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1. Basic concepts of Quantum Mechanics

Dalton’s atomic theory allowed the development of modern chemistry, but lots of questions
remained unanswered, and in particular the WHY is not being explained:

e What is the binding force between atoms?
It is not the charge since atoms are neutral.
How can even two atoms of the same kind (like H-H) form a bond?

e Why can atoms form molecules only with certain rates?
e What is the reason for the existence of the periodic table of Mendeleev?

At the turn of the 19th and 20th century new experiments appeared which could not
be explained by the tools of the classical (Newtonian) mechanics. For the new theory new
concepts were needed:

e quantization: energy can not have arbitrary value;
e particle-wave dualism.
All these led to the development of QUANTUM MECHANICS. Let us follow the route

of this development and discuss the most important steps in some detail.

1.1. Introduction: same basic terms related to light

In the strict sense, ,light” is a narrow range of the electromagnetic radiation, what we can
sense with our eyes. In physics very often the term ,light” is used for the entire spectrum.

Electromagnetic Wave

Am Electric Field (E)

Magnetic

Electromagnetic radiation consists of oscillating magnetic and electric fields wich are
perpendicular to each other, and to the direction of its propagation.
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Basic terms:
e v: frequency of the oscillation [1/s]
e v*: wavenumber [1/m]
e )\: wave length [m]
e c: speed of light

e polarized light: oscillations occur only in a plane

Important relations:
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What is spectroscopy?
Matter can absorbe or emit light. The absorbed/emitted light can be decomposed

into its components, and the intensity of these will be characteristic for the matter light
interacts with.
Light, thus, can be decomposed into its components, for example by a prism.

1.2. Observations leading to quantum mechanics

1.2.1. Black Body Radiation

A possible model of a ,black body” consists of a closed pot which is isolated from its
surrounding by a heated wall. Inside, depending on the temperature, specific electromag-
netic radiation (,light”) appears which, after a while, will be in equilibrium (the amount
of emitted and absorbed radiation is the same). We are interested in the ,spectrum” of
the radiation inside the pot. (To investigate the radiation, we make a small hole on the
wall, such that the radiation exiting does not influence the equilibrium.) The radiation
will be investigated by a prism which separates the components.

Temperature = 7

Small
hole

Cavity radiation

(The "black-body" spectrum of the cosmic space corresponds to a temperature of T =

2.725 K)
Let us plot the intensity as a function of the frequency and repeat this at different tem-

peratures!
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According to the classical theory, radiation is caused by elementary oscillators, with aver-
aged energy of € which, according to the principle of equipartition, is proportional to
the temperature. The amount of radiation emitted in a given frequency range should be
proportional to the number of modes in that range. Classical physics suggested that all
modes have an equal chance of being produced, and that the number of modes increases
proportional by the square of the frequency.

The dotted curve in the second figure gives the dependence of energy density on the
wavelength calculated according to the classical theory: the energy density corresponding
to high frequency (low wave length) goes to infinity independent of the temperature. This
is called the ,ultraviolet catastrophe” which should not scare you since it simply means
that theory can not describe the experiment.

In 1900 Planck came up with a new, unusual explanation: according to his theory,
the energy of the individual oscillators can not be arbitrarily small, otherwise the energy
could not be distributed among all the oscillators in infinite different ways (c.f. entropy).
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Therefore, the observation can only be explained if the energy of the oscillators are quan-
tized (not continuous), i.e. its value can only be hv, 2hv, 3hv ... Tt follows, that at every
temperature there is a maximum frequency, and oscillators with higher frequency are not
vibrating, since the energy corresponding to each mode (€) is smaller than hv. Here h is
the so called Planck constant: h = 6.626 - 1073*.Js

Planck himself did not like his own theory, since it required an assumption (postulate),
i.e. the existence of the constant h; he aimed to derive this from the existing theory. He
was not successful with this; now we know it is not possible to derive this, since it follows
from a new theory. Thus, despite of his genius discovery, he could not participate in
further development of quantum mechanics.

1.2.2. Heat capacity

According to the Dulong-Petit rule, heat capacity is given by ¢, ., =~ 3R, i.e. it is inde-
pendent of temperature. This is valid at temperatures which could be investigated until
the end of the 19th century. Later, when measurements at lower temperatures could be
performed the full curve of temperature dependence was obtained. It showed that at zero
temperature heat capacity also goes to zero.

Einstein explained this using Planck’s idea: matter is also quantized, the oscillators of the
matter (vibrations) can not have arbitrary energy, like the oscillators causing the black
body radiation. This means that by lowering the temperature certain oscillators do not
have enough energy to show up. (The final form of the theory with several oscillators was
derived by Debye.)
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1.2.3. Photoelectric effect

- Incoming hiwe light

1ect Nt o e 3 .
oo "x::‘-,_““--- = -, - eminter plate
Y £
- |
e J
. _* -- == |
X s varunm A
- 5 i
electrans get to collector plats
o
.: ‘ﬁf: Ammeter
e
eurrent Mows

photoel.gif

Shining light on a metal plate can result in electric current in the circuit. However, there
is a threshold frequency, below this there is no current, irrespective of the intensity of the
light, i.e.

e below the threshold frequency, no electron leaves the metal plate

e increasing the intensity of the light, the energy of the emitted electrons does not
change, only their number grows.

According to the measurements, the following relation exists between the kinetic
energy of the electron (T.) and the frequency of the light (v):

Tel:hV—A

where A depends on the nature of the metal plate (called ,work function”).

Explanation was given by Einstein again, using the quantization introduced by Planck:
light consists of tiny ,particles” (photons) which can have energy of hr only. (Note
that Planck opposed the use of his ,uncompleted” theory to explain this (and other)
phenomenon!!)
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1.2.4. The Compton effect
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When photon collides with a resting electron, it looses energy. Therefore its frequency also
changes. The photon acts as a particle in this experiment!! Note that a wave scattered

on an object would not change its wave length or frequency!!!

1.2.5. Scattering of electron beam
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The figure above shows the experiment by Davisson and Germer (1927), as well as by Ge-
orge Paget Thomson (1928). Using an electron beam, interference circles can be observed
on the photographic plate, just like in case of X-ray radiation — in this experiment the

electron beam acted as a wave.
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1.2.6. The hydrogen atom

The hydrogen atom has four lines in the visible range of its emission spectrum (experiment
first performed by Angsrém in 1871):

I : “
- f B Bitts v Prisem “;;.*
NP & &
| f
| 1] 1
U H 4 Blug-  Elug-
. T Violet violet  green Red
Gas discharge
tube containing B o e e
hydrogen EE =E EE it

hydrogen.gif

It was Balmer who gave a formula to describe the position of these lines (so called
Balmer formula):

1 1 1
X = R(22—n2> n:3,4,5,6

where R is the so called Rydberg constant, A is the wave length.

After the discovery that light brings energy of hv (see e.g. photoelectric effect), one
could conclude that the energy of the hydrogen atom must also be quantized!!

How is this possible? According to the Rutherford model, in the hydrogen atom an
electron ,orbits" around the nucleus (proton). However,

a) why can its energy not be arbitrary?

b) why does it not crash into the nucleus? An orbiting charge dissipate energy (el-
ectromagnetic field, think about the electric current in a spiral wire), thus after a while
it looses its entire energy and could not orbit anymore.

Explanation by Bohr: in his atomic model, the electron must fullfil some ,quantum”
conditions:
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bohr.gif

e in case of orbits having certain radius the electron does not dissipate energy; these
are the so called stationary states;

e if the electron jumps from one orbit to the other, it emits (or absorbs) energy in
form of electromagnetic field (,light”).

e the possible values for the energy are given by the following formula:
F = —— with n is an integer number

(e is the charge of the electron, ag the unit length (1 bohr)).

This energy expression gives back the Balmer formula. However, this theory can not

be applied for helium or any other atom!!!
Homework: Show that Bohr’s energy formula gives the Balmer formula for the wave
length corresponding to the transition between energy levels.

1.2.7. Summary

Event New concept Discoverer
black body radiation energy quantized (hv) Planck (1900)
photoelectric effect energy of light is quantized Einstein (1905)
(photon)
heat capacity at low temperature matter is quantized Einstein (1905),
goes to zero Debye
Compton effect electromagnetic radiation Compton (1923)
acts like a particle
scattering of the electron beam electron acts like a wave Davisson (1927),
G.P. Thomson (1928)
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Important consequence of all these: particle-wave dualism (dual nature of
matter)

Luis de Broglie! in 1924(!!!) came up with the formula relating momentum (p) to wave
length (), properties of particles and waves, respectively:

To consider all these, existing theories need to be revised completely! Although Bohr
could ,fix” the old theory with quantum conditions to describe the hydrogen atom, this
technique does not work in general.

The new theory was presented by:
e Heisenberg (1925) as ,matrix mechanics”
e Schrodinger (1926) as ,wave mechanics”

It turned out later that the two theories are equivalent, they use only slightly
different mathematics. Now we call this theory as (non-relativistic) quantum
mechanics.

!Louis-Victor-Pierre-Raymond, 7th duc de Broglie
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1.3. Basic concepts of quantum mechanics
1.3.1. Postulates

Postulates or axioms: basic assumptions, directly not observable in experiments, but the
theory based on them explains all observations.

Postulate I
A hermitian operator is ASSIGNED to each physical quantity. The following relation
must be satisfied by the operators of position (&) and momentum (p,):

[z, D] = ih
The operators of all other physical quantities are derived by replacing x and p, in the
classical formulae by the operators Z and p, (,quantization”, principle of correspondence).

Postulate 11

The outcome of the measurement of a physical quantity must yield one of the eigen-
values of the corresponding operator. After the measurement the system ends up in the
eigenstate corresponding to that eigenvalue:

with a; and ®; being the eigenvalue and the corresponding eigenstate, respectively.

Postulate 11T

The state of the system is represented by its wave function (state function, state
vector). The wave function completely determines the outcome of the measurements.
The wave function (V) is continuous, single-valued and square-integrable.

Postulate IV
If the system is in state ¥, the expectation value of a measurement performed on a
quantity represented by the operator A is given by:

A = /\If(a:)A\If(w)de(\If\A]\I!)

Postulate V
The time dependence of the state function is given by the so called (time dependent)
Schrédinger equation:

0 .\
h—W = HVU
Zh@t (x,1) (x,t)

In this equation H is the hamiltonian of the system, ¢ is the time.

Postulate V+1
®,; state functions form a basis of an irreducible representation corresponding to the
point group of the system.

Postulate V+2
The wave function of electrons is antisymmetric with respect to the interchange of the
particles. (In general: antisymmetric for fermions and symmetric for bosons.)
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1.3.2. Some remarks on the postulates

ad I
One possible choice: # is the multiplication by z (Zf(x) = zf(x))
In this case the momentum is: p, = —ih%
For the kinetic energy we get: T' = % = T= —%%
In three dimensionAs: T = —% (% - 8%2 + %) = —%A = —%VQ.
Potential energy: V' =V (z,y,2)
Hamiltonian becomes: H =T+ V
z component of angular momentum: [, = —iha% (¢ is the angle to axis z).

ad II
According to postulate II, the measurement of a physical quantity can only result the
eigenvalues of the corresponding operator:

Apt = ap?  i=1,... (1)

7

The eigenvalues of some physical quantities are discrete (cannot have arbitrary va-
lues), therefore physical quantities are quantized. For example, the eigenfunction of the z
component of the angular momentum (I,) are given by \/%e"m‘f’, while the eigenvalues are
mh, with m = 0,+1,+£2,.... The energy of the system is in most cases quantized, as well.

Other quantities, like the position of a particle (Zf(z) = zf(x)) and momentum
(pe €P* = h p €*), are not quantized and these quantities can have arbitrary values (in
an interval). It is said that these operators possess continuous spectrum.

What do we get if we measure quantity A corresponding to operator Aona system
which is in a state represented by the wave function ¥U?

a) If ¥ coincides with one of the eigenfunctions of A, we will measure the corresponding
eigenvalue: ¥ = ¢ — A = q;

b) If ¥ does not coincide with any of the eigenfunctions of operator A then the result
of the measurement can not be predicted: ¥ # ¢! — A =?. However, according to
postulate IT we certainly will get one of the eigenvalues, though one can not predict
which one. One can, however predict the expectation value of the measurement:
A = (U|A|T). The results of the measurement will be scattered around this value
with uncertainty of AA. After the measurement the system will be in the state
corresponding to the measured eigenvalue!!

Consequently: measurement is not an ,inspection” rather an ,interaction” with the
system.

ad III
In quantum mechanics the state of a system is represented by the wave function (or
state function) which depends on the coordinates of the particles:

U = U(x,y,2) =Y(r)
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or in case of n particles:
v = qj('rlayl?'zlvx%y% 22y ooy Ty Yns ZTL) = \Il(zhf% 7fn)

The wave function is an abstraction, has no physical meaning, but its square, the so
called probability density can be used for interpretation:

\I’*<CL’O, y07 ZO) ) \IJ(Q;O’ yO’ Zo)dl‘ dy dz

is the probability of finding a particle at point (z°,4°, 2%) (more precisely in its infinitesimal
proximity).

Shorter notation: U*Wdv or |¥|?dv

We have to use a normalized wave function, otherwise the probability of finding the
particle in the entire space would not be one:

///\I/*-\I/da:dydz:l

ad IV

Expectation value: average value of the outcome of several measurements. According
to postulate IV, expectation value can be calculated as: (U|A|¥). On the other hand,
according to postulate I, these measurements need to be performed on distinct identical
systems, since after a measurement the system will be in the state corresponding to the
measured eigenvalue.

Consider the eigenfunctions of an operator which satisfy: Ad; = a;¢;. The wave
function can be expanded on the basis of these eigenfunctions: ¥ = 3", ¢;¢;.

Inserting this form of the wave function into the expression of the expectation value,
we get:

A=y Zcicj<¢i|/i|¢j>
J

%

= D) ccjai{dild))
(]
= Z C?ai
Therefore the probability of obtaining the eigenvalue a; is p; = ;]2

If U = ¢;, then A = q;, i.e. the outcome of the measurement is assured without any
uncertainty.

Two physical quantities can be measured at the same time (without uncertainty) if
their operators commute:

[A,B] = 0
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If this is not fulfilled, the two quantities can not be measured with arbitrary precision:

N

1C

A, B]
!
AA-AB > ;|C*|

with AA and AB are the uncertainty of the quantities A and B.
Specifically, for position (coordinate) and momentum:

[i‘aﬁx] = th#0
+

1

Ax-Ap, > 575

This is the famous Heisenberg uncertainty principle which is now a consequence of the
postulates. (Note that the system of postulates can be formulated differently with, for
example, the uncertainty principle as one of the postulates.)

ad V

Stationary state: in this state, the expectation value of the time independent operators
is constant in time.

Look for a particular solution of the (time dependent) Schrodinger equation:

U(a,t) = P(x)p(t)

Inserting this into the time dependent Schrodinger equation:

A

zha \If(m t) = H(x)V(x,t)

ih <I><x>a§> = o) (x)B(x)

e 022 e e

The right hand side of the equation depends only on x, while the left one only on t,
therefore they both have to possess a constant value (say F). Therefore, we get

and
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therefore the complete wavefunction is:

U(z,t) = ®(z)exp (—ihEt>

Now let us calculate the expectation value of a time independent operator A with this
wave function:

A = (B(z)exp (_ft) A () exp (—ift)>

= /<I>(a:) exp (ZhEt) Ad(z) exp <—ihEt> dx
= exp (ft) exp <—ft> /@(x)fl@(a:)dw
= (®(2)|A|®(z))

It is independent of time, therefore the state is ,stationary”.

ad V42
Degeneracy is caused by symmetry (see later).
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1.4. Ways to solve the (time independent) Schrédinger equation

General form of the Schridinger equation:

One particle in one dimension:

h? d2 N
—5 75 V() + V(@)U() = E¥(x)

This is a differential equation which is

e of second order,

e variable coefficient (,fliggvényegyiitthatos”),
e linear,

e homogeneous.

