EE101: Digital circuits (Part 4)

M. B. Patil

mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

* The digital circuits we have seen so far (gates, multiplexer, demultiplexer, encoders, decoders) are *combinatorial* in nature, i.e., the output(s) depends only on the *present* values of the inputs and *not* on their past values.

- * The digital circuits we have seen so far (gates, multiplexer, demultiplexer, encoders, decoders) are *combinatorial* in nature, i.e., the output(s) depends only on the *present* values of the inputs and *not* on their past values.
- * In sequential circuits, the "state" of the circuit is crucial in determining the output values. For a given input combination, a sequential circuit may produce different output values, depending on its previous state.

- * The digital circuits we have seen so far (gates, multiplexer, demultiplexer, encoders, decoders) are *combinatorial* in nature, i.e., the output(s) depends only on the *present* values of the inputs and *not* on their past values.
- * In sequential circuits, the "state" of the circuit is crucial in determining the output values. For a given input combination, a sequential circuit may produce different output values, depending on its previous state.
- * In other words, a sequential circuit has a *memory* (of its past state) whereas a combinatorial circuit has no memory.

- * The digital circuits we have seen so far (gates, multiplexer, demultiplexer, encoders, decoders) are *combinatorial* in nature, i.e., the output(s) depends only on the *present* values of the inputs and *not* on their past values.
- * In sequential circuits, the "state" of the circuit is crucial in determining the output values. For a given input combination, a sequential circuit may produce different output values, depending on its previous state.
- * In other words, a sequential circuit has a *memory* (of its past state) whereas a combinatorial circuit has no memory.
- * Sequential circuits (together with combinatorial circuits) make it possible to build several useful applications, such as counters, registers, arithmetic/logic unit (ALU), all the way to microprocessors.

Α	В	X_1	X_2
	A	А В	A B X ₁

* A, B: inputs, X_1 , X_2 : outputs

Α	В	X_1	X_2

- * A, B: inputs, X_1 , X_2 : outputs
- * Consider A = 1, B = 0.

Α	В	X_1	X_2

- * A, B: inputs, X_1 , X_2 : outputs
- * Consider A = 1, B = 0. $B = 0 \Rightarrow X_2 = 1 \Rightarrow X_1 = \overline{AX_2} = \overline{1 \cdot 1} = 0$.

Α	В	X_1	X_2

- * A, B: inputs, X_1 , X_2 : outputs
- * Consider A=1, B=0. $B=0 \Rightarrow X_2=1 \Rightarrow X_1=\overline{AX_2}=\overline{1\cdot 1}=0$. Overall, we have $X_1=0$, $X_2=1$.

Α	В	X_1	X_2
1	0	0	1

- * A, B: inputs, X_1 , X_2 : outputs
- * Consider A=1, B=0. $B=0 \Rightarrow X_2=1 \Rightarrow X_1=\overline{AX_2}=\overline{1\cdot 1}=0$. Overall, we have $X_1=0$, $X_2=1$.

A	В	X_1	X_2
1	0	0	1

- * A, B: inputs, X₁, X₂: outputs
- * Consider A=1, B=0. $B=0 \Rightarrow X_2=1 \Rightarrow X_1=\overline{AX_2}=\overline{1\cdot 1}=0$. Overall, we have $X_1=0$, $X_2=1$.
- * Consider A = 0, B = 1. Show that $X_1 = 1$, $X_2 = 0$.

Α	В	X_1	X_2
1	0	0	1
0	1	1	0

- * A, B: inputs, X₁, X₂: outputs
- * Consider A=1, B=0. $B=0 \Rightarrow X_2=1 \Rightarrow X_1=\overline{AX_2}=\overline{1\cdot 1}=0$. Overall, we have $X_1=0$, $X_2=1$.
- * Consider A = 0, B = 1. Show that $X_1 = 1$, $X_2 = 0$.

Α	В	X_1	X_2
1	0	0	1
0	1	1	0

- * A, B: inputs, X₁, X₂: outputs
- * Consider A=1, B=0. $B=0 \Rightarrow X_2=1 \Rightarrow X_1=\overline{AX_2}=\overline{1\cdot 1}=0$. Overall, we have $X_1=0$, $X_2=1$.
- * Consider A = 0, B = 1. Show that $X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1.

Α	В	X_1	X_2
1	0	0	1
0	1	1	0

- * A, B: inputs, X₁, X₂: outputs
- * Consider A=1, B=0. $B=0 \Rightarrow X_2=1 \Rightarrow X_1=\overline{AX_2}=\overline{1\cdot 1}=0$. Overall, we have $X_1=0$, $X_2=1$.
- * Consider A = 0, B = 1. Show that $X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1. $X_1 = \overline{A} X_2 = \overline{X_2}, \ X_2 = \overline{B} X_1 = \overline{X_1} \Rightarrow X_1 = \overline{X_2}$

Α	В	X_1	X_2
1	0	0	1
0	1	1	0

- * A, B: inputs, X_1 , X_2 : outputs
- * Consider A=1, B=0. $B=0 \Rightarrow X_2=1 \Rightarrow X_1=\overline{AX_2}=\overline{1\cdot 1}=0$. Overall, we have $X_1=0$, $X_2=1$.
- * Consider A = 0, B = 1. Show that $X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1. $X_1 = \overline{AX_2} = \overline{X_2}, \ X_2 = \overline{BX_1} = \overline{X_1} \Rightarrow \overline{X_1 = \overline{X_2}}$

If $X_1=1$, $X_2=0$ previously, the circuit continues to "hold" that state. Similarly, if $X_1=0$, $X_2=1$ previously, the circuit continues to "hold" that state.

Α	В	X_1	X_2
1	0	0	1
0	1	1	0
1	1	pre	vious

- * A, B: inputs, X_1 , X_2 : outputs
- * Consider A=1, B=0. $B=0 \Rightarrow X_2=1 \Rightarrow X_1=\overline{AX_2}=\overline{1\cdot 1}=0$. Overall, we have $X_1=0$, $X_2=1$.
- * Consider A = 0, B = 1. Show that $X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1. $X_1 = \overline{AX_2} = \overline{X_2}, X_2 = \overline{BX_1} = \overline{X_1} \Rightarrow \overline{X_1 = \overline{X_2}}$

If $X_1=1$, $X_2=0$ previously, the circuit continues to "hold" that state. Similarly, if $X_1=0$, $X_2=1$ previously, the circuit continues to "hold" that state.

