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1 - SECOND-ORDER ACTIVE FILTERS

This section introduces circuits which have two zeros and two poles.  The poles

determine the natural frequencies of a circuit.  These natural frequencies become time

constants in the time-domain impulse response of circuit.  The zeros determine the

characteristics of the circuit in the frequency domain.  For example, the zeros determine

whether the circuit has a low-pass, bandpass, high-pass, bandstop, or an allpass behavior.

The key difference between second-order and first-order circuits is that the roots of the

second-order circuit can be complex whereas all roots of first-order circuits are constrained

to the real axis.  

It will be shown in this section that there is a significant difference between cascaded,

first-order circuits and higher-order circuits such as second-order circuits.  For example,

assume that a circuit is to pass signals up to 10 kHz with a gain variation within 0 dB to -3

dB.  Above 20 kHz the circuit must have a gain that is less than -20 dB.  Fig. 1-1 shows

this requirement.  The magnitude response of the circuit must fall within the white areas

and stay out of the shaded areas.  In order to achieve this specification, four, first-order

circuits  are required.  However, if we use second-order circuits which permit complex

roots, we can satisfy the specification with one second-order circuit cascaded with one

first-order circuit.  The result will be the savings of one op amp and is due to the fact that

we can make some of the poles complex.

-20 dB

-3 dB
0 dB 1 20

Gain Magnitude

Frequency (kHz)

Figure 1-1 - Specification for a low-pass magnitude response in the frequency domain.
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Second-Order, Passive, Low-Pass Filters

If we are willing to use resistors, inductances, and capacitors, then it is not necessary

to use op amps to achieve a second-order response and complex roots.  Let us consider the

passive, second-order circuit of Fig. 1-2.  Straight-forward analysis of this circuit using the

complex frequency variable, s, gives

T(s) = 
Vout(s)
Vin(s)    = 

R/sC
R+(1/sC)

sL+
R/sC

R+(1/sC)

   = 

R
sC

sL



R+

1
sC +

R
sC

   = 

1
LC

s2+  
s

RC +  
1

LC

   . (1-1)

We see that Eq. (1-1) has two poles at

p1, p2 = 
-1

2RC  ± 
1
2 



1

RC
2
  -  

4
LC (1-2)

and two zeros at infinity.  The poles will be complex if (4/LC) > (1/RC)2.

+

-

+

-

Vin(s) Vout(s)

L

C R

Figure 1-2 - Passive, RLC, low-pass filter.

The standard form of a second-order, low-pass filter is given as

TLP(s) = 
TLP(0)ω

2
o

s2 + 



ωo

Q s + ω
2
o

 (1-3)

where TLP(0) is the value of TLP(s) at dc, ωo is the pole frequency, and Q is the pole Q or

the pole quality factor.  The damping factor, ζ, which may be better known to the reader, is

given as

ζ = 
1

2Q   . (1-4)

The poles of Eq. (1-3) are
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p1,p2 = 
-ωo
2Q   ± j 



ωo

2Q 4Q2-1   . (1-5)

The pole locations for the case where they are complex are shown on Fig. 1-3 and

graphically illustrate the pole frequency and pole Q.   Equating Eq. (1-1) with Eq. (1-3)

gives Ao = 1, ωo = 1/ LC , and Q = R/L.

ωo

ωo
2Q

p1

p2

jω

σ

Figure 1-3 - Location of the poles of a second-order system in the complex frequency

plane.

It is of interest to us to plot the locus of the poles, p1 and p2, as Q is varied from 0 to

∞.  The resulting plot is called a root locus plot and is shown in Fig. 1-4.  There are two

loci on this plot, one corresponding to p1 and the other to p2.  At Q=0, the poles are at 0
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Figure 1-4 - Root-locus of the poles of Eq. (1-3) as Q is varied from 0 to ∞.
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and ∞.  As Q increases these poles move along the real axis towards -ωo.  When Q=0.5,

the two poles are identical and are at -ωo.  As Q increases above 0.5, the poles leave the

real axis and become complex.  As Q increases further, one pole follows the upper quarter

circle and the other the lower quarter circle.  Finally, at Q = ∞, the poles are on the jω axis

at ±j1.

Example      1-1     -      Roots      of     a      Passive   RLC,      Low-Pass      Circuit

Find the roots of the passive RLC, low-pass circuit shown in Fig. 1-5.

Solution   

First we must find the voltage transfer function.  Using voltage division among the

three series components results in

T(s) = 
Vout(s)
Vin(s)   = 

1
sC

sL+R+
1
sC

  = 

1
LC

s2+



R

L s+
1

LC

  = 
1012

s2+141x104s+1012   .

Equating this transfer function to Eq. (1-3) gives TLP(0) = 1, ωo = 106 rps, and Q=1/ 2 .

Substituting these values into Eq. (1-5) gives

p1,p2 = -707,107 ± j707,107 (rps).

Standard, Second-Order, Low-Pass Transfer Function - Frequency Domain

The frequency response of the standard, second-order, low-pass transfer function can

be normalized and plotted for general application.  The normalization of Eq. (1-3) includes

both amplitude and frequency and is defined as

TLPn(sn) = 

TLP



s

ωo

| |TLP(0)
   =  

1

sn2 + 
sn
Q +  1

 (1-6)

where

+

-

+

-

Vin (s) Vout(s)

L=100µH

C =
10nF

R=141Ω

Figure 1-5 - A second-order low-pass RLC filter.
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TLPn(s) = 
TLP(s)

| |TLP(0)
 (1-7)

and

sn = 
s

ωo
   . (1-8)

The magnitude and phase response of the normalized, second-order, low-pass transfer

function is shown in Fig. 1-6 where Q is a parameter.  In this figure, we see that Q

influences the frequency response in the vicinity of ωo.  If Q is greater than 2 , then the

normalized magnitude response has a peak value of
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Figure 1-6 - (a.) Normalized magnitude and (b.) phase response of the standard second-

order, low-pass transfer function with Q as a parameter.



ECE 6414: Continuous Time Filters (P.Allen) - Chapter 1 Page 1-6

|Tn(ωmax)| = 
Q

1  -  
1

4Q2

 (1-9)

at a frequency of

ωmax = ωo 1  -  
1

2Q2   . (1-10)

Example      1-2     -      Second-Order,      Low-Pass   Transfer      Function

Find the pole locations and |T(ωmax)| and ωmax of a second-order, low-pass transfer

function if ωo = 104 rps and Q = 1.5.

