G(M ) from
0 to M: From node v j−1 we follow the edge labeled s j to v j, for all j = 1, . . . ,n.

So, in order to recover the string s, it seems reasonable to search for paths from 0 to M in the
spectrum graph G(M ). One can easily check that for any such path p and corresponding string s,
all prefix masses and suffix masses of s are elements of M . Clearly, there may be many such paths:
For Example 2.1, we find five paths, namely 0,2,5,12,14; 0,2,9,11,14; 0,2,9,12,14; 0,2,12,14;
and 0,3,5,12,14. But for certain paths, the corresponding string may violate our simplifying
assumptions:

• The path 0,2,5,12,14 corresponds to the string abca; but this string has prefix a and suffix
a which obviously have identical mass, violating Assumption 3. This corresponds to visiting
both the nodes 2 and 14−2= 12 in our path.

• The path 0,2,12,14 corresponds to the string ada; but this string has no prefix or suffix of
mass 3, violating Assumption 1.

We want to formalize these two observation: According to Assumption 3, a valid path in the
spectrum graph G(M ) must visit either m ∈ M or M − m ∈ M , but not both; and according to
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2 Peptide De Novo Sequencing

Assumption 1, it must visit at least one of m ∈ M and M −m ∈ M . Consequently, we say that
that a path in the spectrum graph G = (V ,E) is valid if it starts in 0 and ends in M, and for
V = {

x0, . . . , xn, yn, . . . , y0
}

from (2.2), the path visits exactly one of the two nodes xi, yi for every
i = 1, . . . ,n.

Lemma 2.1. Given a set of masses M with spectrum graph G :=G(M ). Let p be a path in G with
corresponding string s. Then, M (s)=M if and only if p is valid.

Proof. We have seen above that M (s) = M implies that p must be a valid path. We concentrate
on the other direction of the proof.

So, let p be a valid path in G, and let s be the corresponding string. We have to show that
M (s) = M holds. Assume that p = v0v1 . . .vn+1 with v0 = 0 and vn+1 = M. One can easily check
that the prefix a of s of length |a| = j has mass v j, and that the suffix b of s of length n− j has mass
M−v j, for all i = 0, . . . ,n. In view of the definition of M (s), this is sufficient to show M (s)=M .

So, we have transformed the problem of finding the peptide string, into the problem of finding a
valid path in the spectrum graph. This new problem is neither simpler nor more complicated than
the original one; in fact, both problems are only two sides of the same coin. But as we will see,
the graph-theoretical formulation makes it somewhat easier for us to come up with an efficient
algorithm for its solution.

Without going into the details, we note that finding valid paths is a particular instance of the
ANTISYMMETRIC LONGEST PATH problem. For general DAGs, this is an NP-hard problem. This
implies that we cannot hope to find an efficient algorithm for the ANTISYMMETRIC LONGEST

PATH problem in general, unless P = NP. Here, “efficient” means an algorithm with polynomial
running time. But the particular structure of spectrum graphs allows us find such an efficient
algorithm, that will be presented in the next section.

One can easily come up with a naïve algorithm to recover the peptide string from the set of
masses M : For every pair x j, yj we decide whether x j or yj is part of the path through G(M ).
Obviously, there are 2n possibilities for this. We then compute the graph induced by the selected
nodes, and we test whether the induced graph contains a path from 0 to M through all nodes,
what can be done in linear time. If so, then the resulting string s satisfies M (s) =M and we are
done. Running time of this algorithm is O(2n · n) and, hence, the algorithm is limited to rather
small strings. In practice, running time of this naïve algorithm are probably acceptable for up
to 20 peaks, but are prohibitive in applications as soon as we drop our simplifying assumptions.
In practice, we can speed up the algorithm by building the string s from left to right, deciding
on which peaks belong to the prefix path as we go. Using this branch-and-bound search, we can
discard prefixes that cannot result in an admissible string, see Exercise 2.5. Early algorithms
for the peptide de novo sequencing problem were in fact based on the branch-and-bound search
paradigm. Unfortunately, there is no simple way to generalize this approach for additional and
missing peaks, compare to Sec. 2.5.4.

2.4 Dynamic programming for ideal data

We are given a set of masses M with spectrum graph G :=G(M ); our task is to find a valid path
in G = (V ,E). From the above, we may assume that V =M = {

x0, . . . , xn, yn, . . . , y0
}

satisfying (2.2).
We could now directly search for a valid path p in G. This has the conceptual disadvantage

that we always have to consider pairs xi, yi where exactly one of the two nodes is part of the
path. To this end, we use a detour that is conceptually slightly simpler: We ignore yn, . . . , y0 and
concentrate on nodes x0, . . . , xn. We construct two paths in the spectrum graph called prefix path
and suffix path, both starting in x0 = 0. We require that these two paths are node-disjoint, with
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Figure 2.5: Prefix path x0 = 0, x1 = 2 and suffix path x0 = 0, x2 = 3, x3 = 5 for Example 2.1. These
paths form a valid pair.

the exception of the start node x0 = 0. Furthermore, each node x1, . . . , xn must be part of either the
prefix path or the suffix path. Consequently, we say that a prefix path to xi and a suffix path to x j
are valid pair if, for all l = 1, . . . ,max{i, j}, node xl is either an element of the suffix path or of the
prefix path. See Fig. 2.5 for two paths that form a valid pair for Example 2.1.

What is the connection between a valid path, and a valid pair of prefix and suffix path? Let p be
a valid path in G. Let p1 be the part of p with nodes from x0, . . . , xn, and let p2 be the remaining
part of the path with nodes from yn, . . . , y0. Now, we can flip p2 = v0 . . .vl by setting p∗

2 := ul . . .u0
with u j := M − v j for all j = 1, . . . , l. One can easily check that p∗

2 is a path in G, and that p1 and
p∗

2 form a valid pair of paths.
On the other hand, assume that we are given a valid pair of a prefix path p1 to xi and suffix

path p2 to x j. Analogously to above, we flip p2 to generate a path p∗
2 that uses only nodes from

yn, . . . , y0. In order to “glue” together these two paths, we have to make sure that they can be
connected via an edge: We know that xi is the last node of the prefix path, and that yj is the first
node of the flipped suffix path. If xi yj is an edge of the spectrum graph, then we can connect the
two paths p1 and p∗

2 , resulting in a single path p. Is this path valid? Not necessarily so: Clearly,
either xl or yl is a node of p, for all l = 1, . . . ,max{i, j}. But we also have to make sure that all
nodes of the spectrum graph are part of the path: This is the case if and only if max{i, j}= n holds.

We want to use Dynamic Programming to test whether our instance has a solution, see Sec.14.4.
We define a binary matrix D[0. . .n,0 . . .n] as follows: We set D[i, j]= 1 if there is a prefix path from
x0 to xi and a suffix path from x0 to x j that form a valid pair; and D[i, j] = 0 otherwise.3 Clearly,
D[0,0] = 1 holds, as well as D[ j, j] = 0 for j = 1, . . . ,n. We will use this to initialize the main
diagonal D[ j, j] of our matrix. Also note that the matrix D is symmetric, so D[i, j] = D[ j, i] holds
for all i, j.

Example 2.2. Consider the weighted alphabet Σ = {a,b,c,d} and the fragmentation spectrum
M :=M (s) = {

0,2,3,5,9,11,12,14
}

from Example 2.1. See Fig. 2.5 for the spectrum graph. Then,
the matrix D is:

j = 0 1 2 3
i = 0 1 1 0 0

1 1 0 1 1
2 0 1 0 1
3 0 1 1 0

3Note that this (and only this) is the definition of the matrix D, whereas Eq. (2.3) below is a recurrence that tells us
how to compute D.
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2 Peptide De Novo Sequencing

Figure 2.6: Illustration of how recurrence (2.3) accesses entries in the matrix.

For example, D[2,3] = 1 tells us that there exists a prefix path to x2 and a suffix path to x3 that
form a valid pair; namely, this prefix path is x0x2, and the suffix path is x0x1x3. Exchanging prefix
path and suffix path, we also have D[3,2]= 1.

But how can we efficiently compute matrix D? Consider any entry D[i, j]: If i ≥ j + 2 then
i−1> j, so the node xi−1 cannot be part of the suffix path ending in x j. Hence, D[i, j]= 1 holds if
and only if D[i−1, j]= 1 and xi−1xi is an edge of the spectrum graph. Analogously, for i ≤ j−2 we
have D[i, j]= 1 if and only if D[i, j−1]= 1 and x j−1x j ∈ E.

So, the only entries D[i, j] of the matrix we are left with to compute, are those with i = j+1 or
i = j−1. The corresponding elements D[i, i−1] and D[i, i+1] are called secondary diagonals. We
concentrate on the first case i = j+1. Here, the prefix path ends in xi and the suffix path ends in
x j = xi−1, so the previous nodes xl for l = 1, . . . , i−2 can be part of either the prefix or the suffix
path. Assume that D[i, j] = 1, so there is a valid pair of prefix and suffix path. We consider all
possible last edges of the prefix path: Obviously, the prefix path must end with some edge xl xi ∈ E
for l ∈ {1, . . . , i−2}. In addition, there must be a prefix path to xl and a suffix path to x j that form a
valid pair. But the later is true, by definition of D, if and only if D[l, j]= 1. So, for all l = 1, . . . , i−2,
we test if D[l, j]= 1 and xl xi ∈ E holds simultaneously; if we find one such l, then D[i, j]= 1. The
case i = j−1 can be solved analogously.

The above argumentation actually proves that the following recurrence is correct:

D[i, j]=



D[i−1, j] if i ≥ j+2 and xi−1xi ∈ E
D[i, j−1] if j ≥ i+2 and x j−1x j ∈ E
maxl=0,..., j−1

{
D[l, j] : xl x j+1 ∈ E

}
if i = j+1

maxl=0,...,i−1
{
D[i, l] : xl xi+1 ∈ E

}
if j = i+1

0 otherwise

(2.3)

We initialize D[0,0]= 1 and D[ j, j]= 0 for all j ≥ 1. In (2.3) we assume that max;= 0, to simplify
the formalism. Note that taking the maximum is only some “math voodoo”, that allows us to write
up the equation more easily: The expression gets one, if at least one of the entries in the set is
non-zero. See Fig. 2.6 on how the recurrence accesses other entries in the matrix.

How much time do we need to compute D? The main diagonal is initialized in O(n) total time.
For every entry of the two secondary diagonals i = j+1 and i = j−1, computing the maximum
requires O(n) time. As there are O(n) entries on the secondary diagonals, this leads to O(n2) time
in total. All other entries can be computed in constant time; as there are O(n2) entries remaining,
this again results in O(n2) time. In total, we need O(n2) time to compute the complete matrix D.
Obviously, we need O(n2) memory to store the matrix D; this requirement can be reduced to O(n),
see Exercise 2.6.
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2.4 Dynamic programming for ideal data

1: function PEPTIDESEQUENCINGIDEALDATA(set of masses M )
2: Test that M has even cardinality
3: Let

{
x0, . . . , xn, yn, . . . , y0

}
:=M satisfying (2.2)

4: Let M := y0
5: Test xi + yi = M for all i = 0, . . . , M
6: Construct spectrum graph G = (V ,E) from M = {

x0, . . . , xn, yn, . . . , y0
}

7: Init binary matrix D[0. . .n,0 . . .n] with D[0,0]← 1 and D[i, i]← 0 for i = 1, . . . ,n
8: for i ← 0, . . . ,n do . Fill the matrix
9: for j ← 0, . . . ,n do

10: if i 6= j then
11: Compute D[i, j] from (2.3)
12: end if
13: end for
14: end for
15: for i ← 0, . . . ,n do . Check if there is a valid path
16: if D[i,n]= 1 and xi yn ∈ E then
17: return (i,n)
18: end if
19: end for
20: for j ← 0, . . . ,n do
21: if D[n, j]= 1 and xn yj ∈ E then
22: return (n, j)
23: end if
24: end for
25: return false
26: end function

Algorithm 2.1: Peptide de novo sequencing for ideal data: We first compute the matrix D using
recurrence (2.3); then check if there is a valid path using this matrix.

The actual computation of the matrix is quite simple: To compute D[i, j], recurrence (2.3)
accesses only entries (i′, j′) 6= (i, j) such that i′ ≤ i and j′ ≤ j holds. So, we can fill the matrix
from the upper-left entry to the lower-right entry. We show the resulting “algorithm” in Alg. 2.1.

Having computed the matrix D, how does that help us to check if there is a valid path? Assume
that D[i, j] = 1 holds for some i, j with max{i, j} = n. By definition of D, this means that there
is a prefix path to xi and a suffix path to x j that form a valid pair. We can flip the suffix path,
as described above; to glue together the two resulting paths, we only have to check if xi yj is an
edge. The resulting path is valid, since max{i, j} = n holds. Consequently, we check if there some
i ∈ {1, . . . ,n} with D[i,n] = 1 and xi yn ∈ E, or some j ∈ {1, . . . ,n} with D[n, j] = 1 and xn yj ∈ E. If we
can find such i or j, then there is a valid path in the spectrum graph and, consequently, also a
string s ∈ Σ∗ with M (s) = M ; but if there is no such i or j, then there is also no valid path and,
hence, no such string. I have integrated this query into Alg. 2.1.

So, our DP matrix lets us decide if there is at least one string s such that M (s)=M ; but, how do
we recover this string? The answer to this question is backtracing. In principle, we could proceed
in three steps: First, we use the matrix D to recover a valid pair of prefix path and suffix path,
that can be glued into a valid path in the spectrum graph. Then, we can flip the suffix path to
construct the valid path. Finally, we transform the valid path into a string.

But it is possible to do all three steps at once, directly constructing the string s. Assume that
D[i, j] = 1 holds for indices i, j with max{i, j} = n, and that xi yj ∈ E. We simultaneously extend
the string s to the left and to the right. We initialize s ← z for the unique character z ∈ Σ with

27



2 Peptide De Novo Sequencing

1: function BACKTRACINGIDEALDATA(matrix D[0. . .n,0 . . .n], integers i, j, graph G = (V ,E))
2: Let

{
x0, . . . , xn, yn, . . . , y0

}
:=V satisfying (2.2)

3: Assure that max{i, j}= n, D[i, j]= 1, and xi yj ∈ E
4: Choose z ∈Σ with µ(z)= yj − xi
5: Let s ← z
6: while (i, j) 6= (0,0) do . Backtracing starts here
7: Find (i′, j′) such that D[i, j]= D[i′, j′] in (2.3)
8: if i′ < i then . implies j′ = j
9: Choose z ∈Σ with µ(z)= xi − xi′

10: s ← zs . extend prefix part of the string
11: else . implies i′ = i and j′ < j
12: Choose z ∈Σ with µ(z)= yj′ − yj
13: s ← sz . extend suffix part of the string
14: end if
15: Let i ← i′ and j ← j′

16: end while
17: Return s
18: end function

Algorithm 2.2: Peptide de novo sequencing for ideal data: We backtrace through the matrix D to
reconstruct the string s. We assume that the spectrum graph G as well as indices i, j to start the
backtracing, have been computed beforehand.

µ(z) = yj − xi. Looking at recurrence (2.3), we see that “D[i, j] = 1” has progressed from some
entry D[i′, j′] with either i′ < i and j′ = j, or i′ = i and j′ < j. In case i′ < i and j′ = j, we append
the unique character z ∈ Σ with µ(z) = xi − xi′ to the left side of s. In the other case i′ = i and
j′ < j, we append the unique character z ∈ Σ with µ(z) = yj′ − yj = x j − x j′ to the right side of s.
Let (i, j) ← (i′, j′) and repeat, until we reach the upper-left entry (i, j) = (0,0). Now, s is the string
we are searching for, satisfying M (s) = M : In fact, we have constructed a valid path by our
backtracing procedure, so this follows directly from Lemma 2.1. See Alg. 2.2 for the pseudocode of
this algorithm.

2.5 Getting rid of the unrealistic assumptions

Hitherto, we have used some unrealistic assumptions to simplify the problem, that we will
abandon in the following. We will see that we have succeeded in “making the problem as simple as
possible, but not simpler”: We have to replace recurrence (2.3) by an optimization version which is
even a bit simpler. But besides playing around with some weights, no other changes are required.

Our presentation will touch upon certain issues that will be covered in more detail at a later
stage of this textbook. After all, this is only the beginning of our journey through the realms of
computational mass spectrometry. These issues include:

• The general problem of matching mass spectra; this will be covered in Sec. 4.4.

• Penalizing (or rather not penalizing) additional peaks in Sec. 2.5.1; see also Sec. 4.3.

• Penalizing missing peaks in Sec. 2.5.3; we will come back to this in Sec. 4.4.

• “Strings without order” in Sec. 2.5.3; this leads to the definition of “compomers” in the next
chapter.
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2.5 Getting rid of the unrealistic assumptions

2.5.1 Additional Peaks

The next problem that we want to deal with, is that the set of masses M contains additional peaks:
In application, we will not only record the masses of prefixes and suffixes of our peptide string but,
in addition, many peak masses that do not correspond to our peptide at all. Furthermore, peptide
fragmentation is more complex than what we have described above, and peak masses in M may
stem from fragments that we have not accounted for in our simple model. Be aware that in this
section, we assume no peaks to be missing; so, m ∈ M still implies M −m ∈ M . This means that
we can still name our peak masses M = {

x0, . . . , xn, yn, . . . , y0
}

satisfying (2.2).
How can we decide which string is the “best” one? An obvious choice is the following: We

say that a string s explains some peak mass m if m ∈ M (s). Now, the string that explains the
maximum number of peaks in the measured set of peaks M , is a natural choice for this “best”
answer.

At this point, two things must be understood. If our set of masses does not contain any
additional peaks, then a string explaining a maximum number of peaks, is also a solution of the
ideal problem without additional peaks, and vice versa: This string explains all the peaks in the
spectrum, which is obviously optimal. This is not only a nice gimmick, but rather a necessity: If
you transform an algorithm for idealized data into its optimization version, then the optimization-
based algorithm should come up with the correct solution if you feed it with ideal data. This is true
here, so we can move on. Here comes the second important point: If the set of masses contains
additional peaks and if we are unlucky, then the string that explains a maximum number of peaks
is not the true string that the fragmentation spectrum stems from. But this is not a particular
problem of our approach, but rather a general one for any method that has to deal with noisy
data: In case the quality of the data is bad, no computational method in the world will be able to
reconstruct the true string. Several times throughout this textbook, we will find that there is no
way around “rubbish in — rubbish out”. All that we can do, is try to push the limits of what we
consider “rubbish” as far as possible.

We define a matrix Q[0. . .n,0 . . .n] where Q[i, j] is the maximum number of peaks explained by
the prefix path x0 to xi and the suffix path x0 to x j, such that these paths form a valid pair. We will
ignore the peaks at masses 0 and M, as these are not informative. Note that we are not penalizing
for the presence of additional peaks; this will be discussed (and justified) in Sec. 4.3. We initialize
Q[0,0] = 0 and Q[ j, j] =−∞ for j = 1, . . . ,n. Here, Q[i, j] =−∞ means that the solution is invalid,
so there is no valid pair of paths to xi and x j.

How can we compute the maximum number of peaks explained by any string, if we know
the matrix Q? Different from ideal data, the optimal valid path may skip the node pair xn, yn
altogether. To this end, we iterate over all edges xi yj ∈ E, and search for the maximum value
Q[i, j]. Then, 2Q[i, j] is in fact the maximum number of peaks that can be explained by any
string, ignoring masses 0 and M, see Exercise 2.9. We have to multiply by two, as a peak m
explained by the prefix path will also explain the corresponding peak M−m, and similarly for the
suffix path.

To simplify the recurrence for Q, we define a scoring function w which, for the moment, will
only be used to count peaks. At a later stage, we will reuse the scoring function to encode more
complex things. In addition, we use w to encode whether or not an edge uv is present in the
spectrum graph G = (V ,E). To this end, we define

w(x, y) :=
{

1 if xy ∈ E,
−∞ otherwise.

(2.4)

Now, w(u,v) = 1 holds if and only if uv ∈ E. We can think of w as (unit) edge weights to the
spectrum graph.
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Introducing −∞ as a score, allows us to come up with a very simple recurrence for Q, similar
to (2.5). For readers not familiar with calculations involving ±∞, we note that x+−∞=−∞ and
x >−∞ holds for all numbers x ∈R. The recurrence for Q is:

Q[i, j]=
{

maxl=0,...,i−1
{
Q[l, j]+w(xl , xi)

}
if i > j

maxl=0,..., j−1
{
Q[i, l]+w(yj, yl)

}
if j > i

(2.5)

At this point, our scoring function w serves a single purpose: Entries Q[l, j] and Q[i, l] are not
taking into consideration for the maxima in (2.5) if xl xi ∉ E or yj yl ∉ E holds, respectively. Note
that we have deliberately broken the symmetry, accessing w(yj, yl) instead of w(xl , x j) in the
recurrence. At present, we have w(yj, yl) = w(xl , x j); but we will see in the next section that it
can be reasonable to define a non-symmetric scoring function in application.

We now show that recurrence (2.5) is correct. Consider entry Q[i, j]; we concentrate on the case
i > j, the other case follows analogously. Let E′ ⊆ E be the set of edges ending in xi. Clearly,
w(x′xi) = 1 holds for all x′xi ∈ E′. If E′ is empty then there is no suffix path ending in xi, so
Q[i, j] =−∞ is correctly calculated by (2.5). If Q[l, j] = −∞ holds for all entries in the maximum
from (2.5), then there is no valid pair of paths to x j and any predecessor of xi; again, Q[i, j]=−∞
is correctly calculated. In the following, we assume Q[i, j] 6= −∞; this implies that there is a prefix
path to xi and a suffix path to x j forming a valid pair.

Assume that xLxi is the last edge of the optimal prefix path. By induction, Q[i, j] = Q[L, j]+1
must hold, as our new prefix path explains exactly one more peak. This implies Q[i, j] ≤
maxl=0,...,i−1

{
Q[l, j]+ w(xl , xi)

}
, and it remains to be shown that Q[L, j] = maxl=0,...,i−1

{
Q[l, j]

}
.

This follows as otherwise, xLxi would not be the last edge of an optimal prefix path, in contradic-
tion to our assumption. This concludes our proof.

Compare (2.3) with (2.5): The second recurrence appears to be simpler than the first one. This is
because we no longer treat the two secondary diagonals differently; instead, we have to compute
maxima for all elements of the matrix, as extending either prefix or suffix path is always possible,
assuming all unexplained peaks to be additional. But as so often, our intuition is misleading:
Whereas the second recurrence appears simpler, its computation takes more time. In fact, it
is quite easy to see that computing the complete matrix Q requires O(n3) time, and we need
O(n2) memory to store it. So, running time has increased from quadratic for ideal data, to cubic
when additional peaks have to be taken into account. Also, there is no way to reduce memory
requirements to O(n), compare to Exercise 2.6. From the theoretical standpoint, this is a huge
increase in running time; luckily, n is rather small in application with n ≤ 100 in most cases, so
computation time will hardly ever reach one second on a moder computer.

Again, we are left with the task of recovering the optimal solution from the matrix Q. Similar
to above, this is achieved by backtracing, this time through the matrix Q: Assume that Q[i, j]
with xi yj ∈ E is maximum. We start with s = x for x ∈Σ with µ(x) = yj − xi. We search for D[i′, j′]
where D[i, j] in the maxima of (2.5) has progressed from, so D[i, j] = D[i′, j′]+1. We again have
two cases, appending a character either to the left end or the right end of s. We set (i, j) ← (i′, j′)
and repeat, until we reach (i, j)= (0,0).

2.5.2 General edge-weighted spectrum graphs

In the previous section, the edge weighting w was merely a trick, so that we did not have to treat
edges and “non-edges” of G separately in recurrence (2.5). But it turns out that exactly the same
recurrence can be used in case the spectrum graph is edge-weighted: Given a graph G = (V ,E),
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2.5 Getting rid of the unrealistic assumptions

any function w : E → R is an edge weighting. The weight (or length) of a path p = u0u1 . . .ul in G
is then simply the sum of edge weights,

w(p) :=
l∑

i=1
w

(
ui−1ui

)
.

Now, the following lemma tells us that we can use recurrence (2.5) to search for longest valid
paths:

Lemma 2.2. Let G = (V ,E) be a spectrum graph for some set of masses M = {x0, . . . , xn, yn, . . . , y0}
with xi+yi = M for all i = 0, . . . ,n. Let w : E →R be arbitrary edge weights, and set w(x, y) :=−∞ for
xy ∉ E. Then, the maximum weight of a valid path in G from 0 to M, equals max{Q[i, j]+w(xi, yj) :
xi yj ∈ E} where Q is computed using (2.5).

We leave the proof of the lemma to the reader, see Exercise 2.10. For this proof, we have
to formally define the dynamic programming matrix Q. This is slightly more complicated than
above: Given a prefix path p1 and a suffix path p2 in G, we say that the length of this pair is
w(p1)+w(p∗

2). The important point to note is that we are not using the weight of the suffix path
p2 itself but instead, we use its flipped counterpart. Now, we can formally define Q[i, j] to be the
maximum length of a prefix path to xi and a suffix path to yj that form a valid pair.

Looking at the lemma, you will notice one important change: The maximum weight of a valid
path is max{Q[i, j]+w(xi, yj) : xi yj ∈ E} whereas previously, we searched for max{Q[i, j] : xi yj ∈ E}.
Where does the additional weight of w(xi, yj) come from?

There are two answers to this question. The first answer is formal and simple: From the
definition of Q we see that the weight of the edge xi yi connecting the prefix path p1 with the
flipped suffix path p∗

2 has not been added yet. So, in our maximization, we simply take care of
that missing edge.

The second answer is somewhat harder to explain: The weight of a path is defined as the sum of
edge weights. But what we want to score in our mass spectrum, are peaks; and peaks correspond
to nodes, not edges! The conceptually most elegant way to get around this dilemma, is to push the
weight of a node to all of its incoming edges. In this way, weight w(u,v) corresponds to the weight
of node v. As at most one of the edges entering v is part of the path, we add the weight of a node
if and only if the path passes through that node.

This is different from our initial definition of the matrix Q, because now, a suffix path from 0 to
x j does not longer explain the peak yj: The first edge of the flipped suffix path is yj y for some node
y > yj, and w(yj, y) tells us something about the node (and peak) y, but not about yj. Combining
the peak counting score (2.4) with Lemma 2.2 leads to the following interpretation: Entry Q[i, j] is
the maximum number of peaks from M \{0} explained by a prefix path to xi and a suffix path to x j
that form a valid pair, ignoring x j in our calculation. And we reach max{Q[i, j]+w(xi, yj) : xi yj ∈ E}
as the maximum number of peaks from M \{0} that can be explained by a valid path. (Note that
we deliberately excluded 0 but not M from being counted.) As this definition is much harder to
grasp than what we initially came up with, the reader will hopefully excuse our little detour.

2.5.3 Missing Peaks

First, assume that either some prefix peak m or the complementing suffix peak M−m is missing,
but never both at the same time. In this case, we can “reconstruct” the missing information
by mirroring the spectrum, M ′ := M ∪ {M −m : m ∈ M }. We assume M ′ = {

x0, . . . , xn, yn, . . . , y0
}
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2 Peptide De Novo Sequencing

satisfying (2.2). We construct our spectrum graph using the set M ′ instead of M . For counting
peaks, we define the score w by:

w(x, y) :=


0 if xy ∈ E, y ∉M , and M− y ∉M

1 if xy ∈ E, and either y ∈M or M− y ∈M

2 if xy ∈ E, y ∈M , and M− y ∈M

−∞ if xy ∉ E

(2.6)

The nice thing is that recurrence (2.5) can be applied without changes, see Lemma 2.2. Here,
max{Q[i, j]+w(xi, yj) : xi yj ∈ E} is the maximum number of peaks that can be explained by any
string, ignoring mass 0.

Up to this point, both the scoring function w as well as the resulting matrix Q have been
symmetric. But the fact that peaks may be missing, is a reason to break this symmetry: It is
possible that in application, the presence of a prefix peak (b ion) is seen as more informative than
the presence of a suffix peak (y ion). So, seeing the prefix peak but not the suffix peak, is “better”
than seeing the suffix peak but not the prefix peak. Instead of simply counting explained peaks,
we may want to define a different score: we take twice the number of peaks explained by prefixes,
plus the number of peaks explained by suffixes. Then, we can define a scoring function w′ as:

w′(x, y) :=



0 if xy ∈ E, y ∉M , and M− y ∉M

1 if xy ∈ E, y ∉M , but M− y ∈M

2 if xy ∈ E, y ∈M , but M− y ∉M

3 if xy ∈ E, y ∈M , and M− y ∈M

−∞ if xy ∉ E

Again, recurrence (2.5) can still be applied without changes, see Lemma 2.2, and Exercise 2.12 for
an even more general approach.

The case where prefix and suffix peak at m and M − m are simultaneously missing, is only
slightly more complicated: We can simply check if the mass difference between two peaks can be
explained as the mass of up to k amino acid residues, where k ∈N∪ {∞} is a fixed parameter set
by the user. We can think of this as inserting additional edges into the spectrum graph G = (V ,E):
For u,v ∈ V there is an edge uv ∈ E if and only if there exists some z ∈ Σ∗ with 1 ≤ |z| ≤ k such
that u+µ(z) = v. A theoretically more elegant way, is to replace our original weighted alphabet
Σ by an extended version Σ′, that contains a character for every non-empty string of the original
alphabet Σ with up to k characters. We then have to delete characters from Σ′ that have identical
mass. We will not pursue this “elegant way”; but it implies that all of our definitions and results
for spectrum graphs, are still valid if we insert the additional edges.

Note that we cannot infer the order of characters inside the “gap string” z; we will come up
with a formalism for this situation in the next chapter, where we introduce compomers as “strings
without order”. In the literature, this situation is often denoted as s = a[bc]d, meaning that we
have no information whether the true string is abcd or acbd. If the gap gets so large that the mass
can be explained by more than one combination of characters, we can use the notation s = a[186]d
for a gap of 186 Da.

To our delight, matrix Q and recurrence (2.5) from above can be used without any changes. This
follows using our idea of an “extended alphabet” Σ′ and Lemma 2.2. Again, we are searching for
the string that explains a maximum number of peaks. This should be combined with our approach
of mirroring the spectrum, to reconstruct missing prefix and suffix peaks.

Larger steps in the spectrum graph explain less peaks, so we force the approach to use these
larger steps as prudent as possible. Unfortunately, that is not quite the end of the story. Let
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2.5 Getting rid of the unrealistic assumptions

Σ= {a,b,c,d} be the weighted alphabet from Example 2.1. Assume that s = cd is the correct peptide
string; for ideal data, we have M = {0,7,10,17}. Obviously, the string s explains all of these
masses; but so does the string s′ = caaaaa with

M (s′)= {0,2,4,6,7,8,9,10,11,13,15,17}.

It is understood that we should be able to distinguish between s and s′ based on this data. We can
do so by penalizing unobserved (missing) peak pairs, where both the prefix and the suffix peak
are missing from the measured mass spectrum. Again, we do not have to change the recurrence,
but simply modify the scoring w: For example, we may modify the score for counting peaks from
(2.6) by defining

w(x, y) :=−min
{|z|−1 : z ∈Σ∗,µ(z)= y− x

}
(2.7)

for the case xy ∈ E, but y ∉ M and M − y ∉ M . Then, a “gap string” z = z1z2, where we cannot
find a prefix or suffix pair for appending either z1 or z2, is penalized by −1 for one missing peak
pair. If there are multiple gap strings that can bridge the gap, then we have to give the string
the benefit of the doubt, penalizing it the least. The nice thing is that recurrence (2.5) can still
be applied without changes. How do we find the minimum length of a string that explains some
mass difference? This will be addressed in the next chapter, see Exercise 3.1.

We leave the proof that all of these calculations and recurrences are in fact correct, to the reader,
see Exercise 2.13. In Sec. 4.4, we will come back to the problem of penalizing missing peaks.

2.5.4 Pre�x mass equals su�x mass

Before we discuss how to get rid of Assumption 3, we want to take a short detour and explain
why this assumption was introduced in the first place. Assume that we want to maximize the
number of explained peaks, ignoring missing peaks. Initially, people did not consider the number
of explained peaks to find the “best” solution, as this is somewhat complicated to compute. Instead,
they looked at a simpler score that, for some string s ∈ Σ∗, counts the number of proper prefix
masses of s present in M , plus the number of proper suffix masses of s present in M . This score
is easy to incorporate into branch-and-bound approaches, as it allows us to truncate the search
space.

Consider the “true” string s = aaabb for the weighted alphabet from Example 2.1. Let M :=
M (s)= {0,2,3,4,6,8,9,10,12} be the ideal fragmentation spectrum of s. Now, the true string s has
four proper prefixes and four proper suffixes, all of which are present in M , leading to a score
of 8. Where is the problem? Consider the string s′ = aaaaaa: This string has five proper prefixes
and five proper suffixes, all of which are present in M , resulting in score 10. So, we have found
a string that better explains the data than the true solution! Obviously, this is not the case, the
problem being peak double counting: We have counted each peak 2,4,6,8,10 twice in our scoring,
although these peaks are present only once in M . In fact, the string s′ explains only seven out of
nine peaks in M . So, we should be able to tell that this explanation is worse, without having to
rely on scoring missing peaks.

Demanding that any string s must not contain a proper prefix and suffix of identical mass,
altogether removes the problem: No longer can a peak be scored twice, as all proper prefixes
and suffixes are required to have different masses. But this comes at the price of a reduced
generalizability of the method: Certain strings can simply not be found, even if they are the correct
answer. For our simplified model, it is quite obvious that many strings violate Assumption 3: Any
string that contains a prefix a and a suffix b with the same composition of characters, violates our
assumption. But it is also true in application, see Exercises 3.12 and 3.13. We will now show how
get around peak double counting without artificially limiting the search space.

So, let us drop Assumption 3. To simplify our presentation, we limit our considerations to the
case of “additional peaks only”, resulting in the simplest scoring function wA ≡ w with w(x, y) ∈
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1: function PEPTIDESEQUENCING(set of masses M , precursor mass M)
2: Let M ′ := {0, M}∪ {m, M−m : m ∈M }
3: Let

{
x0, . . . , xn, yn, . . . , y0

}
:=M ′ satisfying (2.2)

4: Construct spectrum graph G = (V ,E) from M ′

5: Matrix Q′[0. . .n,0 . . .n]
6: Init Q′[0,0]← 0
7: for i ← 0, . . . ,n do . Fill the matrix
8: for j ← 0, . . . ,n do
9: if (i, j) 6= (0,0) then

10: Compute Q′[i, j] from (2.8)
11: end if
12: end for
13: end for
14: Let maxscore←−∞ . Check if there is a valid path
15: for i ← 0, . . . ,n do
16: for j ← 0, . . . ,n do
17: if xi yj ∈ E and Q′[i, j]>maxscore then
18: Let maxscore←Q′[i, j] and (i′, j′)← (i, j)
19: end if
20: end for
21: end for
22: Return (i′, j′) with score maxscore
23: end function

Algorithm 2.3: Peptide de novo sequencing with additional peaks: We first compute the matrix Q′

using recurrence (2.8); then search for the path through the spectrum graph with highest score.

{1,−∞} from (2.4). We will deliberately not used a general scoring function in our presentation;
we will come back to this issue later. We define a matrix Q′[0. . .n,0 . . .n] where Q′[i, j] is the
maximum number of peaks in M \{0, M} explained by any prefix path x0 to xi and suffix path x0
to x j. Here, nodes that are present in both the prefix path and the suffix path are counted only
once; but we do no longer ask that prefix path and suffix path form a valid pair. The initialization
is reduced to Q′[0,0]= 0, since Q[ j, j]=−∞ only made sense when Assumption 3 was still in place.

We re-use recurrence (2.5) for Q′, but extend it by the calculation of the diagonal matrix
elements:

Q′[i, j]=


maxl=0,...,i−1

{
Q′[l, j]+wA(xl , xi)

}
if i > j

maxl=0,..., j−1
{
Q′[i, l]+wA(yj, yl)

}
if j > i

maxl=0,...,i−1{Q′[l, j] : xl xi ∈ E} if i = j

(2.8)

Once more, recall that wA(x, y) = 1 for xy ∈ E, and wA(x, y) = −∞ otherwise. Also recall that we
assume max;=−∞. The last case of the recurrence appears to be non-symmetric; but this is due
to the fact that

max
l=0,...,i−1

{Q′[l, j] : xl xi ∈ E} = max
l=0,..., j−1

{Q′[i, l] : yj yl ∈ E}. (2.9)

See Exercise 2.14 for a proof, and see Alg. 2.3 for the resulting algorithm.

To prove the correctness of recurrence (2.8), recall that we are considering additional peaks
only. We first note that we can concentrate on the case Q′[i, j] 6= −∞; this follows analogously to
the proof for matrix Q and recurrence (2.5) in Sec. 2.5.1. So, assume Q′[i, j] 6= −∞, what implies
that there is a prefix path to xi and a suffix path to yj. These paths do not have to form a valid pair;
but at least, they exist. For i 6= j, the argumentation that recurrence (2.8) is correct, is exactly the
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2.6 Ion series: The abc and xyz of peptide fragmentation

same as for the matrix Q. So, let us concentrate on the final case i = j: Assume that xLxi ∈ E is
the final edge of the prefix path, and that xL′ x j is the final edge of the suffix path. As we do not
want to count the peak xi = x j twice, we infer Q′[i, j] =Q′[L, j] =Q′[i,L′]. Again by an analogous
argument as in the proof of recurrence (2.5), we see that Q′[L, j] = maxl=0,...,i−1{Q′[l, j] : xl xi ∈ E}
and Q′[i,L′]=maxl=0,..., j−1{Q′[i, l] : yj yl ∈ E} what concludes the proof.

What about the generalizations of (2.8) to the cases where peaks are missing, the scoring
is no longer symmetric, or we even use an arbitrarily edge-weighted spectrum graph? An
unsymmetrical scoring is easily dealt with; just include both sides of (2.9) in recurrence (2.8)
for the case i = j. But things are slightly more complicated: The fact that we have pushed the
weight of a node to all incoming edges, brakes the symmetry of the problem. Still, I believe that
one can come up with a recurrence, although I expect it to be more complicated than the ones
presented in this chapter. But the conceptually simpler solution is to remember that we originally
wanted to score nodes (peaks), not edges; compare to Exercise 2.12. To this end, we can define the
weight of a path to be the sum of node weights; and, we can define the valid weight of a path as
the sum of weight where, if xi and yi are present simultaneously, only the larger weight is added
to the weight of the path. See Exercise 2.16 for details.

2.6 Ion series: The abc and xyz of peptide fragmentation

If you take a look at any real-world peptide fragmentation spectrum, there is obviously more going
on than what we pretended above. Compare Fig. 2.7 to Fig. 2.1: Besides the two “main” ion series
b and y, there are at least four more ion series, namely a, c, x, and z ions. The following description
is tailored toward CID (Collision-Induced Dissociation) peptide fragmentation, which still is the
predominant method for this purpose.
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Figure 2.7: Fragmentation of a peptide into a,b,c and x,y,z-ions. This figure oversimplifies the
fragmentation process.

Molecular formula modifications for six ion series are shown in Table 2.2. The a, b, and c ion
series correspond to prefixes of the peptide; the x, y, and z ion series correspond to suffixes. To
calculate the molecular formula of an ion from a prefix or suffix string, add up the molecular
formulas of residues from Table 2.1 on page 19; then, add or subtract the molecular formula
modification from Table 2.2, plus H+ for a single charge. Note that I have omitted the proton from
the molecular formula modifications in Table 2.2, to conform with the rest of the book. Just like
b and y ions being complementary, the same holds for a and x ions, and for c and z ions. The
molecular formula of a pair “b plus y” and a pair “c plus z” adds up to the molecular formula of the
peptide. This is not the case for a pair “a plus x”, whose molecular formulas add up to the peptide
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prefixes, N-terminal suffixes, C-terminal
series MFM mass series MFM mass
a ions −CO −27.994915 x ions +CO2 +43.989830
b ions none ±0.0 y ions +H2O +18.010565
c ions +NH3 +17.026549 z ions −NH3 +H2O +0.984016

Table 2.2: Ion series for peptide fragmentation. ‘MFM’ is the molecular formula modification that
has to be applied to the molecular formula of the prefix or suffix (that is, the sum of
residue molecular formulas) to receive the molecular formula of the ion series. Mass
modification for protonation excluded from the table.

molecular formula minus H2. The reason is that peptide fragmentation is still more complicated
than Fig. 2.7 suggests: It is an involved process that can comprise a series of rearrangements
inside the peptide, before the actual fragmentation takes place. We will not go into further details.

Example 2.3. Given the peptide ESI with molecular formula C14H25N3O7, assume that ES is the
prefix (N-terminal fragment) and I is the suffix (C-terminal fragment). The molecular formula of
the residue string ES is C5H7N1O3 +C3H5N1O2 = C8H12N2O5, whereas the residue string I has
molecular formula C6H11N1O1. The full peptide has molecular formula

C8H12N2O5 +C6H11N1O1 +H2O=C14H25N3O7.

We calculate the corresponding molecular formulas of the ion series as:

series molecular formula calculation ion
a ion C8H12N2O5 −CO =C7H12N2O4 C7H13N2O +

4
b ion C8H12N2O5 =C8H12N2O5 C8H13N2O +

5
c ion C8H12N2O5 +NH3 =C8H15N3O5 C8H16N3O +

5
x ion C6H11N1O1 +CO2 =C7H11N1O3 C7H12N1O +

3
y ion C6H11N1O1 +H2O =C6H13N1O2 C6H14N1O +

2
z ion C6H11N1O1 −NH3 +H2O =C6H10O2 C6H11O +

2

In fact, things are even more complicated: Ions of all ion series may also loose ammonia −NH3
or water −H2O. Unfortunately, y ions loosing ammonia have the same molecular formula as
z ions, so peaks are indistinguishable and intensities will add up in the mass spectrum. Next,
immonium ions are “indicator ions” which do not correspond to a substring of the peptide string,
but rather a single character. The molecular formula of an immonium ion is the molecular formula
of the amino acid residue, plus CH3N (without charge) or plus CH4N+ (for the ion). Immonium
ions cannot be used for determining the sequence of the peptide, but they are indicative of the
presence or absence of a particular amino acid from the sequence. Next, leucine and isoleucine
are not as indistinguishable as we have thought: They sometimes may be told apart by different
“fragmentation behavior”. Next, internal fragments can occur, which are neither prefixes nor
suffixes but rather substrings of the peptide string. Next, the spectrum may contain multiple-
charged fragments, see Section 1.4.2. And there is more; but these details are beyond the scope of
this textbook.

2.7 Posttranslational modi�cations: Enlarging the alphabet

When a proteomics expert takes a look at Table 2.1, he or she might object, “and where are the
amino acid modifications?” We will cover them now, for the sake of completeness. In fact, we
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can cover all of these modifications without any changes to our approach. This is fundamentally
different from peptide database searching (see Chapter 4 below) where variable modifications
pose a major combinatorial problem. But the fact that our computational de novo sequencing
approach does not require any changes, does not mean that modifications are easy to deal with:
In fact, de novo sequencing becomes considerably harder when variable modifications (see below)
are present, as it further increases the ambiguity of the data.

We have to differentiate between two types of modifications of amino acids: The first is due to
the experimental setup, such that all amino acids of a certain type are replaced by their modified
counterpart. This is called a fixed modification. One example is the oxidization of methionine,
that happens spontaneous during the analysis; so, experimentalists often make sure that all
methionine in the sample is oxidized. To deal with this situation, we simply replace the letter M in
our alphabet, which now has molecular formula C5H9N1O2S1 for methionine sulfoxide. Another
example is carboxamidomethyl cysteine (CamC), where cysteine reacts with iodoacetamide. Fixed
modifications make peptide de novo sequencing neither simpler nor more complicated: We simply
replace one molecular formula of the character by a different one.4 We do not introduce a new
symbol for the modified amino acids, as they are an artifact of the experimental setup, and have
no biological meaning.

The second type of modifications are variable modifications, enlarging the alphabet of amino
acids that we have to look at: Post translational Modifications (PTMs) are chemical modifications
of a protein after its translation. One of the most common PTMs is the phosphorylation of
serine, threonine, and tyrosine: Phosphorylation is the addition of a phosphate group to a
protein, and activates or deactivates many protein enzymes. It results in a molecular formula
change of +PO4 for the affected amino acid residue. Any serine, threonine, tyrosine amino acid
of the protein can or cannot be phosphorylated individually. This results in three additional
amino acid residues that we have to take into account: For example, we introduce a new letter
“pS” for the phosphorylated serine residue with molecular formula C3H5N1O6P. Other common
post-translational modifications are pyroglutamic acid replacing glutamine (Q); deamidation of
glutamine (Q) or asparagine (N); and carboxylation of aspartic acid (D) or glutamic acid (E). We
may also include the methylated form of some amino acids, such as methylated arginine (R∗) with
molecular formula C6H12N4O1, and doubly methylated arginine (R∗∗) with molecular formula
C6H12N4O1.

Clearly, this makes the de novo sequencing problem more challenging, as the number of ambi-
guities increases through the additional characters we can add at every position. Surprisingly, the
number of candidates we have to consider may per se not increase “dramatically”: If we consider
an alphabet of 25 instead of 19 letters, then the number of peptides of length exactly 10 increases
from 6.13·1012 (trillions of candidates) to 9.54·1013 (tens of trillions). I would argue that it depends
on the actual weighted characters we are adding: If we add characters that generate additional
“combinatorial pitfalls” such as µ(AD)=µ(EG) (see Section 8.6 for details) then de novo sequencing
may indeed become substantially harder, even if few characters are added.

Another common post-translational modification is glycosylation, the covalent attachment of
oligosaccharides to the protein. As oligosaccharides are themselves polymers, these modifications
can be very complex. We will come back to oligosaccharides in Chapter 11.

2.8 A two-step strategy for de novo sequencing

In many cases, our de novo sequencing algorithm will not be smart enough to identify the correct
peptide string. But the algorithm was designed with the main objective to be swift: We have to

4In theory, it is possible that the modified mass equals that of another amino acid by chance; or, that a modified mass
does no longer equal that of another amino acid. In application, this subtlety appears to be irrelevant.
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consider, say, 3.76 · 1025 candidate peptide sequences of length 20. A highly accurate yet slow
algorithm which, for example, considers each candidate individually, is of no use in practice as it
will run for billions of years.

But maybe, we are judging the algorithm too sternly? Maybe, we do not have to find “the”
correct peptide sequence; maybe, it is sufficient if the algorithm returns several answers, and the
correct answer is just one of them? We can indeed modify our algorithm to return more than one
string; and this is indeed often sufficient for high-quality de novo sequencing. Let us start with
the second, easier step.

Suppose our algorithm has “sequenced” k candidates, one of which is (hopefully) the correct
answer. We can now regard these candidates as a “custom database” we want to search in, and
we can use methods for database searching (Chapter 4) to establish which of the candidates is the
best match for the data. Since the number of candidates (say, a thousand strings) is much, much
smaller than the total number of strings we have to consider in de novo sequencing, this means
that we can now spend substantial time to score each candidate. This allows us to use much more
involved scorings which can also take into account peak intensities, infrequent ion series, internal
fragments or multiple charged fragments.

What about the first step? As we have used dynamic programming to derive the optimal
solution, it is actually simple to also find suboptimal solutions. In practice, it is not advisable
to fix a particular number k and ask for the k best solutions, see for example the problem of
computing k-shortest paths [86]. But our choice of k is somewhat arbitrary, anyways; why not 2k
or 0.7k+23? Instead, we will concentrate on computing sub-optimal solutions that deviate only
by a small margin from the score of the optimal solution. First, we compute the exact score T of
an optimal solution. Assume we are given some ε> 0, and we want to find all strings with score
at least T −δ where δ := ε ·T. This can be done using backtracking, allowing suboptimal scores in
the recursion step: We simply keep track of how much we deviate from the optimal solution in the
current step. Let the total of the partial solution constructed so far be d; we only further process
those partial solutions where d ≤ δ.

To generate a candidate set of reasonable size for the subsequent analysis, we can iteratively
adjust δ: Assume that we want to generate at least l and at most u solutions. We start with a
reasonable “guessed” δ. We stop the recursion if we have already generated more than u solutions;
in this case, we decrease δ (say, by interval-halving) and restart. If we have not generated enough
solutions, we increase δ (either doubling δ, or by interval-halving if we have previously established
an upper bound) and restart.

Suboptimal solutions can be rather uninteresting minor modifications of the optimum solution;
for de novo sequencing, the algorithm can decide to fill larger gaps in the sequence with all strings
that have the same mass as the gap. In practice, you may have to prohibit this behavior, to avoid
that you have to score a large number of peptide strings which are basically identical.

To the best of my knowledge, few (if any) published approaches for peptide de novo sequencing
make use of this two-step approach. (Novor [184] uses a two-step approach, but the second step is
only refining ambiguities in the original sequence.) This is somewhat surprising since for related
problems such as glycan “sequencing” (Chapter 11) this is the standard approach.

2.9 Shotgun proteomics: Shoot �rst, ask later

Now that we have spend some time on the problem of peptide sequencing, the question is: Why is
this of interest? Today, most proteomics experiments rely on shotgun proteomics using Liquid
Chromatography Mass Spectrometry (LC-MS), see Sec. 1.6.2. The basic idea is to digest the
proteins in the mixture, and only afterward to separate the peptides using liquid chromatography.
In comparison to the alternative workflow of separating proteins first, then digesting them
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individually (so-called mass fingerprints), this experimental setup has the huge advantage that
it requires much less work experimentally: Separation is performed fully automated by the
instrument.

The name “shotgun proteomics” is somewhat misleading: Instead of dumb pellets, we are firing
with smart missiles that find their targets (lysine and arginine) with high accuracy. The “shotgun”
part is rather when we try to make sense of the peptide identifications since, after all, we are
interested in proteins.

By design, only peptides are identified in shotgun proteomics. Now, different proteins may
“generate” the same peptide through tryptic digestion; more often, our peptide identifications
(sequences) are wrong or ambiguous. To this end, the last step of the shotgun proteomics
identification pipeline is mapping peptides to proteins. (This step requires a protein database,
so this is relevant rather for database searching than de novo sequencing.) This is usually done
by statistical inference algorithms [268] which provide us, for each protein, with a probability that
it is present in the sample. Unfortunately, this step is currently not covered in this textbook, see
Chapter 13.

2.10 Historical notes and further reading

The title of Sec. 2.6 was borrowed from the paper by Steen and Mann [279], see there for more
details on peptide de novo sequencing. Mass spectrometry experts still sequence peptides “by
hand”, see Seidler, Zinn, Boehm, and Lehmann [265] for a review. The nomenclature of ion
series is due to Roepstorff and Fohlman [247]. Zhang [312] quantitatively modeled the peptide
fragmentation process.

There exists a huge number of computational approaches for de novo sequencing of peptides, see
Muth et al. [203] for a review. Early approaches [252] were based on exhaustive enumeration of all
peptide strings and, hence, limited to very short peptides. Pruning techniques were developed to
reduce the combinatorial explosion of the problem [121, 307] but did not prove very successful, in
particular because a correct sequence prefix could be pruned due to peaks missing in the measured
spectrum. Some noteworthy approaches are: Lutefisk [288] from 1997, PEAKS [186] (which is
now commercial), PepNovo [96], and Novor [184] by Bin Ma, the creator of PEAKS. See Muth and
Renard [202] for a more complete list. Muth and Renard [202] also compared the performance
of Novor, the commercial PEAKS software, and PepNovo, and investigated the most common
sequencing error. Tran et al. [292] introduced a de novo sequencing method based on deep learning
which, according to the authors, performs better than Novor, PEAKS or PepNovo.

Our presentation of this chapter loosely follows the paper of Chen, Kao, Tepel, Rush, and
Church [49], with major modifications to simplify the line of thought. The algorithm of Sec. 2.5.4
(a proper prefix mass may equal a proper suffix mass) is not in this paper. There is a reasonable
number of peptides with b and y ions of identical mass, see Exercises 3.12 and 3.13 below; so, this
is a relevant generalization.

It is common in computational graph theory to search for longest paths in edge-weighted rather
than in node-weighted graphs. To this end, both our presentation (except for Sec. 2.5.4) as well
as the literature [12, 48, 49, 58] use the trick of transforming node-weights into edge-weights. In
fact, there is a good reason for edge-weighting the graph that stems from the application itself:
In this way, we can also score the mass difference between consecutive peaks of a peaks series, as
well as the existence or non-existence of such consecutive peaks.

The spectrum graph was introduced by Bartels [12] in 1990. Valid paths in spectrum graphs
are a particular case of antisymmetric paths. When Dančík et al. [58] cast the peptide de novo
problem onto the ANTISYMMETRIC LONGEST PATH problem they noted that, in general, this
is an NP-complete problem [98]. But the authors already conjectured that, due to the special
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structure of the spectrum graph, the de novo sequencing problem may allow for a polynomial
time algorithm. As we know, such an algorithm was found only a year later [48]. Andreotti
et al. [6] presented a faster method for finding longest antisymmetric paths, based on Lagrangian
relaxation of an Integer Linear Program which pushes the “NP-hard part” of the problem into the
objective function; in practice, this also boils down to repeatedly solving the longest path problem
in a directed acyclic graph using Dynamic Programming.

Searching for antisymmetric longest paths inside the spectrum graph has certain intrinsic
shortcomings: Firstly, we can only “see” the mass difference between two peaks, but not the
peak masses themselves. In this way, small errors can add up to larger errors of prefixes
or suffixes, which are far beyond the mass accuracy we would find acceptable (Exercise 2.17).
Second, it is non-trivial to integrate other ion types into our recurrence [11]. Third, searching
for antisymmetric paths is slow (two-dimensional DP) and not necessary in practice: As Mo et al.
[198] suggested, we can search for the optimal peptide string, accepting that certain peaks are
counted twice (as prefix and suffix mass). We then identify these peaks; assuming there is only
a small number of them, we fix these peaks to be prefix or suffix mass, and rerun the algorithm
multiple times. In practice, the number of peaks that are counted twice is small, so this approach
is very fast for real-world data. The algorithmically more elegant solution to this problem would
be again Lagrangian relaxation; unfortunately, the formulation of Andreotti et al. [6] does not
prevent peak double counting but rather forbids prefixes and suffixes of identical mass, as in our
original, idealized formulation of the problem.

So, if “double peak counting” can be avoided efficiently by this heuristic, then why did we spend
a complete chapter on the exact solution? There are several answers to that: Firstly, historical
reasons: This is one of the first (if not the first) algorithms ever published in computational mass
spectrometry that fulfills our strict criteria from the preface. Second, it does not matter: The
computational solution is very instructive, and we will reuse ideas from this chapter throughout
the textbook. Third, didactic reasons: I teach the Smith-Waterman algorithm before I teach
BLAST.

If you are wondering why we paid so much attention to the overly simplified peak counting
score, you might want to “sneak preview” glycan de novo sequencing in Chapter 11: It turns out
that this is a computationally hard problem even for the peak counting score.

2.11 Exercises

2.1 Assume that our tandem MS spectrum was solely made up of y ions, corresponding to
suffix masses. Then, an interpretation of the spectrum would be much easier. Describe an
algorithm that, given a spectrum M = {m1, . . . ,mn} with m1 < m2 < . . . < mn and precursor
mass M = mn, reconstructs the peptide string from the spectrum. What is the time
complexity of your algorithm?

2.2 Let Σ= {a,b,c,d} be a weighted alphabet with µ(a)= 2, µ(b)= 3, µ(c)= 7, and µ(d)= 10. Find
all strings that have the same fragmentation spectrum as aabdac. Give reason why there
are no other strings.

2.3 With Σ from the previous exercise, find a string s of length |s| ≥ 2 that has a unique
fragmentation spectrum; that is, there is no other string s′ ∈Σ∗ with M (s)=M (s′).

2.4 For Σ from Exercise 2.2, find a string that generates the fragmentation spectrum M =
{0,2,3,5,9,11,12,14}, where the precursor mass is M = 14. Note that there are several such
strings; can you find them all?
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2.5 Develop a branch-and-bound algorithm for finding all strings s ∈ Σ∗ with M (s) = M for a
given set of masses M . Your algorithm should build up prefixes of the string, then recurse
for each character that can be appended.

2.6? Modify the algorithm of Sec. 2.4 for ideal data so that it uses only linear memory. To
this end, strip off those parts of the DP matrix D that are “uninteresting”. Show how to
backtrace through this reduced matrix.

2.7 Instead of explicitly building the spectrum graph, it is sufficient to keep an implicit repre-
sentation of its edge set. Explain how this can be done for ideal data.

2.8 We are given a tandem MS spectrum M = {m1, . . . ,mn}. We assume that this spectrum
consists solely of prefix masses and noise peaks, so no suffix masses are present. Here, some
string s explains a mass m ∈M if s has a prefix of mass m. Describe an algorithm that finds
a string s ∈Σ∗ maximizing the number of explained masses. Show that your algorithm has
running time O(n |Σ|) or, if we assume the alphabet to be constant, time O(n).

2.9 Assume that there are additional peaks but no missing peaks, as introduced in Sec. 2.5.1.
Proof that the maximum number of peaks in a mass spectrum that can be explained by any
string equals 2maxi, j{Q[i, j] : xi yj ∈ E}, using the definition of Q and w from that section.

2.10? Proof Lemma 2.2.

2.11 Given the weighted alphabet Σ = {a,b,c} with µ(a) = 2, µ(b) = 3, and µ(c) = 7, and a tandem
MS spectrum M := {0,2,7,8,9,14,16,17,22,24} with precursor mass 24. We know that some
of the peptide peaks might be missing, and that some of the measured peaks might be noise.
Find a string that explains a maximum number of peaks.

2.12 We are given a set of masses M with 0, M ∈ M , such that m ∈ M implies M −m ∈ M for
precursor mass M. In addition, we are given a prefix score w1 : M → R and a suffix score
w2 : M →R: Here, w1(m) is added to the score of a string if the string has a proper prefix of
mass m, and w2(m) is added if the string has a proper suffix of mass m. Formally, we define

score(s) := ∑
proper prefix a of s

w1(a) + ∑
proper suffix b of s

w2(a)

Show how to compute the optimal solution using recurrence (2.5).

2.13 Let the score of a string be the number of explained peaks in the measured spectrum, minus
the number of missing peak pairs: This is the number of prefix/suffix peak pairs in M (s) that
are not present in the measured spectrum M . Show that recurrence (2.5) with weighting w
from (2.6), modified by (2.7), will compute the optimal solution.

2.14 Show that
max

l=0,...,i−1

{
Q′[l, j] : xl xi ∈ E

}= max
l=0,..., j−1

{
Q′[i, l] : yj yl ∈ E

}
holds in recurrence (2.8) for the case i = j.

2.15 With the weighted alphabet from Example 2.1, we have measured a tandem mass spectrum

M = {0,2,8,9,11,12,14,15,21,23}

with precursor mass M = 23. Assume that there are “additional peaks only”. Find the string
that explains a maximum number of peaks, using recurrence (2.8) and matrix Q′, as the true
solution may contain prefix peaks and suffix peaks of identical mass.
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2.16? Let G = (V ,E) be a spectrum graph for some set of masses M = {x0, . . . , xn, yn, . . . , y0} with
xi + yi = M for all i = 0, . . . ,n. Let w : V → R be arbitrary node weights. We define the valid
length of a path to be the sum over all node weights where, if xi and yi are simultaneously
present in the path, we add the maximum weight of xi or yi (but not both). Define a matrix
Q′ and find a recurrence analog to (2.8) that can be used to compute the maximum valid
length of any path in G.

2.17 Find a series of b ion peak masses where, for mass error ε = 0.5 Da, the mass difference
between any two consecutive peaks can be explained by the mass of an amino acid residue,
but the mass of the last peak cannot be explained by a peptide b ion.

2.18?Assume that the unknown peptide contains exactly one Post-Translational Modification
(PTM) but unfortunately, we do not know the mass of the modified amino acid. We assume
that we have ideal data. Reconstruct the peptide strings and the mass of the PTM amino
acid from the measured set of masses M using recurrence (2.3), plus a modified version of
it. The trick is to build a matrix similar to D but this time, from the “center peaks” xn, yn
outward.

2.19 For ideal data, M (s)=M (s−1), so we cannot tell apart a peptide and its inverse. Why is this
not an issue in practice?

2.20FAssume there are several peptides with similar precursor mass (say, no more than 25 Da
between any two peptides) with experimental fragmentation spectra M1, . . . ,Mk. All we are
given is the spectrum M :=M1 ∪·· ·∪Mk; we do not even know k. Develop a computational
approach that determines high-quality substrings of length 5 or 6 for each of the unknown
peptide strings.
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“If numbers aren’t beautiful, I don’t know what is.” (Paul Erdős)

WE now turn to some problems that keep reappearing, in various flavors, not only throughout
this textbook but also throughout the computational mass spectrometry literature. These

problems, and also our strategies for solving them, lie at the core of many MS applications. In
fact, we have already stumbled upon some of the problems in the previous section. All problems
circle around the question of decomposing masses: We are given a weighted alphabet, such as the
alphabet of amino acid residues; and we want to know if and how peak masses that we see in a
mass spectrum can be explained.

For simplicity, we assume throughout this chapter that all masses are integer: For example, we
can round amino acid masses to the closest integer. Alternatively, we multiply all masses by a
large constant c such as c = 1000 before rounding, to reduce the impact of rounding errors. See
Sec. 8.1 below for a thorough investigation on how to decompose real numbers, and how this can
be applied in metabolomics.

3.1 Formal problem de�nitions

We are given an alphabet Σ= {a1, . . . ,ak}, for example the alphabet of amino acids, or an alphabet
of elements. Throughout this chapter, we denote the cardinality of our alphabet by k = |Σ|. We
are also given a mass function µ : Σ→ N. Recall that the mass of a string s = s1 . . . sn over Σ is
defined as µ(s) :=∑n

i=1µ(si). In the following, we usually assume that all characters have pairwise
different mass, even though this is not required for some of the algorithms. Still and all, there
are very few applications where different characters of the same mass are reasonable: Instead,
the method of choice usually is to treat all characters of identical mass as one, and to sort out this
impreciseness at a later stage, see Exercise 3.6. Recall that for the amino acid alphabet, leucine
and isoleucine have identical mass and will be regarded as one character.

One should immediately notice that the order of characters in the string has no effect on the
mass: only the number of occurrences of each of the characters is important. To this end, we
make the following definition: A compomer over Σ can be viewed either as a map c : Σ→ N, or
as a vector (c1, . . . , ck) ∈Nk.1 Defining compomers as vectors is easier to grasp, whereas defining
them as maps is mathematically more elegant: We do not have to order the alphabet, and the
definition also works for infinite alphabets. In the following, we will use these two definitions
interchangeably. If we view compomers as vectors c = (c1, . . . , ck), the order of characters in the
alphabet is relevant, and we assume this order to be arbitrarily fixed. Given a string s = s1 . . . sn,
the function comp :Σ∗ →Nk maps s to its compomer by counting characters,

comp(s)= (c1, . . . , ck) with c j = #{i : si = ai}. (3.1)

The length of compomer c is |c| :=∑k
j=1 c j, and the mass of c is µ(c) :=∑k

j=1 c j ·µ(a j). The definition
of length of a compomer, becomes obvious by the following lemma:

Lemma 3.1. Given a string s ∈Σ∗ and a compomer c := comp(s). Then |c| = |s| and µ(c)=µ(s).

1Compomers have been proposed numerous times throughout the literature, and many different names have been
proposed such as compositions [19], Parikh-vectors [253], multiplicity vectors [9], or abelian patterns.
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We will often denote a compomer c as (a1)c1 . . . (ak)ck , omitting those characters ai with ci =
0. This increases readability and is particularly favorable for large alphabets, such as amino
acids. This presentation is obviously inspired by molecular formulas from chemistry, such as
C12H22O11 for sucrose. This shows that compomers also exist “without strings”, see Chapter 7.
Sometimes, compomers with negative entries make sense: For example, the difference between
two compomers can be useful in certain applications.

Example 3.1. Let Σ = {a,b,c,d} be our alphabet with masses µ(a) = 2, µ(b) = 3, µ(c) = 7, and
µ(d) = 10. We will make use of this weighted alphabet throughout this chapter. For a string
s = baacbcaca we have c := comp(s)= (4,2,3,0) in vector notation or, equivalently, c = a4b2c3. Now,
|c| = 9 and µ(c)= 4 ·2+2 ·3+3 ·7= 35.

Now, we turn to an obvious question: It is well-known that there are kn strings of length n over
an alphabet of size k. Now, how many compomers of a given length exist?

Lemma 3.2. The number of compomers of length n over an alphabet of size k is
(n+k−1

k−1
)
.

Hence, the rate of growth is polynomial in n, not exponential. But for large alphabets, the
number is still increasing rapidly: For a fixed alphabet of size k, we have

(n+k−1
k−1

) ∈Θ(nk−1) many
compomers. For the amino acid alphabet of size 19, this implies that the number of compomers is
increasing with a polynomial of degree 18.

Lemma 3.2. Every compomer of length n can be mapped bijectively onto n+ k−1 points, where
k−1 points are selected by asterisks. The compomer (c1, . . . , ck) is mapped to c1 points, asterisk,
c2 points, asterisk, . . . , asterisk, ck points. For example, (c1, . . . , c5)= (3,2,0,3,5) is mapped to:

c1︷ ︸︸ ︷
©©© ∗©

c2︷︸︸︷
©© ∗©

c3︷︸︸︷
∗©

c4︷ ︸︸ ︷
©©© ∗©

c5︷ ︸︸ ︷
©©©©©

How many possibilities exist to choose (cross out) k−1 points out of n+ k−1 points? It is well
known that there exist

(n+k−1
k−1

)
such possibilities.

There are four problems that we will address in the following: Given a mass integer mass M ≥ 0,
what is the number of compomers and strings with this mass? Is there at least one such compomer
or string? If yes, can we provide a witness or proof, that is, a compomer c with µ(c) = M? And
finally, can we enumerate all compomers of mass M? Searching for compomers or strings over an
alphabet Σ with mass M, we also say that we decompose mass M, and the compomers or strings
of mass M will be called decompositions.

In combinatorics, determining the number of things is called “counting”, whereas “enumerating”
refers to constructing all objects with a particular property.2 Usually, counting can be achieved
faster than enumerating. In turn, counting (how many?) is at least as hard as the decision
problem (at least one?).

In the remainder of the chapter, we name the characters of the alphabet with their integer
masses: Instead of the alphabet Σ= {a,b,c,d} from Example 3.1, we will consider the alphabet Σ=
{2,3,7,10}. This will make it easier to follow the formalism. As we assume that all characters have
pairwise distinct masses, this is not a restriction. Unless explicitly stated otherwise, we assume
that all masses are positive. Finally, let us assume that masses in the alphabet Σ= {a1, . . . ,ak} are
ordered, so in particular, a1 is the smallest mass and ak is the largest mass.

Finally, let us consider the problem of negative integer masses. If all masses are negative, you
can take the (additive) inverse of all masses, and you are back at our previous problem. If at

2Depending on the scientific area and the year of publication, you sometimes find “to enumerate” as a synonym for
“to count”; prominent examples include Garey and Johnson [98], or “graph enumeration” that deals with counting
certain graphs. To reduce confusion, we will stick to this sharp differentiation throughout this textbook.
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least one mass is positive and one mass is negative, there is an infinite number of solutions, see
Exercises 3.21, so counting and enumerating does not make sense. But sometimes you are not
interested in enumerating all solutions but only some optimum one following, say, the parsimony
principle; for example, we might be interested in the minimum number of Post-Translational
Modifications that makes some protein fit with some peak mass.

3.2 Counting compomers and strings

We have seen in Lemma 3.2 how to compute the number of compomers of given length. In mass
spectrometry, the usually more interesting question is: How many compomers exist with mass M?
We will present an exact solution based on dynamic programming (see Sec. 14.4) that is actually
very simple — a related problem is “scientific folklore” in computer science and combinatorics,
see Exercise 3.1. We solve the problem by two-dimensional dynamic programming. Let C be a
two-dimensional table, where C[i,m] is the number of compomers c over the alphabet {a1, . . . ,ai}
with mass µ(c) = m, for i = 0, . . . ,k and m = 0, . . . , M. For i < k, this means that we do not take
into considerations the complete alphabet but only a sub-alphabet. In the extreme case i = 0, this
corresponds to an empty alphabet and, obviously, the only mass that we can decompose over this
alphabet is m = 0, and there is exactly one decomposition (the empty compomer) for this mass.
Hence, we initialize our table by C[0,0]= 1 and C[0,m]= 0 for m = 1, . . . , M.

Let us assume that we have previously computed all entries C[i′,m′] with i′ ≤ i and m′ ≤ m,
where i′ < i or m′ < m or both holds. To compute the number of compomers with mass m
over the alphabet {a1, . . . ,ai} we sort these compomers into two buckets: One bucket contains
those compomers where ai = 0 holds, the other bucket contains those with ai ≥ 1. Clearly, the
two buckets are disjoint, so we can add up these two numbers to reach the desired value. But
we already know these values: The number of compomers that do not use letter ai is exactly
C[i − 1,m], the number of compomers for mass m over the alphabet {a1, . . . ,ai−1}. And for the
compomers that use letter ai at least once, we can remove a single letter ai and count compomers
of mass m−ai that use ai at least zero times: This number is stored in C[i,m−ai]. Obviously, the
later number is only meaningful in case m ≥ ai. In total, we reach the recurrence:

C[i,m]=
{

C[i−1,m]+C[i,m−ai] if m ≥ ai

C[i−1,m] else
(3.2)

At the end of our computation, C[k, M] holds the desired number. We formalized the above
argumentation in the proof of Lemma 3.3.

