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1 - SECOND-ORDER ACTIVE FILTERS

This section introduces circuits which have two zeros and two poles. The poles
determine the natura frequencies of a circuit. These natura frequencies become time
constants in the time-domain impulse response of circuit. The zeros determine the
characterigtics of the circuit in the frequency domain. For example, the zeros determine
whether the circuit has alow-pass, bandpass, high-pass, bandstop, or an allpass behavior.
The key difference between second-order and first-order circuits is that the roots of the
second-order circuit can be complex whereas al roots of first-order circuits are constrained
to thereal axis.

It will be shown in this section that thereis asignificant difference between cascaded,
first-order circuits and higher-order circuits such as second-order circuits. For example,
assume that a circuit isto pass signals up to 10 kHz with a gain variation within O dB to -3
dB. Above 20 kHz the circuit must have a gain that is less than -20 dB. Fig. 1-1 shows
this requirement. The magnitude response of the circuit must fall within the white areas
and stay out of the shaded areas. In order to achieve this specification, four, first-order
circuits are required. However, if we use second-order circuits which permit complex
roots, we can satisfy the specification with one second-order circuit cascaded with one
first-order circuit. Theresult will be the savings of one op amp and is due to the fact that
we can make some of the poles complex.

Gain Magnitude
A
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Figure 1-1 - Specification for alow-pass magnitude response in the frequency domain.
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Second-Order, Passive, Low-Pass Filters

If we arewilling to use resistors, inductances, and capacitors, then it is not necessary
to use op amps to achieve a second-order response and complex roots. Let us consider the
passive, second-order circuit of Fig. 1-2. Straight-forward analysis of this circuit using the

complex frequency variable, s, gives

RIsC R 1
Vo) = R+¥TC) sC _ LC
T(9= Vin(s) ~ R/sC ~ 10R ~ s 1 - (1-1)

SL+R+(1/SC:) SL%:&-FSCD-FSC 52+ RC + LC

We see that Eqg. (1-1) hastwo poles at

1 1 [0lp 4
PL, P2 =3RC 7 H‘TCD - IC (1-2)

and two zeros at infinity. The poleswill be complex if (4/LC) > (1/RC)2.
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Figure 1-2 - Passive, RLC, low-pass filter.

The standard form of a second-order, low-passfilter isgiven as

2
TLP(0)wg
TLp(s) = ool 5 (1-3)
s2+ Qs + Wo

where T p(0) isthe value of T_p(s) at dc, wyg isthe pole frequency, and Q is the pole Q or
the pole quality factor. The damping factor, ¢, which may be better known to the reader, is

given as

1
(=55 - (1-4)

The poles of Eq. (1-3) are
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“Wo . [l
PLP2= 720 *i QIN4Q*1 . (1-5)

The pole locations for the case where they are complex are shown on Fig. 1-3 and
graphicaly illustrate the pole frequency and pole Q. Equating Eg. (1-1) with Eq. (1-3)
givesAp=1, o = 1A/LC , and Q=RIL.
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Figure 1-3 - Location of the poles of a second-order system in the complex frequency
plane.

It isof interest to us to plot the locus of the poles, p1 and p2, as Q is varied from 0O to
. Theresulting plot is caled aroot locus plot and is shown in Fig. 1-4. There are two

loci on this plot, one corresponding to p1 and the other to p2. At Q=0, the poles are a O
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Figure 1-4 - Root-locus of the poles of Eq. (1-3) as Q isvaried from 0 to co.
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and c. As Q increases these poles move aong the red axis towards -wo. When Q=0.5,
the two poles are identical and are at -wo. As Q increases above 0.5, the poles leave the
real axis and become complex. AsQ increases further, one pole follows the upper quarter
circle and the other the lower quarter circle. Finaly, at Q = o, the poles are on the jw axis
at £j1.

Example 1-1 - Roots of aPassive RLC, Low-Pass Circuit

Find the roots of the passive RLC, low-pass circuit shownin Fig. 1-5.
Solution

First we must find the voltage transfer function. Using voltage division among the
three series components resultsin

1 1
R Vow(s) € IC 1012
~ Vin(s) ~ 1~ 1 7 s2+141x104s+1012
in sL+R+gE 52+%_3%+E P x104s+10

Equating this transfer function to Eq. (1-3) gives T p(0) = 1, wg = 106 rps, and Q=1//2 .
Substituting these values into Eqg. (1-5) gives
p1,p2 = -707,107 + j707,107 (rps).

R=141Q
——O
+ L=100pH| +
Vin(9) C=—L-Vou(9
10nF
o o

Figure 1-5 - A second-order low-pass RLC filter.

Standard, Second-Order, Low-Pass Transfer Function - Frequency Domain

The frequency response of the standard, second-order, low-pass transfer function can
be normalized and plotted for general application. The normdization of Eqg. (1-3) includes
both amplitude and frequency and is defined as
00
Léopl] 1
|TLR(0), ) 5n2 + %’M, 1

TLp

TLPn(sn) = (1-6)

where
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TLpn(S) thg))l (1-7)
d
) == (1-8)
S

The magnitude and phase response of the normalized, second-order, low-pass transfer
function is shown in Fig. 1-6 where Q is a parameter. In this figure, we see that Q
influences the frequency response in the vicinity of wo. If Q is greater than 4/2 , then the

normalized magnitude response has a peak value of

20dB¢
8 10}
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3 = -10dBf
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Zz £ 3048} \
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Figure 1-6 - (a.) Normalized magnitude and (b.) phase response of the standard second-

order, low-pass transfer function with Q as a parameter.
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Q

ITr(0oman)] = ——=— (1-9)
V! a2

a afreguency of

T
wmax=wo'\/1 2 (1-10)

Example 1-2 - Second-Order, L ow-Pass Transfer Function

Find the pole locations and [T (wmax)| and wmax of a second-order, low-pass transfer
function if wg =104 rpsand Q = 1.5.
Solution

From Eqg. (1-5) we get

p1,p2 = % T %%)W =-3,333 +£ 10,541 rps.

