Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Advanced PLC programming methods

Miroslav Hanak

Supervisor: Ing. Petr Kadera, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Robotics

May 2017

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Miroslav Han ak
Study programme: Cybernetics and Robotics
Specialisation: Robotics

Title of Bachelor Project: Advanced PLC Programming Methods

Guidelines:

1. Study the PLCopen XML standard.

2. Study the Model-driven PLC programming approach.

3. Develop a method based on object-oriented programming principles for generating
PLCopen XML compliant code from reusable templates.

4. Implement a tool set for practical evaluation of the method from the step 3.

Bibliography/Sources:

[1] Blewitt Alex - Eclipse 4 Plug-in Development by Example Beginner's Guide - Birmingham,
2013

[2] Blewitt Alex - Mastering Eclipse Plug-in Development - Birmingham, 2014

[3] Bolton William - Programmable logic controllers - Oxford, 2009

Bachelor Project Supervisor: Ing. Petr Kadera, Ph.D.

Valid until: the end of the summer semester of academic year 2017/2018

L.S.

prof. Dr. Ing. Jan Kybic prof. Ing. Pavel Ripka, CSc.
Head of Department Dean

Prague, January 10, 2017

iv

Acknowledgements Declaration

I would like to thank my family for all I declare that the presented work was
their support through my studies. Also, developed independently and that I
I would like to thank my supervisor for have listed all sources of information
offering an interesting thesis topic and for used within it in accordance with the
his advice. methodical instructions for observing the

ethical principles in the preparation of
university theses.

Prague, date

signaturel

Abstract

The main goal of this thesis is to
use Model-Driven Design approach and
Object-Oriented Programming features to
create a software tool for programming
PLC control system.

The primary function of the instrument
of development is the automated generat-
ing of proper PLC code according to IEC
61131-3 from templates which represent
models of real components of automated
plant and let us use some of the Object-
Oriented Programming features.

PLCopen XML standard based on ex-
tended markup language technology, is
used, as it represents a vendor and hard-
ware platform independent way for storing
generated PLC code.

The development tool is implemented
in Java language with using Eclipse 4 Rich
Client Platform development framework.

Keywords: PLC, Model-Driven Desing,
Object-Oriented Programming, PLCopen
XML, Java, Eclipse 4 Rich Client
Platform

Supervisor: Ing. Petr Kadera, Ph.D.
CTU in Prague, CIIRC
Jugosldvskych partyzanu 1580/3

160 00 Prague 6

Czech Republic

vi

Abstrakt

Hlavnim cilem této prace je vyuzit pristup
Modelové tizeného vyvoje a Objektové
orientovaného programovani k vytvoreni
softwarového nastroje urceného k progra-
movani PLC.

Hlavni funkci vyvojového néstroje je ge-
nerovani PLC kédu dle normy TEC 61131-
3 z Sablon, které predstavuji redlné kom-
ponenty automatizované soustavy a dovoli
nam vyuzit vlastnosti Objektové oriento-
vaného programovani.

Standard PLCopen XML, zalozeny na
technologii rozsiritelného znackovaciho ja-
zyka, je pouzit jako na platformé a vy-
robci nezavisly zptisob uchovani generova-
ného PLC kodu.

Vyvojovy nastroj je implementovan v
jazyce Java s vyuzitim vyvojového ramce
Eclipse 4 Rich Client Platform.

Kli¢ova slova: PLC, modelové fizeny
névrh, objektové orientované
programovani, PLCopen XML, Java,
Eclipse 4 Rich Client Platform

P¥eklad nazvu: Pokrocilé metody
programovani PLC

Contents

1 Introduction 1
1.1 Motivation
T2AIm. ..o 1l
1.3 Thesis structure
2 PLC and its control code 3
2.1 Programable logic controller.
2.1.1 Formation 3
2.1.2 Hardware 4
213 Scancycle
221EC 61131 6l
2.2.1 Software model (
2.2.2 Programming languages
2.3 PLCopen XML 9
2.3.1 Purpose 9|

2.3.2 Introduction. 9]

2.3.3 Testing
2.3.4 Extensible markup language .
2.3.5 File structure..............
3 State-of-the-art PLC
programming methods 13
3.1 Model-Driven development.
3.1.1 Conclusion

3.2 Object Oriented extension of ITEC

61131 ... 13
3.2.1 Conclusion [14]
33IEC61149
3.3.1 Architecture............... 15
3.3.2 Application
333 Device........... .. 15
3.34 Resource..................
3.3.5 Function Block [15]
3.3.6 Conclusion 16/

4.1 Task description
4.2 Control system
4.3 Application
4.4 Templates
4.5 PLC code creation
4.6 Code deployment
4.7 Tools. ..o
4.8 Example.........
4.8.1 Templates.................
4.8.2 Templates code
4.8.3 Application
4.8.4 Control system

vii

4.8.5 Assignment
5 Implementation 29
5.1 Eclipse o oL
5.2 Software architecture..........
5.3 User interface 30/

5.4.2 Template
5.4.3 XML handling
5.4.4 Project
5.4.5 Code generation

6 Evaluation

7 Conclusion
7.1 Model situation
7.2 Implementation

7.2.1 Future work and extensions .
7.3 Evaluation

Bibliography

&8 HEEEY 8 HEEERR

A Content of attached CD

Figures
2.1 PLC hardware depiction from [20]
2.2 PLC scan cycle depiction from [19]
2.3 Resource depiction from
[5] (modified)
2.4 Instruction List language depiction
2.5 Structured Text language depiction
2.6 Ladder Diagram language depiction
2.7 Function Block Diagram language
depiction
2.8 Sequential Function Chart
language depiction
2.9 XML file syntax depiction from

[30]

2.10 PLCopen XML file structure . .
4.1 Control system view
4.2 Application view
4.3 CPU assignment
4.4 Sketch of the model situation. .. [21]
4.5 Control desk template code
4.6 Cylinder template code
4.7 Belt conveyor template code ...
4.8 Production line template code . .
4.9 Example of the application.
4.10 Example of the control system .
4.11 Example of the assignment
5.1 User interface design

5.2 Example of Dialog - New template

dialog L.
6.1 Screenshot of MDDE’s graphical
user interface................... 135

6.2 Screenshot of the PLC code
simluation in e!COCKPIT

viii

Tables

4.1 Control desk template variables.
4.2 Cylinder template variables
4.3 Motor template variable

4.4 Production line template variables

Chapter 1

Introduction

. 1.1 Motivation

Throughout a development process of control systems, control engineers deal
with challenges like shorter development time, higher quality and flexibility
requirements and reusability of the control code. Since existing technologies
and approaches are limited by their effectiveness, new approaches are needed
[2].

A programmable logic controller (PLC) is a digital computer designed to
resist hard conditions of the industrial environment. It has been an integral
part of factory automation and industrial process control for decades. They
control a wide sort of applications from simple lighting functions to chemical
processing plants.

The IEC 61131-3 standard defines a software model and provides a set
of programming languages for the development of PLC control systems. It
is widely accepted in the industrial automation domain, and most of the
commercial tool vendors proclaim compliance with it [I].

Last years the standard received criticism for its noncompliance with state
of the art software engineering trends and concepts such as object-oriented
programming, distribution of the application software and the model-driven
development paradigm [3]. Several research groups work in this direction [IJ.

B 12 Am

The primary focus of the thesis is to create a PLC software development tool
using Model-Driven development approach.

The secondary aim of this thesis is to introduce the state-of-the-art PLC
software development methods briefly.

. 1.3 Thesis structure

In the next chapter, we introduce PLC and International Electrotechnical
Commission standard for PLCs 61131 especially part 3. Also, the PLCopen

1

1. Introduction

and XML concepts will be presented. Chapter 3 gives us a brief overview
and explanation of state-of-the-art PLC programming methods including
Model-Driven development. Chapter 4 focuses on the development tool design.
In Chapter 5 the implementation of the instrument of development is covered.
In Chapter 6 the evaluation of the development process and the implemented
development instrument is done. In the last chapter, we discuss reached
results.

Chapter 2

PLC and its control code

B2 Programable logic controller

A programmable logic controller (PLC) is a digital computer applied for
automation of electromechanical processes. Almost any production line,
machine function, or process can be greatly enhanced using this type of
control system. It continuously monitors the state of input devices and makes
decisions based upon a custom program to control the state of output devices.

PLCs are demanded to work flawlessly for years in industrial environments
that are hazardous to the electronic components that modern PLCs are made
from. PLCs must be robust and designed for immunity to electrical noise,
resistance to vibration, impact, extended temperature ranges and moisture.

A PLC is a hard real-time system. Output must be produced in response to
input conditions within a limited time. Otherwise, an unintended operation
will result. It can cause many damages [18, [20].

