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1. Basic concepts of Quantum Mechanics
Dalton’s atomic theory allowed the development of modern chemistry, but lots of questions
remained unanswered, and in particular the WHY is not being explained:

• What is the binding force between atoms?
It is not the charge since atoms are neutral.
How can even two atoms of the same kind (like H-H) form a bond?

• Why can atoms form molecules only with certain rates?

• What is the reason for the existence of the periodic table of Mendeleev?

At the turn of the 19th and 20th century new experiments appeared which could not
be explained by the tools of the classical (Newtonian) mechanics. For the new theory new
concepts were needed:

• quantization: energy can not have arbitrary value;

• particle-wave dualism.

All these led to the development of QUANTUM MECHANICS. Let us follow the route
of this development and discuss the most important steps in some detail.

1.1. Introduction: same basic terms related to light

In the strict sense, „light” is a narrow range of the electromagnetic radiation, what we can
sense with our eyes. In physics very often the term „light” is used for the entire spectrum.

Electromagnetic radiation consists of oscillating magnetic and electric fields wich are
perpendicular to each other, and to the direction of its propagation.
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Basic terms:

• ν: frequency of the oscillation [1/s]

• ν∗: wavenumber [1/m]

• λ: wave length [m]

• c: speed of light

• polarized light: oscillations occur only in a plane

Important relations:

λ =
c

ν
ν∗ =

1

λ

Ranges of the electromagnetic radiation:
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What is spectroscopy?
Matter can absorbe or emit light. The absorbed/emitted light can be decomposed

into its components, and the intensity of these will be characteristic for the matter light
interacts with.

Light, thus, can be decomposed into its components, for example by a prism.

1.2. Observations leading to quantum mechanics

1.2.1. Black Body Radiation

A possible model of a „black body” consists of a closed pot which is isolated from its
surrounding by a heated wall. Inside, depending on the temperature, specific electromag-
netic radiation („light”) appears which, after a while, will be in equilibrium (the amount
of emitted and absorbed radiation is the same). We are interested in the „spectrum” of
the radiation inside the pot. (To investigate the radiation, we make a small hole on the
wall, such that the radiation exiting does not influence the equilibrium.) The radiation
will be investigated by a prism which separates the components.

(The "black-body" spectrum of the cosmic space corresponds to a temperature of TB =
2.725 K)
Let us plot the intensity as a function of the frequency and repeat this at different tem-
peratures!



1. BASIC CONCEPTS OF QUANTUM MECHANICS 6

According to the classical theory, radiation is caused by elementary oscillators, with aver-
aged energy of ε̄ which, according to the principle of equipartition, is proportional to
the temperature. The amount of radiation emitted in a given frequency range should be
proportional to the number of modes in that range. Classical physics suggested that all
modes have an equal chance of being produced, and that the number of modes increases
proportional by the square of the frequency.

The dotted curve in the second figure gives the dependence of energy density on the
wavelength calculated according to the classical theory: the energy density corresponding
to high frequency (low wave length) goes to infinity independent of the temperature. This
is called the „ultraviolet catastrophe” which should not scare you since it simply means
that theory can not describe the experiment.

In 1900 Planck came up with a new, unusual explanation: according to his theory,
the energy of the individual oscillators can not be arbitrarily small, otherwise the energy
could not be distributed among all the oscillators in infinite different ways (c.f. entropy).
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Therefore, the observation can only be explained if the energy of the oscillators are quan-
tized (not continuous), i.e. its value can only be hν, 2hν, 3hν ... It follows, that at every
temperature there is a maximum frequency, and oscillators with higher frequency are not
vibrating, since the energy corresponding to each mode (ε̄) is smaller than hν. Here h is
the so called Planck constant: h = 6.626 · 10−34Js

Planck himself did not like his own theory, since it required an assumption (postulate),
i.e. the existence of the constant h; he aimed to derive this from the existing theory. He
was not successful with this; now we know it is not possible to derive this, since it follows
from a new theory. Thus, despite of his genius discovery, he could not participate in
further development of quantum mechanics.

1.2.2. Heat capacity

According to the Dulong-Petit rule, heat capacity is given by cv,m ≈ 3R, i.e. it is inde-
pendent of temperature. This is valid at temperatures which could be investigated until
the end of the 19th century. Later, when measurements at lower temperatures could be
performed the full curve of temperature dependence was obtained. It showed that at zero
temperature heat capacity also goes to zero.

Einstein explained this using Planck’s idea: matter is also quantized, the oscillators of the
matter (vibrations) can not have arbitrary energy, like the oscillators causing the black
body radiation. This means that by lowering the temperature certain oscillators do not
have enough energy to show up. (The final form of the theory with several oscillators was
derived by Debye.)
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1.2.3. Photoelectric effect

Shining light on a metal plate can result in electric current in the circuit. However, there
is a threshold frequency, below this there is no current, irrespective of the intensity of the
light, i.e.

• below the threshold frequency, no electron leaves the metal plate

• increasing the intensity of the light, the energy of the emitted electrons does not
change, only their number grows.

According to the measurements, the following relation exists between the kinetic
energy of the electron (Te) and the frequency of the light (ν):

Tel = hν − A

where A depends on the nature of the metal plate (called „work function”).
Explanation was given by Einstein again, using the quantization introduced by Planck:

light consists of tiny „particles” (photons) which can have energy of hν only. (Note
that Planck opposed the use of his „uncompleted” theory to explain this (and other)
phenomenon!!)
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1.2.4. The Compton effect

When photon collides with a resting electron, it looses energy. Therefore its frequency also
changes. The photon acts as a particle in this experiment!! Note that a wave scattered
on an object would not change its wave length or frequency!!!

1.2.5. Scattering of electron beam

The figure above shows the experiment by Davisson and Germer (1927), as well as by Ge-
orge Paget Thomson (1928). Using an electron beam, interference circles can be observed
on the photographic plate, just like in case of X-ray radiation → in this experiment the
electron beam acted as a wave.
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1.2.6. The hydrogen atom

The hydrogen atom has four lines in the visible range of its emission spectrum (experiment
first performed by Ångsröm in 1871):

It was Balmer who gave a formula to describe the position of these lines (so called
Balmer formula):

1

λ
= R

(
1

22
− 1

n2

)
n = 3, 4, 5, 6

where R is the so called Rydberg constant, λ is the wave length.
After the discovery that light brings energy of hν (see e.g. photoelectric effect), one

could conclude that the energy of the hydrogen atom must also be quantized!!
How is this possible? According to the Rutherford model, in the hydrogen atom an

electron „orbits" around the nucleus (proton). However,
a) why can its energy not be arbitrary?
b) why does it not crash into the nucleus? An orbiting charge dissipate energy (el-

ectromagnetic field, think about the electric current in a spiral wire), thus after a while
it looses its entire energy and could not orbit anymore.

Explanation by Bohr: in his atomic model, the electron must fullfil some „quantum”
conditions:
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• in case of orbits having certain radius the electron does not dissipate energy; these
are the so called stationary states;

• if the electron jumps from one orbit to the other, it emits (or absorbs) energy in
form of electromagnetic field („light”).

• the possible values for the energy are given by the following formula:

E = − 1

2n2

e2

a0

with n is an integer number

(e is the charge of the electron, a0 the unit length (1 bohr)).

This energy expression gives back the Balmer formula. However, this theory can not
be applied for helium or any other atom!!!

Homework: Show that Bohr’s energy formula gives the Balmer formula for the wave
length corresponding to the transition between energy levels.

1.2.7. Summary

Event New concept Discoverer
black body radiation energy quantized (hν) Planck (1900)
photoelectric effect energy of light is quantized Einstein (1905)

(photon)
heat capacity at low temperature matter is quantized Einstein (1905),

goes to zero Debye
Compton effect electromagnetic radiation Compton (1923)

acts like a particle
scattering of the electron beam electron acts like a wave Davisson (1927),

G.P. Thomson (1928)
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Important consequence of all these: particle-wave dualism (dual nature of
matter)

Luis de Broglie1 in 1924(!!!) came up with the formula relating momentum (p) to wave
length (λ), properties of particles and waves, respectively:

λ =
h

p

To consider all these, existing theories need to be revised completely! Although Bohr
could „fix” the old theory with quantum conditions to describe the hydrogen atom, this
technique does not work in general.

The new theory was presented by:

• Heisenberg (1925) as „matrix mechanics”

• Schrödinger (1926) as „wave mechanics”

It turned out later that the two theories are equivalent, they use only slightly
different mathematics. Now we call this theory as (non-relativistic) quantum
mechanics.

1Louis-Victor-Pierre-Raymond, 7th duc de Broglie
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1.3. Basic concepts of quantum mechanics

1.3.1. Postulates

Postulates or axioms: basic assumptions, directly not observable in experiments, but the
theory based on them explains all observations.

Postulate I
A hermitian operator is ASSIGNED to each physical quantity. The following relation

must be satisfied by the operators of position (x̂) and momentum (p̂x):

[x̂, p̂x] = ih̄

The operators of all other physical quantities are derived by replacing x and px in the
classical formulae by the operators x̂ and p̂x („quantization”, principle of correspondence).

Postulate II
The outcome of the measurement of a physical quantity must yield one of the eigen-

values of the corresponding operator. After the measurement the system ends up in the
eigenstate corresponding to that eigenvalue:

ÂΦi = aiΦi

with ai and Φi being the eigenvalue and the corresponding eigenstate, respectively.

Postulate III
The state of the system is represented by its wave function (state function, state

vector). The wave function completely determines the outcome of the measurements.
The wave function (Ψ) is continuous, single-valued and square-integrable.

Postulate IV
If the system is in state Ψ, the expectation value of a measurement performed on a

quantity represented by the operator Â is given by:

Ā =
∫

Ψ(x)ÂΨ(x)dx ≡ 〈Ψ|Â|Ψ〉

Postulate V
The time dependence of the state function is given by the so called (time dependent)

Schrödinger equation:

ih̄
∂

∂t
Ψ(x, t) = ĤΨ(x, t)

In this equation Ĥ is the hamiltonian of the system, t is the time.

Postulate V+1
Φi state functions form a basis of an irreducible representation corresponding to the

point group of the system.

Postulate V+2
The wave function of electrons is antisymmetric with respect to the interchange of the

particles. (In general: antisymmetric for fermions and symmetric for bosons.)
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1.3.2. Some remarks on the postulates

ad I
One possible choice: x̂ is the multiplication by x (x̂f(x) = xf(x))
In this case the momentum is: p̂x = −ih̄ ∂

∂x

For the kinetic energy we get: T = p2x
2m

⇒ T̂ = − h̄2

2m
d2

dx2

In three dimensions: T̂ = − h̄2

2m

(
∂
∂x2

+ ∂
∂y2

+ ∂
∂z2

)
= − h̄2

2m
∆ = − h̄2

2m
∇2.

Potential energy: V̂ = V (x, y, z)
Hamiltonian becomes: Ĥ = T̂ + V̂
z component of angular momentum: l̂z = −ih̄ ∂

∂φ
(φ is the angle to axis z).

ad II
According to postulate II, the measurement of a physical quantity can only result the

eigenvalues of the corresponding operator:

ÂφAi = aiφ
A
i i = 1, ... (1)

The eigenvalues of some physical quantities are discrete (cannot have arbitrary va-
lues), therefore physical quantities are quantized. For example, the eigenfunction of the z
component of the angular momentum (l̂z) are given by 1√

2π
eimφ, while the eigenvalues are

mh̄, with m = 0,±1,±2, .... The energy of the system is in most cases quantized, as well.
Other quantities, like the position of a particle (x̂f(x) = xf(x)) and momentum

(p̂x eipx = h̄ p eipx), are not quantized and these quantities can have arbitrary values (in
an interval). It is said that these operators possess continuous spectrum.

What do we get if we measure quantity A corresponding to operator Â on a system
which is in a state represented by the wave function Ψ?

a) If Ψ coincides with one of the eigenfunctions of Â, we will measure the corresponding
eigenvalue: Ψ = φAi → A = ai

b) If Ψ does not coincide with any of the eigenfunctions of operator Â then the result
of the measurement can not be predicted: Ψ 6= φAi → A =?. However, according to
postulate II we certainly will get one of the eigenvalues, though one can not predict
which one. One can, however predict the expectation value of the measurement:
Ā = 〈Ψ|Â|Ψ〉. The results of the measurement will be scattered around this value
with uncertainty of ∆A. After the measurement the system will be in the state
corresponding to the measured eigenvalue!!

Consequently: measurement is not an „inspection” rather an „interaction” with the
system.

ad III
In quantum mechanics the state of a system is represented by the wave function (or

state function) which depends on the coordinates of the particles:

Ψ = Ψ(x, y, z) = Ψ(r)
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or in case of n particles:

Ψ = Ψ(x1, y1, z1, x2, y2, z2, ..., xn, yn, zn) = Ψ(r1, r2, ..., rn)

The wave function is an abstraction, has no physical meaning, but its square, the so
called probability density can be used for interpretation:

Ψ∗(x0, y0, z0) ·Ψ(x0, y0, z0)dx dy dz

is the probability of finding a particle at point (x0, y0, z0) (more precisely in its infinitesimal
proximity).

Shorter notation: Ψ∗Ψdv or |Ψ|2dv
We have to use a normalized wave function, otherwise the probability of finding the

particle in the entire space would not be one:

∫ ∫ ∫
Ψ∗ ·Ψ dx dy dz = 1

ad IV
Expectation value: average value of the outcome of several measurements. According

to postulate IV, expectation value can be calculated as: 〈Ψ|Â|Ψ〉. On the other hand,
according to postulate II, these measurements need to be performed on distinct identical
systems, since after a measurement the system will be in the state corresponding to the
measured eigenvalue.

Consider the eigenfunctions of an operator which satisfy: Âφi = aiφi. The wave
function can be expanded on the basis of these eigenfunctions: Ψ =

∑
i ciφi.

Inserting this form of the wave function into the expression of the expectation value,
we get:

Â =
∑
i

∑
j

cicj〈φi|Â|φj〉

=
∑
i

∑
j

cicjaj〈φi|φj〉

=
∑
i

c2
i ai

Therefore the probability of obtaining the eigenvalue ai is pi = |ci|2.
If Ψ = φi, then Ā = ai, i.e. the outcome of the measurement is assured without any

uncertainty.

Two physical quantities can be measured at the same time (without uncertainty) if
their operators commute:

[Â, B̂] = 0
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If this is not fulfilled, the two quantities can not be measured with arbitrary precision:

[Â, B̂] = iĈ

↓

∆A ·∆B ≥ 1

2
|C̄|

with ∆A and ∆B are the uncertainty of the quantities A and B.
Specifically, for position (coordinate) and momentum:

[x̂, p̂x] = ih̄ 6= 0

↓

∆x ·∆px ≥
1

2
h̄

This is the famous Heisenberg uncertainty principle which is now a consequence of the
postulates. (Note that the system of postulates can be formulated differently with, for
example, the uncertainty principle as one of the postulates.)

ad V
Stationary state: in this state, the expectation value of the time independent operators

is constant in time.
Look for a particular solution of the (time dependent) Schrödinger equation:

Ψ(x, t) = Φ(x)ϕ(t)

Inserting this into the time dependent Schrödinger equation:

ih̄
∂

∂t
Ψ(x, t) = Ĥ(x)Ψ(x, t)

ih̄ Φ(x)
∂ϕ(t)

∂t
= ϕ(t)Ĥ(x)Φ(x)

ih̄ ϕ−1(t)
∂ϕ(t)

∂t
= Φ(x)−1Ĥ(x)Φ(x)

The right hand side of the equation depends only on x, while the left one only on t,
therefore they both have to possess a constant value (say E). Therefore, we get

ĤΦ(x) = EΦ(x)

and

ih̄
∂ϕ(t)

∂t
= E ϕ(t)

The solution of the latter equation is:

ϕ(t) = exp
(
−iE
h̄
t
)
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therefore the complete wavefunction is:

Ψ(x, t) = Φ(x) exp
(
−iE
h̄
t
)

Now let us calculate the expectation value of a time independent operator Â with this
wave function:

Ā = 〈Φ(x) exp
(
−iE
h̄
t
)
|Â|Φ(x) exp

(
−iE
h̄
t
)
〉

=
∫

Φ(x) exp
(
iE

h̄
t
)
ÂΦ(x) exp

(
−iE
h̄
t
)
dx

= exp
(
iE

h̄
t
)

exp
(
−iE
h̄
t
) ∫

Φ(x)ÂΦ(x)dx

= 〈Φ(x)|Â|Φ(x)〉

It is independent of time, therefore the state is „stationary”.

ad V+2
Degeneracy is caused by symmetry (see later).
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1.4. Ways to solve the (time independent) Schrödinger equation

General form of the Schrödinger equation:

Ĥ(r) Ψ(r) = E Ψ(r)

One particle in one dimension:

− h̄2

2m

d2

dx2
Ψ(x) + V̂ (x)Ψ(x) = E Ψ(x)

This is a differential equation which is

• of second order,

• variable coefficient („függvényegyütthatós”),

• linear,

• homogeneous.

In case of one particle: 3 dimensions.
In case of n particles: 3n dimensions.

How can one solve it?

• Analytically – only in a few simple cases

• Variationally – set up the energy functional and make it stationary with respect to
the wave function (or its parameters). Very often, the solution is written as a linear
combination of basis functions =⇒ method of linear variations by Ritz.

• Perturbationally – Ĥ = Ĥ0 + Ĥ ′, where the complete eigensystem (value and func-
tion) of Ĥ0 is known.
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1.4.1. Variational solution

see Kémiai Matematika!!!

1.4.2. Basics of perturbation theory

Split the operator into two components („partitioning”):

Ĥ = Ĥ0 + Ĥ ′

such that all eigenvalues and eigenfunctions of Ĥ0 are known:

Ĥ0Ψ0 = E0Ψ0

with Ψ0 being normalized. Expand the energy and wave function:

E = E0 + E1 + E2 + E3 + ...

