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ANTENNA ENGINEERING (3-1-0)  
Module-I                                                   (14 Hours) 

  Antenna Definition,Principles of Radiation, Basic antenna parameters, Retarded 

Vector Magnetic Potential, Radiation field from Current element., Current 

Distribution on a thin Wire. Half wave dipole and Quarterwave monopole.  

Two-element array. Principle of Pattern Multiplication. Linear Array. Broadside 

and end fire patterns, Balun.  

Module-II 

                                                   (12 Hours) 

Folded Dipole, Yagi Antenna. Frequency Independent Antenna. Log Periodic 

Dipole array, Secondary Source and Aperture Antennas (Basics & applications).   

Module-III                                                   (10 Hours) 

Horn Antennas-Pyramidal & Sectoral Horn. Radiation Pattern and Gain of horn 

antenna.  Parabolic Reflector Antenna  -Principle, analysis, Radiation Pattern and 

Gain.  Principles of Cassegrain Antenna.   

Module-IV 

                                                   (08 Hours) 

Microstrip Antenna – Basic Characteristics, Rectangular Patch, Radiation 

principle, Feeding Techniques,Cavity model.  

Antenna  Measurements – Radiation Pattern, Gain and Input Impedance.  

Text Books: 

1. Electromagnetic Wave and Radiating system by E. C. Jordan and K.G. Balmain, 

10, 11, 12, 13, 14, and 15. 

2. Antennas Theory – Analysis and Design by C. Balanis, 2nd Edition, John Willey 

& Sons Selected portion Ch. 11, 12, 13, 15, and 16.  
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ANTENNA DEFINITION: 

An antenna is defined by Webster’s Dictionary as “a usually metallic device (as a 

rod or wire) for radiating or receiving radio waves.” The IEEE Standard 

Definitions of Terms for Antennas (IEEE Std 145–1983)∗  defines the antenna or 

aerial as “a means for radiating or receiving radio waves.” In other words the 

antenna is the transitional structure between free-space and a guiding device, as 

shown in Figure 1.1. The guiding device or transmission line may take the form of 

a coaxial line or a hollow pipe (waveguide), and it is used to transport 

electromagnetic energy from the transmitting source to the antenna, or from the 

antenna to the receiver. In the former case, we have a transmitting antenna and in 

the latter a receiving antenna. 

A transmission-line Thevenin equivalent of the antenna system of Figure 1.1 in the 

transmitting mode is shown in Figure 1.2 where the source is represented by an 

ideal generator, the transmission line is represented by a line with characteristic 

impedance Zc, and the antenna is represented by a load ZA [ZA = (RL + Rr ) + 

jXA] connected to the transmission line. The Thevenin and Norton circuit 

equivalents of the antenna are also shownin Figure 2.27. The load resistance RL is 

used to represent the conduction and dielectric losses associated with the antenna 

structure while Rr , referred to as the radiation resistance, is used to represent 

radiation by the antenna. The reactance XA is used to represent the imaginary part 

of the impedance associated with radiation by the antenna. This is discussed more 

in detail in Sections 2.13 and 2.14. Under ideal conditions, energy generated by the 

source should be totally transferred to the 

Radiation resistance Rr , which is used to represent radiation by the antenna. 

However, in a practical system there are conduction-dielectric losses due to the 

lossy nature of the transmission line and the antenna, as well as those due to 

reflections (mismatch) losses at the interface between the line and the antenna. 

Taking into account the internal impedance of the source and neglecting line and 

reflection (mismatch) losses, maximum power is delivered to the antenna under 

conjugate matching. 



 

 

The reflected waves from the interface create, along with the traveling waves from 

the source toward the antenna, constructive and destructive interference patterns, 

referred to as standing waves, inside the transmission line which represent pockets 

of energy concentrations and storage, typical of resonant devices. A typical 

standing wave pattern is shown dashed in Figure 1.2, while another is exhibited in 

Figure 1.15. If the antenna system is not properly designed, the transmission line 

could act to a large degree as an energy storage element instead of as a wave 

guiding and energy transporting device. If the maximum field intensities of the 

standing wave are sufficiently large, they can cause arching inside the transmission 

lines. The losses due to the line, antenna, and the standing waves are undesirable. 

The losses due to the line can be minimized by selecting low-loss lines while those 

of the antenna can be decreased by reducing the loss resistance represented by RL 

in Figure 1.2. The standing waves can be reduced, and the energy storage capacity 

of the line minimized, by matching the impedance of the antenna (load) to the 

characteristic impedance of the line. This is the same as matching loads to 

transmission lines, where the load here is the antenna, and is discussed more in 

detail in Section 9.7. An equivalent similar to that of Figure 1.2 is used to represent 

the antenna system in the receiving mode where the source is replaced by a 

receiver. All other parts of the transmission-line equivalent remain the same. The 

radiation resistance Rr is used to represent in the receiving mode the transfer of 

energy from the free-space wave to the antenna. 



In addition to receiving or transmitting energy, an antenna in an advanced wireless 

system is usually required to optimize or accentuate the radiationen ergy insome 

directions and suppress it in others. Thus the antenna must also serve as a 

directional device in addition to a probing device. It must thentake various forms to 

meet the particular need at hand, and it may be a piece of conducting wire, an 

aperture, a patch, an assembly of elements (array), a reflector, a lens, and so forth. 

 

 

PRINCIPLES OF RADIATION: 

It simply states that to create radiation, there must be a time-varying current or an 

acceleration (or deceleration) of charge. We usually refer to currents in time-

harmonic applications while charge is most often mentioned in transients. To 

create charge acceleration (or deceleration) the wire must be curved, bent, 

discontinuous, or terminated [1], [4]. Periodic charge acceleration 

(or deceleration) or time-varying current is also created when charge is oscillating 

in a time-harmonic motion, as shown in Figure 1.17 for a λ/2 dipole. Therefore: 

1. If a charge is not moving, current is not created and there is no radiation. 

2. If charge is moving with a uniform velocity: 

a. There is no radiation if the wire is straight, and infinite in extent. 

b. There is radiation if the wire is curved, bent, discontinuous, terminated, or 

truncated, as shown in Figure 1.10. 

3. If charge is oscillating in a time-motion, it radiates even if the wire is straight. 

A qualitative understanding of the radiation mechanism may be obtained by 

considering a pulse source attached to an open-ended conducting wire, which may 



be connected to the ground through a discrete load at its open end, as shown in 

Figure 1.10(d). When the wire is initially energized, the charges (free electrons) in 

the wire are set in motionby the electrical lines of force created by the source. 

When charges are accelerated in the source-end of the wire and decelerated 

(negative acceleration with respect to original motion) during reflection from its 

end, it is suggested that radiated fields are produced at each end and along the 

remaining part of the wire, [1], [4]. Stronger radiation with a more broad frequency 

spectrum occurs if the pulses are of shorter or more compact duration while 

continuous time-harmonic oscillating charge produces, ideally, radiation of single 

frequency determined by the frequency of oscillation. The 

Acceleration of the charges is accomplished by the external source in which forces 

set the charges in motion and produce the associated field radiated. The 

deceleration of the charges at the end of the wire is accomplished by the internal 

(self) forces associated with the induced field due to the buildup of charge 

concentration at the ends of the wire. 

The internal forces receive energy from the charge buildup as its velocity is 

reduced to zero at the ends of the wire. Therefore, charge acceleration due to an 

exciting electric field and deceleration due to impedance discontinuities or smooth 

curves of the wire are mechanisms responsible for electromagnetic radiation. 

While both current density (Jc) and charge density (qv) appear as source terms in 

Maxwell’s equation, charge is viewed as a more fundamental quantity, especially 

for transient fields. Even though this interpretation of radiation is primarily used 

for transients, it can be used to explain steady state radiation[4]. 

