EE101: Digital circuits (Part 4)

M. B. Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

Sequential circuits

Sequential circuits

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer, encoders, decoders) are combinatorial in nature, i.e., the output(s) depends only on the present values of the inputs and not on their past values.

Sequential circuits

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer, encoders, decoders) are combinatorial in nature, i.e., the output(s) depends only on the present values of the inputs and not on their past values.
* In sequential circuits, the "state" of the circuit is crucial in determining the output values. For a given input combination, a sequential circuit may produce different output values, depending on its previous state.

Sequential circuits

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer, encoders, decoders) are combinatorial in nature, i.e., the output(s) depends only on the present values of the inputs and not on their past values.
* In sequential circuits, the "state" of the circuit is crucial in determining the output values. For a given input combination, a sequential circuit may produce different output values, depending on its previous state.
* In other words, a sequential circuit has a memory (of its past state) whereas a combinatorial circuit has no memory.

Sequential circuits

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer, encoders, decoders) are combinatorial in nature, i.e., the output(s) depends only on the present values of the inputs and not on their past values.
* In sequential circuits, the "state" of the circuit is crucial in determining the output values. For a given input combination, a sequential circuit may produce different output values, depending on its previous state.
* In other words, a sequential circuit has a memory (of its past state) whereas a combinatorial circuit has no memory.
* Sequential circuits (together with combinatorial circuits) make it possible to build several useful applications, such as counters, registers, arithmetic/logic unit (ALU), all the way to microprocessors.

* A, B : inputs, X_{1}, X_{2} : outputs

* A, B : inputs, X_{1}, X_{2} : outputs
* Consider $A=1, B=0$.

A	B	X_{1}	X_{2}

* A, B : inputs, X_{1}, X_{2} : outputs
* Consider $A=1, B=0$.

$$
B=0 \Rightarrow X_{2}=1 \Rightarrow X_{1}=\overline{A X_{2}}=\overline{1 \cdot 1}=0 .
$$

* A, B : inputs, X_{1}, X_{2} : outputs
* Consider $A=1, B=0$.
$B=0 \Rightarrow X_{2}=1 \Rightarrow X_{1}=\overline{A X_{2}}=\overline{1 \cdot 1}=0$. Overall, we have $X_{1}=0, X_{2}=1$.

A	B	X_{1}	X_{2}
1	0	0	1

* A, B : inputs, X_{1}, X_{2} : outputs
* Consider $A=1, B=0$.
$B=0 \Rightarrow X_{2}=1 \Rightarrow X_{1}=\overline{A X_{2}}=\overline{1 \cdot 1}=0$. Overall, we have $X_{1}=0, X_{2}=1$.

A	B	X_{1}	X_{2}
1	0	0	1

* A, B : inputs, X_{1}, X_{2} : outputs
* Consider $A=1, B=0$.
$B=0 \Rightarrow X_{2}=1 \Rightarrow X_{1}=\overline{A X_{2}}=\overline{1 \cdot 1}=0$. Overall, we have $X_{1}=0, X_{2}=1$.
* Consider $A=0, B=1$. Show that $X_{1}=1, X_{2}=0$.

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0

* A, B : inputs, X_{1}, X_{2} : outputs
* Consider $A=1, B=0$.
$B=0 \Rightarrow X_{2}=1 \Rightarrow X_{1}=\overline{A X_{2}}=\overline{1 \cdot 1}=0$. Overall, we have $X_{1}=0, X_{2}=1$.
* Consider $A=0, B=1$. Show that $X_{1}=1, X_{2}=0$.

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0

* A, B : inputs, X_{1}, X_{2} : outputs
* Consider $A=1, B=0$.
$B=0 \Rightarrow X_{2}=1 \Rightarrow X_{1}=\overline{A X_{2}}=\overline{1 \cdot 1}=0$. Overall, we have $X_{1}=0, X_{2}=1$.
* Consider $A=0, B=1$. Show that $X_{1}=1, X_{2}=0$.
* Consider $A=B=1$.

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0

* A, B : inputs, X_{1}, X_{2} : outputs
* Consider $A=1, B=0$.
$B=0 \Rightarrow X_{2}=1 \Rightarrow X_{1}=\overline{A X_{2}}=\overline{1 \cdot 1}=0$.
Overall, we have $X_{1}=0, X_{2}=1$.
* Consider $A=0, B=1$.

Show that $X_{1}=1, X_{2}=0$.

* Consider $A=B=1$.

$$
X_{1}=\overline{A X_{2}}=\overline{X_{2}}, X_{2}=\overline{B X_{1}}=\overline{X_{1}} \Rightarrow X_{1}=\overline{X_{2}}
$$

NAND latch (RS latch)

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0

* A, B : inputs, X_{1}, X_{2} : outputs
* Consider $A=1, B=0$.
$B=0 \Rightarrow X_{2}=1 \Rightarrow X_{1}=\overline{A X_{2}}=\overline{1 \cdot 1}=0$.
Overall, we have $X_{1}=0, X_{2}=1$.
* Consider $A=0, B=1$.

Show that $X_{1}=1, X_{2}=0$.

* Consider $A=B=1$.
$X_{1}=\overline{A X_{2}}=\overline{X_{2}}, X_{2}=\overline{B X_{1}}=\overline{X_{1}} \Rightarrow X_{1}=\overline{X_{2}}$
If $X_{1}=1, X_{2}=0$ previously, the circuit continues to "hold" that state.
Similarly, if $X_{1}=0, X_{2}=1$ previously, the circuit continues to "hold" that state.

NAND latch (RS latch)

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0
1	1	previous	

* A, B : inputs, X_{1}, X_{2} : outputs
* Consider $A=1, B=0$.
$B=0 \Rightarrow X_{2}=1 \Rightarrow X_{1}=\overline{A X_{2}}=\overline{1 \cdot 1}=0$.
Overall, we have $X_{1}=0, X_{2}=1$.
* Consider $A=0, B=1$.