Ψ = Ψ0 + Ψ1 + Ψ2 + Ψ3 + ...

with 〈Ψ0|Ψi〉 = 0, i.e. all corrections are orthogonal to the zeroth order wave function.
Inserting this into the Schrödinger equation we get:

(Ĥ0 + Ĥ ′)(Ψ0 + Ψ1 + Ψ2 + Ψ3 + ...) = (E0 + E1 + E2 + E3 + ...)(Ψ0 + Ψ1 + Ψ2 + Ψ3 + ...)

which should be satisfied for each order, i.e. we collect the terms of the same order:
Zeroth order:

Ĥ0Ψ0 = E0Ψ0,

i.e. we obtained the zeroth order equation.
First order:

Ĥ0Ψ1 + Ĥ ′Ψ0 = E0Ψ1 + E1Ψ0

Multiplying the equation from the left by Ψ0 and integrating over the coordinates:

〈Ψ0|Ĥ0|Ψ1〉︸ ︷︷ ︸
E0〈Ψ0|Ψ1〉=0

+〈Ψ0|Ĥ ′|Ψ0〉 = E0 〈Ψ0|Ψ1〉︸ ︷︷ ︸
=0

+E1 〈Ψ0|Ψ0〉︸ ︷︷ ︸
=1

Therefore

E1 = 〈Ψ0|Ĥ ′|Ψ0〉

i.e. the first order correction of the energy is calculated as the expectation value of the
perturbation. Physical meaning: the perturbation is small and the change in energy is
calculated with the unchanged wavefunction.
Higher orders can be obtained similarly, but in this case also the perturbed wave function
up to Ψi−1 is needed.
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1.4.3. Example of the analytic solution: particle in the box

The following simple systems can be solved analytically:

• Harmonic oscillator, Morse-oscillator (see later with Prof. Császár)

• Particle in the box

• Potential barrier

• ...

• H atom

• H+
2 „molecule”

The particle in the box is a very instructive model system which shows nicely the new
properties of quantum objects:
Hamiltonian:

V (x) = 0, 0 < x < L

V (x) = ∞, otherwise

Within the box of length L the Hamiltonian is equal to the kinetic energy:

Ĥ = T̂ +V (x)︸ ︷︷ ︸
0

,

The particle can not leave the box, the probability of finding it outside the box is zero,
therefore the wave function must also vanish there. To keep the wave function continuos,
it has to vanish already at the walls (boundary condition):

Ψ(0) = Ψ(L) = 0
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Therefore the Schrödinger equation to solve reads:

− h̄2

2m

d2

dx2
Ψ(x) = EΨ(x)

Ψ′′ = EΨ

with E = −2m
h̄2
E

The general solution to this equation is a function, the second derivative of which is
proportional to itself:

Ψ(x) = A · cos(lx) +B · sin(kx)

As the consequence of the boundary condition:

A = 0 since cos(0) 6= 0 (2)
kL = nπ, nεN since then sin(kL) = 0 (3)

This means that not any sine functions are acceptable: QUANTIZATION appears due to
the boundary conditions.

Put this back to the equation, the following solution can be obtained:

E = n2 · h2

8mL2
; n = 1, 2, ...

Ψ(x) =

√
2

L
sin

(
n
π

L
x
)

The form of the wave function:
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Notes:

• Energy is quantized, it grows quadratically with the quantum number n, it is invers
proportional to L2 and m.

If L → ∞, E2 − E1 ∼ 22−12

L2 → 0. This means that quantization disappears with
L =∞.

The same is true for growing mass m→∞.

• There is a zero point energy (ZPE)!

Energy is not 0 for the lowest level (ground state).

If, however, L→∞, E0 → 0.

Why is ZPE there? This is an unknown term for classical mechanics!

It can be explained by the uncertainty principle: ∆x ·∆p ≥ 1
2
h̄.

Since here we have V̂ = 0, E ∼ p2, i.e. the energy of the particle stems exclusively
from its momentum.

Assume that E = 0, than p = 0, therefore ∆x = ∞, which is a contradiction since
∆x ≤ L, the particle must be in the box. Therefore we conclude that the energy
can never become zero, since in this case its uncertainty would also be zero which is
possible only for a very large box where the uncertainty of the coordinate is large.

Or alternatively, one can also say: if L→ 0 =⇒ ∆x→ 0 =⇒ ∆p→∞ =⇒ ∆E →
∞. This means that the energy of all levels MUST BE larger and larger if the size
of the box gets smaller.

• Wave function: the larger n is, the more nodes the wave function possesses: ground
state has none, first excited state has one, etc. (Node: where the wave function
changes sign).

• Investigate also the probabilities: Ψ∗Ψ! (See the right hand side of the figure above.)

In the ground state the particle can be found everywhere in the box, the largest
probability corresponds to the middle of the box.

In the first excited state, finding the particle in the middle of the box is zero. How
can the particle pass from the left to the right? Bad question, since a particle is
neither on the left or the right, but on both sides.

• How does the solution look like in 3D?

E =
π2h̄2

2m

(
n2
a

a2
+
n2
b

b2
+
n2
c

c2

)
,

where a, b, c are the three measures of the box and na, nb, nc = 1, 2, ... are the
quantum numbers.

If a = b = L, then
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na nb E
(

h2

8mL2

)
1 1 2
2 1 5
1 2 5

We have found degeneracy which is caused by the symmetry of the system (two
measures are the same).
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1.5. Angular momentum operators

Classical angular momentum

l = r × p
lx = ypz − zpy
ly = zpx − xpz
lz = xpy − ypx.

Thus, with the definition of x̂, and p̂ one can obtain the corresponding operators for
the angular momentum components:

l̂x = ŷp̂z − ẑp̂y = −ih̄
(
y
∂

∂z
− z ∂

∂y

)

l̂y = = −ih̄
(
z
∂

∂x
− x ∂

∂z

)

l̂z = −ih̄
(
x
∂

∂y
− y ∂

∂x

)

l̂
2

= l̂2x + l̂2y + l̂2z

It is easy to derive some important properties of the angular momentum operators:[
l̂x, l̂y

]
= ih̄ l̂z[

l̂y, l̂z
]

= ih̄ l̂x[
l̂z, l̂x

]
= ih̄ l̂y[

l̂2, l̂i
]

= 0, i = x, y, z

This means that l̂ does not have any two components which can be measured at the same
time. It is square length (l̂2) and one component of l̂ which can be obtained simultaneously.
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1.5.1. z component of the angular momentum

l̂z = −ih̄
(
x
∂

∂y
− y ∂

∂x

)

Let us use a spherical coordinate system since the hydrogen atom and all other atoms
have spherical symmetry.

x = r sinϑ cosϕ y = r sinϑ sinϕ z = r cosϑ

∂x

∂ϕ
= −r sinϑ sinϕ = −y

∂y

∂ϕ
= r sinϑ cosϕ = x

∂z

∂ϕ
= 0
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Let us prove that (
x
∂

∂y
− y ∂

∂x

)
=

∂

∂ϕ
.

This is easily done using the chain rule:

∂

∂ϕ
=

∂

∂x

∂x

∂ϕ
+

∂

∂y

∂y

∂ϕ
+

∂

∂z

∂z

∂ϕ

= − ∂

∂x
y +

∂

∂y
x+

∂

∂z
· 0

=

(
x
∂

∂y
− y ∂

∂x

)
QED.

Therefore, in spherical coordinates the z component of the angular momentum is given
by:

l̂z = −ih̄ ∂

∂ϕ
, 0 ≤ ϕ ≤ 2π

Thus, choosing the appropriate coordinate system, the form of this operator becomes
quite simple and even its eigenvalue equation can be solved easily:

−ih̄ ∂

∂ϕ
Φ (ϕ) = lzΦ (ϕ)

Φ (ϕ) = A · eimϕ

Here, too, we have a boundary condition, due to the periodicity in ϕ:

Φ (0) = Φ (2π)

eim0 = eim2π = 1

cos (m2π) +i sin (m2π) = 1

cos (m2π) = 1 and sin (m2π) = 0 if m = 0,±1,±2, ...

Quantization comes again from the boundary condition!!!
Now we insert the eigenfunction into the differential equation in order to calculate the

eigenvalues:

−ih̄ (im)A · eimϕ = lz A · eimϕ, m = 0,±1, ...

lz = mh̄, m = 0,±1, ...

The normalized eigenfunction reads:

Φ (ϕ) =
1√
2π
· eimϕ, m = 0,±1, ...
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Eigenfunctions and eigenvalues of the z component of the angular momentum

lz = mh̄, m = 0,±1, ...

Φ (ϕ) =
1√
2π
· eimϕ, m = 0,±1, ...

It is seen that the z component can not take arbitrary values, its magnitude is deter-
mined by the quantum number m.

1.5.2. The l̂2 operator

Let us first write this operator in spherical coordinates:

l̂2 = −h̄2

 1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
︸ ︷︷ ︸+

1

sin2 ϑ

∂2

∂ϕ2


Â (ϑ)

The eigenvalue equation reads:

l̂2Y (ϑ, ϕ) = λY (ϑ, ϕ)

Since
[
l̂2, l̂z

]
= 0, the two operators have common eigenfunctions. Therefore Y (ϑ, ϕ)

must be the eigenfunction of l̂z, as well. Since the eigenfunctions of l̂z depend only on the
variable ϕ, one can write:

Y m (ϑ, ϕ) = Θ (ϑ) Φm (ϕ) , with Φm =
1√
2π
eimϕ

Inserting this into the eigenvalue equation:

l̂2Θ (ϑ) Φm (ϕ) = −h̄2Φm (ϕ) ÂΘ (ϑ)− h̄2 1

sin2 ϑ
Θ (ϑ)

∂2Φm (ϕ)

∂ϕ2
= λΘ (ϑ) Φm (ϕ)

Above it was shown that: −ih̄∂Φm

∂ϕ
= mh̄Φm (ϕ), therefore

−h̄2∂
2Φm (ϕ)

∂ϕ2
= m2h̄2Φm (ϕ) .

Inserting this into the above equation, then by „simplifying” with Φm(ϕ) 2 we arrive to
an equation which only depends on ϑ:

−h̄2
(
ÂΘ (ϑ)−m2 1

sin2 ϑ
Θ (ϑ)

)
= λΘ (ϑ)

2Precisely: multiplying from the left by Φm(ϕ), then integrating according to ϕ.
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Therefore, one has to solve the following equation:

−h̄2

[
1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
−m2 1

sin2 ϑ

]
Θ (ϑ) = λΘ (ϑ)

This is a differential equation already discussed during the „kém.mat.” course: its
solutions are the associated Legendre polynomials:

Θ (ϑ) = Pm
l (cosϑ)

Pm
l (x) =

(
1− x2

) |m|
2 d|m|

dx|m|
Pl (x)

with Pl(x) being the Legendre polynomial of grade l. After applying the differential
operator of rank m on this polynomial, we obtain another polynomial of grade (l − |m|).
With other words, the following relation must hold between the known quantum number
m and the new quantum number l:

l − |m| ≥ 0

l ≥ |m|.

To remember, the first couple of Legendre and associated Legendre polynomials read:

Legendre associated Legendre
P0 (x) = 1 P 1

1 (x) =
√

(1− x2)

P1 (x) = x P 1
2 (x) = 3x

√
(1− x2)

P2 (x) = 1
2

(3x2 − 1) P 2
2 (x) = 3 (1− x2)

Summerized, the eigensystem of operator l̂2 reads:

λ = l (l + 1) h̄2 l ≥ |m|

Y m
l (ϑ, ϕ) = Θm

l (cos(ϑ)) · eimϕ

l = 0, 1, 2, ...

m = −l, ..., 0, ...l

Y m
l (ϑ, ϕ) is the so called spherical function, Θm

l is a polynomial in the variable cos(ϑ).
The square of the angular momentum – and thus its length – can not have arbitrary

values, its magnitude is determined by the quantum number l. The following relation
needs to be fulfilled by the quantum numbers: l ≥ |m|, because the length of a vector can
not be smaller than any of its components (|l| ≥ lz).
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1.6. Quantum mechanical description of the hydrogen atom

1.6.1. Hamiltonian for the hydrogen atom

Atomic units
To avoid dealing with very small numbers, let us introduce the so called „atomic units”:

Quantity Atomic unit SI Conversion
Ang. mom. h̄ [J s] h̄ = 1, 05459 · 10−34Js

Mass me [kg] me = 9, 1094 · 10−31kg
Charge e [C] e = 1, 6022 · 10−19C

Permittivity 4πε0

[
C2

Jm

]
4πε0 = 1, 11265 · 10−10 C2

Jm

derived quantities:
Length a0 (bohr) [m] 1 bohr = 4πε0h̄

2

me e2
= 0, 529177 · 10−10m

Energy Eh (hartree) [J ] 1hartree = e2

4πε0a0
= 4, 359814 · 10−18J

1 Eh ≈ 27, 21 eV
Eh ≈ 627 kcal/mol

The Hamiltonian in (SI units):

Ĥ = T̂ + V̂ = − h̄2

2me

4− e2

4πε0 r

i.e. the potential consists of the Coulomb interactions of electron and nucleus.
The Hamiltonian in atomic units reads:

Ĥ = −1

2
4− 1

r

Clearly, the problem can dealt with in spherical coordinates3:

Ĥ = −1

2

[
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
−l̂2

)]
− 1

r

1.6.2. Solution of the Schrödinger equation for the hydrogen atom

To solve the Schrödinger equation, one first can use the following relations:[
Ĥ, l̂z

]
= 0 and

[
Ĥ, l̂2

]
= 0

Since l̂z and l̂2 depend only on the variables ϕ and ϑ, the wave function can be written
as:

Ψ (r, ϑ, ϕ) = R (r) Y m
l (ϑ, ϕ)

3see the full form of 4 and l̂2 using spherical coordinates in course kém.mat.!
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We insert this into the Schrödinger equation and, similarly to the procedure used in
case of l̂2, we can get rid of the part depending on ϑ, ϕ. One gets:−1

2

∂2

∂r2
− 1

r

∂

∂r︸ ︷︷ ︸
kinetic energy

−1

r
+
l (l + 1)

2r2︸ ︷︷ ︸
Veff

R (r) = E R (r) .

which is an equation in variable r only. One can observe that this last step introduced the
eigenvalues of l̂2 into the equation. Veff is an effective potential: for l = 0 it is a simple
Coulomb interaction, for l 6= 0 beside the Coulomb interaction, also centrifugal force is
considered.

The solutions of this equation can be given in the following form:

Rnl (r) = e−
r
n rl Lnl (r) , n ≥ l + 1 (=⇒ l = 0, 1, 2, ..., n− 1)

with Lnl being the associated Laguerre polynomial.

Here again, a new quantum number has appeared: n = 1, 2, ..., and there is a constraint
between n and l.

Summarized, the solutions of the Schrödinger equation of H-atom:
Eigenfunctions:

Ψ (r, ϑ, ϕ) = Rnl (r) Y
m
l (ϑ, ϕ)

Eigenvalues (hartree units):

En = − 1

2n2
(Eh)

Quantum numbers:

n = 1, 2, 3, ...

l = 0, 1, 2, ..., n− 1

m = −l,−l + 1, ..., 0, l − 1, l
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1.6.3. Discussion of the solution

Discussion of the solution: energy

• energy increases with n and the density of the levels also increases;

• energy depends only on the quantum number n, while eigenfunctions also depend
on l and m → high degree of degeneracy!! (See also below.)

• the formula corresponds to the Bohr formula, thus it correctly describes Balmer
(n1 = 2,VIS) and Lyman (n1 = 1,UV) series.
To remind you, the Balmer-formula reads:

1

λ
= RH

(
1

n2
1

− 1

n2
2

)

Discussion of the solution: degeneracy

Energy is n2-fold degenerate, since:

n−1∑
l=0

(2l + 1) = n2

For example:

n deg.
1 1 one s
2 4 one s, three p
3 9 oen s, three p, five d

What is the reason for degeneracy?

• according to m: spherical symmetry – maintained also in many-electron atoms

• according to l: 1
r
potential (symmetry of the Coulomb-field) – only in hydrogen

atom

Discussion of the solution: eigenfunction

The total wave function reads:

Ψ (r, ϑ, ϕ) = N Rnl (r) Y
m
l (ϑ, ϕ) = N rl Lnl (r) e

− r
nP
|m|
l (cosϑ) eimϕ

n = 1, 2, ...

l = 0, 1, ...n− 1

m = −l, ...0, ...l
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What can we tell about the radial part?

e−
r
n → orbitals with higher quantum number n fall off slower

Lnl (r) → this is a polynomial of grad n− l − 1, which has n− l − 1 nodes
rl → in case of l 6= 0 the wave function is 0 at the nucleus.

Angular part:

• responsible for the direction in space

• its form is a consequence of the spherical symmetry (this form is maintained also
for many-electron atoms).

Eigenfunctions of the hydrogen molecule (Ψnlm):

1s Ψ100 = 1√
π
e−r

2s Ψ200 = 1
4
√

2π
(2− r)e−r/2

2p0 Ψ210 = 1
4
√

2π
re−r/2 cos(ϑ)

2p±1 Ψ21±1 = 1
8
√
π
re−r/2 sin(ϑ)e±iϕ

3s Ψ300 = 2
81
√

3π
(27− 18r + 2r2)e−r/3

3p0 Ψ310 =
√

2
81
√
π
r(6− r)e−r/3 cos(ϑ)

3p±1 Ψ31±1 = 1
81
√
π
r(6− r)e−r/3 sin(ϑ)e±iϕ

3d0 Ψ320 = 1
81
√

6π
r2e−r/3(3 cos2(ϑ)− 1)

3d±1 Ψ32±1 = 1
81
√
π
r2e−r/3 sin(ϑ) cos(ϑ)e±iϕ

3d±2 Ψ32±2 = 1
162
√
π
r2e−r/3 sin2(ϑ)e±2iϕ
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Discussion of the solution: representation of orbitals
Radial part:

Angular part: directional diagram
Rules to draw the directional diagrams:

• ϑ and ϕ define a direction in space;

• we draw a vector of length |Y (ϑ, ϕ)| into this direction;

• connect the tip of the vectors;

• denote the sign of Y (ϑ, ϕ).

