
DB2 Parallel EditionChaitanya Baru , Gilles FecteauIBM SWSD, TorontoAmbuj Goyal, Hui-I Hsiao, Anant Jhingran, Sriram Padmanabhan, Walter WilsonIBM TJ Watson Research CenterAbstractThe rate of increase in database size and response time requirements has outpacedadvancements in processor and mass storage technology. One way to satisfy the increasingdemand for processing power and I/O bandwidth in database applications is to have anumber of processors, loosely or tightly coupled, serving database requests concurrently.Technologies developed during the last decade have made commercial parallel databasesystems a reality and these systems have made an inroad into the stronghold of traditionallymainframe based large database applications. This paper describes the parallel databaseproject initiated at IBM Research at Hawthorne and the DB2/AIX-PE product based onit.1 IntroductionLarge scale parallel processing technology has made giant strides in the past decade and thereis no doubt that it has established a place for itself. However, almost all of the applicationsharnessing this technology are scienti�c or engineering applications. The lack of commercial ap-plications for these parallel processors is due largely to the questionable robustness and usabilityof these systems. Compared to mainframe systems, large scale parallel processing systems havea history of poor availability and reliability . They are also lack of good software for systemmanagement and application development. However, the current generation of massively paral-lel processor systems, in particular, IBM's Scalable Parallel (SP1 and SP2) class of systems, aremuch more robust and easy to use. The commercial market has recognized these improvementsand are eager to take advantage of this exciting technology.One of the main enablers for commercial applications is Database Management Systems(DBMS). Thus, a parallel DBMS is a natural step. Several businesses and industries are invest-ing in Decision Support applications in order to understand various sales and purchase trends.1

These applications pose complex questions (queries) against large sets of data in order to gainan insight into the trends. Single system (or Serial) DBMSs cannot handle the capacity andthe complexity requirements of these applications. Besides decision support, there are othernew application classes such as Data Mining, Electronic Libraries, and Multimedia that requireeither large capacity or the ability to handle complexity. All these applications require parallelDBMS software.In the past, a number of research prototypes, including GAMMA [1], BUBBA [2], andXPRS [3], have tried to understand the issues in parallel databases. These and other projectsaddressed important issues such as parallel algorithms for execution of important database op-erations [4, 5, 6, 7], query optimization techniques [8, 9], data placement [10, 11, 12, 13], anddatabase performance [14, 15, 16]. The results of these studies form a basis for our knowledgeof parallel database issues today. However, two major limitations with these projects are: (i)Many of the problems were considered in isolation, so the implementation tended to be verysimple, and (ii) In several cases, people resorted to simulation and analysis because the im-plementation requires enormous e�ort. Recognizing the importance of a commercial strengthparallel database system, we started a project at IBM Research that has now led to the an-nouncement of the DB2 Parallel Edition product.DB2 Parallel Edition (DB2 PE) is a parallel database software solution that can executeatop any UNIX-based parallel processing system. Its Shared-Nothing (SN) architecture modeland Function Shipping execution model provide two important assets: scalability and capacity.DB2 PE can easily accommodate databases with hundreds of GigaBytes of data. Likewise,the system model enables databases to be easily scaled with the addition of more system CPUand disk resources. DB2 PE has been architect4ed and implemented to provide the bestquery processing performance. The query optimization technology considers a variety of par-allel execution strategies for di�erent operations and queries and uses Cost in order to choosethe best possible execution strategy. The execution time environment is optimized to reduceprocess overhead, synchronization overhead, and data transfer overhead. The ACID transactionproperties [17] are enforced in a very e�cient manner in the system to provide full transactioncapabilities. Utilities such as Load, Import, Reorganize Data, and Create Index have beene�ciently parallelized. We also provide a parallel reorganization utility called Rebalance whichwill e�ectively correct data and processing load imbalance across di�erent nodes of the system.2

In sum, DB2 PE is a comprehensive, full-edged, parallel database system.It must be noted that companies such as Tandem and Teradata have built and sold par-allel database products for a few years [18, 16, 19]. Teradata's DBC/1012 system is targetedfor Decision Support Applications while most of the Tandem systems target high-performanceOLTP applications. However, both products are based on proprietary hardware architectureswhich are only usable for the database processing task. The proprietary hardware increases thecost of such systems and also inhibits the development of a full set of application enablers onthem. Besides the fact that DB2 PE does not impose such a limitation, we believe that thereare several novel aspects that are addressed by this project which have not been addressedelsewhere. Several of these aspects will be highlighted in the ensuing sections.The rest of the paper is organized as follows. Section 2 describes the general architecture ofthe DB2 PE system. The relative merits of the Shared Nothing architecture and the FunctionShipping execution model are described. The next three sections discuss the three layers of thesystem in detail. Section 3 discusses the user controlled data layout for optimal performance.The next section describes some of the salient features of DB2 PE's query optimization. Therun-time internals of the system are then discussed in Section 5. Since decision supportapplications depend a lot on database utilities like load and unload, we discuss that in section6. Section 7 presents some of the initial performance numbers of some controlled experiments,and the paper then ends with a discussion on our experience, conclusions, and directions forfuture work.2 Architecture Overview and Project HistoryThere are three di�erent approaches in building high performance parallel database systems[20], namely shared memory (shared everything, tightly coupled), shared disk (data sharing,loosely coupled), and shared nothing (partitioned data). Figures 1, 2, and 3 illustrate the threedi�erent parallel database system architectures.In shared memory systems, as shown in Figure 1, multiple processors share a commoncentral memory. With this architecture, communication among processors is through shared3

Interconnection Network

P1 P2 Pn

Global Shared MemoryFigure 1: Shared memory architecture.
Interconnection Network

P1 P2 Pn

Figure 2: Shared disk architecture.
Interconnection Network

P1 P2 PnFigure 3: Shared nothing architecture.4

memory, thus there is little message overhead. In addition, the software required to provideparallel database processing is considerably less complex with shared memory than with theother two architectures. Consequently, many commercial parallel database systems availabletoday are based on the shared memory architecture.Although shared memory systems are easier to develop and support, one major limitation isthat it can not scale to large number of processors. Research has shown that beyond a certainnumber of processors, access to memory becomes a bottleneck [21] and the processing speedof the system will be limited by memory access and not determined by how fast the processorsare. State of the art technology can build memory to support about 500 MIPS of CPU power.This implies that a shared memory system can support less than 10 RISC processors of thecurrent generation.In shared disk systems [22], as illustrated in Figure 2, multiple processors, each with itslocal memory, share a pool of disks. Shared disk systems avoid the central memory accessbottleneck, but introduce the di�cult problem of connecting all processors to all disks. Thiscan be especially di�cult in the case of large number of processors and disks. In addition,shared disk presents the most challenging task of transaction management because it needsto coordinate global locking activities { but without the help of a shared memory { and tosynchronize log writes among all processors.With the shared nothing architecture (Figure 3), each processor has its own memory as wellas local disks. Except communications media, no other resources are shared among processors.shared nothing does not have the memory access bottleneck problem, nor does it have theproblem of inter-connecting a large number of processors and disks. The major complexity insupporting the shared nothing architecture is the requirement of breaking a SQL request intomultiple sub-requests sent to di�erent nodes in the system and merging the results generatedby multiple nodes. In addition, shared nothing requires distributed deadlock detection andmulti-phase commit protocol to be implemented. Researchers and developers have argued thatthe shared nothing architecture is the most cost e�ective alternative and the most promisingapproach for high performance parallel database systems [20, 23, 24]. Many research projects,including Gamma [1] and Bubba [2] have studied various aspects of parallel database systemdesign based on this architecture.Because a shared nothing system can easily be scaled to hundreds of processor while sharedmemory and shared disk systems are limited either by memory bus bandwidth or by I/O channelbandwidth and because a shared nothing system can grow gracefully, i.e. adding more disk5

TASK STRUCTURE

scan my
t1

scan my
t1

scan my
t1

scan my
t1

scan my
t1

CLIENT

slave tasks

coordinator

partitions of t1

select * from t1

Figure 4: Run-Time Execution in DB2 PEcapacity and/or processing power as needed, DB2 PE adopts the shared nothing architecture.2.1 Function ShippingBecause resources are not shared in an shared nothing system, typical implementations usefunction shipping. In this, database operations are performed where the data resides. Thisminimizes network tra�c by �ltering out unimportant data, as well as achieves good parallelism.So a major task in an shared nothing implementation is to split the incoming SQL into manysubtasks { these subtasks are then executed on di�erent processors (if required, interprocessand interprocessor communication is used for data exchanges). Typically, a coordinator servesas the application interface { it receives the SQL and associated host variables, if any, andreturns the answers back to the application.Figure 4 shows some of the task structure for a very simple query. The table t1 is shown6

JOIN

SORT SORT

SCAN SCAN

T SFigure 5: An example of a DB2/6000 Execution Strategyhorizontally partitioned [13] across all the nodes and thus, based on function shipping paradigm,the coordinator requests a slave task { one on each node { to fetch its partition of t1 and streamthe result to it. The results are then returned to the application as it issues "EXEC SQLFETCH" statements. In more complicated SQL statements, the task structure is inherentlymore complex { it is the job of the query compiler to come up with the best (i.e. optimal)task structure for the execution of a query. The query compiler determines the function to beperformed by each task { at run time; the coordinator task is typically instantiated on the nodeto which the application connects, and each slave task is instantiated on the nodes on which thedata it needs to access resides. Thus in Figure 4, there is one coordinator, and �ve instancesof slave task #1.1As an example of a more complex function shipping, consider the query and its serialexecution strategy shown in Figure 5 for the query:select T.A, S.A from T, S where T.B = S.BWhen T and S are horizontally partitioned, a possible parallel execution startegy could be theone that maintains the serial structure, but executes each operator in parallel (Figure 6).Circled crosses indicate data exchanges (we show later how in a large number of cases evensuch exchanges can be avoided). It is clear that this execution startegy requires a coordinator(not shown) and three slave tasks (slave task #1 scans, sorts, and ships its partition of T toslave task #3, slave task #2 does the same against S, and slave task #3 does the actual join).One of the advantages that we realized from using function shipping was that we couldleverage a lot of the existing DB2/6000 code { the scans, sorts, joins etc shown in Figure 6 is1We use the term slave task, subordinate task, subsection and subplan interchangeably.7

SORT

SCAN

SORT

SCAN

JOIN

NODE 1

T1 S1

SORT

SCAN

SORT

SCAN

JOIN

SORT

SCAN

SORT

SCAN

JOIN

T2 S2 Tn Sn

NODE 2 NODE n

X X X X X XFigure 6: An example of a DB2/6000 Execution Strategyidentical to the operators in Figure 5 { they are transparently parallelized because their inputsare. The real fundamental technology in Figure 6 is in the mechanism that glues the nodestogether to provide a single system view to outside world. In addition to function shipping,other technologies required are (1) generation of parallel plan, (2) streaming of data and controlow, (3) process management, (4) parallel transaction and lock management, and (5) parallelutilities.Figure 7 describes the system architecture of one node of a DB2 PE system at a conceptuallevel. Operations on a node are either on behalf of external applications, or internal requestsfrom other nodes in the system. External requests include SQL calls, utilities (load, unload,rebalance etc.), or other calls (commit, start using database etc.). SQL calls can be broken intoDDL (Data De�nition Language) and DML (Data Manipulation Language). DDL is used tode�ne and manipulate meta-data, such as creating databases, tables, and indices. DML is usedfor populating, querying, or modifying the data in the database.Execution of the external and internal requests is primarily driven through the run-timelayer. An example function of this layer is to traverse the \operator" graph of an optimizedDML statement and to call lower level functions for executing each operator. The run-timesystem is also responsible for allocating and deallocating processes for processing local andremote requests.Below this layer are two distinct components { DMS (Data Management Services), whichdeals with operations on local data, and Communication Services, which deals with operationson remote data. DB2 PE had to make modi�cations to the DMS layer of DB2/6000, but thechanges were relatively modest. However, the communication services was an entirely new8

Comm. Mgr

Data
Msg

Control
Msg

Async Sync

DPS

Data

Mgmt.

