Basic FPGA Tutorial

using VHDL and VIVADO to design two frequencies PWM
modulator system

Contents

1 INTRODUCTION

1.1 Motivation o e
1.2 Purpose of this Tutorial e
1.3 Structure of this Tutorial
1.4 Objectives of this Tutorial o e
1.5 One Possible Solution for the Modulator Design o e
1.6 Design Flow e
1.7 Vivado Design Suite and it's Use Modes o

1.7.1 Differences between Project and Non-ProjectMode,

2 FREQUENCY TRIGGER

2.1 Description L e
2.2 CreatingaNew Project e
2.3 Vivado Integrated Design Environmento
2.4 CreatingModule L

2.41 Creating a Module Using Vivado Text Editor,
25 CreatingTestBench e
2.6 Simulating with Vivado Simulator L

3 COUNTER

3.1 Description e e e e
3.2 CreatingModule L e
3.3 CreatingTestBench e
3.4 Simulating e e

4 SINE PACKAGE
4.1 Description L e e
4.2 CreatingModule L

5 DIGITAL SINE
5.1 Description e e e e e e

5.2 CreatingModule L e

6 DIGITAL SINE TOP

6.1 Description e

17
17
17
22
24
30
34
38

41
41
41
42
45

47
47
48

51
51
51

53

CONTENTS

10

11

6.2 CreatingModule 54
6.3 CreatingTestBench e 55
6.4 Simulating e 56
6.5 Synthesis e 57
6.5.1 Description L e 57
6.5.2 RunSynthesis 58
6.5.3 After Synthesis 59
6.5.4 Synthesis Reports 63
6.5.5 Schematic View 65
PWM 69
7.0 Description e 69
7.2 CreatingModule L e e 70
7.3 CreatingTestBench 72
7.4 Simulating e 73
MODULATOR 75
8.1 DesCription e e e e e 75
8.2 CreatingModule L 76
8.3 CreatingTestBench e 77
8.4 Simulating 78
MODULATOR WRAPPER 79
9.1 Description e e e e e e e e 79
9.2 CreatingModule L e 80
DESIGN IMPLEMENTATION 83
10.1 Creating XDC File 83
10.1.1 Defining Timing Constraints e e 89
10.1.2 Migrating UCF Constraintsto XDC e 100
10.2 Implementation L e 101
10.2.1 About the Vivado Implementation Process 101
10.2.2 RunlImplementation L 102
10.2.3 After Implementation e e 103
10.2.4 Implementation Reports 105
10.2.5 Run Post-Implementation Simulation L L 108
10.2.6 Run Post-Implementation Timing Simulation L. 109
10.3 Generate Bitstream File 113
10.4 Program Device L 113
10.5 Modifications in case of using different developmentboards 120
DEBUGGING DESIGN 123
11.1 Inserting ILA and VIO Cores into Design 123

CONTENTS

11.2 Debug a Design using Integrated Vivado Logic Analyzer 141
11.3 OsCilloSCOPE o o o 150
12 MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD 155
12.1 Description L e e 155
12.2 Creating Project o 156
12.3 CreatingModule L L 158
13 DESIGNING WITH IPs 173
13.1 IP Packager e 174
13.2 IPIntegrator e 196
13.3 Debugging IP Integrated Designs L 211
13.4 Creating Modulator IP Core with AXl4 Interface 214
14 APPENDIX 235
14.1 HDL Instantiation Debug Probing Flow 235
14.2 Using the HDL Instantiation Debug Probing Flow in IP Integrator 252
Index 255

CONTENTS

List

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24

of Figures

Example of the PWM signal 4
Sine wave with 256 samples L 4
Block diagram e e e e e 6
Details of PWM signal generation 7
Project Design Steps L e 7
Design Flow e e 8
Design Verification Steps 10
Project and Non-Project Mode Commands 12
Frequency Trigger block diagram L 17
The Vivado Getting Started page o e 18
Create a New Vivado Projectdialogbox 18
Project Name dialog box e 19
Project Type dialog box e 19
Default Partdialogbox 20
New Project Summary dialogbox 21
Vivado IDE Viewing Environment L e e e 22
Vivado IDE Default Layout 23
Project Summary View 24
Add Sources command e e e 25
Add Sources dialog box e 25
Add or Create Design Sources dialog box - Create Fileoption 26
Create Source Filedialogbox e 26
Add or Create Design Sources dialog box with created file 27
Define Module dialogbox 27
Vivado IDE Viewing Environment after module creation oL 28
Automatically generated frequency_trigger_rtl.vhd sourcefile 28
Remove File from Projectoption 29
Remove Sources dialog box 29
Add Sources command e e 30
Add Sources dialog box - Add or create design sourcesoptiono oo 31
Add or Create Design Sources dialog box - Add Filesoption 31

Add Source Filesdialogbox e 32

LIST OF FIGURES

2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36

3.1
3.2
3.3
3.4
3.5
3.6

41

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

Add or Create Design Sources dialog box - with added file 32
Vivado IDE Viewing Environment with added sourcefile oL 33
Add Sources command L e e e e e 35
Add Sources dialog box - Add or create simulation sourcesoption 35
Add or Create Simulation Sources dialogbox 36
Add Source Files dialogbox L 36
Add or Create Simulation Sources dialog box - with added file 37
Vivado IDE Viewing Environment with added test benchfile 37
Run Behavioral Simulation option L 39
Vivado IDE Viewing Environment - after simulationprocess oo 39
Simulation Results L 40
Vivado Simulator Simulation Controls L e 40
Counter block diagram L 41
Create Simulation Setoption L 43
Create Simulation Setdialogbox L 43
Vivado IDE Viewing Environment with created new simulationset 44
Make Active option L e e e e e 45
Simulation Results L 45
Sine-package description L e e 47
Digital Sine block diagram 51
Digital Sine Top block diagram L e e 53
Digital Sine Top detailed block diagram L 53
Simulation Results L 56
Waveform Style -> Analog option L 57
Simulation results with analog sine signal representation oo 57
Run Synthesis command e 58
Synthesis Completed dialogbox 58
Default Layout option e e e 59
Synthesized Design options L L e 59
Timing Constraints window L e e 60
Timing Summary Report e e e 60
Clock Networks Report o 61
Report Methodology e 61
DRC Report o e e e e 62
Noise Report e e 62
Utilization Report o e 62
Power Report e 63
Reportstab e 63
Vivado Synthesis Report 64

vi

LIST OF FIGURES

6.20 Utilization Report L e 65
6.21 Schematiccommand e 66
6.22 Sine-Top Schematic View L e e e 66
7.1 PWMblock diagram L e e e e e 69
7.2 FSMstatediagram L 70
7.3 Simulation Results L 73
8.1 Modulator block diagram L e e e e 75
8.2 Simulation Results L e 78
9.1 Modulator wrapper block diagram L. L e 79
10.1 /O Planning option e e e 84
10.2 /O Planning VIew o o e 85
10.3 /O Portstab o e 85
10.4 1/O Port Properties window L e 86
10.5 1/O Ports tab with assigned pin locations and I/O standards 86
10.6 Save Constraintsdialogbox L 87
10.7 Save Constraints As dialogbox L 87
10.8 Created modulator _rtl constraints set e e e e 88
10.9 modulator.xdc file with physical constraints 88
10.10Add Sources dialog box - Add or create constraintsoption 89
10.11No Target Constraints File dialogbox 90
10.12Define Constraints and Target dialogbox 90
10.13lIdentify and Recommend Missing Timing Constraints dialogbox 91
10.14Primary Clocks dialog box 92
10.15Input Delays dialog box o 93
10.160utput Delays dialog box e 93
10.17Constraints Summary dialog box L 94
10.18Timing Constraints option e e e 95
10.19Timing Constraints Window e 95
10.20Create Clock dialog box o e 96
10.21Specify Clock Source Objects dialogbox 97
10.22Create Clock dialog box after specifying the period fortheclk_p 98
10.23Timing Constraints window with the create_clock constraint 98
10.24modulator.xdc constraints file in the Sources window Lo 99
10.25modulator.xdc file with physical and timing constraints o oo 99
10.26Run Implementation command L e 102
10.27Implementation Completed dialog box L 102
10.28Implemented Design options L L e e 103
10.29Report Timing Summary tab e e e 104
10.30Report Clock Interactiontab e 104

LIST OF FIGURES

10.31Utilization Reporttab L 105
10.32Reportstab e 105
10.3310 Report 106
10.34Utilization Report e 106
10.35Control Sets Report L e 107
10.36Power Report L 108
10.37Route Status Report L 108
10.38Simulation Flow e 109
10.39Run Post-Implementation Timing Simulation option. L o 111
10.40Libraries tab with added modulator_pkg.vhdfile o 111
10.41Move Sources dialog box - Manual compile order 112
10.42Timing Simulation Results 112
10.43Functional Simulation Results L 112
10.44Timing Simulation Results (with signaldelays) 113
10.45Generate Bitstream command L L L 113
10.460pen Hardware Manager command ot e e e 114
10.47Hardware Manager VIEW e e e e e e 114
10.480pen Target command e e 114
10.490pen Hardware Target dialog box o e 115
10.50Hardware Server Settings dialogbox Lo 115
10.51Select Hardware Target dialogbox 116
10.520pen Hardware Target Summary dialogbox 117
10.53Hardware view after opening a connection to the hardwaretarget 117
10.54Program Device option L e 118
10.55Program device option from the Hardware Managerview 118
10.56Program Device WindOW o L e e 118
10.57Hardware Device Properties window L 119
10.58Close Target option L 119
10.59Close Server option L 119
10.60Project Settings window L e 120
10.61Project Settings dialogbox e 120
10.62Select Device dialog box L L e 121
11.1 Symbolofthe ILAVB.2core o 124
11.2 Symbolofthe VIO V3.0 core o 125
11.3 IP Catalog window with selected VIO core 126
11.4 VIO core configuration window - General Options 126
11.5 VIO core configuration window - PROBE_IN Ports(0..0)tab 127
11.6 VIO core configuration window - PROBE_OUT Ports(0..0)tab 127
11.7 Generate Output Products window for VIO core 128
11.8 Sources tab with generated VIO core L 128
11.9 Connection between VIO core and Modulator module L. 129

viii

LIST OF FIGURES

11.10Project Settings command L L e 131
11.11Project Settings dialogbox e 132
11.12Run Synthesis command e 132
11.130pen Synthesized Design option L L e 133
11.14Debug tab with unassigned debug nets L 133
11.15Netlist window with expanded Nets folders 134
11.16Mark and Unmark Debug option 134
11.17Confirm Debug Net(s) dialogbox 135
11.18Set Up Debug button L o e 135
11.19Tools -> Setup Debug option L 136
11.20Set Up Debug dialog box o e 136
11.21Nets to Debug dialog box L 137
11.22Find Nets dialog box o o e 137
11.28Select Clock Domain option o 138
11.24Select Clock Domain dialogbox 138
11.25Nets to Debug dialog box - with specified clock domains 139
11.261LA Core Options dialog box 139
11.27Set up Debug Summary dialogbox 140
11.28Debug window with assigned debugnets 140
11.29Netlist window with generated ILAcore e 141
11.300pen Hardware Manager command ot i e e e 141
11.31Hardware window showing the ILA and VIO debugcores 142
11.32ILA Properties Window L L e e 142
11.33Add Probes to Basic Capture Setup option 143
11.34Basic Capture Setup window with the freq_trig_sdebugprobe 144
11.35ILA probe Operator dialog box L 144
11.36Run Triggeroption L e 146
11.37Content of the waveform window after trigger has beendetected 146
11.38Waveform window with debug probes and specified trigger position 147
11.39Zoomed in results in the waveformwindow L 147
11.40Results of the behavioral simulation of the PWM module 147
11.41Captured waveform of the sine signal 148
11.42Captured waveform of the sine signal with 2048 ILA buffer datadepth 148
11.43Add Probes to VIO Window option o e 149
11.44VIO Probes window L e 149
11.45Changing the swO_svalue 150
11.46Using oscilloscope for viewing PWM signal 150
11.47PWM signal measured by oscilloscope 153
12.1 Modulator block diagram for socius developmentboard 156
12.2 Default Partdialogbox 157
12.3 Vivado IDE Viewing Environment with created modulator_socius project 158

LIST OF FIGURES

12.4 Source tab with generated VIO core L 159
12.5 Source tab with generated VIO core and Modulatormodule 159
12.6 TclConsole Window o L o e e 166
12.7 Block diagram of Zyng PS configured to runon sociusboard Lo 167
12.8 ILADashboard 168
12.9 Add Probestothe VIO window L e 168
12.10VIO Probes window L L o e e 169
12.11Changingthe swO_svalue e 169
12.12Add Probes to the Trigger Setup window e 170
12.13Changing the Compare Values in the Trigger Setup window 170
12.14Add Probes to the Capture Setup window e 171
12.15Changing the Compare Values in the Capture Setup window 171
12.16Captured waveform of the sine signal, whensw0=0 171
12.17Captured waveform of the sine signal, whensw0=1 172
13.1 Vivado IP-Centric Design Flow e 173
13.2 IP Packagingand Usage Flow e 174
13.3 Create a New Vivado Projectdialogbox o 174
13.4 Project Name dialog box e 175
13.5 Project Type dialogbox o e 175
13.6 Add Sources dialogbox L 176
13.7 Add Source Filesdialogbox e 176
13.8 Add Sources dilaog box with added sourcefile L L o 177
13.9 Add Existing IP (optional) dialogbox 177
13.10Add Constraints (optional) dialog box 178
13.11Default Part dialog box L 178
13.12New Project Summary dialogbox 179
13.13Created new frequency_trigger project L 179
13.14Packager window with configured settings that will be applied after packaging process 180
13.15Create and Package IP option 180
13.16Create and Package IP dialog box L 181
13.17Choose Create Peripheral or Package IP dialogbox 181
13.18Package Your Current Project dialogbox 182
13.19New IP Creation dialog box 182
13.20ldentification window L L e 183
13.21Review and Package window 184
13.22Package IP dialog box L 184
13.23Package IP dialog box with selected new archive location 184
13.24Review and Package window with new archive information 185
13.25frequency_trigger IPinthe IP Catalog e 185
13.26Repository Manager window L L L e 187
13.27Add Repository dialog box L 187

LIST OF FIGURES

13.28Repository Manager with selected ip_repository 188
13.29frequency_trigger IP configuration window L 189
13.30Generate Output Products window for frequency_trigger_ipcore 189
13.31Sources window with generated frequency_trigger_ipIP Lo 190
13.32counter IP configuration window L L 190
13.33sine IP configuration window L L 191
13.34pwm IP configuration window L L e 192
13.35Sources window with all four generated IPs 192
13.36Connection between generated IPs L 193
13.37Modulator IP wrapper block diagram 195
13.38Create Block Designoption L 198
13.39Create Block Design dialog box L 198
13.40Vivado IDE with ablank designcanvas e 198
13.41Add IP oplion 199
13.42Add IPlinK . . o o e 199
13.43Add IP button e 200
13.44frequency_trigger_vi_OcoreinthelP Catalog 200
13.45Automatically instantiated frequency_trigger_v1_0 core in the IP Integrator designcanvas 201
13.461P Integrator design canvas with all four instantiated IPs o 0oL 201
13.47frequency_trigger_v1_0 re-customization dialogbox Lo 202
13.48counter_v1_0 re-customization dialogbox 202
13.49sine_v1_0re-customization dialogbox 203
13.50pwm_v1_0 re-customization dialog box L 203
13.511P Integrator design canvas with all four re-customized IPs 204
13.52IP Integrator design canvas with instantiated ConstantIPs 204
13.53Constant block re-customization dialogboxo 205
13.54Create Port option L e 206
13.55Create Portdialogbox L 206
13.561P Integrator design canvas withnew ports L 207
13.571P Integrator design canvas with connected IPs 208
13.58Validate Design option fromthe mainmenu L L o 208
13.59Validate Design button from the main toolbarmenuo oo 209
13.60Validate Design dialogbox L 209
13.61Create HDL Wrapper option o e e 209
13.62Create HDL Wrapper dialogbox o o e 209
13.63Sources window with generated modulator_ipi HDL wrapper 210
13.64 Sources window with added modulator_ipi_rtl.xdc constraints file 210
13.651P Integrator design canvas with connected VIOcore 211
13.66Debug option L e 212
13.67Generate Block Designcommand L e 212
13.68MARK_DEBUG attributes in the generated HDL file 213

LIST OF FIGURES

13.69Save Projectdialog box L
13.70Modulator design with AXlinterface
13.71Create and Package IP... option L
13.72Create and Package IP dialog box L
13.73Choose Create Peripheral or Package IP dialogbox
13.74Peripheral Details dialog box L
13.75Add Interfaces dialog box L e
13.76Create Peripheral dialog box L
13.771dentification window L L e
13.78Hierarchy tab after adding all the necessary source filesinthe IP
13.79Hierarchy tab with opened modulator_axi_ip_v1_0-arch_impbranch
13.80Modified modulator_axi_ip_v1_0_S00_AXlLvhdfile-part1
13.81Modified modulator_axi_ip_v1_0_S00_AXlvhdfile-part2
13.82modulator_axi_ip_v1_0_S00_AXIl.vhd file with instantiated Modulator module
13.83Hierarchy window with integrated Modulator module within AXl peripheral
13.84Modified modulator_axi_ip_v1_0.vhd source file-part1,
13.85Modified modulator_axi_ip_v1_0.vhd source file-part2
13.86Modified modulator_axi_ip_v1_0.vhd sourcefile-part3
13.87Compatibility window L L
13.88File Groups WindOwW L L
13.89Customization Parameters window after merging changes from Customization Parameters Wizard
13.90Edit IP Parameter window L
13.91Review and Package window L L e e
13.92IP Catalog with modulator_axi_ip IP o
13.93Customize IP - modulator_axi_ip_v1.0
13.94Show IP Hierarchy dialogbox
13.95Sources window with modulator_axi_ip_0 sources hierarchy
13.96 AXI4-Lite single write operation timing diagram
13.97S_AXI_AWADDR signal
13.98Run Behavioral Simulationoption
13.99Simulation results - writing to div_factor_freghigh and div_factor_freglow registers
13.108@imulation Results - changing the value of swO register

13.108imulation Results - pwm signal frequency change as a result of the change of the swO0 register value . . .

14.1 Vivado Logic Analyzer Design Flow
14.2 Symbolofthe ILAVB.2core e
14.3 Symbolofthe VIO V3.0 core e
14.4 JTAG to AXI Master System
14.5 IP Catalog command e
14.6 IP Catalog window with selected ILAcore o 0 i
14.7 LA core configuration window - General Optionstab

14.8 ILA core configuration window - Probe_Ports(0..0)tab o oo

Xii

LIST OF FIGURES

14.9 Generate Output Products window for ILAcore 242
14.10Sources tab with generated ILAcore L 242
14.11Product Guide option L 243
14.12Documentation / Product Guide option L 243
14.13IP Catalog window with selected VIO core 244
14.14VIO core configuration window - General Options 245
14.15VIO core configuration window - PROBE_IN Ports(0..0)tab 245
14.16VIO core configuration window - PROBE_OUT Ports(0..0)tab 246
14.17Generate Output Products window for VIO core 246
14.18Source tab with generated VIO core L 247
14.19Connection between the ILA core, VIO core and Modulatormodule 248
14.201LA core configuration window - General Optionstab 253
14.211LA core configuration window - Probe_Ports(0..7)tab Lo 254
14.221P Integrator design canvas with connected ILAand VIOcores 254

xiii

LIST OF FIGURES

xiv

List of Tables

Chapter 1

INTRODUCTION

1.1 Motivation

Basic FPGA Tutorial is a document made for beginners who are entering the FPGA world. This tutorial explains, step by
step, the procedure of designing a simple digital system using VHDL language and Xilinx Vivado Design Suite.

1.2 Purpose of this Tutorial

This tutorial is made to introduce you how to create, simulate and test an project and run it on your development board.

After completing this tutorial, you will be able to:

+ Launch and navigate the Vivado Integrated Design Environment (IDE)

 Learn the various types of projects that can be created with the New Project Creation Wizard
+ Create and add design source files with the Vivado IDE

» Synthesize and implement the design in the Vivado IDE

» Simulate a design using integrated Vivado Simulator

* Run your design on the target development board

» Debug a design in hardware using Vivado Logic Analyzer and Oscilloscope

+ Designing with IPs
The following project is designed for:

« Designing Surface: VIVADO 2016.4
» HD Language: VHDL
+ Simulator: Vivado Simulator

+ Device: ZedBoard Zynq Evaluation and Development Kit

1.3 Structure of this Tutorial

This tutorial is composed of eight chapters. The content of each chapter is explained in the text below:

+ Chapter 1: "Introduction” - In this chapter you will find what is the purpose of this tutorial, explanation what is the
PWM signal, frequency calculations, block diagram of one possible solution for the modulator design and a lot of
basic information about the Vivado Design Suite.

INTRODUCTION

Chapter 2: "Frequency Trigger" - In this chapter you will find all the necessary information about how to create a
new project in the Vivado IDE, how to create Frequency Trigger module as constituent part of the Modulator design,
how to generate its test bench file and how to simulate it with the integrated Vivado simulator.

Chapter 3: "Counter" - This chapter explains how to create Counter module, how to create its test bench file and
how to simulate it with Vivado simulator.

Chapter 4: "Sine Package" - This chapter holds the information how to create Sine package as one universal
package that will be used in almost all modules of the Modulator design.

Chapter 5: "Digital Sine" - This chapter explains how to create Digital Sine module, how to create its test bench file
and how to simulate it with Vivado simulator.

Chapter 6: "Digital Sine Top" - In this chapter you will find all the necessary information about how to create
Digital Sine Top module which combines Frequency Trigger, Counter, Sine package and Digital Sine modules into
one larger module. You will also find information about how to create its test bench file and how to simulate it with
Vivado simulator. Additionally, this chapter holds information about the Vivado synthesis process.

Chapter 7: "PWM" - This chapter explains how to create PWM module. This module will generate an PWM signal
modulated using the digital sine wave from the Digital Sine module. In this chapter you will find how to create its
FSM state diagram, its test bench file and how to simulate it with Vivado simulator.

Chapter 8: "Modulator” - This chapter includes all the necessary information about the Modulator module, as the
top module of our design. In this chapter you will find information how to create Modulator module and its test bench
file and how to simulate it with Vivado simulator.

Chapter 9: "Modulator Wrapper" - This chapter includes all the necessary information about the Modulator Wrap-
per module. In this chapter you will find information how to create a wrapper for the Modulator module that enables
easy portability of the Modulator design between different development boards with different types of reference clock
sources.

Chapter 10: "Design Implementation” - This is a large chapter and includes all the information about the design
implementation process steps. In this chapter you will learn how to create XDC file, how to implement your de-
sign, how to generate bitstream file and how to program your device. Here you will also find information about the
necessary modifications in case of using different development boards.

Chapter 11: "Debugging Design" - This chapter explains how you can debug your design first using internal
Vivado Logic Analyzer and then using Oscilloscope as external analyzer. In this chapter you will also find what are
the differences between "HDL Instantiation Debug Probing Flow" and "Netlist Insertion Debug Probing Flow".

Chapter 12: "Modulator Design Targeting Socius Development Board" - This chapter will show you how to
define the structure of the ARM-based processor system for socius development board, that will be used as a part
of the solution for PWM signal generation.

Chapter 13: "Debugging with IPs" - This chapter explains how you can create Modulator design using your own
IPs, with the help of the Vivado IP Packager and IP Integrator tools, how you can debug IP integrated designs and
how you can create new Modulator IP core with AXI4 interface in it.

Chapter 14: "Appendix" - This chapter contains explanations about various features of the Xilinx Vivado tool that
are not covered in any of the chapters.

This tutorial is accompanied by the .odp labs presentations. In total there are 19 labs. Correlation between labs and this
tutorial document is the following:

Lab 1: "Introduction" - covers the information presented in the Chapter 1: "Introduction” of this tutorial.

Lab 2: "Using the Vivado Tool" - presents the overview of design development using Xilinx Vivado Design Suite and
VHDL modelling language. Therefore, this lab covers information located throughout the whole tutorial document.

Lab 3: "Creating Frequency Trigger Module" - covers the information presented in the sub-chapters 2.2, 2.4,
2.4.1 of Chapter 2: "Frequency Trigger" of this tutorial.

Lab 4: "Frequency Trigger Verification" - covers the information presented in the sub-chapters 2.5, 2.6 of Chap-
ter 2: "Frequency Trigger" of this tutorial.

Lab 5: "Creating Counter Module" - covers the information presented in the Chapter 3: "Counter" of this tutorial.

1.4 Objectives of this Tutorial

1.4

Lab 6: "Creating Sine Package" - covers the information presented in the Chapter 4: "Sine Package" of this
tutorial.

Lab 7: "Creating Digital Sine Module" - covers the information presented in the Chapter 5: "Digital Sine" of this
tutorial.

Lab 8: "Creating Digital Sine Top Module" - covers the information presented in the Chapter 6: "Digital Sine
Top" of this tutorial.

Lab 9: "Creating PWM Module" - covers the information presented in the Chapter 7: "PWM" of this tutorial.

Lab 10: "Creating Modulator Module" - covers the information presented in the Chapter 8: "Modulator" of this
tutorial.

Lab 11: "Creating XDC File" - covers the information presented in the sub-chapter 10.1 of Chapter 10: "Design
Implementation” of this tutorial.

Lab 12: "Design Implementation” - covers the information presented in the sub-chapter 6.5 of Chapter 6: "Digital
Sine Top" and sub-chapters 10.2, 10.3, 10.4 of Chapter 10: "Design Implementation™ of this tutorial.

Lab 13: "Vivado Logic Analyzer" - covers the information presented in the sub-chapter 11.1 of the Chapter 11
"Debugging Design" of this tutorial.

Lab 14: "Debug a Design using Integrated Vivado Logic Analyzer" - covers the information presented in the
sub- chapter 11.2 of the Chapter 11 "Debugging Design" of this tutorial.

Lab 15: "Oscilloscope" - covers the information presented in the sub-chapter 11.3 of the Chapter 11 "Debugging
Design" of this tutorial.

Lab 16: "Modulator Design Targeting Socius Development Board" - covers the information presented in the
Chapter 12 "Modulator Design Targeting Socius Development Board" of this tutorial.

Lab 17: "Designing with IPs - IP Packager" - covers the information presented in the sub-chapter 13.1 of the
Chapter 13 "Designing with IPs" of this tutorial.

Lab 18: "Designing with IPs - IP Integrator"” - covers the information presented in the sub-chapter 13.2 of the
Chapter 13 " Designing with IPs" of this tutorial.

Lab 19: "Debugging IP Integrated Designs" - covers the information presented in the sub-chapter 13.3 of the
Chapter 13 " Designing with IPs" of this tutorial.

Lab 20: "Creating Modulator IP Core with AXI4 Interface" - covers the information presented in the sub-chapter
13.4 of the Chapter 13 " Designing with IPs" of this tutorial.

Objectives of this Tutorial

In this tutorial a PWM signal modulated using the sine wave with two different frequencies (1 Hz and 3.5 Hz) will be
created. Frequency that will be chosen depends on the position of the two-state on-board switch (sw0).

PWM Signal

Pulse-width modulation (PWM) uses a rectangular pulse wave whose pulse width is modulated by some other signal (in
our case we will use a sine wave) resulting in the variation of the average value of the waveform. Typically, PWM signals
are used to either convey information over a communications channel or control the amount of power sent to a load. To
learn more about PWM signals, please visit http://en.wikipedia.org/wiki/Pulse-width_modulation.

lllustration 1.1. illustrates the principle of pulse-width modulation. In this picture an arbitrary signal is used to modulate the
PWM signal, but in our case sine wave signal will be used.

http://en.wikipedia.org/wiki/Pulse-width_modulation

INTRODUCTION

A
MAX ——
0.75 MAX — ,_|
0.5 MAX —— T
0.25 MAX } } }
] |] | -
I [I [= ¢
| \ \ \
. \ \ \
PWM mgnall ‘ ‘
| \ \ \
\
\
\
} >
| T | 2T | 3T | 4T t
0.25T 0.5T+T 0.75T+2T 0.5T+3T

Figure 1.1: Example of the PWM signal

1.5 One Possible Solution for the Modulator Design

Considering that we are working with digital systems and signals, our task will be to generate an digital representation of
an analog (sine) signal with two frequencies: 1 Hz and 3.5 Hz.

lllustration 1.2 is showing the sine wave that will be used to modulate the PWM signal.

2000
1500
1000

500

-500
-1000

-1500

2000 ‘
0 25 50 75 100

I I : I [
125 150 175 200 225 250

Figure 1.2: Sine wave with 256 samples

One period of the sine wave is represented with 256 (2'8) samples, where each sample can take one of 4096 (2'12)
possible values. Since the sine wave is a periodic signal, we only need to store samples of one period of the signal.

Note : Pay attention that all of sine signals with the same amplitude, regardless their frequency, look the same during the
one period of a signal. The only thing that is different between those sine signals is duration of a signal period. This means
that the sample rate of those signals is different.

Considering that the whole system will be clocked with the 100 MHz input signal, which is available on the target devel-
opment board, to get 1 Hz and 3.5 Hz frequencies (which is much smaller than 100 MHz) we should divide input clock
frequency with integer value N.

In the Tables 1.1 and 1.2 are shown parameters that are necessary for generating sine signals with 1 Hz and 3.5 Hz
frequencies.

Table 1.1: Sine signal with the frequency of 1 Hz

1.5 One Possible Solution for the Modulator Design

Division Factor Steps Calculation Explanation

T=1s T=1/1 Hz=1s T is the period of the signal

f1=256 f1=256+1 Hz=256 Hz (or read in f1 is the frequency of reading whole

time: 1 s/256) period (T) with 256 samples

N1=390625 N1=100 MHz/256 Hz=390625 N1 is the number which divides
frequency of the input clock signal
(100 MHz) to the required frequency
for the digital sine module

N2=95 N2=390625/4096=95.3674 N2 is the number which divides
frequency of the input clock signal
(100 MHz) to the required frequency
for the PWM’s FSM module

N1=389120 N1=95%x4096=389120 This is new calculation, because N1
must be divisible with 4096

Table 1.2: Sine signal with the frequency of 3.5 Hz
Division Factor Steps Calculation Explanation

T=0.286 s

T=1/3.5 Hz=0.286 s

T is the period of the signal

f2=896 Hz

f2=256+3.5 Hz=896 Hz (or read in
time: 0.286 s/256)

f2 is the frequency of reading whole
period (T)

N1=111607.1429

N1=100 MHz/896
Hz=111607.1428571

N1 is the number which divides
frequency of the input clock signal
(100 MHz) to the required frequency

N2=27 N2=111607.1428571/4096=27.2478 | N2 is the number which divides
frequency of the input clock signal
(100 MHz) to the required frequency
for the PWM’s FSM module

N1=110592 N1=27x4096=110592 This is new calculation, because N1

must be divisible with 4096

Now, it is obvious that the sine wave can be generated by reading sample values of one period, that are stored in one table,
with appropriate speed. In our case the values will be generated using the sine function from the IEEE Math library and will

be stored in an ROM memory.

Note: All of these information, such as what is the purpose of this tutorial, explanation what is the PWM signal, fre-
quency calculations and block diagram as one possible solution for the modulator design, are illustrated in the Lab 1:

"Introduction".

Block diagram

Block diagram on the lllustration 1.3 shows the structure of one possible system that can be used to generate required

PWM signals.

INTRODUCTION

[swo swo freq_trig ——
|aiv_ractor_treqhigh(31:03 div_factor_freghigh(31:0)
EREQUENCY TRIGGER
|UIVJBEIDLWEQ'0W<3W 0) div_factor_freglow(31:0)
cli_in clk_in
L cnt_en cnt_out(7:0) ——
. COUNTER
clk_in
L ampl_cnt(7:0) sine_out(11:0) ——
clk_in
DIGITAL SINE
ES|
sine_ampl(11:0) pwm_out pwm_out >>
EREQUENCY TRIGGER
swl freq_trig clk_en PWM
div_factor_freghigh(31:0)
div_factor_freglow(31:0)

clk_in ’— clk_in

Figure 1.3: Block diagram

Let us briefly explain each module shown on the lllustration 1.3:
Frequency Trigger

This module will generate one output signal with two possible frequencies calculated in the Tables 1.1 and 1.2, one with 256
Hz and the second one with 896 Hz. Which frequency will be chosen depends on the position of the two-state on-board
switch (swO0).

Counter

This module will be an universal (generic) counter. It's task will be to generate read addresses for the ROM where samples
of the sine wave are stored. The speed of the counting will be controlled by the Frequency Trigger module, via freg_trig
port, and the output of the Counter module will be an input of the Digital Sine module.

Digital Sine

This module will generate an digital representation of an analog (sine) signal with desired frequency. It will use the counter
values as addresses to fetch the next value of the sine wave from the ROM.

In our case we will make an VHDL package with a parametrized sine signal. 2"8=256 unsigned amplitude values during
one sine-period that will be stored into an ROM array.

VHDL package is a way of grouping related declarations that serve a common purpose. Each VHDL package contains
package declaration and package body.

Note: Don’t forget to include the Sine package in the code of the Digital Sine module !
PWM

This module will generate an PWM signal modulated using the digital sine wave from the Digital Sine module. This module
will be composed of two independent modules. One will be the Frequency Trigger, for generating two different frequencies
and the second one will be the Finite State Machine (FSM), for generating the PWM signal.

Frequency Trigger - output from this module will be used to control the frequency at which FSM module works. As we have

6

1.5 One Possible Solution for the Modulator Design

already said, in PWM signal information is represented as duty cycle value in each period of the signal. Since our digital
sine signal can have 4096 possible values, there will also be 4096 different duty cycle values. This means that PWM’s FSM
must operate at frequency that is 4096 times higher than the one used by the Digital Sine module.

FSM - is necessary to generate the PWM signal. It will generate the PWM signal with correct duty cycle for each period
based on the current amplitude value of digital sine signal, that is stored in the ROM.

sine signal
A (MAX value = 4096)

N PWM signal

-I ﬂ T T T 1 T bl

| T | 2T | 3T | am | t
T2=T1/4096 2T2 3T2 4T2 5T2

Figure 1.4: Details of PWM signal generation

Design steps
This tutorial will be realized step by step with the idea to explain the whole procedure of designing an digital system.

On the lllustration 1.5 are shown steps in designing modules of this lab:

JUENCY TRIGGER | (1)

|

v
P

! IGITAL SINE

. o
>

_

Figure 1.5: Project Design Steps

INTRODUCTION

« First we will create the Frequency Trigger module that will provide one output signal with two possible frequencies.

» Then, we will create the Counter module, that will generate read addresses for the ROM where samples of the sine
wave will be stored.

« Then, we will create an VHDL package with a parametrized sine signal.

signal and where we will include the Sine package.

After that, we will create PWM signal with the PWM module.

After that, we will create the Digital Sine module, where we will generate an digital representation of an analog (sine)

+ At the end, we will create Modulator module where we will merge all the previously designed modules into one big

design.

Note: In the Lab 2: "Using the Vivado Tool" is illustrated the structure and the interface of this project, which modules
we will have in our design and what will be our design steps.

1.6 Design

Flow

¥

| Design Entry

1]

| Design Synthesis

L]

Design Implementation

Y

Estimate
Power

Metlist Optimization
Power Opt Design:
Power Optimiz sticn

[Place Design:

[OPT Design:

Placer

Phys Opt Design:
Physical Synthesis

[Route Design:

Router

A A A A S

Design
Verification

Y

Generate
Programming File

!

(€] Programming
Open Hardware Manager

'

Testing
ChipScope / Vivado Logic Analyzer /
Bxternal Appl

Figure 1.6: Design Flow

On the lllustration 1.6 is presented the simplified Vivado Design flow.

|

+ Design Entry - the first step in creating a new design is to specify it's structure and functionality. This can be done
either by writing an HDL model using some text editor or drawing a schematic diagram using schematic editor.

1.6 Design Flow

» Design Synthesis - next step in the design process is to transform design specification (RTL design specification)
into a more suitable representation (gate-level representation) that can be further processed in the later stages in the
design flow. This representation is called the netlist. Prior to netlist creation synthesis tool checks the model syntax
and analyse the hierarchy of your design which ensures that your design is optimized for the design architecture you
have selected.

Vivado synthesis enables you to configure, launch and monitor synthesis run. The Vivado IDE displays the synthesis
result and creates report files. You can launch multiple synthesis runs also, simultaneously or serially.

» Design Implementation
Implementation step maps netlist produced by the synthesis tool onto particular device’s internal structure.

Vivado implementation includes all steps necessary to place and route the netlist onto the FPGA device resources,
while meeting the design’s logical, physical and timing constraints.

Vivado implementation enables you to configure, launch and monitor implementation runs. The Vivado IDE displays
the implementation result and creates report files. You can launch multiple implementation runs also, simultaneously
or serially.

« Design Verification - is very important step in design process. A verification is comprised of seeking out problems
in the HDL implementation in order to make it compliant with the design specification. A verification process reduces
to extensive simulation of the HDL code. Design Verification is usually performed using two approaches: Simulation
and Static Timing Analysis.

There are two types of simulation:

— Functional (Behavioral) Simulation - enables you to simulate or verify a code syntax and functional capabil-
ities of your design. This type of simulation tests your design decisions before the design is implemented and
allows you to make any necessary changes early in the design process. In functional (behavioral) simulation
no timing information is provided.

— Timing Simulation - allows you to check does the implemented design meet all functional and timing require-
ments and behaves as you expected. The timing simulation uses the detailed information about the signal
delays as they pass through various logic and memory components and travel over connecting wires. Using
this information it is possible to accurately simulate the behaviour of the implemented design. This type of
simulation is performed after the design has been placed and routed for the target PLD, because accurate sig-
nal delay information can now be estimated. A process of relating accurate timing information with simulation
model of the implemented design is called Back-Annotation.

— Static Timing Analysis - helps you to perform a detailed timing analysis on routed FPGA design. This analysis
can be useful in evaluating timing performance of the logic paths, especially if your design doesn’t meet timing
requirements. This method doesn’t require any type of simulation.

» Generate Programming File - this option runs Xilinx bitstream generation program, to create a bitstream file that
can be downloaded to the device.

» Programming - Vivado Design Suite offers Open Hardware Manager option that uses the native in-system device
programming capabilities that are built into the Vivado IDE. Hardware manager uses the output from the Generate
Programming File process to configure your target device.

» Testing - after configuring your device, you can debug your FPGA design using Vivado Logic Analyzer or some
external logic analyzer.

» Estimate Power - after implementation, you can use the analyzer for estimation and power analysis. With this tool
you can estimate power, based on the logic and routing resources of the actual design.

INTRODUCTION

[[1'1

Design Entry

Design
Verification
HKSIM/ModelSim

¥

‘[I]

Design Synthesis

[}

unctional (Behavioral)
Simulation

I}

]

X

)

Estimate
Power

Design Implementation

OFT Design:
Netlist Optimizstion

Power Opt Design:
Power Optimization

Place Design:
Placer

EEEE

Phys Opt Design:
Physical Synthesis

e,

Route Design:
Router

N —" — " ——

-{ Static Timing Analysis]

—l-[Back Annotation

(3] Generate
Programming File

'

e
(5] Programming
Open Hardware Manager

!

]——-I Timing Simulation]

7] Testing
ChipScope / Vivado Legic Analyzer /
\ External Appl Py

Figure 1.7: Design Verification Steps

Note : In the Lab 2: "Using the Vivado Tool" you can also find a short description about each step from the Vivado Design
Flow.

1.7 Vivado Design Suite and it'’s Use Modes

The Vivado Design Suite is a entirely new tool suite, designed to improve overall productivity of designing, integrating and
implementing with the Xilinx 7 Series, Zyng-7000 All Programmable (AP) SoC, and UltraScale device families. The entire
ISE Design Suite flow is replaced by the new Vivado Design Suite tools. It replaces all of the ISE Design Suite point tools,
such as Project Navigator, Xilinx Synthesis Technology (XST), Implementation, CORE Generator tool, Timing Constraints
Editor, ISE Simulator (ISim), ChipScope Analyzer, Xilinx Power Analyzer, FPGA Editor, PlanAhead design tool, and Smart-
Xplorer. All of these capabilities are now built directly into the Vivado Design Suite and leverage a shared scalable data
model.

Important. The Vivado IDE supports designs that target 7 Series devices, Zyng-7000 All Programmable (AP) SoC, and
UltraScale devices.

Built on the shared scalable data model of the Vivado Design Suite, the entire design process can be executed in memory
without having to write or translate any intermediate file formats (like it was in the ISE Design Suite flow). This accelerates
runtimes, debug, and implementation while reducing memory requirements.

All of the Vivado Design Suite tools are written with a native Tool Command Language (Tcl) interface. All of the commands
and options available in the Vivado IDE are accessible through Tcl. A Tcl script can contain Tcl commands covering the

10

1.7 Vivado Design Suite and it’'s Use Modes

entire design synthesis and implementation flow, including all necessary reports generated for design analysis at any point
in the design flow.

You can interact with the Vivado Design Suite using:

* GUI-based commands in the Vivado IDE

+ Tcl commands entered in the Tcl Console in the Vivado IDE, in the Vivado Design Tcl shell outside the Vivado IDE,
or saved to a Tcl script file that is run either in the Vivado IDE or in the Vivado Design Suite Tcl shell

» A mix of GUI-based and Tcl commands
The Vivado Design Suite supports the following industry design standards:

e Tcl

AXl4, IP-XACT

» Synopsys design constraints (SDC)
* Verilog, VHDL, System Verilog

» SystemC, C, C++

The entire solution is, as we already said, native Tcl based, with support for SDC and Xilinx design constraints (XDC)
formats. Broad Verilog, VHDL, and SystemVerilog support for synthesis enables easier FPGA adoption. Using standard IP
interconnect protocol, such as AXI4 and IP-XACT, enables faster and easier system-level design integration.

There are two design flow modes in the Vivado Design Suite:

» Project Based Mode - You can run this mode in the Vivado IDE. In the Project Based Mode you create a project in
the Vivado IDE, and the Vivado IDE automatically saves the state of the design, generates reports and messaging,
and manages source files. A runs infrastructure is used to manage the automated synthesis and implementation
process and to track run status. The entire design flow can be run with a single click within the Vivado IDE. The
Vivado GUI provides high levels of automation, project management, and easy-of-use features.

» Non-Project Batch Mode - You can run this mode using Tcl commands or scripts. In the Non-Project Batch Mode
you have full control of the design flow, but the Vivado tools do not automatically manage source files or report the
design states. When working in Non-Project Batch Mode, sources are accessed from their current locations and the
design is compiled through the flow memory. Each design step is run individually using Tcl commands. You can save
design checkpoints and create reports at any stage of the design process using Tcl commands. You are viewing the
active design in memory, so any changes are automatically passed forward in the flow.

Recommendation: Project Based Mode is the easiest way to get acquainted with the Vivado tool behaviour and Xilinx
recommendations.

1.7.1 Differences between Project and Non-Project Mode

Some of the Project Mode features, such as source file and results management, saving design and tool configuration,
design status and IP integration are not available in Non-Project Mode.

In Project Mode, the Vivado IDE tracks the history of the design and stores design information. Because, many features
are automated, you have less control using this mode.

In Non-Project Mode, each action is executed using a Tcl command. All of the processing is done in memory, so no files
or reports are generated automatically. Each time you compile the design, you must define all of the sources, set all tool
and design configuration parameters, launch all implementation commands, and specify report files to generate. Because,
the project is not created on disk, source files remain in their original locations and run output is only created where you
specify. The flow provides you with all of the power of Tcl commands and full control over the entire design process.

The following table highlights the feature differences between Project and Non-Project Mode.

Table 1.3: Project VS. Non-Project Mode Features

11

INTRODUCTION
Flow Element Project Mode Non-Project Mode
Design Source File Management Automatic Manual
Flow Navigation Guided Manual
Flow Customization Limited Unlimited
Reporting Automatic Manual
Analysis Stages Designs only Designs and checkpoints

Note : Both these flows can be fully scripted and run in batch mode (no GUI).

lllustration 1.8 shows the differences between Project and Non-Project Mode Tcl commands.

Project Mode

Non-Project Mode

GUI

Tcl Script

Tcl Script

Flow Navigator «
4 Project Manager

% Project Settings

(% Add Sources

1_1' IP Catalog

4 Simulation
{3 simulation Settings
{{@l) Run Simulation

F Open Static Simulation

4 RTL Analysis

F" Open Elaborated Design

4 Synthesis
{5 Synthesis Settings
& Run Synthesis
4 Implementation
{3 Implementation Settings

[» Run Implementation

4 Program and Debug
@.f-r Bitstream Settings
¥ Generate Bitstream

& Open Hardware Session

create_project ...
add_files ...
import_files ...

launch_run_synth_1
wait_on_run_synth_1
open_run_synth_1
report_timing_summary

launch_run_impl_1
wait_on_run_impl_1
open_run_impl_1
report_timing_summary

launch_run_impl_1-to_step_write_bitstream

wait_on_ru_impl_1

read_verilog ...
read_vhdl ...
read_ip ...
read_xdc ...
read_edif ...

synth_design
report_timing_summary
write_checkpoint

opt_design
write_checkpoint
place_design
write_checkpoint
route_design
report_timing_summary
write_checkpoint

write_bitstream

Figure 1.8: Project and Non-Project Mode Commands

Tcl commands depending on the mode you would like to use. The resulting Tcl scripts are different for each mode.

Some commands can be used in either mode, such as reporting commands. In some cases Tcl commands are specific to
either Project and Non- Project Mode. Commands that are specific to one mode must not be mixed when creating scripts.

Project Mode includes GUI operations, which results in a Tcl command being executed in most cases. The Tcl commands
appear in the Vivado IDE Tcl Console and are also captured in the vivado.jou file. Journal and log files provide a complete
record of the Vivado IDE commands that are executed so the designer can construct scripts. You can use those files to
develop scripts for use with either mode.

Journal file (vivado.jou) - contains just the Tcl commands executed by the Vivado IDE. To open the journal file, select
File -> Open Journal File option from the GUI

Log file (vivado.log) - contains all messages produced by the Vivado IDE, including Tcl commands and results, info/warn-

12

1.7 Vivado Design Suite and it’'s Use Modes

ing, error messages, etc. To open the log file, select File -> Open Log File option from the GUI

When we compare Vivado Project and Non-Project Modes there is one more difference, handling of design checkpoints.
Design checkpoints enable you to take a snapshot of your design in its current state. The current netlist, constraints, and
implementation results are stored in the design checkpoint.

Using design checkpoints, you can:

* restore your design if needed

+ perform design analysis

« define constraints

You can write design checkpoints at different points in the flow. It is important to write design checkpoints after critical steps
for design analysis and constraints definition.

When you use the Vivado IDE and the project infrastructure, you are automatically getting built-in checkpoints done for
you. If you want finer control between each of the commands, you can manually write checkpoints at each stage in the Tcl
non-project batch mode.

Important: With the exception of generating a bitstream, design checkpoints are not intended for use as starting points to
continue the design process. They are merely snapshots of the design in its current state.

Following is the associated Tcl command:

» Tcl command: write_checkpoint < file_name>

» Tcl command: read_checkpoint <file_name>

In the Tables 1.4 and 1.5 are shown the basic Project and Non-Project Mode Tcl commands that control project creation,
implementation and reporting.

Table 1.4: Basic Project Mode Tcl Commands

13

INTRODUCTION

Command

Description

create_project

Creates the Vivado IDE project. Arguments include
project name and location, design top module name, and
target part.

add_files

Adds source files to the project. These include Verilog
(.v), VHDL (.vhd or .vhdl), SystemVerilog (.sv), IP (.xco or
xci), XDC constraints (.xdc or .sdc), embedded processor
sub-systems from XPS (.xmp), and System Generator
modules (.mdl). Individual files or entire directory trees
can be scanned for legal sources and automatically
added to the project.

set_property

Used for multiple purposes in the Vivado IDE. For
projects, it can be used to define VHDL libraries for
sources, simulation-only sources, target constraints files,
tool settings, and so forth.

import_files

Imports the specified files into the current file set,
effectively adding them into the project infrastructure. It is
also used to define XDC files into constraints sets.

launch_runs launch_runs -to_step

Starts either synthesis or implementation and bitstream
generation. This command encompasses the individual
implementation commands as well as the standard
reports generated after the run completes. It is used to
launch all the steps of the synthesis or implementation
process in a single command, and to track the tools
progress trough that process. The -to_step option is used
to launch the implementation process, including bitstream
generation, in incremental steps.

wait_on_run

Ensures the run is complete before processing the next
steps in the flow.

open_run

Opens either the synthesized design or implemented
design for reporting analysis. A design must be opened
before information can be queried using Tcl for reports,
analysis, and so forth.

close_design

Closes the design in memory.

start_gui stop_gui

Invokes or closes the Vivado IDE with the current design
in memory.

Table 1.5: Basic Non-Project Mode Tcl Commands

Command Description

read_edif Imports an EDIF or NGC netlist file into the Design
Source fileset of current project.

read_verilog Reads the Verilog (.v) and SystemVerilog (.sv) source
files for the Non-Project Mode session.

read_vhdl Reads VHDL (.vhd or .vhdl) source files for the
Non-Project Mode session.

read_ip Reads existing IP (.xco or .xci) project files for the
Non-Project Mode session. The .ngc netlist is used from
the .xco IP project. For .xci IP, the RTL is used for
compilation or the netlist is used if it exists.

read_xdc Reads the .sdc or .xdc format constraints source files for

the Non- Project Mode session.

set_param set_property

Used for multiple purposes. For example, it can be used
to define design configuration, tool settings, and so forth.

link_design

Compiles the design for synthesis if netlist sources are
used for the session.

synth_design

Launches Vivado synthesis with the design top module
name and target part as arguments.

14

1.7 Vivado Design Suite and it’'s Use Modes

opt_design

Performs high-level design optimization.

power_opt_design

Performs intelligent clock gating to reduce overall system
power. This is an optional step.

place_design

Places the design.

phys_opt_design

Performs physical logic optimization to improve timing or
routability. This is an optional step.

route_design

Routes the design.

report_sx

Runs a range of standard reports, which can be run at
any stage of the design process.

write_bitstream

Generates a bitstream file and runs DRCs.

write_checkpoint read_checkpoint

Save the design at any point in the flow. A design
checkpoint consists of the netlist and constraints with any
optimizations at that point in the flow as well as
implementation results.

start_gui stop_gui

Invokes or closes the Vivado IDE with the current design
in memory.

As we already said, both flows can be run using Tcl commands. You can use Tcl scripts to run the entire design flow. If
you prefer to work directly with Tcl, you can interact with your design using Tcl commands.

15

INTRODUCTION

16

Chapter 2

FREQUENCY TRIGGER

2.1 Description

» Usage : This module will generate one output signal with two possible frequencies, one with 256 Hz and the second
one with 896 Hz. Which frequency will be chosen depends on the position of the two-state on-board switch (sw0).

 Block diagram:

— clk_in freq_trig
— swO

—— div_factor_freghigh(31:0)

——{ div_factor_freghigh(31:0)

Figure 2.1: Frequency Trigger block diagram

* Input ports:

clk_in : input clock signal

swO : input signal from the on-board switch, used for changing output signal frequency

div_factor_freqghigh : input clock division factor when sw0 =1’

div_factor_freqglow: input clock division factor when sw0 =0’
» Output ports:
— freq_trig : output signal which frequency depends on the state of the sw0 input signal (256 Hz or 896 Hz)

* File name: frequency_trigger_rtl.vhd

2.2 Creating a New Project

The first step in creating a new design will be to create a new project. We will crate a new project using the Vivado IDE
New Project wizard. The New Project wizard will create an XPR project file for us. It will be place where Vivado IDE will
organize our design files and save the design status whenever the processes are run.

To create a new project:

Step 1. Launch the Vivado software: Select Start -> All Programs -> Xilinx Design Tools -> Vivado 2016.4 -> Vivado
2016.4 and the Vivado Getting Started page will appear, see lllustration 2.2

As you can see from the illustration below, the Getting Started page contains links to create new or open an existing
projects, and to view documentation.

FREQUENCY TRIGGER

4 Vivado 20164 =ANCE X

File Flow Tools Window Help Quick Access

VIVADO! £ XILINX

ALL PROGRAMMABLE.

HLx Editions
Quick Start
A\ £ |
Create New Project Open Project Open Example Project

Tasks

% ®

Manage IF Open Hardware Manager Xilinx Td Store

Information Center

Documentation and Tutorials Quick Take Videos Release Notes Guide

5 Td Console

Figure 2.2: The Vivado Getting Started page

Step 2. On the Getting Started page, choose Create New Project option

Step 3. In the Create a New Vivado Project dialog box click Next and the wizard will guide you through the creation of a
new project, see lllustration 2.3

¢ New Project ﬁ

Create a New Vivado Project

v |VADO‘ This wizard will guide you through the creation of a new project.

HLx Editions

To create a Vivado project you will need to provide a name and a location for your project files. Mext, you wil
specify the type of flow you'l be working with. Finally, you will specify your project sources and choose a

& XILINX

ALL PROGRAMMABLE. To continue, dick Next.

i
I'.\n

Figure 2.3: Create a New Vivado Project dialog box

Step 4. In the Project Name dialog box specify the name and the location of the new project:

18

2.2 Creating a New Project

« In the Project name field type modulator as the name of our project

+ In the Project location field specify the location where our project data will be stored

+ Leave Create project subdirectory option enabled, see lllustration 2.4

gl*'.f_:. New Project

Project Name
Enter & name for your project and specify a directory where the project data files will be stored.

Project name: | modulator
Project location: | D:/temp
Create project subdirectory

Project will be created at: D:ftemp/modulator

&

Cancel

Figure 2.4: Project Name dialog box

Step 5. Click Next

Step 6. In the Project Type dialog box specify the type of project you want to create. In our case we will choose RTL

Project option. Select Do not specify sources at this time also, see lllustration 2.5

gl*'.f_:. New Project

i

Project Type
Specify the type of project to create.

@ RTL Project

Do not spedify sources at this time

, LfO Planning Project
Do not specify design sources. You will be able to view part/package resources.

=, Imported Project
Create a Vivado project from a Synplify, XST or ISE Project File.

= Example Project
Create a new Vivado project from a predefined template.

‘fou will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis, implementation, design
planning and analysis.

= Post-synthesis Project: You will be able to add sources, view device resources, run design analysis, planning and implementation.

/

Figure 2.5: Project Type dialog box

19

FREQUENCY TRIGGER

As you can see from the lllustration above, four different types of the project can be created:

* RTL Project - The RTL Project environment enables you to add RTL source files and constraints, configure IP with
the Vivado IP catalog, create IP subsystems with the Vivado IP integrator, synthesize and implement the design, and
perform design planning and analysis.

 Post-synthesis Project - This type of project enables you to import third-party netlists, implement the design, and
perform design planning and analysis.

 l/O Planning Project - With this type of project you can create an empty project for use with early 1/0 planning and
device exploration prior to having RTL sources.

» Imported Project - This type of project enables you to import existing project sources from the ISE Design Suite,
Xilinx Synthesis Technology (XST), or Synopsys Synplify.

» Configure an Example Embedded Evaluation Board Design - This type of project enables you to target the example
Zyng-7000 or MicroBlaze embedded designs to the available Xilinx evaluation boards.

Step 7. Click Next

Step 8. In the Default Part dialog box choose a default Xilinx part or board for your project. Select Boards to choose the
default board for the project and a list of evaluation boards will be displayed, see lllustration 2.6

¢ New Project @

Default Part

Choose a default Xilinx part or board for your project. This can be changed later. ‘
Select: & Parts | [Boards
4 Filter/ Preview

Vendor: Al -

Display Mame: | All -

Board Rey: Latest -

Reset All Filters
Search: -
Block

Display Mame Vendor Board Rev Part IO Pin Count File Version RAMs
" zedBoard 2ynq Evaluation and Development kitlem.avnet.con |- |1 xc7z020clg44-L
B Artix-7 AC701 Evaluation Platform xilin.com 11 & xcT7a200tfhg676-2 676 1.3 365
B ZYNQ-7 ZC702 Evaluation Board xilin. com 1.0 & xc7z020cg484-1 484 1.2 140
] I - +

Figure 2.6: Default Part dialog box

Step 9. Select Zedboard Zynq Evaluation and Development Kit as it is shown on the illustration above
Step 10. Click Next

Step 11. In the New Project Summary dialog box click Finish if you are satisfied with the summary of your project. If you
are not satisfied, you can go back as much as necessary to correct all the questionable issues, see lllustration 2.7

20

2.2 Creating a New Project
¢ New Project &J

New Project Summary

VIVADO!

HLx Editions (1) A new RTL project named ‘modulator’ will be created.

(i) The default part and product family for the new project:
Default Board: ZedBoard Zyng Evaluation and Development Kit
Default Part: xc7z020clg484-1
Product: Zyng-7000
Family: Zyng-7000
Package: dg4a4
Speed Grade: -1

& XILINX

ALL PROGRAMMAELE. To create the project, dick Finish

Figure 2.7: New Project Summary dialog box

After we finished with the new project creation, in a few seconds Vivado IDE Viewing Environment will appear, see
lllustration 2.8.

When Vivado creates new project, it also creates a directory with the name and at the location that we specified in the
GUI (see lllustration 2.4). That means that the all project data will be stored in the project name (modulator) directory
containing the following:

 project_name.xpr file - object that is selected to open a project (Vivado IDE project file)

» project_name.runs directory - contains all run data

* project_name.srcs directory - contains all imported local HDL source files, netlists, and XDC files

* project_name.data directory - stores floorplan and netlist data

 project_name.sim directory - contains all simulation data

21

FREQUENCY TRIGGER

45 Project Settings
B¥ Add Sources

¥ Language Templates
1F 1P catalog

S

1P Integrator
¥ create Block Design
g Open Block Design
& Generate Block Design

S

Simulation
% simulation Settings
() Run Smulation

S

RTL Analysis
% Elaboration Settings
> Eb’ Open Elaborated Design

S

Synthesis
5 synthesis Settings
@ Run Synthesis

> @ Open Synthesized Design

S

Implementation
#% Implementation Settings
[» Run Implementation

> @ Open Implemented Design

S

Program and Debug
5 Bitstream Settings
iﬁ Generate Bitstream
> @ Open Hardware Manager

-1 Design Sources

I Constraints

=& Simulation Sources
1 sim_1

Hierarchy | Libraries | Complle Order

Project name: modulator
Project location:

Product family: Zyna-7000

4 modulator - [E/Projects/Vivado/preba/Vivado-2016.4/modulator/modulatorxpr] - Vivado 2016.4 = | B ||
Fle Edit Flow Tools Window Layout View Help
oo BRE X PP B S XK LG | Socfultlayout ME & 3.V Ready
Flow Mavigator 7« Project Manager - modulator 7?7 X
QA= Sources = e %, Project Summary X 0w ox
NS ol | -
4 Project Manager Project Settings Edit

E:/Projects/Vivado/proba,Vivado-2016.4/modulator

Project part:

ZedBoard Zynq Evaluation and Development Kit (xc7z020cq484-1)

Top module name:
Target language:

Simulator language:
Board Part

Display name:
Board part name:

Repository path:

Mot defined

Verilog

Mixed

ZedBoard Zynq Evaluation and Development Kit
em.avnet.com:zed:partd: 1.3
D filinx Vivado /2016, 4/data/boards/board _files

T

pe— T URL: htp: fowi. zedboard.or
=K Board overview: ZedBoard Zynq Evaluation and Development Kit
Synthesis Implementation L
e i Status: Not started Status: Mot started
Select an object to see properties
Messages: Mo errors or warnings Messages: Mo errors or warnings
Part: xc7z020clg484-1 Part: Xc7z020clg484-1
Strategy: Vivado Synthesis Defaults Strategy: Vivado Implementation Defaults
Incremental compile: Mone
Design Runs ?_0O@ %
A, | Name Constraints ~ Status WNS TNS WHS THS TPWS TotalPower FalledRoutes LUT FF BRAM URAM PCle% Start
,LZ == synth_1 constrs_1 Not started
g - impl_1 constrs_1 Not started
=
< m +
B Td Console | (Messages | [Log | 3 Reports-. 3» Design Runs

Figure 2.8: Vivado IDE Viewin

2.3 Vivado Integrated Design Environment

g Environment

The Vivado IDE can be used for a variety of purposes at various stages in the design flow and is very helpful at detecting
design problems early in the design flow.

The Vivado IDE allows different file types to be added as design sources, including Verilog, VHDL, EDIF, NGC format cores,
SDC, XDC, and TCL constraints files, and simulation test benches. These files can be stored in variety of ways using the
tabs at the bottom of the Sources window: Hierarchy, Library or Compile Order , see lllustration 2.9.

By default, after launching, the Vivado IDE opens the Default Layout. Each docked window in the Vivado IDE is called a
view, so you can find Sources View, Properties View, Project Summary View ans so on, see lllustration 2.9.

22

2.3 Vivado Integrated Design Environment

Fle Edit Flow Tools Window Layout View Help Q- s

EacBRb X P DR S XK G [SoefutLayout MR .E Y Ready
¥ Flow Navigator <Y | Project Manager - moduater x|
@ T & Flow Navigator | { souces _ O x Y[TE Project summary_ x EREER
I | == -
4 Project Manager AzZE et R = Project Settings Edt % |—
i . I Design Sources = Project) dulato
45 Project Settings = Constraints roject name: modulator
3% Add Sources)0 Simulation Sources Project location: D:/tempjVivado/Vivado-2015. 4fmodulator R _
g Esm 1 St famiy: Project Summary View
@ Langquage Templates - Product family: Kintex-7
£} P Catalog Project part: Kintex-7 KC705 Evaluation Platform (xc7k325tff0900-2)
Top module name: Not defined
4 IPIntegrator s Vi Targetlanquage: Verilog
)—,‘% Create Block Design ources View Simulator language: Mixed
=
B¥ Open Block Design Board Part el
&) Generate Block Design
Display name: Kintex-7 KC705 Evaluation Platform
4 Simulation Hierarchy | Libraries | Compie Order Board part name: xdlinx.com:kc705:partd: 1.2
5 Smuiation Settings | {b Sources | ¥ Templates) Repository path: - D: Xiinx/Vivado/2015. 4/data /boards board_flles
() Run Simulation { Properties O %) URL: vy iy comc 705
Board overview: Kintex-7 KC705 Evaluation Platform
=k
4 RTL Analysis
13 Blaboration Settings
> g% Open Elaborated Design Properties View
0 S Synthesis % | Implementation %
5 synthesis Settings Select an object to see properties Status: Notstarted Status: Mot started
9 Run Synthesis Messages: Mo errors or warnings Messages: Mo errors or warnings
> [Open Synthesized Design Part: %c7k325tFgI00-2 Part: xc7k325tFgI00-2
Strategy: Vivado Synthesis Defaults Strategy: Vivado Implementation Defaults
4 Implementation Incremental compile: Mone
3 Implementation Settings M < b W
[» Run Implementation fDesAgn Runs —— =
> @ Open Implemented Design A Name Constraints Status WNS TNS WHS THS TPWS FaledRoutes LUT FF BRAM URAM DSP Start Elapsed
Z: - synth_1 constrs_1 Not started
4 Program and Debug y =5 impl_1 constrs_1 Notstarted
=
13 Bitstream Settings > Tcl Console
) Generate Bitstream
e < | i G
> [@® Open Hardware Manager
O g J . 12 Td Console | () Messages | [Log | 5 Reports-, 3> Design Runs

Figure 2.9: Vivado IDE Default Layout

Flow Navigator

The vertical toolbar present on the left side of the Vivado IDE is the Flow Navigator. The Flow Navigator provides control
over the major design process tasks, such as project configuration, synthesis, implementation and bitstream creation.

Sources View

The Sources view displays the list of source files that has been added in the project.

+ The Design Sources folder helps you keep track of VHDL and Verilog design source files and libraries.

» The Constraints folder helps you keep track of the constraints files.

» The Simulation Sources folder helps keep track of VHDL and Verilog simulation sources source files and libraries.

Notice that the design hierarchy is displayed as default.

+ In the Libraries tab, sources are grouped by file type, while the Compile Order tab shows the file order used for
synthesis.

Project Summary View

The Project Summary view provides a brief overview of the status of different processes executed in the Vivado IDE, see
lllustration 2.10.

23

FREQUENCY TRIGGER

L Project Summary X 7 0 ®
Project Settings Edit
Project name: modulator

Project location: E:/Projects Vivado jprobaVivado-2016. 4/modulator

Product family: Zyng-7000

Project park: ZedBoard Zyng Evaluation and Development Kit {xc7z020cg484-1)

Top module name: frequency frigger

Target language: Verilog

Simulator language: Mixed

Board Part

Display name: ZedBoard Zyng Evaluation and Development Kit

Board part name: em.avnet.com:zed:part0: 1.3

Repository path: D f¥ilinx Vivado /20 16.4/data/boards/board _files

URL: http: .zedboard.or

Board overview: ZedBoard Zynq Evaluation and Development Kit
Synthesis Implementation
Status: Not started Status: Not started
Messages: Mo errors or warnings Messages: Mo errors or warnings
Part: xc72020cg484-1 Part: xc72020dg484-1
Strategy: Vivado Synthesis Defaults Strategy: Vivado Implementation Defaults
Incremental compile: None

DRC Violations Timing

Run Implementation to see DRC results Run Implementation to see timing results
Utilization Power

Run Synthesis to see utilization results Run Implementation to see power results

Figure 2.10: Project Summary View

The Project Settings panel displays the project name, product family, project part, and top module name. Clicking a link
in this panel you will open the Project Settings dialog box.

» The Messages panel summarizes the number of errors and warnings encountered during the design process.

» The Synthesis panel summarizes the state of synthesis in the active run. The synthesis panel also shows the target
part and the strategy applied in the run.

» The Implementation panel summarizes the state of implementation in the active run. The Implementation panel
also shows the target part and the strategy applied in the run.

Tcl Console

Below the Project Summary view, see lllustration 2.9, is the Tcl Console which echoes the Tcl commands as operations
are performed. It also provides a means to control the design flow using Tcl commands.

2.4 Creating Module

To create a new module, follow the steps:

Step 1. In the Vivado Flow Navigator, click the Add Sources command (Project Manager option), see lllustration 2.11

24

2.4 Creating Module

Flowe Mavigator L<S

G p
A g =

4 Project Manager
@ Project Settings
Oﬁ Add Sources
'? Language Templates
1F 1P Catalog

Figure 2.11: Add Sources command

Step 2. In the Add Sources dialog box, select Add or create design sources option to create the design source files in
the project, see lllustration 2.12

¢ Add Sources @
Add Sources
v |\/AD O‘ This guides you through the process of adding and creating sources for your project
HLx Editions
(71 Add or create constraints

(@) Add or create design sources

() Add or create simulation sources
() Add or create DSP sources

() Add existing block design sources

() Add existing IP

£ XILINX
ALL PROGRAMMABLE. To continue, dick Next

Figure 2.12: Add Sources dialog box

Step 3. Click Next

Step 4. In the Add or Create Design Sources dialog box, click the + icon and select Create File... option to create a new
file in the project, or just click Create File button, see lllustration 2.13

25

FREQUENCY TRIGGER

Add Sources &J

Add or Create Design Sources

Specify HOL and netlist files, or directories containing HOL and netlist files, to add to your project. Create a new source file on disk and add it ’
to your project.

+

- Add Files...

Add Directories...
Create File...

Add Files] [Add Directories] [Create File
Scan and add RTL indude files into project
Copy sources into project
Add sources from subdirectories

Figure 2.13: Add or Create Design Sources dialog box - Create File option

Step 5. In the Create Source File dialog box, fill the file type, file name and file location on the following way, see lllustration
2.14:

* File type: VHDL

+ File name: frequency_trigger_rtl

* File location: Local to Project

g‘” Create Source File ﬁ

Create a new source file and add it to your project.

