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1. Introduction

1.1 Signals, systems and signal processing

What does “Digital Signal Processing” mean?

Signal:

e Physical quantity that varies with time, space or any other
independent variable

e Mathematically: Function of one or more independent
variables,s; (t) = 5t, so(t) = 20 ¢*

e Examples: Temperature over timerightness (luminance) of
animage ove(x, y), pressure of a sound wave over, y, z)
or(z,y, z,t)

Speech signal:
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Signal Processing:

e Passing the signal through a system
e Examples:
— Modification of the signal (filtering, interpolation, noise
reduction, equalization,. .)
— Prediction, transformation to another domain (e.g. Fourier
transform)

— Numerical integration and differentiation
— Determination of mean value, correlation, p.d.f.,

Properties of the system (e.g. linear/nonlinear) determine the

properties of the whole processing operation

System: Definition also includes:

— software realizations of operations on a signal, which
are carried out on a digital computer={( software
implementation of the system)

— digital hardware realizations (logic circuits) configured
such that they are able to perform the processing operation,
or

— most general definition: a combination of both

Digital signal processingProcessing of signals by digital means
(software and/or hardware)

Includes:

e Conversion from the analog to the digital domain and back

(physical signals are analog)

e Mathematical specification of the processing operatiens

Algorithm method or set of rules for implementing the system
by a program that performs the corresponding mathematical
operations

e Emphasis on computationally efficient algorithms, which are

fast and easily implemented.



Basic elements of a digital signal processing system

Analog signal processing:

Analog Analog Analog
input ——— = signal ———output
signal processor signal

Digital signal processing:
(A/D: Analog-to-digital, D/A: Digital-to-analog)

Digital Digital
| input I output |
Analog signal Digita signal Analog
input ——= A/D " signal D/A " ——=output
signal converter processor converter signal

Why has digital signal processing become so popular?

Digital signal processing has many advantages compared to
analog processing:

| Property | Digital | Analog |

Dynamics only limited by | generally limited
complexity

Precision generally unlimited | generally limited (costs
(costs, complexity ~ increase drastically with
precision) required precision)

Aging without problems problematic

Production low higher

costs

Frequency wdmin <K Wamin Wdmax <K Wamax

range

Linear-phase exactly realizable approximately realizable

frequency

responses

Complex realizable strong limitations

algorithms

1.2 Digital signal processors (DSPs)

e Programmable microprocessor (more flexibility), or hardwired
digital processorASIC, application specific integrated circlit
(faster, cheaper)

Often programmable DSPs (simply called "DSPs”) are used for
evaluation purposes, for prototypes and for complex algorithms:

e Fixed-point processors: Twos-complement number repre-
sentation.

e Floating-point processors: Floating point number repre-
sentation (as for example used in PC processors)

Overview over some available DSP processors see next page.

Performance example: 256-point complex FFT
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FIGURE 1. Execution times for a 256-point complex FFT,
in microseconds (lower is better).

(from [Evaluating DSP Processor Performance, Berkeley Deghnology, Inc., 2000])



Some currently available DSP processors and their properties (2006):

Data BDTImark Core Unit price
Manufacturer Family Arithmetic width (bits) | 2000(TM) | clock speed| qty. 10000
Analog Devices ADSP-219x fixed-point 16 410 160 MHz $11-26
ADSP-2126x floating-point 32/40 1090 200 MHz $5-15
ADSP-BF5xx fixed-point 16 4190 750 MHz $5-32
ADSP-TS20x | floating/fixed-point | 8/16/32/40 6400 600 MHz $131-205
Freescale DSP563xx fixed-point 24 820 275MHz $4-47
DSP568xx fixed-point 16 110 80 MHz $3-12
MSC71xx fixed-point 16 3370 300 MHz $13-35
MSC81xx fixed-point 16 5610 500 MHz $77-184
Texas-Instuments| TMS320C24x fixed-point 16 n/a 40 MHz $2-8
TMS320C54x fixed-point 16 500 160 MHz $3-54
TMS320C55x fixed-point 16 1460 300 MHz $4-17
TMS320C64x fixed-point 8/16 9130 1GHz $15-208
TMS320C67x floating-point 32 1470 300 MHz $12-31
4 N
Speed Scores for Fixed-Point Packaged Processors
Updated May 2006
Copyright © 2006 Berkeley Design Technology, Inc.
Contact BDTI for authorization to publish scores.
See page 2 for details.
ADIADSP-218x| 1240
ADI ADSP-219X7 H 250410
ADI ADSP-BF5xx (Blackfin) 1] I 1 6804190
ADI ADSP-TS201S (TigerSHARC) | I 5330-6400
ADI ADSP-TS2025/203S (TigerSHARC)| 15130
Freescale DSP563xx 2 | I 240-820
Freescale DSP56F8xx (56800)7 | 80-110
Freescale DSP5685x/56F8xxx (56800E)7 90-340
Freescale MSC71xx (SC1400) | I 2240-3370
Freescale MSC81xx (SC140) 1] I 22405610
Intel PXA255 (XScale) | mmM 470-930 T
Intel PXA27x (XScale/Wireless MMX)i I 1070-2140
LSI Logic LSI40x (ZSP4OO)7 Il 560-940
Microchip dsPIC3x | 90130
NEC puPD77050 (SPXKS)’ 1770
Renesas SH76xx (SH2-DSP) [1170 T
Renesas SH772x (SHB-DSP)i Il 250-490
Texas Instruments TMS320C54x '7”-”{573(7);566 777777777777777777777777777777777777777777777777777777777777777777777777
Texas Instruments TMS320C55x 1 I 7801460
Texas Instruments C55x+ 5| I 2530-3160
Texas Instruments TMS320C64x | I, 36509130
Texas Instruments TMS320CG4X+7 I 7900-10980
2 ;Z;Z:;;L:I::d with 24-bit fixed-point data; all other processors benchmarked with 16-bit fixed-point data
3 The C55x+ is only available in custom wireless handset products BDTlsimMark2000™
\ BDTIsimMark2000™ scores may be based on projected clock speeds. For information, see www.BDTl.com/benchmarks.html J
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2. Digital Processing of Continuous-Time Signals
Digital signal processing system from above is refined:

Digital signal

processor W

= A/D [—>

~—{ DI/A

Sample-and

hold circuit

Sample-and

hold circuit

—

]

Anti-aliasing

lowpass filter

Lowpass recor]-

struction filter

—

-

= Generation of discrete-time signals from continuous-time

2.1 Sampling
signals
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(2.1)

i 0(t — nT)

n—=—oo
n—=—oo

zs(t) = x.(t) -

where 6(t) is the unit impulse functionand T' the sampling

period:
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= Y x(nT)s(t — nT)

(2.2)

n=-—oo
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("sifting property” of the impulse function) we finally have for the Fourier transform of (¢)

x.(t)

@ w XG0 =2 3 XGE@-k)). | @4
t k=—o0

s(t) (lengths of Dirac deltas correspond to their weighting)

= Periodically repeated copies &f,(j2) /T, shifted by integer

®) ) multiples of the sampling frequency
\ T T T T T Xe(j2)
j | } | | ! (a) 1
0 T 2T 3T AT 5T
x4(t)  (lengths of Dirac deltas correspond to their weighting) ¢
—Qn | Qn
(© b W P 5(59)
e A ®) %
0 2T 3T 4T 5T T T T T T T Q
30, 20,  -Q, 0 Q, 20, 30,
How does theFourier transform F{zs(t)} = X(52) look
like?
. . . (©) T
Fourier transform of an impulse train:
Q
om X 0. oo, 6. —an | o \Q ) 29 30,
s(t)o—e S(HQ) = Y §(Q—kQ)  (23) | | | L e ‘ v
T k=—00 —67 —47 —27 0 2 A 67
w=0QT
Q, = 27 /T sampling frequency in radians/s. @ = Aliasing
Writing (2.1) in the Fourier domain,
)
) 1 ) ) R i . 20,
X:(jQ2) = 2—Xc(]Q) * S(7Q), (s = )
T

11 12



(a) Fourier transform of a bandlimited continuous-time input
signal X.(5€2), highest frequency i€

(b) Fourier transform of the Dirac impulse train

(c) Result of the convolutios' (5€2) * X.(5€2). Itis evident that
when

Qs — Qn > Qn or Qg > 20y (2.5)

the replicas ofX.(j€2) donotoverlap.
= x.(t) can be recovered with an ideal lowpass filter!

(d) If (2.5) does not hold, i.e. if2, < 2Qu, the copies of
X (7€) overlap and the signal.(t) cannot be recovered by

lowpass filtering. The distortions in the gray shaded areas are
calledaliasing distortionsor simplyaliasing

Also in (c): Representation with the discrete (normalized) frequency
w=QT =27 fT (f frequency in Hz) for the discrete signal(nT) =xz(n)

with Fo{z(n)} = X(e’*), F«{-} denoting the Fourier transform for
discrete-time aperiodic signals (DTFT)

Nonideal sampling

=- Modeling the sampling operation with the Dirac impulse train
is not a feasible model in real life, since we always need a finite
amount of time for acquiring a signal sample.

Nonideally sampled signal,,(¢) obtained by multiplication of a
continuous-time signat.(t) with a periodic rectangular window
functiona,,(t): x,(t) = z.(t) - a,(t) where

[ee]

an(t) = ap(t) * Z o(t—nT)= Z ao(t — nT)
n=-—oo n=—oo (26)

13

ao(t) denotes the rectangular prototype window:

ao(t) = rect<t_:é—f/2> (2.7)
. __Jo for |t|>1/2
with rect(t) := {1 for |t] < 1/2 (2.8)

Qo (t)

1 rect(t) o—e sing(2/2),
sing(x) := sin(z)/x

|
T

aT T

Fourier transform of a,,(t):

Fourier transform of the rectangular time window in (2.7) (see
properties of the Fourier transform)

AO(]Q) = f{ao(t)} =o'l - S|nC(QO[T/2) X e*anT/2
(2.9)
Fourier transform ot.,, (¢) in (2.6) (analog to (2.3)):

ALGR) = 4G9 - S0 59 - k)

k=—o0

=2ma Y singkQ,aT/2) e T2 5(Q—kQ,)

k=—o00
=2ra Y sindkra)e M §(Q—kQ,)

k=—o0

(2.10)

14



Since
2a(t) = 2(t) an(t) o8 X,(I) = 5= (XGD*AL(D)

we finally have by inserting (2.10)

X,(jQ) = « i sindkra) e XL (5(Q — kQL)).

k=—o00

(2.112)
From (2.11) we can deduce the following:

e Compared to the result in the ideal sampling case (cp. (2.4))
here each repeated spectrum at the center frequiefigyis
weighted with the term siré&mra) e /¥,

e The energy | X, (j)|* is proportional a?:  This is
problematic since in order to approximate the ideal case we
would like to choose the parameteras small as possible.

15

Solution: Sampling is performed by aample-and-holdS/H)
circuit

Convert ‘
S/H command ¥
o

control

| L
A/D ™| Buffer To computer or

Sample- uter
hold converter | orbus communication
channel
-~

[—
[ —

Analog
preamp Status N [}

(a)

Tracking
in "sample"

f — — < rF
; S/H output
(b)
(from [Proakis, Manolakis, 1996])

(a) Basic elements of an A/D converter, (b) time-domain response of an ideal
S/H circuit

e The goal is to continously sample the input signal and to hold
that value constant as long as it takes for the A/D converter to
obtain its digital representation.

e |deal S/H circuit introduces no distortion and can be modeled
as an ideal sampler.
= Drawbacks for the nonideal sampling case can be avoided
(all results for the ideal case hold here as well).

16



2.2 Sampling Theorem

Reconstruction of an ideally sampled signal by ideal lowpass

filtering:

(@)
e T Rl e H,(jQ)

ze(t) (1) (1)
Qy < Qe < (2 — Qn)
(d) |
Xe(G9)
(b) 1 Q
—Q, Q
9)
Oy | Qn X, (59)
X,(9Q) ® 1
1
() T Q
—an | Oy
20, -9, x| oy N\ a, 20,
(Qs - QN)

In order to get the input signat.(¢) back after reconstruction,
ie. X, (j2) = X.(j2), the conditions

Qs
Qn < ? and Qy < Q. < (Qs — QN) (212)

have both to be satisfied. Then,

Xc(jﬂ) = Xr(jQ) = XS(.]Q) : HT‘(.]Q) —0
xc(t) = xr(t) = xs(t) * hr(t)' (2.13)

We now choose the cutoff frequen€y, of the lowpass filter as
Q. = Q,/2 (satisfies both inequalities in (2.12)).

17

Then, with the definition of the re¢t) function in (2.8) we have

H,.(j) = Trect(2/Qs) o h,.(t) = sing(Qt/2).
(2.14)
Combining (2.13), (2.14), and (2.2) yields

i z.(nT)é(r —nT) SinC(%Qs(t—T)> dr

n=—oo

= f:: :Ec(nT)/OO(S(T—nT)SinC<%QS(t—T)> dr
= f:: mc(nT)sinc<%Qs(t—nT)>.

Sampling theorem:

Every bandlimited continuous-time signalx.(t) with
Qn < Qs/2 can be uniquely recovered from its samples
x.(nT) according to

oo

zo(t) = Y xo(nT) sinc<%Qs(t—nT)>. (2.15)

n=-—oo

Remarks:

e EQ. (2.15) is called thédeal interpolation formula and the
sinc-function is namedteal interpolation function

18



e Reconstruction of a continuous-time signal using ideal
interpolation:

Reconstructed signal \

-T 0 T 2T 3T 47
(from [Proakis, Manolakis, 1996])

Anti-aliasing lowpass filtering:

In order to avoid aliasing, the continuous-time input signal toa
be bandlimited by means of anti-aliasing lowpass-filtewith
cut-off frequency$2. < /2 prior to sampling, such that the
sampling theorem is satisfied.

2.3 Reconstruction with sample-and-hold circuit

In practice, a reconstruction is carried out by combining a D/A
converter with a S/H circuit, followed by a lowpass reconstruction
(smoothing) filter
digital
input signal S/H xo(t) Lowpass pa(t)

— = DI/IA e

ho(t) ha (t)

e DJ/A converter accepts electrical signals that correspond to
binary words as input, and delivers an output voltage or current
being proportional to the value of the binary word for every
clock intervalnT’

e Often, the application on an input code word yields a
high-amplitude transient at the output of the D/A converter
("glitch”)

19

=- S/H circuit serves as a "deglitcher”:

Output of the D/A converter is held constant at the previous
output value until the new sample at the D/A output reaches
steady state

i )

6T

(a)

Sampled signal meme——-] S/H b X (1)

(b)

h(t)

Figure 9.22 (a) Approximation of an
t analog signal by a staircase; (b) linear
0 T filtering interpretation; (c) impulse
() response of the S/H.

(from [Proakis, Manolakis, 1996])

Analysis:
The S/H circuit has the impulse response

ho(t) = rect<#> (2.16)

which leads to a frequency response

Ho(jQ) = T - singQT/2) - e 7772 (2.17)

20



e No sharp cutoff frequency response characteristisswe 1X, ()|
have undesirable frequency components (alfoy£2), which @ 1ix o) .
can be removed by passing,(t) through a lowpass \/ - \
reconstruction filterh,.(¢). This operation is equivalent =y 5 a4 v
to smoothing the staircase-like signah(t) after the S/H
operation. o T singQT2)
e When we now suppose that the reconstruction filteft) is T
an ideal lowpass with cutoff frequenéy. = 2,/2 and an /\ P
amplification of one, the only distortion in the reconstructed 20, 0 Q, 20,
signalzpa (t) is due to the S/H operation:
© [ Xo(j)]
| Xpa(39) = | X ()| - [sinQT/2)] (2.18) e
| X.(7€2)| denotes the magnitude spectrum for the ideal o ’ QS .
reconstruction case.
@ [H, ()
= Additional distortion when the reconstruction filter is not ideal 1 e
(asinreal life!) } .8
= Distortion due to the sinc-function may be corrected by pre- -2 -2 102 O
biasing the frequency response of the reconstruction filter
© [Xba(62)]
Spectral interpretation of the reconstruction process (see next page): !
(&) Magnitude frequency response of the ideally sampled continuous-time _bs 0 QL !
signal

(b) Frequency response of the S/H circuit (phase factor21/2

omitted)
(c) Magnitude frequency response after the S/H circuit
(d) Magnitude frequency response: lowpass reconstruction filter

(e) Magnitude frequency response of the reconstructed continuous-time signal

21



2.4 Quantization

Conversion carried out by an A/D converter involepgmntization
of the sampled input signat,(n7T") and theencodingof the
resulting binary representation

e Quantization is anonlinear and noninvertibleprocess which
realizes the mapping

zs(nT) =x(n) — x € Z, (2.19)

where the amplitude, is taken from a finite alphabét.
e Signal amplitude range is divided infointervals!,, using the

L+1 decision levelsl;, do, . . ., dp+1:
L, ={dp, < z(n) <dg+1}, k=1,2,...,L
%\Lfglgtization Ig/gfsision e
P Y

Amplitude —

e Mapping in (2.19) is denoted @agn) = Q[z(n)]
e Uniform or linear quantizers with constamuantization step
sizeA are very often used in signal processing applications:

A =z —x, =const, forallk =1,2,...,L—1
(2.20)

e Midtreat quantizer: Zero is assigned a quantization level
Midrise quantizer: Zero is assigned a decision level

23

e Example: midtreat quantizer with = 8 levels andrange
R =8A

—4A  —-3A -2A -A 0 A 2A 3A

| | | | | ° | |
T T T T T * T T

d1:—00 T d2 ZTo d3 T3 d4 Ta d5 ZT5 dﬁ Te d7 Z7 dg Ts ngOO

| Amplitude — |
| |
| |
1

~—— RangeR of quantizer

e Quantization errore(n) with respect to the unquantized
signal

A A
Y <e(n) < 5} (2.21)

If the dynamic range of the input sign&kmax — Tmin) IS
larger than the range of the quantizer, the samples exceeding
the quantizer range are clipped, which leads(ta) > A /2.

e Quantization characteristic functiofor a midtreat quantizer
with L = 8:

Output | % = Q[x]
Quantization
levels \3A
2A Two's-complement
code words
A - 011
Decision levels

N b
B 2 001
000
94 7A 5A 0 3A 3a 54 74 9 Yol
2 2 2 2 2 2 2 2 Input py9

101

100
—2A

-3A

Range R = FSR

(Peak-to-peak range)
~FS +FS

(from [Proakis, Manolakis, 1996])
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Coding significant bit(LSB), has the value

The coding process in an A/D converter assigns a binary number b1
to each quantization level. T = —B+ Z 327" (2.24)
=1

e With a wordlength of bits we can represeRf > L binary

numbers, which yields _ )
e Number representation has no influence on the performance of

b > log,(L). (2.22) the quantization process!

_ . o Performance degradations in practical A/D converters:
e The step size or theesolutionof the A/D converter is given as

8
3's
]
R S Tmp Ideal —
) . £ A/D
A = 5 with the rangeR of the quantizer. (2.23) 1280l conversion
EREE UL .
) $14 Ideal £
. 5 5 100F ansiti )
e Commonly used bipolar codes: N cansition | £
—E % o011 F Nominal g
Positive Negative Sign + Two's Offset One’s E 12 qu‘a,\:lz;zced E
Number  Reference Reference Magnitude Complement Binary Complement E“ K ? 010 * %LSB) é
k=] o
S g oolf VA
+7 +} -1 0111 0111 1111 0111 E O, Bld |3 2 |8 ]33 %‘
+6 +§ -¢ 0110 0110 1110 0110 8 ool Tl =
: ; o L 1 3 1 5 3 1 Fs
+5 +3 -3 0101 0101 1101 0101 8 4 8 2 8 4 38
+4 +3 -4 0100 0100 1100 0100 Normalized analog input
+3 +3 -3 0011 0011 1011 0011 @
+2 +} -3 0010 0010 1010 0010
+1 +3 -1 0001 0001 1001 0001 1 -
0 0+ 0- 0000 0000 1000 0000 :(')? N
0 0- 0+ 1000 (0000)  (1000) 1111 100 " S,
-1 -1 +1 1001 1111 0111 1110 o1l Gain
error
-2 -3 +3 1010 1110 0110 1101 010
-3 -3 +3 1011 1101 0101 1100 poes
8 8 000 SN S T T N |
—4 -4 +4 1100 1100 0100 1011 O b Offsetemor FS
: ; o
-5 -3 +3 1101 1011 0011 1010 ® ©
-6 -¢ +§ 1110 1010 0010 1001
-7 -3 +] 1111 1001 0001 1000 -
-8 -3 +§ (1000)  (0000) 110 [ Nonlinearity Missed codes
101 + g b
100 |
. . ol b ,
(from [Proakis, Manolakis, 1996]) 010 | A
001 |4
, . . . . 000 A v L
e Two’s complement representation is used in most fixed- S s
4 2 3 4
point DSPs: Ab-bit binary fraction[3y5152 . . . Bv—1], Bo @ ©
denoting themost significant bitMSB) and 5,_; the least (from [Proakis, Manolakis, 1996])
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Quantization errors

Quantization error is modeled as noise, which is added to the
unquantized signal:

Quantize

Actual system ﬁ(ﬁ Q(n)) ch(n)

e(n)

'

Mathematical model (%@—>
x

n) Z(n)=xz(n)+e(n)

Assumptions:

e The quantization erro¢(n) is uniformly distributed over the
range—5 < e(n) < 5.

e The error sequence(n) is modeled as a stationary white
noise sequence.

e The error sequence(n) is uncorrelated with the signal
sequence:(n).

e The signal sequence is assumed to have zero mean.

Assumptions do not hold in general, but they are fairly well
satisfied for large quantizer wordlengtihs

Effect of the quantization error oguantization noiseon the
resulting signalz(n) can be evaluated in terms of tegnal-to-
noise ratio(SNR) in Decibels (dB)

2
SNR:= 10logy, (%) , (2.25)
Je
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where ai denotes the signal power andj the power of the
guantization noise.

Quantization noise is assumed to be uniformly distributed in the
range(—A/2, A/2):

p(e)

D=

| >
| >

= Zero mean, and a variance of

AJ2 1 A/2 A2
ng/ egp(e)de:—/ e’ de = —

A/2 AJ_ap 12
(2.26)
Inserting (2.23) into (2.26) yields
272b R2
— , (2.27)
12

and by using this in (2.25) we obtain

B o2\ 122% o2
SNR=10log;y | — | = 10logy | —p7—

e

R
g

x
J/

(*)

Term () in (2.28):
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e o, root-mean-square (RMS) amplitude of the signéd)
e o, to small=- decreasing SNR

e Furthermore (not directly fronix)): o, to large=- rangeR
is exceeded

= Signal amplitude has to be carefully matched to the range of

the A/D converter
For music and speech a good choice js= R /4. Thenthe SNR
of a b-bit quantizer can be approximately determined as

SNR= 6.02b — 1.25dB. (2.29)

Each additional bit in the quantizer increases the signahtise
ratio by 6 dB!

Examples:

Narrowband speeclb: = 8 Bit == SNR = 46.9dB
Music (CD):b = 16 Bit = SNR= 95.1dB
Music (Studio):b = 24 Bit = SNR= 143.2dB
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2.5 Analog-to-digital converter realizations

Flash A/D converter

Va

(Analog input)
V+
R
R

72"’-2 % D_
Vr

Analog
comparator:

% :@_v
V;
0
V2

N, Digital
i> oufput

TTT

(ZN —1) —levels-to-N -bit encoder

=

(from [Mitra, 2000], N = b: resolution in bits)

e Analog input voltagelV4 is simultaneously compared with a

set of2° — 1 separated reference voltage levels by means of a
set of2°—1 analog comparatoes- locations of the comparator
circuits indicate range of the input voltage.

e All output bits are developed simultaneousty very fast

conversion

Hardware requirements increase exponentially with an
increase in resolution

= Flash converters are used for low-resultién € 8 bit) and
high-speed conversion applications.

Serial-to-parallel A/D converters

Here, two b/2-bit flash converters in a serial-parallel
configuration are used to reduce the hardware complextity
at the expense of a slightly higher conversion time
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Subranging A/D converter:

Va

(Analog input)

_.IN/Z—bit':B JN/2-bit
Ve "ADC ® V&7 ADC

MSBs LSBs

(from [Mitra, 2000], N = b: resolution in bits)

Ripple A/D converter:
Va
(Analog input)
v, —fN/2-bit N/2-bit] Y N/2-bit
R | ADC DAC ADC [ |y/2
Coarse N2 T Fine

V

MSBs R LSBs

(from [Mitra, 2000], N = b: resolution in bits)

Advantage of both structures: Always one converter is idle while
the other one is operating

= Only oneb/2-bit converter is necessary

Sucessive approximation A/D converter

Start
YA Control] | Clock I N-bit
(Analog input) logic oc shift register
W
N -bit
shift register

N Digital
output

l— Reference
voltage

D/A converter

Vb

(from [Mitra, 2000], N = b: resolution in bits)
Iterative approach: At thé-th step of the iteration the binary
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approximation in the shift register is converted into an (analog)
reference voltagéd’p by D/A conversion (binary representation

[BoB1 - - BeBr+1 - - - Bo-1], Br € {0, 1}VEk):

e Case 1: Reference voltagé, < V4 = increase the binary
number by setting both thle-th bit and the(k+1)-th bitto 1

e Case 2: Reference voltagé, > V4 = decrease the binary
number by setting th&-th bit to 0 and the(k+1)-th bitto 1

= High resolution and fairly high speed at moderate costs, widely
used in digital signal processing applications

Oversampling sigma-delta A/D converter to be discussed in Section 5. ..

