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1. Introduction
1.1 Signals, systems and signal processing

What does “Digital Signal Processing” mean?

Signal:

• Physical quantity that varies with time, space or any other
independent variable

• Mathematically: Function of one or more independent
variables,s1(t) = 5 t, s2(t) = 20 t2

• Examples: Temperature over timet, brightness (luminance) of
an image over(x, y), pressure of a sound wave over(x, y, z)

or (x, y, z, t)

Speech signal:
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Signal Processing:

• Passing the signal through a system

• Examples:

– Modification of the signal (filtering, interpolation, noise
reduction, equalization,. . .)

– Prediction, transformation to another domain (e.g. Fourier
transform)
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– Numerical integration and differentiation
– Determination of mean value, correlation, p.d.f.,. . .

• Properties of the system (e.g. linear/nonlinear) determine the
properties of the whole processing operation

• System: Definition also includes:
– software realizations of operations on a signal, which

are carried out on a digital computer (⇒ software
implementation of the system)

– digital hardware realizations (logic circuits) configured
such that they are able to perform the processing operation,
or

– most general definition: a combination of both

Digital signal processing: Processing of signals by digital means
(software and/or hardware)
Includes:
• Conversion from the analog to the digital domain and back

(physical signals are analog)

• Mathematical specification of the processing operations⇒
Algorithm: method or set of rules for implementing the system
by a program that performs the corresponding mathematical
operations

• Emphasis on computationally efficient algorithms, which are
fast and easily implemented.
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Basic elements of a digital signal processing system

Analog signal processing:

Analog
input
signal

Analog
signal
processor

Analog
output
signal

Digital signal processing:
(A/D: Analog-to-digital, D/A: Digital-to-analog)

Digital
signal
processor

Digital
input
signal

Digital

signal
output

Analog
input
signal

Analog
output
signalconverter

A/D
converter
D/A

Why has digital signal processing become so popular?

Digital signal processing has many advantages compared to
analog processing:

Property Digital Analog

Dynamics only limited by
complexity

generally limited

Precision generally unlimited
(costs, complexity ∼
precision)

generally limited (costs
increase drastically with
required precision)

Aging without problems problematic
Production
costs

low higher

Frequency
range

ωdmin ≪ ωamin, ωdmax≪ ωamax

Linear-phase
frequency
responses

exactly realizable approximately realizable

Complex
algorithms

realizable strong limitations
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1.2 Digital signal processors (DSPs)

• Programmable microprocessor (more flexibility), or hardwired
digital processor (ASIC, application specific integrated circuit)
(faster, cheaper)

Often programmable DSPs (simply called ”DSPs”) are used for
evaluation purposes, for prototypes and for complex algorithms:

• Fixed-point processors: Twos-complement number repre-
sentation.

• Floating-point processors: Floating point number repre-
sentation (as for example used in PC processors)

Overview over some available DSP processors see next page.

Performance example: 256-point complex FFT

(from [Evaluating DSP Processor Performance, Berkeley DesignTechnology, Inc., 2000])
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Some currently available DSP processors and their properties (2006):

Data BDTImark Core Unit price
Manufacturer Family Arithmetic width (bits) 2000(TM) clock speed qty. 10000

Analog Devices ADSP-219x fixed-point 16 410 160 MHz $11-26
ADSP-2126x floating-point 32/40 1090 200 MHz $5-15
ADSP-BF5xx fixed-point 16 4190 750 MHz $5-32
ADSP-TS20x floating/fixed-point 8/16/32/40 6400 600 MHz $131-205

Freescale DSP563xx fixed-point 24 820 275 MHz $4-47
DSP568xx fixed-point 16 110 80 MHz $3-12
MSC71xx fixed-point 16 3370 300 MHz $13-35
MSC81xx fixed-point 16 5610 500 MHz $77-184

Texas-Instuments TMS320C24x fixed-point 16 n/a 40 MHz $2-8
TMS320C54x fixed-point 16 500 160 MHz $3-54
TMS320C55x fixed-point 16 1460 300 MHz $4-17
TMS320C64x fixed-point 8/16 9130 1 GHz $15-208
TMS320C67x floating-point 32 1470 300 MHz $12-31
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9 2. Digital Processing of Continuous-Time Signals
Digital signal processing system from above is refined:

Digital signal

processor
A/D

D/A
Sample-and-

hold circuitstruction filter

Lowpass recon-

lowpass filter

Anti-aliasing Sample-and-

hold circuit

2.1 Sampling

⇒ Generation of discrete-time signals from continuous-time
signals

Ideal sampling

Ideally sampled signalxs(t) obtained by multiplication of the
continuous-time signalxc(t) with the periodic impulse train

s(t) =

∞∑

n=−∞
δ(t − nT ),

where δ(t) is the unit impulse functionand T the sampling
period:

xs(t) = xc(t) ·
∞∑

n=−∞
δ(t − nT ) (2.1)

=

∞∑

n=−∞
xc(nT ) δ(t − nT ) (2.2)
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(”sifting property” of the impulse function)
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How does theFourier transform F{xs(t)} = Xs(jΩ) look
like?

Fourier transform of an impulse train:

s(t) ◦−•S(jΩ) =
2π

T

∞∑

k=−∞
δ(Ω − kΩs) (2.3)

Ωs = 2π/T : sampling frequency in radians/s.
Writing (2.1) in the Fourier domain,

Xs(jΩ) =
1

2π
Xc(jΩ) ∗ S(jΩ),
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we finally have for the Fourier transform ofxs(t)

Xs(jΩ) =
1

T

∞∑

k=−∞
Xc(j(Ω − kΩs)). (2.4)

⇒ Periodically repeated copies ofXs(jΩ)/T , shifted by integer
multiples of the sampling frequency

1
T

Ωs 2Ωs

(Ωs − ΩN )

(d) = Aliasing

3Ωs−3Ωs −2Ωs −Ωs Ωs 2Ωs

2π
T

−ΩN

1

3Ωs−3Ωs −2Ωs −Ωs 2ΩsΩN−ΩN

1
T

0

(a)

(b)

(c)

Ωs

ΩN

0 2π 4π−2π−4π−6π 6π

(Ωs − ΩN )

Xs(jΩ)

Ω

.

S(jΩ)

Xc(jΩ)

Xs(jΩ)

Ω

Ω

Ω

.ω

ω = Ω T
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(a) Fourier transform of a bandlimited continuous-time input
signalXc(jΩ), highest frequency isΩN

(b) Fourier transform of the Dirac impulse train

(c) Result of the convolutionS(jΩ) ∗Xc(jΩ). It is evident that
when

Ωs − ΩN > ΩN or Ωs > 2ΩN (2.5)

the replicas ofXc(jΩ) donot overlap.
⇒ xc(t) can be recovered with an ideal lowpass filter!

(d) If (2.5) does not hold, i.e. ifΩs ≤ 2ΩN , the copies of
Xc(jΩ) overlap and the signalxc(t) cannot be recovered by
lowpass filtering. The distortions in the gray shaded areas are
calledaliasing distortionsor simplyaliasing.

Also in (c): Representation with the discrete (normalized) frequency

ω=ΩT =2πfT (f frequency in Hz) for the discrete signalxc(nT )=x(n)

with F∗{x(n)} = X(ejω), F∗{·} denoting the Fourier transform for

discrete-time aperiodic signals (DTFT)

Nonideal sampling

⇒ Modeling the sampling operation with the Dirac impulse train
is not a feasible model in real life, since we always need a finite
amount of time for acquiring a signal sample.

Nonideally sampled signalxn(t) obtained by multiplication of a
continuous-time signalxc(t) with a periodic rectangular window
functionan(t): xn(t) = xc(t) · an(t) where

an(t) = a0(t) ∗
∞∑

n=−∞
δ(t − n T ) =

∞∑

n=−∞
a0(t − nT )

(2.6)
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a0(t) denotes the rectangular prototype window:

a0(t) = rect

(
t − αT/2

αT

)

(2.7)

with rect(t) :=

{

0 for |t| > 1/2

1 for |t| < 1/2
(2.8)

�T T1 a0(t) t rect(t) ◦−• sinc(Ω/2),
sinc(x) := sin(x)/x

Fourier transform of an(t):

Fourier transform of the rectangular time window in (2.7) (see
properties of the Fourier transform)

A0(jΩ) = F{a0(t)} = α T · sinc(ΩαT/2) · e
−jΩαT/2

(2.9)
Fourier transform ofan(t) in (2.6) (analog to (2.3)):

An(jΩ) = A0(jΩ) · 2π

T

∞∑

k=−∞
δ(Ω − kΩs)

= 2πα

∞∑

k=−∞
sinc(kΩsα T/2) e

−jkΩsαT/2
δ(Ω−kΩs)

= 2πα

∞∑

k=−∞
sinc(kπα) e

−jkπα
δ(Ω−kΩs)

(2.10)
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Since

xn(t) = xc(t) an(t) ◦−• Xn(jΩ) =
1

2π
(Xc(jΩ)∗An(jΩ))

we finally have by inserting (2.10)

Xn(jΩ) = α

∞∑

k=−∞
sinc(kπα) e

−jkπα
Xc(j(Ω − kΩs)).

(2.11)
From (2.11) we can deduce the following:

• Compared to the result in the ideal sampling case (cp. (2.4))
here each repeated spectrum at the center frequencykΩs is
weighted with the term sinc(kπα) e−jkπα.

• The energy |Xn(jΩ)|2 is proportional α2: This is
problematic since in order to approximate the ideal case we
would like to choose the parameterα as small as possible.
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Solution: Sampling is performed by asample-and-hold(S/H)
circuit

(from [Proakis, Manolakis, 1996])

(a) Basic elements of an A/D converter, (b) time-domain response of an ideal

S/H circuit

• The goal is to continously sample the input signal and to hold
that value constant as long as it takes for the A/D converter to
obtain its digital representation.

• Ideal S/H circuit introduces no distortion and can be modeled
as an ideal sampler.
⇒ Drawbacks for the nonideal sampling case can be avoided
(all results for the ideal case hold here as well).
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2.2 Sampling Theorem

Reconstruction of an ideally sampled signal by ideal lowpass
filtering:

−2Ωs −Ωs 2ΩsΩN−ΩN

1
T

ΩN−ΩN

1

Hr(jΩ)
xc(t) xs(t) xr(t)

(a)

(b)

(c)

−Ωc Ωc

ΩN−ΩN

1

(d)

(e)

T
ΩN < Ωc < (Ωs − ΩN )

Ωs

(Ωs − ΩN )

s(t) =
∞∑

n=−∞
δ(t − nT )

Xs(jΩ)

Xc(jΩ)

Ω

Ω

Hr(jΩ)

Xr(jΩ)

Ω

Ω

In order to get the input signalxc(t) back after reconstruction,
i.e.Xr(jΩ) = Xc(jΩ), the conditions

ΩN <
Ωs

2
and ΩN < Ωc < (Ωs − ΩN) (2.12)

have both to be satisfied. Then,

Xc(jΩ) = Xr(jΩ) = Xs(jΩ) · Hr(jΩ) •−◦
xc(t) = xr(t) = xs(t) ∗ hr(t). (2.13)

We now choose the cutoff frequencyΩc of the lowpass filter as
Ωc = Ωs/2 (satisfies both inequalities in (2.12)).
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Then, with the definition of the rect(·) function in (2.8) we have

Hr(jΩ) = T rect(Ω/Ωs) •−◦hr(t) = sinc(Ωst/2).

(2.14)
Combining (2.13), (2.14), and (2.2) yields

xc(t) =

∞∫

−∞

∞∑

n=−∞
xc(nT ) δ(τ − nT ) sinc

(
1

2
Ωs(t−τ)

)

dτ

=
∞∑

n=−∞
xc(nT )

∞∫

−∞

δ(τ−nT ) sinc

(
1

2
Ωs(t − τ)

)

dτ

=

∞∑

n=−∞
xc(nT ) sinc

(
1

2
Ωs(t−nT )

)

.

Sampling theorem:
Every bandlimited continuous-time signalxc(t) with
ΩN < Ωs/2 can be uniquely recovered from its samples
xc(nT ) according to

xc(t) =

∞∑

n=−∞
xc(nT ) sinc

(
1

2
Ωs(t−nT )

)

. (2.15)

Remarks:

• Eq. (2.15) is called theideal interpolation formula, and the
sinc-function is namedideal interpolation function
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• Reconstruction of a continuous-time signal using ideal
interpolation:

(from [Proakis, Manolakis, 1996])

Anti-aliasing lowpass filtering:

In order to avoid aliasing, the continuous-time input signal has to
be bandlimited by means of ananti-aliasing lowpass-filterwith
cut-off frequencyΩc ≤ Ωs/2 prior to sampling, such that the
sampling theorem is satisfied.

2.3 Reconstruction with sample-and-hold circuit

In practice, a reconstruction is carried out by combining a D/A
converter with a S/H circuit, followed by a lowpass reconstruction
(smoothing) filter

S/H

h0(t)

digital
input signal

hr(t)

Lowpass xDA(t)
D/A

x0(t)

• D/A converter accepts electrical signals that correspond to
binary words as input, and delivers an output voltage or current
being proportional to the value of the binary word for every
clock intervalnT

• Often, the application on an input code word yields a
high-amplitude transient at the output of the D/A converter
(”glitch”)
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⇒ S/H circuit serves as a ”deglitcher”:
Output of the D/A converter is held constant at the previous
output value until the new sample at the D/A output reaches
steady state

(from [Proakis, Manolakis, 1996])

Analysis:
The S/H circuit has the impulse response

h0(t) = rect

(
t − T/2

T

)

(2.16)

which leads to a frequency response

H0(jΩ) = T · sinc(ΩT/2) · e
−jΩT/2 (2.17)
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• No sharp cutoff frequency response characteristics⇒ we
have undesirable frequency components (aboveΩs/2), which
can be removed by passingx0(t) through a lowpass
reconstruction filterhr(t). This operation is equivalent
to smoothing the staircase-like signalx0(t) after the S/H
operation.

• When we now suppose that the reconstruction filterhr(t) is
an ideal lowpass with cutoff frequencyΩc = Ωs/2 and an
amplification of one, the only distortion in the reconstructed
signalxDA(t) is due to the S/H operation:

|XDA(jΩ) = |Xc(jΩ)| · |sinc(ΩT/2)| (2.18)

|Xc(jΩ)| denotes the magnitude spectrum for the ideal
reconstruction case.

⇒ Additional distortion when the reconstruction filter is not ideal
(as in real life!)
⇒ Distortion due to the sinc-function may be corrected by pre-
biasing the frequency response of the reconstruction filter

Spectral interpretation of the reconstruction process (see next page):

(a) Magnitude frequency response of the ideally sampled continuous-time
signal

(b) Frequency response of the S/H circuit (phase factore−jΩT/2 omitted)

(c) Magnitude frequency response after the S/H circuit

(d) Magnitude frequency response: lowpass reconstruction filter

(e) Magnitude frequency response of the reconstructed continuous-time signal
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(b)
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2.4 Quantization

Conversion carried out by an A/D converter involvesquantization
of the sampled input signalxs(nT ) and theencodingof the
resulting binary representation

• Quantization is anonlinear andnoninvertibleprocess which
realizes the mapping

xs(nT ) = x(n) −→ xk ∈ I, (2.19)

where the amplitudexk is taken from a finite alphabetI.

• Signal amplitude range is divided intoL intervalsIn using the
L+1 decision levelsd1, d2, . . . , dL+1:

In = {dk < x(n) ≤ dk+1}, k = 1, 2, . . . , L

Amplitude

x3 x4 xkd3 d4 d5 dk dk+1

Ik
levels
Quantization Decision

levels

• Mapping in (2.19) is denoted aŝx(n) = Q[x(n)]

• Uniform or linear quantizers with constantquantization step
size∆ are very often used in signal processing applications:

∆ = xk+1 − xk = const., for all k = 1, 2, . . . , L−1

(2.20)

• Midtreat quantizer: Zero is assigned a quantization level
Midrisequantizer: Zero is assigned a decision level
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• Example: midtreat quantizer withL = 8 levels andrange
R = 8∆

Amplitude

d9 =∞x3 x4 x8d3 d4 d5 d8x1 d2 x2 x5 d6 x7d7x6

−4∆ −2∆ −∆ 0 ∆ 2∆ 3∆−3∆

d1 =−∞

RangeR of quantizer

• Quantization error e(n) with respect to the unquantized
signal

−∆

2
< e(n) ≤ ∆

2
(2.21)

If the dynamic range of the input signal(xmax − xmin) is
larger than the range of the quantizer, the samples exceeding
the quantizer range are clipped, which leads toe(n) > ∆/2.

• Quantization characteristic functionfor a midtreat quantizer
with L = 8:

(from [Proakis, Manolakis, 1996])
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Coding

The coding process in an A/D converter assigns a binary number
to each quantization level.

• With a wordlength ofb bits we can represent2b > L binary
numbers, which yields

b ≥ log2(L). (2.22)

• The step size or theresolutionof the A/D converter is given as

∆ =
R

2b
with the rangeR of the quantizer. (2.23)

• Commonly used bipolar codes:

(from [Proakis, Manolakis, 1996])

• Two’s complement representation is used in most fixed-
point DSPs: Ab-bit binary fraction[β0β1β2 . . . βb−1], β0

denoting themost significant bit(MSB) andβb−1 the least
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significant bit(LSB), has the value

x = −β0 +

b−1∑

ℓ=1

βℓ 2
−ℓ (2.24)

• Number representation has no influence on the performance of
the quantization process!

Performance degradations in practical A/D converters:

(from [Proakis, Manolakis, 1996])
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Quantization errors

Quantization error is modeled as noise, which is added to the
unquantized signal:

x̂(n)Q(x(n))x(n)

x̂(n)=x(n) + e(n)x(n)

e(n)

Quantizer

Mathematical model

Actual system

Assumptions:

• The quantization errore(n) is uniformly distributed over the
range−∆

2 < e(n) < ∆
2 .

• The error sequencee(n) is modeled as a stationary white
noise sequence.

• The error sequencee(n) is uncorrelated with the signal
sequencex(n).

• The signal sequence is assumed to have zero mean.

Assumptions do not hold in general, but they are fairly well
satisfied for large quantizer wordlengthsb.

Effect of the quantization error orquantization noiseon the
resulting signal̂x(n) can be evaluated in terms of thesignal-to-
noise ratio(SNR) in Decibels (dB)

SNR := 10 log10

(

σ2
x

σ2
e

)

, (2.25)
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where σ2
x denotes the signal power andσ2

e the power of the
quantization noise.
Quantization noise is assumed to be uniformly distributed in the
range(−∆/2, ∆/2):

��2 �2
1� e

p(e)
⇒ Zero mean, and a variance of

σ
2
e =

∫ ∆/2

−∆/2

e
2
p(e) de =

1

∆

∫ ∆/2

−∆/2

e
2
de =

∆2

12

(2.26)
Inserting (2.23) into (2.26) yields

σ
2
e =

2−2b R2

12
, (2.27)

and by using this in (2.25) we obtain

SNR= 10 log10

(

σ2
x

σ2
e

)

= 10 log10

(

12 22b σ2
x

R2

)

= 6.02 b + 10.8−20 log10

(
R

σx

)

︸ ︷︷ ︸

(∗)

dB. (2.28)

Term(∗) in (2.28):
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• σx root-mean-square (RMS) amplitude of the signalv(t)

• σx to small⇒ decreasing SNR

• Furthermore (not directly from(∗)): σx to large⇒ rangeR

is exceeded

⇒ Signal amplitude has to be carefully matched to the range of
the A/D converter
For music and speech a good choice isσx = R/4. Then the SNR
of ab-bit quantizer can be approximately determined as

SNR= 6.02 b − 1.25 dB. (2.29)

Each additional bit in the quantizer increases the signal-to-noise
ratio by6 dB!

Examples:

Narrowband speech:b = 8 Bit ⇒ SNR= 46.9 dB
Music (CD):b = 16 Bit ⇒ SNR= 95.1 dB
Music (Studio):b = 24 Bit ⇒ SNR= 143.2 dB
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2.5 Analog-to-digital converter realizations

Flash A/D converter

Analog
comparator:

(from [Mitra, 2000],N =b: resolution in bits)

• Analog input voltageVA is simultaneously compared with a
set of2b−1 separated reference voltage levels by means of a
set of2b−1 analog comparators⇒ locations of the comparator
circuits indicate range of the input voltage.

• All output bits are developed simultaneously⇒ very fast
conversion

• Hardware requirements increase exponentially with an
increase in resolution

⇒ Flash converters are used for low-resultion (b < 8 bit) and
high-speed conversion applications.

Serial-to-parallel A/D converters

Here, two b/2-bit flash converters in a serial-parallel
configuration are used to reduce the hardware complextity
at the expense of a slightly higher conversion time
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Subranging A/D converter:

(from [Mitra, 2000],N =b: resolution in bits)

Ripple A/D converter:

(from [Mitra, 2000],N =b: resolution in bits)

Advantage of both structures: Always one converter is idle while
the other one is operating
⇒ Only oneb/2-bit converter is necessary

Sucessive approximation A/D converter

(from [Mitra, 2000],N =b: resolution in bits)

Iterative approach: At thek-th step of the iteration the binary
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approximation in the shift register is converted into an (analog)
reference voltageVD by D/A conversion (binary representation
[β0β1 . . . βkβk+1 . . . βb−1], βk ∈ {0, 1}∀k):

• Case 1: Reference voltageVD < VA ⇒ increase the binary
number by setting both thek-th bit and the(k+1)-th bit to1

• Case 2: Reference voltageVD ≥ VA ⇒ decrease the binary
number by setting thek-th bit to0 and the(k+1)-th bit to1

⇒ High resolution and fairly high speed at moderate costs, widely
used in digital signal processing applications
Oversampling sigma-delta A/D converter, to be discussed in Section 5. . .

2.6 Digital-to-analog converter realizations

Weighted-resistor D/A converter

�N�1 �N�2 �1 �0

(from [Mitra, 2000],N =b: resolution in bits)

OutputVo of the D/A converter is given by

Vo =

N−1∑

ℓ=0

2
ℓ
βℓ

RL

(2N − 1)RL + 1
VR

VR: reference voltage
Full-scale output voltageVo,FS is obtained whenβℓ = 1 for all
ℓ = 0, . . . , N−1:
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Vo,FS =
(2N − 1)RL

(2N − 1)RL + 1
VR ≈ VR, since(2N−1)RL ≫ 1

Disadvantage: For high resolutions the spread of the resistor
values becomes very large

Resistor-ladder D/A converter

�N�2 �N�1�3�2�1�0

(from [Mitra, 2000],N =b: resolution in bits)

⇒ R–2R ladder D/A converter, most widely used in practice.
OutputVo of the D/A converter:

Vo =

N−1∑

ℓ=0

2
ℓ
βℓ

RL

2(RL + R)
· VR

2N−1

In practice, often2RL ≫ R, and thus, the full-scale output
voltageVo,FS is given as

Vo,FS ≈ (2N − 1)

2N
VR

Oversampling sigma-delta D/A converter, to be discussed in Section 5. . .

33

3. DFT and FFT

3.1 DFT and signal processing

Definition DFT from Signals and Systems:

DFT: v(n) ◦−•VN(k) =
N−1∑

n=0

v(n) W
kn
N (3.1)

IDFT: VN(k) •−◦ v(n) =
1

N

N−1∑

k=0

VN(k) W
−kn
N (3.2)

with WN := e−j2π/N , N : number of DFT points

3.1.1 Linear and circular convolution

Linear convolution of two sequencesv1(n) andv2(n), n ∈ ZZ:

yl(n) = v1(n) ∗ v2(n) = v2(n) ∗ v1(n)

=

∞∑

k=−∞
v1(k) v2(n − k) =

∞∑

k=−∞
v2(k) v1(n − k) (3.3)

Circular convolution of two periodic sequencesv1(n) and
v2(n), n = {0, . . . , N1,2 − 1} with the same period
N1=N2=N andn0 ∈ ZZ:
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yc(n) = v1(n)©∗ v2(n) = v2(n)©∗ v1(n)

=

n0+N−1
∑

k=n0

v1(k) v2(n − k) =

n0+N−1
∑

k=n0

v2(k) v1(n − k)

(3.4)

We also use the symbol©N instead of©∗ .

DFT and circular convolution

Inverse transform of a finite-length sequencev(n),
n, k = 0, . . . , N−1:

v(n) ◦−•VN(k) •−◦ v(n) = v(n + λN) (3.5)

⇒ DFT of a finite-length sequence and its periodic extension is
identical!
Circular convolution property (n, k = 0, . . . , N−1)
(v1(n) andv2(n) denotefinite-lengthsequences):

y(n) = v1(n)©N v2(n) ◦−•Y (k) = V1N
(k) · V2N

(k)

(3.6)
Proof:

IDFT of Y (k): y(n) =
1

N

N−1∑

k=0

Y (k)W
−kn
N

=
1

N

N−1∑

k=0

V1N
(k)V2N

(k)W
−kn
N
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Substitution of the DFT definition in (3.1) forv1(n) andv2(n):

y(n) =
1

N

N−1∑

k=0

[
N−1∑

m=0

v1(m)W
km
N

] [
N−1∑

l=0

v2(l)W
kl
N

]

W
−kn
N

=
1

N

N−1∑

m=0

v1(m)

N−1∑

l=0

v2(l)

[
N−1∑

k=0

W
−k(n−m−l)
N

]

(3.7)

Term in brackets: Summation over the unit circle

N−1∑

k=0

e
j2πk(n−m−l)/N

=

{

N for l=n−m+λN, λ ∈ ZZ

0 otherwise
(3.8)

Substituting (3.8) into (3.7) yields the desired relation

y(n) =

N−1∑

k=0

v1(k)

∞∑

λ=−∞
v2(n − k + λN)

︸ ︷︷ ︸

=: v2((n−k))N (periodic extension)

=
N−1∑

k=0

v1(k)v2((n − k))N (3.9)

= v1(n)©N v2(n)
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Example: Circular convolutiony(n) = v1(n)©N v2(n):

0 N

0 N

0 N

0 N

0 N

n

v2(n)

n

v1(n) = δ(n−1)

k

v2((0 − k))N , k = 0, . . . , N−1, n=0

n

k

v2((1 − k))N , k = 0, . . . , N−1, n=1

y(n) = v1(n)©N v2(n)

3.1.2 Use of the DFT in linear filtering

• Filtering operation can also be carried out in the frequency
domain using the DFT⇒ attractive since fast algorithms (fast
Fourier transforms) exist

• DFT only realizes circular convolution, however, the desired
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operation for linear filtering is linear convolution. How can
this be achieved by means of the DFT?