File type: i YHDL -
File name: frequency_trigger _ril
File location: | &0 <Local to Project=> -

[OK][Cancel]

Figure 2.14: Create Source File dialog box

Step 6. Click OK to create a new source file (frequency_trigger_rtl.vhd) and add it into your project (modulator)

Step 7. Now your source file will appear in the Add or Create Design Sources dialog box, see lllustration 2.15. Click
Finish

26

2.4 Creating Module

¢ Add Sources

=

Add or Create Design Sources

your project.

Index MName Location

+

- 1

Library
frequency_trigger_rl.vhd xil_defaultib <lLocal to Project=

Add Files] [Add Directories] [Create File
Scan and add RTL indude files into project
Copy sources into project
Add sources from subdirectories

Specify HOL and netlist files, or directories containing HDL and netlist files, to add to your project. Create a new source file on disk and add it to

/

Figure 2.15: Add or Create Design Sources dialog box with created file

Step 8. In the Define Module dialog box, Vivado IDE will automatically create Entity name (frequency._trigger _rtl) and

Architecture name (Behavioral).

Please, rename Entity name to be frequency_trigger and Architecture name to be rtl, see lllustration 2.16

Step 9. Specify ports for the intended module as it is also shown on the lllustration 2.16

ﬁ*" Define Module

Define a module and specify I/ Ports to add to your source file,
For each port spedified:

MSE and LSE values will be ignored unless its Bus column is checked,
Ports with blank names will not be written.

Module Definition
Entity name: frequency_trigger

Architecture name: | ril

10 Port Definitions

+ Port Name

Direction Bus MSB L5B
| clk_in in - O
4 |sw0 in = [O
div_factor_freghigh in - O
div_factor_freglow in > O
freq_trig out » O

[
]

Figure 2.16: Define Module dialog box

Step 10. Click OK and your source file should appear under the Design Sources in the Sources view in the Project

Manager window, see lllustration 2.17

Step 11. Double-click on the created frequency_trigger_rtl.vhd source file to see what the tool has created for us, see

lllustration 2.18

27

FREQUENCY TRIGGER

4 medulator - [Ex/Projects/Vivado/proba/Vivado-2016.4/modulator/modulatorxpr] - Vivado 20164 B
Fle Edt Flow Tools Window Layout View Help Q- Quick Access
FlooRl X P> D ESX TG [Soehutlayut e R D nendy
Flow Navigator 2« \ Project Manager - modulator ? X
Q= Sources _DOe x ?2 01 %
= A= wet R = = ==
4 Project Manager | Project Settings Edit
% Ty | Design Sources (1)
J e s frequency_trigger - rtl (Tequency_trigger_ril.vihd) Project name: modulatar
Eﬁ Add Sources 1) Constraints Project location: E:/Projects/Vivado/proba,Vivado-20 16.4/modulator
) Language Templates = 5mu|ah°ﬂ’5?uf°es o Product Family: 2ynq-7000
IF 1 Catabon -5 sm_1(1) Project part: ZedBoard Zyng Evalustion and Development Kit (xc72020clq484-1)
Top module name: frequency trigger
4 TP Integrator]
- Target language: verllog
i‘i; Create Block Design
Simulator language: Mixed
B# Open Block Design
& Generate Block Design Board Part =
Display name: ZedBoard Zynq Evaluation and Development Kit
4 Simulation
& smi Board partname: em.avnet.com:zed:partd: 1.3
Simulation Settings
¢ Libraries | Compille Order Repositary path: dinVivado,/2016. 4/data/boards/board_files -
@ Runsimuiaton |
URL: .
Properties [= LS
4 RTL Analysis Board overview: ZedBoard Zynq Evaluation and Development Kit
€% Elaboration Settings
b EE‘ Open Elaborated Design
4 Synthesis Synthesis Implementation -
5 Synthesis Settings
P Status: Not started Status: Not started
& un synthesis Select an object to see properties M . . .
essages: Mo errors or warnings Messages: Mo errors or warnings
b B¥ Open Synthesized Design
Part: xc7z020dg484-1 Part: Xc72020cig484-1
4 Implementation Strategy: Vivado Synthesis Defaults Strategy: Vivado Implementation Defaults
&% Implementation Settings Incremental compile: Mone
[» Run Implementation 4] il G
> B¥ OpenImplementedDesgn || . = =
Design Runs -0
4 Program and Debug | Name Constraints Status WNS TNS WHS THS TPWS TotalPower FaledRoutes LUT FF BRAM URAM PCle% Start
€3 Bitstream Settings o B2 synth_1 constrs_1 Mot started
K Generate Bitstream = = impl_1 constrs_1 Notstarted
> g% Open Hardware Manager
> K | 1, b
|5/ Tdl Console | (> Messages | G Log | [Reports, 3» Design Runs
Figure 2.17: Vivado IDE Viewing Environment after module creation
I Project Summary X | i frequency_trigger_rtlvhd x| owe x

B C:/Userskorisnik/Desktop/probajproba.sres/sources_1/new/frequency_trigaer_rt.vhd

22 library IEEE;
23use IEEE.STD LOGIC 1164.RLL;

FOoH

34entity frequency trigger is

35 Port (clk in : in STD_LOGIC:

36 aw0 : in STD_LOGIC;

37 div_factor_freghigh : in STD_LOGIC;
38 div_factor freglow : in STD_LOGIC;
39 freq trig : out STD_LOGIC):

40end frequency_trigger;

41

42 architecture rtl of frequency trigger is

43

44 begin

45

46

47 end rtl:

48

mn

Figure 2.18: Automatically generated frequency_trigger_rtl.vhd source file

As we can see from the illustration above, the tool automatically creates a default header and the entity declaration based

on the data that you entered.

Vivado editor is a powerful text editor with syntax highlighting for VHDL and Verilog HDLs. You can use Vivado editor to

28

2.4 Creating Module

complete your VHDL/Verilog model of your design.

Important. The automatically generated code is not very handsome and clear, and the recommendation is to modify it.

Here are the steps for modifying:

 create a complete module header

« set all text to lower case

as comment

» remove all end descriptions (for example: rt/ next to end) and all comments

« set all in/outputs in alphabetical order and comment them

Note: As you can see there are a lot of things for modifying. For better designs, our recommendation is not to use
the GUI (Graphical User Interface) for module creation. Instead of that, create a module in an text editor, rename it to
module_name.vhd and add it into your project.

Before we explain how to create a module using Vivado text editor, don’t forget to remove frequency_trigger._rtl.vhd from
the project. To remove some file from the project, do the following:

Step 1. Select the file that you want to remove

Step 2. Right-click on the selected file and choose Remove File from Project... option, see lllustration 2.19

Project Manager - modulator

L Project Summs

Sources — 0O =
Q, E {%} & oﬂ’ 3 E B E:fProjectsNi
=J-{= Design Sources (1) 11 -- Desc
“ Xfrequency_trigger gus . =
1= Constraints & Source Mode Properties... Ctrl+E
=1+ Simulation Sources (1 * Open Fie Alt+0
S sim_1 (1 Replace File...
Alt+I
¥ Remove File from Project... Delete
Alt+Equals
Disable File Alt+Minus
Mave to Simulation Sources
Hierarchy Update
@ Sources | Refresh Hierarchy
IP Hierarchy
Hierarchy | Libraries | Compile O
= wn
£ Sources |) Templates
Source File Properties
B
i frequency_trigger_rtl.vhd Sources | Set Library... Alt+L
Location: E:fProjects/Viva Sources | Set File Type...
T VHDL [SetUsed In...
Library: il_defaultlib EALGwSlEn s e
T A Edit Simulation Sets...
Modified: Today at 17:24: 8% Add Sources... Alt+A

Figure 2.19: Remove File from Project option

Step 3. In the Remove Sources dialog box enable Also delete the project local file/directory from disk option, click
OK and the file will be removed from the project, see lllustration 2.20

g Remove Sources

X5

|0I CK to remove the one selected file from the project?

/| Also delete the project local file/directory from disk

OK | Cancel |

Figure 2.20: Remove Sources dialog box

29

FREQUENCY TRIGGER

Note: Information about how to create the Frequency Trigger module, you can also find in the Lab 3: "Creating Frequency
Trigger Module".

2.41 Creating a Module Using Vivado Text Editor

Design reuse is a common way of increasing a designer’s productivity. It includes reusing a design modules that have been
previously created and used within some other design. Since these modules are already created we need a way to add
them to current project. This can be done using Add File option within Add Sources command. To illustrate how this can be
accomplished, following procedure is presented. In this example we will first create VHDL model using Vivado text editor
and save it as .vhd source file. Next we will add this source file to our project.

Here are the steps for creating a module using Vivado text editor:

Step 1. Optional: Launch Vivado IDE (if it is not already launched)

Step 2. Optional: Open "Modulator" project (modulator.xpr) (if it is not already opened)

Step 3. In the main Vivado IDE menu, click File -> New File... option to open Vivado text editor

Step 4 In the New File dialog box, type the name of your source file (e.g. frequency_trigger_rtl.vhd) in the File name
field and choose to save it into your working directory

Note: You can create new folder under your working directory, intended for storing source files.

Step 5. When you click Save , Vivado IDE will automatically open empty frequency_trigger_rtl.vhd source file in Vivado
text editor

Step 6. Insert the VHDL code and add the frequency_trigger_rtl module header

Step 7. When you finish with module creation, click File ->> Save File option from the main Vivado IDE menu, or just click
Ctrl + S to save it

Step 8. In the Vivado Flow Navigator click the Add Sources command, see lllustration 2.21

Flow Mavigator 4

7y =9 pa
A g

4 Project Manager
@; Project Settings

o‘ﬂf Add Sources

':,:' Language Templates

1F 1P Catalog

Figure 2.21: Add Sources command

Step 9. In the Add Sources dialog box, select Add or create design sources option to add the design source files into
the project, see lllustration 2.22

30

2.4 Creating Module

¢ Add Sources

VIVADO!

HLx Editions

£ XILINX

ALL PROGRAMMABLE.

Add Sources

This guides you through the process of adding and creating sources for your project

~ Add or geate constraints

®

) Add or create design sources

() Add or create simulation sources
~1 Add or create DSP sources
") Add existing block design sources

() Add existing IP

To continue, dick Next

m
&

Cancel

Figure 2.22: Add Sources dialog box - Add or create design sources option

Step 10. Click Next

Step 11. In the Add or Create Design Sources dialog box, click the + icon and select Add Files... option to include the

existing source files into the project, or just click Add Files button, see lllustration 2.23

¢ Add Sources

===

to your project.

Add or Create Design Sources
Specify HDL and netlist files, or directories containing HOL and netlist files, to add to your project. Create a new source file on disk and add it ‘

+
- Add Files...

Add Directories. ..
Create File...

Copy sources into project

Add Files I [Add Directories I [Create File

Scan and add RTL indude files into project

Add sources from subdirectories

m
7

Cancel

Figure 2.23: Add or Create Design Sources dialog box - Add Files option

Step 12. In the Add Source Files dialog box, browse to the project working directory and select the frequency _trigger -
rtl.vhd source file, see lllustration 2.24

31

FREQUENCY TRIGGER

4 Add Source Files =2
Loakin: | | seurces 202 R AEDXS B

Recent Directories

@ counter_rtl.vhd
@ couneiuna | G:/temp Vivado /Sources/sources -

o
OIS G requicncy_tigger_rtlvhd

(@il frequency_trigger_tb.vhd

I

File Preview

A modulator_ila_vio_itlvhd

" o @ modulator_ip_rtl.vhd
Desktop (@i modulator_sscilloscope_itlvhd

@ modulator_pkg.vhd

- @ modulator_ttlvhd
E @ modulator_thvhd

My Documents | &8 modulator_timesim_tb.vhd

@ modulator_vie_ttlvhd

- .- @ pwm_ttlvhd
o W pwm_tb.vhd
Computer @ sine_rtl.vhd

@il sine_top_rtl.vhd

‘:.tl., @ sine_top_tb.vhd

Netwark

File name: frequency_trigger_rtl.vhd

Files of type: | All Design Source Files (.wefa, vb, vea, vho, tF, &If, v, vhf, verilog, vhd, edn, svh, d<p, sv, edf, vr, h, vp, nge, vhdl, vm, mif, viog, edif, vh, vg, bmm, vf) -

Figure 2.24: Add Source Files dialog box

Step 13. Click OK and the frequency_trigger_rtl.vhd source file should appear in the Add or Create Design Sources
dialog box, as it is shown on the lllustration 2.25

Add Sources I@

Add or Create Design Sources

Specify HOL and netiist files, or directories containing HDL and netlist files, to add to your project. Create a new source file on disk and add it to '
your project.

'|" Index Name Library Location

—] frequency_trigger_rtl.vhd wil_defaultib E:/Projects/Vivado proba/Vivade-2016.2/2016.2
1t

+

Add Files] [Add Directories] [Create File

[Scan and add RTL indude files into project
|:| Copy sources into project

Add sources from subdirectories

Figure 2.25: Add or Create Design Sources dialog box - with added file

Step 14. Click Finish and your source file should appear under the Design Sources in the Sources view in the Project
Manager window, see lllustration 2.26

32

2.4 Creating Module

4 modulator - [E/Projects/Vivade/proba/Vivado-2016 4/medulator/modulator.xpr] - Vivade 20164 =R
File Edit Flow Tools Window Layout View Help

BnoRk X P> NG K LG [EoefutLayout S TeN @ ——
Flow Navigator 7 « \pmjectnanaqer-mmulamr ? x|
a s Sources ?— O X | ¥ project Summary X | PO

| A= wah R

| 4 Project Manager Project Settings Edit —
5 Project settngs =i Design Sources (1)
= g i@ frequency_trigger - rtl (frequency trigaer rtl.vhd) Project name: modulatar
(3% Add Sources & Constraints Project location: E: Projects Vivado/proba Vivado-2016.4fmodulator
¢ Language Templates Simulation Sources (1) Product family: Zyng-7000
- {1
4F 1P Catalog (15 sim_1 (1) Project part: ZzedBoard Zyng Evaluation and Development Kit (xc72020clq484-1)
Top module name: frequency trigger
4 IP Integrato
e Target language: Veriog
7 Create Block Design
Simulator language: Mixed
P¥ Open Block Design
#) Generat= Block Design Board Part =
e Display name: ZedBoard Zyng Evaluation and Development Kit
imulation
& s Board partname: em.avnet.com:zed:part0: 1.3
Simulation Settings
G Libraries | Compile Order | Repository path: flin Vivado/2016. 4/data/boardsboard _files
@ runsimuiston | L0 URL: ,
Properties P_owe o — . n
4 RTL Analysis - R Board overview: ZedBoard Zyng Evaluation and Development Kit
&% Elaboration Settings g
» [g¥ Open Elaborated Design
4 Synthesis Synthesis Implementation L
5 synthesis Settings
O Status: Not started Status: Mot started
un Synthesis
a2)) e memrenis Messages: Mo errors or warnings Messages: No errors or warnings
> BF Open Synthesized Design
Part: xc72020dg484-1 Part: xc72020dg84-1
4 Implementation Strategy: Vivado Synthesis Defaults Strategy: vivado Implementation Defaults
ﬁ Implementation Settings Incremental compile: [Mone
> Run Implementation < i] ¥
> @ OpenlmplementedDesign ||
Design Runs P02 X
4 Program and Debug X | Name Constraints Status ~ WNS TNS WHS THS TPWS TotalPower FaledRoutes LUT FF BRAM URAM PCle% Start
3 Bitstream Settings I Bk synth_1 constrs_1 Not started
¥ Generste Bitstream = = impl_1 constrs_1 Mot started

> @ Open Hardware Manager

o < | i | v

/5 Td Console | (> Messages | [Log | (% Reports', 3> Design Runs

Figure 2.26: Vivado IDE Viewing Environment with added source file

Note: Double-click on the frequency_trigger - rtl (frequency_trigger_rtl.vhd) source file in the Sources view and your
source file should appear in the Vivado editor on the right side of the Vivado IDE. Using Vivado editor you can further
modify this source file, if needed.

Frequency Trigger VHDL model:

Make reference to libraries that are necessary for this file:

the first part is a symbolic name, the path is defined depending of the tools

the second part is a package name

the third part includes all functions from that package

Better for documentation would be to include only the functions that are necessary

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

Entity defines the interface of a module

Generics are static, they are used at compile time

Ports are updated during operation and behave like signals on a schematic or traces on a PCB
Entity is a primary design unit

entity frequency_trigger is

port (
—— input clock signal
clk_in : in std_logic;
—— signal made for selecting frequency
sw0 : in std_logic;

—-— input clock division factor when sw0O = "1’
div_factor_freghigh : in std_logic_vector (31 downto 0);

—— input clock division factor when sw0 = ’0’
div_factor_fregqlow : in std_logic_vector (31 downto 0);
—— output signal which frequency depends on the swO state
freq trig : out std_logic

)

end entity;

Architecture is a secondary design unit and describes the functionality of the module
One entity can have multiple architectures for different families, technologies

or different levels of description

The name should represent the level of description like structural, rtl, tb and
maybe for which technology

33

FREQUENCY TRIGGER

architecture rtl of frequency_trigger is

——- Between architecture and begin is declaration area for types, signals and constants
—— Everything declared here will be visible in the whole architecture

signal freg cnt_s : integer := 0; -- clock counter
begin

—-— Defines a sequential process
-— Counts to different values depending on the sw0

freq ce_p : process
begin
—— replaces the sensitivity list
—-- suspends evaluation until an event occurs
—— in our case event we are waiting for is rising edge on the clk_in input port
wait until rising_edge (clk_in);
freqg trig <= 70’; —— default assignment
freq cnt_s <= freg cnt_s + 1; -- counting

if (sw0 = '0’) then

if (fregq_cnt_s >= div_factor_freglow - 1) then
freq trig <= "1’;
freqg cnt_s <= 0; -- reset

end if;

else
if (freq cnt_s >= div_factor_freghigh - 1) then
freq trig <= "1’;
freq cnt_s <= 0; -- reset
end if;
end if;
end process;
end;

2.5 Creating Test Bench

» Usage: used to verify correct operation of the frequency_trigger module defined in the frequency_trigger_rtl.vhd file
 Test bench internal signals:

— clk_in_s: input clock signal

— sw0_s: input signal used to select output signal frequency

— freq_trig_s: output signal which frequency depends of the sw0_s signal state

» Generics:

— div_factor_freqhigh_g: input clock division factor when sw0 =1’
— div_factor_freqlow_g: input clock division factor when sw0 =0’

* File name: frequency_trigger_tb.vhd

We are creating a test bench to verify the correctness of a design or model.

To create and add an test bench file into the project, do the similar steps as for creating a module using Vivado text editor:
Step 1. Optional: Launch Vivado IDE (if it is not already launched)

Step 2. Optional: Open "Modulator" project (modulator.xpr) (if it is not already opened)

Step 3. In the main Vivado IDE menu, click File -> New File... option to open Vivado text editor

Step 4. In the New File dialog box, type the name of your test bench file (e.g. frequency_trigger_tb.vhd) in the File
name field and choose to save it into your working directory, on the same place where you saved frequency _trigger _rtl.vhd
source file

Step 5. When you click Save , Vivado IDE will automatically open empty frequency._trigger_tb.vhd source file in Vivado
text editor

Step 6. Insert the VHDL code and add the frequency_trigger_tb module header

Step 7. When you finish with the test bench creation, click File -> Save File option from the main Vivado IDE menu, or
just click Ctrl + S to save it

Step 8. In the Vivado Flow Navigator click the Add Sources command, see lllustration 2.27

34

2.5 Creating Test Bench

Flowe Mavigator L<S

G p
A g =

4 Project Manager
@ Project Settings
Oﬁ Add Sources
'? Language Templates
1F 1P Catalog

Figure 2.27: Add Sources command

Step 9. In the Add Sources dialog box, select Add or create simulation sources option to add the simulation source

files into the project, see lllustration 2.28

¢ Add Sources

Add Sources

VIVADO!

HLx Editions

() Add or greate constraints

() Add or create design sources

(@ Add or create simulation sources
() Add or create DSP sources

(7) Add existing block design sources

() Add existing IP

To continue, dick Next

Thig guides you through the process of adding and creating sources for your project

il
&

Cancel

Figure 2.28: Add Sources dialog box - Add or create simulation sources option

Step 10. Click Next

Step 11. In the Add or Create Simulation Sources dialog box, click the + icon and select Add Files... option, see

lllustration 2.29

35

FREQUENCY TRIGGER

¢ Add Sources

]

Add or Create Simulation Sources

your project.

Specify simulation set: | = sim_1 -
+

— Add Files. ..

1+ Add Directories...

+ Create File...

Specify simulation spedific HDL files, or directories containing HOL files, to add to your project. Create a new source file on disk and add it to ‘

Add Files

] [Add Directories

J

Create File

Scan and add RTL indude files into project
Copy sources into project
Add sources from subdirectories

Indude all design sources for simulation

m
=

il
&

Cancel

Figure 2.29: Add or Create Simulation Sources dialog box

Step 12. In the Add Source Files dialog box, browse to the project working directory and select the frequency _trigger -

tb.vhd source file, see lllustration 2.30

4. Add Source Files

Lookin: | || sources

. @ counter_itl.vhd

p W counter_th.whd
RecentItems | frequency trigger rtl.vhd

@ frequency_trigger_tb.vhd

@ modulator_ila_vio_rtl.vhd
! @ modulator_ip_rtl.vhd
Deskiop A modulator_oscilloscope_rtl.vhd
modulator_pkg.vhd
modulator_ttl.vhd
modulator_th.vhd
modulator_timesim_tb.vhd
modulator_vio_ttlvhd
pwm_rtl.vhd

pwm_tb.vhd

sine_itlvhd
sine_top_rtl.vhd
sine_top_tb.vhd

[E

[E5

®

=
3

[E

A
3

[E

F< [
K
My Documents

®

A
=

[E

]

A
=

i " -

L

[E

&

A
3

Computer [

[E

®

A
3

@ |

Network

[E

File name: frequency_trigger_tb.vhd

Files of type:

All Design Source Files (.wcfg, vb, veo, vho, tf, elf, v, vhf, verilog, vhd, edn, svh, dop, sv, edf, vr, h, vp, ngc, vhd, vm, mif, viog, edif, vh, vg, bmm, vf) -

AR ERADOXS B
Recent Directories
1 G:ftempyVivado/Sources/sources -
File Preview

Figure 2.30: Add Source Files dialog box

Step 13. Click OK and the frequency _trigger_tb.vhd source file should appear in the Add or Create Simulation Sources

dialog box, as it is shown on the lllustration 2.31

36

2.5 Creating Test Bench

¢ Add Sources

Sz

Add or Create Simulation Sources

your project.

Specify simulation specific HOL files, or directories containing HOL files, to add to your project. Create a new source file on disk and add it to

4

Spedfy simulation set: | = sim_1 -
'|" Index Name Library Location
- 1 frequency_trigger_th.vhd wxil_defaultiib E:/Projects/Vivado fprobaVivado-2016.2/2016.2
1
4
Add Files] [Add Directories] [Create File

[Scan and add RTL include files into project
|:| Copy sources into project

Add sources from subdirectories

Indude all design sources for simulation

Figure 2.31: Add or Create Simulation Sources dialog box - with added file

Step 14. Click Finish and your test bench file should appear under the Simulation Sources / sim_1 in the Sources view,
in the Project Manager window, see lllustration 2.32

modulater - [E:/Projects/Vivado/proba/Vivade-2016.4/modulator/modulator.xpr] - Vivade 2016.4
File Edit Flow Tools Window Layout Yiew Help Qu
3 I [¥ FRIE] - x| £
s RR X D> DY S XX (G [SoefutLayout TFoex © Ready
Flow Navigator 7 | | Project Manager - modulator ? X
0 =4 e
A= PO x I Project Summary X o ox
4 Project Manager Project Settings Edit.
4 Project Settings : frequency_trigger - rtl (frecu Project name: modulator
5% Add Sources 4155 Canstraints Project location: E:/Projects Vivado/proba/Vivado-2015. 4fmodulator
:;J Language Templates = Simulation Sources (1) Praduct family: Zyng-7000
Q IP Catalog = 'é Sl'mil&r-;aqnenw,trigger,tb-th: Project part: ZedBoard Zynq Evaluation and Development Kit (xc72020ciq484-1)
A freq_ce - frequency _trigger - rtl Top module name: frequency trigger
4 TP Integrator Vil
) Target |anguage: verilog.
4k create Block Design
Smulator language: Mixed
B¥ Open Block Desion
& Generate Block Design Board Part =
Display name: ZedBoard Zynq Evaluation and Development kit
4 simulation
& s Board partname: em.avnet.comized:partd: 1.3
Simulation Settings
“ Hierarchy | Libraries | Compile Order Repository path: Dz xilinx/Vivado 2016, 4/data/boards/board_fies
Run Simulati
@ o Smdeten URL: ht edboard.or
Properties ? -0 X
4 RTL Analysis Board overview: ZedBoard Zyng Evaluation and Development kit
- = F &
3 Elaboration Settings
> [§¥ Open Elaborated Design
4 Synthesis Synthesis Implementation 4
4% Synthesis Settings
N Status: Not started Status: Mot started
& Run Synthesis Select an ohject to see properties
o Messsges: Mo Errors or warnings Messages: Mo errors or warnings
> @ Open Synthesized Design
Part: ¥cT2020clg484-1 Part: %cT2020clg484-1
4 Implementation Strategy: Vivado Synthesis Defaults Strategy: Vivado Implementation Defaults
45 Implementation Settings Incremental compile: None
[» Run Implementation < i b
> @F Open Implemented Design
Design Runs 2_ O X
4 Pragram and Debug A Name Constraints Status WNS TNS WHS THS TPWS TotalPower FaledRoutes LUT FF BRAM LURAM PCle% Start
4% Bitstream Settings = - synth_1 constrs_1 Mot started
% Generate Bitsream - = impl_1 constrs_1 MNotstarted
> @% Open Hardware Manager
el < | (] b
5 Td Console | (> Messages | [Log | |5 Reports, 3> Design Runs

Figure 2.32: Vivado IDE Viewing Environment with added test bench file

Note: Double-click on the frequency_trigger_tb - tb (frequency_trigger_tb.vhd) source file in the Sources view and
your test bench file should appear in the Vivado text editor on the right side of the Vivado IDE.

37

FREQUENCY TRIGGER

Frequency Trigger test bench:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

—— include user defined modulator_pkg package where are important related
—- declarations that serve a common purpose

use work.modulator_pkg.all;

entity frequency_trigger_tb is

—— use lower values generics to speed up simulation time

generic (
div_factor_freghigh_g : integer := 2; -- input clock division factor when swO = "1’ (an example)
div_factor_freqlow_g : integer := 4 -- input clock division factor when swO = "0’ (an example)
)i

end entity;

architecture tb of frequency_trigger_tb is
signal clk_in_s : std_logic := ’'1’; -- input clock signal
signal freqg trig_s : std_logic := ’"1’; -- signal which frequency depends on the sw0 state
signal swO_s : std_logic := ’0’; -- signal selecting frequency

begin

—— instantiation of device under test (DUT)
—-— no component definition is necessary
—-— use keyword entity, work is the library

freq ce : entity work.frequency_trigger (rtl)

port map (
clk_in > clk_in_s,
swQO > swO_s,

div_factor_freghigh
div_factor_freqglow
freq_ trig

)i

> conv_std_logic_vector (div_factor_freghigh_g, 32),
> conv_std_logic_vector (div_factor_freqlow_g, 32),
fregq trig_s

\%

clk_in_s <= not (clk_in_s) after per_c/2; -- generates 50 MHz input clock signal;
swO_s <= 1’ after 200 ns;
end;

Note: As you can see from the code above, you must include modulator_pkg.vhd source file into your modulator project.
In the modulator_pkg.vhd file is defined per_c constant that will be used in this test bench. This package will be explained
in detail later, in Chapter 4. SINE PACKAGE, where you can also find the whole modulator_pkg.vhd source code.

To include modulator_pkg.vhd source file into your modulator project, use Add Sources option from the Flow Navigator
and repeat steps from the Sub-chapter 2.4.1. Creating a Module Using Vivado Text Editor for adding design sources.

2.6 Simulating with Vivado Simulator

Simulation is a process of emulating the real design behavior in a software environment. Simulation helps verify the
functionality of a design by injecting stimulus and observing the design outputs. Simulators interpret HDL code into circuit
functionality and display logical results.

The Vivado IDE is integrated with the Xilinx Vivado logic simulation environment. The Vivado IDE enables you to add
and mange simulation test benches in the project. You can configure simulation options and create and manage various
simulation source sets. You can launch behavioral simulation prior to synthesis using RTL sources and launch timing
simulation using post-implementation simulation model, that will be generated by the Vivado IDE tool after completing the
design implementation process.

After you have entered the code for the input stimulus in order to perform simulation, follow the next steps:
Step 1. In the Sources window, under the Simulation Sources / sim_1, select frequency_trigger_tb - tb file
Step 2. In the Flow Navigator, under the Simulation, click on the Run Simulation button

Step 3. Choose the only offered Run Behavioral Simulation option, see lllustration 2.33, and your simulation will start

38

2.6 Simulating with Vivado Simulator

4 Simulation
@; Simulation Settings Properties
@Q Run Simu== —

Run Behavicral Simulation
4 RTL Analysis
Eﬁ} Open Bl

4 Synthesis

@; Synthesi

Figure 2.33: Run Behavioral Simulation option

Step 4. The tool will compile the test bench file and launch the Vivado simulator, see lllustration 2.34

¢ modulator - [E/Projects/Vivado/proba/Vivado-2016.4/modulator/madulatorxpr] - Vivado 2016.4
Fle Edit Flow Tools Window Layout Vien Run Help
3 =) P D N H K| L G S oefautLayout - | Kl R, b 10 us v |53 Q| ®
Flow Navigator ? « | Behavioral Simulation - Functional - sm_1 - frequency_trigger_tb
o= Scopes ?_ D00 %X Objects T_0Ow %
Q& = s = " TR
} AT @eEcEeEma |8 | | B 1
4 Project Manager
& Project Settngs Name Design nit Block Type Name Value Data Tyy
5% Add st = | b dk_in_s 1 Logic
al ources U freg_ce frequency_tria... VHDL Entity) freq_trig_s 1 Logic
¢ Language Templates b sw_s 1 Logic
{F 1P catalog & div_factor_fre... 2 Integer
& div_factor_fre... 4 Integer
4 IP Integrator
¥ Create Block Design
4 Simulation
@3 Simulation Settings
(i} Run Simulation
4 RIL Analysis
&% Elsboration Settings
- [@® Open Elaborated Design
4 Synthesis
&5 synthesis Settings
#» Run Synthesis
Open Synthesized Design
4 Implementation 2, Scope | & Sources “ i1 b~
&% Implementation Settings e CR N
[» Run Implementation - i1 e
=5}
Open Implemented = # run 1000ns =
- INFO: [USF-X5im-94] ¥Sim completed. Design snapshot 'frequency_trigger_th_behav' loaded.
4 Program and Debug 1] INFO: [USF-XSim-97] XSim simulatien ran for 1000ns
@3 Bitstream Settings gl launch_simulation: Time (s): cpu = 00:00:02 ; elapsed = 00:00:06 . Memory (MB): peak = 721.367 ; gain = 0.000 E
¥ Generate Bitstream | 2
« it v
@ Open Hardware Manager @I
5 Tel Console | Messages | [Log
Simulation Scope: frequency_trigger_th Sim Time: 1 us

Figure 2.34: Vivado IDE Viewing Environment - after simulation process

Note: By default, Untitled Waveform viewer will appear displaying only the signals at the top level of the test bench.
Step 5. Correct any errors before proceeding
Step 6. Double-click on the Untitled 1 file or click on the Maximize button in the right upper corner of the waveform viewer

Step 7. Assuming no errors, your simulation result should look similar to the lllustration 2.35.

39

FREQUENCY TRIGGER

Untitled 2 - O a %

Figure 2.35: Simulation Results

Step 8. Optional: If you want to insert further internal signals from your simulated file, click on the desired file in the
Scopes window and drag-and-drop the signals from the Objects window into the waveform window. Now you have to
restart and rerun your simulation.

Step 9. Optional: If you want to restart and rerun simulation for specific time, see lllustration 2.36.
K I,.-En_, i 10 |us = | W (i}

Figure 2.36: Vivado Simulator Simulation Controls

Vivado Simulator Simulation Controls has the following buttons that the user can use to control the simulation process:

» Restart - restarts the simulation from "time 0"

* Run All - run the simulation until there are no more events

* Run for specified time - runs the simulation for the specified amount of time
+ Step - runs the simulation until the next breakable line

» Break - stops the running simulation at the next breakable line

* Relaunch - relaunch current Vivado simulator

Note: Information about creating a Frequency Trigger test bench file and simulating a design using Vivado simulator, you
can also find in the Lab 4:"Frequency Trigger Verification".

40

Chapter 3

COUNTER

3.1 Description

» Usage: This module will be an universal (generic) counter. It’s task will be to generate read addresses for the ROM
where samples of the sine wave are stored. The speed of the counting will be controlled by the Frequency Trigger
module, via freg_trig port, and the output of the Counter module will be an input of the Digital Sine module.

» Block diagram:

— clk_in cnt_out(7:0)

—— cnt_en

Figure 3.1: Counter block diagram

* Input ports:

— clk_in: input clock signal

— cnt_en: counter enable
» Output ports:

— cnt_out : current counter value
» Generics:

— cnt_value_g : threshold value for counter

— depth_g : the number of samples in one period of the signal

* File name: counter_rtl.vhd

3.2 Creating Module

As we already said, for better designs, our recommendation is not to use the GUI for module creation. Instead of that,
create a module in Vivado text editor, name it to module_name.vhd and add it into your project.

All the steps for creating a new module using Vivado text editor or adding existing module are explained in Sub-chapter
2.4.1 Creating a Module Using Vivado Text Editor.

Counter VHDL model:

COUNTER

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity counter is

generic(
cnt_value_g : integer; -- threshold value for counter
depth_g : integer -- the number of samples in one period of the signal
)i

port (
clk_in : in std_logic; -- input clock signal
cnt_en : in std_logic; —— counter enable
cnt_out : out std_logic_vector (depth_g - 1 downto 0) —-- current counter value

)i
end entity;

architecture rtl of counter is
signal cnt_out_s : std_logic_vector (depth_g - 1 downto 0) := (others => ’0’); —-- current counter value
begin

—— Defines a sequential process
—-— This will be universal (generic) counter

counter_p: process

begin
wait until rising_edge (clk_in);
if (cnt_en = ’1’) then
-— conv_std_logic_vector function converts integer type to std_logic_vector type
if (cnt_out_s = conv_std_logic_vector (cnt_value_g, depth_g)) then
cnt_out_s <= (others => ’0’); -- counter reset
else
cnt_out_s <= cnt_out_s + 1; —— counter
end if;
end if;

end process;
cnt_out <= cnt_out_s;

end;

3.3 Creating Test Bench

» Usage: used to verify correct operation of the counter module defined in the counter_rtl.vhd file
« Test bench internal signals:

— clk_in_s: input clock signal
— cnt_en_s: counter enable

— cnt_out_s: current counter value
» Generics:

— cnt_value_g: threshold value for counter

— depth_g: the number of samples in one period of the signal

* File name: counter_tb.vhd

We will now create a new simulation set (sim_2) with the test bench file for the Counter module (counter_tb.vhd) in it.
We will use the similar steps as for creating test bench file for the Frequency Trigger module, explained in Chapter 2.5
Creating Test Bench:

Step 1. Repeat steps 1 - 10 from the Chapter 2.5 Creating Test Bench

Step 2. In the Add or Create Simulation Sources dialog box, click on the Specify simulation set drop-down list and
choose Create Simulation Set... option, see lllustration 3.2

42

3.3 Creating Test Bench

¢ Add Sources @
Add or Create Simulation Sources
Spedify simulation spedific HOL files, or directories containing HOL files, to add to your project. Create a new source file on disk and add it to ‘
your project.

Specify simulation set: | i sim_1 -
+
Fl

&= Create Simulation Set...

Use Add Files, Add Directories or Create File buttons below

Add Files] [Add Directories] [Create File

Scan and add RTL indude files into project
Copy sources into project
Add sources from subdirectories

Indude &ll design spurces for simulation

Figure 3.2: Create Simulation Set option

Step 3. In the Create Simulation Set dialog box, enter a name for the new simulation set or leave sim_2 as a name and
click OK, see lllustration 3.3

Enter Simulation Set Name

Lok

gL Create Simulation Set @
Cancel] ‘

Figure 3.3: Create Simulation Set dialog box

Step 4. In the Add or Create Simulation Sources dialog box, under the new sim_2 simulation set, use Add Files...
option to add the test bench file for the Counter module

Step 5. In the Add Source Files dialog box, browse to the project working directory and select the counter_tb.vhd test
bench file

Step 6. Click OK and counter_tb.vhd source file should appear in the Add or Create Simulation Sources dialog box

Step 7. Click Finish and your test bench file should appear under the Simulation Sources / sim_2 in the Sources view,
in the Project Manager window, see lllustration 3.4

43

COUNTER

m@g

4 modulator - [E:/Prajects/Vivade/proba/Vivado-2016.4/mc] - Vivade 2016.4
Fle Edt Fow Tooks Window Layout View Help Q- Quick Access
ZonoRila X D> XE 6K TG [5Soclaot e x| © nesdy
Flow Navigator 2 <«| | Project Manager - modulator ? X
el —}
Q T = Sources 2O x T Project Summary X r oo
a1
" q (=] Wll e ﬁl i N - |
4 Project Manager Project Settings Edi
) Project settngs =4 Design Sources (2)
¥ s @z frequency_trigger - rtl (Tequency_trigger_rtl.vhd) Project name: modator
GH Add Sources @ counter -t (counter_rtl.vhd) Project location: E:/Projects/ Jorcb do-2016. 4/modulator
' Language Templates 5 Constraints Product family: Zyng-7000
£ Simulation Sources (4)))
@ ' i ZedBoard Zyna Evaluation and Development it (xc72020dq484-1)
I 1P Catalog BB w20 Project part ZedBoard Zyng Evaluation and Development Kit (xc72020cig484-1
| b counter_th - th (counter_th.vhd) (1) Top module name: frequency triqger
4 IPIntegrator . @ frequency_trigger -t (fiequency_trigger_rtl.vhd) Target language: Verlog
 Create Block Design 1= sim_1(2) (active)
Simulator language: Mixed
B¥ Open Block Design
& Generat= Block Design Board Part =
Display name: ZedBoard Zyng Evaluation and Development Kit
4 Simulation
& s Boardpartname: em.avnet.com:zed:partd: 1.3 -
Simulation Settings) N - B
Libraries | Compile Order | Repository path: D:Xiinx Vivado/2016.4/data boards /board_files - —
(i} Run Simuiation = o
URL: h zedbos
Properties »_ O x E
4 RTL Ansiysis Board overview: ZedBoard Zynq Evaluation and Development Kit
&% Elaboration Settings
1+ g% Open Elaborated Design
4 Synthesis Synthesis Implementation L
&% Synthesis Settings
= Status: Mot started Status: Mot started
P Rrunsynthess Select an object to ses properties
Messages: Mo errors or warnings Messages: No errors or warnings
b @F Open Synthesized Design
Part: XC72020clg484-1 Part: XC72020dg484-1
4 Implementation Strategy: Vivado Synthesis Defauits Strategy: Vivado Implementation Defaults
&5 Implementation Settings Incremental compile: None
[» Run Implementation | T] »
> @¥ Open Implemented Design
Design Runs 0w x
4 Program and Debug O\ Name Constraints Status WNS TNS WHS THS TPWS Total Power Failed Routes T FF BRAM URAM PCle % Start
3 Bitstream Settings = B synth_1 constrs_1 Mot started
| Generate Bitstream = = impl_1 constrs_1 Not started
I @¥ OpenHardware Manager
o | it G
| Tdl Console | > Messages | [Log | |2 Reports', 3> Design Runs

library ieee;
use
use
use

use work.modulat

entity counter_tb is

Use lower val
generic(
cnt_value_g
depth_g

end entity;
architecture tb of c

signal clk_in_s
signal cnt_en_s
signal cnt_out_s

begin

counter : entity
generic map (
cnt_valu
depth_g

)

port map (
clk_in
cnt_en
cnt_out
)i

clk_in_s <= not
cnt_en_s <= ’'1’
1o

Figure 3.4: Vivado IDE Viewing Environment with created new simulation set

Counter test bench:

ieee.std_logic_1164.all;
ieee.std_logic_arith.all;
ieee.std_logic_unsigned.all;

or_pkg.all;

ues

: integer
: integer

ounter_tb is

: std_logic 1’
: std_logic := ’0’
: std_logic_vector

work.counter (rtl) counter

e_g => cnt_value_g,
=> depth_g

threshold value for
—— the number of samples in one

instance

generics to speed up simulation time

counter

(depth_g - 1 downto 0) :=

(others

period of the signal

input clock signal
counter enable
current counter value

=> clk_in_s,

=> cnt_en_s,

> cnt_out_s

(clk_in_s) after per_c/2; -- generates 50 MHz input clock signal

after 100 ns, '0’ after 120 ns, '1’ after 160 ns, '0’ after 180 ns, ’1’ after 220 ns,
after 240 ns, ’'1’ after 320 ns, "0’ after 340 ns, ’'1’ after 420 ns, '0’ after 440 ns;

i
3.4 Simulating
3.4 Simulating

After you have entered the code for the input stimulus in order to perform simulation, follow the next steps:

Step 1. In the Sources window, under the Simulation Sources, select new sim_2 simulation set, right-click on it and
choose Make Active option, see lllustration 3.5

Project Manager - modulator
Sources i VS
¢ Gl g
Az et BE
=|-{= Design Sources (2
H ;—----v_h-.*.frequencv_trigger— rtl (frequency _trigger _
(i counter - rHl {counter _ril.vhd
[+ Constraints
=J-{= Simulation Sources (4

: sim_1 (| & Simulation-Only Sources Properties... Ctrl+E
M, Run Simulation »
Reset Simulation »
Delete Delete
Hierarchy Update 3
@ Refresh Hierarchy
IP Hierarchy »
Make Active
Edit Constraints Sets...
Hierarchy | Libra Edit Simulation Sets...
£ Sources || % Add Sources... Alt+A

Figure 3.5: Make Active option

Step 2. In the Flow Navigator, under the Simulation, click Run Simulation command

Step 3. Choose the only offered Run Behavioral Simulation option and your simulation will start

Step 4. The tool will compile the test bench and launch the Vivado simulator

Step 5. Correct any errors before proceeding

Step 6. Double-click on the Untitled 1 file or click on the Maximize button in the right upper corner of the waveform viewer

Step 7. Assuming no errors in the Vivado simulator command line, your simulation result should look similar to lllustration
3.6

Untitied 3 -0 a x

Figure 3.6: Simulation Results

Note: All the information about creating the Counter module, generating its test bench file and simulating the Counter
design, you can also find in the Lab 5: "Creating Counter Module".

45

COUNTER

46

Chapter 4

SINE PACKAGE

4.1 Description

« Usage: In our case we will make an VHDL package with a parametrized sine signal. Total of 28 = 256 unsigned
amplitude values during one sine-period will be stored into an ROM array.

In order to simplify the generation of the PWM signal, we will use the sine wave signal that is shifted upwards. The
value of this shift will be selected in a way to make all values of the sine signal positive. This is illustrated on the
lllustration 4.1.

4000 1
35001 1
3000 1
2500 1

2000 3
1500+ B
1000+ b
500+ B

1 1 1 1
0 50 100 150 200 250

Figure 4.1: Sine-package description

The formula for calculating the sine wave shown on the lllustration 4.1 is:

sin(%) ¢ (QWidthe=1 1) owidihe=1 _y Ny _ odepthe

depth_c - is the number of samples in one period of the signal (28 = 256)
width_c - is the number of bits used to represent amplitude value (2'? = 4096)

This formula is defining the nature of the desired sine signal:

. sin(%) - is telling us that the signal is periodic, with 27t period; i - is the current sample value (from 0 to 255) and

N is the number of samples in one period of the signal
o %(2idthe=1 _1) - is telling us that the amplitude of the sine signal is 2047

o 42widthe=1 _ 1 _js telling us that the DC value of the sine signal is 2047, which means that the whole sine signal is
shifted up

* File name: modulator_pkg.vhd

SINE PACKAGE
4.2 Creating Module

To create a Sine-package module, use steps for creating modules, Sub-chapter 2.4.1 Creating a Module Using Vivado
Text Editor.

Sine package VHDL model:

library ieee;
use ieee.math_real.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

-— VHDL package is a way of grouping related declarations that serve a common purpose

——- Each VHDL package contains package declaration and package body

—- Package declaration:

package modulator_pkg is
type module_is_top_t is (yes, no); —-- only the top module can instantiate a diff clk buffer
type board_type_t is (1x9, zedboard, ml605, kc705, microzed, socius);
type has_diff_clk_t 1is (yes, no);

type board_setting_t_rec is record

board_name : board_type_t; —- specifies the name of the board that we are using

fclk : real; —— specifies the reference clock frequency that is presented
—— on the board (in Hz)

has_diff_clk : has_diff clk_t; —-- specifies if board has differential clock or not

end record board_setting_t_rec;

—— place the information about the new boards here:

constant 1x9_c : board_setting_t_rec := (1x9, 100000000.0, no); -— Spartan-6
constant zedboard_c : board_setting_t_rec := (zedboard, 100000000.0, no); —-- Zyng-7000
constant ml605_c : board_setting_t_rec := (ml605, 200000000.0, yes); —— Virtex-6

constant kc705_c : board_setting_t_rec := (kc705, 200000000.0, yes); —— Kintex-7

constant microzed_c : board_setting_t_rec := (microzed, 33333333.3, no); —— MicroZed

constant socius_c : board_setting_t_rec := (socius, 50000000.0, no); —-— Socius

—- array holding information about supported boards
type board_info_t_arr is array (1 to 6) of board_setting_t_rec;
constant board_info_c: board_info_t_arr := (1x9_c, zedboard_c, ml605_c, kc705_c, microzed_c, socius_c);

type vector_t_arr is array (natural range <>) of integer;

constant per_c : time := 20 ns; -- clock period (T=1/50 MHz), that is used in almost all test benches

type design_setting_t_rec is record

cntampl_value : integer; —— counter amplitude border,

—-— it’s value should be equal to (2"depth)-1
f_low : real; —-— first frequency for the PWM signal, specified in Hz
f_high: real; -— second frequency for the PWM signal, specified in Hz
depth : integer range 0 to 99; —-- the number of samples in one period of the signal
width : integer range 0 to 99; —- the number of bits used to represent amplitude value

end record design_setting_t_rec;
constant design_setting_c : design_setting_t_rec := (255, 1.0, 3.5, 8, 12);

—— init_sin_f function declaration

function init_sin_f
(
constant depth_c : in integer; -- number of samples in one period of the signal (278=256)
constant width_c : in integer -- number of bits used to represent amplitude value (2712=4096
)

return vector_t_arr;

—- function that returns the information about the selected development board
function get_board_info_f
(
constant board_name_c : in string
)
return board_setting_t_rec;
end;

-— In the package body will be calculated sine signal
—— Package body:
package body modulator_pkg is

—— init_sin_f function definition
function init_sin_f
(
constant depth_c : in integer;
constant width_c : in integer
)

return vector_t_arr is

variable init_arr_v : vector_t_arr(0 to (2 %x depth_c - 1));

48

4.2 Creating Module

begin
for 1 in 0 to ((2 %% depth_c)- 1) loop —— calculate amplitude values
init_arr_v (i) := integer (round(sin((math_2_pi / real (2 ** depth_c))+*real(i)) =*
(real (2 x* (width_c - 1)) - 1.0))) + integer(2 =% (width_c - 1) - 1);

—— sin (2xpi*i / N) * (2width_c-1 - 1) + 2width_c-1 - 1, N = 2depth_c
end loop;

return init_arr_v;

end;

—- function that returns the information about the selected development board
function get_board_info_f

(

constant board_name_c : in string

)

return board_setting_t_rec is

begin
for i in 1 to board_info_c’length loop

-- if supplied board name equals some of supported boards,
-- return board information for that board

if (board_type_t’image (board_info_c (i) .board_name) = board_name_c (2 to board_name_c’length-1)
then
return board_info_c(1);
end if;
end loop;
end;

Note: All the information about creating the sine package, you can also find in the Lab 6: "Creating Sine Package".

49

SINE PACKAGE

50

Chapter 5

DIGITAL SINE

5.1 Description

« Usage: This module will generate an digital representation of an analog (sine) signal with desired frequency. It will
use the counter values as addresses to fetch the next value of the sine wave from the ROM.

Note: Don’t forget to include the Sine package in the code of the Digital Sine module!

 Block diagram:

— clk_in sine_out(11:0) ——

—— ampl_cnt(7:0)

Figure 5.1: Digital Sine block diagram

* Input ports:

— clk_in : input clock signal
— ampl_cnt : address value for the sine waveform ROM

» Output ports:
— sine_out : current amplitude value of the sine signal
« Generics:

— depth_g : the number of samples in one period of the signal

— width_g: the number of bits used to represent amplitude value

* File name: sine_rtl.vhd

5.2 Creating Module

To create Digital Sine module, use steps for creating modules, Sub-chapter 2.4.1 Creating a Module Using Vivado Text
Editor .

Digital Sine VHDL model:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

DIGITAL SINE

entity sine is
generic (

depth_g : integer range 1 to 99 := 8; —-- the number
width_g : integer range 1 to 99 := 12 -- the number
)i

port (
clk_in : in std_logic;
ampl_cnt : in std_logic_vector (depth_g-1 downto 0);
sine_out : out std_logic_vector (width_g-1 downto 0)

)i
end entity;

architecture rtl of sine is

of
of

samples in one period of the signal
bits used to represent amplitude value

input clock signal
address value for the sine waveform ROM
current amplitude value of the sine signal

constant sin_ampl_c : vector_t_arr := init_sin_f (depth_g, width_g); —- returns sine amplitude value
signal ampl_cnt_s : integer range 0 to 255 := 0; —— amplitude counter
signal sine_s : std_logic_vector (width_g-1 downto 0) := (others=>’0’); -- sine signal

begin

—— Defines a sequential process
—— Fetches amplitude values and frequency -> generates sine

sine_p : process
begin

wait until rising_edge (clk_in);

—— converts ampl_cnt from std_logic_vector type to integer type

ampl_cnt_s <= conv_integer (ampl_cnt);

—— converts sin_ampl_c from integer type to std_logic_vector type

sine_s <= conv_std_logic_vector (sin_ampl_c (ampl_cnt_s),

end process;
sine_out <= sine_s;

end;

width_g); —-- fetch amplitude

Note: All the information about creating the Digital Sine module, you can also find in the Lab 7: "Creating Digital Sine

Module" .

52

Chapter 6

DIGITAL SINE TOP

6.1

Description

» Usage: This module will merge Frequency Trigger, Counter, Sine package and Digital Sine module into one Digital
Sine Top module (Drawings 6.1 and 6.2). It will have four input ports: one will be used for input clock signal (clk_in),
the second one will be used for changing output signal frequency (sw0) and the last two ports (div_factor_freghigh
and div_factor_freglow) will be used for specifying input clock division factors. The only output port will represent the
current amplitude value of the desired sine signal.

» Block diagram:

— clk_in sine_out(11:0)

— swO
—— div_factor_freghigh(31:0)
—— div_factor_freghigh(31:0)

Figure 6.1: Digital Sine Top block diagram

[swo swo freq trig ——
div_factor_freghigh(31:0)
div_factor_freglow(31:0)
| clk_in clk_in
L cnt_en cnt_out(7:0)
clk_in
L ampl_cnt(7-0) sine_out({11:0)
clk_in

Figure 6.2: Digital Sine Top detailed block diagram

FREQUENCY TRIGGER

COUNTER

sine_out{11:0)

DIGITAL SINE

DIGITAL SINE TOP

* Input ports:

» Output ports:

clk_in: input clock signal

swO: input signal from the on-board switch, used for changing output signal frequency
div_factor_freqhigh: input clock division factor when sw0 =1’

div_factor_freqglow : input clock division factor when sw0 =0’

— sine_out: current amplitude value of the sine signal

» Generics:

— cntampl_value_g : threshold value for counter, it’s value should be equal to (2" depth)-1

— depth_g: the number of samples in one period of the signal

— width_g: the number of bits used to represent amplitude value

* File name: sine_top_rtl.vhd

6.2 Creating Module

To create Digital Sine Top module, use steps for creating modules, Sub-chapter 2.4.1 Creating a Module Using Vivado
Text Editor .

Digital Sine Top VHDL model:

library
use
use
use

use

ieee;
ieee.std _logic_1164.all;
ieee.std_logic_arith.all;

ieee.std_logic_unsigned.all;

work.modulator_pkg.all;

entity sine_top is
generic(

cntampl_value_g : integer

:= 255; —— threshold value for counter,

—-- it’s value should be equal to (2"depth)-1

depth_g : integer range 1 to 99 := 8; -—- the number of samples in one period of the signal
width_g : integer range 1 to 99 := 12 —-- the number of bits used to represent amplitude
-- value
)i
port (
clk_in : in std_logic; —— input clock signal
sw0 : in std_logic; —-— signal used for selecting frequency
div_factor_freghigh : in std_logic_vector (31 downto 0); —-- threshold value for high frequency
div_factor_freglow : in std_logic_vector (31 downto 0); —-- threshold value for low frequency
sine_out : out std_logic_vector (width_g-1 downto 0) —-- current amplitude value of the
—-— sine signal
)i
end entity;
architecture rtl of sine_top is
signal ampl_cnt_s std_logic_vector (depth_g-1 downto 0) := (others=>'0’); -- amplitude counter
signal freq trig_s : std_logic := '0’;
begin
-— frequency trigger module instance
freq ce : entity work.frequency_trigger (rtl)
port map (
clk_in => clk_in, —— input clock signal
sw0 => swO0, —-— signal used for selecting frequency
div_factor_freghigh => div_factor_freghigh, -- input clock division factor when sw0 = ’1’
div_factor_fregqlow => div_factor_freqglow, -- input clock division factor when sw0 = ’0’
freq trig => freq trig_s -- output signal which frequency depends of the swO state
)i
—- counter module instance
counterampl : entity work.counter (rtl
generic map (
cnt_value_g => cntampl_value_g, —-- threshold value for counter
depth_g => depth_g —— the number of samples in one period of the signal
)
port map (

54

6.3 Creating Test Bench

clk_in => clk_in, —— input clock signal
cnt_en => freq_ trig_s, —-- counter enable
cnt_out => ampl_cnt_s —— current counter value

)i

—— digital sine module instance

sine : entity work.sine(rtl)

generic map (
depth_g => depth_g, —-- the number of samples in one period of the signal
width_g => width_g -- the number of bits used to represent amplitude value
)

port map (
clk_in => clk_in, —— input clock signal
ampl_cnt => ampl_cnt_s, -- address value for the sine waveform ROM
sine_out => sine_out —— current amplitude value of the sine signal
)i

end;

6.3 Creating Test Bench

» Usage: used to verify correct operation of the sine_top module defined in the sine_top_rtl.vhd file
+ Test bench internal signals:

— clk_in_s: input clock signal
— sw0_s: input signal from the on-board switch, used for changing output signal frequency

— sine_out_s: current amplitude value of the sine signal

» Generics:

cntampl_value_g: threshold value for counter

depth_g: the number of samples in one period of the signal

width_g: the number of bits used to represent amplitude value

div_factor_freghigh_g: threshold value for high frequency

div_factor_freqlow_g: threshold value for low frequency

* File name: sine_top_tb.vhd

We will now create a new simulation set (sim_3) with the test bench file for the Digital Sine Top module (sine_top_tb.vhd)
in it. We will use the steps explained in the Sub-chapter 3.3 Creating Test Bench.

Digital Sine Top test bench:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

entity sine_top_tb is

—— Use lower values for div_factor_freghigh_g and div_factor_freglow_g generics to speed up simulation
-- time
generic(
cntampl_value_g : integer := 255; —-— threshold value for counter,
-- it’s value should be equal to (2"depth)-1
depth_g : integer range 1 to 99 := 8; —— the number of samples in one period of the signal
width_g : integer range 1 to 99 := 12 —— the number of bits used to represent amplitude value
div_factor_freghigh_g : integer := 55; -- threshold value for high frequency
div_factor_freglow_g : integer := 195; -- threshold value for low frequency

)i
end entity;

architecture tb of sine_top_tb is

signal clk_in_s : std_logic := '0’; —- input clock signal
signal swO_s : std_logic := ’'0’; —- signal used for selecting frequency
signal sine_out_s : std_logic_vector (width_g-1 downto 0) := (others=>'0");

—— current amplitude value of the sine signal

begin
—- sine_top module instance
dut : entity work.sine_top

55

DIGITAL SINE TOP

generic map (
cntampl_value_g => cntampl_value_g,

depth_g => depth_g,
width_g => width_g
)

port map (
clk_in => clk_in_s,
sw0 => swO_s,

div_factor_freghigh => conv_std_logic_vector (div_factor_freghigh_g, 32),
div_factor_freglow => conv_std_logic_vector (div_factor_freqglow_g, 32),

sine_out => sine_out_s
)i
clk_in_s <= not (clk_in_s) after per_c/2; -- 50 MHz input clock signal
swO_s <= '0’, '1l’" after 1 ms;
end;
6.4 Simulating

After you have entered the code for the input stimulus in order to perform simulation:
Step 1. You can start your simulation (see Chapter 3.4 Simulating)
Step 2. Simulate your design for 4 ms (see Chapter 2.6 Simulating — step 9.)

Step 3. Assuming no errors, your simulation result should look similar to lllustration 6.3.

Figure 6.3: Simulation Results

As you can see from the illustration above, Vivado simulator presented sine signal, sine_out s, in digital form. This is
default Vivado simulator waveform style. If you would like to see if this signal really has a shape of sine signal, Vivado
simulator gives you possibility to change the waveform style from digital to analog. To change the waveform style in Vivado
simulator, please do the following:

1. Select the sine_out_s signal

2. Right-click on it and choose Waveform Style -> Analog , see lllustration 6.4

56

6.5 Synthesis

Copy
Paste
Delete

Find...

Select Al
Expand

Collapse

Rename

Name

Waveform Style v | Digital

Radix Analog

Signal Color Analog Settings...
Reverse Bit Order

. New Group

New Divider

%5 New Virtual Bus

Figure 6.4: Waveform Style -> Analog option

When you change waveform style from digital to analog, Vivado simulator will automatically change sine signal perspective.
Now, sine_out_s signal should have a shape of sine signal, as it is shown on the lllustration 6.5.

Untitled 4= —oax

Figure 6.5: Simulation results with analog sine signal representation

In the lllustrations 6.3 and 6.5 and in the sine_top_tb.vhd source file you can also notice that we have changed div_factor-
_freqhigh_g and div_facto_freqlow_g values from initial 196608 and 57344 values to 55 and 195 values, respectively.
This is done, because we wanted to speed up the simulation process, in this example ~1000 times, while retaining the
same functionality. This is a way to speed up the simulation process without compromising functional behavioral of the
system that is being simulated. This is the reason why we need only 4 ms to simulate our design, instead of 4000 ms which
would take a 1000 times longer to complete.

Note: Information about creating the Digital Sine Top module, generating its test bench file and simulating the Digital Sine
Top design, you can also find in the Lab 8: "Creating Digital Sine Top Module" .

6.5 Synthesis

6.5.1 Description

Synthesis is the process of transforming an RTL-specified design into a gate-level representation. It checks code syntax
and analyse the hierarchy of your design. This ensures that your design is optimized for the design architecture that you
have selected (e.g. Number of Flip-Flops, LUTs, Clock- and |10-Buffers).

Vivado IDE synthesis is timing-driven and optimized for memory usage and performance. Support for SystemVerilog as
well as mixed VHDL and Verilog languages is included.

57

DIGITAL SINE TOP

There are two ways to setup and run synthesis:

» Use Project Mode (which we will use in this tutorial)

» Use Non-Project Mode - applying the synth_design Tool Command Language (Tcl) command and controlling your
own design files.

6.5.2 Run Synthesis

To synthesize your design, follow these steps:

Step 1. Before you run synthesis process, set Digital Sine Top module to be the top module. To do that, in the Sources
window, under Design Sources, select synthesizable module (sine_top - rtl), right-click on it and choose Set as Top
option

Step 2. In the Vivado Flow Navigator, click Run Synthesis command (Synthesis option) and wait for task to be com-
pleted, see lllustration 6.6

4 Synthesis
@. Synthesis Settings

@ Run Synthesis

> [Open Synthesized Design

Figure 6.6: Run Synthesis command

Note: You can monitor the Synthesis progress in the bar in the upper-right corner of the Vivado IDE.

Step 3. After the synthesis is completed, the Synthesis Completed dialog box will appear, see lllustration 6.7

Synthesis Completed @

IOI Synthesis successfully completed.

Mext

Run Implementation

@ bp
View Reports

Don't show this dialog again

| oK || Cancel |

Figure 6.7: Synthesis Completed dialog box

In the Synthesis Completed dialog box you can select one of the following options:

* Run Implementation: which launches implementation with the current Implementation Project Settings.

» Open Synthesized Design: which opens the synthesized netlist, the active constraint set, and the target device into
Synthesized Design environment, so you can perform I/O pin planning, design analysis, and floorplanning.

» View Reports: which opens the Reports window, so you can view reports.

Step 4. Select Open Synthesized Design and click OK, see lllustration 6.7

58

6.5 Synthesis

Step 5. Make sure that Default Layout option is selected from the view layout pull-down menu in the main toolbar, see
lllustration 6.8

dulator/modulatorxpr] - Vivado 2013.4
Layout View Help

C;} 9 g Qﬂ 1| @ @ % % E Q}I%DeﬁultLaynut vI

Figure 6.8: Default Layout option

6.5.3 After Synthesis

After you have synthesized your project (or opened a project that only contains netlists) the Flow Navigator changes
and now includes: Constraints Wizard, Edit Timing Constraints, Set Up Debug, Report Timing Summary, Report Clock
Networks, Report Clock Interaction, Report DRC, Report Noise, Report Utilization, Report Power and Schematic options,
see lllustration 6.9

4 Synthesis
@ Synthesis Settings
$- Run Synthesis
4 Synthesized Design

l% Constraints Wizard
£ Edit Timing Constraints
'3;:& Set Up Debug
(2} Report Timing Summary
M, Repart Clock Networks
5] Report Clock Interaction
|:', Report Methodology
() ReportDRC
[} Report Noise
Report Utilization
%]j Report Power

¥ schematic

Figure 6.9: Synthesized Design options

Flow Navigator is optimized to provide quick access to the options most frequently used after synthesis:

+ Constraints Wizard: The Vivado IDE provides Timing Constraints wizard to walk you through the process of creating
and validating timing constraints for the design. The wizard identifies clocks and logic constructs in the design and
provides an interface to enter and validate the timing constraints in the design. It is only available in the synthesized
and implemented designs.

 Edit Timing Constraints: Open the Constraint Viewer (formerly called the Constraints Editor). The Timing Con-
straints window appears in the main window of the Vivado IDE, see lllustration 6.10.

59

DIGITAL SINE TOP

% Project Summary X | § Device X | 7, Timing Constraints X [E 4
= A & Create Clock
[=-Clocks (0) + Positon ClockName Period (ns) Rise At (ns) Fall At (ns) Add Clock Source Objects Source File Scoped Cell Current Instance

¥ reate Clock (0) - | Dex .

-Create Generated Clock (0 -

-5et Clock Latency (0

-5et Clock Uncertainty (0

-Set External Delay (0
nputs (0

¢ L-SetInput Delay (0
—-Qutputs (]

¢ L-SetOutput Delay (0
—J-Assertions (0

-Set Data Check (0]

-Set Case Analysis (0
-Set False Path (0

-Set Multicycle Path (0
-Set Maximum Delay (0
-Set Minimum Delay (0)
Others (0]

+-Group Path (0)
t..Set Disable Timing (0)
All Constraints
Position Command Scoped Cell

| | R B P

Figure 6.10: Timing Constraints window

» Set Up Debug: The Vivado IDE provides Set up Debug wizard to help guide you through the process of automatically
creating the debug cores and assigning the debug nets to the inputs of the cores.

* Report Timing Summary. Generate a default timing report (using estimated timing information), see lllustration
6.11. Timing Reports can be generated at any point after synthesis.

— Tcl command equivalent to this option is: report_timing_summary

Timing - Timing Summary - timing_1 2 _ O x
QT = ? @ j 4 Design Timing Summary
i »
General Information Setup Hold oudse Widh
~-Timer Settings

Timing Summary Worst Negative Slack (WNS): inf Worst Hold Slack (WHS): inf Worst Pulse Width Slack (WPWS): NA
Check Timing (232) Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): NA
ntra-Clock Paths
~Inter-Clock Paths
- QOther Path Groups
User Ignored Paths
Unconstrained Paths

Number of Faiing Endpaints: 0 Number of Faiing Endpoints: 0 Mumber of Failing Endpaints: NA
Total Number of Endpoints: 117 Total Number of Endpoints: 117 Total Mumber of Endpoints: NA

There are no user specified timing constraints.

Timing Summary - timing_1 4 b8
= Td Console | (= Messages | [d Log | [2) Reports | J» Design Runs (3 Timing

Figure 6.11: Timing Summary Report

* Report Clock Networks: Generates a clock tree for the design, see lllustration 6.12. This option creates a tree view
of all the logical clock trees found in the design, annotated with existing and missing clock definitions and the roots
of these trees.

— Tcl command equivalent for this option will be: report_clock_network

60

6.5 Synthesis

Clock Metworks - netwark_1 b B E -4
= —----.'Unconstl'alned 50)
paa | W dk in (0.00 M
= ’
Ber] =-Cr dk_in
'E';'_J =B T (dk_in_IBUF_inst/1)
N =1-[i) dk_in_IBUF _inst (T

E+@ © (ck_in_I6U
[Fil} .
D' =1 dk_in_IBUF (d
a =+ 1 (dk_in_IBUF_BUFG_inst/I)
m [dk_in_IBUF_BUFG_inst (BUFG)
H i---CIO dk_in_IBUF_BUFG_i

- I dk_in_IBUF_BUFG (clk_in_IBUF_BLFG)
network_1 4 b B
2 Td Console | 7 Messages | [d Log | 2 Reports | J» Design Runs' W Clock Networks

Figure 6.12: Clock Networks Report

Report Clock Interaction: Verifies constraint coverage on paths between clock domains. This option uses an inter-
clock path matrix to show clock relationships and group paths. This report is helpful to tell us if timing is asynchronous
(in case that we didn’t include synchronization circuitry) and if paths are constrained (in case that we didn’t add timing
constraints to cover paths between unrelated clock domains). Green squares confirm that paths between the two
clock domains are constrained.

— Tcl command equivalent to this option is: report_clock_interaction

Report Methodology: The Vivado Design Suite provides automated methodology checks based on the UltraFast
Design Methodology Guide for the Vivado Design Suite using the Report Methodology command. You can generate
a methodology report on an opened, elaborated, synthesized, or implemented design. Running the methodology
report allows you to find design issues early during the elaboration stage prior to synthesis, which saves time in the
design process.

— Tcl command equivalent to this option is: report_methodology -name < results_name>

Methodology - methodology_1 (51 viclations) ? O @ =
S, [](D 51 Warnings | Hide Al

Mame Details

= - [qm All Violations (51

_ - (1) SYNTH-6 (1)
= i Timing (50
%1 Bad Practice (50)
#- (1) TIMING-17 (50)

methodology_1 (51 violations) 4 r B
5 Td Console | (— Messages | G| Log | (5 Reports | 3> Design Runs | £ Power [Methodology

Figure 6.13: Report Methodology

Report DRC: Performs design rule check on the entire design. DRCs performed early in the design flow allow for
correction before a full implementation. We can select which DRCs we would like to run, see lllustration 6.14, or we
can select to run all. Objects listed in the violations are cross-selectable with HDL sources. Any problems will open a
DRC window at the bottom of the Vivado GUI. If you would like to see the final sign-off DRC, run the implementation
process.