2.6 Digital-to-analog converter realizations

Weighted-resistor D/A converter

........... A—ovo
LoV 1/2N2 1/2! 1 R,
S s S N
=N [ N-1Q: o 2. oo N1
N g NE
v CA B2 [ B Bo
R~ "visB LSB
(from [Mitra, 2000], N = b: resolution in bits)
OutputV/, of the D/A converter is given by
N—-1
Ry,
Vo= 2 1%
;) BZ(QN—l)RL-klR

Vr: reference voltage
Full-scale output voltag®/, rs is obtained wherg, = 1 for all
{=0,...,N—1:
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(2N — 1Ry _ N
Vv, = Vr = Vg, since(2—1)R;, > 1
FS 2N — )Ry + 1 R R ( )RL

Disadvantage: For high resolutions the spread of the resistor

values becomes very large

Resistor-ladder D/A converter

"LSB ) ' ) MSB
(from [Mitra, 2000], N = b: resolution in bits)

= R-2R ladder D/A converter, most widely used in practice.
OutputV, of the D/A converter:

N-1
¢
2°B¢
=0

Vr
Q(RL + R) 2N-1

In practice, often2R; > R, and thus, the full-scale output
voltageV,, rg is given as

2" -1

N VR

Vo,rs =

Oversampling sigma-delta D/A converter to be discussed in Section 5. ..
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3. DFT and FFT
3.1 DFT and signal processing

Definition DFT from Signals and Systems:

N-1
DFT: w(n)o—e Vy(k) = > v(n) Wy" (3.1)
n=0

IDFT: Vin(k)e—ouv(n) = % Z Vn(k) Wy (3.2)
k=0

with Wy := e 72/N N: number of DFT points

3.1.1 Linear and circular convolution

Linear convolution of two sequences; (n) andvy(n), n € Z:

yi(n) = vi(n) * v2(n) = va(n) * vi(n)

= Z vi(k) va(n — k) = Z va(k) vi(n — k) (3.3)

k=—o0 k=—o0

Circular convolution of two periodic sequencesv;(n) and
va(n), n = {0,...,N12 — 1} with the same period
N1:N2:Nandno S/
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Substitution of the DFT definition in (3.1) far, (n) andvy(n):

Ye(n) = vi(n) ® v2(n) = v2(n) ® vi(n)
no+N-—1 ng+N-—1
= Z vi(k) v2(n — k) = Z va(k) vi(n — k) 1 N1 N-1 N—1
k=ng k=ng =N Z vi(m) Z va(l) [Z W&k("_m_l)]
m=0 1=0 k=0

N—-1 - N—1
s =23 [z m(m)vv]@m] [z w(l)wjél] et

=0

(3.4)
(3.7)
We also use the symbal) instead of () .
DET and circular convolution Term in brackets: Summation over the unit circle
Inverse transform of a finite-length sequende: ), Nl

) ejgﬂk(n_m_l)/N _ N for I=n—m+AN, N Z
n,k=0,..., N-1: 2. 0 otherwise

_ _ — (3.8)
v(n) o—e Vy(k)e—ov(n) =v(n+ AN) (35) Substituting (3.8) into (3.7) yields the desired relation

= DFT of a finite-length sequence and its periodic extension is

N—-1 oo
identical!
y(n) = v1(k vo(n — k + AN
Circular convolution propertyr(, k = 0, ..., N —1) (n) kz_:o 1(F) A_z_:oo 2 )
(v1(n) andvy(n) denotdfinite-lengthsequences): o ((i—k)) o periodic extension)
N—-1
y(n) = vi(n) @ va(n) o—e Y (k) = Viy (k) - Vo () =3 wi(Byal(n — k) 3.9)
(3.6 k=0
Proof: =wvi(n) @ va2(n)
1 N-1
IDFT of Y (k): ==Y Y)Wy
() y(n) = 530 Y (R)
1 N2
= =D Viy(k)Vay (k) Wy
NS
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Example: Circular convolutiopg(n) = vi(n) @ va(n):

vy(n)

HMT n

0 N
{ vi(n) =d0(n—1)
0 N
va((0=k))n, k=0,...,N=1,n=0
{ Al
0 N
172((1—k));\r,A‘=0,...,;‘7\1‘Y—1,n=1
lal
0 N
y(n) = v1(n)@ va(n)
A1
0 N

3.1.2 Use of the DFT in linear filtering

e Filtering operation can also be carried out in the frequency
domain using the DFE> attractive since fast algorithms (fast
Fourier transforms) exist

e DFT only realizes circular convolution, however, the desired
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operation for linear filtering is linear convolution. How can
this be achieved by means of the DFT?

Given: Finite-length sequences(n) with length N; andwvs(n)
with length N,

e Linear convolution:

Ni-1

y(n) = 3" (k) val(n — k)

k=0

Length of the convolution resulf(n): N3 + Ny — 1

e Frequency domain equivalerit’ (e’*) = Vi (e’*) Va(e’¥)

e In order to represent the sequengén) uniquely in the
frequency domain by samples of its spectriife’), the
number of samples must be equal or excdéd+ No — 1
= DFT of sizeN > N; + Ny — 1isrequired.

e Then, the DFT of the linear convolution(n) = v1(n) *
va(n)isY (k) = Vi(k) - Vo(k),k =0,..., N—1.

This result can be summarized as follows:

The circular convolution of two sequenceg n ) with length Ny
andwvy(n) with length N, leads to the same result as the linear
convolutionvy (n) x v2(n) when the lengths of; (n) andvs(n)

are increased t&v = N, + N, — 1 points byzero padding

Other interpretation:  Circular convolution as linear
convolution with aliasing
IDFT leads to periodic sequence in the time-domain:

> yin—AN) n=0,...,N—1,
Yp(n) = § A==
0 otherwise
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with Y (k) = DFTy{y(n)} = DFTy{y,(n)}

= For N < N; + N> — 1: Circular convolution equivalent to

linear convolution followed byime domain aliasing
Example:

z1(n)=w2(n)

A1
0 Ni=N
Ny
{ y(n)=z1(n) * z2(n)
At :
0 2N -1
Nt oy, Ni=6
1] ‘ HMT :
0 M
Ny
} y(n+Ny), Ny =6
TM Ly !
—-N; 0
Ny
z1(n)® z2(n)
Ny =Ny =6
0 Ni=N> |
Ny
{ 21 (n)@ z2(n)
[ N=12
AL !
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3.1.3 Filtering of long data sequences

Filtering of a long input signak(n) with the finite impulse
responséi(n) of length N,
Overlap-add method
1. Input signal is segmented into separate blocks:
vy(n) =v(n+vN;),ne{0,1,..., Ny—1}, v € Z.
2. Zero-padding for the signal blocks (n) — ¥, (n) and the
impulse responsé(n) — h(n) to the lengthN = N; +
No—1.
Input signal can be reconstructed according to

oo

v(n) = Z Uy(n — vNy)
sincev,(n) =0forn = N1+1,..., N.

3. The twoN-point DFTs are multiplied together to form
Y, (k) =V, (k) -H(k), k=0,...,N—1.

4. The N-point IDFT yields data blocks that are free from
aliasing due to the zero-padding in step 2.

5. Since each input data bloek (n) is terminated withV — Ny
zeros the lasfV — N; points from each output blocly, (n)
must be overlapped and added to the fivst N, points of the
succeeding block (linearity property of convolution):

oo

y(n) = 3 yu(n — vy

V=—00

= Overlap-addmethod
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Linear FIR (finite impulse response) filtering by the overlap-add
method:

Input signal:

jf——— [ ——a—— [ ———fa——— [ ——>

&o(n)

N—N; zeros
\
21(n)
N —Nj zeros
Zo(n)
N — N, zeros
Output signal:

Yo(n) N\ N—N, samples
added together

N y1(n) N N—N, samples

added together

N\ T

Overlap-save method

1. Inputsignalis segmented into By— N; samples overlapping
blocks:
vy(n) =v(n+vNy), ne {0,1,..., N—1}, v € Z.

2. Zero-padding of the filter impulse resporisign) — h(n) to
the lengthV = N1+ No— 1.

3. The two N-point DFTs are multiplied together to form
Y, (k) =V,(k) -H(k),k=0,...,N—1.
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4. Since the input signal block is of lengf the first N — N;
points are corrupted by aliasing and must be discarded. The
last No = N — N7 —1 samples iny, (n) are exactly the same
as the result from linear convolution.

5. In order to avoid the loss of samples due to aliasing the last
N — N; samples are saved and appended at the beginning of
the next block. The processing is started by setting the first
N — N, samples of the first block to zero.

Linear FIR filtering by the overlap-save method:

Input signal:

zo(n)

N—N, zeros Nl

z1(n)

za(n) &

Output signal:

Discard ()
N — N, samples yuin

Discard (n)
N—N; samples y2(n

Discard
N —N; samples

Nore computationally efficient than linear convolution? Vs,
combination with very efficient algorithms for DFT computation.
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3.1.4 Frequency analysis of stationary signals
Leakage effect

Spectral analysis of an analog signdt ):

e Antialiasing lowpass filtering and sampling with, > 22,
), denoting the cut-off frequency of the signal

e For practical purposes (delay, complexity): Limitation of the
signal duration to the time intervdly = L T' (L: number of
samples under consideratidfi; sampling interval)

Limitation to a signal duration of7; can be modeled as
multiplication of the sampled input signa(n ) with a rectangular
windoww (n)

1 foro<n<L-1,
0 otherwise.

(3.10)
Suppose that the input sequence just consists of a singleash
thatisv(n) = cos(wen). The Fourier transform is

o(n) = v(n)w(n) with w(n):{

V() = 7(6(w — wp) + 6(w + wp)). (3.11)
For the windoww (n) the Fourier transform can be obtained as

L—1 —Gjwl .
; i 1—e™’ iw(L—1)/28In(wL/2)
W (el = jon _ ‘ — jw(L—1)/2 ‘
(e™) Z © 1_edw € sin(w/2)
(3.12)

n=0
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We finally have

|~

V(™) = — V() @ W(e™)]

™

[W(ej(w—wo)) + W(ej(w_‘—wO))} (3.13)

N~ N

Nagnitude frequency responBe (e’*)| for L = 25:

Magnitude

Frequency

(from [Proakis, Nanolakis, 1996])

Windowed spectruni/ (e’“) is not localized to one frequency,
instead it is spread out over the whole frequency range
= spectral leaking

First zero crossing oV (e’“) atw, = +2x/L:

e The larger the number of sampling poirdigand thus also the
width of the rectangular window) the smaller becormggand
thus also the main lobe of the frequency response).

e = Decreasing the frequency resolution leads to an increase
of the time resolution and vice versa (duality of time and
frequency domain).

In practice we use the DFT in order to obtain a sampled
representation of the spectrum accordindtpe’“x),
k=0,...,N—1.
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Special case: If

27
N =L and UJO:FV, v=0,...,N—1

then the Fourier transform is exactly zero at the sampled
frequenciesvy, except fork = v.

Example: (V = 64, n = 0,..., N — 1, rectangular window

w(n))

vo(n) = cos [5%4 o1(n) = cos {(5W ) %>

\Y (n)-cos(ZTVN B5m) vl(n)-cos((ZTVN B+17N) )

1
|
| 0“ \
N -
1
DFT(v (n) W(n)) rect. window

0.

o
o

DFT(v (n) w(n)) rect. window

0.8 0.8

0.6 0.6
0.4 0.4
\\“ ‘MHHHH\HHHHH

0.2 0.2

0 0
0 10 20 30 0 10 20 30

k

e Left hand side:Vj(e/“*) = Vi (e/“k) ® W (e/*k) = 0 for

45

wy, = k2w /N exceptfork =5, sincew is exactly an integer
multiple of 27w /N

= periodic repetition ofvy(n) leads to a pure cosine
sequence

e Right hand side: slightincreaseof, # v2n /N forv € Z
= Vi(e?“F) # 0 for w, = k27 /N, periodic repetition is
not a cosine sequence anymore

Windowing and different window functions

Windowing not only distorts the spectral estimate due to leakag
effects, it also reduces the spectral resolution.

Consider a sequence of two frequency components
v(n)=-cos(win)+cos(wyn) with the Fourier transform

V(e) = [W(ej(wfwl)) + W(ej(w*wz)) +

N |~

+ W(ej(w-i-wl)) + W(ej(w+w2))

where W (e’*) is the Fourier transform of the rectangular
window from (3.12).

e 27 /L < |wi—w2|: Two maxima, main lobes for both window
spectral/ (e “~«1) andW (e’(“~+2)) can be separated

e |w; —ws| =27 /L: Correct values of the spectral samples,
but main lobes cannot be separated anymore

e |wi —wsy| < 27/L: Nain lobes of W (e’“~“1)) and
W (e?“%2)) overlap

= Ability to resolve spectral lines of different frequencies is
limited by the main lobe width, which also depends on the length
of the window impulse respongde.
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Example: Magnitude frequency respone(e’*)| for

v(n) = cos(won) + cos(win) + cos(wan) (3.14)

with wg = 0.2 7, w1 =0.227, wy = 0.6 7w and (8)L = 25,
(b) L=50, (c) L=100

Magnitude

8

Magnitude

0

Ny |

_x
2
Frequency Frequency

@) (b)

Magnitude

Frequency
(©)

(from [Proakis, Nanolakis, 1996])
The cosines with the frequencies andw; are only resolvable
for L =100.

To

reduce leakage, we can choose a different window function

with lower side lobes (however, this comes with an increase of
the width of the main lobe). One choice could be H@nning
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window specified as

1—005‘.(2T7T )} foro<n<L-—1,
'U)Han(n): [ L=t

otherwise

O N

| (3.15
Nagnitude frequency respongd’(e’*)| from (3.13), where
W (e’¥) is replaced byWVyan(e’®) (L =25):

6

St L=25

4

3 4

2F

1

Br -I 0 x x
2 2

Frequency

Magnitude

(from [Proakis, Nanolakis, 1996])

Spectrum of the signal in (3.14) after it is windowed withian(n)
in (3.15):

T

Frequency Frequency
@ (®)

Magnitude
IO = 8w & » o

Magnitud
o = v w & » o
c;

N

(from [Proakis, Nanolakis, 1996])
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The reduction of the sidelobes and the reduced resolution
compared to the rectangular window can be clearly observed.

Alternative: Hamming window

0.54 — 0.46 cos (Z5n) for0 <n <L -1,
0 otherwise

WHam(n) = {

(3-16)
Comparison of rectangular, Hanning and Hamming window
(L=64):

Rectangular window w, __ (n) 20log, |Wrecl(ej‘*’)|
1 0
0.5 9 -50
0 -100
0 20 40 60 0 0.2 0.4 0.6 0.8 1
n - w/m -
Hanning window w, _ () 20log, |WHan(e"")|
1 0
) ‘ ‘ -
0 M\HHHHH HHHH“M‘ ~100 TATATaY:)
0 20 40 60 0 0.2 0.4 0.6 0.8 1
n- w/m -
Hamming window w,_ (n) 20 log, ; IW,,, (")
1 0
) ‘ -
0 H\HHHHHH HHHHHHM _100
0 20 40 60 0 0.2 0.4 0.6 0.8 1

n - w/m -

Remark: Spectral analysis with DFT

e Sampling grid can be made arbitrarily fine by increasing
the length of the windowed signal with zero padding (that
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is increasinglN). However, the spectral resolution is not
increased (separation of two closely adjacent sine spectra
lines).

e An increase in resolutioran only be obtainety increasing
the length of the input signal to be analyzdthat is
increasingL), which also results in a longer window (see
examples above).

3.2 Fast computation of the DFT: The FFT

Complexity of the DFT calculation in (3.1) fow(n) €C,
VN(k}) eC:

N—-1
Vn(k) =) 3(n)W}§” for k=0,...,N—1
n=0 1 complex multiplication N results

N compl. mult., N compl. add.

= Overall N? complex multiplications and additions.

Remarks:

e 1 complex multiplication— 4 real-valued mult+ 2 real-
valued additions
1 complex addition— 2 real valued additions

e A closer evaluation reveals that there are slightly less fNan
operations:
— N values have to be added up (/N — 1) additions.
— Factorse’®, e/™, e*15* = no real multiplications.
— For k=0 no multiplication at all.

e Complexity of the the DFT becomes extremely large for
large values ofN (i.e. N = 1024) = efficient algorithms
advantageous.
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Fast algorithms for DFT calculation (as the fast Fourier transform,
FFT) exploit symmetry and periodicity propertieswj’f,” as

e complex conjugate symmetryy’ X" = W Fn = (Wwkny*

e periodicity ink andn: W} =w "N =y (FH"

3.2.1 Radix-2 decimation-in-time FFT algorithms

Principle:

Decomposing the DFT computation into DFT computations
of smaller size by means of decomposing thepoint input
sequence(n) into smaller sequences- "decimation-in-time”

Prerequisite:
N integer power of two, i.eN = 2™, m=log,(N) € N =
"radix-2"

Decomposing aN -point DFT into two N /2-point transforms

DFT V (k) (we drop the subscriplV for clarity) can be written
as

N—-1
Vik) =Y vm)Wy', k=0,...,N—1
n=0
N/2-1 N/2-1
= Y v@n) W+ Y w@n+ 1) WY,
n=0 n=0

(3.17)
where in the last step(n) is separated into twaV/2-point
sequences consisting of the even- and odd-numbered points in

v(n).
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Since

Wz%f _ o 202m/N _ —j2m/(N/2) _ Wo

we can rewrite (3.17) as

N/2—1 N/2—1
Vik)= Y v@n) Wy, + Wy > v(@2n+1) Wy,
n=0 n=0

(3.18)
=Gk)+WrH(k), k=0,...,N—1 (3.19)

e Each of the sums in (3.18) representsVgd2 DFT over the
even- and odd-numbered pointswdfn ), respectively.

e G(k)andH (k) need only to be computedfor ..., N/2—
1 since both are periodic with periad /2.

Signal flow graph fotN =8 (v — z,V — X):

Gl0]
x[0] o——] X[0]

x[2] o——
7N — point

x[4] o—>— DFT

x[6] o——]

x[1] o——]

x[3] o——
%]~ point
DFT

x[5] o——]

x[7] o——

(from [Oppenheim, Schafer, 1999])

Complexity:
2 DFTs of lengthN/2 — 2 - N?/4 = N?/2 operations+
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N operations for the combination of both DFTs
= N + N?/2 operations (less thaN? for N > 2)

Decomposition into 4N /4-point DFTs
G(k) andH (k) from (3.19) can also be written as

The overall flow graph now looks like — =,V — X):

x[0] o>

%’ - point
DFT

X[l
\/\\ /V ﬂ

N/4—1 N/4—1
kn k kn
G(k) = Z 9(2n) WN/4 + WN/2 Z 9(2n+1) WN/47
n=0 n=
(3.20)
N/4—1 N/4—1
kn k kn
H(k) = Z h(2n) Wy s + Wy s Z h(2n+1) Wy,
n=0 n=0
(3.21)
wherek = 0,..., N/2—1.
Signal flow graph fotN =8 (v — =,V — X):
o= g—point WS/CZ;[O]
xf4jo——ry PFT Gl
Wi
xRl %—poim /5/2 e
x[6]o——] PFT oG [3]
Win
(from [Oppenheim, Schafer, 1999])
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x[4]

SO ANVILN
X2 X[2
x[2] ghpmm ﬂw 121
i TR
X4
X[llo_’_ %—poml \//><><\ [ ]
x[s]o—{ PFT X[5]

x[3] o> X6
o %’fpoml W l
x[7]0>—{_PFT X[

(from [Oppenheim, Schafer, 1999])

Complexity:
4 DFTs of lengthN /4 — N? /4 operations
+ 2 - N/2 + N operations for the reconstruction

= N?/4 + 2N complex multiplications and additions

Final step: Decomposition into 2-point DFTs
DFT of length 2:

V3(0) = v'(0) + W5 v'(1) = v'(0) + /(1) (3.22)
V(1) = o'(0) + W, v'(1) = '(0) —o'(1)  (3.23)

Flow graph:

Inserting this in the resulting structure from the last step yidids t
overall flow graph fo N = 8)-point FFT:(v — z, V — X):
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(from [Oppenheim, Schafer, 1999])

In general, our decomposition requires = log,(N) = Id N
stages and folV > 1 we have

N -m = NIdN complex multiplications and additions.

(instead ofN?)

Examples:
N=32— N?~ 1000, Nld N =~ 160 — factor6
N=1024 — N? ~ 10%°, NId N ~ 10* — factor100

Butterfly computations

Basic building block of the above flow graph is calledtterfly
(p€{0,...,N/2—1}):

1

1
Simpli£cation
w4 1
=
1 1

W W K

The simplification is due to the fact that

55

Wjifv/Q — ¢ J@T/N)N/2 _ o—im — _ 1 Therefore we have
WENE —we wi? = —wi.

Using this modification, the resulting flow graph fof = 8 is
given ajv — x,V — X).

Stage |
x(0)
x(4) .

1

x(2)

X(0)

Xy

XQ)

x(6)

-1
x(1)
X(5) u
-1
-1

X@3)

/
AL/
&

X(5)

(3) X(6)

a
w3 \
8 X7

x(7)

(from [Proakis, Nanolakis, 1996])

In-place computations

e The intermediate resultsvj(f)(kl,g) in the ¢-th stage,
£ =0,...,m—1 are obtained as

Vi (k) = VD (k) + WE VD (ky),
Vi (k) = VI (k1) — WE VT (k)

(butterfly computations) where,, ko2, p € {0,..., N—1}
vary from stage to stage.
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e = Only N storage cells are needed, which first contain the
valuesv(n), then the results from the individual stages and
finally the valuesVy (k) = In-place algorithm

Bit-reversal
e v(n)-values at the input of the decimation-in-time flow graph
in permuted order

e Example forV = 8, where the indices are written in binary
notation:

# flow graph input 000 001 010 011
v(n) v(000) | »(100) | »(010) | »(110)

# flow graph input 100 101 110 111
v(n) v(001) | »(101) | »(011) | w(11l1)

= Input data is stored ihit-reversedorder

Bit-reversed order is due to the sorting in even and odd indices in
every stage, and thus is also necessary for in-place computation

(v — x):
ny ny n

x[000]

x[100]

x[010]
x [nynyng) x[110]
G

x[001]

x[101]

x[011]

T

x[111]
(from [Oppenheim, Schafer, 1999])
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Inverse FFT

According to (3.2) we have for the inverse DFT

N-1

_ 1 —kn
o) = 3 30 V() W,

that is
1 N—-1 .
v(=n) =+ ;;o Vi (k) Wy, <=
v(N —n) = %DFT{VN(k)} (3.24)

=- With additional scaling and index permutations the IDFT can
be calculated with the same FFT algorithms as the DFT!

3.2.2 FFT alternatives

Alternative DIT structures

Rearranging of the nodes in the signal flow graphs lead to
FFTs with almost arbitrary permutations of the input and output
sequence. Reasonable approaches are structures

(a) without bitreversal, or
(b) bit-reversal in the frequency domain

58



(@) Signal flow graph fotN =8 (v — z,V — X):

x(0) /
x(1) /
x

X(0)

X()

X(2)

X(1)

x(5) X(5)

x(6) XG)

L
3
X

1
Wi >< e
-1
1
1

x(7)

—1
(from [Proakis, Nanolakis, 1996])

X(7)

(b)

Radix » and mixed-radix FFTs

When we gerally use

N=r" for r>2, rmé€EN (3.25)

we obtain DIF or DIT decompositions with a radix Besides
r=2, r=3 andr =4 are commonly used.

=

(from [Oppenheim, Schafer, 1999],— =,V — X )

The flow graph in (a) has the disadvantage, that insminplace

algorithm, because the butterfly-structure does not continue pas Radix4 butterfly \ ’

| N B e
the first stage. (g=0,...,N/4-1) 20N

ation.i - (N — N): = -
Decimation-in-frequency algorithms
Instead of applying the decomposition to time domain, we could il 2
also start the decomposition in the frequency domain, where (from [Proakis, Nanolakis, 1996])
the sequence of DFT coefficienigy (k) is decomposed into For special lengths, which can not be expressedvas= r""
smaller sequences. The resulting algorithm is callecimation- so called mixed-radix FFT algorithms can be used (i.e. for
in-frequency(DIF) FFT. N =576=2%.3%).
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3.3 Transformation of real-valued sequences Thus, we have

v(n) € R — FFT program/hardware:r(n) 4+ j vi(n) €C
N~

=0 1
= Inefficient due to performing arithmetic calculations with zero Vi (k) = = (Vng(k) + Vg (N — k) +
values 2 .
In the following we will discuss methods for the efficient usage of + J (VNI(k;) — VNI(N — k:)) , (3.31)
a complex FFT for real-valued data. 2
3.3.1 DFT of two real sequences where
Given:vi(n),v2(n) € R,n=0,...,N—1
How can we obtair/y, (k) e—o vi(n), Vi, (k) o va(n)? 1
. VNRe(k) =3 (VNR(k) + VNR(N - k)) ’
Define 2
— : 1
| v(n) = vi(n) 4+ j va(n) (3.26) Viv,, (k) = 5 (Viv, (k) — Vi, (N — k)) .
leading to the DFT
VN(k’) — DFT{v(n)} — VNl(k) +J VNz(k) ) (327) Likewise, we have fOVN2(l€) the relation
N N——
er e
. . 1
Separation oV (k) into Vi, (k), Vi, (k)? Vi, (k) = 3 (Va, (k) + VN, (N — k) —
Symmetry relations of the DFT: j
=5 (Vg(k) = Vg (N = k), (332)
v(n) = Vre(n) + VR () + Jvi(n) + jvn(n) (3.28)
=v1(n) =wa(n) with
Corresponding DFTs: 1
Vivg, (k) = o (Vg (k) + Vi, (N = k) ,
URe(n) c—e VNRe(k)’ URo(n) o—ej VNIO(k)7 (329) 1
jvie(n) o—e j Vy, (k), juvr(n)o—eVn, (k). (3.30) Vg, (k) = 3 (Vvp(k) = Vg (N — k) .
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Rearranging (3.31) and (3.32) finally yields

Vi (k) = 5 (Vi (k) + V(N — k) ,

N |~

‘ (3.33)
Vi, (k) = —% (Vin(k) — V(N — k) .

Due to the Hermitian symmetry of real-valued sequences

VN(LQ)(k) = VJ(‘,(LQ)(N — k) (3.34)
the vaIuesVN(1 2)(k:) fork € {N/2+1,..., N—1} can be
obtained from those fok € {0, ..., N/2}, such that only a

calculation forN /241 values is necessary.