Svcs.

Run−Time

DML DDL

SQL

Utilities Others

Network (to other nodes)Figure 7: Major System Components
9

component.The communication services component provides two types of interfaces { one for controlmessages, and the other for data. The control messages can be either synchronous or asynchro-nous. All messaging is through a communication manager, which is resposible for multiplexing,demultiplexing and reliable delivery to other DB2 PE processes.In addition, the DPS (Data protection services) layer of DB2/6000, responsible for locking,logging and recovery, had to be extended to account for the fact that a transaction can involvemore than one node. The extensions to DPS use the control message interface of the commu-nication services for global deadlock detection, two-phase commit protocol, and recovery fromsystem failures.These building blocks of the DB2 PE system will be discussed in more detail in the followingsections. Changes to the DDL and its processing are described in Section 3. DML statementsand their optimization, including the new operators required to execute them in a functionshipping paradigm are discussed next. All changes in the run-time system and the DPS layer,as well as the new communication component are discussed in Section 5. Finally, Section 6discusses some of the new parallel database utilities.2.2 Project HistoryThe seeds for DB2 PE were laid at IBM TJ Watson Research Center, starting 1989. Initialtechnology achievements were showcased in the Fall Comdex 1990. For this demo, a smallnumber of LAN-connected PS/2's were used. Though a lot of the underlying run-time infra-structure had been prototyped by then, the parallel query plans were hand generated. Researchkept adding to the functionality of the parallel database system, and experimented with severaldi�erent approaches. We began joint work with product divisions, �rst with Advanced Work-stations Division in Austin. Joint work started with IBM's Software Solutions Division (thenProgramming Systems) in Toronto when the latter got the DB2 Client/Server mission in late1992. A full development team was put in place starting mid 1993 when it became clear thatthe market was ripe for an open MPP based database system in 1994.
10

3 Data De�nition Language (DDL)3.1 BackgroundDB2 PE provides extensions to SQL in the form of new data de�nition language (DDL) state-ments which allow users to control the placement of database tables across the nodes of aparallel system. Before describing the DDL extensions, we provide a general discussion of dataplacement issues in shared-nothing parallel database systems.The problem of determining the best storage strategy for the tables in a given databaseis called the data placement problem. Data placement in parallel database systems is knownto be a di�cult problem [13] and several approaches have been taken to solve this problem[25, 10, 13, 26]. The three key aspects of the data placement problem are, declustering, assign-ment, and partitioning [13]. Declustering refers to the technique of distributing the rows of asingle table across multiple nodes. If the rows are stored across all the nodes of the paralleldatabase system, then the table is said to be fully declustered. If the rows are distributed acrossa subset of the nodes, then the table is said to be partially declustered. The number of nodesacross which a table is declustered is referred to as the degree of declustering of the table. Theterm, table partition, refers to the set of rows of a given table that are all stored at one node ofthe shared-nothing system (therefore, the number of table partitions = degree of declustering).After choosing the degree of declustering, it is neccesary to solve the assignment problemwhich is the problem of determining the particular set of nodes on which the table partitionsare to be stored. The following issues arise during assignment. Given any two database tables,their assignment may be non-overlapped, i.e. the two tables do not share any common nodes.Conversely, their assignment may be overlapped, in which case the two tables share at least onenode. If both tables share exactly the same set of node, then the tables are said to be fullyoverlapped. Finally, the problem of partitioning refers to the problem of choosing a technique toassign each row of a table to a table partition. Common techniques are, round-robin, hash, andrange. In the last two, a set of columns (attributes) of the table are de�ned as the partitioningkeys and their value(s) in each row is used for hashing or range partitioning.11

3.2 Nodegroup DDLDB2 PE supports partial declustering, overlapped assignment, and hash partitioning of data-base tables using the notion of nodegroups. A nodegroup is a named subset of nodes in theparallel database system. The following example illustrates the use of the nodegroup DDLstatement:CREATE NODEGROUP GROUP 1 ON NODES (1 TO 32, 40, 45, 48)CREATE NODEGROUP GROUP 2 ON NODES (1, 3, 33)CREATE NODEGROUP GROUP 3 ON NODES (1 TO 32, 40, 45, 48)In the above example, GROUP 1 and GROUP 3 are two di�erent nodegroups, even thoughthey contain the same set of nodes, viz. nodes 1 to 32, 40, 45, and 48. Nodegroup GROUP 2is partially overlapped with GROUP 1 and GROUP 3 (on nodes 1 and 3).To support scalability, an on-line utility called REDISTRIBUTE NODEGROUP is providedto allow addition/removal of nodes to/from a nodegroup. Further details are provided in Section6.4.2.3.3 Extensions to CREATE TABLE DDLWhen creating a table, it is possible to specify the nodegroup on which the table will be declus-tered. The cardinality of the nodegroup is the degree of declustering of the table. In addition, itis possible to specify the column(s) to be used for the partitioning key. The following exampleillustrates the use of DDL extensions to the CREATE TABLE statement:CREATE TABLE PARTS (Partkey integer, Partno integer) IN GROUP 1PARTITIONING KEY (Partkey) USING HASHINGCREATE TABLE PARTSUPP (Partkey integer, Suppkey integer, PS Descp char[50])IN GROUP 1 PARTITIONING KEY (Partkey) USING HASHINGCREATE TABLE CUSTOMERS (Custkey integer, C Nation char[20]) IN GROUP 1PARTITIONING KEY (Custkey) USING HASHINGCREATE TABLE SUPPLIERS (Suppkey integer, S Nation char[20]) IN GROUP 112

Partitioning Concepts

A B

NODE 1

NODE 2

NODE 3

NODE 4

H(A)

Partition

MapFigure 8: The concept of Partitioning Keys and MapsPARTITIONING KEY (Suppkey) USING HASHINGThe partitioning key of tables PARTS and PARTSUPP is Partkey. All tables are partitionedacross the set of nodes identi�ed by the nodegroup, GROUP 1.For each row of a table, the hash partitioning strategy applies an internal hash functionto the partitioning key value to obtain a partition (or bucket) number. This partition numberis used as an index into an internal data structure associated with each nodegroup, called thepartitioning map (PM), which is an array of node numbers. Each nodegroup is associated witha distinct partitioning map. If a partitioning key value hashes to partition i in the map, thenthe corresponding row will be stored at the node whose node number appears in the ith locationin the map, i.e. at PM [i]. (Figure 8 shows a table with partitioning key A. The hash functionH(:) is applied on a tuple's A value and that is used as an index into the partition map todetermine the actual node number.)If there are p partitions in the partitioning map and if d is the degree of declustering of atable then it is neccesary that d � p. In DB2 PE, the value of p is chosen to be 4096. Typically,d << 4096, thus several partitions are mapped to the same node. Initially, the 4096 hash par-titions are assigned to nodes using a round-robin scheme. Thus, each node has at most d4096d epartitions of a given table.In the above example, all tables use the same partitioning map since they are de�ned in thesame nodegroup. In addition, if the data types of the partitioning keys are compatible then thetables are said to be collocated. Since the data types of the partitioning keys of PARTS andPARTSUPP are the same, they are compatible by de�nition. DB2 PE provides a simple set ofrules that de�ne compatibility of unequal data types. The partitioning strategy ensures that13

rows from collocated tables are mapped to the same partition (and, therefore, the same node)if their partitioning key values are the same. This is the primary property of collocated tables.Conversely, if rows from collocated tables map to di�erent nodes then their partitioning keyvalues must be di�erent. Collocation is an important concept since the equi-join of collocatedtables on the respective partitioning key attributes can be computed e�ciently in parallel byexecuting joins locally at each node without requiring inter-node data transfers. Such joins arecalled collocated joins and have the property of being highly scalable (perfectly scalable in theideal case). Thus, in the above example, the following is a collocated join:PARTS 1(Partkey=Partkey) PARTSUPP.4 Query Optimization for DB2 Parallel EditionThe Compiler component of DB2 Parallel Edition is responsible for generating the ParallelQuery Execution Strategies for the di�erent types of SQL queries. The DB2 PE compiler isimplemented on the basis of a number of unique principles:� Full-edged Cost based optimization - The optimization phase of the compiler gen-erates di�erent parallel execution plans and chooses the execution plan with the bestcost. The optimizer accounts for the inherent parallelism of di�erent operations and theadditional costs introduced by messages while comparing di�erent strategies.� Comprehensive usage of data distribution information - The optimizer makes fulluse of the data distribution and partitioning information of the base and intermediatetables involved in each query while trying to choose parallel execution strategies.� Transparent parallelism - The user applications issuing Data Manipulation SQL state-ments do not have to change in order to execute on DB2 PE . Hence, the investment thatusers and customers have made already in generating applications is fully protected andthe migration task for the DML applications is trivial. Application programs written forthe DB2/6000 product do not even need to be recompiled fully when they are migrated toDB2 PE ; the application only requires a rebind to the parallel database which generatesthe best cost parallel plan for the di�erent SQL statements, and, if appropriate, storesthem. 14