Show that $X_{1}=1, X_{2}=0$.

* Consider $A=B=1$.
$X_{1}=\overline{A X_{2}}=\overline{X_{2}}, X_{2}=\overline{B X_{1}}=\overline{X_{1}} \Rightarrow X_{1}=\overline{X_{2}}$
If $X_{1}=1, X_{2}=0$ previously, the circuit continues to "hold" that state.
Similarly, if $X_{1}=0, X_{2}=1$ previously, the circuit continues to "hold" that state.

NAND latch (RS latch)

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0
1	1	previous	

* A, B : inputs, X_{1}, X_{2} : outputs
* Consider $A=1, B=0$.
$B=0 \Rightarrow X_{2}=1 \Rightarrow X_{1}=\overline{A X_{2}}=\overline{1 \cdot 1}=0$.
Overall, we have $X_{1}=0, X_{2}=1$.
* Consider $A=0, B=1$.

Show that $X_{1}=1, X_{2}=0$.

* Consider $A=B=1$.
$X_{1}=\overline{A X_{2}}=\overline{X_{2}}, X_{2}=\overline{B X_{1}}=\overline{X_{1}} \Rightarrow X_{1}=\overline{X_{2}}$
If $X_{1}=1, X_{2}=0$ previously, the circuit continues to "hold" that state.
Similarly, if $X_{1}=0, X_{2}=1$ previously, the circuit continues to "hold" that state.
The circuit has "latched in" the previous state.

NAND latch (RS latch)

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0
1	1	previous	

* A, B : inputs, X_{1}, X_{2} : outputs
* Consider $A=1, B=0$.
$B=0 \Rightarrow X_{2}=1 \Rightarrow X_{1}=\overline{A X_{2}}=\overline{1 \cdot 1}=0$.
Overall, we have $X_{1}=0, X_{2}=1$.
* Consider $A=0, B=1$.

Show that $X_{1}=1, X_{2}=0$.

* Consider $A=B=1$.
$X_{1}=\overline{A X_{2}}=\overline{X_{2}}, X_{2}=\overline{B X_{1}}=\overline{X_{1}} \Rightarrow X_{1}=\overline{X_{2}}$
If $X_{1}=1, X_{2}=0$ previously, the circuit continues to "hold" that state.
Similarly, if $X_{1}=0, X_{2}=1$ previously, the circuit continues to "hold" that state. The circuit has "latched in" the previous state.
* For $A=B=0, X_{1}$ and X_{2} are both 1 . This combination of A and B is not allowed for reasons that will become clear later.

NAND latch (RS latch)

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	1	1

* A, B : inputs, X_{1}, X_{2} : outputs
* Consider $A=1, B=0$.
$B=0 \Rightarrow X_{2}=1 \Rightarrow X_{1}=\overline{A X_{2}}=\overline{1 \cdot 1}=0$.
Overall, we have $X_{1}=0, X_{2}=1$.
* Consider $A=0, B=1$.

Show that $X_{1}=1, X_{2}=0$.

* Consider $A=B=1$.
$X_{1}=\overline{A X_{2}}=\overline{X_{2}}, X_{2}=\overline{B X_{1}}=\overline{X_{1}} \Rightarrow X_{1}=\overline{X_{2}}$
If $X_{1}=1, X_{2}=0$ previously, the circuit continues to "hold" that state.
Similarly, if $X_{1}=0, X_{2}=1$ previously, the circuit continues to "hold" that state.
The circuit has "latched in" the previous state.
* For $A=B=0, X_{1}$ and X_{2} are both 1 . This combination of A and B is not allowed for reasons that will become clear later.

NAND latch (RS latch)

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

NAND latch (RS latch)

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

* The combination $A=1, B=0$ serves to reset X_{1} to 0 (irrespective of the previous state of the latch).

NAND latch (RS latch)

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

* The combination $A=1, B=0$ serves to reset X_{1} to 0 (irrespective of the previous state of the latch).
* The combination $A=0, B=1$ serves to set X_{1} to 1 (irrespective of the previous state of the latch).

NAND latch (RS latch)

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

* The combination $A=1, B=0$ serves to reset X_{1} to 0 (irrespective of the previous state of the latch).
* The combination $A=0, B=1$ serves to set X_{1} to 1 (irrespective of the previous state of the latch).
* In other words,
$A=1, B=0 \rightarrow$ latch gets reset to 0 .
$A=0, B=1 \rightarrow$ latch gets set to 1 .

NAND latch (RS latch)

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

* The combination $A=1, B=0$ serves to reset X_{1} to 0 (irrespective of the previous state of the latch).
* The combination $A=0, B=1$ serves to set X_{1} to 1 (irrespective of the previous state of the latch).
* In other words,
$A=1, B=0 \rightarrow$ latch gets reset to 0 .
$A=0, B=1 \rightarrow$ latch gets set to 1 .
* The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.

NAND latch (RS latch)

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

* The combination $A=1, B=0$ serves to reset X_{1} to 0 (irrespective of the previous state of the latch).
* The combination $A=0, B=1$ serves to set X_{1} to 1 (irrespective of the previous state of the latch).
* In other words,
$A=1, B=0 \rightarrow$ latch gets reset to 0 .
$A=0, B=1 \rightarrow$ latch gets set to 1 .
* The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.
* X_{1} is denoted by Q, and X_{2} (which is $\overline{X_{1}}$ in all cases except for $A=B=0$) is denoted by \bar{Q}.

NAND latch (RS latch)

A	B	X_{1}	X_{2}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

* The combination $A=1, B=0$ serves to reset X_{1} to 0 (irrespective of the previous state of the latch).
* The combination $A=0, B=1$ serves to set X_{1} to 1 (irrespective of the previous state of the latch).
* In other words,
$A=1, B=0 \rightarrow$ latch gets reset to 0 .
$A=0, B=1 \rightarrow$ latch gets set to 1 .
* The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.
* X_{1} is denoted by Q, and X_{2} (which is $\overline{X_{1}}$ in all cases except for $A=B=0$) is denoted by \bar{Q}.