Egs. (1-9) and (1-10) give |T(tmax)| = 1.591 or 4.033 dB and wmax = 8,819 rps.
Standard, Second-Order, Low-Pass Transfer Function - Step Response

The unit step response of the standard, second-order, low-pass transfer function can
be found by multiplying Eqg. (1-3) by 1/sto get

TS TLrOw, TLRO)ot

Voul® =75 =0 o0 SEHPO(SHPD) (1-11)
32+ Q5 + Wol

The solution of the step response depends on whether the poles p1 and po are rea or
complex which can be determined from Q or . When Q > 0.5, the poles are complex and
the step response of the second-order, low-pass transfer function is sad to be
underdamped. When Q = 0.5, the step response is critically damped. When Q < 0.5, the
step response is overdamped.

The underdamped or criticaly damped solution (Q = 0.5) is of interest to us here.
For purposes of notation simplicity, we shall use the damping factor { (=1/2Q) in place of

the pole Q. Thusthe poles of the standard, second-order transfer function when { < 1 are

p1, P2 = -{Wo * j {woV4Q2%-1 . (1-12)
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Substituting these rootsinto EqQ. (1-11) and taking the inverse Laplace transform of V gut(S)
gives

'Z wot

0 [
-1 e
L [vout(s)]:vout(t)=TLp(0)EI -\/ltzzsin%\ll-@wotﬂp% (1-13)

where

E{/ _z20
Lo . (1-14)

Eulers formula has been used to combine a sine and cosine having the same arguments into
asingle sinusoid with a phase shift of ¢. Figure 1-7 shows the normalized step response
of the standard, second-order, low-pass transfer function for ¢ = 1, 0.707, 0.5, 0.25, and
0.1 which correspond to Q = 0.5, 0.707, 1, 2, and 5.

2

3 [ o
% 16[.Q=120=1. /" N\a Q=12=5

: Q=120=2
%_ 1.2} k/ Pl
8 F 9/— % ya—
B /% \;/
E o4l 7/ \Q= 12 = 0707
2 | Q=12=05

% 2 4 6 5 10

Normalized Time ()
Figure 1-7 - Normalize step response of a standard, low-pass, second-order transfer
function for Q = 5 (underdamped).

We see from the normalized step response of Fig. 1-7 that for Q > 0.5, the output
exceedsthefina valueof 1. This behavior is cdled overshoot. If the response has more
than one oscillation (ring), the first oscillation is used because it is aways the largest. If
we differentiate Eq. (1-13) and set the result equal to zero, we will find that the peak value

of thefirst oscillation occurs at
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. m
=
wo\1-¢?
Substituting this value into Eq. (1-13) gives
N
Vout(tp) =1 - 77— (1-16)
\/1 -2
Fig. 1-8 helpstoillustrate these results.
Normalized Amplitude
A
Vou(fp) |y ¢ ______
Te(0) Oversnoot |
10 fF---- ¢ - N -
0 : .
Wolp Normalized Time
Figure 1-8 - Normalized step response for Q = 2.
From Fig. 1-8, we define overshoot is defined as
Largest peak value - Final value exp(-1t
Overshoot = gest p Eina value = P . (2-17)
\/1—(2

In general we want the step response of a second-order, low-pass circuit to approach its
final value as quickly as possible. Therefore, high values of Q are undesirable because the
oscillations of the step response take along timeto die out. Shortly, we shall show how to
relate the overshoot of the step response of a feedback system to its stability. This will
provide a quick method of examining stability of feedback circuits in the time domain.

Example 1-3 - Step Response of a Second-Order, L ow-Pass Circuit

Find the tp and the overshoot of the second-order, low-pass circuit of Ex. 1-2.

Solution
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InEX. 1-2, 0o = 104 rpsand Q = 1.5. Q = 1.5 corresponds to { = 1/3. Substituting

3.1416
these valuesin Eq. (1-15) givest, = W =0.3332 ms. The overshoot is found

_ exp(-1.0472) , ,
from Eq. (1-17) and is—qgz2g = 0.3722. We typicaly multiply overshoot by 100

and express it as 37.22%.
How Does an Active-RC Filter Work?

An active-RC filter uses only resistors, capacitors, and amplifiers to achieve complex
poles. If we do not use inductors, how can complex poles be achieved? Once more,the
answer isfeedback. When feedback is applied around a system containing red roots, the
closed loop transfer function may contain complex roots. To illustrate how this occurs,
assume that A(s) of asingle-loop, negative feedback circuit (Fig. 4.3-2) can be written as

Aoy

A = (sron(stn)

(1-18)

Therefore, the poles of A(s) arereal and are located in the complex frequency plane at -y
and -wy. Now assume that frequency independent negative feedback of (%, is placed

around the amplifier. The closed-loop transfer function becomes

AR(9) = Al Ao up
YT 1AW T (stoor)(stor) + AgRowiw
_ Ao Aoty 1-19
"~ 2o +up)stonup(1+AoRy) (s+pr1)(stpr2) (1-19)
The poles of the closed-loop transfer function, A(s), are given as
oy 1
pr1. 2= -~ £ 2\ (1+2)? - dwgen(1+Aok) - (1-20)

We can see that the closed-loop poles can become complex if %5 is large enough. The

process by which feedback creates complex polesisillustrated by the root-locus of Fig. 1-9
for Eq. (1-22) where wp = 9w and Agl3y isvaried from 0 to co. We note that when A3 =

2, the poles are compl ex.
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Figure 1-9 - Normalized root-locus of the poles of Eq. (1-19) when Ayl is varied from 0
to o for the case where wp = 9w;.