B 2.1.1 Formation

PLC invention was in response to the requirements of the American auto-
motive manufacturing industry. Before the PLC, control, sequencing, and
safety interlock logic for manufacturing lines relied on hundreds or, in some
cases, thousands of relays, cam timers, and drum sequencers and dedicated
closed-loop controllers.

Relay systems at the time tended to fail and create delays. Engineers then
had to troubleshoot a whole wall of relays to find and fix the problem. Also,
a process of updating such facilities was very time to consume and expensive,
as technicians needed to separately and manually rewire every relay.

The purpose of a PLC was to directly replace electromechanical parts
as logic elements, substituting it by a solid-state digital computer with a
saved program, able to imitate the interconnection of many relays to perform
several logical tasks. In the 1960s and the 1970s, with the discovery of the
microprocessor, the device that was first used as a relay replacement device
only, evolved into the advanced PLC of today [I8] 20, 21].

3

2. PLC and its control code

B 2.1.2 Hardware

The basic PLC must be adequately flexible and configurable to meet the
diverse needs of different applications. All PLCs have the same essential
components. These elements work together to bring input information into the
PLC from the plant, process that information, and send output information
back out to a plant.

The components are input and output modules (I/O), central processing
unit (CPU or processor), co-processor modules, power supply and peripheral
devices [18].

PLC System

Power supply

——) Central
processing
unit (CPU)

Output
load

N o
= O devices
rd N\

Input
sensing

devices _°}

Memory
program data

- CT I3 -

o —cao3

~cD ~c O
©o—-—cao3

———F—

P

Optical / Optical

Isolation — N I Isolation
R J

Programming device

Figure 2.1: PLC hardware depiction from [20]

B cprPu

A CPU, working as the brain of the PLC, is a microprocessor consisting of
a memory and integrated circuits performing control logic, monitoring and
communicating.

The CPU executes control instructions stored in a user’s programs, com-
municates with other devices, carries out logic and arithmetic operations, and
performs housekeeping activities such as communications, internal diagnostics.
It runs memory routines, continually checking the PLC to avoid programming
errors and secure the memory is undamaged [20].

B Memory

Memory provides storage to the operating system and firmware of the proces-
sor and modules, and the program and data. The program memory consists
of the lists of instructions, which are sent to the processor. The program is
downloaded to a PLCs program memory by a programming device, computer
or console. The data memory stores the input and output image tables as
well as numerical and boolean data [17) 20].

4

2.1. Programable logic controller

B Peripherals

PLCs read signals from and write signals to different devices through I/0
modules. The I/O modules can be single I/O cards or complex decentralised
I/O peripherals. The input devices can be sensors, keyboards, and switches.
Output devices can be power lights, solenoids, contactors, small motors,
pneumatic or hydraulic cylinders.

PLC can either communicate with different intelligent devices like robots
controllers, frequency inverters, locks, cameras, database servers, etc. PLCs
cannot interact with human well, so external monitors and HMI (Human Ma-
chine Interface) operator panels are required. All these devices communicate
through various types od field buses [21].

B 2.1.3 Scancycle

When PLC is set in run mode, it executes an initialization step. If there are
no problems, then the PLC repeatedly executes scan cycle sequence. Scan
cycle usually takes a few milliseconds. Scan cycle consists of four main steps

[16, T9].

Housekeeping |=p

Input
o Scan
Output ¥
Scan
R
Program
Scan

Figure 2.2: PLC scan cycle depiction from [I9]

B Input scan

The status of all input modules is copied to the memory area called input
image table. It avoids cases where an input changes from the start to the end
of the program.

B Program scan

Data in input image memory area is applied to the user program. The user
program is performed, and output image memory area is updated.

B Output scan

Data, taken from the output image area, are sent to all output modules in
the system.

2. PLC and its control code

B Housekeeping

There are also other steps like systems checks and updating the current
internal counter and timer values [16, [19].

B 2.2 IEC 61131

In the past, many of various vendors developed PLCs with different run-time,
operating systems, and programming languages. To enhance compatibility
and interoperability among the various products, the International Elec-
trotechnical Commission (IEC) elaborated the standard IEC 61131. Part
3 of this standard specifies the syntax and semantics of a unified suite of
programming languages for PLCs [4], 5].

B 2.2.1 Software model

B Configuration

At the highest level, the software of the particular PLC control application
is enclosed in a configuration. It consists of several resources and it groups
them together within the PLC control system. It also provides means for
data exchange between them.

B Resource

A resource is central processing units (CPUs), able to execute assigned task
or several tasks. Configurations and resources can be started and stopped
via the operator interface or operating system functions.

Resource
{ Program 1 ’ { Program 2 ’
Function 1 [Function Block 1] {Function 5} [Function Block 4]
Function 2 || Function 3} [Function 6 || Function 7} [Function 8

Function Block 2

Figure 2.3: Resource depiction from [5](modified)

2.2 IEC 61131

B Task

The task is performed according to its specifications and priority, usually
cyclically with cycle times from few to several hundred milliseconds or it’s an
event triggered. The task call one or several assigned POUs.

B Program Organisation Units

Program Organisation Units (POUs) defined by the IEC 61131-3 are Function,
Function Block and Program. A POU contains a declaration part and body.

Each declaration of a POU contains at least one declaration part specifying
the types and the physical or logical address of the variables used in it.

The body of POU defines POUs algorithmic behaviour in one of the five
languages specified by the standard: ST (Structured Text), IL (Instruction
List) and SFC (Sequential Function Chart), FBD (Function Block Diagram),
LD (Ladder Diagram).

A PLC program is the composition of all the programming language
elements and constructs, functions(without internal memory) and function
blocks (with internal memory) [5} 22].

Bl 2.2.2 Programming languages

There are two textual languages: Instruction List (IL) and Structured Text
(ST) and two graphical programming languages: Ladder Diagram, Function
Blocks. There is also fifth programming language called Sequential Function
Chart (SFC), it can be assumed to be a graphical language.

I Instruction List

Instruction List is similar to low-level assembly language. A POU consists of
the sequence of instructions. Each instruction is situated on separated line.
Instructions can be modified by a set of modifiers e.g., negation, conditionality,
jumpings, returns and priority.

LD varl
AND varZ2
ANDN var3
OR var4
ST ‘VaES

Figure 2.4: Instruction List language depiction

B Structured Text

Structured Texts syntax seems like a high-level procedural programming
language (C or PASCAL). It is defined by commands and expressions. The
semicolon divides commands. There can be more commands on the same
line.

2. PLC and its control code

P step := 3;

CASE P step OF

1: P step := P _steptl;

2: P_step := P_stept+l;

3: F step := P steptl;
ELSE

P _step := P_steptlO;
END CASE

IF limit switch 1 OR limit switch 2 THEN
C'UT_ *=TRUE;
EN'D_IF

Figure 2.5: Structured Text language depiction

B Ladder Diagram

Ladder Diagram also known as Ladder Logic is the oldest programming
language for PLCs. It is based on a graphic representation of relay contact
logic, so it is well suited to express the Boolean circuits. Elemnts of Function
Block Diagram language are allowed too.

F_TRIG 0
GVL.inl GVL.inRunButton F TRIC GVL.outRun

0l % o i QT—([D

GVL.outTON

—{s]

GVL.in2 GVL.inStopButton
i i
I 1/]

Figure 2.6: Ladder Diagram language depiction

B Function Block Diagram

Function Block language is analogous to the electrical and block diagrams
of the analogue and digital technique. There are included standard logical
functions, timers, counters, communication functions and special functions.

AND AND OR
varl — — — out
varz — & & 21
var3 —
GE
varh — > —
vare — -

Figure 2.7: Function Block Diagram language depiction

2.3. PLCopen XML

B Sequential Function Chart

SFC is derived from Petri Nets. It consists of steps, transitions and actions.
The step represents a state of a controlled system and has assigned action
block. Transition express condition to deactivate the previous step and
activate next step. These are drawn graphically to describe a sequence of
interactions 23] 24].

Init —| N varl

+ condl

step0 441L var2

J‘: cond2

Bran..

Stepl —| R var3d Step2 Ds vard

== cond3

Init

Figure 2.8: Sequential Function Chart language depiction

B 2.3 PLCopen XML

B 23.1 Purpose

Since the release of the IEC 61131-3, a lot of development environments,
used for editing PLC control code according to the standard, have been
created by a broad sort of vendors. Users - software developers have wanted
to be able to exchange their programs, libraries and projects between these
development environments. The IEC 61131-3 compliant programming tools
are only one part of complex set of development instruments. The another
parts are network, debug and documentation tools and simulators [25].

B 2.3.2 Introduction

PLCopen, an independent organisation, had decided to develop interfaces
towards all these tools. It means interfaces between producers and consumers
of logical and graphical information. The primary goal is still to transfer a
control project according to IEC 61131-3 standard without much additional
work, from one development tool to another without loosing information
even if it’s incomplete or with errors. The design of the transferred software
project unit has to remain the same after the transfer [25].