NAND latch (RS latch)

NAND latch (RS latch)

* Up to $t=t_{1}, R=0, S=1 \rightarrow Q=1$.

NAND latch (RS latch)

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

* Up to $t=t_{1}, R=0, S=1 \rightarrow Q=1$.
* At $t=t_{1}, R$ goes high $\rightarrow R=S=1$, and the latch holds its previous state \rightarrow no change at the output.

NAND latch (RS latch)

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

* Up to $t=t_{1}, R=0, S=1 \rightarrow Q=1$.
* At $t=t_{1}, R$ goes high $\rightarrow R=S=1$, and the latch holds its previous state \rightarrow no change at the output.
* At $t=t_{2}, S$ goes low $\rightarrow R=1, S=0 \rightarrow Q=0$.

NAND latch (RS latch)

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

* Up to $t=t_{1}, R=0, S=1 \rightarrow Q=1$.
* At $t=t_{1}, R$ goes high $\rightarrow R=S=1$, and the latch holds its previous state \rightarrow no change at the output.
* At $t=t_{2}, S$ goes low $\rightarrow R=1, S=0 \rightarrow Q=0$.
* At $t=t_{3}, S$ goes high $\rightarrow R=S=1$, and the latch holds its previous state \rightarrow no change at the output.

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	1	1

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	1	1

＊Why not allow $R=S=0$ ？

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	1	1

* Why not allow $R=S=0$?
- It makes $Q=\bar{Q}=1$, i.e., Q and \bar{Q} are not inverse of each other any more.

NAND latch (RS latch)

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	1	1

* Why not allow $R=S=0$?
- It makes $Q=\bar{Q}=1$, i.e., Q and \bar{Q} are not inverse of each other any more.
- More importantly, when R and S both become 1 simultaneously (starting from $R=S=0$), the final outputs Q and \bar{Q} cannot be uniquely determined. We could have $Q=0, \bar{Q}=1$ or $Q=1, \bar{Q}=0$, depending on the delays associated with the two NAND gates.

NAND latch (RS latch)

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	1	1

* Why not allow $R=S=0$?
- It makes $Q=\bar{Q}=1$, i.e., Q and \bar{Q} are not inverse of each other any more.
- More importantly, when R and S both become 1 simultaneously (starting from $R=S=0$), the final outputs Q and \bar{Q} cannot be uniquely determined. We could have $Q=0, \bar{Q}=1$ or $Q=1, \bar{Q}=0$, depending on the delays associated with the two NAND gates.

NAND latch (RS latch)

* Why not allow $R=S=0$?
- It makes $Q=\bar{Q}=1$, i.e., Q and \bar{Q} are not inverse of each other any more.
- More importantly, when R and S both become 1 simultaneously (starting from $R=S=0$), the final outputs Q and \bar{Q} cannot be uniquely determined. We could have $Q=0, \bar{Q}=1$ or $Q=1, \bar{Q}=0$, depending on the delays associated with the two NAND gates.

NAND latch (RS latch)

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	1	1

* Why not allow $R=S=0$?
- It makes $Q=\bar{Q}=1$, i.e., Q and \bar{Q} are not inverse of each other any more.
- More importantly, when R and S both become 1 simultaneously (starting from $R=S=0$), the final outputs Q and \bar{Q} cannot be uniquely determined. We could have $Q=0, \bar{Q}=1$ or $Q=1, \bar{Q}=0$, depending on the delays associated with the two NAND gates.

NAND latch (RS latch)

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	1	1

* Why not allow $R=S=0$?
- It makes $Q=\bar{Q}=1$, i.e., Q and \bar{Q} are not inverse of each other any more.
- More importantly, when R and S both become 1 simultaneously (starting from $R=S=0$), the final outputs Q and \bar{Q} cannot be uniquely determined. We could have $Q=0, \bar{Q}=1$ or $Q=1, \bar{Q}=0$, depending on the delays associated with the two NAND gates.

NAND latch (RS latch)

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	1	1

* Why not allow $R=S=0$?
- It makes $Q=\bar{Q}=1$, i.e., Q and \bar{Q} are not inverse of each other any more.
- More importantly, when R and S both become 1 simultaneously (starting from $R=S=0$), the final outputs Q and \bar{Q} cannot be uniquely determined. We could have $Q=0, \bar{Q}=1$ or $Q=1, \bar{Q}=0$, depending on the delays associated with the two NAND gates.
* We surely don't want any question marks in digital electronics!

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
0	0	previous	
1	1	invalid	

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
0	0	previous	
1	1	invalid	

* The NOR latch is similar to the NAND latch: When $R=1, S=0$, the latch gets reset to $Q=0$. When $R=0, S=1$, the latch gets set to $Q=1$.

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
0	0	previous	
1	1	invalid	

* The NOR latch is similar to the NAND latch:

When $R=1, S=0$, the latch gets reset to $Q=0$.
When $R=0, S=1$, the latch gets set to $Q=1$.

* For $R=S=0$, the latch retains its previous state (i.e., the previous values of Q and \bar{Q}).

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
0	0	previous	
1	1	invalid	

* The NOR latch is similar to the NAND latch:

When $R=1, S=0$, the latch gets reset to $Q=0$.
When $R=0, S=1$, the latch gets set to $Q=1$.

* For $R=S=0$, the latch retains its previous state (i.e., the previous values of Q and \bar{Q}).
* $R=S=1$ is not allowed for reasons similar to those discussed in the context of the NAND latch.

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
0	0	previous	
1	1	invalid	

Chatter (bouncing) due to a mechanical switch

* When the switch is thrown from A to B, V_{o} is expected to go from $0 V$ to V_{s} (say, 5 V).

* When the switch is thrown from A to B, V_{o} is expected to go from $0 V$ to V_{s} (say, 5 V).

