
Basic FPGA Tutorial

using VHDL and VIVADO to design two frequencies PWM
modulator system

January 4, 2017

Contents

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Purpose of this Tutorial . 1

1.3 Structure of this Tutorial . 1

1.4 Objectives of this Tutorial . 3

1.5 One Possible Solution for the Modulator Design . 4

1.6 Design Flow . 8

1.7 Vivado Design Suite and it’s Use Modes . 10

1.7.1 Differences between Project and Non-Project Mode . 11

2 FREQUENCY TRIGGER 17

2.1 Description . 17

2.2 Creating a New Project . 17

2.3 Vivado Integrated Design Environment . 22

2.4 Creating Module . 24

2.4.1 Creating a Module Using Vivado Text Editor . 30

2.5 Creating Test Bench . 34

2.6 Simulating with Vivado Simulator . 38

3 COUNTER 41

3.1 Description . 41

3.2 Creating Module . 41

3.3 Creating Test Bench . 42

3.4 Simulating . 45

4 SINE PACKAGE 47

4.1 Description . 47

4.2 Creating Module . 48

5 DIGITAL SINE 51

5.1 Description . 51

5.2 Creating Module . 51

6 DIGITAL SINE TOP 53

6.1 Description . 53

CONTENTS

6.2 Creating Module . 54

6.3 Creating Test Bench . 55

6.4 Simulating . 56

6.5 Synthesis . 57

6.5.1 Description . 57

6.5.2 Run Synthesis . 58

6.5.3 After Synthesis . 59

6.5.4 Synthesis Reports . 63

6.5.5 Schematic View . 65

7 PWM 69

7.1 Description . 69

7.2 Creating Module . 70

7.3 Creating Test Bench . 72

7.4 Simulating . 73

8 MODULATOR 75

8.1 Description . 75

8.2 Creating Module . 76

8.3 Creating Test Bench . 77

8.4 Simulating . 78

9 MODULATOR WRAPPER 79

9.1 Description . 79

9.2 Creating Module . 80

10 DESIGN IMPLEMENTATION 83

10.1 Creating XDC File . 83

10.1.1 Defining Timing Constraints . 89

10.1.2 Migrating UCF Constraints to XDC . 100

10.2 Implementation . 101

10.2.1 About the Vivado Implementation Process . 101

10.2.2 Run Implementation . 102

10.2.3 After Implementation . 103

10.2.4 Implementation Reports . 105

10.2.5 Run Post-Implementation Simulation . 108

10.2.6 Run Post-Implementation Timing Simulation . 109

10.3 Generate Bitstream File . 113

10.4 Program Device . 113

10.5 Modifications in case of using different development boards . 120

11 DEBUGGING DESIGN 123

11.1 Inserting ILA and VIO Cores into Design . 123

ii

CONTENTS

11.2 Debug a Design using Integrated Vivado Logic Analyzer . 141

11.3 Oscilloscope . 150

12 MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD 155

12.1 Description . 155

12.2 Creating Project . 156

12.3 Creating Module . 158

13 DESIGNING WITH IPs 173

13.1 IP Packager . 174

13.2 IP Integrator . 196

13.3 Debugging IP Integrated Designs . 211

13.4 Creating Modulator IP Core with AXI4 Interface . 214

14 APPENDIX 235

14.1 HDL Instantiation Debug Probing Flow . 235

14.2 Using the HDL Instantiation Debug Probing Flow in IP Integrator . 252

Index 255

iii

CONTENTS

iv

List of Figures

1.1 Example of the PWM signal . 4

1.2 Sine wave with 256 samples . 4

1.3 Block diagram . 6

1.4 Details of PWM signal generation . 7

1.5 Project Design Steps . 7

1.6 Design Flow . 8

1.7 Design Verification Steps . 10

1.8 Project and Non-Project Mode Commands . 12

2.1 Frequency Trigger block diagram . 17

2.2 The Vivado Getting Started page . 18

2.3 Create a New Vivado Project dialog box . 18

2.4 Project Name dialog box . 19

2.5 Project Type dialog box . 19

2.6 Default Part dialog box . 20

2.7 New Project Summary dialog box . 21

2.8 Vivado IDE Viewing Environment . 22

2.9 Vivado IDE Default Layout . 23

2.10 Project Summary View . 24

2.11 Add Sources command . 25

2.12 Add Sources dialog box . 25

2.13 Add or Create Design Sources dialog box - Create File option . 26

2.14 Create Source File dialog box . 26

2.15 Add or Create Design Sources dialog box with created file . 27

2.16 Define Module dialog box . 27

2.17 Vivado IDE Viewing Environment after module creation . 28

2.18 Automatically generated frequency_trigger_rtl.vhd source file . 28

2.19 Remove File from Project option . 29

2.20 Remove Sources dialog box . 29

2.21 Add Sources command . 30

2.22 Add Sources dialog box - Add or create design sources option . 31

2.23 Add or Create Design Sources dialog box - Add Files option . 31

2.24 Add Source Files dialog box . 32

LIST OF FIGURES

2.25 Add or Create Design Sources dialog box - with added file . 32

2.26 Vivado IDE Viewing Environment with added source file . 33

2.27 Add Sources command . 35

2.28 Add Sources dialog box - Add or create simulation sources option . 35

2.29 Add or Create Simulation Sources dialog box . 36

2.30 Add Source Files dialog box . 36

2.31 Add or Create Simulation Sources dialog box - with added file . 37

2.32 Vivado IDE Viewing Environment with added test bench file . 37

2.33 Run Behavioral Simulation option . 39

2.34 Vivado IDE Viewing Environment - after simulation process . 39

2.35 Simulation Results . 40

2.36 Vivado Simulator Simulation Controls . 40

3.1 Counter block diagram . 41

3.2 Create Simulation Set option . 43

3.3 Create Simulation Set dialog box . 43

3.4 Vivado IDE Viewing Environment with created new simulation set . 44

3.5 Make Active option . 45

3.6 Simulation Results . 45

4.1 Sine-package description . 47

5.1 Digital Sine block diagram . 51

6.1 Digital Sine Top block diagram . 53

6.2 Digital Sine Top detailed block diagram . 53

6.3 Simulation Results . 56

6.4 Waveform Style -> Analog option . 57

6.5 Simulation results with analog sine signal representation . 57

6.6 Run Synthesis command . 58

6.7 Synthesis Completed dialog box . 58

6.8 Default Layout option . 59

6.9 Synthesized Design options . 59

6.10 Timing Constraints window . 60

6.11 Timing Summary Report . 60

6.12 Clock Networks Report . 61

6.13 Report Methodology . 61

6.14 DRC Report . 62

6.15 Noise Report . 62

6.16 Utilization Report . 62

6.17 Power Report . 63

6.18 Reports tab . 63

6.19 Vivado Synthesis Report . 64

vi

LIST OF FIGURES

6.20 Utilization Report . 65

6.21 Schematic command . 66

6.22 Sine-Top Schematic View . 66

7.1 PWM block diagram . 69

7.2 FSM state diagram . 70

7.3 Simulation Results . 73

8.1 Modulator block diagram . 75

8.2 Simulation Results . 78

9.1 Modulator wrapper block diagram . 79

10.1 I/O Planning option . 84

10.2 I/O Planning View . 85

10.3 I/O Ports tab . 85

10.4 I/O Port Properties window . 86

10.5 I/O Ports tab with assigned pin locations and I/O standards . 86

10.6 Save Constraints dialog box . 87

10.7 Save Constraints As dialog box . 87

10.8 Created modulator_rtl constraints set . 88

10.9 modulator.xdc file with physical constraints . 88

10.10Add Sources dialog box - Add or create constraints option . 89

10.11No Target Constraints File dialog box . 90

10.12Define Constraints and Target dialog box . 90

10.13Identify and Recommend Missing Timing Constraints dialog box . 91

10.14Primary Clocks dialog box . 92

10.15Input Delays dialog box . 93

10.16Output Delays dialog box . 93

10.17Constraints Summary dialog box . 94

10.18Timing Constraints option . 95

10.19Timing Constraints window . 95

10.20Create Clock dialog box . 96

10.21Specify Clock Source Objects dialog box . 97

10.22Create Clock dialog box after specifying the period for the clk_p . 98

10.23Timing Constraints window with the create_clock constraint . 98

10.24modulator.xdc constraints file in the Sources window . 99

10.25modulator.xdc file with physical and timing constraints . 99

10.26Run Implementation command . 102

10.27Implementation Completed dialog box . 102

10.28Implemented Design options . 103

10.29Report Timing Summary tab . 104

10.30Report Clock Interaction tab . 104

vii

LIST OF FIGURES

10.31Utilization Report tab . 105

10.32Reports tab . 105

10.33IO Report . 106

10.34Utilization Report . 106

10.35Control Sets Report . 107

10.36Power Report . 108

10.37Route Status Report . 108

10.38Simulation Flow . 109

10.39Run Post-Implementation Timing Simulation option . 111

10.40Libraries tab with added modulator_pkg.vhd file . 111

10.41Move Sources dialog box - Manual compile order . 112

10.42Timing Simulation Results . 112

10.43Functional Simulation Results . 112

10.44Timing Simulation Results (with signal delays) . 113

10.45Generate Bitstream command . 113

10.46Open Hardware Manager command . 114

10.47Hardware Manager view . 114

10.48Open Target command . 114

10.49Open Hardware Target dialog box . 115

10.50Hardware Server Settings dialog box . 115

10.51Select Hardware Target dialog box . 116

10.52Open Hardware Target Summary dialog box . 117

10.53Hardware view after opening a connection to the hardware target . 117

10.54Program Device option . 118

10.55Program device option from the Hardware Manager view . 118

10.56Program Device window . 118

10.57Hardware Device Properties window . 119

10.58Close Target option . 119

10.59Close Server option . 119

10.60Project Settings window . 120

10.61Project Settings dialog box . 120

10.62Select Device dialog box . 121

11.1 Symbol of the ILA v6.2 core . 124

11.2 Symbol of the VIO v3.0 core . 125

11.3 IP Catalog window with selected VIO core . 126

11.4 VIO core configuration window - General Options . 126

11.5 VIO core configuration window - PROBE_IN Ports(0..0) tab . 127

11.6 VIO core configuration window - PROBE_OUT Ports(0..0) tab . 127

11.7 Generate Output Products window for VIO core . 128

11.8 Sources tab with generated VIO core . 128

11.9 Connection between VIO core and Modulator module . 129

viii

LIST OF FIGURES

11.10Project Settings command . 131

11.11Project Settings dialog box . 132

11.12Run Synthesis command . 132

11.13Open Synthesized Design option . 133

11.14Debug tab with unassigned debug nets . 133

11.15Netlist window with expanded Nets folders . 134

11.16Mark and Unmark Debug option . 134

11.17Confirm Debug Net(s) dialog box . 135

11.18Set Up Debug button . 135

11.19Tools -> Set up Debug option . 136

11.20Set Up Debug dialog box . 136

11.21Nets to Debug dialog box . 137

11.22Find Nets dialog box . 137

11.23Select Clock Domain option . 138

11.24Select Clock Domain dialog box . 138

11.25Nets to Debug dialog box - with specified clock domains . 139

11.26ILA Core Options dialog box . 139

11.27Set up Debug Summary dialog box . 140

11.28Debug window with assigned debug nets . 140

11.29Netlist window with generated ILA core . 141

11.30Open Hardware Manager command . 141

11.31Hardware window showing the ILA and VIO debug cores . 142

11.32ILA Properties window . 142

11.33Add Probes to Basic Capture Setup option . 143

11.34Basic Capture Setup window with the freq_trig_s debug probe . 144

11.35ILA probe Operator dialog box . 144

11.36Run Trigger option . 146

11.37Content of the waveform window after trigger has been detected . 146

11.38Waveform window with debug probes and specified trigger position . 147

11.39Zoomed in results in the waveform window . 147

11.40Results of the behavioral simulation of the PWM module . 147

11.41Captured waveform of the sine signal . 148

11.42Captured waveform of the sine signal with 2048 ILA buffer data depth . 148

11.43Add Probes to VIO Window option . 149

11.44VIO Probes window . 149

11.45Changing the sw0_s value . 150

11.46Using oscilloscope for viewing PWM signal . 150

11.47PWM signal measured by oscilloscope . 153

12.1 Modulator block diagram for socius development board . 156

12.2 Default Part dialog box . 157

12.3 Vivado IDE Viewing Environment with created modulator_socius project 158

ix

LIST OF FIGURES

12.4 Source tab with generated VIO core . 159

12.5 Source tab with generated VIO core and Modulator module . 159

12.6 Tcl Console window . 166

12.7 Block diagram of Zynq PS configured to run on socius board . 167

12.8 ILA Dashboard . 168

12.9 Add Probes to the VIO window . 168

12.10VIO Probes window . 169

12.11Changing the sw0_s value . 169

12.12Add Probes to the Trigger Setup window . 170

12.13Changing the Compare Values in the Trigger Setup window . 170

12.14Add Probes to the Capture Setup window . 171

12.15Changing the Compare Values in the Capture Setup window . 171

12.16Captured waveform of the sine signal, when sw0=0 . 171

12.17Captured waveform of the sine signal, when sw0=1 . 172

13.1 Vivado IP-Centric Design Flow . 173

13.2 IP Packaging and Usage Flow . 174

13.3 Create a New Vivado Project dialog box . 174

13.4 Project Name dialog box . 175

13.5 Project Type dialog box . 175

13.6 Add Sources dialog box . 176

13.7 Add Source Files dialog box . 176

13.8 Add Sources dilaog box with added source file . 177

13.9 Add Existing IP (optional) dialog box . 177

13.10Add Constraints (optional) dialog box . 178

13.11Default Part dialog box . 178

13.12New Project Summary dialog box . 179

13.13Created new frequency_trigger project . 179

13.14Packager window with configured settings that will be applied after packaging process 180