Example: draw orbitals 2p0, 1s, and 3d0
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Discussion of the solution: representation of orbitals
Angular part: directional diagram

Directional diaram: 1s orbital

Directional diaram: 2p orbitals
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Directional diaram: 3d orbitals

What directional diagrams does not show: nodes originating from radial part. These can
be seen if we look „into” the orbitals. For example, in case of 2s:
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Discussion of the solution: representation of orbitals
Some other pictures of the p and d orbitals:
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Discussion of the solution: representation of orbitals
Representation of the orbitals: „dotting” – the frequency of the dots represents the

value: denser points represent larger value of the wave function.
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Discussion of the solution: changing to real functions
2p0 function points to z direction, since

2p0 =
1

4
√

2π
e−r/2 r cos(ϑ)︸ ︷︷ ︸

z

= 2pz

We can not draw p1 and p−1 functions, since these are complex. We can, however, take
a real combination of these, since they are degenerate with respect to energy (i.e. the
results will represent a function with the same energy):

1√
2

(2p1 + 2p−1) =
1√
2

1

8
√
π

(
re−r/2 sin(ϑ)eiϕ + re−r/2 sin(ϑ)e−iϕ

)
=

1

8
√

2π
e−r/2r sin(ϑ)

(
eiϕ + e−iϕ

)
︸ ︷︷ ︸

2 cos(ϕ)

=
1

4
√

2π
e−r/2 r sin(ϑ) cos(ϕ)︸ ︷︷ ︸

x

= 2px

1

i
√

2
(2p1 − 2p−1) = 2py

Now we can draw the directional diagram of 2py and 2px functions (see the figure
above).

The same way we can treat the d functions. 3d0 is real and points in z direction.

3d0 =
1

81
√

6π
e−r/3 r2(3 cos2(ϑ)︸ ︷︷ ︸

3z2

−1) =
1

81
√

6π
e−r/3(3z2 − r2) = 3dz2

We can form the combination of 3d1 and 3d−1 functions:

1√
2

(3d1 + 3d−1) = 3dxz

1

i
√

2
(3d1 − 3d−1) = 3dyz

Similarly in case of 3d2 and 3d−2 functions:

1√
2

(3d2 + 3d−2) = 3dx2−y2

1

i
√

2
(3d2 − 3d−2) = 3dxy
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Discussion of the solution: electron density

Remember: the wave function has no physical meaning, but its square, the density
(Ψ(r)∗ ·Ψ(r)dr = |Ψ|2dr) has and it gives the probability of finding the particle at a given
point.

What is the probability of finding the electron at distance r from the nucleus? In case
of 1s orbital this seems to be easy, since the wave function depends only on r:

|Ψ|2dr = Ψ∗(r) ·Ψ(r)dr =
1

π
e−2rdr

Ábra!!!!!!!
Inspecting this function, it seems that the most probable position of the electron is at

the nucleus. What did we really obtain? The function shows the probability of finding
the electron along the radius.

More appropriate question: what is the probability finding the electron at a given
distance r from the nucleus? This is not a point but a shell of the sphere!!! The further
away we go from the nucleus, the larger the volume of the shell becomes.

First, when calculating the volume element, the proper transformation to spherical
coordinates reads:

dx dy dz → r2 sin(ϑ) dr dϑ dϕ

To get the density as the function of r only, we need to sum (integrate) over all possible
values of ϑ and ϕ:

∫
ϑ

∫
ϕ

Ψ(r, ϑ, ϕ)∗ ·Ψ(r, ϑ, ϕ)r2 sin(ϑ)dr dϑ dϕ
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In case of 1s orbital:∫
ϑ

∫
ϕ

Ψ(r, ϑ, ϕ)∗ ·Ψ(r, ϑ, ϕ)r2dr sin(ϑ)dϑ dϕ =
∫ π

ϑ=0

∫ 2π

ϕ=0
sin(ϑ)dϑ dϕ︸ ︷︷ ︸
4π

Ψ(r)∗ ·Ψ(r)r2dr

= 4πr2Ψ(r)∗ ·Ψ(r)dr

This quantity is called radial density.

Radial density of the 1s, 2s and 2p orbitals:

Radial density of the 3s, 3p and 3d orbitals:
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Discussion of the solution: radius of the atom
In Bohr’s atomic theory the radius of the H-atom is a trivial concept: the atom ends

at the orbit where the electron is situated. In case of the 1s orbital the radius is 1 bohr.
But how can this concept be defined in case of quantum mechanics? The problem is that
density does not „end”, the function decays exponentially.

Proper questions in the language of quantum mechanics:

• Where is the maximum of the electron density?

• What is the average distance of the electron from the nucleus?

• What is the probability of finding an electron within a given distance r0?

Where is the maximum of the (radial) electron density?

∂

∂r
(4πr2Ψ∗ ·Ψ) = 0

In case of 1s orbital:

∂

∂r
(4 e−2rr2) = 4 (−2e−2rr2 + 2re−2r) = 0

2e−2rr(1− r) = 0

e−2r = 0 asymptotic behaviour: not a real extremum.

r = 0 minimum

(1− r) = 0 maximum

Thus the maximum of the radial electron density is exactly at 1 bohr!!

What is the average distance from the nucleus?

r̄ = 〈Ψ|r̂|Ψ〉 =
∫

Ψ∗r̂Ψ dv

In case of 1s function 4:
4The following definite integral has been used:∫ ∞

0

xne−ax dx =
n!

an+1
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r̄ =
1

π

∫ ∞
r=0

∫ π

ϑ=0

∫ 2π

ϕ=0
e−rre−rr2 sin(ϑ)dr dϑdϕ

=
1

π
4π
∫ ∞
r=0

re−2rr2dr

= 4
∫ ∞
r=0

r3e−2rdr =
4 · 3 · 2

4 · 4
=

3

2

This means that the expectation value of the distance of the electron from the nucleus
is 1.5 bohr in case of 1s orbital.

The general formula valid for all orbitals can be given in an analytic form, one only
needs to insert the quantum numbers:

r̄ =
a0

2
[3n2 − l(l + 1)]

What is the probability of finding an electron within a given distance r0?

We have to sum the probabilities from 0 to r0, this is an integration:

∫ r0

r=0

∫ π

ϑ=0

∫ 2π

ϕ=0
Ψ∗ ·Ψ r2 sin(ϑ)dr dϑdϕ

Example: 1s orbital, r0 = 1bohr

4π

π

∫ 1

0
r2 e−2rdr = 4

[
e−2r

(
r2

−2
− 2r

4
+

2

−8

)]1

0

= 4
(
e−2

(
−1

2
− 1

2
− 1

4

)
+

1

4

)
= 0.324..

(The following indefinite integral was used:
∫
x2eax dx = eax

(
x2

a
− 2x

a2
+ 2

a3

)
)

The table below demonstrates the result:

r0(bohr) 0.1 0.2 1. 1.5 2. 5
% 0.12 4.8 32.4 57.6 76 99.6

We can clearly see that the probability decays vers slowly, the electron can be found with
a probability of only 76% within 2 bohr.

Let us compare the results of the Bohr model and quantum mechanics (in case of the
1s ground state):

Bohr model Quantum mechanics
Maximum of the probability 1 bohr 1 bohr

Average distance 1 bohr 1.5 bohr
Probability within 1 bohr 100% 32.4%
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Discussion of the results: angular momentum

The eigenfunctions for the hydrogen atom has been selected so that they are also eigen-
functions of l̂2 and l̂z operators:

l̂2 operator: λ = l(l + 1)h̄2 l̂z operator: lz = mh̄
where l and m are the quantum numbers.

The angular momentum values corresponding to the orbitals of the H atom:

orbital l m λ = l(l + 1)[h̄2] lz = m[h̄]
1s 0 0 0 0
2s 0 0 0 0
2p0 1 0 2 0
2p1 1 1 2 1
2p−1 1 -1 2 -1
3s 0 0 0 0
3p0 1 0 2 0
3p1 1 1 2 1
3p−1 1 -1 2 -1
3d0 2 0 6 0
3d1 2 1 6 1
3d−1 2 -1 6 -1
3d2 2 2 6 2
3d−2 2 -2 6 -2

Note:

For all s type orbitals the length of angular momentum vector (
√
λ) is 0 → the electron

does not „orbit” around the nucleus!!
What is it doing then? Why it is not in the nucleus?
The answer again can be given using the Heisenberg relation: if the electron is at the
nucleus, than ∆x = 0 → ∆p and thus the kinetic energy is infinitely large. This is a
contradiction!

Electrons in s state do not have angular momentum!!!
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Angular momentum vectors of the 3d orbitals:

1.6.4. Magnetic moments

If a charged particle is moving on a circle (has an angular momentum), it also has mag-
netic moment. The magnetic moment vector (µ) is therefore proportional to the angular
momentum vector:

µ̂ =
e

2 mel

l̂

µ̂z =
e

2 mel

l̂z

If two operators differ only by a constant factor, also the eigenvalues will differ by this
factor only. Thus, we can easily calculate the eigenvalues of the magnetic monets:

eigenvalues of µ̂z :
e

2 mel

h̄ ·m

with m being the quantum number introduced in connection to the l̂z operator. (This
relation gives an explanation why it is often called magnetic quantum number).

The interaction of a system possessing a magnetic moment and the magnetic field is
given by the product of the magnetic induction (B̂) characterizing the magnetic field and
magnetic moment of the system:

B̂ · µ̂

If this interaction exists, it needs to be included in the Hamiltonian of the system:

Ĥ → Ĥ + B̂ · µ̂︸ ︷︷ ︸
Ĥ′

Considering Ĥ ′ as perturbation, the first order correction (see perturbation theory above)
to the energy of the H-atom is given by:

E(1) = 〈Ψnlm|B̂ · µ̂|Ψnlm〉
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Assume that the magnetic field is along the z axis:

E(1) = 〈Ψnlm|Bz · µ̂z|Ψnlm〉 = 〈Ψnlm|Bz ·
e

2mel

l̂z|Ψnlm︸ ︷︷ ︸
h̄ m|Ψnlm〉

〉 = Bz ·
e

2mel

h̄︸ ︷︷ ︸
µB

m

= Bz · µB ·m

with µB being the so called Bohr magneton, a constant.
What does this mean? According to the equation above, the energy of the hydrogen

atom in magnetic field will depend on the quantum number m: if m is positive, it will
grow; if m is negative, it will decrease; and it is not changing for m = 0. Since there are
2l + 1 possible values of m, there will be 2l + 1 different energy levels, the degeneracy of
these levels will be lifted! This is the so called Zeeman effect.

1.6.5. The spin of the electron

The Zeeman effect can be demonstrated if a beam of H atoms is injected into a inhomoge-
neous magnetic field, since the beam must split into 2l+ 1 beams according to the values
of m. This means 1, 3, 5, 7, etc. beams are expected depending on the initial quantum
number l of the H-atom.

Stern and Gerlach observed, however, that the beam splited into two (2) beams:
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(Note that Stern and Gerlach conducted the experiment with silver atoms, but it also has
only one electron on its outermost s orbital.)

These experiments can not be explained by the theory we have presented so far!!!!

Conclusion:

• Pauli (1925): a „fourth quantum number” is needed;

• Goudsmit and Uhlenbeck suggested the concept of spin as the „internal angular
momentum”.

Classically: if the electron is not a point-like particle, it can rotate around its axis,
either to the right or to the left.

In quantum mechanics: the electron as a particle has „intrinsic” angular momentum,
which is its own property, like its charge.

In the non-relativistic quantum mechanics we are doing here, spin does not appear,
i.e. we have an experiment which contradicts the postulates! Either we need a new theory
(this would be relativistic quantum mechanics), or we try to fix the theory by introducing
spin phenomenologically.

To do this, one needs to introduce an operator to describe spin:

ŝ = (ŝx, ŝy, ŝz)

What do we need to know about an operator in order to work with it?

• what is it acting on?

• what is its effect?

• commutation relations.

The commutation properties of this new operator are the same as of the angular momen-
tum, since it describes similar phenomena (magnetic moment):

[ŝx, ŝy] = ih̄ŝz

[ŝ2, ŝi] = 0 i = x, y, z

Eigenvalues have again similar properties than in case of the angular momentum:

ŝ2 eigenvalues : s(s+ 1) [h̄2]

ŝz eigenvalues : ms = −s,−s+ 1, . . . , s [h̄]

What are the possible values of the new quantum numbers s and ms? These can be
obtained from the Stern-Gerlach experiment: there were two beams, so that ms can have
only two values:

ms =
1

2
, −1

2
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Therefore

s =
1

2

is the only proper choice!!!
Electron, as a particle has, beside its charge, another intrinsic property, spin. Electron

has a charge of −1, and a spin of 1
2
!!!!

What do the spin operators act on? ŝz has only two eigenvalues and associated eigen-
functions:

ŝz α(σ) =
1

2
α(σ)

ŝz β(σ) = −1

2
β(σ)

with σ being the spin variable (spin coordinate). On this basis, considering the commu-
tation relations, the matrices of the spin operators can be derived (Pauli matrices, see
Kémiai Matematika):

ŝz =

(
1
2

0
0 −1

2

)

ŝx =

(
0 1

2
1
2

0

)

ŝx =

(
0 − i

2
i
2

0

)

The total wave function of the electron in the hydrogen atom must be supplemented
by the spin, thus it depends on four variables:

Ψ(x, y, z, σ) = u(x, y, z) α(σ)

or = u(x, y, z) β(σ)

Notes:

• in what follows we will only deal with pure spin states;

• the usual Hamiltonian does not depend on spin, the product form given in the
previous equation is not an approximation!

1.6.6. The states of the hydrogen atom, revisited

Wave function:

Ψn,l,m,ms = Ψn,l,m,ms(r, ϑ, ϕ, σ)
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Quantum numbers:

n = 1, 2, . . .

l = 0, 1, . . . , n− 1

m = −l,−l + 1, . . . , l

ms = −1

2
,
1

2
Energy depends still only on the quantum number n:

En = − 1

2 n2
[Eh]

therefore the degeneracy is 2n2-fold!!!

H-atom in magnetic field, revisited

Spin is alike angular momentum and a magnetic moment is associated with it. Ac-
cording to the experiments, the associated magnetic moment is twice as large as in case
of the angular momentum associated with the orbital:

µ̂z =
e

mel

ŝz

E(1) = 〈Ψnlmms|Bz
e

mel

ŝz|Ψnlmms〉 = Bz
e

mel

ms

(c.f. the factor of two in the denominator).
Considering both l̂z and ŝz:

E(1) = BzµB(m+ 2 ms)

Thus, energy levels are split up into 2(2l + 1) levels!

1.6.7. Spin-orbit interaction

We have seen above that there are two different types of angular momenta:

• angular momentum resulting from the motion of electrons (l̂), will be called as
orbital angular momentum;

• angular momentum originating from the spin (ŝ) (spin momentum).

Since both angular momenta create magnetic moments, these can interact. The mag-
nitude of the interaction depends on the two momenta:

Ĥ → Ĥ + ζ · l̂ · ŝ
where ζ is a constant.

Consequences:

• the Hamilton operator will not commute with either l̂2, l̂z and ŝz operators;

• energy will depend on the quantum number l.

This effect is very small, it is of the order 10−4 − 10−5 hartree, but can be observed
with very accurate spectroscopic methods. For heavier atoms it can be larger and for
atoms with large atomic number it must be considered.
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2. Many-electron systems

2.1. The Hamiltonian

Ĥ = − h̄2

2mel

electrons∑
i

(
∂2

∂xi2
+

∂2

∂yi2
+

∂2

∂zi2

)
−

electrons∑
i

nuclei∑
A

ZA · e2

riA4πε0

+
electrons∑

i

electrons∑
j<i

e2

rij4πε0
+

nuclei∑
A

nuclei∑
B<A

ZAZBe
2

rAB4πε0

with

• {xi, yi, zi} being the coordinates of electron i;

• ZA being the charge of nucleus A;

• rij being the distance of electrons i and j;

• rAB being the distance of nuclei A and B;

• riA is the distance of electron i and nucleus A;

• for constants see earlier.

The Hamiltonian in atomic units

Ĥ = −1

2

electrons∑
i

(
∂2

∂xi2
+

∂2

∂yi2
+

∂2

∂zi2

)
︸ ︷︷ ︸

kinetic energy of electrons

−
electrons∑

i

nuclei∑
A

ZA
riA︸ ︷︷ ︸

electron−nuclei attraction

+
electrons∑

i

electrons∑
j<i

1

rij︸ ︷︷ ︸
electron−electron repulsion

+
nuclei∑
A

nuclei∑
B<A

ZAZB
rAB︸ ︷︷ ︸

repulsion of the nuclei

Note: The kinetic energy of the nuclei have been separated using the Born-Oppenheimer
approximation (see later).

2.2. Wave function of the many electron system

Ψ = Ψ(x1, y1, z1, σ1, x2, y2, z2, σ2, ..., xn, yn, zn, σn)

≡ Ψ(1, 2, ..., n)

i.e. a function with 4n variables.
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2.3. The Schrödinger equation

ĤΨ(1, 2, ..., n) = E Ψ(1, 2, ..., n)

Problem: the Hamiltonian can not be written as a sum of terms corresponding to
individual electrons (

∑
i), therefore the wave function is not a product:

• Schrödinger equation can not be solved exactly

• the solution is not intuitive

2.4. Approximation of the wave function in a product form

Physical meaning:

• Independent Particle Approximation (IPA), or

• Independent Electron Model (IEM)

a) assume, there is no interaction between electrons
This unphysical situation helps us to find a suitable approximation:

Ĥ =
∑
i

hi(i) ⇒ Ψ(1, 2, ..., n)︸ ︷︷ ︸
wave function

= φ1(1) · φ2(2)... · φn(n)︸ ︷︷ ︸
product of spin orbitals

Spin orbitals

φi(i) = φi(xi, yi, zi, σi) = u(xi, yi, zi)α(σi)

or = u(xi, yi, zi)︸ ︷︷ ︸
spatial orbital

β(σi)

In this case the Schrödinger equation reduces to one-electron equations:

ĤΨ = EΨ ⇒ ĥ1(1)φ1(1) = ε1φ1(1)

ĥ2(2)φ2(2) = ε2φ2(2)

...

ĥn(n)φn(n) = εnφn(n)

One n-electron equation ⇒ system of n one-electron equations

Total energy in this case is a simple sum: E =
∑
i εi

What is ĥi?