The following subsections describe the key features of the query compilation technologyin DB2 PE . We describe the important operator extensions that are required for parallelprocessing, the di�erent types of operator execution strategies, and �nally, the generation ofthe overall parallel execution plan. We use several examples to illustrate these concepts.4.1 Operator ExtensionsFor the most part, parallel processing of database operations implies replicating the basic re-lational operators at di�erent nodes. Thus, the basic set of operators (such as Table Access,Join, etc.) are used without much change. However, the function shipping database architec-ture introduces two new concepts that are not present in a serial engine:� Query execution over multiple logical tasks (recall that each logical task, at run-time,can be executed on multiple nodes). Consequently, we need operators that the coordina-tor task can use to control the run-time execution of slave tasks. This operator, calleddistribute sub-section, is described in more detail in a later section.� As a consequence of multiple processes, interprocess communication operators (notablysend/receive) are required in DB2 PE. These operators can have attributes (e.g., sendcan be broadcast or directed; receive could be deterministic or random).4.2 Partitioning KnowledgeIn DB2 PE, we are conscious about partitioning in the DDL, Data Manipulation SQL, and atrun-time. DB2 PE's partitioning methodology can be viewed simply as a load balancing tool(by changing the key and partition map, we can adjust the number of tuples on any node);however by making the compiler and the run-time systems understand it, we have succeeded inimproving SQL performance beyond simply load balancing. As mentioned before, an exampleof this is collocated joins. The compiler, being fully cognizant of partitionings, node groupsetc., can evaluate the costs of di�erent operations (collocated vs. broadcast joins for example,as described later) and thus choose the optimal execution strategy for a given SQL statement.In the case of certain directed joins, the run-time system uses the knowledge of partitioning tocorrectly direct tuples to the approriate nodes.15

4.3 Query Optimization and Execution Plan GenerationThe compiler is responsible for generating the optimal strategy for parallel execution of a givenquery. In this section, we will describe the query execution plans as trees of operators separatedinto tasks. The query execution can be viewed as a data ow on this tree, with send/receivesbeing used for inter-task communication.A query optimizer typically chooses (a) the optimal join order and (b) the best way to accessbase tables and to compute each join. This task is inherently exponential ([27, 28]) and manyoptimizers use heuristics like postponing of cross products, left-deep trees etc. in order to prunethe search space. In the case of a parallel database, this operation is further complicated by(c) determining the nodes on which operations need to be done (this is called the repartitioningstrategy and is required because the inner and the outer may not be on the smae set of nodes)and (d) choosing between system resources and response time as the appropriate metric fordeteriming the cost of a plan.In DB2 PE, we have made a few simplifying assumptions in order to keep the query opti-mization problem tractable:� We keep track of, on a per node basis, the total system resource accumulated during thebottom-up generation of a query plan. The maximum across all the nodes is a measureof the response time of a query. This ignores the costs associated with the coordinator,as well as the response time complications associated with multiple processes.� Of all the possible subsets of nodes that can be used to execute a join, we typicallyconsider only a few { all the nodes, the nodes on which the inner table is partitioned, thenodes on which the ouer is partitioned, and a few others.� In keeping with the DB2/6000 query optimization strategy, we are greedy in choosing therepartitioning startegy as well { the best locally optimal strategy is the one that survives.In some queries, the optimal strategy is obvious:select S_NAME, S_ADDRESS from SUPPLIERS where S_REGION='ASIA'If a secondary index exists on SUPPLIERS.S REGION, then the query plan will use it torestrict the tuples on each node; otherwise each node will have to fetch all its SUPPLIER tuplesand eliminate those which are not from 'ASIA'. The run-time execution strategy is very similarto 4. 16

Task Structure

select count(*) from t1
where t1.b = :hvar

coordinator

slave task

Multiple Instances

scan t1

count

sum

return to application
get data from

application

Figure 9: Task structure for a QueryIn a more complicated query, such as one shown in Figure 9, the coordinator not onlyreturns the answer to the application, but also binds in any information required to computethe answer (passing this information to the slave task if required). In this case, an additionalfeature that DB2 PE supports is to do aggregation such as count(*) in two steps { the slavetasks compute their local counts and then the coordinator sums the counts and returns to theapplication. The arrows from the slave task to the coordinator are send/receive end { the arrowfrom the coordinator to the slave task is the passing of all the information required for the slavetask to correctly execute (i.e. the function, including the input host variable).In these two examples, the query optimizer had to do little; we now turn to some examplesof joins where the optimizer has to actually make decisions.SELECT CUSTNAME from CUSTOMERS, ORDERSwhere O_CUSTKEY = C_CUSTKEYand O_ORDERDATE > '02/02/94'The query selects the name of all customers who placed orders after a certain date. It requiresthat the ORDERS and CUSTOMERS tables be joined on their CUSTKEY attribute. ThisJoin operation can be performed by a variety of di�erent strategies in a parallel databaseenvironment. 17

COORDINATOR

SLAVE TASK
JOIN

SCAN SCAN

Customer orders Figure 10: Collocated JoinCollocated JoinLet the Partition Keys of the ORDERS and CUSTOMERS tables be CUSTKEY and let thembe in the same nodegroup. Then, the records of both tables having a particular CUSTKEYvalue will reside on the same node. For example, CUSTKEY value of 10000 may be mappedto node 100 but is the same for both tables. Thus, the Join operation can be performed on thelocal partitions of the two tables. The execution strategy for this is shown in Figure 6 exceptthat the circled cross operators are null operators { no data exchange is required and the entireoperation can be done in one slave process that scans the two tables and joins them, and thenships the result to the coordinator. Figure 10 shows the task structure for this join.Directed JoinLet the Partition Key for CUSTOMER be CUSTKEY and ORDERS be ORDERKEY. Here, wecannot perform a collocated join operation since records of the ORDERS table with a particularCUSTKEY value could reside on all nodes. The compiler recognizes that this is the case basedon the partitioning knowledge. It then considers a few execution strategies the foremost ofwhich is the directed join.The optimizer recognizes that the CUSTOMERS table is partitioned on the CUSTKEY.So, one e�cient way to match the CUSTKEYs of ORDERS and CUSTOMERS is to hash theselected ORDERS rows using its CUSTKEY attribute and direct the rows to the appropriateCUSTOMERS nodes. This strategy localizes the cost of the Join to partitions at each nodeand at the same time tries to minimize the data transfer. Figure 11 shows the compiled plan18

join

direct/
broadcast

coordinator

slave task #2

slave task #1

to application

scan

customers scan

ordersFigure 11: Directed/Broadcast Joinfor this strategy.Broadcast JoinConsider the following query between the CUSTOMERS and SUPPLIERS table.SELECT CUSTNAME, SUPPNAME, C_NATIONfrom CUSTOMERS, SUPPLIERSwhere C_NATION = S_NATIONThe query tries to �nd customers and suppliers in the same region. Let the Partition-ing Key for CUSTOMERS be CUSTKEY and that of SUPPLIERS be SUPPKEY. Note thatC NATION and S NATION could have been the respective Partition Keys of the two tables;however, CUSTKEY and SUPPKEY are used more often in queries and are more likely can-didates. Given this, the optimizer cannot try to localize the join operation on the C NATIONand S NATION attributes. Hence, a strategy of broadcasting the selected rows of EITHERtable to all the nodes of the other tables is considered. The broadcast essentially causes onetable to be materialized fully at each node containing a partition of the other table. Now, ajoin at all nodes will produce the complete result of the query. Figure 11 also shows a broadcast19

slave task #2

slave task #1

JOIN

coordinator

slave task #3

scan

customers

scan

suppliersFigure 12: Repartitioned Joinjoin (with the ORDERS table being replaced by SUPPLIERS) and the arrow connecting slavetask #1 to slave task #2 being of type broadcast as opposed to directed.The broadcast join operation is relatively expensive both in terms of network cost and joinCPU cost. However, there are instances where this strategy is still very useful. These instancesinclude situations where one of the joining tables is much smaller than the other or when thereis an index on a joining attribute(s).Repartitioned JoinsWe also consider a repartitioned strategy of Join execution in cases such as the query describedabove. In this strategy, the optimizer decides to explicitly repartition both tables on theirjoining attributes in order to localize and minimize the join e�ort. In the example querydescribed above, the optimizer will repartition the CUSTOMERS table on C NATION and theSUPPLIERS table on S NATION on some common set of nodes. The repartitioned tables canthen be joined in a collocated join fashion at each node. Figure 12 shows the repartitioned joinstrategy.The repartitioned join requires message tra�c to redistributes rows of both tables involved20

JOIN

JOIN

JOIN

T1 T2

T3

T4

JOIN

JOIN JOIN

T1 T2 T3 T4Figure 13: Di�erent Execution Strategies in Serial and Parallel Environmentsin the join. Once redistributed, the join CPU cost is similar to the colocated Join case.Cost Based OptimizationOne of the most important features of the optimizer is that it uses Cost Estimates whne decidingbetween di�erent execution choices. This is to be contrasted with an optimization techniquewhich heuristically decides to go with a particular strategy. For example, given a join operation,the optimizer estimates the cost of each of the join strategies described above and chooses theone with the least cost estimate for a given join step. The cost basis makes the optimizerdecisions more robust when choosing between strategies such as broadcast or repartitionedjoins.Cost estimation also enables the optimizer to choose the best query execution plan in aparallel environment. It accounts for the messaging costs incurred by operations. Most impor-tantly, estimation tries to inuence parallel processing of di�erent parts of the query wheneverpossible. Figure 13 shows two di�erent types of query execution plans for a 4-way Join query.Let the tables be allocated to two disjoint sets of nodes. An optimizer for a serial DBMS couldchoose the strategy in Figure 13 (a) because all the operations are performed in the same nodeand that is the best serial strategy (possibly inuenced by indexes, sort orders etc.). However,the DB2 PE optimizer may try to favor the parallel plan represented by Figure 13 (b) sincemore work can be performed in parallel and the partitionings for the two lowermost joins areoptimal. Thus proper \parallel cost measures" are critical for parallel query optimization.4.4 Parallelism for all operationsA guiding principle in the compiler design has been to enable parallel processing for all types ofSQL constructs and operations. For the sake of brevity, we only list the other operations and21

constructs where we apply parallelism while generating the execution strategies.� Aggregation: Ability to perform aggregation at individual slave tasks and, if required, ata global level.� Set operations: We consider collocated, directed, repartitioned, or a global strategy akinto the Join strategies described above.� Inserts with subselect, updates, deletes.� Subqueries: We consider collocated, directed, and broadcast methods of returning sub-query results to the sites where the subquery predicate is evaluated.5 DB2 Parallel Edition RuntimeIn order to execute a query plan or a DDL statement in parallel, DB2/6000 run-time mechanismhad to be augmented considerably. A new component, the communication manager, was addedto provide interprocess communication between various DB2 PE processes. On top of it, thefollowing new components now exist:� : Table Queue Service: This deals with exchange of rows between DB2 PE agentsacross or within a node and is responsible for the correct execution of the data owoperators connecting di�erent slave tasks.� : Control Service: This deals with interprocess control message ow (start/stop ofprocesses, error reporting, interrupts, Parallel Remote Procedure Call, etc.).In addition, several existing components had to be modi�ed for DB2 PE. They includethe interpreter (the component that drives the execution of a plan), deadlock detectors, lockmanager, transaction manager etc. In this section, we describe the new components, as well asthe modi�cations to the existing ones.5.1 Control ServicesTo summarize the discussion in section 4, the compiler takes each SQL statement and producesa plan to be executed. This plan consists of operators such as Access Table, Join Tables, Sort,etc. Plans are organized based on a data-ow model. For example, two Sort operators mayfeed rows to a Join operator (as shown in Figure 5).22

