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1 Introduction

Digital Signal Processing (DSP) is the application of a digital computer to modify an analog or
digital signal. Typically, the signal being processed is either temporal, spatial, or both. For example,
an audio signal is temporal, while an image is spatial. A movie is both temporal and spatial. The
analysis of temporal signals makes heavy use of the Fourier transform in one time variable and one
frequency variable. Spatial signals require two independent variables. Analysis of such signals relies
on the Fourier transform in two frequency variables (e.g. ECE 533). In ECE 431, we will restrict
ourselves to temporal signal processing.
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Our main goal is to be able to design digital LTI filters. Such filters are using widely in applica-
tions such as audio entertainment systems, telecommunication and other kinds of communication
systems, radar, video enhancement, and biomedical engineering. The first half of the course will
be spent reviewing and developing the fundamentals necessary to understand the design of digital
filters. Then we will examine the basic types of filters and the myriad of design issues surrounding
them.
From the outset, the student should recognize that there are two distinct classes of applications

for digital filters. Real-time applications are those where data streams into the filter and must
be processed immediately. A significant delay in generating the filter output data cannot be
tolerated. Such applications include communication networks of all sorts, musical performance,
public address systems, and patient monitoring. Real-time filtering is sometimes called on-line
processing and is based on the theory of causal systems.
Non-real-time applications are those where a filter is used to process a pre-existing (i.e. stored)

file of data. In this case, the engineer is typically allotted a large amount of time over which the
processing of data may be performed. Such applications include audio recording and mastering,
image processing, and the analysis of seismic data. Non-real-time filtering is sometimes called
off-line processing and is based on the theory of noncausal systems. In these applications, the
fact that noncausal filters may be employed opens the door to a much wider range of filters and
commensurately better results. For example, one problem typical of real-time filtering is phase
distortion, which we will study in detail in this course. Phase distortion can be eliminated completely
if noncausal filters are permitted.
The first part of the course will consist of review material from signals and systems. Throughout

the course, we will rely heavily on the theory of Fourier transforms, since much of signal processing
and filter theory is most easily addressed in the frequency domain. It will be convenient to refer to
commonly used transform concepts by the following acronyms:

CTFT: Continuous-Time Fourier Transform
DTFT: Discrete-Time Fourier Transform
CFS: Continuous-Time Fourier Series
DFS: Discrete-Time Fourier Series
LT: Laplace Transform
DFT: Discrete Fourier Transform
ZT: z-Transform

An “I”preceding an acronym indicates “Inverse” as in IDTFT and IDFT. All of these concepts
should be familiar to the student, except the DFT and ZT, which we will define and study in detail.

2 Review of the DT Fourier Transform

2.1 Definition and Properties

The CT Fourier transform (CTFT) of a CT signal x (t) is

F {x (t)} = X (jω) =

∫ ∞
−∞

x (t) e−jωtdt.

The Inverse CT Fourier Transform (ICTFT) is

F−1 {X (jω)} =
1

2π

∫ ∞
−∞

X (jω) ejωtdω.
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Recall the CT unit impulse δ (t) , the DT unit impulse δ [n] , and their basic properties:∫ ∞
−∞

δ (t) dt = 1,
∞∑

n=−∞
δ [n] = 1

x (t) δ (t− τ) = x (τ) δ (t− τ) , x [n] δ [n−m] = x [m] δ [n−m]

x (t) ∗ δ (t− τ) = x (t− τ) , x [n] ∗ δ [n−m] = x [n−m] (sifting property).

For any DT signal x [n] , we may define its DT Fourier transform (DTFT) by associating with x [n]
the CT impulse train

x (t) =
∞∑

n=−∞
x [n] δ (t− n)

and taking the transform

X (jω) =

∫ ∞
−∞

∞∑
n=−∞

x [n] δ (t− n) e−jωtdt

=
∞∑

n=−∞
x [n] e−jωn

∫ ∞
−∞

δ (t− n) dt

=
∞∑

n=−∞
x [n] e−jωn.

Thus we may write

X (jω) =
∞∑

n=−∞
x [n]

(
ejω
)−n

,

expressing X as a function of ejω. For this reason, the DTFT is normally written

X
(
ejω
)

=
∞∑

n=−∞
x [n] e−jωn.

Technically, this is an abuse of notation, since the two X’s are actually different functions, but
the meaning will usually be clear from context. In order to help distinguish between CT and DT
transforms, we will henceforth denote the frequency variable in DT transforms as Ω :

X
(
ejΩ
)

=

∞∑
n=−∞

x [n] e−jΩn. (2.1)

Although your text writes frequency as ω for both CT and DT transforms, the Ω notation has
numerous advantages. For example, it keeps the units of frequency straight: ω is in rad/sec, while
Ω is in radians.
By Euler’s formula,

ejΩ = cos Ω + j sin Ω,

so ejΩ is periodic with fundamental period 2π. Hence, X
(
ejΩ
)
has period 2π. We also write

F {x [n]} = X
(
ejΩ
)
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and
x [n]←→ X

(
ejΩ
)
.

The Inverse DTFT is

F−1
{
X
(
ejΩ
)}

= x [n] =
1

2π

∫ 2π

0

X
(
ejΩ
)
ejΩndΩ.

The integral may be evaluated over any interval of length 2π.

Properties: (See O&S Table 2.1 on p. 55 and Table 2.2 on p. 58.)
Periodicity:

X
(
ej(Ω+2π)

)
= X

(
ejΩ
)

Linearity: {
αx [n]←→ αX

(
ejΩ
)

x1 [n] + x2 [n]←→ X1

(
ejΩ
)

+X2

(
ejΩ
)

Time Shift:
x [n− n0]←→ e−jΩn0X

(
ejΩ
)

Frequency Shift:
ejΩ0nx [n]←→ X

(
ej(Ω−Ω0)

)
Time/Frequency Scaling:

x(N) [n] =

{
x
[
n
N

]
, n

N
an integer

0, else

x(N) [n]←→ X
(
ejΩN

)
Convolution:

x1 [n] ∗ x2 [n] =
∞∑

m=−∞
x1 [n−m]x2 [m]

x1 [n] ∗ x2 [n]←→ X1

(
ejΩ
)
X2

(
ejΩ
)

Multiplication:

x1 [n]x2 [n]←→ 1

2π

∫ 2π

0

X1

(
ej(Ω−θ)

)
X2

(
ejθ
)
dθ

Time Differencing:
x [n]− x [n− 1]←→

(
1− e−jΩ

)
X
(
ejΩ
)

Accumulation:
n∑

m=−∞
x [m]←→ 1

1− e−jΩX
(
ejΩ
)

Frequency Differentiation:

nx [n]←→ j
dX
(
ejΩ
)

dΩ

Conjugation:
x∗ [n]←→ X∗

(
e−jΩ

)
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Reflection:
x [−n]←→ X

(
e−jΩ

)
Real Time Signal:

x [n] real ⇐⇒
{ ∣∣X (ejΩ)∣∣ even
∠X

(
ejΩ
)
odd

Even-Odd: {
x [n] even ⇐⇒ X

(
ejΩ
)
real

x [n] odd ⇐⇒ X
(
ejΩ
)
imaginary

Parseval’s Theorem:

∞∑
n=−∞

x1 [n]x∗2 [n] =
1

2π

∫ 2π

0

X
(
ejΩ
)
Y ∗
(
ejΩ
)
dΩ

Example 2.1 The DT unit impulse

δ [n] =

{
1, n = 0
0, n 6= 0

has DTFT

F {δ [n]} =
∞∑

n=−∞
δ [n] e−jΩn = 1.

Example 2.2 The unit impulse train in frequency

X
(
ejΩ
)

=
∞∑

k=−∞

δ (Ω− 2πk)

has Inverse DTFT

x [n] =
1

2π

∫ 2π−

0−

( ∞∑
k=−∞

δ (Ω− 2πk)

)
ejΩndΩ

=
1

2π

∞∑
k=−∞

∫ 2π−

0−
δ (Ω− 2πk) ej2πkndΩ

=
1

2π

∞∑
k=−∞

∫ 2π−

0−
δ (Ω− 2πk) dΩ.

But ∫ 2π−

0−
δ (Ω− 2πk) dΩ =

{
1, k = 0
0, k 6= 0

,

so
x [n] =

1

2π

and

1←→ 2π
∞∑

k=−∞

δ (Ω− 2πk) .
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Example 2.3 Define the DT rectangular window

wN [n] =

{
1, ≤ n ≤ N − 1
0, else

.

The DTFT is

WN

(
ejΩ
)

=
∞∑

n=−∞
wN [n] e−jΩn

=

N−1∑
n=0

e−jΩn

=
N−1∑
n=0

(
e−jΩ

)n
=

1− e−jNΩ

1− e−jΩ

=
ej

Ω
2

ej
Ω
2

(
ej

(N−1)Ω
2 − e−j (N+1)Ω

2

)
e−j

(N−1)Ω
2

1− e−jΩ

=
ej

NΩ
2 − e−jNΩ

2

ej
Ω
2 − e−j Ω

2

e−j
(N−1)Ω

2

=
sin NΩ

2

sin Ω
2

e−j
(N−1)Ω

2 .

The real factor in WN

(
ejΩ
)
is the “periodic sinc”function:

Figure 2.1

(See O&S Table 2.3 on p. 62 for further examples.)

2.2 Periodic Convolution

The multiplication property involves the periodic convolution

X1

(
ejΩ
)
∗X2

(
ejΩ
)

=

∫ 2π

0

X1

(
ej(Ω−θ)

)
X2

(
ejθ
)
dθ.
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Since X
(
ejΩ
)
and Y

(
ejΩ
)
both have period 2π, the linear (i.e. ordinary) convolution blows up

(except in trivial cases):∫ ∞
−∞

X1

(
ej(Ω−θ)

)
X2

(
ejθ
)
dθ =

∞∑
i=−∞

∫ 2π(i+1)

2πi

X1

(
ej(Ω−θ)

)
X2

(
ejθ
)
dθ

=

∞∑
i=−∞

∫ 2π

0

X1

(
ej(Ω−θ)

)
X2

(
ejθ
)
dθ

=∞.

On the other hand, the periodic convolution is well-defined with period 2π.

Example 2.4 Consider the square wave

X
(
ejΩ
)

=

{
1, 0 ≤ Ω < π
0, π ≤ Ω < 2π

with period 2π. We wish to convolve X
(
ejΩ
)
with itself. We need to look at two cases:

1) 0 ≤ Ω < π ∫ 2π

0

X
(
ej(Ω−θ)

)
X
(
ejθ
)
dθ =

∫ Ω

0

1dθ = Ω

Figure 2.2

2) π ≤ Ω < 2π ∫ 2π

0

X
(
ej(Ω−θ)

)
X
(
ejθ
)
dθ =

∫ π

Ω−π
1dθ = 2π − Ω

Figure 2.3

The periodic convolution is the triangle wave

X
(
ejΩ
)
∗X

(
ejΩ
)

=

{
Ω, 0 ≤ Ω < π
2π − Ω, π ≤ Ω < 2π

with period 2π.
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Periodic convolution may also be defined for sequences. If x1 [n] and x2 [n] have period N, then

x1 [n] ∗ x2 [n] =
N−1∑
m=0

x1 [n−m]x2 [m]

has period N.

2.3 Fourier Series

Let ak be a sequence of complex numbers with period N and

Ω0 =
2π

N
.

Suppose we restrict attention to DT signals whose DTFT’s are impulse trains of the form

X
(
ejΩ
)

= 2π

∞∑
k=−∞

akδ (Ω− Ω0k) . (2.2)

Then

x [n] =
1

2π

∫ 2π

0

X
(
ejΩ
)
ejΩndΩ

=

∫ 2π−

0−

∞∑
k=−∞

akδ (Ω− Ω0k) ejΩndΩ

=
∞∑

k=−∞

ake
jΩ0kn

∫ 2π−

0−
δ (Ω− Ω0k) dΩ.

But ∫ 2π−

0−
δ (Ω− Ω0k) =

{
1, 0 ≤ k ≤ N − 1
0, else

,

so

x [n] =
N−1∑
k=0

ake
jΩ0kn. (2.3)

Note that

ejΩ0k(n+N) = ejΩ0kn + ejΩ0kN

= ejΩ0kn + ej2πk

= ejΩ0kn,

so ejΩ0kn and, therefore, x [n] have period N.
Formula (2.3) is the DT Fourier series (DFS) representation of the periodic signal x [n] . The

(complex) numbers ak are the Fourier coeffi cients of x [n] . In this case, we write

x [n]←→ ak.
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Every DT signal x [n] with period N has DTFT (2.2) and DFS (2.3). The Fourier coeffi cients also
have period N and may be derived from x [n] via the summation

ak =
1

N

N−1∑
n=0

x [n] e−jΩ0kn. (2.4)

In both the DFS (2.3) and its inverse (2.4), the sum may be taken over any interval of length N.
The properties of the DFS are similar to those of the DTFT. (See O&S Table 8.1 on p. 634.)
Linearity: {

αx [n]←→ αak
x1 [n] + x2 [n]←→ ak + bk

Time-Shift:
x [n− n0]←→ e−jΩ0kn0ak

Frequency Shift
ejΩ0k0nx [n]←→ ak−k0

Time/Frequency Scaling:

x(M) [n]←→ 1

M
ak (period MN)

Convolution:
N−1∑
m=0

x1 [n−m]x2 [m]←→ Nakbk

Multiplication:

x1 [n]x2 [n]←→
N−1∑
i=0

ak−ibi

Time Differencing:
x [n]− x [n− 1]←→

(
1− e−jΩ0k

)
ak

Accumulation:
n∑

m=−∞
x [m]←→ 1

1− e−jΩ0k
ak (only for a0 = 0)

Frequency Differencing: (
1− ejΩ0n

)
x [n]←→ ak − ak−1

Conjugation:
x∗ [n]←→ a∗−k

Reflection:
x [−n]←→ a−k

Real Time Signal:

x [n] real ⇐⇒
{
|ak| even
∠ak odd

Even-Odd: {
x [n] even ⇐⇒ ak real
x [n] odd ⇐⇒ ak imaginary
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Parseval’s Theorem:
1

N

N−1∑
n=0

x1 [n]x∗2 [n] =

N−1∑
k=0

akb
∗
k

Many of the properties of the DFS appear to be “mirror images”of one another. This principle is
called duality and is the result of the similarity of equations (2.3) and (2.4). The same phenomenon
can be seen with regard to transforms of specific signals.

Example 2.5 Find the DTFT and DFS of

x [n] =
∞∑

m=−∞
δ [n−mN ] .

The coeffi cients are

ak =
1

N

N−1∑
n=0

∞∑
m=−∞

δ [n−mN ] e−jΩ0kn =
1

N

∞∑
m=−∞

e−jΩ0kmN

(
N−1∑
n=0

δ [n−mN ]

)
.

But
N−1∑
n=0

δ [n−mN ] =

{
1, m = 0
0, m 6= 0

,

so ak = 1
N
for every k. The DFS is

x [n] =
1

N

N−1∑
k=0

ejΩ0kn

and the DTFT is

X
(
ejΩ
)

= 2π
∞∑

k=−∞

akδ (Ω− Ω0k) = Ω0

∞∑
k=−∞

δ (Ω− Ω0k) .

Example 2.6 From Example 2.5, the Fourier coeffi cients corresponding to an impulse train are
constant. Now find the Fourier coeffi cients of x [n] = 1. By duality, we should get an impulse train.

ak =
1

N

N−1∑
n=0

x [n] e−jΩ0kn

=
1

N

N−1∑
n=0

(
e−jΩ0k

)n
=

{
1, k = mN

1
N

1−(e−jΩ0k)
N

1−e−jΩ0k
, else

But (
e−jΩ0k

)N
= e−j2πk = 1,

so

ak =

{
1, k = mN
0, else

=
∞∑

i=−∞
δ [k − iN ] .
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3 Sampling

3.1 Time and Frequency Domain Analysis

For any T > 0, we may sample a CT signal x (t) to generate the DT signal

x [n] = x (nT ) .

This amounts to evaluating x (t) at uniformly spaced points on the t-axis. The number T is the
sampling period,

fs =
1

T

is the sampling frequency, and

ωs = 2πfs =
2π

T

is the radian sampling frequency. Normally, the units of fs are Hertz or samples/sec. The units of
ωs are rad/sec. The time interval [nT, (n+ 1)T ] is called the nth sampling interval. The process
of sampling is sometimes depicted as a switch which closes momentarily every T units of time:

Figure 3.1

A useful expression for the DTFT of x [n] can be obtained by writing x (t) in terms of its inverse
transform:

x (t) =
1

2π

∫ ∞
−∞

X (jω) ejωtdω

x [n] = x (nT )

=
1

2π

∫ ∞
−∞

X (jω) ejωnTdω

=
1

2π

∞∑
k=−∞

∫ (k+1)ωs

kωs

X (jω) ejωnTdω

=
1

2πT

∞∑
k=−∞

∫ 2π

0

X

(
j

Ω + 2πk

T

)
ej(Ω+2πk)ndΩ (Ω = ωT − 2πk)

=
1

2π

∫ 2π

0

(
1

T

∞∑
k=−∞

X

(
j

Ω + 2πk

T

))
ejΩndΩ

The analysis shows that

XDT

(
ejΩ
)

=
1

T

∞∑
k=−∞

XCT

(
j

Ω + 2πk

T

)
. (3.1)

Expression (3.1) is referred to as the Poisson summation formula.
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3.2 Aliasing

We say a CT signal x (t) is bandlimited if there exists ωB <∞ such that XCT (jω) = 0 for |ω| > ωB.
SupposeXCT has transform depicted (very roughly) in Figure 3.2. (We use a signal withXCT (0) = 1
for reference.)

Figure 3.2

The number ωB is the bandwidth of the signal. If x (t) is bandlimited, (3.1) indicates that XDT

(
ejΩ
)

looks like Figure 3.3

Figure 3.3

or Figure 3.4.

13



Figure 3.4

Figure 3.3 is drawn assuming
2π − ωBT > ωBT

or, equivalently,
ωs > 2ωB.

In this case, (3.1) indicates that

XDT

(
ejΩ
)

= XCT

(
j

Ω

T

)
for −π ≤ Ω < π. This establishes the fundamental relationship between the CT and DT frequency
variables ω and Ω under sampling:

Ω = ωT. (3.2)

We will encounter equation (3.2) under a variety of circumstances when sampling is involved.
For ωs < 2ωB, the picture reverts to Figure 3.4. In this case, the shifts of XCT

(
j Ω
T

)
overlap

—a phenomenon called aliasing. As we will see, aliasing is undesirable in most signal processing
applications. The minimum radian sampling frequency ωs = 2ωB required to avoid aliasing is called
the Nyquist rate.

3.3 The Nyquist Theorem

Consider the set ΣCT of all CT signals x (t) and the set ΣDT of all DT signals x [n] . For a given
sampling period T, the process of sampling may be viewed as a mapping from ΣCT into ΣDT :

x (t) 7−→ x [n] = x (nT ) .

That is, each CT signal generates exactly one DT signal. The following example shows that the
mapping changes if the sampling period changes.

Example 3.1 Let x (t) = sin t and T = π
2
. Then

x [n] = sin
(
n
π

2

)
=

{
(−1)

n−1
2 , n odd

0, n even
.

On the other hand, setting T = π yields

x [n] = sin (nπ) = 0.

Thus sampling sin t results in different signals for different T.

14



The next example shows that the sampling map may not be 1− 1.

Example 3.2 Let x1 (t) = sin t and x2 (t) = 0. For T = π,

x1 [n] = x2 [n] = 0,

so the distinct CT signals x1 (t) and x2 (t) map into the same DT signal.

Now let ΣωB ⊂ ΣCT be the set of all CT signals with bandwidth at most ωB. In Example 3.2,
both x1 (t) and x2 (t) belong to Σ1. Yet, they map into the same DT signal for T = π. In other
words, the sampling map may not be 1− 1 even on ΣωB . Also, note that in Example 3.2,

ωs =
2π

T
= 2 = 2ωB,

so we are sampling at exactly the Nyquist rate. The situation is clarified by the Nyquist Sampling
Theorem:

Theorem 3.1 The sampling map is 1− 1 on ΣωB iff ωs > 2ωB.

The Nyquist theorem states that, if we are given a signal x (t) and we sample at greater than
the Nyquist rate, then there is no loss of information in replacing x (t) by its samples x [n] . In other
words, x (t) can be recovered from x [n] . However, if we sample at or below the Nyquist rate, then
knowledge of x [n] is insuffi cient to determine x (t) uniquely.

