80509 LINEAR DIGITAL FILTERING I

PART I: Design and Implementation of Digital Filters

1) Structures for implementing digital filters.

2) FIR (finite impulse response) and IIR (infinite impulse
response) filters.

3) How to study the filter performance with the aid of the
transfer function: stability, frequency response.

4) Filter design process.

5) Requiremenst for the amplitude, phase, phase delay
and group delay responses.

6) Various approximation criteria for meeting the given

specifications,illustrated by typicalclassical solutions.

These solutions will be considered in more details
in Parts lll and IV of these lecture notes.

® What to read for the examination ?:

1) What is a linear digital filter and how to analyse it ?:
difference equation; transfer function; the role of
frequency, amplitude, phase, phase delay, and
group delay responses; filter stability.

2) Direct-form and cascade-form structures.
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DESIGN AND IMPLEMENTATION OF DIG-
ITAL FILTERS

1. What is a digital filter?

2. Different filter types: Infinite impulse response

(IIR) and finite impulse response (FIR) filters.

3. Various structures for the same transfer func-

tion.

4. Various implementation forms: computer pro-

gram, signal processor, VLSI-circuit.

5. Filter design process: Given the specifications
as well as the implementation form, find the
tranfer function as well as a proper structure

to fullfil the criteria as effectively as possible.
6. Synthesis of FIR filters.
7. Synthesis of IIR filters.

8. Finite wordlength effects: Scaling, output noise
due to the multiplication roundoff errors, os-
cillations (limit cycle oscillations and overflow

oscillations), effects of coefficient quantization.

The above list consists of the main topics of this

course.
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WHAT IS A FILTER?

e If you are willing to listen to Radio 957, then
your radio set needs a filter which is able to
pick up a channel which consists of frequencies

in the vicinity of 95.7 MHz.

e This filter is a bandpass filter which preserves a
frequency band in the vicinity of 95.7 MHz and

rejects the other frequencies.

Requirements for the filter

Preserve

% IH(j2r)l l

95.7 MHz f
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WHAT IS A DIGITAL FILTER?

e Answer: The following difference equation:
M N
y[n] = Z arx[n — k] + Z bry[n — k.
k=0 k=1

e Initial conditions: y[-1] = y[-2] = .- =
y|-N] =0 and z[n] =0 for n < 0.
e Then,
y[0] = aoz[0]
y|1] = apz[1l] + a12[0] + b1y[0]
y[2] = apx[2] + a1z[1] + asz[0] + byy[1] + byy[0].

e In general, for r < max{N, M}

: min{M,r} min{NV,r}
yrl= Y axlr—k+ D byl —k
: k=0 k=1

and for r > max{NN, M}

| ylr] = Z ak:c[h, — 7]+ Z brylr — k.
, k=0 k=1

e The following four pages give practical imple-

mentations for the above difference equation.
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DIRECT-FORM I STRUCTURE FOR OUR
DIFFERENCE EQUATION
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STRUCTURE RESULTING WHEN INTER-
CHANGING THE FEEDBACK AND FEED-
FORWARD PARTS

L XX
|l 000
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DIRECT-FORM II STRUCTURE OBTAINED
BY SHARING THE DELAY TERMS AND
ASSUMING THAT M =N

Al (T T &'Q yin]
z—1




- 7 -

STRUCTURE OBTAINED BY TRANSPOS-
ING THE DIRECT-FORM II STRUCTURE

x[n] y[n]
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HOW TO GENERATE A TRANSPOSED
STRUCTURE HAVING THE SAME TRANS-
FER FUNCTION

1) Reverse the directions of all arrows.

2) Interchange all branch nodes (black dots) and

adders.

3) Interchange the output and input.

e When performing these operations to the struc-
ture of page 6, we arrive at the structure of
page 9.

e Finally, the structure of page 7 is obtained
by taking the mirror-image of the structure of

page 9.
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INTERMEDIATE STEP IN GENERATING THE
STRUCTURE OF PAGE 7

yin]
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TWO BASIC DIGITAL FILTER TYPES

e For N > 1, the impulse response is of infi-
nite duration = These filters are called infi-

nite impulse response (IIR) filters.

e For N = 0, the impulse response is of finite
duration = These filters are called finite im-

pulse response (FIR) filters.

e For FIR filters, the difference equation is usu-
ally expressed in terms of the impulse re-

sponse coefficients h[n] as follows (M = N and
ar = hlk] for k=1,2,---,N):

yln] = Z hlk]x[n — k.
k=0
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TWO BASIC STRUCTURES FOR FIR FIL-
TERS: FIRST DIRECT-FORM, THEN TRANS-
POSED FORM

— e — - - - || !
h[0]§7 h[1]§7 hi2] h[N-1] :7 h[N]

y[n]
x[n]

hINT\ /hIN-11\ /hiN-2]\ / h11\/ hio]
b oo
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HOW TO STUDY THE PERFORMANCE
OF A DIGITAL FILTER?

ANSWER: In terms of the transfer function.

The transfer function of a difference equation

M N
= Zakx[n — k] + Zbky[n —k
k=0 k=1
1S

Mk
H(z) =Y(2)/X(2) = 1 ?S?v brzh

Note that in the denominator of H(z), the signs
of the b;y’s have been changed compared to the

difference equation. In the direct-form realization,
we use the signs of the difference equation!!

Alternatively, H(z) can be expressed as

H(Z) Hk 0(1 — Cgr 1)
Hk (1 —dgz )

where di’s and c¢p’s are the poles and zeros of

H(z), respectively.

FILTER STABILITY: All the poles must lie
inside the unit circle |z| = 1, that is, |dg| < 1 for
k=1,2,--- N.
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FREQUENCY-DOMAIN BEHAVIOR

e The response of our system with transfer function
H(z) to an exitation

z[n] = Acos[nwy + @]
is given by
y[n] = A|H(e’*?)| cos[nwy + ¢ + arg H(e/0)]. (A)

e The frequency response is thus obtained by evalu-
ating H(z) along the unit circle z = e/*, that is,

H(e) = H(2)

|z = e/

e The complex-valued H(e’*) is expressible in the
forms (Re{z} and Im{z} stand for the real and
imaginary parts of a complex number z):

H(e™) = Re {H ()} + jIm {H (™))
— |H(e/)|e2re H(e™),

e Here,
[H(e’)| = v/[Re {H(e/“)}]? + [Im { H (e/¥) }]2
and

arg H(e”) = atan2(Im {H (&™)}, Re {H (')},

where
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tan_l(y/x), x>0
atan2(y,r) = ¢ m+tan"(y/z), <0 and y >0
—m+tan"1(y/z), =<0 and y < 0.

e The above definition of arg H(e/*) forced it to
take values between —m and w. In practice, it
1s desired to make this function continuous. In
Matlab, this can be done by using the command
'unwrap’. As can be seen in the phase response
plots of the filters later, the resulting arg H(e'“)
1s continuous except for those angular frequencies,
where the filter has a single zero on the unit cir-
cle. At these points, the is a jump of m upwards.
Equally well we can use a jump of m downwards.

e A good compromize would be to use a jump up-
wards every second time and a jump downwards
every second time. However, Matlab uses all the
time jumps upwards.

e As seen from equation (A) on the previous page,
|[H(e?¥)| is the amplitude response of the filter
and tells us the change caused by the filter for
the oscillation amplitude of a sinusoidal signal of
frequency w.

o arg H(e’*) is the phase response of the filter
and tells us the change caused by the filter for the

phase of a sinusoidal signal of frequency_w.
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Alternative form for the output signal

The output signal y[n] of page 13 is also ex-

pressible as
yln] = A|H (e")| cos|(n — 7,(wo))wo + ¢,

where

(W) = —arg H(e")/w
is the phase delay of the filter.