Appl System
Controller

Coordinator

FORK
Connect
Request

Figure 14: Application ConnectsIn making the query parallel, multiple processes are involved on di�erent nodes. Unlessoptimization combines them, each operator is e�ectively executing in its own process. DB2 PEconsequently adds explicit dataow operators where data-ow between processes is necessary.When an application connects to a database (14), a special process called the coordinator iscreated. This process is responsible for executing database requests on behalf of the application,returning any results through the reply queue and shared memory area (15). In the serial casethis is all there is; but in the parallel case multiple processes need to be created to executerequests. These processes, called agents, are organized into a network of producer-consumerprocesses. Data ow over Table Queues, which are described in the section 5.2.The subsection executed by the coordinator distributes the other subsections to the appro-priate nodes to be executed. Along with every request it sends connection information for theTable Queues, and any host variable information that may be required. There are separatedistribute operators in the coordinator for each subsection. Typically, the compiler can makestatic decisions about where a particular subsection needs to be instantiated (generally basedon the nodegroups of the tables that the particular slave task accesses). However, DB2 PE iscapable of choosing nodes at run-time, either based on the query structure (e.g., a query select* from t1 where t1.a = host-variable with t1.a being the partitioning key of t1 needs the table23

Appl System
Controller

Shared
Memory

Coordinator

Agent
Reply
Queue

SQL
Request
Queue

Figure 15: Application and Coordinator Agentaccess to happen only on the node that contains the partition for t1.a = host-variable), or onthe current load (for those subsections that are not tied to speci�c nodes, e.g. those whichexecute repartitioned joins).Creating a process can be an expensive operation. For long-running queries, this process isamortized over many millions of instructions, but for shorter queries this can be considerableoverhead. Therefore several optimizations have been done to decrease this overhead. Processmanagement is done by DB2 PE's control component(see 16).The purist view of process management is that the "abstract database process" is createdto execute its subsection, then terminates when the subsection is �nished. DB2 PE implementsa \process pool", which allows processes to be re-used for di�erent applications, and di�erentsubsections of the same application; and can grow or shrink as required.Certain sequence of SQL operations have a portion that is inherently state based. Forexample, cursor-based updates depend on a previous statement to position the cursor. ThereforeDB2 PE provides persistent agents which remain assigned until the application disconnects.After such an agent starts working on behalf of a request, it remains attached to the request'sstate till the request completes. An alternative we explored was "disconnecting" a process froma subsection during idle times, such as when waiting for a message to be received or sent. Theextra overhead of saving and restoring state seemed to overwhelm the system savings. The24

Coordinator
Agent

Start
SubSection
Request

Parallel
Agent
Controller

Pqrallel
Agent
Pool

Parallel
Agent

Parallel
Agent

Parallel
Agent

Parallel
Agent

Parallel
Agent

Activate
Waiting
Agent

Can be
extended

Parallel
Agent
Controller

Pqrallel
Agent
Pool

Parallel
Agent

Parallel
Agent

Parallel
Agent

Parallel
Agent

Parallel
Agent

Activate
Waiting
Agent

Can be
extended

Node i

Node j

Figure 16: Subsections Distributed25

parameters determining this tradeo� may change as system speed increases disproportionatelyto the disk swap time.In addition to the requests to start or stop processes, the control component also handlesrequests to stop or interrupt processes; return control replies such as the SQLCA to applications;provides Parallel Remote Procedure Call support for low-level database manager functions suchas "retrieve long �eld" or "load access plan from catalog".5.2 Table QueuesThe inter-process data-ow constructs are called Table Queues, and are similar to Gamma'sSplit Tables [1]. However, they are richer in functionality. Intuitively, they can be thought of asa temporary table which is visible to more than one process. The most important di�erence isthat they do not need to be completely built before rows can be fetched from them. They arein e�ect streams of rows for inter-process communication, controlled by back pressure. Theyhave a send operator (Table Queue Build) and a receive operator (Table Queue Access).Table Queues are designed to provide maximum exibility to the SQL compiler and op-timizer in generating the most e�cient parallel plan. The plan speci�es that a certain TableQueue is to connect two subsections of a plan. However, each subsection can be instantiatedon more than one node. Therefore a single Table Queue can have more than one sender, andmore than one receiver. It is a communication path between multiple producer and multipleconsumer processes (see 17). Although it should be thought of as one entity, it is implementedby multiple connections, between each sender/receiver pair. Each sending process can send eachrow to every receiver process, or to just one process depending on the partitioning informationassociated with the Table Queue.Each connection on a table queue has a speci�ed capacity, which is used to synchronize thesending and receiving processes. A receiver can consume all of the rows which have been sent,then wait for the producer to send more. Conversely, if the producer is sending rows faster thanthey can be consumed, it will wait for room when it has a row that needs to be sent on a fullconnection.There are many attributes associated with table queues. Some of them are:� : Broadcast vs. Directing: Does one row at the sending end go to all the receivers, oronly to one? See 18 for an example of a directed table queue.26

Table Queue as
Specified in plan

Table Queue as
instantiated

Send

ReceiveReceive

Send SendSend

Receive Receive

Figure 17: Table Queues� : Read-Ahead vs. Stepping: Does the table queue builder wait to �ll a block, or does itsend across just one row at a time? While the latter might seem ine�cient, it is requiredfor some operations where the position of Table Access needs to be maintained for possiblesubsequent updates.5.3 Communication SubsystemThe parallel communications component is layered in a similar fashion to the rest of the runtime.It accepts messages (either control messages or bu�ers of rows) and guarantees ordered deliverybetween nodes (or between processes on the same node). It performs multiplexing and de-multiplexing of messages between nodes of a DB2 PE system. Underneath, it uses the deliverylayer, which can be UDP, TCP, or proprietary high-speed switch interface (see 19).Because a message can be sent before the process waiting for it is ready to receive it,the communications layer must hold messages until the receiving process is ready to receive it.Some of the complications that had to be solved here were determining if the process to which amessage was directed had already terminated, in which case the arriving (or "in ight") messageshould be dropped; or whether the process has not yet been created and so the message should27

Send

Receive

SendSend

Receive Receive

a
b
c

a
b
c

a
b
c

a
a

a a a

a b

b

b

c

c
c

a a a
b b b

c
c c

a
a
a

b
b
b

c
c
c

Figure 18: Directed Table Queue28

row
row
row

row
row
row

row
row
row

row

row

row

row
row

SEND

get
row

pack
row

row

row

row

row
row

unpack
 row

put
row

RECEIVE

row
row
row

F
C
M

Queue of
blocks

Queue of
blocks

Node i

Node j

Rows Packed
and sent via FCM

Rows Received from FCM
and unpackedFigure 19: Details of One Table Queue Connection via Communication Manager

29

be kept. The solution to this question relied on the communications manager to guaranteeorder of arrival of messages. That is, if message A is sent from sender S on node 1 to receiverR on node 2, then it must be received by R before R can receive any other message sent laterby S to R. (Exceptions are made for the class of "interrupt" messages.)5.4 Interrupt and Error HandlingThe assumption inherent in the serial database manager is that either the application is busy,or the database is busy, but not both at the same time. Further, the database is busy doingonly one request per application. In DB2 Parallel Edition, not only can the database be activeconcurrently with the application, it can be processing more than one query on behalf of thesame application. Multiple cursors may be open at any given time. Each fetch of a cursorreturns a single row, but there could be processes on many nodes working to retrieve rows forthat cursor. Each set of processes is started when the cursor is opened, and continues until theend of its partition is reached, or until the cursor is closed.So although a row may be ready to be fetched, another node may have had an error. Thesemantics had to be de�ned for when the error indication is returned. Should it be returned assoon as possible, as late as possible, or in its "natural" order? DB2 Parallel Edition implementsthe "as soon as possible" policy, but it is by no means clear this is always the best. There aremany other examples of similar problems, where serial semantics just cannot be maintained[29].5.5 Concurrency Control and RecoveryTwo-phase commit protocol. One important property of database systems is to guaranteeeither all actions of a user transaction take e�ect or none take e�ect. Since a transaction can beexecuted on multiple processors concurrently in a parallel database system, it is much harderto provide the all or nothing property. To guarantee this property, most parallel systems adapta two-phase commit protocol that includes a prepare phase and a commit/abort phase. Thetwo-phase commit protocol may result in blocking if the coordinator fails after it has receivedvotes but before sends out an outcome. When blocking occurs, participants will hold/lockresources for a long time, resulting in signi�cant degradation in system performance. Three-phase commit protocol [30] has been proposed to remedy the blocking problem. But becausea three-phase commit protocol imposes much higher overhead than a two-phase protocol doesand the blocking problem can be "resolved" by system administrators, none of the existing30

ABORT

1 or more no vote

PREPARE

ABORT

Receive Prepare

global commitglobal abort

COMMIT COMMIT

ACTIVE ACTIVE

Coordinator agent PDB agents

_YES

PREPARED

Receive Prepare

Receive Prepare
(Ready)

(Not ready)

All yes vote

 (Read only)