                                     



         

Let us consider a voltage source connected to a two-conductor transmission line 

which is connected to an antenna. This is shown in Figure 1.11(a). Applying a 

voltage across the two-conductor transmission line creates an electric field between 

the conductors. The electric field has associated with it electric lines of force which 

are tangent to the electric field at each point and their strength is proportional to the 

electric field intensity. The electric lines of force have a tendency to act on the free 

electrons (easily detachable from the atoms) associated with each conductor and 

force them to be displaced. The movement of the charges creates a current that in 

turn creates a magnetic field intensity. Associated with the magnetic field intensity 

are magnetic lines of force which are tangent to the magnetic field. We have 

accepted that electric field lines start on positive charges and end on negative 

charges. They also can start on a positive charge and end at infinity, start at infinity 

and end on a negative charge, or form closed loops neither starting or ending on 

any charge. Magnetic field lines always form closed loops encircling current-

carrying conductors because physically there are no magnetic charges. In some 

mathematical formulations, it is often convenient to introduce equivalent magnetic 

charges and magnetic currents to draw a parallel between solutions involving 

electric and magnetic sources. The electric field lines drawn between the two 

conductors help to exhibit the distribution of charge. If we assume that the voltage 

source is sinusoidal, we expect the electric field between the conductors to also be 

sinusoidal with a period equal to that of the applied source. The relative magnitude 



of the electric field intensity is indicated by the density (bunching) of the lines of 

force with the arrows showing the relative direction (positive or negative). The 

creation of time-varying electric and magnetic fields between the conductors forms 

electromagnetic waves which travel along the transmission line, as shown in 

Figure 1.11(a). The electromagnetic waves enter the antenna and have associated 

with them electric charges and corresponding currents. If we remove part of the 

antenna structure, as shown in Figure 1.11(b), free-space waves can be formed by 

“connecting” the open ends of the electric lines (shown dashed). The free-space 

waves are also periodic but a constant phase point P0 moves outwardly with the 

speed of light and travels a distance of λ/2 (to P1) inthe time of one-half of a 

period. It has been shown [6] that close to the antenna the constant phase point P0 

moves faster thanthe speed of light but approaches the speed of light at points far 

away from the antenna (analogous to phase velocity inside a rectangular 

waveguide). Figure 1.12 displays the creationan d travel of free-space waves by a 

prolate spheroid with λ/2 interfocal distance where λ is the wavelength. The free-

space waves of a center-fed λ/2 dipole, except in the immediate vicinity of the 

antenna, are essentially the same as those of the prolate spheroid. 

 

BASIC ANTENNA PARAMETERS: 

RADIATION PATTERN 

An antenna radiation pattern or antenna pattern is defined as “a mathematical 

function or a graphical representation of the radiation properties of the antenna as a 

function of space coordinates. In most cases, the radiation pattern is determined in 

the far field region and is represented as a function of the directional coordinates. 

Radiation properties include power flux density, radiation intensity, field strength, 

directivity, phase or polarization.” The radiation property of most concern is the 

two- or three dimensional spatial distribution of radiated energy as a function of 

the observer’s position along a path or surface of constant radius. A convenient set 

of coordinates is shown in Figure 2.1. A trace of the received electric (magnetic) 

field at a constant radius is called the amplitude field pattern.  

On the other hand, a graph of the spatial variation of the power density along a 

constant radius is called an amplitude power pattern. Often the field and power 

patterns are normalized with respect to their maximum value, yielding normalized 



field and power patterns. Also, the power pattern is usually plotted on a 

logarithmic scale or more commonly in decibels (dB). This scale is usually 

desirable because a logarithmic scale can accentuate in more details those parts of 

the Pattern that have very low values, which later we will refer to as minor lobes. 

For an antenna, the  

(a) Field pattern( in linear scale) typically represents a plot of the magnitude 

of the electric or magnetic field as a function of the angular space.  

(b) Power pattern( in linear scale) typically represents a plot of the square of 

the magnitude of the electric or magnetic field as a function of the 

angular space. 

(c) power pattern( in dB) represents the magnitude of the electric or 

magnetic field in decibels, as a function of the angular space. 

 To demonstrate this, the two-dimensional normalized field pattern (plotted 

in linear scale), power pattern( plotted in linear scale), and power pattern (plotted 

on a logarithmic dBscale ) of a 10-element linear antenna array of isotropic 

sources, with a spacing of d = 0.25λ betweenthe elements, are shown in Figure 2.2. 

In this and subsequent patterns, the plus (+) and minus (−) signs in the lobes 

indicate the relative polarization of the amplitude between the various lobes, which 

changes (alternates) as the nulls are crossed. To find the points where the pattern 

achieves its half-power (−3 dB points), relative to the maximum value of the 

pattern, you set the value of the 

a. field pattern at 0.707 value of its maximum, as shown in Figure 2.2(a) 

b. power pattern (in a linear scale) at its 0.5 value of its maximum, as shown in 

Figure 2.2(b) 

c. power pattern (in dB) at −3 dBvalue of its maximum, as shown in Figure 2.2(c). 

Isotropic, Directional, and Omnidirectional Patterns 

An isotropic radiator is defined as “a hypothetical lossless antenna having equal 

radiation in all directions.” Although it is ideal and not physically realizable, it is 

often Figure 2.5 taken as a reference for expressing the directive properties of 

actual antennas. A directional antenna is one “having the property of radiating or 

receiving electromagnetic waves more effectively in some directions than in 

others. This term is usually applied to an antenna whose maximum directivity is 

significantly greater than that of a half-wave dipole.” Examples of antennas with 

directional radiation patterns are shown in Figures 2.5 and 2.6. It is seen that the 



pattern in Figure 2.6 is non directional in the azimuth plane [f (φ), θ = π/2] and 

directional in the elevation plane [g(θ), φ = constant]. This type of a pattern is 

designated as omni directional, an dit is defined as one “having an essentially 

nondirectional pattern in a given plane (in this case in azimuth) and a directional 

pattern in any orthogonal plane (in this case in elevation).” An omnidirectional 

patternis thena special type of a directional pattern. 

Field Regions 

The space surrounding an antenna is usually subdivided into three regions: (a) 

reactive 

near-field, (b) radiating near-field (Fresnel) and (c) far-field (Fraunhofer) regions 

as 

shown in Figure 2.7. These regions are so designated to identify the field structure 

in 

each. Although no abrupt changes in the field configurations are noted as the 

boundaries 

are crossed, there are distinct differences among them. The boundaries separating 

these regions are not unique, although various criteria have been established and 

are 

commonly used to identify the regions. 

Reactive near-field region is defined as “that portion of the near-field region 

immediately surrounding the antenna wherein the reactive field predominates.” For 

most antennas, the outer boundary of this region is commonly taken to exist at a 

distanceR < 0.62 _ D3/λ from the antenna surface, where λ is the wavelength and 

D is the largest dimension of the antenna. “For a very short dipole, or equivalent 

radiator, the outer boundary is commonly taken to exist at a distance λ/2π from the 

antenna surface.” 

Radiating near-field (Fresnel) region is defined as “that region of the field of an 

antenna between the reactive near-field region and the far-field region wherein 

radiation fields predominate and wherein the angular field distribution is dependent 

upon the distance from the antenna. If the antenna has a maximum dimension that 

is not large compared to the wavelength, this region may not exist. For an antenna 

focused at infinity, the radiating near-field region is sometimes referred to as the 

Fresnel region on the basis of analogy to optical terminology. If the antenna has a 

maximum overall dimension which is very small compared to the wavelength, this 

field region may not exist.” The inner boundary is taken to be the distance R ≥ 0.62 



_ D3/λ and the outer boundary the distance R < 2D2/λ where D is the largest∗  

dimension of the antenna. This criterion is based on a maximum phase error of π/8. 