61

DIGITAL SINE TOP

DRC - dre_1 (3 violations) ? 0O 2 X
a, (1) 2 Critical Warnings 1) 1 Warning | Hide All
=
= MName Details
g
=1 -l All Violations (3)
EI% .5 Pin Planning (2)
7 (@ NSTD-1(1
@@ ucio-1(1
=@ PS7 (1)
= 'ynq requires PS7 blodk (1]

ZPS7-1 (1)
1) ZPS7 #1 The P57 cell must be used in this Zyng design in arder to enable correct default configuration.

drc_1 (3 violations) 4 B
5 Td Console | (= Messages | [Log | 2 Reports | 3» Design Runs'. £ DRC

Figure 6.14: DRC Report

* Report Noise: Performs an SSN analysis of output and bidirectional pins in the design. This report is looking a
gauge the number of pins, I/O standard, and drive strength on a bank-by-bank basis, see lllustration 6.15. Banks
that are exceed, what is recommended, will be flagged in the Summary tab. SSN analysis can only be done on
output and bidirectional ports.

Noise - ssn_1 _0Our =
Summary 1j0 Bank Details
Messages (2) 7
X Name Port 1/0 Std Ve Slew Drive Strength (mA) ~ OFf-Chip Termination Remaining Margin (%) Notes
Links X e /O Bank 0 (0

gy e 1/0Bank 1300
-5 1/0 Bank 33 (0
[E| - 1/08ank 340
-5 /0 Bank 35 (0

£ (& Unplaced Ports (12)
< sine_out[g] sine_out[0] LVCMOS18 1,80 SLOW 12 FR_VTT_S0 CRITICAL WARNING - Unplaced port
0 sine_out{1] sine_out[1) LVCMOS18 1.80 SLOW 12 FP_VTT_S0 CRITICAL WARNING - Unplaced port
< sine_out{2] sine_out[2] LVCMOS18 1.80 SLOW 12 FP_VTT_50 CRITICAL WARNING - Unplaced port
{J sine_out{3] sine_out[3] LVCMOS18 1.80 SLOW 12 FP_VTT_50 CRITICAL WARNING - Unplaced port
0 sine_out(4] sine_outf4] LVCMOS18 1.80 SLOW 12 FP_VTT_50 CRITICAL WARNING - Unplaced port
{7 sine_out[s] sine_out[5] LVCMOS18 1.80 SLOW 12 FP_VTT_50 CRITICAL WARNING - Unplaced port
0 sine_out[g] sine_out[s] LVCMOS18 1.80 SLOW 12 FP_VTT_S0 CRITICAL WARNING - Unplaced port
(0 sine_out[7] sine_out[7] LVCMOS13 1.80 SLOW 12 FP_VTT_S0 CRITICAL WARNING - Unplaced port
-+« sine_out[s] sine_out[s] LVCMOS13 1.80 SLOW 12 FP_VTT_S0 CRITICAL WARNING - Unplaced port
] sine_out[s] sine_out[s] LVCMOS13 1.80 SLOW 12 FP_VTT_S0 CRITICAL WARNING - Unplaced port
~{Jsine_out[10] sine_out[10] LVCMOS15 1.80 SLOW 12 FP_VTT_S0 CRITICAL WARNING - Unplaced port
--{Jsine_out[11] sne_out[11] LVCMOS18 1.80 SLOW 12 FP_VTT_S0 CRITICAL WARNING - Unplaced port
ssn_l.. 4 b e
B Td Console | © Messages | [Log | |2 Reports | 3> Design Runs -, ¥l Noise

Figure 6.15: Noise Report

* Report Utilization: Generates a graphical version of the Utilization Report, see lllustration 6.16.

Utiization - utiization_1(1) ?_0OE x

AT S =N 4 Siice Logic - Slice LUTS (53200 available)

- Hierarchy - | Name Used
Summary = =

. ‘ = | 136

& Slice Logic o =

=R = =

LUT as Memary (0% %

i ~LUT as Logic =

: 7

. [-Slice Registers (<1% A7

~Register as Latch (0%)

~Register 2 Fiip Flop Warring! The Final LUT count, after physical optimizations and full mplementation, is typically lower. Run opt_design after synthesis, if not aready completed, for a more realistic count.

q
utiizaon_1 | utiization_2 | utilization_1(1) abvE
[Z Td Console | © Messages | Ed Log | [2 Reports | 3» Design Runs utilization

Figure 6.16: Utilization Report

* Report Power. Provides detailed power and thermal analysis reports that can be customized for the power sup-

ply and application environment, see lllustration 6.17. This report estimates power at every stage after synthesis
process. Perform also what-if analysis by varying switching activity.

— Tcl command equivalent to this option is: report_power

62

6.5 Synthesis

Power - power_1 -0 X
O\Z%ﬁ-}j 4| Summary
3
ary (14,349 W) Power estimation from Synthesized netiist. Activity derived from constraints flles, On-Chip Power
. simulation files or vectorless analysis, Mote: these early estimates can change
ouer Supply after implementation,] Dynamic: 13.807W (93%)
[=-Utilization Details
i 8%
: Total On-Chip Power: 14.849 W (Junction temp exceeded!) &% [Signals: 1,067 W
A—
Junction Temperature: 125.0 °C 93% [Logic: 0.816W
Thermal Margin: -111,3°C (8.9 W) 859 W BRAM: 0.064W
Effective d1A: 115 °C/w Oifo: 11.851W
Power supplied to off-chip devices: 0W
Confidence level: Low 7% [0 Device Static: Lo41w

Launch Power Constraint Advisor to find and fix
invalid switching activity

power_l... 4B
|3 Td Console |) Messages | B4 Log | (%) Reports | 3> Design Runs-._ =) Power

Figure 6.17: Power Report

+ Schematic: Opens the Schematic window. In the schematic window, you can view design interconnect, hierarchy
structure, or trace signal paths for the elaborated design, synthesized design, or implemented design. The Schematic
View is explained in detail in the Sub-chapter 6.5.5 Schematic View

6.5.4 Synthesis Reports

After synthesis completes, you can view the reports, and open, analyze, and use the synthesis design. The reports window
contains a list of reports provided by various synthesis and implementation tools in the Vivado IDE.

Open the Reports view to explore the reports generated during synthesis process.

To view Synthesis Report:

Step 1. Select the Reports tab at the bottom of the IDE, see lllustration 6.18

Reports ? - 0O a x
O\ Mame Modified Size GUI Report

Z [=-Synth Design (synth_design)

=] -+ 2 Vivado Synthesis Report 5/10/16 4:30 PM 17.9KB

e

- [Utilization Report 5/10/16 4:30 PM 6.9KB
[=)-Design Initialization (init_desian)
: - |l Timing Summary Report
[=--Opt Design (opt_design)
[Post opt_design DRC Report
- [Post opt_design Methodology D...
- [l Timing Summary Report
[=-Power Opt Design (power_opt_design)
: - [l Timing Summary Report
[=-Place Design (place_design)
- |l Vivado Implementation Log
- [l Pre-Placement Incremental Reus...
- [10 Report
- [l Utilization Report
- [l Control Sets Report
- [Incremental Reuse Report
- |l Timing Summary Report
[=-Post-Place Power Opt Design (post_place_power_opt_design)
I Timing Summary Report
[=--Post-Place Phys Opt Design (phys_opt_design)
- [Timing Summary Report
[=-Route Design (route_design)
i i [l Vivado Implementation Log
- NebTalk Report
Ik DRC Report
Methodelogy DRC Report
- [Power Report
- [l Route Status Report
- [l Timing Summary Report
- [Incremental Reuse Report
- [l Clock Utlization Report
[=-Post-Route Phys Opt Design (post_route_phys_opt_design)
- [Post-Route Physical Optimizatio. .,
[=-Write Bitstream (write_bitstream)
- [Vivado Implementation Log
- [l WebTalk Report

Figure 6.18: Reports tab

Note: If this tab is not shown, select from the main menu Windows -> Reports

63

DIGITAL SINE TOP

Step 2. In the Reports tab, double-click on the Vivado Synthesis Report to open it and examine the report contents, see

lllustration 6.18

Vivado Synthesis Report- is a detailed resource that describes the synthesis process. It describes source file recognition,
IP attributes, RTL synthesis, logic optimization, primitive inference, technology mapping, and cell usage, see lllustration

6.19.

'} Vivado Synthesis Report - synth_1 x
B E:/Projects/Vivado/proba/Vivado-2016. 4/modulator/madulator. runs/synth_1/sine_top.vds
ik
2%
3#
4%
S#
¢
T#
4 R ;
9t
10 ¢
114
12 spurce sine_top.tcl -notrace
13 Command: synth_design -top sine_top -part xcTz020clgdsd-1
V' | 14 Starting synth_design
P 1SAttempting to get a license for feature 'Synthesis' and/or device 'xe7z020°
16 INFO:
17 INFO
18 INFO:

Vivado v2016.4 (€4-bit)

SW Build 1733598 on Wed Dec 14 :35:39 MST 2016
IF Build 1731160 on Wed Dec 14 :47:21 M3T 2016
Thu Dec 22 14:25:17 201é

23
Start of seasion at:
2460

Current directory: E:/Projects/Vivado/proba/Vivado-2016.4/modulator/modulator.runs/synth 1

Process ID:

Log file: E:/Projects/Vivado/proba/Vivado-2016.4/modulator/modulator.runs/synth_1/sine_top.vds
Journal file: E:/Projects/Vivado/proba/Vivado-2016.4/modulator/modulator.runs/synth_l\wivado.jou

[Common 17-349] Got license for feature 'Synthesis' and/or device 'xc7z020'
Launching helper process for spawning children vivado processes
Helper process launched with BID 1480

P
o

S

Starting Synthesize : Time (3): cpu = 00:00:07 ; elapsed = 00:00:11 .

o

MMM MR NN
]

< i

Command line: vivado.exe -log sine_top.vds -product Vivado -mode batch -messageDb vivado.pb -notrace

Memory (MB): peak = 281.465

f does not always return a value [E:/Projects/Vivado/proba/Vivado-2016.4/2016.4/modulator_pkg.vhd:144]

2WARNING: [Synth £-2048] function get_board_info_|
3 INFO: [Synth £-638] synthesizing medule "sine top' [E:/Projects/Vivade/proba/Vivade-2016.4/2016.4/sine top rtl.vhd:T6]
It Parameter catampl value g bound to: 255 - type: integer

Parameter depth_g bound to: 8 - type: integer

[E:/Projects/Vivado/proba/Vivade-2016.4/2016. 4/frequency trigger rtl.vhd:64]

& Parameter width g bound to: 12 - type: integer

7 2-638] synthesizing module 'frequency trigger' [E:/Projects/Vivado/proba/Vivado-2016.4/2016.4/frequency trigger rtl.vhd:64]
8 2-256] done synthesizing module 'freguency trigger' (131)

£ 8-638] synthesizing module 'counter' [E:/Projects/Vivado/proba/Vivado-2016.4/2016.4/counter_rtl.vhd:45]

30 Parameter cnt_value_g bound to: 255 - type: integer

31 Parameter depth g bound to: & - type: integer

32 INFO: [Synth £-256] done synthesizing module 'counter' (241) (E:/Projects/Vivade/proba/Vivade-2016.4/2016.4/counter_rtl.vhd:65]
33 INFO: [Synth 8-638] synthesizing module 'sine' [E:/Projects/Vivade/proba/Vivado-2016.4/2016.4/sine_rtl.vhd:68]

34 Parameter depth g bound to: & - type: integer

35 Parameter width g bound to: 12 - type: integer

36 INFO: [Synth £-256] done synthesizing module 'sine' (3#1) [E:/Projects/Vivade/proba/Vivedo-2016.4/2016.4/sine rtl.vhd:&8]
37 INFO: [Synth £-256] done synthesizing module "sine top' (4#1) [E:/Projects/Vivado/proba/Vivado-2016.4/2016.4/sine_top_rtl
38

39 Finished Synthesize : Time (3): cpu = 00:00:09 ; elapsed = 00:00:14 . Memory (MB): peak = 317.957 ; gain = 108.543

40

41

42 Finished Constraint Validation : Time (s): cpu = 00:00:08 ; elapsed = 00:00:14 . Memory (MB): peak = 317.957 ; gain = 102.
43

12

[m]
Read-only

[E e

I

-source sine_top.tcl

gain = 72.051

.vhd:7€]

Figure 6.19: Vivado Synthesis Report

Step 3. When finished, close the report

Step 4. In the Reports tab, double-click on the Utilization Report to examine its content, see lllustration 6.18

Utilization Report - describes the amount of device resources that the synthesized design is expected to use, see lllustra-

tion 6.20

64

6.5 Synthesis

' utilization Report - synth_1 X Ov x
[E:/Projects VivadojprobaVivado-20 16. 4fmodulator fmodulator.runs/synth_tjsine_top_utizstion_synth.rpt Read-only
1 Copyright 1986-2016 Xilinx, Inc. ALl Rights Resezved. -

3| Tool Version : Vivado v.2016.4 (winé4) Build 17335928 Wed Dec 14 22:35:39 MST 2016

e, 4| Date : Thu Dec 22 14:25:48 2016

.| 51 Host : maja-BC running 64-bit Service Pack 1 (build 7601)

Ej 6 | Command : report_utilization -file sine top utilization synth.rpt -pb sine top_utilization_synth.pb £
7| Design : sine_tep I
B | Device : 7z020clgigd-1
9| Design State : Synthesized

CeJ 12Utilization Design Information
=] &

V' | 14Table of Contents

P 55—

161. Slice Logic
171.1 Summary of Registers by Type
Memory

DSE

. 0 and GT Specific

. Clocking

. Specific Feature

Primitives

. Black Boxes
. Instantiated Netlists

. Slice Logic

Site Type | Used | Fixed | Available | Usilt |

33| Slice LUTs* | 136 | ol 53200 | 0.26 |

341 LUT as Logic I 136 | 01 53200 | 0.26 |

351 LUT as Memory | 0l 0l 17400 | 0.00 |

36| Slice Registers [t 01 106400 | 0.05 |

37| Register as Flip Flop | 49 | 01 106400 | 0.05 |

381 Register as Latch | 01 01 106400 | 0.00 |

39| FT Muxes | 0l 0l 26600 | 0.00 |

40| T2 Muxes | ol ol 13300 | 0.00 |

11

42 * Warning! The Final LUT count, after physical optimizations and full implementation, is typically lower. Run opt_design after synthesis, if not already completed, for a m

43

a4 ad
] . »

Figure 6.20: Utilization Report

6.5.5 Schematic View

The Schematic view allows selective expansion and exploration of the logical design. You can generate schematic view for
any level of the logical or physical hierarchy. You can select a logic element in an open window, such as primitive or net
in the Netlist window, and use the Schematic command in the popup menu to create a Schematic window for the selected
object. An elaborated design always opens with a Schematic window of the top-level of the design. In the Schematic
window, you can view design interconnect, hierarchy structure, or trace signal paths for the elaborated design, synthesized

design, or implemented design.
To create a schematic view, do the following steps:
Step 1. Select one or more logic elements in an open window, such as the Netlist window

Step 2. In the Flow Navigator / Synthesis / Synthesized Design click the Schematic command, see lllustration 6.21

65

DIGITAL SINE TOP

4 Synthesis
ﬁ Synthesis Settings
9 Run Synthesis
4 Synthesized Design

l% Constraints Wizard
{24 Edit Timing Constraints
’Qﬁ Set Up Debug
(3 Report Timing Summary
My, Report Clock Networks

5] Report Clock Interaction

|:', Report Methodology
(D ReportDRC

[f Report MNoise
Report Utilization
%]j Report Power

Figure 6.21: Schematic command

Step 3. After few seconds, Schematic window will show up, and your design should look similar to the design shown on

the lllustration 6.22

7] Schematic X
~)|] 82 Cells 78 1/O Ports 166 Nets

FERRY T

|1 +&9 HE &

Figure 6.22: Sine-Top Schematic View

The Schematic window displays the selected logic cells or nets. If only one cell is selected, schematic symbol for that

module will be displayed.

In the Schematic window, you can find and view objects as follows:

« The links as the top of the schematic sheet, labelled Cells , I/O Ports, and Nets, open a searchable list in the Find

66

6.5 Synthesis

Results window, making it easier to find specific items in the schematic.

» When you select objects in the schematic window, those objects are also selected in all other windows. If you opened
an implemented design, the cells and nets display in the Device window.

Schematic Window Toolbar Commands

The local toolbar contains the following commands:

» Schematic Options - Configures the display of the Schematic window
» Previous Position - Resets the Schematic window to display the prior zoom, coordinates and logic content

» Next Position - Returns the Schematic window to display the original zoom, coordinates and logic content after
Previous Position is used

* Zoom In - Zooms in the Schematic window (Ctrl + Equals)

» Zoom Out - Zooms out the Schematic window (Ctrl + Minus)

» Zoom Fit - Zooms out to fit the whole schematic into the display area (Ctrl + 0)
» Select Area - Selects the objects in the specified rectangular area

« Fit Selection - Redraws the Schematic window to display the currently selected objects. This is useful when selecting
objects are in another window and you want to redraw the display around those selected objects

 Autofit Selection - Automatically redraws the Schematic window around newly selected objects. This mode can be
enabled or displayed

+ Expand all logic inside selected cell - Expands a hierarchical module from the symbol view to the logic view.
Note: Hierarchical modules can also be expanded directly from the schematic by clicking the plus (+) icon on the
schematic symbol

» Collapse all logic inside selected cell - Collapses a hierarchical module from the logic view to the symbol view.
Note: An expanded hierarchical block can also be collapsed directly from the schematic by clicking the minus (-) icon
on the hierarchical block

» Magnify: Displays a detailed popup view of the selected bus pin
Note: Alternatively, you can press Ctrl and double-click a bus pin.

» Toggle autohide pins for selected cell - Toggles the pin display on selected hierarchical modules. Higher levels of
the hierarchy display as concentric rectangles without pins, when a Schematic window is generated. In most cases,

the lack of pins makes the Schematic window more readable. However, you can display the pins for selected cells
as needed

» Add selected elements to schematic - Recreates the Schematic window when the newly selected elements added
to the existing schematic

+ Remove selected elements from the schematic - Recreates the Schematic window with the currently selected
elements removed from the existing schematic

+ Regenerate Schematic - Redraws the active Schematic window

67

DIGITAL SINE TOP

68

Chapter 7

PWM

71

Description

» Usage: This module will generate an PWM signal modulated using the digital sine wave from the Digital Sine module.
This module will be composed of two independent modules. One will be the Frequency Trigger, for generating two
different frequencies and the second one will be the Finite State Machine (FSM), for generating the PWM signal.

Frequency Trigger module is the same module explained as in the Chapter 2. FREQUENCY TRIGGER. We need a
second Frequency Trigger module in our design, because this module will generate freq_trig signal with 2" higher
frequency than the freq_trig signal of the first Frequency Trigger module. This is important for proper PWM signal
generation.

FSM module will generate the PWM signal. It will generate the PWM signal with correct duty cycle for each period
based on the current amplitude value of digital sine signal, that is stored in the ROM. State diagram of the FSM is
shown on the Figure 7.2.

» Block diagram:

FS

sine_ampl(11:0) sine_ampl{11:0) pwm_out pwm_out >

FREQUENCY TRIGGER

[swl sw0 freq_trig clk_en
|d|v_factor_freqn|gn(3 1:0) div_factor_freghigh(31:0)
|le_faCtOf_ff8CN0W(51 0) div_factor_freglow(31:0)

[clk_in clk_in ’— clk_in

Figure 7.1: PWM block diagram

PWM

threshold = sine_ampl
count=0

load_new_ampl

A \
B \
Pl (?d/‘ #
if (count < 4095) if (count < 4095 & if (count < 4095 &
PWM =0 count = threshold) count < threshold)
PWM =1 PWM = 1

count = count +1
count = count +1

Figure 7.2: FSM state diagram

* Input ports:

clk_in: input clock signal

swO: input signal from the on-board switch, used for changing output signal frequency

sine_ampl: current amplitude value of the sine signal

div_factor_freghigh: input clock division when sw0 =1’

div_factor_freqlow: input clock division when sw0 =0’
* Output ports:
— pwm_out: pulse width modulated signal
» Generics:
— width_g: the number of bits used to represent amplitude value

* File name: pwm_rtl.vhd

7.2 Creating Module

To create PWM module, use steps for creating modules, Sub-chapter 2.4.1 Creating a Module Using Vivado Text Editor.

PWM VHDL model.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity pwm is

generic(
width_g : integer range 1 to 99 := 12; -- the number of bits used to represent amplitude value
)i

port (
clk_in : in std_logic; —— input clock signal
sw0 : in std_logic; —- signal made for selecting frequency
sine_ampl : in std_logic_vector (width_g-1 downto 0); -- current amplitude value of the

—- sine signal

div_factor_freghigh : in std_logic_vector (31 downto 0); —— input clock division when sw0 = ’1

70

7.2 Creating Module

div_factor_freglow : in std_logic_vector (31 downto 0); —— input clock division when swO = "0’
pwm_out : out std_logic —-- pulse width modulated signal
)i

end entity;

architecture rtl of pwm is

type state_t is (load_new_ampl, pwm_high, pwm_low); -- states load_new_ampl, pwm_high, pwm_low
signal state: state_t ;

signal ce_s : std_logic := ’0’; —-- clock enable signal for the fsm
begin

—-— Defines a sequential process
-- processl and process2 will constitute two-process model of the FSM (Finite State Machine)

—— processl models state register and next-state logic
processl_p : process (clk_in)

—- threshold_v is variable that is telling us when pwm signal should be changed from 1 to 0
—- integer range 0 to 4095 (in our)

variable threshold v : integer range 0 to ((2+xwidth_g)-1) := 0;

—-— count_v 1is variable that counts the number of elapsed cycles

—-—- when count_v reaches threshold_v value it is time to change pwm signal from 1 to 0

—- integer range 0 to 4095 (in our ¢ e)

variable count_v : integer range 0 to ((2%xxwidth_g)-1) := 0;
begin
if (clk_in = 71’ and clk_in’event) then
if (ce_s = '1’) then

case state is

—— in load_new_ampl state we are loading new amplitude value of the sine signal
when load_new_ampl =>
—-- set the threshold_v value to the current value of the sine signal
threshold_v := conv_integer (sine_ampl);
count_v := 0; —— default assignment

—— 1if current amplitude of the sine signal is greater than zero, there
-—- will be a pulse on the PWM signal in the current period
-— (PWM will be 1 for a period of time)
if (sine_ampl > 0) then
state <= pwm_high;

—— if current amplitude value is equal to zero, there will be no pulse
—— on the PWM signal in the current period (PWM will always be 0)

elsif (sine_ampl = 0) then
state <= pwm_low;
end if;

—-— when we are in pwm_high state, PWM = 1
when pwm_high =>
count_v := count_v + 1; —-— increment counter

—-— while counter value is less than threshold_v, we stay in pwm_high state
if (count_v < ((2+xxwidth_g)-1) and count_v < threshold_v) then

state <= pwm_high;
—— 1if one period of the PWM signal has elapsed we go to load_new_ampl state
elsif (count_v = ((2x*width_g)-1)) then

state <= load_new_ampl;

—-— if count_v is equal to threshold_v, we go to pwm_low state

elsif (count_v < ((2x*width_g)-1) and count_v = threshold_v) then
state <= pwm_low;
end if;

—-— when we are in pwm_low state, PWM = 0
when pwm_low =>
count_v := count_v + 1; —-— increment counter

—-— while counter value is less than 4095, we stay in pwm_low state
if (count_v < ((2+xxwidth_g)-1)) then
state <= pwm_low;

—— 1if count_v is equal to 4095, we go to load_new_ampl state
-— to load a new amplitude value of the sine signal

elsif (count_v = ((2x+width_g)-1)) then
state <= load_new_ampl;
end if;
end case;
end if;
end if;

end process processl_p;

—— process2 models output logic (logic that generates pwm signal)
process2_p : process (state)

71

begin

case state is

when load_new_ampl => pwm_out <= ’0’;
when pwm_high => pwm_out <= "17;
when pwm_low => pwm_out <= '0’;

end case;
end process process2_p;

fsm_ce: entity work.frequency_trigger (rtl) —- frequency trigger module instance

port map (
clk_in => clk_in,
sw0 => sw0,
div_factor_freghigh => div_factor_freghigh,
div_factor_freglow => div_factor_freqglow,
freq_ trig => ce_s

)i

end;

7.3 Creating Test Bench

» Usage: used to verify correct operation of the PWM module defined in the pwm_rtl.vhd file

+ Test bench internal signals:

clk_in_s: input clock signal
swO_s: input signal from the on-board switch, used for changing output signal frequency

sine_out_s: current amplitude value of the sine signal

pwm_s: pwm signal

+ Generics:
— cntampl_value_g: threshold value for counter, it's value should be equal to (247" — 1)
— depth_g: the number of samples in one period of the signal

— width_g: the number of bits used to represent amplitude value

* File name: pwm_tb.vhd

We will now create a new simulation set (sim_4) with the test bench file for the PWM module (pwm_tb.vhd) in it. We will
use the steps explained in the Sub-chapter 3.3 Creating Test Bench.

PWM test bench:

ieee;
ieee.
ieee.
ieee.

library
use
use
use

std_logic_1164.all;
std_logic_arith.all;
std_logic_unsigned.all;
use work.modulator_pkg.all;
entity pwm_tb is

generic (

cntampl_value_g : 255; —-— threshold value for counter,

it’s value should be equal to (2"depth)-1
the number of samples in one period of the signal
the number of bits used to represent amplitude
value

integer :=

integer range 1 to 99 := 8; —-

integer range 1 to 99

depth_g
width_g

|
-
[

|

|

)i
end entity;

architecture tb of pwm_tb is
std_logic := ’0’; —— input clock signal

std_logic_vector (width_g-1 downto 0) := (others=>'0’);
—— current amplitude value of the sine signal

signal
signal

clk_in_s
sine_out_s

signal swO_s std_logic := '0'; —-- signal made for selecting frequency
signal pwm_s std_logic := ’0’; —-— pwm signal

begin
dutl : entity work.sine_top —-- sine_top module instance

generic map (
cntampl_value_g => cntampl_value_g,
depth_g => depth_g,
width_g => width_g
)

72

7.4 Simulating

port map (
clk_in => clk_in_s,
sw0 => swO_s,
div_factor_freghigh => conv_std_logic_vector (lx (2«xwidth_g), 32), —-- 1x4096=4096
div_factor_freglow => conv_std_logic_vector (2x (2«xwidth_g), 32), —-- 2x4096=8192
sine_out => sine_out_s
)i

dut2 : entity work.pwm -- pwm module instance

generic map (
width_g => width_g
)

port map (
clk_in => clk_in_s,
sw0 => swl_s,
sine_ampl => sine_out_s,

div_factor_freghigh => conv_std_logic_vector (1, 32),
div_factor_freglow => conv_std_logic_vector (2, 32),

pwm_out => pwm_s

)i
clk_in_s <= not (clk_in_s) after per_c/2; -- input clock signal
swO_s <= '0", "1’ after 1 ms;

end;

7.4 Simulating

After you have entered the code for the input stimulus in order to perform simulation:
Step 1. You can start your simulation (see Chapter 3.4 Simulating)
Step 2. Simulate your design for 25 ms (see Chapter 2.6 Simulating — step 9.)

Step 3. Assuming no errors, your simulation result should look similar to lllustration 7.3 .

Untitled 3% — 0O« X

Figure 7.3: Simulation Results

In this example we have also decreased div_factor_freqhigh and div_factor_freqlow values, in the dut1 instance, 10
times to shorten the duration of the simulation process. We done this on the same way like in the Digital Sine Top test
bench file.

Note: All the information about creating the PWM module, its FSM state diagram, generating the PWM test bench file and
simulating the PWM design, you can also find in the Lab 9: "Creating PWM Module" .

73

PWM

74

Chapter 8

MODULATOR

8.1 Description

+ Usage: This module will merge all the previously designed modules.

» Block diagram:

[swo swi freg_trig ——
|div_tactor_freqhigh(31:03 div_factor_freghigh(31:0)
- FREQUENCY TRIGGER
‘le_faElOf_ffEl}lDW(S‘ 0) div_factor_freglow(31:0)
cli_in clk_in
L cnt_en cnt_out(7:0) ——
. COUNTER
clk_in
L ampl_cnt(7:0) sine_out(11:0) ——
clk_in
DIGITAL SINE
FS
sine_ampl(11:0) pwm_out pwm_out >
FREQUENCY TRIGGER
swl freq_tng clk_en PWM
div_factor_freghigh(31:0)
div_factor_freglow(31:0)

clk_in ’— clk_in

Figure 8.1: Modulator block diagram

* Input ports:

— clk_in: input clock signal

— swa0: input signal from the on-board switch, used for changing output signal frequency

MODULATOR

— div_factor_freqhigh: input clock division when sw0 =1’

— div_factor_freqlow: input clock division when sw0 =0’
* Output ports:
— pwm_out: pulse width modulated signal
» Generics:
— design_setting_g: user defined settings for the pwm design

 File name: modulator_rtl.vhd

8.2 Creating Module

To create Modulator module use steps for creating modules, Sub-chapter 2.4.1 Creating a Module Using Vivado Text
Editor .

Modulator VHDL model-

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_textio.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

library unisim;
use unisim.vcomponents.all;

entity modulator is

generic(

—— User defined settings for the pwm design

design_setting_g : design_setting_t_rec := design_setting_c

)i

port (
clk_in : in std_logic; —— input clock signal
sw0 : in std_logic; -— signal made for selecting frequency
div_factor_freghigh : in std_logic_vector (31 downto 0); -- input clock division when swQ = "1’
div_factor_freqglow : in std_logic_vector (31 downto 0); -- input clock division when sw0O = 70’
pwm_out : out std_logic —— pulse width modulated signal

)i
end entity;
architecture rtl of modulator is

-— amplitude counter

signal ampl_cnt_s : std_logic_vector (design_setting _g.depth-1 downto 0);
—— current amplitude value of the sine signal
signal sine_ampl_s : std_logic_vector (design_setting_g.width-1 downto 0);
—-- signal which frequency depends on the swO state
signal freq trig_s : std_logic := ’0’;
begin
freq_ce : entity work.frequency_trigger (rtl) -— frequency trigger module instance
port map (
clk_in => clk_in,
sw0 => sw0,

div_factor_freghigh => div_factor_freghigh,
div_factor_freglow => div_factor_freqglow,
freq trig => freq_trig_s

)i

counterampl : entity work.counter (rtl) —— counter module instance
generic map (
cnt_value_g => design_setting_g.cntampl_value,

depth_g => design_setting_g.depth
)
port map (
clk_in => clk_in,
cnt_en => freqg trig_s,

cnt_out => ampl_cnt_s
)i

sine : entity work.sine(rtl) —- digital sine module instance
generic map (

76

8.3 Creating Test Bench

depth_g => design_setting_g.depth,
width_g => design_setting_g.width
)

port map (
ampl_cnt => ampl_cnt_s,
clk_in => clk_in,

sine_out => sine_ampl_s
)i

pwmmodule : entity work.pwm (rtl) —-— pwm module instance
generic map (
width_g => design_setting_g.width
)

port map (
clk_in => clk_in,
sw0 => sw0,
sine_ampl => sine_ampl_s,

div_factor_freghigh => conv_std_logic_vector (conv_integer (div_factor_freghigh)/ (2x+design_setting_g
.width), 32),

div_factor_freqlow => conv_std_logic_vector (conv_integer (div_factor_freglow)/ (2x*design_setting_g.
width), 32),

pwm_out => pwm_out

)i

end;

8.3 Creating Test Bench

» Usage: used to verify correct operation of the Modulator module defined in the modulator_rtl.vhd file
+ Test bench internal signals:

— clk_in_s: input clock signal
— swO0_s: input signal from the on-board switch, used for changing output signal frequency

— pwm_s: pulse width modulated signal
» Generics:

— board_name_g: parameter that specifies major characteristics of the board that will be used to implement
the modulator design. Possible choices: ""Ix9"", """zedboard™", """mI605""", """kc705"", """microzed""", ""so-
cius""". Adjust the modulator_pkg.vhd file to add more

— design_setting_g: user defined settings for the pwm design

* File name: modulator_tb.vhd

We will now create a new simulation set (sim_5) with the test bench file for the Modulator module (modulator_tb.vhd) in
it. We will use the steps explained in the Sub-chapter 3.3 Creating Test Bench.

Modulator test bench:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

entity modulator_tb is
generic(
—— Parameter that specifies major characteristics of the board that will be used
-— to implement the modulator design
-— Possible choices: """1x9""", """zedboard""", """mleO5""", """kc705""", """microzed""", ""socius"
nwn
—— Adjust the modulator_pkg.vhd file to add more
board_name_g : string := """zedboard""";

—— User defined settings for the pwm design
design_setting_g : design_setting_t_rec := design_setting_c

)i
end entity;

architecture tb of modulator_tb is

77

MODULATOR

signal clk_in_s : std_logic := "1’; -- input clock signal
signal swO_s : std_logic := ’1'; -- signal made for selecting frequency
signal pwm_s : std_logic := ’0’; -- pulse width modulated signal

—— period of input clock signal
constant clock_period_c : time := 1000000000.0 / get_board_info_f (board_name_g).fclk * 1ns;

—— constant created to short the duration of the simulation process 10 times

constant design_settingl_c : design_setting_t_rec := (255, 10.0, 35.0, 8, 12)
-- cl_c = fclk/(2"depth*2"width) - cl_c =cl _c = 95.3674, fclk = 100 MHz
constant cl_c : real :=
get_board_info_f (board_name_g) .fclk/ (real ((2+x*design_settingl_c.depth) » (2x*xdesign_settingl_c.width)));
-— div_factor_freghigh_c = (cl_c/f_high)*2”width - threshold value of frequency a = 110592
constant div_factor_freghigh_c : integer :=
integer (cl_c/design_settingl_c.f_high) * (2x+*design_settingl_c.width);
-— div_factor_freqlow_c = (cl_c/f_low)*2"width - threshold value of frequency b = 389120
constant div_factor_freqglow_c : integer :=

integer (cl_c/design_settingl_c.f_low) (2+«xdesign_settingl_c.width);

begin
pwmmodulator : entity work.modulator —— modulator module instance
generic map (
design_setting_g => design_settingl_c
)
port map (
clk_in => clk_in_s,
sw0 => swl_s,
div_factor_freghigh => conv_std_logic_vector (div_factor_freqghigh_c, 32),
div_factor_freqlow => conv_std_logic_vector(div_factor_freqglow_c, 32),
pwm_out => pwm_s
)i
clk_in_s <= not (clk_in_s) after clock_period_c/2; -- generates input clock signal
sw0_s <= '1", "0’ after 25 us;
end;

8.4 Simulating

After you have entered the code for the input stimulus in order to perform simulation:
Step 1. You can start your simulation (see Chapter 3.4 Simulating)
Step 2. Simulate your design for 20 ms (see Chapter 2.6 Simulating - step 9.)

Step 3. Assuming no errors, your simulation result should look similar to lllustration 8.2

Untitled 7 — 0O a =

Figure 8.2: Simulation Results

In this example we have also shortened the duration of the simulation process by defining the new design_setting1_c
constant in the modulator_tb.vhd file. As you can see from the modulator_tb.vhd source code we shortened the duration of
the simulation process 10 times, so the simulation should now lasts 20 ms instead of 200 ms .

Note: All the information about creating the Modulator module, generating its test bench file and simulating the Modulator
design, you can also find in the Lab 10: "Creating Modulator Module" .

78

Chapter 9

MODULATOR WRAPPER

9.1 Description

» Usage: This module is necessary to support different development boards with different referent clock types (single-
ended and differential clocks). In this module we will instantiate Modulator module and, if needed, differential input
clock buffer. Differential input clock buffer will be instantiated if the target development board has reference clock

source with differential output.
* Block diagram:

MODULATOR_WRAPPER

MODULATOR
IBUFGDS
. oo™
clk_in pwm_out pwm_out
[swo sw0
const. —— div_factor_freghigh(31:0)
const. —— div_factor_freghigh(31:0)

Figure 9.1: Modulator wrapper block diagram

* Input ports:

— clk_p: differential input clock signal
— clk_n: differential input clock signal

— swaO: input signal from the on-board switch, used for changing output signal frequency

* Output ports:
— pwm_out: pulse width modulated signal

+ Generics:
— this_module_is_top_g: if some module is top, it needs to implement the differential clk buffer, otherwise this
variable will be overwritten by a upper hierarchy layer

— board_name_g: parameter that specifies major characteristics of the board that will be used to implement
the modulator design. Possible choices: """Ix9"", """zedboard"", """mI605""", """kc705"", """microzed""", ""so-
cius"". Adjust the modulator_pkg.vhd file to add more

— design_setting_g: user defined settings for the pwm design

* File name: modulator_wrapper_rtl.vhd

MODULATOR WRAPPER
9.2 Creating Module

To create Modulator wrapper module use steps for creating modules, Sub-chapter 2.4.1 Creating a Module Using Vivado
Text Editor .

Modulator wrapper VHDL model.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

library unisim;
use unisim.vcomponents.all;

use work.modulator_pkg.all;

entity modulator_wrapper is
generic(
—-— If some module is top, it needs to implement the differential clk buffer,
—— otherwise this variable will be overwritten by a upper hierarchy layer
this_module_is_top_g : module_is_top_t := yes;

—— Parameter that specifies major characteristics of the board that will be used

-— to implement the modulator design

—— Possible choices: """I1x9"UN MmN iedhoard" M, MUMR]EQOSMNN, WEMlCTQENNN wNwpicrozed MY "Msocius"
wn

—— Adjust the modulator_pkg.vhd file to add more

board_name_g : string := """zedboard""";

—— User defined settings for the pwm design

design_setting_g : design_setting_t_rec := design_setting_c
)i

port (
clk_p : in std_logic; —-- differential input clock signal
clk_n : in std_logic; -— differential input clock signal
sw0 : in std_logic; -— signal made for selecting frequency
pwm_out : out std_logic —— pulse width modulated signal

- clk_en : out std_logic —-— clock enable port used only for MicroZed board

)i

end entity;

architecture rtl of modulator_wrapper is

—— Between architecture and begin is declaration area for types, signals and constants
—-— Everything declared here will be visible in the whole architecture

—- input clock signal
signal clk_in_s : std_logic;

-- cl_c = fclk/(2"depth*2"width) - cl_c = 95.3674, fclk = 100 MHz
constant cl_c : real :=
get_board_info_f (board_name_g) .fclk/ (real ((2+x*design_setting_g.depth) * (2+«*design_setting_g.width)));

—— div_factor_freghigh_c = (cl_c/f_high)*2”width - threshold value of frequency a = 110592
constant div_factor_freghigh_c : integer :=
integer (cl_c/design_setting_g.f_high) « (2+xdesign_setting_g.width) ;
-- div_factor_freqlow_c = (cl_c/f_low)*2"width - threshold value of frequency b = 389120
constant div_factor_freqlow_c : integer :=

integer (cl_c/design_setting_g.f_low) x (2«xdesign_setting_g.width);
begin

—— in case of MicroZed board we must enable on-board clock generator
- clk_en <= "1’;

—— 1if module is top, it has to generate the differential clock buffer in case
—-—- of a differential clock, otherwise it will get a single ended clock signal
—— from the higher hierarchy

clk_buf_if top : if (this_module_is_top_g = yes) generate
clk_buf : if (get_board_info_f (board_name_g) .has_diff_clk = yes) generate
ibufgds_inst : ibufgds
generic map (

ibuf_low_pwr => true,
-- low power (true) vs. performance (false) setting for referenced I/0 standards

iostandard => "default"
)
port map (
o => clk_in_s, —-- clock buffer output
i => clk_p, —-— diff_p clock buffer input

80

9.2 Creating Module

ib => clk_n —— diff_n clock buffer input

)i
end generate clk_buf;

no_clk_buf : if (get_board_info_f (board_name_g) .has_diff_clk = no) generate
clk_in_s <= clk_p;
end generate no_clk_buf;

end generate clk_buf_ if top;

not_top : if (this_module_is_top_g = no) generate
clk_in_s <= clk_p;
end generate not_top;

pwmmodulator : entity work.modulator —-— modulator module instance
generic map (
design_setting_g => design_setting_g
)

port map (
clk_in => clk_in_s,
sw0 => swO0,

div_factor_freghigh => conv_std_logic_vector (div_factor_ freghigh_c, 32),
div_factor_freglow => conv_std_logic_vector (div_factor_freqglow_c, 32),
pwm_out => pwm_out

)i

end;

Note: All the information about creating the Modulator Wrapper module, you can also find in the Lab 10: "Creating
Modulator Module".

81

MODULATOR WRAPPER

82

Chapter 10

DESIGN IMPLEMENTATION

When we have all the necessary design files for our design, we can implement targeting FPGA design. First we should cre-
ate XDC constraints file where we will define placement and timing constraints for our design. Then, we should synthesize
and implement our design (synthesis process is explained in the Sub-chapter 6.5 Synthesis). After design implementation
is completed successfully, we must generate bitstream file and use it to program target FPGA device.

10.1 Creating XDC File

The Vivado IDE software allows you to specify different types of constraints to help improve your design performance. Each
type of constraint serves a different purpose and is recommended under different circumstances. Following are some of
the most commonly used types of constraints:

« Timing Constrains - are typically specified globally but can also be specified for individual paths. Global constraints
include period constraints for each clock, setup times for each input, and clock-to-out constraints for each output. You
can enter timing constraints using the option for the timing constraints creation in the Flow Navigator. This creates a
text-based Xilinx Design Constraints (XDC) file.

» Placement Constraints - for FPGA designs, you can specify placement constraints for each type of logic element,
such as BRAMs, DSPs, LUTs, FFs, I/Os, I0Bs, and global buffers. Individual logic gates, such as AND and OR
gates, are mapped into CLB function generators before the constraints are read and cannot be constrained.

» Synthesis Constraints - Synthesis constraints instruct the synthesis tool to perform specific operations. When using
"Vivado Synthesis" for synthesis, synthesis constraints control how "Vivado Synthesis" processes and implements
FPGA resources, such as state machines, multiplexers, and multipliers, during the HDL synthesis and low level
optimization steps. Synthesis constraints also allow control of register duplication and fanout control during global
timing optimization.

Important. The Vivado IDE doesn’t support use of User Constraints File (UCF). UCF constraints are replaced with Xilinx
Design Constraints (XDC). The tool supports XDC, which is based on the industry-standard Synopsys Design Constraints
(SDC).

There are key differences between XDC and UCF constraints. XDC constraints are based on the standard Synopsys
Design Constraints (SDC) format. SDC has been in use and evolving for more than 20 years, making it the most popular
and proven format for describing design constraints.

XDC constraints are combination of:

¢ Industry standard SDC, and

« Xilinx propriety physical constraints
XDC constraints have the following properties:

+ There are not simple strings, but are commands that follow the Tcl semantic

DESIGN IMPLEMENTATION

» They can be interpreted like any other Tcl command by the Vivado Tcl interpreter

» They are read and parsed sequentially the same as other Tcl commands

You can enter XDC constraints in several ways, at different points in the flow:

 Store the constraints in one or more XDC files

» Generate the constraints with Tcl script

There are two different ways of generating an XDC File:

+ using Vivado GUI (I/O Planning view)

+ using Text Editor

Creating a XDC File using the Vivado GUI (I/O Planning view):

In this step, you will be using the I/O Planning View to place the unplaced pins in the design. In order to assign pins to the
FPGA, you will determine the proper pin assignments by using the "ZedBoard Hardware User’s Guide". This user guide
contains the pin details and a reference master XDC file specifying the location and the 1/O standards to be used while

selecting a pin for the design.

In order to apply the constraints to the design, the design has to be synthesized at least ones. Therefore, you will start the
constraints file creation by synthesizing the design and opening the synthesized design. To synthesize your design, follow

the steps explained in the Sub-chapter 6.5.2 Run Synthesis.
To create a XDC file using the Vivado IDE GUI, do the following:

Step 1. Change the layout from the Default Layout to I/O Planning view, in the layout pull-down menu in the main toolbar,
to identify pins that don’t have an assigned location, see lllustration 10.1

- Vivado 20154

3/Vivado-2015.4/modulator/modulator.xpr]
wt Wiew Help
" PUANGOB XL G

Synthesized Design - modulator_ril | xc7z0)

Sources

o ==
A g

g

[5)-{= Design Sources (2]

H T o modulator_wrapper - vt (mo

b sine_top -ri (sine_top_ri.vhd) {
| Constraints (1]

a

2 &

[

52 1/0 Planning

00 pefault Layout

10 Clock Planning
10 Floorplanning
00 Debug

00 Timing Analysis

1 22 save As Mew Layout...

Reset Layout F3

Figure 10.1: /O Planning option

This will change the layout from the Default view to the 1/O Planning view, see lllustration 10.2.

84

10.1 Creating XDC File

¢ modulator - [E:/Projects/Vivado/proba/Vivado-2016.1/modulater/modulator.xpr] - Vivade 2016.1 =B -
File Edit Fow Tools Window Layout View Help Se ands
R woBBXHPDREHNGHOS KX G Syorbnng P & Y~ Synthesis Complete
Flow Navigator 2 «| | Synthesized Design xc7z020dg484 1 (active) ? X
Q= Device Constraints S T ¢ [Package X | @ Device X T 0O01E =
Q. =7 e [[E .
4 Project Manager Al = = 12 3 456 7 8 9 10111213 1415

~ Internal VREF
&5 Project Settings

) 0.6V
Q@’ Add Sources | 0.675V
¢ Language Templates | 0.75V
H) 0.9v
1F 17 catalog s NONE (4

g 1f0 Bank 13
g 1f0 Bank 33
:;ﬂ}; Create Block Design t-mm 1f0 Bank 34
e 1f0 Bank 35

[N

IP Int=grator

¥ Open Block Design

& Generate Block Design

4 Simulati 2 , _
imuation & Sources | [Metiist-, @& Device Constraints
ﬁ Simulation Settings
? »
@ Run Simulation Riopcyiice -guex
= = |5 &
4 RTL Analysis
ﬁ Elaboration Settings
> [@% Open Elzborated Design Select an object to see properties
: Synthesis
4 Implementation i Properties Clock Regions
ﬁ Implementation Settings 1/O Ports O o
Run Implementation a
I> " A | Name Direction Board PartPin Board Part Interface Neg Diff Pair Package Pin Fixed Bank I/O Std

-
¥ Open Implemented Design E =+ Al ports (4)

| Scalar ports (4)

[N

pag
Program and Debug =AJ
% Bitstream Settings E%

Logp

Qﬂ Generate Bitstream

3 .b Open Hardware Manager 4 i G

& Td Console | (> Messages | B Log | |5 Reports | S» Design Runs | £ Package Pins~. (- 1/0 Ports

Figure 10.2: I/0 Planning View

The main window of the I/O Planning view displays the package view of the ZedBoard device. Below the Package view,
two additional tabs are populated. One tab displays the list of /O ports of the design and the second tab displays the list of
package pins on the device package.

Step 2. In the I/O Ports tab, click Expand All option, or just expand Scalar ports, which shows all /O Ports of your design,
see lllustration 10.3

?_ 0O ¢ %
Q4 | Name Direction Board PartPin Board Part Interface Neg Diff Pair ~ Package Pin Fixed Bank 1/0 Std Vcco Wref Drive Strength Slew Type Pull Type OFf-Chip Termination ~ IN_TERM
X B Allports (4)

g D Sclarporis ()

= SDrdkn IN ~ | default LVCMOS18) ~ 1.800 NONE ~ NONE -
= Dk N - | default (VCMOS18) ~ 1800 NONE ~ NONE -
=Y i< pwm_out out - B default (VCMOS18) ~ 1800 12 - 5SL0W - NONE ~ FP_YTT_50 -
%] “Or swl N > | default LVCMOS18) ~ 1.800 NONE ~ NONE -

3 Td Console |) Messages | [Log | |3 Reports | 3» Design Runs | JO Package Pins - > 1f0 Ports

Figure 10.3: I/0O Ports tab

Note that none of the pins in this view have an assigned location.

Grey icons indicate unplaced ports, while yellow icons indicate placed ports. On the lllustration 10.3 we can see that all
I/O ports are coloured grey, since none of them has been placed to a specific pin location. After we assign a pin location to
each of the I/O ports they will be coloured yellow, as can be seen on the lllustration 10.5.

Step 3. To connect your logical with your physical ports, select one scalar port (for example pwm_out) and find in the user
guide for the ZedBoard evaluation board to which pin location you would like to connect your pwm_out port. In our design
we should connect pwm_out port with one of the LED diodes that are physically present on the ZedBoard evaluation board.
If you open ZedBoard user guide you can find that the FPGA pin location of the LDO diode is T22 and that the I/O standard
that must be used is LVCMOS33.

LVCMOS33 is a low voltage CMOS 1/O standard using 3.3V power supply voltage. For more information about this I/-
O standard, please refer to the "JEDEC Standard JESD8C.01, Interface Standard for Nominal 3 V/3.3 V Supply Digital

85

DESIGN IMPLEMENTATION

Integrated Circuits standard.

Step 4. In the I/0 Ports tab, click on the pwm_out’s Package Pin column and choose T22 as a pin location to connect the
pwm_out port

Step 5. Click on the pwm_out’s I/O Std column and change the I/O standard from default LVCMOS18 to LVCMOS33
Step 6. Leave all the other pwm_out’s options unchanged, because they are default values

Note: After assigning pin location and I/O standard for pwm_out port, we can notice that /0 Port Properties window
popped up. This is the another way to change port properties, see lllustration 10.4. If you want to apply some changes that
you made, just click the Automatically update button.

1/0 Port Properties T 0O X

=P[5

< pwm_out
Mame: paim_out 1/0 Port Properties R T
Direction: out & 0" i.\,_
Package pin: | T22 V| Fixed lnn et
Site type: [0_L2P_T0O_33
Site info: 1O standard: | LVCMOS33 -
Cell: Drive strength: | 12 -
Net: Slew type: sLow -
1/0 Bank: pull type: NONE -
Tile: In Term type: -

Clock region:

General | Properties | Configure | Power

. Properties Clock Regiong

General | Properties | Configure | Fower

.+ Properties Clock Regions

Figure 10.4: I/O Port Properties window

Step 7. Repeat these configuration steps for the remaining ports using the pin locations and necessary I/O standards
information shown below:

+ clk_p - pin location: Y9, I/O standard: LVCMOS33

+ swO - pin location: F22, I/O standard: LVCMOS25

Note: All this information has been extracted from the user guide for the ZedBoard evaluation board.

LVCMOS25 is a low voltage CMOS 1/O standard using 2.5V power supply voltage. For more information about this 1/0
standard, please refer to the “JEDEC Standard JESD8-5A.01, 2.5 V + 0.2 V (Normal Range) and 1.8 V — 2.7 V (Wide
Range) Power Supply Voltage and Interface Standard for Nonterminated Digital Integrated Circuits” standard.

Note: After all modifications, I/O Ports tab should look like as it is shown on the lllustration 10.5.

1/0 Parts ? 0w %
| Name Drection BoardPartPin Board PartInterface Neg DiffPair Package Pin Fixed Bank 1/0 5td Veco Vref DriveStrength SlewType PulType Off-Chip Termination IN_TERM
= EHE Al ports (4

) =) Sealar ports (4)

= D ckon ™ - default (VCMOS18) ~ 1.800 NOMNE ~ WONE

= SR ckop N Y9 - & 13 LVCMOS33* ~ 3.300 NONE = MNOME

3 <l pwm_out out T22 hd V| 33 LVCMOS33* ~ 3.300 12 v SLOW ~ NOMNE - FP_VTT_50

B sw0 ™ F22 - M 35 LVCMOS25* ~ 2.500 NOMNE ~ NONE

A

L4

|5 Td Console | Messages | [Log | (2 Reports | 3 DesignRuns | j Package Pins - [T/O Ports

Figure 10.5: I/O Ports tab with assigned pin locations and I/O standards

Note that clk_n port doesn’t have assigned pin location and I/O standard. This is because clk_n port is the differential
input pair of clk_p port and our target ZedBoard evaluation board doesn’t have differential reference clock signal.

86

10.1 Creating XDC File

As pins or banks are selected, the corresponding pins or banks become highlighted in the other views. This makes it easier
to see that the pins assigned in each bank meet the 1/0 banking rules and the grouped appropriately.

As you drag across the package view, yellow icons indicate assigned pins, grey icons indicate unassigned pins and both
displayed indicates assigned I/O banks.

In the Package view you can also notice that:

« the coloured areas between the pins display the 1/O banks

« the clock pins are shown as grey hexagons

« the clock-capable pins are shown as blue hexagons

« the power pins (VCC) are shown as red squares

+ the ground pins (GND) are shown as green squares

Step 8. When you are finished with the placement constraints, click File / Save Constraints As...

Step 9. In the Save Constraints dialog box, type the name of the constraints file in the File name field. In our case, the
name will be modulator, see lllustration 10.6

¢ Save Constraints &]

Select a target file to write new unsaved constraints to. Choosing an existing file will update that file with
the new constraints.

@ Create a new file

File type: Y ¥DC -
File name: modulator

File location: | & <Local to Project> -

Select an existing file

<select 3 target filex

Figure 10.6: Save Constraints dialog box

Step 10. In the Save Constraints As dialog box, type the name of the constraint set in the New Constraints set hame
field. In our case, the name will be modulator_rtl, see lllustration 10.7

gl*..f_:. Save Constraints As &J

Save constraints as a new Constraint Set.

¢

MNew Constraint set name: | modulator _rtl

V| Make active

=B

Figure 10.7: Save Constraints As dialog box

Step 11. Click OK and your modulator_rtl constraint set with modulator.xdc file should appear in the Sources window
under the Constraints, see lllustration 10.8

87

DESIGN IMPLEMENTATION

Sources — O 2 =
Q Z {65 > O? : E

== Design Sources (2)

il s modulator_wrapper - rtl (modulator_wrapper_ril.vhd) (1)
¢ [sine_top - rtl (sine_top_rtl.vhd) (3)

7 Constraints (1)

[modulator_rtl (1) (zctive)
it] modulator.xdc (taret) |
H i constrs_1
-+ Simulation Sources (13)

Hierarchy | Libraries | Compile Order

4% Sources | [Y) Netlist | @& Device Constraints

Figure 10.8: Created modulator_rtl constraints set

Step 12. Double-click on the modulator.xdc file to open it, see lllustration 10.9

[Package x | Device x |14 modulatorxde X [E S
= E: fProjects/Vivado fproba/Vivado-2015. 1/modulator jmodulator .sresfmodulator _rtlfnew /modulator. xdc
1 set property PRCERGE PIN Y9 [get ports clk_p] o
h 2 set_property IOSTRNDARD LVCMO333 [get_ports clk_pl
3
4 zet property PRCERGE PIN F22 [get ports swl]
5set_property IOSTANDARD LVCMOS25 [get_ports swl]
Ej g
13| 7 set_property PACKAGE_PIN T22 [get ports pwm_out]
b4 & set_property IOSTARNDARD LVCMO333 [get_ports pwm out]

o

Figure 10.9: modulator.xdc file with physical constraints

In the modulator.xdc constraints file you can see assigned pin locations and I/O standards for each logical port of our
design. For each logical port two constraints are necessary:

« First constraint connects selected logical port (by using get ports Tcl command) with specified pin location (by setting
the PACKAGE_PIN property, using set_property Tcl command).

+ Second constraint sets the 1/0 standard that should be used for selected logical port by setting the IOSTANDARD
property, using set_property Tcl command.

As you can see from the code above, there is a quite a lot of difference between XDC and UCF file formats. The fundamental
differences between UCF and XDC files and the migrations from one format to another will be explained in detail in the
Sub-chapter 10.1.2 Migrating UCF Constraints to XDC.

Creating a XDC File using Vivado Text Editor:

The another way to create a XDC constraints file is using Vivado text editor. The steps will be similar like in Sub-chapter
2.4.1 Creating a Module Using Vivado Text Editor.

Here are the steps for creating XDC file using Vivado text editor:

Step 1. Optional: Launch Vivado IDE (if it is not already launched)

Step 2. Optional: Open "Modulator" project (modulator.xpr) (if it is not already opened)

Step 3. In the main Vivado IDE menu, click File -> New File... option to open Vivado text editor

Step 4. In the New File dialog box, type the name of your constraints file (modulator.xdc) in the File name field and
choose to save it into your working directory, on the same place where you saved the rest of your source files

88

10.1 Creating XDC File

Step 5. When you click Save, Vivado IDE will automatically open empty modulator.xdc source file in Vivado text editor

Step 6. Write the constraints into the opened modulator.xdc constraints file, see lllustration 10.9

Note: How to write XCD constraints file will be in detail explained in the Sub-chapter 10.1.2 Migrating UCF Constraints
to XDC.

Step 7. When you finish with constraints file creation, click File -> Save File option from the main Vivado IDE menu, or
just click Ctrl + S to save it

Step 8. In the Vivado Flow Navigator, click the Add Sources command

Step 9. In the Add Sources dialog box, select Add or create constraints option to add the constraints file to the project,
see lllustration 10.10

¢ Add Sources K
Add Sources
Vl\/AD O 4 This guides you through the process of adding and creating sources for your project
HLx Editions
@ Add or geate constraints

Add or create design sources
Add or create simulation sources
Add or create DSP sources
Add existing block design sources
Add existing IP

& XILINX

ALL PROGRAMMABLE To continue, click Next

Figure 10.10: Add Sources dialog box - Add or create constraints option

Step 10. Click Next
Step 11. In the Add or Create Constraints dialog box, click the "+" icon and select Add Files... option

Step 12. In the Add Constraint Files dialog box, browse to the project working directory and select the modulator.xdc
constraints file

Step 13. Click OK and the modulator.xdc constraints file should appear in the Add or Create Constraints dialog box

Step 14. Click Finish and your constraints file should appear under the Constraints in the Sources view, see lllustration
10.8
10.1.1 Defining Timing Constraints

Prior to implementation, there are physical and timing constraints that need to be defined. In the previous steps we have
defined physical constraints. Now, it's time to define timing constraints also.

To define timing constraints you can choose between two approaches:

+ using Constraints Wizard , or

+ using Constraints Editor

Defining timing constraints using Constraints Wizard

89

DESIGN IMPLEMENTATION

As we already explained, the Vivado IDE provides Timing Constraints wizard to walk you through the process of creating
and validating timing constraints for the design. The Timing Constraints wizard analyzes the gate level netlist and finds
missing constraints. It is only available in the synthesized and implemented designs.

To define timing constraints using Constraints Wizard, follow the next steps:
Step 1. In the Flow Navigator, under the Synthesis Design section, select first offered Constraints Wizard command

Step 2. When the No Target Constraints File dialog box appear, see lllustration 10.11, just click Define Target option to
associate current design with constraints file

4L No Target Constraints File ﬁ

| There is no designated target in the constraint set associated with the current design
* inmemory (constrs_1). Use the Define Target button below to select a constraints
file and set it as the target. You may also add or create additional constraints files.
If you add a new file to the current constraint set, you will need to reload the design.
If you want to change constraints sets, you will need to dose and reopen the design.

Define Target | ’ Cancel]

Figure 10.11: No Target Constraints File dialog box

Step 3. In the Define Constraints and Target dialog box, select modulator.xdc file as target constraints file and click OK,

see lllustration 10.12. In the Define Constraints and Target dialog box, you can also create new or add existing constraints
file.

g” Define Constraints and Target @

Set an existing, enabled constraints file as the target. You may also create or add
constraints files. All files will have a NORMAL processing order. ‘

Constraints Set: constrs_1

Target Constraints File Location

| © [it modulator.xdc E:\ProjectsiVivado \Vivado-2015.2

<] =
Add Files...] [Create File...]

[] Copy constraints files into project

Figure 10.12: Define Constraints and Target dialog box

Step 4. In the Flow Navigator, click ones more Constraints Wizard command to open the introduction page. This page
describes the types of constraints that the wizard will create: Clocks, Input and Output Ports, and Clock Domain Crossings,
see lllustration 10.13. After reading the page, click Next to continue.

90

10.1 Creating XDC File

Timing Constraints Wizard Lﬁ

Identify and Recommend Missing Timing Constraints

[
v |VAD O The Timing Constraints Wizard guides you through creating timing constraints per Xilinx design methodology. It analyzes your design for missing timing
HLx Editions constraints and makes recommendations. You need to review and understand all of the recommendations to ensure they are appropriate for your
design.
Clocks:

o Primary Clocks

o Generated Clocks

o Forwarded Clocks

o External Feedback Delays
Tnput and Output Ports:

o Input Delays

© Output Delays

o Combinational Delays
Clock Domain Crossings:

o Physically Exclusive Clock Groups

o Logically Exclusive Clock Groups with No Interaction
o Logically Exclusive Clock Groups with Interaction
= Asynchronous Clock Domain Crossings

Clicking ‘Next' on a page applies the constraints to the design in memory, so that missing constraints on subsequent pages can be identified. Each
page may require considerable runtime to discover missing constraints.

The Clock Networks report is available on every page to help you review the constraints. Schematics and timing path reports are available on the
Asynchronous Clock Domain Crossings page.

To leave the Wizard and automatically save the new constraints to the target XDC file, dick Finish, To discard the new constraints dick Cancel.

&€ XILIN

ALL FROGRAMMABLE To continue, dick Next.

? fiexi> || skptoFinsh>> | [Cancel

Figure 10.13: Identify and Recommend Missing Timing Constraints dialog box

Step 5. In the Primary Clocks dialog box, Timing Constraints Wizard will display all the clock sources with a missing clock
definition. Specify 100 MHz frequency for the clk_p clock and wizard will automatically calculate values for Period (ns),
Rise At (ns), Fall At (ns) and Jitter (ns) fields, see lllustration 10.14. Click Next to continue.

Each row of the wizard is a missing constraint. If you would prefer not to enter the constraint, you can uncheck the box
next to the constraint. If you would like more information about how the wizard finds these missing constraints, there is a
Reference button in the lower left-hand corner of the wizard. The reference pages are context specific and contain more
information about the topologies the wizard is looking for and an explanation as to why the constraint is being suggested.

91

DESIGN IMPLEMENTATION

4 Timing Constraints Wizard [
Primary Clocks
Primary docks usually enter the design though input ports. Specify the period and optionally a name and waveform (ising and falling edge times) to describe the duty
cycle if nat 50%. Mare info
Recommended Constraints
Q. Object Name Freguency (MHz) Period (ns) Rise At (ns) Fall At (ns) Jitter (ns)
e [T S I I I I I
>
=
Constraints for Pulse Width Check Only
aQ [F] Object MName Frequency (MHz) Period (ns) Rise At {ns) Fall At (ns) Jitter (ns)

b

m,

= Tcl Command Preview (1) | &, Existing Create Clock Constraints (0)

[sN.. create_dodk period 10.000 -name dk_p -waveform {0.000 5.000} [get_ports {dk_p}]

<Bock || Next> || SkptoFmsh»» | [Cancel

Figure 10.14: Primary Clocks dialog box

Step 6. The primary clock constraints have been added to the design. Next, the wizard looks for unconstrained generated
clocks. Generated clocks are derived from primary clocks in the FPGA fabric. In our design, the wizard determined that
there are no unconstrained generated clocks. In the Generated Clocks dialog box, click Next to continue.

Step 7. Next, the wizard looks for forwarded clocks. A forwarded clock is a generated clock on a primary output port of the
FPGA. These are commonly used for source synchronous buses when the capture clock travels with the data. The wizard
has also determined that there are no unconstrained forwarded clocks in our design. In the Forwarded Clocks dialog box,
click Next to continue.

Step 8. Next, the wizard looks for external feedback delays. MMCM or PLL feedback delay outside the FPGA is used to
compute the clock delay compensation in the timing reports. The wizard did not find any unconstrained MMCM external
feedback delay in our design. In the External Feedback Delays dialog box, click Next to continue.

Step 9. Next, the wizard looks at the input delays. lllustration 10.15 shows the Input Delays page of the Timing Constraints
wizard. There are three sections on the page.

« First section shows all the input ports that are missing input delay constraints in the design. In this table you select
the timing template you would like to use to constraints the input.

* In the second section you provide the delay values for the template. This section will change depending on the
template chosen in the first section.

« In the third section there are three tabs:

— Tcl Command Preview - previews the Tcl commands that will be used to constrain the design
— Existing Set Input Delay Constraints - shows input delay constraints that exist in the design

— Waveform - displays the waveform associated with the template

92

10.1 Creating XDC File

¢ Timing Constraints Wizard &J
Input Delays
Input delays describe relative phase between reference docks {usually board docks) and input signals at the FPGA boundary. Inaccurate input delay values can make ‘
timing fail and affect implementation quality of results. More info
Recommended Constraints
Q Interface Clock o Synchr;nzous Ahgnr;ve]nt Data Rabe'a;d Edge Delay Parameters
& m@ Clock period: 10 ns
Mp‘ tco_min: undefined | ns
T‘ tco_max: undefined | ne
tree_dly_min: undefined | ns
tree_dly_max: undefined | ns

Rise Max = tco_max +tree_dly_max
Rise Min = tco_min + tree_dly_min

o Td Command Preview (2) | §#, Existing Set Input Delay Constraints (0) B Wawveform - System | Edge | Single Rise

input clock f\—/—\—

i i !
————————5 (tco_min + trce,‘_dlv_mm)
(tco_max + trce_dly_max)

< Back][[ext > ” Skip to Finish ==][Cancel

Figure 10.15: Input Delays dialog box

Step 10. Uncheck the sw0 input port in the first section of the Input Delays dialog box, because we don’t need delay period
for this input port. When you successfully finished with all input constraint values, click Next

Step 11. Next, the Output Delays page of the wizard displays all the outputs that are unconstrained in the design, see
lllustration 10.16. The page layout is very similar to the inputs page. Uncheck the pwm_out output port in the first section
of the Output Delays dialog box, because we don’t need delay period for this output port also. When you successfully
finished with all output constraint values, click Next

#% Timing Constraints Wizard

===

Output Delays

Recommended Constraints

Q Interface

Output delays describe relative phase between reference docks (usually board or forwarded docks) and output signals at the FPGA boundary. Inaccurate output delay
wvalues can make timing fail and affect implementation quality of results. More info

Clock.

e Clock period: 10 ns
m tsu: undefined | ns
T‘ thd: undefined | ns
tree_dly_max: undefined | ns
tree_dly_min: undefined | ns

% Tcl Command Preview (2) | @ Existing Set Output Delay Constraints {0} B Waveform - System | Setup/Hold | Single Rise

a1 Delay Parameters

w7 | EEl
Synchronous Alignment Data Rate and Edge

Rise Max = trce_dly_max + tsu
Rise Min = trce_dly_min - thd

e T
data "’V‘"’V’V“"V‘V’V"’V‘V’V’V"’V‘V’V’V‘ data ’V"""’V‘"’V’V“"V‘V’V’V"’V‘V’V’V"’V

(tree_dly_max + tsu} 5(—:—«
(tree_dly_min - thd) «——

[<gak [pext> || skptoFinsh>> | [cancel

Figure 10.16: Output Delays dialog box

93

DESIGN IMPLEMENTATION

Step 12. The wizard now looks for any unconstrained combinational paths through the design. A combinational path
is a path that traverses the FPGA without being captured by any sequential elements. Our design doesn’t contain any
combinational paths. In the Combinational Delays dialog box, click Next to continue.

Step 13. Physically exclusive clock groups are clocks that do not exit in the design at the same time. There are no
unconstrained physically exclusive clock groups in our design. In the Physically Exclusive Clock Groups dialog box,
click Next to continue.

Step 14. Logically exclusive clocks with no interaction are clocks that are active at the same time except on shared clock
tree sections. Then these clocks do not have logical paths between each other and outside the shared sections, they are
logically exclusive. There are no unconstrained logically exclusive clock groups with no interaction in our design. In the
Logically Exclusive Clock Groups with No Interaction dialog box, click Next to continue.

Step 15. Logically exclusive clocks with interaction are clocks that are active at the same time except on shared clock tree
sections. When these clocks have logical paths between each other, only the clocks limited to the shared clock tree sections
are logically exclusive and are therefore constrained differently than the logically exclusive clock with no interaction. There
are no unconstrained logically exclusive clock groups with interaction in our design. In the Logically Exclusive Clock
Groups with Interaction dialog box, click Next to continue.

