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MODULE – I 

NUMBER SYSTEMS 
Many number systems are in use in digital technology. The most common are the decimal, 

binary, octal, and hexadecimal systems. The decimal system is clearly the most familiar to us 

because it is a tool that we use every day. Examining some of its characteristics will help us to 

better understand the other systems. In the next few pages we shall introduce four numerical 

representation systems that are used in the digital system. There are other systems, which we will 

look at briefly.  

 Decimal  

 Binary   

 Octal   

 Hexadecimal 

Decimal System 
 The decimal system is composed of 10 numerals or symbols. These 10 symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, 

9. Using these symbols as digits of a number, we can express any quantity. The decimal system is also 

called the base-10 system because it has 10 digits.  

Decimal Examples 3.1410,   5210 ,  102410  , 6400010  

Binary System 
In the binary system, there are only two symbols or possible digit values, 0 and 1. This 

base-2 system can be used to represent any quantity that can be represented in decimal or other 

base system. In digital systems the information that is being processed is usually presented in 

binary form. Binary quantities can be represented by any device that has only two operating states 

or possible conditions. 

E.g. A switch is only open or closed. We arbitrarily (as we define them) let an open switch 

represent binary 0 and a closed switch represent binary 1. Thus we can represent any binary 

number by using series of switches. 

Octal System 
The octal number system has a base of eight, meaning that it has eight possible 

digits:0,1,2,3,4,5,6,7. 

Octal to Decimal Conversion 

2378 = 2 x (82) + 3 x (81) + 7 x (80) = 15910 



24.68 = 2 x (81) + 4 x (80) + 6 x (8-1) = 20.7510 

11.18 = 1 x (81) + 1 x (80) + 1 x (8-1) = 9.12510 

12.38 = 1 x (81) + 2 x (80) + 3 x (8-1) = 10.37510 

Hexadecimal System 
The hexadecimal system uses base 16. Thus, it has 16 possible digit symbols. It uses the 

digits 0 through 9 plus the letters A, B, C, D, E, and F as the 16 digit symbols. 

Hexadecimal to Decimal Conversion 

24.616 = 2 x (161) + 4 x (160) + 6 x (16-1) = 36.37510 

11.116 = 1 x (161) + 1 x (160) + 1 x (16-1) = 17.062510 

12.316 = 1 x (161) + 2 x (160) + 3 x (16-1) = 18.187510 

 

Code Conversion 
Converting from one code form to another code form is called code conversion, like converting 

from binary to decimal or converting from hexadecimal to decimal. 

Binary-To-Decimal Conversion 

Any binary number can be converted to its decimal equivalent simply by summing together the 

weights of the various positions in the binary number which contain a 1.e.g. 

110112=24+23+01+21+20=16+8+0+2+1=2710 

Octal-To-Binary Conversion 

Each Octal digit is represented by three binary digits. 

Example: 4 7 28= (100) (111) (010)2 = 100 111 0102 

Octal-To-Hexadecimal Hexadecimal-To-Octal Conversion 

 Convert Octal (Hexadecimal) to Binary first. 

 Regroup the binary number by three bits per group starting from LSB if Octal is required. 

 Regroup the binary number by four bits per group starting from LSB if Hexadecimal is 

required. 

Arithmetic Operation using 1’s and 2’s Complement 

1’s Complement  

 The 1’s complement of a binary number is defined as the value obtained by inverting all 

the bits in the binary representation of the number (swapping 0’s for 1’s and vice versa). The 1’s 

complement of the number then behaves like the negative of the original number in some 

arithmetic operations. 



Example: 1’s complement of 10111 is 01000. 

2’s Complement 

 To get 2’s complement of a binary number we add one (1) to the 1’s complement of that 

same binary number. 

Example: 2’s complement of 10111 is; 1’s complement of 10111 + 1 

                                                                  => 01000 + 1 = 01001 

Arithmetic Operation 

1. Using 1’s complement:  

Example1: Subtract 134 from 168. 

168-134 = 168 + (-134) 

Binary representation of 168= 1010 1000 

Binary representation of 134= 1000 0110 

Binary representation of -134= 0111 1001 

 [Because 1’s complement represents the negative magnitude of a binary number] 

168 + (-134)=  1010 1000 

                      + 0111 1001 

                       10010 0001 

As a carry bit is present, 1 will be added to the result and it represents that the result is 

positive. 

                      0010 0001 + 1 = 0010 0010 

Decimal representation of 0010 0010 is 34. 

168-134=34; hence the result is correct. 

Example2: Subtract 168 from 134. 

134-168 = 134 + (-168) 

Binary representation of 134= 1000 0110 

Binary representation of 168= 1010 1000 

Binary representation of -168= 0101 0111 

 [Because 1’s complement represents the negative magnitude of a binary number] 



134 + (-168)=  1000 0110 

                      + 0101 0111 

                         1101 1101 

As a carry bit is absent, 1’s complement of this value will be the final result and absence 

of carry bit represents that the result is negative. 

1’s complement of 1101 1101 = 0010 0010 

Decimal representation of 0010 0010 is 34. As carry bit is absent the result is negative i.e -34 

134 -168= -34; hence the result is correct. 

2. Using 2’s complement: 

Example 1: Subtract 96 from 118. 

118-96 = 118 + (-96) 

Binary representation of 118= 0111 0110 

Binary representation of   96= 0110 0000 

Here 2’s complement represents the negative magnitude of a binary number. 

Hence 2’s complement of 96 represents -96. 

So -96= 1001 1111 

118 + (-96) =  0111 0110 

                    + 1001 1111 

                      10001 0101 

As a carry bit is present, 1 will be added to the result and presents of carry bit represents 

that the result is positive. 

0001 0101+ 1= 0001 0110  

Decimal representation of 0001 0110 is 22. As carry bit is present the result is positive. 

Example 2: Subtract 118 from 96. 

118-96 = 96 + (-118) 

Binary representation of   96= 0110 0000 

Binary representation of 118= 0111 0110 

Here 2’s complement represents the negative magnitude of a binary number. 

Hence 2’s complement of 118 represents -118. 



So -118= 1000 1010 

96 + (-118) =  0110 0000 

                    + 1000 1010 

                        1110 1010 

As a carry bit is absent, 2’s complement of this value will be the final result and absence 

of carry bit represents that the result is negative. 

2’s complement of 1110 1010 = 0001 0110 

Decimal representation of 0001 0110 is 34. As carry bit is absent the result is negative i.e -34. 

Binary Codes 
Binary codes are codes which are represented in binary system with modification from the original 

ones. Below we will be seeing the following: 

 Weighted Binary Systems 

 Non Weighted Codes 

Weighted Binary Systems 
Weighted binary codes are those which obey the positional weighting principles, each position of 

the number represents a specific weight. The binary counting sequence is an example. 

8421 Code/BCD Code 

The BCD (Binary Coded Decimal) is a straight assignment of the binary equivalent. It is possible 

to assign weights to the binary bits according to their positions. The weights in the 

BCD code are 8,4,2,1. 

Example: The bit assignment 1001, can be seen by its weights to represent the decimal 9 because: 

1x8+0x4+0x2+1x1 = 9 

2421 Code 

This is a weighted code, its weights are 2, 4, 2 and 1. A decimal number is represented in 4- bit 

form and the total four bits weight is 2 + 4 + 2 + 1 = 9. Hence the 2421 code represents the decimal 

numbers from 0 to 9. 

5211 Code 

This is a weighted code, its weights are 5, 2, 1 and 1. A decimal number is represented in 4- bit 

form and the total four bits weight is 5 + 2 + 1 + 1 = 9. Hence the 5211 code represents the decimal 

numbers from 0 to 9. 



Reflective Code 
A code is said to be reflective when code for 9 is complement for the code for 0, and so is for 8 

and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 are reflective, whereas the 

8421 code is not. 

Excess-3 Code 
Excess-3 is a non-weighted code used to express decimal numbers. The code derives its name from 

the fact that each binary code is the corresponding 8421 code plus 0011(3). 