The phase delay at w = wy gives directly the
delay caused by the filter to a sinusoidal sig-

nal of frequency w = wy.

As an example we consider the effect of filter-
ing using a fifth-order elliptic filter with char-

acteristics shown on page 17.

As test signals, we use z[n] = cos(nwy)u(n),
which starts at n = 0 and is zero before this

time 1nstant.

For the first signal wg = 0.047 so that its os-
cillation angular frequency is within the pass-

band of the filter. As seen from page 17, for
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this frequency |H (e’?)| = 0.9786 and 7,(wg) = 23.98

samples.

As seen from page 18, the oscillation ampli-
tude and the delay are the right ones after the

transient part.

Note that the signals are discrete, even though

~they have been plotted like for continuous-

time signals.

For the second test signal, wy = 0.57 which is
in the stopband of our filter and |H(e/*?)| =
0.00052.

As seen from page 18, after the transient part,

this signal is attenuated to the desired level.

Pages 19-27 give a matlab-file for plotting the
responses of pages 17 and.18. Please study it.

Later on, the same file is used as an example

on how to generate cascade-form' and ‘parallel-

form structures for the overall transfer func-

tion (pages 33, 34 and 38, 39).
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Responses for a fifth-order elliptic filter
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Filtering of two sinusoidal signals of frequen-
cies wy = 0.047 and wy = 0.57
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%°o°o°o°o°o°o°o°o°o°o°o°o°o%°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o%°o°o°o°o°o°o°o°o%°o
%°o°o°o°o°o

% The purpose of this matlab-file is

% four-fold. First, a fifth-order elliptic

% filter with omega_p=0.05pi, omega_s=0.1pi,

% A_p=0.2 dB, and A_s=62.273 dB is designed and
% several responses are plotted. Second, the

% effects of filtering are considered for two

% sinusoidals, one having the angular frequncy

% in the passband region and the second one in

% the stopband region. Third, it is shown how

% the filter shapes the Fourier transform of

% two pulses. Fourth, it is shown how

% the overall filter transfer function can be

% realized using a cascade-form and a parallel-

% form structure

% This file can be found in SUN's:

% ~ts/matlab/dsp/lueiir5.m
%°o°o°o°o°o°o°o°o°o°o°o°o%°o°o°o°o°o°o°o°o%°o°o°o°o°o°o°o%°o°o°o°o°o°o°o%°o°o
%°o°o°o°o°o°o

[N, wn] = ellipord(.05, .1, 0.2, 62.2734);

[B, A] = ellip(N,0.2,62.2734,wn);

o/

% The transfer function is of the form (A(1)=1)

% H(z)=N(z)/D(z), where

% N(2)=B(1)+B(2)z*(-1)+B(3)z(-2)+B(4)z*(-3)+

% B(5)z*(-4)+B(6)z"(-5)

% and

% D(z)=A(1)+A(2)z"(-1)+A(3)z"(-2)+A(4)2"(-3)+

% A(5)z"(-4)+A(6)z~(-5).

[-74
/0

% Frequency response of the filter: e is the complex
% frequency response as a function of omega running
% from zero to pi. The number of grid points is

% 8*1024+1

o/,
[e omega]=freqz(B,A,8*1024);
o/
% Generate the phase response and make it continuous
% except for those angular frequency points where the

% filter has a zero on the unit circle. At these points

% there is a jump of pi upwards. Matlab does this using
% first the 'angle' command and the the 'unwrap'

% command. It should be pointed out that equally well

% we can jump downwards by pi. A good selection would
% be to jump upwards every second time and downwards
% every second time. Matlab is jumping upwards each
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% time.

o/

ang=angle(e);
ang=unwrap(ang);

o/

A

% Generate the phase delay.
o/,
for i=1:length(e)
phad(i)=-ang(i))omega(i);end
figure(1)

subplot(2,2,3)

[-7A

% Amplitude response in the passband
o/
plot(omega/pi,(abs(e)));grid;axis([0 .05 .975 1]);
ylabel('Amplitude');

xlabel('Angular frequency omega/pi');
subplot(2,2,1)

o/,
% Amplitude response in dB
o/
plot(omega/pi,20*log10(abs(e)));grid;
axis([0 1 -100 5]);

ylabel('Amplitude in dB');
xlabel(‘'Angular frequency omega/pi');
subplot(2,2,2)

%
% Phase response
o/
plot(omega/pi,ang/pi);grid;
ylabel('Phase as a fraction of pi');
axis([0 1 -2.5 0]);

xlabel('Angular frequency omega/pi')
subplot(2,2,4)

%
% Phase delay
%
plot(omega/pi,phad);grid;axis([0 .05 20. 30.]);
ylabel('Phase delay in samples');
xlabel('Angular frequency omega/pi');
figure(2)

subplot(2,2,1)

o/

A

% Pole-zero plot
(-7
zplane(B,A);title('Pole-zero plot');
subplot(2,2,2)
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%
% Group delay
%
grpdelay(B,A,8*1024);grid;
axis([0 .05 20. 60.]);
ylabel('Group delay in samples');grid;
xlabel('Angular frequency omega/pi');
subplot(2,1,2)
%
% Impulse response
o/,
impz(B,A);grid;
ylabel('Impulse response’);
xlabel('n in samples')
%° °° °° o° °° o° °° 0° o° °° °° o° o° o° 0° o° o° o° o° o° o°o° o° Oo o° 0° o° °° o° o° 0° O° o° o° Oo o° °° o° 0° O° (<]
%°o°o°o°o°o '
% Time to consider two sinusoidals. For the
% first one, the angular frequency 0.04*pi is in
% the passband region, whereas for the second one,
% 0.5*pi is in the stopband region.