Given: Finite-length sequencesv1(n) with lengthN1 andv2(n)

with lengthN2

• Linear convolution:

y(n) =

N1−1
∑

k=0

v1(k) v2(n − k)

Length of the convolution resulty(n): N1 + N2 − 1

• Frequency domain equivalent:Y (ejω) = V1(e
jω) V2(e

jω)

• In order to represent the sequencey(n) uniquely in the
frequency domain by samples of its spectrumY (ejω), the
number of samples must be equal or exceedN1 + N2 − 1

⇒ DFT of sizeN ≥ N1 + N2 − 1 is required.

• Then, the DFT of the linear convolutiony(n) = v1(n) ∗
v2(n) is Y (k) = V1(k) · V2(k), k = 0, . . . , N−1.

This result can be summarized as follows:
The circular convolution of two sequencesv1(n) with lengthN1

andv2(n) with lengthN2 leads to the same result as the linear
convolutionv1(n)∗v2(n) when the lengths ofv1(n) andv2(n)

are increased toN =N1+N2−1 points byzero padding.

Other interpretation: Circular convolution as linear
convolution with aliasing
IDFT leads to periodic sequence in the time-domain:

yp(n) =







∞∑

λ=−∞
y(n − λN) n = 0, . . . , N−1,

0 otherwise
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with Y (k) = DFTN{y(n)} = DFTN{yp(n)}

⇒ For N < N1 + N2 − 1: Circular convolution equivalent to
linear convolution followed bytime domain aliasing

Example:

0 2N1−1

0 N1

0−N1

0 N1 =N2

0 2N1−1

0 N1 =N2

y(n)=x1(n) ∗ x2(n)

n

N1

n

N1

n

y(n+N1), N1 =6
N1

n

N1

n

N1

N =12

x1(n)©N x2(n)

y(n−N1), N1 =6

N1 =N2 =6

x1(n)©N x2(n)

x1(n)=x2(n)

n

1 N1 =N2 =6

39

3.1.3 Filtering of long data sequences

Filtering of a long input signalv(n) with the finite impulse
responseh(n) of lengthN2

Overlap-add method

1. Input signal is segmented into separate blocks:
vν(n) = v(n + νN1), n ∈ {0, 1, . . . , N1−1}, ν ∈ ZZ.

2. Zero-padding for the signal blocksvν(n) → ṽν(n) and the
impulse responseh(n) → h̃(n) to the lengthN = N1 +

N2−1.
Input signal can be reconstructed according to

v(n) =

∞∑

ν=−∞
ṽν(n − νN1)

sinceṽν(n) = 0 for n = N1+1, . . . , N .

3. The twoN -point DFTs are multiplied together to form

Yν(k) = Ṽν(k) · H̃(k), k = 0, . . . , N−1.

4. The N -point IDFT yields data blocks that are free from
aliasing due to the zero-padding in step 2.

5. Since each input data blockvν(n) is terminated withN−N1

zeros the lastN −N1 points from each output blockyν(n)

must be overlapped and added to the firstN−N1 points of the
succeeding block (linearity property of convolution):

y(n) =

∞∑

ν=−∞
yν(n − νN1)

⇒ Overlap-addmethod
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Linear FIR (finite impulse response) filtering by the overlap-add
method:

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Output signal:

y0(n)

y1(n)

y2(n)

added together

N−N1 samples
added together

N−N1 samples

L L L

N−N1 zeros

x̂2(n)

N−N1 zeros

x̂1(n)

N−N1 zeros

Input signal:

x̂0(n)

Overlap-save method

1. Input signal is segmented into byN−N1 samples overlapping
blocks:
vν(n) = v(n + νN1), n ∈ {0, 1, . . . , N−1}, ν ∈ ZZ.

2. Zero-padding of the filter impulse responseh(n) → h̃(n) to
the lengthN =N1+N2−1.

3. The two N -point DFTs are multiplied together to form
Yν(k) = Vν(k) · H̃(k), k = 0, . . . , N−1.
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4. Since the input signal block is of lengthN the firstN −N1

points are corrupted by aliasing and must be discarded. The
lastN2=N−N1−1 samples inyν(n) are exactly the same
as the result from linear convolution.

5. In order to avoid the loss of samples due to aliasing the last
N−N1 samples are saved and appended at the beginning of
the next block. The processing is started by setting the first
N−N1 samples of the first block to zero.

Linear FIR filtering by the overlap-save method:

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Discard
N−N1 samples

Discard
N−N1 samples

Discard
N−N1 samples

L L L

N−N1 zeros

x0(n)

x1(n)

N
−

L

Input signal:

x2(n)

y0(n)

y1(n)

y2(n)

Output signal:

Nore computationally efficient than linear convolution? Yes,in
combination with very efficient algorithms for DFT computation.
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3.1.4 Frequency analysis of stationary signals

Leakage effect

Spectral analysis of an analog signalv(t):

• Antialiasing lowpass filtering and sampling withΩs ≥ 2Ωb,
Ωb denoting the cut-off frequency of the signal

• For practical purposes (delay, complexity): Limitation of the
signal duration to the time intervalT0 = L T (L: number of
samples under consideration,T : sampling interval)

Limitation to a signal duration ofT0 can be modeled as
multiplication of the sampled input signalv(n) with a rectangular
windoww(n)

v̂(n) = v(n) w(n) with w(n)=

{

1 for 0 ≤ n ≤ L−1,

0 otherwise.
(3.10)

Suppose that the input sequence just consists of a single sinusoid,
that isv(n) = cos(ω0n). The Fourier transform is

V (e
jω

) = π(δ(ω − ω0) + δ(ω + ω0)). (3.11)

For the windoww(n) the Fourier transform can be obtained as

W (e
jω

) =
L−1∑

n=0

e
−jωn

=
1 − e−jωL

1 − e−jω
= e

−jω(L−1)/2sin(ωL/2)

sin(ω/2)
.

(3.12)
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We finally have

V̂ (e
jω

) =
1

2π

[

V (e
jω

)©∗ W (e
jω

)
]

=
1

2

[

W (e
j(ω−ω0)

) + W (e
j(ω+ω0)

)
]

(3.13)

Nagnitude frequency response|V̂ (ejω)| for L=25:

(from [Proakis, Nanolakis, 1996])

Windowed spectrum̂V (ejω) is not localized to one frequency,
instead it is spread out over the whole frequency range
⇒ spectral leaking

First zero crossing ofW (ejω) atωz = ±2π/L:
• The larger the number of sampling pointsL (and thus also the

width of the rectangular window) the smaller becomesωz (and
thus also the main lobe of the frequency response).

• ⇒ Decreasing the frequency resolution leads to an increase
of the time resolution and vice versa (duality of time and
frequency domain).

In practice we use the DFT in order to obtain a sampled
representation of the spectrum according toV̂ (ejωk),
k=0, . . . , N−1.
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Special case: If

N = L and ω0 =
2π

N
ν, ν =0, . . . , N−1

then the Fourier transform is exactly zero at the sampled
frequenciesωk, except fork=ν.

Example: (N = 64, n = 0, . . . , N −1, rectangular window
w(n))

v0(n) = cos

[

5
2π

N
n

]

, v1(n) = cos

[(

5
2π

N
+

π

N

)

n

]

0 20 40 60
−1

−0.5

0

0.5

1

v
0
(n)=cos(2π/N ⋅5⋅n)

n
0 20 40 60

−1

−0.5

0

0.5

1

v
1
(n)=cos((2π/N ⋅5+π/N) ⋅n)

n

0 10 20 30
0

0.2

0.4

0.6

0.8

1

DFT(v
0
(n) w(n)), rect. window

k
0 10 20 30

0

0.2

0.4

0.6

0.8

1

DFT(v
1
(n) w(n)), rect. window

k

• Left hand side:V̂0(e
jωk) = V0(e

jωk)©∗ W (ejωk) = 0 for
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ωk = k2π/N except fork=5, sinceω0 is exactly an integer
multiple of2π/N

⇒ periodic repetition ofv0(n) leads to a pure cosine
sequence

• Right hand side: slight increase ofω0 6= ν2π/N for ν ∈ ZZ

⇒ V̂1(e
jωk) 6= 0 for ωk = k2π/N , periodic repetition is

not a cosine sequence anymore

Windowing and different window functions

Windowing not only distorts the spectral estimate due to leakage
effects, it also reduces the spectral resolution.
Consider a sequence of two frequency components
v(n)=cos(ω1n)+cos(ω2n) with the Fourier transform

V (e
jω

) =
1

2

[

W (e
j(ω−ω1)

) + W (e
j(ω−ω2)

) +

+ W (e
j(ω+ω1)

) + W (e
j(ω+ω2)

)
]

where W (ejω) is the Fourier transform of the rectangular
window from (3.12).

• 2π/L< |ω1−ω2|: Two maxima, main lobes for both window
spectraW (ej(ω−ω1)) andW (ej(ω−ω2)) can be separated

• |ω1−ω2| = 2π/L: Correct values of the spectral samples,
but main lobes cannot be separated anymore

• |ω1 − ω2| < 2π/L: Nain lobes ofW (ej(ω−ω1)) and
W (ej(ω−ω2)) overlap

⇒ Ability to resolve spectral lines of different frequencies is
limited by the main lobe width, which also depends on the length
of the window impulse responseL.
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Example: Magnitude frequency response|V (ejω)| for

v(n) = cos(ω0n) + cos(ω1n) + cos(ω2n) (3.14)

with ω0 = 0.2 π, ω1=0.22 π, ω2 = 0.6 π and (a)L = 25,
(b) L=50, (c) L=100

(from [Proakis, Nanolakis, 1996])

The cosines with the frequenciesω0 andω1 are only resolvable
for L=100.

To reduce leakage, we can choose a different window function
with lower side lobes (however, this comes with an increase of
the width of the main lobe). One choice could be theHanning
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window, specified as

wHan(n) =







1
2

[

1 − cos
(

2π
L−1n

)]

for 0 ≤ n ≤ L − 1,

0 otherwise.

(3.15)
Nagnitude frequency response|V̂ (ejω)| from (3.13), where
W (ejω) is replaced byWHan(e

jω) (L=25):

(from [Proakis, Nanolakis, 1996])

Spectrum of the signal in (3.14) after it is windowed withwHan(n)

in (3.15):

(from [Proakis, Nanolakis, 1996])
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The reduction of the sidelobes and the reduced resolution
compared to the rectangular window can be clearly observed.

Alternative:Hamming window

wHam(n) =

{

0.54 − 0.46 cos
(

2π
L−1n

)

for 0 ≤ n ≤ L − 1,

0 otherwise.

(3.16)

Comparison of rectangular, Hanning and Hamming window
(L=64):

0 20 40 60
0

0.5

1

Rectangular window w
rect

(n)

n  →
0 0.2 0.4 0.6 0.8 1

−100

−50

0

dB

ω / π  → 

20 log
10

 |W
rect

(ejω)|

0 20 40 60
0

0.5

1

Hanning window w
Han

(n)

n →
0 0.2 0.4 0.6 0.8 1

−100

−50

0

dB

ω / π  → 

20 log
10

 |W
Han

(ejω)|

0 20 40 60
0

0.5

1

Hamming window w
Ham

(n)

n  →
0 0.2 0.4 0.6 0.8 1

−100

−50

0

dB

ω / π  →

20 log
10

 |W
Ham

(ejω)|

Remark: Spectral analysis with DFT

• Sampling grid can be made arbitrarily fine by increasing
the length of the windowed signal with zero padding (that
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is increasingN ). However, the spectral resolution is not
increased(separation of two closely adjacent sine spectra
lines).

• An increase in resolutioncan only be obtainedby increasing
the length of the input signal to be analyzed(that is
increasingL), which also results in a longer window (see
examples above).

3.2 Fast computation of the DFT: The FFT

Complexity of the DFT calculation in (3.1) forv(n) ∈ IC,
VN(k) ∈ IC:

VN(k) =

N−1∑

n=0

v(n)W
kn
N︸ ︷︷ ︸

1 complex multiplication
︸ ︷︷ ︸
N compl. mult.,N compl. add.

for k = 0, . . . , N−1
︸ ︷︷ ︸

N results

⇒ OverallN2 complex multiplications and additions.

Remarks:
• 1 complex multiplication→ 4 real-valued mult.+ 2 real-

valued additions
1 complex addition→ 2 real valued additions

• A closer evaluation reveals that there are slightly less thanN2

operations:
– N values have to be added up⇒ (N−1) additions.
– Factorsej0, ejπλ, e±jπ

2λ ⇒ no real multiplications.
– Fork=0 no multiplication at all.

• Complexity of the the DFT becomes extremely large for
large values ofN (i.e. N = 1024) ⇒ efficient algorithms
advantageous.
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Fast algorithms for DFT calculation (as the fast Fourier transform,
FFT) exploit symmetry and periodicity properties ofW kn

N as

• complex conjugate symmetry:W
k(N−n)
N =W−kn

N =(W kn
N )∗

• periodicity ink andn: W kn
N =W

k(n+N)
N =W

(k+N)n
N .

3.2.1 Radix-2 decimation-in-time FFT algorithms

Principle:
Decomposing the DFT computation into DFT computations
of smaller size by means of decomposing theN -point input
sequencev(n) into smaller sequences⇒ ”decimation-in-time”

Prerequisite:
N integer power of two, i.e.N = 2m, m=log2(N) ∈ IN ⇒
”radix-2”

Decomposing aN -point DFT into two N/2-point transforms

DFT V (k) (we drop the subscriptN for clarity) can be written
as

V (k) =

N−1∑

n=0

v(n) W
kn
N , k = 0, . . . , N−1

=

N/2−1
∑

n=0

v(2n) W
2kn
N +

N/2−1
∑

n=0

v(2n + 1) W
k(2n+1)
N ,

(3.17)

where in the last stepv(n) is separated into twoN/2-point
sequences consisting of the even- and odd-numbered points in
v(n).
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Since

W
2
N = e

−2j·2π/N
= e

−j2π/(N/2)
= WN/2

we can rewrite (3.17) as

V (k) =

N/2−1
∑

n=0

v(2n) W
kn
N/2 + W

k
N

N/2−1
∑

n=0

v(2n + 1) W
kn
N/2

(3.18)

= G(k) + W
k
NH(k), k = 0, . . . , N − 1 (3.19)

• Each of the sums in (3.18) represents aN/2 DFT over the
even- and odd-numbered points ofv(n), respectively.

• G(k) andH(k) need only to be computed for0, . . . , N/2−
1 since both are periodic with periodN/2.

Signal flow graph forN =8 (v → x, V → X):

(from [Oppenheim, Schafer, 1999])

Complexity:
2 DFTs of lengthN/2 → 2 · N2/4 = N2/2 operations+
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N operations for the combination of both DFTs
⇒ N + N2/2 operations (less thanN2 for N > 2)

Decomposition into 4N/4-point DFTs

G(k) andH(k) from (3.19) can also be written as

G(k) =

N/4−1
∑

n=0

g(2n) W
kn
N/4 + W

k
N/2

N/4−1
∑

n=0

g(2n+1) W
kn
N/4,

(3.20)

H(k) =

N/4−1
∑

n=0

h(2n) W
kn
N/4 + W

k
N/2

N/4−1
∑

n=0

h(2n+1) W
kn
N/4

(3.21)

wherek = 0, . . . , N/2−1.

Signal flow graph forN =8 (v → x, V → X):

(from [Oppenheim, Schafer, 1999])
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The overall flow graph now looks like(v → x, V → X):

(from [Oppenheim, Schafer, 1999])

Complexity:
4 DFTs of lengthN/4 → N2/4 operations
+ 2 · N/2 + N operations for the reconstruction

⇒ N2/4 + 2N complex multiplications and additions

Final step: Decomposition into 2-point DFTs

DFT of length 2:

V
′
2(0) = v

′
(0) + W

0
2 v

′
(1) = v

′
(0) + v

′
(1) (3.22)

V
′
2(1) = v

′
(0) + W

1
2 v

′
(1) = v

′
(0) − v

′
(1) (3.23)

Flow graph:

�1
1 11v0(0)v0(1) V 02(0)V 02(1)

Inserting this in the resulting structure from the last step yields the
overall flow graph for(N =8)-point FFT:(v → x, V → X):
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(from [Oppenheim, Schafer, 1999])

In general, our decomposition requiresm = log2(N) = ld N

stages and forN ≫ 1 we have

N · m = N ld N complex multiplications and additions.

(instead ofN2)

Examples:
N =32 → N2 ≈ 1000, N ld N ≈ 160 → factor6
N =1024 → N2 ≈ 106, N ld N ≈ 104 → factor100

Butterfly computations

Basic building block of the above flow graph is calledbutterfly
(ρ ∈ {0, . . . , N/2−1}):

1

1

W ρ
N

W
(ρ+N/2)
N

1

1

1

−1W ρ
N

⇒
Simpli£cation

The simplification is due to the fact that
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W
N/2
N = e−j(2π/N)N/2 = e−jπ = −1. Therefore we have

W
ρ+N/2
N = W

ρ
N W

N/2
N = −W

ρ
N .

Using this modification, the resulting flow graph forN = 8 is
given as(v → x, V → X):

(from [Proakis, Nanolakis, 1996])

In-place computations

• The intermediate resultsV (ℓ)
N (k1,2) in the ℓ-th stage,

ℓ = 0, . . . , m−1 are obtained as

V
(ℓ)

N (k1) = V
(ℓ−1)

N (k1) + W
ρ
N V

(ℓ−1)
N (k2),

V
(ℓ)

N (k2) = V
(ℓ−1)

N (k1) − W
ρ
N V

(ℓ−1)
N (k2)

(butterfly computations) wherek1, k2, ρ ∈ {0, . . . , N−1}
vary from stage to stage.
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• ⇒ Only N storage cells are needed, which first contain the
valuesv(n), then the results from the individual stages and
finally the valuesVN(k) ⇒ In-place algorithm

Bit-reversal

• v(n)-values at the input of the decimation-in-time flow graph
in permuted order

• Example forN = 8, where the indices are written in binary
notation:

# flow graph input 000 001 010 011
v(n) v(000) v(100) v(010) v(110)

# flow graph input 100 101 110 111
v(n) v(001) v(101) v(011) v(111)

⇒ Input data is stored inbit-reversedorder

Bit-reversed order is due to the sorting in even and odd indices in
every stage, and thus is also necessary for in-place computation:
(v → x):

(from [Oppenheim, Schafer, 1999])

57

Inverse FFT

According to (3.2) we have for the inverse DFT

v(n) =
1

N

N−1∑

k=0

VN(k) W
−kn
N ,

that is

v(−n) =
1

N

N−1∑

k=0

VN(k) W
kn
N , ⇐⇒

v(N − n) =
1

N
DFT{VN(k)} (3.24)

⇒ With additional scaling and index permutations the IDFT can
be calculated with the same FFT algorithms as the DFT!

3.2.2 FFT alternatives

Alternative DIT structures

Rearranging of the nodes in the signal flow graphs lead to
FFTs with almost arbitrary permutations of the input and output
sequence. Reasonable approaches are structures

(a) without bitreversal, or

(b) bit-reversal in the frequency domain
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(a)

(b)

(from [Oppenheim, Schafer, 1999],v → x, V → X )

The flow graph in (a) has the disadvantage, that it is anon-inplace
algorithm, because the butterfly-structure does not continue past
the first stage.

Decimation-in-frequency algorithms

Instead of applying the decomposition to time domain, we could
also start the decomposition in the frequency domain, where
the sequence of DFT coefficientsVN(k) is decomposed into
smaller sequences. The resulting algorithm is calleddecimation-
in-frequency(DIF) FFT.
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Signal flow graph forN =8 (v → x, V → X):

(from [Proakis, Nanolakis, 1996])

Radix r and mixed-radix FFTs

When we gerally use

N = r
m for r ≥ 2, r, m ∈ IN (3.25)

we obtain DIF or DIT decompositions with a radixr. Besides
r=2, r=3 andr=4 are commonly used.

Radix-4 butterfly
(q = 0, . . . , N/4−1)
(N → N ):

(from [Proakis, Nanolakis, 1996])

For special lengths, which can not be expressed asN = rm,
so called mixed-radix FFT algorithms can be used (i.e. for
N =576=26·32).
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3.3 Transformation of real-valued sequences

v(n) ∈ IR → FFT program/hardware:vR(n) + j vI(n)
︸ ︷︷ ︸

= 0

∈ IC

⇒ Inefficient due to performing arithmetic calculations with zero
values

In the following we will discuss methods for the efficient usage of
a complex FFT for real-valued data.

3.3.1 DFT of two real sequences

Given:v1(n), v2(n) ∈ IR, n = 0, . . . , N−1

How can we obtainVN1
(k) •−◦ v1(n), VN2

(k) •−◦ v2(n)?

Define

v(n) = v1(n) + j v2(n) (3.26)

leading to the DFT

VN(k) = DFT{v(n)} = VN1
(k)

︸ ︷︷ ︸
∈ IC

+j VN2
(k)

︸ ︷︷ ︸
∈ IC

. (3.27)

Separation ofVN(k) into VN1
(k), VN2

(k)?

Symmetry relations of the DFT:

v(n) = vRe(n) + vRo(n)
︸ ︷︷ ︸

= v1(n)

+ j vIe(n) + j vIo(n)
︸ ︷︷ ︸

= v2(n)

(3.28)

Corresponding DFTs:

vRe(n) ◦−•VNRe
(k), vRo(n) ◦−• j VNIo

(k), (3.29)

j vIe(n) ◦−• j VNIe
(k), j vIo(n) ◦−•VNRo

(k). (3.30)
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Thus, we have

VN1
(k) =

1

2

(
VNR

(k) + VNR
(N − k)

)
+

+
j

2

(
VNI

(k) − VNI
(N − k)

)
, (3.31)

where

VNRe
(k) =

1

2

(
VNR

(k) + VNR
(N − k)

)
,

VNIo
(k) =

1

2

(
VNI

(k) − VNI
(N − k)

)
.

Likewise, we have forVN2
(k) the relation

VN2
(k) =

1

2

(
VNI

(k) + VNI
(N − k)

)
−

− j

2

(
VNR

(k) − VNR
(N − k)

)
, (3.32)

with

VNIe
(k) =

1

2

(
VNI

(k) + VNI
(N − k)

)
,

VNRo
(k) =

1

2

(
VNR

(k) − VNR
(N − k)

)
.
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Rearranging (3.31) and (3.32) finally yields

VN1
(k) =

1

2

(
VN(k) + V

∗
N(N − k)

)
,

VN2
(k) = −j

2

(
VN(k) − V

∗
N(N − k)

)
.

(3.33)

Due to the Hermitian symmetry of real-valued sequences

VN(1,2)
(k) = V

∗
N(1,2)

(N − k) (3.34)

the valuesVN(1,2)
(k) for k ∈ {N/2+1, . . . , N −1} can be

obtained from those fork ∈ {0, . . . , N/2}, such that only a
calculation forN/2+1 values is necessary.

Application: Fast convolution of two real-values sequences with
the DFT/FFT

3.3.2 DFT of a2N -point real sequence

Given:v(n) ∈ IR, n = 0, . . . , 2 N−1

Wanted:

V2N(k) = DFT{v(n)} =

2N−1∑

n=0

v(n) W
kn
2N

with k = 0, . . . , 2N−1.

Hermitian symmetry analog to (3.34) sincev(n) ∈ IR for all n:

V2N(2N − k) = V
∗
2N(k), k = 0, . . . , N
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Define

ṽ(n) := v(2n) + j v(2n + 1), n = 0, . . . , N − 1,

(3.35)

=: v1(n) + j v2(n),

where the even and odd samples ofv(n) are written alternatively
into the real and imaginary part of̃v(n). Thus we have a complex
sequence consisting of two real-valued sequences of lengthN

with the DFT

ṼN(k
′
) = VN1

(k
′
) + j VN2

(k
′
), k

′
= 0, . . . , N − 1.

(3.36)
VN1

(k′) andVN2
(k′) can easily be obtained with (3.33) as

VN1
(k

′
) =

1

2

(

ṼN(k
′
) + Ṽ

∗
N(N − k

′
)
)

,

VN2
(k

′
) = −j

2

(

ṼN(k
′
) − Ṽ

∗
N(N − k

′
)
)

for k′ = 0, . . . , N−1.
In order to calculateV2N(k) from VN1

(k′) and VN2
(k′) we

rearrange the expression for DFT{v(n)} according to

V2N(k) =

N−1∑

n=0

v(2n)
︸ ︷︷ ︸

= v1(n)

W
2kn
2N +

N−1∑

n=0

v(2n + 1)
︸ ︷︷ ︸

= v2(n)

W
(2n+1)k
2N ,

=

N−1∑

n=0

v1(n) W
kn
N + W

k
2N ·

N−1∑

n=0

v2(n) W
nk
N ,
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Finally we have

V2N(k)=VN1
(k)+W

k
2N VN2

(k), k=0, . . . , 2N−1

(3.37)
Due to the Hermitian symmetryV2N(k)=V ∗

2N(2N−k), k only
needs to be evaluated from0 to N with VN1/2

(N)=VN1/2
(0).

Signal flow graph:

j1/2

ṼN (k)

Ṽ ∗
N (N − k)

V2N (k)

W k
2N

VN1
(k)1/2

k = 0, . . . , N

−j

k = N → k = 0

VN2
(k)

⇒ Computational savings by a factor of two compared to the
complex-valued case since for real-valued input sequences only
anN point DFT is needed
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4. Digital Filters

Digital filter = linear-time-invariant (LTI) causal system with a
rational transfer function(without loss of generality: numerator
degreeN = denominator degree)

H(z) =

N∑

i=0

bN−i zi

N∑

i=0

aN−i zi

=

N∑

i=0

bi z−i

1 +
N∑

i=1

ai z−i

(4.1)

wherea0=1 without loss of generality.
ai, bi: parameters of the LTI system (⇒ coefficientsof the digital
filter), N is said to be thefilter order

Product notation of (4.1):

H(z) = b0

N∏

i=1

(z − z0i)

N∏

i=1

(z − z∞i)

(4.2)

where thez0i are thezeros, and thez∞i are thepoles of the
transfer function (the latter are responsible for stability).

Difference equation:

y(n) =

N∑

i=0

bi v(n − i) −
N∑

i=1

ai y(n − i), (4.3)
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with v(n) denoting the input signal andy(n) the resulting signal
after the filtering

Remarks

• Generally, (4.3) describes a recursive filter with aninfinite
impulse response(IIR filter):
y(n) is calculated fromv(n), v(n−1), . . . , v(n−N) and
recursively fromy(n−1), y(n−2), . . . , y(n−N).