ĥi = −1

2
∆i −

ZA
riA

which resembles the Hamiltonian of the H-atom ⇒ eigenfunctions will be hydrogen-like!
Problem: electron-electron interaction is missing!!!
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b) Hartree method:
Consider the one-electron problem of the first electron, but let us complete ĥ1 with

the interaction with the other electrons:

ĥ1 → ĥeff1 = −1

2
∆i −

ZA
riA

+ V eff
1

where V eff
1 is the interaction of electron 1 with all other electrons.

How to obtain V eff
1 ?

• Interaction of two charges: Q1Q2

r12

• If Q2 is a distributed charge corresponding to the electron on orbital ϕ2: Q2 =
−|ϕ2(r2)|2

• Thus: Q1Q2

r12
= −Q1

∫ |ϕ2|2
r12

dv2

• The charge of electron 1: Q1 = −1

• Thus: V eff
1 =

∑
j=2

∫ |ϕj(j)|2
r1j

dvj

The energy (ε1) and orbital (ϕ1) of electron 1 can be obtained by solving the eigenvalue
equation of ĥeff1 :

ĥeff1 ϕ1(1) = ε1ϕ1(1)

Similarly, for electron 2

V eff
2 =

∑
j 6=2

∫ |ϕj(j)|2
r2j

dvj

ĥeff2 ϕ2(2) = ε2ϕ2(2)

Finally for electron n:

V eff
n =

∑
j 6=n

∫ |ϕj(j)|2
rnj

dvj

ĥeffn ϕn(n) = εnϕn(n)

These equations are not independent since the orbitals of all other electrons are needed
to obtain V eff

i . Therefore, these equations have to be solved iteratively:

1. starting orbitals (e.g. system neglecting the electron-electron interaction):

2. obtain V eff
i

3. solve the equations → new orbitals

4. go to step 2
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We call this procedure Self-Consistent Field (SCF), since at convergence the field
(electron-electron interaction) generated by the actual set of orbitals results in the same
set of orbitals.

Total energy: E 6= ∑
i εi, i.e. not a sum of the orbital energies since in this case we

would count electron-electron interaction twice. Therefore, energy has to be calculated
as an expectation value:

E = 〈Ψ|Ĥ|Ψ〉

c) Hartree-Fock method: see later

2.5. Pauli principle and the Slater determinant

An important principle of quantum mechanics: identical particles can not be distingu-
ished. Therefore the operator permuting two electrons (P̂12) can not change the wave
function, or at the most it can change its sign:

P̂12Ψ(1, 2, ..., n) = ±Ψ(1, 2, ..., n)

Change of the sign is eligible since only the square of the wave function has physical
meaning which does not change with the sign.

According to postulate V+2-es (so called Pauli principle) the wave function of the
electrons must be anti-symmetric with respect to the interchange of two particles. In case
of two electrons:

P̂12Ψ(1, 2, ..., n) = −Ψ(1, 2, ..., n)

The product wave function used in the Hartree method does not fulfill this requirement,
it isn’t anti-symmetric. Therefore, instead of a product, we have to use a determinantal
wave function.

Ψ(1, 2, ..., n) =
1√
n

∣∣∣∣∣∣∣∣∣∣
φ1(1) φ2(1) · · · φn(1)
φ1(2) φ2(2) · · · φn(2)
...

...
...

...
φ1(n) φ2(n) · · · φn(n)

∣∣∣∣∣∣∣∣∣∣
This type of wave function is called the Slater determinant.
Remember the properties of determinants:

a) Interchanging two rows of a determinant, the sign of the determinant will change.
→ interchanging two orbitals, the wave function will change sign;

b) If two columns of a determinant are equal, the value of the determinant is 0
→ if two electrons are on the same orbital, the wave function vanishes;

c) Adding a row of a determinant to another row, the value of the determinant is unc-
hanged
→ any combination of the orbitals will give the same wave function.
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Conclusions:

a) and b) Pauli principle is fulfilled automatically

c) orbitals do not have physical meaning, only the space spaned by them!!!

Hartree-Fock method
In the Hartree method, equations as well as ĥeffi corresponding to different electrons

differ:

ĥeff1 ϕ1(1) = ε1ϕ1(1)

ĥeff2 ϕ2(2) = ε2ϕ2(2)

· · ·
ĥeffn ϕn(n) = εnϕn(n)

This contradicts the principle of indistinguishability of identical particles.
Therefore in the Hartee-Fock method the same operator (Fock operator) is used for

all electrons:

ĥeffi → f̂(i) = −1

2
∆i −

ZA
riA

+ UHF

with UHF being an averaged (Hartree-Fock) potential (see later).
The Hartree-Fock equation:

f̂(i)ϕi(i) = εiϕi(i) i = 1, · · · , n

The wave function Ψ is a determinant constructed from the orbitals ϕi, while energy
can be calculated as an expectation value: 〈Ψ|Ĥ|Ψ〉.
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3. Electronic structure of atoms
Underlying physical principle: Independent Particle Approximation

3.1. Energy, orbitals, wave function

According to the discussion above, we should solve the Hartree, or the Hartree-Fock
equations first. In both cases we get orbital energies (εi) and orbitals (φi), therefore for
a quantitative discussion it does not matter which one we use. The form of the equation
reads:

ĥ(i)φi = εiφi

ĥ(i) = −1

2
∆i −

1

r
+ V

where V denotes the electron-electron repulsion and is given for both the Hartree and the
Hartree-Fock methods above.

As a solution we get:

• φi orbitals

• εi orbital energies

Since ĥ is similar to the Hamiltonian of the hydrogen atom, the solutions will also be
similar:
The angular part of the wave functions will be the SAME, i.e. Y (ϑ, ϕ). Therefore we can
again classify the orbitals as 1s, 2s, 2p0, 2p1, 2p−1, etc.
The radial part: R(r) will differ, since the potential is different here from that of the H
atom: since it is not a simple Coulomb potential, the degeneracy according to l quantum
number will be lifted, i.e. orbital energies will depend not only on n but also on l (ε = εnl).

Wave function: constructed from the occupied orbitals as a product (Hartree) or as a
determinant (Hartree-Fock); occupied orbitals are selected according to the increasing
value of the orbital energy (so called Aufbau principle).

Some important terms:

• Shell: collection of the orbitals with the same quantum number n;

• Subshell: collection of orbitals with common n and l quantum numbers, which are
degenerate according to the discussion above. Orbital 1s as well as 2s form subshells
alone, while 2p0, 2p1 és 2p−1 (or 2px, 2py, 2pz) orbitals form the subshell 2p. Subshell
3d has five components, 4f seven, etc.

• Configuration: defines the occupation of the subshells. Examples:
He: 1s2

C: 1s2 2s2 2p2
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3.2. Angular momentum of atoms

one particle: l̂2 l̂z ŝ2 ŝz
many particles: L̂2 L̂z Ŝ2 Ŝz

The angular momentum of the system is given by the sum of the individual angular
momenta of the particles (so called vector model or Sommerfeld model):

L̂ =
∑
i

l̂(i)

Ŝ =
∑
i

ŝ(i)

Since L and S are again angular momentum operators, the eigenvalues are given by
similar rules:

L̂2 → L(L+ 1) [h̄2] L = 0, 1, 2, . . .

L̂Z → ML [h̄] ML = −L,−L+ 1, . . . , L

Ŝ2 → S(S + 1) [h̄2] S = 0,
1

2
, 1,

3

2
, 2, ...

ŜZ → MS [h̄] MS = −S,−S + 1, . . . , S

Let us try to obtain the eigenvalues of these operators. From the definition it follows:

L̂z =
∑
i

l̂z(i)

Ŝz =
∑
i

ŝz(i)

and therefore

ML =
∑
i

m(i)

Ms =
∑
i

ms(i)

To obtain the length of the many particle angular momentum vectors is more complicated,
in particular, since – due to the uncertainty principle – the direction of the one-particle
vectors is unknown. The following figure demonstrates this uncertainty of the summation:
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since the angular momentum vectors are not known, only the cone it is situated on,
therefore the summation can lead to different results. For example, in case of two particles
the possible values of the L and S quantum numbers are given by:

L = (l1 + l2), (l1 + l2 − 1), · · · , |l1 − l2|
S = (s1 + s2), (s1 − s2)

For more particles the values can be obtained recursively, adding the components one by
one.

3.3. Classification and notation of the atomic states

The Hamiltonian commutes with L̂2, L̂z, Ŝ2 and Ŝz operators ⇒ we can chose the eigen-
function of the Hamiltonian such that these are eigenfunctions of the angular momentum
operators at the same time. This means we can classify the atomic states by the corres-
ponding quantum numbers of the angular momentum operators:

ΨL,ML,S,Ms = |L,ML, S,Ms〉

The latter notation is more popular.
Thus, in analogy to the hydrogen atom, the states can be classified according to the
quantum numbers. For this, L and S suffices, since energy depends only on these two.

L= 0 1 2 3 4 5 · · ·
notation: S P D F G H · · ·
degeneracy 1 3 5 7 9 11 · · ·
S= 0 1

2
1 3

2
2 · · ·

multiplicity (2S+1): 1 2 3 4 · · ·
denomination: singlet doublet triplet quartet · · ·

In the full notation one takes the notation of the above table for the given L and writes
the multiplicity as superscript before it:
Examples:

L = 0, S = 0: 1S read: singlet S
L = 2, S = 1: 3D read: triplet D

Total degeneracy is (2S+1)(2L+1)-fold!!

3.4. Construction of atomic states

Since there is a high-level degeneracy among the orbitals, most of the time we face open
shell systems, where degenerate orbitals are not fully occupied. In this case one can
construct several states for the same configuration, i.e. configuration is not sufficient to
represent the atomic states.
Example: carbon atom

1s2 2s2 2p2
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2p is open subshell, since only two electrons are there for six possible places on the 2p
subshell.

What are the possibilities to put the two electrons onto these orbitals?
spatial part: 2p0, 2p1, 2p−1

spin part: α, β
These give altogether six spinorbitals, wich can be occupied by the available two

electrons. The number of the possibilities are given by
(

6
2

)
which results in 15 different

determinants. This means there will be 15 states in this case. Do the determinants form
the states? With other words: are these determinants eigenfunctions of L̂2 and Ŝ2?

To see this, let us construct the states by summing the angular momenta: Since we
do not know angular momentum vectors completely (remember the uncertainty principle
applying for the components!), the summation of two angular momentum vectors will not
be unique either, we get different possibilities:

l(1) = 1 l(2) = 1

s(1) =
1

2
s(2) =

1

2
⇓

L = l(1) + l(2), l(1) + l(2)− 1, . . . , |l(1)− l(2)| = 2, 1, 0

S = s(1) + s(2), s(1) + s(2)− 1, . . . , |s(1)− s(2)| = 1, 0

The possible states therefore are:
1S 1P 1D
3S 3P 3D

Considering the degeneracy: 1S gives one state, 1P gives three states, 1D gives five, 3S
gives three states, 3P gives nine states (three times three), 3D gives fifteen states (three
times five), which are altogether 36 states. But we can have only 15, as was shown above!

What is the problem? We also have to consider Pauli principle, which says that two
electrons can not be in the same state.

If we consider this, too, the following states will be allowed:
1S 3P 1D

These give exactly 15 states, so that everything is round now!
Summarized: carbon atom in the 2p2 configuration has three energy levels.
What is the order of these states?

Hund’s rule (from experiment; „Nun, einfach durch Anstieren der Spektren”):

• the state with the maximum multiplicity is the most stable: there is an interaction
called „exchange” which exists only between same spins (see later);

• if multiplicities are the same, the state with larger L value is lower in energy;

In case of the carbon atom:

E3P < E1D < E1S
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3.5. Spin-orbit interaction, total angular momentum

As has been discussed in case of the hydrogen atom, orbital and spin angular momenta
interact. The Hamiltonian changes according to these interaction as:

Ĥ → Ĥ +
∑
i

ζ l̂(i) · ŝ(i)

Consequence: L̂2 and Ŝ2 do not commute with Ĥ anymore, thus L and S will not be
suitable to label the states („not good quantum numbers”). One can, however, define the
total angular momentum operator as:

Ĵ = L̂+ Ŝ

which

[Ĥ, Ĵ2] = 0 [Ĥ, Ĵz] = 0

i.e. the eigenvalues of Ĵ2 and Ĵz are good quantum numbers. These eigenvalues again
follow the same pattern than in case of other angular momentum-type operators we have
already observed:

Ĵ2 → J(J + 1) [h̄2]

Ĵz → MJ [h̄]

The quantum numbers J andMJ of the total angular momentum operators follow the
same summation rule which was discussed above, i.e.

J = L+ S, L+ S − 1, · · · , |L− S|

Energy depends on J only, therefore degenerate energy level might split!!
Notation: even though L and S are not good quantum numbers, we keep the notation

but we extend it with a subscript giving the value of J .
Example I: carbon atom, 3P state:

L = 1, S = 1 → J = 2, 1, 0
3P → 3P2,

3P1,
3P0

Energy splits into three levels!
Example II: carbon atom 1D state:

L = 2, S = 0 → J = 2
1D → 1D2

There is no splitting of energy here, J can have only one value. This should not be a
surprise since S = 0 means zero spin momentum, therefore no spin-orbit inetarction!!!
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3.6. Atom in external magnetic field

Considering the total angular momentum, the change of energy in magnetic field reads:

∆E = MJ · µB ·Bz

MJ = −J,−J + 1, . . . , J

This means, levels will split into 2J + 1 sublevels!

3.7. Summarized

Carbon atom in 2p2 configuration:

Other configuration for p shell:

p1 and p5 2P

p2 and p4 3P, 1D, 1S

p3 4S, 2D, 2P

p6 (closed shell) 1S
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4. Electronic structure of molecules

4.1. Separation of the motion of electrons and nuclei

Hamiltonian
New compared to atoms: electrons are moving in the field of several nuclei. One

important consequence is that the symmetry of the system is lower than in case of atoms.

Ĥ = −1

2

electrons∑
i

∆i −
electrons∑

i

nuclei∑
A

ZA
riA

+
electrons∑
j<i

1

rij
+

nuclei∑
B<A

ZAZB
rAB︸ ︷︷ ︸

Ĥe(r,R)

−1

2

∑
A

1

mA

∆A︸ ︷︷ ︸
T̂n(R)

= T̂el(r) + V̂el−nucl(r, R) + V̂el−el(r) + V̂nucl−nucl(R)︸ ︷︷ ︸
Ĥe(r,R)

+ T̂nucl(R)︸ ︷︷ ︸
T̂n(R)

Ĥ(r,R) = Ĥe(r,R) + T̂n(R)

with

• r denoting the coordinates of the electrons;

• R denoting the coordinates of the nuclei;

• see also earlier notations.

The coordinates of the electrons and the nuclei do not separate, interaction between
electrons and nuclei couples them.

The Born-Oppenheimer approximation:

electrons are much lighter than nuclei ( M
mel
≈ 1836)

⇓ equipartition
electrons are much faster

⇓
electrons follow immediately nuclei (adiabatic approximation)

⇓
from the point of view of the electrons nuclei are steady

⇓
Equation for electrons: Ĥe(r;R)Φ(r;R) = E(R)Φ(r;R)

for nuclei: (T̂n (R) + E(R))χ(R) = ETOTχ(R)

Notes:

• within the Born-Oppenheimer (BO) approximation the equation for electrons and
nuclei have been separated;
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• nuclei are not steady;

• the potential acting on the nuclei is E(R), i.e. electronic energy (eigenvalue of the
electronic Schrödinger equation) at different nuclear distances;

• the potential energy surface E(R) is thus the consequence of the Born-Oppenheimer
approximation, without this approximation the potential (potential curve, potential
energy surface – PES) can not be defined;

• usually a very good approximation, it breaks down if the energies of two electronic
states are close (e.g. photochemistry).

From now on, we will deal with the first (electronic) equation, that of the nuclei will
be considered in the second part of the semester; we will omit the index e, Ĥ will refer
to the electronic Hamiltonian.

4.2. The H+
2 molecular ion

This is a three-body problem and can not be solved analytically. However, using the BO
approximation, it can be reduced to a single-electron problem:

The Hamiltonian:

Ĥ = −1

2
∆1 −

1

r1A

− 1

r1B

+
1

R

with r1A and r1B are the distances of the electron from nuclei A and B, respectively, while
R is the distance of the two nuclei.

The Schrödinger equation:

ĤΦi(1;R) = Ei(R)Φ(1;R)

Analytic solution is possible in elliptic coordinates; we do not solve it, only analyze
the solutions.

Symmetry of the system: D∞h.
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Character table for point group D h

D h E 2C ... v i 2S ... C'2
linear functions,

rotations
quadratic
functions

cubic
functions

A1g= +
g +1 +1 ... +1 +1 +1 ... +1  x2+y2, z2 

A2g= 
g +1 +1 ... 1 +1 +1 ... 1 Rz  

E1g= g +2 +2cos( ) ... 0 +2 2cos( ) ... 0 (Rx, Ry) (xz, yz) 

E2g= g +2 +2cos(2 ) ... 0 +2 +2cos(2 ) ... 0  (x2y2, xy) 

E3g= g +2 +2cos(3 ) ... 0 +2 2cos(3 ) ... 0   

Eng +2 +2cos(n ) ... 0 +2 (1)n2cos(n ) ... 0   

... ... ... ... ... ... ... ... ...   

A1u= +
u +1 +1 ... +1 1 1 ... 1 z  z3, z(x2+y2)

A2u= 
u +1 +1 ... 1 1 1 ... +1   

E1u= u +2 +2cos( ) ... 0 2 +2cos( ) ... 0 (x, y)  (xz2, yz2) [x(x2+y2), y(x2+y2)]

E2u= u +2 +2cos(2 ) ... 0 2 2cos(2 ) ... 0   [xyz, z(x2y2)]

E3u= u +2 +2cos(3 ) ... 0 2 2cos(3 ) ... 0   [y(3x2y2), x(x23y2)]

Enu +2 +2cos(n ) ... 0 2 (1)n+12cos(n ) ... 0   

... ... ... ... ... ... ... ... ...   

