
Business & Computers, Inc. Page 1

Stored Procedures for SQL Server
The Basics

Copyright® 2001 Business & Computers, Inc.

A note – the below is my humble opinion – with testing – If you use my ideas
please test them and if you have problems or learn more let me know.

#1 - Stored Procedures (SPs) Inside SQL Server

* Stored Procedures are precompiled Transact-SQL statements stored in a SQL Server database.

* Stored Procedures are one of the most powerful pieces of programming you will ever see. When you

start out, you will see them as a way to return a record set, or do some small update on your data. As
you learn more about SPs you will understand why there are entire books written on the subject. SQL
Server compiles the Proc so that when you run it, it runs as fast as possible. Once you write a couple of
complicated SPs, you will be convinced. This paper only covers the tip of the Stored Procedure iceberg.

* I will refer to Stored Procedures in this document as SP and Proc - get use to it.

* Stored Procedures return read only data and can have

 > Input parameters
 > Output parameters
 > Parameters that are both input and
 output
 > Can have 1 or more recordsets

We Translate
Business Processes

from the Mind

to the Computer
to the Bottom Line.

BUSINESS & COMPUTERS, Inc.
13839 Mur-Len Rd, Suite M
OLATHE, KANSAS 66062

Phone: (913) 764-2311
Fax: 764 7515
larryg@kcnet.com

SQL_StoredProcBasics Updated 10/05/2001

Business & Computers, Inc. Page 2

#2 - Simple Recordset with a Input
 Parameter

* Figure –2-1 shows a simple stored

procedures with that has in input pa-
rameter and returns a recordset.
When we run it from the Query Ana-
lyzer (Figure 2–2) we get the follow-
ing results.

* If you notice in Figure 2-2, it shows “(3 row(s) affected)”. If you don’t set “set nocount on” in a SP,
when you run the SP in the Query Analyzer, you will get back a message “X rows affected”. By set-
ting nocount on, it stops SQL Server from doing some work, that you don’t care about. This will cause
the SP to run just a little faster.

* You need to learn about sp_Help and other system stored procedures.

Works with or without the single quotes.

* You can also run the query in an Access Pass-Through
Query.

Figure 2-1 Stored Procedure with input parameter & recordset

Figure-2-2
Running a
procedure on
Query Ana-
lyzer

Stored Procedure Name Parameter Check Syntax Run Button Database running against Result set

Figure 2-4 MS Access Pass-Through Query

Figure 2-5 Pass-Through Query Results

Figure 2-3

Business & Computers, Inc. Page 3

* In figure 2-4 we use ADO code
and the command object to get a
recordset from the Stored Proce-
dure on SQL Server.

* Note: You certainly can do this

many different ways, however I
do want to point out the differ-
ence between the While, Wend
Loop as opposed to the GetString.
You will probably want to use the
GetString in testing.

Public Function ex_SP_ReadRecords()
'--> Uses the Command Object
Dim Cmd1 As ADODB.Command
Dim lngRecordsAffected As Long
Dim rs1 As ADODB.Recordset
Dim intRecordCount As Integer

'-----
Dim cnnTemp As ADODB.Connection
Set cnnTemp = New ADODB.Connection

cnnTemp.ConnectionString = "Provider=SQLOLEDB.1;" & _
 "DRIVER=SQL Server;SERVER=bcnt;" & _
 "Trusted_Connection=Yes;UID=;PWD=;" & _
 "DATABASE=MWData;"

cnnTemp.Open

 'Open Connection
 Set Cmd1 = New ADODB.Command
 Cmd1.ActiveConnection = cnnTemp

'---
 With Cmd1
 .CommandText = "z_sp_SimpleReadTable"
 .CommandType = adCmdStoredProc .Parameters.Refresh
 .Parameters("@vcCompanyName").Value = "bus"
 End With

 Set rs1 = Cmd1.Execute()
 'While Not rs1.EOF
 ' intRecordCount = intRecordCount + 1
 ' Debug.Print rs1.Fields(1), intRecordCount

 ' rs1.MoveNext
 'Wend

'The following lines shows all the records and all fields fro the above recordset
 Debug.Print rs1.GetString(adClipString, , ";")

rs1.Close

Finish_Up:

 ex_SP_ReadRecords = True

ProcedureDone:
 On Error Resume Next
 rs1.Close
 Set Cmd1 = Nothing
 Set rs1 = Nothing

