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Common-mode and differential-mode voltages

Vee
R, Re
v Amplifier — V,
V2
Ry Ry

Consider a bridge circuit for sensing temperature, pressure, etc., with R, = R, = Re = R..

R4 = R + AR varies with the quantity to be measured. Typically, AR is a small fraction of R.
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Common-mode and differential-mode voltages

Vee
R, Re
v Amplifier — V,
V2
Ry Ry

Consider a bridge circuit for sensing temperature, pressure, etc., with R, = R, = Re = R..
R4 = R + AR varies with the quantity to be measured. Typically, AR is a small fraction of R.

The bridge converts AR to a signal voltage which can then be suitably amplified and used for
display or control.
Assuming that the amplifier has a large input resistance,

R 1

= —— Vec == Ve
vi R+ R cc =5 Vee
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Common-mode and differential-mode voltages

Vee
R, Re
v Amplifier — V,
V2
Ry Ry

Consider a bridge circuit for sensing temperature, pressure, etc., with R, = R, = Re = R..
R4 = R + AR varies with the quantity to be measured. Typically, AR is a small fraction of R.

The bridge converts AR to a signal voltage which can then be suitably amplified and used for
display or control.

Assuming that the amplifier has a large input resistance,
R 1

= — Vec = — Ve
n=pg Ve =g Ve
(R + AR) 1 14x 1 1
= =V, = - —V, ~ — (1 1-— 2) V, = —(1 2) V, ,
V2 R+ (RtDR) €~ 2 11 Ve 2( +x) (1 —x/2) Vce 2( +x/2) Ve

where x = AR/R.
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Common-mode and differential-mode voltages

Vee
R, Re
v Amplifier — V,
V2
Ry Ry

Consider a bridge circuit for sensing temperature, pressure, etc., with R, = R, = Re = R..
R4 = R + AR varies with the quantity to be measured. Typically, AR is a small fraction of R.

The bridge converts AR to a signal voltage which can then be suitably amplified and used for
display or control.

Assuming that the amplifier has a large input resistance,

R v 1V
v = —— = - .
"TRyR T 27
(R + AR) 1 1+x 1 1
= =V, = - —V, ~ — (1 1-— 2) V, = —(1 2) V, ,
. R+ (R+ AR) e 2 1+x/2 e 2( 29 (1= x/2) Vee 2( +x/2) Vee

where x = AR/R.

For example, with Vcc =15V, R=1k, AR =0.01k ,
v =75V,

Vo =7.540.0375 V.
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Common-mode and differential-mode voltages

Amplifier

eV,

w =75V, v, =7.5+00375V.
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Common-mode and differential-mode voltages

Vee
Ra Re
v Amplifier —e V,
V2
Ry 2 R4

=75V, v»w=75+0.0375V.
The amplifier should only amplify vo — v; = 0.0375 V (since that is the signal arising from AR).
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Common-mode and differential-mode voltages

Vee
Ra Re
v Amplifier —e V,
V2
Ry 2 R4

vi=75V, v»w=754+0.0375V.
The amplifier should only amplify vo — v; = 0.0375 V (since that is the signal arising from AR).
Definitions:
Given v; and vy,
1
Ve = 5 (v1 + v») = common-mode voltage,
vg = (v» — vi) = differential-mode voltage.
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=75V, v»w=75+0.0375V.
The amplifier should only amplify vo — v; = 0.0375 V (since that is the signal arising from AR).
Definitions:

Given v; and vy,

1
Ve = 5 (v1 + v») = common-mode voltage,

vg = (v» — vi) = differential-mode voltage.
vi and v» can be rewritten as,

Vi= Ve —Vg/2, vo = ve+vg/2.
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Common-mode and differential-mode voltages
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Ra Re
v Amplifier —e V,
V2
Ry 2 R4

=75V, v»w=75+0.0375V.
The amplifier should only amplify vo — v; = 0.0375 V (since that is the signal arising from AR).
Definitions:

Given v; and vy,

1
Ve = 5 (v1 + v») = common-mode voltage,

vg = (v» — vi) = differential-mode voltage.
vi and v» can be rewritten as,
Vi= Ve —Vg/2, vo = ve+vg/2.