In case of one particle: 3 dimensions.
In case of n particles: 3n dimensions.

How can one solve it?

e Analytically — only in a few simple cases

e Variationally — set up the energy functional and make it stationary with respect to
the wave function (or its parameters). Very often, the solution is written as a linear
combination of basis functions = method of linear variations by Ritz.

e Perturbationally — H = Hy + H’, where the complete eigensystem (value and func-
tion) of Hy is known.
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1.4.1. Variational solution

see Kémiai Matematikal!l

1.4.2. Basics of perturbation theory

Split the operator into two components (,partitioning”):

H = H' +H
such that all eigenvalues and eigenfunctions of HO are known:
a°v’ = g9
with ¥ being normalized. Expand the energy and wave function:
E = E°+E'+E*+ B>+ ..
U= U U 0

with (U9)0*) = 0, i.e. all corrections are orthogonal to the zeroth order wave function.
Inserting this into the Schrodinger equation we get:

(H+ HY U + ' + 02402+ ) = (E°4+E'+E?+E>+ )0 + 0" + 0% 4 0% 4

which should be satisfied for each order, i.e. we collect the terms of the same order:
Zeroth order:

f{O\Ilo _ EO‘I/O,

i.e. we obtained the zeroth order equation.
First order:

W' + 7'9° = E°U 4 B0
Multiplying the equation from the left by W and integrating over the coordinates:

(UO[HO ) (WO H00) = B (WO 7 (00]0°)
N————— N—— N——
EO(W0|wly=0 =0 =1
Therefore
E' = (V°|H'9°)

i.e. the first order correction of the energy is calculated as the expectation value of the
perturbation. Physical meaning: the perturbation is small and the change in energy is
calculated with the unchanged wavefunction.

Higher orders can be obtained similarly, but in this case also the perturbed wave function
up to Uil is needed.
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1.4.3. Example of the analytic solution: particle in the box
The following simple systems can be solved analytically:
e Harmonic oscillator, Morse-oscillator (see later with Prof. Csaszar)

Particle in the box

Potential barrier

o ...
e H atom

HF lecule”
e H, ,molecule

The particle in the box is a very instructive model system which shows nicely the new
properties of quantum objects:
Hamiltonian:

phoxd.gif

Vi) = 0, 0 <z <L

V(z) = oo, otherwise

Within the box of length L the Hamiltonian is equal to the kinetic energy:

H = T+V(x),
———
0
The particle can not leave the box, the probability of finding it outside the box is zero,
therefore the wave function must also vanish there. To keep the wave function continuos,

it has to vanish already at the walls (boundary condition):

T(0) = (L) =0
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Therefore the Schréodinger equation to solve reads:

h? d?

v = EVU
with £ = —%—TQE
The general solution to this equation is a function, the second derivative of which is
proportional to itself:

U(x) = A-cos(lx) + B - sin(kx)
As the consequence of the boundary condition:

A=0 since cos(0) # 0 (2)
kL = nm, neN since then  sin(kL) =0 (3)

This means that not any sine functions are acceptable: QUANTIZATION appears due to
the boundary conditions.

Put this back to the equation, the following solution can be obtained:

The form of the wave function:

wavefunctions pmba_l:!llty
densities
E; =9h/8mL2... [l N f ) n=3
Ey = 4h2/8mL2 oo N n=2
Ey=h2/BmL2 e N N g
0 L 1] L
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Notes:
e Energy is quantized, it grows quadratically with the quantum number n, it is invers
proportional to L? and m.

IfL— o0, Ey—FE;~ 22;212 — 0. This means that quantization disappears with
L = oo.

The same is true for growing mass m — oo.

e There is a zero point energy (ZPE)
Energy is not 0 for the lowest level (ground state).
If, however, L — oo, FEy— 0.
Why is ZPE there? This is an unknown term for classical mechanics!

It can be explained by the uncertainty principle: Az - Ap > %h

Since here we have V = 0, E ~ p?, i.e. the energy of the particle stems exclusively
from its momentum.

Assume that £ = 0, than p = 0, therefore Ax = oo, which is a contradiction since
Ax < L, the particle must be in the box. Therefore we conclude that the energy
can never become zero, since in this case its uncertainty would also be zero which is
possible only for a very large box where the uncertainty of the coordinate is large.

Or alternatively, one can also say: if L -0 — Arx - 0= Ap - 0o = AF —
00. This means that the energy of all levels MUST BE larger and larger if the size
of the box gets smaller.

e Wave function: the larger n is, the more nodes the wave function possesses: ground
state has none, first excited state has one, etc. (Node: where the wave function
changes sign).

e Investigate also the probabilities: W*W! (See the right hand side of the figure above.)

In the ground state the particle can be found everywhere in the box, the largest
probability corresponds to the middle of the box.

In the first excited state, finding the particle in the middle of the box is zero. How
can the particle pass from the left to the right? Bad question, since a particle is
neither on the left or the right, but on both sides.

e How does the solution look like in 3D?

2h2 2 2 2

2m \a? b2 2

where a,b,c are the three measures of the box and n,,n,,n. = 1,2,... are the
quantum numbers.

If a=b= L, then
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n, N ‘ E(STZ;)
1 1 2
2 1 5
1 2 5

We have found degeneracy which is caused by the symmetry of the system (two
measures are the same).
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1.5. Angular momentum operators

Classical angular momentum

Il = rxp
lx = Yp: — 2Py
ly = ZPz — TPz

Thus, with the definition of Z, and p one can obtain the corresponding operators for
the angular momentum components:

0z dy
~ 0 0
ly, = =—ih (Zﬁx — x((?z)
~ 0 0
l, = —ih (q:ay — y@x)
P o= B

It is easy to derive some important properties of the angular momentum operators:
0] = il
[Zy, Zz} — iRkl
L] = i,
[lAz,lAZ} =0, 1=u29,z2

This means that [ does not have any two components which can be measured at the same
time. Tt is square length (/?) and one component of [ which can be obtained simultaneously.



1. BASIC CONCEPTS OF QUANTUM MECHANICS 25

Eigenvalue
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Square-root
of the eigenvalue
of /7

Fig. 4.2 The cone used to
represent a state of angular
momentum with specified
magnitude and z-component.

1.5.1. z component of the angular momentum

5 . 0 0
[, =—ih <m6y — y@az)

Let us use a spherical coordinate system since the hydrogen atom and all other atoms
have spherical symmetry.

gy

Ox . :
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O

dy .

— = rsindcosp ==
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0z
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Let us prove that

0 0

This is easily done using the chain rule:

9
dp

0 Ox

0
Ox
0

(53)-

ox0p

26

0

Oy

00y 0 0z
dyde " 9209
o 0
a—yx—kaﬂ
0

(may — y@x) QED.

Therefore, in spherical coordinates the z component of the angular momentum is given

by:

I, = —ih——,
1 20

0<p<2rm

Thus, choosing the appropriate coordinate system, the form of this operator becomes
quite simple and even its eigenvalue equation can be solved easily:

0
—ih—®
hoe ()
® (p)
Here, too, we have a boundary condition,

®(0) =
eimO

e

1 (p)

A- ™

due to the periodicity in ¢:

d (27)

im2m -1

cos (m2m) +isin (m2m) =1

cos (m2m) =1 and sin (m27) =0

if m=0,41,+2, ..

Quantization comes again from the boundary condition!!!
Now we insert the eigenfunction into the differential equation in order to calculate the

eigenvalues:
—ih (im) A- ™ = [LA-e™ m=0,%£1,..
[, = mbh, m=0,=%1, ...
The normalized eigenfunction reads:
1 .
D (p) = e m=0,%£1,..
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Figenfunctions and eigenvalues of the z component of the angular momentum

It is seen that the z component can not take arbitrary values, its magnitude is deter-
mined by the quantum number m.

1.5.2. The 2 operator

Let us first write this operator in spherical coordinates:

S O N AT
Fo= sin ¢ 09 8””95)79 +sin2198g02

A()
The eigenvalue equation reads:
PY (0,9) = AY (0,9)

Since [ZAQ, ZAZ} = 0, the two operators have common eigenfunctions. Therefore Y (¢, )

must be the eigenfunction of I, as well. Since the eigenfunctions of I, depend only on the
variable ¢, one can write:
1

Inserting this into the eigenvalue equation:

2
L o 0*®,, ()

PO (0) @ (¢) = —1*Cy (¢) AO (V) = B0 () 02

= A0 (V) @ (¢)

Above it was shown that: —ih% = mh®,, (¢), therefore

_hZM

07 = m*h’®,, (¢).

2

Inserting this into the above equation, then by ,simplifying” with ®,,(¢) * we arrive to

an equation which only depends on :

1
6 (19)) — 20 (¥)

_p? (A@ (9) — m?

sin

2Precisely: multiplying from the left by ®,,(¢), then integrating according to .
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Therefore, one has to solve the following equation:

—h2[ L 9 <sin198>—m2 L ]@(19):/\@(19)

sin 9 9V sin? ¢
This is a differential equation already discussed during the ,kém.mat.” course: its

solutions are the associated Legendre polynomials:

© (¥) = P (cos V)
Im| - glm|
=)t n

with Py(x) being the Legendre polynomial of grade I. After applying the differential
operator of rank m on this polynomial, we obtain another polynomial of grade (I — |m|).
With other words, the following relation must hold between the known quantum number
m and the new quantum number [:

[—1|m| >0
[ > |m].

To remember, the first couple of Legendre and associated Legendre polynomials read:

Legendre associated Legendre
Py(z)=1 Pl (z) = /(1 —22)

T Py (z) = 3z,/(1 — 22)
Py(z) =132 1) | P} () =3(1—2?

Summerized, the eigensystem of operator 12 reads:

A= 1I+1D)R 1> |m|

Y (0,0) = O (cos(d)) - e

Y™ (1, ) is the so called spherical function, ©]" is a polynomial in the variable cos(?}).

The square of the angular momentum — and thus its length — can not have arbitrary
values, its magnitude is determined by the quantum number [. The following relation
needs to be fulfilled by the quantum numbers: [ > |m/|, because the length of a vector can
not be smaller than any of its components (|I| > 1,).
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1.6. Quantum mechanical description of the hydrogen atom
1.6.1. Hamiltonian for the hydrogen atom

Atomic units
To avoid dealing with very small numbers, let us introduce the so called ,,atomic units™

Quantity Atomic unit SI Conversion
Ang, morm. 7 7] hi=1,05450 - 10 %' Js
Mass me [kg] me =9,1094 - 103 kg
Charge e [C] e=1,6022-1071°C
Permittivity dreg [%ﬂ dmeg = 1,11265- 10710
derived quantities:
Length ao (bohr) [m)] 1 bohr = % =0,529177- 1071
Energy E}, (hartree) [] 1 hartree = 47;;0 =4,359814 - 10~ 18J

1 B, ~ 27,21V
Ey, =~ 627 kcal /mol

The Hamiltonian in (SI units):

L. K2 2
H=T+V=-"pn_-_°

2m, dmegr

i.e. the potential consists of the Coulomb interactions of electron and nucleus.
The Hamiltonian in atomic units reads:

ﬁ:_lA_l
2 r

Clearly, the problem can dealt with in spherical coordinates®:

N 1 [ 02 20 1 - 1
I B S R A 2 Y
= 2[87’2—’_7"81“4_7“2( l)] r

1.6.2. Solution of the Schrodinger equation for the hydrogen atom
To solve the Schrodinger equation, one first can use the following relations:
[Hl} =0 and [H Zﬂ =0

Since I, and (2 depend only on the variables ¢ and ¢, the wave function can be written
as:

U (r,d,0) = R(r) Y, (V,9)

3see the full form of A and {2 using spherical coordinates in course kém.mat.!
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We insert this into the Schrédinger equation and, similarly to the procedure used in
case of [?, we can get rid of the part depending on 1, ¢. One gets:

192 10 1 1(+1)
2002 ror_r 212
kinetic energy Verr

R(r)=ER(r).

which is an equation in variable r only. One can observe that this last step introduced the
eigenvalues of 12 into the equation. V.ss is an effective potential: for [ = 0 it is a simple
Coulomb interaction, for [ # 0 beside the Coulomb interaction, also centrifugal force is
considered.

o
|

H-atom-effY. gif

Effective potential energy, Vag

Radius, r

The solutions of this equation can be given in the following form:
Ruy(r)=enr'Ly(r), n>l+1 (=1=0,1,2,...,n—1)
with L,; being the associated Laguerre polynomial.

Here again, a new quantum number has appeared: n = 1,2, ..., and there is a constraint
between n and [.

Summarized, the solutions of the Schrodinger equation of H-atom.:
Eigenfunctions:

v (T’ v, (P) = Ry (’l“) Yim (297 90)

Eigenvalues (hartree units):

E, = (Eh)

1
o2
Quantum numbers:

n o= 1,2,3,..
I = 0,1,2,...n—1
m = —l,—1+1,..,0,l—1,1
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1.6.3. Discussion of the solution
Discussion of the solution: energy
e cnergy increases with n and the density of the levels also increases;

e cnergy depends only on the quantum number n, while eigenfunctions also depend
on [ and m — high degree of degeneracy!! (See also below.)

e the formula corresponds to the Bohr formula, thus it correctly describes Balmer
(ny = 2,VIS) and Lyman (n; = 1,UV) series.
To remind you, the Balmer-formula reads:

1 1 1
S Y

Discussion of the solution: degeneracy

Energy is n?-fold degenerate, since:
n—1
Y (@2i41)=n’
1=0

For example:

deg.

1 one s
4  one s, three p
9  oen s, three p, five d

W N B

What is the reason for degeneracy?
e according to m: spherical symmetry — maintained also in many-electron atoms

e according to [: % potential (symmetry of the Coulomb-field) — only in hydrogen
atom

Discussion of the solution: eigenfunction

The total wave function reads:

U (r,d,0) = N Ry (r) Y (9,0) = Nrt Ly (r) e 5 P™ (cos 9) e™

n = 1,2,..
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What can we tell about the radial part?

e"n = orbitals with higher quantum number n fall off slower
L, (r) — thisis a polynomial of grad n — [ — 1, which has n — [ — 1 nodes
7! — in case of [ # 0 the wave function is 0 at the nucleus.

Angular part:

e responsible for the direction in space

e its form is a consequence of the spherical symmetry (this form is maintained also
for many-electron atoms).

Figenfunctions of the hydrogen molecule (U, ):

1s Wigo = ﬁe_’"
2s Wogo = ﬁ@ —r)e"/?
2po Wy = ﬁr(f’"/2 cos(V)
2D41 Uoiiq = ﬁr@‘rﬂ sin(1)ett
3s Wa00 = gz (27 — 18 + 2r%)e ™/
3po U310 = %r((ﬁ —7r)e”"/3 cos(¥)
3p11 Ugipg = ﬁr@ —7r)e” /3 sin(V) et
3dy W30 = 81\1/6?7’26_7’/3(3 cos?(d) — 1)
3dy4 Wsopg = ﬁrﬂe*”/?’ sin(1) cos(19)e*
3d.s Uiy = 1621\/777'26_”3 sin? (1) e*2®
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Discussion of the solution: representation of orbitals
Radial part:

Angular part: directional diagram
Rules to draw the directional diagrams:

e ¢ and ¢ define a direction in space;

e we draw a vector of length |Y (¢, ¢)| into this direction;
e connect the tip of the vectors;

e denote the sign of Y(1J, ¢).