Example 3.2. Consider the weighted alphabet Σ = {2,3,7,10} from Example 3.1. How many
compomers exist with mass M = 13? Using (3.2) we compute the following table:

i ai M = 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0
2 3 1 0 1 1 1 1 2 1 2 2 2 2 3 2
3 7 1 0 1 1 1 1 2 2 2 3 3 3 4 4
4 10 1 0 1 1 1 1 2 2 2 3 4 3 5 5

For example, C[2,12] = C[1,12]+C[2,9] = 1+2 = 3. So, the number of compomers is C[4,13] = 5.
Note that the above table tells us the number of compomers for any m ≤ 13.

An algorithm that applies recurrence (3.2) has running time O(kM), and requires O(kM)
space to store table C. In complexity theory, this is called a pseudo-polynomial running time:
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1: function COMPUTENUMBERCOMPOMERS(weighted alphabet Σ, mass M)
2: arrays C[0. . . M],C′[0. . . M] of integers
3: integer i
4: if k is even then
5: C[0]← 1; C[m]← 0 for m = 1, . . . , M; i ← 1
6: else
7: C[m]← 1 if m is divisible by a1, and C[m]← 0 otherwise; i ← 2
8: end if
9: while i < k do

10: for m = 0, . . . ,ai −1 do
11: C′[m]← C[m]
12: end for
13: for m = ai, . . . , M do
14: C′[m]← C[m]+C′[m−ai]
15: end for
16: i ← i+1
17: for m = 0, . . . ,ai −1 do
18: C[m]← C′[m]
19: end for
20: for m = ai, . . . , M do
21: C[m]← C′[m]+C[m−ai]
22: end for
23: i ← i+1
24: end while
25: return array C
26: end function

Algorithm 3.1: Computing the number of compomers over an alphabet Σ = {a1, . . . ,ak} of integer
masses, up to some maximum mass M.

The running time depends linearly (polynomially) on the integer M which is part of the input.
Regarding memory consumption, slight improvements are possible: For the computation of entries
C[i, ·], only entries of type C[i−1, ·] and C[i, ·] are needed. To this end, we can calculate the table
row-by-row, and “forget” each row after computation of the subsequent row has been finished.
Then, memory requirements are reduced to O(M). Doing so, we can no longer ask for the number
of decompositions for some sub-alphabet {a1, . . . ,ai} for i < k, but this is of minor concern here.
An implementation of this idea is given in Alg. 3.1. If we are only interested in the number of
compomers for mass M but not for any smaller masses, we can compute the table column-by-
column, and reduce memory requirements to O(kmaxi ai). Not that the later does not depend on
M, which is very favorable in applications. On the other hand, we have to forget the number of
decompositions for almost all m < M, which is unattractive in applications. We reach:

Lemma 3.3. For a alphabet Σ = {a1, . . . ,ak} of integer masses, the number of compomers with
mass m, for each m = 0, . . . , M, can be computed in O(kM) time and with O(M) space using Alg. 3.1.

The formal proof of this lemma can be found in the next section.

The related question for strings is, how many strings over Σ have mass M? This question is
rather simple to answer, and requires only one-dimensional dynamic programming: Let C′[m]
denote the the number of strings over Σ that have mass exactly m. Then, each such string can
be divided into a string that is one character shorter, plus one character. Now, we can sort the
strings into k many buckets, depending on the last character, and see that all of these buckets are
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disjoint. We initialize C′[m]= 0 as there is exactly one string (the empty string) of mass zero. We
easily reach the recurrence:

C′[m]=
k∑
i1

C′[m−ai] (3.3)

where we assume that C′[m] = 0 holds for all m < 0. Put differently: Iterate over all i = 1, . . . ,k
and for those that satisfy m ≥ ai, add C′[m−ai] to the total number of strings.

Example 3.3. Consider again the weighted alphabet Σ= {2,3,7,10}. How many strings exist with
mass M = 13? Using (3.3) we compute:

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13
C′[m] 1 0 1 1 1 2 2 4 4 7 10 12 20 25

Hence, the number of strings is C′[13]= 25. Even for this small example, we observe the different
rate of growth for compomers vs. strings, namely, polynomial vs. exponential: Regarding m = 5
there exist only one compomer a1b1, but two strings ab and ba.

Note that the problem of counting weighted strings, has a striking similarity with Fibonacci-
numbers: In fact, for Σ= {1,2} we reach the definition of these numbers, F(n)= F(n−1)+F(n−2).3

For an arbitrary alphabet, (3.3) defines a linear recurrence relation with finite history and
constant coefficients [114], or a linear recursive sequence for short. In theory, we can find a
closed-form solution for any linear recursive sequence. Then, the exact number C[m] can then
be computed in constant time, just like the nth Fibonacci number F(n) can be computed as

F(n)= 1p
5

(
ϕn − (1−ϕ)n)= ⌊

1p
5
ϕn + 1

2

⌋
(3.4)

where ϕ = 1+p5
2 is the golden ratio, and b·c denotes the floor function for rounding down. The

problem is that there exists no simple way to find this closed form for an arbitrary alphabet Σ,
and that the resulting formula will be rather complicated.

3.3 Formal proof of the counting lemma

We now give a formal proof of Lemma 3.3. Other lemmata and claims in this chapter can be
proven similarly, so we will go through this formal exercise only once. Reader with no formal
background in mathematics or computer science might want to trust me on the subject matter,
and skip this section altogether.

I present this proof as an example of the requirements mentioned in the preface of this textbook;
namely, specification of the input, generalizability of the method, correctness of the algorithm,
and running time of the algorithm. We have clearly stated the input of the method (an alphabet
of integer masses and a maximum mass M, all non-negative), and we have not stated any
restrictions that the algorithm might work only for certain inputs, but choose to fail on other.
Now, we will prove that the algorithm works correctly for all input, and we will also prove its
running time.

First, we show that recurrence (3.2) computes all entries C[i,m] according to the definition of
the C[i,m]: By this definition, C[i,m] is the number of compomers of mass m, over the alphabet
{a1, . . . ,al}. We do so by induction on i and m. As our induction start, we observe that only
mass m = 0 can be decomposed over the empty alphabet, having a unique decomposition, so the
C[0, ·] are correctly initialized. Assume that i ≥ 1. Let C be the set of compomers over the alphabet

3Note that the sequence is shifted, though, as we set C[0]= 1.
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{a1, . . . ,ai} with µ(c) = m for all c ∈ C ; then, |C | = C[i,m] must hold. Partition C into two sets
C1,C2 with C1 ∪C2 =C and C1 ∩C2 =;:

C1 := {c : c = (c1, . . . , ci) ∈C , ci = 0}

C2 := {c : c = (c1, . . . , ci) ∈C , ci ≥ 1}

Let C ′
1 be the set of compomers over the alphabet {a1, . . . ,ai−1} of mass m; by induction,

∣∣C ′
1

∣∣ =
C[i−1,m] must hold. We can easily define a bijection between the sets C1 and C ′

1, either removing
the trailing zero, or appending it. Hence, |C1| =

∣∣C ′
1

∣∣= C[i−1,m].
For m < ai we obviously have C2 = ; and, hence, C = C1, so our claim follows. Assume

m ≥ ai: Then, let C ′
2 be the set of compomers over the alphabet {a1, . . . ,ai} of mass m− ai; by

induction,
∣∣C ′

2

∣∣ = C[i,m−ai] must hold. We define a bijection ϕ : C2 → C ′
2 by ϕ(c1, . . . , ci−1, ci) :=

(c1, . . . , ci−1, ci −1), removing one character ai with mass ai from the compomer. Hence, |C2| =∣∣C ′
2

∣∣= C[i,m−ai]. As C is the disjoint union of C1,C2 we reach

C[i,m]= |C | = |C1 ∪C2| = |C1|+ |C2| = C[i−1,m]+C[i,m−ai]

as claimed.
Next, we make sure that Alg. 3.1 does in fact compute recurrence (3.2). But this is rather easy

to see: During the course of the algorithm, i is increased from 1 or 2 to M with increment 1. After
line 8 of the algorithm, array C[·] equals C[i, ·] for either i = 1 or i = 2. We claim that at the start of
each WHILE-loop, we have C[m]= C[i,m] for all m = 0, . . . , M, where C[i,m] is computed by (3.2).
To this end, after the execution of the first FOR-loop (at line 16) we know that C′[m] = C[i,m]
must hold; similarly, after the execution of the second FOR-loop we again have C[m] = C[i,m], as
claimed.

Finally, we consider running time and memory of the algorithm: Space is clearly O(M) for
storing arrays C,C′. But equally clearly, running time is O(kM) as initialization requires M +1
assignments. Afterwards, we have dk/2e outer loops; in each loop, we do 2M+2 assignments and
O(M) summations.

3.4 Finding witnesses and the decision problem

We now turn to the slightly simpler question: Is there a compomer with mass M over the alphabet
Σ= {a1, . . . ,ak}? Note that we can answer this question by using our algorithms from the previous
section, checking whether “C[k, M] ≥ 1”. We will now give a related solution but here, we only
need a one-dimensional binary table A. We define A[m] = 1 if and only if there is at least one
compomer of mass m over the alphabet {a1, . . . ,ak}. We initialize A[0]= 1, and use the recurrence

A[m]=
{

1 if there is some i with A[m−ai]= 1 for m ≥ ai,
0 else.

(3.5)

Note the similarity with (3.3): Actually, asking whether there exists some compomer of mass M,
or if there exists some string of mass M, is equivalent. Computation of table A again requires
O(kM) time and O(M) space. In case we do not want to store table A for “future use”, memory
consumption can be reduced to O(maxi ai). Again, our algorithm has pseudo-polynomial running
time, linear in M. In contract, the size of the input is only log2 M as this is the number of bits
required to encode the number M in memory. Unfortunately, deciding if there is a compomer or
a string of mass M is NP-hard [182]: No exact algorithm with running time polynomial in log M
can exist, unless P = NP. The pseudo-polynomial algorithm introduced above is no contradiction
to this hardness result: In fact, the problem is weakly NP-hard, but not strongly [98].
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How can we produce a witness, that is, find some compomer c with µ(c) = M? Here and in the
following, let e i = (0, . . . ,0,1,0, . . . ,0) denote the ith unit vector that has all-zero entries, except for
the ith entry, which equals one. Finding a witness is very simple, using table A: Assume that
A[M] = 1. Start with c ← 0 and m ← M. Find some i such that m ≥ ai and A[m− ai] = 1. Set
c ← c+ e i and m ← m−ai, and repeat until m = 0. Output c. Similarly, we can build a witness
string s with µ(s) = M. One can easily see that this algorithm is correct, and has running time
O(k M

a1
).

Example 3.4. Consider again the weighted alphabet Σ = {2,3,7,10}. We want to compute a
witness c for mass M = 13. Here is table A, modified from Example 3.3:

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13
A[m] 1 0 1 1 1 1 1 1 1 1 1 1 1 1

We start with m ← 13 and c = (0,0,0,0). For i = 1 we find A[m−a1]= A[13−2]= 1, so we set m ←
m−a1 = 11 and c ← (0,0,0,1). We repeat this four more times and reach m = 3 and c = (0,0,0,5).
Now, A[m−a1] = 0, but for i = 2 we have again A[m−a2] = A[3−3] = 1. We set m ← m−a2 = 0
and c ← (0,0,0,5)+ (0,0,1,0)= (0,0,1,5), and we are done. As desired, µ(c)= 5 ·2+1 ·3= 13.

3.5 Enumerating strings and compomers

Finally, we consider the question most interesting for the majority of MS applications: Given a
mass M, find all strings s with µ(s) = M, and find all compomers c with µ(c) = M. First, we
consider creating all strings of mass M.

Now, we consider the problem of enumerating all compomers c with µ(c) = M. This problem
can be solved by backtracking through the table C: For that, we consider the two “buckets” of
recurrence (3.2), and follow both cases to actually compute the individual compomers. As for the
decision problem, a binary table is sufficient for this task, as only requests of the form “C[i,m] >
0?” have to be answered. Unfortunately, we cannot use table A to enumerate all compomers,
as the information stored there is not sufficient. To this end, we define a third, two-dimensional
binary table B. We define B[i,m]= 1 if and only if there is at least one compomer of mass m over
the sub-alphabet {a1, . . . ,ai}. Now, we initialize B[0,0]= 1 and B[0,m]= 0 for m = 1, . . . , M, and use
the recurrence

B[i,m]=
{

1 if B[i−1,m]= 1 or B[i,m−ai]= 1 for m ≥ ai,
0 otherwise.

(3.6)

Clearly, B[i,m]= 1 holds if and only if C[i,m]> 0.
See Alg. 3.2 for the pseudo-code of the enumeration algorithm. Clearly, we can replace the

statement “B[i,m] = 1” by “C[i,m] > 0”. The algorithm is written as a recursion for the sake of
simplicity, but we can also do this task iteratively, see Alg. 3.5 on page 57. These algorithms can be
easily modified to take into account upper and lower bounds for each character, see Exercise 3.20.

How much time is needed to compute all compomers? Comparable to the algorithm for
computing a single witness, the algorithm FINDALLREC requires O(k M

a1
) time per decomposition.

So, the running time is linear in the size of the output, which is quite obvious: the larger the
output, the longer the running time. But even if there is only a few compomers with mass M, the
running time also depends linearly on M, which is somewhat unfavorable. In the next section, we
will get to know a different approach that does not have this unfavorable property.
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1: procedure FINDALLREC(integer i ≤ k, mass m, compomer c)
2: if i = 0 then
3: Output c and return
4: end if
5: if B[i−1,m]= 1 then
6: FINDALLREC(i−1,m, c)
7: end if
8: if m ≥ ai and B[i,m−ai]= 1 then
9: FINDALLREC(i,m−ai, c+ e i)

10: end if
11: end procedure

Algorithm 3.2: Recursive algorithm for enumerating all compomers of a given mass m. To
decompose mass M, this algorithm is initially called as FINDALLREC(k, M,0).

3.6 The Money Changing problem and the Round Robin

algorithm

In Sec. 3.4, we asked if there is at least one compomer c with mass µ(c) = M. This problem was
first posed in 1884 and is known as the MONEY CHANGING PROBLEM. To understand what this
has to do with money changing, assume that we live in a country where only coins with values
a1, . . . ,ak such that a1 < a2 < ·· · < ak are available. We want to know what change can be given
with these coins. This problem is trivial if a coin with value a1 = 1 exists. Let g := gcd(a1, . . . ,ak)
be the greatest common divisor of numbers a1, . . . ,ak: So, g is a divisor of each ai for all i = 1, . . . ,k,
and g is the largest such integer. In case g > 1 then it is easy to see that we can only make change
for numbers 0,1g,2g,3g, . . . . In the following, we will usually assume gcd(a1, . . . ,ak)= 1. In turns
out that the results of this section can also be applied in case gcd(a1, . . . ,ak)> 1, see the end of the
section for the simple details.4

Let Σ = {a1, . . . ,ak} be a fixed weighted alphabet with gcd(a1, . . . ,ak) = 1. We want to decide
whether some mass M is decomposable or not over Σ. For an integer M, we write r = M mod a1
for the residue of M modulo a1: This is the unique number r ∈ {0, . . . ,a1 −1} such that M = qa1 + r
for some integer q. For M ≥ 0 we easily see that q = bM/a1c. We say that M belongs to residue
class r (modulo a1).

A simple observation is as follows: If M is decomposable, then M +a1, M +2a1, M +3a1, . . . are
also decomposable. (It holds that M+ai is decomposable for any i = 1, . . . ,k, but we only need the
statement for i = 1.) This implies that there is a smallest such mass that is decomposable. For
each residue classes r = 0, . . . ,a1−1, let N[r] be the smallest mass that is decomposable satisfying
N[r] mod a1 = r. So, N[0. . .a1 −1] is a one-dimensional array satisfying

N[r]=min
{
n : r = n mod a1, and n is decomposable over {a1, . . . ,ak}

}
for r = 0, . . . ,a1−1. Here, N[r]=+∞ if no such number exists, and the minimum is empty. Clearly,
µ(c) = N[r] for some compomer c = (c1, . . . , ck) implies c1 = 0 because otherwise, N[r]− a1 has a
decomposition, too. The table N[0. . .a1 −1] form the residue table of the instance.

Example 3.5. For the remainder of this section, we will consider the weighted alphabet Σ =
{5,8,9,12}. The residue table N[0. . .a1 −1] of this alphabet is:

r 0 1 2 3 4
N[r] 0 16 12 8 9

4Many countries got rid of small coins, but since supermarkets love prices such as $0.99, the amount you have to pay
has to be rounded.
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It is straightforward to check that this truly is the residue table of the above instance: Clearly,
mass 0 belongs to residue class r = 0 (modulo a1 = 5) and obviously, there is no smaller non-
negative integer. Next, 16 belongs to residue class r = 1 and can be decomposed as 16 = 8+8,
whereas we cannot decompose 16−5 = 11. We can continue in this fashion up to residue class
r = 4, where 9= 9 can be decomposed but 9−5= 4 cannot.

Assume that we know the residue table N[0. . .a1 −1] of a weighted alphabet: This allows us
to answer the question “is mass M decomposable?” in constant time. We simply calculate r ← M
mod a1; then, M is decomposable if and only if M ≥ N[r]. For example, assume that we want
to know if 17 can be decomposed over the weighted alphabet from Example 3.5. We calculate
17 mod 5 = 2 and check 17 ≥ N[2] = 12, so the answer is “yes”. On the other hand, we cannot
decompose 11, as 11 mod 5= 1, and 11< N[1]= 16.

Before we concentrate on computing the residue table, we take a short detour: Recall that
gcd(a1, . . . ,ak) = 1. Then there exists a number g := g(a1, . . . ,ak), called the Frobenius number,
such that g cannot be decomposed, but all masses M > g can be decomposed. It might be
somewhat surprising that for an arbitrary weighted alphabet, all sufficiently large masses can
be decomposed. See Exercise 3.14 for the proof of the special case k = 2. Given the residue table
N[0. . .a1 −1] of an instance, there is a simple formula to compute the Frobenius number g, as
well as the number ω of omitted values that cannot be decomposed over Σ= {a1, . . . ,ak}:

g = max
r=0,...,a1−1

{
N[r]

}−a1 and ω=
a1−1∑
r=0

⌊
N[r]
a1

⌋
= 1

a1

a1−1∑
r=0

N[r]− a1 −1
2

. (3.7)

These two formulas may also appear somewhat surprising but in fact, it is rather straightforward
to show that these identities hold; see Exercise 3.15. For the weighted alphabet from Example 3.5,
we can read from the residue table that g = 16−5= 11, and there are

ω= 16+12+8+9
5

− 4
2
= 9−2= 7

masses without a decomposition; namely, these are masses 1,2,3,4,6,7,11.

Now, the interesting question is: Given a weighted alphabet {a1, . . . ,ak), how can we efficiently
calculate its residue table N[0. . .a1 −1]? This can be achieved by the Round Robin algorithm:
We compute the values of N iteratively for the sub-problems “Find N[0. . .a1 −1] for the instance
{a1, . . . ,ai}”, for i = 1, . . . ,k. For i = 1 we can only decompose masses of the form M = ia1 whereas
all other masses cannot be decomposed. Hence, we start with N[0] = 0 and N[r] = ∞ for r =
1, . . . ,a1−1. When constructing the residue table for the next step, the current values N[0. . .a1−1]
are updated. Suppose we know the correct values N ′[r] for the sub-problem {a1, . . . ,ak−1}, and we
want to calculate those of the original problem {a1, . . . ,ak}. We first concentrate on the simple case
that gcd(a1,ak) = 1. We initialize N[r] ← N ′[r] for all r = 0, . . . ,a1 −1, and n ← N[0] = 0. In every
step of the algorithm, set n ← n+ak and r ← n mod a1. Let n ← min{n, N[r]} and N[r] ← n. We
repeat this loop until n equals 0. In case all a2, . . . ,ak are coprime to a1 — that is, gcd(a1,ai) = 1
holds for all i = 2, . . . ,k — then this short algorithm is already sufficient to find the correct values
N[r].

Example 3.6. Consider the weighted alphabet Σ = {5,8,9,12} from Example 3.5. In Figure 3.1,
each column can be viewed as representing one iteration of the Round Robin algorithm. For
example, focus on the column a3 = 9. We start with n = 0. In the first step, we have n ← 9 and
r = 4. Since n < N[4] = 24 we update N[4] ← 9. Second, we have n ← 9+9 = 18 and r = 3. In view
of n > N[3] = 8 we set n ← 8. Third, we have n ← 8+9 = 17 and r = 2. Since n < N[2] = 32 we
update N[2] ← 17. Fourth, we have n ← 17+9 = 26 and r = 1. In view of n > N[1] = 16 we set
n ← 16. Finally, we return to r = 0 via n ← 16+9= 25.
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r a1 = 5 a2 = 8 a3 = 9 a4 = 12
0 0 0 0 0
1 ∞ 16 16 16
2 ∞ 32 17 12
3 ∞ 8 8 8
4 ∞ 24 9 9

Figure 3.1: Extended residue table N[0. . .4,0. . .4] of the weighted alphabet Σ = {5,8,9,12} from
Example 3.5, as well as iterations of the Round Robin algorithm.

1: procedure ROUNDROBIN(weighted alphabet Σ)
2: initialize N[0]← 0 and N[r]←∞ for r = 1, . . . ,a1 −1
3: for i ← 2, . . . ,k do
4: d ← gcd(a1,ai)
5: for p ← 0, . . . ,d−1 do
6: find n =min

{
N[q] : p = q mod d,0≤ q ≤ a1 −1

}
7: if n <∞ then
8: for j ← 1, . . . ,a1/d−1 do . repeat a1/d−1 times
9: n ← n+ai

10: r = n mod a1
11: n ←min

{
n, N[r]

}
12: N[r]← n
13: end for
14: end if
15: end for
16: end for
17: end procedure

Algorithm 3.3: Constructing the residue table N[0. . .a1−1] of a weighted alphabet Σ= {a1, . . . ,ak}.

It is straightforward how to generalize the algorithm for d := gcd(a1,ai)> 1: In this case, we do
the updating independently for every residue p = 0, . . . ,d −1: Only those N[r] for r ∈ {0, . . . ,a1 −
1} are updated that satisfy r = p mod d. To guarantee that the Round Robin loop completes
updating after a1/d steps, we have to start the loop from a minimal N[r] with r = p mod d. For
p = 0 we know that N[0] = 0 is the unique minimum, while for p 6= 0 we search for the minimum
first. See Alg. 3.3 for the pseudo-code of the algorithm. The inner loop (lines 8–13) will be executed
only if the minimum min{N[q]} is finite; otherwise, the elements of the residue class cannot be
decomposed over a1, . . . ,ai because of gcd(a1, . . . ,ai)> 1.

It is quite easy to see that the Round Robin algorithm computes the residue table of a weighted
alphabet Σ = {a1, . . . ,ak} in Θ(k a1) time; besides O(a1) memory for storing the current residue
table, we need only constant extra memory.

Example 3.7. Consider the weighted alphabet Σ = {6,7,8}. Now, gcd(a1,a3) = 2 so for i = 3, we
have to compute the residue table N[0. . .a1−1] in two independent round robin runs. The residue
tables computed by the iterations of the Round Robin algorithm are:
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1: procedure FINDALLERT(integer i ≤ k, mass m, compomer c)
2: if i = 0 then
3: Output c and return
4: end if
5: r ← m mod a1
6: if m ≥ N[i−1, r] then
7: FINDALLERT(i−1,m, c)
8: end if
9: r ← (m−ai) mod a1

10: if m ≥ ai and m−ai ≥ N[i, r] then
11: FINDALLERT(i,m−ai, c+ e i)
12: end if
13: end procedure

Algorithm 3.4: Recursive algorithm for enumerating all compomers of a given mass m, based on
the Extended Residue Table N[0. . .k,0 . . .a1−1]. To decompose mass M, this algorithm is initially
called as FINDALLERT(k, M,0).

r a1 = 6 a2 = 7 a3 = 8
0 0 0 0
1 ∞ 7 7
2 ∞ 14 8
3 ∞ 21 15
4 ∞ 28 16
5 ∞ 35 23

For the last column, we first consider p = 1: then, n = min{0,14,28} = 0. We repeat two times: In
the first step, we set n ← 0+8 = 8 and r = 2. Since n < N[2] = 14 we update N[2] ← 8. Second, we
have n ← 8+8 = 16 and r = 4. In view of n < N[4] = 28 we set N[4] ← 28. The next step would
bring us back to r = 0. Next, we consider p = 1: here, n = min{7,21,35} = 7. We again repeat two
times: In the first step, we set n ← 7+8= 15 and r = 3. Since n < N[3]= 21 we update N[3]← 15.
Second, we have n ← 15+8 = 23 and r = 5. In view of n < N[5] = 35 we set N[5] ← 23. The next
step would bring us back to r = 1, and we are done.

For enumerating all decompositions of mass M, the information contained in the residue table
is unfortunately insufficient. But to our delight, we have implicitly come up with a data structure
that allows us to tackle the enumeration problem: Namely, for each r = 0, . . . ,a1 − 1 and each
i = 1, . . . ,k, we search for the smallest number N[i, r] such that r = N[i, r] mod a1, and N[i, r] is
decomposable over {a1, . . . ,ai}. Formally, we define the extended residue table N[0. . .k,0 . . .a1 −1]
to be a two-dimensional table such that

N[i, r]=min
{
n : r = n mod a1, and n is decomposable over {a1, . . . ,ai}

}
where N[i, r]=+∞ if no such number exists, and the minimum is empty. Clearly, space for storing
the extended residue table O(ka1). Here, the nice feature is that there is no “largest mass” that
we have to decide upon during preprocessing.

The nice feature of the Round Robin algorithm is that we have already computed the extended
residue table of the instance: We simply have to store each iteration of the algorithm as a “column”
of the matrix, when iterating i = 0, . . . ,k. See Fig. 3.1 for the extended residue table of Example 3.5.

We can easily use the extended residue table to enumerate all decompositions: In fact, we
simply have to replace the query “B[i,m] = 1” in Alg. 3.2 by the equivalent query “m ≥ N[i, r] for
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r = m mod a1”. See Alg. 3.2 for the result. In fact, we easily transform the iterative variant of
that algorithm, namely Alg. 3.5, into an iterative variant using the extended residue table, see
Exercise 3.10.

So, we have improved upon the memory consumption of our approach, as well as the running
time during preprocessing. Also, the new algorithm has the desirable property that we do not
have to decide upon a largest mass that we want to decompose during preprocessing. Instead,
for a fixed weighted alphabet, we compute its unique extended residue table; this allows us to
compute decompositions for any mass m at a later stage. It turns out that the resulting algorithm
is also much faster in practice, at least for certain applications: This is due to the reduced memory
consumption, which allows us to store the extended residue table in the processor cache, instead
of having to store array B in main memory, see Sec. 8.1.

One thing that we have not improved upon, is the running time per decomposition. But there
is a modification of the algorithm so that we can guarantee that every decomposition is computed
in O(ka1) time: To this end, we do not recurse in an arbitrary order but instead, treats all
recursions for each residue class in one batch. Whereas the resulting algorithm allows us to prove
an improved worst-case running time, the overhead required for processing the residue classes
individually, is usually too high in applications. The algorithm can be found in Fig. 4 of [27], we
defer further details.

Finally, a few words about the case g := gcd(a1, . . . ,ak)> 1 that we have ignored so far. To cover
this case is rather simple: Replace masses a1, . . . ,ak by new masses a1/g, . . . ,ak/g, and construct
the (extended) residue table for this weighted alphabet. If you want to decompose a mass M (or
decide if it is decomposable), first check if M mod g = 0 holds: Otherwise, M has no decomposition
over a1, . . . ,ak. Next, decompose the mass M/d over the alphabet a1/g, . . . ,ak/g; all decompositions
that you compute, are also decompositions of M over a1, . . . ,ak.

3.7 Approximating the number of compomers

Before we start this section, a word of warning is in place. The term “ f approximates g” for
two functions f , g : N→ R can be used with many different meanings: In computer science, this
means that we can calculate some number with a guaranteed relative error, so f (n) ≤ (1+ε)g(n)
or f (n) ≥ (1−ε)g(n) for all n ∈N. Here, ε > 0 can be a constant or a function depending on n. In
mathematics, this sometimes means that f and g are asymptotically equivalent or asymptotically
equal, so limn→∞ f (n)/g(n) = 1, what is denoted f ∼ g. Hence, f “behaves like” g and as n goes
towards infinity, the relative error goes to zero. Be aware that in both cases, we only consider
relative errors: The absolute difference may be huge and will often go to infinity as n →∞, see
Exercise 3.23. Be also warned that f ∼ g does not tell us how fast the error goes to zero, and that
the approximation might be arbitrarily bad for the first N numbers where, again, N might be
arbitrarily large. See Sec. 14.6 for more details.

Let γ(M) denote the number of compomers with mass exactly M, over some fixed alphabet Σ.
Often, we do not have to compute γ(M) exactly but rather, want to compute a reasonable estimate.
Luckily, there is a simple formula that can help us to estimate the number of decompositions in
constant time. The following result is due to Issai Schur:

Theorem 1. If gcd(a1, . . . ,ak)= 1 then

γ(M)∼ 1
(k−1)!a1a2 · · ·ak

Mk−1 for M →∞. (3.8)
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Actually, we can infer from this theorem that every sufficiently large number M is decomposable
over Σ. Unfortunately, convergence is rather slow. A better approximation was given by Beck,
Gessel, and Komatsu [15]:

γ(M)≈ bk−1Mk−1 +bk−2Mk−2 +bk−3Mk−3 . . . (3.9)

where
bk−1 := 1

a1 · · ·ak
· 1
(k−1)!

bk−2 := 1
a1 · · ·ak

· 1
2(k−2)!

·
k∑

i=1
ai

bk−3 := 1
a1 · · ·ak

· 1
4(k−3)!

·
(

1
3

k∑
i=1

a2
i +

∑
i< j

aia j

) (3.10)

In fact, the authors show how to compute all the coefficients of the polynomial, we omit the details.
See Sec. 8.5 on how this can be used to estimate the number of molecular formulas over some
alphabet of elements.

We mentioned that the above estimates do not give any guarantees, such as: The approximation
will in all cases be at most twice as large as the number of decompositions. Only when M goes to
infinity, Theorem 1 guarantee that the relative error will drop to zero. As we will see in Sec. 8.1,
Eq. (3.9) cannot be used to give a reasonable estimate of the number of amino acid decompositions.
By contrast, even the simpler approximation (3.8) results in reliable estimates of the number of
molecular formulas, if we ignore the fluctuation of this number due to the combinatorial nature of
the problem.

We will now turn to approximations that give us a guarantee on how large the relative error
is. Let Γ(M) be the number of decompositions with mass m ≤ M, so Γ(M) =∑M

m=0γ(m). Dyer [77]
gave a Polynomial Time Approximation Scheme (PTAS) for this number: We choose an arbitrary
relative error ε> 0, then the algorithm computes an estimate Γ̄(M) such that

Γ(M)≤ Γ̄(M)≤ (1+ε)Γ(M)

in time O(k5 + ε−2k4). So, we can approximate Γ(M) with arbitrary precision, where we trade
running time for precision. Note that M itself is no longer part of the running time. Unfortunately,
this will not lead to an approximation for the number of compomers with mass exactly M. In
fact, one can easily see that no PTAS can exist for this number: The reason is that if we
can approximate γ(M) with performance ratio ε = 1

2 in polynomial time, then we can decide in
polynomial time whether γ(M)= 0 holds. We noted above that this is not possible unless P=NP.

3.8 Historical notes and further reading

Our presentation in this chapter roughly follows the paper of Böcker and Lipták [27], see there
for additional details and missing proofs.

The idea of using compomers for the analysis of mass spectrometry data, dates back at least to
the 1980’s: Back in 1984, Sakurai et al. [252] used compomers over the amino acid alphabet for
de novo sequencing of peptides. In their approach, they took an MS/MS spectrum of an unknown
peptide with precursor mass M, generated all compomers c with µ(c) = M, then generated all
strings s with comp(s) = c and, finally, simulated a reference spectrum for each such string s to
compare it against the measured spectrum. Obviously, this approach suffered heavily from the
huge number of compomers over an alphabet with 19 characters.

The MONEY CHANGING problem and, in particular, the problem of computing Frobenius
numbers has been around in Mathematics for quite some time: In 1884, Sylvester asked for the
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Frobenius number of k = 2 coins a1,a2, and Curran Sharp showed that g(a1,a2) = a1a2 −a1 −a2
[284]. For three coins a1,a2,a3, Greenberg [113] and Davison [61] independently discovered
simple algorithms with fast running times. Kannan [146] established algorithms that for any
fixed k, compute the Frobenius number in time polynomial in logak. Unfortunately, the running
time has a double exponential dependency on k, and cannot be applied for k ≥ 5. Reading the
Frobenius number from the residue table was suggested by Brauer and Shockley [36].

In 2007, Einstein, Lichtblau, Strzebonski, and Wagon [83] presented an elaborate method that
can solve instance with k = 4 and ak ≤ 10100 in under one second, and instances with k = 7 and
ak ≈ 101000 in a matter of minutes. Other methods might be faster if k is large whereas a1 is
relatively small [16]. Computing the Frobenius number is NP-hard [228], so we cannot hope to
find algorithms polynomial in k and logak simultaneously unless P=NP. Many results regarding
the MONEY CHANGING problem and Frobenius numbers are based on generating functions, see
[304] for an introduction. There has been considerable work on bounds for Frobenius numbers,
see Ramírez-Alfonsín [227] for a survey.

The solution of the CHANGE MAKING problem (see Exercise 3.1) was proposed by Gilmore and
Gomory [105] in 1965, but it is probably easier to come up with a solution yourself than to find it
in their paper.

The MONEY CHANGING problem is also closely related to unbounded integer knapsacks [191]:
There, one replaces the condition

∑
j c ja j = M by

∑
j c ja j ≤ M. In fact, the approximation result of

Dyer [77] mentioned in Sec. 3.7 is for unbounded integer knapsacks. Although these problems look
similar, algorithms for solving unbounded integer knapsacks such as the algorithm of Martello
and Toth [190], cannot be used for the MONEY CHANGING problem.

Alg. 3.5 is the iterative version of the FINDALL algorithm. Be aware that, although it is
more complicated than the recursive Alg. 3.2, it is presumably much faster in application. The
fasted variant is hard-coding |Σ| many WHILE-Loops. In practice, both approaches will show a
comparable running time, as compiler optimizations such as loop unrolling cannot be performed
here, see Exercise 3.19.

3.9 Exercises

3.1 Assume you are given an infinite supply of coins with values Σ= {2,3,7,10} dollars. How can
you make change for 18 dollars with as few coins as possible? Provide a general solution to
the problem. This problem is known in computer science as the CHANGE MAKING problem,
and can be solved with a recurrence similar to (3.2).

3.2 Compute the residue table and the Frobenius number for the weighted alphabet Σ =
{6,9,20}. How can you “make change” for 41 “dollars”? This particular problem is also known
as CHICKEN MCNUGGETS problem — explain why, and discuss it with your benchmate.

3.3 You can compute Frobenius numbers using the search engine Wolfram Alpha at
http://www.wolframalpha.com/. What is the Frobenius number of the alphabet
{12312312,4567456745,678678678,4567894567}?

3.4 Show by examples that the greedy algorithm cannot optimally solve the MONEY CHANGING

and the CHANGE MAKING problem.

3.5 How many strings can be made using all characters of the string ALGORITHMUS exactly
once? As an example, there are three strings for the input string ABA, namely AAB, ABA,
and BAA. How many strings can be made from ABRACADABRA? Try to find a formula for
this number.
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3.9 Exercises

1: procedure FINDALLIT(mass m)
2: compomer c = (c1, . . . , ck)← 0
3: integer i ← k
4: while i ≤ k do
5: if B[i,m]= 0 then . is this decomposable at all?
6: while i ≤ k and B[i,m]= 0 do . no, go to next one
7: m ← m+ ciai
8: ci ← 0
9: i ← i+1

10: end while . now, B[i,m]= 1 holds
11: if i ≤ k then
12: m ← m−ai
13: ci ← ci +1
14: end if
15: else . yes, decomposable
16: while i > 1 and B[i−1,m]= 1 do . initially, we do not add any coins
17: i ← i−1
18: end while . now, B[i,m]= 1 but B[i−1,m]= 0
19: if i = 1 then
20: c1 ← m/a1
21: Output c = (c1, . . . , ck)
22: i ← 2
23: end if
24: if i ≤ k then . move to next decomposition
25: m ← m−ai
26: ci ← ci +1
27: end if
28: end if
29: end while
30: end procedure

Algorithm 3.5: Iterative algorithm for enumerating all compomers of a given mass m. To
decompose mass M, this algorithm is initially called as FINDALLIT(M).

3.6 Let Σ be a weighted alphabet with integer masses µ : Σ→ N>0, where not all masses are
necessarily different. Build an algorithm that decomposes some mass M over this alphabet,
using any of the FINDALL algorithms as a subroutine.

3.7 Let Σ= {a,b,c,d} be a weighted alphabet with masses µ(a)= 3, µ(b)= 6, µ(c)= 8, and µ(d)= 9.
Compute all compomers using the recursive algorithm FINDALLREC (Alg. 3.2). List all
calls of the the algorithm, in the order in which they are executed. Here, we use the “old
fashioned” version of weighted alphabets, to make it easier to write up the compomers.

3.8 Let Σ be the weighted alphabet from the previous exercise. Compute all compomers using
the iterative algorithm FINDALLIT (Alg. 3.5). List values of variables i, m, and c for each
entry into the WHILE-loop (line 5), in the order in which the algorithm is executed.

3.9 Let Σ := {6,7,17,22} be a weighted alphabet. Compute the ERT table using the Round Robin
algorithm, and use the ERT table to compute all decompositions of mass 35. Compute the
Frobenius number and the number of omitted values of this instance.
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3.10 Modify Alg. 3.5 so that it uses the Extended Residue Table instead of array B, similar to
Algorithms 3.2 and 3.4.

3.11 Assume that we have computed C′[m] for all m = 0, . . . , M as the number of strings over an
alphabet Σ. How many strings of precursor mass M have a prefix of mass m, and how many
have a suffix of mass m? Finally, how many strings of precursor mass M have a prefix or
suffix (or both) of mass m ≤ M/2? Hint: The solution to all three questions is very simple
and, in particular, you do not need a new recurrence.

3.12 Using integer masses, find the prefix and suffix of a peptide with smallest mass so that, with
the “true” de novo sequencing mass modification ±0 and +18, both have identical mass,
violating Assumption 4 from Chapter 2. Argue why the string resulting from appending
prefix and suffix, is truly the string of smallest mass violating the assumption.

3.13? Using integer masses, count the number of peptide strings of mass M that have a prefix of
mass m and a suffix of mass m+18, for any m ∈ {0, . . . , M}. If you have previously computed
C′[0. . . M], you can do so in O(M2) time. To come up with useful numbers, you should treat
character I and L as one; similarly, characters K and Q. Plot the relative number of such
strings against M, for M = 0, . . . ,3500.

3.14? Proof that for a weighted alphabet {a1,a2} that the number g = g(a1,a2) = a1a2 − a1 − a2
cannot be decomposed, but all M > g can be decomposed.

3.15 Proof the correctness of Eq. (3.7).

3.16 Write a program to compute arrays B and C for the amino acid alphabet. As integer weights,
use those from Table 2.1 times 100, rounded to the closest integer. Compute B[0. . .20000]
and C[0. . .20000].

3.17? Compute the Residue Table for the amino acid alphabet in Table 2.1, rounded to integers.
What is the Frobenius number, that is, the largest mass that does not have a decomposition?

3.18 The previous exercise is not complicated, but it is a lot of work. Write and run a computer
program that does the job for you. Rerun your program but this time, multiply all masses
with 1000 before rounding.

3.19 Implement the recursive and iterative algorithms for enumerating compomers, Algorithms
3.2 and 3.5, as well as 19 nested WHILE-loops for the amino acid alphabet. Using each
algorithm, enumerate all compomers for integer masses m = 0, . . . ,20000, using the array B
from the previous exercise. Compare running times. Warning: Do not print out compomers,
as this will by far exceed the time required to compute them.

3.20 It is easy to modify all presented algorithms for enumerating compomers, when upper and
lower bounds for each character in Σ are given. Show how this can be done. Note that for
lower bounds, you do not need any changes to the actual algorithms.

3.21 Assume that Σ is an alphabet of integer masses, such that at least one character has positive
mass, and at least one character has negative mass. Proof: If some mass M has at least one
decomposition, then it has an infinite number of decompositions.

3.22 Assume that Σ is an alphabet of integer masses, positive or negative. Find a recurrence that
computes, for any integer mass M ∈ {−M′, . . . ,0, . . . , M}, the minimum number of characters
needed to reach this mass.
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3.23 Let f (n) := 2n+n+1000 and g(n) := 2n. Show that f ∼ g. Compute the absolute and relative
error for n = 1, . . . ,20.
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4 Database Searching and Comparing Mass

Spectra

This is work in progress!

“If it looks like a duck, and quacks like a duck, we have at least to consider the
possibility that we have a small aquatic bird of the family Anatidae on our hands.”
(Douglas Adams, Dirk Gently’s Holistic Detective Agency)

GIVEN a measured sample spectrum and a database with reference spectra, there are two
questions to be answered: Which reference spectrum matches best with the measured

spectrum? And, how certain are we that this identification is correct? In this chapter, we will
focus on the first question; the second question will be addressed in Chapters 6 and 5.

In the vast majority of cases, database searching is based on the comparison of two spectra,
where one is the spectrum from the database (the reference) whereas the other is our measured
spectrum (the query). We use this comparison to compute a score that measures the similarity
or dissimilarity between the two spectra. Candidate spectra from the database are then sorted
(ranked) by score; if everything goes according to plan, then the highest-scoring candidate is also
the correct solution. With the exception of Sec. 4.10, we will not put particular focus on the
application of database searching, but rather consider the general task of comparing two spectra.

Besides database searching, other computational questions such as de novo sequencing (Chap-
ters 2 and 11) or annotating mass spectra (Chapter 9) also have to compare mass spectra; all of
these will be covered in this chapter. Also recall that the reference database may be computed
“on the fly” (Sec. 2.8). In most cases, it is also not relevant if the biomolecules we are considering
are peptides, metabolites, glycans, or something different. For the sake of readability, we will
nevertheless often focus on peptides and searching in a peptide database throughout this chapter;
doing so will help us to fill our theoretical concepts with some “meat”.

We can make the following differentiations with regards to our task: The first differentiation
concerns the mass accuracy of our measurements.

• At least one of the two spectra is measured at unit mass accuracy.

• Both the query and the reference spectrum have high mass accuracy.

Clearly, we can only make use of high mass accuracy if both spectra have this property. Next, we
have to differentiate based on the availability of peak intensities.

• The reference spectrum has peak intensities.

• The reference spectrum is a “barcode spectrum” without peak intensities.

The query spectrum is an experimental spectrum and contains information about peak intensities;
but the reference spectrum can be either an experimental spectrum — in which case we speak of
a spectral library to search in — or a simulated one, see for example Sec. 2.6. In the later case, it
is often highly nontrivial how to assign peak intensities.
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The third differentiation is rather a classification of the presented scorings: Namely, we can
match peaks one-to-one, one-to-many, or many-to-many. This classification only makes sense
when both spectra have high mass accuracy; for unit mass accuracy, all scorings are one-to-one.
For one-to-one matchings, each peak in the query may be matched against at most one peak in
the reference, and vice versa. For one-to-many matchings, one peak in the query may be matched
against multiple peaks in the reference, but each peak in the reference is matched against at most
one peak in the query. Finally, many-to-many matchings allow us to match each peak in the query
with each peak in the reference. In principle, there is also the possibility to match one or more
peak in the query against at most one peak in the reference, but such many-to-one matchings are
rarely of use in application.

4.1 Unit mass accuracy: The dot product score and its variants

The following is for unit mass accuracy. As such, it is a one-to-one scoring. It is most useful when
the reference spectrum has peak intensities, but can also be applied for barcode spectra.

The conceptually simplest comparison of two speactra is when both spectra have unit mass
accuracy. Here, we can think of the two spectra as vectors h = (h1, . . . ,hn) and h′ = (h′

1, . . . ,h′
n),

where missing peaks have intensity zero. We use the dot product (or scalar product) between the
two vectors,

〈h,h′〉 =
n∑

m=1
hmh′

m

as our measure of similarity. To guarantee that values are between 0 and 1, we use the norm
‖h‖ =√〈h,h〉 and define the score as

〈h,h′〉
‖h‖ ·‖h′‖ . (4.1)

This has also been referred to as the “cosine score” because in Euclidean geometry, this is the
cosine of the angle between the two vectors. But hardly anybody transform it to angles, which
would result in values between 0 and π/2 (or 0◦ and 90◦ if you prefer school math). We can
get around the normalizing factor in (4.1) if we assume that both vectors have been normalized
individually as h ← 1/‖h‖ ·h and analogously for h′; now, ‖h‖ = ∥∥h′∥∥= 1 and we can use the scalar
product 〈h,h′〉 without normalization.

It must be understood that the dot product is not the only mathematically sensible way to
measure the (dis)similarity between two vectors; the Euclidean distance

∥∥h−h′∥∥ is another well-
known possibility. But dot products work well for comparing (mass) spectra and “do not require”
a geometric interpretation (Euclidean space).

In application, many scientists have tried to improve on the scalar product for searching in
spectral libraries. Two modifications that were suggested repeatedly is a “weighting factor” ψ and
an “intensity transformation” ϕ. Weighting factor ψ :R≥0 →R≥0 allows us to put different weights
ψ(m) (assign importance) to different masses m of the spectrum. The intensity transformation
ϕ :R≥0 →R≥0 is a monotonic function that is most often used to “tone down” the effect of intensities
and intensity differences: Usual choices are ϕ(x) = p

x or, more generally, ϕ(x) = xc for c ∈ (0,1),
but ϕ(x) = log(x) or ϕ(x) = max{0,log(x)+d} for some d > 0 are also reasonable choices. Now, (4.1)
becomes ∑n

m=1ψ(m)ϕ(hm)ϕ(h′
m)√∑

mψ(m)ϕ(hm)ϕ(hm)
√∑

mψ(m)ϕ(h′
m)ϕ(h′

m)
.

Similar modifications can be applied for other scores presented below. For the sake of readability,
we will ignore weighting factors ψ in our presentation, and we assume that intensity transforma-
tions h ← ϕ(h) have been applied to the spectra. (In your code, you should do it exactly the other
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way round: Integrate the intensity transformation into the function that computes the scalar
product etc., but never apply it to the spectra. Do not photoshop your spectra.)

4.2 Scalar products for high mass accuracy and the Probability

Product Kernel

The following is for high mass accuracy data. It is most useful when the reference spectrum has
peak intensities, but can also be applied for barcode spectra. It is a many-to-many scoring, where
every peak in one spectrum is scored against every peak in the other.

We now generalize the ideas of Sec. 4.1 for spectra with high mass accuracy. A straightforward
generalization of the dot (or scalar) product of two vectors of finite length is the scalar product of
two functions g, g′ :R→R,

〈g, g′〉 =
∫ b

a
g(x) · g′(x) dx

where a < b. Here, g′ denotes a second function, not the derivative of g. To ensure values between
0 and 1, we again normalize using the norms of the two functions,

〈g, g′〉
‖g‖‖g′‖ where ‖g‖ =

√
〈g, g〉.

We may apply this to the raw (not peak-picked) spectra that are measured by the instrument, but
that is not a good idea for many reasons: To name one, this will put a lot of weight on the baseline
of the mass spectrum, something we definitely do not want. (In reality, raw spectra are discrete
signals, but it is straightforward how to treat these as continuous functions.)

A better idea is to use peak lists as in the rest of this book, and to generate an idealized
spectrum from the peak list, being the sum of Gaussians at the appropriate positions and with the
appropriate intensities. We use some standard deviation σ2 corresponding to the mass accuracy
of the measurement, and define

f (x) := 1p
2πσ2

exp
(−x2

2σ2

)
.

to be the standard Gaussian (probability density of the normal distribution with mean zero and
unit variance). Note that ‖ f ‖ = √〈 f , f 〉 = 1. We may use other “peak shapes” but the Gaussian
appears to be a somewhat natural choice: Even though calculations for mass spectrometry physics
tell us that measured peaks should have shapes slightly different from a Gaussian function, it is
still common to model them as Gaussians. Even more important — as we will see below — is again
the observation that mass deviations follow roughly a normal distribution. Now, the complete
ideal spectrum is

g(x) :=∑
i

hi f (x−mi)

where m1, . . . ,mn are the peak masses and h1, . . . ,hn the corresponding intensities. Given a second
ideal spectrum g′(x) := ∑

j h′
j f (x−m′

j) for peak masses m′
1, . . . ,m′

n′ and intensities h′
1, . . . ,h′

n′ , we
have

〈g, g′〉 =
〈∑

i hi f (x−mi),
∑

j h′
j f (x−m′

j)
〉
=∑

i, j
hih′

j · 〈 fmi , fm′
j
〉 (4.2)

where fm(x) := f (x−m), because 〈·, ·〉 is an inner product.
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It remains to compute 〈 fm, fm′〉. But instead, we first compute 〈 f , fδ〉 for δ= m′−m. Now,∫
f (x) · fδ(x) dx =

∫
f (x) · f (x−δ) dx

=
∫

1
2πσ2 exp

(−x2 − (x−δ)2

2σ2

)
dx

= 1
2πσ2

∫
exp

(−2x2 +2δx−δ2

2σ2

)
dx

= 1
2πσ2

∫
exp

(−x2 +δx− 1
2δ

2

σ2

)
dx

= 1
2πσ2

∫
exp

(−(x− 1
2δ)2 + 1

4δ
2 − 1

2δ
2

σ2

)
dx

= 1
2πσ2 ·exp

(−1
4δ

2

σ2

)
·
∫

exp

(−(x− 1
2δ)2

σ2

)
dx

=
p
πσ2

2πσ2 ·exp
(−δ2

4σ2

)
· 1√

2π(σ/
p

2)2

∫
exp

(−(x− 1
2δ)2

2(σ/
p

2)2

)
dx

(4.3)

For the definite integral we calculate∫ b

a
f (x) · fδ(x) dx = 1

2
p
πσ2

·exp
(−δ2

4σ2

)
·
[
F

(
b−δ/2
σ/
p

2

)
−F

(
a−δ/2
σ/
p

2

)]
(4.4)

where F(x) is the cumulative distribution function of the standard normal distribution. By
definition,

lim
x→−∞F(x)= 0 and lim

x→+∞F(x)= 1.

For the integral from a =−∞ to b =+∞ we therefore reach

〈 f , fδ〉 =
∫ +∞

−∞
f (x) fδ(x) dx = 1p

2π ·2σ2
·exp

(
− δ2

2 ·2σ2

)
. (4.5)

It is possible and sensible to do integrations for all of R because all integrals are finite if we use
Gaussians. Now,

〈 fm, fm′〉 = 〈 f , fδ〉
with δ= m′−m, which is what we wanted to compute.

Eq. (4.5) is just the probability density function of the normal distribution (Gaussian function)
with mean 0 and variance 2σ2. Nevertheless, this is not the probability that mass difference δ is
observed: The probability for observing mass deviation exactly δ is zero, for any δ. This simply
follows from the fact that the normal distribution is a continuous distribution. In this sense, the
scalar product does not have a “clean” stochastic interpretation, compare to Sec. 4.5 below where
we will use the cumulative distribution function of the normal distribution. On the other hand,
we can interpret this value as the probability that the mass deviation is “δ or sufficiently close”.
This gives reasonable values as the normal distribution is “well-behaved” (unimodal, symmetric,
differentiable, not heavy-tailed etc).

Combining (4.2) and (4.5) we reach

〈g, g′〉 =
∫ ∞

−∞
g(x) · g′(x) dx = 1p

2π ·2σ2
·∑

i, j
hih′

j ·exp

(
− (mi −m′

i)
2

2 ·2σ2

)
(4.6)
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what allows us to compute the inner product in time O(n·n′). There is no need to do any numerical
integration of the two functions; all we need is to invoke the exponential function n ·n′ times.

But in practice, we can bring down the running time to linear if σ is chosen reasonable small:
Assume

∣∣m−m′∣∣≥ 10σ holds.1 Then,

exp
(
− (m−m′)2

2 ·2σ2

)
≤ exp

(
− (10σ)2

2 ·2σ2

)
= exp(−25)= 1.39 ·10−11

and we can safely ignore the corresponding summand even if peak intensities are high, as it will
not contribute substantially to the scalar product. For comparison,

∣∣m−m′∣∣≥ 8σ only guarantees
values below 1.13 · 10−7, and

∣∣m−m′∣∣ ≥ 6σ values below 1.23 · 10−4. (In case all summands in
(4.6) are small and this summand has a noteworthy effect on the sum, then the two spectra are
so dissimilar that, again, it does not make a difference if we consider the summand or not.) This
implies that calculations can be carried out in linear time O(n+n′) if each of the spectra contains
only “few” peak pairs with mass difference at most 10σ, assuming that both peak lists are sorted
by mass. This statement can be formalized, but we leave out the technical details. In particular,
these considerations allow us to compute the norm of g in linear time if the mass difference
between consecutive peaks is at least 10σ: Then,

‖g‖ =
√
〈g, g〉 ≈

√∑
h2

i

which is the same as for the unit mass accuracy case.
Eq. (4.6), being a scalar product, is a kernel function. We do not want to go into the mathe-

matical details here, but such kernels are of importance in machine learning, namely for kernel
methods such as the well-known Support Vector Machines. Notably, a slightly different kernel is
frequently used for that purpose: The probability product kernel is defined as

〈g, g′〉 = 1
nn′

1
4π ·σmass ·σint

·∑
i, j

exp

(
− (mi −m′

i)
2

2 ·2σ2
mass

− (hi −h′
i)

2

2 ·2σ2
int

)
(4.7)

where σ2
mass,σ

2
int are standard deviations of mass and intensity, respectively. In machine learning,

these (hyper)parameters are usually determined using cross-validation. Eq. (4.7) assumes zero
covariance between masses and intensities — or, more precisely, between mass deviations and
intensity deviations.

4.3 Additional and missing peaks: To score or not to score?

If our reference is a measured spectrum, we may indeed score both additional (peaks not found
in the query spectrum) and missing peaks (peaks found in the query which cannot be matched
to a peak in the measured spectrum). But is this always the case? The following a somewhat
philosophical reflection on the cases and applications where this makes sense, and on those where
it does not.

Additional: Our simulation of the reference spectrum may be incomplete, not covering all, say,
fragmentation reactions. Maybe, these fragmentation reactions have never been described in the
literature. Maybe, even all available data will not allow us to explain this peak. Also, there is the
chance that “impurities” will screw up our ranking.

Things are even worse for missing: How sure are we that the peak should indeed be observable
in the query spectrum? In case our measured spectrum is a barcode spectrum, we have to be

1The following considerations are not connected to the 5 sigma rule from physics or the 6 sigma rule from quality
management: Those rules consider the cumulative distribution of the normal distribution, whereas we are using its
probability density function.
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very cautious — potentially, the query spectrum does contain the peak, but it so small that it was
missed. With intensities, a small peak is lost easier than a high-intensity peak.

Scalar products, by design, put more weight (attention) on high-intensity peaks.

4.4 Matching spectra and the peak counting score for high mass

accuracy

In this section, we assume that M is the reference we want to compare against; and that M ′ is
the query of our sample using an MS instrument. For the ease of presentation, we assume that
both M and M ′ are sets of masses. In fact, we can easily add more “peak attributes” to this
framework without having to change the formal presentation: We can think of these attributes
as maps from the set of masses, to some set representing the possible attribute states. One such
attribute that we will make use of repeatedly, are peak in intensities in the measured spectrum.
For the reference spectrum, a possible peak attribute is the ion series the peak stems from.

The following is for high mass accuracy data. It assumes that both spectra are barcode spectra;
as described, this can be achieved by intensity thresholding. It is a one-to-one scoring, where each
peak in one spectrum is scored against at most one peak in the other.

Given a protein string, it is quite easy to simulate, say, tryptic digestion in silico, see Exer-
cise 1.1. But it is similarly easy to simulate the tandem mass spectrum of a peptide — at least,
if we assume some simple model of peptide fragmentation, see the previous chapter and Sec. 2.6.
In fact, we have implicitly “simulated” such peptide tandem mass spectra in the previous section.
We leave the details to the reader, see Exercises 4.3 and 4.9.

In Chapter 2, we have implicitly introduced a simple approach to compare two mass spectra: We
did so by counting the peaks that occur both in the measured spectrum M ′ and in the reference
spectrum M . This number will be called peak counting score in the following, but goes under
many different names in the literature. The idea behind this, is that the measured spectrum is
fixed, whereas we are searching for a best match in the database. As mentioned repeatedly, we
have to allow for some mass deviation ε> 0 between the masses of measured and reference peak.
In the following, we will also look at other ways to compute a score for the reference spectrum M

by comparing it to the fixed measured spectrum M ′.
What exactly do we mean with “counting common peaks”? In fact, there are at least three

different interpretations:

1. We want to match pairs of peaks: That is, every peak in the reference spectrum M can be
matched with at most one peak in the measured spectrum M ′, and vice versa, to contribute
toward the score.

2. Each peak in the reference spectrum M can be matched with at most one peak in the
measured spectrum M ′; but a peak in the measured spectrum M ′ may be matched to many
peaks in the reference spectrum M .

3. Each peak in the measured spectrum M ′ can be matched with at most one peak in the
reference spectrum M ; but a peak in the reference spectrum M may be matched to many
peaks in the measured spectrum M ′.

Intuitively, the first interpretation appears to be the most “natural”; but it turns out that the
second interpretation is also quite reasonable in many applications. We will call the first a one-
to-one matching, and the second a many-to-one matching. In contrast, the third interpretation
should hardly ever be relevant in applications. We will discuss this later and, for the moment,
concentrate on the one-to-one matching case.
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Example 4.1. We now give an example meant to demonstrate various problems of the peak
counting score. Assume that we have measured the spectrum

M ′ = {200,300,500,515,700}

and we want to compare it against a set of reference mass spectra in our database, namely:

M1 = {100,175,350,480,490,550}

M2 = {200,270,300,500}

M3 = {205,505,705,850}

M4 = {190,310,490,710}

M5 = {100,150,200,250, . . . ,600,650,700}

Assume that ε= 10 is the mass deviation that we believe to be reasonable. Now, we find that M1
has one peak in common with M ; both M2 and M3 have three; and both M4 and M5 have four
peaks in common.

What are the problems with the peak counting score in Example 4.1? First, changing parameter
ε slightly can dramatically change the score. For example, spectrum M4 has score four for ε= 10,
but if we instead choose ε= 9.9 then the peak counting score decreases to zero. But also for spectra
that are not in this “critical zone”, it is understood that M2 fits the observed data better than M3,
but this is not reflected in the score. Finally, reference spectra with many peaks such as M5 get
a better score, because the are more likely to hit a peak mass in M just by chance. We have
observed this problem at the end of Sec. 2.5.3.

In view of this, it seems reasonable to score mass deviations a little more carefully. To this end,
we assume that we are given some mass scoring function f :R≥0×R≥0 →R that, for a pair of peaks
at masses m (for the reference peak) and m′ (for the measured peak), judges the similarity of these
peaks based on their masses. For a mass scoring function to be true to the application, we may
demand an additional property: If M′ < m′ < m or m < m′ < M′ holds, then f (m, M′) < f (m,m′).
Similarly, if M < m < m′ or m′ < m < M then f (M,m′)< f (m,m′). A mass scoring function is called
strictly monotonical if it satisfies these two conditions. A weaker condition is that M′ < m′ < m or
m < m′ < M′ implies f (m, M′) ≤ f (m,m′), and that M < m < m′ or m′ < m < M implies f (M,m′) ≤
f (m,m′). In this case, the mass scoring function is called monotonical. For example, the peak
counting score for any ε > 0 is monotonical but not strictly monotonical. The above are a quite
reasonable conditions: For example, f (M,m′) > f (m,m′) for M < m < m′ or m′ < m < M would
imply that matching the measured peak at mass m′ with the more distant reference peak M, is
more sensible than matching it with the closer reference peak m.

Example 4.2. Let g(m,m′) := 1−2
∣∣m−m′∣∣ for m,m′ ∈ R≥0. Then, g is a mass scoring function

that is strictly monotonical. In particular, we have g(m,m′) ≤ 1 for all m,m′; g(m,m′) = 1 if and
only if m = m′; and g(m,m′)= 0 for

∣∣m−m′∣∣= 1
2 . See Fig. [TODO: FFF].

We now assume that peak pairs are scored by some score function σ : M ×M ′. Such a score
function is usually derived from a mass scoring function, but can take into account other attributes
such as intensities. An alignment of the mass spectra M and M ′ is a matching of the two sets,
where a subset of M is bijectively mapped onto a subset of M ′. To penalize peaks that are not
matched with any counterpart, we introduce a gap character ε. Here, σ(ε,m′) ≤ 0 penalizes a
missing peak m′ ∈ M ′, whereas σ(m,ε) ≤ 0 penalizes an additional peak m ∈ M . We define the
score of a matching as:∑

m matches m′
σ(m,m′)+ ∑

missing peaks m′ ∈M ′
σ(ε,m′)+ ∑

additional peaks m ∈M

σ(m,ε) (4.8)
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Let A ⊆M×M ′ be the matching of an alignment of M ,M ′. We say that the alignment is crossing
if there exist matched mass pairs (m1,m′

1) and (m2,m′
2) in A such that m1 < m2 but m′

1 > m′
2

holds, or m1 > m2 but m′
1 < m′

2 holds. Otherwise, the alignment is crossing-free.

Example 4.3. [TODO: FFF]

Crossing matchings (shown in Example 4.3) are not admissible, because they are physical
nonsense.

[TODO: FFF]The optimal matching can be found by aligning the spectra, so we use dynamic
programming for the table D[1. . .n,1 . . .n′] with n := |M | and n′ := ∣∣M ′∣∣. We initialize D[0,0] = 0,
D[i,0]= D[i−1,0]+σ(mi,ε) for i = 1, . . . ,n, and D[0, j]= D[0, j−1]+σ(ε,m′

j). We use the following
recurrence to fill the table:

D[i, j]= max


D[i−1, j]+σ(mi,ε)
D[i−1, j−1]+σ(mi,m′

j)

D[i, j−1]+σ(ε,m′
j)

(4.9)

The score of an optimal alignment between Obviously, the method requires O(n · n′) time and
memory. After filling the matrix, the optimal score can be found in entry D[n,n′]. To find the
optimal alignment we use backtracking through D. Consider the measured spectrum M and
reference spectrum [TODO: WHICH?] from Example 4.1: Using the mass scoring function from
Example 4.2 with gap penalty −1, the best alignment has score 1. In application, the optimal
alignment can usually be found much faster than the worst-case running times suggests: but is
faster in application normally. For example if σ(m,m′) < σ(m,ε)+σ(ε,m′) matching m and m′

causes the optimal alignment in no case. This banded estimation needs only linear time and
memory.

4.5 Stochastic model for scoring mass deviations

Let m1, . . . ,mn be the peak masses of the reference spectrum (our hypothetical “truth”), and
m′

1, . . . ,m′
n′ of the query spectrum. We assume that the matching M between peaks from the

two spectra is already established, and (i, j) ∈ M means that we match peak i from the reference
with peak j from the query. In fact, that matching is established using the presented score, see
Sec. 4.4.

For our score, we will use log odd scores, as defined in statistics: We want to differentiate
between two statistical models, one for our hypothesis and one for the background. Here, we
look at a pair of peaks, one from the measured spectrum and one from the reference spectrum,
that have been matched by our spectrum alignment algorithms. Now, the two models are “the
measured peak is an incorporation of the reference peak” vs. “the measured peak is simply noise,
and has nothing to do with the reference peak.”

Odd scores are used to differentiate between the two models, by computing the ratio

oddscore= P(D|H1)
P(D|H0)

where D is the observed data (the peak in the measured spectrum), H1 is our hypothesis (the
measured peak belongs to the reference peak), and H0 is the null model (the measured peak is
noise). For oddscore> 1 we would accept the model H1, and for oddscore< 1 the null model H0 is
more likely.

Log odd scores do pretty much the same as odd scores:

logoddscore= log
P(D|H1)
P(D|H0)

(4.10)
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Here, the logarithm can be computed to an arbitrary (but fixed) basis, such as the natural loga-
rithm with basis e. For log2 the resulting log odd scores are called bit scores. For logoddscore> 0
we accept the model, for logoddscore < 0 we reject it. Log odd scores have the advantage that
we can sum them (instead of multiplying likelihoods) to receive a statistical meaningful number:
That is, the log odd score that all the matched peaks of the measured spectrum belong to their
reference counterparts, vs. all the measured peaks are noise.

Now, assume that the model is true, that is, the measured peak belongs to the matched reference
peak. Then, it is usually impossible to predict the intensity of the fragment peak solely from its
molecular formula. But we can use the mass difference between the measured peak and the
molecular formula to assess whether the model holds: We want to assess the likelihood that the
mass differences between measured and reference peaks, corresponding to the mass error of the
measurement, can get this large or larger by chance.

The probability to observe a certain mass error, clearly depends on the accuracy of the instru-
ment: If the instrument has a bad mass accuracy (for example, ion trap MS) than we will observe
large mass errors much more often than for an instrument with excellent mass accuracy, such as
Orbitrap MS. In fact, mass spectrometry literature reports mass accuracies of instruments and
measurements: This is a unit-free number, usually given in parts per million (ppm), showing the
relative mass accuracy of the measurement or instrument. For example, if we measure an ion
with mass 1000 Da at mass 1000.03 Da, then the “mass accuracy” of the measurement is

|1000−1000.03|
1000

= 3 ·10−5 = 30ppm. (4.11)

Unfortunately, the mass accuracy reported in the literature often refers to such a single mass
difference: Zubarev and Mann [314] coined the term anecdotal mass accuracy for the “selective
reporting of mass measurements, usually to demonstrate the capabilities of the author’s instru-
ment.” Such anecdotal mass accuracy “should clearly be distinguished from routine instrument
performance in day to day use.” Zubarev and Mann also proposed to use the term “mass deviation”
instead of “mass accuracy” for an individual mass error, such as the one in (4.11).

We need, in contrast, a statistical mass accuracy that assigns probabilities to different mass
errors. It turns out that mass errors are roughly normally distributed with mean zero. We
can argue statistically, that some random variable that is the sum of numerous other random
variables that account to the final peak mass measured in the spectrum, should be normally
distributed. But this fact has also been verified experimentally in at least two studies [137, 314].

But before we continue, a warning is in place: Observed mass errors are in fact the sum of
a systematic mass error due to poor calibration, and the statistical mass introduced above. The
systematic mass error can be countered by calibration using (internal or external) standards, or by
hypothesis-driven recalibration, see Sec. 4.11 below for more details. Only after we have removed
the systematic mass error from the measurement, it is reasonable to assume that mass errors are
statistically distributed.

[TODO: FFF]We calculate this likelihood as the two-sided area under the Gaussian curve
with SD 1/3 of the relative mass error.

How to define a expedient scoring function? We know from mass spectrometry that mass
deviations are nearly uniformly distributed.

The probability P(mass deviation ≤ ε) is the integral from both sites, labeled red in Figure 4.1.
The expectation value is µ = 0 for a well calibrated instrument. The standard deviation is σ =
1
3

z
106 m, where z is the mass accuracy of the instrument z ppm. We assume that 99,7% of the

measurements lie in these area, that is consistent with σ= 1
3

z
106 m. Using the Normal distribution,

we cannot rule out that arbitrarily large mass deviations occur; we just assume that they are
arbitrarily unlikely. For example, we implicitly assume that 99.9999998% of all measurements
are at least within twice the stated mass accuracy, and less than two in a billion measurements
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Figure 4.1: We model the distribution of mass deviation ε as a Normal distribution N (0,σ2) with
mean zero. Then, 99.7% of the measured mass deviations lie between −3σ and +3σ.

show a larger mass deviation.2 We estimate the probability of observing a mass difference of∣∣m−m′∣∣ or larger as:

P(D|H1)=P(mass difference of m−m′ or more)= 2p
2π

∫ ∞

z
e−t2/2dt = erfc

( ∣∣m−m′∣∣
p

2σmass

)
(4.12)

with z := |m−m′|
σmass

, where m,m′ are the masses of the measured and the reference peak, and σ is
the standard deviation of the Gaussian mass error distribution. No closed form for the definite
integral of the probability density function is known. That is why practically all numerical
libraries offer functions erf(·) and erfc(·) which allow us to compute approximations of excellent
quality (“approximation” as in mathematical approximation theory, see Sec. 14.6). In particular,
“erfc” denotes the complementary error function with erfc(x) := 2p

π

∫ ∞
x e−t2

dt.

4.6 Stochastic model for scoring intensity deviations

Let h1, . . . ,hn be the peak intensities of the reference spectrum, and h′
1, . . . ,h′

n′ of the query
spectrum. Again, the matching M between peaks from the two spectra is already established,
and (i, j) ∈ M means that we match peak i from the reference with peak j from the query.