13.15Create and Package IP option . 180

13.16Create and Package IP dialog box . 181

13.17Choose Create Peripheral or Package IP dialog box . 181

13.18Package Your Current Project dialog box . 182

13.19New IP Creation dialog box . 182

13.20Identification window . 183

13.21Review and Package window . 184

13.22Package IP dialog box . 184

13.23Package IP dialog box with selected new archive location . 184

13.24Review and Package window with new archive information . 185

13.25frequency_trigger IP in the IP Catalog . 185

13.26Repository Manager window . 187

13.27Add Repository dialog box . 187

x

LIST OF FIGURES

13.28Repository Manager with selected ip_repository . 188

13.29frequency_trigger IP configuration window . 189

13.30Generate Output Products window for frequency_trigger_ip core . 189

13.31Sources window with generated frequency_trigger_ip IP . 190

13.32counter IP configuration window . 190

13.33sine IP configuration window . 191

13.34pwm IP configuration window . 192

13.35Sources window with all four generated IPs . 192

13.36Connection between generated IPs . 193

13.37Modulator IP wrapper block diagram . 195

13.38Create Block Design option . 198

13.39Create Block Design dialog box . 198

13.40Vivado IDE with a blank design canvas . 198

13.41Add IP option . 199

13.42Add IP link . 199

13.43Add IP button . 200

13.44frequency_trigger_v1_0 core in the IP Catalog . 200

13.45Automatically instantiated frequency_trigger_v1_0 core in the IP Integrator design canvas 201

13.46IP Integrator design canvas with all four instantiated IPs . 201

13.47frequency_trigger_v1_0 re-customization dialog box . 202

13.48counter_v1_0 re-customization dialog box . 202

13.49sine_v1_0 re-customization dialog box . 203

13.50pwm_v1_0 re-customization dialog box . 203

13.51IP Integrator design canvas with all four re-customized IPs . 204

13.52IP Integrator design canvas with instantiated Constant IPs . 204

13.53Constant block re-customization dialog box . 205

13.54Create Port option . 206

13.55Create Port dialog box . 206

13.56IP Integrator design canvas with new ports . 207

13.57IP Integrator design canvas with connected IPs . 208

13.58Validate Design option from the main menu . 208

13.59Validate Design button from the main toolbar menu . 209

13.60Validate Design dialog box . 209

13.61Create HDL Wrapper option . 209

13.62Create HDL Wrapper dialog box . 209

13.63Sources window with generated modulator_ipi HDL wrapper . 210

13.64Sources window with added modulator_ipi_rtl.xdc constraints file . 210

13.65IP Integrator design canvas with connected VIO core . 211

13.66Debug option . 212

13.67Generate Block Design command . 212

13.68MARK_DEBUG attributes in the generated HDL file . 213

xi

LIST OF FIGURES

13.69Save Project dialog box . 213

13.70Modulator design with AXI interface . 214

13.71Create and Package IP... option . 215

13.72Create and Package IP dialog box . 216

13.73Choose Create Peripheral or Package IP dialog box . 216

13.74Peripheral Details dialog box . 217

13.75Add Interfaces dialog box . 218

13.76Create Peripheral dialog box . 218

13.77Identification window . 219

13.78Hierarchy tab after adding all the necessary source files in the IP . 219

13.79Hierarchy tab with opened modulator_axi_ip_v1_0 - arch_imp branch . 220

13.80Modified modulator_axi_ip_v1_0_S00_AXI.vhd file - part 1 . 220

13.81Modified modulator_axi_ip_v1_0_S00_AXI.vhd file - part 2 . 221

13.82modulator_axi_ip_v1_0_S00_AXI.vhd file with instantiated Modulator module 221

13.83Hierarchy window with integrated Modulator module within AXI peripheral 222

13.84Modified modulator_axi_ip_v1_0.vhd source file - part 1 . 222

13.85Modified modulator_axi_ip_v1_0.vhd source file - part 2 . 223

13.86Modified modulator_axi_ip_v1_0.vhd source file - part 3 . 223

13.87Compatibility window . 224

13.88File Groups window . 224

13.89Customization Parameters window after merging changes from Customization Parameters Wizard 224

13.90Edit IP Parameter window . 225

13.91Review and Package window . 225

13.92IP Catalog with modulator_axi_ip IP . 226

13.93Customize IP - modulator_axi_ip_v1.0 . 226

13.94Show IP Hierarchy dialog box . 227

13.95Sources window with modulator_axi_ip_0 sources hierarchy . 227

13.96AXI4-Lite single write operation timing diagram . 230

13.97S_AXI_AWADDR signal . 230

13.98Run Behavioral Simulation option . 233

13.99Simulation results - writing to div_factor_freqhigh and div_factor_freqlow registers 233

13.100Simulation Results - changing the value of sw0 register . 234

13.101Simulation Results - pwm signal frequency change as a result of the change of the sw0 register value . . . 234

14.1 Vivado Logic Analyzer Design Flow . 236

14.2 Symbol of the ILA v6.2 core . 237

14.3 Symbol of the VIO v3.0 core . 238

14.4 JTAG to AXI Master System . 239

14.5 IP Catalog command . 239

14.6 IP Catalog window with selected ILA core . 240

14.7 ILA core configuration window - General Options tab . 240

14.8 ILA core configuration window - Probe_Ports(0..0) tab . 241

xii

LIST OF FIGURES

14.9 Generate Output Products window for ILA core . 242

14.10Sources tab with generated ILA core . 242

14.11Product Guide option . 243

14.12Documentation / Product Guide option . 243

14.13IP Catalog window with selected VIO core . 244

14.14VIO core configuration window - General Options . 245

14.15VIO core configuration window - PROBE_IN Ports(0..0) tab . 245

14.16VIO core configuration window - PROBE_OUT Ports(0..0) tab . 246

14.17Generate Output Products window for VIO core . 246

14.18Source tab with generated VIO core . 247

14.19Connection between the ILA core, VIO core and Modulator module . 248

14.20ILA core configuration window - General Options tab . 253

14.21ILA core configuration window - Probe_Ports(0..7) tab . 254

14.22IP Integrator design canvas with connected ILA and VIO cores . 254

xiii

LIST OF FIGURES

xiv

List of Tables

Chapter 1

INTRODUCTION

1.1 Motivation

Basic FPGA Tutorial is a document made for beginners who are entering the FPGA world. This tutorial explains, step by
step, the procedure of designing a simple digital system using VHDL language and Xilinx Vivado Design Suite.

1.2 Purpose of this Tutorial

This tutorial is made to introduce you how to create, simulate and test an project and run it on your development board.

After completing this tutorial, you will be able to:

• Launch and navigate the Vivado Integrated Design Environment (IDE)

• Learn the various types of projects that can be created with the New Project Creation Wizard

• Create and add design source files with the Vivado IDE

• Synthesize and implement the design in the Vivado IDE

• Simulate a design using integrated Vivado Simulator

• Run your design on the target development board

• Debug a design in hardware using Vivado Logic Analyzer and Oscilloscope

• Designing with IPs

The following project is designed for:

• Designing Surface: VIVADO 2016.4

• HD Language: VHDL

• Simulator: Vivado Simulator

• Device: ZedBoard Zynq Evaluation and Development Kit

1.3 Structure of this Tutorial

This tutorial is composed of eight chapters. The content of each chapter is explained in the text below:

• Chapter 1: "Introduction" - In this chapter you will find what is the purpose of this tutorial, explanation what is the
PWM signal, frequency calculations, block diagram of one possible solution for the modulator design and a lot of
basic information about the Vivado Design Suite.

INTRODUCTION

• Chapter 2: "Frequency Trigger" - In this chapter you will find all the necessary information about how to create a
new project in the Vivado IDE, how to create Frequency Trigger module as constituent part of the Modulator design,
how to generate its test bench file and how to simulate it with the integrated Vivado simulator.

• Chapter 3: "Counter" - This chapter explains how to create Counter module, how to create its test bench file and
how to simulate it with Vivado simulator.

• Chapter 4: "Sine Package" - This chapter holds the information how to create Sine package as one universal
package that will be used in almost all modules of the Modulator design.

• Chapter 5: "Digital Sine" - This chapter explains how to create Digital Sine module, how to create its test bench file
and how to simulate it with Vivado simulator.

• Chapter 6: "Digital Sine Top" - In this chapter you will find all the necessary information about how to create
Digital Sine Top module which combines Frequency Trigger, Counter, Sine package and Digital Sine modules into
one larger module. You will also find information about how to create its test bench file and how to simulate it with
Vivado simulator. Additionally, this chapter holds information about the Vivado synthesis process.

• Chapter 7: "PWM" - This chapter explains how to create PWM module. This module will generate an PWM signal
modulated using the digital sine wave from the Digital Sine module. In this chapter you will find how to create its
FSM state diagram, its test bench file and how to simulate it with Vivado simulator.

• Chapter 8: "Modulator" - This chapter includes all the necessary information about the Modulator module, as the
top module of our design. In this chapter you will find information how to create Modulator module and its test bench
file and how to simulate it with Vivado simulator.

• Chapter 9: "Modulator Wrapper" - This chapter includes all the necessary information about the Modulator Wrap-
per module. In this chapter you will find information how to create a wrapper for the Modulator module that enables
easy portability of the Modulator design between different development boards with different types of reference clock
sources.

• Chapter 10: "Design Implementation" - This is a large chapter and includes all the information about the design
implementation process steps. In this chapter you will learn how to create XDC file, how to implement your de-
sign, how to generate bitstream file and how to program your device. Here you will also find information about the
necessary modifications in case of using different development boards.

• Chapter 11: "Debugging Design" - This chapter explains how you can debug your design first using internal
Vivado Logic Analyzer and then using Oscilloscope as external analyzer. In this chapter you will also find what are
the differences between "HDL Instantiation Debug Probing Flow" and "Netlist Insertion Debug Probing Flow".

• Chapter 12: "Modulator Design Targeting Socius Development Board" - This chapter will show you how to
define the structure of the ARM-based processor system for socius development board, that will be used as a part
of the solution for PWM signal generation.

• Chapter 13: "Debugging with IPs" - This chapter explains how you can create Modulator design using your own
IPs, with the help of the Vivado IP Packager and IP Integrator tools, how you can debug IP integrated designs and
how you can create new Modulator IP core with AXI4 interface in it.

• Chapter 14: "Appendix" - This chapter contains explanations about various features of the Xilinx Vivado tool that
are not covered in any of the chapters.

This tutorial is accompanied by the .odp labs presentations. In total there are 19 labs. Correlation between labs and this
tutorial document is the following:

• Lab 1: "Introduction" - covers the information presented in the Chapter 1: "Introduction" of this tutorial.

• Lab 2: "Using the Vivado Tool" - presents the overview of design development using Xilinx Vivado Design Suite and
VHDL modelling language. Therefore, this lab covers information located throughout the whole tutorial document.

• Lab 3: "Creating Frequency Trigger Module" - covers the information presented in the sub-chapters 2.2, 2.4,
2.4.1 of Chapter 2: "Frequency Trigger" of this tutorial.

• Lab 4: "Frequency Trigger Verification" - covers the information presented in the sub-chapters 2.5, 2.6 of Chap-
ter 2: "Frequency Trigger" of this tutorial.

• Lab 5: "Creating Counter Module" - covers the information presented in the Chapter 3: "Counter" of this tutorial.

2

1.4 Objectives of this Tutorial

• Lab 6: "Creating Sine Package" - covers the information presented in the Chapter 4: "Sine Package" of this
tutorial.

• Lab 7: "Creating Digital Sine Module" - covers the information presented in the Chapter 5: "Digital Sine" of this
tutorial.

• Lab 8: "Creating Digital Sine Top Module" - covers the information presented in the Chapter 6: "Digital Sine
Top" of this tutorial.

• Lab 9: "Creating PWM Module" - covers the information presented in the Chapter 7: "PWM" of this tutorial.

• Lab 10: "Creating Modulator Module" - covers the information presented in the Chapter 8: "Modulator" of this
tutorial.

• Lab 11: "Creating XDC File" - covers the information presented in the sub-chapter 10.1 of Chapter 10: "Design
Implementation" of this tutorial.

• Lab 12: "Design Implementation" - covers the information presented in the sub-chapter 6.5 of Chapter 6: "Digital
Sine Top" and sub-chapters 10.2, 10.3, 10.4 of Chapter 10: "Design Implementation" of this tutorial.

• Lab 13: "Vivado Logic Analyzer" - covers the information presented in the sub-chapter 11.1 of the Chapter 11
"Debugging Design" of this tutorial.

• Lab 14: "Debug a Design using Integrated Vivado Logic Analyzer" - covers the information presented in the
sub- chapter 11.2 of the Chapter 11 "Debugging Design" of this tutorial.

• Lab 15: "Oscilloscope" - covers the information presented in the sub-chapter 11.3 of the Chapter 11 "Debugging
Design" of this tutorial.

• Lab 16: "Modulator Design Targeting Socius Development Board" - covers the information presented in the
Chapter 12 "Modulator Design Targeting Socius Development Board" of this tutorial.

• Lab 17: "Designing with IPs - IP Packager" - covers the information presented in the sub-chapter 13.1 of the
Chapter 13 "Designing with IPs" of this tutorial.

• Lab 18: "Designing with IPs - IP Integrator" - covers the information presented in the sub-chapter 13.2 of the
Chapter 13 " Designing with IPs" of this tutorial.

• Lab 19: "Debugging IP Integrated Designs" - covers the information presented in the sub-chapter 13.3 of the
Chapter 13 " Designing with IPs" of this tutorial.

• Lab 20: "Creating Modulator IP Core with AXI4 Interface" - covers the information presented in the sub-chapter
13.4 of the Chapter 13 " Designing with IPs" of this tutorial.

1.4 Objectives of this Tutorial

In this tutorial a PWM signal modulated using the sine wave with two different frequencies (1 Hz and 3.5 Hz) will be
created. Frequency that will be chosen depends on the position of the two-state on-board switch (sw0).

PWM Signal

Pulse-width modulation (PWM) uses a rectangular pulse wave whose pulse width is modulated by some other signal (in
our case we will use a sine wave) resulting in the variation of the average value of the waveform. Typically, PWM signals
are used to either convey information over a communications channel or control the amount of power sent to a load. To
learn more about PWM signals, please visit http://en.wikipedia.org/wiki/Pulse-width_modulation.

Illustration 1.1. illustrates the principle of pulse-width modulation. In this picture an arbitrary signal is used to modulate the
PWM signal, but in our case sine wave signal will be used.

3

http://en.wikipedia.org/wiki/Pulse-width_modulation

INTRODUCTION

Figure 1.1: Example of the PWM signal

1.5 One Possible Solution for the Modulator Design

Considering that we are working with digital systems and signals, our task will be to generate an digital representation of
an analog (sine) signal with two frequencies: 1 Hz and 3.5 Hz.

Illustration 1.2 is showing the sine wave that will be used to modulate the PWM signal.

Figure 1.2: Sine wave with 256 samples

One period of the sine wave is represented with 256 (2∧8) samples, where each sample can take one of 4096 (2∧12)
possible values. Since the sine wave is a periodic signal, we only need to store samples of one period of the signal.