In the above example, ve = 7.5V, vy =37.5mV.
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Common-mode and differential-mode voltages

Vee
Ra Re
v Amplifier —e V,
V2
Ry 2 R4

=75V, v»w=75+0.0375V.
The amplifier should only amplify vo — v; = 0.0375 V (since that is the signal arising from AR).
Definitions:

Given v; and vy,

1
Ve = 5 (v1 + v») = common-mode voltage,

vg = (v» — vi) = differential-mode voltage.
vi and v» can be rewritten as,
Vi= Ve —Vg/2, vo = ve+vg/2.

In the above example, ve = 7.5V, vy =37.5mV.

Note that the common-mode voltage is quite large compared to the differential-mode voltage.
This is a common situation in transducer circuits.
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Common-Mode Rejection Ratio

vy e—+

Amplifier F—e v,

Vi =V +vg/2
Vo = Ve —Vg/2

V_&— —

An ideal amplifier would only amplify the difference (v; — v_), giving
Vo =Ad(vy —v_) =Agvy,

where Ay is called the “differential gain” or simply the gain (Ay).
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Common-Mode Rejection Ratio
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Amplifier [—e v,

Vi =V +vg/2
o

Vo = Ve —Vg/2

An ideal amplifier would only amplify the difference (v; — v_), giving
Vo =Ad(vy —v_) =Agvy,

where Ay is called the “differential gain” or simply the gain (Ay).

In practice, the output can also have a common-mode component:

Vo = Agvd + Ac ve,

where A. is called the “common-mode gain”.
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Common-Mode Rejection Ratio

viet Vi = Ve +vg/2

Amplifier F—e v,
Vo = Ve —Vg/2

V_&— —

An ideal amplifier would only amplify the difference (v; — v_), giving

Vo =Ad(vy —v_) =Agvy,

where Ay is called the “differential gain” or simply the gain (Ay).

In practice, the output can also have a common-mode component:

Vo = Ag Vg + Ac Ve,

where A. is called the “common-mode gain”.

The ability of an amplifier to reject the common-mode signal is given by the

Common-Mode Rejection Ratio (CMRR):

CMRR = Ad .
A

c
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Common-Mode Rejection Ratio

vy e—+

Amplifier F—e v,

Vi =V +vg/2
Vo = Ve —Vg/2

V_&— —

An ideal amplifier would only amplify the difference (v; — v_), giving

Vo =Ad(vy —v_) =Agvy,

where Ay is called the “differential gain” or simply the gain (Ay).

In practice, the output can also have a common-mode component:

Vo = Ag Vg + Ac Ve,

where A. is called the “common-mode gain”.

The ability of an amplifier to reject the common-mode signal is given by the
Common-Mode Rejection Ratio (CMRR):

Ad
CMRR = — .
AC

For the 741 Op Amp, the CMRR is 90 dB (=~ 30,000), which may be considered to be infinite in
many applications. In such cases, mismatch between circuit components will determine the overall

common-mode rejection performance of the circuit.
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Op Amp circuits (linear region)
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Op Amp circuits (linear region)
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Op Amp circuits (linear region)

Method 1:

Ry

— V.
R3 + Ry

Large input resistance of Op Amp — i, =0, Vi =

1

Si Vi — Vo0, h =—
ince V¢ , 0 R

1
(V= Vo)™ == (Vi = V4).
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Op Amp circuits (linear region)

Method 1:

Ry

—— Via.
R3 + Ry

Large input resistance of Op Amp — i, =0, Vi =

1

Si Vi — Vo0, h =—
ince V¢ , 0 R

1
(V= Vo)™ == (Vi = V4).
Ry

. . Ry
I_NOHVO:V_711R2%V+7F(\/; - V).
1
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Op Amp circuits (linear region)

Method 1:
Large input resist f Op Amp — i\ =0, V Re
arge input resistance o m i =0, = ——— Vp.
g P P P + » V4 Rs+ Rs 2
. ) 1 1
Since Vi —V_ =0, i1 =—(Va—-V_)x= —(Va—V}).
R R

. . Ry
I_NOHVO:V_711R2%V+7F(\/; - V).
1

Substituting for V. and selecting R3/Rs = Ri/R», we get (show this),

Ry
Vo= — (Vi — V).
o R1(2 )
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Op Amp circuits (linear region)

