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1 Introduction

Digital Signal Processing (DSP) is the application of a digital computer to modify an analog or
digital signal. Typically, the signal being processed is either temporal, spatial, or both. For example,
an audio signal is temporal, while an image is spatial. A movie is both temporal and spatial. The
analysis of temporal signals makes heavy use of the Fourier transform in one time variable and one
frequency variable. Spatial signals require two independent variables. Analysis of such signals relies
on the Fourier transform in two frequency variables (e.g. ECE 533). In ECE 431, we will restrict
ourselves to temporal signal processing.



Our main goal is to be able to design digital LTI filters. Such filters are using widely in applica-
tions such as audio entertainment systems, telecommunication and other kinds of communication
systems, radar, video enhancement, and biomedical engineering. The first half of the course will
be spent reviewing and developing the fundamentals necessary to understand the design of digital
filters. Then we will examine the basic types of filters and the myriad of design issues surrounding
them.

From the outset, the student should recognize that there are two distinct classes of applications
for digital filters. Real-time applications are those where data streams into the filter and must
be processed immediately. A significant delay in generating the filter output data cannot be
tolerated. Such applications include communication networks of all sorts, musical performance,
public address systems, and patient monitoring. Real-time filtering is sometimes called on-line
processing and is based on the theory of causal systems.

Non-real-time applications are those where a filter is used to process a pre-existing (i.e. stored)
file of data. In this case, the engineer is typically allotted a large amount of time over which the
processing of data may be performed. Such applications include audio recording and mastering,
image processing, and the analysis of seismic data. Non-real-time filtering is sometimes called
off-line processing and is based on the theory of noncausal systems. In these applications, the
fact that noncausal filters may be employed opens the door to a much wider range of filters and
commensurately better results. For example, one problem typical of real-time filtering is phase
distortion, which we will study in detail in this course. Phase distortion can be eliminated completely
if noncausal filters are permitted.

The first part of the course will consist of review material from signals and systems. Throughout
the course, we will rely heavily on the theory of Fourier transforms, since much of signal processing
and filter theory is most easily addressed in the frequency domain. It will be convenient to refer to
commonly used transform concepts by the following acronyms:

CTFT: Continuous-Time Fourier Transform
DTFT: Discrete-Time Fourier Transform
CFS: Continuous-Time Fourier Series

DFS: Discrete-Time Fourier Series

LT: Laplace Transform

DFT: Discrete Fourier Transform

Z'T: z-Transform

An “I” preceding an acronym indicates “Inverse” as in IDTFT and IDFT. All of these concepts
should be familiar to the student, except the DF'T and ZT, which we will define and study in detail.

2 Review of the DT Fourier Transform

2.1 Definition and Properties
The CT Fourier transform (CTFT) of a CT signal x (t) is

o)

Flz(t)} = X (juw) = / o (1) et

— 00

The Inverse CT Fourier Transform (ICTFT) is
1 [ .
FHX (jw)} = 2—/ X (jw) et dw.
™ —0o0
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Recall the CT unit impulse § (¢), the DT unit impulse § [n], and their basic properties:

/ooé(t)dtzl, S b =1
z(t)d(t—1)=x(1)d(t—7), x[n]d[n—m]=x[m]dn—m]
z(t)xd(t—T1)=x(t—7), xz[n|*xd[n—m]=x[n—m] (sifting property).

For any DT signal z [n], we may define its DT Fourier transform (DTFT) by associating with x [n]
the CT impulse train

o)

z(t)= Y x[n]s(t—n)

n=—0oo

and taking the transform

X (jw) = /OO i x[n]d(t —n)e“dt

O n=—00

[e.o]

-y m[n]e‘jw"/_wé(t—n)dt

n=—oo
[e.°]

= Z x [n] e v,

n=—oo

Thus we may write
o0

X (jw) = Z z[n] ()",

n=—oo
expressing X as a function of /. For this reason, the DTFT is normally written

o0

X (e™) = Z x [n] e 7,

n=—oo

Technically, this is an abuse of notation, since the two X’s are actually different functions, but
the meaning will usually be clear from context. In order to help distinguish between CT and DT
transforms, we will henceforth denote the frequency variable in DT transforms as 2 :

o0

X (/) = Z x [n] e 9%, (2.1)

n—=—oo

Although your text writes frequency as w for both CT and DT transforms, the {2 notation has
numerous advantages. For example, it keeps the units of frequency straight: w is in rad/sec, while
() is in radians.
By Euler’s formula,
e/ = cos Q + jsinQ,

so e/ is periodic with fundamental period 2. Hence, X (ejQ) has period 27w. We also write
F{xn|} =X (em)
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and .
z[n] +— X (¢/9).

The Inverse DTFT is

1 2 ) )
= —/ X (eJQ) 7m0,
2w Jo

The integral may be evaluated over any interval of length 27.

Fi {X (ejQ)} =z [n]

Properties: (See O&S Table 2.1 on p. 55 and Table 2.2 on p. 58.)
Periodicity:
X (ej(ﬂ+27r)) _x (ejﬂ)

Linearity: ( )
oz [n] — aX (e®
{ w1 [n] + 22 [n] — Xy (¢7) + Xp ()

Time Shift: ' ‘
z[n—ngl «— e X (V)

Frequency Shift:
0 [n] — X (ej(ﬂfﬂo))

Time/Frequency Scaling:

r|%|, =+ an integer
vl = { 11

Ty [n] — X (ejQN)

Convolution: .
x1 [n] * xo [n] = Z x1 [n — m] zo [m)]
w1 [n] ¥ @9 [n] e X1 () Xy (¢77)
Multiplication:
1 21 ) )
T [n] To [n] — % X, (ej(Q—G)) X, (ejé’) do
0

Time Differencing;:

Accumulation:

Frequency Differentiation:

Conjugation:



Reflection: .
z[—n] —— X (e77%)

Real Time Signal:
‘X (ejﬂ)‘ even

x [n] real <— { /X () odd

Even-Odd: ,
z[n] even <= X (&?) real
z[n] odd <= X (¢/) imaginary

Parseval’s Theorem:
= * 1 o iQ * iQ
E xl[n]%[n]:%/o X (&%) Y™ () d

n=—oo

Example 2.1 The DT unit impulse
1, n=0
oln] = { 0, n#0
has DTFT
F{5[n]} = Z §[n)e " =1

n=—oo

Example 2.2 The unit impulse train in frequency

ejﬂ Z d(Q — 2mk)

k=—00

has Inverse DTFT

x[n]:%/2 (Zé —27rk‘)ej9"d9

k=—o00
1 0 27~ —
= — Q-2 T A
o :Z/ 5 ( k) 27k g
1 0 27~
= — Q-2 Q.
2%_200 o k) d
But )
" 1, k=0
/ 5 (9 — 27k) ) {0 o
50 1
x[n]:%
and -
1<—>27TZ5(Q—27T/{3)
k=—00



Example 2.3 Define the DT rectangular window

1, <n<N-1
wy [n] =

0, else
The DTFT is
oo
Wy (e/9) = g wy [n] e 7"
n=-—oo
N-1
— E G_an
n=0
N-1
_ ( —jQ)”
= e
n=0
1— e—jNQ
1 —ei®
J(N-1)Q (N4 L (N-D)Q
ei%(eJ T —el 2 )eJ 2
o 1 — e 70
Q - NQ
el 2 —e 12 (N—1)Q
= —6_] 2
o) Y
el2 —e 2
sin NQ (N-1)Q
— 2 i
. Q o
sin ¥

2
The real factor in Wy (ejg) is the “periodic sinc” function:

Figure 2.1
(See O&S Table 2.3 on p. 62 for further examples.)

2.2 Periodic Convolution

The multiplication property involves the periodic convolution
2

X, (69) # X, (%) = / X, (€9 X, (%) db.
0



Since X (ejQ) and Y (ejQ) both have period 2, the linear (i.e. ordinary) convolution blows up
(except in trivial cases):

00 oo 2m(i+1)
/ X (¢00) X, () do = Y / X, (979 X, () db

o0

On the other hand, the periodic convolution is well-defined with period 27.

Example 2.4 Consider the square wave

o [1, 0<Q<n
X(e’)—{()’ T<Q<2r

with period 2. We wish to convolve X (ejQ) with itself. We need to look at two cases:
1)0o<Q<m

2m Q
/ X () X (/) do = / 1df = Q
0 0

X : . X: Xa X, Yo

&

O 2 ¢ -1 10 LL T QAT pqr Ol

Figure 2.2
2)m<Q<2r

2w ™
/ X () X (e7) db = / 1df = 27 — Q
0

Q—m

X." Xy Ko X X"
3 [,

I 05 1 AT o &% W L 2f 4

Figure 2.3

The periodic convolution is the triangle wave

. . Q, 0<Q<m
xEex e ={ 5 o V50T

with period 2.



Periodic convolution may also be defined for sequences. If x; [n] and x5 [n] have period N, then

has period N.

2.3 Fourier Series
Let a; be a sequence of complex numbers with period N and

_27T

QO—N.

Suppose we restrict attention to DT signals whose DTFT’s are impulse trains of the form

X (7)) =2m > a6 (2 — k). (2.2)
k=—oc0
Then
1 o i iQn
x[n]=— X (e7%) &°md
2 Jo
2~ X )
= D s (Q = Qok) AR
B k=—00
0 ] 2~
= > apelt / 5 (Q — Qok) dS.
k=—o00 Un
But .
" 1, 0<kE<SN-1
/_ 5<Q_on)_{0, else ’
SO
N-1
x[n] = Z ae ok, (2.3)
k=0
Note that
eonk‘(n-i—N) — ejﬂok:n + eonk‘N
— ejﬂokn + €j27rk
— ejQOkn7
so e/%kn and, therefore, x [n] have period N.

Formula (2.3) is the DT Fourier series (DFS) representation of the periodic signal x [n]. The
(complex) numbers a;, are the Fourier coefficients of x [n]. In this case, we write

x [n] «— ay.



Every DT signal x [n] with period N has DTFT (2.2) and DFS ({2.3]). The Fourier coefficients also
have period N and may be derived from xz [n] via the summation

N-
1 .
= 5 E x [n] e Ik0hn, (2.4)

In both the DFS ({2.3]) and its inverse ([2.4)), the sum may be taken over any interval of length V.
The properties of the DFS are similar to those of the DTFT. (See O&S Table 8.1 on p. 634.)

Linearity:

Time-Shift:

Frequency Shift

Time/Frequency Scaling:

Convolution:

Multiplication:

Time Differencing;:

Accumulation:

Frequency Differencing:

Conjugation:

Reflection:

Real Time Signal:

Even-Odd:

1
Z z[m] 1 — o—i%0k Ok

m=—00

{ azx [n] «—— aay
x1 [n] + x3 [n] «— ap + by

x [n — ng| s e I WF0g,

eIkon g ] ap_g,

1
T [n] «— 7 (period M N)

N-1
Z x1[n —m]xy [m] «—— Nagby

m=0

N-1
x1 [n] o [n] «—— Z ag_;b;
=0

— e‘jﬂok) a

(only for ag = 0)

(1 — ejQO") x[n] «— ap — ag_1
z" [n] «— aZ;
x[—n] —— a_y

lax| even

x [n] real < { Za, odd

x[n] even <= qy real
z[n] odd <= a; imaginary

10



Parseval’s Theorem:
1 N-1 N-1
LY aiazlol = ¥ i
n=0 k=0

Many of the properties of the DFS appear to be “mirror images” of one another. This principle is
called duality and is the result of the similarity of equations (2.3) and (2.4). The same phenomenon
can be seen with regard to transforms of specific signals.

Example 2.5 Find the DTFT and DFS of

z[n] = Z d[n—mN].

The coefficients are
1 N—-1 oo 1 o0 N—-1
_ —jQokn __ —jQokmN
ak—ﬁnz%mz_:ooé[n—m]\f]e]" —Nmz_:ooejo (noé[n—mN]>.
But Vot
- 1, m=0
Zoé[n—mN]—{ 0 m£0
S0 ap = % for every k. The DFS is
| N
— iQokn
x[n] = N Z e’
k=0
and the DTF'T is
X () =2m > axd (Q—Qok) =Q > 5(Q—Qok).
k=—0o0 k=—0oc0

Example 2.6 From FExample the Fourier coefficients corresponding to an impulse train are
constant. Now find the Fourier coefficients of x [n] = 1. By duality, we should get an impulse train.

R,
Gh=5) ¢ [n] e~74t0kn
n=0
N-1
1 , n
S OMGLD
N n=0
1, k=mN
- 1— (e~ 750k N
% 1E6,j902 , else
But
(6*39016) — efj27rk _ 1)
50

11



3 Sampling

3.1 Time and Frequency Domain Analysis

For any T' > 0, we may sample a CT signal x (t) to generate the DT signal
xn] =z nT).

This amounts to evaluating x (t) at uniformly spaced points on the t-axis. The number 7" is the

sampling period,
1
f s T

is the sampling frequency, and
onf 2m
ws =2 fs = —
T

is the radian sampling frequency. Normally, the units of f, are Hertz or samples/sec. The units of
w, are rad/sec. The time interval [nT, (n + 1) T] is called the nth sampling interval. The process
of sampling is sometimes depicted as a switch which closes momentarily every T units of time:

-
X4 — > Xn]= X(nT)

Figure 3.1

A useful expression for the DTFT of z [n] can be obtained by writing « (¢) in terms of its inverse
transform:

1 [ -
x(t) = %/ X (jw) &' dw

x[n] =z (nT)
S /_ X (ju) @ du

1 o (k4+1)ws )
=5 Z / X (jw) e dw
m k

k=—o00

2w
L T Z / ( Q-+ 27T]€> /2RO (Q = WT — 21k)
T

L1 & Q-+ 2rk .
- 5 x (52T ) g0
or Jy (T 2. <‘7 T )) ‘

k=—o00

Ws

The analysis shows that

: 1 « Q)+ 21k
XDT (EJQ) = f Z XCT (jTﬂ-) . (31)

k=—o00

Expression (3.1)) is referred to as the Poisson summation formula.

12



3.2 Aliasing

We say a CT signal z (t) is bandlimited if there exists wp < 0o such that Xcr (jw) = 0 for |w| > wp.
Suppose Xor has transform depicted (very roughly) in Figure 3.2. (We use a signal with Xor (0) = 1
for reference.)

-

Figure 3.2

The number wg is the bandwidth of the signal. If z (¢) is bandlimited, 1} indicates that Xpr (ejQ)
looks like Figure 3.3

Kot

\/\/ /_\/ﬂ_

Figure 3.3

or Figure 3.4.

13
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3
/'\\ N L,\\ . li\l II\ i /,\i N Z.0
A ] i 11 0 L i _(L
~4T 27T 27 7
Figure 3.4

Figure 3.3 is drawn assuming
2m —wpT > wpT

or, equivalently,
ws > 2WpR.

In this case, (3.1)) indicates that

, Q
Xpr (/%) = Xer (Jf)

for —m < ) < 7. This establishes the fundamental relationship between the CT and DT frequency
variables w and (2 under sampling:
Q=wT. (3.2)

We will encounter equation ([3.2)) under a variety of circumstances when sampling is involved.

For wy < 2wg, the picture reverts to Figure 3.4. In this case, the shifts of X¢or ( J %) overlap

— a phenomenon called aliasing. As we will see, aliasing is undesirable in most signal processing
applications. The minimum radian sampling frequency w, = 2wp required to avoid aliasing is called
the Nyquist rate.

3.3 The Nyquist Theorem

Consider the set Yor of all CT signals x (t) and the set ¥ pr of all DT signals x [n]. For a given
sampling period 7T, the process of sampling may be viewed as a mapping from Xcr into Xpr :

z(t)— xn] =x(nT).

That is, each CT signal generates exactly one DT signal. The following example shows that the
mapping changes if the sampling period changes.

Example 3.1 Let z (t) = sint and T = 3. Then

r [n] = sin (nz> — { (-1)7 , n odd

2 0, n even
On the other hand, setting T' = m yields
x [n] = sin (n7) = 0.

Thus sampling sint results in different signals for different T.

14



The next example shows that the sampling map may not be 1 — 1.
Example 3.2 Let xq (t) =sint and x5 (t) = 0. For T =,
x1[n] =x5[n] =0,
so the distinct CT signals x1 (t) and x5 (t) map into the same DT signal.

Now let ¥, C Xcr be the set of all CT signals with bandwidth at most wp. In Example [3.2]
both z; (t) and x9 (t) belong to ;. Yet, they map into the same DT signal for 7" = 7. In other
words, the sampling map may not be 1 — 1 even on ¥,,. Also, note that in Example [3.2]

2
T

so we are sampling at exactly the Nyquist rate. The situation is clarified by the Nyquist Sampling
Theorem:

Ws =2 = 2uwg,

Theorem 3.1 The sampling map is 1 —1 on X, iff ws > 2wp.

The Nyquist theorem states that, if we are given a signal = (¢) and we sample at greater than
the Nyquist rate, then there is no loss of information in replacing z (¢) by its samples x [n] . In other
words, x (t) can be recovered from z [n]. However, if we sample at or below the Nyquist rate, then
knowledge of x [n] is insufficient to determine x () uniquely.