Firstly, the simplest way to compare intensities — which has been suggested repeatedly in the
literature — is to use the absolute value of the difference,

∣∣h−h′∣∣. Ignoring peak masses for a
moment, this results in sum of absolute differences,

λ · ∑
(i, j)∈M

∣∣hi −h′
j
∣∣,

where the factor λ> 0 is required if you want to combine this score with other scores. Using the
sum of absolute differences is more robust than the sum of squared differences, meaning that
outliers have less impact. One may think that this approach, different from others discussed
here, does not have an underlying statistical model; but this is not the case. Let us assume that
the absolute intensity deviations are exponentially distributed with parameter λ > 0; then, the
probability to observe a deviation of

∣∣h−h′∣∣ is 1− (1−exp(−λ ∣∣h−h′∣∣)) = exp(−λ ∣∣h−h′∣∣). (We use
the cumulative density function to estimate the likelihood of a deviation of at least

∣∣h−h′∣∣; but
here, we could as well use the probability density function and end up with practically the same
result.) Assuming independence, the likelihood of the data is the product of these likelihoods,

P(h′
1, . . . ,h′

n′ | h1, . . . ,hn,λ)= ∏
(i, j)∈M

exp
(
−λ · ∣∣hi −h′

j
∣∣) ,

2We cannot rule out that a meteor hits and destroys the earth tomorrow; it is just very, very unlikely.
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and instead of maximizing this likelihood we can as well maximize the log likelihood

log P(h′
1, . . . ,h′

n′ | h1, . . . ,hn,λ)= ∑
(i, j)∈M

−λ · ∣∣hi −h′
j
∣∣=−λ ∑

(i, j)∈M

∣∣hi −h′
j
∣∣

which is in turn equivalent to minimizing
∑

(i, j)∈M
∣∣hi − h′

j

∣∣. Here, “log” denotes the natural
logarithm. To this end, if we use the sum of absolute differences to decide for the best match,
this is equivalent to a maximum likelihood approach implicitly assuming that absolute deviations
are exponentially distributed. To combine this with other likelihood estimates, we still have to
choose an appropriate λ> 0 as a multiplicative factor.

Second, the probability product kernel (4.7) explicitly models intensity deviations h−h′ using a
normal distribution, but uses the probability density function instead of the (stochastically more
sensible) cumulative distribution. Again, doing so has been suggested repeatedly in the literature.

Third, we can explicitly model the relative error h′/h of intensities. A somewhat natural choice is
to model h′/h as a normal distribution with mean one, but this model has non-zero probability for
negative values of h′/h, see below. Another possibility is to model h′/h by a log normal distribution
or, equivalently, logh′/h by a normal distribution with mean zero.

[TODO: FFF]
All of these approaches are not completely satisfactory in practice: Undisputed, the intensity

deviation has an absolute and a relative component. Can we model both error types simultane-
ously?

It turns out that this is indeed possible. We use a maximum likelihood estimator with two
parameters, namely, absolute error σabs > 0 and relative error σrel > 0 of peak intensities. We
statistically model the intensity error as

Y = x+D+E

where x is the expected (theoretical) intensity, Y is the random variable modeling the observed
intensity, and D,E are random variables for relative and absolute noise, respectively. We assume
that both relative noise D ∼ x ·N (0,σ2

rel) = N (0, x2σ2
rel) and absolute noise E ∼ N (0,σ2

abs) are
normally distributed: In detail, we assume that D,E have densities

fD(δ)= 1√
2πx2σ2

rel

exp

(
− δ2

2x2σ2
rel

)
and fE(ε)= 1√

2πσ2
abs

exp

(
− ε2

2σ2
abs

)

for δ,ε ∈ R. As in Sec. 4.2, we use the probability density function to estimate probabilities, see
there for an explanation/excuse. The model can result in negative observed peak intensities, but
this limitation is not relevant in application, where relatively weak noise is observed.

We further assume that relative and absolute noise are independent. Given an observed
intensity y := h′ and an expected intensity x := h, the likelihood of some model θ = (δ,ε) is

Ly|x(δ,ε)= 1p
2πxσrel

exp

(
−δ2

2x2σ2
rel

)
· 1p

2πσabs
exp

(
−ε2

2σ2
abs

)

= 1
2πxσrelσabs

exp

(
− δ2

2x2σ2
rel

− ε2

2σ2
abs

)
.

(4.13)

After a series of intricate transformations, we find that the Maximum Likelihood Ly|x(δ0,ε0) for
model (δ0,ε0) is

Ly|x(δ0,ε0)= 1
2πxσrelσabs

exp

(
− (y− x)2

2(σ2
abs + x2σ2

rel)

)
. (4.14)
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We can see that δ0,ε0, corresponding to the maximum likelihood model, are not to be found on
the right side of the equation. Hence, for the computation of the maximum likelihood, we actually
do not have to compute δ0 or ε0 at all! Instead, we have the highly convenient situation that we
can directly insert theoretical intensity x = h and observed intensity y= h′ into equation (4.14) to
estimate the maximum likelihood of the data. Note that (4.14) is very similar to the probability
density function of the random variable D+E ∼N (0,σ2

abs + x2σ2
rel).

The above model is mathematically sound, but has a conceptual disadvantage when scoring
several theoretical candidate spectra against one measured spectrum: The relative noise depends
on the peak intensity in the candidate spectrum and, hence, each candidate spectrum is scored
differently. To this end, we exchange the role of x and y (expected/theoretical intensity vs. observed
intensity) in our scoring. Likelihoods computed in this way are usually very large, positive values;
we can instead use log odds, dividing values through the likelihood for some fixed δ0,ε0 such as
δ0 = 2σrel and ε0 = 2σabs.

4.7 Stochastic model for scoring intensities against barcode peaks

For the background model, we cannot use the mass of the peak since, in general, noise peaks
may appear at any mass. But we can use the peak intensity for this purpose: Evaluations have
shown that noise peak intensities are roughly exponentially distributed; see for instance Fig. 4 in
Goldberg et al. [107]. Let λeλx be the exponential distribution with parameter λ, where x is the
peak intensity. The likelihood of observing a noise peak with intensity y or higher is

P(intensity noise≥ y)=
∫ ∞

y
λeλxdx = e−λy. (4.15)

Taking the natural logarithm, we reach −λy for intensity y.
Since this likelihood appears in the denominator of the log odds term, we simply add the peak

intensity, multiplied by a constant representing the noise in the spectrum, to the score. Finally,
we can use prior probabilities, computing the odds ratio that any peak is not noise: We add a
constant b, being the logarithm of this odds ratio, to each vertex score.

It is possible to integrate more peak attributes to the scoring function. For instance high peaks
get a better score by adding the intensity to the score, that solves the threshold problem.

To get log odds we assign for each pair of peaks m′ and m

score(m,m′)= log
P(peak m′ is signal at m)
P(peak m′ is noise peak)

(4.16)

If peak m′ is signal at m then the intensity of m′ is only relevant if we know the intensity of the
reference peak m, what we normally don’t do. So the mass deviation is |m−m′| If m′ is a noise
peak there is no mass deviation, so we need a model for the distribution of the intensities of noise
peaks. The exponential distribution fits well. For X ∼ Exp(λ) holds

P(X > x)= e−λx and logP(X > x)=−λx (4.17)

The score is know simply the sum of individual scores for all peaks in the spectrum.
Score additional and missing peaks.
We can also take into consideration the mass error of the precursor mass, corresponding to the

precursor ion.
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4.8 Likelihood score for high mass accuracy, both spectra with

intensities

Sections 4.5 and 4.6 allow us to derive a mathematically elegant score in case M is a perfect
matching (that is, there are no missing or additional peaks).

σ(i, j) :=− (hi −h′
i)

2

2
(
σ2

abs + (h′
i)

2σ2
rel

)
What is p̂? This is due to the following problem: For peaks missing in one of the spectra, we

do not have an experimental mass deviation between the two peaks. But we cannot simply ignore
this mass deviation in our scoring: Otherwise, it may be preferable to mark two matching peaks
with low intensity both as “missing”, to avoid the penalty for matching the masses — all our
probabilities are smaller than one and, hence, the logarithm is always negative. The parameter
p̂ ∈ (0,1) is not much more than a workaround for this issue, but at least it has a clear statistical
interpretation: We assume that the non-observed peak has mass deviation that, according to our
statistical model, is as extreme as for p̂ of all observed mass deviations, compare to Fig. 4.1. So,
p̂ = 0.5 corresponds to the quantiles of the normal distribution (25% on the left and 25% on the
right end of the normal distribution), whereas p̂ = 0.8 assumes that mass deviation is as for 10%
on the left and 10% on the right end of the distribution. In full, p̂ is an annoying parameter (not a
nuisance parameter) but at least, it has a clear statistical interpretation. Since small peaks have
larger mass deviations that large peaks, as the exact mass of the peak is harder to determine for
the peak picking software, it is more reasonable to set p̂ = 0.8 than p̂ = 0.5; but you can also do
some statistics on your data at hand to establish an even better parameter choice.

4.9 Log-odds score for high mass accuracy, reference is barcode

spectrum

4.10 Smarter ranking: Beyond the one-size-�ts-all score

Currently, there appears a misconception in the field of computational mass spectrometry, which
says that the ultimate way to search in a database is to compare the query spectrum with
candidate reference spectra that have intensities. (Such reference spectra can either be measured
from standards, or possibly simulated.) As soon as we have such reference spectra in our database,
we are done: We simply use the scoring from Sec. 4.2 to find the best candidate.

But this is not at all what database searching is about! Let us take a step back: What we
want is a method that ranks the candidates such that the correct candidate is found on the top
rank as often as possible; more precisely, that for all queries, correct candidates are ranked “as
good as possible”. How we get this ranking is not important for the task: Usually, we rank the
candidates using some score of the query against each candidate, but not even that is required.
(As an example, take a look at the “learning to rank” literature in Machine Learning.) Having
reference spectra with intensities is definitely a plus; but there is no reason to believe that a
direct comparison of spectra via, say, the scalar product will result in the best-possible ranking.

I suggest that the way to build a better score, is to have a very close look at the application. Let
us consider peptide identification via tandem mass spectrometry (CID, to be precise): If both the b
and y ion are present in the measured spectrum, this is a better indication than observing a b or a
y ion; even if the intensity of the single peak is higher than the summed intensities of both b and
y ion. (This is one explanations why using the square root of intensities might actually improve
results.) Another example is that y ions tend to appear in consecutive series, so a “ladder” of five

73



4 Database Searching and Comparing Mass Spectra

y ions should be scored better than five y ions distributed with gaps across the peptide sequence.
Talking empirically,3 certain peak pairs may “get lost” in experimental spectra as twins: If we
look at hundreds of experimental tandem mass spectra of the same peptide, we always find both
peaks or none. In this case, the presence of both peaks should be rewarded, the absence should
not be penalized, whereas the presence of only one of the peaks in the query spectrum should be
substantially penalized. None of that can be taken into account when simply comparing the query
spectrum to a reference spectrum.

Even if you are directly comparing query and reference to compute a score for ranking, certain
applications require special treatment: Analyzing isotope patterns (Chapter 8), we may “trust”
peak intensities to an extent that is much higher than for any other application: From a chemical
standpoint, all peaks belong to exactly the same molecule. Also, masses (or, more precisely, mass
differences) can be “trusted” much more for this application. See Sec. 8.3 for details. On the other
hand, small peaks might easily get lost in LC-MS peak picking, and should not be penalized — or,
actively searched for in the raw data.

An example against the one-size-fits-all scorings is PERCOLATOR by Käll, Canterbury, Weston,
Noble, and MacCoss [141]. Using a “bag of hits” from a complete LC-MS run with thousands of
peptides to be identified, it extracts features from these hits and compares to those of decoy hits,
see Chapter 6. It then uses a linear Support Vector Machine [141] or a Deep Neural Network
[278] to re-rank candidates, maximizing the number of peptides matched to the target database
at a given false discovery rate. This substantially improves the number of hits, but comes at the
cost of overfitting: That is, we might get results that look like what we expect, instead of the true
identifications [47].

A second example is PepNovo by Frank and Pevzner [96]. Here, different peaks corresponding
to one cleavage of the peptide (abcxyz ions, water losses, amonia losses and so on, see Sec. 2.6) are
no longer scored individually. The idea is as follows: If we see an intense peak which we could
explain as an a ion for the current peptide candidate, but the corresponding b ion and y ion are
absent from the experimental spectrum, does it really make sense to give the candidate a positive
score for that? PepNovo models the dependencies between ion types using a Bayesian network.

Another example for a “non-standard” score is MS-GF, which is described in Sec. 5.4. MS-GF
uses a “regular” additive score first to compare the measured spectrum with a peptide sequence;
but on top of that, it computes the p-value and E-value that this score or higher is reached by
chance. The resulting E-value score is calibrated (Sec. 5.5) what is desirable for significance
estimation via decoy databases.

Finally, for metabolites, many computational methods never consider reference spectra for the
structure candidates; instead, structural information is directly inferred from the mass spectra.
These computational methods perform substantially better than those that try to simulate and
compare reference spectra. Examples include CSI:FingerID for general metabolites and the Lipid
Data Analyzer for lipids. See Chapter 10 for details.

Nevertheless, there exist applications where simulating mass spectra is “the way to go” —
at least, nobody had a promising alternative idea so far. Undoubtedly the most important
such application is DIA and SWATH: So far, we have assumed that a fragmentation spectrum
contains fragments from a single compound structure. MS instruments measure such spectra
by first scanning through the MS1 spectrum, then iteratively selecting the k (depends on the
user settings) most intense peaks there for fragmentation. For each peak, a small m/z window
is opened, and molecules with this m/z are then fragmented. Even there, it is not unlikely that
more than one compound structure is selected for fragmentation; but such chimeric spectra are
considered bad quality, or (the most common approach) researchers simply ignore that some of

3I have to admit that I am also talking hypothetically here: I have never observed such twins in the data, but I assume
that such twins may exist. If not, Bugger!
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the spectra are chimeric. After recording the k individual fragmentation spectra, the process is
repeated. This is called Data-Dependent Acquisition (DDA).

But today, more and more people are using Data-Independent Acquisition4 (DIA) such as
SWATH from the lab of Ruedi Aebersold. Here, we do not select one m/z at a time; instead,
we fragment all molecules that have m/z in a range of, say, 25 Da. By cycling this window though
the mass range (say, 400 to 1200 Da), we have recorded fragmentation spectra of all molecules in
the mass range. After recording 32 spectra, the process is repeated. Unfortunately, this means
that chimeric spectra are now the rule rather than the exception; and many fragmentation spectra
will contain fragment peaks from, say, 10+ compounds. Here, searching in a spectral library is a
powerful and simple way to disentangle the chimeric fragmentation spectrum, in particular if the
reference spectra have peak intensities.

4.11 Hypothesis-driven recalibrating

So far, we have assumed that mass spectrometry can measure the mass-to-charge ratio of an
ion; unfortunately, this is not true. A mass spectrometer can only measure a derived physical
property such as time of flight, or that the molecule will pass through a quadrupole filter on a
stable trajectory for some voltages. Physical properties are transformed into mass-to-charge using
a calibration function. The function itself is determined by the physics of the instrument; but
its coefficients are determined using a separately measured calibration spectrum that contains
molecules of known mass. Doing so, we can determine which, say, time-of-flight has to be mapped
to which mass-to-charge. Unfortunately, subtle changes of instrument parameters can cause
mass inaccuracies in the sample mass spectra: As an example, consider Time-Of-Flight mass
spectrometry. Ionized molecules are accelerated in an electric field with constant force F, then
drift for some time through the field-free flight tube before they hit the detector. We measure the
time t that a molecule needs to get from the source to the detector. To simplify things, assume
a single charged ion, where acceleration solely depends on its mass, a = F

m . Furthermore, let us
ignore the time of acceleration in our calculations. The time-of-flight of an ion with mass m is
t = 1p

a l, where l is the distance of drift. Solving for m yields m = F
l2 · t2. This results in three

coefficients for the calibration polynomial. Coefficients are estimated using calibrants of known
mass. Now, assume that the temperature in the lab changes by, say, one degree Celsius. This
means that the flight tube changes its lengths (shrinks or expands). Unless the instrument is
again calibrated before the next measurement, this implies that the coefficients of our calibration
function are no longer correct and, hence, mass-to-charge determined by that function differ from
the true mass-to-charge of the analyzed ions! This can easily result in deviations of more than
20 ppm for measured mass-to-charge values.

We now want to improve the mass accuracy of peaks in a tandem mass spectrum. The concept
of recalibration is to use hypothetical knowledge of the investigated sample, to recalibrate the
measured spectrum. For example, peptides or glycans can only generate fragments of certain
masses. A “global calibration” is possible if we find peak masses in the measured peak that
can be assigned to exactly one theoretical mass. But such peaks are hard or impossible to find
particularly in the high mass region, see Sec. 8.6 for peptides and Sec. 8.5 for metabolites. In
contrast, such “global recalibration” is possible for glycans as the weighted alphabet is small, see
Chapters 3, 11 and ref. [107].

We now concentrate on hypothesis-driven recalibration which can be applied for any type of
molecules, but which we will explain in the context of peptide tandem mass spectrometry. In a
nutshell, this works as follows: We are given a measured spectrum, and we want to search for
a best hit in a peptide database. For that, we iterate over the peptides; for each peptide s, we

4Hilarious acronym. . .
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simulate a spectrum. But before we now score the measured spectrum against the simulated one,
we insert a recalibration step: At that point of time, we are investigating the hypothesis that the
measured spectrum corresponds to peptide s. We also know that the calibration of the measured
spectrum is defective, as the calibration function has been calculated from a different spectrum.
So, let us use our hypothesis (peptide s) to correct the calibration of the measured spectrum! The
ideal peak masses of the simulated spectrum obviously have better quality than the measured
peak masses. So, let us find a set of peak pairs from the simulated and the measured spectrum
that are “sufficiently close”; then, use the masses of the simulated spectrum, to correct all masses
in the measured spectrum.

To make this approach work in practice, recalibration has to be robust (as we do not want
to recalibrate using wrongly assigned peak pairs) and fast (as we do it for every peptide in the
database). Regarding robustness, we note that there is a multitude of peptides with almost
identical mass; for example, K and Q, AD and W, or SV and W, see Sec. 8.6. Also, we should not
recalibrate on three peak pairs, if we have four degrees of freedom in our recalibration function.
Furthermore, the recalibration algorithm has to be fast, since recalibration must be performed for
every simulated spectrum that shows at least some similarity to the measured mass spectrum.

[TODO: REFORMULATE THE REST OF THE SECTION, MAKING IT EASIER TO READ!]
In the following, a linear mapping between sample spectrum peaks and reference masses is

constructed. This mapping can then be used to correct the peak masses in the measured spectrum.
Restricting ourselves to linear mappings allows for very fast methods for this task.

We formalize the calibration task as a linear one-dimensional point set matching problem: given
two sets of real values, i.e. one-dimensional point sets A,B ⊆R, find a linear function f :R→R such
that

∣∣E f
∣∣ is maximum, where E f is the edge set of a bipartite graph on A,B such that {a,b} ∈ E f

if and only if | f (a)−b| ≤ ε. Note that some a ∈ A can be mapped into ε-distance of several b ∈ B
and vice versa. In fact, in most instances, there is a degenerate optimum solution mapping all
points of A into ε-distance from one point of B. In our application such degenerated cases can be
avoided by restricting the search space: the measurement technique gives some absolute limits
for the maximum scale and translation values. Within that range of transformations, degenerated
solutions a rare.

In our application, A and B are the sets of mass values, and f is the recalibration polynomial of
degree one. We detect outliers by allowing only matches satisfying the ε-limitation. A reasonable
value for ε can be estimated depending on the measurement device and other conditions.

We next use a geometrical interpretation of the problem to find the second efficient algorithm
for mass spectra recalibration. In the Maximum Line-Pair Stabbing (MLS) problem, we are given
a set of N points in the plane, and want to find a pair of parallel lines within distance ε from each
other such that the number of input points that intersect (stab) the area between the two lines, is
maximized. In the following, we present an algorithm that solves MLSP in time O(N2 log N) and
space O(N).

How do we transform the problem of mass spectra recalibration to an instance of MLSP? Recall
that A,B denote the sets of mass values. We define a set of points in the plane S := {(a,b) :
a ∈ A,b ∈ B} and try to find a line-pair that stabs a maximum number of points in S. By this,
we construct a point set matching that allows many-to-many mappings of A to B. To exclude
degenerate cases, we assume that scale s ∈ [s0, s1] and translation t ∈ [t0, t1] are bounded by some
intervals. Then, we can restrict our set of points in the plane,

S := {
(a,b) : a ∈ A, b ∈ B, and b ∈ [s0a+ t0 −ε, s1a+ t1 +ε]

}
. (4.18)

Nonetheless, the solution will in general not define a one-to-one mapping between A and B: for
distinct a,a′ ∈ A and b,b′ ∈ B with

∣∣a−a′∣∣¿ ε and
∣∣b−b′∣∣¿ ε, the optimal line-pair may stab all

four points (a,b), (a,b′), (a′,b), and (a′,b′).
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1: function RECALIBRATE(set S = {(x1, y1), . . . , (xn, yn)} of mass pairs)
2: Let Q be a list of events
3: score∗ ←−∞
4: for i = 1, . . . ,n do . the first point/line
5: Empty Q

6: for j = 1, . . . ,n with j 6= i do . the second point/line
7: δx := xi − x j; sign := sign(δx)
8: if δx 6= 0 then
9: a := (yi − yj)/δx; append (a,sign) to Q

10: a′ := (yi +ε− yj)/δx; append (a′,−sign) to Q

11: end if
12: end for
13: Sort list Q with respect to first entry
14: score← 0
15: for all (a,sign) in the sorted list Q do . find the maximum
16: score← score+sign
17: if score> score∗ then
18: score∗ ← score; a∗ ← a; and b∗ ← xi ·a− yi
19: end if
20: end for
21: end for
22: If required, process vertical lines with infinite slope
23: Extract subset S′ ⊆ S of those (xi, yi) satisfying |a∗ · xi −b∗− yi| ≤ ε
24: Use Ordinary Least Squares to derive a,b from S′

25: return (a,b)
26: end function

Algorithm 4.1: Recalibrate a measured spectrum to a reference spectrum. Input is a set of mass
pairs belonging to peaks that might match. Parameter ε is the maximal mass error we accept
after recalibration. Line 22 is not needed for the recalibration problem, as recalibration slope a is
close to one and far from infinity. [TODO: CHECK THE ALGORITHM!]

See Algorithm 4.1 for a solution to the line pair stabbing problem. The algorithm is not very
complicated, and does not use any involved concepts from computer science. Notice that for the
general line pairs stabbing problem, we have to consider vertical lines in line 22; but this is not
necessary for the recalibration problem at hand, as a vertical line has infinite slope, whereas
the recalibration we are searching for, has slope close to one. But where does this algorithm
come from, and how does it work? Now, this is complicated, and brings us into the realm of
Computational Geometry; see de Berg et al. [64] for an excellent introduction to this topic.

Our solution is based on the duality transform of a set of points in the plane introduced by
Brown [41]. The dual of a point p = (px, py) in the plane is the line p∗ : y = pxx− py, while the
dual of a line q : y = qxx+ qy is the point q∗ = (qx,−qy). The vertical distance between a point p
and a line q equals the vertical distance between the line p∗ and the point q∗. Furthermore, the
dual transform maintains the above/below relationship between a point and a line. See e.g. [64,
Chapter 8.2] for more details.

We now describe our solution to the MLS Problem. We are given a distance ε and a set
S ⊆ R2 of points in the plane. In the following, the distance between two parallel lines is not
the Euclidean distance, but their vertical distance. Let us ignore vertical line pairs that can be
handled separately. Given two parallel lines q : y = qxx+ qy and q′ : y = qxx+ qy + ε then every
line between q and q′ must be parallel to q,q′. These lines, including q,q′, are mapped to the
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

Figure 4.2: On the geometric interpretation of the problem. Left: selecting the set S of point pairs
from the two spectra that are reasonable for recalibration. Right: Finding two parallel
lines with fixed distance ε stabbing a maximum number of points.

Figure 4.3: Maximum line-pair stabbing algorithm: finding the interval where q∗ can contribute
to a segment starting in p∗.

line segment px × [−py −ε,−py] in the dual. Finding a line-pair that stabs a maximum number
of points in S, is equivalent to finding a line segment x× [−y− ε,−y] such that the number of
intersected lines in S′ is maximum, over all choices of x and y. Note that the optimal line segment
intersects the lines in S∗ in some order, so there exists a first and a last line stabbed.

We iterate over all lines p∗ ∈ S∗, and assume that p∗ is the first line stabbed. Note that one
of the lines has to be stabbed first and, since we are iterating over all lines, this is no restriction.
Every other line q∗ : y= qxx−qy partitions p∗ into a constant number of ranges as follows: only in
the range between the intersection of p∗ and q∗, and the intersection of q∗ with the line parallel
to p∗ and at distance ε, can this line contribute to a line segment that stabs p∗ first (see Fig. 4.3).
Projection to the x-axis leads to the interval bounded by points x = (py − qy)/(px − qx) and x′ =
(py − qy + ε)/(px − qx). Attaching +1 or −1 to the endpoints depending on whether the endpoint
is start or end of a range and then sorting these endpoints, one can scan through the endpoints
keeping a counter how many ranges are active. The optimal choice for (x,−y) corresponds to
the overall largest count, and the line-pair l : py = xpx + y together with the parallel line l′ at ε
distance stabs a maximum number of points in S.

The above algorithm solves the point set matching problem in time O(|S|2 log |S|) and, for
unrestricted scale and translation, in time O

(
(mn)2(logm+ logn)

)
.
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4.12 Historical notes and further reading

Even before the dot product and as early as 1971, other scores were used in the metabolomics
community for database searching, see Stein and Scott [281]. There exist several approaches
from the metabolomics community that try to improve on the dot product for spectral library
searching [160, 211, 218, 281], usually by weighting masses and

Similarly, there exist numerous approaches for searching in peptide databases, some of which
have becomes commercial; I mention only few: MOWSE (MOlecular Weight SEarch) by Pappin
et al. [215] and was targeted at the identification of proteins using peptide mass fingerprints.
Its successor MASCOT by Perkins et al. [220] is no commercial; it tries to convert the MOWSE
score into a p-value. SEQUEST by Eng et al. [85] is one of the first tools for searching peptide
fragmentation spectra in databases, and is no commercial. In early versions, the software
apparently matched the barcode reference spectrum to the measured spectrum by simulating
a “raw” spectrum (without peak picking) for the reference, then computing a scalar product with
the raw measured spectrum. This is clearly much slower than the approach from Sec. 4.2 but,
as noted, has other disadvantages such as scoring the baseline etc. In fact, SEQUEST computed
Fourier transforms of the spectra to score different mass shifts. The discussion in Sec. 4.2) may be
the explanation why SEQUEST performed very good in practice. X!Tandem by Craig and Beavis
[55] is an open source tool available from Global Proteome Machine Organization.

Back in 1992, Owens [213] suggested to use correlation of mass spectra as a score. Probability
product kernels were introduced by Jebara, Kondor, and Howard [138]. In fact, these kernels are
much more general than what I have presented here; the complete Sec. 4.2 would fit into a few
lines of [138]. But for the purpose of comparing and scoring mass spectra, the kernel as presented
in Sec. 4.2 is sufficient.

An additive scoring for rewarding observed peaks and penalizing unobserved peaks was possibly
first suggested by Dančík et al. [58], together with a stochastic justification of this principle
(“premium for present ions, penalty for missing ions”). In fact, I have the feeling that the
more elaborate scorings were developed as part of de novo analysis of data, such as peptide
de novo sequencing. This may be explained by the fact that de novo sequencing is many
orders of magnitude harder than database searching: Simply compare the number of considered
candidates. To this end, an elaborate score was simply not needed in database searching.

Using absolute peak intensity differences for scoring was proposed in [222], using relative peak
intensities in [33]. The combined model was introduced by Dührkop et al. [76]. In all three cases,
the authors analyzed isotope patterns.

Using peak intensities to score the peaks in a spectrum, as explained in Sec. 4.6, has been pro-
posed many times in the literature [187], but this is usually done without giving any (stochastic)
justification. Goldberg et al. [107] suggested to use exp(a0+a1x+a2x2) to model intensities of noise
peaks; but it appears that their estimated a0 is very close to zero (see Fig. 4, right in [107]), so
that we are back to an exponential distribution. Also, their model has the unappealing property
that noise peaks with negative intensity have probabilities larger than zero. The fact that the
distribution is truncated for low intensities, can be attributed to thresholding in the peak picking
algorithm and has not “deeper” meaning.

Zubarev and Mann [314] propose to use known peptides as internal calibrants, until the
distribution of mass errors is normally distributed. The paper also contains some details on mass
accuracy needed to identify peptides an proteins from their monoisotopic mass; we will come back
to this in Sec. 8.9.

Simulated mass spectra usually have no intensities or “rule-of-thumb” intensities. An exception
is again tandem MS of peptides, where millions of training examples are available and spectra can
be predicted by machine learning. This was first proposed by Zhou, Zeng, Chi, Luo, Liu, Zhan, He,
and Zhang [313] in 2017, see also Gessulat et al. [104] and Tiwary et al. [291]. Funnily enough, we
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also worked on predicting peak intensities of peptides back in 2008, see Timm, Scherbart, Böcker,
Kohlbacher, and Nattkemper [290].

4.13 Exercises

4.1 You want to compare two unit mass spectra, but only one of them has peak intensities. What
is the dot product actually measuring?

4.2 Show how to combine to sorted lists of size m and n into one in time O(m+n).

4.3 Write an algorithm to simulate the tandem MS spectrum of a peptide if only b and y ions
are present, and ions have a single proton.

4.4 Describe an algorithm that computes the probability product kernel of two ideal spectra
mi,hi and m′

j,h
′
j in “basically linear” time, assuming that the peak lists are sorted by mass.

4.5?Give a formal description of what “basically linear” means for the previous algorithm.

4.6 Given two peak lists M = {150,175,220,310,470} and M ′ = {150,190,250,315,485}. Calcu-
late the peak counting score for ε= 5 and for ε= 15.

4.7 Let score(i, j) = 2 − 1
5

∣∣∣mi −m′
j

∣∣∣ and score(i,ε) = score(ε, j) = −1. Calculate an optimal
alignment of these two peak lists.

4.8 Why is it reasonable, from a mathematical perspective, to assume that for 10 ppm mass
accuracy, the difference between two peak masses has at most 14 ppm? Hint: if a random
variable X is normally distributed, then −X is so, too. Under what condition is it reasonable,
from a MS perspective, to assume that this mass difference is still 10 ppm or better?

4.9 Write an algorithm to simulate the tandem MS spectrum of a peptide as thoroughly as
possible.

4.10 How much does the length of a steel tube change if the temperature raises by one degree
Celsius? How much does that change the mass we determine from the formula m = F

l2 · t2 for
a flight tube of length l?

4.11 The classification above is missing the many-one matching, where one peak in the reference
may be matched against multiple peaks in the query, but each peak in the query is matched
against at most one peak in the reference. Explain why.

4.12FBuild a scoring or ranking for peptide tandem mass spectra which is not simply comparing
peaks in the query and the reference.
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“The grand assertion is that you must see the world through probability and that
probability is the only guide you need.” (Dennis Lindley)

“What do you think of my new poem?” — “I once read that given infinite time,
a thousand monkeys with typewriters would eventually write the entire works of
Shakespeare.” — “But what about MY poem?” — “Three monkeys, ten minutes.”
(Dilbert & Dogbert)

THE content of the following two chapters is a little different from the rest of this textbook, as it
deals with statistics and stochastic of mass spectrometry analysis but not combinatorics and

algorithmics. This overview will be short and vastly incomplete: In fact, a complete textbook can
be written about the statistical analysis of peptide and protein MS, which has many similarities
but also some unique features compared to transcriptomics. The reasons to include these chapters
are twofold: First, I want to argue that what I present here is the minimum information you need
to do sensible work in algorithmic mass spectrometry. Second, computational MS only make sense
in light of statistics: Computational MS is about “real data” and, as such, full of inaccuracies,
errors, misclassifications, and spurious signals. Usually, the best way to deal with these problems
is statistics. In Chapter 4, I have indicated how to modify some optimization algorithm so that
results have “statistical meaning”. Finally, the ideas described in the following two chapters can
be reused in many other areas of computational mass spectrometry and science.

In the previous chapter, we have seen how to match a measured spectrum to a reference
spectrum. Again, we will focus on the task of identifying a peptide using MS/MS data, but
solely for the sake of readability: The methods presented here can in principle be used for other
applications, as long as the requirements are met. We search our measured spectrum against a
database of reference peptide sequences, and we accept the reference spectrum and, hence, the
reference peptide with the highest score as being the correct answer. We call the pair “measured
spectrum” plus “best candidate peptide sequence” a hit in the database. Hits are often referred to
as peptide-spectrum matches (PSM), but I do not see the necessity for yet another acronym (YAA).

Unfortunately, the best-scoring peptide is not necessarily the correct answer. This can be due
to two different phenomena: Firstly, the correct answer is part of the database we search in, but
a different peptide received a better score; compare to the Charlie Chaplin example in Chapter 6.
Second, the correct answer is not part of the database: There are many potential causes for
this, such as an incomplete protein database for the organism we are looking at, protein from a
different organism in the sample, impurities through sample preparation such as Keratin (the key
structural material making up the outer layer of human skin), data from a cyclic (non-ribosomal)
peptide, data from a metabolite or glycan, or tandem mass spectra that do not contain any real
biomolecules but only “noise”. (I was very surprised how often MS instruments record these
“empty spectra”, where you cannot spot any peak at the precursor mass in the MS1.) For such
spectra, our method will also find a best hit in the database. In both cases, we will call such hits
spurious or bogus.

How can we differentiate between true hits and bogus hits? Is a score of 120 a good score and,
hence, a true hit? We can compare it to other scores but maybe, all of our hits are bogus, and
all scores are bad scores. The most reasonable way to deal with this dilemma, is to estimate the
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statistical significance of a hit. We will consider two concepts to estimate significance, namely
p-values and E-values (this chapter); and False Discovery Rates and q-values (next chapter).

5.1 p-values and E-values

We are given a single query tandem mass spectrum; we have selected the best candidate (reference
spectrum) from a list of N candidates according to maximum score. The principle underlying p-
value computation is that the score T of the hit (score between query and best-scoring candidate)
also allows us to differentiate between true and bogus hits. We define the p-value of a hit as the
probability that we observe a score of at least T for a random reference spectrum. To this end, our
null model is that the reference spectrum is random; our null hypothesis is that the observed or a
better score is reached by chance. If the p-value is very small, we can reject the null hypothesis,
and infer that the hit is “significant”. Nothing else must be interpreted into this test; for example,
if our hit has p-value p then 1− p is not the probability that the hit is correct, see Sec. 6.6 below.
Note that a small p-value means high significance, and a large p-value means low significance.

Clearly, we need a statistical model (null model) of random reference spectra that we want to
consider: Formally, let Ω be the sample space, M ∈Ω be the (elementary) events, and p(M ) be the
probability of reference spectrum M . Then, the p-value is the sum of p(M ) where the score of the
query spectrum vs. reference spectrum M is at least T. It is understood that p-value estimates
depend on the chosen null model; it should also be understood that, by choosing a bad null model,
we can come up with p-value estimates which are useless. See below for two examples, one bad
and one reasonable null model.

Next, the E-value is the expected number of events that pass the score threshold T if we repeat
this experiment N times; we do so as we have N candidates in our candidate list, and any one
of them may pass the score threshold by chance. It is easy to see that the E-value is N · p for
p-value p, compare to coin flipping and the binomial distribution.

In theory, there exists three approaches to assign p-value to a hit with score T: Here, we
have considered randomizing the targets, that is, the reference spectra or peptide sequences.
But instead, we can also randomize the query, that is, the sample mass spectra; third, we can
randomize both the query and the targets. I am not aware that someone has used this alternative
routes in shotgun proteomics, as it is non-trivial to randomize query mass spectra. If you are not
searching peptides but other macromolecules such as glycans, the situation is similar to shotgun
proteomics: It is rather straightforward how to randomize the candidates, and how to transform a
candidate structure into a reference spectrum. In metabolomics, though, it is highly non-trivial to
randomize metabolite structures and to transform them into mass spectra; but we can randomize
query spectra [259]. For comparison, in local sequence alignment, randomizing both query and
targets is the “industry standard” Karlin-Altschul statistics [148] first used in BLAST [3], see also
below. See Sec. 5.6 for issues of the three approaches.

What is a reasonable background model, that is, a reasonable set Ω of reference spectra to
choose from? In “the old days” of computational mass spectrometry, some people proposed to
use mass spectra with random peak masses as Ω: Simply draw peak masses at random, for
example, uniformly distributed in the interval [0, M] where M is the precursor mass of the
measured spectrum. Here, the number of peaks may be chosen as the average number of peaks
of a reference spectra database. Unfortunately, this is a very bad background model. Consider
shotgun proteomics: Due to the experimental setup, most of the measured mass spectra will
actually correspond to some peptide, even though the peptide sequence might not be recorded in
the database. In Chapter 2 we have seen that peptide fragmentation spectra have a particular
structure, which is clearly not the case if we generate spectra using random peaks. Even if our
database hit is bogus, it might share some peaks with the measured spectrum, possibly because
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a few amino acids agree with the measured peptide we are searching for; see also Sec. 6.4. In
contrast, randomizing peak masses will make it unlikely to find a single matching peak pair. In
total, we will grossly overestimate the significance, that is, compute a p-value which is much
too small. This stays true if peak masses are drawn with respect to some empirical distribution
computed from, say, a reference database: Peak masses in a peptide fragmentation spectrum are
highly correlated, and independently drawing peaks neglects these dependencies.

But since we search in a database of peptide sequences and simulate the reference spectra
anyways, it is clearly a smarter choice to limit ourselves to reference spectra that correspond to
some peptide sequence. We have to go even further: We only want to consider those peptides that
have the correct precursor mass, as this is the filter we use for our reference database search, too.
To this end, the sample space Ω contains all peptide strings with the correct precursor mass. We
may choose different probabilities p(s) for different random peptides s ∈Ω: For example, we can
take into account relative abundances of amino acids in our database so that peptides which use
many “uncommon” amino acids are considered with smaller probability.

5.2 A naïve approach for estimating p-values

Assume that our measured spectrum M ′ (the data) was scored highest against reference spectrum
M∗ from the database, and reached score T (the true score). To randomize the reference, we have
to sample a large number of random reference objects, score each random object against the data,
and count the number of times this score is larger or equal to the true score. In detail, let Ω
be the space of reference spectra. Randomly choose a reference spectrum M ∈ Ω according to
probability p(M ); we say that we “sample” from Ω. Score the reference spectrum against the
measured spectrum M ′, computing the score score(M ,M ′). Repeat this “a reasonable number
of times”. Count the number of random reference spectra M with score(M ,M ′) ≥ T. Divide by
the number of repetitions, to compute an empirical p-value. In fact, a better p-value estimate is
(k+1)/(n+1) if there are k random spectra above the threshold, and we are considering a total of
n random spectra [60].1

The problem of the naïve approach stems from the fact that we have to repeat “a reasonable
number of times”. We are usually interested in very small p-values; for most applications, there is
a huge difference between p-value 10−5 and 10−10. This is because we want to compute E-values
or have to correct for multiple testing (Sec. 5.5); for N = 10000 an E-value of 10−4 means that we
expect one random reference spectrum will pass the score T just by chance. This is not convincing
really that the hit is correct, is it? But to reach a non-zero p-value of 10−10 we have to repeat at
least 10000000000 times. This will result in prohibitive running times: Even if we could score
109 random spectra against the sample spectrum per second, calculating a single p-value would
still require ten seconds; and this now has to be done for every hit.

But let us ignore this problem for a moment, and assume that we have enough time to do the
sampling. Then, the question is: What isΩ, and how do we sample from it? We have argued above
that for shotgun proteomics, a reasonable choice for the sample space Ω is the set of all strings
over Σ with mass M. For the moment, let us assume we have no further background information,
and all strings s ∈Ω have the same probability p(s)= 1/ |Ω|. The algorithmic question is: How can
we sample uniformly from Ω? The important word here is “uniformly”: That is, each string with
mass M is drawn with the same probability. A naïve approach that just adds characters to the
string and restarts every time we exceed mass M, will indeed sample uniformly but take many

1Using (k+1)/(n+1) instead of k/n is again some kind of statistical magic; unless you can explain off the cuff why we
have to divide by n−1 when we compute the sample variance (Bessel’s correction), it might be too much detail. I
have to tell you that I cannot: This is about unbiased estimators, but that is all I know.
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5 Significance: p-values and E-values

tries to generate a single string. A less naïve approach that checks whether a decomposition for
mass m exists (compare to Chapter 3), unfortunately violates uniformity (Exercise 5.1).

Luckily, we have already solved this problem, possibly without noticing it: Recall from (3.3) that
the number of strings C′[m] of mass m can be computed by the recurrence C′[m]=∑

a∈ΣC′[m−a],
where C′[m]= 0 for all m < 0. Remember that a ∈Σ denotes both the character and its mass. Now,
we generate the string from right to left, starting with the empty string s ← ε and m ← M. We
randomly draw a letter a ∈ Σ where each a has probability C′[m− a]/C′[m]; it is clear from the
recurrence that these values add up to one. Character a is appended to s on the left side, s ← as.
We repeat until m = 0. It straightforward to check that this algorithm uniformly draws a string
with mass M, as each string is chosen with probability 1/C′[M].

I suggested to generate the string s from right to left, because this is what backtracing through
the Dynamic Programming table would do; and this is also what we do here, only in a probabilistic
fashion. In application, it does not matter whether you generate the string from right to left or
from left to right, because s = s1 . . . sl and the inverse string s−1 = sl . . . s1 have the same mass. To
this end, you can also go from left to right, which is usually easier to write as code.

You might argue that you do not want to sample uniformly from Ω, and that certain peptide
strings should be sampled with higher or lower probability. But now that we can sample uniformly,
we can also incorporate such deviations. For example, we can easily incorporate that amino acids
are not chosen uniformly but instead have individual probabilities πa for a ∈Σ: Let S be an infinite
string where each character a has probability πa to be appended,

∑
aπa = 1. The probability p[m]

that a prefix of S has mass m, can be computed as

p[m]= ∑
a∈Σ

πa · p[m−a] (5.1)

where p[0] = 1 and p[m] = 0 for m < 0. To sample a string s of mass M, we again start with
an empty string and iteratively add characters, where character a is selected with probability
πa · p[m−a]/p[m].

5.3 Parametric distributions

Let us take a short detour: The first time bioinformatics students get in contact with p-values and
E-values, is probably in the context of BLAST (Basic Local Alignment Search Tool). Here, scientist
faced the same problem: Computing a local alignment between two sequences, what does a score
of T “mean”? Karlin and Altschul showed that scores of two random sequences can be modeled
via a random walk, and proved that scores of the optimal alignment follow an extreme value
(Gumbel) distribution. To this end, we can calculate the p-value for score T using the cumulative
distribution function of the extreme value distribution,

P(X ≥ T)= 1−exp
(
−K ·mn · e−λT

)
where X is a random variable for the optimal alignment score of two random sequences. Esti-
mating exact parameters K and λ of the distribution is part of the proof; these correspond to
parameters µ = ln(Kmn)/λ and β = 1/λ for the standard form of the extreme value distribution
with cumulative distribution function

exp
(
−e−(x−µ)/β

)
.

The extreme value distribution is one example of a parametric distribution; other examples are
the normal distribution, the exponential distribution, the Gamma distribution, the log-normal
distribution, or the Pareto distribution. Being able to prove that scores follow a particular
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Distribution parameters mean variance skewness
normal µ ∈R, σ2 > 0 µ σ2 0
exponential λ> 0 1/λ 1/λ2 2
Gamma k > 0, θ > 0 kθ kθ2 2/

p
k

Gumbel µ ∈R, β> 0 µ+0.577216β 1.644934β2 −1.139547

Table 5.1: First three central moments of some parametric distributions. The Gumbel distribution
is more precisely known as “Generalized Extreme Value distribution Type-I”, and is
often referred to as “extreme value distribution” in bioinformatics.

distribution, is undoubtedly the best we can come up with; clearly, our proof is then valid only
for one particular score from Chapter 4. Usually, this is not possible for us. But even for Karlin-
Altschul statistics, proofs only hold for local sequence alignments without insertions and deletions.
It was “empirically established” that the score distribution was sufficiently close to an extreme
value distribution for local sequence alignments with InDels, using extensive simulations with
many millions of queries and target databases. The parameters of the extreme value distribution
were also determined by these simulations, for several combinations of score matrix and affine
gap penalties.

How can you “empirically establish” that scores follow a particular parametric distribution? To
this end, we use 100 (better, 1000) query spectra; in the following, we assume that one query
is fixed. We then plot the distribution of scores the query reaches against 1000 (better 100 000)
random candidates. This is basically the same procedure as for the naïve estimation of p-values
in Sec. 5.2, except that we record all scores, and not only how many scores passed the threshold.
From a statistical viewpoint, the score is a random variable X ; the 1000 to 100 000 scores of the
fixed query against random candidates are a sample for this random variable. You can visualize
the distribution of scores using a bar plot or — usually more instructive — a kernel density:
Kernel density estimation is a non-parametric estimation of the probability density function of
a random variable. We then hopefully see that these empirical distributions look similar to the
same parametric distribution, for each query.

In reality, a score distribution may look like a normal distribution for small scores, and like a
log-normal distribution for high scores. What now? The answer is obvious and somewhat brutal:
Nobody cares for high p-values. If you estimate a p-value of 0.6 when in truth, it should have
been 0.9 — well, I honestly could not care less. Both p-values tell us that the score is not at all
significant. What we want to avoid is that the p-value estimate is 0.1 for a true p-value of 10−10.
In theory, you could and should exclusively look at the right end (say, top 1%) of the empirical
score distributions, and ignore what is going on for the other 99%. In practice, doing so will make
it hard to identify “the correct” parametric distribution. But if a parametric distribution fits the
complete empirical score distribution for some instances, whereas we observe a good fit for the top
30% of scores for other instances, then this is as good as it gets. Unfortunately, this can complicate
parameter estimation for the parametric distribution, see below.

Let us assume ideal conditions: For each query, the resulting kernel density does in fact look
like, say, the probability density function of a Gamma distribution. So, this part is fixed; whatever
query we are given, we assume that scores of candidates follow again a Gamma distribution.
But obviously, for different queries, this is not the same Gamma distribution: We observe that
mean, variance and skewness are different, for each query. How can we adapt the parametric
distribution to the query spectrum?

Clearly, what we have to do is to choose appropriate parameters of the parametric distribution.
Each parametric distribution comes with its own parameters, see Table 5.1. An instructive way to
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choose the parameters, is via the central moments: For each parametric distribution, we know the
central moments such as mean, variance and skewness, see again Table 5.1. Central moments
can be infinite for certain parametric distributions: For example, the Pareto distribution with
parameters xm > 0, α> 0 has mean (αxm)/(α−1) for α> 1 but mean ∞ for α≤ 1; similarly, it has
variance ∞ for α≤ 2 and skewness ∞ for α≤ 3.

On the other hand, central moments can be estimated from the data for our random variable X :
Let x1, . . . , xn be the sample, that is, the scores of a query spectrum versus n random targets.
Computing the sample scores is again the same procedure as for the naïve estimation of p-values
in Sec. 5.2, and we again record all scores. But this time, it is sufficient that we sample, say
n = 100 or even fewer random candidates! It is well-known that unbiased estimators x for sample
mean and S2 for sample variance are

x = 1
n

n∑
i=1

xi and S2 = 1
n−1

n∑
i=1

(xi − x)2 .

Higher moments such as skewness can be estimated in a similar fashion. Now, we can determine
the parameters of the parametric distribution using the central moments of the sample (that is,
the observed scores), using the known central moments of parametric distributions from Table 5.1.
For example, consider Gamma distribution: We may choose parameters k,θ as k = x2/S2 and
θ = S2/ x, then µ= kθ = x and σ2 = kθ2 = S2 as desired.

Using estimated moments to derive the parameters is an easy-to-follow argumentation but
not advisable in practice. Three issues should be immediately clear: Firstly, for the Gamma
distribution, how can we be sure that value S2/ x is positive as it is required for this distribution?
Second, we have implicitly chosen 2/

p
k = 2/

√
x2/S2 as the skewness of the Gamma distribution,

completely ignoring the skewness of the actual sample. Third, we learned that for certain
parametric distributions, some central moments are not even finite. But the most important point
is that there is no statistical justification why we should choose the parameters of the distribution
in this way!

Instead, you should use Maximum Likelihood to estimate the parameters of the distribution.
This is easy for us because luckily, someone smarter than me has already established Maximum
Likelihood estimators for pretty much any parametric distribution you can think of; you may
look them up in some statistics textbook or in Wikipedia. For example, the Maximum Likelihood
estimator (x̂m, α̂) for the parameters of the Pareto distribution is

x̂m = min
i=1,...,n

xi and α̂= n∑n
i=1 ln(xi/x̂m)

where x1, . . . , xn are the samples (observed scores). For the normal distribution, we estimate
parameters (µ̂, σ̂2) as

µ̂= x = 1
n

n∑
i=1

xi and σ̂2 = 1
n

n∑
i=1

(xi − x)2 .

Note that the Maximum Likelihood estimator for sample variance, σ̂2, is not Bessel-corrected.
Unfortunately, estimating the parameters in this way does not necessarily work in case only

high scores follow the assumed parametric distribution. Even more unfortunate is the fact that
there are no estimators which, out-of-the-box, ignore low scores and only use high scores to fit the
distribution. I cannot offer an easy solution to this dilemma; in case you do, please tell me.

What did we gain replacing the naïve method of p-value estimation by the detour via a
parametric distribution? On the one hand, we only have to generate a relatively small number of
score samples, such as n = 100, for any given query. This is usually enough to reach high-quality
estimates for mean and variance, but also to estimate the parameters of the distribution. On the
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other hand, we can now estimate p-values via the known cumulative distribution function of the
parametric distribution: The cumulative distribution function at x is the probability that a real-
valued random variable will take a value at most x. Hence, the p-value of x is simply one minus
the cumulative distribution function at x. The cumulative distribution function of a parametric
distribution usually has some simple closed form: For example, assuming that scores follow a
Pareto distribution with parameters xm, α, then the cumulative distribution function is 1−(xm/x)α,
and the p-value of score x is simply (xm/x)α. (Recall that the most prominent exception is the
normal distribution, as no closed form for the definite integral of the probability density function is
known; in practice, we can compute the p-value using the complementary error function provided
by numerical libraries, see Sec. 4.5.) Finally, estimated p-values can get arbitrary small when
the score of the target candidate x gets large; in particular, this is independent of the number of
samples we used to estimate parameters.

Sometimes, people report z-scores instead of p-values. This is simply the number of standard
deviations some value is above or below the sample mean, and can be estimated as z = (x− x̄)/S
where x̄ is the mean of the sample x1, . . . , xn, and S is its standard deviation. Reporting z-scores
means that we are agnostic of the underlying distribution. Unfortunately, when this is done in
practice, some readers (and maybe even writers) will implicitly assume that values are normally
distributed; in this case, a z-score of +5 is highly significant, not to mention +7. But this is a false
conclusion: Values may also follow a Pareto or log-normal distribution, and for these distributions,
being seven standard deviations above the mean is not that surprising, see Exercise 5.4. See also
Sec. 5.6 below.

5.4 Exact computations using dynamic programming

We now turn to a method for exact computation of p-values. This method is called MS-GF, where
GF stands for “generating functions”. Generating functions allow us to do involved mathematical
tricks such as multiplication, division, or taking the derivative of the functions, which usually are
infinite series. None of this is actually required here, so we will use a much simpler mathematical
formalism based on random variables and the convolution of distributions. Computations from
this section will be reused in Chapter 7, so it is worth reading this section even if you are not
interested in the application.

Assume that you are given an ideal die. You will model this stochastically using a discrete
random variable X : Ω → {1, . . . ,6} where Ω denotes the sample space (everything that might
happen). The probability that a particular value x ∈ {1, . . . ,6} is reached, is P(X = x) = 1

6 , and
zero everywhere else. Assume that we have a second die with random variable Y , and we want
to model the sum of these two dice. One can easily see that the sum of the dice, X +Y , has
distribution

P(X +Y = x)= ∑
y=1,...,6

P(X = x− y) ·P(Y = y). (5.2)

This can be generalized beyond dice: For two random variables X ,Y :Ω→N we have

P(X +Y = x)= ∑
y=0,...,x

P(X = x− y) ·P(Y = y). (5.3)

and if both random variables have finite support (that is, only a finite set of numbers has
probability strictly greater than zero) then this is actually a finite sum.

It is now simple to actually compute these probabilities for X +Y : Let PX [0. . . xmax] be the
array with PX [x] = P(X = x) and

∑
x=0,...,xmax PX [x] = 1, and PY [0. . . ymax] analogously. Then, we

can compute PY+X [0. . . xmax + ymax] as

PY+X [x]← ∑
x=0,...,ymax

PX [x− y] ·PY [y] (5.4)
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where we assume PX [x]= 0 for x < 0 and x > xmax.
This is all the mathematics that we need in this section. We again over-simplify our problem

slightly, to improve readability. To this end, assume that all masses are integer, that our peptide
only generate prefix masses, and that we use the peak counting score. Let the peak scoring
function f (m) indicate whether a (prefix) peak is present ( f (m) = 1) or absent ( f (m) = 0) in the
query spectrum at mass m: The score of a string s is simply∑

s′ is prefix of s
f
(
µ(s′)

)
.

This score is not limited to strings of mass M; in particular, we can compute it for prefixes of such
strings.

Recall recurrence (5.1) from Sec. 5.2, which allows us to sample strings with mass M where
character s is drawn with probability πa. Also recall that we defined the p[m] using a random
string of infinite length. We define P[m, i] as the probability that a prefix s with mass m of the
random infinite string, explains exactly i peaks, f (s) = i. We can compute the P[m, i] using the
recurrence

P[m, i]= ∑
a∈Σ

πaP
[
m−a, i− f (m)

]
(5.5)

what is relatively easy to see if you have understood recurrence (5.1). (Recall that a is both the
character and its mass.) In particular,

∑∞
i=0 P[m, i] = p[m] for p[m] defined there: Every prefix

has to generate some score. Clearly, we do not have to consider an infinite number of scores; in
fact, we have to consider only i = 0, . . . ,T −1 where T is the (peak counting) score of the database
search hit. Now, the probability that a prefix of the random string with mass M has score at least
T, is 1−∑T−1

i=0 P[i, M]. But we condition our calculations by considering only the those prefixes
that have exactly this mass; to this end,

p-value= 1
p[M]

·
(
1−∑T−1

i=0 P[i, M]
)
. (5.6)

is the p-value we are searching for: The probability that a random string of mass M will have
score at least T.

Our first assumption that masses are integer is not restrictive in application, see the discussion
in Chapter 3 and Sec. 8.8 below, as well as many other places in this textbook. Our third
assumption about using the peak counting score is slightly harder to get around: Clearly, we
want to score peaks differently, depending on peak intensity and mass deviation. To this end,
there is some score f ′(m) ∈R that a prefix with mass m will add to the total score of the candidate.
Here, we have to discretize scores as f (m) ∈ {0,1, . . . , fmax}, as we have done it for masses. Again,
we can limit computations in the recurrence to scores that are at most the score of the database
hit we are evaluating.

But what about the fact that we are only considering prefix masses? It is straightforward that
we can take into account other ions besides the b ion in the prefix mass score f (m). But we cannot
avoid the peak double counting issue: If a string has a prefix and a suffix of mass m, then the
corresponding peaks in the spectrum will be counted twice, as both f (m) and f (M − m) will be
part of the sum that scores the string. We have spend all of Chapter 2 on how to avoid this issue;
and now we claim that it is not of particular importance?

Turns out that we can indeed ignore the double counting issue. (See Sec. 2.10 for a heuristic
approach on how to avoid double counting for peptide de novo sequencing.) Here, we are searching
in a peptide database, and we cannot freely choose a string that scores the most intense peaks in
the experimental spectrum (the prefix masses m with close-to-maximum f (m)) twice. To this end,
it is unlikely that the database hit is scoring any relevant peaks twice. But what about recurrence
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Figure 5.1: Score distributions for two experimental tandem mass spectra against 1000 random
peptide sequences each (shuffled decoys, see Sec. 6.4 and Exercise 5.8). We observe
that all scores of the first spectrum (green) are smaller than all scores of the second
spectrum (blue). Choosing a score threshold of 1, we will regard all random hits of
the first spectrum as “not significant” and all random hits of the second spectrum
as “significant”. Figure redrawn from Keich and Noble [149], spectra from a yeast
dataset.

(5.5) and Eq. (5.6)? There, we are considering all strings with precursor mass M; and this includes
all strings that do contain prefix and suffix of mass m for high-scoring f (m). The answer is the
same: Such strings are unlikely and, hence, scoring them “slightly awkward” will not change our
p-value computations substantially.

In the title of this section, we have promised an exact method, and that’s what it is — as
long as our restricting assumptions are satisfied. In practice, you can score the peptides for
database searching with a continuous scoring where neither masses nor peak scores have been
discretized, and you might also avoid peak double counting. But you can nevertheless use the
above calculations — where masses and scores were discretized — to get a highly accurate
“approximation” (in the informal sense, see Sec. 14.6) of the true p-value.

5.5 Calibrated scores and p-value correction

Remember the question we started off with: Is a score of 120 a good score and, hence, is the
corresponding hit correct? We were unable to decide this based on the score, as it depends on the
query spectrum and the precursor mass: In the extreme case, one query spectrum may receive
a higher score against any candidate, than another query spectrum against any candidate! See
Fig. 5.1 for a nasty example. To this end, we introduced p-values and E-values.

It turns out that this is exactly what we will do for False Discovery Estimation in the next
chapter: There, we will order hits by score, assuming that the high-scoring hits are more likely
correct than the low-scoring ones. But that means that we can indeed “trust” the score in the sense
that a score of 120 indeed means a good hit, under all circumstances! To this end, it makes much
more sense to order hits by p-value or E-value, to decide whether they are correct or incorrect.

But rethinking p-values, we see that they are not apt for this purpose, either: It makes a
huge difference if a hit (the highest-scoring candidate) was chosen from a set of 10 or 10000
candidates! Throwing three dice, a roll of 18 is surprising; rolling them 10000 times and reporting
the maximum, we would be surprised if the maximum is less than 18. Hence, we must not sort by
p-value. In contrast, E-values have been corrected for “multiple testing”; hence, we can compare
E-values from different queries, and rank queries according to E-value. We call this a calibrated
score [149].
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Luckily, the False Discovery Rate estimation procedure described in Sec. 6.3 is very robust
against the use of uncalibrated scores, and estimates are still of high quality if we use our
everyday score such as the dot product. Nevertheless, it is somewhat upsetting to use the hit
score to decide if a hit is correct, when we already know that the score is not apt for this purpose.
It turns out that even for the robust method from Sec. 6.3, the number of hits at a given False
Discovery Rate increases, see the next chapter for details. You can decide for yourself.

It must be understood that a score being calibrated is not a yes/no question; rather, there
are numerous shades of gray on how good a score is calibrated between different queries and
corresponding hits.

So, the E-value can serve as a calibrated score; but it is not a probability, and can take values
beyond 1. When we want to further work with probabilities, for one reason or another, then we
rather want to correct the p-value for the multiple testing (taking the maximum score over N
candidates).

We can correct the p-value for multiple testing as follows: The p-value that the hit (the best-
scoring candidate) reaches score at least T is 1 − (1 − p)N if there are N candidates and p
is the p-value of the highest-scoring pair “query plus candidate” for score T. The formula is
easy to understand: Not a single candidate must have reached the score threshold by chance.
Unfortunately, if you use this formula directly, you will experience some surprises, see Sec. 14.3:
The formula is numerically unstable. Luckily, any reasonable math library contains a function
that computes f (x) := log(1+ x) with high precision when |x| is small; similarly, there exists a
designated function to compute g(x) := exp(x)−1 for |x| small. With these functions, you can now
compute

1− (1− p)N = 1−exp
(
N log(1− p)

)=−g
(
N · f (−p)

)
. (5.7)

Function names for f , g are, for example, “log1p” and “expm1”.
When N · p ¿ 1 is much smaller than one, then

1− (1− p)N = 1−
N∑

i=0

( i
N

)
(−p)i1N−i = 1−1+N p− (N

2
)
p2 + (N

3
)
p3 ±·· · ≈ N · p,

because N · p ¿ 1 implies

N · p À (N
2
)
p2 = N(N −1)/2 · p2 À (N

3
)
p3 = N(N −1)(N −2)/6 · p3 À . . . .

So, N · p can serve as an approximation for the corrected p-value. But you should only use this
approximation when you are sure that N · p is much smaller than one: All you gain from this
approximation is that you can compute it without executing f , g in (5.7).

5.6 Issues of p-value estimation

Unfortunately, there are several issues with p-value computation; some of them were mentioned
previously. We will discuss them here, so that you are warned when interpreting p-values. I
stress that any reasonable p-value computation is much preferred to not computing p-values; the
discussion below is rather meant to “keep you alert” and prevent that you trust p-values blindly.
There are too many papers where authors wrongly pray to the gods of p-values [136]. We first
concentrate on randomizing the targets, as done in shotgun proteomics, and cover randomizing of
the query later.

We noted above that (estimated) p-values depend on our null model; different null models will
result in different p-value estimates. In particular, a bad null model will result in “bad” p-values,
meaning that these p-values do not carry any useful information.
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5.6 Issues of p-value estimation

Using a parametric distribution for p-value estimation, we face the threat that the distribution
is not the correct choice for the dataset we want to analyze right now. Maybe, the chosen distribu-
tion was fine for the datasets we looked at during methods development; but how can we be sure
this still holds true for the current dataset? Only a formal proof that scores follow a particular
distribution, as for local sequence alignments and Karlin-Altschul statistics, can protect us from
unpleasant surprises. Visual inspection to choose the “correct” parametric distribution can easily
be misleading; choosing the wrong distribution can again have a devastating effect on our p-value
estimates. For example, if we use a short-tailed distribution (normal, exponential) when the true
distribution is heavy-tailed (Pareto, log-normal), we will substantially overestimate significance:
Our p-value estimates will be much (potentially, many orders of magnitude) smaller than the true
p-values, see Exercise 5.4.

Next, the true distribution may be bimodal, something not covered in the parametric models;
the second mode might be hard to spot because it is much smaller than the first, major mode.
Unfortunately, the second (tiny) mode of the score distribution might contribute more to the p-
value than the first (large) mode if the score we are considering is close to the second mode.
Ignoring the second mode will again result in inflated significance estimates, see Exercise 5.5.
You can easily make things worse by considering a third mode which is even smaller than the
first two, and so on. From my experience, I can say that multimodal score distributions are
rather the rule than the exception; see also Fig. 5.1. Unfortunately, not all queries will result in
a multimodal distribution. Note that exact estimation of p-values (Sec. 5.4) does not suffer from
the last two problems.

I noted that p-values must not be misinterpreted as “probabilities that a hit is incorrect”. But
p-values also cannot provide information about the “quality” of a spectrum: It is possible that
an identification from a low-quality spectrum reaches a small p-value, whereas an identification
from a high-quality spectrum may only reach a large p-values. This can happen independently
from the correctness of the hit. Assume we have a perfect copy of some reference spectrum as our
query; assume further that the hit reaches a very small p-value (say, 10−30). Now, add noise to the
query spectrum, but make sure that all added peaks cannot be explained by any peptide sequence.
For example, we may add peaks at mass m+0.25 Da for integer and reasonably small m. Such
peaks can only be explained by fragments that carry four charges, which is practically impossible
for all applications we consider in this textbook. For all scoring functions we have considered
in Chapter 4, this will change the score of any reference; but this change will usually be via a
monotonic functions, meaning that the order of scores is not changed. In particular, the target
hit score is ranked at the same position among the scores against random references. Hence, we
will estimate exactly the same p-value for the disturbed query spectrum as for the perfect match
(again, say 10−30); and this is still the case if the noise peaks are responsible for 99 % of the total
intensity in the query spectrum. Would you trust this identification, in particular at this level of
significance?

But wait there is more! What about the alternative approaches to assign p-values? Randomiz-
ing the query also comes with certain issues: Firstly, this approach has repeatedly been criticized
for ignoring the actual query in p-value estimation. For example, Karlin-Altschul statistics
will treat two queries TWTWTW and SSSSSS that reach the same hit score exactly the same,
because they also have the same length. This is despite the fact that, according to amino acid
frequencies, one peptide is very rare whereas the other is rather common. This is acceptable for
sequence comparison because we are using a scoring matrix, and treat amino acids differently
when computing the score.

But how can we generate a random query spectrum that somehow represents the peculiarities
of our query spectrum, given that our scores for comparing mass spectra are “agnostic” to the
peculiarities of the underlying biochemical question and experimental setup? What are the
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important characteristics of our query spectrum that must be mirrored in the random spectra
so that p-value estimates are reasonable? Can we formally describe the sample space we use in
our computations, or is the sample space defined only implicitly via the algorithm to generate
random spectra? If this is the case, we have no possibility to check via theoretical considerations
that resulting p-values are “probably useless”.

5.7 Further reading and other approaches

The problem of wrongly assuming a score distribution to be normal by reporting the “number
of standard deviation above the mean,” has already been pointed out in 1994 by Waterman and
Vingron [300] for pairwise sequence alignments. The BLAST paper by Altschul, Gish, Miller,
Myers, and Lipman [3] is one of the most-cited papers of all times, with more than 75000 citations
in March 2019. The successor paper [4], introducing gapped BLAST and PSI-BLAST, was cited a
mere 70000 times.

Sampling random strings of a fixed precursor mass was proposed by Lu and Chen [181]. The
method for exact computation of p-values for peptides, MS-GF, was proposed by Kim, Gupta, and
Pevzner [159]. It is also described in Chapter 11 (“Was T rex Just a Big Chicken?”) in Compeau
and Pevzner [53].

Numerous parametric distributions that have been proposed for the scores introduced in the
respective papers: For example, PepProbe [251] uses a hypergeometric distribution, X!Tandem
[91] a Gumbel distribution, OMSSA [102] a Poisson distribution, and Crux [216] a Weibull
distribution.

In proteomics, to the best of my knowledge, all approaches for “randomizing a tandem mass
spectrum” still require that we know the peptide sequence that generated the spectrum. These
approaches first assign labels (“a-ion” etc) to the peaks in the spectrum, then disturb the
spectrum using the known labels. To this end, we cannot use these approaches to randomize
the query spectrum, as this is exactly the information that we do not have. In metabolomics,
randomizing queries can be achieved using PASSATUTTO by Scheubert, Hufsky, Petras, Wang,
Nothias, Dührkop, Bandeira, Dorrestein, and Böcker [259], as long as you have a batch of queries.
Unfortunately, this method cannot be applied for peptides, as it ignores the linear nature of
peptides. Furthermore, it faces the issues of randomizing the query mentioned in Sec. 5.6.

Keich and Noble [149] called calibrated scores “well-calibrated scores”, to make clear that this
is not a binary thing. I am lazy, so I saved one word. See there and in the next chapter on how
calibrated scores help in False Discovery Rate estimation. Keich and Noble [149] also found that
the E-value estimates from Sec. 5.5, while being much better than “regular scores”, are still not
perfectly calibrated. This might be due to the fact that the exact estimation does not take into
account peptide length, compare to Sec. 6.4. It is straightforward to take peptide length into
account for the DP in Sec. 5.4, but it will add a factor l in the running time for target peptide
length l, see Exercise 5.8.

Numerous articles have been written that warn against “bad statistics” and “bad interpretation”
thereof [136]. Be reminded that this must not be used as an excuse for not using statistics.

5.8 Exercises

5.1 The “not-so-naïve” method to sample a string of mass M is to build the string iteratively
from right to left, and to consider for the remaining mass m if there exists a string (or
compomer) of mass m. Give an example where this approach does not uniformly sample a
string of mass M.
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5.2 Compute 1− (1− p)N and N · p for p = 10−3 and N = 1000.

5.3 Compute 1−(1−p)N and N ·p for p = 10−10 and N = 1000 using double precision and without
the designated functions; compare to the exact value.

5.4 Assume that scores are distributed according to a Pareto distribution with parameters xm =
1 and α = 3. Calculate mean, variance and standard deviation of the distribution. What
is the probability to be 10 standard deviations above the mean (z-score 10)? What would
be the estimated p-value if we had wrongly assumed that the score distribution is normal?
Repeat calculations for 20 standard deviations above the mean (z-score 20).

5.5 Assume scores against random candidates have a mixture distribution: In 99.9999% of the
cases, the score is drawn from the normal distribution N (0,1); and in 0.0001% of the cases,
the score is drawn from N (8,1). What is the p-value of score 10? What would be our p-
value estimate if we had wrongly determined that the score distribution is simply N (0,1)?
Why is it rather likely that we would have wrongly estimated the later score distribution in
practice?

5.6 Modify computations from Sec. 5.4 so that precursor masses between m1 and m2 are taken
into account.

5.7 Speed up computations from Sec. 5.4 by algorithm engineering: Notice that not all masses
m have to be computed, because both the prefix mass and the suffix mass must have a
decomposition. You may assume that you have computed an appropriate data structure
(such as the residue table from Sec. 3.6, see Exercise 3.17) during preprocessing. How much
does this trick help?

5.8?Modify the recurrence from Sec. 5.4 so that only peptides of a particular length l (alterna-
tively, peptides with length between l and u) are considered. Do some algorithm engineering
so that you do not have to iterate over all masses. (There should be a total of four bounds
for the masses you consider, two for the lower bound and two for the upper bound.)

5.9FConsider some weighted alphabet Σ. What is the number N[M] of string with mass M that
have a proper prefix and suffix of the same mass? Recall that C′[M] is the number of strings
of mass M. Warning: A prefix-suffix pair can have a sub-prefix-suffix pair of identical mass,
so

∑
m C′[m]C′[M−2m]C′[m] (see Exercise 3.11) is unfortunately not the solution. . .

5.10?Implement the calculations from the previous exercise, and verify for some examples that
N[M]∼ C′[M] for M →∞.

5.11?Let Σ be the alphabet of amino acid residues with integer masses, where leucine and
isoleucine are treated as a single character. Plot the probability that a string of mass M
has prefix and suffix of the same mass.

5.12?Repeat the above, but modify your computations to take into account that b ion and y ion
differ in mass by 18 Dalton.