While the root-locus of EqQ. (1-19) never crosses the jw axis, there are some cases
where feedback will cause the locus of the closed-loop poles to cross the jw axis. When
this occurs the feedback system isunstable. The root-locus of the poles is another way to
examine the stability of afeedback system.

Example 1-4 - lllustration of Achieving Complex Poles using Negative Feedback

Suppose the A(s) part of a single-loop, negative feedback circuit is shown in Fig. 1-
10. If negative feedback of 13, is applied around this amplifier, find the transfer function,
Vout(S)/Vin(s), and show whether or not complex poles can be obtained and under what

conditions.
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Figure 1-10 - Feedback circuit for Ex. 1-4.
Solution
First, we must find A(s). The two loop equations that describe the RC network are

written as

1
A&Vi(9 = TRegg (e - Telate)

and
0=- Ben® + RescizS

Solving these equations using Kramer's rule gives

Eh+ AoVi(s)U
sC (S)D

02 o0 Al
S
l2(s) = T 4 o lm 20 ol
Qe H  dseaiees oea
[5c R+scl
Because V qut(S) = 12(S)/sC, we can use the above to solve for A(S) = Vout(S)/Vi(s) as
Ao Ao
(s (sC)? (RC)?
A(S) = \(/)u(ts) “2, 3RS T 3s il

2= = Do L =
TC T2 STTRCT (RoR
Next, we substitute A(s) and (% into Eg. (4.3-1) to get

Ao
A9 (RC)2

A =
FS) = AR, = 2 o % + @(HAOBO)

The poles of the closed-loop transfer function, Ax(s), are given as
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45 1 [9 a
Pr1.Pf2 = RC T 2 (RC)Z - (RC)2\1+AOBO)

which can be complex if Agl3y = 1.25.
Time and Frequency Domain Perspective of Stability

We can now show a useful relationship between the step response and the stability of
afeedback system based on the above results. The key to this relationship is to assume that
we can approximate a third-order system by a second-order system. As a result, the
relationship we will develop is useful for determining the degree of stability (i.e. phase
margin) but not whether the circuit is stable or unstable.

Let us suppose that negative feedback has been used as illustrated above to create a
second-order, low-pass transfer function having complex poles. The closed-loop transfer

function can be written as

2 2
TLP(0)wg Ar(0)wy,
AR(S) =TLp(s) = 0 = > - (1-21)
52 + DG@ + (A)ZO SZ + (ZZwO)S + wo
Next, assumethat Risreal ([3) and multiply both side of Eq. (4.3-1) by 3, to get
A(9)R
ARSI = AR - (1-22)

Solve for the quantity, A(s)3 of Eq. (4.2-22) to get

AR, = % . (1-23)

AR - Bo

Finally, substitute Eq. (1-21) into EqQ. (1-23) resulting in

2
o AF(0)Bow,
AR = > = i > 7 . (1-24)
$24+2{WeS + Wq $24+2{WeS + Wg - AF(0)Rowy
ARO)w ’

When the loop gain is much greater than unity, we know that Ag(0) = 1/f3,. Therefore
Apr(0)3 = 1. Substituting this approximate relationship into Eq. (1-24) gives
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AFO)Rowh o

2 2 = :
S2 + 20000S + W - AR(O)Bowg  S°* 2{Wos

A(S)Ry = (1-25)

We have studied the stability properties of A(S)% in Sec. 4.3 and know that wogs
occurswhen |JA(jw)l3| = 1. Thus we can take the magnitude of Eq. (1-25) and set it equa

to oneto get
wods = Wo\V4Z4+1 - 222 (1-26)
The phase shift of A(jw)l3, can be expressed from Eq. (1-25) as
T [toodB L
ArglA(j =-5 -tanl : 1-27
rg[A(jwods)Ro] =-7 - tan EZT(A)ODD (1-27)

Substituting this value of phase shift of into the definition of phase margin below gives

It oI TT oogs O 2wl
Phase Margin = 11- & +tan-1 =5 -tan'l =tarlmd—0 . 1-28
MG =T (2 o ot 2 g et 2

Substituting for wogg in EQ. (1-28) gives

[l 2 H
Phase Margin = tan-133 ‘ = cosl%\/4z4+l - 2724 . (1-29)

AJaza+1 - 222F

Eq. (1-29) gives the phase margin of a negative feedback system used to implement a

second-order, low-pass transfer function in terms of the damping factor {. Previously, we
related the peak overshoot to step response of a second-order, low-pass transfer function to
the damping factor ¢ in Eq. (1-17). Egs. (1-17) and (1-29) alow us to relate the peak
overshoot of the step response of a second-order, low-pass system to its phase margin.
Figure 1-11 consist of aplot of Egs. (1-17) and (1-29) as a function of the damping factor

(. Thedotted line shows how to use the figure. For example, suppose that we observed a

10% overshoot to the step response.  We project horizontally to the overshoot curve to
find avaue of {. Next, project verticaly to the phase margin curve. Finally, projecting

horizontally gives the approximate equivalent phase margin.  For this example, a 10%
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overshoot corresponds to a ¢ of approximately 0.59 (Q = 0.85) which gives a phase
margin of approximately 58°.
100
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=
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Figure 1-11 - Graphical illustration of the relationship between peak overshoot and phase
margin of anegative feedback system.
Positive Feedback, Second-Order, Low-Pass, Active Filter?

The basic principle of active-RC filters is to use feedback to create complex poles
which are necessary for efficient filter applications. The feedback can be either positive or
negative as long as the circuit is not unstable. Fig. 1-12a shows one of the popular,
second-order, low-pass filters which employs positive feedback. The voltage amplifier has
avoltage gain of K and is assumed to have an infinite input resistance and a zero output
resistance. This voltage amplifier can be redlized by the noninverting voltage amplifier

shown in Fig. 1-12b.