It allows migration of a software project between different hardware plat-
forms. It causes the losing of the information about hardware. So after the
migration of a software project to another vendor development environment

9

2. PLC and its control code

- another hardware platform the hardware configuration with appropriate
hardware is needed [25].

Extensible markup language (XML) is the right technology for this task.
From the moment that this format is available, it is just more than a transfer
tool. XML file can be generated by other tools like simulation and modelling
tools and consumed by verification, documentation, and version control tools.
1251

B 23.3 Testing

We tested portability of software project with help development environment
CODESYS V3.5 SP9 Patch 5 [26] and e/ COCKPIT [27]. We ported project
with basic fragments of programs in ladder diagram language from one devel-
opment environment to another development environment and otherwise to
check the PLCopen XML function. We also searched for another development
environments which support function of importing/exporting project using
by PLCopen XML. Only TwinCAT 3 - XAE [28] was found.

Bl 2.3.4 Extensible markup language

XML is a markup language similar to HTML (Hypertext Markup Language),
designed to store data in the plain text format and to be both human- and
machine-readable. It provides a software- and hardware-independent method
of storing, transporting, and sharing data [29, [30].

Bl Structure

The XML document is formed as a tree. The tree starts at a root element
and branches from the root to child elements. There can be empty elements
or elements can include text. XML elements can have attributes, just like
HTML. Attributes serve to contain data related to a specific element [30].

B Syntax

An XML document with correct syntax is called "Well Formed". The syntax
rules are very simple, logical, easy to learn and easy to use. Each element
is defined by a beginning and an ending tag. XML tags are case sensitive.
The elements must be properly nested. The attribute values must always be
quoted [30].

10

2.3. PLCopen XML

<note>
<date>2015-09-01</date>
<hour>08:30</hour>
<to>Tove</to>
<from>Jani</from>
<body>Don't forget me this weekend!
</body>
</note>

Figure 2.9: XML file syntax depiction from [30]

B Design

The tags and attributes are designed by the author of the XML document.
So the author defines the document structure. Element names and their
attributes describe the content of the document’s data, and the tree structure
describes the relationship between the data [30].

B Schema

The data can be checked for consistency with the provided scheme. Different
schemes provide a possibility to check the various incompatibilities. An
XML document validated toward an XML Schema is both "Well Formed"
and "Valid". A schema is defined as a formal specification of the element
and attribute names, that indicates which of those are allowed in an XML
document, and in what combinations. It also determines the structure of the
document: which elements are child elements of others, the order in which
the child elements can be, and the number of child elements. XML Schemas
are itself written in XML. [30]

B 2.3.5 File structure

The following figure depicts the basic structure of PLCopen XML file. The

project element is root.
v ! ! Ve Yoo
[ﬁle header] [contentheader] [types] [instances] add data

Figure 2.10: PLCopen XML file structure

The file consists of a mandatory and optional elements.

11

2. PLC and its control code

B File header

The file header element provides information regarding the creation of the
file. Its obligatory attributes are the company name, with a product name,
release information, version, and the date and time of the file creation.

I Content header

The content header element gives overview information concerning the actual
content of the file. The only name attribute is required [25].

B Types

The types element gives us an overview of user data types derived from
defined data types according to the standard. Also, POUs declaration section
and code for both the graphical and textual languages is included [25].

B Instances

The instances element can contain a configurations element. The configuration
element represents a group of resources. The resource element describes a
group of programs, tasks and global variables.

The task element depicts a periodic or triggered task, defined by a required
priority and an optional interval time, and consists of a group of program
and/or function block instances.

The poulnstance element represents a program or function block instance
either running with or without a task [25].

B Add data

The vendor can include additional data in the XML file. These optional
vendor-specific data are certain in the add data object and must be uniquely
identifiable by URI (uniform resource identifier) in an addDatalnfo element
[25].

12

Chapter 3

State-of-the-art PLC programming
methods

B 3.1 Model-Driven development

The first model in Model Driven Development (MDD) process is the platform-
independent model (PIM). A PIM describes the software in a higher level
of abstraction that is independent of any implementation technology. The
main idea is to use a model transformation language (MTL) to transform a
Platform-independent model into a Platform-specific model. The platform-
specific model (PSM) is linked to a specific platform and implementation
technology [3].

MDD is a quite successful paradigm in general-purpose computing. This
leads to the exploiting the benefits of MDD in the industrial automation
domain. It uses the application-centric approach, which is not much supported
yet, instead of a classic device-centric approach. The key point in MDD is
that models have become the primary artefact of software design and have
increased the level of abstraction in the development process. Models are
next used for the automatic or semi-automatic generation of program code.

[T 3]

B 3.1.1 Conclusion

MDD development of PLC code is based on the IEC 61131, its extensions
and IEC 61499. It utilises piping and instrumentation diagrams (P&IDs) and
modelling languages (e.g. UML, SysML) to generating PLC code [1J, 3] [6].

B 32 Object Oriented extension of IEC 61131

The TEC 61131 standard, first published in 1992 is widely accepted and
has been used for many years in the industrial automation domain. This is
faced with several challenges today’s complex systems. After a long period of
success and many commercial implementations of the standard, it is the time
for new features to address these challenges.

13

3. State-of-the-art PLC programming methods

Object-oriented programming (OOP) is conventional in desktop application
development and an integral part of technical university education. It’s great
in handling with complex software development tasks, producing flexible,
reusable software components and reducing the development time of new
software.

To meet the demands of modern industrial automation, the extension of
the IEC 61131-3 that supports the Object Oriented paradigm was considered
as the most promising and successful solution. In 2013 the third edition of
the IEC 61131-3 was established. It brought significant technical changes,
mainly the mentioned Object Oriented (OO) features of classes and function
blocks. The approach used in the OO extension is a mix of procedural and
OO paradigms e.g. like in C++ [4} [7, [31].

The standard already covers a simple OO class concept, the function block.
A function block has an internal state, a routine manipulating this state,
and can be instantiated. So, the enlargement of the current function block
by object-oriented features is a natural way of adding these features to the
standard. Primary points of the OO extension are:

® INTERFACE support

® extending the declaration of the FB type with METHODS
® defining the CLASS construct

B inheritance support with the EXTENDS keyword.

The new OO features are more detailed described and discussed in [4} [7], of
course, the exact description can be found in the standard release.

B 3.2.1 Conclusion

The third edition of IEC 61131-3 introduced important changes to support
the new object-oriented syntax and now it is starting to be adopted by some
PLC vendors. However, there are some inconsistencies between the proposed
features and the formal specification of those features [§].

These differences may become sources of different interpretations, and
hence different implementations of the standard, which may lead to non-
portability of code, which is contrary to the purposes of the norm. The main
source of the inconsistencies is the support both the procedural as well as the
object-oriented paradigms [4].

Solutions have been suggested for all the identified issues with the objec-
tive to have a more robust extension that is required to avoid problematic
implementations of the new version of the IEC 61131 [4].

B 3.3 I1EC 61149

TEC 61499 is based on the function block model of currently dominating
standard IEC 61131. It meets the current industry requirements for intelligent,

14

3.3. IEC 61149

portable, reliable, distributed, flexible automation systems. It shifts from the
cyclic scan execution to the event-driven execution, as well it shifts from the
device-centric approach to the application-centric approach. It assumes basic
concepts of object-oriented approach, and it defines a generic architectural
model for the distributed automation applications [10, [11].

B 3.3.1 Architecture

The standard defines architecture consisting of application, system, device,
resource, and the FB model - that allows the development of distributed
control applications in an intuitive and graphical manner [9].

B 3.3.2 Application

An application is described as an aggregation of interconnected FBs instances.
Applications are in general composed without any device or infrastructure in
mind. After the modelling process, they are mapped to devices, which can
execute them [9].

B 3.3.3 Device

A device represents any control equipment, capable hold resources and execute
applications. It consists of a communication interface, providing commu-
nication services for the device and the application parts mapped to this
device, a process interface, providing the services for communication with
sensors/actuators monitoring and controlling the process, the device manage-
ment, and can contain zero or more resources. In diversity to the resources
defined in the TEC 61131-3, IEC 61499 not necessarily associates a resource
to one computational unit (e. g. one CPU) [9].

B 3.3.4 Resource

A resource is a containment unit for applications or application parts living on
the specific device, and it has independent control of applications operations.
Within a device, resources can be created, deleted, configured, etc [9].

B 3.3.5 Function Block

An FB is the elemental functional unit for composing IEC 61499 applications.
It specifies three main FB types [9].