Receive Abort Receive Commit

Figure 20: Transaction State Transition in DB2 PE.commercial systems to-date support the three-phase protocol.There are three variations of the two phase commit protocol: presumed nothing, presumedcommit, and presumed abort [?]. DB2 PE adopts the presumed abort protocol which assumesa transaction has aborted when the state of the transaction was inquired by any subordinatenodes and the state cannot be found in the in-memory transaction table. Figure 20 shows thetransition of transaction state in DB2 PE. When a transaction starts, a coordinator agent isactivated to coordinating the execution of the transaction. Subordinate agents (PDB agents),if needed, are activated by the requests sending from the coordinator agent. Before processinga commit/rollback request, the transaction at both coordinator and subordinate agents are inactive state.DB2 PE keeps a transaction node list, TNL for short, for every active transaction. The TNLof a transaction keeps the node numbers of all nodes participated in executing the transaction.When a coordinator agent receives a commit request from an application, it sends out prepare-to-commit requests to the PDB request queues of all nodes recorded in the transaction's TNLincluding the coordinator node itself. At this point, the coordinator agent enters the preparestate.Upon receiving the prepare-to-commit request, the PDB controller at the coordinator nodeis responsible for stopping active agents associated with the committing transaction. However,the coordinator itself is responsible for processing the prepare-to-commit locally. Notice that31

there is no prepare log written at the coordinator before starting the prepare phase in DB2 PE.At a subordinate node, a prepare-to-commit request is processed by an active agent associatedwith the transaction if one exists. Otherwise, a new agent is selected by the PDB controllerto process the request. The commit agent �rst checks the transaction state stored in the localtransaction table. If the transaction encountered any error and thus cannot be committed, itwill vote "no" to the coordinator and enters the abort state. Otherwise, it will reply "yes" andenters the prepared state if it has modi�ed its local database. If a participant does not updateits local database and is ready to commit, it will reply read-only and enters the commit state.If everyone votes "yes" or read-only, the coordinator commits the transaction and inform allparticipants who have voted "yes". At this point, the transaction state changed to commit atthe coordinator node. Otherwise, the the coordinator aborts the transaction and forwards thedecision to all subordinate nodes who voted "yes". All actions performed for the transactionat all nodes are rolled back and the transaction state is changed to abort.Concurrency Control. Parallel database systems need to maintain consistent global lockingacross all nodes because a database object may be accessed by multiple nodes concurrently anddeadlocks may occur among nodes. This requirement posts a signi�cant challenge to paralleldatabase system designers. In SM and SD systems, data can be accessed by multiple nodesconcurrently. In order to maintain a consistent global locking, a node needs to get read/writepermission from all other nodes before reading or writing a data object that it does not alreadyown an appropriate access permission. In DB2 PE, each processor accesses only the portionof database that it owns locally. Consequently, a processor does not have to request accesspermission from remote processors before accessing its local data; thus global lock table is notrequired. However, DB2 PE does require a distributed deadlock detector to check for globaldeadlocks.In DB2 PE, a lock table and local deadlock detector are created per database per node tomaintain locking information and to resolve conict in lock request for a given database. Atransaction may have multiple processes active on its behalf and each process requesting a lockwill be assigned a separate lock request block (LRB). When two processes of the transactionmake lock request to the same object, the one LRB per process design uses more memory space.However, it simpli�es the design in processing lock conversion request and lock release requestbefore end of a transaction. The local deadlock detector is implemented as a separate processand is awakens periodically to scan the local lock table and build local wait-for graph. It thensends the local wait-for graph to the global deadlock detector (GDD) for processing.32

Global Deadlock Detection is also implemented as a separate process. There is one globaldeadlock detector per database opened per DB2 PE system. Currently, a transaction is notallowed to access multiple databases at the same time and thus one GDD per database isthe most e�cient alternative. The GDD process resides on a pre-con�gured node. On a usercon�gurable time interval, local deadlock detectors send their local wait-for graphs to the GDD.The GDD merges the graphs received and build a global wait-for graph based on transactionid which is unique across all nodes in a DB2 PE system. After the completion of building theglobal wait-for graph, the GDD goes through a depth �rst search to �nd deadlock cycles in thegraph. When a cycle is detected, one or more victims are selected and rolled back to breakthe cycle. When a transaction has been selected as a deadlock victim, its coordinator agent(process) is informed by the GDD and the coordinator agent will send a rollback request to itssubordinate agents (processes) to undo the action of the transaction.6 Database UtilitiesDB2 PE provides a variety of utilities to manage the parallel database system. Some of theimportant utilities are described in the following subsections.6.1 Data LoadingThe Load utility allows bulk loading of database tables from at �les. To support applicationsrequiring very large database sizes (100's of Gbytes and higher), DB2 PE provides e�cient waysof loading large volumes of data into the database. Data can be loaded in parallel into a singletable by invoking the Load utility at each of the nodes that contains a table partition for thegiven table. Typically, the input data is stored in a single at �le. Application programminginterfaces (APIs) provided with the database system can be used to partition an input �le intomultiple �les, one per table partition. The partitioned �les can then be loaded in parallel. Inaddition, at each node, the Load utility reads the input data �le and directly creates data pagesin the internal format used by the database engine. These pages are directly appended to theexisting database �le, thereby greatly increasing the speed of the Load utility.6.2 Adding Nodes to the SystemDB2 PE supports scalability by allowing incremental addition of nodes to the shared-nothingparallel system. Thus, a user can start with a system con�guration that is su�cient to handle33

current storage and performance requirements and add new nodes as the size of the databasegrows. New nodes can be added to increase storage capacity as well as performance. Thecommand, Add Node, allows users to add nodes to the parallel database system con�gurationand \initialize" the node for use by any database. Once added, a node can be used by adatabase by including it in one of the nodegroups in the database (either the CREATE orALTER NODEGROUP statements can be used for this purpose). Since DB2 PE supportspartial declustering of tables, the set of all tables for a given database may reside only ona subset of the nodes in the system. However, an application can connect to any databasefrom any node in the system, regardless of whether that node contains data pertaining to thatdatabase.The Drop Node command can be used to remove an existing node from the database con-�guration. However, if the node to be dropped contains any data belonging to any of thecurrently de�ned databases, then the node is not dropped. The Rebalance Nodegroup com-mand (described in Section 6.4.2) must be used to remove data from this node before it can bedropped.6.3 Creating a DatabaseNormally, issuing the Create Database command ensures that the database is de�ned acrossall the nodes that are currently in the system. Similarly, the Drop Database command dropsthe database de�nition from all nodes. However, there are situations in which one may wishto create and drop the database only at a single node. For example, the Add Node commanddescribed above, implicitly performs a Create Database At Node operation for each existingdatabase. Also, in case the database at a node is damaged for some reason, the Drop DatabaseAt Node command allows the user to drop only the database at that node rather than droppingthe entire database across all the nodes of the system. Since DB2 PE supports node-levelbackup and restore (see section on backup/restore), after dropping a database at a node, thedatabase backup image can be used to restore the database at that node (and roll forward thelogs, if necessary).6.4 Data ReorganizationAs a result of insert, delete, and update activity, the physical layout of database tables maychange. Insertions may result in the creation of overow data blocks and, as a result, the diskpages containing data belonging to the table may no longer be stored contiguously. On the other34

hand, deletions may create gaps in disk pages thereby resulting in an ine�cient utilization ofdisk space. If a table is partitioned across a set of nodes, insert/delete activity may also resultin table partitions at some nodes having more data than those at other nodes, thus creatinga skew in data distribution. Also, in many decision support applications, the database sizeincreases with time. Thus, it may be necessary to increase the degree of declustering of a tablein order to accommodate the additional data. Finally, even if the size of the database remainsthe same, the workload may change thereby requiring a change in data placement.In all of the above situations, data reorganization utilities can be used to manage thephysical storage of the table. The following subsections describe the data reorganization utilitiesavailable in DB2 PE.6.4.1 Table reorganizationThe Reorg utility can be used for compaction and reclustering of database �les at each node.The Reorg operation executes in parallel across all the nodes that contain a table partition fora given table. The �le in which the database table is stored is reorganized by creating a new�le without any page gaps and overow blocks. If the operation completes successfully on somenodes but not on others, then the table partitions remain successfully reorganized at the nodeswhere Reorg succeeded.This is an example of an operation where the atomic commit semantics of the databaseoperation has been relaxed. If the operation were to be atomic, then upon failure, the Reorgwould have to be undone at all the nodes where it completed successfully. However, the Reorgoperation may be time consuming and undoing it may be even more expensive. In addition,consider the case when Reorg succeeds on, say, 60 nodes but fails on 1. It is more bene�cial notto undo the operation. In this case, the operation returns an error message but is not undonesince there is no penalty if some partitions are reorganized while others are not. On the otherhand, the nodes at which the partitions were reorganized would bene�t from the resulting �lecompaction.6.4.2 Data RedistributionThe partitioning strategy used to partition tables may, in some situations, cause a skew inthe distribution of data across nodes. This can be due to a variety of factors including, thedistribution of attribute values in a relation and the nature of the partitioning strategy itself.At initial placement time, it is possible to analyze the distribution of input attribute values and35

obtain a data placement that minimizes skew. However, data skew may be reintroduced overthe database lifetime due to insertion and deletion of data. DB2 PE provides the RebalanceNodegroup operation to redistribute the data in a table in order to minimize skew.For a given nodegroup, the rebalance operation considers the 4K partitions in the partition-ing map and determines the set of partitions that should be moved in order to obtain an evendistribution of data across the nodes of the nodegroup. The default assumption is that thedata is evenly distributed across the 4K partitions, thus, if the partitions are evenly distributedamong the set of nodes, then the data is also assumed to be evenly distributed across the nodes.The user may override this default assumption by providing a distribution �le which assigns aweight to each of the 4K partitions. In this case, the rebalance operation will attempt to redis-tribute partitions among nodes such that the sum of the weights at each node is approximatelythe same.If a nodegroup contains several tables, then rebalancing only one table and not the otherswill result in a loss of collocation among the tables. In order to preserve table collocation atall times, the rebalance operation is applied to all the tables in the nodegroup and each tableis rebalanced in turn. If a rebalance operation does not complete successfully, it is likely thatsome tables in the nodegroup have been rebalanced while others have not. In this case, theoperation can be completed by issuing the rebalance command with the restart option. It is alsopossible to issue the rebalance command with a rollback option, in order to undo the e�ectsof the failed rebalance. The Rebalance Nodegroup command is an on-line operation whichlocks only the table that is currently being rebalanced. All other tables in the nodegroup arenormally accessible.In addition to the Rebalance command, an application programming interface (API) isprovided that permits users to redistribute data by specifying a target partitioning map (PM)for a given nodegroup. The API initiates data redistribution of all tables in the nodegroup usingthe target PM. This API can be used to achieve \custom" redistribution of tables, e.g. send allrows with a particular partitioning key value to a particular node, create skewed distributions,etc. The current data distribution across partitions and nodes can be determined using twonew SQL scalar functions, viz. PARTITION and NODE. These functions return the partitionnumber and node number to which a given row in a table is mapped.The following example illustrates how the new SQL functions can be used to obtain thedistribution of the rows of PARTS table: 36