• The calculation ofy(n) requires memory elements in order to
storev(n−1), . . . , v(n−N) and
y(n−1), y(n−2), . . . , y(n−N) ⇒ dynamical system.

• bi ≡ 0 for all i 6= 0:

H(z) =
b0 zN

N∑

i=0

aN−i zi

=
b0 zN

N∏

i=1

(z − z∞i)

(4.4)

⇒ Filter has no zeros⇒ All-pole or autoregressive (AR-)
filter.
Transfer function is purely recursive:

y(n) = b0 v(n) −
N∑

i=1

ai y(n − i) (4.5)

• ai ≡ 0 for all i 6= 0, a0 = 1 (causal filter required!):
Difference equation is purelynon-recursive:

y(n) =

N∑

i=0

bi v(n − i) (4.6)

⇒ Non-recursive filter
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Transfer function:

H(z) =
1

zN

N∑

i=0

bN−i z
i
=

N∑

i=0

bi z
−i (4.7)

– Polesz∞i = 0, i = 1, . . . , N , but not relevant for
stability⇒ all-zerofilter

– According to (4.6):y(n) obtained by a weighted average
of the lastN +1 input values⇒ Moving average(MA)
filter (as opposite to the AR filter from above)

– From (4.7) it can be seen that the impulse response has
finite length ⇒ Finite impulse response(FIR) filter of
lengthL = N + 1 and orderN

4.1 Structures for FIR systems

• Difference equation given by (4.6)

• Transfer function given by (4.7)

• Unit sample response is equal to the coefficientsbi

h(n) =

{

bn for 0 ≤ n ≤ L−1

0 otherwise

4.1.1 Direct form structures

The direct form structure follows immediately from the
nonrecursive difference equation given in (4.6), which is
equivalent to the linear convolution sum

y(n) =
L−1∑

k=0

h(k) v(n − k).
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(from [Proakis, Manolakis, 1996],v → x, L → M )

⇒ Tapped-delay-lineor transversalfilter in the first direct form

If the unit impulsev(n) = δ(n) is chosen as input signal, all
samples of the impulse responseh(n) appear successively at the
output of the structure.

In the following we mainly use the more compact signal flow
graph notation:

h(0) h(1) h(2) h(3) h(L−2) h(L−1)

z−1

v(n)
z−1 z−1 z−1 z−1 z−1

y(n)

The second direct form can be obtained bytransposingthe flow
graph:

• Reversing the direction of all branches,

• exchanging the input and output of the flow graph

• exchanging summation points with branching points and vice
versa.
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Transversal filter in the second direct form:

h(L−1) h(L−2) h(1) h(0)

v(n)

y(n)
z−1 z−1 z−1z−1z−1

h(2)h(3)

When the FIR filter has linear phase (see below) the impulse
response of the system satisfies either the symmetry or asymmetry
condition

h(n) = ±h(L − 1 − n). (4.8)

Thus, the number of multiplications can be reduced fromL to
L/2 for L even, and fromL to (L+1)/2 for L odd.

Signal flow graph for oddL:

z−1z−1z−1z−1z−1

v(n)
z−1 z−1 z−1 z−1 z−1 z−1

z−1

z−1

h(0) h(1) h(2) h(3)

y(n)

h
(

L−1
2

)
h

(
L−3
2

)

4.1.2 Cascade-form structures

By factorizing the transfer function

H(z) = H0

P∏

p=1

Hp(z) (4.9)

we obtain a cascade realization. TheHp(z) are normally second-
order, since in order to obtain real coefficients, conjugate complex
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zerosz0i andz∗
0i have to be grouped:

Hp(z) = (1 − z0iz
−1

)(1 − z
∗
0iz

−1
)

= 1 + b1 z
−1

+ b2 z
−2

For linear-phase filters due to the special symmetry (4.8) the zeros
appear in quadruples: Bothz0i andz∗

0i, andz−1
0i and(z∗

0i)
−1 are

a pair of complex-conjugate zeros. Consequently, we have

Hp(z) = (1−z0iz
−1

)(1−z
∗
0iz

−1
)(1−z

−1
0i z

−1
)(1−(z

∗
0i)

−1
z
−1

),

= 1 + b1 z
−1

+ b2 z
−2

+ b1 z
−3

+ z
−4

.

4.1.3 Lattice structures

Lattice structures are mainly used as predictor filter (i.e. in digital
speech processing) due to their robustness against coefficient
quantization:

2-th stage
(L−1)-th

stage

xL−1(n)

yL−1(n)

x1(n)

y1(n)

x2(n)

1-th stagev(n) y2(n)

z−1

qi

qi

xi(n)

yi(n)

xi−1(n)

yi−1(n)

1 1 1

11

General structure:

i-th stage lattice filter:
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The behavior of thei-th stage can be written in matrix notation as

[
Xi(z)

Yi(z)

]

=

[
1 qi z−1

qi z−1

]

·
[
Xi−1(z)

Yi−1(z)

]

. (4.10)

After the first stage we have

X1(z) = V (z) + q1 z
−1

V (z),

Y1(z) = q1 V (z) + z
−1

V (z).
(4.11)

It follows

H1(z) =
X1(z)

V (z)
= 1 + q1 z

−1
= α01 + α11 z

−1
,

G1(z) =
Y1(z)

V (z)
= q1 + z

−1
= β01 + β11 z

−1
.

Second stage:

X2(z) =X1(z) + q2 z
−1

Y1(z),

Y2(z) =q2 X1(z) + z
−1

Y1(z).
(4.12)

Inserting (4.11) into (4.12) yields

X2(z) = V (z) + q1z
−1

V (z) + q2q1z
−1

V (z) + q2z
−2

V (z),

Y2(z) = q2V (z) + q1q2z
−1

V (z) + q1z
−1

V (z) + z
−2

V (z),
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which finally leads to the transfer functions

H2(z) =
X2(z)

V (z)
= 1 + (q1 + q1 q2)z

−1
+ q2 z

−2
, (4.13)

= α02 + α12 z
−1

+ α22z
−2

,

G2(z) =
Y2(z)

V (z)
= q2 + (q1 + q1 q2)z

−1
+ z

−2
, (4.14)

= β02 + β12 z
−1

+ β22z
−2

.

By comparing (4.13) and (4.14) we can see that

H2(z) = z
−2

G2(z
−1

),

that is, the zeros ofH2(z) can be obtained by reflecting the zeros
of G2(z) at the unit circle. Generally, it can be shown that

Hi(z) = z
−i

Gi(z
−1

), for i = 1, . . . , L − 1. (4.15)

4.2 Structures for IIR systems

4.2.1 Direct form structures

Rational system function (4.1) can be viewed as two systems in
cascade:H(z) = N(z)/D(z) = H1(z) · H2(z) with

H1(z) =

N∑

i=0

bi z
−i

, H2(z) =
1

1 +
N∑

i=1

ai z−i

The all-zeroH1(z) can be realized with the direct form from
Section 3.1.1. By attaching the all-pole systemH2(z) in cascade,
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we obtain thedirect form I realization:

z−1

z−1

z−1

z−1

z−1

b0

b1

b2

b3

bN−1

bN

z−1

v(n)

z−1

z−1

z−1

z−1

z−1

−a1

−a2

−a3

−aN−1

−aN

z−1

y(n)

All-zero systemN(z) All-pole system1/D(z)

Another realization can be obtained by exchanging the order of
the all-pole and all-zero filter. Then, the difference equation for
the all-pole section is

w(n) = −
N∑

i=1

ai w(n − i) + v(n),

where the sequencew(n) is an intermediate result and represents
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the input to the all-zero section:

y(n) =

N∑

i=0

bn w(n − i).

The resulting structure is given as follows:

z−1

z−1

z−1

z−1

z−1

−a1

−a2

−a3

−aN−1

−aN

z−1

v(n)

b1

b2

b3

bN−1

bN

b0
y(n)

⇒ Only one single delay line is required for storing the delayed
versions of the sequencew(n). The resulting structure is called
a direct form II realization. Furthermore, it is said to becanonic,
since it minimizes the number of memory locations (among other
structures).
Transposing the direct form II realization leads to the following
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structure, which requires the same number of multiplications,
additions, and memory locations as the original structure:

z−1

z−1

z−1

z−1

z−1

b1

b2

b3

bN−1

bN

z−1

v(n)

−a1

−a2

−a3

−aN−1

−aN

y(n)
b0

4.2.2 Cascade-form structures

Analog to Section 4.1.2 we can also factor an IIR systemH(z)

into first and second order subsystemsHp(z) according to

H(z) =

P∏

p=1

Hp(z). (4.16)

⇒ Degrees of freedom in grouping the poles and the zeros

76



First order subsystems:

Canonical direct form forN =1:

z−1

−a1

v(n)

b1

b0
y(n)

Corresponding transfer function:

H(z) =
Y (z)

V (z)
=

b0 + b1 z−1

1 + a1 z−1
(4.17)

Every first order transfer function can be realized with the above
flow graph:

H(z)=
b′0 + b′1 z−1

a′
0 + a′

1 z−1
=

(b′0/a′
0) + (b′1/a′

0) z−1

1 + (a′
1/a′

0) z−1
=

b0 + b1 z−1

1 + a1 z−1

Second order subsystems:

Canonical direct form forN =2:

z−1

−a1

−a2

z−1

v(n)

b1

b2

b0
y(n)

Corresponding transfer function:

H(z) =
Y (z)

V (z)
=

b0 + b1 z−1 + b2 z−2

1 + a1 z−1 + a2 z−2
(4.18)
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Example:

A so calledChebyshevlowpass filter of5-th order and the cut-off frequency
fco=0.25 fs (fs denoting the sampling frequency) is realized. A filter design
approach (we will discuss the corresponding algorithms later on) yields the
transfer function

H(z) = 0.03217·

· 1 + 5 z−1 + 10 z−2 + 10 z−3 + 5 z−4 + z−5

1 − 0.782 z−1 + 1.2872 z−2 − 0.7822 z−3 + 0.4297 z−4 − 0.1234 z−5

(4.19)

• The zeros are all atz=−1: z0i = −1 for i = 1, 2, . . . , 5.

The location of the poles are:

z∞1,2 = −0.0336 ± j 0.8821,

z∞3,4 = 0.219 ± j 0.5804, z∞5 = 0.4113.
(4.20)

Grouping of polesz∞1,2:

Ĥ1,2(z) =
1 + 2 z−1 + z−2

1 + 0.0672 z−1 + 0.7793 z−2

Grouping of polesz∞3,4:

Ĥ3,4(z) =
1 + 2 z−1 + z−2

1 − 0.4379 z−1 + 0.3849 z−2

Real-valued polez∞5 leads to a first-order subsystem

Ĥ5(z) =
1 + z−1

1 − 0.4113 z−1
.

• For the implementation on a fixed-point DSP it is advantageous to ensure
that all stages have similar amplification in order to avoid numerical
problems. Therefore, all subsystems are scaled such that they have
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approximately the same amplification for low frequencies:

H1(z) =
Ĥ5(z)

Ĥ5(z = 1)
=

0.2943 + 0.2943 z−1

1 − 0.4113 z−1

H2(z) =
Ĥ3,4(z)

Ĥ3,4(z = 1)
=

0.2367 + 0.4735 z−1 + 0.2367 z−2

1 − 0.4379 z−1 + 0.3849 z−2

H3(z) =
Ĥ1,2(z)

Ĥ1,2(z = 1)
=

0.4616 + 0.9233 z−1 + 0.4616 z−2

1 − 0.4379 z−1 + 0.3849 z−2

Remark: The order of the subsystems is in principle arbitrary. However,
here we know from the pole analysis in (4.20) that the poles ofĤ1,2(z)
are closest to the unit circle. Thus, using a fixed-point DSP may lead more
likely to numerical overflow compared tôH3,4(z) andĤ5(z). Therefore,
it is advisable to realize the most sensible filter as the last subsystem.

• Frequency responses:
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• Resulting signal flow graph (V → U ):

(from [Fliege: ”Analoge und digitale Filter”, Hamburg University of Technology, 1990])

4.2.3 Parallel-form structures

⇒ An alternative to the factorization of a general transfer function
is to use a partial-fraction expansion, which leads to a parallel-
form structure

• In the following we assume that we have only distinct poles
(which is quite well satisfied in practice). The partial-fraction
expansion of a transfer functionH(z) with numerator and
denominator degreeN is then given as

H(z) = A0 +

N∑

i=1

Ai

1 − z∞iz−1
. (4.21)

The Ai, i ∈ {1, . . . , N} are the coefficients (residues) in
the partial-fraction expansion,A0 = bN/aN .

• We furthermore assume that we have only real-valued
coefficients, such that we can combine pairs of complex-
conjugate poles to form a second order subsystem
(i ∈ {1, . . . , N}):

Ai

1 − z∞iz−1
+

A∗
i

1 − z∗∞iz
−1

=

2ℜ{Ai} − 2ℜ{Ai z∗∞i}z−1

1 − 2ℜ{z∞i}z−1 + |z∞i|2z−2
=:

b0 + b1 z−1

1 + a1 z−1 + a2 z−2

(4.22)
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• Two real-valued poles can also be combined to a second order
transfer function (i, j ∈ {1, . . . , N}):

Ai

1 − z∞iz−1
+

Aj

1 − z∞jz−1
=

(Ai + Aj) − (Ai z∞j + Aj z∞i) z−1

1 − (z∞j + z∞i) z−1 + (z∞j z∞i) z−2
=:

b0 + b1 z−1

1 + a1 z−1 + a2 z−2

(4.23)

• If N is odd, there is one real-valued pole left, which leads to
one first order partial fraction (see example).

Parallel structure: H0H1(z)H2(z)
HP (z)P : number of parallel subsystems

V (z)

Y (z)

Signal flow graph of a second order section:

z−1

−ap1

−ap2

z−1

v(n)

bp1

bp0
yp(n)

p = 1, . . . , P
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Example:

Consider again the 5-th order Chebyshev lowpass filter with the transfer
function from (4.19). The partial fraction expansion can be given as

H(z) = −0.2607 +
A1

1 − z∞1 z−1
+

A∗
1

1 − z∗∞1 z−1
+

+
A3

1 − z∞3 z−1
+

A∗
3

1 − z∗∞3 z−1
+

A5

1 − z∞5 z−1

with the poles from (4.20) and the residues

z∞1 = −0.0336 + j 0.8821, A1 = 0.1 + j 0.0941,

z∞3 = 0.219 + j 0.5804, A3 = −0.5533 + j 0.00926,

z∞5 = 0.4114, A5 = 1.1996.

With (4.22) the resulting transfer function writes

H(z) = −0.2607 +
0.2 − 0.1592 z−1

1 + 0.0673 z−1 + 0.7793 z−2
+

−1.1066 + 0.3498 z−1

1 − 0.4379 z−1 + 0.3849 z−2
+

1.1996

1 − 0.4114 z−1
.

Resulting signal flow graph (V → U ):

(from [Fliege: ”Analoge und digitale Filter”, Hamburg University of Technology, 1990])
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4.3 Coefficient quantization and round-off effects

In this section we discuss the effects of a fixed-point digital filter
implementation on the system performance.

4.3.1 Errors resulting from rounding and truncation

Number representation in fixed-point format:
A real numberv can be represented as

v = [β−A, . . . , β−1, β0, β1, . . . , βB] =
B∑

ℓ=−A

βℓr
−ℓ

,

(4.24)
whereβℓ is the digit,r is the radix (base),A the number of integer
digits,B the number of fractional digits.

Example:[101.01]2 = 1 ·22+0 ·21+1 ·20+0 ·2−1+1 ·2−2

Most important in digital signal processing:

• Binary representation withr=2 andβℓ∈{0, 1}, β−A MSB,
βB LSB.

• b-bit fraction format:A=0, B =b−1, binary point between
β0 andβ1 → numbers between0 and2−2−b+1 are possible.

Positive numbers are represented as

v = [0.β1β2 . . . βb−1] =

b−1∑

ℓ=1

βℓ2
−ℓ

. (4.25)

Negative fraction:

v = [−0.β1β2 . . . βb−1] = −
b−1∑

ℓ=1

βℓ2
−ℓ

, (4.26)
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can be represented with one of the three following formats

• Sign-magnitude format:

vSM = [1.β1β2 . . . βb−1] for v < 0. (4.27)

• One’s-complement format:

v1C = [1.β̄1β̄2 . . . β̄b−1] for v < 0, (4.28)

with β̄ℓ = 1 − βℓ denoting the one’s complement ofβℓ.

Alternative definition:

v1C = 1·20
+

b−1∑

ℓ=1

(1−βℓ)·2−ℓ
= 2−2

−b+1−|v| (4.29)

• Two’s-complement format:

v2C = [1.β̄1β̄2 . . . β̄b−1]©+ [00 . . . 01] for v < 0,

(4.30)
where ©+ denotes a binary addition. We thus have by using
(4.29)

v2C = v1C + 2
−b+1

= 2 − |v|. (4.31)

Does (4.30) really represent a negative number? Using the
identity

1 =
b−1∑

ℓ=1

2
−ℓ

+ 2
−b+1
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we can express a negative number as

v = −
b−1∑

ℓ=1

βℓ2
−ℓ

+ 1 − 1

= −1 +

b−1∑

ℓ=1

(1 − βℓ)
︸ ︷︷ ︸

= β̄ℓ

2
−ℓ

+ 2
−b+1

= v2C − 2.

Example:
Express the fractions7/8 and−7/8 in sign-magnitude, two’s-complement,
and one’s-complement format.

v=7/8 can be represented as2−1 + 2−2 + 2−3, such thatv=[0.111]. In
sign-magnitude format,v=−7/8 is represented asvSM =[1.111], in one’s
complement we havev1C = [1.000], and in two’s-complement the result is
v2C =[1.000]©+ [0.001]=[1.001].

(For further examples see also the table in Section 2.4.)

Remarks:
• Most DSPs use two’s-complement arithmetic. Thus anyb-bit

numberv has the number range

v ∈ {−1,−1 + 2
−b+1

, . . . , 1 − 2
−b+1}.

• Two’s-complement arithmetic withb bits can be viewed as
arithmetic modulo2b (Example forb = 3):

(from [Proakis, Manolakis, 1996])
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• Important property: If the sum of numbers is within the range
it will be computed correctly, even if individual partial sums
result in overflow.

Truncation and rounding:

Problem: Multiplication of twob-bit numbers yields a result of
length(2b−1)→ truncation/rounding necessary→ can again be
regarded asquantizationof the (filter) coefficientv
Suppose that we have a fixed-point realization in which a number
v is quantized frombu to b bits.

We first discuss the truncation case. Let the truncation error be
defined asEt = Qt[v] − v.

• For positive numbers the error is

−(2
−b+1 − 2

−bu+1
) ≤ Et ≤ 0

(truncation leads to a number smaller than the unquantized
number)

• For negative numbers and the sign-magnitude representation
the error is

0 ≤ Et ≤ (2
−b+1 − 2

−bu+1
).

(truncation reduces the magnitude of the number)

• For negative numbers in the two’s-complement case the error
is

−(2
−b+1 − 2

−bu+1
) ≤ Et ≤ 0

(negative of a number is obtained by subtracting the
corresponding positive number from 2, see (4.31))
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• Quantization characteristic functions for a continuous input
signalv (v → x):
Sign-magnitude representation:

+1

+1

Two’s-complement representation:

+1

+1

(from [Proakis, Manolakis, 1996])

Rounding case, rounding error is defined asEr = Qr[v] − v:

• Rounding affects only the magnitude of the number and is thus
independent from the type of fixed-point realization.

• Rounding error is symmetric around zero and falls in the range

−1

2
(2

−b+1 − 2
−bu+1

) ≤ Er ≤ 1

2
(2

−b+1 − 2
−bu+1

).

• Quantization characteristic function,bu = ∞ (v → x):

+1

+1

(from [Proakis, Manolakis, 1996])
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4.3.2 Numerical overflow

If a number is larger/smaller than the maximal/minimal possible
number representation

• ±(1 − 2−b+1) for sign magnitude and ones’s-complement
arithmetic;

• −1 and1 − 2−b+1, resp., for two’s-complement arithmetic,

we speak of anoverflow/underflowcondition.

Overflow example in two’s-complement arithmetic
(range:−8, . . . , 7)

[0.111]
︸ ︷︷ ︸

7

©+ [0.001]
︸ ︷︷ ︸

1

= [1.000]
︸ ︷︷ ︸

−8

⇒ resulting error can be very large when overflow/underflow
occurs
Two’s-complement quantizer forb=3, ∆ = 2−b (v → x):

(from [Oppenheim, Schafer, 1999])

Alternative: saturation or clipping, error does not increase
abruptly in magnitude when overflow/underflow occurs:
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(from [Oppenheim, Schafer, 1999])

Disadvantage: ”Summation property” of the two’s-complement
representation is violated

4.3.3 Coefficient quantization errors

• In a DSP/hardware realization of an FIR/IIR filter the accuracy
is limited by the wordlength of the computer⇒ Coefficients
obtained from a design algorithm have to be quantized

• Wordlength reduction of the coefficients leads to different
poles and zeros compared to the desired ones. This may lead
to
– modified frequency response with decreased selectivity
– stability problems

Sensitivity to quantization of filter coefficients

Direct form realization, quantized coefficients:

āi = ai + ∆ai, i = 1, . . . , N,

b̄i = bi + ∆bi, i = 0, . . . , N,

∆ai and∆bi represent the quantization errors.
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As an example, we are interested in the deviation
∆z∞i = z∞i − z̄∞i, when the denominator coefficientsai

are quantized (̄z∞i denotes the resulting pole after quantization).
It can be shown [Proakis, Manolakis, 1996, pp. 569] that this
deviation can be expressed as:

∆z∞i = −
N∑

n=1

zN−n
∞i

N∏

ℓ=1, ℓ6=i

(z∞i − z∞ℓ)

∆an, i = 1, . . . , N.

(4.32)

From (4.32) we can observe the following:

• By using the direct form, each single pole deviation∆z∞i

depends on all quantized denominator coefficientsāi.

• The error∆z∞i can be minimized by maximizing the distance
|z∞i − z∞ℓ| between the polesz∞i andz∞ℓ.

⇒ Splitting the filter into single or double pole sections (first or
second order transfer functions):

• Combining the polesz∞i andz∗
∞i into a second order section

leads to a small perturbation error∆z∞i, since complex
conjugate poles are normally sufficiently far apart.

• ⇒ Realization incascade or parallel form: The error of a
particular pole pairz∞i andz∗

∞i is independent of its distance
from the other poles of the transfer function.

Example: Effects of coefficient quantization

Elliptic filter of orderN = 12 (Example taken from [Oppenheim, Schafer,
1999]):
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Unquantized:
(a) Magnitude frequency response20 · log10 |H(ejω)|
(b) Passband details

Quantized withb=16 bits:
(c) Passband details for cascade structure
(d) Passband details for parallel structure
(e) Magnitude frequency response (log) for direct structure

Pole locations of quantized second order sections

Consider a two-pole filter with the transfer function

H(z) =
1

1 − (2r cos θ) z−1 + r2 z−2
.
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Poles:z∞1,2 = r e±jθ,
Coefficients:
a1 = −2r cos θ, a2 = r2,
Stability condition:|r| ≤ 1

2r cos θ

−r2

z−1

v(n) y(n)

z−1

Quantization ofa1 and a2 with b = 4 bits: → possible pole
positions:

• Nonuniformity of the pole position is due to the fact that
a2=r2 is quantized, while the pole locationsz∞1,2=r e±jθ

are proportionalr.

• Sparse set of possible pole locations aroundθ=0 andθ=π.
Disadvantage for realizing lowpass filters where the poles are
normally clustered nearθ=0 andθ=π.

Alternative:Coupled-form realization

y1(n) = v(n) + r cos θ y1(n − 1) − r sin θ y(n − 1),

y(n) = r sin θ y1(n − 1) + r cos θ y(n − 1),

(4.33)
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which corresponds to the following signal flow graph:

v(n)

z−1

z−1

−r sin θ r sin θ

r cos θ

r cos θ

y(n)

y1(n)

By transforming (4.33) into the z-domain, the transfer function of
the filter can be obtained as

H(z) =
Y (z)

V (z)
=

(r sin θ) z−1

1 − (2r cos θ) z−1 + r2 z−2
.

• We can see from the signal flow graph that the two coefficients
r sin θ and r cos θ are now linear in r, such that a
quantization of these parameters lead to equally spaced pole
locations in the z-plane:
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• Disadvantage: Increased computational complexity compared
to the direct form.

Cascade or parallel form?

Cascade form: H(z) =

P∏

p=1

bp0 + bp1 z−1 + bp2 z−2

1 + ap1 z−1 + ap2 z−2

Parallel form: H(z) = A0 +
P∑

p=1

cp0 + cp1 z−1

1 + ap1 z−1 + ap2 z−2

• Cascade form: Only the numerator coefficientsbpi of
an individual section determine the perturbation of the
corresponding zero locations (an equation similar to (4.32) can
be derived)→ direct control over the poles and zeros

• Parallel form: A particular zero is affected by quantization
errors in the numerator and denominator coefficients of all
individual sections→ numerator coefficientscp0 andcp1 do
not specify the position of a zero directly, direct control over
the poles only

⇒ Cascade structure is more robust against coefficient
quantization and should be used in most cases

Example:

Elliptic filter of orderN =7, frequency and phase response
(taken from [Proakis, Manolakis, 1996]):
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Cascade form (3 digitŝ= b≈10 bits, 4 digits=̂ b≈14 bits)

Parallel form (b=10 bits)
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Coefficient quantization in FIR systems

In FIR systems we only have to deal with the locations of the
zeros, since for causal filters all poles are atz=0.
Remarks:

• For FIR filters an expression analogous to (4.32) can be
derived for the zeros⇒ FIR filters should also be realized
in cascade form according to

H(z) = H0

P∏

p=1

(1 + bp1 z
−1

+ bp2 z
−2

)

with second order subsections, in order to limit the effects of
coefficient quantization to the zeros of the actual subsection
only.

• However, since the zeros are more or less uniformly spread in
the z-plane, in many cases the direct form is also used with
quantized coefficients.

• For a linear-phase filter with the symmetry (4.8) in the
impulse response, quantization does not affect the phase
characteristics, but only the magnitude.