Example: representation of 7 in Excess-3 code is :- 

BCD code of 7 = 0111 

Excess-3 code of 7 = BCD + 0011 = 1010 

Gray Code 
The gray code belongs to a class of codes called minimum change codes, in which only one bit in 

the code changes when moving from one code to the next. The Gray code is non weighted code, 

as the position of bit does not contain any weight. The gray code is are reflective digital code which 

has the special property that any two subsequent numbers codes differ by only one bit. This is also 

called a unit-distance code. In digital Gray code has got a special place. 

Example: Write the Gray code of 7. 

Step-1 BCD code of 7 = 0111 

Step-2 Keep the MSB of BCD same and then add it with the next digit. Ignore the carry bit in each 

case. 

              (0111)2 = (0100)G 

                        0 1 1 1 = 0100 

Error Detecting and Correction Codes 
For reliable transmission and storage of digital data, error detection and correction is required. 

Below are a few examples of codes which permit error detection and error correction after 

detection. 

Error Detecting Codes 

When data is transmitted from one point to another, like in wireless transmission, or it is just stored, 

like in hard disks and memories, there are chances that data may get corrupted. To detect these 

data errors, we use special codes, which are error detection codes. 

Parity 

In parity codes, every data byte, or nibble (according to how user wants to use it) is checked if 

they have even number of ones or even number of zeros. Based on this information an additional 

bit is appended to the original data. Thus if we consider 8-bit data, adding the parity bit will make 

it 9 bit long. 

+ + + 



At the receiver side, once again parity is calculated and matched with the received parity (bit 9), 

and if they match, data is ok, otherwise data is corrupt. 

There are two types of parity: 

 Even parity: Checks if there is an even number of ones; if so, parity bit is zero. When the 

number of ones is odd then parity bit is set to 1. 

 Odd Parity: Checks if there is an odd number of ones; if so, parity bit is zero. When number 

of ones is even then parity bit is set to 1. 

Error-Correcting Codes 

Error correcting codes not only detect errors, but also correct them. This is used normally in 

Satellite communication, where turn-around delay is very high as is the probability of data getting 

corrupt. 

ECC (Error correcting codes) are used also in memories, networking, Hard disk, CDROM, 

DVD etc. Normally in networking chips (ASIC), we have 2 Error detection bits and 1 Error 

correction bit. 

Hamming Code 
Hamming code adds a minimum number of bits to the data transmitted in a noisy channel, to be 

able to correct every possible one-bit error. It can detect (not correct) two bits errors and cannot 

distinguish between 1-bit and 2-bits inconsistencies. It can't – in general – detect 3(or more)-bits 

errors The idea is that the failed bit position in an n-bit string (which we'll call X) can be 

represented in binary with log2 (n) bits, hence we'll try to get it adding just log2(n) bits. 

ASCII Code 
ASCII stands for American Standard Code for Information Interchange. It has become a world 

standard alphanumeric code for microcomputers and computers. It is a 7-bit code representing 27 

= 128 different characters. These characters represent 26 upper case letters 

(A to Z), 26 lowercase letters (a to z), 10 numbers (0 to 9), 33 special characters and symbols and 

33 control characters. 

Boolean algebra and Logic Gates 
The English mathematician George Boole (1815-1864) sought to give symbolic form to Aristotle’s 

system of logic. Boole wrote a treatise on the subject in 1854, titled an Investigation of the Laws 

of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities, which 

codified several rules of relationship between Mathematical quantities limited to one of two 

possible values: true or false, 1 or 0. His Mathematical system became known as Boolean algebra. 

All arithmetic operations performed with Boolean quantities have but one of two possible 

Outcomes: either 1 or 0. There is no such thing as ‖2‖ or ‖-1‖ or ‖1/2‖ in the Boolean 

world. 



It is a world in which all other possibilities are invalid by fiat. As one might guess, this is not the 

kind of math you want to use when balancing a check book or calculating current through a resistor. 

However, Claude Shannon of MIT fame recognized how Boolean algebra could be applied to on-

and-off circuits, where all signals are characterized as either ‖high‖ (1) or ‖low‖ (0). His1938 

thesis, titled A Symbolic Analysis of Relay and Switching Circuits, put Boole’s theoretical work 

to use in a way Boole never could have imagined, giving us a Powerful mathematical tool for 

designing and analysing digital circuits. 

Like ‖normal‖ algebra, Boolean algebra uses alphabetical letters to denote variables. 

Unlike ‖normal‖ algebra, though, Boolean variables are always CAPITAL letters, never 

lowercase. 

Boolean Arithmetic 
Let us begin our exploration of Boolean algebra by adding numbers together: 

0 + 0 = 0 

0 + 1 = 1 

1 + 0 = 1 

1 + 1 = 1 

The first three sums make perfect sense to anyone familiar with elementary addition. 

The Last sum, though, is quite possibly responsible for more confusion than any other 

Single statement in digital electronics, because it seems to run contrary to the basic principles of 

mathematics. Well, it does contradict principles of addition for real numbers, but not for Boolean 

numbers. Remember that in the world of Boolean algebra, there are only two possible values for 

any quantity and for any arithmetic operation: 1 or 0. There is no such thing as ‖2‖ within the 

scope of Boolean values. Since the sum ‖1 + 1‖ certainly isn’t 0, it must be 1 by process of 

elimination. 

Principle of Duality 

It states that every algebraic expression is deducible from the postulates of Boolean algebra and it 

remains valid if the operators & identity elements are interchanged. If the inputs of a NOR gate 

are inverted, we get a AND equivalent circuit. Similarly, when the inputs of a NAND gate are 

inverted, we get an OR equivalent circuit. This property is called duality. 

Theorems of Boolean algebra and Identities 
The theorems of Boolean algebra can be used to simplify many a complex Boolean expression and 

also to transform the given expression into a more useful and meaningful equivalent expression. 

The theorems are presented as pairs, with the two theorems in a given pair being the dual of each 

other. These theorems can be very easily verified by the method of ‘perfect induction’. According 

to this method, the validity of the expression is tested for all possible combinations of values of 



the variables involved. Also, since the validity of the theorem is based on its being true for all 

possible combinations of values of variables, there is no reason why a variable cannot be replaced 

with its complement, or vice versa, without disturbing the validity. Another important point is that, 

if a given expression is valid, its dual will also be valid. 

Theorem 1 (Operations with ‘0’ and ‘1’) 

(a) 0.X = 0 and (b) 1+X= 1 

Where X is not necessarily a single variable – it could be a term or even a large expression. 

Theorem 1(a) can be proved by substituting all possible values of X, that is, 0 and 1, into 

the given expression and checking whether the LHS equals the RHS: 

• For X = 0, LHS = 0.X = 0.0 = 0 = RHS. 

• For X= 1, LHS = 0.1 = 0 = RHS. 

Thus, 0.X =0 irrespective of the value of X, and hence the proof. 

Theorem 1(b) can be proved in a similar manner. In general, according to theorem 1, 0. (Boolean 

expression) = 0 and 1+ (Boolean expression) =1. 

1. For example: 0. (A.B + B.C +C.D) = 0 and 1+ (A.B+B.C +C.D) = 1, where A, B and C are 

Boolean variables. 

Theorem 2 (Operations with ‘0’ and ‘1’) 

(a) 1.X = X and (b) 0+X = X  

where X could be a variable, a term or even a large expression. 

According to this theorem, ANDing a Boolean expression to ‘1’ or ORing ‘0’ to it makes no 

difference to the expression: 

For X = 0, LHS = 1.0 = 0 = RHS. 

For X = 1, LHS = 1.1 = 1 = RHS. 

Also, 

1. (Boolean expression) = Boolean expression and 0 + (Boolean expression) = Boolean expression. 

For example, 

1.(A+B.C + C.D) = 0+(A+B.C +C.D) = A+B.C +C.D 

Theorem 3 (Idempotent or Identity Laws) 

(a) X.X.X……X = X and (b) X+X+X +···+X = X 

Theorems 3(a) and (b) are known by the name of idempotent laws, also known as identity laws. 