3.4 Anti-Aliasing Filters

In order to avoid aliasing, we may set the sampling rate wys > 2wp. However, in certain applications
it is desirable to achieve the same end by reducing the bandwidth of x (¢) prior to sampling. This
can be done by passing x (t) through a CT filter. Define the ideal CT low-pass filter (LPF) to be
the CT LTT system with transfer function

1, |wl <1

Hypp (jw) = { 0 |w|>1 (3.3)

If we pass x (t) through the frequency-scaled filter Hp ( jﬁ) , then X (jw) is “chopped” down to

bandwidth wg. An LPF used in this way is called an anti-aliasing filter and must be built from
analog components.
The impulse response of Hyp (jw) is

hop (t) = F ' {Hpp (jw)}

1 o ,
= %/OO HLP (]w) e”“tdw

[t
= — el dw
2 )4
1 it —jt
= o )
_ sint
oot
Let
et 1, =0
sinct = ; .
smﬂgrt)’ t;é 0

15



D5 A N

Figure 3.5
We may write
1 t
hrp (t) = —sinc — 3.4
LP ( ) . S1nc . ( )

Note that hpp (t) has a couple of unfortunate features:

1) hrp (t) # 0 for t < 0, so the ideal LPF is noncausal.

2)
| e tae = [
:%/Ooo sin (mt)

Vv

> (% /n : sin (7rt)|dt>

= 0.
Hence, the ideal LPF is not BIBO stable.

Although an ideal LPF cannot be realized in practice, we will eventually study approximations to
the ideal LPF that can actually be built.

3.5 Downsampling

Let x [n] be a DT signal and N > 0 an integer, and define

xq[n] =z [nN].

16



x4 [n] is obtained from z [n] be selecting every N values and discarding the rest. Hence, we may
view downsampling as “sampling a DT signal”. If x [n] was obtained by sampling a CT signal z ()
with period 7', then

zgn] =z [nN| =2 (nNT)

corresponds to sampling x (t) at a lower rate with period NT.
Downsampling leads to a version of the Poisson summation formula. This may be derived by
mimicking the analysis leading to (3.1)), but in DT:

1 2

x[n]:%

X (ejﬂ) 7 dQ)
xq[n] = x (nN)
1 2m

= — X (ejQ) eI N 40
2T

N-1

27 (k1)
- 1 Z /N X (ejQ) N Q)

2 2
W’rk

N—
_ LN Z / X () ey (9 = QN — 2rk)

N-1

— i/ (i X (€J9+§”k>) eI 4
2m Jo N

k=0

Xa () = Z X (eJ ‘”2”’“) . (3.5)

Expression ({3.5)) is analogous to . They both state that sampling in time corresponds to adding
shifts of the original transform. However, unlike sampling a CT signal, downsampling x [n] results
in a finite sum of shifts of X (ejQ) .

Suppose z [n] has bandwidth Qp < 7 :

X(e‘ig‘)

{ } _('L
-0 -fig ‘0 Lg 27

Figure 3.6

Then x4 [n] has spectrum

17



M (@«‘SSL/

LN N

Figure 3.7

To avoid aliasing, we need
NQp <21 — NQp

or
™

N < —.
Qp

If x [n] comes from sampling a CT signal z (¢) with bandwidth wp, then Qp = wpT and we need

™ Ws
N<—7= .
CUBT 2&)3

3.6 Upsampling

For any DT signal x [n] , the Time/Frequency Scaling property of the DTFT states that the expanded
signal
T ||, + an integer
vl = { 511

has DTFT ‘
F{x(N) [n}} =X (eJQN) )

This is only one kind of interpolation scheme obtained by setting missing data values to 0. An
alternative is to assume that x [n| was obtained by sampling a CT signal = (¢) with bandwidth wg
at some sampling frequency ws; > 2wp. Resampling z (t) at N times the original rate yields the

upsampled signal
T
T, [n] =z (nﬁ> . (3.6)

We would like to develop a method for computing z, [n] directly from z [n], without resorting to

explicit construction of x (t).
Suppose z (t) has CTFT X¢r (jw) as in Figure 3.2. Then from the Poisson formula (3.1),

F{zw) [n]} = Xpr (™) (3.7)

1 & QN + 27k
=5 Xer (J—)



Ny
Xpr@)

L
VAWAVAWIAVAVAWA N
~7 ‘% ! l'_:)ﬂ T
Figure 3.8

and

Fleunl) = X, () = % 3 Xer (J.Q + m)

X (&)
N
/\ I m ..
L “QT |0 wT o7
N N
Figure 3.9

Note that (3.8) is a scaled version of (3.7)), but containing only 1 out of every N terms.

Define the ideal DT low-pass filter:

, <z
Hpp () = { L [0 <% (period 27)

e ———— —-——-‘-\—n.-—- T 3
J [ ( ) I P
' } ! { y
e )
~IT o P 2@
N N
Figure 3.10
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Passing from to is the same as applying NHp (/%) to Xpr (e/) :

X, (/") = NHrp (¢/%) Xpr (V)

X102 —9@

Upsampling from z [n] to z, [n] amounts to Figure 3.11, where the first block indicates expansion
by N. As with the ideal CT LPF, the ideal DT LPF is not realizable in practice. However, close
approximations are achievable.

3 —
N i, (e9T) > X, D

Xw)

Figure 3.11

3.7 Change of Sampling Frequency

More generally, suppose we are given a DT signal z [n] and we wish to replace every N consecutive
values by M without changing the “character” of the signal. A common application of this idea is
that of resampling a CT signal: Suppose z [n] consists of samples of a CT signal z (t) at frequency
ws > 2wp. We may wish to resample z (f) at a new rate rws, where r is a rational number. The
number r must be chosen to avoid aliasing —i.e. rws > 2wp.

Resampling can be achieved through upsampling and downsampling. Write

r=—,

N

where M and N are coprime integers. Upsampling by M, we obtain

] a
Tynj=x(n—|.

M
Downsampling by N yields

20 0] = 24 [0N] = (mv%) — 2 (ng) |

The block diagram in Figure 3.12 depicts the process, where the last block indicates downsampling
by N.

g =1 Ky
xoy—a g Pt e T e

Figure 3.12

Examination of Figures 3.6-3.10 shows that no aliasing occurs at any step. The final spectrum is
shown in Figure 3.13:

20



\ -

Xp(e)

r
LN /I /N
~27 — gl

oot o
r

r

Figure 3.13

Obviously, if r = % (i.e. an integer), then downsampling by N = 1 is unnecessary. If r = %, then
upsampling by M is unnecessary.

4 CT Signal Reconstruction

4.1 Hybrid Systems

A system that takes a DT input x [n] into a CT output y (¢) is called a hybrid system. (Actually,
CT — DT is also hybrid, but we will not pursue this idea.) The definitions of system properties
such as linearity, causality, and BIBO stability carry over word-for-word:

Linearity:
{ ax [n] — ay (1)
1 [n] + 21 [n] =y (1) 4+ y2 (1)

BIBO Stability:
x[n] bounded = y () bounded

We also need to define the concepts of time-invariance and causality. This must be done relative to
a sampling period 7" > 0 :
Time-Invariance:
x[n—m] —y(t—mT) for every integer m

Causality:
r1[n) =x9[n] forn<m=y (t)=y2(t) fort<ml

This will allow us to use hybrid system theory to analyze sampling and signal reconstruction for
any given sampling rate f,. Note that a system that is time-invariant relative to one value of T
generally will not be time-invariant relative to other values.

In the case of linear, time-invariant (LTI) hybrid systems, the concept of impulse response is
useful: The impulse response h (t) is the output generated by the input 6 [n]. Exploiting linearity,
time-invariance, and the DT sifting property, we obtain the following statements about how the

system processes signals:
d[n] — h(t)

d[n—m]— h(t—mT)
xm|d[n—m] — x[m|h(t—mT)
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[e.o] o0

> wmlén—m)— > x[m]h(t—mT)

m=—0o0 m=—00

z[n] — Y h(t—mT)z[m] (4.1)

m=—0o0

The sum on the right side of (4.1)) is hybrid convolution:

h(t)xan]= Y h(t—mT)x[m]. (4.2)

m=—00

As with purely CT or DT systems, a hybrid LTI system convolves the input with its impulse
response.
We define the transfer function of a hybrid system with impulse response h (t) to be

H (jw) = F{h(t)}.

Then the output y (¢) has Fourier transform

Y (jw) = /_ h > h(t—mT)x[m]e 7 dt (4.3)

= Z x [m)] / h(t —mT)e “tdt
= Z x [m] / h(r)e dTtmDdt (1 =t —ml)

- ( /_ Zh(f) ej‘”dt) ( i x [m] eﬂwT)m)

= H (jw) X (™7,

so H (jw) may be viewed as the ratio of the Fourier transforms of the input and output. Equation
(4.3)) is just the hybrid version of the convolution property of the Fourier transform:

h(t) * z [n] «— H (jw) X (e/*7)
Note that here again we encounter the frequency equivalence 2 = wT as in (3.2)).

Example 4.1 For any DT signal x [n|, we define

v (t) = Y x[n]s(t—nT). (4.4)

n=—0oo

If x [n] is obtained by sampling a CT signal x (t) with period T, then xr (t) is called the “impulse
sampled” signal corresponding to x (t). The map from x n| to xr (t) is a hybrid system, which is
easily shown to be LTI. The corresponding impulse response s

hp(t)= Y d[n]d(t—nT)=65(t).

n=—oo
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The transfer function is
Hr (jw)=F{5 ()} =1.

Thus ‘ '
X7 (jw) = Hr (jw) X (7)) = X (/7). (4.5)

Xr (jw) is just a copy of X (ejQ) , but with the frequency axis scaled by T.

Consider a causal LTI hybrid system. Setting @ = 0 in the definition of linearity, we obtain
0 — 0. Since § [n] = 0 for n < 0, the definition of causality says that & (t) = 0 for ¢t < 0. Conversely,
suppose h (t) =0 for t < 0. If 21 [n| = 25 [n] for n < m, then

() =2 (8) = h (1) * (21 [n] — 22 [n])

= > h(t—IT) (21 [[] — 22 [1])

=Y h(t—IT) (2, [I] — 22 (1))

But
h(t—IT)=0 fort<IT,

SO
y1(t) —y2 (1) =0 fort <mT,

proving causality. Thus an LTI hybrid system is causal iff h (t) = 0 for ¢t < 0.
Now consider BIBO stability. It turns out that an LTI hybrid system is BIBO stable iff its
impulse response h (t) satisfies

max Z |h(t — nT)| < oo. (4.6)

To show that (4.6) implies stability, let |z [n]| < M; for every n and

M, = max > |n(t—nT)|.

n—=—oo

Define the floor function
|t] = largest integer < ¢.

Invoking the triangle inequality,

> h(t—nT)z[n]

pol= 3
gniw(t—mux[nu
<M S b))
:Mlnioo|h(t—nT)| (r=t-— L%J T, m=n-— L%J)
:Mlmf_:oo|h(7'—mT)|.
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But 0 <7 <T, so
ly ()] < My M.

In other words, bounded inputs produce bounded outputs, so the system is BIBO stable. One may
also prove the converse — i.e. that stability implies . However, this is far more difficult.
Hybrid convolution shares most of the basic algebraic properties of CT and DT convolution.
Unfortunately, hybrid convolution is not commutative, since one signal in the convolution (4.2)
must be CT and the other must be DT. It is easy to see that hybrid convolution is distributive:

(7 () + ha (£)) + 2 [n] = (ha () * 2 [n]) + (ke (£) * 2 [n])

This tells us that the impulse response of a parallel combination of hybrid systems is just the sum
of the individual impulse responses.
Hybrid convolution is also associative:

hg(t)*(hl(t)*m[n]):/oo (hg(t—T) Z hl(T—nT)x[n]> dr

_ nio ( / Z hy (:__:: hy (v — nT) d7> )
:n;iw (/:hg((t—nT) — p) Iy (u)du) z[n]  (p=r1—nT)
_ (/_Zhg(t—u)hl (u)du) ]

= (ha (t) * hy (t)) * x [n]
Associativity corresponds to systems in series. Actually, connecting hybrid systems in series makes

no sense, since the output of the first is CT and input of the second is DT. However, we can connect
a CT system to the output of a hybrid system:

, ( P —— !
X (n2 —-@lﬂe h(t)— \(U')

Figure 4.1

Associativity tells us that the series impulse response is the convolution of the individual impulse
responses:

h(t) = h ()  ha (£).

Thus the series transfer function is
H (jw) = Hy (jw) Hy (jw) .

Suppose we place two causal systems in series as in Figure 4.1. Then hy (t) = ho (t) for t < 0, so
the convolution h (t) inherits the same property and the combines system is causal. Now suppose
we place two BIBO stable systems in series. If = [n] is bounded, then stability of the first system
implies boundedness of y; (t) . Stability of the second system in turn implies boundedness of y ().

24



Hence, the composite system is BIBO stable. Recall that a CT system with impulse response h ()
is BIBO stable iff -

/ I ()| dt < oo. (@7)
So, if hy (t) satisfies (4.6) and hy (t) satisfies (4.7), then hq (¢) * hy (t) satisfies (4.6). One may derive

similar results when a DT system is followed by a hybrid system.

4.2 Ideal Signal Reconstruction

CT signal reconstruction of x (t) from its samples = [n] is a fundamental problem in DSP. This
process must take place whenever information from a digital system (e.g. a computer, CD player,
voice synthesizer) is converted to a usable form in the analog world. We will first study the problem
of exactly reproducing x (t) .

We begin the reconstruction by converting z [n] to its impulse sampled version x7 (t). (See
Example ) This process amounts to passing z [n] through the hybrid system with transfer
function Hp (jw) = 1. Now pass x7 (t) through the ideal LPF with transfer function

. 2w
H, (jw)=THrp (]—) )
W
Assuming ws > 2wp, the LPF “selects” the lowest frequency lobe of X (jw), yielding Xcor (jw) .

Formally,

XCT (jw) = THLP (]i—w> HT (JU)) X (ejWT) = Hr (jw) XT (Jw) .

S

Comparing Figures 3.1, 4.1, and 4.3 illustrates the idea.

T "\'Hl.f(3 %)

v 1200 .
‘ % W
' - Y W,
— by - < Y

Figure 4.2

Used in this way, an LPF is a reconstruction filter.
We may also analyze this process in time-domain. Recall from Example that the impulse
sampler amounts to the convolution

xp (t) =0 (t) xx [n].
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The LPF has impulse response

he (t) = F~H{H, (jw)}

W
=mher (1)

.t
= sinc —.
T

Connecting these two systems in series yields the impulse response
h(t) %0 (t) = h, (),

so the output is

n=—oo

The reconstruction of x (t) is illustrated in Figure 4.4:

(4.8)

Figure 4.3

The interplay between sampling and the Fourier transform is summarized in Figure 4.5:

rE) < + — XCT(J“N)

S‘Wﬂe, ¥ Poissan LPF

o s T
KM ¥ s xww} )

Figure 4.4
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Unfortunately, there are a couple of problems associated with ideal reconstruction. First note
that h, (t) # 0 for most ¢ < 0, so the system is noncausal. Also,

oo

max Z |hy (t — nT)| = max

n=—oo n=—oo

(4.9)

so the system is not BIBO stable. Thus there exists a bounded input x [n] that produces an
unbounded output z (t). Note that, if we apply the scaled input ez [n| even for small ¢ # 0,
linearity guarantees that the output ex () is still unbounded. This shows that even the tiniest
amount of random noise in the system has the tendency to produce extremely large error in the
reconstruction, making ideal reconstruction unachievable in practice. Nevertheless, we will see that
it is possible to closely approximate the ideal.

4.3 The Zero-Order Hold

Define the Zero-Order Hold (ZOH) to be the hybrid system that takes x [n] into the CT signal x (¥)
defined by

x(t)==x[n], nT <t<(n+1)T. (4.10)
X ()
Nt g x 81
P o Xie
— N (=3) X1-1] AU ’ —
Kb\ ' 53)

Figure 4.5

In other words, each input value is held throughout the subsequent sampling interval.
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X[n]_ai 20H > X(1)

Figure 4.6
Consider the unit rectangular pulse
1, 0<t<1
w(t) = { 0, else '

The ZOH processes signals according to

20 (£) = i x[n]w(t_TnT) :w(%) v zln],

n=—0o0

so the ZOH is an LTT hybrid system with impulse response

t 1, 0<t<T
ho (t) = w (T) = { 0. else . (4.11)

The Fourier transform of w (t) is

W (jw) = /OO w (t) e ¥ dt

o0
1
= / e Wt dt
0
1—e @
Jw
ed2 —eJ2 w
= - 67‘75
Jw
: w
_ 2sin 3 1%

so the ZOH has transfer function

Ho (jw) = F {w (%) } = TW (juT) =T <smc i) eI
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w
-5«..\" =2, =\, Q Wy 20, 3w,
Figure 4.7

The output z (t) of a ZOH has Fourier transform satisfying

Xo (jw) = Ho (j) Xpr (7) = %HO Gw) 3 Xor G (w+ kw,)

k=—oc0

| Xo (jw)| is depicted in Figure 4.8, obtained by combining Figures 3.2 and 4.7:

Xy v

Figure 4.8

Keeping in mind that the bandwidth wg is fixed, we may consider the effect of letting the
sampling rate f; become large (i.e. T becomes small). As f; — oo, all but the central lobe of
Xr (jw) = Xpr (e7T) slides off the picture. Furthermore, Hy (jw) — T for —wp < w < wp so the
central lobe is multiplied by a transfer function close to unity. In this sense, X, (jw) = Xeor (jw)
for large f,. This fact can also be seen in the time domain:
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Figure 4.9

As T — 0 the “staircase” function z, (t) produced by the ZOH converges to z (1) .

The point of using a ZOH is that it can actually be built. This is true because a unit
rectangular pulse (or at least a very close approximation) can be produced using conventional
electronics. Try building an electric circuit that generates anything close to an impulse! The ZOH
alone does not perform ideal reconstruction, but only a close approximation. For many applications
(e.g. digital control systems), this approximation is entirely adequate. For others, the distortion
caused by the higher-frequency lobes shown in Figure 4.8 can create serious problems. For example,
in audio systems these lobes are not audible, but can damage other equipment such as the power
amplifier and speakers. Another consideration is that, in the interest of economy, we usually prefer
to use the smallest sampling rate possible, so an extremely close approximation in Figure 4.9 may
be wasteful. For these reasons, the higher-frequency lobes of zq (t) are often filtered out using an
LPF. In this context, the LPF is sometimes referred to as a “smoothing” filter.