Solution   

From Eq. (1-5) we get

p1,p2 = 
-ωo
2Q   ± j 



ωo

2Q 4Q2-1   = -3,333 ± j10,541 rps.

Eqs. (1-9) and (1-10) give |T(ωmax)| = 1.591 or 4.033 dB and ωmax = 8,819 rps.

Standard, Second-Order, Low-Pass Transfer Function - Step Response

The unit step response of the standard, second-order, low-pass transfer function can

be found by multiplying Eq. (1-3) by 1/s to get

Vout(s) = 
TLP(s)

s    = 
TLP(0)ω

2
o

s





s2 + 



ωo

Q s + ω
2
o

   = 
TLP(0)ω

2
o

s(s+p1)(s+p2) . (1-11)

The solution of the step response depends on whether the poles p1 and p2 are real or

complex which can be determined from Q or ζ.  When Q > 0.5, the poles are complex and

the step response of the second-order, low-pass transfer function is said to be

underdamped.  When Q = 0.5, the step response is critically damped.  When Q < 0.5, the

step response is overdamped.  

The underdamped or critically damped solution (Q ≥ 0.5) is of interest to us here.

For purposes of notation simplicity, we shall use the damping factor ζ (=1/2Q) in place of

the pole Q.  Thus the poles of the standard, second-order transfer function when ζ ≤ 1 are

p1, p2 = -ζωo ± j ζωo 4Q2-1   . (1-12)
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Substituting these roots into Eq. (1-11) and taking the inverse Laplace transform of Vout(s)

gives

     L 
-1
 
 
 [Vout(s)] = vout(t) = TLP(0)









1  -  
e
-ζωot

 

1 - ζ 2
 sin 1 - ζ 2 ωot + φ    (1-13)

where

φ = tan-1






1 - ζ 2

ζ
   . (1−14)

Eulers formula has been used to combine a sine and cosine having the same arguments into

a single sinusoid with a phase shift of φ.  Figure 1-7 shows the normalized step response

of the standard, second-order, low-pass transfer function for ζ = 1, 0.707, 0.5, 0.25, and

0.1 which correspond to Q = 0.5, 0.707, 1, 2, and 5.
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Figure 1-7 - Normalize step response of a standard, low-pass, second-order transfer

function for Q ≥ 5 (underdamped).

We see from the normalized step response of Fig. 1-7 that for Q > 0.5, the output

exceeds the final value of 1.  This behavior is called overshoot.  If the response has more

than one oscillation (ring), the first oscillation is used because it is always the largest.  If

we differentiate Eq. (1-13) and set the result equal to zero, we will find that the peak value

of the first oscillation occurs at
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tp = 
π

ωo 1-ζ2
   .

Substituting this value into Eq. (1-13) gives

vout(tp) = 1 - 
e
-ζπ
 

1 - ζ 2
   . (1-16)

Fig. 1-8 helps to illustrate these results.

1.0

0
ωotp Normalized Time

Normalized Amplitude

Overshoot

vout(tp)
TLP(0)

Figure 1-8 - Normalized step response for Q = 2.

From Fig. 1-8, we define overshoot is defined as

Overshoot = 
Largest peak value - Final value

Final value   = 
exp(-πζ)

1-ζ2
   . (1-17)

In general we want the step response of a second-order, low-pass circuit to approach its

final value as quickly as possible.  Therefore, high values of Q are undesirable because the

oscillations of the step response take a long time to die out.  Shortly, we shall show how to

relate the overshoot of the step response of a feedback system to its stability.  This will

provide a quick method of examining stability of feedback circuits in the time domain.

Example      1-3     -      Step     Response      of  a      Second-Order,      Low-Pass      Circuit

Find the tp and the overshoot of the second-order, low-pass circuit of Ex. 1-2.

Solution   
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In Ex. 1-2, ωo = 104 rps and Q = 1.5.  Q = 1.5 corresponds to ζ = 1/3. Substituting

these values in Eq. (1-15) gives tp = 
3.1416

(104)(0.9428)
  = 0.3332 ms.  The overshoot is found

from Eq. (1-17) and is 
exp(-1.0472)

0.9428   = 0.3722.  We typically multiply overshoot by 100

and express it as 37.22%.

How Does an Active-RC Filter Work?

An active-RC filter uses only resistors, capacitors, and amplifiers to achieve complex

poles.  If we do not use inductors, how can complex poles be achieved?  Once more,the

answer is feedback.  When feedback is applied around a system containing real roots, the

closed loop transfer function may contain complex roots.  To illustrate how this occurs,

assume that A(s) of a single-loop, negative feedback circuit (Fig. 4.3-2) can be written as

A(s) = 
Aoω1ω2

(s+ω1)(s+ω2)
   . (1-18)

Therefore, the poles of A(s) are real and are located in the complex frequency plane at -ω1

and -ω2.  Now assume that frequency independent negative feedback of ßo is placed

around the amplifier.  The closed-loop transfer function becomes

AF(s) = 
A(s)

1+ßoA(s)  = 
Aoω1ω2

(s+ω1)(s+ω2) + Aoßoω1ω2
  

          = 
Aoω1ω2

s2+(ω1+ω2)s+ω1ω2(1+Aoßo)
  = 

Aoω1ω2
(s+pf1)(s+pf2)   . (1-19)

The poles of the closed-loop transfer function, AF(s), are given as

pf1, pf2 = - 
ω1+ω2

2   ± 
1
2 (ω1+ω2)2 - 4ω1ω2(1+Aoßo)   . (1-20)

We can see that the closed-loop poles can become complex if ßo is large enough.  The

process by which feedback creates complex poles is illustrated by the root-locus of Fig. 1-9

for Eq. (1-22) where ω2 = 9ω1 and Aoßo is varied from 0 to ∞.  We note that when Aoßo ≥

2, the poles are complex.
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Figure 1-9 - Normalized root-locus of the poles of Eq. (1-19) when Aoßo is varied from 0

to ∞ for the case where ω2 = 9ω1.

While the root-locus of Eq. (1-19) never crosses the jω axis, there are some cases

where feedback will cause the locus of the closed-loop poles to cross the jω axis.  When

this occurs the feedback system is unstable.  The root-locus of the poles is another way to

examine the stability of a feedback system.