Step 16. The Asynchronous Clock Domain Crossings page recommends constraints for safe clock domain crossings.
Our design does not contain any unconstrained clock domain crossings. Click Next to continue.

Step 17. The Constraints Summary page is the final page of the Timing Constraints wizard, see lllustration 10.17. All
the constraints that were generated by the wizard can be viewed by clicking the links. If you would like to run any reports
once the wizard is finished, you can select them using the check boxes in the wizard. Click Finish to complete the Timing
Constraints wizard.

4 Timing Constraints Wizard 23|

Constraints Summary

VI\/ﬁ\D O (D The Timing Constraints Wizard created 1 new timing constraint:

HLx Editions Create Clock (1)

On Finish
View Timing Constraints
Create Timing Summary report
Create Check Timing repart

Create DRC report using only timing checks

-
iA XI LI NX To keep the new constraints and perform the selected actions, dick Finish. The new constraints will automatically be saved to your target XDC file. To
ALL FROGRAMMABLE. discard the constraints, dick Cancel.
? < Back Next > Finish | [cancel

Figure 10.17: Constraints Summary dialog box

Defining timing constraints using Constraints Editor
To define timing constraints using Constraints Editor, follow the next steps:

Step 1. Select Window -> Timing Constraints option from the main Vivado IDE menu to open the Timing Constraints
window, see lllustration 10.18, or

94

10.1 Creating XDC File

4 modulator - [G:/temp/Vivado/modulator/madul

xpr] - Vivado 2013.4

File Edit Flow Tools | Window | Layout View Help
il | | 2 N S| Project Summary
Flow Navigator & Sources
o T % Language Templates
I Properties Ctrl+E
4 Project Manager t Selection
ﬁ Project Settings | 3] MNetlist
& Add Sources & Device Constraints
ﬂ IP Catalog Physical Constraints
0 DT ||@-‘ Timing Constraints
;% Create Block Desig A PackagePins
ﬂ"i Open Block Desigr| o VO P
& Generate Block Dg S
Debug
4 Simulation = Metrics
ﬁ Simulation Setting: @ Device
@ Run Simulation Package
4 RTL Analysis Clock Resources
| g% OpenElaborated] =2 Tl Console Ctrl+Shift+T
S ' Messages
(SaSynthesic ey H Log
ﬁ Synthesis Settingg B Reports
$ Run Synthesis % Design Runs
[Synthesized Desig -
& Timing

Figure 10.18: Timing Constraints option

select in the Flow Navigator, under the Synthesis Design section, second offered Edit Timing Constraints command

The Timing Constraints window appears in the main window of the Vivado IDE, see lllustration 10.19

| E Project summary x |G Deviee x [Tiilmng Constraints >

]
= = i

Create Clock

- Clocks (0)

T
-Create Generated Clock (1)
---Set Clock Latency (0)
+--5et Clock Uncertainty (0)
+..5et Clock Groups (1)
+5et Clock Sense (0)
-Set Input Jitter (0)
-Set System Jitter (0)

! . SetExterna Delay (1)

] Inputs (0)

t L.SetInputDelay (0)

=-Outputs (0)

i --SetOutputDelay (0)

[Assertions (0)

|| SetData Check (0)

=] Exceptions (0)

t o LeSetCase Analysis (0)
+..5et False Path (1)
-Set Multicyde Path (0)
- Set Maximum Delay (0)

. SetMinimum Delay (0)

£ Other (0)
+--Group Path (0)
*..5et Disable Timing ()

All Constraints

&
X

Position ClockName Period (ns)

Double cfick fo create 8 Create Gock constrant

Rise At{ns) Fall At (ns)

Add Clock

Source Objects SourceFile Scoped Cell CurrentInstance

& <P (P& e L

WAooy || I Cancel

Figure 10.19: Timing Constraints window

There are three sections in the Timing Constraints window:

95

DESIGN IMPLEMENTATION

» Constraints tree view - displays standard timing constraints, grouped by category. Double-clicking a constraint in
this section opens a new window to help you define the selected constraint.

» Constraints Spreadsheet - displays timing constraints of the type currently selected in the Constraints tree view. If
you prefer, you can use this to directly define or edit constraints instead of using Constraints wizard.

+ All Constraints - displays all the timing constraints that currently exist in the design

The Timing Constraints wizard identifies missing clocks, 1/0 delays, and clock domain crossings exceptions, but it doesn’t
handle general timing exceptions. We will use the timing constraints editor to create the exceptions that exist in the design.

Define the primary clock constraint by creating a clock object with a specified period. The modulator design has a 100 MHz
clock supplied through differential clock input ports on the FPGA. First define the primary clock object for the design and
then define a PERIOD constraint for the clock object.

Step 2. In the Constraints tree view window of the Timing Constraint editor, double-click on the Create Clock (0) option
under the Clocks (0) section to create a clock constraint

Step 3. In the Create Clock dialog box, enter clock_name (clk_p) in the Clock Name field, see lllustration 10.20

g“ Create Clock @
Creates a dock object. The created dock is applied to the specified source objects. If you do not specify
source objects, but give a dock name, a virtual dock is created. ‘

Clock name: dk_p

Source objects: |:|
Waveform

Period: 10| ns

Rise at: 0 ns

Fall at: 55 ns

Add this dock to the existing dock (no overwriting)

Command: | create_dock -period 10.000 -name dk_p -waveform {0.000 5.000}

Reference H Reset to Defaults | Cancel

Figure 10.20: Create Clock dialog box

Step 4. Click the icon next to the Source objects field and Specify Clock Source Objects dialog box will appear, see
lllustration 10.20

Note: This step is important to associate the clock input port to the clock definition.

Step 5. In the Specify Clock Source Objects dialog box (see lllustration 10.21), do the following:

» Ensure that I/O Ports is selected from the Find nhames of type drop-down list
 Enter clk in the empty search field
+ Click Find

* In the Find results: 2 section, select clk_p

96

10.1 Creating XDC File

* Click the -> icon to select clk_p

+ Click Set
i ™
¢ Specify Clock Scurce Objects ﬁ
Specify the ports, pins, or nets which are the source of the specified dack. ‘
Find names of type:
Options
NAME ~ || contains - [f = |+ -
AMD ~ || DIRECTION - ||is - ||IN - + -
[] Regular expression Ignore case
Of Objects: E]
Results
Found: 1 Selected: 1 B
o
t
- ¥
= t
£ ¥
Command: | get_ports dk_p
[Set] [Append] [Cancel]

Figure 10.21: Specify Clock Source Objects dialog box

Step 6. In the Create Clock dialog box, specify the period by setting the period property of the clock. In this step, you will
describe the period property and review the waveform details of the clock objects, see lllustration 10.22:

» Enter 10 ns in the Period field in the Waveform section, because 10 ns is the period of the 100 MHz input clock
signal

» Ensure that the Rise at and Fall at fields are set to 0 and 5 respectively, which means that the duty cycle of the input
clock signal will be 50%.

« Click OK to create the clock constraint

97

DESIGN IMPLEMENTATION
¢ Create Clock g

Creates a dock object. The created dock is applied to the specified source objects. If you do not spedfy
source objects, but give a dock name, a virtual dock is created. ‘

Clock name: dk_p

Source objects: | [get_ports dk_p] E]
Waveform

Period: 105 ns

Rise at: 0| ns

Fall at: 5 ns

] #dd this dack b the existing dock {no overwriing:

Command: create_dock -period 10.000 -name dk_p -waveform {0.000 5.000} [get_ports ck_p]

[Reference][Reset to Defaults]

Figure 10.22: Create Clock dialog box after specifying the period for the clk_p

The Timing Constraints window now displays the timing constraint applied to the design, see lllustration 10.23

| I
Create Clock
E‘ Ctod<5 (1) + Position Clock Name Period (ns) Rise At {ns) Fall At (ns) Add Clock Source Objects Source File Scoped Cell Current Instance
e Y- e 1 wool oo son] @ loet porisdep] Jrodumorsa ||
o) P
Teate Genera ock 1) ya Double diick to creale a Create Glock constraint

et Clock Latency (0)
et Clock Uncertainty (0)
et Clock Groups (0)
et Clock Sense (0)
et Input Jitter ()

et System Jitter (0)

¢ i-SetExternal Delay (0)
[-dnputs (0)
i iiget Input Delay (0)
E-Cutputs (1)

¢ i.Set Output Delay (0)
[=)-Assertions (0)

| l.SetData Check (0)

E! Exceptions (1)

: i-SetCase Analysis (0)
+-Get False Path (0)
t-Set Multicydle Path (0)
- Set Maximum Delay (0]

L. Set Minimum Delay (0)

E+-Others (0)
+-Group Path (0)
t.-Set Disable Timing (0)

All Constraints

C\ Puosition Command Scoped Cell
Z =B medulator.xdc (E: /Projects/Vivado/proba/Vivado-2016. 1/modulator fmodulator.sresfmodulator_rtfnew /modulator. xdc)

== r:reate_dod: -period 10.000 -name dk_p -waveform {0.000 5.000} [get_ports dk_p] _

=

Apply Cancel

Figure 10.23: Timing Constraints window with the create_clock constraint

Notice that the create_clock XDC command for the created clock is also displayed in the All Constraints view of the Timing
Constraints window.

98

10.1 Creating XDC File

All the timing constraints that have been run are applied to the design that is loaded in the memory. The applied constraints
can be saved by writing them to the XDC file. All the timing constraints applied to the design are available in the All
Constraints view of the Timing Constraints window, see lllustration 10.23.

Step 7. To save your timing constraints to the modulator.xdc constraints file, select File -> Save Constraints command
from the main menu

If you want to verify that the timing constraints have been applied to the modulator.xdc file, do the following:

1. If the modulator.xdc file is already open, click the Reload link in the banner of the modulator.xdc tab to reload the
constraints file from disk.

2. If the modulator.xdc file is not open, select the Sources window, Hierarchy view
3. Expand Constraints folder

4. Double-click on the modulator.xdc file, under the modulator_rtl, to open the file and you should see that your timing
constraints were saved to the XDC file, see lllustrations 10.24 and 10.25

Sources — 0O e x
M A i
A= 2e R

=7 Design Sources (2]
+- i sine_top -l (sine_

Hierarchy | Libraries | Compile Order

4% Sources |] Netlist | & Device Constraints

Figure 10.24: modulator.xdc constraints file in the Sources window

[Package = | Device X |5 modulatorxde X O =
= E:fProjects/vivado fproba/Vivade-2016. 1fmodulator jmodulator .sresfmodulator_rtljnew fmedulator, xdc
1set_property PACEAGE_PIN Y9 [get ports clk p] -

' 2 get_property IOSTANDARD LVCMOS33 [get_ports clk_p]
3
4 set_property PRCEAGE_PIN F22 [get ports awl]
5 get_property IOSTANDARD LVCMOS25 [get_ports awl]
[
3| 7 set_property PACKRGE PIN T22 [get ports pwm out]
3 g set_property IOSTANDARD LVCMOS33 [get_ports pwm_out]
3
"’"’ 10 create clock -period 10.000 -name clk_p -waveform {0.000 5.000} [get ports clk_p]

iy = §

Figure 10.25: modulator.xdc file with physical and timing constraints

In the modulator.xdc file you will see four blocks of commands, see lllustration 10.25. First three blocks (first six lines) are
the Physical Constraints and the last line is the Timing Constraint.

99

DESIGN IMPLEMENTATION

10.1.2 Migrating UCF Constraints to XDC

As we already said, the Vivado IDE doesn’t support the UCF constraints used in the ISE Design Suite. You must migrate
the design with UCF constraints to the XDC format.

If you are familiar with the UCF file, it won’t be hard for you to understand how to convert existing UCF file to XDC as a
starting point for creating XDC constraints.

As with UCF, XDC consists of:

+ Timing constraints

+ Physical constraints

The fundamental differences between XDC and UCF constraints are:

+ XDC is sequential language, with clear precedence rules

» UCF constraints are typically applied to nets, for which XDC constraints are typically applied to pins, ports, and cell
objects

» UCF PERIOD constraints and XDC create _clock command are not always equivalent and can lead to different timing
results

+ UCF by default doesn’t time between asynchronous clock groups, while in XDGC, all clocks are considered related
and timed unless otherwise constrained (set_clock _groups)

+ In XDC, multiple clocks can exist on the same object

The Table 10.1 shows the main mapping between UCF constraints to XDC commands.

Table 10.1 UCF to XDC Mapping

UCF XDC
TIMESPEC PERIOD create_clock, create_generated clock
OFFSET = IN <x> BEFORE <clk> set_input_delay
OFFSET = OUT <x> BEFORE <clk> set_output_delay
FROM:TO"TS _"2 set_multicycle_path
FROM:TO set_max_delay
TIG set_false_path
NET "clk_p" LOC = AD12 set_property LOC AD12 [get_ports clk_p]
NET "clk_p" IOSTANDARD = LVDS set_property IOSTANDARD LVDS [get_ports clk_p]
According to the Table 10.1, our UCF file will migrate to the XDC in the following way:
ucf constraints:
NET "clk_p" LocC = "yo" | TOSTANDARD = LVCMOS33;
NET "swO" LOC = "F22" | IOSTANDARD = LVCMOS25;
NET "pwm_out" LOC = "T22" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

NET "clk_p" TNM_NET = clk_p;
TIMESPEC TS_clk_p = PERIOD "clk_in" 10 ns HIGH 50%;

xdc constraints:

set_property PACKAGE_PIN Y9 [get_ports clk_p]
set_property PACKAGE_PIN F22 [get_ports sw0]
set_property PACKAGE_PIN T22 [get_ports pwm_out]

set_property IOSTANDARD LVCMOS33 [get_ports clk_p]
set_property IOSTANDARD LVCMOS25 [get_ports sw0]
set_property IOSTANDARD LVCMOS33 [get_ports pwm_out]

create_clock -period 10.000 -name clk_p -waveform {0.000 5.000} [get_ports clk_p]

Note: Information about the types of constraints, how to generate XDC constraints file, differences between UCF and XDC
constraints and how to migrate from UCF to XDC constraints file, you can also find in the Lab 11: "Creating XDC File".

100

10.2 Implementation

10.2 Implementation

10.2.1 About the Vivado Implementation Process

The Vivado Design Suite enables implementation of UltraScale FPGA and Xilinx 7 Series FPGA designs from the variety
of design sources, including RTL designs, netlist designs and IP centric design flows.

Vivado implementation process includes all steps necessary to place and route the netlist onto the FPGA device resources,
while meeting the design’s logical, physical, and timing constraints.

The Vivado implementation is a timing-driven flow. It supports industry standard Synopsys Design Constraints (SDC)
commands to specify design requirements and restrictions, as well as additional commands in the Xilinx Design Constraints
(XDC) format.

The Vivado implementation process includes logical and physical transformations of the design. The implementation
process consists of the following sub-processes:

» Opt Design: Netlist Optimization

Optimizes the logical design to make it easier to fit onto the target Xilinx device:

— Ensures optimal netlist for placement
— Optional in non-project batch flow (but recommended)
— Automatically enables in the project-based flow
Because this is the first view of the assembled design (RTL and IP blocks), the design can usually be further op-
timized. The opt_design command is the next step and performs logic trimming, removing cells with no loads,
propagating constant inputs, and combining LUTs for example LUTs in series that can be combined into fewer LUTs.
+ Power Opt Design: Power Optimization

Optimizes design elements to reduce the power demands of the target Xilinx device:

Disabled in project-based flow (can be set with implementation settings in GUI)

Power optimization includes a fine-grained clock gating solution that can reduce dynamic power by up to 30%

Intelligent clock gating optimizations are automatically performed on the entire design and will generate no
changes to the existing logic or clocks

Algorithm performs analysis on all portions of the design
Note: This step is optional.

* Place Design: Placer

Places the design onto the target Xilinx device:

— Project-based flow (included in implementation stage)
— Non-project batch flow (place_design)
— Can use an input XDEF as a starting point for placement

+ Phys Opt Design: Physical Synthesis
Optimizes design timing by replicating drivers of high-fanout nets to distribute the loads:
— Post-placement timing-driven optimization (replicates and places drivers of high fanout nets with negative slack)
— More features coming in future releases (register retiming)

— Available in all flows and can be de-activated in the GUI

— phys_opt_design (run between place_design and route_design)
Note: This step is optional.

* Route Design: Router

Routes the design onto the target Xilinx device:

— Project-based flow (included in implementation stage)
— Non-project batch flow (route_design)

101

DESIGN IMPLEMENTATION

— Router reporting (report_route_status command)

— Check route status of individual nets

The Vivado Design Suite includes a variety of design flows, and supports an array of design sources. In order to generate
a bitstream that can be downloaded onto the FPGA device, the design must pass through implementation process.

Implementation is a series of steps that takes the logical netlist and maps it into the physical array of the target Xilinx device.
These steps include:

* Logic optimization
» Placement of logic cells

+ Routing of connections between cells

10.2.2 Run Implementation

Now we will run implementation process from the Flow Navigator, which will trigger synthesis followed by implementation
in one step.

To run the implementation process, please do the following:

Step 1. In the Flow Navigator, click Run Implementation command and wait for implementation to be completed, see
lllustration 10.26

4 Implementation
@ Implementation Settings

I [» Run Implementation I

> [COpen Implemented Design

Figure 10.26: Run Implementation command

Note: You can monitor the Implementation progress in the bar in the upperright corner of the Vivado IDE.

Step 2. After the implementation is completed, the Implementation Completed dialog box will appear, see lllustration
10.27

Implementation Completed @

IOI Implementation successfully completed.

Mext

@ Open Implemented Design
Generate Bitstream

View Reports

Don't show this dialog again

[ok || Cancel |

Figure 10.27: Implementation Completed dialog box

Step 3. Select Open Implementation Design option in the Implementation Completed dialog box and click OK to open
the implemented design

102

10.2 Implementation

10.2.3 After Implementation

After implementation process:

» Sources and Netlist tabs do not change. Now as each resource is selected, it will show the exact placement of the
resource on the die (Instance Properties view will show specific details about the resource).

« Timing results have to be generated with the Report Timing Summary

» As each path is selected, the placement of the logic and its connections is shown in the Device view. This is the
cross-probing feature that helps with static timing analysis.

After you have implemented the design (or opened a project that only contains an implemented design), the Flow Navigator
changes again, see lllustration 10.28. Flow Navigator is optimized to provide quick access to the options most frequently
used after implementation (note that most of these reports are the same, except with true-timing information):

4 Implementation
@ Implementation Settings
[» Run Implementation
4 Implemented Design
Caonstraints Wizard
Edit Timing Constraints

m

Repart Timing Summary

Report Clock Metworks

6 E @ B R

&

Report Clock Interaction

Report Methodalogy
Report DRC
Report MNoise

Report Utilization

CEHQ

Report Power

Figure 10.28: Implemented Design options

» Constraints Wizard: Open the Timing Constraints wizard

 Edit Timing Constraints: Open the Constraints viewer

* Report Timing Summary. Generates a default timing report (using true timing information)
* Report Clock Networks: Generates a clock tree for the design

* Report Clock Interaction: Verifies constraint coverage on paths between clock domains

* Report Methodology: Performs automated methodology checks and allows you to find design issues early in the
design process

* Report DRC: Performs design rule check on the entire design
* Report Noise: Performs an SSO analysis of output and bidirectional pins in your design
* Report Utilization: Generates a graphic version of the Utilization Report
* Report Power: Provides detailed power analysis reports
Note that the Report Timing Summary is the most important default report because at this point what most designers are

concerned about is meeting their timing objectives and only after completing an implementation does the designer know if
they can actually do that.

103

DESIGN IMPLEMENTATION

Timing - Timing Summary - impl_1 —

QT mup ? 4 Design Timing Summary
5 o 13
|® Thisis a saved report X|"| getup Hold Pulse Width

~General Information \Worst Negative Slack (WNS): 2.333ns Worst Hold Slack (WHS): 0.109ns \orst Pulse Width Siack (WPWS): 4.500 s

~Timer Settings)))
Total Megative Slack (TNS): 0,000 ne Total Hold Slack (THS): 0,000 ns Total Pulse Width Negative Slack (TPWS): 0,000 ns
Clock Summary (1) MNumber of Failing Endpoints: 0 Mumber of Failing Endpaints: 0 MNumber of Failing Endpoints: 0

Check Timing (2) Total Number of Endpoints: 233 Total Number of Endpoints: 233 Total Number of Endpoints: 110
tra-Clock Paths

i Inter-Clock Paths All user specified timing constraints are met.

--Other Path Groups

-User Ignored Paths

“Unconstrained Paths

&) Td Console LD Messages | B4 Log | (2 Reports LS} Package Pins L§> Design Runs Liﬁ Power- (3 Timing L[:} Methodology LQ DRC I

Figure 10.29: Report Timing Summary tab

Step 1. To view the clock interaction of the design, expand Implemented Design, under the Implementation in the Flow
Navigator, and select Report Clock Interaction command

Step 2. In the Report Clock Interaction dialog box, type the name of the results in the Results name field and click OK

Step 3. The Clock Interaction report will display in the main Vivado IDE window, see lllustration 10.30

Jﬁchcklntemﬁnn—ﬁnilg_z x O ¢ x

Bl Destination Clocks
— % 5
4=
=
Q
& v
w4
“ o

(=]
@ g clk_p
:

g

w

M NoPath W Timed [Partial False Path O Max Delay Datapath Only
B User Ignored Paths M Timed (unsafe) [Partial False Path (unsafe)
==="oii——————0_—"-—_,
d Source Destination Edges WNS NS Failing Endpoints ~ Total Endpoints Path Req Edges WHS THS Failing Endpoints ~ Total Endpaints Path Reg Comman Inter-Clock.
Clock Clock {(WNS) {ns) {ns) (TNS) {TNS) {(WNS) {WHS) {ns) {ns) {THs) {THS) {WHS) Primary Clock Constraints
1dk_p ck_p rise - rise 3,460 0,000 [233 10,000 rise - rise 0.096 0.000 1] 233 0,000 Yes Timed

Figure 10.30: Report Clock Interaction tab

This report is helpful to tell us if timing is asynchronous (in case that we didn’t include synchronization circuitry) and if paths
are constrained (in case that we didn’t add timing constraints to cover paths between unrelated clock domains). Green
squares confirm that paths between the two clock domains are constrained.

Step 4. To view the resource utilization of the design, expand Implemented Design, under the Implementation in the
Flow Navigator, and select Report Utilization command

Step 5. In the Report Utilization dialog box, type the name of the results in the Results name field and click OK

Step 6. The Utilization report will display at the bottom of the Vivado IDE, see lllustration 10.31

104

10.2 Implementation

Utilization - utilization_1
QTS X

~Hierarchy

lice Logic
E| -Slice LUTs

é--SI\cE Registers (< 1%
Register as Latch |
--Register as Flip Flop |
=I-Slice Lng\c Dlsmhuhﬂn
E)-lice (
H 'SLICEM
SLICEL
E|LUT as Memary (0%:)
Ul e —

utilization_1

3 Td Console | () Messages

4 Summary
L
L Resource Utilization Available Utilization %
3 LT 110 53200 0.21
L FF 108 106400 0.10
BRAM 1 140 0.71
10 3 200 1.50
LT 1%
FF 12
BRAM - 1%
jlo} 2%
0 5 5 75 100

B Log

Utilization (%)

| Reports | i3 Package Pins | 3 DesignRuns | £ Power | & Timing -, (5| Utilization | [} Methodalogy

Figure 10.31: Utilization Report tab

Note: You can maximize the utilization report and explore the results.

m

Note: Information about the Vivado Implementation Process, you can also find in the Lab 12: "Design Implementation™

10.2.4 Implementation Reports

While the Flow Navigator points to the most important reports, the Reports tab contains several other useful reports, see

Illustration 10.32:

Vivado Implementation Log - describes the implementation process and any issues it encountered

Reports

Q| Name Modified Size GUI Repart
Z [=-Synth Design (zynth_desian)

[= Vivado Synthesis Report 5/11f16 5:22 PM 23.1KB

|3 Utilization Report 5f11/16 5:22 PM 7.0KB
D Deslgn Initialization {init_design)
- il Timing Summary Report
D ODtDeslgn opt_design)
5 Post opt_design DRC Report 5/11/18 5:25FM 1.1KB
Post opt_design Methodology D...
Timing Summary Repart
Lfr-Povxar Opt Design (power_opt_design)
: Timing Summary Report
D Place Design (place_desion)
-[3 Vivado Implementation Log 5/11/16 5:26 FM 20,1KB

Pre-Placement Incremental Reus. ..
%) 10 Report 5/11/16 5:25PM 116.83 KB
5 Utilization Report 5/11/16 5:25 PM 8.6KB
%) Control Sets Report 5/11/16 5:25FPM 3.7KB

Incremental Reuse Report

Timing Summary Report

D Post-Place Power Opt Design (post_place_power_opt_design)

Timing Summary Report

‘ost-Place Phys Opt Design (phys_opt_design)

- il Timing Summary Report

E| Route Design (route_design)

5 Vivado Implementation Log 5/11/16 5:26 PM 20,1KB

WebTalk Report

) DRC Report 5/11/16 5:26 PM 1.2KB
Methodology DRC Report

5 Power Report 5/11/16 5:26 FM 8.0KB

5 Route Status Report 5/11/16 5:26 PM 0.6 KB

2 Timing Summary Report 5/11/16 5:26 PM 112.9KB Open
Incremental Reuse Report

5 Clock Utlization Report 5/11/16 5:26 PM 11.6 KB

E| Post-Route Phys Opt Design (post_route_phys_opt_desion)
- [l Post-Route Physical Optimizatio. ..

El Wirite Bitstream (write_bitstream)

Vivado Implementation Log

NebTalk Report

Figure 10.32: Reports tab

10 Report - Lists every signal, its attributes and its final location, see lllustration 10.33. It is always important to double-

click pin assignments before implementing, because the tools can move any pin that is unassigned.

105

log

DESIGN IMPLEMENTATION

10 Report - impl_1 X

[

B | E:Projects vivado probajVivaro-2016. 1jmodulator fmodulator.runsimpl_1jmodulator_wrapper_io_placed.rpt
1 Copyright 1986-201¢ Xilinx, Inc. All Rights Reserved.

2

3| Tool Version : Vivado v.2016.4 (winé4) Build 1538259 Fri Zpr £ 15:45:27 MDT 2016
4| Date : Wed May 11 17:25:46 2016

5| Host : maja-BC running 64-bit Service Pack 1 (build T&01)

6 | Command report_io -file modulator_wrapper_io_placed.rpt

=IXPi/FES|

7| Design modulator_wrapper
81 Device xc7z020
9| Speed File @ -1
10 | Package : clgagd
11

C'e 12

—| 13I0 Information

? 14

| 1sTable of Contents
16—

171. Surmary
18 2. IO Assignments by Package Pin
19

201. Summary

302. IO Assignments by Package Pin

Read-only

31
32
33
34| Pin Number | Signal Name | Bank Type | Pin Name | Use | I0 Standard | IQ Bank | Drive (mk) | Slew | On-Chip
35
36| Rl | | | P5_MIO1_500 | PSS IO | | | | |
371 A2 | | | BS_MIOZ2_500 | PSS IO | | | | |
38| A3 | | | P5_MIO5_500 | PSS IO | | | | |
39| A4 | | | BS_MIO&_ 500 | PSS ID | | | | |
40| A5 | | | GND | GND | | | | |
41| B& | | | P5S_MIO13_500 | B35 IO | | | | |
42| A7 | | | BS_MIOla_501 | PSS IO | | | | |
43| BB | | | PS_MI020_501 | PSS IO | | | | |
441 n9 1 1 | PS MT03& 501 | PSS TO 1 1 1 1 1
< 11 | »

Figure 10.33: 10 Report

Utilization Report - describes the amount of FPGA resources used in a text format, see lllustration 10.34

Jg Utilization Report - syath_1 x|

0@ x

B | E:/Projects/Vivado/proba/Vivade-2016.4/madulator /modulator .runs/synth_1jmedulator_wrapper_utilization_synth.rpt
- 1Copyright 1986-2016 Xilinx, Inc. All Rights Reserved.

Read-only

m o,

% 3 Tool Version : Vivade v.2016.4 (winé4) Build 1733598 Wed Dec 14 22:35:39 MST 2016

A 41 Date Fri Dec 23 12:14:40 2016

I 5| Host : maja-BC running 64-bit Service Pack 1 (build 7601)

2 61 Comana report utilization -file modulator wrapper utilization synth.rpt -pb medulator wrapper utilizatien synth.pb =
B 7 pesign : modulator_wrapper

¥ | 8l Device 72020clgdad-1

E 9| Design State : Synthesized

12 Utilization Design Information
13
14 Table of Contents

161. Slice Logic

171.1 Summary of Registers by Type
182. Memory

193. D5SP

204. I0 and GT Specific

215. Clocking

22 4. Specific Feature

237. Primitives

24 8. Black Boxes

259. Instantiated Netlists

26
271. Slice Logic
28 ——————— -
29
30
31| Site Type | Used | Fixed | Available | Utils |
32
33| Slice LUTs* | 182 |] 53200 | 0.34 |
34 LUT as Logic | 182 |] 53200 | 0.34 |
351 LUT as Memory |]] 17400 | 0.00 |
36 | Slice Registers | 108 |] 106400 | 0.10 |
371 Register as Flip Flop | 108 |] 106400 | 0.10 |
38| Register as Latch |]] 106400 | 0.00 |
39| F7 Muxes |]] 26600 | 0.00 |
40 | F2 Muxes |]] 13300 | 0.00 |
41
42 * Warning! The Final LUT count, after physical optimizations and full implementation, is typically lower. Run opt_design after synthesis, if
43
A i]

r

Figure 10.34: Utilization Report

106

10.2 Implementation

Control Sets Report - describes the number of unique control sets in the design Ideally this number will be as small as
possible. Number of control sets describes how control signals were grouped. Control signals include clocks, clock enables,
set, and reset signals. How the tools group them into slices and CLBs will dictate the density of the design in the FPGA.

1| Control Sets Report - impl_1 X Oo¢ =
B E:/Projects/Vivado fproba/Vivade-2016. 1/modulator jmodulator.runsimpl_1/modulator_wrapper_control_sets_placed.rpt Read-only
B

| 1Copyright 1986-2016 Xilinx, Inc. R11 Rights Reserved. =

2

3| Tool Version : Vivado v.2016.4 (win€é4) Build 1538259 Fri Apr & 15:45:27 MDT 2016

b, 41| Date : Wed May 11 17:25:46 2016
_- 5| Host : maja-PC running €4-bit Service Pack 1 (build 7601)
==j & | Command : report_control_sets -verbose -file modulator_wrapper_contrel_sets_placed.rpt
7| Design : modulator_wrapper
81 Device : xc7z020
9
10
11 Contrel Set Information
C§J 12
— | 13Table of Contents
L

& 151. Summary
16 2. Flip-Flop Distribution
17 3. Detailed Contrcl Set Information

1

191. Summary

20
21

231 Status | Count |

24

25 | Number of unique control sets | 61

26 | Unused register locations in slices containing registers | 12 |

28

29

302. Flip-Flop Distribution

2 o EE—

32

33

34| Clock Enable | Synchronous Set/Reset | Asynchronous Set/Reset | Total Registers | Total Slices |
35

36| No | No | Ho | 12 | 51
371 No | No | Yes | L] o1
38| No | Yes | Ho | a4 | 1 |
39| Yes | Ne | Ho | 12 | 31
40| Yes | He | Yes | o1 (U]
41| Yes | Yes | No | 20 | [
42

43

aa =

< [»

Figure 10.35: Control Sets Report

DRC Report - Lists the DRC routing checks that were completed

Power Report - describes the operating conditions and the estimated power consumption of your device, see lllustration
10.36

107

DESIGN IMPLEMENTATION

I Power Report - impl_1 X Oo¢ x
B E:/Projects Vivado fproba Vivado-2016. 1/modulator fmodulator. runsfimpl _1/modulator_wrapper_power_routed.rpt Read-only
= 1Copyright 1986-2016 Xilinx, Inc. All Righta Reserved. =
L 3| Tool Version : Vivado v.2016.4 (win€4) Build 1538259 Fri Apr 8 15:45:27 MDT 2016&
4| Date : Wed May 11 17:26:27 2016
5| Host : maja-PC running 64-bit Service Pack 1 (build 7601)
= & | Command : report_power -file modulator_wrapper_power_routed.rpt -pb modulator_wrapper power summary_routed.pb -rpx modulatg
i 7| Design : modulator_wrapper =
» &1 Device : ®cTz020clgdgd-1
n Design State : routed
Grade : commercial
Process : typical

Characterization : Production

éE]_TJ 121
,;J

15 Power Report
16
17 Table of Contents

191. Summary
201.1 On-Chip Components
211.2 Power Supply Summary
221.3 Confidence Lewvel

22
23 2. Settings

24 2.1 Environment

25 2.2 Clock Constraints

26 3. Detailed Reports

27 3.1 By Hierarchy

28

291. Summary

30 —mmmmm e

=l

32

33 | Total On-Chip Power (W) 0.128
34 | Dynamic (W) 0.004
35| Device Static (W) 0.124
36 | Effective TJA (C/W) 11.5
37| Max Ambient (C) 83.5

| |
| |
| |
| |
| |
38 | Junction Temperature (C) | 26.5 |
| |
| |
| |
| |

39 | Confidence Level Medium

40 | Setting File -—

41 | Simulation Activity File -

42 | Design Nets Matched NR

43

44 _ S
« ["

Figure 10.36: Power Report

Route Status Report - reports lists any nets that could not be routed

I Route Status Report - impl_1 X Ooe =
B E: [Projects Vivadoproba/Vivado-2016. 1/fmodulator fmodulator .runs impl_1/modulator_wrapper_route_status.rpt Read-only
1Design Route Status =
nets :
0of logical MeCS.....ueeeivanesnannnnnnnnn H 414 :
4 of nets not needing routing....... 220 =
of internally routed nets..... 220 :
of routable NECS.....cevvennnnnnannsn : 194 =
of fully routed NEtS...eevsansans H 184 :
4 of nets with routing errors.......... : 0z
?
¥
] r

Figure 10.37: Route Status Report

Timing Summary Report - identifies the default timing for the finished design (with true timing information)

The benefit of automatically generating these reports is that it encourages designers to read more about their design.

10.2.5 Run Post-Implementation Simulation

Simulation can be applied at several points in the design flow. It is one of the first steps after design entry and one of the
last steps after implementation as part of the verifying the end functionality and performance of the design.

Simulation is an iterative process. It might need to be repeated until both the design functionality and the timing are met.

On the lllustration 10.38 is shown the simulation flow of a typical design.

108

10.2 Implementation

{ RTL Design 1

y

4

Behavioral

Simulation

Post Synthes

is Simulation

Y

Y

Emplement (Place&Route)

Y

Y

Post Implementation Simulation

[Debug

10.2.6 Run Post-Implementation Timing Simulation

Figure 10.38: Simulation Flow

You can perform functional or timing simulation after implementation process. Timing simulation is the closest emulation to
actually downloading a design to a device. It allows you to ensure that the implemented design meets functional and timing
requirements and has the expected behavior in the design.

To run post-implementation timing simulation, we must first create test bench for that type of simulation. We can use

existing modulator_tb.vhd test bench file to create new modulator_wrapper_timesim_tb.vhd test bench file:

» change the entity name from modulator_tb to modulator_wrapper_timesim_tb
 change the architecture name from modulator_tb to modulator_wrapper_timesim_tb also
» remove clk_in_s input clock signal and create two input clock differential signals: clk_p_s and clk_n_s

» remove design_setting1_c constant

« remove all the constants related to the div_factor_freghigh and div_factor_freqglow value calculations: ¢1_c, div_-
factor_freqhigh_c, div_factor_freqlow_c

« instead of Modulator module instance (pwmmodulator), instantiate Modulator Wrapper module (modulatorwrap-

per) instance

« remove all the generics from the Modulator Wrapper module instance (modulatorwrapper) as it is shown in the

code bellow

This last step is necessary because during the Synthesis process all the generics are being replaced by the values supplied
by the designer. This means that the design that will be implemented will have no generics. Therefore, when we generate

a Post-Implementation Timing Simulation model it can’t contain any generics since they don’t exist any more.

Modulator wrapper test bench file for the timing simulation:

109

DESIGN IMPLEMENTATION

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

entity modulator_wrapper_timesim_tb is
generic(
—— Parameter that specifies major characteristics of the board that will be used
—-— to implement the modulator design
-- Possible choices: """1x9""", """zedboard""", """mleQO5""", """kc705""", """microzed""", ""socius"
nwn
—— Adjust the modulator_pkg.vhd file to add more
board_name_g : string := """zedboard""";

—— User defined settings for the pwm design
design_setting_g : design_setting_t_rec := design_setting_c
)i

end entity;

architecture tb of modulator_wrapper_timesim_tb is

signal clk_p_s : std_logic := "1’; —-- differential input clock signal
signal clk_n_s : std_logic := ’0’; —-- differential input clock signal
signal swO_s : std_logic := ’1’; -- signal made for selecting frequency
signal pwm_s : std_logic := ’0’; -- pulse width modulated signal

—— period of input clock signal

constant clock_period_c : time := 1000000000.0 / get_board_info_f (board_name_g).fclk * 1ns;
begin
modulatorwrapper : entity work.modulator_wrapper -— modulator_wrapper module instance
port map (
clk_p => clk_p_s,
clk_n => clk_n_s,
sw0 => swO_s,

pwm_out => pwm_s
)i

clk_p_s <= not (clk_p_s) after clock_period_c/2; -- generates input clock signal
clk_n_s <= not (clk_n_s) after clock_period_c/2; -- generates input clock signal
swO_s <= '1", '0’" after 25 us;

After we have created a new test bench file (modulator_wrapper_timesim_tb.vhd) we must include it in our design:
Step 1. In the Flow Navigator, under the Project Manager , click Add Sources command
Step 2. In the Add Sources dialog box, choose Add or create simulation sources option and click Next

Step 3. In the Add or Create Simulation Sources dialog box, click on the Specify simulation set drop-down list and
choose Create Simulation Set... option

Step 4. In the Create Simulation Set dialog box, enter a name for the new simulation set or leave sim_6 as a name and
click OK

Step 5. In the Add or Create Simulation Sources dialog box, under the new sim_6 simulation set, click "+" icon and
select Add Files... option

Step 6. In the Add Source Files dialog box, select modulator_wrapper_timesim_tb.vhd source file and click OK

Step 7. In the Add or Create Simulation Sources dialog box, click Finish and your new test bench file should appear in
the Sources window, under the Simulation Sources / sim_6

Step 8. In the Sources window, select new sim_6 simulation set, right-click on it and choose Make Active option

Step 9. Select the modulator_wrapper_timesim_tb - tb (modulator_wrapper_timesm_tb.vhd) file, right-click on it and
choose Set as Top option

After we have added a new modulator_wrapper_timesim_tb.vhd test bench file into the design, we can start post-
implementation timing simulation:

Step 1. In the Flow Navigator, click on the Run Simulation command and choose Run Post-Implementation Timing
Simulation option, see lllustration 10.39

110

10.2 Implementation

4 Simulation
% Simulation Settings
"@R Run Simulation L

Run Behavioral Simulation
4 RTL Analysis]] -]
Run Post-Synthesis Functional Simulation
' Eﬁ’ Open
Run Post-Synthesis Timing Simulation
4 Synthesis Run Post-Implementation Functional Simulation
% Synth Run Post-Implementation Timing Simulation

Figure 10.39: Run Post-Implementation Timing Simulation option

Note: If your Vivado IDE notify an error that compiler cannot find package (modulator_pkg.vhd), that means that Vivado
simulator has not included package automatically. Here are the steps to correct this problem:

Step 1. First step will be to add modulator_pkg.vhd file into the sim_6 simulation set. To do that, click the Add Sources
command

Step 2. In the Add Sources dialog box, choose Add or create simulation sources option and click Next

Step 3. In the Add or Create Simulation Sources dialog box, choose sim_6 as simulation set from the Specify simula-
tion set drop-down list, click the "+" icon and select Add Files... option

Step 4. In the Add Source Files dialog box, choose modulator_pkg.vhd file and click OK

Step 5. In the Add or Create Simulation Sources dialog box, click Finish and your modulator_pkg.vhd source file will
be added under the sim_6 simulation set

Step 6. To see where is added modulator_pkg.vhd source file (because it is not visible in the Sources view, in the
Hierarchy tab, under the sim_6 simulation set), click on the Libraries tab and expand sim_6 simulation set, see lllustration
10.40

Sources ? 0O X
QT w e 12[E
#1-1= Design Sources (&)
+-{= Constraints (1)
=1-[Simulation-Only Sources (7]
- sim_6 (2) (active)
.= WHOL (2)
=il %il_de faultiib (2)
- @ modulator_pkg. vhd
-4 modulator _wrapper_timesim_tb.vhd

@,
3
(]

Hierarchy | Libraries | Compile Crder

4% Sources | Y] Netlist | & Device Constraints

Figure 10.40: Libraries tab with added modulator_pkg.vhd file

As you can see from the picture above, modulator_pkg.vhd source file is now located in the library xil_defaultlib, as it
should be.

Note: If you would like to see real compile order of your source files, open the Compile Order tab, beside the Libraries
tab. If you are not satisfied with the automatically generated compile order of your source files, you can change it in the
following way:

» To manually move some file from one place to another, Manual Compile Order option must be turned on. Before
start moving process, tool will ask you would you like to turn on the Manual Compile Order option, see lllustration
10.41

111

DESIGN IMPLEMENTATION

J‘.‘_. Move Sources @

.:0:. Manual compile order is turned off. To honor your changes manual compile order must
— be turned on. Would you like to turn it on now?

Yes | | No |

Figure 10.41: Move Sources dialog box - Manual compile order

+ Click Yes and the selected source file will be moved to the place of your choice

Step 7. After all those modifications, we can turn back into the Hierarchy tab, select modulator_wrapper_timesim_tb.-
vhd simulation model and start ones more our post-implementation timing simulation

After implementation, the simulation information is much more complete, so you can get a better perspective on how the
functionality of your design is meeting your requirements.

After you select a post-implementation functional simulation, the functional netlist is generated and the UNISIM libraries
are used for simulation.

After you select a post-implementation timing simulation, the timing netlist and the SDF file are generated.
Step 8. Simulate your design for 200 ms (see Chapter 2.6 Simulating with Vivado Simulator — step 9.)

Step 9. Assuming no errors, your simulation result should look similar to lllustration 10.42

Untitled 1%

Figure 10.42: Timing Simulation Results

As you can see the results of timing simulation (waveform of the pwm_s signal) look identical to the results of functional
simulation. This means that the desired functionality is preserved after all implementation steps have been performed.
What is identical is the desired functionality (the shape of the pwm_s signal), but the timing properties of the pwm_s signal
simulated using functional and timing simulation are significantly different, as can be seen from the following lllustrations
(10.43 and 10.44).

modulator_tb_behav.wecfg

—Oax

Figure 10.43: Functional Simulation Results

112

10.3 Generate Bitstream File

modulator_wrapper_timesim_th_time_impl.wcfg _oOax

3,829,697.015 ns

Figure 10.44: Timing Simulation Results (with signal delays)

lllustration 10.44 shows how big is the pwm_s signal delay related to the rising edge of the input clock signal (clk_p_s).
This signal delay is illustrated with two markers (yellow and blue) and it amounts 7820 ns.

Note: You can see that timing simulation lasts much longer than functional simulations. This is the reason why timing
simulation is not often used in practice.

10.3 Generate Bitstream File

You can run the bitstream file generation process after your design has been completely routed for FPGAs. The bitstream
file generation process produces a bitstream for Xilinx device configuration. After the design is completely routed, you must
configure the device to execute the desired function.

To generate the bitstream file:
Step 1. In the Flow Navigator, under Program and Debug, click on the Generate Bitstream command, see lllustration
10.45

4 Program and Debug

% Bitstream Settings

‘T*1 Generate Bitstream

‘3} Open Hardware Manager

Figure 10.45: Generate Bitstream command

Note that the Generate Bitstream process will try to resynthesize and implement the design if any of process is out of
date.

Step 2. Click Yes to acknowledge running of the processes that are needed for bitstream generation
Step 3. Click Cancel in the Bitstream Generation Completed dialog box

Note: Information about how to generate bitstream file, you can also find in the Lab 12: "Design Implementation”.

10.4 Program Device

After you have generated the bitstream file, the next step will bi to download it into the target FPGA device. In our case it
will be ZedBoard evaluation board.

The Vivado tool offers Open Hardware Manager to use the native in-system device programming capabilities that are built
into the Vivado IDE.

The Vivado IDE tool includes functionality that allows you to connect to your hardware, containing one or more FPGA
devices, to program them and debug your design on the real hardware. Connecting to hardware can be done either from
the Vivado IDE GUI or by using Tcl commands. In both cases, the procedure is the same:

113

DESIGN IMPLEMENTATION

Step 1. For the ZedBoard evaluation board, connect the Digilent USB JTAG cable of your ZedBoard board to the Windows
machine’s USB port

Step 2. Ensure that the board is plugged in and powered on
Step 3. Make sure that the board settings are proper

Step 4. In the Flow Navigator, under the Program and Debug, click Open Hardware Manager command, see lllustration
10.46

4 Program and Debug
@; Bitstream Settings
Qﬂ Generate Bitstream

I Fl ua‘ Open Hardware Manager I
ﬁ Open Target

@ Program Device

& Add Configuration Memory Device

Figure 10.46: Open Hardware Manager command

The another way to open the hardware manager is to select Flow -> Open Hardware Manager option from the main
Vivado menu

Step 5. The next step in opening a hardware target is connecting to the hardware server that is managing the connection
to the hardware target. You can do this on three ways:

» Use the Open target selection in the Hardware Manager view, to open a recent or a new hardware targets, see
lllustration 10.47

Hardware Manager - unconnected
\;} No hardware targetis open. Open target

Hardware E Auto Connect
5 _ E o Recent Targets 3
3
Mame Status
& OpenMew Target..,

Figure 10.47: Hardware Manager view

» Use the Open Target command, under the Open Hardware Manager in the Program and Device section, to open
new or recent hardware targets, see lllustration 10.48

4 Program and Debug
ﬁ:’; Eitstream Settings
Qﬂ Generate Bitstream
4 ‘3’ Open Hardware Manager
ﬁ Open Targe

@' Program Dey

i Open Mew Target...

& Add Configuration Memary Device

Figure 10.48: Open Target command

» Use Tcl commands to open a connection to a hardware target

Step 6. Click on the Open New Target command. The Open New Hardware Target wizard provides an interactive way
for you to connect to a hardware server and target, see lllustration 10.49

114

10.4 Program Device

¢ Open New Hardware Target &J
Open Hardware Target
V |VADO‘ This wizard will guide you through connecting to a hardware target.
HLx Editions
" To connect to a remote hardware target, provide the host name and IP port of the remote
machine on which the instance of a Vivado Hardware Server is running.
& XILINX
ALL PROGRAMMABLE. To continue, dick Next.
Back || MNext> | l Cancel

Figure 10.49: Open Hardware Target dialog box

Step 7. In the Open Hardware Target dialog box, click Next

Step 8. In the Hardware Server Settings dialog box, specify or select a local or remote server, depending on what

machine your hardware target is connected to. Leave the default Local server and click Next , see lllustration 10.50

Local server. Use this setting if your hardware target is connected to the same machine on which you are running the
Vivado IDE. The Vivado software automatically starts the Vivado hardware server (hw_server) application on the local

machine.

Remote server. Use this setting if your hardware target is connected to a different machine on which you are running the
Vivado IDE. Specify the host name or IP address of the remote machine and the port number for the hardware server
(hw_server) application that is running on that machine.

¢ Open New Hardware Target &J

Hardware Server Settings

Select local or remote hardware server, then configure the host name and port settings. Use Local server if the
target is attached to the local machine; otherwise, use Remote server.

Connect to: | Local server (target is on local machine) -

Click Next to launch andjfor connect to the hw_server {port 3121) application on the local machine.

Figure 10.50: Hardware Server Settings dialog box

115

DESIGN IMPLEMENTATION

Step 9. In the Select Hardware Target dialog box, select the appropriate hardware target from the list of targets that are
managed by the hardware server. Note that when you select a target, you will see the various hardware devices that are

available on the hardware target, see lllustration 10.51

¢ Open New Hardware Target

Select Hardware Target

Select a hardware target from the list of available targets, then set the appropriate JTAG dodk (TCK)
frequency. If you do not see the expected devices, decrease the frequency or select a different target.

Hardware Targets
Type MName JTAG Clock Frequency

« xinx_tcf |Digilent/210248445895

Hardware Devices (for unknown devices, spedfy the Instruction Register (IR) length)
MName 1D Code IR Length

% arm_dap_0 0BADD477 4
@ xc72020_1 03727093 6

Hardware server: localhost:3121

]
7

Figure 10.51: Select Hardware Target dialog box

Note: If one or more of the devices is unknown to Vivado tool, you can provide the instruction register (IR) length directly
in the Hardware Devices table of the Open Hardware Target wizard, see lllustration 10.51
Step 10. Click Next

Step 11. In the Open Hardware Target Summary dialog box, click Finish to connect to the hardware described in the
summary window, see lllustration 10.52

116

10.4 Program Device

¢ Open New Hardware Target

Open Hardware Target Summary

4
v |VA DO (i) Hardware Server Settings:

HLx Editions
o Server: localhost: 3121

(i) Target Settings:
o Target: xilinx_tcf/Diglent/210243445835

o Frequency: 15000000

£ XILINX

ALL PROGRAMMABLE.

To connect to the hardware described above, dick Finish

Figure 10.52: Open Hardware Target Summary dialog box

Ones you finish opening a connection to a hardware target, the Hardware window is populated with the hardware server,
hardware target, and various hardware devices for the open target, see lllustration 10.53

Hardware — O =
Gl pag [b
AZSE KM »E
Name Status
=- B localhost (1) Connected
=@ e xiinx_tcf/Digilent/210248445895 (2) Open
i@ arm_dap_0 (0) N/A

Figure 10.53: Hardware view after opening a connection to the hardware target

Step 12. You can program the hardware device right-clicking on the device in the Hardware window and selecting the

Program Device... option, see lllustration 10.54
117

DESIGN IMPLEMENTATION

Hardware — 0O e X
AZL|E R E
MName Status
= B locahost (1) Connected
- @ xilinx_tcf/Digilent/210248445835 (7). Open
dap_0 | /A
&4 Hardware Device Properties... Ctrl+E

i Program Device...
Verify Device...

@ Refresh Device

& Add Configuration Memary Device...
Boot from Configuration Memary Device
Program BER Key...
Clear BBR Key...

Program eFUSE Registers...

Export to Spreadsheet. .,

Figure 10.54: Program Device option

The another way to program your device is to select Program device option from the Hardware Manager view and choose
the target device (x¢72020_1), as it is shown on the lllustration 10.55

Hardware Manager - localhost/xiinx_tcfjDigilent/210243445895
@ There are no debug cores. Program device Refresh device

Hardware & xc7z020_1 I I EJ¢

AZHE % P> E

Name Status
= B localhost (1) Connected
=@ e xdlinx_tcf/Digilent/210248445895 (2) Open
dap_0 NfA

Figure 10.55: Program device option from the Hardware Manager view

In the Program Device window, click Program to program your device, see lllustration 10.56

===

¢ Program Device

Select a bitstream programming file and download it to your hardware device. You can optionally select a debug
probes file that corresponds to the debug cores contained in the bitstream programming file.

Bitstream file: s Vivado/proba,Vivado-2016. 1/modulator /modulator. runs fimpl_1/modulator_wrapper .bit E]

[

Debug probes file:

Enable end of startup check

[Program][Cancel

Figure 10.56: Program Device window

Note: As a convenience, Vivado IDE automatically uses .bit file for the current implemented design as the values for the
programming file property of the first matching device in the open hardware target.

Ones the progress dialog box has indicated that the programming is 100% complete, you can check that the hardware
device has been programmed successfully by examining the DONE status in the Hardware Device Properties view, see

lllustration 10.57

118

10.4 Program Device

Hardware Device Properties T 0O
+ = SR
& xc72020_1

O\ PROGRAM o
Z = REGISTER

iy BOOT_STATUS 00000000000000000000000000000001

= COMFIG_STATUS 01000110000100000111111111111100
COROD

o COR1

— EFUSE —
e B R 110101

l\? BITO_ALWAYS_OMNE 1

z BIT1_ALWAYS_ZERI 0

mn

BIT2_ISC_DOME 1
BIT3_ISC_ENABLED 0
BIT4_INIT_COMPLE 1

TIMER. 00000000
USERCODE i
USR_ACCESS "] =

Generl | Properties |

Figure 10.57: Hardware Device Properties window

After downloading your design into the ZedBoard device, led diode on the board will start blinking. The speed of blinking
will be chosen depends on the position of the two-state on-board switch swO.

If you want to close a hardware target, right-click on the hardware target in the Hardware window and select Close Target
option from the popup manu, see lllustration 10.58

Hardware — O =
AaZSE N MH»E

Name Status

- g localhost (1) Connected

Hardware Target Properties. .. Ctrl+E

& arm_dap_0 (0) 5]
E‘@ Xe72020_1 (1) @ Refresh Target
- XADC (System I
| Close Target

Export to Spreadsheet...

Figure 10.58: Close Target option

If you want to close a connection to the hardware server, right-click on the hardware server in the Hardware window and
select Close Server option from the popup menu, see lllustration 10.59

Hardware — O @ =

g & b »E

b3

=
0\ (5]

Status

Hardware Server Properties... Ctrl+E

Refresh Server

Close Server |

Export to Spreadsheet. ..

Figure 10.59: Close Server option

Assuming no errors occurs, you can test your design with a Vivado logic analyzer or an oscilloscope.

Note: Information about how to program an FPGA device, you can also find in the Lab 12: "Design Implementation".

119

DESIGN IMPLEMENTATION

10.5 Modifications in case of using different development boards

In case of using some other development board, some small modifications to accommodate your design to the new devel-
opment board, must be done.

These modifications will be illustrated in case of using Virtex-7 (VC707) development board.

Difference between ZedBoard and Virtex-7 development board is that ZedBoard has single-ended reference clock, while
Virtex-7 has differential reference clock. The other difference between these two boards is the frequency of the reference
clock. ZedBoard has 100 MHz reference clock, while Virtex-7 has 200 MHz reference clock.

Step 1. Change the type of the target FPGA device

+ In the Project Summary window (Project Settings) click on the Project part: ZedBoard Zynq Evaluation and
Development Kit (xc72020clg484-1), see lllustration 10.60

i3 Project summary Xi

Project Settings

Project name: modulator

Project location: E:/Projects/Vivado/proba/Vivado-2016. 1/modulator
Product family: Zyng-7000

Project part:

Top module name: modulator wrapper
Target language: VHOL

Simulator lanquage: Mixed

Figure 10.60: Project Settings window

+ In the Project Settings dialog box, click on the icon beside Project device field to browse the another development
board, see lllustration 10.61

4 Project Settings &J
General
@ Name: madulator
General
= Project device: & zedBoard Zyng Evaluation and Development Kit (xc7z020dg484-1)
i 'uul
Target language: VHDL -
Simulation
. Default library: il_defaultib
{}3‘ B
e]
e Top module name: | modulator_wrapper E]

Elzboration
Language Cptions

\4

Synthesis Verilog options: verilog_version=Verilog 2001 G

Generics[Parameters:

v

) Loop count: 1,000 =
Implementation

|§i|¢)

-

Bitstre,

11|
o
3

g

Figure 10.61: Project Settings dialog box

In the Select Device dialog box, select Virtex-7 VC707 Evaluation Platform and click OK, see lllustration 10.62

120

10.5 Modifications in case of using different development boards

p“:"_:. Select Device @
Filter, search, and browse parts by their resources, The selection will be applied. ‘
Select: € Parts | @ Boards
- Filter

Vendor: All -

Display Name: | All -

Board Rev: Latest -

Reset All Filters
Search:
Display Name Vendor Board Rev Part If0 Pin Count File Vers
@ ZedBoard Zynq Evaluation and Development Kit em.avnet.com d & xc72020cg484-1 484 1.3
@ Artix-7 AC701 Evaluation Platform xilinx.com 1.1 & xc7a200thgs75-2 675 1.2
B Kintex-7 KC705 Evaluation Platform wdlinx. com 11 & xc7k325tffg900-2 900 1 z
H Kintex-Ultrascale KCU 105 Evaluation Platform mllnx com 1.0 & xcku040-ffvall56-2-e 1 156
" Vriex-7 V707 Evaliaton Platform famccom L1 1 xchvdestiig o1 2 -

H Virtex-7 VC709 Evaluation Platform mllnx com 1.0 & xcTvx690tig1761-2 1 781
@ 2YNQ-7 ZC702 Evaluation Board wdlinx. com 1.0 @ xc72020clg484-1 484 1. z
@ ZyNQ-7 ZC706 Evaluation Board xilinx. com L1 & xc7z045ffg900-2 300 12
] I (=)

Figure 10.62: Select Device dialog box

Step 2. Change the xdc constraints file

Open the modulator.xdc file from your working directory and make the following changes:

set_property LOC E19 [get_ports clk_pl;
set_property LOC E18 [get_ports clk_n];
set_property LOC AV30 [get_ports sw0];
set_property LOC AM39 [get_ports pwm_out];

set_property IOSTANDARD LVDS [get_ports clk_p];
set_property IOSTANDARD LVDS [get_ports clk_n];
set_property IOSTANDARD LVCMOS18 [get_ports sw0];
set_property IOSTANDARD LVCMOS18 [get_ports pwm_out];

create_clock -period 5.000 -name clk_p -waveform {0.000 2.500} [get_ports clk_p]
The things that we changed in the xdc file:

* Placement Constraints - find in the User Guide for the Virtex-7 (VC707) development board pin locations where you
would like to connect the input differential clock (clk_p, clk_n) and the sw0 and pwm_out ports.

» Timing Constraints - change the period of the input clock signal. For Virtex-7 (VC707) development board, you have
to change input clock period from 10 ns to 5 ns, because Virtex-7 (VC707) development board has 200 MHz input
clock frequency.

Step 3. Change the source codes

Because we changed the target development board, from ZedBoard to Virtex-7 (VC707), we must accommodate the whole
system to the new parameters.

Changes that must be done are listed below.

121

DESIGN IMPLEMENTATION

If you want to add some other development board that is not on the list of the available development boards in our design,
please open the modulator_pkg.vhd source file and add the desired development board information.

modulator_pkg.vhd:

» Add the name of the new development board in the board_type_t type declaration:

type board_type_t is (1x9, zedboard, ml605, kc705, vc707, microzed, socius);
» Create a new constant for the new development board. Constant must be a structure of type board_setting_t_rec.
In that structure you must declare the following parameters:

— the name of the new development board defined in the board_type_t type declaration
— the frequency of the input clock signal in MHz

— is the input clock differential (yes) or not (no), using a has_diff_clk_t type field

-— place the information about the new boards here:

constant 1x9_c : board_setting_t_rec := (1x9, 100000000.0, no); —— Spartan-6
constant zedboard_c : board_setting_t_rec := (zedboard, 100000000.0, no); -- Zyng-7000
constant ml1605_c : board_setting_t_rec := (ml605, 200000000.0, yes); —-— Virtex-6

constant kc705_c : board_setting_t_rec := (kc705, 200000000.0, yes); —— Kintex-7

constant vc707_c : board_setting_t_rec := (vc707, 200000000.0, yes); —-— Virtex-7

constant microzed_c : board_setting_t_rec := (microzed, 33333333.3, no); —— MicroZed

constant socius_c : board_setting_t_rec := (socius, 50000000.0, no); —-— Socius

modulator_wrapper_rtl.vhd and modulator_tb.vhd:

» Change the type of your development board. In our case it will be from zedboard to vc707.

-— Parameter that specifies major characteristics of the board that will be used
—- to implement the modulator design

— POSSible ChOiCeS: l|llHlX9"ll", """Zedboard""", """ml605""", llll|lkc705nllll, """VC707""", ll"llmicrozedllnll’
"mnSocinggt T

—-— Adjust the modulator_pkg.vhd file to add more

board_name_g : string := """vyc707""";

122

Chapter 11

DEBUGGING DESIGN

In this chapter we will show how user can debug a design. We will use two types of analyzers, Vivado Logic Analyzer as
an integrated Vivado analyzer and oscilloscope as an external debugging device.

11.1 Inserting ILA and VIO Cores into Design

In this chapter you will learn how to debug your FPGA design by inserting an Integrated Logic Analyzer (ILA) core and
Virtual Input/Output (VIO) core using the Vivado IDE. You will take advantage of integrated Vivado logic analyzer functions
to debug and discover some potential root causes of your design.

There are two flows (methods) supported in the Vivado Debug Probing:

1. HDL Instantiation Debug Probing Flow

2. Using the Netlist Insertion Debug Probing Flow

This chapter will illustrate "Using the Netlist Insertion Debug Probing Flow" between Vivado logic analyzer, ILA 6.2, VIO
3.0 and Vivado IDE. Details about how to use the "HDL Instantiation Debug Probing Flow" can be found in the Chapter 14
"Appendix".

LogiCORE IP Integrated Logic Analyzer (ILA) v6.2 core

The LogiCORE IP Integrated Logic Analyzer (ILA) core is a customizable logic analyzer core that can be used to monitor the
internal signals of a design. The ILA core includes many advanced features of modern logic analyzers, including boolean
trigger equations, and edge transition triggers. Because the ILA core is synchronous to the design being monitored, all
design clock constraints that are applied to your design are also applied to the components of the ILA core.

ILA core general features are:

+ user-selectable number of probe ports and probe_width
» multiple probe ports, which can be combined into a single trigger condition

« AXl interface on ILA IP core to debug AXI IP cores in a system

The following illustration is a symbol of the ILA v6.2 core.

DEBUGGING DESIGN

ILA Core
——» clk
— trig_in trig_out ——»
— | trig_out_ack trig_in_ack ———»
——» probed Slot_0_AXI ‘e—

—>| probet

—*| probe2

— > probe1023

Figure 11.1: Symbol of the ILA v6.2 core

Signals in the FPGA design are connected to ILA core clock and probe inputs. These signals, attached to the probe inputs,
are sampled at design speed and stored using on-chip block RAM (BRAM). The core parameters specify the number of
probes, trace sample depth, and the width for each probe input. Communication with the ILA core is conducted using an
auto-instantiated debug core hub that connects to the JTAG interface of the FPGA.

Note: If you want to read and learn more about the ILA v6.2 core, please refer to "LogiCORE IP Integrated Logic Analyzer
(ILA) v6.2 Product Guide".

LogiCORE IP Virtual Input/Output (VIO) v3.0 core

The LogiCORE IP Virtual Input/Output (VIO) core is a customizable core that can both monitor and drive internal FPGA
signals in real time. The number of width of the input and output ports are customizable in size to interface with the FPGA
design. Because the VIO core is synchronous to the design being monitored and/or driven, all design clock constraints
that are applied to your design are also applied to the components inside the VIO core. Run time interaction with this core
requires the use of the Vivado logic analyzer feature. Unlike the ILA core, no on-chip or off-chip RAM is required.

VIO core general features are:

« provides virtual LEDs and other status indicators through input ports

« includes optional activity detectors on input ports to detect rising and falling transitions between samples

* provides virtual buttons and other controls indicators through output ports

« includes custom output initialization that allows you to specify the value of the VIO core outputs immediately following
device configuration and start-up

« run time reset of the VIO core to initial values

The following illustration is a symbol of the VIO v3.0 core.

124

11.1 Inserting ILA and VIO Cores into Design

VIO Core

probe_in0[0:0] | probe_out0[255:0]

\J

probe_in1[255:0] _ | Input Reqgisters and

_| probe_out1[0:0]
Activity Detectors =

Output Registers

probe_in255[31:0] | probe_out255127:0]

L

L

A J

Interface to JTAG through Debug Hub

Figure 11.2: Symbol of the VIO v3.0 core

Note: If you want to read and learn more about the VIO v3.0 core, please refer to "LogiCORE IP Virtual Input/Output (VIO)
v3.0 Product Guide".

Insertion of debug cores in the Vivado tool is presented in a layered approach to address different needs of the diverse
group of Vivado users:

» The highest level is a simple wizard that creates and configures Integrated Logic Analyzer (ILA) cores automatically
based on the selected set of nets to debug

» The next level is the main Debug window allowing control over individual debug cores, ports and their properties

» The lowest level is the set of Tcl debug commands that you can enter manually or replay as a script

Netlist insertion debug probing flow can be used to insert ILA cores only. If you need the VIO core, like in our design, it
must be inserted using the following steps:

Step 1. In the Vivado Flow Navigator, under the Project Manager, click the IP Catalog command

Step 2. In the IP Catalog window, in the Search field, search for the VIO (Virtual Input/Output) IP core. After you selected
the VIO core, in the Details window, under the main IP Catalog window, you will find all the necessary information about
selected IP core, see lllustration 11.3

125

DEBUGGING DESIGN

[

T Project Summary X | LF IP Catalog x

Search: vio

Cores | Interfaces
é[l MName AXI4 Status License VLNV

=3 |- Vivado Repository
- Debug & Verification
=] Debug

| [production _Jinduded _Juinx.cominsvio:3.0

T

Gl I=E R F=Ir R

Details

MName: VIO (Virtual Input/Qutput)

Version: 3.0 (Rev. 10)
Description: The Virtual Input/Output (VIO) core is a customizable core that can both monitor and drive internal FPGA signals in real time. The number and width of the input and cutput ports are customizable in size to inte
Because the VIO core is synchronous to the design being monitored andfor driven, all design dock constraints that are applied to your design are also applied to the components inside the VIO core. Run-time i

reguires the use of the Yivado logic analyzer feature.

Status: Production

License: Incuded

Change Log: View Change Log
Vendor: Xilinx, Inc.

VLNV: xilinx. com:ip:vio: 3.0

Repository: D: fXilinx/Vivado/2015.4/data/ip

a7 i (=}

Figure 11.3: IP Catalog window with selected VIO core

Step 3. Double-click on the VIO (Virtual Input/Output) IP core and Vivado IDE will create a new skeleton source for your
VIO core

The window that will be opened is used to set up the general VIO core parameters, see lllustration 11.4

ﬂ Customize IP lﬁj

VIO (Virtual Input/Output) (3.0) '

ﬁ Documentation | IP Location ([Switch to Defaults

[] Show disabled ports Component Name vio_core
To configure more than 54 probe ports use Vivado Td Console

General Options | PROBE_IN Ports(0..0) | PROBE_OUT Ports({D..0)

Input Probe Count |1 [o-

Cutput Probe Count |1 [0 - 256]

Enable Input Probe Activity Detectors

probe_oud[0:0]

Figure 11.4: VIO core configuration window - General Options

Step 4. In the VIO (Virtual Input/Output) (3.0) window, enter vio_core_name (vio_core) in the Component Name field

Step 5. In the General Options tab, leave Input Probe Count to be 1 and Output Probe Count also to be 1, because we
will need one input probe for pwm_out signal and one output probe for sw0 signal, see lllustration 11.4

126

11.1 Inserting ILA and VIO Cores into Design

Step 6. In the PROBE_IN Ports(0..0) tab leave Probe Width of the PROBE_INO Probe Port to be 1, because our pwm_out
signal is 1 bit signal, see lllustration 11.5

gi Customize IP @

VIO (Virtual Input/Qutput) (3.0) ‘

ﬁ'ﬂ Documentation | IP Location £ Switch to Defaults

[] Show disabled ports Compaonent Name vio_core

To configure mere than 64 probe ports use Vivado Td Console

General Options~ PROBE_IN Ports(0..0) | PROBE_OUT Port=(0..0)

Probe Port Probe Width [1-255]
PROBE_IMO 1

clle

b E0[0:0]
probe_in0[0:0] el B

Figure 11.5: VIO core configuration window - PROBE_IN Ports(0..0) tab

Step 7. In the PROBE_OUT Ports(0..0) tab, leave Probe Width of the PROBE_OUTO0 Probe Port to be 1, because our
swO0 signal is also 1 bit signal, see lllustration 11.6

ﬂ Customize IP @
VIO (Virtual Input/Output) (3.0) '
ﬁ Documentation |5 IP Location £g Switch to Defaults

[] Show disabled ports Component Name vio_core
To configure mare than 64 probe ports use Vivado Td Console
General Options | PROBE_IN Ports(0..0) PROBE_OUT Ports(0..0)

Probe Port Probe Width [1-256] Initial Value (in hex)
PROBE_OUTO 1 0%

clk

b 000
orobe_nojog] Pbe-oL04]

Figure 11.6: VIO core configuration window - PROBE_OUT Ports(0..0) tab

Step 8. Click OK

127

DEBUGGING DESIGN

Step 9. In the Generate Output Products window click Generate, see lllustration 11.7

Figure 11.7: Generate Output Products window for VIO core

¢ Generate Qutput Products

i

The following output products will be generated.