Exit Function

HandleError:
 Debug.Print Err.Number, Err.Description
 Resume ProcedureDone
End Function

Figure 2-4 ADO using Proc for recordset

Business & Computers, Inc. Page 4

#3 - Simple Input & Output Pa-
rameters

* Figure 3-1 shows another

example of a simple SP with
input and output parameter.
In the SP we input a com-
pany Id (@vcCo_IdT) and re-
turn the company name in
the output parameter. We
run the SP with ADO Code.
(see figure-6)

The Proc simply takes the
input from the ADO code, runs
the T-SQL statement using the
input parameter, and returns the
answer to the ADO code.

* Notice the line in Figure-3-2.
This is a remark. You can put in
a remark with “/*” and end with
“*/” You can also use two dashes
“--this is a test” for a single line.

* The ADO code (figure-3-3)
Opens the connection, sets the
command, refreshes the parame-
ters, and set the value of the pa-
rameter, and then executes the
proc. It then reads the output pa-
rameter from the proc.

Note: If you run this procedure
from the query analyzer, you will
need to put in a false parameter
for the output parameter, and
probably put a print statement in-
side the proc to show the output
parameter in the query analyzer.

z_sp_In_Out_Parameters_Simple '266', ''

 print @vcOutPut1

Figure-3-3 ADO Code to run Proc
Public Function ex_SP_In_Out_Parameters_Simple_2()

'On Error GoTo HandleError

Dim Cmd1 As ADODB.Command
Dim lngRecordsAffected As Long
Dim cnnTemp As ADODB.Connection
Set cnnTemp = New ADODB.Connection

cnnTemp.ConnectionString = "Provider=SQLOLEDB.1;" & _
 "DRIVER=SQL Server;SERVER=bcnt;" & _
 "Trusted_Connection=Yes;UID=;PWD=;" & _
 "DATABASE=MWData;"
cnnTemp.Open

'----
 'Open Command Object
 Set Cmd1 = New ADODB.Command
 Cmd1.ActiveConnection = cnnTemp

'---
 With Cmd1
 .CommandText = "z_sp_In_Out_Parameters_Simple"
 .CommandType = adCmdStoredProc
 .Parameters.Refresh
 .Parameters("@vcCo_IdT").Value = 266
 .Execute , lngRecordsAffected, adExecuteNoRecords
 End With

 Debug.Print Cmd1.Parameters("@vcOutPut1").Value

 Set Cmd1 = Nothing

ProcedureDone:
Exit Function

HandleError:

Figure-3-2 Comment
/*Input @vcCo_Idt =266
 OutPut @vcOutPut1 = Business & Computers, Inc */

Figure 3-1 Stored Procedure Input and Output Parameters

Business & Computers, Inc. Page 5

* This is a bit of a
complex stored
procedure. I
won’t go over it
today, but some
times we want to
see a direction
we are heading.

CREATE PROCEDURE z_sp_In_Out_Parameters_Complex
 @vcWhere AS varchar(8000),
 @vcTableFromName AS varchar(255) ,
 @vcIDName AS varchar(55) ,
 @vcTableInToName AS varchar(255) = 'tbl_zs_StartID',
 @btNumericId_YN as bit=0,
 @vcOutPut1 AS varchar(255) output
 as
 SET NOCOUNT ON

/* Documentation Below
 '----
 --> Purpose: This is an Example of In & Out Parameters
 See ex_SP_In_Out_Parameters_Complex in Mod_ADo_SQL<- Purpose
 --
 --> Required_Elements: tbl_zs_StartID <- Required_Elements
 --
 -->Returns: Recordset
 --
Documentation Above */

 Declare @vcSQL AS varchar(255)
 Declare @vcIDField AS varchar(55)

set @vcOutPut1 = '-100'

 Select @vcSQL = 'delete from ' + @vcTableInToName
 exec(@vcSQL)

set @vcOutPut1 = '-90'