Example      1-4     -     Illustration      of      Achieving     Complex      Poles   using       Negative      Feedback   

Suppose the A(s) part of a single-loop, negative feedback circuit is shown in Fig. 1-

10.  If negative feedback of ßo is applied around this amplifier, find the transfer function,

Vout(s)/Vin(s), and show whether or not complex poles can be obtained and under what

conditions.
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Vin(s)
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Figure 1-10 - Feedback circuit for Ex. 1-4.

Solution   

First, we must find A(s).   The two loop equations that describe the RC network are

written as

AoVi(s) = 



R+

1
sC  I1(s) - 



1

sC  I2(s)

and

0 = - 



1

sC  I1(s) + 



R+

2
sC  I2(s) .

Solving these equations using Kramer's rule gives

I2(s) = 






R+

1
sC  AoVi(s)

 
-1
sC    0







R+

1
sC   

-1
sC

-1
sC    R +

2
sC

  = 

AoVi(s)
sC





R+

1
sC 



R+

2
sC  -  



1

sC
2
 

   .

Because Vout(s) = I2(s)/sC, we can use the above to solve for A(s) = Vout(s)/Vi(s)  as

A(s) = 
Vout(s)
Vi(s)   = 

Ao

(sC)2

R2 + 
3Rs

C  +  
1

(sC)2

  =  

Ao

(RC)2

s2  +  
3s
RC +  

1
(RC)2

   .

Next, we substitute A(s) and ßo into Eq. (4.3-1) to get

AF(s) = 
A(s)

1+A(s)ßo
  = 

Ao

(RC)2

s2  +  
3s
RC +  

1
(RC)2(1+Aoßo)

   .

The poles of the closed-loop transfer function, AF(s), are given as
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pf1,pf2 = 
-1.5
RC   ± 

1
2 

9
(RC)2 -  

4
(RC)2(1+Aoßo) 

which can be complex if Aoßo ≥ 1.25.

Time and Frequency Domain Perspective of Stability

We can now show a useful relationship between the step response and the stability of

a feedback system based on the above results.  The key to this relationship is to assume that

we can approximate a third-order system by a second-order system.  As a result, the

relationship we will develop is useful for determining the degree of stability (i.e. phase

margin) but not whether the circuit is stable or unstable.

Let us suppose that negative feedback has been used as illustrated above to create a

second-order, low-pass transfer function having complex poles.  The closed-loop transfer

function can be written as

AF(s) = TLP(s) = 
TLP(0)ω

2
o

s2 + 



ωo

Q s + ω
2
o

  =  
AF(0)ω

2
o

s2 + (2ζωo)s + ω
2
o

    . (1-21)

Next, assume that ß is real (ßo) and multiply both side of Eq. (4.3-1) by ßo to get

AF(s)ßo = 
A(s)ßo

1+A(s)ßo
   . (1-22)

Solve for the quantity, A(s)ßo of Eq. (4.2-22) to get

A(s)ßo = 
ßo

1
AF(s) -  ßo

   . (1-23)

Finally, substitute Eq. (1-21) into Eq. (1-23) resulting in

     A(s)ßo  = 
ßo

s2+2ζωos + ω
2
o

AF(0)ω
2
o

 -  ßo

  = 
AF(0)ßoω

2
o

s2+2ζωos + ω
2
o - AF(0)ßoω

2
o

   . (1-24)

When the loop gain is much greater than unity, we know that AF(0) ≈ 1/ßo.  Therefore

AF(0)ßo ≈ 1.  Substituting this approximate relationship into Eq. (1-24) gives
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A(s)ßo  = 
AF(0)ßoω

2
o

s2 + 2ζωos + ω
2
o - AF(0)ßoω

2
o

   ≈  
ω

2
o

s2 + 2ζωos
   . (1-25)

We have studied the stability properties of A(s)ßo in Sec. 4.3 and know that ω0dB

occurs when |A(jω)ßo| = 1.  Thus we can take the magnitude of Eq. (1-25) and set it equal

to one to get

ω0dB = ωo 4ζ4+1 - 2ζ2   . (1-26)

The phase shift of A(jω)ßo can be expressed from Eq. (1-25) as

Arg[A(jω0dB)ßo] = - 
π
2  - tan-1







ω0dB

2ζωo
 . (1-27)

Substituting this value of phase shift of into the definition of phase margin below gives

Phase Margin = π - 






π

2 +tan-1






ω0dB

2ζωo
  = 

π
2  -tan-1







ω0dB

2ζωo
  = tan-1







2ζωo

ω0dB
   . (1-28)

Substituting for ω0dB in Eq. (1-28) gives

Phase Margin = tan-1









2ζ

4ζ4+1 - 2ζ2
  = cos-1 4ζ4+1 - 2ζ2    . (1-29)

Eq. (1-29) gives the phase margin of a negative feedback system used to implement a

second-order, low-pass transfer function in terms of the damping factor ζ.  Previously,  we

related the peak overshoot to step response of a second-order, low-pass transfer function to

the damping factor ζ in Eq. (1-17).  Eqs. (1-17) and (1-29) allow us to relate the peak

overshoot of the step response of a second-order, low-pass system to its phase margin.

Figure 1-11 consist of a plot of Eqs. (1-17) and (1-29) as a function of the damping factor

ζ.  The dotted line shows how to use the figure.  For example, suppose that we observed a

10% overshoot to the step response.   We project horizontally to the overshoot curve to

find a value of ζ .  Next, project vertically to the phase margin curve.  Finally, projecting

horizontally gives the approximate equivalent phase margin.    For this example, a 10%
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overshoot corresponds to a ζ of approximately 0.59 (Q ≈ 0.85) which gives a phase

margin of approximately 58°.  
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Figure 1-11 - Graphical illustration of the relationship between peak overshoot and phase

margin of a negative feedback system.

Positive Feedback, Second-Order, Low-Pass, Active Filter†

The basic principle of active-RC filters is to use feedback to create complex poles

which are necessary for efficient filter applications.  The feedback can be either positive or

negative as long as the circuit is not unstable.  Fig. 1-12a shows one of the popular,

second-order, low-pass filters which employs positive feedback.  The voltage amplifier has

a voltage gain of K and is assumed to have an infinite input resistance and a zero output

resistance.  This voltage amplifier can be realized by the noninverting voltage amplifier

shown in  Fig. 1-12b.