Preview

] vio_core.xd (OOC per IF)
Instantiation Template

Il Synthesized Checkpoint (.dcp)
-['fi Behavioral Simulation

----- fil Change Log

Synthesis Options

() Global

(@) Out of context per IP
Run Settings

Mumber of jobs: |1 -

Apply | Generate |[

Skip]

Note: After VIO core generation, your VIO core should appear in the Sources window, see lllustration 11.8

Figure 11.8: Sources tab with generated VIO core

The first step in inserting the ILA core into our design is to add debug nets to the project.

Sources

AZ=E we BE

[=-1= Design Sources (4]

+= modulator_wrappel
sine_top - ril (s ri.vi
[@ vio_core (vio_core.xc)

| Constraints

[#-I1 Simulation Sources (4)

Hierarchy | IP Sources | Libraries | Compile Order

methods how to add debug nets using the Vivado IDE:

+ Add mark_debug attribute to the target XDC file

set_property mark_debug true [get_nets sine_ampl_sx*]
set_property mark_debug true [get_nets freq trig_sx]

Following are some of the

Note: Use these attributes in synthesized design only! Do not use them with pre-synthesis or elaborated design nets.

» Add mark_debug attribute to HDL files

VHDL:

attribute mark_debug : string;
attribute keep: string;

attribute mark_debug of sine_ampl_s :
attribute mark_debug of freg trig_s :

Verilog:

(» mark_debug) wire sine_ampl_s;
(» mark_debug) wire freq trig_s;

signal is "true";
signal is "true";

128

11.1 Inserting ILA and VIO Cores into Design

* Right-click and select Mark Debug or Unmark Debug on Synthesis netlist

» Use Tcl prompt to set the mark_debug attribute. For example:

set mark_debug true [get_nets sine_ampl_sx]
set mark_debug true [get_nets freq trig_sx*]

This applies the mark_debug on the current, open netlist.

In this tutorial we will use only the second method of adding debug nets. The following steps will show you how to add
debug nets to your HDL file (modulator_rtl.vhd) and how to synthesize your design using Vivado IDE.

Step 10. Open the existing modulator_rtl.vhd source file and add the following code lines into the architecture of the
modulator design:

attribute mark_debug : string;
attribute keep : string;

attribute mark_debug of sine_ampl_s : signal is "true";
attribute mark_debug of freqg trig_s : signal is "true";

Now, your modulator_rtl.vhd source file should look like the code bellow:

architecture rtl of modulator is

attribute mark_debug : string;
attribute keep : string;

—- amplitude counter

signal ampl_cnt_s : std_logic_vector (design_setting_g.depth-1 downto 0);
—— current amplitude value of the sine signal

signal sine_ampl_s : std_logic_vector (design_setting_g.width-1 downto 0);
—- signal which frequency depends on the sw0 state

signal freq trig_s : std_logic := '0’;

attribute mark_debug of sine_ampl_s : signal is "true";
attribute mark_debug of freq trig_s : signal is "true";

begin

Step 11. Save the modulator_rtl.vhd source file with new changes

After configuring and generating the VIO core, we should make a new module (modulator_vio_rtl.vhd) where we will
connect the existing design (modulator_rtl.vhd) with the VIO core (see Figure 11.9).

modulator_vio_rtl.vhd

modulator_rtl.vhd

—= swl pwm_out | pwm_out >

const. div_factor_freghigh[31:0]

const. div_factor_freglow[31:0]

clk_in_s o
-

IBUFGDS

clk_in

vio_core

clk probe_outd

probe_in0 |-

Figure 11.9: Connection between VIO core and Modulator module

129

DEBUGGING DESIGN

As you can see from the picture above (Figure 11.9), we have to connect only Modulator module with the VIO core, because

ILA core will be inserted later, in the design netlist.

To create a modulator_vio_rtl.vhd module, use steps for creating modules, Chapter 2.4.1 Creating a Module Using

Vivado Text Editor .

modulator_vio_rtl.vhd-

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

library unisim;
use unisim.vcomponents.all;

use work.modulator_pkg.all;

entity modulator_vio is
generic(
—-— If some module is top, it needs to implement the differential clk buffer,
—— otherwise this variable will be overwritten by a upper hierarchy layer
this_module_is_top_g : module_is_top_t := yes;

—— Parameter that specifies major characteristics of the board that will be used
-—- to implement the modulator design
—— Possible choices: """I1x9QMUN, MWW odhoayrd" N, MENGE]GOENNN MMM CTQSNNN MMy croedttn MNNSooi g

nun

—- Adjust the modulator_pkg.vhd file to add more

board_name_g : string := """zedboard""";
—— User defined settings for the pwm design
design_setting_g : design_setting_t_rec := design_setting_c
)i

port (
clk_p : in std_logic; -—- differential input clock signal
clk_n : in std_logic; —— differential input clock signal
pwm_out : out std_logic -- pulse width modulated signal

- clk_en : out std_logic -- clock enable port used only for MicroZed board

)i
end entity;

architecture rtl of modulator_vio is

signal clk_in_s : std_logic;

signal pwm_s : std_logic_vector (0 downto 0);

signal swO_s : std_logic_vector (0 downto 0);

-— cl_c = fclk/(2"depth*2”width) - cl_c = 95.3674, fclk = 100 MHz

constant cl_c : real := get_board_info_f (board_name_g) .fclk/ (real ((2+«+xdesign_setting_g.depth) x (2%*
design_setting_g.width)));
-— div_factor_freghigh_c = (cl_c/f_high)*2”width - threshold value of frequency a = 110592

constant div_factor_freghigh_c : integer := integer (cl_c/design_setting_g.f_high)* (2+«xdesign_setting_g.
width);

—-- div_factor_freglow_c = (cl_c/f_low)=*2”width - threshold value of frequency b = 389120

constant div_factor_freglow_c : integer := integer (cl_c/design_setting_g.f_low)x (2x+xdesign_setting_g.
width);

—-— vio_core component definition
component vio_core
port (
clk : in std_logic;
probe_in0 : in std_logic_vector (0 downto 0);
probe_out0 : out std_logic_vector (0 downto 0)
)i
end component;

begin

—— in case of MicroZed board we must enable on-board clock generator
- clk_en <= "1";

—- 1f module is top, it has to generate the differential clock buffer in cas:
—-—- of a differential clock, otherwise it will get a single ended clock signal
—— from the higher hierarchy

pwm_out <= pwm_s (0);
clk_buf : © (get_board_info_f (board _name_g) .has_diff_ clk = yes) generate

ibufgds_inst : ibufgds
generic map (
ibuf_low_pwr => true,
-- low power (true) vs. performance (false) setting for referenced I/0 standards
iostandard => "default"

130

11.1 Inserting ILA and VIO Cores into Design

)

port map (
o => clk_in_s, —-- clock buffer output
i => clk_p, -— diff_p clock buffer input
ib => clk_n —— diff_n clock buffer input

)i
end generate clk_buf;

no_clk_buf : if (get_board_info_f (board _name_g) .has_diff_clk = no) generate
clk_in_s <= clk_p;
end generate no_clk_buf;

—- modulator module instance
modulator: entity work.modulator (rtl)
generic map (
design_setting_g => design_setting_g
)

port map (
clk_in => clk_in_s,
sw0 => swO_s (0),

div_factor_freghigh => conv_std_logic_vector(div_factor_freghigh_c, 32),
div_factor_freglow => conv_std_logic_vector (div_factor_freqglow_c, 32),
pwm_out => pwm_s (0)

)i

—-— vio_core component instance
vio: vio_core

port map (
clk => clk_in_s,
probe_in0 => pwm_s,

probe_out0 => swO_s

After we made a new VHDL module (modulator_vio_rtl.vhd), we must also modify the modulator_rtl.xdc file, because
we don’'t have any more swO port. The new content of the xdc file is shown in the code below.

modulator_vio.xdc file:

set_property PACKAGE_PIN Y9 [get_ports clk_p]
set_property PACKAGE_PIN T22 [get_ports pwm_out]

set_property IOSTANDARD LVCMOS33 [get_ports clk_p]
set_property IOSTANDARD LVCMOS33 [get_ports pwm_out]

create_clock -period 10.000 -name clk_p -waveform {0.000 5.000} [get_ports clk_p]

After finishing with the modifications, we must return to the Vivado IDE and do the following:
Step 12. Remove modulator_wrapper _rtl.vhd source file from the design

Step 13. Add modulator_vio_rtl.vhd and modulator_vio.xdc files in the Modulator design with Add Sources option:

» modulator_vio_rtl.vhd as Design Source file, and

* modulator_vio.xdc as Constraints file

Step 14. Remove the old modulator.xdc file from the design
Step 15. In the Sources window, right-click on the modulator_vio_rtl.vhd file and select Set as Top option

Step 16. In Project Manager, click the Project Settings command, see lllustration 11.10

I 4 Project Manager

@ Project Settings

O‘ﬂf Add Sources

7;;' Language Templates

I {F 1P catalog

Figure 11.10: Project Settings command

131

DEBUGGING DESIGN

Step 17. In the Project Settings dialog box, select Synthesis option from the left pane

Step 18. In the Synthesis window, change the flatten_hierarchy option from rebuilt to none as it is shown on the
lllustration 11.11 and click OK

The reason for changing this setting to none is to prevent the synthesis tool from performing any boundary optimization for
this tutorial.

Project Settings @
p Synthesis
@ Constraints
G |
2Eners Default constraint set: | = modulator_rtl (active) -
I@ulll
Options
Simulation .
Strategy: A Vivado Synthesis Defaults (Vivado Synthesis 2016) - |
é? S
'\g}} Description:
Elaboration
[=] Synth Design (vivado) -
% tol.pre [
Synthesis tel.post @
flatten_hierarchy rebuilt
I) -gated_dock_conversion Il i
i bu
Implementation fg ebuilt
% - ~fanout_limit T OO |
:OUL'OF‘I -directive Default - =
Bitstream -retiming l
fam_extraction auto -
+eep_equivalent_registers l
P -resource_sharing auto -
-control_set_opt_threshold auto -
e e =1 S
-flatten_hierarchy
Flatten hierarchy during LUT mapping.
(o J[concel J[ooy |

Figure 11.11: Project Settings dialog box

Step 19. In the Vivado Flow Navigator, click Run Synthesis command (Synthesis option) and wait for task to be
completed, see lllustration 11.12

4 Synthesis
ﬁ. Synthesis Settings

$- Run Synthesis

: [@F Open Synthesized Design

Figure 11.12: Run Synthesis command

Step 20. After the synthesis is completed, choose Open Synthesized Design option in the Synthesis Completed dialog
box, see lllustration 11.13

132

11.1 Inserting ILA and VIO Cores into Design

Synthesis Completed @

Mext

") Run Implementation

~) View Reports

[] Don't show this dialog again

[oK ” Cancel l

Figure 11.13: Open Synthesized Design option

Step 21. Open Debug Layout, if it is not already opened

Step 22. In the Debug window, expand dbg_hub and Unassigned Debug Nets folders, if they are not already expanded.
lllustration 11.14 shows assigned debug nets to the VIO core and debug nets that were marked in the modulator_rtl.vhd
source file with mark_debug attributes and that we will assign to the ILA core.

Debug — O a =

NI Mame Driver Cel

| 5% dbg_hub (=

e io (1al
=] ;EI.E\HD._.

: - ok (1]

2% probe_ind (1)

i‘;\h& - probe_outD (1]
Ej [=1[= Unassigned Debug Nets (13)
553

" 4

= J-i% modulator/sine_ampl_s (12) FDRE
- [% modulator fsine_ampl_s[0] FORE
- _[% modulator fsine_ampl_s[1] FDRE
- [£ modulator fsine_ampl_s[Z] FDRE
- [% modulator fsine_ampl_s[3] FORE
- _[&% modulator fsine_ampl_s[4] FDRE
- £ modulator fsine_ampl_s[5] FDRE
- _[% modulator fsine_ampl_s[6] FDRE
- [£ modulator fsine_ampl_s[7] FDRE
- [% modulator fsine_ampl_s[8] FORE
- [modulator fsine_ampl_s[9] FDRE
- _[£ modulator fsine_ampl_s[10] FDRE
- [% modulator fsine_ampl_s[11] FORE
= _[i meodulator/freq_trig_s FDRE

Debug Cores | Debug Nets

Figure 11.14: Debug tab with unassigned debug nets

Step 23. Select the Netlist tab, beside Sources tab and expand Nets folders of the modulator_vio and modulator
module, see lllustration 11.15

133

DEBUGGING DESIGN

Metlist — 0O «a x

= %

+1 modulator_vio
= Mets (62)
G-dT sl iportd (27)
I sl_oportd (17)

- [«ronstls

- [<constl>

T dk_p

o[dk_p_IBUF

T dk_p_IBUF_BUFG
ol pwm_out

- i3 pwm_s

- [swl_s

-5 Leaf Cells (5)
dbg_hub
modulator
| Mets (&

| Leaf Cells (3
counterampl (c
freq_ce (fre ager__ 1)
pwmmodule

Figure 11.15: Netlist window with expanded Nets folders

In the expanded Nets folders you will find nets that exist in our design. Nets that we marked with mark_debug attributes
are designated with green bug sign. These nets will be used to verify and debug our design.

If you are not satisfied with the marked nets and you want to mark some new or unmark some existing net, you have an
opportunity to do that from the Netlist window in the following way:

+ Select the net, right-click on it, and choose Mark Debug or Unmark Debug option, see lllustration 11.16

MNetlist — 0O «a x Metlist — 0O «a x
= %l = %l
2+ modulator_vio #1 modulator_vio

<constd=
EE

CLy @ MNetProperties... Ctrl+E

clk] Route Ctrl+Alt+MN
Unroute

Mark Debug) Met Properties... Ctrl+E
- Leaf Cells | Unroute
Select Driver Pin
Unmark Debug
Schematic F4
Show C tivi
ow Connectivity Ctrl+T Select Driver Pin
Show Hierarchy F&
Schematic F4
Highlight 3
Show Connectivity Ctrl+T
Show Hierarchy F&
Mark Ctrl+M
_ Highlight 4
Ctrl+Shift+ M
Mark Ctrl+M
Ctrl+Shift+M =

Figure 11.16: Mark and Unmark Debug option

+ In the Confirm Debug Net(s) dialog box (in case of marking new debug net), click OK, see lllustration 11.17

134

11.1 Inserting ILA and VIO Cores into Design

g Cenfirm Debug Met(s)

IOI OK to debug CLK net?

sl

This will create MARK_DEBUG constraints, which will be added to the target XDC constraint
file when you save the design, causing synthesis to go out of date, To aveid having
to rerun synthesis you can dick Force-up-to-date.

[

oK] | Cancel

Figure 11.17: Confirm Debug Net(s) dialog box

The next step after marking nets for debugging is to assign them to debug cores. The Vivado IDE provides Set Up Debug
wizard to help guide you through the process of automatically creating the debug cores and assigning the debug nets to

the inputs of the cores.

To use the Set Up Debug wizard to insert the debug cores, do the following:

Step 24. In the Debug window, select Set Up Debug button to launch the wizard, see lllustration 11.18

Debug

“N|| Name

=

g
(=]

(3]

’_JE}

wda| | - EE dbg_hub
i B vio (I 5_v
- dk (1)

)

5
e
:

i probe_in0 (1]
~ial probe_outd (1]

by Bt £

il setu

p Debug

or choosing nets and connecting them to debug cores,

"4

Launch wizard f

TP I T T T TSI TR T T

- [%% modulatorsine_ampl_s[1]
- ' modulator fsine_ampl_s[2]
-+ [modulator fsine_ampl_s[3]
- [% modulator fsine_ampl_s[4]
- [% modulatorsine_ampl_s[5]
- I modulator/sine_ampl_s[5]
-+ [modulator fsine_ampl_s[7]
-+ [% modulator fsine_ampl_s[8]
- [%% modulatorsine_ampl_s[3]
- ' modulator fsine_ampl_s[10]
- [% modulator /sine_ampl_s[11]

- _[% modulator ffreq_trig_s

Debug Cores | Debug Nets

Figure 11.18: Set Up Debug button

— O e« X

Driver Cel

FDRE
FDRE
FDRE
FDRE
FDRE
FDRE
FDRE
FDRE
FDRE
FDRE
FDRE
FDRE
FDRE
FDRE

The another way to launch this wizard is to select Tools -> Set up Debug... option from the Vivado IDE main menu, see

lllustration 11.19

135

DEBUGGING DESIGN

gl*..f_:. modulator - [G:/temp/Vivado/modulator/modulatorxpr] - Vi

File Edit Flow | Tools | Window Layout View Help
‘4/% | 3 Floorplanning 4
/0 Planni 3
Flow Mavigator b_ . anning
o T = Timing 3
ey Gl
= & Edit Timing Constraints
4 Project Manag| | Schematic F4
@ Project 5 Show Connectivity Ctrl+T
Oﬁ Add Sourl @ Show Hierarchy F&
1F 1P catald Report >
Edit Device Properties...
4 TP Integrator
|‘4r:=1 Create B Create and.PackageIP...
8 Open Blo| Run Tel Script...
W Generatd & Property Editor Ctrl+)
Associate ELF Files...
4 Simulation % Set up Debug...
@ S Custemize Commands »
@ Run Simyy K _
% Project Settings...
4 RTL Analysis 4 Options...

Figure 11.19: Tools -> Set up Debug option

Step 25. In the Set Up Debug dialog box, click Next to open Nets to Debug dialog box, see lllustration 11.20

/’

Set Up Debug

VIVADO!

HLx Editions

& XILINX

ALL PROGRAMMABLE.

Set Up Debug

This wizard wil guide you through the process of

1. Choosing nets and connecting them to debug cores.
2. Associating a dlock domain with each of the nets chosen for debug.

3. Choosing additional features on the debug cores like Data Depth, Advanced Trigger
mode and Capture Control.

Mote: This setup wizard does not apply to the VIO, IBERT or JTAG-to-AXI-Master debug
cores. Please refer to Vivado Design Suite User Guide: Programming and Debugaing (UG308)
for further instructions on how to use these IPs,

To continue, dick Mext.

]
@

Cancel

Figure 11.20: Set Up Debug dialog box

Step 26. In the Nets to Debug dialog box you will find nets that you have marked for debugging, see lllustration 11.21

136

11.1 Inserting ILA and VIO Cores into Design

¢ SetUp Debug &J

Nets to Debug

The nets below wil be debugged with ILA cores. To add nets dick "Find Mets to Add”. You can also select nets in

the Netlist or other windows, then drag them to the list or dick "Add Selected Nets™.
O | Name Clock Domain Driver Cell Probe Type
Z - I modulator /sine_ampl_s (12) ck_p_IBUF_BUFG RAMB18E1 Data and Trigger -
g | b I modulator ffreq_trig_s dk_p_IBUF_BUFG FDRE Data and Trigger -
S

7
mn
+
-
Find Mets to Add... Mets to debug: 13

Figure 11.21: Nets to Debug dialog box

In the Nets to Debug dialog box, you have also an opportunity to add more nets or remove existing nets from the table.
Click Find Nets to Add... button to open Find Nets dialog box, see lllustration 11.22

L Find Nets (===

Find objects in the current design or device by filtering Td properties and objects.

Properties

MNAME * || contains - ||* +

[Regular expression Search hierarchically Display unique nets

Of objects: E]

Command: | show_objects -name NET_ONLY [get_nets -hierarchical -top_net_of_hierarchical_group -filter { NAME =~ "*"}]

Figure 11.22: Find Nets dialog box

Step 27. If you are satisfied with the debug net selection, click OK

Step 28. In the Nets to Debug dialog box, select target debug net, right-click on it and choose Select Clock Domain...
option to change the clock domain that will be used to sample value on the net, see lllustration 11.23

137

DEBUGGING DESIGN

¢ SetUp Debug &J

Nets to Debug

The nets below will be debugged with ILA cores. To add nets dick "Find Nets to Add™. You can also select nets in
the MNetlist or other windows, then drag them to the list or dick "Add Selected Nets™

O\ MName Clock Domain Driver Cell Probe Type

Z m“atorm_w_s (12) i ST b ——A Teimmme

= ‘o T i3 modulator freq_tria_s dk_p_IBUF_ELI Select Clock Domain... -
-

== Remove Nets

J.”;, Set Probe Type 3

m Export to Spreadsheet...

-

Find Nets to Add... Nets to debug: 13

Figure 11.23: Select Clock Domain option

Note: The Set Up Debug wizard attempts to automatically select the appropriate clock domain for the debug net by
searching the path for synchronous elements.

Step 29. In the Select Clock Domain dialog box modify clock domain as needed, see lllustration 11.24. Be aware that
each clock domain present in the table results in a separate ILA v6.2 core instance.

¢ Select Clock Domain l&]
The list below contains 'GLOBAL_CLOCK' nets,
To see other types of dock nets use the drop-down button. ‘

@, X = |GLOBALCLOCK w | [] Search hierarchically

Cancel

Figure 11.24: Select Clock Domain dialog box

Step 30. Select the same clock domain for freq_trig_s net, because signals captured by the same ILA core must have the
same clock domain, lllustration 11.25

138

11.1 Inserting ILA and VIO Cores into Design

¢ SetUp Debug &J
Nets to Debug
The nets below wil be debugged with ILA cores. To add nets dick "Find Mets to Add”. You can also select nets in
the Netlist or other windows, then drag them to the list or dick "Add Selected Nets™.
O | Name Clock Domain Driver Cell Probe Type
Z - I modulator /sine_ampl_s (12) ck_p_IBUF_BUFG RAMB18E1 Data and Trigger -
g | b I modulator ffreq_trig_s dk_p_IBUF_BUFG FDRE Data and Trigger -
S
7
mn
+
-
Find Mets to Add... Mets to debug: 13

Figure 11.25: Nets to Debug dialog box - with specified clock domains

Step 31. Ones you are satisfied with the debug net selection, click Next

Step 32. In the ILA Core Options dialog box, set Sample of data depth option to 2048 value, enable Capture control
option, leave all parameters unchanged and click Next, see lllustration 11.26

SetUp Debug &J
ILA Core Options
Choose features for the ILA debug cores. ‘

Sample of data depth: | 2043 -
Input pipe stages: o~
Trigger and Storage Settings

el ;

[Advanced trigger

Important. The Set Up

Figure 11.26: ILA Core Options dialog box

Debug wizard inserts one ILA core per clock domain!

The nets that were selected for debug are assigned automatically to the probe ports of the inserted ILA v6.2 cores. The
last wizard screen shows the core creation summary displaying the number of clocks found and ILA cores to be created
and/or removed, see lllustration 11.38

Step 33. If you are satisfied with the results, click Finish to insert and connect the ILA v6.2 cores in your synthesized
design netlist, see lllustration 11.27

139

DEBUGGING DESIGN

¢ SetUp Debug

e

VIVADO!

HLx Editions

& XILINX

ALL PROGRAMMABLE.

Set up Debug Summary

(i) 0 debug cores will be removed

(i) 1debug core will be created

(i) Found 1 dock

Open in Debug layout

To apply the above changes, dick Finish

Finish |[Cancel

Figure 11.27: Set up Debug Summary dialog box

Step 34. The debug nets are now assigned to the ILA v6.2 debug core, what you can see in the Debug window, see

lllustration 11.28

Debug

& Mame

5 -4 dba_hub |
=5 vio

4

Bk & G 4 B B

=% probel (1)
i@ Ch 0 (modulator ffreq_trig_s)
i Unassigned Debug Nets {0)

Debug Cores | Debug Nets

Driver Cel

BUFG

FDRE

FDRE

BUFG

RAMB13E1
RAMB13E1
RAMB13E1
RAMB13E1
RAMB13E1
RAMB13E1
RAMB13E1
RAMB13E1
RAMB13E1
RAMB18E1
RAMB13E1
RAMB13E1

FDRE

Driver PFin Probe Type

s}
Data and Trigger
DOADC[O]
DOADO[1]
DOADC[2]
DOADO[3]
DOADO[4]
DOADC[5]
DOADO[E]
DOADC[7]
DOADO[S]
DOADO[9]
DOADC[10]
DOADO[11]
Data and Trigger
Q

Figure 11.28: Debug window with assigned debug nets

The generated ILA core you can also find in the Netlist window, see lllustration 11.29

-

140

11.2 Debug a Design using Integrated Vivado Logic Analyzer

Metlist P 0O 2 X

B far E
b _rd ||

3] modulator_vio
-5 Nets (129]
-5 Leaf Cells (5]

£ Sources Y] Netlist

Figure 11.29: Netlist window with generated ILA core

Step 35. Implement your design with Run Implementation option from the Flow Navigator / Implementation (see Sub--
Chapter 10.2.2 Run Implementation)

Step 36. Generate bitstream file with Generate Bitstream option from the Flow Navigator / Program and Debug (see
Sub-Chapter 10.3 Generate Bitstream File)

Step 37. Program your ZedBoard device (see Sub-Chapter 10.4 Program Device)

Note: All the information about the Vivado Netlist Instantiation Debug Probing Flow, such as its design flow and cores, how
to generate, configure and instantiate some of them, as well as how to connect them with your existing design, you can
also find in the Lab 13: "Vivado Logic Analyzer" .

11.2 Debug a Design using Integrated Vivado Logic Analyzer

Ones you have the debug cores in your design, you can use the run time logic analyzer features to debug the design in
hardware. The Vivado logic analyzer feature is used to interact with new ILA, VIO, and JTAG-to-AX| Master debug cores
that are in your design.

To access the Vivado logic analyzer feature:

Step 1. In the Vivado Flow Navigator, click the Open Hardware Manager command in the Program and Debug section,
see lllustration 11.30

4 Program and Debug
% Bitstream Settings
‘Iﬂ Generate Bitstream

I] ub Open Hardware Manager I

Figure 11.30: Open Hardware Manager command

Step 2. Repeat steps from the Chapter 10.4 Program Device to program your FPGA device with the .bit file

Step 3. After programming the FPGA device with the .bit file that contains the ILA v6.2 and VIO v3.0 cores, the Hardware
window now shows the ILA and VIO cores that were detected after scanning the device, see lllustration 11.31

141

DEBUGGING DESIGN

Hardware

a5 |E

Name

= B localhost (1)
= @ xilinx_tcf/Digilent/210248445895 (2)

-8 arm_dap_0 (0)

i

Bl b

a1

hw_ila_1 {u_ila_0)
hw_vio_1
& XADC (System Monitor)

Status

Connected

Open

NfA

Programmed

O Idle

OFK - Outputs Reset

Figure 11.31: Hardware window showing the ILA and VIO debug cores

Step 4. The next step in design debugging process is to set up the ILA core. When the debug cores are detected
upon refreshing a hardware device, the default dashboard for each debug core is automatically opened. The default ILA
Dashboard can be seen on the lllustration 11.32

Sohw_ila_l X & hw_vies X

Settings -hw iz 1

Trigger Mode Settings

Trigger mode: | BASIC_OML

Capture Mode Settings

Dashboard Options

Capture mode:

DNumber of windows: 1

Trigger position in window: |0
General Settings

Refresh rate: |500

ALWAYS ~

Window data depth: 2048

ms

Full

Idle

Status - hw ila 1

*.’ Core status

i1 Tdie waiting For Trigger Post-Trigger

bp Capture status

Vindow 1 of 1 Window sample 0 of 2048 Total sample 0 of 2048
Idie Ide

Trigger Setup -hw ila 1

D

Waveform - hw ila 1

3| nastauside

[m ERESE

Capture Setup - hw ila 1 — O x

Figure 11.32: ILA Properties window

Every default dashboard contains windows relevant to the debug core the dashboard is created for. The default dashboard
created for the ILA debug core contains five windows, as can be seen on the previous illustration:

+ Settings window

 Status window

» Trigger Setup window
» Capture Setup window

* Waveform window

As you can see from the illustration above, ILA Dashboard is the central location for all status and control information of
the ILA core. You can use the ILA Dashboard to interact with the ILA core in several ways:

+ Use BASIC and ADVANCED trigger modes to trigger on various events in hardware

» Use ALLWAYS and BASIC capture modes to control filtering of the data to be captured

+ Set the data depth of the ILA capture window

142

11.2 Debug a Design using Integrated Vivado Logic Analyzer

« Set the trigger position to any sample within the capture window

» Monitor the trigger and capture status of the ILA debug core

Step 5. In the ILA Settings window, under the Capture Mode Settings, configure the following parameters:

+ set Capture mode to BASIC
» leave Window data depth on the 2048 value, and

« set Trigger position in window to 1000

Capture mode - selects what condition is evaluated before each sample is captured:

+ ALWAYS: store a data sample during a given clock cycle regardless of any capture conditions

» BASIC: store a data sample during a given clock cycle only if the capture condition evaluates "true"

Data Depth - sets the data depth of the ILA core captured data buffer. You can set the data depth to any power of two from
1 to the maximum data depth.

Trigger Position - sets the position of the trigger mark in the captured data buffer. You can set the trigger position to any
sample number in the captured data buffer. For instance, in the case of a captured data buffer that is 1024 sample deep:

» sample number 0 corresponds to the first (left- most) sample in the captured data buffer
» sample number 1023 corresponds to the last (right-most) sample in the captured data buffer
» sample numbers 511 and 512 correspond to the two "center" samples in the captured data buffer
Step 6. The next step will be to decide what ILA debug probes you want to participate in the trigger condition. Open

Debug Probes window by clicking Window -> Debug Probes option from the main Vivado IDE menu to see all the
probes corresponding to the ILA core.

Step 7. Go to the Debug Probes window, select the desired ILA debug probes (in our case it will be only the freq_trig_s
debug probe), right-click on it and choose Add Probes to Basic Capture Setup option, see lllustration 11.33.

Debug Probes — 0P = % hw_ila_1 x| & hw_vios X

™ A pis

Q el =—}

N o A E Settings - hw ila 1 -

odulator ffrec Trigger Mode Settings
% modulatorsine_ampl_s[| (&} Debug Probe Properties... Ctrl+E
hw_vio_1 >l

Run Trigger
[*l+ Run Trigger Immediate
Stop Trigger
Enable Auto Re-trigger

Edit Enumeration...

Rename...

Name 3
Add Probes to Waveform

Add Probes to Basic Trigger Setup

Add Probes to Basic Capture Setup

%1 Dashboard 3

Figure 11.33: Add Probes to Basic Capture Setup option

The another way to add debug probes to the Basic Capture Setup window is to drag and drop the probes from the Debug
Probes window to the Basic Capture Setup window.

Important: Only probes that are in the Basic Trigger Setup or Basic Capture Setup window participate in the trigger
condition. Any probes that are not in the window are set to "don’t care" values and are not used as part of the trigger
condition.

143

DEBUGGING DESIGN

Note: If you want to remove probes from the Basic Capture Setup window, select the probe, right-click on it and choose
Remove option.

The Debug Probes window contains information about the nets that you probed in your design using the ILA and/or VIO
cores. This debug probe information is extracted from your design and stored in a data file that typically has an .ltx file
extension. Normally, the ILA probe file is automatically created during implementation process. This file is automatically
associated with the FPGA hardware device if the probes file is called debug_nets.ltx and is found in the same directory as
the bitstream file that is associated with the device.

Step 8. Now, when the ILA debug probe freq_trig_s is in the Basic Capture Setup window, see lllustration 11.34, we can
create trigger condition and debug probe compare values.

AW) hw_vios X ?0Or x
Settings -l s 1 ? _ 0O % || stews-hwia 1 2 _ 0O X%
Trigger Mode Settings % Core status

2 Iricger mode: [BASIC_ON >l 1de Pre-Trigger | Waiting For Trigger | Post-Trigger Ful
& 4 Capture status
s
2 canture Mode sett Window 10f 1 Window sample 0 0f 2048 Total sample 0 of 2048
5| SeplreHode setngs 1de 1de Ide
a Capture mode: BASIC v
Number of windows: 1
Trigger Setup - 2 1 ? - O % || Capture Setwp -l ils 1 2 _ 0O X%
Window data depth: 048 -)
e O Name Operator Radix Value Port
Trigger position in window: (1,000 + + - - -
General Settings Press the wjm button to add probes =
Refresh rate: [500 s ED D
Waveform - hw ila 1 7 — 0O %
| 1A status:Ide
+ | Name

Figure 11.34: Basic Capture Setup window with the freq_trig_s debug probe

Step 9. In the Basic Capture Setup window, select the Operator cell in for a given ILA debug probe (freq_trig_s) to open
the Operator dialog box. Select == (equal) option, as it is shown on the lllustration 11.35.

Sohw ila_1 X 5 hw_vies X 70 =
Settings - hw iz 1 ? _ O % || Status-hwila 1 »_Ox
Trigger Mode Settings Wi Core status

g Tringer moe: | BASTC_ONLY Pl i Pre-Trigger | Waiting for Trigger | Post-Trigger Ful

S W Copture status

=

21l canture Mode sett Window 1 of 1 Window sample 0 of 2048 Total sample 0 of 2048

5| Soplure Hode Setings Idie Idie Ide

a Capture mode: BASIC ~

Number of windows: 1
Trigger Setup - a1 7 _ 0O % || Caplure Setup -l ila 3 ?_ 0%

Window data depth: 043~

noou 2R G0 2, Name Operator Radix Value Part

Triqger position in window: [1,000 -2047] + + - = =

General Settings Fress the s button to 2dd probes - 1= (ot equal)

Refresh rate: (500 ms Er ER
Waveform - hw ila 1 »_ O %
2| nastatus:ide

Figure 11.35: ILA probe Operator dialog box

The ILA probe trigger comparators are used to detect specific equality or inequality conditions on the probe inputs to the

144

11.2 Debug a Design using Integrated Vivado Logic Analyzer

ILA core. The trigger condition is the result of a Boolean "AND", "OR", "NAND", or "NOR" calculation of each of the ILA
probe trigger comparator results.

Step 10. Repeat the same procedure with the Radix and Value cells and set its parameters on the following way:

+ Radix: [B] (Binary)

» Value: R (0-to-1 transition)
As you can see from the illustration above, the Basic Capture Setup window contains three fields that you can configure:

» Operator: This is the comparison operator that you can set to the following values:

— == (equal)

— !=(not equal)

— < (less then)

— <= (less then or equal)
— > (greater than)

— >= (greater than or equal)
* Radix: This is the radix or base of the Value that you can set to the following values:

— [B] Binary

— [H] Hexadecimal

— [0] Octal

— [A] ASCII

— [U] Unsigned Decimal
— [S] signed Decimal

+ Value: This is the comparison value that will be compared (using the Operator) with the real-time on the nets(s) in
the design that are connected to the probe input of the ILA debug core. Depending on the radix settings, the Value
string is as follows:

— Binary
= 0 : logical zero
= 1 logical one
= X :don't care
*

: rising or low-to-high transition

*

: falling or high-to-low transition

W T 3 X =

*

: either low- to-high or high-to-low transitions
= N : no transition (current sample value is the same as the previousvalue)

Hexadecimal

= X : All bits corresponding to the value string character are "don’t care" values
» 0-9 : Values 0 through 9
= A-F :values 10 through 15

Octal

= X : All bits corresponding to the value string character are "don’t care" values
= 0-7 : Values 0 through 7

AScCll
= Any string made up of ASCII characters

Unsigned Decimal

= Any non-negative integer value

Signed Decimal
= Any integer value

145

DEBUGGING DESIGN

Step 11. After we set all the ILA core parameters, we can run or arming the ILA core trigger. We can run or arm the ILA
core trigger in two different modes:

* Run Trigger mode - arms the ILA core to detect the trigger event that is defined by the ILA core trigger condition
and probe compare values

To run this mode, click the Run Trigger button in the Hardware or Debug Probes window.
* Run Trigger Inmediate mode — arms the ILA core to trigger immediately regardless of the settings of the ILA core

trigger condition and probe compare values. This command is useful for capturing any values present at the probe
inputs of the ILA core.

To run this mode, click the Run Trigger Immediate button in the Hardware or Debug Probes window.

You can also arm the trigger by selecting and right-clicking on the ILA core (hw_ila_1) in the Hardware window and
selecting Run Trigger or Run Trigger Immediate option from the popup menu, see lllustration 11.36

Hardware — O =
ADTEE Bl bp
Narme Status
= § localhost (1) Connected
=@ & wilime_tcfyDigilent/210248445895 (2) Open
ﬁb arm_dap_0 (0] MfA

= wcFz020_1 (3 Programmed

OK - Outputs Re:

ILA Core Properties. .. Ctrl+E
Run Trigger

Run Trigger Immediate

Stop Trigger

Enable Auto Re-trigger

%) Dashboard 3

Export to Spreadsheet...

Figure 11.36: Run Trigger option

Step 12. Once the ILA core captured data has been uploaded to the Vivado IDE, it is displayed in the Waveform Viewer,
see lllustration 11.37

ST a1 %] © hw_vios x 7oL ox
Settings - hw ia 1 °_ O % || Stetus-hwis 1 > _Qx
Trigger Mode Settings & core sttus

g Triqqer mode: | BASIC_ONLY < 1de Pre-Trigger | Waiting for Trigger | Post-Trigger Ful

& bb Capture status

=

21l canture Mode sett Window 10f 1 Vindow sample 0 of 2048 Total sample 0 of 2048

5| SoplireHode setings 1de 1de Ide

& Capture mode: BASIC -

Number of windows: 1
Trigger Setup - hw =1 2 _ O X || Capture Setup-hw ils 1 > _Qx
Window data depth: 2048 v |[1 c
LA & Name Operator Radix Value Port
Trigger position in window: (1,000 | [0 -2047] + o moduiator freq_tig s == -B <R ~ probe1[o]
General Settings Press the =fs button to add probes.
Refresh rate: (500 ms Dy o
Waveform - hw iia_1 =
3 1A Status:Ide Fa
=+ Name 1,000
&
[
-
=
v

Figure 11.37: Content of the waveform window after trigger has been detected

146

11.2 Debug a Design using Integrated Vivado Logic Analyzer

Step 13. In the waveform window, select sine_ampl_s[11:0] probe port, right-click on it and select Radix -> Unsigned
Decimal option to convert binary value to unsigned decimal

Now, when you click Zoom Fit option your waveform window should look the same as it is shown on the Illustration 11.38,
where you can see debug probes and trigger position that we specified.

Sihwila 1 x| hw_vios X

Waveform -hw ila 1 — @ %

H| 1A status:Ide

1,000

Figure 11.38: Waveform window with debug probes and specified trigger position

Step 14. Zoom In few times and you can see the first results, see lllustration 11.39

Sohw_ila_l X & hw_vies X
Waveform - hw ila 1 g X

| LA Status:Ide

Dashboard Options

Updated at: 2016-May-

Figure 11.39: Zoomed in results in the waveform window

If you compare results obtained by the Vivado logic analyzer (lllustration 11.39) with the results obtained by the behavioral
simulation of the PWM module (lllustration 11.40), you can see that the signals sine_ampl_s and sine_out_s have identical
waveforms. This means that the implemented Modulator design in the FPGA is behaving in the same way as it was
predicted by the simulation.

Untitled 1% —Oax

Figure 11.40: Results of the behavioral simulation of the PWM module

Note: To get results of the behavioral simulation of the PWM module, repeat steps from the Sub-chapter 7.4 Simulating.

If you would like to compare more result values from the Vivado logic analyzer with the results from the behavioral simulation
of the PWM module, run the ILA core trigger as much as you need.

The ILA core can capture data samples when the core status is Pre-Trigger, Waiting for Trigger or Port-Trigger, see lllustra-
tion 11.35. As we already said, Capture mode selects what condition is evaluated before each sample is captured. Basic

147

DEBUGGING DESIGN

Capture mode stores a data sample during a given clock cycle only if the capture condition evaluates "true". We used
freq_trig_s signal to do the signal capturing.

Capture condition is a Boolean combination of events that is detected by match unit comparators that are attached to the
trigger ports of the core. Only when this combination is detected, data will be stored in the ILA’s buffer.

To be able to capture at least one period of the sine signal and to store it in the ILA buffer, we have to use capture condition
feature. After triggering the ILA core, in the waveform viewer change the Waveform Style from Digital to Analog and your
captured waveform should look like as the waveform on the lllustration 11.41

& hw_ila_l X & hw_vies X

Waveform - hw ila 1

30| 1A stausIde

Dashboard Options

Updated at: 2016-May-

Figure 11.41: Captured waveform of the sine signal

From the illustration above we can see that data depth that we have selected for the ILA buffer is too big for this example.
We can decrease the ILA buffer data depth from 131072 to 1024 and speed up the process of signal capturing. After
decreasing ILA buffer data depth, your captured waveform of the sine signal should look like as the waveform on the

lllustration 11.42.

hw ila 1 x & hw_vios X

Waveform -hw ila_1

H| 1A status:Ide
=+ | name . -
0 1,000

Dashboard Options

Figure 11.42: Captured waveform of the sine signal with 2048 ILA buffer data depth

Step 15. Go back to the Debug Probes window, select hw_vio_1, right-click on it and choose Add Probes to VIO Window
option, see lllustration 11.43

148

11.2 Debug a Design using Integrated Vivado Logic Analyzer

Debug Probes
QA=
=58 hw_ila_1

-_p} hw_vio_1
ol pm_s
Lolg swi_s

Figure 11.43: Add Probes to VIO Window option

‘iz modulatorffreq_trig_s

— 0O =

®hwila_1 x| &
hw wvio 1

L

k2 modulator fsine_ampl_s[11:0] g e
& VIO Core Properties. ..
|
|
Add Probes to VIO Window

&) Dashboard

Step 15. In the VIO Probes window you will see two 1-bit probes, pwm_s and sw0_s, see lllustration 11.45. pwm_s
probe is actually connected to the pwm_out output port of the Modulator module, as can be seen on the Figure 11.9 and
from the modulator_ila_vio_rtl.vhd source code. Similarly, sw0_s probe is connected to the swO0 input port of the Modulator

module.

Sihw_ila_1 x| 5 hw_vies

Z ID pwm_s [B] 1
g vlaswl_s [B]O -
|c

bl

'~—\ Mame Value Activity

$

Direction VIO
Input hw_vio_1
Cutput hw_vio_1

Figure 11.44: VIO Probes window

In the VIO Probes window, you can observe the rate of change of the pwm_s signal. You can change the frequency of the
pwm_s signal by changing the value of the sw0_s probe from 0 to 1 and from 1 to 0, see lllustration 11.45. The change in

frequency of the pwm_s signal can be also observed on the development board. Now, sw0_s probe has taken the role of
the switch sw0, present on the development board.

149

DEBUGGING DESIGN

g

S hw_ila_t x| &) hw_vies x | O =
hw_vio_1 —_ 0O =
0\ Mame Value Activity Direction VIO
= e pam_s [B] 0 4 Input hw_vio_1
T EE
+ [l 1
-—

Figure 11.45: Changing the sw0_s value

Note: All the information about debugging the design using the Vivado Logic Analyzer, such as how to configure and run
it and how to analyze your design using this tool, you can also find in the Lab 14: "Debug a Design using Integrated
Vivado Logic Analyzer".

1.3

Oscilloscope

An oscilloscope is a type of electronic instrument that creates a two- dimensional graph of one or more electrical potential
differences. Typically horizontal, or x-axis, represents function of time and vertical, or y-axis, represents voltage.

To see the pwm signal on the oscilloscope, follow these steps:

Step 1. Connect the USB Connector to the Starter Kit Board Connector and to the PC

Step 2. Connect the oscilloscope’s probe to some expansion connector on the Starter Kit Board (see lllustration 11.46)

Step 3. Power on the ZedBoard development board

Step 4. In the modulator_wrapper_rtl.vhd file made the following modifications:

» add a new pwm_osc output port in the modulator entity declaration:

Figure 11.46: Using oscilloscope for viewing PWM signal

150

11.3 Oscilloscope

pwm_osc: out std_logic;

« in the architecture add a new temporary signal declaration:

signal temp_out_s: std_logic;

* in the port map of the pwm module (pwmmodule) connect the pwm_out port with the temp_out_s signal:

pwm_out => temp_out_s;

« at the and of the architecture connect the pwm_out and pwm_osc ports with the temp_out_s signal:

pwm_out <= temp_out_s;
pwm_osc <= temp_out_s;

Now, the modulator_oscilloscope_rtl.vhd source file should look like the code below.

modulator_oscilloscope_rtl.vhd:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

library unisim;
use unisim.vcomponents.all;

entity modulator_oscilloscope is
generic(
—-— If some module is top, it needs to implement the differential clk buffer,
—— otherwise this variable will be overwritten by a upper hierarchy layer
this_module_is_top_g : module_is_top_t := yes;

—— Parameter that specifies major characteristics of the board that will be used
-— to implement the modulator design
R POSSible ChOiCeS: "Hlllx9ll"lv’ """Zedboard""", """ml605""", llllllkc7o5"ll|l’ """miCrOZed""", llnsociusu

nn

—— Adjust the modulator_pkg.vhd file to add more
board_name_g : string := """zedboard""";

—— User defined settings for the pwm design

design_setting_g : design_setting_t_rec := design_setting_c
)i
port (
clk_p : in std_logic; —-— differential input clock signal
clk_n : in std_logic; —— differential input clock signal
sw0 : in std_logic; —-- signal made for selecting frequency
pwm_out : out std_logic; —- pulse width modulated signal
pwm_osc : out std_logic -- pulse width modulated signal for the oscilloscope
- clk_en : out std_logic —— clock enable port used only for MicroZed board

)i
end entity;
architecture rtl of modulator_oscilloscope is

—- input clock signal
signal clk_in_s : std_logic;

—-- temporary signal

signal temp_out_s : std_logic;
-- cl_c = fclk/ (2"depth*2"width) - cl_c = 95.3674, fclk = 100 MHz
constant cl_c : real :=
get_board_info_f (board_name_g) .fclk/ (real ((2++design_setting_g.depth) * (2x+xdesign_setting_g.width)));
—-- div_factor_freghigh_c = (cl_c/f_high)+*2”width - threshold value of frequency a = 110592
constant div_factor_freghigh_c : integer :=
integer (cl_c/design_setting_g.f_high) * (2x*design_setting_g.width);
—— div_factor_freqlow_c = (cl_c/f_low)*2”width — threshold value of frequency b = 389120
constant div_factor_freglow_c : integer :=

integer (cl_c/design_setting_g.f_low) x (2«+xdesign_setting_g.width);
begin

—— in case of MicroZed board we must enable on-board clock generator
- clk_en <= '1";

—-— if module is top, it has to generate the differential clock buffer in case
—-— of a differential clock, otherwise it will get a single ended clock signal

151

DEBUGGING DESIGN

—— from the higher hierarchy

clk_buf_ if top : if (this_module_is_top_g = yes) generate
clk_buf : if (board_name_g.has_diff clk = yes) generate

ibufgds_inst : ibufgds
generic map (
ibuf_low_pwr => true,
—-— low power (true) vs. performance (false) setting for referenced I/O standards
iostandard => "default"
)

port map (
o => clk_in_s, -- clock buffer output
i => clk_p, —-— diff_p clock buffer input
ib => clk_n —-- diff_n clock buffer input

)i
end generate clk_buf;

no_clk_buf : if (board_name_g.has_diff_clk = no) generate
clk_in_s <= clk_p;
end generate no_clk_buf;

end generate clk_buf_if top;

not_top : if (this_module_is_top_g = no) generate
clk_in_s <= clk_p;
end generate not_top;

pwmmodulator : entity work.modulator —— modulator module instance
generic map (
design_setting_g => design_setting_g
)

port map (
clk_in => clk_in_s,
sw0 => sw0,

div_factor_freghigh => conv_std_logic_vector (div_factor_freqghigh_c, 32),
div_factor_freqlow => conv_std_logic_vector(div_factor_freqglow_c, 32),
pwm_out => temp_out_s

)i

pwm_out <= temp_out_s;
pwm_osc <= temp_out_s;

end;

Step 5. In the XDC file add location of the pwm_osc port. Location of the pwm_osc port should be chosen in such way to
allow easy access for the oscilloscope’s probe

Step 6. Return to the Flow Navigator and synthesize your design with Run Synthesis option from the Flow Navigator /
Synthesis (see Sub-chapter 6.5.2 Run Synthesis)

Step 7. Implement your design with Run Implementation option from the Flow Navigator / Implementation (see Sub--
Chapter 10.2.2 Run Implementation)

Step 8. Generate bitstream file with Generate Bitstream option from the Flow Navigator / Program and Debug (see
Sub-Chapter 10.3 Generate Bitstream File)

Step 10. Program your ZedBoard device (see Sub-Chapter 10.4 Program Device)

Step 4. Configure the oscilloscope, and if your oscilloscope’s settings are correct, you should see a pwm_out signal on the
display, see lllustration 11.47

152

11.3 Oscilloscope

Tel Al & Stop M Pos: 19.2Fms SAVESREC

&ction

Saving
Images

Select

Folder

Save
TEKQQOD.JPG

M 5.00ms
12-Aug-10 01:21

Figure 11.47: PWM signal measured by oscilloscope

Note: All the information about the Oscilloscope, how to use it and how to analyze your design on it, you can also find in
the Lab 15: "Oscilloscope" .

153

DEBUGGING DESIGN

154

Chapter 12

MODULATOR DESIGN TARGETING SOCIUS
DEVELOPMENT BOARD

12.1 Description

» Usage: This module will be used to target socius development board. Socius development board is a small, portable
electronic device that can be easily powered, developed by the "so-logic" company. This module will be composed
of two separate VHDL models:

— modulator_socius_rtl.vhd model and

— modulator_socius_clk_rtl.vhd model which will be the top model of the design

The main component of the socius development board is Zynq-7000 AP SoC. The Zyng-7000 family is based on the
Xilinx All Programmable SoC (AP SoC) architecture. The Zyng-7000 AP SoC is composed of two major functional
blocks: Processing System (PS) and Programmable Logic (PL). Since existing LEDs and switches on the socius
board are connected to the PS part of the Zynq FPGA, it would require programming PS part of the Zynq FPGA,
which is not topic of this tutorial. It is the main topic in the "Basic Embedded System Design" tutorial.

In our design we will program PL part of the Zynq FPGA with modulator_socius_rtl.vhd model. PS part is also
required to generate clock signal for the Modulator design, since the only reference clock source on the socius board
is connected to the PS part of the Zynq FPGA. Properly configured PS part is described in the socius_xz_lab_ps._-
bd component. Both of these components, modulator_socius and socius_xz_lab_ps_bd, will be contained in the
modulator_socius_clk_rtl.vhd model, see block diagram below.

 Block diagram:

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

modulator_socius_clk_rtl.vhd

socius_xz_lab_ps bd component Y

| fed_io_ps ok

ps_clk_i
pl_clkd |

| modulator_socius component

modulator_rtl.vhd |

| sull_s pwm_s

| Wl pwTT_out |
|
| const div_factor_freghigh(31:0] l
const div_factor_freqlow{31:0] |
|
|
| p| cli_in

| measurement_counter_p

A

coum_s
count_s

ila_core

Y

ol probed

probe0[31:0] e

vio_core J
clk

Ld

A

A

Figure 12.1: Modulator block diagram for socius development board

* Input ports:
— ps_clk_i: input clock signal from socius development board

* File name: modulator_socius_clk_rtl.vhd

12.2 Creating Project

Our first step will be to create new project. The following steps describe how to create ARM-based hardware platform for
socius development board:

Step 1. Launch the Vivado software:

Select Start -> All Programs -> Xilinx Design Tools -> Vivado 2016.4 -> Vivado 2016.4 and the Vivado Getting
Started page will appear

156

Step 3. In the Create a New Vivado Project dialog box, click Next and the wizard will guide you through the process of a
new project creation

12.2 Creating Project

Step 2. On the Getting Started page, choose Create New Project option

Step 4. In the Project Name dialog box specify the name and the location of the new project:

« In the Project name field type modulator_socius as the name of the project

+ In the Project location field specify the location where project data will be stored

» Leave Create project subdirectory option enabled and

« Click Next

Step 5. In the Project Type dialog box choose RTL Project option, select Do not specify sources at this time and click
Next

Step 6. In the Default Part dialog box select Parts option and set the following parameters as it is shown on the lllustration
12.2

4 MNew Project @
Default Part
Choose a default Xilinx part or board for your project. This can be changed later. '
Select: | @@ Parts | @ Boards
4 Filter
Product category: | All - Speed grade: | -1 b
Family: Zyng-7000 - Temp grade: | All Remaining -
Package: clg400 -
Reset All Filters
Search: -
1fO Pin Block N GTPE2 GTXEZ Gb Available
part Count RAMs DSPs EREkrS Transceivers Transceivers Transceivers IO0Bs
i xc72007sdg400-1 400 50 [+1:7 28800 0 0 0 100
i xc72010clg400-1 400 &0 80 35200 0 0 0 100
i %c7z014sdg400-1 400 107 170 81200 [u] [u] [u] 125
00 Jio o Jueswo o oo fios |
] i1 - +

Figure 12.2: Default Part dialog box

Step 7. Click Next

Step 8. In the New Project Summary dialog box click Finish if you are satisfied with the summary of your project. If you
are not satisfied, you can go back as much as necessary to correct all the questionable issues.

After we finished with the new project creation, in a few seconds Vivado IDE Viewing Environment will appear, see lllustra-
tion 12.3.

157

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

4 modulator_socius - [E:/Projects/Vivado/proba/Vivada-2015.4/SOCIUS/modulator_sacius/modulator_socius.xpr] - Vivado 2015.4 =RECHL X
Fie Edit Fow Tools Wndow Llayout View Help Search commands
3| uh P Db Y H K T G |Soefautlayout P & 2N Ready
Flow Navigator « | Project Manager - modulator_socius X
Qe Sources — O x . Project Summary X O x
AT gkt B F=
4 Project Manager st gt E =3 | Project Settings Edt %
Design Saurces = oroject st
5 project settngs G ot roject name: modulator_socius
&% Add Sources 5[Simulation Saurces Projectlocation: E:/Projectsjivado/proba/Vivado-2015.4/S0CIUS/moduiator_socius
= 1sim_1 ily: P
§ Lonsusae Temiates = Product family: Zyng-7000
i d £ 72020clg400-
v cotion Project part: XC72020dg400-1
Top module name: Not defined
4 IP Integrator Targetlanguage: VHOL
Create Bock Design Simulator language: Mixed
3 ok Desi
Open Block Design Synthesis % Implementation IS
Generate Block Design
= S Status: Motstarted Status: Mot started
Hierarchy | Libraries | Compile Order
4 simulation = — Messages: Mo errors or warnings Messages: Na errors or warnings
S0 Y Te e
43 Simuation Setings ds Sources |V Tempates Part; Xc72020dg400-1 Part: Xc72020dg400-1
(@) Run Smulation Properties _ o x Strategy: Vivado Synthesis Defaults Strategy: Vivado Implementation Defaults
?;;, Incremental compile: Mone
4 RTL Analysis
{# Elaboration Setfings DRC Violations A | Timing 2
> [@% Open Elaborated Design
Run Implementation to ses DRC resuls Run Implementation to sz fiming resuits
4 Synthesis
4 Synthesis Settings Utilization % | Power %
@ Run Synthesis
. v sis b tion results ion to see power results
> @ Open Synthesized Design Run Synthesi Run Implementation
4 Implementation
5 Implementation Settings T o ox
[» Run Implementation o)
X Name Constraints Status WNS TNS WHS THS TPWS FaledRoutes LUT FF BRAM URAM DSP Start Elaps:
> B 5
B Open Implemented Design el — constrs_t | Notstarted
eae = impl_1 constrs_1 Mot started
4 Program and Debug =
5 Bitstream Settings
¥ Generate Bitstream
7 i »
> % Open Hardware Manager -
5 Td Console | (7 Messages | [Log | |2 Reports' 3 Design Runs

Figure 12.3: Vivado IDE Viewing Environment with created modulator_socius project

12.3 Creating Module

As we already said, in our design we will program PL part of the Zynq FPGA with modulator_socius_rtl.vhd model. Since
existing LEDs and switches on the socius board are connected to the PS part of the Zynq FPGA, we have to instantiate
Integrated Logic Analyzer (ILA) and Virtual Input/Output (VIO) cores into our design. All the information about ILA and VIO
cores you can find in the Chapter 11 "Debugging Design" of this tutorial.

Both, ILA and VIO cores will be instantiated into our design, where VIO core will be instantiated using the "HDL Instantiation
Debug Probing Flow" and ILA core using the "Netlist Insertion Debug Probing Flow", because netlist insertion debug
probing flow can be used to insert ILA cores only. All these information you can also find in the Chapter 11 "Debugging
Design" of this tutorial where both flows are explained in detail. ILA core will be used to monitor PWM signal width change
and VIO core will be used to replace on-board switch used for changing output signal frequency.

Step 1. Instantiate VIO core into our design using steps for VIO core instantiation, explained in the Sub-chapter 11.1
"Inserting ILA and VIO Cores into Design" of this tutorial. Use the same core customizations as it is explained in this
sub-chapter:

* In the VIO (Virtual Input/Output) (3.0) window, enter vio_core_name (vio_core) in the Component Name field

* In the General Options tab, leave Input Probe Count to be 1 and Output Probe Count also to be 1, because we
will need one input probe for pwm_out signal and one output probe for sw0 signal

 In the PROBE_IN Ports(0..0) tab leave Probe Width of the PROBE_INO Probe Port to be 1, because our pwm_out
signal is 1 bit signal

+ In the PROBE_OUT Ports(0..0) tab, leave Probe Width of the PROBE_OUTO Probe Port to be 1, because our sw0
signal is also 1 bit signal

+ Click OK

After VIO core generation, your VIO core should appear in the Sources window, see lllustration 12.4

158

12.3 Creating Module

Sources T 0O %
O 559 pba |

M g = 3 O%T f E

=11 Design Sources (1)

i [-LFE vio_core (vio_core, xci)

+ | Constraints
-2 7 Simulation Sources (1)
- gim_1 (1)

Hierarchy | IF Sources | Libraries | Compile Order

Figure 12.4: Source tab with generated VIO core

ILA core will be instantiated into our design using "Netlist Insertion Debug Probing Flow", explained in the Sub-chapter 11.1
of this tutorial. We will use mark_debug attribute to add debug nets (pwm_s and count_s) to our HDL file (modulator_-
socius_rtl.vhd). As we already said ILA core will be used to monitor PWM signal width change, where pwm_s signal will
represent PWM signal and count_s will measure the duration of the high pulse of the PWM signal.

In our design despite ILA and VIO cores, we will also have to instantiate Modulator module and counter which will measure
the duration of the PWM pulse, see Figure 12.1. Both of these instances, plus ILA and VIO core instances will be included
within modulator_socius_rtl.vhd VHDL model.

Step 2. To include all the necessary Modulator module source files (frequency _trigger_rt.vhd, counter_rtl.vhd, modulator_-
pkg.vhd, sine_rtl.vhd, sine_top _rtl.vhd, pwm_rtl.vhd and modulator _rtl.vhd) into our design, in the Flow Navigator, use Add
Sources command to add the files and after adding your Sources window should look like as it is shown on the lllustration

12.5.

Sources P
™ G p .
aTsiwae BE
=|-{= Design Sources 3)
¢fis% modulator - ¢l (mo
sine_top -ril (=
i LR vio_core (v
+-I5 Constraints
=i Simulation Sources (3
411 sim_1 (3)

Hierarchy | IP Sources | Libraries | Compile Order

Figure 12.5: Source tab with generated VIO core and Modulator module

Step 3. To create and add modulator_socius_rtl.vhd and modulator_socius_clk_rtl.vhd source files use steps for
creating modules, explained in Sub-chapter 2.4.1 Creating a Module Using Vivado Text Editor of this tutorial. Content
of the source files you can find in the text below.

modulator_socius_rtl.vhd VHDL model.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

library work;
use work.modulator_pkg.all;

entity modulator_socius is

generic(
—— User defined settings the pwm design
board_setting_g : board_setting_t_rec := socius_c;
design_setting_g : design_setting_t_rec := design_setting_c
)i

port (
clk_in : in std_logic

)i
end entity;

architecture structural of modulator_socius is

159

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

-—- Between architecture and begin is declaration area

types,

-— Everything declared here will be visible in the whole architecture

—— MODULATOR SECTION STARTS!
attribute mark_debug string;
attribute keep string;

signal pwm_s
signal swO_s
signal count_s

std_logic_vector
std_logic_vector
std_logic_vector

(0 downto 0);
(0 downto 0);
(31 downto 0)

=>

(others r0");

attribute mark_debug of pwm_s
attribute mark_debug of count_s

signal is "true";
signal is "true";

constant cl_c real :=
design_setting_g.width)));

constant div_factor_freghigh_c integer :=
width) ;

constant div_factor_freglow_c integer :=
width);

—— vio_core component definition
component vio_core
port (
clk
probe_in0
probe_out0

in std_logic;
in std_logic_vector
out std_logic_vector

(0 downto 0);
(0 downto 0)
)i
end component;

begin

end

—— modulator module instance
modulator_i: entity work.modulator (rtl)
generic map (
design_setting_g => design_setting_g

)

port map (
clk_in => clk_in,
sw0 => sw0_s (0),

div_factor_freghigh => conv_std_logic_vector (div_factor_freghigh_c,

div_factor_freglow => conv_std_logic_vector (div_factor_freglow_c,
pwm_out => pwm_s (0)
)i

—-— vio_core component instance

vio_1i: vio_core
port map (
clk => clk_in,
probe_in0 => pwm_s,
probe_out0 => swO_s

)i

—— Counter for measuring the duration of the high pulse of the PWM signal
measurement_counter_p: process

begin
wait until rising_edge(clk_in);
if (pwm_s(0) = "0’) then
count_s <= (others => ’'0");
else
count_s <= count_s + 1;
end if;

end process;

architecture;

signals and constants

board_setting_g.fclk/ (real ((2x+*design_setting_g.depth) * (2x%
integer (cl_c/design_setting_g.f_high) * (2x*design_setting_g.

integer (cl_c/design_setting_g.f_low) » (2xxdesign_setting_g.