4.3.4 Round-off effects

Direct-form I IIR structure

Starting point for the analysis: Direct-form I structure with the
difference equation

y(n) =

N∑

i=0

bi v(n − i) −
N∑

i=1

ai y(n − i).
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All signal values and coefficients are represented byb-bit
binary fixed-point numbers (for example in two’s-complement
representation):

• truncation or rounding of the(2b−1)-bit products tob bit
necessary

• modelling as a constant multiplication followed by a quantizer
−

−

−

−

−

−

−

(from [Oppenheim, Schafer, 1999],v → x)

This can be described with the difference equation

y(n) =

N∑

i=0

Q[bi v(n − i)] −
N∑

i=1

Q[ai y(n − i)]. (4.34)
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As already stated in Section 2.4 the result of each single
quantization stage can be modeled by adding a noise sourceei(n)

with the following properties:

• Each ei(n) corresponds to a wide-sense-stationary white-
noise process.

• Eachei(n) has an uniform distribution of amplitudes over one
quantization interval (uniform p.d.f.).

• Eachei(n) is uncorrelated with the quantizer input, all other
quantization noise sources and the input signal of the filter.

We have shown above that forb-bit quantization the rounding
error falls in the range

−1

2
(2

−b+1
) ≤ ei(n) ≤ 1

2
(2

−b+1
),

and for two’s-complement truncation we have

−2
−b+1 ≤ ei(n) ≤ 0.

Mean and variance for rounding

µe = 0, σ
2
e =

2−2b+2

12
, (4.35)

and for truncation

µe = −2−b+1

2
, σ

2
e =

2−2b+2

12
. (4.36)

Autocorrelation (white noise process):

ϕee(n) = σ
2
eδ(n) + µ

2
e. (4.37)
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In the following we will restrict ourselves to the rounding case,
whereϕee(n) = σ2

eδ(n) and thus, for the power spectral density
we haveΦ(ejω) = σ2

e :

• The following structure can be obtained by summing up all the
noise sources:

e(n) =

4∑

i=0

ei(n),

−

−

(from [Oppenheim, Schafer, 1999],v → x)

• ⇒ Overall noise variance in the special case from above:

σ
2
e =

4∑

i=0

σ
2
ei

= 5 · 2−2b+2

12

Overall noise variance in the general case:

σ
2
e = (2N + 1) · 2−2b+2

12
(4.38)

• Due to linearity the output of the whole filter iŝy(n) =

y(n) + f(n). Thus, the difference equation for the
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quantization noisee(n) now is given as

f(n) =

N∑

i=1

aif(n − i) + e(n), (4.39)

sincee(n) can be regarded as the input to an all-pole system
with outputf(n).

• Suppose that the allpole-filter has the transfer function
Hef(z) with

Hef(z) =
1

D(z)
, H(z) =

N(z)

D(z)
analog to (4.1).

– Mean off(n): µf = µe Hef(e
j0) = 0 for rounding.

– Power spectral density (power spectrum)
Φff(e

jω) = σ2
e |Hef(e

jω)|2.

– Varianceσ2
f = F−1

∗ {Φff(e
jω)}|n=0:

σ
2
f =

σ2
e

2π

∫ π

−π

|Hef(e
jω

)|2 dω = σ
2
e

∞∑

n=−∞
|hef(n)|2,

(4.40)
where the last expression is obtained by applying Parseval’s
theorem.

By combining (4.38) and (4.40) we can now state the total output
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variance due to internal round-off as

σ
2
f = (2N+1)

2−2b+2

2π · 12

π∫

−π

dω

|D(ejω)|2

= (2N+1)
2−2b+2

12

∞∑

n=−∞
|hef(n)|2

(4.41)

Round-off noise in a first-order system

Given: Transfer function

H(z) =
b0

1 − a1z−1
, |a1| < 1

→ Impulse response:h(n) = b0 an
1 u(n) (u(n): unit step

function)

a1

y(n)

z−1

b0
v(n)

e(n) = ea1
(n) + eb0(n)

Considering (4.41) and the two error sourcesea1
(n), eb0

(n), we
have

σ
2
f = 2

2−2b+2

12

∞∑

n=0

|a1|2n
=

2−2b+2

6

(
1

1 − |a1|2
)

.

(4.42)
The output noise variance increases when the polez∞ = a1
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approaches the unit circle⇒ In order to neep the noise variance
below a certain level, the wordlengthb has to be increased.

Round-off noise in a second-order system

Second-order direct form I system:

H(z) =
b0 + b1 z−1 + b2 z−2

(1 − r ejθ z−1)(1 − r e−jθ z−1)

Thus we have

σ
2
f = 5

2−2b+2

12

1

2π

π∫

−π

dω

|(1 − r ejθ e−jω)|2 |(1 − r e−jθ e−jω)|2
.

With a1 = −2r cos θ anda2 = r2 it can be shown via a partial
fraction expansion that

σ
2
f = 5

2−2b+2

12

(

1 + r2

1 − r2

)

1

r4 + 1 − 2r2 cos(2θ)
. (4.43)

As in the first-order case we can see that the total variance
increases if the poles approach the unit circle (r → 1).

Direct-form II structure

In this case, the nonlinear difference equations are of the form

w(n) = −
N∑

i=1

Q[ai w(n − i)] + v(n),

y(n) =

N∑

i=0

Q[bi w(n − i)].

(4.44)
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Signal flow graph:

−

−

−

−

(from [Oppenheim, Schafer, 1999],v → x)

For rounding (µe = 0) the power spectrum of the output noise is:

Φff(e
jω

) = N
2−2b+2

12
|H(e

jω
)|2 + (N + 1)

2−2b+2

12
.

(4.45)
We then have:

σ
2
f = N

2−2b+2

12

1

2π

π∫

−π

|H(e
jω

)|2 dω + (N + 1)
2−2b+2

12
,

(4.46)
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and by applying a relation similar to (4.40)

σ
2
f = N

2−2b+2

12

∞∑

n=−∞
|h(n)|2 + (N + 1)

2−2b+2

12
.

(4.47)

• White noise produced in implementing the poles is filtered
by the entire system, whereas the white noise produced in
implementing the zeros is added directly to the output of the
system.

• A comparison with (4.41) for the direct form I structure shows
that both structures are affected differently by the quantization
of products.

4.3.5 Zero-input limit cycles

• Stable IIR filters implemented with infinite-precision
arithmetic: If the excitation becomes zero and remains
zero for n > n0 then the output of the filter will decay
asymptotically towards zero.

• Same system implemented with fixed-point arithmetic: Output
may oscillate indefinitely with a periodic pattern while the
input remains equal to zero:⇒ Zero-input limit cycle
behavior, due to nonlinear quantizers in the feedback loop or
overflow of additions.

No general treatment, but two examples are given

Limit cycles due to round-off and truncation

Given: First-order system with the difference equation

y(n) = a y(n − 1) + v(n), |a| < 1.
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Register length for storinga and the intermediate results: 4 bits
(sign bit plus 3 fractional digits)⇒ producta y(n − 1) must be
rounded or truncated to 4 bits, before being added tov(n)

Signal flow graphs:

a

z−1

v(n) y(n)

z−1

v(n)

a

Q[·]

ŷ(n)

Infinite-precision linear system

Nonlinear system due to quantization

Nonlinear difference equation (Q[·] represents two’s-complement
rounding):

ŷ(n) = Q[a ŷ(n − 1)] + v(n).

Suppose we havea = 1/2 = [0.100], v(n) = 7/8 δ(n) =

[0.111] δ(n):

ŷ(0) = 7/8 = [0.111]

ŷ(1) = Q[a ŷ(0)] = Q [ [0.100] × [0.111] ]

= Q [ [0.011100] ] = Q[7/16] = [0.100] = 1/2

ŷ(2) = Q[a ŷ(1)] = [0.010] = 1/4

ŷ(3) = Q[a ŷ(2)] = [0.001] = 1/8

ŷ(4) = Q[a ŷ(3)] = Q [ [0.000100] ] = [0.001] = 1/8
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⇒ A constant steady value is obtained forn ≥ 3.

For a = −1/2 we have a periodic steady-state oscillation
between−1/8 and1/8.

⇒ Such periodic outputs are calledlimit cycles.

(from [Oppenheim, Schafer, 1999])

Limit cycles due to overflow

Consider a second-order system realized by the difference
equation

ŷ(n) = v(n) + Q [a1 ŷ(n − 1)] + Q [a2 ŷ(n − 2)] ,

(4.48)
Q[·] represents two’s-complement rounding with one sign and
3 fractional digits.
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Overflow can occur with the two’s-complement addition of the
products in (4.48).

Suppose thata1 = 3/4 = [0.110], a2 = −3/4 = [1.010],
ŷ(−1) = 3/4 = [0.110], ŷ(−2) = −3/4 = [1.010],
v(n)=0 for all n≥0:

ŷ(0) = Q[ [0.110] × [0.110] ] + Q[ [1.010] × [1.010] ]

= Q[ [0.100100] ] + Q[ [0.100100] ] = [0.101] + [0.101]

= [1.010] = −3/4

ŷ(1) = [1.011] + [1.011] = [0.110] = 3/4

⇒ ŷ(n) continues to oscillate unless an input is applied.

Remarks

Some solutions for avoiding limit cycles:

• Use of structures which do not support limit-cycle oscillations.

• Increasing the computational wordlength.

• Use of a double-length accumulator and quantization after the
accumulation of products.

FIR-filters are limit-cycle free since there is no feedback involved
in its signal flow graph.
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4.4 Design of FIR filters

General remarks (IIR and FIR filters)

• Ideal filters arenoncausal, and thus physically unrealizable for
real-time signal processing applications.

• Causality implies that the a filter frequency responseH(ejω)

cannot have an infinitely sharp cutoff from passband to
stopband, and that the stopband amplification can only be zero
for a finite number of frequenciesω.

Magnitude characteristics of physically realizable filters:

(from [Proakis, Manolakis, 1996])

δ1: passband ripple, δ2: stopband ripple,
ωp: passband edge frequency, ωs: stopband edge frequency

Filter design problem:

• Specify δ1, δ2, ωp, and ωs corresponding to the desired
application.

• Select the coefficientsai andbi (free parameters), such that
the resulting frequency responseH(ejω) best satisfies the
requirements forδ1, δ2, ωp, andωs.

• The degree to whichH(ejω) approximates the specifications
depends on the criterion used for selecting theai andbi and
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also on the numerator and denominator degreeN (number of
coefficients)

4.4.1 Linear phase filters

Important class of FIR filters, which we will mainly consider in
the following. Definition: A filter is said to be alinear-phase
filter, if its impulse response satisfies the condition (L=N+1):

h(n) = ±h(L − 1 − n). (4.49)

With the definitionS := (L − 1)/2 and forL odd this leads to
a z-transform

H(z) =

L−1∑

n=0

h(n)z
−n (4.50)

= z
−S

[

h(S) +

S−1∑

n=0

h(n)
(

z
(S−n) ± z

−(S−n)
)
]

,

(4.51)

for L evenwe have

H(z) = z
−S

L/2−1
∑

n=0

h(n)
(

z
(S−n) ± z

−(S−n)
)

. (4.52)

When we now substitutez−1 for z in (4.50) and multiply both
sides byz−(L−1) we obtain with (4.49)

z
−(L−1)

H(z
−1

) = ±H(z), (4.53)
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which is the z-transform equivalent to (4.49). Consequences:

• The roots of the polynomialH(z) are identical to the roots of
the polynomialH(z−1): If z0i is a zero ofH(z) thenz−1

0i is
also a zero.

• If additionally the impulse responseh(n) is real-valued, the
roots must occur in complex-conjugate pairs: Ifz0i is a zero
of H(z) thenz∗

0i is also a zero.

⇒ The zeros of a real-valued linear-phase filter occur in
quadruples in the z-plane (exception: zeros on the real axis, zeros
on the unit circle)

(from [Proakis, Manolakis, 1996])

(a) Type-1 linear phase system

Definition: Odd lengthL, evensymmetryh(n)=h(L−1−n)

Frequency response from (4.51):

H(e
jω

) = e
−jSω

[

h(S) + 2

S−1∑

n=0

h(n) cos ((S − n)ω)

]

(4.54)

= e
−jSω

H01(ω)
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H01(ω): amplitude frequency response, real-valued (generally
denoted withH0(ω))

• linear phaseϕ1(ω) = −argH(ejω) = Sω
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0

type 1, odd length (L=31)

n

h(
n)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

type 1, amplitude frequency response

ω / π

H
01

(ω
)

(b) Type-3 linear phase system

Definition: Odd lengthL, oddsymmetryh(n)=−h(L−1−n)

Frequency response from (4.51):

H(e
jω

) = e
−jSω

j

[

h(S) + 2

S−1∑

n=0

h(n) sin ((S − n)ω)

]

(4.55)

= e
−jSω

j H03(ω) = e
−jSω+jπ/2

H03(ω)

• linear phaseϕ3(ω) = −argH(ejω) = Sω − π/2

• H(ej0) = 0, S ∈ IN ⇒ H(ejπ) = 0
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(c) Type-2 linear phase system

Definition: EvenlengthL, evensymmetryh(n)=h(L−1−n)

Frequency response from (4.52):

H(e
jω

) = e
−jSω



2

L/2−1
∑

n=0

h(n) cos ((S − n)ω)



 (4.56)

= e
−jSω

H02(ω)

• linear phaseϕ2(ω) = −argH(ejω) = Sω

• S = (2λ−1)/2, λ ∈ IN ⇒ H(ejπ) = 0
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• Amplitude frequency response has4π-periodicity:

H02(ω) = 2

L/2−1
∑

n=0

h(n) cos ((S − n)ω)

H02(ω + 2π) = 2

L/2−1
∑

n=0

h(n) cos ((S − n)(ω + 2π))

= 2

L/2−1
∑

n=0

h(n) cos ((S − n)ω) ·

· cos ((S − n)2π)
︸ ︷︷ ︸

= cos((L−1−2n)π) =−1

= −H02(ω)

• Remark:H(ejω) is2π-periodic again due to thee−jSω phase
factor
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(d) Type-4 linear phase system

Definition: EvenlengthL, oddsymmetryh(n)=−h(L−1−n)

Frequency response from (4.52):

H(e
jω

) = e
−jSω

j



2

L/2−1
∑

n=0

h(n) sin ((S − n)ω)





(4.57)

= e
−jSω

j H04(ω) = e
−jSω+jπ/2

H04(ω)

• linear phaseϕ4(ω) = −argH(ejω) = Sω − π/2

• H(ej0) = 0

• Similar to the type-2 filter the amplitude frequency response
has 4π-periodicity: H04(ω + 2π) = −H04(ω). The
multiplication with the exponential factore−jSω+jπ/2 then
again leads to2π-periodicity forH(ejω).
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Applications:

• Type-1 and Type-2 filters used for ”ordinary” filtering,
however type 2 filters are unsuitable for highpass filtering

• Type-3 and Type-4 filters for example used for 90 degree phase
shifters and so calledHilbert transformers

4.4.2 Design of linear-phase filters using a window function

Given: Desired frequency response

Hd(e
jω

) =
∞∑

n=−∞
hd(n) e

−jωn (4.58)

⇒ Impulse responsehd(n) can be obtained with the inverse
Fourier-Transform

hd(n) =
1

2π

π∫

−π

Hd(e
jω

) e
jωn

dω. (4.59)

Impulse response has generally infinite length⇒ truncation
to length L by multiplication with a window functionw(n)

necessary:h(n) = hd(n) · w(n).

Rectangular window:

w(n) =

{

1 n = 0, . . . , L − 1

0 otherwise
⇒ h(n) =

{

hd(n) n = 0, . . . , L − 1

0 otherwise

Frequency response of the rectangular window: see (3.12)

Suppose, we want to design a linear-phase lowpass filter of length
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L with the desired frequency response

Hd(e
jω

) =

{

e−jω(L−1)/2 for 0 ≤ |ω| < ωc,

0 otherwise,
(4.60)

whereωc is denoting the cut-off frequency.
Corresponding unit sample response:

hd(n) =
1

2π

ωc∫

−ωc

e
jω(n−(L−1)/2)

dω.

=
sin

[
ωc

(
n − L−1

2

)]

π
(
n − L−1

2

) , n 6= L − 1

2
(4.61)

Multiplication with a rectangular window of lengthL leads to

h(n) =
sin

[

ωc

(

n − L−1
2

)]

π
(

n − L−1
2

) , n 6= L − 1

2
, n = 0, . . . , L − 1

ForL odd: h

(
L − 1

2

)

=
ωc

π

Example forωc =0.2π, L=61 andL=101:
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L=61, ω
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=0.2⋅π
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jω
)|

 →

ω / π  → 

L=101, ω
c
=0.2⋅π

Disadvantage of using an rectangular window:
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Large sidelobes lead to in undesirable ringing effects (overshoot
at the boundary between pass- and stopband) in the frequency
response of the resulting FIR filter

⇒ Gibbs phenomenon:

• Result of approximating a discontinuity in the frequency
response with a finite number of filter coefficients and a mean
square error criterion

• Eq. (4.58) can be interpreted as a Fourier series representation
for Hd(e

jω) with the Fourier coefficientshd(n) → Gibbs
phenomenon resulting from a Fourier series approximation

• Squared integral errorE =
π∫

−π

(Hd(e
jω) − H(ejω))2 dω

approaches zero with increasing length ofh(n). However, the
maximum value of the error|Hd(e

jω)−H(ejω)| approaches
a constant value.

⇒ Use of other appropriate window functions with lower
sidelobes in their frequency responses
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(n → n, L → M , I0: Bessel function of the first kind of order zero)

(from [Proakis, Manolakis, 1996])

Frequency-domain characteristics of some window functions
(taken from [Proakis, Manolakis, 1996]):

Approximate transition Peak
Type of window width of main lobe sidelobe [dB]

Rectangular 4π/L -13
Bartlett 8π/L -27
Hanning 8π/L -32
Hamming 8π/L -43
Blackman 12π/L -58

Parameterα in the Kaiser window allows to adjust the width of
the main lobe, and thus also to adjust the compromise between
overshoot reduction and increased transition bandwidth in the
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resulting FIR filter.

Magnitude frequency response20 log10 |H(ejω)| of the
resulting linear-phase FIR filter, when different window functions
are used to truncate the infinite-length impulse response from
(4.61) (desired frequency responseHd(e

jω) in (4.60)):
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MATLAB-command for windowed linear-phase FIR design:
fir1

4.4.3 Frequency sampling design

Desired frequency responseHd(e
jω) is specified as a set of

equally spaced frequencies:

ωk =
2π

L
(k + α), k = 0, 1, . . . , L− 1, α ∈

{

0,
1

2

}

.

(4.62)
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Frequency response of an FIR filter (requirement):

Hd(e
jω

)
!
=

L−1∑

n=0

h(n)e
−jωn

With (4.62) we obtain fork = 0, . . . , L−1:

Hd(e
j2π

L
(k+α)

) =

L−1∑

n=0

h(n)e
−j2π(k+α)n/L

. (4.63)

Multiplication of (4.63) withej2πkℓ/L, ℓ = 0, . . . , L−1 and
summation overk = 0, . . . , L−1 yields to

L−1∑

k=0

e
j2πkℓ/L

Hd(e
j2π

L
(k+α)

) =

=
L−1∑

k=0

L−1∑

n=0

h(n)e
−j2π(k+α)n/L

e
j2πkℓ/L

=

L−1∑

n=0

h(n)e
−j2παn/L

L−1∑

k=0

e
−j2π(n−ℓ)k/L

= L h(ℓ) e
−j2παℓ/L

.

Thus, the impulse responseh(n) can be obtained from the
sampled desired frequency response as (n = 0, . . . , L−1):

h(n) =
1

L

L−1∑

k=0

Hd(e
j2π

L
(k+α)

) e
j2π(k+α)n/L (4.64)
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Remarks:

• For α = 0 (4.64) is identical to the IDFT⇒ fast evaluation
with IFFT

• In generalHd(e
j2π

L
(k+α)) has to be specified in amplitude

and phase for everyk.
Exception: Type 1/3 linear-phase filters, whereHd(·) can be
real-valued with an additional shift of the obtained impulse
response (see below).

If h(n) is a real-valued sequence, the frequency response and thus
also its sampled version have theHermitian symmetry

Hd(e
j2π

L
(k+α)

) = H
∗
d(e

j2π
L

(L−k−α)
).

⇒ The number of frequency specifications can be reduced, and
(4.62) becomes

ωk =
2π

L
(k + α),







k = 0, 1, . . . , L−1
2 L odd,

k = 0, 1, . . . , L
2 − 1 L even,

α ∈
{
0, 1

2

}
.

(4.65)
Linear-phase FIR filters:

• Symmetry inh(n) can be additionally exploited such that
(4.64) only has to be evaluated forn = 0, . . . , L

2 − 1 for L

even, andn = 0, . . . , L−1
2 for L odd, resp.

• Linear-phase property may be included by specifying real-

valued frequency response samplesHd(e
j2π

L
(k+α)) →

Application of (4.64) leads to azero-phase responsewhich has
to be shifted to the right byL−1

2 samples.
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Example:

Determine the coefficients of a type 2 linear-phase filter with lengthL = 32,
and the desired sampled frequency response

Hd(e
j2π

L
(k+α)

) = e
−jL−1

2
2π
L

(k+α) ·







1 k = 0, 1, . . . , 5,

T1 k = 6,

0 k = 7, 8, . . . , 15.

The parameterT1 is responsible for the transition band behavior and is
obtained via numerical optimization in order to reduce the magnitude of the
sidelobes. The corresponding values are tabulated in the literature ([Rabiner,
Gold, McGonegal, 1970], [Proakis, Manolakis, 1996]).

ForL=32 we obtainT1=0.3789795 for α=0, andT1=0.3570496 for
α=1/2.

Coefficients of the impulse responseh(n):
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Magnitude frequency responses (20 log10 |H(ejω)|):

L=32, α=0: L=32, α=0.5:

(from [Proakis, Manolakis, 1996])

MATLAB-command for the frequency sampling design of
linear-phase FIR filters:fir2

4.4.4 Optimum equiripple design (Chebyshev approximation)

• Windowing design techniques (section 4.4.2) try to reduce
the difference between the desired and the actual frequency
response (error function) by choosing suitable windows

• How far can the maximum error be reduced?
⇒ Theory ofChebyshev approximationanswers this question
and provides us with algorithms to find the coefficients
of linear-phase FIR filters, where the maximum frequency
response error is minimized

• Chebyshev approximation: Approximation that minimizes the
maximum errors over a set of frequencies

• Resulting filters exhibit an equiripple behavior in their
frequency responses⇒ equiripple filters
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Linear-phase filters revisited

As we have shown in section 4.4.1, every linear-phase filter has a
frequency response of the form

H(e
jω

) = (j)
m·A(ω)·e−jω(L−1)/2

, m ∈ {0, 1}, (4.66)

whereA(ω) is a real-valued positive or negative function (ampli-
tude frequency response) (cmp. (4.54), (4.55), (4.56), (4.57)).

It can be shown that for all types of linear-phase symmetryA(ω)

can always be written as a weighted sum of cosines. For example
for type 1 linear-phase filters we have

A(ω) =

(L−1)/2
∑

n=0

an cos(nω) (4.67)

with a0=h

(
L − 1

2

)

, an =2 h

(

− n +
L − 1

2

)

. (4.68)

Remaining linear-phase filters(ω → 2πf ):

(from [Parks, Burrus: Digital Filter Design, 1987])
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Problem definition

Acceptable frequency response for the resulting FIR filter:

• Linear phase,

• transition bandwidth∆ω between pass- and stopband,

• passband deviation±δ1 from unity,

• stopband deviation±δ2 from zero.

(Multiple bands are possible as well.)

We will restrict ourselves in the following to lowpass type 1 linear-
phase filters.

Approximation problem: Given

• a compact subsetF of [0, π] in the frequency domain
(consisting of pass- and stopband in the lowpass filter case),

• a desired real-valued frequency responseD(ω), defined on
F ,

• a positive weight functionW (ω), defined onF , and

• the form ofA(ω), here (type-1 linear-phase)
A(ω) =

∑ r−1
n=0 an cos(nω).

Goal: Minimization of the error

Emax = max
ω∈F

W (ω) · |D(ω) − A(ω)| (4.69)

overan by the choice ofA(ω).

Alternation theorem (without proof):
If A(ω) is a linear combination ofr cosine functions,

A(ω) =
r−1∑

n=0

an cos(nω),
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then a necessary and sufficient condition thatA(ω) be the
unique, best weighted Chebyshev approximation to a given
continuous functionD(ω) on F is that the weighted error
function E(ω) = W (ω) · (D(ω) − A(ω)) exhibit at least
r +1 extremal frequencies inF . These frequencies are points
for whichω1 < · · · < ωr < ωr+1,

E(ωm) = −E(ωm+1), m = 1, 2, . . . , r,

and

|E(ωi)| = max
ω∈F

E(ω), i = 1, . . . , r + 1.

• Consequences from the alternation theorem: Best Chebyshev
approximation must have an equiripple error functionE(ω),
and isunique.

• Example: Amplitude frequency response of an optimum
type 1 linear-phase filter withL=13 → r=7

ω
π

L = 13

ωsωp

A(ω) =
(L−1)/2∑

n=0
an cos(nω)

(from [Parks, Burrus: Digital Filter Design, 1987])

• If the r+1 extremal frequencies were known, we could use the
frequency-sampling design from above to specify the desired
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values1± δ1 at the extremal frequencies in the passband, and
±δ2 in the stopband, respectively.

How to find the set of extremal frequencies?

Remez exchange algorithm(Parks, McClellan, 1972)

• It can be shown that the error function

E(ω) = D(ω) −
r−1∑

n=0

an cos(nω) (4.70)

can always be forced to take on some values±δ for any given
set ofr+1 frequency pointsωi, i = 1, . . . , r + 1.
Simplification: Restriction toW (ω) = 1, leading toδ1 =

δ2=δ.
This can be written as a set of linear equations according to

D(ωi) =

r−1∑

n=0

an cos(nωi)+(−1)
i
δ, i = 1, . . . , r+1,

(4.71)
from which we obtain a unique solution for the coefficients
an, n = 0, . . . , r−1 and the error magnitudeδ.

• In the Remez exchange algorithm{F} is usually chosen as
an equally spaced grid of frequency points with the number of
frequency points being approximately10 · L. The algorithm
is initialized with a trial set of arbitrarily chosen frequencies
T = {ω1, ω2, . . . , ωr+1}.

• The Remez algorithm now consists of the following basic
computations:
1. Solve the linear equations in (4.71), yielding an error

magnitudeδk in thek-th iteration.
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2. Interpolate to find the frequency response on the entire grid
of frequencies.