If wy > 2wp, passing the output of the ZOH through the filter with transfer function

THpp (]i—w)
Ho (jw)
Hpp (Ji—w>

W (jwT)

isf

€ 2 | | < Ws

—{ sinc <~ Wi > 2
= s

0, else

HOr (jw> = (412)

yields the output

Y (jw) = Hor (jw) Ho (jw) Xpr (e7)

= Hyp (gi—“) ki Xer (7 (w+ kwy))
Xer(e).

Hence, we may view ideal reconstruction as the series combination of the ZOH with the filter having
transfer function Hy, (jw) .
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From (4.11)), the ZOH is causal. Furthermore,

max i [ho (t —nT)| = max i 'w (t_TnTM

n=—00 n=—0oo
=max1
t
=1
< 00,

so the ZOH is BIBO stable (which is also clear from (4.10)). As with H, (jw), Ho, (jw) determines
a noncausal, unstable filter. However, we will see that Hy, (jw) can be approximated by a stable
filter. Hence, the reconstruction method of choice in practice is to process samples through a ZOH
and then, if necessary, through a smoothing filter approximating Ho, (jw) .

4.4 A/D and D/A Converters

The actual electronic device that performs sampling is called an analog-to-digital (A/D) converter.
An A /D converter actually consists of two parts: First, the CT input is sampled. Then the resulting
value (a voltage) is quantized — i.e. approximated by the nearest value taken from a given finite set.
Quantization is depicted in Figure 4.11:
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T
Figure 4.11

Here we assume the input voltage stays within 5V and that the output can achieve 2™ possible
values. The quantized signal is then represented in binary form in an m-bit computer register.
Quantization contributes a certain degree of distortion to a signal, which can be made smaller by
increasing m. In practice, the value of m depends on the application. In control systems, m = 12
is common, while in high-fidelity audio systems, m = 16 is minimum. The distortion caused by the
nonlinear nature of Figure 4.11 is called quantization noise. An analytic treatment of quantization
noise is possible, but it is mathematically difficult and requires the study of random processes. This
is beyond our scope, so we will henceforth assume that the number of bits m is sufficiently large to
ensure that the effects of quantization are negligible. In other words, we will approximate the A/D
converter as an ideal sampler, depicted in Figure 3.1.

A D/A converter performs signal reconstruction. The m-bit binary value is converted back to
a voltage with 2™ possible values and then passed through a ZOH. A smoothing filter may then be
applied to the output. The only idealization required here is that m be very large, so the ZOH can
accept any DT signal z [n].
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4.5 Digital Filters

At this point, we can pull together several concepts we have already studied and describe the general
framework in which digital filtering may be carried out. Consider a series combination of a sampler,
DT system with transfer function Hpp (ejQ) , and ideal reconstruction device:

j X[w e Sﬂ/
K (k) - )\f ~ L HDT(Q’

Figure 4.12

yin] i deal
recaustryctinm

—

—> y(+)

We assume that all input signals have bandwidth less than %= to avoid aliasing. The sampled input
x [n] has DTFT X pr (/) given by the Poisson formula (3.1). The DT output y [r] thus has DTFT

: Q + 27k
YDT (e]ﬂ> — HDT (6-] )XDT (GJQ Z HDT 6-7 )XCT <]T) . (413)
k:*—oo
As discussed above, ideal reconstruction may be envisioned as either 1) conversion of y [n] to the
impulse train yr (t) followed by an ideal LPF or 2) passing y [n] through a ZOH and then through
the filter Hy, (jw). Both have the same effect, isolating the & = 0 term on the right side of (4.13))

as in Figure 4.2. This yields the CT output y (t) with FT

2w

Yor (jw) = THprp ( > Ypr (e7) = Hpr (¢") Xer (jw) .

S

The system in Figure 4.12 therefore has frequency response
HCT (]w) = HDT (ej“T)

_ws Ws .
for —% <w <5

Figure 4.13

33



- ’ =
P 2
Figure 4.14

The CT system Her (jw) is just a copy of the DT system Hpr (ejQ) , restricted to the frequency
interval —% < w < %, and with the familiar frequency scaling 2 = wT.

5 The Discrete Fourier Transform

5.1 Definition and Properties

The Discrete Fourier Transform (DFT) is a variant of the DT Fourier series. The DFT is the only
kind of Fourier transform that can actually be evaluated on a computer. Since a computer can
only process a finite amount of data, we must be able to represent every time signal and transform
as a finite array. This requirement does not sit well with respect to ordinary transforms: If a DT
signal x [n] has a DTFT concentrated at discrete frequencies, then z [n] is periodic. (The transform
is essentially the sequence of Fourier coefficients ay.) In this case, the DTFT is also periodic, so
neither array is finite.

Another way to look at this problem is to consider the signals x [n] which can be expressed as
a finite array of numbers. We say z [n] is a finite-duration signal if there exists N < oo such that
x [n] =0 for |n| > N. Otherwise, x [n] is infinite-duration.

Theorem 5.1 If x [n] is finite-duration and bandlimited, then x[n] =0 for all n.

(Theorem also holds for C'T signals.) Clearly, our notion of the Fourier transform must be
modified in working with computers.
Fortunately, there is a simple trick that resolves the issue. Suppose x [n] is finite-duration with

z[n)=0 forn<0andn >N, (5.1)
and consider the signal
zp[n] = Z x[n—mN]. (5.2)
Then
zp[n+ N| = Z xz[n—(m—1)N]
= > an—qN] (¢g=m-1)
q=—00
= Tp {n] )
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so x, [n] has period N. In other words, x,[n] extends x [n] periodically. Let a; be the sequence
of DT Fourier coefficients for x, [n], also with period N. Although z,[n] is not bandlimited, we
only need N values aj, to represent z, [n]. We define the DFT of z[n] to be one period of
Nay. This way, both x [n] and a; are finite arrays. Instead of Nay, we denote the DFT by X [k].
Formally,

X[kl =Y an]e ™k  0<kE<N-1, (5.3)

where g = %’r is the fundamental frequency. The DFS recovers z [n] :
| V-1
x[n]:N;X[k]emok”, 0<n<N-1 (5.4)

Expression (j5.4)) is the Inverse Discrete Fourier Transform (IDFT). Note that the IDFT is just the
DFT reflected and divided by V.
For z [n] satisfying 1} the DFT and DTFT are closely related. Evaluating X (ejQ) at ) =

Q,k, we obtain
N-1

X (ejﬂok) = Z x [n] e 7R — X [K].
n=0
Hence, the DFT is simply the array of samples of the DTFT taken with sampling period )y and in-
dicesk = 0, ..., N—1. Furthermore, expression tells us that the N samples X [0],..., X [N — 1]
of X (ejﬂ) are sufficient to exactly reconstruct z [n] and, therefore, X (ejﬂ) for all €. This is the
dual of the Nyquist theorem, made possible by the fact that z [n] is finite-duration. Specifically,
X (ejQ) is recovered by the formula

N-1
X (/) = x [n] eI (5.5)
n=0
1 V=l /Nl
<> ( X [k] ejﬁo'm) eI
n=0 k=0
T, N-1
- —j(Q—Qok)n
=% X [K] Z e~ 0 )
k=0 n=0
T,
=5 X [k] Wy (ey(ﬂfﬂok)) 7
k=0

where Wy (ej Q) is the periodic sinc function. (See Example ) Note that is actually hybrid
convolution (in frequency) and is dual to the ideal signal reconstruction formula for x (t).
Ideal reconstruction of X (ejﬂ) is possible, since the “Nyquist rate” in this setting is N and the
“sampling rate” is

Since z [n] and X [k] are defined on a fixed, finite interval, an ordinary time or frequency shift
is not allowed. However, there is an appropriate operation that serves the same purpose for DFT’s.
We need to invoke mod N arithmetic: For any integer n, there exists a unique integer

((n))y € {0,...,N -1} (5.6)
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such that n — ((n)), is an integer multiple of N. In other words, an integer m can be found such
that
((n))y =n—mN

and holds.
Properties: (See O&S Table 8.2 on p. 660.)
Linearity:
azx [n] «— aX [k]
{ x1 [n] + 2o [n] «— X1 [k] + X2 [K]
Time Shift:

z[((n = 1no)) ] e e7HmRX [K]

Frequency Shift: )
e"x[n] —— X [((k —1))y]

Convolution:
a1 [n] * 22 [n] = Jf 1 [((n —m))y]x2 [m]
21 [n] * 22 f;fo<—> X, [k] X, [K]
Multiplication:
Xy [k] * Xy [k] = NZ; Xy [((k — 1)) 5] X2 (1]

1 [n] 22 ] — X ] % X K]
Time Differencing:
zn] =z [((n = 1)) e (1 —e7™*) X [K]
Accumulation:

Z x [m)] - el_jQOkX [k]  (only for X [0] =0)

m=0

Frequency Differencing:
(1= %) @ [n] s X [k] — X [((k — 1)),
Conjugation:
2" [n] «— X" [((=F))y]
Reflection:

z[((=n))y] = X[((=F)) ]

Real Time Signal
[ X [((K)) ]| even

z [n] real <= { /X [((K))y] odd

Even-Odd:
{ z[((n))y] even <= X [k] real

z[((n))y] odd <= X [k] imaginary

Parseval’s Theorem:

S il o] = 3 X [k X [
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5.2 Circular Operations

Mod N arithmetic may be used to define operations on signals that are appropriate for the DFT.
The circular reflection of x[n] is x[((—n))y]|. The circular shift of x[n] by any integer ng is
x [((n — ng))y) . From circular shift, we define the circular convolution of x1 [n] and z, [n] is

N-1

z1 [n] * za [n] = Z 1 [((n —m)) ] z2 [m] .

m=0

Periodic and circular convolution are similar, but apply to different circumstances: Periodic convo-
lution requires periodic signals and produces a periodic signal; circular convolution requires finite-
duration signals and produces a finite-duration signal. Nevertheless,

21 [n] *cire T2 [n] = T1p [0] Hper Tap [1]

for 0 < n < N — 1. Circular shift and periodic convolution may also be applied to X [k]. Note that
circular shift and convolution appear in several of the DFT properties above.

Example 5.1 Let N be even and
In] = 1, n=0,....,8 -1
T 0, Y<n<N -1
Find the circular convolution of x [n| with itself.
N-1
i) xx[n] =) w,[n —m]a,[m]
m=0

Forogngg—l,

x[n]*x[n]221:n+1.

O - > o e
i =T
‘ | | L
- : T ry) !L ‘ -
-y ON Yo M N N
Figure 5.1
FOT‘%STLSN—L
J-1
x[n|*xn] = Z 1=N-1-n.
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Figure 5.2

(For additional examples, see O&S pp. 655-659.)

5.3 Fast Fourier Transform Algorithms

Computational efficiency is paramount in applying the DFT (5.3) and IDFT (5.4). If we compute
the DFT (5.3) in the most direct way, we are faced with multiplying the arrays

z (0] 1
x[1] e~ ISk
r = s e =
[N —1] eIk -1)

together entry-by-entry and then adding the results to produce X [k]. For each k, this requires
N multiplications and N — 1 additions. To generate the DF'T, this must be done N times, so
N? multiplications and N (N — 1) additions are required. We say that such an algorithm requires
o (N?) operations, meaning that the number of operations “increases like N?” for large N.

There are a variety of ways to reduce the number of operations in computing the DFT. The
most efficient algorithms require o (N In N) operations. These are collectively referred to as Fast
Fourier Transform (FFT) algorithms. Note that NIn N grows more slowly than N2, resulting in
substantial computational savings. To give a sense of how such algorithms work, we will study one
FFT algorithm, called Decimation in Time:

Suppose N is even. We may split the DFT into 2 parts:

N-1 N-1 N-1
X [k] = Z x [n] e Ik — Z x [n] eIk 4 Z x [n] e~ IS0k,
n=0 n=0 n=0
n even n odd
Substituting m = % in the first sum and m = ”T’l in the second,
X (k] =) a[2m]e /WM 4 =0k N " g (2 4 1] eIk = [ [k] + e TWRH (K] (5.7)
m=0 m=0

We note that Hy [k] and H; [k] are the DFT’s of z [2m] and x [2m + 1], each having length & and
fundamental frequency

= 2().

sl=|

Normally, Hy [k] and H; [k] are defined only for 0 < k < £ — 1, rendering (5.7) meaningless for

% <k < N — 1. This problem can be avoided by extending Hy [k] and H; [k] periodically. In other
words, we evaluate the 2 sums in (5.7) over the entire frequency range 0 < k < N — 1.
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If & is even, we may apply the same technique to Hy[k] and H, [k] to split the DFT of X [k]
into 4 parts:

x [2m] eI (X0)km
m=0

(5.8)
m=0
m odd

N_q N_1
2 2
H, [k] = z [2m + 1] e FW0)km Z [2m, + 1] 77 (#0)km (5.9)
mmc;(e)n m odd
i1 i1
— z [4p + 1] e~ I(40)kp 4 o —i(2)k
p:

x[4p +3]e’ (420)kp
0 0
= G2 [k] + eij(QQO)ng [k]

hS]

If N =29 (5.7) may be applied recursively a total of

Q-2 Q-1
gy 297 -1
20-2 1
q=0

times. It then remains to find the DFT of 297! signals of length 2. A careful accounting of products
and sums shows that this approach requires o (Q . QQ) operations. Since

In N

n2’

we may also express the computational burden as o (N In N)
qualifies as an FFT algorithm.

Q =log, N =

proving that decimation in time

Example 5.2 The following signal flow graph illustrates decimation in time for N = 8
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Many other FFT algorithms have been devised. (See O&S Sections 9.2-9.5.)
Exploiting circular reflection, the IDFT can be written as

N—-1
1 .
€T [n] — N (E X [k.] 6]90k((n))N> .
k=0

This says that the IDFT can be obtained by taking the DFT of X [k], performing a circular reflec-
tion, and dividing by N. Starting with X [0],..., X [N — 1], FFT provides the values 2 [0] , ...,z [N — 1].
Then

5.4 Zero-Padding
If N is not a power of 2, we need to reconfigure x [n] to apply FFT algorithms. Choose @ such that

2071 « N < 29, (5.10)

define M = 29 and consider  [n] on the interval 0 < n < M — 1, recalling that x[n] = 0 for
N < n < M—1. This method is called zero-padding, since it extends the z [n] with 0’s. Zero-padding
produces a DFT of length M and changes the values of X [k] for 0 < k < N — 1. Nevertheless, we
will see in the next section that the zero-padded DFT is still a viable representation of the DTFT

of x [n]. Taking In of (5.10),
Q—1<InN<Q

2971 (Q -~ 1)In2 < NInN < 29Q1In?2

In2 In2

0297 (Q -1)In2) =0 (TQQQ — T2Q) =0(Q29)

0 (ZQan 2) =0 (QZQ) ,

” o(MInM) =0(Q2%) =o(NInN).

Hence, the computational efficiency of the algorithm is unchanged.

6 Applications of the DFT

6.1 Spectral Analysis
Recalling that €2y = %r, ) states

X [k] = X (eﬂ‘%"k) . (6.1)
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Now suppose we employ zero-padding by choosing an arbitrary M > N and computing the DFT
on that basis. This amounts to extending « [n] with 0’s for N <n < M — 1. The new DFT is

M-1
Z x [n] e/ 21" (6.2)

N

X [K]

I
- O

x [n] el it kn

n=0

X (ej%k) )

Comparing 1} and { , we see that the effect of zero-padding is to resample X (ejQ) at more
closely spaced frequencies (M points instead of V). Thus zero-padding gives a more refined picture
of the signal spectrum.

6.2 Linear Convolution

Suppose x [n] and h [n] are finite-duration signals with
n] =0 forn <0andn> N,

T
hin]=0 forn<0andn > M.
Then the (linear) convolution of x [n] and h [n] is

o0

But

xn—m]=0, m>n
and

him] =0, m <0,

x[n]*hn] = Zx[n—m}h[m], 0<n<M+N-—1.
m=0
A careful accounting of operations reveals a computational burden of o (M N) for linear convolution.
For non-real-time applications, an alternative approach is to use the convolution property of the
DFT. Unfortunately, the convolution property applies to circular, not linear, convolution.

Example 6.1 Let M = N and
1, 0<n<N-1

z[n] = { 0, else

For 0 <n < N — 1, the linear convolution is

o0

m=—00
n

221

m=0

=n-+1.
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Xy

W=+ o' n N —1 i
Figure 6.1
For N <n <2N —2,
N-1
x [n] iy x [n] = Z 1=2N—-n—1.
m=n—N+1

Ol nlff N-1 n

Figure 6.2

But the circular convolution is

=

= 2 ((n— m)) ) [ml

x [n] *eire T [N]

= 3
Ll

I
7

||
=

for0<n <N -1

- AT T o o s e
hr 1 x C
U i t 1 (L M
~A W N AVt =V I g W N nth asle ¢

Figure 6.3

Fortunately, we can change linear into circular convolution through zero-padding: Extending
both signals with 0’s to M + N — 1 points, the circular convolution is

MA+N-2

hin] el =Y B[((n—m))yyn_y] 2 m]

M+N-—2

= Z h [((” - m))]V[-&-N—J x [m] + Z h [((n - m))M-&-N—J x [m].

m=n+1
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The range of m and n may be decomposed into several regions as shown in Figure 6.4:

A

M+N —21 T4 1 ) 1R hii
- L {
. T 1 {
N =1 =4 A1 20 W B
,__..__7f |

Figure 6.4

In region I,

n<m<n+N-—-1
or

—N+1<n—-m<D0.
Hence,

((n—m))M+N_1 =n—m+M+N-1

and

((TL - m))M+N71 > M7
SO

h [((n_m>)M—|—N—1] = 0.
In region 11,
N—-1l<m<M+N -2,

x [m] = 0.