32),
32),

PS part of the Zynq FPGA is also required to generate clock signal for the Modulator_socius design. Properly configured
PS part is described in the socius_xz_lab_ps_bd component of the modulator_socius_clk_rtl.vhd VHDL model. The
complete modulator_socius_clk_rtl.vhd VHDL model you can find in the text below:

modulator_socius_clk_rtl.vhd VHDL model:

library ieee;

use ieee.std_logic_1164.all;

entity socius_clk_top is

port (
—-— expansion top slot

pl_io_t_io_p_io inout std_logic_vector (18 downto 0);
pl_io_t_io_n_io inout std_logic_vector (18 downto 0);
—— expansion main slot

pl_io_m io_p_io inout std_logic_vector (18 downto 0);
pl_io_m io_n_io : inout std_logic_vector (18 downto 0);
—- expansion bottom slot

pl_io_b_io_p_io : inout std_logic_vector (18 downto 0);
pl_io_b_io_n_io inout std_logic_vector (18 downto 0);

160

12.3 Creating Module

-— ps io
ps_ddr3_addr
ps_ddr3_ba
ps_ddr3_cas_n
ps_ddr3_ck_n
ps_ddr3_ck_p
ps_ddr3_cke
ps_ddr3_cs_n
ps_ddr3_dm
ps_ddr3_dg
ps_ddr3_dgs_n
ps_ddr3_dgs_p
ps_ddr3_odt
ps_ddr3_ras_n
ps_ddr3_reset_n
ps_ddr3_we_n
ps_ddr_vrn
ps_ddr_vrp
ps_clk_1i
ps_por_n_i
ps_srst_n_1i
ps_phy_mdc_io
ps_phy_mdio_io
ps_phy_rx_clk_io
ps_phy_rx_ctrl_io
ps_phy_rxd_io
ps_phy_tx_clk_io
ps_phy_tx_ctrl_io
ps_phy_txd_io
ps_i2c_scl_io
ps_i2c_sda_io
ps_led_error_n_io
ps_led_front_n_io
ps_led_sdcard_n_io
ps_sw0O_a_io
ps_sw0_b_io
ps_swl_a_io
ps_swl_b_io
ps_sw2_a_io
ps_sw2_b_io
ps_sw3_a_io
ps_sw3_b_io
ps_uart_rx_io
ps_uart_tx_io
ps_gspi_cs_n_io
ps_gspi_data_io
ps_gspi_clk_io
ps_sdio_clk_io
ps_sdio_cmd_io
ps_sdio_data_io
ps_usb_clk_io
ps_usb_data_io
ps_usb_dir_io
ps_usb_nxt_io
ps_usb_stp_io
)i
end entity;

inout std_logic_vector (14 downto 0);
inout std_logic_vector (2 downto 0);

inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;

inout std_logic_vector(3 downto
inout std_logic_vector (31 downto
inout std_logic_vector(3 downto
inout std_logic_vector(3 downto

inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;

0);
0);
0);
0);

inout std_logic_vector (3 downto 0);

inout std_logic;
inout std_logic;

inout std_logic_vector (3 downto 0);

inout std_logic;
inout std_logic;
inout std_logic;

inout std_logic_vector (1l downto 0);

inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;
inout std_logic;

inout std_logic_vector (3 downto 0);

inout std_logic;
inout std_logic;
inout std_logic;

inout std_logic_vector (3 downto 0);

inout std_logic;

inout std_logic_vector (7 downto 0);

inout std_logic;
inout std_logic;
inout std_logic

architecture structural of socius_clk_top is

component socius_xz_lab_ps_bd is

port (
pl_clkO
pl_clkl
pl_clk2
pl_clk3
pl_int_bot
pl_int_mid
pl_int_soc
pl_int_top
pl_reset_n
ddr3_cas_n
ddr3_cke
ddr3_ck_n
ddr3_ck_p
ddr3_cs_n
ddr3_reset_n
ddr3_odt
ddr3_ras_n
ddr3_we_n
ddr3_ba
ddr3_addr
ddr3_dm
ddr3_dqgq
ddr3_dgs_n
ddr3_dgs_p
fixed_io_mio
fixed_io_ddr_vrn
fixed_io_ddr_vrp
fixed_io_ps_srstb
fixed_io_ps_clk

out STD_LOGIC;

out STD_LOGIC;

out STD_LOGIC;

out STD_LOGIC;

in STD_LOGIC_VECTOR
in STD_LOGIC_VECTOR
in STD_LOGIC_VECTOR
in STD_LOGIC_VECTOR
out STD_LOGIC;
inout STD_LOGIC;
inout STD_LOGIC;
inout STD_LOGIC;
inout STD_LOGIC;
inout STD_LOGIC;
inout STD_LOGIC;
inout STD_LOGIC;
inout STD_LOGIC;
inout STD_LOGIC;

inout STD_LOGIC_VECTOR
inout STD_LOGIC_VECTOR
inout STD_LOGIC_VECTOR
inout STD_LOGIC_VECTOR
inout STD_LOGIC_VECTOR
inout STD_LOGIC_VECTOR
inout STD_LOGIC_VECTOR

inout STD_LOGIC;
inout STD_LOGIC;
inout STD_LOGIC;
inout STD_LOGIC;

oo oo

to
to
to
to

o o oo

2 downto 0
14 downto O
3 downto 0
31 downto 0
3 downto 0O
3 downto O
53 downto 0

)

)

);

)

)
)

)

7

7

7

161

fixed_io_ps_porb
sdio_0O_cdn
usbind_0_port_indctl
usbind_0_vbus_pwrselect
usbind_0_vbus_pwrfault
pl _iic_1_sda_i
pl_iic_1_sda_o
pl_iic_1_sda_t
pl_iic_1_scl_ i
pl_iic_1_scl_ o
pl_iic_1_scl_t
pl_spi_O_sck_1i
pl_spi_0O_sck_o
pl_spi_0O_sck_t
pl_spi_0_io0_1i
pl_spi_0_io0O_o
pl_spi_0_io0_t
pl_spi_0_iol_ i
pl_spi_0_iol_o
pl_spi_O_iol_t
pl_spi_O_ss_1i

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

inout STD_LOGIC;
in STD_LOGIC;
out STD_LOGIC_VECTOR (
out STD_LOGIC;
in STD_LOGIC;
in STD_LOGIC;
out STD_LOGIC;
out STD_LOGIC;
in STD_LOGIC;
out STD_LOGIC;
out STD_LOGIC;
in STD_LOGIC;
out STD_LOGIC;
out STD_LOGIC;
in STD_LOGIC;
out STD_LOGIC;
out STD_LOGIC;
in STD_LOGIC;
out STD_LOGIC;
out STD_LOGIC;
in STD_LOGIC;

1 downto 0);

pl_spi_0O_ss_o out STD_LOGIC;
pl_spi_0O_ssl_o out STD_LOGIC;
pl_spi_0_ss2_o out STD_LOGIC;
pl_spi_O_ss_t out STD_LOGIC;
pl_uart_1_txd out STD_LOGIC;

in STD_LOGIC;
out STD_LOGIC_VECTOR
out STD_LOGIC;
out STD_LOGIC_VECTOR
in STD_LOGIC_VECTOR (

pl_uart_1_rxd
pl_bram_bot_addr
pl_bram_bot_clk
pl_bram_bot_din
pl_bram_bot_dout

(15 downto 0);

(31 downto 0);
31 downto 0);

pl_bram_bot_en out STD_LOGIC;
pl_bram_bot_rst out STD_LOGIC;
pl_bram_bot_we out STD_LOGIC_VECTOR (3 downto 0);

pl_bram_mid_addr out 15 downto 0
pl_bram mid_clk
pl_bram mid_din

pl_bram mid_dout

STD_LOGIC_VECTOR (
out STD_LOGIC;

out STD_LOGIC_VECTOR (
in STD_LOGIC_VECTOR (

)i

31 downto 0
31 downto 0

)i
)i

pl_bram mid_en out STD_LOGIC;
pl_bram _mid_rst out STD_LOGIC;
pl_bram mid_we out STD_LOGIC_VECTOR (3 downto 0);

pl_bram_soc_addr out 15 downto 0
pl_bram_soc_clk
pl_bram_soc_din

pl_bram_soc_dout

STD_LOGIC_VECTOR (
out STD_LOGIC;

out STD_LOGIC_VECTOR (
in STD_LOGIC_VECTOR (

)i

31 downto 0);
31 downto 0);

pl_bram_soc_en out STD_LOGIC;
pl_bram_soc_rst out STD_LOGIC;
pl_bram_soc_we out STD_LOGIC_VECTOR (3 downto 0);

pl_bram_top_addr out 15 downto 0
pl_bram_top_clk
pl_bram_ top_din
pl_bram_top_dout
pl_bram_top_en
pl_bram_top_rst
pl_bram_top_we

)i

end component socius_xz_lab_ps_bd;

STD_LOGIC_VECTOR (
out STD_LOGIC;

out STD_LOGIC_VECTOR (
in STD_LOGIC_VECTOR (
out STD_LOGIC;

out STD_LOGIC;

out STD_LOGIC_VECTOR

)i

31 downto 0
31 downto 0

)i
)i

(3 downto 0)

—-— Between architecture and begin is declaration area for types, signals and constants
-— Everything declared here will be visible in the whole architecture

—-bram register interface soc

signal pl_bram_soc_addr_s std_logic_vector (15 downto 0);
signal pl_bram_soc_din_s std_logic_vector (31 downto 0);
signal pl_bram_soc_dout_s std_logic_vector (31 downto 0);
signal pl_bram_soc_en_s std_logic;

signal pl_bram_soc_rst_s std_logic;

signal pl_bram_soc_we_s std_logic_vector (3 downto 0);
——bram register interface mid

signal pl_bram mid_addr_s std_logic_vector (15 downto 0);
signal pl_bram_mid_din_s std_logic_vector (31 downto 0);
signal pl_bram mid_dout_s std_logic_vector (31 downto 0);
signal pl_bram mid_en_s std_logic;

signal pl_bram mid_rst_s std_logic;

signal pl_bram mid_we_s std_logic_vector (3 downto 0);
—-bram register interface top

signal pl_bram_top_addr_s std_logic_vector (15 downto 0);
signal pl_bram top_din_s std_logic_vector (31 downto 0);
signal pl_bram_top_dout_s std_logic_vector (31 downto 0);
signal pl_bram_top_en_s std_logic;

signal pl_bram_top_rst_s std_logic;

signal pl_bram top_we_s std_logic_vector (3 downto 0);
——bram register interface bot

signal pl_bram_bot_addr_s std_logic_vector (15 downto 0);
signal pl_bram_bot_din_s std_logic_vector (31 downto O0);
signal pl_bram_bot_dout_s std_logic_vector (31 downto 0);
signal pl_bram bot_en_s std_logic;

signal pl_bram bot_rst_s std_logic;

signal pl_bram bot_we_s std_logic_vector (3 downto 0);

162

12.3 Creating Module

—— declaration for fixed signal PL to PS
: std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

signal pl_clkO_s
signal pl_clkl_s
signal pl_clk2_s
signal pl_clk3_s

signal pl_reset_n_s

-- ps signals
signal ps_mio_s

std_logic_vector (53 downto 0);

--uart, i2c, spi signals

signal uart_rxd_s

signal uart_txd_s

signal spi_io0_i_s
signal spi_io0_o_s
signal spi_io0_t_s
signal spi_iol_i_s
signal spi_iol_o_s
signal spi_iol_t_s
signal spi_sck_i_s
signal spi_sck_o_s
signal spi_sck_t_s
signal spi_ssl_o_s
signal spi_ss2_o_s
signal spi_ss_i_s

signal spi_ss_o_s

signal spi_ss_t_s

signal iic_scl_i_s
signal iic_scl_o_s
signal iic_scl_t_s
signal iic_sda_i_s
signal iic_sda_o_s
signal iic_sda_t_s

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

——interrupt signals to ps

signal pl_int_soc_s
signal pl_int_top_s
signal pl_int_mid_s
signal pl_int_bot_s

begin

——- modulator module instance

modulator_i: entity work.modulator_socius (structural)

port map (

clk_in
)i

std_logic;
std_logic;
std_logic;
std_logic;

=>

—- instance of processor system PS

socius_xz_lab_ps_bd_i:

port map (

ddr3_addr
ddr3_ba
ddr3_cas_n
ddr3_ck_n
ddr3_ck_p
ddr3_cke
ddr3_cs_n
ddr3_dm

ddr3_dqg
ddr3_dgs_n
ddr3_dgs_p
ddr3_odt
ddr3_ras_n
ddr3_reset_n
ddr3_we_n
fixed_io_ddr_vrn
fixed_io_ddr_vrp
fixed_io_mio
fixed_io_ps_clk
fixed_io_ps_porb

fixed_io_ps_srstb

pl_uart_1_rxd

pl_uart_1_txd

pl_spi_0_io0_1i
pl_spi_0_io0_o
pl_spi_0_ioO_t
pl_spi_0_iol_ i
pl_spi_0_iol_o
pl_spi_0_iol_t
pl_spi_0O_sck_i
pl_spi_0_sck_o
pl_spi_0_sck_t
pl_spi_O_ssl_o
pl_spi_0O_ss2_o
pl_spi_O_ss_i

pl_spi_0_ss_o

pl_spi_0_ss_t

pl_iic_1 scl_ i

pl_clkO_s

component socius_xz_lab_ps_bd

ps_ddr3_addr,
ps_ddr3_ba,
ps_ddr3_cas_n,
ps_ddr3_ck_n,
ps_ddr3_ck_p,
ps_ddr3_cke,
ps_ddr3_cs_n,
ps_ddr3_dm,
ps_ddr3_dq,
ps_ddr3_dgs_n,
ps_ddr3_dgs_p,
ps_ddr3_odt,
ps_ddr3_ras_n,
ps_ddr3_reset_n,
ps_ddr3_we_n,
ps_ddr_vrn,
ps_ddr_vrp,
ps_mio_s,
ps_clk_i,
ps_por_n_i,
ps_srst_n_i,
uart_rxd_s,
uart_txd_s,
spi_io0_i_s,
spi_io0_o_s,
spi_io0_t_s,
spi_iol_i_s,
spi_iol_o_s,
spi_iol_t_s,
spi_sck_1i_s,
spi_sck_o_s,
spi_sck_t_s,
spi_ssl_o_s,
spi_ss2_o_s,
spi_ss_i_s,
spi_ss_o_s,
spi_ss_t_s,
iic_scl_i_s,

163

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

pl_iic_1_scl_o
pl_iic_1_scl_t

pl_iic_1 sda_i

pl_iic_1 _sda_o
pl_iic_1_sda_t
sdio_0_cdn
usbind_0_port_indctl
usbind_0_vbus_pwrfault
usbind_0_vbus_pwrselect
pl_bram_bot_addr
pl_bram_bot_clk
pl_bram_bot_din
pl_bram_bot_dout
pl_bram_bot_en

pl_bram_ bot_rst
pl_bram_bot_we
pl_bram_mid_addr
pl_bram mid_clk
pl_bram_mid_din
pl_bram_mid_dout
pl_bram _mid_en
pl_bram_mid_rst
pl_bram_mid_we
pl_bram_soc_addr
pl_bram_soc_clk
pl_bram_soc_din
pl_bram_soc_dout
pl_bram_soc_en
pl_bram_soc_rst
pl_bram_soc_we
pl_bram_top_addr
pl_bram_top_clk
pl_bram_top_din
pl_bram_top_dout
pl_bram_top_en
pl_bram_top_rst
pl_bram_top_we

pl_clkO
pl_clkl
pl_clk2
pl_clk3
pl_reset_n
pl_int_soc
pl_int_top
pl_int_mid
pl_int_bot
)i

—— assignment of MIO to

ps_mio_s (53
ps_mio_s (52
ps_mio_s (51
ps_mio_s (50
ps_mio_s (49
ps_mio_s (48 downto 47
ps_mio_s (46)

ps_mio_s (45 downto 42)
ps_mio_s (41)
ps_mio_s (40)
ps_mio_s (39)
ps_mio_s (38)
ps_mio_s (37)
ps_mio_s (36)
ps_mio_s (35)
ps_mio_s (34)
ps_mio_s (33)
ps_mio_s (32)
ps_mio_s (31)
ps_mio_s (30)
ps_mio_s (29)
ps_mio_s (28)
ps_mio_s (27)
ps_mio_s (26 downto 23
ps_mio_s (22)

ps_mio_s (21)

ps_mio_s (20 downto 17)
ps_mio_s (16)
ps_mio_s (15)
ps_mio_s (14)
ps_mio_s (13)
ps_mio_s (12)
ps_mio_s (11)
ps_mio_s (10)
ps_mio_s (9)

ps_mio_s (8)

ps_mio_s (7)

ps_mio_s (6)

ps_mio_s (5 downto 2)
ps_mio_s (1)

ps_mio_s (0)

=> iic_scl_o_s,
=> iic_scl_t_s,
=> iic_sda_i_s,
=> iic_sda_o_s,
=> iic_sda_t_s,

=>'1", —— pl_sd_cd_n_i,

=> open,

=>'1", -- pl_usb_fault_n_i,
=> open,

=> pl_bram_bot_addr_s,

=> open,

=> pl_bram _bot_din_s,
=> pl_bram_bot_dout_s,
=> pl_bram_bot_en_s,
=> pl_bram bot_rst_s,
=> pl_bram_bot_we_s,
=> pl_bram mid_addr_s,
=> open,

=> pl_bram_mid_din_s,
=> pl_bram_mid_dout_s,
=> pl_bram mid_en_s,
=> pl_bram_mid_rst_s,
=> pl_bram_mid_we_s,
=> pl_bram_soc_addr_s,
=> open,

=> pl_bram_soc_din_s,
=> pl_bram_soc_dout_s,
=> pl_bram_soc_en_s,
=> pl_bram_soc_rst_s,
=> pl_bram_soc_we_s,
=> pl_bram_top_addr_s,
=> open,

=> pl_bram_top_din_s,
=> pl_bram_top_dout_s,
=> pl_bram_top_en_s,
=> pl_bram_top_rst_s,
=> pl_bram_top_we_s,
=> pl_clkO_s,

=> pl_clkl_s,

=> pl_clk2_s,

=> pl_clk3_s,

=> pl_reset_n_s,

=> pl_int_soc_s,

=> pl_int_top_s,

=> pl_int_mid_s,

=> pl_int_bot_s

board names

<= ps_phy_mdio_io;

<= ps_phy_mdc_io;

<= ps_uart_tx_io;

<= ps_uart_rx_io;

<= ps_led_error_n_io;

<= ps_led_front_n_io (1l downto 0);
<= ps_led_sdcard_n_io;

<= ps_sdio_data_io;

<= ps_sdio_cmd_io;

<= ps_sdio_clk_io;

<= ps_usb_data_io(7);

<= ps_usb_data_io (6);

<= ps_usb_data_io(5);

<= ps_usb_clk_io;
<= ps_usb_data_io(
<= ps_usb_data_io(
<= ps_usb_data_io(
<= ps_usb_data_io(
<= ps_usb_nxt_io;
<= ps_usb_stp_io;
<= ps_usb_dir_io;
<= ps_usb_data_io (4);
<= ps_phy_rx_ctrl_io;
<= ps_phy_rxd_io;

<= ps_phy_rx_clk_io;
<= ps_phy_tx_ctrl_io;
<= ps_phy_txd_io;

<= ps_phy_tx_clk_io;
<= ps_i2c_sda_io;

<= ps_i2c_scl_io;

<= ps_sw3_b_io;

<= ps_sw3_a_io;

<= ps_sw2_b_io;

<= ps_sw2_a_io;

<= ps_swl_b_io;

<= ps_swl_a_io;

<= ps_sw0_b_io;

<= ps_gspi_clk_io;

<= ps_gspi_data_io;
<= ps_gspi_cs_n_io;
<= ps_swO_a_io;

164

“!FEP

12.3 Creating Module

end architecture;

Note: Don’t forget to set modulator_socius_clk_rtl.vhd source file to be the top file!

Step 4. Now is the time to create and add constraints file for the socius board, modulator_socius.xdc. To create and add
constraints file, please use steps from the Sub-chapter 10.1 "Creating XDC File", where it is in detail explained in paragraph
"Creating a XDC File using Vivado Text Editor". The complete modulator_socius.xdc constraints file you can find in the
text below.

modulator_socius.xdc constraints file:

set properties for bitstream genration

set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
#set_property BITSTREAM.GENERAL.XADCENHANCEDLINEARITY ON [current_design]
#set_property BITSTREAM.GENERAL.XADCPOWERDOWN ENABLE [current_design]

set configuration bank voltages

set_property CFGBVS VCCO

set_property CONFIG_VOLTAGE 3.3

[current_design]
[current_design]

set condition for power analyzer

set_operating_conditions
set_operating_conditions
set_operating_conditions
set_operating_conditions
set_operating_conditions

—ambient_temp 50
—board small
—airflow 250
—heatsink low
—-board_layers 12tol5

unrelate clock domains in PL for clocks genrated in PS f
#set_false_path -from [get_clocks clk_fpga_1] -to [get_clocks clk_fpga_0]
#set_false_path -from [get_clocks clk_fpga_0] -to [get_clocks clk_fpga_1]

#set_clock_groups —asynchronous -group clk_fpga_ 0 -group clk_fpga_1
only for power designs

#set_property C_CLK_INPUT_FREQ_HZ 300000000
fset_property C_ENABLE_CLK_DIVIDER false
#set_property C_USER_SCAN_CHAIN 1

#connect_debug_port dbg_hub/clk

[get_debug_cores dbg_hub]
[get_debug_cores dbg_hub]
[get_debug_cores dbg_hub]

[get_nets pl_clk3]

Push flip flops to IOBs

#set_property IOB true [get_cells -hier =xio_i_s_regx]
#set_property IOB true [get_cells -hier xio_o_regx]
#set_property IOB true [get_cells -hier xio_t_regx]

PL pins with fixed functionality for xzl and xz2
set_property PACKAGE_PIN M14 [get_ports pl_b35_mlé_io]
set_property IOSTANDARD LVCMOS33 [get_ports pl_b35 ml4_io]
set_output_delay -clock [get_clocks clk_fpga_0] -max 1.000
set_output_delay -clock [get_clocks clk_fpga_0] -min 0.500

[get_ports pl_b35_ml4_io]
[get_ports pl_b35_ml4_io]

set_property PACKAGE_PIN M15 [get_ports pl_b35_ml5_io]

set_property IOSTANDARD LVCMOS33 [get_ports pl_b35 ml5_io]
set_output_delay -clock [get_clocks clk_fpga_0] -max 1.000
set_output_delay -clock [get_clocks clk_fpga_0] -min 0.500

[get_ports pl_b35_ml5_io]
[get_ports pl_b35_ml5_io]

set_property PACKAGE_PIN T19 [get_ports pl_hsw_good_i]

set_property IOSTANDARD LVCMOS33 [get_ports pl_hsw_good_i]
set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000
set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500

[get_ports pl_hsw_good_i]
[get_ports pl_hsw_good_1i]

set_property
set_property

PACKAGE_PIN V13 [get_ports pl_phy_ reset_n_o]
TIOSTANDARD LVCMOS33 [get_ports pl_phy_reset_n_o]

set_property
set_property

PACKAGE_PIN T15 [get_ports pl_sd_cd_n_i]
IOSTANDARD LVCMOS33 [get_ports pl_sd_cd n_i]

set_property
set_property

PACKAGE_PIN J15 [get_ports pl_pwm_fan_o]
TIOSTANDARD LVCMOS33 [get_ports pl_pwm_fan_o]

set_property PACKAGE_PIN R19 [get_ports pl_pwr_en_i]
set_property IOSTANDARD LVCMOS33 [get_ports pl_pwr_en_i]
set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000
set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500

[get_ports pl_pwr_en_i]
[get_ports pl_pwr_en_i]

set_property PACKAGE_PIN Gl4 [get_ports pl_rtc_out_i]

set_property IOSTANDARD LVCMOS33 [get_ports pl_rtc_out_i]
set_input_delay -clock [get_clocks clk_fpga_ 0] -max 5.000
set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500

[get_ports pl_rtc_out_i]
[get_ports pl_rtc_out_i]

set_property PACKAGE_PIN Ul3 [get_ports pl_usb_reset_n_o]

set_property IOSTANDARD LVCMOS33 [get_ports pl_usb_reset_n_o]

set_output_delay -clock [get_clocks clk_fpga_0] -min 1.000 [get_ports pl_usb_reset_n_o]
set_output_delay -clock [get_clocks clk_fpga_0] -max 0.500 [get_ports pl_usb_reset_n_o]

set_property PACKAGE_PIN T14 [get_ports pl_usb_fault_n_i]
set_property IOSTANDARD LVCMOS33 [get_ports pl_usb_fault_n_i]

165

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000 [get_ports pl_usb_fault_n_i]
set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500 [get_ports pl_usb_fault_n_i]

#set_property PACKAGE_PIN M14 [get_ports pl_b35 ml4_io]

#set_property IOSTANDARD LVCMOS33 [get_ports pl_b35 ml4_io]

#set_output_delay -clock [get_clocks clk_fpga 0] -max 1.000 [get_ports pl_b35 mld_io]
#set_output_delay -clock [get_clocks clk_fpga_0] -min 0.500 [get_ports pl_b35 mld_io]

TS

et_property PACKAGE_PIN M15 [get_ports pl_b35 ml5_io]

et_property IOSTANDARD LVCMOS33 [get_ports pl_b35 ml5_io]

#set_output_delay -clock [get_clocks clk_fpga_ 0] -max 1.000 [get_ports pl_b35 ml5_io]
fset_output_delay -clock [get_clocks clk_fpga_ 0] min 0.500 [get_ports pl_b35_ml5_io]

S
S

4=

TS

set_property PACKAGE_PIN T19 [get_ports pl_hsw_good_i]

#set_property IOSTANDARD LVCMOS33 [get_ports pl_hsw_good_1i]

#set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000 [get_ports pl_hsw_good_i]
#set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500 [get_ports pl_hsw_good_i]

#set_property PACKAGE_PIN V13 [get_ports pl_phy reset_n_o]

#set_property IOSTANDARD LVCMOS33 [get_ports pl_phy_reset_n_o]

#set_output_delay -clock [get_clocks clk_fpga_1] -max 1.000 get_ports pl_phy_reset_n_o]
#set_output_delay -clock [get_clocks clk_fpga_1] -min 0.500 [get_ports pl_phy_reset_n_o]

set_property PACKAGE_PIN T15 [get_ports pl_sd _cd_n_i]
set_property IOSTANDARD LVCMOS33 [get_ports pl_sd_cd_n_i]

#set_property PACKAGE_PIN J15 [get_ports pl_pwm_fan_o]

#set_property IOSTANDARD LVCMOS33 [get_ports pl_pwm_fan_o]

#set_output_delay -clock [get_clocks clk_fpga_ 1] -max 1.000 [get_ports pl_pwm_fan_o]
#set_output_delay -clock [get_clocks clk_fpga_ 1] -min 0.500 [get_ports pl_pwm_fan_o]

#set_property PACKAGE_PIN R19 [get_ports pl_pwr_en_i]

#set_property IOSTANDARD LVCMOS33 [get_ports pl_pwr_en_i]

#set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000 [get_ports pl_pwr_en_i]
#set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500 [get_ports pl_pwr_en_i]

#set_property PACKAGE_PIN Gl4 [get_ports pl_rtc_out_i]

#set_property IOSTANDARD LVCMOS33 [get_ports pl_rtc_out_i]

#set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000 [get_ports pl_rtc_out_i]
#set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500 [get_ports pl_rtc_out_i]

#set_property PACKAGE_PIN Ul3 [get_ports pl_usb_reset_n_o]

#set_property IOSTANDARD LVCMOS33 [get_ports pl_usb_reset_n_o]

#set_output_delay -clock [get_clocks clk_fpga_ 0] -min 1.000 [get_ports pl_usb_reset_n_o]
#set_output_delay -clock [get_clocks clk_fpga 0] -max 0.500 [get_ports pl_usb_reset_n_o]

#set_property PACKAGE_PIN T14 [get_ports pl_usb_fault_n_i]

#set_property IOSTANDARD LVCMOS33 [get_ports pl_usb_fault_n_i]

#set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000 [get_ports pl_usb_fault_n_i]
#set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500 [get_ports pl_usb_fault_n_i]

Finally, we must configure the Zynqg PS part to work on socius development board. This includes a number of configuration
steps. All the PS configuration steps can be done using the Vivado GUI, by creating a block design. However, since this
task includes a lot of manual settings of the Zynq PS, a better approach would be to do this manual configuration only once
and then to create a Tcl script file that can be used in all future configurations of the Zynq PS part. The Tcl script that
should be used to correctly configure Zynq PS to work on socius board is socius_xz lab_ps_bd.tcl. This Tcl script file is
too long to be shown in the tutorial, so ask your instructor for details.

Step 5. Next step is to execute the socius_xz_lab_ps_bd.tcl Tcl file in the Vivado IDE. Go to the Tcl console window and
type the following and press enter:

source <path>/socius_xz_lab_ps_bd.tcl

Where <path> stands for the full path to the folder where the socius_xz _lab_ps_bd.tcl Tcl file is stored.

Td Console 7 _ 0O X
Ed update_compile order -fileset sources 1 -
e set_property top socius_clk top [current fileset

=

- update_compile order -fileset sources 1 |
1] add files -fileset constrs 1 -norecurse E:/Projects/Vivade/proba/Vivade-2016.2/2016.2/xdc/medulater_socius.xde =
Pl import_files -fileset comstrs 1 E:/Projects/Vivade/proba/Vivado-2016.2/2016.2/xde/medulator_socius.zde E
@ < T] r

| source E:/Projecta/SVil/so_ws_fpaa_basic/vivado20162/src/xilinx/bd/socius_xz_lab_ps_bd.tcl
) Tcl Console | () Messages | [Log | |5 Reports | 3> Design Runs

Figure 12.6: Tcl Console window

After Vivado has finished with the Tcl script execution, a created block diagram containing Zyng PS will be visible in the
Vivado IDE, as shown on the lllustration 12.7.

166

12.3 Creating Module

£= Diagram X | [Address Editor X Oowe =
#] b sodus_z_lab_ps_bd »
a
o
=]
Y
[}
- socius xz_io_ps
= -] sodius_e_lab_ps_bd
= e I &«
= o i o D fixed o
2 FIXED_10%
o i — [plLiic_1
. I [sdio 0
2 SPL 04k I socius_3e_bram_switch_bd —Lplspo
=, —=
" || [4k5_AXI_HPO_FIFO_CTRL et B S pl_uart_1
plint_bot[0:0] 23— o im_botj0 igonaat_0 E|dbS_AI_HPD o P > ustind 0
¥ plint md(:0]>— 5 = maog HACGOCK VYN o ol I e b ma pl pren i I_|-—|:> pl_bram_bat
it | [0:0] : 1_ARESET Bl bram soc
& plint_soc(0:0] = £_int_scc[0:0)] Hh i -—-sﬂm HPO_ACLK gt bram_sacdk — 1 b % 1l _bram_mid
pLint_top(0:0] (5 5l sool0] dou]3:0] RP:0] 0. [SOAE o e = 1 3 pl_bram_soc
© i B > pl_bram_top
= [0:0] FOLK OLKL——4 —_— [T=e b
k2 — FOK QK2 4 uart_1 D|_§|k1
o Concat Fax okl usbind gliclkz
s FOLK_RESETO) :z‘ =0 ey
& «_oxl
ZVNG7 Processing Sysem Ireset n
ZYNQ7 Processing System 30 pLI L1
fok_ca
filk_reset0_n

Figure 12.7: Block diagram of Zynq PS configured to run on socius board

Step 6. In the Vivado Flow Navigator, click Run Synthesis command and wait for task to be completed

Step 7. After the synthesis is completed, choose Open Synthesized Design option in the Synthesis Completed dialog
box

Step 8. Open Debug Layout (if it is not already opened) and in the Debug window, select Set Up Debug button to launch
the Set Up Debug wizard. In the Set Up Debug wizard add pwm_s and count_s nets to ILA core, as it is explained in
steps 23 - 32 in the Sub-chapter 11.1 "Inserting ILA and VIO Cores into Design".

Note: Pay attention to enable Capture control feature for ILA in step 31!

Step 9. Implement your design with Run Implementation option from the Flow Navigator / Implementation (see Sub--
Chapter 10.2.2 Run Implementation)

Step 10. Generate bitstream file with Generate Bitstream option from the Flow Navigator / Program and Debug (see
Sub-Chapter 10.3 Generate Bitstream File)

Step 11. Program your socius board (see Sub-Chapter 10.4 Program Device)

Step 12. When the socius board is programmed, select File -> Export -> Export Hardware... option from the main
Vivado IDE menu

Step 13. In the Export Hardware dialog box, you don’t have to include bistream file, so just click OK

In order to get the internal FPGA clock running, we must run some application on the processing system. In order to do
this, following steps must be performed:

Step 14. Select File -> Launch SDK from the main Vivado IDE menu

Step 15. In the Launch SDK dialog box, make sure that both Exported location and Workspace are set to Local to
Project and click OK

SDK will be launched in a separate window.

To create an application project, do the following:

Step 16. Select File -> New -> Application Project and the Application Project dialog box will appear

Step 17. In the Project name field, type a name of the new project, in our case it will be modulator_socius and click Next

Step 18. In the Templates dialog box, choose one of the available templates to generate a fully-functioning application
project. You can choose Hello World template and click Finish.

Step 19. In the Project Explorer select your application project (modulator_socius), right-click on it and select Run As
-> Launch on Hardware (System Debugger) option

167

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

Step 20. Turn back to the Vivado IDE and in the Hardware window of the Hardware Manager right-click on the FPGA
device (xc7z020) and select Refresh Device option

After refreshing the FPGA device the Hardware window now shows the ILA and VIO cores that were detected after scanning
the device and default dashboard for each debug core is automatically opened. The default ILA dashboard can be seen on
the lllustration 12.8.

@ modulator_socius_ck_rtl.vhd [{57 hw a1 % & hw_vios X 0w =
Settings - a1 _ O % || staws-heia _ o=
Trigger Mode Settings % core status

£ SN ..o Pl T Waiting For Trigger | Fost-Triager Ful

1 bb Capture status
-
E: Window 10f 1 Window sample 0 of 1024 Total sample 0 of 1024
H
5| coptre vode seitngs o 2 2
a Capture mode: ALWAYS -
Humber of windos: 1
Trigger Setup - b a1 _ O % || Capture Setup -hu s 1 o«
Window data depth: 1024 « | [1-1024] oo e 2 g e 1 o
Trigger position in window: |0 [0 - 1023]
+
General Settings
Refiesh rate: (500 ms D S h
A
— O =

Waveform -hw ila 1

Figure 12.8: ILA Dashboard

Step 21. Open the VIO dashboard by clicking the hw_vios tab and press green + button in the middle of the VIO dashboard
to add the probes

Step 22. In the Add Probes window select both pwm_s and sw0_s probes and click OK, see lllustration 12.9

@ modulator_socius_dk_rti.vhd x | & hw ila_t X | & hw_vios x [mES
b via 1 _ox
&
2
o
z
T+
2
2 Add Probes x
a =y
o &
Search:
Probes for hw_vie_1(2) -
=5 hw_vio_1
[ok || cancel

Figure 12.9: Add Probes to the VIO window

Step 23. In the VIO Probes window you will see two 1-bit probes, pwm_s and sw0_s, see lllustration 12.10. pwm_s
probe is actually connected to the pwm_out output port of the Modulator module, as can be seen on the Figure 11.9 and

168

12.3 Creating Module

from the modulator_vio_rtl.vhd source code. Similarly, sw0_s probe is connected to the sw0 input port of the Modulator
module.

Sihwila_ 1 x |5 hw_vios X

0@ x
hw_vio_1 — O =
C\ Mame Value Activity Direction VIO
= s pwm_s [B] 1 1 Input hw_vio_1

elg swl_s [B]O w Output hw_vio_1

1 + &E

B33

Figure 12.10: VIO Probes window

In the VIO Probes window, you can observe the rate of change of the pwm_s signal. You can change the frequency of the

pwm_s signal by changing the value of the sw0_s probe from 0 to 1 and from 1 to 0, see lllustration 12.11. The default
sw0_s value is 0.

@ hw_ila_1 x| &) hw_wvios X

| T
hw_vio_1 — O =
C\ Mame Value Activity Direction VIO
Z = pwm_s [B] 0 1 Input bwe_vio_1
oy TN) I T TN
+ Bl 1
-

o

Figure 12.11: Changing the sw0_s value

Step 24. Turn back to the ILA dashboard by clicking the hw_ila_1 tab and in the Trigger Setup window press green +
button in the middle to add the probes

Step 25. In the Add Probes window select only pwm_s_1 probe and click OK, see lllustration 12.12

169

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

@l modulator_socus_ck_rtl.whd X | & hw_ila_1 X | & hw_vies X og x
Settings - hw ila 1 I Status -hw ila 1 — o x

Trigger Mode Settings W Core status

] Tdis Waiting For Trigger Past-Trigger Full
4 Capture status

Window 10of 1 Window sample 0 of 1024 Total sample 0 of 1024
Idle 1dle Idle

Trigger mode: | BASIC_ONL:

Capture Mode Settings

Dashboard Options

Capture mode: ALWAYS -

Number of windows: 1
Trigger Setup -hw la 1 — 0O x Capture Setup -hw ia 1 — 0O x

Window data depth: 1024 - | [1-1029)
Trigger position in window: 0 [0 - 1023]
+

General Settings Add Probes X

[ok || canel :

Refresh rate: (500 ms Iy search:

i modulator_ifcount_s_0[31:0]
e

Wave

Eaf |
+

e
7+

e
b

[ER

| L

Figure 12.12: Add Probes to the Trigger Setup window

Step 26. Now, when the ILA debug probe pwm_s_1 is in the Trigger Setup window, we can create trigger conditions and
debug probe compare values. In the Trigger Setup window, leave == (equal) value in the Operator cell, [H] (Hexadecimal)
value in the Radix cell and set the Value parameter to be 0 (logical zero), as it is shown on the lllustration 12.13.

Trigger Setup -hw ila 1 9 _ 0O x
G Mame Operator Radix Value Port
+ - ~ 0 (logical zero)

1 (logical one)

D

Figure 12.13: Changing the Compare Values in the Trigger Setup window

Step 27. In the main ILA Properties window, change the Capture mode to be BASIC in the Capture Mode Settings
section

Step 28. In the Capture Setup window press green + button in the middle to add the probes
Step 29. In the Add Probes window select only pwm_s_1 probe and click OK, see lllustration 12.14

170

12.3 Creating Module

S hw_ila_1 X | & hw_vies X

Settings - ila 1 20 %

Trigger Mode Settings

Trigger mode: | BASIC_OMLY

Capture Mode Settings

Dashboard Options

Capture mode: BASIC ~
Mumber of windows: 1
Window data depth: 1024
Trigger position in window: [0

General Settings

Refresh rate: |500 ms

Status - hw ila 1 ?

% core status
] dle wWaiting For Trigger | Post-Trigger Ful

Capture status

Window 10f 1 Window sample 0 of 1024 Total sample 0 of 1024
He He He
Trigger Setup - hw ilz 1 2 _ 0O x Capture Setup - hw ila 1 2
A, Name Operator Radix Value Port
= Add Probes x
o), search:
& modulator_ifcount_s_0[31:0]
=

Waveform - hw ila 1

#[| 1A status:Idie

+ | tame

| ox || cancel

Fi

gure 12.14: Add Probes to the Capture Setup window

Step 30. In the Capture Setup window, leave == (equal) value in the Operator cell, [B] (Binary) value in the Radix cell

and set the Value parameter to be

F (1-to-0 transition), as it is shown on the lllustration 12.15.

Capture Setup -hw ila 1 7T _ 0O =
. Name Operator Radix Value Part
= - = X (don't care)
— 0 (logical zero)
1 (logical one)
;[A % (don't care)

F (0-to-1 transition)

E (both transitions)
M (no transitions)

Figure 12.15: Changing the Compare Values in the Capture Setup window

Step 31. After we set all the ILA core parameters, we can run the ILA core trigger unit by pressing the Run Trigger button.

Once the ILA core captured data has been uploaded to the Vivado IDE, it is displayed in the Waveform Viewer, see

Illustration 12.16.

Note: After triggering the ILA core, in the waveform viewer change the count_s_0 Waveform Style from Digital to Analog,
and your captured waveform should look like as the waveform on the lllustration 12.16.

@ modulator_sodus_ck_rt.vhd % | & hw_ila_1 3 | & hw_vies x

Waveform - hw ila 1

Dashboard Options

&
T
14
bl
]

o L8

Figure 12.16: Captured waveform of the sine signal, when sw0=0

171

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

Step 32. Turn back to the VIO Probes window and change the Value of the sw0_s signal from 0 to 1, see lllustration 12.11

Step 33. Arm the trigger ones more and after triggering the ILA core your captured waveform should look like as the
waveform on the lllustration 12.17

@ modulator_sodus_ck_rti.vhd % | & hw_ila_1 3 | & hw_vies x

Waveform - hw iz 1

Dashboard Options

Figure 12.17: Captured waveform of the sine signal, when sw0=1

Note: By comparing the waveforms shown on lllustrations 12.16 and 12.17 we can observe that they differ in the amplitude
value. This is expected since the waveforms actually represent the width of the PWM pulse generated by the modulator
module. Since the frequencies of two generated PWM signals differ (one has a frequency of 1 Hz and the other of 3.5
Hz) and the PWM pulse width measurement module always uses the same frequency for measuring the duration of the
PWM pulse, when the PWM frequency increases the duration of the PWM pulse will decrease, therefore decreasing the
amplitude of the output signal of the PWM pulse width measurement module.

172

Chapter 13

DESIGNING WITH IPs

This chapter will guide you through the process of IP core creation, customization and integration into your design. Vivado
Design Suite offers IP Packager and IP Integrator tool to help you with the process of designing with IP.

The Vivado Design Suite provides multiple ways to use IP in a design. The Vivado IDE provides an IP-Centric design flow
that enables you to add IP modules to your project from various design sources. IP-Centric design flow helps you quickly
turn design and algorithms into reusable IP. lllustration 13.1 illustrates the IP-Centric design flow.

IP Catalog
Source (C, RTL, IP_) Xilinx IP
Simulation models User
Documentation IP Packager |—»| 3™ Party IP Desi
Example Designs esign
Test Bench User IP —

t

Figure 13.1: Vivado IP-Centric Design Flow

You can customize and add an IP into the project using the IP Catalog from the Vivado IDE. In the IP Catalog you can add
the following:

* Modules from System Generator for DSP designs (MATLAB/Simulink algorithms) and Vivado High-Level Synthesis
designs (C/C++ algorithms)
* Third party IP
» User designs packaged using IP Packager
The available methods to work with IP in a design are:
» Use the Managed IP Flow to customize IP and generate output products, including a Synthesized Design Checkpoint

(DCP)

» Use IP in either Project or Non-Project modes by referencing the created Xilinx Core Instance (XCI) file, which is a
recommended method for large projects with many team members

» Create and add IP within a Vivado Project. Access the IP Catalog in a project to create and add IP to design. Store
the IP either inside the project or save it externally to the project, which is the recommended method for projects with
small team sizes

» Create and customize IP and generate output products in a non- project script flow, including generation of a Syn-
thesized Design Checkpoint (DCP)

In this tutorial we will show you how to create and add user designs in the IP Catalog, packaged using the IP Packager
tool and how you can instantiate your IP into the project using IP Catalog or IP Integrator tools.

DESIGNING WITH IPs
13.1 IP Packager

The Vivado IP Packager is a tool designed on the IEEE IP-XACT standard. It provides any Vivado user the ability to
package a design at any stage of the design flow and prepare it for use in the Vivado environment. The IP user can then
instantiate IP into their design either by using the IP Catalog or IP Integrator. The lllustration 13.2 shows the flow of the IP
packaging and IP usage, using the IP Catalog.

IP Developer Flow IP User Flow
HOL & Repository :
other IP IP Package Customize & HDL &
souce ™| |P Packager —» @PFie) ™ Management —» Generate IP > output
files and IP Catalog

Figure 13.2: IP Packaging and Usage Flow

As you can see from the illustration above, the IP developer uses the IP Packager to package HDL and other IP source
files and create an archive (zip file). The packaged IP is then given to the user and added to the IP Catalog. When the IP
is in the IP Catalog, a user can select the IP and create a customization for their design.

The Vivado IDE contains a Create and Package IP wizard that helps and guides you step-by-step through the IP creation
and packaging steps. The Create and Package IP wizard offers the following functions:

+ Create IP using source files and information from a project
+ Create IP from a specified directory

» Create a template AXI4 peripheral that includes the HDL, drivers, a test application, a Bus Functional Model (BFM),
and an example template

The following steps describe how to use the Package IP wizard to package IP. You can use the IP Packager within your
existing Vivado project or you can create a new Vivado project for IP you want to package.

Step 1. Close the existing Modulator project with the File -> Close Project option from the main Vivado IDE menu and in
the Vivado Getting Started page choose Create New Project option

Step 2. In the Create a New Vivado Project dialog box, click Next, see lllustration 13.3

¢ New Project X

Create a New Vivado Project

V |VAD O‘ This wizard will guide you through the creation of a new project.

HLx Editions
To create a Vivado project you will need to provide a name and a location for your project files. Next, you will

specify the type of flow you'll be working with. Finally, you will specify your project sources and choose a
default part.

£ XILINX

To continue, dick Next.

7 < Back

Figure 13.3: Create a New Vivado Project dialog box

174

13.1 IP Packager

Step 3. In the Project Name dialog box, enter a name of a new project and specify directory where the project data files
will be stored. Name the project frequency_trigger, verify the project location and click Next, see lllustration 13.4

““ Mew Project @

Project Name

Enter a name for your project and specify a directory where the project data files will be stored ’:‘/

Project name: frequency_trigger
Project location: | G: /temp Vivado I:l
/| Create project subdirectory

Project will be created at: G:ftemp/Vivado/frequency_trigger

< Back Finish Cancel

Figure 13.4: Project Name dialog box

4% New Project B

Project Type
Specify the type of project to create. ‘

@ RITLProject
‘You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis, implementation, design
planning and analysis.

Do not specify sources at this time

Post-synthesis Project
‘fou will be able to add sources, view device resources, run design analysis, planning and implementation,

urces at this time

L0 Planning Project
Do not specify design sources. You will be able to view part/package resources.

Imported Project
Create a Vivado project from a Synplify, XST or ISE Project File.

Configure an Example Embedded Evaluation Board Design
Create a new Vivado project from a predefined IP Integrator template design.

< Back Finish Cancel

Figure 13.5: Project Type dialog box

Step 4. In the Project Type dialog box, verify that the RTL Project is selected and the Do not specify sources at this
time option is unchecked and click Next, see lllustration 13.5

Step 5. In the Add Sources dialog box, click + icon and choose Add Files... option to add HDL and Netlist files to your

project, see lllustration 13.6

175

DESIGNING WITH IPs

¢ New Project @

Add Sources

Spedify HDL and netlist files, or directories containing HOL and netiist files, to add to your project. Create a new source file on
disk and add it to your project. You can also add and create sources later,

Add Files...
Add Directories. ..
Create File...

- | +

Add Files] [Add Directories] [Create File

Scan and add RTL indude files into project
Copy sources into project
Add sources from subdirectories

Target language: | Verlog ~ | Simulator language: | Mixed -

Figure 13.6: Add Sources dialog box

Step 6. In the Add Source Files dialog box, select frequency _trigger_rtl.vhd source file and click OK, see lllustration
13.7

4 Add Source Files ==
Lookin: | |, sources_ip A 0mBAOX S B
@ counter_rtlvhd Recent Directories
. 3 &

i @ counter_tb.vhd | G:ftempNivado/Sources/sources _ip -

v 4 g
Recent Items frequency trigger_rtl.vhd
@ frequency_trigger_tb.vhd
@ modulator_ila_vio_rtl.vhd

File Preview

|| @ modulator_ip_rtlvhd
Desktop | @ modulstar_oscilloscope_rtlvhd

@ modulator_pkg.vhd
- @ modulator_rtlvhd
IL‘ @ medulator_tb.vhd
My Documents | &8 modulator_timesim_th.vhd
@ modulator_vio_rtl.vhd

E.. @ pwm_rtl.vhd
(- @ pwm_tb.vhd
Computer @ sine_ttlvhd
@ sine_top_rtl.vhd
‘t (@ sine_top_tb.vhd
Network
File name: frequency_trigger_rtl.vhd
Fies of type: | All Design Source Files (.wefg, vb, veo, vho, tf, &lf, v, vhf, verilog, vhd, edn, svh, dep, sv, edf, vr, h, vp, nac, vhdl, vm, mif, viog, edif, vh, vg, bmm, vf) = -—CE"CE‘

Figure 13.7: Add Source Files dialog box

Step 7. In the Add Sources dialog box, select VHDL as the target language and ensure that you select Copy sources
into project option, because Xilinx strongly recommends the source files are present within the project, see lllustration
13.8

176

13.1 IP Packager

Step 8. Click Next

New Project

==

Add Sources
Specify HDL and netlist files, or directories containing HDL and netlist files, to add to your project. Create a new source file on disk
and add it to your project. You can also add and create sources later.

Location

'h Index Name Library HDL Source Far
frequency_trigger_rtl.vhd xil_defaultib Synthesis & Simulation

— |1

1
+

Add Files] [Add Directories] [Create File

[5can and add RTL indude files into project

Add sources from subdirectories

Targetlanguage: |WHDL v | Simulator language: | Mixed

~ E:fProjects/Vivado/probaVivado-2016.4/2016.4

¢

Cancel

Figure 13.8: Add Sources dilaog box with added source file

Step 9. In the Add Existing IP (optional) dialog box, click Next

4 New Project

Add Existing IP (optional)
Specify existing configurable IP, DSP composite, and Embedded sub-design files to add to your project.

+

AddFies | [Add Directories

Copy sources into project

Figure 13.9: Add Existing IP (optional) dialog box

Step 10. In the Add Constraints (optional) dialog box, remove if there are some constraints files, and click Next, see

lllustration 13.10

177

DESIGNING WITH IPs

¢ New Project

|

Add Constraints (optional)
Spedify or create constraint files for physical and timing constraints.

“-> 1 &

Use Add Files or Create File buttons below

Add Files Create File

Copy constraints files into project

4

Cancel

Figure 13.10: Add Constraints (optional) dialog box

Step 11. In the Default Part dialog box, ensure that the ZedBoard Zynq Evaluation and Development Kit is selected
and click Next, see lllustration 13.11

New Project

Default Part
Choose a default Xilinx part or board for your project. This can be changed later.

select: @ Parts | [Boards
4 Filter/ Preview

4 1

Vendor: All -
Display Name: | Al -
Board Rey: Latest -
Reset All Filters
Search: -

. " - . Block
Display Name Vendor Board Rev Part 1/0 Pin Count File Version RAMe
™ Zedcoard Zyma Evalztion and Development Kilem avretcom i]
@ Artix-7 AC701 Evaluation Platform ilire. com ik & xc7a200ttbg67e-2 676 13 385
H Kintex-7 KC705 Evaluation Platform iz, com 11 & xc7k325tfga00-2 200 1.3 445
H rintex-UltraScale KCU105 Evaluation Platform xilime.com 1.0 & xcku040-ffva1156-2= 1,156 11 600
@ virtex-7 YC707 Evaluation Platform ilinx.com 11 & xcTvx485tifg1761-2 1,761 1.3 1030
@ virtex-7 VC709 Evaluation Platform xilinx.com 1.0 & xc7vx690tffig17e1-2 1,761 1.8 1470
@ virtex-UltraScale VCU 108 Evaluation Platform xdlinx. com 1.0 % xovul95-fva2i04-2-e 2,104 11 1728
@ virtex-UltraScale VCU110 Evaluation Platform xilime.com 1.0 % xcvu190-ige2104-22 2,104 11 3780
B zYNQ-7 ZC702 Evaluation Board iz, com 1.0 & xc7z020dg484-1 434 1.2 140
@ 2¥YnQ-7 ZC706 Evaluation Board ilinx.com L1 % %c72045ffg900-2 900 1.3 545

Cancel

Figure 13.11: Default Part dialog box

Step 12. In the New Project Summary dialog box, click Finish if you are satisfied with the summary of your project or go
back as much as necessary to correct all the questionable issues, see lllustration 13.12

178

13.1 IP Packager

4 New Project @

New Project Summary

VIVADO'

HLx Editions (1) A new RTL praject named 'frequency_trigger' will be created.
(i) 1 source file will be added.
/iy No Configurable IP files will be added. Use Add Sources to add them later.
Iy No constraints files will be added. Use Add Sources to add them later.

(1) The default part and product family for the new project:
Default Board: ZedBoard Zyng Evaluation and Development Kit
Default Part: xc7z020dg484-1
Product: Zyng-7000
Family: Zyng-7000
Package: dg484
Speed Grade: -1

& XILINX

ALL PROGRAMMABLE. To create the project, dick Finish

Figure 13.12: New Project Summary dialog box

After we finished with the new project creation, in a few seconds Vivado IDE will appear with the created frequency_trigger
project, see lllustration 13.13

4 frequency trigger - [E/Projects/Vivado/proba/Vivado-2016.4/frequency_trigger/frequency_triggerxpr] - Vivado 20164
Fle Edt Fow Took Window Layout View Help ! s
o BB X > DY S X LG | Soefauilayout B £ N2 Ready
Flow Navigator 2 «| | ProjectManager frequency_trigger ? X
Qs Sources 700 x T Project Summary X 202 %
A= wal R
4 Project Manager Project Settings Edit
o (= Design Sources (1)
45 Project Settings L@ frequency_trigger- rt (7 g Project name: frequency_trigger
5% Add Sources) Constraints Project location: E: Projects/Vivado/proba/Vivado-2016. 4/frequency_trigger
@ Language Templates & Simulation Sourees (1) Product family: Zyng-7000
IF 1 Catalog Project part: ZedBoard Zyna Evaluation and Development Kit (xc7z020cig484-1)
Top module name: frequency trigger
4 TP Integrato
AsEelar Target language: VHDL
% Create Block Design i
Simulator language: Mixed
P¥ Open Block Design
8 Generate Block Design Board Part L
Display name: ZedBoard Zyng Evaluation and Development Kit
4 Simulation
& smi Board partmame: em.avnet.com:zed:partd:1.3
Simulation Settings N i
a & Hierarchy | Libraries | Complle Order Repository path: D: flinx /Vivado 20 16, 4/data/boards/board_files
Run Simulation
Properties s O ox URL: ht ecboard.or
4 RTL Analysis - Fn Board overvien: ZedBoard Zyng Evaluation and Development Kit
&% Elsboration Settings
> % Open Elaborated Design
4 Synthesis Synthesis Implementation L
&% Synthesis Settings
I Status: Not started Status: Not started
@ Run Synthesis Select an object to see properties
o Messages: Mo errors or warnings Messages: No errors or warnings
> @ Open Synthesized Design
Part: Xc72020clg484-1 Part: XcT2020dg484-1
4 Implementation Strategy: Vivado Synthesis Defaits Strategy: vivado Implementation Defaults
&5 Implementation Settings Incremental compile: None
[» Run Implementation d
> @F Open Implemented Design Design Runs ?_0OLwE x
q Name Constraints Status WNS TNS WHS THS TPWS Total Power Failed Routes wr FF BRAM URAM PCle % Start
4 Program and Debug _
=2 synth_1 constrs_1 Notstarted
& Bitstream Settings % e impl_1 constrs_1 Not started
¥ Generate itstream T
> g% Open Hardware Manager 4
17 il b
5 Td Console | © Messages | [Log | 2 Reports', 3> Design Runs

Figure 13.13: Created new frequency_trigger project

Step 13. In the Vivado Flow Navigator, under the Project Manager, click Project Settings command and choose IP
from the left pane, see lllustration 13.14. Global IP project settings are available to help you be more productive when
customizing IP.

179

DESIGNING WITH IPs

Step 14. In the IP window, select Packager tab and fill the fields as it is shown on the lllustration 13.14.

Packager sets default values for packaging new IP, including vendor, library and taxonomy. This category also allows you to
set the default behavior when opening the IP Packager and allows you to specify file extension to be filtered automatically.
If necessary, you can change the default values for packaging IP during the IP packaging process.

Note: Ensure that the Create archive of IP option is enabled in the After Packaging section to deliver an archive file.

¢ Project Settings

i

W

General

"-;jnum

Simulation
@
&
&

Elaboration

P

Synthesis

>

Implementation

Bitstream

il

P

General | Repository Manager Packager

Default Values

(i) The following values will be automatically applied after finishing the IP Packager

Wizard.

Vendor: So-Logic

Library: user

Category: |My IPs

1P location:

Automatic Behavior

After Packaging

Create archive of IP

Add IP to the IP Catalog of the current project

dové

Edit IP in IP Packager

Delete project after packaging

File Extensions to Filter on Add Directory

(i) Create a list of file extensions that will be automatically filtered when adding a directory to a

File Group.

+

Figure 13.14: Packager window with configured settings that will be applied after packaging process

Our next step will be to package frequency._trigger project. To package a Vivado project as IP, do the following:

Step 15. In the main Vivado IDE menu, select Tools -> Create and Package IP... option, see lllustration 13.15

¢ frequency trigger - [Di/temp/Vivado/Vivado-2015.4/frequency.

File Edit Flow

Toals

Window Layout WView

Help

& 3
]

Flow Mavigator

0y 59 &
o W — |

4 Project Mana

@. Project

Bk Add so
.‘;;- Langua

{F 1 cata

4 1P Integrator

He reambn

@
#®

Report

Create and Package IP...

Create Interface Definition. ..

Run Td Script...
Property Editor
Assodate ELF Files. ..

Compile Simulation Libraries...

Xilinx T Store...

Customize Commands

Project Settings...
Options...

Ctrl+)

Figure 13.15: Create and Package IP option

180

13.1 IP Packager

Step 16. In the Create and Package IP dialog box, click Next, see lllustration 13.16

¢ Create and Package New IP @

Create and Package IP

V |VAD O' This wizard can be used to accomplish following tasks:

HLx Editions

Package a new IP for the Vivado IP Catalog
This wizard will guide you through the process of creating a new Vivade IP using source files and
information from your current project, block design or specified directary.

Create a new AXI4 Peripheral

This wizard will guide you through the process of creating a new AXI4 peripheral which indudes HDL,
driver, software test application, IP Integrator BFM simulation and debug demonstration design.

& XILINX

ALL PROGRAMMABLE. Click Next to continue

(i}
&

Cancel

Figure 13.16: Create and Package IP dialog box

Step 17. In the Choose Create Peripheral or Package IP dialog box, choose Package your current project option and
click Next, see lllustration 13.17

¢ Create and Package Mew IP @

Create Peripheral, Package IP or Package a Block Design
Please select one of the following tasks. ’

Packaging Options

i@ Package your current project
"~ Use the project as the source for creating a new IP Definition.
Mote: All sources to be packaged must be located at or below the spedified directory.
Package a block design from the current project
Choose a block design as the source for creating a new IP Definition.

=, Package a spedfied directory
Choose a directory as the source for creating a new IP Definition.

Create AXI4 Peripheral

, Create a new AXI4 peripheral
Create an AXI4 [P, driver, software test application, IP Integrator AXI4 BFM simulation and debug demonstration design.

[i]
7)

Cancel

Figure 13.17: Choose Create Peripheral or Package IP dialog box

Step 18. In the Package Your Current Project dialog box, choose IP Location and type of the Packaging IP in the
project, see lllustration 13.18

181

DESIGNING WITH IPs

i

¢ Create and Package New IP

Package Your Current Project
Select the directory where the IP Definition will be created and the associated options for packaging the current project. ’

IP location: |E:/Projects Vivade fprobaVivado-2016,1/2016. 1 D
Packaging IP in the project

@ Indude .xd files

*) Indude IP generated files

Figure 13.18: Package Your Current Project dialog box

« IP Location: The directory in which the tool creates the IP Definition. The default is the project sources directory.

+ Packaging IP in the project:

— Include .xci files: If the project you are packaging includes subcores, package only the IP customization XClI
file. By deciding to include the XCl files, the IP Packager packages only the XCI file of the IP customization.
This creates a subcore reference to the parent IP and allows the packaged XCI file to be managed by the
Vivado tool. The advantage is that the IP can easily be upgraded to the latest release by using the Vivado IP

Upgrade methodology.

— Include IP generated files: Packages the generated RTL and XDC sources of the IP customization.

Step 19. In the New IP Creation dialog box, click Finish, see lllustration 13.19.

¢ Create and Package New IP

VIVADO!

HLx Editions

& XILINX

ALL PROGRAMMABLE.

New IP Creation

The following pieces of information will be gathered:
o Identification information based on top module name
o Family compatibility based on part in the project
o File(g) from Synthesis and Simulation file sets
o Ports from the file containing the top module
o Parameters from the file containing the top module
o Bus Interfaces based on port names

o Address Spaces and Memary Maps based on inferred bus interfaces

Following file will be created on disk along with corresponding customization files:

E:/Projects/Vivado probaVivade-2016. 1/2016. 1fcompanent. xm|

Click Finish to continue

Cancel

Figure 13.19: New IP Creation dialog box

182

13.1 IP Packager

If you have selected either Package your current project or Package a specified directory option, the New IP Creation
dialog box opens automatically to summarize the information the wizard gathered about the project, and creates a basic IP
package in a staging area as shown on the illustration above.

Step 20. In the Package IP dialog box, click OK and Package IP - frequency_trigger window will automatically appear
on the right side of the Vivado IDE, see lllustration 13.20

Review the IP Packaging steps in the Package IP page:

+ ldentification: Information used to identify your IP

« Compatibility: Configure the parts and/or families of Xilinx devices that are compatible with your IP
+ File Groups: Individual files for your IP are grouped into specific file groups

» Customization Parameters: Specify the parameters to customize your IP

» Ports and Interfaces: Top-level ports and interfaces for your IP

+ Addressing and Memory: Specify the memory-maps or address spaces

+ Customization GUI: Configure the parameters that appear on each page of the Customization GUI

+ Review and Package: Summary of the IP and repackaging

Step 21. In the Package IP - frequency_trigger window, in the Identification section, fill in fields as it is shown on the
lllustration 13.20

I Project Summary X Package IP - frequency_trigger X [m}

RS
Packaging Steps <« || Tdentification ?
+ Identification Vendor: So-Logic
+ Compatibility Library: modulator
+ File Groups MName: frequency_trigger

Version: 1.0
+ Customization Parameters
Display name: frequency_trigger_v1_0
+' Ports and Interfaces
Description: frequency_trigger_v1.0
Addressing and Memory
Vendor display name: | So-Logic
/' Custol tion GUI
W Fustomizatien Company url: http:ffwww.so-ogic.net
Review and Package Rootdrectory: d:/temp/modulator fsources
Xml file name: d:ftemp/modulater sources/component, xml
Categories
o My IPs
] i A=

Figure 13.20: Identification window

As you can see from the illustration above, Package IP wizard automatically choose MylIPs category, as the default category
to store packaged IP.

The Categories option allows the IP designer to select various categories to help classify the new IP Definition. When IP
definition is added to the IP Catalog, the IP will be listed under the specified categories.

Step 22. After we finished with the IP Identification, select the Review and Package option in the Package IP window
and check the specified project directory folder to make sure that the new archive file was added, see lllustration 13.21.

The default naming convention for the archive is:
<vendor>_<library>_<name>_<version>.zip
In our case, the name of the zip file should be:
So-Logic_modulator_frequency._trigger_1.0.zip

The user can change the default name and location of the archive by selecting the edit link next to the Create archive of
IP name in the After Packaging selection, see lllustration 13.21.

183

DESIGNING WITH IPs

T Project summary X | Package Ip - frequet trigger %

Oowe x
Packaging Steps « Review and Package ?
+' Identification Summary
' Compatibility Display name: frequency_trigger_v1_0

Description: frequency_trigger_v1_0

/' File Groups Root directory: d: ftemp/modulator fsources

+f Customization Parameters
+ Ports and Interfaces

Addressing and Memory After Packaging

+ Customization GUL
o Create archive of IP - D:/ftemp/modulator fsources/So-Logic_modulator_frequency_trigger _1.0.zip edit

Review and Package TP will be made avaiable in the catalog using the repository - d:/temp/modulator fsources
o IP Packager window will dose upon successful completion
edit packaging settings
g ' o (mBadzcine

Figure 13.21: Review and Package window

Step 23. Click edit link next to the Create archive of IP name in the After Packaging selection to change the name and
the location of the archive, see lllustration 13.22

g“':_.. Package IP Léj
Choose where you want to save your packaged IP. ‘
Archive name: So-Logic_modulator_frequency_trigger_1.0
Archive location: | D:/ftemp/modulatorfsources l:J
Archive file will be created at: ...Logic_modulator_frequency_trigger_1.0.zip

Figure 13.22: Package IP dialog box

Step 24. In the Package IP dialog box, change the Archive name to be:

So-Logic_modulator_frequency_trigger_1.0.zip

Step 25. Before you change the Archive location, create a new folder, ip_repository, in the same folder where the

frequency _trigger project was created. This new folder will be a place where we will keep all IPs (.zip files) that we will
create.

Step 26. In the Package IP dialog box, change the Archive location to the new ip_repository folder, see lllustration
13.23

#. Package IP &J
Choose where you want to save your packaged IF. ‘
Archive name: So-Logic_modulator_frequency_trigger_1.0
Archive location: | D:ftemp/medulator fip_repository EJ

Archive fle wil be created at: ...ogic_modulator_frequency_trigger_1.0.zip

==

Figure 13.23: Package IP dialog box with selected new archive location

Step 27. Click OK and you should see all the modifications that we made in the After Packaging sector of the Review
and Package window, see lllustration 13.24

184

13.1 IP Packager

£ Project Summary X Package IP - frequency_trigger X OQe =
Packaging Steps « Review and Package ?
+ Identification Summary

 Compatiiity Display name: frequency_trigger_v1_0

Description: frequency._trigger_v1 0
+/ File Groups Root directory: d: ftemp/modulator fsources

+ Customization Parameters

+" Ports and Interfaces After Packaging

Addressing and Memor
9 B o Create archive of IP - D:/temp/modulator fip_repository/So-Logic_modulator_frequency_trigger_1.0.2p edit

+ Customization GUI 1P will be made avalable in the catalog using the repository - d:/tempjmodulator fsources
Review and Package o IP Packager window will dose upon successful completion
edit packaging settings

Package IP

Figure 13.24: Review and Package window with new archive information

Step 28. If you are satisfied with the Package IP information, click the Package IP button at the bottom of the Review and
Package window to finish with the frequency _trigger IP packaging process

Step 29. In the Flow Navigator, under the Project Manager, click IP Catalog command to verify the presence of our
frequency_trigger IP in the IP Catalog

Step 30. In the IP Catalog, search for the frequency_trigger _v1_0 IP, see lllustration 13.25

If you select the frequency_trigger_v1_0 IP, all the data that we entered in the process of the IP creation should appear
in the Details window, see lllustration 13.25.

L. Project Summary X | O =
*I] Search: frequency_trigger {1 match)
el 1
23 | Name AXI4 Status License VLNV
% == User Repository (d: ftemp/modulator fsources)
1 [fproducion Jinduded __So-ogicimo.]
-r'a
™
i Details
\a Mame: frequency_trigger_v1_0
ﬁ Version: 1.0 (Rev. Z)
Description: frequency_trigger_v1_0
Status: Production
License: Included
Vendor: So-Logic
VLMY So-Logic:modulator:frequency_trigger: 1.0
Repository: d:ftemp/modulator fsources
] il =

Figure 13.25: frequency_trigger IP in the IP Catalog

Now, when you know the procedure for IP creation, repeat the steps (1-29) to create the rest of the IPs (counter, digital_sine
and pwm), necessary for the Modulator project, with the following exceptions:

Counter IP:

* Name the project "counter” when you start new project creation

* In the project creation process, in the Add Source Files dialog box, choose counter_rtl.vhd source file and click
OK

+ In the Packager IP wizard, in the Review and Package window, click edit link next to the Create archive of IP name
in the After Packaging selection to change the name and the location of the archive:

— Change the Archive name to be: So-Logic_modulator_counter_1.0.zip

185

DESIGNING WITH IPs

— Change the Archive location to the new ip_repository folder

Digital Sine IP:

» Name the project "digital_sine" when you start new project creation

+ In the project creation process, in the Add Source Files dialog box, choose sine_rtl.vhd and modulator_pkg.vhd
source files and click OK

+ In the Packager IP wizard, in the Review and Package window, click edit link next to the Create archive of IP name
in the After Packaging selection to change the name and the location of the archive:

— Change the Archive name to be:

So-Logic_modulator_digital_sine_1.0.zip

— Change the Archive location to the new ip_repository folder

Pwm IP:

» Name the project "pwm" when you start new project creation

« In the project creation process, in the Add Source Files dialog box, choose pwm_rtl.vhd and frequency_trigger-
_rtl.vhd source files and click OK

+ In the Packager IP wizard, in the Review and Package window, click edit link next to the Create archive of IP name
in the After Packaging selection to change the name and the location of the archive:

— Change the Archive name to be: So-Logic_modulator_pwm_1.0.zip

— Change the Archive location to the new ip_repository folder

Now, when all IPs are created, it's time to create a new project, modulator_ip, where we will instantiate these IPs.
Step 31. Create new Vivado project, modulator _ip, without adding any source file

The following steps will show you how to add packaged IP to the IP Catalog:

Step 32. Open ip_repository folder with packaged IPs (.zip files) and extract each IP separately

Step 33. Then, In the Flow Navigator, under the Project Manager , click Project Settings command and choose IP from
the left pane

Step 34. In the IP window, select Repository Manager tab, see lllustration 13.26

Repository Manager lets you add or remove user repositories and establish precedence between repositories.

186

13.1 IP Packager

¢ Project Settings

P
@ General” Repository Manager | Packager

(i) Add directories to the list of repositories. You may then add additional IP to a selected
= repository. If an IP is disabled then a tool-tip will alert you to the reason.
1]

IP Repositories

- +
|-

Simulation

Elzboration

P

Synthesis

Implementation

Press the =f button to Add Repository
et

Figure 13.26: Repository Manager window

Step 35. In the Repository Manager window, click + icon to add the desired repository, see lllustration 13.26

Step 36. In the IP Repositories window, choose ip_repository folder and click Select

Step 37. In the Add Repository dialog box, click OK to add the selected repository (ip_repository with 4 IPs) to the project,
see lllustration 13.27

¢ Add Repository @
I 1repository was added to the project
Repositary
Z E|--e:_.."Projectsﬂfivadofprobaf\u'ivado-ZD 16.4ip_repository
iy [HIPs (4)
= -AF counter_v1_0 (So-Log
-4F frequency_trigger_v1_0 | iency_trigger: 1.1
-AF pwm_v1_0
--4F sine_v1_0 (5o

Figure 13.27: Add Repository dialog box

Step 38. In the Repository Manager window, when ip_repository is added to the IP Repositories section, click OK, see
lllustration 13.28

187

DESIGNING WITH IPs

T ™y
¢ Project Settings &J
) P
@ General” Repository Manager | Packager | IP Cache
General (i) Add directories to the list of repositories. You may then add additional IP to a selected
P repository, If an IP is disabled then a tool-tip will alert you to the reason.
@ IP Repositories

Simulation + e: [ProjectsVivado jprobaVivado-2015.4/ip_repository (Project)
Elaboration Ll

. 4

vV.e

Synthesis

v

Implementation

EI#
=

=
o
o
m
o
3

sl

o) e] [awr]

Figure 13.28: Repository Manager with selected ip_repository

Step 39. In the Flow Navigator, under the Project Manager, click IP Catalog command to verify the presence of the
previously created IPs in the IP Catalog.

Step 40. Double-click on the frequency_trigger_v1_0 IP core and Vivado IDE will create a new skeleton source for your
IP

The window that will be opened is used to set up the general frequency_trigger core parameters, see lllustration 13.29

188

13.1 IP Packager

i__} Customize IP

frequency_trigger_v1_0 (1.0)
ﬁj Documentation | IP Location I[J Switch to Defaults

[show disabled ports

freq_trig

div_Factor_fraghigh
div_Factor_Fraglow

Component Mame | frequency_trigger_ip

Figure 13.29: frequency_trigger IP configuration window

Step 41. In the frequency_trigger_v1_0 (1.0) dialog box, change the Component Name to be frequency_trigger _ip

and click OK

Step 42. In the Generate Output Products dialog box, click Generate, see lllustration 13.30

[

Generate Cutput Products

i

The following output products will be generated.