T Thistype of filter is called Sallen and Key after the inventors who published their work in the often
referenced paper, R.P. Sallen and E.L. Key, "A Practical Method of Designing RC Active Filters," IRE
Trans. Circuit Theory, vol. CT-2, March 1955, pp. 74-85.
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—o

L oVout() —
\ Voltage Ra Re=(K-1)Ra
Amplifier

(@) (b))

Figure 1-12 - (a.) A second-order, low-pass active filter using positive feedback. (b.) The

Vin (S)

realization of the voltage amplifier K by the noninverting op amp configuration.
The closed-loop, voltage transfer function of Fig. 1-12a can be found (see Prob.
PA1-2) as

K
Vout(S) R1R3C2Ca
Vin(s) ~ 01 1 1 K 1
2+ STRyC; ¥ RiC; * RaC; - RaCa? RIRsCCa

(1-30)

In order to use this result, we must be able to express the component values of Fig. 1-12a
(R1, R3, Cy, C4, and K) in terms of the parameters of the standard, second-order, low-
pass transfer function (T_p(0), Q, and wy). These relationships are called design equations
and are the key to designing agiven activefilter. When equating the coefficients of Eq. (1-
30) to Eq. (1-3), three independent equationsresult. Unfortunately, there are 5 unknowns
and therefore a unique solution does not exist. This circumstance happens often in active
filter design. To solve this problem, the designer chooses as many additional constraints as
necessary to obtain a unique set of design equations.
In order to achieve aunique set of design equations for Fig. 1-12, we need two more

independent relationships. Let us choose these relationships as

R=R;=Rs3 (1-31)
and

C=Cy=Cy . (1-32)

Substituting these relationships into Eq. (1-30) gives
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K

\% RC)2
rCr o 39

s? + ERC% (RC)2

Now, if we equate Eq. (1-33) to Eqg. (1-3) we get three design equations which are

1

RC=— (1-34)
Wo
K=3. % (1-35)
and
K =TLp(0) . (1-36)

Unfortunately, our choice of equa resistors and equal capacitors resulted in two, rather
than three, independent design equations. This means we cannot simultaneously satisfy a
specification for Q and for T p(0). However, thisnot a red disadvantages and the design
equations are so simple that we shall cal them the equal-R, equal-C design equations.
Other design equations are given in the problems (see PR1-8 and PR1-9).

Example 1-5 - Application of the Equal-R, Equal-C Design Approach

Use the equal-R, equal-C design approach to design a second-order, low-pass filter
using Fig. 1-12aif Q = 0.707 and fo = 1 kHz. What isthe value of T p(0)?

Solution
First, we must pick a value of R or C in order to use Eq. (1-34). Let us sdlect C =
1 ..
1uF. ThereforeR = (6.2832x109)(10°6) ~ 159.2 Q. Thisis probably too small for R so

let us decrease our choice for C by 100 which givesC=C; = C2 = 0.01pF and R=R; =
R2 = 15.92 kQ.

Next, we design K from Eqg. (1-35). We seethat K = 3 - 1.4142 = 1.5858. Now
we have to design the resistors of Fig. 1-12b so that this gain is achieved. We see that Rg
=0.5858Rp. If we pick Ra =10kQ, then Rg = 5.858 kQ. We note that gains less than 1
or Q < 0.5 cannot be achieved without modification to Fig. 1-12b (see Prob. PA1-3) and
that Q < 0.333 isimpossible for Fig. 1-12ato realize.

The reason for the lower limit of Q of Fig. 1-12a noted in the above example can be

seen by letting all passive components equal unity and plotting the poles of Eq. (1-30) as K
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variesfrom 0 to 0. Theresultisshownin Fig. 1-13. We seethat K = 1, that the poles are
identical an on negative real axis a -1. If we use Fig. 1-12b to implement the voltage
amplifier, thisvalue of K will be the smallest possible corresponding to aQ = 0.5. For this
reason and the fact that first-order circuits can realize poles on the negative red axis, we
restrict Fig. 1-12afor the case of complex poles.

Imaginary Axis (rps)
k=3Aj1

K=0 K =00 K=5 Red

% - T o AXis

-2.6180 3 (rp9)
'Jl

Figure 1-13 - Root locus of the poles of Fig. 1-12a as a function of K.
Negative Feedback, Second-Order, Low-Pass, Active Filter

A second-order, low-pass active filter that uses negative feedback is shown in Fig. 1-
14. It is necessary to have one more passive element in the feedback network compared to
Fig. 1-12ain order to get sufficient open-loop phase shift to cause complex poles. The
voltage transfer function of this circuit can be found asf

-1
Vout(s) R1R3C4Cs

Ve® ", 01 1 15, 1 (1-37)
S+ SR1Cs T RCs * RaCan ™ RaR3CaCs

where we have assumed that the op amp isideal.

T Seefor example, Sec. 5.1 of Introduction to the Theory and Design of Active Filters, L.P. Huelsman and
P.E. Allen, McGraw-Hill Book Co., (1980).
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Vin(S)o—A :(>_ov0ut(s)
Csq

T° 0

Figure 1-14 - A negative feedback realization of a second-order, low-pass active filter.

This circuit brings forth an important principle concerning the analysis of op amp
circuits that should not go unnoticed. In general, the more op amps and the less passive
components in an op amp circuit, the eader is the analysis of the circuit. The easiest type
of op amp circuits to analyze are those where every passive eement is connected between
the following types of nodes. a node where the voltage is defined including ground, the
inverting input terminal of the op amp with the potential on the noninverting input termina
known, or the output of the op amp. We see that the node common to R1, Ry, Rz, and Cy
in Fig. 1-14 violates this principle. (Also the node common to R1, Cp, and R3 of Fig. 1-
12awasin violation of this principle.)