Α	В	X_1	X_2
1	0	0	1
0	1	1	0
1	1	pre	vious

- * A, B: inputs, X_1 , X_2 : outputs
- * Consider A=1, B=0. $B=0 \Rightarrow X_2=1 \Rightarrow X_1=\overline{AX_2}=\overline{1\cdot 1}=0$. Overall, we have $X_1=0$, $X_2=1$.
- * Consider A = 0, B = 1. Show that $X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1. $X_1 = \overline{AX_2} = \overline{X_2}, \ X_2 = \overline{BX_1} = \overline{X_1} \Rightarrow \overline{X_1 = \overline{X_2}}$

If $X_1=1$, $X_2=0$ previously, the circuit continues to "hold" that state. Similarly, if $X_1=0$, $X_2=1$ previously, the circuit continues to "hold" that state. The circuit has "latched in" the previous state.

Α	В	X_1	X_2
1	0	0	1
0	1	1	0
1	1	pre	vious

- * A, B: inputs, X_1 , X_2 : outputs
- * Consider A=1, B=0. $B=0 \Rightarrow X_2=1 \Rightarrow X_1=\overline{AX_2}=\overline{1\cdot 1}=0$. Overall, we have $X_1=0$, $X_2=1$.
- * Consider A = 0, B = 1. Show that $X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1. $X_1 = \overline{AX_2} = \overline{X_2}, X_2 = \overline{BX_1} = \overline{X_1} \Rightarrow \overline{X_1 = \overline{X_2}}$

If $X_1=1$, $X_2=0$ previously, the circuit continues to "hold" that state. Similarly, if $X_1=0$, $X_2=1$ previously, the circuit continues to "hold" that state. The circuit has "latched in" the previous state.

* For A = B = 0, X_1 and X_2 are both 1. This combination of A and B is *not* allowed for reasons that will become clear later.

Α	В	X_1	X_2
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	1	1

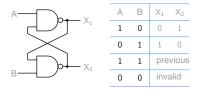
- * A, B: inputs, X_1 , X_2 : outputs
- * Consider A=1, B=0. $B=0 \Rightarrow X_2=1 \Rightarrow X_1=\overline{AX_2}=\overline{1\cdot 1}=0$. Overall, we have $X_1=0$, $X_2=1$.
- * Consider A = 0, B = 1. Show that $X_1 = 1$, $X_2 = 0$.
- * Consider A = B = 1.

$$X_1 = \overline{A X_2} = \overline{X_2}, \ X_2 = \overline{B X_1} = \overline{X_1} \Rightarrow X_1 = \overline{X_2}$$

If $X_1=1$, $X_2=0$ previously, the circuit continues to "hold" that state. Similarly, if $X_1=0$, $X_2=1$ previously, the circuit continues to "hold" that state. The circuit has "latched in" the previous state.

* For A = B = 0, X_1 and X_2 are both 1. This combination of A and B is *not* allowed for reasons that will become clear later.

Α	В	X_1 X_2	
1	0	0 1	
0	1	1 0	
1	1	previous	
0	0	invalid	



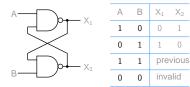
* The combination A=1, B=0 serves to reset X_1 to 0 (irrespective of the previous state of the latch).

Α	В	X_1	X_2
1	0	0	1
0	1	1	0
1	1	previous	
0	0	inv	alid

- * The combination A=1, B=0 serves to reset X_1 to 0 (irrespective of the previous state of the latch).
- * The combination A = 0, B = 1 serves to set X_1 to 1 (*irrespective of* the previous state of the latch).

Α	В	X_1	X_2
1	0	0	1
0	1	1	0
1	1	previous	
0	0	inva	alid

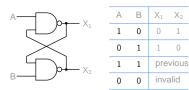
- * The combination A=1, B=0 serves to reset X_1 to 0 (irrespective of the previous state of the latch).
- * The combination A = 0, B = 1 serves to set X_1 to 1 (irrespective of the previous state of the latch).
- * In other words,
 - A=1, $B=0 \rightarrow latch gets reset to 0.$
 - A = 0, $B = 1 \rightarrow$ latch gets set to 1.

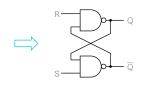


- * The combination A=1, B=0 serves to reset X_1 to 0 (irrespective of the previous state of the latch).
- * The combination A = 0, B = 1 serves to set X_1 to 1 (irrespective of the previous state of the latch).
- * In other words, A=1, $B=0 \rightarrow$ latch gets reset to 0. A=0, $B=1 \rightarrow$ latch gets set to 1.
- * The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.

	Α	В	X_1	X_2
	1	0	0	1
ĺ	0	1	1	0
Ī	1	1	previous	
ĺ	0	0	inva	alid

- * The combination A=1, B=0 serves to reset X_1 to 0 (irrespective of the previous state of the latch).
- * The combination A = 0, B = 1 serves to set X_1 to 1 (irrespective of the previous state of the latch).
- * In other words, A=1, $B=0 \rightarrow$ latch gets reset to 0. A=0, $B=1 \rightarrow$ latch gets set to 1.
- * The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.
- * X_1 is denoted by Q, and X_2 (which is $\overline{X_1}$ in all cases except for A=B=0) is denoted by \overline{Q} .

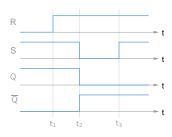




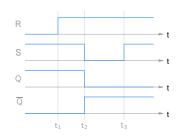
R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid

- * The combination A=1, B=0 serves to reset X_1 to 0 (irrespective of the previous state of the latch).
- * The combination A = 0, B = 1 serves to set X_1 to 1 (*irrespective of* the previous state of the latch).
- * In other words, A=1, $B=0 \rightarrow$ latch gets reset to 0. A=0, $B=1 \rightarrow$ latch gets set to 1.
- * The A input is therefore called the RESET (R) input, and B is called the SET (S) input of the latch.
- * X_1 is denoted by Q, and X_2 (which is $\overline{X_1}$ in all cases except for A=B=0) is denoted by \overline{Q} .

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inv	alid

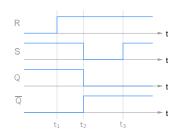


R	S	Q Q	
1	0	0 1	
0	1	1 0	
1	1	previous	
0	0	invalid	



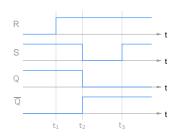
* Up to $t = t_1$, R = 0, $S = 1 \rightarrow Q = 1$.

R	S	$Q \overline{Q}$	
1	0	0 1	
0	1	1 0	
1	1	previous	
0	0	invalid	



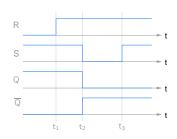
- * Up to $t = t_1$, R = 0, $S = 1 \rightarrow Q = 1$.
- * At $t=t_1$, R goes high $\to R=S=1$, and the latch holds its previous state \to no change at the output.

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inv	alid

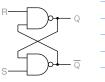


- * Up to $t = t_1$, R = 0, $S = 1 \rightarrow Q = 1$.
- * At $t=t_1$, R goes high $\to R=S=1$, and the latch holds its previous state \to no change at the output.
- * At $t = t_2$, S goes low $\rightarrow R = 1$, $S = 0 \rightarrow Q = 0$.