Application: Fast convolution of two real-values sequencehl wit
the DFT/FFT

3.3.2 DFT of a2 N-point real sequence

Given:v(n) e R,n=0,...,2 N—1
Wanted:
2N -1
Van (k) = DFT{v(n)} = Y v(n) Wyy
n=0
withk =0,...,2N—1.

Hermitian symmetry analog to (3.34) sincén) € IR for all n:
Van(2N — k) = V,y(k), k=0,...,N
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Define

o(n) :=v(2n)+jv2n+1), n=0,...,N—1,
(3.35)

=: v1(n) + jva(n),

where the even and odd samplea6f.) are written alternatively
into the real and imaginary part 8{n). Thus we have a complex
sequence consisting of two real-valued sequences of leNgth
with the DFT

Vn(k') = Vv (K') + 3 Vi, (K)), k' =0,...,N—1.
(3.36)
Vn, (k") andVy, (k") can easily be obtained with (3.33) as

Vi (K) = 5 (k) + 7V = 1)
Vi (k) = =2 (W (k) = T3(N — )

fork' =0,...,N—1.
In order to calculateVzy (k) from Vi, (k') and Vi, (k') we
rearrange the expression for DFd(n ) } according to

N—-1

N—-1
2kn 2n+1)k
Van(k) = > v(2n) Wi+ S w@n+1) WY
n=0 _ n=0 _
=wv1(n) =va(n)

N—-1 N—-1
= 3w WA+ Wiy - a(m) W
n=0

n=0
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Finally we have

Von (k) = Vi, (k) + Wiy Vi, (k), k=0,...,2N—1

(3.37)
Due to the Hermitian symmetiyan (k) =V, (2N —k), k only
needs to be evaluated frodrto N with VNl/Q(N) = VN1/2(0).

Signal flow graph:

T (k) 1/2 Vv (k)

k=N—-k=0
V(N — k) —J
1/2 J Vi, (k) Wiy

= Computational savings by a factor of two compared to the
complex-valued case since for real-valued input sequences only

an N point DFT is needed
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4. Digital Filters

Digital filter = linear-time-invariant (LTI) causal system with a

rational transfer function(without loss of generality: numerator
degreeN = denominator degree)

N . N ;
Z bez’ 2" Z bi z "
=0 =0
H(z) = = = (4.1)

N
Yan—izt 1+ > a;z7¢
i=0

i=1

whereaq =1 without loss of generality.
a;, b;: parameters of the LTI systems{ coefficientf the digital
filter), NV is said to be thélter order

Product notation of (4.1):

l]_V[ (Z — ZOi)
H(z) = by ——— (4.2)

(2 — Zoci)
i=1

where thez,; are thezeros and thez.; are thepolesof the
transfer function (the latter are responsible for stability).

Difference equation

N N
y(n) =) biv(n—i) =) aiy(n—1), | (43)
=0 =1
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with v(n) denoting the input signal ang(n) the resulting signal
after the filtering

Remarks

e Generally, (4.3) describes a recursive filter with iafinite
impulse respons@IR filter):

y(n) is calculated from(n), v(n—1),...,v(n—N) and
recursively fromy(n—1), y(n—2),...,y(n—N).

e The calculation ofy(n) requires memory elements in order to
storev(n—1),...,v(n—N) and
y(n—1),y(n—2),...,y(n—N) = dynamical system.

e b, =0foralli £ 0:

by 2 by 2N
H(z) = — 0 = — 0 (4.4)
> an—iz'  J[(z = 200i)
1=0

=1

= Filter has no zeros=- All-pole or autoregressive (AR-)
filter.
Transfer function is purely recursive:

y(n) =bov(n) — Z a;y(n — 1) (4.5)

e a; = Oforalli % 0, ap = 1 (causal filter required!):
Difference equation is purelyon-recursive

N
y(n) =Y biv(n — i) (4.6)
=0
= Non-recursive filter
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Transfer function:

H(z) = — Z by_iz' = Z bz " 4.7)
z 1=0 =0
— Poleszy; = 0, ¢ = 1,...,N, but not relevant for

stability = all-zerofilter

— According to (4.6):y(n) obtained by a weighted average

of the lastNV + 1 input values= Moving averaggMA)
filter (as opposite to the AR filter from above)

— From (4.7) it can be seen that the impulse response has

finite length = Finite impulse responséFIR) filter of
lengthL = N + 1 and orderlNV

4.1 Structures for FIR systems

e Difference equation given by (4.6)
e Transfer function given by (4.7)
e Unit sample response is equal to the coefficiénts

bn for 0<n<L-1
h(n) = .
0 otherwise

4.1.1 Direct form structures

The direct form structure follows immediately from the
nonrecursive difference equation given in (4.6), which is
equivalent to the linear convolution sum

y(n) = i: h(k)v(n — k).

k=0
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x(n)

h(0) h(1) h(2) h(3)
N N

(from [Proakis, Manolakis, 1996}y — =, L — M)
= Tapped-delay-liner transversafilter in the first direct form

If the unit impulsev(n) = §(n) is chosen as input signal, all
samples of the impulse responisén) appear successively at the
output of the structure.

In the following we mainly use the more compact signal flow
graph notation:

v(n) -

h(0) h(1) h(2) h(3) h(L—2) | h(L-1)

-- y(n)

The second direct form can be obtainedtgnsposingthe flow
graph:

e Reversing the direction of all branches,

e exchanging the input and output of the flow graph

e exchanging summation points with branching points and vice
versa.
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Transversal filter in the second direct form:

v(n) -

h(L—1) Yy h(L—2) R(3) h(2) h(1) h(0)

- y(n)

When the FIR filter has linear phase (see below) the impulse
response of the system satisfies either the symmetry or asyynmet
condition

h(n) = £h(L — 1 — n). (4.8)
Thus, the number of multiplications can be reduced frbnto
L /2 for L even, and fronl. to (L+1) /2 for L odd.

Signal flow graph for odd.:

4.1.2 Cascade-form structures

By factorizing the transfer function
P

H(z) = Ho || Hp(2) (4.9)
p=1

we obtain a cascade realization. THg(z) are normally second-
order, since in order to obtain real coefficients, conjugateptexn
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zeroszy,; andz;, have to be grouped:

Hy(z) = (1 — 202" ) (1 — 25,27 ")
= 1—|—b1z_1—|—bgz_2

For linear-phase filters due to the special symmetry (4.8) theszero
appear in quadruples: Both; andz,, andz&l and(zg;i)*1 are
a pair of complex-conjugate zeros. Consequently, we have

Hy(2) = (1= 20z (1= 20z (=252 ) (1= (z0) =),

=1+ b 2! + by 22 + by 273+z74.

4.1.3 Lattice structures

Lattice structures are mainly used as predictor filter (i.e. intalig
speech processing) due to their robustness against codfficien
quantization:

General structure:

x1(n) _ z2(n)

S (LDt zr-1(n)
v(n) 1-thstagg o, () |2-th stagq 4, (n) stage

™ YrL-1 (77‘>

i-th stage lattice filter:

zi—1(n) > 1,(n)
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The behavior of thé-th stage can be written in matrix notation as
Xz(z) . 1 q; Z_l Xi,l(z)
Yol =la RG] eo
After the first stage we have

Xi(z) = V(2) + q1 27 V(2),

Yi(z) = V(2) + 27 V(2). (@41
It follows
Hi(z) = )‘(/1((5)) =1+4+qz'=an+onz
Gi(z) = if((;) =q+2z =Bn+pBuz .

Second stage:

Xa(2) =X1(2) + 227 Yi(2),

) (4.12)
Ya(z) =q2 X1(2) + 2 Yi(2).
Inserting (4.11) into (4.12) yields

Xo(z) =V (z)+ qlz_1 Vi(z) + nglz_IV(z) + qu_QV(z),
Ya(2) = @2V (2) + qugez” 'V (2) + @127 ' V(2) + 27V (2),
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which finally leads to the transfer functions

we obtain thalirect form | realization

,,,,,,,,,,,,,,,,,,,,,,

Xo(2 _ _
Hy(z) = 2(2) (4 a @)z +qz’ (4.13) o) — 2 ‘ )
V(z)
= ap2 + aq2 2 M+ 06222_27 by —ay
Y Z — — 3 -1 -1
Ga(z) = 2(2) =@+ (@ +ag)z  +27  (4.14) | 7 :
Vi(z) | by oy
= Boz + Praz " + Poaz . 1 1
b3 —ag
By comparing (4.13) and (4.14) we can see that
Hy(z) = 2 2 Ga(z 1), ’ ’
that is, the zeros aff2(z) can be obtained by reflecting the zeros -1 | | -
of G2(z) at the unit circle. Generally, it can be shown that - o
Hi(z) =2z "Gi(z""), for i=1,...,L—1. (4.15) e
3 by ! —ay
4.2 Structures for IIR systems A S A
4.2 1 Direct form structures All-zero systemN (z) All-pole systeml/D(z)
Rational system function (4.1) can be viewed as two systems in Another realization can be obtained by exchanging the order of

cascadeH (z) = N(z)/D(z) = Hi(z) - Ha(z) with

N . 1
Hy(z) = Z biz™', H(z) = N N
=0 1—|—l§::1aiz_i w(n) = —Z CI,Z’LU(TL—Z)‘F’U(TL))

The all-zeroH,(z) can be realized with the direct form from
Section 3.1.1. By attaching the all-pole systéf(z) in cascade,
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the all-pole and all-zero filter. Then, the difference equation for
the all-pole section is

where the sequenaee(n) is an intermediate result and represents
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v(n)

y(n) = Z b, w(n —1).

the input to the all-zero section:

The resulting structure is given as follows:

bo

by

—ay

by

—as

b3

—an-1

byn—1

» y(n)

v(n)

bo

structure, which requires the same number of multiplications,
additions, and memory locations as the original structure:

by

—ay

by

—az

b3

—asz

bn_1

—aN-1

by

—an

= y(n)

—an bN

= Only one single delay line is required for storing the delayed
versions of the sequenee(n). The resulting structure is called
adirect form Il realization Furthermore, it is said to beanonic
since it minimizes the number of memory locations (among other
structures).

Transposing the direct form Il realization leads to the following
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4.2.2 Cascade-form structures

Analog to Section 4.1.2 we can also factor an IIR systitr)
into first and second order subsysteAis(z) according to

P
H(z) =[] Hu(2). (4.16)

p=1

= Degrees of freedom in grouping the poles and the zeros
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First order subsystems:

Canonical direct form forV = 1:

b
v(n) - y(n)

—a1 by

Corresponding transfer function:

Y(Z) . bo + bl 271
V(z) 14az?

H(z) = (4.17)

Every first order transfer function can be realized with the above

flow graph:

by + bz _ (bp/ag) + (b /ag) 27" by +brz!

H = —
(2) ay + a) z71 14 (a}/ag) z=1 14+a;21

Second order subsystems:

Canonical direct form forNV = 2:

b
o(n) - y(n)

—ay by

Corresponding transfer function:

_Y(2) bo+bizl4byz?
S V(z) 14arzl4azz?

(4.18)
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Example:

A so calledChebyshevowpass filter of5-th order and the cut-off frequency
feo=0.25 fs (fs denoting the sampling frequency) is realized. A filter design
approach (we will discuss the corresponding algorithms later on) yields the
transfer function

H(z) = 0.03217-

1452 141027241023 4+52"% 4277

1078221 4+1.28722-2 — 0.7822 23 + 0.4297 24 — 0.1234 25
(4.19)

e Thezerosareallat=—1:z9; = —1fori =1,2,...,5.
The location of the poles are:

Zool,2 = —0.0336 & j 0.8821,
(4.20)
Zoo3a = 0.219 4 j0.5804, 2,05 = 0.4113.

Grouping of poleg 1 ,2:

1—1—22_1—1—2_2

ﬁ =
12(2) = T 5067221 7 0.7793 52

Grouping of poles: 3 4:

1—|—2z71—|—7372

_H- p—
34(2) = T 013792~ T 7 0.3840 22

Real-valued pole 5 leads to a first-order subsystem

l—f-z_1

-H- = — .
5(2) = T a1 T

e For the implementation on a fixed-point DSP it is advantageous to ensure
that all stages have similar amplification in order to avoid numerical
problems. Therefore, all subsystems are scaled such that they have
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approximately the same amplification for low frequencies: e Resulting signal flow graphi{ — U):

N U X Y, 1 Y. , Yy
Hs(2) 0.2943 + 0.2943 2z~ N A N L —
Hi(z) = — = T |z z-1 21
HS(Z = 1) 1—-0.4113 2z~ 0,2943 | 0,413 04735 | 04379 0,9233 | -0,0672
. ’ ' -1 -1
(o) Hs 4(2) 0.2367 + 0.4735 21 4 0.2367 22 02367 1 -0,3845| | o4s16 | 07793
2 = = — = — 1 ) > : <
H3,4(Z =1) 1—0.4379 27" +0.3849 2 (from [Fliege: "Analoge und digitale Filter”, Hamburg Univésof Technology, 1990])
Hi o(z 0.4616 + 0.9233 2~ ! + 0.4616 22
Hs(z) = — 12() + . + - 4.2.3 Parallel-form structures
Hyo(z=1) 1—0.4379 2= 4 0.3849 z—

= An alternative to the factorization of a general transfer function

Remark: The order of the subsystems is in principle arbitrary. However, is to use a partial-fraction expansion, which leads to a parallel-

here we know from the pole analysis in (4.20) that the poleélgfz(z)
are closest to the unit circle. Thus, using a fixed-point DSP may lead more form structure

likely to numerical overflow compared 1183’4(z) andH(z). Therefore, e In the following we assume that we have only distinct poles
it is advisable to realize the most sensible filter as the last subsystem. (which is quite well satisfied in practice). The partial-fraction
F : . . ..

* rrequencyresponses expansion of a transfer functiof/ (z) with numerator and

20 20010gy IH, ") 20 20000g,, IH,(e™)l denominator degre#/ is then given as
N
° ° H(z) = Ao+ > A (4.21)
S % S %0 pfl i
40 _40 The A;, i € {1,..., N} are the coefficients (residues) in
5 55 1 g Y ] the partial-fraction expansiody = by /an.
wlm wim e We furthermore assume that we have only real-valued
2 20Clog,, [H,(e)| 2020EloglolH(ei“’)I (overall filter) coefficients, such that we can combine pairs of complex-
conjugate poles to form a second order subsystem
0 0 (ied{1,...,N}):
"
%_20 %_20 ' 1—;4i~z*1+1—?"i -1
(o ok2 001
-40 -40 2R{A;} —2R{A; 25} bo+ bzt
0 0.5 1 0 05 1 1—=2R{zo0i}z 1 + |200il?272 14 a1271 +agz—2
W/ w/T (4.22)
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e Two real-valued poles can also be combined to a second order Example:

transfer functiond, j € {1,..., N}): Consider again the 5-th order Chebyshev lowpass filter with the transfer
A; A function from (4.19). The partial fraction expansion can be given as

1 — 2zooiz— L 1-— zoojz_l

Ay AT
_ _ H = —0.2
(Ai +4j) — (Aizooj + Aj2ei) 270 bo + b1z (=) 02007+ [ 1 =25, 1
1_ : N1 . 3.2 ] —1 )
(Zoog + 2Zooi) 271+ (ZOOJ Zooi) Z +tapz7" +az z4 03 As AE‘;) As
(4.23) + —1 + * -1 —1
1 —2503% 1—22 5% 1 —2505%

e If NV is odd, there is one real-valued pole left, which leads to with the poles from (4.20) and the residues
one first order partial fraction (see example).

Zoo1 = —0.0336 + 5 0.8821, A7 = 0.1+ 50.0941,
Parallel structure:

Zoo3 = 0.219 + j 0.5804, As = —0.5533 + 5 0.00926,

Hy
Zoos = 0.4114, Az = 1.1996.
) With (4.22) the resulting transfer function writes
H,(z)
H(z) 0.2607 + 0.2 —0.1592 z 1 N
o (2 zZ) = —U.
Ve e 1+ 0.0673 21 4 0.7793 22
—1.1066 + 0.3498 z 1 1.1996

| | 1—0.4379 21 4 0.3849 z—2 + 1—0.41142z—1"

\—> Hp(z) 4’$—)>(Z)

Resulting signal flow graphi{ — U):

P: number of parallel subsystems LL{Z)\ - -~ .
> > >
v 1'% ¥
Signal flow graph of a second order section: < < < € <
Y h A v 043794 A v A0.4114
byo -0,0673 | -0,7793 -0,3849)
v(n Yp(n _ N > 3 > 5
(n) Yp(n) 0,2607 7 P o1 o1 =1
z7! 0,2000Y Y-0,1592 —1 1066 Yo,3498
—ap byt < < ¥1,1996
- N 4 N ¥ Y(z)
> > >
—ap p=1,...,P

(from [Fliege: "Analoge und digitale Filter”, Hamburg Univéssof Technology, 1990])
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4.3 Coefficient quantization and round-off effects

In this section we discuss the effects of a fixed-point digitag(filt
implementation on the system performance.

4.3.1 Errors resulting from rounding and truncation

Number representation in fixed-point format:
A real number can be represented as

B
v = [/8an"'56715505513"'763] — Z ﬁflr'iza
T a2a

whereg, is the digit,r is the radix (base)A the number of integer

digits, B the number of fractional digits.

Example:[101.01]y = 1-224+0-2'+1-2°+0.27 1 +1.272

Most important in digital signal processing:

e Binary representation with=2andg, € {0, 1}, 8_4 MSB,
Gp LSB.

e b-bit fraction format: A =0, B =b—1, binary point between
By andB; — numbers betweeand2 — 27! are possible.

Positive numbers are represented as

b—1

v=1[0.6182... 81l = B2 " (4.25)

=1
Negative fraction:

b

—_

v=[=0.51B...Bp1] == B2, (4.26)

(=1
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can be represented with one of the three following formats

e Sign-magnitude format

vsm = [1.6182 ... By—1] for v <O. (4.27)
e One’s-complement format

vic = [1.01Bs2 ... Bp_1] for v <0, (4.28)

with 3, = 1 — 3, denoting the one’s complement 6f.

Alternative definition:
b—1
vie =1:2°4) (1-p0)-27" =2-2""""—|v| (4.29)
/=1

e Two’s-complement format

voc = [1.5182 ... Bp—1] @D [00...01] for » <O,
(4.30)
where @ denotes a binary addition. We thus have by using
(4.29)
vao =vic+ 2 T =2 — o). (4.31)
Does (4.30) really represent a negative number? Using the
identity

1= 2—£ + 2—b+1
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we can express a negative number as

b—1

v==Y B2 +1-1
=1

b—1
—£ —-b
:—1+Z£1—ﬁ£)2 + 270 — e — 2.
/=1

=By

Example:
Express the fractiong/8 and —7/8 in sign-magnitude, two’s-complement,
and one’s-complement format.

v="7/8 can be represented as! + 22 + 2_3, such thaty =[0.111]. In
sign-magnitude formay = —7/8 is represented asg; =[1.111], in one’s
complement we have;~ = [1.000], and in two’s-complement the result is
vo =[1.000] @ [0.001]=[1.001].

(For further examples see also the table in Section 2.4.)

Remarks:
e Most DSPs use two’s-complement arithmetic. Thus byt

numberv has the number range
ve{—1,—-142"" 12,

e Two’s-complement arithmetic witlh bits can be viewed as
arithmetic modul®® (Example forb = 3):

0.0

(b)

(a)
(from [Proakis, Manolakis, 1996])
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e Important property: If the sum of numbers is within the range
it will be computed correctly, even if individual partial sums
result in overflow.

Truncation and rounding:

Problem: Multiplication of twob-bit numbers yields a result of
length(2b—1) — truncation/rounding necessary can again be
regarded aguantizationof the (filter) coefficient

Suppose that we have a fixed-point realization in which a number
v is quantized fronb,, to b bits.

We first discuss the truncation case. Let the truncation error be
defined asl; = Q.[v] — v.

e For positive numbers the error is
_(2—b+1 o 2—bu—|—1) S Et S 0

(truncation leads to a number smaller than the unquantized
number)

e For negative numbers and the sign-magnitude representation
the error is

0< B, < (2701 —27buthy,

(truncation reduces the magnitude of the number)

e For negative numbers in the two’'s-complement case the error

IS
_(2—b+1 o 2—bu+1) S Et S 0

(negative of a number is obtained by subtracting the
corresponding positive number from 2, see (4.31))
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e Quantization characteristic functions for a continuous input
signalv (v — z):
Sign-magnitude representation:  Two’s-complement representation:

0x) (%)

2-bh ’_,_J‘ 2-b41 ’_I—J;
J_I_‘ 2-b+1 : 2-b+1 *

E=Q/x) —x E;=Q/x) - x

(from [Proakis, Manolakis, 1996])

Rounding case, rounding error is definedigs= Q.. [v] — v:

e Rounding affects only the magnitude of the number and is thus
independent from the type of fixed-point realization.

e Rounding error is symmetric around zero and falls in the range

1 1
_5(271)4*1 . 2fbu+1) S Er S 5(2fb+1 _ 2fbu+l)'

e Quantization characteristic functioh, = co (v — z):

0,(x)

2-b1 ’_I——r
2-b+1 A
2

E,=Q,(x)-x

(from [Proakis, Manolakis, 1996])
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4.3.2 Numerical overflow

If a number is larger/smaller than the maximal/minimal pdssib
number representation

e +(1 — 27" for sign magnitude and ones’s-complement
arithmetic;

e —1landl — 271 resp., for two’s-complement arithmetic,

we speak of averflow/underfloveondition.

Overflow example in two’s-complement arithmetic
(range:—8,...,7)

[0.111] @ [0.001] = [1.000
N — N — N —~
7 1 —8

= resulting error can be very large when overflow/underflow

occurs
Two’s-complement quantizer for=3, A = 270 (v = )

£= 0]
A

010
010 ml

&
T

101 101

(from [Oppenheim, Schafer, 1999])

Alternative: saturation or clipping, error does not increase
abruptly in magnitude when overflow/underflow occurs:
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011

010

©
©
©
Pole
Sl
NS
el
=

101

(from [Oppenheim, Schafer, 1999])

Disadvantage: "Summation property” of the two’s-complement
representation is violated

4.3.3 Coefficient quantization errors

e Ina DSP/hardware realization of an FIR/IIR filter the accuracy
is limited by the wordlength of the computes Coefficients
obtained from a design algorithm have to be quantized

e Wordlength reduction of the coefficients leads to different

poles and zeros compared to the desired ones. This may lead

to
— modified frequency response with decreased selectivity
— stability problems

Sensitivity to quantization of filter coefficients

Direct form realization, quantized coefficients:

dl':ai—kAai, izl,...,N,
b;=b;+Ab;, i=0,...,N,

Aa; andAb; represent the quantization errors.
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As an example, we are interested in the deviation

AZsoi = Zooi — Zooi, When the denominator coefficients

are quantized,.; denotes the resulting pole after quantization).
It can be shown [Proakis, Manolakis, 1996, pp. 569] that this
deviation can be expressed as:

N Zan
Azogi = — )  ——= Aay, i=1,...,N.
n=1 H (Zooi - Zooﬁ)
=1, t+i

(4.32)
From (4.32) we can observe the following:

e By using the direct form, each single pole deviatid ;
depends on all quantized denominator coefficients

e The errorA z..; can be minimized by maximizing the distance
|Zooi — Zoor| between the poles.,; andz ;.

= Splitting the filter into single or double pole sections (first o
second order transfer functions):

e Combining the poles..; andz__; into a second order section
leads to a small perturbation errékz..;, since complex
conjugate poles are normally sufficiently far apart.

e = Realization incascade or parallel form The error of a
particular pole pair..; andz__, is independent of its distance
from the other poles of the transfer function.

Example: Effects of coefficient quantization

Elliptic filter of order N = 12 (Example taken from [Oppenheim, Schafer,
1999)):
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1.02

101 -

1.00 {

Amplitude

099

098

L ! L
0287 0307 0327 0347 036m 0387 0407

~100 L 1 I
0 027 047 0.6m 087 s Radian fre s
Radian frequency (w) adian frequency ()
(b)
102 102
1.01 |- 1.01
?;; 1.00 - :é 1.00
< <
099 099
098 L ] | 098 L L
0287 030w 0327 0347 036r 0387 0407  0d2m 0287 030w 0327 0347 036z 0387 0407 0427
Radian frequency (w) Radian frequency ()
(e) (@
-20
-40
2 60
-80 -
~100 L 1 1
0 027 047 0.6m 0.87 -
Radianjfrequency (w)
()

(a) Magnitude frequency responge - logg |H(ej“’)|
(b) Passband details
Quantized withh = 16 bits:

(c) Passband details for cascade structure
(d) Passband details for parallel structure

(e) Magnitude frequency response (log) for direct structure

Pole locations of quantized second order sections

Consider a two-pole filter with the transfer function

H(z) = !

1 —(2rcos@)z—1 +r2 2=2
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Polesizoci 2 =7 et
Coefficients:
a1 = —2rcosf,as =171

Stability condition:|r| < 1

2

v(n)

2rcos

2

Quantization ofa; and ay with b = 4 bits: — possible pole

positions:

e Nonuniformity of the pole position is due to the fact that

a, = r? is quantized, while the pole locations,; 2 =17e€

are proportionat-.

+3560

e Sparse set of possible pole locations aro@rd0 andf = .
Disadvantage for realizing lowpass filters where the poles are

normally clustered neat=0 andf = .

Alternative: Coupled-form realization

yi(n) =v(n) +r cosfyi(n—1) —rsinfy(n — 1),

y(n) =rsinfy;(n —1)+r cosfy(n — 1),

(4.33)
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which corresponds to the following signal flow graph:

v(n) y1(n)
rcosf 271
—rsinf rsinf
= y(n)
rcosf P

By transforming (4.33) into the z-domain, the transfer function of
the filter can be obtained as

_Y(2) (r sinf) z*

H = = .
(2) V(z) 1—(2rcosf)z"1t+r2z-2

e We can see from the signal flow graph that the two coefficients
rsinf and rcosf are now linear inr, such that a
gquantization of these parameters lead to equally spaced pole
locations in the z-plane:
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e Disadvantage: Increased computational complexity compared
to the direct form.

Cascade or parallel form?