Example: draw orbitals 2pg, 1s, and 3d,

33
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Discussion of the solution: representation of orbitals
Angular part: directional diagram

1s orbital
n=1,£6=0 mg=0

t 2

The 1s standing wave
function (orbital) is all
positive (i.e., no negative
s lobes) and has no nodal
Y  surfaces. Itis spherically
symmetric.

Directional diaram: 1s orbital

2p orbitals
e, el mps =101

- Araqular nodal sirface

Lt il pRridovg
P arsd nEative ko in
. o~ wyplane
" =
. '
2 This regan has

TRETATARE M e R

Tl wwcdanii Hari

Ol AT

H -
“ Ty ' "y
“n B |

Directional diaram: 2p orbitals
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Directional diaram: 3d orbitals

What directional diagrams does not show: nodes originating from radial part. These can
be seen if we look ,into” the orbitals. For example, in case of 2s:

2s orbital
n=2¢=0,m,=0

o -
Radial nodal surface between
its positive and negative lobe.

* X This region has
postive amplitude
This region has
negative amplitude
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Discussion of the solution: representation of orbitals
Some other pictures of the p and d orbitals:

36
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Discussion of the solution: representation of orbitals
Representation of the orbitals: ,dotting” — the frequency of the dots represents the
value: denser points represent larger value of the wave function.
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Discussion of the solution: changing to real functions
2po function points to z direction, since

1
200 = e
P = o

2 cos(¥) = 2p,
—_———

z

We can not draw p; and p_; functions, since these are complex. We can, however, take
a real combination of these, since they are degenerate with respect to energy (i.e. the
results will represent a function with the same energy):

1 1
V287

1 . .
—7/2,. o3 9 i 4 i
8\/%6 7 sin( )(e e )

(2p1 +2p-1) = (re”"/Q sin(0)e’? + re "/ sin(ﬁ)e’i“")

Sl

2 cos(p)

1
= ——e "2 rsin() cos(p) = 2p,
—_—

44/ 27

1(2 2)—2
iﬁpl P-1) = 4Py

Now we can draw the directional diagram of 2p, and 2py functions (see the figure
above).
The same way we can treat the d functions. 3dj is real and points in z direction.

1 1
-r/3,.2 2 o
e r“(3cos*(¥) —1) = e
L1/ 67 L,LZ ) 1V 067

322

3dy = 3322 — %) = 3d.»

We can form the combination of 3d; and 3d_; functions:

1
ﬁ (3d1 + Sd_l) - 3d:(:z
L34 —3d,) = 3d
Z\/§ 1 -1 - Yz
Similarly in case of 3dy and 3d_5 functions:
1
ﬁ (3d2 + 3d,2> - 3dx2,y2
1

—— (3dy — 3d_ = 3d,
Z\/§( 2 2) Y
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Discussion of the solution: electron density

Remember: the wave function has no physical meaning, but its square, the density
(U(r)*-¥(r)dr = |¥|*dr) has and it gives the probability of finding the particle at a given
point.

What is the probability of finding the electron at distance r from the nucleus? In case
of 1s orbital this seems to be easy, since the wave function depends only on r:

|U|2dr = U*(r) - U(r)dr = l6_27"d7"
T

Inspecting this function, it seems that the most probable position of the electron is at
the nucleus. What did we really obtain? The function shows the probability of finding
the electron along the radius.

More appropriate question: what is the probability finding the electron at a given
distance r from the nucleus? This is not a point but a shell of the sphere!!! The further
away we go from the nucleus, the larger the volume of the shell becomes.

£
n [ 1 % 2 L T E-II'I H d'-':‘
; = i : I -i-:'l' ; b e g : -
x rgin @———+ " AR

rdé — | b
Volume element o
dV=r"sin® do d¢ dr J - N S R

First, when calculating the volume element, the proper transformation to spherical
coordinates reads:

dx dy dz — r*sin(9) dr dv dyo

To get the density as the function of 7 only, we need to sum (integrate) over all possible
values of ¥ and ¢:

/ / ‘IJ<T7 197 90)* : \Ij(r,ﬁ, (P)T'2 Sin(ﬁ)d?“ di ng
R
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In case of 1s orbital:

// U(r, 9, ¢)" - \I!('r’,ﬂ,go)'r’er sin(9)dd dy
9 Jep

/7r
¥=0

40

27

/

sin(9)dd dp U (r)* - U (r)ridr

This quantity is called radial density.

Radial density of the 1s, 2s and 2p orbitals:

E)Sl 410
| 3510°

310°

25108

st(r)

210°

1510°

110°

510°

o

Radial Probability Function forz=2, I=¢

p

el

o

I 1

\

0

1 2 3 4 g 6 7 8 9
Radial Distance, r (x 107" m}

10

Radial density of the 3s, 3p and 3d orbitals:

Radial Probability Function for =3, I=0

/’\\
il / \\\
/"\ ’/
SN

o1 2 3 4 § & 7 8 38
Radial Distance, r (x 107" m)

10

P

3p

Radial Probability Function for n =3, I=1

3510°

o~ 2510

o N

// \\\

T

RV / \\
\/

01 2 3 4 5 & T 8 8
Radial Distance, r (x 10" m)

Am

4rr? W (r)* - U (r)dr

Radial Probability Function for =2, I=1
410°

f

310°

210
5107 \
110* \

\
510¢ /

N
0 -
o 1 2 3 4 5 B T i 9 10

Radial Distance, r (x 107'° m)

Radial Probability Function for =3, =2

2510°
210
€ 1510 /
3
o / \
110° /
RRERN/, N\
510 / ‘\
/ N
0
10 0 1 2 3 4 ] B 7 8 El 10

Radial Distance, r (x 107" m)
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Discussion of the solution: radius of the atom

In Bohr’s atomic theory the radius of the H-atom is a trivial concept: the atom ends
at the orbit where the electron is situated. In case of the 1s orbital the radius is 1 bohr.
But how can this concept be defined in case of quantum mechanics? The problem is that
density does not ,end”, the function decays exponentially.

Proper questions in the language of quantum mechanics:
e Where is the maximum of the electron density?
e What is the average distance of the electron from the nucleus?

e What is the probability of finding an electron within a given distance ry?

Where is the maximum of the (radial) electron density?

;(471’7’2\1/*‘\1/) =0

In case of 1s orbital:

0
8—(4 e ¥r?) = 4 (=2 +2re” ) =0
r

2¢*r(l—r) = 0
e~?" = 0 asymptotic behaviour: not a real extremum.
r = 0 minimum
(1 —r) =0 maximum
Thus the maximum of the radial electron density is exactly at 1 bohr!!

What is the average distance from the nucleus?

Fo= (\If|f|\1/>:/\11*f\11 dv

In case of 1s function *:

4The following definite integral has been used:

0 |
n:

e dr = 1
0 ant
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1 oo ™ 2w
ro= —/ / / e "re”"r* sin(¥)dr dddyp
T Jr=0 JY9=0 J =0
1 o9
= —47T / re 2" r2dr

4 3 2 3
i 3 —27‘ e
[ -3

This means that the expectation value of the distance of the electron from the nucleus
is 1.5 bohr in case of 1s orbital.

The general formula valid for all orbitals can be given in an analytic form, one only
needs to insert the quantum numbers:

Fo= e’ =1+ 1)]

What is the probability of finding an electron within a given distance ro?

We have to sum the probabilities from 0 to r¢, this is an integration:

L ™ 27
/ ’ / / U* W r?sin(0)dr didyp
r=0 JY¥=0 J p=0

Example: 1s orbital, 1o = 1bohr
4t o, o (TP 2r 2 '
— "dr = 4 e
A e r [e (_2 1 + 3

(The following indefinite integral was used: [ z2%e dx = %@ (% — Z% + a%) )
The table below demonstrates the result:

ro(bohr) | 0.1 [02] 1. |15 ]2 [ 5
% [ 0.12|4.8]324|57.6 |76 99.6

We can clearly see that the probability decays vers slowly, the electron can be found with
a probability of only 76% within 2 bohr.

Let us compare the results of the Bohr model and quantum mechanics (in case of the
1s ground state):

Bohr model | Quantum mechanics
Maximum of the probability 1 bohr 1 bohr
Average distance 1 bohr 1.5 bohr
Probability within 1 bohr 100% 32.4%
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Discussion of the results: angular momentum

43

The eigenfunctions for the hydrogen atom has been selected so that they are also eigen-

functions of [2 and [, operators:
I? operator: A\ = [(I+ 1)h*

l; operator: [, = mh

where [ and m are the quantum numbers.

The angular momentum values corresponding to the orbitals of the H atom:

orbital 1 m X=1I(+1)[A%] I, =m[A]
Is 0 0 0 0
25 0 0 0 0
2p0 1 0 2 0
o2p1 1 1 2 1
op_; 1 -1 2 -1
33 0 0 0 0
3pp 1 0 2 0
3p1 1 1 2 1
3p_1 1 -1 2 -1
3dg 2 0 6 0
3, 2 1 6 1
3d; 2 -1 6 -1
3dy, 2 2 6 2
3dy, 2 -2 6 -2
Note:

For all s type orbitals the length of angular momentum vector (v/\) is 0 — the electron

does not ,,orbit” around the nucleus!!

What is it doing then? Why it is not in the nucleus?
The answer again can be given using the Heisenberg relation: if the electron is at the
nucleus, than Az = 0 — Ap and thus the kinetic energy is infinitely large. This is a

contradiction!

Electrons in s state do not have angular momentum!!!
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Angular momentum vectors of the 3d orbitals:

Z

+1

(b)

1.6.4. Magnetic moments

If a charged particle is moving on a circle (has an angular momentum), it also has mag-
netic moment. The magnetic moment vector (u) is therefore proportional to the angular
momentum vector:

N € Z

ﬂ B 2 Me

e

Az - 7lz
H 2 Mg

If two operators differ only by a constant factor, also the eigenvalues will differ by this
factor only. Thus, we can easily calculate the eigenvalues of the magnetic monets:

eigenvalues of  [i, : h-m

2 Mer

with m being the quantum number introduced in connection to the L, operator. (This
relation gives an explanation why it is often called magnetic quantum number).

The interaction of a system possessing a magnetic moment and the magnetic field is
given by the product of the magnetic induction (B) characterizing the magnetic field and
magnetic moment of the system:

B
If this interaction exists, it needs to be included in the Hamiltonian of the system:
H - H+4+B-
——
)20
Considering H' as perturbation, the first order correction (see perturbation theory above)

to the energy of the H-atom is given by:
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Assume that the magnetic field is along the z axis:

E(l) - <\I/nlm|Bz : ﬂz|anlm> - <\Ijnlm|Bz : ¢ lAz|\Ijnlm> - Bz ' ‘ h m
Zmd —— 27’”61
hm|\pnlm>
WB
= B, -ug-m

with up being the so called Bohr magneton, a constant.

What does this mean? According to the equation above, the energy of the hydrogen
atom in magnetic field will depend on the quantum number m: if m is positive, it will
grow; if m is negative, it will decrease; and it is not changing for m = 0. Since there are
2l + 1 possible values of m, there will be 2] + 1 different energy levels, the degeneracy of
these levels will be lifted! This is the so called Zeeman effect.

— =2

m=1

e , —— m=0
m=-1

m=-

1.6.5. The spin of the electron

The Zeeman effect can be demonstrated if a beam of H atoms is injected into a inhomoge-
neous magnetic field, since the beam must split into 2] 4+ 1 beams according to the values
of m. This means 1, 3, 5, 7, etc. beams are expected depending on the initial quantum
number [ of the H-atom.

Stern and Gerlach observed, however, that the beam splited into two (2) beams:

Classical
pradiclion What was

Sitver atoms
aciually obsarved

Furnace

Inhomogenaous
magnetic el
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(Note that Stern and Gerlach conducted the experiment with silver atoms, but it also has
only one electron on its outermost s orbital.)
These experiments can not be explained by the theory we have presented so far!!!!

Conclusion:

e Pauli (1925): a ,fourth quantum number” is needed;

e Goudsmit and Uhlenbeck suggested the concept of spin as the ,internal angular
momentum”.

Classically: if the electron is not a point-like particle, it can rotate around its axis,
either to the right or to the left.

In quantum mechanics: the electron as a particle has ,intrinsic” angular momentum,
which is its own property, like its charge.

In the non-relativistic quantum mechanics we are doing here, spin does not appear,
i.e. we have an experiment which contradicts the postulates! Either we need a new theory
(this would be relativistic quantum mechanics), or we try to fix the theory by introducing
spin phenomenologically.

To do this, one needs to introduce an operator to describe spin:

s = (§xv Sy, §Z)
What do we need to know about an operator in order to work with it?
e what is it acting on?
e what is its effect?

e commutation relations.

The commutation properties of this new operator are the same as of the angular momen-
tum, since it describes similar phenomena (magnetic moment):

[8,,8,] = ihs,

[§2a§i] =0 Z.:m?va

Eigenvalues have again similar properties than in case of the angular momentum:

8% eigenvalues : s(s+ 1) [p?]
5, eigenvalues : ms=—8,—-s+1,...,s [h]
What are the possible values of the new quantum numbers s and my? These can be

obtained from the Stern-Gerlach experiment: there were two beams, so that m, can have
only two values:
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Therefore

N | —

is the only proper choice!!!
Electron, as a particle has, beside its charge, another intrinsic property, spin. Electron
has a charge of —1, and a spin of%!!!!

What do the spin operators act on? s, has only two eigenvalues and associated eigen-
functions:

$,a(c) = = a(o)

5.6(0) = —3 B(0)

with o being the spin variable (spin coordinate). On this basis, considering the commu-
tation relations, the matrices of the spin operators can be derived (Pauli matrices, see
Kémiai Matematika):

| o
N——

o=

N SN— N

O Ni= O O

W>
8
I
//
I
=
N———

The total wave function of the electron in the hydrogen atom must be supplemented
by the spin, thus it depends on four variables:

U(z,y,2,0) = u(z,y,2) alo)

or = u(z,y,z2) B(o)
Notes:
e in what follows we will only deal with pure spin states;

e the usual Hamiltonian does not depend on spin, the product form given in the
previous equation is not an approximation!

1.6.6. The states of the hydrogen atom, revisited

Wave function:

an,l,m,mS = \Dn,l,m,ms (T7 79’ P, 0)
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Quantum numbers:

n = 1,2,...
[ = 0,1,....n—1
m = —l,—l+1,...,1
11
ms = —5,5
2’2
Energy depends still only on the quantum number n:
1
E, = — |F
2 n? [Eh]

therefore the degeneracy is 2n2-fold!!!
H-atom in magnetic field, revisited

Spin is alike angular momentum and a magnetic moment is associated with it. Ac-
cording to the experiments, the associated magnetic moment is twice as large as in case
of the angular momentum associated with the orbital:

N e .
Mtz = Sz
Mmep
e e
1 ~
E( e <anlmms‘Bz Sz’anlmms> = Bz mg
Meg Meg

(c.f. the factor of two in the denominator).
Considering both [, and 3,:

EM = B.up(m + 2 my)
Thus, energy levels are split up into 2(2/ 4 1) levels!

1.6.7. Spin-orbit interaction

We have seen above that there are two different types of angular momenta:
e angular momentum resulting from the motion of electrons (z), will be called as
orbital angular momentum;
e angular momentum originating from the spin (8) (spin momentum).

Since both angular momenta create magnetic moments, these can interact. The mag-
nitude of the interaction depends on the two momenta:

H —» H+¢-1-5
where ( is a constant.

Consequences:

e the Hamilton operator will not commute with either ZA2, l; and §, operators;

e cnergy will depend on the quantum number [.