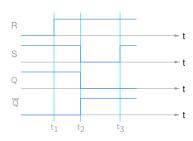
R S Q Q 1 0 0 1 0 1 1 0 1 1 previous			
0 1 1 0	R	S Q	Q
	1	0	1
1 1 previou	0	1 1	0
	1	ı pre	evious
0 0 invalid	0) inv	alid

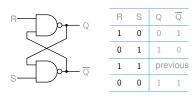


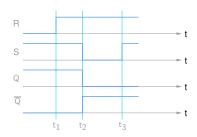
- * Up to $t = t_1$, R = 0, $S = 1 \rightarrow Q = 1$.
- * At $t=t_1$, R goes high $\to R=S=1$, and the latch holds its previous state \to no change at the output.
- * At $t = t_2$, S goes low $\rightarrow R = 1$, $S = 0 \rightarrow Q = 0$.
- * At $t=t_3$, S goes high $\to R=S=1$, and the latch holds its previous state \to no change at the output.



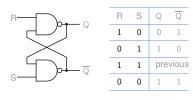
R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	previous	
0	0	1	1

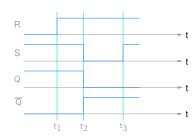




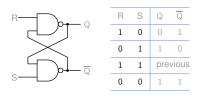


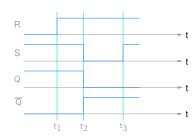
* Why not allow R = S = 0?



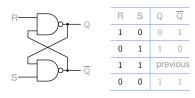


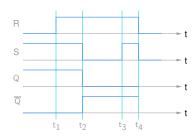
- * Why not allow R = S = 0?
 - It makes $Q=\overline{Q}=1$, i.e., Q and \overline{Q} are not inverse of each other any more.



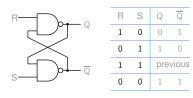


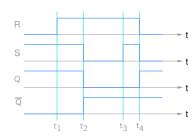
- * Why not allow R = S = 0?
 - It makes $Q=\overline{Q}=1$, i.e., Q and \overline{Q} are not inverse of each other any more.
 - More importantly, when R and S both become 1 simultaneously (starting from R=S=0), the final outputs Q and \overline{Q} cannot be uniquely determined. We could have Q=0, $\overline{Q}=1$ or Q=1, $\overline{Q}=0$, depending on the delays associated with the two NAND gates.



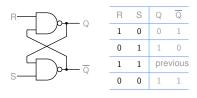


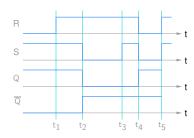
- * Why not allow R = S = 0?
 - It makes $Q=\overline{Q}=1$, i.e., Q and \overline{Q} are not inverse of each other any more.
 - More importantly, when R and S both become 1 simultaneously (starting from R=S=0), the final outputs Q and \overline{Q} cannot be uniquely determined. We could have Q=0, $\overline{Q}=1$ or Q=1, $\overline{Q}=0$, depending on the delays associated with the two NAND gates.



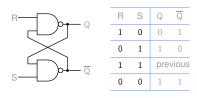


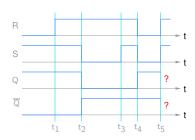
- * Why not allow R = S = 0?
 - It makes $Q=\overline{Q}=1$, i.e., Q and \overline{Q} are not inverse of each other any more.
 - More importantly, when R and S both become 1 simultaneously (starting from R=S=0), the final outputs Q and \overline{Q} cannot be uniquely determined. We could have Q=0, $\overline{Q}=1$ or Q=1, $\overline{Q}=0$, depending on the delays associated with the two NAND gates.



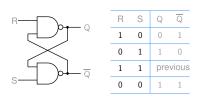


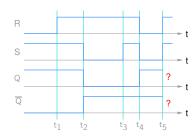
- * Why not allow R = S = 0?
 - It makes $Q=\overline{Q}=1$, i.e., Q and \overline{Q} are not inverse of each other any more.
 - More importantly, when R and S both become 1 simultaneously (starting from R=S=0), the final outputs Q and \overline{Q} cannot be uniquely determined. We could have Q=0, $\overline{Q}=1$ or Q=1, $\overline{Q}=0$, depending on the delays associated with the two NAND gates.



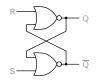


- * Why not allow R = S = 0?
 - It makes $Q=\overline{Q}=1$, i.e., Q and \overline{Q} are not inverse of each other any more.
 - More importantly, when R and S both become 1 simultaneously (starting from R=S=0), the final outputs Q and \overline{Q} cannot be uniquely determined. We could have Q=0, $\overline{Q}=1$ or Q=1, $\overline{Q}=0$, depending on the delays associated with the two NAND gates.

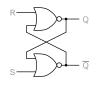




- * Why not allow R = S = 0?
 - It makes $Q=\overline{Q}=1$, i.e., Q and \overline{Q} are not inverse of each other any more.
 - More importantly, when R and S both become 1 simultaneously (starting from R=S=0), the final outputs Q and \overline{Q} cannot be uniquely determined. We could have Q=0, $\overline{Q}=1$ or Q=1, $\overline{Q}=0$, depending on the delays associated with the two NAND gates.
- * We surely don't want any question marks in digital electronics!

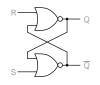


R	S	Q	Q
1	0	0	1
0	1	1	0
0	0	pre	vious
1	1	inva	alid



R	S	Q	Q
1	0	0	1
0	1	1	0
0	0	previous	
1	1	inva	alid

* The NOR latch is similar to the NAND latch: When R=1, S=0, the latch gets reset to Q=0. When R=0, S=1, the latch gets set to Q=1.



R	S	Q	Q
1	0	0	1
0	1	1	0
0	0	previous	
1	1	inva	alid

- * The NOR latch is similar to the NAND latch: When R=1, S=0, the latch gets reset to Q=0. When R=0, S=1, the latch gets set to Q=1.
- * For R = S = 0, the latch retains its previous state (i.e., the previous values of Q and \overline{Q}).

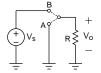
R	S	Q	Q
1	0	0	1
0	1	1	0
0	0	previous	
1	1	inva	alid

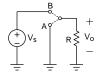
- * The NOR latch is similar to the NAND latch: When R = 1, S = 0, the latch gets reset to Q = 0. When R = 0, S = 1, the latch gets set to Q = 1.
- * For R = S = 0, the latch retains its previous state (i.e., the previous values of Q and \overline{Q}).
- * R = S = 1 is not allowed for reasons similar to those discussed in the context of the NAND latch.

Comparison of NAND and NOR latches

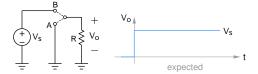
R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	prev	/ious
0	0	inva	lid

R	S	Q	Q
1	0	0	1
0	1	1	0
0	0	pre	vious
1	1	inva	alid

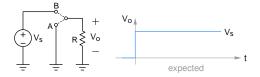




* When the switch is thrown from A to B, V_o is expected to go from 0 V to V_s (say, 5 V).