3.4 Anti-Aliasing Filters

In order to avoid aliasing, we may set the sampling rate ωs > 2ωB. However, in certain applications
it is desirable to achieve the same end by reducing the bandwidth of x (t) prior to sampling. This
can be done by passing x (t) through a CT filter. Define the ideal CT low-pass filter (LPF) to be
the CT LTI system with transfer function

HLP (jω) =

{
1, |ω| ≤ 1
0, |ω| > 1

. (3.3)

If we pass x (t) through the frequency-scaled filter HLP

(
j ω
ωB

)
, then X (jω) is “chopped”down to

bandwidth ωB. An LPF used in this way is called an anti-aliasing filter and must be built from
analog components.
The impulse response of HLP (jω) is

hLP (t) = F−1 {HLP (jω)}

=
1

2π

∫ ∞
−∞

HLP (jω) ejωtdω

=
1

2π

∫ 1

−1

ejωtdω

=
1

j2πt

(
ejt − e−jt

)
=

sin t

πt
.

Let

sinc t =

{
1, t = 0
sin(πt)
πt

, t 6= 0
.

15



Figure 3.5

We may write

hLP (t) =
1

π
sinc

t

π
(3.4)

Note that hLP (t) has a couple of unfortunate features:

1) hLP (t) 6= 0 for t < 0, so the ideal LPF is noncausal.
2) ∫ ∞

−∞
|hLP (t)| dt =

1

π

∫ ∞
−∞

∣∣∣∣sin (πt)

t

∣∣∣∣ dt
=

2

π

∫ ∞
0

∣∣∣∣sin (πt)

t

∣∣∣∣ dt
=

2

π

∞∑
n=1

∫ n

n−1

∣∣∣∣sin (πt)

t

∣∣∣∣ dt
≥ 2

π

∞∑
n=1

(
1

n

∫ n

n−1

|sin (πt)| dt
)

=
2

π

∞∑
n=1

(
1

n

∫ 1

0

sin (πt) dt

)
=

2

π2

∞∑
n=1

1

n

=∞.

Hence, the ideal LPF is not BIBO stable.

Although an ideal LPF cannot be realized in practice, we will eventually study approximations to
the ideal LPF that can actually be built.

3.5 Downsampling

Let x [n] be a DT signal and N > 0 an integer, and define

xd [n] = x [nN ] .

16



xd [n] is obtained from x [n] be selecting every N values and discarding the rest. Hence, we may
view downsampling as “sampling a DT signal”. If x [n] was obtained by sampling a CT signal x (t)
with period T, then

xd [n] = x [nN ] = x (nNT )

corresponds to sampling x (t) at a lower rate with period NT.
Downsampling leads to a version of the Poisson summation formula. This may be derived by

mimicking the analysis leading to (3.1), but in DT:

x [n] =
1

2π

∫ 2π

0

X
(
ejΩ
)
ejΩndΩ

xd [n] = x (nN)

=
1

2π

∫ 2π

0

X
(
ejΩ
)
ejΩnNdΩ

=
1

2π

N−1∑
k=0

∫ 2π
N

(k+1)

2π
N
k

X
(
ejΩ
)
ejΩnNdΩ

=
1

2πN

N−1∑
k=0

∫ 2π

0

X
(
ej

θ+2πk
N

)
ej(θ+2πk)ndθ (θ = ΩN − 2πk)

=
1

2π

∫ 2π

0

(
1

N

N−1∑
k=0

X
(
ej

θ+2πk
N

))
ejθndθ

Xd

(
ejΩ
)

=
1

N

N−1∑
k=0

X
(
ej

Ω+2πk
N

)
. (3.5)

Expression (3.5) is analogous to (3.1). They both state that sampling in time corresponds to adding
shifts of the original transform. However, unlike sampling a CT signal, downsampling x [n] results
in a finite sum of shifts of X

(
ejΩ
)
.

Suppose x [n] has bandwidth ΩB < π :

Figure 3.6

Then xd [n] has spectrum

17



Figure 3.7

To avoid aliasing, we need
NΩB < 2π −NΩB

or
N <

π

ΩB

.

If x [n] comes from sampling a CT signal x (t) with bandwidth ωB, then ΩB = ωBT and we need

N <
π

ωBT
=

ωs
2ωB

.

3.6 Upsampling

For any DT signal x [n] , the Time/Frequency Scaling property of the DTFT states that the expanded
signal

x(N) [n] =

{
x
[
n
N

]
, n

N
an integer

0, else

has DTFT
F
{
x(N) [n]

}
= X

(
ejΩN

)
.

This is only one kind of interpolation scheme obtained by setting missing data values to 0. An
alternative is to assume that x [n] was obtained by sampling a CT signal x (t) with bandwidth ωB
at some sampling frequency ωs > 2ωB. Resampling x (t) at N times the original rate yields the
upsampled signal

xu [n] = x

(
n
T

N

)
. (3.6)

We would like to develop a method for computing xu [n] directly from x [n] , without resorting to
explicit construction of x (t) .
Suppose x (t) has CTFT XCT (jω) as in Figure 3.2. Then from the Poisson formula (3.1),

F
{
x(N) [n]

}
= XDT

(
ejΩN

)
(3.7)

=
1

T

∞∑
k=−∞

XCT

(
j

ΩN + 2πk

T

)

=
1

T

∞∑
k=−∞

XCT

(
j

Ω + 2π k
N

T
N

)
.
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Figure 3.8

and

F {xu [n]} = Xu

(
ejΩ
)

=
N

T

∞∑
k=−∞

XCT

(
j

Ω + 2πk
T
N

)
(3.8)

Figure 3.9

Note that (3.8) is a scaled version of (3.7), but containing only 1 out of every N terms.
Define the ideal DT low-pass filter :

HLP

(
ejΩ
)

=

{
1, |Ω| ≤ π

N

0, π
N
< |Ω| ≤ π

(period 2π)

Figure 3.10
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Passing from (3.7) to (3.8) is the same as applying NHLP

(
ejΩ
)
to XDT

(
ejΩN

)
:

Xu

(
ejΩ
)

= NHLP

(
ejΩ
)
XDT

(
ejΩN

)

Figure 3.11

Upsampling from x [n] to xu [n] amounts to Figure 3.11, where the first block indicates expansion
by N. As with the ideal CT LPF, the ideal DT LPF is not realizable in practice. However, close
approximations are achievable.

3.7 Change of Sampling Frequency

More generally, suppose we are given a DT signal x [n] and we wish to replace every N consecutive
values by M without changing the “character”of the signal. A common application of this idea is
that of resampling a CT signal: Suppose x [n] consists of samples of a CT signal x (t) at frequency
ωs > 2ωB. We may wish to resample x (t) at a new rate rωs, where r is a rational number. The
number r must be chosen to avoid aliasing —i.e. rωs > 2ωB.
Resampling can be achieved through upsampling and downsampling. Write

r =
M

N
,

where M and N are coprime integers. Upsampling by M, we obtain

xu [n] = x

(
n
T

M

)
.

Downsampling by N yields

xr [n] = xu [nN ] = x

(
nN

T

M

)
= x

(
n
T

r

)
.

The block diagram in Figure 3.12 depicts the process, where the last block indicates downsampling
by N.

Figure 3.12

Examination of Figures 3.6-3.10 shows that no aliasing occurs at any step. The final spectrum is
shown in Figure 3.13:
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Figure 3.13

Obviously, if r = M
1
(i.e. an integer), then downsampling by N = 1 is unnecessary. If r = 1

N
, then

upsampling by M is unnecessary.

4 CT Signal Reconstruction

4.1 Hybrid Systems

A system that takes a DT input x [n] into a CT output y (t) is called a hybrid system. (Actually,
CT → DT is also hybrid, but we will not pursue this idea.) The definitions of system properties
such as linearity, causality, and BIBO stability carry over word-for-word:
Linearity: {

αx [n]→ αy (t)
x1 [n] + x1 [n]→ y1 (t) + y2 (t)

BIBO Stability:
x [n] bounded =⇒ y (t) bounded

We also need to define the concepts of time-invariance and causality. This must be done relative to
a sampling period T > 0 :
Time-Invariance:

x [n−m]→ y (t−mT ) for every integer m

Causality:
x1 [n] = x2 [n] for n < m =⇒ y1 (t) = y2 (t) for t < mT

This will allow us to use hybrid system theory to analyze sampling and signal reconstruction for
any given sampling rate fs. Note that a system that is time-invariant relative to one value of T
generally will not be time-invariant relative to other values.
In the case of linear, time-invariant (LTI) hybrid systems, the concept of impulse response is

useful: The impulse response h (t) is the output generated by the input δ [n] . Exploiting linearity,
time-invariance, and the DT sifting property, we obtain the following statements about how the
system processes signals:

δ [n]→ h (t)

δ [n−m]→ h (t−mT )

x [m] δ [n−m]→ x [m]h (t−mT )
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∞∑
m=−∞

x [m] δ [n−m]→
∞∑

m=−∞
x [m]h (t−mT )

x [n]→
∞∑

m=−∞
h (t−mT )x [m] (4.1)

The sum on the right side of (4.1) is hybrid convolution:

h (t) ∗ x [n] =

∞∑
m=−∞

h (t−mT )x [m] . (4.2)

As with purely CT or DT systems, a hybrid LTI system convolves the input with its impulse
response.
We define the transfer function of a hybrid system with impulse response h (t) to be

H (jω) = F {h (t)} .

Then the output y (t) has Fourier transform

Y (jω) =

∫ ∞
−∞

∞∑
m=−∞

h (t−mT )x [m] e−jωtdt (4.3)

=
∞∑

m=−∞
x [m]

∫ ∞
−∞

h (t−mT ) e−jωtdt

=
∞∑

m=−∞
x [m]

∫ ∞
−∞

h (τ) e−jω(τ+mT )dt (τ = t−mT )

=

(∫ ∞
−∞

h (τ) e−jωτdt

)( ∞∑
m=−∞

x [m] e−j(ωT )m

)
= H (jω)X

(
ejωT

)
,

so H (jω) may be viewed as the ratio of the Fourier transforms of the input and output. Equation
(4.3) is just the hybrid version of the convolution property of the Fourier transform:

h (t) ∗ x [n]←→ H (jω)X
(
ejωT

)
Note that here again we encounter the frequency equivalence Ω = ωT as in (3.2).

Example 4.1 For any DT signal x [n] , we define

xT (t) =

∞∑
n=−∞

x [n] δ (t− nT ) . (4.4)

If x [n] is obtained by sampling a CT signal x (t) with period T, then xT (t) is called the “impulse
sampled” signal corresponding to x (t) . The map from x [n] to xT (t) is a hybrid system, which is
easily shown to be LTI. The corresponding impulse response is

hT (t) =
∞∑

n=−∞
δ [n] δ (t− nT ) = δ (t) .
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The transfer function is
HT (jω) = F {δ (t)} = 1.

Thus
XT (jω) = HT (jω)X

(
ejωT

)
= X

(
ejωT

)
. (4.5)

XT (jω) is just a copy of X
(
ejΩ
)
, but with the frequency axis scaled by T.

Consider a causal LTI hybrid system. Setting α = 0 in the definition of linearity, we obtain
0→ 0. Since δ [n] = 0 for n < 0, the definition of causality says that h (t) = 0 for t < 0. Conversely,
suppose h (t) = 0 for t < 0. If x1 [n] = x2 [n] for n < m, then

y1 (t)− y2 (t) = h (t) ∗ (x1 [n]− x2 [n])

=
∞∑

l=−∞

h (t− lT ) (x1 [l]− x2 [l])

=

∞∑
l=m

h (t− lT ) (x1 [l]− x2 [l]) .

But
h (t− lT ) = 0 for t < lT,

so
y1 (t)− y2 (t) = 0 for t < mT,

proving causality. Thus an LTI hybrid system is causal iff h (t) = 0 for t < 0.
Now consider BIBO stability. It turns out that an LTI hybrid system is BIBO stable iff its

impulse response h (t) satisfies

max
t

∞∑
n=−∞

|h (t− nT )| <∞. (4.6)

To show that (4.6) implies stability, let |x [n]| ≤M1 for every n and

M2 = max
t

∞∑
n=−∞

|h (t− nT )| .

Define the floor function
btc = largest integer ≤ t.

Invoking the triangle inequality,

|y (t)| =
∣∣∣∣∣
∞∑

n=−∞
h (t− nT )x [n]

∣∣∣∣∣
≤

∞∑
n=−∞

|h (t− nT )| |x [n]|

≤M1

∞∑
n=−∞

|h (t− nT )|

= M1

∞∑
n=−∞

|h (t− nT )| (τ = t−
⌊
t

T

⌋
T, m = n−

⌊
t

T

⌋
)

= M1

∞∑
m=−∞

|h (τ −mT )| .

23



But 0 ≤ τ < T, so
|y (t)| ≤M1M2.

In other words, bounded inputs produce bounded outputs, so the system is BIBO stable. One may
also prove the converse —i.e. that stability implies (4.6). However, this is far more diffi cult.
Hybrid convolution shares most of the basic algebraic properties of CT and DT convolution.

Unfortunately, hybrid convolution is not commutative, since one signal in the convolution (4.2)
must be CT and the other must be DT. It is easy to see that hybrid convolution is distributive:

(h1 (t) + h2 (t)) ∗ x [n] = (h1 (t) ∗ x [n]) + (h2 (t) ∗ x [n])

This tells us that the impulse response of a parallel combination of hybrid systems is just the sum
of the individual impulse responses.
Hybrid convolution is also associative:

h2 (t) ∗ (h1 (t) ∗ x [n]) =

∫ ∞
−∞

(
h2 (t− τ)

∞∑
n=−∞

h1 (τ − nT )x [n]

)
dτ

=
∞∑

n=−∞

(∫ ∞
−∞

h2 (t− τ)h1 (τ − nT ) dτ

)
x [n]

=
∞∑

n=−∞

(∫ ∞
−∞

h2 ((t− nT )− µ)h1 (µ) dµ

)
x [n] (µ = τ − nT )

=

(∫ ∞
−∞

h2 (t− µ)h1 (µ) dµ

)
∗ x [n]

= (h2 (t) ∗ h1 (t)) ∗ x [n]

Associativity corresponds to systems in series. Actually, connecting hybrid systems in series makes
no sense, since the output of the first is CT and input of the second is DT. However, we can connect
a CT system to the output of a hybrid system:

Figure 4.1

Associativity tells us that the series impulse response is the convolution of the individual impulse
responses:

h (t) = h2 (t) ∗ h2 (t) .

Thus the series transfer function is

H (jω) = H2 (jω)H1 (jω) .

Suppose we place two causal systems in series as in Figure 4.1. Then h1 (t) = h2 (t) for t < 0, so
the convolution h (t) inherits the same property and the combines system is causal. Now suppose
we place two BIBO stable systems in series. If x [n] is bounded, then stability of the first system
implies boundedness of y1 (t) . Stability of the second system in turn implies boundedness of y (t) .

24



Hence, the composite system is BIBO stable. Recall that a CT system with impulse response h (t)
is BIBO stable iff ∫ ∞

−∞
|h (t)| dt <∞. (4.7)

So, if h1 (t) satisfies (4.6) and h2 (t) satisfies (4.7), then h2 (t) ∗h1 (t) satisfies (4.6). One may derive
similar results when a DT system is followed by a hybrid system.

4.2 Ideal Signal Reconstruction

CT signal reconstruction of x (t) from its samples x [n] is a fundamental problem in DSP. This
process must take place whenever information from a digital system (e.g. a computer, CD player,
voice synthesizer) is converted to a usable form in the analog world. We will first study the problem
of exactly reproducing x (t) .
We begin the reconstruction by converting x [n] to its impulse sampled version xT (t) . (See

Example 4.1.). This process amounts to passing x [n] through the hybrid system with transfer
function HT (jω) = 1. Now pass xT (t) through the ideal LPF with transfer function

Hr (jω) = THLP

(
j

2ω

ωs

)
.

Assuming ωs > 2ωB, the LPF “selects”the lowest frequency lobe of XT (jω) , yielding XCT (jω) .
Formally,

XCT (jω) = THLP

(
j

2ω

ωs

)
HT (jω)X

(
ejωT

)
= Hr (jω)XT (jω) .

Comparing Figures 3.1, 4.1, and 4.3 illustrates the idea.

Figure 4.2

Used in this way, an LPF is a reconstruction filter.
We may also analyze this process in time-domain. Recall from Example 4.1 that the impulse

sampler amounts to the convolution

xT (t) = δ (t) ∗ x [n] .
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The LPF has impulse response

hr (t) = F−1 {Hr (jω)}

= πhLP

(ωs
2
t
)

= sinc
t

T
.

Connecting these two systems in series yields the impulse response

hr (t) ∗ δ (t) = hr (t) ,

so the output is

x (t) = hr (t) ∗ x [n] =
∞∑

n=−∞
x [n] sinc

t− nT
T

. (4.8)

The reconstruction of x (t) is illustrated in Figure 4.4:

Figure 4.3

The interplay between sampling and the Fourier transform is summarized in Figure 4.5:

Figure 4.4

26



Unfortunately, there are a couple of problems associated with ideal reconstruction. First note
that hr (t) 6= 0 for most t < 0, so the system is noncausal. Also,

max
t

∞∑
n=−∞

|hr (t− nT )| = max
t

∞∑
n=−∞

∣∣∣∣sinc
t− nT
T

∣∣∣∣ (4.9)

≥
∞∑

n=−∞

∣∣∣∣sinc

(
1

2
− n

)∣∣∣∣ (t =
T

2
)

=
∞∑

n=−∞

∣∣∣∣sinc

(
n− 1

2

)∣∣∣∣
= 2

∞∑
n=1

∣∣∣∣sinc

(
n− 1

2

)∣∣∣∣
=

2

π

∞∑
n=1

∣∣sin π (n− 1
2

)∣∣
n− 1

2

=
2

π

∞∑
n=1

1

n− 1
2

≥ 2

π

∞∑
n=1

1

n
,

so the system is not BIBO stable. Thus there exists a bounded input x [n] that produces an
unbounded output x (t) . Note that, if we apply the scaled input εx [n] even for small ε 6= 0,
linearity guarantees that the output εx (t) is still unbounded. This shows that even the tiniest
amount of random noise in the system has the tendency to produce extremely large error in the
reconstruction, making ideal reconstruction unachievable in practice. Nevertheless, we will see that
it is possible to closely approximate the ideal.

4.3 The Zero-Order Hold

Define the Zero-Order Hold (ZOH) to be the hybrid system that takes x [n] into the CT signal x (t)
defined by

x (t) = x [n] , nT ≤ t < (n+ 1)T. (4.10)

Figure 4.5

In other words, each input value is held throughout the subsequent sampling interval.
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Figure 4.6

Consider the unit rectangular pulse

w (t) =

{
1, 0 ≤ t ≤ 1
0, else

.

The ZOH processes signals according to

x0 (t) =

∞∑
n=−∞

x [n]w

(
t− nT
T

)
= w

(
t

T

)
∗ x [n] ,

so the ZOH is an LTI hybrid system with impulse response

h0 (t) = w

(
t

T

)
=

{
1, 0 ≤ t < T
0, else

. (4.11)

The Fourier transform of w (t) is

W (jω) =

∫ ∞
−∞

w (t) e−jωtdt

=

∫ 1

0

e−jωtdt

=
1− e−jω
jω

=
ej

ω
2 − e−j ω2
jω

e−j
ω
2

=
2 sin ω

2

ω
e−j

ω
2

=
(

sinc
ω

2π

)
e−j

ω
2 ,

so the ZOH has transfer function

H0 (jω) = F
{
w

(
t

T

)}
= TW (jωT ) = T

(
sinc

ω

ωs

)
e−j

ωT
2 .
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Figure 4.7

The output x0 (t) of a ZOH has Fourier transform satisfying

X0 (jω) = H0 (jω)XDT

(
ejωT

)
=

1

T
H0 (jω)

∞∑
k=−∞

XCT (j (ω + kωs)) .

|X0 (jω)| is depicted in Figure 4.8, obtained by combining Figures 3.2 and 4.7:

Figure 4.8

Keeping in mind that the bandwidth ωB is fixed, we may consider the effect of letting the
sampling rate fs become large (i.e. T becomes small). As fs → ∞, all but the central lobe of
XT (jω) = XDT

(
ejωT

)
slides off the picture. Furthermore, H0 (jω)→ T for −ωB ≤ ω ≤ ωB so the

central lobe is multiplied by a transfer function close to unity. In this sense, X0 (jω) ≈ XCT (jω)
for large fs. This fact can also be seen in the time domain:
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Figure 4.9

As T → 0 the “staircase”function x0 (t) produced by the ZOH converges to x (t) .
The point of using a ZOH is that it can actually be built. This is true because a unit

rectangular pulse (or at least a very close approximation) can be produced using conventional
electronics. Try building an electric circuit that generates anything close to an impulse! The ZOH
alone does not perform ideal reconstruction, but only a close approximation. For many applications
(e.g. digital control systems), this approximation is entirely adequate. For others, the distortion
caused by the higher-frequency lobes shown in Figure 4.8 can create serious problems. For example,
in audio systems these lobes are not audible, but can damage other equipment such as the power
amplifier and speakers. Another consideration is that, in the interest of economy, we usually prefer
to use the smallest sampling rate possible, so an extremely close approximation in Figure 4.9 may
be wasteful. For these reasons, the higher-frequency lobes of x0 (t) are often filtered out using an
LPF. In this context, the LPF is sometimes referred to as a “smoothing”filter.
If ωs > 2ωB, passing the output of the ZOH through the filter with transfer function

H0r (jω) =
THLP

(
j 2ω
ωs

)
H0 (jω)

(4.12)

=
HLP

(
j 2ω
ωs

)
W (jωT )

=

{
ej
ωT
2

sinc ω
ωs

, |ω| ≤ ωs
2

0, else

yields the output

Y (jω) = H0r (jω)H0 (jω)XDT

(
ejωT

)
= HLP

(
j

2ω

ωs

) ∞∑
k=−∞

XCT (j (ω + kωs))

= XCT (jω) .