P
Cascade form: H(z) =[]

p=1

pr —I— bpl Zil —|— bp2 272

1+ ap 27t + ape 272

-1
Cpo t+ Cp1 2

1+ ap 27t + ape 272

P
Parallel form: H(z) = Ao+ »
p=1

e Cascade form: Only the numerator coefficieriis; of
an individual section determine the perturbation of the
corresponding zero locations (an equation similar to (4.32) can
be derived)— direct control over the poles and zeros

e Parallel form: A particular zero is affected by quantization
errors in the numerator and denominator coefficients of all
individual sections— numerator coefficients,, andc,; do
not specify the position of a zero directly, direct control over
the poles only

= Cascade structure is more robust against coefficient
guantization and should be used in most cases

Example:
Elliptic filter of order N =7, frequency and phase response

(taken from [Proakis, Manolakis, 1996]):
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Cascade form (3 digit&: b~ 10 bits, 4 digits= b ~ 14 bits) Coefficient quantization in FIR systems

b In FIR systems we only have to deal with the locations of the
zeros, since for causal filters all poles are at 0.

Remarks:

10

~30

Gain (db)
&

e For FIR filters an expression analogous to (4.32) can be
derived for the zeros=- FIR filters should also be realized
in cascade form according to

P
H(Z) = HO H (1 —|— bpl Z_l + bp2 2_2)

p=1

Phase (degree)
°
L

with second order subsections, in order to limit the effects of

coefficient quantization to the zeros of the actual subsectio
Parallel form 6 = 10 bits) only.

. e However, since the zeros are more or less uniformly spread in
o the z-plane, in many cases the direct form is also used with
5 ol quantized coefficients.
e For a linear-phase filter with the symmetry (4.8) in the
- impulse response, quantization does not affect the phase
s ; : 3 4 ! characteristics, but only the magnitude.

180

4.3.4 Round-off effects
Direct-form | IIR structure

Starting point for the analysis: Direct-form | structure with the
difference equation

(degree)
°

Phase

y(n) = Z biv(n —1i) — Z a;y(n —1).
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All signal values and coefficients are represented it As already stated in Section 2.4 the result of each single

binary fixed-point numbers (for example in two’s-complement quantization stage can be modeled by adding a noise sei(re¢
representation): with the following properties:
e truncation or rounding of th€2b — 1)-bit products tob bit e Eache;(n) corresponds to a wide-sense-stationary white-
necessary noise process.
e modelling as a constant multiplication followed by a quantize e Eache;(n) has an uniform distribution of amplitudes over one
N guantization interval (uniform p.d.f.).
e a e Eache;(n) is uncorrelated with the quantizer input, all other
& guantization noise sources and the input signal of the filter.
1 | We have shown above that férbit quantization the rounding
@ error falls in the range
x[n] . OJL?-—I - )A’["O] 1 b1 1 b1
—— (27" < ei(n) < =27,
@7 <ein) < 527
and for two’s-complement truncation we have
(b)
T o —27" < ei(n) <0.
71 eln) 7!
b Mean and variance for rounding
f f
7! e[n] es[n] z! 2—2b—|—2
2
by - we =0, o, = , (4.35)

) f ‘T—‘4 ¢ 12
@ and for truncation
(from [Oppenheim, Schafer, 1999], — z) 2—b+1 ) 2—2b+2

, = . 4.36
ol ="03 (4.36)

This can be described with the difference equation 2

Autocorrelation (white noise process):

(n) =) Qlbivin—i)] — ) Qlaiy(n —i)]. (4.34)
! go ; ! Gee(n) = o28(n) + u’. (4.37)
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In the following we will restrict ourselves to the rounding case,
whereyp..(n) = o25(n) and thus, for the power spectral density
we haved (') = o2

e The following structure can be obtained by summing up all the

noise sources:
4

e(n) =) ei(n),

=0

e[n]

h |
o

x[n] , Jlnl=yln] +f[n]

(from [Oppenheim, Schafer, 1999], — z)

e = Overall noise variance in the special case from above:

o, = o, =5-
— 12

Overall noise variance in the general case:

—2b+2

o= (2N +1) - (4.38)

12

e Due to linearity the output of the whole filter i§(n) =
y(n) + f(n). Thus, the difference equation for the

99

guantization noise(n) now is given as

N

fn) =Y aif(n—i)+e(n), (439

i=1

sincee(n) can be regarded as the input to an all-pole system
with output f (n).

e Suppose that the allpole-filter has the transfer function
Hef(z) with

H.s(z) = ﬁ, H(z) = % analog to (4.1)

— Mean of f(n): uy = pe Hey(e’%) = 0 for rounding.

— Power 'spectral density (power spectrum)
Oyp(e’) = ol [Hep(e!)|.

— Varianceo; = F, ' {®;(e’*) } =0

2 T oo
2 O, jwn 2 2 2
O-fzg |H€f(e] )l dw:ae Z |h’3f(n)| ’
o (4.40)
where the last expression is obtained by applying Parseval’s
theorem.

By combining (4.38) and (4.40) we can now state the total output
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variance due to internal round-off as

—2b+2
= (2N +1
O'f ( + ) / |D(€Jw)|2

(4.41)
—2b+2 00 )
= (2N+1) > lhes(n)]
Round-off noise in a first-order system
Given: Transfer function
b
H(z) = ————, a1 <1
1—ajz1
— Impulse responseh(n) = bpal u(n) (u(n): unit step

function)

e(n) = eq, (n) + ey, (n)

by

v(n)

=y(n)

ay

Considering (4.41) and the two error souregg(n), ey, (n), we
have

72b+2 [e%S) ) 2 2b+2 1
n
O' = .
Z' ! (1—|a1\2)

(4.42)
The output noise variance increases when the pgle = a;
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approaches the unit circke- In order to neep the noise variance
below a certain level, the wordlengtthas to be increased.
Round-off noise in a second-order system

Second-order direct form | system:

bo + b1 Z_l + b2 Z_2

H(z) = (1—refz1)(1—-reifz1)

Thus we have

) 52—2b—|—2 dw
o, =
s 12 27 |(1—7"6796 JNP2 (1 = reif e=iw)|2’

With a; = —2r cos 0 anda, = 7?2 it can be shown via a partial
fraction expansion that

02 B 52—2b+2 1+ ,’n2 1 (4 43)
e 12 1—72) 441 —2r2cos(20) '

As in the first-order case we can see that the total variance
increases if the poles approach the unit cirele-¢ 1).

Direct-form Il structure

In this case, the nonlinear difference equations are of the form

w(n) ==Y Qlaiw(n — )] + v(n),
= (4.44)

y(n) =Y Qbiw(n - i)
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Signal flow graph:
x[n] ?_C yln]

x[n] yinl

(from [Oppenheim, Schafer, 1999], — x)

For rounding [t = 0) the power spectrum of the output noise is:

272b+2 —2b+2

jwy 12
o HED+ (N +1) ———.
(4.45)

Dsp(e?) =N

We then have:

272b+2 —2b+2

1 :
ol =N —/\H(eW)|2dw+(N+1)
27

12
(4.46)

12
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and by applying a relation similar to (4.40)

—2b+42 00 —2b+2

Y lh(n)* + (N +1)

n—=—oo

2_
O'f—N

12 12

(4.47)

e White noise produced in implementing the poles is filtered

by the entire system, whereas the white noise produced in
implementing the zeros is added directly to the output of the
system.

e A comparison with (4.41) for the direct form | structure shows

that both structures are affected differently by the quantization
of products.

4.3.5 Zero-input limit cycles
e Stable IIR filters implemented with infinite-precision

arithmetic: If the excitation becomes zero and remains
zero forn > mng then the output of the filter will decay
asymptotically towards zero.

Same system implemented with fixed-point arithmetic: Output
may oscillate indefinitely with a periodic pattern while the
input remains equal to zero:= Zero-input limit cycle
behavior due to nonlinear quantizers in the feedback loop or
overflow of additions.

No general treatment, but two examples are given
Limit cycles due to round-off and truncation

Given: First-order system with the difference equation

y(n) = ay(n —1) +o(n), |af <1.
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Register length for storing and the intermediate results: 4 bits
(sign bit plus 3 fractional digits}>- producta y(n — 1) must be
rounded or truncated to 4 bits, before being added(to)

Signal flow graphs:

Infinite-precision linear system

v(n)

Nonlinear system due to quantization

v(n)

Qll z

Nonlinear difference equatiod)(-] represents two’s-complement

rounding):
g(n)

Suppose we have
[0.111] 6(n):

Qlag(n — )] + v(n).

1/2 = [0.100], v(n) = 7/84(n) =

9(0) = 7/8 = [0.111]
9(1) = Qlay(0)] = Q[[0.100] x [0.111]]
= Q[[0.011100]] = Q[7/16] = [0.100] = 1/2
9(2) = Qlay(1)] = [0.010] = 1/4
9(3) = Qay(2)] = [0.001] =1/8
9(4) = Qla9(3)] = Q[[0.000100]] = [0.001] = 1/8

105

= A constant steady value is obtained for> 3.

Fora = —1/2 we have a periodic steady-state oscillation
between—1/8 and1/8.

= Such periodic outputs are callénhit cycles

7
8

(from [Oppenheim, Schafer, 1999])

Limit cycles due to overflow

Consider a second-order system realized by the difference
equation

g(n) =v(n) + Qa1 g(n —1)] + Q[az g(n — 2)],
(4.48)
Q[-] represents two’s-complement rounding with one sign and
3 fractional digits.
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Overflow can occur with the two’s-complement addition of the
products in (4.48).

Suppose that; = 3/4 = [0.110], az = —3/4 = [1.010],
§(—1) = 3/4 = [0.110], §(—2) = —3/4 = [1.010],
v(n)=0forall n>0:
9(0) = Q[[0.110] x [0.110]] + Q[[1.010] x [1.010]]
= Q[]0.100100]] + Q[[0.100100]] = [0.101] 4 [0.101]
= [1.010] = —3/4

§(1) = [1.011] + [1.011] = [0.110] = 3/4
= ¢(n) continues to oscillate unless an input is applied.

Remarks
Some solutions for avoiding limit cycles:

e Use of structures which do not support limit-cycle oscillations.
e Increasing the computational wordlength.

e Use of a double-length accumulator and quantization after the

accumulation of products.

FIR-filters are limit-cycle free since there is no feedback involved
in its signal flow graph.
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4.4 Design of FIR filters

General remarks (IR and FIR filters)

e |deal filters armoncausaland thus physically unrealizable for
real-time signal processing applications.

e Causality implies that the a filter frequency respofibge’*)
cannot have an infinitely sharp cutoff from passband to
stopband, and that the stopband amplification can only be zero
for a finite number of frequencies.

Magnitude characteristics of physically realizable filters:

|H(w)!

14+ 8 f o= = g =~ = e -
1= oL XL NS <

8

0 @) @s

(from [Proakis, Manolakis, 1996])

01: passband rippled,: stopband ripple
wp: passband edge frequency,: stopband edge frequency

Filter design problem:
e Specify 61, d2, wp, and w, corresponding to the desired
application.

e Select the coefficienta; and b; (free parameters), such that
the resulting frequency respondé(e’”) best satisfies the
requirements fob, d2, w,, andws.

e The degree to whiclif (e’“) approximates the specifications
depends on the criterion used for selecting dhendb; and
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also on the numerator and denominator degveéhumber of
coefficients)

4.4.1 Linear phase filters

Important class of FIR filters, which we will mainly consider in
the following. Definition: A filter is said to be &near-phase
filter, if its impulse response satisfies the conditian=£ N +1):

h(n) = £h(L — 1 — n). (4.49)

With the definitionS := (L — 1) /2 and for L oddthis leads to
a z-transform

~

—1
H(z) = h(n)z™" (4.50)
0

3
I

S
z

S-1
h(S) + Z h(n) (z(sfn) + z(sn))] ,
n=0
(4.51)

for L evenwe have

L/2—1
H(z)=2z"° Z h(n) (Z(an) + z7(57")> . (452
n=0

When we now substitute ™! for z in (4.50) and multiply both
sides byz~(*~1) we obtain with (4.49)

V(Y = £H(2), (4.53)
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which is the z-transform equivalent to (4.49). Consequences:

e The roots of the polynomialf (z) are identical to the roots of
the polynomialH (2~ ): If 2, is a zero ofH (z) thenzy," is
also a zero.

e If additionally the impulse responge(n) is real-valued, the
roots must occur in complex-conjugate pairszdf is a zero
of H(z) thenz(, is also a zero.

= The zeros of a real-valued linear-phase filter occur in
quadruples in the z-planeXception: zeros on the real axis, zeros
on the unit circlg

(from [Proakis, Manolakis, 1996])

(a) Type-1 linear phase system
Definition: Oddlength L, evensymmetryh(n) =h(L—1—n)
Frequency response from (4.51):

S—1
H(e™) = e 7% |h(S) +2) h(n)cos ((S — n)w)
" (4.54)

= 6—ij H01 (w)
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Hyi(w): amplitude frequency responseeal-valued (generally
denoted withHy(w))

e linear phasep;(w) = —argH (e’¥) = Sw

type 1, odd length (L=31)

h(n)

i i i i i
0 5 10 15 20 25 30

H N 1(oo)

o o5 1 15 2 25 3 35 4
(b) Type-3 linear phase system
Definition: Oddlength L, oddsymmetryh(n) =—h(L—1—n)

Frequency response from (4.51):

' . S—1
H(e™) = e 75 |h(S)+ 2 h(n)sin ((S — n)w)

n=0
(4.55)
— eiju.;j HO,?,(CU) — efj5w+j7r/2 HOg(W)

e linear phaseps(w) = —argH (e’*) = Sw — /2
o He) =0, SEN=H(") =0
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type 3, odd length (L=31)
T T T

O,fv..vTTT.'T[[I. e e

i i i i i
"0 5 10 15 20 25 30

n
type 3, amplitude frequency response

(c) Type-2 linear phase system
Definition: Evenlength L, evensymmetryh(n) =h(L—1—n)

Frequency response from (4.52):

L/2—1
H(™) =e 72 )" h(n)cos((S—n)w)| (4.56)
n=0

= e—ij Hog(w)
e linear phaseps(w) = —argH (e’¥) = Sw

e S=(2XA-1)/2, € N= H(e") =0
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e Amplitude frequency response hés-periodicity: (d) Type-4 linear phase system
Definition: Evenlength L, oddsymmetryh(n) = —h(L—1—n)

L/2—1
Frequency response from (4.52):

Hpp(w) =2 > h(n)cos ((S — n)w)

L/2—-1
L/2-1 H(e’) = e 799 | 2 h(n)sin ((S — n)w)
Hpp(w +27) =2 > h(n)cos ((S — n)(w + 27)) 2:0
=0 (4.57)
L/2-1 . . .
— eijwj HO4(CL)) — e*]S(—d‘i’jﬂ‘/Q H04((.U)

=2 Z h(n)cos ((S —n)w) -
"0 e linear phaseps(w) = —argH (e’¥) = Sw — 7/2

-cos ((S — n)2m) o H(c) =0
= cos((L=1=2n)m) = —1 e Similar to the type-2 filter the amplitude frequency response
= —Hp(w) has 4r-periodicity: Hos(w + 27) = —Hos(w). The
multiplication with the exponential factor—/5“*7™/2 then
e Remark:H (e’*) is 27r-periodic again due to the7°* phase again leads t@-periodicity for H (e/*).
factor
type 4, even length (L=30)

type 2, even length (L=30)

~ go,n..mm.JHT R SR A
= Lo oW R I ! ]“ {T R e : l[l li

i i i i i
5 10 15 20 25 30

0 5 10 15 20 25 30 n
type 4, amplitude frequency response

n
type 2, amplitude frequency response
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Applications:

e Type-1 and Type-2 filters used for “ordinary” filtering,

however type 2 filters are unsuitable for highpass filtering

e Type-3 and Type-4 filters for example used for 90 degree phase

shifters and so calleHilbert transformers

4.4.2 Design of linear-phase filters using a window function

Given: Desired frequency response

Hy(e¥) = i ha(n) e 7" (4.58)

n=—oo

= Impulse responsé(n) can be obtained with the inverse

Fourier-Transform

1 r S
hqa(n) = E/ Hy(e’”) " dw. (4.59)

Impulse response has generally infinite length truncation
to length L by multiplication with a window functionw(n)
necessaryh(n) = hq(n) - w(n).

Rectangular window:

w(n):{l n:O,...,L—lih(n>:{hd(n) n=0,...,L—1

0 otherwise 0 otherwise

Frequency response of the rectangular window: see (3.12)

Suppose, we want to design a linear-phase lowpass filter oflengt
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L with the desired frequency response

. 7‘7““)(1/71)/2 for 0 <
Hy(e) = { ¢ < lel<we 4 60)
0 otherwise
wherew, is denoting the cut-off frequency.
Corresponding unit sample response:
ha(n) = — 7 R %)
21
s L—1
sin |w. (n — == L —1
= e ( L712 )], n# —— (4.61)
™ (n—557) 2

Multiplication with a rectangular window of length leads to

sin {we (N — 5=
) | R
W(n_sz) O

For L odd: h(Lgl) _ e

h(n) =

T
Example forw,=0.27w, L=61 andL =101:

1.2 1.2

L=61, w =0.2 L=101, w =0.20
c 0.8 c

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
w/m -

w/m -
Disadvantage of using an rectangular window:
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Large sidelobes lead to in undesirable ringing effects (ovetshoo
at the boundary between pass- and stopband) in the frequency

(n — n, L — M, Iy: Bessel function of the first kind of order zero)

Name of
window

Time-domain sequence,
h(n),0<n<M-1

response of the resulting FIR filter

2"7M—1‘
H artlett (triangular - 2
= Gibbs phenomenon Pttt (et o
Blackman 042 = 0.5 cos ——— + 0.08 cos ——~
e Result of approximating a discontinuity in the frequency _ T
i L. i . Hamming 0'5470'46‘:05M—1
response with a finite number of filter coefficients and a mean _— (1 2
square error criterion I
M—1)2 M—1)\?
e Eqg. (4.58) can be interpreted as a Fourier series representation Ksr '[ ) -5 )}
y . . .« . . M-1
for Hy(e’*) with the Fourier coefficientd ;(n) — Gibbs ol«(57)]
. . . . . . M-1 L
phenomenon resulting from a Fourier series approximation Lancsos r‘"[? (";4 f)/){”(’M:;)]l Lo
™ . . (=)
e Squared integral erot = [ (Hy(e’*) — H(e’*))? dw MY B ES U
. . _ﬂ- Tukey l [1 +cos(n*7 A +aym - 1)/2n):|
approaches zero with increasing lengtthgf. ). However, the Z(M N “‘“L”ﬁ;l”/zﬁ,_l
“M=DR=|n === = =5

maximum value of the errdiH ;(e’“) — H (e’“)| approaches
a constant value.

(from [Proakis, Manolakis, 1996])

= Use of other appropriate window functions with lower

. . . Frequency-domain characteristics of some window functions
sidelobes in their frequency responses . y

(taken from [Proakis, Manolakis, 1996])):

' RS /
O ,{fl \\R;m'm Approximate transition Peak
(N v "] Type of window |  width of main lobe | sidelobe [dB]
’ ap A Rectangular 4 /L -13
5 o1 Bartlett 8m/L -27
Hanning 8m/L -32
Hamming 8m /L -43
E Blackman 127w /L -58
E
R\ Parametery in the Kaiser window allows to adjust the width of
o el

the main lobe, and thus also to adjust the compromise between
overshoot reduction and increased transition bandwidth in the
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resulting FIR filter.

Magnitude frequency response0 log,,|H (e’“)| of the
resulting linear-phase FIR filter, when different window functions
are used to truncate the infinite-length impulse response from
(4.61) (desired frequency responllg(e’*) in (4.60)):

oF—\ Rectangular window o Hamming window-
L=61, wc=0.2@[ L=61, wCZO.Zﬁ[
1 -20 1 =20
3 N
=3 )
F-40 40
S 3
&-60 8-60
& Q
-80 -80
100 02 04 06 08 1 100, 02 04 06 08 1
w/m - w/m -
0 Blackman window oF——— Kaiser window, B=4
L=61, (A)C=O.ZE[ L=61, Q)C=O.ZE[
1-20 : 1 -20 .
& N
0} )
E-40 £-40
] i
8-60 8-60
o o
N N
-80 -80
_ MM A _
1OGO 0.2 0.4 0.6 0.8 1 1OGO 0.2 0.4 0.6 0.8 1
w/m - W/ -

MATLAB-command for windowed linear-phase FIR design:
firl
4.4.3 Frequency sampling design

Desired frequency responsé,(e’~) is specified as a set of
equally spaced frequencies:

2w 1
Wk:f(k‘f—a): kZO,l,,L—l, 046{0,5}
(4.62)

119

Frequency response of an FIR filter (requirement):

L-1

Hy(e) =3 h(n)e 7"

n=0

With (4.62) we obtain fok = 0, ..., L—1:

L—1
.27 .
Hy(e' Ty =37 p(n)e 72rrem/t, (4.63)
n=0
Multiplication of (4.63) withe’?™**/L ¢ = 0,...,L—1 and
summation ovek = 0, ..., L —1 yields to
L-1 o
e]27‘rk€/LHd(ejf(k+o¢)) _
k=0

h
L
h
L

h(n)e—jZW(k—l—a)n/L €j27rk:Z/L

!
i~

0

n

h
L

L—
h ) —j2man/L

,_.

—j2n(n—~0)k/L

e
k=0

3
Il
=)

L h(g) 67]27T06£/L'

Thus, the impulse responge(n) can be obtained from the

sampled desired frequency responseras<(0, ..., L—1):
1 L1 27 .
h(n) —_ Z Z Hd(ejf(kJra)) ej27r(k+a)n/L (464)
k=0
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Remarks:

e Fora = 0 (4.64) is identical to the IDF&- fast evaluation
with IFFT

o In generalH (¢’ T ¥7)) has to be specified in amplitude
and phase for everg.
Exception: Type 1/3 linear-phase filters, whéig(-) can be
real-valued with an additional shift of the obtained impulse
response (see below).

If h(n) is areal-valued sequence, the frequency response and thus
also its sampled version have tHermitian symmetry

i, I hta)y _ (i (L—k—a)y
d

= The number of frequency specifications can be reduced, and
(4.62) becomes

) k=0,1,..., 21 L odd,
s
wk:T(k+a), k=0,1,...,2-1 L even
aE{O,%}.
(4.65)

Linear-phase FIR filters:

e Symmetry inh(n) can be additionally exploited such that
(4.64) only has to be evaluated far= 0, . . ., é — 1for L
even,anch = O, ... ,% for L odd, resp.

e Linear-phase property may be included by specifying real-
valued frequency response samplées(ejzfﬂ(“a)) —

Application of (4.64) leads to zero-phase responsehich has
to be shifted to the right b5 samples.
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Example:

Determine the coefficients of a type 2 linear-phase filter with lerdgts 32,
and the desired sampled frequency response

1 =0,1,...
A P k=0,1,...,5,
Hd(e L ) = € 2 L . T1 k = 6,

0 k=1,8,...,15.

The parameterl is responsible for the transition band behavior and is
obtained via numerical optimization in order to reduce the magnitude of the
sidelobes. The corresponding values are tabulated in the literature ([Rabiner,
Gold, McGonegal, 1970], [Proakis, Manolakis, 1996]).

For L = 32 we obtainT; =0.3789795 for « =0, andT; =0.3570496 for
a=1/2.

Coefficients of the impulse responsén):

M=32 M=32

ALPHA = 0. ALPHA = 0.5

T1 = 0.3789795E+00 T1 =0.3570496E+00
h(0) =-0.7141978E-02 h(0) =-0.4089120E-02

h(1) =-0.3070801E-02 h( 1) =-0.9973779E-02
h(2) =0.5891327E-02 h(2) =-0.7379891E-02

h(3) =0.1349923E-01
h(4) =0.8087033E-02
h(5)=-0.1107258E-01
h(6) =-0.2420687E-01
h(7) =-0.9446550E-02
h(8) =0.2544464E-01
h(9) =0.3985050E-01
h(10) = 0.2753036E-02
h(11) = -0.5913959E-01
h(12) = -0.6841660E-01
h(13) = 0.3175741E-01
h(14) = 0.2080981E+00
h(15) = 0.3471138E+00

h(3) =0.5949799E-02
h(4) =0.1727056E-01
h(5) =0.7878412E-02
h(6) =-0.1798590E-01
h(7) =-0.2670584E-01
h(8) =0.3778549E-02
h(9) =0.4191022E-01
h(10) = 0.2839344E-01
h(11) = -0.4163144E-01
h(12) = -0.8254962E-01
h(13) = 0.2802212E-02
h(14) = 0.2013655E+00
h(15) = 0.3717532E+00
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Magnitude frequency respons&f(log |H(ej“) ):

L=32,a=0: L=32,aa=0.5:

0
0

-20

Magnitude (dB)

40

. /WYW\/\
0
-80 * < ¢ -80 L . - -

Ed 3 3
a 2 5

Magnitude (dB)

aa

(from [Proakis, Manolakis, 1996])

MATLAB-command for the frequency sampling design of
linear-phase FIR filterd:i r 2

4.4.4 Optimum equiripple design (Chebyshev approximation)

e Windowing design techniques (section 4.4.2) try to reduce
the difference between the desired and the actual frequency
response (error function) by choosing suitable windows

e How far can the maximum error be reduced?
= Theory ofChebyshev approximati@answers this question
and provides us with algorithms to find the coefficients
of linear-phase FIR filters, where the maximum frequency
response error is minimized

e Chebyshev approximatiodpproximation that minimizes the
maximum errors over a set of frequencies

e Resulting filters exhibit an equiripple behavior in their
frequency responses- equiripple filters
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Linear-phase filters revisited
As we have shown in section 4.4.1, every linear-phase filter has a
frequency response of the form

H(™) = ()™ A(w)-e 72 m e {0,1}, (4.66)
whereA(w) is a real-valued positive or negative function (ampli-
tude frequency response) (cmp. (4.54), (4.55), (4.56), (4.57)).