If we equate Eq. (1-37) to Eq. (1-3) we get the following three equations,

1
Wo = RoR3C4Cx

R2R3 R3 RoU
\/C4D R * VR: * \VRa (1-39)

R
TROI=R, - (1-40)

(1-38)

and

Again, we do not have a sufficient number of equations to be able to uniquely solve for dl
of the component values of the reaization of Fig. 1-14. If we choose the constraints, Cs =
Cand C4=4Q2%(1 + [T p(0)|)C, then aunique set of useful design equations result and are
given as,
Cs=C (1-41)
Ca=4Q2(1 +[TLp(0)))C (1-42)
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1
R T HO)leQC (43
R-> = 1 1-44
2= 20,0C (1-44)
and
: (1-45)

R 2 QCATLAO))
The following example will illustrate how to use these design equations for the second-
order, low-pass redlization of Fig. 1-14.
Example 1-6 - Design of A Negative Feedback, Second-Order, L ow-Pass Active Filter

Use the negative feedback, second-order, low-pass active filter of Fig. 1-14 to design
alow-pass filter having adc gain of -1, Q = 1/4/2, and f, = 100 Hz.
Solution

L et us use the design equations given in Egs. (1-41) through (1-45). Assume that Cs
= C =0.1pyF. Therefore, from EqQ. (1-42) we get C4 = (8)(0.5)C = 0.4 yF. The resistors

are designed using Eq. (1-43) for Ry which gives

V2

R1= (2)(1)(628.32)(10°7) =11.254 kQ .
Eq. (1-44) gives
Rz = : — =11.254kQ .
(2)(628.32)(10°7)
Finally, Eq. (1-45) gives
2
V2 = 5.627kQ .

R3=12)(628.32)(2)(10°7)
One of the advantages of the negative feedback, second-order, low-pass active filter
of Fig. 1-14 isthat it can be used to achieve gains greater or less than unity independently

of thevalues of wp or Q. Let usillustrate by the following example.

Example 1-7 - Design of A Second-Order, L ow-Pass Filter with aDC Gain of -100

Repeat the Ex. 1-6 except let the gain at dc be -100.
Solution



ECE 6414: Continuous Time Filters (P.Allen) - Chapter 1 Page 1-20

L et us choose asmaller capacitor in anticipation that the resistances will be otherwise
be smaller. Therefore, Cs = C = 0.01yF. C4 = (4)(0.5)(101)(108) = 2.02 yF. Rp is

found from Eq. (1-43) as

Ry = V2 = 1.125kQ
&= (2)(100)(628.32)(108) ~ '
Eq. (1-44) gives
Ry = V2 = = 11254 kQ .
(2)(628.32)(10°8)
Finally, Eq. (1-45) gives
2
V2 = 1114 kQ .

R3=12)(628.32)(101)(10°9)

Multiple Op Amp, Second-Order, Low-Pass, Active Filter
If oneiswilling to use more than one op amp, severa useful second-order, low-pass
realizations result. Figure 1-15 shows atwo-op amp positive feedback circuit. This circuit
hasalot of smilaritiesto Fig. 1-12aexcept Rz isisolated from Ry and Cp by the unity gain
buffer, A1. This circuit has a unity dc voltage gain and is easy to anayze because dl

passive elements are connected to a voltage-defined node.

The output voltage of the first op amp, Vo1(S), can be written in terms of Vou(s) and

Vin(s) by superposition. Theresultis

L oVout(9)

Figure 1-15 - A two-op amp, second-order, low-pass active filter realization.

D = [
Voi(s) = E_D\/m(s) + 1 DVout(S)
@1+SC2 %1+SC2|:|
DR = U
= B Vin(9 + E=Vau (1-46)
B’leczD %*Rlczm

The output voltage, Vout(S), can be expressed in terms of V1(S) as
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s O e O
Vou(s) = G—B/01<s) = B—D/ol(s) (1-47)

B3+sc4D [$*RaCa R3C4D

Now, substituting Eq. (1-47) into Eq. (1-46) and simplifying resultsin

Dm R11C2 ] s E
Vou(s) = [3 T [Win(s) + EI_[é/out(s) (1-48)
Srmca Hmos Gl
or
Voul T} + RS * R R Rl\F/zlggczl - (1-49)
Solving for the voltage transfer function gives the desired result which is
S
\\//?EE(;) _ |§1R3C2C4 - | (1.50)

s2 + RiC; T RiR3C,Ca

When we equate Eqg. (1-50) to Eq. (1-3) we get

1 R1Co
Wo = RiRaC,Ca + Q="\VRaC, » @d TLp(0) = (1-51)
In order to develop a set of design equations, we assume that C4 = mCp = mC and R3 =

nR1 = nR. Using these constraintsin Eg. (1-51) resultsin

__Q
m = woRC (1-52)
1
n= 0ORC (1-53)
Cs=mC (1-54)
and
R3=nR (1-55)

where R; = R and C, = C are chosen arbitrarily and T_p(0) is always unity.

Example 1-8 - Design of A Two-Op Amp, Second-order, L ow-Pass Active Filter

Use Fig. 1-15 to redlize the filter of Ex. 1-6 if thegainis +1.
Solution
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Let usarbitrarily pick C,=C = 0.1yF and R; = R = 10 kQ. Eq. (1-52) givesm =

1 V2

V2(628.32) (109 (107) . 1254 Ea. (1-53) gives n = (eog oo (10810 7)
Thus Egs. (1-54) and (1-55) give C4 = (1.1254)(0.1 yF) = 0.11254 pF and R3 =

= 2.2508.

(2.2508)(10 kQ) = 22.508 kQ.