The solutions (Φi(1;R)), the wave function of the system, now orbital, since it refers
to one electron):

Φ1, symmetry is Σ+
g Φ2, symmetry is Σ+

u
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Equilibrium bond distance: 2.00 bohr, dissociation energy: 2.8 eV

Basic question: what is the chemical bond?
Answer according to the figures:

• according to the form of the lower PES: energy decreases when the two nuclei get
closer to each other;

• form of the corresponding orbital: electron density between the two nuclei increases.

Quantum mechanics can not tell more, but this is mathematically a perfect explana-
tion. For chemists there are of course other explanations based on approximate models,
see later.
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4.3. The LCAO-MO approximation

σg and σu orbitals are complicated functions. Can we use something simpler?
If we consider the formation of molecules as atoms approaching each other, mole-

cular orbitals can be viewed as two hydrogenic ground state orbitals (1s) approaching.
Therefore:

σg = N1 · (1sA + 1sB)

σu = N2 · (1sA − 1sB)

where 1sA and 1sB are the 1s orbitals of the two atoms.
The validity of this approximation is clearly seen from the form of the molecular

orbitals. Is there a mathematical explanation?

Ĥ = −1

2
∆− 1

r1A︸ ︷︷ ︸
H atom at position A

− 1

r1B︸︷︷︸
=0 at position A

+
1

R︸︷︷︸
constant

This means the Hamiltonian at nucleus A can be approximated by the Hamiltonian
of an H atom, and similarly also at position B. Therefore the wave function can be
approximated by the combination of 1sA and 1sB functions.

In general: within the Linear Combination of Atomic Orbitals for Molecular Orbitals
(LCAO-MO) theory, molecular orbitals are approximated by the linear combination of
atomic orbitals:

φi =
∑
r

cirχr

with χr denoting atomic orbitals. Mathematically: molecular orbitals are expanded in
the basis of atomic orbitals (basis functions) with coefficients cir.

How many function do we need?

• for an exact expansion infinitely many functions are required;

• according to the above discussion, AO-s form a very good basis, a few of them
suffice;

• we need at least as many basis function as many occupied orbitals we have in the
atoms (so called minimal basis).

How can one obtain the coefficients: variational principle, i.e. minimize the energy
(E = 〈φi|Ĥ|φi〉 → min), which leads to a matrix eigenvalue problem (see Kémiai Mate-
matika):

Hc =ESc

with

• H is the matrix of the Hamiltonian: Hij = 〈φi|Ĥ|φj〉;

• c is the vector of the coefficients;
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• S is the overlap matrix Sij = 〈φi|φj〉, which needs to be considered since atomic
orbitals are not orthogonal. Their overlap is important to get bonding!!!

Example: H2
+ molecule ion, minimal basis

Basis: χ1 = 1sA χ2 = 1sB
Overlap of the basis functions: S11 = S22 = 1 S12 = 〈χ1|χ2〉 ≡ S
We look for the wave functions in the following form:

χ1 = c11 1sA + c12 1sB

χ2 = c21 1sA + c22 1sB

Matrix elements of the Hamiltonian:

H11 = 〈χ1|Ĥ|χ1〉 = 〈1sA|Ĥ|1sA〉 ≡ α

H22 = 〈χ2|Ĥ|χ2〉 = 〈1sB|Ĥ|1sB〉 ≡ α

H12 = 〈χ1|Ĥ|χ2〉 = 〈1sA|Ĥ|1sB〉 ≡ β

H and S matrices:

H =
(
α β
β α

)
S =

(
1 S
S 1

)
The Hc = ESc eigenvalue equation:(

α β
β α

)(
C1

C2

)
= E

(
1 S
S 1

)(
C1

C2

)
The secular determinant:∣∣∣∣ α− E β − ES

β − ES α− E

∣∣∣∣ = 0

⇓

E1 =
α + β

1 + S
C1 = C2 =

1√
2(1 + S)

E2 =
α− β
1− S

C1 = −C2 =
1√

2(1− S)
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Results:
Energy: orbital energy diagram:

From this calculation: Re ≈ 2.5 bohr. How good is this?
For qualitative purposes quite acceptable (we could describe the bonding), but also

for quantitative purposes it is encouraging that with such a small basis we obtain good
result.

We can also use symmetry. First set up the so called symmetry adapted basis, i.e. we
form such combinations of the basis functions which transform according to the irreducible
representations of the point group of the molecule:

Σ+
g symmetry s1 =

1√
2(1 + S)

(1sA + 1sB)

Σ+
u symmetry s2 =

1√
2(1− S)

(1sA − 1sB)

The Ĥ matrix in this basis:〈
s1

∣∣∣Ĥ∣∣∣s1

〉
=

〈
1√

2(1 + S)
(1sA + 1sB)

∣∣∣Ĥ∣∣∣ 1√
2(1 + S)

(1sA + 1sB)

〉
=

2α + 2β

2(1 + S)
=

α + β

(1 + S)

〈
s2

∣∣∣Ĥ∣∣∣s2

〉
=

〈
1√

2(1− S)
(1sA − 1sB)

∣∣∣Ĥ∣∣∣ 1√
2(1− S)

(1sA − 1sB)

〉
=

2α− 2β

2(1− S)
=

α− β
(1− S)

〈
s1

∣∣∣Ĥ∣∣∣s2

〉
=

〈
1√

2(1 + S)
(1sA + 1sB)

∣∣∣Ĥ∣∣∣ 1√
2(1− S)

(1sA − 1sB)

〉
=

α− α + β − β
2
√

(1 + S)(1− S)
= 0

H =

 α+β
(1+S)

0

0 α−β
(1−S)
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This matrix is diagonal, its eigenvalues are the diagonal elements:

E1 =
α + β

(1 + S)
and E2 =

α− β
(1− S)

i.e. we obtained the results without diagonalization.
Note: in general, the use of symmetry reduces the size of the matrix to be diagonalized,

since it breaks up into smaller blocks belonging to different irreps.
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4.4. Expectation value of energy in case of determinant wave func-
tion

Let us decompose the Hamiltonian according to zero-, one- and two-electron terms:

Ĥ = −
∑
i

1

2
∆i −

∑
i

∑
A

ZA
riA︸ ︷︷ ︸+

∑
i<j

1

rij︸ ︷︷ ︸
+
∑
A<B

ZAZB
rAB︸ ︷︷ ︸

Ĥ1 =:
∑
i

ĥ(i) Ĥ2 Ĥ0

Expression for the energy:

E =
〈
Ψ
∣∣∣Ĥ∣∣∣Ψ〉 =

〈
Ψ
∣∣∣∑
i

ĥi
∣∣∣Ψ〉+

〈
Ψ
∣∣∣∑
i>j

1

rij

∣∣∣Ψ〉+H0

with Ψ being the determinant wave function. It can be shown that

E =
∑
i

Hii +
∑
i>j

(Jij −Kij) +H0

where:

• Hii =
〈
φi|ĥ|φi

〉
– is the one-electron term containing kinetic energy and interaction

with the nuclei;

• Jij =
〈
φi(1)φj(2)| 1

r12
|φi(1)φj(2)

〉
– so called Coulomb integral, representing electron-

electron interaction;

• Kij =
〈
φi(1)φj(2)| 1

r12
|φj(1)φi(2)

〉
– so called exchange integral.

This means that in case of determinant wave function, in addition to the Coulomb
interaction, there is also an exchange interaction among electrons. One can show that the
exchange interaction can be non-zero only in case of electrons of the same spin. This is
the explanation for the Hund’s rule, since, due to this interaction, it is more favourable
to put electrons to degenerate orbitals with same spin than with opposite spin.
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4.5. Electronic structure of the hydrogen molecule

The Hamiltonian:

Ĥ = −
2∑
i

1

2
∆i −

2∑
i

1

riA
−

2∑
i

1

riB︸ ︷︷ ︸
Ĥ1=:

∑
i
ĥ(i)

+
1

r12︸︷︷︸
Ĥ2

+
1

R︸︷︷︸
Ĥ0

Another partitioning:

Ĥ = −1

2
∆1 −

1

r1A︸ ︷︷ ︸
ĤA

−1

2
∆2 −

1

r2B︸ ︷︷ ︸
ĤB

− 1

r2A

− 1

r1B

+
1

r12

+H0︸ ︷︷ ︸
Ĥ′

These two forms offer two approximations:

• MO theory – according to the first form;

• VB theory – according to the second one.

4.5.1. MO theory for the hydrogen molecule

Similarly to atoms, we use independent electron approximation.
The wave function is a determinant:

ΨMO =
∣∣∣∣φ1(1) φ2(1)
φ1(2) φ2(2)

∣∣∣∣
Where to obtain the MOs from? In case of atoms, the AOs were taken from the

hydrogen atom, here we can use the corresponding one-electron system, the H2
+:

φ1 = σgα φ2 = σgβ

with σg being the bonding orbital of H2
+ (σg = 1√

2(1+S)
(1sA + 1sB)).

Configuration: σ2
g

State: 1Σ+
g Σ+

g ⊗ Σ+
g = Σ+

g

Let us expand the determinant wave function:

ΨMO =
1√
2

(φ1(1)φ2(2)− φ1(2)φ2(1))

=
1√
2

(σgα(1)σgβ(2)− σgα(2)σgβ(1))

= σg(1)σg(2)︸ ︷︷ ︸
spatial part

1√
2

(α(1)β(2)− α(2)β(1))︸ ︷︷ ︸
determinant of the singlet spinfunction
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Inserting the expansion form of the orbital into the spatial part:

Ψspatial
MO = σg(1)σg(2)

=
1

2(1 + S)
(1sA(1) + 1sB(1))(1sA(2) + 1sB(2))

=
1

2(1 + S)
(1sA(1)1sA(2)︸ ︷︷ ︸

ionic

+ 1sA(1)1sB(2) + 1sB(1)1sA(2)︸ ︷︷ ︸
covalent

+ 1sB(1)1sB(2)︸ ︷︷ ︸
ionic

)

Energy:

E = 〈ΨMO|Ĥ|ΨMO〉
= H11 +H22 + J12 −K12

with

H11 = 〈σgα(1)|ĥ|σgα(1)〉 = 〈σg|ĥ|σg〉
H22 = 〈σgβ(2)|ĥ|σgβ(2)〉 = 〈σg|ĥ|σg〉

J12 = 〈σgα(1)σgβ(2)| 1

r12

|σgα(1)σgβ(2)〉 = 〈σg(1)σg(2)| 1

r12

|σg(1)σg(2)〉 〈α(1)β(2)|α(1)β(2)〉︸ ︷︷ ︸
=1

K12 = 〈σgα(1)σgβ(2)| 1

r12

|σgα(2)σgβ(1)〉 = 〈σg(1)σg(2)| 1

r12

|σg(2)σg(1)〉 〈α(1)β(2)|α(2)β(1)〉︸ ︷︷ ︸
=0

There is no exchange interaction between electrons of opposite spin!

Excited state:
Configuration: σgα σuα
State: 3Σ+

u Σ+
g ⊗ Σ+

u = Σ+
u

Here the exchange interaction does not vanish:

K12 = 〈σgα(1)σuα(2)| 1

r12

|σgα(2)σuα(1)〉 = 〈σg(1)σu(2)| 1

r12

|σg(2)σu(1)〉 〈α(1)α(2)|α(2)α(1)〉︸ ︷︷ ︸
=1

The exchange interaction is negative, therefore the energy of the state with higher
multiplicity is lower (Hund’s rule).

4.5.2. Valence Bond (VB) description of the hydrogen molecule

Ĥ(1, 2) = ĤA(1) + ĤB(2) + Ĥ ′(1, 2)

This form suggests the use of perturbation theory, since the Hamiltonian is built from
the Hamiltonians of the non-interactive atoms (ĤA and ĤB), as well as the interaction
(Ĥ ′) between them as perturbation.

The wave function in case of non-interacting atoms:

f1(1, 2) = 1sA(1)1sB(2) or f2(1, 2) = 1sA(2)1sB(1)
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Heitler-London (spatial) wave function:

Φspatial
HL (1, 2) = c1f1(1, 2) + c2f2(1, 2)

(one has to choose antisymmetric spin function for the symmetric spatial function).
Coefficients can again be obtained by variational principle:

Hc = ESc → E1,2 =
H11 ±H12

1± S12

(we have used that H11 = H22).
The matrix elements:

H11 = 〈f1|Ĥ|f1〉 = 〈f1|ĤA|f1〉+ 〈f1|ĤB|f1〉+ 〈f1|Ĥ ′|f1〉 = −1 +Q

since

〈f1|ĤA|f1〉 = 〈1sA(1)1sB(2)|ĤA(1)|1sA(1)1sB(2)〉 = 〈1sA(1)|ĤA(1)|1sA(1)〉︸ ︷︷ ︸
− 1

2

〈1sB(2)|1sB(2)〉︸ ︷︷ ︸
1

= −1

2

〈f1|ĤB|f1〉 = 〈1sA(1)1sB(2)|ĤB(2)|1sA(1)1sB(2)〉 = 〈1sB(2)|ĤB(2)|1sB(2)〉︸ ︷︷ ︸
− 1

2

〈1sA(1)|1sA(1)〉︸ ︷︷ ︸
1

= −1

2

Observe: this is the ground state energy of the hydrogen atom!

〈f1|Ĥ ′|f1〉· = Q

This is a kind of Coulomb interaction.
Similarly:

H22 = −1 +Q

Finally:

H12 = 〈f1|Ĥ|f2〉 = 〈f1|ĤA|f2〉+ 〈f1|ĤB|f2〉+ 〈f1|Ĥ ′|f2〉 = −S2
AB + A

since

〈f1|ĤA|f2〉 = 〈1sA(1)1sB(2)|ĤA(1)|1sA(2)1sB(1)〉

= 〈1sA(1)|ĤA(1)|︸ ︷︷ ︸
− 1

2
〈1sA(1)|

1sB(1)〉

︸ ︷︷ ︸
− 1

2
SAB

〈1sB(2)|1sA(2)〉︸ ︷︷ ︸
SAB

= −1

2
S2
AB

〈f1|ĤB|f2〉 = 〈1sA(1)1sB(2)|ĤB(2)|1sA(2)1sB(1)〉

= 〈1sB(2)|ĤB(2)|︸ ︷︷ ︸
− 1

2
〈1sB(2)|

1sA(2)〉

︸ ︷︷ ︸
− 1

2
SAB

〈1sA(1)|1sB(1)〉︸ ︷︷ ︸
SAB

= −1

2
S2
AB

〈f1|Ĥ ′|f2〉 · = A
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The last one is an exchange-like interaction.
The overlap is:

S12 = 〈f1|f2〉 = 〈1sA(1)1sB(2)|1sA(2)1sB(1)〉 = 〈1sA(1)|1sB(1)〉〈1sB(2)|1sA(2)〉 = S2
AB

Thus energies and the corresponding coefficients read:

E1 =
H11 +H12

1 + S12

=
Q+ A

1 + S2
AB

− 1 c1 = c2 =
1√

2(1 + S2
AB)

E2 =
H11 −H12

1− S12

=
Q− A

1− S2
AB

− 1 c1 = −c2 =
1√

2(1 + S2
AB)

-1: energy of two hydrogen atoms in ground state, Q+ A: their interaction.
The ground state wave function therefore reads:

Ψspatial
HL = (1sA(1)1sB(2) + 1sB(1)1sA(2)) · 1√

2(1 + S2
AB)

Comparing this to the wave function obtained in the MO theory: this is the covalent
part, the ionic part is missing!

Add some ionic functions:

f3(1, 2) = 1sA(1)1sA(2)

f4(1, 2) = 1sB(1)1sB(2)

Thus the complete VB wave function reads:

Ψspatial
V B = cHLΨspatial

HL + cion(f3 + f4)

Coefficients can again be obtained using variational principle. Observe that this is
better than MO wave function since the weight of the covalent and ionic parts are not
fixed.

The results of the calculations:

• at equilibrium distance: cHL ≈ cion, therefore MO is a good approximation here;

• at big R: cHL → 1, cion → 0.
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4.6. Electronic structure of A2-type diatomic molecules

Symmetry: D∞h
The symmetry of the orbitals according to the irreps of the D∞h pointgroup:

symbol of the irrep dimension symbol of the orbital
Σ+
g 1 σg

Σ+
u 1 σu

Πg 2 πg
Πu 2 πu
∆g 2 δg
∆u 2 δu
Σ−g 1 –
etc.

Thus there are non-degenerate (σg, σu) and double degenerate (πu, πg, etc.) orbitals.
We take the orbitals (at least their qualitative form) from H2

+ system:

1σg orbital (-1.10 hartree)

defaults used                           

                                        

 Edge =  5.00 Space =  0.1800 Psi =  1  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

1σu orbital (-0.23 hartree)

defaults used                           

                                        

 Edge =  5.00 Space =  0.1500 Psi =  2  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N
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2σg orbital (-0.04 hartree)

defaults used                           

                                        

 Edge =  5.00 Space =  0.0800 Psi =  3  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

2σu orbital ( 0.10 hartree)

defaults used                           

                                        

 Edge =  5.00 Space =  0.0800 Psi =  4  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

1πu orbital ( 0.11 hartree)

defaults used                           

                                        

 Edge =  5.00 Space =  0.0800 Psi =  5  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N
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1πu orbital ( 0.11 hartree)

defaults used                           

                                        

 Edge =  5.00 Space =  0.1000 Psi =  6  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

3σg orbital ( 0.38 hartree)

defaults used                           

                                        

 Edge =  6.00 Space =  0.0700 Psi =  7  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

1πg orbital ( 0.42 hartree)

defaults used                           

                                        

 Edge =  6.00 Space =  0.0700 Psi =  8  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N
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1πg orbital ( 0.42 hartree)

defaults used                           

                                        

 Edge =  6.00 Space =  0.0700 Psi =  9  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

3σu orbital ( 0.72 hartree)

defaults used                           

                                        

 Edge =  6.00 Space =  0.0700 Psi = 10  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

According to these results, energy ordering of the orbitals is:

1σg, 1σu, 2σg, 2σu, 1πu, 3σg, 1πg, 3σu · · ·

Let us write these orbitals as linear combinations of the atomic orbitals like in case of
H2

+ and H2 systems:

1σg =
1√

2(1 + S1)
(1sA + 1sB)

1σu =
1√

2(1− S1)
(1sA − 1sB)

Similarly:

2σg =
1√

2(1 + S2)
(2sA + 2sB)

2σu =
1√

2(1− S2)
(2sA − 2sB)

The next orbitals can be constructed from the 2p orbitals of atoms, considering also
the symmetry (z is the molecular axis):
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3σg =
1√

2(1− S3)
(2pzA − 2pzB)

1πu(x) =
1√

2(1 + S4)
(2pxA + 2pxB)

1πu(y) =
1√

2(1 + S4)
(2pyA + 2pyB)

Similarly, for anti-bonding orbitals:

3σu =
1√

2(1 + S3)
(2pzA + 2pzB)

1πg(x) =
1√

2(1− S4)
(2pxA − 2pxB)

1πg(y) =
1√

2(1− S4)
(2pyA − 2pyB)

There is a problem with the energy ordering of orbitals: in case of H2
+, the energy

of the 1πu orbital is lower than that of the 3σg orbital. The combination given above
suggests the opposite order (see also General Chemistry).