O/ O/ O, O/ O, ooooo O/ O,

%°°°°°°°0°0°°°°°Oo0°°°°°°°°°°°0°°°°°°°0°0 o /0 °°°°°°O°O 0 /0 o /0 °°0°0°°°0°0°O

%°o°o°o°o
Nin = 1001; %number of samples
n = 0:Nin-1; %index vector

(-7

A

% sinusoidals
%
in1=sin(.04*pi*n);
in2=sin(0.5*pi*n);
o/

% Filter these signals
(-4
out1 = filter(B,A,in1);
out2 = filter(B,A,in2);

o/

A4

% Plot the input and output signals
/.
figure(3)

subplot(2,1,1);plot(n,in1);

title('Input sinusoidal with omega_0=0.04*pi');
ylabel('Amplitude');

xlabel('n in samples')
subplot(2,1,2);plot(n,out1);

axis([0 1000 -1.1 1.1]);

title('Output sinusoidal with omega_0=0.04*pi');
ylabel('Amplitude');

xlabel('n in samples')




figure(4)

subplot(2,1,1);plot(n,in2);

title('Input sinusoidal with omega_0=0.5*pi');
ylabel('Amplitude');

xlabel('n in samples')
subplot(2,1,2);plot(n,out2);

title('Output sinusoidal with omega_0=0.5*pi');

ylabel('Amplitude');
xlabel( n in samples')
/ ° °°° (-} °°°°0°°°°°0 o °°0°0 (-] °°°°0 0 (] 0°0 0 (] o°o°o (] °°°°0°0°°°0°0

%% %

% Tlme to consider two simple pulses. For the
% first one, x(0)=x(1)=x(2)=x(3)=x(4)=1/5 and
% for the second one, x(0)=x(2)=x(4)=1 and

% x(1)—x(3)=-1

%% %% %% %% %o %o %o Yo Yo %o Yo %o %o %o %o Yo %% Yo Yo Yo Yo Ve e %Yo %% Y% % Y% Y% %% % % %
O/O O, o O

Nin = 1001; %number of samples

n = 0:Nin-1; %index vector

%

% pulses

o/,

in1=zeros(size(n));

for k=1:5
in1(k)=1/5;

end

in2=in1;

in2(2)=-in1(2);

in2(4)=-in1(4);

o/,
/0

% Filter these signals
[-74
out1 = filter(B,A,in1);
out2 = filter(B,A,in2);

o/

9

% Plot the input and output signals as well as
% their spectra

%
figure(5)

subplot(2,1,1);impz(in1(1:201))

title('Input pulse x(0)=x(1 )_x(2)-x(3)_x(4)_115 );
ylabel('Amplitude');

xlabel('n in samples’)
subplot(2,1,2);impz(out1(1:201))

title(‘Output puise');

ylabel(‘'Amplitude');

xlabel('n in samples’)
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[H1,w]=freqz(in1,1,2*11);

[H2,w]=freqz(out1,1,2211);

figure(6)

subplot(2,1,1);plot(w/pi,abs(H1));axis([0 1 0 1]);
title('Amplitude spectrum for the input pulse’);

grid;

ylabel(' Amplitude’);xlabel('Angular frequency omega/pi‘)
subplot(2,1,2);plot(w/pi,abs(H2));axis([0 1 0 1]);

grid;

title('Amplitude spectrum for the output pulse');
ylabel('Amplitude’);xlabel('Angular frequency omega/pi')
figure(7)

subplot(2,1,1);impz(in2(1:201))

title('Input pulse x(0)=x(2)=x(4)=1/5, x(1)=x(3)= -1/5');
ylabel('Amplitude');

xlabel('n in samples’)

subplot(2,1,2);impz(out2(1:201))

title('Output puise’);

ylabel('Amplitude');

xlabel('n in samples')

[H1,w]=freqz(in2,1,2711);

[H2,w]=freqz(out2,1,2~11);

figure(8)

subplot(2,1,1);plot(w/pi,abs(H1));axis([0 1 0 1]);
title("Amplitude spectrum for the input pulse');

grid;

ylabel('Amplitude');xlabel('Angular frequency omega/pi')
subplot(2,1,2);plot(w/pi,abs(H2));axis([0 1 0 .2]);

grid; :

title("Amplitude spectrum for the output pulse');
ylabel('Amplitude');xlabel('Angular frequency omega/pi')
%°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o%°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o%
%°o°o°o°o

% Coefficients for the cascade-form structure

%°°°°°°°°°°°°°°°°°000000000000000000000

©0/0/0/0/0/0 0°°°°°0°0°0° %%

0 /0/0 0 /0/0/0 o/0/0/0/0/0/0/0/0/0 o/0/0/0
%°o°o°o
%
%
% For the direct-form filter
%
disp('Direct-Form Filter:')
disp(' )
disp('Coefficients for the numerator polynomial‘)
B
disp(‘Coefficients for the denominator polynomial')
A

pause;
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[-74

A

% Poles and zeros

%
pol=roots(A);
o/

A4

% Sort the poles in such a manner that the radii

% are in the ascending order. This means that pol(1)
% contains the real pole, pol(2) and pol(3) the

% the innermost complex conjugate pole pair (smaller
% angle), and pol(4) and pol(5) the outermost complex
% conjugate pole pair (larger angle).

o/

pol=sort(pol);
o/

79

% Sort the zeros in such a manner that the real parts
% are in the ascending order. This means that zer(1)
% contains the real pole at z=-1, pol(2) and pol(3) the
% the complex conjugate zero pair having the larger
% angle, and pol(4) and pol(5) the zero pair having

% the smaller angle. See page 17 in the lecture notes.
(-7
zer=roots(B);
[Y,l]=sort(real(zer));
zer=zer(l);

(-7

A

% The overall filter consists of a constant, one

% first-order block and two second-order blocks.

% The first order block realizes the real pole and

% zero. The complex conjugate pole pair with a

% smaller angle and the zero pair on the unit circle
% with a larger angle are included in the first

% second-order block. The remaining pole and zero
% pairs are included in the second second-order

% block.

%
% First order block: (1+a*z”(-1))/(1+b*zA(-1)) with

% a=-zer(1) and b=-pol(1); this is expressed in the

% form (ar(1)+ar(2)*z~(-1))(br(1)+br(2)*zA(-1)).

% Note that in the actual realization to be considered
% later in these lecture notes, we realize ar(2)=a and
% -br(2)=-b. b is in the feedback loop. Therefore, we
% realize -b instead of b. The sign of the

% coefficients in the denominator of H(z) are always
% changed in the realization!!

o/

9

disp(‘Cascade-Form Realization')
disp(’ )
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disp('First-order block’)
ar(1)=1;ar(2)=-zer(1);
br(1)=1;br(2)=-poi(1);

disp('Numerator first, then denominator')
ar

br

%
% Second-order blocks: N_k(z)/D_k(z) k=1,2, where
% N_k(z)=1-2r_k*cos(phi_k)*z*(-1)+(r_k)*2*z~(-2) and
% D_k(z)=1-2R_k*cos(Phi_k)*z*(-1)+(R_k)"2*z7(-2).
% Here the zero pair is located at z=r_k*e*(+j*phi_k)
% and the pole pair at z=R_k*e*(+j*Phi_k).

% Equally well the zero pair is located at

% z=Real{zero}+-j*Imag(zero) and the pole pair at

% z=Real{pole}+j*Imag(pole). In this case,

% -2r_k*cos(phi_k)=-2*Real{zero), (r_k)*2=

% [Real{zero}]*2+[Imag{zero}]*2,

% -2R_k*cos(Phi_k)=-2*Real{pero), and (R_k)"*2=

% [Real{pole}]*2+[Imag{pole}]*2.