B Basic Function Block

The Basic Function Block (FB) is determined as an entity to encapsulate
algorithms and the data flow that these algorithms run on. The TEC 61499
FB enters the target state, executes the associated algorithms, and outcomes
the corresponding events.

15

3. State-of-the-art PLC programming methods

FB consists of a head and a body. The head, connected to the event flows,
accepts event inputs and generates event outputs. The head of the FB type is
used to capture dynamics in terms of ECC. The body, connected to the data
flows, capturing the functionality terms of algorithms accepts data inputs and
generates data outputs. The sequencing of algorithm invocations is defined
using a statechart called execution control chart (ECC). An ECC consists of
EC states, EC transitions and EC action[I0} [1T].

B Composite Function Block

Composite FB (CFB) contains a BFB network similar to a resource. Incoming
events are passed on to the internal FBs [9] [32).

B Service Interface Function Block

Service Interface FB (SIFB) provides a mapping from device specific services
to IEC 61499 FBs. It represents the interface to low-level services provided by
the operating system or hardware of the embedded device. In general, there
are two different types of SIFBs: the requester and the responder type[9, [32].

B 3.3.6 Conclusion

TEC 61499 has been formed to enable intelligent automation. Intelligence is
decentralised and embedded into software components, which can be openly
distributed over network devices [I2]. With a recent increasing emergence
of commercially supported, freeware and open source software tools (the
overview can be found in [I3]) and dozens of hardware platforms, IEC 61499
is getting adopted from academic and research sphere to industry domain.
To meet the open system requirements on portability, reconfigurability, and
interoperability the using of Software tools requirements (defined in Part 2
of the standard) and Compliance Profiles (defined in Part 4 of the norm) is
indispensable [12] [13].

The number and the complexity of the example applications and examina-
tions are not sufficient to demonstrate the maturity of the new technology.
The high number of publications, studies, reviews with many contradicting
remarks on the standard FB models ambiguities and open problems make
very difficult to clearly understand the technology, identify its advantages
and it complicates the process of the standard assimilation by industry [10].

Also, the standard efforts to introduce at the same time two paradigm
shifts, the one from the procedural to the object-based, and the other from the
device-centric to the application-centric, makes the adoption procces slower
[10].

16

Chapter 4

Development instrument design

The main function of the development tool is an automated generating of
proper PLC code according to the IEC 61131-3 from reusable templates.

. 4.1 Task description

In general, the point is to connect and bind the control system with its control
code. The goal is the use application-centric approach, instead of classical
device-centric approach. So finally we assign the control systems hardware to
applications components, representing the control code instead of standard
procedure when a user first creates a hardware configuration and then write
code for each controller in hardware configuration. We need to represent the
control system (CPUs), which executes the control code and components of
the automated plant - application and its behaviour.

B 42 Control system

Although using PLCopen XML, we lost information about particular hardware
configuration some minimal control system description is necessary. The
software model within IEC 61131 includes resources, representing the CPUs
of given configuration. The control system consists of a set of controllers
(CPUs) which execute the control code. CPUs communicate among themselves
by some field bus type.

CPU; ... CPU,

Task, ces Taskp

N\

Pou | | Pou | | Pou | | POU POU

Figure 4.1: Control system view

17

4. Development instrument design

B a3 Application

The given application (automated plant, e.g. a manufacturing line) consists
of a hierarchy of components (e.g. belt-conveyors, rotating tables, machining
stations and many others). Each component can include subcomponents (e.g.
belt conveyor consists of motors).

Application

T

Component; Component,

Subcomponent; Subcomponent, Subcomponents Subcomponenty

Figure 4.2: Application view

Control code of each component defines its behaviour. We describe the
components and hierarchy in software (PLC control code) using object-
oriented design.

. 4.4 Templates

The application is described by a hierarchy of components. To represent
the components we use universal Object-Oriented templates. A template
represents a general type of a component with general properties and a
behaviour e.g. belt-conveyor with n motors.

To express the behaviour of general OO templates we need to enrich proper
PLC programming language according to IEC 61131-3 with OO features. A
major issue is that the control code cannot be dynamically created during its
execution by a CPU of a PLC. All the instances have to be created before
downloading into the PLC. This complicates the using of the template.

For example, we need to iterate over a set of instances although we do
not know how many of them will be created. Attributes of the templates
instances are stored in PLC tags, each of them must have a unique name
within the PLC. Again, the names of instances aren’t known at design time.
To solve these issues we use some enhancements defined in IEC 61131 taken
from [14].

18

4.5. PLC code creation

B Indirect references

It allows the access to attributes-variables of the template . Character $
represents the notation "this" known from OO programming which represents
the current object - class instance.

Within enhanced LD code it allows expressing general and not fully named
variable e.g. $.run in a belt-conveyor template. "this " construct is later
replaced by the name of concrete component - template "instance'.

B Containment

It allows a user to specify that component has the sub-component(s) e.g.
conveyor contains motors. Dot notation realises the referencing to the sub-
components attribute e.g. motor.run.

It allows us to access to run variable in subcomponent motor. Hat notation
realises the referencing to the parents component attribute e.g. ~.ready means
ready variable in parent subcomponent.

B Macro instructions

It gives a user the ability to specify basic operations like AND, OR over the
set of components either the number of components an their names aren’t
known yet. The macro instructions operator consists of a type of operation
(e.g. AND, OR), a definition of collection type (e.g. motor, cylinder) and set
of subinstructions containing character # which is step by step substituted
by each element of the collection. It is very useful for collecting general
information from the same type of components although the elements of the
collection are unknown.

. 4.5 PLC code creation

The process of the creation of PLC code starts with the creating of the object-
oriented template representing general functionality of selected device in the
automated field. Then the user creates a concrete application, which consists
of a hierarchy of components. Specific components and their subcomponents
are created ("instatiated") from object-oriented templates. At this point, all
components of the application are known. Now software developer defines
CPU representing the minimal hardware configuration. Then he or she assigns
using the editor a CPU which will execute the components control code to
each component.

19

4. Development instrument design

CPU4
Application

Component, — Component,

CPU, Subcomponent, Subcomponent, Subcomponents Subcomponenty,

Figure 4.3: CPU assignment

In the editor for the code generation the developer can select for which CPUs
the code will be generated. For the chosen CPUs will be generated proper
PLC code according to IEC 61131-3 represented by PLCopen XML file.

During the process of generation, all references and object-oriented notation
mentioned above are substituted by specific PLC tag which is unique within
the PLC. To simplify and test the process of the generation of the control
code during the development, the control code will have some restrictions.
PLC code will be written only in Ladder diagram language. The generated
control code of each PLC will be represented by single POU type Program.
All variables all will be stored in one global variable list. For each controller
will be generated one global variable list.

B 4.6 Code deployment

Using the Object-Oriented templates and then the automated generating of
the code can simplify the process of the development of the PLC control code.

The advantage of PLCopen XML is its vendor and hardware platform
independency but on the other hand it causes the losing of the information
about hardware. So after the migration of a software project to another
vendor development environment - another hardware platform the hardware
configuration with appropriate hardware is needed.

After the importing project to the vendor-specific development environment
and then the exact hardware configuration, we are allowed to map the tags
to real hardware I/Os. The code of different components can be executed
in different CPUs. In that situation, maybe it will be necessary to set tag
sharing between these CPUs. Its solution depends on a vendor of the PLC
control system - on a particular hardware platform.

. 4.7 Tools

To ensure all needed functionalities, we divide development instrument to
different tools.

20

4.8. Example

® Control system editor - A control system is represented by the CPUs
executing the control code. User creates CPUs and edit its properties.

® Template editor - User creates a reusable templetes representing a differ-
ent types of facilities.

® Application editor - User creates a specific application from templates of
facilities.

® Assignment editor - User assigns CPU to each component. Component’s
code will be executed in an assigned CPU.

® Generation editor - User can choose the CPU for which the PLC code
will be generated. The PLC code has to be generated for an each CPU
of the control system.

B as Example

For better illustrativeness and explanation, we introduce the whole process
by example. We are going to use all enhancements introduced above. Let
us consider that there is a simple production line consisting of pneumatic
cylinders, their limit switches, part presence switches, control desks and belt
conveyor. Belt conveyor consists of motors.

OO, OEEC

RUNNING RUNNING
N (L
< N

ERROR ERROR
A L
_/ T _ _/ T \-

START (| 7777 START

@) @)
STOP STOP
ACK ACK
©)

Figure 4.4: Sketch of the model situation

21

4. Development instrument design

First of all, we need to create object-oriented templates representing general
parts of the production line and implement their PLC code to describe parts
behaviour. Secondly, we create the particular application consisting from a
specific hierarchy of components. Next, we create the CPUs representing the
control system and assign to each component CPU which will be executing
its control code. Finally, the proper PLC code according to IEC 61131-3
represented by PLCopen XML file for both CPUs can be generated.