Explanation: when forming linear combinations, not only one pair of atomic orbitals
needs to be considered. For example:

1σg = c11 (1sA + 1sB) + c12 (2sA + 2sB) + c13 (2pzA + 2pzB) + · · ·
2σg = c21 (1sA + 1sB) + c22 (2sA + 2sB) + c23 (2pzA + 2pzB) + · · ·
3σg = c31 (1sA + 1sB) + c32 (2sA + 2sB) + c33 (2pzA + 2pzB) + · · ·

Obtaining the coefficients, we get that

c11 ≈
1√

2(1 + S1)
, c12 ≈ c13 ≈ 0

Thus, the simpler approximation above is valid in case of 1σg. This can be explained
since the energy of the 1s orbital is substantially lower than that of the others. The
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same approximation is, however, less valid in case of the 2σg and 3σg orbitals, since their
energies are closer, therefore they interact; the energy of the former lowers, that of the
latter increases.

FIGURE

4.6.1. Construction of the states

First we occupy the orbitals according to the Aufbau principle. This gives the configura-
tion. The wavefunction of the state can be characterized by its symmetry, which can be
obtained as the direct product of the symmetry (irrep) of the occupied orbitals.
As example consider first H2:

Configuration: 1σ2
g

Symmetry of the state: Σ+
g ⊗ Σ+

g = Σ+
g

Symbol of the state: 1Σ+
g (read as singlet sigma g plus)

Bond order: 1, since one bonding orbital is occupied by two electrons.

2nd example is He2:

Configuration: 1σ2
g1σ

2
u

Symmetry of the state: Σ+
g ⊗ Σ+

g ⊗ Σ+
u ⊗ Σ+

u = Σ+
g

Symbol of the state: 1Σ+
g

Bond order: 0, since one bonding and one anti-bonding orbitals are occupied.

We observe that in case of doubly occupied orbitals, symmetry is always Σ+
g . It is the

totally symmetric irrep. This is true in general: fully occupied orbitals result in totally
symmetric irrep. Therefore, it is enough to consider only open shells when obtaining the
symmetry of the system.
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For Li2 and Be2 we get the same picture as in General Chemistry. The first difference
appears for B2:
B2: Configuration: 1σ2

g 1σ2
u 2σ2

g 2σ2
u 1π2

u.
The πu orbital can host four electrons, therefore we have here open shell:
Possible symmetries: Πu ⊗ Πu = Σ+

g ⊕ Σ−g ⊕∆g

Possible states, considering also the Pauli principle: 3Σ−g , 1Σ+
g , 1∆g

Energy ordering: E3Σ−g
< E1∆g

< E1Σ+
g

Bond order: ≈1, since the bonding orbitals are occupied with two electrons.

Problematic case:
O2

Configuration: 1σ1
g 1σ2

u 2σ2
g 2σ2

u 1π4
u 3σ2

g 1π2
g .

The πg orbital can host four orbitals, i.e. this is again an open shell system:
Possible symmetries: Πg ⊗ Πg = Σ+

g ⊕ Σ−g ⊕∆g

Possible states considering also Pauli principles: 3Σ−g , 1Σ+
g , 1∆g

Ordering of energy: E3Σ−g
< E1∆g

< E1Σ+
g

Bond order: ≈2, since there are three bonding orbitals fully occupied (3σg, and 1πu
with six electrons, as well as an anti-bonding orbital with two electrons).

Oxygen is paramagnetic, triplet state!!!!

4.7. Electronic structure of AB-type diatomic molecules

Problems:

• the orbital energies of the two atoms are not equal;

• stabilization of the bonding MO depends on this energy difference.
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Therefore, the qualitative picture is not always enough, often quantitative considera-
tion is necessary.

Example: LiH (figure on the blackboard)
orbital energies: Li: -2.48 and -0.19 hartree, H: -0.5 hartree

Other example: CO molecule:
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4.8. The Hartree-Fock method

4.8.1. Formulation of the Hartree-Fock equations

In MO theory determinant wave function is used. In case of diatomic molecules orbitals
could be taken from a one-electron system H2

+.
Problem:

• these are not the best orbitals for quantitative purposes;

• for more complicated molecules there is no reasonable one-electron problem.

Solution to this problem: look for optimal orbitals for each molecule.
But how? One can use variation principle: look for the determinant which gives the

lowest energy. Since the determinant is built up from orbitals, in fact we look for the best
orbitals.

What does it mean „the best orbitals”? According to the variational principle, these
are the orbitals resulting the lowest energy determinant. Let us look for these orbitals!

Expression of energy (see earlier):

E =
〈
Ψ|Ĥ|Ψ

〉
=
∑
i

Hii +
1

2

∑
ij

(Jij −Kij)

=
∑
i

〈
φi|ĥ|φi

〉
+

1

2

∑
ij

(〈
φi(1)φj(2)| 1

r12

|φi(1)φj(2)
〉
−
〈
φi(1)φj(2)| 1

r12

|φj(1)φi(2)
〉)

which is a functional of orbitals {φi}. Therefore one needs to look for the minimum of the
functional with respect to the variation of the orbitals. Orbitals need to remain ortogonal
in order to keep the above form of the energy valid (it is valid if the determinant is
normalized) therefore boundary conditions need to be considered:

〈φi|φj〉 = Sij = δij ∀ i, j → 〈Ψ|Ψ〉 = 1

Thus, the functional to be varied is:

G = E −
∑
i

∑
j

εij (Sij − δij)

δG =
∑
i

δHii +
1

2

∑
ij

(δJij − δKij)−
∑
ij

εij δSij = 0

Without giving the details, the functional G has extremum for those orbitals which
fulfill the following equation:ĥ+

∑
j

(
Ĵj − K̂j

) ∣∣∣φi〉 =
∑
j

εij
∣∣∣φj〉 i = 1, ..., n

with

Ĵj(1) =
〈
φj(2)

∣∣∣ 1

r12

∣∣∣φj(2)
〉

2

K̂j

∣∣∣φi(1)
〉

=
〈
φj(2)

∣∣∣ 1

r12

∣∣∣φi(2)
〉

2

∣∣∣φj(1)
〉
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where integration is over the coordinates of the second electron.

Let us define the following operator:

f̂ := ĥ+
∑
j

(
Ĵj − K̂j

)

With this (and by a transformation among orbitals) one gets the following equation:

f̂φi = εi φi i = 1, ..., n

This is the so called Hartree-Fock equation, which we obtained earlier as the generalization
of the Hartree equation considering the indistinguishability of the electrons. Now we also
get the form of the ÛHF potential:

ÛHF =
∑
j

(
Ĵj − K̂j

)
,

i.e. the Hartree-Fock potential consists of the Coulomb (Ĵj) and exchange (K̂j) operators.
Orbitals satisfying the Hartree-Fock equation are called canonical orbitals. Later we

will discuss their porperties in detail, but we can recognize already that orbital energies are
assiciated with them. It seems that n-electron problem is reduced to that of n independent
one-electron systems. This is, however, not quite true: the Fock operator f̂ is a one-
particle operator, but – through Ĵj and K̂j – it depends on all the occupied orbitals:

f̂ = f̂
({
φi
})

Therefore the solution of the equation can be performed through an iterative procedure
we have discussed before:{

φ
(0)
i

}
→ f̂ (0) →

{
φ

(1)
i

}
→ f̂ (1) → ....

which is called the SCF (Self-Consistent Field) procedure. (The name comes from the
fact that after convergence, the Fock operator built up from a set of orbitals results the
same orbitals as its eigenfunctions.)

4.8.2. The Hartree-Fock-Roothaan method

Above we have derived the equations of the HF-method:

f̂φi = εi φi i = 1, ..., n

These are still complicated differential equations, which do not have analytic solution.
We have to introduce a further approximation: let us look for the best orbitals in form
of linear combination. In this case optimization of the orbitals means optimization of the
coefficients of the linear combinations. In practice, atomic orbitals are used as basis, i.e.
we use the LCAO-MO approximation:

φi =
∑
a

Caiχa
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with χa representing atomic orbitals. Insert these into the HF equations:

f̂
∑
a

Caiχa = εi
∑
a

Caiχa /〈χb|

∑
a

Cai

〈
χb

∣∣∣∣f̂ ∣∣∣∣χa〉︸ ︷︷ ︸ = εi
∑
a

Cai

〈
χb

∣∣∣∣χa〉︸ ︷︷ ︸
Fba Sba

F Ci = εi S Ci

with Ci is the vector given by the Cai coefficients corresponding to the ith MO. Collecting
all Ci vectors into a matrix C, we have a compact form of the Hartree-Fock-Roothaan
(HFR) equations:

F C = ε S C

This is a matrix eigenvalue equation, but the Fock matrix F is still a function of the
orbitals, or more precisely, their coefficients:

F = F
(
Ĵ , K̂

)
= F ({φi}) = F ({Ci})

Therefore, the solution proceeds again in a SCF way.
In this the Fock-matrix is formed using the coefficient matrix C, then the HFR equations are

solved, i.e. the Fock matrix is diagonalized. This results a new C matrix which is used to build
the new F , etc., the procedure is repeated until convergence.

4.8.3. Interpretation of the results of the Hartree-Fock method

Orbitals (φi) are obtained from the Hartree-Fock equations:

f̂φi = εi φi

In practice, orbitals are linear combination of atomic orbitals:

φi =
∑
a

Caiχa

The wave function of the system is the determinant built from these orbitals:

Ψ =
1√
n!

det(φ1, · · · , φn)

The density matrix
According to the postulates, it is the probability density which has physical meaning:

Ψ∗(r1, r2, · · · , rn)Ψ(r1, r2, · · · , rn)dv1dv2 · · · dvn

which gives the probability of finding the first electron at position r1, the second at
position r2, the third at r3, etc, while the nth at rn.
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This is not really that we are interested in. Instead, we would like to know what is the
probability of finding an electron at a given pont in space, r, irrespective of the position
of other electrons. This can be obtained with the following expression:

ρ(r) = n
∫ ∫

· · ·
∫

Ψ∗(r1, r2, · · · , rn)Ψ(r1, r2, · · · , rn)dv2dv3 · · · dvn

Notice that, except of the first electron, we integrate according to the position of all other
electrons. The multiplier n in front of the expression comes from the fact that electrons
can not be distinguished, so we added up the probability for all individual electrons. ρ is
called electron density.

In case of determinental wave function, electron density can be given as the sum of
the densities corresponding to individual orbitals.

ρ(r) =
n∑
i

φi(r)φi(r)

=
n∑
i

∑
a

Caiχa(r)
∑
b

Cbiχb(r)

=
∑
a

∑
b

n∑
i

CaiCbi︸ ︷︷ ︸
Pab

χa(r)χb(r)

In the second row orbitals have been expanded in the (AO) basis, in the last one the den-
sity matrix P has been introduced. The first line shows why this method is an independent
electron approximation: density is given as the sum of the densities from individual orbi-
tals.

Population analysis (according to Mulliken)
Integration of the electron density for the entire space gives the number of electrons:

n =
∫
ρ(r)dv =

∑
a

∑
b

Pab

∫
χa(r)χb(r)dv

=
∑
a

∑
b

PabSab

In the last equation total electron density can be divided among basis functions:

• PaaSaa = Paa gives the charge corresponding to basis function χa;

• PabSab gives the charge corresponding to the overlap χaχb.

From these one can construct atomic contributions:

• ∑a∈A PaaSaa =
∑
a∈A Paa gives the charge on atom A;

• ∑a∈A
∑
b∈B PabSab gives the electron number corresponding to bond between atoms

A and B (NOT BOND ORDER, THOUGH!).
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Finally, the total (Mulliken) charge on atom A can be obtained by summing all cont-
ributions involving atom A: ∑

a∈A

∑
b

PabSab =
∑
a∈A

(PS)aa

Mulliken population analysis, despite of its theoretical weaknesses, is very popular.
There are, however, other methods for population analysis, which are theoretically more
precise, but at the same time more complicated. We can not deal with these in this course.

Orbital energy, total energy
The quantity εi in the Hartree-Fock equations is orbital energy. This is the expectation

value of the Fock operator for orbital φi:

εi =
〈
φi
∣∣∣f̂ ∣∣∣φi〉

=

〈
φi
∣∣∣ĥ+

∑
j

(Ĵj − K̂j)
∣∣∣φi
〉

= Hii +
∑
j

(Jij −Kij)

Summing all orbital energies of the occupied orbitals, we do not get the total energy
of the system:

E 6=
∑
i

εi =
∑
i

Hii +
∑
i

∑
j

(Jij −Kij)

E =
∑
i

Hii +
1

2

∑
i

∑
j

(Jij −Kij)

=
∑
i

εi −
1

2

∑
i

∑
j

(Jij −Kij)

Thus, one has to subtract electron-electron interaction, since the sum of orbital energies
includes it twice.

Ionization energy, Koopmans’ principle
Consider a closed shell system (M), and remove one electron (M+). For the latter

system, we keep the orbitals unchanged. The energy of the molecule and ion can be given
as:

EM = 2H11 + 2H22 + 4J12 − 2K12 + J11 + J22

EM+ = 2H11 +H22 + 2J12 −K12 + J11

∆E = EM+ − EM = −H22 − 2J12 +K12 − J22 = −ε2

Ionization energy is equal to the negative of the energy of the orbital where the electron
has been removed from. This is the so called Koopmans’ principle. This is a quite simple
way to calculate ionization energy. Its accuracy is due to the cancellation of the errors of
two approximations:
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• determinental wave function (the so called electron correlation is neglected);

• orbitals are not optimized for the ion (orbital relaxation is neglected).

The same way one could also calculate electron affinity:

EM− − EM = εa

This is, however, a much worse approximation, since the empty orbital, which is occupied
by the extra electron, is not well described (not included in the Fock operator, therefore
its interaction with other electrons is not considered).
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4.9. Electronic structure of water molecule

4.9.1. Qualitative MO treatment

Orbitals can be obtained from the Independent Particle Approximation (IPA), and occupy
them according to orbital energies.

In practice: Hartree-Fock-Roothaan method (HF + LCAO-MO):

wave function : Ψ = |φ1, φ2, ..., φn|
orbital : φi =

∑
a

Caiχa

with χa being the basis functions.

Let us use the minimal basis, which only includes the functions of each occupied shells:
H: 1sa, 1sb O: 1s, 2s, 2px, 2py, 2pz

Performing the calculations, we obtain the following orbitals:

1a1 orbital (-20.52 hartree)

defaults used                           

                                        

 Edge =  4.35 Space =  0.1000 Psi =  1  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

1a1: 1s

2a1 orbital ( -1.33 hartree)

defaults used                           

                                        

 Edge =  4.35 Space =  0.1000 Psi =  2  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

2a1: 2s (–2pz)+ 1sa+ 1sb bonding
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1b1 orbital ( -0.67 hartree)

defaults used                           

                                        

 Edge =  4.35 Space =  0.1500 Psi =  3  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

1b1: 2py + 1sa – 1sb bonding

3a1 orbital ( -0.56 hartree)

defaults used                           

                                        

 Edge =  4.35 Space =  0.2000 Psi =  4  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

3a1: 2pz (+ 2s) non-bonding

1b2 orbital ( -0.52 hartree)

defaults used                           

                                        

 Edge =  4.35 Space =  0.2000 Psi =  5  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

1b2: 2px non-bonding
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4a1 orbital ( 0.33 hartree)

defaults used                           

                                        

 Edge =  4.35 Space =  0.2000 Psi =  6  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

4a1: 2s + 2pz – 1sa – 1sb anti-bonding

2b1 orbital ( 0.49 hartree)

defaults used                           

                                        

 Edge =  4.35 Space =  0.2000 Psi =  7  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

2b1: 2py – 1sa +1sb anti-bonding

Configuration: (1a1)2 (2a1)2 (1b1)2 (3a1)2 (1b2)2
State: 1A1 (orbitals are fully occupied ⇒ total symmetric singlet)

Excited states:
configuration: (1a1)2 (2a1)2 (1b1)2 (3a1)2 (1b2)1 (4a1)1
B2⊗A1=B2 ⇒ state: 3B2 or 1B2

configuration: (1a1)2 (2a1)2 (1b1)2 (3a1)2 (1b2)1 (2b1)1
B2⊗B1=A2 ⇒state: 3A2 or 1A2
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Considering symmetry

In IEA/LCAO-MO there are seven atomic orbitals → seven MO’s → 7x7 problem.
Symmetry: C2v

seven basis functions → seven symmetry-adapted basis functions
mathematically: basis is reducible → transform it into irreducible representation

Character table:

C2v E C2 σv(yz) σv(xz)
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1
Γbasis 7 1 5 3

Formula for the reduction:

ni =
1

h

r∑
k=1

Nk χ
i(k) χ(k)

with

h: order of the group;

Nk: order of the class;

χi(k): character if the ith irrep corresponding to class k ;

χ(k): character of the reducible representation corresponding to class k.