 --What field do we put the data into
 If @btNumericId_YN =0
 Begin
 Select @vcIDField = 'IdT'
 End
 else
 Begin
 Select @vcIDField = 'Id'
 End

set @vcOutPut1 = '-80'
 --Put the Id from the records in the current form into the table
 Select @vcSQL = 'INSERT INTO '
 + @vcTableInToName + '(' + @vcIDField + ')'
 + ' SELECT ' + @vcIDName + ' FROM ' + @vcTableFromName + ' Where '
 exec(@vcSQL + @vcWhere)

set @vcOutPut1 = '-70'

--SELECT @chmsg = 'We are Done.'
--select @vcOutPut1 = str(@@rowcount)

SELECT vw_Companies.Co_Alpha_Name, vw_Companies.Bill_Cty,
 vw_Companies.Bill_St
FROM vw_Companies RIGHT OUTER JOIN
 tbl_zs_StartID ON vw_Companies.Co_IdT = tbl_zs_StartID.IdT
select @vcOutPut1 = '--->' + Ltrim(str(@@rowcount) + ' Records')
return 10

Figure 3-4 Com-
plex Input and Output
Parameters

Business & Computers, Inc. Page 6

#4 - What Access Calls Action Queries
 (Delete data, Append Data, Update
 Data, Make Tables)

* In MS Access we have select queries

that would return a result set similar to
figure 2-5. In addition we have the
following type of queries that manipu-
lates the data in the tables.

Delete data
* Ok, so I made it a little more difficult

than it had to be. To delete records
from a table you can just have one line
in the procedure:
 delete tbl_City where
City_Id = @intId

You can pass an input pa-
rameter
Create Procedure abc
 @intId as Int
as

 delete tbl_City where City_Id
= @intId

 return

The Easy

* In figure 4-1 we pass a
complete where statement
in the input parameter,
and are looking for a re-
cord count in the output
parameter. We have to
deal with the SQL state-
ment as a string, and then
execute it. You might
consider using
“With recompile” if you
are passing a complete
Where statement.

* In figure 4-2 we run the

Proc with ADO Code.

Figure 4-1 Delete Records—Stored Procedure

Public Function ex_SP_QueryDelete() As Boolean

'>>> Stored Procedure & ADO are about the same Speed <<<
'----
' Purpose: Use a stored Procedure to run the delete query
' Required Elements: Stored Procedure --> z_sp_qry_DeleteRecords_PassWhere
' Example: ex_SP_QueryDelete()
'----
' Parameters:
'----
' Returns:
'---
Dim Cmd1 As ADODB.Command
Dim strWhereStatement As String
'----

strWhereStatement = "City like 'h%'"

'Check the Connection - If no connection try to make one
 If Not CnnCheckConnection() Then GoTo ProcedureDone

 Set Cmd1 = New ADODB.Command
 Set Cmd1.ActiveConnection = cnn

 With Cmd1
 .CommandText = "z_sp_qry_DeleteRecords_PassWhere"
 .CommandType = adCmdStoredProc 'adCmdTable adCmdText adCmdStoredProc
 .Parameters.Refresh
 .Parameters("@vcWhere").Value = strWhereStatement
 End With

 Cmd1.Execute
 ex_SP_QueryDelete = Cmd1.Parameters("RETURN_VALUE").Value
 Debug.Print "Records Deleted: --> " & Cmd1.Parameters("@inRecCount").Va lue

 Set Cmd1 = Nothing
 ex_SP_QueryDelete = True
ProcedureDone:

Figure 4-2 ADO to Run the Above Delete Action

Business & Computers, Inc. Page 7

Update data
* In figure 4-3 we see how to add 1 year to a date in a table

using the T-SQL update process. Notice the SQL Server
built in Dateadd function. Look at the last 4 pages of this
document for some additional SQL Server built in func-
tions.

* In figure 4-4 we see how to update a field in one row of

data, with data from 1 row from another table.

Make a Table
* In figure 4-5 we are

creating a table with
data from another
recordset. When we
get finished data will
be in the table.

* In figure 4-6 we cre-

ate a table with no
data.

Figure 4-3
Update the date (dt_expire) by 1 year

Figure 4-4
Update the data in one table with data from another table.

Figure 4-5 Make a Table with Data from Another Recordset

Figure 4-6 Make a Table with No Data

Business & Computers, Inc. Page 8

Append data
* In figure 4-7 we are inserting rows of data from one table to

another table.