Chatter (bouncing) due to a mechanical switch

* When the switch is thrown from A to B, V_{o} is expected to go from $0 V$ to V_{s} (say, 5 V).
* However, mechanical switches suffer from "chatter" or "bouncing," i.e., the transition from A to B is not a single, clean one. As a result, V_{o} oscillates between 0 V and 5 V before settling to its final value (5 V).

Chatter (bouncing) due to a mechanical switch

* When the switch is thrown from A to B, V_{o} is expected to go from $0 V$ to V_{s} (say, 5 V).
* However, mechanical switches suffer from "chatter" or "bouncing," i.e., the transition from A to B is not a single, clean one. As a result, V_{o} oscillates between 0 V and 5 V before settling to its final value (5 V).

Chatter (bouncing) due to a mechanical switch

* When the switch is thrown from A to B, V_{o} is expected to go from $0 V$ to V_{s} (say, 5 V).
* However, mechanical switches suffer from "chatter" or "bouncing," i.e., the transition from A to B is not a single, clean one. As a result, V_{o} oscillates between 0 V and 5 V before settling to its final value (5 V).
* In some applications, this chatter can cause malfunction \rightarrow need a way to remove the chatter.

Chatter (bouncing) due to a mechanical switch

Chatter (bouncing) due to a mechanical switch

* Because of the chatter, the S and R inputs may have multiple transitions when the switch is thrown from A to B.

Chatter (bouncing) due to a mechanical switch

* Because of the chatter, the S and R inputs may have multiple transitions when the switch is thrown from A to B.
* However, for $S=R=1$, the previous value of Q is retained, causing a single transition in Q, as desired.

The "clock"

* Complex digital circuits are generally designed for synchronous operation, i.e., transitions in the various signals are synchronised with the clock.
* Complex digital circuits are generally designed for synchronous operation, i.e., transitions in the various signals are synchronised with the clock.
* Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output nodes and internal nodes) can change only at specific times.
* Complex digital circuits are generally designed for synchronous operation, i.e., transitions in the various signals are synchronised with the clock.
* Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output nodes and internal nodes) can change only at specific times.
* A clock is a periodic signal, with a positive-going transition and a negative-going transition.

The "clock"

* Complex digital circuits are generally designed for synchronous operation, i.e., transitions in the various signals are synchronised with the clock.
* Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output nodes and internal nodes) can change only at specific times.
* A clock is a periodic signal, with a positive-going transition and a negative-going transition.

* The clock frequency determines the overall speed of the circuit. For example, a processor that operates with a 1 GHz clock is 10 times faster than one that operates with a 100 MHz clock.

Clocked RS latch

CLK	R	S	Q	$\overline{\mathrm{Q}}$
0	X	X	previous	
1	1	0	0	1
1	0	1	1	0
1	0	0	previous	
1	1	1	invalid	

A	B	Q	$\overline{\mathrm{Q}}$
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

NAND RS latch

Clocked RS latch

A	B	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

NAND RS latch

* When clock is inactive (0),$A=B=1$, and the latch holds the previous state.

Clocked RS latch

CLK	R	S	Q	\bar{Q}
0	X	X	previous	
1	1	0	0	1
1	0	1	1	0
1	0	0	previous	
1	1	1	invalid	

NAND RS latch

* When clock is inactive (0), $A=B=1$, and the latch holds the previous state.
* When clock is active (1), $A=\bar{S}, B=\bar{R}$. Using the truth table for the NAND RS latch (right), we can construct the truth table for the clocked RS latch.

Clocked RS latch

CLK	R	S	Q	\bar{Q}
0	X	X	previous	
1	1	0	0	1
1	0	1	1	0
1	0	0	previous	
1	1	1	invalid	

NAND RS latch

* When clock is inactive (0), $A=B=1$, and the latch holds the previous state.
* When clock is active (1), $A=\bar{S}, B=\bar{R}$. Using the truth table for the NAND RS latch (right), we can construct the truth table for the clocked RS latch.
* Note that the above table is sensitive to the level of the clock (i.e., whether CLK is 0 or 1).

Clocked RS latch

CLK	R	S	Q	$\overline{\mathrm{Q}}$
0	X	X	previous	
1	1	0	0	1
1	0	1	1	0
1	0	0	previous	
1	1	1	invalid	

(SEQUEL file: ee101_rs_1.sqproj)

Edge-triggered flip-flops

* The clocked RS latch seen previously is level-sensitive, i.e., if the clock is active (CLK $=1$), the flip-flop output is allowed to change, depending on the R and S inputs.

Edge-triggered flip-flops

* The clocked RS latch seen previously is level-sensitive, i.e., if the clock is active (CLK $=1$), the flip-flop output is allowed to change, depending on the R and S inputs.
* In an edge-sensitive flip-flop, the output can change only at the active clock edge (i.e., CLK transition from 0 to 1 or from 1 to 0).

Edge-triggered flip-flops

* The clocked RS latch seen previously is level-sensitive, i.e., if the clock is active (CLK $=1$), the flip-flop output is allowed to change, depending on the R and S inputs.
* In an edge-sensitive flip-flop, the output can change only at the active clock edge (i.e., CLK transition from 0 to 1 or from 1 to 0).
* Edge-sensitive flip-flops are denoted by the following symbols:

positive edge-triggered flip-flop

negative edge-triggered flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

* When CLK $=0$, we have $R=S=1$, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK $=0$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

* When CLK $=0$, we have $R=S=1$, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK $=0$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{n+1}\right)$
0	X	X	previous $\left(Q_{n}\right)$
Truth table for JK flip-flop			

* When CLK $=0$, we have $R=S=1$, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK $=0$.
* When CLK=1:

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{n+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
Truth table for JK flip-flop			

* When CLK $=0$, we have $R=S=1$, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK $=0$.
* When CLK = 1 :
- $J=K=0 \rightarrow R=S=1, \mathrm{RS}$ latch holds previous Q, i.e., $Q_{n+1}=Q_{n}$, where n denotes the $n^{\text {th }}$ clock pulse (This notation will become clear shortly).