Tow-Thomas (Resonator) Redlization

A second, multiple op amp, second-order, low-pass active filter redization is shown
in Fig. 1-16. This circuit will be called the Tow-Thomas filter and consists of a damped
inverting integrator, cascaded with another undamped integrator, and an inverter with
feedback applied around the entire structure. If it weren't for R4, the feedback loop of this
circuit would be unstable.  An advantage of this circuit, not found in any of the previous

realizations, isthat it offers independent tuning of the pole Q and the pole frequency.

R3
NV
WA
Vin(9) Rt I R R

o— AN\ Vout(S)
Voi(s) Voz(s) —°

Figure 1-16 - The Tow-Thomas, second-order, low-pass active filter realization.

The number of op amps in Fig. 1-16 insure that the analysis of this circuit will be
straight-forward. The output of op amp Al can be expressed by superposition between
Vin(s) and Vout(s) as

1
L] R4C
Vorld) = BTV in(9) - Beou(9' 2 (1-56)
4 + R4C1
By inspection we can write that
_Voui(s)
Vou(s) =sR,C, - (1-57)

Substituting Eq. (1-57) into Eq. (1-56) yields
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-1
Vout(S) R1R2C1Co
Vin(® ~ 2 S 1 ' (1-58)
S° T RC1 Y RIRsCIiC,

Equating Eq. (1-58) to Eq. (1-3) gives

1 1 1 RRG R e
wO_‘\/RzRgchz ' Q TRy C1 yand [TLp( )|—R1 . (1-59)

If welet R, = Rz =R and C1 = Cy = C, then the design equations become

_1 S 160
= oC or ~ oR (1-60)
R4=0OR (1-61)
and
R3 R
R1=TTLR0)] = TTLRO)] - (1-62)

We note that a bandpass redlization isaso available at V op and that this realization does not
have the negative sign of Eq. (1-58).

Example 1-9 - Design of the Tow-Thomas, Second-Order, L ow-Pass Active Filter

Apply the circuit of Fig. 1-16 to Ex. 1-7.
Solution
The specifications of thefilter of Ex. 1-7 were adc gain of -100, wg of 2001t rps, and

NP : ppo— Y
aQof 0.707. Choosing C = 0.1yF givesR> = R3 =R = (62832)(107) 15.915 kQ

using Eq. (1-60). Eg. (1-61) givesRq = (0.707)(15.915 kQ) = 11.254 kQ. Finaly, Eq.
(1-62) gives R1 = (15.195 kQ)/(100) = 151.95. It might be worthwhile to go back and

choose C = 0.01pF in order to raise all resistors by avaue of 10.
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High-Pass, Second-Order, Active Filters

A second useful second-order transfer function is the high-pass transfer function.
This transfer function is exactly like the second-order, low-pass transfer function except
that both zeros are at the origin of the complex frequency plane. Therefore, we can write

the standard, second-order, high-pass transfer function as

THp(e0)s?
T =0 (1-63)
s + [JQI$ + Wo

where Tp() is equa to THp(s) a w = «. The poles of the second-order high-pass

transfer function are given by Eq. (1-5) and illustrated by Fig. 1-3.
We can normalize Eq. (1-63) aswe did for T_p(s) to get

S0
THPm)OD 52
THpn (Sn) = = Sn (1-64)
THR() sn2+ g+ 1
where
THp(s
Tpn(9) = o (1-65)
| THP()|
and
= (1-66)
Sn w

The normalized frequency response of the standard, second-order, high-pass transfer
function is shown in Fig. 1-17. We note that the slopes of the magnitudes as frequency
becomes much greater or much less than wy is 20 dB/dec. rather than -40 dB/dec. of the
low-pass, second-order transfer function. This is because one pole is causing the high-

frequency roll-off while the other poleis causing the low-frequency roll-off.
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order, high-pass transfer function with Q as a parameter.

A readlization for a second-order, high-pass transfer function can be derived from Fig.
1-12a and Fig. 1-14 by simply by replacing pertinent resistors with capacitors and the
capacitors with resistors. The resulting second-order, high-pass positive feedback and

negative feedback realizations are shown in Fig. 1-18. Example 1-10 will illustrate their

application to high-passfilter design.
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C :i —_ 1 AA"A%
WR C=—%
Vm (S) Il ” %R (A)OC VOUt(S) C2: _C
o | Il |THP(oo)|:
Vin(9) | C
— 1 n V
| THPEo) o3 é) Ra ) A

Figure 1-18 - (a.) Positive feedback and (b.) negative feedback, second-order, high-pass
activefilter reglization.

Example 1-10 - Design of High-Pass Positive Feedback and Negative Feedback Filters

Use the redlizations of Fig. 1-18 to redize a second-order, high-pass filter having
[THp(0)| =1 ,fo=10kHz, andaQ = 1.

Solution

If we pick C =1 nF of Fig. 1-18a, then the resistors are R = R4 = R = 15.915 kQ.
Because Q = 1, Rg = Ra. Let uschoose Ra = Rg = 10 kQ. We note that [THp(e)| = (4//2
)-1 = 1.8284 which does not meet the specification. In order to meet the specification, we
can add a resistive attenuator at the output consisting of a 8.284 kQ and 10 kQ resistor.
The only disadvantage of this solution is that the output resistance of the filter is now 10
kQ. If thisis unacceptable, then the use of an op amp buffer will solve the problem.

For the negative feedback redization of Fig. 1-18b, we again select C = 1 nF.
Because [THp(®)| = 1, Co = C = 1nF dso. R4 = 15.915 kQ/3 = 5305 kQ. Rs =
(2)(2)15.915 kQ or 63.662 kQ.

Figure 1-19 shows how to modify the second-order Tow-Thomas circuit to redize a
second-order, high-pass transfer function. Both noninverting and inverting realizations are

possiblein Fig. 1-19.
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Figure 1-19 - The Tow-Thomas second-order, high-pass active filter realization.

Example 1-11 - Design of A High-Pass Filter using the Tow-Thomas of Fig. 1-19

Repeat Ex. 1-10 using the Tow-Thomas second-order, high-pass active filter
realization of Fig. 1-19.