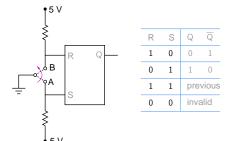
* When the switch is thrown from A to B, V_o is expected to go from 0 V to V_s (say, 5 V).

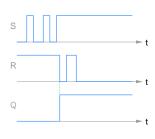


- * When the switch is thrown from A to B, V_o is expected to go from 0 V to V_s (say, 5 V).
- * However, mechanical switches suffer from "chatter" or "bouncing," i.e., the transition from A to B is not a single, clean one. As a result, V_o oscillates between 0 V and 5 V before settling to its final value (5 V).

- * When the switch is thrown from A to B, V_o is expected to go from 0 V to V_s (say, 5 V).
- * However, mechanical switches suffer from "chatter" or "bouncing," i.e., the transition from A to B is not a single, clean one. As a result, V_o oscillates between 0 V and 5 V before settling to its final value (5 V).

- * When the switch is thrown from A to B, V_o is expected to go from 0 V to V_s (say, 5 V).
- * However, mechanical switches suffer from "chatter" or "bouncing," i.e., the transition from A to B is not a single, clean one. As a result, V_o oscillates between 0 V and 5 V before settling to its final value (5 V).
- st In some applications, this chatter can cause malfunction ightarrow need a way to remove the chatter.





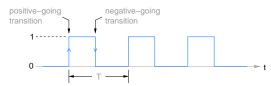
* Because of the chatter, the S and R inputs may have multiple transitions when the switch is thrown from A to B.

- st Because of the chatter, the S and R inputs may have multiple transitions when the switch is thrown from A to B.
- * However, for S = R = 1, the previous value of Q is retained, causing a *single* transition in Q, as desired.

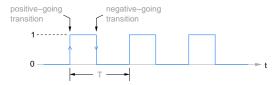
* Complex digital circuits are generally designed for *synchronous* operation, i.e., transitions in the various signals are synchronised with the *clock*.

- * Complex digital circuits are generally designed for *synchronous* operation, i.e., transitions in the various signals are synchronised with the *clock*.
- * Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output nodes and internal nodes) can change only at specific times.

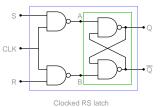
- * Complex digital circuits are generally designed for *synchronous* operation, i.e., transitions in the various signals are synchronised with the *clock*.
- * Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output nodes and internal nodes) can change only at specific times.
- * A clock is a periodic signal, with a positive-going transition and a negative-going transition.



- * Complex digital circuits are generally designed for *synchronous* operation, i.e., transitions in the various signals are synchronised with the *clock*.
- * Synchronous circuits are easier to design and troubleshoot because the voltages at the nodes (both output nodes and internal nodes) can change only at specific times.
- * A clock is a periodic signal, with a positive-going transition and a negative-going transition.



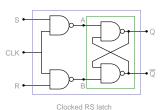
* The clock frequency determines the overall speed of the circuit. For example, a processor that operates with a 1 GHz clock is 10 times faster than one that operates with a 100 MHz clock.



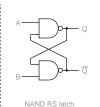
CLK	R	S	Q	Q
0	Χ	Χ	pre	vious
1	1	0	0	1
1	0	1	1	0
1	0	0	pre	vious
1	1	1	inva	alid

NAND RS latch

Α	В	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid

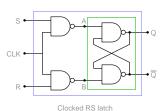


	R	S	Q	Q
0	Χ	Χ	pre	vious
1	1	0	0	1
1	0	1	1	0
1	0	0	pre	vious
1	1	1	inva	alid

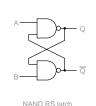


Α	В	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid

* When clock is inactive (0), A = B = 1, and the latch holds the previous state.

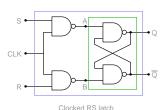


CLK	R	S	Q	Q
0	Χ	Χ	pre	vious
1	1	0	0	1
1	0	1	1	0
1	0	0	pre	vious
1	1	1	inva	alid



Α	В	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid

- * When clock is inactive (0), A = B = 1, and the latch holds the previous state.
- * When clock is active (1), $A = \overline{S}$, $B = \overline{R}$. Using the truth table for the NAND RS latch (right), we can construct the truth table for the clocked RS latch.

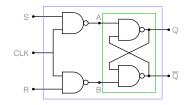


CLK	R	S	Q	Q
0	Χ	Χ	pre	vious
1	1	0	0	1
1	0	1	1	0
1	0	0	pre	vious
1	1	1	inva	alid

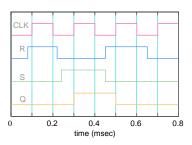
NAND RS latch

А	В	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid

- * When clock is inactive (0), A = B = 1, and the latch holds the previous state.
- * When clock is active (1), $A = \overline{S}$, $B = \overline{R}$. Using the truth table for the NAND RS latch (right), we can construct the truth table for the clocked RS latch.
- * Note that the above table is sensitive to the *level* of the clock (i.e., whether CLK is 0 or 1).



CLK	R	S	Q	Q
0	Χ	Χ	pre	vious
1	1	0	0	1
1	0	1	1	0
1	0	0	pre	vious
1	1	1	inva	alid



(SEQUEL file: ee101_rs_1.sqproj)

Edge-triggered flip-flops

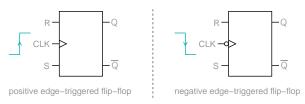
* The clocked RS latch seen previously is *level-sensitive*, i.e., if the clock is active (CLK = 1), the flip-flop output is allowed to change, depending on the R and S inputs.

Edge-triggered flip-flops

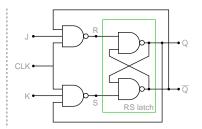
- * The clocked RS latch seen previously is *level-sensitive*, i.e., if the clock is active (CLK = 1), the flip-flop output is allowed to change, depending on the R and S inputs.
- * In an edge-sensitive flip-flop, the output can change only at the active clock edge (i.e., CLK transition from 0 to 1 or from 1 to 0).

Edge-triggered flip-flops

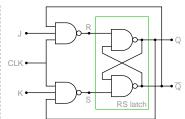
- * The clocked RS latch seen previously is *level-sensitive*, i.e., if the clock is active (CLK = 1), the flip-flop output is allowed to change, depending on the R and S inputs.
- * In an edge-sensitive flip-flop, the output can change only at the active clock edge (i.e., CLK transition from 0 to 1 or from 1 to 0).
- * Edge-sensitive flip-flops are denoted by the following symbols:



R	S	0	0
1	0	0	1
0	1	1	0
1	1	prev	/ious
0	0	inva	ılid

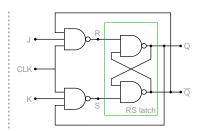


Truth table for RS latch



* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK = 0.