Note : Pay attention that all of sine signals with the same amplitude, regardless their frequency, look the same during the
one period of a signal. The only thing that is different between those sine signals is duration of a signal period. This means
that the sample rate of those signals is different.

Considering that the whole system will be clocked with the 100 MHz input signal, which is available on the target devel-
opment board, to get 1 Hz and 3.5 Hz frequencies (which is much smaller than 100 MHz) we should divide input clock
frequency with integer value N.

In the Tables 1.1 and 1.2 are shown parameters that are necessary for generating sine signals with 1 Hz and 3.5 Hz
frequencies.

Table 1.1: Sine signal with the frequency of 1 Hz

4

1.5 One Possible Solution for the Modulator Design

Division Factor Steps Calculation Explanation
T=1 s T=1/1 Hz=1 s T is the period of the signal
f1=256 f1=256∗1 Hz=256 Hz (or read in

time: 1 s/256)
f1 is the frequency of reading whole
period (T) with 256 samples

N1=390625 N1=100 MHz/256 Hz=390625 N1 is the number which divides
frequency of the input clock signal
(100 MHz) to the required frequency
for the digital sine module

N2=95 N2=390625/4096=95.3674 N2 is the number which divides
frequency of the input clock signal
(100 MHz) to the required frequency
for the PWM’s FSM module

N1=389120 N1=95∗4096=389120 This is new calculation, because N1
must be divisible with 4096

Table 1.2: Sine signal with the frequency of 3.5 Hz

Division Factor Steps Calculation Explanation
T=0.286 s T=1/3.5 Hz=0.286 s T is the period of the signal
f2=896 Hz f2=256∗3.5 Hz=896 Hz (or read in

time: 0.286 s/256)
f2 is the frequency of reading whole
period (T)

N1=111607.1429 N1=100 MHz/896
Hz=111607.1428571

N1 is the number which divides
frequency of the input clock signal
(100 MHz) to the required frequency

N2=27 N2=111607.1428571/4096=27.2478 N2 is the number which divides
frequency of the input clock signal
(100 MHz) to the required frequency
for the PWM’s FSM module

N1=110592 N1=27∗4096=110592 This is new calculation, because N1
must be divisible with 4096

Now, it is obvious that the sine wave can be generated by reading sample values of one period, that are stored in one table,
with appropriate speed. In our case the values will be generated using the sine function from the IEEE Math library and will
be stored in an ROM memory.

Note: All of these information, such as what is the purpose of this tutorial, explanation what is the PWM signal, fre-
quency calculations and block diagram as one possible solution for the modulator design, are illustrated in the Lab 1:
"Introduction".

Block diagram

Block diagram on the Illustration 1.3 shows the structure of one possible system that can be used to generate required
PWM signals.

5

INTRODUCTION

Figure 1.3: Block diagram

Let us briefly explain each module shown on the Illustration 1.3:

Frequency Trigger

This module will generate one output signal with two possible frequencies calculated in the Tables 1.1 and 1.2, one with 256
Hz and the second one with 896 Hz. Which frequency will be chosen depends on the position of the two-state on-board
switch (sw0).

Counter

This module will be an universal (generic) counter. It’s task will be to generate read addresses for the ROM where samples
of the sine wave are stored. The speed of the counting will be controlled by the Frequency Trigger module, via freg_trig
port, and the output of the Counter module will be an input of the Digital Sine module.

Digital Sine

This module will generate an digital representation of an analog (sine) signal with desired frequency. It will use the counter
values as addresses to fetch the next value of the sine wave from the ROM.

In our case we will make an VHDL package with a parametrized sine signal. 2∧8=256 unsigned amplitude values during
one sine-period that will be stored into an ROM array.

VHDL package is a way of grouping related declarations that serve a common purpose. Each VHDL package contains
package declaration and package body.

Note: Don’t forget to include the Sine package in the code of the Digital Sine module !

PWM

This module will generate an PWM signal modulated using the digital sine wave from the Digital Sine module. This module
will be composed of two independent modules. One will be the Frequency Trigger, for generating two different frequencies
and the second one will be the Finite State Machine (FSM), for generating the PWM signal.

Frequency Trigger - output from this module will be used to control the frequency at which FSM module works. As we have

6

1.5 One Possible Solution for the Modulator Design

already said, in PWM signal information is represented as duty cycle value in each period of the signal. Since our digital
sine signal can have 4096 possible values, there will also be 4096 different duty cycle values. This means that PWM’s FSM
must operate at frequency that is 4096 times higher than the one used by the Digital Sine module.

FSM - is necessary to generate the PWM signal. It will generate the PWM signal with correct duty cycle for each period
based on the current amplitude value of digital sine signal, that is stored in the ROM.

Figure 1.4: Details of PWM signal generation

Design steps

This tutorial will be realized step by step with the idea to explain the whole procedure of designing an digital system.

On the Illustration 1.5 are shown steps in designing modules of this lab:

Figure 1.5: Project Design Steps

7

INTRODUCTION

• First we will create the Frequency Trigger module that will provide one output signal with two possible frequencies.

• Then, we will create the Counter module, that will generate read addresses for the ROM where samples of the sine
wave will be stored.

• Then, we will create an VHDL package with a parametrized sine signal.

• After that, we will create the Digital Sine module, where we will generate an digital representation of an analog (sine)
signal and where we will include the Sine package.

• After that, we will create PWM signal with the PWM module.

• At the end, we will create Modulator module where we will merge all the previously designed modules into one big
design.

Note: In the Lab 2: "Using the Vivado Tool" is illustrated the structure and the interface of this project, which modules
we will have in our design and what will be our design steps.

1.6 Design Flow

Figure 1.6: Design Flow

On the Illustration 1.6 is presented the simplified Vivado Design flow.

• Design Entry - the first step in creating a new design is to specify it’s structure and functionality. This can be done
either by writing an HDL model using some text editor or drawing a schematic diagram using schematic editor.

8

1.6 Design Flow

• Design Synthesis - next step in the design process is to transform design specification (RTL design specification)
into a more suitable representation (gate-level representation) that can be further processed in the later stages in the
design flow. This representation is called the netlist. Prior to netlist creation synthesis tool checks the model syntax
and analyse the hierarchy of your design which ensures that your design is optimized for the design architecture you
have selected.

Vivado synthesis enables you to configure, launch and monitor synthesis run. The Vivado IDE displays the synthesis
result and creates report files. You can launch multiple synthesis runs also, simultaneously or serially.

• Design Implementation

Implementation step maps netlist produced by the synthesis tool onto particular device’s internal structure.

Vivado implementation includes all steps necessary to place and route the netlist onto the FPGA device resources,
while meeting the design’s logical, physical and timing constraints.

Vivado implementation enables you to configure, launch and monitor implementation runs. The Vivado IDE displays
the implementation result and creates report files. You can launch multiple implementation runs also, simultaneously
or serially.

• Design Verification - is very important step in design process. A verification is comprised of seeking out problems
in the HDL implementation in order to make it compliant with the design specification. A verification process reduces
to extensive simulation of the HDL code. Design Verification is usually performed using two approaches: Simulation
and Static Timing Analysis.

There are two types of simulation:

– Functional (Behavioral) Simulation - enables you to simulate or verify a code syntax and functional capabil-
ities of your design. This type of simulation tests your design decisions before the design is implemented and
allows you to make any necessary changes early in the design process. In functional (behavioral) simulation
no timing information is provided.

– Timing Simulation - allows you to check does the implemented design meet all functional and timing require-
ments and behaves as you expected. The timing simulation uses the detailed information about the signal
delays as they pass through various logic and memory components and travel over connecting wires. Using
this information it is possible to accurately simulate the behaviour of the implemented design. This type of
simulation is performed after the design has been placed and routed for the target PLD, because accurate sig-
nal delay information can now be estimated. A process of relating accurate timing information with simulation
model of the implemented design is called Back-Annotation.

– Static Timing Analysis - helps you to perform a detailed timing analysis on routed FPGA design. This analysis
can be useful in evaluating timing performance of the logic paths, especially if your design doesn’t meet timing
requirements. This method doesn’t require any type of simulation.

• Generate Programming File - this option runs Xilinx bitstream generation program, to create a bitstream file that
can be downloaded to the device.

• Programming - Vivado Design Suite offers Open Hardware Manager option that uses the native in-system device
programming capabilities that are built into the Vivado IDE. Hardware manager uses the output from the Generate
Programming File process to configure your target device.

• Testing - after configuring your device, you can debug your FPGA design using Vivado Logic Analyzer or some
external logic analyzer.

• Estimate Power - after implementation, you can use the analyzer for estimation and power analysis. With this tool
you can estimate power, based on the logic and routing resources of the actual design.

9

INTRODUCTION

Figure 1.7: Design Verification Steps

Note : In the Lab 2: "Using the Vivado Tool" you can also find a short description about each step from the Vivado Design
Flow.

1.7 Vivado Design Suite and it’s Use Modes

The Vivado Design Suite is a entirely new tool suite, designed to improve overall productivity of designing, integrating and
implementing with the Xilinx 7 Series, Zynq-7000 All Programmable (AP) SoC, and UltraScale device families. The entire
ISE Design Suite flow is replaced by the new Vivado Design Suite tools. It replaces all of the ISE Design Suite point tools,
such as Project Navigator, Xilinx Synthesis Technology (XST), Implementation, CORE Generator tool, Timing Constraints
Editor, ISE Simulator (ISim), ChipScope Analyzer, Xilinx Power Analyzer, FPGA Editor, PlanAhead design tool, and Smart-
Xplorer. All of these capabilities are now built directly into the Vivado Design Suite and leverage a shared scalable data
model.

Important: The Vivado IDE supports designs that target 7 Series devices, Zynq-7000 All Programmable (AP) SoC, and
UltraScale devices.

Built on the shared scalable data model of the Vivado Design Suite, the entire design process can be executed in memory
without having to write or translate any intermediate file formats (like it was in the ISE Design Suite flow). This accelerates
runtimes, debug, and implementation while reducing memory requirements.

All of the Vivado Design Suite tools are written with a native Tool Command Language (Tcl) interface. All of the commands
and options available in the Vivado IDE are accessible through Tcl. A Tcl script can contain Tcl commands covering the

10

1.7 Vivado Design Suite and it’s Use Modes

entire design synthesis and implementation flow, including all necessary reports generated for design analysis at any point
in the design flow.

You can interact with the Vivado Design Suite using:

• GUI-based commands in the Vivado IDE

• Tcl commands entered in the Tcl Console in the Vivado IDE, in the Vivado Design Tcl shell outside the Vivado IDE,
or saved to a Tcl script file that is run either in the Vivado IDE or in the Vivado Design Suite Tcl shell

• A mix of GUI-based and Tcl commands

The Vivado Design Suite supports the following industry design standards:

• Tcl

• AXI4, IP-XACT

• Synopsys design constraints (SDC)

• Verilog, VHDL, System Verilog

• SystemC, C, C++

The entire solution is, as we already said, native Tcl based, with support for SDC and Xilinx design constraints (XDC)
formats. Broad Verilog, VHDL, and SystemVerilog support for synthesis enables easier FPGA adoption. Using standard IP
interconnect protocol, such as AXI4 and IP-XACT, enables faster and easier system-level design integration.

There are two design flow modes in the Vivado Design Suite:

• Project Based Mode - You can run this mode in the Vivado IDE. In the Project Based Mode you create a project in
the Vivado IDE, and the Vivado IDE automatically saves the state of the design, generates reports and messaging,
and manages source files. A runs infrastructure is used to manage the automated synthesis and implementation
process and to track run status. The entire design flow can be run with a single click within the Vivado IDE. The
Vivado GUI provides high levels of automation, project management, and easy-of-use features.

• Non-Project Batch Mode - You can run this mode using Tcl commands or scripts. In the Non-Project Batch Mode
you have full control of the design flow, but the Vivado tools do not automatically manage source files or report the
design states. When working in Non-Project Batch Mode, sources are accessed from their current locations and the
design is compiled through the flow memory. Each design step is run individually using Tcl commands. You can save
design checkpoints and create reports at any stage of the design process using Tcl commands. You are viewing the
active design in memory, so any changes are automatically passed forward in the flow.

Recommendation: Project Based Mode is the easiest way to get acquainted with the Vivado tool behaviour and Xilinx
recommendations.

1.7.1 Differences between Project and Non-Project Mode

Some of the Project Mode features, such as source file and results management, saving design and tool configuration,
design status and IP integration are not available in Non-Project Mode.

In Project Mode, the Vivado IDE tracks the history of the design and stores design information. Because, many features
are automated, you have less control using this mode.

In Non-Project Mode, each action is executed using a Tcl command. All of the processing is done in memory, so no files
or reports are generated automatically. Each time you compile the design, you must define all of the sources, set all tool
and design configuration parameters, launch all implementation commands, and specify report files to generate. Because,
the project is not created on disk, source files remain in their original locations and run output is only created where you
specify. The flow provides you with all of the power of Tcl commands and full control over the entire design process.

The following table highlights the feature differences between Project and Non-Project Mode.

Table 1.3: Project VS. Non-Project Mode Features

11

INTRODUCTION

Flow Element Project Mode Non-Project Mode
Design Source File Management Automatic Manual
Flow Navigation Guided Manual
Flow Customization Limited Unlimited
Reporting Automatic Manual
Analysis Stages Designs only Designs and checkpoints

Note : Both these flows can be fully scripted and run in batch mode (no GUI).

Illustration 1.8 shows the differences between Project and Non-Project Mode Tcl commands.

Figure 1.8: Project and Non-Project Mode Commands

Tcl commands depending on the mode you would like to use. The resulting Tcl scripts are different for each mode.

Some commands can be used in either mode, such as reporting commands. In some cases Tcl commands are specific to
either Project and Non- Project Mode. Commands that are specific to one mode must not be mixed when creating scripts.

Project Mode includes GUI operations, which results in a Tcl command being executed in most cases. The Tcl commands
appear in the Vivado IDE Tcl Console and are also captured in the vivado.jou file. Journal and log files provide a complete
record of the Vivado IDE commands that are executed so the designer can construct scripts. You can use those files to
develop scripts for use with either mode.

Journal file (vivado.jou) - contains just the Tcl commands executed by the Vivado IDE. To open the journal file, select
File -> Open Journal File option from the GUI

Log file (vivado.log) - contains all messages produced by the Vivado IDE, including Tcl commands and results, info/warn-

12

1.7 Vivado Design Suite and it’s Use Modes

ing, error messages, etc. To open the log file, select File -> Open Log File option from the GUI

When we compare Vivado Project and Non-Project Modes there is one more difference, handling of design checkpoints.
Design checkpoints enable you to take a snapshot of your design in its current state. The current netlist, constraints, and
implementation results are stored in the design checkpoint.