Query 1:SELECT PARTITION(PARTS), COUNT(*)FROM PARTSGROUP BY PARTITION(PARTS)ORDER BY PARTITION(PARTS)Query 2:SELECT NODE(PARTS), COUNT(*)FROM PARTSGROUP BY NODE(PARTS) ORDER BY NODE(PARTS)The output of Query 1 is a set of 4K rows where each row contains the partition number(0 to 4095) and the number of rows of the table that map to that partition. The output ofQuery 2 is a set of rows where each row contains the node number and the number of rows ofthe table that map to that node.6.4.3 Backup/RestoreThe degree of parallelism achieved during backup and restore of a database is determined bythe number of backup devices available. The DB2 PE backup/restore design allows each nodein the system to be backed up independently. Thus, data from several nodes can be backed upsimultaneously, if multiple backup devices are available. The backup utility creates a backupimage of the entire database partition resident at a given node.At restore time, it is neccesary to ensure that the database partition that is being restoredis in a consistent state with respect to the rest of the nodes in the system. This can be achievedby either restoring all nodes in the system using backup images that are known to be consistentor by restoring the single node and rolling forward logs to a point in time where the databasestate is consistent across all nodes. DB2 PE supports the ability to roll forward logs acrossnodes to a speci�c point in time.6.4.4 High AvailabilityHigh availability is supported by the use of HACMP [31] software. The HACMP softwareprovides transparent takeover of the disk and communications resources of the failed node.System nodes are paired together and each pair has access to twin-tailed disks. If one of the37

processors in a pair fails, the other processor can take over and the system can continue tooperate. To enable use of HACMP software, the database engine has been designed to allowthe situation where a single processor executes multiple copies of the database engine. In otherwords, multiple database nodes or logical nodes are mapped to the same physical node. Whilethis method provides quick take over of a failed node, there may be an impact on performancedue to increased load on the takeover processor. In many decision support applications, it is notessential to provide instant take over capability, whereas it is important not to degrade overallsystem performance. Thus, it may be acceptable to have a particular node become inaccessiblefor say, tens of minutes, in order to be able to recover from a failure of that node without anysubsequent performance penalty. This can be achieved by con�guring one or more spare nodesin the system which can take over on behalf of any failed node. When a node fails, its database�les are copied to the spare node (access to the disks on the failed node is available due totwin-tailing) and the spare is now restarted as the original, failed node. In this scenario, onlythe node that failed is inaccessible for a brief period of time while the remaining nodes in thesystem are still operational.6.5 Performance monitoring and con�guration managementDatabase monitoring tools allow users to identify performance bottlenecks and take appropriateaction to relieve the bottlenecks. DB2 PE provides a database monitoring facility that allowsusers to gather data on resource consumption at the database manager, database, application,and individual process levels. This data is collected at each node and can be used to identifybottlenecks at individual nodes. To obtain a global picture of the performance of the entiresystem, it is necessary to combine performance monitoring data across all nodes. A performancemonitoring tool is being developed as a separate product for this purpose.The database manager provides several con�guration parameters at the database managerand individual database levels, that can be used to tune the performance of each databaseand the database manager as a whole. For example, users can control the size of bu�ers,maximum number of processes, size of log �les, etc. These parameters can be set independentlyat each node, thereby allowing users to tune the performance of each individual node. Thus,the con�guration parameters can be adjusted to account for di�erences in hardware capacities,database partition sizes, and workloads at each node.38

7 ResultsWe have performed a number of internal and customer benchmarks on DB2 PE and a briefsynopsis of these results are presented here. The results are divided into 3 categories:� Stand-alone numbers - on capacity, load times, etc.� Speedup - this metric measures the performance of queries and utilities as we increase thenumber of nodes in the system while maintaining the same database sizes.� Scaleup - this metric measures the performance of the system as the database sizes, thenumber of concurrent users and/or the number of nodes are scaled proportionately.The system con�guration for many of the benchmarks has been IBM's SP2 or SP1 systems.The systems have ranged from 8 nodes to 64 nodes depending upon the database requirementsof the individual benchmarks. Typically, each node has 128 or 256 MB of memory and 2 to 48GB of disk capacity. The nodes are interconnected using a High-Speed switch. In some of thebenchmarks, we have only used the slower Ethernet as the interconnect.The results that are described in this section were measured using available versions of theDB2 PE software and speci�c hardware con�gurations. As such, the results obtained in adi�erent hardware and/or software environment may vary signi�cantly. Users of these resultsshould verify if they are applicable for their environments. We encourage the reader to look forthe general trend in these results (particularly for the speedup and scaleability experiments)rather than focusing on the particular performance numbers in the �gures.7.1 Stand-alone MetricsTable 1 describes the important stand-alone metrics based on results of benchmarks per-formed to date. One of the foremost metrics we would like to present is System Capacity.When stating capacity, we must di�erentiate between 'user data' size (The size of at �lescontaining the date in normalized form), database size (The space occupied once the data hasbeen loaded in DB2 PE, relevant indexes created and any denormalized tables required havebeen created) and disk capacity (The total disk space used to support the database workload,including internal work areas, interim load �les, etc). We have benchmarked applications withover 100 GigaBytes of user data, databases of over 250 GB and systems with more than 600GB of disk space. One of the tables in the database has been as large as 84 GB and contained39

Data size 100GB and largerDatabase size 250GB and largerTable size 84GB (2,000,000,000 rows)Total disk space over 600GBData Splitting 2 GB/Node/HrData Load Rate 2 GB/Node/HrTable 1: Stand-alone Metricsover 2 billion rows. We expect to support con�gurations in the TeraByte size. To put this inperspective, even the mainframe relational databases are rarely over 200 GB in size. Some ofthe measurements were done using tables larger than the 64GB limit of many RDBMS.Another very important metric is Data Load times. Our FastLoad utility is able to loaddata at rates of up to 2 GB/node/hour. The dataload utility runs in parallel at all nodes,hence it demonstrates completely linear speedup of load rates. In a 32 node system, one couldload at the rate of 64 GB/hour.Before loading the data, it must be declustered and sent to the appropriate node. The utilityused to decluster data (Data Splitter) is exible and can be modi�ed by the user in situationswhere �ne tuning is required. The Data Splitter can be executed on a variety of OS platformsincluding AIX, MVS, and VM. In most cases we also divided the input data so as to run thesplitter in parallel. The output of the splitter must then be sent to the appropriate node forloading. In some cases this was done by sending the data in �le format (using FTP). In othercases the output from the splitter was piped directly into the load program. In most cases, theconnectivity between the system containing the source data and the target database systemwas the limiting factor on the entire database load process. For a 100 GB database on a 46node SP2 system, the elapsed time for partitioning all the data, loading the data, and creatingindexes on the tables was just 12 hours.The �nal stand-alone metric is availability. In these benchmarks, we have tried to maintaina couple of spare nodes for replacement in the event of node failures. Due to the decision-supportnature of the benchmarks, only a few nodes (those containing database catalogs) in the systemmay need the use of fancy availability mechanisms such as twin-tailing of disks. For all othernodes, in the event of failure, failure, the data residing on the failed node can be reloaded ontothe spare node and the spare node is then wheeled in as a replacement node. We have been40

Table No. of Rows Row Size Total SizeS1 100,000 100 10 MBT1 1,000,000 100 100 MBT2 1,000,000 100 100 MBW1 1,000,000 1000 1 GBTable 2: Database Description for Speedup Experimentsable to accomplish this task in times that are only dependent on the data load times for thenode. For example, on the 100 GB database on 46 nodes, this task was accomplished in lessthan 2 hours.7.2 Speedup ResultsFor speedup, we present results from an internal benchmark performed on 4, 8, 16, and 32node SP2 systems. Table 2 describes the database con�guration used. The database consistsof four main tables (S1, T1, T2, W1) and each table contains a primary key besides othernon-essential attributes. The S1 table contains 100,000 rows while the T1, T2 and W1 tablescontain a Million rows, respectively. S1, T1, and T2 tables contain rows with a size of 100 byteswhile the W1 table has a row size of 1000 bytes.7.2.1 Scan PerformanceFigure 21 shows the execution times and the speedup of parallel scan operations on tables T1and W1 returning 1 row to the application. The y-axis on the left shows the execution timeswhile the y-axis on the right measures speedup which can be a maximum of 8.The scan of the T1 table exhibits linear speedup, i.e., the ratio of the execution times isexactly the inverse of the ratio of the number of nodes, when the number of nodes is increasedfrom 4 to 8. Beyond this point, the speedup becomes sublinear due to the smaller size of thetable. In contrast, the scan of the W1 table exhibits linear speedup upto 16 nodes and onlythen becomes slightly sublinear. If the table scans had been performed using more nodes, theexecution times will eventually atten out when the table partitions at each node become smallenough that the overhead of initiating the scans at the di�erent nodes o�sets the performancegain from the parallel scan. This �gure illustrates that the parallelism bene�ts are bounded by41

4 8 12 16 20 24 28 32
Number of nodes

5

10

15

20

E
xe

cu
ti

on
 T

im
e

(s
ec

s)

T1: Scan Execution Time, return 1 Row

4 8 12 16 20 24 28 32
Number of nodes

2

4

6

8

Speedup

T1: Scan Speedup

4 8 12 16 20 24 28 32
Number of nodes

0

50

100

E
xe

cu
ti

on
 T

im
e

(s
ec

s)

W1: Exec. Time for Scan & Return 1 row

4 8 12 16 20 24 28 32
Number of nodes

2

4

6

8

Speedup

W1: Speedup for Scan & Return 1 row

Figure 21: Execution Times and Speedup of Parallel Scan returning 1 Row on T1 and W1tablesthe sizes of the tables for any operation.Figure 22 illustrates the performance of a Parallel Scan operation on the W1 table thatreturns 10% of the rows to the application. The execution times improve as the system size isincreased but the speedup is quite sublinear. The reason for this has to do with the processingdone at the Coordinator node in fetching 100,000 rows (10%) of the data and returning it tothe application. Amdahl's Law e�ectively limits the maximum performance improvement fromsuch queries due to the serial bottleneck. To overcome this bottleneck requires the applicationbe parallelized. One simple way of doing this on DB2 PE is to divide the application intomultiple tasks, each running on a separate coordinator. The division can either be based onrange of data or such that each task operates on a subset of the database nodes. Section 8discusses further the issue of parallel applications.7.2.2 Insert, Update PerformanceFigure 23 shows the execution times for performing Insert into a Temporary table of 1 Row,1% rows, and 10% rows of the T1 table. The �gure is plotted using logarithmic scale (base 2)on both the X and Y axes. In such a graph, linear execution time curves (with appropriate42

4 8 12 16 20 24 28 32
Number of nodes

0

50

100

150

200

E
xe

cu
ti

on
 T

im
e

(s
ec

s)

W1: Exec. Time for Scan & Return 10% rows

4 8 12 16 20 24 28 32
Number of nodes

2

4

6

8

Speedup

W1: Speedup for Scan & Return 10% rows

Figure 22: Execution Times and Speedup of Parallel Scan returning 10% Rows on W1 table
4 8 16 32

Number of nodes

2

4

8

16

32

64

128

E
xe

cu
ti

on
 T

im
e

(s
ec

s)

Insert w/ subselect, 1 Row
Insert w/ subselect, 1% Rows
Insert w/ subselect, 10% Rows

Figure 23: Execution Times of 1 Row, 1%, and 10% Insert with Subselect statements43

4 8 16 32
Number of nodes

2

4

8

16

32

64

128

256

E
xe

cu
ti

on
 T

im
e

(s
ec

s)

Searched Update, 1% Rows
Searched Update, 10% Rows
Searched Update, 100% Rows

Figure 24: Execution Times of 1%, 10%, and 100% Update with Subselect statementsslope) indicate linear speedup. All three curves show near linear speedup gains with increasingsystem size. We are able parallelize both the insert as well as the subselect operations of thisstatement resulting in linear speedup of the statement across di�erent nodes. Figure 24 showsthe execution times of update column operations on 1%, 10% and 100% of the rows of theS1 table. Once again, the execution times decrease linearly with increasing system size. The1% and 10% update curves show somewhat anomalous behavior at 32 nodes. We conjecturethat the relatively small number of updates at each node of the 32 node system (approximately300 for 1%) makes the execution times really dependent on the parallel scan times for 32nodes. Both these results illustrate the extremely parallel query execution strategies that DB2PE is able to generate for Insert, Update, and Delete SQL statements. The parallel Insert wasparticularly useful in benchmarks where interim results were saved in tables for later analysisor where denormalized tables were created from normalized ones.7.2.3 Index Create PerformanceFigure 25 shows the execution times of a Secondary Index creation on the 100,000 row S1 tableand the 1,000,000 row T1 table. Both curves illustrate close to linear performance improvementindicating that the create index operations are very e�ciently parallelized in DB2 PE _The44

4 8 16 32
Number of nodes

2

4

8

16

32

64

128

E
xe

cu
ti

on
 T

im
e

(s
ec

s)

Create Sec. Index 100,000 rows.
Create Sec. Index 1,000,000 Rows.