Hence, we may view ideal reconstruction as the series combination of the ZOH with the filter having
transfer function H0r (jω) .
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Figure 4.10

From (4.11), the ZOH is causal. Furthermore,

max
t

∞∑
n=−∞

|h0 (t− nT )| = max
t

∞∑
n=−∞

∣∣∣∣w(t− nTT

)∣∣∣∣
= max

t
1

= 1

<∞,

so the ZOH is BIBO stable (which is also clear from (4.10)). As with Hr (jω) , H0r (jω) determines
a noncausal, unstable filter. However, we will see that H0r (jω) can be approximated by a stable
filter. Hence, the reconstruction method of choice in practice is to process samples through a ZOH
and then, if necessary, through a smoothing filter approximating H0r (jω) .

4.4 A/D and D/A Converters

The actual electronic device that performs sampling is called an analog-to-digital (A/D) converter.
An A/D converter actually consists of two parts: First, the CT input is sampled. Then the resulting
value (a voltage) is quantized —i.e. approximated by the nearest value taken from a given finite set.
Quantization is depicted in Figure 4.11:
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Figure 4.11

Here we assume the input voltage stays within ±5V and that the output can achieve 2m possible
values. The quantized signal is then represented in binary form in an m-bit computer register.
Quantization contributes a certain degree of distortion to a signal, which can be made smaller by
increasing m. In practice, the value of m depends on the application. In control systems, m = 12
is common, while in high-fidelity audio systems, m = 16 is minimum. The distortion caused by the
nonlinear nature of Figure 4.11 is called quantization noise. An analytic treatment of quantization
noise is possible, but it is mathematically diffi cult and requires the study of random processes. This
is beyond our scope, so we will henceforth assume that the number of bits m is suffi ciently large to
ensure that the effects of quantization are negligible. In other words, we will approximate the A/D
converter as an ideal sampler, depicted in Figure 3.1.
A D/A converter performs signal reconstruction. The m-bit binary value is converted back to

a voltage with 2m possible values and then passed through a ZOH. A smoothing filter may then be
applied to the output. The only idealization required here is that m be very large, so the ZOH can
accept any DT signal x [n] .
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4.5 Digital Filters

At this point, we can pull together several concepts we have already studied and describe the general
framework in which digital filtering may be carried out. Consider a series combination of a sampler,
DT system with transfer function HDT

(
ejΩ
)
, and ideal reconstruction device:

Figure 4.12

We assume that all input signals have bandwidth less than ωs
2
to avoid aliasing. The sampled input

x [n] has DTFT XDT

(
ejΩ
)
given by the Poisson formula (3.1). The DT output y [n] thus has DTFT

YDT
(
ejΩ
)

= HDT

(
ejΩ
)
XDT

(
ejΩ
)

=
1

T

∞∑
k=−∞

HDT

(
ejΩ
)
XCT

(
j

Ω + 2πk

T

)
. (4.13)

As discussed above, ideal reconstruction may be envisioned as either 1) conversion of y [n] to the
impulse train yT (t) followed by an ideal LPF or 2) passing y [n] through a ZOH and then through
the filter H0r (jω) . Both have the same effect, isolating the k = 0 term on the right side of (4.13)
as in Figure 4.2. This yields the CT output y (t) with FT

YCT (jω) = THLP

(
j

2ω

ωs

)
YDT

(
ejωT

)
= HDT

(
ejωT

)
XCT (jω) .

The system in Figure 4.12 therefore has frequency response

HCT (jω) = HDT

(
ejωT

)
for −ωs

2
≤ ω < ωs

2
:

Figure 4.13
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Figure 4.14

The CT system HCT (jω) is just a copy of the DT system HDT

(
ejΩ
)
, restricted to the frequency

interval −ωs
2
≤ ω < ωs

2
, and with the familiar frequency scaling Ω = ωT.

5 The Discrete Fourier Transform

5.1 Definition and Properties

The Discrete Fourier Transform (DFT) is a variant of the DT Fourier series. The DFT is the only
kind of Fourier transform that can actually be evaluated on a computer. Since a computer can
only process a finite amount of data, we must be able to represent every time signal and transform
as a finite array. This requirement does not sit well with respect to ordinary transforms: If a DT
signal x [n] has a DTFT concentrated at discrete frequencies, then x [n] is periodic. (The transform
is essentially the sequence of Fourier coeffi cients ak.) In this case, the DTFT is also periodic, so
neither array is finite.
Another way to look at this problem is to consider the signals x [n] which can be expressed as

a finite array of numbers. We say x [n] is a finite-duration signal if there exists N < ∞ such that
x [n] = 0 for |n| > N. Otherwise, x [n] is infinite-duration.

Theorem 5.1 If x [n] is finite-duration and bandlimited, then x [n] = 0 for all n.

(Theorem 5.1 also holds for CT signals.) Clearly, our notion of the Fourier transform must be
modified in working with computers.
Fortunately, there is a simple trick that resolves the issue. Suppose x [n] is finite-duration with

x [n] = 0 for n < 0 and n ≥ N, (5.1)

and consider the signal

xp [n] =

∞∑
m=−∞

x [n−mN ] . (5.2)

Then

xp [n+N ] =
∞∑

m=−∞
x [n− (m− 1)N ]

=
∞∑

q=−∞
x [n− qN ] (q = m− 1)

= xp [n] ,
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so xp [n] has period N. In other words, xp [n] extends x [n] periodically. Let ak be the sequence
of DT Fourier coeffi cients for xp [n] , also with period N. Although xp [n] is not bandlimited, we
only need N values ak to represent xp [n] . We define the DFT of x [n] to be one period of
Nak. This way, both x [n] and ak are finite arrays. Instead of Nak, we denote the DFT by X [k] .
Formally,

X [k] =
N−1∑
n=0

x [n] e−jΩ0kn, 0 ≤ k ≤ N − 1, (5.3)

where Ω0 = 2π
N
is the fundamental frequency. The DFS recovers x [n] :

x [n] =
1

N

N−1∑
k=0

X [k] ejΩ0kn, 0 ≤ n ≤ N − 1 (5.4)

Expression (5.4) is the Inverse Discrete Fourier Transform (IDFT). Note that the IDFT is just the
DFT reflected and divided by N.
For x [n] satisfying (5.1), the DFT and DTFT are closely related. Evaluating X

(
ejΩ
)
at Ω =

Ωok, we obtain

X
(
ejΩ0k

)
=

N−1∑
n=0

x [n] e−jΩ0kn = X [k] .

Hence, the DFT is simply the array of samples of the DTFT taken with sampling period Ω0 and in-
dices k = 0, . . . , N−1. Furthermore, expression (5.4) tells us that theN samplesX [0] , . . . , X [N − 1]
of X

(
ejΩ
)
are suffi cient to exactly reconstruct x [n] and, therefore, X

(
ejΩ
)
for all Ω. This is the

dual of the Nyquist theorem, made possible by the fact that x [n] is finite-duration. Specifically,
X
(
ejΩ
)
is recovered by the formula

X
(
ejΩ
)

=
N−1∑
n=0

x [n] e−jΩn (5.5)

=
1

N

N−1∑
n=0

(
N−1∑
k=0

X [k] ejΩ0kn

)
e−jΩn

=
1

N

N−1∑
k=0

(
X [k]

N−1∑
n=0

e−j(Ω−Ω0k)n

)

=
1

N

N−1∑
k=0

X [k]WN

(
ej(Ω−Ω0k)

)
,

where WN

(
ejΩ
)
is the periodic sinc function. (See Example 2.3.) Note that (5.5) is actually hybrid

convolution (in frequency) and is dual to the ideal signal reconstruction formula (4.8) for x (t) .
Ideal reconstruction of X

(
ejΩ
)
is possible, since the “Nyquist rate” in this setting is N and the

“sampling rate”is
2π

Ω0

= N.

Since x [n] and X [k] are defined on a fixed, finite interval, an ordinary time or frequency shift
is not allowed. However, there is an appropriate operation that serves the same purpose for DFT’s.
We need to invoke mod N arithmetic: For any integer n, there exists a unique integer

((n))N ∈ {0, . . . , N − 1} (5.6)
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such that n − ((n))N is an integer multiple of N. In other words, an integer m can be found such
that

((n))N = n−mN
and (5.6) holds.

Properties: (See O&S Table 8.2 on p. 660.)
Linearity: {

αx [n]←→ αX [k]
x1 [n] + x2 [n]←→ X1 [k] +X2 [k]

Time Shift:
x [((n− n0))N ]←→ e−jΩ0n0kX [k]

Frequency Shift:
ejinx [n]←→ X [((k − i))N ]

Convolution:

x1 [n] ∗ x2 [n] =
N−1∑
m=0

x1 [((n−m))N ]x2 [m]

x1 [n] ∗ x2 [n]←→ X1 [k]X2 [k]

Multiplication:

X1 [k] ∗X2 [k] =
N−1∑
i=0

X1 [((k − i))N ]X2 [i]

x1 [n]x2 [n]←→ 1

N
X1 [k] ∗X2 [k]

Time Differencing:
x [n]− x [((n− 1))N ]←→

(
1− e−jΩ0k

)
X [k]

Accumulation:
n∑

m=0

x [m]←→ 1

1− e−jΩ0k
X [k] (only for X [0] = 0)

Frequency Differencing: (
1− ejΩ0n

)
x [n]←→ X [k]−X [((k − 1))N ]

Conjugation:
x∗ [n]←→ X∗ [((−k))N ]

Reflection:
x [((−n))N ]←→ X [((−k))N ]

Real Time Signal

x [n] real ⇐⇒
{
|X [((k))N ]| even
∠X [((k))N ] odd

Even-Odd: {
x [((n))N ] even ⇐⇒ X [k] real
x [((n))N ] odd ⇐⇒ X [k] imaginary

Parseval’s Theorem:
1

N

N−1∑
n=0

x1 [n]x∗2 [n] =
N−1∑
k=0

X1 [k]X∗2 [k]
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5.2 Circular Operations

Mod N arithmetic may be used to define operations on signals that are appropriate for the DFT.
The circular reflection of x [n] is x [((−n))N ] . The circular shift of x [n] by any integer n0 is
x [((n− n0))N ] . From circular shift, we define the circular convolution of x1 [n] and x2 [n] is

x1 [n] ∗ x2 [n] =
N−1∑
m=0

x1 [((n−m))N ]x2 [m] .

Periodic and circular convolution are similar, but apply to different circumstances: Periodic convo-
lution requires periodic signals and produces a periodic signal; circular convolution requires finite-
duration signals and produces a finite-duration signal. Nevertheless,

x1 [n] ∗circ x2 [n] = x1p [n] ∗per x2p [n]

for 0 ≤ n ≤ N − 1. Circular shift and periodic convolution may also be applied to X [k] . Note that
circular shift and convolution appear in several of the DFT properties above.

Example 5.1 Let N be even and

x [n] =

{
1, n = 0, . . . , N

2
− 1

0, N
2
≤ n ≤ N − 1

.

Find the circular convolution of x [n] with itself.

x [n] ∗ x [n] =
N−1∑
m=0

xp [n−m]xp [m]

For 0 ≤ n ≤ N
2
− 1,

x [n] ∗ x [n] =
n∑

m=0

1 = n+ 1.

Figure 5.1

For N
2
≤ n ≤ N − 1,

x [n] ∗ x [n] =

N
2
−1∑

m=n−N
2

+1

1 = N − 1− n.
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Figure 5.2

(For additional examples, see O&S pp. 655-659.)

5.3 Fast Fourier Transform Algorithms

Computational effi ciency is paramount in applying the DFT (5.3) and IDFT (5.4). If we compute
the DFT (5.3) in the most direct way, we are faced with multiplying the arrays

x =


x [0]
x [1]
...

x [N − 1]

 , e =


1

e−jΩ0k

...
e−jΩ0k(N−1)


together entry-by-entry and then adding the results to produce X [k] . For each k, this requires
N multiplications and N − 1 additions. To generate the DFT, this must be done N times, so
N2 multiplications and N (N − 1) additions are required. We say that such an algorithm requires
o (N2) operations, meaning that the number of operations “increases like N2”for large N.
There are a variety of ways to reduce the number of operations in computing the DFT. The

most effi cient algorithms require o (N lnN) operations. These are collectively referred to as Fast
Fourier Transform (FFT) algorithms. Note that N lnN grows more slowly than N2, resulting in
substantial computational savings. To give a sense of how such algorithms work, we will study one
FFT algorithm, called Decimation in Time:
Suppose N is even. We may split the DFT into 2 parts:

X [k] =
N−1∑
n=0

x [n] e−jΩ0kn =
N−1∑
n=0
n even

x [n] e−jΩ0kn +
N−1∑
n=0
n odd

x [n] e−jΩ0kn.

Substituting m = n
2
in the first sum and m = n−1

2
in the second,

X [k] =

N
2
−1∑

m=0

x [2m] e−j(2Ω0)km + e−jΩ0k

N
2
−1∑

m=0

x [2m+ 1] e−j(2Ω0)km = H0 [k] + e−jΩ0kH1 [k] . (5.7)

We note that H0 [k] and H1 [k] are the DFT’s of x [2m] and x [2m+ 1] , each having length N
2
and

fundamental frequency
2π
N
2

= 2Ω0.

Normally, H0 [k] and H1 [k] are defined only for 0 ≤ k ≤ N
2
− 1, rendering (5.7) meaningless for

N
2
≤ k ≤ N − 1. This problem can be avoided by extending H0 [k] and H1 [k] periodically. In other

words, we evaluate the 2 sums in (5.7) over the entire frequency range 0 ≤ k ≤ N − 1.
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If N
2
is even, we may apply the same technique to H0 [k] and H1 [k] to split the DFT of X [k]

into 4 parts:

H0 [k] =

N
2
−1∑

m=0
m even

x [2m] e−j(2Ω0)km +

N
2
−1∑

m=0
m odd

x [2m] e−j(2Ω0)km (5.8)

=

N
4
−1∑

p=0

x [4p] e−j(4Ω0)kp + e−j(2Ω0)k

N
4
−1∑

p=0

x [4p+ 2] e−j(4Ω0)kp

= G0 [k] + e−j(2Ω0)kG1 [k]

H1 [k] =

N
2
−1∑

m=0
m even

x [2m+ 1] e−j(2Ω0)km +

N
2
−1∑

m=0
m odd

x [2m+ 1] e−j(2Ω0)km (5.9)

=

N
4
−1∑

p=0

x [4p+ 1] e−j(4Ω0)kp + e−j(2Ω0)k

N
4
−1∑

p=0

x [4p+ 3] e−j(4Ω0)kp

= G2 [k] + e−j(2Ω0)kG3 [k]

If N = 2Q, (5.7) may be applied recursively a total of

Q−2∑
q=0

2q =
2Q−1 − 1

2Q−2 − 1

times. It then remains to find the DFT of 2Q−1 signals of length 2. A careful accounting of products
and sums shows that this approach requires o

(
Q · 2Q

)
operations. Since

Q = log2N =
lnN

ln 2
,

we may also express the computational burden as o (N lnN) , proving that decimation in time
qualifies as an FFT algorithm.

Example 5.2 The following signal flow graph illustrates decimation in time for N = 8 :
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Figure 5.3

Applying (5.8) and (5.9), [
G0 [0]
G0 [1]

]
=

[
x [0] + x [4]
x [0]− x [4]

]
[
G1 [0]
G1 [1]

]
=

[
x [2] + x [6]
x [2]− x [6]

]
[
G2 [0]
G2 [1]

]
=

[
x [1] + x [5]
x [1]− x [5]

]
[
G3 [0]
G3 [1]

]
=

[
x [3] + x [7]
x [3]− x [7]

]

H0 [0]
H0 [1]
H0 [2]
H0 [3]

 =


G0 [0] +G1 [0]
G0 [1]− jG1 [1]
G0 [2]−G1 [2]
G0 [3] + jG1 [3]

 =


G0 [0] +G1 [0]
G0 [1]− jG1 [1]
G0 [0]−G1 [0]
G0 [1] + jG1 [1]



H1 [0]
H1 [1]
H1 [2]
H1 [3]

 =


G2 [0] +G3 [0]
G2 [1]− jG3 [1]
G2 [2]−G3 [2]
G2 [3] + jG3 [3]

 =


G2 [0] +G3 [0]
G2 [1]− jG3 [1]
G2 [0]−G3 [0]
G2 [1] + jG3 [1]

 .
From (5.7), 

X [0]
X [1]
X [2]
X [3]
X [4]
X [5]
X [6]
X [7]


=



H0 [0] +H1 [0]
H0 [1] + 1−j√

2
H1 [1]

H0 [2]− jH1 [2]
H0 [3]− 1+j√

2
H1 [3]

H0 [4]−H1 [4]
H0 [5]− 1−j√

2
H1 [5]

H0 [6] + jH1 [6]
H0 [7] + 1+j√

2
H1 [7]


=



H0 [0] +H1 [0]
H0 [1] + 1−j√

2
H1 [1]

H0 [2]− jH1 [2]
H0 [3]− 1+j√

2
H1 [3]

H0 [0]−H1 [0]
H0 [1]− 1−j√

2
H1 [1]

H0 [2] + jH1 [2]
H0 [3] + 1+j√

2
H1 [3]


.
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Many other FFT algorithms have been devised. (See O&S Sections 9.2-9.5.)
Exploiting circular reflection, the IDFT can be written as

x [n] =
1

N

(
N−1∑
k=0

X [k] e−jΩ0k((−n))N

)
.

This says that the IDFT can be obtained by taking the DFT of X [k] , performing a circular reflec-
tion, and dividing byN. Starting withX [0] , . . . , X [N − 1] , FFT provides the values x̃ [0] , . . . , x̃ [N − 1] .
Then

x [n] =
x̃ [((−n))N ]

N
=

{
x̃[0]
N
, n = 0

x̃[N−n]
N

, n = 1, . . . , N − 1
.

5.4 Zero-Padding

If N is not a power of 2, we need to reconfigure x [n] to apply FFT algorithms. Choose Q such that

2Q−1 < N < 2Q, (5.10)

define M = 2Q, and consider x [n] on the interval 0 ≤ n ≤ M − 1, recalling that x [n] = 0 for
N ≤ n ≤M−1. This method is called zero-padding, since it extends the x [n] with 0’s. Zero-padding
produces a DFT of length M and changes the values of X [k] for 0 ≤ k ≤ N − 1. Nevertheless, we
will see in the next section that the zero-padded DFT is still a viable representation of the DTFT
of x [n] . Taking ln of (5.10),

Q− 1 < lnN < Q

2Q−1 (Q− 1) ln 2 < N lnN < 2QQ ln 2

o
(
2Q−1 (Q− 1) ln 2

)
= o

(
ln 2

2
Q2Q − ln 2

2
2Q
)

= o
(
Q2Q

)
o
(
2QQ ln 2

)
= o

(
Q2Q

)
,

so
o (M lnM) = o

(
Q2Q

)
= o (N lnN) .

Hence, the computational effi ciency of the algorithm is unchanged.

6 Applications of the DFT

6.1 Spectral Analysis

Recalling that Ω0 = 2π
N
, (5.3) states

X [k] = X
(
ej

2π
N
k
)
. (6.1)
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Now suppose we employ zero-padding by choosing an arbitrary M > N and computing the DFT
on that basis. This amounts to extending x [n] with 0’s for N ≤ n ≤M − 1. The new DFT is

XM [k] =

M−1∑
n=0

x [n] ej
2π
M
kn (6.2)

=
N−1∑
n=0

x [n] ej
2π
M
kn

= X
(
ej

2π
M
k
)
.

Comparing (6.1) and (6.2), we see that the effect of zero-padding is to resample X
(
ejΩ
)
at more

closely spaced frequencies (M points instead of N). Thus zero-padding gives a more refined picture
of the signal spectrum.

6.2 Linear Convolution

Suppose x [n] and h [n] are finite-duration signals with

x [n] = 0 for n < 0 and n ≥ N,

h [n] = 0 for n < 0 and n ≥M.