Note that the triangular region

{(m,n) |O§n<m§M+N—2}CIUH,

Z_ h [((n - m))M-&-N—J x[m] =0
and

h[n] *cire x [n] = Z hn —m]x[m] = h[n] %y, xn].

By the convolution property of DFT’s, we may compute the linear convolution h [n] *  [n] via
the following algorithm:
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Algorithm 6.1 1) Zero-pad h[n] and x[n| to M + N — 1 points.
2) Apply FFT to x[n] and h[n].

3) Compute H [k] X [k] .

4) Apply FFT to H [k] X [k].

5) Reflect the result (mod M + N — 1) and divide by M + N — 1.

This approach requires o ((M + N)In (M + N)) operations in steps 2) and 4) and o (M + N) in steps
3) and 5). Hence, convolution using the DFT is performed in o ((M + N)In (M + N)) operations.
Compare this to the o (M N) required for direct convolution. Which approach is faster depends on
the values of M and N.

6.3 Windowing

In many applications, one needs to compute the DFT of a signal x [n] that is infinite-duration. For
example, this can occur when z [n] is specified by the mathematical constructions encountered in
a digital filter design. Another possibility is that x [n] actually is finite-duration, but too long to
process as a whole. A common approach to such problems is to truncate z [n] to a manageable size.
This operation can be done in a variety of ways and is generally referred to as windowing.

Windowing may be thought of as an approximation technique. As long as x [n] — 0 as |n| — oo,
the approximation can be made arbitrarily close by extending the width of the window. However,
computer memory and processing speed is limited, so the windowed signal must be kept to a
reasonable length.

In principle, a window is any finite-duration signal w [n] satisfying . However, the most
useful windows are designed so that the windowed signal is a close approximation to the original.
The most commonly used windows are

<n< —
1) wn] = wy [n] = { [1)’ gls_e n<hN-1 (rectangular)
Zon 0<agid
2 wn]=¢ 2—345n, Sr<n<N-1 (Bartlett or triangular)
0, else
1 _leos(En), 0<n<N-1
3) wn| = { (2] 2 (N*1 ) olso (Hann)
54 — . 2z <n<N -
) wln] = { 054 46 cos (N_ln) , gls_e n<N-—-1 (Hamming)
42 — _2m ) _Am <n< N —
5) wn] = { 042 5cos (:2%5n) + .08 cos (5n) (e)ls_e n<N-1 (Blackman)

(See O&S pp. 536-538.) These windows are depicted in Figure 6.5:

45



wn] Rectangular

1.0
r—— Hamming
—— - Hann
0.8} w— = Blackman

Bartlett
0.6

0.4

0.2

// N -
/2> NN
0 V-t A1
2
Figure 6.5

The windows may be scaled in amplitude and shifted in time as the application dictates.

The only perfect “window” is the constant w [n] = 1. But a nonzero constant does not qualify as
a window, since it is infinite-duration. Nevertheless, it is useful to note that, from the multiplication
property of the DTFT, multiplication of z [n] by 1 corresponds to convolution of X (ejQ) by

W (e?) = 2r i 5 (Q—2rk).

k=—o00

Thus we may approach the problem of window selection as that of finding one whose DTFT best
approximates a periodic impulse train.
Consider first the rectangular window. Its DTFT is

. (NQ -
W () = Slrsln(l é—) eI
2

(See Figure 2.1.) It is more instructive to graph the “normalized gain”

201og

obtained by dividing !W (ejQ)| by its value at €2 = 0 and converting to dB:
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Rectangular

SA

Normalized Gain (dB)

70F- - RS R PR P ........ . -
80k - -- o RN IR I - o

90 - . . B - B I R . o .

-100 I | | |

Frequency (radians)

Figure 6.6 corresponds to N = 25. The most important quantities to observe in such a graph are the
width MW of the “main lobe” and the amplitude SA of the first “side-lobe”. For the rectangular
window, the main lobe has width about %’T, while the side lobe has maximum amplitude about —13
dB (relative to W (1)). These measures are compared to those of the ideal impulse train: MW = 0,
SA = —oo dB. Thus we wish to find a window whose spectrum is concentrated near 2 = 0. The
phase shift in W (ejQ) is not important, since it can be eliminated by time-shifting w [n]. (See the
time-shift property of the DTFT.)

Similar graphs for the Bartlett, Hann, Hamming, and Blackman windows are shown in Figures
6.7-6.10, respectively.
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The values of MW and SA for the 5 windows are tabulated below:
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Window | MW (rad) | SA (dB)
Rectangular QW“ —13
Bartlett % —25
Hann ]\ffl —31
Hamming A;‘fl —41
Blackman ]\?fl —57

Note the trade-off between MW and SA.
Another way to look at the effect of windowing is to examine a prototype signal. Let 0 < Qp <7
and X (/) have period 27 with

, 1, |19 <Qp
QN )
X (e )_{o, Qp<|Q <

Then

x [n] ! /7T X (/%) a2

T or

1 (98

—T

= — 7 dQ)
2T —Qp
sin Q2gn

™
Qp (QB >
= —Ssmc|{—n|.
™ ™

Let w [n] be the rectangular window time-shifted to the left by #=*. Then
*)

Multiplying « [n] w [n] corresponds to the periodic convolution

4

sin (

W () =

NelIM

sin (

1 ) ) 1 Q+7 ) ) 1 Q+Qp )
L (@) s w (&%) = / X (0 | () db = - W () db
Q

27 T oo —m 27 Ja—q,

shown in Figure 6.11:
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Figure 6.11

Part (a) depicts the process of convolution and (b) the result. The oscillations in (b) are called Gibbs
phenomena. They are due to the interaction of the sinc function with the discontinuity in X (ejﬂ)
in the convolution process. Note that the “overshoot” increases with S A, while the “sharpness” of
the approximation improves with smaller MW. The choice of window w [n] may be viewed as the
quest to improve these effects.

Example 6.2 Real-Time Spectrum Analyzer

We wish to perform a running computation of the “Fourier transform versus time” for an incoming
signal x [n]. Since x [n] has unknown duration, it must be windowed before we can apply the DFT.
Choosing a particular window w [n] of length N, we position the window at time n to enclose input

values x[n — N +1],...,x[n]. As n increases, the window slides from left to right:
XIm2
w [wm-un+V~1)
—
0! n-N+l n "
Figure 6.12
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The nth windowed signal is
Ty [m)=x[mlwm—n+ N —1].

For each n, we shift to the interval 0 <m < N — 1
YoMl =z, [m+n—-N+1=x[m+n— N+ 1jw[m]

and take the DF'T:

N-1 N—-1
Y, [k] = Z Y [ ] €70Fm — Z zm+n— N+ 1w [m] fkm
m=0 m=0

For eachn, the arrays |Y,, [k]| and £Y,, [k] can be displayed. In practice, in order to save computation,
Y, [k] is computed for only about 1 in % values of n. This corresponds to 80% owverlap of adjacent
windows.

7 The z-Transform

7.1 The CT Laplace Transform

One of our main goals is to be able to design digital filters. An indispensable tool in filter design
is the z-Transform. First we review the Laplace Transform. For a CT signal z (t), its Laplace
Transform (LT) is

o0

L{x ()} = X (s) = / (1) et

where s = 0 + jw is complex frequency. In general, the Laplace integral can be evaluated on only a
subset of the complex plane.

Example 7.1 Let u(t) be the unit step function and

Then
X (s) :/ ele " dt
0
:/ et gt
0
1 00
_ (1-s)t
T 15 0
But

eIt = U=ltgmjwt — (=) (cog iyt + jsinwt),

so the upper limit can be evaluated iff o > 1. In other words, X (s) is defined only for the right
half-plane Re s > 1. In this case,
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The set of s on which X (s) is defined is called the Region of Convergence (ROC'). One can
show that, in general, the ROC is an open vertical strip in the complex plane

ROC:{S|a<Res<b},

where —oo < a < b < oo. In other words, the ROC is either a vertical strip, bounded on both sides,
a left half-plane (a = —o0), a right half-plane (b = 00), or the entire plane (e = —oo, b = 00). If
the ROC contains the imaginary axis, then we may evaluate s = jw, yielding the CTFT X (jw).
(This explains the notation X (jw).)

The Inverse Laplace Transform (ILT) is

LYHX ) =2() = % /00 X (0 + jw) ey,

The integral evaluates to x (t) as long as ¢ lies in the ROC.

7.2 The DT Laplace Transform and the z-Transform

To each DT signal x [n] we may associate an impulse train

o0

z(t) = Z x[n]d(t—n)

n=—oo

and apply the LT:

X (s) = / Z 5(t— n) et (7.1)

= Z gg[n]esn/_ooé(t—n)dt
= Z x[n]e".

We denote the complex frequency variable in DT problems as

S=¥+j50
The DT Laplace transform is
X () = Z x [n]e"
Since we may write
X ()= > wlnl ()",
X (es ) may be viewed as a function of ¢”.Note that
€S+j27r — 656j27r — €S.

Hence, e° and, therefore, X (es) have period j27.

Since X (eS ) is still an LT, the rules surrounding the ROC' continue to apply. A DT Laplace
transform need only be specified on the rectangle bounded horizontally by a and b and vertically
by 0 and 27 :
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Figure 7.1

The value of X (es ) on the remaining rectangles is determined completely by periodicity.

Example 7.2 Let p be any complex number, u[n] be the DT unit step, and

Then

- 1—pe=S’

The geometric series converges for
lple™™ =[pe™®| <1

or
Y >1In|p|.

Hence,

ROC = {5| ReS > m\p\}.
In order to avoid writing e® repeatedly, it is conventional to introduce the frequency map
z=e". (7.2)
The complex variable z may also be considered complex frequency. (Both S and z are dimensionless. )

From ([7.2]),
|z| = e, Zz=Q. (7.3)
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Making the substitution (7.2]), the DT Laplace transform becomes the z-Transform (ZT)

o)

Z{zh]}=X(z)= Y wn]z"

n=—0oo

In many cases, X (z) is defined at z = 0 in spite of the fact that e # 0 for all finite S. Thus, in
effect, the z-transform extends the LT to S = oo.

It is important to understand the geometry of the exponential map (7.2). Consider the vertical
line

VL (D) = {S| ReS = 2}
in the S-plane. From (7.3)), V' L (X) maps onto the circle

C(e”) = {z| |z| = 62}

in the z-plane. Owing to periodicity, the exponential wraps V' L (X) infinitely many times around

C (e*) . In particular, setting ¥ = 0 shows that the imaginary axis V' L (0) maps onto the unit circle
().
We may extend this idea to all ROC’s in the S-plane: Consider the vertical strip

VS (a,b) = {S]|a<ReS <b},
where 0 < a < § < o0o. It is conventional to denote
LHP = VS (—00,0),
RHP =VS5(0,00).
The exponential function maps V'S (a,b) onto the annulus
ann (e“,eb) = {z

In particular, LH P maps onto ann (0, 1).
If the ROC of X (z) contains the unit circle, then we may evaluate z = €/, yielding the DT
Fourier transform X (e7?) . (This explains the notation X (e/%).)

e < |z| <eb}.

Example 7.3 Find the ZT of x [n] = p"u[n|. From Ezample the DT Laplace transform is

1 1
X (9)= =
B =1= pe=S  1—p(es)”!
with
ROC =V S (In|p|,0),
50 )
X(2) = —
(2) 1—pz—t
with

ROC = ann (|p|, 00).
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Now, let us calculate X (z) directly:

The geometric series converges iff |pz~'| < 1 or, equivalently, |z| > |p|, so ROC = ann (|p|,00) .

Example 7.4 Setting p =1 in Example yields the ZT of the unit step:

H 1 .z
uin 1—21 2-1

Example 7.5 Let x[n]| = [n]. Then
X(z)= > 6z
The only nonzero term in the series is the n = 0 term.
X(2)=2z"=1
The ROC is the entire z-plane.

The Inverse z-transform (I1ZT) is

,r.’f'L

T o

ZHX ()} =2 [n] /0 7rX (re’?) e/ de,

where r lies in the ROC. The integral may be evaluated on any interval of length 2.
(Additional examples are listed in O&S Table 3.1 on p. 110.)

7.3 Properties
The ZT has the following list of properties:
Properties: (See O&S Table 3.2 on p. 132.)
R, = the ROC of X (z) = ann («, )
Linearity:

{ ax [n] «— aX (2) (ROC = Ry)
x1 [n] + 29 [n] «— X1 (2) + X2 (2) (ROC D R,, N Ry,,)

Time Shift:
x[n—ngl +—— 27X (2) (ROC DR, —{0})
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Frequency Shift:
zixn] — X (25'2)  (ROC = |2| R,)
Time/Frequency Scaling:

Convolution:

Time Differencing:

z[n]—azn—1«— (1-2") X (2) (ROC DR, —{0})

Accumulation:

n

Zx[m]<—> ! X (z) (ROC D R,Nann(1,00))

= 1—271
Frequency Differentiation:
X
nx [n] —z (2) (ROC = R,)
dz
Conjugation:
¥ [n] «—— X" (2*) (ROC = R,)

Reflection:

Real Time Signal
z[n] real <= X () = X" (2)

8 DT Systems and the ZT

8.1 LTI Systems

Recall that a DT system is LTT iff it maps the input z [n] to the output y [n] via (linear) convolution:

y[n] = hin]*xxn].

The sifting property of § [n] tells us that the input x [n] = § [n] produces the output

yln] =hin]*dln]=hin].

For this reason, h[n] is called the impulse response of the system. By the convolution property of
the 7T,

Y(2)=H(2) X (2).
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H (z) is the transfer function of the system.
Since DT convolution is a linear operation, impulse responses and transfer functions of systems

in parallel add:
hln] = hi[n] + ha[n],
H(z)=Hy(2)+ Hy (2).

A n] y [h

Figure 8.1

Since DT convolution is associative, impulse responses of systems in series must be (linearly) con-

volved
h[n] = hy [n] x ha [n],

while transfer functions must be multiplied
H(z) =H; (2) Hy(2).

xim —{ 1 ] 1]

Figure 8.2
Recall that a DT system is causal if
z1[n] =x9[n] forn<m =y, [n]=y2[n] forn<m.
We also define a system to be anti-causal if
forn >m =y [n] = y2[n] forn >m.

x1[n] = x9 0]

In terms of the impulse response & [n], an LTI system is causal iff i [n] = 0 for n < 0. It is easy to
show that an LTT system is anti-causal iff & [n] = 0 for n > 0. Hence, the only LTI systems that are

both causal and anti-causal are those with impulse responses of the form
hn] = Ad[n].

These are the static systems.
A DT system is BIBO stable if
x [n] bounded = y[n] bounded.

For LTT systems, this is equivalent to

Z |h [n]]| < oc.

n=—oo
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8.2 Difference Equations

An important class of digital filters is implemented through the use of difference equations:
any[n+ N+ ...+ ayn] =byxn+ M]+...+ bz [n].

There is no harm in assuming ay # 0 and by; # 0, since otherwise M and N can be redefined. In
fact, we may divide through the equation by ay and redefine coefficients accordingly. This makes
ay = 1. Now suppose

ag=...=ag_1 =0.

In other words, K is the smallest index such that ax # 0. The difference equation becomes
yn+ N]+ayyn+N—-1]+...+agy[n+ K] =byx[n+ M]+ ... +byx [n]. (8.1)

The number N — K is the order of the equation. For now, we will restrict ourselves to equations
with order N — K > 0.

A difference equation is very similar to a differential equation in that it expresses a relationship
between shifts of the input x [n] and the output y [n], rather than derivatives of x (t) and y (¢) . Like
a differential equation, a difference equation has infinitely many solutions corresponding to a given
input signal x [n]. A single solution is determined uniquely by specifying N — K initial conditions,
typically adjacent values such as y [—1], ...,y [KK — N|. For a given x [n] and set of initial conditions,
a difference equation can be solved using the same analytic methods as for differential equations:
Find a particular solution, add the general homogeneous solution with N — K free parameters, and
apply the NV — K initial conditions.

Example 8.1 Solve
5
yln+2] = gyln+1 +y|n] = z|n]

for the input
xn]=n

and initial conditions
y[-1] =1, y[-2]=0.

As with differential equations, a polynomial input admits at least one polynomial solution. Applying
“variation of parameters”, we try
y[n] = An + B.

Then

or

which yields

and the particular solution
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The “homogeneous equation” is

y[n+2]—gy[n+1}+y[n]:o.

The polynomial
)
2
—Sr41=0
z 5 zZ 4+
has roots

102:27

1
0125

so the general homogeneous solution is
1\" "
min=c(3) +D-2
where C' and D are free parameters. All solutions of the difference equation have the form

y[n] =y, [n] + yn [n]
:—2n+2+0(%) +D-2"

Applying the initial conditions, we obtain

D
yl[-1l]=4+2C+— =1,

2
D
y}ﬂ:6+4€+zzm
or 3
C=--, D=0
27

The final answer is
3 /1\"
=-2n+2—-|=] .
y[n] n+2- g (2>

Equation (8.1]) can also be solved recursively — a method that has no counterpart in the study of
differential equations. There are 2 ways of rewriting the equation that will be useful. First, forward
recursive form is obtained by shifting (8.1)) IV steps to the right and solving for y [n] :

ynl=—-any_1yn—1—...—agyn+K — N]+byz[n+M—N]+...+ bz [n—N]. (82)
The solution is obtained via the following algorithm:

Forward Recursion (given y[—1],...,y[K — N])

1) Apply z [n| and the initial conditions to (8.2)) to find y [0].