                                                
† This type of filter is called Sallen and Key after the inventors who published their work in the often
referenced paper, R.P. Sallen and E.L. Key, "A Practical Method of Designing RC Active Filters," IRE
Trans. Circuit Theory, vol. CT-2, March 1955, pp. 74-85.
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K

Voltage
Amplifier

Vout(s)Vin(s) K
R1 R3

C2

C4

(a.) (b.)

RB=(K-1)RARA

Figure 1-12 - (a.) A second-order, low-pass active filter using positive feedback. (b.) The

realization of the voltage amplifier K by the noninverting op amp configuration.

The closed-loop, voltage transfer function of Fig. 1-12a can be found (see Prob.

PA1-2) as

vout(s)
Vin(s)   = 

K
R1R3C2C4

s2 + s 



1

R3C4
 +  

1
R1C2

 +  
1

R3C2
 -  

K
R3C4

+  
1

R1R3C2C4

   . (1-30)

In order to use this result, we must be able to express the component values of Fig. 1-12a

(R1, R3, C2, C4, and K) in terms of the parameters of the standard, second-order, low-

pass transfer function (TLP(0), Q, and ωo).  These relationships are called design equations

and are the key to designing a given active filter.  When equating the coefficients of Eq. (1-

30) to Eq. (1-3), three independent equations result.  Unfortunately, there are 5 unknowns

and therefore a unique solution does not exist.  This circumstance happens often in active

filter design.  To solve this problem, the designer chooses as many additional constraints as

necessary to obtain a unique set of design equations.

In order to achieve a unique set of design equations for Fig. 1-12, we need two more

independent relationships.  Let us choose these relationships as

  R = R1 = R3 (1-31)
and

C = C2 = C4  . (1-32)

Substituting these relationships into Eq. (1-30) gives
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Vout(s)
Vin(s)   = 

K
(RC)2

s2  + 



3-K

RC s  +  
1

(RC)2

   . (1-33)

Now, if we equate Eq. (1-33) to Eq. (1-3) we get three design equations which are

RC = 
1

ωo
 (1-34)

K = 3 - 
1
Q (1-35)

and
K = TLP(0)  . (1-36)

Unfortunately, our choice of equal resistors and equal capacitors resulted in two, rather

than three, independent design equations.  This means we cannot simultaneously satisfy a

specification for Q and for TLP(0).   However, this not a real disadvantages and the design

equations are so simple that we shall call them the equal-R, equal-C design equations.

Other design equations are given in the problems (see PR1-8 and PR1-9).

Example      1-5     -      Application      of     the      Equal-R,   Equal-C   Design   Approach   

Use the equal-R, equal-C design approach to design a second-order, low-pass filter

using Fig. 1-12a if Q = 0.707 and fo = 1 kHz.  What is the value of TLP(0)?

Solution   

First, we must pick a value of R or C in order to use Eq. (1-34).  Let us select C =

1µF.  Therefore R = 
1

(6.2832x103)(10-6)
  = 159.2 Ω.  This is probably too small for R so

let us decrease our choice for C by 100 which gives C = C1 = C2 = 0.01µF and R = R1 =

R2 = 15.92 kΩ.

Next, we design K from Eq. (1-35).  We see that K = 3 - 1.4142 = 1.5858.  Now

we have to design the resistors of Fig. 1-12b so that this gain is achieved.  We see that RB

= 0.5858RA.  If we pick RA = 10 kΩ, then RB = 5.858 kΩ.  We note that gains less than 1

or Q ≤ 0.5 cannot be achieved without modification to Fig. 1-12b (see Prob. PA1-3) and

that Q ≤ 0.333 is impossible for Fig. 1-12a to realize.

The reason for the lower limit of Q of Fig. 1-12a noted in the above example can be

seen by letting all passive components equal unity and plotting the poles of Eq. (1-30) as K
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varies from 0 to ∞.  The result is shown in Fig. 1-13.  We see that K = 1, that the poles are

identical an on negative real axis at -1.  If we use Fig. 1-12b to implement the voltage

amplifier, this value of K will be the smallest possible corresponding to a Q = 0.5.  For this

reason and the fact that first-order circuits can realize poles on the negative real axis, we

restrict Fig. 1-12a for the case of complex poles. 

-0.3820-2.6180

Imaginary Axis (rps)

Real
Axis
(rps)

j1

-j1

-1 1

K=0 K=0
K=1

K=3

K=3

K=5K=∞
K=∞

K

K

Figure 1-13 - Root locus of the poles of Fig. 1-12a as a function of K.

Negative Feedback, Second-Order, Low-Pass, Active Filter

A second-order, low-pass active filter that uses negative feedback is shown in Fig. 1-

14.  It is necessary to have one more passive element in the feedback network compared to

Fig. 1-12a in order to get sufficient open-loop phase shift to cause complex poles.  The

voltage transfer function of this circuit can be found as†

Vout(s)
Vin(s)   = 

-1
R1R3C4C5

s2 + s 



1

R1C4
 +  

1
R2C4

 +  
1

R3C4
 +  

1
R2R3C4C5

   (1-37)

where we have assumed that the op amp is ideal.

                                                
†  See for example, Sec. 5.1 of Introduction to the Theory and Design of Active Filters, L.P. Huelsman and
P.E. Allen, McGraw-Hill Book Co., (1980).
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R1

R2
R3

C4

C5

Vin(s)
Vout(s)

Figure 1-14 - A negative feedback realization of a second-order, low-pass active filter.

This circuit brings forth an important principle concerning the analysis of op amp

circuits that should not go unnoticed.  In general, the more op amps and the less passive

components in an op amp circuit, the easier is the analysis of the circuit.  The easiest type

of op amp circuits to analyze are those where every passive element is connected between

the following types of nodes: a node where the voltage is defined including ground, the

inverting input terminal of the op amp with the potential on the noninverting input terminal

known, or the output of the op amp.  We see that the node common to R1, R2, R3, and C4

in Fig. 1-14 violates this principle.  (Also the node common to R1, C2, and R3 of Fig. 1-

12a was in violation of this principle.)