In this region the field pattern is, in general, 

a function of the radial distance and the radial field component may be appreciable. 

Far-field (Fraunhofer) region is defined as “that region of the field of an antenna 

where the angular field distribution is essentially independent of the distance from 

the antenna. If the antenna has a maximum∗  overall dimension D, the far-field 

region is commonly taken to exist at distances greater than 2D2/λ from the 

antenna, λ being the wavelength. The far-field patterns of certain antennas, such as 

multibeam reflector antennas, are sensitive to variations in phase over their 

apertures. For these antennas 2D2/λ may be inadequate. In physical media, if the 

antenna has a maximum overall dimension, D, which is large compared to π/|γ |, 

the far-field region can be taken to begin approximately at a distance equal to |γ 

|D2/π from the antenna, γ being the 

propagation constant in the medium. For an antenna focused at infinity, the far-

field region is sometimes referred to as the Fraunhofer region on the basis of 

analogy to optical terminology.” In this region, the field components are essentially 

transverse and the angular distribution is independent of the radial distance where 

the measurements are made. The inner boundary is taken to be the radial distance 

R = 2D2/λ and the outer one at infinity. 

RADIATION POWER DENSITY 

Electromagnetic waves are used to transport information through a wireless 

medium or a guiding structure, from one point to the other. It is then natural to 

assume that power and energy are associated with electromagnetic fields. The 

quantity used to describe the power associated with  

an electromagnetic wave is the instantaneous Poynting vector defined as  

 
Since the Poynting vector is a power density, the total power crossing a closed 

surface can be obtained by integrating the normal component of the Poynting 

vector  over the entire surface. In equation form 

 



For applications of time-varying fields, it is often more desirable to find the 

average power density which is obtained by integrating the instantaneous Poynting 

vector over one period and dividing by the period. For time-harmonic variations of 

the form ejωt , we define the complex fields E and H which are related to their 

instantaneous counterparts _ and _ by 

 

The first term of (2-7) is not a function of time, and the time variations of the 

second are twice the given frequency. The time average Poynting vector (average 

power density) can be written as 

 

 
The  ½ factor appears in(2-7) and (2-8) because the E and H fields represent peak 

values, and it should be omitted for RMS values. A close observationof (2-8) may 

raise a question. If the real part of (E × H∗  )/2 represents the average (real) power 

density, what does the imaginary part of the same quantity represent? At this point 

it will be very natural to assume that the imaginary part must represent the reactive 

(stored) power density associated with the electromagnetic fields. In later chapters, 

it will be shown that the power density associated with the electromagnetic fields 

of an antenna in its far-field region is predominately real and will be referred to as 

radiation density.  

 
RADIATION INTENSITY 



Radiation intensity ina givendirectionis defined as “the power radiated from an 

antenna per unit solid angle.” The radiation intensity is a far-field parameter, and it 

can be obtained by simply multiplying the radiation density by the square of the 

distance. In mathematical form it is expressed as 

 
 

where 

U = radiation intensity (W/unit solid angle) 

Wrad = radiationden sity (W/m2) 

The total power is obtained by integrating the radiation intensity, as given by (2-

12), over the entire solid angle of 4π. Thus 

 
For anisotropic source U will be independent of the angles θ and φ, as was the case 

for Wrad. Thus (2-13) canbe written as 

 
or the radiation intensity of an isotropic source as 

 
 BEAMWIDTH 

Associated with the pattern of an antenna is a parameter designated as beamwidth. 

The beamwidth of a pattern is defined as the angular separation between two 

identical points on opposite side of the pattern maximum. In an antenna pattern, 

there are a number of beamwidths. One of the most widely used beamwidths is the 

Half-Power Beamwidth (HPBW ), which is defined by IEEE as: “In a plane 

containing the direction of the maximum of a beam, the angle between the two 



directions in which the radiation intensity is one-half value of the beam.” This is 

demonstrated in Figure 2.2. Another important beamwidth is the angular separation 

between the first nulls of the pattern, and it is referred to as the First-Null 

Beamwidth (FNBW ). Both the HPBW and FNBW are demonstrated for the 

pattern in Figure 2.11  or the pattern of Example 2.4. Other beamwidths are those 

where the patternis −10 dB from the maximum, or any other 

value. However, inpractice, the term beamwidth, with no other identification, 

usually refers to HPBW. 

DIRECTIVITY 

In the 1983 versionof the IEEE Standard Definitions of Terms for Antennas, there 

has been a substantive change in the definition of directivity, compared to the defin 

tion of the 1973 version. Basically the term directivity in the new 1983 version has 

been used to replace the term directive gain of the old 1973 version. In the new 

1983 version the term directive gain has been deprecated. According to the authors 

of the new 1983 standards, “this change brings this standard in line with common 

usage among antenna engineers and with other international standards, notably 

those of the International Electrotechnical Commission (IEC).” Therefore 

directivity of an antenna defined as “the ratio of the radiation intensity in a given 

direction from the antenna to the radiation intensity averaged over all directions. 

The average radiation intensity is equal to the total power radiated by the antenna 

divided by 4π. If the direction is not specified, the direction of maximum radiation 

intensity is implied.” Stated more simply, the directivity of a nonisotropic source is 

equal to the ratio of its radiation intensity in a given direction over that of an 

isotropic source. In mathematical form, using (2-15), it can be written as 

 
If the direction is not specified, it implies the direction of maximum radiation 

intensity 

(maximum directivity) expressed as 



 
D = directivity (dimensionless) 

D0 = maximum directivity (dimensionless) 

U = radiation intensity (W/unit solid angle) 

Umax = maximum radiation intensity (W/unit solid angle) 

U0 = radiation intensity of isotropic source (W/unit solid angle) 

Prad = total radiated power (W) 

ANTENNA EFFICIENCY 

Associated with an antenna are a number of efficiencies and can be defined using 

Figure 2.22. The total antenna efficiency e0 is used to take into account losses at 

the input terminals and within the structure of the antenna. Such losses may be due, 

referring to Figure 2.22(b), to 

1. reflections because of the mismatch between the transmission line and the 

antenna 

2. I 2R losses (conduction and dielectric) 

In general, the overall efficiency can be written as 

               e0 = er ec ed 

where 

e0 = total efficiency (dimensionless) 

er = reflection(mismatch) efficiency = (1 − |?|2) (dimensionless) 

ec = conduction efficiency (dimensionless) 

ed = dielectric efficiency (dimensionless) 

? = voltage reflection coefficient at the input terminals of the antenna 

[? = (Zin − Z0)/(Zin + Z0) where Zin = antenna input impedance, 

Z0 = characteristic impedance of the transmission line] 

VSWR = voltage standing wave ratio = 1 + |?|/(1 − |?|) 

Usually ec and ed are very difficult to compute, but they canbe determined 

experimentally. 

Even by measurements they cannot be separated, and it is usually more convenient 

to write (2-44) as e0 = erecd = ecd (1 − |?|2) 

 

GAIN 



Another useful measure describing the performance of an antenna is the gain. 

