
EE101: ADC and DAC circuits

M. B. Patil
mbpatil@ee.iitb.ac.in

www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

M. B. Patil, IIT Bombay



Introduction

* Real signals (e.g., a voltage measured with a thermocouple or a speech signal
recorded with a microphone) are analog quantities, varying continuously with
time.

* Digital format offers several advantages: digital signal processing, storage, use of
computers, robust transmission, etc.

* An ADC (Analog-to-Digital Converter) is used to convert an analog signal to the
digital format.

* The reverse conversion (from digital to analog) is also required. For example,
music stored in a DVD in digital format must be converted to an analog voltage
for playing out on a speaker.

* A DAC (Digital-to-Analog Converter) is used to convert a digital signal to the
analog format.
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* For a 4-bit DAC, with input S3S2S1S0, the output voltage is
VA = K

[
(S3 × 23) + (S2 × 22) + (S1 × 21) + (S0 × 20)

]
.

In general, VA = K
∑N−1

0 Sk2k .

* K is proportional to the reference voltage VR . Its value depends on how the
DAC is implemented.
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DAC using binary-weighted resistors
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* If the input bit Sk is 1, Ak gets connected to VR ; else, it gets connected to ground.
→ V (Ak ) = Sk × VR .

* Since the inverting terminal of the Op Amp is at virtual ground,

Ik =
V (Ak )− 0

Rk

=
Sk VR

Rk

.

* Using Rk = 2N−1 R/2k , we get I =
VR

2N−1R

N−1∑
0

Sk × 2k (N = 4 here).

* The output voltage is Vo = −Rf I = −VR
Rf

2N−1R

N−1∑
0

Sk × 2k
.
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DAC using binary-weighted resistors: Example (from Gopalan)
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* Consider an 8-bit DAC with VR = 5 V. What is the smallest value of R which will limit the
current drawn from the supply (VR ) to 10 mA?

Maximum current is drawn from VR when the input is 1111 1111.
→ All nodes A0 to A7 get connected to VR .

→ 10 mA =
VR

R
+

VR

2R
+ · · · + VR

27R
=

1
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(
20 + 21 + · · · + 27

)
=

1
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(
28 − 1

)
=

255

128
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R

→ Rmin =
5 V

10 mA
× 255

128
= 996 Ω .
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* If Rf = R, what is the resolution (i.e., ∆VA corresponding to the input LSB changing from 0
to 1 with other input bits constant)?
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* If the resistors are specified to have a tolerance of 1 %, what is the range of |VA|
corresponding to input 1111 1111?

|VA| is maximum when (a) currents I0, I1, etc. assume their maximum values, with

Rk = R0
k × (1− 0.01) and (b)Rf is maximum, Rf = R0

f × (1 + 0.01).
(The superscript ‘0’ denotes nominal value.)

→ |VA|max
11111111 = VR ×

255

128
× Rf

R

∣∣∣∣max

= 5× 255

128
× 1.01

0.99
= 10.162 V.

Similarly, |VA|min
11111111 = 5× 255

128
× 0.99

1.01
= 9.764 V.
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DAC using binary-weighted resistors: Example (from Gopalan)
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* ∆VA for input 1111 1111 = 10.162− 9.764 ≈ 0.4 V which is larger than the resolution
(0.039 V) of the DAC. This situation is not acceptable.

* The output voltage variation can be reduced by using resistors with a smaller tolerance.
However, it is difficult to fabricate an IC with widely varying resistance values (from R to

2N−1R) and each with a small enough tolerance.
→ use R − 2R ladder network instead.
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R-2R ladder network

2R

R

A0

2R

R

A1

2R

MSBLSB

else, it is connected to ground.

2R

A3

R

A2

2R

Node Ak is connected to VR if input bit Sk is 1;

2R

S0VR S1VR S2VR S3VR

2R

R

2R

R

2R

R

2R

The original network is equivalent to
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R-2R ladder network: Thevenin resistance

R R R
2R 2R2R2R2R

R R R
2R2R2RR

R R
2R2RR

R
2RR RTh = R
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R-2R ladder network: VTh for S0 = 1

RR R

VR

2R 2R 2R 2R 2R

RR R

VR

2

2RR 2R 2R

VR

4

RR

2R 2RR

VR

8

R

2RR

VTh =
VR

16
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R-2R ladder network: VTh for S2 = 1
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R-2R ladder network: VTh for S3 = 1
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R-2R ladder network: RTh and VTh

2R RTh

VTh

S0VR S1VR S2VR S3VR

2R

R

2R

R

2R

R

2R

* RTh = R .

* VTh = V
(S0)
Th + V

(S1)
Th + V

(S2)
Th + V

(S3)
Th

=
VR

16

[
S0 20 + S1 21 + S2 22 + S3 23

]
.