5.13 Assume that peptide masses are distributed according to a Poisson distribution with mean
1200. Using number from the previous exercise, calculate the probability that a peptide has
prefix and suffix of the same mass.
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6 Signi�cance: Decoy Databases and False

Discovery Rates

“[Back in 1915] Charlie Chaplin look-alike contest became a popular form of enter-
tainment. At these events, contestants would compete to see who could best imitate
the ‘tramp’ persona championed by Chaplin. [. . . ] According to entertainment folklore,
Chaplin himself once entered and lost one of these contests. [. . . ] Charlie Chaplin did
not come in second or third, he did not even make the finals.” (Mario Cruz)

Statistical significance estimation via p-values is definitely better than nothing; but in a way,
this is answering a question that we did not ask. In particular, the p-value is not the probability
that the hit is incorrect, and cannot be easily transformed into this probability. On the contrary, a
rather natural question is as follows: Recall that in a shotgun proteomics experiment, we do not
search for a single query spectrum inside the peptide database. Instead, we have thousands of
query spectra that we want to identify, see Sec. 2.9. Our question is: From the set of hits (that is,
the putatively identified peptides), how many are correct and how many are bogus? Assuming that
the hit score does indeed allow us to separate correct from bogus hits, can I choose a subset of hits
so that the fraction of bogus hits is reasonably small? This is exactly what False Discovery Rates
are about; False Discovery Rate estimation deals with the problem that we are not omniscient
(bummer). Next, q-values allow us to assign significance values to the individual query spectra.
Any False Discovery Rate or q-value is nevertheless a property of a batch or list of query spectra
and not a single query. Finally, Posterior Error Probabilities are indeed the probability that a
particular hit is incorrect, but their estimation comes with certain pitfalls (Sec. 6.6).

As in the previous chapter, we will concentrate on peptide identification and shotguns proteins
in our presentation. Whereas FDR estimation is a general statistical procedure, the shotgun
proteomics experimental setup makes it particularly easy for us to come up with sensible decoy
databases. Things get considerably more complicated if we consider metabolomics, but also
metaproteomics (Sec. 6.8).

6.1 False Discovery Rates and q-values

Recall that a hit is a query plus the best-scoring candidate from the database we are searching
in. We are given a list (or batch) of hits, such as all putatively identified peptides from a shotgun
proteomics LC-MS run. Assume that we know which of the hits are correct (true) and which are
bogus (false): For k correct hits out of n total hits, the False Discovery Rate (FDR) is simply k/n.
Speaking in the context of information retrieval, the FDR equals the number of false positives
(FP) divided by the sum of true positives (TP) and false positives,

FDR= FP
TP+FP

. (6.1)

We do not have to consider the complete list of hits for FDR estimation; the definition also covers
the case that we return any sublist of length n containing k correct hits. That being said, the
information retrieval view becomes more clear: True positives are the correct hits in our sublist,
whereas false positives are the bogus hits we put in the sublist but should not. We can calculate
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6 Significance: Decoy Databases and False Discovery Rates

numerous related classification measures such as precision or recall, but the False discovery rate
will do for us.

What sublists are reasonable to consider? If our assumption is correct that the hit score allows
us to differentiate between correct and bogus hits, then the only reasonable sublists we have to
consider are those hits that have hit score above some score threshold, for any score threshold. In
other words, we sort the list of hits by hit score, and consider the top k for any k = 0, . . . ,n.

If we iteratively consider the top k sublists, then going from k−1 to k will either increase our
FDR (in case the hit at rank k is bogus) or decrease it (in case the hit at rank k is correct). In
other words, returning a larger sublist may be better — that is, have smaller FDR — then staying
cautious and returning the smaller list. In application, we usually let the user decide upon an
FDR threshold (s)he can accept; we then return the largest top k sublist such that the FDR is at
most the user-specified threshold.

The q-value of a hit is the minimal FDR at which this hit is included in our output (top k list).
If we have computed FDR values pk for all hits k = 1, . . . ,n, then the corresponding q-values qk
are simply qn = pn and

qk =min {pk, qk+1} for k = n−1,n−2, . . . ,1. (6.2)

It is important to understand that, whereas q-values are assigned to individual hits, this is
nevertheless a property of the complete list of hits: If we add query spectra to our batch, then q-
values of all hits may change. In more detail, if we add correct and high-scoring hits then q-values
of other hits will decrease (become more significant); if we add bogus and high-scoring hits then
q-values will generally increase (become less significant). Similarly, if we change the database we
search in, q-values of all hits may change, even of those where the set of candidates is identical.

Second, if you are given a single query, you cannot compute a q-value for that. This simply does
not make sense. But quite obviously, you can compute a p-value for a single query.

Third, the “precision” we can reach with False Discovery Rates and q-values, is limited by the
number of hits in our input hit list: For n hits, the smallest non-zero FDR and q-value is 1/(n−1),
see Exercise 6.2. This is usually not so much of a problem for False Discovery Rates, where a
threshold is provided by the user — unless the user chooses the threshold unreasonably small.
But this sets apart q-values from p-values; for the later, we can easily reach very small non-zero
values such as 10−10, whereas a q-value of 10−3 is likely the best (non-zero value) we can expect
in most applications.

So far, we have assumed that we are omniscient: That is, we know for each hit whether it is
correct or bogus. Such an omniscient perspective is sometimes realistic: When we are developing
a computational method, we will evaluate it on reference data where we know the correct answer,
see for example Sec. 6.7.

In practice, we are clearly not omniscient; hence, the rest of this chapter deals with estimating
the FDR in a way that our estimate is “as close to the true FDR as possible”. Clearly, estimating
FDR implies estimating q-values. It must be understood that neither the list of hits we start with,
nor the order of hits which is defined by the hit score can be influenced by our FDR estimates. The
only questions that FDR estimation can answer, are: If I can accept a certain FDR in my output,
what is a reasonable hit score threshold; and looking at an individual hit, what would be the FDR
threshold to have this hit in the output?

6.2 Using random number generators to estimate False Discovery

Rates

Our first False Discovery Rate estimate is conceptually rather simple; this is not completely true,
as pseudo-random number generation on a deterministic computer is already a highly non-trivial
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problem. If we have to estimate False Discovery Rates for n hits, we simply draw n random
numbers between 0 and 1, sort them and assign them to the hits sorted by hit score. In fact, we
do not even have to sort them; but our estimates will be “more accurate” if we do so. We transform
FDR estimates into q-values as described above; in case we have sorted the random numbers, the
q-value equals the FDR.

You may be surprised, but this is a valid FDR estimation method. It is a very, very bad one;
but this is something it has in common with many other methods for FDR estimation! Numerous
methods have been published where the authors claim (and potentially believe) that something is
an FDR estimate. But the only way to show that your FDR estimates are better than random, is
to prove it empirically, see Sec. 6.7. For that, you need data where you know the correct answer;
otherwise, it is impossible to judge how good the method performed. This has been used as an
excuse why an empirical evaluation of a new method is impossible. But today, much reference
data (for example, millions of peptide tandem mass spectra where the peptide sequence is known)
are available for such evaluations. If no experimental reference data are available, you have to
simulate such data in the most reasonable way you can think of. But without the evaluations of
Sec. 6.7, an FDR estimate should be treated with the same respect as a random number.

One more point: Sometimes, methods are indeed evaluated as “being better than random”. This
is an extremely weak statement; it is actually very hard to construct a computational method
which does not use random numbers and is nevertheless as good (or as bad) as random. If FDR
estimates are better than random, they may still be completely useless; they have to be pretty
accurate to be of use in practice. On the other hand, they do not have to be perfect; but we should
know how much we can trust them. See again Sec. 6.7 for details.

6.3 Decoy databases and False Discovery Rate estimation

Decoys are hits that are always bogus; they will help us to estimate the False Discovery Rate, as
we can compare bogus hits against decoys and bogus hits against “true candidates”. We will refer
to the database that we use for searching, as the target database. We create a second database,
called the decoy database, which looks similar to the target database, but only contains candidates
which cannot be the correct answer. We then combine both databases into one, and search in the
combined database. To this end, each query results in a hit that is either from the target database
or from the decoy database.

As stated above, the decoy database should look “reasonably similar” to the target database
while at the same time, all hits in the decoy database should be spurious. In detail, we want the
decoy database to meet the following three assumptions:

1. There is no overlap between the decoy database and the target database: That is, candidate
peptides in the decoy database are not in the target database, and vice versa.

2. The correct answer (the true peptide) is never present in the decoy database; any hit in the
decoy database is a bogus hit.

3. A bogus hit in the target database is as likely as a (bogus) hit in the decoy database.

Note that Assumption 2 is much stronger than Assumption 1: Assumption 2 does not only state
something about the candidates in our target database, it states something about all possible
candidates, known and unknown! Assumption 1 is in the list because it intuitively makes sense;
because it can be checked empirically for any given pair target plus decoy database, what is not
possible for Assumption 2; and because there might be cases where the target database contains
a candidate which is never the true candidate, but should still not end up in our decoy database
to avoid ties. For Assumption 3, any hit in the decoy database must be bogus according to

97



6 Significance: Decoy Databases and False Discovery Rates

# score DB FDR q-value
37 128.1 target 0.0% 0.0%

124 122.8 target 0.0% 0.0%
12 121.2 target 0.0% 0.0%

950 103.1 target 0.0% 0.0%
730 102.3 target 0.0% 0.0%
217 96.4 target 0.0% 0.0%
918 94.8 target 0.0% 0.0%
333 94.3 decoy 14.3%
212 93.5 target 12.5% 10.0%

4 93.4 target 11.1% 10.0%

# score DB FDR q-value
18 92.0 target 10.0% 10.0%
69 90.7 decoy 20.0%
72 89.9 target 18.2% 16.6%

174 87.3 target 16.6% 16.6%
111 86.5 decoy 25.0%
750 86.4 target 23.1% 18.8%
828 84.2 target 21.4% 18.8%
830 82.3 target 20.0% 18.8%
13 82.2 target 18.8% 18.8%

522 80.9 decoy 25.0%

Figure 6.1: Search in combined target and decoy database. Results are sorted by score. Only the
top 20 hits are reported. ‘#’ is the (completely arbitrary) number of the query. For each
k, we estimate the FDR of the top k; for each target hit, we estimate its q-value.

Assumption 2. It should be intuitively clear that this assumption is the crux of our method;
on the one side, it will guarantee sensible estimates (compare to Sec. 6.2) and on the other side, it
will be the hardest to establish, both empirically and by theoretical considerations.

In practice, it is not necessary that all three conditions are perfectly fulfilled: It is sufficient that
the number of exceptions to these conditions is so small, that is does not interfere substantially
with our estimations.

Assuming that we were successful in building a decoy database that fulfills all three assump-
tions; how does that help us to estimate FDR? Recall that we are given a batch of query spectra,
resulting in a list of hits. Recall further that we search in the combined target plus decoy database,
meaning that any hit will be in either the target or in the decoy database. Hits in the decoy
database will never be reported to the user, but instead discarded: By Assumption 2, these hits
must be bogus, so why baffle the user by reporting them? But we can use hits in the decoy
database to estimate the number of bogus hits in the target database, as follows: Assume that
among the top n hits above a certain score threshold, there are k hits in the decoy database
— and, consequently, n− k hits in the target database which we report to the user. Now, by
Assumption 3, for each decoy hit that passed the score threshold by chance, we expect to see also
one bogus hit in the target database that passes the score threshold by chance. To this end, there
are also k bogus hits among the n− k hits in the target database. We output the n− k hits from
the target database with estimated FDR min

{
k/(n− k),1

}
, compare to (6.1). (Clearly, we should

not estimate False Discovery Rates beyond 100%.)
Let us take a look at the example from Fig. 6.1. Consider the top n = 10 hits from this list,

corresponding to score threshold 93.4: We return n−k = 9 target hits to the user, and we estimate
that k = 1 hit is bogus, as we have also found one hit in the decoy database above the score
threshold. To this end, we estimate FDR 1/9 = 11.1%. If we consider the top 11 hits (score
threshold 92.0), the FDR estimate drops to 1/10 = 10%; for the top 19 hits with score threshold
82.2, we estimate an FDR of 4/15= 26.6%. See Fig. 6.1 for all estimates. Recall that in application,
the user would give us an FDR threshold, and we would return the largest list such that our
estimated FDR is below the threshold.

We then estimate q-values for all hits in the target database. As in Sec. 6.1, this is the smallest
FDR for which a hit in the target database will be in the output; as there, we can compute the
q-value using (6.2). See again Fig. 6.1 for all estimated q-values.

One peculiarity of the above approach has to be mentioned: When we compute an FDR for a
list of hits, the only hit score we take into account is the worst score, among all hits! So, the two
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hits lists with scores [100,100,100,50] and [50,50,50,50] have exactly the same estimated FDR;
you may assume that score 100 indicates a perfect hit. If you estimate an FDR of 50 %, then one
of your perfect hits is seemingly incorrect, despite the fact that shortening the list by one hit, we
probably reach an FDR of zero. You may argue that such extreme hit lists are rare, and this is why
on average (or, in expectation) our FDR estimation procedure computes high-quality estimates;
this behaviour is nevertheless inaccurate and somewhat counterintuitive. You may further argue
that one can see the difference if one looks at the q-values of individual hits; but this does not
change a thing about the strange FDR estimate for the complete list. The reason why we do not
take into account all hit scores when estimating the FDR, is that this would make things really,
really complicated. See Sec. 6.6 for one possibility to do so.

6.4 How to create a decoy database for peptides

Having talked so much about decoy databases, the first question that comes into mind, is: How
do we build one? Clearly, our goal is to satisfy the three assumptions from the previous section.
We will see that it is relatively easy to satisfy the first two assumptions; our focus will therefor lie
on satisfying the third assumption. Before we start, I want to stress that FDR estimation already
implies that there is an underlying stochastic model: The accuracy of our estimates depends on
the experimental data as well as the decoy database. In fact, some of the methods for building a
decoy database have a stochastic component, and repeating FDR estimation will result in varying
estimates. To this end, our argumentations will be from a stochastic standpoint, too: We can never
completely rule out that certain things happen; we can only show that they are highly improbable,
and therefor do not interfere with our estimation procedure.

Since we search in a peptide sequence (structure) database, it is reasonable to also create
the decoy database on the peptide sequence level. Different methods for creating a peptide
decoy database have been proposed over the years. All start off from the target database either
containing full protein sequences, or peptide sequences that have been digested in silico, see
Sec. 1.6.1. We then transform each entry in the target database into an entry in the decoy
database. It is not mandatory that we generate one decoy sequence for every target sequence;
but in view of the third assumption, this again appears to be very reasonable.

Methods to build a peptide decoy databases include:

• Inverted proteins. We invert all target proteins, that is, read them from right to left. Then,
we do in silico digestion to create the peptide decoy database.

• Inverted peptides. We invert each target peptide, reading it from right to left; for example,
PEPTIDE becomes EDITPEP.

• Pseudo-inverted peptides. We invert each target peptide but keep the last character in place,
so s = s1 . . . sl−1sl gets sl−1 . . . s1sl ; for example, PEPTIDE becomes DITPEPE.

• Shuffled peptides. For each peptide in the target database, we generate a decoy database by
shuffling the characters of the peptide using a uniformly drawn permutation. For example,
PEPTIDE may become IDETPEP or EITDPPE.

• Pseudo-shuffled peptides. We shuffle each peptide but keep the last character in place. For
example, PEPTIDE may become TIDEPPE or PITEDPE.

• Random iid. We use the target database to estimate the relative frequency of each amino
acid. For each peptide of the target database, we generate a random peptide of the same
length. Each character is drawn independently and with identical distribution (i.i.d.), using
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the amino acid frequency estimates as probabilities. For example, PEPTIDE may become
MYSTERY.

• Markov chain. Instead of drawing the letters independently, we learn a Markov chain from
the target database, and generate random peptides of identical length distribution as the
target database using this Markov chain. I leave out the technical details.

Some of the above methods are deterministic, and one target database is transformed into exactly
one decoy database; others are random algorithms, and will produce different decoy peptides if we
run them repeatedly on the same target database.

Why do we keep the last character in place for the “pseudo”-methods? The answer is simple:
For the target database, the majority of peptides end with the characters K and R (lysine and
arginine), whereas these characters can rarely be found at other positions of the peptide, in which
case they are followed by a P (proline). It is intuitively clear that our target database should
also follow this restriction, to make target peptides and decoy peptides “more similar”; we will
come back to this point later. It is understood that we can easily modify methods random iid
and Markov chain to also take into account the peculiarities of the last position; we leave out
the technical details solely for brevity. A similar intuition is behind our requirement that target
peptide and decoy peptide must have the same length, see again below for details.

What about three assumptions from the previous section, which are mandatory so that FDR
estimation via a decoy database can work? First, consider Assumption 1. In application, this
assumption is easy to check: Simply generate the decoy database, and search for overlap. But
there are also some theoretical considerations telling us that this overlap can be neglected in
practice: We may assume that peptides in the target database have some minimal length such
as six amino acids, as shorter peptides and their fragmentation spectra are rather uninformative
in application. There are 206 = 6.4 · 107 peptides of that length — ignoring for simplicity that
we cannot differentiate between leucine and isoleucine, plus that the last position of a peptide is
more restricted. In comparison, our target database contains at most a few hundred peptides of
this length. If peptides are generated by a random process, then the probability of a peptide being
in both databases is very small. For longer peptides, the probability decreases at an exponential
rate. This same argument carries over to decoy databases made by reversing peptides or proteins,
as there is no biological or biochemical explanation of reversing an amino acid sequence; from this
perspective, these decoy databases are “close to random”.

What about Assumption 2? This cannot be verified empirically, because any decoy peptide we
generate may, by chance, be present in the experimental sample we are looking at. To this end,
we have to rely on theoretical considerations: If the true peptide is in the decoy database then, by
Assumption 1, it is not in the target database. This means that we have scored a “lucky punch”:
We were searching in a database of chicken proteins and just by chance, the true peptide (which
is not from chicken) happens to be in the decoy database. But we have seen above that amino acid
sequences in the decoy database are either random or “kind of random”, so the probability to find
exactly the one we have in the sample is rather small and can be ignored.

As noted, Assumption 3 is the most important and, at the same time, the hardest to “discuss
away”. Empirically, we can generate a decoy dataset and show that bogus hits in the target
database are equally likely as hits in the decoy database: This is non-trivial, as we usually do not
know which of the hits in the target database are bogus. But more importantly, this only “proves”
that the assumption is satisfied for this target database and this list of query spectra; does it hold
for any such combination? We can also approach the assumption from a theoretical standpoint;
we will argue that some of the above methods to generate a decoy database are likely to fail the
assumption, whereas other do not have such flaws. But even for those, empirical evaluation is
required to see how good our FDR estimates are, see Sec. 6.7.
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When we access the combined database, we filter candidates by the precursor mass of the query
spectrum. To assure that random (bogus) hits from the target database and hits from the decoy
database have the same chance of coming out on top, a very natural request is that the same
number of candidates comes from the target and the decoy database: By this, we provide “equal
opportunities”. In the extreme case, all query spectra have candidates exclusively from the target
database; it is hard to argue that Assumption 3 still holds. Now, reversed proteins, random iid and
Markov chain cannot guarantee that the number of candidates is identical; but all other methods
can.

Next, the score of a peptide candidate depends crucially on the number of peaks the peptide
can explain: Assuming ideal fragmentation (prefixes and suffixes only), the number of peaks is
linear in the length of the peptide. None of the scores in Chapter 4 has been designed considering
the subtleties of score comparability for peptides of different lengths. To this end, it appears
to be a reasonable idea to use decoys that mimic the length distribution of the target database,
preferably for any query precursor mass. It turns out that all above methods to generate decoys
guarantee this in general; but reversed proteins, random iid and Markov chain cannot guarantee
this property for each individual query precursor mass.

Is there anything else we know about the peptides in the target database, which makes them
substantially different from random peptides? In fact, there is one more thing: (Almost) all
peptides in the target database end with the characters K or R, and few of them have K or R
at a different position. Why is this important for Assumption 3? Because (almost) all of our query
spectra will correspond to peptides which also end with the characters K or R, because of tryptic
digestion! This also holds for query peptides which are not in the target database. But if the query
peptide and the target peptide end with the same character, then they already share two peaks
in the ideal spectrum. To this end, decoy peptides which have arbitrary characters at the last
position, will have worse scores than random target peptides. Hence, we weed out all methods
which do not preserve the peculiarities of the final position.

The methods that cannot be rejected based on theoretical considerations about Assumption 2,
are therefor pseudo-inverted peptides and pseudo-shuffled peptides.

As a related topic, we have discussed in Sec. 5.1 why we cannot use spectra with random peak
masses as reasonable decoys.

6.5 Searching separately in target and decoy database

The approach we have presented above searches in a database that combines targets and decoys.
It is called Target-Decoy Competition (TDC), as each query results in a hit in either the target or
the decoy database: Target and decoy peptides compete for being selected as the hit. A somewhat
natural alternative is to search individually in the target database and in the decoy database, and
to use search results to again estimate FDR. This is called Target-Decoy Separate Search (TDSS).
Consider Fig. 6.1: Each query will now produce two hits, one from the target database and one
from the decoy database.

The individual search has two conceptual advantages: The first is that we do not have to discard
high-scoring hits, just because there has been a better hit in the decoy database. If we indeed
believe that a high score of a hit is informative about it being correct or incorrect, then throwing
away such high-scoring hits should make your heart ache. Statistics dictates that even the best
and cleanest correct hit might get discarded: No matter how good the hit score is, there is a
chance that a decoy scores better. The second advantage is that we can increase the size of our
decoy database without having to go an extra mile in our statistical estimation method. We noted
that q-value estimates are limited in their precision by the size of the batch we are searching;
but maybe, the difference between 0 and 0.001 (the smallest non-zero q-value you can reach with
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1000 queries) is very important to you. Separate search allows us to use a decoy database which
is, say, 10 times the size of the target database. The necessary modifications for the estimation
method are straightforward, but running times will increase substantially (say, 5.5-fold). To build
a decoy database larger than the target database, we have to use one of the stochastic methods;
in view of our discussion in Sec. 6.4, “pseudo-shuffled” is the method of choice.

Unfortunately, this approach also as a number of issues: It assumes not only that a bogus hit
in the target database is as probable as a hit in the decoy database; it goes one step further and
assumes that the distribution of scores is identical for these two sets. The scores discussed in
Chapter 4 are not designed to guarantee this: If a query spectrum contains high-intensity noise
peaks which cannot explained by any peptide sequence, then scores of all peptides against this
spectrum will be much lower than those of the same query spectrum without the noise peaks.
Luckily, we already know a solution to that problem: Our score has to be calibrated, see Sec. 5.5.
In contrast, Target-Decoy Competition does not require us to use a calibrated score; I will not go
into the details, but estimates are unbiased. But given that we assume throughout this whole
chapter that high scores indicate high-quality hits, using calibrated scores appears to be a good
idea anyways, even when using TDC.

The second issue is more severe: Assume that we want to output the complete list of target
hits; what is our FDR estimate for that? This implies that (basically) all our decoys also pass the
score threshold; it does not have to be all of them, but it can be. Now, assuming that the number of
bogus target hits above the score threshold equals the number of decoy hits above score threshold,
we see that (almost) all of our target hits must be bogus! This is obviously nonsense. To correct for
this issue, we have to introduce a prior probability α0 so that, for the complete list of hits, a hit is
bogus with probability α0. Our FDR estimate then becomes α0 ·k/n where k and n are the number
of bogus and target hits above the score threshold, respectively. But what is α0? The conceptually
simplest way to determine it is to use Target-Decoy Competition for the complete list, which does
not require us to do any additional work; and whereas there are smarter, better ways, this shall
do for us.

Unfortunately, it turns out the TDSS, with or without the correction via α0 is not a good
(unbiased) estimator for the False Discovery Rate. Luckily, there now exists a method called “mix-
max” which solves this issue [151], combining unbiased estimates with the advantages mentioned
above. Beyond the mandatory use of calibrated scores, its only disadvantage compared to TDC is
that it is substantially more complicated and harder to explain; so, users will not like it.

6.6 Posterior Error Probabilities

As mentioned in Sec. 6.1 both FDR and q-value make a statement about the list of reliable
identifications; what we want to know is the quality of each single hit.

The Posterior Error Probability (PEP) is simply the probability that an observed hit is incorrect.
If the PEP associated with some hit (query plus candidate) is 2%, then there is a 98% chance
that the candidate was in the mass spectrometer when the query was measured. The PEP can be
thought of as a local version of the FDR; but whereas the FDR measures the error rate associated
with a collection of hits, the PEP measures the probability of error for a single hit.

PEPs finally sound like what we are interested in: We can now decide — for each hit — whether
it is correct or bogus! Why shall we deal with significance estimates that tell us something only
for a list of hits (FDRs, q-values), or deal with the unintuitive p-values? But unfortunately, PEPs
and PEP estimation also has a number of “issues”, as we will see below.

Since we are sorting hits by score, this means that PEP measures the error rate for hits with a
given score T. To estimate a PEP, we have to estimate the number of correct hits a with score T,
and the number of bogus hits b with score T: Then, the PEP is b/(a+ b). Compare to FDR where
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we counted the number of hits with score at least T. But since we have only a finite number of hits,
there is usually at most one hit for any score T! To this end, we have to model score distributions
of true and bogus hits using some distribution. We can then estimate the likelihood a that score T
was “generated” by a correct hit and the likelihood b that it was “generated” by a bogus hit, and
calculate the PEP again as b/(a+b). Similar to p-value estimation in Sec. 5.3, we can model scores
via certain parametric distributions; different from there, we do not only have to model the score
distribution of bogus (random) hits, but also that of correct hits. To do so, we can use Expectation
Maximization (EM) to simultaneously fit the two distributions for correct and bogus hits to the
score distribution of the dataset. The mathematical details are more complicated than for FDR
and q-value estimation, so I will stop at this point.

Advantages of PEPs over FDR and q-values include:

• Are you interested in one particular hit? For example, in a metabolomics sample, the first
eight hits may be metabolites which you are not deeply surprised to observe in the dataset,
whereas rank nine is a small sensation. In this case, the PEP of that metabolite is more
relevant than its q-value.

• In almost all cases, you are not at all interested in the presence or absence of peptides in your
sample; what you want to know is the presence or absence of (modifications of) proteins in
your sample, see Chapter 13. To estimate how likely it is that a particular protein is present
in your sample, PEPs of hits are conceptually the correct basis.

Now for the issues of PEPs and PEP estimation described above:

• We noted in Sec. 5.6 that modeling score distributions via parametric distributions has a
number of issues; in particular, most score distributions are multimodal. This problem
is further aggravated for PEP estimation because we do not only have to model the score
distribution for bogus identifications, but also that of correct identifications! Whereas it is
rather easy to generate many false hits using decoys, it is much harder to generate many
correct hits; so, our estimate of this distribution is less accurate.

• It is possible that for two hits, the hit with better score gets worse PEP estimate. This is
somewhat counterintuitive but mathematically correct for the models we have established.
This is not limited to the case that one of the distributions is multimodal, see Exercise 6.11.
Unfortunately, this may be an artifact of our incomplete knowledge about the true distri-
butions. We have observed a similar effect for FDR estimation; but there, we are returning
sets of hits, and enlarging the set is welcome to us.

• One might naïvely assume that the PEP of a hit should not depend on the other hits in the
dataset; but this is usually not the case: If we fit the score distributions via Expectation
Maximization, then inserting high-scoring correct or bogus hits will obviously shift the
corresponding distributions and, hence, change our estimates.

• Are you truly interested in one particular hit in a peptide database? Or, are you rather
interested in a set of hits where we can guarantee that only a small fraction is wrong?
Because this is exactly not what PEPs are about; if you are interested in identifying sets
of hits, use q-values. If you set a threshold on the PEP of hits, then the list of hits passing
the threshold will have an FDR below the chosen threshold; but the information you are
missing is whether it is slightly below the threshold, or substantially below the threshold.

But PEPs finally allow us to estimate FDR while taking into account the quality of each hit in
the list, compare to the end of Sec. 6.3: Assume that we have ordered all hits by Posterior Error
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Probabilities p1, p2, . . . , so pi ≤ pi+1 — be reminded that this is not necessarily the same order as
by hit score. Now, the expected number of bogus hits for a single hit i is pi; simply think of flipping
an appropriate coin (in technical jargon, this is a Bernoulli trial). Hence, the expected number of
bogus hits among the first k hits is

∑k
i=1 pi. Notably, we do not even have to assume that the coin

flips (top k hits) are statistically independent; regarding expected values, E(X +Y ) = E(X )+E(Y )
holds whether or not random variables X ,Y are independent. This allows us to estimate the False
Discovery Rate of the top k hits as �FDRk =

1
k

∑k
i=1 pi. (6.3)

As long as we have a method to accurately estimate PEP, we can use this equation to estimate
FDR taking into account the quality of every hit in the list. Note that FDR estimates via (6.3) are
monotonically increasing, so qk = �FDRk is also the q-value estimate of hit k.

6.7 Evaluation of decoy databases and False Discovery Rate

estimates

If you have generated a decoy database, you might wonder if it is of good quality. How can we test
that? Our first evaluation is based on the fact that whenever you can estimate False Discovery
Rates, you can also estimate p-values. For decoys, this was covered in Sec. 5.2: Our p-value
estimate is (k+1)/(n+1) if there are k decoys above the score threshold, and we considered a total
of n decoys. But this is the p-value for an individual pair “query plus candidate”; for a hit, which
is the best candidate from a set of candidates, we have to correct the p-value for multiple testing.

If we have a set of reference queries where we know the correct answer, we can score each
query against any incorrect candidate, compute the p-value of the score using the decoys, and
collect these computed p-values. We do not have to correct p-values, as we are considering p-
values of individual queries, not hits. Alternatively, we can estimate p-values for hits (best-scoring
candidates); in this case, we have to correct p-values as 1− (1− p)N if there are N candidates and
p is the p-value of the highest-scoring pair “query plus candidate”. Note that we cannot use the
simple correction N · p as the corrected p-value may become large, and N · p may even be larger
than one.

Under the null model, p-values follow a uniform distribution: We can visualize that by a
histogram plot of the p-values. In a uniform plot, all bars in the histogram have roughly the
same height. Alternatively, we can sort the p-values, then plot the (relative) rank of a p-value
against its value. For a uniform distribution, this should be close to a straight line.

Unfortunately, we have to use reference spectra as queries to execute the above evaluation.
One can argue that real query spectra can look very different from these reference spectra; also,
we may be not satisfied with the number of available reference spectra as queries. To this end,
a more involved route is to use entrapment candidates: These candidates are much like decoys;
the difference is that we do not use them for significance estimation, but for evaluation of such
estimates. For example, we can use peptides from a evolutionary distant organism (see Sec. 6.8)
to build the entrapment database. We search in a combined database consisting of our true
peptide targets (proteins from the organism our sample comes from, plus the usual contaminant
proteins such as keratin) plus the entrapment targets (from a distant organism). For all hits in
the entrapment database, we know that the answer must be wrong!

We can sidetrack estimating the uncorrected p-value “query plus candidate” and instead, use
only the hits in target and decoy database under Target-Decoy competition for p-value estimation.
We estimate the p-value of a target hit with some score T as p′ = (k+1)/(n+1) where k is the
number of decoy hits with score T or larger, and n is the total number of decoy hits. To reach
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Figure 6.2: Exemplary evaluation of False Discovery Rate estimation using a decoy database.
Left: Estimated p-values vs. cumulated frequency (“true p-value”). Right: Estimated
vs. true q-value; three methods (including a naïve method) are compared. The naïve
method is obviously not suggested for q-value estimation; rather, we want to know
how bad estimates are in practice. Figure taken from [259].

meaningful p-values requires a very large number of (decoy) hits; to this end, the approach is
usually not suited for reference datasets.

The above evaluation is not limited to decoy databases but instead, can and should be performed
for any method that claims to do FDR or p-value estimation.

But we also want to evaluate our FDR estimates directly — how can we do this? We have seen
that False Discovery Rates go up and down as we increase the score threshold; to this end, we
rather compare q-values. We again assume a set of reference queries where we know the correct
answer. We search this set in some database and generate a list of hits, which we sort by score.
As we know the correct answers, we can estimate the exact q-values as described in Sec. 6.1. But
we can also ignore that we are omniscient, and estimate q-values as described in Sec. 6.3. Now,
every hit i = 1, . . . ,n has an exact q-value qi and an estimated q-value q̂i attached to it. We plot
these pairs (qi, q̂i) in a scatterplot. This is sometimes referred to as quantile-quantile (Q-Q) plot,
which is not incorrect, as both the qi and the q̂i are non-decreasing, qi ≤ qi+1 and q̂i ≤ q̂i+1.1 But
the important point is: If our estimates are of high quality, then the points should be close to the
line x = y. As we are particularly interested in small q-values, we can also plot pairs (log qi, log q̂i)
— or, even better, plot (qi, q̂i) on a logarithmic scale.

Have a look at Fig. 6.2, taken from Scheubert et al. [259] where an FDR estimation method
for small molecule library search is presented. I have deliberately chosen a method which I have
co-developed myself, not because of vanity, but because I want to play “blame and shame”. The
details of the method are of no importance to us; the only relevant question is: Are False Discovery
Rate estimates in Fig. 6.2 of “good quality”? The p-value distribution plot looks reasonable; it is
far from uniform, but maybe that is OK. But if we have a look at the Q-Q plot, we can get a
clear understanding on what we can trust and we cannot with regards to the estimates. In detail,
the Q-Q plot compares three different methods for generating decoys; two methods reach similar
estimate whereas the naïve method is so inaccurate that it is of no use in practice, compare to

1If I am not mistaken, we can also interpret this as a probability-probability (P-P) plot if we think of the q-values
(exact and estimated) as the cumulative distribution function of the score. Is all of that correct? Statisticians! This
is probably too much information, though.
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Sec. 6.2. For the two “real” methods, estimates are far off the true values in particular for small
q-values: When the true q-value is 2%, the estimated q-value is still close to zero. In comparison
to what people are used to in shotgun proteomics and peptide identification, FDR estimates are
ridiculously bad. . . It turns out that estimation inaccuracies are not due to our inability to build
good-quality decoy databases, but rather an intrinsic problem of FDR estimation in metabolomics,
see Sec. 6.8. The q-value estimation in Fig. 6.2 allows us to evaluate the severity of the problem,
and to give reasonable suggestions to the user, such as: q-value estimates below one percent
must not be trusted; rather expect 3% false identifications for those. The danger here is that
biologists and chemists will forget about this fact; when users see a substantial number of hits
with estimated FDR 1 % they will report them — and, potentially believe them — as such. In
particular, users will neither understand nor approve if we improve our method and estimates
get “worse”, that is, closer to the real values. But inaccurate or not, this is substantially more
information than not estimating an FDR rate at all, or simply claiming that some measure is a
p-value or q-value without this evaluation!

6.8 The limits of decoy databases: Metaproteomics and

metabolomics

Everything is good in shotgun proteomics as long as you are considering the proteome of a single
organism, or the proteomes of a few organisms which, in the best of worlds, are not closely related.
But when we go to metaproteomics, where we want to study the proteins from a sample of an
environmental source, things get ugly. The funny thing is: Everything is fine with our decoy
database; it is the target database that is causing problems.

Let us assume we are studying a sample from some microbial community; our target database
consists of peptides from 100 microbial proteomes. We build our decoy database as described
above, using the pseudo-inverse or pseudo-shuffle method. If you do so, you will find that many
bogus hits will receive excellent q-value estimates, and that your FDR estimates are much too
optimistic. In truth, I have never done this experiment; I simply claim it to be true, based on the
observations that our target database is no longer suitable for FDR estimation.

What do I mean with that? When we have build our decoy database, we were a little imprecise
when we discussed Assumption 3: The assumption says that “a bogus hit in the target database
is equally likely as a hit in the decoy database”. But what we discussed afterward was whether
a random hit in the target database is equally likely as a hit in the decoy database! We did this
without blushing because the target database is extremely sparse: The target database contains
several thousand peptide sequences, which is basically nothing in comparison to the 1.08 ·1013

peptides of length up to ten. Furthermore, you will have a hard time finding two peptide sequences
of reasonable length in the proteome of a single organism that have edit distance at most, say, 3.
To this end, any bogus hit in the target database is indeed as good or bad as a hit against a random
peptide sequence.

But if we consider a target database from multiple organisms, this is no longer true: The
different taxa have orthologuous proteins, and for reasonably closely related organisms, the
protein sequence will be similar. This implies that we also have peptides in our target database
with similar sequence. Let us consider one particular case of how these similar peptides may look
like: We assume that the two peptide strings are identical, except for two consecutive characters
(amino acids) which have been swapped. For example, one string may be PEPTIDE whereas the
other one is PETPIDE. (If you insists on tryptic peptides, feel free to add an R to the end.) If your
query spectrum is that of PEPTIDE, then the PETPIDE candidate will receive a much higher score
than you would expect for a random string.
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In fact, the problem is much worse than that. Above, we implicitly assumed that we have both
strings PEPTIDE and PETPIDE in our target database. But in application, it is more likely that
only one of the two (say, PETPIDE) is present in our target database — because the genome of
the organism with the corresponding protein has been sequenced — whereas the other is absent,
simply because the corresponding organism has not been sequenced. This is more likely as only
a small fraction of organisms in our sample have been sequenced, and this is not going to change
quickly. Now, assume we have the PEPTIDE string from the unsequenced organism in our sample.
We will then find an excellent agreement of its query spectrum with the PETPIDE string in the
target database, reaching a hit score which is hard to explain by some random process. Et voilá:
Here is a hit which will presumably receive a very good q-value but which is wrong.

I have chosen the case of two consecutive, swapped amino acids because it is easy to understand
that the resulting tandem mass spectra are very similar: Only the peaks for prefixes PEP vs. PET
and suffixes TIDE vs. PIDE change. As soon as you have understood that, you can build yourself
numerous other types of string transformations that will cause basically the same problem, in
any shade and degree of the problem you can think of. This explains why we cannot simply ignore
the problem by saying, “a peptide with only two swapped amino acids is not a severe problem for
me and my application”.

The fact that this is a problem of the target database and not of the decoy database, means that
we cannot solve the problem by building a different, “smarter” decoy database. Hopefully, one
day a smart statistician will solve this problem, or “discuss it away”. Until then, we have to deal
with the fact that small q-value estimates can be accurate only if our target database is not too
“clogged”.

Similar things can happen within one organism: For examples, consider the proteins Actin
(ACTB) and Beta-actin-like protein 2 (ACTBL) in human, which contain the tryptic peptides
VAPEEHPVLLTEAPLNPK and VAPDEHPILLTEAPLNPK, respectively. These two peptides differ
only at positions 4 (E vs. D) and 8 (V vs. I). Now, the molecular formula of a glutamic acid residue
plus a valine residue is C5H7N1O3 +C5H9N1O1 = C10H16N2O4, and so is that of an aspartic acid
residue plus an isoleucine residue. Hence, these peptides have exactly the same mass — as long
as we ignore binding energies, as we have done throughout this book — and the fragmentation
spectra of these peptides share a large number of peaks, much larger than what you expect by
chance from a random match. But this is a rare thing and, hence, will not interfere substantially
with FDR estimation; the variation in FDR estimation through the actual data you look at is
potentially much larger.

Exactly the same problem makes FDR estimation hard when you are doing metabolomics,
see Sec. 10.1. (It is somewhat funny that both areas with “FDR estimation issues” start with
“meta”.) Here, the set of all known metabolites is even smaller in comparison to the space of all
possible molecular structures, see Sec. 10.4. Unfortunately, metabolite structures also tend to
“flocculate”: Two structures where we move a hydroxyl group (OH) from one carbon atom to an
adjacent carbon atom, are often both valid metabolites. As above, these two structures can have
basically indistinguishable fragmentation patterns. Again, our knowledge of all metabolites is
vastly incomplete, so we will usually not even notice if we have identified the wrong one.

In fact, the situation is even worse for metabolites: It is a highly non-trivial problem how
to simulate the tandem mass spectrum of a metabolite if we only know its structure, see
Chapter 10; and, it is unclear how to generate decoy structures, as small modifications of existing
metabolites may be true metabolites whose structure has not been elucidated so far, whereas
large modification may result in decoys which are too different from our target structures, see
Chapter 5.
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6.9 Historical notes and further reading

My presentation of decoy databases is inspired by Elias and Gygi [84] and Keich, Kertesz-Farkas,
and Noble [151]; the later paper gives an excellent introduction to the different paradigms in FDR
estimation. See also the review by Nesvizhskii [204]. I want to stress that the below coverage of
literature on FDR estimation is in no way comprehensive.

In this chapter, we have talked about FDR, q-values and PEPs of hits, not of peptides. We have
deliberately done so, as multiple hits may point to the same peptide; some of these hits may be
correct, others may be bogus. You have to correct for that if you want to make statements about
the peptides present in your sample. Keep in mind that in the end, we are interested in proteins
and not peptides (Chapter 13).

Historically, the first method for significance estimation in shotgun proteomics is due to Keller,
Nesvizhskii, Kolker, and Aebersold [153] in 2002: PeptideProphet did not estimate False Discov-
ery Rates but rather Posterior Error Probabilities. Furthermore, it did not use decoys but rather
Empirical Bayes estimation, where Expectation Maximization is used to fit the distributions of
(presumably) correct and (presumably) bogus hit scores. Later versions of PeptideProphet [50, 51]
integrated decoys into the estimation procedure. It is also possible to estimate PEPs using non-
parametric regression [5, 81, 144, 283]. See Käll et al. [143] on the relationship of q-values and
Posterior Error Probabilities.

Target Decoy Competition is due to Elias and Gygi [84], whereas Target Decoy Separate Search
was proposed by Käll, Storey, MacCoss, and Noble [142]. Elias and Gygi [84] also empirically
verified that the three assumption from Sec. 6.3 are met for TDC.2 See Keich and Noble [149]
on the importance of calibrated scores even if you are using TDC. Using larger decoy databases
for TDC is, as mentioned, a non-trivial problem; Keich et al. [152] show how it can be done. The
mix-max method is due to Keich et al. [151]; see also there for empirical results that neither TDC
nor the original TDSS (with or without prior α0) are unbiased estimators, whereas mix-max is.

Transforming PEPs into FDR using (6.3) is the Averaging Theorem (4.4) by Efron and Tibshi-
rani [80], but they call PEPs “local FDR”.

Keich and Noble [150] suggest an alternative route of FDR estimation, which is based on
correcting p-value estimates similar to Benjamini-Hochberg [18]. It explicitly takes into account
that there are two types of false identifications, one being due to foreign spectra — which cannot
be found in our incomplete database — the other being due to wrongly assigned spectra. On the
downside, estimates can only be as good as the initial p-value estimates.

Calibrated scores were suggested by Jeong, Kim, and Bandeira [139] as “normalized scores”;
this was formalized by Keich and Noble [149] who suggest to use shuffled peptides for this
purpose. With regards to the importance of evaluating your FDR and q-value estimates, Jeong
et al. [139] showed that true false discovery rates can be 10-fold higher than those estimated and
reported in publications.

The Actin example was suggested by Brian C. Searle. For metabolomics, generating de-
coy metabolite structures as well as simulating tandem mass spectra remain open problems.
Scheubert et al. [259] sidestep the problem by transforming target spectra into decoy spectra,
without ever considering the structure of the target metabolite. But this trick cannot sidestep
the fundamental problem that bogus hits in the decoy database are often not random (Sec. 6.8),
resulting in too optimistic FDR estimates.

The story about Charlie Chaplin is one of these stories that is too nice to be true, because it is
not true — despite numerous people having reported it in books and articles [197]. Unfortunately,

2The protocol in [84] suggests to also report the decoy hits to the user and use 2k/n as the FDR estimate; in view of
Assumptions 1 and 2, this is an extremely funny advice: “Here are your search hits; some hits are not from your
database and definitely wrong, but whatever!” — I like the spirit.
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it is most probably an urban myth that spread virally in some of the 1920s gossip columns.3 It
nevertheless contains a grain of truth: Sometimes, something is more similar to the real thing
than the real thing itself.

6.10 Exercises

6.1 When calculating FDR exactly, why do we have to consider only sublists consisting of the
top k hits from the sorted list, for any k = 0, . . . ,n?

6.2 For a list of k correct hits and n total hits, what is the smallest non-zero q-value any hit can
reach?

6.3FWhat is the smallest non-zero difference between any two q-values in a list with n hits?

6.4 Show that the smallest non-zero difference between any two q-values in a list with n hits,
is at least 1/n2.

6.5 Assume that we build a decoy database using the “inverted proteins” method. Explain why
we cannot guarantee that the decoy database contain exactly the same number of peptides;
or, that the distribution of peptide lengths in the two databases is identical. One protein
does the trick.

6.6 Given a target database of proteins{
TVKQDEGHRWTL,YPPNKCRRDHIKVRAA,DDCDKPKMN,FIKTTSRQPRVYYC,

MNMQKWAWAKFIFIRVW
}
,

build the corresponding peptide decoy databases for methods “inverted proteins”, “inverted
peptides”, and “pseudo-inverted peptides”.

6.7 For the target database from the previous exercise, build the “random iid” model with
pseudocounts (any character receives 0.5 observations as a starter package).

6.8?For the target database from Exercise 6.6, build the “Markov chain” model of order 2 with
pseudocounts (any two-letter string receives 0.5 observations).

6.9 We want to do Target-Decoy Separate Search, and have computed the hit scores of query i
against the target database (ti) and the decoy database (di), for i = 1, . . . ,n. Explain how we
can use Target-Decoy Competition to estimate the prior probability α0 that a hit in our list
of hits is correct. Use only known value ti and di.

6.10?Enlarging the decoy database result in more accurate and more robust q-value estimates,
but comes at the price of substantially increased running times. Develop an adaptive
strategy to control this overhead.

6.11 Assume that the score distribution of correct hits is N (3,1), the score distribution of bogus
hits is N (0,2), and 10 % of the hits are correct. In what intervals of the real axis is the
Posterior Error Probability below and above 50% and 1%, respectively?

6.12 Show that for numbers a1,a2, . . . with ai ≤ ai+1, the averages bk = 1
k

∑k
i=1 ai also satisfy

bk ≤ bk+1.

3https://skeptics.stackexchange.com/questions/9423/
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7 Isotope Distributions and Isotope Patterns

“Two very significant discoveries are due to mass spectroscopic studies. First, J.J.
Thomson discovered that neon consisted of a mixture of two different isotopes (masses
20 and 22) rather than only a single isotope. This observation of the existence of
stable isotopes is perhaps the greatest achievement that can be claimed by mass
spectroscopy. [. . . ] The second significant discovery due to mass spectrographic
studies was made by F.W. Aston. He observed that the masses of all isotopes are not
simple multiples of a fundamental unit, but rather they are characterized by a mass
defect; i.e., isotopes do not have integral masses.” (Robert W. Kiser, The Introduction
to Mass Spectrometry)

MASS spectrometry cannot detect single molecules, but is dependent on the existence of
millions of “identical” copies of some molecule. These copies are identical from a chemical

standpoint, but not from a physical standpoint: Throughout these copies, elements follow their
natural isotope abundances. For mass spectrometry, this implies that instead of a single peak,
we observe an isotope pattern of the molecule. On the one hand, this is simply an additional
complication that we have to deal with when analyzing MS data. In many MS applications, the
experimental setup is actually chosen so that we do not have to consider such isotope patterns: In
peptide de novo sequencing introduced in Chapter 2, one deliberately selects only the monoisotopic
peak (see below) for fragmentation, and no isotope patterns can be observed in the fragmentation
spectrum. On the other hand, we can use this fact to our advantage: Namely, we can use the
isotope pattern to derive information about an unknown molecule, namely its molecular formula.
This will be addressed in Chapter 8.

Although in principle, each and every molecular formulas should correspond to some molecule,
our formalism does not distinguish between reasonable molecular formulas (such as C12H22O11)
and unreasonable molecular formulas (such as CH37). For the sake of readability, we will use
unreasonable molecular formulas (such as H100) in our examples and theoretical considerations
whenever this leads to simpler calculations. Such examples might provide the reader with a rough
estimate on, say, the required size of a molecule. For this purpose, an unreasonable molecular
formula should do the job. We will come back to this point in Sec. 8.4, where we reject molecular
formulas that cannot correspond to some molecule. Trying to integrate such chemical knowledge
at a low level, will usually destroy both the comprehensibility and the swiftness of our methods.
Instead, chemical knowledge should be integrated at a higher level, such as rejecting molecular
formulas after they have been enumerated.

7.1 Isotopes

We continue our journey into the realm of physics that we have started in Sec. 1.1. We shortly
recall some of the facts from there: Atoms are composed of electrons with a negative charge,
protons with a positive charge, and neutrons without charge. Protons and neutrons make up the
atomic nucleus. Atoms have no charge, whereas charged particles are called ions. Atoms are
classified by the number of protons in the atom, that defines which element the atom is. Atoms
with identical atomic number cannot be differentiated chemically. Elements most abundant in
biomolecules are hydrogen (H, atomic number 1), carbon (C, 6), nitrogen (N, 7), oxygen (O, 8),
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7 Isotope Distributions and Isotope Patterns

phosphor (P, 15), and sulfur (S, 16). The “backbone” of all biomolecules is made from carbon, and
we often classify elements based on their similarity or dissimilarity to carbon. Less abundant
elements include boron, fluorine, silicon, chlorine, copper, zinc, and selenium, see Table 7.5.

The nominal mass or nucleon number of an atom is its total number of protons and neutrons.
An element can have numerous different atoms with equal number of protons and electrons, but
varying number of neutrons. These are called isotopes of the element. The nucleon number is
denoted in the upper left corner of an atom, such as 12C for the carbon 12 isotope with 6 protons
and 6 neutrons. Several isotopes of an element can be found in nature and are called natural
isotopes. The natural isotope with lowest mass is called monoisotopic, such as 1H, 12C, 14N,
16O, 31P, and 32S. As an example, the relative abundance of the monoisotopic carbon isotope 12C
is 98.93%, whereas the isotope 13C has a relative abundance of about 1.07%. The radioactive
isotope 14C with half-life 5730 years has a relative abundance of less than 0.001% in nature, and
is usually ignored in our analysis; likewise, we can ignore tritium 3H.

A short discussion is in place with respect to the term “monoisotopic”; if you are from bioin-
formatics or computer science, you can safely skip this paragraph. The International Union of
Pure and Applied Chemistry (IUPAC) made the unfortunate decision to define the monoisotopic
mass of a molecule as “the sum of masses of the atoms in a molecule (or ion) using the unbound,
ground-state, rest mass of the most abundant isotope for each element.” (IUPAC forgot to define
what the monoisotopic mass of an atom is, which is somewhat odd, as the molecular formula H1
has a monoisotopic mass using their definition; furthermore, it makes the definition unnecessary
complicated, sacrificing heredity of the property for no reason.) Note that this definition results in
differences to the one above only for few elements relevant for biomolecules (none from Table 7.1)
such as selenium or boron, see Table 7.5. But as soon as you start working with isotope patterns
computationally, you will notice that the IUPAC definition is not helpful at all: Using the IUPAC
definition, the monoisotopic mass is often not the most abundant isotopologue (see below) of the
molecule, it is often not resolved from other isotopologue peaks, and it may be undetectable in
an MS experiment as it has intensity below noise level. In particular, given the experimental
isotope pattern of an unknown molecule, it is generally impossible to determine which of the peaks
corresponds to the monoisotopic peak!1 Using our definition, the monoisotopic mass of a molecule
is always the sum of monoisotopic masses of the atoms; the monoisotopic peak is in all cases the
first peak of the ideal isotope pattern; and, the monoisotopic (isotopologue) peak is always resolved
from all other isotopologue peaks, even at unit mass accuracy. Clearly, the monoisotopic peak of a
molecule may again be undetectable in an MS experiments; this is mainly an issue for molecules
beyond 3000 Da and when “uncommon” elements have to be considered, see Exercise 7.7 and
Section 8.7. In the computational mass spectrometry literature, the difference between the two
definitions is usually ignored, as it is of relevance only if your molecules contain “uncommon’
elements such as selenium or boron; it is implicitly assumed that, say, the monoisotopic mass of
the molecule is the first peak detected in its isotope pattern. According to IUPAC, that is wrong.

It is important to notice that unlike other numbers in this section, abundances of natural iso-
topes are no physical constants: These abundances vary depending on time and place (continent,
planet, solar system) where the sample is taken. In fact, physicists may determine the offspring
of a sample based on its isotope abundances. For example, deuterium (2H) varies in relative
abundance from about 0.012% to 0.016% in non-marine organisms [66]. For computational mass
spectrometry this is usually irrelevant; we just keep in mind that isotope abundances are not
an “exact science” as masses. Regarding the six elements most abundant in living beings, see
Table 7.1 for a detailed list of all natural isotopes and their relative abundance in nature. Isotopes

1There is another noteworthy problem with the IUPAC definition: It is only valid for planet Earth, and might not even
be unambiguous there. But on other planets, moons or asteroids, abundance of isotopes are different. For example,
81Br can easily become monoisotopic instead of 79Br.
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7.1 Isotopes

element (symbol) isotope abundance% mass (Da) atomic weight (Da)
hydrogen (H) 1H 99.988% 1.007825

2H 0.012% 2.014102 1.008
carbon (C) 12C 98.93% 12.0

13C 1.07% 13.003355 12.011
nitrogen (N) 14N 99.636% 14.003074

15N 0.364% 15.001090 14.007
oxygen (O) 16O 99.757% 15.994915

17O 0.038% 16.999131
18O 0.205% 17.999160 15.999

phosphor (P) 31P 100% 30.973762 30.973762
sulfur (S) 32S 94.99% 31.972071

33S 0.75% 32.971459
34S 4.25% 33.967867
36S 0.01% 35.967081 32.06

Table 7.1: Natural isotope abundances: Relative abundance of isotopes and their masses in
Dalton, for the six elements most abundant in biomolecules. Masses are rounded to
six decimal places. In addition, atomic weights of the elements are given.

not listed here have relatively small half-lives and, hence, are not found in nature at significant
levels. At the end of this chapter, Table 7.5 on page 129 provides the same information for “less
frequent” elements. Note that ionic bonds are not stable enough to be seen in MS, and metal
ions may “fall off” the molecule; hence, these are not fully covered in Table 7.5. Exceptions are
organometallics containing covalent metal-carbon bonds, such as organomercury and organotin
compounds which are used as fungicides and antifouling agents and, hence, are important in
environmental analysis [195]. Another exception are coordination complexes such as heme, where
a central atom or ion (an iron ion for heme) is surrounded by an array of ligands. Heme is
sometimes covalently bound to a protein, in which case you may see the Fe ion even in protein
mass spectrometry.

Recall that 1 Dalton is 1/12 of the mass of one atom of the 12C isotope, so

1Dalton≈ 1.660538 ·10−24 g and 1g= NA Dalton

where NA ≈ 6.022141·1023 denotes the Avogadro constant. Also recall that due to nuclear binding
energy, an atoms mass is smaller than sum of masses of the contained protons, neutrons, and
electrons; this is the mass defect. For example, the mass of a protons is 1.00728 Da, the mass of a
neutron 1.00866 Da, and the mass of an electron is about 0.00054 Da. So, 6 protons, 6 neutrons,
and 6 electrons have a total mass of 12.09596 Da whereas the corresponding 12C atom has a mass
of exactly 12 Da, a deviation of about 0.8%. See Table 7.1 above for the masses of isotopes of the
elements most abundant in living beings. Masses are rounded to six decimal places.

The atomic weight of an element is the expected mass (weighted average) over the natural
distribution of isotopes. For example, the average mass of nitrogen is 0.99634 times the mass
of 14N plus 0.00366 times the mass of 15N. See Table 7.1 for atomic weights of elements most
abundant in living beings. Due to the variation of isotope abundances, average masses are no
physical constants and depend on time and place where the measurement is taken. To this end,
atomic weights in Table 7.1 are given with fewer digits.2

2https://www.qmul.ac.uk/sbcs/iupac/AtWt/
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7 Isotope Distributions and Isotope Patterns

A molecule consists of a stable system of two or more atoms. The molecular formula tells us
the number of atoms that compose the molecule, and can be thought of as a compomer over the
set of elements. Molecules with the same atoms in different arrangements are called isomers.
For example, the chemical formula (which we will not use in this textbook, so we do not have to
define it formally) (CH3)3CH implies a chain of three carbon atoms, with the middle carbon atom
bonded to another carbon, and the remaining bonds connected to hydrogen atoms. In comparison,
the molecular formula C4H10 only tells us that the molecule is made up of 10 hydrogen and 4
carbon atoms: A straight line of (single bond) carbon atoms with remaining bonds leading to
hydrogen atoms has identical molecular formula and, hence, is an isomer of the previous molecule.
Molecules can have a net electric charge, that is, more electrons than protons or vice versa, and
such molecules are called ions.

The nominal mass of a molecule is the sum of protons and neutrons of the constituting atoms.
The mass of a molecule is the sum of masses of the atoms it is composed of. Here, a warning seems
to be in place: The energy of a molecule is smaller than the energy of the constituting atoms do to
the chemical bonds and intermolecular bonds in the molecule. According to E = mc2, the mass of
a molecule shows yet another mass defect through its structure, and is slightly smaller than the
mass calculated above. But this mass defect is several orders of magnitude smaller than the atom
mass defect, and can be safely ignored in all of our calculations. So, in a very strict sense, isomers
do not necessarily have identical mass; but they do, as far as we are concerned.

Clearly, the mass and nominal mass of a molecule depend on the isotopes that constitute it.
To this end, the monoisotopic mass of a molecule is the sum of masses of the constituting atoms
where for every element, we choose the monoisotopic isotope. For example, sucrose C12H22O11
has monoisotopic mass 12 ·12.0+22 ·1.007825+11 ·15.994915= 342.116215 Da and monoisotopic
nominal mass 12 ·12+22 ·1+11 ·16 = 342 Da. The molecular weight of a molecule is the sum of
atomic weights of the constituting atoms. (Sigh.) If x is the molecular weight of your molecule in
Dalton, then x g of pure substance contain NA copies of the molecule.

7.2 Isotope distributions and isotope patterns

Mass spectrometry generally cannot detect single molecules but, just like most analysis tech-
niques in life sciences, is dependent on the existence of millions of identical copies of some
molecule. This means that elements follow the natural isotope abundances from the previous
section: Instead of identical copies, we have different isotopologues of a molecule. For example,
12C12

1H22
16O11 and 12C9

13C3
2H22

16O7
17O3

18O1 are two isotopologues of sucrose C12H22O11. The
mass of an isotopologue is the sum of masses of the constituting isotopes. The isotopologue where
each atom is the isotope with the lowest nominal mass is called monoisotopic. See Table 7.2 for
the first eleven isotopologues of sucrose.

The number of distinct isotopologues of a molecule is

number of isotopologues= (iC +1)(iH +1)(iN +1)

(
iO +2

2

)(
iS +3

3

)
(7.1)

where iE denotes the multiplicity of element E in the molecule, E ∈ {C,H,N,O,P,S}. This follows
because for an element E with r natural isotopes, a molecule E l consisting of l atoms of the
element has

(l+r−1
r−1

)
different isotopologues. Note that

(n
0
) = 1 for all n ∈ N. For example, sucrose

has 13 ·23 · (13
2
)= 23322 isotopologues.

Mass spectrometry is often not capable of resolving isotopologues with identical nominal mass;
instead, these isotopologues may appear as one peak in the MS output. Clearly, this depends on
the resolution of the instrument and the analyzed molecule: Analyzing a molecule that contains
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7.2 Isotope distributions and isotope patterns

12C 13C 1H 2H 16O 17O 18O nom. mass mass (Da) abundance (%)
12 0 22 0 11 0 0 342 342.116215 84.9204
11 1 22 0 11 0 0 343 343.119570 11.4384
12 0 22 0 10 1 0 343 343.120431 0.3558
12 0 21 1 11 0 0 343 343.122492 0.2803
12 0 22 0 10 0 1 344 344.120460 1.8727
10 2 22 0 11 0 0 344 344.122925 0.7062
11 1 22 0 10 1 0 344 344.123786 0.0479
11 1 21 1 11 0 0 344 344.124647 0.0007
12 0 22 0 9 2 0 344 344.125847 0.0378
12 0 21 1 10 1 0 344 344.126708 0.0012
12 0 20 2 11 0 0 344 344.128769 0.0004

Table 7.2: Isotopologues of sucrose molecules C12H22O11, sorted by mass. Isotopologues with
nominal mass 345 and above omitted.

sulfur with high-resolution MS, we may see two peaks for monoisotopic nominal mass plus 2. The
same is true for other elements whose isotope mass differences differ significantly from that of
carbon. See Sec. 7.5 for more details. Finally, ultra-high resolution instruments may resolve more
isotopologues. For the moment, we simply ignore this fact.

If the nominal mass of an isotopologue is significantly larger than the monoisotopic nominal
mass, then isotopologues with distinct nominal masses may have almost identical real masses.
Consider the molecular formula C345H344 with nominal monoisotopic mass 4484: the isotopo-
logue 13C345

1H344 has nominal mass 4828 and mass 4832.849275 Da whereas the isotopologue
12C345

2H344 has nominal mass 4827 and mass 4832.851088 Da. But the relative abundance of
these isotopologues is so small that they are not detectable by mass spectrometry: In fact, there
will usually be zero copies of these isotopologues present in our sample, see Exercise 7.1. Hence,
we may safely ignore this subtlety.

We merge isotopologues with identical nominal mass; we refer to the resulting distribution
as the molecule’s isotope distribution (or isotopic distribution). How can we formally model this
isotope distribution? For each element E ∈ Σ we define a discrete random variable, denoted YE,
representing the nominal mass distribution of the element. For example, YC with state space
{12,13} and

P
(
YC = 12

)= 0.98890, P
(
YC = 13

)= 0.01110

is the random variables of carbon, whereas YO with state space {16,17,18} and

P
(
YO = 16

)= 0.99757, P
(
YO = 17

)= 0.00038, P
(
YO = 18

)= 0.00205

is the random variable of oxygen.
Now, the random variable Y of a molecule is the sum of random variables of the atoms

constituting the molecule, where we choose these random variables according to the element of
each atom. Unfortunately, we have to deal with a subtlety in the stochastic notation: We cannot
write YH2O = YH +YH +YO for the isotope distribution of H2O, as this would not result in two
independent random variables for hydrogen but instead, one random variable whose value is
doubled. To this end, we have two go a slightly longer road. We write Y ∼ Y ′ if two random
variables are independent identically distributed. So, P(Y = y) = P(Y ′ = y) holds for all y in the
state space, but Y and Y ′ are independent. Given a molecule consisting of l atoms, we assign to
each atom i a random variable Yi, for i = 1, . . . , l, such that Yi ∼ YE i where E i is the element of
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nominal mass 342 343(+1) 344(+2) 345(+3) 346(+4) 347. . .398
abundance % 84.9204 12.0745 2.6668 0.2976 0.0371 < 0.0001

Table 7.3: Isotope distribution of sucrose C12H22O11 in percent, rounded to four decimal places.

the ith atom. Now we can represent the molecule’s isotope distribution by the random variable
Y :=Y1 + . . .+Yl .

Example 7.1. Consider sucrose with molecular formula C12H22O11. The isotope distribution of
sucrose is the random variable Y =Y1 +·· ·+Y45 where

Yi ∼YC for i = 1, . . . ,12,

Y12+i ∼YH for i = 1, . . . ,22, and

Y34+i ∼YO for i = 1, . . . ,11.

In an ideal mass spectrum, normalized peak intensities correspond to the isotope distribution
of the molecule. For ease of exposition, the peak at monoisotopic mass is also called monoisotopic,
the following peaks are referred to as +1, +2, . . . peaks. (In the literature, these peaks are also
called A+1,A+2, . . . , to distinguish them from charges; but we do not consider charges here.) The
number of non-zero entries in the isotope distribution of a molecule is

number non-zero entries= iC + iH + iN +2iO +3iS +1 (7.2)

where again, iE denotes the multiplicity of element E in the molecule, E ∈ {C,H,N,O,P,S}. Clearly,
this is much less than the number of isotopologues, compare to (7.1): For example, sucrose
C12H22O11 has 12+22+2 ·11+1 = 57 non-zero entries, ranging from nominal mass 342 to 398.
See Table 7.3 for the isotope distribution of sucrose. Put differently, if Y is the random variable
of sucrose, then P(Y = 342) = 0.8492. Peak intensity quickly deteriorate for increasing nominal
mass, and P(Y ≥ 347)< 0.00004.

A perfect mass spectrometry instrument would show individual isotopologue peaks, but the
“imperfection of mass spectrometry” results in +1,+2, . . . isotope peaks that, in fact, are superpo-
sitions of peaks with almost identical mass. We have introduced above a model for the intensity
of the superimposed peak; but what about its mass? It is reasonable to assume that the mass of a
peak in the isotope pattern, is the mean mass of all isotopologues that add to its intensity. We now
formalize this idea: For each element E ∈Σ we define another random variable XE, representing
the mass of the natural isotopes. Random variables XE and YE are correlated: In fact, XE can be
viewed as a function λ of YE and E, XE =λE(YE). For example, XC with state space {12,13.003355}
and

P
(
XC = 12

)= 0.98890, P
(
XC = 13.003355

)= 0.01110

is the random variables of carbon, and we have XC = 12 if and only if YC = 12. Given a molecule
consisting of l atoms, we assign to the ith atom, i = 1, . . . , l, a random variables X i such that
X i ∼ XE i , where E i is the element of the ith atom. Now we can represent the molecule’s mass
distribution by the random variable X := X1 + . . .+ X l . Clearly, X and Y are correlated, where Y
is the isotope distribution of the molecule.

For mass distribution X = X1 + . . .+ X l and isotope distribution Y = Y1 + ·· ·+Yl of a molecule
with elements E1, . . . ,E l and monoisotopic nominal mass N, the mean peak mass mn of the +n
peak can be calculated as:

mn = E(X
∣∣ Y = N +n

)
= ∑∑

i Ni=N+n

P(Y1 = N1, . . . ,Yl = Nl)
P(Y = N +n)

(
λ(N1,E1)+·· ·+λ(Nl ,E l)

) (7.3)
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nominal mass 342 343(+1) 344(+2) 345(+3) 346(+4)
abundance % 84.9204 12.0745 2.6668 0.2976 0.0371

mean peak mass 342.116215 343.119663 344.121254 345.124197 346.126084

Table 7.4: Isotope pattern (isotope distribution and mean peak masses) of sucrose C12H22O11.
Peaks with nominal mass 347, . . . ,398 have abundances of less than 0.01%.

where the sum is taken over all vectors ~N = (N1, . . . , Nl) ∈ Nl satisfying
∑

i Ni = N + n. We refer
to the isotope distribution together with the mean peak masses as the molecule’s isotope pattern.
See Table 7.4 for the isotope pattern of sucrose.

7.3 Simulating isotope patterns

In the following, we will “separate” isotope patterns from the monoisotopic nominal mass of the
molecule: If two molecular formulas differ by a single phosphor atom, then the resulting isotope
patterns are identical, only shifted by the mass of a single phosphor. In other words: It is of no
interest for the isotope pattern what the actual nominal mass N of the molecule is. To this end, we
write nominal masses of isotopes as N +n, corresponding to the +n peak of the isotope pattern.
The monoisotopic peak will also be referred to as “the first non-zero value of the distribution”
because obviously, no isotope can have smaller mass.

We start with the computation of the isotope distribution, as this will be needed to compute
mean peak masses. Let us compute the isotope distribution of sucrose C12H22O11 by hand,
compare to Table 7.3. To do so, we put 100 000 marbles in a bag: 99 988 will be marked “1”
and 12 marbles will be marked “2”. We label the bag with an ‘H’. We prepare a second bag
labeled ‘C’ that contains 9 893 marbles marked “12” and 107 marbles marked “13”. In a third
bag labeled ‘O’ we put 99 757 marbles marked “16”, 38 marbles marked “17”, and 205 marbles
marked “18”. At random, pull a marble from the sack labeled ‘C’, write down the number, put it
back. Repeat 11 more times. Do the same for sack ‘H’ with 22 repetitions, and for the sack ‘O’
with 11 repetitions. Sum up all numbers, record the sum on a second piece of paper. Repeat 10 000
times, count how often you have computed each sum — voilá, you have just simulated an isotope
distribution. Another way to do this is throwing dice, see Fig. 7.1. Obviously, these two methods
are not very efficient3 to simulate isotope distributions, neither by hand nor in the computer:
Doing so is not only time consuming but, even worse, the simulated isotope distribution can still
differ significantly from the distribution you would get for an infinite number of repetitions. Can
we do better?

Computing the complete isotope distribution is somewhat tedious, as there are many intensities
that we compute in vain, see again Table 7.3 where peaks at nominal masses 347 to 398 will not
be detectable in any mass spectrometer. In fact, isotope distributions decrease rapidly for all
molecules over the alphabet of elements CHNOPS. To further substantiate this claim empirically,
we extracted all molecular formulas from the KEGG COMPOUND database [145] (release 42.0)
that have elements CHNOPS and mass below 3000 Da. Among the resulting 11479 molecular
formulas, not a single entry has intensity of the +10 peak larger than 0.007%. Clearly, the
corresponding peak must be lost in the noise of the experimental mass spectrum. We consider
the worst case of a “sulfur-only” molecule in Exercise 7.2.

3Doing these naïve simulations can nevertheless teach you something about the variations of peak intensities you
have to expect in practice, as you are looking at a finite number N of molecules that generated the measured
isotope distribution in the instrument; see also Exercise 7.8.
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7 Isotope Distributions and Isotope Patterns

Figure 7.1: Throwing dice to simulate an isotope distribution, for water H2O (left) and sucrose
C12H22O11 (right). H-dice have two faces, where a ‘1’ is rolled in 99.988% of the cases,
and a ‘2’ in 0.012%. C-dice and O-dice are made analogously, but O-dice have three
faces. The rolled number is found on the face that touches the table, compare to four-
sided dice (tetrahedra, D4) used in role playing games.