Using design checkpoints, you can:

• restore your design if needed

• perform design analysis

• define constraints

You can write design checkpoints at different points in the flow. It is important to write design checkpoints after critical steps
for design analysis and constraints definition.

When you use the Vivado IDE and the project infrastructure, you are automatically getting built-in checkpoints done for
you. If you want finer control between each of the commands, you can manually write checkpoints at each stage in the Tcl
non-project batch mode.

Important: With the exception of generating a bitstream, design checkpoints are not intended for use as starting points to
continue the design process. They are merely snapshots of the design in its current state.

Following is the associated Tcl command:

• Tcl command: write_checkpoint <file_name>

• Tcl command: read_checkpoint <file_name>

In the Tables 1.4 and 1.5 are shown the basic Project and Non-Project Mode Tcl commands that control project creation,
implementation and reporting.

Table 1.4: Basic Project Mode Tcl Commands

13

INTRODUCTION

Command Description
create_project Creates the Vivado IDE project. Arguments include

project name and location, design top module name, and
target part.

add_files Adds source files to the project. These include Verilog
(.v), VHDL (.vhd or .vhdl), SystemVerilog (.sv), IP (.xco or
xci), XDC constraints (.xdc or .sdc), embedded processor
sub-systems from XPS (.xmp), and System Generator
modules (.mdl). Individual files or entire directory trees
can be scanned for legal sources and automatically
added to the project.

set_property Used for multiple purposes in the Vivado IDE. For
projects, it can be used to define VHDL libraries for
sources, simulation-only sources, target constraints files,
tool settings, and so forth.

import_files Imports the specified files into the current file set,
effectively adding them into the project infrastructure. It is
also used to define XDC files into constraints sets.

launch_runs launch_runs -to_step Starts either synthesis or implementation and bitstream
generation. This command encompasses the individual
implementation commands as well as the standard
reports generated after the run completes. It is used to
launch all the steps of the synthesis or implementation
process in a single command, and to track the tools
progress trough that process. The -to_step option is used
to launch the implementation process, including bitstream
generation, in incremental steps.

wait_on_run Ensures the run is complete before processing the next
steps in the flow.

open_run Opens either the synthesized design or implemented
design for reporting analysis. A design must be opened
before information can be queried using Tcl for reports,
analysis, and so forth.

close_design Closes the design in memory.
start_gui stop_gui Invokes or closes the Vivado IDE with the current design

in memory.

Table 1.5: Basic Non-Project Mode Tcl Commands

Command Description
read_edif Imports an EDIF or NGC netlist file into the Design

Source fileset of current project.
read_verilog Reads the Verilog (.v) and SystemVerilog (.sv) source

files for the Non-Project Mode session.
read_vhdl Reads VHDL (.vhd or .vhdl) source files for the

Non-Project Mode session.
read_ip Reads existing IP (.xco or .xci) project files for the

Non-Project Mode session. The .ngc netlist is used from
the .xco IP project. For .xci IP, the RTL is used for
compilation or the netlist is used if it exists.

read_xdc Reads the .sdc or .xdc format constraints source files for
the Non- Project Mode session.

set_param set_property Used for multiple purposes. For example, it can be used
to define design configuration, tool settings, and so forth.

link_design Compiles the design for synthesis if netlist sources are
used for the session.

synth_design Launches Vivado synthesis with the design top module
name and target part as arguments.

14

1.7 Vivado Design Suite and it’s Use Modes

opt_design Performs high-level design optimization.
power_opt_design Performs intelligent clock gating to reduce overall system

power. This is an optional step.
place_design Places the design.
phys_opt_design Performs physical logic optimization to improve timing or

routability. This is an optional step.
route_design Routes the design.
report_∗ Runs a range of standard reports, which can be run at

any stage of the design process.
write_bitstream Generates a bitstream file and runs DRCs.
write_checkpoint read_checkpoint Save the design at any point in the flow. A design

checkpoint consists of the netlist and constraints with any
optimizations at that point in the flow as well as
implementation results.

start_gui stop_gui Invokes or closes the Vivado IDE with the current design
in memory.

As we already said, both flows can be run using Tcl commands. You can use Tcl scripts to run the entire design flow. If
you prefer to work directly with Tcl, you can interact with your design using Tcl commands.

15

INTRODUCTION

16

Chapter 2

FREQUENCY TRIGGER

2.1 Description

• Usage : This module will generate one output signal with two possible frequencies, one with 256 Hz and the second
one with 896 Hz. Which frequency will be chosen depends on the position of the two-state on-board switch (sw0).

• Block diagram:

Figure 2.1: Frequency Trigger block diagram

• Input ports:

– clk_in : input clock signal

– sw0 : input signal from the on-board switch, used for changing output signal frequency

– div_factor_freqhigh : input clock division factor when sw0 = ’1’

– div_factor_freqlow: input clock division factor when sw0 = ’0’

• Output ports:

– freq_trig : output signal which frequency depends on the state of the sw0 input signal (256 Hz or 896 Hz)

• File name: frequency_trigger_rtl.vhd

2.2 Creating a New Project

The first step in creating a new design will be to create a new project. We will crate a new project using the Vivado IDE
New Project wizard. The New Project wizard will create an XPR project file for us. It will be place where Vivado IDE will
organize our design files and save the design status whenever the processes are run.

To create a new project:

Step 1. Launch the Vivado software: Select Start -> All Programs -> Xilinx Design Tools -> Vivado 2016.4 -> Vivado
2016.4 and the Vivado Getting Started page will appear, see Illustration 2.2

As you can see from the illustration below, the Getting Started page contains links to create new or open an existing
projects, and to view documentation.

FREQUENCY TRIGGER

Figure 2.2: The Vivado Getting Started page

Step 2. On the Getting Started page, choose Create New Project option

Step 3. In the Create a New Vivado Project dialog box click Next and the wizard will guide you through the creation of a
new project, see Illustration 2.3

Figure 2.3: Create a New Vivado Project dialog box

Step 4. In the Project Name dialog box specify the name and the location of the new project:

18

2.2 Creating a New Project

• In the Project name field type modulator as the name of our project

• In the Project location field specify the location where our project data will be stored

• Leave Create project subdirectory option enabled, see Illustration 2.4

Figure 2.4: Project Name dialog box

Step 5. Click Next

Step 6. In the Project Type dialog box specify the type of project you want to create. In our case we will choose RTL
Project option. Select Do not specify sources at this time also, see Illustration 2.5

Figure 2.5: Project Type dialog box

19

FREQUENCY TRIGGER

As you can see from the Illustration above, four different types of the project can be created:

• RTL Project - The RTL Project environment enables you to add RTL source files and constraints, configure IP with
the Vivado IP catalog, create IP subsystems with the Vivado IP integrator, synthesize and implement the design, and
perform design planning and analysis.

• Post-synthesis Project - This type of project enables you to import third-party netlists, implement the design, and
perform design planning and analysis.

• I/O Planning Project - With this type of project you can create an empty project for use with early I/O planning and
device exploration prior to having RTL sources.

• Imported Project - This type of project enables you to import existing project sources from the ISE Design Suite,
Xilinx Synthesis Technology (XST), or Synopsys Synplify.

• Configure an Example Embedded Evaluation Board Design - This type of project enables you to target the example
Zynq-7000 or MicroBlaze embedded designs to the available Xilinx evaluation boards.

Step 7. Click Next

Step 8. In the Default Part dialog box choose a default Xilinx part or board for your project. Select Boards to choose the
default board for the project and a list of evaluation boards will be displayed, see Illustration 2.6

Figure 2.6: Default Part dialog box

Step 9. Select Zedboard Zynq Evaluation and Development Kit as it is shown on the illustration above

Step 10. Click Next

Step 11. In the New Project Summary dialog box click Finish if you are satisfied with the summary of your project. If you
are not satisfied, you can go back as much as necessary to correct all the questionable issues, see Illustration 2.7

20

2.2 Creating a New Project

Figure 2.7: New Project Summary dialog box

After we finished with the new project creation, in a few seconds Vivado IDE Viewing Environment will appear, see
Illustration 2.8.

When Vivado creates new project, it also creates a directory with the name and at the location that we specified in the
GUI (see Illustration 2.4). That means that the all project data will be stored in the project_name (modulator) directory
containing the following:

• project_name.xpr file - object that is selected to open a project (Vivado IDE project file)

• project_name.runs directory - contains all run data

• project_name.srcs directory - contains all imported local HDL source files, netlists, and XDC files

• project_name.data directory - stores floorplan and netlist data

• project_name.sim directory - contains all simulation data

21

FREQUENCY TRIGGER

Figure 2.8: Vivado IDE Viewing Environment

2.3 Vivado Integrated Design Environment

The Vivado IDE can be used for a variety of purposes at various stages in the design flow and is very helpful at detecting
design problems early in the design flow.

The Vivado IDE allows different file types to be added as design sources, including Verilog, VHDL, EDIF, NGC format cores,
SDC, XDC, and TCL constraints files, and simulation test benches. These files can be stored in variety of ways using the
tabs at the bottom of the Sources window: Hierarchy, Library or Compile Order , see Illustration 2.9.

By default, after launching, the Vivado IDE opens the Default Layout. Each docked window in the Vivado IDE is called a
view, so you can find Sources View, Properties View, Project Summary View ans so on, see Illustration 2.9.

22

2.3 Vivado Integrated Design Environment

Figure 2.9: Vivado IDE Default Layout

Flow Navigator

The vertical toolbar present on the left side of the Vivado IDE is the Flow Navigator. The Flow Navigator provides control
over the major design process tasks, such as project configuration, synthesis, implementation and bitstream creation.

Sources View

The Sources view displays the list of source files that has been added in the project.

• The Design Sources folder helps you keep track of VHDL and Verilog design source files and libraries.

• The Constraints folder helps you keep track of the constraints files.

• The Simulation Sources folder helps keep track of VHDL and Verilog simulation sources source files and libraries.

Notice that the design hierarchy is displayed as default.

• In the Libraries tab, sources are grouped by file type, while the Compile Order tab shows the file order used for
synthesis.

Project Summary View

The Project Summary view provides a brief overview of the status of different processes executed in the Vivado IDE, see
Illustration 2.10.

23

FREQUENCY TRIGGER

Figure 2.10: Project Summary View

The Project Settings panel displays the project name, product family, project part, and top module name. Clicking a link
in this panel you will open the Project Settings dialog box.

• The Messages panel summarizes the number of errors and warnings encountered during the design process.

• The Synthesis panel summarizes the state of synthesis in the active run. The synthesis panel also shows the target
part and the strategy applied in the run.

• The Implementation panel summarizes the state of implementation in the active run. The Implementation panel
also shows the target part and the strategy applied in the run.

Tcl Console

Below the Project Summary view, see Illustration 2.9, is the Tcl Console which echoes the Tcl commands as operations
are performed. It also provides a means to control the design flow using Tcl commands.

2.4 Creating Module

To create a new module, follow the steps:

Step 1. In the Vivado Flow Navigator, click the Add Sources command (Project Manager option), see Illustration 2.11

24

2.4 Creating Module

Figure 2.11: Add Sources command

Step 2. In the Add Sources dialog box, select Add or create design sources option to create the design source files in
the project, see Illustration 2.12

Figure 2.12: Add Sources dialog box

Step 3. Click Next

Step 4. In the Add or Create Design Sources dialog box, click the + icon and select Create File... option to create a new
file in the project, or just click Create File button, see Illustration 2.13

25

FREQUENCY TRIGGER

Figure 2.13: Add or Create Design Sources dialog box - Create File option

Step 5. In the Create Source File dialog box, fill the file type, file name and file location on the following way, see Illustration
2.14:

• File type: VHDL

• File name: frequency_trigger_rtl

• File location: Local to Project

Figure 2.14: Create Source File dialog box

Step 6. Click OK to create a new source file (frequency_trigger_rtl.vhd) and add it into your project (modulator)

Step 7. Now your source file will appear in the Add or Create Design Sources dialog box, see Illustration 2.15. Click
Finish

26

2.4 Creating Module

Figure 2.15: Add or Create Design Sources dialog box with created file

Step 8. In the Define Module dialog box, Vivado IDE will automatically create Entity name (frequency_trigger_rtl) and
Architecture name (Behavioral).

Please, rename Entity name to be frequency_trigger and Architecture name to be rtl, see Illustration 2.16

Step 9. Specify ports for the intended module as it is also shown on the Illustration 2.16

Figure 2.16: Define Module dialog box

Step 10. Click OK and your source file should appear under the Design Sources in the Sources view in the Project
Manager window, see Illustration 2.17

Step 11. Double-click on the created frequency_trigger_rtl.vhd source file to see what the tool has created for us, see
Illustration 2.18

27

FREQUENCY TRIGGER

Figure 2.17: Vivado IDE Viewing Environment after module creation

Figure 2.18: Automatically generated frequency_trigger_rtl.vhd source file

As we can see from the illustration above, the tool automatically creates a default header and the entity declaration based
on the data that you entered.

Vivado editor is a powerful text editor with syntax highlighting for VHDL and Verilog HDLs. You can use Vivado editor to

28

2.4 Creating Module

complete your VHDL/Verilog model of your design.

Important: The automatically generated code is not very handsome and clear, and the recommendation is to modify it.
Here are the steps for modifying:

• create a complete module header as comment

• set all text to lower case

• remove all end descriptions (for example: rtl next to end) and all comments

• set all in/outputs in alphabetical order and comment them

Note: As you can see there are a lot of things for modifying. For better designs, our recommendation is not to use
the GUI (Graphical User Interface) for module creation. Instead of that, create a module in an text editor, rename it to
module_name.vhd and add it into your project.

Before we explain how to create a module using Vivado text editor, don’t forget to remove frequency_trigger_rtl.vhd from
the project. To remove some file from the project, do the following:

Step 1. Select the file that you want to remove

Step 2. Right-click on the selected file and choose Remove File from Project... option, see Illustration 2.19

Figure 2.19: Remove File from Project option

Step 3. In the Remove Sources dialog box enable Also delete the project local file/directory from disk option, click
OK and the file will be removed from the project, see Illustration 2.20

Figure 2.20: Remove Sources dialog box

29

FREQUENCY TRIGGER

Note: Information about how to create the Frequency Trigger module, you can also find in the Lab 3: "Creating Frequency
Trigger Module".