B 4.8.1 Templates

The templates are production line control desk, cylinder, belt conveyor, and
motor. We suppose the following behaviour of general devices - components.

B Production line

The top level entity is a production line template. It collects all information
from its subcomponent. It realises the controlling of all its subcomponents.

B Control desk

Control desk contains three push buttons - run, stop, acknowledge and
two indicator lights, error and run light. After pressing start pushbutton
production line starts to do its task. The belt conveyor runs, and cylinder
can eject. After pressing stop, it stops the task. The belt conveyor stops, and
cylinders can’t eject.

If there is an error, the line is stopped, and error acknowledgement and
again start are required. The acknowledge push button acknowledges the
error state. If the line is running, the run indicator lights. During the error
state the error indicator blinks.

B Cylinder

The single acting pneumatic cylinder represents the e.g. pressing device. Each
cylinder is equipped with limit switches and part presence sensor. If part
presence sensor detects the part, the cylinder ejects. After ejecting it inserts
again to its default state.

We want to detect some error states. For example, if the cylinder doesn’t
eject in five seconds since supplying the compressed air. Also, there is the
error if both limit switches are active at the same time.

B Belt conveyor

Belt conveyor transports the parts through the assembly process. It consists
of motors. Belt conveyor mustn’t run if one or more cylinders are air supplied
or if there is an error state.

22

B Motor

Motor is just simple devices with on/off function.

B 4.8.2 Templates code

B Control desk

4.8. Example

Variable | Data type Comment Type
startButton BOOL start input
stopButton BOOL stop input
ackButton BOOL error acknowledgement | input

errLight BOOL error state indication | output
runLight BOOL run state indication ouput
timer_ 0 BOOL timer output internal
timer 1 BOOL timer output internal
TON_0 TON on-delay timer internal
TON_ 1 TON on-delay timer internal
Table 4.1: Control desk template variables
~.isRunning $.runLight
| 1 ()
$.TON_0
~.isError $.timer 1 TON $.timer 0
I 1 i v 0 {)
T#is —PT

$.TON 1
o8 timer_D TON

$.timer 1

()

==
T#2s — BT

$.timer 0

$.errLight

{)

Il

Figure 4.5: Control desk template code

23

4. Development instrument design

B Cylinder
Variable | Data type Comment Type
isInserted BOOL limit switch input
isEjected BOOL limit switch input
isPart BOOL part presence detection input
air BOOL air supply output
eject BOOL eject command internal
insert BOOL insert command internal
errl BOOL . . error sta'te no. 1 - .) internal
cylinder is not ejected in 7s after air supplying
error state no. 2 -
2 BOOL int 1
o both limit switches are active at the same time | o o
R_TRIG_0| R_TRIG rise edge detection internal
R _TRIG 1| R TRIG rise edge detection internal
TON_O TON on-delay timer internal
TON_1 TON on-delay timer internal
RS 0 RS RS flip-flop internal
Table 4.2: Cylinder template variables
$.R_TRIG 0
. iaRunning $.iaPart R_TRIG £.eject
{ | { I eh s, A {]
$.TON 0 $.R_TRIG 1
".isﬁulﬂ:ning S.is?j:cted TON R_TRIG S.:i.-rs'"!rt
1 [11 IN @ Q —{CLK -1':._ g————]
T§Zs — BT
$.RS 0
$.eject RS §.air
1 SET m al {1
$.insert :
_[l H RESET1
M .atop
1 |
$.TON_1
* .isRunning $.air TON $.iaEjected §.errl
{ [{ [IN@ e 1/l {)
T§7s —PT
~.iaRunning $.isEjected $.isInserted $.exrxr2
[| I I I 1 i 'l‘
U ||] L

Figure 4.6: Cylinder template code

24

4.8. Example

B Belt conveyor

OR:MOTOR
| ~ _isRunning ~_.blocked #.run
| | /1 ()

Figure 4.7: Belt conveyor template code
B Motor
Variable | Data type | Comment | Type
run BOOL motor on/off | output
Table 4.3: Motor template variable
B Production line
Variable | Data type Comment Type
start BOOL global start command | internal
stop BOOL global start command | internal
ack BOOL global ack command | internal
err BOOL global err command | internal
blocked BOOL global blocked state | internal
isError BOOL global error state internal
isRunning BOOL global run state internal
RS_0 RS RS flip-flop internal
RS 1 RS RS flip-flop internal
R_TRIG 0| R_TRIG rise edge detection internal
R_TRIG 1 R_TRIG rise edge detection internal
R _TRIG 2| R TRIG rise edge detection internal
R_TRIG_ 3 R_TRIG rise edge detection internal

Table 4.4: Production line template variables

25

4. Development instrument design

OR:ControlDesk $.R_TRIG 0
#.startButton R TRIG $.start
o .
CLK Q D
1 W (
OR:ControlDesk $S.R TRIG 1
#. stopButton‘ R TRIG S.stop
Il T I
| |] CLK .z.;_ o} 0 j)
OR:ControlDesk 5.R TRIG 2

#.ackButton R TRIG S.ack
i A Tk i
l I 1 :é Q {)

OR:ControlDesk $.R TRIG 3
i =,
$.6T7l R TRIG SuEER
| e 5 o ()
OR:ControlDesk —
P R
$.err2

Ml

OR:Cylinder

$.air $.blocked
1 [()

e A

$.RS_0
S.err RS $.1sError
11 SET éTb Q1 {7
S.ack
11 RESET1
$.RS 1
5.s5tart RS $.isRunning
01 SET ’$ o1 (]
S.s5top
11 RESET1

S .isError

I

Figure 4.8: Production line template code

Bl 4.8.3 Application

Production line consists of one belt conveyor, two control desks and five
pneumatic cylinders. Belt conveyor consists of ten motors. Components are
created "instantiated" from templates. Now all components names and their
counts are known.

26

4.8. Example

Application

¢l||¢

Cylinder, Control desk

|

Cylinders Control desks
Cylindera l
Cylindery l
Cylinders

Figure 4.9: Example of the application

Bl 4.8.4 Control system

Despite the production line is not very complicated, the PLC control system
includes two controllers placed in different locations in a plant connected by
a bus.

CPU; CPU,
v v
Task Task
v v
POU POU

Figure 4.10: Example of the control system

B 48.5 Assignment

After creating the specific application user help by Assignment editor assign
the CPU to each component.

27

4. Development instrument design

Application

Y
Control desko v

Figure 4.11: Example of the assignment

28

Chapter 5

Implementation

We implemented the development instrument in Java language with using the
state-of-the-art Eclipse 4 Rich Client Platform (RCP) development framework.
We called the RCP application representing the implementation of develop-
ment instrument designed by us MDDE (simply shortcut for "Model-Driven
Development Environment").

B 51 Eclipse

Eclipse is an open-source project providing a robust, full-featured, commercial-
quality, and freely available development platform for the development of
highly integrated tools. It provides an open, extensible integrated develop-
ment environment (IDE) composed of plugins. So, its functionality can be
extended by adding or changing plugins through Extension Points. It is
created to run on multiple operating systems, and it provides integration
with each underlying OS and fast and reliable native user interface (SWT,
JFace libraries)[33].

Eclipse RCP uses Eclipse platform’s components to build a fully-customizable
stand-alone application easily extensible for future purposes.

Eclipse 4 is the next generation for building Eclipse-based tools and RCP
applications, and it introduces a new set of technologies making the develop-
ment of applications and tools easier. These are e.g.: a model-based Ul, new
CSS-based application styling, a new services-oriented programming model,
support of Dependency injections [15].

. 5.2 Software architecture

MDDE?’s architecture is based on Model-View-Controller (MVC) pattern. It
divides an application into three interconnected entities to separate internal
data representation from ways the data are presented and accepted by a user.

The Model stores user data that are acquired by commands from the
Controller and displayed in the View. The View (user interface) is output
representation of the Model. It simultaneously serves to receive input from a

29

5. Implementation

user. The Controller accepts data and commands from user help by the View
and updates Model’s state and sends commands to actualize the View [34].
Because MDDE is implemented using the Eclipse development framework
its consists of its specifics parts, and it uses its specific functionalities and
services provided by Eclipse’s API, but the MVC pattern is preserved.

. 5.3 User interface

The Eclipse application user interface (UI) consists of one or more windows.
Usually, an application has only one window. Each window contains set
of Parts which allow a user to navigate, create and modify data. The
arrangement of the set of the Parts is called Perspective e. g. Eclipse IDE
uses various perspectives for different development tasks.

Parts can be directly added to a Window or can be grouped by Part Stacks
or Part Stash Containers. In Parts Stack, only one Part is visible at the same
time. This Part is selected via part tabs. Parts in Part Stash Container are
displayed at the same time divided horizontally or vertically.