Then the (linear) convolution of x [n] and h [n] is

x [n] ∗ h [n] =
∞∑

m=−∞
x [n−m]h [m] .

But
x [n−m] = 0, m > n

and
h [m] = 0, m < 0,

so

x [n] ∗ h [n] =
n∑

m=0

x [n−m]h [m] , 0 ≤ n ≤M +N − 1.

A careful accounting of operations reveals a computational burden of o (MN) for linear convolution.
For non-real-time applications, an alternative approach is to use the convolution property of the

DFT. Unfortunately, the convolution property applies to circular, not linear, convolution.

Example 6.1 Let M = N and

x [n] =

{
1, 0 ≤ n ≤ N − 1
0, else

.

For 0 ≤ n ≤ N − 1, the linear convolution is

x [n] ∗lin x [n] =
∞∑

m=−∞
x [n−m]x [m]

=
n∑

m=0

1

= n+ 1.
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Figure 6.1

For N ≤ n ≤ 2N − 2,

x [n] ∗lin x [n] =
N−1∑

m=n−N+1

1 = 2N − n− 1.

Figure 6.2

But the circular convolution is

x [n] ∗circ x [n] =
N−1∑
m=0

x [((n−m))N ]x [m]

=
N−1∑
m=0

1

= N

for 0 ≤ n ≤ N − 1.

Figure 6.3

Fortunately, we can change linear into circular convolution through zero-padding: Extending
both signals with 0’s to M +N − 1 points, the circular convolution is

h [n] ∗circ x [n] =
M+N−2∑
m=0

h
[
((n−m))M+N−1

]
x [m]

=

n∑
m=0

h
[
((n−m))M+N−1

]
x [m] +

M+N−2∑
m=n+1

h
[
((n−m))M+N−1

]
x [m] .
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The range of m and n may be decomposed into several regions as shown in Figure 6.4:

Figure 6.4

In region I,
n < m ≤ n+N − 1

or
−N + 1 ≤ n−m < 0.

Hence,
((n−m))M+N−1 = n−m+M +N − 1

and
((n−m))M+N−1 ≥M,

so
h
[
((n−m))M+N−1

]
= 0.

In region II,
N − 1 < m ≤M +N − 2,

so
x [m] = 0.

Note that the triangular region{
(m,n) 0 ≤ n < m ≤M +N − 2

}
⊂ I ∪ II,

so
M+N−2∑
m=n+1

h
[
((n−m))M+N−1

]
x [m] = 0

and

h [n] ∗circ x [n] =
n∑

m=0

h [n−m]x [m] = h [n] ∗lin x [n] .

By the convolution property of DFT’s, we may compute the linear convolution h [n] ∗ x [n] via
the following algorithm:
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Algorithm 6.1 1) Zero-pad h [n] and x [n] to M +N − 1 points.
2) Apply FFT to x [n] and h [n] .
3) Compute H [k]X [k] .
4) Apply FFT to H [k]X [k] .
5) Reflect the result (mod M +N − 1) and divide by M +N − 1.

This approach requires o ((M +N) ln (M +N)) operations in steps 2) and 4) and o (M +N) in steps
3) and 5). Hence, convolution using the DFT is performed in o ((M +N) ln (M +N)) operations.
Compare this to the o (MN) required for direct convolution. Which approach is faster depends on
the values of M and N.

6.3 Windowing

In many applications, one needs to compute the DFT of a signal x [n] that is infinite-duration. For
example, this can occur when x [n] is specified by the mathematical constructions encountered in
a digital filter design. Another possibility is that x [n] actually is finite-duration, but too long to
process as a whole. A common approach to such problems is to truncate x [n] to a manageable size.
This operation can be done in a variety of ways and is generally referred to as windowing.
Windowing may be thought of as an approximation technique. As long as x [n]→ 0 as |n| → ∞,

the approximation can be made arbitrarily close by extending the width of the window. However,
computer memory and processing speed is limited, so the windowed signal must be kept to a
reasonable length.
In principle, a window is any finite-duration signal w [n] satisfying (5.1). However, the most

useful windows are designed so that the windowed signal is a close approximation to the original.
The most commonly used windows are

1) w [n] = wN [n] =

{
1, 0 ≤ n ≤ N − 1
0, else

(rectangular)

2) w [n] =


2

N−1
n, 0 ≤ n ≤ N−1

2

2− 2
N−1

n, N−1
2

< n ≤ N − 1

0, else
(Bartlett or triangular)

3) w [n] =

{
1
2
− 1

2
cos
(

2π
N−1

n
)
, 0 ≤ n ≤ N − 1

0, else
(Hann)

4) w [n] =

{
.54− .46 cos

(
2π
N−1

n
)
, 0 ≤ n ≤ N − 1

0, else
(Hamming)

5) w [n] =

{
.42− .5 cos

(
2π
N−1

n
)

+ .08 cos
(

4π
N−1

n
)
, 0 ≤ n ≤ N − 1

0, else
(Blackman)

(See O&S pp. 536-538.) These windows are depicted in Figure 6.5:
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Figure 6.5

The windows may be scaled in amplitude and shifted in time as the application dictates.
The only perfect “window”is the constant w [n] = 1. But a nonzero constant does not qualify as

a window, since it is infinite-duration. Nevertheless, it is useful to note that, from the multiplication
property of the DTFT, multiplication of x [n] by 1 corresponds to convolution of X

(
ejΩ
)
by

W
(
ejΩ
)

= 2π
∞∑

k=−∞

δ (Ω− 2πk) .

Thus we may approach the problem of window selection as that of finding one whose DTFT best
approximates a periodic impulse train.
Consider first the rectangular window. Its DTFT is

W
(
ejΩ
)

=
sin
(
NΩ

2

)
sin Ω

2

e−j
(N−1)Ω

2

(See Figure 2.1.) It is more instructive to graph the “normalized gain”

20 log

∣∣∣∣∣W
(
ejΩ
)

W (1)

∣∣∣∣∣ ,
obtained by dividing

∣∣W (
ejΩ
)∣∣ by its value at Ω = 0 and converting to dB:
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Figure 6.6 corresponds to N = 25. The most important quantities to observe in such a graph are the
width MW of the “main lobe”and the amplitude SA of the first “side-lobe”. For the rectangular
window, the main lobe has width about 2π

N
, while the side lobe has maximum amplitude about −13

dB (relative toW (1)). These measures are compared to those of the ideal impulse train: MW = 0,
SA = −∞ dB. Thus we wish to find a window whose spectrum is concentrated near Ω = 0. The
phase shift in W

(
ejΩ
)
is not important, since it can be eliminated by time-shifting w [n] . (See the

time-shift property of the DTFT.)
Similar graphs for the Bartlett, Hann, Hamming, and Blackman windows are shown in Figures

6.7-6.10, respectively.
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The values of MW and SA for the 5 windows are tabulated below:
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Window MW (rad) SA (dB)
Rectangular 2π

N
−13

Bartlett 4π
N−1

−25

Hann 4π
N−1

−31

Hamming 4π
N−1

−41

Blackman 6π
N−1

−57

Note the trade-off between MW and SA.
Another way to look at the effect of windowing is to examine a prototype signal. Let 0 < ΩB < π

and X
(
ejΩ
)
have period 2π with

X
(
ejΩ
)

=

{
1, |Ω| ≤ ΩB

0, ΩB < |Ω| ≤ π
.

Then

x [n] =
1

2π

∫ π

−π
X
(
ejΩ
)
ejΩndΩ

=
1

2π

∫ ΩB

−ΩB

ejΩndΩ

=
sin ΩBn

πn

=
ΩB

π
sinc

(
ΩB

π
n

)
.

Let w [n] be the rectangular window time-shifted to the left by N−1
2
. Then

W
(
ejΩ
)

=
sin
(
NΩ

2

)
sin
(

Ω
2

) .
Multiplying x [n]w [n] corresponds to the periodic convolution

1

2π
X
(
ejΩ
)
∗W

(
ejΩ
)

=
1

2π

∫ Ω+π

Ω−π
X
(
ej(Ω−θ)n

)
W
(
ejθ
)
dθ =

1

2π

∫ Ω+ΩB

Ω−ΩB

W
(
ejθ
)
dθ

shown in Figure 6.11:
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Figure 6.11

Part (a) depicts the process of convolution and (b) the result. The oscillations in (b) are called Gibbs
phenomena. They are due to the interaction of the sinc function with the discontinuity in X

(
ejΩ
)

in the convolution process. Note that the “overshoot”increases with SA, while the “sharpness”of
the approximation improves with smaller MW. The choice of window w [n] may be viewed as the
quest to improve these effects.

Example 6.2 Real-Time Spectrum Analyzer
We wish to perform a running computation of the “Fourier transform versus time”for an incoming
signal x [n] . Since x [n] has unknown duration, it must be windowed before we can apply the DFT.
Choosing a particular window w [n] of length N, we position the window at time n to enclose input
values x [n−N + 1] , . . . , x [n] . As n increases, the window slides from left to right:

Figure 6.12
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The nth windowed signal is
xn [m] = x [m]w [m− n+N − 1] .

For each n, we shift to the interval 0 ≤ m ≤ N − 1

yn [m] = xn [m+ n−N + 1] = x [m+ n−N + 1]w [m]

and take the DFT:

Yn [k] =

N−1∑
m=0

yn [m] ejΩ0km =
N−1∑
m=0

x [m+ n−N + 1]w [m] ejΩ0km

For each n, the arrays |Yn [k]| and ∠Yn [k] can be displayed. In practice, in order to save computation,
Yn [k] is computed for only about 1 in N

5
values of n. This corresponds to 80% overlap of adjacent

windows.

7 The z-Transform

7.1 The CT Laplace Transform

One of our main goals is to be able to design digital filters. An indispensable tool in filter design
is the z-Transform. First we review the Laplace Transform. For a CT signal x (t) , its Laplace
Transform (LT) is

L{x (t)} = X (s) =

∫ ∞
−∞

x (t) e−stdt,

where s = σ + jω is complex frequency. In general, the Laplace integral can be evaluated on only a
subset of the complex plane.

Example 7.1 Let u (t) be the unit step function and

x (t) = etu (t) .

Then

X (s) =

∫ ∞
0

ete−stdt

=

∫ ∞
0

e(1−s)tdt

=
1

1− se
(1−s)t∞

0
.

But
e(1−s)t = e(1−σ)te−jωt = e(1−σ)t (cosωt+ j sinωt) ,

so the upper limit can be evaluated iff σ > 1. In other words, X (s) is defined only for the right
half-plane Re s > 1. In this case,

X (s) =
1

1− s (0− 1) =
1

s− 1
.
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The set of s on which X (s) is defined is called the Region of Convergence (ROC). One can
show that, in general, the ROC is an open vertical strip in the complex plane

ROC =
{
s a < Re s < b

}
,

where −∞ ≤ a < b ≤ ∞. In other words, the ROC is either a vertical strip, bounded on both sides,
a left half-plane (a = −∞), a right half-plane (b = ∞), or the entire plane (a = −∞, b = ∞). If
the ROC contains the imaginary axis, then we may evaluate s = jω, yielding the CTFT X (jω) .
(This explains the notation X (jω).)
The Inverse Laplace Transform (ILT) is

L−1 {X (s)} = x (t) =
1

2π

∫ ∞
−∞

X (σ + jω) e(σ+jω)tdω.

The integral evaluates to x (t) as long as σ lies in the ROC.

7.2 The DT Laplace Transform and the z-Transform

To each DT signal x [n] we may associate an impulse train

x (t) =
∞∑

n=−∞
x [n] δ (t− n)

and apply the LT:

X (s) =

∫ ∞
−∞

∞∑
n=−∞

x [n] δ (t− n) e−stdt (7.1)

=

∞∑
n=−∞

x [n] e−sn
∫ ∞
−∞

δ (t− n) dt

=
∞∑

n=−∞
x [n] e−sn.

We denote the complex frequency variable in DT problems as

S = Σ + jΩ.

The DT Laplace transform is

X
(
eS
)

=
∞∑

n=−∞
x [n] e−Sn.

Since we may write

X
(
eS
)

=
∞∑

n=−∞
x [n]

(
e−S
)n
,

X
(
eS
)
may be viewed as a function of eS.Note that

eS+j2π = eSej2π = eS.

Hence, eS and, therefore, X
(
eS
)
have period j2π.

Since X
(
eS
)
is still an LT, the rules surrounding the ROC continue to apply. A DT Laplace

transform need only be specified on the rectangle bounded horizontally by a and b and vertically
by 0 and 2π :
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Figure 7.1

The value of X
(
eS
)
on the remaining rectangles is determined completely by periodicity.

Example 7.2 Let ρ be any complex number, u [n] be the DT unit step, and

x [n] = ρnu [n] .

Then

X
(
eS
)

=
∞∑
n=0

ρne−Sn

=
∞∑
n=0

(
ρe−S

)n
=

1

1− ρe−S .

The geometric series converges for
|ρ| e−Σ =

∣∣ρe−S∣∣ < 1

or
Σ > ln |ρ| .

Hence,
ROC =

{
S ReS > ln |ρ|

}
.

In order to avoid writing eS repeatedly, it is conventional to introduce the frequency map

z = eS. (7.2)

The complex variable z may also be considered complex frequency. (Both S and z are dimensionless.)
From (7.2),

|z| = eΣ, ∠z = Ω. (7.3)
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Making the substitution (7.2), the DT Laplace transform becomes the z-Transform (ZT)

Z {x [n]} = X (z) =
∞∑

n=−∞
x [n] z−n.

In many cases, X (z) is defined at z = 0 in spite of the fact that eS 6= 0 for all finite S. Thus, in
effect, the z-transform extends the LT to S =∞.
It is important to understand the geometry of the exponential map (7.2). Consider the vertical

line
V L (Σ) =

{
S ReS = Σ

}
in the S-plane. From (7.3), V L (Σ) maps onto the circle

C
(
eΣ
)

=
{
z |z| = eΣ

}
in the z-plane. Owing to periodicity, the exponential wraps V L (Σ) infinitely many times around
C
(
eΣ
)
. In particular, setting Σ = 0 shows that the imaginary axis V L (0) maps onto the unit circle

C (1) .
We may extend this idea to all ROC’s in the S-plane: Consider the vertical strip

V S (a, b) =
{
S a < ReS < b

}
,

where 0 ≤ α < β ≤ ∞. It is conventional to denote

LHP = V S (−∞, 0) ,

RHP = V S (0,∞) .

The exponential function maps V S (a, b) onto the annulus

ann
(
ea, eb

)
=
{
z ea < |z| < eb

}
.

In particular, LHP maps onto ann (0, 1) .
If the ROC of X (z) contains the unit circle, then we may evaluate z = ejΩ, yielding the DT

Fourier transform X
(
ejΩ
)
. (This explains the notation X

(
ejΩ
)
.)

Example 7.3 Find the ZT of x [n] = ρnu [n] . From Example 7.2, the DT Laplace transform is

X (S) =
1

1− ρe−S =
1

1− ρ (eS)−1

with
ROC = V S (ln |ρ| ,∞) ,

so
X (z) =

1

1− ρz−1

with
ROC = ann (|ρ| ,∞) .
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Now, let us calculate X (z) directly:

X (z) =

∞∑
n=0

ρnz−n

=
∞∑
n=0

(
ρz−1

)n
=

1

1− ρz−1
.

The geometric series converges iff |ρz−1| < 1 or, equivalently, |z| > |ρ| , so ROC = ann (|ρ| ,∞) .

Example 7.4 Setting ρ = 1 in Example 7.3 yields the ZT of the unit step:

u [n]←→ 1

1− z−1
=

z

z − 1

Example 7.5 Let x [n] = δ [n] . Then

X (z) =
∞∑

n=−∞
δ [n] z−n.

The only nonzero term in the series is the n = 0 term.

X (z) = z−0 = 1.

The ROC is the entire z-plane.

The Inverse z-transform (IZT) is

Z−1 {X (z)} = x [n] =
rn

2π

∫ 2π

0

X
(
rejΩ

)
ejΩndΩ,

where r lies in the ROC. The integral may be evaluated on any interval of length 2π.
(Additional examples are listed in O&S Table 3.1 on p. 110.)

7.3 Properties

The ZT has the following list of properties:

Properties: (See O&S Table 3.2 on p. 132.)

Rx = the ROC of X (z) = ann (α, β)

Linearity: {
αx [n]←→ αX (z) (ROC = Rx)
x1 [n] + x2 [n]←→ X1 (z) +X2 (z) (ROC ⊃ Rx1 ∩Rx2)

Time Shift:
x [n− n0]←→ z−n0X (z) (ROC ⊃ Rx − {0} )
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Frequency Shift:
zn0x [n]←→ X

(
z−1

0 z
)

(ROC = |z0|Rx)

Time/Frequency Scaling:

R
1
m
x =

{
z zm ∈ Rx

}
= ann

(
α

1
m , β

1
m

)
xm [n]←→ X (zm) (ROC = R

1
m
x )

Convolution:
x1 [n] ∗ x2 [n]←→ X1 (z)X2 (z) (ROC ⊃ Rx1 ∩Rx2)

Time Differencing:

x [n]− x [n− 1]←→
(
1− z−1

)
X (z) (ROC ⊃ Rx − {0} )

Accumulation:
n∑

m=−∞
x [m]←→ 1

1− z−1
X (z) (ROC ⊃ Rx ∩ ann (1,∞) )

Frequency Differentiation:

nx [n]←→ −zdX (z)

dz
(ROC = Rx)

Conjugation:
x∗ [n]←→ X∗ (z∗) (ROC = Rx)

Reflection:
1

Rx

=

{
z

1

z
∈ Rx

}
= ann

(
1

β
,

1

α

)
x [−n]←→ X

(
z−1
)

(ROC =
1

Rx

)

Real Time Signal
x [n] real ⇐⇒ X (z∗) = X∗ (z)

8 DT Systems and the ZT

8.1 LTI Systems

Recall that a DT system is LTI iff it maps the input x [n] to the output y [n] via (linear) convolution:

y [n] = h [n] ∗ x [n] .

The sifting property of δ [n] tells us that the input x [n] = δ [n] produces the output

y [n] = h [n] ∗ δ [n] = h [n] .

For this reason, h [n] is called the impulse response of the system. By the convolution property of
the ZT,

Y (z) = H (z)X (z) .
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H (z) is the transfer function of the system.
Since DT convolution is a linear operation, impulse responses and transfer functions of systems

in parallel add:
h [n] = h1 [n] + h2 [n] ,

H (z) = H1 (z) +H2 (z) .

Figure 8.1

Since DT convolution is associative, impulse responses of systems in series must be (linearly) con-
volved

h [n] = h1 [n] ∗ h2 [n] ,

while transfer functions must be multiplied

H (z) = H1 (z)H2 (z) .

Figure 8.2

Recall that a DT system is causal if

x1 [n] = x2 [n] for n < m =⇒ y1 [n] = y2 [n] for n < m.

We also define a system to be anti-causal if

x1 [n] = x2 [n] for n > m =⇒ y1 [n] = y2 [n] for n > m.

In terms of the impulse response h [n] , an LTI system is causal iff h [n] = 0 for n < 0. It is easy to
show that an LTI system is anti-causal iff h [n] = 0 for n > 0. Hence, the only LTI systems that are
both causal and anti-causal are those with impulse responses of the form

h [n] = Aδ [n] .

These are the static systems.
A DT system is BIBO stable if

x [n] bounded =⇒ y [n] bounded.

For LTI systems, this is equivalent to

∞∑
n=−∞

|h [n]| <∞.
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8.2 Difference Equations

An important class of digital filters is implemented through the use of difference equations:

aNy [n+N ] + . . .+ a0y [n] = bMx [n+M ] + . . .+ b0x [n] .

There is no harm in assuming aN 6= 0 and bM 6= 0, since otherwise M and N can be redefined. In
fact, we may divide through the equation by aN and redefine coeffi cients accordingly. This makes
aN = 1. Now suppose

a0 = . . . = aK−1 = 0.

In other words, K is the smallest index such that aK 6= 0. The difference equation becomes

y [n+N ] + aN−1y [n+N − 1] + . . .+ aKy [n+K] = bMx [n+M ] + . . .+ b0x [n] . (8.1)

The number N −K is the order of the equation. For now, we will restrict ourselves to equations
with order N −K > 0.
A difference equation is very similar to a differential equation in that it expresses a relationship

between shifts of the input x [n] and the output y [n] , rather than derivatives of x (t) and y (t) . Like
a differential equation, a difference equation has infinitely many solutions corresponding to a given
input signal x [n] . A single solution is determined uniquely by specifying N −K initial conditions,
typically adjacent values such as y [−1] , . . . , y [K −N ] . For a given x [n] and set of initial conditions,
a difference equation can be solved using the same analytic methods as for differential equations:
Find a particular solution, add the general homogeneous solution with N −K free parameters, and
apply the N −K initial conditions.