It can be shown that for all types of linear-phase symmeit(yw )
can always be written as a weighted sum of cosines. For example
for type 1 linear-phase filters we have

(L-1)/2
Alw) = Z a, cos(nw) (4.67)

n=0
_ L—1 L—-1
Wltha0:h< 5 >,an:2h<—n+T>. (4.68)

Remaining linear-phase filte(s — 2 f):

Symmetry
Even Odd
h(n) =h(N—1—n), (m=0) h(n)=—h(N—=1—-n), (m=1)
(N-1)2 (N-3)/2
0dd Length A(f)= Y a, cos 2nkf A(f) =sin 2rf Y. ¢, cos 2nkf
(N) k=0 k=0
ag=h((N =1)/2) o —3c(2) =2n((N - 3)/2)
a=2h(—k+ (N —1)/2) ¢((N —5)/2) = 4n(1)
k=1,....(N=1)/2 ¢((N = 3)/2) = 4h(0)

clk=1) —c(k+1) = 2n(—k + (N — 1)/2)
k=2...(N=5)2
(N-2)12 (N=-2)2
Even Length A(f) = cos nf .zo by cos 2mkf A(f)y =sinnf Y  dy cos2nkf
N < =
™ bo +3b(1) = 2n((N - 3)/2 dy - 4d(1) =2kn?(/v—3)/2)
ok 1;’“’:’7(;)3)/2; 4h(0) d((N — 3)/2) = 4h(0)
-+ =4h(=k+ (N=1)/2) g(k—1) - d(k) = 4h(— -
k=2, (N -3)/2 ¢ )k=§)4’(7/(v—k;)/($/ R

(from [Parks, Burrus: Digital Filter Design, 1987])
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Problem definition

Acceptable frequency response for the resulting FIR filter:
Linear phase,

transition bandwidthAw between pass- and stopband,

passband deviatiottd; from unity,
stopband deviatios- 95 from zero.

(Multiple bands are possible as well.)

We will restrict ourselves in the following to lowpass type 1 linear-
phase filters.

Approximation problem: Given

e a compact subsefF of [0,n] in the frequency domain
(consisting of pass- and stopband in the lowpass filter case),

e a desired real-valued frequency respoi3éw), defined on
F,

e a positive weight functio (w), defined onF, and

e the form of A(w), here (type-1 linear-phase)
Alw) = Z;_:B an cos(nw).

Goal: Minimization of the error

Emax = max W (w) - |D(w) — A(w)] (4.69)
overa,, by the choice ofA (w).

Alternation theorem (without proof):
If A(w) is alinear combination of cosine functions,

Alw) = z_: a, cos(nw),
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then a necessary and sufficient condition tbéfw) be the
unigue, best weighted Chebyshev approximation to a given
continuous functionD(w) on F is that the weighted error
function E(w) = W (w) - (D(w) — A(w)) exhibit at least

r 4+ 1 extremal frequencies itF. These frequencies are points
forwhichw; < -+ < w, < wyq1,

E(wm) = —B(wmy1), m=1,2,...,7,
and

E(w;)| = Ew), 1=1,..., 1.

|B(wi)] = max B(w), i "t

e Consequences from the alternation theorem: Best Chebyshev
approximation must have an equiripple error functiofw),
and isunique

e Example: Amplitude frequency response of an optimum
type 1 linear-phase filter with =13 — r=7

L=13 Alw) = (L_i:]ﬂ ap cos(nw)

8 Extremal frequencies

(from [Parks, Burrus: Digital Filter Design, 1987])

e Ifthe r41 extremal frequencies were known, we could use the
frequency-sampling design from above to specify the desired
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valuesl =+ 4; at the extremal frequencies in the passband, and 2. Interpolate to find the frequency response on the entire grid

14, in the stopband, respectively. of frequencies.
3. Search over the entire grid of frequencies for a larger error

How to find the set of extremal frequencies? ’ ] )
magnitude tham,, obtained in step 1.

Remez exchange algorithn{Parks, McClellan, 1972) 4. Stop, if no larger magnitude error has been found.
e [t can be shown that the error function Otherwise, take the: 4+ 1 frequencies, where the error
. attains its maximum magnitude as a new trial set of
B(w) = D(w) — Z an cos(nw) (4.70) extremal frequencies and go to step 1.
n=0
Flowchart(w — f):

can always be forced to take on some valt&sfor any given Remes exchange

sgt Of’.r.—f— 1-frequency. pglntszi, i=1,...,7r + 1. _){ P —- |

Simplification: Restriction tdV (w) = 1, leading tod; =

0o =2.
This can be written as a set of linear equations according to

Make error E(f) oscillate
on T with amplitude &,

r—1
i . = M2X |E(f)| and
D(wl) - Z an COS(’I’LLL)Z)—‘_(—l) 67 1 = ]-7 e 7T+17 Tconta:wstheextremal
0 frequencies
(4.71)
from which we obtain a unique solution for the coefficients T e T |
an,mn = 0,...,r—1and the error magnitud® —ense LTI on 7 o8 ne 2o
8y increases on each iteration. The iteration stops when &, stops increasing.
° In the RemeZ exchange algo”th{[F'} iS usua"y Chosen as At this point, 6k="jgx |E(f)| and T contains the r + 1|extremal frequencies.
an equally spaced grid of frequency points with the number of (from [Parks, Burrus: Digital Filter Design, 1987))

frequency points being approximately - L. The algorithm
is initialized with a trial set of arbitrarily chosen frequencies

T ={wi,wa,...,wrp1}. Example:
e The Remez algorithm now consists of the following basic Choose the two coefficients) andd; such that they minimize the Chebyshev
computations: error )
1. Solve the linear equations in (4.71), yielding an error ve[0.1] |27 = (do + dy1)|
magnituded,, in the k-th iteration. (approximation of a parabola by a straight line) three extremal points—
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resulting linear equations to be solved:
2? =do+diz;+ (—1)'s, i=0,1,2 (4.72)

Choose do, d; to minimize x:TESTIJ |D(x) - (do + d1x)|

D(x) = x?

To= {ﬁ-)l-l} 6o=‘llz

5 5 =5
Eo=x2-% x+15. lEoll =76

7, ={0.31} & =1x

7
Ey=x?-x+ 15 IIE\| = 158

1
E;=x2-x+ % |E2ll= %

(from [Parks, Burrus: Digital Filter Design, 1987])

1. Arbitrarily chosen trial setTy = [0.25, 0.5, 1.0]
Matrix version of the linear equations in (4.72):

1 025 17 [do 0.0625
1 05 —1| |d| =] 025
1 1.0 1| |6 1.0

— dg = 0.0625
2. Next trial set chosen as those three points, where the error

E(z) = 2® — (do + di)
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achieves its maximum magnitudes 77 = [0.0, 0.625, 1.0]
Linear equations to solve:

1 0.0 17 [do 0.0
1 0625 —1| |di| = |0.390625
1 1.0 1] |60 1.0

— 8, = 0.1171875
3. Nexttrial set7Ty = [0.0, 0.5, 1.0]
Linear equations to solve:

1 00 17 [do 0.0
1 05 —1| |di| =]0.25
1 1.0 1] |6 1.0

— 61 = 0.125 = maximum error— T5 is the extremal point set

After the extremal pointsy; are found, the coefficients,, from

Step 1 of the above algorithm are used to obtain the filter

coefficients with (4.68).
MATLAB-command for optimum equiripple desigm.enez
Estimation of the filter length

Given the stop- / passband rippta, d., and the transition
bandwidthAw = w, — w, the necessary filter ordeN can
be estimated as (Kaiser, 1974)

. —10 10g10(51 52) — 13
- 2.324Aw '

(4.73)

MATLAB-command for estimating the filter order.enezord
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Design example

Design a linear-phase lowpass filter with the specifications
61 =0.01, 6, =0.001, w,=0.47m, w,=0.6m7.

— weightingd2 /1 = 10 in the stopband.

Inserting these values into (4.73) leads 0 =~ 25.34 and
rounding up (to be on the save side) yields a filter length
L= N+1=2T7.

Impulse response Magnitude frequency response

0.6

0.4

T
=02
=
0% o
0% 5 10 15 20 25 106, 0.2 0.4 0.6 0.8 1

n - w/m -

Passband detail

0 0.2 0.4
/T -

In the passband the specifications are not satisfiethcreasing
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the filter-length by onelL = 28:

Impulse response Magnitude frequency response
0.6
0
T
0.4 o —20
h=}
! & -40
g 02 2
= I
T T 260
&
0 3 71 77 0.0 o
2] l l o R -80
w02 5 10 15 20 25 106, 0.2 0.4 06 0.8 1
n - w/m -

Passband detail

0 0.2 0.4
w/m -

4.5 Design of lIR filters

e In the following only design algorithms are discussed which
convert an analog into a digital filter, however, there are also
numerous algorithms for directly designing an IIR filter in the
z-domain (frequency sampling method, least-squares design).

e Why starting point analog filter? Analog filter design is a well
developed field (lots of existing design catalogs). Problem can
be defined in the z-domain, transformed into the s-domain and
solved there, and finally transformed back into the z-domain.
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e Analog filter: Transfer function

@
3
w
3

H,(s) = (4.74)

S| =
=] M=

3
I
(e}
R
3
®
3

with the filter coefficientsa,,, 3,, and the filter orderV.
Furthermore,

o0

H,(s) = / h(t)e *"dt (4.75)

— 00

(Laplace transform).

e Note that linear-phase designs are not possible for causal and
stable IIR filters, since the condition

H(z) =42 VH(:=

has to be satisfied (compare (4.53)} mirror-image pole
outside the unit-circle for every pole inside the unit-cirele
unstable filter.

4.5.1 Filter design by impulse invariance

Goal: Design an IIR filter with an impulse resporisén) being
the sampled version of the impulse respohgét) of the analog
filter:

h(n) = he(nT), n=0,1,2,...,

whereT is the sampling interval.
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Frequency response (ideal sampling assumed, compare (2.4)):
1 & 27mn
H(jQ) = — H,|jQ—j— 4.76
(92) = > (J J T) (4.76)

n=—oo

e T should be selected sufficiently small to avoid aliasing.

e Method is not suitable to design highpass filters due to the
large amount of possible aliasing.

Suppose that the poles of the analog filter are distinct. Then t
partial-fraction expansion aoff,, (s) writes

Hy(s) =) ———, (4.77)

the A; are the coefficients of the partial-fraction expansion, and
the s.,; denote the poles of the analog filter. Inverse Laplace
transform of (4.77) yields

N
ha(t) = Z A; Pl ¢ > 0.
=1
Periodical sampling:

N
h(n) = he(nT) =Y A;e*i",
i=1
Transfer functionf (z) e—o h(n):
o] 00 N
H(z) = Z h(n)z™" = Z <Z A; eSOOinT> 2 "
n=0 n=0 =1
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We then have

N 00 N ]
H(z) = Z Aizzo (esOOiT zil) = Z il —
=1 n= 3

Thus, given an analog filteF,(s) with poless..;, the transfer
function of the corresponding digital filter using the impulse
invariant transform is

N A,
H(z) = ‘ 4.78
(&) =2 T (4.78)
with poles atz..; = e®~il 4 = 1,..., N. Note: (4.78)

holds only for distinct poles generalization to multiple-order
poles possible.

Example:

Convert the analog filter with transfer function

s+ 0.1

Ha($) = 50279

into a digital filter using the impulse invariant method.
Poles ofH,(s): s000,1 = —0.1 £ 53

Partial-fraction expansion:

0.5 0.5

H =
a(s) s+0.1—j3+s+0.1+j3
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From (4.78) we then finally have

0.5 0.5

H(z) = 1 — ¢—(0.1—-33)T ,—1 + 1 — = (0.1453)T ,—1

1— (e 91T cos(3T)) 271
1 —(2e 01T cos(3T)) 2= 4 02T p—2°

Magnitude frequency responses:
Digital filter: 20 logy( | H (e/%)| Analog filter: 20 log g | Ha (592)|

10 3 r ' . 2

ot

[
S

Magnitude (dB)
I I
w
o (=3

Magnitude (dB)

|
8

I
v
S

0.1 0.2 0.3 0.4 0.5
Normalized frequency

(from [Proakis, Manolakis, 1996])

Frequency

4 .5.2 Bilinear transform

Algebraic transformation between the variabdesnd z, mapping
of the entirej2-axis of thes-plane to one revolution of the unit
circle in thez-plane.

Definition:

2 [1—2z7"1

T denoting the sampling interval.

The transfer function of the corresponding digital filter can be
obtained from the transfer function of the analog filtdt,(s)
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according to

2 (1—2z7"
H =H, |=| —— = H,(s).
Properties

e Solving (4.79) forz yields

1 T/2
L= L+ (T/2)s (4.80)
1—-(T/2)s
and by substituting = o + 72 we obtain

14 0T/2+jQT/2
*TI1_or/2—j0T/2

c<0—=|z|<1l,0>0—|z| > 1forall
= causal, stable continuous-time filters map into causal stable
discrete-time filters

e By insertings = 52 into (4.80), it can be seen thpt| =1 for
all values ofs on thej2-axis = j2-axis maps onto the unit
circle.

e Relationship betweew and(2: From (4.79) we obtain with
s = jQandz = e’

, 2 (1—-eﬁW>

Q==
T\1+ e v

2 <jsin(w/2)

2
T\ cos(w/2) > N ?tan(w/2)
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= Nonlinear mapping betweew and 2 (warping of the
frequency axis) according to

Q= %tan(w/2), w = 2arctan(27'/2).  (4.81)

i s-plane om z-plane
Image of
s = jQ (unit circle)

Al
i

left half-plane

®

=2 arctan (?)

(from [Oppenheim, Schafer, 1999])
Remarks:

e Design of a digital filter often begins with frequency
specifications in the digital domain, which are converted
to the analog domain by (4.81). The analog filter is
then designed considering these specifications (i.e. usig th
classical approaches from the following section) and converted
back into the digital domain using the bilinear transform.

e When using this procedure, the paraméfecancels out and
can thus be set to an arbitrary valié & 1).

e Example:
Design a digital single-pole lowpass filter with-a3 dB frequency (cutoff
frequency) ofw. = 0.2, using the bilinear transform applied to the
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analog filter with the transfer function

Qe

Holo) = a0
C

Q. denoting the analog cutoff frequency.
Q. is obtained fromw,. using (4.81)

2 0.65
QC = ?tan(wc/Q) = T.

The analog filter now has the transfer function

0.65/T

Hy(s) = ———
a(s) s+ 0.65/T’

which is transformed back into the digital domain using the bilinear
transform in (4.79), leading to the transfer function of our desired digital
filter:
0.245 (1 4+ 2z~ 1)

1—-0.5092"1"
Note that the paramet@f has been divided out. The frequency response is

H(z) =

H() = 0.245 (1 + e~ 7%)
1 — 0.509 e—Jw

)

especially we havéd (¢/%) = 1, and|H (¢/°-2™)| = 0.707, which is
the desired response.

4.5.3 Characteristics of commonly used analog filters

e Design of a digital filter can be reduced to design an

appropriate analog filter and then performing the conversion
from H(s) to H(z).

e In the following we briefly discuss the characteristics of

commonly used analog (lowpass) filters.
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Butterworth filters

Lowpass Butterworth filters are allpole-filters characterized by the

squared magnitude frequency response

1

HOF = 1 e

(4.82)

N is the order of the filter§2. is the —3 dB frequency (cutoff
frequency).

SinceH (s) - H(—5)|s—jo = |H(5)|* we have from (4.82)
by analytic continuation into the whokeplane

1
T+ (=2/9)N

H(s) - H(—s) =

— Poles ofH (s) H(—s):

—S 1/N i(2n+1)7/N
WZ(_U/ :6J(+)/
- Sco,n — Q. €j7r/2 ej(2n+1)7r/(2N), n=0,...,2N —1

(4.83)

e From (4.83): The2N poles of H(s) H(—s) occur on a
circle of radius(2,. at equally spaced points in tiseplane.

e The N polesforn = 0,..., N — 1in (4.83) are located in
the left half of thes-plane and belong téf (s).

e The N remaining poles lie in the right half of theplane and
belong toH (—s) (stability?).
e Furthermore, a Butterworth filter hd$ zeros a2 — oo.
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Pole locations in the-plane:

Poles of

N=4

(from [Proakis, Manolakis, 1996])

Frequency responses — €, |H(2,)|? = 1/(1 + €2))

IH@)R

Py

(from [Proakis, Manolakis, 1996])

Estimation of the required filter ordéey:

At the stopband edge frequen© (4.82) can be written as

1 2

=0,
14 (2:/Q)2N 7

which leads to log(( /52) )
_ log((1/03) — 1
= 2 108(Q /) (4.84)

MATLAB commandsbut t or d for order estimationput t er
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for the design of the corresponding digital filter obtained via
bilinear transform.

Example:

Determine the order and the poles of a lowpass Butterworth filter that has a
—3dB bandwidth of 500 Hz and an attenuation of 40 dB at 1000 Hz.

e —3dBfrequency2, =27 - fo = 1000 m,
e stopband frequencf2s = 27 - fs = 2000 m,

e attenuation off0dB — d5 = 0.01.

From (4.84) we then obtain

_ logy(10* — 1)
o 210g10 2

= 6.64

In order to be on the safe side we chodge= 7.

Properties of the resulting digital filter designed wiiht t er for N = 7,
fsamp = 8000 Hz, and the above parameters (continuous-time filter
transformed by bilinear transform into the discrete-time domain):

Magnitude frequency response Transition band
0 1
il
m'-20 0.8
k=3
— il
3@/—40 06
I 2
960 e
8
S
N -80 0.2
_1000 0.1 0.2 0.3 0.4 0.5 0.6 c'0 0.05 0.1 0.15 0.2 0.25
w/m - W/ -
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Phase response Pole/zero locations
0 T T T r

|
o

arg H(E') [rad] -

|
=
o

—150

0.2 0.4 0.6 0.8 1 -1 -0.5 0.5 1

0
W/ - Re{z}

Chebyshev filters
Two types of Chebyshev filters:
e Type 1 filters are all-pole filters with equiripple behavior

in the passband and monotonic characteristic (similar to a
Butterworth filter) in the stopband.

e Type 2 filters have poles and zeros (for finide and equiripple
behavoir in the stopband, but a monotonic characteristican th
passband.

Type 1 Chebyshev filter:

Squared magnitude frequency response:

1
1+ 2T2(Q2/Q,)

|H(Q)* = (4.85)

wheree is a parameter related to the passband ripple anx )
is the V-th order Chebyshev polynomial defined as

cog Ncos '(x))  for|z| < 1,

Y (4.86)
cosi(Ncosh *(z)) for|xz| > 1.

TN(IE) = {
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The Chebyshev polynomials can be obtained by the recursive
equation

TN+1(CIS) =2ZETN(CIS) —TN_l(w), N = 1,2,...

Examples:
o Ty(x) =1,Ti(x) = cogcos '(z)) = =
e Ty(z) = cog2cos !(z)) = 2cos(cos 'z) — 1
=22 —1
o T3(x) = cog3cos '(x))
= 4cos'(cos 'z) —3cogcos !(z)) =42 -3z

= T'v(x) represents a polynom of degrééin x.
= Chebyshev behavior (minimizing the maximal error) in the
passband (or in the stopband for type 2 filters).

The filter parametet in (4.85) is related to the passband ripple:
For N odd, Tx(0) = 0 — |H(0)|? =1,

for N evenTy(0) = 1 — |[H(0)]” = 13
At the passband edge frequerey= €2, we havelx (1) = 1,

such that

1

1

which establishes a relation between the passband rippéad
the parametet.

Typical squared magnitude frequency response for a Chebyshev
type 1 filter:
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|HE)? IHE)?

1 1F
L § 1
1 +e2 1+e2

L
Q, 2,
N odd N even

(from [Proakis, Manolakis, 1996])

Type 2 Chebyshev filter:
Squared magnitude frequency response:

1

’H(Q)|2 1 + €2 [TZ(Q:/Q,) /T3 (2:/Q)]

(4.88)

= contains zeros at < oo and poles

Typical squared magnitude frequency response for a Chebyshev
type 2 filter:
|HQ)? IH@)?

1} 1

" / gl
R Q + Q
Q, Q 2, 2,

N odd Neven

(from [Proakis, Manolakis, 1996])
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Estimation of the filter order:

Chebyshev filter only depend on the paramef€rs:, d,, and the
ratioQ2,/€2,. Using these values, it can be shown that the required
order can be estimated as

N log [<\/1 —5§+\/1 —55(1+e2)) /(652)]

N log [2,/2, + v/ (2727 — 1]

(4.89)
MATLAB commands:

e Order estimation:cheblord for type 1, cheb2ord for
type 2.

e Design of the corresponding digital filter, obtained from the
analog version by bilinear transforncheby1 for type 1,
cheby?2 for type 2.

Elliptic (Cauer) filters
e Elliptic filters have equiripple (Chebyshev) behavior in both
pass- and stopband.

e Transfer function contains both poles and zeros, where the
zeros are located on thy€2-axis.

e Squared magnitude frequency response

1
1+ e Un(2/Q,)

|H(Q)|” = (4.90)

whereU (z) denotes the Jacobian elliptic function of order
N, and the parametercontrols the passband ripple.

e Characteristic squared magnitude frequency response for a
elliptic filter:

146



HQ)PR IH(SQ)P

1
1+ L

1 L
1+e T+e

63F ‘ 82 L\

Neven N odd

(from [Proakis, Manolakis, 1996])

e Filter design is optimal in pass- and stopband in the equgipp
sense: However, other types of filters may be preferred due to
their better phase response characteristics (i.e. approximatel
linear-phase), for example the Butterworth filter.

Estimation of the filter order:

Required order to achieve the specifications with the parameters
51, 92 and Q,/Q, 1 — 61 = 1/V/1+€%, 1 — 0y =
1/V/1 4 62):

N K(Q/Q) K(J/1 —(/4)?)
K(e/6) K(V1 = (2/Q)?)

whereK (x) denotes the complete elliptic integral of the first kind
(tabulated)

(4.91)

/2

K () / do
) = _— .
\/1—w28in20

0

MATLAB commandsel | i por d for order estimationel |i p
for the design of the corresponding digital filter obtained via
bilinear transform.
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5. Multirate Digital Signal Processing

e In many practical signal processing applications different
sampling rates are present, corresponding to different
bandwidths of the individual signals> multirate systems

e Often, a signal has to be converted from one rate to another.
This process is callesampling rate conversion

— Sampling rate conversion can be carried out by analog
means, that is D/A conversion followed by A/D conversion
using a different sampling rate— D/A converter
introduces signal distortion, and the A/D converter leads
to quantization effects.

— Sampling rate conversion can also be carried out
completely in the digital domain: Less signal distortions,
more elegant and efficient approach.

e = Topic of this chapter is multirate signal processing and
sampling rate conversion in the digital domain.

5.1 Basic multirate operations
5.1.1 Sampling rate reduction

Reduction of the sampling rateldwnsampliny by factor M:
Only every M-th value of the signalc(n) is used for further
processing, i.ey(m) = z(m - M)

z(n) e——— L M ——=y(m)

Example: Sampling rate reduction by factor
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a) x(n)
I 1]0 YTTTI s

b) Axo (n)

(4
a0 | 02

012345 [ 15 n
c) Ay(m)

@
_x(0) S8 I,,x(l2)

0 1
a7
(from [Fliege: Multiraten-Signalverarbeitung, 1993])

In the z-domain we have

Xo(2) = Xo(z") = Y a(mM)z"""

=Y (") =Y()eoy(m) (5.1)

Frequency response after downsampling
Starting point: orthogonality of the complex exponentialsstce

M—1
1 4 1 form =AM A
2 : 6]271'km/M { or AM, NeZ, (52)

0 otherwise.

With zo(m M) = z(mM) it follows

zo(m) = x(m) — Z W_km W := e 2™ (5.3)
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With (5.3) the z-transfornX(z) can be obtained as

oo

Xo(z) = Z xo(m)z" "

m=—0o0

M—-1 00
— Z Z z(m)(Whz)™". (5.4)
k=0 m=—

By replacingY (2) = Xy(z) in (5.4) we have for the z-
transform of the downsampled sequenden )

1 M-—1
Yy (") = i > X (2Wy)). (5.5)

With z = e’ andw’ = wM the corresponding frequency
response can be derived from (5.5):

M—1
jw! 1 (W —k2m
Y (/) = - ST xSRIy (5.6)

= Downsampling by factoi\/ leads to a periodic repetition of
the spectrumX (e’*) at intervals of2zw /M (related to the high
sampling frequency).

Example: Sampling rate reduction of a bandpass signal
by M =16 (Q — w)
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a) )
/IQ(eJQ)I _ _ _
_1Q(ED)| OH(eIY)| = K(&9)|
ol T g=31 m on Q
g “m g
b)
(@@ omy)
g “m g
c)
ol T g -3 n on Q
g g
0 2m 16m 321 Q

(from [Vary, Heute, Hess: Digitale Sprachsignalverarbeifur@8])

(a) Bandpass spectruxi (ej“’) is obtained by filtering.

(b) Shift to the baseband, followed by d(;cimation with = 16.

(c) Magnitude frequency respong¥ (e’“ )| at the lower sampling rate.
Remark: Shifted versions of (e’*) are weighted with the factor
1/M according to (5.6).

Decimation and aliasing

If the sampling theorem is violated in the lower clock rate,
we obtainspectral overlappindetween the repeated spectea
Aliasing

How to avoid aliasing? Bandlimitation of the input signdin )
prior to the sampling rate reduction with amtialiasing filter
h(n) (lowpass filter).

P s G Y I
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= Antialiasing filtering followed by downsampling is often
calleddecimation

Specification for the desired magnitude frequency response of the
lowpass antialiasing (or decimation) filter:

1 for |w| <w./M,

(5.7)
0 for n/M < |w| <,

|Ha(e™)| = {

wherew,. < = denotes the highest frequency that needs to be
preserved in theecimatedsignal.

Downsampling in the frequency domain, illustration fof = 2:
(a) input and filter spectra, (b) output of the decimator, (c) no
filtering, only downsamplingy — X):

H(')

(from [Mitra, 2000])
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More general approach: Sampling rate reduction with phase
offset

Up to now we have always used0) = x(0), now we introduce
an additional phase offsétinto the decimation process.