Method 1:

Ry

— V.
R3 + Ry

Large input resistance of Op Amp — i, =0, Vi =

1

Si Vi — Vo0, h =—
ince V¢ , 0 R

1
(V= Vo)™ == (Vi = V4).
Ry

. . Ry
I_NOHVO:V_711R2%V+7F(\/; - V).
1

Substituting for V. and selecting R3/Rs = Ri/R», we get (show this),
Ra
Vo = — (Vo — Vi1).
o R ( 2 )
The circuit is a “difference amplifier.”
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Difference amplifier

Method 2:

Since the Op Amp is operating in the linear region, we can use superposition:
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Difference amplifier

Method 2:

Since the Op Amp is operating in the linear region, we can use superposition:

Case 1:  Inverting amplifier (note that V; = 0 V).
Ry
— Vor=—— V1.
Ry
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Difference amplifier

Method 2:

Since the Op Amp is operating in the linear region, we can use superposition:

Case 1:  Inverting amplifier (note that V; = 0 V).
Ry
— Vor=—— V1.
Case 2: Non-inverting amplifier, with V; = Tt Vio.
R3 + Ry

=V, 7<1+R2>( R )v-
2 R R3 + Ry 2
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Difference amplifier

Method 2:

Since the Op Amp is operating in the linear region, we can use superposition:

Case 1:  Inverting amplifier (note that V; = 0 V).
Ry
— Vor=—— V1.
Case 2: Non-inverting amplifier, with V; = Tt Vio.
R3 + Ry

=V, 7<1+R2>( R )v-
2 R R3 + Ry 2

The net result is,

R: R. R R,
vo:vol+v02:<1+—2)< g )v,- e = B Vi - Vi) i RyR = RuJR.

Ry Rs+ R Ry Ry
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Difference amplifier

10 k
Rz
1k R,
+ i Ve
1k Rs gRL
Rq !
10k =
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Difference amplifier

1k Ry

10k
Rz
+ i Ve
?RL
Re !
10k =

The resistance seen from v is (R3 + Ra) which is small enough to cause v, to change.

This is not desirable.
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Difference amplifier

10 k
Rz
1k R,
+ i Ve
1k Rs gRL
Rq !
10k =

The resistance seen from v is (R3 + Ra) which is small enough to cause v, to change.
This is not desirable.

— need to improve the input resistance of the difference amplifier.
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Difference amplifier

10 k
Rz
1k R,
+ i Ve
1k Rs gRL
Rq !
10k =

The resistance seen from v is (R3 + Ra) which is small enough to cause v, to change.
This is not desirable.

— need to improve the input resistance of the difference amplifier.

We will discuss an improved difference amplifier later. Before we do that, let us

discuss another problem with the above difference amplifier which can be important
for some applications (next slide).
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Difference amplifier

Vit = Ve — Vg/2
Vo
Vig = Ve +vg/2

RL
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Difference amplifier

Vit = Ve — Vg/2
Vo
Vig = Ve +vg/2

RL

R,
Consider the difference amplifier with R3 = Ry, Ry = Ry — V, = ?2 (Vi2 — vi1) .
1

The output voltage depends only on the differential-mode signal (vi2 — vi1),

i.e., Ac (common-mode gain) = 0.
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Difference amplifier

Vit = Ve — Vg/2
Vo
Vig = Ve +vg/2

RL

R,
Consider the difference amplifier with R3 = Ry, Ry = Ry — V, = ?2 (Vi2 — vi1) .
1

The output voltage depends only on the differential-mode signal (vi2 — vi1),
i.e., Ac (common-mode gain) = 0.

In practice, R3 and R; may not be exactly equal. Let R3 = R + AR.
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Difference amplifier

Vip = Ve — Va/2
Vo

_%RL

Vig = Ve +vg/2

R,
Consider the difference amplifier with R3 = Ry, Ry = Ry — V, = ?2 (Vi2 — vi1) .
1

The output voltage depends only on the differential-mode signal (vi2 — vi1),
i.e., Ac (common-mode gain) = 0.

In practice, R3 and R; may not be exactly equal. Let R3 = R + AR.