If we equate Eq. (1-37) to Eq. (1-3) we get the following three equations,

ωo  = 
1

R2R3C4C5
 (1-38)

1
Q  = 

C5
C4

 





R2R3

R1
 +  

R3
R2

 +  
R2
R3

 (1-39)

and

|TLP(0)| = 
R2
R1

   . (1-40)

Again, we do not have a sufficient number of equations to be able to uniquely solve for all

of the component values of the realization of Fig. 1-14.  If we choose the constraints, C5 =

C and  C4 = 4Q2(1 + |TLP(0)|)C, then a unique set of useful design equations result and are

given as,

C5 = C (1-41)

C4 = 4Q2(1 + |TLP(0)|)C (1-42)
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R1 = 
1

2|TLP(0)|ωoQC
 (1-43)

R2 = 
1

2ωoQC
 (1-44)

and

R3 = 
1

2ωoQC(1+|TLP(0)|)
   . (1-45)

The following example will illustrate how to use these design equations for the second-

order, low-pass realization of Fig. 1-14.

Example      1-6     -      Design      of      A       N      egative      Feedback,   Second-Order,      Low-Pass   Active   Filter 

Use the negative feedback, second-order, low-pass active filter of Fig. 1-14 to design

a low-pass filter having a dc gain of -1, Q = 1/ 2 , and fo = 100 Hz.

Solution   

Let us use the design equations given in Eqs. (1-41) through (1-45).  Assume that C5

= C = 0.1µF.  Therefore, from Eq. (1-42) we get C4 = (8)(0.5)C = 0.4 µF.  The resistors

are designed using Eq. (1-43) for R1 which gives

R1 = 
2

(2)(1)(628.32)(10-7)
   = 11.254 kΩ .

Eq. (1-44) gives

R2 = 
2

(2)(628.32)(10-7)
  = 11.254 kΩ  .

Finally, Eq. (1-45) gives

R3 = 
2

(2)(628.32)(2)(10-7)
  = 5.627 kΩ  .

One of the advantages of the negative feedback, second-order, low-pass active filter

of Fig. 1-14 is that it can be used to achieve gains greater or less than unity independently

of the values of ωo or Q.  Let us illustrate by the following example.

Example      1-7     -      Design      of      A      Second-Order,   Low-Pass   Filter       with     a   DC    Gain      of  -100   

Repeat the Ex. 1-6 except let the gain at dc be -100.

Solution   
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Let us choose a smaller capacitor in anticipation that the resistances will be otherwise

be smaller.  Therefore, C5 = C = 0.01µF.  C4 = (4)(0.5)(101)(10-8) = 2.02 µF.  R1 is

found from Eq. (1-43) as

R1 = 
2

(2)(100)(628.32)(10-8)
  = 1.125 kΩ  .

Eq. (1-44) gives

R2 = 
2

(2)(628.32)(10-8)
  = 112.54 kΩ  .

Finally, Eq. (1-45) gives

R3 = 
2

(2)(628.32)(101)(10-8)
  = 1.114 kΩ  .

Multiple Op Amp, Second-Order, Low-Pass, Active Filter

If one is willing to use more than one op amp, several useful second-order, low-pass

realizations result.  Figure 1-15 shows a two-op amp positive feedback circuit.  This circuit

has a lot of similarities to Fig. 1-12a except R3 is isolated from R1 and C2 by the unity gain

buffer, A1.  This circuit has a unity dc voltage gain and is easy to analyze because all

passive elements are connected to a voltage-defined node.

The output voltage of the first op amp, Vo1(s), can be written in terms of Vout(s) and

Vin(s) by superposition.  The result is

Vout(s)Vin(s)
R1 R3

C2

C4

A1 A2

Vo1(s)

Figure 1-15 - A two-op amp, second-order, low-pass active filter realization.

Vo1(s) = 






1

sC2

R1+
1

sC2

 Vin(s) + 







R1

R1+
1

sC2

 Vout(s)

  = 






1

R1C2

s+
1

R1C2

 Vin(s) + 







s

s+
1

R1C2

 Vout(s) . (1-46)

The output voltage, Vout(s), can be expressed in terms of Vo1(s) as
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Vout(s) = 






1

sC4

R3+
1

sC4

 Vo1(s) =  






1

R3C4

s+
1

R3C4

 Vo1(s) . (1-47)

Now, substituting Eq. (1-47) into Eq. (1-46) and simplifying results in

Vout(s) = 






1

R3C4

s+
1

R3C4 











1

R1C2

s+
1

R1C2

Vin(s) + 







s

s+
1

R1C2

Vout(s)  (1-48)

or

Vout(s)









s  +  

1
R1C2 



s  +  

1
R3C4

 -  
s

R3C4
  = 

Vin(s)
R1R3C2C4

   . (1-49)

Solving for the voltage transfer function gives the desired result which is

Vout(s)
Vin(s)   = 

1
R1R3C2C4

s2  +  
s

R1C2
 +  

1
R1R3C2C4

   . (1-50)

When we equate Eq. (1-50) to Eq. (1-3) we get

ωo = 
1

R1R3C2C4
   ,  Q = 

R1C2
R3C4

  ,  and  TLP(0) = 1 . (1-51)

In order to develop a set of design equations, we assume that C4 = mC2 = mC and R3 =

nR1 = nR.  Using these constraints in Eq. (1-51) results in

m = 
Q

ωoRC
 (1-52)

n = 
1

ωoQRC
 (1-53)

C4 = mC (1-54)
and

R3 = nR (1-55)

where R1 = R and C2 = C are chosen arbitrarily and TLP(0) is always unity.

Example      1-8     -      Design      of      A      Two-Op      Amp,   Second-order,      Low-Pass      Active      Filter  

Use Fig. 1-15 to realize the filter of Ex. 1-6 if the gain is +1.

Solution   
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Let us arbitrarily pick C2 = C = 0.1µF and R1 = R = 10 kΩ.  Eq. (1-52) gives m =

1

2(628.32)(104)(10-7)
  = 1.1254.  Eq. (1-53) gives n = 

2
(628.32)(104)(10-7)

   = 2.2508.

Thus Eqs. (1-54) and (1-55) give C4 = (1.1254)(0.1 µF) = 0.11254 µF  and R3 =

(2.2508)(10 kΩ) = 22.508 kΩ.

Tow-Thomas     (Resonator)      Realization   

A second, multiple op amp, second-order, low-pass active filter realization is shown

in Fig. 1-16.  This circuit will be called the Tow-Thomas filter and consists of a damped

inverting integrator, cascaded with another undamped integrator, and an inverter with

feedback applied around the entire structure.  If it weren't for R4, the feedback loop of this

circuit would be unstable.   An advantage of this circuit, not found in any of the previous

realizations, is that it offers independent tuning of the pole Q and the pole frequency.