Example for¢ = 2

b) Ixj n)
| 1 .
012345 l 15 n
c) Iy;(m)
I 1 .
oM 1+eM ] 340/M m
0 1 2 3 k=m—L{/M

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

Note thatys(m) in (c) is aformal description for the output signal of the
downsampler with non-integer sample indices. The real output sigrial) is
obtained by assuming integer sample locations.

Derivation of the Fourier transform of the output signéin):
Orthogonality relation of the complex exponential sequence:

M—
1 Zl omkm—or _ [T form =AM +¢, A€Z,
M = 0 otherwise.

(5.8)
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Using (5.8) we have

M—1

mg(m) = x(m)% Z WA}k(m—é)’ (5_9)
k=0

and transforming (5.9) into the z-domain yields

g

—1 0

1

Xez) =230 D w(m)(Wiz) "Wy
k=0 m=-—o0
. 1 e k Kt
=—Y X W)W (5.10)
M k=0

The frequency response can be obtained from (5.10) by
substitutingz = €’* andw’ = Mw as

M—-1

Yi(e*') = % 3 X (I FRMy R (5 )
k=0
, 1 M1 o
Yi(e!M¥y = - ST X (TP W (5.12)
k=0

= We can see that each repeated spectrum is weighted with a
complex exponential (rotation) factor.
5.1.2 Sampling rate increase

Increase of the sampling rate by factoiupsampling: Insertion
of L — 1 zero samples between all samples;¢in)

u(n):{y(n/L) forn = AL, X € Z,

) (5.13)
0 otherwise.
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y(m)s——— 1L ——=u(n)

Notation: Since the upsampling factor is named within conformance with
the majority of the technical literature in the following we will denotelgregth
of an FIR filterwith L .

Example: Sampling rate increase by factor

a) Iy(m)
I ,
0 1 I 3 4 m
b) I u(n)
I o
012345 | 16 n

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

In the z-domain the input/output relation is

U(z) = Y(25). (5.14)

Frequency response after upsampling
From (5.14) we obtain with = /%

U(e”) = Y (™). (5.15)

= The frequency response af(m) does not change by
upsampling, however the frequency axis is scaled differentlg. Th
new sampling frequency is now (in terms of for the lower
sampling rate) equal td - 2.
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a)

wmgmqmr

Imagc ,Image . Image . Image

mmmmr

2n/L 41:/L 6m/L 2

b)

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

Interpolation

The inserted zero values are interpolated with suitable values,
which corresponds to the suppression of the— 1 imaging
spectra in the frequency domain by a suitable lowpass
interpolation filter.

u(n)

y(m)e— 1L = g(n) [—=v(n)

g(n): Interpolation orantiimaginglowpass filter

Specifications for the interpolation filter:

Supposey(m) is obtained by sampling a bandlimited continuous-
time signaly,(t) at the Nyquist rate (such that the sampling
theorem is just satisfied). The Fourier transfdrife’*) can thus
be written with (2.4) and? = w /Ty as

=—00
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whereT|, denotes the sampling period. If we instead sangple)
at a much higher raté&’ = T,/ L we have

V() = —k_zooy <J(w _T%k)) : (5.16)
=2 (Bms)-

On the other hand by upsampling g{m) with factor L we
obtain the Fourier transform of the upsampled sequenge)
analog to (5.15) as

U(e) = v (e*h).

= If u(n) is passed through an ideal lowpass filter with cutoff
frequency atr /L and a gain ofL, the output of the filter will be
preciselyv(n) = F ' {V (e/*)} in (5.16).

Therefore, we can now state our specifications for the lowpass
interpolation filter:

L for |w| < w./L,

(5.17)
0 for n/L < |w| <,

|Ga(e™)| = {

where w. denotes the highest frequency that needs to be
preserved in the interpolated signal (related to the lower samplin
frequency).
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Upsampling in the frequency domain, illustration fbr = 2:
(a) input spectrum, (b) output of the upsampler, (c) output after
interpolation with the filtera (n):

X(e®)

(from [Mitra, 2000])

5.1.3 Example: Decimation and interpolation
Consider the following structure:

o vun PPN S0 VS IO IRV Kl BT s

Input-output relation?

Relation betweed” (z) andU (z) (see (5.5)), where is replaced
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by 2 MM
Y@ﬁ:ing@MWW)
M k=0 .
which by usingU (z) = H(z)X (z) leads to
Y(z) = iﬂfl H(MWE) x™MwE). (5.18)
M

k=0

With V' (2) = Y (™) it follows

1 M—-1
V(z) = ;) H(zWy) X(2W)), (5.19)
and we finally have
$ M 1 ! k k
X@:HM%):MZF@MMMXMW)
k=0

(5.20)
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Example:
M = 4, no aliasing:

X(el)

H(e/), F(e™)

- }%Wf m -

-2 - 4 21

U(e/®)
o 1 11 W
-2 - T 27

Y (e/®)

-2 —‘n .7‘5 2 ¢
V(e)
AYATAVAVIIIAVAVATR S
-2 - 4 2

X(eiy

B —

w1 ]

-2 -
with aliasing:
U(e/®)
.../‘\ | fj | /‘\... .
-2 - T 2
e
/\ | L

-2 -
(from [Mertins: Signal Analysis, 1999])

4 21

5.1.4 Polyphase decomposition

e A polyphase decomposi

tiaf a sequence:(n) leads toM

subsequences,(m), £ = 0,..., M — 1, which contain
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only every M-th value ofx(n). Example for M

= 2

Decomposition into an even and odd subsequence.

e Important tool for the derivation of efficient multirate filtering

structures later on.
Three different decomposition types:

e Type-1 polyphase components

Decomposition ofc(n) into zy(m), £ =0,1,..., M — 1

with
xe(m) =x(mM +£), n=mM + £.

With z,(m) o—e X,(z) the z-transform X (z)
obtained as

M—1

X(2) =Y 2 ' Xu(z")

£=0

Example forM = 3:

AR

2 RSO SE

0

| T

(5.21)

can be

(5.22)
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2o(0) = z(0), x0(1) = x(3),
21(0) = z(1), z=1(1) = x(4),
z2(0) = z(2), =x2(1) = z(5),

e Type-2 polyphase components

S

-1
X(z) =Y 2 M Ox7M)
0

~
Il

(5.23)

with X ,(z) eoxy(n) = x(nM + M —1—¢) (5.24)

Example forM = 3:

20(0) = x(2), =z(1) = z(5),
21(0) = z(1), =)(1) = z(4),
25(0) = x(0), xy(1) = x(3),

e Type-3 polyphase components

M—1 B
X(2) =Y 2'Xi(z")
=0

with  X,(z) &0 Zy(n) = x(nM — £)

(5.25)

(5.26)
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5.1.5 Nyquist-Filters
Nyquist- or L-band filters:

e Used as interpolator filters since they preserve the nonzero
samples at the output of the upsampler also at the interpolato
output.

e Computationally more efficient since they contain zero
coefficients.

e Preferred in interpolator and decimator designs.

ym) o 10 s o)

Using (5.14) the input-output relation of the interpolator can be
stated ad/ (z) = G(z) Y (z1).

The filter G(z) can be written in polyphase notation according to
G(z) = Go(zM) + 2 Gi(ZH) + -+ 27V G (2D,

where theG,(z),¢ = 0, ..., L — 1 denote the type 1 polyphase
components of the filte& (z).

Suppose now that thex-th polyphase component @¥(z) is a
constant, i.eG,,(z) = «. Then the interpolator outpdt (z)
can be expressed as

L—-1
V(z) =az "Y (") + Y 2 Gu(zN)Y ().
0=0, l#m
(5.27)

= v(Ln+m) = ay(n);the input samples appear at the output
of the system without any distortion for afl. All in-between
(L — 1) samples are determined by interpolation.

163

Properties:

e Impulse response of a zero-phdseéh band filter:

a for n =0,

_ (5.28)
0 otherwise.

g(Ln) = {

= every L-th coefficient is zero (except for = 0) —
computationally attractive

g(n)

ool N,

& RN O 6 & =
(from [Mitra, 2000])

e It can be shown forx = 1/ L that for a zero-phasgé-th band
filter

L—1
> G(zW}) = La = 1. (5.29)
£=0

= The sum of allL uniformly shifted versions of3(e’*)
add up to a constant.

2z =clv

G(zW[r D) '

0 2n
(from [Mitra, 2000])

w

Half-band filters
Special case of.-band filters forL, = 2:
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e Transfer functionG(z) = a + 2 'G1(2?)

e Fora = 1/2 we have from (5.29) for the zero-phase filter

g(n)
G(z) + G(—=2) = 1. (5.30)

If g(n) is real-valued thei? (—e’*) = G(e/"")) and by
using (5.30) it follows

G(’) + G/ ™)) = 1. (5.31)

= G(e’¥) exhibits a symmetry with respect to the half-band
frequencyr /2 — halfband filter

G(e¥)

(from [Mitra, 2000])

FIR linear-phase halfband filter: Length is restricted to
Lp=4\—1,A €N

5.2 Structures for decimation and interpolation
5.2.1 FIR direct form realization for decimation

P s G Y I
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The convolution with the length.r FIR filter h(n) can be
described as

Lp—1

z(n) = Y h(k)-v(n—k),

k=0

and the downsampling wit(m) = x(m M). Combining both
equations we can write the decimation operation according to

Lp—1

y(m) = > h(k)-v(m M — k). (5.32)
k=0

Visualization (M = 3):

1+ T >
b) Yu(—k
v(0)
L 17, 11]11111,;”(0)”(0)
. I3 k
o) v(l—k)
v(0) :
1 1 1/1 R 'l ] I ' 1] R = (1) is removed
Il k
d) v(2—k)
11 1 T/U%O) ' I ] I 1y, = z(2) is removed
' Il k
e) IU( —k)
v(0)
EEEEEER! 11“1,;”(3)%(”
0123 I K
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= Multiplication of h(n) with v(1 — n) andv(2 — n) leads to
the resultsc(1) andx(2) which are discarded in the decimation
process— these computations are not necessary.

More efficient implementatiotw(n) — w(n), L — N):
a) b)

u(n>) h(>0) E_y’('ﬂ u(n) lM h£0) yém)

z-ly A z-1

h(1)

1y 4 21

A | L.'E WD)

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

(&) Antialiasing FIR filter in first direct form followed by
downsampling.

(b) Efficient structure obtained from shifting the downsampler
before the multipliers:

e Multiplications and additions are now performed at the lower
sampling rate.

e Additional reductions can be obtained by exploiting the
symmetry ofh(n) (linear-phase).

5.2.2 FIR direct form realization for interpolation

ym) o 12 P ) )

The outputv(n) of the interpolation filter can be obtained as

Lp—1

v(n) =Y g(k)-u(n— k),

k=0
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which is depicted in the following:

" .

1 3 T 2
b) I.y(m)

, I 1 ] |

0 1 2 3 m
c) I u(—k)

=- The output sample(0) is obtained by multiplication of(n)
with w(—n), where a lot of zero multiplications are involved,
which are inserted by the upsampling operation.

More efficient implementatiow(n) — z(n), Lp — N):

a) b)
Y(m) T g0)  xm)  ym)  g(0) T x(n)
Y 4zl Y z-1
g() LONNES
Y 421 v z-1
¢ g(N-1) ¢ g(N-1) TL |

(a) Upsampling followed by interpolation FIR filter in second
direct form

(b) Efficient structure obtained from shifting the upsampler bethin
the multipliers:

e Multiplications are now performed at the lower sampling
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rate, however the output delay chain still runs in the higher
sampling rate.

e Zero multiplications are avoided.

e Additional reductions can be obtained by exploiting the
symmetry ofh(n) (linear-phase).

5.3 Decimation and interpolation with polyphase filters

5.3.1 Decimation

e From Section 5.1.4 we know that a sequence can be
decomposed into polyphase components. Here type-1

polyphase components (5.21) are considered in the following.
e Type-1 polyphase decomposition of the decimation filter
h(n): The z-transformH (z) can be written according to

(5.22) as
M-—1

H(z) =Y =z "Hy(z"), (5.33)
=0
M denoting the downsampling factor and
Hy(z") @0 hy(m) the z-transform of the type-1 polyphase

components,(m),¢ =0,..., M — 1.
Resulting decimator structut® (z) — U(z)):
a) b)

) Y(z')

(from [Fliege: Multiraten-Signalverarbeitung, 1993])
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(a): Decimator with decimation filter in polyphase representation
(b): Efficient version of (a) with\/ times reduced complexity

Remark: The structure in (b) has the same complexity as the direct
form structure from Section 5.2.1, therefore no further advantage.
However, the polyphase structures are important for digital filter
banks which will be discussed later on.

Structure (b) in time domai@(n) — w(n)):

u(n) Dl 3 uy(m) h(0) yo(m) ygm)

z-ly h3)
1Y pe b P holm)
zly 1Y ho) 4
l 3 uy(m) h(VI) y1(m) .
)
1Y ey hy(m)
z-1 , > 4
z'-1y h(lO)
Dl 3 uy(m) h(2) y,(m)
z'-1 hs) 4
71y A) hy(m)
1Y han 4

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

5.3.2 Interpolation
Transfer function of the interpolation filter can be written analog
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to (5.33) for the decimation filter as

~
—_

G(z) = 2 Gy(2Y),

~
Il

L denoting the upsampling factor, angk(m) the type-1
polyphase components gfn) with g,(m) o—e G,(z").

Resulting interpolator structu® (z) — X (z)):
a) b)

H
H

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

(a): Interpolator with interpolation filter in polyphase
representation
(b): Efficient version of (a) withl, times reduced complexity

As in the decimator case the computational complexity of the
efficient structure in (b) is the same as for the direct form
interpolator structure from Section 5.2.2.

5.4 Noninteger sampling rate conversion

Notation: For simplicity a delay by one sample will be generally denoted with
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21 for every sampling rate in a multirate system in the following (instead of
introducing a speciat for each sampling rate as in the sections before).

e In practice often there are applications where data has to be
converted between different sampling rates with a rational
ratio.

e Noninteger (synchronous) sampling rate conversion by factor
L /M: Interpolation by factorL, followed by a decimation
by factor M; decimation and interpolation filter can be
combined:

Y(2) R a(z) NG Ly X(2)

e Magnitude frequency responses:

a) Y1

0LuM 2n L2x w
b)  4iryl

owM WL 2n w
¢ 4G

0 /M nyL 2n w
) J/'\IXL:1| J/\k

0n/M 21/M 2n w
Bniaialataial

0 m2n w

(from [Fliege: Multiraten-Signalverarbeitung, 1993])
Efficient conversion structure

In the following derivation of the conversion structure we assume
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aratioL/M < 1. However, aratid./M > 1 can also be used
with thedual structures.

1. Implementation of the filteiG(z) in polyphase structure,
shifting of all subsamplers into the polyphase branches:

- .I— . =

(from [Fliege: Multiraten-Signalverarbeitung, 1993])
2. Application of the following structural simplifications:
(a) Itis known that if. and M are coprime (that is they have
no common divider except one) we can fihd my € IN
such that

lo L — mog M = —1 (diophantic equation) (5.34)

= delayz~" in one branch of the polyphase structure can
be replaced with the delay* (‘0 Z=0 M)

‘ Ga(2) tL Ao L=mo M) M

(b) The factorz**% can be shifted before the upsampler, and
the factorz~*™0M pehind the downsampler:

‘ Gi(2) A +L M »—Ama
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(c) Finally, if M and L are coprime, it can be shown that up-
and downsampler may be exchanged in their order:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

i |
F Gi(2) 2o LM 1L z~Amo
| i
i i

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(d) Inevery branch we now have a decimator (marked with the
dashed box), which can again be efficiently realized using
the polyphase structure from Section 5.3.1. Thus, each
type-1 polyphase componepj (n) is itself decomposed
again inM polyphase components,,(n) o—e G,.(z),
A=0,...,L—1,u=0,...,M —1.

Resulting structure:

] G0 L7
-

(from [Fliege: MuItiraten-SiQnaIverarbeitung, 1993]) '

e Delaysz~*"0 are realized with the output delay chain.
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e The termsz*0 are noncausal elements: In order to obtain a
causal representation, we have to insert the extra delay block
2~ (L=D% at the input of the whole system, which cancels out
the "negative” delays ‘.

e Polyphase filters are calculated with the lowest possible
sampling rate.

e LL/M > 1 is realizable using the dual structure (exchange:
input < output, downsamplers— upsamplers, summation
points«< branching points, reverse all branching directions)

Example forL = 2 andM = 3:

Application: Sampling rate conversion for digital audio signal
from 48 kHz to 32 kHz sampling rate

B
21
-1

zZ

wl G

7zl

-1
—{3}{eue]

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

Polyphase filters are calculated with6 kHz sampling rate
compared t®6 kHz sampling rate in the original structure.

Rate conversion froB2 kHz to 48 kHz: Exercise!

5.5 Efficient multirate filtering

In the following we only consider lowpass filtering, however, the
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presented methods can easily be extended to band- or highpass
filters.

5.5.1 Filtering with lower sampling rate

If the stopband edge frequency of a lowpass filter is substantiall
smaller than half of the sampling frequency, it may be advesabl
to perform the filtering at a lower sampling rate:

H,(z) is the (input) decimation filter, the actual filtering is carried
out with the core filtet.( z) in the M -times lower sampling rate
with sampling frequencyf,, = f,/M, and after upsampling
the output signal is interpolated withf;(z) = Single-stage
implementation

Stopband- and passband edge frequencies of the decimation and

interpolation filters have to be adjusted to the filter spedifices
of the core filter:

""" s~~ _|Hal, | Hi

|H| BRI

i y : Ty : f
fpass fstop fsl/2 f81 *fstop f31

e Stop- and passband edge frequencfas, and fpass Of the
core filter H.(z) are identical with those for the overall filter
H(z) =Y(2)/V(2).
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Stopband edge frequency for the decimation filter then has to
be chosen less or equal thafy, — fsiop)-

The interpolation filter can be chosen identical to the
decimation filter, since then it is guaranteed that all imggin
components are in the stopband region of the interpolation
filter.

Transition bandwidth foiH (z) is M-times smaller than for
H.(z) = design with a fairly small number of coefficients
for H.(z) possible (compared to a direct designtf z)).

Stopband rippl&, for the overall filterH (z):

5y = {52,(:(1 +01,)(1+61,9) = 2.6, fstop< f < (fsy — fstop),

02,c 02,402, (fsq—fstop) < f < fs
(5.35)

where the approximation fofswp < f < (fs; — fstop) holds
for small decimation and interpolation filter passband ripples
617d andéu.

Passband ripplé, for H(z):

1461 =(14+061,c)(1+1q) (1+614),
(5.36)
appgation

01 =~ d1,c + 01,04+ 01,4, (5.37)

where the last approximation is valid for small passband
ripplesdy ¢, 41,4, anddy ;.

Complexity savings (#multiplications and #additions) can b
obtained by roughly a factor of 100. An even higher gain can
be achieved by multistage implementations.
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5.5.2 Interpolating FIR (IFIR) filters

Alternative to multirate filters with decimation and interpolatio
also suitable for very narrowband filters.

Principle:

e No real multirate filter since both filters are calculated with the

same (input) sampling rate. Multirate technique is applied to
the coefficients of the impulse resporisen ).

Realization ofG'(z%) in the first direct structure:

K K K K K K

v(n)

9(0) g(1) 9(2) 9(3) 9(Lr=2)y g(Lp—1)

y(n)

G(z") is a function where alk~' are replaced by %,

which is equivalent to insertingC — 1 zeros between the
coefficients ofG(z).

G(e’™) — G(e/f¥): Frequency respons& (e’*) is
"compressed” by factoK', K —1 imaging spectra are present:

G (e?)]
— —
n 2n w
(e
. _Image P Image P Image . Image )
0 2n/K 4n/K 6n/K 2n w

(from [Fliege: Multiraten-Signalverarbeitung, 1993])
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Furthermore, the transition bandwidth and the width of
the passband foG(e/%*) are K-times smaller than for
the original filter G(e’*) with the same number of filter
coefficients.

e The filter F'(z) removes the imaging spectra, and

H(z) = G(zK) - F'(z) only consists of the baseband
part of G (e/%%).

Design: Starting point for the design: Passband and stopband
edge frequencies;, w,, for the overall filterH (z) — search for
a suitable factor leading to a less complex interpolation filter

f(n).

Filter specificationgH, F, G are allmagnitude frequency responyes

AG
| G
Kuw, Kuwg n Vw
Gy W 2n/K n w

(from [Fliege: Multiraten-Signalverarbeitung, 1993])

e Requirements for passband and stopband edge frequency of
the prototype&(z):
wpag =K -wp, wse=K"ws. (5.38)
e Requirements for passband and stopband edge frequency of
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the interpolation filte?'(z):

27
Wp P = Wpy  Ws P = 70 = Wse (5.39)
e Passband ripplé, for H(z):
146 =14 61,6) (14 d1,r). (5.40)

Small passband ripples,  for G(z) and §; r for F(z),
resp., lead to the simplification

51 ~ 517(; + 517}7‘. (541)

e Stopband ripplé, for H(z):

5 {52,(; (14381r) for w.Sw<wur g0

62,F (1 + 51,G) for Ws, F <w S TT.
For small passband ripplés ¢, 61, we have approximately

02 & da,r = O2,G- (5.43)
Example:
Design a lowpass IFIR filter with the following specifications:
wq = 0.057, ws=0.1m,
20log1g(1 + 1) = 0.2dB — §; =~ 0.023, 20logig(]d2|) = —40dB
1. We select a factoK = 4: PrototypeG (z) has the parameters

wp g =027, wgqg=04mr,

81, ~ 0.0116 — 201log; (1461 ¢)~0.1dB,

G
201ogy(|d2,¢|) = —40dB,
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ripple is equally distributed betwe&H(z) and F'(z), see (5.41). Impulse response Magnitude frequency response

2. We use an linear-phase FIR Chebyshev design and insert these values for o4
G(z) into (4.73), yielding a filter ordelN = 19. However, several test 03
designs show that the above specifications are only mef\for= 21, 02
leading to afilter length oL p = N +1=22. '
o1
Impulse response Magnitude frequency response 7
0.4 T T T T T T T T
-0.1
0.3
0.2 70'20 20 40 60 80 _800 0.2 O.é) I 0.6 0.8 1
. n- -
201 5. Final IFIR filterh(n) = g1(n) * f(n):
o Magnitude frequency response  Passband detalil
-0.1 0 ‘ ‘ ‘ ‘ 1 1.02 | |

5 10 15 20 0 0.2 0.4 0.6 0.8 1
n - w/m

3. Specifications for the interpolation filtéf(z):

S
N
20 log,, [HE")| [dB] -
1 | U
[o2] B N
?
joo
o o MHEIN-
© © o
oo © [ =

2
wp p=wp = 0.007, wgp= % — ws = 0.4,
20log1o(1 +61,7) = 0.1dB, 20logo(|d2,F|) = —40dB. 8% 02 o4 06 08 1 0 002 004 0.06
W/t - -

6. H(z) in the IFIR realization has an overall length of 35 coefficients. On

= resulting filter order ((4.73)N = 12: . . -
the other hand we obtain from (4.73) an estimated length of 65 coefficients

Impulse response Magnitude frequency response for the direct form implementation.
0.3 T T T T T
5.6 Application: Oversampled A/D and D/A converter
0.2
5.6.1 Oversampled A/D converter
1
g [ [ Extension of the A/D and D/A conversion concepts from
o Lo T T - Section 2.
Structure:
0.3 2 4 6 8 10 12 8% 0.2 0A4/ 0.6 0.8 1 1’””7”””"”””””‘;
n - W/T — T R 1 z(nT/2Y) = z1(n 1Qlzp(n J(n y(n
. - a(t) Tl (nT/2") = ar(n) [(g :Q[ (n)] h(n) j(n) Iy y(n)
4. Upsampling of the impulse responggn) by factor K = 4 — Ly ot
gi(n)o—e G(eJK¥Yy: T AD converter
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e Continuous-time input signal is band-limited by the analog
lowpass such that the frequenegy, represents the maximum
frequency in the interesting frequency range for the input
signal:

Sampling with a sampling frequen®” - w, > 2 - w,,

L €{0,1,2,...}, after the analog filtering. Herey,
denotes the lowest possible sampling frequency in order not
to violate the sampling theorerts = 2 - w,, = 27 /T.

e A/D converter here is idealized as concatenation of sampler
and quantizer.

e After A/D conversion a lowpass filtering is carried out where
the lowpass has the idealized frequency response

i 1 for|w| < w/2%,
|H(e’)] = .
0 otherwise
The resulting bandlimited signal can then be downsampled by
factor2”.

Quantization noise variance of &-bit midtreat quantizer
according to (2.27), where the rangeof the quantizer is chosen

asRkR = 2:
2—2b+2

0'2 =
¢ 12
As an alternativefg can also be obtained via the power spectral
density (power spectrund,.(e’*) as

1 [ 4
ag = —/ b (') dw.
27
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The filtering with the lowpasa (n) now reduces the quantization
noise variance by fact@”, since

7r/2L
) 1 @)r o 9—2b+2 "
T = 2m / P (@) dw =5 B49)
,ﬂ-/2L

=- Reduction of the noise variance due to oversampling by
factor2”:

2
Gain= 10 log;, | —“— | = 10 log,o(2") = L-3.01 dB.
7e(L)
(5.45)
= An increase of theversampling facto” by factor 2 leads to
an increase in quantizer resolution by half a bit (compare (2.29))
and to an increase of the signal-to-noise ratio (SNR) in (2.29) by
3dB!

Visualization: A
Deo(ed)
o2 - - -
(@)
W
—T 0 s
oL (e1)
ot
(b)
+ w
—3r 0 3z ™

Gain in (5.45) can also be used for reducing the quantizer
wordlength while keeping the SNR constant:
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e Reduction of the hardware complexity of the core A/D
converter

e Extreme case: Quantizer wordlength is reduced te 1 bit
— only a simple comparator is necessary

Requirements:

2

o —2b7 42
aE Sl b=y (640
e(o,bo)

with by, denoting the quantizer wordlength for a giveéreading

to the same quantization noise variancé@®or L =0, by, < b.
Example:

Given abg = 16 bit A/D converter, where the analog input signal is sampled
at the Nyquist rate. Choose the paramdien the oversampled A/D converter

from above such that the same quantization noise varianckefee 1 bit is
achieved.