Although the gain of the antenna is closely related to the directivity, it is a measure 

that takes into account the efficiency of the antenna as well as its directional 

capabilities. Remember that directivity is a measure that describes only the 

directional properties of the antenna, and it is therefore controlled only by the 

pattern. Gain of an antenna (in a given direction) is defined as “the ratio of the 

intensity, in a given direction, to the radiation intensity that would be obtained if 

the power accepted by the antenna were radiated isotropically. The radiation 

intensity corresponding to 

the isotropically radiated power is equal to the power accepted (input) by the 

antenna divided by 4π.” Inequation form this canbe expressed as 

 

 
 

RETARDED VECTOR MAGNETIC POTENTIAL: 

Although magnetic currents appear to be physically unrealizable, equivalent 

magnetic currents arise when we use the volume or the surface equivalence 

theorems. The fields generated by a harmonic magnetic current in a homogeneous 

region, with J = 0 but M _= 0, must satisfy ∇  · D = 0. Therefore, EF canbe 

expressed as the curl of the vector potential F by 

 
Substituting (3-16) into Maxwell’s curl equation 

 
reduces it to 

 
From the vector identity of (3-6), it follows that 

 



where φm represents an arbitrary magnetic scalar potential which is a function of 

position. Taking the curl of (3-16) 

 
and equating it to Maxwell’s equation 

 
leads to 

 

 
By letting 

 
reduces (3-23) to 

 
and (3-19) to 

 
RADIATION FIELD FROM CURRENT ELEMENT: 

An infinitesimal linear wire (l _ λ) is positioned symmetrically at the origin of the 

coordinate system and oriented along the z axis, as shown in Figure 4.1(a). 

Although infinitesimal dipoles are not very practical, they are used to represent 

capacitor-plate (also referred to as top-hat-loaded) antennas. In addition, they are 

utilized as building blocks of more complex geometries. The end plates are used to 

provide capacitive loading in order to maintain the current on the dipole nearly 

uniform. Since the end plates are assumed to be small, their radiation is usually 

negligible. The wire, in Addition to being very small (l _ λ), is very thin (a _ λ). 

The spatial variationof the current is assumed to be constant an d given by 

 



 
Since the source only carries an electric current Ie, Im and the potential function F 

are zero. To find A we write 

 
where (x, y, z ) represent the observation point coordinates,  represent the 

coordinates of the source, R is the distance from any point on the source to the 

observation point, and path C is along the length of the source. 

 
 

For this problem, Ax = Ay = 0, so (4-5) using (4-4) reduces to

 



 
 

 

 

 

 
Power Density and Radiation Resistance 

The input impedance of an antenna, which consists of real and imaginary parts, 

was discussed in Section 2.13. For a lossless antenna, the real part of the input 

impedance was designated as radiation resistance. It is through the mechanism of 

the radiation resistance that power is transferred from the guided wave to the free-

space wave. To find the input resistance for a lossless antenna, the Poynting vector 

is formed in terms of the E- an dH-fields radiated by the antenna. By integrating 

the Poynting vector over a closed surface (usually a sphere of constant radius), the 

total power radiated by the source is found. The real part of it is related to the input 

resistance. 

 



 

 

 

 
The transverse component Wθ of the power density does not contribute to the 

integral. Thus (4-14) does not represent the total complex power radiated by the 

antenna. Since Wθ , as given by (4-12b), is purely imaginary, it will not contribute 

to any real radiated power. However, it does contribute to the imaginary (reactive) 

power which along with the second term of (4-14) can be used to determine the 

total reactive power of the antenna. The reactive power density, which is most 

dominant for small values of kr, has both radial and transverse components. It 

merely changes between outward and inward directions to form a standing wave at 

a rate of twice per cycle. It also moves in the transverse direction as suggested by 

(4-12b). 

 

 



 
 

 

CURRENT DISTRIBUTION ON A HALF WAVE DIPOLE: 

The creation of the current distribution ona thinwire was discussed inSection 1.4, 

and it was illustrated with some examples inFigure 1.16. The radiationproperties of 

an infinitesimal dipole, which is usually taken to have a length l ≤ λ/50, were 

discussed in the previous section. Its current distribution was assumed to be 

constant. Although a constant current distribution is not realizable (other than top-

hat-loaded elements), it is a mathematical quantity that is used to represent actual 

current distributions of antennas that have been incremented into many small 

lengths. 

A better approximation of the current distribution of wire antennas, whose lengths 

are usually λ/50 < l ≤ λ/10, is the triangular variation of Figure 1.16(a). The 

sinusoidalvariations of Figures 1.16(b)–(c) are more accurate representations of the 

current distribution of any length wire antenna. The most convenient geometrical 

arrangement for the analysis of a dipole is usually to have it positioned 

symmetrically about the origin with its length directed along the z-axis, as shown 

in Figure 4.4(a). This is not necessary, but it is usually the most convenient. The 

current distribution of a small dipole (λ/50 < l ≤ λ/10) is shown in 

 
 



 
 

 

 
Following the procedure established in the previous section, the vector potential 

of(4-2) canbe written using (4-33) as 

 
Because the overall length of the dipole is very small (usually l ≤ λ/10), the values 

of R for different values of z _ along the length of the wire (−l/2 ≤ z _ ≤ l/2) are not 

much different from r. Thus R canbe approximated by R   r throughout the 

integration path. The maximum phase error in(4-34) by allowing R = r for λ/50 < l 

≤ λ/10, will be kl/2 = π/10 rad = 18◦ for l = λ/10. Smaller values will occur for the 

other lengths. As it will be shown in the next section, this amount of phase error is 

usually considered negligible and has very little effect on the overall radiation 

characteristics. Performing the integration, (4-34) reduces to 

 



which is one-half of that obtained in the previous section for the infinitesimal 

dipole and given by (4-4). The potential function given by (4-35) becomes a more 

accurate approximation as 

kr →∞. This is also the region of most practical interest, and it has been designated 

as the far-field region. Since the potential function for the triangular distribution is 

one-half of the corresponding one for the constant (uniform) current distribution, 

the corresponding fields of the former are one-half of the latter. Thus we can write 

the E and H-fields radiated by a small dipole 

 
same as the ones with the constant current distribution given by (4-31) and (4-32), 

respectively. 

 

 

TWO ELEMENT ARRAY: 

Let us assume that the antenna under investigation is an array of two infinitesimal 

horizontal dipoles positioned along the z-axis, as showninFigure 6.1(a). The total  

field radiated by the two elements, assuming no coupling between the elements, is 

equal to the sum of the two and in the y-z plane it is given by 

 

 
where β is the difference in phase excitation between the elements. The magnitude 

excitation of the radiators is identical. Assuming far-field observations and 

referring to 



 
 

 

 

 
It is apparent from (6-3) that the total field of the array is equal to the field of a 

single element positioned at the origin multiplied by a factor which is widely 

referred to as the array factor. Thus for the two-element array of constant 

amplitude, the array factor is givenby 



 
PRINCIPLE OF PATTERN MULTIPLICATION: 

  
The array factor is a function of the geometry of the array and the excitation phase. 

By varying the separation d and/or the phase β betweenthe elements, the 

characteristics of the array factor and of the total field of the array can be 

controlled. It has been illustrated that the far-zone field of a uniform two-element 

array of identical elements is equal to the product of the field of a single element, 

at a selected reference point (usually the origin), and the array factor of that array. 

That is, 

E(total) = [E(single element at reference point)] × [array factor] (6-5) 

This is referred to as pattern multiplication for arrays of identical elements, and it 

is analogous to the pattern multiplication of (4-59) for continuous sources. 

Although it has been illustrated only for an array of two elements, each of identical 

magnitude, it is also valid for arrays with any number of identical elements which 

do not necessarily have identical magnitudes, phases, and/or spacings between 

them. This will be demonstrated in this chapter by a number of different arrays. 