R> R R
o = ararrm (R R
Ra . .
] R—l(vd — X V), with x = RiR (show this)
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Difference amplifier

Vit = Ve — Vg/2
Vo
Vig = Ve +vg/2

_%RL

R,
Consider the difference amplifier with R3 = Ry, Ry = Ry — V, = ?2 (Vi2 — vi1) .
1

The output voltage depends only on the differential-mode signal (vi2 — vi1),
i.e., Ac (common-mode gain) = 0.

In practice, R3 and R; may not be exactly equal. Let R3 = R + AR.

Ry (1+ Rz) Ry
V, = = —_ Vi — — Vj
° T Ri+AR+ R, R R
R> AR
~ — — ,with x = —— how thi
) (va — x vc) , with x R R (show this)
R> R,
Al = x — Adl = —.
Al = x 2 < gl =
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Difference amplifier

Vip = Ve — Va/2
Vo

_%RL

Vig = Ve +vg/2

R,
Consider the difference amplifier with R3 = Ry, Ry = Ry — V, = ?2 (Vi2 — vi1) .
1

The output voltage depends only on the differential-mode signal (vi2 — vi1),
i.e., Ac (common-mode gain) = 0.

In practice, R3 and R; may not be exactly equal. Let R3 = R + AR.

Ry (1+ Rz) Ry
V, = = —_ Vi — — Vj
° T Ri+AR+ R, R R
R> AR
~ — — ,with x = —— how thi
) (va — x vc) , with x R R (show this)
R> R,
Al = x — Adl = —.
Al = x 2 < gl =

However, since v, can be large compared to vy, the effect of A. cannot be ignored.
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Large input resistance of Al and A2 = the current through the two resistors marked R is also
equal to 7.
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Improved difference amplifier

. 1
Vim Vo = Vi =V, VB:V/27_>’1:?(V/‘ = V).
1

Large input resistance of Al and A2 = the current through the two resistors marked R is also
equal to 7.
2 R2>

1
Vor— Ve =ii(Ri +2R) = R*(V, — Vi) (R +2R) = (Vi1 — Vi2) (1+T
1 1



Improved difference amplifier

. 1
Vim Vo = Va= Vi, VB:V/'27_>’1:?(V/‘ — Via).
1
Large input resistance of Al and A2 = the current through the two resistors marked R is also
equal to 7.
. 1 2Ry
Vor— Ve =ii(Ri +2R) = R*(V, —V)(Ri+2Ry) = (Vi — Vi) (1+ R )
1 1

. Ry Ry 2R,
Finally, Vo = — (Voo — V1) = — |1+ — Vio — V).
e R3( : 2 Rs ( * Ry >( ? 2



Improved difference amplifier

. 1
Vim Vo = Vi =V, VB:V/'27_>’1:?(V/‘ = V).
1

Large input resistance of Al and A2 = the current through the two resistors marked R is also
equal to 7.

1 2R
Vor = Voo = (R +2Ry) = o= (Vs = Vio) (R +2Re) = (Vi — Vi) (1+TQ>'
1 1

. Ry Ry 2R,
Finally, Vo = — (Voo — V1) = — |1+ — Vio — V).
e R3( : 2 Rs ( * Ry >( ? 2

This circuit is known as the “instrumentation amplifier.”
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Instrumentation amplifier
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Instrumentation amplifier

The input resistance seen from Vj; or Vj; is large (since an Op Amp has a large input
resistance).



Instrumentation amplifier

The input resistance seen from Vj; or Vj; is large (since an Op Amp has a large input
resistance).

— the amplifier will not “load” the preceding stage, a desirable feature.



Instrumentation amplifier

The input resistance seen from Vj; or Vj; is large (since an Op Amp has a large input
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— the amplifier will not “load” the preceding stage, a desirable feature.



Instrumentation amplifier

The input resistance seen from Vj; or Vj; is large (since an Op Amp has a large input
resistance).

— the amplifier will not “load” the preceding stage, a desirable feature.

As a result, the voltages v; and v, in the bridge circuit will remain essentially the same
when the bridge circuit is connected to the instrumentation amplifier.
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Instrumentation amplifier

Rs
Vig = Ve — Vg/2

Vo Vig = Ve +vg/2

+ H
R3 % R

As we have seen earlier, vj1 and vj> can have a large common-mode component (v.)