The above implies that we can restrict our computations to the first nmax non-zero values of
the distribution, where nmax is a small constant such as nmax = 10. In the following, these nmax
values will be referred to (slightly imprecise) as the isotope distribution.

We begin with “pure” molecular formulas made from a single element, such as H63. Clearly,
such molecular formulas are “unreasonable” as they usually do not correspond to a molecule. But
that should not stop us from calculating the corresponding isotope distribution!

The atoms hydrogen, carbon, and nitrogen have only two natural isotopes. Thus, the isotope
distribution of a molecule E l consisting of l atoms of element E with E ∈ {H,C,N}, follows a
binomial distribution: Let qn denote the probability that E l has nominal mass N + n, where
N is the monoisotopic nominal mass of E l . Then,

qn =
(

l
n

)
pl−n(1− p)n, (7.4)

where p is the relative abundance of the monoisotopic isotope of element E. The values of the qn
can be computed iteratively, since q0 = pl and

qn+1 = l−n
n+1

· 1− p
p

qn for n ≥ 0, (7.5)

thus the total computation time is O(nmax).
Where an element E has r > 2 isotopes (such as oxygen and sulfur), the isotope distribution

of E l can in theory be computed as follows: Let pi for i = 0, . . . , r − 1 denote the probability of
occurrence of the ith isotope. Then, the probability that E l has nominal mass N +n is

qn :=P(E l has nominal mass N +n )=∑(
l

l0, l1, . . . , lr−1

)
·

r−1∏
i=0

pl i
i , (7.6)

where the sum runs over all l0, . . . , lr−1 ≥ 0 satisfying
∑r−1

i=0 l i = l and
∑r−1

i=0 i ·l i = n [131]. The tuples
(l0, . . . , lr−1) satisfying

∑
i ·l i = n are the integer partitions of n into at most r parts. To compute all

partitions, a greedy algorithm with a simple recursion can be employed. However, this approach
faces the problem that the number of summands in (7.6) grows rapidly, at least as a polynomial
in n of degree r−1 [293], and is impractical in application.
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7.3 Simulating isotope patterns

We now present a smarter way to compute the isotope distribution of Ol and Sl . Let Y and Y ′

be two discrete random variables with state spaces Ω,Ω′ ⊆ N. Recall that we can compute the
distribution of the random variables Z :=Y +Y ′ as

P(Z = x)=∑
yP(Y = x− y) ·P(Y ′ = y), (7.7)

compare to (5.3) in Sec. 5.4. If we restrict ourselves to the first nmax non-zero values of this
distribution, we can compute it in O(n2

max) time. We briefly recall the details: Let PY [0. . .nmax−1]
and PY ′[0. . .nmax −1] be the first nmax non-zero values of the distributions of Y and Y ′. Then,

PY [n]=P(Y = N +n) and PY ′[n]=P(Y ′ = N ′+n)

holds for n = 0, . . . ,nmax −1 and some N, N ′ ∈N; furthermore, PY [0] > 0 and PY ′[0] > 0, as well as
P(Y = n)= 0 for n < N and P(Y ′ = n)= 0 for n < N ′. We compute an array PZ[0. . .nmax −1] as

PZ[n]←
nmax−1∑

i=0
PY [n] ·PY ′[n− i] for n = 0, . . . ,nmax −1 (7.8)

and find that PZ[n] = P(Z = N + N ′+ n) for all n = 0, . . . ,nmax −1, as well as P(Z = n) = 0 for all
n < N +N ′, where Z = Y +Y ′. We will below see that (7.8) also allows us to swiftly compute the
isotope distribution of an arbitrary molecular formula.

We can compute the isotope distributions of oxygen Ol and sulfur Sl by iterative convolution:
For example, the isotope distribution of Ol is computed by l times convolving the distribution of
oxygen. This results in O(ln2

max) time for computing the first nmax coefficients of the distribution
of Ol and Sl . Actually, we can do better than that: Russian multiplication4 allows us to compute
the product a ·b of two integers by repeatedly doubling one, halving the other: For example,

133 ·177= 133 ·20 +133 ·24 +133 ·25 +133 ·28

= 133+2128+4256+17024= 23541

as 177= 1+16+32+128= 20 +24 +25 +28. This also works for computing ab:

133177 = 13320 ·13324 ·13325 ·13328 ≈ 8.35 ·10375

Similarly, we can compute the distribution of the random variable Z = Z1+·· ·+Zl where Zi ∼ Z1,
see Alg. 7.1. Limiting ourselves to the first nmax coefficients of the distribution, this results in
running time O(n2

max log l).
But although Alg. 7.1 is quite fast, we can do better, using a simple trick: We shift these

computations into the preprocessing phase, storing results in memory. For that, we have to
choose some fixed L, and store isotope distributions for Ol and Sl where l = 1, . . . ,L. This results in
O(nmaxL) memory for every element. Note that L is small in application: For example, 256 oxygen
atoms already have mass of about 4096 Da, most likely exceeding the relevant mass range.

Assume you want to compute the isotope distribution of some molecular formula EL′ but have
only stored the isotope distributions of molecular formulas E l for l = 1, . . . ,L, where L < L′. In
this case, we rely as much as possible on what we have previously computed, and use a modified
version of the Russian folding algorithm for the rest. The somewhat obvious Alg. 7.3 can be found
at the end of this chapter.

Now, the algorithm for computing the actual isotope pattern of an arbitrary molecular formula,
becomes rather trivial, see Alg. 7.2: For molecules consisting of different elements, we first

4Also known as smart Russian multiplication, Russian peasant multiplication, ancient Egyptian multiplication, or
Egyptian multiplication.
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7 Isotope Distributions and Isotope Patterns

1: function SMARTRUSSIAN(isotope distribution P, integer l)
2: isotope distributions Q =Q[0. . .nmax −1] and Q′ =Q′[0. . .nmax −1]
3: Q[0]← 1, Q[i]← 0 for i = 1, . . . ,nmax −1
4: Q′ ← P
5: while l > 0 do
6: if l is odd then
7: Convolve Q and Q′, store result in Q
8: end if
9: Convolve Q′ and Q′, store result in Q′

10: l ←bl/2c
11: end while
12: return isotope distribution Q
13: end function

Algorithm 7.1: Smart Russian algorithm for computing the isotope distribution of Ol and Sl , as
well as other elements with three or more natural isotopes.

1: function ISOTOPEDISTRIBUTION(molecular formula CiCHiHNiNOiOPiPSiS)
2: distribution Q := PH[iH]
3: Fold Q and PC[iC], store result in Q
4: Fold Q and PN[iN], store result in Q
5: Fold Q and PO[iO], store result in Q
6: Fold Q and PS[iS], store result in Q
7: return isotope distribution Q
8: end function

Algorithm 7.2: Compute the isotope distribution of an arbitrary molecular formula with iE atoms
of element E, over the alphabet CHNOPS of elements. We assume that isotope distribution PE[i]
for molecular formula E l for all CHNOS have been precomputed.

compute or look up the isotope distributions of the individual elements. Then, we combine these
distributions by convolution in O(|Σ| · n2

max) time. There, we assume that isotope distribution
have been precomputed for all elements E ∈ CHNOS. Alternatively, these distributions can be
computed on the fly for E ∈ {C,H,N} using (7.5). Also, we can use Alg. 7.3 instead of directly
assessing the pre-computed distributions; we refrained from doing so solely for readability. Case
closed.

We now come to the more challenging problem of efficiently computing the mean peak masses
of a distribution. Doing so using the definition mn = E(X | Y = N + n) is highly inefficient,
because we have to sum up over all isotopologues. Pruning strategies have been developed to
speed up computation [309], but pruning leads to a loss of accuracy [245]. We now present a
simple recurrence for computing these masses analogous to the convolution of distributions: Let
Y = Y1 +·· ·+Yl and Y ′ = Y ′

1 +·· ·+Y ′
L be isotope distributions of two molecules with monoisotopic

nominal masses N and N ′, respectively. Let pn := P(Y = N + n) and qn := P(Y ′ = N ′+ n) denote
the corresponding probabilities, mn and m′

n the mean peak masses of the +n peaks. Consider the
random variable Z =Y +Y ′ with monoisotopic nominal mass N +N ′.

Theorem 2. The mean peak mass Mn of the +n peak of the isotope pattern for random variable
Z =Y +Y ′ can be computed as:

Mn = 1∑n
j=0 p j qn− j

·
n∑

j=0
p j qn− j

(
m j +m′

n− j

)
. (7.9)
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The mean peak masses Mn must not be mixed up with the precursor mass M from Chapter 2.
Note that

∑n
j=0 p j qn− j = P(Z = N + N ′ + n). Since by independence, P(Y1 = N1, . . . ,Yl = Nl) =∏

iP(Yi = Ni), the theorem follows by rearranging summands. A formal proof can be found in
Sec. 7.8.

The theorem allows us to “convolve” mean peak masses of two distributions to compute the
mean peak masses of their sum. This implies that we can compute mean peak masses as
efficiently as the distribution itself.

7.4 Faster approximation by the Fast Fourier Transform

This is work in progress!

The following is slightly more mathematical than the rest of this section. (I hope that I got all
the math details right, I am not an expert in Fourier theory.) What we want to do, is to further
speed up computations of the previous section for simulating an isotope pattern. It turns out
that this is indeed possible, with some elegant mathematical theory. Unfortunately, the impact in
application is rather limited, resulting in a speedup of at most two-fold for small molecules and
peptides.

The convolution theorem tells us that a convolution of functions in the time domain corresponds
to a multiplication of functions in the frequency domain, and vice versa: Formally, given integrable
functions f , g with Fourier transforms f̂ , ĝ, then the convolution

h(x)=
∫ ∞

−∞
f (y)g(x− y)d y

has Fourier transform
ĥ(ξ)= f̂ (ξ) · ĝ(ξ).

Formally, if F denotes the Fourier transform operator, then

F
{
f ∗ g

}=F { f } ·F {g}

where “∗” denotes the convolution operator and “·” denotes the point-wise multiplication. There
exist four variants of the Fourier transform, where time and frequency domain can be either
discrete or continuous.

For us, the interesting variant is the discrete Fourier transform, where both time and frequency
domain are discretized: We transform a sequence of N complex numbers x0, . . . , xN−1 into another
sequence of complex numbers X0, . . . , XN−1 through

Xk =
N−1∑
n=0

xn ·exp
(−2π i

N kn
)= N−1∑

n=0
xn ·

(
cos(2πkn/N)− i ·sin(2πkn/N)

)
.

We can think of the xn as samples of the underlying periodic function f ; the discrete time Fourier
transform of such a function is periodic, and the Xn are samples of one cycle.

Note that both xn and Xn are complex; but if the xn are real-valued, as will be the case here,
then Xk = X∗

N−k where x∗ = a−b·i is the complex conjugate of a complex number x = a+b·i, a,b ∈R;
see Fig. 7.2. This means that we have to store only the complex numbers X0, . . . , XN/2 (assuming
for simplicity that N is even), so the discrete Fourier transform of N real-valued numbers are
again N real-valued numbers. Recall that the product of two complex numbers a+ i ·b and c+ i ·d
for a,b, c,d ∈R is simply (ac−bd)+ i · (ad+bc). Here, i =p−1 is the imaginary unit.
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7 Isotope Distributions and Isotope Patterns

Figure 7.2: Complex conjugates by xkcd (https://xkcd.com/849/). Remember, if x = a+b · i then
x · x∗ = a2 +b2 where a,b ∈R.

Now, the important point is that the convolution theorem still holds for discrete time and fre-
quency domain: If X0, . . . , XN−1 are the discrete Fourier transform of x0, . . . , xN−1 and Y0, . . . ,YN−1
are the discrete Fourier transform of y0, . . . , yN−1, then xxx

[TODO: FFF]
Fast Fourier Transform (FFT) [TODO: FFF]
The nice point is that we do the same for expected masses of the isotope pattern: [TODO:

FFF]
Be warned that implementing the FFT can easily result in numerical instabilities; you should

rely on an existing implementation that avoids such instabilities.
Unfortunately, the above computations are only an approximation of the true numbers: Above,

we have — explicitly or implicitly — assumed that the signal (the isotope distribution) is periodic,
which is not the case. We have done so because the Fourier transform of a non-periodic discrete
signal is continuous, and we do not want to multiply continuous functions in our computations for
sure. This is a common trick also used, say, in image compression, and results in block boundary
artifacts if you use high compression rates. Similarly, the discrete Fourier transform will “carry
over” all parts of the isotope pattern which requires indices N and beyond: This part of the isotope
pattern cannot “get lost” as it should be, but rather increases, say, the monoisotopic peak. To this
end, N must be chosen sufficiently large, and in particular larger than nmax, which is the number
of isotope peaks we are interested in. Since the isotope distribution of any molecular formula is
quickly vanishing, this is usually not a problem in application; in fact, you can push N so that
other sources of numerical errors take over, see Sec. 14.3. Remember that all computations carried
out in a computer, are only an approximation of the real thing. . .

Was it all worth it? For simplicity, let us concentrate on the simulation of isotope distributions
(without expected peak masses). On the theoretical side, we have done a wonderful job: Instead of
running time O(ln2

max) for convolving the isotope distributions of the l = |Σ| elements, we now have
running time O(lnmax +nmax lognmax) where lnmax is for the convolution part and nmax lognmax
corresponds to the FFT. Note that x j = exp( j log(x)) can be computed in O(1) time, and that we
assume that the Fourier transforms of each element’s isotope distribution was computed and
stored during preprocessing. With that, we only need a single FFT at the end of our computations.

In practice, computing and storing Fourier transforms of each element’s isotope distribution
is necessary for all elements including hydrogen and carbon, as we cannot use the “binomial
distribution trick” from (7.5). But then, we still have to compute x j where j is the number of
elements; to avoid the Θ(log j) multiplications required for this computation, we instead store
the FFTs for each element and each multiplicity, up to some upper limit. (Using equality
x j = exp( j log(x)) is worse in practice for reasonable j, as it requires calling the time-expensive
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7.5 Sulfur and other mavericks

exponential and logarithm function.) Doing so, we again need just a single FFT at the end of our
computations.

Now, was it worth the effort in practice? We first consider small molecules and peptides; let us
consider a reasonable nmax such as nmax = 7, so we are interested in eight values of the isotope
distribution. Each convolution of isotope distributions requires 8·9

2 = 36 multiplications using the
naïve approach. In comparison, we now have to multiply four complex numbers (recall Xk =
X∗

N−k) what corresponds to 16 real-valued multiplications. To this end, we have roughly doubled
the speed of the algorithm, ignoring overhead such as applying the final FFT. This comes at the
price that we should choose N slightly larger than nmax, and that our computations are only an
approximation, though probably a highly accurate one. If simulating isotope patterns is the time-
critical step in your analysis pipeline, you will indeed see running time improvement of up to
factor 2 in practice. Seen the other way around, you can avoid the Fourier transform overhead5 at
the cost of roughly doubled running times.

What about proteins? Here, the FFT approach can result in massive improvements in running
time, as we are substituting a linear term by its logarithm. Unfortunately, simulating the isotope
pattern of a large protein (where the speedup will be most dramatic) is an intellectual finger
exercise with basically no practical relevance, as we will see in Sec. 7.6. Hence, it does not seem
worthwhile to simulate the isotope pattern of a protein beyond 20 000, maybe 30 000 Dalton. For
proteins below this threshold, it will depend on your application how much you can speed up
computations by switching to the frequency domain.

7.5 Sulfur and other mavericks

What is so special about sulfur, that we have to treat it different than the other elements? First,
look at mass differences of isotopes: The mass difference µ(13C)−µ(12C)= 1.003355 is larger than
one, so the isotope peaks of a carbon molecule are farther to the “right” than nominal masses
suggest. In contrast, µ(34S)−µ(32S) = 1.995796, so isotope peaks of a sulfur molecule are farther
to the “left” than nominal masses suggest. But nitrogen and even hydrogen also show strong
deviations in the mass difference of isotopes, and we do not treat them separately. So, what is
special about sulfur?

The answer is somewhat more subtle: Our assumption that an isotope peak is a superposition of
all isotopologues with identical nominal mass, only holds if mass differences between subsequent
isotopologues is small, or if intensities of outlier isotopologues are very small.

See Table 7.2 for the isotopologue of sucrose: There are seven isotopologues with nominal mass
344, ranging in mass from 344.120460 to 344.128769, an interval of 0.008309 Da width. But the
mass difference between any two subsequent isotopologues is much smaller, namely 0.002465 at
maximum. This mass difference is below 1 ppm, and even though resolving peaks is a matter
of resolution and not of mass accuracy, it should be easy to believe that such peaks can easily
“smear” into a single peak in a mass spectrum.

Now, let us the gedankenexperiment that the molecular formula contains an additional sulfur
with nominal mass 32 — what are the resulting isotopologues with nominal mass 344+32= 376?
The isotopologue that use the 32S sulfur isotope, are the same as those displayed in Table 7.2,
only shifted by 31.972071, and range from 376.092531 to 376.100840. The 33S isotope of sulfur
will result in several additional isotopologues of low intensity, that we may ignore. But the 34S
isotope of sulfur results in a single isotopologue with mass 376.084082, at distance 0.008449 Da
to the closest isotopologue.

5One may argue that using the Fourier transform makes the code for simulating isotope patterns simpler and easier to
read; personally, I do not think that directly computing a convolution via (7.8) and (7.9) is particularly complicated,
either. Be reminded that you should not try to implement the Fast Fourier Transform yourself.
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7 Isotope Distributions and Isotope Patterns

What this means in practice is that we can sometimes observe two +2 peaks, where one
corresponds to the isotopologue with a single 34S, and the other one corresponds to all other
isotopologue with this nominal mass. If the resolution of the instrument gets better, you might
observe even more peaks in the experimental isotope pattern.

There are two possibilities how to deal with this anomaly in practice: First, we can “calculate it
away”. Consider the sample spectrum: If m,m′ are peak masses and h,h′ intensities with identical
nominal mass, we can replace them by a single peak with mass hm+h′m′/(h+h′) and intensity
h+ h′. This approach has the advantage that it works out of the box; it has the disadvantage
that we are sacrificing information. I would argue that the amount of lost information is rather
small: We will be able to identify molecular formulas with sulfur also from the shifted +2 peak;
but beyond that, not much more can be learned from the split peak.

Second, we can integrate the instrument parameter “resolution” into our calculations. From
a computational perspective, this is possible without increasing running times too much, see
Exercise 7.12. But on a conceptual level, it is somewhat more complicated which peaks we merge
and which peaks we do not: Assume that peaks a and b have mass difference such that the
resolution parameter tells us to merge these two; assume further that peaks b and c have such
mass difference, too. Now, if we first merge peaks a and b, the resulting peak a+b may have mass
difference to c such that our resolution parameter tells us not to merge a+b and c. In contrast, if
we start merging b+c, we might not merge a and b+c. I do not know if there is a general applicable
procedure which produces an unambiguous result, allows for a swift implementation and produces
substantially better results, to justify the overhead. You may instead directly choose to simulate
isotopologue patterns, see Sec. 7.7.

7.6 Isotope patterns of peptides and proteins

The obvious way to compute the isotope pattern of a peptide, is to first compute its molecular
formula, then to simulate the isotope pattern using the methods from Sec. 7.3. An alternative
approach is to precompute isotope patterns for each amino acid (with multiplicities), then to fold
these isotope patterns according to their frequency in the peptide. But this is advantageous only
if the peptide contains at most five different amino acids; otherwise, the detour over the molecular
formula is faster.

Different from metabolites, there is less information we can gain from the experimental
isotope pattern of a peptide: Isotope patterns of sufficiently large peptides often look mostly
indistinguishable, see below for a detailed discussion. To this end, some authors have defined the
averagine amino acid, for example C4.9384H7.7583N1.3577O1.4773S0.0417 from [267]. This averagine
has monoisotopic mass 111.054306; if you have observed an unknown peptide with monoisotopic
mass m, you can estimate that an average peptide has 4.9384α carbon, 7.7583α hydrogen,
1.3577α nitrogen, 1.4773α oxygen and 0.0417α sulfur, where α= m/111.054306. You first choose
CNOS, round appropriately and “fill up” the molecular formula with hydrogen so that at least
the nominal mass of the peptide fits. Alternatively, you can use the Fast Fourier Transform from
Sec. 7.4 which allows non-integer number of elements; but the results will probably be mostly
indistinguishable.

From the above, it is understood that the isotope pattern does not allow us to determine the
number of amino acids de novo, see also Sec. 8.6. But simulating isotope patterns of peptides may
nevertheless be useful: For example, when doing database search we have an extremely restricted
set of candidates (thousands or ten thousand candidates), and many of these candidates will have
a theoretical isotope pattern which is very different from the experimental one. Here, integrating
the isotope pattern similarity into the overall candidate score may help us to rule out certain
candidates which would not be possible using tandem MS data alone. Furthermore, one piece of
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Figure 7.3: Top: Simulated isotope pattern of Galectin C1343H2039N367O397S10 (blue) vs. normal
distribution with µ = 29998.508 and σ2 = 21.028431 (red), normalized to maximum
intensity 100 %. Lines included for better readability; this is not a mass spectrum
where, on a high-resolution instrument, separate peaks will be recorded. The isotope
distribution is slightly skewed but otherwise, the fit is of high quality. Bottom, left:
Simulated isotope patterns of Galectin and “Microtubule-associated protein RP/EB
family member 1” C1343H2039N367O397S10. Bottom, right: Absolute differences of the
two protein isotope distributions, using rounded masses.

information may be extracted from the isotope pattern without the need of a database lookup:
Sulfur atoms will usually result in notably different isotope patterns for peptides, see Sec. 7.5.
To this end, one may determine the combined number of cysteine/methionine residues from the
isotope pattern of a peptide. Similarly, isotope patterns will come handy when you are analyzing
data from isotopic labeling experiments: You may, for example, grow bacteria on “all 13C” medium.
If some molecule is made from carbon which in part follows the natural isotope distribution and
in part is “all 13C”, it will clearly affect its isotope pattern; hence, you can recover the fractions
of labeled carbons from there, see also Exercise 7.11. I assume that numerous other applications
exist where isotope patterns can give useful information about peptides.

For proteins up to, say, 30 000 Da, simulating isotope patterns can also be helpful, as long as
you have a reasonably small number of hypotheses about the protein identity. (An extreme case
with substantial changes in the isotope pattern are hemoproteins measured with or without the
iron ion in the coordination complex; clearly, this also changes the mass of the protein.) But for
larger proteins with identical molecular weight, the central limit theorem will make sure that
their isotope distributions look practically indistinguishable: This theorem states that the sum
of independent random variables tends toward a normal distribution (certain restrictions apply).
Do not get me wrong here: I do not propose to use the normal distribution to simulate the isotope
pattern; what I am saying is that for large proteins, the resulting isotope distribution will look
“mostly normal” and, hence, does not contain much information about the identity of the protein.
See Fig. 7.3. Clearly, we do not have to simulate the isotope distribution to estimate its central
moments: In details, the variance of independent random variables is just the sum of variances
of the random variables, and the same holds true for the skewness.

In reality, the situation is even worse: With the exeption of cysteine/methionine, amino acid
residues have “rather similar” molecular formulas, compare to the averagine introduced above.
Two randomly chosen proteins with similar molecular weight will therefor also have similar
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7 Isotope Distributions and Isotope Patterns

molecular formulas: For example, the randomly picked proteins6 Galectin and “Microtubule-
associated protein RP/EB family member 1” have molecular formulas C1343H2039N367O397S10
and C1340H2099N355O408S9, respectively; the intersection of these molecular formulas is
C1340H2039N355O397S9 whereas the molecular formula difference is a mere C3H-60N12O-11S1.
Hence, the resulting isotope distributions are more similar to one another than to the normal
distribution, see again Fig. 7.3. Notably, the monoisotopic masses of the two proteins are very
different (29979.785 Da vs. 29980.190 Da, 13 ppm mass difference) but the same is true for the
molecular weight (29998.508 Da vs. 29998.799 Da, 10 ppm weight difference). To this end, the
isotope pattern will not give you substantially more information than the monoisotopic mass.
As always, these statements hold in general: It is easy to come up with examples where the
isotope patterns of two large proteins are easily distinguishable, such as one protein with many
cysteine/methionine and one protein without; compare to the “sweet spot” discussion of Sec. 8.6
below.

Unfortunately, there is yet another issue when simulating isotope patterns of large proteins:
Whereas masses of isotopes are physical constants, we noted above that natural abundances of
these isotopes are not. They vary not only if we go to other planets or moons; even on earth,
differences can be substantial, for example between marine and land organisms and, in particular,
for hydrogen. In fact, isotope abundances can differ between two compound class (sugars, lipids)
in the same organism. This has no dramatic effect on the isotope patterns of small molecules or
peptides, but I would argue that it renders a simulated isotope pattern of a large protein mostly
useless; in fact, both the molecular weight and the mode of the isotope distribution can shift by
many Dalton if your protein gets large enough. To this end, you might have to first determine the
ratios of natural isotopes in the sample at hand and, potentially, even for each compound class
you are interested in.

7.7 Simulating isotopologues

This is work in progress!

7.8 Formal proof of the folding theorem

For the sake of completeness, we now provide a formal proof of Theorem 2. In fact, this proof is
very simple. Readers not interested in the formal details can safely skip this section.

Let ~N = (N1, . . . , Nl) ∈ Nl and ~N ′ = (N ′
1, . . . , N ′

L) ∈ NL be vectors of nominal masses. We denote∑ ~N := ∑l
i=1 Ni and

∑ ~N ′ := ∑L
i=1 N ′

i. Let ~Y := (Y1, . . . ,Yl) and ~Y ′ := (Y ′
1, . . . ,Y ′

L) be vectors of the
input random variables, and note that

P(~Y = ~N, ~Y ′ = ~N ′)=P(~Y = ~N)P(~Y ′ = ~N ′)

due to the independence of the underlying random variables. Finally, we set λ(~N) =∑l
i=1λE i (Ni)

and analogously define λ(~N ′).
We can rewrite (7.3) for the mass of the +n peak as

P(Z = N +N ′+n) ·Mn = ∑
∑ ~N+∑ ~N ′=N+N ′+n

P(~Y = ~N, ~Y ′ = ~N ′) · (λ(~N)+λ(~N ′)
)
.

6Taken from UniProt, https://www.uniprot.org/, query “mass [sic] between 29999 and 30001 Da”.
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We observe that we can split this formula into two independent sums of the form∑
∑ ~N+∑ ~N ′=N+N ′+n

P(~Y = ~N, ~Y ′ = ~N ′) ·λ(~N) (7.10)

and a second summand where λ(~N) is replaced by λ(~N ′); we concentrate on (7.10) in the following.
Now, ∑

∑ ~N+∑ ~N ′=N+N ′+n

P(~Y = ~N, ~Y ′ = ~N ′) ·λ(~N)

=
n∑

j=0

∑
∑ ~N=N+ j

∑
∑ ~N ′=N ′+n− j

P(~Y = ~N)P(~Y ′ = ~N ′) ·λ(~N)

=
n∑

j=0

∑
∑ ~N=N+ j

P(~Y = ~N) ·λ(~N)
∑

∑ ~N ′=N ′+n− j

P(~Y ′ = ~N ′)

=
n∑

j=0

∑
∑ ~N=N+ j

P(~Y = ~N) ·λ(~N) ·P(Y ′
1 +·· ·+Y ′

L = N ′+n− j)

=
n∑

j=0
P(Y ′ = N ′+n− j)

∑
∑ ~N=N+ j

P(~Y = ~N) ·λ(~N)

=
n∑

j=0
qn− j p jm j

where the last equality follows from the definition of m j,

m j = 1
p j

∑
∑ ~N=N+ j

P(~Y = ~N) ·λ(~N).

Analogously, we can show that

∑
∑ ~N+∑ ~N ′=N+N ′+n

P(~Y = ~N, ~Y ′ = ~N ′) ·λ(~N ′)=
n∑

j=0
qn− j p jm′

j.

This concludes the proof of the theorem.

7.9 Historical notes and further reading

I sincerely hope that nobody feels hurt by the name of the smart convolution algorithm. Calling
someone “smart” should not be an issue, but political correctness can drive strange blooms.7

The formalism and methods presented in this chapter follow the paper of Böcker, Letzel, Lipták,
and Pervukhin [33], but note that some variable names have been changed: Here, we use n, N for
the nominal masses of the molecule, whereas k is the size of the alphabet.

Early computational approaches for simulating isotope distributions were presented by Yergey
[309] and Hsu [131]. In 1991, Kubinyi [165] suggested to compute isotope distributions by
convolving isotope distributions of “hyperatoms” using, in principle, the smart Russian algorithm
from Alg. 7.1.

7I was once accused of being rude and insensitive because I used the German term “Milchmädchenrechnung” in a
talk, which roughly translates to “back-of-the-envelope calculation” and literally means “milkmaid calculation”.
(According to Wikipedia, the German term is either from the fable “La Laitiére et le Pot au Lait” by Jean de La
Fontaine, or the historic person Anna Schnasing, who happened to become a Direktrice in accounting for the dairy
C. Bolle in Berlin around 1885.) Personally, I still find the German term much more beautiful, so I better be careful
here.
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7 Isotope Distributions and Isotope Patterns

In the literature on simulating isotope distributions and patterns, one can find many contribu-
tions by Alan L. Rockwood, for example using the Fourier transform to speed up computations
[240, 242, 243]. Rockwood et al. [244] suggested to use mean peak masses as the masses of isotope
peaks. Later, Rockwood et al. [245] presented some validation of this hypothesis, as well as an
algorithm for computing mean peak masses, which is more complicated and less efficient than
the algorithm from Sec. 7.3. In 2006, Rockwood and Haimi [241] and Böcker, Letzel, Lipták, and
Pervukhin [31] independently came up with the algorithm presented in Sec. 7.3.

We have seen in Chapter 2 that we often record the fragmentation pattern of a molecule, to
obtain additional information about its structure. Usually, only the monoisotopic peak is selected
for fragmentation, to simplify the interpretation of the fragmentation spectra. But what if we
select, say, the monoisotopic and the +1 peak for simultaneous fragmentation? Obviously, the
isotope distribution of fragments is not the isotope distribution of a “regular” molecule. Somewhat
surprisingly, it is not too complicated to simulate these isotope distributions, see Rockwood,
Kushnir, and Nelson [244] and Exercise 7.13. On the downside, simulating such truncated isotope
distributions requires considerably more time than the algorithms from Sec. 7.3. In contrast,
if one opens the precursor mass window wide enough so that all “important” isotope peaks
are selected for fragmentation, then isotope distributions of fragments will follow the isotope
distribution as defined in Sec. 7.2. But this will increase the chance that besides the isotope peak
of the molecule of interest, other molecules may “sneak” into the fragmentation process.

Masses of isotopes are taken the paper of Audi et al. [8] and rounded to six decimal places; the
most current numbers can be found in Wang et al. [299]. Isotope abundances and atomic weight
(average masses) taken from the paper of de Laeter et al. [66]. See de Laeter et al. [66] for the
history of atomic-weight determination.

The masses given in this chapter are not meant for the use in computer programs, but rather
for the human reader. This will only become an issue if you want to analyze spectra with
mass accuracy below 1 ppm; but it is nevertheless a good idea to make your computations “as
accurate as possible”. You can download masses with higher mass accuracy from the Internet.8

Computations in this chapter use masses from Table 7.1; in contrast, Table 2.1 has been computed
using masses with higher accuracy. For example, a cysteine residue has mass 103.009184
according to Table 2.1, whereas C3H5N1O1S1 has mass 103.009185 according to Table 7.1.

See Table 7.5 for isotope masses of elements less abundant in biomolecules: Halogens fluorine
and chlorine are relatively common in small molecules, whereas iodine and bromine are less
common. Selenium is part of the (uncommon but proteinogenic) amino acid selenocysteine; more
than 50 human proteins are known that contain selenium [249]. Some metals such as copper
or iron do not form covalent bonds in small molecules and, hence, will not be measured together
with the molecule [195]. But for heme and other coordination complexes, the metal atom or ion
can be measured together with the compound; I have included iron in Table 7.5 for heme and
hemoproteins. Mercury and tin form covalent bonds in certain organometallic compounds, such
as antifouling agents or fungicides [195]; I did not include them in the table, as you will not find
many such compounds in any structure database. Sodium (Na) is included as it can form adduct
ions such as [M+Na]+ with the molecule M; the same holds true for potassium (K). Tungsten (W)
is only present in this table because it is the heaviest element known to be biologically functional
(essential for some archaea) and since its isotope pattern is rather special.

8http://amdc.impcas.ac.cn/, http://amdc.impcas.ac.cn/masstables/Ame2016/mass16.txt
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7.9 Historical notes and further reading

element (symbol) AN isotope abundance% mass (Da) av. mass (Da)
boron (B) 5 10B 19.9∗% 10.012937

11B 80.1∗% 11.009305 10.811
fluorine (F) 9 18F 100% 18.000938 18.000938

sodium (Na) 11 23Na 100% 22.989769 22.989769
silicon (Si) 14 28Si 92.223% 27.976927

29Si 4.685% 28.976495
30Si 3.092% 29.973770 28.0855

chlorine (Cl) 17 35C 75.76% 34.968853
37C 24.24% 36.965903 35.453

potassium (K) 19 39K 93.258% 38.963707
41K 6.730% 40.961826 39.0983

iron (Fe) 26 54Fe 5.845% 53.939611
56Fe 91.754% 55.934937
57Fe 2.119% 56.935394
58Fe 0.282% 57.933276 55.845

selenium (Se) 34 74Se 0.89% 73.922476
76Se 9.37% 75.919214
77Se 7.63% 76.919914
78Se 23.77% 77.917309
80Se 49.61% 79.916521
82Se 8.73% 81.916699 78.96

bromine (Br) 35 79Br 50.69% 78.918337
81Br 49.31% 80.916291 79.90

iodine (I) 53 127I 100% 126.904473 126.904473
tungsten (W) 74 180W 0.12% 179.946704

182W 26.50% 181.948204
183W 14.31% 182.950223
184W 30.64% 183.950931
186W 28.43% 185.954364 183.84

Table 7.5: Natural isotope abundances of elements less frequent in biomolecules. ‘AN’ is atomic
number. Masses rounded to six decimal places. *Distribution of boron shows a strong
variation, depending on where the sample is taken. Remember not to use these
numbers in your programs.
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7 Isotope Distributions and Isotope Patterns

1: function DISTRIBUTION(array P of isotope distributions, integer l)
2: isotope distributions Q =Q[0. . .nmax −1] and Q′ =Q′[0. . .nmax −1]
3: if l ≤ L then
4: return isotope distribution P[l]
5: end if
6: i ←bl/Lc; l′ ← l− iL
7: Q ← P[l′]
8: Q′ ← P[L]
9: while i > 0 do

10: if i is odd then
11: Convolve Q and Q′, store result in Q
12: end if
13: Convolve Q′ and Q′, store result in Q′

14: i ←bi/2c
15: end while
16: return isotope distribution Q
17: end function

Algorithm 7.3: What to do when too many guests arrive: Computing the isotope distribution of
E l for l > L. The two-dimensional array P has been computed during preprocessing. Here, P[l] is
the isotope distribution for molecular formula E l , for l = 1, . . . ,L. Each distribution P[l] consists
of nmax entries P[l,0], . . . ,P[l,nmax −1]. Convolve isotope distributions using (7.8).

7.10 Exercises

7.1 Consider the isotopologues 13C345
1H344 and 12C345

2H344 for molecular formula C345H344.
What is the probability of these two isotopologues? How many isotopologues will be present
if you have 1 kg of pure substance?

7.2 Imagine a “sulfur-only” molecule — how large does this molecule have to be, so that the
+10 has intensity of more the 1%? This can be seen as a worst-case scenario. For
your computation, assume that sulfur has only two isotopes, namely nominal mass 34
with relative abundance 1− p = 0.0425, and nominal mass 32 with relative abundance p.
Estimate the required number of sulfur atoms using (7.4). Be reminded that the heavier
isotope of sulfur has nominal mass 34, not 33.

7.3 Write a program to simulate the isotope distribution of an arbitrary molecular formula over
the elements CHNOPS. Compute the isotope distribution of sucrose, and verify your result
using Table 7.3.

7.4 Verify your calculations from Exercise 7.2 using the program from Exercise 7.3.

7.5 We noted above that among all entries in the KEGG COMPOUND database (release 42.0)
with elements CHNOPS and mass below 3000 Da, not a single molecule has intensity of the
+10 peak larger than 0.007%. But that version of the database is totally outdated by now
— possibly, there are new molecular formulas in the current release that have +10 peaks of
higher intensities?

7.6 In Alg. 7.1 (the smart Russian convolution) you can get rid of two convolutions — how?

7.7 How many atoms of any element from CHNOPS are needed so that the +1 peak is more
intense than the monoisotopic peak? For example, for C93 the relative intensity of the
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7.10 Exercises

monoisotopic is 36.77%, and 36.99% for the +1 peak. How many atoms are needed to that
the monoisotopic peak has less than 5 % intensity of the +1 peak?

7.8 In the mass spectrometry instrument, we do record only a finite number of molecules
resulting in the observed isotope distribution; whereas in our calculations, we basically
assumed an infinite number. Let us put some rigor in here: Assume that we have measured
exactly N molecules, and we want to know what measures we can expect for the +k peak.
Show how to estimate the median, quantiles, standard deviation or any other statistics you
can think of for the observed intensity of the +k peak. Hint: They can be found in Wikipedia
and any statistics textbook, but you first have to simulate the “ideal” isotope distribution.

7.9 A peptide s ∈Σ∗ is said to be pure if it is made from repetitions of a single amino acid, s = xl

for some x ∈ Σ. Find the pure peptide with intensity of the +10 peak larger than 1% such
that µ(s) is minimum, over elements CHNOPS and CHNOPSBFClI.

7.10 Let s ∈ Σ∗ be any peptide with intensity of the +10 peak larger than 1% such that µ(s) is
minimum. This peptide is not necessarily pure. Argue why its mass will be close to the mass
calculated in the previous exercise.

7.11 Assume an isotopic labeling experiments where parts of the carbon in each molecule has
been replaced by “all 13C”. Let h1, . . . ,hk be the isotope intensities measured by the
instrument of the query molecule with known molecular formula over l elements. Show
how to estimate the enrichment ratio in O(k) time if your data was ideal. (Hint: This is a
very simple computation.) Why should you not use this method in practice? The number
may nevertheless serve as a start for a subsequent, more robust estimation procedure.

7.12? Given two sorted lists corresponding to sets A,B ⊆R. Give an algorithm that computes the
sorted list for set C := {a+b : a ∈ A,b ∈ B} in time O(|A| · |B|). You may assume that all a+b
are different (in which case |C| = |A| · |B|), or take into account in your algorithm that some
elements might be identical.

7.13? Assume that not only the monoisotopic peak is picked for fragmentation, but also +1 and
+2 peaks. Now, fragments will show a truncated isotope pattern, which is obviously not
the full isotope pattern. Let fp, f be the molecular formulas of the precursor molecule and
the fragment, and choose f ′ such that f + f ′ = fp. (Here, f ′ is the neutral loss, compare
to Chapter 9.) Let Y ,Y ′, Z be the random variables for f , f ′, fp, and let N, N ′, Np be the
corresponding nominal masses. Assume we have picked peaks 0, . . . ,nmax − 1 from the
precursor isotope distribution, or a subset thereof. Then, we can limit our calculations to the
first nmax peaks of the truncated fragment distributions — explain why. We define a matrix
C[0. . .nmax −1,0. . .nmax −1] by

C[i, j] :=P(Y = N + i) ·P(Y ′ = N ′+ j).

Then, P(Z = Np + n) = ∑n
j=0 C[ j,n − j] holds. Describe an algorithm that computes the

truncated isotope distribution of fragment f using matrix C and the above equation.

7.14?Try to estimate the abundances of CHNOPS from some database for peptide mass spectra.

7.15 Describe an algorithm that convolves two lists of isotopologues.
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8 Decomposing Isotope Patterns

“When you hear hoofbeats, think of horses not zebras.” (Theodore Woodward)

ASSUME that we have measured an isotope pattern, and we want to find those molecular
formulas that show the highest similarity the measured pattern, over some fixed alphabet of

elements. Note that the formal definition of “isotope pattern” is, to a certain extent, depending on
the application and the used MS technique, see Sec. 7.2 and 7.5. Unfortunately, decomposing an
isotope pattern is a somewhat ill-post problem, and we are not aware of any practical approaches
that directly address this problem. Instead, we circumvent the problem, similar to the two-step
strategy proposed in Sec. 2.8: First, we filter the set of molecular formulas to a manageable subset,
using only one or few features of isotope patterns, in particular the monoisotopic mass. This
leaves us with a set of candidate molecular formulas. The first step is not meant to differentiate
between the candidates; its only purpose is to quickly generate a candidate set of manageable
size. In the next step, we evaluate the candidates using the isotope patterns: As we now have a
candidate molecular formula, it is an easy task to simulate the corresponding isotope pattern
using methods from Sec. 7.3, and to compare the simulated isotope pattern against the the
measured one, comparable to a database search. The candidate with the best match against
the measured isotope pattern is the output of our method, and hopefully the correct answer.

Our input is a list of masses M0, . . . , Mnmax with intensities h0, . . . ,hnmax . We assume that these
have been extracted from a mass spectrum in a preprocessing step, and that they correspond to
the isotope pattern of a single sample molecule. Separating isotope peaks that belong to different
molecules is trivial for most cases. Our goal is to find the molecular formula whose isotope pattern
best matches the input. Given a molecular formula candidate, we can predict its spectrum with
masses m0, . . . ,mnmax and intensities g0, . . . , gnmax as described in the previous chapter.

Even though MS instruments record ions, we will sometimes consider neutral molecules in our
presentation. This simplifies matters, but does not restrict the method in any way.

What about peptides, that is, decomposing over the alphabet of amino acids? As we will see in
Sec. 8.6, it is not a clever idea to decompose over this alphabet directly. The amino acid alphabet
is simply too large, leading to a huge number of decompositions with identical molecular formula
and, hence, identical simulated isotope patterns. In contrast, one can directly decompose over
small alphabets: For glycans, we can often assume a small alphabet with only three or four simple
sugars, see Chapter 11.

8.1 Decomposing real numbers

We now come back to the problem of decomposing a real number, namely, the monoisotopic
mass M0. In Chapter 3 we have seen how to efficiently decompose integers, and we want to utilize
these methods to do the same thing for real numbers. When decomposing real numbers, we have
to take into account the inaccuracy of MS measurements: We want to find all molecular fomulas
with monoisotopic mass in the interval

[
l′,u′]⊆R where l′ := M0−ε (lower bound) and u′ := M0+ε

(upper bound) for some measurement inaccuracy ε. Formally, we search for all solutions of the
equation

µ′(c) := a′
1c1 +a′

2c2 +·· ·+a′
ncn ∈ [

l′,u′] , (8.1)
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Figure 8.1: Decomposing isotope patters using a two-step approach: First, molecular formulas are
filtered using the monoisotopic mass of the molecule. Second, candidate molecular
formulas are filtered using the full isotope pattern. Figure taken from [257].

where a′
1, . . . ,a′

n are the real-valued monoisotopic masses of elements. We search for all com-
pomers c = (c1, . . . , cn) satisfying (8.1) or, equivalently, µ′(c) ∈ [

l′,u′]. Searching for compomers
c with µ′(c) = M0 does not make sense in the real-valued setting: This set is practically always
empty. Again, we may assume a′

1 < a′
2 < ·· · < a′

n.

A straightforward solution to this problem, is to enumerate all vectors c with c1 = 0 and∑
j a′

j c j ≤ u′, and next to test if there is some c1 ≥ 0 such that
∑

j a′
j c j ∈

[
l′,u′]. For readability,

we will omit the limits of the sum in case these limits are obvious: Here, j = 1, . . . ,k. We can do
so by nesting |Σ| −1 FOR-loops. An algorithm that works for an alphabet of arbitrary size, and
avoids the nasty nesting, is given in Alg. 8.1. This results in Θ(M0

k−1) running time, which is
acceptable in applications if you want to decompose only a few numbers. But often, you want to
use the decomposition algorithm as a subroutine of a larger algorithm, see for example Chapters 9
and 11. Then, this subroutine might be executed thousands of times. Here, improving the running
time from one second to one millisecond, will have a large impact on the overall running time of
the algorithm.

Another approach is to compute all potential decompositions up to some upper bound U during
preprocessing, sort them with respect to mass and use binary search; this results in Θ(Uk) space
requirement, but only requires k logU time for searching, using binary search. Both presented
approaches are unfavorable in theoretical complexity as well as in practice: For the elements
CHNOPS there exist more than 7 · 109 molecular formulas with mass below 1500 Da. It is
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8.1 Decomposing real numbers

1: procedure FINDALLNAIVE(real-valued lower bound l′, upper bound u′)
2: compomer c ← 0
3: mass M ← 0
4: integer i ← 1 . to get the following loop started
5: while i ≤ k do
6: for c1 ←

⌈
l′−M

a′
1

⌉
, . . . ,

⌊
u′−M

a′
1

⌋
do . this loop may be empty

7: Output c
8: end for
9: M ← M+a′

2; c2 ← c2 +1; i ← 2
10: while M > u′ and i ≤ k do
11: M ← M− cia′

i; ci ← 0 . clear less significant “digits”
12: i ← i+1 . increase next “digit”
13: if i ≤ k then
14: M ← M+a′

i; ci ← ci +1
15: end if
16: end while
17: end while
18: end procedure

Algorithm 8.1: Naïve but, at least, iterative algorithm for enumerating all compomers c with
µ′(c) ∈ [

l′,u′]. Constants a′
1, . . . ,a′

k are the real-valued masses.

somewhat strange to dedicate many Gigabytes of memory to a subroutine, when the same problem
can be solved with about one Megabyte.

The above estimates are for the CHNOPS alphabet of elements: We are facing a combinatorial
explosion if we add only two or three more elements. Table 7.5 on page 129 lists several
“uncommon” elements that, depending on the application you have in mind, have to be added
to the alphabet: For example, you should consider halogens such as chlorine or bromine as part of
your alphabet if you are analyzing pharmaceutical small molecules.

In the remainder of this section, we transform the enumeration problem with real-valued
masses into a problem instance with integer masses. We already noted that we can transform real-
valued masses to integer masses by multiplying all masses with a large constant, and rounding
the results. We now formalize this idea: Choose a blowup factor b ∈ R, we round coefficients
by bbxc, where b·c denotes the floor function for rounding down. Blowup factor b corresponds to
precision 1/b of our calculations. This precision 1/b is merely a parameter of the decomposition
algorithm, and independent of the measurement mass accuracy ε. We will discuss selecting a
“good” blowup factor in the next section.

We transform all real-valued masses a′
1, . . . ,a′

k into integer masses ai := ⌊
ba′

i
⌋
, and we also

calculate integer bounds l := ⌊
l′
⌋

and u := ⌊
u′⌋. We want to find all compomers c with µ(c) ∈ [l,u]

over the integer alphabet Σ= {a1, . . . ,ak}, where µ(c) :=∑
j c ja j denotes the weighting function for

integer weights. This can be achieved by iterating over M = l, . . . ,u, and enumerating all c with
µ(c)= M for each M. In Sec. 3.5 and 3.6, we have presented methods for efficiently doing so.

Does this already solve our problem? Unfortunately, no: certain solutions c of the integer mass
instance are no solutions of the real-valued mass instance, and vice versa. In other words, there
might be compomers c with integer mass µ(c) ∈ [l,u] but real-valued mass µ′(c) ∉ [

l′,u′]. These are
false positive solutions, as we would wrongly report them when solving the integer instance. We
can easily sort out false positive solutions by checking (8.1) for every decomposition c, resulting
in additional running time for computing some integer decompositions “in vain”. On the other
hand, there might be compomers c with integer mass µ(c) ∉ [l,u] but real-valued mass µ′(c) ∈
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8 Decomposing Isotope Patterns

[
l′,u′]. These are false negative solutions as we would wrongly omit them when solving the integer

instance. We now concentrate on the more intriguing problem of false negative solutions.
For the upper bound, we want to show that µ′(c)≤ u′ implies µ(c)≤ u: This follows because∑

j
c ja j =

∑
j

⌊
c ja j

⌋≤∑
j

c jba′
j = b

∑
j

c ja′
j ≤ bu′

and, as
∑

j c ja j is integer, µ(c)=∑
j c ja j ≤

⌊
bu′⌋= u. This means that we do not have to change the

upper bound u, as we will never miss a real-world decomposition of (8.1) here. On the other hand,
we have to decrease the integer lower bound l to guarantee the same thing: We define relative
rounding errors

∆ j =∆ j(b) := ba′
j−

⌊
ba′

j

⌋
a′

j
= b−

⌊
ba′

j

⌋
a′

j
for j = 1, . . . ,k, (8.2)

and note that 0≤∆ j < 1
a′

j
. Let ∆=∆(b) :=max j{∆ j}. We claim:

∑
j a′

j c j ≥ l′ implies
∑

j a j c j ≥ bl′−∆l′ (8.3)

So, assume that
∑

j a′
j c j ≥ l′ holds. Our claim follows from

∑
j a j c j =

∑
j ba′

j c j −
∑

j

(
ba′

j −a j

)
c j

= b
∑

j a′
j c j −

∑
j

(
ba′

j −
⌊
ba′

j

⌋)
c j

≥ bl′−∑
j

(
ba′

j −
⌊
ba′

j

⌋)
c j

= bl′−∑
j

ba′
j−

⌊
ba′

j

⌋
a′

j
a′

j c j

= bl′−∑
j∆ ja′

j c j

≥ bl′−∆∑
j a′

j c j

≥ bl′−∆l′.

This implies that we can use l := ⌈
bl′−∆l′

⌉
as the lower bound of the integer decomposition

instance.
Alg. 8.2 shows how to decompose a real-valued mass. Line 8 of the algorithm assures that we

will never output any false positives, and Eq. (8.3) guarantees that this algorithm will never miss
a decomposition.

Can we save some time by slightly increasing the new lower bound
⌈
bl′+∆l′

⌉
? It turns out

that this is not possible, as the new lower bound is tight: That is, no larger bound can be chosen
without missing some real-valued decompositions. Precisely speaking, given an arbitrary real-
valued alphabet, we can find an infinite number of compomers c and lower bounds l′ such that
µ′(c) ≥ l′ (true decomposition for real-valued masses) but µ(c) = ⌈

bl′+∆l′
⌉
. To show this, assume

that ∆ = ∆ j for some element E with index j. Consider the decomposition c = q · e j for some
integer q > 0. Recall that e j = (0, . . . ,0,1,0, . . . ,0) denotes the jth unit vector that has all-zero
entries, except for the jth entry, which equals one. If we set the lower bound of our decomposition
as l′ := µ′(c) = qa′

j then c is part of the output. To ensure this, l ≤ µ(c) = qa j must hold. We
calculate

bl′− l ≥ bqa′
j − qa j = q ·

(
ba′

j −
⌊
ba′

j

⌋)
= qa′

j
ba′

j−
⌊
ba′

j

⌋
a′

j
= qa′

j∆ j = l′∆.

Hence, l ≤ bl′−∆l′ and, as l is integer, l ≤ ⌊
bl′−∆l′

⌋
as claimed.

As indicated, increasing the upper bound forces us to decompose a larger number of integer
masses: Without rounding correction we have to decompose about (u′− l′)b integer masses, but
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8.2 Good choices for the blowup factor

1: procedure FINDALL(real-valued lower bound l′, upper bound u′)
2: a j :=

⌊
ba′

j

⌋
for j = 1, . . . ,k

3: l := ⌈
bl′−∆l′

⌉
4: u := ⌊

bu′⌋ . increased bound, to avoid false negatives
5: for M = l, . . . ,u do
6: Enumerate all compomers c with µ(c)= M over the alphabet a1, . . . ,ak
7: for each compomer c with µ(c)= M do
8: if µ′(c)≥ l′ and µ′(c)≤ u′ then . remove false positives
9: Output c

10: end if
11: end for
12: end for
13: end procedure

Algorithm 8.2: Smart algorithm for enumerating all compomers c with µ′(c) ∈ [
l′,u′]. Constants

a′
1, . . . ,a′

k are the real-valued masses. Blowup factor b is a constant, and ∆ is computed from (8.2).
The integer masses a1, . . . ,ak are also constant, and line 2 is only meant to remind the reader of
their definition.

rounding correction forces us to decompose an additional ∆l′ integer masses, independent of the
interval size u′− l′. (For readability, we have ignored the effect of rounding when estimating these
numbers, as this has a negligible impact.) This appears to be somewhat unfortunate: Even if
δ is very small, the number of integers we have to decompose is linear in the mass M0 of the
measurement. But we should keep in mind that mass accuracy gets worse with increasing mass,
and is measured as a relative value such as α = 10 ppm = 10−5, see Sec. 4.5. So, the absolute
accuracy is itself a linear function in M0, ε(M0) :=α ·M0. The number of integer masses we have
to decompose, then becomes roughly (2αb+∆)M0. Also, be reminded that the running time for
decomposing integer masses (Algorithm 3.4) is dominated by the number of decompositions of
these integers, and not by the number of integers itself.

Example 8.1. Consider the weighted alphabet of elements Σ = CHNOPS and blowup factor b =
104. Using masses from Table 7.1, we compute

∆C(b)= 0 ∆H(b)= 0.2481 ∆N(b)= 0.0528

∆O(b)= 0.0094 ∆P(b)= 0.0200 ∆S(b)= 0.0222

where ∆x(b) denotes the relative rounding error of character x ∈ Σ. So, ∆(b) = ∆H(b) =
0.25/1.007825 = 0.2481. Assume that we want to decompose the real-valued mass M0 = 1000.
Then, we have to decompose an additional 248 integers, independent of the mass accuracy. For
mass accuracy 10 ppm we have ε = 0.01 and u′− l′ = 0.02. In total, we have to decompose 449
integer masses, instead of 201 without correction.

8.2 Good choices for the blowup factor

Algorithm 8.2 tells us how to decompose any interval of real numbers; the only parameter of this
approach that we have not considered, is the blowup factor b. Be reminded that independent of
the choice of b, Algorithm 8.2 will never miss a molecular formulas, or produce a false positive.
In application, you would choose b “reasonable”: It should not be too small, taking into account
the anticipated mass accuracy of the instrument. Otherwise, many integer decompositions will
be computed in vain, and have to be discarded by line 8 of the algorithm. On the other hand, it
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8 Decomposing Isotope Patterns

should not be too large: Even though computers have Gigabytes of memory these days, accessing
this memory is significantly slower than accessing the processor cache, just like accessing the hard
disk is significantly slower than accessing the internal memory. In application, a comparatively
small b appears to be a good choice, so that the Extended Residue Table of Algorithm 3.4 uses less
than one Megabyte of memory; recall that the size of this table is O(k

⌊
ba′

1
⌋
).

We will now look at “good choices” for parameter b: Such blowup factors will result in a small
quotient ∆(b)/b of additional integers we have to decompose. Note that we write ∆(b) here, to
stress that ∆ actually depends on the chosen blowup. We have to decompose a total of (2αb+
∆(b))M0 integer masses, and ∆(b)M0 of these are decomposed because of our rounding technique.
We want to minimize the relative number of integers that have to be decomposed in addition,
being

∆(b)M0(
2αb+∆(b)

)
M0

= ∆(b)
2αb+∆(b)

, (8.4)

and this number is minimum if ∆(b)/b is minimum. You can easily see this if you try to maximize
the (multiplicative) inverse of (8.4). See, for example, Example 8.1: Choosing b = 104 seems to be
a bad idea as ∆H À∆x for x ∈ {C,N,O,P,S}.

Suppose that memory considerations imply a maximum blowup factor of B ∈R. We want to find
b ∈ (0,B] such that ∆(b)/b is minimized. We think of ∆ j :R→R as a function of b,

∆ j(b)= b− 1
a′

j

⌊
ba′

j

⌋
,

for all j = 1, . . . ,k. Each ∆ j is a piecewise linear function with discontinuities 1
a′

j
, 2

a′
j
, . . . ,

ba′
jBc

a′
j

. In

every interval, this function has slope 1. Next, we set ϕ1 ≡ ∆1 and for j ≥ 2, we define ϕ j as the
maximum of ϕ j−1 and ∆ j. Each ϕ j is a piecewise linear function; and ∆≡ϕk is a piecewise linear
function with O

(
(a′

1 + ·· · + a′
k)B

)
discontinuities. For every piecewise linear part I ⊆ R of ∆ the

minimum of ∆(b)
b must be located at one of the terminal points. We sweep over the discontinuities

from left to right, and for each discontinuity b, we calculate all ∆ j(b) and ∆(b). See Dührkop et al.
[73] for details, and Table 2 there for all locally optimal blowup factors.

It turns out that 1182.7510330, 5963.3376861 and 44770.6721964 are very good blowup factors,
for the alphabets of elements CHNOPS and CHNOPSClBrI, as these blowups are locally optimal
in both cases. In practice, blowup b = 5963.3376861 appears to give a good balance between saving
memory — what speeds up computations as we can store all tables in the processor cache — and
generating not too many decompositions “in vain” [73].

Example 8.2. Consider the weighted alphabet of elements Σ = CHNOPS and blowup factor b =
5963.3376861. Using masses from Table 7.1, we compute:

∆C(b)= 0 ∆H(b)= 0.0008 ∆N(b)= 0.0042

∆O(b)= 0.0050 ∆P(b)= 0.0001 ∆S(b)= 0.0080

So, ∆(b) = ∆S = 0.0080, compare to Example 8.1. For mass 1000 we have to decompose an
additional 8 integer masses.

8.3 Scoring isotope patterns

Now that we have filtered down to a few (possibly, still tens of thousands of) molecular formulas,
we have to rank them. We can think of this as searching in a database, see Chapter 4 and in
particular Sec. 4.8. Certain aspects should be considered in our scoring, though:
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8.3 Scoring isotope patterns

• Different from matching general spectra, isotope patterns are rater boring with respect
to the presence or absence of certain peaks: Any isotope pattern is a string of peaks at
about one Dalton distance. Matching peak pairs between query and reference spectrum is
basically trivial.

• The much bigger problem is to identify an isotope pattern in, say, an LC-MS run. In
particular, it is non-trivial to detect the low-intensity peaks in the isotope pattern.

• We have a clear idea of peak intensities. All peaks correspond, chemically speaking, to
the same molecule; to this end, there should be no intensity variation through ionization
preferrences.

• All peaks are very close to each other. We can locally correct for “mass shifts”.

• We have some chemical understanding of which candidates are “somewhat unlikely” and
should be penalized, see Sec. 8.4 below.

We mostly use the ideas of Sec. 4.8 to build a scoring for isotope patterns. We only slightly
modify the scoring, as suggested in Sec. 4.10. Recall that the score presented there is based on
computing the likelihood of the data. We will instead use Bayes rule and rank our candidates by
posterior probability P(Mi|D,B),

P(Mi|D)= P(Mi) ·P(D|Mi)∑
iP(Mi|B)P(D|Mi,B)

(8.5)

where D is the data (the measured spectrum), Mi are the models (the candidate molecular
formulas). The prior probability P(Mi) is coverred in Sec. sec:chemical-knowledge; for the
moment, we may assume a flat prior. Eq. (8.5) allows us to compute the probability of each model
(given the data), using the probability of the data, given each model. It turns out that we do not
have to compute the probability of the data, as

P(D)=∑
i
P(Mi)P(D|Mi),

so it is sufficient to normalize probabilities P(Mi)·P(D|Mi) to one. We now iterate over all models,
and concentrate on a particular model M as our candidate molecular formula.

As peak picking may not pick the complete isotope pattern, we score only those peaks that were
detected in the query spectrum, and we do not penalize missing peaks. We also do not penalize
additional peaks, as these must be contaminants and can safely be ignored.

Compared to Sec. 4.8, we make the following modification when scoring peak masses. Recall
that the mass accuracy α of the instrument is given as a parameter, such as α = 10 ppm = 10−5.
We assume some standard deviation of for peak masses such as σmass := 1

3αM0, assuming that
more than 99.7% of measurements fall into the specified mass range. We may also take into
account that small peaks usually have worse mass accuracy then high-intensity peaks, using an
individual mass accuracy for each peak that depends on the intensity of the corresponding peak;
we omit the details. For the mass of the monoisotopic peak, we calcaculate the probability that
the mass difference is at least this large, as in Sec. 4.5:

P(M0|m0)= erfc
( |M0 −m0|p

2σmass

)
= 2p

2π

∫ ∞

z
e−t2/2dt (8.6)

with z := |M0−m0|
σmass

. For the following peaks, we can eliminate the mass bias: We do not compare
masses of the +1,+2, . . . peaks directly but instead, we compare the difference to the monoisotopic
peak, M j −M0 vs. m j −m0:

P(M j|m j)= erfc
( ∣∣M j −M0 −m j +m0

∣∣
p

2σ′
mass

)
(8.7)
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8 Decomposing Isotope Patterns

for j = 1, . . . ,nmax. Recall from Exercise 4.8 that from a mathematical standpoint, we would have
to assume an increased standard deviation of σ′

mass =
p

2σmass; but from an MS perspective, it
makes more sense to use a substantially smaller standard deviation σ′

mass < σmass, as we have
removed the bias part of the mass error. Stochastically speaking, our assumption of independence
between peak masses has become more realistic through removing the mass deviation bias.

Compared to Sections 4.6 and 4.8, we make the following modification when scoring peak
intensities. Firstly, we truncate the isotope pattern of the candidate to the same length as the
query isotope pattern. The other peaks of the query isotope pattern might get lost due to a
multitude of reasons which we cannot control. We have seen that isotope distributions tend to
“deteriorate quickly”, see for example Table 7.3 on page 116. Second, we normalize intensities
in both the query and the reference mass spectrum: Absolute intensities correspond to the
abundance of the molecule, its ionization potential, other molecules in the sample etc, all of which
we have no knowledge about. There exist three possibilities to normalize intensities: We can
normalize such that (i) maxi hi = 1, (ii) h0 = 1, or (iii)

∑
i hi = 1; analogously for the theoretical

spectrum g. We stress that g has to be normalized at this point although it corresponds to a
(isotope) distribution, because we have truncated peaks at the end. Normalizing the sum agrees
with our intuition that this is a distribution which, by definition, sums up to one. On the other
hand, one wrongly measured peak intensity will result in all other peak intensities wobbling. In
practice, it appears that normalizing the first peak works better [76]. Böcker et al. [33] suggested
to also incorporate the theoretical intensity of the “first missing peak”, but practical issues with
peak detection methods speak against doing so.

8.4 Integrating chemical knowledge

Before we start, a word of warning: Prior for integrating background knowledge should be handled
with extreme care, see Chapter 12.

We will now take another look at the molecular formulas we are generating: These, after all,
should correspond to some molecules. Be reminded that we generate all molecular formulas, and
do not only consider those present in some database. First, let us consider the molecule graph
corresponding to the molecule’s structure: This is an undirected graph where nodes are labeled
with elements, and multiple edges may exists between two nodes to indicate the bond order of the
covalent bonds. This graph should be connected, corresponding to a molecule where all atoms are
connected by covalent bonds. The element by which a node is labeled, determines the degree of the
node: This is called the valence of the element. In fact, the term “valence” is somewhat ambiguous
and the truth is more complicated; but for us, it serves as a useful concept to filter out “impossible”
molecular formulas. In organic compounds, carbon has valence 4, hydrogen valence 1, and oxygen
valence 2. Unfortunately, many elements do not have a single valence: Nitrogen has valence 3
in organic compounds, but can also have valence 5; phosphorus has valence 3 or 5; and sulphur
has valence 2, 4 or 6. But even carbon sometimes has a non-standard (“abnormal”) valence, see
Table 2 in [298].

For a graph to be connected, it must have at least n−1 edges to connect the n nodes; a connected
graph with exactly n−1 edges and n nodes is a tree. Furthermore, each edge connects exactly two
nodes. For molecule graphs, this inspired the definition of the Ring Double Bond Equivalent
(RDBE) value [63],

RDBE= 1+ 1
2

∑
i

(vali ci −2)

where vali is the minimum valence (lowest valence state) of element #i. This number was
meant to count the number of rings and double bonds in a molecule; unfortunately, this is not
true. As some atoms can form more covalent bonds than indicated by the minimum valence,
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8.4 Integrating chemical knowledge

some molecules will have a negative RDBE: For example, Methylenebis(pentafluorosulfur) with
molecular formula CH2F10S2 has RDBE −4, as it comprises sulphur at a valence state of six [162].
Fractional (non-integer) RDBE values correspond to radicals, which are chemically unstable and,
hence, unlike to be observed in our sample. To this end, it has been suggested repeatedly in the
literature to discard all molecular formula candidates which have fractional or negative RDBE.
This is often referred to as “Senior’s rules” or “Senior’s theorem” [266]. Note that the RDBE
changes through ionization; in particular, a single-charged protonized ion has RDBE x− 1

2 where
x is the RDBE of the corresponding molecule.

But should we indeed discard molecular formula candidates, as suggested above? I would argue
that this is not necessary. Radicals will be observed rarely in MS experiments.1 But their mass,
isotope pattern and fragmentation spectrum (see Chapter 9) will be very different from that of any
non-radical molecule. To this end, candidate molecular formulas of radicals will rarely (if ever)
be ranked high if we have experimental data from a non-radical molecule. Instead of discarding
the candidate, we may rather penalize a non-integer RDBE in our candidate scoring. Similarly,
we should only discard candidate molecular formulas with negative RDBE* when the RDBE* has
been calculated using the maximum valence of all elements; again, we can penalize candidates if
the minimum valence-based RDBE is negative. Biomolecules (“molecules of biological interest”)
with negative RDBE are rare, but they exist: For example, about 0.16% of substances in the
KEGG COMPOUND database [145] (release 42.0) violate this rule.

Are there further conciderations on what molecular formulas are “chemically impossible”? Kind
and Fiehn [162] presented six “rules” to discard molecular formulas which are very different from
what we expect to see in biomolecules (the seventh rule considers the measured isotope pattern of
the molecule). These “rules” are based on statistical observations and the distribution of certain
values in biomolecule databases: For example, how many nitrogen atoms does a biomolecule
with mass below 500 Da have? What is the hydrogen-to-carbon ratio biomolecules? But in every
filtering step, we discard some molecular formulas which correspond to known biomolecules. To
this end, it again is more appealing to penalize “strange” candidate molecular formulas, instead
of discarding them.

A word of warning on bad priors: We cannot use the empirical distributions of, say, the
hydrogen-to-carbon ratio directly, to compute a sensible prior probability. These empirical
distributions only describe what is found in some molecule databases. There is no information
on how frequently each molecular formula is found in an MS experiment; in particular, there is
no information about the experiment that you are analyzing. It might be that certain hydrogen-
to-carbon ratios are quite common in the database, whereas the corresponding molecules are
extremely rare in experiments. It might also be that you are experimentally looking at a particular
class of biomolecules that has hydrogen-to-carbon ratios quite different from what you find in
databases. To this end, you should never give a bonus for a “good-looking” molecular formula, and
indeed restrict yourself to penalizing those that are outliers. See Chapter 12 for more details on
this subject.

Böcker and Dührkop [26] introduced several elaborate priors to penalize outlier molecular
formulas; but Dührkop [72] later showed that only two priors are needed to reach a good
separation: One prior is based on RDBE, the other on the ration of carbon atoms to atoms which
are not carbon, hydrogen or oxygen. Even better separation was reached with a linear Support
Vector Machine, trained with molecular formulas from biomolecules as positive training examples
and random molecular formulas as negative training examples [72].

1There is the additional complication of intrinsically charged molecules which can be observed in mass spectrometry
without having to ionize them; for such molecules, the RDBE will be integer, incorrectly suggesting an ionized
radical. Unfortunately, I am still unsure if intrinsically charged molecules (integer RDBE, odd charge) even exist
— some chemists say yes, some say no. . .
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Figure 8.2: Number of decompositions over the alphabet of elements CHNOPS. Numbers for bins
of width 0.001 Da, corresponding to absolute mass accuracy 0.0005 Da. True number
of decompositions γ(M) and approximation (8.8). The number of decompositions is
varying strongly, so we use “superbins” of width one Dalton and display minimum
and maximum in each superbin. As shown in the inlay, γ(M) varies with a periodic
function of period roughly 1 Da.

Whatever you decide to penalize outlier molecular formulas, it makes sense to keep a
“whitelist”: Those are molecular formulas which you (and your priors) assume to be outliers, but
corresponding molecules are frequently observed in experiments. For example, C10HF19O2 does
not look like a reasonable molecular formula for a biomolecule, neither to me nor to the machine
learning approach mentioned above; but this is the molecular formula of perfluorodecanoic acid,
which is a solvent commonly used in certain metabolomics experiments.

8.5 On the number of molecular formulas over CHNOPS

In Chapter 3, we have described how to approximate the number of decompositions over an integer
alphabet [15]. We use this to approximate the number of molecular formulas over the elements
CHNOPS: We multiply all masses with a large blowup factor b and round. (Since we are free
to choose a blowup factor, we can make sure that the integer masses of elements have greatest
common divisor one.) Assuming that we have measured a peak with mass M, then the number of
decompositions in the interval [M, M+ε] for mass accuracy 1

2ε is

γ(M,ε)≈ 3.10657 ·10−9εM5 +8.22867 ·10−7εM4 +8.05088 ·10−5εM3. (8.8)

Empirically, we can simply count the number of decompositions over CHNOPS. We have plotted
the number of decompositions over the alphabet of elements CHNOPS in Fig. 8.2. We observe a
periodic variation of the number of decompositions; but different from numbers for amino acids
(see below), the variation is relatively small. In particular, the number of decompositions changes
only slightly when we move from one bin to the next; furthermore, Eq. (8.8) is an accurate
approximation of the true number. We attribute this “non-combinatorial behaviour” (compare to
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8.6 Decomposing amino acids

Fig. 8.3) to the fact that hydrogen with mass almost one is present in the weighted alphabet.
We have deliberately not filtered molecular fomulas (Sec. 8.4) as this might again introduce
unpleasent combinatorial effects.