This effect is very small, it is of the order 10™* — 10~ hartree, but can be observed
with very accurate spectroscopic methods. For heavier atoms it can be larger and for
atoms with large atomic number it must be considered.
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2. Many-electron systems

2.1. The Hamiltonian

. h2 electrons 82 82 82 electrons nuclei ZA . 62
H:_2 Z 82+52+32_ZZ 4
Ml i T Yi Zi f 1 TiAaT €
electrons electrons 2 nuclei nuclei Z 7
Be
+ Z D Fn D DD Dl e
j<i ij 0 A B<A 'AB 0
with
e {x;,v;, 2z} being the coordinates of electron i;
e 74 being the charge of nucleus A;
e 1;; being the distance of electrons 7 and j;
e 745 being the distance of nuclei A and B;
e 7,4 is the distance of electron ¢ and nucleus A;
e for constants see earlier.
The Hamiltonian in atomic units
R 1 electrons 82 82 82 electrons nuclei Z
H:_§Z 32+32+32 ZZ*
P T Yi Zi f 1 TiA
kinetic energy of electrons electron—nuclei attraction
electrons electrons 1 nuclei nuclei Z 7
B
+ Z POt D DD D
j<i Tij A B<A 'AB

electron—electron repulsion repulsion of the nuclei

Note: The kinetic energy of the nuclei have been separated using the Born-Oppenheimer
approximation (see later).

2.2. Wayve function of the many electron system

v = \Il(xlv Y1,21,01,T2,Y2,22,02, ...; Tny Yn, Zn, Un)

= ¥(1,2,...,n)

i.e. a function with 4n variables.
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2.3. The Schrodinger equation

HU(1,2,...n) = E¥(1,2,..,n)

Problem: the Hamiltonian can not be written as a sum of terms corresponding to
individual electrons (3;), therefore the wave function is not a product:

e Schrodinger equation can not be solved exactly

e the solution is not intuitive

2.4. Approximation of the wave function in a product form
Physical meaning:
e Independent Particle Approximation (IPA), or

e Independent Electron Model (IEM)

a) assume, there is no interaction between electrons
This unphysical situation helps us to find a suitable approximation:

ﬁzZM@zﬁ@@Zwm:¢ﬂ)@@m¢Wﬂ

wave function product of spin orbitals

Spin orbitals

¢ii) = bi(wi, yi, 2i,00) = w(ws, yi, zi)a(04)
or = u(w, Y, z) Blos)
—— —

spatial orbital
In this case the Schrodinger equation reduces to one-electron equations:

HU =BV = hy(1)é1(1) = e161(1)
i12<2)¢2(2) = 52¢2(2)

ha(n)n(n) = €ngn(n)
One n-electron equation = system of n one-electron equations

Total energy in this case is a simple sum: E =}, ¢;
What is h;?

. 1 Z
hi = —2A -2
2 TiA

which resembles the Hamiltonian of the H-atom = eigenfunctions will be hydrogen-like!
Problem: electron-electron interaction is missing!!!
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b) Hartree method: A
Consider the one-electron problem of the first electron, but let us complete h; with
the interaction with the other electrons:

Za

TiA

N N 1
hy — hiff _ _§Ai N _'_Vleff

where fo 7 is the interaction of electron 1 with all other electrons.
How to obtain V;//?

Q1Q2

e Interaction of two charges: =

o If (), is a distributed charge corresponding to the electron on orbital py: Qo =
—lpa(r2)[?
e Thus: &% — —QlfMdvg

T12 T12

e The charge of electron 1: @)1 = —1
o Thus: Vi// = =2 [ 7‘%3”2(11;]-

The energy (£1) and orbital (¢;) of electron 1 can be obtained by solving the eigenvalue
equation of h$/7:

W ei(1) = eipi(1)

Similarly, for electron 2

NE

e Y;i\J

Vel = Z/‘ Jri)‘ dv,
j

2
W7 0a(2) = eapa(2)

Finally for electron n:

()2
Vneff _ Z/l@](]” dv;
J#n T'nj
Itbfsz@n(n) = enpn(n)

These equations are not independent since the orbitals of all other electrons are needed
to obtain fo ! Therefore, these equations have to be solved iteratively:

1. starting orbitals (e.g. system neglecting the electron-electron interaction):
2. obtain V7
3. solve the equations — new orbitals

4. go to step 2
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We call this procedure Self-Consistent Field (SCF), since at convergence the field
(electron-electron interaction) generated by the actual set of orbitals results in the same
set of orbitals.

Total energy: E # Y ,¢;, i.e. not a sum of the orbital energies since in this case we
would count electron-electron interaction twice. Therefore, energy has to be calculated
as an expectation value:

E = (U|H|T)

c) Hartree-Fock method: see later

2.5. Pauli principle and the Slater determinant

An important principle of quantum mechanics: identical particles can not be distingu-
ished. Therefore the operator permuting two electrons (Pj2) can not change the wave
function, or at the most it can change its sign:

PuU(1,2,...,n) = +0(1,2,....n)

Change of the sign is eligible since only the square of the wave function has physical
meaning which does not change with the sign.

According to postulate V+2-es (so called Pauli principle) the wave function of the
electrons must be anti-symmetric with respect to the interchange of two particles. In case
of two electrons:

PuU(1,2,...,n) = —U(1,2,....n)

The product wave function used in the Hartree method does not fulfill this requirement,
it isn’t anti-symmetric. Therefore, instead of a product, we have to use a determinantal
wave function.

P1(1)  @2(1) -+ Ba(1)
1| ¢1(2) ¢2(2) - on(2)
vn : : : :
¢1(n) da(n) -+ Pn(n)

This type of wave function is called the Slater determinant.
Remember the properties of determinants:

a) Interchanging two rows of a determinant, the sign of the determinant will change.
— interchanging two orbitals, the wave function will change sign;

b) If two columns of a determinant are equal, the value of the determinant is 0
— if two electrons are on the same orbital, the wave function vanishes;

¢) Adding a row of a determinant to another row, the value of the determinant is unc-
hanged
— any combination of the orbitals will give the same wave function.
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Conclusions:
a) and b) Pauli principle is fulfilled automatically
c¢) orbitals do not have physical meaning, only the space spaned by them!!!

Hartree-Fock method
In the Hartree method, equations as well as hff f corresponding to different electrons

differ:

iliff%(l) = 51901(1)
Wi 0a(2) = expa(2)

ﬁsz@n(n) = enpn(n)

This contradicts the principle of indistinguishability of identical particles.
Therefore in the Hartee-Fock method the same operator (Fock operator) is used for
all electrons:

Za

TiA

R . 1

Wt o fli) = —5A -+ Ui

with UHF being an averaged (Hartree-Fock) potential (see later).
The Hartree-Fock equation:

N

The wave function V¥ is a determinant constructed from the orbitals ¢;, while energy
can be calculated as an expectation value: (V|H|¥).
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3. Electronic structure of atoms

Underlying physical principle: Independent Particle Approximation

3.1. Energy, orbitals, wave function

According to the discussion above, we should solve the Hartree, or the Hartree-Fock
equations first. In both cases we get orbital energies (¢;) and orbitals (¢;), therefore for
a quantitative discussion it does not matter which one we use. The form of the equation
reads:

h(i)p; = e
1

- 1
h(i) = —=A;,——+4+V
(%) 2 r *
where V' denotes the electron-electron repulsion and is given for both the Hartree and the

Hartree-Fock methods above.

As a solution we get:
e ¢; orbitals
e ¢, orbital energies

Since h is similar to the Hamiltonian of the hydrogen atom, the solutions will also be
similar:

The angular part of the wave functions will be the SAME, i.e. Y (3, ¢). Therefore we can
again classify the orbitals as 1s, 2s, 2pg, 2p1, 2p_1, etc.

The radial part: R(r) will differ, since the potential is different here from that of the H
atom: since it is not a simple Coulomb potential, the degeneracy according to [ quantum
number will be lifted, i.e. orbital energies will depend not only on n but also on [ (¢ = &,).

Wave function: constructed from the occupied orbitals as a product (Hartree) or as a
determinant (Hartree-Fock); occupied orbitals are selected according to the increasing
value of the orbital energy (so called Aufbau principle).

Some important terms:

e Shell: collection of the orbitals with the same quantum number n;

e Subshell: collection of orbitals with common n and | quantum numbers, which are
degenerate according to the discussion above. Orbital 1s as well as 2s form subshells
alone, while 2pg, 2p; és 2p_; (or 2p,, 2p,, 2p,) orbitals form the subshell 2p. Subshell
3d has five components, 4f seven, etc.

e Configuration: defines the occupation of the subshells. Examples:
He: 152
C: 152 252 2p?
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3.2. Angular momentum of atoms

one particle: ? 1, &

many particles: L2 L, S &S,

P

The angular momentum of the system is given by the sum of the individual angular
momenta of the particles (so called vector model or Sommerfeld model):

L = X216
S = 350
Since L and S are again angular momentum operators, the eigenvalues are given by
similar rules:

L - LIL+1)[*] L=01,2,...
Ly — My M,=-L—L+1,..., L
. 1

S?— S(S+1) [ 5:0,2,1,2,2,...

Sy — Mslh| Msg=-S-S+1,...,8
Let us try to obtain the eigenvalues of these operators. From the definition it follows:
L. = Y L()
S. = Y 5.()
and therefore
M, = my(i)

To obtain the length of the many particle angular momentum vectors is more complicated,
in particular, since — due to the uncertainty principle — the direction of the one-particle
vectors is unknown. The following figure demonstrates this uncertainty of the summation:

(b}
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since the angular momentum vectors are not known, only the cone it is situated on,
therefore the summation can lead to different results. For example, in case of two particles
the possible values of the L and S quantum numbers are given by:

L=(U+1b),li+l—1),--, L —1
S = (s1+ s2), (51 — 82)

For more particles the values can be obtained recursively, adding the components one by
one.

3.3. Classification and notation of the atomic states

The Hamiltonian commutes with f,2’ iz, 52 and S, operators = we can chose the eigen-
function of the Hamiltonian such that these are eigenfunctions of the angular momentum
operators at the same time. This means we can classify the atomic states by the corres-
ponding quantum numbers of the angular momentum operators:

‘PL7ML7S7MS = ‘La MLa Sa Ms>

The latter notation is more popular.
Thus, in analogy to the hydrogen atom, the states can be classified according to the
quantum numbers. For this, L and S suffices, since energy depends only on these two.

L= 0 1 2 3 4 5
notation: S P D F G H
degeneracy 1 3 5 7 9 11
S—= 0 3 1 2 2
multiplicity (25+1): 1 2 3 4
denomination: singlet doublet triplet quartet

In the full notation one takes the notation of the above table for the given L and writes
the multiplicity as superscript before it:
Examples:

L=0,S=0:1!S read: singlet S

L=2,8=1:3D read: triplet D

Total degeneracy is (25+1)(2L+1)-fold!!
3.4. Construction of atomic states

Since there is a high-level degeneracy among the orbitals, most of the time we face open
shell systems, where degenerate orbitals are not fully occupied. In this case one can
construct several states for the same configuration, i.e. configuration is not sufficient to
represent the atomic states.
Example: carbon atom

1s% 252 2p?
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2p is open subshell, since only two electrons are there for six possible places on the 2p
subshell.

What are the possibilities to put the two electrons onto these orbitals?

spatial part: 2pg, 2p1, 2p_1

spin part: a,

These give altogether six spinorbitals, wich can be occupied by the available two

electrons. The number of the possibilities are given by g which results in 15 different

determinants. This means there will be 15 states in this case. Do the determinants form
the states? With other words: are these determinants eigenfunctions of L2 and 52?

To see this, let us construct the states by summing the angular momenta: Since we
do not know angular momentum vectors completely (remember the uncertainty principle
applying for the components!), the summation of two angular momentum vectors will not
be unique either, we get different possibilities:

(=1 12)=1

L=11)+12),l(1)+12)—1,...,[I(1) =1(2)| =2,1,0
S=s(1)+s(2),s(1)+s(2)—1,...,|
The possible states therefore are:
's P 'D
BS SP 3D
Considering the degeneracy: 1S gives one state, ! P gives three states, 1D gives five, 35
gives three states, P gives nine states (three times three), 3D gives fifteen states (three
times five), which are altogether 36 states. But we can have only 15, as was shown above!
What is the problem? We also have to consider Pauli principle, which says that two

electrons can not be in the same state.
If we consider this, too, the following states will be allowed:

'S 3P 'D
These give exactly 15 states, so that everything is round now!

Summarized: carbon atom in the 2p? configuration has three energy levels.
What is the order of these states?

Hund’s rule (from experiment; ,Nun, einfach durch Anstieren der Spektren”):

e the state with the maximum multiplicity is the most stable: there is an interaction
called ,exchange” which exists only between same spins (see later);

e if multiplicities are the same, the state with larger L value is lower in energy;

In case of the carbon atom:

E3p < ElD < Els
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3.5. Spin-orbit interaction, total angular momentum

As has been discussed in case of the hydrogen atom, orbital and spin angular momenta
interact. The Hamiltonian changes according to these interaction as:

H — EI+Z§Z(¢)-§(¢)

Consequence: L? and 5?2 do not commute with H anymore, thus L and S will not be
suitable to label the states (,not good quantum numbers”). One can, however, define the
total angular momentum operator as:

s

J = L+
which
[H,J?]=0 [H,J]=0

i.e. the eigenvalues of J? and J, are good quantum numbers. These eigenvalues again
follow the same pattern than in case of other angular momentum-type operators we have
already observed:

J2 = J(J+1) B
J. — M, [h)

The quantum numbers J and M of the total angular momentum operators follow the
same summation rule which was discussed above, i.e.

J = L+SL+S—1,---,|L—-S5|

Energy depends on J only, therefore degenerate energy level might split!!

Notation: even though L and S are not good quantum numbers, we keep the notation
but we extend it with a subscript giving the value of J.

Example I: carbon atom, 3P state:

L=1 S=1 — J=21,0
5P — 3P, 3P, ®PR,

Energy splits into three levels!
Example II: carbon atom 'D state:

L=2 S=0 — J=2
' = D,

There is no splitting of energy here, J can have only one value. This should not be a
surprise since S = 0 means zero spin momentum, therefore no spin-orbit inetarction!!!
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3.6. Atom in external magnetic field

Considering the total angular momentum, the change of energy in magnetic field reads:

AE = Mj-pp- B,
M; = —J—J+1,...,J

This means, levels will split into 2.J + 1 sublevels!

3.7. Summarized

Carbon atom in 2p? configuration:

. f) O i
-
: 7 (4
’ : g D ] N —
. - G e o =
== e .
oty
: G =
o \\ . PR B
TN e o X .
‘”M‘“‘”‘i@\i % ==
'\ QY
P R AL T
G A——— ’ g
H e ("Df"ygf D 14 Q/@C, L 12,50
. 1SS ) 2. L2Coy | . weda
Z'e,e)\ﬁca._\
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P, tasnd petie  As eew a( ACC e A ca
T
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Other configuration for p shell:
p' and p° 2P
p? and p* 3P, 'D, 'S
p3 45’ QD, 2P
p® (closed shell) 'S
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4. Electronic structure of molecules

4.1. Separation of the motion of electrons and nuclei

Hamiltonian
New compared to atoms: electrons are moving in the field of several nuclei. One
important consequence is that the symmetry of the system is lower than in case of atoms.

. 1 electrons electrons nuclez electrons 1 nuclei ZAZB 1
H = —3 Z D DD Dt D Dl i) Z —
i A TiA j<i Tii  B<a TAB A mA
ﬁe(r,R) T, (R)
= T ( ) + ‘/el nucl(r R) + ‘/el el( ) + Vnucl nucl(R) Tnucl (B)
———
H.(r,R) Tn(R)

H(r,R) = H.r,R)+T,(R)
with
e 1 denoting the coordinates of the electrons;
e R denoting the coordinates of the nuclei;
e see also earlier notations.