2.4.1 Creating a Module Using Vivado Text Editor

Design reuse is a common way of increasing a designer’s productivity. It includes reusing a design modules that have been
previously created and used within some other design. Since these modules are already created we need a way to add
them to current project. This can be done using Add File option within Add Sources command. To illustrate how this can be
accomplished, following procedure is presented. In this example we will first create VHDL model using Vivado text editor
and save it as .vhd source file. Next we will add this source file to our project.

Here are the steps for creating a module using Vivado text editor:

Step 1. Optional: Launch Vivado IDE (if it is not already launched)

Step 2. Optional: Open "Modulator" project (modulator.xpr) (if it is not already opened)

Step 3. In the main Vivado IDE menu, click File -> New File... option to open Vivado text editor

Step 4 In the New File dialog box, type the name of your source file (e.g. frequency_trigger_rtl.vhd) in the File name
field and choose to save it into your working directory

Note: You can create new folder under your working directory, intended for storing source files.

Step 5. When you click Save , Vivado IDE will automatically open empty frequency_trigger_rtl.vhd source file in Vivado
text editor

Step 6. Insert the VHDL code and add the frequency_trigger_rtl module header

Step 7. When you finish with module creation, click File -> Save File option from the main Vivado IDE menu, or just click
Ctrl + S to save it

Step 8. In the Vivado Flow Navigator click the Add Sources command, see Illustration 2.21

Figure 2.21: Add Sources command

Step 9. In the Add Sources dialog box, select Add or create design sources option to add the design source files into
the project, see Illustration 2.22

30

2.4 Creating Module

Figure 2.22: Add Sources dialog box - Add or create design sources option

Step 10. Click Next

Step 11. In the Add or Create Design Sources dialog box, click the + icon and select Add Files... option to include the
existing source files into the project, or just click Add Files button, see Illustration 2.23

Figure 2.23: Add or Create Design Sources dialog box - Add Files option

Step 12. In the Add Source Files dialog box, browse to the project working directory and select the frequency_trigger_-
rtl.vhd source file, see Illustration 2.24

31

FREQUENCY TRIGGER

Figure 2.24: Add Source Files dialog box

Step 13. Click OK and the frequency_trigger_rtl.vhd source file should appear in the Add or Create Design Sources
dialog box, as it is shown on the Illustration 2.25

Figure 2.25: Add or Create Design Sources dialog box - with added file

Step 14. Click Finish and your source file should appear under the Design Sources in the Sources view in the Project
Manager window, see Illustration 2.26

32

2.4 Creating Module

Figure 2.26: Vivado IDE Viewing Environment with added source file

Note: Double-click on the frequency_trigger - rtl (frequency_trigger_rtl.vhd) source file in the Sources view and your
source file should appear in the Vivado editor on the right side of the Vivado IDE. Using Vivado editor you can further
modify this source file, if needed.

Frequency Trigger VHDL model:

-- Make reference to libraries that are necessary for this file:
-- the first part is a symbolic name, the path is defined depending of the tools
-- the second part is a package name
-- the third part includes all functions from that package
-- Better for documentation would be to include only the functions that are necessary
library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

-- Entity defines the interface of a module
-- Generics are static, they are used at compile time
-- Ports are updated during operation and behave like signals on a schematic or traces on a PCB
-- Entity is a primary design unit

entity frequency_trigger is
port(

-- input clock signal
clk_in : in std_logic;
-- signal made for selecting frequency
sw0 : in std_logic;
-- input clock division factor when sw0 = ’1’
div_factor_freqhigh : in std_logic_vector(31 downto 0);
-- input clock division factor when sw0 = ’0’
div_factor_freqlow : in std_logic_vector(31 downto 0);
-- output signal which frequency depends on the sw0 state
freq_trig : out std_logic
);

end entity;

-- Architecture is a secondary design unit and describes the functionality of the module
-- One entity can have multiple architectures for different families, technologies
-- or different levels of description
-- The name should represent the level of description like structural, rtl, tb and
-- maybe for which technology

33

FREQUENCY TRIGGER

architecture rtl of frequency_trigger is

-- Between architecture and begin is declaration area for types, signals and constants
-- Everything declared here will be visible in the whole architecture

signal freq_cnt_s : integer := 0; -- clock counter

begin

-- Defines a sequential process
-- Counts to different values depending on the sw0

freq_ce_p : process
begin

-- replaces the sensitivity list
-- suspends evaluation until an event occurs
-- in our case event we are waiting for is rising edge on the clk_in input port
wait until rising_edge(clk_in);
freq_trig <= ’0’; -- default assignment
freq_cnt_s <= freq_cnt_s + 1; -- counting

if (sw0 = ’0’) then
if (freq_cnt_s >= div_factor_freqlow - 1) then

freq_trig <= ’1’;
freq_cnt_s <= 0; -- reset

end if;
else

if (freq_cnt_s >= div_factor_freqhigh - 1) then
freq_trig <= ’1’;
freq_cnt_s <= 0; -- reset

end if;
end if;

end process;
end;

2.5 Creating Test Bench

• Usage: used to verify correct operation of the frequency_trigger module defined in the frequency_trigger_rtl.vhd file

• Test bench internal signals:

– clk_in_s: input clock signal

– sw0_s: input signal used to select output signal frequency

– freq_trig_s: output signal which frequency depends of the sw0_s signal state

• Generics:

– div_factor_freqhigh_g: input clock division factor when sw0 = ’1’

– div_factor_freqlow_g: input clock division factor when sw0 = ’0’

• File name: frequency_trigger_tb.vhd

We are creating a test bench to verify the correctness of a design or model.

To create and add an test bench file into the project, do the similar steps as for creating a module using Vivado text editor:

Step 1. Optional: Launch Vivado IDE (if it is not already launched)

Step 2. Optional: Open "Modulator" project (modulator.xpr) (if it is not already opened)

Step 3. In the main Vivado IDE menu, click File -> New File... option to open Vivado text editor

Step 4. In the New File dialog box, type the name of your test bench file (e.g. frequency_trigger_tb.vhd) in the File
name field and choose to save it into your working directory, on the same place where you saved frequency_trigger_rtl.vhd
source file

Step 5. When you click Save , Vivado IDE will automatically open empty frequency_trigger_tb.vhd source file in Vivado
text editor

Step 6. Insert the VHDL code and add the frequency_trigger_tb module header

Step 7. When you finish with the test bench creation, click File -> Save File option from the main Vivado IDE menu, or
just click Ctrl + S to save it

Step 8. In the Vivado Flow Navigator click the Add Sources command, see Illustration 2.27

34

2.5 Creating Test Bench

Figure 2.27: Add Sources command

Step 9. In the Add Sources dialog box, select Add or create simulation sources option to add the simulation source
files into the project, see Illustration 2.28

Figure 2.28: Add Sources dialog box - Add or create simulation sources option

Step 10. Click Next

Step 11. In the Add or Create Simulation Sources dialog box, click the + icon and select Add Files... option, see
Illustration 2.29

35

FREQUENCY TRIGGER

Figure 2.29: Add or Create Simulation Sources dialog box

Step 12. In the Add Source Files dialog box, browse to the project working directory and select the frequency_trigger_-
tb.vhd source file, see Illustration 2.30

Figure 2.30: Add Source Files dialog box

Step 13. Click OK and the frequency_trigger_tb.vhd source file should appear in the Add or Create Simulation Sources
dialog box, as it is shown on the Illustration 2.31

36

2.5 Creating Test Bench

Figure 2.31: Add or Create Simulation Sources dialog box - with added file

Step 14. Click Finish and your test bench file should appear under the Simulation Sources / sim_1 in the Sources view,
in the Project Manager window, see Illustration 2.32

Figure 2.32: Vivado IDE Viewing Environment with added test bench file

Note: Double-click on the frequency_trigger_tb - tb (frequency_trigger_tb.vhd) source file in the Sources view and
your test bench file should appear in the Vivado text editor on the right side of the Vivado IDE.

37

FREQUENCY TRIGGER

Frequency Trigger test bench:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

-- include user defined modulator_pkg package where are important related
-- declarations that serve a common purpose
use work.modulator_pkg.all;

entity frequency_trigger_tb is

-- use lower values for generics to speed up simulation time
generic(

div_factor_freqhigh_g : integer := 2; -- input clock division factor when sw0 = ’1’ (an example)
div_factor_freqlow_g : integer := 4 -- input clock division factor when sw0 = ’0’ (an example)
);

end entity;

architecture tb of frequency_trigger_tb is

signal clk_in_s : std_logic := ’1’; -- input clock signal
signal freq_trig_s : std_logic := ’1’; -- signal which frequency depends on the sw0 state
signal sw0_s : std_logic := ’0’; -- signal for selecting frequency

begin

-- instantiation of device under test (DUT)
-- no component definition is necessary
-- use keyword entity, work is the library

freq_ce : entity work.frequency_trigger (rtl)
port map(

clk_in => clk_in_s,
sw0 => sw0_s,
div_factor_freqhigh => conv_std_logic_vector(div_factor_freqhigh_g, 32),
div_factor_freqlow => conv_std_logic_vector(div_factor_freqlow_g, 32),
freq_trig => freq_trig_s
);

clk_in_s <= not (clk_in_s) after per_c/2; -- generates 50 MHz input clock signal;
sw0_s <= ’1’ after 200 ns;

end;

Note: As you can see from the code above, you must include modulator_pkg.vhd source file into your modulator project.
In the modulator_pkg.vhd file is defined per_c constant that will be used in this test bench. This package will be explained
in detail later, in Chapter 4. SINE PACKAGE, where you can also find the whole modulator_pkg.vhd source code.

To include modulator_pkg.vhd source file into your modulator project, use Add Sources option from the Flow Navigator
and repeat steps from the Sub-chapter 2.4.1. Creating a Module Using Vivado Text Editor for adding design sources.

2.6 Simulating with Vivado Simulator

Simulation is a process of emulating the real design behavior in a software environment. Simulation helps verify the
functionality of a design by injecting stimulus and observing the design outputs. Simulators interpret HDL code into circuit
functionality and display logical results.

The Vivado IDE is integrated with the Xilinx Vivado logic simulation environment. The Vivado IDE enables you to add
and mange simulation test benches in the project. You can configure simulation options and create and manage various
simulation source sets. You can launch behavioral simulation prior to synthesis using RTL sources and launch timing
simulation using post-implementation simulation model, that will be generated by the Vivado IDE tool after completing the
design implementation process.

After you have entered the code for the input stimulus in order to perform simulation, follow the next steps:

Step 1. In the Sources window, under the Simulation Sources / sim_1 , select frequency_trigger_tb - tb file

Step 2. In the Flow Navigator, under the Simulation, click on the Run Simulation button

Step 3. Choose the only offered Run Behavioral Simulation option, see Illustration 2.33, and your simulation will start

38

2.6 Simulating with Vivado Simulator

Figure 2.33: Run Behavioral Simulation option

Step 4. The tool will compile the test bench file and launch the Vivado simulator, see Illustration 2.34

Figure 2.34: Vivado IDE Viewing Environment - after simulation process

Note: By default, Untitled Waveform viewer will appear displaying only the signals at the top level of the test bench.

Step 5. Correct any errors before proceeding

Step 6. Double-click on the Untitled 1 file or click on the Maximize button in the right upper corner of the waveform viewer

Step 7. Assuming no errors, your simulation result should look similar to the Illustration 2.35.

39

FREQUENCY TRIGGER

Figure 2.35: Simulation Results

Step 8. Optional: If you want to insert further internal signals from your simulated file, click on the desired file in the
Scopes window and drag-and-drop the signals from the Objects window into the waveform window. Now you have to
restart and rerun your simulation.

Step 9. Optional: If you want to restart and rerun simulation for specific time, see Illustration 2.36.

Figure 2.36: Vivado Simulator Simulation Controls

Vivado Simulator Simulation Controls has the following buttons that the user can use to control the simulation process:

• Restart - restarts the simulation from "time 0"

• Run All - run the simulation until there are no more events

• Run for specified time - runs the simulation for the specified amount of time

• Step - runs the simulation until the next breakable line

• Break - stops the running simulation at the next breakable line

• Relaunch - relaunch current Vivado simulator

Note: Information about creating a Frequency Trigger test bench file and simulating a design using Vivado simulator, you
can also find in the Lab 4:"Frequency Trigger Verification".

40

Chapter 3

COUNTER

3.1 Description

• Usage: This module will be an universal (generic) counter. It’s task will be to generate read addresses for the ROM
where samples of the sine wave are stored. The speed of the counting will be controlled by the Frequency Trigger
module, via freg_trig port, and the output of the Counter module will be an input of the Digital Sine module.

• Block diagram:

Figure 3.1: Counter block diagram

• Input ports:

– clk_in: input clock signal

– cnt_en: counter enable

• Output ports:

– cnt_out : current counter value

• Generics:

– cnt_value_g : threshold value for counter

– depth_g : the number of samples in one period of the signal

• File name: counter_rtl.vhd

3.2 Creating Module

As we already said, for better designs, our recommendation is not to use the GUI for module creation. Instead of that,
create a module in Vivado text editor, name it to module_name.vhd and add it into your project.

All the steps for creating a new module using Vivado text editor or adding existing module are explained in Sub-chapter
2.4.1 Creating a Module Using Vivado Text Editor.