Theorem 3(a) is a direct outcome of an AND gate operation, whereas theorem 3(b) represents an 

OR gate operation when all the inputs of the gate have been tied together. The scope of idempotent 

laws can be expanded further by considering X to be a term or an expression. For example, let us 

apply idempotent laws to simplify the following Boolean expression: 

 

 

 

Theorem 4 (Complementation Law) 

(a) X_X = 0 and (b) X+X = 1 

According to this theorem, in general, any Boolean expression when ANDed to its complement 

yields a ‘0’ and when ORed to its complement yields a ‘1’, irrespective of the 

complexity of the expression: 

 
Hence, theorem 4(a) is proved. Since theorem 4(b) is the dual of theorem 4(a), its proof is implied. 

The example below further illustrates the application of complementation laws: 

 
Theorem 5 (Commutative property) 

Mathematical identity, called a ‖property‖ or a ‖law‖ describes how differing variables relate 

to each other in a system of numbers. One of these properties is known as the commutative 

property, and it applies equally to addition and multiplication. 

In essence, the commutative property tells us we can reverse the order of variables that are either 

added together or multiplied together without changing the truth of the expression: 

Commutative property of addition 

A + B = B + A 

Commutative property of multiplication 

AB = BA 

Theorem 6 (Associative Property) 

The Associative Property, again applying equally well to addition and multiplication. 

This property tells us we can associate groups of added or multiplied variables together with 

parentheses without altering the truth of the equations. 



Associative property of addition 

A + (B + C) = (A + B) + C 

Associative property of multiplication 

A (BC) = (AB) C 

Theorem 7 (Distributive Property) 

The Distributive Property, illustrating how to expand a Boolean expression formed by the product 

of a sum, and in reverse shows us how terms may be factored out of Boolean sums-of-products: 

Distributive property 

A (B + C) = AB + AC 

Theorem 8 (Absorption Law or Redundancy Law) 

(a) X+X.Y = X and (b) X.(X+Y) = X 

The proof of absorption law is straightforward: 

X+X.Y = X. (1+Y) = X.1 = X 

Theorem 8(b) is the dual of theorem 8(a) and hence stands proved. 

The crux of this simplification theorem is that, if a smaller term appears in a larger term, then the 

larger term is redundant. The following examples further illustrate the underlying concept: 

 

De-Morgan’s First Theorem 

It States that the complement of the sum of the variables is equal to the product of the complement 

of each variable. This theorem may be expressed by the following Boolean expression. 

BABA .  

De-Morgan’s Second Theorem 

It states that the complement of the product of variables is equal to the sum of Complements of 

each individual variables‖. Boolean expression for this theorem is 

BABA .  



Boolean Function 
Boolean functions are represented in various forms. The two popular forms are truth tables and 

Venn diagram. Truth tables represent functions in a tabular form, while Venn diagram provide a 

graphic representation. In addition, there are two algebraic representation known as the standard 

form or canonical form. 

Example: Truth table for Z= AB’ + A’C + A’B’C 

 There are three variables present in the equation; A, B, C. Hence, there will be 23 = 8 

combinations of values. These eight combinations are shown in the first three columns of the truth 

table. These combinations corresponds to binary numbers 000 through 111. 

 To evaluate Z in the example function, knowing the values for A,B,C at each row of the 

truth table, we should first generate the values for A’ and B’ and then generate the values of AB’, 

A’C and A’B’C by ANDing the values in the appropriate columns for each row. Finally, we should 

derive the values of Z by ORing the values in the last three columns for each row. Note that 

evaluating A’B’C corresponds to ANDing A’ and B’ values, followed by ANDing the value of C.  

 

Complete Logic Sets 

The basic logic gates are NOT, AND and OR.  The complex logic functions like NAND, NOR, 

XOR, XNOR are crested by using these basic logic gates. The last two are not standard terms; they 

stand for ‘inverter’ and ‘buffer’, respectively. The symbols for these gates and their corresponding 

Boolean expressions are given in Fig. 2. 



 

All of the logical gate functions, as well as the Boolean relations discussed in the next section, 

follow from the truth tables for the AND and OR gates. A complete set of logic operations is one 

that allows us to create every possible logic function using only those in the set. 

Basic Logic Operations 
Boolean algebra is based on a set of logic operations that define basic functions. They are 

performed using one or more input variables and they result in a single output bit. 

NOT Operation  

Because they are allowed to possess only one of two possible values, either 1 or 0, each and every 

variable has a complement: the opposite of its value. For example, if variable ‖A‖ has a value 

of 0, then the complement of A has a value of 1. Boolean notation uses a bar above the variable 

character to denote complementation, like this: 

If: A=0, then: Ā=1 

If: A=1,then: Ā=0 

In written form, the complement of ‖A‖ denoted as ‖A-not‖ or ‖A-bar‖. Sometimes a 

‖prime‖symbol is used to represent complementation. For example, A‘would be the 

complement of A, much the same as using a prime symbol to denote differentiation in calculus 



rather than the fractional notation dot. Usually, though, the ‖bar‖ symbol finds more wide spread 

use than the ‖prime‖ symbol, for reasons that will become more apparent later in this chapter. 

Truth Table:  

A Ā 

0 1 

1 0 

Symbol: 

 

OR Operation 

Let us consider there are two input bits, A and B. each of two bits can assume a value of 0 or 1. So 

22=4 possible combinations can occur. This can be listed as AB= 00, 01, 10, 11. 

A OR B can be restated as A + B. We usually employ the symbol “+” to denote OR operation.  

A OR B = A + B 

Example: If A=1, B=1 then,  

A OR B = A + B = 1 

Truth Table: 

 

 

 

Symbol 

 

 

AND Operation 

This operation detects the situation where all of the inputs are equal to 1 for this case. For two 

inputs A and B, we define the AND logic by writing 

A AND B = A.B 

If both A=1 and B=1, 

 then  

A AND B = 1 

else  

A B A + B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

A Ā 

A 

B 
A+B 



 A AND B = 0 

Truth Table: 

A B  A.B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Symbol 

 

Universal Logic Gates 

NAND Logic Gate 

The name NAND is the shorten form of NOT-AND and means the output is defined as the 

complement of the AND gate. With the inputs A and B, the NAND operation is denoted as BA. . 

This is equivalent to the statement 

If either input is 0, 

    then 

BA. =1 

    else 

BA. =0 

Truth Table:  

A B BA.  

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 

Symbol:  

 
 

 

NOR Logic Gate 

The name NOR is the shorten form of NOT-OR and means the output is defined as the complement 

of the OR gate. With the inputs A and B, the NOR operation is denoted as BA . This is equivalent 

to the statement 

If either input is 0, 

    then 

BA =1 

A 

B 
A.B 

A 

B 
 

BA.  



    else 

BA =0 

Truth Table:  

A B BA  
0 0 1 

0 1 0 

1 0 0 

1 1 0 

 

 

 

Symbol:  

 

Algebraic Reduction 
 One common problem in combinational logic design is reduction of a logic expression to 

the “simplest” possible form; “simplest” usually means that we want to implement the function 

using the smallest no of gates. The reduction is accomplished by applying the basic identities in a 

step-by-step manner. Some basic rules are summarized in table given below to aid in the task. 

OR Identities AND Identities 

A+0=A A.0=0 

A+1=1 A.1=A 

A+A=A A.A=A 

A+Ā=1 A.Ā=0 

AA   
- 

A+B=B+A A.B=B.A 

A+(B+C)=(A+B)+C A.(B.C)=(A.B).C 

A.(B+C)=A.B+A.C A+(B.C)=(A+B).(A+C) 

BABA .)(   BABA ).(  

A+A.B=A BABAA  .  

 

Combinational Logic Design 

Specifying the problem  
Combinational logic deals with networks that use logic gates to combine the input variables as 

needed to produce logic functions. In combinational circuits the value of the input depends on the 

current values of the inputs. To design a combinational logic network, we usually start with a 

specified set of inputs to produce output. 