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	invalid	



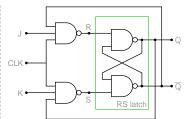
CLK	J	K	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)

Truth table for RS latch

Truth table for JK flip-flop

* When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK = 0.

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	invalid	



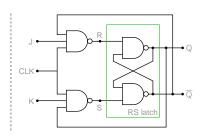
CLK	J	K	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)

Truth table for RS latch

Truth table for JK flip-flop

- * When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK = 0.
- * When CLK = 1:

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	invalid	



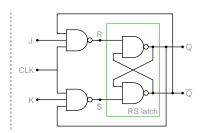
CLK	J	K	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)

Truth table for RS latch

Truth table for JK flip-flop

- * When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK = 0.
- * When CLK = 1:
 - $J=K=0 \rightarrow R=S=1$, RS latch holds previous Q, i.e., $Q_{n+1}=Q_n$, where n denotes the n^{th} clock pulse (This notation will become clear shortly).

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	invalid	



CLK	J	K	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)

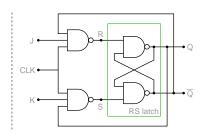
Truth table for RS latch

Truth table for JK flip-flop

- * When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK = 0.
- * When CLK = 1:
 - $J = K = 0 \rightarrow R = S = 1$, RS latch holds previous Q, i.e., $Q_{n+1} = Q_n$, where n denotes the nth clock pulse (This notation will become clear shortly).

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	invalid	

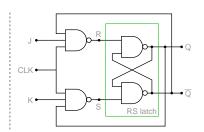
Truth table for RS latch



CLK	J	K	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)

- * When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK = 0.
- * When CLK = 1:
 - $J = K = 0 \rightarrow R = S = 1$, RS latch holds previous Q, i.e., $Q_{n+1} = Q_n$, where n denotes the nth clock pulse (This notation will become clear shortly).
 - J=0, $K=1 \rightarrow R=1$, $S=\overline{Q_n}$.

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	invalid	



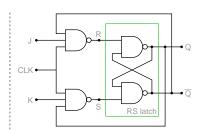
CLK	J	K	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)

Truth table for RS latch

Truth table for JK flip-flop

- * When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK = 0.
- * When CLK = 1:
 - $J = K = 0 \rightarrow R = S = 1$, RS latch holds previous Q, i.e., $Q_{n+1} = Q_n$, where n denotes the nth clock pulse (This notation will become clear shortly).
 - J = 0, $K = 1 \to R = 1$, $S = \overline{Q_n}$. Case (i): $Q_n = 0 \to S = 1$ (i.e., R = S = 1) $\to Q_{n+1} = Q_n = 0$.

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	invalid	



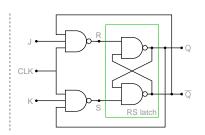
CLK	J	Κ	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)

Truth table for RS latch

Truth table for JK flip-flop

- * When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK = 0.
- * When CLK = 1:
 - $J = K = 0 \rightarrow R = S = 1$, RS latch holds previous Q, i.e., $Q_{n+1} = Q_n$, where n denotes the nth clock pulse (This notation will become clear shortly).
 - J = 0, $K = 1 \to R = 1$, $S = \overline{Q_n}$. Case (i): $Q_n = 0 \to S = 1$ (i.e., R = S = 1) $\to Q_{n+1} = Q_n = 0$. Case (ii): $Q_n = 1 \to S = 0$ (i.e., R = 1, S = 0) $\to Q_{n+1} = 0$.

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	invalid	



CLK	J	K	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)

Truth table for RS latch

Truth table for JK flip-flop

- * When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK = 0.
- * When CLK = 1:
 - $J = K = 0 \rightarrow R = S = 1$, RS latch holds previous Q, i.e., $Q_{n+1} = Q_n$, where n denotes the nth clock pulse (This notation will become clear shortly).
 - J=0, $K=1 \rightarrow R=1$, $S=\overline{Q_n}$.

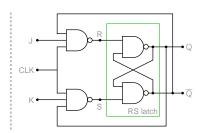
Case (i):
$$Q_n = 0 \rightarrow S = 1$$
 (i.e., $R = S = 1$) $\rightarrow Q_{n+1} = Q_n = 0$.

Case (ii):
$$Q_n = 1 \rightarrow S = 0$$
 (i.e., $R = 1$, $S = 0$) $\rightarrow Q_{n+1} = 0$.

In either case, $Q_{n+1} = 0 \rightarrow \text{For } J = 0$, K = 1, $Q_{n+1} = 0$.

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	invalid	

Truth table for RS latch



CLK	J	K	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0

Truth table for JK flip-flop

- * When CLK = 0, we have R = S = 1, and the RS latch holds the previous Q. In other words, nothing happens as long as CLK = 0.
- * When CLK = 1:
 - $J = K = 0 \rightarrow R = S = 1$, RS latch holds previous Q, i.e., $Q_{n+1} = Q_n$, where n denotes the nth clock pulse (This notation will become clear shortly).
 - J=0, $K=1 \rightarrow R=1$, $S=\overline{Q_n}$.

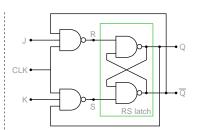
Case (i):
$$Q_n = 0 \rightarrow S = 1$$
 (i.e., $R = S = 1$) $\rightarrow Q_{n+1} = Q_n = 0$.

Case (ii):
$$Q_n = 1 \rightarrow S = 0$$
 (i.e., $R = 1$, $S = 0$) $\rightarrow Q_{n+1} = 0$.

In either case, $Q_{n+1} = 0 \rightarrow \text{For } J = 0$, K = 1, $Q_{n+1} = 0$.

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid

Truth table for RS latch

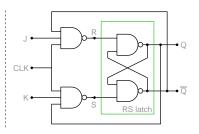


CLK	J	Κ	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0

Truth table for JK flip-flop

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid

Truth table for RS latch



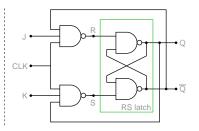
CLK	J	Κ	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0

Truth table for JK flip-flop

- * When CLK = 1:
 - Consider J=1, $K=0 \rightarrow S=1$, $R=\overline{\overline{Q_n}}=Q_n$.

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid

Truth table for RS latch



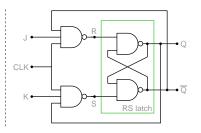
	CLK	J	Κ	$Q\left(Q_{n+1}\right)$
Ī	0	Χ	Χ	previous (Q _n)
	1	0	0	previous (Q _n)
Ī	1	0	1	0

Truth table for JK flip-flop

* When CLK = 1:

- Consider J=1, $K=0 \rightarrow S=1$, $R=\overline{\overline{Q_n}}=Q_n$. Case (i): $Q_n=0 \rightarrow R=0$ (i.e., R=0, S=1) $\rightarrow Q_{n+1}=1$.