R1 R2

R3

R4

C1 C2

Vin(s)

Vo1(s)
A2

Vo2(s)

R

R

A3
Vout(s)

A1

Figure 1-16 - The Tow-Thomas, second-order, low-pass active filter realization.

The number of op amps in Fig. 1-16 insure that the analysis of this circuit will be

straight-forward.  The output of op amp A1 can be expressed by superposition between

Vin(s) and Vout(s) as

Vo1(s) = 






1

R4C1

s  +  
1

R4C1




-



R4

R1
Vin(s) - 



R4

R3
Vout(s)    . (1-56)

By inspection we can write that

Vout(s) = 
Vo1(s)
sR2C2

   . (1-57)

Substituting Eq. (1-57) into Eq. (1-56) yields
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Vout(s)
Vin(s)   = 

-1
R1R2C1C2

s2  +  
s

R4C1
 +  

1
R2R3C1C2

   . (1-58)

Equating Eq. (1-58) to Eq. (1-3) gives

ωo = 
1

R2R3C1C2
   ,  

1
Q  = 

1
R4

 
R2R3C2

C1
   , and   |TLP(0)| = 

R3
R1

    . (1-59)

If we let R2 = R3 = R and C1 = C2 = C, then the design equations become

R = 
1

ωoC
       or    C = 

1

ωoR
   (1-60)

R4 = QR (1-61)

and

R1 = 
R3

|TLP(0)|  = 
R

|TLP(0)|   . (1-62)

We note that a bandpass realization is also available at Vo2 and that this realization does not

have the negative sign of Eq. (1-58).

Example      1-9     -      Design      of     the      Tow-Thomas,      Second-Order,      Low-Pass      Active      Filter  

Apply the circuit of Fig. 1-16 to Ex. 1-7.

Solution   

The specifications of the filter of Ex. 1-7 were a dc gain of -100, ωo of 200π rps, and

a Q of 0.707.  Choosing C = 0.1µF gives R2 = R3 = R = 
1

(628.32)(10-7)
  = 15.915 kΩ

using Eq. (1-60).  Eq. (1-61) gives R4 =  (0.707)(15.915 kΩ) = 11.254 kΩ.  Finally, Eq.

(1-62) gives R1 = (15.195 kΩ)/(100) = 151.95.  It might be worthwhile to go back and

choose C = 0.01µF in order to raise all resistors by a value of 10.
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High-Pass, Second-Order, Active Filters

A second useful second-order transfer function is the high-pass transfer function.

This transfer function is exactly like the second-order, low-pass transfer function except

that both zeros are at the origin of the complex frequency plane.  Therefore, we can write

the standard, second-order, high-pass transfer function as

THP(s) = 
THP(∞)s2

s2  + 



ωo

Q s + ω
2
o

   (1-63)

where THP(∞) is equal to THP(s) at ω = ∞.  The poles of the second-order high-pass

transfer function are given by Eq. (1-5) and illustrated by Fig. 1-3.

We can normalize Eq. (1-63) as we did for TLP(s)  to get

THPn (sn) = 

THP



s

ωo

| |THP(∞)
   =  

sn2

sn2 + 
sn
Q +  1

 (1-64)

where

THPn(s) = 
THP(s)

| |THP(∞)
 (1-65)

and

sn = 
s

ωo
   . (1-66)

The normalized frequency response of the standard, second-order, high-pass transfer

function is shown in Fig. 1-17.  We note that the slopes of the magnitudes as frequency

becomes much greater or much less than ωo is ±20 dB/dec. rather than -40 dB/dec. of the

low-pass, second-order transfer function.  This is because one pole is causing the high-

frequency roll-off while the other pole is causing the low-frequency roll-off.
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Figure 1-17 - (a.) Normalized magnitude and (b.) phase response of the standard, second-

order, high-pass transfer function with Q as a parameter.

A realization for a second-order, high-pass transfer function can be derived from Fig.

1-12a and Fig. 1-14 by simply by replacing pertinent resistors with capacitors and the

capacitors with resistors.  The resulting second-order, high-pass positive feedback and

negative feedback realizations are shown in Fig. 1-18.  Example 1-10 will illustrate their

application to high-pass filter design.
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(a.) (b.)

Vin (s) Vout(s)

RA

R = 1
ωoC

R = 1
ωoC

C = 1
ωoR C = 1

ωoR

RB= 2 - 1
Q

RATHP(∞) = 3 - 1
Q

Vout(s)
Vin(s)

C
C

C2= C
THP(∞) R5= 

2THP(∞) +1 Q
ωoC

R4= 
1/(ωoCQ)

2 + 1
THP(∞)

Figure 1-18 - (a.) Positive feedback and (b.) negative feedback, second-order, high-pass

active filter realization.

Example      1-10     -      Design      of       High-Pass      Positive      Feedback     and    Negative   Feedback      Filters 

Use the realizations of Fig. 1-18 to realize a second-order, high-pass filter having

|THP(∞)| = 1 ,fo = 10 kHz,  and a Q = 1.  

Solution   

If we pick C = 1 nF of Fig. 1-18a, then the resistors are R2 = R4 = R = 15.915 kΩ.

Because Q = 1, RB = RA.  Let us choose RA = RB = 10 kΩ.  We note that |THP(∞)| = (4/ 2

)-1 = 1.8284 which does not meet the specification.  In order to meet the specification, we

can add a resistive attenuator at the output consisting of a 8.284 kΩ and 10 kΩ resistor.

The only disadvantage of this solution is that the output resistance of the filter is now 10

kΩ.  If this is unacceptable, then the use of an op amp buffer will solve the problem.

For the negative feedback realization of Fig. 1-18b, we again select C = 1 nF.

Because |THP(∞)| = 1, C2 = C = 1nF also.  R4 = 15.915 kΩ/3 = 5.305 kΩ.  R5 =

(2)(2)15.915 kΩ or 63.662 kΩ.

Figure 1-19 shows how to modify the second-order Tow-Thomas circuit to realize a

second-order, high-pass transfer function.  Both noninverting and inverting realizations are

possible in Fig. 1-19.
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Vin(s)
A2

R

R

A3
Vout(s)A1 -Vout(s)

C1 = 
THP(∞) C

R4 = QR R

R

C = 1
ωoRC = 1/ωoR

Figure 1-19 - The Tow-Thomas second-order, high-pass active filter realization.