Parts, in general, can be divided into Views and Editors. The view is
typically used to operate on a set of data. The data can be hierarchically
structured. Editors are typically used to modify a single data element e.g.
file [15].

Without main UI parts, there can be a wide variety of secondary UI parts
like buttons, popup menus, dialogs, tool panels, trim bars and many other.

Bl 5.3.1 MDDE’s Ul design and control

MDDE O00O

Template 1 Template 1 QCIWdJEICEY Template 3
Template 2 |

(Save)
Template 3 -

A variables N

<variables></variables>

Project 1

Project 2 | L J

Application {Code } N
Component;

<code></code>
Control system

CPU1

_ J

Figure 5.1: User interface design

30

5.3. User interface

The previous figure depicts the MDDE’s user interface design. It consists of
one main Window. Because our application it’s not yet very complex, we
need only one static perspective. The Window is vertically divided by main
Part Stash container into two main parts.

The Left side is horizontally divided into two Views. Upper View serves as
Template Explorer. A user can create and delete OO Templates here. Bottom
View serves as Project Explorer. A user creates and deletes here Projects
and their particular content - Control system and Application. The Control
system consists of a list of CPUs. The Application consists of tree hierarchy
of Components.

The right side of the main Part Sash container contains Part Stack collect-
ing Editors of individual Templates. Template editor can be opened from
Template Explorer View by mouse double-click on chosen Template. The
Template Editor contains Save button, the Variables text area, and Code
text area. Text areas are used to input and edit text representing PLC code
of Editor’s Template and its variables. Save button saves modifications of
the Code and Variables text areas.

There are secondary user interface parts beside main parts mentioned above
predominantly Popup menus and various Dialogs.

Popup menu allows a user to choose specific action after a right mouse click
on a concrete Ul object e.g. element in View. Popup menus are assigned to
particular Views. There are two Popup menus in MDDE application. The
First in assigned to Template Explorer View and the second is assigned to
Project Explorer View. Through the Template Explorer View Popup menu,
a user chooses Template to deletion and can create new Template.

The Project Explorer View’s Popup menu is more complex. It serves
for creating and deletion Projects, Components, and CPUs. Also, CPU
assignment to particular Component is done through it as well as generating
code action triggering.

Dialogs in MDDE are used to prompt the user for additional information
like new Template, Project, Component and CPU name or provide a user
with feedback like no text was inserted.

New Template O

New template name:

Cancel OK

Figure 5.2: Example of Dialog - New template dialog

31

5. Implementation

B 54 Model

B 54.1 PLC code

The PLC control code expressed in Ladder Diagram language is composed of
Networks. Each Network is net of connected instructions (NO, NC contacts,
coils, Function Blocks, etc.). Each net starts at left power rail and continues
to the right power rail by a serial-parrel combination of instructions till coil
ends it.

We implemented this using the similar Java class (object) structure. A list
of Networks represents the PLC code. A list of Instruction represents the
Network. The Instruction is a basic code element. Instructions connections
are realized by Instructions references, but the situation is more complicated
since Instructions could have more inputs and outputs. So each Instruction
has a list of inputs and outputs then each input and output have references
to connected Instructions. The list of variables can be very easily expressed
by a list of Variable objects.

In our Model, we distinguish mainly between proper PLC code Instruc-
tions and Macro Instructions. Macro Instructions are in the later stage of
code generating replaced by proper Instructions. OO features like indirect
referencing and containment notations are only parameters of Instructions
and thus can be easily replaced by appropriate Components names.

B 5.4.2 Template

Templates serve as code patterns for its next replacement by proper Compo-
nents name and expansion of macro instructions. Template simultaneously
stores code pattern’s variables.

A user creates PLC code of Templates through the editor. Variables are
declared help by editor too. In a fully qualified commercial development
environment, the Ladder Diagram code editor is graphical. A user creates code
by Drop and Drag actions and creates nets (ladder diagrams) of Instructions
(contacts, coils, functions blocks). Variables are declared by text or table
form in the unique part of the code editor or a separated editor.

In MDDE the PLC code editor is textual because design and implementation
of the full graphical editor are very time consuming and the development of
it is not the goal of this thesis. The Variable Editor is textual too.

Because we operate with XML structure due to PLCopen XML, we have
decided to describe the PLC code of Templates’ and their variables by XML
structures too. Texts, expressing these XML structures, are stored in the
String variables, which are edited trough particular Text areas in Template
Editor Part as described in |5.3.1l Since we need describe only PLC code
and variables, it is not necessary for the much-complicated structure as in
PLCopen XML. The syntaxes of these XML structures are adapted for being
easy to parse information from them and create the model expressing the
PLC code and variables as described in [5.4.1L

32

5.4. Model

B Code XML structure

The root of the structure is Code element. Child elements of the root are
Network elements. The child elements of the Network are Instruction elements.
Instruction element contains elements storing information about its inputs’
and outputs’ connections, parameters like ID number, Instruction’s type,
and variable name. In the case of Macro Instruction, there are additional
parameters like its type (OR, AND), Subcomponent type and its variable,
type of Instruction to expand (coil, contact).

B Variables XML structure

The root of the structure is Variables element. Its child elements are Variable
elements. Variable element stores data about variable’s name, type and
comment.

B 5.4.3 XML handling

The Java has a rich set of libraries for XML handling. We have decided to
use Document Object Model (DOM) API. A Document Object Model is a
tree structure, where each element contains one of the components of an
XML structure. The DOM provides functions to create and remove elements,
change their contents, and traverse the hierarchy of the elements.

B 5.44 Project

The software unit representing the automation task is in MDDE expressed
by Project. The Project consists of Application and Control system. The
Application is tree hierarchy of Components. Each Component has reference
to parent Component and a list of its Subcomponents. Each Component has
a reference to Template, from which is "created." The Control system is a list
of CPUs. After CPUs assignments, each Component has a reference to CPU,
which will"execute" its code.

Bl 5.4.5 Code generation

The output of MDDE is single PLCopen XML file, storing one Program
Organization Unit (POU) type Program and one Global Variable List (GVL),
for selected CPU or CPUs in Control System. Thus, the process of code
generation is separated in few stages and starts by user choice of CPU, for
which PLC code and variables will be generated. The final Program is
composed of PLC code fragments of Components’ Templates. Similarly, the
final GVL is composed of variables lists of Components’ Templates.

The iterative BFS algorithm gradually searches the tree of Components. It
starts at the root of the tree (Application) and adds all its children to the
queue (First In First Out). Further, it iterates through the queue. If actual
Component’s CPU is equal to selected CPU, the following steps are executed:

33

5. Implementation

® From String variable storing XML document, which represents the PLC
code of Component’s Template is created the Document object.

® From parsed parameters of the Document’s nodes are created Instructions.
During this step, the all indirect references and containment notations
are replaced by proper names of given Component relating to actual
Component.

® The DOM’s nodes are parsed again, and Instructions created in previous
steps are connected through their references based on again parsed
ID numbers. This ensures that all connection will be linked because
connecting Instructions through their references during the first process
of parsing can cause that some Instruction can need to be connected to
Instruction, which is not created yet.

® All macro instruction are expanded. Macro instruction is replaced by
the set of Instructions specifically connected according to its type (OR,
AND).

® All parsing, connecting, and expansion is ongoing within one network.
After all these actions the Network as a list of connected Instructions is
added to a list of Networks, which represents the PLC code.

® From String variable storing XML document, which represents variables
of Component’s Template is created the Document object.

® The Variables, created from parsed Document nodes’ parameters, are
added to the variable list, expressing the GVL. To all variables’ names
is added the particular name of actual Component.

After these actions, the actual component is removed from the queue and
all its children are added to the queue. When the queue is empty, BFS
algorithm ends and in the list of Networks representing the PLC code and list
of Variables representing the GVL are all objects, from which will be created
DOM elements and these written to PLCopen XML file.

In PLCopen XML file, each tag expressing the code element has a local ID.
Help by it the information about code elements’ connections is stored. Before
creating the DOM elements from Networks’ and Instructions’ objects, the
IDs numbers, which will represent the local IDs, are generated and assigned
to these objects.