 



Canonical form of Boolean Expression 

 

Product-of-Sums Expressions 

A product-of-sums expression contains the product of different terms, with each term being either 

a single literal or a sum of more than one literal. It can be obtained from the truth table by 

considering those input combinations that produce a logic ‘0’ at the output. Each such input 

combination gives a term, and the product of all such terms gives the expression. 

Different terms are obtained by taking the sum of the corresponding literals. Here‘0’ and ‘1’ 

respectively mean the un-complemented and complemented variables, unlike sum-of products 

expressions where ‘0’ and ‘1’ respectively mean complemented and un-complemented variables. 

Since each term in the case of the product-of-sums expression is going to be the sum of literals, 

this implies that it is going to be implemented using an OR operation. Now, an OR gate produces 

a logic ‘0’only when all its inputs are in the logic ‘0’state, which means that the first term 

corresponding to the second row of the truth table will be A+B+C. The product-of-sums Boolean 

expression for this truth table is given by transforming the given product-of-sums expression into 

an equivalent sum-of-products expression is a straight forward process. Multiplying out the given 

expression and carrying out the obvious simplification provides the equivalent sum-of-products 

expression: 

)).((),( yxyxyxF   

Sum of Products expression 

A given sum-of-products expression can be transformed into an equivalent product-of sums 

expression by (a) taking the dual of the given expression, (b) multiplying out different terms to get 

the sum-of products form, (c) removing redundancy and (d) taking a dual to get the equivalent 

product-of-sums expression. As an illustration, let us find the equivalent product of sums 

expression of the sum-of products expression 



 

Extracting Canonical Forms 
Let us investigate this relationship by means of a specific case where we start with the function 

table shown below. The input variables are A, B, C and the output function is f(A, B, C). 

A B C f 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 

From the table output f can be represented as 

f= f1+f2+f3+f4 

where,  

f1= CBA  

f2= CBA  

f3= CBA  

f4= ABC  

Hence the complete expression will be  

f= CBA + CBA + CBA + ABC  

Minterms and Maxterms 

A minterm is the product of N distinct literals where each literal occurs exactly any Boolean 

expression may be expressed in terms of either minterms or maxterms. To do this we must first 

define the concept of a literal. A literal is a single variable within a term which may or may not be 

complemented. For an expression with N variables, minterms and maxterms are defined as follows  

 once. 

 A maxterm is the sum of N distinct literals where each literal occurs exactly once. 



The Exclusive-OR and Equivalence Operation 
 By definition, the X-OR gate provides an output that is identical to that of the OR gate 

except for the case where both inputs are 1; the XOR output is 0 in this case. The name “exclusive-

OR” arises from this exception in that the output is a 1 when only a single input is 1 exclusively, 

that is, by itself. 

A B BA  

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Symbol: 

 

The logical description of the gate can be extracted from the function table. The two cases that 

results in a 1 at the output are AB=01 and AB=10, so the function is given by 

BABABA ..   

The complement of the XOR function is the exclusive NOR (XNOR) operation; which can be 

denoted as BA . The function is given by 

BABABA ..   

By reading off the SOP terms where the output is 1, this shows that it is only possible when bot 

the inputs are same; i.e A=B. Because of this property, the XNOR is also referredto as the 

“equivalence function”. 

Function Table: 

A B BA  

0 0 1 

0 1 0 

1 0 0 

1 1 1 

Symbol: 

 



Karnaugh Map 
Maurice Karnaugh, a telecommunications engineer, developed the Karnaugh map at Bell Labs in 

1953 while designing digital logic based telephone switching circuits. Karnaugh maps reduce logic 

functions more quickly and easily compared to Boolean algebra. By reduce we mean simplify, 

reducing the number of gates and inputs. We like to simplify logic to a lowest cost form to save 

costs by elimination of components. We define lowest cost as being the lowest number of gates 

with the lowest number of inputs per gate. A Karnaugh map is a graphical representation of the 

logic system. It can be drawn directly from either minterm (sum-of-products) or maxterm (product-

of-sums) Boolean expressions. Drawing a Karnaugh map from the truth table involves an 

additional step of writing the minterm or maxterm expression depending upon whether it is desired 

to have a minimized sum-of products or a minimized product of-sums expression. 

Construction of a Karnaugh Map 

An n-variable Karnaugh map has 2n squares, and each possible input is allotted a square. In the 

case of a minterm Karnaugh map, ‘1’ is placed in all those squares for which the output is ‘1’ and 

‘0’ is placed in all those squares for which the output is ‘0’. 0s are omitted for simplicity. An ‘X‘ 

is placed in squares corresponding to ‘don‘t care conditions. In the case of a maxterms Karnaugh 

map, a ‘1’ is placed in all those squares for which the output is ‘0’, and a ‘0’ is placed for input 

entries corresponding to a ‘1’ output. Again, 0s are omitted for simplicity, and an ‘X‘ is placed in 

squares corresponding to ‘don’t care’ conditions. The choice of terms identifying different rows 

and columns of a Karnaugh map is not unique for a given number of variables. The only condition 

to be satisfied is that the designation of adjacent rows and adjacent columns should be the same 

except for one of the literals being complemented. Also, the extreme rows and extreme columns 

are consider adjacent. Some of the possible designation styles for two, three and four variable 

minterm Karnaugh maps are shown in the figure below. 

The style of row identification need not be the same as that of column identification as long as it 

meets the basic requirement with respect to adjacent terms. It is, however, accepted practice to 

adopt a uniform style of row and column identification. Also, the style shown in the figure below 

is more commonly used. A similar discussion applies for maxterms Karnaugh maps. Having drawn 

the Karnaugh map, the next step is to form groups of 1s as per the following guidelines: 

 Each square containing a ‘1’ must be considered at least once, although it can be considered 

as often as desired. 



 The objective should be to account for all the marked squares in the minimum number of 

groups. 

 The number of squares in a group must always be a power of 2, i.e. groups can have 1, 2, 

4, 8, 16, squares. 

 Each group should be as large as possible, which means that a square should not be 

accounted for by itself if it can be accounted for by a group of two squares; a group of two 

squares should not be made if the involved squares can be included in a group of four 

squares and so on. 

 ‘Don’t care‘entries can be used in accounting for all of 1-squares to make optimum groups. 

They are marked ‘X’ in the corresponding squares. It is, however, not necessary to account 

for all ‘don’t care’ entries. Only such entries that can be used to advantage should be used. 

Two Variable K-Map 

 

Three Variable K-Map 

 

 



Four Variable K-Map 

 



 

MODULE – II 

Concept of logic components 
Modern digital networks can be quite complicated, consisting of millions of logic gates. To design 

large system, we use the hierarchical approach where the network is broken down into smaller 

logic components that perform useful functions. The components themselves may be classified as 

basic components for system building even though they consist of smaller components or basic 

logic gates.  

Binary Adder 

Half-Adder 
A half-adder is an arithmetic circuit block that can be used to add two bits. Such a circuit thus has 

two inputs that represent the two bits to be added and two outputs, with one producing the SUM 

output and the other producing the CARRY. Figure shows the truth table of a half-adder, showing 

all possible input combinations and the corresponding outputs. The Boolean expressions for the 

SUM and CARRY outputs are given by the equations below 

 

 

An examination of the two expressions tells that there is no scope for further simplification. While 

the first one representing the SUM output is that of an EX-OR gate, the second one representing 

the CARRY output is that of an AND gate. However, these two expressions can certainly be 

represented in different forms using various laws and theorems of Boolean algebra to illustrate the 



flexibility that the designer has in hardware implementing as simple a combinational function as 

that of a half-adder. 

 

Although the simplest way to hardware-implement a half-adder would be to use a two input EX- 

OR gate for the SUM output and a two-input AND gate for the CARRY output, as shown in Fig. 

it could also be implemented by using an appropriate arrangement of either NAND or NOR gates. 