* In figure 4-8 we get a little more complex. We can run this
procedure with the code in Section A or Section B, not both. In
Section A we “Select * Into tmpCity” which will create table
Tmpcity and then put data into the table. In Section B we cre-
ate the table, Set the Primary Key, Tell SQL Server don’t pay
attention to Primary keys
we insert, then we insert
the data.

> We delete

table
tmpCity if it
exist.

Section A

Section B

Figure 4-7 Simple Append Proc
Append data from 1 table to another table

Figure 4-8 Complex Append Proc

Business & Computers, Inc. Page 9

#5 - Case Statement

* If you are like me and use the “IIf” statement in Access queries, you are going to want to know what

you can replace it with in SQL Server. There are no replacements in Views, however in SPS you can
use the case statement. In figure 5-1 we have a SP that looks at the field Mail_St which is a 2 character
field for the state. If it = KS we substitute Kansas, if MO we use Missouri, otherwise we use the actual
value in the field Mail_St. You can see how it comes out in figure 5-2.

Figure 5-2 Figure 5-1

Business & Computers, Inc. Page 10

#6 - Additional Information

Figure 6-1 >>Numeric Functions<<

SQL Explanation

Floor(7.234) Convert to integer

Round(765.4321, 2) select Round(765.4321, 2) returns 765.43

Figure 6-2 >>Type Conversions<<

SQL Explanation

Convert(int, X) Convert to Integer CInt("876.54") equals 877

Convert(float, X) Convert to Double Precision

convert(money, X) Convert to Currency

convert(varchar, X) Convert to String

Convert(DateTime, X) Convert to Date/Time

Figure 6-3 >>Misc. Information<<

Explanation SQL

Date Delimiter SQL->Between ‘1/1/01’ and ‘12/31/01’ ‘

String Delimiter SQL -> ‘Gordon’ + ‘, ‘ + ‘Larry’ ‘

Concatenation Operator SQL -> ‘Gordon’ + ‘, ‘ + ‘Larry’ +

Wildcard Character (Any one character) Where Last like “Gor_on”
 SQL -> select last_Name from tbl_Individuals where last_name like 'Gor_on'

_

Wildcard Character (Any group of characters)
 SQL -> select last_Name from tbl_Individuals where last_name like 'Gord%'

%

True/Yes Bit type data 1

False/No Bit type data 0

Business & Computers, Inc. Page 11

Figure 6-4 >>String Functions<<
SQL Explanation

Replace('aabbccdd', 'bb', 'xx') Replace all 'bb' in the original string with 'xx'

CharIndex(“XYZ”, “Y”) Find a position of a particular string select CHARINDEX('Joe', 'Smith, Joe') returns 8

IsNull([Price], 0)
IsNull([Price], ‘Free’)

If the price is null, return 0, else return the Price
If the price is null, return Free, else return the Price

([Dt_Join] IS NULL))
Not ([Dt_Join] IS NULL))

Check to see if a value is null
select * from tbl_Companies where not ([Dt_Join] IS NULL)

Left(‘ABCDE’, 2) Left characters of a string Left(‘ABCDE’, 2) returns AB

Right(‘ABCDE’, 2) Right characters of a string Right(‘ABCDE’, 2) returns DE

Substring("Test This",6, 20)
Substring(Expression, Start,
Length)

In SQL Server you have to put the length, however in Access you are not required to
have the length. The secret in SQL Server is to put the maximum length it could ever be
(if it’s greater than string length, that’s not a problem).

Ltrim(x) Trim the spaces off the Left of a string Ltrim(“ SQL”) returns “SQL”

Rtrim(x) Trim the spaces off the Right of a string Rtrim(“SQL ”) returns “SQL”

Len(X) or
DataLength(x)

select LEN(‘This is a test’) returns 14

Space(X) Give you X number of spaces e.g. Select Space(22) + 'aabbccdd'

Ascii(x) Returns the ASCII value of a character Asc("A”) will return 65

Char(x) Returns a character associated with the specified character code. Chr(65) will return A

Str(X) Converts a number to a string Str(1234) returns "1234"

Lower(x) Change to lower case
SELECT Lower('THIS IS HOW THE MAIN FRAME PROGRAMMERS USE TO DO IT')

Upper(x) Change to UPPER case

Business & Computers, Inc. Page 12

Figure 6-5 >> Date/Time Functions <<
SQL Explanation

Getdate() SQL Server returns 2001-05-24 10:37:09.043
GetDate() Gets Date & Time - See “Style in Date Convert” below.