Example 8.1 Solve

y [n+ 2]− 5

2
y [n+ 1] + y [n] = x [n]

for the input
x [n] = n

and initial conditions
y [−1] = 1, y [−2] = 0.

As with differential equations, a polynomial input admits at least one polynomial solution. Applying
“variation of parameters”, we try

y [n] = An+B.

Then
A (n+ 2) +B − 5

2
(A (n+ 1) +B) + (An+B) = n

or (
−A

2
− 1

)
n− A

2
− B

2
= 0.

which yields
A = −2, B = 2

and the particular solution
yp [n] = −2n+ 2.
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The “homogeneous equation”is

y [n+ 2]− 5

2
y [n+ 1] + y [n] = 0.

The polynomial

z2 − 5

2
z + 1 = 0

has roots
ρ1 =

1

2
ρ2 = 2,

so the general homogeneous solution is

yh [n] = C

(
1

2

)n
+D · 2n,

where C and D are free parameters. All solutions of the difference equation have the form

y [n] = yp [n] + yh [n]

= −2n+ 2 + C

(
1

2

)n
+D · 2n.

Applying the initial conditions, we obtain

y [−1] = 4 + 2C +
D

2
= 1,

y [−2] = 6 + 4C +
D

4
= 0

or
C = −3

2
, D = 0.

The final answer is

y [n] = −2n+ 2− 3

2

(
1

2

)n
.

Equation (8.1) can also be solved recursively —a method that has no counterpart in the study of
differential equations. There are 2 ways of rewriting the equation that will be useful. First, forward
recursive form is obtained by shifting (8.1) N steps to the right and solving for y [n] :

y [n] = −aN−1y [n− 1]− . . .− aKy [n+K −N ] + bMx [n+M −N ] + . . .+ b0x [n−N ] . (8.2)

The solution is obtained via the following algorithm:

Forward Recursion (given y [−1] , . . . , y [K −N ])
1) Apply x [n] and the initial conditions to (8.2) to find y [0] .
2) Apply x [n] , the initial conditions, and y [0] to (8.2) to find y [1] .
3) Apply x [n] , the initial conditions, y [0] , and y [1] to (8.2) to find y [2] .
4) Continue indefinitely.
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Backward recursive form is achieved by shifting (8.1) K steps to the right and solve for y [n] :

y [n] = − 1

aK
y [n+N −K]− aN−1

aK
y [n+N −K − 1]− . . .− aK+1

aK
y [n+ 1] (8.3)

+
bM
aK

x [n+M −K] + . . .+
b0

aK
x [n−K] .

Backward Recursion (given y [−1] , . . . , y [K −N ])
1) Apply x [n] and the initial conditions to (8.3) to find y [K −N − 1] .
2) Apply x [n] , the initial conditions, and y [K −N − 1] to the right side of (8.3) to find

y [K −N − 2] .
3) Apply x [n] , the initial conditions, y [K −N − 1] , and y [K −N − 2] to the right side of (8.3)

to find y [K −N − 3] .
4) Continue indefinitely.

Example 8.2 Solve the problem in Example 8.1 recursively. Iterating forward,

y [n] =
5

2
y [n− 1]− y [n− 2] + x [n− 2]

y [0] =
5

2
y [−1]− y [−2] + x [−2] =

1

2

y [1] =
5

2
y [0]− y [−1] + x [−1] = −3

4

y [2] =
5

2
y [1]− y [0] + x [0] = −19

8

y [3] =
5

2
y [2]− y [1] + x [1] = −67

16
...

Iterating backward,

y [n] = −y [n+ 2] +
5

2
y [n+ 1] + x [n]

y [−3] = −y [−1] +
5

2
y [−2] + x [−3] = −1− 3 = −4

y [−4] = −y [−2] +
5

2
y [−3] + x [−4] = −10− 4 = −14

y [−5] = −y [−3] +
5

2
y [−4] + x [−5] = 4− 35− 5 = −36

...

Note that these values are consistent with the analytic solution of Example 8.1.
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In some problems, backward recursion is based on initial conditions y [1] , . . . , y [N −K] :

Backward Recursion (given y [1] , . . . , y [N −K])
1) Apply x [n] and the initial conditions to (8.3) to find y [0] .
2) Apply x [n] , the initial conditions, and y [0] to the right side of (8.3) to find y [−1] .
3) Apply x [n] , the initial conditions, y [0] , and y [−1] to the right side of (8.3) to find y [−2] .
4) Continue indefinitely.

The recursive approach can easily be written into a computer program.
Difference equations can be used to describe a certain class of LTI systems. Let x [n] = δ [n]

in (8.1) and find any solution h [n] . This determines an LTI system with impulse response h [n] . If
x [n] is any other input, then we may check that

y [n] = h [n] ∗ x [n]

is a corresponding solution. To do so, note that

y [n+m] = δ [n+m] ∗ y [n]

= (δ [n+m] ∗ h [n]) ∗ x [n]

= h [n+m] ∗ x [n] .

Substituting y [n] into (8.1) yields

y [n+N ] + aN−1y [n+N − 1] + . . .+ aKy [n+K]

= h [n+N ] ∗ x [n] + aN−1h [n+N − 1] ∗ x [n] + . . .+ aKh [n+K] ∗ x [n]

= (h [n+N ] + aN−1h [n+N − 1] + . . .+ aKh [n+K]) ∗ x [n]

= (bMδ [n+M ] + . . .+ b0δ [n]) ∗ x [n]

= bMδ [n+M ] ∗ x [n] + . . .+ b0δ [n] ∗ x [n]

= bMx [n+M ] + . . .+ b0x [n] ,

proving that the LTI system with impulse response h [n] is consistent with (8.1).
As we have seen, each input x [n] leads to infinitely many solutions, so there are infinitely

many impulse responses corresponding to each difference equation. Each impulse response
determines a distinct LTI system.

Example 8.3
y [n+ 1]− y [n] = x [n+ 1]

For x [n] = δ [n] , a particular solution is hp [n] = u [n] , since

u [n+ 1]− u [n] = δ [n+ 1] .

The homogeneous solutions are just the constants hh [n] = A. The general form of the impulse
response is

h [n] = hp [n] + hh [n] = u [n] + A,

where A is arbitrary.

Having infinitely many impulses responses may seem daunting, but it will turn out that only one
of these can be used in applications.
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8.3 Rational Transfer Functions

The time-shift property transforms the difference equation (8.1) into the form

zNY (z) + aN−1z
N−1Y (z) + . . .+ aKz

KY (z) = bMz
MX (z) + . . .+ b0X (z) .

Let
∆ (z) = zN + aN−1z

N−1 + . . .+ aKz
K

and
Γ (z) = bMz

M + . . .+ b0.

The transformed equation may be written

∆ (z)Y (z) = Γ (z)X (z) . (8.4)

∆ (z) is called the characteristic polynomial of the equation. Its roots are the eigenvalues. Basic
to the study of difference equations is that the eigenvalues are the “natural frequencies” of the
equation. Note that the order N −K of the difference equation is positive iff there exists at least
one nonzero eigenvalue.
It is tempting to divide (8.4) through by ∆ (z)X (z) , leading to a transfer function

Y (z)

X (z)
=

Γ (z)

∆ (z)
.

But this would entail dividing by zero whenever z is an eigenvalue. It is an unfortunate consequence
of this fact that not every impulse response of the difference equation has a z-transform.

Example 8.4 In Example 8.3, setting A = 0 yields h [n] = u [n] . From Table 3.1, line 2,

H (z) =
1

1− z−1
.

For A = −1,
h [n] = u [n]− 1 = −u [−n− 1] .

From line 3,

H (z) =
1

1− z−1
.

No other value of A yields a z-transform H (z) .

Nevertheless, the function

H (z) =
Γ (z)

∆ (z)
=

bMz
M + . . .+ b0

zN + aN−1zN−1 + . . .+ aKzK
(8.5)

is fundamental to the study of (8.1). Since H (z) is the ratio of two polynomials, H (z) is called
a rational function. Starting from H (z) , we can recover the difference equation, since both forms
are completely defined by the coeffi cients aK , . . . , aN−1 and b0, . . . , bM . We say H (z) is proper if
M ≤ N, strictly proper if M < N, improper if M > N, and biproper if M = N. Note that strict
properness is equivalent to |H (z)| → 0 as |z| → ∞, while improperness is the same as |H (z)| → ∞
as |z| → ∞.
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Sometimes it will be advantageous to write H (z) as a rational function in z−1. If H (z) is proper,
we multiply the numerator and denominator in (8.5) by z−N to obtain

H (z) =
bMz

M−N + . . .+ b0z
−N

1 + aN−1z−1 + . . .+ aKzK−N
. (8.6)

If H (z) is improper, multiply numerator and denominator by z−M :

H (z) =
bM + bM−1z

−1 + . . .+ b0z
−M

zN−M + aN−1zN−M−1 + . . .+ aKzK−M
(8.7)

(Note that O&S Table 3.1 uses the form (8.6)-(8.7).)

8.4 Poles and Zeros

The Fundamental Theorem of Algebra tells us that every polynomial has a unique factorization into
linear factors. For example,

Γ (z) =

q∏
i=1

(z − ηi)Mi ,

∆ (z) =
r∏
i=1

(z − ρi)Ni .

The multiplicities Mi and Ni must add up to
∑
Mi = M and

∑
Ni = N. If Γ (z) and ∆ (z) have

a common root, then there is at least one factor common to both. In forming H (z) , all common
may be factors cancelled, leaving a reduced numerator and denominator

H (z) =
Γ̃ (z)

∆̃ (z)
, (8.8)

where Γ̃ (z) and ∆̃ (z) do not have a common root. The roots of Γ̃ (z) are the zeros of H (z) , and
the roots of ∆̃ (z) are the poles of H (z) . If H (z) is strictly proper, we say it has a zero at ∞ with
multiplicity N −M. If H (z) is improper, it has a pole at ∞ with multiplicity M −N. (H (z) never
has both poles and zeros at∞.) Counting poles or zeros at∞, the total number zeros always equals
the total number of poles.

Example 8.5 Let

H (z) =
z2 − 1

z2 + 3z + 2
.

From the quadratic formula, the roots of Γ (z) are ±1 and the roots of ∆ (z) are −1,−2. Hence,

H (z) =
(z + 1) (z − 1)

(z + 1) (z + 2)
=
z − 1

z + 2
.

H (z) has a single zero η = 1 and a single pole ρ = −2. The number −1 is neither a pole nor a zero
of H (z) .
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In practice, filter design usually proceeds by choosing a rational function H (z) , transforming it to
a difference equation, and writing the equation into a computer program. Representing H (z) with
numerator and denominator Γ (z) and ∆ (z) having a common root would unnecessarily increase
the order of the difference equation and the computational burden of solving it. For this reason, we
will henceforth assume that the difference equation (8.1) has coeffi cients such that Γ (z)
and ∆ (z) have no root in common. In particular, this assumption implies that a difference
equation has positive order N −K iffH (z) has at least one nonzero pole.
Each pole ρ of H (z) determines a circle centered at 0 and passing through ρ. Suppose these

circles have radii 0 ≤ r1 < . . . < rp. Then each annulus ann (ri, ri+1) contains no pole of H (z) , but
does have at least one pole on each of its boundaries. If r1 > 0, we also need to consider the disk

D (0, r1) =
{
z |z| < r1

}
= ann (0, r1) ∪ {0} .

These regions play a special role in describing the impulse responses corresponding to the difference
equation.

Theorem 8.1 If an impulse response h [n] of the difference equation (8.1) has a z-transform H (z) ,
then H (z) is given by (8.5) with ROC either ann (ri, ri+1) for some i, ann (rp,∞) , or D (0, r1) .
Each such ROC corresponds to an impulse response h [n] .

Example 8.6 Let

H (z) =
1

z2 + 5
2
z + 1

.

The poles are ρ1,2 = −1
2
,−2, so r1 = 1

2
and r2 = 2. The possible regions of convergence are D

(
0, 1

2

)
,

ann
(

1
2
, 2
)
, or ann (2,∞) .

In applications, we need only consider systems with real impulse response. In other words, we
want the IZT of H (z) to be real. From the “real time-signal”property of the ZT, this is true iff
H (z∗) = H∗ (z) . For rational functions, one can show that this condition holds iff all coeffi cients
a0, . . . aN−1, b0, . . . , bM of H (z) are real. Hence, we will restrict attention to rational functions with
real coeffi cients. A consequence of this assumption is that poles and zeros are always distributed
symmetrically about the real axis in the z-plane.

8.5 Partial Fraction Expansion

H (z) can be decomposed into a sum of smaller terms using partial fraction expansion (PFE): If
M ≥ N in H (z) , then ∆ (z) may be divided into Γ (z) yielding quotient Q (z) and remainder R (z) .
Polynomial division produces a remainder with degree strictly less than that of the the divisor∆ (z) .
Thus

H (z) = Q (z) +
R (z)

∆ (z)
,

where the second term is the strictly proper part

Hs (z) =
R (z)

∆ (z)
.

If Q (z) is not a constant, then The strictly proper term may be further decomposed into the form

Hs (z) =

r∑
i=1

Ni∑
k=1

Aik

(z − ρi)k
. (8.9)
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The coeffi cients Aik are given by the formula

Aik =
1

(Ni − k)!

dNi−k

dzNi−k

(
(z − ρi)Ni Hs (z)

)
z=ρi

; k = 1, . . . , Ni; i = 1, . . . , r. (8.10)

For Ni = 1,
Ai1 = (z − ρi)Hs (z)

z=ρi

.

The Aik can also be found by multiplying through (8.9) by ∆ (z) and equating the coeffi cients for
each power of z.

Example 8.7 Find the PFE of

H (z) =
1

z2 + 5
2
z + 1

.

No polynomial division is required. The poles are ρ1,2 = −1
2
,−2, both with multiplicity 1. Since none

of the poles is repeated, no differentiation in (8.10) is required.

A11 =

(
z +

1

2

)
1(

z + 1
2

)
(z + 2) z=− 1

2

=
1

z + 2 z=− 1
2

=
2

3

A21 = (z + 2)
1(

z + 1
2

)
(z + 2) z=−2

=
1

z + 1
2 z=−2

= −2

3

Alternatively, multiplication of (8.9) by
(
z + 1

2

)
(z + 2) yields

A11 (z + 2) + A21

(
z +

1

2

)
= 1,

A11 + A21 = 0, 2A11 +
1

2
A21 = 1,

A11 =
2

3
, A21 = −2

3
.

The PFE is

H (z) =
2
3

z + 1
2

−
2
3

z + 2
.

It is also useful to consider the PFE of H (z) in the form (8.6)-(8.7). An easy way to do so is to
define v = z−1 and H̃ (v) = H (v−1) and use the techniques above. Here it is common practice to
write the PFE as

H̃ (v) = Q̃ (v) + H̃s (v) ,

H̃s (v) =

r∑
i=1

Ni∑
k=1

Ãik

(1− ρiv)k
.

The coeffi cients are

Ãik =
1

(Ni − k)!

(
− 1

ρi

)Ni−k dNi−k

dvNi−k

(
(1− ρiv)Ni H̃ (v)

)
v= 1

ρi

; k = 1, . . . , Ni; i = 1, . . . , r,
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where the ρi are still the poles of H (z) . For Ni = 1,

Ãi1 = (1− ρiv) H̃ (v)
v= 1

ρi

.

This approach facilitates the use of tables such as O&S Table 3.1 to find the inverse transform of
H (z) .

Example 8.8 For H (z) as in Example 8.7, (8.6) has the form

H (z) =
z−2

1 + 5
2
z−1 + z−2

,

so

H̃ (v) =
v2

1 + 5
2
v + v2

.

By polynomial division,

H̃ (v) = 1−
1 + 5

2
v

1 + 5
2
v + v2

.

The coeffi cients are

A11 = −
(

1 +
1

2
v

)
1 + 5

2
v(

1 + 1
2
v
)

(1 + 2v) v=−2
= −

1 + 5
2
v

1 + 2v v=−2
=

4

3
,

A21 = − (1 + 2v)
1 + 5

2
v(

1 + 1
2
v
)

(1 + 2v) v=− 1
2

= −
1 + 5

2
v

1 + 1
2
v v=− 1

2

= −1

3
.

The PFE is

H̃ (v) = 1 +
4
3

1 + 1
2
v
−

1
3

1 + 2v
,

or

H (z) = H̃
(
z−1
)

= 1 +
4
3

1 + 1
2
z−1
−

1
3

1 + 2z−1
.

Table 3.1, p. 110, in O&S yields the inverse transforms:

Case I: ROC = ann (2,∞)
From line 5,

1

1 + 1
2
z−1
←→

(
1

2

)n
u [n] ,

1

1 + 2z−1
←→ 2nu [n] ,

h [n] = δ [n] +
1

3

(
4

(
1

2

)n
− 2n

)
u [n] .

Case II: ROC = ann
(

1
2
, 2
)

From lines 5 and 6,

1

1 + 1
2
z−1
←→

(
1

2

)n
u [n] ,

1

1 + 2z−1
←→ −2nu [−n− 1] ,
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h [n] = δ [n] +
4

3

(
1

2

)n
u [n] +

1

3
2nu [−n− 1] .

Case III: ROC = D
(
0, 1

2

)
From line 6,

1

1 + 1
2
z−1
←→ −

(
1

2

)n
u [−n− 1] ,

1

1 + 2z−1
←→ −2nu [−n− 1] ,

h [n] = δ [n]− 1

3

(
4

(
1

2

)n
− 2n

)
u [−n− 1] .

Closely related to the PFE is the Inner-Outer Decomposition: If no pole of H (z) lies on the
unit circle then we may separate the poles into those inside the unit circle and those outside. The
terms in the PFE may be grouped accordingly and recombined to yield the functions Hi (z) with
all poles inside the unit circle and Ho (z) with all poles outside the unit circle. Then

H (z) = Hi (z) +Ho (z) .

If the PFE is performed in z, we include the Q (z) term in Ho (z) , since poles at ∞ lie outside the
unit circle. If the PFE is done in z−1, then Q (z−1) has poles at 0 and is therefore grouped with
Hi (z) .

Example 8.9 In Example 8.7, H (z) is already in inner-outer form:

Hi (z) =
2
3

z + 1
2

, Ho (z) = −
2
3

z + 2
.

In Example 8.8,

Hi (z) = 1 +
4
3

1 + 1
2
z−1

=
7
3

+ 1
2
z−1

1 + 1
2
z−1

,

Ho (z) = −
1
3

1 + 2z−1
.

8.6 Causality and Stability of Difference Equations

As we have seen, each difference equation leads to infinitely many LTI systems. The transfer
function H (z) corresponds to those which have a z-transform. If we are to use difference equations
to implement a digital filter, the system must be BIBO stable. We may or may not be restricted
to causal systems, depending on the application. The following results clarify the picture.

Theorem 8.2 The family of all the LTI systems corresponding to a given difference equation con-
tains at most one BIBO stable system. Such a system exists iff H (z) has no pole on the unit
circle.

Suppose the condition of Theorem 8.2 holds. Then we may construct an (open) annulus con-
taining the unit circle and none of the poles of H (z) . Let Λ be the largest such annulus. That is,
Λ contains the unit circle, contains no pole of H (z) , and has at least one pole of H (z) on each of
its boundaries:
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Figure 8.3

Theorem 8.3 Suppose H (z) has no pole on the unit circle, and consider the unique BIBO stable
system determined by the difference equation.
1) The impulse response of the system has ZT equal to H (z) with ROC = Λ.
2) The system is causal iff H (z) is proper and every pole of H (z) satisfies |ρ| < 1.
3) The system is anti-causal iff every pole of H (z) satisfies |ρ| > 1.

Note that the condition for stability is exactly the same as the condition for applying the inner-
outer decomposition —i.e. no pole on the unit circle. Under this assumption, we may write

H (z) = Hi (z) +Ho (z) .

The inner term Hi (z) satisfies the conditions of Theorems 8.2 and 8.3 for stability and causality.
The corresponding ROC is

Λi = ann (Ri,∞) ,

where Ri is the largest radius over the poles lying inside the unit circle. Similarly, Ho (z) satisfies
the conditions for stability and anti-causality. Its ROC is

Λo = D (0, Ro) ,

where Ro is the smallest radius over the poles lying outside the unit circle. From the linearity
property of the ZT, H (z) has ROC

Λ = Λi ∩ Λo.

The next example shows how to find h [n] using this decomposition.

Example 8.10 For H (z) as in Examples 8.7 and 8.8, neither pole lies on the unit circle, so there
must be a stable system associated with the equation

y [n+ 2] +
5

2
y [n+ 1] + y [n] = x [n] .
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Since
|ρ1| =

1

2
< 1, |ρ2| = 2 > 1,

the stable system is neither causal nor anti-causal. The stable impulse response h [n] has transform
H (z) with ROC = ann

(
1
2
, 2
)
. Example 8.9 yields Hi (z) and Ho (z) . The BIBO stable impulse

response is calculated in Example 8.8, part II.