% N_k(z) and D_k(z) are given below in the forms

% N_k(z)=ak(1)+ak(2)*z*(-1)+ak(3)*z~*(-2) and

% D_k(z)=bk(1)+bk(2)*z*(-1)+bk(3)*z*(-2)

% Note that bk(1)=1 and we implement in practice

% -bk(2) and -bk(3)

o/

disp(‘'Second-order blocks:')
ai(1)=1;a1(2)=-2*real(zer(2));
ai(3)=real(zer(2))*2+imag(zer(2))*2;
b1(1)=1;b1(2)=-2*real(pol(2));
b1(3)=real(pol(2))*2+imag(pol(2))*2;
a2(1)=1;a2(2)=-2*real(zer(4));
a2(3)=real(zer(4))*2+imag(zer(4))*2;
b2(1)=1;b2(2)=-2*real(pol(4));
b2(3)=real(pol(4))*2+imag(pol(4))*2;

disp('First block: numerator and then denominator’)
al

b1

disp('Second block: numerator and then denominator')
a2

b2

o/

9

% What is left is the constant to make the passband
% maximum for the amplitude response equal to unity
% It is directly the constant in the numerator in the

% direct form realization.

o/,

disp('constant’)
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B(1)

pause;
°/o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o
%°o°o°o°o

% Coefficients for the parallel-form structure
%°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o°o
%°o°o°o

%

[R,P,K] = residuez(B,A);

o/

e

% Using the command shown below, we can express the
% overall transfer function in the form (partial fraction

% expansion) H(z)=K(1)+R(1)/[1-P(1)zA(-1)]+

% R(2)/[1-P(2)z*(-1)]+R(3)/[1-P(3)z~(-1)]+

% R(4)/[1-P(4)z*(-1)]+R(5)/[1-P(5)z*(-1)]

% Here, P(k) for k=1,2,3,4,5 are the poles of our

% filter. Note that B contains the numerator coefficients
% and A the denominator coefficients of our filter

%
%

[R,P,K] = residuez(B,A);
%

o/
/0

% We know now that we have one real pole at z=P(k) with
% the real-valued A(k). However, we don't know the proper
% value of k. Furthermore, we know that there are two

% complex congugate pole pairs. For both pairs, the

% corresponding R's are also complex conjugates.

o/

%
[Y,l]=sort(P);
P=P(l);
R=R(l);

%

o/,

A d

% The above command sorts the poles in such a manner that
% the radii are in the ascending order. This means that

% P(1) contains the real pole. Futhermore, R(1) is the

% the corresponding R. P(2) and P(3) the the innermost

% complex conjugate pole pair (smaller angle) with R(2)

% and R(3) being the corresponding R's. P(4) and P(5)

% are the outermost complex conjugate pole pair (larger

% angle) with R(4) and R(5) being the corresponding R's.

% See page 17 in the lecture notes.

o/

A

% Now we are ready to find out the coefficients of the
% parallel-form structure considered on pages 33 and
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% 34 in the lecture notes.

% We express H(z)=K(1)+H_r1(z)+H_1(z)+H_2(2). Here
% H_r1(z)=R(1)/[1-P(1)z~(-1)] is a first-order block

% realizing the real pole at z=P(1).

o/

A d

disp(‘'Parallel-Form Realization')

disp(’ ")

disp('constant’)

K

disp(‘First-order block:')
disp(‘Numerator first, then denominator')
cr=real(R(1));

dr(1)=1;dr(2)=-P(1);

cr

dr

%
% H_1(2)=R(2)/[1-P(2)z*(-1)]+R(3)/[1-P(3)z(-1)]=

% N_1(z)/D_2(2),

% where

% N_1(2)={R(2)[1-P(3)z~(-1)]+R(3)[1-P(2)z*(-1)]

% and

% D_1(z)=[1-P(2)z*(-1)][1-P(3)z*(-1)].

% Here, P(2) and P(3) are a complex conjugate pole pair
% with a smaller angle. Therefore, D_1(z) is the same as
% for the first second-order block in the cascade-form

% realization. R(2) and R(3) are a complex conjugate pair.
% Therefore, N_1(2) is of the form a_0+a_1z*(-1).

% H_2(z) contains the remaining pole pair and in formed
% in the same manner. In the following, we express H_k(2)
% =[ck(1)+ck(2)zA(-1)V[dk(1)+dk(2)z (-1)+dk(2)z (-2)].

o/,

9

disp(‘Second-order blocks:')

di=b1;d2=b2;

ci=conv(R(2),[1 -P(3)]);

c2=conv(R(4),[1 -P(5)]);

c1=2*real(c1);

c2=2*real(c2);

disp('First block: numerator and then denominator)
ci

d1

disp(‘Second block: numerator and then denominator')
c2

d2
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FOURIER TRANSFORMS OF THE INPUT
AND OUTPUT SIGNALS

For signals that are not periodic, we can utilize
the fact that the Fourier transforms of the input

and output signals are related through
Y(e) = H() X (),

where X (e/¥) and Y (e/*) are the Fourier trans-
forms of the input and output signals, respec-
tively.

As examples, we consider filtering two input sig-
nals with the aid of the ﬁltei" considered previ-
ously.

For the first signal, z[n] = 1/5 for n = 0,1,---.4
and zero otherwise.

The following page shows the input and output
signals as well as their amplitude spectra | X (e/*)|
and |Y (e/¥)].

It is seen that the filter makes the output signal

much smoother preserving the frequencies in the

passband region.
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1/5 for n=0,1,---.4

SIGNAL z|[n]

Amplitude

Amplitude
o

Input pulse x(0)=x(1)=x(2)=x(3)=x(4)=1/5

T T T T T T T T T

R ! 5 5 3 R ’ )
80 100 120 140 160 200
n in samples
Output pulse

26. 4va:66nbb

o o
[o)] o]

Amplitude
o
»

o
o

Amplitude

i 1 I 1

1 1 1 I3 i
20 40 60 80 100 120 140 160 180 200
n in samples

Amplitude spectrum for the input pulse

' ! ! ! ! ! ! ! !
! ' 1 1 i
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Angular frequency omega/pi
Amplitude spectrum for the output pulse
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1 1 ] 1 1 1

1 {
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Angular frequency omega/pi
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FILTERING OF AN INPUT SIGNAL z[n] =
1/5 for n =0,2,4, x[n] = —1/5 for n=1,3

e bor the second signal, z[n| = 1/5 for n = 0, 2,4,
zin] = —1/5 for n = 1,3, and zero otherwise.

e Irom the following page, it is seen that most of

the energy of | X (e’¥)| is at high frequencies.

e Since this signal is filtered with a lowpass filter,

the output signal has very low values.

e In the frequency domain, the output signal con-

tains small energy at low frequencies.
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FILTERING OF AN INPUT SIGNAL x[n]
1/5 for n =0,2,4, z[n] = —-1/5 for n=1,3

Input pulse x(0)=x(2)=x(4)=1/5, x(1)=x(3)= -1/5

Amplitude

-0.1} .
_0'2 _'} 1 1 1 ] 1 1 1 ] 1
0 20 40 60 80 100 120 140 160 180 200
n in samples
x 107 Output pulse
1 5 T T T T T T T T T

Amplitude

_5 1 ] I t ] ! 1 1 1
0] 20 40 60 80 100 120 140 160 180 200
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Amplitude spectrum for the input pulse
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VARIOUS FILTER STRUCTURES

The same filter transfer function is imple-

mentable using several structures.

In the sequel, several structures are introduced
even though our course concentrates on a few

structures.

The purpose is to make the reader aware of
the fact in practical implementations using ei-
ther VLSI circuits or signal processors it is

very cruclal to select a proper filter structure.