Counter VHDL model:

COUNTER

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity counter is
generic(

cnt_value_g : integer; -- threshold value for counter
depth_g : integer -- the number of samples in one period of the signal
);

port(
clk_in : in std_logic; -- input clock signal
cnt_en : in std_logic; -- counter enable
cnt_out : out std_logic_vector (depth_g - 1 downto 0) -- current counter value
);

end entity;

architecture rtl of counter is

signal cnt_out_s : std_logic_vector (depth_g - 1 downto 0) := (others => ’0’); -- current counter value

begin

-- Defines a sequential process
-- This will be universal (generic) counter

counter_p: process
begin

wait until rising_edge(clk_in);
if (cnt_en = ’1’) then

-- conv_std_logic_vector function converts integer type to std_logic_vector type
if (cnt_out_s = conv_std_logic_vector (cnt_value_g, depth_g)) then

cnt_out_s <= (others => ’0’); -- counter reset
else

cnt_out_s <= cnt_out_s + 1; -- counter
end if;

end if;
end process;

cnt_out <= cnt_out_s;

end;

3.3 Creating Test Bench

• Usage: used to verify correct operation of the counter module defined in the counter_rtl.vhd file

• Test bench internal signals:

– clk_in_s: input clock signal

– cnt_en_s: counter enable

– cnt_out_s: current counter value

• Generics:

– cnt_value_g: threshold value for counter

– depth_g: the number of samples in one period of the signal

• File name: counter_tb.vhd

We will now create a new simulation set (sim_2) with the test bench file for the Counter module (counter_tb.vhd) in it.
We will use the similar steps as for creating test bench file for the Frequency Trigger module, explained in Chapter 2.5
Creating Test Bench:

Step 1. Repeat steps 1 - 10 from the Chapter 2.5 Creating Test Bench

Step 2. In the Add or Create Simulation Sources dialog box, click on the Specify simulation set drop-down list and
choose Create Simulation Set... option, see Illustration 3.2

42

3.3 Creating Test Bench

Figure 3.2: Create Simulation Set option

Step 3. In the Create Simulation Set dialog box, enter a name for the new simulation set or leave sim_2 as a name and
click OK, see Illustration 3.3

Figure 3.3: Create Simulation Set dialog box

Step 4. In the Add or Create Simulation Sources dialog box, under the new sim_2 simulation set, use Add Files. . .
option to add the test bench file for the Counter module

Step 5. In the Add Source Files dialog box, browse to the project working directory and select the counter_tb.vhd test
bench file

Step 6. Click OK and counter_tb.vhd source file should appear in the Add or Create Simulation Sources dialog box

Step 7. Click Finish and your test bench file should appear under the Simulation Sources / sim_2 in the Sources view,
in the Project Manager window, see Illustration 3.4

43

COUNTER

Figure 3.4: Vivado IDE Viewing Environment with created new simulation set

Counter test bench:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

entity counter_tb is

-- Use lower values for generics to speed up simulation time
generic(

cnt_value_g : integer := 4; -- threshold value for counter
depth_g : integer := 3 -- the number of samples in one period of the signal

);

end entity;

architecture tb of counter_tb is

signal clk_in_s : std_logic := ’1’; -- input clock signal
signal cnt_en_s : std_logic := ’0’; -- counter enable
signal cnt_out_s : std_logic_vector (depth_g - 1 downto 0) := (others => ’0’); -- current counter value

begin

counter : entity work.counter(rtl) -- counter instance
generic map(

cnt_value_g => cnt_value_g,
depth_g => depth_g
)

port map (
clk_in => clk_in_s,
cnt_en => cnt_en_s,
cnt_out => cnt_out_s
);

clk_in_s <= not (clk_in_s) after per_c/2; -- generates 50 MHz input clock signal
cnt_en_s <= ’1’ after 100 ns, ’0’ after 120 ns, ’1’ after 160 ns, ’0’ after 180 ns, ’1’ after 220 ns,

’0’ after 240 ns, ’1’ after 320 ns, ’0’ after 340 ns, ’1’ after 420 ns, ’0’ after 440 ns;

end;

44

3.4 Simulating

3.4 Simulating

After you have entered the code for the input stimulus in order to perform simulation, follow the next steps:

Step 1. In the Sources window, under the Simulation Sources, select new sim_2 simulation set, right-click on it and
choose Make Active option, see Illustration 3.5

Figure 3.5: Make Active option

Step 2. In the Flow Navigator, under the Simulation, click Run Simulation command

Step 3. Choose the only offered Run Behavioral Simulation option and your simulation will start

Step 4. The tool will compile the test bench and launch the Vivado simulator

Step 5. Correct any errors before proceeding

Step 6. Double-click on the Untitled 1 file or click on the Maximize button in the right upper corner of the waveform viewer

Step 7. Assuming no errors in the Vivado simulator command line, your simulation result should look similar to Illustration
3.6

Figure 3.6: Simulation Results

Note: All the information about creating the Counter module, generating its test bench file and simulating the Counter
design, you can also find in the Lab 5: "Creating Counter Module".

45

COUNTER

46

Chapter 4

SINE PACKAGE

4.1 Description

• Usage: In our case we will make an VHDL package with a parametrized sine signal. Total of 28 = 256 unsigned
amplitude values during one sine-period will be stored into an ROM array.

In order to simplify the generation of the PWM signal, we will use the sine wave signal that is shifted upwards. The
value of this shift will be selected in a way to make all values of the sine signal positive. This is illustrated on the
Illustration 4.1.

Figure 4.1: Sine-package description

The formula for calculating the sine wave shown on the Illustration 4.1 is:

sin(
2π ∗ i

N
)∗ (2widthc−1−1)+2widthc−1−1,N = 2depthc

depth_c - is the number of samples in one period of the signal (28 = 256)

width_c - is the number of bits used to represent amplitude value (212 = 4096)

This formula is defining the nature of the desired sine signal:

• sin(2π∗i
N) - is telling us that the signal is periodic, with 2π period; i - is the current sample value (from 0 to 255) and

N is the number of samples in one period of the signal

• ∗(2widthc−1−1) - is telling us that the amplitude of the sine signal is 2047

• +2widthc−1−1 - is telling us that the DC value of the sine signal is 2047, which means that the whole sine signal is
shifted up

• File name: modulator_pkg.vhd

SINE PACKAGE

4.2 Creating Module

To create a Sine-package module, use steps for creating modules, Sub-chapter 2.4.1 Creating a Module Using Vivado
Text Editor.

Sine package VHDL model:

library ieee;
use ieee.math_real.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

-- VHDL package is a way of grouping related declarations that serve a common purpose
-- Each VHDL package contains package declaration and package body
-- Package declaration:

package modulator_pkg is

type module_is_top_t is (yes, no); -- only the top module can instantiate a diff clk buffer
type board_type_t is (lx9, zedboard, ml605, kc705, microzed, socius);
type has_diff_clk_t is (yes, no);

type board_setting_t_rec is record
board_name : board_type_t; -- specifies the name of the board that we are using
fclk : real; -- specifies the reference clock frequency that is presented

-- on the board (in Hz)
has_diff_clk : has_diff_clk_t; -- specifies if board has differential clock or not

end record board_setting_t_rec;

-- place the information about the new boards here:
constant lx9_c : board_setting_t_rec := (lx9, 100000000.0, no); -- Spartan-6
constant zedboard_c : board_setting_t_rec := (zedboard, 100000000.0, no); -- Zynq-7000
constant ml605_c : board_setting_t_rec := (ml605, 200000000.0, yes); -- Virtex-6
constant kc705_c : board_setting_t_rec := (kc705, 200000000.0, yes); -- Kintex-7
constant microzed_c : board_setting_t_rec := (microzed, 33333333.3, no); -- MicroZed
constant socius_c : board_setting_t_rec := (socius, 50000000.0, no); -- Socius

-- array holding information about supported boards
type board_info_t_arr is array (1 to 6) of board_setting_t_rec;
constant board_info_c: board_info_t_arr := (lx9_c, zedboard_c, ml605_c, kc705_c, microzed_c, socius_c);

type vector_t_arr is array (natural range <>) of integer;

constant per_c : time := 20 ns; -- clock period (T=1/50 MHz), that is used in almost all test benches

type design_setting_t_rec is record
cntampl_value : integer; -- counter amplitude border,

-- it’s value should be equal to (2^depth)-1
f_low : real; -- first frequency for the PWM signal, specified in Hz
f_high: real; -- second frequency for the PWM signal, specified in Hz
depth : integer range 0 to 99; -- the number of samples in one period of the signal
width : integer range 0 to 99; -- the number of bits used to represent amplitude value

end record design_setting_t_rec;

constant design_setting_c : design_setting_t_rec := (255, 1.0, 3.5, 8, 12);

-- init_sin_f function declaration
function init_sin_f

(
constant depth_c : in integer; -- number of samples in one period of the signal (2^8=256)
constant width_c : in integer -- number of bits used to represent amplitude value (2^12=4096)
)

return vector_t_arr;

-- function that returns the information about the selected development board
function get_board_info_f

(
constant board_name_c : in string
)

return board_setting_t_rec;
end;

-- In the package body will be calculated sine signal
-- Package body:
package body modulator_pkg is

-- init_sin_f function definition
function init_sin_f

(
constant depth_c : in integer;
constant width_c : in integer
)

return vector_t_arr is

variable init_arr_v : vector_t_arr(0 to (2 ** depth_c - 1));

48

4.2 Creating Module

begin

for i in 0 to ((2 ** depth_c)- 1) loop -- calculate amplitude values
init_arr_v(i) := integer(round(sin((math_2_pi / real(2 ** depth_c))*real(i)) *

(real(2 ** (width_c - 1)) - 1.0))) + integer(2 ** (width_c - 1) - 1);
-- sin (2*pi*i / N) * (2width_c-1 - 1) + 2width_c-1 - 1, N = 2depth_c

end loop;

return init_arr_v;

end;

-- function that returns the information about the selected development board
function get_board_info_f

(
constant board_name_c : in string
)

return board_setting_t_rec is

begin
for i in 1 to board_info_c’length loop

-- if supplied board name equals some of supported boards,
-- return board information for that board
if (board_type_t’image(board_info_c(i).board_name) = board_name_c(2 to board_name_c’length-1))

then
return board_info_c(i);

end if;
end loop;

end;
end;

Note: All the information about creating the sine package, you can also find in the Lab 6: "Creating Sine Package".

49

SINE PACKAGE

50

Chapter 5

DIGITAL SINE

5.1 Description

• Usage: This module will generate an digital representation of an analog (sine) signal with desired frequency. It will
use the counter values as addresses to fetch the next value of the sine wave from the ROM.

Note: Don’t forget to include the Sine package in the code of the Digital Sine module!

• Block diagram:

Figure 5.1: Digital Sine block diagram

• Input ports:

– clk_in : input clock signal

– ampl_cnt : address value for the sine waveform ROM

• Output ports:

– sine_out : current amplitude value of the sine signal

• Generics:

– depth_g : the number of samples in one period of the signal

– width_g: the number of bits used to represent amplitude value

• File name: sine_rtl.vhd

5.2 Creating Module

To create Digital Sine module, use steps for creating modules, Sub-chapter 2.4.1 Creating a Module Using Vivado Text
Editor .

Digital Sine VHDL model:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

DIGITAL SINE

entity sine is
generic(

depth_g : integer range 1 to 99 := 8; -- the number of samples in one period of the signal
width_g : integer range 1 to 99 := 12 -- the number of bits used to represent amplitude value
);

port(
clk_in : in std_logic; -- input clock signal
ampl_cnt : in std_logic_vector(depth_g-1 downto 0); -- address value for the sine waveform ROM
sine_out : out std_logic_vector(width_g-1 downto 0) -- current amplitude value of the sine signal

);
end entity;

architecture rtl of sine is

constant sin_ampl_c : vector_t_arr := init_sin_f(depth_g, width_g); -- returns sine amplitude value

signal ampl_cnt_s : integer range 0 to 255 := 0; -- amplitude counter
signal sine_s : std_logic_vector(width_g-1 downto 0) := (others=>’0’); -- sine signal

begin

-- Defines a sequential process
-- Fetches amplitude values and frequency -> generates sine

sine_p : process
begin

wait until rising_edge(clk_in);
-- converts ampl_cnt from std_logic_vector type to integer type
ampl_cnt_s <= conv_integer(ampl_cnt);
-- converts sin_ampl_c from integer type to std_logic_vector type
sine_s <= conv_std_logic_vector(sin_ampl_c(ampl_cnt_s), width_g); -- fetch amplitude

end process;

sine_out <= sine_s;

end;

Note: All the information about creating the Digital Sine module, you can also find in the Lab 7: "Creating Digital Sine
Module" .

52

Chapter 6

DIGITAL SINE TOP

6.1 Description

• Usage: This module will merge Frequency Trigger, Counter, Sine package and Digital Sine module into one Digital
Sine Top module (Drawings 6.1 and 6.2). It will have four input ports: one will be used for input clock signal (clk_in),
the second one will be used for changing output signal frequency (sw0) and the last two ports (div_factor_freqhigh
and div_factor_freqlow) will be used for specifying input clock division factors. The only output port will represent the
current amplitude value of the desired sine signal.

• Block diagram:

Figure 6.1: Digital Sine Top block diagram

Figure 6.2: Digital Sine Top detailed block diagram

DIGITAL SINE TOP

• Input ports:

– clk_in: input clock signal

– sw0: input signal from the on-board switch, used for changing output signal frequency

– div_factor_freqhigh: input clock division factor when sw0 = ’1’

– div_factor_freqlow : input clock division factor when sw0 = ’0’

• Output ports:

– sine_out: current amplitude value of the sine signal

• Generics:

– cntampl_value_g : threshold value for counter, it’s value should be equal to (2∧depth)-1

– depth_g: the number of samples in one period of the signal

– width_g: the number of bits used to represent amplitude value

• File name: sine_top_rtl.vhd

6.2 Creating Module

To create Digital Sine Top module, use steps for creating modules, Sub-chapter 2.4.1 Creating a Module Using Vivado
Text Editor .

Digital Sine Top VHDL model:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

entity sine_top is
generic(

cntampl_value_g : integer := 255; -- threshold value for counter,
-- it’s value should be equal to (2^depth)-1

depth_g : integer range 1 to 99 := 8; -- the number of samples in one period of the signal
width_g : integer range 1 to 99 := 12 -- the number of bits used to represent amplitude

-- value
);

port(
clk_in : in std_logic; -- input clock signal
sw0 : in std_logic; -- signal used for selecting frequency
div_factor_freqhigh : in std_logic_vector(31 downto 0); -- threshold value for high frequency
div_factor_freqlow : in std_logic_vector(31 downto 0); -- threshold value for low frequency
sine_out : out std_logic_vector(width_g-1 downto 0) -- current amplitude value of the

-- sine signal
);

end entity;

architecture rtl of sine_top is

signal ampl_cnt_s : std_logic_vector(depth_g-1 downto 0) := (others=>’0’); -- amplitude counter
signal freq_trig_s : std_logic := ’0’;

begin

-- frequency trigger module instance
freq_ce : entity work.frequency_trigger(rtl)

port map(
clk_in => clk_in, -- input clock signal
sw0 => sw0, -- signal used for selecting frequency
div_factor_freqhigh => div_factor_freqhigh, -- input clock division factor when sw0 = ’1’
div_factor_freqlow => div_factor_freqlow, -- input clock division factor when sw0 = ’0’
freq_trig => freq_trig_s -- output signal which frequency depends of the sw0 state
);

-- counter module instance
counterampl : entity work.counter(rtl)

generic map(
cnt_value_g => cntampl_value_g, -- threshold value for counter
depth_g => depth_g -- the number of samples in one period of the signal
)

port map(

54

6.3 Creating Test Bench

clk_in => clk_in, -- input clock signal
cnt_en => freq_trig_s, -- counter enable
cnt_out => ampl_cnt_s -- current counter value
);

-- digital sine module instance
sine : entity work.sine(rtl)

generic map(
depth_g => depth_g, -- the number of samples in one period of the signal
width_g => width_g -- the number of bits used to represent amplitude value
)

port map(
clk_in => clk_in, -- input clock signal
ampl_cnt => ampl_cnt_s, -- address value for the sine waveform ROM
sine_out => sine_out -- current amplitude value of the sine signal
);

end;

6.3 Creating Test Bench

• Usage: used to verify correct operation of the sine_top module defined in the sine_top_rtl.vhd file

• Test bench internal signals:

– clk_in_s: input clock signal

– sw0_s: input signal from the on-board switch, used for changing output signal frequency

– sine_out_s: current amplitude value of the sine signal

• Generics:

– cntampl_value_g: threshold value for counter

– depth_g: the number of samples in one period of the signal

– width_g: the number of bits used to represent amplitude value

– div_factor_freqhigh_g: threshold value for high frequency

– div_factor_freqlow_g: threshold value for low frequency

• File name: sine_top_tb.vhd

We will now create a new simulation set (sim_3) with the test bench file for the Digital Sine Top module (sine_top_tb.vhd)
in it. We will use the steps explained in the Sub-chapter 3.3 Creating Test Bench.