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{\mathrm{n}+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
Truth table for JK flip-flop			

* When CLK $=0$, we have $R=S=1$, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK $=0$.
* When CLK=1:
- $J=K=0 \rightarrow R=S=1, \mathrm{RS}$ latch holds previous Q, i.e., $Q_{n+1}=Q_{n}$, where n denotes the $n^{\text {th }}$ clock pulse (This notation will become clear shortly).

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{\mathrm{n}+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
Truth table for JK flip-flop			

* When CLK $=0$, we have $R=S=1$, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK $=0$.
* When CLK=1:
- $J=K=0 \rightarrow R=S=1, \mathrm{RS}$ latch holds previous Q, i.e., $Q_{n+1}=Q_{n}$, where n denotes the $n^{\text {th }}$ clock pulse (This notation will become clear shortly).
- $J=0, K=1 \rightarrow R=1, S=\overline{Q_{n}}$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{n+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
Truth table for JK flip-flop			

* When CLK $=0$, we have $R=S=1$, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK $=0$.
* When CLK=1:
- $J=K=0 \rightarrow R=S=1, \mathrm{RS}$ latch holds previous Q, i.e., $Q_{n+1}=Q_{n}$, where n denotes the $n^{\text {th }}$ clock pulse (This notation will become clear shortly).
- $J=0, K=1 \rightarrow R=1, S=\overline{Q_{n}}$.

Case (i): $Q_{n}=0 \rightarrow S=1$ (i.e., $R=S=1$) $\rightarrow Q_{n+1}=Q_{n}=0$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{n+1}\right)$
0	X	X	previous $\left(Q_{n}\right)$
1	0	0	previous $\left(Q_{n}\right)$

Truth table for JK flip-flop

* When CLK $=0$, we have $R=S=1$, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK $=0$.
* When CLK=1:
- $J=K=0 \rightarrow R=S=1, \mathrm{RS}$ latch holds previous Q, i.e., $Q_{n+1}=Q_{n}$, where n denotes the $n^{\text {th }}$ clock pulse (This notation will become clear shortly).
- $J=0, K=1 \rightarrow R=1, S=\overline{Q_{n}}$.

Case (i): $Q_{n}=0 \rightarrow S=1$ (i.e., $\left.R=S=1\right) \rightarrow Q_{n+1}=Q_{n}=0$.
Case (ii): $Q_{n}=1 \rightarrow S=0$ (i.e., $\left.R=1, S=0\right) \rightarrow Q_{n+1}=0$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{\mathrm{n}+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$

Truth table for JK flip-flop

* When CLK $=0$, we have $R=S=1$, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK $=0$.
* When CLK=1:
- $J=K=0 \rightarrow R=S=1, \mathrm{RS}$ latch holds previous Q, i.e., $Q_{n+1}=Q_{n}$, where n denotes the $n^{\text {th }}$ clock pulse (This notation will become clear shortly).
- $J=0, K=1 \rightarrow R=1, S=\overline{Q_{n}}$.

Case (i): $Q_{n}=0 \rightarrow S=1$ (i.e., $\left.R=S=1\right) \rightarrow Q_{n+1}=Q_{n}=0$.
Case (ii): $Q_{n}=1 \rightarrow S=0$ (i.e., $\left.R=1, S=0\right) \rightarrow Q_{n+1}=0$.
In either case, $Q_{n+1}=0 \rightarrow$ For $J=0, K=1, Q_{n+1}=0$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{\mathrm{n}+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	1	0
Truth table for JK flip-flop			

* When CLK $=0$, we have $R=S=1$, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK $=0$.
* When CLK=1:
- $J=K=0 \rightarrow R=S=1$, RS latch holds previous Q, i.e., $Q_{n+1}=Q_{n}$, where n denotes the $n^{\text {th }}$ clock pulse (This notation will become clear shortly).
- $J=0, K=1 \rightarrow R=1, S=\overline{Q_{n}}$.

Case (i): $Q_{n}=0 \rightarrow S=1$ (i.e., $\left.R=S=1\right) \rightarrow Q_{n+1}=Q_{n}=0$.
Case (ii): $Q_{n}=1 \rightarrow S=0$ (i.e., $\left.R=1, S=0\right) \rightarrow Q_{n+1}=0$.
In either case, $Q_{n+1}=0 \rightarrow$ For $J=0, K=1, Q_{n+1}=0$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{\mathrm{n}+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Qn}_{\mathrm{n}}\right)$
1	0	1	0
Truth table for JK flip-flop			

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$\mathrm{Q}\left(\mathrm{Q}_{\mathrm{n}+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	1	0
Truth table for JK flip-flop			

* When CLK = 1 :
- Consider $J=1, K=0 \rightarrow S=1, R=\overline{\overline{Q_{n}}}=Q_{n}$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{\mathrm{n}+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	1	0

Truth table for JK flip-flop

* When CLK = 1 :
- Consider $J=1, K=0 \rightarrow S=1, R=\overline{\overline{Q_{n}}}=Q_{n}$.

$$
\text { Case } \left.(\mathrm{i}): Q_{n}=0 \rightarrow R=0 \text { (i.e., } R=0, S=1\right) \rightarrow Q_{n+1}=1
$$

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{n+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Qn}_{\mathrm{n}}\right)$
1	0	1	0

Truth table for JK flip-flop

* When CLK = 1 :
- Consider $J=1, K=0 \rightarrow S=1, R=\overline{\overline{Q_{n}}}=Q_{n}$. Case (i): $Q_{n}=0 \rightarrow R=0$ (i.e., $R=0, S=1$) $\rightarrow Q_{n+1}=1$. Case (ii): $Q_{n}=1 \rightarrow R=1$ (i.e., $\left.R=1, S=1\right) \rightarrow Q_{n+1}=Q_{n}=1$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{n+1}\right)$
0	X	X	previous $\left(Q_{n}\right)$
1	0	0	previous $\left(Q_{\mathrm{n}}\right)$
1	0	1	0

Truth table for JK flip-flop

* When CLK=1:
- Consider $J=1, K=0 \rightarrow S=1, R=\overline{\overline{Q_{n}}}=Q_{n}$.