What is the effect of v. on the amplifier output v,?
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Instrumentation amplifier

Rs
Vig = Ve — Vg/2

Vo Vig = Ve +vg/2

+ H
R3 % R

As we have seen earlier, vj1 and vj> can have a large common-mode component (v.)

What is the effect of v. on the amplifier output v,?

Vi RV = va= Ve — Vg/2, vB = Vet vg/2.
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Instrumentation amplifier

Rs
- Vig = Ve — Vg/2

Vo Vig = Ve +vg/2

+ H
R3 % RL
Rs H

As we have seen earlier, vj; and vj> can have a large common-mode component (v.).
What is the effect of v. on the amplifier output v,?
Vi RV = va= Ve — Vg/2, vB = Vet vg/2.

1 1

W= E(VA ) = Fl((vc —vg/2) — (ve + v4/2)) = 7Ri1Vd.
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Instrumentation amplifier

Rs
- Vig = Ve — Vg/2

Vo Vig = Ve +vg/2

R3 % R
Rs H

As we have seen earlier, vj; and vj> can have a large common-mode component (v.).
What is the effect of v. on the amplifier output v,?

Vi RV = va= Ve — Vg/2, vB = Vet vg/2.

. 1 1 1

h = E(VA —vg) = Fl((vc —vg/2) — (Ve + va/2)) = 7Evd.

Ve has simply got cancelled! (And this holds even if R, and R; are not exactly matched.)
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Instrumentation amplifier

Rs
Vig = Ve — Vg/2

Vo Vig = Ve +vg/2

R3 % R
Rs H

As we have seen earlier, vj; and vj> can have a large common-mode component (v.).
What is the effect of v. on the amplifier output v,?

Vi RV = va= Ve — Vg/2, vB = Vet vg/2.

. 1 1 1

h = E(VA —vg) = Fl((vc —vg/2) — (Ve + va/2)) = 7Evd.

Ve has simply got cancelled! (And this holds even if R, and R; are not exactly matched.)

— The instrumentation amplifier is very effective in minimising the effect of the common-mode
signal. (Note that component mismatch in the second stage will cause a finite CMRR, but the first
stage has effectively amplified only v4 while leaving v unchanged; so the overall CMRR has
improved.)
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Current-to-voltage conversion

Some circuits produce an output in the form of a current. It is convenient to convert
this current into a voltage for further processing.



Current-to-voltage conversion

Some circuits produce an output in the form of a current. It is convenient to convert
this current into a voltage for further processing.

Current-to-voltage conversion can be achieved by simply passing the current through a
resistor: Vo1 = Is R.



Current-to-voltage conversion

Some circuits produce an output in the form of a current. It is convenient to convert
this current into a voltage for further processing.

Current-to-voltage conversion can be achieved by simply passing the current through a
resistor: Vo1 = Is R.

= = = amplifier

However, this simple approach will not work if the next stage in the circuit (such as an
amplifier) has a finite R;, since it will modify Vo1 to Vo1 = Is (R || R), which is not
desirable.
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VoxVi,andi—o=0=Vo=V_-LR=—-LR.



Current-to-voltage conversion

VA
?RL

VoxVi,andim=0=>V,=V_-LR=—-R.
The output voltage is proportional to the source current, irrespective of the value

of Ry, i.e., irrespective of the next stage.



Current-to-voltage conversion

VA
?RL

VoxVi,andi—o=0=Vo=V_-LR=—-LR.

The output voltage is proportional to the source current, irrespective of the value
of Ry, i.e., irrespective of the next stage.

Example: a photocurrent detector.



Current-to-voltage conversion

VoxVi,andi—o=0=Vo=V_-LR=—-LR.

The output voltage is proportional to the source current, irrespective of the value
of Ry, i.e., irrespective of the next stage.

Example: a photocurrent detector.
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Current-to-voltage conversion

VoxVi,andi 0= V,=V_-LR=—-LR.
The output voltage is proportional to the source current, irrespective of the value
of Ry, i.e., irrespective of the next stage.