We note that the impulse response calculated in Example 8.10 is infinite-duration. In fact,
a casual glance at O&S Table 3.1 shows that none of the terms in a partial fraction expansion
corresponding to a nonzero pole has an inverse transform which is finite-duration. From this we
conclude that every transfer function having at least one nonzero pole corresponds to an
infinite-duration impulse response. Equivalently, every difference equation with positive order
has an infinite-duration impulse response. This fact will have major implications to the design of
digital filters.

8.7 Choice of Initial Conditions

A given difference equation determines at most one BIBO LTI system. In applications, this is the
system of interest. It should not be surprising that passing an input signal x [n] through the system
is equivalent to solving the difference equation for an appropriate choice of initial conditions. Thus
the system may be implemented by encoding the difference equation in a computer program. In
order to start the recursion, we need to choose initial conditions so that the equation generates
solutions consistent with a BIBO stable system. The next result shows how to proceed.

Theorem 8.4 Consider a difference equation with input x [n] .
1) If H (z) is proper, x [n] = 0 for n < N1, and y [N1 − 1] = . . . = y [N1 −N +K] = 0, then the
solution of the difference equation corresponds to a causal system.
2) If ρ = 0 is not a pole of H (z) , x [n] = 0 for n > N2, and y [N2 + 1] = . . . = y [N2 +N ] = 0,
then the solution of the difference equation corresponds to an anti-causal system.

The assumptions on x [n] in Theorem 8.4 are not a major concession. Part 1) applies to real-time
applications. In this case, input data begins streaming at some initial time, which we call N1. In
non-real-time applications, both parts 1) and 2) are relevant. Here the input consists of a data file
of finite length. We may identify the first entry of the file as x [N1] and the last entry as x [N2] .
If the stable system determined by a difference equation is causal, then we apply part 1) of

Theorem 8.4. For example, since x [n] = δ [n] has N1 = 0, the causal impulse response may be
calculated by setting y [−1] = . . . = y [−N +K] = 0. If the system is anti-causal, then part 2)
applies. For x [n] = δ [n] , N2 = 0 and we apply y [1] = . . . = y [N ] = 0. In either case, for an
arbitrary input x [n] , the recursion produces the same output as the linear convolution

y [n] = h [n] ∗ x [n] .

If H (z) has poles both inside and outside the unit circle, the stable system will be neither causal
nor anti-causal. Here we must invoke the inner-outer decomposition

H (z) = Hi (z) +Ho (z)

to generate a pair of difference equations. These must be solved using the initial conditions described
in Theorem 8.4, part 1) forHi (z) and part 2) forHo (z) . Adding the two solutions together generates
y [n] corresponding to the stable system. The causal (inner) part requires forward recursion, while
the anti-causal (outer) part requires backward recursion.
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Example 8.11 As in Examples 8.7-8.10, let

H (z) =
1

z2 + 5
2
z + 1

=
2
3

z + 1
2

−
2
3

z + 2
.

This is already the inner-outer decomposition with

Hi (z) =
2
3

z + 1
2

, Ho (z) = −
2
3

z + 2
.

Hi (z) determines the difference equation

yi [n+ 1] +
1

2
yi [n] =

2

3
x [n] ,

while Ho (z) determines

yo [n+ 1] + 2yo [n] = −2

3
x [n] .

Let x [n] = w4 [n] .We want causality for the first equation, so we apply the initial condition yi [−1] =
0. For the second, we want anti-causality, so we set yo [4] = 0. Forward recursion of the first equation
yields

yi [n] = −1

2
yi [n− 1] +

2

3
w4 [n− 1]

yi [0] = −1

2
yi [−1] = 0

yi [1] = −1

2
yi [0] +

2

3
=

2

3

yi [2] = −1

2
yi [1] +

2

3
=

1

3

yi [3] = −1

2
yi [2] +

2

3
=

1

2

yi [4] = −1

2
yi [3] +

2

3
=

5

12
...

with yi [n] = 0 otherwise. Backward recursion of the second equation yields

yo [n] = −1

2
yo [n+ 1]− 1

3
w4 [n]

yo [3] = −1

2
yo [4]− 1

3
= −1

3

yo [2] = −1

2
yo [3]− 1

3
= −1

6

yo [1] = −1

2
yo [2]− 1

3
= −1

4

yo [0] = −1

2
yo [1]− 1

3
= − 5

24
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yo [−1] = −1

2
yo [0] =

5

48
...

with yo [n] = 0 otherwise. Adding the results,

y [n] = yi [n] + yo [n] =



...
...

5
48
, n = −1
− 5

24
, n = 0

5
12
, n = 1

1
6
, n = 2

1
6
, n = 3

5
12
, n = 4

...
...

.

8.8 Zeroth-Order Difference Equations

Until now, we have restricted attention to difference equations with positive order —i.e. N−K > 0.
If N −K = 0, the difference equation (8.1) becomes

y [n+N ] = bMx [n+M ] + . . .+ b0x [n] . (8.11)

The corresponding rational function is

H (z) =
bMz

M + . . .+ b0

zN
= bMz

M−N + . . .+ b0z
−N .

As always, we assume that no cancellation is possible between numerator and denominator. Thus
b0 6= 0. Right-shifting (8.11) by N yields

y [n] = bMx [n+M −N ] + . . .+ b0x [n−N ] . (8.12)

Note that, for any input signal x [n] , (8.12) has exactly one solution y [n] . Initial conditions play
no role in determining the solution of the equation.
Setting x [n] = δ [n] yields the impulse response

h [n] = bMδ [n+M −N ] + . . .+ b0δ [n−N ] (8.13)

=

{
bN−n, n = N −M, . . . , N
0, else

and transfer function
Z {h [n]} = H (z) .

If N = 0, H (z) is a polynomial and the ROC is the entire complex plane. If N > 0, ROC =
ann (0,∞) . In contrast to systems with nonzero poles, zeroth-order systems always determine
finite-duration impulse responses.
Stability and causality are easy to characterize for zeroth-order systems. Since the pole z = 0

lies inside the unit circle, every zeroth-order difference equation determines a BIBO stable
system. If N = 0, expression (8.13) reduces to

h [n] =

{
b−n, n = −M, . . . , 0
0, else

.
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Since h [n] = 0 for n > 0, the system is anti-causal. If M ≤ N, (8.13) shows that h [n] = 0 for
n < 0, so the system is causal. In all other cases (M > N > 0), the system is neither causal nor
anti-causal. Here we could invoke the inner-outer decomposition

Hi (z) =
bN−1z

N−1 + . . .+ b0

zN
,

Ho (z) = bMz
M−N + . . .+ bN ,

but this has little use in applications.

9 Analog Filter Design

9.1 Introduction

The design of a digital filter usually begins with the choice of a CT transfer function H (s) . This
approach is an historical artifact, owing to the fact that CT filter design is a mature subject,
thoroughly developed during the first half of the 20th century. As we will see, converting from CT
to DT is a simple matter, so it is not necessary to reinvent DT filter theory from scratch.
Most filter design is based on rational transfer functions. For analog filters, this is necessary

because filters are built with electronic components: operational amplifiers, resistors, and capacitors.
The physics of such devices dictate that circuits are governed by differential equations, which in turn
lead to rational functions. For digital filters, rational functions correspond to difference equations,
which may be solved recursively.
We begin by examining two important classes of CT filters.

9.2 The Butterworth Filter

The 2Nth roots of −1 are

ηk =
(
ejπej2πk

) 1
2N = ej

1+2k
2N

π; k = −N, . . . , N − 1.

Let
λk = jηk = ej

π
2 ηk = ej

N+1+2k
2N

π.

We are interested in those λk for which Reλk < 0. This requires

1

2
<
N + 1 + 2k

2N
<

3

2

or
0 ≤ k ≤ N − 1.

Define the degree N Butterworth polynomial

BN (s) = sN + aN−1s
N−1 + . . .+ a0

to be the polynomial with roots λ0, . . . , λN−1. The cases N = 4, 5 are shown in Figure 9.1:
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Figure 9.1

Coeffi cients of the first 5 Butterworth polynomials are provided below:

N BN (s)
1 s+ 1
2 s2 + 1.41s+ 1
3 s3 + 2.00s2 + 2.00s+ 1
4 s4 + 2.61s3 + 3.41s2 + 2.61s+ 1
5 s5 + 3.24s4 + 5.24s3 + 5.24s2 + 3.24s+ 1

Note that
λk−N = −λk; k = 0, . . . , N − 1,

so the roots of BN (−s) are just those λk that lie in RHP (i.e. k = −N, . . . ,−1). It follows that
the roots of BN (s)BN (−s) are the complete set of λk. In other words,

BN (s)BN (−s) = (−js)2N + 1 = (−1)N s2N + 1.

The Nth order Butterworth LPF is the (causal and stable) CT system with transfer function

HN (s) =
1

BN (s)
.

The magnitude frequency response of the filter (squared) is

|HN (jω)|2 = HN (jω)H∗N (jω)

= HN (jω)HN (−jω)

=
1

BN (jω)BN (−jω)

=
1

(−1)N (jω)2N + 1

=
1

ω2N + 1
,
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so
|HN (jω)| = 1√

ω2N + 1
.

Figure 9.2

Figure 9.2 shows that |HN (jω)| converges to the magnitude of the ideal LPF as N →∞. |HN (jω)|
has additional properties of interest. For example, it is straightforward to calculate

d

dω
|HN (jω)| = −Nω2N−1 |HN (jω)|3 ,

which is negative for ω > 0 and positive for ω < 0. Hence, |HN (jω)| “rolls off”monotonically with
frequency. Further differentiation shows that

dk

dωk
|HN (jω)|ω=0 = 0; k = 1, . . . , 2N − 1.

For this reason, |HN (jω)| is said to be “maximally flat”. It is important to note that only the
magnitude |HN (jω)| converges to the ideal LPF. The phase of HN (jω) rolls off from 0 to −90N◦

asymptotically as ω → ∞, so taking N → ∞ sends ∠HN (jω) → −∞. In some applications, the
phase is not an important issue, so approximating the ideal LPF in magnitude only is adequate. In
other applications, this may not be acceptable.

9.3 The Chebyshev Filter

Consider the (Type I) Chebyshev polynomials

T0 (ω) = 1,

T1 (ω) = ω,

TN+1 (ω) = 2ωTN (ω)− TN−1 (ω) .

Associated with these are the functions

ΓN (s) = 1 + ε2T 2
N

(
s

j

)
,

where ε > 0 is a design parameter. The 2N roots λk of ΓN are symmetrically distributed around
an ellipse with major axis equal to the imaginary axis:
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Figure 9.3

Let
CN (s) = 2N−1εsN + aN−1s

N−1 + . . .+ a0

be the polynomial whose roots are those of ΓN (s) that lie in LHP. Then

ΓN (s) = CN (s)CN (−s) .

The transfer function of the Nth-order Chebyshev LPF is

HN (s) =
1

CN (s)
.

The frequency response is

|HN (jω)|2 =
1

CN (jω)CN (−jω)

=
1

ΓN (jω)

=
1

1 + ε2T 2
N (ω)

,

|HN (jω)| = 1√
1 + ε2T 2

N (ω)
.
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Figure 9.4

The Chebyshev filter has a steeper cutoff than the Butterworth filter for any value of N and is,
therefore, a more effi cient design. However, it suffers from “ripple”in the passband. This effect can
be made arbitrarily small by choosing ε small, since the maximum deviation satisfies

lim
ε→0

(
1− 1√

1 + ε2

)
= 0.

The trade-off here is that N must be increased as ε is decreased in order to maintain the filter
bandwidth near ωB = 1. For the Chebyshev filter, taking N →∞ and ε→ 0 makes |HN (jω)| tend
to the ideal LPF. However, ∠HN (jω)→ −∞ for each ω > 0.

9.4 Causality

The issue of causality is just as important to analog filters as it is to digital filters. The theory
is completely analogous: Differential equations replace difference equations, vertical strips in the
plane replace annuli, and the imaginary axis replaces the unit circle. Suppose a rational transfer
function H (s) has no pole on the imaginary axis and Λ is the largest open vertical strip containing
the axis but no pole of H (s) :
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Figure 9.5

Then H (s) along with ROC = Λ determines a CT LTI system. Compare the following result with
Theorem 8.3.

Theorem 9.1 1) The system is BIBO stable iff H (s) is proper.
2) The system is causal iff every pole of H (s) satisfies Reλ < 0.
3) The system is anti-causal iff every pole of H (s) satisfies Reλ > 0.

For any stable CT system with rational H (s) , we may separateH (s) into causal and anti-causal
terms in a manner analogous to the inner-outer decomposition from DT analysis: Perform PFE
and group terms with poles satisfying Reλ < 0 and terms with Reλ > 0. This yields the left-right
decomposition

H (s) = Hl (s) +Hr (s) .

Hl (s) represents a causal stable system, while Hr (s) represents an anti-causal stable system.
From Theorem 9.1, the Butterworth and Chebyshev filters are BIBO stable and causal. The

anti-causal version of each can be constructed by reflecting the poles across the imaginary axis.
Since the poles are already symmetric relative to the real axis, it suffi ces to map s 7−→ −s. In other
words, the Nth-order anti-causal Butterworth filter is

HN (s) =
1

BN (−s)
and the Nth-order anti-causal Chebyshev filter is

HN (s) =
1

CN (−s) .

We may also consider the 2Nth-order filters obtained by combining the poles of the causal and
anti-causal cases. For Butterworth filters,

H (s) =
1

BN (s)BN (−s) =
1

(−1)N s2N + 1
, (9.1)

H (jω) =
1

ω2N + 1
.

For Chebyshev,

H (s) =
1

CN (s)CN (−s) =
1

1 + ε2T 2
N

(
s
j

) , (9.2)

H (jω) =
1

1 + ε2T 2
N (ω)

.

9.5 Frequency Scaling, Highpass, and Bandpass Transformations

Let H (s) be any filter with (roughly speaking) a bandwidth of 1 rad/sec. In practice, we will need
to modify H (s) in order to achieve certain design specifications. The simplest such modification is
to set the bandwidth of the filter to a value other than unity. This is easily done by the frequency
scaling

s 7−→ s

ωB
,

which “stretches”the frequency response by ωB. In other words, H
(

s
ωB

)
has bandwidth ωB, rather

than 1. The pole locations are scaled outward by a factor of ωB.
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Example 9.1 Design a causal 4th-order Butterworth LPF with bandwidth 5 Krad/sec. The 4th-
order Butterworth polynomial is

B4 (s) =
(
s− ej 5

8
π
)(

s− ej 7
8
π
)(

s− ej 9
8
π
)(

s− ej 11
8
π
)

=
(
s2 +

(
2 sin

π

8

)
s+ 1

)(
s2 +

(
2 cos

π

8

)
s+ 1

)
.

Interpreting s as rad/sec, we need ωB = 5000. Then

B4

( s

5000

)
=

(( s

5000

)2

+
(

2 sin
π

8

)( s

5000

)
+ 1

)(( s

5000

)2

+
(

2 cos
π

8

)( s

5000

)
+ 1

)
=
s2 + 3827s+ 2.5× 107

2.5× 107
· s

2 + 9239s+ 2.5× 107

2.5× 107
,

so

H
( s

5000

)
=

1

B4

(
s

5000

) =
6.25× 1014

(s2 + 3827s+ 2.5× 107) (s2 + 9239s+ 2.5× 107)
.

The poles lie on the circle centered at 0 with radius 5 Krad/sec.
It is sometimes convenient to reinterpret s as Krad/sec, Mrad/sec, etc. in order to make the
coeffi cients easier to work with. In our example, we can write the transfer function with s in
Krad/sec. This amounts to setting ωB = 5 :

H
(s

5

)
=

625

(s2 + 3.827s+ 25) (s2 + 9.239s+ 25)
.

In some applications it is desired to block components of a signal x (t) below a certain frequency
ω0. Define the ideal highpass filter (HPF) by

HHP (jω) =

{
1, |ω| ≥ ω0

0, |ω| < ω0
.

Figure 9.6

The interval [0, ω0] is called the stopband.
Consider the frequency map

s 7−→ ω0

s
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and the transformed filter H
(
ω0

s

)
. Specializing to s = jω yields

ω 7−→ −ω0

ω
,

±ω0 7−→ ∓1,

|ω| > ω0 ⇐⇒
∣∣∣−ω0

ω

∣∣∣ < 1.

Hence, if |H (jω)| approximates HLP (jω) , then
∣∣H (−j ω0

ω

)∣∣ approximates HHP (jω) .

Example 9.2 Design a causal 4th-order Butterworth HPF with stopband [0, 5] Krad/sec. Inter-
preting s as Krad/sec, we need ω0 = 5. Then

B4

(
5

s

)
=

((
5

s

)2

+
(

2 sin
π

8

)(5

s

)
+ 1

)((
5

s

)2

+
(

2 cos
π

8

)(5

s

)
+ 1

)

=
s2 +

(
10 sin π

8

)
s+ 25

s2
·
s2 +

(
10 cos π

8

)
s+ 25

s2
,

H

(
5

s

)
=

1

B4

(
5
s

) =
s4

(s2 + 3.827 + 25) (s2 + 9.239s+ 25)
.

Sometimes it is required to design a filter which passes components of a signal over some interval
of frequencies and attenuates the signal elsewhere. For example the ideal bandpass filter (BPF) is
given by

HBP (jω) =

{
1, ω1 ≤ |ω| ≤ ω2

0, else
,

where 0 < ω1 < ω2 <∞.

Figure 9.7

The filter has bandwidth
ωB = ω2 − ω1

and center frequency
ω0 =

√
ω1ω2.
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The interval [ω1, ω2] is called the passband.
Consider the frequency map

s 7−→ β (s) =
ω0

ωB

(
s

ω0

+
ω0

s

)
and the transformed filter H (β (s)) . Writing

β (s) =
s2 + ω2

0

ωBs

exposes the fact that H (β (s)) has order 2N. Specializing to s = jω, we obtain

ω 7−→ ω0

ωB

(
ω

ω0

− ω0

ω

)
,

ω0 7−→ 0,

±ω1 7−→
ω0

ωB

(
±ω1

ω0

∓ ω0

ω1

)
= ∓1,

±ω2 7−→
ω0

ωB

(
ω2

ω0

∓ ω0

ω2

)
= ±1,

ω1 < |ω| < ω2 ⇐⇒ |β (jω)| < 1.

If |H (jω)| is approximates HLP (jω) , then |H (β (jω))| approximates HBP (jω) .

Example 9.3 Design a causal 8th-order Butterworth BPF with passband [5, 10] Krad/sec. Inter-
preting s as Krad/sec, we merely need to calculate

H (s) =
1

B4 (β (s))

with
ω0 =

√
ω1ω2 =

√
50 = 5

√
2,

ωB = ω2 − ω1 = 5.

B4 (β (s)) = B4

(
s2 + 50

5s

)
=

((
s2 + 50

5s

)2

+
(

2 sin
π

8

)(s2 + 50

5s

)
+ 1

)((
s2 + 50

5s

)2

+
(

2 cos
π

8

)(s2 + 50

5s

)
+ 1

)

=
(s4 + 5.412s3 + 150s2 + 270.6s+ 2500) (s4 + 13.07s3 + 150s2 + 653.3s+ 2500)

625s4

H (s) =
625s4

(s4 + 3.827s3 + 125s2 + 191.3s+ 2500) (s4 + 9.239s3 + 125s2 + 461.9s+ 2500)
.
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9.6 Zero Phase Filters

A filter H (jω) 6= 0 has zero phase if ∠H (jω) = 0 for all ω. This is the same as saying that H (jω)
is real and nonnegative for all ω or, equivalently,

H (jω) = |H (jω)| . (9.3)

From the even-odd property of the CTFT, a zero phase filter has an even impulse response h (t) . If,
in addition, the filter is causal, then h (t) = 0 for |t| > 0. This implies h (t) = αδ (t) for some constant
α. A similar analysis holds for anti-causal zero phase filters. These facts may be summaraized as
follows:

Theorem 9.2 If a CT filter has zero phase and is either causal or anti-causal, then H (jω) is
constant.

Unfortunately, h (t) being even does not imply zero phase:

Example 9.4 Let

h (t) = w

(
t+ 1

2

)
−
{

1, |t| ≤ 1
0, else

.

Note that h (t) is even, but

H (jω) = 2 sinc
ω

π

is negative for certain ω, violating (9.3). In this example, ∠H (jω) oscillates between 0 and 180◦.

Example ?? demonstrates that, in general, one must check H (jω) directly to determine whether
the a filter actually has zero phase. However, for rational functions H (s) , the zero phase property
has a simple characterization in terms of poles and zeros: For any real number λ, let

Qλ (s) = −
(
s2 − λ2

)
.