Full Adder 
A full adder circuit is an arithmetic circuit block that can be used to add three bits to produce a 

SUM and a CARRY output. Such a building block becomes a necessity when it comes to adding 

binary numbers with a large number of bits. The full adder circuit overcomes the limitation of the 

half-adder, which can be used to add two bits only. Let us recall the procedure for adding larger 

binary numbers. We begin with the addition of LSBs of the two numbers. We record the sum under 

the LSB column and take the carry, if any, forward to the next higher column bits. As a result, 

when we add the next adjacent higher column bits, we would be required to add three bits if there 

were a carry from the previous addition. We have a similar situation for the other higher column 

bits. Also until we reach the MSB. A full adder is therefore essential for the hardware 

implementation of an adder circuit capable of adding larger binary numbers. A half-adder can be 

used for addition of LSBs only. 

 



Figure shows the truth table of a full adder circuit showing all possible input combinations and 

corresponding outputs. In order to arrive at the logic circuit for hardware implementation of a full 

adder, we will firstly write the Boolean expressions for the two output variables, that is, the SUM 

and CARRY outputs, in terms of input variables. These expressions are then simplified by using 

any of the simplification techniques described in the previous chapter. The Boolean expressions 

for the two output variables are given in Equation below for the SUM output (S) and in above 

Equation for the CARRY output (Cout): 

 

Boolean expression above can be implemented with a two-input EX-OR gate provided that one of 

the inputs is Cin and the other input is the output of another two-input EX-OR gate with A and B 

as its inputs. Similarly, Boolean expression above can be implemented by ORing two minterms. 

One of them is the AND output of A and B. The other is also the output of an AND gate whose 

inputs are Cin and the output of an EX-OR operation on A and B. The whole idea of writing the 

Boolean expressions in this modified form was to demonstrate the use of a half-adder circuit in 

building a full adder. Figure shows logic implementation of Equations above. 

 

Subtractor and Multiplier 

Half-Subtractor 

We will study the use of adder circuits for subtraction operations in the following pages. Before 

we do that, we will briefly look at the counterparts of half-adder and full adder circuits in the half-

subtractor and full subtractor for direct implementation of subtraction operations using logic gates. 



A half-subtractor is a combinational circuit that can be used to subtract one binary digit from 

another to produce a DIFFERENCE output and a BORROW output. The BORROW output here 

specifies whether a ‘1’ has been borrowed to perform the subtraction. The truth table of a half-

subtractor, as shown in Fig. explains this further. The Boolean expressions for the two outputs are 

given by the equations 

 

 

Full-Subtractor 

A full subtractor performs subtraction operation on two bits, a minuend and a subtrahend, and also 

takes into consideration whether a ‘1‘ has already been borrowed by the previous adjacent lower 

minuend bit or not. As a result, there are three bits to be handled at the input of a full subtractor, 

namely the two bits to be subtracted and a borrow bit designated as Bin .There are two outputs, 

namely the DIFFERENCE output D and the BORROW output Bo. The BORROW output bit tells 

whether the minuend bit needs to borrow a ‘1’ from the next possible higher minuend bit. Figure 

shows the truth table of a full subtractor. The Boolean expressions for the two output variables are 

given by the equations 



 

Binary Multiplier 

Multiplication of binary numbers is usually implemented in microprocessors and microcomputers 

by using repeated addition and shift operations. Since the binary adders are designed to add only 

two binary numbers at a time, instead of adding all the partial products at the end, they are added 

two at a time and their sum is accumulated in a register called the accumulator register. Also, when 

the multiplier bit is ‘0’, that very partial product is ignored, as an all ‘0’ line does not affect the 

final result. The basic hardware arrangement of such a binary multiplier would comprise shift 

registers for the multiplicand and multiplier bits, an accumulator register for storing partial 

products, a binary parallel adder and a clock pulse generator to time various operations.  

Binary multipliers are also available in IC form. Some of the popular type numbers in the TTL 

family include 74261 which is a 2 × 4 bit multiplier (a four-bit multiplicand designated 

asB0, B1, B2, B3 and B4, and a two-bit multiplier designated as M0, M1 and M2.The MSBs 

B4 and M2 are used to represent signs. 74284 and 74285 are 4 × 4 bit multipliers. They can be 

used together to perform high-speed multiplication of two four-bit numbers. Figure shows the 

arrangement. The result of multiplication is often required to be stored in a register. The size of 

this register (accumulator) depends upon the number of bits in the result, which at the most can be 

equal to the sum of the number of bits in the multiplier and multiplicand. Some multipliers ICs 

have an in-built register. 



 

Magnitude comparator 
A magnitude comparator is a combinational circuit that compares two given numbers and 

determines whether one is equal to, less than or greater than the other. The output is in the form of 

three binary variables representing the conditions A = B,A>B and A<B, if A and B are the two 

numbers being compared. Depending upon the relative magnitude of the two numbers, the relevant 

output changes state. If the two numbers, let us say, are four-bit binary numbers and are designated 

as (A3 A2 A1 A0) and (B3 B2 B1 B0), the two numbers will be equal if all pairs of significant 

digits are equal, that is, A3= B3, A2 = B2, A1= B1 and A0 =B0. In order to determine whether A 

is greater than or less than B we inspect the relative magnitude of pairs of significant digits, starting 

from the most significant position. The comparison is done by successively comparing the next 

adjacent lower pair of digits if the digits of the pair under examination are equal. The comparison 

continues until a pair of unequal digits is reached. In the pair of unequal digits, if Ai = 1 and Bi = 

0, then A > B, and if Ai = 0, Bi= 1 then A < B. If X, Y and Z are three variables respectively 

representing the A =B, A > B and A < B conditions, then the Boolean expression representing 

these conditions are given by the equations 



 

Let us examine equations .x3 will be ‘1’ only when both A3 and B3 are equal. Similarly, conditions 

for x2, x1 and x0 to be ‘1’ respectively are equal A2 and B2, equal A1 and B1 and equal A0 and 

B0. ANDing of x3, x2, x1 and x0 ensures that X will be ‘1’ when x3, x2, x1 and x0 are in the logic 

‘1’ state. Thus, X = 1 means that A = B. On similar lines, it can be visualized that equations and 

respectively represent A> B and A < B conditions. Figure shows the logic diagram of a four-bit 

magnitude comparator. 

Magnitude comparators are available in IC form. For example, 7485 is a four bit magnitude 

comparator of the TTL logic family. IC 4585 is a similar device in the CMOS family. 7485 and 

4585 have the same pin connection diagram and functional table. The logic circuit inside these 

devices determines whether one four-bit number, binary or BCD, is less than, equal to or greater 

than a second four-bit number. It can perform comparison of straight binary and straight BCD (8-

4-2-1) codes. These devices can be cascaded together to perform operations on larger bit numbers 

without the help of any external gates. This is facilitated by three additional inputs called cascading 

or expansion inputs available on the IC. These cascading inputs are also designated as A = B, A > 

B and A <B inputs. Cascading of individual magnitude comparators of the type 7485 or 4585 is 

discussed in the following paragraphs. IC 74AS885 is another common magnitude comparator. 

The device is an eight bit magnitude comparator belonging to the advanced Schottky TTL family. 

It can perform high-speed arithmetic or logic comparisons on two eight-bit binary or 2‘s 

complement numbers and produces two fully decoded decisions at the output about one number 

being either greater than or less than the other. More than one of these devices can also be 

connected in a cascade arrangement to perform comparison of numbers of longer lengths. 



 

 

Decoders and Encoders 
The previous section began by discussing an application: Given 2n data signals, the problem is to 

select, under the control of n select inputs, sequences of these 2n data signals to send out serially 

on a communications link. The reverse operation on the receiving end of the communications link 

is to receive data serially on a single line and to convey it to one of 2noutput lines. This again is 

controlled by a set of control inputs. It is this application that needs only one input line; other 

applications may require more than one. We will now investigate such a generalized circuit. 