Solution

Picking R = 10 kQ, the formulas on Fig. 1-19 give C = 1/(2rx10%)(10%) = 1.5915
nF, C1 = C = 1.5915 nF, and R4 = R = 10 kQ.
Bandpass, Second-Order, Active Filters
Another useful second-order transfer function is the bandpass transfer function.
This transfer function is exactly like the second-order, low-pass transfer function except
that one zero is at the origin of the complex frequency plane and the other zero is a infinity.

Therefore, we can write the standard, second-order, bandpass transfer function as

Tep(s) = (1-67)

where Tgp(wp) isequal to Tep(s) at w = wp. Fig. 1-3 aso holds for the poles of Tgp(s).
We can normalize Eq. (1-63) aswedid for T p(s) and Typ(S) to get

oSO Sn
TBPme o]
Tepn (Sn) = = S (1-68)
TBR(Wo)]  sp2+ 5+ 1
where
Tp(S)
T Sy=—"" 1-69
BPn(S) Torla) (1-69)

and
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The normalized frequency response of the standard, second-order, bandpass transfer

function isshown in Fig. 1-20. We note that the slopes of the magnitudes as frequency

0 dBg =)
o -5 dBf- Q= 070(% NS
2 = -10 B PSR NNSNNN
B3 158 2 AV S NN
<
= E 20ds SR
B3 marl . 32 NG
gE - / Q=1 \
EE -30 dB/ <
Z  -3508
40 OlB01 , 1 10
Normalized Frequency (w/oy)
0 (a)

45|

Q=5

Phase Shift (Degrees)
o

-45].

N—

90l
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10

Normalized Frequency (w/oy)
(b.)

Figure 1-20 - (a.) Normalized magnitude and (b.) phase response of the standard second-

order, bandpass transfer function with Q as a parameter.

becomes much greater or much less than wy is +20 dB/dec. rather than -40 dB/dec. of the

low-pass, second-order transfer function. This is because one pole is causing the high-

frequency roll-off while the other poleis causing the low-frequency roll-off.

Fig. 1-21a shows a positive feedback, second-order, bandpass redlization using the

concepts of Fig. 1-12a. Fig. 1-21b illustrates a second-order, bandpass filter using the
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negative feedback approach of Fig. 1-14. In order to save space and summarize the results

briefly, a set of design equations are shown on the circuits.

_ Q
Tep(o) =12 - 1 " Teplu)onC
Vin(s) v =_—C
R=_1_ ! in() Vout(S)
wpC c —o
_ 1 j—
C=aR / Lo
- v (2Q2 - | Tap(wn)) sC
(b)

Figure 1-21 - (a.) Positive feedback and (b.) negative feedback, second-order, bandpass
activefilter redlizations.

Example 1-12 - Application of the Second-Order, Bandpass Filters of Fig. 1-21

Use the redlizations of Fig. 1-21 to redlize a second-order, bandpass filter having
[Tep(wo)| =1 ,fo=10kHz, andaQ = 1.

Solution

Let us pick C = 1 nF for the redization of Fig. 1-21a. Thus R becomes
1/(2rx10%)(10°9) = 15.915 kQ. If we pick Ra = 10 kQ, then Rg = (3 - ¥/2 )10 kQ =
12.858 kQ. Thegana s = jwy is 2 and must be reduced using the same approach as
proposed in Ex. 1-10.

For the infinite gain redlization of Fig. 1-21b, we again pick C = 1 nF. Rp =
1/(2rx104)(10°9) = 15.915kQ. Ry and R3 are both equal to R7 in this case.

It turns out that the output of A1 of the second-order, low-pass circuit, designated as
Vo1(s), of Fig. 1-16 redizes a second-order, bandpass filter. In order to increase the
versdtility of the bandpass redlization, we interchange the integrator (A2) and the inverter
(A3) to get a positive or negative bandpass response.  This modification is shown in Fig.
1-22.
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Figure 1-22 - The Tow-Thomas, second-order, bandpass active filter realization.
We can show that the transfer function of Fig. 1-22 is given by
-S

Vout(s) R1C1
Vin(s) ~

- — (1-71)
S2 ¥ RyC1 * RoRCiC,

The relationships of Eq. (1-59) hold for Fig. 1-22 except that

R4
Ter(wo) =Ry - (1-72)
The design equations given in Egs. (1-60) and (1-61) are valid along with

__Re QR
~ [TeR(wo)l — [TeP(wo)l

Example 1-13 - Design of a Second-Order, Bandpass Filter using the Tow-Thomas Filter

Ry (1-73)

Repeat Ex. 1-12 for Fig. 1-22.
Solution

Selecting C = 1 nF resultsin Ry = Rz = 1/(2mx104)(10-9) = 15.915 kQ from Eq. (1-
60). EQ. (4.6-61) givesthat R4 = R = 15.915 kQ. The unity value of [Tgp(yg)| and Q
substituted into Eqg. (1-73) gives R1 = 15.915 kQ.
Other Types of Second-Order Transfer Functions

There are two other types of second-order transfer functions filters which we have
not covered here. They are the band-stop and allpass. These transfer functions have the
same poles as the previous ones. However, the zeros of the band-stop transfer function are
on the jw axiswhile the zeros of the allpass transfer function are quadrantaly symmetrical

to the poles (they are mirror images of the poles in the right-half plane). Both of these
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transfer functions can be implemented by a second-order biquadratic transfer function

whose transfer function is given as

TBQ(s) = (1-74)

where K is aconstant, wy; is the zero frequency, Q; the zero-Q, wyp is the pole frequency,
and Qp the pole-Q.