Each array has its own array factor. The array factor, in general, is a function of the 

number of elements, their geometrical arrangement, their relative magnitudes, their 

relative phases, and their spacings. The array factor will be of simpler form if the 

elements have identical amplitudes, phases, and spacings. Since the array factor 

does not depend on the directional characteristics of the radiating elements 

themselves, it can be formulated by replacing the actual elements with isotropic 

(point) sources. Once the array factor has been derived using the point-source 

array, the total field of the actual array is obtained by the use of (6-5). Each point-

source is assumed to have the amplitude, phase, and location of the corresponding 

element it is replacing. In order to synthesize the total pattern of an array, the 

designer is not only required to select the proper radiating elements but the 

geometry (positioning) and excitation of the individual elements. 

 To better illustrate the pattern multiplication rule, the normalized patterns of 

the single element, the array factor, and the total array for each of the above array 

examples are showninFigures 6.3, 6.4(a), and 6.4(b). In each figure, the total 



pattern of the array is obtained by multiplying the pattern of the single element by 

that of the array factor. 

 In each case, the pattern is normalized to its own maximum. Since the array 

factor for the example of Figure 6.3 is nearly isotropic (within 3 dB), the element 

pattern and the total pattern are almost identical in shape. The largest magnitude 

difference between the two is about 3 dB, and for each case it occurs toward the 

direction along which the phases of the two elements are in phase quadrature (90◦ 

out of phase). For Figure 6. this occurs along θ = 0◦ while for Figures 6.4(a,b) this 

occurs along θ = 90◦. Because the array factor for Figure 6.4(a) is of cardioid form, 

its corresponding element and total patterns are considerably different. In the total 

pattern, the null at θ = 90◦ is due to the element pattern while that toward θ = 0◦ is 

due to the array factor. Similar results are displayed inFigure 6.4(b). 

 
 

 

LINEAR ARRAY: 

Now that the arraying of elements has been introduced and it was illustrated by the 

two-element array, let us generalize the method to include N elements. Referring to 

the geometry of Figure 6.5(a), let us assume that all the elements have identical 



amplitudes but each succeeding element has a β progressive phase lead current 

excitation relative to the preceding one (β represents the phase by which the 

current in each element leads the current of the preceding element). An array of 

identical elements all of identical magnitude and each with a progressive phase is 

referred to as a uniform array. The array factor can be obtained by considering the 

elements to be point sources. If the actual elements are not isotropic sources, the 

total field can be formed by multiplying the array factor of the isotropic sources by 

the field of a single element. This is the pattern multiplication rule of (6-5), and it 

applies only for arrays of identical elements. The array factor is givenby 

 

 
which canbe written as 

 
 



 



 
 

Since the total array factor for the uniform array is a summation of exponentials, it 

canbe represented by the vector sum of N phasors each of unit amplitude and 

progressive phase ψ relative to the previous one. Graphically this is illustrated by 

the phasor diagram inFigure 6.5(b). It is apparent from the phasor diagram that the 

amplitude and phase of the AF can be controlled in uniform arrays by properly 



selecting the relative phase ψ between the elements; in nonuniform arrays, the 

amplitude as well as the phase can be used to control the formation and distribution 

of the total array factor.The array factor of (6-7) canalso be expressed in analtern 

ate, compact and closed form whose functions and their distributions are more 

recognizable. This is accomplished as follows. 

 Multiplying both sides of (6-7) by ejψ, it canbe written as 

 

 
Subtracting (6-7) from (6-8) reduces to 

 
which canalso be written as 



 
If the reference point is the physical center of the array, the array factor of (6-

10)reduces to For small values of ψ, the above expressioncan be approximated by 

 
The maximum value of (6-10a) or (6-10b) is equal to N. To normalize the array 

factors so that the maximum value of each is equal to unity, (6-10a) and (6-10b) 

are written in normalized form as  

 

 
BROADSIDE ARRAY: 

In many applications it is desirable to have the maximum radiation of an array 

directed normal to the axis of the array [broadside; θ0 = 90◦ of Figure 6.5(a)]. To 

optimize the design, the maxima of the single element and of the array factor 

should both be directed toward θ0 = 90◦. The requirements of the single elements 



can be accomplished by the judicious choice of the radiators, and those of the array 

factor by the proper separation and excitation of the individual radiators. In this 

section, the requirements that allow the array factor to “radiate” efficiently 

broadside will be developed. 

Referring to (6-10c) or (6-10d), the first maximum of the array factor occurs when 

 

 
Since it is desired to have the first maximum directed toward θ0 = 90◦, then 

 
Thus to have the maximum of the array factor of a uniform linear array directed 

broadside to the axis of the array, it is necessary that all the elements have the same 

phase excitation(in addition to the same amplitude excitation). The separation 

between the elements can be of any value. To ensure that there are no principal 

max ma in other directions, which are referred to as grating lobes, the 

separationbetweenthe elements should not be equal to multiples of a wavelength (d 

_= nλ, n = 1, 2, 3 . . .) when β = 0. 

If d = nλ, n = 1, 2, 3, . . . and β = 0, then 

  
This value of ψ when substituted in(6-10c) makes the array factor attain its 

maximum value. Thus for a uniform array with β = 0 an dd = nλ, in addition to 

having the maxima of the array factor directed broadside (θ0 = 90◦) to the axis of 

the array, there are additional maxima directed along the axis (θ0 = 0◦ , 180◦) of 

the array (endfire radiation). 

One of the objectives in many designs is to avoid multiple maxima, in addition to 

the main maximum, which are referred to as grating lobes. Often it may be 

required to select the largest spacing between the elements but with no grating 

lobes. To avoid any grating lobe, the largest spacing between the elements should 

be less than one wavelength (dmax < λ). To illustrate the method, the three-

dimensional array factor of a 10-element (N = 10) uniform array with β = 0 an dd = 

λ/4 is shown plotted in Figure 6.6(a). A 90◦ angular sector has been removed for 

better view of the pattern distribution in the elevation plane. The only maximum 



occurs at broadside (θ0 = 90◦). To form a comparison, the three-dimensional 

pattern of the same array but with d = λ is also plotted in Figure 6.6(b). For this 

pattern, in addition to the maximum at θ0 = 90◦, there are 

additional maxima directed toward θ0 = 0◦, 180◦. The corresponding two-

dimensional  patterns of Figures 6.6(a,b) are showninFigure 6.7. 

If the spacing between the elements is chosen between λ < d < 2λ, then the 

maximum of Figure 6.6 toward θ0 = 0◦ shifts toward the angular region 0◦< θ0 < 

90◦ while the maximum toward θ0 = 180◦ shifts toward 90◦< θ0 < 180◦. When d = 

2λ,there are maxima toward 0◦, 60◦ , 90◦ , 120◦ and 180◦. 

 
 



 
END-FIRE ARRAY: 

Instead of having the maximum radiation broadside to the axis of the array, it may 

be desirable to direct it along the axis of the array (end-fire). As a matter of fact, it 

may be necessary that it radiates toward only one direction (either θ0 = 0◦ or 180◦ 

of Figure 6.5).To direct the first maximum toward θ0 = 0◦, 

 
If the first maximum is desired toward θ0 = 180◦, then 

 
Thus end-fire radiation is accomplished when β = −kd (for θ0 = 0◦) or β = kd (for 

θ0 = 180◦). 

If the element separation is d = λ/2, end-fire radiation exists simultaneously in both 

directions (θ0 = 0◦ and θ0 = 180◦). If the element spacing is a multiple of a 

wavelength (d = nλ, n = 1, 2, 3, . . .), then inadditionto having end-fire radiation in 

both directions, there also exist maxima in the broadside directions. Thus for d = 

nλ, n = 1, 2, 3, . . . there exist four maxima; two in the broadside directions and two 

along the axis of the array. To have only one end-fire maximum and to avoid any 

grating lobes, the maximum spacing between the elements should be less than 



dmax < λ/2. The three-dimensional radiation patterns of a 10-element (N = 10) 

array with d = 

λ/4, β = +kd are plotted inFigure 6.8. When β = −kd, the maximum is directed 

along θ0 = 0◦ and the three-dimensional pattern is shown in Figure 6.8(a). 