From (5.46) we obtain,. = 30, leading to an oversampling factor of
2l ~ 10°.
Improvement: Shaping of the quantization noise

The quantizer in the above block is now replaced by the following
structure:
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Analysis:

y(n)=[zL(n)lg = Qlzr(n) — é(n — 1)),
=xr(n) —é(n—1) +é(n),
=zr(n)+é(n) *x (1-8(n—1)) (5.47)
o—e Y(z)=Xp(z)+ E(z)(1—-2z"). (5.48)

Therefore, the z-transform of the overall quantization error
sequence can be expressed as

E(z) = E(z) (1 - z_l) ,
which leads to the quantization noise power spectrum

Deo(?) = Dea(e?)1 — e 7).

, : —2b+2 . :
With ®z(e’) = 2 1; (noise power spectrum of a-bit
midtreat quantizer with rangB = 2) we have
) —2b42
Pee(e’) = 5 (1 — cos(w)). (5.49)
gx10”
s 1372
T4
Egn
ed)
- 2
1
C,0 0.2 0.4/ 0.6 0.8 1
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= Quantization noise power spectrum now has highpass
character— noiseshaping

The noise variance after lowpass filtering witlin ) in the above
oversampled A/D converter structure is now given with (5.49) as

7r/2L
1 .
s = om / Pecle™) dw,
) T
,ﬂ-/2L
2—2b+2 2
= <2‘L+1 - = sin(2_L7r)> . (5.50)
12 T

Reduction of the noise variance due to oversampling by f&tor
. —L+1 2 —L
Gain= —10 log;, | 2 — —sin(2 "7m)) . (5.51)
™

For L = 4: Gain ~ 31dB (compared to 12dB without noise
shaping, see (5.45)).

Reducing the quantizer wordlength for constant SNR:

2

O-e(ovbo) ! 1 41 2 . -L
———— =1 — by=bp+=-log, | 2 ——sin(2777) ) .
o? 2 s

(5.52)
Example:
The above example is again carried out for the noiseshaping case: For
bp=16bit and by, = 1hit we obtain from (5.52) via a computer search
(fix-point iteration) L =~ 10.47 — When the input signal is sampled with
fs = 44.1kHz andbg = 16 the new sampling frequency in the oversampled

A/D converter would befsqyer = 2!l . fo ~ 90MHz for by, =1.
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= Improved noiseshaping by other techniques, where the
guantization noise power spectrum shows even stronger highpass
character (sigma-delta modulation, more selective shapiegsiilt

5.6.2 Oversampled D/A converter

Structure:
x(n) Zr(n) zr(n) Q[IL(")]
oL hin hi(n
el b bit () Q by < b bit 1)
y(t) f& by bit
T TC DAC

1. Input signal sampled withbits is upsampled by fact@” and
then interpolated witth (n).

2. The resulting signak(n) is requantized to a wordlength
of by < b bits, leading to a worse SNR due to higher
guantization noise.

3. Filtering by hi(n) removes the quantization noise in the
unused spectral regions, which increases the SNR again.

4. Theb, bit DAC in combination with a simple analog lowpass
converts the signal back into the analog domain.

Reason for performing a requantization: Use of a cheap low
resolution D/A converter is possible, often with = 1 bit.

In combination with a noiseshaping approach the same SNR is
obtained as when & bit converter would be used directly on the
input signal (but with higher costs).

= Favored converter principle in CD players~( "bitstream”
conversiorfor by = 1 bit)
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5.7 Digital filter banks

e A digital filter bank consists of a set of filters (normally
lowpass, bandpass and highpass filters) arranged in a parallel
bank.

e The filters split the input signat(n) into a number of subband
signalsyx(n), k = 0, ..., K — 1 (analysis filter bank

e Subband signals are processed and finally combined in a
synthesis filter banleading to the output signai(n).

e If the bandwidth of the subband signal is smaller than the

investigated in the following— simplified structure:

= Critically subsampledilter bank: The number of subband
equals the subsampling factor in every subband.

Typical frequency responses for the analysis filters:

analysis filter bank

Subband processing:
coding, (adaptive) filtering— equalization, ...

synthesis filter bank

Quantization (wordlength reductien)

bandwidth of the original signal, they can be downsampled | 1 e I, (@)
before processing- processing is carried out more efficiently.
(n) ho(n) [ li\/‘, win) ’m/” W L) #(n) ,
—_— — 0 w2 n
g et (from [Mitra, 2000])
) [0 gy wlm) 8 LT VA S L R . . .
- g Frequency responses of the subband signalsdéal filters)
s Q- w):
&
T R '“[’7 v (mic) 'W v [

5.7.1 Two-channel filter banks: Structure and analysis I

. (From [Vary, Heute, Hess: Digitale Sprachsignalverarbeitd9§8])
Basic two-channel subband coder: (a): Magnitude frequency response of the input signal, (b) magnitude frequency
response of the lowpass, and (c) highpass branch after analysis filtering and

downsampling

= Highpass subband: Baseband spectré&eguency reversed
order

o~

Decode Fo(z) Z(n)
Decode Fi(z)

Only the errors in the above system related to the filter bank are

—=

Demultiplexer
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Analysis

How do we have to design the filters such that
Z(n) = z(n — D) holds?

(D denotes the delay of the overall analysis-synthesis system in
samples)
We have the following relations:

Yo(=%) = 3 [Ho(2) X(2) + Ho(~2)X(~2)]  (659)
Yi(2%) = %[Hl(z) X (2)+ Hi(—2)X(—2)] (5.54)

Proof:
These relations can be obtained from (5.18)

1 M—-1
Y(2) =+ ST HEMWE) X (VM)
k=0

for M = 2. With

Wk — oi2mk/2 _ —imh _ 1 for n even,
2 —1 formn odd,

we have

V() = 5 3 HID ) X (1)

1

: [H(+Z1/2)X(+Zl/2) + H(—zl/Q)X(—zl/Q)

(5.55)
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Replacingz by z? then leads to

1
Y(2%) = 5 [H(2) X(2) + H(—2) X(=2)],
where (5.53), (5.54) can be obtained by repladifgvith H, and
Hq, resp. O

The connection between the subband signals and the recosesitruct
signal is

X(2) = [Yo(z) Fo(=) + V(=) Fal=)| ,  (5.56)

and finally by combining (5.56), (5.53), and (5.54) the input-
output relation for the two-channel filter bank writes

X(z) = %[Ho(Z) Fo(z) + Hi(z) Fi(2)] X(2)+

1

+ 5 Ho(=2) Fo(2) + Hi(—2) Fi(2)] X(—2).
(5.57)
(5.57) consists of two parts:
S(z) = [Ho(z) Fo(z) + Hi(2) Fi(#)], (5.58)

G(z) = [Ho(—2) Fo(2) + Hi(—z) F1(#)] (5.59)

e S(z): Transfer function for the input signaX (z) through
the filter bank, desirable is

S(z) = 2277, (5.60)
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e ((z): Transfer function for the aliasing componeXit(—z), = Cancelationof all aliasing components
desirable is (no aliasing!) For the linear distortion transfer functiofi(z) one obtains by

inserting (5.62) into (5.58)

Gz =0 (5-60) S(2) = Hy(2) = Hy(==2),

Two cases have now to be distinguished: that is, the prototypéf,(z) has to be designed such that

1. If G(z) = 0, but S(2) # cz~P, then the reconstructed
signalz (n) is free of aliasing howeverJinear distortionsare
present.

2. If G(z) = 0andS(z) = cz P, then we have perfect
reconstruction(PR) system, except of a scaling factgf2 and
an additional delay oD samples.

S(z) = H2(z) — HX(—2) ~ 22" (5.64)

is satisfied as good as possible requirement for anideal
(constant) overall frequency response for the whole analysis-
synthesis system

e Unfortunately, (5.64) can not be satisfied exactly with FIR

5.7.2 Two-channel quadrature-mirror filter (QMF) banks filters, but it can be approximated with an arbitrarily small
(Crosier, Esteban, Galand, 1976) error

Quadrature-mirror filter (QMF) banks allow thmancelation of = Linear distortions can be kept small

all aliasing componenisbut generally lead tdéinear distortions e Exception: (5.64) is satisfied exactly by using the prototype

(i.e. phase and amplitude distortions)

1 —1
Starting point: Given (lowpass) prototyf#, (=), all other filters Ho(z) = ﬁ(l +27)

are chosen as _
(Haar filter):

Fo(z)=Ho(z), Hi(z)=Ho(—z2), Fi(z)=—H(z)
(5.62)
Thus we have from (5.59) for the aliasing transfer function

1 1
5(1 +227 4277 — 5(1 — 227 427 =227

e The magnitude frequency responses of highpass and lowpass
G(z) = Ho(—=z) Fo(z) + Hi(—z) Fi(2) filter have for real-valued filter coefficients the mirror image
property (therefore the name QMF):
= Ho(—2) Ho(z) + Ho(2)(—Ho(—2)) =0
(5.63) |H1(ej(%_w))| _ |H0(€j(%+w))| (5.65)

193 194



)l - Jr‘il_(f{“’;)! |

0 02 04 06 08 1
w/m-

Design of QMF banks

e Usually the design is carried out by minimization of an error
measure '
E=F,+ aFE; = min. (5.66)

E.. refers to the linear distortion error energy

T

B =2 [ (o) + |Ho(“ ) = 1) do,

w=0
(5.67)

and E; to the energy in the stopband region of the filter

E.= [ |Ho()P de, (5.68)

wW=wsg

with the stopband edge, = (7 + Aw) /2. Aw denotes the
width of the transition band, which is symmetrically centered
aroundw = 7 /2.

e Minimization of (5.66) can be carried out via a numerical
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minimization approach for a giveAw and given prototype
length L .

e Catalogs with optimized filter coefficients fdig(n) may

for example be found in [Akansu, Haddad: Multirate signal
decomposition, 1992].

e Once a good prototypé&l,(z) has been found, the remaining

filters can be obtained from (5.62).

Example: Cr = 20, Aw = 0.27)

Impulse responskg(n) Impulse responsk (n)

0. T T T 0.5

0.5

0.4

° ! I

= ? ?

o ¢ N
[11]

0 ) f ) J J ) )
% 5 10 15 20 0% 5 10 15 20

n- n-

Frequency responses féfy, H1  Frequency response of the QMF bank

Iy e 0.0 A

o
o
=

0.0 /
v ) Ty )
o |
-8 -0.0
-10 0.2 0.4 0.6 0.8 1 oo 0.2 0.4 0.6 0.8 1
W/ W/
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Efficient realization using polyphase components

From (5.62) we know that#{;(z) = Hy(—=z) holds for the
analysis highpass filter. Then, the type-1 polyphase compsne
Hy(z)andHq4(z), £ € {0, 1}, are related according to

Hlo(z) = Hoo(z) and Hu(z) = —H()l(z). (569)

This leads to an efficient realization of the analysis andssis
filter bank, where the number of multiplications and additicas
be reduced by factor four:

></ Yo(m) >< (Z)
1
>~ Yi(m) - Hy,(2) 4’@"

(From [Mertins: Signal analysis, 1999])

x(n)

Hy(2)

5.7.3 Two-channel perfect reconstruction filter banks

In order to obtain a perfect reconstruction filter bank the analysis
and synthesis filters are chosen as follods({0, 1, 2, . .. }):

Fo(z) = z " Hi(—2), Fi(z)=—2 "Hy(—2)
(5.70)
Aliasing transfer function: Inserting (5.70) into (5.59) yields

G(z) = Ho(—z) Fo(2) + Hi(—2) Fi(z)
= Ho(—2) 2 " Hi(=2) + Hi(=2) (—="" Ho(—2))
=0 = No aliasing componenis the reconstructed signal!

Transfer function for the input signal: Inserting (5.70) into (5.58)
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yields

S(z) = Ho(z) Fo(z) + Hi(z) Fi(=)
= Hy(z) Fo(z) + (1) Ho(—2)Fy(—2) (5.71)

Condition for a linear distortion free systerfi(z) =2, P
With the abbreviation

T(z) := Fy(z) Ho(z) (5.72)
the PR condition in (5.71) becomes
T(z)+ (=)' T(=2)=22"". (5.73)

Interpretation:

e [T'(z) + T(—=)] refers to the z-transform of a sequence
whoseodd coefficients are zero.

e [T'(z) — T(—=z)]: All coefficients with anevenindex are
zero.

e The PR condition in (5.71) now states that the corresponding
sequences with z-transformd7'(z) + T(—=z)] or
[T'(z) — T(—=z)] are allowed to have only one non-zero
coefficient. Hence, fot(n) o—e T'(z) holds

1 for n=D,
t(n) =<0 for n=D+ 2\, X\#QO,
arbitrary otherwise.
(5.74)
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= Half-band filter (Nyquist(2) filter), see Section 5.1.5.
A half-band filter hast\ — 1 coefficients A € IN).
Example:

(a): linear-phase half-band filter
(b): half-band filter with lower system delay

1.5 1.5

1 1

0.5 0.5

t(n) —

t(n) —=

0 0

-0.5 -0.5
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 1012 14 16 18

n — n—

(a) (b)
(From [Mertins: Signal analysis, 1999])

Filter design via spectral factorization
A given half-band filterT'(z) can be factorized according to

T(Z) = F()(Z) HQ(Z),

i.e. one looks for the zeros @ (=), and distributes them among
the polynomialsF(z) and Hy(2).

The missing filtersF (z) and H1(z) can then be obtained from
(5.70).

= General approaclior the PR design of two-channel banks

Example:
A half-band filter is given as

{t(n)} = {—1,0,9,16,9,0, —1}.
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The zeros arg/3.7321, —1.0, —1.0,0.2679}, {—1.0, —1.0},
zeros ofHy(z) zeros ofFy(z)
such that (linear-phase filter).

Ho(z) = a(—=14+22"" 4622 4227° - 277,
Fo(z) = B(1+227" +277)

Orthogonal filter banks
e In the above example: Still two filterBy(z) and Hy(z) to
design in order to construct the whole PR filter bank.

e In an orthogonaltwo-channel filter bank (Smith, Barnwell,
1984), (Mintzer, 1985) it suffices to design the lowpass
analysis filterH(z) for a PR system.

For an orthogonal two-channel bank the fil#éi (z) is chosen as
Hi(z) = 2z PP Hy(—27"), (5.75)

L i denoting the length oky(n). In the following we will only
considereven lengthd. . Then, using (5.70) witd = 0, the
remaining synthesis filter can be obtained as

Fy(z)=(—2) " Y Hy(z™), Fi(z)=—Ho(—z).

Note that (—z) Fr—D = (—1)"r-D) =Lp=D

(—1) z=F~Y since(Lr—1) odd.

The factor(—1) in Fy(z), F1(z) can be regarded as a common
factor multiplied to the output of the synthesis bank and ttas
be removed for simplicity reasons:

Fo(z)=2""F"V Hy(z™"), Fi(2)=Hy(—z2). (5.76)
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Removing the factor(—1) does not change anything at the — It can be easily shown that the power-complementary property
aliasing cancelation property: Insertidg,(z) and F(z) into also holds forh(n), fo(n), andfi(n).
(5.59) still yieldsG(z) = 0. , _

Design of orthogonal filter banks
In order to obtain the condition for a analysis-synthesis system
free of linear distortions we now insert (5.75) and (5.76) into

(5.58), leading to

1. Search a prototypeH,(z) which satisfies the power-
complementary property (5.78) or (for the interesting real-
valued filters) the corresponding equation (5.77) in the z-

S(z) = 2~ UF Y (Ho(2) Ho(2™") + Ho(—2) Ho(—2"")), domain.

LD With the abbreviatiol;(z) = Ho(z) Ho(z™")
= z .

L Tz(z) + Tz(—2) =2 (5.79)
Hence, the PR condition is
: is satisfied, wher&'; (z) denotes aero-phaséalf-band filter.
Ho(z) Ho(z" ") + Ho(—z) Ho(—z ") = 2. (5.77) Notation: In the following zero-phase filters and amplitude responses are
denoted with the subscriptZ” instead of '0” to avoid confusion with the
lowpass analysis filtetg (n).

Valid half-band filter: 7'z (z) is a valid half-band filter if it can
be factorized intaH(z) and Ho(z ™).

= Design goal: Find a valid half-band filter and factorize it
into Hy(z) andHy(z™1).

2. When a suitable filteH(z) has been found, the remaining
HEP e filter can be obtained from

I [ A S

With z = ¢e’* (5.77) can be written for real-valuety(n)
according to

|Ho(e™)|* + [Ho(!“T™))? = 2 (5.78)

= power-complementangroperty for Hy(e’*).

A

Hi(z) = 2 FF=Y go(—27h),
Fo(2) = 2~ FP~Y Ho(z7h), (5.80)

Fi(2) = 2 P Y Hi(z7Y = Hy(—=2).

T = special case of the conditions in (5.70).
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How to design a valid half-band filter?
Spectral factorization may be problematic;
With T (2) = Ho(z) Ho(z™ ') andz = e/*:

!
Ty (e’) = Ho(e’) Hy(e™7*) = |Ho(’)]* > 0 for all w.
(5.81)
Design approach due to Smith and Barnwell, 1986
Starting point is an arbitrary linear-phase half-band filter (for
example designed with the Remez algorithm from Section 4.4.4):

A(ejw) _ Az(w)e—jw(LF—l)

Az(w): Real-valued amplitude frequency response of the half-
band filtera(n), Az(w) &0 az(n), L: length ofhy(n).

If the value

d = min Az(w) <O, (5.82)
we(0,27]

a non-negative amplitude frequency response can be generated
with

Azi(w) = Az(w) + |6]. (5.83)
In time-domain this corresponds with

_ Jaz(n) for n#0,
Azy(w)e—oazi(n) = {az(n) + 5] for n =0.
(5.84)

(az(n) denotes theero-phasémpulse response with the center
of symmetry located at = 0).
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Visualization:
A A

(From [Fliege: Multiraten-Signalverarbeitung, 1993])

= Single zeros on the unit-circle are converted to double zeros
— factorization into two filters is now possible

A valid zero-phase half-band filtefl’;(z) can finally be
obtained by scaling of the resulting transfer function such that
Ty (e’™/?)=1 (note thatT;(z) + Tz(—z) = 2 has to hold),
leading to the expression

1
Tz(z) = TWAZHZ)- (5.85)

Remark:

In practice for double zeros on the unit circle the separation
process is numerically very sensitive. As a solution, the pammet
|6] in (5.82) and (5.83) can be enlarged by a small value>
zeros move pairwise off the unit-circle where due to the linear-
phase property they are mirrored at the unit-circle
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Example
Parameter for the design @fz(z): Lr = 16, w, = 0.6,
Aw = 0.27, e =107

Pole-zero patterfi’; (z) Pole-zero patteri{y(z)

o
1 o ° 1 o
k) o
0.9 ® “o ° 05 o °o
1 @ ° 1 R o
< 0 » o o < o - o
E ® ° £ ° °
-0.5 ® °© o -0.5 o °©
o o
@ o
6 o
-1 . 1
o
-1 1 2 -1 0 1 2
Re{z} - Re{z} -

2. T T T T 1.5

0 0.2 0.4 0.6 0.8 1 0 0.2 ) 0.4 0.6 0.8 1
Q/m- W/

After ho(n) has been constructed, the remaining impulse
response&(n), fo(n), f1(n) are obtained with (5.80).
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Impulse responskq(n)

Impulse responsg; (n)

0.8 0.
0.6 0.6
0.4 0.4
0.2 0.2
1 1
go 0 ? l I T 4 - ? . . €H . . ? . S T ! J .
= ~
-0.2 -0.2
-0.4 -0.4
-0.6 -0.6
0. 5 10 s O 5 10 15
n- n-
Impulse responsé(n) Impulse responsg; (n)
0. T T 0. T T
0.6 0.6
0.4 0.4
0.2 0.2
Lo ) y | 1 2 r ] .t
€ : ] 1 g0 I T 3
-0 J -0 J
-0.4 -0.4
-0.6 -0.6
-0 5 10 15 O 5 10 15

e Filter in orthogonal two-channel filter banks have an even

number of coefficients sincEy (z) = Ho(z) Ho(z™ %)

Example:

|

Tz (=) with 7 coefficients can be factorized into two filters of

length 4.

The next feasible length is 11 coefficients
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Il

! !
which leads to two filters of length 6.

e Filter in orthogonal two-channel filter banks can not be made
linear-phase (except two trivial cases) (Vaidyanathan, 1985).

5.8 Tree filter banks
K channel filter banks can be developed by iterating the two-
channel systems from above.

[12l~Fie

-3

(From [Mertins: Signal analysis, 1999]) ®

207

(a): Fully iterated tree filter bank, (b): Octave filter bank

If the two band filter bank is of the perfect reconstruction
type, the generated multiband structure also exhibits the perfec
reconstruction property.

5.9 K-band filter banks

In the following we briefly considef -band systems with equal
subband widths and equal subsampling factors in every subband.

() ho(n) 20 |y () g S ) (n)
I(n) I Y (m) ) SO YN s

o e I et

analysis filter bank synthesis filter bank

e If K = M the analysis-synthesis system is calteitically
subsampledfor K > M we speak of amversampled
system.

e The caseK < M (undersampledystem) is infeasible since
the sampling theorem is violated in the subbands also for ideal
(brickwall) filters — no reasonable reconstruction is possible.

Subset of generdk -band filter banks:
— Modulated filter banks

All K analysis and synthesis filters are obtained from one single
analysis and synthesis prototype, resp.
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Advantages:
e More efficient implementation compared to genekalband
systems.

e Less design complexity since only the prototype filters have to
be designed.

e (Less storage required for the filter coefficients.)

Two important types of modulated filter banks: DFT and cosine-
modulated filter banks
In the following only DFT filter banks are briefly considered.

DFT filter banks

e Analysis and synthesis filter& (= 0,1, ..., K — 1):
27 D
hi(n) = p(n) eI K ) (5.86)
N —

analysis prototype modulation and phase shifting
27 D
LT fe(n—L2
KR =7) (5.87)

n) = n
fuln) = g(n) e
synthesis prototype modulation and phase shifting

D denotes the overall analysis-synthesis system delay, for
linear phase filters we hav® = Lp — 1.

e Frequency responses:

; . 27 27 . D
Hy(e’) = P“KY) .e7K*2  (5.88)
N— e — N——
frequency shift by 27 /K  phase factor

. . 2 27 1. D
Fp(e) = QW EY) VK" (5.89)
N— e — N——

frequency shift by 27 /K  phase factor
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Ha(e)] K=38

\/Uu(r’”)\ |Hia (7))

T 2m
* T T 2m

e z-transforms:

kD nD
Hy(2) = PCGWRWZ, Fi(z) = QW)W 2

(5.90)
e Perfect reconstruction in the critical subsampled case is only
possible for filter lengthsLr = K — not very good

frequency selectivity. Therefore, the DFT filter bank is mainly
used withM < K.

Why the nameDFT filter bank?

Type 1 polyphase components of the analysis prototype,

K-1
P(z) =) z "Py(z"). (5.91)
£=0

Inserting (5.91) into (5.90) then yields

K—

—_

D
kg

Hy(z) = Wy 2Py Wikt (5.92)

=0

1 K-1
Analogy to the IDFT: x(n) = —— > X (k) Wit
k=0

= The subband filter of an DFT filter bank can be calculated
with the IDFT (and thus also with the fast IFFT), where the input
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signals of the IDFT are obtained by filtering with the delayed
polyphase components

The n-th output of the IDFT has finally to be multiplied with the

. nd
rotation factorgh/,. 2.

Structure of the analysis filter bank:

1

(k 1
z(k) ® Py (%) IN @y —Ng—>y0(m)

R ¢ wpr?

e(k—1) - wi! ‘ g
Py (25) N - e >%> y1(m)

. !
-1y ' WwD/2 1)

(k—M+1) Wi 3 !
@(k—1 . < H
Py (25) IN e @ mnnnna yr—1(m)

K-IDFT

(dual structure for the synthesis)

If K = cM, c € IN, then besides the IDFT also the polyphase
filtering can be calculated in the lower sampling rate.
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6. Spectral Estimation

In this chapter we consider the problem of estimating the power
spectral density (power spectrum) of a wide-sense stationary
(WSS) random process.

Applications for power spectrum estimation:

Signal detection and tracking, frequency estimation (e.g. foaso

or radar signals), harmonic analysis and prediction, beamforming
and direction finding,. ...

Problems in power spectrum estimation:

e The amount of data is generally limited, for example, a random
process may be stationary only for a short time (e.g. speech
signal). On the other hand, as we have seen in Section 3.1.4 for
the frequency analysis of non-random signals using the DFT,
the longer the input data vector, the higher the frequency
resolution of the spectral analysis.

e Often, only one representation of a stochastic process may be
available. Therefore, an ergodic process is often assumed.

e Additionally, the input data may be corrupted by noise.
Estimation approaches can be classified into two classes:

1. Classical ornonparametric methods: Estimation of the
autocorrelation sequence, where the power spectrum is then
obtained by Fourier transform of the autocorrelation sequence.

2. Nonclassical oparametricapproaches, which use a model for
the random process in order to estimate the power spectrum.

6.1 Periodogram-based nonparametric methods
6.1.1 The periodogram
Power spectrun®,,,(e’*) of a WSS random procesgn) is the
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Fourier transform of the autocorrelation functign, (x):

o0

CIDW(ejw): Z Pov(K) e Ir

KR=—00

= Spectral estimation is also an autocorrelation estimation
problem

From Signals and Systems we know that for a stationary random
processv(n) which is ergodic in the first and second moments
the autocorrelation sequence can be theoretically obtained from
the time-average

N

. 1 *
(k) = ]\1715)20 INT1 k:Z_Nv(kz + rk)v (k). (6.1)
If v(n) is only measured over a finite interval &f samples,
n = 0,..., N —1, the autocorrelation sequence is estimated as
1 N—-1—k
Gun(r) =— Y v(k+r)v(k) 6.2)
N k=0

with the values ofp,, (k) for k < 0 defined via the symmetry
relation ¢,,(—x) = ¢, (k), and with ¢,,(k) = 0 for

K| > N.