Case (i): $Q_{n}=0 \rightarrow R=0$ (i.e., $\left.R=0, S=1\right) \rightarrow Q_{n+1}=1$.
Case (ii): $Q_{n}=1 \rightarrow R=1$ (i.e., $\left.R=1, S=1\right) \rightarrow Q_{n+1}=Q_{n}=1$.
\rightarrow For $J=1, K=0, Q_{n+1}=1$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{\mathrm{n}+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Qn}_{\mathrm{n}}\right)$
1	0	1	0
1	1	0	1

Truth table for JK flip-flop

* When CLK = 1 :
- Consider $J=1, K=0 \rightarrow S=1, R=\overline{\overline{Q_{n}}}=Q_{n}$.

Case (i): $Q_{n}=0 \rightarrow R=0$ (i.e., $\left.R=0, S=1\right) \rightarrow Q_{n+1}=1$.
Case (ii): $Q_{n}=1 \rightarrow R=1$ (i.e., $\left.R=1, S=1\right) \rightarrow Q_{n+1}=Q_{n}=1$.
\rightarrow For $J=1, K=0, Q_{n+1}=1$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{n+1}\right)$
0	X	X	previous $\left(\mathrm{Qn}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Qn}_{\mathrm{n}}\right)$
1	0	1	0
1	1	0	1

Truth table for JK flip-flop

* When CLK = 1 :
- Consider $J=1, K=0 \rightarrow S=1, R=\overline{\overline{Q_{n}}}=Q_{n}$. Case (i): $Q_{n}=0 \rightarrow R=0$ (i.e., $\left.R=0, S=1\right) \rightarrow Q_{n+1}=1$. Case (ii): $Q_{n}=1 \rightarrow R=1$ (i.e., $\left.R=1, S=1\right) \rightarrow Q_{n+1}=Q_{n}=1$.
\rightarrow For $J=1, K=0, Q_{n+1}=1$.
- Consider $J=1, K=1 \rightarrow R=Q_{n}, S=\overline{Q_{n}}$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{n+1}\right)$
0	X	X	previous $\left(\mathrm{Qn}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Qn}_{\mathrm{n}}\right)$
1	0	1	0
1	1	0	1

Truth table for JK flip-flop

* When CLK=1:
- Consider $J=1, K=0 \rightarrow S=1, R=\overline{\overline{Q_{n}}}=Q_{n}$. Case (i): $Q_{n}=0 \rightarrow R=0$ (i.e., $\left.R=0, S=1\right) \rightarrow Q_{n+1}=1$. Case (ii): $Q_{n}=1 \rightarrow R=1$ (i.e., $\left.R=1, S=1\right) \rightarrow Q_{n+1}=Q_{n}=1$.
\rightarrow For $J=1, K=0, Q_{n+1}=1$.
- Consider $J=1, K=1 \rightarrow R=Q_{n}, S=\overline{Q_{n}}$. Case (i): $Q_{n}=0 \rightarrow R=0, S=1 \rightarrow Q_{n+1}=1$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{n+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Qn}_{\mathrm{n}}\right)$
1	0	1	0
1	1	0	1

Truth table for JK flip-flop

* When CLK=1:
- Consider $J=1, K=0 \rightarrow S=1, R=\overline{\overline{Q_{n}}}=Q_{n}$. Case (i): $Q_{n}=0 \rightarrow R=0$ (i.e., $\left.R=0, S=1\right) \rightarrow Q_{n+1}=1$. Case (ii): $Q_{n}=1 \rightarrow R=1$ (i.e., $\left.R=1, S=1\right) \rightarrow Q_{n+1}=Q_{n}=1$.
\rightarrow For $J=1, K=0, Q_{n+1}=1$.
- Consider $J=1, K=1 \rightarrow R=Q_{n}, S=\overline{Q_{n}}$.

Case (i): $Q_{n}=0 \rightarrow R=0, S=1 \rightarrow Q_{n+1}=1$. Case (ii): $Q_{n}=1 \rightarrow R=1, S=0 \rightarrow Q_{n+1}=0$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{n+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Qn}_{\mathrm{n}}\right)$
1	0	1	0
1	1	0	1

Truth table for JK flip-flop

* When CLK = 1 :
- Consider $J=1, K=0 \rightarrow S=1, R=\overline{\overline{Q_{n}}}=Q_{n}$. Case (i): $Q_{n}=0 \rightarrow R=0$ (i.e., $\left.R=0, S=1\right) \rightarrow Q_{n+1}=1$. Case (ii): $Q_{n}=1 \rightarrow R=1$ (i.e., $\left.R=1, S=1\right) \rightarrow Q_{n+1}=Q_{n}=1$.
\rightarrow For $J=1, K=0, Q_{n+1}=1$.
- Consider $J=1, K=1 \rightarrow R=Q_{n}, S=\overline{Q_{n}}$.

Case (i): $Q_{n}=0 \rightarrow R=0, S=1 \rightarrow Q_{n+1}=1$. Case (ii): $Q_{n}=1 \rightarrow R=1, S=0 \rightarrow Q_{n+1}=0$.
\rightarrow For $J=1, K=1, Q_{n+1}=\overline{Q_{n}}$.

JK flip-flop

R	S	Q	\bar{Q}
1	0	0	1
0	1	1	0
1	1	previous	
0	0	invalid	

Truth table for RS latch

CLK	J	K	$Q\left(Q_{\mathrm{n}+1}\right)$	
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$	
1	0	0	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$	
1	0	1	0	
1	1	0	1	
1	1	1	toggles $\left(\overline{Q_{\mathrm{n}}}\right)$	
Truth table for JK flip-flop				

* When CLK = 1 :
- Consider $J=1, K=0 \rightarrow S=1, R=\overline{\overline{Q_{n}}}=Q_{n}$.