* We can use the R-2R ladder network and an Op Amp
to make up a DAC → next slide.
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DAC with R-2R ladder

Vo

Rf

2R Vo

Rf

VTh

RTh

S3VRS2VRS1VRS0VR

2R

R

2R

R

2R

R

2R

* Vo = − Rf

RTh

VTh = − Rf

RTh

VR

16

[
S0 20 + S1 21 + S2 22 + S3 23

]
.

* For an N-bit DAC, Vo = − Rf

RTh

VTh = − Rf

RTh

VR

2N

N−1∑
0

Sk2k .

* 6- to 20-bit DACs based on the R-2R ladder network are commercially available in
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DAC: home work

Combination of weighted−resistor and R−2R ladder networks

r

Rf

Vo

S1VR S2VR S3VR S4VR S5VR S6VR S7VR

8R 4R 2R R 8R 4R 2R R

S0VR

* Find the valur of r for the circuit to work as a regular (i.e., binary to analog) DAC.

* Find the valur of r for the circuit to work as a BCD to analog DAC.
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DAC: settling time

D0

D1

D2
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N-bit
digital
input

analog
output

ground

value
initial

value
final

VA

t

* When there is a change in the input binary number, the output VA takes a finite time to
settle to the new value.

* The finite settling time arises because of stray capacitances and switching delays of the
semiconductor devices used within the DAC chip.

* Example: 500 ns to 0.2 % of full scale.

M. B. Patil, IIT Bombay



DAC: settling time

D0

D1

D2

DN−1

VA

VR

N-bit
digital
input

analog
output

ground

value
initial

value
final

VA

t

* When there is a change in the input binary number, the output VA takes a finite time to
settle to the new value.

* The finite settling time arises because of stray capacitances and switching delays of the
semiconductor devices used within the DAC chip.

* Example: 500 ns to 0.2 % of full scale.

M. B. Patil, IIT Bombay



DAC: settling time

D0

D1

D2

DN−1

VA

VR

N-bit
digital
input

analog
output

ground

value
initial

value
final

VA

t

* When there is a change in the input binary number, the output VA takes a finite time to
settle to the new value.

* The finite settling time arises because of stray capacitances and switching delays of the
semiconductor devices used within the DAC chip.

* Example: 500 ns to 0.2 % of full scale.

M. B. Patil, IIT Bombay



DAC: settling time

D0

D1

D2

DN−1

VA

VR

N-bit
digital
input

analog
output

ground

value
initial

value
final

VA

t

* When there is a change in the input binary number, the output VA takes a finite time to
settle to the new value.

* The finite settling time arises because of stray capacitances and switching delays of the
semiconductor devices used within the DAC chip.

* Example: 500 ns to 0.2 % of full scale.

M. B. Patil, IIT Bombay



ADC: introduction

3−bit ADC
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* If the input VA is in the range V k
R < VA < V k+1

R , the output is the binary
number corresponding to the integer k. For example, for VA =V ′A, the output is
100.

* We may think of each voltage interval (corresponding to 000, 001, etc.) as a
“bin.” In the above example, the input voltage V ′A falls in the 100 bin; therefore,
the output of the ADC would be 100.

* Note that, for an N-bit ADC, there would be 2N bins.
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* The basic idea behind an ADC is simple:

- Generate reference voltages V 1
R , V 2

R , etc.

- Compare the input VA with each of V i
R to figure out which bin it

belongs to.
- If VA belongs to bin k (i.e., V k

R < VA < V k+1
R ), convert k to the

binary format.

* A “parallel” ADC does exactly that → next slide.
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3-bit parallel (flash) ADC
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3-bit parallel (flash) ADC
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* Practical difficulty: As the input changes, the comparator outputs (C0, C1, etc.) may not
settle to their new values at the same time.
→ ADC output will depend on when we sample it.

* Add D flip-flops. Allow sifficient time (between the change in VA and the active clock edge)
so that the comprator outputs have already settled to their new values before they get
latched in.
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Parallel (flash) ADC

* In the parallel (flash) ADC, the conversion gets done “in parallel,” since all
comparators operate on the same input voltage.

* Conversion time is governed only by the comparator response time → fast
conversion (hence the name “flash” converter).

* Flash ADCs to handle 500 million analog samples per second are commercially
available.

* 2N comparators are required for N-bit ADC → generally limited to 8 bits.
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ADC: sampling of input signal

S
C

clock
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Cbuffer

buffer

clock

clock

Va Vs → to ADC

t

t

Va

Vs

Vs

Va

Tc

* An ADC typically operates on a “sampled” input signal (Vs (t) in the figure) which is
derived from the continuously varying input signal (Va(t) in the figure) with a
“sample-and-hold” (S/H) circuit.

* The S/H circuit samples the input signal Va(t) at uniform intervals of duration Tc , the
clock period.