Furthermore, it is desired to show how many
alternatives there are to realize the same trans-

fer function.

Please take just a short look at different alter-

natives.

Some of the following structures are consid-
ered in more details in courses “Digital Lin-
ear Filtering II” and “System Level DSP Al-

gorithms” .
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CASCADE-FORM STRUCTURES

e Consider a transfer function

H . Ziv:o akz_k
() = 2k B

e This H(z) can be expressed as

GOHszl(l — Ck:z—l).
| Hfgv:1(1 — dpz™1)

e Assuming that there are K; real zeros and
poles, denoted by a; and B, and K, com-
plex conjugate zero and pole pairs, denoted by
rret% and Rpet®k, H(z) can be rewritten as

H(z) =

K Ky
1 9
H(z) = ao [ [ B ] [ 2 (<),
k=1 k=1
where 1 )
1 1+ a4 271
H{(z) = k=
1 —b;,/ 271
and
H(Q)( - 1+a§k) 1+a() —2
_ bﬁ) 1 _ bék)z_2
with 1
ag;g = — Ok, lk — ﬂk
agk) = —27} COS Py, agg =7}

b(Z) = 2R} cos Py, bgﬂ) = R%.
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RESULTING STRUCTURE

(1)
H{)(2)

-~ @ 00 -

| H(12)(z)

—~0 00—

H(Xz
K5

yin]
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Generation of the cascade-form structure us-

ing a matlab file

e The matlab file of pages 19-27 shows how for
a fifth-order elliptic filter a cascade-form struc-

ture can be generated.

e Please study the file carefully, especially the

matlab commands.

e The same file can also be used for generating

the parallel-form structure of pages 38 and
39.
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OTHER SECOND-ORDER BLOCKS: FIRST
MODIFIED COUPLED-FORM, THEN WAVE
DIGITAL BLOCK |

>
y[n]
‘ yln-1]

© - - -w[n-1]+du[n]

w[n-1]

yi-1+cufn) -~

ay=(B;-B;-1)/2

az= (1- B) ‘82)/2
Bi=(A2-A-A5)/2A,
B2=(Ag-A-Ay)/2A,

Fig. 64. Generally usable second-order section for which
all stability problems (except that under looped COﬂdlthﬂS)
can be solved in the same way as for WDFs.
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USEFUL SECOND-ORDER AND FIRST-OTHER

SECTIONS: TRANSPOSED DIRECT-FORM
II BLOCKS

X[n]

x[n] | | y[n]
+ *QP ————>
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PARALLEL FORM STRUCTURES

e Using the partial fraction expansion, H(z) is
expressible as

N Ak
H(Z) = Bo—f— Z 1 _ dkz_l.
k=0

o Assuming that there are K; real poles, de-
noted by B, and the corresponding A; is de-
noted by [ as well as there are K, complex
pole pairs, denoted by Rie™® and the cor-
responding A’s are denoted by rpe™i%, H(z)
can be rewritten as

K Ko |
1 9
H(z)=Bo+ Y H(2)+ Y HI(2),
k=1 k=1
where
BO = ——CLN/bN
0 a,
H,7(z) =
g 1— b&)z—l
and
2 2 _
HJEQ)(Z) _ a’ék) + agk)z !
EE
with 1
1
) —cn, )=
a(()? = 27}, COS Oy, aﬁ,) = —2r, Ry cos(op — Pp)

b)) = 2Ry cos ®y, b = —R2.




- 39 -

RESULTING STRUCTURE

x[n]

(2)
HY'(2)

H{ ) z !
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WAVE LATTICE FILTERS: PARALLEL CON-
NECTION OF TWO ALLPASS SECTIONS

1/2

= 1-yy = 0.4871
ax=leyy = 0.331 3
a3z y, 0.334 2
@z |yy| = 0.404 4
ag= 1=y, = 0.392 2
ag= l+yg = 0.103 8
az= Yg = 0.2067
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WAVE LADDER FILTERS

U\
{
i
I
L]

<
S

Fig. 4.6 Wave-flow diagram for the canonic

wave digital ladder filter.
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LDI LADDER FILTERS

. out
\ml -” \\-
+ (Dt —
v s
C2 '
<+
4
z" 1
—

+ Magnitude truncation + + Absolute Magnitude truncation

Fig.7.

Symmetric LDI ladder structure for realizing a fifth-order filter.

For the elliptic filter, all the coefficients are used. For Example 1

in Section IV, ¢4=c,=0, and for Example 2, ¢4=0. Magnitude and
absolute magnitude trunctions are defined as quantization operations
Q() characterized by IQ(x)I<Ix| and IQ(x)I<IxI, respectively. In
practice, the parts given using a dashed line are not used. -

b) ’ D
out — out
H—(*) (+ )¢ O (Hr—Fp—
Z P, 4 A A :C‘\
C c N,
2 4 :
z! z”! rak P
21 + )6 + ?_‘-_1_5
+ L' ] + [ J + E
A 2-1 2-1 ':7‘
“ | €3 — Cs
X X :
o= + + K + )(_ +a
D. _ ~ A
ln -
Cg Cy D
+

Fig. 8. Nonsymmetric LDI ladder structure for realizing a fifth-order elliptic filter.
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STATE-SPACE STRUCTURES

()£

"2IN1oNnlIiS d|qrlieA-9181S £°'8 IHNOI4

|04 ¢)

Ilp

Zlp

(u)n
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SPECIAL STRUCTURES: ALL COEFFIECIENT
VALUES CAN BE EXPRESSED IN THE
FORM +2 149 P4 955

e Multiplier-free filters since all the coefficient val-
ues can be implemented by shift and add and/or

subtract operations.

e These filters are attractive in VLSI implementa-
tions since there is no need to use a costly multi-

plier element.

e Structure for IIR filters, where A(z) and B(z)
are allpass filters (to be considered in the course

“System Level DSP Algorithms”).

IN C N
l/

b1(0)‘7 b(1) b4(2) §7bm(0) bni(1) bn1(2)
>| B(2) B(2) > B(2) B(2)
4___4___ A(2) | ° e 0 <——<— A(2) |«
OUT § cpna(1) c4(1)
B(2) B(2)

Cna0) ¢1(0)

A(2) A(2) oo o —o>| AZ) —o—| A(2)

A
A
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SELECTION AMONG DIFFERENT FILTER
STRUCTURES

e Iinite wordlength effects, such as output noise
variance due to multiplication roundoff errors
and limit cycle oscillations, determine the data
wordlength in internal calculations to keep

these effects under the given limits.

e Coefficient sensitivity determines the number
of bits required to keep the response within

the given criteria.

e Computer program: Direct-form filter with
double precision arithmetic are generally the

most effective.

e Signal processors: the length of the code is

important.

e VLSI-circuits: the small silicon area, low power
consumption, and high achievable sampling
rate are 1mportant; Multiplierless filters are
preferred since the general multiplier element

1s costly.
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EXAMPLE: COEFFICIENT SENSITIVITY FOR

SOME FILTER STRUCTURES

AMPLITUDE IN d8B AMPLITUDE IN 4B AMPLITUDE IN 4B

AMPLITUDE IN 4B

-20

-40

-60

-80

-20

-40

L T T 1 ¥ 1 L) T T

Proposed LDI N

0.2n O.4w 0.6w 0.8n
FREQUENCY

w

0.2m

0.4n 0.6m 0.87
FREOQUENCY

LI | T T T T T T T

LDI proposed
in [1] 7

0.2n O.4w 0.6m O0.8n
FREQUENCY

n

.