The coordinates of the electrons and the nuclei do not separate, interaction between
electrons and nuclei couples them.

The Born-Oppenheimer approximation.:

electrons are much lighter than nuclei (mﬂl ~ 1836)
| equipartition
electrons are much faster

4

electrons follow immediately nuclei (adiabatic approximation)

4

from the point of view of the electrons nuclei are steady
G
Equation for electrons: H.(r; R)®(r;R) = E(R)®(r; R)
for nuclei: (7, (R) + E(R)) x(R) = Erorx(R)

Notes:

e within the Born-Oppenheimer (BO) approximation the equation for electrons and
nuclei have been separated;
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e nuclei are not steady;

e the potential acting on the nuclei is E(R), i.e. electronic energy (eigenvalue of the
electronic Schrodinger equation) at different nuclear distances;

e the potential energy surface E(R) is thus the consequence of the Born-Oppenheimer
approximation, without this approximation the potential (potential curve, potential
energy surface — PES) can not be defined;

e usually a very good approximation, it breaks down if the energies of two electronic
states are close (e.g. photochemistry).

From now on, we will deal with the first (electronic) equation, that of the nuclei will
be considered in the second part of the semester; we will omit the index e, H will refer
to the electronic Hamiltonian.

4.2. The Hj molecular ion

This is a three-body problem and can not be solved analytically. However, using the BO
approximation, it can be reduced to a single-electron problem:
The Hamiltonian:

with r14 and 715 are the distances of the electron from nuclei A and B, respectively, while
R is the distance of the two nuclei.
The Schrodinger equation:

A

H®(LR) = Ei(R)®(1;R)

Analytic solution is possible in elliptic coordinates; we do not solve it, only analyze
the solutions.
Symmetry of the system: D.,.
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Character table for point group D=h

D%h E
A,g:i *g +1
A, g:E N e+l
E, g=1'Ig 2
EZZ:A N +2
E3g=0 . 2
E +2
A=E,
AT w
E=Il w2
B, w2
L
E, +2

+2cos($)
+2cos2)
+2cos3 )

+2c0s(n®)

+1

+1
+2cos($)
+2cos2)
+200s3 )

+2cosn®)

i

+1

+1

+2

+2

+2

+2

259

+1

+1
“2cos(®)
+2c0s29)
2c0s39)

(1)"2cos(n®)

-1

-1
+2cos($)
2c0s29)
2c0s(39)

)™ 2cos(nd)

LI

.+l

. 0

linear functions,
rotations

xy)

quadratic
functions

x2+y2, Zz

(xz, yz)

0y, xy)

cubic
functions

2, 2(x%+y")

(22, y2%) [x(P4y%), YOy )]
[xyz, 203-y?)]

[yGxyD), x(x23y7)]

62

The solutions (®;(1; R)), the wave function of the system, now orbital, since it refers

to one electron):

—
o e
[
11] &
I M
"
ATERLs -2

®y, symmetry is XF

®,, symmetry is 3
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H 4
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=

Equilibrium bond distance: 2.00 bohr, dissociation energy: 2.8 eV

Basic question: what is the chemical bond?
Answer according to the figures:

e according to the form of the lower PES: energy decreases when the two nuclei get
closer to each other;

e form of the corresponding orbital: electron density between the two nuclei increases.

2
|1PSI/\/\

Bonding

2
EA

Anti-bonding

Quantum mechanics can not tell more, but this is mathematically a perfect explana-
tion. For chemists there are of course other explanations based on approximate models,
see later.
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4.3. The LCAO-MO approximation

o4 and o, orbitals are complicated functions. Can we use something simpler?

If we consider the formation of molecules as atoms approaching each other, mole-
cular orbitals can be viewed as two hydrogenic ground state orbitals (1s) approaching.
Therefore:

oy = Nl'(18A+1SB)
O, = Nz . (1SA — 153)
where 1s4 and 1sp are the 1s orbitals of the two atoms.

The validity of this approximation is clearly seen from the form of the molecular
orbitals. Is there a mathematical explanation?

- 1 1 1 1
0 = _—A—— _— = L =
2 T1A 1B R

H atom at position A =0 at position A  constant

This means the Hamiltonian at nucleus A can be approximated by the Hamiltonian
of an H atom, and similarly also at position B. Therefore the wave function can be
approximated by the combination of 1s4 and 1sg functions.

In general: within the Linear Combination of Atomic Orbitals for Molecular Orbitals
(LCAO-MO) theory, molecular orbitals are approximated by the linear combination of
atomic orbitals:

i = ZcirXr

with y, denoting atomic orbitals. Mathematically: molecular orbitals are expanded in
the basis of atomic orbitals (basis functions) with coefficients ¢;,..
How many function do we need?

e for an exact expansion infinitely many functions are required;

e according to the above discussion, AO-s form a very good basis, a few of them
suffice;

e we need at least as many basis function as many occupied orbitals we have in the
atoms (so called minimal basis).

How can one obtain the coefficients: wvariational principle, i.e. minimize the energy
(E = (¢;|H|p;) — min), which leads to a matrix eigenvalue problem (see Kémiai Mate-
matika):

Hc =ESc
with
e H is the matrix of the Hamiltonian: H;; = (¢;|H|¢;);

e c is the vector of the coefficients;
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e S is the overlap matrix S;; = (¢;|¢;), which needs to be considered since atomic
orbitals are not orthogonal. Their overlap is important to get bonding!!!

Example: Hy™ molecule ton, minimal basis
Basis: x1 = 1s4 X2 = lsp
Overlap of the basis functions: Sj; = S =1 S1a = (x1lx2) =5
We look for the wave functions in the following form:

X1 = ci11lsa+ci21lsp

X2 = Co1 1lsg+coolsp
Matrix elements of the Hamiltonian:

Hiu = (alHxa) = (1salH|1sa) = a
(x2|H|x2) = (Lsp|H|lsp) =«
Hyy = (x1|H|x2) = (1sa|H|lsg) =

=
I

H and S matrices:

s
Il
A~
Nk ®R
S ™
~

=
~—

The He = ESc eigenvalue equation:

(5 2)(a) = #(s )(a)

The secular determinant:

a—E B-ES

8—ES a-£| ="
|3
Ao NS N
1+5 2(1+S)
Egza_ﬁ 012—02: 1

—_
|
n
[\
—
I
2
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Results:
Energy: orbital energy diagram:

Energy
f !
. o’
1s 3 3'— 1s
Atorrie Cibial S Atornie Orbital
T o
Molecular Crirital

From this calculation: R, =~ 2.5 bohr. How good is this?

For qualitative purposes quite acceptable (we could describe the bonding), but also
for quantitative purposes it is encouraging that with such a small basis we obtain good
result.

We can also use symmetry. First set up the so called symmetry adapted basis, i.e. we
form such combinations of the basis functions which transform according to the irreducible
representations of the point group of the molecule:

1
YF symmetry sy = ———(1s4 + 1sp)
! V214 S)
1
YF symmetry  s; = ————(1s4 — lsp)
2(1 - S)

The H matrix in this basis:

X /1 . sh S s sg _ 20428  a+p
(silH]s1) = < s ot gy et )> 21+8)  (1+5)

a — # spa— lsp A¥ SA — 18B :QQ_QB: o v
<52 H 52> = < 205 (1sa —1sp) |H 205 (Isa — 1 )> 21-95) (1-29)

. IS Sy o AL o1 Tsy)) — a—a+f—-p
<81H82> = < 215 5) (Isa+ 1sp) |H 21 5) (Isqg — 1 )> 2\/(1—1—5)(1—5) 0
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This matrix is diagonal, its eigenvalues are the diagonal elements:

_ a+p _a-p
By ™ BTy

i.e. we obtained the results without diagonalization.
Note: in general, the use of symmetry reduces the size of the matrix to be diagonalized,
since it breaks up into smaller blocks belonging to different irreps.
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4.4. Expectation value of energy in case of determinant wave func-
tion

Let us decompose the Hamiltonian according to zero-, one- and two-electron terms:

Z 1 YAVA
oy Loy A
ria i Tii a<p TAB

~ A

Hl = Z]AI(Z) HQ H()

A 1
L R D

Expression for the energy:

\If> + <\If’ Z:J‘\If> + H,

1>)

with ¥ being the determinant wave function. It can be shown that

E = Y Hy+Y (Ji; — Ki) + H

i>j
where:

o H;y = <¢ZW¢1> — is the one-electron term containing kinetic energy and interaction
with the nuclei;

o J,= <¢Z~(1)¢j(2) | i\¢i(1)¢j(2)> —so called Coulomb integral, representing electron-
electron interaction;

o Kij= <¢2(1)¢](2)|i|¢j(1)¢1(2)> — so called exchange integral.

T12

This means that in case of determinant wave function, in addition to the Coulomb
interaction, there is also an exchange interaction among electrons. One can show that the
exchange interaction can be non-zero only in case of electrons of the same spin. This is
the explanation for the Hund’s rule, since, due to this interaction, it is more favourable
to put electrons to degenerate orbitals with same spin than with opposite spin.
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4.5. Electronic structure of the hydrogen molecule

The Hamiltonian:

1 1
= - Z A - Z — - Z t -+
TiB 12
-~
lezzi h(’L) H2 HO
Another partitioning:
- 1 1 1 1 1 1 1
H = —*Al—i—*A2—7—7—7+7+H0
2 T 2 ToB  T2A T Ti2
Hy Hgp A

These two forms offer two approximations:
e MO theory — according to the first form;

e VB theory — according to the second one.

4.5.1. MO theory for the hydrogen molecule

Similarly to atoms, we use independent electron approximation.
The wave function is a determinant:

e é(1)
Yuo =4 (9) ¢2<2>‘

Where to obtain the MOs from? In case of atoms, the AOs were taken from the
hydrogen atom, here we can use the corresponding one-electron system, the Hy™:

P1 = 040 ®2 ZUgB

with o, being the bonding orbital of Hy™ (0, = (Isa + 1sp)).

(1+S)

Configuration: o

State: '¥F YreXi=xf
Let us expand the determinant wave functlon

Uyo = 7( 1(1)$2(2) — ¢1(2)92(1))
\/—( a(1)ayB(2) — o40(2)0,5(1))

— o (1)o,(2) jﬁmuwz)—a(zw(l))

determinant of the singlet spinfunction

spatial part
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Inserting the expansion form of the orbital into the spatial part:

Uile" = 0oy (2)
1
= —(Isa(1 1sp(1))(1s4(2) + 1sp(2
2(1—|—S)< sa(1) +1sp(1))(1sa(2) + 1s5(2))
1
= m(155/;(1)15/1(2) +1s4(1)1sp(2) 4+ 1sp(1)1s4(2) 4+ Lsp(1)1sp(2))
ionic covalent ionic
Energy:
E = (UnolH Vo)
= Hll +H22 + JlQ — K12
with

Hy = (o,0(1)|h|o,a
Hypy = (095(2)|M%5

1) = <Ug|ﬁ|ag>

(
(2)) = {o4lhloy)

T = (o,a(a,f@)- loa(la,82) = (0,(0)0@)- - lo(Da,(2) 205R) (D)
Ku = (0,0(00,82)lo,a2),8(1)) = (Do) 10,20, (1) (a(DA)|a2)5(D)

=0

There is no exchange interaction between electrons of opposite spin!

Excited state:
Configuration: o, 0,0

State: 337 Yrexi=xf
Here the exchange interaction does not vanish:
1 1
K = {ogal)ona2)] —loga(2)oua(l)) = (o5(1)au(2)| —log(2)ou(l)) (a(Da(2)|a2)a(l))

=1
The exchange interaction is negative, therefore the energy of the state with higher

multiplicity is lower (Hund’s rule).

4.5.2. Valence Bond (VB) description of the hydrogen molecule

H(1,2) = Ha(1)+ Hp(2)+ H'(1,2)

This form suggests the use of perturbation theory, since the Hamiltonian is built from
the Hamiltonians of the non-interactive atoms (lﬁl 4 and H B), as well as the interaction
(H') between them as perturbation.

The wave function in case of non-interacting atoms:

f1(1,2) = 1s4(1)1sp(2) or fo(1,2) = 1s4(2)1sp(1)
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Heitler-London (spatial) wave function:
O (L2) = afi(1,2)+eafa(1,2)

(one has to choose antisymmetric spin function for the symmetric spatial function).
Coefficients can again be obtained by variational principle:

Hll + H12

¢ ¢ 2TTTES,

(we have used that Hy; = Hy).
The matrix elements:

Hu = (AlHIR) = lHal ) + (Al HslA) + (RIH'A) = -1+Q

since

(filHal fi) = (Lsa(1)1sp(2)| Ha(D)[15a(1)1s(2)) = (Lsa(D)[Ha(1)[1sa(1)) (Lsp(2)|1s5(2)) = —

1

(filHp|fr) = (1sa()1sp(2)| Hp(2)[1s4(1)155(2)) = (1s5(2)|Hp(2)|155(2)) (Isa(1)|15a(1)) = —;

Observe: this is the ground state energy of the hydrogen atom!

(AlH'A) = Q
This is a kind of Coulomb interaction.
Similarly:
Hy=-1+0Q
Finally:

Hip = (filH|fo) = (filHalf2) + (il Hplfo) + (Al H | fo) = =S%5 + A

since

= (Lsa()[Ha(1)| 1sp(1)) {Lsp(2)|1s4(2)) = _;S,anB

—5(lsa(1)] Sap

(filHalfe) = (1sa(1)1sp(2)|Ha(1)|1s4(2)Lsp(1))

*%SAB
(AilHs|f2) = (1sa(1)1sp(2)|Hp(2)|1s4(2)1s5(1))
= (1sp(2)|Hp(2)| 1s4(2)) (1s(1)[155(1)) = —;Sfm

—L(1sp(2)] Sas

1
—554B

(LlH|f) = A
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The last one is an exchange-like interaction.
The overlap is:

Stz = (filfa) = (Lsa()1s5(2)]15a(2) 155 (1) = (1sa(D]1sa(1) (1sa(2)[154(2)) = S

Thus energies and the corresponding coefficients read:

Hyy + Hyo Q+ A 1
E1: = 5 -1 Cl = C = —F/——
1+ S 1+ SAB 2(1 _’_S’le)
Hy,—H — A 1
B, = 11 12:Q ~ P
1=51  1-5ip 2(14 525)

-1: energy of two hydrogen atoms in ground state, () + A: their interaction.
The ground state wave function therefore reads:

1

V= (lsa(D1sa() + 15n(1)14(2) - s

Comparing this to the wave function obtained in the MO theory: this is the covalent
part, the ionic part is missing!

Add some ionic functions:

f3(1,2) = 1sa(1)1s4(2)
f4(1,2) = 183(1)183(2)

Thus the complete VB wave function reads:
VI = en W (s + )

Coefficients can again be obtained using variational principle. Observe that this is
better than MO wave function since the weight of the covalent and ionic parts are not
fixed.

The results of the calculations:
e at equilibrium distance: cyp = cion, therefore MO is a good approximation here;

e at big R: cyr — 1, cion — 0.
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4.6. Electronic structure of A,-type diatomic molecules

Symmetry: Do
The symmetry of the orbitals according to the irreps of the D, pointgroup:

symbol of the irrep dimension symbol of the orbital

E;r 1 o
xF 1 Ou
I1, 2 e
1L, 2 Ty,
A, 2 dg
JAVS 2 Ou
E; 1 -
ete.