3. Search over the entire grid of frequencies for a larger error
magnitude thanδk obtained in step 1.

4. Stop, if no larger magnitude error has been found.
Otherwise, take ther + 1 frequencies, where the error
attains its maximum magnitude as a new trial set of
extremal frequencies and go to step 1.

Flowchart(ω → f ):

(from [Parks, Burrus: Digital Filter Design, 1987])

Example:

Choose the two coefficientsd0 andd1 such that they minimize the Chebyshev
error

max
x∈[0,1]

|x2 − (d0 + d1x1)|

(approximation of a parabola by a straight line)→ three extremal points→
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resulting linear equations to be solved:

x
2
i = d0 + d1 xi + (−1)

i
δ, i = 0, 1, 2 (4.72)

(from [Parks, Burrus: Digital Filter Design, 1987])

1. Arbitrarily chosen trial set:T0 = [0.25, 0.5, 1.0]

Matrix version of the linear equations in (4.72):





1 0.25 1
1 0.5 −1
1 1.0 1









d0

d1

δ0



 =





0.0625
0.25
1.0





→ δ0 = 0.0625

2. Next trial set chosen as those three points, where the error

E(x) = x
2 − (d0 + d1x)
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achieves its maximum magnitude:→ T1 = [0.0, 0.625, 1.0]

Linear equations to solve:





1 0.0 1
1 0.625 −1
1 1.0 1









d0

d1

δ0



 =





0.0
0.390625

1.0





→ δ1 = 0.1171875

3. Next trial set:T2 = [0.0, 0.5, 1.0]

Linear equations to solve:





1 0.0 1
1 0.5 −1
1 1.0 1









d0

d1

δ0



 =





0.0
0.25
1.0





→ δ1 = 0.125 =̂ maximum error→ T2 is the extremal point set

After the extremal pointsωi are found, the coefficientsan from
Step 1 of the above algorithm are used to obtain the filter
coefficients with (4.68).

MATLAB-command for optimum equiripple design:remez

Estimation of the filter length

Given the stop- / passband rippleδ1, δ2, and the transition
bandwidth∆ω = ωs − ωp the necessary filter orderN can
be estimated as (Kaiser, 1974)

N =
−10 log10(δ1 δ2) − 13

2.324∆ω
. (4.73)

MATLAB-command for estimating the filter order:remezord
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Design example

Design a linear-phase lowpass filter with the specifications

δ1 = 0.01, δ2 = 0.001, ωp = 0.4π, ωs = 0.6π.

→ weightingδ2/δ1 = 10 in the stopband.

Inserting these values into (4.73) leads toN ≈ 25.34 and
rounding up (to be on the save side) yields a filter length
L= N+1=27.

Impulse response
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In the passband the specifications are not satisfied→ Increasing
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the filter-length by one,L=28:

Impulse response
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4.5 Design of IIR filters

• In the following only design algorithms are discussed which
convert an analog into a digital filter, however, there are also
numerous algorithms for directly designing an IIR filter in the
z-domain (frequency sampling method, least-squares design).

• Why starting point analog filter? Analog filter design is a well
developed field (lots of existing design catalogs). Problem can
be defined in the z-domain, transformed into the s-domain and
solved there, and finally transformed back into the z-domain.
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• Analog filter: Transfer function

Ha(s) =
N(s)

D(s)
=

M∑

n=0
βn sn

N∑

n=0
αn sn

(4.74)

with the filter coefficientsαn, βn, and the filter orderN .
Furthermore,

Ha(s) =

∞∫

−∞

h(t) e
−st

dt (4.75)

(Laplace transform).

• Note that linear-phase designs are not possible for causal and
stable IIR filters, since the condition

H(z) = ±z
−N

H(z
−1

)

has to be satisfied (compare (4.53))→ mirror-image pole
outside the unit-circle for every pole inside the unit-circle→
unstable filter.

4.5.1 Filter design by impulse invariance

Goal: Design an IIR filter with an impulse responseh(n) being
the sampled version of the impulse responseha(t) of the analog
filter:

h(n) = ha(nT ), n = 0, 1, 2, . . . ,

whereT is the sampling interval.
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Frequency response (ideal sampling assumed, compare (2.4)):

H(jΩ) =
1

T

∞∑

n=−∞
Ha

(

jΩ − j
2πn

T

)

(4.76)

• T should be selected sufficiently small to avoid aliasing.

• Method is not suitable to design highpass filters due to the
large amount of possible aliasing.

Suppose that the poles of the analog filter are distinct. Then the
partial-fraction expansion ofHa(s) writes

Ha(s) =

N∑

i=1

Ai

s − s∞i

, (4.77)

the Ai are the coefficients of the partial-fraction expansion, and
the s∞i denote the poles of the analog filter. Inverse Laplace
transform of (4.77) yields

ha(t) =

N∑

i=1

Ai e
s∞it, t ≥ 0.

Periodical sampling:

h(n) = ha(nT ) =

N∑

i=1

Ai e
s∞inT

.

Transfer functionH(z) •−◦h(n):

H(z) =

∞∑

n=0

h(n)z
−n

=

∞∑

n=0

(
N∑

i=1

Ai e
s∞inT

)

z
−n

.
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We then have

H(z) =

N∑

i=1

Ai

∞∑

n=0

(

e
s∞iT z

−1
)n

=

N∑

i=1

Ai

1 − es∞iT z−1
.

Thus, given an analog filterHa(s) with poless∞i, the transfer
function of the corresponding digital filter using the impulse
invariant transform is

H(z) =

N∑

i=1

Ai

1 − es∞iT z−1
(4.78)

with poles atz∞i = es∞iT , i = 1, . . . , N . Note: (4.78)
holds only for distinct poles, generalization to multiple-order
poles possible.

Example:

Convert the analog filter with transfer function

Ha(s) =
s + 0.1

(s + 0.1)2 + 9

into a digital filter using the impulse invariant method.

Poles ofHa(s): s∞0,1 = −0.1 ± j3

Partial-fraction expansion:

Ha(s) =
0.5

s + 0.1 − j3
+

0.5

s + 0.1 + j3
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From (4.78) we then finally have

H(z) =
0.5

1 − e−(0.1−j3)T z−1
+

0.5

1 − e−(0.1+j3)T z−1

=
1 − (e−0.1T cos(3T )) z−1

1 − (2 e−0.1T cos(3T )) z−1 + e−0.2T z−2
.

Magnitude frequency responses:

Digital filter: 20 log10 |H(ejω)| Analog filter:20 log10 |Ha(jΩ)|

(from [Proakis, Manolakis, 1996])

4.5.2 Bilinear transform

Algebraic transformation between the variabless andz, mapping
of the entirejΩ-axis of thes-plane to one revolution of the unit
circle in thez-plane.

Definition:

s =
2

T

(

1 − z−1

1 + z−1

)

, (4.79)

T denoting the sampling interval.

The transfer function of the corresponding digital filter can be
obtained from the transfer function of the analog filterHa(s)
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according to

H(z) := Ha

[

2

T

(

1 − z−1

1 + z−1

)]

= Ha(s).

Properties

• Solving (4.79) forz yields

z =
1 + (T/2)s

1 − (T/2)s
, (4.80)

and by substitutings = σ + jΩ we obtain

z =
1 + σT/2 + jΩT/2

1 − σT/2 − jΩT/2
.

σ < 0 → |z| < 1, σ > 0 → |z| > 1 for all Ω
⇒ causal, stable continuous-time filters map into causal stable
discrete-time filters

• By insertings=jΩ into (4.80), it can be seen that|z|=1 for
all values ofs on thejΩ-axis⇒ jΩ-axis maps onto the unit
circle.

• Relationship betweenω andΩ: From (4.79) we obtain with
s = jΩ andz = ejω

jΩ =
2

T

(

1 − e−jω

1 + e−jω

)

,

=
2

T

(
j sin(ω/2)

cos(ω/2)

)

=
2j

T
tan(ω/2)
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⇒ Nonlinear mapping betweenω and Ω (warping of the
frequency axis) according to

Ω =
2

T
tan(ω/2), ω = 2arctan(ΩT/2). (4.81)

(from [Oppenheim, Schafer, 1999])

Remarks:

• Design of a digital filter often begins with frequency
specifications in the digital domain, which are converted
to the analog domain by (4.81). The analog filter is
then designed considering these specifications (i.e. using the
classical approaches from the following section) and converted
back into the digital domain using the bilinear transform.

• When using this procedure, the parameterT cancels out and
can thus be set to an arbitrary value (T = 1).

• Example:
Design a digital single-pole lowpass filter with a−3 dB frequency (cutoff
frequency) ofωc = 0.2π, using the bilinear transform applied to the
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analog filter with the transfer function

Ha(s) =
Ωc

s + Ωc
,

Ωc denoting the analog cutoff frequency.

Ωc is obtained fromωc using (4.81)

Ωc =
2

T
tan(ωc/2) =

0.65

T
.

The analog filter now has the transfer function

Ha(s) =
0.65/T

s + 0.65/T
,

which is transformed back into the digital domain using the bilinear
transform in (4.79), leading to the transfer function of our desired digital
filter:

H(z) =
0.245 (1 + z−1)

1 − 0.509 z−1
.

Note that the parameterT has been divided out. The frequency response is

H(e
jω

) =
0.245 (1 + e−jω)

1 − 0.509 e−jω
,

especially we haveH(ej0) = 1, and|H(ej0.2π)| = 0.707, which is

the desired response.

4.5.3 Characteristics of commonly used analog filters

• Design of a digital filter can be reduced to design an
appropriate analog filter and then performing the conversion
from H(s) to H(z).

• In the following we briefly discuss the characteristics of
commonly used analog (lowpass) filters.
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Butterworth filters

Lowpass Butterworth filters are allpole-filters characterized by the
squared magnitude frequency response

|H(Ω)|2 =
1

1 + (Ω/Ωc)2N
, (4.82)

N is the order of the filter,Ωc is the−3 dB frequency (cutoff
frequency).
SinceH(s) · H(−s)|s=jΩ = |H(jΩ)|2 we have from (4.82)
by analytic continuation into the wholes-plane

H(s) · H(−s) =
1

1 + (−s2/Ω2
c)

N
.

→ Poles ofH(s) H(−s):

−s2

Ω2
c

= (−1)
1/N

= e
j(2n+1)π/N

→ s∞,n = Ωc e
jπ/2

e
j(2n+1)π/(2N)

, n = 0, . . . , 2N − 1

(4.83)

• From (4.83): The2N poles ofH(s) H(−s) occur on a
circle of radiusΩc at equally spaced points in thes-plane.

• TheN poles forn = 0, . . . , N − 1 in (4.83) are located in
the left half of thes-plane and belong toH(s).

• TheN remaining poles lie in the right half of thes-plane and
belong toH(−s) (stability!).

• Furthermore, a Butterworth filter hasN zeros atΩ → ∞.
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Pole locations in thes-plane:

(from [Proakis, Manolakis, 1996])

Frequency responses(ω → Ω, |H(Ωp)|2 = 1/(1 + ǫ2))

(from [Proakis, Manolakis, 1996])

Estimation of the required filter orderN :

At the stopband edge frequencyΩs (4.82) can be written as

1

1 + (Ωs/Ωc)2N
= δ

2
2,

which leads to

N =
log((1/δ2

2) − 1)

2 log(Ωs/Ωc)
. (4.84)

MATLAB commands:buttord for order estimation,butter
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for the design of the corresponding digital filter obtained via
bilinear transform.

Example:

Determine the order and the poles of a lowpass Butterworth filter that has a
−3 dB bandwidth of 500 Hz and an attenuation of 40 dB at 1000 Hz.

• −3 dB frequencyΩc = 2 π · fc = 1000 π,

• stopband frequencyΩs = 2 π · fs = 2000 π,

• attenuation of40 dB→ δ2 = 0.01.

From (4.84) we then obtain

N =
log10(10

4 − 1)

2 log10 2
= 6.64

In order to be on the safe side we chooseN = 7.

Properties of the resulting digital filter designed withbutter for N = 7,
fsamp = 8000 Hz, and the above parameters (continuous-time filter
transformed by bilinear transform into the discrete-time domain):

Magnitude frequency response
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Phase response
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Chebyshev filters

Two types of Chebyshev filters:

• Type 1 filters are all-pole filters with equiripple behavior
in the passband and monotonic characteristic (similar to a
Butterworth filter) in the stopband.

• Type 2 filters have poles and zeros (for finites), and equiripple
behavoir in the stopband, but a monotonic characteristic in the
passband.

Type 1 Chebyshev filter:

Squared magnitude frequency response:

|H(Ω)|2 =
1

1 + ǫ2 T 2
N(Ω/Ωp)

, (4.85)

whereǫ is a parameter related to the passband ripple, andTN(x)

is theN -th order Chebyshev polynomial defined as

TN(x) =

{

cos(Ncos−1(x)) for |x| ≤ 1,

cosh(Ncosh−1(x)) for |x| > 1.
(4.86)
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The Chebyshev polynomials can be obtained by the recursive
equation

TN+1(x) = 2 x TN(x) − TN−1(x), N = 1, 2, . . .

Examples:

• T0(x) = 1, T1(x) = cos(cos−1(x)) = x

• T2(x) = cos(2 cos−1(x)) = 2cos2(cos−1x) − 1

= 2 x2 − 1

• T3(x) = cos(3 cos−1(x))

= 4 cos3(cos−1x)−3 cos(cos−1(x)) = 4 x3−3 x

• ...

⇒ TN(x) represents a polynom of degreeN in x.
⇒ Chebyshev behavior (minimizing the maximal error) in the
passband (or in the stopband for type 2 filters).

The filter parameterǫ in (4.85) is related to the passband ripple:
ForN odd,TN(0) = 0 → |H(0)|2 = 1,
for N even,TN(0) = 1 → |H(0)|2 = 1

1+ǫ2

At the passband edge frequencyΩ = Ωp we haveTN(1) = 1,
such that

1√
1 + ǫ2

= 1−δ1 ⇐⇒ ǫ =

√

1

(1 − δ1)2
− 1, (4.87)

which establishes a relation between the passband rippleδ1 and
the parameterǫ.

Typical squared magnitude frequency response for a Chebyshev
type 1 filter:
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(from [Proakis, Manolakis, 1996])

Type 2 Chebyshev filter:

Squared magnitude frequency response:

|H(Ω)|2 =
1

1 + ǫ2 [T 2
N(Ωs/Ωp)/T 2

N(Ωs/Ω)]
(4.88)

⇒ contains zeros ats < ∞ and poles

Typical squared magnitude frequency response for a Chebyshev
type 2 filter:

(from [Proakis, Manolakis, 1996])
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Estimation of the filter order:

Chebyshev filter only depend on the parametersN , ǫ, δ2, and the
ratioΩs/Ωp. Using these values, it can be shown that the required
order can be estimated as

N =

log

[(√

1 − δ2
2 +

√

1 − δ2
2(1 + ǫ2)

)

/(ǫ δ2)

]

log
[

Ωs/Ωp +
√

(Ωs/Ωp)2 − 1
] .

(4.89)
MATLAB commands:

• Order estimation:cheb1ord for type 1, cheb2ord for
type 2.

• Design of the corresponding digital filter, obtained from the
analog version by bilinear transform:cheby1 for type 1,
cheby2 for type 2.

Elliptic (Cauer) filters

• Elliptic filters have equiripple (Chebyshev) behavior in both
pass- and stopband.

• Transfer function contains both poles and zeros, where the
zeros are located on thejΩ-axis.

• Squared magnitude frequency response

|H(Ω)|2 =
1

1 + ǫ2 UN(Ω/Ωp)
, (4.90)

whereUN(x) denotes the Jacobian elliptic function of order
N , and the parameterǫ controls the passband ripple.

• Characteristic squared magnitude frequency response for a
elliptic filter:
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Æ22 Æ22

(from [Proakis, Manolakis, 1996])

• Filter design is optimal in pass- and stopband in the equiripple
sense: However, other types of filters may be preferred due to
their better phase response characteristics (i.e. approximately
linear-phase), for example the Butterworth filter.

Estimation of the filter order:

Required order to achieve the specifications with the parameters
δ1, δ2 and Ωp/Ωs, (1 − δ1 = 1/

√
1 + ǫ2, 1 − δ2 =

1/
√

1 + δ2):

N =
K(Ωp/Ωs) K(

√

1 − (ǫ/δ)2)

K(ǫ/δ) K(
√

1 − (Ωp/Ωs)2)
(4.91)

whereK(x) denotes the complete elliptic integral of the first kind
(tabulated)

K(x) =

π/2∫

0

dθ
√

1 − x2 sin2 θ
.

MATLAB commands:ellipord for order estimation,ellip
for the design of the corresponding digital filter obtained via
bilinear transform.
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5. Multirate Digital Signal Processing

• In many practical signal processing applications different
sampling rates are present, corresponding to different
bandwidths of the individual signals→ multirate systems.

• Often, a signal has to be converted from one rate to another.
This process is calledsampling rate conversion.

– Sampling rate conversion can be carried out by analog
means, that is D/A conversion followed by A/D conversion
using a different sampling rate→ D/A converter
introduces signal distortion, and the A/D converter leads
to quantization effects.

– Sampling rate conversion can also be carried out
completely in the digital domain: Less signal distortions,
more elegant and efficient approach.

• ⇒ Topic of this chapter is multirate signal processing and
sampling rate conversion in the digital domain.

5.1 Basic multirate operations

5.1.1 Sampling rate reduction

Reduction of the sampling rate (downsampling) by factor M :
Only everyM -th value of the signalx(n) is used for further
processing, i.e.y(m) = x(m · M)

x(n) y(m)
.

.

↓ M

Example: Sampling rate reduction by factor4
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(from [Fliege: Multiraten-Signalverarbeitung, 1993])

In the z-domain we have

X0(z) = X0(z
M

) =

∞∑

m=−∞
x(mM)z

−mM

=

∞∑

m=−∞
y(m)(z

M
)
−m

= Y (z
M

) = Y (z
′
) •−◦ y(m) (5.1)

Frequency response after downsampling
Starting point: orthogonality of the complex exponential sequence

1

M

M−1∑

k=0

e
j2πkm/M

=

{

1 for m = λM, λ ∈ ZZ,

0 otherwise.
(5.2)

With x0(mM) = x(mM) it follows

x0(m) = x(m)
1

M

M−1∑

k=0

W
−km
M , WM := e

−j2π/M (5.3)
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With (5.3) the z-transformX0(z) can be obtained as

X0(z) =
∞∑

m=−∞
x0(m)z

−m

=
1

M

M−1∑

k=0

∞∑

m=−∞
x(m)(W

k
Mz)

−m
. (5.4)

By replacingY (zM) = X0(z) in (5.4) we have for the z-
transform of the downsampled sequencey(m)

Y (z
M

) =
1

M

M−1∑

k=0

X(zW
k
M). (5.5)

With z = ejω and ω′ = ωM the corresponding frequency
response can be derived from (5.5):

Y (e
jω′

) =
1

M

M−1∑

k=0

X(e
j(ω′−k2π)/M)

) (5.6)

⇒ Downsampling by factorM leads to a periodic repetition of
the spectrumX(ejω) at intervals of2π/M (related to the high
sampling frequency).

Example: Sampling rate reduction of a bandpass signal
by M = 16 (Ω → ω)
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(from [Vary, Heute, Hess: Digitale Sprachsignalverarbeitung, 1998])

(a) Bandpass spectrumX(ejω) is obtained by filtering.
(b) Shift to the baseband, followed by decimation withM = 16.
(c) Magnitude frequency response|X(ejω′

)| at the lower sampling rate.

Remark: Shifted versions ofX(ejω) are weighted with the factor
1/M according to (5.6).

Decimation and aliasing

If the sampling theorem is violated in the lower clock rate,
we obtainspectral overlappingbetween the repeated spectra⇒
Aliasing
How to avoid aliasing? Bandlimitation of the input signalv(n)

prior to the sampling rate reduction with anantialiasing filter
h(n) (lowpass filter).

.

h(n)v(n)

.

y(m)↓ M
x(n)
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⇒ Antialiasing filtering followed by downsampling is often
calleddecimation.
Specification for the desired magnitude frequency response of the
lowpass antialiasing (or decimation) filter:

|Hd(e
jω

)| =

{

1 for |ω| ≤ ωc/M,

0 for π/M ≤ |ω| ≤ π,
(5.7)

whereωc < π denotes the highest frequency that needs to be
preserved in thedecimatedsignal.

Downsampling in the frequency domain, illustration forM = 2:
(a) input and filter spectra, (b) output of the decimator, (c) no
filtering, only downsampling(V → X):

(from [Mitra, 2000])
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More general approach: Sampling rate reduction with phase
offset

Up to now we have always usedy(0) = x(0), now we introduce
an additional phase offsetℓ into the decimation process.

Example forℓ = 2

�=m�`=M0 1 32` ` `

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

Note thaty2(m) in (c) is a formal description for the output signal of the

downsampler with non-integer sample indices. The real output signaly2(κ) is

obtained by assuming integer sample locations.

Derivation of the Fourier transform of the output signaly(m):

Orthogonality relation of the complex exponential sequence:

1

M

M−1∑

k=0

e
j2πk(m−ℓ)/M

=

{

1 for m = λM + ℓ, λ ∈ ZZ,

0 otherwise.
(5.8)
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Using (5.8) we have

xℓ(m) = x(m)
1

M

M−1∑

k=0

W
−k(m−ℓ)
M , (5.9)

and transforming (5.9) into the z-domain yields

Xℓ(z) =
1

M

M−1∑

k=0

∞∑

m=−∞
x(m)(W

k
Mz)

−m
W

kℓ
M

=
1

M

M−1∑

k=0

X(zW
k
M) W

kℓ
M . (5.10)

The frequency response can be obtained from (5.10) by
substitutingz = ejω andω′ = Mω as

Yℓ(e
jω′

) =
1

M

M−1∑

k=0

X(e
j(ω′−2πk)/M

) W
kℓ
M , (5.11)

Yℓ(e
jMω

) =
1

M

M−1∑

k=0

X(e
jω−j2πk/M

) W
kℓ
M . (5.12)

⇒ We can see that each repeated spectrum is weighted with a
complex exponential (rotation) factor.

5.1.2 Sampling rate increase

Increase of the sampling rate by factorL (upsampling): Insertion
of L − 1 zero samples between all samples ofy(m)

u(n) =

{

y(n/L) for n = λL, λ ∈ ZZ,

0 otherwise.
(5.13)
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↑ Ly(m) u(n)
.

.

Notation: Since the upsampling factor is named withL in conformance with

the majority of the technical literature in the following we will denote thelength

of an FIR filterwith LF .

Example: Sampling rate increase by factor4

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

In the z-domain the input/output relation is

U(z) = Y (z
L
). (5.14)

Frequency response after upsampling

From (5.14) we obtain withz = ejω

U(e
jω

) = Y (e
jLω

). (5.15)

⇒ The frequency response ofy(m) does not change by
upsampling, however the frequency axis is scaled differently. The
new sampling frequency is now (in terms ofω′ for the lower
sampling rate) equal toL · 2π.
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ω′

ω

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

Interpolation

The inserted zero values are interpolated with suitable values,
which corresponds to the suppression of theL − 1 imaging
spectra in the frequency domain by a suitable lowpass
interpolation filter.

↑ Ly(m)
.

.

g(n) v(n)
u(n)

g(n): Interpolation orantiimaginglowpass filter

Specifications for the interpolation filter:

Supposey(m) is obtained by sampling a bandlimited continuous-
time signalya(t) at the Nyquist rate (such that the sampling
theorem is just satisfied). The Fourier transformY (ejω) can thus
be written with (2.4) andΩ = ω/T0 as

Y (e
jω

) =
1

T0

∞∑

k=−∞
Ya

(
j(ω − 2πk)

T0

)

,
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whereT0 denotes the sampling period. If we instead sampleya(t)

at a much higher rateT = T0/L we have

V (e
jω

) =
1

T

∞∑

k=−∞
Ya

(
j(ω − 2πk)

T

)

, (5.16)

=
L

T0

∞∑

k=−∞
Ya

(
j(ω − 2πk)

(T0/L)

)

.

On the other hand by upsampling ofy(m) with factor L we
obtain the Fourier transform of the upsampled sequenceu(n)

analog to (5.15) as

U(e
jω

) = Y (e
jωL

).

⇒ If u(n) is passed through an ideal lowpass filter with cutoff
frequency atπ/L and a gain ofL, the output of the filter will be
preciselyv(n) = F−1{V (ejω)} in (5.16).

Therefore, we can now state our specifications for the lowpass
interpolation filter:

|Gd(e
jω

)| =

{

L for |ω| ≤ ωc/L,

0 for π/L ≤ |ω| ≤ π,
(5.17)

where ωc denotes the highest frequency that needs to be
preserved in the interpolated signal (related to the lower sampling
frequency).
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Upsampling in the frequency domain, illustration forL = 2:
(a) input spectrum, (b) output of the upsampler, (c) output after
interpolation with the filterh(n):

(from [Mitra, 2000])

5.1.3 Example: Decimation and interpolation

Consider the following structure:

.

.

h(n) ↓ M ↑ M f(n)
u(n) v(n)

x(n) x̂(n)
y(m)

Input-output relation?

Relation betweenY (z) andU(z) (see (5.5)), wherez is replaced
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by z1/M :

Y (z) =
1

M

M−1∑

k=0

U(z
1/M

W
k
M),

which by usingU(z) = H(z)X(z) leads to

Y (z) =
1

M

M−1∑

k=0

H(z
1/M

W
k
M) X(z

1/M
W

k
M). (5.18)

With V (z) = Y (zM) it follows

V (z) =
1

M

M−1∑

k=0

H(zW
k
M) X(zW

k
M), (5.19)

and we finally have

X̂(z) = F (z)Y (z
M

) =
1

M

M−1∑

k=0

F (z) H(zW
k
M) X(zW

k
M).

(5.20)
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Example:

M = 4, no aliasing:

F

with aliasing:

(from [Mertins: Signal Analysis, 1999])

5.1.4 Polyphase decomposition

• A polyphase decompositionof a sequencex(n) leads toM

subsequencesxℓ(m), ℓ = 0, . . . , M − 1, which contain
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only every M -th value ofx(n). Example forM = 2:
Decomposition into an even and odd subsequence.

• Important tool for the derivation of efficient multirate filtering
structures later on.