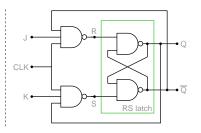
R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid



CLK	J	Κ	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0

- Truth table for RS latch
 - * When CLK = 1:
 - Consider J=1, $K=0 \rightarrow S=1$, $R=\overline{\overline{Q_n}}=Q_n$.
 - Case (i): $Q_n = 0 \rightarrow R = 0$ (i.e., R = 0, S = 1) $\rightarrow Q_{n+1} = 1$.
 - Case (ii): $Q_n = 1 \rightarrow R = 1$ (i.e., R = 1, S = 1) $\rightarrow Q_{n+1} = Q_n = 1$.

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid



CLK	J	Κ	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0

- Truth table for RS latch
 - * When CLK = 1:

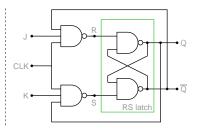
- Consider
$$J=1$$
, $K=0 \rightarrow S=1$, $R=\overline{Q_n}=Q_n$.

Case (i):
$$Q_n = 0 \rightarrow R = 0$$
 (i.e., $R = 0$, $S = 1$) $\rightarrow Q_{n+1} = 1$.

Case (ii):
$$Q_n = 1 \rightarrow R = 1$$
 (i.e., $R = 1$, $S = 1$) $\rightarrow Q_{n+1} = Q_n = 1$.

$$\rightarrow$$
 For $J = 1$, $K = 0$, $Q_{n+1} = 1$.

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid



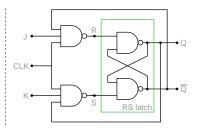
CLK	J	Κ	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0
1	1	0	1

- Truth table for RS latch
 - * When CLK = 1:
 - Consider J=1, $K=0 \rightarrow S=1$, $R=\overline{Q_n}=Q_n$.
 - Case (i): $Q_n = 0 \rightarrow R = 0$ (i.e., R = 0, S = 1) $\rightarrow Q_{n+1} = 1$.

Case (ii):
$$Q_n = 1 \rightarrow R = 1$$
 (i.e., $R = 1$, $S = 1$) $\rightarrow Q_{n+1} = Q_n = 1$.

$$\rightarrow$$
 For $J = 1$, $K = 0$, $Q_{n+1} = 1$.

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid



CLK	J	Κ	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0
1	1	0	1

Truth table for RS latch

Truth table for JK flip-flop

* When CLK = 1:

- Consider J=1, $K=0 \rightarrow S=1$, $R=\overline{Q_n}=Q_n$.

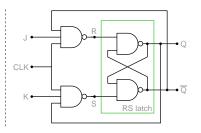
Case (i): $Q_n = 0 \rightarrow R = 0$ (i.e., R = 0, S = 1) $\rightarrow Q_{n+1} = 1$.

Case (ii):
$$Q_n = 1 \to R = 1$$
 (i.e., $R = 1$, $S = 1$) $\to Q_{n+1} = Q_n = 1$.

→ For
$$J = 1$$
, $K = 0$, $Q_{n+1} = 1$.

- Consider J=1, $K=1 \rightarrow R=Q_n$, $S=\overline{Q_n}$.

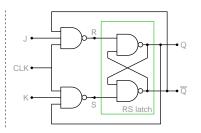
R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid



CLK	J	Κ	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0
1	1	0	1

- Truth table for RS latch
 - * When CLK = 1:
 - Consider J=1, $K=0 \rightarrow S=1$, $R=\overline{Q_n}=Q_n$.
 - Case (i): $Q_n = 0 \rightarrow R = 0$ (i.e., R = 0, S = 1) $\rightarrow Q_{n+1} = 1$.
 - Case (ii): $Q_n = 1 \rightarrow R = 1$ (i.e., R = 1, S = 1) $\rightarrow Q_{n+1} = Q_n = 1$.
 - \rightarrow For J = 1, K = 0, $Q_{n+1} = 1$.
 - Consider J=1, $K=1 \rightarrow R=Q_n$, $S=\overline{Q_n}$.
 - Case (i): $Q_n = 0 \rightarrow R = 0$, $S = 1 \rightarrow Q_{n+1} = 1$.

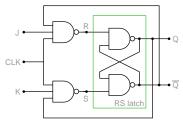
R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid



CLK	J	Κ	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0
1	1	0	1

- Truth table for RS latch
 - * When CLK = 1:
 - Consider J=1, $K=0 \rightarrow S=1$, $R=\overline{\overline{Q_n}}=Q_n$.
 - Case (i): $Q_n = 0 \rightarrow R = 0$ (i.e., R = 0, S = 1) $\rightarrow Q_{n+1} = 1$.
 - Case (ii): $Q_n = 1 \to R = 1$ (i.e., R = 1, S = 1) $\to Q_{n+1} = Q_n = 1$.
 - \rightarrow For J = 1, K = 0, $Q_{n+1} = 1$.
 - Consider J=1, $K=1 \rightarrow R=Q_n$, $S=\overline{Q_n}$.
 - Case (i): $Q_n = 0 \rightarrow R = 0$, $S = 1 \rightarrow Q_{n+1} = 1$.
 - Case (ii): $Q_n = 1 \to R = 1$, $S = 0 \to Q_{n+1} = 0$.

R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid



CLK	J	Κ	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0
1	1	0	1

Truth table for JK flip-flop

Truth table for RS latch

* When CLK = 1:

- Consider J=1, $K=0 \rightarrow S=1$, $R=\overline{\overline{Q_n}}=Q_n$.

Case (i):
$$Q_n = 0 \rightarrow R = 0$$
 (i.e., $R = 0$, $S = 1$) $\rightarrow Q_{n+1} = 1$.

Case (ii):
$$Q_n = 1 \rightarrow R = 1$$
 (i.e., $R = 1$, $S = 1$) $\rightarrow Q_{n+1} = Q_n = 1$.

$$\rightarrow$$
 For $J = 1$, $K = 0$, $Q_{n+1} = 1$.

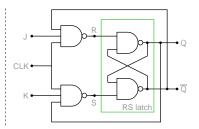
- Consider
$$J=1$$
, $K=1 \rightarrow R=Q_n$, $S=\overline{Q_n}$.

Case (i):
$$Q_n = 0 \rightarrow R = 0$$
, $S = 1 \rightarrow Q_{n+1} = 1$.

Case (ii):
$$Q_n = 1 \to R = 1$$
, $S = 0 \to Q_{n+1} = 0$.

$$\rightarrow$$
 For $J=1$, $K=1$, $Q_{n+1}=\overline{Q_n}$.