Thus there are non-degenerate (o,, o,) and double degenerate (m,, 7,, etc.) orbitals.
We take the orbitals (at least their qualitative form) from Hy™* system:

lo, orbital (-1.10 hartree)

st st

1o, orbital (-0.23 hartree)

detauts used
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20, orbital (-0.04 hartree)

mmmmmmmmm

20, orbital ( 0.10 hartree)

uuuuuuuuu
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1, orbital ( 0.11 hartree)

75
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17, orbital ( 0.42 hartree)

wwwwwwwwww

s used

According to these results, energy ordering of the orbitals is:
log, 1oy, 204,20, 17y, 304, 174, 30y, - - -

Let us write these orbitals as linear combinations of the atomic orbitals like in case of
H,* and H, systems:

lo, = \/2(1:_751)(13,4—1—133)
lo, = \/2(11_750 (1sa — 1sp)
Similarly:
20, = S S (254 + 2sp)
Yoy
20, = \/2(1_75” (254 — 2s5B)

The next orbitals can be constructed from the 2p orbitals of atoms, considering also
the symmetry (z is the molecular axis):
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Llsa G} . % 3
- + - e = - o Antibonding
P
. + .| - ..On. @ Bonding MO
O® . O®
+ R 1 Antibonding
Q - Q e > Q 7t Bonding MO

1
30y = —F—————(2p.4—2p.
I 2(1 — S3) ( 5)
1
17Tu i = T 2pa:A + 2px
(@) 2(1 + 54) ( 2
1
Imy(y) = —— (2pya +2pyB)

2(1+4 5,

~—

Similarly, for anti-bonding orbitals:

1
30, = ——— (2p.a+2p.B)
J2(1+ S) 7
1
Img(z) = 72(1 5 (2pa — 2p2B)
— M4
1
17Tg(y) = 2(1 g ) (2pyA — 2pyB)
— M4

There is a problem with the energy ordering of orbitals: in case of Hy*, the energy
of the 17, orbital is lower than that of the 30, orbital. The combination given above
suggests the opposite order (see also General Chemistry).

Explanation: when forming linear combinations, not only one pair of atomic orbitals
needs to be considered. For example:

10'g = (11 (18A + lSB) + C12 (23,4 + QSB) + C13 (2pzA + zsz) +

20, = co(1sa+1sp) + a2 (254 + 25p) + a3 (2poa + 2p28) + - - -

305 = c31(lsa+ 1sp) + c32 (254 + 25B) + €33 (2p2a + 2p2p) + -+
Obtaining the coefficients, we get that
1

Cl R ——e, Cpp~ci3=0

2(14+95)

Thus, the simpler approximation above is valid in case of 1o,. This can be explained
since the energy of the 1s orbital is substantially lower than that of the others. The
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same approximation is, however, less valid in case of the 20, and 30, orbitals, since their
energies are closer, therefore they interact; the energy of the former lowers, that of the
latter increases.

FIGURE

4.6.1. Construction of the states

First we occupy the orbitals according to the Aufbau principle. This gives the configura-
tion. The wavefunction of the state can be characterized by its symmetry, which can be
obtained as the direct product of the symmetry (irrep) of the occupied orbitals.

As example consider first Hs:

Eriergy

. 4]— 4— .

Atorie Otbitl /' Atomie Odbital

Molerular Crbital

Configuration: 1o

Symmetry of the state: ¥XF @ X7 = 37

Symbol of the state: 'S} (read as singlet sigma g plus)

Bond order: 1, since one bonding orbital is occupied by two electrons.

2nd example is Hes:

He He, He

antibonding

A ol

.&m @
Proa "= node
e =,
-
g H o

ols§
bonding MO

Configuration: 1o) 107,

Symmetry of the state: ¥ @ ¥F @ ¥F @ ¥F = XF

Symbol of the state: 'S}

Bond order: 0, since one bonding and one anti-bonding orbitals are occupied.

We observe that in case of doubly occupied orbitals, symmetry is always Z;. It is the
totally symmetric irrep. This is true in general: fully occupied orbitals result in totally
symmetric irrep. Therefore, it is enough to consider only open shells when obtaining the
symmetry of the system.
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For Liy and Bes, we get the same picture as in General Chemistry. The first difference
appears for Bs:
B,: Configuration: 1o} 1oy, 207 207, 17,

The m, orbital can host four electrons, therefore we have here open shell:

Possible symmetries: II, ® I, = E; DY, DA,

Possible states, considering also the Pauli principle: X, 'XF, Ay

Energy ordering;: E32_; < Eip, < Elz;

Bond order: =1, since the bonding orbitals are occupied with two electrons.

Problematic case:

O,

2p

—
Y
>

N

-——

N
(7]

(0]

¢+ 45 1l

Configuration: 103 lo? 203 202 17l 305 17r§.

The 7, orbital can host four orbitals, i.e. this is again an open shell system:

Possible symmetries: II, @ I, = X7 & X @ A,

Possible states considering also Pauli principles: X, 'SF, 'A

Ordering of energy: E32; < Eip, < ElE;

Bond order: ~2, since there are three bonding orbitals fully occupied (304, and 17,
with six electrons, as well as an anti-bonding orbital with two electrons).

Oxygen is paramagnetic, triplet state!!!!

4.7. Electronic structure of AB-type diatomic molecules

Problems:
e the orbital energies of the two atoms are not equal;

e stabilization of the bonding MO depends on this energy difference.
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Therefore, the qualitative picture is not always enough, often quantitative considera-
tion is necessary.

Example: LiH (figure on the blackboard)

orbital energies: Li: -2.48 and -0.19 hartree, H: -0.5 hartree

Other example: CO molecule:
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4.8. The Hartree-Fock method
4.8.1. Formulation of the Hartree-Fock equations

In MO theory determinant wave function is used. In case of diatomic molecules orbitals
could be taken from a one-electron system Hy™.
Problem:

e these are not the best orbitals for quantitative purposes;

e for more complicated molecules there is no reasonable one-electron problem.

Solution to this problem: look for optimal orbitals for each molecule.

But how? One can use variation principle: look for the determinant which gives the
lowest energy. Since the determinant is built up from orbitals, in fact we look for the best
orbitals.

What does it mean ,the best orbitals™” According to the variational principle, these
are the orbitals resulting the lowest energy determinant. Let us look for these orbitals!

Expression of energy (see earlier):

E = <\DIFI!\P> = ZHu + ;Z (Jij — Kij)
= S (alilo) + 5 35 (@I l0e @) - (606,21 —160)6)) )

which is a functional of orbitals {¢;}. Therefore one needs to look for the minimum of the
functional with respect to the variation of the orbitals. Orbitals need to remain ortogonal
in order to keep the above form of the energy valid (it is valid if the determinant is
normalized) therefore boundary conditions need to be considered:

(Pildj) = Sy =05 Vi,j — (¥[¥)=1
Thus, the functional to be varied is:
G = E=3 % &;(S;—0y)
i

) ) *J

Without giving the details, the functional G has extremum for those orbitals which
fulfill the following equation:

E+Z(Jj—f(j)] di) = D 5| 5) i=1,..,n
with
By = (8| ]e),
N 1

Kjloi(1)) = (4;(2)

6i(2)),]@5(1))

T12
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where integration is over the coordinates of the second electron.

Let us define the following operator:
fZ: E+Z(j]—f(]>
J

With this (and by a transformation among orbitals) one gets the following equation:

~

foi=¢ci¢i t=1,..,n

This is the so called Hartree-Fock equation, which we obtained earlier as the generalization
of the Hartree equation considering the indistinguishability of the electrons. Now we also
get the form of the URF potential:

oMt o= Y (- K5),

~ A

i.e. the Hartree-Fock potential consists of the Coulomb (.J;) and exchange (K;) operators.
Orbitals satisfying the Hartree-Fock equation are called canonical orbitals. Later we
will discuss their porperties in detail, but we can recognize already that orbital energies are
assiciated with them. It seems that n-electron problem is reduced to that of n independent
one-electron systems. This is, however, not quite true: the Fock operator f is a one-
particle operator, but — through jj and K ; — it depends on all the occupied orbitals:

F=f({od)

Therefore the solution of the equation can be performed through an iterative procedure
we have discussed before:

) S VL S L

which is called the SCF (Self-Consistent Field) procedure. (The name comes from the
fact that after convergence, the Fock operator built up from a set of orbitals results the
same orbitals as its eigenfunctions.)

4.8.2. The Hartree-Fock-Roothaan method

Above we have derived the equations of the HF-method:

~

f¢1:€z¢z izl,...,n

These are still complicated differential equations, which do not have analytic solution.
We have to introduce a further approximation: let us look for the best orbitals in form
of linear combination. In this case optimization of the orbitals means optimization of the
coeflicients of the linear combinations. In practice, atomic orbitals are used as basis, i.e.
we use the LCAO-MO approximation:

¢i = Z CaiXa
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with y, representing atomic orbitals. Insert these into the HF equations:

JEZCM'X& = & aniXa /(Xb|

> Cui <Xb f Xa> = &> Cu <Xb Xa>

a ———— a —_——
Fba Sba
EQl = Ezﬁgl

with C; is the vector given by the C,; coefficients corresponding to the ith MO. Collecting
all C; vectors into a matrix C, we have a compact form of the Hartree-Fock-Roothaan
(HFR) equations:

[igs
[

1[0

5C

This is a matrix eigenvalue equation, but the Fock matrix F is still a function of the
orbitals, or more precisely, their coefficients:

F=F(J,K)=E({s})=E({C})

Therefore, the solution proceeds again in a SCF way.

In this the Fock-matriz is formed using the coefficient matrix C, then the HFR equations are
solved, i.e. the Fock matrix is diagonalized. This results a new C matrix which is used to build
the new F', etc., the procedure is repeated until convergence.

4.8.3. Interpretation of the results of the Hartree-Fock method

Orbitals (¢;) are obtained from the Hartree-Fock equations:

~

foi=c¢€i ¢

In practice, orbitals are linear combination of atomic orbitals:
¢i = Z CaiXa
The wave function of the system is the determinant built from these orbitals:

1
U = ﬁdet((bh"'aqﬁn)

The density matrix
According to the postulates, it is the probability density which has physical meaning:

U*(ry, 79, 1)V (g, Ty - -+, 1y )dvrdvg - - - duy,

which gives the probability of finding the first electron at position r;, the second at
position ry, the third at rs, etc, while the nth at r,,.
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This is not really that we are interested in. Instead, we would like to know what is the
probability of finding an electron at a given pont in space, r, irrespective of the position
of other electrons. This can be obtained with the following expression:

p<£) - n//.../\Ij*(Zlaz%'"7Zn)\Ij<flaf27'",fn>dv2d/03"'d1}n

Notice that, except of the first electron, we integrate according to the position of all other
electrons. The multiplier n in front of the expression comes from the fact that electrons
can not be distinguished, so we added up the probability for all individual electrons. p is
called electron density.

In case of determinental wave function, electron density can be given as the sum of
the densities corresponding to individual orbitals.

p(r) = Zn: Gi(r)di(r)
= i > Caixa(r) Y Crixe(r)
= Z Z i CaiCbi Xa (E)Xb (f)

—_———
Pab

In the second row orbitals have been expanded in the (AO) basis, in the last one the den-
sity matriz P has been introduced. The first line shows why this method is an independent
electron approximation: density is given as the sum of the densities from individual orbi-
tals.

Population analysis (according to Mulliken)
Integration of the electron density for the entire space gives the number of electrons:

n= [owdo = X3Py [l
= Zzpabsab

In the last equation total electron density can be divided among basis functions:
o P,.Su. = P,, gives the charge corresponding to basis function y,;
o P, Su gives the charge corresponding to the overlap x.xs.
From these one can construct atomic contributions:
® > ca PuaSaa = X aca Paa gives the charge on atom A;

® > ca>pen PuSa gives the electron number corresponding to bond between atoms
A and B (NOT BOND ORDER, THOUGH!).
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Finally, the total (Mulliken) charge on atom A can be obtained by summing all cont-
ributions involving atom A:

Z Z PabSab = Z(P:S)aa

a€A b acA

Mulliken population analysis, despite of its theoretical weaknesses, is very popular.
There are, however, other methods for population analysis, which are theoretically more
precise, but at the same time more complicated. We can not deal with these in this course.

Orbital energy, total energy
The quantity €; in the Hartree-Fock equations is orbital energy. This is the expectation
value of the Fock operator for orbital ¢;:
o)

& = <¢z’ f ¢z’>
= (ofi+ 0 - &)
J
Summing all orbital energies of the occupied orbitals, we do not get the total energy
of the system:

= Hy+)Y (Ji; — Kij)
J

E # Z&:ZHWFZZ(JM—K@)
E = ZHM"‘;ZZ(JU_KU)
= Ya ;T Ky)

Thus, one has to subtract electron-electron interaction, since the sum of orbital energies
includes it twice.

Tonization energy, Koopmans’ principle

Consider a closed shell system (M), and remove one electron (M™). For the latter
system, we keep the orbitals unchanged. The energy of the molecule and ion can be given
as:

Ey = 2Hy +2Hy +4J10 — 2K10 + Jin + Jao
Ey+ = 2Hy + Hoo +2J10 — K9+ J1n
AE = EM“’ — EM = —H22 — 2J12 + K12 — J22 = —&9

Ionization energy is equal to the negative of the energy of the orbital where the electron
has been removed from. This is the so called Koopmans’ principle. This is a quite simple
way to calculate ionization energy. Its accuracy is due to the cancellation of the errors of
two approximations:
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e determinental wave function (the so called electron correlation is neglected);
e orbitals are not optimized for the ion (orbital relaxation is neglected).
The same way one could also calculate electron affinity:

Ey- —FEy=¢,

This is, however, a much worse approximation, since the empty orbital, which is occupied
by the extra electron, is not well described (not included in the Fock operator, therefore
its interaction with other electrons is not considered).
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4.9. Electronic structure of water molecule

4.9.1. Qualitative MO treatment

Orbitals can be obtained from the Independent Particle Approximation (IPA), and occupy

them according to orbital energies.
In practice: Hartree-Fock-Roothaan method (HF + LCAO-MO):

wave function : U = |[¢q, Po, ..., Oyl
orbital : ¢; = Z CuiXa
with x, being the basis functions.

Let us use the minimal basis, which only includes the functions of each occupied shells:
H: 1s,, 1sy O: 1s, 2s, 2py, 2py, 2p,

Performing the calculations, we obtain the following orbitals:

lay orbital (-20.52 hartree)

wwwwwwwwww

lag: 1s

2a; orbital ( -1.33 hartree)

st used

2a;: 28 (—2p,)+ ls,+ 1s, bonding
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1b, orbital ( -0.67 hartree)

uuuuuuuuu

1by: 2py + 1s, — 1s, bonding

3a; orbital ( -0.56 hartree)

st st

3ai: 2p, (+ 2s) non-bonding

1by orbital ( -0.52 hartree)

wwwwwwwww

1bsy: 2p, non-bonding

88
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4a, orbital ( 0.33 hartree)

aaaaaaaa

4ay: 28 + 2p, — 1s, — 1s, anti-bonding

2b; orbital ( 0.49 hartree)

st st

2by: 2py — 1s, +1sp, anti-bonding

Configuration: (1a;)? (2a;1)? (1by)? (3a;)? (1by)?
State: 'A; (orbitals are fully occupied = total symmetric singlet)

Excited states:
configuration: (1a;)? (2a;)? (1by)? (3a1)? (1by)! (4ay)?
B2®A1:B2 = state: 3B2 or 1B2

configuration: (1a;)? (2a;)? (1by)? (3a;)? (1by)! (2by)?
B2®B1:A2 =-state: 3A2 or 1A2

89
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Considering symmetry

In TEA/LCAO-MO there are seven atomic orbitals — seven MO’s — 7x7 problem.
Symmetry: Coy
seven basis functions — seven symmetry-adapted basis functions
mathematically: basis is reducible — transform it into irreducible representation

Character table:

Cay E Cy ou(y2) op(22)
A, 1 1 1 1
A, 1 1 1 1
By 1 -1 1 -1
By 1 -1 -1 1
Dpasis 7 1 ) 3

Formula for the reduction:

with

h: order of the group;

Ny order of the class;

X'(k): character if the ith irrep corresponding to class k;

X(k): character of the reducible representation corresponding to class #.