The discrete Fourier transform @#,,(x) from (6.2) is called
periodogram(Schuster, 1898) and leads to an estimate of the
power spectrum according to

N—-1
SN = 3T puu(r)e I (6.3)
r=—N+1
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With the rectangular window

(n) 1 n=0,...,N—1,
wr(n) = .
0 otherwise,

we can describe the input sequence being analyzed also as
vy(n) =v(n) - w.(n). (6.4)

Then, the estimated autocorrelation sequence may be written as

Bun() = == D2 o(ktr) vk () = - un (k)= (—R).

k=—o0
(6.5)
Fourier transform of the rightmost equation in (6.5)
finally yields the following expression for the periodogram
(Vn(e?¥) @0 vn(n)):

T jw 1 jw * jw 1 jwy |12
BEE) = 5 V() Vir(e™) = - IViv(e™) .

(6.6)
MATLAB-commandper i odogr am

The sampled versiord®®)(e7¥2/M) = $P)(k) can be
obtained from the\/;-point DFT Vy (k) of v (n):

. 1
OO (k) = SRR, k=0, Mi—1. (67)

Thus, the periodogram can be calculated very efficiently usiag t
FFT.
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Example: Periodogram of white noise

If v(n) is white noise with a variance @fg, thenpyy (k) = ag 6(k) with a

constant power spectrumm,(ej “) = ag.

Sample realization foN = 32 Autocorrelation sequencgy, ()
2 T T T T T T 1

.
ptiiny
: l |

-0.2

0 5 10 15 20 25 30 -40 -20 N 0 20 40
n - -

Periodogramb P e7) (solid), power spectrur., (/') (dashed)

10

% 0.2 0.4 0.6 0.8 1

W/ -

Definition: Bias and consistency

o

o

Magnitude [dB] -
&

I
=
o

Desirable:

e Convergence of the periodogram to the exact power spectrum
in the mean-square sense

lim E { (&)gpff>(ej“) - @vv(ejW))z} ~0. (6.8)

N—o0

e In order to achieve this it is necessary that the periodogram is
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asymptotically unbiasedvhich means that foN — oo the
expectation value of the estimated power spectrum is equal to
the true power spectrum:

. = (per), jw R Jw
lim B{3%)} L o). (69)

On the other hand for hiasedestimator there would be a
difference between the expectation value and the true result.

e Furthermore, the estimation variance should go to zero as the
data length/V goes to infinity:

: Ben dwy | L
J\PB;OVM{(I)W (e )} = 0. (6.10)

e If (6.9) and (6.10) are satisfied we say that the periodogram
Pen(e@) is aconsistenestimate of the power spectrum.
Note that there are different definitions of consistency in the literature.

Bias of the periodogram

First step: Calculation of the expected value of the autocatiosl
Puo (k). From (6.2) we have

A 1 N—-1—k .
E{ew(r)} == >  E{v(k+r)v'(k)}
N k=0
1 N—-1—k kK
= Puw(K) = Puw(K) (6.11)
N Py N
forr = 0,...,N — 1, and forr > N it follows

E{¢w(r)} = 0.
By using the symmetry relatiog,,(—x) = ¢, () (6.11) can
be written asE{p.,,(k)} = wp(k) p.w(k) with the Bartlett
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(triangular) window

N-_lsl g <N
wB(H):{ v forlsl <V, (6.12)

0 for |k| > N.

The expected value of the periodogram can now be obtained as

N—-1

E{&0)} = S B{pun(n)}e ™,
kr=—N-+1
0 .
= Z wp(k) @ (k) e "™,
K=—00

which finally yields

= Bu() @ Wi(e) | (6.13)

Vv

E { (i)(pef)(ejw)}

with W (e’*) denoting the Fourier transform of the Bartlett

window

1 /sin(Nw/2) 2

N < sin(w/2) ) '
= Periodogram is diased estimatesince the expected value is
the convolution between the true power spectrum and the Fourier
transform of the Bartlett window.

Wg(e’) =

Since Wp(e’*) converges to an impulse faNn+ — oo the
periodogram igsymptotically unbiased

lim E {@g‘f”(ejw)} = B,,(") (6.14)

N—oo
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Spectral resolution

We know from the discussion in Section 3.1.4 that the convarfuti
with the frequency response of a window may lead to

e spectral smoothing,

e spectral leaking,

e the loss of the ability to resolve two nearby spectral lines.
Similarly, this also holds for the convolution between the power
spectrum and the Bartlett window frequency response in (6.13).

Example: (a) Power spectrum of two sinusoids in white noise,
(b) expected value of the periodogram

Py(e®)

lra2
3 A

(a)

E{Ppe(e®)

142
MA
o}

(from [Hayes, 1996])

(b)

e Width of the main lobe ofi¥(e’*) increases as the data
record length decreases.

e = For a given lengthV there is a limit on how closely two
sinusoids or narrowband processes may be located before they
no longer can be resolved.
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e One way to define this frequency resolution limit is to Aeb
equal to the width of the main lobe of the Bartlett window at
its —6 dB point:

27
Aw = 0.89 —, (6.15)
N

which is also thdrequency resolution of the periodogram

Variance of the periodogram

White Gaussian random processes:

It can be shown that for a white Gaussian random proeé¢ss

the variance of the periodogram is equal to the square of the power
spectrumd,,, (e’*) (see [Hayes, 1996]):

Var{@gpfr)(ejw)} = 32 (). (6.16)

Non-white Gaussian random processes:

For non-white Gaussian processes, which are more important
in practice, we derive an approximation for the variance of the
periodogram in the following.

A random process (n) with power spectruni,,,(e’*) may be
generated by filtering white noise(rn) with variances? = 1
with a linear filterh(n) o—e H(e’*) and

|H (") ]? = @y (e’). (6.17)

The sequencesy (n) andz y(n) are now formed by windowing
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analog to (6.4). The periodograms of these processes are

. . 1 . . , 1 ,
PEA) = S IV(E)P BEA) = < Xn(e”).
(6.18)
If N is large compared to the length &fin), vy(n) can be
described asy(n) =~ h(n)*xzy(n), since the transition effects

can be neglected. Thus, the magnitude square frequency response

|V (e?%)|? of vy (n) can be with (6.17) expressed as

[V ()P [H (™)) [ Xn (&) = Puu(e”) [ Xn (™).
(6.19)
Inserting (6.18) into (6.19) yields

P () m @, (1) DN ().

xrx

Applying the variances on both sides results in
VU

Var { ci><pe°(ejW)} ~ @2 () Var { é;p;”(ejW)} :

and, since Vaf®®*)(¢7“)} = 1 according to (6.16), the variance
for large N can be obtained as

Var{igpf”(ej“’)} ~ 32 (). (6.20)

= Periodogram is not a consistent estimator

Example: ‘
For a white Gaussian noise process:) with o2 = 1 and®,,(e/¥) = 1t
follows from (6.13) and (6.16), resp., that

E{@gpfr)(ej“)} =1 and Var{ égpff)(ejw)} =1.
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Thus, although the periodogram for white Gaussian noise is unbiased, the
variance is independent of the data record length

N = 64, overlay of 30 periodo- N = 64, approximated periodo-
gramsd P i) gram variance

2
3

25

N

=
wn
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Variance -
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o
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0 0.2 0.4 0.6 0.8 1 G0 0.2 0.4 0.6 0.8 1

/- -
N = 256, over(i’ag of 30 periodo- N = 256, appr%;imated periodo-
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6.1.2 Bartlett's method: Periodogram averaging

In contrast to the periodogram, Bartlett’s method (1948) provides
aconsistent estimatef the power spectrum.

The motivation for this method comes from the fact that by
averaging a set of uncorrelated measurements for a random
variablev one obtains a consistent estimate of the medn }.

Since the periodogram is asymptotically unbiased

lim E{(Abgpver)<6jw)} - (va(ejw)a
N —o0
it obviously suffices to find a consistent estimate of the

periodogram E{®®*)(e/)} in order to find a consistent
estimate for the true power spectrubp,, (e’*).

= Estimation of the power spectrum by periodogram averaging!

Let vi(n) for i = 0,...,K — 1 denote K uncorrelated
realizations of a random proces¢n) forn = 0,..., L —1.
The periodogram of each single realization is obtained from (6.6)

as
2

A ‘ 1|2 ‘
‘I’S,);ri)(ew) - D vi(n)e ™ (6.21)
n=0

The average of these periodograms is

. : 1B .
Bun(e™) = 22> P (). (6.22)
1=0

For the expected value ob,,(e’*) we have with (6.22) and
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(6.13)
E {évv(ejw)} =F {@gﬂi?(ejw)}

_ 2i Do) @ Wi(e™).  (6.23)

As with the periodogram, the estimabe,, (e’“) is asymptotically
unbiased, i.e. fol. — oo.

For uncorrelated data recordg n) the variance Vaf®,,, (e’“)}
can be obtained in the same way from (6.22) and (6.20) as

Var { évv(ejW)} — %Var{cﬁg’;?(ejw)} ~ % 32 ().
(6.24)
We can observe that the variance goes to zefo goes to infinity
= &,,(e’) is aconsistent estimatef the power spectrum if
both L and K tend to infinity.

In practice:

Uncorrelated realizations of a random process are generally not
available, instead we have only one single realization oftleNg
Alternative: v(n) of length V is divided into K nonoverlapping
sequences of lengthh with N = L - K, that is
vi(n) =v(n+¢L),n=0,...,L—1,i=0,..., K—1.

Thus, the Bartlett estimate is

K-1|L-1
1

b () = ~ Y 1D v(n+iL)ye ™| .| (6.25)

1=0 | n=0
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Properties

From (6.23) the expected value is

E {‘i’ff)(ej“)} = % B,,(") ® Wa(e’) | (6.26)

As the periodogram the Bartlett estimate asymptotically
unbiased
The spectral resolutiorof the Bartlett estimate can be obtained

from the resolution of the periodogram in (6.15). Since we now
use sequences of lengihthe resolution becomes

27 27
Aw = 0.89 — = 0.89 K —, (6.27)
L N

which is K times larger (worse!) than that of the periodogram.

Variance: Assuming that the data sequencegn) are
approximately uncorrelated (this is generally not the case!) the
variance of the Bartlett estimate is for largé

. : 1 .
ar e ~ — e . .
Var{ &)} m - @2 (7). | (628)

K

o &P (e1¥)is a consistent estimate fdt, L — oo.

e The Bartlett estimate allows to trade spectral resolution for a
reduction in variance by adjusting the parametermsnd i .

Examples:

e The power spectrum of a white noise Gaussian processmﬁth: 1 of
length N =256 is estimated with Bartlett's method.
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Here, the input signal consists of two sinusoids in white Gaussian noise
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n(n) of varianceo% =1,
v(n) = 3 - sin(nwy) + sin(nwso) + n(n) (6.29)

with w; = 0.27, wg = 0.257, and lengthV. = 512 samples.

The following figures show the average power spectrum estimate over
30 realizations, and demonstrate the reduced spectral resolution of the

Bartlett estimate compared to the periodogram.
K =4, L =128, Bartlett estimate K =8, L =64, Bartlett estimate
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6.1.3 Welch’s method: Averaging modified periodograms
In 1967, Welch proposed two modifications to Bartlett's method:

1. The data segments(n) of length L are allowed to overlap,
where D denotes the offset between successive sequences:

vi(n) =v(n+iD), n=0,...,L—1,i=0,..., K—1.
(6.30)
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The amount of overlap between(n) andv;+1(n) is L— D
samples, and i sequences cover the entifé data points
we haveN = L + D(K — 1). If D = L the segments do
not overlap as in Bartlett's method witif = N/ L.

= By allowing the sequences to overlap it is possible to

increase the number and/or length of the sequences that are

averaged. Reduction of the variance (for lar@€) can thus
be traded in for a reduction in resolution (for smalley and
vice versa.

2. The second modification is to window the data segments prior

to computing the periodogram. This leads to a so called
modified periodogram

. ' 1 L—1 4
Ny = 13" wi(n) w(n)e ™| (6.31)
1Y LU —

with a general windoww (n) of length L, andU denoting
a normalization factor for the power in the window function

according to
L—-1

U= %Z lw(n)|?. (6.32)

n=0

Welch’s method may explicitly be written as

' | K-1|L-1 P
@f]‘f)(e]w) = %LU Z v(n +iD)w(n)e ’™
i=0 | n=0

(6.33)
MATLAB-commandpwel ch
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Properties

e [t can be shown that the expected value of Welch’s estimate is

D, (') @ |W ()2,

(6.34)
whereW (e’“) denotes the Fourier transform of the general
L-point window sequence (n). Thus, Welch’s method is an
asymptotically unbiasedstimate of the power spectrum.

e The spectral resolutionof Welch’s estimate depends on the
used window sequence and is specified as 38 width
Awsgp of the main lobe of the spectral windowAws gg is
specified for some commonly used windows in the following
table.

E{&(1 ()} =

2w LU

Sidelobe | 3dB bandwidth

Type of window | level [dB] Aws 4B
2

Rectangular -13 0.89 <&

Bartlett -27 1.28 28
; 2

Hanning -32 1.44 ¢
; 2

Hamming -43 1.30

Blackman -58 1.68 2%

Remark: In (6.15) we stated the frequency resolution of the peridogram
as the 6 dB main lobe width of the Bartlett window. SiridéB(ejw) =
|Wg(e?%)|? this is equivalent to the 3dB bandwidth of the frequency
responsé/VR(ej‘*’) of the rectangular window.

e The variance of Welch’s estimate highly depends on the
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amount of overlapping. For a Bartlett window and a 50%
overlap the variance is approximately
Var{ci(W) e } ~ 2 (e 6.35

vU ( ) 8K ’U’U( ) ( )
(— consistent estimate). A comparison with (6.28) shows that
the variance for Welch’s method seems to be larger than for
Bartlett's method. However, for fixed amount of dé@¥aand a
fixed resolutionL here twice as many sections are averaged

compared to Bartlett's method. Witk = 2N/L (50%
overlap) (6.35) becomes

. A 9L |
Var{@ff;v)(e]”)} ~ o @), (6.36)

A comparison with (6.28) and{ = N/L for the Bartlett
estimate we have

Var{igf)(ejw)} ~ %Var{i)ff)(ej“)} . (6.37)

Increasing the amount of overlap yields higher computational
complexity and also the correlation between the subsequences

v;(n) — amount of overlap is typically chosen as 50% or
75%.

Example:

As an input signal we again use (6.29) which contains two sinusoids in white
Gaussian noisg(n) of variancea,z7 = 1, withw; = 0.27, wg = 0.257,

and a signal length oN = 512 samples. The section length is chosen as

L = 128, the amount of overlapping is 50%, and for the window we use a
Hamming window.
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Compared to the Bartlett estimate for the same example above the use of

the Hamming window reduces the spectral leakage in the estimated power
spectrum.

Since the number of sections (7) are about the same to those in the above
example for the Bartlett estimate witk = 8, L = 64 (8 sections) both
variances are also approximately the same.

6.1.4 Blackman-Tukey method: Periodogram smoothing

Recall that the periodogram is obtained by a Fourier transform
from the estimated autocorrelation sequence. However, for any
finite data record of lengthV the variance ofz,, () will be
large for values ofk, which are close taV. For example for
lagk = N — 1 we have from (6.2)

Pun(N = 1) = o(N = 1) v(0).

Two approaches for reducing the variancexQf, (<) and thus also
the variance of the peridogram:

1. Averaging periodograms and modified periodograms, resp., as
utilized in the methods of Bartlett and Welch.

2. Periodogram smoothing> Blackman-Tukey method (1958)

230



Blackman-Tukey method: Variance of the autocorrelation
function is reduced by applying a window {®,, (<) to decrease
the contribution of the undesired estimates to the periodogram.

The Blackman-Tukey estimate is given as

M

L () = > @u(r) w(k) e ™, (6.38)
k=—M

wherew (k) is alag windowbeing applied to the autocorrelation
estimate and extending fromM to M for M < N — 1.

=- Estimates ofp,,, (x) having the largest variance are set to zero
by the lag window— the power spectrum estimate will have a
smaller variance.

The Blackman-Tukey power spectrum estimate from (6.38) may
also be written as

R . 1 . . ,
By () = - BN @ W), (6.39)
™

T

1 ) ) )
= / PN W (@) du  (6.40)
T

—1T

with W (e?“) denoting the Fourier transform of the lag window.
= BIackman-Tukey‘ estimate smooths the periodogram by
convolution withWW (e’*).

Choice of a suitable window:

e w(x) should be conjugate symmetric, such thét{ e’) (and
also the power spectrum) is real-valued.
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o W(e?) > 0, such thatb (57 (e’*) is nonnegative for alb.
Note that some of the window functions we have introduced
do not satisfy this condition, for example, the Hamming and
Hanning windows.

Properties

e The expected value of the Blackman-Tukey estimate can be
derived forM < N as

E{&{1 ()} = % B, () @ W ()
(6.41)

whereW (e’*) is the Fourier transform of the lag window.

e The spectral resolution of the Blackman-Tukey estimate
depends on the used window.

e It can be shown that the variance can be approximated as

M
Var { B ()}~ 82, () D wh(),

r=—M

(6.42)

e From (6.41) and (6.42) we again see the trade-off between bias
and variance: For a small biad/ should be large in order to
minimize the width of the main lobe d# (e’*), whereasM
should be small to minimize the sum term in (6.42). As a
general rule of thumh)/ is often chosen a8/ = N/5.

Examples:

e The power spectrum of a white noise Gaussian processanﬁth: 1 of
length N = 256 is estimated with the Blackman-Tukey method, where a
Bartlett window withM = 51 is used.
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6.1.5 Performance comparisons
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e Each technique has a figure of merit being approximately the
same, figures of merit are inversely proportional to the length
N of the data sequence.

e = Overall performance is fundamentally limited by the
amount of data being available!

6.2 Parametric methods for power spectrum estimation

Disadvantages of the periodogram-based (nonparametric)
methods:

e Long data records are required for sufficient performance,
windowing of the autocorrelation sequence limits spectral
resolution.

e Spectral leakage effects due to windowing.
e A-priori information about the generating process is not
exploited.

Disadvantages are removed by usipgrametric estimation
approaches, where an appropriate model for the input process is
applied.

Parametric methods are based on modeling the data sequence as
the output of a linear system with the transfer function (IR filter!)

Z bl Z_i
H(z) = ——, (6.45)
14> a;z7!
i=1

where thex; andb; are the model parameters. The corresponding
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difference equation is
q p
v(n) = Z b,w(n —1i) — Z a;v(n — 1), (6.46)
=0 i=1

wherewv(n) denotes the output and(n) the input sequence

If w(n) represents a stationary random process, ther) is also
stationary and the power spectrum can be given as (Wiener-Lee
relation)

D, (7)) = [H(")|* ®ru(e’™). (6.47)

Parametric power spectrum estimation:

- - model process
white noise
—— v(n)
sourceyu =0 ! A
= received process

stationary random process Ow
Py (e?) = o, - [H()[?

In order to estimate the power spectrdm, (¢’“) we assume in
our model that®,,,,(e’“) comes from a zero-mean white noise
process with variance?. By inserting®,,,,(e’*) = o2 into
(6.47) the power spectrum of the observed data is

> | B(e”)|?

Jwy 2 Jwy |12
vi(e ) - aw |H(€ )| - Uw |A(€J°‘))|2

(6.48)

Goal: Make the model process(n) as similar as possible to
the unknown received process in the mean-square error sense by
adjusting the parameters, b;, ando,, = the power spectrum
®,,(e’¥) can then be obtained via (6.48).
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In the following we distinguish among three specific cases for
H (=) leading to three different models:

Autoregressive (AR) process

The linear filterH (z) = 1/A(z) is anall-polefilter, leading to
bo = 1, b; = 0 for n > 0 in the difference equation (6.46):

v(n) = w(n) — Z a;v(n —1). (6.49)

Moving average (MA) process

Here, H(z) = B(z) is an all-zero (FIR!) filter, and the
difference equation becomes withy = 0 forn > 0

v(n) = Z b, w(n —1). (6.50)
=0

Autoregressive, moving average (ARMA) process

In this case the filteH (z) = B(z)/A(z) has both finite poles

and zeros in the z-plane and the corresponding difference equation
is given by (6.46).

Remarks:

e The AR model is most widely used, since the AR model is
suitable of modeling spectra with narrow peaks (resonances)
by proper placement of the poles close to the unit circle.

e MA model requires more coefficients for modeling a narrow
spectrum, therefore it is rarely used as a model for spectrum
estimation.

e By combining poles and zeros the ARMA model has a more
efficient spectrum representation as the MA model concerning
the number of model parameters.
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6.2.1 Relationship between the model parameters and the
autocorrelation sequence

In the following it is shown that the model parametetsb; can

be obtained from the autocorrelation sequence of the observed
procesy(n). These values are then inserted into (6.45) yielding
H (e’*), which is then inserted into (6.48) leading to the power
spectrumd,,, (e’*) of our observed process.

In a first step the difference equation (6.46) is multiplied by
v*(n — k) and the expected value is taken on both sides

E{v(n)v'(n—k)} = Z bi E{w(n —i)v'(n —kK)}—
i=0

p
— Z a; E{v(n —i)v"(n — k)},
i=1
which leads to
q p
Sovv("i) = Z b <-;va(’% - ,L) - Z a; Sovv(ﬁ - Z) (6.51)
i=0 i=1

The crosscorrelation sequencge,,(x) depends on the filter
impulse response:

Puu(k) = E{v (n) w(n + K)},

=E {Z h(k) w*(n — k) w(n + /{)} = o2 h(—k).

k=0
(6.52)
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In the last step we have used our prerequisite from above that the
processv(n) is assumed to be a zero-mean white random process
with E{w(n — k)w*(n + k)} = &(x + k)o?, and known
varianceafu. Thus we have from (6.52)

0 for k> 0,
wo ) = 6.53
Pun(r) {012” h(—r) for k <0. (6:53)

By combining (6.51) and (6.53) we obtain the desired relationship
for the general ARMA case:

p
— > a; pov(k — 7) fork > q,
i=1
— q—kK p
poo(k) = 02 S h(i)biyx — > ajpun(n —i) for0 < r <gq
i=0 i=1
Pan(—K) forx < 0.
(6.54)

— nonlinear relationship between the parameteys(x) and
ai, b;

In the following we only consider the AR model case, where
(6.54) simplifies to

p
— > a; pov(k — 7) fork > 0,
=1
— p
Puv(r) = 012” — 5 ajpuw(k —1) fork =0 (6.55)
=1
Pru(—K) forx < 0.

These equations are also caldale-Walker equationsnd denote
a system of linear equations for the parametgr&quation (6.55)
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may also be expressed in matrix notation according to

Pvv(0) ©uu(1) o =1 fa Puv(1)

Yoo (1) Puv(0) orp(p—2) agl _ _ pov(2)

oo —1) -2 ... ow®) | |ap ovo(D)
(6.56)

which is in short-hand notatioR a = r. Once thez; have been
obtained by solving for the coefficient vectay the variance;fu
can be calculated from

p
oh = @u(0) + Y aipus(—1). (6.57)
=1

Since the matriR has a special structurédeplitzstructure) there
exist efficient algorithms for solving the system of linear &iipns

in (6.55) and (6.56), respectively (Levison-Durbin algorithm
(1947, 1959), Sdlr recursion (1917)).

6.2.2 Yule-Walker method

In the Yule-Walker method (also calleditocorrelation method

we simply estimate the autocorrelation sequence from the
observed data (n), where the autocorrelation estimate in (6.2)
is used:

N—-1—k

Z v(n+k)v'(n), k=0,...,p.

" (6.58)
In the matrix version of the Yule-Walker equations (6.56) we
replace ¢., (k) with @,,(x). The resulting linear equation
system is solved for the parameter vecipmwhich now contains
the estimated AR parameteés, « = 1,...,p. Finally, we

1

Puw(K) = N
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obtainaﬁ) via (6.57) from thei,; and the estimated autocorrelation
sSequenced,, (k).

The corresponding power spectrum estimate can now be stated
from (6.48) as

2
SUR) (I9) = Tw . (6.59)
1+ Z aj e kv
k=1

MATLAB-commandpar yul e

6.2.3 Examples and comparisons to nonparametric methods

In the following we compute power spectrum estimates obtained
with the Yule-Walker method and for comparison purposes also
with the Blackman-Tukey method (Bartlett window of length
Lp).

The input process consists of two sinusoids in white Gaussian Rdis¢ of

variances? = 1 according to (6.29) withvy = 0.27, wg = 0.257. The
model order of the Yule-Walker method is chosemas 50.

e Length of observed proce$é =512 (Blackman-Tukey:L g = 205):
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overlay of 30 Blackman-Tukey estimates Blackman-Tukey ensemble average
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Length of observed procesS = 100 (Blackman-Tukey: Lg = 41):
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Blackman-Tukey ensemble average
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We can see that only for the longer data sequence With= 512 the
resolution of the estimates are comparable. Clearly,Nor= 100 the
estimate based on an AR-model provides much better frequency resolution
for the sinusoidal components than the Blackman-Tukey method.
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Remark: Use of a certain model generally requisepriori
knowledgeabout the process. In case ofnaodel mismatch
(e.g. MA process and AR model) using a nonparametric approach
may lead to a more accurate estimate.

Example:
Consider the MA process (lengiii = 512)
v(n) = w(n) — wln — 2),

wherew(n) is again a white-noise zero-mean process with varia;rfpe: 1.
The power spectrum af(n) is

@Uv(ejw) =2 — 2 cos(2w).

Ensemble average over 30 power spectrum estimates for the Yule-Walker
method (AR model of ordep = 4) and the Blackman-Tukey method (Bartlett
window, L g = 205):

10 T
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|
[N
o

-- Yule-Walker (AR(4) model)
- - - Blackman-Tukey
—— exact power spectrum

|
[N
[$))
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— Blackman-Tukey estimate, which makes no assumption about the process,
yields a better estimate of the power spectrum compared to the model-based
Yule-Walker approach.
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