The lesson to be learned from the above is simple: Even if we have an excellent MS instrument
with mass accuracy 1 ppm or below (recall the difference between “anecdotal mass accuracy” [314]
and everyday mass accuracy), the number of decompositions becomes large as masses exceed
1000 Da — even for the small alphabet of elements CHNOPS. This means that we cannot
hope to recover the correct molecular formula from monoisotopic mass alone. In their 2006
paper “Metabolomic database annotations via query of elemental compositions: Mass accuracy
is insufficient even at less than 1 ppm”, Kind and Fiehn [161] also consider chemical restrictions
and find — well, pretty much what the title suggests.

8.6 Decomposing amino acids

Let us consider the task of finding all amino acid compomers for a given mass. The first and
potentially most important observation here, is that the number of decompositions will quickly
explode. Even if we have an instrument with ideal mass accuracy, we cannot tell apart certain
compomers over the amino acid alphabet.2 This goes beyond the obvious leucine/isoleucine
ambiguity mentioned before: For example, µ′(AD) = µ′(EG), µ′(AG) = µ′(Q), and µ′(GG) = µ′(N)
for amino acid residues alanine A, aspartic acid D, glutamic acid E, glycine G, asparagine N,
and glutamine Q. These amino acid strings have identical molecular formulas, and so do the
corresponding peptides (add H2O). Consider mass 840.347442 that may be decomposed into three
Q and four N, we can replace each Q by AD and each N by GG, resulting in 20 decompositions
with identical molecular formula and, hence, identical mass. The problem becomes even more
pronounced on “real-world” instruments which cannot have ideal mass accuracy.

We can also argue from an empirical perspective: Fig. 8.3 shows the number of decompositions
over the amino acid alphabet, where leucine and isoleucine are treated as a single character.
This chart was computed using recurrence (3.2) from page 45, and calculations were carried out
with accuracy 10−3 Da: Real-valued masses were multiplied by 103, rounded, and used as integer
masses for the recurrence. The number of decompositions varies strongly, and if we would plot
the resulting numbers directly, you would be unable to see a thing in the figure.3 To this end, we
binned numbers of decompositions once more, this time into “superbins” of width 1 Dalton, each
containing 1000 values; for each superbin, we report the minimum, mean, and maximum number
of decompositions of any mass in the bin. Note the logarithmic scale for the y-axis: For very
large masses, the number of decompositions can be approximated by a polynomial of degree 18,
compare to (8.8). Still, the growth is sub-exponential, as can be seen in the figure: An exponential
growth would correspond to a straight line. If we would plot these numbers using a regular scale,
this would result in a rather boring plot: Compared to the largest numbers reported (around 107),
numbers below 105 would be almost indistinguishable from zero.

We can learn three things from Fig. 8.3: Firstly, the number of decompositions is relatively
small (always less than 1000 decompositions for every 0.001 Dalton bin) for masses below 1000
Dalton. Second, the number of decompositions “explodes” beyond 2000 Da, where we already have
to consider 100000 decompositions on average. This is mostly independent of the mass accuracy
of the instrument. Third, combinatorial effects are still huge at 2500 Da, and the number of
decompositions is practically impossible to approximate. In particular, there exist “sweet spots”

2Remember that this is not true, as structure determines energy and, hence, mass; also remember that the mass
accuracy required to distinguish structures with identical molecular formula, is far beyond what mass spectrometry
will reach in the next decades.

3That is not entirely true; the resulting plot is in fact very interesting and even somewhat beautiful, see Exercise 8.6.

143



8 Decomposing Isotope Patterns

           1

         100

       10000

     1000000

   100000000

 500  1000  1500  2000  2500

n
u

m
b

er
 o

f 
d

ec
o

m
p

o
si

ti
o

n
s

mass [Da]

maximum
mean

minimum

Figure 8.3: Number of amino acid decompositions with mass M. Leucine and isoleucine are
treated as a single character. Numbers for bins of width 0.001 Da, corresponding to
absolute mass accuracy 0.0005 Da. The number of decompositions is varying strongly,
so we use “superbins” of width one Dalton, and only display maximum, mean, and
minimum in each superbin. Note the logarithmic y-axis; values of zero are not shown
in the plot.

beyond 1500 Dalton where we find no or few decomposition, although the average number of
decompositions is already 10000 and higher.

In case you nevertheless want to decompose over the alphabet of amino acids, you might want
use a two-step approach: First, you decompose the molecular formula, what is relatively easy
as the alphabet of elements is restricted to CHNOS. You can then identify the best molecular
formula candidates (you should probably not restrict yourselve to only one candidate) using, say,
the isotope pattern of the peptide. Third, you “decompose the molecular formula”: Böcker and
Pervukhin [28] show how we can modify our decomposition methods for this purpose. It should
be noted that running time is not the limiting factor, as decompositions can usually be computed
in less than 0.001 seconds for peptides below 2000 Dalton [28]. But the question is: What do
we do with the resulting amino acid decompositions? If we are unlucky, there exist hundreds
of amino acid compomers with identical molecular formula and identical isotope pattern; these
decompositions correspond to an even bigger number of amino acid strings. . .

8.7 Decomposing average masses

We come back to the problem of generating molecular formula candidates; but this time, we
assume that the monoisotopic peak is lost. This can happen if the molecular formula contains
elements that are not frequent in biomolecules, see Table 7.5. For example, the amino acid
selenocysteine C3H7NO2Se1 has a monoisotopic peak with relative intensity

0.98933 ·0.999887 ·0.99636 ·0.997572 ·0.0089≈ 0.0085.
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8.8 Detour: Smarter rounding

Clearly, this peak with relative intensity below 1 % is easily missed by the peak picking software.
Other elements that may lead to a missing monoisotopic peak are boron and bromine. In contrast,
if we stick with the classical elements CHNOPS then we can assume that the monoisotopic peak
is present, unless we are considering proteins or very large peptides: You need 279 carbon atoms,
24963 hydrogen atoms, 822 nitrogen atoms, 1232 oxygen atoms, or 59 sulfur atoms so that the
relative intensity of the monoisotopic peak is below 5%. So, the resulting molecule has mass at
least 1886 Da if it is made solely from sulfur, mass 3348 Da if it is solely made from carbon, and
even higher mass for the other elements. The peptides of smallest mass where the monoisotopic
peak drops below 5%, consist of 34 cysteine residues (mass 3520.323 Da) or 27 methionine
residues (mass 3556.104 Da), compare to Exercises 7.9 and 7.10 in the previous chapter.

For completeness, we now show how to determine the molecular formula of a molecule in case
elements with “strange” natural isotope distributions are (potentially) present. For this, we will
decompose the average mass of the molecule, corresponding to it atomic weight. Unfortunately,
our inevitably incomplete knowledge of the natural isotope distribution leads to inaccurate
knowledge of the atomic weight of molecular formulas. To this end, decompositions must be
executed with a huge mass inaccuracy of, say, 1000 ppm.

Given the observed normalized intensities h0, . . . ,hnmax and peak masses M0, . . . , Mnmax as the
experimental isotope pattern of some query molecule. This allows us to estimate its average
mass as Mav := ∑

i hiMi. This will underestimate the average mass as we are missing peaks
in the isotope pattern with high mass but low intensity. The atomic weights of elements can
be found in Tables 7.1 and 7.5; we decompose the number Mav over these weights. As noted,
this will result in a huge number of decompositions. In case running time is not an issue, this
approach can nevertheless be executed and will result in mostly the same identification rates as
decomposing the monoisotopic mass; we generate, say, 1000 times more candidates, but I claim
that the 999 additional molecular formula candidates will have isotope pattern far, far different
from the experimental isotope pattern, and not interfere with the identification of the correct
molecular formula.

Now, let us assume that running time is an issue; can we again speed up the decomposition?
Recall that we can decompose integers only, so we assume that all masses and other values are
rounded using appropriate precisions. The mass of the monoisotopic peak is an additive invariant
of the decompositions we are searching for: Given any solution, the sum of monoisotopic masses
of all elements is the input mass; more precisely, it lies in some integer interval l, . . . ,u. The
same holds true for the average mass. The interesting point is that there exist many more
additive invariants in the isotope pattern, see Excercises 8.9 to 8.11; and, that knowing several of
these additive invariants simultaneously makes the decomposition process significantly faster, as
described by Böcker et al. [31].

8.8 Detour: Smarter rounding

The idea of using a blowup factor, as introduced in this section for mass decomposition, is also
usefull for other applications: Often, our algorithms assume that we have, say, unit masses so
that we can do dynamic programming or other tricks. We do so, although measurements with
high mass accuracy (10 ppm and below) are nowadays rather the rule than the exception. To get
around this issue, we can simply store the high-precision mass of the peak of every 1 Da interval
(bin) for scoring; as long as there is at most one peak in each 1 Dalton bin, this simplification will
usually do the trick. (There may be multiple peaks in the experimental spectrum, in which case
we simply use the maximum scoring peak in the bin.) See, for example, Chapter 11.

Unfortunately, almost all elements found in biomolecules have monoisotopic masses which are
larger than the nominal mass; to this end, if we simply round the measured, high accuracy
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8 Decomposing Isotope Patterns

mass, we will nevertheless end up in the wrong bin, that is, miss the correct nominal mass
of the molecule. For example, a peptide with as few as 12 leucine residues (molecular formula
C72H134N12O14) has monoisotopic nominal mass 1390 but monoisotopic mass 1391.013698.

What is a sensible multiplicative correction factor to counter this effect? Considering
peptides, if we assume a distribution of amino acids as in some protein database, the av-
eragine approach of Senko et al. [267] can help us again: The average amino acid residue
C4.9384H7.7583N1.3577O1.4773S0.0417 from [267] has nominal monoisotopic mass 111 and monoistopic
mass 111.054306. To this end, a somewhat natural correction factor is c := 111/111.054306 =
0.999511. We multiply all measured masses by c to increase chances that the integer part of the
monoisotopic mass and the nominal mass are identical.

This correction will reduce but cannot solve the problems introduced by rounding masses: For
example, a peptide made from 14 leucine has molecular formula C84H156N14O15, nominal mass
1600, and mass 1601.186912. On the other hand, a peptide with 16 cysteine has molecular
formula C48H82N16O17S16, nominal mass 1666, and mass 1666.156973. The nominal mass
difference between the peptides is 66, but the mass difference is only 64.970061< 65. So, whatever
your correction factor is: By rounding, one of these peptides will land in the wrong bin. (Certain
restrictions apply: I assume that you want to choose a “reasonable” correction factor close to 1.0.)

It must be understood that the correction factor depends on the application at hand; we will
apply a different correction if we want to analyze, say, glycans (Chapter 11). Furthermore, the
correction is most effective for macromolecules where each building block is made from numerous
atoms (and, hence, possible molecular formulas are restricted) and which have masses beyond
1000 Da.

A similar technique was proposed by Kendrick [154] in 1963, normalizing masses of hydrocar-
bons to CH2. This results in the Kendrick mass scale with unit ‘Ke’ and normalization factor

14 Ke
14.015650 Da .

8.9 Historical notes and further reading

Our presentation in this chapter largely follows the paper of Böcker et al. [33]. See Dührkop et al.
[73] on how to make real-valued decompositions fast(er) in practice; in fact, the methods presented
here are up to 1000-fold faster than the naïve search tree or folded loops algorithm. Note that it
does not make a difference if we are rounding masses up or down; Böcker et al. [33] round up
whereas Dührkop et al. [73] round down. The only difference is whether we have to adjust the
lower or the upper bound. We have chosen “rounding down” here, as this is the more “natural”
way of rounding. The methods presented here are available as part of SIRIUS 4 [76].4

Fig. 8.1 is modified from Kind and Fiehn [161], where the authors proposed to build an
automated pipeline, similar to the one presented in this chapter. The idea of assigning molecular
formulas to peak masses, dates back at least to the year 1965, when the “Artificial Intelligence”
program DENDRAL was created for this task, see Sec. 10.7 below.

Sec. 8.3 proposes to use the “absolute plus relative noise” model from Sec. 4.6 for scoring
intensities; Dührkop et al. [76] showed that this substantially improves molecular formula
identification compared to other intensity noise models.

There exist other tools for decomposing isotope patterns, but mostly, these methods are part
of commercial and proprietary software, and no details on the underlying methods have been
published. Several programs are available to decompose masses over the amino acid alphabet;
most programs rely on the naïve approach for decomposing masses as presented in Sec. 8.1 and
have to somewhat arbitrarily (and rather agressively) restrict the search space, say, by introducing
upper bounds on the number of certain amino acids, to avoid the combinatorial explosion.

4https://github.com/boecker-lab/sirius
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8.10 Exercises

Rogers, Scheltema, Girolami, and Breitling [248] propose a quite different approach to assign
molecular formulas to metabolites: Instead of treating each measurement individually, they as-
sign molecular formulas to a batch of metabolite masses. Here, they use the fact that metabolites
are connected to each other via chemical transformations [37]. They then use Gibbs sampling to
find a model with maximum posterior probability, given the data. Unfortunately, this approach
suffers heavily from bad priors: Molecular formulas with many connections to other molecular
formulas will be much preferred by the Gibbs sampling, see Chapter 12.

We have seen that it is not reasonable to decompose large masses over the amino acid alphabet:
If you are lucky, you will hit a “sweet spot” where only relatively few amino acid decompositions
are found. (According to Fig. 8.3, the last “sweet spots” should be found for peptide masses
between 1700 and 1800 Dalton.) In fact, the mass spectrometry literature contains many such
“anecdotal” decompositions. But we are interested in computational methods that work for all
input data, not just a few hand-selected peptides. As a successful example for a computational
method that decomposes masses over the amino acid alphabet, we mention Bertsch et al. [20] who
use such decompositions as part of a divide-and-conquer strategy.

As far as I know, nobody uses isotope patterns as part of peptide identification, which is a pity.
Whereas we cannot deduce the amino acid composition from the isotope pattern, it can be highly
informative for database search.

8.10 Exercises

8.1 Describe a naïve recursive algorithm to compute all decompositions c of real-valued masses
in the interval

[
l′,u′], compare to Alg. 8.1.

8.2 Implement the algorithm from the previous exercise, as well as Alg. 8.1. Given alphabet
{H,C,N,O} with masses {1.007825,12.0,14.003074,15.994915}, compute all decompositions
of mass 100 with inaccuracy 0.01. How many are there? Compute all decompositions of the
mass 3000 with inaccuracy 0.0001. How many are there? Compare running times.

8.3 How do running times change if we throw in elements P and S with masses 30.973762 and
31.972071?

8.4 Similar to Exercise 8.4, it is easy to modidify Algorithms 8.1 and 8.2, when upper and lower
bounds for each character are given. Show how this can be done.

8.5 Consider the weighted alphabet of elements Σ=CHNOPS. Compute ∆(b) for blowup factor
b = 5963.4.

8.6 Compute and plot the number of decompositions over the 19-letter amino acid residue
alphabet using mass accuracy 0.001 Dalton. Plot the exact number of decompositions for
each mass (1000 points per Dalton). Try a logarithmic y-scale.

8.7?Give an algorithm that transforms a molecular formula into all amino acid compomers with
this molecular formula.

8.8 Give an algorithm that transforms an amino acid compomer c into all peptide strings s with
comp(s)= c.

8.9 For every element E, let pE denote the probability that an isotope of this element is
monoisotopic. Show that the negative log intensity of the monoisotopic peak is an additive
invariant over the weighted alphabet with weights − log pE. Note that phosphor has weight
zero over this alphabet.
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8 Decomposing Isotope Patterns

8.10?Show that the relative intensity between the +1 peak and the monoisotopic peak is an
additive variant.

8.11? Show that the mass difference between the +1 peak and the monoisotopic peak is an
additive variant.
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9 Fragmentation trees

“All models are wrong but some are useful.” (George E. P. Box)

AS mentioned in the introduction, there are biomolecules beyond DNA, RNA, proteins and
peptides: The phenotype of an organism is strongly determined by the small chemical

compounds contained in its cells. These compounds are called metabolites; their mass is typically
below 1000 Da. Metabolites are the intermediates and products of metabolism, that is, chemical
reactions that happen in living beings to maintain life. Biopolymers such as proteins, DNA, or
glycans (see Chapter 11 below) are not considered metabolites, but their constituent monomers
(amino acids, monosaccharides) are.

In the following, our task is to determine the molecular formula of a single small molecule. (As
mentioned, we can also try to determine the molecular formula of a not-so-small molecule, but
this makes little sense.) This small molecule may be a metabolite (Sec. 10.1); but it may also be a
drug, a drug degradation product — our body tries to get rid of drugs as soon as they have entered
the system — or other xenometabolite, or some synthetic compounds such as the aforementioned
antifouling agents or fungicides, which are frequently found in nature and taken up by living
beings. The previous chapters presented methods that allow us to determine the molecular
formula using the isotope pattern of the molecule; here, we concentrate on its fragmentation
(tandem MS) spectrum. In application, best results are achieved by combining both approaches.

9.1 Naïve approach: Fragmentation bushes

The simplest way to model the fragmentation of a molecule, is to assume that all fragments
directly resulted from the precursor ion via a single fragmentation reaction. This is a somewhat
trivial observation but can already help us to identify the molecular formula of the precursor
ion: We can limit ourselves to those molecular formulas that allow to explain each peak in the
fragmentation spectrum, meaning that we find a subformula with mass sufficiently close to the
peak mass.

Obviously, this very naïve approach may fail as soon as there is a single noise peak in the
spectrum, see Chapter 2. A more reasonable — but still naïve — approach is to count the number
of peaks that a molecular formula candidate explains. Even better, we can use the scores from
Sec. 4.5 and 4.7 to take into account peak intensities and mass deviations, see also Sec. 9.6 below.
Unfortunately, the is the furthest we can get without including prior information, compare to
Chapter 12.

In the nomenclature of the next section, the naïve model corresponds to a fragmentation bush:
In graph theory, a bush is a tree where every node but the root is one step from the root.

9.2 Formal de�nition of fragmentation trees

Let us assume that we are given the tandem mass spectrum of a metabolite, but we have no
information about its structure. In our presentation, we assume that the molecular formula of the
metabolite is known, as this makes it easier to understand the details. See Sec. 9.7 on how to use
the presented method to determine the molecular formula.
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9 Fragmentation trees

The fragmentation process of small molecules through tandem MS is not completely understood;
in principle, a small molecules can fragment at almost any chemical bond. But here, we are in an
even worse situation: We do not have any information about the structure of the metabolite! As
we will see in the next chapter, searching in a (relatively small) database of molecular structures
is already a hard problem, but de novo structural elucidation is beyond reach.

But maybe, we do not have to identify the structure of the metabolite to do something useful
with the fragmentation spectrum? Consider genome sequencing: After you have assembled the
genome, nobody will expect that you explain every base of the genome, or describe the exact
function of every gene; but at least, you have to annotate it with additional information (open
reading frames, genes, introns/exons, micro-RNAs etc) so that it is useful for other scientists.
That is what we want to do here: We want to annotate the fragmentation spectrum with additional
information.

In experiments, we see that fragments of the precursor are further fragmented when higher
collision energies are applied, compare to Sec. 10.5. Ion trap instruments allows us to build such
fragmentation cascades experimentally. To account for this multi-step fragmentation, we want to
use a fragmentation tree to annotate the fragmentation spectrum: This rooted tree has molecular
formulas as its node set, and is rooted in the precursor molecular formula. Each node molecular
formula explains a peak in the fragmentation spectrum: That is, its mass is withing the allowed
mass deviation of the measured peak mass. We demand that every peak is explained by at most
one node. Peaks in the spectrum which are not explained by the fragmentation tree, are noise
and must be taken into account as such in our scoring. Nodes are connected by directed edges,
constituting losses: Parts of the molecule break off but are not ionized, so that we cannot detect
them in the subsequent MS step. An directed edge uv in the tree tells us that fragment v is a
sub-fragment of fragment (or precursor ion) u: So, for each element, the molecular formula of v
contains at most as many atoms as the candidate molecular formula of v. Here, u− v ≥ 0 is the
loss. Recall that we use uv as shorthand for the edge (u,v).

Strictly speaking, what we are considering here is an arborescence or an arboreal rooted tree,
where all edges are pointing away from the root. Given that “arboreal” means “tree-like”, this is a
somewhat funny definition. In the following, we will assume that all our rooted trees are arboreal,
with edges pointing away from the root.

Different fragmentation pathways may lead to fragments with identical molecular formula or
even identical structure. Hence, we have oversimplified the problem: By restricting ourselves to
fragmentation trees, we demand that each fragment in the fragmentation spectrum is generated
by a single fragmentation pathway. But this is not a serious oversimplification: Firstly, this
situation is rather the exception than the rule. Second, we can argue that we are interested in
the major fragmentation events that mainly occurred. Third, the most common exceptions to
our assumption are “parallelograms” where loss A is followed by loss B, as well as the other way
round. (For example, two groups fall off at different ends of the molecule.) In this case, the tree
representation has to artificially decide whether the fragment which lost both A and B is a child
of the fragment for loss A, or the fragment for loss B. But this is implicitly encoded in the tree and
can be easily recovered from there.

We also demanded that every peak in the spectrum is explained by at most one node of the
fragmentation tree. But in contrast to the previous paragraph, not much discussion is needed
for this constraint: Fragmentation spectra of metabolites are usually very sparse (ten peaks with
significant intensity is already a lot), and the number of “potential fragment molecular formulas”
(all sub-formulas of the precursor molecular formula) is in general many orders of magnitude
larger. Given that the vast majority of potential fragments is not detected in the fragmentation
spectrum, it is extremely unlikely that some peak in the fragmentation spectrum corresponds to
two fragments with different molecular formulas but almost identical mass.
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9.3 Fragmentation graphs and the Maximum Colorful Subtree problem

Finally, we demanded that the fragmentation tree must only contain nodes that explain a peak
in the fragmentation spectrum. This may be justified by parsimony, Occam’s razor (William of
Ockham, circa 1287–1347, scholastic philosopher and theologian) or however you want to call it;
but the easiest explanation is that we want to annotate the fragmentation spectrum. Peaks that
were not observed, require no annotation.

The above discussion tells us that the constrains we put on fragmentation trees are not too
unrealistic. But the question is: Why did we introduce them, anyways? Why not allow that
two fragmentation cascades lead to the same fragment? Why not allow that two nodes of the
fragmentation tree explain the same peak? The answer is “optimization”: What we will do in
the next section, is to search for a tree that best explains the fragmentation spectrum, for a
reasonable score. If we drop the constraint that every fragment has only one parent, then it
will be beneficial (under most reasonable scorings) to give any node in the resulting graph many
parents, to collect as much score as possible. It is not unlikely that some fragment will be a child
of all other fragments in the spectrum. But this is much worse than our constraint from above,
and much further away from the chemical reality. Similarly, if we drop the constraint that each
peak is explained by at most one node, then it will often be beneficial to include all explanations
in the resulting graph; again, this is much worse than our constraint.

In case you are unhappy with this argumentation (“it is not true, but better than the alterna-
tive”), be advised that this is nothing special. One can easily argue that sequence alignments and
phylogenetic trees are as far away from the biological truth, as we are from the chemical truth.
But both sequence alignments and phylogenetic trees have been extremely helpful tools for the
analysis and understanding of biology.

Formally, a directed graph T = (V ,E) is a tree if there is a root node r ∈ V such that every node
v ∈ V can be reached from r via a unique path. (Recall that this is also called “arborescence”.)
Many alternative characterizations of trees exist; we just mention that T is a tree with root r if
and only if every node v ∈V can be reached from r, and every node v but the root has in-degree one,
whereas the root has in-degree zero. Here, “v can be reached from r” means that there is a directed
path from r to v; this, in turn, means a path p = v0v1 . . .vl with v0 = r, vl = v, and vi−1vi ∈ E for i =
1, . . . , l. Clearly, any tree is acyclic: Recall that a graph G is acyclic if, for every node v of G, there
is no directed path from v to v in G. A tree T = (V ,E) is a fragmentation tree if all nodes v ∈V are
molecular formulas, and an edge uv ∈ E implies that v is a sub-formula of u. A fragmentation tree
explains some fragmentation spectrum if the root r ∈ V is the molecular formula of the precursor
peak; for every v ∈V there exists some peak in the fragmentation spectrum with mass sufficiently
close to µ(v); and no two nodes map to the same peak in the fragmentation spectrum.

9.3 Fragmentation graphs and the Maximum Colorful Subtree

problem

How can we find the fragmentation tree that best explains the fragmentation spectrum? To do so,
we transform the fragmentation spectrum into a “fragmentation graph”. We then show (in fact,
there is not much to be shown) that every fragmentation tree that explains the fragmentation
spectrum must also be a subtree of the fragmentation graph, and vice versa.

Our first step is to transform the masses of fragment peaks into molecular formulas, which will
serve as the nodes of our fragmentation graph G = (V ,E). Since all fragments must originate
from the precursor ion, we have to consider only subformulas of the (known) molecular formula
of the precursor ion. As always, we only consider molecular formulas which are sufficiently close
to the peak mass. Methods for doing so were discussed in Chapter 3 and Sec. 8.1. Clearly, there
can be more than one decomposition of each fragment mass. These molecular formulas plus the
precursor molecular formula are nodes of G. The graph is node-colored: Every node gets a color
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9 Fragmentation trees

that represents the peak it explains. For edges, we create a directed edge between two nodes if
one molecular formula is a sub-formula of the other molecular formula. Doing so, we represent
every possible fragmentation step, even those that are extremely unlikely.

The resulting fragmentation graph G = (V ,E) is a directed, acyclic graph (DAG). Recall that
acyclic means that we cannot walk away from some node v of the graph along directed edges, and
ultimately end up in v again. Since the “sub-formula” relation is transitive, the constructed graph
is also transitive: uv,vw ∈ E implies uw ∈ E.

We claim that every fragmentation tree that explains the fragmentation spectrum must also be
a subtree of the fragmentation graph: If a tree T = (VT ,ET ) explains the fragmentation spectrum,
then for every v ∈VT there exists some peak in the fragmentation spectrum with mass sufficiently
close to µ(v); to this end, the molecular formula v is also a node of the fragmentation graph. The
definition of edges is identical for fragmentation trees and fragmentation graphs. Analogously,
any subtree rooted in the root of the fragmentation graph, is a fragmentation tree that explains
the fragmentation spectrum. To this end, we will only consider induced colorful subtrees of the
fragmentation graph in the following.

To formulate our task as an optimization problem, we still need some scoring to evaluate how
good some fragmentation tree explains the fragmentation spectrum: For example, the tree which
consists of one node only, corresponding to the precursor ion molecular formula, explains the
fragmentation spectrum regardless of all other peaks. Clearly, this makes sense, as all other
peaks may be noise; this is unlikely, but we cannot exclude the possibility. Nevertheless, we now
want to find the best fragmentation tree — or, equivalently, the best subtree of the fragmentation
graph. Usually, our the first idea is to use a peak counting score: We count the number of peaks
that can be explained as fragments of the precursor ion. But here, this will not take us very far:
Counting peaks, the fragmentation tree where every node is connected to the precursor peak node
(the “fragmentation bushes” from the previous section) will receive maximum weight; in addition,
there will be numerous other fragmentation trees with identical score. To achieve good results,
we have to use a more involved scoring.

Unfortunately, finding a reasonable scoring is non-trivial and requires prior knowledge; we give
some details in Sec. 9.6. For the moment, we simply assume that we are given some edge weights
via function w : E →R. We stress that edge weights may be negative: It may be more likely that a
peak is noise than the explanation via a node of the fragmentation tree; but we may nevertheless
choose to include it into the tree, as this allows us to better explain subsequent fragmentation
reactions.

We now formalize the problem of computing a fragmentation tree. All of the following definitions
are standard in computational graph theory: Let n := |V | be the number of nodes and m := |E| the
number of edges in the graph, and let k := |C | be the number of colors. Let c : V →C be the node
colors of G. Furthermore, let w : E → R be the edge weights, whose sum we want to maximize.
We will write w(u,v) instead of w((u,v)) or w(uv) for an edge uv. A subtree T = (VT ,ET ) of G is
a subgraph of G, VT ⊆ V and ET ⊆ E, that is a tree. One peak may result in many molecular
formulas in V explaining it; to avoid that two nodes explain the same peak, we have to ensure
that the induced subtree does not use any color twice. The tree T is colorful if it uses every color
in C at most once: so, c(u) 6= c(v) holds for all u,v ∈VT with u 6= v. We formalize our problem as:

Maximum Colorful Subtree problem. Given a node-colored DAG G = (V ,E) with weights w :
E →R. Find the induced colorful subtree T = (VT ,ET ) of G of maximum weight w(T) :=∑

e∈ET w(e).

Unfortunately, this problem is NP-hard. Hence, we cannot compute a maximum colorful subtree
in polynomial time, unless P = NP.1 To make the consequences clear: We cannot hope to find

1The P versus NP problem is an unsolved problem in computer science, and one of the seven Millennium Prize
Problems where you are awarded US$ 1,000,000 for the first correct solution. An answer to the P = NP question
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9.4 Exact algorithms for the Maximum Colorful Subtree problem

an algorithm with running time, say, O(n1000), where n is the number of nodes of the graph,
unless P = NP. The problem remains NP-hard if we assume that all edges have positive or even
unit weight, and if we remove the “colorful” constraint: that is, all nodes in our input graph
have different colors or, equivalently, no colors at all. In contrast, we can easily compute a
maximum subtree if we drop the requirement that it has to be colorful and all edges have non-
negative weight; in this case, we simply have to compute a maximum spanning tree. But it
must be understood that limiting ourselves to colorful subtrees is inevitable, and so are negative
edge weights, see Exercises 9.2 and 9.3. We mention in passing that the MAXIMUM COLORFUL

SUBTREE problem is a special case of the edge-weighted GRAPH MOTIF problem introduced in
Sec. 10.5. This is somewhat surprising, as we are working with molecular graphs there, whereas
it is fragmentation graphs now.

9.4 Exact algorithms for the Maximum Colorful Subtree problem

Whereas the computational hardness of the MAXIMUM COLORFUL SUBTREE problem may be
daunting at first, this does not mean that we have to abandon all hope! In particular, we should
not abandon our hope to find an exact solution to the problem; just because it is NP-hard, we do
not have to fall back to heuristics for its solutions. In the following, we assume that all colors C

are in use, so c(V )=C where G = (V ,E).
A naïve algorithm for the problem is as follows: Let us demand that the fragmentation tree uses

exactly nodes U ⊆V from the fragmentation graph. Then, we can compute the maximum subtree
as a maximum spanning tree. Iterating over all U ⊆ V allows us to find the maximum colorful
subtree: We do not know what the node set of the maximum colorful subtree is, but it has to
have one; iterating over all subsets we cannot miss it. This results in running time O(2n ·m logn).
Clearly, subsets U ⊆ V must be colorful, meaning that c(u) 6= c(v) must holds for all u,v ∈U with
u 6= v. How many colorful subsets U ⊆ V exist? For a color c′ ∈C let n(c′) := #

{
v ∈V : c(v)= c′

}
be

the number of nodes in G of that color. It is easy to see that the number of colorful subsets equals∏
c′∈C

(
n(c′)+1

)
; we have to add one as U does not have to use color c′ at all. Unfortunately, no

useful bound on this number is possible, and it can get large even for relatively small graphs: For
a graph with 90 nodes and ten colors, such that every color is used by nine nodes, we have 1010

colorful subsets. But we have already found an algorithm that can solve such instances — which
are far from what you want to try on a blackboard — exactly and in a matter of minutes.

9.4.1 Dynamic programming and �xed-parameter algorithmics

A faster algorithm for the problem uses dynamic programming: Let D[u,S] be the maximum
weight of a colorful subtree in G that is rooted in u ∈V and uses at most the colors from the color
subset S ⊆C . This clearly includes the case that it uses all colors from S. If there is no such tree,
we assume D[u,S]=−∞; this is the case if c(u) ∉ S. Now,

D[u,S]=max


max

v ∈V with uv ∈ E,
c(v)∈S\{c(u)}

D
[
v,S \{c(u)}

]+w(u,v)

max
(S1,S2) with S1 ∪S2 = S,

S1∩S2={c(u)}

D [u,S1]+D[u,S2]
(9.1)

with initial condition D
[
u, {c(u)}

] = 0 for all u ∈ V . Calculations can be carried out by iterating
over the nodes u in topological order; for computing fragmentation trees, the topological order

would determine whether problems that can be verified in polynomial time can also be solved in polynomial time. If
P=NP holds, a large portion of the complexity hierarchy — something theoretical computer scientists have worked
on for many decades — would collapse. It is under discussion how much impact this would have in practice.
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simply means that we go from smaller masses to larger masses. When the array has been filled,
the optimal weight of a colorful subtree is D[r,C ] where r is the root of the DAG. The tree can
now be recovered from the matrix by backtracing, compare to Chapter 2 and Sec. 14.4.

The first line of recurrence (9.1) extends a tree by introducing u as the new root, adding the
weight of the edge uv to the weight of the tree below v. The second line merges two trees which
have nothing in common but their root u; S1,S2 form a partition of S except for the color c(u) of u.
Now, an optimal subtree rooted in u and using at most the colors from S must have either exactly
one edge leaving u (which is covered in the first line), or two or more edges leaving u (which is
covered in the second line). This shows that recurrence (9.1) is correct.

Clearly, the second line of (9.1) is the expensive part of the calculation, as we have to iterate
over all subsets S1 ⊆ S with c(u) ∈ S1. Also clearly, we need O(2k ·n) space to store the array D. For
running time, a naïve analysis would lead to an upper bound of O(4k · km), as we have to iterate
over O(2k) subsets S ⊆ C and then over O(2k) subsubsets S1 ⊆ S. But a closer analysis reveals
that the algorithm needs only O(3k ·km) time to calculate the second line of the recurrence. This is
because C is actually partitioned into three subsets: These subsets are C −S, S1 and S2. (The fact
that S1∩S2 = {c(u)}, is not relevant for our considerations as it introduces only a constant factor.)
Clearly, there are 3k possibilities to perform this partitioning. As the second line of recurrence
(9.1) dominates the running time, we reach total running time O(3k ·km).

Running time and space of the dynamic programming algorithm are polynomial in the number
of nodes and edges, despite the computational complexity of the problem. The exponential
growth of space and running time is restricted to the number of colors k, being the number of
peaks in the fragmentation spectrum. Algorithms with running time O( f (k) · nβ) where f is a
computable function, k is a parameter describing the problem instance, n is the problem size
and β is a constant, are called fixed-parameter algorithms, and a problem that allows for such
an algorithm is called fixed-parameter tractable with respect to parameter k. I stress the this is
much stronger than the statement, “running time is polynomial for any fixed k” — for a fixed-
parameter algorithm, the degree of the polynomial must not change when k increases. Different
from other algorithmic concepts, fixed-parameter algorithms are of practical use in bioinformatics,
as they are indeed swift as long as the parameter does not get too large. We see that the algorithm
presented above is a fixed-parameter algorithm for the MAXIMUM COLORFUL SUBTREE problem,
and the problem is fixed-parameter tractable with respect to parameter “number of colors in the
graph”.

As an algorithm engineering trick, we can define D[u,S] to be the maximum weight of a colorful
subtree in G that is rooted in u ∈ V and uses exactly the colors from S ⊆ C . Again, we assume
D[u,S] = −∞ if no such tree exists. But different from above, D[u,S] = −∞ now holds for the
majority of the array D. Again, we initialize D

[
u, {c(u)}

] = 0 for u ∈ V , and compute D using
recurrence (9.1). In the end, the optimum weight can be found as maxS⊆C D[r,S] for root r. To
save space, we do not store the complete matrix but only those entries that are different from
−∞; this can be achieved using a hash map. To save time, we have to transform recurrence (9.1)
into its bottom-up variant, see Sec. 14.4. Unfortunately, all of this does not change the asymptotic
bounds for time and space.

9.4.2 Integer Linear Programming

The second exact algorithm for the MAXIMUM COLORFUL SUBTREE problem uses Integer Linear
Programming (ILP). But before we can define what an Integer Linear Program is, we have to
define what a Linear Program is: Much like “Dynamic Programming”, the word “program” in
“Linear Program” does not mean what it means today, compare to Sec. 14.4.

In short, a linear program is an optimization problem where both the objective function and the
constraints are linear. We are searching for a vector x ∈ Rn in n-dimensional space. As our first
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d

x1

x2

Figure 9.1: Illustration of a Linear Program with two variables x = (x1, x2). The vector d shows
the direction in which the objective function increases; the orthogonal line, where all
solutions have equal objective function, is shown as dashed. Several constraints are
indicated as lines; the forbidden half-plane is indicated by stripes.

constraint, we demand that each coordinate of x = (x1, . . . , xn) is non-negative, xi ≥ 0. We will write
this as x ≥ 0; compare to “y = z” for vectors y, z which also means that each coordinate is equal.
We want to maximize the linear objective function dT · x = d1x1 +·· ·+dnxn where d ∈ Rn is some
fixed vector. (Vector “d” is called “c” in the literature, but that letter is already in use here for
the color mapping.) Negative coordinates are allowed for d; if you prefer to minimize, use −d. We
have to transpose vector c (flip it from a column-vector to a row-vector) because both c and x are
column-vectors.

This would still be a rather boring optimization problem; as long as d has one positive
coordinate, we can make dT · x arbitrary large. To this end, we introduce further constraints:
For i = 1, . . . ,m we demand that aT

i · x ≥ bi where ai ∈ Rn is a vector and bi ∈ R is a scalar. A more
elegant way to write this is Ax ≥ b (see above) where the ai are the columns of the m×n matrix
A and b = (b1, . . . ,bm). See Fig. 9.1 for an example.

Numerous optimization problems can be formulated as a linear program (LP), such as problems
from operations research: How much of which item do I have to produce so that my revenue is
maximized? See Exercise 9.6. The reason why Linear Programming has been so tremendously
successful, is that there exist numerous free and commercial solvers that allow us solve huge
instances in little time: Instances with millions of variables and millions of constraints can be
solved in reasonable time, as long as the matrix A is reasonably sparse (does not contain too many
non-zero entries). On the theoretical side, linear programs can be solved in (weakly) polynomial
time using interior point methods.

Integer Linear Programming is basically identical to Linear Programming, except for one
important difference: We demand that entries in the solution vector x are integer, x ∈ Zn. With
this small change, the complexity of the problem changes to NP-hard. This is not much of a
surprise: Numerous combinatorial problems can be easily encoded (with polynomial blowup) as
an Integer Linear Program (ILP), including numerous NP-hard problems and, in particular, the
MAXIMUM COLORFUL SUBTREE problem. If we were able to solve any ILP in polynomial time,
then we could find a solution of the MAXIMUM COLORFUL SUBTREE problem in polynomial time
— and we already know that this problem is NP-hard.

So, why care? The answer is “solvers”: Numerous free and commercial solvers exist that
can, despite the theoretical hardness of the problem, find exact solutions to relatively large
ILP instances in reasonable time. (I deliberately stay vague here, because it depends on the
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structure of the problem we are encoding how large instances may become before running times
get prohibitive.) It is understood that solving an ILP usually requires significantly more time
(often, many orders of magnitude) than solving an LP. Algorithm engineering techniques such as
facet-defining inequalities, “branch and cut”, (delayed) column generation or “branch and prize”
have been developed to solve large ILP instances from particular combinatorial problems even
faster. These techniques are based on the fact that we can quickly solve an LP, and only by
demanding that variables are integer, we make things complicated. From personal experience, I
can say that it can be highly challenging to beat an ILP using other algorithmic techniques such
as fixed-parameter algorithms.

Back to the MAXIMUM COLORFUL SUBTREE problem: We search for a colorful subtree in the
input graph of maximum weight. It is understood that any subgraph of a directed, acyclic graph
G is again a directed, acyclic graph. But when is a tree a tree?2 Remember that a directed graph
T is a tree with root r if and only if every node v ∈ V can be reached from r, and every node v
but the root has in-degree one, whereas the root has in-degree zero. For the ILP, we use a slightly
different characterization: A directed, acyclic graph T is a tree if and only if every node v but the
root has in-degree one, whereas the root has in-degree zero; see Exercise 9.5. This is intuitively
easy to understand: If you want to leave a node of the tree, you must have entered it first; but if
you have two ways of entering a node, then there exist two edge-disjoint paths between two nodes
and, hence, the graph cannot be a tree.

We are given a node-colored DAG G = (V ,E) with weights w : E →R; we want to find the induced
colorful subtree T = (VT ,ET ) of G of maximum weight. We encode this as an ILP as follows: For
each edge e ∈ E of the graph, we generate on variable xe that decides whether e is part of the
subgraph (xe = 1) or not (xe = 0). In the following, we may assume that edges have been numbered
1, . . . ,n, so x = (x1, . . . , xn). Any ILP demands that x ≥ 0; to ensure that coordinates are zero or one,
we simply add the constraint x ≤ 1. We set de := w(e), then dT · x is the weight of the selected
subgraph.

At this point, the optimal solution would simply be to select (xe = 1) all edges of G with positive
weight; we have to enforce that only subtrees can be selected. From our characterization of trees,
we know that this is the case if every node of the tree but the root has exactly one incoming edge;
this means that every node of the tree but the root at least one incoming edge and at most one
incoming edge. (As noted above, we will enforce that the root of G is also the root of the subtree;
but as noted in Sec. 9.8 below, this does not change the problem fundamentally, and is in sync
with our application of finding a fragmentation tree.) For the first requirement, xuv = 1 means
that both u and v are part of the subgraph; clearly, v has (at least) one incoming edge. To enforce
that u has an incoming edge, too, at least one edge that enters u has to be part of the subgraph.
Let

E−(u) := {
(w,u) : w ∈V ,wu ∈ E

}
be the set of edges in G entering u. If there exists at least one edge entering u then

∑
e∈E−(u) xe ≥ 1;

to this end, we encode this requirement as a constraint∑
e∈E−(u)

xe ≥ xuv for all uv ∈ E, u 6= r (9.2)

where r is the root of G. For the second requirement, any node v must have at most one incoming
edge; this can be enforced via the constraint∑

e∈E−(v)
xe ≤ 1 for all v ∈V . (9.3)

With these constraints, any subgraph encoded by edges e with xe = 1 is indeed a tree.

2This should read “When is a subgraph a tree?”, but the other variant is more fun.
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So, we have enforced that the subgraph is a tree — or, more precisely, that only trees are taken
into account when maximizing the ILP; but what about the requirement that the subtree has to
be colorful? For a color c′ ∈C let V (c′) := {v ∈ V : c(v) = c′} be the set of nodes that have this color.
Our last problem is that “colorful” is a statement about the nodes of the subtree, whereas we are
concentrating on edges in our ILP formulation. But luckily, we already know that every node of
the tree, except for the root, has exactly one incoming edge! To this end, for any node v 6= r in the
tree there exists exactly one edge e = uv ∈ E with xe = 1. So, we can change the constraint to: For
every color, there must be at most one edge entering a node of this color. Formally, let

E−(U) :=⋃
u∈U E−(u)= {

(w,u) : w ∉U ,u ∈U ,wu ∈ E
}

be the set of edges entering a subset U ⊆V of nodes; then,∑
e∈E−(V (c′))

xe ≤ 1 for all c′ ∈C . (9.4)

But if we demand that (9.4) is satisfied, then (9.3) is automatically satisfied, too! If there is at most
one edge entering all nodes with a particular color, then there is also at most one edge entering
any node of that color; and we demand that this holds for every color. (The root is always part of
the tree, so its color is used, and we may assume that the graph does not contain any other nodes
of this color.) To this end, we can leave out constraint (9.3) from our ILP, without changing the
solution.

In full, our ILP can be formulated as follows:

max
∑

uv∈E
w(u,v) xe

s. t.
∑

e∈E−(V (c′))
1 · xe ≤ 1 ∀c′ ∈C∑

e∈E−(u)
(−1) · xe +1 · xuv ≤ 0 ∀uv ∈ E, u 6= r

xe ∈ {0,1} ∀e ∈ E

(9.5)

I have slightly changed the constraints to make them look similar to the normal form Ax ≤ b;
clearly, α≤ β is equivalent to −α≥−β. All entries in the resulting matrix A are −1, 0, or +1; all
entries in b are 0 or 1. Furthermore, the matrix A is sparse, meaning that only few entries are
non-zero for non-degenerated instances of the MAXIMUM COLORFUL SUBTREE problem. Recall
that xe ∈ {0,1} is equivalent to (xe ≥ 0, xe ≤ 1, and xe integer). The universal quantifier “∀” means
“for all” and is rarely used outside of mathematical logic — and (Integer) Linear Programming.

So, when we are given a instance of the MAXIMUM COLORFUL SUBTREE problem, we proceed
as follows: We create the matrix A and the vectors b,d as implicitly described in (9.5). We then
call an ILP solver with the resulting ILP instance. Finally, we extract all e ∈ E with xe = 1 — et
voilá, this is the maximum colorful subtree.

9.5 Heuristic algorithms for the Maximum Colorful Subtree

problem

Now that we have several exact algorithms at our hand, we can think about heuristics for the
problem. I argue against first developing heuristics: You will not even notice if your heuristics are
doing hilariously stupid things, unless you can evaluate them against exact solutions, at least for
some reasonably small instances.

Note that there exist at least three ways to evaluate the quality of a heuristic: The first is the
simplest, comparing the objective value of the heuristic solution with that of the exact solution.
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This is a good way to evaluate solutions if you want to minimize the length of a round trip through
Norway, or maximize revenue by placing stores in Vietnam. In such cases, the objective value has
a real-world explanation (time, money) and we can judge if we accept that the heuristic solution
is, say, 1 % off the optimum. But in bioinformatics, this is rarely the case; the objective function
is of little or no interested by itself and usually not even reported to the user. (We often use
the objective function value of a solution to judge its quality, though; but Chapters 5 and 6 have
shown us that this is a non-trivial undertaking.) The second is the hardest, where we compare
the structure of the heuristic solution with that of the exact algorithm. But it is often non-trivial
how this comparison has to be carried out, and how we can transform structural similarity into a
numerical value. If we cannot even decide upon the “right” similarity measure, how can we then
use it to evaluate heuristics? The third is an intermediate: We use the heuristic and the exact
method to rank certain candidates (in our case, molecular formulas for the precursor ion), and
compare the ranking performance. Given that this is the task we formulated at the beginning
of this chapter, this appears to be a reasonable evaluation criteria for the MAXIMUM COLORFUL

SUBTREE problem.

Numerous heuristics have been developed for the MAXIMUM COLORFUL SUBTREE problem [29,
75, 234]; unfortunately, most of them are in fact doing “hilariously stupid things”, at least if you
compare their results with the corresponding exact solutions [75]. Furthermore, the description
of heuristics is only rarely satisfying from an algorithmic point of view: What works and what
does not is highly dependent on the structure of the problem and the real-world instances, and
is often of little use for other problems. Nevertheless, I will now describe two simple and one
slightly advanced heuristic, so that you can get an idea. All of them perform reasonably well for
identifying the molecular formula of a small molecule.

The Kruskal-style heuristic is inspired by Kruskal’s algorithm for computing minimum span-
ning trees [164]. We sort all edges of the graph by decreasing edge weight, then iteratively add
edges from the sorted list, ensuring that the growing subgraph is colorful and that each node
has at most one incoming edge. Since r is the unique source of G, and since G is transitive,
this will ultimately result in a colorful subtree of G. With regards to running time, sorting
all edges according to weight takes O(m logn) time. Connectivity testing can be performed in
sub-logarithmic time per considered edge using a union-find data structure [287]; checking for
colorfulness is easily accommodated by initially placing all nodes of the same color in the same
component. The overall time complexity is O(m logn).

The Prim-style heuristic is inspired by Prim’s algorithm (previously developed by Vojtěch
Jarník) for computing a minimum spanning tree [224]. The tree T = (VT ,ET ) initially contains
only the root r of G. In every step, we consider all edges uv with u ∈ VT and v ∉ VT such that
c(v) ∉ c(VT ); among these, we choose the edge with maximum weight and add it to the tree. We
repeat until all colors in the graph are used in the tree; recall that G is transitive, so rv ∈ E
for each v 6= r. We explicitly do not quit when adding the first negative-weight edge uv, as the
newly reached node v may allow us to later add other edges with positive weight. The Prim-
style heuristic will usually result in a different tree than the Kruskal-style heuristic, due to the
colorfulness constraint. The Prim-style heuristic requires O(m logn) time, which can be seen
analogously as for the Kruskal-style heuristic.

Unfortunately, both algorithms will add edges even if only negative edge weights are left in the
list. To this end, we apply a post-processing called Remove Dangling Subtrees: Let T = (VT ,ET )
be the colorful tree we have computed by one of the two heuristics. For each node u ∈VT , let D[u]
be the maximum weight of any subtree rooted in u. Clearly, D[u]≥ 0, as the tree consisting solely
of node u does have weight zero. For each edge uv of T with w(u,v)+D[v]< 0, we remove uv and
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Figure 9.2: Illustration of the Remove Dangling Subtrees postprocessing. Left: Input tree, where
each node v is labeled by its score D[v]. Right: Output tree of weight 24. Figure
from [75].

Figure 9.3: Example for the Critical Path heuristic. Nodes are labeled by score, solid lines show
the tree, dashed lines the rest of the graph. Grayed-out nodes have colors already used
in the subtree. Figure from [75].

the subtree below it, thereby increasing the weight of the tree. Table D can be computed using
dynamic programming:

D[u] := ∑
uv∈ET

max
{
0,w(u,v)+D[v]

}
(9.6)

For that, we use a tree traversal, moving down and up every edge of T exactly once. The
postprocessing requires O(n) time, as every edge is considered once and |ET | = |VT | −1 = n−1,
remember that T is a spanning tree. See Figure 9.2 for an example postprocessing.

Finally, here is one slightly more complex heuristic: The Critical Path heuristic searches
for paths which should be added next to a growing tree. Again, we iteratively build a tree
T = (VT ,ET ); initially, the partial solution T contains only the root r of G. The score S[u] of a node
u ∈V is the maximum weight of a path p from u to any node v, such that c(p)∩c(VT )⊆ {c(u)}; that
is, the path does not use nodes with colors already present in the tree, except for the color of the
starting node. We can compute S[u] using the recurrence

S[u] := max
uv∈E,c(v)∉c(VT )

{
0, S[v]+w(u,v)

}
. (9.7)

(We assume max;= 0.) Recall that c(VT ) = {c(v) : v ∈ VT }. The recurrence is correct because the
coloring of G is order-preserving: That is, the colors of G can be ordered such that, for any edge uv,
c(u) comes before c(v). This is not surprising; simply order the colors by the mass they represent.
To this end, no two nodes of the path encoded by S have the same color. We iterate over the
ordered colors c in reverse order, computing S[u] for all nodes u of color c. The critical path p of
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maximum score can be found by backtracing from the maximum entry S[u] with u ∈ VT . We add
p to T, then iterate, recomputing S for the new set of used colors c(Vt). With regards to running
time, we need O(m) time to compute the S[u] values and to identify the path of maximum weight.
This is repeated at most k−1 times, resulting in a total running time of O(km). See Figure 9.3 for
an example.

Beyond the designated heuristics presented above, it is noteworthy that exact methods for a
problem almost always allow us to derive heuristics. For example, the dynamic programming
algorithm from the previous section grows exponential in space and time with k, the number of
peaks in the spectrum. Hence, we cannot process spectra with too many peaks, as this would lead
to out-of-memory errors or simply require more time than we are willing to invest. But we can
choose an arbitrary k, such as k = 10 or k = 15, and run the dynamic programming algorithm
restricted to the ten or 15 most intense or highest-scoring (see Sec. 9.6) peak in the tandem mass
spectrum. For the ILP approach, it is noteworthy that ILP solvers return (potentially suboptimal)
solutions as soon as these are found; in many cases, an optimal solution is found much earlier
than a proof that it is indeed an optimal solution.

9.6 Edge weights in the fragmentation graph

As noted, we have to weight our graph so that we indeed compute fragmentation trees and not
fragmentation bushes. The first part of the score is, as usual, dealing with peak intensities and
mass deviations: Each color corresponds to a peak in the query spectrum, and we can use the
intensity of the peak to score all nodes with this color (Sec. 4.7). Furthermore, each node is
the sum formula of a hypothetical fragment, and we can use the mass deviation between the
hypothetical fragment and the assigned peak to modify the score of the node (Sec. 4.5).

Both of the above are node scores, whereas our formulation of the MAXIMUM COLORFUL

SUBTREE problem assume that only edges are weighted. But this is not an issue: In the
fragmentation graph, we simply shift the node score to the weight of all incoming edges. In
every subtree of the fragmentation graph, exactly one incoming edge is selected for each node
that is part of the subtree. The only exception to this rule is the root of the fragmentation graph,
but we demand that the root is part of all subtrees: To this end, this score modification applies to
all subtrees of the current fragmentation graph. After we have computed the maximum colorful
subtree — in a graph with edge weights only — we add the score of the root to the subtree score.
This is necessary if we want to compare subtrees from different fragmentation graphs, see Sec. 9.7.

But scoring nodes (peaks) exclusively, any subtree that encompasses the same nodes as an
optimal subtree will be co-optimal. This includes fragmentation bushes from Sec. 9.1 — recall
that the fragmentation graph is transitive. To this end, we have to add prior knowledge to our
computations. A word of warning: See Chapter 12 on the many things that can go wrong if you
include prior knowledge in your computations. To lower the possibility of overfitting, we must
not choose any parameters of the fragmentation tree computation so that, say, molecular formula
identification rates are maximized.

What prior information can we use to weight the edges of the fragmentation graph? It is well-
known that certain losses are observed frequently in tandem mass spectrometry: These common
losses include H2O, CH3, and CO. Similarly, many losses are included in the fragmentation graph
which are thought to be implausible: This includes all radical losses but a few “common radical
losses” such as H·, O·, or ·OH, and nitrogen-only or carbon-only losses. We can ask an expert to
compile lists of common and implausible losses; an even better approach would be to learn such
lists from the data. (Learning common losses from data is indeed possible, but to learn implausible
losses is not.) Another observation we can make is that certain loss masses appear more often
than others, beyond the common losses mentioned above: A log normal distribution with mode at
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55.84 Da shows excellent agreement with observed loss masses. Finding the distribution and its
parameters is highly non-trivial, as we have to include the prior knowledge into the fragmentation
tree computation, which we then use to determine the parameters of the distribution. This
is best carried out using an iterative approach similar to Expectation Maximization, where we
compute fragmentation trees for a given reference dataset, then determine parameters from these
fragmentation trees, and then iterate until (hopefully) the process converges. At the end, we can
check whether our assumption — say, loss masses follow a log normal distribution — is supported
by the data. I will leave out the tedious technical details.

9.7 Finding the precursor molecular formula

Throughout all of this chapter, we have assumed to know the molecular formula of the precursor
ion, when in reality, that is what we want to determine. But considering the rest of this textbook, it
is not hard to come up with a solution: We iterate over all possible molecular formulas that explain
the precursor peak, or the corresponding peak from MS1. For each candidate molecular formula,
we generate the fragmentation graph and solve the MAXIMUM COLORFUL SUBTREE problem. We
use the score (weight) of the best tree as the score of our candidate molecular formula, and then
sort candidates by this score.

An alternative route — which ends up with exactly the same solution — is to integrate all
molecular formula candidates for the precursor ion in the fragmentation graph simultaneously.
All of these nodes have the same color; we add a superroot with a new color which is connected
to each of the precursor ion nodes. The optimum tree in this graph is also the optimum tree
we obtain by iterating over the molecular formula candidates. But this approach has a number
of disadvantages compared to the iterative computation: Firstly, we only get to know the top
scoring molecular formula candidate, not a ranking of all molecular formula candidates. This
is undesirable since we often cannot expect that the true answer is scored highest, but rather
have to consider the top 2 or top 10. Second, remember that the MAXIMUM COLORFUL SUBTREE

problem is NP-hard. Adding only a few nodes and colors can increase running times dramatically,
such as trillion-fold or worse; the time we save by not iterating over the candidates is tiny in
comparison. You might think that adding only one color (for the superroot) and a few nodes (for
the molecular formula candidates of the precursor ion) does not fatten the porridge, but the reality
is much worse: If we consider molecular formula candidates one by one, we have to consider —
for each candidate — only those molecular formulas for the fragments which are subformulas of
the candidate formula. This will not only substantially reduce the number of nodes; in addition,
we will usually find that some peaks cannot be explained as subformulas, reducing the number of
colors. In total, combining all molecular formula candidates in one fragmentation graph is rather
of theoretical algorithmic interest, as it will result in instances of MAXIMUM COLORFUL SUBTREE

problem which are at the limit of what is feasible.

9.8 Historical notes and further reading

Fragmentation trees were introduced by Böcker and Rasche [29] in 2008. NP-hardness of the
MAXIMUM COLORFUL SUBTREE problem was shown independently by Fellows et al. [89] and
Böcker and Rasche [29]: In the first paper, the more general GRAPH MOTIF problem is considered,
which is then restricted to colorful motives and trees as input graphs, resulting in the unweighted
MAXIMUM COLORFUL SUBTREE problem. In fact, the problem is also hard to approximate [94,
234].

We have been slightly sloppy when defining the MAXIMUM COLORFUL SUBTREE problem:
First, does the root of the graph have to be a node of the induced subtree? This is the case when
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9 Fragmentation trees

we compute fragmentation trees, but what about the general case? This point does not make a
difference for the complexity of the problem, as we can easily transform the two problems into
each other with polynomial (linear) overhead. Second, be reminded that we talk about subtrees
when we are only interested in arboreal (that is, tree-like) sub-trees. Finally, it is noteworthy
that neither the transitivity of the fragmentation graph, nor the fact that its coloring is order-
preserving [94], have been used in the design of the exact algorithms.

For the naïve algorithm, the O(m logn) running time factor is for computing the maximum
spanning tree, and can be decreased to O(mα(m,n)) using Chazelle’s algorithm [46], where α is
the inverse of the Ackerman function. This function α grows extremely slowly and for all practical
purposes, it may be considered a constant no greater than 4. We ignored this subtlety, as it has no
consequences on running time in practice. Note that it does not matter if we compute a maximum
spanning tree or a minimum spanning tree, both problems are equivalent.

For an introduction to parameterized algorithms, I refer the reader to [69, 208]. Using subsets of
colors as part of the dynamic programming recurrence, has been used frequently in algorithmics:
See for example Dreyfus and Wagner [71] who, back in 1972, colored graphs to compute a shortest
Steiner tree. A closer analysis of the dynamic programming algorithm shows running time O(2k ·
m+3k · kn). Running time can be improved to O(2k · p(n,k)) where p(n,k) is a polynomial in n
and k, using the Möbius transform and the inversion technique of Björklund et al. [23]; but this is
rather of theoretical interest, in particular since we can no longer use the space- and time-saving
algorithm engineering tricks.

Numerous books have been written about Integer Linear Programming, see for example Schrij-
ver [261]. The applications of (Integer) Linear Programming are unlimited and include spacecraft
trajectory planing [236] and smart homes [277]. To get a feeling for the importance of Integer
Linear Programming, take a look at the price lists of commercial solvers: A solver may easily cost
US$ 50k per year. If you want to know more about the difficulties of beating an ILP formulation
using a “custom-made” algorithm, see for example Böcker et al. [35] for the CLUSTER EDITING

problem and Rauf et al. [234] for the MAXIMUM COLORFUL SUBTREE problem.
My presentation of heuristics for the MAXIMUM COLORFUL SUBTREE problem follows Dührkop,

Lataretu, White, and Böcker [75], see there for further details. It turns out that the Critical Path
heuristic performs on par with the exact methods when it comes to molecular formula identifica-
tion, and that two variants of this heuristic perform even better than exact methods. Somewhat
unexpectedly, the two spanning tree heuristics have very different performance, both with regards
to running time and identification performance. No heuristic can compute fragmentation trees
which are structurally similar to the exact solution.

Why do we care about the structure of the fragmentation tree when evaluating heuristics for
the problem? Firstly, Rasche et al. [232] showed that the structure of fragmentation trees — as
computed by an exact method — agrees well with what a human expert would assign. But second,
fragmentation trees contain valuable information about the structure of a compound which goes
beyond that available in the fragmentation spectra! This was first shown by Rasche et al. [233]
which introduced fragmentation tree alignments (yet another NP-hard problem) for the pairwise
comparison of compounds. Today, the pairwise comparison of fragmentation trees forms the basis
of CSI:FingerID [74, 270]; replacing fragmentation spectra comparison in FingerID [127] with
fragmentation tree comparison in CSI:FingerID is the driving force behind the huge performance
leap between these tool. See Chapter 10 for some more details.

For scoring fragmentation trees, Böcker and Rasche [29] initially proposed an ad hoc scoring
where the list of common losses was indeed provided by a mass spectrometry expert. Böcker and
Dührkop [26] replaced the ad hoc scores by a statistical model where all parameters were indeed
learned from data. To avoid overfitting, the statistical model uses an intentionally small number
of parameters. It is noteworthy that the algorithms for computing fragmentation trees stay the
same; only the edge weights in the fragmentation graph change. Although parameters were not
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chosen in a way to maximize the molecular formula identification rate for the precursor ion, this
rate nevertheless almost doubled with the new edge weights.

Scheubert et al. [256] modified the approach of calculating fragmentation trees, so that MSn

data can be taken into account. Interestingly, whereas it appears to be a much simpler task
to reconstruct such trees from multiple MS data, the computational questions that arise in this
context are even harder than those presented here. In practice, this is not much of an issue, after
applying a decent amount of algorithm engineering [258].

Tandem mass spectra of a small molecule can be measured at different collision energies:
Higher energies lead to smaller fragments, as more chemical bonds break. To increase the amount
of information available to us, we may demand that several mass spectra (measured at different
fragmentation energies) are given to us. This is different from peptide fragmentation, where
spectra are always measured using one “fixed” collision energy. We can merge multiple spectra
from the same metabolite into one, merging peaks from different spectra with masses “sufficiently
close.” Alternatively, one tandem mass spectrum can been measured in “ramp mode”, where the
collision energy is varied while measuring the spectrum.

9.9 Exercises

9.1 How many sub-formulas exist for molecular formula C6H12O6? Find a general formula.

9.2 Why is it inevitable that we demand that the subtree of the fragmentation graph has to
be colorful, when defining the MAXIMUM COLORFUL SUBTREE problem? Describe what
happens if we drop this requirement.

9.3 Why do some edges of the fragmentation graph usually have negative weight, when defining
the MAXIMUM COLORFUL SUBTREE problem?

9.4 Show that that a directed graph T is a tree (formally, an arborescence) with root r if and
only if every node v of T can be reached from r, and every node but the root has in-degree
one, whereas the root has in-degree zero.

9.5 Show that that a directed graph T is a tree (an arborescence) if and only if it is acyclic, and
every node but the root has in-degree one, whereas the root has in-degree zero.

9.6 Assume that a company wants to produce two products, A and B. You need three machines
to produce these products: Product A requires 7 minutes of processing time on machine 1,
4 minutes on machine 2 and 3 minutes on machine 3; product B requires 4 minutes on
machine 1, 9 minutes on machine 2 and 3 minutes on machine 3. We can sell product A for
9 $ and product B for 13 $. Maximize the income you can make in one hour using Linear
Programming.

9.7 Proof that the Kruskal-style heuristic always returns a subtree.

9.8 Give a simple example where the Kruskal-style heuristic and the Prim-style heuristic return
different trees.

9.9 Show the correctness of recurrence (9.6).

9.10 Show the correctness of recurrence (9.7); give an example why the recurrence is no longer
correct if the coloring of G is not order-preserving.

9.11 For the fragmentation graph shown below, compute the heuristic solutions for the Kruskal-
style and Prim-style heuristic, with and without Remove Dangling Subtrees postprocessing.
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9 Fragmentation trees

Assume that all transitive edges (for example, from the root to any other node) which are
not shown, are also present in the input graph but have weight −10.

2 1
0

2
42

322

-5

0

9.12 For the fragmentation graph from Exercise 9.11, compute the Critical Path heuristic.
Compare all heuristic solutions to the exact solution of the MAXIMUM COLORFUL SUBTREE

problem.

9.13F Proof that finding a maximum subtree in a DAG that may contain negative edges, is an
NP-hard problem.
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10 Searching metabolite structure databases

“Nature makes penicillin; I just found it.” (Alexander Fleming)

“You want to know how two chemicals interact, do you ask them? No, they’re going
to lie through their lying little teeth. Throw them in a beaker and apply heat.” (Dr.
Gregory House)

FRAGMENTATION tree computation, as introduced in the previous section, can be an important
first step in the analysis of fragmentation data from small molecules. But ultimately, the

thing that we want to know is the molecule’s structure. We will see in Sec. 10.4 that de novo
structure elucidation of small molecules is impossible, compare to Chapters 2 and 11. This
does not mean that computational mass spectrometry cannot assist in doing so, but a lot of
prior background knowledge and potentially additional experimental data has to be added. To
this end, we will concentrate on searching in molecular structure databases (Sec. 10.3). Note
that searching in spectral libraries (the standard way of identifying small molecules via mass
spectrometry, sometimes referred to as “dereplication”) has been covered in Chapter 4.

10.1 More facts about metabolites

I assume that you, the reader, are familiar with proteins and peptides — this is taught, say, to
undergraduate students from bioinformatics. But I also assume that you are less familiar with
“metabolites”; this is why I want to collect a few facts about them. If you already know what I am
talking about, skip this section.

Metabolites can be subdivided into two major classes. A primary metabolite is directly involved
in growth, development, and reproduction of a cell or organism: For example, adenosine-5’-
triphosphate (ATP) is the energy currency of the cell. A secondary metabolite is not directly
involved in those processes. Examples include antibiotics and pigments; a secondary metabolite
of particular importance to science in general, is shown in Fig. 10.1.

A major challenge is that most of the secondary metabolites in any given higher eukaryote
are largely unknown: Current estimates are in the range of up to 20 000 metabolites for any
given species. In particular, plants, filamentous fungi, and marine bacteria synthesize enormous
numbers of secondary metabolites. Unlike for proteins, genome sequencing usually does not allow
us to deduce the structure of the metabolites.

Another challenge that we have to face, it that the molecular structure of metabolites is not
restricted: Unlike for biopolymers who are made from smaller monomer building blocks in some
ordered fashion (strings for proteins, trees for glycans) the molecular structure of metabolites
is not restricted. In spite of the small size of metabolites, this results in a huge variety and
complexity of such molecules.

For the analysis via mass spectrometry, the important point is not that metabolites are interme-
diates or products of some metabolism; the important point is that they are small molecules: These
are molecules with mass below about 1000 Da that, by definition, are no biopolymers. No rule
without exception: Small biopolymers such as peptides with only two amino acids (for example,
carnosine) or disaccharides (for example, sucrose) are sometimes also considered metabolites. It
is understood that there exist small molecules that are not metabolites: To name two examples,
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10 Searching metabolite structure databases

consider drugs and pesticides, which are often synthetic. To include these small molecules, we will
speak about “biomolecules”, that is, molecules that are products of nature, or synthetic products
with potential bioactivity. For mass spectrometry, there is usually no fundamental difference
analysing metabolites or other biomolecules. To this end, when we speak about “metabolites”, you
can often replace this by “small biomolecules”.

Much like for proteins, mass spectrometry is also a key technology for the identification of small
molecules. Various analytical setups have been developed, most notably gas chromatography
MS (GC-MS, also GC/MS) and liquid chromatography MS (LC-MS, see Sec. 1.6.2). GC-MS
is almost exclusively coupled with Electron Ionization (EI), that both ionizes and fragments
molecules. GC-MS spectra are usually interpreted via database search in spectral libraries of
references. To generate an entry in a spectral library someone has bought the (mostly pure)
molecule from a vendor, then measured it on his GC-MS instrument, recording its retention
time and fragmentation spectrum. In this context, the molecule is referred to as a “standard”
or “reference compound”. Fragmentation spectra of reference compounds have been collected
over many decades. Spectral library search is comparatively easy as the fragmentation is highly
reproducible across instruments, vendors, and time. Large spectral libraries of measured GC-MS
reference spectra are available, such as the commercial library from the National Institute of
Standards and Technology (NIST/EPA/NIH Mass Spectral Library). A major issue of searching
GC-MS libraries is that the fragmentation is executed without precursor selection, so that the
mass of the molecule is unknown and we have to search the complete library without filtering.
On the other extreme, EI fragmentation spectra are often interpreted by hand, and numerous
books have been written that explain how to do this. This is possible as EI fragmentation is
comparatively easy to understand, reproduce and simulate.

GC-MS requires metabolites to be thermally stable. Unfortunately, this is not the case for
several biologically important compound classes: Just imagine what happens to sugar-containing
metabolites when you heat them. For the analysis via GC, molecules have to be derivatized; this is
done to improve the volatility of compounds, to reduce polar substances in polarity or to increase
sensitivity. For example, the hydroxy groups of sugars are silylated to make them available for
the analysis via GC-MS. Alternatively, these molecules can be analyzed using LC-MS. Recall the
experimental setup from Sec. 1.6.2: First, molecules are separated by liquid chromatography, and
MS1 spectra are recorded; the precursor ion of one molecule is mass selected, and fragmented
by collision-induced dissociation; and masses of resulting fragments are recorded in a tandem
mass spectrum. Compared to GC-MS, this has the additional advantage that we can fragment
one molecule at a time, whereas fragmentation by EI is applied to all molecules that leave the GC
column simultaneously. The computational analysis of metabolite tandem MS data is still in its
infancy, and this is presumed to be one of the major technological hurdles in metabolomics today.
The manual analysis of these data is highly non-trivial and time-consuming, as the fragmentation
of small molecules under varying fragmentation energies is not completely understood. Tandem
MS of small molecules is highly reproducible if you compare spectra measured on the same
instrument. On different instruments and, in particular, when comparing tandem mass spectra
from different instrument types such as Orbitrap and QTOF, reproducibility is much lower than
for EI fragmentation. But even in this case, reproducibility is high enough to allow for spectral
library searching.