2) Apply z [n], the initial conditions, and y [0] to (8.2)) to find y [1].

)
3) Apply z [n], the initial conditions, y [0], and y [1] to (8.2) to find y[2].
4) Continue indefinitely.
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Backward recursive form is achieved by shifting (8.1)) K steps to the right and solve for y [n] :

yn|=——yn+N—-K|— aN_ly[n+N—K—1] — = aKHy[n—i—l] (8.3)
aK ax ax
b b
+ e+ M—-Kl+...+—zn-K].
aK aK
Backward Recursion (given y [—1],...,y[K — N])

1) Apply z [n] and the initial conditions to to find y [K — N —1].

2) Apply x[n], the initial conditions, and y[K — N — 1] to the right side of to find
y[K — N —2].

3) Apply z [n], the initial conditions, y [K' — N — 1], and y [K — N — 2] to the right side of
to find y [K — N — 3].

4) Continue indefinitely.

Example 8.2 Solve the problem in Example recursiely. Iterating forward,

WJ:gy[n—l]—y[n—z]m[n—z]
y[0] Zgy[—l]—y[—2]+:c[—2] :%
y[1] Zgy[ol—y[—1}+x[—1] :_z

y[2]=gy[1]—y[0]+x[01:_%
67

Iterating backward,

y[n]:—y[n+2]+gy[n+1]+x[n]

y1-3) = —y[-1]+ Sy[-2 +o[-3) = —1-3 = ~4

yI-4 = —y[-2)+ (-8 + o4 = 10— 4= 14

y[—5]——y[—3]+gy[—4]+x[—5]—4—35—5——36

Note that these values are consistent with the analytic solution of Example[8.1].
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In some problems, backward recursion is based on initial conditions y [1],...,y [N — K] :

Backward Recursion (given y[1],...,y [N — K])

1) Apply = [n| and the initial conditions to to find y [0] .

2) Apply z [n], the initial conditions, and y [0] to the right side of to find y [—1].

3) Apply z [n], the initial conditions, y [0], and y [—1] to the right side of to find y [—2].
4) Continue indefinitely.

The recursive approach can easily be written into a computer program.

Difference equations can be used to describe a certain class of LTI systems. Let x[n] = d [n]
in and find any solution & [n]. This determines an LTI system with impulse response h [n] . If
x [n] is any other input, then we may check that

y[n] = hn] xx[n]
is a corresponding solution. To do so, note that

y[n+m|=0d[n+m|xyn]
= (0[n+m]*hn])*z[n]
=hn+m]*xn|.

Substituting y [n] into (8.1]) yields

yn+ N]+ay_y[n+ N -1+ ... +agy[n+ K]
=h[n+ N]*xz[n|+ayv_1hn+N—1]xxn|+...+axghn+ K| *x[n]
= (h[n+ N]+an_1h[n+ N —1]+ ... +axh[n+ K]) xz [n]
= (byd [n+ M|+ ...+ byd [n]) * :U[n]
=byd[n+ M]*xxn|+ ...+ byd [n] *x[n]
=byx[n+ M|+ ...+ box[n],
proving that the LTT system with impulse response k [n] is consistent with (8.1)).
As we have seen, each input z [n] leads to infinitely many solutions, so there are infinitely

many impulse responses corresponding to each difference equation. Each impulse response
determines a distinct LTI system.

Example 8.3
yn+1 —y[n] =xn+1]

For x[n| =0 [n|, a particular solution is h, [n] = u[n|, since
un+1] —uln]=dn+1].

The homogeneous solutions are just the constants hy [n] = A. The general form of the impulse
response 1s

hn] = hy[n] + by [n] = u[n] + A,

where A is arbitrary.

Having infinitely many impulses responses may seem daunting, but it will turn out that only one
of these can be used in applications.
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8.3 Rational Transfer Functions
The time-shift property transforms the difference equation (8.1)) into the form

MY (2) Fan 12N (2) 4 Fag2®Y (2) = by M X (2) F b X (2).

Let
A(z) =2 +ay_ 12N+ Fag®

and
['(2) = byz™ 4 ...+ bg.

The transformed equation may be written
A(z)Y (2) =T (2) X (2). (8.4)

A (z) is called the characteristic polynomial of the equation. Its roots are the eigenvalues. Basic
to the study of difference equations is that the eigenvalues are the “natural frequencies” of the
equation. Note that the order N — K of the difference equation is positive iff there exists at least
one nonzero eigenvalue.

It is tempting to divide through by A (z) X (2), leading to a transfer function

Y(2) T(2)

X (2) A(z)

But this would entail dividing by zero whenever z is an eigenvalue. It is an unfortunate consequence
of this fact that not every impulse response of the difference equation has a z-transform.

Example 8.4 In Example setting A = 0 yields h [n| = w[n|. From Table 3.1, line 2,

1
H = )
(2) 1—2z71
For A =—1,
hin)=uln] —1=—u[-—n—1]
From line 8,
1
H pu—
(2) 1—271
No other value of A yields a z-transform H (z) .
Nevertheless, the function
r byzM 4+ .. 4D
H(z) = L&) _ Mzt o (8.5)

A(z) 2N +an_12V P4+ agzK

is fundamental to the study of (8.1). Since H (z) is the ratio of two polynomials, H (z) is called
a rational function. Starting from H (z), we can recover the difference equation, since both forms
are completely defined by the coefficients ag,...,any_1 and by, ...,by. We say H (z) is proper if
M < N, strictly proper it M < N, improper if M > N, and biproper if M = N. Note that strict
properness is equivalent to |H (z)| — 0 as |z| — oo, while improperness is the same as |H (z)| — oo
as |z| — oo.
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Sometimes it will be advantageous to write H (z) as a rational function in z~!. If H (z) is proper,
we multiply the numerator and denominator in (8.5) by 2= to obtain

bMZMiN 4+ ...+ boZﬁN

H(z) = : 8.6

<Z) 1+(1N_1Z_1+... +CLKZK_N ( )
If H (z) is improper, multiply numerator and denominator by z= :
b b1z 4+ bz M

H (Z) _ Mt Op—12 + + bgz (87)

2N-M gy 12N-M=1 1 qpK-M

(Note that O&S Table 3.1 uses the form (8.6)-(8.7).)

8.4 Poles and Zeros

The Fundamental Theorem of Algebra tells us that every polynomial has a unique factorization into
linear factors. For example,

['(z) = H(Z—Uz‘)Mi,

A =TG- ™
i=1
The multiplicities M; and N; must add up to Y M; = M and > N; = N. If I'(z) and A (2) have
a common root, then there is at least one factor common to both. In forming H (z), all common
may be factors cancelled, leaving a reduced numerator and denominator

H(z) = : (8.8)

where T' (z) and A (z) do not have a common root. The roots of I (z) are the zeros of H (z), and
the roots of A (z) are the poles of H (). If H (2) is strictly proper, we say it has a zero at 0o with
multiplicity N — M. If H (z) is improper, it has a pole at oo with multiplicity M — N. (H (z) never
has both poles and zeros at co.) Counting poles or zeros at 0o, the total number zeros always equals
the total number of poles.

Example 8.5 Let
22 -1
224+32+2
From the quadratic formula, the roots of I' (z) are 1 and the roots of A (z) are —1,—2. Hence,

H(z) =

C(z+1)(z—-1) z-1
H(z) = (z+1D(z+2) 2+2

H (2) has a single zero n =1 and a single pole p = —2. The number —1 is neither a pole nor a zero

of H(2).
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In practice, filter design usually proceeds by choosing a rational function H (z), transforming it to
a difference equation, and writing the equation into a computer program. Representing H (z) with
numerator and denominator I'(z) and A (z) having a common root would unnecessarily increase
the order of the difference equation and the computational burden of solving it. For this reason, we
will henceforth assume that the difference equation has coefficients such that I (2)
and A (z) have no root in common. In particular, this assumption implies that a difference
equation has positive order N — K iff H (z) has at least one nonzero pole.

Each pole p of H (z) determines a circle centered at 0 and passing through p. Suppose these
circles have radii 0 <7 < ... < r,. Then each annulus ann (r;,7;41) contains no pole of H (z), but
does have at least one pole on each of its boundaries. If r; > 0, we also need to consider the disk

D (0,r) = {z| |z| < 7"1} = ann (0,7) U{0}.

These regions play a special role in describing the impulse responses corresponding to the difference
equation.

Theorem 8.1 If an impulse response h [n] of the difference equation has a z-transform H (z) ,
then H (z) is given by with ROC' either ann (r;,r;41) for some i, ann (r,,00), or D (0,71).
Each such ROC corresponds to an impulse response h[n].

Example 8.6 Let

1
Hz)=——F—.
() 24+52+1
The poles are p1 2 = —%, —2, 8011 = % and ro = 2. The possible regions of convergence are D (O, %) ,
ann (%, 2) , or ann (2, 00) .

In applications, we need only consider systems with real impulse response. In other words, we
want the IZT of H (z) to be real. From the “real time-signal” property of the ZT, this is true iff
H (z*) = H*(z). For rational functions, one can show that this condition holds iff all coefficients
ag,...an—_1,bg,...,by of H(z) are real. Hence, we will restrict attention to rational functions with
real coefficients. A consequence of this assumption is that poles and zeros are always distributed
symmetrically about the real axis in the z-plane.

8.5 Partial Fraction Expansion

H (z) can be decomposed into a sum of smaller terms using partial fraction expansion (PFE): If
M > N in H (z), then A (2) may be divided into I' (2) yielding quotient @) () and remainder R (2).
Polynomial division produces a remainder with degree strictly less than that of the the divisor A (z).
Thus

H(z)=Q()+

where the second term is the strictly proper part

R(2)
A(z)

H,(2) =

If @ (2) is not a constant, then The strictly proper term may be further decomposed into the form
r N; A
ik
Hy(z)=> Y —%—. (8.9)
i (2= )
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The coefficients A;, are given by the formula

A

© k=1,...,Ni; i=1,....m 8.10
(N, — k)l dzNk ’ e ! " (8.10)

2=p;

Ay =

(== )" H, ()

For .ZVZ = 1,
A = (2 — pi) Hy (2)

Z=Pi
The A;; can also be found by multiplying through by A (z) and equating the coefficients for
each power of z.

Example 8.7 Find the PFE of

1
H(z):—ﬁ—i—gz—l—l'

No polynomual division is required. The poles are p1 o = —%, —2, both with multiplicity 1. Since none
of the poles is repeated, no differentiation in 18 required.

A ( +1) 1 | 1 2
= A bl fr—y -
! 2) G+ 1) (z+2k—1 221 3

1 1 2
Ag = (242 | =
e P | R

Alternatively, multiplication of by (z + %) (z + 2) yields

z=—2 N 3

1
A11(2+2)+A21 <Z+§> :1,

1

2 2

A==, Ay =—=.

=g 21 3
The PFFE is ) N
H()— 3 __ 3

(2) z—i—% z+4+2

It is also useful to consider the PFE of H (z) in the form (8.6)-(8.7). An easy way to do so is to
define v = 27! and H (v) = H (v™!) and use the techniques above. Here it is common practice to
write the PFE as

The coeflicients are

- 1 1 Ni—k ANi—k N
Aik:—<——) —_<(1—piv)N"H(v)>L’ C k=1,... Ny i=1,...,n
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where the p; are still the poles of H (z). For N; =1,

A = (1 —pv) H (v)

1
Pi

hv=

This approach facilitates the use of tables such as O&S Table 3.1 to find the inverse transform of
H(z).

Example 8.8 For H (z) as in Example[8.7, has the form

z
H(z)= ,
(2) 14 3271+ 272
50 )
~ v
v) = :
(v)=1 + 2v 4 02
By polynomaial division,
Hv)=1- 2
(v) 1+ 2v 402

The coefficients are

14 30 1+ 3v 1
Ay = — (1420 2 ' -T2 S
n = )(1 1) (1 + 20)h=-1 1+§UL_,% 3
The PFE is \ 1
H@w)=1+-—3——_3
(v) +1—|—%v 1420’
or A ,
H(z):ﬁ(z_l)zl—l— 51_— 57
1+ 52 S

Table 3.1, p. 110, in O&S yields the inverse transforms:

Case I: ROC = ann (2, 00)

From line 5,
1 1\" 1 "
1. — o u[n]v _ 2u[n]v
1+ 5271 2 142271

Case II: ROC = ann (l 2)

29
From lines 5 and 6,

1 \" 1
——«— |z ) uhn, —m—— 2"u[-n-1],
145271 2 142271



Case III: ROC = D (0,3)

From line 6,
1 1\" 1
—<—>—(§> ul-n-1], ———««— —2"u[-n-1],

h[n]zé[n]—%<4(%>n—2”>u[—n—1].

Closely related to the PFE is the Inner-Outer Decomposition: If no pole of H (z) lies on the
unit circle then we may separate the poles into those inside the unit circle and those outside. The
terms in the PFE may be grouped accordingly and recombined to yield the functions H; (z) with
all poles inside the unit circle and H, (z) with all poles outside the unit circle. Then

H(z)=H;(z2)+ H, (2).

If the PFE is performed in z, we include the @ (2) term in H, (z), since poles at oo lie outside the
unit circle. If the PFE is done in 271, then @ (z7!) has poles at 0 and is therefore grouped with

Example 8.9 In Ezample H (z) is already in inner-outer form:

2 2
H; =3 ,  H, =3
() z+% () Z+2
In Exzample[8.§,
4 71,1
3 3+ 3%
142271 143271
1
_ 3
Ho ( )__1—1-2,2—1'

8.6 Causality and Stability of Difference Equations

As we have seen, each difference equation leads to infinitely many LTI systems. The transfer
function H (z) corresponds to those which have a z-transform. If we are to use difference equations
to implement a digital filter, the system must be BIBO stable. We may or may not be restricted
to causal systems, depending on the application. The following results clarify the picture.

Theorem 8.2 The family of all the LTI systems corresponding to a given difference equation con-
tains at most one BIBO stable system. Such a system exists iff H (z) has no pole on the unit
circle.

Suppose the condition of Theorem holds. Then we may construct an (open) annulus con-
taining the unit circle and none of the poles of H (z). Let A be the largest such annulus. That is,
A contains the unit circle, contains no pole of H (z), and has at least one pole of H (z) on each of
its boundaries:
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Figure 8.3

Theorem 8.3 Suppose H (z) has no pole on the unit circle, and consider the unique BIBO stable
system determined by the difference equation.

1) The impulse response of the system has ZT equal to H (z) with ROC = A.

2) The system is causal iff H (2) is proper and every pole of H (z) satisfies |p| < 1.

3) The system is anti-causal iff every pole of H (z) satisfies |p| > 1.

Note that the condition for stability is exactly the same as the condition for applying the inner-
outer decomposition — i.e. no pole on the unit circle. Under this assumption, we may write

H(z)=H;(2)+ H,(2).

The inner term H; (z) satisfies the conditions of Theorems and for stability and causality.
The corresponding ROC is
A; = ann (R;, 00) ,

where R; is the largest radius over the poles lying inside the unit circle. Similarly, H, (z) satisfies
the conditions for stability and anti-causality. Its ROC is

A,=D(0,R,),

where R, is the smallest radius over the poles lying outside the unit circle. From the linearity
property of the ZT, H (z) has ROC
A=ANNA,.

The next example shows how to find h [n] using this decomposition.

Example 8.10 For H (z) as in Examples cmd neither pole lies on the unit circle, so there
must be a stable system associated with the equation

y[n—l—Q]—i-gy[n—l—l]—i-y[n]:x[n].
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Since .
!p1|=§<1, [p2| =2 >1,

the stable system is neither causal nor anti-causal. The stable impulse response h [n] has transform
H (z) with ROC = ann (3,2). Ezample yields H; (z) and H,(z). The BIBO stable impulse
response is calculated in Example part I1.

We note that the impulse response calculated in Example [8.10] is infinite-duration. In fact,
a casual glance at O&S Table 3.1 shows that none of the terms in a partial fraction expansion
corresponding to a nonzero pole has an inverse transform which is finite-duration. From this we
conclude that every transfer function having at least one nonzero pole corresponds to an
infinite-duration impulse response. Equivalently, every difference equation with positive order
has an infinite-duration impulse response. This fact will have major implications to the design of
digital filters.

8.7 Choice of Initial Conditions

A given difference equation determines at most one BIBO LTI system. In applications, this is the
system of interest. It should not be surprising that passing an input signal  [n] through the system
is equivalent to solving the difference equation for an appropriate choice of initial conditions. Thus
the system may be implemented by encoding the difference equation in a computer program. In
order to start the recursion, we need to choose initial conditions so that the equation generates
solutions consistent with a BIBO stable system. The next result shows how to proceed.

Theorem 8.4 Consider a difference equation with input x [n].

1) If H (z) is proper, x[n] = 0 for n < Ny, and y[Ny — 1] = ... = y[N1 — N + K| = 0, then the
solution of the difference equation corresponds to a causal system.
2) If p =0 is not a pole of H(2), x[n] =0 forn > Ny, and y[No+1] = ... = y[No+ N] = 0,

then the solution of the difference equation corresponds to an anti-causal system.

The assumptions on z [n] in Theorem are not a major concession. Part 1) applies to real-time
applications. In this case, input data begins streaming at some initial time, which we call N;. In
non-real-time applications, both parts 1) and 2) are relevant. Here the input consists of a data file
of finite length. We may identify the first entry of the file as « [IV;] and the last entry as x [Ns].