34

Chapter 6

Evaluation

To evaluate the designed development process and implementation of MDDE,
we implemented the example model situation from 4.8/ in MDDE.

w1 MDDE = a X
cylinder cylinder editor 2 | productionLine editor | controlDesk editoré motor editor | beltConveyor editor‘
productionLine save
controlDesk .
variables
HKHOE, <variables> ~
beltConveyor <variable name="isInserted" type="BOOL" comment="" />
<variable name="isEjected” type="BOOL" comment="" />
<variable name="isPart” type="BOOL" comment=""/>
<variable name="air" type="BOOL" comment="" />
<variable name="gject” type="BOOL" comment="" />
<variable name="insert” type="BOOL" comment="" />
<variable name="err1"” type="BOOL" comment=""/>
<variable name="err2" type="BOOL" comment=""/>
<variable name="R_TRIG_0" type="R_TRIG" comment="" /=
<variable name="R_TRIG_1" type="R_TRIG" comment="" /= -
code
~ example ~ <code> =
~ Application <network comment=""title="">
~ productionLine1 <instruction id="1" type="NQOcontact">
cylinder1 <inputs>)
cylinder2 <input des;rlptmn: in">
o <connection=0</connection>
cylinder3 -
: </input=
cylinder4 </inputs>
cylinder5 <output>
controlDesk1 <connection>2 </connection>
controlDesk2 <foutput>
~ beltConveyorl <parameters>
matori <parameter name="variable” > *.isRunning </parameter>
</parameters >
motor2 - :
<finstruction> v
motor3 e
< >

Figure 6.1: Screenshot of MDDE’s graphical user interface

B Evaluation process in MDDE

B We created Templates representing the parts of given example model
situation.

® We described Templates’ codes and variables by provisional XML struc-
ture described in XX.

® We created Project and given Component configuration and CPUs in it.

35

6. Evaluation

We assigned CPUs to all Component is Project’s Application.
® We generated the PLCopen XML files for both CPUs.

All used and generated XML files are too extensively to be shown here, so
they are stored in attachment and attached CD.

Further, in el COCKPIT [27] we created the testing project to more advanced
evaluation.

gd B PROGRAMMING FUNCTIONS test_project.ecp - e!COCKPIT ? - 0O x
START VIEW PROGRAM DEBUG FBD /LD /I W}IEH @

ol g [i onlinechange e *
¥ Es5) =y [b || L= L3
- By edit offine
Connect Close WMultiple Eoo " Source code Source | Search Import/Export
simulation downioad downicad Changes dovmicad | code~ | - -
Connection Online Functions
21 x
Program structure v
= 51
D
78 Proest brary (FOUs) el = e
« B Applications {1 = 3 o mi
4%+ WD Application (PFC100_CS_ exanple_cpal_varizbles conszelDeskZ_ssepBussen ﬂ
example_cpui_variables {1
il Library Manager : enampie cpi_varisbies .predustieaiinel R IRIG 2
" @ example_cput_program sxapie_cpul_varissies.conszeibesidasiBurien | Do example_cp
= T L
+ [y Task Configuration Ly == A e
4% WD Application (PFC100_C5_2ET| example_cpul_varisbles.convrolDesk2 ackBusson
- il
+ i MODEUS 1Lk

example_cpu2_varisbles 3 example cpul varisbles.producticnlinel R TRIG 3

MODBUS example_cpul_variables eylinderl_errl | T TRIC example_epul_varizl
0 ke K e
jill Library Manager | e

™ © example_cpuz_program crample cpul_varisbies.cylindesd_srsd
+ [Task Configuration L

example cpul_variables.cylinderd erzl
T
U

example cpul_varisbles eylinder? erzl
T
L

example cpul_variables.cylinders_erzl

e
L

example cpul_varisbles eylinderl _erzZ

I -
»

'X‘

Figure 6.2: Screenshot of the PLC code simluation in el COCKPIT

B Evaluation process in e!COCKPIT

® We created the same device configuration as in XX; the two CPUs
connected by bus.

® We imported generated PLCopen XML files to testing projects to check
the correctness of generated PLC code.

® Because program performed in CPU2 uses the variables declared in
CPU1, we set the tag sharing between these CPUS.

8 We started PLC simulation to check that, PLC code is executable without
€rTors.

In e!COCKPIT’s Ladder Diagram editor the final generated code can be seen.
The code is too long to be shown here. Complete e/ COCKPIT testing project
is stored in attachment and attached CD.

36

Chapter 7

Conclusion

. 7.1 Model situation

In 4.8 we presented simple model situation. We decided to describe the
model automated plant by five Templates. We decided to describe the model
automated plant by five Templates. Each Template can consist of variables
and PLC code, but it’s not necessary. In Belt conveyor template, no variable
is needed. It is only "checkpoint" for in advance an unknown number of
motors and without any complex function. On the other hand, the Motor
template includes only one variable "run" representing on/off function of
a motor. This variable is controlled by a macro instruction in [4.4] from
Belt-conveyor template. We expressed that Belt-conveyor can have n motors,
using that. In Production line template we had used macro instructions to
collect information from other components and used them for setting control
states like stop, start error, etc. These control states are as follows used help
by containment referencing in 4.4 for controlling cylinders and control desks.
Indirect referencing |4.4]is in Templates’ code used for internal, control and
help variables like timers, edge detections, and flip-flops.

B 72 Implementation

We implemented the development instrument described in |4. The application
provides the basic graphical user interface and allows a user to perform
development process in 4.5 The originally designed decomposition of tools
of development instrument in |4.7] is not preserved but their function yes.
The application’s graphical user interface is dived into these main parts:
Template Explorer, Project Explorer and Template Editors. They provide all
functionalities of the individual tools from [4.7.

Template Explorer allows a user to create and delete Templates. Templates’
PLC code and variables are edited through Template Editor. In Project
Explorer, a user creates Projects representing the automation task. Project
Explorer realizes rest of basic functionality. In Project’s folder Control system
a user can create and delete CPUs. In Application folder, a user creates from
Templates and deletes the tree hierarchy of Components representing the

37

7. Conclusion

parts of an automated plant. Further, it provides functionalities to CPU
assignments and code generation.

B 7.2.1 Future work and extensions

The primary task for the future is the development of a graphical Ladder
diagram editor and a table Variable editor. The actual way of PLC code
editing is not suitable; the XML is technology for data storing and does not
meet requirements on user comfort and quick PLC code editing. Now it serves
as the intermediate step before the full graphical editor allowing developing
and testing the PLC code generation process.

In application’s Model (MVC architecture) we have implemented only func-
tionalities needed to generation instructions included in the model example.
These instructions are NO, NC contact, coil, TON, RS, R_ TRIG and Maro
OR. Thus, the extension of the set of instructions will be needed in the future.

. 7.3 Evaluation

We have evaluated the designed development process and implementation
of the development instrument in two phases described in 6. In the first
phase, we successfully generated PLC code by our implemented development
tool. Secondly, we imported generated codes into fully qualified development
environment e!/COCKPIT and run the PLC code in e!/COCKPIT’s PLC
simulator.

38

1]

Bibliography

K. Thramboulidis and G. Frey, “Towards a Model-Driven IEC 61131-Based
Development Process in Industrial Automation”, Journal of Software
Engineering and Applications, vol. 4, no. 4, pp. 217-226, 2011.

B. Vogel-Heuser, S. Braun, M. Obermeier, K. S., and K. Schweizer, “Us-
ability evaluation on teaching and applying model-driven object oriented
approaches for PLC software”, 2012 American Control Conference (ACC),
pp. 4463-4469, 2012.

K. Thramboulidis, “IEC 61131 as enabler of OO and MDD in industrial au-
tomation”, IEEE 10th International Conference on Industrial Informatics,
pp. 425-430, 2012.

K. Thramboulidis, “Towards an Object-Oriented extension for IEC 611317,
Proceedings of 2012 IEEE 17th International Conference on Emerging
Technologies Factory Automation (ETFA 2012), pp. 1-8, 2012.

A. Otto and K. Hellmann, “IEC 61131: A general overview and emerging
trends”, IEEE Industrial Electronics Magazine, vol. 3, no. 4, pp. 27-31,
2009.

K. Thramboulidis and G. Frey, “An MDD process for IEC 61131-based
industrial automation systems”, ETFA2011, pp. 1-8, 2011.

B. Werner, “Object-oriented extensions for iec 61131-3”, IEEE Industrial
Electronics Magazine, vol. 3, no. 4, pp. 36-39, 2009.

B. G. Silva and M. de Sousa, “Internal inconsistencies in the third edition
of the IEC 61131-3 international standard”, 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA),
pp. 1-4, 2016.

A. Zoitl, R. Smodic, and C. Sunder, “Enhanced real-time execution of
modular control software based on IEC 61499,”, Proceedings 2006 IEEE
International Conference on Robotics and Automation, pp. 327-332, 2006.

[10] K. Thramboulidis, “IEC 61499 Function Block Model: Facts and Fal-

lacies”, EEE Industrial Electronics Magazine, vol. 3, no. 4, pp. 7 - 26,
2010.

39

Bibliography

[11] K. Thramboulidis, “IEC 61499 as an Enabler of Distributed and Intelli-
gent Automation: A State-of-the-Art Review—A Different View”, Journal
of Engineering, vol. 2013, 2013.