Conventional

cascade form

14bits

6bits

N T
0.2vw 0.4w 0.6n O0.8n

FREQUENCY

A

0 n

Xc)

(e)

(g9)

AMPLITUDE IN 4B

AMPLITUDE IN 4B

AMPLITUDE IN dB

AMPLITUDE IN 48

-0.

-0.

0‘
1
2
3+ -
‘4 Proposed LDI n
s TN NN S N SN SO VRN BN'{
0 0.05n 0.1m
FREQUENCY
0
(d)
1
2
3 6bits
3 -
4 |- Wave lattice -
5 TR S S S |
0 0.05m O.1wm
FREQUENCY
0
(f)
1
2
3
4 FLDI proposed in [1]
s PRI SO S SN SANUE SN SO S |
0 0.05n 0.im
FREQUENCY
0
(h)
1
2
3
4
S
0 0.05n O.1nm
FREQUENCY
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IIR FILTER STRUCTURES TO BE STUD-
IED IN THIS COURSE

Direct-form structures

Cascade-form structures with direct-form 1I

blocks or transposed direct-form II blocks

Parallel connections of two allpass filters are
very effective and will be considered in de-
tails in the course “Digital Linear Filtering
II”. Lattice wave digital filters of page 40 are

examples of these structures.

It should be pointed out that the parallel
form structures of pages 38 and 39 are not

good at all; they are just of academic interest.

Students interested in other structures please

contact the lecturer.
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DIGITAL FILTER DESIGN PROCESS

Digital filter design involves usually the following

basic steps:

1.

Determine a desired response or a set of de-
sired responses (e.g., a desired magnitude re-

sponse and/or a desired phase response)

. Select a class of filters for approximating the

desired response(s) (e.g., linear-phase FIR fil-
ters or IIR filters being implementable as a

parallel connection of two allpass filters).

. Establish a criterion of ’goodness’ for the re-

sponse(s) of a filter in the selected class com-

pared to the desired response(s).

. Develop a method for finding the best member

in the filter class.

. Synthesize the best filter using a proper struc-

ture and a proper implementation form, e.g.

using a computer program, a signal processor,

or a VLSI chip.

. Analyze the filter performance (espeéially, the

finite-wordlegth effects are of great importance).
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- AMPLITUDE SPECIFICATIONS

Conventional lowpass specifications

|H(eI®) |

Ja—
1
(o7
©
§ ‘
r
7~
~

\

I

I

I

\ I
\ I
I

I

|
|
I \
passband : transition stopband
|band \\ I
| \ |
| v
I \\ |
| |
s |- ! \
S | NN o |
0 Wp 0g L%

1-6, <|H(¥)| <146, for we][0,w,)

|H(e%)| < 6, for w € [ws,n]
e w is related to the ”real frequency” f via

w:ZWf/f&

where f; is the sampling frequency.

o If f = 20 kHz and the band edges are 4 kHz
and 5 kHz, then w, = 0.47 and ws; = 0.57.
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e Sometimes the edges are given in terms of the

normalized frequency defined by

f'norm — f/fs

e In the above example, the normalized pass-

band and stopband edges are 0.2 and 0.25.

e Usually, the amplitudes of allowable ripples
are given logarithmically (i.e. in decibels) in
terms of the maximum passband variation and

the minimum stopband attenuation, which are

given by
14+0
Ap — 20 loglo( + p) dB
1—90,
and
AS = —20 10g10(58) dB,
respectively.

e Note that both of these quantities are posi-
tive.
Example: 6, = 0.01, §, = 0.001 = A, = 0.17
dB and A, = 60 dB.
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GENERAL AMPLITUDE SPECIFICATIONS

|H(ei®) |

e The criteria can be written as:
Dy(w)—ep(w) < |[H(e')| < Dp(w)+ep(w) for we X,
|H(e’)| < eg(w) for we€ X,
e X, and X, are the passband and stopband re-

gions.

¢ e,(w) is the permissible deviation from the de-

sired passband response D,(w).

e ¢5(w) is the allowable deviation from zero in the

stopband region.
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ALTERNATIVE FORM

e Using the substitutions
ep(w) = 1/Wp(w), es(w) =1/Wy(w),

the specifications of the previous transparency

are expressible in the forms:

—1/Wy(w) < [[H(e")|=Dy(w)] < 1/Wy(w) for w € X,

|H(e™)| < 1/W,(w) for we X,

—1 < Wy(w)[|H(e?)| — Dp(w)] <1 for weE X,
Ws(W)|H()] <1 for we X,

or

Wo(W)[IH ()| = Dpw)]] <1 for we X,

[We(w)|H()]| <1 for we X,




R -

DESIRED FORM

e Finally, these criteria can be combined to give
the following form which is useful in many fil-

ter design techniques:

[EW)| <€ for weX=X,|]X,

where
E(w) = W(w)[|H(&")| — D(w)]
with
e=1,
D(w) = {Dp(w) for w € X,
0 for w e X,
and

Wy(w) for we X

W(w) = p(w) p

Ws(w) for we X,.
o D(w) and W(w) are called the desired func
tion and the weighting function, respectively,

and E(w) is the weighted error function.
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EXAMPLE

e In the bandpass case, the criteria are usually

stated as
1-6,<|H(e™) <146, for we [wy,wy)
—0, < |H ()| < 8y for w € [0, wy] U[ws%ﬂ-]‘

e These specifications can be written in the

above form using

X = [0,wa] Iy wpal Jlwsz,
{ 1 for w € [wp, wp] |
0 for w € [0, ws]| U [ws2, 7]

1/6, for w € [wpr,wps]
W(w) =
1/6s  for w € [0,wq] U[ws2, 7]

D(w) =

€e=1.
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PHASE APPROXIMATIONS

e In some applications, it is necessary to pre-

serve the shape of the input signal.
e This is achieved if the phase response
arg H(e’*) approximates in the passband [0, w,)]

the linear curve
¢(w) = —Tow + 71,

where 79 and 7 can be freely chosen.

e The criteria are usually given in terms of the

group delay response

d arg H(e'¥)
Tg(w) = — do

or phase delay response
arg H(e/*)
- :

Tp(w) =
e These responses have simpler representation
forms and are easier to interpret.

o 7,(wp) gives directly the delay caused by the

filter for a sinusoidal signal of frequency wy.
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o If the input signal is periodic or approximately
periodic, as an electrocardiagram signal, then the
phase delay is required to approximate a constant
To with the given tolerance é; as shown in the fol-

lowing figure.