Digital Sine Top test bench:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

entity sine_top_tb is
-- Use lower values for div_factor_freqhigh_g and div_factor_freqlow_g generics to speed up simulation
-- time
generic(

cntampl_value_g : integer := 255; -- threshold value for counter,
-- it’s value should be equal to (2^depth)-1

depth_g : integer range 1 to 99 := 8; -- the number of samples in one period of the signal
width_g : integer range 1 to 99 := 12 -- the number of bits used to represent amplitude value
div_factor_freqhigh_g : integer := 55; -- threshold value for high frequency
div_factor_freqlow_g : integer := 195; -- threshold value for low frequency
);

end entity;

architecture tb of sine_top_tb is

signal clk_in_s : std_logic := ’0’; -- input clock signal
signal sw0_s : std_logic := ’0’; -- signal used for selecting frequency
signal sine_out_s : std_logic_vector(width_g-1 downto 0) := (others=>’0’);

-- current amplitude value of the sine signal

begin
-- sine_top module instance
dut : entity work.sine_top

55

DIGITAL SINE TOP

generic map(
cntampl_value_g => cntampl_value_g,
depth_g => depth_g,
width_g => width_g
)

port map(
clk_in => clk_in_s,
sw0 => sw0_s,
div_factor_freqhigh => conv_std_logic_vector(div_factor_freqhigh_g, 32),
div_factor_freqlow => conv_std_logic_vector(div_factor_freqlow_g, 32),
sine_out => sine_out_s
);

clk_in_s <= not (clk_in_s) after per_c/2; -- 50 MHz input clock signal
sw0_s <= ’0’, ’1’ after 1 ms;

end;

6.4 Simulating

After you have entered the code for the input stimulus in order to perform simulation:

Step 1. You can start your simulation (see Chapter 3.4 Simulating)

Step 2. Simulate your design for 4 ms (see Chapter 2.6 Simulating – step 9.)

Step 3. Assuming no errors, your simulation result should look similar to Illustration 6.3.

Figure 6.3: Simulation Results

As you can see from the illustration above, Vivado simulator presented sine signal, sine_out_s, in digital form. This is
default Vivado simulator waveform style. If you would like to see if this signal really has a shape of sine signal, Vivado
simulator gives you possibility to change the waveform style from digital to analog. To change the waveform style in Vivado
simulator, please do the following:

1. Select the sine_out_s signal

2. Right-click on it and choose Waveform Style -> Analog , see Illustration 6.4

56

6.5 Synthesis

Figure 6.4: Waveform Style -> Analog option

When you change waveform style from digital to analog, Vivado simulator will automatically change sine signal perspective.
Now, sine_out_s signal should have a shape of sine signal, as it is shown on the Illustration 6.5.

Figure 6.5: Simulation results with analog sine signal representation

In the Illustrations 6.3 and 6.5 and in the sine_top_tb.vhd source file you can also notice that we have changed div_factor-
_freqhigh_g and div_facto_freqlow_g values from initial 196608 and 57344 values to 55 and 195 values, respectively.
This is done, because we wanted to speed up the simulation process, in this example ∼1000 times, while retaining the
same functionality. This is a way to speed up the simulation process without compromising functional behavioral of the
system that is being simulated. This is the reason why we need only 4 ms to simulate our design, instead of 4000 ms which
would take a 1000 times longer to complete.

Note: Information about creating the Digital Sine Top module, generating its test bench file and simulating the Digital Sine
Top design, you can also find in the Lab 8: "Creating Digital Sine Top Module" .

6.5 Synthesis

6.5.1 Description

Synthesis is the process of transforming an RTL-specified design into a gate-level representation. It checks code syntax
and analyse the hierarchy of your design. This ensures that your design is optimized for the design architecture that you
have selected (e.g. Number of Flip-Flops, LUTs, Clock- and IO-Buffers).

Vivado IDE synthesis is timing-driven and optimized for memory usage and performance. Support for SystemVerilog as
well as mixed VHDL and Verilog languages is included.

57

DIGITAL SINE TOP

There are two ways to setup and run synthesis:

• Use Project Mode (which we will use in this tutorial)

• Use Non-Project Mode - applying the synth_design Tool Command Language (Tcl) command and controlling your
own design files.

6.5.2 Run Synthesis

To synthesize your design, follow these steps:

Step 1. Before you run synthesis process, set Digital Sine Top module to be the top module. To do that, in the Sources
window, under Design Sources, select synthesizable module (sine_top - rtl), right-click on it and choose Set as Top
option

Step 2. In the Vivado Flow Navigator, click Run Synthesis command (Synthesis option) and wait for task to be com-
pleted, see Illustration 6.6

Figure 6.6: Run Synthesis command

Note: You can monitor the Synthesis progress in the bar in the upper-right corner of the Vivado IDE.

Step 3. After the synthesis is completed, the Synthesis Completed dialog box will appear, see Illustration 6.7

Figure 6.7: Synthesis Completed dialog box

In the Synthesis Completed dialog box you can select one of the following options:

• Run Implementation: which launches implementation with the current Implementation Project Settings.

• Open Synthesized Design: which opens the synthesized netlist, the active constraint set, and the target device into
Synthesized Design environment, so you can perform I/O pin planning, design analysis, and floorplanning.

• View Reports: which opens the Reports window, so you can view reports.

Step 4. Select Open Synthesized Design and click OK, see Illustration 6.7

58

6.5 Synthesis

Step 5. Make sure that Default Layout option is selected from the view layout pull-down menu in the main toolbar, see
Illustration 6.8

Figure 6.8: Default Layout option

6.5.3 After Synthesis

After you have synthesized your project (or opened a project that only contains netlists) the Flow Navigator changes
and now includes: Constraints Wizard, Edit Timing Constraints, Set Up Debug, Report Timing Summary, Report Clock
Networks, Report Clock Interaction, Report DRC, Report Noise, Report Utilization, Report Power and Schematic options,
see Illustration 6.9

Figure 6.9: Synthesized Design options

Flow Navigator is optimized to provide quick access to the options most frequently used after synthesis:

• Constraints Wizard: The Vivado IDE provides Timing Constraints wizard to walk you through the process of creating
and validating timing constraints for the design. The wizard identifies clocks and logic constructs in the design and
provides an interface to enter and validate the timing constraints in the design. It is only available in the synthesized
and implemented designs.

• Edit Timing Constraints: Open the Constraint Viewer (formerly called the Constraints Editor). The Timing Con-
straints window appears in the main window of the Vivado IDE, see Illustration 6.10.

59

DIGITAL SINE TOP

Figure 6.10: Timing Constraints window

• Set Up Debug: The Vivado IDE provides Set up Debug wizard to help guide you through the process of automatically
creating the debug cores and assigning the debug nets to the inputs of the cores.

• Report Timing Summary: Generate a default timing report (using estimated timing information), see Illustration
6.11. Timing Reports can be generated at any point after synthesis.

– Tcl command equivalent to this option is: report_timing_summary

Figure 6.11: Timing Summary Report

• Report Clock Networks: Generates a clock tree for the design, see Illustration 6.12. This option creates a tree view
of all the logical clock trees found in the design, annotated with existing and missing clock definitions and the roots
of these trees.

– Tcl command equivalent for this option will be: report_clock_network

60

6.5 Synthesis

Figure 6.12: Clock Networks Report

• Report Clock Interaction: Verifies constraint coverage on paths between clock domains. This option uses an inter-
clock path matrix to show clock relationships and group paths. This report is helpful to tell us if timing is asynchronous
(in case that we didn’t include synchronization circuitry) and if paths are constrained (in case that we didn’t add timing
constraints to cover paths between unrelated clock domains). Green squares confirm that paths between the two
clock domains are constrained.

– Tcl command equivalent to this option is: report_clock_interaction

• Report Methodology: The Vivado Design Suite provides automated methodology checks based on the UltraFast
Design Methodology Guide for the Vivado Design Suite using the Report Methodology command. You can generate
a methodology report on an opened, elaborated, synthesized, or implemented design. Running the methodology
report allows you to find design issues early during the elaboration stage prior to synthesis, which saves time in the
design process.

– Tcl command equivalent to this option is: report_methodology -name <results_name>

Figure 6.13: Report Methodology

• Report DRC: Performs design rule check on the entire design. DRCs performed early in the design flow allow for
correction before a full implementation. We can select which DRCs we would like to run, see Illustration 6.14, or we
can select to run all. Objects listed in the violations are cross-selectable with HDL sources. Any problems will open a
DRC window at the bottom of the Vivado GUI. If you would like to see the final sign-off DRC, run the implementation
process.

61

DIGITAL SINE TOP

Figure 6.14: DRC Report

• Report Noise: Performs an SSN analysis of output and bidirectional pins in the design. This report is looking a
gauge the number of pins, I/O standard, and drive strength on a bank-by-bank basis, see Illustration 6.15. Banks
that are exceed, what is recommended, will be flagged in the Summary tab. SSN analysis can only be done on
output and bidirectional ports.

Figure 6.15: Noise Report

• Report Utilization: Generates a graphical version of the Utilization Report, see Illustration 6.16.

Figure 6.16: Utilization Report

• Report Power: Provides detailed power and thermal analysis reports that can be customized for the power sup-
ply and application environment, see Illustration 6.17. This report estimates power at every stage after synthesis
process. Perform also what-if analysis by varying switching activity.

– Tcl command equivalent to this option is: report_power

62

6.5 Synthesis

Figure 6.17: Power Report

• Schematic: Opens the Schematic window. In the schematic window, you can view design interconnect, hierarchy
structure, or trace signal paths for the elaborated design, synthesized design, or implemented design. The Schematic
View is explained in detail in the Sub-chapter 6.5.5 Schematic View

6.5.4 Synthesis Reports

After synthesis completes, you can view the reports, and open, analyze, and use the synthesis design. The reports window
contains a list of reports provided by various synthesis and implementation tools in the Vivado IDE.

Open the Reports view to explore the reports generated during synthesis process.

To view Synthesis Report:

Step 1. Select the Reports tab at the bottom of the IDE, see Illustration 6.18

Figure 6.18: Reports tab

Note: If this tab is not shown, select from the main menu Windows -> Reports

63

DIGITAL SINE TOP

Step 2. In the Reports tab, double-click on the Vivado Synthesis Report to open it and examine the report contents, see
Illustration 6.18

Vivado Synthesis Report - is a detailed resource that describes the synthesis process. It describes source file recognition,
IP attributes, RTL synthesis, logic optimization, primitive inference, technology mapping, and cell usage, see Illustration
6.19.

Figure 6.19: Vivado Synthesis Report

Step 3. When finished, close the report

Step 4. In the Reports tab, double-click on the Utilization Report to examine its content, see Illustration 6.18

Utilization Report - describes the amount of device resources that the synthesized design is expected to use, see Illustra-
tion 6.20

64

6.5 Synthesis

Figure 6.20: Utilization Report

6.5.5 Schematic View

The Schematic view allows selective expansion and exploration of the logical design. You can generate schematic view for
any level of the logical or physical hierarchy. You can select a logic element in an open window, such as primitive or net
in the Netlist window, and use the Schematic command in the popup menu to create a Schematic window for the selected
object. An elaborated design always opens with a Schematic window of the top-level of the design. In the Schematic
window, you can view design interconnect, hierarchy structure, or trace signal paths for the elaborated design, synthesized
design, or implemented design.

To create a schematic view, do the following steps:

Step 1. Select one or more logic elements in an open window, such as the Netlist window

Step 2. In the Flow Navigator / Synthesis / Synthesized Design click the Schematic command, see Illustration 6.21

65

DIGITAL SINE TOP

Figure 6.21: Schematic command

Step 3. After few seconds, Schematic window will show up, and your design should look similar to the design shown on
the Illustration 6.22

Figure 6.22: Sine-Top Schematic View

The Schematic window displays the selected logic cells or nets. If only one cell is selected, schematic symbol for that
module will be displayed.

In the Schematic window, you can find and view objects as follows:

• The links as the top of the schematic sheet, labelled Cells , I/O Ports, and Nets, open a searchable list in the Find

66

6.5 Synthesis

Results window, making it easier to find specific items in the schematic.

• When you select objects in the schematic window, those objects are also selected in all other windows. If you opened
an implemented design, the cells and nets display in the Device window.

Schematic Window Toolbar Commands

The local toolbar contains the following commands:

• Schematic Options - Configures the display of the Schematic window

• Previous Position - Resets the Schematic window to display the prior zoom, coordinates and logic content

• Next Position - Returns the Schematic window to display the original zoom, coordinates and logic content after
Previous Position is used

• Zoom In - Zooms in the Schematic window (Ctrl + Equals)

• Zoom Out - Zooms out the Schematic window (Ctrl + Minus)

• Zoom Fit - Zooms out to fit the whole schematic into the display area (Ctrl + 0)

• Select Area - Selects the objects in the specified rectangular area

• Fit Selection - Redraws the Schematic window to display the currently selected objects. This is useful when selecting
objects are in another window and you want to redraw the display around those selected objects

• Autofit Selection - Automatically redraws the Schematic window around newly selected objects. This mode can be
enabled or displayed

• Expand all logic inside selected cell - Expands a hierarchical module from the symbol view to the logic view.