[12] V. Vyatkin, “IEC 61499 as Enabler of Distributed and Intelligent Au-
tomation: State-of-the-Art Review”, IEEE Transactions on Industrial
Informatics, vol. 7, no. 4, pp. 768-781, 2011.

[13] J. H. Christensen, T. Strasser, A. Valentini, V. Vyatkin, and A. Zoitl,
“The TEC 61499 Function Block Standard: Software Tools and Runtime
Platforms”, Conference: ISA Automation Week 2012, 2012.

[14] P. Tichy, P. Kadera, R. J. Staron, P. Vrba, and V. Marik, “Multi-
agent system design and integration via agent development environment”,
Engineering Applications of Artificial Intelligence, vol. 25, no. 4, pp.
846-852, 2012.

[15] L. Vogel, Eclipse 4 Application Development: The complete guide to
Eclipse 4 RCP development, Wizard’s wand series (Vogella). 2012.

[16] “PLC Scan Cycle”. [Online]. Available: http://plcsoftwar.blogspot.
|cz/2016/02/plc-scan-cycle.html.|[Accessed: 05-Apr.-2017].

[17] “PLC Memory”. [Online]. Available: http://automationprimer.com/
|2016/08/28/plc-memory/ .| [Accessed: 05-Apr.-2017].

[18] “PROGRAMMABLE LOGIC CONTROLLER (PLC)”. [Online]. Avail-
able: https://www.myodesie.com/wiki/index/returnEntry/id/2962.|
[Accessed: 05-Apr.-2017].

[19] “What is a PLC?” [Online]. Available: https://www.amci.com/
|industrial-automation-resources/plc-automation-tutorials/ |

[Accessed: 05-Apr.-2017].

[20] “Engineering Essentials: What Is a Programmable
Logic Controller?”. [Online]. Available:

|//machinedesign.com/engineering-essentials/ |
lengineering-essentials-what-programmable-Ilogic-controller.|
[Accessed: 05-Apr.-2017].

[21] “Programmable Logic Controllers (PLC): Chapter 6 - Ladder Logic”.
[Online]. Available: https://www.allaboutcircuits.com/textbook/
digital/chpt-6/programmable-logic-controllers-plc/.|[Accessed:
05-Apr.-2017].

[22] “A Developer’s Perspective of PLC Configuration and Programming us-
ing FBD and ST”. [Online]. Available: https://www.design-reuse.com/
larticles/25025/plc-configuration-programming-fbd-st.html.
[Accessed: 17-Apr.-2017].

40

http://plcsoftwar.blogspot.cz/2016/02/plc-scan-cycle.html.
http://plcsoftwar.blogspot.cz/2016/02/plc-scan-cycle.html.
http://automationprimer.com/2016/08/28/plc-memory/.
http://automationprimer.com/2016/08/28/plc-memory/.
https://www.myodesie.com/wiki/index/returnEntry/id/2962.
https://www.amci.com/industrial-automation-resources/plc-automation-tutorials/what-plc/.
https://www.amci.com/industrial-automation-resources/plc-automation-tutorials/what-plc/.
https://www.amci.com/industrial-automation-resources/plc-automation-tutorials/what-plc/.
http://machinedesign.com/engineering-essentials/engineering-essentials-what-programmable-logic-controller.
http://machinedesign.com/engineering-essentials/engineering-essentials-what-programmable-logic-controller.
http://machinedesign.com/engineering-essentials/engineering-essentials-what-programmable-logic-controller.
https://www.allaboutcircuits.com/textbook/digital/chpt-6/programmable-logic-controllers-plc/.
https://www.allaboutcircuits.com/textbook/digital/chpt-6/programmable-logic-controllers-plc/.
https://www.design-reuse.com/articles/25025/plc-configuration-programming-fbd-st.html.
https://www.design-reuse.com/articles/25025/plc-configuration-programming-fbd-st.html.

Bibliography

[23] “PLC Programming - How Do The Different Languages of IEC
61131-3 Compare?”. [Online|. Available: http://www.plcedge.com/
plc-programming.html.| [Accessed: 17-Apr.-2017].

[24] “Programovaci jazyky pro PLC”. [Online]. Available:
plcedge.com/plc-programming.html.|[Accessed: 17-Apr.-2017].

[25] Technical Paper PLCopen Technical Committee 6: XML Formats for
IEC 61131-3. 2009. Avaible: http://www.plcopen.org/pages/tc6_xml/|
[Accessed: 05-Apr.-2017].

[26] “CODESYS”. [Online|. Available: https://www.codesys.com.| [Ac-
cessed: 17-Apr.-2017].

[27] “WAGO”. [Online]. Available: http://global.wago.com/en/index-en,
[Accessed: 17-Apr.-2017].

[28] “BECKHOFEF". [Online]. Available:
|/ /www.beckhoff.com/english.asp?twincat/ |
‘twincat-3-extended-automation-engineering.htm.| [Accessed:
17-Apr.-2017].

[29] “XML (Extensible Markup Language)”. [Online]. Available:
http://searchmicroservices.techtarget.com/definition/ |
XML-Extensible-Markup-Language.|[Accessed: 05-Apr.-2017].

[30] “XML Tutorial”. [Online]. Available: https://www.w3schools.com/
xml/default.asp.| [Accessed: 05-Apr.-2017].

[31] “IEC 61131-3:2013: Programmable controllers - Part 3: Pro-
gramming languages”. [Online]. Available: https://webstore.iec.ch/
publication/4552#additionalinfo.|[Accessed: 28-Apr.-2017].

[32] “What is IEC 614997”. [Online|. Available: http://www.holobloc.com/
papers/iec61499/overview.htm.| [Accessed: 30-Apr.-2017].

[33] “Eclipse documentation - Current Release: What is Eclipse?”. [On-
line]. Available: https://help.eclipse.org/neon/index.jsp?topic=
h2Forg.eclipse.platform.doc.isv/%2Fguide’,2Fint_eclipse.htm.|
[Accessed: 19-May-2017].

[34] “MVC Architecture:”. [Online]. Available:

‘tutorialsteacher.com/mvc/mvc-architecture.| [Accessed: 19-
May-2017].

41

http://www.plcedge.com/plc-programming.html.
http://www.plcedge.com/plc-programming.html.
http://www.plcedge.com/plc-programming.html.
http://www.plcedge.com/plc-programming.html.
http://www.plcopen.org/pages/tc6_xml/
https://www.codesys.com.
http://global.wago.com/en/index-en.jsp.
http://global.wago.com/en/index-en.jsp.
https://www.beckhoff.com/english.asp?twincat/twincat-3-extended-automation-engineering.htm.
https://www.beckhoff.com/english.asp?twincat/twincat-3-extended-automation-engineering.htm.
https://www.beckhoff.com/english.asp?twincat/twincat-3-extended-automation-engineering.htm.
http://searchmicroservices.techtarget.com/definition/XML-Extensible-Markup-Language.
http://searchmicroservices.techtarget.com/definition/XML-Extensible-Markup-Language.
https://www.w3schools.com/xml/default.asp.
https://www.w3schools.com/xml/default.asp.
https://webstore.iec.ch/publication/4552#additionalinfo.
https://webstore.iec.ch/publication/4552#additionalinfo.
http://www.holobloc.com/papers/iec61499/overview.htm.
http://www.holobloc.com/papers/iec61499/overview.htm.
https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2Fint_eclipse.htm.
https://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2Fint_eclipse.htm.
http://www.tutorialsteacher.com/mvc/mvc-architecture.
http://www.tutorialsteacher.com/mvc/mvc-architecture.

42

Appendix A

Content of attached CD

Folder

Content

cz.cvut.fel.bp.mh.mdde
elcockpit__testing

latex

mdde

mdde_ testing_files

source codes

e!lCOCKPIT testing project
latex source codes

executable MDDE application
MDDE testing files

43

	Introduction
	Motivation
	Aim
	Thesis structure

	PLC and its control code
	Programable logic controller
	Formation
	Hardware
	Scan cycle

	IEC 61131
	Software model
	Programming languages

	PLCopen XML
	Purpose
	Introduction
	Testing
	Extensible markup language
	File structure

	State-of-the-art PLC programming methods
	Model-Driven development
	Conclusion

	Object Oriented extension of IEC 61131
	Conclusion

	IEC 61149
	Architecture
	Application
	Device
	Resource
	Function Block
	Conclusion

	Development instrument design
	Task description
	Control system
	Application
	Templates
	PLC code creation
	Code deployment
	Tools
	Example
	Templates
	Templates code
	Application
	Control system
	Assignment

	Implementation
	Eclipse
	Software architecture
	User interface
	MDDE's UI design and control

	Model
	PLC code
	Template
	XML handling
	Project
	Code generation

	Evaluation
	Conclusion
	Model situation
	Implementation
	Future work and extensions

	Evaluation

	Bibliography
	Content of attached CD