T(0)
To'l'sd o= ' =
To /7 S NN
Tp—04 7 \
I\
I\
I\
| \
| \
N
| N
L TS ——
| —_——
|
|
|
[
0 I |
0 ®p T

e Since the delay of all components is approximately

equal, the signal shape is preserved.

e If the signal is not periodic, then, instead of the

phase delay, the group delay can be used.

e Note that for a constant phase delay, 7 is forced
to be zero, whereas for a constant group delay, 7

may take any value.
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Filtering of an EGC-signal

(a) o ;ﬁ‘,"':-!‘;' ,, (e ,
A it DA I Ay L A HigH )
gLt L

'

(v)

Fig. 10.2. Performance of an implemented high-pass notch filter
when the ECG signal is contaminated by the 50 Hz
line frequency interference (heart rate 60 beats/min).
(2) Original ECG signal. (b) Filtered ECG signal.

: Jun

Fig. 10.3. Elimination of the baseline drift (heart rate 60 beats/
min). (a) Original ECG signal. (b) Filtered ECG signal.
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Response of the linear phase filter in use for

fs =200 Hz

LIN. AMP

~ A a\'\'ﬁ.'.\vav‘

W

AMPLITUDE IN dB

- 60}

01 02 0L 08 : 10 50100
LOG FREQUENCY IN Hz

Fig. 8.3. Amplitude response of the notch filter with infinite pre-
cision coeficients (a) and when the coefficients are quan-
tized to 7 bits (b).
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COMMENTS

e If the periodic signal

is in the frequency range w; < w < w,y, the wave-

form is presevered if in this range |

o |[H(e™)| ~1

o arg H(e') ~ —1ow + r27 with 7 being the in-
teger.

e Since each component of z(n) is periodic with

periodicity equal to 2w, the output signal is ap-

proximately
K
y(n) = Ay cos(n(kwo) + ¢ — krowo + 727)

k=1
K

= Z Ay, cos(n(kwo) + ¢ — kTowo)
k=1
K

— Z Ap cos((n — To)(kwo) + ¢k)
k=1

—=Tr\n — 7‘0),

that is, y(n) is a delayed version of z(n).
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o If there is an additional phase shift of 7 or —m,
then y(n) = —z(n — 79) so that in addition to the
delay the sign of the periodic signal changes.
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GENERAL PHASE SPECIFICATIONS

e The general specifications for the group or phase
delay can be stated in terms of the weighted er-

ror function as
|Er(w)| <e for weX,
where

Er(w) = Wi (w)[r(w) — Dr(w) — 7]

e As an example, we consider the group delay
equalization of an elliptic filter with the aid of an

~allpass filter.

e Some characteristics of our example fourth-order
elliptic filter are shown on page 65. For this fil-
ter, the passband and stopband edges are located
at w = 0.57 and w = 0.67, respectively. The pass-

band and stopband ripples are 0.5 dB and 32 dB,

respectively.

o It is seen that the group delay is far away from
a constant in the passband and is monotonously
increasing from one sample to nine samples as w

varies from 0 to 0.57.
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In order to keep the amplitude response the same
and to improve the group delay response, we cas-
cade our elliptic filter with an eigth-order allpass

filter with the transfer function of the form

Ha(2) = Nai(2)/Dan(2),

where
Nai(z) =ag + a7zt +agz 2 + asz ™3 + agz™
+ agz_5 + agz—G + alz"7 + 278
and
Da(2) =1+ a1z  + a2z 2+ azz > + a4z"4
-+ a5z"5 + a62“6 + a,7z_7 -+ CLSZ_S
From the above equation, it is seen that the co-
efficients of the numerator and denominator are
reversed versions of each other. This guarantees
that the amplitude response is identically equal
to unity and only the delay response (phase re-
sponse) is changing.
Furthermore, if the filter has a pole pair at z =
re*J? [a real pole at z = 7], then it has a zero

pair at z = (l/r)eiW la real zero at z = 1/r].
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e These filters are considered in more details in the

end of Part II of these lecture notes.

e When cascading our elliptic filter with an allpass

filter the group delay is given by
Ty(w) = 730 (w) + 7P (W),

where ’7'9(1)((4}) and Tg(z)(w) are the group delay re-
sponses of the elliptic filter and the allpass delay

equalizer, respectively.

e The coefficients of the allpass filter as well as T,
the passband average of 7,(w), are desired to be

optimized to minimize

_ 1 2
€= wer[r()l,%}.%w] 'T!g )(w) + ng )(w) — 70l

that is, the maximum absolute deviation of the
overall group delay response from the average

value 79 in the interval [0, 0.57] is minimized.

e Some characteristics of the optimized allpass filter

are shown on page 66.




- 64 —

Page 67 shows some of the responses of the cas-
caded filter, whereas page 68 shows the group de-
lays of the elliptic filter, the allpass filter, and
the overall filter.

Note that the group delay is an additive response
and the overall group delay achieves higher val-
ues than that of the elliptic filter, increasing the

overall delay.

Finally, it should be noted that the above ap-
proach of first designing a frequency-selective fil-
ter and then improving the group delay with the

ald of an allpass filter is not the best approach.

Filters with lower order and better performances
can be designed by more sophisticated techniques
to be considered in the course “Digital Linear
Filtering II”.
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Some Characteristics of A Fourth-Order El-
liptic Filter
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Some Characteristics of An Optimized Eigth-

Or

der Allpass Filter
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Some Characteristics of A Cascade of the El-
liptic Filter and the Allpass Filter
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Group Delay responses for the Elliptic filter,
the Allpass Filter, and Their Cascade
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TIME-DOMAIN CONDITIONS

e In some cases,

it is desired to optimize the
frequency-domain behavior of the filter subject to

the given time-domain conditions.

e Nyquist or N-th band filters: every N-th impulse

response value is restricted to be zero except for

the central sample of value 1/N.
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e In some applications, the overshoot of the step re-
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APPROXIMATION CRITERIA

e Three different error measures are normally
used in the approximation theory and also in

designing digital filters.
e Lor intruduction purposes, consider the follow-
ing simple example:

e It is desired to approximate the desired curve
d(z) = z* by a line h(z) = a+bx for 0 <z < 1.




- 79

MINIMAX ERROR DESIGNS

e In this case, the problem is to find a and b
of h(z) = a + br in such a way that the peak
absolute value of the following weighted error

function
E(z) = W(z)[h(z) — d(z)]

on [0, 1] is minimized. Here, W(z) is a
weighting function and it must be positive on
0, 1].

e In order word, the problem is to find a and b
to minimize the quantity

= E(z)].
¢ xrer[lgﬁ]l (2)]

e We consider two cases. For both cases, W(z) =
1 on [0.3, 1]. For the first and second cases,
W(z) =1 and W(z) = 10 on [0, 0.3], respec-
tively.

e Pages 74 and 75 give the optimum solutions

to these cases.




s
It is seen that in both cases F(x) achieves the
peak absolute value at three points in such a
way that the sign of FE(z) alternates. This
is one more than the number of unknowns (a

and b).

In the first case, the peak absolute value of
E(x) is 0.125 and is achieved at z = 0, z =
1/2, and x = 1.
In the second case, the peak absolute value of
E(z) is 0.4468 and is achieved at z = 0, = =
0.3, and = = 1.