However, when β = +kd, the maximum is oriented toward θ0 = 180◦, and the three-

dimensional pattern is shown in Figure 6.8(b). The two-dimensional patterns of 

Figures 6.8(a,b) are shown in Figure 6.9. To form a comparison, the array factor of 

the same array (N = 10) but with d = λ and β = −kd has been calculated. Its pattern 

is identical to that of a broadside array with N = 10, d = λ, and it is shown plotted 

in Figure 6.7. It is seen that there are four maxima; two broadside and two along 

the axis of the array. 

 
 

BALUNS: 

A twin-lead transmission line (two parallel-conductor line) is a symmetrical line 

whereas a coaxial cable is inherently unbalanced. Because the inner and outer 

(inside and outside parts of it) conductors of the coax are not coupled to the 

antenna in the same way, they provide the unbalance. The result is a net current 

flow to ground on the outside part of the outer conductor. This is showninFigure 

9.25(a) where anelectrical equivalent is also indicated. The amount of current flow 

I3 onthe outside surface of the outer conductor is determined by the impedance Zg 



from the outer shield to ground. If Zg canbe made very large, I3 can be reduced 

significantly. Devices that can be used to balance inherently unbalanced systems, 

by canceling or choking the outside current, are known as baluns (balance to 

unbalance). 

One type of a balunis that shown inFigure 9.25(b), referred to usually as a bazooka 

balun. Mechanically it requires that a λ/4 in length metal sleeve, and shorted at its 

one end, encapsulates the coaxial line. Electrically the input impedance at the open 

end of this λ/4 shorted transmission line, which is equivalent to Zg, will be very 

large (ideally infinity). Thus the current I3 will be choked, if not completely 

eliminated, and the system will be nearly balanced. 



 
 

Another type of a balun is that shown in Figure 9.25(c). It requires that one end of 

a λ/4 section of a transmission line be connected to the outside shield of the main 

coaxial line while the other is connected to the side of the dipole which is attached 

to the center conductor. This balun is used to cancel the flow of I3. The operation 

of it can be explained as follows: In Figure 9.25(a) the voltages between each side 

of the dipole and the ground are equal in magnitude but 180◦ out of phase, thus 

producing acurrent flow on the outside of the coaxial line. If the two currents I1 

and I2 are equal in magnitude, I3 would be zero. Since arm #2 of the dipole is 



connected directly to the shield of the coax while arm #1 is weakly coupled to it, it 

produces a much larger current I2. Thus there is relatively little cancellation in the 

two currents. 

The two currents, I1 and I2, can be made equal in magnitude if the center 

conductor of the coax is connected directly to the outer shield. If this connection is 

made directly at the antenna terminals, the transmission line and the antenna would 

be short-circuited, thus eliminating any radiation. However, the indirect parallel-

conductor connection of Figure 9.25(c) provides the desired current cancellation 

without eliminating the radiation. 

The current flow on the outer shield of the main line is canceled at the bottom end 

of the λ/4 section(where the two jointogether) by the equal inmagn itude, but 

opposite inphase, current in the λ/4 sectionof the auxiliary line. Ideally then there is 

no current flow in the outer surface of the outer shield of the remaining part of 

main coaxial line. It should be stated that the parallel auxiliary line need not be 

made λ/4 in length to achieve the balance. It is made λ/4 to prevent the upsetting of 

the normal operation of the antenna. 

A compact constructionof the baluninFigure 9.25(c) is that in Figure 9.25(d). The 

outside metal sleeve is split and a portionof it is removed onopposite sides. The 

remaining opposite parts of the outer sleeve represent electrically the two shorted 

λ/4 parallel transmission lines of Figure 9.25(c). All of the baluns shown in Figure 

9.25 are narrowband devices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Microstrip Antennas 

Introduction 

In high-performance aircraft, spacecraft, satellite, and missile applications, where 

size, weight, cost, performance, ease of installation, and aerodynamic profile are 

constraints, low-profile antennas may be required. Presently there are many other 

government and commercial applications, such as mobile radio and wireless 

communications that have similar specifications. To meet these requirements, 

microstrip antennas can be used. These antennas are low profile, conformable to 

planar and nonplanar surfaces, simple and inexpensive to manufacture using 

modern printed-circuit technology, mechanically robust when mounted on rigid 

surfaces, compatible with MMIC designs, and when the particular patch shape and 

mode are selected, they are very versatile in terms of resonant frequency, 

polarization, pattern, and impedance. In addition, by adding loads between the 

patch and the ground plane, such as pins and varactor diodes, adaptive elements 

with variable resonant frequency, impedance, polarization, and pattern can be 

designed. Major operational disadvantages of microstrip antennas are their low 

efficiency, low power, high Q (sometimes in excess of 100), poor polarization 

purity, poor scan performance, spurious feed radiation and very narrow frequency 

bandwidth, which is typically only a fraction of a percent or at most a few percent. 

 

Basic characteristics 

Microstrip antennas received considerable attention starting in the 1970s, although 

the idea of a microstrip antenna can be traced to 1953 and a patent in 1955. 

Microstrip antennas consist of a very thin (t _ λ0, where λ0 is the free-space 

wavelength) metallic strip (patch) placed a small fraction of a wavelength (h <λ0, 

usually 0.003λ0 ≤ h ≤ 0.05λ0) above a ground plane. The microstrip patch is 

designed so its pattern maximum is normal to the patch (broadside radiator). This 

is accomplished by properly choosing the mode (field configuration) of excitation 

beneath the patch. End-fire radiation can also be accomplished by judicious mode 

selection. For a rectangular patch, the length L of the element is usually λ0/3 < L < 

λ0/2. The strip (patch) and the ground plane are separated by a dielectric sheet 

(referred to as the substrate). There are numerous substrates that can be used for 

the design of microstrip antennas, and their dielectric constants are usually in the 



range of 2.2 ≤ Ir ≤ 12. The ones that are most desirable for good antenna 

performance are thick substrates whose dielectric constant is in the lower end of 

the range because they provide better efficiency, larger bandwidth, loosely bound 

fields for radiation into space, but at the expense of larger element size. Thin 

substrates with higher dielectric constants are desirable for microwave circuitry 

because they require tightly bound fields to minimize undesired radiation and 

coupling, and lead to smaller element sizes; however, because of their greater 

losses, they are less efficient and have relatively smaller bandwidths. 

 

 

 



 

 

Often microstrip antennas are also referred to as patch antennas. The radiating 

elements and the feed lines are usually photo etched on the dielectric substrate. The 

radiating patch may be square, rectangular, thin strip (dipole), circular, elliptical, 

triangular or any other configuration. These and others are Square, rectangular, 

dipole (strip), and circular are the most common because of ease of analysis and 

fabrication, and their attractive radiation characteristics, especially low cross-

polarization radiation. 

 

Feeding methods 

There are many configurations that can be used to feed microstrip antennas. The 

four most popular are the microstrip line, coaxial probe, aperture coupling, and 

proximity coupling. One set of equivalent circuits for each one of these is shown in 

Figure 14.4. The microstrip feed line is also a conducting strip, usually of much 

smaller width compared to the patch. The microstrip-line feed is easy to fabricate, 

simple to match by controlling the inset position and rather simple to model. 