If the stable system determined by a difference equation is causal, then we apply part 1) of
Theorem [8.4] For example, since z [n] = 6 [n] has N; = 0, the causal impulse response may be
calculated by setting y[—1] = ... = y[-N + K| = 0. If the system is anti-causal, then part 2)
applies. For xz[n] = d[n], No = 0 and we apply y[1] = ... = y[N] = 0. In either case, for an
arbitrary input z [n], the recursion produces the same output as the linear convolution

y[n] =hin]*xxn].

If H (z) has poles both inside and outside the unit circle, the stable system will be neither causal
nor anti-causal. Here we must invoke the inner-outer decomposition

H(2) = Hi(2) + Ho (2)

to generate a pair of difference equations. These must be solved using the initial conditions described
in Theorem[8.4] part 1) for H; (z) and part 2) for H, (z) . Adding the two solutions together generates
y [n] corresponding to the stable system. The causal (inner) part requires forward recursion, while
the anti-causal (outer) part requires backward recursion.
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Example 8.11 As in Examples let

H; (%) determines the difference equation

o+ 1]+ il = Sl

while H, (z) determines

Yo [+ 1) + 2y, [n] = —gzv in].

Let x [n] = wy [n]. We want causality for the first equation, so we apply the initial condition y; [—1] =
0. For the second, we want anti-causality, so we sety, [4] = 0. Forward recursion of the first equation
yields

yi[n] = —%yi n—1] + §w4 [n —1]

i [0] = —gul-1] =0
yll= gl + 2 =2
yi 2] = —%yi [1]+§:%
yB = —gul+2 =3
pll = gl 4o =

Yo [n] = =540 [+ 1] = Swy [n]
bol8) = o4~ 3 =3
Yo [2] = —%yo 3] - % = —%
Yo [1] = —%yo 2] - % = —i
o l0] =~ 1] - 5 =~



ol =1) = =30 [0) = &

with y, [n] = 0 otherwise. Adding the results,

[t | e
gl
3
Il

e
C3
I

\ -

8.8 Zeroth-Order Difference Equations

Until now, we have restricted attention to difference equations with positive order —i.e. N — K > 0.
If N — K =0, the difference equation (8.1)) becomes

yn+ N|=byxn+ M +...+ bz [n]. (8.11)
The corresponding rational function is

M
H(z):bMZ +"'+bo:bMZM_N-i-...—I—bOz_N.

As always, we assume that no cancellation is possible between numerator and denominator. Thus
bo # 0. Right-shifting (8.11)) by N yields

y[n] =byz[n+ M — N]+...4+byx[n— NJ. (8.12)

Note that, for any input signal x [n], (8.12]) has exactly one solution y [r]. Initial conditions play
no role in determining the solution of the equation.
Setting x [n] = 0 [n] yields the impulse response

hin] = bad[n+ M — N +...+bed[n— N] (8.13)
{ byw, n=N-M,... N
1 0, else

and transfer function
Z{h[n]} = H (2).
If N =0, H(z) is a polynomial and the ROC is the entire complex plane. If N > 0, ROC =
ann (0, 00) . In contrast to systems with nonzero poles, zeroth-order systems always determine
finite-duration impulse responses.
Stability and causality are easy to characterize for zeroth-order systems. Since the pole z = 0
lies inside the unit circle, every zeroth-order difference equation determines a BIBO stable

system. If N = 0, expression (88.13)) reduces to

b_pn, n=-—M,...,0
h[n]_{(), else '
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Since h[n] = 0 for n > 0, the system is anti-causal. If M < N, (8.13) shows that h[n] = 0 for
n < 0, so the system is causal. In all other cases (M > N > 0), the system is neither causal nor
anti-causal. Here we could invoke the inner-outer decomposition

by TN+ b
- ~ :

H,(2) = by 2N 4.+ by,

but this has little use in applications.

9 Analog Filter Design

9.1 Introduction

The design of a digital filter usually begins with the choice of a CT transfer function H (s). This
approach is an historical artifact, owing to the fact that CT filter design is a mature subject,
thoroughly developed during the first half of the 20th century. As we will see, converting from CT
to DT is a simple matter, so it is not necessary to reinvent DT filter theory from scratch.

Most filter design is based on rational transfer functions. For analog filters, this is necessary
because filters are built with electronic components: operational amplifiers, resistors, and capacitors.
The physics of such devices dictate that circuits are governed by differential equations, which in turn
lead to rational functions. For digital filters, rational functions correspond to difference equations,
which may be solved recursively.

We begin by examining two important classes of CT filters.

9.2 The Butterworth Filter
The 2Nth roots of —1 are

N :
Nk = (e”eﬂﬂk) N =¢e2n" k=-N,...

Let

. -7 - N+142k
)\k:]nk:€]277k:€] 2N

™

We are interested in those A\, for which Re A\ < 0. This requires

1<N—|—1+2k<3
2 2N 2
or
0<k<N-1.

Define the degree N Butterworth polynomial
By (s) =sY +an_1s" P+ . +ag

to be the polynomial with roots Ag,...,Ay_1. The cases N = 4,5 are shown in Figure 9.1:
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TAT =
A
3
A‘f

Figure 9.1

Coefficients of the first 5 Butterworth polynomials are provided below:

N BN (S)
s+1
s2+1.41s+1
53 +2.00s% 4 2.00s + 1
st +2.61s% +3.41s°> +2.61s+ 1
s° 4+ 3.24s* +5.245% +5.245* +3.24s + 1

O | W N~

Note that
)\k—N:_)\ld ]CZO,...,N—I,

so the roots of By (—s) are just those A, that lie in RHP (i.e. k = —N,...,—1). It follows that
the roots of By (s) By (—s) are the complete set of Ax. In other words,

By (s) By (=s) = (—js)®N +1= (-1 N + 1.
The Nth order Butterworth LPF is the (causal and stable) CT system with transfer function
1
By (s)
The magnitude frequency response of the filter (squared) is
|Hy (jo)I = Hy (jw) Hy, (jw)
= Hy (jw) Hy (—jw)

HN (S)




SO

|
0
l

Figure 9.2

Figure 9.2 shows that |Hy (jw)| converges to the magnitude of the ideal LPF as N — oo. |Hy (jw)|
has additional properties of interest. For example, it is straightforward to calculate

d . _ .
= [H (o)l = =N Hy (ju)

which is negative for w > 0 and positive for w < 0. Hence, |Hy (jw)| “rolls off” monotonically with
frequency. Further differentiation shows that

d* ,
MIHN(jwﬂw:O:O; kE=1,...,2N — 1.

For this reason, |Hy (jw)| is said to be “maximally flat”. It is important to note that only the
magnitude |Hy (jw)| converges to the ideal LPF. The phase of Hy (jw) rolls off from 0 to —90N°
asymptotically as w — 00, so taking N — oo sends ZHy (jw) — —oo. In some applications, the
phase is not an important issue, so approximating the ideal LPF in magnitude only is adequate. In
other applications, this may not be acceptable.

9.3 The Chebyshev Filter
Consider the (Type I) Chebyshev polynomials

T() (W) = 1,

Associated with these are the functions
22 [ S
Oy (s)=1+4+¢eTy (—> ,
J

where € > 0 is a design parameter. The 2N roots A\, of 'y are symmetrically distributed around
an ellipse with major axis equal to the imaginary axis:
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Let
Cy(s) =2V es™ +an_1s" P+ ... +ao

be the polynomial whose roots are those of I'y (s) that lie in LH P. Then
FN (S) = CN (S) CN (—S) .

The transfer function of the Nth-order Chebyshev LPF' is

1
Hpy(s) =
N( ) CN (S)
The frequency response is
|Hy (o) :
w
N Cy (jw) Cn (—jw)
B 1
Iy (jw)
1
14 e2T% (w)’
|Hy (je)| :
N 1+ 273 (w)
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The Chebyshev filter has a steeper cutoff than the Butterworth filter for any value of N and is,
therefore, a more efficient design. However, it suffers from “ripple” in the passband. This effect can
be made arbitrarily small by choosing € small, since the maximum deviation satisfies

1
Ilm(l— ——— 1] =0
e—0 ( val + 52>
The trade-off here is that N must be increased as ¢ is decreased in order to maintain the filter

bandwidth near wp = 1. For the Chebyshev filter, taking N — oo and ¢ — 0 makes |Hy (jw)| tend
to the ideal LPF. However, ZHy (jw) — —oo for each w > 0.

9.4 Causality

The issue of causality is just as important to analog filters as it is to digital filters. The theory
is completely analogous: Differential equations replace difference equations, vertical strips in the
plane replace annuli, and the imaginary axis replaces the unit circle. Suppose a rational transfer
function H (s) has no pole on the imaginary axis and A is the largest open vertical strip containing
the axis but no pole of H (s) :

Res




Figure 9.5

Then H (s) along with ROC' = A determines a CT LTI system. Compare the following result with
Theorem B3l

Theorem 9.1 1) The system is BIBO stable iff H (s) is proper.
2) The system is causal iff every pole of H (s) satisfies Re A < 0.
3) The system is anti-causal iff every pole of H (s) satisfies Re A > 0.

For any stable CT system with rational H (s), we may separate H (s) into causal and anti-causal
terms in a manner analogous to the inner-outer decomposition from DT analysis: Perform PFE
and group terms with poles satisfying Re A < 0 and terms with Re A > 0. This yields the left-right
decomposition

H(s)=H;(s)+ H, (s).
H, (s) represents a causal stable system, while H, (s) represents an anti-causal stable system.

From Theorem [0.1], the Butterworth and Chebyshev filters are BIBO stable and causal. The
anti-causal version of each can be constructed by reflecting the poles across the imaginary axis.
Since the poles are already symmetric relative to the real axis, it suffices to map s — —s. In other
words, the Nth-order anti-causal Butterworth filter is

1
H =
N (S) By (—S)
and the Nth-order anti-causal Chebyshev filter is
1
H =—\
N () O (=5)

We may also consider the 2Nth-order filters obtained by combining the poles of the causal and
anti-causal cases. For Butterworth filters,

1 1

H(s) = iy B~ TR (9.1)
H (jo) = .
For Chebyshev, 1 1
H(S) = Gy ens) = e (3) (9.2)
H (o) = 1

T 1+ 2T ()

9.5 Frequency Scaling, Highpass, and Bandpass Transformations

Let H (s) be any filter with (roughly speaking) a bandwidth of 1 rad/sec. In practice, we will need
to modify H (s) in order to achieve certain design specifications. The simplest such modification is
to set the bandwidth of the filter to a value other than unity. This is easily done by the frequency
scaling
s
S —,
wpB

S
w

which “stretches” the frequency response by wg. In other words, H (—B> has bandwidth wp, rather

than 1. The pole locations are scaled outward by a factor of wg.
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Example 9.1 Design a causal 4th-order Butterworth LPF with bandwidth 5 Krad/sec. The 4th-
order Butterworth polynomial is

By (s) = (5 - ej%”> (S - ej%”> <5 - ej%”) (s — ej%’r)
= (32+ (281n%> s+ 1> (32 + <2COS%> s+ 1) .
Interpreting s as rad/sec, we need wg = 5000. Then

B (5000) = (<50300>2 +(255) (5500) *+ 1) ((ﬁy +(20055) (505) * 1)

s2 +3827s + 2.5 x 107 %+ 9239s + 2.5 x 107
2.5 x 107 2.5 x 107 ’

S0

s 1 6.25 x 10
H ( ) _ _ .
5000 By (555) (524382754 2.5 x 107) (5% + 9239s + 2.5 x 107)

The poles lie on the circle centered at 0 with radius 5 Krad/sec.

It is sometimes convenient to reinterpret s as Krad/sec, Mrad/sec, etc. in order to make the
coefficients easier to work with. In our example, we can write the transfer function with s in
Krad/sec. This amounts to setting wp =5 :

S 625
(- -
5 (s2 4 3.827s + 25) (s 4+ 9.239s + 25)

In some applications it is desired to block components of a signal x (t) below a certain frequency
wp. Define the ideal highpass filter (HPF) by

) 1, |wl>w
HHP(]W):{O iwi<w2'

Hr}r(é »)

Figure 9.6

The interval [0, wp| is called the stopband.
Consider the frequency map



and the transformed filter H (Wf) . Specializing to s = jw yields

Wo
wh— ——

w
two — F1,

lw| > wy <= ‘—@ <1
w

Hence, if | H (jw)| approximates Hyp (jw), then |H (—j“)| approximates Hyp (jw) .

Example 9.2 Design a causal 4th-order Butterworth HPF with stopband [0,5] Krad/sec. Inter-
preting s as Krad/sec, we need wy = 5. Then

JOR(ORCHIORIORESIOR)

s?+ (10sin %) s +25 s?+4 (10cos %) s + 25

52 52

Y

5 1 s
<§) © By (8) (52 43.827+25) (s +9.2395 + 25)

Sometimes it is required to design a filter which passes components of a signal over some interval
of frequencies and attenuates the signal elsewhere. For example the ideal bandpass filter (BPF') is
given by
1, w <|w| <wsy

Hpp (jw) = { 0, else

)

where 0 < w; < wy < 00.

Hyp(w)

4 |
— f t oV
Figure 9.7

The filter has bandwidth

Wwp = W2 — W1

and center frequency

Wy = v/ W1Ws.
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The interval [wy,ws] is called the passband.
Consider the frequency map

= (L)

wp \wo S
and the transformed filter H (3 (s)). Writing

s? + wi

wpSs

ps) =

exposes the fact that H (/5 (s)) has order 2N. Specializing to s = jw, we obtain

Wo — 07
wWpB Wo w1
oy YO <ﬂ ﬂ) 4
wp \Wo %)

w < |w| <wy = |B(jw)| < 1.
If |H (jw)| is approximates Hyp (jw), then |H (5 (jw))| approximates Hpp (jw) .

Example 9.3 Design a causal 8th-order Butterworth BPF with passband [5,10] Krad/sec. Inter-
preting s as Krad/sec, we merely need to calculate

1

") = 356)

with

Wo = Vwiwg = V50 = 5\/5,

W = Wy — Wy = D.

B3 = 5 (12

s2 + 50 2+<2, 77) s2 + 50 o s2 + 50 2+<2 7r> s2 + 50 O
= Sl — COS —
5% 8 bs 5% 8 Ds

(s 4 5.412s3 + 15052 + 270.65 + 2500) (s* + 13.07s® + 15052 + 653.3s + 2500)
6255

N—

6255

H (s) = .
(5) (s* + 3.827s3 + 12552 4 191.3s + 2500) (s* + 9.239s3 4 12552 + 461.9s + 2500)
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9.6 Zero Phase Filters

A filter H (jw) # 0 has zero phase if ZH (jw) = 0 for all w. This is the same as saying that H (jw)
is real and nonnegative for all w or, equivalently,

H (jw) = |H (jw)|. (9-3)

From the even-odd property of the CTFT, a zero phase filter has an even impulse response A (t) . If,
in addition, the filter is causal, then & (t) = 0 for |¢t| > 0. This implies & () = «d (t) for some constant
a. A similar analysis holds for anti-causal zero phase filters. These facts may be summaraized as
follows:

Theorem 9.2 If a CT filter has zero phase and is either causal or anti-causal, then H (jw) is
constant.

Unfortunately, h (t) being even does not imply zero phase:

(t+1 1, |t <1
h(t)—w( 2 >_{0, else

H (jw) = 2sinc
n

Example 9.4 Let

Note that h (t) is even, but

is megative for certain w, violating . In this example, ZH (jw) oscillates between 0 and 180°.

Example ?? demonstrates that, in general, one must check H (jw) directly to determine whether
the a filter actually has zero phase. However, for rational functions H (s), the zero phase property
has a simple characterization in terms of poles and zeros: For any real number A, let

Qxr(s) =—(s°=N?).
The roots of Q) (s) are £\. Furthermore,
Q)\ (]CU) - (,()2 + )‘27

SO
Q) (jw) =0

for all w. Now let A be complex and set

Qx (s) = s* =2 (ReA?) s + ).
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The roots of Q) (s) are the 4 symmetrically positioned complex numbers +\ and +\* :

ZMS

¢
Ax XA

Q Res

_ ,\?‘ )(/-\’)Q

Figure 9.8

Setting s = jw,
Q) (Jw) = Wi+ 2 (Re )\2) w? 4 |)\|4
is real. Since
IA? =A% > —ReN?,
we obtain )
Qx (jw) > w =2 AP w? + M\ = (w? = NP7,
SO

ZQ)\ (]w) =0.

More generally, suppose H (s) has poles and zeros which may grouped into pairs and 4-tuples
as described above. That is,

o H QQ (5)
H(s) = Ao (9.4)

If A is real and positive, then
ZH (]w) =ZA+ Z ZQQ (jw) - Z ZQ, (jw) =0,

so H (s) has zero phase. A moment’s reflection reveals that the form (9.4) is equivalent to having
the poles and zeros of H (s) symmetric with respect to both axes. In the case of imaginary poles
or zeros, symmetry reduces to even multiplicity.

Theorem 9.3 A CT rational transfer function H (s) # 0 has zero phase iff H (jw) is real and
positive for small w and the poles and zeros of H (s) are symmetric relative to both the real and
maginary axes.

The 2Nth order noncausal Butterworth and Chebyshev filters (9.1)) and (9.2]) have H (0) > 0,
no zeros, and the required symmetry for poles. Hence, these filters have zero phase.

83



Example 9.5 Design an 8th-order zero phase Butterworth LPF with bandwidth 5 Krad/sec. Here
we use the form with N = 4 and perform a frequency scaling:

1 1
H = =
) (-1)*s8+1 s5+1
(s> 1 390625
5/ (2)P41  s5+390625°

In applications where approximating an ideal LPF, BPF, or HPF in magnitude only is accept-
able, a nonzero phase phase filter will work. In non-real-time applications, approximation in both
magnitude and phase is feasible using a zero phase filter. Since frequency scaling, highpass, and
bandpass transformations merely reassign the values of H (jw) to different frequencies, the zero
phase property is not affected by such modifications of H (jw).