Three different decomposition types:

• Type-1 polyphase components:
Decomposition ofx(n) into xℓ(m), ℓ = 0, 1, . . . , M − 1

with

xℓ(m) = x(mM + ℓ), n = mM + ℓ. (5.21)

With xℓ(m) ◦−•Xℓ(z) the z-transformX(z) can be
obtained as

X(z) =

M−1∑

ℓ=0

z
−ℓ

Xℓ(z
M

) (5.22)

Example forM = 3:

n

m

m

0

0

0

0

1

1

1

1

2

2

2

2

m

x(n)

x0(m)

x1(m)

x2(m)
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x0(0) = x(0), x0(1) = x(3), . . .

x1(0) = x(1), x1(1) = x(4), . . .

x2(0) = x(2), x2(1) = x(5), . . .

• Type-2 polyphase components:

X(z) =

M−1∑

ℓ=0

z
−(M−1−ℓ)

X
′
ℓ(z

M
) (5.23)

with X
′
ℓ(z) •−◦ x

′
ℓ(n) = x(nM +M −1− ℓ) (5.24)

Example forM = 3:

x
′
0(0) = x(2), x

′
0(1) = x(5), . . .

x
′
1(0) = x(1), x

′
1(1) = x(4), . . .

x
′
2(0) = x(0), x

′
2(1) = x(3), . . .

• Type-3 polyphase components:

X(z) =

M−1∑

ℓ=0

z
ℓ
X̄ℓ(z

M
) (5.25)

with X̄ℓ(z) •−◦ x̄ℓ(n) = x(nM − ℓ) (5.26)
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5.1.5 Nyquist-Filters

Nyquist- orL-band filters:

• Used as interpolator filters since they preserve the nonzero
samples at the output of the upsampler also at the interpolator
output.

• Computationally more efficient since they contain zero
coefficients.

• Preferred in interpolator and decimator designs.

↑ Ly(m)
.

.

g(n) v(n)
u(n)

Using (5.14) the input-output relation of the interpolator can be
stated asV (z) = G(z) Y (zL).

The filterG(z) can be written in polyphase notation according to

G(z) = G0(z
L
)+ z

−1
G1(z

L
)+ · · ·+ z

−(L−1)
GL−1(z

L
),

where theGℓ(z), ℓ = 0, . . . , L−1 denote the type 1 polyphase
components of the filterG(z).

Suppose now that them-th polyphase component ofG(z) is a
constant, i.e.Gm(z) = α. Then the interpolator outputV (z)

can be expressed as

V (z) = αz
−m

Y (z
L
) +

L−1∑

ℓ=0, ℓ 6=m

z
−ℓ

Gℓ(z
L
)Y (z

L
).

(5.27)
⇒ v(Ln+m) = αy(n); the input samples appear at the output
of the system without any distortion for alln. All in-between
(L − 1) samples are determined by interpolation.
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Properties:

• Impulse response of a zero-phaseL-th band filter:

g(Ln) =

{

α for n = 0,

0 otherwise.
(5.28)

⇒ every L-th coefficient is zero (except forn = 0) →
computationally attractive

g(n)

n

(from [Mitra, 2000])

• It can be shown forα = 1/L that for a zero-phaseL-th band
filter

L−1∑

ℓ=0

G(zW
ℓ
L) = Lα = 1. (5.29)

⇒ The sum of allL uniformly shifted versions ofG(ejω)

add up to a constant.

G(z) G(zWL) G(zW
L−1

L
)G(zW

2

L
)

z = ejω

ω

(from [Mitra, 2000])

Half-band filters

Special case ofL-band filters forL = 2:
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• Transfer functionG(z) = α + z−1G1(z
2)

• For α = 1/2 we have from (5.29) for the zero-phase filter
g(n)

G(z) + G(−z) = 1. (5.30)

• If g(n) is real-valued thenG(−ejω) = G(ej(π−ω)) and by
using (5.30) it follows

G(e
jω

) + G(e
j(π−ω)

) = 1. (5.31)

⇒ G(ejω) exhibits a symmetry with respect to the half-band
frequencyπ/2 → halfband filter.

ω
ωp ωs

G(ejω)

(from [Mitra, 2000])

• FIR linear-phase halfband filter: Length is restricted to
LF = 4λ − 1, λ ∈ IN

5.2 Structures for decimation and interpolation

5.2.1 FIR direct form realization for decimation

.

h(n)v(n)

.

y(m)↓ M
x(n)
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The convolution with the lengthLF FIR filter h(n) can be
described as

x(n) =

LF−1
∑

k=0

h(k) · v(n − k),

and the downsampling withy(m) = x(m M). Combining both
equations we can write the decimation operation according to

y(m) =

LF−1
∑

k=0

h(k) · v(m M − k). (5.32)

Visualization (M = 3):

⇒ x(0) → y(0)

⇒ x(1) is removed

⇒ x(2) is removed

⇒ x(3) → y(1)

v(0)

h(k)

k

k

k

k

k
v(−k)

v(1 − k)

v(2 − k)

v(3 − k)

v(0)

v(0)

v(0)

h(0) h(LF −1)
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⇒ Multiplication of h(n) with v(1−n) andv(2−n) leads to
the resultsx(1) andx(2) which are discarded in the decimation
process→ these computations are not necessary.

More efficient implementation(v(n) → u(n), LF → N ):

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

(a) Antialiasing FIR filter in first direct form followed by
downsampling.
(b) Efficient structure obtained from shifting the downsampler
before the multipliers:

• Multiplications and additions are now performed at the lower
sampling rate.

• Additional reductions can be obtained by exploiting the
symmetry ofh(n) (linear-phase).

5.2.2 FIR direct form realization for interpolation

↑ Ly(m)
.

.

g(n) v(n)
u(n)

The outputv(n) of the interpolation filter can be obtained as

v(n) =

LF−1
∑

k=0

g(k) · u(n − k),
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which is depicted in the following:

g(k)

y(−m)

u(−k)

k

m

k
⇒ v(0)

⇒ The output samplev(0) is obtained by multiplication ofg(n)

with u(−n), where a lot of zero multiplications are involved,
which are inserted by the upsampling operation.

More efficient implementation(v(n) → x(n), LF → N ):

(a) Upsampling followed by interpolation FIR filter in second
direct form

(b) Efficient structure obtained from shifting the upsampler behind
the multipliers:

• Multiplications are now performed at the lower sampling
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rate, however the output delay chain still runs in the higher
sampling rate.

• Zero multiplications are avoided.

• Additional reductions can be obtained by exploiting the
symmetry ofh(n) (linear-phase).

5.3 Decimation and interpolation with polyphase filters

5.3.1 Decimation

• From Section 5.1.4 we know that a sequence can be
decomposed into polyphase components. Here type-1
polyphase components (5.21) are considered in the following.

• Type-1 polyphase decomposition of the decimation filter
h(n): The z-transformH(z) can be written according to
(5.22) as

H(z) =

M−1∑

ℓ=0

z
−ℓ

Hℓ(z
M

), (5.33)

M denoting the downsampling factor and
Hℓ(z

′) •−◦hℓ(m) the z-transform of the type-1 polyphase
componentshℓ(m), ℓ = 0, . . . , M − 1.

Resulting decimator structure(V (z) → U(z)): (z0)
(z0)(z0)

(z0)
Y (z0) Y (z0)

(from [Fliege: Multiraten-Signalverarbeitung, 1993])
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(a): Decimator with decimation filter in polyphase representation
(b): Efficient version of (a) withM times reduced complexity

Remark: The structure in (b) has the same complexity as the direct
form structure from Section 5.2.1, therefore no further advantage.
However, the polyphase structures are important for digital filter
banks which will be discussed later on.

Structure (b) in time domain(v(n) → u(n)):

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

5.3.2 Interpolation

Transfer function of the interpolation filter can be written analog
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to (5.33) for the decimation filter as

G(z) =

L−1∑

ℓ=0

z
−ℓ

Gℓ(z
L
),

L denoting the upsampling factor, andgℓ(m) the type-1
polyphase components ofg(n) with gℓ(m) ◦−•Gℓ(z

′).

Resulting interpolator structure(V (z) → X(z)):Y (z0) Y (z0) (z0)
(z0)(z0)

(z0)

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

(a): Interpolator with interpolation filter in polyphase
representation
(b): Efficient version of (a) withL times reduced complexity

As in the decimator case the computational complexity of the
efficient structure in (b) is the same as for the direct form
interpolator structure from Section 5.2.2.

5.4 Noninteger sampling rate conversion

Notation: For simplicity a delay by one sample will be generally denoted with
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z−1 for every sampling rate in a multirate system in the following (instead of

introducing a specialz for each sampling rate as in the sections before).

• In practice often there are applications where data has to be
converted between different sampling rates with a rational
ratio.

• Noninteger (synchronous) sampling rate conversion by factor
L/M : Interpolation by factorL, followed by a decimation
by factor M ; decimation and interpolation filter can be
combined:Y (z)

.

Y1(z) G(z) #M" L X1(z) X(z).

• Magnitude frequency responses:

ω

ω

ω

ω

ω

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

Efficient conversion structure

In the following derivation of the conversion structure we assume
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a ratioL/M < 1. However, a ratioL/M > 1 can also be used
with thedual structures.

1. Implementation of the filterG(z) in polyphase structure,
shifting of all subsamplers into the polyphase branches:

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

2. Application of the following structural simplifications:
(a) It is known that ifL andM are coprime (that is they have

no common divider except one) we can findℓ0, m0 ∈ IN

such that

ℓ0 L − m0 M = −1 (diophantic equation) (5.34)

⇒ delayz−λ in one branch of the polyphase structure can
be replaced with the delayzλ(ℓ0 L−m0 M)

" L

.

G�(z) #M .z�(`0 L�m0M)

(b) The factorzλℓ0L can be shifted before the upsampler, and
the factorz−λm0M behind the downsampler:

.

.z�`0 " L #M z��m0G�(z)
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(c) Finally, if M andL are coprime, it can be shown that up-
and downsampler may be exchanged in their order:

.

.z��m0z�`0 #M " LG�(z)

(d) In every branch we now have a decimator (marked with the
dashed box), which can again be efficiently realized using
the polyphase structure from Section 5.3.1. Thus, each
type-1 polyphase componentgλ(n) is itself decomposed
again inM polyphase componentsgλµ(n) ◦−•Gλµ(z),
λ = 0, . . . , L − 1, µ = 0, . . . , M − 1.

Resulting structure:

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

• Delaysz−λm0 are realized with the output delay chain.
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• The termszλℓ0 are noncausal elements: In order to obtain a
causal representation, we have to insert the extra delay block
z−(L−1)ℓ0 at the input of the whole system, which cancels out
the ”negative” delayszλℓ0.

• Polyphase filters are calculated with the lowest possible
sampling rate.

• L/M > 1 is realizable using the dual structure (exchange:
input ↔ output, downsamplers↔ upsamplers, summation
points↔ branching points, reverse all branching directions)

Example forL = 2 andM = 3:

Application: Sampling rate conversion for digital audio signals
from 48 kHz to32 kHz sampling rate

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

Polyphase filters are calculated with16 kHz sampling rate
compared to96 kHz sampling rate in the original structure.

Rate conversion from32 kHz to48 kHz: Exercise!

5.5 Efficient multirate filtering

In the following we only consider lowpass filtering, however, the
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presented methods can easily be extended to band- or highpass
filters.

5.5.1 Filtering with lower sampling rate

If the stopband edge frequency of a lowpass filter is substantially
smaller than half of the sampling frequency, it may be advisable
to perform the filtering at a lower sampling rate:H
(z) "M#M Hi(z) .fs1=fs=M fs1Hd(z)V (z)

. H(z)fs Y (z)fs

Hd(z) is the (input) decimation filter, the actual filtering is carried
out with the core filterHc(z) in theM -times lower sampling rate
with sampling frequencyfs1

= fs/M , and after upsampling
the output signal is interpolated withHi(z) ⇒ Single-stage
implementation

Stopband- and passband edge frequencies of the decimation and
interpolation filters have to be adjusted to the filter specifications
of the core filter:

fs1 ffs1=2 fs1�fstopfstopfpass

jHdj; jHijjH
j

• Stop- and passband edge frequenciesfstop and fpass of the
core filterHc(z) are identical with those for the overall filter
H(z) = Y (z)/V (z).
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• Stopband edge frequency for the decimation filter then has to
be chosen less or equal than(fs1

−fstop).

• The interpolation filter can be chosen identical to the
decimation filter, since then it is guaranteed that all imaging
components are in the stopband region of the interpolation
filter.

• Transition bandwidth forH(z) is M -times smaller than for
Hc(z) ⇒ design with a fairly small number of coefficients
for Hc(z) possible (compared to a direct design ofH(z)).

• Stopband rippleδ2 for the overall filterH(z):

δ2 =

{

δ2,c(1 + δ1,i)(1 + δ1,d) ≈ δ2,c, fstop≤ f ≤ (fs1−fstop),

δ2,c δ2,d δ2,i, (fs1−fstop) < f ≤ fs

(5.35)

where the approximation forfstop ≤ f ≤ (fs1
−fstop) holds

for small decimation and interpolation filter passband ripples
δ1,d andδ1,i.

• Passband rippleδ1 for H(z):

1 + δ1 = (1 + δ1,c) (1 + δ1,d) (1 + δ1,i),

(5.36)

approximation
=⇒ δ1 ≈ δ1,c + δ1,d + δ1,i, (5.37)

where the last approximation is valid for small passband
ripplesδ1,c, δ1,d, andδ1,i.

• Complexity savings (#multiplications and #additions) can be
obtained by roughly a factor of 100. An even higher gain can
be achieved by multistage implementations.
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5.5.2 Interpolating FIR (IFIR) filters

Alternative to multirate filters with decimation and interpolation,
also suitable for very narrowband filters.

Principle: V (z)

.

. Y (z)H(z) G(zK) F (z)
• No real multirate filter since both filters are calculated with the

same (input) sampling rate. Multirate technique is applied to
the coefficients of the impulse responseh(n).

• Realization ofG(zK) in the first direct structure:

g(0) g(1) g(2) g(3) g(LF −2) g(LF −1)

z−K

v(n)
z−K z−K z−K z−K z−K

y(n)

G(zK) is a function where allz−1 are replaced byz−K,
which is equivalent to insertingK − 1 zeros between the
coefficients ofG(z).

• G(ejω) → G(ejKω): Frequency responseG(ejω) is
”compressed” by factorK, K−1 imaging spectra are present:

ω

ω

|G(ejω)|

|G(ejKω)|

(from [Fliege: Multiraten-Signalverarbeitung, 1993])
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Furthermore, the transition bandwidth and the width of
the passband forG(ejKω) are K-times smaller than for
the original filter G(ejω) with the same number of filter
coefficients.

• The filter F (z) removes the imaging spectra, and
H(z) = G(zK) · F (z) only consists of the baseband
part ofG(ejKω).

Design: Starting point for the design: Passband and stopband
edge frequenciesωs, ωp for the overall filterH(z) → search for
a suitable factorK leading to a less complex interpolation filter
f(n).

Filter specifications(H, F, G are allmagnitude frequency responses)

ω

ω

Kωp Kωs

ωsωp

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

• Requirements for passband and stopband edge frequency of
the prototypeG(z):

ωp,G = K · ωp, ωs,G = K · ωs. (5.38)

• Requirements for passband and stopband edge frequency of
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the interpolation filterF (z):

ωp,F = ωp, ωs,F =
2π

K
− ωs. (5.39)

• Passband rippleδ1 for H(z):

1 + δ1 = (1 + δ1,G) (1 + δ1,F ). (5.40)

Small passband ripplesδ1,G for G(z) and δ1,F for F (z),
resp., lead to the simplification

δ1 ≈ δ1,G + δ1,F . (5.41)

• Stopband rippleδ2 for H(z):

δ2 =

{

δ2,G (1 + δ1,F ) for ωs ≤ ω ≤ ωs,F ,

δ2,F (1 + δ1,G) for ωs,F < ω ≤ π.
(5.42)

For small passband ripplesδ1,G, δ1,F we have approximately

δ2 ≈ δ2,F = δ2,G. (5.43)

Example:

Design a lowpass IFIR filter with the following specifications:

ωd = 0.05π, ωs = 0.1π,

20 log10(1 + δ1) = 0.2 dB → δ1 ≈ 0.023, 20 log10(|δ2|) = −40 dB

1. We select a factorK =4: PrototypeG(z) has the parameters

ωp,G = 0.2π, ωs,G = 0.4π,

δ1G
≈ 0.0116 → 20 log10(1+δ1,G)≈0.1 dB,

20 log10(|δ2,G|) = −40 dB,
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ripple is equally distributed betweenG(z) andF (z), see (5.41).

2. We use an linear-phase FIR Chebyshev design and insert these values for
G(z) into (4.73), yielding a filter orderN = 19. However, several test
designs show that the above specifications are only met forN = 21,
leading to a filter length ofLF =N+1=22.

Impulse response
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3. Specifications for the interpolation filterF (z):

ωp,F = ωp = 0.05π, ωs,F =
2π

K
− ωs = 0.4π,

20 log10(1 + δ1,F ) ≈ 0.1 dB, 20 log10(|δ2,F |) = −40 dB.

⇒ resulting filter order ((4.73))N = 12:

Impulse response

0 2 4 6 8 10 12
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4. Upsampling of the impulse responseg(n) by factor K = 4 →
g1(n) ◦−•G(ejKω):
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Impulse response
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5. Final IFIR filterh(n) = g1(n) ∗ f(n):

Magnitude frequency response
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Passband detail
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6. H(z) in the IFIR realization has an overall length of 35 coefficients. On
the other hand we obtain from (4.73) an estimated length of 65 coefficients
for the direct form implementation.

5.6 Application: Oversampled A/D and D/A converter

5.6.1 Oversampled A/D converter

Extension of the A/D and D/A conversion concepts from
Section 2.

Structure:

C

Rx(t)
h(n) ↓ 2L

Q[xL(n)]x(nT/2L) = xL(n)

T/2L

y(n)ŷ(n)

b bit

Q

A/D converter
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• Continuous-time input signal is band-limited by the analog
lowpass such that the frequencyωu represents the maximum
frequency in the interesting frequency range for the input
signal:

Sampling with a sampling frequency2L · ωs ≥ 2 · ωu,
L ∈ {0, 1, 2, . . . }, after the analog filtering. Hereωs

denotes the lowest possible sampling frequency in order not
to violate the sampling theorem:ωs = 2 · ωu = 2π/T .

• A/D converter here is idealized as concatenation of sampler
and quantizer.

• After A/D conversion a lowpass filtering is carried out where
the lowpass has the idealized frequency response

|H(e
jω

)| =

{

1 for |ω| < π/2L,

0 otherwise.

The resulting bandlimited signal can then be downsampled by
factor2L.

Quantization noise variance of ab-bit midtreat quantizer
according to (2.27), where the rangeR of the quantizer is chosen
asR = 2:

σ
2
e =

2−2b+2

12
.

As an alternativeσ2
e can also be obtained via the power spectral

density (power spectrum)Φee(e
jω) as

σ
2
e =

1

2π

π∫

−π

Φee(e
jω

) dω.
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The filtering with the lowpassh(n) now reduces the quantization
noise variance by factor2L, since

σ
2
e(L,b)

=
1

2π

π/2L
∫

−π/2L

Φ
(L)
ee (e

jω
) dω =

2−2b+2

12 · 2L
. (5.44)

⇒ Reduction of the noise variance due to oversampling by
factor2L:

Gain= 10 log10




σ2

e

σ2
e(L,b)



 = 10 log10(2
L
) = L·3.01 dB.

(5.45)
⇒ An increase of theoversampling factor2L by factor 2 leads to
an increase in quantizer resolution by half a bit (compare (2.29))
and to an increase of the signal-to-noise ratio (SNR) in (2.29) by
3 dB!
Visualization:
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ω
π

σ2
e

−π 0

(a)

Φee(e
jω)

ω
ππ

2L− π
2L 0

σ2
e

(b)

Φ
(L)
ee (ejω)

Gain in (5.45) can also be used for reducing the quantizer
wordlength while keeping the SNR constant:
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• Reduction of the hardware complexity of the core A/D
converter

• Extreme case: Quantizer wordlength is reduced tob = 1 bit
→ only a simple comparator is necessary

Requirements:

σ2
e(L,bL)

σ2
e(0,b0)

!
= 1 =

2−2bL+2

2L · 2−2b0+2
→ bL = b0−

L

2
, (5.46)

with bL denoting the quantizer wordlength for a givenL leading
to the same quantization noise variance asb0 for L=0, bL ≤ b0.

Example:
Given ab0 = 16 bit A/D converter, where the analog input signal is sampled
at the Nyquist rate. Choose the parameterL in the oversampled A/D converter
from above such that the same quantization noise variance forbL = 1 bit is
achieved.

From (5.46) we obtainL = 30, leading to an oversampling factor of

2L ≈ 109.

Improvement: Shaping of the quantization noise

The quantizer in the above block is now replaced by the following
structure:

Q

[xL(n)]Q

z−1

− +

−

+
Q̂

ê(n)

xL(n) x̂L(n)
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Analysis:

y(n)=[xL(n)]Q = Q̂[xL(n) − ê(n − 1)],

= xL(n) − ê(n − 1) + ê(n),

= xL(n)+ê(n) ∗ (1−δ(n−1)) (5.47)

◦−• Y (z) = XL(z) + Ê(z)(1 − z
−1

). (5.48)

Therefore, the z-transform of the overall quantization error
sequence can be expressed as

E(z) = Ê(z)
(

1 − z
−1

)

,

which leads to the quantization noise power spectrum

Φee(e
jω

) = Φêê(e
jω

)|1 − e
−jω|2.

With Φêê(e
jω) = 2−2b+2

12 (noise power spectrum of ab-bit
midtreat quantizer with rangeR = 2) we have

Φee(e
jω

) =
2−2b+2

6
(1 − cos(ω)). (5.49)
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|Φ
ee

(e
jω

)|
  →
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⇒ Quantization noise power spectrum now has highpass
character→ noiseshaping
The noise variance after lowpass filtering withh(n) in the above
oversampled A/D converter structure is now given with (5.49) as

σ
2
e(L,b)

=
1

2π

π/2L
∫

−π/2L

Φee(e
jω

) dω,

=
2−2b+2

12

(

2
−L+1 − 2

π
sin(2

−L
π)

)

. (5.50)

Reduction of the noise variance due to oversampling by factor2L:

Gain= −10 log10

(

2
−L+1 − 2

π
sin(2

−L
π)

)

. (5.51)

For L = 4: Gain ≈ 31 dB (compared to 12 dB without noise
shaping, see (5.45)).

Reducing the quantizer wordlength for constant SNR:

σ2
e(0,b0)

σ2
e(L,bL)

!
= 1 → bL =b0+

1

2
log2

(

2
−L+1− 2

π
sin(2

−L
π)

)

.

(5.52)
Example:
The above example is again carried out for the noiseshaping case: For

b0=16 bit and bL = 1 bit we obtain from (5.52) via a computer search

(fix-point iteration)L ≈ 10.47 → When the input signal is sampled with

fs = 44.1 kHz andb0 = 16 the new sampling frequency in the oversampled

A/D converter would befsover = 211 · fs ≈ 90 MHz for bL=1.
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⇒ Improved noiseshaping by other techniques, where the
quantization noise power spectrum shows even stronger highpass
character (sigma-delta modulation, more selective shaping filters).

5.6.2 Oversampled D/A converter

Structure:

C

Ry(t)

DAC
b1 bit

b bit b bit
h(n) Q

b1 < b bit
h1(n)

Q[xL(n)]xL(n)x̂L(n)x(n)
↑ 2L

1. Input signal sampled withb bits is upsampled by factor2L and
then interpolated withh(n).

2. The resulting signalxL(n) is requantized to a wordlength
of b1 < b bits, leading to a worse SNR due to higher
quantization noise.

3. Filtering by h1(n) removes the quantization noise in the
unused spectral regions, which increases the SNR again.

4. Theb1 bit DAC in combination with a simple analog lowpass
converts the signal back into the analog domain.

Reason for performing a requantization: Use of a cheap low
resolution D/A converter is possible, often withb1 = 1 bit.
In combination with a noiseshaping approach the same SNR is
obtained as when ab bit converter would be used directly on the
input signal (but with higher costs).

⇒ Favored converter principle in CD players (→ ”bitstream”
conversionfor b1=1 bit)
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5.7 Digital filter banks

• A digital filter bank consists of a set of filters (normally
lowpass, bandpass and highpass filters) arranged in a parallel
bank.

• The filters split the input signalx(n) into a number of subband
signalsyk(n), k = 0, . . . , K − 1 (analysis filter bank).

• Subband signals are processed and finally combined in a
synthesis filter bankleading to the output signal̂x(n).

• If the bandwidth of the subband signal is smaller than the
bandwidth of the original signal, they can be downsampled
before processing→ processing is carried out more efficiently.

.

.

↓ M0

↓ M1

u1(n)

u0(n)

uK−1(n)

h1(n)

h0(n)

hK−1(n)

x(n)

analysis filter bank

su
bb

an
d

pr
oc

es
si

ng

↑ M1

↑ M0

↑MK−1

v0(n)

v1(n)

vK−1(n)

synthesis filter bank

x̂(n)

fK−1(n)

f0(n)

f1(n)

y0(m0)

y1(m1)

yK−1(mK−1)
↓MK−1

Subband processing: Quantization (wordlength reduction)→
coding, (adaptive) filtering→ equalization, . . .

5.7.1 Two-channel filter banks: Structure and analysis

Basic two-channel subband coder:

↓ 2

↓ 2

↑ 2

↑ 2D
em

ul
tip

le
xe

r

M
ul

tip
le

xe
r

Channel

Decoder

Decoder

Encoder

Encoder

.

.

x(n) H0(z)

H1(z)

x̂(n)F0(z)

F1(z)

Only the errors in the above system related to the filter bank are
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investigated in the following→ simplified structure:

↓ 2

↓ 2

↑ 2

↑ 2
.

.

x(n)
y0(m)

y1(m)

H0(z)

H1(z)

x̂(n)F0(z)

F1(z)

⇒ Critically subsampledfilter bank: The number of subband
equals the subsampling factor in every subband.
Typical frequency responses for the analysis filters:

(from [Mitra, 2000])

Frequency responses of the subband signals (foridealfilters)
(Ω → ω) :

0 π 2π Ω

Ω

0 2ππ 3π 4π Ω´

0 π 2π

0 π 2π

Ω
0 2ππ 3π 4π Ω´

b)

a)

c)

0 "0"

0 1

1

"1"

"1" 1"1"

"0"

0 "0"
X(ejΩ)

(From [Vary, Heute, Hess: Digitale Sprachsignalverarbeitung, 1998])

(a): Magnitude frequency response of the input signal, (b) magnitude frequency

response of the lowpass, and (c) highpass branch after analysis filtering and

downsampling

⇒ Highpass subband: Baseband spectra infrequency reversed
order
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Analysis

How do we have to design the filters such that

x̂(n) = x(n − D) holds?