However as the substrate thickness increases, surface waves and spurious feed 

radiation increase, which for practical designs limit the bandwidth (typically 2–

5%). Coaxial-line feeds, where the inner conductor of the coax is attached to the 

radiation patch while the outer conductor is connected to the ground plane, are also 

widely used. The coaxial probe feed is also easy to fabricate and match, and it has 

low spurious radiation. However, it also has narrow bandwidth and it is more 

difficult to model, especially for thick substrates (h > 0.02λ0). Both the microstrip 

feed line and the probe possesses inherent asymmetries which generate higher 

order modes which produce cross-polarized radiation. To overcome some of these 

problems, non contacting aperture-coupling feeds have been introduced. The 

aperture coupling is the most difficult of all four to fabricate and it also has narrow 

bandwidth. However, it is somewhat easier to model and has moderate spurious 

radiation. The aperture coupling consists of two substrates separated by a ground 

plane. On the bottom side of the lower substrate there is a microstrip feed line 

whose energy is coupled to the patch through a slot on the ground plane separating 

the two substrates. This arrangement allows independent optimization of the feed 

mechanism and the radiating element. Typically a high dielectric material is used 



for the bottom substrate, and thick low dielectric constant material for the top 

substrate. The ground plane between the substrates also isolates the feed from the 

radiating element and minimizes interference of spurious radiation for pattern 

formation and polarization purity. For this design, the substrate electrical 

parameters, feed line width, and slot size and position can be used to optimize the 

design [38]. Typically matching is performed by controlling the width of the feed 

line and the length of the slot. The coupling through the slot can be modeled using 

the theory of Bethe which is also used to account for coupling through a small 

aperture in a conducting plane. This theory has been successfully used to analyze 

waveguide couplers using coupling through holes. In this theory the slot is 

represented by an equivalent normal electric dipole to account for the normal 

component (to the slot) of the electric field, and an equivalent horizontal magnetic 

dipole to account for the tangential component (to the slot) magnetic field. If the 

slot is centered below the patch, where ideally for the dominant mode the electric 

field is zero while the magnetic field is maximum, the magnetic coupling will 

dominate. Doing this also leads to good polarization purity and no cross-polarized 

radiation in the principal planes. Of the four feeds described here, the proximity 

coupling has the largest bandwidth (as high as 13 percent), is somewhat easy to 

model and has low spurious radiation. However its fabrication is somewhat more 

difficult. The length of the feeding stub and the width-to-line ratio of the patch can 

be used to control the match. 



 

Rectangular patch 

The rectangular patch is by far the most widely used configuration. It is very easy 

to analyze using both the transmission-line and cavity models, which are most 

accurate for thin substrates. We begin with the transmission-line model because it 

is easier to illustrate. 

 

 Transmission-Line Model 

 

It was indicated earlier that the transmission-line model is the easiest of all but it 

yields the least accurate results and it lacks the versatility. However, it does shed 

some physical insight. A rectangular microstrip antenna can be represented as an 

array of two radiating narrow apertures (slots), each of width W and height h, 

separated by a distance L. Basically the transmission-line model represents the 

microstrip antenna by two slots, separated by a low-impedance Zc transmission 

line of length L. 

 

 Fringing Effects 



Because the dimensions of the patch are finite along the length and width, the 

fields at the edges of the patch undergo fringing. This is illustrated along the length 

for the two radiating slots of the microstrip antenna. The same applies along the 

width. The amount of fringing is a function of the dimensions of the patch and the 

height of the substrate. For the principal E-plane (xy-plane) fringing is a function 

of the ratio of the length of the patch L to the height h of the substrate (L/h) and the 

dielectric constant Lr of the substrate. Since for microstrip antennas L/h <1, 

fringing is reduced; however, it must be taken into account because it influences 

the resonant frequency of the antenna. The same applies for the width. This is a 

nonhomogeneous line of two dielectrics; typically the substrate and air. As can be 

seen, most of the electric field lines reside in the substrate and parts of some lines 

exist in air. As W/h< 1 an dIr <1, the electric field lines concentrate mostly in the 

substrate. Fringing in this case makes the microstrip line look wider electrically 

compared to its physical dimensions. Since some of the waves travel in the 

substrate and some in air, an effective dielectric constant Lreff is introduced to 

account for fringing and the wave propagation in the line. To introduce the 

effective dielectric constant, let us assume that the center conductor of the 

microstrip line with its original dimensions and height above the ground plane is 

embedded into one dielectric. The effective dielectric constant is defined as the 

dielectric constant of the uniform dielectric material so that the line has identical 

electrical characteristics, particularly propagation constant, as the actual line of 

Figure 14.5(a). For a line with air above the substrate, the effective dielectric 

constant has values in the range of 1 < Lreff < Ir . For most applications where the 

dielectric constant of the substrate is much greater than unity (Lr< 1), the value of 

Lreff will be closer to the value of the actual dielectric constant Ir of the substrate. 

The effective dielectric constant is also a function of frequency. As the frequency 

of operation increases, most of the electric field lines concentrate in the substrate. 

Therefore the microstrip line behaves more like a homogeneous line of one 

dielectric (only the substrate), and the effective dielectric constant approaches the 

value of the dielectric constant of the substrate. 



 

For low frequencies the effective dielectric constant is essentially constant. At 

intermediate frequencies its values begin to monotonically increase and eventually 

approach the values of the dielectric constant of the substrate. The initial values (at 

low frequencies) of the effective dielectric constant are referred to as the static 

values, and they are given by 
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Because of the fringing effects, electrically the patch of the microstrip antenna 

looks greater than its physical dimensions. For the principal E-plane (xy-plane), 

where the dimensions of the patch along its length have been extended on each end 

by a distance 3L, which is a function of the effective dielectric constant Lreff and the 

width-to-height ratio (W/h). A very popular and practical approximate relation for 

the normalized extension of the length is  
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Since the length of the patch has been extended by 3L on each side, the effective 

length of the patch is now (L = λ/2 for dominant TM010 mode with no fringing) 

                                                                       2effL L L     

For the dominant TM010 mode, the resonant frequency of the microstrip antenna is 

a function of its length. Usually it is given by 
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where υ0 is the speed of light in free space. Since (14-4) does not account for 

fringing, it must be modified to include edge effects and should be computed using 
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The q factor is referred to as the fringe factor (length reduction factor). As the 

substrate height increases, fringing also increases and leads to larger separations 

between the radiating edges and lower resonant frequencies. 

 

RADIATION PATTERN 

For a linearly polarized antenna, performance is often described in terms of its 

principal E- and H -plane patterns. The E-plane is defined as “the plane 

containing the electric-field vector and the direction of maximum radiation,” 

and the H-plane  as “the plane containing the magnetic-field vector and the 

direction of maximum radiation.” Although it is very  difficult  to illustrate  the 

principal  patterns  without  considering  a specific example,  it is the usual 

practice to orient most antennas so that at least one of the principal plane 

patterns coincide with one of the geometrical principal planes. For this 

example, the x-z  plane (elevation plane; Φ = 0) is the principal E-plane  and 

the x-y  plane (azimuthal plane; Φ  = π/2) is the principal H -plane. Other 

coordinate orientations can be selected. The omnidirectional pattern of Figure 

2.6 has an infinite number of principal E-planes (elevation planes; Φ = Φc) and 

one principal H-plane (azimuthal plane; θ = 90
˚
). 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Cavity Model 

Microstrip antennas resemble dielectric-loaded cavities, and they exhibit higher 

order resonances. The normalized fields within the dielectric substrate (between 

the patch and the ground plane) can be found more accurately by treating that 

region as a cavity bounded by electric conductors (above and below it) and by 

magnetic walls (to simulate an open circuit) along the perimeter of the patch. This 

is an approximate model, which in principle leads to a reactive input impedance (of 

zero or infinite value of resonance), and it does not radiate any power. However, 

assuming that the actual fields are approximate to those generated by such a model, 

the computed pattern, input admittance, and resonant frequencies compare well 

with measurements. This is an accepted approach, and it is similar to the 

perturbation methods which have been very successful in the analysis of 

waveguides, cavities, and radiators. To shed some insight into the cavity model, let 

us attempt to present a physical interpretation in to the formation of the fields 

within the cavity and radiation through its side walls. When the microstrip patch is 

energized, a charge distribution is established on the upper and lower surfaces of 

the patch, as well as on the surface of the ground plane. 