The roots of Qλ (s) are ±λ. Furthermore,

Qλ (jω) = ω2 + λ2,

so
∠Qλ (jω) = 0

for all ω. Now let λ be complex and set

Qλ (s) = s4 − 2
(
Reλ2

)
s2 + |λ|4 .
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The roots of Qλ (s) are the 4 symmetrically positioned complex numbers ±λ and ±λ∗ :

Figure 9.8

Setting s = jω,
Qλ (jω) = ω4 + 2

(
Reλ2

)
ω2 + |λ|4

is real. Since
|λ|2 =

∣∣λ2
∣∣ ≥ −Reλ2,

we obtain
Qλ (jω) ≥ ω4 − 2 |λ|2 ω2 + |λ|4 =

(
ω2 − |λ|2

)2
,

so
∠Qλ (jω) = 0.

More generally, suppose H (s) has poles and zeros which may grouped into pairs and 4-tuples
as described above. That is,

H (s) = A

∏
Qζi (s)∏
Qλi (s)

. (9.4)

If A is real and positive, then

∠H (jω) = ∠A+
∑

∠Qζi (jω)−
∑

∠Qλi (jω) = 0,

so H (s) has zero phase. A moment’s reflection reveals that the form (9.4) is equivalent to having
the poles and zeros of H (s) symmetric with respect to both axes. In the case of imaginary poles
or zeros, symmetry reduces to even multiplicity.

Theorem 9.3 A CT rational transfer function H (s) 6= 0 has zero phase iff H (jω) is real and
positive for small ω and the poles and zeros of H (s) are symmetric relative to both the real and
imaginary axes.

The 2Nth order noncausal Butterworth and Chebyshev filters (9.1) and (9.2) have H (0) > 0,
no zeros, and the required symmetry for poles. Hence, these filters have zero phase.
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Example 9.5 Design an 8th-order zero phase Butterworth LPF with bandwidth 5 Krad/sec. Here
we use the form (9.1) with N = 4 and perform a frequency scaling:

H (s) =
1

(−1)4 s8 + 1
=

1

s8 + 1
,

H
(s

5

)
=

1(
s
5

)8
+ 1

=
390625

s8 + 390625
.

In applications where approximating an ideal LPF, BPF, or HPF in magnitude only is accept-
able, a nonzero phase phase filter will work. In non-real-time applications, approximation in both
magnitude and phase is feasible using a zero phase filter. Since frequency scaling, highpass, and
bandpass transformations merely reassign the values of H (jω) to different frequencies, the zero
phase property is not affected by such modifications of H (jω) .

9.7 Phase Delay, Linear Phase, and Phase Distortion

Consider a single-frequency signal
x (t) = ej(ω0t+φ).

If we write φ = −ω0τ, we obtain
x (t) = ejω0(t−τ).

In other words, the phase shift φ is equivalent to a time delay

τ = − φ

ω0

.

For an arbitrary signal x (t) , the phase ∠X (jω) varies with frequency. We define the phase delay
to be

∆ (ω) = −∠X (jω)

ω
.

Suppose ∠X (jω) is a linear function of frequency

∠X (jω) = −τω,

where τ is a constant. Then the phase delay is

∆ (ω) = −∠X (jω)

ω
= τ.

In other words, each sinusoid that makes up the signal is shifted right by τ, so linear phase shift
corresponds to a time-delay (or advance) of the signal.
Now consider systems. We say an LTI system with transfer function H (s) has linear phase if

∠H (jω) = −ωτ

for some constant τ. In this case, let

H1 (s) = H (s) esτ .

Then
∠H1 (jω) = ∠

(
H (jω) ejωτ

)
= ∠H (jω) + ωτ = 0
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and
H (s) = H1 (s) e−sτ .

From the time-shift property of the LT, the impulse responses satisfy

h (t) = h1 (t− τ) .

We conclude that a linear phase filter is just a zero phase filter with a time-shift. Since
the impulse response of a zero phase filter is even, the impulse response of a linear phase filter is
the shift of an even function.
Rational transfer functions H (s) generally have a phase ∠H (jω) that is nonlinear. This can be

seen by writing H (s) in terms of poles and zeros:

H (s) = A

∏
(s− ζi)∏
(s− ρi)

.

Then

∠H (jω) = ∠A+
∑

∠ (jω − ζi)−
∑

∠ (jω − ρi)

= ∠A−
∑

arctan

(
ω − Im ζi

Re ζi

)
+
∑

arctan

(
ω − Im ρi

Re ρi

)
,

which is a nonlinear function, except when poles and zeros satisfy the kind of symmetry discussed
above. One can show that for CT systems, every rational function with linear phase has
zero phase.
Suppose a system has nonlinear phase. Then the phase delay ∆ (ω) is not constant. This means

that at some frequencies the system imposes more delay than at others. This effect is called phase
distortion. Phase distortion is a serious problem in applications such as high-speed communication
networks, where the “shape”of signals must be maintained. It has also been argued that phase
distortion causes problems in audio systems. This claim is still controversial, except in unrealistically
high-order filters.
The next example shows how signal shape can be corrupted by nonlinear phase.

Example 9.6 Let

H (s) = −s− 1

s+ 1
.

Then

|H (jω)| =
∣∣∣∣−jω − 1

jω + 1

∣∣∣∣ =
ω2 + 1

ω2 + 1
= 1,

so any change in signals passing through the system is due entirely to phase distortion. Systems
with |H (jω)| = 1 are called “all-pass”. The phase

∠H (jω) = ∠
(
−jω − 1

jω + 1

)
= −2 arctanω

is nonlinear and
∆ (ω) = 2

arctanω

ω
.
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Figure 9.9

Low frequencies are delayed more than high frequencies. To see what phase distortion looks like,
consider

x (t) = u (t) .

Then

Y (s) = H (s)X (s)

= −s− 1

s+ 1
· 1

s

= − 2

s+ 1
+

1

s
,

y (t) =
(
1− 2e−t

)
u (t) .

Figure 9.10

For DT filters H
(
ejΩ
)
, phase delay is the same as in CT:

∆ (Ω) = −
∠H

(
ejΩ
)

Ω
.

Thus linear phase means
∠H

(
ejΩ
)

= −Ωτ.

Although the definitions of linear phase in CT and DT are the same, there are a couple of important
differences:
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1) Since

ej∠H(ejΩ) = e−jΩτ

must have period 2π,
− (Ω + 2π) τ = −Ωτ − 2πN

for some integer N. Hence, τ = N. This is merely a reflection of the fact that delay in DT systems
must be integer.
2) A DT filter with nonzero linear phase can have a rational transfer function. For example, the

system that delays the input by N time steps has transfer function

H (z) = z−N .

10 IIR Filters

10.1 Conversion of CT to DT Filters

We now have methods for designing CT low-pass, high-pass, and band-pass filters. These can be
either causal or zero phase. The next step is to convert the CT filter to DT. The simplest way to
do this utilizes a function φ (z) which maps the z-plane into the s-plane:

s = φ (z) .

Ideally, φ (z) should satisfy 3 properties:

1) φ is a 1− 1 map between the s and z planes.
2) φ (z) maps the unit circle onto the imaginary axis and the unit disk onto LHP.
3) φ is a rational function.

In view of 1), φ (z) has an inverse
z = φ−1 (s) .

Applying φ (z) to the CT filter HCT (s) produces the DT filter

HDT (z) = HCT (φ (z)) .

The poles of HDT (z) are just ρ = φ−1 (λ) , where λ ranges over the poles of HCT (s) . (The same
holds for zeros.) Property 2) ensures that φ (z) preserves BIBO stability, causality, and anti-
causality. Property 3) ensures that HDT (z) is a rational function whenever HCT (s) is rational.
This guarantees that we can implement the digital filter by encoding difference equations.
A common choice of φ (z) is the bilinear transformation

φ (z) =
2

T

z − 1

z + 1
, (10.1)

where T > 0 will be the sampling period. The inverse is

φ−1 (s) =
1 + T

2
s

1− T
2
s
, (10.2)
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proving 1). Writing z in polar form, we obtain the rectangular form of φ (z) :

φ
(
rejΩ

)
=

2

T

rejΩ − 1

rejΩ + 1

=
2

T

(
rejΩ − 1

) (
re−jΩ + 1

)
|rejΩ + 1|2

=
2

T

r2 − 1 + j2r sin Ω

|rejΩ + 1|2
,

so

σ = Reφ
(
rejΩ

)
=

2

T

r2 − 1

|rejΩ + 1|2
.

Note that σ = 0 iff r = 1, so φ (z) maps the unit circle onto the imaginary axis. Also, σ < 0 iff
r < 1, so φ (z) maps the unit disk onto LHP , establishing 2). Property 3) is obvious. Converting
from CT to DT using the bilinear transformation is called Tustin’s method.
In filter design, we are interested in frequency response HCT (jω) and HDT

(
ejΩ
)
. Restricting to

s = jω and z = ejΩ, the bilinear transformation becomes

ω = −jφ
(
ejΩ
)

(10.3)

=
4

T

sin Ω

|ejΩ + 1|2

=
2

T

sin Ω

1 + cos Ω

=
2

T
tan

Ω

2
.

Note that (10.3) and, therefore,

HDT

(
ejΩ
)

= HCT

(
j

2

T
tan

Ω

2

)
have period 2π. The inverse is

Ω = 2 arctan
ωT

2
. (10.4)

In cases where the CT filter has transfer function defined only for s = jω, applying the bilinear
transformation requires (10.3) rather than (10.1).

Example 10.1 Applying (10.3) to the CT ideal LPF HLP

(
j ω
ωB

)
with bandwidth ωB yields the DT

filter in Figure 10.1:

Figure 10.1
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The CT ideal BPF converts to Figure 10.2:

Figure 10.2

One might be troubled by the fact that we now have two very different transformations from ω
to Ω. These are Ω = ωT, which results from sampling, and the bilinear transformation (10.4). It is
important not to confuse the meaning and usage of these transformations. Sampling is the physical
(and mathematical) process of converting signals from CT to DT. Tustin’s method is one of many
mathematical operations that convert systems from CT to DT.
This difference is made clearer if we apply each transformation to a single CT filter. First, sample

the filter impulse response h (t) to produce h (nT ) . Then convert the transfer function HCT (s) to
HDT (z) via Tustin’s method, and find the impulse response h [n] of HDT (z) . In virtually all cases,
it will turn out that h (nT ) 6= h [n] .

Example 10.2 Let

HCT (s) =
1

s+ 1
.

The CT impulse response is
h (t) = e−tu (t) .

For T = 2, sampling yields
h (nT ) = e−2nu [n] .

Applying Tustin’s method,

HDT (z) = HCT

(
z − 1

z + 1

)
=

1

2

(
1 + z−1

)
and

h [n] =
1

2
(δ [n] + δ [n− 1]) .

Note that
h (nT ) 6= h [n]

for every n ≥ 0.

The following Filter Design Algorithm should help keep things straight:

1) Identify the desired bandwidth or passband in CT frequency ω.
2) Apply Ω = ωT to determine the corresponding bandwidth ΩB or passband [Ω1,Ω2] .
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3) Convert to the CT bandwidth ωB or passband [ω1, ω2] by applying the bilinear formula (10.3).
4) Choose a CT filter design method (Butterworth, Chebyshev, etc.) and associated parameters
(N, ε) to meet frequency and other specifications in CT.
5) Transform the CT filter to DT using the bilinear formula (10.1) and graph HDT

(
ejωT

)
.

6) If the specifications on HDT

(
ejωT

)
are not met or if the filter is over-designed, modify N accord-

ingly and repeat 5).

Under Tustin’s method, the two frequency responses HCT (jω) and HDT

(
ejωT

)
will be similar over

0 ≤ ω ≤ ωs
2
but not quite identical because of the distortion of the frequency axis described by

ω 7−→ 2

T
tan

(
T

2
ω

)
. (10.5)

This is a consequence of the nonlinear nature of the bilinear transformation. Steps 2) and 3) of
the filter design algorithm are constructed to cancel out this effect, at least at the critical cutoff
frequencies. Applying this scheme with modern computers and software such as MATLAB, it is
easy to iteratively adjust the design parameters N and ε, view the resulting graph, and ultimately
converge to acceptable values.

Example 10.3 Design an 8th-order, causal, digital Butterworth BPF for sampling rate 44.1 KHz
with passband [10, 15] KHz. The DT passband is

[Ω1,Ω2] =

[
20π

44.1
,

30π

44.1

]
= [1.425, 2.137] .

From (10.3), the modified CT passband is

[ω1, ω2] =

[
2

T
tan

Ω1

2
,

2

T
tan

Ω2

2

]
= [76.18, 160.6] .

Note that the CT frequencies have increased substantially, due to (10.5):

[f1, f2] = [12.12, 25.56] KHz

KHz. Working as in Example 9.3, we obtain the CT filter

HCT (s) =
5.079× 107s4(

s8 + 220.6s7 + 7.327× 104s6 + 9.669× 106s5 + 1.544× 109s4

+1.183× 1011s3 + 1.097× 1013s2 + 4.039× 1014s+ 2.240× 1016

)
to DT with

T =
1

44.1
= 0.02268 ms.

Invoking Tustin’s method,

φ (z) = 88.2
z − 1

z + 1
,

HDT (z) =
5.079× 107φ4(

s8 + 220.6φ7 + 7.327× 104φ6 + 9.669× 106φ5 + 1.544× 109φ4

+1.183× 1011φ3 + 1.097× 1013φ2 + 4.039× 1014φ+ 2.240× 1016

)
=

7.374× 10−3 (z2 − 1)
4

z8 − 1.370z7 + 2.871z6 − 2.493z5 + 2.848z4 − 1.566z3 + 1.136z2 − 0.3244z + 0.1481
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Since (10.3) merely reassigns values of HCT (jω) to different frequencies to produce HDT

(
ejΩ
)
,

the zero phase property is preserved under the bilinear transformation. In both CT and DT, zero
phase is equivalent to evenness of the impulse response, so the bilinear transformation takes even
h (t) into even h [n] . As in CT, the only causal zero phase filters are the constants.
It is worth noting that the bilinear transformation does not preserve linear phase:

Example 10.4 Consider the unit delay system

HCT (s) = e−sT .

The phase is
∠HCT (jω) = ∠e−jωT = −ωT,

so the system has linear, but nonzero phase. Applying the bilinear transformation,

HDT

(
ejΩ
)

= HCT

(
j

2

T
tan

Ω

2

)
= e−j2 tan Ω

2 ,

which has nonlinear phase

∠HDT

(
ejΩ
)

= −2 tan
Ω

2
.

For rational functions, we note that the bilinear transformation maps CT poles and zeros into
DT poles and zeros according to

ρ =
1 + T

2
λ

1− T
2
λ
. (10.6)

In the zero phase case, poles and zeros are symmetric about the real and imaginary axes. Note that
symmetry about the real axis is retained under (10.6):

1 + T
2
λ∗

1− T
2
λ∗

=

(
1 + T

2
λ

1− T
2
λ

)∗
= ρ∗

Symmetry about the imaginary axis is more complicated:

1 + T
2

(−λ∗)
1− T

2
(−λ∗)

=

(
1− T

2
λ

1 + T
2
λ

)∗
=

1

ρ∗
. (10.7)

We say complex numbers ρ1 and ρ2 are symmetric about the unit circle if

ρ2 =
1

ρ∗1
. (10.8)

For real numbers, (10.8) states that ρ1 and ρ2 are reciprocal. If ρ1 = 0, then (10.8) reduces to
ρ2 =∞. Hence, the number of poles or zeros at z = 0 must equal the number at ∞.
Under the bilinear transformation, symmetry of CT zeros about the imaginary axis is equivalent

to symmetry of DT zeros about the unit circle. The same holds for poles. This leads to the DT
counterpart to Theorem 9.3:

Theorem 10.1 A DT rational transfer function H (z) 6= 0 has zero phase iff H
(
ejΩ
)
is real and

positive for small Ω and the poles and zeros of H (z) are symmetric relative to both the real axis
and the unit circle.
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10.2 Recursive Structures for Causal IIR Filters

Having designed a DT filter H (z) that we wish to implement on a computer, we need to decide
between several methods for doing so. If H (z) has at least one nonzero pole, then the impulse
response h [n] does not have finite-duration. Such systems are called infinite impulse response (IIR)
filters. In order to implement an IIR filter, we must encode the difference equations corresponding
to

H (z) = Hi (z) +Ho (z)

with the appropriate initial conditions. This can be done using a variety of computational schemes.
Several issues must be considered when deciding which scheme to use. For example, the method

chosen can affect computational speed, memory requirements, and numerical stability. A detailed
study of these issues is beyond the scope of this course. A “quick and dirty”approach is to design
several different computational structures and decide through simulation which works best. The
best choice turns out to be quite application-dependent.
Suppose we are given a difference equation

y [n+N ] + aN−1y [n+N − 1] + . . .+ aKy [n+K] = bMx [n+M ] + . . .+ b0x [n] (10.9)

or rational function

H (z) =
bMz

M−N + . . .+ b0z
−N

1 + aN−1z−1 + . . .+ aKzK−N

corresponding to a BIBO stable system. Recall that, if the system is neither causal nor anti-causal,
then we may decompose H (z) into inner and outer parts, resulting in the sum of a causal system
and an anti-causal system. Hence, it suffi ces to consider the implementation of systems that are
either causal or anti-causal. We begin with causal systems.
We may rewrite (10.9) for forward recursion as

y [n] = −aN−1y [n− 1]− . . .− aKy [n+K −N ] + bMx [n+M −N ] + . . .+ b0x [n−N ] . (10.10)

For any input x [n] with x [n] = 0 for n < N1, y [n] may be computed directly by recursively
evaluating (10.10) using the initial conditions

y [N1 − 1] = . . . = y [N1 −N ] = 0.

This approach corresponds to the signal flow graph in Figure 10.3:

Figure 10.3
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(Set ai = 0 or bi = 0 if it is not defined.) At each time step,

v [n] = bMx [n+M −N ] + . . .+ b0x [n−N ]

is computed. Then y [n] is generated by the recursion

y [n] = −aN−1y [n− 1]− . . .− aKy [n+K −N ] + v [n] .

This method is called Direct Form I and may be viewed as factoring

H (z) =

(
1

1 + aN−1z−1 + . . .+ aKzK−N

)(
bMz

M−N + . . .+ b0z
−N) .

A related method is Direct Form II and is defined by the factorization

H (z) =
(
bMz

M−N + . . .+ b0z
−N)( 1

1 + aN−1z−1 + . . .+ aKzK−N

)
.

In other words, we first compute an intermediate signal v [n] through the recursion

v [n] = −aN−1v [n− 1]− . . .− aKv [n+K −N ] + x [n] .

Then find
y [n] = bMv [n+M −N ] + . . .+ b0v [n−N ] .

The signal flow graph is

Figure 10.4

For any input and initial conditions, Direct Forms I and II yield the same output (ignoring
roundoff error). One difference between the two structures is that Figure 10.3 uses 2N −K delays,
while Figure 10.4 requires only N. Each delay corresponds to one unit of computer memory, so
Direct Form II involves a savings in hardware.
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A third structure is obtained through PFE (in z−1):

H (z) = Q̃
(
z−1
)

+
r∑
i=1

Ni∑
k=1

Ãik

(1− ρiz−1)k
.

The polynomial Q̃ (z−1) may be implemented with a series of delays. Recall that the coeffi cients in
the strictly proper term may be complex. In order to avoid the diffi culties of complex computation,
we may combine conjugate terms into terms with real coeffi cients. For k = 1,

Ãi1
1− ρiz−1

+
Ã∗i1

1− ρ∗i z−1
= 2

(
Re Ãi1

)
z−1 − Re

(
Ã∗i1ρi

)
z−2

1− (2 Re ρi) z−1 + |ρi|2 z−2
.

For arbitrary k,

Ãik

(1− ρiz−1)k
+

Ã∗ik

(1− ρ∗i z−1)k
=

2
k∑
l=0

(−1)l
(
k
l

)
Re
(
Ã∗ikρ

l
)
z−l(

1− (2 Re ρi) z−1 + |ρi|2 z−2
)k .

Each term in the resulting PFE corresponds to a smaller difference equation, which may be solved
recursively according to either Direct Form I or II. Summing the outputs gives a realization of the
original system. This approach is called Parallel Form.

Example 10.5 Let

H (z) =
3 + z−1

1 + 1
2
z−1 − 1

4
z−3

.

The PFE is
H (z) =

1

1− 1
2
z−1

+
1

1 + 1+j
2
z−1

+
1

1 + 1−j
2
z−1

.

Combining conjugate terms,

H (z) =
1

1− 1
2
z−1

+
2 + z−1

1 + z−1 + 1
2
z−2

.

Using Direct Form II, the first term yields the equation

y1 [n] =
1

2
y1 [n− 1] + x [n] .

The second term corresponds to

v2 [n] = −v2 [n− 1]− 1

2
v2 [n− 2] + x [n] ,

y2 [n] = 2v2 [n] + v2 [n− 1] .

The overall system output is
y [n] = y1 [n] + y2 [n] .