(D denotes the delay of the overall analysis-synthesis system in
samples)
We have the following relations:

Y0(z
2
) =

1

2
[H0(z) X(z) + H0(−z)X(−z)] (5.53)

Y1(z
2
) =

1

2
[H1(z) X(z) + H1(−z)X(−z)] (5.54)

Proof:
These relations can be obtained from (5.18)

Y (z) =
1

M

M−1∑

k=0

H(z
1/M

W
k
M) X(z

1/M
W

k
M)

for M = 2. With

W
k
2 = e

−j2πk/2
= e

−jπk
=

{

1 for n even,

−1 for n odd,

we have

Y (z) =
1

2

1∑

k=0

H((−1)
k
z

1/2
) X((−1)

k
z

1/2
)

=
1

2

[

H(+z
1/2

) X(+z
1/2

) + H(−z
1/2

) X(−z
1/2

)
]

.

(5.55)
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Replacingz by z2 then leads to

Y (z
2
) =

1

2
[H(z) X(z) + H(−z) X(−z)] ,

where (5.53), (5.54) can be obtained by replacingH with H0 and
H1, resp. 2

The connection between the subband signals and the reconstructed
signal is

X̂(z) =
[

Y0(z
2
) F0(z) + Y1(z

2
) F1(z)

]

, (5.56)

and finally by combining (5.56), (5.53), and (5.54) the input-
output relation for the two-channel filter bank writes

X̂(z) =
1

2
[H0(z) F0(z) + H1(z) F1(z)] X(z)+

+
1

2
[H0(−z) F0(z) + H1(−z) F1(z)] X(−z).

(5.57)
(5.57) consists of two parts:

S(z) = [H0(z) F0(z) + H1(z) F1(z)] , (5.58)

G(z) = [H0(−z) F0(z) + H1(−z) F1(z)] (5.59)

• S(z): Transfer function for the input signalX(z) through
the filter bank, desirable is

S(z)
!
= 2z

−D
. (5.60)
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• G(z): Transfer function for the aliasing componentX(−z),
desirable is (no aliasing!)

G(z)
!
= 0. (5.61)

Two cases have now to be distinguished:

1. If G(z) = 0, but S(z) 6= c z−D, then the reconstructed
signalx̂(n) is free of aliasing, however,linear distortionsare
present.

2. If G(z) = 0 andS(z) = c z−D, then we have aperfect
reconstruction(PR) system, except of a scaling factorc/2 and
an additional delay ofD samples.

5.7.2 Two-channel quadrature-mirror filter (QMF) banks

(Crosier, Esteban, Galand, 1976)
Quadrature-mirror filter (QMF) banks allow thecancelation of
all aliasing components, but generally lead tolinear distortions
(i.e. phase and amplitude distortions)

Starting point: Given (lowpass) prototypeH0(z), all other filters
are chosen as

F0(z)=H0(z), H1(z)=H0(−z), F1(z)=−H1(z)

(5.62)
Thus we have from (5.59) for the aliasing transfer function

G(z) = H0(−z) F0(z) + H1(−z) F1(z)

= H0(−z) H0(z) + H0(z)(−H0(−z)) = 0

(5.63)
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⇒ Cancelationof all aliasing components
For the linear distortion transfer functionS(z) one obtains by
inserting (5.62) into (5.58)

S(z) = H
2
0(z) − H

2
0(−z),

that is, the prototypeH0(z) has to be designed such that

S(z) = H
2
0(z) − H

2
0(−z)

!≈ 2z
−D (5.64)

is satisfied as good as possible→ requirement for anideal
(constant)overall frequency response for the whole analysis-
synthesis system

• Unfortunately, (5.64) can not be satisfied exactly with FIR
filters, but it can be approximated with an arbitrarily small
error
⇒ Linear distortions can be kept small

• Exception: (5.64) is satisfied exactly by using the prototype

H0(z) =
1√
2
(1 + z

−1
)

(Haar filter):

1

2
(1 + 2z

−1
+ z

−2
) − 1

2
(1 − 2z

−1
+ z

−2
) = 2z

−1

• The magnitude frequency responses of highpass and lowpass
filter have for real-valued filter coefficients the mirror image
property (therefore the name QMF):

|H1(e
j(π

2−ω)
)| = |H0(e

j(π
2+ω)

)| (5.65)
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jω
)|

 →

Design of QMF banks

• Usually the design is carried out by minimization of an error
measure

E = Er + αEs
!
= min. (5.66)

Er refers to the linear distortion error energy

Er = 2

π∫

ω=0

(

|H0(e
jω

)|2 + |H0(e
j(ω−π)

)|2 − 1
)

dω,

(5.67)
andEs to the energy in the stopband region of the filter

Es =

π∫

ω=ωs

|H0(e
jω

)|2 dω, (5.68)

with the stopband edgeωs = (π +∆ω)/2. ∆ω denotes the
width of the transition band, which is symmetrically centered
aroundω = π/2.

• Minimization of (5.66) can be carried out via a numerical
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minimization approach for a given∆ω and given prototype
lengthLF .

• Catalogs with optimized filter coefficients forh0(n) may
for example be found in [Akansu, Haddad: Multirate signal
decomposition, 1992].

• Once a good prototypeH0(z) has been found, the remaining
filters can be obtained from (5.62).

Example: (LF = 20, ∆ω = 0.2π)

Impulse responseh0(n)
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Impulse responseh1(n)
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Frequency responses forH0, H1
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Frequency response of the QMF bank
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Efficient realization using polyphase components

From (5.62) we know thatH1(z) = H0(−z) holds for the
analysis highpass filter. Then, the type-1 polyphase components
H0ℓ(z) andH1ℓ(z), ℓ ∈ {0, 1}, are related according to

H10(z) = H00(z) and H11(z) = −H01(z). (5.69)

This leads to an efficient realization of the analysis and synthesis
filter bank, where the number of multiplications and additionscan
be reduced by factor four:

0

0

(From [Mertins: Signal analysis, 1999])

5.7.3 Two-channel perfect reconstruction filter banks

In order to obtain a perfect reconstruction filter bank the analysis
and synthesis filters are chosen as follows (ℓ ∈ {0, 1, 2, . . . }):

F0(z) = z
−ℓ

H1(−z), F1(z) = −z
−ℓ

H0(−z)

(5.70)
Aliasing transfer function: Inserting (5.70) into (5.59) yields

G(z) = H0(−z) F0(z) + H1(−z) F1(z)

= H0(−z) z
−ℓ

H1(−z) + H1(−z)
(

−z
−ℓ

H0(−z)
)

= 0 ⇒ No aliasing componentsin the reconstructed signal!

Transfer function for the input signal: Inserting (5.70) into (5.58)
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yields

S(z) = H0(z) F0(z) + H1(z) F1(z)

= H0(z) F0(z) + (−1)
ℓ+1

H0(−z)F0(−z) (5.71)

Condition for a linear distortion free system:S(z)
!
= 2z−D

With the abbreviation

T (z) := F0(z) H0(z) (5.72)

the PR condition in (5.71) becomes

T (z) + (−1)
ℓ+1

T (−z) = 2 z
−D

. (5.73)

Interpretation:

• [T (z) + T (−z)] refers to the z-transform of a sequence
whoseoddcoefficients are zero.

• [T (z) − T (−z)]: All coefficients with anevenindex are
zero.

• The PR condition in (5.71) now states that the corresponding
sequences with z-transforms[T (z) + T (−z)] or
[T (z) − T (−z)] are allowed to have only one non-zero
coefficient. Hence, fort(n) ◦−•T (z) holds

t(n) =







1 for n = D,

0 for n = D + 2λ, λ 6= 0,

arbitrary otherwise.
(5.74)
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⇒ Half-band filter (Nyquist(2) filter), see Section 5.1.5.

A half-band filter has4λ − 1 coefficients (λ ∈ IN).

Example:
(a): linear-phase half-band filter
(b): half-band filter with lower system delay

(From [Mertins: Signal analysis, 1999])

Filter design via spectral factorization

A given half-band filterT (z) can be factorized according to

T (z) = F0(z) H0(z),

i.e. one looks for the zeros ofT (z), and distributes them among
the polynomialsF0(z) andH0(z).

The missing filtersF1(z) andH1(z) can then be obtained from
(5.70).
⇒ General approachfor the PR design of two-channel banks

Example:
A half-band filter is given as

{t(n)} = {−1, 0, 9, 16, 9, 0,−1}.
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The zeros are{3.7321,−1.0,−1.0, 0.2679}
︸ ︷︷ ︸

zeros ofH0(z)

, {−1.0,−1.0}
︸ ︷︷ ︸

zeros ofF0(z)

,

such that (linear-phase filter).

H0(z) = α(−1 + 2z
−1

+ 6z
−2

+ 2z
−3 − z

−4
),

F0(z) = β(1 + 2z
−1

+ z
−2

)

Orthogonal filter banks

• In the above example: Still two filtersF0(z) andH0(z) to
design in order to construct the whole PR filter bank.

• In an orthogonal two-channel filter bank (Smith, Barnwell,
1984), (Mintzer, 1985) it suffices to design the lowpass
analysis filterH0(z) for a PR system.

For an orthogonal two-channel bank the filterH1(z) is chosen as

H1(z) = z
−(LF−1)

H0(−z
−1

), (5.75)

LF denoting the length ofh0(n). In the following we will only
considereven lengthsLF . Then, using (5.70) withℓ = 0, the
remaining synthesis filter can be obtained as

F̂0(z)=(−z)
−(LF−1)

H0(z
−1

), F̂1(z)=−H0(−z).

Note that (−z)−(LF−1) = (−1)−(LF−1) z−(LF−1) =

(−1) z−(LF−1) since(LF −1) odd.
The factor(−1) in F0(z), F1(z) can be regarded as a common
factor multiplied to the output of the synthesis bank and canthus
be removed for simplicity reasons:

F0(z)=z
−(LF−1)

H0(z
−1

), F1(z)=H0(−z). (5.76)
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Removing the factor(−1) does not change anything at the
aliasing cancelation property: InsertingF0(z) and F1(z) into
(5.59) still yieldsG(z) = 0.

In order to obtain the condition for a analysis-synthesis system
free of linear distortions we now insert (5.75) and (5.76) into
(5.58), leading to

S(z) = z
−(LF−1)

(H0(z) H0(z
−1

) + H0(−z) H0(−z
−1

)),

!
= 2 z

−D
.

Hence, the PR condition is

H0(z) H0(z
−1

) + H0(−z) H0(−z
−1

)
!
= 2. (5.77)

With z = ejω (5.77) can be written for real-valuedh0(n)

according to

|H0(e
jω

)|2 + |H0(e
j(ω+π)

)|2 = 2 (5.78)

⇒ power-complementaryproperty forH0(e
jω).
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→ It can be easily shown that the power-complementary property
also holds forh1(n), f0(n), andf1(n).

Design of orthogonal filter banks

1. Search a prototypeH0(z) which satisfies the power-
complementary property (5.78) or (for the interesting real-
valued filters) the corresponding equation (5.77) in the z-
domain.

With the abbreviationTZ(z) = H0(z) H0(z
−1)

TZ(z) + TZ(−z) = 2 (5.79)

is satisfied, whereTZ(z) denotes azero-phasehalf-band filter.
Notation: In the following zero-phase filters and amplitude responses are

denoted with the subscript ”Z” instead of ”0” to avoid confusion with the

lowpass analysis filterh0(n).

Valid half-band filter:TZ(z) is a valid half-band filter if it can
be factorized intoH0(z) andH0(z

−1).

⇒ Design goal: Find a valid half-band filter and factorize it
into H0(z) andH0(z

−1).

2. When a suitable filterH0(z) has been found, the remaining
filter can be obtained from

H1(z) = z
−(LF−1)

H0(−z
−1

),

F0(z) = z
−(LF−1)

H0(z
−1

),

F1(z) = z
−(LF−1)

H1(z
−1

) = H0(−z).

(5.80)

⇒ special case of the conditions in (5.70).
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How to design a valid half-band filter?
Spectral factorization may be problematic:
With TZ(z) = H0(z) H0(z

−1) andz = ejω:

TZ(e
jω

) = H0(e
jω

) H0(e
−jω

) = |H0(e
jω

)|2
!

≥ 0 for all ω.
(5.81)

Design approach due to Smith and Barnwell, 1986
Starting point is an arbitrary linear-phase half-band filter (for
example designed with the Remez algorithm from Section 4.4.4):

A(e
jω

) = AZ(ω)e
−jω(LF−1)

AZ(ω): Real-valued amplitude frequency response of the half-
band filtera(n), AZ(ω) •−◦ aZ(n), LF : length ofh0(n).

If the value
δ = min

ω∈[0,2π]
AZ(ω) < 0, (5.82)

a non-negative amplitude frequency response can be generated
with

AZ+(ω) = AZ(ω) + |δ|. (5.83)

In time-domain this corresponds with

AZ+(ω) •−◦ aZ+(n) =

{

aZ(n) for n 6= 0,

aZ(n) + |δ| for n = 0.
(5.84)

(aZ(n) denotes thezero-phaseimpulse response with the center
of symmetry located atn = 0).
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Visualization:

ω

(From [Fliege: Multiraten-Signalverarbeitung, 1993])

⇒ Single zeros on the unit-circle are converted to double zeros
→ factorization into two filters is now possible

A valid zero-phase half-band filterTZ(z) can finally be
obtained by scaling of the resulting transfer function such that

TZ(ejπ/2)=1 (note thatTZ(z) + TZ(−z)
!
= 2 has to hold),

leading to the expression

TZ(z) =
1

1 + |δ|
AZ+(z). (5.85)

Remark:
In practice for double zeros on the unit circle the separation
process is numerically very sensitive. As a solution, the parameter
|δ| in (5.82) and (5.83) can be enlarged by a small valueǫ →
zeros move pairwise off the unit-circle where due to the linear-
phase property they are mirrored at the unit-circle
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Example
Parameter for the design ofTZ(z): LF = 16, ωs = 0.6π,
∆ω = 0.2π, ǫ = 10−4

Pole-zero patternTZ(z)

−1 0 1 2

−1

−0.5

0

0.5

1

Re{z} →

Im
{z

} 
→

30

Pole-zero patternH0(z)

−1 0 1 2

−1

−0.5

0

0.5

1

Re{z} →

Im
{z

} 
→

15

Amplitude frequency responseTZ(ω)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Ω / π →

T
Z

(ω
) 

→

Frequency responses analysis filters

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

|H
0
(ejω)| |H

1
(ejω)|=|H

0
(−e−jω)|

ω / π →

After h0(n) has been constructed, the remaining impulse
responsesh1(n), f0(n), f1(n) are obtained with (5.80).
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Impulse responseh0(n)

0 5 10 15
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Impulse responseh1(n)

0 5 10 15
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Impulse responsef0(n)
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−0.6

−0.4
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n →

f 0(n
) →

Impulse responsef1(n)
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n →

f 1(n
) →

• Filter in orthogonal two-channel filter banks have an even
number of coefficients sinceTZ(z) = H0(z) H0(z

−1)

Example:

TZ(z) with 7 coefficients can be factorized into two filters of
length 4.

The next feasible length is 11 coefficients
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which leads to two filters of length 6.

• Filter in orthogonal two-channel filter banks can not be made
linear-phase (except two trivial cases) (Vaidyanathan, 1985).

5.8 Tree filter banks
K channel filter banks can be developed by iterating the two-
channel systems from above.

F

F

F

F

F

F

F

F

F

F

(From [Mertins: Signal analysis, 1999])
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(a): Fully iterated tree filter bank, (b): Octave filter bank

If the two band filter bank is of the perfect reconstruction
type, the generated multiband structure also exhibits the perfect
reconstruction property.

5.9K-band filter banks

In the following we briefly considerK-band systems with equal
subband widths and equal subsampling factors in every subband.

.

.

↓ M

↓ M ↑ M

↑ M

↑ M

u1(n)

u0(n)

uK−1(n)

h1(n)

h0(n)

hK−1(n)

v0(n)

v1(n)

vK−1(n)

x(n)

analysis filter bank synthesis filter bank

y0(m)

y1(m)

x̂(n)

fK−1(n)

f0(n)

f1(n)

yK−1(m)

↓ M

• If K = M the analysis-synthesis system is calledcritically
subsampled, for K > M we speak of anoversampled
system.

• The caseK < M (undersampledsystem) is infeasible since
the sampling theorem is violated in the subbands also for ideal
(brickwall) filters→ no reasonable reconstruction is possible.

Subset of generalK-band filter banks:

→ Modulated filter banks

All K analysis and synthesis filters are obtained from one single
analysis and synthesis prototype, resp.
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Advantages:

• More efficient implementation compared to generalK-band
systems.

• Less design complexity since only the prototype filters have to
be designed.

• (Less storage required for the filter coefficients.)

Two important types of modulated filter banks: DFT and cosine-
modulated filter banks
In the following only DFT filter banks are briefly considered.

DFT filter banks

• Analysis and synthesis filters (k = 0, 1, . . . , K − 1):

hk(n) = p(n)
︸ ︷︷ ︸

analysis prototype

· e
j2π

K
k(n−D

2 )

︸ ︷︷ ︸
modulation and phase shifting

(5.86)

fk(n) = q(n)
︸ ︷︷ ︸

synthesis prototype

· e
j2π

K
k(n−D

2 )

︸ ︷︷ ︸
modulation and phase shifting

(5.87)

D denotes the overall analysis-synthesis system delay, for
linear phase filters we haveD = LF − 1.

• Frequency responses:

Hk(e
jω

) = P (e
j(ω−2π

K
k)

)
︸ ︷︷ ︸

frequency shift byk 2π/K

· e−j2π
K

kD
2

︸ ︷︷ ︸
phase factor

(5.88)

Fk(e
jω

) = Q(e
j(ω−2π

K
k)

)
︸ ︷︷ ︸

frequency shift byk 2π/K

· e−j2π
K

kD
2

︸ ︷︷ ︸
phase factor

(5.89)
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2π

K
2ππ

K

ω
π

|HK−1(e
jω)||H0(e

jω)|

|Hn(ejω)| K = 8

• z-transforms:

Hk(z) = P (zW
k
K)W

kD
2

K , Fk(z) = Q(zW
k
K)W

nD
2

K

(5.90)

• Perfect reconstruction in the critical subsampled case is only
possible for filter lengthsLF = K → not very good
frequency selectivity. Therefore, the DFT filter bank is mainly
used withM < K.

Why the nameDFT filter bank?

Type 1 polyphase components of the analysis prototype,

P (z) =

K−1∑

ℓ=0

z
−ℓ

Pℓ(z
K
). (5.91)

Inserting (5.91) into (5.90) then yields

Hk(z) = W
kD

2
K

K−1∑

ℓ=0

z
−ℓ

Pℓ(z
K
) W

−kℓ
K . (5.92)

Analogy to the IDFT: x(n) =
1

K

K−1∑

k=0

X(k) W
−kn
K

⇒ The subband filter of an DFT filter bank can be calculated
with the IDFT (and thus also with the fast IFFT), where the input
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signals of the IDFT are obtained by filtering with the delayed
polyphase components

Then-th output of the IDFT has finally to be multiplied with the

rotation factorsW
nD

2
K .

Structure of the analysis filter bank: .x(k)x(k�1)
x(k�M+1). PK�1(zK)

P1(zK)P0(zK) # N
# N

# Nx(k) z�1z�1z�1

1W�1K
W�(K�1)K K�IDFT yK�1(m)

y1(m)y0(m)WD=2K
WD=2(K�1)K

1

(dual structure for the synthesis)

If K = cM , c ∈ IN, then besides the IDFT also the polyphase
filtering can be calculated in the lower sampling rate.
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6. Spectral Estimation
In this chapter we consider the problem of estimating the power
spectral density (power spectrum) of a wide-sense stationary
(WSS) random process.

Applications for power spectrum estimation:
Signal detection and tracking, frequency estimation (e.g. for sonar
or radar signals), harmonic analysis and prediction, beamforming
and direction finding,. . .

Problems in power spectrum estimation:

• The amount of data is generally limited, for example, a random
process may be stationary only for a short time (e.g. speech
signal). On the other hand, as we have seen in Section 3.1.4 for
the frequency analysis of non-random signals using the DFT,
the longer the input data vector, the higher the frequency
resolution of the spectral analysis.

• Often, only one representation of a stochastic process may be
available. Therefore, an ergodic process is often assumed.

• Additionally, the input data may be corrupted by noise.

Estimation approaches can be classified into two classes:

1. Classical ornonparametric methods: Estimation of the
autocorrelation sequence, where the power spectrum is then
obtained by Fourier transform of the autocorrelation sequence.

2. Nonclassical orparametricapproaches, which use a model for
the random process in order to estimate the power spectrum.

6.1 Periodogram-based nonparametric methods

6.1.1 The periodogram

Power spectrumΦvv(e
jω) of a WSS random processv(n) is the
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Fourier transform of the autocorrelation functionϕvv(κ):

Φvv(e
jω

) =

∞∑

κ=−∞
ϕvv(κ) e

−jκω
.

⇒ Spectral estimation is also an autocorrelation estimation
problem

From Signals and Systems we know that for a stationary random
processv(n) which is ergodic in the first and second moments
the autocorrelation sequence can be theoretically obtained from
the time-average

ϕvv(κ) = lim
N→∞

1

2N + 1

N∑

k=−N

v(k + κ) v
∗
(k). (6.1)

If v(n) is only measured over a finite interval ofN samples,
n = 0, . . . , N−1, the autocorrelation sequence is estimated as

ϕ̂vv(κ) =
1

N

N−1−κ∑

k=0

v(k + κ) v
∗
(k) (6.2)

with the values ofϕ̂vv(κ) for κ < 0 defined via the symmetry
relation ϕ̂vv(−κ) = ϕ̂∗

vv(κ), and with ϕ̂vv(κ) = 0 for
|κ| ≥ N .

The discrete Fourier transform of̂ϕvv(κ) from (6.2) is called
periodogram(Schuster, 1898) and leads to an estimate of the
power spectrum according to

Φ̂
(per)
vv (e

jω
) =

N−1∑

κ=−N+1

ϕ̂vv(κ)e
−jκω

. (6.3)
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With the rectangular window

wr(n) =

{

1 n = 0, . . . , N − 1,

0 otherwise,

we can describe the input sequence being analyzed also as

vN(n) = v(n) · wr(n). (6.4)

Then, the estimated autocorrelation sequence may be written as

ϕ̂vv(κ) =
1

N

∞∑

k=−∞
vN(k+κ) v

∗
N(k) =

1

N
vN(κ)∗v

∗
N(−κ).

(6.5)
Fourier transform of the rightmost equation in (6.5)
finally yields the following expression for the periodogram
(VN(ejω) •−◦ vN(n)):

Φ̂
(per)
vv (e

jω
) =

1

N
VN(e

jω
) V

∗
N(e

jω
) =

1

N
|VN(e

jω
)|2.

(6.6)

MATLAB-command: periodogram

The sampled version̂Φ(per)
vv (ejk2π/M) = Φ̂(per)

vv (k) can be
obtained from theM1-point DFTVN(k) of vN(n):

Φ̂
(per)
vv (k) =

1

N
|VN(k)|2, k = 0, . . . , M1 − 1. (6.7)

Thus, the periodogram can be calculated very efficiently using the
FFT.
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Example: Periodogram of white noise

If v(n) is white noise with a variance ofσ2
v, thenϕvv(κ) = σ2

v δ(κ) with a
constant power spectrumΦvv(e

jω) = σ2
v.

Sample realization forN =32
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Definition: Bias and consistency

Desirable:

• Convergence of the periodogram to the exact power spectrum
in the mean-square sense

lim
N→∞

E

{(

Φ̂
(per)
vv (e

jω
) − Φvv(e

jω
)
)2

}
!
= 0. (6.8)

• In order to achieve this it is necessary that the periodogram is
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asymptotically unbiased, which means that forN → ∞ the
expectation value of the estimated power spectrum is equal to
the true power spectrum:

lim
N→∞

E
{

Φ̂
(per)
vv (e

jω
)
}

!
= Φvv(e

jω
). (6.9)

On the other hand for abiasedestimator there would be a
difference between the expectation value and the true result.

• Furthermore, the estimation variance should go to zero as the
data lengthN goes to infinity:

lim
N→∞

Var
{

Φ̂
(per)
vv (e

jω
)
}

!
= 0. (6.10)

• If (6.9) and (6.10) are satisfied we say that the periodogram
Φ̂(per)

vv (ejω) is aconsistentestimate of the power spectrum.
Note that there are different definitions of consistency in the literature.

Bias of the periodogram

First step: Calculation of the expected value of the autocorrelation
ϕ̂vv(κ). From (6.2) we have

E{ϕ̂vv(κ)} =
1

N

N−1−κ∑

k=0

E{v(k + κ) v
∗
(k)}

=
1

N

N−1−κ∑

k=0

ϕvv(κ) =
N − κ

N
ϕvv(κ) (6.11)

for κ = 0, . . . , N − 1, and for κ ≥ N it follows
E{ϕ̂vv(κ)} = 0.

By using the symmetry relation̂ϕvv(−κ) = ϕ̂∗
vv(κ) (6.11) can

be written asE{ϕ̂vv(κ)} = wB(κ) ϕvv(κ) with the Bartlett

216



(triangular) window

wB(κ) =

{
N−|κ|

N for |κ| ≤ N,

0 for |κ| > N.
(6.12)

The expected value of the periodogram can now be obtained as

E
{

Φ̂
(per)
vv (e

jω
)
}

=

N−1∑

κ=−N+1

E{ϕ̂vv(κ)}e
−jκω

,

=

∞∑

κ=−∞
wB(κ) ϕvv(κ) e

−jκω
,

which finally yields

E
{

Φ̂
(per)
vv (e

jω
)
}

=
1

2π
Φvv(e

jω
)©∗ WB(e

jω
) (6.13)

with WB(ejω) denoting the Fourier transform of the Bartlett
window

WB(e
jω

) =
1

N

(
sin(Nω/2)

sin(ω/2)

)2

.

⇒ Periodogram is abiased estimate, since the expected value is
the convolution between the true power spectrum and the Fourier
transform of the Bartlett window.