With this:

Na1—
Na2—
np1=
Np2—

117+ 1114+ 1154 1-1:3) =4

(11741114 1(=1)5+1(-1)3)=0
(1174 1(=1)1+ 115+ 1-(—1)3) =2
11174+ 1(=1)1+1(-1)54+113) =1

Thus: Fbasis:4 A1 D 2 B1 ®1 BQ

The above expression tells us that there are four a;, two by, and by orbitals.

Which basis functions form the MOs?

Remember: the operator projecting into the space of the ith irrep is:

A

B = Y X({RR
7

with R is the symmetry operation, X’(R) is its character with respect to irrep 1.

90
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For example:
Pa, 1sq = 1s, 4+ 18y + 1s, + 1sp = 2(1s, + 1sp)

The final results:
ar: 1s, 28, 2p,, (1s,+1sp)  dimension 4x4
bi: 2py, (Is,—1s,) dimension 2x2
by: 2p, dimension 1x1

One can perform the calculations in the symmetry adapted basis. This will result in
the same orbitals discussed above, however, symmetry blocks can be treated separately.
Localized orbitals

How do bonding orbitals look like? There are two bonding orbitals, both of them
extend over all three atoms.
Chemical intuition suggests different bonds!

Remember: ,orbitals have no physical meaning”, the determinant does not change if we
transform occupied orbitals among themselves.
Thus, one can consider the linear combination of these two orbitals:

2&1 1b1

uuuuuuuuuuuuuuuuuuuuu

uuuuuuuuuuuuuuuuuuuuu

2a; — 1by 2a1+1by

We obtain two bonding orbitals which correspond to chemical intuition, each repre-
senting one OH bond!



4. ELECTRONIC STRUCTURE OF MOLECULES

Now consider the two non-bonding orbitals:

3&1

nnnnnnnnnnn

3&1 + 1b2

1by

uuuuuuuuu

<<<<<<<<<

92

We obtained two non-bonding orbitals which correspond to chemical intuition (two
lone pairs on oxygen).

Comparison of localized and canonic orbitals:

canonic | localized
orbital energy yes no
symmetry yes no
bond between pair of atoms no yes
lone pair on atom no yes

4.9.2. ,Hybrid orbitals” (details see later)

We would like to construct localized orbitals directly from the basis functions.
We know that basis functions span a space, therefore any linear combination of basis
functions will span the same space, while the description of the problem in this new basis

is unchanged.
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Construct so called hybrid orbitals, which point into the direction of the bonds:
hi = 2p, + 2p, orbital:

wwwwwwwww

hy = 2p, — 2p, orbital:

uuuuuuuuu

Mix in also some 2s component:
hll = hl + 28

s st

93
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hl2:h2+28

et sed

(There is of course a third orbital: hf = 2s — hy + hs)
These already point along the bonds, so that we can construct the desired pairs:

hy + 1s, first bond
Ry + 1sy second bond

Important: when constructing hybrid orbitals, we already use the ,results”, since the
hybrids point where we expect the bond to be.

For example: h; and he do not point exactly along the bond:

uuuuuuuuu

Let us as change the relative weight of the p, and p, orbitals:
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The figure shows that increasing 2p, contribution rotates the hybrid orbitals. Below
this will have an important consequence!

4.9.3. VB treatment

In case of the Hy molecule we have seen that in VB theory one forms electron pairs from
unpaired electrons. The spatial part of the wave function reads:

geratial - — 960 (1) 1sp(2) + 1s4(2) 1sp(1)

It follows that we need only consider unpaired electrons.

In case of water, the contributing atomic configurations are:
O: 1s? 2¢% 2p* — 1s% 28% 2p,? 2p, 2p,

H: 1s

Open shells:

O: 2py and 2p,

H: 1s, and 1sy,

Thus we can form two pairs (spatial pairs):

f11(1,2)=154(1)2p4(2) + 15a(2)2p,(1)

f12(3,4)=1sy(3)2py(4) + 1sp(4)2py(3)

From these one can obtain the wave function of four electrons (spatial part):
D4 (1,2,3,4)= 11;(1,2)-£12(3,4)

One can, however, pair these also in another way:

f91(1,2)=1s,(1)2py(2) + 1s.(2)2py(1)

f22(374):18b(3)2pz(4) + lsb(4)2pz(3)

From these one can obtain the wave function of four electrons (spatial part):
$p(1,2,3,4)= £1(1,2)-£51(3,4)
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(There is one more possibility:
£31(1,2)=1s,(1)1sp(2) + 1sa(2)1sp(1)
f39(3,4)=2p4(3)2py (4) + 2p.(4)2py(3)

but this is redundant, see e.g. the book of Levine).

The Heitler-London wave function:

\I/HL(1,2,3,4):CACI)A(1,2,3,4)+ CB(I)B<17273;4);
where coefficients can be obtained variationally: cy=—cp

Correction:

i.) consider also ionic terms (for the repulsion of H atoms)

ii.) use hybridization — place the unpaired electrons to such orbitals which show the
right bond angle.

VB wave function with hybrid orbitals:

O: hy’ and hy’

H: 1s, and 1sy

(b’ hybrids are shown above!)

711 (1,2)=1s,(1)hy’(2) + 1s,(2)hy’(1)

f712(3,4>:18b(3)h27(4) + 1Sb(4)h27(3>

These are all we need since, as can be seen from the figure, overlaps are small in case
of other pairings (e.g. between 1s, and h)).

\DHL(1727374) = f{l(lvz)f{2(374)

Graphically:
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As we have seen, the angle of hybrid orbitals can be adjusted, therefore we can obtain
the correct structure!
This means that for a good result one needs to know the structure in advance :).
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1. For a qualitative treatment this is enough: Lewis structures are based on this theory
(see later).

2. For a quantitative treatment: generalized VB (GVB) method can be used.

Generalized VB wave function:

In case of water molecule:
Vave(1,2,3,4)= ca{(g1(1)g2(2) + 21(2)g2(1)) (g3(3)2a(4) + g3(4)ga(3))} +

cp{(g1(1)g3(2) + 81(2)gs(1)) (82(3)ga(4) + g2(4)g4(3))}
gi=2a CiaXa These are ATOMIC ORBITALS!!!!!!

Coeflicients cya, cg and c¢;, can be obtained variationally. Thus one takes into account
that during bond formation, orbitals of the atoms might change.

Advantage:

e  ab initio”, meaning that no information on structure is used;
e chemical intuition OK;

e quantitative.

Disadvantage: computationally demanding (atomic orbitals are not orthogonal).
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4.10. Qualitative description of the electronic structure of mole-
cules using VB theory based on hybrid orbitals

4.10.1. Methane molecule

Atomic configurations:

H: 1s
C: 1s% 2s% 2p?

We know that the carbon atom forms four equivalent bonds. But how, if
e it has only two unpaired electrons;
e these are on the three components of the 2p orbital?

How do we get four equal bonds?

Solution:
1. ,promotion” (excitation): 2s* 2p?— 2s' 2p?

2. hybridization: from the 2s and three components of the 2p orbitals: ,,sp? hybri-
dization”

hi= 2s + 2px + 2py + 2p,

h2: 2s — 2px - 2py =+ 2pz

hs= 2s — 2px + 2py — 2p,

hy= 2s + 2py — 2py — 2p,

These orbitals point to the corners of a tetrahedron:

sp® hybrid orbitals
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A fictive process before the formation of bonds:
2522p? — promotion — 2s'2p? — hybridization — h* configuration
Note: h* results in the same spherical electron density than sp?.

Now we can form electron pairs:

£(1,2) = hy(1)15,(2) + hy(2)15,(1)
£5(3,4) = ho(3)1sp(4) + ha(4)1s,(3)

£5(5,6) = hy(5)15¢(6) + hy(6)1se(5)

£4(7,8) = ha(7)1sq(8) + ha(8)1s4(7)

Oy (1,2,....,8) = £1(1,2) - £2(3,4) - £3(5,6)- £4(7.,8)

We do not need other configuration, since only these orbitals point towards each other.
Graphically:

i i
; LRl S " i
Lt T !.'v",! 2 S

Thus using the fact that there are four equivalent bonds in methane, VB theory
predicts four bonds pointing towards the corners of a tetrahedron.

4.10.2. Ethene molecule

Atomic configurations are as above. Now, however, one wants to form not four, rather
three identical bonds (two CH and one CC bonds):

Other hybridization: 2s 2py 2p, — three orbitals
The 2p, orbital is unchanged.
,sp? hybridization”

The fictive process before forming the bonds:

2522p? — promotion — 2s'2p® — hybridization— h? 2p, configuration
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h1: 2s + 2pX + 2py

ho= 2s — 2py — 2py

hs= 2s — 2px + 2py

These orbitals point towards the corners of a triangle:

sp? hybrid orbitals

The unpaired electrons are on the following orbitals:
]-Sa7 ]-Sb7 ]-SC: 1Sd7 hll; h217 h317 2pzl7 h127 h227 h327 2pz2

Now we can form the electron pairs:

forn (1,2) = hy(1)18a(2) + hyy(2)1sa(1)

fCH2(3;4) = h21(3) Sb(4) + h21(4)1sb( )

fCH3(5,6) = h12(5)1SC(6) -+ h12(6)1SC( )

fCH4(7,8) h22(7)18d(8) + h22(8)18d(7)

fcc1(9,10)= hs1(9)hs2(10) + hsy(10)hs2(9)

foca(11,12)= 2p,1(11)2p,2(12) + 2p,1(12)2p,2(11) IT bond

Oy (1,2, ..,12) = fom(1,2) - fonz(3.4) - fons(5.6) - fena(7.8) - feer(9,10) - foea(11,12)

Other resonance is not possible.
Graphically:
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Thus, there is one bond between each neighbouring C and H atoms, while there is a
double bond between carbon atoms.

4.10.3. Ethine molecule

Here carbon atoms form bonds with only two other atoms.

Other hybridization: 2s 2p, — two hybrid orbitals.
2pxand 2p, orbitals are unchanged.
,sp hybridization”

The fictive process before forming the bonds:

2s?2p? — promotion — 2s'2p® — hybridization — h? 2p,! 2p,' configuration
h1: 2s + 2pz

ho= 2s — 2p,

These orbitals are along one line.

sp hybrid orbitals

Unpaired electrons are on the following orbitals:

1s,, sy, hii,har, 2psa, 2py1, hya, hay, 2Dx2,2Py2

Now we can form electron pairs:

forn(1,2) =hpp(1)184(2) +hy1(2)1sa(1)
fCH2(3;4) hlg( )1Sb(4) +h12(4>18b(3)
foe1(5,6) = hai(5)haz(6) +hoi (6)h2a(5)
foca(7,8) = 2px1 (7)2Px2(8) +2px1(8)2pxa(7) IT bond
fccg(g,l()) = Zpyl (9)2py2(10) +2py1(10)2py2(9) IT bond

Dy (1,2,...,10)= fom- fome - focr - foce - focs

Other resonance is not possible.
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Graphically:
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/ J
I
- i
- N s sk
i. S T

Thus, there are single bonds between the neighbouring C and H atoms and a triple
bond between carbon atoms.

4.10.4. Ammonia molecule

Atomic configuration:
H: 1s
N: 1s? 2s? 2p3

The nitrogen atom forms bonds with three hydrogen atoms.
According to the above consideration, this can happen with sp? hybridization:

2522p3 — promotion — 2s'2p* — hybridizatio— h? 2p?, configuration

This results in a planar structure. We know, however that ammonia is not planar.
Graphically:

Now let us try also sp? hybridization:
2522p3 — promotion — 2s'2p? — hybridization— h® configuration

Pyramidal structure with the non-bonding pair on the top!
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Which one is the right structure? Without calculating energy, this question can not
be answered. The pyramidal structure is lower in energy, therefore it is the most stable
one. In fact, tha planar one is a saddle point on the potential energy surface.

4.10.5. Allyl radical

C atom: sp? hybridization

Unpaired electrons:
1Sa7 1Sb7 1SC,1Sd, 1Seah117 h217 h3172p217h127 h227h3272p227 h137 h237h3372p23

Possible electron pairs::

forn(1,2) =hy1(1)1s4(2) +hy1(2)1s,(1)
fon2(3,4) =hoi(3)1sp(4) +hai(4)1s,(3)
foms(5,6) =h12(5)1s(6) +hi2(6)1sc(5)
fera(7,8) =hi3(7)1s4(8) +hy3(8)1s4(7)

e 1 e

(3,

(5, 1

(7, 154(8
fCH5(9 10) h23< )18 ( ) +h23(10)1 (9)
foo1(11,12)= gt (11)haa(12) +hgy (12)hyy(11)
foon(13,14)= hy(13)haz(14) +hyo(14)has(13)

There remain three 2p, orbitals and three electrons. Therefore only one more bond is
possible:

fir1 (15,16)= 2p,1(15)2p,2(16) +2p,1(16)2p,5(15)  and  2p,s(17)

fr12(15,16)= 2p,3(15)2p,2(16) +2p,3(16)2p,2(15)  and  2p,i(17)

The last electron remains unpaired.

The two possible resonance structures are:
DA(1,2,...17)=fcm1(1,2) - fen2(3,4) - fens(5,6) - fopa(7,8) - fons(9,10) - foer(11,12) -
foca(13,14) - f11(15,16) - 2p,3(17)

Dp(1,2,....17)= fom(1,2) - fora(3,4) - fous(5,6) - fema(7.8) - fous(9,10) - focr(11,12) -
fccg(13,14> . fH2(15,16) : 2pzl(]—7)

VYyp= ca®Pa + cgPp

Summarized: we have found single bonds between the neighbouring C and H atoms, single
bonds between C atoms and a partial II bond involving all three carbon atoms, as well
as a delocalized unpaired electron.

4.10.6. Rules for constructing Lewis structures

Rules (see General Chemistry):
1. count valence electrons;
2. draw single bonds around the central atom;
3. on the terminal atoms, add non-bonding electron pairs to match octets;
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4. put the remaining electrons in form of non-bonding pairs on the central atom;

5. if there is no octet around the central atom, form double bonds by moving the
non-bonding pairs of the terminal atoms into bonding position;

6. determine the formal charges on the atom, and make sure that charge separation
is minimal.

Explanation based on VB theory:

ad 2: with hybridization we form bonds between the central and terminal atoms;

ad 3: on the terminal atoms, we fill up the hybrid and non-bonding orbitals with
electrons;

ad 4: repeat this on the central atom,;

ad 5: form II bonds;

ad 6: resonance structures.

Thus we have shown that the rules obtaining Lewis structures is based on a VB theory
using hybrid orbitals.

Octet rule: there are four orbitals (2s + 2p) in the second shell, if all orbitals are
occupied by two electrons, altogether eight electrons can be accommodated.

4.10.7. Hybridization

Types:
1. sp®> — tetrahedral (see figure above);
2. sp? — triangle (see figure above);
3. sp — linear (see figure above);
In case of transition metal complexes, also d orbitals contribute. For example:

sp3d? hybridization — octahedral complex

sp?d? hybrid orbitals
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sp®d hybridization — trigonal-bipyramidal complex

sp3d hybrid orbitals

Concerning hybrid orbitals, it is important to note that:

1. the result is included in the process since we form such combinations which point
into the required direction;

2. hybridization itself is a simple basis transformation without any physical meaning.
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4.11. The Hiuckel method

For larger molecules the description by the MO theory becomes complicated. In some
cases it is enough to consider only a subset of orbitals. For example, in case of conjugated
molecules, we only consider the 2p orbitals perpendicular to the molecular plane.