As GC-MS is very important for analyzing small molecules, we will usually speak about the
fragmentation spectrum of the molecule, which can be its tandem mass spectrum, its Electron
Ionization fragmentation spectrum, or anything else you can think of. Clearly, fragmentation
processes are very different and sometimes require massive modifications of an approach; but
many general ideas can be easily transferred.
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Figure 10.1: Left: Structural formula of caffeine, molecular formula C8H10N4O2, monoisotopic
mass 194.080376 Da. Right: Corresponding molecular graph with colors from
{C,H,N,O}, but without bond orders. Note that some hydrogen atoms are omitted
in the structural formula.

10.2 Representing molecular structures as graphs

There exist at least two ways to encode the structure of a molecule as a graph, both being
absolutely straightforward. The molecular graph G = (V ,E; c) of a given molecular structure
represents each atom (including hydrogen atoms, which are frequently omitted from molecular
structure drawings) by a node. Each node is labeled by the corresponding element through the
function c : V → C , where C is the set of all chemical elements. The graph is undirected but not
simple, meaning that two nodes can be connected by more than one edge. For an edge between
u and v, we will use the notation uv ∈ E. For every covalent bond in the molecular structure,
we insert edges into the graph according to the bond order: A single bond is represented by one
edge, a double bond by two edges, and a triple bond by three edges. Clearly, doing so we cannot
represent, say, aromatic bonds in the graph; aromatic rings have to be resolved into single and
double edges.

The bond-labeled molecular graph G = (V ,E; c,b) again represents all atoms as nodes and labels
them accordingly. But this is a simple undirected graph, meaning that two nodes can be connected
by at most one edge. In addition, each edge e is mapped to some bond order b(e), which besides
single, double and triple bonds may also be an aromatic edge, or anything else that comes into
your mind. See Fig. 10.1 for an example; bond orders are omitted from the graph.

A path p = u0u1 . . .ul in an undirected graph G is a list of nodes u0,u1, . . . ,ul ∈ V such that
ui−1ui ∈ E is an edge, for all i = 1, . . . , l. We say that p is a path from u0 to ul of length |p| := l.
A graph G is connected if, for any pair of nodes u,v, there exists a path from u to v. Clearly,
there can be more than one such path. Recall that only molecules held together by covalent bonds
will be measured jointly in the MS instrument. In other words: If the molecular graph is not
connected, it will not be measured in MS as one.

To deal with fragmentation mass spectra, we consider subgraphs of the molecular graph. Any
graph H = (V ′,E′) with V ′ ⊆ V and E′ ⊆ E is a subgraph of G = (V ,E). Subgraph H is an induced
subgraph (more precisely, a node-induced subgraph) if E′ = E ∩ (V ′

2
)
, where

(X
2
) = {

{x, y} : x, y ∈
X , x 6= y

}
is the set of subsets of cardinality two. Colloquially speaking, an induced subgraph

contains all the edges from the original graph connecting nodes from V ′. A cut F ⊆ E is a subset
of edges such that the graph (V ,E −F) is not connected. For an induced subgraph (V ′,E′), the
corresponding cut is

F := {
uv : u ∈V ′,v ∈V −V ′}.

Recall that the weight of a fragment is determined by its nodes (atoms), not its edges (bonds). On
the other hand, breaking a bond requires energy. To this end, we will often restrict ourselves to
induced subgraphs.
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Going from strings (peptides) or trees (glycans) to arbitrary graphs comes with numerous
computational problems. For example, even checking whether two representations of a molecular
graph are actually “the same”, is a highly non-trivial problem: This is the graph isomorphism
problem, and it is famous in complexity theory for being a candidate for the complexity class
“NP-intermediate”. The subgraph isomorphism problem is simply NP-complete, see below.

Molecular graphs correspond to the “constitution” of a molecule, but do not account for its 3-
dimensional structure. For any given molecular graph, there can exist numerous stereoisomers
which differ solely in the 3-dimensional orientations of their atoms in space. Thalidomide is
a particular infamous example for demonstrating the importance of stereochemistry; D-serine,
an enantiomer of the common L-serine, serves as a neuromodulator. It is widely believed that
differentiating between stereoisomers is currently and in general beyond the power of mass
spectrometry. (For certain hand-selected examples it may be possible today; and this may change
in the future.) In this regard, molecular graphs, representing the “2-dimensional structure” of
the molecule, are an adequate representation. I have set “2-dimensional structure” into quotation
marks because certain molecular graphs require the third dimension to be “reasonably” drawn,
see tetrodotoxin (fugu poison) as an example. Note that the molecular graph of tetrodotoxin
is nevertheless planar, as it does not contain K2,3 as a minor. But to embed the tetrodotoxin
molecular graph into the plane requires highly unequal edge lengths. In fact, even the molecular
graph of buckminsterfullerene (the bucky ball) is planar.

Do not ask me for a definition of aromaticity; in short, it is complicated. It is enough for us
to know that certain chordless cycles in the structure can be labeled “aromatic ring”. Aromatic
rings are usually made from five or six atoms. These rings do not break apart easily, which
is obviously of interest for us when we try to interpret the fragmentation of a small molecule.
Deciding whether a particular ring in a molecular structure is an aromatic ring, is a non-trivial
problem [193, 200, 260]; the often-applied Hückel rule can, for example, only be applied if there is
only one ring.

There exist many issues with representing a molecular structure as a molecular graph. For
example, “tautomerism, mesomerism and alternate ionization states contribute to the number
of possible valid, nonidentical representations of the same structure” [120]; sometimes, these
representations exist in equilibrium [255]. These issues are somewhat cumbersome to deal with,
see for example Hähnke et al. [120] on the standardization of molecular structures in PubChem.
At a certain stage, the molecular graph representation may result in wrong conclusions being
drawn about the molecule. (For molecular graphs with multiple edges between nodes, we cannot
even represent aromatic bonds; resolving them as single and double bonds already results in
ambiguity that we have to deal with later.) Nevertheless, molecular graphs are extremely helpful
for many applications, and have the advantage of simplicity: If you want to avoid such issues, use
Quantum Chemistry calculations. Citing George E. P. Box once more: “All models are wrong but
some are useful.”

10.3 Searching in metabolite structure databases

In the following, our goal is to structurally elucidate a small molecule (e.g., a metabolite), given
its tandem mass spectrum. Unfortunately, to do so de novo is not possible, see Sec. 10.4. (It may
be possible for a few hand-selected cases, but definitely not in general.) This is why searching in
spectral libraries has been the standard way of identifying metabolites for decades.

In the following, we want to replace searching in spectral libraries by searching in molecular
structure databases — but why? Spectral libraries are (and will be) tiny, in comparison to the huge
molecular structure databases. PubChem already contains more than 100 million compounds
and is steadily growing. In comparison, spectral libraries unusually contain thousands to ten
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Figure 10.2: Three paradigms for searching in small molecule structure databases.

thousand (singular) of compounds. The actual numbers are of no importance here; it is enough
to see that structure databases are orders of magnitude larger. There is no reason to believe that
this gap will get smaller in the future: All biologically relevant standards that you can buy for
little money, have already been included in spectral libraries. In fact, different spectral libraries
today show an overlap which may be surprising, given that so many biomolecules are still absent
from all libraries. In the near future, people will search in structure databases that contain
hypothetical metabolites; when you read this, it may already be an accepted standard procedure.

Searching in a structure database proceeds in the usual way: First, we filter all molecules
from the database that have the correct precursor mass or molecular formula; these are our
candidates. Second, we then rank all candidates using the measured spectrum; this is usually
done by computing some score. Currently, there exist four paradigms to rank the candidates:

• Structure to mass spectrum. We transform a molecular structure (for example, a
molecular graph) into a fragmentation spectrum. The advantage here is that we can do
the transformation as preprocessing; the actual molecular structure search boils down to
a spectral library search, where spectra in the library are all simulated. This is closest to
what we know from peptide mass spectrometry, where — in its simplest incorporation —
simulating a fragmentation spectrum is trivial. Unfortunately, it is highly non-trivial for
small molecules. Current approaches are either based on Quantum Chemistry calculations
(EI fragmentation) or machine learning (tandem MS and EI fragmentation). To give you
an idea of how involved this can get: The machine learning approach CFM combines
Expectation Maximization, Neural Nets and a hint of Markov Chain Monte Carlo. It must
be understood that the simulated spectrum of a compound is usually rather distinct from
its experimental counterpart; but the primary task here is to rank the correct candidate at
a top position (see Sec. 4.10), not to simulate a nice-looking spectrum.

• Structure plus mass spectrum to score. Here, we try to explain the peaks in the
measured fragmentation spectrum as induced subgraphs of the candidate molecular graph.
This is also known as combinatorial fragmentation, as it does not simulate the actual
fragmentation of the molecule (we would not need a measured spectrum to simulate a
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spectrum) but instead, simply tests which of the detected peaks can be “explained away”.
Obviously, our score can take into account mass deviations (Sec. 4.5) and peak intensities;
but since there is no simulated spectrum, we have to resort to score against barcode spectra
(Sec. 4.7). This paradigm is conceptually the simplest of the three, but comes with the
disadvantage that both the structure candidate and the experimental query spectrum have
to be known to compute a score. We will come back to this in Sec. 10.5.

• Mass spectrum to structure. We transform the query framentation spectrum into
information about the structure of the query molecular structure (usually, a molecular
fingerprint). The advantage of this paradigm is that this transformation does not require a
database. The molecular structure search boils down to comparing the structure informa-
tion (say, the molecular fingerprint) to structures in a molecular structure database. But
the method is not limited to search in a molecular structure database, and we can also use
the predicted structure information to derive further information about the query molecular
structure. Current approaches use machine learning to derive the structure information, in
particular, kernel-based methods such as Support Vector Machines.

• Guilt by association. These are meta-methods that try to extend the annotations of some
identification method (spectral library search, sometimes even searching exact match) to
other queries which were initially not identified. To do so, they require that some molecular
network is known. [TODO: FFF]

See Fig. 10.2 for the first three paradigms. These three paradigms are referred to as “in silico
fragmentation”, although this name only fits the first paradigm; the other two paradigms do not
(claim to) simulate small molecule fragmentation in silico. The “structure to mass spectrum”
paradigm is closest what biochemists are used to from spectral library search; but as detailed in
Sec. 4.10, this does not mean that it is the best way to rank candidates.

Finally, what databases do we search in? There exist large databases such as PubChem
(https://pubchem.ncbi.nlm.nih.gov/) or ChemSpider (http://www.chemspider.com/) which
contain millions of compounds. Searching there has the disadvantages that only a small fraction
of the entries are biomolecules. Also, searching in a large database is considerably harder than
searching in a small one, as bogus hits (high-scoring wrong candates which, just by chance,
have a better score than the correct candidate) will increase, see Chapter 6. One the other
hand, there are specialized databases such as HMBD (http://www.hmdb.ca/) or ChEBI (https:
//www.ebi.ac.uk/chebi/) which concentrate on a subset of biomolecules. Unfortunately, there
is no biomolecule database containing all of them, so one has to aggregate the different databases
“by hand”. In practice, a reasonable strategy is to search first in a biomolecule database; only
queries where we do not find a reasonable hit, are then searched in PubChem or ChemSpider.
See Chapter 12 for a justification of this approach. For evaluations, it makes most sense to search
PubChem or ChemSpider, as this is more challenging; this is what you will (hopefully) see in
publications from computational mass spectrometry on the topic.

10.4 De novo structural elucidation of small molecules

What about metabolite “de novo sequencing”? For peptides (Chapter 2) and glycans (Chapter 11)
it is possible (at least in principle) to determine the structure without having to rely on a database
to search in. Is something similar possible for small molecules?

Unfortunately, this is not possible. This is so for a number of reasons, some of which have been
discussed previously:

• Given the structure of a metabolite, it is highly involved to simulate its spectrum.
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10.4 De novo structural elucidation of small molecules

• Given one or more peaks in the fragmentation spectrum, it is highly involved to deduce
information about its structure.

• Fragmentation depends on the energy we are applying; and since some metabolites show
informative fragmentation for certain fragmentation energies only, we have to solve the
above problems for any given energy.

• Many metabolites do not show informative fragmentation at any energy; a fragmentation
spectrum with less than ten peaks is rather common.

• Metabolites with different structures can have practically indistinguishable fragmentation
spectra. We observe this phenomenon already today, although our spectra libraries from
chemical standards are puny, in comparison to all biomolecules that exist, or molecular
structures that might exist.

• Genomic data tells us little about the structure of metabolites.

• Whereas structure of peptides (strings) and glycans (trees) is highly restricted, very few
restrictions exists for metabolites (graphs).

• Consequently, whereas the number of peptides and glycans (see Chapter 11) may appear
intimidating, numbers are even worse for metabolites.

• We do not even know how many metabolite structures exist for a given molecular formula,
up to a given mass, or any related question. The only way to compute this number, is to
actually generate (enumerate) each structure.

• Testing if two molecular graphs are actually the same molecular structure, is already a
highly non-trivial problem. Testing for substructures is even worse.

Recall that you may exchange “metabolite” for “small biomolecules”. The above does not mean
that computer programs cannot assist in the structural elucidation of a metabolite; but a full
structural elucidation by mass spectrometry is, by all accounts, impossible. (I am happy to take
bets here.) The above statements hold in general: You will find certain metabolites or metabolite
classes where this is not the case, but generalizability dictates that this is not enough.

The best shot at the problem is to combine searching in structure databases with structure
generators such as MOLGEN or OMG. Structure generators enumerate, for a given molecular
formula or mass, all molecular structures that are chemically sound. (Molecular structure
enumeration is in itself a scientifically extremely challenging task, and many master and PhD
theses [117, 303] — often under the supervision of Prof. Reinhard Laue and Prof. Adalbert
Kerber at the University Bayreuth — and books have been written about this topic [158].) This
allows us to overcome the boundaries of database searching: Generate all molecular structures
corresponding to the precursor mass or molecular formula, and use the output of the structure
generator as our database, compare to Sec. 2.8. But unfortunately, there is little hope that this
approach will ever work, at least in this simple setup: The problem is not the structure generators,
which can enumerate millions of structures in a matter of seconds, the problem is the size of
the search space. For example, MOLGEN enumerates all molecular structures with molecular
formula C8H6N2O, in a matter of minutes [156]. Unfortunately, it turns out that there are more
than 100 million such structures. Now, ranking these structures to find the one that is correct,
is an extremely hard task: Ranking the candidates will take considerable time; but even worse,
ranking the correct answer at a top position is extremely challenging. Remember that PubChem
also contains more than 100 millions structures; but using a molecular structure generator, all
structures have the same molecular formula, and we cannot filter any candidates based on the
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10 Searching metabolite structure databases

molecular formula! Finally, the molecular formula C8H6N2O with mass 146.048013 does not
correspond to a particularly large biomolecule; things get even worse for larger molecules, as we
will see below.

So, how many molecular structures exist for a given (nominal) mass? As noted, we do not have
a clue, except for certain special cases. An obvious but highly misleading approach is to look into
molecular structure databases such as PubChem; but what we observe there is that after a certain
mass, the number of structures decreases. Another possibility is to consider only a particular
class of small molecules: The combinatorially simplest class are alkanes with molecular formula
CnH2n+2. From a combinatorial standpoint, alkanes correspond to trees with maximum degree 4;
this combinatorial standpoint ignores whether the molecular structures can exist in 3D space, but
is “as good as we can get”. The number t[n] of alkanes CnH2n+2 can be computed exactly using a
recurrence, but also approximated as

t[n]∼ 0.6563186958 ·n−5/2 ·2.815460033n, (10.1)

compare to Sec. 11.7. For example, for molecular formula C71H144 with nominal mass 996 there
exist 1.28 ·1027 alkanes. Finally, we can indeed enumerate all structures to count them. Clearly,
we have to restrict our alphabet of elements to limit the combinatorial explosion. For example,
using alphabet of elements CHNO and nominal mass 150 there exist 615977591 molecular
structures. Although we do not have any approximation for the number of molecular structures
with nominal mass m over CHNO, we can roughly extrapolate the number as

2.0668257909 ·10−4 ·1.2106212044m. (10.2)

This number does not come with any guarantee of convergence (Sec. 14.6), but is just a crude
regression of the available numbers; remember the proverbial “Milchmädchenrechnung” from
the footnote on page 127. Assuming that (10.2) is accurate, the number of molecular structures
increases 1000-fold every 36 Da; in particular, we have 2.11·1079 molecular structures for nominal
mass 1000 over the alphabet CHNO. This is roughly the estimated number of atoms in the
observable universe. The number does not change much if we consider all masses up to 1000 Da
instead of exactly 1000 Da, see Exercise 10.3. If we include phosphorus, sulfur and halogens in
this estimate, things will get worse, but it is hard to estimate how much worse — the number
is probably somewhere between 1085 and 10110 molecular structures for mass up to 1000 Da,
potentially closer to the lower number. For comparison, there exist 2.10 ·1027 peptides of length
up to 20; you will have to go up to peptide length 60 to be a match for the number of metabolite
structures.

10.5 Matching masses to molecular substructures

Let us assume for a moment that we have both the experimental tandem MS data, and the correct
molecular structure of the molecule: All we have to do, is to match what we see experimentally
with the known structure. You might wonder whether this this is a little bit too much information
at the same time. As CID fragmentation of metabolites is still largely not understood, it is actually
a rather sensible question. But in application, this “oracle” will be used as a subroutine of the
combinatorial fragmentation approach for searching in molecular structure databases.

Unfortunately, many negative (hardness) results are waiting along the path to this problem. To
this end, let us focus on the potentially most basic problem: Given a molecular graph, is there a
connected subgraph of mass m?

To make things somewhat simpler for us, let us assume that we have successfully transformed
the mass of the fragment into its molecular formula. Then, the question is: Is there a substructure
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of the molecule with the given molecular formula? We now formalize this problem, see Sec. 10.2:
We are given a node-colored, undirected graph G = (V ,E). A molecular formula corresponds to a
multiset of colors: A multiset is a set where, for each element in the set, we also record the number
of times it appears. Now, our question is: Is there an induced subgraph G′ of the given graph, such
that the multiset of colors of this subgraph equals a given input multiset of colors?

In theoretical computer science, this problem is known as the GRAPH MOTIF problem. Unfor-
tunately, a series of papers has proven the hardness of the problem with respect to different
algorithmic flavors. We just note that the problem is NP-hard even for bipartite graphs of
maximum node degree four and only two colors. On the positive side, several parameterized
algorithms were constructed. For the application that we have in mind, the GRAPH MOTIF

problem is an oversimplification, as we ignore the cost of cutting out a fragment at a particular
position; incorporating edge weights and solving the optimization problem leads to increased
running time.

But somewhat counterintuitive, the problem that we address here, is simpler than the GRAPH

MOTIF problem: As the fragmentation energy is limited, the molecule cannot break at too many
positions simultaneously. So, we assume that we are given an upper bound b, such that at most b
edge removals must suffice to disconnect the subgraph G from the remainder of G. In application,
we may assume that this b is rather small, such as b = 3. Assume that we have some objective
function w : E → R that we want to minimize; w may correspond to the energy required to break
some bond. Now, we ask: What is the induced subgraph G′ of G that can be separated from the
remainder of G via deleting an cut set E′ ⊆ E with

∣∣E′∣∣ ≤ b, such that w(E′) is minimum? As we
require

∣∣E′∣∣≤ b, there may be no such graph.
We can try all edge sets with at most b edges, and see if they produce the desired multiset

(molecular formula). As there are O(|E|b) such edge sets, an algorithm for that purpose will run
in roughly that time. But we want to something slightly smarter: We use a branch-and-bound
heuristic, aborting our search as soon as no optimal solution can be found in the future. Given a
cut set E′ ⊆ E with

∣∣E′∣∣ ≤ b, its deletion might separate G into a set of connected components.
We use depth-first search to identify the connected components in G; simultaneously, colors
are counted and costs for the partition are calculated. If the colors of a connected component
correspond to the colors of the input multiset, and the costs are smaller than the costs of the best
solution found so far, the connected component is stored. These costs w∗ are then used as an
upper bound for pruning.

Initially, edges are sorted in increasing order with respect to their weight. We use edge set
iterators i1 < i2 < ·· · < ib pointing to the sorted set E. We iterate i1 = 1, . . . , |E|, and inside this
loop iterate i2 = i1 +1, . . . , |E|, and so on, compare to Algorithm 8.1 on page 135. Let w(i) be the
cost of the edge that corresponds to iterator i. Assume that we have iterators i1, . . . , ia−1 fixed,
and that we want to iterate ia = ia−1 +1, . . . , |E| for a ≤ b. Assume further that the weight of the
partial solution for iterators i1, . . . , ia−1 is known; we compute the weight of the partial solution for
iterators i1, . . . , ia in constant time, adding w(ia), and pass this weight to the following iteration
steps. We abort this loop if our current weight exceeds the current minimum weight w∗.

Another trick of speeding up this algorithm in applications, is to iterate over b′ = 1, . . . ,b, and
to examine only cut sets E′ with

∣∣E′∣∣ = b′. Note that you may not stop if you found a solution for
some b′ < b, as cut sets with larger cardinality may have smaller weight. Another possibility is
to provide not only b as the maximum number of edges we are allowed to break, but also some
maximum weight w∗ that we are allowed to use for breaking edges.

Analyzing the worst-case running time of our algorithm is quite simple, as none of the heuristic
improvements discussed above, does anything good to the worst-case running time. Sorting edges
costs O(|E| log |E|) time. Running time of the depth first search is O(|V |). The branch-and-bound
algorithm iterates over O(|E|b) edge sets. This results in an overall running time of O(|E| log |E|+
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10 Searching metabolite structure databases

|V | · |E|b). It is easy to see that this algorithm also answers the question, whether there is a
substructure of some given mass m.

10.6 Lipids

One large class of metabolites are lipids: These are biomolecule that is soluble in nonpolar sol-
vents, and include fatty acids, waxes, sterols, fat-soluble vitamins, monoglycerides, diglycerides,
triglycerides, and phospholipids. Different from general metabolites, lipids are very restricted
in their molecular structure: In particular, they often have long chains made from carbon and
hydrogen, usually with only few double bonds between the carbon atoms, which are attached to
some backbone.

Different from general metabolites, the fragmentation of lipids is relatively easy to predict.
Usually, we cannot identify the exact positions of double bonds in the hydrocarbon chains; to
this end, what we want to identify is not the exact molecular structure, but rather a structure
intermediate. In full, it does not make sense to computationally analyze lipids in the same way
that we do it with other small biomolecules: In this way, lipids are similar to peptides and glycans,
where applying the generalist methods from this chapter would also be “overkill”.

LipidBlast and CFM-ID version 3 make use of the known fragmentation patterns of lipids, to
predict lipid spectra via rules similar to what we do for peptides (abcxyz ions). The Lipid Data
Analyzer (LDA) avoids simulating lipid mass spectra, and instead follows the “mass spectrum to
structure” paradigm, transforming the mass spectrum into structure information about the lipid
based on expert-curated decision rules. In evaluation, LDA substantially outperforms approaches
based on simulating lipid mass spectra.

In short: Lipids are special; do not make things complicated by treating them as if they were
general metabolites.

10.7 DENDRAL

First rule-based approaches for predicting fragmentation patterns, as well as explaining exper-
imental mass spectra with the help of a molecular structure, were developed as part of the
DENDRAL project that started back in 1965 [174, 175]: This lead to a series of papers, dealing
with the interpretation of mass spectrometry data, and the identification of metabolites. Meta-
DENDRAL was used to derived new “rules of thumb” for the analysis of mass spectrometry data,
published in a series of papers in the Journal of the American Chemical Society. Gray et al. [111]
describe the computer program CONGEN which corresponds to Sec. 10.5. Lavanchy et al. [171] use
this method to interpret mass spectra of marine sterols. Gray et al. [112] do a similar analysis
using the related GENOA program. See Mun and Mclafferty [201] and Smith et al. [276] for reviews
of different aspects of the DENDRAL project at that time. Other parts of the project dealt with the
automated analysis of Nuclear Magnetic Resonance (NMR) data [110]. A full coverage of all the
techniques developed as part of the DENDRAL project, is far beyond the scope of this textbook;
see Chapter 7 of the PhD thesis of November [210] for the early years of the project. Some of
the techniques used in DENDRAL would today go under the name “combinatorics”, “algorithmics”
or “graph theory”: For example, computing molecular formulas from masses was achieved by a
brute-force search with some simple pruning strategies, compare to Chapters 3 and 8. But at the
time, the label “Artificial Intelligence” probably made it much easier to get funding.

In the end, the DENDRAL project did not have much impact on today’s computational mass
spectrometry. Citing Gasteiger et al. [99]: “However, it is sad to say that, in the end, the DENDRAL

project failed in its major objective of automatic structure elucidation by mass spectral data,
and research was discontinued. Therefore, investigations of the relationships between structure
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and mass spectra by computer techniques suffered severe setbacks.” Possibly, the people behind
DENDRAL were too far ahead of their time: With high mass accuracy data and the compute
power that we have today, things obviously become easier. Possibly, they chose the wrong objects
to study: Peptides are much more convenient, from a computational perspective. As Biemann
et al. [21] observed back in 1966, “the structures of oligopeptides follow a few strict requirements
which can be simply expressed in computer language.” But then, rule-based systems have not
had much success in peptide analysis. Finally, concepts from theoretical computer science, such
as correctness proofs or worst-case running time analysis, did not play a role back then. Still,
it might be a good idea for everybody who has a “new” idea on this topic, to look at “ye olde”
publications.

10.8 Historical notes and further reading

See Fernie et al. [92] and Last et al. [170] for introductions to metabolomics and metabolite
profiling.

This chapter is somewhat different from the previous ones, in that the computational analysis
of small molecule MS has only recently (around 2006) started to foster. This is somewhat
surprising, as the DENDRAL project (Sec. 10.7) started in back in 1965, one year before tandem
mass spectrometry was invented. In the next four decades, papers were published regularly
(say, ten per year) on the “computerized analysis” of metabolite MS data, but little progress
was made regarding general computational methods. One noteworthy exception is predicting the
presence or absence of certain substructures from EI fragmentation data using machine learning
[56, 122, 166, 280, 282, 295, 297, 302, 310]. See Scheubert et al. [257] for a review. In comparison,
computational mass spectrometry for peptides and proteins started only 1997 or 1999, at least
on the (bio)informatics side, but quickly outstripped the development of computational methods
for metabolites. I can remember an Informatics session at the annual conference of the American
Society of Mass Spectrometry where the chair asked, “who in the room is not doing peptides or
proteins?”, and I was the only one to raise my hand — out of at least 200 people at that session.
Maybe, everybody else was shy.

Archetypical methods for the three approaches to search molecular structure databases are
CFM(-ID) [1, 2] for “structure to spectrum”, MetFrag [250, 305] and MAGMa [237, 238] for
“structure plus spectrum to score”, and FingerID [127] and CSI:FingerID [74, 270] for “spectrum
to structure”. The Input Output Kernel Regression version of CSI:FingerID [39, 40] avoids
predicting a molecular fingerprint, which severely speeds up computations but comes at the prize
that, well, we do not get to know the molecular fingerprint. Quantum Chemistry methods can
be found in [14, 43, 115, 129]. MetFusion [103] is an hybrid approach: Like a kernel method, it
computes the similarity of the query spectrum to all spectra in the training data, then combines
these similar to a linear Support Vector Machine. But the weights of the linear combination are
not learned and instead chosen individually for each candidate, based on the chemical similarity
between the candidate and the training structure. For “guilt by association” methods, [TODO:
FFF]. “Guilt by association” methods may suffer heavily from hidden priors (Sec. 12.8).

Searching in molecular structure databases is sometimes being referred to as “dereplication”,
similar to searching in spectral libraries. But this is a rather stupid name, as it implies that
we can only find things which are already known. Given that our database can consist solely
of hypothetical structures, which for sure nobody “knows” to be biomolecules, it is clear that the
label “dereplication” is misleading at best.

In 2008, Hill, Kertesz, Fontaine, Friedman, and Grant [129] were the first (as far as I know)
who proposed to search in a molecular structure database; they used a commercial program
to predict tandem MS spectra from molecular structures. In 2010, Wolf, Schmidt, Müller-

175



10 Searching metabolite structure databases

60 80 100 120 140
nominal mass

101

102

103

104

105

106

107

108

109

nu
m

b
er

of
m

ol
ec

ul
ar

gr
ap

hs

Figure 10.3: Number of molecular graphs with nominal mass m. Numbers taken from Kerber
et al. [157]. Note the logarithmic y-axis. Regression line fitted for masses 80 Da and
above.

Hannemann, and Neumann [305] presented a somewhat greedy heuristic to match molecular
structures and experimental data, see Sec. 10.5. Methods for searching in molecular structure
databases have made remarkable progress since 2008: CASMI (Critical Assessment of Small
Molecule Identification) challenges (http://casmi-contest.org/) have been conducted since
2012, usually under the (co-)supervision of Emma Schymanski and Steffen Neumann, to evaluate
the power of computational methods for searching small molecule tandem MS in structure
databases [209, 262, 264]. See there for the progress automated methods have made in only a few
years, and see [133–135, 206] for reviews on computational methods for small molecule tandem
MS.

We claimed that genome sequencing does not allow us to deduce the structure of the metabolites.
This is not true for polyketides, secondary metabolites that are made by polyketide synthases
which, in turn, are huge proteins resembling conveyor belt factories. Also, certain proteins are
known to make metabolites of a particular structure. Finally, heavily modified and cyclic peptides
are at the border of proteomics and metabolomics; as for lipids, it is not advisable to analyze them
with general purpose metabolomics methods.

For the number of molecular structures, see Kerber et al. [156] for nominal mass 146, and
Kerber et al. [157] for masses up to 150. The fact that growth is potentially again exponential,
can be “empirically established” from Fig. 1 in [157]. For the crude approximation in (10.2) see
Fig. 10.3. See Cayley’s paper from 1875 [44] on the number of alkanes; but also note the correction
by Rains and Sloane [225]. The bookchapter by Faulon, Visco Jr, and Roe [88] gives an extensive
review on the subject, and lists the number of alkanes, alkenes, alkynes, stereoalkanes, ketones,
esters, alcohols, benzenoids, and fullerenes. The approximation (10.1) for alkanes is due to Böcker
and Wagner [30]. MOLGEN [17, 155, 156] is by far the fastest available method to generate
molecular structures for a given mass or molecular formula, but unfortunately, it is commercial.
If you do not want to pay the money, you have to stick with the Open Molecule Generator (OMG)
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[219] which is usually orders of magnitude slower, in particular for large molecular structures
where it hurts most. But chances are good that a faster version of OMG will be made available
in the not-too-distant future. As noted, running time differences do not matter that much for
computational MS, as ranking millions of structure candidates is extremely challenging. Faulon
et al. [88] name other computational tools for generating molecular structures given a molecular
formula; I have to admit that I do not know which of those are still actively maintained.

The work of Heinonen, Rantanen, Mielikäinen, Kokkonen, Kiuru, Ketola, and Rousu [126] is
targeted at explaining what you see in a tandem mass spectrum of a metabolite, as introduced
in Sec. 10.5. Their ILP-based approach suffers heavily from the complexity of the underlying
problem, and the resulting combinatorial explosion; running times can be prohibitive even for
medium-size molecules. FiD is based on earlier (2016) work by almost the same authors [125],
which also contains an NP-hardness proof for the problem of matching masses to substructures.
These questions, in turn, goes back to earlier work by, again, Hill and Mortishire-Smith [128]. To
populate the edge weights of the molecular graph for combinatorial fragmentation, we can use the
enthalpy change upon bond fragmentation [183]; smarter ways of computing these weights would
be beneficial.

Lacroix et al. [167] proposed the GRAPH MOTIF problem for searching motifs in metabolic
networks. Fellows et al. [89] showed that the problem is NP-hard even for bipartite graphs of
maximum node degree four and only two colors. Böcker et al. [34] evaluated weighted GRAPH

MOTIF algorithms for cleaving fragments from a precursor molecule, and found that the simple
branch-and-bound heuristic performs best for this application, see Sec. 10.5. See Sikora [273] for
a overview of theoretical results on the GRAPH MOTIF problem; and see Guillemot and Sikora
[119] for some parameterized algorithms for different flavors of the problem, and how running
times increase when edge weights are taken into account.

Beyond searching in molecular structure databases, de novo structural elucidation of small
molecules is called “Computer Assisted Structure Elucidation” (CASE). This is usually based on
2-dimensional Nucleic Magnetic Resonance (NMR) spectroscopy, and uses mass spectrometry data
as secondary data at best. In 2012, Schymanski et al. [263] suggested to use MOLGEN to generate
a database of candidate molecular structures, then used MetFrag and an approach similar to
FingerID to rank the candidates.

LipidBlast is due to Kind et al. [163], the Lipid Data Analyzer is by Hartler et al. [124], and the
rule-based lipid prediction in CFM-ID version 3.0 (which does not longer fit with the name) is by
Djoumbou Feunang [67].

10.9 Exercises

10.1 What happens to sugar-containing metabolites if you heat them? What do scientist do to
prevent that, when they want to analyze metabolites by GC-MS?

10.2 Find all subgraphs with molecular formula CHN in the molecular graph of caffeine, see
Fig. 10.1.

10.3 Asumme that the number of structures with nominal mass m is indeed given by (10.2).
Calculate the number of molecular structures with mass up to 1000. Hint: You will have to
derive the formula for

∑
i xi or look it up somewhere.
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11 Glycan De Novo Sequencing

“Sweets for my sweet — sugar for my honey!” (Doc Pomus and Mort Shuman)

GLYCANS are molecules made from simple sugars that form complex tree structures. Glycans
constitute one of the most important Post-Translational Modifications of proteins: Apweiler

et al. [7] estimate that more than 50 % of all eukaryotic proteins are glycosylated, i.e., carry
a glycan modification. Glycans are believed to play an important role in cell growth and
development, tumor growth and metastasis, immune recognition and response [226], and even
the allergic reaction to white wine [214]. The elucidation of glycan structure remains one of the
most challenging tasks in biochemistry. Like metabolites, but unlike proteins, the structure of
glycans cannot be directly inferred from the genome sequence of an organism.

One of the most powerful tools for glycan structure elucidation is tandem mass spectrometry. As
for peptide, glycan mass spectra can be interpreted by searching a database of glycan structures,
but such databases are vastly incomplete.

In this chapter, we focus on the problem of de novo interpretation of glycan tandem MS data.
This is very similar in spirit to peptide de novo sequencing, see Chapter 2. In fact, we will re-
use several ideas from earlier chapters, and this chapter can be seen as an application of what
we have already learned — with a twist. Note that the term “glycan sequencing” is somewhat
ill-chosen, as glycans are trees and not sequences. We will stick with it, though, to avoid word
monster such as “glycan de novo topology elucidation”, and to underline the analogy to peptide
de novo sequencing.

There are different levels of resolving the structure of a glycan: We concentrate on the “high-
level” structure, namely, the “topology” of the glycan. In some sense, glycan sequencing is more
difficult than peptide sequencing, as we try to resolve a tree structure (the topology of the glycan)
instead of a linear string. We use a two-step approach suggested in Sec. 2.8, the first step being
candidate generation and the second step being candidate evaluation. As for peptides, we will
focus on the candidate generation step. Many early tools for glycan sequencing use a naïve
approach to generate candidates: They decompose the precursor mass of the glycan over the
alphabet of monosaccharides, then enumerate all topologies that have the correct multiplicities
of monosaccharides. This approach faces the problem of a combinatorial explosion of structures,
see below. In the following, we will present a smarter way to generate candidates, based on the
observed tandem MS data.

Recall that peptide sequencing can be solved in linear time if there is only one ion series, see
Exercise 2.1. So, what is the twist here? It turns out that sequencing glycans is computationally
hard (NP-hard), even if we simultaneously restrict ourselves to (i) a single ion series, (ii) ideal
data, and (iii) the peak counting score. This can be seen as a late justification for assuming ideal
data in Chapter 2: Sequencing glycans is computationally hard, and this hardness does not come
from any peculiarities in the mass spectrometry data, but is an intrinsic part of the combinatorial
problem itself. If, in turn, we allow peaks to be counted multiple times, the resulting problem can
be easily solved, but results can be pathetic, see for example Exercise 11.6.

We have seen in the previous section, that an NP-hard problem does not necessarily mean the
end of all days. We will again derive a dynamic programming algorithm which does not only
allow us to find the optimal solution, but also to sample suboptimal one. And again, the resulting
algorithm is fixed-parameter tractable (Sec. 9.4) where, for our theoretical analysis, the parameter
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monosaccharides mol. formula mass (Da)
pentoses (Pen), such as xylose (Xyl) C5H8O4 132.042259
deoxyhexoses (dHex), such as fucose (Fuc) C6H10O4 146.057909
hexoses (Hex), such as glucose (Glc),
galactose (Gal), mannose (Man)

C6H12O6 180.063388

hexose acids (HexA), such as glucoronic acid (GlcA) C6H8O6 176.032088
N-acetylhexosamines (HexNAc), such as
N-acetylglucosamine (GlcNAc)

C8H13NO5 203.079373

N-acetylneuraminic acid (NeuAc, also Neu5Ac) C11H17NO8 291.095417
N-glycolylneuraminic acid (NeuGc) C11H17NO9 307.090331

Table 11.1: Monosaccharides commonly found in glycans, with molecular formula and monoiso-
topic mass of the residue (removed H2O). Masses are computed with high mass
accuracy, then rounded to six decimals.

k is the “number of peaks in the measured spectrum”. In practice, parameter k can be chosen
arbitrarily and allows us to tune the methods, trading specificity of the candidate generation for
running time and memory consumption.

Finally, we demonstrate the combinatorial explosion of glycan topologies by counting glycan
topologies. In Sec. 11.7, we present methods for counting all glycan topologies with n monosac-
charides, and for counting glycan topologies for a given mass m.

11.1 Glycans and glycan topologies

Glycans are — besides nucleic acids and proteins — the third major class of biopolymers, and
are built from simple sugars (monosaccharides). Since monosaccharides can have up to five
linkage sites, glycans can be assembled in a tree-like structure, making their primary structure
considerably more complex than that of proteins. Glycans can be attached to proteins (N-glycans,
O-glycans, glycosaminoglycans) or lipids, but may also be free molecules. Starch, glycogen,
cellulose, and chitin are sometimes also referred to as glycans, but we will focus on smaller
oligosaccharides that usually have more complex structures. Glycosylation, the attachment of
glycans to proteins, is presumably one of the most extensive and complex protein PTM.

Monosaccharides (simple sugars) are the building blocks of glycans. Table 11.1 lists monosac-
charides commonly found in higher animals; others can be found in bacteria and plants. A
large number of monosaccharides exist, but only few are present for an individual species or
cell: For example, humans express only NeuAc but not NeuGc, because of a missing enzyme [52].
Molecular formulas and masses in Table 11.1 are reported for monosaccharide residues; for the
corresponding monosaccharide, add H2O or 18.010565 Da. Masses have been computed with high
mass accuracy, and not with Table 7.1. We see that monosaccharides are mostly made up from
carbon, hydrogen, and oxygen, with only few nitrogen atoms. Note the large number of isomers:
Pentoses have five carbon atoms in the backbone, and all share the molecular formula C5H10O5.
Similarly, hexoses with six carbon atoms in the backbone have molecular formula C6H12O6.

The following paragraph explains how glycans are formed from monosaccharides. As our
algorithms deliberately ignore linkage types and only focus on glycan topology, one does not have
to understand this paragraph in order to understand the algorithms in this chapter. For us, the
important fact is that each monosaccharide has one “in-link” (the anomeric carbon) and usually
four “out-links” (carbon hydroxy groups), and that monosaccharides can be glued together via
these links (glycosidic bonds). But for the sake of completeness, let us have a look at how glycans
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Figure 11.1: Open and cyclic form of the monosaccharide glucose: The chain form of D-glucose
(left) and α-D-glucopyranose (right).

are formed from monosaccharides. We will ignore chirality in our presentation, as this does not
modify the masses of monosaccharides. See Chapter 2 of [294] for details.

Free monosaccharides can exist in an open or cyclic form, see Fig. 11.1. Carbon atoms are
consecutively numbered, starting with the aldehyde carbon atom C-1 double-bonded to an oxygen
atom. In glycans, we only find the cyclic form of monosaccharides: Here, the monosaccharide has a
ring structure with five or six covalent bonds, made from carbon atoms and one oxygen atom. See
again Fig. 11.1 (right) for glucose: atoms C-1 to C-5 plus one oxygen make up the ring of the cyclic
monosaccharide. Two monosaccharides can be concatenated by a glycosidic bond, that is formed
between the anomeric carbon of one monosaccharide and a hydroxy group of another: Chemically
speaking, the hemiacetal group of one monosaccharide reacts with the alcohol group of the other
monosaccharide, releasing water. In Fig. 11.1 (right), C-1 is the anomeric carbon, and C-2, C-3,
C-4, and C-6 have hydroxy groups. This results in different linkage types, denoted “1–2” for a
glycosidic bond involving anomeric carbon C-1 in the first monosaccharide, and carbon C-2 with a
hydroxy group in the second monosaccharide. In a glycan, the unique monosaccharide that is not
engaged in a glycosidic bond via its anomeric carbon, may be attached to a protein (see below) or a
lipid. This is the distinguished reducing end of the glycan: Precisely speaking, “the reducing end
of the oligosaccharide bears a free anomeric center that is not engaged in a glycosidic bond and
thus retains the chemical reactivity of the aldehyde” [294]. It is still being referred to as reducing
end, if the monosaccharide is in fact linked to, say, a serine or threonine.

The following is a rough classification of glycans:

N-glycans (or N-linked glycans) are attached to an asparagine residue of a protein or peptide.
The amino acid sequence an N-glycan can be attached to, is either asparagine-X-serine or
asparagine-X-threonine, where X is any amino acid except proline. All N-glycans are derived
from a common precursor, which is then extensively modified. Still, unlike O-glycans, all N-
glycans share a rather similar topology. N-glycans are important for protein folding, among
others, and they are very common in eukaryotes but less common in prokaryotes.

O-glycans (or O-linked glycans) are attached to a serine or threonine residue of a protein or
peptide. O-glycan assembly starts with an N-acetyl-galactosamine monosaccharide. Unlike
N-glycans, there is no common precursor, and at least four “core structures” are known.
O-glycans are very common in eukaryotes but less common in prokaryotes.

Glycosaminoglycans have a linear topology and contain long repetitions of disaccharide motifs.
They are attached to a protein or peptide via an O-link.

Free glycans are not attached to anything. They are used as signaling molecules for a variety of
biological processes, such as plant defense response. Also, free glycans are found in the milk
of mammals, and glycans found in human milk appear to protect infants against pathogens
affecting the intestines.
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Figure 11.2: Structural formula (left) and topology (right) of a glycan made from four monosac-
charides.

So much for the biochemistry; let us come back to computational mass spectrometry, introducing
a formal model for glycan topologies. Unlike for peptide sequencing, the alphabet of monosaccha-
rides (the glycan building blocks) can differ depending on the type of glycan we are analyzing. We
assume that the alphabet Σ of monosaccharides is fixed and provided by the user, based on the
biological background of the experiment. Every element a ∈ Σ is assigned a residue mass µ(a).
At this level, no monosaccharide isomers can be differentiated; depending on our background
knowledge about the glycan, we may assume either hexose (Hex) or, say, glucose (Glc) to be part
of our alphabet Σ.

We model a glycan topology as a rooted tree T = (V ,E). The root of the tree is the distinguished
root monosaccharide, which can be attached to a protein or peptide. Tree nodes are labeled with
monosaccharides from Σ and, hence, each node in the tree is also assigned a mass. Every node
has an out-degree of at most four, because each monosaccharide has at most five linkages. See
Fig. 11.2 for an example. We will use the letter T to denote both the underlying tree structure, and
the glycan topology that includes node labels. To find the molecular formula or mass of a glycan
topology we simply add up the molecular formulas or masses of the constituting monosaccharides
and, finally, add H2O or 18.010565 Da. Note that glycan topologies do not contain information
regarding linkage types.

Our method will take into account all possible glycan topologies, deliberately ignoring all
biological restrictions on, say, the amount of branching in the tree. It is well known that certain
branching types are observed seldom in biological samples: For example, most monosaccharides
show only one to three linkages, so most nodes in a glycan tree will have out-degree of at most two.
But instead of completely forbidding such structures, we can incorporate biological restrictions
into our scoring model, by subtracting a penalty if a structural rule is violated. In this way,
we do not impede the discovery of rare structures that may diverge significantly from structural
restrictions.

11.2 Glycan fragmentation

There are three types of fragmentation that break the glycan topology, resulting in six types of
ions, see Fig. 11.3: X, Y, and Z ions correspond to fragments that contain the reducing end of
the glycan and are called reducing end ions or reducing end fragments. A, B, C-ions, in contrast,
do not contain the reducing end. A and X-ions are cross-ring fragments that result from internal
monosaccharide breakages; the exact breakage positions are denoted by an additional superscript.

In the following, we assume that we have recorded a fragmentation spectrum of a single glycan.
For glycans, collision-induced dissociation (CID) is often used as fragmentation technique. The
collision energy determines the collision strength: The higher the energy, the more and stronger
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Figure 11.3: Fragments resulting from tandem mass spectrometry analysis of a glycan. Note that
B, C, Y, and Z ions are not affected by linkage types.

atomic bonds break. Since glycosidic bonds between sugars are weak compared to bonds inside
the monosaccharides, we can choose the energy so that mainly these bonds break. This will
predominantly generate B and Y ions, and we concentrate on these two types in our presentation.

We have modeled a glycan topology as a rooted tree T = (V ,E), where nodes are labeled with
monosaccharides from an alphabet Σ. A fragment T ′ of T is a connected subtree, and the mass
of T ′ is the sum of masses of the constituting nodes. Let M := µ(T) be the precursor mass of the
glycan structure. To simplify our presentations, we ignore mass modifications, such as adding
the terminal H2O group, reducing end modifications, the proton mass, or multiple ion series. As
for peptides, these modifications can be easily incorporated into our method, see Sec. 11.5 below.
Note that depending on the experimental setup and the glycans we are looking at, reducing end
fragments may carry a peptide or peptide part as their “mass modification”. This will (usually)
make it easier for us to differentiate between the B and Y ion series.

For candidate generation, we restrict ourselves to simple fragmentation events, where only
a single glycosidic bond is broken. This is a realistic assumption in application, see Fig. 11.4:
By choosing an appropriate fragmentation energy, we can ensure that intense peaks usually
correspond to single-cleaved fragments. Formally, such fragmentation is equivalent to removing
a single edge. Hence, we can represent each simple fragmentation event by a node v ∈ V , where
the subtree T(v) induced by v represents the non-reducing end fragment, and the remainder of
the tree is the reducing end fragment. The resulting non-reducing end fragments have the mass
of a subtree of T induced by a node v, denoted µ(v). For reducing end fragments we subtract µ(v)
from the precursor mass M.

11.3 The candidate generation problem

In this section, we formalize the problem of glycan candidate generation: given the experimental
data, we want to generate a small set of candidate glycan topologies, containing the correct
topology. As in Chapter 2, we will use the peak counting score to compare hypothetical spectra
with the measured one. A more involved scoring using, say, peak intensities is again considered at
a later stage, namely Sec. 11.5 below. Also, we will concentrate on finding the best topology, and
generating sub-optimal topologies (our candidates) comes “for free”, as we will be using dynamic
programming once more.

To simplify our presentation, let us assume for the moment that all our mass spectra consist
of non-reducing end ions only. It turns out that we can easily generalize our solution to include
reducing end ions. Also, we assume that all fragments stem from single fragmentation events.
For the moment, we assume all masses to be integer.

Assume we are given a glycan topology T, and we want to evaluate T against the measured
spectrum. We use a simple fragmentation model to generate a hypothetical candidate spectrum,
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Figure 11.4: The peak-picked spectrum of a glycan with four hexoses, four N-acetylhexosamines,
and one fucose. The spectrum is annotated with single-cleaved fragments of the
correct glycan topology, and all but one peaks corresponding to single-cleaved frag-
ments are found in the spectrum. Three intense peaks marked with (*) correspond
to double-cleaved fragments. Additionally, all peaks marked with filled circles can
be annotated with double-cleaved fragments of the glycan, and peaks marked with
unfilled circles can be annotated with fragments that stem from more than two
cleavages. Figure from [32].

and count the number of shared peaks between the measured spectrum and the candidate
spectrum. Let f (m) be the characteristic function of the measured spectrum, telling us if a peak is
present (then, f (m)= 1) or absent (then, f (m)= 0) in the measured spectrum at mass m. Summing
f (m) over all peak masses m that are present in the candidate spectrum, we count all peaks that
are common to both the measured spectrum and the candidate spectrum. (Again, we can replace
this peak counting score by something more elaborate at a later stage.) Formally, we define

S(T) := ∑
m=0,...,M

f (m) · gT (m) (11.1)

where

gT (m) :=
{

1 if T contains some subtrees T(v) with mass µ(v)= m
0 otherwise

(11.2)

is the characteristic function of the glycan topology T, telling us if the tree contains a subtree
of a certain mass. The important point is that gT (m) = 1 holds if there is at least one subtree
of mass m, independent of the actual number of such subtrees. Now, the GLYCAN CANDIDATE

GENERATION problem can be stated as such: Find a glycan topologies T∗ such that S(T∗) is
maximum; and afterward, find all glycan topologies T such that

S(T)≥ (1−ε)S(T∗)

for some fixed ε> 0. This is the set of glycan topology candidates that is passed to the evaluation
step of our sequencing algorithm.

Unfortunately, it turns out that finding an optimal topology T∗ is an NP-hard problem:
Precisely speaking, the decision problem “is there a glycan topology T such that S(T) ≥ t for
some threshold t?” is NP-complete, even if we restrict ourselves to binary trees, where each
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monosaccharide node has at most two children. So, there is little hope for an algorithm with
running time polynomial in M; unless P = NP, no such algorithm can exist. This makes glycan
sequencing quite different from peptide sequencing, where this oversimplified version of the
problem is comparatively easy to answer, see Chapter 2.

Let T = (V ,E) be a glycan topology. We introduce another scoring model, namely

S′(T) := ∑
v∈V

f (µ(v)) (11.3)

which compares the measured spectrum, encoded by the characteristic function f , with a candi-
date glycan topology. Unfortunately, S′ is not a peak counting score. Instead, for every subtree T ′

of T with mass m′ = µ(T ′) we add f (m′) to the score. In this way, a glycan topology that contains
many subtrees of identical mass m′ receives a high score if f (m′) is large, even if it ignores all
other peaks; see for example Exercise 11.6. We will show in the next section how computations
for this model can be modified to avoid peak double counting, though.

To find the glycan topology T that maximizes the score S′(T), we define S′[m] to be the
maximum score of any glycan topology with total mass m. We assume S′[m] = −∞ if there is
no glycan topology of that mass. It is easy to see that S′ can be computed by the recurrence

S′[m]= f (m)+ max
m1+m2+m3+m4+µ(a)=m

S′[m1]+S′[m2]+S′[m3]+S′[m4], (11.4)

where the maximum is taken over all a ∈ Σ and 0 ≤ m1 ≤ m2 ≤ m3 ≤ m4 < m; see Exercise 11.2.
The term S′[m] corresponds to any subtree of mass m with an arbitrary monosaccharide at its
root. We initialize S′[0] = 0, as the “empty glycan topology” does not explain any peaks. We
further assume S′[m]=−∞ for all m < 0. But what about monosaccharide nodes that do not have
the maximum out-degree of four? Actually, these are already covered in (11.4): If one or more of
the m j in (11.4) equals zero, then the monosaccharide at the root of the subtree has less than four
bonds. The maximum score of any glycan topology of precursor mass M is S′[M].

Unfortunately, computation of S′[M] takes much too long using (11.4), see Exercise 11.3.
Luckily, we can speed up computations considerably:

S′[m]= f (m)+max
a∈Σ

max
m1=0,...,

⌊
m−µ(a)

2

⌋S′
2[m1]+S′

2
[
m−µ(a)−m1

]
S′

2[m]= max
m1=0,...,bm

2 c
S′[m1]+S′[m−m1]

(11.5)

The term S′
2[m] corresponds to a “headless” subtree without a monosaccharide at its root, see

Fig. 11.5. See Exercise 11.4 regarding the correctness of this recurrence. Now, instead of attaching
four children to a monosaccharide node, we attach two headless subtrees with two children each.
Remember that the special case of less than four children is covered in (11.4), as one or more
subtrees can have mass zero, and it is also covered here.

Using (11.5) we can compute S′[M] in time O(|Σ| ·M2): We have to compute M entries in S′ and
S′

2; computing S′[m] requires O(|Σ|M) time, and computing S′
2[m] requires only O(M) time. The

actual algorithm is simply a For-loop over all masses m = 0, . . . , M, we omit the simple details. It
should also be understood how to recover an optimal solution using backtracing, see Exercise 11.5.
We reach:

Lemma 11.1. Given a monosaccharide alphabet Σ with masses µ : Σ→ N, a precursor mass M,
and a function f : {0, . . . , M} → R encoding the measured spectrum. Then, we can compute S′[m]
and S′

2[m] for all m = 0, . . . , M in time O(|Σ| ·M2) using recurrence (11.5). Next, we can recover a
glycan topology T = (V ,E) maximizing S′(T) in O(|V | ·M) time, backtracing through S′ and S′

2.
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Figure 11.5: In (11.4) we compute the score for appending up to four previously computed subtrees
to one monosaccharide, the root of the current subtree. Equation (11.5) reduces
the complexity of computation by appending two “headless” subtrees to the root
monosaccharide; each “headless” subtree, in turn, consists of two subtrees. Subtrees
can be empty.

11.4 An exact algorithm for glycan candidate generation

So, the problem of generating glycan topologies from tandem MS data is NP-hard, even if we
restrict ourselves to the simple peak counting model — what can we do? For obvious reasons, we
want to stick with the dynamic programming approach, as this allows us to generate an arbitrary
number of suboptimal solutions (Sec. 2.8). Also for obvious reasons, we do not want to rely on
heuristics at this early stage of our algorithm: If the true solution is missed during candidate
generation, it cannot be brought back during candidate evaluation.

We now modify recurrences (11.5) to find the glycan topology T that maximizes S(T). We
do not want to take a closer look at the proof of NP-hardness in [269]; but I can assure you
that the complexity of the problem only holds for mass spectra that contain a “large” number
of peaks. Measured spectra, in contrast, are relatively sparse and contain only tens of peaks
that have significant intensity: The number of simple fragments of a given glycan topology
corresponds to the number of nodes in a tree, and this is only linear in the number of constituting
monosaccharides. Let k be the number of peaks in the measured spectrum: k is the parameter
of our problem, and we limit the running time explosion to this parameter, while maintaining a
polynomial running time with respect to M. Choosing k to be equal to the number of peaks, is
solely done for the ease of presentation. In the next sections, we show that parameter k can be
arbitrarily chosen in application, trading specificity for running time and memory consumption
of the method: For low k, the method produces more candidates that have a high score because
of scoring peaks multiple times. As done previously in this textbook, we abandoned optimality to
save time and space. It turns out that a moderate k, such as k = 10, is appropriate in practice [32].

In order to avoid multiple peak counting, we incorporate the set of explained peaks into the
dynamic programming. Let C be the set of peak masses in the measured spectrum, where |C | = k;
these will serve as our colors, see Chapter 9. For every mass m ≤ M and every subset C ⊆ C we
define S[C,m] to be the maximum score of any glycan topology T with total mass µ(T)= m where
only the peaks from C are used to compute this score. We stress that we do not have to use all
peaks from C, and that it is OK to only score a subset. At the end of our computations, S[C , M]
holds the maximum score of any glycan topology where at most the peaks from C are taken into
account for scoring. We initialize S[C,0]= 0 for all C ⊆C .

We could come up with a recurrence similar to (11.4) for computing S[C,m] but this would be
much too slow in practice, see Exercise 11.7. Instead, we modify the faster recurrence from (11.5)
for our purpose: We define S2[C,m] to be the score of a “headless” glycan topology with mass m
using only peaks in C. Again, we initialize S2[C,0]= 0 for all C ⊆C .

Now, S2 helps us to restrict the branching in the tree to bifurcations: We limit the recurrence
of S[C,m] to two “headless” subtrees with disjoint peak sets C1,C2 ⊆ C, where C1 is the subset of
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1: procedure GLYCANSEQUENCING(mass M, set of peak colors C )
2: Initialize S[C,0]← 0 and S2[C,0]← 0 for all C ⊆C

3: for m = 1, . . . , M do
4: for all subsets C ⊆C do
5: Compute S[C,m] using (11.6)
6: end for
7: for all subsets C ⊆C do
8: Compute S2[C,m] using (11.6)
9: end for

10: end for
11: end procedure

Algorithm 11.1: Generating glycan candidates: Besides the precursor mass M and the set of peak
colors C , the weighted alphabet Σ with integer masses µ :Σ→N and the function f : {0, . . . , M}→R

are inputs of the method.

peaks explained by the first subtree, and C2 is the set of peaks explained by the second subtree.
We require C1 ∩C2 =; what guarantees that every peak is scored at most once. Additionally, we
demand C1 ∪C2 = C \{m}. We obtain the following recurrences:

S[C,m]=max
a∈Σ

max
m1=0,...,

⌊
m−µ(a)

2

⌋ max
C1⊆C\{m}

{
f (C,m)+S2[C1,m1]

+S2
[
C \ (C1 ∪ {m}),m−µ(a)−m1

]}
S2[C,m]= max

m1=0,...,bm
2 c

max
C1⊆C

S[C1,m1]+S
[
C \ C1,m−m1

] (11.6)

What is f (C,m)? We have to delay the scoring of a peak at mass m if m is not in C: To this end,
we define

f (C,m) :=
{

0 if m ∉ C but m ∈C ,
f (m) otherwise.

(11.7)

So, both peaks not in C and peaks in C are scored, whereas scoring of peaks in C \ C is delayed.
For the particular case that C equals the set of all peaks (or peak colors) then the condition
“m ∈ C ” is always fulfilled. But as we have indicated above, we want this recurrence to work for
an arbitrary set of peak colors.

We do not want to prove the correctness of recurrence (11.6), as this proof will be somewhat
lengthy and technical. We just note that the presumably best way to prove the correctness, is to
show the equivalence of (11.6) to a recurrence for four subtrees similar to (11.4), and then to show
that this recurrence does indeed compute the correct values S[C,m]. See Exercise 11.8.

It is not very involved to compute (11.6) in an admissible order, see Algorithm 11.1. To see
this, take a closer look at (11.6): Computing S[C,m] accesses table entries S2[·,m1] with m1 < m
but never for m1 ≥ m; furthermore, it does not access any entries S[·, ·]. So, we ensure that
S2[C,m1] is has been computed for all C ⊆ C and all m1 < m, what is trivial, see the outer loop
of Algorithm 11.1. Similarly, computing S2[C,m] will only access entries S[·,m1] for m1 ≤ m, but
not S2[·, ·]. So, we ensure that S[C,m1] is has been computed for all C ⊆C and all m1 ≤ m, what
is again trivial: We simply interleave the computation of S[·, ·] and S2[·, ·]. See Section 9.4 on how
to implement an iteration over all C ⊆ {1, . . . ,k} and all C′ ⊆ C.

We now analyze time and space that is needed for the computation of (11.6). One can easily
see that the space required to store S[C,m] is O(2k ·M). What is the time required to compute all
S[C,m]? It turns out to be O(3k · |Σ| ·M2). To understand this, we first note that factors |Σ| and
M come from the calculation of S[C,m] in (11.6), and that we can ignore computation of S2[C,m]
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in our considerations. As we have to compute S[C,m] for all m = 0, . . . , M, another factor M is
obvious. But we have to be careful about partitioning the set C: There are 2k sets C ⊆ {1, . . . ,k}, and
iterating over all C1 ⊆ C takes O(2k) time, resulting in a 4k factor in our running time analysis.
But this analysis is simply to imprecise: There exist 3k possibilities to partition k peaks into the
three sets C1, C2, and C \ (C1 ∪C2). Every such partition will be evaluated exactly once in the
computation of S[C1 ∪C2,m], so any algorithm that computes (11.6) in a reasonable fashion, and
in particular Algorithm 11.1, has the desired running time of O(3k · |Σ| ·M2).

To recover an optimal solution, we backtrace through the dynamic programming matrix starting
from entry S[C , M]. It is obvious that the maximum score will explain as many peaks as possible,
but not necessarily all. We can also compute sub-optimal solutions that deviate at most δ :=
ε · S(T∗) from the optimal score S(T∗) for some ε > 0, see Sec. 2.8. This backtracking usually
generates many isomorphic trees, which have to we remove from the final output: This can be
achieved by encoding glycan topologies as strings, see Exercise 11.9. Running time of backtracking
is O(out ·2k ·Mn) where n is the maximum size of a glycan topology in the output, and out is the
number of generated trees including isomorphic trees, that is usually larger than the size of the
final candidate set.

11.5 Mostly old wine in new skins

In this section, we discuss modifications to the algorithm from the previous section, many of which
are meant to make it run fast in practice. Most of these modifications are already known to us
from the problem of peptide sequencing and the rest of this textbook — hence, the title of this
section. We will reference to ideas and tricks throughout this textbook, which might be slightly
uncomfortable for the reader, but illustrates the degree to which we can “recycle” these ideas.

It is understood that we can use a more elaborate scoring then the peak counting score; in
particular, we can use real-valued masses for the scoring (Sec. 8.8), and peak intensities and peak
masses as described in Sec. 4.5 and 4.6. Only when incorporating peak intensities, the presented
approach can be applied to experimental data.

Certain glycan topologies do in fact create the same fragment mass several times: It must be
understood that S(T) does not penalize such topologies, but it also does not reward them. As the
extreme case, consider a single leaf of the tree: If the corresponding peak has very high intensity,
then we reward trees for having identical labels at all leaves, which is surely not desirable.

Next, we get rid of the unrealistic assumption that only non-reducing end ions (B ions) are
present in the mass spectra. But whenever we find a non-reducing end ion then, for ideal data,
the complementing reducing end ion must also be present in the mass spectrum for perfect data.
We can “mirror” the spectrum in a preprocessing step, see Sec. 2.5.3. The spectrum now contains
reducing end and non-reducing end peaks with same intensity for every observed peak, even if
only one was detected by the instrument. But how do we avoid multiple peak counting for intense
peaks? Some glycan topology might contain both an B and a Y ion of identical mass, and if a
peak with this mass is present in the measured spectrum, we must not score it twice. In fact,
avoiding multiple peak counting comes “for free”: We regard the elements in C as colors, and
assign complementing reducing end and non-reducing end ion peaks the same color. This can
be achieved without changing recurrence (11.6) or Algorithm 11.1. This ensures that each peak
is only scored once, either as a reducing end ion, or as a non-reducing end ions, whatever leads
to the better score. In practice, this problem is usually not as daunting as for peptide de novo
sequencing: the mass of a reducing end ion is often not decomposable if regarded as non-reducing
end ion mass (and vice versa) because of reducing end modification, and will not be considered
for the score anyway. This can be contributed to the small monosaccharide alphabet, where many
masses cannot be decomposed, see also below. Recall that in some case, the mass modification of
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the reducing end can be a peptide or peptide fragment. Here, the complementing ion series, such
as B and Y ions, will show only small overlap, further simplifying the problem.

We can incorporate C and Z ions into our score by merging their intensities with those of the
corresponding B and Y ion pair. By this, we are loosing our “peak counting score” interpretation
of the optimization, but this is most probably not a problem in applications.

We do not penalize for additional peaks that are not explained by our glycan, see Section 4.3 for
a justification. Recall that for candidate generation, this is a sensible thing to do, as our scoring
does not take into account peaks from multiple-cleaved fragments, or the A/X ion series. For our
computations, this implies that we can safely ignore additional peaks, and we have to compute
S[C,m] and S2[C,m] only for those sets C ⊆ C that do not contain any additional peaks/colors.
This can be efficiently implemented by sparse dynamic programming using hash maps to store
values, and by restricting (11.6) to initialized entries, compare to Section 14.4. The maximum
score is no longer found in entry S[C , M] which is now usually undefined; instead, we search for
the maximum entry S[C, M] with C ⊆C , and we have to start backtracing from this entry. When
computing (11.6), sets C containing peaks with mass larger than the current mass m need not be
considered.

In case the number of peaks in a glycan mass spectrum is too large, we can easily limit the
exponential growth in memory and running time by choosing an appropriate k such as k = 10.
Now, we use the k most intense peaks C in our explanation at most once, whereas we allow all
other peaks to contribute multiple times to the score.

Using these engineering techniques, the prohibitive factor1 in the running time may easily be-
come M2. But we noted above that many masses m are not decomposable at all over the alphabet
of monosaccharide masses, as our alphabet Σ is usually small in applications (Exercise 11.1). Us-
ing sparse dynamic programming, we can altogether exclude these masses from our computation,
since there exists no subtree which could explain them. A similar argumentation shows that the
mass remainder M −m must also be decomposable over the alphabet of monosaccharide masses,
so we can also exclude many masses close to M from our computations. Doing so, we again reduce
running time and memory requirements of the algorithm in practice.

We can also include a-priori probabilities for the number of branches a monosaccharide has. For
example, fucose generally does not connect to further monosaccharides. These probabilities can
be estimated from known glycan structures. All recurrences presented in this chapter and, in par-
ticular, (11.5) and (11.6) can be modified to take into account properties of the monosaccharide a,
such as the number of links of a for the scoring: This is obvious for the “long” recurrence (11.4) but
can also be achieved for the recurrences using “headless” subtrees, see Exercise 11.10. Be aware
that care has to be taken when learning branching probabilities: A particular branching may be
rare in general but common at a certain position of the glycan, and the scoring must not impede
such branching. As an example, we mention mannose in the core structure of certain N-glycans,
with out-degree three.

11.6 Evaluation of glycan topology candidates

Once we have reduced the set of potential glycan topologies from the exponential number of initial
candidates, to a manageable set of tens or hundreds of structures, we can now evaluate each
candidate glycan topology using an in-depth comparison between its theoretical spectrum and the
measured spectrum. This comparison can also take into account multiple-cleaved fragment trees,
C and Z ions, or A and X ions where a monosaccharide is cleaved. Furthermore, we can now
penalize missing peaks when we expect to see a B or Y ion.

1The “prohibitive factor” in a running time is the one that will make the problem “crack” in practice, meaning that we
have to wait hours (days, years) for the solution.
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But as indicated in Sec. 4.10, this is again not the best we can do. Clearly, if we observe C
and Z ions (which are assumed to have relatively low intensity) then we should also see the
(high-intensity) B and Y ions; if this is not the case, our interpretation may be incorrect, so we
should penalize the candidate. More involved is the following reasoning: If we observe a peak
that our scoring wants to attribute to a double-cleaved fragment, it is reasonable to assume that
we should also see a single-cleaved fragment it originated from; if this fragment does not exist,
out hypothesis may again be wrong. The same is true for multiple-cleaved fragments.

Finally, we can take into account prior biological knowledge on the glycans we are considering:
In particular, glycans, O-glycans, glycosaminoglycans and free glycans have certain preferred
“branching patterns”. As always, it is not a smart idea to filter out “unexpected” results; rather,
we penalize them. As existing glycan databases are presumably vastly incomplete and do not
contain information about the frequency of glycans, we should not derive too detailed priors from
there: For example, few monosaccharide are connected to four or even five other monosaccharides;
but if we transform database counts into a prior, we have made it practically impossible that such
a glycan will ever receive the top score.

11.7 Counting glycan topologies

We have mentioned above that the number of glycan topologies easily becomes prohibitive for
enumerating all possible topologies. We now substantiate this claim, by computing the number of
glycan topologies for a certain number of monosaccharides, and for a certain mass. Our analysis
will be strictly combinatorial, as we will ignore whether geometrical constraints render certain
glycan topologies impossible: These glycan topologies will show large amount of branching,
particularly close to the root. In this sense, the number computed here, are upper bounds to
the “true” number of glycan topologies; but these bounds are “sharp” in the sense that, from a
combinatorial standpoint, our calculations will be exact. Taking into account considerations from
molecular geometry will be extremely difficult: This might boil down to enumerating all glycan
topologies using the methods presented below, then testing for each glycan topology if it can exist
in 3D space. On the other hand, our computations do not take into account linkage types or
chirality.

Let r(s)[n] be the number of different glycan topologies with n nodes, where nodes are labeled
with elements from Σ and s = |Σ|. One can easily see that this number does not depend on the
actual alphabet Σ but only on its cardinality.2 Recall that a glycan topology corresponds to a
rooted tree such that every node has out-degree at most four. In the following a glycan tree is
a rooted trees with out-degree at most four. Note that counting glycan trees does not take into
account that nodes are labeled, and corresponds to the the case |Σ| = 1.

The “classical way” of counting trees, is to use Pólya’s enumeration theorem [223]. We omit the
details, but you eventually come up with the recurrence

r[n]= 1
24

( ∑
i+ j+k+l=n−1

r[i]r[ j]r[k]r[l]+6
∑

i+ j+2k=n−1
r[i]r[ j]r[k]

+3
∑

2i+2 j=n−1
r[i]r[ j]+8

∑
i+3 j=n−1

r[i]r[ j]+6
∑

4i=n−1
r[i]

) (11.8)

2We will not use k to denote the size of the alphabet in this section, as we have “consumed” it for the parameter k in
the previous sections.
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11.7 Counting glycan topologies

where r[n] := r(1)[n] is the number of glycan trees, and we initialize r[0] = 1. Similar to Sec. 3.7,
one can approximate the number of glycan trees r[n] using a closed formula: This number
asymptotically behaves like

r[n]∼ 0.4621373461 ·n−3/2 ·2.911037772n. (11.9)

We omit the details, but see also below.
We can roughly estimate the number of glycan topologies over an arbitrary alphabet Σ by |Σ|n ·

r[n], since every node can be colored with an individual color. This overestimates the number
of glycan topologies, as we do not take into account isomorphic trees; see Exercise 11.11. As an
example, consider |Σ| = 5 and n = 10: We estimate this number to be 6.24 ·109 whereas the true
number is 3.10 ·109, so the true number is only half of what our rough estimate tells us. The
relative error will become even larger as n increases, see Exercise 11.12.