The signal flow graph is
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Figure 10.5

The final technique we will study requires factoring H (z) into linear and quadratic factors with
real coeffi cients

H (z) = Hp (z) · · ·H1 (z) .

This can be done in a variety of ways. Each factor Hi (z) determines a difference equation which
can be implemented using Direct Forms I and II. The resulting systems are connected in series to
generate the overall system. This is called Cascade Form.

Example 10.6 The transfer function in Example 10.5 may be factored

H (z) =
3 + z−1(

1− 1
2
z−1
) (

1 + z−1 + 1
2
z−2
) = H2 (z)H1 (z) ,

where

H1 (z) =
3 + z−1

1 + z−1 + 1
2
z−2

,

H2 (z) =
1

1− 1
2
z−1

.

Of course, this is only one of several possibilities. H1 (z) and H2 (z) determine the Direct Form II
equations

v1 [n] = −v1 [n− 1]− 1

2
v1 [n− 2] + x [n] ,

y1 [n] = 3v1 [n] + v1 [n− 1] ,

y [n] =
1

2
y [n− 1] + y1 [n] .
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Figure 10.6

10.3 The Anti-Causal Case

The same computational structures may be used for anti-causal systems. The only change is that the
recursion is backward, rather than forward. Suppose (10.9) corresponds to an anti-causal system.
Backward recursion is based on the form

y [n] = − 1

aK
y [n+N −K]− aN−1

aK
y [n+N −K − 1]− . . .− aK+1

aK
y [n+ 1]

+
bM
aK

x [n+M −K] + . . .+
b0

aK
x [n−K]

and

H (z) =

bM
aK
zM−K + . . .+ b0

aK
z−K

1
aK
zN−K + aN−1

aK
zN−K−1 + . . .+ aK−1

aK
z + 1

.

For Direct Form I, we factor

H (z) =

(
1

1
aK
zN−K + aN−1

aK
zN−K−1 + . . .+ aK−1

aK
z + 1

)(
bM
aK

zM−K + . . .+
b0

aK
z−K

)
,

which yields the equations

v [n] =
bM
aK

x [n+M −K] + . . .+
b0

aK
x [n−K] ,

y [n] = − 1

aK
y [n+N −K]− aN−1

aK
y [n+N −K − 1]− . . .− aK+1

aK
y [n+ 1] + v [n] .

For Direct Form II,

H (z) =

(
bM
aK

zM−K + . . .+
b0

aK
z−K

)(
1

1
aK
zN−K + aN−1

aK
zN−K−1 + . . .+ aK−1

aK
z + 1

)
,

v [n] = − 1

aK
v [n+N −K]− aN−1

aK
v [n+N −K − 1]− . . .− aK+1

aK
v [n+ 1] + x [n] ,

y [n] =
bM
aK

v [n+M −K] + . . .+
b0

aK
v [n−K] .

For Parallel form, perform PFE (in z, not z−1), combine conjugate terms, and use Direct Form I
or II on each term. For Cascade Form, factor H (z) and use Direct Form I or II on each factor,
combining conjugate terms. In each case, the resulting signal flow graph involves forward shift
elements z. Although mathematically a forward shift is a noncausal operation, on a computer each
shift is just a memory element. The recursion proceeds forward in actual time, but represents a
backward progression through conceptual time. Of course, this is possible only in non-real-time
applications.

Example 10.7 Let

H (z) =
3z2 − 2

z3 − 2z − 4
.
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Find the Parallel Form. The poles are

ρ1 = 2, ρ2,3 = −1± j.

Since the poles lie outside the unit circle, H (z) corresponds to a BIBO stable, but anticausal, filter.
The PFE is

H (z) =
1

z − 2
+

1

z + 1− j +
1

z + 1 + j

=
1

z − 2
+

2z + 2

z2 + 2z + 2

=
−1

2

−1
2
z + 1

+
z + 1

1
2
z2 + z + 1

.

For the first term,

y1 [n] =
1

2
y1 [n+ 1]− 1

2
x [n] .

For the second, we use Direct Form II:

v2 [n] = −1

2
v2 [n+ 2]− v2 [n+ 1] + x [n] ,

y2 [n] = v2 [n+ 1] + v2 [n] .

Finally,
y [n] = y1 [n] + y2 [n] .

Figure 10.7
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11 FIR Filters

11.1 Causal FIR Filters

If a DT filter HDT

(
ejΩ
)
has a finite-duration impulse response h [n] , it is called a finite impulse

response (FIR) filter. FIR filters are always BIBO stable, since

∞∑
n=−∞

|h [n]| =
N2∑

n=−N1

|h [n]| <∞.

An FIR filter is often obtained by windowing the impulse response of an IIR filter.
First consider the causal case. We start with an IIR filter with impulse response h [n] . Then

h [n] is infinite-duration and h [n] = 0 for n < 0. For a window w [n] with length N, we set

h̃ [n] = αw [n]h [n] ,

where α is a scaling factor. Then h̃ [n] is nonzero only for 0 ≤ n ≤ N − 1 and thus determines a
causal FIR filter. If the IIR design is based on a CT LPF HCT (jω) , the bilinear transformation
(10.3) indicates

HDT

(
ejΩ
)

= HCT

(
j

2

T
tan

Ω

2

)
.

In this context, windowing has some unfortunate consequences. One of these is that it changes
the gain of the filter at critical frequencies. For example, in designing a low-pass FIR filter, we wish
to achieve a “DC gain”which matches the original IIR filter. Setting Ω = 0, we want

HDT (1) = HCT (0) .

(Typically, HCT (0) = 1.) Windowing generally results in the filter with impulse response w [n]h [n]
having DC gain other than HCT (0) . Hence, we need to choose α to achieve

H̃ (1) = HCT (0) .

The DTFT of the windowed filter is

H̃
(
ejΩ
)

=
N−1∑
n=0

h̃ [n] e−jΩn,

so

H̃ (1) =
N−1∑
n=0

h̃ [n] = α
N−1∑
n=0

w [n]h [n] ,

α =
HCT (0)

N−1∑
n=0

w [n]h [n]

.

Example 11.1 Starting with the 2nd order Butterworth, causal, CT LPF with bandwidth 1, convert
to DT using sampling rate fs = 1

2
and window to FIR using a Hann window with N = 7.

HCT (s) =
1

s2 +
√

2s+ 1
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HDT (z) =
1(

z−1
z+1

)2
+
√

2
(
z−1
z+1

)
+ 1

=
1

2 +
√

2

z2 + 2z + 1

z2 + 3− 2
√

2

=
1

2 +
√

2

1 + 2z−1 + z−2

1 +
(
3− 2

√
2
)
z−2

= 1 +
1√
2
−
√

2
1−

√
3− 2

√
2z−1

1 +
(
3− 2

√
2
)
z−2

From O&S Table 3.1, lines 11 and 12,

h [n] =

(
1 +

1√
2

)
δ [n]−

√
2
(

cos
(π

2
n
)
− sin

(π
2
n
))(

3− 2
√

2
)n

2
u [n] .

w [n] =

{
1
2
− 1

2
cos
(
π
3
n
)
, 0 ≤ n ≤ 6

0, else

h̃ [n] = αw [n]h [n]

α =
1

6∑
n=0

w [n]h [n]

= −
√

2
6∑

n=1

(
cos
(
π
2
n
)
− sin

(
π
2
n
)) (

3− 2
√

2
)n

2
(
1− cos

(
π
3
n
))

= 4.975

The constant α may be designed to correct the gain at other critical frequencies. For example,
in a band-pass design, we may wish to set α so that the FIR and IIR gains match at ω0 =

√
ω1ω2 :

H̃
(
ejω0T

)
= HCT (jω0) .

Then

α =
HCT (jω0)

N−1∑
n=0

w [n]h [n] e−jω0Tn

.

11.2 Zero-Phase FIR Filters

Beginning with a zero phase (noncausal) CT filter HCT (jω) , we may convert it to a DT HDT

(
ejΩ
)

and take the IDTFT, obtaining an even impulse response h [n] . To maintain zero phase after
windowing, the window must also be even. The standard windows w [n] are nonzero only for
0 ≤ n ≤ N − 1, but may be shifted to the even function w

[
n+ N−1

2

]
. (N must be odd.). In this

case, set

h̃ [n] = αw

[
n+

N − 1

2

]
h [n] ,
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with

α =
HCT (0)

N−1
2∑

n=−N−1
2

w
[
n+ N−1

2

]
h [n]

.

As we noted in Example 9.4, an even impulse response does not always give rise to a zero phase
frequency response. This leads to another unfortunate consequence of windowing: A windowed
zero phase filter may not have zero phase.

Example 11.2 Let

h [n] =

(
2

3

)|n|
.

The poles and zeros of

H (z) = −5

6

z(
z − 2

3

) (
z − 3

2

)
guarantee that the IIR filter has zero phase. Let w [n] be the rectangular window with length N = 3.
Then

h̃ [n] = αw [n+ 1]h [n] =

{
α
(

2
3

)|n|
, n = −1, 0, 1

0, else

is even, but

H̃
(
ejΩ
)

= α
1∑

n=−1

(
2

3

)|n|
e−jΩ = α

(
2

3
ejΩ + 1 +

2

3
e−jΩ

)
= α

(
1 +

4

3
cos Ω

)
.

Since H̃
(
ejΩ
)
oscillates between + and −, the FIR filter does not have zero phase.

In most cases windowing zero phase IIR to FIR does maintain zero phase. But, as demonstrated
in Example 11.2, the zero phase property must be confirmed explicitly.

Example 11.3 Starting with a 2nd order Butterworth, zero phase, CT LPF with bandwidth 1,
convert to DT using sampling rate fs = 1 and window to FIR using a Hann window with N = 11.
Confirm that the FIR filter has zero phase.

HCT (s) =
1

−s2 + 1

HDT (z) =
1

−
(
2 z−1
z+1

)2
+ 1

=
−1

3
z2 − 2

3
z − 1

3

z2 − 10
3
z + 1

Hi (z) =
2
9

z − 1
3

=
2
9
z−1

1− 1
3
z−1

Ho (z) = −1

3
− 2

z − 3

h [n] =
2

9
3−n+1u [n− 1]− 1

3
δ [n] + 2 · 3n−1u [−n] =

1

3

(
2 · 3−|n| − δ [n]

)
h̃ [n] = αw [n+ 5]h [n]
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w [n+ 5] =
1

2

(
1− cos

(π
5

(n+ 5)
))

=
1

2

(
1 + cos

(π
5
n
))

α =
1

5∑
n=−5

w [n+ 5]h [n]

=
6

5∑
n=−5

(2 · 3−|n| − δ [n])
(
1 + cos

(
π
5
n
))

=
3

1 + 2
5∑

n=1

3−n
(
1 + cos

(
π
5
n
))

= 1.175

h̃ [n] =

{
0.1959

(
2 · 3−|n| − δ [n]

) (
1 + cos

(
π
5
n
))
, −5 ≤ n ≤ 5

0, else
=



0.0009238, n = ±4
0.01003, n = ±3
0.05699, n = ±2
0.2362, n = ±1
0.3918, n = 0

0, else

H̃ (z) = 0.0009238z−4 + 0.01003z−3 + 0.05699z−2 + 0.2362z−1 + 0.3918

+ 0.2362z + 0.05699z2 + 0.01003z3 + 0.0009238z4

H̃
(
ejΩ
)

= 0.0009238e−j4Ω + 0.01003e−j3Ω + 0.05699e−j2Ω + 0.2362e−jΩ + 0.3918

+ 0.2362ejΩ + 0.05699ej2Ω + 0.01003ej3Ω + 0.0009238ej4Ω

= 0.001848 cos (4Ω) + 0.02006 cos (3Ω) + 0.1140 cos (2Ω) + 0.4724 cos Ω + 0.3918

≥ 0.01519

Since H̃
(
ejΩ
)
> 0 for all Ω, ∠H̃

(
ejΩ
)

= 0.

11.3 Choice of Window Length

For any BIBO stable LTI system, the impulse response satisfies |h [n]| → 0 as |n| → ∞. Hence,
using a suffi ciently long window ensures that

h̃ [n] = αw [n]h [n]

closely approximates h [n] . But how long is long enough? If the window is too long, we are essentially
windowing 0’s for large n, and the filter implementation will require unnecessary computations and
memory. If the window is too short, the approximation to the IIR response will be poor.
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A simple answer to this question comes from a study of the exponential function, which should
be familiar from elementary circuit analysis. The following table is easy to compute:

m e−m

0 1
1 .37
2 .14
3 .050
4 .018
5 .0067
6 .0025
7 .00091
8 .00034
9 .00012

In CT problems, one often encounters the decaying exponential

x (t) = e−λt.

The magnitude is
|x (t)| = e−(Reλ)t.

Setting

τ =
1

Reλ
,

we may write
|x (t)| = e−

t
τ .

The number τ is the time constant. The left column of the table represents an integer number
of time constants, while the right column indicates the extent to which x (t) has decayed after
that length of time. For example, 1 time constant translates into x (t) falling to 37% of its initial
value. After 5 time constants, x (t) has fallen below 1% of its initial value x (0) . For this reason, 5
time constants is a common measure of how long an exponentially decaying signal takes to become
negligible.
For DT, exponentials are usually written in the form

x [n] = ρn.

Assuming |ρ| < 1, we may draw a comparison to the CT case by writing

|x [n]| = |ρ|n = e−
n
τ ,

where
τ =

1

ln 1
|ρ|

is a (dimensionless) “time constant”. Again, for n ≥ 5τ, |x [n]| is less than 1% of |x [0]| . For n < 5τ,
x [n] is large enough that it should not be ignored.
Now consider an IIR filter with poles ρ1, . . . , ρk inside the unit circle and poles ρk+1, . . . , ρN

outside the unit circle. For n > 0, the impulse response hi [n] of the inner poles is a sum of
right-sided exponentials ρnl , and the worst-case “inner time constant”is

τi = max
l≤k

1

ln 1
|ρl|
.
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The impulse response ho [n] of the outer poles is a sum of left-sided exponentials ρnl . The decay
occurs as n→ −∞. This is equivalent to letting n→ +∞ in

ρ−nl =

(
1

ρl

)n
.

Hence, we define the “outer time constant”

τo = max
l>k

1

ln |ρl|
.

The inner time constant relates to decay as n → ∞ and the outer to n → −∞. To avoid wasting
computer resources, windows should be nonzero only on the interval −5τo ≤ n ≤ 5τi. We refer to
this as the 5 time constant rule.
For causal filters, only inner poles appear, so we can calculate N according to

N − 1 = d5τie

or
N = d5τie+ 1,

where
dte = smallest integer ≥ t

is the ceiling function. In the case of zero phase filters, h [n] is even so, again, we need only consider
the inner poles. Since h [n] = 0 except for

−N − 1

2
≤ n ≤ N − 1

2
,

we may set
N − 1

2
= d5τie

or
N = 2 d5τie+ 1.

Example 11.4 In Example 11.1, the poles are

ρ1,2 = ±j
√

3− 2
√

2,

so
τi =

1

ln 1√
3−2
√

2

= 1.135.

The appropriate window length is

N = d5τie+ 1 = d5.675e+ 1 = 7.

In Example 11.3,

ρ1 =
1

3
, ρ2 = 3,

τi =
1

ln 1
1/3

= .9102,

N = 2 d5τie+ 1 = 2 d4.551e+ 1 = 11.
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11.4 Linear Phase FIR Filters

A DT filter with transfer function H
(
ejΩ
)
is a linear phase filter if there exists an integer n0 such

that
∠H

(
ejΩ
)

= −n0Ω, −π < Ω < π.

Thus
H
(
ejΩ
)

=
∣∣H (ejΩ)∣∣ e−jn0Ω.

In particular, a zero phase filter has linear phase with n0 = 0. Linear phase filters exhibit no phase
distortion, since the phase delay

∆ (Ω) = −
∠H

(
ejΩ
)

Ω
= −n0

is constant.
Let h [n] be the impulse response of a linear-phase filter. Then

h [n+ n0]←→ ejn0ΩH
(
ejΩ
)

=
∣∣H (ejΩ)∣∣ ,

so a filter has linear phase iff its impulse response is the time-shift of that of a zero phase filter.
In particular, h [n+ n0] must be an even function. If, in addition, the linear phase filter is causal,
then h [n] = 0 for n < 0, so h [n] = 0 for n > 2n0 + 1. This proves the following result:

Theorem 11.1 If a DT linear phase filter is causal, then it is FIR.

The main application of linear-phase is in real-time problems where phase distortion is a signif-
icant issue. As we have seen, real-time IIR filters have nonlinear phase. Unfortunately, zero phase
IIR filters are noncausal and thus cannot be implemented in real-time. The alternative is to window
the IIR filter to convert it to zero phase FIR. But such a filter has an even impulse response, making
the filter noncausal. Set

n0 = max
{
n h [n] 6= 0

}
.

Then
min

{
n h [n] 6= 0

}
= −n0,

so we may simply delay h [n] by n0 time steps to force causality. This achieves a real-time linear
phase filter without changing

∣∣H (ejΩ)∣∣ . Although the resulting filter does not suffer from phase
distortion, it does exhibit a delay of n0T. Clearly, n0 must be kept small enough to make the delay
negligible. This constitutes a second upper bound on window length, which may be significantly
smaller than that determined by the system time constants. Such a design involves a trade-off
between small delay and good approximation to the IIR response.

Example 11.5 Starting with a 2nd order Butterworth, zero phase, CT LPF with bandwidth 1,
convert to DT using sampling rate fs = 1 and window to FIR using a Hann window with N = 11.
Shift the impulse response to generate a causal, linear phase LPF.
From Example 11.3,

h̃ [n] =

{
0.1959

(
2 · 3−|n| − δ [n]

) (
1 + cos

(
π
5
n
))
, −5 ≤ n ≤ 5

0, else

meets all the conditions, except causality. Delaying by n0 = 5 yields a linear-phase, causal filter
with impulse response h̃ [n− 5] . The resulting CT delay is n0T = 5.
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11.5 Difference Equation Implementation

Suppose an FIR filter has impulse response h [n] , where h [n] = 0 for n < N1 and n > N2. For any
input x [n] ,

y [n] = h [n] ∗ x [n] (11.1)

=

N2∑
m=N1

h [m]x [n−m]

= h [N1]x [n−N1] + . . .+ h [N2]x [n−N2] ,

which is just the zeroth-order difference equation (8.12) with

M = N2 −N1,

N = N2,

bi = h [N2 − i] .
As with IIR filters, one may program the filter in a variety of ways for the sake of computational

effi ciency and stability. We will examine two methods. The first is Direct Form:

Figure 11.1

Here the difference equation (11.1) is computed directly, requiring N2−N1 + 1 multiplications and
N2 delays.
In the case of causal, linear phase filters, a more effi cient variant of Direct Form is possible.

Suppose M is even and

h [n] =

{
h [M − n] , 0 ≤ n ≤M
0, n < 0 or n > M

.

Then N1 = 0 and N2 = M. The filter is FIR with phase

∠H
(
ejΩ
)

= −M
2

Ω.

The following structure requires only M
2

+ 1 multiplications:
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Figure 11.2

The second method requires factorization of the polynomial

Q
(
z−1
)

= h [N1] + h [N1 + 1] z−1 + h [N1 + 2] z−2 + . . .+ h [N2]
(
z−1
)N2−N1

according to the Fundamental Theorem of Algebra. The complex conjugate factors must be com-
bined to yield a product of linear and quadratic factors, all with real coeffi cients. Each of these
factors may be programmed in Direct Form and connected in series. Such a structure is called
Cascade Form. Note the similarity between Cascade Form for FIR filters and IIR filters.

Example 11.6 Consider the FIR filter with impulse response

h [n] =


1, n = −2
3, n = −1, 0, 1
2, n = 2
0, else

.

Then N1 = −2, N2 = 2, and

Q
(
z−1
)

= h [−2] + h [−1] z−1 + h [0] z−2 + h [1] z−3 + h [2] z−4

= 1 + 3z−1 + 3z−2 + 3z−3 + 2z−4

=
(
1 + z−1

) (
1 + 2z−1

) (
1 + jz−1

) (
1− jz−1

)
=
(
1 + z−1

) (
1 + 2z−1

) (
1 + z−2

)
.

The Cascade Form is

Figure 11.3
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11.6 DFT Implementation

Given the impulse response h [n] of an FIR filter and an input signal x [n] , the convolution (11.1)
may also be computed using the DFT as outlined in Section 6. This constitutes another method of
FIR filter implementation. Recall Algorithm 6.1:

Algorithm 11.1 1) Zero-pad h [n] and x [n] to M +N − 1 points.
2) Apply FFT to x [n] and h [n] .
3) Compute H [k]X [k] .
4) Apply FFT to H [k]X [k] .
5) Reflect the result (mod M +N − 1) and divide by M +N − 1.

Since the entire input signal x [n] must be known in order to compute X [k] , this method applies
only to non-real-time applications.
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