Case (i): $Q_{n}=0 \rightarrow R=0$ (i.e., $\left.R=0, S=1\right) \rightarrow Q_{n+1}=1$.
Case (ii): $Q_{n}=1 \rightarrow R=1$ (i.e., $\left.R=1, S=1\right) \rightarrow Q_{n+1}=Q_{n}=1$.
\rightarrow For $J=1, K=0, Q_{n+1}=1$.

- Consider $J=1, K=1 \rightarrow R=Q_{n}, S=\overline{Q_{n}}$.

Case (i): $Q_{n}=0 \rightarrow R=0, S=1 \rightarrow Q_{n+1}=1$.
Case (ii): $Q_{n}=1 \rightarrow R=1, S=0 \rightarrow Q_{n+1}=0$.
\rightarrow For $J=1, K=1, Q_{n+1}=\overline{Q_{n}}$.

CLK	J	K	$Q\left(Q_{\mathrm{n}+1}\right)$	
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$	
1	0	0	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$	
1	0	1	0	
1	1	0	1	
1	1	1	toggles $\left(\overline{Q_{\mathrm{n}}}\right)$	
Truth table for JK flip-flop				

Consider $J=K=1$ and $C L K=1$.

JK flip-flop

CLK	J	K	$Q\left(Q_{n+1}\right)$
0	X	X	previous $\left(Q_{n}\right)$
1	0	0	previous $\left(Q_{n}\right)$
1	0	1	0
1	1	0	1
1	1	1	toggles $\left(\overline{Q_{n}}\right)$

Truth table for JK flip-flop

Consider $J=K=1$ and $C L K=1$.
As long as $C L K=1, Q$ will keep toggling! (The frequency will depend on the delay values of the various gates).

JK flip-flop

CLK	J	K	$Q\left(Q_{\mathrm{n}+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Qn}_{\mathrm{n}}\right)$
1	0	1	0
1	1	0	1
1	1	1	toggles $\left(\overline{Q_{\mathrm{n}}}\right)$

Truth table for JK flip-flop

Consider $J=K=1$ and $C L K=1$.
As long as CLK $=1, Q$ will keep toggling! (The frequency will depend on the delay values of the various gates).
When CLK changes from 1 to 0 , the toggling will stop. However, the final value of Q is not known; it could be 0 or 1 .

JK flip-flop

CLK	J	K	$Q\left(Q_{\mathrm{n}+1}\right)$
0	X	X	previous $\left(\mathrm{Q}_{\mathrm{n}}\right)$
1	0	0	previous $\left(\mathrm{Qn}_{\mathrm{n}}\right)$
1	0	1	0
1	1	0	1
1	1	1	toggles $\left(\overline{Q_{\mathrm{n}}}\right)$

Truth table for JK flip-flop

Consider $J=K=1$ and $C L K=1$.
As long as CLK $=1, Q$ will keep toggling! (The frequency will depend on the delay values of the various gates).
When CLK changes from 1 to 0 , the toggling will stop. However, the final value of Q is not known; it could be 0 or 1 .
\rightarrow Use the "Master-slave" configuration.

JK flip-flop (Master-Slave)

JK flip-flop (Master-Slave)

* When CLK goes high, only the first latch is affected; the second latch retains its previous value (because $\overline{C L K}=0 \rightarrow R_{2}=S_{2}=1$).

JK flip-flop (Master-Slave)

* When CLK goes high, only the first latch is affected; the second latch retains its previous value (because $\overline{\mathrm{CLK}}=0 \rightarrow R_{2}=S_{2}=1$).
* When CLK goes low, the output of the first latch $\left(Q_{1}\right)$ is retained (since $R_{1}=S_{1}=1$), and Q_{1} can now affect Q.

JK flip-flop (Master-Slave)

* When CLK goes high, only the first latch is affected; the second latch retains its previous value (because $\overline{C L K}=0 \rightarrow R_{2}=S_{2}=1$).
* When CLK goes low, the output of the first latch $\left(Q_{1}\right)$ is retained (since $R_{1}=S_{1}=1$), and Q_{1} can now affect Q.
* In other words, the effect of any changes in J and K appears at the output Q only when CLK makes a transition from 1 to 0 . This is therefore a negative edge-triggered flip-flop.

JK flip-flop (Master-Slave)

CLK	J	K	Q_{n+1}
\downarrow	0	0	Q_{n}
\downarrow	0	1	0
\downarrow	1	0	1
\downarrow	1	1	$\overline{Q_{n}}$

* When CLK goes high, only the first latch is affected; the second latch retains its previous value (because $\overline{C L K}=0 \rightarrow R_{2}=S_{2}=1$).
* When CLK goes low, the output of the first latch $\left(Q_{1}\right)$ is retained (since $R_{1}=S_{1}=1$), and Q_{1} can now affect Q.
* In other words, the effect of any changes in J and K appears at the output Q only when CLK makes a transition from 1 to 0 . This is therefore a negative edge-triggered flip-flop.

JK flip-flop (Master-Slave)

CLK	J	K	Q_{n+1}
\downarrow	0	0	Q_{n}
\downarrow	0	1	0
\downarrow	1	0	1
\downarrow	1	1	$\overline{Q_{n}}$

* When CLK goes high, only the first latch is affected; the second latch retains its previous value (because $\overline{\mathrm{CLK}}=0 \rightarrow R_{2}=S_{2}=1$).
* When CLK goes low, the output of the first latch $\left(Q_{1}\right)$ is retained (since $R_{1}=S_{1}=1$), and Q_{1} can now affect Q.
* In other words, the effect of any changes in J and K appears at the output Q only when CLK makes a transition from 1 to 0 .
This is therefore a negative edge-triggered flip-flop.
* Note that, unlike the RS NAND latch which does not allow one of the combinations of R and S (viz., $R=S=0$), the JK flip-flop allows all four combinations.

positive edge-triggered JK flip-flop

negative edge-triggered JK flip-flop
* Both negative (e.g., 74101) and positive (e.g., 7470) edge-triggered JK flip-flops are available as ICs.