Conceivably, there might be a combinational circuit that accepts n inputs (not necessarily 1, but a 

small number) and causes data to be routed to one of many, say up to 2n, outputs. Such circuits 

have the generic name decoder. Semantically, at least, if something is to be decoded, it must have 

previously been encoded, the reverse operation from decoding. Like a multiplexer, an encoding 

circuit must accept data from a large number of input lines and convert it to data on a smaller 

number of output lines (not necessarily just one). This section will discuss a number of 

implementations of decoders and encoders. 



n-to-2n-Line Decoder 
In the demultiplexer circuit in Figure, suppose the data input line is removed. (Draw the circuit for 

yourself.) Each AND gate now has only n (in this case three) inputs, and there are 2n (in this case 

eight) outputs. Since there isn’t a data input line to control, what used to be control inputs no longer 

serve that function. Instead, they are the data inputs to be decoded. 

This circuit is an example of what is called an n-to-2n-line decoder. Each output represents a 

minterm. Output k is 1 whenever the combination of the input variable values is the binary 

equivalent of decimal k. Now suppose that the data input line from the demultiplexer in Figure 16 

is not removed but retained and viewed as an enable input. The decoder now operates only when 

the enable x is 1. Viewed conversely, an n-to-2n-line decoder with an enable input can also be 

used as a demultiplexer, where the enable becomes the serial data input and the data inputs of the 

decoder become the control inputs of thedemultiplexer.7 Decoders of the type just described are 

available as integrated circuits (MSI);n = 3 and n = 4 are quite common. There is no theoretical 

reason why n can’t be increased to higher values. Since, however, there will always be practical 

limitations on the fan-in (the number of inputs that a physical gate can support), decoders of higher 

order are often designed using lower-order decoders interconnected with a network of other gates. 

 

Encoder 
An encoder is a combinational circuit that performs the inverse operation of a decoder. If a device 

output code has fewer bits than the input code has, the device is usually called an encoder. e.g. 2n-



to-n, priority encoders. The simplest encoder is a 2n-to-n binary encoder, where it has only one of 

2n inputs =1 and the output is the n-bit binary number corresponding to the active input. 

Priority Encoder 
A priority encoder is a practical form of an encoder. The encoders available in IC form are all 

priority encoders. In this type of encoder, a priority is assigned to each input so that, when more 

than one input is simultaneously active, the input with the highest priority is encoded. We will 

illustrate the concept of priority encoding with the help of an example. 

Let us assume that the octal to-binary encoder described in the previous paragraph has an input 

priority for higher-order digits. Let us also assume that input lines D2, D4 and D7 are all 

simultaneously in logic ‘1’ state. In that case, only D7 will be encoded and the output will be111.  

 

The truth table of such a priority encoder will then be modified to what is shown above in truth 

table. Looking at the last row of the table, it implies that, if D7 = 1, then, irrespective of the logic 

status of other inputs, the output is 111 as D7 will only be encoded. As another example, Fig. 

shows the logic symbol and truth table of a 10-line decimal to four-line BCD encoder providing 

priority encoding for higher-order digits, with digit 9 having the highest priority. In the functional 

table shown, the input line with highest priority having a LOW on it is encoded irrespective of the 

logic status of the other input lines. 



 

MULTIPLEXERS 
Data generated in one location is to be used in another location; a method is needed to transmit it 

from one location to another through some communications channel. The data is available, in 

parallel, on many different lines but must be transmitted over a single communications link. 

A mechanism is needed to select which of the many data lines to activate sequentially at any one 

time so that the data this line carries can be transmitted at that time. This process is called 

multiplexing. An example is the multiplexing of conversations on the telephone system. A number 

of telephone conversations are alternately switched onto the telephone line many times per second. 

Because of the nature of the human auditory system, listeners cannot detect that what they are 

hearing is chopped up and that other people’s conversations are interspersed with their own in the 

transmission process. Needed at the other end of the communications link is a device that will 

undo the multiplexing: a demultiplexer. Such a device must accept the incoming serial data and 

direct it in parallel to one of many output lines. The interspersed snatches of telephone 

conversations, for example, must be sent to the correct listeners. 

A digital multiplexer is a circuit with 2n data input lines and one output line. It must also have a 

way of determining the specific data input line to be selected at any one time. 

This is done with n other input lines, called the select or selector inputs, whose function is to select 

one of the 2n data inputs for connection to the output. A circuit for n = 3 is shown in Figure below. 

The n selector lines have 2n = 8 combinations of values that constitute binary select numbers 



 

Demultiplexers 
The demultiplexer shown there is a single-input, multiple-output circuit. However, in addition to 

the data input, there must be other inputs to control the transmission of the data to the appropriate 

data output line at any given time. Such a demultiplexer circuit having eight output lines is shown 

in Figure 16a. It is instructive to compare this demultiplexer circuit with the multiplexer circuit in 

Figure 13. For the same number of control (select) inputs, there are the same number of AND 

gates. But now each AND gate output is a circuit output. Rather than each gate having its own 

separate data input, the single data line now forms one of the inputs to each AND gate, the other 

AND inputs being control inputs. 



 

Synchronous Sequential logic 

Latches 
The following 3 figures are equivalent representations of a simple circuit. In general these are 

called flip-flops. Specially, these examples are called SR (set-rese) flip-flops, or SR latches. 

 

 



S S  R R  Q Q  

1 0 0 1 1 0 

0 1 1 0 0 1 

0 1 0 1 Prev. 

value 
Prev. 

value 

1 0 1 0 0 0 

The state described by the last row is clearly problematic, since Q and Q  should not be the same 

value. Thus the S=R=1 inputs should be avoided.   

From the truth table, we can develop a sequence such as the following: 

R=0, S=1 => Q=1 (Set) 

R=0, S=0 => Q=1 (Q=1 state retained) 

R=1, S=0 => Q=0 (Reset) 

R=0, S=0 => Q=0 (Q= 0 state retained) 

 In alternative language, the first operation “writes” a true state into one bit of memory. It 

can subsequently be “read” until it is erased by the reset operation of the third line. 

Flip Flops 
The flip-flop is an important element of such circuits. It has the interesting property of an SR Flip-

flop has two inputs: S for setting and R for Resetting the flip- flop : It can be set to a state which 

is retained until explicitly reset. 

R-S Flip-Flop 
A flip-flop, as stated earlier, is a bistable circuit. Both of its output states are stable. The circuit 

remains in a particular output state indefinitely until something is done to change that output status. 

Referring to the bistable multivibrator circuit discussed earlier, these two states were those of the 

output transistor in saturation (representing a LOW output) and in cut-off (representing a HIGH 

output). If the LOW and HIGH outputs are respectively regarded as ‘0’ and ‘1’, then the output 

can either be a ‘0’ or a ‘1’. Since either a ‘0’ or a ‘1’ can be held indefinitely until the circuit is 

appropriately triggered to go to the other state, the circuit is said to have memory. It is capable of 

storing one binary digit or one bit of digital information. Also, if we recall the functioning of the 

bistable multivibrator circuit, we find that, when one of the transistors was in saturation, the other 

was in cut-off. This implies that, if we had taken outputs from the collectors of both transistors, 

then the two outputs would be complementary. 



J-K Flip-Flop 
A J-K flip-flop behaves in the same fashion as an R-S flip-flop except for one of the entries in the 

function table. In the case of an R-S flip-flop, the input combination S =R = 1 (in the case of a flip-

flop with active HIGH inputs) and the input combination S = R= 0 (in the case of a flip-flop with 

active LOW inputs) are prohibited. In the case of a J-K flip-flop with active HIGH inputs, the 

output of the flip-flop toggles, that is, it goes to the other state, for J = K = 1 . The output toggles 

for J = K = 0 in the case of the flip-flop having active LOW inputs. Thus, a J-K flip-flop overcomes 

the problem of a forbidden input combination of the R-S flip-flop. Figures below respectively 

show the circuit symbol of level-triggered J-K flip-flops with active HIGH and active LOW inputs, 

along with their function tables. 