Since WB(ejω) converges to an impulse forN → ∞ the
periodogram isasymptotically unbiased:

lim
N→∞

E
{

Φ̂
(per)
vv (e

jω
)
}

= Φvv(e
jω

) (6.14)
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Spectral resolution

We know from the discussion in Section 3.1.4 that the convolution
with the frequency response of a window may lead to

• spectral smoothing,

• spectral leaking,

• the loss of the ability to resolve two nearby spectral lines.

Similarly, this also holds for the convolution between the power
spectrum and the Bartlett window frequency response in (6.13).
Example: (a) Power spectrum of two sinusoids in white noise,
(b) expected value of the periodogram

(from [Hayes, 1996])

• Width of the main lobe ofWB(ejω) increases as the data
record length decreases.

• ⇒ For a given lengthN there is a limit on how closely two
sinusoids or narrowband processes may be located before they
no longer can be resolved.
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• One way to define this frequency resolution limit is to set∆ω

equal to the width of the main lobe of the Bartlett window at
its−6 dB point:

∆ω = 0.89
2π

N
, (6.15)

which is also thefrequency resolution of the periodogram.

Variance of the periodogram

White Gaussian random processes:
It can be shown that for a white Gaussian random processv(n)

the variance of the periodogram is equal to the square of the power
spectrumΦvv(e

jω) (see [Hayes, 1996]):

Var
{

Φ̂
(per)
vv (e

jω
)
}

= Φ
2
vv(e

jω
). (6.16)

Non-white Gaussian random processes:

For non-white Gaussian processes, which are more important
in practice, we derive an approximation for the variance of the
periodogram in the following.

A random processv(n) with power spectrumΦvv(e
jω) may be

generated by filtering white noisex(n) with varianceσ2
x = 1

with a linear filterh(n) ◦−•H(ejω) and

|H(e
jω

)|2 = Φvv(e
jω

). (6.17)

The sequencesvN(n) andxN(n) are now formed by windowing
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analog to (6.4). The periodograms of these processes are

Φ̂
(per)
vv (e

jω
) =

1

N
|VN(e

jω
)|2, Φ̂

(per)
xx (e

jω
) =

1

N
|XN(e

jω
)|2.

(6.18)
If N is large compared to the length ofh(n), vN(n) can be
described asvN(n) ≈ h(n)∗xN(n), since the transition effects
can be neglected. Thus, the magnitude square frequency response
|VN(ejω)|2 of vN(n) can be with (6.17) expressed as

|VN(e
jω

)|2≈|H(e
jω

)|2 |XN(e
jω

)|2=Φvv(e
jω

) |XN(e
jω

)|2.
(6.19)

Inserting (6.18) into (6.19) yields

Φ̂
(per)
vv (e

jω
) ≈ Φvv(e

jω
) Φ̂

(per)
xx (e

jω
).

Applying the variances on both sides results in

Var
{

Φ̂
(per)
vv (e

jω
)
}

≈ Φ
2
vv(e

jω
) Var

{

Φ̂
(per)
xx (e

jω
)
}

,

and, since Var{Φ̂(per)
xx (ejω)}=1 according to (6.16), the variance

for largeN can be obtained as

Var
{

Φ̂
(per)
vv (e

jω
)
}

≈ Φ
2
vv(e

jω
). (6.20)

⇒ Periodogram is not a consistent estimator

Example:
For a white Gaussian noise processv(n) with σ2

v = 1 andΦvv(e
jω) = 1 it

follows from (6.13) and (6.16), resp., that

E
{

Φ̂
(per)
vv (e

jω
)
}

= 1 and Var
{

Φ̂
(per)
vv (e

jω
)
}

= 1.

220



Thus, although the periodogram for white Gaussian noise is unbiased, the
variance is independent of the data record lengthN .

N = 64, overlay of 30 periodo-
gramsΦ̂(per)

vv (ejω)
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N = 64, approximated periodo-
gram variance
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N = 256, overlay of 30 periodo-
gramsΦ̂(per)
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N = 256, approximated periodo-
gram variance
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N =64, periodogram average
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N =256, periodogram average
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6.1.2 Bartlett’s method: Periodogram averaging

In contrast to the periodogram, Bartlett’s method (1948) provides
aconsistent estimateof the power spectrum.

The motivation for this method comes from the fact that by
averaging a set of uncorrelated measurements for a random
variablev one obtains a consistent estimate of the meanE{v}.

Since the periodogram is asymptotically unbiased

lim
N→∞

E
{

Φ̂
(per)
vv (e

jω
)
}

= Φvv(e
jω

),

it obviously suffices to find a consistent estimate of the
periodogram E{Φ̂(per)

vv (ejω)} in order to find a consistent
estimate for the true power spectrumΦvv(e

jω).

⇒ Estimation of the power spectrum by periodogram averaging!

Let vi(n) for i = 0, . . . , K − 1 denoteK uncorrelated
realizations of a random processv(n) for n = 0, . . . , L−1.
The periodogram of each single realization is obtained from (6.6)
as

Φ̂
(per)
vivi

(e
jω

) =
1

L

∣
∣
∣
∣
∣

L−1∑

n=0

vi(n)e
−jnω

∣
∣
∣
∣
∣

2

. (6.21)

The average of these periodograms is

Φ̂vv(e
jω

) =
1

K

K−1∑

i=0

Φ̂
(per)
vivi

(e
jω

). (6.22)

For the expected value of̂Φvv(e
jω) we have with (6.22) and
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(6.13)

E
{

Φ̂vv(e
jω

)
}

= E
{

Φ̂
(per)
vivi

(e
jω

)
}

=
1

2π
Φvv(e

jω
)©∗ WB(e

jω
). (6.23)

As with the periodogram, the estimateΦ̂vv(e
jω) is asymptotically

unbiased, i.e. forL → ∞.

For uncorrelated data recordsvi(n) the variance Var{Φ̂vv(e
jω)}

can be obtained in the same way from (6.22) and (6.20) as

Var
{

Φ̂vv(e
jω

)
}

=
1

K
Var

{

Φ̂
(per)
vivi

(e
jω

)
}

≈ 1

K
Φ

2
vv(e

jω
).

(6.24)
We can observe that the variance goes to zero ifK goes to infinity
⇒ Φ̂vv(e

jω) is a consistent estimateof the power spectrum if
bothL andK tend to infinity.

In practice:
Uncorrelated realizations of a random process are generally not
available, instead we have only one single realization of length N .
Alternative:v(n) of lengthN is divided intoK nonoverlapping
sequences of lengthL with N = L · K, that is
vi(n) = v(n + iL), n = 0, . . . , L−1, i = 0, . . . , K−1.

Thus, the Bartlett estimate is

Φ̂
(B)
vv (e

jω
) =

1

N

K−1∑

i=0

∣
∣
∣
∣
∣

L−1∑

n=0

v(n + iL) e
−jnω

∣
∣
∣
∣
∣

2

. (6.25)
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Properties

From (6.23) the expected value is

E
{

Φ̂
(B)
vv (e

jω
)
}

=
1

2π
Φvv(e

jω
)©∗ WB(e

jω
) (6.26)

As the periodogram the Bartlett estimate isasymptotically
unbiased.

The spectral resolutionof the Bartlett estimate can be obtained
from the resolution of the periodogram in (6.15). Since we now
use sequences of lengthL the resolution becomes

∆ω = 0.89
2π

L
= 0.89 K

2π

N
, (6.27)

which isK times larger (worse!) than that of the periodogram.

Variance: Assuming that the data sequencesvi(n) are
approximately uncorrelated (this is generally not the case!) the
variance of the Bartlett estimate is for largeN

Var
{

Φ̂
(B)
vv (e

jω
)
}

≈ 1

K
Φ

2
vv(e

jω
). (6.28)

• Φ(B)
vv (ejω) is a consistent estimate forK, L → ∞.

• The Bartlett estimate allows to trade spectral resolution for a
reduction in variance by adjusting the parametersL andK.

Examples:
• The power spectrum of a white noise Gaussian process withσ2

v = 1 of
lengthN =256 is estimated with Bartlett’s method.
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K = 4, L = 64, overlay of 30
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K = 8, L = 32, overlay of 30

Bartlett estimateŝΦ(B)
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• Here, the input signal consists of two sinusoids in white Gaussian noise
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η(n) of varianceσ2
η = 1,

v(n) = 3 · sin(nω1) + sin(nω2) + η(n) (6.29)

with ω1 = 0.2π, ω2 = 0.25π, and lengthN = 512 samples.
The following figures show the average power spectrum estimate over
30 realizations, and demonstrate the reduced spectral resolution of the
Bartlett estimate compared to the periodogram.
K =4, L=128, Bartlett estimate
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6.1.3 Welch’s method: Averaging modified periodograms

In 1967, Welch proposed two modifications to Bartlett’s method:

1. The data segmentsvi(n) of lengthL are allowed to overlap,
whereD denotes the offset between successive sequences:

vi(n) = v(n+iD), n = 0, . . . , L−1, i = 0, . . . , K−1.

(6.30)
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The amount of overlap betweenvi(n) andvi+1(n) is L−D

samples, and ifK sequences cover the entireN data points
we haveN = L + D(K − 1). If D = L the segments do
not overlap as in Bartlett’s method withK = N/L.

⇒ By allowing the sequences to overlap it is possible to
increase the number and/or length of the sequences that are
averaged. Reduction of the variance (for largerK) can thus
be traded in for a reduction in resolution (for smallerL) and
vice versa.

2. The second modification is to window the data segments prior
to computing the periodogram. This leads to a so called
modified periodogram

Φ̂
(mod)
vivi

(e
jω

) =
1

LU

∣
∣
∣
∣
∣

L−1∑

n=0

vi(n) w(n)e
−jnω

∣
∣
∣
∣
∣

2

(6.31)

with a general windoww(n) of lengthL, andU denoting
a normalization factor for the power in the window function
according to

U =
1

L

L−1∑

n=0

|w(n)|2. (6.32)

Welch’s method may explicitly be written as

Φ̂
(W )
vv (e

jω
) =

1

KLU

K−1∑

i=0

∣
∣
∣
∣
∣

L−1∑

n=0

v(n + iD) w(n)e
−jnω

∣
∣
∣
∣
∣

2

.

(6.33)
MATLAB-command: pwelch
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Properties

• It can be shown that the expected value of Welch’s estimate is

E
{

Φ̂
(W )
vv (e

jω
)
}

=
1

2πLU
Φvv(e

jω
)©∗ |W (e

jω
)|2,

(6.34)
whereW (ejω) denotes the Fourier transform of the general
L-point window sequencew(n). Thus, Welch’s method is an
asymptotically unbiasedestimate of the power spectrum.

• The spectral resolutionof Welch’s estimate depends on the
used window sequence and is specified as the3 dB width
∆ω3 dB of the main lobe of the spectral window.∆ω3 dB is
specified for some commonly used windows in the following
table.

Sidelobe 3 dB bandwidth
Type of window level [dB] ∆ω3 dB

Rectangular -13 0.89 2π
L

Bartlett -27 1.28 2π
L

Hanning -32 1.44 2π
L

Hamming -43 1.30 2π
L

Blackman -58 1.68 2π
L

Remark: In (6.15) we stated the frequency resolution of the peridogram

as the 6 dB main lobe width of the Bartlett window. SinceWB(ejω) =

|WR(ejω)|2 this is equivalent to the 3 dB bandwidth of the frequency

responseWR(ejω) of the rectangular window.

• The variance of Welch’s estimate highly depends on the
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amount of overlapping. For a Bartlett window and a 50%
overlap the variance is approximately

Var
{

Φ̂
(W )
vv (e

jω
)
}

≈ 9

8K
Φ

2
vv(e

jω
) (6.35)

(→ consistent estimate). A comparison with (6.28) shows that
the variance for Welch’s method seems to be larger than for
Bartlett’s method. However, for fixed amount of dataN and a
fixed resolutionL here twice as many sections are averaged
compared to Bartlett’s method. WithK = 2N/L (50%
overlap) (6.35) becomes

Var
{

Φ̂
(W )
vv (e

jω
)
}

≈ 9L

16N
Φ

2
vv(e

jω
). (6.36)

A comparison with (6.28) andK = N/L for the Bartlett
estimate we have

Var
{

Φ̂
(W )
vv (e

jω
)
}

≈ 9

16
Var

{

Φ̂
(B)
vv (e

jω
)
}

. (6.37)

Increasing the amount of overlap yields higher computational
complexity and also the correlation between the subsequences
vi(n) → amount of overlap is typically chosen as 50% or
75%.

Example:
As an input signal we again use (6.29) which contains two sinusoids in white
Gaussian noiseη(n) of varianceσ2

η = 1, with ω1 = 0.2π, ω2 = 0.25π,
and a signal length ofN = 512 samples. The section length is chosen as
L = 128, the amount of overlapping is 50%, and for the window we use a
Hamming window.
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Overlay plot of 30 Welch estimates
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Compared to the Bartlett estimate for the same example above the use of
the Hamming window reduces the spectral leakage in the estimated power
spectrum.

Since the number of sections (7) are about the same to those in the above

example for the Bartlett estimate withK = 8, L = 64 (8 sections) both

variances are also approximately the same.

6.1.4 Blackman-Tukey method: Periodogram smoothing

Recall that the periodogram is obtained by a Fourier transform
from the estimated autocorrelation sequence. However, for any
finite data record of lengthN the variance ofϕ̂vv(κ) will be
large for values ofκ, which are close toN . For example for
lagκ = N − 1 we have from (6.2)

ϕ̂vv(N − 1) =
1

N
v(N − 1) v(0).

Two approaches for reducing the variance ofϕ̂vv(κ) and thus also
the variance of the peridogram:

1. Averaging periodograms and modified periodograms, resp., as
utilized in the methods of Bartlett and Welch.

2. Periodogram smoothing→ Blackman-Tukey method (1958)
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Blackman-Tukey method: Variance of the autocorrelation
function is reduced by applying a window tôϕvv(κ) to decrease
the contribution of the undesired estimates to the periodogram.

The Blackman-Tukey estimate is given as

Φ̂
(BT )
vv (e

jω
) =

M∑

κ=−M

ϕ̂vv(κ) w(κ) e
−jκω

, (6.38)

wherew(κ) is a lag windowbeing applied to the autocorrelation
estimate and extending from−M to M for M < N − 1.
⇒ Estimates ofϕvv(κ) having the largest variance are set to zero
by the lag window→ the power spectrum estimate will have a
smaller variance.

The Blackman-Tukey power spectrum estimate from (6.38) may
also be written as

Φ̂
(BT )
vv (e

jω
) =

1

2π
Φ̂

(per)
vv (e

jω
)©∗ W (e

jω
), (6.39)

=
1

2π

π∫

−π

Φ̂
(per)
vv (e

ju
) W (e

j(ω−u)
) du (6.40)

with W (ejω) denoting the Fourier transform of the lag window.
⇒ Blackman-Tukey estimate smooths the periodogram by
convolution withW (ejω).

Choice of a suitable window:

• w(κ) should be conjugate symmetric, such thatW (ejω) (and
also the power spectrum) is real-valued.
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• W (ejω) ≥ 0, such that̂Φ(BT )
vv (ejω) is nonnegative for allω.

Note that some of the window functions we have introduced
do not satisfy this condition, for example, the Hamming and
Hanning windows.

Properties

• The expected value of the Blackman-Tukey estimate can be
derived forM ≪ N as

E
{

Φ̂
(BT )
vv (e

jω
)
}

=
1

2π
Φvv(e

jω
)©∗ W (e

jω
)

(6.41)
whereW (ejω) is the Fourier transform of the lag window.

• The spectral resolution of the Blackman-Tukey estimate
depends on the used window.

• It can be shown that the variance can be approximated as

Var
{

Φ̂
(BT )
vv (e

jω
)
}

≈ Φ
2
vv(e

jω
)
1

N

M∑

κ=−M

w
2
(κ).

(6.42)

• From (6.41) and (6.42) we again see the trade-off between bias
and variance: For a small bias,M should be large in order to
minimize the width of the main lobe ofW (ejω), whereasM
should be small to minimize the sum term in (6.42). As a
general rule of thumb,M is often chosen asM = N/5.

Examples:
• The power spectrum of a white noise Gaussian process withσ2

v = 1 of
lengthN = 256 is estimated with the Blackman-Tukey method, where a
Bartlett window withM = 51 is used.
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• In a second example we use two sinusoids in white Gaussian noise ((6.29),
σ2

n = 1, ω1 = 0.2π, ω2 = 0.25π) for N = 512 samples. The
window is a Bartlett window withM = 102.

Overlay plot of 30 Blackman-
Tukey estimates
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6.1.5 Performance comparisons

Performance of the discussed estimators is assessed in terms of
two criteria:

1. Variability V of the estimate,

V =
Var

{

Φ̂vv(e
jω)

}

E2
{

Φ̂vv(ejω)
} , (6.43)

which can be regarded as a normalized variance.

2. Overallfigure of merit, which is defined as the product of the
variability and the spectral resolution∆ω,

M = V ∆ω. (6.44)

Results for the periodogram-based spectrum estimation tech-
niques:

Variability Resolution Figure of merit
V ∆ω M

Periodogram 1 0.89
2π

N
0.89

2π

N

Bartlett
1

K
0.89 K

2π

N
0.89

2π

N

Welch (50% overlap,
Bartlett window)

9

8 K
1.28

2π

L
0.72

2π

N

Blackman-Tukey
(Bartlett window of length
2M , 1 ≪ M ≪ N )

2 M

3 N
0.64

2π

M
0.43

2π

N
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• Each technique has a figure of merit being approximately the
same, figures of merit are inversely proportional to the length
N of the data sequence.

• ⇒ Overall performance is fundamentally limited by the
amount of data being available!

6.2 Parametric methods for power spectrum estimation

Disadvantages of the periodogram-based (nonparametric)
methods:

• Long data records are required for sufficient performance,
windowing of the autocorrelation sequence limits spectral
resolution.

• Spectral leakage effects due to windowing.

• A-priori information about the generating process is not
exploited.

Disadvantages are removed by usingparametric estimation
approaches, where an appropriate model for the input process is
applied.

Parametric methods are based on modeling the data sequence as
the output of a linear system with the transfer function (IIR filter!)

H(z) =

q∑

i=0

bi z−i

1 +
p∑

i=1

ai z−i

, (6.45)

where theai andbi are the model parameters. The corresponding
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difference equation is

v(n) =

q
∑

i=0

bi w(n − i) −
p

∑

i=1

ai v(n − i), (6.46)

wherev(n) denotes the output andw(n) the input sequence

If w(n) represents a stationary random process, thenv(n) is also
stationary and the power spectrum can be given as (Wiener-Lee
relation)

Φvv(e
jω

) = |H(e
jω

)|2 Φww(e
jω

). (6.47)

Parametric power spectrum estimation:

H(ejω)
w(n)

source,µ=0

white noise

ai, bi

Φvv(ejω) = σ2
w · |H(ejω)|2

stationary random process σw

v(n)
!
= received process

model process

In order to estimate the power spectrumΦvv(e
jω) we assume in

our model thatΦww(ejω) comes from a zero-mean white noise
process with varianceσ2

w. By insertingΦww(ejω) = σ2
w into

(6.47) the power spectrum of the observed data is

Φvv(e
jω

) = σ
2
w |H(e

jω
)|2 = σ

2
w

|B(ejω)|2

|A(ejω)|2
. (6.48)

Goal: Make the model processv(n) as similar as possible to
the unknown received process in the mean-square error sense by
adjusting the parametersai, bi, andσw ⇒ the power spectrum
Φvv(e

jω) can then be obtained via (6.48).
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In the following we distinguish among three specific cases for
H(z) leading to three different models:

Autoregressive (AR) process

The linear filterH(z) = 1/A(z) is anall-pole filter, leading to
b0 = 1, bi = 0 for n > 0 in the difference equation (6.46):

v(n) = w(n) −
p

∑

i=1

ai v(n − i). (6.49)

Moving average (MA) process

Here, H(z) = B(z) is an all-zero (FIR!) filter, and the
difference equation becomes withan = 0 for n ≥ 0

v(n) =

q
∑

i=0

bi w(n − i). (6.50)

Autoregressive, moving average (ARMA) process

In this case the filterH(z) = B(z)/A(z) has both finite poles
and zeros in the z-plane and the corresponding difference equation
is given by (6.46).

Remarks:

• The AR model is most widely used, since the AR model is
suitable of modeling spectra with narrow peaks (resonances)
by proper placement of the poles close to the unit circle.

• MA model requires more coefficients for modeling a narrow
spectrum, therefore it is rarely used as a model for spectrum
estimation.

• By combining poles and zeros the ARMA model has a more
efficient spectrum representation as the MA model concerning
the number of model parameters.
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6.2.1 Relationship between the model parameters and the
autocorrelation sequence

In the following it is shown that the model parametersai, bi can
be obtained from the autocorrelation sequence of the observed
processv(n). These values are then inserted into (6.45) yielding
H(ejω), which is then inserted into (6.48) leading to the power
spectrumΦvv(e

jω) of our observed process.

In a first step the difference equation (6.46) is multiplied by
v∗(n − κ) and the expected value is taken on both sides

E{v(n) v
∗
(n − κ)} =

q
∑

i=0

bi E{w(n − i) v
∗
(n − κ)}−

−
p

∑

i=1

ai E{v(n − i) v
∗
(n − κ)},

which leads to

ϕvv(κ) =

q
∑

i=0

bi ϕwv(κ − i) −
p

∑

i=1

ai ϕvv(κ − i). (6.51)

The crosscorrelation sequenceϕwv(κ) depends on the filter
impulse response:

ϕwv(κ) = E{v
∗
(n) w(n + κ)},

= E

{ ∞∑

k=0

h(k) w
∗
(n − k) w(n + κ)

}

= σ
2
w h(−κ).

(6.52)
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In the last step we have used our prerequisite from above that the
processw(n) is assumed to be a zero-mean white random process
with E{w(n − k)w∗(n + κ)} = δ(κ + k)σ2

w and known
varianceσ2

w. Thus we have from (6.52)

ϕwv(κ) =

{

0 for κ > 0,

σ2
w h(−κ) for κ ≤ 0.

(6.53)

By combining (6.51) and (6.53) we obtain the desired relationship
for the general ARMA case:

ϕvv(κ) =







−
p∑

i=1
ai ϕvv(κ − i) for κ > q,

σ2
w

q−κ∑

i=0
h(i) bi+κ −

p∑

i=1
ai ϕvv(κ − i) for 0 ≤ κ ≤ q

ϕ∗
vv(−κ) for κ < 0.

(6.54)

→ nonlinear relationship between the parametersϕvv(κ) and
ai, bi

In the following we only consider the AR model case, where
(6.54) simplifies to

ϕvv(κ) =







−
p∑

i=1
ai ϕvv(κ − i) for κ > 0,

σ2
w −

p∑

i=1
ai ϕvv(κ − i) for κ = 0

ϕ∗
vv(−κ) for κ < 0.

(6.55)

These equations are also calledYule-Walker equationsand denote
a system of linear equations for the parametersai. Equation (6.55)

239

may also be expressed in matrix notation according to







ϕvv(0) ϕ∗
vv(1) . . . ϕ∗

vv(p − 1)
ϕvv(1) ϕvv(0) . . . ϕ∗

vv(p − 2)
... ... . . . ...

ϕvv(p − 1) ϕvv(p − 2) . . . ϕvv(0)















a1

a2
...

ap








= −








ϕvv(1)
ϕvv(2)

...
ϕvv(p)








(6.56)

which is in short-hand notationR a = r. Once theai have been
obtained by solving for the coefficient vectora, the varianceσ2

w

can be calculated from

σ
2
w = ϕvv(0) +

p
∑

i=1

aiϕvv(−i). (6.57)

Since the matrixR has a special structure (Toeplitzstructure) there
exist efficient algorithms for solving the system of linear equations
in (6.55) and (6.56), respectively (Levison-Durbin algorithm
(1947, 1959), Scḧur recursion (1917)).

6.2.2 Yule-Walker method

In the Yule-Walker method (also calledautocorrelation method)
we simply estimate the autocorrelation sequence from the
observed datav(n), where the autocorrelation estimate in (6.2)
is used:

ϕ̂vv(κ) =
1

N

N−1−κ∑

n=0

v(n + κ) v
∗
(n), κ = 0, . . . , p.

(6.58)
In the matrix version of the Yule-Walker equations (6.56) we
replaceϕvv(κ) with ϕ̂vv(κ). The resulting linear equation
system is solved for the parameter vectora, which now contains
the estimated AR parameterŝai, i = 1, . . . , p. Finally, we
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obtainσ2
w via (6.57) from thêai and the estimated autocorrelation

sequencêϕvv(κ).

The corresponding power spectrum estimate can now be stated
from (6.48) as

Φ̂
(AR)
vv (e

jω
) =

σ2
w

∣
∣
∣
∣
1 +

p∑

k=1

âk e−jkω

∣
∣
∣
∣

2
. (6.59)

MATLAB-command: paryule

6.2.3 Examples and comparisons to nonparametric methods

In the following we compute power spectrum estimates obtained
with the Yule-Walker method and for comparison purposes also
with the Blackman-Tukey method (Bartlett window of length
LB).

The input process consists of two sinusoids in white Gaussian noiseη(n) of
varianceσ2

η = 1 according to (6.29) withω1 = 0.2π, ω2 = 0.25π. The
model order of the Yule-Walker method is chosen asp = 50.

• Length of observed processN =512 (Blackman-Tukey:LB =205):

overlay of 30 Yule-Walker estimates
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overlay of 30 Blackman-Tukey estimates
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• Length of observed processN = 100 (Blackman-Tukey:LB = 41):
overlay of 30 Yule-Walker estimates
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overlay of 30 Blackman-Tukey estimates
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• We can see that only for the longer data sequence withN = 512 the
resolution of the estimates are comparable. Clearly, forN = 100 the
estimate based on an AR-model provides much better frequency resolution
for the sinusoidal components than the Blackman-Tukey method.
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Remark: Use of a certain model generally requiresa-priori
knowledgeabout the process. In case of amodel mismatch
(e.g. MA process and AR model) using a nonparametric approach
may lead to a more accurate estimate.

Example:

Consider the MA process (lengthN = 512)

v(n) = w(n) − w(n − 2),

wherew(n) is again a white-noise zero-mean process with varianceσ2
w = 1.

The power spectrum ofv(n) is

Φvv(e
jω

) = 2 − 2 cos(2ω).

Ensemble average over 30 power spectrum estimates for the Yule-Walker
method (AR model of orderp=4) and the Blackman-Tukey method (Bartlett
window,LB = 205):
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→ Blackman-Tukey estimate, which makes no assumption about the process,
yields a better estimate of the power spectrum compared to the model-based
Yule-Walker approach.
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