Example      1-11     -      Design      of      A       High-Pass      Filter      using     the   Tow-Thomas   of      Fig.   1-19   

Repeat Ex. 1-10 using the Tow-Thomas second-order, high-pass active filter

realization of Fig. 1-19.

Solution   

Picking R = 10 kΩ, the formulas on Fig. 1-19 give C = 1/(2πx104)(104) = 1.5915

nF, C1 = C = 1.5915 nF, and R4 = R = 10 kΩ.

Bandpass, Second-Order, Active Filters

Another useful second-order transfer function is the bandpass transfer function.

This transfer function is exactly like the second-order, low-pass transfer function except

that one zero is at the origin of the complex frequency plane and the other zero is at infinity.

Therefore, we can write the standard, second-order, bandpass transfer function as

TBP(s) = 
TBP(ωo)



ωo

Q  s

s2  + 



ωo

Q  s + ω
2
o

 (1-67)

where TBP(ωo) is equal to TBP(s) at ω = ωo.  Fig. 1-3 also holds for the poles of TBP(s).  

We can normalize Eq. (1-63) as we did for TLP(s) and THP(s) to get

TBPn (sn) = 

TBP



s

ωo

| |TBP(ωo)
   =  

sn
Q

sn2 + 
sn
Q +  1

 (1-68)

where

TBPn(s) = 
TBP(s)

| |TBP(ωo)
 (1-69)

and
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sn = 
s

ωo
   . (1-70)

The normalized frequency response of the standard, second-order, bandpass transfer

function is shown in Fig. 1-20.  We note that the slopes of the magnitudes as frequency
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Figure 1-20 - (a.) Normalized magnitude and (b.) phase response of the standard second-

order, bandpass transfer function with Q as a parameter.

becomes much greater or much less than ωo is ±20 dB/dec. rather than -40 dB/dec. of the

low-pass, second-order transfer function.  This is because one pole is causing the high-

frequency roll-off while the other pole is causing the low-frequency roll-off.

Fig. 1-21a shows a positive feedback, second-order, bandpass realization using the

concepts of Fig. 1-12a.  Fig. 1-21b illustrates a second-order, bandpass filter using the
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negative feedback approach of Fig. 1-14.  In order to save space and summarize the results

briefly, a set of design equations are shown on the circuits.  

(a.) (b.)

Vin(s)
Vout(s)

C

C

R1 = 
Q

TBP(ωo)ωoC

R4= 
Q

2Q2 - TBP(ωo) ωoC

R5= 
2Q

ωoCVout(s)Vin(s)

RA

R = 1
ωoC

R = 
1

ωoC

R = 1
ωoC

C = 1
ωoR

C = 1
ωoR

TBP(ωo) = 
4Q

2
 - 1

RB= 3- 2
Q

RA

Figure 1-21 - (a.) Positive feedback and (b.) negative feedback, second-order, bandpass

active filter realizations.

Example      1-12     -      Application      of     the      Second-Order,   Bandpass      Filters      of      Fig.   1-21

Use the realizations of Fig. 1-21 to realize a second-order, bandpass filter having

|TBP(ωo)| = 1 ,fo = 10 kHz,  and a Q = 1.  

Solution   

Let us pick C = 1 nF for the realization of Fig. 1-21a.  Thus R becomes

1/(2πx104)(10-9) =  15.915 kΩ.  If we pick RA = 10 kΩ, then RB = (3 - 2 )10 kΩ =

12.858 kΩ.  The gain at s = jωo is 2 and must be reduced using the same approach as

proposed in Ex. 1-10.

For the infinite gain realization of Fig. 1-21b, we again pick C = 1 nF.  R1 =

1/(2πx104)(10-9) =  15.915 kΩ.  R2 and R3 are both equal to R1 in this case.

It turns out that the output of A1 of the second-order, low-pass  circuit, designated as

Vo1(s), of Fig. 1-16 realizes a second-order, bandpass filter.  In order to increase the

versatility of the bandpass realization, we interchange the integrator (A2) and the inverter

(A3) to get a positive or negative bandpass response.  This modification is shown in Fig.

1-22.
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R1

R3R4

C1

Vin(s) R2

C2

A2

R

R

A3
Vout(s)A1 -Vout(s)

Figure 1-22 - The Tow-Thomas, second-order, bandpass active filter realization.

We can show that the transfer function of Fig. 1-22 is given by

Vout(s)
Vin(s)   = 

-s
R1C1

s2  +  
s

R4C1
 +  

1
R2R3C1C2

   . (1-71)

The relationships of Eq. (1-59) hold for Fig. 1-22 except that

|TBP(ωo)| = 
R4
R1

   . (1-72)

The design equations given in Eqs. (1-60) and (1-61) are valid along with

R1 = 
R4

|TBP(ωo)|
  = 

QR

|TBP(ωo)|
   . (1-73)

Example      1-13     -      Design      of     a      Second-Order,   Bandpass      Filter      using     the   Tow-Thomas   Filter 

Repeat Ex. 1-12 for Fig. 1-22.

Solution   

Selecting C = 1 nF results in R2 = R3 = 1/(2πx104)(10-9) = 15.915 kΩ from Eq. (1-

60).  Eq. (4.6-61) gives that R4 = R = 15.915 kΩ.  The unity value of |TBP(ωo)| and Q

substituted into Eq. (1-73) gives R1 = 15.915 kΩ.

Other Types of Second-Order Transfer Functions

There are two other types of second-order transfer functions filters which we have

not covered here.  They are the band-stop and allpass.  These transfer functions have the

same poles as the previous ones.  However, the zeros of the band-stop transfer function are

on the jω axis while the zeros of the allpass transfer function are quadrantally symmetrical

to the poles (they are mirror images of the poles in the right-half plane).  Both of these
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transfer functions can be implemented by a second-order biquadratic transfer function

whose transfer function is given as

TBQ(s) = 

K







s2  ± 





ωoz

Qz
s + ωo z

2

s2  + 





ωop

Qp
s + ωo p

2
   (1-74)

where K is a constant, ωoz is the zero frequency, Qz the zero-Q, ωop is the pole frequency,

and Qp the pole-Q.