The characteristic tables for a J-K flip-flop with active HIGH J and K inputs and a J-K flip-flop 

with active LOW J and K inputs are respectively shown in Figs (a) and (b). The corresponding 

Karnaugh maps are shown in Fig below for the characteristics table of Fig and in below for the 

characteristic table below. The characteristic equations for the Karnaugh maps of below figure is 

shown next FIG 

 

FIG a. JK flip flop with active high inputs, b. JK flip flop with active low inputs 

Toggle Flip-Flop (T Flip-Flop) 
The output of a toggle flip-flop, also called a T flip-flop, changes state every time it is triggered at 

its T input, called the toggle input. That is, the output becomes ‘1’ if it was 



‘0’and ‘0’ if it was ‘1’. Positive edge-triggered and negative edge-triggered T flip-flops, along with 

their function tables. If we consider the T input as active when HIGH, the characteristic table of 

such a flip-flop is shown in Fig. If the T input were active when LOW, then the characteristic table 

would be as shown in Fig. The Karnaugh maps for the characteristic tables of Figs shown 

respectively. The characteristic equations as written from the Karnaugh maps are as follows: 

nnn QTQTQ ..1 
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D Flip-Flop 
A D flip-flop, also called a delay flip-flop, can be used to provide temporary storage of one bit of 

information. Figure shows the circuit symbol and function table of a negative edge-triggered D 

flip-flop. When the clock is active, the data bit (0 or 1) present at the D input is transferred to the 

output. In the D flip-flop of Fig the data transfer from D input to Q output occurs on the negative-

going (HIGH-to-LOW) transition of the clock input. The D input can acquire new status. 



 

Analysis of Clocked Sequential circuits 
The analysis of a synchronous sequential circuit is the process of determining the functional 

relation that exists between its output, its inputs and its internal state. The contents of all the flip-

flops in the circuit combined determine the internal state of the circuit. Thus, the circuit contains 

n flip-flops, it can be in one of the 2n states. Knowing the present state of the circuit and the input 

values at any time t, we should be able to derive its next state (i.e. the state at time t+1) and the 

output produced by the circuit at t. 

 A sequential circuit can be described completely by a state table that is very similar to the 

one shown for flip-flops. For a circuit with n flip-flops, there will be 2n rows in the state table. If 

there are m inputs to the circuit then there will be 2m no of columns. In the intersection of each 

row and column the next state and the output information will be recorded. 

A state diagram is a graphical representation of state table, in which each state is represented as a 

circle and the state transitions are represented as arrows. Analysing a sequential circuit thus 

corresponds to generating the state table and state diagram for the circuit. The state table and state 

diagram can be used to determine the output sequence generated by the circuit for a given input 

sequence if the initial condition is known.  Usually the power-up circuits are used to the appropriate 

state when the power is turned on. 



 

(a) Sequential circuit analysis (b) Transition table (c) State diagram 

Counters 
In digital logic and computing, a counter is a device which stores (and sometimes displays) the 

number of times a particular event or process has occurred, often in relationship to a clock signal. 

In practice, there are two types of counters: 

 up counters which increase (increment) in value 

 down counters which decrease (decrement) in value 

Counters Types 
In electronics, counters can be implemented quite easily using register-type circuits such as the 

flip-flop, and a wide variety of designs exist, e.g: 

 Asynchronous (ripple) counters 

 Synchronous counters 

 Johnson counters 

 Decade counters 

 Up-Down counters 

 Ring counters 

Each is useful for different applications. Usually, counter circuits are digital in nature, and count 

in binary, or sometimes binary coded decimal. Many types of counter circuit are available as digital 

building blocks, for example a number of chips in the 4000 series implement different counters. 



Asynchronous (ripple) counters 
The simplest counter circuit is a single D-type flip flop, with its D (data) input fed from its own 

inverted output. This circuit can store one bit, and hence can count from zero to one before it 

overflows (starts over from 0). This counter will increment once for every clock cycle and takes 

two clock cycles to overflow, so every cycle it will alternate between a transition from 0 to 1 and 

a transition from 1 to 0. Notice that this creates a new clock with a 50% duty cycle at exactly half 

the frequency of the input clock. If this output is then used as the clock signal for a similarly 

arranged D flip flop (remembering to invert the output to the input), you will get another 1 bit 

counter that counts half as fast. Putting them together yields a two bit counter: 

 

 

Decade counters 
Decade counters are a kind of counter that counts in tens rather than having a binary representation. 

Each output will go high in turn, starting over after ten outputs have occurred. This type of circuit 



finds applications in multiplexers and demultiplexers, or wherever a scanning type of behaviour is 

useful. Similar counters with different numbers of outputs are also common. 

Ring or Up-Down Counters 
It is a combination of up counter and down counter, counting in straight binary sequence. There is 

an up-down selector. If this value is kept high, counter increments binary value and if the value is 

low, then counter starts decrementing the count. The Down counters are made by using the 

complemented output to act as the clock for the next flip-flop in the case of Asynchronous 

counters. An Up counter is constructed by linking the Q out of the J-K Flip flop and putting it into 

a Negative Edge Triggered Clock input. A Down Counter is constructed by taking the Q output 

and putting it into a Positive Edge Triggered input Ring Counters a ring counter is a counter that 

counts up and when it reaches the last number that is designed to count up to, it will reset itself 

back to the first number. For example, a ring counter that is designed using 3 JK Flip Flops will 

count starting from 001 to 010 to 100 and back to 001. It will repeat itself in a 'Ring' shape and 

thus the name Ring Counter is given. 

State Diagram 
In addition to graphical symbols, tables or equations, flip-flops can also be represented graphically 

by a state diagram. In this diagram, a state is represented by a circle, and the transition between 

states is indicated by directed lines (or arcs) connecting the circles. An example of a state diagram 

is shown in Figure 3 below. 

 

The binary number inside each circle identifies the state the circle represents. The directed lines 

are labelled with two binary numbers separated by a slash (/). The input value that causes the state 

transition is labelled first. The number after the slash symbol / gives the value of the output. For 



example, the directed line from state 00 to 01 is labelled 1/0, meaning that, if the sequential circuit 

is in a present state and the input is 1, then the next state is 01 and the output is 0. If it is in a present 

state 00 and the input is 0, it will remain in that state. A directed line connecting a circle with itself 

indicates that no change of state occurs. The state diagram provides exactly the same information 

as the state table and is obtained directly from the state table. 



MODULE-III 

Shift register 
In digital circuits a shift register is a group of flip flops set up in a linear fashion which have their 

inputs and outputs connected together in such a way that the data is shifted down the line when the 

circuit is activated.  

 

 

Memory & Programmable logic 
The important common element of the memories we will study is that they are random access 

memories, or RAM. This means that each bit of information can be individually stored or retrieved 

| with a valid input address. This is to be contrasted with sequential memories in which bits must 

be stored or retrieved in a particular sequence, for example with data storage on magnetic tape. 

Unfortunately the term RAM has come to have a more specific meaning: A memory for which bits 

can both be easily stored or retrieved (“written to" or “read from"). 

Classification of memories 

Random Access Memory (RAM) 
In general, refers to random access memory. All of the devices we are considering to be 

“memories" (RAM, ROM, etc.) are random access. The term RAM has also come to mean memory 

which can be both easily written to and read from.  

RAM has three basic building blocks, namely an array of memory cells arranged in rows and 

columns with each memory cell capable of storing either a ‘0’ or a ‘1’, an address decoder and a 



read/write control logic. Depending upon the nature of the memory cell used, there are two types 

of RAM, namely static RAM (SRAM) and dynamic RAM (DRAM). In SRAM, the memory cell 

is essentially a latch and can store data indefinitely as long as the DC power is supplied. DRAM 

on the other hand, has a memory cell that stores data in the form of charge on a capacitor. 

Therefore, DRAM cannot retain data for long and hence needs to be refreshed periodically. SRAM 

has a higher speed of operation than DRAM but has a smaller storage capacity. 

Static RAM 

These essentially are arrays of flip-flops. They can be fabricated in ICs as large arrays of tint flip-

flops.) “SRAM" is intrinsically somewhat faster than dynamic RAM. 