Consider a negative edge-triggered JK flip-flop.

Consider a negative edge-triggered JK flip-flop.

* As seen earlier, when CLK is high (i.e., $t_{1 A}<t<t_{1 B}$, etc.), the input J and K determine the Master latch output Q_{1}.
During this time, no change is visible at the flip-flop output Q.

JK flip-flop

Consider a negative edge-triggered JK flip-flop.

* As seen earlier, when CLK is high (i.e., $t_{1 A}<t<t_{1 B}$, etc.), the input J and K determine the Master latch output Q_{1}.
During this time, no change is visible at the flip-flop output Q.
* When the clock goes low, the Slave flip-flop becomes active, making it possible for Q to change.

JK flip-flop

Consider a negative edge-triggered JK flip-flop.

* As seen earlier, when CLK is high (i.e., $t_{1 A}<t<t_{1 B}$, etc.), the input J and K determine the Master latch output Q_{1}.
During this time, no change is visible at the flip-flop output Q.
* When the clock goes low, the Slave flip-flop becomes active, making it possible for Q to change.
* In short, although the flip-flop output Q can only change after the active edge, ($t_{1 B}, t_{2 B}$, etc.), the new Q value is determined by J and K values just before the active edge.

JK flip-flop

Consider a negative edge-triggered JK flip-flop.

* As seen earlier, when CLK is high (i.e., $t_{1 A}<t<t_{1 B}$, etc.), the input J and K determine the Master latch output Q_{1}.
During this time, no change is visible at the flip-flop output Q.
* When the clock goes low, the Slave flip-flop becomes active, making it possible for Q to change.
* In short, although the flip-flop output Q can only change after the active edge, ($t_{1 B}, t_{2 B}$, etc.), the new Q value is determined by J and K values just before the active edge.
This is a very important point!

JK flip-flop

CLK	J	K	$\mathrm{Q}_{\mathrm{n}+1}$
\uparrow	0	0	Q_{n}
\uparrow	0	1	0
\uparrow	1	0	1
\uparrow	1	1	$\overline{Q_{\mathrm{n}}}$

positive edge-triggered JK flip-flop

JK flip-flop

$J-$	$-Q$	CLK	J	K	$\mathrm{Q}_{\mathrm{n}+1}$
		\uparrow	0	0	Q_{n}
CLK	$-\bar{Q}$	\uparrow	0	1	0
		\uparrow	1	0	1
		\uparrow	1	1	$\overline{Q_{n}}$

positive edge-triggered JK flip-flop

CLK	J	K	Q_{n+1}
\downarrow	0	0	Q_{n}
\downarrow	0	1	0
\downarrow	1	0	1
\downarrow	1	1	$\overline{\mathrm{Q}_{\mathrm{n}}}$

negative edge-triggered JK flip-flop

JK flip－flop

JK flip-flop

* Since $J_{1}=K_{1}=1, Q_{1}$ toggles after every active clock edge.

JK flip-flop

* Since $J_{1}=K_{1}=1, Q_{1}$ toggles after every active clock edge.

JK flip-flop

$$
J_{1}=K_{1}=1 \text {. Assume } Q_{1}=Q_{2}=0 \text { initially. }
$$

* Since $J_{1}=K_{1}=1, Q_{1}$ toggles after every active clock edge.
* $J_{2}=\overline{Q_{1}}, K_{2}=Q_{1}$. We need to look at J_{2} and K_{2} values just before the active edge, to determine the next value of Q_{2}.

JK flip-flop

$$
J_{1}=K_{1}=1 \text {. Assume } Q_{1}=Q_{2}=0 \text { initially. }
$$

* Since $J_{1}=K_{1}=1, Q_{1}$ toggles after every active clock edge.
* $J_{2}=\overline{Q_{1}}, K_{2}=Q_{1}$. We need to look at J_{2} and K_{2} values just before the active edge, to determine the next value of Q_{2}.
* It is convenient to construct a table listing J_{2} and K_{2} to figure out the next Q_{2} value.

JK flip-flop

$J_{1}=K_{1}=1$. Assume $Q_{1}=Q_{2}=0$ initially.

* Since $J_{1}=K_{1}=1, Q_{1}$ toggles after every active clock edge.
* $J_{2}=\overline{Q_{1}}, K_{2}=Q_{1}$. We need to look at J_{2} and K_{2} values just before the active edge, to determine the next value of Q_{2}.
* It is convenient to construct a table listing J_{2} and K_{2} to figure out the next Q_{2} value.

JK flip-flop

$J_{1}=K_{1}=1$. Assume $Q_{1}=Q_{2}=0$ initially.

* Since $J_{1}=K_{1}=1, Q_{1}$ toggles after every active clock edge.
* $J_{2}=\overline{Q_{1}}, K_{2}=Q_{1}$. We need to look at J_{2} and K_{2} values just before the active edge, to determine the next value of Q_{2}.
* It is convenient to construct a table listing J_{2} and K_{2} to figure out the next Q_{2} value.

JK flip-flop

$J_{1}=K_{1}=1$. Assume $Q_{1}=Q_{2}=0$ initially.

* Since $J_{1}=K_{1}=1, Q_{1}$ toggles after every active clock edge.
* $J_{2}=\overline{Q_{1}}, K_{2}=Q_{1}$. We need to look at J_{2} and K_{2} values just before the active edge, to determine the next value of Q_{2}.
* It is convenient to construct a table listing J_{2} and K_{2} to figure out the next Q_{2} value.
* Note that the circuit is not doing much, apart from taxing our minds! But hold on, some useful circuits will appear soon.