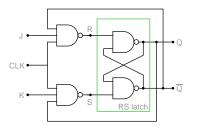
R	S	Q	Q
1	0	0	1
0	1	1	0
1	1	pre	vious
0	0	inva	alid



CLK	J	K	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0
1	1	0	1
1	1	1	toggles $(\overline{Q_n})$

Truth table for JK flip-flop

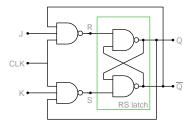
- Truth table for RS latch
 - * When CLK = 1:
 - Consider J=1, $K=0 \rightarrow S=1$, $R=\overline{Q_n}=Q_n$.
 - Case (i): $Q_n = 0 \rightarrow R = 0$ (i.e., R = 0, S = 1) $\rightarrow Q_{n+1} = 1$.
 - Case (ii): $Q_n = 1 \rightarrow R = 1$ (i.e., R = 1, S = 1) $\rightarrow Q_{n+1} = Q_n = 1$.
 - \rightarrow For J = 1, K = 0, $Q_{n+1} = 1$.
 - Consider J=1, $K=1 \rightarrow R=Q_n$, $S=\overline{Q_n}$.
 - Case (i): $Q_n = 0 \rightarrow R = 0$, $S = 1 \rightarrow Q_{n+1} = 1$.
 - Case (ii): $Q_n = 1 \to R = 1$, $S = 0 \to Q_{n+1} = 0$.
 - \rightarrow For J=1, K=1, $Q_{n+1}=\overline{Q_n}$.



CLK	J	K	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0
1	1	0	1
1	1	1	toggles $(\overline{Q_n})$

Truth table for JK flip-flop

Consider J = K = 1 and CLK = 1.

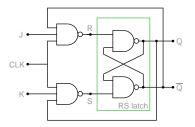


CLK	J	K	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0
1	1	0	1
1	1	1	toggles $(\overline{Q_n})$

Truth table for JK flip-flop

Consider J = K = 1 and CLK = 1.

As long as ${\sf CLK}=1$, Q will keep toggling! (The frequency will depend on the delay values of the various gates).



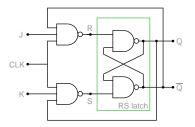
CLK	J	K	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0
1	1	0	1
1	1	1	toggles $(\overline{Q_n})$

Truth table for JK flip-flop

Consider J = K = 1 and CLK = 1.

As long as ${\sf CLK}=1$, Q will keep toggling! (The frequency will depend on the delay values of the various gates).

When CLK changes from 1 to 0, the toggling will stop. However, the final value of ${\it Q}$ is not known; it could be 0 or 1.



CLK	J	K	$Q\left(Q_{n+1}\right)$
0	Χ	Χ	previous (Q _n)
1	0	0	previous (Q _n)
1	0	1	0
1	1	0	1
1	1	1	toggles $(\overline{\mathbb{Q}_n})$

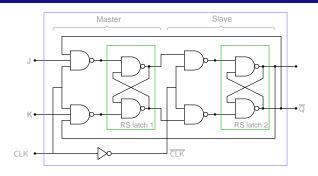
Truth table for JK flip-flop

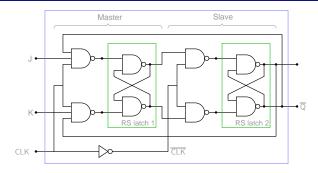
Consider J = K = 1 and CLK = 1.

As long as ${\sf CLK}=1$, Q will keep toggling! (The frequency will depend on the delay values of the various gates).

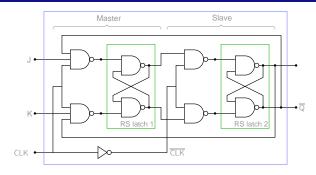
When CLK changes from 1 to 0, the toggling will stop. However, the final value of Q is not known; it could be 0 or 1.

 \rightarrow Use the "Master-slave" configuration.

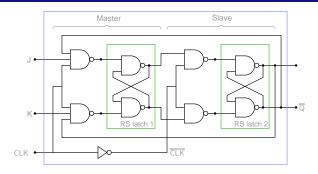




* When CLK goes high, only the first latch is affected; the second latch retains its previous value (because $\overline{\text{CLK}} = 0 \rightarrow R_2 = S_2 = 1$).

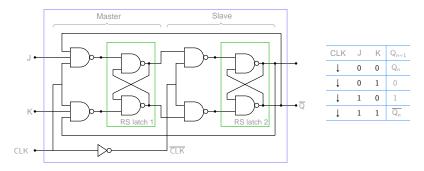


- * When CLK goes high, only the first latch is affected; the second latch retains its previous value (because $\overline{\text{CLK}} = 0 \to R_2 = S_2 = 1$).
- * When CLK goes low, the output of the first latch (Q_1) is retained (since $R_1 = S_1 = 1$), and Q_1 can now affect Q.



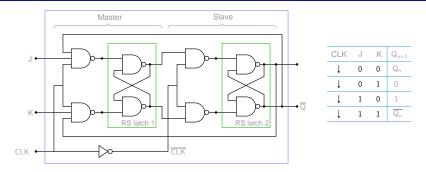
- * When CLK goes high, only the first latch is affected; the second latch retains its previous value (because $\overline{\text{CLK}} = 0 \rightarrow R_2 = S_2 = 1$).
- * When CLK goes low, the output of the first latch (Q_1) is retained (since $R_1 = S_1 = 1$), and Q_1 can now affect Q.
- * In other words, the effect of any changes in J and K appears at the output Q only when CLK makes a transition from 1 to 0.

 This is therefore a negative edge-triggered flip-flop.



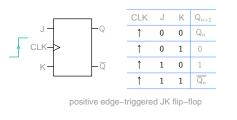
- * When CLK goes high, only the first latch is affected; the second latch retains its previous value (because $\overline{\text{CLK}} = 0 \rightarrow R_2 = S_2 = 1$).
- * When CLK goes low, the output of the first latch (Q_1) is retained (since $R_1 = S_1 = 1$), and Q_1 can now affect Q.
- * In other words, the effect of any changes in J and K appears at the output Q only when CLK makes a transition from 1 to 0.

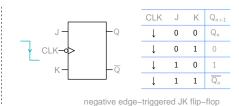
 This is therefore a negative edge-triggered flip-flop.

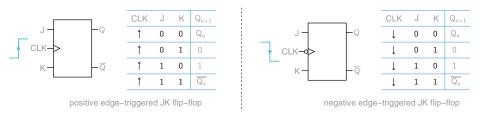


- * When CLK goes high, only the first latch is affected; the second latch retains its previous value (because $\overline{\text{CLK}} = 0 \rightarrow R_2 = S_2 = 1$).
- * When CLK goes low, the output of the first latch (Q_1) is retained (since $R_1 = S_1 = 1$), and Q_1 can now affect Q.
- * In other words, the effect of any changes in J and K appears at the output Q only when CLK makes a transition from 1 to 0.