4.11.1. Approximations

1.
2.

o — 7 separation: neglect of the interaction between o (in plane) and 7 electrons;

H operator:
7 el

0= ht3)

. Wave function: product form (no determinant!!!), spatial orbitals are double occu-

pied:
U(1,2,3,...2n) = u;(a(1)ui(2)B(2)uz(3)a(3) . .. un(2n)B(2n)

Consequence: eigenvalue equations: helfu; = e;u; Energy: £ =2%"¢;

. Basis: minimal basis: on all C atoms a single 2p, orbital (p1, p2, ....pn)

. Molecular orbitals can thus be obtained from a matrix eigenvalue equation with the

overlap of the basis functions neglected: Qef Fe=ec

. Matrix elements (diagonal elements are «, between neighbours 3, 0 otherwise):

(p1 ’fleff 1) = «
<p2 ’heff |p2> = @
<pn|ﬁeff‘pn> = «
(p1 V}eff |p2> = p
(p|h |psy = 0

<p1 ’}Aleff‘pr) = O
<p2 | i}eff |p3> = p
(pz | hel7 |p4> =0

<pn71 ’il&ff ‘pn> = B
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To solve is the eigenvalue equation of the following matrix:

a f 0 0 ... 0
6 a B 0 ... 0
h = 0 6 a pB ... 0
0 00 O !

4.11.2. Ethene

eff _ [ B
e = (5 0)

hHeli) = ecli)

() () =

a—e f

Eigenvalue equation to solve:

8 a—c¢ =0
We get:
eg=a+p 01:02:12
1
go=a—p 01:—02:E
Eigenfunctions:

Energy diagram:

Total energy:

E = 2a+26
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4.11.3. Butadiene

|=

[l
SO O™
O o o

O ™R ™
™ L ™o

A 4x4 problem, requires the solution of a fourth order equation. It is problematic by
hand...

However, one can consider the symmetry!

Point group: Cyy: only .7 irreps need to be considered, others do not include any basis
functions: B, and A,

Character table:
Czh FE OQ 1 Op

A, [1 1 1 1
B, |1 -1 1 -1
A, |1 1 1 4
B, |1 -1 -1 1

r {4 o0 0 -4
The last row of the table denoted by I' includes the characters of the reducible repre-
sentation spanned by the four p functions.
Resolve into irreps:

1 <& :
m= 23 N (b(h
k
(notations see at the water example).

nt:1(1-1-4+0+o+1-(—1)-(—4)):2

nAu:i(1-1-4+0+0+1-(—1)-(—4)>22

Thus:
I'=2B, ® 24,

The symmetry adapted functions can be determined by using the projection operators:

Pi=3 Xph
1 1
Ayt se,(1) = ﬁ(l)l + pa) Sa,(2) = ﬁ(]?z + p3)
By Sbg(l) = \}i(pl — D4) Sbg(2) = \}ﬁ(m — p3)
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The h¢// matrix on this basis:

N 1 N 1
<5au(1>’heff‘5au(1>> = §<P1 +p4\heff|]91 +p4) = 5204 =«
A 1 A 1
(Sau (2)[h |54, (2)) = §<p2 + p3|h |py + p3) = 5(204 +28) =a+p
" 1 N 1
(S, (D[R ]50,(2)) = §<P1 + pal A |y + ps) = 528=106
A 1 A 1
<8bg(1)’heff\3bg(1)> = §<p1 - P4|heff!p1 - p4> = 52@ =«
" 1 A 1
(sp, ([ |5, (1)) = 5(172 — p3|h |py — ps) = 5(204 —20)=a—f
N 1 A 1
(sp, (1) [ |5, (2)) = 5@1 — pal K |py — ps) = 320=7

There are two matrices to be diagonalized:
Symmetry A,:

hA”I(% af—ﬁ) - 51’3:a+1i2\/55

Symmetry By:

hB9:<g 04?5) — 6274204—1:':2\/36

Energy diagram:
SE—— ]
— 1.
0
—H—1a,




4. ELECTRONIC STRUCTURE OF MOLECULES 110

Eigenfunctions:

Configuration: (1ay,)?(1b,)?

State: 1A,

Total energy: FEyuiadiene = 4o + 4.4806

Delocalization energy: FEyuadiene — 2Fethene = (4o + 4.483) — (4 + 45) = 0.4853

We can perform population analysis, as well. For this the coefficients are:
la,: ¢ =0.37, co = 0.60, c3 = 0.60, ¢4 = 0.37
1bg: ¢1 = 0.60, co = 0.37, c3 = —0.37, ¢4, = —0.60

Py - S19 =2(0.37-0.60 + 0.37 - 0.60)S12 = 0.8951,

Question: what would we get for cis-butadiene?
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4.11.4. Benzene

(=

I
MO O o ™R
CoOoOoOoOWLo ™
SO WL wWo
SR o o
L o oo
S Tmo oo™

It is a 6x6 problem, but we can again use symmetry.
Pointgroup: Dgj: only ,,n” irreps, no basis functions in the other ones.
Resolve into irreps:

F(p17p27p37p47p57p6) = AQu S BZg S Elg @ Loy,

None of the irreps appears twice = the matrix in this basis is diagonal.
The symmetrized basis functions, which are already eigenfunctions:

1
Agy a?u:%(pl + pa + p3 + pa + 05 + Ds)

By, : by = (P1 P2+ P3 — pa+ Ps — Pe)

é\

Eig:  ey(l) = 11((2]91 —p3 —Ds) — (2ps — 6 — pz))

\)

€1g ;((p:a - p5 p6 - pz))
Eo i e(l) = \/11—2« —p3s—ps) + (2pa — pe — Pz))

e2u(2) = ;((ps ps) + (s — P2)>

The corresponding energy can be calculated from the expectation value:
Lo 1hefs
Agy €1 = 6<a2u|h |agu)
= 6«]91 + P2+ p3 + 1+ ps + 06) 1| (p1 + p2 + p3 + pa + D5 + o))
=a+20

For other symmetries, similarly:

111
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Energy diagram:

Eigenfunctions:

Configuration (as,)?(e14)?

State: lAlg

Energy: E = 6a + 80

Delocalization energy: Fyenzene — 3Eethene = (6 + 86) — 6(a + ) = 2

Mulliken population analysis:
Density matrix:

occupied

Py = 2- Z CaiCbi

%
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Atomic charge in case of the Hiickel method:

occupied

Z Z PabSab = Puu=2 Z CaiCai
acAbecA i
For atom 1:
1 1 2 2
2.pPy = =+ 00) =1
11 (\/— \/— )
2u elg(l)

Electron density corresponding to the bond in case of the Hiickel method:

ZZPabSab = Pau-Sa

acAbeB

For bond between atoms 1 and 2:

1 1 2 1 1 2
P - S 2-(—=—= c——+0-= )5 ==5
12 12 <\/6\/6+ \/1—2 \/ﬁ+ 2) 12 3 12
€1g(2)
a2q elg(l) 1g(2
For bond between atoms 2 and 3:
1 1 1 —1 1 1 2
Pys - Sos = S. .
23 23 <\/_\/6 \/E \/ﬁ ) 23 — 3 23

agu 619(1) 619<2)
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4.12. Electronic structure of transition metal complexes

System:

e transition metal” atom or positively charged ion
— open shell, can take additional electrons

e ligands™ negative ion, or strong dipole, usually closed shell
— donate electrons (non-bonding pair, m-electrons)

Two theories:

e Cristal field theory: only symmetry

e Ligand field theory: simple MO theory
Questions to answer:

e why are they stable?

e why is the typical color?

e why do they have typical ESR spectrum?
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4.12.1. Cristal field theory (Bethe, 1929)

Basic principle:

e ligands (bound by electrostatic interaction) perturb the electronic structure of the
central atom (ion)

e clectrons of the ligands are absolutely not considered

Denomination comes from the theory of crystals where the field of neighbouring ions has
similar effect on the electronic structure of an ion considered.

atom complex
pointgroup O;j lower symmetry

orbitals | degenerate d | (partial) break off of the degeneracy

This theory is purely based on symmetry!!

Example: [Ti(Hy0)g)>"

K0
=~
Ho
4,0
Pointgroup: Oy,
Character table of the pointgroup Oy:
0, %1 8C, 6C, 6C, 3C,=(C,)) i 65, 85, 30, 604
Aya 11 11 1 - e Ptyrez?
Ay |1 1 -1-1 1 1 -1 1 1 -1 "
E 2~-1 0 O 2 2 0 -1 2 0 Q2—x=)",
=B e b e
Te (3 0-1 1 1 3 1 0 -1 -1 (RyR,R)
IZE 2.0 1~ ~1 3 -1 0 -1 1 (xz, yz, xy)
A, |1 1 T 1 T —1 -1 -1 -1 -1
Ay |1 1 -1-1 1 -1 1 -1 -1 1
E, 2-1 0 0 2 -2 0 1 -2 0
T, |3 0-1 1 -1 =3 -t 0 t liGnad |
T, (3 0. 1-1" -t -3 1.0 1 =}
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Lower symmetry, five d functions form a reducible representation:

L'(5 functions) =Ty, + E,
ng : dZQ, dm2,y2 Eg . dzy, dmz, dyz

o
o 4,0
= JL
x F %
dya_ s
Energy levels:
—_——
/, dzz d_xz_!rrz eg
s
Energy r
ra
—_—— — — —
A
d N
h ot
dy de de 20
Octahedral

Degree of splitting:
e Theory does not say a word about this

e However: 6- A, =4-A., ie. average energy does not change!
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[Ti(H20)6)>" in more detail:

Ti: ...3d*4s>
Tid+: ...3d"
energy
# e T €y
hv
TR
T I,._._.. "'a:l_
ground state excited state
configuration:  d' (tag)! (eg)!
State: ’D Ty ’E,

atom complex
ground state excited state

Energy difference between ground and excited states is small — violet color (20400 cm™1)

How does this work for more electrons? Use the Aufbau-principle:

o e
+—— 11— 1T 11T NTT

S 1/2 1 3/2 2
From the fourth electron, occupation depends on whether A or the exchange interac-
tion (K) is larger:

e if A > K, the electron goes to the lower level (complex with small spin)
e if A < K, the electron goes to the higher level (complex with large spin)

Strong cristal field: splitting is large enough so that the low spin case will be more stable.
Weak cristal field: the splitting is small and the high spin case will be more stable

Experiment: ESR spectroscopy (see later)
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4.12.2. Ligand field theory

Basic principle: MO theory

e the orbitals of the central atom interact with the orbitals of the ligands — bonding
and anti-bonding orbitals are formed

e symmetry is again important: which orbitals do mix?
Basis:
e atom (ion): 3d, 4s, 4p orbitals

e ligands (closed shell): s-type orbital per ligand (,superminimal basis”)
(sometimes eventually also 7 orbitals)

Symmetrized basis:
according to the pointgroup of the complex, we split it into irreducible representations.

Example: Octahedral complex (O, point group)
Basis:

e atom (ion): 3d, 4s, 4p orbitals —
[(3d) =Ty, & E,

F(4S) = Alg
e ligands:

F()\l, )\6) = Alg SP Eg > Tlu

Symmetry adapted orbitals of ligands (6 water molecules):
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MO diagram:

Fem y a%fé'lf"f%‘) Ligandum

A

: 4s (345)/ b‘\\ L&Ll"l’;

One has to put 1412 electrons on these orbitals:
configuration: (a14)?, (t14)%, (€g)*, (t24)*
Occupancy is the same as in cristal field theory, but

e the energy of the ty, orbital does not change with respect to atomic orbital, while
that of the e, orbital grows

e stabilization of the complex is due to the stabilization of the orbitals of the ligands



4. ELECTRONIC STRUCTURE OF MOLECULES 120

Other example: tetrahedral complex (e.g.. [CoCly|*~, [Cu(CN),J37):
Character table of the pointgroup T4

T I 8C, 3C, 6S, 6q
A, 1 1 I 1 1 x?+yt+ 22
A, 1 1 =1 =
E 2 ~1 2. O 0O (222 —x*—y?,
x2=y%
p A 3 0 -1 1 -1 (Ry R,» R))
T, 3 o -1 -1 1 (x, ¥, 2) I (xy, xz, yz)
P I LA 00z
Reductions:
I'(3d) E@Tz
I'(4s) =
[(4p) =
[(ligands) = Al@TQ
MO diagram:

Few,  Komplexy = Ligandum
(tetre cdenes

2
4p (t) /——\

3d(tll e’): \l
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Appendix

Az energia kifejezése determinans hullamfiiggvénnyel

A Hamilton-operatort bontsuk nulla-, egy- és kételektron tagokra:

VA
= Y ACET Ay Sy S
ria 55 Tij a<p TAB
—_ T/
:ZE(Z) I:IQ f{o

Az egyszertiség kedvéért dolgozzunk két elektronnal (2x2-es determinéns):

E = (9(1,2)|H[¥(1,2))

112 = —(a@ -nha®) (el =k

Kezdjiik Hp-lal. Ez, nem hatvan az elektronok koordinataira, konstans:

(wile) = ¥ (v o) = 3 = quy)

A<B A<B TAB

TAB

- s (5 (51002 = 22001 5 (062 — ()1 (2)) )
11

- ¥ | el

A<B TAB 2

11
= Z[l—o 0+1
A<BTAB2

Ellendriztiik tehat hogy a 2x2-es Slater-determinans valéban normélt.

Folytassuk az egyelektron-taggal:

(U|H W) = <\If \1/>

1

= 5 {r0R@ - E0nE)

+, <sol<1>soz<2> P22

- 5[ (a0

h(1)|e

h(2)|e

(D222~ p2(Vn(2)
1(1)pa(2) — 802(1)901(2)>

2)|h(1) |

(e = (elhlen) oale) =
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~(R@D[E0OAE) = (lble) (ele) =0
~ (2@ L[ALRE) > (elblo) (arle) =0

e @hOep0n@) | > (el (ale) = b

+ ugyanez a h(2)—re

1 1
=5 (P11 + hag) + 5 (h11 + ha2) = hi1 + hao

Altalanos esetben tehat:

(i

\p> =Y hy

%

Végiil a kételektron-tag:

(V|H| V) = <\p 7; \1:>
- 5[ (pe@amee) -
~(Rn@| a0e@) 5 K=K
~(aWpO| fabae) 5 K
~(en@| [a0a®)] » =

= J12 - K12

Altalanos esetben (mert J;; = Ky):
1

‘D> = (Ji — Kij) = 52(%' — Kij)

1<j i

()

Ha a spineket is nézziik (¢1 =: uia, o = u13):

T = <u1a(1)ulﬁ(2) ; ula(l)u15(2)> — Jn(£0)
Ko — <u1a(1)ulﬁ(2)'; u15(1)u1a(2)>
= (0Wu@)|=fun0n®) @Ose)Isma() =0

Kicserélodés tehat csak azonos spinii elektronok kozott lehet.
Példaként tekintsiik a Hy molekula alapallapotat (¢ = uia, w2 = w1 f):

Ey = hy + hoy + Jio = 2h1y + Ji
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A triplet gerjesztett allapotban (¢ = uja, @9 = usar) pedig:

Ky = <U104(1)U204(2) 1o

— <u1(1)u2(2)

u2oz(1)u104(2)>
w(Vur(2)) (a(Da(@|a(a(@) = Ki

12

E, = h11+h22+J12_K12:;Nl11+il22+j12_K12

Tehat nem tiinik el a kicserlélédés, szemben a szinglet gerjesztett allapottal.
Ezzel magyarazhato a Hund-szabaly.
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