9.7 Phase Delay, Linear Phase, and Phase Distortion

Consider a single-frequency signal
z(t) = ol (wot+9)

If we write ¢ = —wyT, we obtain
z (t) = e?wolt="),

In other words, the phase shift ¢ is equivalent to a time delay

¢

T=——.
Wo

For an arbitrary signal x (t), the phase /X (jw) varies with frequency. We define the phase delay
to be

ZX (5
Aw) = — 220w
Suppose ZX (jw) is a linear function of frequency

X (jw) = —Tw,

where 7 is a constant. Then the phase delay is

| LX (jw)

A(w) = -

=T

In other words, each sinusoid that makes up the signal is shifted right by 7, so linear phase shift
corresponds to a time-delay (or advance) of the signal.
Now consider systems. We say an LTI system with transfer function H (s) has linear phase if

ZH (jw) = —wT

for some constant 7. In this case, let

Then |
ZH, (jw) = £ (H (jw) €’T) = ZH (jw) +wr =0
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and
H(s)=Hy(s)e .

From the time-shift property of the LT, the impulse responses satisfy
h(t)y="hy(t—71).

We conclude that a linear phase filter is just a zero phase filter with a time-shift. Since
the impulse response of a zero phase filter is even, the impulse response of a linear phase filter is
the shift of an even function.

Rational transfer functions H (s) generally have a phase ZH (jw) that is nonlinear. This can be
seen by writing H (s) in terms of poles and zeros:

N (0
=60

Then
LH (jw) = LA+ L (jw—G) =Y L (jw = pi)
—Im¢; — Im p;
:AA—Zarctan( Rel, >+Zarctan< Rep; ),

which is a nonlinear function, except when poles and zeros satisfy the kind of symmetry discussed
above. One can show that for CT systems, every rational function with linear phase has
zero phase.

Suppose a system has nonlinear phase. Then the phase delay A (w) is not constant. This means
that at some frequencies the system imposes more delay than at others. This effect is called phase
distortion. Phase distortion is a serious problem in applications such as high-speed communication
networks, where the “shape” of signals must be maintained. It has also been argued that phase
distortion causes problems in audio systems. This claim is still controversial, except in unrealistically
high-order filters.

The next example shows how signal shape can be corrupted by nonlinear phase.

Example 9.6 Let
s—1

s+1°

H(s)=—

Then

=1

Y

4 jw—1 w?+1
|H<w>|=\— \—

jw+1] w241
so any change in signals passing through the system is due entirely to phase distortion. Systems
with |H (jw)| = 1 are called “all-pass”. The phase

jw—1
Jw+1

ZH (jw) =~ (— > = —2arctanw

18 nonlinear and
arctan w

Aw)=2

w

85



yaYLV

2.
Gl
Q
Figure 9.9
Low frequencies are delayed more than high frequencies. To see what phase distortion looks like,
consider
(t) = u(t)
Then

Figure 9.10

For DT filters H (ejﬂ) , phase delay is the same as in CT:

NIC)

Thus linear phase means ‘
LH (eJQ) = —Qr.

Although the definitions of linear phase in CT and DT are the same, there are a couple of important
differences:
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1) Since
ejéH(ejQ) — e*jQT

must have period 27,
—(Q42m)T=-Qr — 27N

for some integer N. Hence, 7 = N. This is merely a reflection of the fact that delay in DT systems
must be integer.

2) A DT filter with nonzero linear phase can have a rational transfer function. For example, the
system that delays the input by N time steps has transfer function

H(z)=z".

10 IIR Filters

10.1 Conversion of CT to DT Filters

We now have methods for designing CT low-pass, high-pass, and band-pass filters. These can be
either causal or zero phase. The next step is to convert the CT filter to DT. The simplest way to
do this utilizes a function ¢ (z) which maps the z-plane into the s-plane:

s=¢(z).
Ideally, ¢ (2) should satisfy 3 properties:

1) ¢ is a 1 — 1 map between the s and z planes.
2) ¢ (z) maps the unit circle onto the imaginary axis and the unit disk onto LH P.
3) ¢ is a rational function.

In view of 1), ¢ (z) has an inverse
2=¢7" (s).
Applying ¢ (z) to the CT filter Hor (s) produces the DT filter

Hpr(2) = Her (¢(2)) .

The poles of Hpr (z) are just p = ¢~ (\), where \ ranges over the poles of Hcor (s). (The same
holds for zeros.) Property 2) ensures that ¢ (z) preserves BIBO stability, causality, and anti-
causality. Property 3) ensures that Hpr (z) is a rational function whenever Herp (s) is rational.
This guarantees that we can implement the digital filter by encoding difference equations.

A common choice of ¢ (z) is the bilinear transformation

2z2z—1
— 10.1
where T > 0 will be the sampling period. The inverse is
1+ ZLs
~1 2
5) = , 10.2
6760 =14, (102
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proving 1). Writing z in polar form, we obtain the rectangular form of ¢ (z) :

, 2 re? — 1
ja 2= -
¢ (re )—TrejQ—i-l
2 (re —1) (re 7% 4 1)
T res? + 17

2 r?2 — 1+ j2rsin{
T |re® 4+ 1)

Y

SO 0 21
. re —
o=Reo¢(ré’)==——
¢ (re”) T |rei + 1)
Note that ¢ = 0 iff » = 1, so ¢ (z) maps the unit circle onto the imaginary axis. Also, o < 0 iff
r < 1, so ¢ (z) maps the unit disk onto LH P, establishing 2). Property 3) is obvious. Converting
from CT to DT using the bilinear transformation is called Tustin’s method.
In filter design, we are interested in frequency response Hor (jw) and Hpr (e/) . Restricting to

s = jw and z = €/, the bilinear transformation becomes
w=—jo (/%) (10.3)
4 sinQ)
- Tei® 4+ 1)
2 sinQ)
T T1+cosQ

= —tan —.
T My

Note that (10.3) and, therefore,
. 2 Q
HDT (BJQ) = HCT (]T tan E)
have period 27. The inverse is

T
(1 = 2arctan % (10.4)

In cases where the CT filter has transfer function defined only for s = jw, applying the bilinear
transformation requires ((10.3)) rather than (10.1)).

Example 10.1 Applying (10.5) to the CT ideal LPF Hpp (]ﬁ) with bandundth wp yields the DT
filter in Figure 10.1:

H (&)

P

\ : o | —
-2 T =2t 8L |0 2tun :_%‘_f_ T 2
PR
Figure 10.1
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The CT ideal BPF converts to Figure 10.2:

-0 1 [

-+

-0 Ty ) f

Figure 10.2

One might be troubled by the fact that we now have two very different transformations from w
to Q. These are Q = w7, which results from sampling, and the bilinear transformation (10.4)). It is
important not to confuse the meaning and usage of these transformations. Sampling is the physical
(and mathematical) process of converting signals from CT to DT. Tustin’s method is one of many

mathematical operations that convert systems from CT to DT.

This difference is made clearer if we apply each transformation to a single CT filter. First, sample
the filter impulse response h (t) to produce h (nT'). Then convert the transfer function Her (s) to
Hpr (z) via Tustin’s method, and find the impulse response h [n] of Hpr (z) . In virtually all cases,

it will turn out that h (nT) # h[n].
Example 10.2 Let

The CT impulse response is

ForT' = 2, sampling yields

Applying Tustin’s method,

HDT(Z) = Iicr (j;i) =
and ]
hin) =5 (0[n] +d[n—1])
Note that

for every n > 0.

The following Filter Design Algorithm should help keep things straight:

1) Identify the desired bandwidth or passband in CT frequency w.

2) Apply Q = wT to determine the corresponding bandwidth 5 or passband [y, Q] .
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3) Convert to the CT bandwidth wp or passband |w;,ws] by applying the bilinear formula ((10.3)).
4) Choose a CT filter design method (Butterworth, Chebyshev, etc.) and associated parameters
(N, €) to meet frequency and other specifications in CT.

5) Transform the CT filter to DT using the bilinear formula and graph Hpr (ej“)T) .

6) If the specifications on Hpp (ej“’T) are not met or if the filter is over-designed, modify N accord-
ingly and repeat 5).

Under Tustin’s method, the two frequency responses Her (jw) and Hpr (ej‘”T) will be similar over
0 <w < % but not quite identical because of the distortion of the frequency axis described by

2 T
W tan (§w> . (10.5)

This is a consequence of the nonlinear nature of the bilinear transformation. Steps 2) and 3) of
the filter design algorithm are constructed to cancel out this effect, at least at the critical cutoff
frequencies. Applying this scheme with modern computers and software such as MATLAB, it is
easy to iteratively adjust the design parameters N and ¢, view the resulting graph, and ultimately
converge to acceptable values.

Example 10.3 Design an 8th-order, causal, digital Butterworth BPF for sampling rate 44.1 KHz
with passband [10,15] KHz. The DT passband is

20 307
44.17 441

From , the modified C'T passband is

[ = 2t 0 2‘5 Qs
W, Ws| = TanQ,Tam2

[, Q) = [ } — [1.425,2.137].

} — [76.18,160.6] .

Note that the CT frequencies have increased substantially, due to .'
[f1, fo] =[12.12,25.56] KHz
KHz. Working as in Example we obtain the CT filter
5.079 x 107s?

H -
or (s) 58 4+ 220.65" 4 7.327 x 10%s° +9.669 x 106s® + 1.544 x 10%s*
+1.183 x 1013 + 1.097 x 10352 + 4.039 x 10*s + 2.240 x 10'¢
to DT with
T=——=0.022 .
I 0.02268 ms
Invoking Tustin’s method,
z—1
= 88.2
6() = 8825,

5.079 x 107¢*
s8 4+ 220.6¢7 + 7.327 x 10%¢5 + 9.669 x 105¢° + 1.544 x 10%¢*
+1.183 x 1011¢? + 1.097 x 1013¢? + 4.039 x 10*¢ + 2.240 x 1016
B 7.374 x 1073 (22 — 1)*
28— 1.37027 + 2.87126 — 2.49325 + 2.84824 — 1.56623 + 1.13622 — 0.32442 + 0.1481

HDT (Z) =
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Since (|10.3) merely reassigns values of Hor (jw) to different frequencies to produce Hpyr (ejQ) ,
the zero phase property is preserved under the bilinear transformation. In both CT and DT, zero
phase is equivalent to evenness of the impulse response, so the bilinear transformation takes even
h(t) into even h[n]. As in CT, the only causal zero phase filters are the constants.

It is worth noting that the bilinear transformation does not preserve linear phase:

Example 10.4 Consider the unit delay system
HCT (S) = e*ST.

The phase s '
LHer (jw) = Ze T = —wT,

so the system has linear, but nonzero phase. Applying the bilinear transformation,
) 2 Q )
Hpr (¢") = Her (JT tan 5) — ez

which has nonlinear phase

ZHpp (ejQ) = -2 tan%.

For rational functions, we note that the bilinear transformation maps CT poles and zeros into
DT poles and zeros according to

1+ LA
. 10.6
p=1"T, (10.6)

In the zero phase case, poles and zeros are symmetric about the real and imaginary axes. Note that
symmetry about the real axis is retained under ({10.6)):

1+ T (1+§A>* .
The T =/
—5A —3A
Symmetry about the imaginary axis is more complicated:

(=) A
o (1=p) 1 .

We say complex numbers p; and ps are symmetric about the unit circle if

1

P2 = —.

P1
For real numbers, (10.8) states that p; and p, are reciprocal. If p; = 0, then (10.8) reduces to
p2 = 00. Hence, the number of poles or zeros at z = 0 must equal the number at oco.

Under the bilinear transformation, symmetry of CT zeros about the imaginary axis is equivalent
to symmetry of DT zeros about the unit circle. The same holds for poles. This leads to the DT
counterpart to Theorem

+

1
1

[Nl

(10.8)

Theorem 10.1 A DT rational transfer function H (z) # 0 has zero phase iff H (ejﬂ) s real and
positive for small Q and the poles and zeros of H (z) are symmetric relative to both the real azis
and the unit circle.
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10.2 Recursive Structures for Causal IIR Filters

Having designed a DT filter H (z) that we wish to implement on a computer, we need to decide
between several methods for doing so. If H (z) has at least one nonzero pole, then the impulse
response h [n] does not have finite-duration. Such systems are called infinite impulse response (1IR)
filters. In order to implement an IIR filter, we must encode the difference equations corresponding

to
H(z)=H;(2)+ H,(2)

with the appropriate initial conditions. This can be done using a variety of computational schemes.
Several issues must be considered when deciding which scheme to use. For example, the method
chosen can affect computational speed, memory requirements, and numerical stability. A detailed
study of these issues is beyond the scope of this course. A “quick and dirty” approach is to design
several different computational structures and decide through simulation which works best. The
best choice turns out to be quite application-dependent.
Suppose we are given a difference equation

yn+ Nl+ay_y[n+ N—1]+...+agy[n+ K] =byx[n+ M|+ ...+ byx [n] (10.9)

or rational function
B barzM=N bz N
S l4any_qz 4. FagEN
corresponding to a BIBO stable system. Recall that, if the system is neither causal nor anti-causal,
then we may decompose H (z) into inner and outer parts, resulting in the sum of a causal system
and an anti-causal system. Hence, it suffices to consider the implementation of systems that are
either causal or anti-causal. We begin with causal systems.

We may rewrite for forward recursion as

H(2)

y[n]=—an1yn—1—...—agyn+ K — N]+byx[n+ M —N]+...+byz[n— N]. (10.10)

For any input x[n| with z[n] = 0 for n < Ny, y[n] may be computed directly by recursively
evaluating (10.10)) using the initial conditions

y[Ni—1]=...=y[Ny — N]=0.

This approach corresponds to the signal flow graph in Figure 10.3:

Xiuny e \/ Inl

Figure 10.3
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(Set a; = 0 or b; = 0 if it is not defined.) At each time step,
v[n] =byx[n+ M — N]+...4+byx[n— N]
is computed. Then y [n] is generated by the recursion
y[n]=—-anv1yln—1]—... —agy[n+ K — N] +v|[n].
This method is called Direct Form I and may be viewed as factoring

1

1 + aN_12—1 4+ ...+ (IKZK_N

> (bMZM_N + ...+ b()Z_N) .

i - (

A related method is Direct Form II and is defined by the factorization

1
H ()= (by MV + . 4 bz .
(2) ( Mz + + boz ) l+an_1z7 v+ ... +agzEN

In other words, we first compute an intermediate signal v [n] through the recursion
v[n]=—-any_wn—1—...—agvn+ K — N]+x[n].

Then find
y[n]=byvn+M —N]+...+bwn— NJ.

The signal flow graph is

K Te

Figure 10.4

For any input and initial conditions, Direct Forms I and II yield the same output (ignoring
roundoff error). One difference between the two structures is that Figure 10.3 uses 2N — K delays,
while Figure 10.4 requires only N. Each delay corresponds to one unit of computer memory, so
Direct Form II involves a savings in hardware.
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A third structure is obtained through PFE (in z71):

; S
H(z)=Q(z7") +22m.

i=1 k=1

The polynomial CNQ (271) may be implemented with a series of delays. Recall that the coefficients in
the strictly proper term may be complex. In order to avoid the difficulties of complex computation,
we may combine conjugate terms into terms with real coefficients. For k =1,

G g (eR) ()
1—pizt  1—pizb 7 1—(2Rep)z '+ |pi|* 22
For arbitrary k,
~ ~ 2 i (-1 (I;) Re <f~1jkpl) z7!
Aik Aik =0

(1—piz )" (1=prz 1) (1—(2Rep;) 21 + |pil? 2*2)]{.

Each term in the resulting PFE corresponds to a smaller difference equation, which may be solved
recursively according to either Direct Form I or II. Summing the outputs gives a realization of the
original system. This approach is called Parallel Form.

Example 10.5 Let
34 271

- 1,1 _1,-3"°
1+22 1%

H(2)

The PFFE is
1 1 1

+ - + - .
-5zt 1+ l%z—l 1+ i1

H(z) =

Combining conjugate terms,

1 24271
H(z)= )
(2) 1—%2—1 1+z—1+%z—2

Using Direct Form II, the first term yields the equation
1
y1[n] = LA [n—1]+z[n].
The second term corresponds to
1
ve [n] = —vg [n — 1] —§v2[n—2]+x[n],

Y2 [n] = 209 [n] + vy [n —1].
The overall system output is
ynl =y ln]+ya2n].
The signal flow graph is
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Figure 10.5

The final technique we will study requires factoring H (z) into linear and quadratic factors with
real coefficients

H(z)=H,(z) - - Hi (2).
This can be done in a variety of ways. Each factor H; (z) determines a difference equation which

can be implemented using Direct Forms I and II. The resulting systems are connected in series to
generate the overall system. This is called Cascade Form.