A redization of Eq. (1-74) is cdled a biquad. While there are many one and two
amplifier redlizations of the biquad we shall consider only a modification of the Tow-
Thomas circuit shown in Fig. 1-23. This circuit is identica to Fig. 1-16 except the two
resistors associated with the inverter stage (A3) have been designated as Rs and Rg and the
input is applied to all three stagesthrough R7, Rg, and the parald combination of C3 and
R1.

Ro R4

Vout(s)
Lo

Figure 1-23 - Tow-Thomas biquad realization.

An analysis of Fig. 1-23 similar to that of Fig. 1-16 gives the transfer function as

,, L Rel  Re
Vouls @_3[% SCR1 - RaRgC3 * R3RsR7CC3
TBQ(9) = Vi (9 —-@1[% , S Re E (1-75)
S¢ * R4C1 T RoR3RsC1Co

We can equate Eq. (1-75) to Eq. (1-74) to get

[ Re 1 . _Re g [ReRsRCo
=" \|RaReR7C,C3 A G, Ry " RaRe(N_ ReC3 (1-76)

and
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_ Re 1 1, [RoR3RsCo
“p =\ R2R3RsC1C2 and Qp R4 ReC1 : (1-77)

We see that the Tow-Thomas biquad is capable of redlizing all of the second-order filters
we have studied so far. Table 1-1 shows the design equations for each of five different

second-order filters.

Type of Second-Order Element Constraints Tuning Elements
Transfer Function
L ow-pass gé z 58 - R2, R4, R7
High-pass R1=R7=Rg=o Ro, R4 and C3*
Ri10r Rg =
(dependingupon sign) [ R2, R4, and R1 or Rg,
Bandpass R7= o whichever is not infinite
C3=0
Right-half plane zeros R = oo Ro, R4, R7, Rg, and C3*
jowaxis zeros Ri=Rg= R2, R4, R7, and C3*

*Note that C3 may be fixed if the passband gain is afree parameter.
Table 1-1 - Design and tuning relationships for the biquadratic circuit of Fig. 1-23.

Example 1-14 - Biquadratic, Transfer Function Design using the Tow-Thomas Biquad

A normalized, low-passfilter has the following transfer function

Vou()  -(s?2+ 4)
Vin( "s2 +42 s+ 1

Use the Tow-Thomas biquad of Fig. 1-23 to redlize this transfer function and denormalize

the frequency by 103 and the impedance by 10°.

Solution

The roots of the numerator are +j2 which corresponds to the jw axis case. Therefore,

we let R1 and Rg be infinity. Let usalso choose Rs = Rg. EQ. (1-75) reduces to
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242 [

Vou( €3 5 ¥ ReR7CC3 0
Vin(s) ~ €1 N S N 1 '
RiC1 + RoRaCiCL)

Next, wechoose Ro =R3=R5=Rg=1QandC;=Co =C3=1F. Thisresultsin Ry =
1A/2 = 0.7071 Q and R7 = 1/4 = 0.25 Q. Denormdizing the frequency by 103 and the
impedance by 10° givesRy = R3=Rg=Rg=100kQ, C; =C»=C3=10nF, R4 = 70.71
kQ, and R7 = 25 kQ.
Tuning Active Filters
After the second-order active filter has been designed, the next step is the actud
implementation of the circuit. Unfortunately, the values of resistors and capacitors
generally do not have the accuracy required in the examplesillustrated in thissection. As a
result, the fina step in implementing a second-order active filter is tuning. Tuning is the
process of adjusting the passive component values so that the desired frequency
performanceis achieved. Tuning requiresthe ability to vary the components which can be
done by component replacement or a variable component such as a potentiometer.
A general tuning procedure for most second-order active filters is outlined below. It
is based on the magnitude of the frequency response of a low-pass filter. The filter
parameters are assumed to be the pole frequency, fo, the pole Q, Q, and the gain, T(0).
1.) The component(s) which set(s) the parameter fo is(are) tuned by adjusting the
magnitude of the filter response to be T(0)/10 (or T(0) (dB) - 20dB) at 10f,.
2.) The component(s) which set(s) the parameter T(0) is(are) tuned by adjusting the
magnitude to T(0) at fo/10.
3.) The component(s) which set(s) the parameter Q is(are) tuned by adjusting the
magnitude of the peak (if there is one) to the value given by Fig. 1-6a. If there is no
peaking, then adjust so that the magnitude at fq is correct (i.e. -3dB for Q = 0707).

The tuning procedure should follow in the order of steps 1 through 3 and may be repeated

if necessary. One could aso use the phase shift to help in the tuning of the filter. The
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concept of the above tuning procedure is easily adaptable to other types of second-order
filters.
Summary

Various types of op amp redizations for second-order transfer functions have been
introduced in this section. The complexity of these redlizations is such that one must be
aware of the stability principles presented in the previous section. In fact, the phase margin
of some of the realizations becomes smaller the higher the pole-Q.

We have seen that the polesfor al of the second-order redlizations are essentialy the
same and are determined by the pole frequency, wo, and the pole-Q, Q. Itis the location of
the zeros that determines the performance of the second-order transfer function.

We have aso shown complex poles can be realized by amplifiers and only resistors
and capacitors. In addition, we showed how the step response of a second-order, low-
pass transfer function could be related to the phase margin of a negative feedback system.

Specific topics of importance include:

» Complex polesalow the design of filter with fewer op amps and passive components

* Feedback permits circuits containing only resistors, capacitors, and amplifiers to
achieve complex poles

» If the step response of a feedback system has more than three rings (oscillations), the
phase margin is poor

» The design equations for an active filter permit the unique design of al components
given wo, Q (or ¢), and [TLR(0)], [TeR(jwo)l, or [THP(0)].

» The smplest circuits to analyze are those that have al passive components connected
between a defined potentia (including ground), the negative input termina of an idea
op amp with the potential at the positive input terminal defined, or the output terminal of

an ideal op amp.