We now present a method for the exact computation of r(s)[n] for an alphabet Σ of size s.
Somewhat surprisingly, the resulting formulas are not very complicated and computations are
very fast; but unfortunately, the maths behind these formulas are highly non-trivial and require
an understanding of generating functions. To this end, we simply present the formulas and
numbers, but do not explain why these calculations are correct. If you are interested in that
part, see Böcker and Wagner [30].

The formula to calculate the exact number r(s)[n] of glycans of size n over an alphabet Σ of size
s = |Σ|, is

r(s)[n]= s ·
(

1
24

r4[n−1]+ 1
4

b(n−1)/2c∑
k=0

r[k]r2[n−1−2k]+ 1
8

(n−1)/2∑
k=0

r[k]r[(n−1−2k)/2]

+ 1
3

b(n−1)/3c∑
k=0

r[k]r[n−1−3k]+ r[(n−1)/4]
4

) (11.10)

where

r2[n]=
n∑

k=0
r[k]r[n−k], r3[n]=

n∑
k=0

r[k]r2[n−k], r4[n]=
n∑

k=0
r[k]r3[n−k]. (11.11)

Note that different s also require different r2[n], r3[n] and r4[n]; we have written r i[n] instead of
the more precise r(s)

i [n] solely for the sake of readability. It is easy to check that we can compute
r(s)[n] in O(n2) time and O(n) space. See Table 11.2 for the number of different glycan topologies
for an alphabet size of one to five.

But generating functions allow us to do more: We can also approximate the number r(s)[n] of
glycans over an alphabet of size n. In detail, we reach:

r(1)[n]∼ 0.4621373461 ·n−3/2 ·2.911037772n

r(2)[n]∼ 0.4359963877 ·n−3/2 ·5.603311188n

r(3)[n]∼ 0.4286144321 ·n−3/2 ·8.305741452n

r(4)[n]∼ 0.4251715830 ·n−3/2 ·11.01087067n

r(5)[n]∼ 0.4231864914 ·n−3/2 ·13.71711627n

(11.12)

See [30] for details. Note that the approximation of r(1)[n] = r[n] has already been reported in
Eq. (11.9) and is included here for completeness. These approximations are very accurate even
for small n, see Table 11.2: For n = 10 we reach an approximate value of r(1)[10] ≈ 638.6 using
Eq. (11.12) whereas the true number is r(1)[10] = 643, so the relative error is well below one
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11 Glycan De Novo Sequencing

approx. number of glycan topologies
n using (11.9) |Σ| = 1 |Σ| = 2 |Σ| = 3 |Σ| = 4 |Σ| = 5
1 1 1 2 3 4 5
2 1 1 4 9 16 25
3 2 2 14 45 104 200
4 4 4 52 246 752 1800
5 9 9 214 1485 5996 17850
6 19 19 904 9369 50288 186750
7 44 45 4038 61947 440784 2039500
8 105 106 18508 421668 3980384 2.30 ·107

9 257 260 87008 2939562 3.68 ·107 2.64 ·108

10 639 643 416388 2.09 ·107 3.46 ·108 3.10 ·109

15 72664 72917 1.25 ·109 4.51 ·1011 3.07 ·1013 8.24 ·1014

20 9866231 9881527 4.51 ·1012 1.16 ·1016 3.23 ·1018 2.61 ·1020

25 1.48 ·109 1.48 ·109 1.78 ·1016 3.29 ·1020 3.75 ·1023 9.08 ·1025

30 2.35 ·1011 2.35 ·1011 7.50 ·1019 9.89 ·1024 4.62 ·1028 3.36 ·1031

Table 11.2: Number of glycan topologies for n nodes and an alphabet size of one to five, plus
rounded approximation (11.9) corresponding to |Σ| = 1.

percent. What we can learn from (11.12) is that we are indeed facing a combinatorial explosion of
candidates, as the number of glycan topologies is increasing exponentially in n; furthermore, the
exponential growth is already rather steep even for small alphabets: For alphabet size 5 we have
roughly 13.7n glycan topologies, compared to 5n strings.

Last but not least and somewhat surprisingly, a similar recurrence to Eqs. (11.10) and (11.11)
is possible for glycan topologies over Σ with a particular mass M; this number can be computed in
O(|Σ|M2) time and O(M) space [30] . As an example, we report the number of glycan topologies
over integer-weighted alphabets of size 1 to 3 in Fig. 11.6. We again observe strong combinatorial
effects: For most masses of up to 3000 Dalton we do not find any glycan topology. This is
again because most masses cannot be decomposed over the monosaccharide alphabet, compare
to Sec. 8.6. A nice feature of the recurrence for computing glycan topologies of mass M, is that we
can also use it to enumerate all glycan topologies of mass M, similar to what we did for strings in
Sec. 5.2. If you want to enumerate glycan trees with fixed number of monosaccharides, though,
then there are faster and simpler ways [179].

One might argue that the number of glycan topologies that we can find in biology, will be much
smaller, as we rarely observe that any monosaccharide links to five other monosaccharides. To
this end, we can modify calculations to count glycan topologies with maximal out-degree three.
Again, we can approximate the number (3)r of glycan trees with out-degree at most three using a
closed formula,

(3)r[n]∼ 0.5178760 ·n−3/2 ·2.815460n. (11.13)

Finally, if you feel that out-degree three might still be too high for biological relevant glycans, here
is the approximation for the number of glycan trees with out-degree at most two:

(2)r[n]∼ 0.791603 ·n−3/2 ·2.483254n. (11.14)

We see that the growth is still exponential, and that the base of the exponential growth has not
decreased substantially between out-degree four to three: Namely, the base decreased from 2.911
to 2.815.
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Figure 11.6: Number of glycan topologies for varying mass M and the monosaccharide alpha-
bets Σ = {162} (hexose), Σ = {162,203} (hexose, N-acetylhexosamines), and Σ =
{146,162,203} (fucose, hexose, N-acetylhexosamines). Y-axis (number of topologies)
is logarithmic. Whenever no point is present in the plot, this implies that there is no
glycan topology of the corresponding mass. Figure taken from [30].

11.8 Historical notes and further reading

See Raman et al. [226] for an introduction to the field of glycomics. The book “Essentials of
Glycobiology” by Varki et al. [294] can be accessed freely over the Internet.3

Many approaches for glycan de novo sequencing follow the two-step approach (Sec. 2.8) of first
generating candidates, then scoring them [87, 101, 107, 269, 286]. The following is a sample of
methods published until 2008: STAT by Gaucher et al. [101] first decomposes the masses of all
peaks found in the spectrum; the user has to manually decide on one of the decompositions. STAT
then generates all glycan topologies for the chosen decomposition, and uses certain restriction to
rule out some topologies. StrOligo by Ethier et al. [87] enumerates biologically plausible N-glycan
topologies for the given precursor mass, and evaluates each topology based on the measured
spectrum. OSCAR by Lapadula et al. [168] is special in that it does not use MS2 but MSn

fragmentation data as input. It is a true de novo approach and does not require prior biological
information. GLYCH by Tang et al. [286] does not only derive the topology of the glycan, but
also deduces linkage types using cross-ring ion fragments. GLYCH uses dynamic programming to
compute the optimal score of a structure, similar in spirit to S′ from (11.3). The drawbacks of this
approach has been described above: certain peaks might be scored many times by the dynamic

3http://www.ncbi.nlm.nih.gov/pubmed/20301239
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11 Glycan De Novo Sequencing

programming, leading to somewhat arbitrary optimal solutions. Sheng et al. [271] concentrate on
solely inferring linkage types. CartoonistTwo by Goldberg et al. [107] focuses on O-glycans, which
are considerably larger than N-glycans. The program uses biological constraints for O-glycans,
and scores candidates by an elaborate scheme. And finally, there is GlycoMaster by [269], and
potentially newer programs.

Regarding candidate generation, the above programs can be subdivided into three cate-
gories: Some approaches enumerate all possible glycan topologies of the given precursor mass
[87, 101, 107]. This is possible as in application, the alphabet of monosaccharides is usually very
small (three to five monosaccharides) and, hence, the number of decompositions is also small
— quite often, there is only one decomposition. If glycans become larger, this again results
in a combinatorial explosion of tree structures, see Sec. 11.7. To cope with this problem, tools
apply strict biological rules to cut down on the number of candidates. GLYCH uses dynamic
programming similar to Sec. 11.3 but simply ignore the problem of multiple peak counting [286].
Finally, Shan et al. [269] present a heuristic that avoids peak double counting. Regarding scoring
the candidates, the by far most elaborate approach is due to Goldberg et al. [107], who use
dependencies between the observed fragments to modify the score.

Besides the (de novo) interpretation of tandem MS data, many other computational approaches
have been developed for glycan MS analysis [45, 54, 106, 108, 109, 140, 180, 188, 306].

The term “glycan sequencing” has been repeatedly used in the literature for the structural elu-
cidation of glycans; other terms include “extracting sequence information” [101], “glycan structure
determination” [107], “glycan structure elucidation”, and “glycan structural assignment” [87].

The presentation in this chapter largely follows the paper by Böcker, Kehr, and Rasche [32].
Shan, Ma, Zhang, and Lajoie [269] introduced the simple scoring model from (11.3) as well as
the efficient recurrence (11.5), and established that generating glycan topology candidates while
avoiding peak double counts is an NP-hard problem. The scoring from Sec. 11.6 generalizes ideas
of Goldberg et al. [107].

Böcker et al. [32] evaluated the presented approach (computing S(T)) for generating glycan
topology candidates using 24 glycan spectra. Glycans were composed of fucoses, hexoses and N-
acetylhexosamines and ranged in mass from 1379 to 2354 Da. Candidate generation required less
than 5 seconds setting k = 10. In all but two cases, the correct glycan topology was contained in the
top 100 output. In comparison, there exist millions of glycan topologies for some of the precursor
masses. Avoiding peak double counting is indeed important to generate a useful candidate list: If
peak double counting was ignored (computing S′(T)), then the top 500 candidates contained the
correct structure in only 8 cases.

See Zaia [311] for a review on mass spectrometry analysis of glycans. The nomenclature of ion
series is due to Domon and Costello [68].

Similar to Chapter 9, the running time of our dynamic programming algorithm in Sec. 11.3 can
be reduced from O(3k · |Σ|M2) to O(2k · k2 |Σ|M2) [23]. Again, the practical use seems to be very
limited due to the required overhead.

Counting the number of glycan topologies in Sec. 11.7 presents some of the results from Böcker
and Wagner [30], which contains more results on counting (node-labeled) trees of bounded degree.
Approximations (11.9) and (11.13) are due to Otter [212], who also showed how to approximate
these numbers for arbitrary fixed out-degree d. Unfortunately, he left out the constants for rooted
trees with maximal out-degree four, see (11.9). Note that the multiplicative constant of (11.14)
is correct [95, page 477], but different from the one in [212]. The number of glycan topologies
with |Σ| = 1 or, equivalently, the number of rooted trees where each node has out-degree at most
four, is sequence A036718 in the On-Line Encyclopedia of Integer Sequences.4 If you want to find

4http://oeis.org/A036718
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11.9 Exercises

approximations for pretty much any type of trees, take a look at Flajolet and Sedgewick [95] and
Harary et al. [123]. See also Exercise 11.14.

Li and Ruskey [179] show how to enumerate trees with bounded degree, see Sec. 2.2 of their
paper. The amortized running time per tree is “constant for realistic values of n”, such as n ≤ 25,
where n is the number of nodes in the tree.

11.9 Exercises

11.1 Compute the number of decompositions over the alphabet Pen, dHex, Hex, HexA, and
HexNAc using mass accuracy 0.001 Da (multiply masses by 1000, round down). Compute
and plot minimum, median and maximum for superbins of width 1 Da as in Figures 8.2
and 8.3 for the mass range 0 to 2500 Da.

11.2 Proof that recurrence (11.4) is correct, that is, S′[m] computed using this recurrence is truly
the maximum score of any glycan topology with total mass m.

11.3 Establish the running time of computing S′[M] using (11.4).

11.4 Show that computations using (11.4) and (11.5) will lead to identical results.

11.5 Show how to recover an optimal solution from the array S′ using backtracing. What is the
running time?

11.6 Assume that we have two monosaccharides Σ= {F,H} with masses µ(F)= 146 and µ(H)= 162.
Assume further that we have recorded the mass spectrum (without ion series modifications)

M = {146,162,454,338,938}

with precursor mass M = 938. Assume further that the peak at mass 146 has intensity 2,
whereas all other peaks have intensity 1. Assume that we consider peak intensities in the
scores S(M),S′(M) as proposed in Sec. 4.10; so, the peak at mass 146 scores twice as much
as the other peaks. What is the glycan topology maximizing S(M); and what is the glycan
topology maximizing S′(M)?

11.7 What is the running time of computing S[C,m] by a recurrence similar to (11.4)? Note the
base of the exponential growth!

11.8? Proof the correctness of recurrence (11.6). You can do so by first showing its equivalence
with a recurrence similar to (11.4), compare to Exercise 11.7; then, showing that this
recurrence will compute the correct values.

11.9 Describe an algorithm to transform a glycan topology into string, that uniquely describes
the glycan topology. The important point here is that for glycan topologies, the children of a
monosaccharide are unordered, and we have to give them a “canonical ordering.”

11.10 It is obvious that we can score the “degree of branching” in (11.5), by counting the number
of mi with mi = 0. It is slightly less obvious how to achieve this for (11.5) and (11.6) while
at the same time, guaranteeing the optimality of the computation. Discuss the problem for
(11.5), and show how it can be modified accordingly. Hint: If S′

2[m] is optimal for m1 = 0,
then S′

2[m]= S′[m].

11.11 We noted in Sec. 11.7 that N[n, |Σ|] ≈ |Σ|n · r[n] overestimates the true number of trees.
Show, for n = 5 and Σ = {F, H}, what glycan topologies are counted by this estimate, and
which of them should not be counted (multiple times).
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11.12 Compare the “rough estimate” |Σ|n · r[n] to the exact number, and calculate the relative
error, for |Σ| = 1, . . . ,5 and n = 1, . . . ,30.

11.13? Use the recurrence from Böcker and Wagner [30] to enumerate all glycan topologies of
mass M for the alphabet Σ= {132,146,176,180,203} and sub-alphabets of your choice.

11.14F The constants in approximations (11.13) and (11.14) have only six decimal places. Find
more accurate constants, as described in point VII.21 on page 477–479 of Flajolet and
Sedgewick [95]. Alternatively, you can use the 20-step recipe from Harary et al. [123].
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12 Priors and Machine Learning: Over�tting

and self-ful�lling prophecies

“It is a capital mistake to theorize before one has data. Insensibly one begins to twist
facts to suit theories, instead of theories to suit facts.” (Sherlock Holmes, A Scandal in
Bohemia)

“With four parameters I can fit an elephant, and with five I can make him wiggle his
trunk.” (John von Neumann)

PRIORS, the stochastic equivalent of any “prior knowledge”, are a double-edged tool: On the
one hand, they are sometimes indispensable to make sense of the data; on the other hand,

they can easily result in self-fulfilling prophecies and overrating the power of a computational
approach. I have stumbled upon such badly used prior knowledge repeatedly in computational
mass spectrometry, so I believe that some words of warnings are in place. (Be warned that only
in the vast minority of cases, using priors is mentioned as such.) Machine learning, on the other
hand, is now widely used in science, and increasingly so in computational mass spectrometry.
Again, I have stumbled upon severe problems repeatedly, some of which are closely related to the
problems of using priors.

In this (short) chapter, I will describe a few advices on using priors and machine learning.
This will be sometimes in the form of examples. I will switch back between prior knowledge and
machine learning, because some of the warnings cannot be attributed to either machine learning
or using prior knowledge. I am not an expert on either subject, so do not expect any deep insights.
But I have been surprised how often even this “shallow advice” is not taken into account.

As an initial word of warning: You must not feed a large number of mass spectra into machine
learning, and then expect it to sort things out for you. A lot of people believed that this is possible,
and to the best of my knowledge, nothing sensible came out of that. In an infamous example,
the authors of some study (not to be named here) directly fed raw SELDI (surface enhanced laser
desorption/ionization) MS data to machine learning, without even picking peaks. They found that
the five most important features to discriminate between healthy and sick individuals, are at
mass over charge 0.42, 0.08, 0.07, 0.43, and 0.05. The authors reached 97 % correct classifications
using these value. Considering that a single proton weights more than 1 Dalton, this finding has
to be interpreted with some care.

And another word of warning: Machine learning methods suffer from all issues mentioned in
this chapter, not only those where it explicitly says “machine learning suffers”. The problem is
that machine learning methods assume that the training data is a representative sample of all
possible data. This assumption is almost always violated in practice; your training data is rarely
a representative sample! There are numerous reasons why people measure particular things,
but generating representative samples is rarely the intention. (The millions of peptide reference
tandem mass spectra that have been measured in different labs around the world, may be one
of the first examples where people tried to generate a representative sample: But even there, I
assume that heavily modified peptides are rare, potentially because these are more expensive to
synthesize. Money, by the way, is often a good explanation of what is measured and what is not.)
To this end, you are involuntarily introducing priors through the training data that you use. To
avoid nasty surprises, you will have to search for these priors before you can train. Have fun!
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Figure 12.1: Machine learning by xkcd (https://xkcd.com/1838/).

12.1 Priors and prior information

In Bayesian statistical inference, a prior is the probability distribution that would express one’s
beliefs about some quantity before evidence (data such as a tandem mass spectrum) is taken into
account. Bayes’ theorem implies that

P(M | D)= P(D | M) ·P(M)
P(D)

where P(M | D) is the posterior probability (the conditional probability of the model given the
data), P(D | M) is the likelihood of the data (the conditional probability of the data given the
model), and P(M) is the prior probability (the probability of the model before any data is taken into
consideration). We usually cannot compute the probability of the data P(D) but this is often not
a problem: We simply normalize posterior probabilities so that they sum to one, over all possible
models; alternatively, we search for the model M that maximizes the denominator P(D | M)·P(M).

There has been a long and vivid discussion about the justifications of “Bayesian inference”
vs. “frequentist inference”. This is none of our business; for bioinformatics, Bayesian inference
has been extremely successful. A classical textbook example is a rapid test for, say, a human
immunodeficiency virus (HIV) infection: Such a rapid test may have precision of 99% (out of 100
people were the test is positive, 99 have an HIV infection) and recall of 99% (out of 100 people
that have an HIV infection, the test is positive for 99 people). But if the infection is rare (say, only
0.01% of the tested individuals have an HIV infection) then it is much more likely that someone
with a positive test result does not have an HIV infection, see Exercise 12.1.

When I speak about “priors” in this chapter, I am not referring to the distinction between
Bayesian inference vs. frequentist inference. Instead, I mean any prior information that we use
in our calculations and that is not directly in the data that we are analyzing. With “prior” I simply
refer to integrating prior knowledge into your optimization or calculation. In this sense, a scoring
matrix used to calculate a pairwise sequence alignment is prior knowledge — frequentists may
blush when they hear me speak like this, and I hope I am not causing any heart attacks. As said,
I am not a statistician.

After reading this chapter, some readers might say, “how lucky am I that I have not chosen a
probabilistic framework with all these prior problems, but rather a no-nonsense score where this
cannot happen!” But the truth is:
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12.2 Pirates in the Caribbean

• A prior is a prior even if you do not know what a prior is.

12.2 Pirates in the Caribbean

Be aware that with prior values to be selected, you are introducing additional parameters into
your model. Simply by doing so, you can make sure that results get better in evaluation. This is
completely independent of the fact whether or not the prior actually made any sense. For example,
you can use the number of pirates in the Caribbean in a certain decade as a prior for your data.
Chances are high that, just by chance, this number is correlated to some number which indeed
gives your method an advantage in evaluations, if we are allowed to select an arbitrary value.
This does not mean that it made any sense to prioritize on the number of pirates. To avoid this
type of overfitting, two suggestions are in place:

• Choose your priors independently of the task that you actually want to perform. In
particular, do not choose priors so that some performance evaluation number (the objective
function) is optimized.

• If this is not possible and you have to rely on your objective function, do (10-fold) cross-
validation, and also evaluate the resulting method on an independent dataset.

For the first point, consider PAM (point accepted mutation) scoring matrices used for computing
protein alignment. Before PAM, people used ad hoc-chosen scoring matrices based on biochemical
knowledge, which somehow put a score on the similarity or dissimilarity of each pair of amino
acids. When Dayhoff, Schwartz, and Orcutt [62] developed the PAM scoring matrices, they
brought prior knowledge into sequence alignments, which they derived from data (thousands of
existing pairwise protein alignments). But to do so, they did not choose the 210 free parameters
in the amino acid scoring matrix such that, say, a maximum number of positions where correctly
aligned for some reference alignment dataset. Instead, the parameters were chosen so that
the observed data (protein alignments with 99% sequence identity) were best explained by a
stochastic model of sequence evolution. Similarly, the priors for fragmentation tree computation
(Chapter 9) were directly derived from statistical estimates of the data, without considering any
optimization criteria such as “molecular formula identification”.

12.3 Cross-validation

In statistics, cross-validation is used to assess how a method will perform in practice. It requires
that we partition the sample data into batches (in most cases, ten). In ten iterations, the method
is trained on nine of the ten batches, and evaluated on the tenth batch. Compared to the “training
vs. test data” setup used previously, cross-validation has the advantage that we average results
over ten iterations, making our estimates more robust and avoiding “lucky punches”.

When do you have to perform a cross-validation? The answer is simple: As soon as you make
one decision (what parts of the scoring should be switched on or off?) or optimize one parameter,
then this is training, and there is no way around cross-validation. In other words: “Training”
is not limited to high-end machine learning methods. “Playing around” with a score to improve
results is training, too. The fact that cross-validation is a “must” and not a “nice-to-have” feature,
is unfortunately not generally known in the computational mass spectrometry community. This
has resulted in sometimes absurdly inflated numbers to be reported in publications. In short:

• Whenever you tweak or optimize your score, do cross-validation.
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Unfortunately, this is not enough to do a reasonable cross-validation. Consider the classification
of animals from pictures. This is a “Drosophila” of machine learning, as it is relatively easy to
produce huge amounts of high-quality training data: Millions of pictures are available on the
Internet, and classifying them is easy for humans. Now, assume that a certain photographer has
not uploaded single pictures, but rather multi-shot mode pictures. In this case, we have not one
but, say, ten pictures of the same animal; these pictures are not identical but extremely similar. If
we now sort these ten pictures into the ten cross-validation batches, we no longer have to classify
(learn) pictures; it is now sufficient to memorize them.

Another example, this time from computational mass spectrometry: Machine learning is in-
creasingly used identify small molecules from fragmentation spectra, or to predict fragmentation
spectra for a given molecular structure. It is understood that mass spectra from the same
molecule have to be sorted into the same batch, to prevent that the method simply memorizes
these spectra; this is despite the fact that these are independent measurements. Unfortunately,
this is not enough: Different stereoisomer of a certain molecule can exist; fragmentation spectra
of stereoisomers are not indistinguishable, but extremely similar. If we sort stereoisomers into
different batches, our method can again memorize these spectra, and evaluation results will be
excellent. We can only prevent this if we perform a structure-disjoint evaluation: All molecules
with the same molecular graph are sorted into the same batch.1 Gerlich and Neumann [103] even
went one step further: They excluded all compounds from the training data that were structurally
similar (instead of identical) to the query compound. With that, you can beautifully observe how
the power of the method diminishes when the similarity threshold is decreased. This also brings
up the problem that a molecular graph is often not an adequate representation of the molecular
structure — check out “mesomerism” in Wikipedia — but I leave it at that. In short:

• Make sure that basically identical examples are always sorted into the same cross-validation
batch. Otherwise, your method is memorizing, not learning.

I am aware that this suggestion is in blatant contradiction to the usual race for better evaluation
numbers; but as a side effect, you will probably see that the difference to evaluation on indepen-
dent data becomes smaller, see the next section.

12.4 Independent data and smart horses

The most important point about independent data, is that you must not “touch it” when developing
your method and optimizing your parameters. The data are “burned” (no longer independent) as
soon as you include it in your loop of developing the best method. This includes basic decisions
such as selecting which prior information your method will use at all, or selecting which machine
learning technique (Support Vector Machines or Deep Neural Nets?) you want to apply. Only
when you have made your final decision on what your method is and what the parameters are,
you are allowed to touch the independent data. This is an ideal and usually out of reach in
practice; but you must try hard to get as close as possible to this ideal.

In machine learning, a common approach is to set aside a portion of the training dataset (say,
30 %) before starting method optimization; this subdataset is then called “independent data”. But
this is not the case: The randomly selected subset has exactly the same biases etc as the data you
have trained on! This means that you will largely overestimate the power of your method for data
that are truly independent. For a MS dataset to be independent, it should have been measured
by a different person, in a different lab, on a different instrument, using different samples! If one

1You can decide if two molecules are identical on this level using the first block of the InChI (International Chemical
Identifier) key.
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or more of these conditions are violated, there is a good chance that your reward your method for
overfitting to the peculiarities to the data. In short:

• Make sure that your independent data is truly independent.

As for cross-validation, “independent data” in itself is often not enough: You again have to
make sure that “basically identical” examples are not simultaneously present in training and
independent data. For the example of small molecule fragmentation mass spectra, make sure
that no molecules with identical molecular graph are present in the independent data. This will
require that you discard a huge number of examples from either the training or the independent
data, which is not desirable for obvious reasons (you usually do not have enough data to start
with). A better approach is to test, for each example in the independent data, if a “basically
identical” example is present in the training data; if so, use the model trained in cross-validation
where the “basically identical” training examples are sorted into the testing batch (all of them
should be in one batch, see above).

• Use appropriate cross-validation models even when evaluating on independent data.

There exist numerous examples showing how the bias in your data can result in overestimating
the power of your method, and even result in a method useless in practice. Some examples make
it into the press (only Asians and Caucasians classified as “humans”), but most go unnoticed; the
later are by far the more dangerous. A particularly cute example is the bias in animal pictures:
It turns out that Tibetan terriers are usually photographed as front picture, with their eyes in
a certain distance and their head slightly tilted. I assume that most pictures of Tibetan terriers
were uploaded to the Internet by people who wanted to demonstrate this cuteness to everybody;
the right posture (front picture, large and tilted head) underlines the message. In comparison,
warthogs are rarely taken pictures of in this posture. If you train your classifier on this data,
but test it on data which is taken by an automated camera, then an animal looking into the
camera (preferably with the head tilted) will be classified as “Tibetan terrier” whereas an animal
in a different posture will be classified “warthog”. The point here is that you have not trained a
classifier for animals; you have trained a classifier for “animal pictures uploaded to the Internet”.

Another upsetting example from computer vision is that the presence of a horse in a picture
can be inferred from the presence of a “source tag” (photographer name, Internet address) in the
lower left corner of the picture; a car with a source tag is clearly a horse, to the machine learning
method at least. This has been referred to as “clever Hans effect” effect [169].2 Warnings about
such clever Hans predictors are almost as old as machine learning; but with each new hype cycle
in machine learning, these warnings are again forgotten. Cues in the mass spectrometry data
that machine learning might focus on are, for example, “bleeps” in the raw data that provide
information about the machine the sample was measured on, see the example in the introduction
of this chapter. Another possibility is that the data was preprocessed by different software tools;
or, different samples were treated with slightly different experimental protocols. All of this is
hard to spot for a human, but rather simple to pick up for machine learning.

Much like the trainer of clever Hans was entirely unaware he was providing cues which allowed
to “sidetrack” the problem, many people training machine learning methods are unaware they
provide such cues in the training data.

• Do your best to avoid smart horses.

2Clever Hans (“der Kluge Hans”) was a horse that was claimed to have performed arithmetic and other intellectual
tasks. This was later shown to be an artifact: the horse was responding to involuntary cues in the body language of
his trainer. The trainer was entirely unaware that he was providing these cues.
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Figure 12.2: Left: Great spotted woodpecker, adult male. Right: Ivory-billed woodpecker, male
specimen in Carnegie Museum of Natural History. Left picture by Usitea, license CC
BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0; right picture by
James St. John, license CC BY 2.0, https://creativecommons.org/licenses/by/
2.0.

12.5 Master of the obvious

Let us assume you did everything right: You want to use some background information as a
prior; you determined the parameters of the distribution for the prior without evaluating your
method; and to evaluate if this was a good decision, you used a decent cross-validation and truly
independent data. It worked, everybody is happy. But I am a grouch: I still do not believe in your
prior.

A simple example that I have used before [25], is a smartphone app for identifying birds from
photos. You do some pretty cool stuff and come up with reasonable identification results. Then,
someone approaches you with the smart idea to use prior information on how common birds are.
You know from background information (Wikipedia) that the great spotted woodpecker is about
10 million times more common than the ivory-billed woodpecker (Fig. 12.2). But if you integrate
this prior information into your app, you will rarely and possibly never again identify an ivory-
billed woodpecker with your app. The prior is too strong and whatever the data is, this will not be
enough to support the ivory-billed woodpecker identification. Nevertheless, the app will suddenly
perform much better in evaluation: All these borderline cases where the app previously decided
for an ivory-billed woodpecker will now be classified “great spotted woodpecker”, and that is in
almost all cases the correct answer. On the other side, the app is now simply telling you things
that you already know. If you are an ornithologists, you will be unhappy with how this new and
better app is performing; sorting out the bogus ivory-billed woodpeckers is relatively easy, missing
one is fatal.

Another helpful example is the aforementioned rapid test for HIV. Using Bayes’ theorem we
will see that even if the test result is positive, it is nevertheless much more likely that the tested
patient does not have an HIV infection. But it does not make sense that the doctor sends home the
patient, telling him “Bayes’ theorem tell us that you do not have an HIV infection!” Instead, this
would be the time to do other, potentially more expensive tests that have better sensitivity and
specificity. The indication that a rare event just got 1000-fold more likely, is important information
which should not be left aside because of prior information.

It is easy to integrate prior information into many approaches described in this book. For
example, you can use the frequency of amino acids in a protein database as prior information
for peptide de novo sequencing. You may not want to stop at that and use frequencies of di-
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12.6 More things that can go wrong with priors

amino acids in the database, or maybe tri-amino acids. Taken to the extreme, your de novo
sequencing turns into a database search. There is a fine line between tuning your method for
better performance and turning it into a “master of the obvious” that simply repeats what we
already know.

One possibility to avoid becoming a “master of the obvious” is to use a flat prior for all
“normal” hypotheses, and to use smaller priors only for things that are really, really different
from everything we know today. This advice will usually not help you much if you are searching
in a database: Everything in a database is there (or at least, should be there) for the reason that
this is indeed considered a possibility. In Theodore Woodward’s terms, all database entries are
horses; what is not in the database are the zebras, plus many horses we are currently not aware
of. For example, both the great spotted woodpecker and the ivory-billed woodpecker are birds in
your database, and should receive a flat prior. But to penalize molecular formulas which are very
different from every single (bio)molecule we know today (Sec. 8.4), we may indeed use a prior; we
do so based on the assumption that these molecular formulas are also very different from every
(bio)molecule we will get to know in the next 50 years. In short:

• Penalize the outlandish, but do not reward the obvious.

Clearly, your prior must not be, “if it is not in some database, it gets a penalty”! Databases are
just a snapshot of what is known at this point of time, and will often grow over time. Instead, you
will have to derive properties such that all database entries fall on one side, but examples not in
the database fall on the other.

As an example from bioinformatics where people are decidedly not using prior information,
consider phylogenetics: After decades of research, people are still using flat priors and Maximum
Likelihood when building phylogenetic trees. This allowed the discovery that whales and dolphins
are closely related to cows, which was in clear contrast with everything that everybody believed
to know at that time. If only they would have used prior information to prevent such nonsense
discoveries. . .

12.6 More things that can go wrong with priors

But wait, there is more that can go wrong with integrating prior information! And that has to
do with the fact that we can rarely evaluate our method on true biological data.3 If we use a
prior which improves your results in evaluation, this may not carry over to biological data; in
fact, you may have made everything worse. This might be hard to imagine for someone from
proteomics, where several labs have started to measure millions of synthetic peptides; but these
have been around not for long, and other areas of computational mass spectrometry will never
have the luxury of such huge and mostly unbiased data for training and evaluating our methods.
Consider metabolite identification: You can use the cost at which you can buy a standard, as a
prior for metabolite identification. This will work great in evaluation: The spectral library you
evaluate on, will rarely contain standards which are extremely costly. But why should metabolites
in biological samples follow the same prior probability? Also, what about all the metabolites which
you can currently not buy, for example because they are only hypothetical at present?

So, what is the solution to all of that? Well, I cannot give an easy answer to this question. The
only advice I can offer, is:

3No rule without exception: Methods for FDR estimation in shotgun proteomics are often evaluated on biological
datasets. But the information derived from such evaluations is usually only that “FDR estimation method A
accepted more peptides at FDR 1 % than method B”, without knowing if the estimate by method A is indeed better.
Possibly, the additional peptides are all wrong; possibly, method B is more accurate in its estimates. See also
Sec. 6.7.
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• Be careful with prior information.

If you are not sure if you are doing the right thing, that is possibly because you are not doing the
right thing.

12.7 Building a skyscraper from a bag of bricks

With the hype around deep learning and deep neural networks [173], people have started to apply
them basically for any learning problem. The hype of deep learning is basically build on three
pillars: Firstly, new network architectures such as convolutional neural networks [172] and Long
Short-Term Memory networks [130] have much fewer parameters than (but the same number
of connections as) a “general purpose” (naïve, “vanilla”) neural network, substantially reducing
the number of examples you need to train the network; second, compute power for training large
networks increased significantly, mainly through powerful video cards that can efficiently perform
matrix-vector multiplications; and third, huge training datasets became available for certain
tasks such as image recognition. The first and third point are essential to avoid overfitting of
the method.

Unfortunately, many authors appear not to be aware of this, and try to train naïve deep neural
networks from thousands of training examples. It is inevitable that this must fail: A standard
neural network architecture with only two hidden layers, 1000 input neurons and 100 output
neurons will have, say, 700 neurons on the first and 400 neurons on the second layer. This neural
network has

1000 ·700+700 ·400+400 ·100= 1020000

edges; hence, we have to estimate this many edge weights (multipliers) for the neural network
to do something. It must be clear that you cannot train a million parameters from thousands of
training examples. Machine learning has developed techniques such as regularization (L1, L2,
dropout) to avoid overfitting as much as possible; but if your machine learning model has (orders
of magnitude) more parameters than your training dataset size, there is no way that you can avoid
overfitting.4

But numerous papers have been published where a naïve deep neural network performs well
(and maybe better than all other machine learning techniques evaluated against) for some dataset
which is definitely insufficient for deep learning; how is that possible? The underlying problems
have been mentioned repeatedly throughout this chapter: Your data are often not independent,
allowing machine learning to memorize; you might not learn the problem you are actually
interested in but rather a different, much simpler one; you might be training a clever Hans that
is “learning” features of the training data you are not interested in. These issues can easily result
in a deep neural network showing an outstanding performance.

As so often, proteomics is in a much better position than other areas of computational MS: Not
only that there often exist huge sets of training data, such as millions of tandem mass spectra
for peptides with basically random sequence; in addition, proteins and peptides are strings and
you can use machine learning techniques developed for text analysis (such as, bidirectional Long
Short Term Memory neural networks) mostly “out-of-the-box” [313] .

4The “curse of dimensionality” refers to a related yet deeper problem: Here, the number of training examples is
substantially smaller than the number of features. This is no longer a problem of avoiding unsuitable machine
learning techniques.
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12.8 Hidden priors

Another dangerous situation is when you believe that you are using a flat prior, but in truth, you
are not. In particular, a flat prior on one entity might lead to a non-flat prior for another one. See
Velasco [296] for a detailed discussion on why the flat priors used in phylogenetic reconstruction,
are “not as flat as we might think”.

A “textbook example” of a hidden prior are methods that use networks as an input for their
analysis. (The important differentiation is whether the network is derived from the data, or if it
is prior information.) For example, you might want to use a metabolite network when identifying
metabolites in your sample: Your candidates (nodes of the graph) are metabolites in a structure
database, and you connect these candidates via biotransformations (edges of the graph). These
biotransformations may be obtained from some database such as KEGG [145]; alternatively, you
may assume that two candidates that have a sufficiently similar structure (or even molecular
formula) are connected via an edge. Now, you may give a bonus if many metabolites your
metabolite is connected to, are simultaneously present in the same sample.

This sounds reasonable but unfortunately, you have just introduced a strong prior. Clearly, a
node that does not have any incident edges, cannot have any active neighbor nodes. Similarly,
a node that has few incident edges has on average fewer active neighbors than one with many
incident edges. Depending on how your score active neighbors, you either penalize nodes for
having neighbors, or you give them a bonus on average. You can now estimate which candidates
will be chosen with what prior probability, without having seen the data. It is understood that to
ensure a flat prior, candidates can get a bonus or a penalty, depending on the number of active
neighbors.

One may argue that a positive prior for candidates that many outgoing connections are justified.
(I would object.) But even in case you believe this prior is fine, you have to make it transparent:
A user must be able to see all prior probabilities, to make up his or her mind whether these are
the priors (s)he believes in. In reality, the situation is even worse: The molecular networks we use
are just a snapshot that reflects our current knowledge (and possibly not even that) about biology
and biochemistry; they must not be confused with the biological truth. The prior can also lead to
inflated numbers in evaluations: Your method might not be doing anything useful but rather pick
the usual suspects; see again Sec. 12.5 on why that is a bad idea.

The most reasonable way to deal with this problem is to design your computational method
in a way so that you can prove that all candidates have a flat prior — and with that, I mean a
mathematical proof, not an empirical one. Otherwise, strange things can happen that you never
considered when designing the method.

12.9 Filtering vs. priors and the two-step approach

This is work in progress!

12.10 Further reading

The literature on biomarker discovery is full of warnings about bias etc: Back in 1978, Ransohoff
and Feinstein [231] warned against bias in the evaluation data and “clever Hans” effects in
statistic evaluation. Ransohoff [229] warns against overfitting and improper validation sets in
the context of biomarker discovery. Ransohoff [230] remarks that “no guideline can replace an

205



12 Priors and Machine Learning: Overfitting and self-fulfilling prophecies

investigator’s insight and reflection in considering and addressing possible sources of bias in every
step of research, from design and methods to results, analysis and interpretation.”

The Tibetan terrier example was brought up by Azulay and Weiss [10], who studied why deep
convolutional networks generalize so poorly on small image transformations. The source tag
example and the name “clever Hans” is from Lapuschkin et al. [169]. The oldest “clever Hans”
warning I am aware of in machine learning, is more than 25 years old: In 1992, Dreyfus and
Dreyfus [70] told the “legend” that a neural network did not detect tanks in pictures, but rather
differentiated between pictures taken on sunny and cloudy days. Next, see the commentary
by Marx [192] in Nature Methods mostly on the “curse of dimensionality”. Finally, Riley [239]
from Google recently wrote a comment about pitfalls in machine learning: Namely, inappropriate
splitting of the training data (Sec. 12.3), clever Hans predictors (Sec. 12.4), and wrong objectives
when learning. These warnings are not new (see this chapter, for example) but since it is from
Google and published in Nature, there is a chance that people will finally understand this is an
issue.

Mayer et al. [194] show how you can draw and elephant with four (complex) parameters, and
how you can make him wiggle his trunk with the fifth.

See Gatto et al. [100] for “do’s and don’ts” of computational methods evaluation. I have read and
reviewed many papers where people did not adhere to the advice given in this section, but this is
not “blame and shame”. When reading a paper, just decided for yourself.

The Master of the Obvious is a recurring character from the Dilbert comics.

12.11 Exercises

12.1 Consider the HIV rapid test. There are two models, M1 for HIV infection and M0 for no
infection; similarly, D ∈ {pos,neg} indicates if the test was positive for an HIV infection
or not. Assume that the rapid test has precision and recall 99%. What is P(pos | M1),
P(pos | M0), P(neg | M1), and P(neg | M0)? If only 0.01% of the tested individuals have an
HIV infection, what are the prior probabilities P(M0) and P(M1)? Finally, calculate the
posterior probability P(M1 | pos) of an HIV infection if the test is positive.
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13 The missing chapters

“The great thing about the Internet is that everyone can finally give their opinion
to the whole world. The terrible thing is that everybody does it.” (Marc-Uwe Kling)

UNFORTUNATELY, this book is vastly incomplete. Despite my deliberate limitation to topics
that are interesting on an algorithmic level, I nevertheless feel that certain aspects should

have been covered. In fact, I have stuck to things that I can rather safely talk about. In case
you want to contribute to this textbook, please contact me! Below are a few topics that should be
covered, or justifications for other topics which I believe I cannot cover here:

• Charge states. If there is an isotope pattern, then the charge state can easily be deduced
from it; there are very few situation where this is not the case. Nevertheless, some words on
how the determination of charge state can be carried out in a statistically robust way, would
be helpful. If there is no isotope pattern (fragmentation spectrum from the monoisotopic
peak) then you probably have to keep all possible interpretations as alternatives.

• Signal processing and peak picking. This is a very different topic from the questions
covered so far in this textbook. To give the reader an (imprecise) impression, I have covered
a few details of this step below (Sec. 13.1).

• Deisotoping. Experimental spectra contain isotope peaks, which are often considered an
annoyance. Hence, removing these isotope peaks from an MS1 or MS/MS spectrum has
been considered repeatedly in the literature. In many cases, the better solution would have
been to use the isotope pattern to your advantage, as we have seen that it contains much
information. But for certain experimental setups such as isotope labeling or imperfect mass
filters, it is indeed challenging to identify the monoisotopic mass of a molecule or to estimate
the corresponding isotope pattern.

• Aligning single-stage mass spectra. Unless you chemically label all molecules in one of
your samples, you have to compare two samples as two individual MS1 runs. Unfortunately,
that means that all peaks will be slightly shifted; in particular, the retention time can
vary between two measurements. Establishing a mapping between two LC-MS runs is
further complicated by the fact that some peaks are present in only one of the two runs.
Algorithmically, this boils down to alignments, time-warping or nonlinear regression.

• Protein inference. We have seen how to sequence peptides and how to search for them in
a database, plus estimating the significance of such hits; but what we really want to know, is
what proteins (not peptides) are present in the sample. One of the oldest, probably the best-
known and possibly still the most-used approach for this is ProteinProphet by Nesvizhskii,
Keller, Kolker, and Aebersold [205].

• Protein shotgun sequencing. This problem (not to be confused with shotgun proteomics)
is algorithmically very challenging and gives rise to several interesting combinatorial
problems. Luckily, it has been covered elsewhere: See Chapter 4 (“How Do We Sequence
Antibiotics?”) in Compeau and Pevzner [53].
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• Tag-based approaches. You first use de novo sequencing to derive a short “tag” (3–
6 amino acids) of the peptide, then restrict your database search to those peptides that
have the tag. This is all about speeding up database search, and “speeding up things” is
definitely in the realm of algorithmics. Doing so is beyond a nice-to-have feature: Using
a tag-based approach, you could do database search with practically unrestricted post-
translational modifications! (Certain restrictions apply.) Unfortunately, I am not aware
of a lot happening there in the last years. Potentially, one reason is the advent of Data-
Independent Acquisition (still funny) where a fragmentation spectrum contains peaks from
10+ peptides. This results in the challenging task that the fragmentation spectrum contains
k peptides, and you have to sequence short tags for each of them — give it a try. Also, tag-
based searching may interfere with False Discovery Rate estimation. See Ma and Johnson
[185] and Muth, Hartkopf, Vaudel, and Renard [203] for reviews.

• Simulating fragmentation spectra. For peptides, Zhou, Zeng, Chi, Luo, Liu, Zhan, He,
and Zhang [313] show how to predict fragmentation spectra using Deep Learning; these
spectra are of excellent quality and “look like the real thing”. Unfortunately, the method
description would have to be either very short and shallow, or extremely intricate — if I
explain bidirectional Long Short-Term Memory (LSTM) neural networks first. The complete
methods description in [313] is only 44 lines; citing Zhou et al. [313], the authors are
“looking forward to more nontrivial applications of deep learning in proteomic studies”. Both
options are somewhat unsatisfactory. For metabolites, Quantum Chemistry simulations are
definitely beyond the scope of this textbook, and the Competitive Fragmentation Modeling
method of Allen et al. [1, 2] is an intricate and non-trivial blend of machine learning and
Expectation Maximization, plus a hint of Markov Chain Monte Carlo. Recently, papers have
been published that claim to solve the problem via machine learning; but it looks to me as
if these papers have major evaluation issues, see Chapter 12 and in particular Sec. 12.4.

• Maths. It would be nice to have short introductory sections for (computational) graph theory
and computational complexity theory.

13.1 Signal processing and peak picking

Computational mass spectrometry applications often have the form of a pipeline, where each
stage can access the information computed on previous stages. The first stage of this pipeline is
processing the raw MS data, enhancing the signals and suppressing the “noise”. Even though
sensitivity, signal-to-noise ratio, and mass accuracy have improved considerably with modern
instruments, the automated analysis of raw MS data is still a delicate task, complicated by low-
abundant molecules, chemical and electronic noise, and overlapping patterns.

MS instrument manufacturers tend to sell their instrument with proprietary signal processing
software. As always, using such proprietary software comes with its pros and cons: The software
is often specifically tailored for a particular MS instrument, so there is no need for lengthy
parameter optimization; it usually ships with a decent user interface; and, it reads and writes
the manufacture’ proprietary file formats for the raw data. Most importantly, the vendor signal
processing software is often deeply entangled with the software that operates the MS instrument.
On the “cons” side, the methods and algorithms of the software are usually not documented; and,
the techniques and algorithms used within such software are rarely as evolved and sophisticated
as the ones found in the academic literature.

We have assumed throughout this textbook that mass spectra are presented to us in the form of
a peak list, consisting of masses, intensities, and possibly further features of each detected peak.
The classical way to derive such peak lists consists of four steps:
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1. First, the baseline is removed from the spectrum: This is a systematic error that has been
associated with molecular fragments. The baseline is slowly varying and smooth, and
usually diminishes with higher m/z values. Standard techniques for removing the baseline
include morphological filtering and sliding window approaches.

2. Then, noise is removed from the spectrum. We first have to understand that in mass
spectrometry, “noise” may refer to two very different kinds of artifacts. A random noise
component is present in all experimental datasets, consisting of several components such
as high-frequency jiggle and “shot noise”. This noise can be removed by techniques such
as sliding averages (in particular, Gaussian smoothing), Savitzky-Golay filters, or the
LOWESS (locally weighted scatterplot smoothing) transform. On the other hand, certain
signals were indeed generated by molecular fragments, but not by the sample, and these
are called “chemical noise”. Usually, signals from chemical noise cannot be filtered at this
step, unless we have a quite good understanding of what we are searching for.

3. Next, peaks have to be detected; this is referred to as “peak picking” or “centroiding”. (The
word “centroiding” is a misused scientific term,1 because the mass of the peak is usually not
computed as the center mass; but it is definitely too late to get rid of it.) In principle, peak
detection can be performed by searching for local maxima; but as not each spike in the mass
spectrum will correspond to a real mass peak, peak detection algorithms employ techniques
such as sliding averages of first and second derivative (or much more involved maths) to
improve their robustness.

4. Finally, we can fit a template function, describing the expected peak shape such as Gaussian
or Lorentzian, to those regions of the signal were peaks were detected. This will get rid of
peaks shapes that clearly indicate a “noise peak”. Non-symmetric peak shapes such as
“exponentially modified Gaussian” have been also exploited for peak fitting. Clearly, peak
fitting may require substantial additional running time.

All detected (and fitted) peaks are then evaluated, in the simplest case by their intensity, and
peaks above some threshold are reported in a peak list.

Starting around 2010, there appears to be a paradigm shift regarding MS peak picking:
Methods published at that time often utilize wavelets for this task [42, 199, 207, 272]. Wavelets
are small, wave-like functions, and allow us to split the mass spectrum simultaneously in the mass
and the frequency domain. The Wavelet transform is similar to the well-known Fourier transform,
but the Wavelet transforms allows us to split the mass spectrum locally, what is required for
peak picking. Since true signals, high-frequency noise, and low-frequency baseline are located in
different frequency domains, there is no need for baseline correction or noise filtering; instead,
the wavelet transform is applied directly to the raw MS data.

In case the MS instrument is coupled to LC (Liquid Chromatography) or GC (Gas Chromatog-
raphy), peak picking for MS1 can either be done in one dimension, processing mass spectra
individually, or in two dimensions (mass and retention time). Two-dimensional approaches are
usually more robust, as the differentiation between signal and noise becomes easier if we look at
both dimensions simultaneously.

Early software returned only tens of peaks for each spectrum. This was clearly tailored toward a
human that has to look through these lists. But for many years, these peak lists are in most cases
only the input of the next computational analysis step, as those mentioned in this textbook. If you
are developing automated methods that take peak lists as input, then never let the peak picking
software throw aways peaks for you! Rather, ask the peak picking software to output hundreds or

1What is the technical term for a misused scientific or technical term? I thought it was “malapropism” but this turns
out to be a misused technical term. . .
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even thousands of peaks, including intensities or “significances” or whatever criterion, and decide
yourself which of them are significant for your method and which are not. This may require
some additional computing time for peak picking — throwing them away comes for free. But it
mostly avoids those nasty cases where you algorithm returns a wrong answer, just because several
tiny but clearly visible peaks that could have saved the day, were discarded by the peak picking
algorithm.
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14 Mathematics and computer science

“Do not worry about your difficulties in Mathematics. I can assure you mine are still
greater.” (Albert Einstein)

“To infinity and beyond!” (Buzz Lightyear)

WHEREAS this textbook is mostly targeted at an audience familiar with mathematics and
computer science, there may be readers who are not. To this end, I provide a very short

and crude introduction into some of the relevant topics touched upon in this textbook.

14.1 Writing numbers

It must be understood that when writing a real-valued number x ∈ R in this or any book, we
cannot write down all its digits: For example, e and π would require us to write an infinite series
of digits, and the same is true for every irrational number such as

p
2. To this end, when we write

π = 3.1415926535 for a real-valued number, this does not mean that the sequence of digits stops
at this point. But this is the case for practically every real-valued number, so we do not have to use
a special notation for this fact. (Technically speaking, the rational numbers form a null set, and
the set of numbers with terminating decimal notation is a subset of the rational numbers. In even
more detail, the rational numbers are a countable set — this is a classical exercise for first-year
math students — and every countable set has Lebesque measure zero. Even uncountable sets can
have Lebesque measure zero; I can still remember the exercise, “show that the Cantor set is not
countable and has Lebesque measure zero” from the second year of my math studies.) Depending
on what we have in mind with the number, we can round it — but this should be noted — or, we
simply stop at any point of the digit series: So, π = 3.1415926535 simply tells us nothing about
the next digit of π; it turns out to be 8. In rare occasions, I will add dots to the end of the decimal
notation, to remind the reader that this is not all.

We use the scientific notation 1.23·1012 or 1.23·10−12 for very large or very small numbers. The
coefficient x in x·10y must satisfy x ≥ 1 and x < 10, and is usually given with at least two decimals.
Please, do not write “x∗10y” as the operator ‘∗’ is reserved for a different mathematical operation
(convolutions); if you have to, you can write “x×10y”.

14.2 Masses

Throughout this textbook, we assume that masses are integer or real-valued. Some care has to be
taken: For integers, we only have to make sure the computer knows this is an integer. If you do
not tell the computer that some mass is integer, he might use a float instead, and this can lead to
tremendously funny debugging sessions later.

The situation is much more complicated for real-valued masses. A few things are essential,
though:

• Use double precision, not single precision. When computers deal with real-valued numbers,
they can do this only with some fixed precision, see below. There are very few cases where
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intentionally sacrificing accuracy in your computations makes sense.1 Otherwise, always
use the full precision your computer can offer you. This comes at no cost with respect
to running time: Multiplying two real-valued numbers with single precision, is usually
implemented as casting both numbers to doubles, multiplying the doubles, and casting the
result back onto a number with single precision. (Certain restrictions apply: graphic cards
can multiply single precision numbers faster than double precision numbers; or, even more
precise, they can multiply more single precision numbers per time step.)

• For predicting spectra and theoretical masses, use number of the best accuracy you can get.
The masses in Tables 1.1, 2.1, 7.1, and 7.5 are not meant for the computer, but rather for the
human reader. Instead, you should download masses with higher mass accuracy from the
Internet.2 Masses in these tables are given with only six digits behind the decimal point.
For H, this implies a relative mass accuracy of about 0.5 ppm. Relative mass accuracy for
the other elements is better. Still, you add a mass error of, say, 0.2 ppm to your data, that is
completely independent of the instrument and can easily evaded.

14.3 Floating point arithmetics and numerical stability

Computers implement real numbers as floating points s ·2e where s is the significand and e is the
exponent, such that 1 ≤ s < 2. Both numbers are stored only with a limited precision: For single
precision, we have −126 ≤ e ≤ 127 and 23 bits for the significand not including the implicit first
bit. So, the smallest difference between two significands is 2−23 = 1.192 · · · ·10−7 or, put differently,
only slightly more than 0.1 ppm. Whereas the restriction of the exponent is not a problem for
computational mass spectrometry — we can represent numbers as large as 1.7·1038 — restriction
of the significand is.

As we are using floating point arithmetic, we have to keep in mind that statements that are true
for real numbers, are not necessarily true for floating point numbers. For example, 0.1 ·0.1−0.01
does not equal zero when using (binary) floating point arithmetic. Using single precision, 0.1 is
encoded in the computer as 0.100000001490. . ., and 0.1·0.1 is calculated as 0.010000000707. . .. In
contrast, 0.01 is encoded as 0.009999999776. . ., so computing 0.1 ·0.1−0.01 with double precision
will numerically result in 0.0000000009313 = 9.313 ·10−10. When subtracting numbers, this can
lead to unexpected behavior, in particular when the exact result is close to zero. As comparing
two numbers is implemented as subtracting them and comparing the result to zero, it should be
understood that comparing two floating point numbers for equality, is usually also a bad idea.
When we do a series of arithmetic operations, errors can get “large” — large in comparison to
the machine precision, that is. Involved algorithms have been developed to keep rounding error
accumulation to a minimum, such as the Kahan summation algorithm. For us, it is usually
sufficient to keep in mind that we should never use single precision arithmetic, as rounding error
accumulation can easily rise to a level beyond the mass accuracy of an MS instrument; and not
to compare two masses for equality but instead, allow for a small ε > 0 even if both masses are
derived from theoretical computations.

1Computer graphics computations are one example; training neural networks is a second, where using less accuracy
may avoid overfitting. Finally, saving memory in tremendously memory-intense computations is a third example:
But there, intermediate computations should be carried out with double precision, and care has to be taken.

2http://amdc.impcas.ac.cn/masstables/Ame2016/mass16.txt
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14.4 Dynamic programming

14.4 Dynamic programming

“What title, what name, could I choose? In the first place I was interested in
planning, in decision making, in thinking. But planning, is not a good word for
various reasons. I decided therefore to use the word, ‘programming.’ I wanted to
get across the idea that this was dynamic, this was multistage, this was time-varying
[. . . ] Thus, I thought dynamic programming was a good name. It was something not
even a Congressman could object to. So I used it as an umbrella for my activities.”
(Richard Bellman, Eye of the Hurricane)

Dynamic programming computes the solution to a given optimization problem by combining
optimal solutions to certain sub-problems. In addition, the space of sub-problems we have to solve
is sufficiently small. Consider Fibonacci numbers (this is not an optimization problem but shows
the trick): The equality Fi = Fi−1 +Fi−2 can be directly translated into a recursive function. But
this means that we have to compute the same values over and over again, resulting in a terribly
slow algorithm. Instead, we use an array F[·] to store the Fibonacci numbers, initialize F[1] ← 1
and F[2]← 1, and finally compute F[i]← F[i−1]+F[i−2] for i = 2, . . . ,n until we reach the number
Fn = F[n] we are interested in. For Fibonacci numbers, there exists a closed formula, see (3.4) in
Sec. 3.2; but that is usually not (almost never) the case for dynamic programming.

Dynamic programming can either be formulated “bottom-up” or “top-down”. Here, top-down
means describing how an optimal solution of an instance can be computed from optimal solutions
of smaller instances, as in the many recurrences from Chapter 3, see for instance (3.2) on page 45.
Usually, this form is easiest to understand for a human reader. In contrast, bottom-up means
that the optimal solutions of smaller instances point to all larger instances where they might
contribute, and update the scores of these instances accordingly. An example of an algorithm that
is taught bottom-up in computer science classes, is Dijkstra’s algorithm for finding a shortest path
in a graph.

But when it comes to implementation, bottom-up dynamic programming often has the upper
hand. This can be the case when the order in which elements of some set have to be processed, is
not immediately clear from the problem formulation. Not all DP problems have such a crystal
clear structure as pairwise sequence alignment or the problems from Chapter 3, where it is
obvious how to fill the tables.

Consider again Dijkstra’s algorithm: We are given a directed graph G = (V ,E), and edge lengths
l(u,v)≥ 0 for every edge (u,v) of G. We search for the shortest paths from some fixed root node to
all other nodes of the graph. We use an array D[·] that, when the algorithm terminates, contains
exactly this length. One can formulate Dijkstra’s algorithm top-down, saying that D[v] is the
minima of D[u]+ l(u,v) over all incoming edges (u,v). But now, nodes in the graph have to be
processed in an order so that D[u] for all predecessors u of v has been computed before we actually
compute D[v]. The bottom-up formulation of the algorithm intrinsically solves this problem, as
only entries that cannot be updated themselves, are used to update entries in the table.

Usually, we are not so much interested in the score of the optimal solution, but rather in its
structure. Throughout this textbook, the term “backtracing” will refer to “computing a single
optimal solution”, whereas “backtracking” (notice the ‘k’) refers to “computing all optimal or
even suboptimal solutions”. See Chapter 2 (for example, Sec. 2.4) and Chapter 11 (for example,
Exercise 11.5) for more details on how this is done.

14.5 Logarithms

Throughout this textbook, you will often find the notation “log x”, indicating that you should
calculate the logarithm of x. There are two different logarithms that you get to learn at school,
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namely log10 x as the logarithm with base 10, and ln x as the natural logarithm with base e, where
e = 2.7182818284 is Euler’s number. The base 10 makes it easy to interpret results in the decimal
system, whereas the base e is preferred by Mathematicians, as it has a particular nice property: If
f (x)= ex then f ′ = f . In addition, many computer scientists (and certain branches of mathematics)
use the binary logarithm lb x with base 2. Now, which logarithm is the correct one?

In fact, the situation is more complicated and, at the same time, much simpler: First, note
that we have an infinite number of bases b > 0 to choose from, and for each such base, there
is a logarithm function logb x. In particular, we have ln = loge and lb = log2. Now, if you find
the expression “log x” in this textbook or in the literature, this means that you can take an
arbitrary base to carry out your calculations, as long as the base is fixed: that is, you carry out all
calculations with the same base. There are few cases where a particular base is required; but this
will be explicitly denoted.

Why can we be so careless about the base of the logarithm? Because

logb(x)= 1
logb

log(x)

where “log” is the logarithm to an arbitrary base. To this end, changing the base only introduces
a constant factor. This factor vanishes anyways in the big-O notation.

14.6 Approximations

There exist at least three meanings of the word “approximation”, plus the informal use:

1. Approximation theory is a field of mathematics that studies how functions can be ap-
proximated with simpler functions. An example is the approximation of a function using
polynomials, in particular Chebyshev approximation. Approximation theory makes it
possible to quickly evaluate the exponential or logarithm function on your computer. This is
not what I am talking about throughout this book.

2. In computer science, approximation algorithms are algorithms that find a solution to an
NP-hard optimization with provable guarantees. These algorithms usually have polynomial
running time. Unless P = NP, we cannot find exact solutions to NP-hard optimization
problems; to this end, it is a natural question to ask “how close we can come” in polynomial
time. The guarantee of an approximation algorithm can be a constant (for example, “the
solution has at most two times the cost of an optimal solution”) or dependent on parameters
of the instance (for example, a factor of logn). Polynomial Time Approximation Schemes
(PTAS) allow approximation with “arbitrary quality” at the cost of increasing running
times. Approximation algorithms are, for the vast majority of problems, not of much use
in bioinformatics; bioinformaticians are usually interested in the structure of the optimal
solution, but not the value of the objective function [75]. There are a few places throughout
this book where I speak about approximation algorithms.

3. In most of the cases, when I speak about an approximation, the correct mathematical term
would be “asymptotics”: For two functions f , g :N→R, we say that f (n)∼ g(n) if and only if

lim
n→∞

f (n)
g(n)

= 1.

That is, the relative error vanishes if you see one of the functions as an approximation of
the other. This is a precise mathematical notation, and we have to prove that it holds.
Unfortunately, asymptotics does not tell us anything about the rate of convergence; to reach
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a reasonable relative error, we might have to consider values of n beyond a googolplex,
n ≥ 10(10100). (A googolplex is a number which is much larger than anything you ever
have to consider in real life and most of science, but still puny in comparison to infinity.)
Furthermore, the absolute error can become arbitrary large with increasing n. To make the
asymptotic function a useful approximation in the colloquial sense of the word, we have to
check whether f (n) is close to g(n) for reasonably small n, too.

4. Colloquial speaking, “ f approximates g” means that “ f is somewhat close to g”. This does
not come with any guarantees how close f is to g. I will try to clearly indicate if I use
“approximation” with this meaning.
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“It is not surprising that widely used packages [in computational MS] are from
large MS labs [. . . ]. The music in proteomics is in biology, not in the computational
treatment of the data.” (Unknown referee)

“In this age of specialization men who thoroughly know one field are often incompetent
to discuss another.” (Richard Feynman)

“Science advances one funeral at a time.” (Max Planck)

THIS brings us to the end of this textbook. I have tried to explain the details from mass
spectrometry as cautious as possible, and I hope that I have not turned down to many

readers from the computer science and bioinformatics side. I have also tried, but probably
less successfully so, to explain the details from mathematics, combinatorics, and algorithmics
as cautious as possible; I hope that readers from the mass spectrometry side enjoyed reading the
textbook. You have to excuse the tons of equations I unloaded above your head; but I am a trained
mathematician.

I want to close this textbook with some personal thoughts on the field of computational mass
spectrometry.

In 2005, I read an article by Sean R. Eddy [78] on “antedisciplinary science”, which is “the
science that precedes the organization of new disciplines, the Wild West frontier stage that comes
before the law arrives.” I do not agree with everything that Eddy writes in that article; but he has
a point. Computer science is an example of a formerly antedisciplinary science, coming to life at
the borders of electronics engineering and mathematics; bioinformatics still resides at the borders
of biology and computer science; and as Eddy argues, the same is true for molecular biology.

Computational mass spectrometry is currently an interdisciplinary science and might, at some
stage, turn into an antedisciplinary science: As Eddy points out, “new disciplines eventually self-
organize around new problems and approaches, creating a new shared culture.” With only two
decades on its back, computational mass spectrometry still has some way to go: For proteomics,
computational mass spectrometry is still in an early stage of becoming an antedisciplinary science;
for metabolomics and glycomics, this transformation has hardly begun.

Negative attitudes of the type “it is different so it cannot be important”, can be observed in
any scientific field. But in general, bioinformatics is very open to novel topics, driven by new
questions from biology as well as new data from biotechnology. To this end, computational mass
spectrometry is usually greeted rather positively from the bioinformatics community, potentially
with a raised eyebrow saying, “do you really think that anyone is interested in that?” That is
despite the fact that computational mass spectrometry is very different from the “beaten paths”
in bioinformatics (sequence analysis, transcriptomics, cancer research etc), in particular if we go
beyond proteins and peptides: metabolites and glycans are not even strings. . .

To my impression, this has been different in the MS community. For a long time — and
potentially, even today — many people in mass spectrometry believed that the computational
problems (which always boil down to “write a computer program”, but who cares about the details)
can be solved by vendors or postdocs.1 Bioinformaticians, people who cannot even operate an MS

1I remember a particular occasion at a bioinformatics conference around 1998, where the invited speaker gave a talk
on mass spectrometry, and the issues and questions for bioinformatics. He pretty much said that he wanted to
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instrument and often have a very basic understanding of biochemistry, were definitely not believed
to contribute anything important to the field. Later, there was a strong belief that all the required
software will come from the “major labs”, as these know best where the true problems are, and
they have “big teams” to solve them.

Many years ago, similar patterns were to be observed in the field of sequence analysis: Initially,
biologists loathed the results of Multiple Sequence Alignment programs; today, nobody would do
a MSA completely by hand. Later, new companies promised to do the analysis; none of them
exist anymore. Today, companies selling second generation sequencing instruments, develop
computational methods in close collaboration with the bioinformatics community. Over the last
decades, queer and peculiar new approaches, data structures and algorithms were developed in
the theoretical bioinformatics community, somewhat uncoupled from any biological application, a
prominent example being compressed index structures. Today, compressed index structures are
of uttermost importance to handle the massive amount of data that new sequencing technologies
are spitting out each day, and reside at the heart of any software that performs read mapping.

Even though I have spend ten years in computational mass spectrometry, I do not consider
myself an expert in mass spectrometry issues; in fact, I hardly ever sat in front of a MS instrument
after my times in industry. So, whenever I approach a new problem in mass spectrometry, I do
so in collaboration with an MS expert. If you happen to be an MS expert and you encounter a
problem that has to do with the computational analysis of your data, you might want to do a
similar thing: Collaborate with a computational mass spectrometry expert. If there is a fire, call
the fire brigade. Not your postdoc.

For the “big team” issue, Eddy is wrong when he claims that “computer science mythologizes the
big teams”; in contrast, “teams” in computer science are usually small (about half of the published
papers have one or two authors), and each computer scientist may play for many teams. A similar
statement is true for most of bioinformatics: I just mention pairwise sequence alignments, Karlin-
Altschul statistics and compressed index structures, that were surely not developed by large
teams in large sequencing labs. I do not see any reason why for computational mass spectrometry,
this should be different.

With that being said, I come to the end. The motive of this textbook was to explain some of
the fundamental questions that happen to raise their heads over and over again in computational
mass spectrometry. But clearly, this is extremely subjective. I hope that I have inspired the reader
to deal with questions from this field which I, myself, have found both interesting and inspiring
over the last ten years, and which still keep me in their spell. Also, I hope that I have provided
a small building block for what might once turn computational mass spectrometry into a truly
antedisciplinary science. Maybe, this is not where the music plays; but then, let us bring in some
instruments.

The full quote by Max Planck is, “A new scientific truth does not triumph by convincing its
opponents and making them see the light, but rather because its opponents eventually die, and a
new generation grows up that is familiar with it.”

Where I was wrong. I have to admit that a few years ago, I might have given you different
advice, suggestions and solutions for some of the problems and questions raised in this book. On
the one hand, this is a classical “if only I had known then what I know now” situation. On the
other hand, science is a moving target, and “it takes all the running you can do, to keep in the
same place. If you want to get somewhere else, you must run at least twice as fast as that!” To
me, that is the beauty of it.

pass the computational questions to some computer postdocs who worked in the basement of his lab (I am leaving
out certain details as these might be regarded as “political incorrect”); and that those questions will all be solved
shortly. I am not sure if he talked about sequencing peptides or DNA; but in both cases, it appear that there were
some major issues with his lab’s basement.
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Here is a imcomplete list of questions where I was wrong and had to change my mind, over the
years. I include this to warn you that there are no perpetual truths outside of maths. Also, it may
inspire you to try out things that you do not believe in, and to think “outside the box”.

• I never liked the scalar product of functions to compare mass spectra (Sec. 4.2). Then,
Heinonen et al. [127] successfully used the probability product kernel for machine learning
applied to small molecules. Nice surprise.

• When scoring intensity deviations, I was an advocate of the relative error model h′/h over
the absolute error model h′−h (Sec. 4.6). Turns out that the later performs slighly better
in practice. But what I did not expect is that the combination of absolute and relative error
performs substantially better in practice than the two individually.

• I believed that modelling noise peak intensities using an exponential distribution (i.e.,
simply use the intensity as part of your score) will do the trick — that is, you probably
find a better-suited distribution but the improvement will be negligible in practice. Kai
Dührkop proved my intuition wrong [26].

• I did not think that Deep Learning could have much impact in mass spectrometry as it
requires millions of training examples. Until several labs started to measure literally
millions of synthetic peptides.

Please, prove me wrong, too! And tell me what I have to correct.

Jena, September 5, 2019
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Glossary

Acronym Description (page or section)
CID Collision-Induced Dissociation (Sec. 1.5)
DAG directed acyclic graph
DP Dynamic Programming (Sec. 14.4)
ECD Electron Capture Dissociation (Sec. 1.5)
EI Electron Ionization, formerly known as Electron Impact ionization (p. 10)
ESI Electrospray Ionization (p. 10)
ETD Electron Transfer Dissociation (Sec. 1.5)
FT-ICR Fourier Transform Ion Cyclotron Resonance
GC Gas Chromatography (Sec. 1.6.2)
LC Liquid Chromatography (Sec. 1.6.2)
MALDI Matrix-Assisted Laser Desorption Ionization (p. 10)
MS mass spectrometry
MS/MS tandem mass spectrometry (Sec. 1.5)
MSn multiple mass spectrometry
PSM Peptide Spectrum Match, plural PSMs
PTM Posttranslational Modification, plural PTMs
TOF Time of Flight (p. 11)
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