 

 

 

 

 

 

 

 

 

 

 

 

The charge distribution is controlled by two mechanisms; an attractive and a 

repulsive mechanism [34]. The attractive mechanism is between the corresponding 

opposite charges on the bottom side of the patch and the 



ground plane, which tends to maintain the charge concentration on the bottom of 

the patch. The repulsive mechanism is between like charges on the bottom surface 

of the patch, which tends to push some charges from the bottom of the patch, 

around its edges, to its top surface. The movement of these charges creates 

corresponding current densities Jb and Jt , at the bottom and top surfaces of the 

patch, respectively. Since for most practical microstrip the height-to-width ratio is 

very small, the attractive mechanism dominates and most of the charge 

concentration and current flow remain underneath the patch. A small amount of 

current flows around the edges of the patch to its top surface. However, this current 

flow decreases as the height-to-width ratio decreases. In the limit, the current flow 

to the top would be zero, which ideally would not create any tangential magnetic 

field components to the edges of the patch. This would allow the four side walls to 

be modelled as perfect magnetic conducting surfaces which ideally would not 

disturb the magnetic field and, in turn, the electric field distributions beneath the 

patch. Since in practice there is a finite height-to-width ratio, although small, the 

tangential magnetic fields at the edges would not be exactly zero. However, since 

they will be small, a good approximation to the cavity model is to treat the side 

walls as perfectly magnetic conducting. This model produces good normalized 

electric and magnetic field distributions (modes) beneath the patch. If the 

microstrip antenna were treated only as a cavity, it would not be sufficient to find 

the absolute amplitudes of the electric and magnetic fields. In fact by treating the 

walls of the cavity, as well as the material within it as lossless, the cavity would 

not radiate and its input impedance would be purely reactive. Also the function 

representing the impedance would only have real poles. To account for radiation, a 

loss mechanism has to be introduced. This was taken into account by the radiation 

resistance Rr and loss resistance RL. These two resistances allow the input 

impedance to be complex and for its function to have complex poles; the imaginary 

poles representing, through Rr and RL, the radiation and conduction-dielectric 

losses. To make the microstrip lossy using the cavity model, which would then 

represent an antenna, the loss is taken into account by introducing an effective loss 

tangent δeff. The effective loss tangent is chosen appropriately to represent the loss 

mechanism of the cavity, which now behaves as an antenna and is taken as the 

reciprocal of the antenna quality factor Q (δeff = 1/Q). 

 

Antenna Measurements 



 

Radiation Pattern 

An antenna radiation pattern or antenna pattern is defined as “a mathematical 

function or a graphical representation of the radiation properties of the antenna as a 

function of space coordinates. In most cases, the radiation pattern is determined in 

the farfield region and is represented as a function of the directional coordinates. 

Radiation properties include power flux density, radiation intensity, field strength, 

directivity, phase or polarization.” The radiation property of most concern is the 

two- or three -dimensional spatial distribution of radiated energy as a function of 

the observer’s position along a path or surface of constant radius. A convenient set 

of coordinates is shown in Figure 2.1. A trace of the received electric (magnetic) 

field at a constant radius is called the amplitude field pattern. On the other hand, a 

graph of the spatial variation of the power density along a constant radius is called 

an amplitude power pattern. Often the field and power patterns are normalized 

with respect to their maximum value, yielding normalized field and power 

patterns. Also, the power pattern is usually plotted on a logarithmic scale or more 

commonly in decibels (dB). This scale is usually 

desirable because a logarithmic scale can accentuate in more details those parts of 

the pattern that have very low values, which later we will refer to as minor lobes. 

For an antenna, the 

 a. field pattern( in linear scale) typically represents a plot of the magnitude of the 

electric or magnetic field as a function of the angular space. 

b. power pattern( in linear scale) typically represents a plot of the square of the 

magnitude of the electric or magnetic field as a function of the angular space. 

c. power pattern( in dB) represents the magnitude of the electric or magnetic field, 

in decibels, as a function of the angular space. 

To demonstrate this, the two-dimensional normalized field pattern (plotted in 

linear scale), power pattern( plotted in linear scale), and power pattern (plotted on 

a logarithmic dB scale ) of a 10-element linear antenna array of isotropic sources, 

with a spacing of d = 0.25λ between the elements, are shown in Figure 2.2. In this 

and subsequent patterns, the plus (+) and minus (−) signs in the lobes indicate the 

relative polarization of the amplitude between the various lobes, which changes 

(alternates) as the nulls are crossed. To find the points where the pattern achieves 

its half-power (−3 dB points), relative to the maximum value of the pattern, you set 

the value of the  



a. field pattern at 0.707 value of its maximum, as shown in Figure (a) 

b. power pattern (in a linear scale) at its 0.5 value of its maximum, as shown in 

Figure (b) 

c. power pattern (in dB) at −3 dB value of its maximum, as shown in Figure (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

GAIN 

Another useful measure describing the performance of an antenna is the gain. 

Although the gain of the antenna is closely related to the directivity, it is a measure 

that takes into account the efficiency of the antenna as well as its directional 

capabilities. Remember that directivity is a measure that describes only the 

directional properties of the antenna, and it is therefore controlled only by the 

pattern. Gain of an antenna (in a given direction) is defined as “the ratio of the 

intensity, in a given direction, to the radiation intensity that would be obtained if 

the power accepted by the antenna were radiated isotropically. The radiation 

intensity corresponding to the isotropically radiated power is equal to the power 

accepted (input) by the antenna divided by 4π.” In equation form this can be 

expressed as                           

   

                  
radiation intensity ( , )

4 4 (dimensionless)
total input (accepted) power in

U
Gain

P

 
    

 

In most cases we deal with relative gain, which is defined as “the ratio of the 

power gain in a given direction to the power gain of a reference antenna in its 

referenced direction.” The power input must be the same for both antennas. The 

reference antenna is usually a dipole, horn, or any other antenna whose gain can be 



calculated or it is known. In most cases, however, the reference antenna is a 

lossless isotropic source. Thus 

 

                                   
4 ( , )

(dimensionless)
(lossless isotropic source)in

U
G

P

  
   

 

When the direction is not stated, the power gain is usually taken in the direction of 

maximum radiation.   

 

Input Impedance 

Input impedance is defined as “the impedance presented by an antenna at its 

terminals or the ratio of the voltage to current at a pair of terminals or the ratio of 

the appropriate components of the electric to magnetic fields at a point.” In this 

section we are primarily interested in the input impedance at a pair of terminals 

which are the input terminals of the antenna. In Figure 2.27(a) these terminals are 

designated as a − b. The ratio of the voltage to current at these terminals, with no 

load attached, defines the impedance of the antenna as 

                                                    

                                                    A A AZ R jX   

where 

ZA = antenna impedance at terminals a –b (ohms) 

RA = antenna resistance at terminals a –b (ohms) 

XA = antenna reactance at terminals a –b (ohms) 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In general the resistive part consists of two components; that is  

                                            A r LR R R    

where 

Rr = radiation resistance of the antenna 

RL = loss resistance of the antenna 

If we assume that the antenna is attached to a generator with internal impedance 

                                       g g gZ R jX    

where 

Rg = resistance of generator impedance (ohms) 

Xg = reactance of generator impedance (ohms) 