Dynamic RAM. 

Uses capacitor arrays. Charge put on a capacitor will produce a HIGH bit if its voltage V = Q=C 

exceeds the threshold for the logic standard in use. Since the charge will “leak" through the 

resistance of the connections in times of order 1 msec, the stored in formation must be continuously 

refreshed (hence the term “dynamic"). Dynamic RAM can be fabricated with more bits per unit 

area in an IC than static RAM. Hence, it is usually the technology of choice for most large-scale 

IC memories. 

Read-only memory. 

Information cannot be easily stored. The idea is that bits are initially stored and are never changed 

thereafter. As an example, it is generally prudent for the instructions used to initialize a computer 

upon initial power-up to be stored in ROM. The following terms refer to versions of ROM for 

which the stored bits can be over-written, but not easily. 

Programmable ROM. 

Bits can be set on a programming bench by burning fusible links, or equivalent. This technology 

is also used for programmable array logic (PALs), which we will briefly discuss in class. 

ROM Organization 

A circuit for implementing one or more switching functions of several variables was described in 

the preceding section and illustrated in Figure 20. The components of the circuit are 

• An n × 2n decoder, with n input lines and 2n output lines 

• One or more OR gates, whose outputs are the circuit outputs 



• An interconnection network between decoder outputs and OR gate inputs 

The decoder is an MSI circuit, consisting of 2n n-input AND gates, that produces all the minterms 

of n variables. It achieves some economy of implementation, because the same decoder can be 

used for any application involving the same number of variables. What is special to any application 

is the number of OR gates and the specific outputs of the decoder that become inputs to those OR 

gates. Whatever else can be done to result in a general-purpose circuit would be most welcome. 

The most general-purpose approach is to include the maximum number of OR gates, with 

provision to interconnect all 2n outputs of the decoder with the inputs to every one of the OR gates. 

Then, for any given application, two things would have to be done: 

 The number of OR gates used would be fewer than the maximum number, the others 

remaining unused. 

 Not every decoder output would be connected to all OR gate inputs. This scheme would 

be terribly wasteful and doesn’t sound like a good idea. Instead, suppose a smaller number, 

m, is selected for the number of OR gates to be included, and an interconnection network 

is set up to interconnect the 2n decoder outputs to the m OR gate inputs. Such a structure 

is illustrate in above figure. It is an LSI combinational circuit with n inputs and m outputs 

that, for reasons that will become clear shortly, is called a read-only memory (ROM). 

A ROM consists of two parts: 

• An n × 2n decoder 

• A 2n × m array of switching devices that form interconnections between the 2n lines from the 

decoder and the m output lines the 2n output lines from the decoder are called the word lines.  

Each of the 2n combinations that constitute the inputs to the interconnection array corresponds to 

a minterm and specifies an address. The memory consists of those connections that are actually 

made in the connection matrix between the word lines and the output lines. Once made, the 

connections in the memory array are permanent. So this memory is not one whose contents can be 

changed readily from time to time; we write into this memory but once. However, it is possible to 

read the information already stored (the connections actually made) as often as desired, by 

applying input words and observing the output words. That’s why the circuit is called read-only 

memory. Before you continue reading, think of two possible ways in which to fabricate a ROM so 



that one set of connections can be made and another set left unconnected. Continue reading after 

you have thought about it. 

A ROM can be almost completely fabricated except that none of the connections are made. Such 

a ROM is said to be blank. Forming the connections for a particular application is called 

programming the ROM. In the process of programming the ROM, a mask is produced to cover 

those connections that are not to be made. For this reason, the blank form of the ROM is called 

mask programmable. 

 

 

Programmable Logic Array 
A programmable logic array is a kind of programmable logic devices (PLDs) used to implement 

combinational logic circuits. The PLA has a set of programmable OR gate planes, which can then 

be conditionally complemented to produce an output. It has 2n AND gates for n input and for m 

outputs from PLA, there should be m OR gates. This layout allows for a larger number of logic 

functions to be synthesized in the sum of products canonical form. 

PLA differs from programmable array logic devices in that both AND and OR gate planes are 

programmable. 



Programmable Array Logic 
The PAL device is a special case of PLA which has a programmable AND array and affixed OR 

array. The basic structure of Rom is same as PLA. It is cheap compared to PLA as only the AND 

array is programmable. It is also easy to program a PAL compared to PLA as only AND must be 

programmed. 

The figure below shows a segment of an un-programmed PAL. The input buffer with non-inverted 

and inverted outputs is used, since each PAL must drive many AND Gates inputs. When the PAL 

is programmed, the fusible links (F1, F2, F3…F8) are selectively blown to leave the desired 

connections to the AND Gate inputs. Connections to the AND Gate inputs in a PAL are represented 

by Xs, as shown here: 

 

Digital Integrated logic Circuits 
Logic families can be classified broadly according to the technologies they are built with. In earlier 

days we had vast number of these technologies, as you can see in the list below. 

RTL : Resistor Transistor Logic. 

DTL : Diode Transistor Logic. 

TTL : Transistor Transistor Logic. 

ECL : Emitter coupled logic. 

MOS : Metal Oxide Semiconductor Logic (PMOS and NMOS). 

CMOS : Complementary Metal Oxide Semiconductor Logic. 



Resistor Transistor Logic. 
In RTL (resistor transistor logic), all the logic are implemented using resistors and transistors. One 

basic thing about the transistor (NPN), is that HIGH at input causes output to be LOW (i.e. like an 

inverter). Below is the example of a few RTL logic circuits. 

 
A basic circuit of an RTL NOR gate consists of two transistors Q1 andQ2, connected as the figure 

above. When either input X or Y is driven HIGH, the corresponding transistor goes to saturation 

and output Z is pulled to LOW. 

Diode Transistor Logic 
In DTL (Diode transistor logic), all the logic is implemented using diodes and transistors. A basic 

circuit in the DTL logic family is as shown in the figure below. Each input is associated with one 

diode. The diodes and the 4.7K resistor form an AND gate. If input X, Y or Z is low, the 

corresponding diode conducts current, through the 4.7K resistor. 

Thus there is no current through the diodes connected in series to transistor base. Hence the 

transistor does not conduct, thus remains in cut-off, and output out is high. If all the inputs X,Y,Z 

are driven high, the diodes in series conduct, driving the transistor into saturation. Thus output out 

is Low. 



 

Transistor Transistor Logic 

In Transistor Transistor logic or just TTL, logic gates are built only around transistors. TTL was 

developed in 1965. Through the years basic TTL has been improved to meet performance 

requirements. There are many versions or families of TTL. 

 Standard TTL 

 High Speed TTL 

 Low Power TTL 

 Schhottky TTL 

As such all TTL families have three configurations for outputs. 

 Totem - Pole output. 

 Open Collector Output. 

 Tristate Output. 

Before we discuss the output stage let's look at the input stage, which is used with almost all 

versions of TTL. This consists of an input transistor and a phase splitter transistor. Input stage 

consists of a multi emitter transistor as shown in the figure below. When any input is driven low, 

the emitter base junction is forward biased and input transistor conducts. This in turn drives the 

phase splitter transistor into cut-off. 



 

Metal Oxide Semiconductor Logic (PMOS and NMOS) 
MOS or Metal Oxide Semiconductor logic uses nmos and pmos to implement logic gates. One 

needs to know the operation of FET and MOS transistors to understand the operation of MOS logic 

circuits transistor does not conduct, and thus output is HIGH. But when input is HIGH,NMOS 

transistor conducts and thus output is LOW. 

 

Complementary Metal Oxide Semiconductor Logic 
CMOS or Complementary Metal Oxide Semiconductor logic is built using both NMOS and 

PMOS. Below is the basic CMOS inverter circuit, which follows these rules: NMOS conducts 

when its input is HIGH.PMOS conducts when its input is LOW. So when input is HIGH, NMOS 

conducts, and thus output is LOW; when input is LOW PMOS conducts and thus output is HIGH. 



 
 

 