* When the clock goes high, switch S (e.g., a FET or a CMOS pass gate) is closed, and the
capacitor C gets charged to the signal voltage at that time. When the clock goes low,
switch S is turned off, and C holds the voltage constant, as desired.

* Op Amp buffers can be used to minimise loading effects.
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Successive Approximation ADC

4−bit DAC

Comparator
VA

C

VDAC
o

D1 D0D3 D2

* Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by

successively setting the four bits as follows.

- Start with D3D2D1D0 = 0000, I= 3.

- Set D[I] = 1 (keep other bits unchanged).

- If VDAC
o > VA (i.e., C = 0), set D[I] = 0; else, keep D[I] = 1.

- I← I− 1; go to step 1.

* At the end of four steps, the digital output is given by D3D2D1D0.
Example → next slide.
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Successive Approximation ADC

5−bit DAC

1 2 3 4 5 step

D4 = 1
D3 = 0
D2 = 1
D1 = 1
D0 = 1

→ reset D0

C = 0

D4 = 1
D3 = 0
D2 = 1
D1 = 1
D0 = 0

C = 1

D4 = 1
D3 = 1
D2 = 0
D1 = 0
D0 = 0

→ reset D3

C = 0

D4 = 1
D3 = 0
D2 = 0
D1 = 0
D0 = 0

C = 1

D4 = 1
D3 = 0
D2 = 1
D1 = 0
D0 = 0

C = 1

10 k

20 k

30 k

16 k

24 k

20 k

22 k

23 k

VR

(Note: k ∝ VR)

CVA

VDAC
o

VA

D1 D0D3 D2D4

VDAC
o

* At the end of the 5th step, we know that the input voltage corresponds to 10110.

* For the digital representation to be accurate up to ± 1
2 LSB, ∆V corresponding to 1

2 LSB is
added to VA (see [Taub]).
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Successive Approximation ADC

Control
logic

digital

output

N−bit SAR

N−bit DAC

Successive

Approximation

Register

Comparator

S/H

VR

VDAC
o

VA

* Each step (setting SAR bits, comparison of VA and VDAC
o ) is performed in one clock cycle

→ conversion time is N cycles, irrespective of the input voltage value VA.

* S. A. ADCs with built-in or external S/H (sample-and-hold) are available for 8- to 16-bit
resolution and conversion times of a few µsec to tens of µsec.

* Useful for medium-speed applications such as speech transmission with PCM.
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Counting ADC

digital

output

N−bit DAC

clockreset

clock

conversion
start N−bit Counter

Comparator

S/H
VDAC
o

VDAC
o

t
C

Tc

VR

VA
Tc

VA

* The “start conversion” signal clears the counter; counting begins, and VDAC
o increases with

each clock cycle.

* When VDAC
o exceeds VA, C becomes 0, and counting stops.

* Simple scheme, but (a) conversion time depends on VA, (b) slow (takes 2N clock cycles in
the worst case) → tracking ADC (next slide)
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Tracking ADC

digital

output

clock
N−bit Counter

N−bit DAC

Comparator

Up/Down

S/H t

VDAC
o

C

VDAC
o

Tc

Tc

VA

VR

VA

* The counter counts up if VDAC
o < VA; else, it counts down.

* If VA changes, the counter does not need to start from 000· · · 0, so the conversion time is
less than that required by a counting ADC.

* used in low-cost, low-speed applications, e.g., measuring output from a temperature sensor
or a strain gauge
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Dual-slope ADC

slope=− VA

RC

slope=− VR

RC
R

C

Vo=− 1

RC

∫
Vi dt

0
T1 T2

t

−V1

Vi

VA

VR

S

* t = 0: reset integrator output Vo to 0 V by closing S momentarily.

* Integrate VA (voltage to be converted to digital format, assumed to be positive) for a fixed
interval T1.

* At t = T1, integrator output reaches −V1 =−VA
T1

RC
.

* Now apply a reference voltage VR (assumed to be negative, with |VR | > VA), and integrate
until Vo reaches 0 V.

* Since V1 = VA
T1

RC
= |VR |

T2

RC
, we have T2 = T1

VA

|VR |
→ T2 gives a measure of VA.

* In the dual-slope ADC, a counter output – which is proportional to T2 – provides the desired
digital output.
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Dual-slope ADC

digital output

N−bit Counter

integrator

clockoverflow

clock

comparator

SPDT

A

B

slope=− VA

RC

slope=− VR

RC

0
T2

t

−V1

T1 = 2N Tc

R

C

Vo

Tc

VA

VR

reset

* Start: counter reset to 000· · · 0, SPDT in position A.

* Counter counts up to 2N at which point the overflow flag becomes 1, and SPDT switches to
position B → T1 = 2N Tc where Tc is the clock period.

* The counter starts counting again from 000· · · 0, and stops counting when Vo crosses 0 V.
The counter output gives T2 in binary format.
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