In the first case, the weighted error and the
actual error h(x) — d(x) are the same. In the
second case, because of the higher weighting

on [0. 0.3], the absolute values of h(z) — d(z)

are significantly smaller in this interval.
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MINIMAX ERROR DESIGN: W(x)
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0, 0.3], W(z) =1 on [0.3, 1]

o
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LEAST-SQUARED ERROR DESIGNS

Another error measure is Ly-norm. In this
case, the problem is to find a and b to min-

imze the quantity

1
B, = [ W@h(s) - d@)do
where p is a positive even integer.

For p = 2, the quantity to be minimized is

By [ W@)ihia) - da))do

and the optimum solution is called the least-

squared error solution.

We again consider two cases. For both cases,
W(x) =1 on [0.3, 1]. For the first and second
cases, W(z) = 1 and W(x) = 10 on [0, 0.3],
respectively.

Pages 78 and 79 give the optimum solutions

to these cases.

It is seen that in both cases, the absolute val-
ues of E(x) are larger near the edges of the

interval.
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e In the first case, the weighted error and the
actual error h(z)—d(z) are again the same. In
the second case, because of the higher weight-
ing on [0, 0.3], the absolute values of h(x) —

d(x) are significantly smaller in this interval.
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LEAST-SQUARED ERROR DESIGN: W(x) =
1 on [0, 1]

Least-squared approximation with W(x)=1 on [0, 1]
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LEAST-SQUARED ERROR DESIGN:
10 on [0, 0.3], W(z) =1 on [0.3, 1]
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L,-NORM DESIGNS

Desired and approximating functions

e It is characteristics of the Lj,-norm designs
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that as p — oo, the solution approaches the
minimax solution.

This is illustrated for the case W(z) = 1
on [0, 1] in the figure below, where L,-
norm designs have been generated for p =
2,4,8,16,32,64,128, and 256. As seen from
the figure, the corresponding h(x) approaches
the minimax design, as is desired.
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MAXIMALLY-FLAT APPROXIMATIONS

In this case, one point x = zy is selected in
the interval [0, 1] and the approximating func-
tion is determined such that

h(zo) = d(xo)

and

dh(z) dd(z)

dx Ix:xo dz |m:x0.

For our problem, we have only two unknowns.
Therefore, only the first derivative is needed
to completely specify the approximating func-
tion. For more unknowns, higher order deriva-
tives are used until the approximating function
1s uniquely determined.

Let us select g = 1/2. In this case (d(x)
x?), it is required that h(1/2) = a/2 + b
d(1/2) = 1/4 and K(1/2) = a = d'(1/2) = 1.
Therefore, a =1 and b= —1/4.

The following page shows the resulting h(z) as
well as the error function h(x) — d(z).

|

As seen from the figure, the error is very
small in the vicinity of the point z = xy = 1/2.
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MAXIMALLY-FLAT SOLUTION

Desired and approximating functions

0.8

0.6

0.4

0.2

-0.05

Maximally—flat approximation around x = 1/2

T T T T T T T T T

T
i

h(x) = ax+b -
a=1b=-025

d(x)=xA2 .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Maximaily-flat approximation around x = 1/2




- 83 -

APPROXIMATION CRITERIA FOR DESIGN-
ING DIGITAL FILTERS

e The above-mentioned approximation criteria are

normally used in designing digital filter.

Minimax Error Designs

e Some applications require that the transfer
function coefficients be optimized to minimize
the maximum error between the approximat-

ing response and the given desired response.

e The solution minimizing this error function is
called a minimax or Chebyshev approxima

tion.

e In the case of weighted error function E(w),
the quantity to be minimized is the peak ab-

solute value of F(w) on X, i.e., the quantity

e = max |E(w)].

weX
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NORMATL CASE

I:

1I:

The maximum allowable value of € is specified.

Find the minimum order of a filter required to

meet the given criteria

Optimize the coefficients of a minimum-order

transter function to minimize e.

Examples of minimax solutions are elliptic
(Cauer) IIR filters (see pages 85 and 86)
and equiripple linear-phase FIR filtes (see page
87).

Note that for our example IIR filter, the pass-

band amplitude oscillates around unity.

In some cases, the maximum of the pass-
band amplitude response of an IIR filter is re-

stricted to be unity.
Note that in the case of pages 85 and 86, the

minimax criterion is used such that given the
maximum allowable passband variation, the fil-
ter coeflicients are optimized to maximize the
stopband attenuation (these filters will be con-

sidered in more details in Part IV).

The design of the FIR filter of page 87 will be

considered in Part III.
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SIXTH-ORDER ELLIPTIC IIR FILTER: w, =
0.4, w, = 0.6m, A, =0.2 dB, A; > 60 dB.
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MINIMAX FIR FILTER OF ORDER 46: w, =
0.57, ws = 0.6m, 0, = 0.01, s = 0.00316
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LEAST-SQUARED ERROR DESIGNS

o Lynorm: It is desired to minimize the func-

tion

Ly = /X (W ()| H ()| — D(w)]) dw,
where p is a positive even integer.

e It can be shown that as p — oo, the solution
minimizing the above quantity approaches the

minimax solution.

e This fact is exploited in some IIR filter de-
sign methods. For FIR filters, L,-error designs
are of little practical use since there are effi-
clent algorithms directly available for design—
ing in the minimax sense FIR filters with ar-

bitrary specifications.

e The exception is the Ls-error or least-squared
error designs, which can be found very effec-
tively. In this case, the quantity to be mini-
mized is

: 2
Bo= [ W@)(H()] - D) do,
X
where X is the union of the passbands and

stopbands.
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LEAST-SQUARED-ERROR FIR FILTERS OF
ORDER 46: w, = 057, w; = 0.6mr; Stopband
weightings are 1 and 10
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Maximally-Flat Approximations

e The approximating response is obtained based
on a Taylor series approximation to the de-
sired response at a certain frequency point
and the solution is called a maximally flat

approximation.

e In some cases, such as in designing maximally-
flat (Butterworth) IIR filters, there are two
points, one in the passband and one in the
stopband, where a Taylor series approximation

1s applied. See pages 91 and 92.

e Lor designing linear-phase FIR filters, a simi-

lar approach can be used. See page 93.
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FOURTEENTH-ORDER BUTTERWORTH IIR
FILTER: w, = 047, w, = 0.6r, A, = 0.2 dB,
A, > 60 dB.
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MAXIMALLY-FLAT FIR FILTER OF ORDER
N =50: w, =0.31, ws =0.57
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OTHER CRITERIA

Most of the methods developed for designing
digital filters use one of the above approxima-

tion criteria.

In some synthesis techniques, a combination of
these criteria is used. For instance, in the case
of Chebyshev IIR filters, a Chebyshev approx-
imation in the passband and a maximally flat
approximation in the stopband are used. See

pages 95 and 96.

In the case of inverse Chebyshev filters, a
maximally flat approximation in the passband
and a Chebyshev approximation in the stop-

band are used. See pages 97 and 98.

There exist also several simple filter design
techniques which do not use directly the above

criteria at all.

A typical example of such methods is the
design of FIR filters using windows, where
the Fourier series of an ideal filter is first
truncated and then smoothed using a window

function.
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EIGHTH-ORDER CHEBYSHEV TYPE I IIR

FILTER: w, = 04nm, w, =

As > 60 dB.
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HTH-ORDER CHEBYSHEV TYPE II
FILTER: w, = 0.47, w, = 0.6m, A, = 0.2 dB,

A; > 60 dB.
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