Convert(data_type[(length)],
expression [, style])

In SQL Server
select date_Invoice, convert(varchar, date_Invoice, 1) as x from tbl_invoice
Returns:
 2001-04-12 00:00:00.000 4/12/01
 2001-04-04 00:00:00.000 4/04/01
Style Date Style Date Style Date
 1 4/12/01 101 4/12/2001 2 01.04.12
 7 Apr 12, 01 107 Apr 12, 2001 0 Apr 12 2001 12:00AM

select convert(varchar, getdate(), 8) returns hh:mm:ss 13:02:57

DatePart(M, '5/22/99') Get a part of a date - Select DatePart(M, '5/22/99') returns 5

DateAdd(M, 2, '5/22/99') Does Date addition and subtraction
DateAdd(interval, number, date) Interval - see the constants below
The number can be a posit ive or negative number

DateDiff(M, pubdate, getdate
())

Get the difference between 2 dates
DateDiff(interval, number, date) Interval - see the constants below

select date_Invoice, DATEDIFF(d, date_Invoice, getdate()) as x from tbl_invoice

q, qq Quarter

m, mm Month

y, dy Day of Year

d, dd Day

ww, wk Week

dw WeekDay

hh Hour

mi, n Minute

s, ss Second

ms millisecond

yy, yyyy Year

Business & Computers, Inc. Page 13

Figure 6-6 SQL Data Type

SQL Data
Type

Explanation Of SQL Data Type

bit Integer data with either a 1 or 0 value. Columns of type bit cannot have indexes on them.
(It can be Null, but null can give you trouble later. I recommend you don’t allow Nulls)
Access stores True as –1 and False as 0 inside a Access table, however Access has no problems inter-
preting bit data - 1 = True and 0 = False.

int Integer (whole number) data from -2^31 (-2,147,483,648) through 2^31 - 1 (2,147,483,647). About 2 bil-
lion minus to 2 billion plus

smallint Integer data from 2^15 (-32,768) through 2^15 - 1 (32,767).

tinyint Integer data from 0 through 255.

decimal Fixed precision and scale numeric data from -10^38 -1 through 10^38 -1.

numeric same as decimal

money Monetary data values from -2^63 (-922,337,203,685,477.5808) through 2^63 - 1
(+922,337,203,685,477.5807), with accuracy to a ten-thousandth of a monetary unit.

Small
money

Monetary data values from -214,748.3648 through +214,748.3647, with accuracy to a ten-thousandth of a
monetary unit.

float Floating precision number data from -1.79E + 308 through 1.79E + 308.

real Floating precision number data from -3.40E + 38 through 3.40E + 38.

datetime Date and time data from January 1, 1753, to December 31, 9999, with an accuracy of three-hundredths of
a second, or 3.33 milliseconds.

small-
datetime

Date and time data from January 1, 1900, through June 6, 2079, with an accuracy of one minute.

timestamp A database-wide unique number. A table can have only one timestamp column. The value in the time-
stamp column is updated every time a row containing a timestamp column is inserted or updated.

uniqueiden-
tifier

A globally unique identifier (GUID).

char Fixed-length non-Unicode character data with a maximum length of 8,000 characters.

varchar Variable-length non-Unicode data with a maximum of 8,000 characters.

text Variable-length non-Unicode data with a maximum length of 2^31 - 1 (2,147,483,647) characters.

nchar Fixed-length Unicode data with a maximum length of 4,000 characters.

nvarchar Variable-length Unicode data with a maximum length of 4,000 characters. sysname is a system-supplied
user-defined data type that is a synonym for nvarchar(128) and is used to reference database object
names.

ntext Variable-length Unicode data with a maximum length of 2^30 - 1 (1,073,741,823) characters.

binary Fixed-length binary data with a maximum length of 8,000 bytes.

varbinary Variable-length binary data with a maximum length of 8,000 bytes.

image Variable-length binary data with a maximum length of 2^31 - 1 (2,147,483,647) bytes.