Example: a photocurrent detector.
Vo = Is R. The diode is under a reverse bias, with V, =0V and V, = Va5
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Op Amp circuits (linear region)

C
_| |_
i + Ve —
Vi ’—'\/\/\/—Ia
R B ——o
H Vo
Ru
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Op Amp circuits (linear region)

i

i + Ve —
Vi e—AMN—
R -7
H Vo
Ru

Vor V=0V —>in=V/R.
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Op Amp circuits (linear region)

i

iy + Ve —

—e
i Vo
§ R

Vor V=0V —>in=V/R.
Since i— = 0, the current through the capacitor is i .

dVe . Vi
=N = —.

= C =
dt R
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Op Amp circuits (linear region)

i

iy + Ve —

—e
i Vo
§ R

Vor V=0V —>in=V/R.

Since i— = 0, the current through the capacitor is i .

ave .V

C == —.

5% " "TR
dV, V;
VC:V_—VO:O—VO:—VO—>C(— dt"):F
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Op Amp circuits (linear region)

i

+ Ve —

—e
i Vo
§ R

Vor V=0V —>in=V/R.

Since i— = 0, the current through the capacitor is i .

ave .V
C == —.
5% " "TR
dV, V;
VC:V_—VO:O—VO:—VO—>C(— dt"):F

Vo:—i/\/,-dt
RC

The circuit works as an integrator.
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Integrator

Vi
R=1kQ, C=02uF

L
R - v
§ L AL



Integrator

Vi
N | . R=1kQ, C=024F
VA
R v, - L /'v- dt
| L o — RC. i
6
Vi

.| ,
0

M
_3 Il Il Il Il

0 0.5 1 15 2 25

t (msec)



Integrator

-3

R=1kQ, C=02uF

V[,:—R—IC./Vidt

t (msec)

6
Vi Vi
3 - .
0 /\/\/
Vo
M _3 I 7
Il Il Il Il _6 Il Il
0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 25
t (msec)



Integrator

Vi
R - R=1kQ, C=02uF
LV,
R v *—L/V-dt
1 L o=—re/ Vi
6 6
Vi Vi
3, -

_3 Il Il Il
0 0.5 1 15 2 25 0 0.5

t (msec)

1 1.5 2 25
t (msec)

SEQUEL files: ee101_integrator_1.sqproj, eel0l_integrator_2.sqproj
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Offset voltage
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For the real Op Amp, Vo, = Ay ((V4+ + Vos) — V-).
For Vo, =0V, V. +Vps—V_=0— V- V_ =—Vps.



Offset voltage

O
Vi Vo Vos —V,

— —

+

sat

1 —Vaa

For the real Op Amp, Vo, = Ay ((V4+ + Vos) — V-).
For Vo, =0V, V. +Vps—V_=0— V- V_ =—Vps.

Vo, versus V; curve gets shifted.



Offset voltage

O
Vi Vo Vos —V,

— —

+

sat

1 —Vaa

For the real Op Amp, Vo, = Ay ((V4+ + Vos) — V-).

For Vo, =0V, V. +Vps—V_=0— V- V_ =—Vps.
Vo, versus V; curve gets shifted.

741: —6mV < Vps < 6mV.

OP-77: =50V < Vps < 50uV .
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Effect of Vs
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Effect of Vs

10k Re
VWV
1k
—ANN——
Vi R Vos R
oV,

R: R;
By superposition, V, = -z V: 4+ Vos (1 + —2> .
Ry R1
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Effect of Vs

10k 10k Re
VWV
1k 1k
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V; Vi R1 Vos ———e
VY,

_g_ " I _g_ .

R: R;
By superposition, V, = -z V: 4+ Vos (1 + —2> .
Ry R1

For Vps = 2mV, the contribution from Vps to V, is 22mV,
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Effect of Vs

10k 10k Re
VWV
1k 1k
—AMN——
V; Vi R1 Vos ———e
VY,

_g_ " I _g_ .

R: R;
By superposition, V, = -z V: 4+ Vos (1 + —2> .
Ry R1
For Vps = 2mV, the contribution from Vps to V, is 22mV,

i.e., a DC shift of 22mV.