Figure 25: Execution Times of Create Secondary Index Statements on the S1 and T1 tables
45

Query Description Response Times Ratio10 GB 100 GB6-way join, 14 columns, 3 tables 22 132 5.0Insert/select of 2-way join, select temp 26 186 7.15Simple select, SUM, group by, order by 163 1,177 7.222-way join, not equal predicate, in list 174 1,521 8.74Create temp, Insert/select(4-way join), Select temp 694 7,234 10.42Union of two 2-way joins 253 2,647 10.463-way join, 3 tables, avg, group by, order by 240 3,340 13.912-way join,between predicate, group by, order by 164 3,682 22.45Insert/select, select, 3 tables, distinct 157 4,147 26.4Table 3: Performance of Complex Queries on 46 node SP2 for database sizes of 10GB and100GBreader should note that there is no di�erence between primary indexes and secondary indexesin our system due to the Function shipping model of execution. However, the same is not truefor other parallel database processing systems, where secondary indexes are global and cannotbe e�ciently parallelized [].7.3 Scaleability ResultsWe present three di�erent types of scaleability results.1. Performance as the database size scales from 10 GB to 100 GB on the same number ofnodes.2. Performance as the database size and the system size are scaled proportionately.3. Performance as the number of concurrent users on the system is increased.The results for all these three cases have been obtained from customer benchmarks.Table 3 shows the performance of DB2 PE on a 46 node SP-2 system for 10 GB and100GB versions of a scaleable database. The results are shown for a variety of complex querieson the database. The scaling ratios for the di�erent queries varies between 5 and 26.4. Most ofthe queries show linear or superlinear scalability (ratios less than or equal to 10). For this set46

2 4 8 16 32 64
Number of nodes [Data =Nodes x 0.75 GB]

0

200

400

600

800

E
x

ec
u

ti
o

n
 T

im
e

(s
ec

s)

Figure 26: Performance of a Complex Query as both system size and database size are propor-tionately Increased.of queries, DB2 PE is able to generate equal or larger amount of parallelism on the 100 GBdatabase when compared to the 10 GB database. The scaling factor of the last three queriesin Table 3 are sublinear (> than 10). These three queries include Order By or Distinct clausesthat require sorting to be performed on the results at the coordinator. This causes a serialbottleneck and translates into a reduction in the scaleup ratio.Figure 26 shows the scaleability results for a complex business query shown below as thesystem size is increased from 4 to 64 nodes and the database size (which includes index �lesalso) is proportionately increased from 2.5 GB to 40 GB. The query performs without anysigni�cant di�erence in execution cost showing that no additional costs are introduced with thescaling of the system. This is an important result as it indicates that the overhead introducedby the function shpping model of execution are relatively small and do not a�ect the executiontimes of complex queries.SELECT Count(*) FROM CustomersWHERE Class IN ('1','2','4','6')AND Cust_No NOT IN(SELECT O_CUST_NO FROM Offers47

Query Single user Scaling RatiosExec. Times (secs) 20 Users 30 UsersQ1 2 5 8Q2 15 3.4 3.4Q3 45 7.1 12.4Q4 68 12.4 23.24Q5 93 1.34 2.08Q6 331 10.6 18.9Q7 447 3.53 6.55Q8 493 4.84 8.62Q9 541 4.77 8.57Q10 722 4.9 8.77Q11 755 4.69 8.57Q12 1140 4.75 8.74Q13 1159 3.4 6.17Q14 1557 4.24 8.23Q15 1592 4.23 7.95TotalElapsed 8491 8435 12828Time (secs)Table 4: Performance of Queries with scaling of the number of Concurrent UsersWHERE O_DATE IN (list of dates))AND Cust_no IN(SELECT O_CUST_NO FROM OffersWHERE O_DATE IN (list of 2 dates)AND Response = 'Y')Table 4 shows the results of a Concurrent Execution Scaleability test on the system. Thetest was performed using a 23 GB database on a 8-node SP2 system. In this test, we comparethe response time of queries submitted by a single user to that of 20 and 30 concurrent users.First, we measured the execution times of the query suite consisting of 15 complex queries when48

they were submitted in a single stream by the single user. These execution times are shownin the second column of Table 4. Next, the queries were concurrently submitted by 20 and30 users respectively. Each user submitted one of the 15 queries. In order to distribute thecoordinator activity over all nodes in the system, the users were connected to the 8 nodes inthe SP2 in a round-robin fashion. Columns 3 and 4 show the Scaleup ratios of the executiontimes for the 20 and 30 users respectively. The results show that DB2 PE is able to scalesuperlinearly with respect to the concurrent users. There are several reasons for the superlinearperformance scaleup. Similar to serial databases, DB2 PE is able to make better reuse of thedatabase bu�ers at each node due to the common concurrent requests. This reuse occurs atall nodes, thereby, providing a signi�cant bene�t. Another very big contributing factor is thatthe concurrent users can connect to all nodes in the system and distribute the application andcoordinator load evenly across the nodes. In this experiment, the last row of Table 4 shows thattotal elapsed time for completing the entire query suite. The results show that 30 queries (twoexecutions of the query suite) were completed concurrently in a time that was only 1.5 timesworse than the single user, single stream test. The multiprogramming level of the system isnot constrained by the frontend or coordinator process. Not all parallel database systems havethis feature. Many of the parallel database systems are backend machines which have speci�cinterfacing systems for application entry and their multiprogramming levels are limited by thecapabilities of this frontend system. DB2 PE does not have this restriction and providessigni�cant concurrency bene�ts to users.7.4 DiscussionWe have presented a avor of the results obtained from several internal and external benchmarksperformed so far using DB2 PE _The results that are presented here and all the others have allbeen extremely positive on the performance of the system. The speedup and scaleability resultshave been consistently excellent for most types of queries and utilities. The results vindicatemost of our design decisions in the generation and execution of optimal parallel strategies.There are a few types of queries that do not speedup or scaleup linearly. These queriesare typically those that require signi�cant serial work with respect to the total work in thequeries. The performance of an example query type, which returns a signi�cant number ofrows to the application, was described in Section 7.2.1. Another example is a query requiringcoordinator Sorts or Distinct operations. When the coordinator activity is high in proportionto the total activity, the performance improvement of the system can decrease. We are working49

on improving the execution strategies for such types of queries to improve performance.Also, the performance of queries that are executed in extremely short times on a serialdatabase cannot be improved much further by the use of parallelism. This is because theserial database execution strategy is quite e�cient and parallelism is not going to provide anyimprovement on the execution of such a strategy. An example is Index Only selection of a singlerow of values. Here, the result is a single row and only requires access to the appropriate indexentry. Parallelism can bene�t such a query only if the index happens to be extremely large.Overall, the capacity, speedup, and scaleup improvements of DB2 PE for a very highmajority of the queries far outweigh the very small class of queries described above with smallerperformance gains.8 Experiences and FutureHaving worked on this project for over four years, we have learnt a lot technically as wellas organizationally. The Research division produced an initial prototype, with function be-ing incrementally added. This allowed us to show \proof of concept", and maintain projectmomentum during the inevitable reorganizations. When the development laboratories pickedup the project, we continued in a closely allied joint development mode, producing a productaudited to pass ISO 9000 standards. This worked much better than the alternatives: \spec-ing" the product to death, or just throwing the prototype \over the wall". It has certainlybeen a remarkable experience how two teams { research and development { with such disparatebackgrounds have been able to work so closely together.Technically, we realized that \The devil is in the details." As the work progressed, it becameincreasingly clear that while the initial prototyping e�orts in the project had given us a goodhandle on the fundamental issues (section management, run-time, initial query optimizationetc.), but the work required to produce an industrial strength parallel database manager wasstill sizeable.In the rest of this section, we will highlight some of our technical observations about theproduct.� Function Shipping: Right at the onset, we had made a technical decision to go withfunction shipping with shared nothing hardware. This decision has had multiple bene-�ts. Because we were working on a shared nothing platform, we had to parallelize everydatabase operation { query operator, DDL statement and utility. This resulted in a lot of50

development e�ort. However, the positive impact of this was that it forced a discipline onus to think parallel. The result is a scalable product where parallelism is the cornerstonenot just in simple scans and joins, but also updates, subqueries, utilities etc. This is incontrast with some of the alternatives, which build limited parallelism on top of a sharedsomething environment, and leave the more di�cult operators (updates, subqueries etc.)single threaded.Another bene�t of our initial decision has been that most of our system limits scalelinearly. Thus our tables (base and intermediate) can be N times larger, a query cantypically acquire N times the number of locks etc. This is a straightforward consequenceof doing all operations in parallel.� Query Optimization: Our initial e�ort for generating parallel plans was to take the bestserial plan and to parallelize it. This decision was a matter of programming convenience,encouraged by initial studies which indicated that it often produced the best parallel plan[3]. However, as we delved into more and more complex SQL, it became increasingly clearthat our approach, far fromminimizing coding, was doing quite the opposite. For example,we were making the same kinds of discovery about order classes in the post optimizationphase as the optimizer had made. Furthermore, it was also clear that without knowledgeof partitioning, the optimizer was likely to come up with some very ine�cient plans. Forexample, inselect * from t1, t2, t3 where t1.a = t2.b and t2.c = t3.dthe optimizer might decide to join t2 and t3 �rst (because of its internal decisions on sizeetc.), whereas in the parallel environment, t1 and t2 might be compatibly partitioned andhence should be joined �rst.We therefore rejected the post optimization approach, and developed an integrated costbased optimizer that understands parallelism, partitioning, messages etc. This has beena sound decision resulting in a quality product.� Serial Semantics: We have tried to provide transparent parallelism by maintainingserial semantics. We have succeeded inasmuch as the semantics are explicitly stated inthe manuals. However, there are a lot of implicit semantics that a user sometimes comesto expect, and we have realized that it is impossible or ine�cient to be able to maintainall of these. For example, a user expects that if he issues the same query twice, with no51