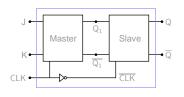
 This is therefore a negative edge-triggered flip-flop.
- * Note that, unlike the RS NAND latch which does not allow one of the combinations of R and S (viz., R=S=0), the JK flip-flop allows all four combinations.

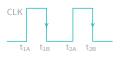


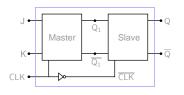


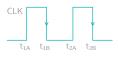


* Both negative (e.g., 74101) and positive (e.g., 7470) edge-triggered JK flip-flops are available as ICs.



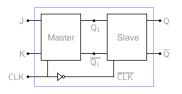


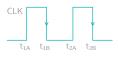




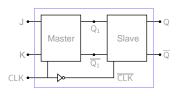
Consider a negative edge-triggered JK flip-flop.

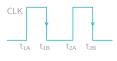
* As seen earlier, when CLK is high (i.e., $t_{1A} < t < t_{1B}$, etc.), the input J and K determine the Master latch output Q_1 . During this time, no change is visible at the flip-flop output Q.



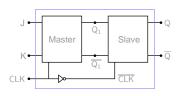


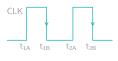
- * As seen earlier, when CLK is high (i.e., $t_{1A} < t < t_{1B}$, etc.), the input J and K determine the Master latch output Q_1 . During this time, no change is visible at the flip-flop output Q.
- When the clock goes low, the Slave flip-flop becomes active, making it possible for Q to change.



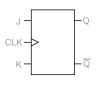


- * As seen earlier, when CLK is high (i.e., t_{1A} < t < t_{1B}, etc.), the input J and K determine the Master latch output Q₁.During this time, no change is visible at the flip-flop output Q.
- When the clock goes low, the Slave flip-flop becomes active, making it possible for Q to change.
- * In short, although the flip-flop output Q can only change after the active edge, $(t_{1B},\,t_{2B},\,$ etc.), the new Q value is determined by J and K values just before the active edge.



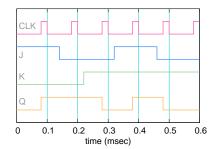


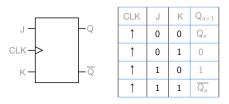
- * As seen earlier, when CLK is high (i.e., t_{1A} < t < t_{1B}, etc.), the input J and K determine the Master latch output Q₁.During this time, no change is visible at the flip-flop output Q.
- When the clock goes low, the Slave flip-flop becomes active, making it possible for Q to change.
- * In short, although the flip-flop output Q can only change after the active edge, $(t_{1B},\,t_{2B},\,$ etc.), the new Q value is determined by J and K values just before the active edge.
 - This is a very important point!



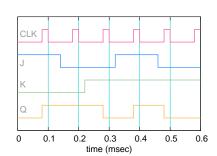
CLK	J	K	Q_{n+1}
1	0	0	Qn
1	0	1	0
1	1	0	1
1	1	1	$\overline{\mathbb{Q}_{n}}$

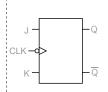
positive edge-triggered JK flip-flop





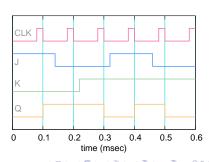
positive edge-triggered JK flip-flop

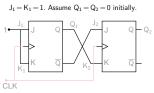


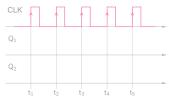


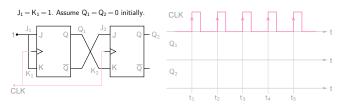
CLK	J	K	Q_{n+1}
J	0	0	Qn
1	0	1	0
1	1	0	1
↓	1	1	$\overline{\mathbb{Q}_{n}}$

negative edge-triggered JK flip-flop

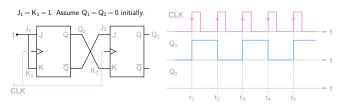




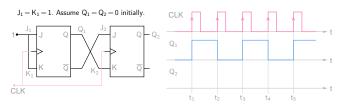




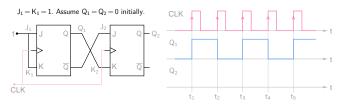
* Since $J_1 = K_1 = 1$, Q_1 toggles after every active clock edge.



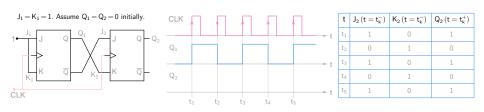
* Since $J_1 = K_1 = 1$, Q_1 toggles after every active clock edge.



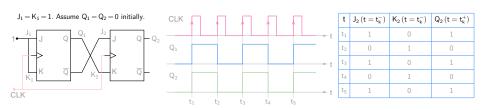
- * Since $J_1 = K_1 = 1$, Q_1 toggles after every active clock edge.
- * $J_2 = \overline{Q_1}$, $K_2 = Q_1$. We need to look at J_2 and K_2 values just before the active edge, to determine the next value of Q_2 .



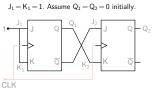
- * Since $J_1 = K_1 = 1$, Q_1 toggles after every active clock edge.
- * $J_2 = \overline{Q_1}$, $K_2 = Q_1$. We need to look at J_2 and K_2 values *just before* the active edge, to determine the next value of Q_2 .
- * It is convenient to construct a table listing J_2 and K_2 to figure out the next Q_2 value.



- * Since $J_1 = K_1 = 1$, Q_1 toggles after every active clock edge.
- * J₂ = Q
 1, K₂ = Q
 1. We need to look at J
 2 and K
 2 values just before the active edge, to determine the next value of Q
 2.
- * It is convenient to construct a table listing J_2 and K_2 to figure out the next Q_2 value.



- * Since $J_1 = K_1 = 1$, Q_1 toggles after every active clock edge.
- * J₂ = Q
 1, K₂ = Q
 1. We need to look at J
 2 and K
 2 values just before the active edge, to determine the next value of Q
 2.
- * It is convenient to construct a table listing J_2 and K_2 to figure out the next Q_2 value.





	t	$J_{2}\left(t=t_{k}^{-}\right)$	$K_{2}\left(t=t_{k}^{\scriptscriptstyle{-}}\right)$	$Q_{2}\left(t=t_{k}^{+}\right)$
t	t ₁	1	0	1
	t_2	0	1	0
t	t ₃	1	0	1
	t ₄	0	1	0
t	t ₅	1	0	1

- * Since $J_1 = K_1 = 1$, Q_1 toggles after every active clock edge.
- * J₂ = Q₁, K₂ = Q₁. We need to look at J₂ and K₂ values just before the active edge, to determine the next value of Q₂.
- * It is convenient to construct a table listing J_2 and K_2 to figure out the next Q_2 value.
- Note that the circuit is not doing much, apart from taxing our minds!
 But hold on, some useful circuits will appear soon.