M. B. Patil, IIT Bombay



Effect of Vs

—AM— —AN—L—
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Effect of Vs

+ Ve — + Ve —
Is
i1 I iy
—— AN — —AM——
V; R L . Vi R Vos ———
VA Vo
e [~ &

dVe

1
V. Vi Vos — i1 R( i 0s) p
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Effect of Vs

+ Vo — + Ve —
[ [
i 1 i Al
—AN— —AN——
V; R L . Vi R Vos [ D
VA 2
s el
dV,
V_%V+:V05~)i1:7(V;7V05):C dtc.
1
Ie,VC:E (V,‘—Vos)dt

M. B. Patil, IIT Bombay



Effect of Vs

+ Ve -

dVe

dt

. 1
V_%V_F:Vos*)ll:E(Vi*VOS):C

1
e, Vo = — V; — Vps) dt.
1.e RC/( 0s)

Even with V; =0V, V. will keep rising or falling (depending on the sign of Vps).

Eventually, the Op Amp will be driven into saturation.
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Effect of Vs
+ Ve -
' 1€

+ Ve —
[
i I
—AMN— —ANN——
V; R ‘. Vi R Vos I SN
Vo Vo
i [®
VoxVi=Vos— i =

1
, Ve=— V; — Vps) dt.
1.e RC/( 0s)

Eventually, the Op Amp will be driven into saturation.
— need to address this issue!

Even with V; =0V, V. will keep rising or falling (depending on the sign of Vps)
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Effect of Vos

Integrator with V; = 0 V:

@)

RN
IIC
o I
+ Ve —
_ R > o
VA
R
O vos ? ]
(b) L =
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Effect of Vos

Integrator with V; = 0 V:

——AM——
R C
1< I
, il o i
> + Ve — + Ve —
VA A
R Re
OYSEEL T
(@ = = (b) = =
Vos dV,
-2 __C
@ h=- dt
Ve = ~Re Vos dt — Op Amp saturates.
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Effect of Vos

Integrator with V; = 0 V:

——AA——
C R C
| ||
iy I i 1T
+ Ve — + Ve —
VA A
R Ru
OYSEEL T
(a) = = (b) = =
. Vos dVe
=9 _ _¢
@ = dt
Ve = ~Re Vos dt — Op Amp saturates.

(b)  There is a DC path for the current.

R’
-V, = (1+?> Vos -
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Effect of Vos

Integrator with V; = 0 V:

——AA——
C R C
| ||
iy I i 1T
+ Ve — + Ve —
VA A
R Ru
OYSEEL T
(a) = = (b) = =
Vos dV,
=9 _ _¢
@ = dt
Ve = ~Re Vos dt — Op Amp saturates.

(b)  There is a DC path for the current.
R/
-V, = (1+?> Vos -

R’ should be small enough to have a negligible effect on V.
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Effect of Vos

Integrator with V; = 0 V:

——AA——
C R C
| ||
iy I i 1T
+ Ve — + Ve —
VA A
R Ru
OYSEEL T
(a) = = (b) = =
Vos dV,
=9 _ _¢
@ = dt
Ve = ~Re Vos dt — Op Amp saturates.

(b)  There is a DC path for the current.

R’
-V, = (1+?> Vos -

R’ should be small enough to have a negligible effect on V.
However, R’ must be large enough to ensure that the circuit still functions as an integrator.
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Effect of Vos

Integrator with V; = 0 V:

——AA——
C R C
| ||
iy I i 1T
+ Ve — + Ve —
VA A
R Ru
OYSEEL T
(a) = = (b) = =
Vos dV,
=9 _ _¢
@ = dt
Ve = ~Re Vos dt — Op Amp saturates.

(b)  There is a DC path for the current.

R’
-V, = (1+?> Vos -

R’ should be small enough to have a negligible effect on V.
However, R’ must be large enough to ensure that the circuit still functions as an integrator.

— R’ > 1/wC at the frequency of interest.
M. B. Patil, IIT Bombay
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Input bias currents

Ig and /g are generally not exactly equal.
[lg — 15| : “offset current” (los)

(I;r +15)/2: "bias current” (Ig).