Preview

Q, [=-LF[frequency_trigger_ip.xd (O0C per IP)

Il Instantiation Template

=

=] | Synthesized Chedkpoint (.dcp)
% ----- Cfil Behavioral Simulation

Synthesis Options

() Global

@ Out of context per IP
Run Settings

Mumber of jobs: |1~

y

| Generate |[

Skip]

Figure 13.30: Generate Output Products window for frequency_trigger_ip core

Note: After frequency_trigger_ip core generation, your frequency_trigger_ip core should appear in the Sources window,

see lllustration 13.31

189

DESIGNING WITH IPs

Sources R RVE 3
M A i %
AT e B
=I-{= Design Sources (1]
+-LF frequency_trigger_ip (frequency_trigger_ip.xci)
1 Constraints

—|-{= Simulation Sources (1]
-5 sim_1 (1)

£

Hierarchy | IP Sources |Libraries | Compile Order

£ Sources | ' Templates

Figure 13.31: Sources window with generated frequency_trigger_ip IP

After we generate frequency_trigger_ip IP, we should repeat the same procedure for the counter_v1_0 IP:

Step 43. In the IP Catalog, double-click on the counter_v1_0 IP core and Vivado IDE will create a new skeleton source
for the counter_v1_0 IP

The window that will be opened is used to set up the general counter core parameters, see lllustration 13.32

i__} Customize IP &J

counter_v1_0 (1.0) '

ﬁﬂ Documentation | IP Location £ Switch to Defaults

[show disabled ports Companent Name |counter_ip

CntValue G | 255
Depth G 8

lk_in

cnt_out[7:0]
nt_en

Figure 13.32: counter IP configuration window

Step 44. In the counter _v1_0 (1.0) dialog box, change the Component Name to be counter_ip and configure the rest
of the parameters:

* Cnt Value G to be 255
* Depth Gto be 8

Note: To know how to configure the right values, open the modulator _rtl.vhd source file and find out how it is done in the
original design:

counterampl : entity work.counter (rtl) —— counter module instance
generic map (
cnt_value_g => design_setting_g.cntampl_value,
depth_g => design_setting_g.depth
)

190

13.1 IP Packager

Step 45. Click OK

Step 46. In the Generate Output Products dialog box, click Generate
Note: After counter_ip core generation, your counter_ip core should appear in the Sources window.
After we generate frequency_trigger_ip and counter_ip IPs, we should repeat the same procedure for the sine_v1_0 IP:

Step 47. In the IP Catalog, double-click on the sine_v1_0 IP core and Vivado IDE will create a new skeleton source for
the sine_v1_0 IP

The window that will be opened is used to set up the general sine core parameters, see lllustration 13.33

ﬂ Customize IP ldh,l

sine_v1_0 (1.0) ’

ﬂj Documentation |) IP Location £ Switch to Defaults
Show disabled ports Component Name | sine_ip

Depth G |8
Width G | 12

smpl_cnt(7:0]

I sine_out[11:0]

[o

Figure 13.33: sine IP configuration window

Step 48. In the sine _v1_0 (1.0) dialog box, change the Component Name to be sine_ip and configure the rest of the
parameters:

» Depth Gtobe 8
« Width G to be 12

Note: To know how to configure the right values, open the modulator _rtl.vhd source file and find out how it is done in the
original design:

sine : entity work.sine(rtl) —— digital sine module instance
generic map (
depth_g => design_setting_g.depth,
width_g => design_setting_g.width
)

Step 49. Click OK
Step 50. In the Generate Output Products dialog box, click Generate
Note: After sine_ip core generation, your sine_ip core should appear in the Sources window.

After we generate frequency_trigger_ip, counter_ip and sine_ip IPs, we should repeat the same procedure for the last
pwm_vi_0 IP:

Step 51. In the IP Catalog, double-click on the pwm_v1_0 IP core and Vivado IDE will create a new skeleton source for
the pwm_v1_0 IP

191

DESIGNING WITH IPs

The window that will be opened is used to set up the general pwm core parameters, see lllustration 13.34

ﬂ Customize IP Ié]

pwm_v1l_0(1.0) '

ﬁﬂ Documentation |5 IP Location L) Switch to Defaults
|| Show disabled parts Compaonent Name | pwm_ip

Wwidth G |12

Figure 13.34: pwm IP configuration window

Step 52. In the pwm _v1_0 (1.0) dialog box, change the Component Name to be pwm_ip and configure the rest of the
parameters:

+ Width G to be 12

Note: To know how to configure the right values, open the modulator_rtl.vhd source file and find out how it is done in the
original design:

pwmmodule : entity work.pwm (rtl) -- pwm module instance
generic map (

width_g => design_setting_g.width,
)

Step 53. Click OK
Step 54. In the Generate Output Products dialog box, click Generate

Note: After pwm_ip core generation, all the generated cores should appear in the Sources window, see lllustration 13.35

Sources — O
AZS e B
=5 sign Sources (<)

LF counter _ip (counter
LF[frequency_trigger_j

= pwm_ip {pwm_ip.xd)
[#+-4F[E sine_ip (sine_ip. xci)
-1 Constraints
=I5 Simulation Seurces (4]
- sim_1 (4]

Hierarchy | IP Sources | Libraries | Compile Order

“» Sources | ' Templates

Figure 13.35: Sources window with all four generated IPs

192

13.1 IP Packager

After configuring and generating all four necessary IPs (frequency_trigger_ip, counter_ip, sine_ip and pwm_ip), we will
create a top-level VHDL module, modulator_ip_rtl.vhd, where we will connect these IPs, see Figure 13.36.

\ swi sw freq_trig ——
‘d\v_faclor_[reqmgh(m 0y div_factor_freghigh(31:0)
‘d‘\’_faElUf_ffE‘Q‘C'\'“(31 0) div_factor_freglow(31:0)

clk_in clk_in

FREQUENCY_TRIGGER_IP

cnt_en cnt_out(7:0) ——
. COUNTER_IP
clk_in
L ampl_cnt(7:0) sine_out(11:0) —
clk_in
SINE_IP
ES|

FREQUENCY TRIGGER

swl freq_trig
div_factor_freghigh(31:0)

div_factor_freglow(31-0)

clk_in

clk_en

’— clk_in

Figure 13.36: Connection between generated IPs

sine_ampl(11:0) pwm_out ——| pwm_out >

PWM_IP

To create a module, use steps for creating modules, Chapter 2.4.1 Creating a Module Using Vivado Text Editor.

modulator_ip_rtl.vhd:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_textio.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;
library unisim;

use unisim.vcomponents.all;

entity modulator_ip is

generic (
—— User defined settings the pwm design
design_setting_g : design_setting_ t_rec := design_setting_c

)i

port (
clk_in : in std_logic; -
sw0 : in std_logic; -
div_factor_freghigh : in std_logic_vector (31 downto 0); --—
div_factor_freglow : in std_logic_vector (31 downto 0); --
pwm_out : out std_logic -

)i
end entity;

architecture rtl of modulator_ip is

signal ampl_cnt_s : std_logic_vector (7 downto 0);

input clock
signal made
input clock
input clock
pulse width

signal

selecting frequency
division when swO = "1’
division when swO = "0’

modulated signal

193

signal sine_ampl_s
signal freqg trig_s

DESIGNING WITH IPs

std_logic_vector (11 downto 0);

std_logic;

—-- frequency_trigger_ip component definition
component frequency_trigger_ip

port (
clk_in in std_logic;
sw0O in std_logic;
div_factor_freghigh in std_logic_vector (31 downto 0);
div_factor_freqglow in std_logic_vector (31 downto 0);

freq_ trig out std_logic
)i

end component;

—— counter_ip component definition
component counter_ip

port (
clk_in in std_logic;
cnt_en in std_logic;
cnt_out out std_logic_vector (7 downto 0)

)i

end component;

—— sine_ip component definition
component sine_ip

port (
clk_in in std_logic;
ampl_cnt in std_logic_vector (7 downto 0);
sine_out out std_logic_vector (11 downto 0)

)i
end component;

—— pwm_ip component definition
component pwm_ip

port (
clk_in in std_logic;
swO in std_logic;
sine_ampl in std_logic_vector (11 downto 0);

(31 downto 0);
(31 downto 0);

in std_logic_vector
in std_logic_vector
out std_logic

div_factor_freghigh
div_factor_freqglow
pwm_out
)i
end component;

begin
—— frequency_trigger_ip component instance
freqg trig: frequency_trigger_ip
port map (
clk_in => clk_in,
sw0 => swO0,
div_factor_freghigh => div_factor_freghigh,
div_factor_freglow => div_factor_freqglow,
freq trig => freq_trig_s
)i
—— counter_ip component instance
counter: counter_ip
port map (
clk_in => clk_in,
cnt_en => freq trig_s,
cnt_out => ampl_cnt_s
)i
—- sine_ip component instance
sine: sine_ip
port map (
clk_in => clk_in,
ampl_cnt => ampl_cnt_s,
sine_out => sine_ampl_s
)i
—-— pwm_ip component instance
pwm: pwm_ip
port map (
clk_in => clk_in,
swQ => sw0,
sine_ampl => sine_ampl_s,
div_factor_freghigh => conv_std_logic_vector (conv_integer (div_factor_freghigh) / (2%x*
design_setting_g.width), 32),
div_factor_freglow => conv_std_logic_vector (conv_integer (div_factor_freglow)/ (2x=*
design_setting_g.width), 32),
pwm_out => pwm_out
)i
end;

After we finished with the modulator _ip_rtl.vhd module creation, we should create new modulator_ip_wrapper_rtl.vhd
module in the same way as it was done for the Modulator module example, see Chapter 9. MODULATOR WRAPPER.

194

13.1 IP Packager

The block diagram and source code of the Modulator IP wrapper is shown in the text below.

MODULATOR IP_ WRAPPER

MODULATOR_IP
IBUFGDS
. o™
clk_in pwm_out pwm_out
[swo sw0
const. —— div_factor_freghigh(31:0)
const. —— div_factor_freghigh(31:0)

Figure 13.37: Modulator IP wrapper block diagram

Modulator IP wrapper VHDL model.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

library unisim;
use unisim.vcomponents.all;

use work.modulator_pkg.all;

entity modulator_ip_wrapper is
generic(
—-— If some module is top, it needs to implement the differential clk buffer,
—— otherwise this variable will be overwritten by a upper hierarchy layer
this_module_is_top_g : module_is_top_t := yes;

—-— Parameter that specifies major characteristics of the board that will be used

—-—- to implement the modulator design

—— Possible choices: """1x9""", ""wiedboard""", """ml605""", """kc705""", """microzed""", ""socius"
wn

—- Adjust the modulator_pkg.vhd file to add more

board_name_g : string := """zedboard""";

—— User defined settings for the pwm design

design_setting_g : design_setting_t_rec := design_setting_c
)i

port (
clk_p : in std_logic; —— differential input clock signal
clk_n : in std_logic; —-- differential input clock signal
sw0 : in std_logic; —-- signal made for selecting frequency
pwm_out : out std_logic —— pulse width modulated signal

- clk_en : out std_logic —— clock enable port used only for MicroZed board

)i

end entity;

architecture rtl of modulator_ip_wrapper is

—— input clock signal

signal clk_in_s : std_logic;
-— cl_c = fclk/(2"depth*2”width) - cl_c = 95.3674, fclk = 100 MHz
constant cl_c : real :=
get_board_info_f (board_name_g) .fclk/ (real ((2+x+*design_setting_g.depth) * (2+«*design_setting_g.width)));
-- div_factor_freghigh_c = (cl_c/f_high)+*2”width - threshold value of frequency a = 110592
constant div_factor_freghigh_c : integer :=
integer (cl_c/design_setting_g.f_high) *x (2x*design_setting_g.width);
—- div_factor_freqlow_c = (cl_c/f_low)x*2”width - threshold value of frequency b = 389120
constant div_factor_freqglow_c : integer :=

integer (cl_c/design_setting_g.f_low) x (2++design_setting_g.width);
begin

—— in case of MicroZed board we must enable on-board clock generator
- clk_en <= "1";

—— 1if module is top, it has to generate the differential clock buffer in case
—-— of a differential clock, otherwise it will get a single ended clock signal
—— from the higher hierarchy

195

DESIGNING WITH IPs

clk_buf_if top : if (this_module_is_top_g = yes) generate

clk_buf : if (get_board_info_f (board_name_g) .has_diff_clk = yes) generate

ibufgds_inst : ibufgds
generic map (
ibuf_low_pwr => true,
-- low power (true) vs. performance (false) setting for referenced I/0 standards
iostandard => " "
)

port map (
o => clk_in_s, —-- clock buffer output
i => clk_p, —-— diff_p clock buffer input
ib => clk_n —— diff_n clock buffer input

)i
end generate clk_buf;

no_clk_buf : if (get_board_info_f (board_name_g) .has_diff_clk = no) generate
clk_in_s <= clk_p;
end generate no_clk_buf;

end generate clk_buf if top;

not_top : if (this_module_is_top_g = no) generate
clk_in_s <= clk_p;
end generate not_top;

modulatorip : entity work.modulator_ip —-— modulator_ip module instance
generic map (
design_setting_ g => design_setting_g
)

port map (
clk_in => clk_in_s,
sw0 => sw0,

div_factor_freghigh => conv_std _logic_vector (div_factor_ freghigh_c, 32),
div_factor_freglow => conv_std_logic_vector (div_factor_freglow_c, 32),
pwm_out => pwm_out

)i

After we finished with the modulator_ip_rtl.vhd and modulator_ip_wrapper_rtl.vhd module creation, we should return
to the Vivado IDE and do the following:

Step 55. Add modulator_ip_rtl.vhd, modulator_ip_wrapper_rtl.vhd and modulator.xdc files in the "modulator_ip"
project with Flow Navigator Add Sources option. We should also add modulator_pkg.vhd source file.

* modulator_ip_rtl.vhd, modulator_ip_wrapper_rtl.vhd and modulator_pkg.vhd as Design Source file, and

* modulator.xdc as Constraints file

Step 56. Synthesize your design with Run Synthesis option from the Flow Navigator / Synthesis (see Sub-chapter
6.5.2 Run Synthesis)

Step 57. Implement your design with Run Implementation option from the Flow Navigator / Implementation (see Sub--
Chapter 10.2.2 Run Implementation)

Step 58. Generate bitstream file with Generate Bitstream option from the Flow Navigator / Program and Debug (see
Sub-Chapter 10.3 Generate Bitstream File)

Step 59. Program your ZedBoard device (see Sub-Chapter 10.4 Program Device)

Note: All the information about designing with IPs, like how to create and package an IP, how to add it to the IP Catalog,
how to customize and generate packaged IP, you can also find in the Lab 16: "Designing with IPs - IP Packager" .

13.2 IP Integrator

To accelerate the creation of highly integrated and complex designs, Vivado Design Suite is delivered with IP Integrator
(IP1) which provides a new graphical and Tcl-based IP- and system-centric design development flow.

Rapid development of smarter systems requires levels of automation that go beyond RTL-level design. The Vivado IP
Integrator accelerates IP- and system-centric design implementation by providing the following:

196

13.2 IP Integrator

+ Seamless inclusion of IPI sub-systems into the overall design

» Rapid capture and packing of IP| designs for reuse

» Tcl scripting and graphical design

» Rapid simulation and cross-probing between multiple design views
 Support for processor or processor-less designs

* Integration of algorithmic and RTL-level IP

+ Combination of DSP, video, analog, embedded, connectivity and logic
» Matches typical designer flows

» Easy to reuse complex sub-systems

» DRCs on complex interface level connections during design assembly
» Recognition and correction of common design errors

+ Automatic IP parameter propagation to interconnected IP

+ System-level optimizations

The Xilinx Vivado Design Suite IP Integrator feature lets you create complex system designs by instantiating and intercon-
necting IP cores from the Vivado IP Catalog onto a design canvas.

You can create designs interactively through the IP Integrator design canvas GUI, or using a Tcl programming interface.
You will typically construct design at the AXI interface level for greater productivity, but you may also manipulate designs at
the port level for more precise design control.

In this tutorial you will instantiate a few IPs in the IP Integrator tool and then stitch them up to create an IP sub-system
design. While working on this tutorial, you will be introduced to the IP Integrator GUI, run design rule checks (DRC) on
your design, and then integrate the design in a top-level design in the Vivado Design Suite. Finally, you will run synthesis
and implementation process, generate bitstream file and run your design on the ZedBoard development board.

The following steps describe how to use the IP Integrator within your project:

Step 1. Close the existing modulator_ip project with the File -> Close Project option from the main Vivado IDE menu
and in the Vivado Getting Started page choose Create New Project option

Step 2. In the Create a New Vivado Project dialog box, click Next to confirm the new project creation

Step 3. In the Project Name dialog box, enter a name of a new project and specify directory where the project data files
will be stored. Name the project modulator _ipi, verify the project location, ensure that Create project subdirectory is
checked and click Next

Step 4. In the Project Type dialog box, verify that the RTL Project is selected and the Do not specify sources at this
time option is unchecked and click Next

Step 5. In the Add Sources dialog box, ensure that the Target language is set to VHDL and click Next. You can add
sources later, under the design canvas in the Vivado IP Integrator to create a subsystem design.

Step 6. In the Add Existing IP (optional) dialog box, click Next
Step 7. In the Add Constraints (optional) dialog box, click Next

Step 8. In the Default Part dialog box, ensure that the ZedBoard Zynq Evaluation and Development Kit is selected and
click Next

Step 9. In the New Project Summary dialog box, review the project summary and click Finish if you are satisfied with the
summary of your project or go back as much as necessary to correct all the questionable issues

The new project, modulator_ipi, will be automatically opened in the Vivado IDE.

Step 10. In the Flow Navigator, expand IP Integrator and select Create Block Design command, see lllustration 13.38

197

DESIGNING WITH IPs

4 [P Integrator
I.}% Create Block Design I

e."# Open Block Design
% Generate Block Design

Figure 13.38: Create Block Design option

Step 11. In the Create Block Design dialog box, specify modulator_ipi name of the block design in the Design nhame
field and click OK, see lllustration 13.39

4. Create Block Design

Flease spedfy name of block design.

Design name: modulator_ipi
Directory: & <Locl to Project -
Specify source set: | [Design Sources -

Figure 13.39: Create Block Design dialog box

The Vivado IDE will display a blank design canvas. You can quickly create complex subsystem by integrating IP cores in it,
see lllustration 13.40

Fle Edit Flow Tools Window Layout View Help Q- Search c s
grE@peBRX PPN G X IS [SGoeftiayout RN ® Ready
Flow Navigator | | Block Design - moduiator_ipi x|
ol — | Design — O ¥ | [fDiagram X | 0w x
o Z[E:- 3] 4 modiater

4 Project Manager
&% Project Settings
¥ Add Sources
{ Language Templates
LF 1P catalog

\#, modulator_ipi

[ERD

4, Create Block Desian
5% Open Block Design
& Generate Block Design

Simulation 4 Sources™, [Design | @ Signals | [Board

This design is empty. Press the T3 button to add IP.

S

QU Y MHAGORELL

% Simulation Settings Properties N s VT
(), Run Simulation « =[x
4 RTL Analysis :
3 Blaboration Settings
b (& Open Elaborated Design Select an object to see properties
el
4 Synthesis <+
& synthesis settrgs = | |- —
P Run Synthesis Td Console — 0w x
b @ Open Synthesized Design X| | close_project -
| [create_project modulator_ipi D:/temp/modulator/medulator_ipi -part zc7k325tffg900-2
=
4 Implementation ﬂvﬂ INFO: [IP_Flow 19-234] Refreshing IP repositories
@) Inplementaton Settngs Wl muwo: [12_Flow 19-1704] Mo user TP repositories specified
]| C/INFO: [IP_Flow 19-2313] Loaded Vivado IP repository 'C:/misc/Kilinx/Vivado/2015.1/data/ip’.
[» Run Implementation [y sec_propersy board part xilinx.com:ks705:part0:l.2 [current_project]
i> (@ Open Implemented Design x set_property target_language VHDL [current project] L

create_bd_design "modulator_ipi”
Program and Debug Wrote : <D:/temp/modulator/modulator_ipi/modulator_ipi.srcs/scurces_1/bd/modulator_ipi/modulator_ipi.bd>

&% Bitstream Settings
¥ Generate Bitstream

.

4 g

O i] G

IT';p% a Tel command here

I g% Open Hardware Manager
|5 Tel Console | © Messages | [Log | % Reports | 3> Design Runs

Figure 13.40: Vivado IDE with a blank design canvas

198

13.2 IP Integrator

Step 12. To add our previously packaged IPs (frequency_trigger _v1_0, counter_v1_0, sine_v1_0 and pwm_v1_0) to
the IP Catalog, please repeat the steps 32 - 38 from the Sub-chapter 13.1 IP Packager.

Step 13. The modulator _ipi design is empty. To get started, add IPs from the IP Catalog. You can do that on three ways:

+ In the design canvas, right-click and choose Add IP... option, see lllustration 13.41, or

Z= Diagram X Owe x

#[] & modulator_ipi

oS
-
& Ctrl+E
S| Delete
e Ctrl+C
- Ctrl+V
f‘"‘ \ Ctrl+F
= L SelectAl Ctrl+A
E _ {# AddIP... Ctrl+I
- 7| & IP Settings...
& ¥ validate Design Fé6
S, Create Hierarchy...
¥ Create Comment
& Create Port... Ctrl+K
@ Create Interface Port... Ctrl+L
@ @ Regenerate Layout
&l Save as PDF File..,
b

Figure 13.41: Add IP option

» Use the Add IP link in the IP Integrator canvas, see lllustration 13.42, or

M
H

o Diagram X [m]

"D #, modulator_ipi

QRS HAGITENR
g

o
)

P

Figure 13.42: Add IP link

* Click on the Add IP button in the IP Integrator sidebar menu, see lllustration 13.43

199

DESIGNING WITH IPs

G Diagram !
+#{] 4 modulator_ipi

APV Y

=

'“@ 1k H 2 &

s

&
=

Figure 13.43: Add IP button

Step 14. In the IP Catalog, search for the frequency_trigger_v1_0 core, see lllustration 13.44

Search:

iF ECC -
1F Ethernet PHY MII to Reduced MII

{F Fast Fourier Transform

{F FIFO Generator

{F FIR Compiler

1F Fixed Interval Timer

{F Floating-point

c
1F G.709 FEC Encoder/Decoder -
{F G.975.1EFEC 1.4 Encoder [Decoder

{F G.975.1EFEC 1.7 Encoder/Decoder

{F Gamma Correction

1F HDMI 1.4/2.0 Receiver Subsystem

{F HDMI 1.4/2.0 Transmitter Subsystem -
4% 12C Bus Master Controller =

ENTER to select, ESC to cancel, Ctrl+Q for IP details

Figure 13.44: frequency_trigger_v1_0 core in the IP Catalog

Step 15. When you find it, press enter on the keyboard or simply double- click on the frequency_trigger_v1_0 core in
the IP Catalog and the selected core will be automatically instantiated into the IP Integrator design canvas, see lllustration

13.45

200

13.2 IP Integrator

Ic Diagram X

O =

#[] i modulator_ipi

| CRSQW S, QIIHLAG AR

frequency _trigger_0

clk_in

B freq_tri
div_factor_freghigh[3L:0] -0

div_factor_freglow[31:0]

frequency_trigger_v1_0

Figure 13.45: Automatically instantiated frequency_trigger_v1_0 core in the IP Integrator design canvas

Step 16. Right-click in the IP integrator canvas and select the Add IP... option to add the rest of the necessary IPs
(counter_v1_0, sine_v1_0 and pwm_v1_0). At this point, the IP Integrator canvas should look like as it is shown on the

lllustration 13.46

o Diagram X

#[] % modulator_ipi

AREQU I RBHL,IITIER R

@

P
=
2

frequency_trigger_0

clk_in

swil
div_factor_freghigh[31:0]
div_factor_freqlow[31:0]

freq_trig

frequency_trigger_v1_0
counter_0

clk_in
cnt_out[0:0]
cnt_en

counter_v1_0

sine_0

clie_in
sine_out[11:0]
ia'npl_cntp:(!] }

sine_vli_0

pwm_0

clk_in

swi

sine_ampl[11:0] pwm_out
div_factor_freqhigh[31:0]
div_factor_freqlow[31:0]

pwm_v1_0

Figure 13.46: IP Integrator design canvas with all four instantiated I1Ps

Step 17. Double-click on the each of the IP cores to re-customize it. Re- customize IPs on the same way as it is done in
the previous Sub-chapter 13.1 IP Packager (steps: 41, 44, 48 and 52), see lllustrations 13.47, 13.48, 13.49 and 13.50

201

DESIGNING WITH IPs

Q: Re-customize IP &J

frequency_trigger_v1_0 (1.0) '

[fffd Documentation [IP Location

[Show disabled ports Component Name | modulator_ipi_frequency_trigger_0_0

It_in
Sl
chy_Fartm_Fregtigh|31:0]
chy_Fec_Fregian|31:0]

Fieg biig

Figure 13.47: frequency_trigger_v1_0 re-customization dialog box

ﬂ Re-customize IP [éj

counter_v1_0 (1.0) ‘

il Documentation [1P Location
[] show disabled ports Component Mame | modulator_ipi_counter_0_0

Cnit Value G | 255

Depth G 8

Ik_in

cnk_out[0:0]
nt_en

Figure 13.48: counter_v1_0 re-customization dialog box

202

13.2 IP Integrator

1F Re-customize [P I&
sine_v1_0 (1.0) ‘
ﬁDocumeniaﬁan | IP Location

[] Show disabled ports Companent Mame | modulator_ipi_sine_0_0
-
DepthG 8
Width G |12
Ir_pilr:cm[m] sine_out[11:0]
] ol

Figure 13.49: sine_v1_0 re-customization dialog box

1 F Re-customize IP I&

pwm_v1_0 (1.0)

iﬂ Documentation || IP Location
[] Show disabled ports Companent Mame | modulator_ipi_pwm_0_0

Width G | 12

It_in
S
i r=_ampl[11:0]

ch_Factm_Fiergn|31:0]
hu_fert_Freghan|31:0)

Figure 13.50: pwm_v1_0 re-customization dialog box

Step 18. After we re-customize all four IPs, the IP Integrator canvas should look like as it is shown on the lllustration 13.51

203

DESIGNING WITH IPs

= Diagram X

O x

3] &, modulator_ipi

FCRSQWIQIHAO 7B LA

frequency_trigger_0

clk_in
swi

freq_trig

div_factor_freghigh[31:0]
div_factor_freglow[31:0]

frequency_trigger_v1_0

counter_0

counter_v1_0

sine_0

clic_in
sine_out[11:0]
ampl_cnt[7:0] }

sine_v1_0
pwm_0
clk_in
swi
sine_ampl[11:0] pwm_out

div_factor_freghigh[31:0]
div_factor_freqlow[31:0]

pwm_vl_0

Figure 13.51: IP Integrator design canvas with all four re-customized IPs

Step 19. The last IP necessary for our design is the Constant IP. Add Constant IP four times into the block design.
Two Constant IP instances will be connected to the div_factor_freqhigh(31:0) and div_factor_freqlow(31:0) ports of
the frequency_trigger_v1_0 module and remaining two instances to the div_factor_freqhigh(31:0) and div_factor _-
freqlow(31:0) ports of the pwm_v1_0 module, see lllustration 13.52.

i Diagram X

3], modulator_ipi

e QRrYBHL,EIRBIERR

xlconstant_0
dout[0:0]
Constant

xlconstant_1
dout[0:0]
Constant

xlconstant_2

Constant

xlconstant_3
dout[0:0]

Constant

frequency_trigger 0

clk_in
swil

div_factor_freghigh[31:0]
div_factor_freqiow[31:0]

freq_trig e

frequency_trigger_v1_0

counter_0

clk_in
cnt_en

ent_out[7:0]

counter_v1_0

clk_in

sine_0

sine_out[11:0]

ampl_cnt[7:0]

sine_v1_0

pwm_0

clk_in
swl

sine_ampl[11:0]

pwm_out

div_factor freghigh[31:0]
div_factor_freqlow[31:0]

pwm_v1l_0

Figure 13.52: IP Integrator design canvas with instantiated Constant IPs

204

13.2 IP Integrator

Step 20. Double-click on the first Constant (xlconstant_0) block and set the Const Width value to 32 and Const Value
value to 110592, see lllustration 13.53

+ Const Width to 32 - because div_factor_freqhigh port that we would like to connect to is 32-bit wide

» Const Value to 110592 - because 110592 is the number that divides frequency of the input clock signal (100 MHz)
to the required frequency, see Table 1.2

ﬁ Re-customize IP lﬁj

Constant (1.1) ‘

[fffd Documentation [1P Location

Show disabled ports
Component Name | modulator_ipi_xlconstant_0_0

Const Width 32 [1 - 4096]

Const Val 110592

=

Figure 13.53: Constant block re-customization dialog box

Step 21. Do the same procedure with the second Constant (xlconstant_1) IP block. Set the Const Width value to 32
and Const Value value to 389120

Step 22. In the third Constant (xlconstant_2) IP block, set the Const Width value to 32 and Const Value value to 27

« Const Value to 27 (110592/4096=27) - because PWM module must operate at 24" (212 = 4096) higher frequency
then the Sine module. This is required in order to generate correct pwm signal, as described earlier

Step 23. In the forth Constant (xlconstant_3) IP block, set the Const Width value to 32 and Const Value value to 95
(389120/4096=95)

After we added all necessary IPs for our design, the next step will be to connect IPs between themselves. Make connections
on the same way as it is shown on the . Here are the steps how to make these connections:

Step 24. First step will be to create new ports:

« Select clk_in pin, right-click on it and select Create port... option, see lllustration 13.54

205

DESIGNING WITH IPs

Z= Diagram X
[% modulator_ipi

PonmFRR

F H

BH QWi

. @

o
53

xlconstant_0

dout[31:0]
Constant

xlconstant_1

dout[31:0]

Constant

xlconstant_2

dout[31:0]

Constant

xlconstant_3

dout[31:0]

Constant

frequency_trigger 0

Block Pin Properties...
Highlight

Copy
Paste
9, Search...
I Select Al
& AddTP...
Add Module...
r, Make External
& IP Settings...
¥ Validate Design
Start Connection Mode
Make Connection...

Create Hierarchy...
Create Comment
Create Port...

@ Regenerate Layout

l Save asPOFFie...

Ctrl+E

»
Delete
Ctrl+C
Ctrl+V/
Ctrl+F
Ctrl+ A
Ctrl+]

Ctrl+T

Fo
Ctrl+H

Ctrl+K

Tjhr_factor_freqlm\r[n:i]]

pwm_vl_0

Figure 13.54: Create Port option

 In the Create Port dialog box, check is the port name clk_in in the Port name field, leave all other parameters
unchanged and click OK, see lllustration 13.55

¢ Create Port

Port name:
Direction: Input =
Type: Other

|| Create vector: from
Frequency (MHz):

Interrupt type: @ Level
Sensitivity: (@) Active High

Connect to ‘dk_in' selected pin

Create port and connect it to selected pins and ports

Edge

Active Low

Figure 13.55: Create Port dialog box

* Repeat the same procedure for sw0 and pwm_out pins. After these modifications, the IP Integrator design canvas
should look like as it is shown on the lllustration 13.56

206

13.2 IP Integrator

i= Diagram X
#[] % modulator_ipi

frequency_trigger_0

Ik_in

D\+
X cli_in [
Lk, swi \.

[
W
e xlconstant_0
D\
=

e Constant
g

N xlconstant_1
=
L dout[31:0]
x Constant
3

¥ xlconstant_2
L]

@ dout[31:01
&l Constant
<l

xlconstant_3

dout[31:0]

Constant

swi
freq_t
div_factor_freghigh[31:0] by

div_factor_freqlow[31:0]

frequency_trigger_vi_0

counter_0

clk_in
cnt_out[7:0]
cnt_en

counter_vi1_0

sine_0

clk_in

sine_out[11:0]
ampl_cnt[7:0]

sine_v1_0

pwm_0

clk_in
swi

sine_ampl[11:0] pwm_out -—D pwm_out
div_factor_freqhigh[31:0]
div_factor_freglow[31:0]

pwm_vl 0

Figure 13.56: IP Integrator design canvas with new ports

Step 25. Next step will be to connect the IPs:

Place the cursor on top of the desired pin and you can notice that the cursor changes into a pencil indicating that a
connection can be made from that pin. Clicking the left mouse button a connection starts. Click and drag the cursor from
one pin to another. You must press and hold down the left mouse button while dragging the connection from one pin to
another. As you drag the connection wire, a green checkmark appears on the port indicating that a valid connection can be
made between these points. The Vivado IP Integrator highlights all possible connections points in the subsystem design
as you interactively wire the pins and ports. Release the left mouse button and Vivado IP integrator makes connection

between desired ports. Repeat this procedure until all the pins become associated, see lllustration 13.57

207

DESIGNING WITH IPs

o Diagram X
3] & modulator_ipi

B RR

CHSsQ% e IEH P &

<
-

frequency_trigger_0

c\k_mD

Ik_in
w0

swO [

xlconstant_0

dout[31:0]

Constant

xlconstant_1

div_factor_freqhigh[31:0]
div_factor_freglow[31:0]

freq_trig

frequency_trigger_vi_0

counter_0

I_in
" ent_out[7:0]

nt_en

dout[31:0]

i

Constant
xlconstant_2

dout[31:0]

Constant

xlconstant_3

dout[31:0]

Constant

counter_v1 0

swil

div_factor_freghigh[31:0]
div_factor_freqlew[31:0]

sine_0
lk_in
sine_out[11:0]
pl_cnt{7:0]
sine_vi_0
pwm_0
Ik_in

ine_ampl[11:0] pwm_out -—D pwm_out

pwm_vl_0

Step 26. From the sidebar menu of the design canvas, run the IP subsystem design rule checks by clicking the Validate

Design button

Alternatively, you can do the same by selecting Tools -> Validate Design from the main menu, see lllustration 13.58, or

by clicking the design canvas and selecting Validate Design button from the main toolbar menu, see lllustration 13.59

Figure 13.57: IP Integrator design canvas with connected IPs

File Edit Flow

Tools | Window Layout Wiew Help

é:‘_ modulator_ipi - [G:/temp/Vivade_2014.3/meodulator_ipi/modul

Ag2E D
Flow Navigator
oz

4 Project Manay
ﬁ Project
Q‘ﬁ’ Add Soy
) Langua

1k 1 cata

4 TP Integrator
J;ﬁ Create

[—l

) validate Design

Report

Create and Package IP...
Create Interface Definition. ..
Run Td Seript...

Property Editor

Assodate ELF Files...

[

Compile Simulation Libraries...
Xilimx Td Store...
Customize Commands

G Project Settings...
2 Options...

F&

Ctrl+)

Figure 13.58: Validate Design option from the main menu

208

13.2 IP Integrator

File Edit Flow Tools

™ A pig
o

Window Layout View Help

g-'_ madulator_ipi - [G:/termp/Vivado/modulator_ipi/medulater_ipixpr] - Vivado 2013.4

AR E D ¢ &' P % 2| & G | X Default Layout -
Flow Navigatar <4 Block Desigp—madulatar _ini *

Design Hierar

Validate Design (F6)

Validate and display errors and critical warnings in this design.

=

Figure 13.59: Validate Design button from the main toolbar menu

Step 27. In the Validate Design dialog box, click OK, see lllustration 13.60

gl".{? Validate Design @

I_.) .) o .
0 Validation successful. There are no errors or critical warnings in this design.

Figure 13.60: Validate Design dialog box

Step 28. At this point, you should save the IP integrator design. Use the File -> Save Block Design command from the
main menu to save the design.

Step 29. In the Sources window, select modulator_ipi, right- click on it and choose Create HDL Wrappetr... option, see

Illustration 13.61

Sources — O ¢ X
A==t B|E
=I-{= Design Sources (1)
- Constraints & Source Node Properties... Ctrl+E
- Simulation Sources | 1) | 3 Open File Alt+0

- sim_1 (1)
Create HOL Wrapper...

View Instantiation Template
Generate Output Products. ..
Reset Output Products...

Figure 13.61: Create HDL Wrapper option

Step 30. In the Create HDL Wrapper dialog box, select Let Vivado manage wrapper and auto-update option and click

OK, see lllustration 13.62

g“ Create HDL Wrapper @
You can either add or copy the HDL wrapper file to the project. Use copy option if you would
like to modify this fle.]
Options
fony generated wrapper to allow user edits
@) Let Vivado manage wrapper and auto-update
Cancel

Figure 13.62: Create HDL Wrapper dialog box

209

DESIGNING WITH IPs

Step 31. After the HDL wrapper is generated, you should see it in the Sources window, see lllustration 13.63

Sources

AZT= mE R
=/ Design Sources (1)
(=} s modulator_ipi_wrapper - STRUCTURE |

-8, modulator_ipi_i - modulator_ipi (
[=}-h modulator_ipi - STRUCTURE

[#-1= Constraints
2= Simulation Sources (1)
- sim_1 (1)

Hierarchy | IP Sources | Libraries | Compile Order

4% Sources | [Design Signals | @ Board

Figure 13.63: Sources window with generated modulator_ipi HDL wrapper

Step 32. The last step in our design will be to crate and add modulator_ipi_rtl.xdc constraints file. The content of the

modulator_ipi_rtl.xdc constraints file is shown in the text below:

LOC Y9
LOC F22
LOC T22

set_property
set_property
set_property

[get_ports clk_in];
[get_ports swO0];
[get_ports pwm_out];

set_property
set_property
set_property

IOSTANDARD LVCMOS33
IOSTANDARD LVCMOS25
IOSTANDARD LVCMOS33

[get_ports clk_in];
[get_ports sw0];
[get_ports pwm_out];

create_clock -period 10.000 -name clk_p -waveform {0.000 5.000}

[get_ports clk_p]

Step 33. Add modulator _ipi_rtl.xdc file in the modulator_ipi project as constraints file, see lllustration 13.64

Sources

A= 2a

?_

[+ Design Sources (1)

7 Constraints (1
=+ constrs_1 (1)

-

{51 Simulation Sources (1]

4 L1

[l modulator _ipi_wrapper - STRUCTURE (modulztor_ipi_wra

Hierarchy | IF Sources | Libraries

2% Sources | | Design Hierarchy

Compile Order

Figure 13.64: Sources window with added modulator_ipi_rtl.xdc constraints file

Step 34. Synthesize your design with Run Synthesis option from the Flow Navigator / Synthesis (see Sub-chapter

6.5.2 Run Synthesis)

Step 35. Implement your design with Run Implementation option from the Flow Navigator / Implementation (see Sub--

Chapter 10.2.2 Run Implementation)

Step 36. Generate bitstream file with Generate Bitstream option from the Flow Navigator / Program and Debug (see

Sub-Chapter 10.3 Generate Bitstream File)

4Step 37. Program your ZedBoard device (see Sub-Chapter 10.4 Program Device)

210

13.3 Debugging IP Integrated Designs

Note: All the information about how to design with IPs using Vivado IP Integrator tool, how to create complex system
design by instantiating and interconnecting IP cores from the Vivado IP Catalog onto a design canvas, you can also find in
the Lab 17: "Designing with IPs - IP Integrator” .

13.3 Debugging IP Integrated Designs

In-system debugging allows you to debug your design in real-time on your target hardware. IP Integrator provides ways
to instrument your design for debugging, which will be explained in this sub-chapter. In the earlier sub-chapters we have
explained that Vivado IDE has two different flows for debugging. One is the HDL Instantiation Debug Probing Flow and
the other one is Using the Netlist Insertion Debug Probing Flow. Choosing the flow depends on your preferences and
types of nets/signals that you are interested in debugging. In this tutorial we will explain both flows on the same, Modulator
IP integrated design.

Details about how to debug your IP Integrator design using the "HDL Instantiation Debug Probing Flow" can be found in
the Chapter 14 "Appendix".

Using the Netlist Insertion Flow in IP Integrator

As shown in the Sub-chapter 11.1 Inserting ILA and VIO Cores into Design, in this flow you will mark nets that you
are interested in analyzing in the block design. Marking nets for debug in the block design offers more control in terms of
identifying debug signals during coding and enabling/disabling debugging later in the flow.

To start debugging process using the Netlist Insertion Flow in IP Integrator tool, please do the following:
Step 1. Right-click on the modulator_ipi block design canvas and select Add IP... option

Step 2. In the IP Catalog, search for VIO core, select it and double- click on it to instantiate the VIO core in the IP Integrator
canvas

Step 3. In case of VIO core, use default configuration settings

Step 4. Remove sw0 port from the IP Integrated canvas and connect the VIO core with the rest of the IPs in the same way
as it is shown on the Figure 11.9, see lllustration 13.65

o Diagram X 2 0 @ %
F[] 4 modulator_ipi
a;
Qg frequency _trigger_0
%‘ clk_in [3— k_in
R 0
fi tri
div_factor_freghigh[31:0] LA
Y div_factor_freqlow[31:0
g xlconstant_0 —]
\J\ [}r \r-‘L'rr\ D
dout[31:0] requency_trigger_v1_
vio_0 onsta
S = ‘ Constant counter_0
: clk
o rob It0[0:0 Tk_i
probe_inD[0:0] e out[0:0] Xiconstant 1 <ol cnt_out[7:0]
nt_en
| T - dout[31:0]
(Virtual Input/Output)
& put put) Conetant counter_v1 0
B stal
a xlconstant_2
@ = sine_0
&l dout[31:0] -
b4 i sine_out[11:0]
Constant pl_cnt[7:0]
xlconstant_3 sine_v1_0
dout[31:0]
pwm_0
Constant K in
swi
ine_ampl[11:0] pwm_out »—{ > pwm_out
div_factor_freghigh[31:0]
div_factor_freqlow[31:0]
pwm_vi_0

Figure 13.65: IP Integrator design canvas with connected VIO core

Step 5. The next step will be to mark nets for debug

211

DESIGNING WITH IPs

Nets can be marked for debug in the block design by highlighting them, right-clicking and selecting Debug, see lllustration
13.66

Step 6. Mark sine_ampl_s and freq_trig_s nets for debug

%o Diagram X ? 02 x
3] modulator_ipi
~ frequency_trigger_0
o equency_trigger_!
iy lk_in
A clk_in [>— -
I freq_trig|
.i:k div_factor_freghigh[31:0] @ System NetProperties... Ctrl+E
= xlconstant_0 div_factor_freglow[31:0] @ Highlight 3
b -
a dout[31:0] frequency_trigger_v1_0 X e Delete
vio_0 —— B Copy Ctrl+C
I = Constant Ctrl+V
— counter_0
= clk probe_out0[0:0] —————— @ Search... Ctrl+F
i probe_in0[0:0] - : wlconstant_1 lk_in | Iy Select Al Ctrl+A
-, AT ST A it -
, VIO (Virtual InputyOutput) dout[n:nli—— = oy addiP.. Ctrl+1
& — ~ counter_v1_0 Add Module...
Constant -
@ @& 1P Settings...
& xlconstant_2 sine_0 ¥ Validste Design F6
@ doUt[31:0] e ", Start Conmection Mode CuloH
&l . I 7‘ cnt7:0] sine_out[11:0] Make Connection...
Constant PlentLs
- S —
sine_vl_ 0 Deb
xlconstant_3 =Ll
[dout[]l:ﬂ]k— pwm_0
1), — Create Hierarchy...
Constant lle_in =G
Create Port... Ctrl+K
b sinie_ampl[11:0] pwm_out|
Iy freqhigh{31:0] Create Interface Port... Ctrl+L
dluif 7frﬂ]lm/v[31'(‘]] @ Regenerats Layout
_7 B Save as PDF File...

pwm_v1_0

Figure 13.66: Debug option

The nets that have been marked for debug will show a small bug icon placed on top of the net in the block design. Likewise,
a bug icon can be seen placed on the nets to be debugged in the Design Hierarchy window as well.

Step 7. Generate output products by clicking on the Generate Block Design command or by highlighting the block design
in the sources window, right-clicking and selecting Generate Output Products option, see lllustration 13.67

4 TP Integrator
i Create Block Design
--,a Open Blodk Design

5:-'} Generate Block Design

Figure 13.67: Generate Block Design command

Note: Generate outputs needed for synthesis, simulation and implementation processes.
Step 8. In the Generate Output Products dialog box, click Generate

Step 9. Marking the nets for debug places the MARK_DEBUG attribute on the net which can be seen in the generated top-
level HDL file. This is important because prevents the Vivado tools from optimizing and renaming the nets, see lllustration
13.68

212

13.3 Debugging IP Integrated Designs

ZaDiagram X | #i modulator_ipivhd x ?2 0O X
=] E:/Projects/Vivado//proba/Vivade-2016.4/modulator _ipi/modulator_ipi.srecs/sources_1/bd/modulator_ipi/hdl/modulator_ipi.vhd Read-only
82 probe_in0 : in STD_LOGIC VECTOR { 0 to 0); .|

probe_outd : out STD_LOGIC VECTOR (0 to 0)
1
end component modulater_ipi_vie_0_0;
signal clk in 1 : STD_LOGIC:
signal counter_0_cnt_out : STD_LDGIC VECTOR (7 downto 0);
signal frequency trigger 0_fregq trig : STD_LOGIC:
attribute DEBUG : string;
~| 90 attribute DEBUG of frequency trigger 0_freg_trig : signal is "true";
/| 81 | attribute MARK DEBUG : boolean:
92 attribute MARK_DEBUG of frequency trigger 0_freq _trig : signal is std.standard.ctrue;
=| 93 signal pwm 0_pwm out : STD_LOGIC:
—| 9% gignal sine_0_sine_gut : STD_LOGIC VECTOR (11 downto O)i
¥ | 95 attribute DEBUG of sine_0 sine_out : signal is "true";

o ommm oo
[reg= = v

& 1 |.=.|:|:r1bu\:e MARK DEBUG of sgine 0 _sine cut : 3ignal is std.standard.true: =
a7 signal swO_1 : STD_LOGIC VECTDR { 0 to 0);
98 signal xlconstant_0_dout : STD_LOGIC VECTOR (31 downto 0)7
99 signal xlconstant_l dout : § W1

100 | signal xlconstant_2_dout : STD_] A
101 signal xlconstant_3_dout : STD_LOGIC VECTOR (31 downto 0)r
102 | begin

103 elk_in_1 <= clk_in;
out <= pwm_0_pwm_out;
r_0: component modulator_ipi_counter_0_0

i, r

Figure 13.68: MARK_DEBUG attributes in the generated HDL file

Step 10. Remove modulator _ipi_rtl.xdc constraints file from the design and add new modulator _ila_vio_rtl.xdc con-
straints file which doesn’t contain swO port constraint

Step 11. The next step is to synthesize the design by clicking on the Run Synthesis command from the Flow Navigator,
under the Synthesis drop-down list

Step 12. In the Synthesis Completed dialog box, select Open Synthesized Design option and click OK
Step 13. The Schematic and the Debug window opens

Step 14. In the Debug window, click on the Set up Debug icon to launch Set up Debug wizard to guide you through the
process of automatically creating the debug cores and assigning the debug nets to the inputs of the cores

Step 15. Please refer to the Sub-chapter 11.1 Using the Inserting ILA and VIO Cores into Design and repeat steps 24
- 32 where is in detail explained how to use Set up Debug wizard, how to choose nets and how to connect them to debug
cores

Note: Pay attention that maybe some marked debug probes in the Nets to Debug dialog box (step 26) would not have
specified clock domain. In that case open Select Clock Domain dialog box, choose ALL_CLOCK instead of default GL-
OBAL_CLOCK nets type, select clk_in_IBUF as a new clock domain and click OK. Repeat the same procedure for the
both (sine_ampl_s and freq_trig_s) debug nets.

Step 16. You are now ready to implement your design and generate a bitstream file. You can immediately click on the
Generate Bitstream command in the Flow Navigator, under the Program and Debug drop-down list

Step 17. Since, you have made changes to the netlist by inserting an ILA core, a dialog box with a question should the
design be saved prior to generating bitstream file will pop up, see lllustration 13.69

é“_ Save Project @

,9, Save project before generating bitstream?

Data to Save

| Synthesized Design - constrs_1 - modulator _ila_vio. xdc

[Save || Don't Save || Cancel

Figure 13.69: Save Project dialog box

Step 18. Click Save in the Save Project dialog box

The benefit of saving the project is that if the signals marked for debug remain the same in the original block design, then
there is no need to insert the ILA core after synthesis manually as these constraints will take care of it.

213

DESIGNING WITH IPs

Step 19. Program your ZedBoard device (see Sub-Chapter 10.4 Program Device)

Step 20. After programming your design, you should get the same results as we presented in the Sub-chapter 11.2 Debug
a Design using Integrated Vivado Logic Analyzer of this tutorial.

Note: All the information about how to debug your IP integrated design using the Netlist Insertion Flow, you can also find
in the Lab 18: "Debugging IP Integrated Designs".

13.4 Creating Modulator IP Core with AXI4 Interface

Advanced eXtensible Interface (AXI) is a standard ARM communication protocol. Xilinx adopted the AXI protocol for IP
cores beginning with Spartan-6 and Virtex-6 families and continues to use it with new 7 Series and Zyng-7000 families.

AXl is part of ARM AMBA, a family of micro controller buses. The first version of AXI was first included in AMBA 3.0. AMBA
4.0 includes the second version of AXI, AXlI4, which we are using now in our designs.

There are three types of AXI4 interfaces:

+ AXI4-Full - for high-performance memory-mapped requirements
+ AXl4-Lite - for simple, low-throughput memory-mapped communication

» AXI4-Stream - for high-speed streaming data

In the Vivado IDE you can access Xilinx IP with an AXl4 interface directly from the Vivado IP Catalog and instantiate that
IP directly into an RTL design. In the IP Catalog, the AXI4 column shows IP with AXI4 interfaces that are supported and
displays the which interfaces are supported by the IP interface.

To integrate our Modulator design in some processor-based system, we need to have AXl interface in our design. In order
to show how to work with AXI interface we will add three internal registers: "div_factor_freghigh”, "div_factor_freglow" and
"sw0". The first two registers, "div_factor_freghigh" and "div_factor_freqglow" will be connected to the div_factor_freghigh
and div_factor_freqglow ports of the Modulator module and will be used for storing division factor values. The third register,
"sw0" register, will be connected to the swO port of the Modulator module. With this configuration we can change the
content of these three registers through AXl interface and easily change the frequency of the pwm signal generation. Block
diagram of the new Modulator design with AXI interface is presented on the lllustration 13.70.

MODULATOR_AXI_IP

AKl4 PERIPHE RAL

swi

REGISTER MOD ULATOR MODULE

shy_reqgld
swl
I she_reql § X
div_factor_freqhigh[31:0]
sl reg2 " =
= div_factor_freqlow{31:0]
div_factor_freqhigh
REGISTER
- clk_in pwm_out pwim_out

div_factor_freglow
REGISTER

4. unused
REGISTER

—

| so0_axi_aclk

T

[soo_axi_

Figure 13.70: Modulator design with AXI interface

214

13.4 Creating Modulator IP Core with AXI4 Interface

From the illustration above we can see that we should create a new Modulator module (for example modulator_axi) with
integrated AXI interface and instantiated modulator module (modulator_rtl.vhd). At the end we should package this new
module as a new IP, e.g. modulator_axi_ip.

The Vivado IDE provides a way to create a new AXl4 peripheral through Create and Package IP wizard. This wizard
takes you through all the required steps and settings necessary for creation of an IP with selected AXI interface (Full, Lite
or Stream). This wizard automatically creates interface logic for selected AXI interface type (AXI peripheral block on the
lllustration 13.70) and allows user to add user specific logic inside this AXI enabled IP (Modulator module on the lllustration
13.70). In our example, we will configure wizard to create an AXI IP with one AXI-Lite interface. Within AXI peripheral block
we will create four 32-bit configuration registers:

« the first register (sw0 REGISTER in the block diagram) will be used to replace the sw0 switch from the board

+ the second register (div_factor_freqhigh REGISTER in the block diagram) will be used to write div_factor_freghigh
values in it

+ the third register (div_factor_freqlow REGISTER in the block diagram) will be used to write div_factor_freglow
values in it

« the fourth register (4. unused REGISTER in the block diagram) will not be used. This register will be generated
automatically by the wizard because the minimum number of AXI registers that must be generated is four.
The first step in creating a new modulator_axi design will be to create a new project:

Step 1. Close the existing modulator_ipi project with the File -> Close Project option from the main Vivado IDE menu
and in the Vivado Getting Started page choose Create New Project option

Step 2. In the Create a New Vivado Project dialog box, click Next to confirm the new project creation

Step 3. In the Project Name dialog box, enter a name of a new project and specify directory where the project data files
will be stored. Name the project modulator_axi, verify the project location, ensure that Create project subdirectory is
checked and click Next

Step 4. In the Project Type dialog box, verify that the RTL Project is selected and the Do not specify sources at this
time option is checked and click Next

Step 5. In the Default Part dialog box, ensure that the ZedBoard Zynq Evaluation and Development Kit is selected and
click Next

Step 6. In the New Project Summary dialog box, review the project summary and click Finish if you are satisfied with the
summary of your project or go back as much as necessary to correct all the questionable issues

The new project, modulator_axi, will be automatically opened in the Vivado IDE.

Step 7. To create AXI4 peripheral and to integrate it into our design we will use Create and Package IP wizard to guide
us through all the required steps and settings. In the Vivado IDE main menu, select Tools -> Create and Package IP...
option, see lllustration 13.71

e]
+ modulator_axi - [D/temp/Vivado/Vivado-2015.4/medulator_ax
e ss—eeeeeee—

File Edit Flow | Tools | Window Layout View Help

| (W) Report 4
rl

Create and Package IP...

Create Interface Definition...

Flow Mavigator

=R

- o
T

Run Td Script...
4 Project Mana{ ‘& FProperty Editor Ctrl+)
@ Project Assodate ELF Files...
04}7 Add So Compile Simulation Libraries. ..
.'l;,'- Langua: Kilinx Tel Store...
g: IP Catal Customize Commands 3
{5 Project Settings...
4 [P Integrator)
] 2 Options...
= .

Figure 13.71: Create and Package IP... option

Step 8. In the Create and Package IP dialog box, click Next

215

DESIGNING WITH IPs

¢ Create and Package New IP

S

Create and Package IP

V |VADO‘ This wizard can be used to accomplish following tasks:

HLx Editions
Package a new IP for the Vivado IP Catalog

information fram your current preject, block design or spedified directory.

Create a new AXI4 Peripheral

£ XILINX

ALL PROGRAMMABLE. Click Next to continue

This wizard will guide you through the process of creating a new Vivado IP using source files and

This wizard will guide you through the process of creating a new AXI4 peripheral which indudes HDL,
driver, software test application, IP Integrator BFM simulation and debug demonstration design.

Figure 13.72: Create and Package IP dialog box

Step 9. In the Create Peripheral, Package IP or Package a Block Design dialog box, choose to Create a hew AXI4
peripheral and click Next, see lllustration 13.73

¢ Create and Package New IP

Create Peripheral, Package IP or Package a Block Design
Flease select one of the following tasks.

Packaging Options

Package your current project
Use the project as the source for creating a new IP Definition.
Mote: All sources to be packaged must be located at or below the specified directory.

Package a block design from the current project
Choose a block design as the source for creating a new IP Definition.

=, Package a specdified directory
Choose a directory as the source for creating a new IP Definition,

Create AXI4 Peripheral

eate a new AXI4 peripheral

[< Back][MNext =] Finish

Cancel

Figure 13.73: Choose Create Peripheral or Package IP dialog box

Step 10. In the Peripheral Details dialog box, give the peripheral an appropriate name (modulator_axi_ip), description
and location, and click Next

216

13.4 Creating Modulator IP Core with AXI4 Interface

Create and Package New IP [é]
Peripheral Details
Spedfy name, version and description for the new peripheral ‘
MName: modulator_axi_ip
Version: 1.0

Display name: | modulator_axi_ip_v1.0
Description: | My new AXI IP
IP location: E:/ProjectsVivado fprobaVivado-2016. 1/modulator_axifip_repasitory l:J

[Overwrite existing

Figure 13.74: Peripheral Details dialog box

Note: The Display Name you provide shows in the Vivado IP Catalog. You can have different names in the Name
and Display Nameb fields. Any change in the Name filed reflects automatically in the Display Name filed, which is
concatenated with the Version field.

Step 11. In the Add Interfaces dialog box, we can configure AXI interface. We will use AXI Lite interface, it will be Slave
to the PS, and we will use the minimum number of 4 32-bit registers of the offered 512 registers. In our design we need
only three registers (sw0, div_factor_freghigh and div_factor_freglow), so the last one will be unused. Looking to this, we
will stick with the default values and just click Next

217

DESIGNING WITH IPs
¢ Create and Package New IP @

Add Interfaces

Add AXI4 interfaces supported by your peripheral ‘
[] Enable Interrupt Support g - Name 00 A
kg Interfaces Interface Type Lite -
g
Interface Mode Slave -
Data Width (Bits) 32 -

Memory Size (Bytes) | 64

Mumber of Registers | 4 [4..512]

| =500_axI

modulator_axi_ip_v 1.0

T [EE

[yl
a
T

Cancel

Figure 13.75: Add Interfaces dialog box

Step 12. In the last Crate Peripheral dialog box, select Edit IP option and click Finish, see lllustration 13.76. Another
Vivado window will open, which will allow you to modify the peripheral that we just created, see lllustration 13.77.

¢ Create and Package New IP @

Create Peripheral

VIVADO!

MLy Edifione Peripheral Generation Summary

1. IP (So-Logic:user:modulator_axi_ip:1.0) with 1interface(s)

2. Driver(v1_00_a) and testapp more info

3. AXI4 BFM Simulation demonstration design more info

4, AXI4 Debug Hardware Simulation demonstration design more info

Peripheral created will be available in the catalog :
E:/Projects/Vivadoproba/Vivado-2016. 1jmedulator_axifip_repository

MNext Steps:

(7) Add IP to the repository

() Verify peripheral IP using AXI4 BFM Simulation interface

() Verify peripheral IP using JTAG interface

£ XI I-I NX Click Finish to continue

ALL PROGRAMMABLE.

Figure 13.76: Create Peripheral dialog box

Step 13. In the Package IP - modulator_axi_ip window, in the Identification section, fill some basic information about
your new modulator_axi_ip IP, see lllustration 13.77

218

13.4 Creating Modulator IP Core with AXI4 Interface

. Project Summary X
Packaging Steps

+ Identification

+ Compatibility

+/ File Groups

+ Customization Parameters
+ Ports and Interfaces

+" Addressing and Memory
+ Customization GUL

Review and Package

« Identification

Vendor:

Library:

MName:

Version:

Display name:
Description:

Wendor display name:
Company url:

Root directory:

xml file name:

Categories
+ AXI_Peripheral

. Package IP - modulator_axi_ip X

So-Logic
modulator
modulator_axi_ip
Lo
modulator_axi_ip_v1.0
My new AXI IP
So-Logic
http: ffwww.so-ogic.net
d: ftemp/modulator /modulator_axifip_repository/modulator_axi_ip_1.0

d: ftemp/modulator/modulator_axi/fip_repository/modulator_axi_ip_1.0/component.xml

M

1,

Figure 13.77: Identification window

At this point, the peripheral that has been generated by Vivado is an AXI Lite slave, that contains 4x32-bit read/write
registers. What we want is to add our Modulator module to the modulator_axi_ip 1P and connect it with the three AXI

registers, see block diagram on the Figure 13.70 from the beginning of this chapter.

Step 14. In the Flow Navigator, click Add Sources command to add all the necessary Modulator module source files
(frequency_trigger_rt.vhd, counter _rtl.vhd, modulator_pkg.vhd, sine_rtl.vhd, sine_top_rtl.vhd, pwm_rtl.vhd and modulator-
_rtl.vhd) and after adding your Hierarchy tab should look like as it is shown on the lllustration 13.78

Note: In the Add or Create Design Sources dialog box don’t forget to enable Copy sources into IP Directory option.

Project Manager - edit_modulator_axi_ip_v1_0

Sources —

== m ek B

-1

—-{= Design Sources (4
+= modulator_axi_ip_v1_0 - arch_imp (modulator_awxi_ip_v1_0.vhd) (1)

modulator - rtl ()
sine_top - rtl (sine y
1 IP-XACT (1)

1 Constraints

1 Simulation Sources (3)

Hierarchy | Libraries | Compile Order

&% Sources | | Templates

Figure 13.78: Hierarchy tab after adding all the necessary source files in the IP

Step 15. Now is the time to modify AXI peripheral. Open the branch "modulator_axi_ip_v1_0-arch_imp", see lllustration

13.79

219

DESIGNING WITH IPs

Project Manager - edit_modulator_axi_ip_v1_0

Sources — O X
QT &iee RE

E| &= De5|gn Sources (4

| Constraints
[#-{= Simulation Sources (3)

Hierarchy | Libraries | Compile Order

4 Sources | T Templates

Figure 13.79: Hierarchy tab with opened modulator_axi_ip_v1_0 - arch_imp branch

Step 16. Double-click on the "modulator_axi_ip_v1_0_S00_AXI _inst" file to open it
Step 17. In the "modulator_axi_ip_v1_0_S00_AXI.vhd" file make the following changes:

» add modulator_pkg package

« in the entity declaration, add depth_g and width_g generics in the generic map, below the first comment line "--
Users to add parameters here"

« in the entity declaration, add pwm_out port as 1-bit output port in the port map, below the comment line "-- Users
to add ports here", see lllustration 13.80

* create constant design_setting_c, as it is shown on the lllustration 13.80

T Project Summary X | & Package IP - modulator_axi_ip X | il modulator_axi_ip_v1_0_S00_AXLvhd X o =

= e fprojects/vivado fproba fvivado-2015. 2/modulator_axijfip_repository/modulator_axi_ip_1.0/hd|/modulator_axi_ip_v1_0_S00_AXI.vhd

1library ieee;

o 2use ieee.std logic 1164.all; |=
U9 suse ieee.numeric_std.all;

z_;:&ﬁ 4
Fr 5|use work.modulator _pkg.all;
o ¢
f_j Tentity medulator axi_ip wl 0_S00_RXT is
b4 a8 generic

11 depth g: integer range 0 to 99; -- th
15§'J 12 width_g: integer range 0 to 99; -- th

17 —-- Width of § AXT dat
_AXI DRTR WIDTH
al] —-— Width of § AXT 5
20 C_S_AXI_ADDR_WIDTH : 1nteger = 4

integer 1= 32:

25 —— pulse widtl
28 pwm_out : out std logic:

Figure 13.80: Modified modulator_axi_ip_v1_0_S00_AXIl.vhd file - part 1

220

13.4 Creating Modulator IP Core with AXI4 Interface

I Praject summary % | & Package IP - madulator_axd_ip ¢ |10 madulator axi ip vi 0 500 Advhd | x: 0w ox
B =:[Projects/Vivadojproba Vivado-2016. 1/modulator_sxi/ip_repository/moduiator_axi_ip_1.0/ndlfmoduiator_axi_ip_v1_0_S00_AXL.vhd

rs 4
signal slv_regl :std logic vector(C 5 AXI DATA WIDTH-1 downtc 0);
signal slv_regl :std logic_vector(C_S_AXI DATA WIDTH-1 downto 0)7
signal slv_reg2 :std legic_wector(C_S_RXI DATR WIDTH-1 downteo 0);
signal slv_reg3 :std logic _wector(C_S_RXI_DRTR WIDTH-1 downtec 0);
signal slv_reg_rden : std logic;

=signal slv_reg_wren : std logic;

signal reg_data_out :std_logic_vector{(C_S BXT DATA WIDTH-1 downto 0);
3ignal byte_index : integer;

constant design_setting ¢ : design_setting t_rec := (2**depth g-1, 0.0, 0.0, depth g, width g};

begin

4 3

Figure 13.81: Modified modulator_axi_ip_v1_0_S00_AXI.vhd file - part 2

Step 18. Now, at the end of this source code find the comment "-- Add user logic here" and below this comment
instantiate Modulator module. Connect Modulator module ports to the AXI peripheral on the same way as it is shown on
the lllustration 13.82

T Project Summary X | & Package IP - modulator_axi_ip X |wfl modulator_axi_ip_w1_0_S00_AXLvhd x O X
k= | e:fprojects/vivadofprobajfvivado-2015. 2fmodulator_axifip_repository/modulator_axi_ip_1.0/hdl/medulator_axi_ip_v1 0_S00_AXI.vhd
380 o
[1D E—
W 302
d&, 393 -- modulator module instance
= | 3948 pwmmodulator : entity work.modulator
“Ej 385 generic map(
H=l| 396 design_setting g => design_setting o
¥ | 397 i
398
"II"II 388 port map(
400 clk_in =» §_BXI_ACLK,
CB__J 401 awl =» slv_regl(0),
—| 402 div_factor_freghigh =» slv_reql,
' (403 div_factor_freglow => slv_reg2,
104 PWIL_out => pWIL_out
405 iH
406 -- User logic ends
407
408 end arch_imp; |E|
409 n
4 3

Figure 13.82: modulator_axi_ip_v1_0_S00_AXI.vhd file with instantiated Modulator module

Step 19. Save the file

Step 20. You should notice that the modulator_rtl.vhd source file has been integrated into the hierarchy, because we
have instantiated it within the AXI peripheral, see lllustration 13.83

221

DESIGNING WITH IPs

Project Manager - edit_modulator_axi_ip_v1_0

Sources [R E S
g R
[=)-{= Design Sources (3)

=il modulator_axi_ip_v1_0 - arch_imp (mo

E-@

@ 5° cfa | ma
A s 2

modulator_axi_ip_vi_0_S00_AXI_inst - modulator_axi_ip
/i pwmmodulator - modulator - ril {m)
i freq_ce - frequency_triager - ril
ounterampl - counter - ril |

ine - sine - rif (sine_r

[IP-XACT (1)
[#-{= Constraints
[Simulation Sources (2)

Hierarchy | Libraries | Compile Order

4. Sources |) Templates

Figure 13.83: Hierarchy window with integrated Modulator module within AXI peripheral

Step 21. Now, double-click on the "modulator_axi_ip_v1_0 - arch_imp" file to open it

Step 22. In the "modulator_axi_ip_v1_0.vhd" file make the following changes:

* in the entity declaration, add depth_g and width_g generics in the generic map, below the first comment line "--
Users to add parameters here"

« in the entity declaration, add pwm_out port as 1-bit output port in the port map, below the comment line "-- Users
to add ports here", see lllustration 13.84

L Project Summary X | & Package IP - modulator_axi_ip X | &fi modulator_axi_ip_wvl_O.whd x O =
=] e:fprojects vivado/probavivado-2015. 2fmodulator_axifip_repository/modulator_axi_ip_1.0/hdl/modulator_axi_ip_vi_0.vhd

1library ieee; o
i 2usze ieee.std logic 1164.all;
@9 3use ieee.numeric_std.all; L
Jo| ¢ i
) Sentity modulator_axi ip vl 0 is
= [generic
.Ilj 7 —
| 8

L depth_g : integer range 0 to 99 := -

10 width_g : integer range 0 to 99 := —

alil

12 -=
—| 13 = beyond this line
V| 14
@ s

la -- Ea rs of Axi s In) AXT

17 C_S00_AXI_DATA WIDTH integer

18 C_500_BXI_ADDR_WIDTH : integer

19 iH

20 port

21 -- Users to add ports here

22

23 -- pulse vidth modulated

24 pwm_cut : out std logic:

25 indl

4 3

Figure 13.84: Modified modulator_axi_ip_v1_0.vhd source file - part 1

Step 23. Now, in the modulator_axi_ip_v1_0_S00_AXI component declaration add depth_g and width_g generics in the
generic map and pwm_out port in the port map, see lllustration 13.85

222

13.4 Creating Modulator IP Core with AXI4 Interface

L Project Summary X | & Package IP - modulator_axi_ip X | v modulator_axi_ip_v1_O.whd x
=] e:fprojects/vivado proba fvivado-2015. 2fmodulator_axifip_repository/medulator_axi_ip_1.0/hdl/modulator_axi_ip_v1_0.vhd
@ 54
“| 55 architecture arch_imp of modulator_axi_ip vl _0 is

LS 56
5&, L) -- component declaration
==j 58 component modulator axi_ip vl 0 500 _AXI is
=| 59 generic [
B s
3| 61 depth g : integer range 0 to 99; -=

62 width_g : integer range 0 to 9%; -- th
F| 6 C_S_AXI_DATA WIDTH : integer := 32

&5 C_5 _AXI_ADDE_WIDTH : integer := 4
| 66 /H
\J 67 port (
|

&9 -- pulse width modulated signal

70 pwm_out : cut std logics

71

72 S_RXI_ACLK : in std logicy

73 5 R¥I RRESETN : in std logic:

]

m

Figure 13.85: Modified modulator_axi_ip_v1_0.vhd source file - part 2

Step 24. In the modulator_axi_ip_vi_0_S00_AXI component instance assign depth_g and width_g generics to their
values and connect pwm_out port of the modulator_axi_ip_v1_0_S00_AXI component to the pwm_out port of the IP, see

lllustration 13.86

% Project Summary X | & Package IP -modulator_axi_ip ® | =i modulator_axi_ip_v1_Owhd =
=] e:fprojects/vivado fproba fvivado-2015. 2fmodulator_axijfip_repositary/meodulater_axi_ip_1.0/hdljmedulator_axi_ip_v1_0.vhd

100 generic map (

depth_g => depth_g,
width g => width g,
C_5 AXI_DATA WIDTH =»> C_SO0_AXI DATA WIDTH,
C_S_AXI_ADDR_WIDTH =y C_S00_AXI_ADDR WIDTH

)

\:J 108 port map (
[JFLE
alalal
112 5 BXI ACLK => s00 axi aclk,
113 5 R¥I RRESETN =» 300 axi aresetn.

i

Figure 13.86: Modified modulator_axi_ip_v1_0.vhd source file - part 3

Step 25. Save the file

Step 26. In the Package IP - modulator_axi_ip window, open Compatibility section and click "+" icon to add the family
with whom you want your packaged IP core to be compatible. Beside Zynqg family we will also add Kintex-7 family, see

lllustration 13.87.