Example 10.6 The transfer function in Example may be factored

3+271
H(Z) = (1 _ %271) (1 Tt 5272) = H, (Z) H, (Z),

where

B 34271

IR
1

1— 171
2
Of course, this is only one of several possibilities. Hy (z) and Hy (z) determine the Direct Form 11

equations

H1 (Z)

HQ (Z) =

vl[n]:—vl[n—l]—%vl[n—2]+x[n],

y1 [n] = 3vy [n] + vy [n— 1],

yln) = 5yln = 1]+ ]
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Figure 10.6

10.3 The Anti-Causal Case

The same computational structures may be used for anti-causal systems. The only change is that the
recursion is backward, rather than forward. Suppose (10.9) corresponds to an anti-causal system.
Backward recursion is based on the form

1 an_ a
ynl=——yn+N-K| - Lynm+N-—K—-1—... — 2Ly n+1]
ag aK 0:¢

b b
+ Yo+ M-K]+.. +—z[n— K]
(0774 ar

and )

b M-K 4 4 b K

H(z) = = e
LpN-K  SNZLN-K-1 g 4 21y 4]
aK aK

aK

For Direct Form I, we factor

1 bM _ b[] _
H(z) = - - = MK 2 K),
) ( ’ zN—K+—§K1zN—K—1+...+—§K12+1> (aK aK

aK

which yields the equations

b b
vin] = Xxn+M—-K|+...+—z[n— K],
ax ax
y[n}:——y[n+N—K]—aN*ly[njLN—K—l]—...—aKHy[n—}—l]—}—v[n].
aK aK aK

For Direct Form II,

by n—k bo k 1
H(Z)—(az ++@Z izNiK_‘_ag}zlzN,Kfl_‘_.“_{_a;(;lz_l_l )

1 _
v = —— o+ N-K| - Xt N-K—1]—...— T+ 1]+ 2 [n],
aK aK aK
b b
y[n]:ﬁv[n+M—K]+...+iv[n—K].

For Parallel form, perform PFE (in z, not z7!), combine conjugate terms, and use Direct Form I
or II on each term. For Cascade Form, factor H (z) and use Direct Form I or II on each factor,
combining conjugate terms. In each case, the resulting signal flow graph involves forward shift
elements z. Although mathematically a forward shift is a noncausal operation, on a computer each
shift is just a memory element. The recursion proceeds forward in actual time, but represents a
backward progression through conceptual time. Of course, this is possible only in non-real-time
applications.

Example 10.7 Let



Find the Parallel Form. The poles are
pr=2, p3=-—1%£].

Since the poles lie outside the unit circle, H (z) corresponds to a BIBO stable, but anticausal, filter.
The PFFE is

1 n 1 n 1
z2—2 z4+1—37 z+4+1+47
1 2z 42
_|_
z2—2 2242242
—3 z+1

= + .
—1z4+1 322+2z+1

H(z) =

For the first term,
n] = o+ 1] - sz
yiln] = Sy ln 5% n]-
For the second, we use Direct Form II:

vg[n]:—%vg[n+2]—v2[n+1]+x[n],

Yo [n] = ve [n+ 1] + vg [n].
Finally,
y[nl =y [n] +y2[n].

'—J,; J/l [n)
1 vz
LAY ALY
\ ALY
~_ ( " | YLUQ
—
Figure 10.7
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11 FIR Filters

11.1 Causal FIR Filters

If a DT filter Hpr (em) has a finite-duration impulse response h[n], it is called a finite impulse
response (FIR) filter. FIR filters are always BIBO stable, since

S Ihlall = Y hinll < oo.

n=—oo

An FIR filter is often obtained by windowing the impulse response of an IR filter.
First consider the causal case. We start with an IIR filter with impulse response & [n]. Then
h[n] is infinite-duration and A [n] = 0 for n < 0. For a window w [n] with length N, we set

hn| = awn|hn],

where « is a scaling factor. Then h [n] is nonzero only for 0 < n < N — 1 and thus determines a
causal FIR filter. If the IIR design is based on a CT LPF Hegr (jw), the bilinear transformation

(10.3)) indicates

, 2 Q
HDT (6]9) == HCT (]f tan 5) .

In this context, windowing has some unfortunate consequences. One of these is that it changes
the gain of the filter at critical frequencies. For example, in designing a low-pass FIR filter, we wish
to achieve a “DC gain” which matches the original IIR filter. Setting 2 = 0, we want

Hpr (1) = Her (0).

(Typically, Hor (0) = 1.) Windowing generally results in the filter with impulse response w [n] h [n]
having DC gain other than Hep (0) . Hence, we need to choose « to achieve

H (1) = Her (0).

The DTFT of the windowed filter is

SO

Example 11.1 Starting with the 2nd order Butterworth, causal, C'T' LPF with bandwidth 1, convert

to DT using sampling rate f, = & and window to FIR using a Hann window with N = 7.

2
1

HCT(S):—52+\/§S+1
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() V2 () +
1 2242241

T 24 V2213-2V2
1 142271 4 272

T 2421+ (3-2v2) 22
L_\@l—\/3—2\/§z_1
V2 1+ (3-2v2) 22

— 14

From O&S Table 3.1, lines 11 and 12,

hn| = (1 + %) 5 [n] — V2 (cos (gn> — sin (gn>> (3 - 2\/5)3 uln].

V2
3 (cos (3n) — sin (3n) (3 - 2v2)

n=1

=4.975

|3

(1 - cos (5n))

The constant o may be designed to correct the gain at other critical frequencies. For example,
in a band-pass design, we may wish to set « so that the FIR and IIR gains match at wy = /wiws :

H (e/°T) = Her (jwo) -

Then .
B Her (jwo)
o= .
N-1 .
> wn]hn]e dwln
n=0

11.2 Zero-Phase FIR Filters

Beginning with a zero phase (noncausal) CT filter Hor (jw) , we may convert it to a DT Hpr (/%)
and take the IDTFT, obtaining an even impulse response h[n|. To maintain zero phase after
windowing, the window must also be even. The standard windows w [n] are nonzero only for
0 <n < N — 1, but may be shifted to the even function w [n + 22] . (N must be odd.). In this
case, set

h[n] = aw ln—i—%] hn],
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with

Z

=

As we noted in Example [9.4] an even impulse response does not always give rise to a zero phase
frequency response. This leads to another unfortunate consequence of windowing: A windowed
zero phase filter may not have zero phase.

Example 11.2 Let

The poles and zeros of

T E Y

guarantee that the IIR filter has zero phase. Let w [n] be the rectangular window with length N = 3.
Then

hln] = awln + 1] h[n] = { 04(%)'"('], " ~1,0,1

18 even, but
In|
2 . 2 . 4
]Q P 19] 1 2 =i — 1 _ Ol .
e an§_1<) a(ge + +3e ) a<+3cos)
Since H (ejQ) oscillates between + and —, the FIR filter does not have zero phase.

In most cases windowing zero phase IIR to FIR does maintain zero phase. But, as demonstrated
in Example the zero phase property must be confirmed explicitly.

Example 11.3 Starting with a 2nd order Butterworth, zero phase, C'T LPF with bandwidth 1,
convert to DT using sampling rate fs = 1 and window to FIR using a Hann window with N = 11.
Confirm that the FIR filter has zero phase.

1
Hor (5)= =337
1 —12_2, 1
Hor (2) = _ "3 3 3
(2= 41 PP+l
2 _Zf]-
Hi — 9 — 9
(2) z—3 1—3z71
1 2
Hy(2) = —5 —
B)=—3-73
2 1
h[n] §3 "un -1 - =8[n]+2-3"u[-n] = 5(2 37— 5 [n])



1 1
wn+ 5] = 3 (1 — Cos (g(n+5))> =3 (1—i—cos (gn)>
1
*="3
>_ wln+5]h[n]
n=-—5
6
5
> (2-37I" =4 [n]) (14 cos (En))
n=-—5
. 3
o 5
1+23 3" (1+cos(En))
n=1
=1.175
(0.0009238, n = +4
0.01003, n =43
Bin] = 4 01959 (2-37 M —35n)) (1+cos(Zn)), -5<n<5 ] 0.05699, n==2
N 0, else N 0.2362, n==+l1
03918, n—=0
L 0, else

H (2) = 0.00092382"* + 0.01003z % + 0.056992 2 + 0.23622 " + 0.3918
+ 0.23622 + 0.056992* + 0.010032> + 0.00092382*

H () = 0.0009238¢ 7% + 0.01003¢ 732 + 0.05699¢ /2% + 0.2362¢ 7 + 0.3918
+ 0.2362¢7? + 0.05699¢7** + 0.01003¢7? + 0.0009238¢74
= 0.001848 cos (452) + 0.02006 cos (3€2) + 0.1140 cos (2€2) + 0.4724 cos 2 + 0.3918
> 0.01519

Since H (e’) > 0 for all Q, /H (/) =0.

11.3 Choice of Window Length

For any BIBO stable LTI system, the impulse response satisfies |h[n]| — 0 as |n| — oo. Hence,
using a sufficiently long window ensures that

h[n| = aw [n] h[n]
closely approximates h [n] . But how long is long enough? If the window is too long, we are essentially

windowing 0’s for large n, and the filter implementation will require unnecessary computations and
memory. If the window is too short, the approximation to the IIR response will be poor.
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A simple answer to this question comes from a study of the exponential function, which should
be familiar from elementary circuit analysis. The following table is easy to compute:

—m

1
37
14

.050
018
.0067
.0025
.00091
.00034
.00012

(&

©o|wo| || o x| w| o~ o3

In CT problems, one often encounters the decaying exponential
z(t) =e M.

The magnitude is
|.%’ (t)’ — ef(Re/\)t'

Setting

we may write
t
[z ()] =€~

The number 7 is the time constant. The left column of the table represents an integer number
of time constants, while the right column indicates the extent to which x (¢) has decayed after
that length of time. For example, 1 time constant translates into x (t) falling to 37% of its initial
value. After 5 time constants, x (¢) has fallen below 1% of its initial value z (0). For this reason, 5
time constants is a common measure of how long an exponentially decaying signal takes to become
negligible.

For DT, exponentials are usually written in the form

xn]=p".

Assuming |p| < 1, we may draw a comparison to the CT case by writing

_n
T

@]l = lpl" = €7,

where
1

In L
ol

is a (dimensionless) “time constant”. Again, for n > 57, |x [n]| is less than 1% of |z [0]|. For n < 57,
x [n] is large enough that it should not be ignored.

Now consider an IIR filter with poles py,..., pr inside the unit circle and poles pxi1,...,pN
outside the unit circle. For n > 0, the impulse response h;[n] of the inner poles is a sum of
right-sided exponentials pj', and the worst-case “inner time constant” is

1
T; = INnax 1 -
1<k In—
1]

T
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The impulse response h, [n] of the outer poles is a sum of left-sided exponentials p". The decay
occurs as n — —oo. This is equivalent to letting n — 400 in

()
& pi '

Hence, we define the “outer time constant”

1

Tp = Max ——.
1>k In|p

The inner time constant relates to decay as n — oo and the outer to n — —oo. To avoid wasting
computer resources, windows should be nonzero only on the interval —57, < n < 57;. We refer to
this as the 5 time constant rule.

For causal filters, only inner poles appear, so we can calculate N according to

or
N = [57’l—| + 1,

where
[t] = smallest integer > ¢

is the ceiling function. In the case of zero phase filters, h [n] is even so, again, we need only consider
the inner poles. Since h [n] = 0 except for

N—1< <N—1
_——_— n —
2 - = 27
we may set

N -1 57]

_ = Ti

2
or

N =2[57;] + 1.

Example 11.4 In Example the poles are

pra = £j\/3—2V2,

1
7= ——1— = 1.135.

S0

The appropriate window length is
N =[57]4+1=1]5675]+1=T.

In Ezample

N =2[57]41=2[4551]+1=11.
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11.4 Linear Phase FIR Filters

A DT filter with transfer function H (ejQ) is a linear phase filter if there exists an integer ng such
that '
/H (em) =-ngf), —-T<NR<T.

Thus ‘ . '
H (639) = }H (eJQ)| gm0,
In particular, a zero phase filter has linear phase with ny = 0. Linear phase filters exhibit no phase
distortion, since the phase delay
/H (e7®
is constant.
Let h[n] be the impulse response of a linear-phase filter. Then

hn+mno) e ™H (/) = [H ()],

so a filter has linear phase iff its impulse response is the time-shift of that of a zero phase filter.
In particular, h[n + ng| must be an even function. If, in addition, the linear phase filter is causal,
then h[n] = 0 for n < 0, so h[n] = 0 for n > 2ny + 1. This proves the following result:

Theorem 11.1 If a DT linear phase filter is causal, then it is FIR.

The main application of linear-phase is in real-time problems where phase distortion is a signif-
icant issue. As we have seen, real-time IIR filters have nonlinear phase. Unfortunately, zero phase
IIR filters are noncausal and thus cannot be implemented in real-time. The alternative is to window
the IIR filter to convert it to zero phase FIR. But such a filter has an even impulse response, making
the filter noncausal. Set

no :max{n|h[n] #0}
Then
min {n | hn] # 0} = —nyg,

so we may simply delay h[n] by ng time steps to force causality. This achieves a real-time linear
phase filter without changing ‘H (ejﬂ)‘ . Although the resulting filter does not suffer from phase
distortion, it does exhibit a delay of ngT. Clearly, ng must be kept small enough to make the delay
negligible. This constitutes a second upper bound on window length, which may be significantly
smaller than that determined by the system time constants. Such a design involves a trade-off
between small delay and good approximation to the IIR response.

Example 11.5 Starting with a 2nd order Butterworth, zero phase, C'T" LPF with bandwidth 1,
convert to DT using sampling rate fs = 1 and window to FIR using a Hann window with N = 11.
Shift the impulse response to generate a causal, linear phase LPF.

From Ezxample
o] = { 0-1959 (2-37M—4[n]) (1 +cos(Fn)), —5<n<5
= 0, else

meets all the conditions, except causality. Delaying by ng = 5 yields a linear-phase, causal filter
with impulse response h[n — 5]. The resulting CT delay is ngT = 5.
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11.5 Difference Equation Implementation

Suppose an FIR filter has impulse response h [n], where h [n] = 0 for n < Ny and n > N,. For any
input z [n],

y[n] = hin]xx[n] (11.1)

= Z hm]x[n — m)|

m=N1
which is just the zeroth-order difference equation (8.12]) with

M:N2_N17

N:NQ,
by = h [Ny — 1.

As with IIR filters, one may program the filter in a variety of ways for the sake of computational
efficiency and stability. We will examine two methods. The first is Direct Form:

- ( - '
xEA-M] £
hIN]

1o

Figure 11.1

Here the difference equation ({11.1]) is computed directly, requiring Ny — N; 4+ 1 multiplications and
Ny delays.
In the case of causal, linear phase filters, a more efficient variant of Direct Form is possible.
Suppose M is even and
h(M—n], 0<n<M
hn] = .
0, n<0orn>M

Then N7 = 0 and Ny = M. The filter is FIR with phase

LH (/) = —%Q.

The following structure requires only % + 1 multiplications:
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Figure 11.2

The second method requires factorization of the polynomial
Q (Z_1> =h [Nl] =+ h [Nl —+ 1] 2_1 + h [Nl + 2] 2—2 4.+ A [NQ] (Z_l)szNl

according to the Fundamental Theorem of Algebra. The complex conjugate factors must be com-
bined to yield a product of linear and quadratic factors, all with real coefficients. Each of these
factors may be programmed in Direct Form and connected in series. Such a structure is called
Cascade Form. Note the similarity between Cascade Form for FIR filters and IIR filters.

Example 11.6 Consider the FIR filter with impulse response

1, n=-2

3, n=-1,0,1
hn| = 5 n—9 )

0, else

Then N1 = —2, N2 = 2, and

Q") =h[=21+h[-1]z""+h[0]z2+h[1]z+n[2)z*
=1432143:24+33 42,7
=14+ Q+22) 1+ (1—4271
=(1+z")(1+227") (1+277).

The Cascade Form is

x[n 'N,]

/1
L-P—-aycu]

(o4

Figure 11.3
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11.6 DFT Implementation

Given the impulse response h [n] of an FIR filter and an input signal x [n], the convolution (11.1))
may also be computed using the DFT as outlined in Section [6] This constitutes another method of
FIR filter implementation. Recall Algorithm [6.1}

Algorithm 11.1 1) Zero-pad h[n] and z [n] to M + N — 1 points.
2) Apply FFT to x [n] and h[n].

3) Compute H [k] X [k] .

4) Apply FFT to H [k] X [k].

5) Reflect the result (mod M + N — 1) and divide by M + N — 1.

Since the entire input signal x [n] must be known in order to compute X [k], this method applies
only to non-real-time applications.

107



	Introduction
	Review of the DT Fourier Transform
	Definition and Properties
	Periodic Convolution
	Fourier Series

	Sampling
	Time and Frequency Domain Analysis
	Aliasing
	The Nyquist Theorem
	Anti-Aliasing Filters
	Downsampling
	Upsampling
	Change of Sampling Frequency

	CT Signal Reconstruction
	Hybrid Systems
	Ideal Signal Reconstruction
	The Zero-Order Hold
	A/D and D/A Converters
	Digital Filters

	The Discrete Fourier Transform
	Definition and Properties
	Circular Operations
	Fast Fourier Transform Algorithms
	Zero-Padding

	Applications of the DFT
	Spectral Analysis
	Linear Convolution
	Windowing

	The z-Transform
	The CT Laplace Transform
	The DT Laplace Transform and the z-Transform
	Properties

	DT Systems and the ZT
	LTI Systems
	Difference Equations
	Rational Transfer Functions
	Poles and Zeros
	Partial Fraction Expansion
	Causality and Stability of Difference Equations
	Choice of Initial Conditions
	Zeroth-Order Difference Equations

	Analog Filter Design
	Introduction
	The Butterworth Filter
	The Chebyshev Filter
	Causality
	Frequency Scaling, Highpass, and Bandpass Transformations
	Zero Phase Filters
	Phase Delay, Linear Phase, and Phase Distortion

	IIR Filters
	Conversion of CT to DT Filters
	Recursive Structures for Causal IIR Filters
	The Anti-Causal Case

	FIR Filters
	Causal FIR Filters
	Zero-Phase FIR Filters
	Choice of Window Length
	Linear Phase FIR Filters
	Difference Equation Implementation
	DFT Implementation