Input bias currents

741 80 nA 20 nA 1mv BJT input
OP77 1.2nA 0.3nA | 10uV BJT input

411 50 pA 25 pA 0.8 mv FET input

Ig and /g are generally not exactly equal.
[lg — 15| : “offset current” (los)

(I;r +15)/2: "bias current” (Ig).
M. B. Patil, IIT Bombay
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Effect of bias currents

Inverting amplifier:

Ip —=
AV
R>
(PR A L
—MN\ , o
V; R: )

Assume that the Op Amp is ideal in other respects (i.e., Vos = 0V, etc.).
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Effect of bias currents

Inverting amplifier:

ip —=
M
R>
i1 T 1deal ! P
—MN\ — o
Vi Ry i ——v—:‘ —o V/,
I + 3

Assume that the Op Amp is ideal in other respects (i.e., Vos = 0V, etc.).
Vor V=0V —i=V/R.
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Effect of bias currents

Inverting amplifier:

ip —=
M
R>
([, T 1deal ! P
—MN\ — o
Vi Ry i ——v—:‘ —o V/,
I + 3

Assume that the Op Amp is ideal in other respects (i.e., Vos = 0V, etc.).
Vor V=0V —i=V/R.
Vi

_ R _
izzilfIB_%VO:V,fizRQ:Of<F1713)R2:7?f\/;+13 Ry,
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Effect of bias currents

Inverting amplifier:

ip —=
M
R>
i1 T 1deal ! P
—MN\ — o
Vi Ry i ——v—:‘ —o V/,
I + 3

Assume that the Op Amp is ideal in other respects (i.e., Vos = 0V, etc.).

Vor V=0V —i=V/R.

S - . Vi - Ro -

Iz:llf/B - Vo=V_ —hR, =0-— 77/8 R2:77w+/BR27
R1 Rl

i.e., the bias current causes a DC shift in V.

For Iz =80nA, R, = 10k, AV, =0.8mV.
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Non-nverting amplifier:
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Effect of bias currents

Non-nverting amplifier:

i) —»
MW
Ro
. i'""""i;:::::::i'
m" i % a ——v—i 3 —V,
1 Ll D
Vi G
- ® IR
15 L=
! I !

Assume that the Op Amp is ideal in other respects (i.e., Vos = 0V, etc.).
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Effect of bias currents

Non-nverting amplifier:

MV
R:
. %7"””"3,:7,::7,::37 :
I NI
1 Ll D
Vi G
® TR
s s
| I 3

Assume that the Op Amp is ideal in other respects (i.e., Vos = 0V, etc.).
VorVi=V,—>i=-Vi/R.
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Effect of bias currents

Non-nverting amplifier:

MV
R:
. %7"””"3,:7,::7,::37 :
I NI
1 Ll D
Vi G
® TR
s s
| I 3

Assume that the Op Amp is ideal in other respects (i.e., Vos = 0V, etc.).
VorVi=V,—>i=-Vi/R.

L — Vi
Iz:llle :7;17 B -
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Effect of bias currents

Non-nverting amplifier:

i —»
MW
Ry
- e
LR Ty
i o+ 3 3 H
Vil L
® R
[5 L

Assume that the Op Amp is ideal in other respects (i.e., Vos = 0V, etc.).
VorVi=V,—>i=-Vi/R.
L _ Vi -
Iz:lllezfﬁlfB.

. Vi _ Ro _
Vo=Vi—bRe=Vi—|-5 —lg |R=Vi(1+ )+ R.
R1 Rl

— Again, a DC shift AV,.
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Effect of bias currents

Integrator:
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Integrator:

/ —Ig dt will drive the Op Amp into saturation.

1

Even with V; =0V, V., = Ve



Effect of bias currents

Integrator:

1
Even with V; =0V, V. = Ve / —Ig dt will drive the Op Amp into saturation.

Connecting R’ across C provides a DC path for the current, and results in a DC shift
AV, =I5 R’ at the output.
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Effect of bias currents

Integrator:
VWA—
R
2— 1€
I
+ Ve —
i1 — el L
— MWW\ - N '
R D>
3 £ P
IR IR §
® 3R
g ‘_é_
| 1§ 3

1
Even with V; =0V, V. = Ve / —Ig dt will drive the Op Amp into saturation.

Connecting R’ across C provides a DC path for the current, and results in a DC shift
AV, =I5 R’ at the output.

As we have discussed earlier, R’ should be small enough to have a negligible effect on V.
However, R’ must be large enough to ensure that the circuit still functions as an integrator.
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