Zyng-7000 family is also used in "Embedded System Design Tutorial", when illustrating how to build an embedded system
around ARM processor. Since this packaged IP core will be used in ARM-based embedded system we must make it

compatible with Zyng-7000 family.

223

DESIGNING WITH IPs

¥ Project Summary X

Packaging Steps
+ Identification
+ Compatibility

+ File Groups

' Ports and Interfaces

+ Customization GUL

Review and Package

© Package TP - modulator_axi_ip x

“©

Compatibility

]

[

-|" Family Life Cyde
== | kintex7 Pre-Production
G#zyng Beta

' Customization Parameters

+" Addressing and Memory

X
&

Figure 13.87: Compatibility window

Step 27. In the Package IP - modulator_axi_ip window, open File Groups section, and click Merge changes from File

Groups Wizard link,

see lllustration 13.88

% Project Summary X

Packaging Steps

+ Identification

+ Compatibility

_/ File Groups
Customization Parameters
Ports and Interfaces

+/ Addressing and Memary
Customization GUI

Review and Package

Package IP - modulator_axi_ip X
k<t File Groups
@ Merge changes from File Groups Wizard

A Name

Library Name Type Is Indude

= Standard 0
=] @ VHDL Synthesis (2) &)
= & VHDL Simulation (2) =]
S| 5 Advanced O
& @ Software Driver (6)]
@7 & UI Layout (1)]
@ & Block Diagram (1] |

il

~

File Group Name Model Name

modulator_axi
modulator_axi

Figure 13.88: File Groups window

Step 28. In the Package IP - modulator_axi_ip window, open Customization Parameters section, and click Merge
changes from Customization Parameters Wizard link. After merging changes from Customization Parameters Wizard,
Customization Parameters window should look like as it is show on the lllustration 13.89.

Note: After this step, you should get a green tick not only in Customization Parameters section, but also in Ports and
Interfaces and Customization GUI sections.

I project summary % 77 Package IP - modulator axi ip X g
Packaging Steps « || Customization Parameters rd
+ Identification :-': Mame Description Display Name Value Yalue Bit String Length Value Format Value Source Value Validat
& | =R Customization Parameters
+" Compatibility {g_} _S00_AXI_DATA_WIDTH Width of 5_AXI data bus € 500 AXI DATA WIDTH 32 1) long default 32
- _S00_AXI_ADDR_WIDTH Width of S_AXI address bus C 500 AXI ADDR WIDTH 4 1] long default
+ File Groups a; _S00_AXI_BASEADDR. C S00 AXIBASEADDR OxFFFFFFFF 32 bitString default
— _500_AXI_HIGHADDR € 500 AXT HIGHADDR 0x00000000 32 bitString default
+ Customization Parameters +
o Ports and Interfaces & Depth & 0 0 lang defauit
Width G a a long default
+" Addressing and Memory
+ Customization GUI
Review and Package
< 11 (=]

Figure 13.89: Customization Parameters window after merging changes from Customization Parameters Wizard

Step 29. In the Customization Parameters window, unhide the Hidden Parameters and hide the Customization Param-

224

13.4 Creating Modulator IP Core with AXI4 Interface

eters, because we would like to have only depth g and width g visible in the modulator_axi_ip_v1.0 IP Customization
GUI.

If you would like to unhide some IP Parameter, select it, right-click on it, choose Edit Parameter... option and in the Edit
IP Parameter dialog box enable Visable in Customization GUI option and click OK, see lllustration 13.90.

If you would like to hide some IP Parameter, just disable the Visable in Customization GUI option in the Edit IP Parameter
dialog box.

f" Edit [P Parameter Léj

Use the options below to customize how the parameter will appear in the Customization GUI for users of
the IP.

Name: depth_g

Show MName

Display Name: Depth G

Tooltip:

Eormat: long -
Editable: Yes -
Dependency: No

|| Specify Range

Type: List of values
ress the e
Show As: Text Edit
Layout: Mot Applicable

Default Value: |8

[

Figure 13.90: Edit IP Parameter window

Step 30. Now, open Review and Package section and click Re- Package IP option, see lllustration 13.91

% Project Summary X Package IP - modulator_axi_ip X a

[
E

Packaging Steps < Review and Package ?

+ Identification

S
+ Compatibility ummary
Display name: modulator_axi_ip_v1.0
 re s Desaiption: My new AXIIP
+ Customization Parameters Root directory: d:/temp/modulator /modulator_axi/fip_repository/modulator_axi_ip_1.0

+ Ports and Interfaces

+/ Addressing and Memory After Packaging

 Customization GUI o Create archive of IP - D:ftemp/modulator fmodulator_axifip_repository/modulator_axi_ip_1.0/So-Logic_modulator_modulator_axi_ip_1.0.zip edit
o This praject will remain on disk after completion

Review and Package edit packaging settings

Re-Package IP

Figure 13.91: Review and Package window

The new AXI peripheral with instantiated Modulator module in it will be packaged and the Vivado window for the peripheral
should be automatically closed. We should now be able to find our modulator_axi_ip |P in the IP Catalog.

Step 31. Open IP Catalog and search for modulator_axi_ip IP, see lllustration 13.92. When you find it, double-click on it
to customize and generate the IP.

225

DESIGNING WITH IPs

% Project Summary X | 1F IP Catalog X O x

Cores | Interfaces Search: mudulatur_axd

1

#[| Name AXT4 Status License VLNV

_m Incduded [So-Logic:modulator:modulator_axi_ip:1.0

Details
Name: modulator_axi_ip_v1.0
Version: 1.0 (Rev. 1)
Interfaces: AXI4
Description: My new AXI IP
Status: Beta
License: Induded

Vendor: So-Logic

VLMV: So-Logic:modulator :medulator_axi_ip: 1.0
Repository: d:ftemp/VivadoVivado-2015.4/ip_repository
< i =

Figure 13.92: IP Catalog with modulator_axi_ip IP

Step 32. In the modulator_axi_ip_v1.0 (1.0) customization window, check is Depth G set to 8 and Width G to 12 and if it
is, click OK, see lllustration 13.93

e B
Q Customize IP &J

modulator_axi_ip_v1.0 (1.0) '

ﬁ Documentation 5 IP Location [J Switch to Defaults

[] Show disabled ports Component Name | modulator_axi_ip_0

“| -ps00_an
500_ani_schk

500 _axi_aresetn

Depth G 8

4 v . WidthG 12

Figure 13.93: Customize IP - modulator_axi_ip_v1.0

Step 33. In the Generate Output Products dialog box, click Generate to generate the modulator_axi_ip_0 IP
Step 34. In the Sources window expand modulator_axi_ip_0 IP to see what the tool has created for us

Step 35. When you try to expand modulator_axi_ip_0 |P, Show IP Hierarchy dialog box will appear. Click OK to open
the modulator_axi_ip_0 |P hierarchy, see lllustration 13.94

226

13.4 Creating Modulator IP Core with AXI4 Interface

4L Show IP Hierarchy et G|

| OK to Show IP Hierarchy?
= For large IPs, this may slow down source hierarchy updates.

OK || Cancel |

Figure 13.94: Show IP Hierarchy dialog box

Step 36. In the Sources window expand all the levels of modulator_axi_ip_0 |P hierarchy, see lllustration 13.95. You can

see the structure of the modulator_axi_ip_0 IP.

Project Manager - modulator_axi

Sources [R E S
M 9 opk
A= me BE
'Design Sources (1]
—--ﬁ Imodulator_axi_ip_0 (modulator_ax 0.xd) (2)

modulator_axi_ip_0 - modulator _axi |p 1] arch
U0 - modulator_axi_ip_v1_0 - arch_imp {1

= \.'h modulator_axi_ip_v1_0_S00_AXI |nst modulahor _axi_ip_v1.0 SDD _AXI - arch_imp {modulator_axi_ip_v1_0_S00_AXIL.vhd) (1)

= immodulator - modulator - rtl (7
i freq_ce - frequency_trigger - rﬂ gger_rtl.vhd)
unterampl - counter - ril
ne - sine - r (sine_rt
-.pAmmoduIe pwm -1
s, modulator_axi_ip_0 (7 [ator_axi_ip_0.dcp)
+-1 Constraints
- Simulation Sources (1
-1 sim_1 (1)

Hierarchy | IP Sources | Libraries | Compile Order

4% Sources | 7 Templates

Figure 13.95: Sources window with modulator_axi_ip_0 sources hierarchy

Step 37. At the end, we must verify our Modulator IP core with AXI4 interface

To write appropriate test bench file for our new Modulator IP core with AXI4 interface, we must first get acquainted with

AXI4-Lite interface signals. The AXl4-Lite interface signals are listed and described in the Table 12.1.

Table 12.1: AXI4_Lite Interface Signals Descriptions

Channel Signals

Signal Name 1/0 Initial State Description

AXI Global System

Signals

S_AXI_ACLK I - AXI Clock.
S_AXI_ARESETN I - AXI Reset, active-low.
AXI Write Address

S_AXI_AWADDRIC_S A-
X|_ADDR_WIDTH-1:0]

AXI write address. The
write address bus gives the
address of the write
transaction.

S_AXI_AWPROT[2:0]

AXI write address
protection signal. "000"
value is recommended.
Infrastructure IP passes
Protection bits across a
system.

227

DESIGNING WITH IPs

S_AXI_AWVALID

Write address valid. This
signal indicates that valid
write address and control
information are available.

S_AX|_AWREADY

Write address ready. This
signal indicates that the
slave is ready to accept an
address and associated
control signals.

AXI Write Data Channel
Signals

S_AXI_WDATA[C_S_AXI-

DATA_WIDTH-1:0]

Write data.

S AXI_WSTRB[C_S AXI-
_DATA_WIDTH/8-1:0]

Write strobes. This signal
indicates which byte lanes
to update in memory.

S_AXI_WVALID

Write valid. This signal
indicates that valid write
data and strobes are
available.

S_AXI_WREADY

Write ready. This signal
indicates that the slave can
accept the write data.

AXI Write Response
Channel Signals

S_AXI|_BRESP[1:0]

Write response. This
signal indicates the status
of the write transaction:
"00" = OKEY, "10" =
SLVERR

S_AXI_BVALID

Write response. This
signal indicates the a valid
write response is available.

S_AXI_BREADY

Response ready. This
signal indicates that the
master can accept the
response information.

AXI Read Address
Channel Signals

S_AXI_ARADDRI[C S A-
X1
ADDR_WIDTH-1:0]

Read address. The read
address bus gives the
address of a read
transaction.

S_AXI_ARPROT[2:0]

AXIl read address
protection signal. "000"
value is recommended.
Infrastructure IP passes
Protection bits across a
system.

228

13.4 Creating Modulator IP Core with AXI4 Interface

S_AXI_ARVALID

Read address valid. When
High, this signal indicates
that the read address and
control information is valid
and remains stable until
the address
acknowledgement signal,
S_AXI_ARREADY, is High.

S _AXI_ARREADY O Read address ready. This
signal indicates that the
slave is ready to accept an
address and associated
control signals.

AXI Read Data Channel

Signals

S_AXI_RDATA[C_S_AXI- (@) Read data.

DATA_WIDTH-1:0]

S_AXI_RRESP[1:0] @) Read response. This
signal indicates the status
of the read transfer.

S _AXI_RVALID 0] Read valid. This signal

indicates that the required
read data is available and
the read transfer can
complete.

S_AX|_RREADY

Read ready. This signal
indicates that the master
can accept the read data
and response information.

In this table only one part of the AXI4-Lite interface signals is presented, relevant to our design. If you want to see the rest
of the AXI4-Lite interface signals, please consult "LogiCORE IP AXI4-Lite IPIF" Product Guide for Vivado Design Suite. In
this document you will find all the necessary information how to create a test bench file for Modulator module with AXI4-Lite

interface.

Considering that we have four 32-bit registers in our design, our test bench task will be to change the content of these
registers through AXI4-Lite interface and, by doing so, to change the frequency of the generated pwm signal.

On the lllustration 13.96 AXI4-Lite single write operation timing diagram is presented. Using to this diagram, we will create

stimulus component in the test bench file for our design.

229

DESIGNING WITH IPs

S_AXI_ACLK

5_AXI_ARESETN ! ! !

5_AXI_AWADDR

S_AXI_AWVALID

S_AXI_AWREADY

nl

5_AXI_WDATA

S_AXI_WWALID

A_AXI_WSTRB

5_AXI_WREADY

5_AXI_BRESP

RRRRRREEE

S_AXI_BVALID

I L e [e e R R R

S_AXl_BREADY

L

Figure 13.96: AXl4-Lite single write operation timing diagram

From the illustration above we can see that we must first generate AXI-Lite input clock signal (S_AXI_ACLK). After that,
the important thing is to reset AXI4-Lite interface (by setting S_AXI_ARESETN signal to value '0’). In our case, reset will
be 10 clock cycles wide. Considering that the reset is low-level sensitive, we will set it to '0’ and wait for 10 falling edges
of the AXI-Lite clock signal. After that, we will release the reset signal, setting it to *1’. From that moment, we will wait for
the next falling edge of the AXI-Lite clock signal and write div_factor_freqghigh value (S_AXI_WDATA) in the appropriate
register (2nd register, see Figure 13.70). To know what will be the address location of the "div_factor_freghigh" register, we
must first understand the structure of S_AXI_AWADDR signal.

Figure 13.97: S_AXI_AWADDR signal

S_AXI_AWADDR is a 4-bit wide signal. AXI address space is byte addressable. Since we are using 32-bit registers, their
addresses must be aligned on 32-bit word address boundaries. This means that values of two least significant bits (bits 0
and 1) of S_AXI_AWADDR signal are not relevant when we are addressing 32-bit registers and can have arbitrary values.
On the other hand two most significant bits (bits 2 and 3) are used to select desired 32-bit register. In our case, internal
32-bit registers address map will have the following structure:

Table 12.2: Internal Registers Address Map of the Modulator IP Core

Internal Register Name S _AXI_AWADDR Value
"swQ" register "0000" (0)
"div_factor_freghigh" register "0100" (4)
"div_facator_freglow" register "1000" (8)

"4. unused" register "1100" (12)

Now when we know the structure of the internal registers address space, we will assign "0100" value to the S_AXI_AWA-
DDR signal since it is the address location of the "div_factor_freghigh" register. We should also validate this address (by
setting S_AXI_AWVALID signal to '1’) and write desired div_factor_freghigh value in the "div_factor_freghigh" register (by
setting S_AXI_WDATA to appropriate value). After that we should validate that the write data is valid (setting S_AXI_WV-
ALID to ’1’) and that all four bytes of write data should be written in the selected internal register (setting S_AXI_WSTRB
to "1111"). When S_AXI_WSTRB = "1111" that means that we would like to write data using all four byte lanes. We should
also activate S_AXI_BREADY signal, because this signal indicates that master can accept a write response. After the
first data write, we will wait for S_AXI_AWREADY signal to be first "1’ and then 'O’ after one clock cycle, and then we will
deactivate AXI Write Address Channel and AXI Write Data Channel signals, completing one write transaction on the AXI
bus. Next we will write div_factor_freqlow value in the "div_factor_freqglow" register by repeating the same procedure. At
the end, we will repeat the same procedure once more, to write appropriate value to the "swQ" register.

230

13.4 Creating Modulator IP Core with AXI4 Interface

The complete test bench file for Modulator IP core with AXI4 interface is shown below.

modulator_axi_ip_tb.vhd:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
use work.modulator_pkg.all;
entity modulator_axi_ip_tb is
end entity;

architecture tb of modulator_axi_ip_tb is

—— AXI Write Address Channel Signals

signal s00_axi_awaddr_s : std_logic_vector (3 downto 0) := (others=>'0");
signal s00_axi_awprot_s : std_logic_vector (2 downto 0) := (others=>’0");
signal s00_axi_awvalid_s : std_logic := ’0’;

signal s00_axi_awready_s : std_logic;

—— AXI Write Data Channel Signals

signal s00_axi_wdata_s : std_logic_vector (31 downto 0):= (others=>'0");
signal s00_axi_wstrb_s : std_logic_vector (3 downto 0) := (others=>'0");
signal s00_axi_wvalid_s : std_logic := ’0’;

signal s00_axi_wready_s : std_logic;

—— AXI Write Response Channel Signals

signal s00_axi_bresp_s : std_logic_vector (1 downto 0);

signal s00_axi_bvalid_s : std_logic;

signal s00_axi_bready_s : std_logic := ’0’;

—— AXI Read Address Channel Signals

signal s00_axi_araddr_s : std_logic_vector (3 downto 0) := (others=>'0");
signal s00_axi_arprot_s : std_logic_vector (2 downto 0) := (others=>'0");
signal s00_axi_arvalid_s : std_logic := ’0’;

signal s00_axi_arready_s : std_logic;

—— AXI Read Data Channel Signals

signal s00_axi_rdata_s : std_logic_vector (31 downto 0);

signal s00_axi_rresp_s : std_logic_vector (1 downto 0);

signal s00_axi_rvalid_s : std_logic;

signal s00_axi_rready_s : std_logic := ’07;

—— AXI Global System Signals

signal s00_axi_aclk_s : std_logic := '0’;

signal s00_axi_aresetn_s : std_logic := "17;

—— pulse width modulated signal

signal pwm_out_s : std_logic;
-- 100 MHz
constant clock_frequency_c : real := 100000000.0;

—-— period of AXI-lite input clock signal
constant clock_period_c : time := 1000000000.0 / clock_frequency_c * 1lns;

—— constant created to short the duration of the simulation process 10 times

constant design_settingl_c : design_setting_t_rec := (255, 10.0, 35.0, 8, 12);

-- cl_c = fclk/(2"depth*2"width) - cl_c = 95.3674, fclk = 100 MHz

constant cl_c : real := clock_frequency_c/ (real((2+xxdesign_settingl_c.depth) » (2xxdesign_settingl_c.
width)));

—- div_factor_freghigh_c = (cl_c/f_high)*2”width - threshold value of frequency a = 110592

constant div_factor_freghigh_c : integer := integer(cl_c/design_settingl_c.f_high) x (2xx
design_settingl_c.width);

-- div_factor_freqlow_c = (cl_c/f_low)*2"width - threshold value of frequency b = 389120

constant div_factor_freglow_c : integer := integer (cl_c/design_settingl_c.f_low)* (2+«*design_settingl_c
.width);

begin

——- modulator_axi_ip IP instance
axi: entity work.modulator_axi_ip_0

port map (
s00_axi_awaddr => s00_axi_awaddr_s,
s00_axi_awprot => s00_axi_awprot_s,

s00_axi_awvalid => s00_axi_awvalid_s,
s00_axi_awready => s00_axi_awready_s,
s00_axi_wdata => s00_axi_wdata_s,
s00_axi_wstrb => s00_axi_wstrb_s,
s00_axi_wvalid => s00_axi_wvalid_s,
s00_axi_wready => s00_axi_wready_s,
s00_axi_bresp => s00_axi_bresp_s,
s00_axi_bvalid => s00_axi_bvalid_s,
s00_axi_bready => s00_axi_bready_s,
s00_axi_araddr => s00_axi_araddr_s,
s00_axi_arprot => s00_axi_arprot_s,
s00_axi_arvalid => s00_axi_arvalid_s,
s00_axi_arready => s00_axi_arready_s,
s00_axi_rdata => s00_axi_rdata_s,
s00_axi_rresp => s00_axi_rresp_s,
s00_axi_rvalid => s00_axi_rvalid_s,

231

DESIGNING WITH IPs

s00_axi_rready => s00_axi_rready_s,

s00_axi_aclk => s00_axi_aclk_s,
s00_axi_aresetn => s00_axi_aresetn_s,
pwm_out => pwm_out_s

)i

—- generates AXI-lite input clock signal
s00_axi_aclk_s <= not (s00_axi_aclk_s) after clock_period_c/2;

stimulus_generator_p : process
begin
—— reset AXI-lite interface. Reset will be 10 clock cycles wide
s00_axi_aresetn_s <= "0’;
-- wait for 10 falling edges of AXI-lite clock signal
for 1 in 1 to 10 loop
wait until falling_edge (s00_axi_aclk_s);
end loop;
—— release reset
s00_axi_aresetn_s <= "1’;
wait until falling_edge(s00_axi_aclk_s);

—-—- write div_factor_freqghigh value into appropriate register
s00_axi_awaddr_s <= "0100";

s00_axi_awvalid_s <= "1’;

s00_axi_wdata_s <= conv_std_logic_vector (div_factor_freghigh_c, 32);
s00_axi_wvalid_s <= "1’";

s00_axi_wstrb_s <= "1111";

s00_axi_bready_s <= "17;

wait until s00_axi_awready_s = '1’;

wait until s00_axi_awready_s = ’'0’;

wait until falling_edge (s00_axi_aclk_s);

s00_axi_awaddr_s <= "0000";

s00_axi_awvalid_s <= "0’;

s00_axi_wdata_s <= conv_std_logic_vector (0, 32);
s00_axi_wvalid_s <= '0’;

s00_axi_wstrb_s <= "0000";

wait until s00_axi_bvalid_s = '0’;

wait until falling_edge (s00_axi_aclk_s);

s00_axi_bready_s <= ’0’;

wait until falling_edge (s00_axi_aclk_s);

—-— write div_factor_freqglow value into appropriate register
s00_axi_awaddr_s <= "1000";

s00_axi_awvalid_s <= "1";

s00_axi_wdata_s <= conv_std_logic_vector (div_factor_freqglow_c, 32);
s00_axi_wvalid_s <= ’"1";

s00_axi_wstrb_s <= "1111";

s00_axi_bready_s <= ’'1";

wait until s00_axi_awready_s = ’'1’;

wait until s00_axi_awready_s = '0’;

wait until falling_edge (s00_axi_aclk_s);

s00_axi_awaddr_s <= "0000";

s00_axi_awvalid_s <= "0’;

s00_axi_wdata_s <= conv_std_logic_vector (0, 32);
s00_axi_wvalid_s <= '0’;

s00_axi_wstrb_s <= "0000";

wait until s00_axi_bvalid_s = '0’;

wait until falling_edge (s00_axi_aclk_s);

s00_axi_bready_s <= ’0’;

wait until falling_edge (s00_axi_aclk_s);

-— we are waiting for one period of pwm signal when sw0=0
wait for 100 ms;

-—- write value sw0O=1 into appropriate register
s00_axi_awaddr_s <= "0000";

s00_axi_awvalid_s <= "1’";

s00_axi_wdata_s <= conv_std_logic_vector (1, 32);
s00_axi_wvalid_s <= "1’";

s00_axi_wstrb_s <= "1111";

s00_axi_bready_s <= "1’;

wait until s00_axi_awready_s = ’'1’;

wait until s00_axi_awready_s = ’'0’;

wait until falling_edge (s00_axi_aclk_s);
s00_axi_awaddr_s <= "0000";

s00_axi_awvalid_s <= ’'0’;

s00_axi_wdata_s <= conv_std_logic_vector (0, 32);
s00_axi_wvalid_s <= ’'0';

s00_axi_wstrb_s <= "0000";

wait until s00_axi_bvalid_s = '0’;

wait until falling_edge (s00_axi_aclk_s);
s00_axi_bready_s <= ’'0’";

wait until falling_edge (s00_axi_aclk_s);

wait;
end process;

end;

232

13.4 Creating Modulator IP Core with AXI4 Interface

After you have entered the code for the input stimulus in order to perform simulation, follow the next steps:
Step 1. In the Sources window, under the Simulation Sources / sim_1, select modulator_axi_ip_tb - tb file
Step 2. In the Flow Navigator, under the Simulation, click on the Run Simulation button

Step 3. Choose the only offered Run Behavioral Simulation option, see lllustration 13.98, and your simulation will start

4 Simulation
£ simulation Settings Properties
(M) Run Simy== =

Run Behavioral Simulation
4 RTL Analysis
&% Open Eld

4 Synthesis
@; Synthesi

Figure 13.98: Run Behavioral Simulation option

Step 4. The tool will compile the test bench file and launch the Vivado simulator

Step 5. In the Vivado simulator, open Scopes window and expand modulator_axi_ip_tb -> axi -> U0 design units and
select modulator_axi_ip_v1_0_S00_AXI_inst design unit

Step 6. In the Vivado Objects window select our four registers slv_reg0[31:0], slv_reg1[31:0], slv_reg2[31:0] and slv_-
reg3[31:0] and move them to waveform window

Step 7. Simulate your design for 120 ms

Step 8. Go to the beginning of the simulation result, zoom out few times and find the moment where s00_axi_aresetn_s
signal is changing from 0 to 1. Your simulation results should look like as it is shown on the lllustration 13.99. From the
simulation results we can see that our system works as we predicted.

Untitled 4= —Oa %

[o |
[
—
—
[o |
[o |
—
—
[]
—
—
[
[
—
—
[]
[
—
—
—
—
—
E—
E—
E—
E—
—
—
E——
—
|

Figure 13.99: Simulation results - writing to div_factor_freghigh and div_factor_freglow registers

Step 9. Zoom fit and then zoom in few times around 100 ms and you will see the "swQ" register change, see lllustration
13.100

233

DESIGNING WITH IPs

Untitied 4%
b

100,000,205, 000 ns

I
TR AANE: |

A

|
__,_,___,___,_,___,_,___E___,_,_

TR
A A _mu“

T 1

A RN A 1
BN | A

5 Neme

1000000000

10000 P

L
¥] = Y 4l =

Figure 13.100: Simulation Results - changing the value of swO register

1,

0 and when sw0=

Step 10. If you zoom out a few times more, you can also see the pwm frequency change, when sw0

see lllustration 13.101

Untitled 4=

100000205000 us

2

CTARVAARNENY Y0 O
RAAATRDRMR | 01D O

L |

Figure 13.101: Simulation Results - pwm signal frequency change as a result of the change of the sw0 register value

234

Chapter 14

APPENDIX

14.1 HDL Instantiation Debug Probing Flow

Vivado Logic Analyzer is a integrated logic analyzer. In this chapter you will learn how to debug your FPGA design by
inserting an Integrated Logic Analyzer (ILA) core and Virtual Input/Output (VIO) core using the Vivado IDE. You will take
advantage of integrated Vivado logic analyzer functions to debug and discover some potential root causes of your design.

This chapter will illustrate overall integration flows between Vivado logic analyzer, ILA 6.2, VIO 3.0 and Vivado IDE. There
are two flows (methods) supported in the Vivado Debug Probing:

1. HDL Instantiation Debug Probing Flow

2. Using the Netlist Insertion Debug Probing Flow

APPENDIX

HDL Instantiation Debug

Probing Flow

Configure

and Generate
cores

Instantiate
cores into HOL source

Connect
buses and internal
signals to cores

Synthesize
design with cores
init

Using the Netlist Insertion Debug

OR

Probing Flow

Mark
HOL signals for debug

Y

Symthesize
design without
instantiated cores in it

Set up Debug
wizard to insert
debug cores

Implement
design

Generate

Bitstream
file

Program
Device

Figure 14.1: Vivado Logic Analyzer Design Flow

As we already said, the HDL instantiation flow is one of the two flows supported in the Vivado Debug Probing. The HDL
instantiation debug probing flow involves the manual customization, instantiation, and connection of various debug core
components directly in the HDL design source. Debug cores that are supported in this flow, in the Vivado tool, are:

Integrated Logic Analyzer (ILA) core v6.2

Virtual Input/Output (VIO) core v3.0

JTAG to AXI Master core vi.1

Integrated Bit Error Ratio Tester (IBERT) core v3.0

LogiCORE IP Integrated Logic Analyzer (ILA) v6.2 core

The LogiCORE IP Integrated Logic Analyzer (ILA) core is a customizable logic analyzer core that can be used to monitor the
internal signals of a design. The ILA core includes many advanced features of modern logic analyzers, including boolean
trigger equations, and edge transition triggers. Because the ILA core is synchronous to the design being monitored, all

design clock constraints that are applied to your design are also applied to the components of the ILA core.

ILA core general features are:

+ user-selectable number of probe ports and probe_width

« multiple probe ports, which can be combined into a single trigger condition

236

14.1 HDL Instantiation Debug Probing Flow

» AXl interface on ILA IP core to debug AXI IP cores in a system

The following illustration is a symbol of the ILA v6.2 core.

ILA Core
—» clk
— trig_in trig_out —»
—— | trig_out_ack trig_in_ack ———»
— | probe0 Slot_0_AXI |fe—

—| probe

—> probe2

— - probe1023

Figure 14.2: Symbol of the ILA v6.2 core

Signals in the FPGA design are connected to ILA core clock and probe inputs. These signals, attached to the probe inputs,
are sampled at design speed and stored using on-chip block RAM (BRAM). The core parameters specify the number of
probes, trace sample depth, and the width for each probe input. Communication with the ILA core is conducted using an
auto-instantiated debug core hub that connects to the JTAG interface of the FPGA.

Note: If you want to read and learn more about the ILA v6.2 core, please refer to "LogiCORE IP Integrated Logic Analyzer
(ILA) v6.2 Product Guide".

LogiCORE IP Virtual Input/Output (VIO) v3.0 core

The LogiCORE IP Virtual Input/Output (VIO) core is a customizable core that can both monitor and drive internal FPGA
signals in real time. The number of width of the input and output ports are customizable in size to interface with the FPGA
design. Because the VIO core is synchronous to the design being monitored and/or driven, all design clock constraints
that are applied to your design are also applied to the components inside the VIO core. Run time interaction with this core
requires the use of the Vivado logic analyzer feature. Unlike the ILA core, no on-chip or off-chip RAM is required.

VIO core general features are:

« provides virtual LEDs and other status indicators through input ports

+ includes optional activity detectors on input ports to detect rising and falling transitions between samples

« provides virtual buttons and other controls indicators through output ports

« includes custom output initialization that allows you to specify the value of the VIO core outputs immediately following
device configuration and start-up

« run time reset of the VIO core to initial values

The following illustration is a symbol of the VIO v3.0 core.

237

APPENDIX

VIO Core

probe_in0[0:0] | probe_out0[255:0]

\J

probe_in1[255:0] _ | Input Reqgisters and

_| probe_out1[0:0]
Activity Detectors =

Output Registers

probe_in255[31:0] | probe_out255127:0]

L

Y

A J

Interface to JTAG through Debug Hub

Figure 14.3: Symbol of the VIO v3.0 core

Note: If you want to read and learn more about the VIO v3.0 core, please refer to "LogiCORE IP Virtual Input/Output (VIO)
v3.0 Product Guide".

LogiCORE IP Integrated Bit Error Ratio Tester (IBERT) for 7 Series GTX Transceivers v3.0 core

The customizable LogiCORE IP Integrated Bit Error Ratio Tester (IBERT) core for 7 Series FPGA GTX transceivers is
designed for evaluating and monitoring the GTX transceivers. This core includes pattern generators and checkers that are
implemented in FPGA logic, and access to ports and the dynamic reconfiguration port attributes of the GTX transceivers.
Communication logic is also included to allow the design to be run time accessible through JTAG.

IBERT core general features are:

+ provides a communication path between the Vivado serial /O analyzer feature and the IBERT core
+ provides a user-selectable number of 7 series FPGA GTX transceivers

« transceivers can be customized for the desired line rate, reference clock rate, reference clock source, and data path
width

* requires a system clock that can be sources from a pin or one of the enabled GTX transceivers

Note: If you want to read and learn more about the IBERT v3.0 core, please refer to "LogiCORE IP Integrated Bit Error
Ratio Tester (IBERT) for 7 Series GTX Transceivers v3.0 Product Guide".

LogiCORE IP JTAG to AXI Master v1.1 core

The LogiCORE JTAG to AXI Master IP core is a customizable core that can generate the AXI transactions and drive the
AXI signals internal to FPGA in the system. The AXI bus interface protocol can be selected using a parameter in the IP
customization Vivado IDE. The width of AXI data bus is customizable. This IP can drive AXI4-Lite or AXl4 Memory Mapped
Slave through an AXI4 interconnect. Run time interaction with this core requires the use of the Vivado logic analyzer
feature.

JTAG to AXI Master core general features are:

+ provides AXI4 master interface

« option to set AXI4 and AXI4-Lite interfaces

+ user selectable AXI| data width - 32 to 64

+ user selectable AXI ID width up to four bits

+ Vivado logic analyzer Tcl Console interface to interact with hardware

 support AXl4 and Lite transactions

238

14.1 HDL Instantiation Debug Probing Flow

The following illustration shows an AXI system that uses the JTAG to AXI Master core as an AXI Master.

AX| Master JTAG to AXI AXI Master
(Master 0) (Master 1) (Master 2)

AX| Interconnect

AXI Slave AXIl Slave AX| Slave
(Slave 0) (Slave 1) (Slave 2)

Figure 14.4: JTAG to AXI Master System

The JTAG to AXI Master core can communicate to all the downstream slaves and can coexist with the other AXI| Master in
this system.

Note: If you want to read and learn more about the JTAG to AXI Master v1.1 core, please refer to "LogiCORE IP JTAG to
AXI Master v1.1 Product Guide".

Important: The IBERT IP core and JTAG to AXI Master IP core won’t be used in this tutorial!

Using the HDL Instantiation Debug Probing Flow, you will generate an ILA v6.2 and VIO v3.0 IP cores using the Vivado IP
Catalog and instantiate the core in a design manually as you would with any other IP core.

Step 1. Before you start ILA and VIO core generation, you must first create a new project (modulator _ila_vio) for Zed-
Board Zynq Evaluation and Development Kit board

Step 2. Add Modulator design source files into the project (frequency _trigger_rtl.vhd, counter _rtl.vhd, modulator_pkg.vhd,
sine_rtl.vhd, sine_top_rtl.vhd, pwm_rtl.vhd, modulator_rtl.vhd, modulator_wrapper_rtl.vhd) using Add Sources command
from the Flow Navigator

Step 3. Select modulator_wrapper _rtl.vhd source file, right-click on it and select Set as Top option
ILA Core Generation
To configure and generate the ILA core, use the following steps:

Step 1. In the Vivado Flow Navigator, under the Project Manager , click the IP Catalog command, see lllustration 14.5

4 Project Manager
% Project Settings
O%T Add Sources

.’;,- Language Templates

Figure 14.5: IP Catalog command

Step 2. In the IP Catalog window, in the Search field, search for the ILA (Integrated Logic Analyzer) IP core. After you
selected the ILA core, in the Details window, under the main IP Catalog window, you will find all the necessary information
about the selected IP core, see lllustration 14.6

239

APPENDIX

¥ Project Summary X |iF IP Catalog X 200 x
Cores | Interfaces Search: ia
1
21 Hame AXI4 Status License VLNV
5| [E-[Vivado Repository
28]
—~ == Aliance Partners
=]
= = ylon
5¢ # Multilayer Video Contraller AXI4 Production Purchase logichricks. com:logichricks:logicve:0.0
= -7 Debug & Verification
"% | B Debug
= 1F System ILA Production Included xilinx.com:ip:system_ila: 1.0
?‘5« -5 Video & Image Processing
@ - 4@ Multiayer Video Controller AXI4 Production Purchase logicbricks.com:logicbricks:logicvc:0.0
@l
Details
Name: ILA (Integrated Logic Analyzer)
Version: 6.2 (Rev. 1)

Interfaces: AXI4, AXI4-Stream

The Integrated Logic Analyzer (ILA) core is a customizable logic analyzer core that can be used to monitor any internal signal of your design. The ILA core indudes many advanced features of modern logic analyzers, incuding Boolean trigl

Bl equations, customizable data capture buffer depth, and optional trigger inputyjoutput ports. Because the ILA core is synchronous to the design being monitored, all design dock constraints that are applied to your design are also applied {
components inside the ILA core. Run-time interaction with this core requires the use of the Vivado logic analyzer feature,

Status: Production

License: Included

Change Log: View Change Log

vendor: Xilinx, Inc.

WLINV: xilinx.com:ip:ila:6.2

Repository: D /Xiins/Vivade/2016.4/data/p

<]

Figure 14.6: IP Catalog window with selected ILA core

Step 3. Double-click on the ILA (Integrated Logic Analyzer) IP core and Vivado IDE will create a new skeleton source for
your ILA core

The window that will be opened is used to set up the general ILA core parameters, see lllustration 14.7

ﬂ Customize IP lﬂ

ILA (Integrated Logic Analyzer) (6.2) 7

ﬁ Documentation [IP Location [Switch to Defaults

[] Show disabled parts Component Mame |ila_core

To configure more than &4 probe ports use Vivado Td Console

General Options | Probe_Ports(0..0)

Monitor Type

@) Mative () AXI

Mumber of Probes | 1 [1...512]
Sample Data Depth | 131072 -

Same Mumber of Comparators for Al Probe Ports
Mumber of Comparators |2~

[] Trigger Out Port

[] Trigger In Port
Input Pipe Stages 1] -
Trigger And Storage Settings
Capture Control
[Advanced Trigger

GUI configuration mode is limited to 64 probe ports.

Figure 14.7: ILA core configuration window - General Options tab

Step 4. In the ILA (Integrated Logic Analyzer) (6.2) window, enter ila_core_name (ila_core) in the Component Name

240

14.1 HDL Instantiation Debug Probing Flow

field

Step 5. In the General Options tab, select Native Monitor Type, choose maximum value for Sample Data Depth (131072),
enable Capture Control option and leave all the other parameters unchanged, see lllustration 14.7

Step 6. Select Probe_Ports(0..0) tab and change the Probe Width [1..4096] of the PROBEOQ probe port from 1 to 13, see
lllustration 14.8

We configured the probe width of the PROBEO probe port to 13, because the width of the sine_ampl_s signal, that we
want to see in the Vivado Logic Analyzer, is 12 bits and the width of the freq_trig_s signal is 1 bit.

ﬁ Customize [P l&J
ILA (Integrated Logic Analyzer) (6.2) g
ﬁj Documentation ||} IP Location () Switch to Defaults
Show disabled ports Component Name |ila_core
To configure more than &4 probe ports use Vivado Td Console
General Options~ Probe_Ports({0..0)
Probe Part Probe Width [1..4096] Mumber of Comparators Probe Trigger or Data
PROBED 13 2 ~ |DATA AND TRIGGER -
oK Cancel

Figure 14.8: ILA core configuration window - Probe_Ports(0..0) tab

Step 7. Click OK

Step 8. In the Generate Output Products window click Generate, see lllustration 14.9

241

APPENDIX

Note: After ILA core generation, your ILA core should appear in the Sources window, see lllustration 14.10

¢ Generate Output Products @

The following output products will be generated.

Preview
a =Lk ila_core.xd (0OC per IP)
= -[fil Instantiation Template
= -[fil Synthesized Checkpoint (.dcp)
% -l Behavioral Simulation

L.l Change Log

Synthesis Options

() Global

@) Out of context per IP
Run Settings

Mumber of jobs: | 1

Apply | Generate |[Skip

Sources ?
QTS W R
[+ Design Sources (3)

u

+= modulator_wrapper - rtl
sine_top - ril (sine_top_rt.vh

| Constraints
[#-/ Simulation Sources (3)

Hierarchy | IP Sources | Libraries | Compile Order

Figure 14.10: Sources tab with generated ILA core

Note: If you want to find product guide of the selected IP core

Figure 14.9: Generate Output Products window for ILA core

« right-click on the selected IP core in the IP Catalog window and choose Product Guide option, see lllustration 14.11.
This option will open for you Xilinx web page for the selected IP core

242

14.1 HDL Instantiation Debug Probing Flow

T Project Summary X |{F IP Catalog %

Cores | Interfaces

)
| name
w=a | =k Vivado Repository
==
. Aliance Partners
=] 5
= = [Xylon
& 38 Multilayer Video Controller
Debug & Verification
E‘% Debug
g (=l ideo & Image Processing
?‘& -4 Multilayer Video Controller
@
Details
Mame: ILA (Integrated Logic Analyzer]
Version: 6.0 (Rev. 1)

Interfaces: AXI4, AXI4-Stream

Description: The Integrated Logic Analyzer {ILA)
equations, customizable data captur

¢ R+ @

AXI4

AXI4

Havta avra oo

Properties...
IP Settings...

Add Repository...
Refresh All Repositories
Customize IP...

License Status
Compatible Families
Product Guide

Change Log

Product Webpage
Answer Records

Export to Spreadshest. ..

Search:

Status License VLMY

Production Purchase logichricks. com:logicbricks:logicvc:0.0

ey

—
Cirl+E

jon Purchase logicbricks. com:logicbricks:logicvc:0.0

the components inside the ILA core.

Status: Production

License: Induded

Change Log: View Change Log
Vendor: ¥ilinx, Inc,

VLMV xlinx. com:ip:ila:6.0

Repository: D:fXilinx Vivado 2015, 4/data/fip

OIT=UNTE T Er ST o I oS core Tequres e use of the Vivado logic analyzer feature,

be used to monitor any internal signal of your design, The ILA core indudes many advanced features of modern logic ang
ports, Because the ILA core is synchronous to the design being monitored, all design dock constraints that are applied to

4

I

Figure 14.11: Product Guide option

the another way is to double-click on the selected IP core in the IP Catalog window and in the main window of the

selected IP core, click Documentation button and choose Product Guide option, see lllustration 14.12. This option
will also open for you Xilinx web page for the selected IP core.

ﬁ Customize IP

o]

® Product Guide
2 Change Log
@ Product Webpage

Answer Records

ILA (Integrated Logic Analyzer) (6.1)

m Documentation | IP Location () Switch to Defaults

Component Name |ilz_0

To configure more than 64 probe ports use Vivado Tcl Console

General Options | Probe_Fortz(0..0)

Monitor Type

@ Mative () AXI

Mumber of Probes | 1 [1...1024]
Sample Data Depth | 1024 -

Same Mumber of Comparators for All Probe Ports
Mumber of Comparators |1 7

[Trigger Cut Port

[Trigger In Port
Input Pipe Stages a hd
Trigger And Storage Settings

[Capture Control

[Advanced Trigger

GUI configuration mode is limited to 64 probe ports.

VIO Core Generation

Figure 14.12: Documentation / Product Guide option

243

APPENDIX

To configure and generate the VIO core, use the following steps:

Step 1. In the IP Catalog window, in the Search field, search for the VIO (Virtual Input/Output) IP core. After you selected
the VIO core, in the Details window, under the main IP Catalog window, you will find all the necessary information about

selected IP core, see lllustration 14.13

T Project Summary X | 1F IP Catalog X [mNE

Cores | Interfaces Search: vio

=1

-)[l Name AX14 Status License WLNV

& |- Vivado Repository

=<

N = Debug & Verification

=]

= = Debug

= oorua ooy roducton. incuded aimx.comipivios3.0
@
Details

Name: VIO (Virtual Input/Qutput)

Version: 3.0 (Rev, 10)

Description: The Virtual Input/Output (VI0) core is a customizable core that can both menitor and drive internal FPGA signals in real time. The number and width of the input and output ports are customizable in size to inte
Because the VIO core is synchronous to the design being monitored and/for driven, all design dock constraints that are applied to your design are also applied to the components inside the VIO core, Run-time i
requires the use of the Vivado logic analyzer feature,

Status: Production

License: Incuded

Change Log: View Change Log

Vendor: ¥ilinx, Inc.

VLNV: xilinx, com:ipivio: 3.0

Repository: D: fXilinx/Vivado/2015.4/datafip

Ol 1] | =

Figure 14.13: IP Catalog window with selected VIO core

Step 2. Double-click on the VIO (Virtual Input/Output) IP core and Vivado IDE will create a new skeleton source for your
VIO core

The window that will be opened is used to set up the general VIO core parameters, see lllustration 14.14

244

14.1 HDL Instantiation Debug Probing Flow
ﬂ Customize IP Iéj

VIO (Virtual Input/OQutput) (3.0) ‘
iﬂ Documentation | IP Location 0 Switch to Defaults

[] Show disabled ports Component Name wio_core

To configure mere than 64 probe ports use Vivado Td Conscle

General Options | PROBE_IN Ports(0..0) | PROBE_OUT Ports(0..0)

Input Probe Count |1 [0 - 256]
Output Probe Count | 1 [0 - 256]

Enable Input Probe Activity Detectors

clk

b to[0:0;
eobe_nafnn] PTeEe-ew0]

Figure 14.14: VIO core configuration window - General Options

Step 3. In the VIO (Virtual Input/Output) (3.0) window, enter vio_core_name (vio_core) in the Component Name field

Step 4. In the General Options tab, leave Input Probe Count to be 1 and Output Probe Count also to be 1, because we
will need one input probe for pwm_out signal and one output probe for sw0 signal, see lllustration 14.14

Step 5. In the PROBE_IN Ports(0..0) tab leave Probe Width of the PROBE_INO Probe Port to be 1, because our pwm_out
signal is 1 bit signal, see lllustration 14.15

gi Customize IP ﬁ

VIO (Virtual Input/Qutput) (3.0) ‘

ﬁ'ﬂ Documentation | IP Location £ Switch to Defaults

[] Show disabled ports Compaonent Name vio_core

To configure mere than 64 probe ports use Vivado Td Console

General Options~ PROBE_IN Ports(0..0) | PROBE_OUT Port=(0..0)

Probe Port Probe Width [1-255]
PROBE_IMO 1

probe_outd[0:0]

Figure 14.15: VIO core configuration window - PROBE_IN Ports(0..0) tab

245

APPENDIX

Step 6. In the PROBE_OUT Ports(0..0) tab, leave Probe Width of the PROBE_OUTO0 Probe Port to be 1, because our
swO0 signal is also 1 bit signal, see lllustration 14.16

ﬂ Customize IP

VIO (Virtual Input/Qutput) (3

[T Show disabled ports

clk

b [0
robe_nofon) om0 100

.0)

m Documentation | IP Location L Switch to Defaults

Component Mame

vio_core

To configure mare than 54 probe ports use Vivado Td Consale

General Options | PROBE_IN Ports{0..0)

PROBE_OUT Ports(0..0)

Probe Port Probe Width [1-256] Initial Value {in hex)
PROBE_OUTO 1 Oxd

Figure 14.16: VIO core configuration window - PROBE_OUT Ports(0..0) tab

Step 7. Click OK

Step 8. In the Generate Output Products window click Generate, see lllustration 14.17

/

Generate Output Products

i

The following output products will be generated.

Preview

@, | B-4F vie_core.xd (00C per IP)
[l Instantiation Template

=
= Cfil Synthesized Checkpoint (.dcp)
% Cfil Behavioral Simulation

Synthesis Options

() Global

(@ Out of context per IP
Run Settings

Mumber of jobs: |1 -

y

Apply | Generate |[

Skip

Figure 14.17: Generate Output Products window for VIO core

Note: After VIO core generation, your VIO core should appear in the Sources window, see lllustration 14.18

246

14.1 HDL Instantiation Debug Probing Flow

Sources A i R E 4
M EE o 1,

X = e B|E

=|-{= Design Sources (4]

«fi Ju modulator_wrapper - vt [modulztor_wrapper_rtl vhd) (1)

fil sine_top - ril (sin ril.vhd) (3)

{Fila_core iz
LF vio_core (v
H-{ Constraints

+-{= Simulation Sources (4)

Hierarchy | IP Sources | Libraries | Compile Order

Figure 14.18: Source tab with generated VIO core

ILA and VIO Core Instantiation

After configuring and generating ILA and VIO cores, we should make a new module (modulator_ila_vio_rtl.vhd) where
we will connect the existing design (modulator_rtl.vhd) with ILA and VIO cores (see Figure 14.19). By doing so, for the
sw0 port control it wont be necessary to use switch on the development board. Instead, we will use one of the VIO core’s
outputs to control the sw0 port. This will enable us to change the state of the sw0 port inside the Vivado Logic Analyzer.

To create the new modulator_ila_vio_rtl.vhd file, you can use existing modulator_wrapper_rtl.vhd file, making the
following changes:

» remove sw0 port from the port map

+ create internal signals pwm_s ,sw0_s and debug_data_s as std_logic_vectors

+ declare ILA and VIO core components

* in the Modulator module instance connect:

— sw0 port to the 0’th bit of the sw0_s signal

— pwm_out port to the 0’th bit of the pwm_out s signal

— debug_data port with the vdebug_data_s signal

« instantiate and connect ILA and VIO cores as it is shown on the Figure 14.19.

247

APPENDIX

F

clk_n

modulator_ila_vio_rtl.vhd

modulator_rtl.vhd

| S0 pwm_out
const. div_factor_freghigh[31:0]
const. div_factor_freqlow{31:0]

j clk_in_s .
| Clk_in debug data
IBUFGDS
ILA_core
- Clk

probel[120] |-

VIO_core

clk probe_outd

probe_in0

A

= pwm_out™>

Figure 14.19: Connection between the ILA core, VIO core and Modulator module

Now we will create an VHDL module (modulator_ila_vio_rtl.vhd) that will make connection between the ILA core, VIO
core and Modulator module (modulator_rtl.vhd).

To create a module, use steps for creating modules, Chapter 2.4.1 Creating a Module Using Vivado Text Editor .

To help you to correctly instantiate the ILA and VIO cores into your design, Xilinx tools always provide an instantiation
template stored in the *.vho file in case of VHDL language or *.veo file in case of Verilog language usage.

In our case ILA core instantiation template file is located in the following folder:

modulator/modulator.srcs/sources_1/ip/ILA_core/ILA_core.vho

Similarly, VIO core instantiation template file is located in the following folder:

modulator/modulator.srcs/sources_1/ip/VIO_core/VIO_core.vho

One possible way to implement the modulator_ila_vio_rtl.vhd module is shown below.

modulator_ila_vio_rtl.vhd :

library
use
use
use

library
use

use

ieee;

ieee.std_logic_1164.all;
ieee.std_logic_arith.all;
ieee.std_logic_unsigned.all;

unisim;

unisim.vcomponents.all;

work.modulator_pkg.all;

entity modulator_ila_vio is
generic(

—-— If some module is top,

this_module_is_-

top_g

yes;

it needs to implement the differential clk buffer,
—— otherwise this variable will be overwritten by a upper hierarchy layer
: module_is_top_t :

—— Parameter that specifies major characteristics of the board that will be used
-— to implement the modulator design
—— Possible choices:

nHwy g
’

" zedboard""",

nMem1605" T,

—— Adjust the modulator_pkg.vhd file to add more

board_name_g :

string

:= ""vzedboard""";

mwng 705,

"nnmicrozed""",

"msocius”

248

14.1 HDL Instantiation Debug Probing Flow

—— User defined settings for the pwm design

design_setting_g : design_setting_t_rec := design_setting_c
)i
port (
clk_p : in std_logic; —— differential input clock signal
clk_n : in std_logic; —-- differential input clock signal
pwm_out : out std_logic -- pulse width modulated signal
- clk_en : out std_logic -- clock enable port used only for MicroZed board

)i
end entity;

architecture rtl of modulator_ila_vio is

signal clk_in_s : std_logic;
signal pwm_s : std_logic_vector (0 downto 0);
signal swO_s : std_logic_vector (0 downto 0)

i
signal debug_data_s : std_logic_vector (12 downto 0);

-- cl_c = fclk/(2"depth*2"width) - cl_c = 95.3674, fclk = 100 MHz
constant cl_c : real :=
get_board_info_f (board_name_g) .fclk/ (real ((2+x+design_setting_g.depth) * (2+«+design_setting_g.width)));

—— div_factor_freghigh_c = (cl_c/f_high)*2”width - threshold value of frequency a = 110592
constant div_factor_freghigh_c : integer :=
integer (cl_c/design_setting_g.f_high) *x (2x*design_setting_g.width);
—- div_factor_freqlow_c = (cl_c/f_low)*2”width - threshold value of frequency b = 389120
constant div_factor_freqglow_c : integer :=

integer (cl_c/design_setting_g.f_low) x (2++xdesign_setting_g.width);

—- ila_core component definition
component ila_core
port (
clk : in std_logic;
probel0 : in std_logic_vector (12 downto 0)
)i
end component;

—-— vio_core component definition
component vio_core

port (
clk : in std_logic;
probe_in0 : in std_logic_vector (0 downto 0);
probe_out0 : out std_logic_vector (0 downto 0)

)i
end component;

begin

—— in case of MicroZed board we must enable on-board clock generator
- clk_en <= '1";

—— if module is top, it has to generate the differential clock buffer in case
—-— of a differential clock, otherwise it will get a single ended clock signal
—— from the higher hierarchy

pwm_out <= pwm_s (0);
clk_buf : if (get_board_info_f (board_name_g) .has_diff clk = yes) generate

ibufgds_inst : ibufgds
generic map (
ibuf_low_pwr => true,
-- low power (true) vs. performance (false) setting for referenced I/O standards
iostandard => "default"

port map (
o => clk_in_s, -- clock buffer output
i => clk_p, —-— diff_p clock buffer input
ib => clk_n —— diff_n clock buffer input

)i
end generate clk_buf;

no_clk_buf : if (get_board_info_f (board_name_g) .has_diff_clk = no) generate
clk_in_s <= clk_p;
end generate no_clk_buf;

—-- modulator module instance
modulator: entity work.modulator (rtl)
generic map (
design_setting_g => design_setting_g
)

port map (
clk_in => clk_in_s,
sw0 => sw0_s (0),

div_factor_freghigh => conv_std_logic_vector(div_factor_freqghigh_c, 32),
div_factor_freqlow => conv_std_logic_vector(div_factor_ freglow_c, 32),

249

APPENDIX

pwm_out => pwm_s (0),
debug_data => debug_data_s

)i

—-— ila_core component instance
ila: ila_core
port map (
clk => clk_in_s,
probe0 => debug_data_s
)i

—- vio_core component instance
vio: vio_core

port map (
clk => clk_in_s,
probe_out0 => swO_s,
probe_in0 => pwm_s

)i

end;

As you can see from the picture above (Figure 14.19), we have added the debug_data output port to the Modulator module
(modulator_rtl.vhd) and connected it to the PROBEO input port of the ILA core. This is important, because we will connect
the internal sine_ampl_s and freq_trig_s signals from the Modulator module to the debug_data port, and use them as

the trigger/data signals for the ILA core.

As we can also see from the picture above (Figure 14.19), we have connected the sw0 input port of the Modulator module
to the PROBE_OUTO output port of the VIO core. This is also important, because now we don’t need any physical switch
from the development board to drive the sw0 input port. Now, this is done using an synchronous output port from the VIO
core (sw0_s signal). This signal can be controlled within the Vivado Logic Analyzer tool to change the value of the sw0

input port, and by doing so the frequency of the pwm_out signal.

To make these modifications, modulator_rtl.vhd source code must be modified as it is shown bellow:

Modulator VHDL model-

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_textio.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

library unisim;
use unisim.vcomponents.all;

entity modulator is

generic(
—— User defined settings

)i

div_factor_freghigh : in std_logic_vector (31 downto 0);
div_factor_freglow : in std_logic_vector (31 downto 0);

port (
clk_in : in std_logic;
sw0 : in std_logic;
pwm_out : out std_logic;
debug_data : out std_logic_vector

)i
end entity;

architecture rtl of modulator is

—-— amplitude counter

signal ampl_cnt_s : std_logic_vector (design_setting_g.depth-1
—- current amplitude value of the sine signal
signal sine_ampl_s : std_logic_vector (design_setting_g.width-1

—— signal which frequency depends on the sw0 state

signal freqg trig_s : std_logic :

begin

freq ce : entity work.frequency_trigger (rtl)

port map (
clk_in => clk_in,
swQO => sw0,

div_factor_freghigh => div_factor_freghigh,
div_factor_freqlow => div_factor_freqglow,
freq trig => freq_trig_s

)i

the pwm design

design_setting g : design_setting_t_rec := design_setting c

(12 downto 0)

input clock signal

signal made selecting frequency
input clock division when swO = "1’
input clock division when swO = "0’

pulse width modulated signal

downto 0);

downto 0);

—-- frequency trigger module instance

250

14.1 HDL Instantiation Debug Probing Flow

counterampl : entity work.counter (rtl) —— counter module instance
generic map (
cnt_value_g => design_setting_g.cntampl_value,

depth_g => design_setting_g.depth
)
port map (
clk_in => clk_in,
cnt_en => freq trig_s,

cnt_out => ampl_cnt_s
)i

sine : entity work.sine(rtl) —-- digital sine module instance
generic map (
depth_g => design_setting_g.depth,
width_g => design_setting_g.width
)

port map (
ampl_cnt => ampl_cnt_s,
clk_in => clk_in,

sine_out => sine_ampl_s

)i

pwmmodule : entity work.pwm (rtl) —-— pwm module instance
generic map (
width_g => design_setting_g.width
)

port map (
clk_in => clk_in,
sw0 => swO0,

4

sine_ampl sine_ampl_s,

div_factor_freghigh => conv_std_logic_vector (conv_integer (div_factor_freghigh)/ (2+x*
design_setting_g.width), 32),

div_factor_freglow => conv_std_logic_vector (conv_integer (div_factor_freqglow)/ (2xx*
design_setting_g.width), 32),

pwm_out => pwm_out

)i

debug_data (11 downto 0) <= sine_ampl_s;
debug_data (12) <= freq_ trig_s;

end;

After we made a new VHDL module (modulator_ila_vio_rtl.vhd), we must also modify the modulator_rtl.xdc file, be-
cause we don’t have any more sw0 port. The new content of the xdc file is shown in the code below.

modulator _ila_vio.xdc file:

set_property PACKAGE_PIN Y9 [get_ports clk_p]
set_property PACKAGE_PIN T22 [get_ports pwm_out]

set_property IOSTANDARD LVCMOS33 [get_ports clk_p]
set_property IOSTANDARD LVCMOS33 [get_ports pwm_out]

create_clock -period 10.000 -name clk_p -waveform {0.000 5.000} [get_ports clk_p]

After finishing with the modifications, we must return to the Vivado IDE and do the following:

Step 1. Remove modulator_wrapper _rtl.vhd source file from the design

Step 2. Add modulator _ila_vio_rtl.vhd and modulator_ila_vio.xdc files in the modulator design with Add Sources
option:

* modulator _ila_vio_rtl.vhd as Design Source file, and

* modulator_ila_vio.xdc as Constraints file

Step 3. Remove the old modulator.xdc file from the design
Step 4. In the Sources window, right-click on the modulator_ila_vio_rtl.vhd file and select Set as Top option
Step 5. Made the necessary changes in the modulator_rtl.vhd source file as it is explained in the text above

Step 6. Synthesize your design with Run Synthesis option from the Flow Navigator / Synthesis (see Sub-chapter 6.5.2
Run Synthesis)

Step 7. Implement your design with Run Implementation option from the Flow Navigator / Implementation (see Sub--
Chapter 10.2.2 Run Implementation)

251

APPENDIX

Step 8. Generate bitstream file with Generate Bitstream option from the Flow Navigator / Program and Debug (see
Sub-Chapter 10.3 Generate Bitstream File)

Step 9. Program your ZedBoard device (see Sub-Chapter 10.4 Program Device)

14.2 Using the HDL Instantiation Debug Probing Flow in IP Integrator

As shown in the previous chapter "HDL Instantiation Debug Probing Flow", we will instantiate an Integrated Logic Analyzer
(ILA) and Virtual Input/Output (VIO) cores into our IP integrator design and connect nets in the same way as it is shown on
the Figure 11.9.

To start debugging process using the HDL Instantiation Flow in IP Integrator tool, please do the following:
Step 1. Create new project modulator _ipi_hdI
Step 2. In the modulator _ipi_hdl project create new modulator _ipi_hdl block design

Step 3. Add previously packaged IPs (frequency _trigger v1_0, counter_v1_0, sine_v1_0and pwm_v1_0) to the IP Catalog
by repeating the steps 32 - 38 from the Sub-chapter 13.1 IP Packager.

Step 4. Add all four IPs (frequency _trigger_v1_0, counter_v1_0, sine_v1_0and pwm_v1_0) to the modulator _ipi_hdI
block design

Step 5. Customize the IPs on the same way as it is explained in the Sub-chapter 13.2 IP Integrator, step 17

Step 6 Add four Constant IP blocks to the modulator _ipi_hdl block design and customize them on the same way as it is
explained in the Sub-chapter 13.2 IP Integrator, steps 22 - 25

Step 7. Add also ILA and VIO IPs to the modulator_ipi_hdl block design
Step 8. Leave VIO core as it is
Step 9. In the IP Integrator canvas, double-click on the ILA core to re- configure it

Step 10. In the General Options tab of the ILA core, re-configure the following parameters:

+ Set Monitor Type to be Native, instead of AXI

« Set Number of Probes to 2

» Set Sample Data Depth to be on the maximum 131072 samples

252

14.2 Using the HDL Instantiation Debug Probing Flow in IP Integrator

ﬁ Re-customize IP @

ILA (Integrated Logic Analyzer) (6.2) ¢

ﬁﬂDDcumEntatDn [IP Location

Show disabled ports Component Name modulator_ipi_hdl_ila_0_0

To configure more than 64 probe ports use Vivade Td Console

General Options | Probe_Ports{0..7)

Monitor Type

@ Native AXL

humber of Probes | 2 [1...1024]
Sample Data Depth | 131072 ~
/| Same Mumber of Comparaters for All Probe Ports
Number of Comparatars |1 =
Trigger Out Port

Trigger In Port

Input Pipe Stages 0 -
Trigger And Storage Settings

Capture Control

Advanced Trigger

‘GUI configuration mede is limited to 64 probe ports.

OK Cancel

Figure 14.20: ILA core configuration window - General Options tab

Step 11. In the Probe_Ports(0..7) tab of the ILA core, re- configure the following parameters:

+ Set the Probe Width [1..4096] of the PROBEO probe port to be 12

» Leave the Probe Width [1..4096] of the PROBE1 probe port to be 1

We configured the probe width of the PROBEOQ probe port to 12 and PROBE1 to 1, because the width of the sine_ampl_s

signal, that we want to see in the Vivado Logic Analyzer, is 12 bits and the width of the freq_trig_s signal is 1 bit.

253

APPENDIX

1F Re-customize IP @
ILA (Integrated Logic Analyzer) (6.2) ¢
m Documentation |) IP Location
] Show disabled ports Component Name | modulator_ipi_hd|_ila_0_0
To configure mare than 64 probe ports use Vivado Td Console
General Options Probe_Ports(0..7)
Praobe Port Probe Width [1..4098] Mumber of Comparators Probe Trigger or Data
PROBED 12 1 ~ | DATA AND TRIGGER -
PROBE1 1 1 ~ | DATA AND TRIGGER -

Figure 14.21: ILA core configuration window - Probe_Ports(0..7) tab

Step 12. In case of VIO core, use default configuration settings
Step 13. Connect the ILA core with the rest of the IPs in the same way as it is shown on the Figure 14.19

Step 14. Remove sw0 port from the IP Integrated canvas and connect the VIO core with the rest of the IPs in the same
way as it is shown on the Figure 14.19, see lllustration 14.22

ie Diagram X
#] # modulator_ipi_hd

frequency_trigger_0

o
BN ck_in [Ik_in
& —
= _factor_freghigh(31:0] -0
i _factor_freqlow[31:0]
WIH
’[‘J) frequency_trigger_v1_0
xlconstant_0
- counter_0
- ila_0 dout[31:0]
= - t_out{7:0
= B Constant e o HEELL
& p [11:0]
- be1[0:0] counter vi
- pi [0:0] Xlconstant_L ounter_v1_0
i ILA (Integrated Logic Analyzer) dout{31:0]
& [}
& Constant sine_0
] vio_0 Ik_in
xlconstant_3 - sine_out[11:0]
&l 1k = pl_cnt[7:0)
= probe_out[0:0]
e probe_in0[0:0] dout[31:0] = =
- sine_v1_0
VIO (Virtual Input/Output) Constant
pwm_0
lk_in
pwm_out
Xlconstant_2 ine_ampi[11:0] pwm_out,
[dnut[}l:l]]}—l div_factor_freghigh(31:0]
div_factor_freqlow[31:0]
Constant
pwm_v1_0

Figure 14.22: IP Integrator design canvas with connected ILA and VIO cores

Step 15. Create and add modulator_ipi_hdl.xdc constraints file to the project. The content of the modulator _ipi_hdl.xdc
constraints file is shown in the text below:

254

14.2 Using the HDL Instantiation Debug Probing Flow in IP Integrator

set_property PACKAGE_PIN Y9 [get_ports clk_in]
set_property PACKAGE_PIN T22 [get_ports pwm_out]

set_property IOSTANDARD LVCMOS33 [get_ports clk_in]
set_property IOSTANDARD LVCMOS33 [get_ports pwm_out]

create_clock -period 10.000 -name clk_p -waveform {0.000 5.000} [get_ports clk_p]

Step 16. Validate your design by selecting Tools -> Validate Design from the main menu
Step 17. Select modulator_ipi_hdl, right-click on it and choose Create HDL Wrapper... option

Step 18. Synthesize your design with Run Synthesis option from the Flow Navigator / Synthesis (see Sub-chapter
6.5.2 Run Synthesis)

Step 19. Implement your design with Run Implementation option from the Flow Navigator / Implementation (see Sub--
Chapter 10.2.2 Run Implementation)

Step 20. Generate bitstream file with Generate Bitstream option from the Flow Navigator / Program and Debug (see
Sub-Chapter 10.3 Generate Bitstream File)

Step 21. Program your ZedBoard device (see Sub-Chapter 10.4 Program Device)

Step 22. After programming your design, you should get the same results as we presented in the Sub-chapter 11.2 Debug
a Design using Integrated Vivado Logic Analyzer of this tutorial.

255

	INTRODUCTION
	Motivation
	Purpose of this Tutorial
	Structure of this Tutorial
	Objectives of this Tutorial
	One Possible Solution for the Modulator Design
	Design Flow
	Vivado Design Suite and it's Use Modes
	Differences between Project and Non-Project Mode

	FREQUENCY TRIGGER
	Description
	Creating a New Project
	Vivado Integrated Design Environment
	Creating Module
	Creating a Module Using Vivado Text Editor

	Creating Test Bench
	Simulating with Vivado Simulator

	COUNTER
	Description
	Creating Module
	Creating Test Bench
	Simulating

	SINE PACKAGE
	Description
	Creating Module

	DIGITAL SINE
	Description
	Creating Module

	DIGITAL SINE TOP
	Description
	Creating Module
	Creating Test Bench
	Simulating
	Synthesis
	Description
	Run Synthesis
	After Synthesis
	Synthesis Reports
	Schematic View

	PWM
	Description
	Creating Module
	Creating Test Bench
	Simulating

	MODULATOR
	Description
	Creating Module
	Creating Test Bench
	Simulating

	MODULATOR WRAPPER
	Description
	Creating Module

	DESIGN IMPLEMENTATION
	Creating XDC File
	Defining Timing Constraints
	Migrating UCF Constraints to XDC

	Implementation
	About the Vivado Implementation Process
	Run Implementation
	After Implementation
	Implementation Reports
	Run Post-Implementation Simulation
	Run Post-Implementation Timing Simulation

	Generate Bitstream File
	Program Device
	Modifications in case of using different development boards

	DEBUGGING DESIGN
	Inserting ILA and VIO Cores into Design
	Debug a Design using Integrated Vivado Logic Analyzer
	Oscilloscope

	MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD
	Description
	Creating Project
	Creating Module

	DESIGNING WITH IPs
	IP Packager
	IP Integrator
	Debugging IP Integrated Designs
	Creating Modulator IP Core with AXI4 Interface

	APPENDIX
	HDL Instantiation Debug Probing Flow
	Using the HDL Instantiation Debug Probing Flow in IP Integrator

	Index