With this:
nA1= 1

4
(1·1·7 + 1·1·1 + 1·1·5 + 1·1·3) = 4

nA2= 1
4
(1·1·7 + 1·1·1 + 1·(− 1)·5 + 1·(− 1)·3) = 0

nB1= 1
4
(1·1·7 + 1·(− 1)·1 + 1·1·5 + 1·(− 1)·3) = 2

nB2= 1
4
(1·1·7 + 1·(− 1)·1 + 1·(− 1)·5 + 1·1·3) = 1

Thus: Γbasis=4 A1 ⊕ 2 B1 ⊕ 1 B2

The above expression tells us that there are four a1, two b1, and b2 orbitals.

Which basis functions form the MOs?

Remember: the operator projecting into the space of the ith irrep is:

P̂i =
∑
R̂

χi(R̂) R̂

with R̂ is the symmetry operation, χi(R̂) is its character with respect to irrep i.
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For example:

PA1 1sa = 1sa + 1sb + 1sa + 1sb = 2(1sa + 1sb)

The final results:
a1: 1s, 2s, 2pz, (1sa+1sb) dimension 4x4
b1: 2py, (1sa–1sb) dimension 2x2
b2: 2px dimension 1x1

One can perform the calculations in the symmetry adapted basis. This will result in
the same orbitals discussed above, however, symmetry blocks can be treated separately.

Localized orbitals

How do bonding orbitals look like? There are two bonding orbitals, both of them
extend over all three atoms.

Chemical intuition suggests different bonds!

Remember: „orbitals have no physical meaning”, the determinant does not change if we
transform occupied orbitals among themselves.

Thus, one can consider the linear combination of these two orbitals:

2a1 1b1

defaults used                           

                                        

 Edge =  4.35 Space =  0.2000 Psi =  1  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

defaults used                           

                                        

 Edge =  4.35 Space =  0.2000 Psi =  2  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

defaults used                           

                                        

 Edge =  4.35 Space =  0.2000 Psi =  3  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

defaults used                           

                                        

 Edge =  4.35 Space =  0.2000 Psi =  4  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

2a1 – 1b1 2a1+1b1

We obtain two bonding orbitals which correspond to chemical intuition, each repre-
senting one OH bond!
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Now consider the two non-bonding orbitals:

3a1 1b2

defaults used                           

                                        

 Edge =  4.35 Space =  0.2000 Psi =  1  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

defaults used                           

                                        

 Edge =  4.35 Space =  0.2000 Psi =  2  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

defaults used                           

                                        

 Edge =  4.35 Space =  0.2000 Psi =  3  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

defaults used                           

                                        

 Edge =  4.35 Space =  0.2000 Psi =  4  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

3a1 + 1b2 3a1 –1b2

We obtained two non-bonding orbitals which correspond to chemical intuition (two
lone pairs on oxygen).

Comparison of localized and canonic orbitals:

canonic localized
orbital energy yes no
symmetry yes no
bond between pair of atoms no yes
lone pair on atom no yes

4.9.2. „Hybrid orbitals” (details see later)

We would like to construct localized orbitals directly from the basis functions.
We know that basis functions span a space, therefore any linear combination of basis

functions will span the same space, while the description of the problem in this new basis
is unchanged.
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Construct so called hybrid orbitals, which point into the direction of the bonds:
h1 = 2pz + 2py orbital:

defaults used                           

                                        

 Edge =  4.35 Space =  0.3000 Psi =  1  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

h2 = 2pz − 2py orbital:

defaults used                           

                                        

 Edge =  4.35 Space =  0.3000 Psi =  2  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

Mix in also some 2s component:
h′1 = h1 + 2s

defaults used                           

                                        

 Edge =  4.35 Space =  0.3000 Psi =  3  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N
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h′2 = h2 + 2s

defaults used                           

                                        

 Edge =  4.35 Space =  0.3000 Psi =  4  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

(There is of course a third orbital: h′3 = 2s− h1 + h2)

These already point along the bonds, so that we can construct the desired pairs:

h′1 + 1sa first bond
h′2 + 1sb second bond

Important: when constructing hybrid orbitals, we already use the „results”, since the
hybrids point where we expect the bond to be.

For example: h1 and h2 do not point exactly along the bond:

defaults used                           

                                        

 Edge =  4.35 Space =  0.2500 Psi =  5  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

Let us as change the relative weight of the py and pz orbitals:
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defaults used                           

                                        

 Edge =  4.35 Space =  0.2500 Psi =  6  

                                        

                                        

                                        

M O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E NM O L D E N

The figure shows that increasing 2pz contribution rotates the hybrid orbitals. Below
this will have an important consequence!

4.9.3. VB treatment

In case of the H2 molecule we have seen that in VB theory one forms electron pairs from
unpaired electrons. The spatial part of the wave function reads:

Ψspatial
HL = 1sA(1) 1sB(2) + 1sA(2) 1sB(1)

It follows that we need only consider unpaired electrons.

In case of water, the contributing atomic configurations are:
O: 1s2 2s2 2p4 → 1s2 2s2 2px

2 2py 2pz

H: 1s
Open shells:
O: 2py and 2pz

H: 1sa and 1sb

Thus we can form two pairs (spatial pairs):
f11(1,2)=1sa(1)2pz(2) + 1sa(2)2pz(1)
f12(3,4)=1sb(3)2py(4) + 1sb(4)2py(3)
From these one can obtain the wave function of four electrons (spatial part):
ΦA(1,2,3,4)= f11(1,2)·f12(3,4)

One can, however, pair these also in another way:
f21(1,2)=1sa(1)2py(2) + 1sa(2)2py(1)
f22(3,4)=1sb(3)2pz(4) + 1sb(4)2pz(3)
From these one can obtain the wave function of four electrons (spatial part):
ΦB(1,2,3,4)= f21(1,2)·f21(3,4)
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(There is one more possibility:
f31(1,2)=1sa(1)1sb(2) + 1sa(2)1sb(1)
f32(3,4)=2pz(3)2py(4) + 2pz(4)2py(3)
but this is redundant, see e.g. the book of Levine).

The Heitler-London wave function:

ΨHL(1,2,3,4)=cAΦA(1,2,3,4)+ cBΦB(1,2,3,4),
where coefficients can be obtained variationally: cA=–cB

Problem: since we used 2pz and 2py orbitals, the bond angle is 90o!!!!!
Correction:
i.) consider also ionic terms (for the repulsion of H atoms)
ii.) use hybridization – place the unpaired electrons to such orbitals which show the

right bond angle.

VB wave function with hybrid orbitals:
O: h1’ and h2’
H: 1sa and 1sb

(h′ hybrids are shown above!)
f’11(1,2)=1sa(1)h1’(2) + 1sa(2)h1’(1)
f’12(3,4)=1sb(3)h2’(4) + 1sb(4)h2’(3)
These are all we need since, as can be seen from the figure, overlaps are small in case

of other pairings (e.g. between 1sa and h′2).

ΨHL(1, 2, 3, 4) = f ′11(1, 2) · f ′12(3, 4)

Graphically:

As we have seen, the angle of hybrid orbitals can be adjusted, therefore we can obtain
the correct structure!

This means that for a good result one needs to know the structure in advance :).
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1. For a qualitative treatment this is enough: Lewis structures are based on this theory
(see later).

2. For a quantitative treatment: generalized VB (GVB) method can be used.

Generalized VB wave function:

In case of water molecule:
ΨGVB(1,2,3,4)= cA{(g1(1)g2(2) + g1(2)g2(1)) (g3(3)g4(4) + g3(4)g4(3))} +
cB{(g1(1)g3(2) + g1(2)g3(1)) (g2(3)g4(4) + g2(4)g4(3))}
gi=Σa ciaχa These are ATOMIC ORBITALS!!!!!!

Coefficients cA, cB and cia can be obtained variationally. Thus one takes into account
that during bond formation, orbitals of the atoms might change.

Advantage:

• „ab initio”, meaning that no information on structure is used;

• chemical intuition OK;

• quantitative.

Disadvantage: computationally demanding (atomic orbitals are not orthogonal).
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4.10. Qualitative description of the electronic structure of mole-
cules using VB theory based on hybrid orbitals

4.10.1. Methane molecule

Atomic configurations:

H: 1s
C: 1s2 2s2 2p2

We know that the carbon atom forms four equivalent bonds. But how, if

• it has only two unpaired electrons;

• these are on the three components of the 2p orbital?

How do we get four equal bonds?

Solution:

1. „promotion” (excitation): 2s2 2p2→ 2s1 2p3

2. hybridization: from the 2s and three components of the 2p orbitals: „sp3 hybri-
dization”

h1= 2s + 2px + 2py + 2pz

h2= 2s – 2px – 2py + 2pz

h3= 2s – 2px + 2py – 2pz

h4= 2s + 2px – 2py – 2pz

These orbitals point to the corners of a tetrahedron:

sp3 hybrid orbitals
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A fictive process before the formation of bonds:

2s22p2 → promotion → 2s12p3 → hybridization → h4 configuration

Note: h4 results in the same spherical electron density than sp3.

Now we can form electron pairs:

f1(1,2) = h1(1)1sa(2) + h1(2)1sa(1)
f2(3,4) = h2(3)1sb(4) + h2(4)1sb(3)
f3(5,6) = h3(5)1sc(6) + h3(6)1sc(5)
f4(7,8) = h4(7)1sd(8) + h4(8)1sd(7)

ΦHL(1,2,. . . .,8) = f1(1,2) · f2(3,4) · f3(5,6)· f4(7,8)

We do not need other configuration, since only these orbitals point towards each other.
Graphically:

Thus using the fact that there are four equivalent bonds in methane, VB theory
predicts four bonds pointing towards the corners of a tetrahedron.

4.10.2. Ethene molecule

Atomic configurations are as above. Now, however, one wants to form not four, rather
three identical bonds (two CH and one CC bonds):

Other hybridization: 2s 2px 2py → three orbitals
The 2pz orbital is unchanged.
„sp2 hybridization”

The fictive process before forming the bonds:

2s22p2 → promotion → 2s12p3 → hybridization→ h3 2pz configuration
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h1= 2s + 2px + 2py

h2= 2s – 2px – 2py

h3= 2s – 2px + 2py

These orbitals point towards the corners of a triangle:

sp2 hybrid orbitals

The unpaired electrons are on the following orbitals:

1sa, 1sb, 1sc, 1sd, h11, h21, h31, 2pz1, h12, h22, h32, 2pz2

Now we can form the electron pairs:

fCH1(1,2) = h11(1)1sa(2) + h11(2)1sa(1)
fCH2(3,4) = h21(3)1sb(4) + h21(4)1sb(3)
fCH3(5,6) = h12(5)1sc(6) + h12(6)1sc(5)
fCH4(7,8) = h22(7)1sd(8) + h22(8)1sd(7)
fCC1(9,10)= h31(9)h32(10) + h31(10)h32(9)
fCC2(11,12)= 2pz1(11)2pz2(12) + 2pz1(12)2pz2(11) Π bond

ΦHL(1,2,. . . ,12) = fCH1(1,2) · fCH2(3,4) · fCH3(5,6) · fCH4(7,8) · fCC1(9,10) · fCC2(11,12)

Other resonance is not possible.
Graphically:
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Thus, there is one bond between each neighbouring C and H atoms, while there is a
double bond between carbon atoms.

4.10.3. Ethine molecule

Here carbon atoms form bonds with only two other atoms.

Other hybridization: 2s 2pz → two hybrid orbitals.
2pxand 2py orbitals are unchanged.
„sp hybridization”

The fictive process before forming the bonds:

2s22p2 → promotion → 2s12p3 → hybridization → h2 2px
1 2py

1 configuration
h1= 2s + 2pz

h2= 2s – 2pz

These orbitals are along one line.

sp hybrid orbitals

Unpaired electrons are on the following orbitals:

1sa, 1sb, h11,h21, 2px1, 2py1, h12, h22, 2px2,2py2

Now we can form electron pairs:

fCH1(1,2) =h11(1)1sa(2) +h11(2)1sa(1)
fCH2(3,4) =h12(3)1sb(4) +h12(4)1sb(3)
fCC1(5,6) = h21(5)h22(6) +h21(6)h22(5)
fCC2(7,8) = 2px1(7)2px2(8) +2px1(8)2px2(7) Π bond
fCC2(9,10) = 2py1(9)2py2(10) +2py1(10)2py2(9) Π bond

ΦA(1,2,. . . ,10)= fCH1· fCH2 · fCC1 · fCC2 · fCC3

Other resonance is not possible.
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Graphically:

Thus, there are single bonds between the neighbouring C and H atoms and a triple
bond between carbon atoms.

4.10.4. Ammonia molecule

Atomic configuration:
H: 1s
N: 1s2 2s2 2p3

The nitrogen atom forms bonds with three hydrogen atoms.
According to the above consideration, this can happen with sp2 hybridization:

2s22p3 → promotion → 2s12p4 → hybridizatio→ h3 2p2
z configuration

This results in a planar structure. We know, however that ammonia is not planar.
Graphically:

Now let us try also sp3 hybridization:
2s22p3 → promotion → 2s12p4 → hybridization→ h5 configuration

Pyramidal structure with the non-bonding pair on the top!
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Which one is the right structure? Without calculating energy, this question can not
be answered. The pyramidal structure is lower in energy, therefore it is the most stable
one. In fact, tha planar one is a saddle point on the potential energy surface.

4.10.5. Allyl radical

C atom: sp2 hybridization

Unpaired electrons:
1sa, 1sb, 1sc,1sd, 1se,h11, h21, h31,2pz1,h12, h22,h32,2pz2, h13, h23,h33,2pz3

Possible electron pairs::
fCH1(1,2) =h11(1)1sa(2) +h11(2)1sa(1)
fCH2(3,4) =h21(3)1sb(4) +h21(4)1sb(3)
fCH3(5,6) =h12(5)1sc(6) +h12(6)1sc(5)
fCH4(7,8) =h13(7)1sd(8) +h13(8)1sd(7)
fCH5(9,10) =h23(9)1se(10) +h23(10)1se(9)
fCC1(11,12)= h31(11)h22(12) +h31(12)h22(11)
fCC2(13,14)= h32(13)h33(14) +h32(14)h33(13)

There remain three 2pz orbitals and three electrons. Therefore only one more bond is
possible:

fΠ1(15,16)= 2pz1(15)2pz2(16) +2pz1(16)2pz2(15) and 2pz3(17)
fΠ2(15,16)= 2pz3(15)2pz2(16) +2pz3(16)2pz2(15) and 2pz1(17)

The last electron remains unpaired.

The two possible resonance structures are:
ΦA(1,2,. . . 17)=fCH1(1,2) · fCH2(3,4) · fCH3(5,6) · fCH4(7,8) · fCH5(9,10) · fCC1(11,12) ·
fCC2(13,14) · fΠ1(15,16) · 2pz3(17)

ΦB(1,2,. . . .17)= fCH1(1,2) · fCH2(3,4) · fCH3(5,6) · fCH4(7,8) · fCH5(9,10) · fCC1(11,12) ·
fCC2(13,14) · fΠ2(15,16) · 2pz1(17)

ΨVB= cAΦA + cBΦB

Summarized: we have found single bonds between the neighbouring C and H atoms, single
bonds between C atoms and a partial Π bond involving all three carbon atoms, as well
as a delocalized unpaired electron.

4.10.6. Rules for constructing Lewis structures

Rules (see General Chemistry):
1. count valence electrons;
2. draw single bonds around the central atom;
3. on the terminal atoms, add non-bonding electron pairs to match octets;
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4. put the remaining electrons in form of non-bonding pairs on the central atom;
5. if there is no octet around the central atom, form double bonds by moving the

non-bonding pairs of the terminal atoms into bonding position;
6. determine the formal charges on the atom, and make sure that charge separation

is minimal.

Explanation based on VB theory:
ad 2: with hybridization we form bonds between the central and terminal atoms;
ad 3: on the terminal atoms, we fill up the hybrid and non-bonding orbitals with

electrons;
ad 4: repeat this on the central atom;
ad 5: form Π bonds;
ad 6: resonance structures.

Thus we have shown that the rules obtaining Lewis structures is based on a VB theory
using hybrid orbitals.

Octet rule: there are four orbitals (2s + 2p) in the second shell, if all orbitals are
occupied by two electrons, altogether eight electrons can be accommodated.

4.10.7. Hybridization

Types:

1. sp3 → tetrahedral (see figure above);

2. sp2 → triangle (see figure above);

3. sp → linear (see figure above);

In case of transition metal complexes, also d orbitals contribute. For example:

sp3d2 hybridization → octahedral complex

sp2d2 hybrid orbitals
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sp3d hybridization → trigonal-bipyramidal complex

sp3d hybrid orbitals

Concerning hybrid orbitals, it is important to note that:

1. the result is included in the process since we form such combinations which point
into the required direction;

2. hybridization itself is a simple basis transformation without any physical meaning.
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4.11. The Hückel method

For larger molecules the description by the MO theory becomes complicated. In some
cases it is enough to consider only a subset of orbitals. For example, in case of conjugated
molecules, we only consider the 2p orbitals perpendicular to the molecular plane.

4.11.1. Approximations

1. σ − π separation: neglect of the interaction between σ (in plane) and π electrons;

2. Ĥ operator:

Ĥ =
π el∑
i

ĥeff (i)

3. Wave function: product form (no determinant!!!), spatial orbitals are double occu-
pied:

Ψ(1, 2, 3, ...2n) = u1(1)α(1)u1(2)β(2)u2(3)α(3) . . . un(2n)β(2n)

Consequence: eigenvalue equations: ĥeffui = εiui Energy: E = 2
∑n
i εi

4. Basis: minimal basis: on all C atoms a single 2pz orbital (p1, p2, ....pn)

5. Molecular orbitals can thus be obtained from a matrix eigenvalue equation with the
overlap of the basis functions neglected: heffc = εc

6. Matrix elements (diagonal elements are α, between neighbours β, 0 otherwise):

〈p1|ĥeff |p1〉 = α

〈p2|ĥeff |p2〉 = α
...

〈pn|ĥeff |pn〉 = α

〈p1|ĥeff |p2〉 = β

〈p1|ĥeff |p3〉 = 0
...

〈p1|ĥeff |pn〉 = 0

〈p2|ĥeff |p3〉 = β

〈p2|ĥeff |p4〉 = 0
...