intermediate activity from him or other users, he will see the same results in the sameorder. However, because we do not guarantee the ordering among nodes, this implicitassumption can be violated in our parallel product. Other examples of such behaviorhappen when cursor controlled operations interact with read ahead operations, In serialengines the behavior is fairly predictable, since all operations are done by one process.The same cannot be said of the parallel product. In such cases, the user will have tochoose between performance and deterministic semantics.� Parallel Utilities: Database literature and research in parallel databases have generallyconcentrated on what is considered the hardest problem { join processing. However, aswe dug more and more into the making of a product, we realized that in a true decisionsupport environment, we cannot operate on data until the data is correctly in place.We thus put in a lot of e�ort to make sure that that the data can be initially loaded,balanced, indexes created and generally prepared for subsequent queries, all at speedsviable for hundreds or thousands of gigabytes that are typical in these environments.People have criticized shared nothing because its static data partitionings can be skewed.We have provided rebalancing tools that do not bring a database to a grinding halt andwork a table at a time. Overall, our parallel utilities are as important as our parallelquery processing, and we will strive to continuously improve on them.� Application Interface Bottleneck (also known as Amdahl's Law): Amdahl's Lawstates that if we can parallelize a fraction f of the total pathlength, the best parallelismthat we can achieve is 1=(1�f). Consequently, in the queries which return a large answerset, we can only parallelize the generation of the answer set { the coordinator must stillreturn one tuple a time to the application, and hence the parallelism is limited.There are a number of ways to alleviate this problem { reduction in the cost of transferfrom database to the application, block transfers, parallel applications etc. { we areworking on all these aspects as part of our future and continuing work. In addition, itshould be realized that the product can simply achieve throughput parallelism of theselarge answer set queries by submitting di�erent queries from di�erent coordinators. Thisis not possible in those products where all external interaction is through a dedicatednode/processor.� Network as a bottleneck: Because of function shipping, we are able to �lter out a lotof the data before it needed to be sent over the network. This coupled with an elaborate52

partitioning model enables us to minimize data movement between nodes. Still, we haveobserved that query processing, especially large cross product computations (where thereare no predicates, and there is no compatibility of partitioning) can overwhelm a localarea network. We are planning on moving our communication to a more lightweight (andhence higher bandwidth) protocol to alleviate this.� Complex Queries vs. Transaction Processing: We realized that to provide a timelyproduct we would have to choose our initial focus carefully. Consequently, we decided toconcentrate on parallel complex queries rather than transactions processing. The decisionwas partially tactical { our primary competitors were playing in the transaction domainand we saw this as an opportunity to leapfrog them. Also, it was felt that the UNIX online transaction processing market is not yet mature.As a consequence of this, while we show completely scalable transaction throughput, weknow of several ways to improve. This is an ongoing e�ort.As a part of our future work (apart from those mentioned in the passing above), we areconcentrating on the following:� Parallel Applications: We believe that the current data mining applications (e.g., thosewhich discover patterns) as well as more complex commercial applications do not executewell against parallel databases mainly because of the large volumes of data crossing thedatabase/application boundary.. We are studying ways to improve the performance ofsuch applications by:{ Providing for parallel application support (programming model, SQL language ex-tensions, and DBMS extensions required to transfer data in parallel).{ Examining means for pushing down some of the application logic into the database.This could involve object oriented extensions such as user-de�ned functions, andextending SQL to understand statistical issues such as correlation and sampling..� Other hardware platforms: What is the best model for query parallelism on sharedmemory symmetric multiprocessors (SMP) and clusters of SMPs? While our sharednothing approach provides parallelism on an SMP architecture, we need to make surethat the technical decisions made for the massively parallel environment are also valid inan SMP, and whenever they are not, come up with the best technology.53

In summary, our �rst cut at IBM's parallel database implementation on an open platformhas been a successful one, especially for complex query environments. In the future we will beenhancing it to incorporate better technology, newer applications and paradigms (e.g. parallelapplications); exploit fully other hardware platforms (e.g., SMP's); and ensure our technologyis best of breed in business critical environments.AcknowledgmentsMany people have contributed to the ideas presented in this paper. It is impossible to list allof them. Some of them have worked on this project in the past and have moved on to otherprojects; their legacy still lives on. The authors acknowledge the contributions from otherpeople in IBM at Austin, Toronto, Santa Teresa Laboratory, Almaden and Hawthorne. Thanksare also due to the performance and benchmarking teams from IBM Power Parallel Systems,Federal Systems Company and Marketing and Sales.References[1] Highly available cluster multiprocessor, 1994.[2] C.K. Baru and S. Padmanabhan. Join and Data Redistribution algorithms for Hypercubes.IEEE Transactions on Knowledge and Data Engineering, Apr 1993.[3] A. Bhide and M. Stonebraker. A performance comparison of two architectures �r fasttransaction processing. In Proceedings of the 1988 Intl. Conf. on Data Engineering, LosAngeles, CA, Feb 1988.[4] H. Boral et al. Prototyping Bubba, a highly parallel database system. IEEE Transactionson Knowledge and Data Engineering, 2(1):4{24, March 1990.[5] G. Copeland et al. Data placement in Bubba. In Proceedings of the 1988 ACM SIGMODConference, pages 99{108, Chicago, IL, June 1988.[6] D. Davis. ORACLE's parallel punch for OLTP. Datamation, Aug 1992.[7] D.J. DeWitt et al. The Gamma database machine project. IEEE Transactions on Knowl-edge and Data Engineering, 2(1):44{62, March 1990.54

[8] D.J. DeWitt, S. Ghandeharizadeh, and D. Schneider. A performance analysis of theGamma database machine. In Proceedings of the 1988 ACM SIGMOD Conference, pages350{360, Chicago, IL, June 1988.[9] D.J. DeWitt and J. Gray. Parallel database systems: The future of high performancedatabase systems. Communications of the ACM, 35(6):85{98, June 1992.[10] D.J. DeWitt, M. Smith, and H. Boral. A single-user performance evaluation of the Teradatadatabase machine. In Proceedings of the 2nd International Workshop on High performanceTransaction systems (Lecture Notes in Computer Science, No. 359), pages 244{269, Paci�cGrove, CA, September 1987. Springer-Verlag.[11] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query optimization for parallel execution.In Proceedings of the 1992 ACM SIGMOD COnference, May 1992.[12] S. Ghandeharizadeh and D. J. DeWitt. Magic: A multiattribute declustering mechanismfor multiprocesor database machines. IEEE Transactions on Parallel and Distributed Sys-tems, 5(5), May 1994.[13] S. Ghandeharizadeh and D.J. Dewitt. Performance analysis of alternative declusteringstrategies. In Proceedings of 6th Intl. Conference on Data Engineering, Los Angeles, CA,February 1990.[14] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACMComputing Surveys, 15(4), 1983.[15] W. Hong and M. Stonebraker. Optimization of parallel query execution plans in XPRS.In Proceedings of the 1991 PDIS Conference, 1991.[16] K. A. Hua and C. Lee. An adaptive data placement scheme for parallel database computersystems. In Proceedings of the 16th VLDB Conference, pages 493{506. Morgan Kaufman,August 1990.[17] S. Khosha�an and P. Valduriez. Parallel execution strategies for declustered databases. InM. Kitsuregawa and H. Tanaka, editors, Database Machines and Knowledge base Machines,pages 458{471, Boston, MA, 1988. Kluwer Acad. Publishers.[18] M. Kitsuregawa and Y. Ogawa. Bucket spreading parallel hash: A new, robust, parallelhash-join method for data skew in the Super Database Computer (SDC). In Proceedings55

of the 16th International conference on Very Large Data Bases, pages 210{221, Brisbane,Australia, August 1990. Morgan Kaufman.[19] M.S. Lakshmi and P.S. Yu. E�ectiveness of parallel joins. IEEE Transactions on Knowledgeand Data Engineering, 2(4):410{424, December 1990.[20] C. Mohan, H. Pirahesh, W. Tang, and Y. Wang. Parallelism in relational database man-agement systems. IBM System Journal, 33(2), 1994.[21] E. Ozkarahan and M. Ouksel. Dynamic and order preserving data partitioning for databasemachines. In Proceedings of the 1985 VLDB Intl. Conference, 1985.[22] S. Padmanabhan. Data Placement in Shared-Nothing Parallel Database Systems. PhDthesis, EECS Department, University of Michigan, Ann Arbor, 1992.[23] D. Schneider and D.J. DeWitt. Tradeo�s in processing complex join queries via hashingin multiprocessor database machines. In Proceedings of the 16th International Conferenceon Very Large Data Bases, pages 469{481, Brisbane, Australia, 1990. Morgan Kaufman.[24] D.A. Schneider and D.J. DeWitt. A performance evaluation of four parallel join algorithmsin a shared-nothing multiprocessor environment. In Proceedings of the ACM SIGMODConference, Portland, Oregon, May 1989.[25] P. Selinger et al. Access path selection in a relational database management system. InProceedings of the 1979 ACM SIGMOD Conference, pages 23{34, 1979.[26] D. Skeen. Non-blocking commit protocol. In Proceedings of the 1981 ACM SIGMODCOnference, Orlando, FL, 1981.[27] S.Padmanabhan and W. Wilson. On parallel database semantics. In Proceedings of theCASCON 93 Parallel Databases Workshop, Toronto, Canada, Oct 1993.[28] M. Stonebraker. The case for Shared Nothing. Database Engineering, 9(1), March 1986.[29] Teradata Corp., CA. DBC/1012 Data Base Computer Concepts and Facilities, c02-0001-05edition, 1988.[30] The Tandem Database Group. NonStop SQL: A distributed, high-performance, high-availability implementation of SQL. In Proceedings of the 2nd International Workshopon High performance Transaction systems (Lecture notes in Computer Science, No. 359),pages 60{104, Paci�c Grove, CA, September 1987. Springer-Verlag.56

[31] The Tandem Performance Group. A benchmark of Non-Stop SQL on the Debit CreditTransaction. In Proceedings of the ACM SIGMOD Conference, pages 337{341, Chicago,IL, June 1988.

57