A realization of Eq. (1-74) is called a biquad.  While there are many one and two

amplifier realizations of the biquad we shall consider only a modification of the Tow-

Thomas circuit shown in Fig. 1-23.  This circuit is identical to Fig. 1-16 except the two

resistors associated with the inverter stage (A3) have been designated as R5 and R6 and the

input is applied to all three stages through R7, R8, and  the parallel combination of C3 and

R1.

R1

R3

R4

C1

Vin(s)

R2

C2

A2 A3
Vout(s)

A1

R5

R6

R7 R8 C3

Figure 1-23 - Tow-Thomas biquad realization.

An analysis of Fig. 1-23 similar to that of Fig. 1-16 gives the transfer function as

TBQ(s) = 
Vout(s)
Vin(s)   = -



C3

C1 



s2 + s 



1

R1
 -  

R6
R3R8

1
C3

 +  
R6

R3R5R7C2C3

s2  +  
s

R4C1
 +  

R6
R2R3R5C1C2

  . (1-75)

We can equate Eq. (1-75) to Eq. (1-74) to get

ωz = 
R6

R3R5R7C2C3
       and     

1
Qz

  = 



1

R1
 -  

R6
R3R8

R3R5R7C2
R6C3

 (1-76)

and
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ωp = 
R6

R2R3R5C1C2
       and     

1
Qp

  = 
1
R4

R2R3R5C2
R6C1

   . (1-77)

We see that the Tow-Thomas biquad is capable of realizing all of the second-order filters

we have studied so far.  Table 1-1 shows the design equations for each of five different

second-order filters.

Type of Second-Order
Transfer Function

Element Constraints Tuning Elements

Low-pass
R1 = R8 = ∞
C3 = 0 R2, R4, R7

High-pass R1 = R7 = R8 = ∞ R2, R4 and C3*

Bandpass

R1 or R8 = ∞
(depending upon sign)
R7 = ∞
C3 = 0

R2, R4, and R1 or R8,
whichever is not infinite

Right-half plane zeros R1 = ∞ R2, R4, R7, R8, and C3*

jω axis zeros R1 = R8 = ∞ R2, R4, R7, and C3*

*Note that C3 may be fixed if the passband gain is a free parameter.

Table 1-1 - Design and tuning relationships for the biquadratic circuit of Fig. 1-23.

Example      1-14     -      Biquadratic,      Transfer   Function      Design      using the      Tow-Thomas      Biquad  

A normalized, low-pass filter has the following transfer function

Vout(s)
Vin(s)   = 

-(s2 + 4)

s2  +  2  s  +  1
   .

Use the Tow-Thomas biquad of Fig. 1-23 to realize this transfer function and denormalize

the frequency by 103 and the impedance by 105.

Solution   

The roots of the numerator are ±j2 which corresponds to the jω axis case.  Therefore,

we let R1 and R8 be infinity.  Let us also choose R5 = R6.  Eq. (1-75) reduces to
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Vout(s)
Vin(s)   = -



C3

C1 





s2  +  

1
R3R7C2C3

s2  +  
s

R4C1
 +  

1
R2R3C1C2

  .

Next, we choose R2 = R3 = R5 = R6 = 1Ω and C1 = C2 = C3 = 1 F.  This results in R4 =

1/ 2  = 0.7071 Ω and R7 = 1/4 = 0.25 Ω.  Denormalizing the frequency by 103 and the

impedance by 105 gives R2 = R3 = R5 = R6 = 100 kΩ, C1 = C2 = C3 = 10 nF, R4 = 70.71

kΩ, and R7 = 25 kΩ.

Tuning Active Filters

After the second-order active filter has been designed, the next step is the actual

implementation of the circuit.  Unfortunately, the values of resistors and capacitors

generally do not have the accuracy  required in the examples illustrated in this section.  As a

result, the final step in implementing a second-order active filter is tuning.  Tuning is the

process of adjusting the passive component values so that the desired frequency

performance is achieved.  Tuning requires the ability to vary the components which can be

done by component replacement or a variable component such as a potentiometer.

A general tuning procedure for most second-order active filters is outlined below.  It

is based on the magnitude of the frequency response of a low-pass filter.  The filter

parameters are assumed to be the pole frequency, fo, the pole Q, Q, and the gain, T(0).

1.) The component(s) which set(s) the parameter fo is(are) tuned by adjusting the

magnitude of the filter response to be T(0)/10 (or T(0) (dB) - 20dB) at 10fo.

2.) The component(s) which set(s) the parameter T(0) is(are) tuned by adjusting the

magnitude to T(0) at fo/10.

3.) The component(s) which set(s) the parameter Q is(are) tuned by adjusting the

magnitude of the peak (if there is one) to the value given by Fig. 1-6a.  If there is no

peaking, then adjust so that the magnitude at fo is correct (i.e. -3dB for Q = 0707).

The tuning procedure should follow in the order of steps 1 through 3 and may be repeated

if necessary.  One could also use the phase shift to help in the tuning of the filter.  The



ECE 6414: Continuous Time Filters (P.Allen) - Chapter 1 Page 1-34

concept of the above tuning procedure is easily adaptable to other types of second-order

filters.  

Summary

Various types of op amp realizations for second-order transfer functions have been

introduced in this section.  The complexity of these realizations is such that one must be

aware of the stability principles presented in the previous section.  In fact, the phase margin

of some of the realizations becomes smaller the higher the pole-Q.  

We have seen that the poles for all of the second-order realizations are essentially the

same and are determined by the pole frequency, ωo, and the pole-Q, Q.  It is the location of

the zeros that determines the performance of the second-order transfer function.

We have also shown complex poles can be realized by amplifiers and only resistors

and capacitors.  In addition, we showed how the step response of a second-order, low-

pass transfer function could be related to the phase margin of a negative feedback system.

Specific topics of importance include:

 • Complex poles allow the design of filter with fewer op amps and passive components

 • Feedback permits circuits containing only resistors, capacitors, and amplifiers to

achieve complex poles

 • If the step response of a feedback system has more than three rings (oscillations), the

phase margin is poor

 • The design equations for an active filter permit the unique design of all components

given ωo, Q (or ζ), and |TLP(0)|, |TBP(jωo)|, or |THP(∞)|.

 • The simplest circuits to analyze are those that have all passive components connected

between a defined potential (including ground), the negative input terminal of an ideal

op amp with the potential at the positive input terminal defined, or the output terminal of

an ideal op amp.