〈pn−1|ĥeff |pn〉 = β
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To solve is the eigenvalue equation of the following matrix:

h =



α β 0 0 . . . 0
β α β 0 . . . 0
0 β α β . . . 0
...

...
...

...
...

...
0 0 0 0 . . . α



4.11.2. Ethene

heff =

(
α β
β α

)
Eigenvalue equation to solve:

heffc(i) = εc(i)(
α− ε β
β α− ε

)(
c1

c2

)
= 0∣∣∣∣∣ α− ε β

β α− ε

∣∣∣∣∣ = 0

We get:

ε1 = α + β c1 = c2 =
1√
2

ε2 = α− β c1 = −c2 =
1√
2

Eigenfunctions:

Energy diagram:

Total energy:

E = 2α + 2β
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4.11.3. Butadiene

h =


α β 0 0
β α β 0
0 β α β
0 0 β α


A 4x4 problem, requires the solution of a fourth order equation. It is problematic by
hand...
However, one can consider the symmetry!
Point group: C2h: only „π” irreps need to be considered, others do not include any basis
functions: Bg and Au
Character table:

C2h E C2 i σh
Ag 1 1 1 1
Bg 1 -1 1 -1
Au 1 1 -1 -1
Bu 1 -1 -1 1
Γ 4 0 0 -4

The last row of the table denoted by Γ includes the characters of the reducible repre-
sentation spanned by the four p functions.

Resolve into irreps:

ni =
1

h

r∑
k

Nkχ
i(k)χ(k)

(notations see at the water example).

nBg =
1

4

(
1 · 1 · 4 + 0 + 0 + 1 · (−1) · (−4)

)
= 2

nAu =
1

4

(
1 · 1 · 4 + 0 + 0 + 1 · (−1) · (−4)

)
= 2

Thus:
Γ = 2Bg ⊕ 2Au

The symmetry adapted functions can be determined by using the projection operators:

Pi =
∑
R̂

χi
R̂
R̂

Au : sau(1) =
1√
2

(p1 + p4) sau(2) =
1√
2

(p2 + p3)

Bg : sbg(1) =
1√
2

(p1 − p4) sbg(2) =
1√
2

(p2 − p3)
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The heff matrix on this basis:

〈sau(1)|ĥeff |sau(1)〉 =
1

2
〈p1 + p4|ĥeff |p1 + p4〉 =

1

2
2α = α

〈sau(2)|ĥeff |sau(2)〉 =
1

2
〈p2 + p3|ĥeff |p2 + p3〉 =

1

2
(2α + 2β) = α + β

〈sau(1)|ĥeff |sau(2)〉 =
1

2
〈p1 + p4|ĥeff |p2 + p3〉 =

1

2
2β = β

〈sbg(1)|ĥeff |sbg(1)〉 =
1

2
〈p1 − p4|ĥeff |p1 − p4〉 =

1

2
2α = α

〈sbg(1)|ĥeff |sbg(1)〉 =
1

2
〈p2 − p3|ĥeff |p2 − p3〉 =

1

2
(2α− 2β) = α− β

〈sbg(1)|ĥeff |sbg(2)〉 =
1

2
〈p1 − p4|ĥeff |p2 − p3〉 =

1

2
2β = β

There are two matrices to be diagonalized:
Symmetry Au:

hAu =

(
α β
β α + β

)
→ ε1,3 = α +

1±
√

5

2
β

Symmetry Bg:

hBg =

(
α β
β α− β

)
→ ε2,4 = α− 1∓

√
5

2
β

Energy diagram:
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Eigenfunctions:

Configuration: (1au)
2(1bg)

2

State: 1Ag
Total energy: Ebutadiene = 4α + 4.48β
Delocalization energy: Ebutadiene − 2Eethene = (4α + 4.48β)− (4α + 4β) = 0.48β

We can perform population analysis, as well. For this the coefficients are:
1au: c1 = 0.37, c2 = 0.60, c3 = 0.60, c4 = 0.37
1bg: c1 = 0.60, c2 = 0.37, c3 = −0.37, c4 = −0.60

P12 · S12 = 2(0.37 · 0.60 + 0.37 · 0.60)S12 = 0.89S12

P23 · S23 = 2(0.60 · 0.60− 0.37 · 0.37)S23 = 0.22S23

Question: what would we get for cis-butadiene?
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4.11.4. Benzene

h =



α β 0 0 0 β
β α β 0 0 0
0 β α β 0 0
0 0 β α β 0
0 0 0 β α β
β 0 0 0 β α


It is a 6x6 problem, but we can again use symmetry.
Pointgroup: D6h: only „π” irreps, no basis functions in the other ones.
Resolve into irreps:

Γ(p1, p2, p3, p4, p5, p6) = A2u ⊕B2g ⊕ E1g ⊕ E2u

None of the irreps appears twice ⇒ the matrix in this basis is diagonal.
The symmetrized basis functions, which are already eigenfunctions:

A2u : a2u =
1√
6

(p1 + p2 + p3 + p4 + p5 + p6)

B2g : b2g =
1√
6

(p1 − p2 + p3 − p4 + p5 − p6)

E1g : e1g(1) =
1√
12

(
(2p1 − p3 − p5)− (2p4 − p6 − p2)

)
e1g(2) =

1

2

(
(p3 − p5)− (p6 − p2)

)
E2u : e2u(1) =

1√
12

(
(2p1 − p3 − p5) + (2p4 − p6 − p2)

)
e2u(2) =

1

2

(
(p3 − p5) + (p6 − p2)

)

The corresponding energy can be calculated from the expectation value:

A2u : ε1 =
1

6
〈a2u|ĥeff |a2u〉

=
1

6
〈(p1 + p2 + p3 + p4 + p5 + p6)|ĥeff |(p1 + p2 + p3 + p4 + p5 + p6)〉

= α + 2β

For other symmetries, similarly:

E1g : ε2 =
1

12
〈e1g(1)|ĥeff |e1g〉 = α + β

E2u : ε3 =
1

12
〈e2u(1)|ĥeff |e2u〉 = α− β

B2g : ε4 =
1

6
〈b2g(1)|ĥeff |b2g〉 = α− 2β
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Energy diagram:

Eigenfunctions:

Configuration (a2u)
2(e1g)

4

State: 1A1g

Energy: E = 6α + 8β
Delocalization energy: Ebenzene − 3Eethene = (6α + 8β)− 6(α + β) = 2β

Mulliken population analysis:
Density matrix:

Pab = 2 ·
occupied∑

i

caicbi
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Atomic charge in case of the Hückel method:

∑
a∈A

∑
b∈A

PabSab = Paa = 2
occupied∑

i

caicai

For atom 1:

2 · P11 = 2 ·
( 1√

6

1√
6︸ ︷︷ ︸

a2u

+
2√
12
· 2√

12︸ ︷︷ ︸
e1g(1)

+ 0 · 0︸︷︷︸
e1g(2)

)
= 1

Electron density corresponding to the bond in case of the Hückel method:∑
a∈A

∑
b∈B

PabSab = Pab · Sab

For bond between atoms 1 and 2:

P12 · S12 = 2 ·
( 1√

6

1√
6︸ ︷︷ ︸

a2u

+
2√
12
· 1√

12︸ ︷︷ ︸
e1g(1)

+ 0 · 1

2︸ ︷︷ ︸
e1g(2)

)
S12 =

2

3
S12

For bond between atoms 2 and 3:

P23 · S23 = 2 ·
( 1√

6

1√
6︸ ︷︷ ︸

a2u

+
1√
12
· −1√

12︸ ︷︷ ︸
e1g(1)

+
1

2
· 1

2︸ ︷︷ ︸
e1g(2)

)
S23 =

2

3
S23
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4.12. Electronic structure of transition metal complexes

System:

• „transition metal”: atom or positively charged ion
→ open shell, can take additional electrons

• „ligands”: negative ion, or strong dipole, usually closed shell
→ donate electrons (non-bonding pair, π-electrons)

Two theories:

• Cristal field theory: only symmetry

• Ligand field theory: simple MO theory

Questions to answer:

• why are they stable?

• why is the typical color?

• why do they have typical ESR spectrum?
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4.12.1. Cristal field theory (Bethe, 1929)

Basic principle:

• ligands (bound by electrostatic interaction) perturb the electronic structure of the
central atom (ion)

• electrons of the ligands are absolutely not considered

Denomination comes from the theory of crystals where the field of neighbouring ions has
similar effect on the electronic structure of an ion considered.

atom complex

pointgroup O+
3 lower symmetry

orbitals degenerate d (partial) break off of the degeneracy

This theory is purely based on symmetry!!

Example: [Ti(H2O)6]3+

Pointgroup: Oh

Character table of the pointgroup Oh:
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Lower symmetry, five d functions form a reducible representation:

Γ(5 functions) = T2g + Eg

T2g : dz2 , dx2−y2 Eg : dxy, dxz, dyz

Energy levels:

Degree of splitting:

• Theory does not say a word about this

• However: 6 ·∆t2g = 4 ·∆eg , i.e. average energy does not change!
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[Ti(H2O)6]3+ in more detail:
Ti: ...3d24s2

Ti3+: ...3d1

configuration: d1 (t2g)
1 (eg)

1

State: 2D 2T2g
2Eg

atom complex
ground state excited state

Energy difference between ground and excited states is small→ violet color (20400 cm−1)

How does this work for more electrons? Use the Aufbau-principle:

S 1/2 1 3/2 2 1
From the fourth electron, occupation depends on whether ∆ or the exchange interac-

tion (K) is larger:

• if ∆ > K, the electron goes to the lower level (complex with small spin)

• if ∆ < K, the electron goes to the higher level (complex with large spin)

Strong cristal field: splitting is large enough so that the low spin case will be more stable.
Weak cristal field: the splitting is small and the high spin case will be more stable

Experiment: ESR spectroscopy (see later)
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4.12.2. Ligand field theory

Basic principle: MO theory

• the orbitals of the central atom interact with the orbitals of the ligands → bonding
and anti-bonding orbitals are formed

• symmetry is again important: which orbitals do mix?

Basis:

• atom (ion): 3d, 4s, 4p orbitals

• ligands (closed shell): s-type orbital per ligand („superminimal basis”)
(sometimes eventually also π orbitals)

Symmetrized basis:
according to the pointgroup of the complex, we split it into irreducible representations.

Example: Octahedral complex (Oh point group)
Basis:

• atom (ion): 3d, 4s, 4p orbitals →
Γ(3d) = T2g ⊕ Eg
Γ(4s) = A1g

Γ(4p) = T1u

• ligands:
Γ(λ1, ...λ6) = A1g ⊕ Eg ⊕ T1u

Symmetry adapted orbitals of ligands (6 water molecules):
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MO diagram:

One has to put 1+12 electrons on these orbitals:
configuration: (a1g)

2, (t1u)
6, (eg)

4, (t2g)
1

Occupancy is the same as in cristal field theory, but

• the energy of the t2g orbital does not change with respect to atomic orbital, while
that of the eg orbital grows

• stabilization of the complex is due to the stabilization of the orbitals of the ligands
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Other example: tetrahedral complex (e.g.. [CoCl4]2−, [Cu(CN)4]3−):
Character table of the pointgroup Td

Reductions:

Γ(3d) = E ⊕ T2

Γ(4s) = A1

Γ(4p) = T2

Γ(ligands) = A1 ⊕ T2

MO diagram:
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Appendix

Az energia kifejezése determináns hullámfüggvénnyel

A Hamilton-operátort bontsuk nulla-, egy- és kételektron tagokra:

Ĥ = −
∑
i

1

2
∆i −

∑
i

∑
A

ZA
riA︸ ︷︷ ︸+

∑
i<j

1

rij︸ ︷︷ ︸
+
∑
A<B

ZAZB
rAB︸ ︷︷ ︸

Ĥ1 =:
∑
i

ĥ(i) Ĥ2 Ĥ0

Az egyszerűség kedvéért dolgozzunk két elektronnal (2x2-es determináns):

E =
〈
Ψ(1, 2)|Ĥ|Ψ(1, 2)

〉
Ψ(1, 2) =

1√
2

(
ϕ1(1)ϕ2(2)− ϕ2(1)ϕ1(2)

)
〈ϕi|ϕj〉 = δij

Kezdjük Ĥ0-lal. Ez, nem hatván az elektronok koordinátáira, konstans:〈
Ψ|Ĥ0|Ψ

〉
=

∑
A<B

〈
Ψ
∣∣∣∣ 1

rAB

∣∣∣∣Ψ〉 =
∑
A<B

1

rAB
〈Ψ|Ψ〉

=
∑
A<B

1

rAB

〈
1√
2

(
ϕ1(1)ϕ2(2)− ϕ2(1)ϕ1(2)

)∣∣∣∣ 1√
2

(
ϕ1(1)ϕ2(2)− ϕ2(1)ϕ1(2)

)〉

=
∑
A<B

1

rAB

1

2

[
〈ϕ1(1)ϕ2(2)|ϕ1(1)ϕ2(2)〉

− 〈ϕ1(1)ϕ2(2)|ϕ2(1)ϕ1(2)〉
− 〈ϕ2(1)ϕ1(2)|ϕ1(1)ϕ2(2)〉

+ 〈ϕ2(1)ϕ1(2)|ϕ2(1)ϕ1(2)〉
]

=
∑
A<B

1

rAB

1

2

[
1− 0− 0 + 1

]
=
∑
A<B

1

rAB

Ellenőriztük tehát hogy a 2x2-es Slater-determináns valóban normált.

Folytassuk az egyelektron-taggal:

〈
Ψ|Ĥ1|Ψ

〉
=

〈
Ψ
∣∣∣∣∑
i

ĥ(i)
∣∣∣∣Ψ
〉

=
1

2

〈
ϕ1(1)ϕ2(2)− ϕ2(1)ϕ1(2)

∣∣∣∣ĥ(1)
∣∣∣∣ϕ1(1)ϕ2(2)− ϕ2(1)ϕ1(2)

〉
+

1

2

〈
ϕ1(1)ϕ2(2)− ϕ2(1)ϕ1(2)

∣∣∣∣ĥ(2)
∣∣∣∣ϕ1(1)ϕ2(2)− ϕ2(1)ϕ1(2)

〉

=
1

2

[ 〈
ϕ1(1)ϕ2(2)

∣∣∣∣ĥ(1)
∣∣∣∣ϕ1(1)ϕ2(2)

〉
→ 〈ϕ1|ĥ|ϕ1〉 〈ϕ2|ϕ2〉 = h11
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−
〈
ϕ1(1)ϕ2(2)

∣∣∣∣ĥ(1)
∣∣∣∣ϕ2(1)ϕ1(2)

〉
→ 〈ϕ1|ĥ|ϕ2〉 〈ϕ2|ϕ1〉 = 0

−
〈
ϕ2(1)ϕ1(2)

∣∣∣∣ĥ(1)
∣∣∣∣ϕ1(1)ϕ2(2)

〉
→ 〈ϕ2|ĥ|ϕ1〉 〈ϕ1|ϕ2〉 = 0

+
〈
ϕ2(1)ϕ1(2)

∣∣∣∣ĥ(1)
∣∣∣∣ϕ2(1)ϕ1(2)

〉 ]
→ 〈ϕ2|ĥ|ϕ2〉 〈ϕ1|ϕ1〉 = h22

+ ugyanez a ĥ(2)−re

=
1

2
(h11 + h22) +

1

2
(h11 + h22) = h11 + h22

Általános esetben tehát: 〈
Ψ
∣∣∣∣Ĥ1

∣∣∣∣Ψ〉 =
∑
i

hii

Végül a kételektron-tag:

〈
Ψ|Ĥ2|Ψ

〉
=

〈
Ψ
∣∣∣∣ 1

r12

∣∣∣∣Ψ〉
=

1

2

[ 〈
ϕ1(1)ϕ2(2)

∣∣∣∣ 1

r12

∣∣∣∣ϕ1(1)ϕ2(2)
〉

→ J12

−
〈
ϕ2(1)ϕ1(2)

∣∣∣∣ 1

r12

∣∣∣∣ϕ1(1)ϕ2(2)
〉

→ K21 = K12

−
〈
ϕ1(1)ϕ2(2)

∣∣∣∣ 1

r12

∣∣∣∣ϕ2(1)ϕ1(2)
〉

→ K12

−
〈
ϕ2(1)ϕ1(2)

∣∣∣∣ 1

r12

∣∣∣∣ϕ2(1)ϕ1(2)
〉 ]

→ J21 = J12

= J12 −K12

Általános esetben (mert Jii = Kii):〈
Ψ
∣∣∣∣Ĥ2

∣∣∣∣Ψ〉 =
∑
i<j

(Jij −Kij) =
1

2

∑
ij

(Jij −Kij)

Ha a spineket is nézzük (ϕ1 =: u1α, ϕ2 = u1β):

J12 =
〈
u1α(1)u1β(2)

∣∣∣∣ 1

r12

∣∣∣∣u1α(1)u1β(2)
〉

= J̃11(6= 0)

K12 =
〈
u1α(1)u1β(2)

∣∣∣∣ 1

r12

∣∣∣∣u1β(1)u1α(2)
〉

=
〈
u1(1)u1(2)

∣∣∣∣ 1

r12

∣∣∣∣u1(1)u1(2)
〉
〈α(1)β(2)|β(1)α(2)〉 = 0

Kicserélődés tehát csak azonos spinű elektronok között lehet.
Példaként tekintsük a H2 molekula alapállapotát (ϕ1 = u1α, ϕ2 = u1β):

E0 = h11 + h22 + J12 = 2h̃11 + J̃11
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A triplet gerjesztett állapotban (ϕ1 = u1α, ϕ2 = u2α) pedig:

K12 =
〈
u1α(1)u2α(2)

∣∣∣∣ 1

r12

∣∣∣∣u2α(1)u1α(2)
〉

=
〈
u1(1)u2(2)

∣∣∣∣ 1

r12

∣∣∣∣u2(1)u1(2)
〉〈

α(1)α(2)
∣∣∣∣α(1)α(2)

〉
= K̃12

E1 = h11 + h22 + J12 −K12 = h̃11 + h̃22 + J̃12 − K̃12

Tehát nem tűnik el a kicserlélődés, szemben a szinglet gerjesztett állapottal.
Ezzel magyarázható a Hund-szabály.