Note: Hierarchical modules can also be expanded directly from the schematic by clicking the plus (+) icon on the
schematic symbol

• Collapse all logic inside selected cell - Collapses a hierarchical module from the logic view to the symbol view.

Note: An expanded hierarchical block can also be collapsed directly from the schematic by clicking the minus (-) icon
on the hierarchical block

• Magnify: Displays a detailed popup view of the selected bus pin

Note: Alternatively, you can press Ctrl and double-click a bus pin.

• Toggle autohide pins for selected cell - Toggles the pin display on selected hierarchical modules. Higher levels of
the hierarchy display as concentric rectangles without pins, when a Schematic window is generated. In most cases,
the lack of pins makes the Schematic window more readable. However, you can display the pins for selected cells
as needed

• Add selected elements to schematic - Recreates the Schematic window when the newly selected elements added
to the existing schematic

• Remove selected elements from the schematic - Recreates the Schematic window with the currently selected
elements removed from the existing schematic

• Regenerate Schematic - Redraws the active Schematic window

67

DIGITAL SINE TOP

68

Chapter 7

PWM

7.1 Description

• Usage: This module will generate an PWM signal modulated using the digital sine wave from the Digital Sine module.
This module will be composed of two independent modules. One will be the Frequency Trigger, for generating two
different frequencies and the second one will be the Finite State Machine (FSM), for generating the PWM signal.

Frequency Trigger module is the same module explained as in the Chapter 2. FREQUENCY TRIGGER. We need a
second Frequency Trigger module in our design, because this module will generate freq_trig signal with 2width higher
frequency than the freq_trig signal of the first Frequency Trigger module. This is important for proper PWM signal
generation.

FSM module will generate the PWM signal. It will generate the PWM signal with correct duty cycle for each period
based on the current amplitude value of digital sine signal, that is stored in the ROM. State diagram of the FSM is
shown on the Figure 7.2.

• Block diagram:

Figure 7.1: PWM block diagram

PWM

Figure 7.2: FSM state diagram

• Input ports:

– clk_in: input clock signal

– sw0: input signal from the on-board switch, used for changing output signal frequency

– sine_ampl: current amplitude value of the sine signal

– div_factor_freqhigh: input clock division when sw0 = ’1’

– div_factor_freqlow: input clock division when sw0 = ’0’

• Output ports:

– pwm_out: pulse width modulated signal

• Generics:

– width_g: the number of bits used to represent amplitude value

• File name: pwm_rtl.vhd

7.2 Creating Module

To create PWM module, use steps for creating modules, Sub-chapter 2.4.1 Creating a Module Using Vivado Text Editor.

PWM VHDL model:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity pwm is
generic(

width_g : integer range 1 to 99 := 12; -- the number of bits used to represent amplitude value
);

port(
clk_in : in std_logic; -- input clock signal
sw0 : in std_logic; -- signal made for selecting frequency
sine_ampl : in std_logic_vector(width_g-1 downto 0); -- current amplitude value of the

-- sine signal
div_factor_freqhigh : in std_logic_vector(31 downto 0); -- input clock division when sw0 = ’1’

70

7.2 Creating Module

div_factor_freqlow : in std_logic_vector(31 downto 0); -- input clock division when sw0 = ’0’
pwm_out : out std_logic -- pulse width modulated signal
);

end entity;

architecture rtl of pwm is

type state_t is (load_new_ampl, pwm_high, pwm_low); -- states load_new_ampl, pwm_high, pwm_low
signal state: state_t ;

signal ce_s : std_logic := ’0’; -- clock enable signal for the fsm

begin

-- Defines a sequential process
-- process1 and process2 will constitute two-process model of the FSM (Finite State Machine)

-- process1 models state register and next-state logic
process1_p : process (clk_in)

-- threshold_v is variable that is telling us when pwm signal should be changed from 1 to 0
-- integer range 0 to 4095 (in our case)
variable threshold_v : integer range 0 to ((2**width_g)-1) := 0;
-- count_v is variable that counts the number of elapsed cycles
-- when count_v reaches threshold_v value it is time to change pwm signal from 1 to 0
-- integer range 0 to 4095 (in our case)
variable count_v : integer range 0 to ((2**width_g)-1) := 0;

begin
if (clk_in = ’1’ and clk_in’event) then

if (ce_s = ’1’) then
case state is

-- in load_new_ampl state we are loading new amplitude value of the sine signal
when load_new_ampl =>

-- set the threshold_v value to the current value of the sine signal
threshold_v := conv_integer (sine_ampl);
count_v := 0; -- default assignment

-- if current amplitude of the sine signal is greater than zero, there
-- will be a pulse on the PWM signal in the current period
-- (PWM will be 1 for a period of time)
if (sine_ampl > 0) then

state <= pwm_high;

-- if current amplitude value is equal to zero, there will be no pulse
-- on the PWM signal in the current period (PWM will always be 0)
elsif (sine_ampl = 0) then

state <= pwm_low;
end if;

-- when we are in pwm_high state, PWM = 1
when pwm_high =>

count_v := count_v + 1; -- increment counter

-- while counter value is less than threshold_v, we stay in pwm_high state
if (count_v < ((2**width_g)-1) and count_v < threshold_v) then

state <= pwm_high;

-- if one period of the PWM signal has elapsed we go to load_new_ampl state
elsif (count_v = ((2**width_g)-1)) then

state <= load_new_ampl;

-- if count_v is equal to threshold_v, we go to pwm_low state
elsif (count_v < ((2**width_g)-1) and count_v = threshold_v) then

state <= pwm_low;
end if;

-- when we are in pwm_low state, PWM = 0
when pwm_low =>

count_v := count_v + 1; -- increment counter

-- while counter value is less than 4095, we stay in pwm_low state
if (count_v < ((2**width_g)-1)) then

state <= pwm_low;

-- if count_v is equal to 4095, we go to load_new_ampl state
-- to load a new amplitude value of the sine signal
elsif (count_v = ((2**width_g)-1)) then

state <= load_new_ampl;
end if;

end case;
end if;

end if;
end process process1_p;

-- process2 models output logic (logic that generates pwm signal)
process2_p : process (state)

71

PWM

begin
case state is

when load_new_ampl => pwm_out <= ’0’;
when pwm_high => pwm_out <= ’1’;
when pwm_low => pwm_out <= ’0’;

end case;
end process process2_p;

fsm_ce: entity work.frequency_trigger(rtl) -- frequency trigger module instance
port map (

clk_in => clk_in,
sw0 => sw0,
div_factor_freqhigh => div_factor_freqhigh,
div_factor_freqlow => div_factor_freqlow,
freq_trig => ce_s

);
end;

7.3 Creating Test Bench

• Usage: used to verify correct operation of the PWM module defined in the pwm_rtl.vhd file

• Test bench internal signals:

– clk_in_s: input clock signal

– sw0_s: input signal from the on-board switch, used for changing output signal frequency

– sine_out_s: current amplitude value of the sine signal

– pwm_s: pwm signal

• Generics:

– cntampl_value_g: threshold value for counter, it’s value should be equal to (2depth−1)

– depth_g: the number of samples in one period of the signal

– width_g: the number of bits used to represent amplitude value

• File name: pwm_tb.vhd

We will now create a new simulation set (sim_4) with the test bench file for the PWM module (pwm_tb.vhd) in it. We will
use the steps explained in the Sub-chapter 3.3 Creating Test Bench.

PWM test bench:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

entity pwm_tb is
generic(

cntampl_value_g : integer := 255; -- threshold value for counter,
-- it’s value should be equal to (2^depth)-1

depth_g : integer range 1 to 99 := 8; -- the number of samples in one period of the signal
width_g : integer range 1 to 99 := 12 -- the number of bits used to represent amplitude

-- value
);

end entity;

architecture tb of pwm_tb is

signal clk_in_s : std_logic := ’0’; -- input clock signal
signal sine_out_s : std_logic_vector(width_g-1 downto 0) := (others=>’0’);

-- current amplitude value of the sine signal
signal sw0_s : std_logic := ’0’; -- signal made for selecting frequency
signal pwm_s : std_logic := ’0’; -- pwm signal

begin
dut1 : entity work.sine_top -- sine_top module instance

generic map(
cntampl_value_g => cntampl_value_g,
depth_g => depth_g,
width_g => width_g
)

72

7.4 Simulating

port map(
clk_in => clk_in_s,
sw0 => sw0_s,
div_factor_freqhigh => conv_std_logic_vector(1*(2**width_g), 32), -- 1*4096=4096
div_factor_freqlow => conv_std_logic_vector(2*(2**width_g), 32), -- 2*4096=8192
sine_out => sine_out_s
);

dut2 : entity work.pwm -- pwm module instance
generic map(

width_g => width_g
)

port map(
clk_in => clk_in_s,
sw0 => sw0_s,
sine_ampl => sine_out_s,
div_factor_freqhigh => conv_std_logic_vector(1, 32),
div_factor_freqlow => conv_std_logic_vector(2, 32),
pwm_out => pwm_s
);

clk_in_s <= not (clk_in_s) after per_c/2; -- input clock signal
sw0_s <= ’0’, ’1’ after 1 ms;

end;

7.4 Simulating

After you have entered the code for the input stimulus in order to perform simulation:

Step 1. You can start your simulation (see Chapter 3.4 Simulating)

Step 2. Simulate your design for 25 ms (see Chapter 2.6 Simulating – step 9.)

Step 3. Assuming no errors, your simulation result should look similar to Illustration 7.3 .

Figure 7.3: Simulation Results

In this example we have also decreased div_factor_freqhigh and div_factor_freqlow values, in the dut1 instance, 10
times to shorten the duration of the simulation process. We done this on the same way like in the Digital Sine Top test
bench file.

Note: All the information about creating the PWM module, its FSM state diagram, generating the PWM test bench file and
simulating the PWM design, you can also find in the Lab 9: "Creating PWM Module" .

73

PWM

74

Chapter 8

MODULATOR

8.1 Description

• Usage: This module will merge all the previously designed modules.

• Block diagram:

Figure 8.1: Modulator block diagram

• Input ports:

– clk_in: input clock signal

– sw0: input signal from the on-board switch, used for changing output signal frequency

MODULATOR

– div_factor_freqhigh: input clock division when sw0 = ’1’

– div_factor_freqlow: input clock division when sw0 = ’0’

• Output ports:

– pwm_out: pulse width modulated signal

• Generics:

– design_setting_g: user defined settings for the pwm design

• File name: modulator_rtl.vhd

8.2 Creating Module

To create Modulator module use steps for creating modules, Sub-chapter 2.4.1 Creating a Module Using Vivado Text
Editor .

Modulator VHDL model:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_textio.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

library unisim;
use unisim.vcomponents.all;

entity modulator is
generic(
-- User defined settings for the pwm design
design_setting_g : design_setting_t_rec := design_setting_c
);

port(
clk_in : in std_logic; -- input clock signal
sw0 : in std_logic; -- signal made for selecting frequency
div_factor_freqhigh : in std_logic_vector(31 downto 0); -- input clock division when sw0 = ’1’
div_factor_freqlow : in std_logic_vector(31 downto 0); -- input clock division when sw0 = ’0’
pwm_out : out std_logic -- pulse width modulated signal
);

end entity;

architecture rtl of modulator is

-- amplitude counter
signal ampl_cnt_s : std_logic_vector(design_setting_g.depth-1 downto 0);
-- current amplitude value of the sine signal
signal sine_ampl_s : std_logic_vector(design_setting_g.width-1 downto 0);
-- signal which frequency depends on the sw0 state
signal freq_trig_s : std_logic := ’0’;

begin

freq_ce : entity work.frequency_trigger(rtl) -- frequency trigger module instance
port map(

clk_in => clk_in,
sw0 => sw0,
div_factor_freqhigh => div_factor_freqhigh,
div_factor_freqlow => div_factor_freqlow,
freq_trig => freq_trig_s
);

counterampl : entity work.counter(rtl) -- counter module instance
generic map(

cnt_value_g => design_setting_g.cntampl_value,
depth_g => design_setting_g.depth
)

port map (
clk_in => clk_in,
cnt_en => freq_trig_s,
cnt_out => ampl_cnt_s
);

sine : entity work.sine(rtl) -- digital sine module instance
generic map(

76

8.3 Creating Test Bench

depth_g => design_setting_g.depth,
width_g => design_setting_g.width
)

port map(
ampl_cnt => ampl_cnt_s,
clk_in => clk_in,
sine_out => sine_ampl_s
);

pwmmodule : entity work.pwm (rtl) -- pwm module instance
generic map (

width_g => design_setting_g.width
)

port map (
clk_in => clk_in,
sw0 => sw0,
sine_ampl => sine_ampl_s,
div_factor_freqhigh => conv_std_logic_vector(conv_integer(div_factor_freqhigh)/(2**design_setting_g

.width), 32),
div_factor_freqlow => conv_std_logic_vector(conv_integer(div_factor_freqlow)/(2**design_setting_g.

width), 32),
pwm_out => pwm_out
);

end;

8.3 Creating Test Bench

• Usage: used to verify correct operation of the Modulator module defined in the modulator_rtl.vhd file

• Test bench internal signals:

– clk_in_s: input clock signal

– sw0_s: input signal from the on-board switch, used for changing output signal frequency

– pwm_s: pulse width modulated signal

• Generics:

– board_name_g: parameter that specifies major characteristics of the board that will be used to implement
the modulator design. Possible choices: """lx9""", """zedboard""", """ml605""", """kc705""", """microzed""", ""so-
cius""". Adjust the modulator_pkg.vhd file to add more

– design_setting_g: user defined settings for the pwm design

• File name: modulator_tb.vhd

We will now create a new simulation set (sim_5) with the test bench file for the Modulator module (modulator_tb.vhd) in
it. We will use the steps explained in the Sub-chapter 3.3 Creating Test Bench.

Modulator test bench:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

entity modulator_tb is
generic(

-- Parameter that specifies major characteristics of the board that will be used
-- to implement the modulator design
-- Possible choices: """lx9""", """zedboard""", """ml605""", """kc705""", """microzed""", ""socius"

""
-- Adjust the modulator_pkg.vhd file to add more
board_name_g : string := """zedboard""";

-- User defined settings for the pwm design
design_setting_g : design_setting_t_rec := design_setting_c

);
end entity;

architecture tb of modulator_tb is

77

MODULATOR

signal clk_in_s : std_logic := ’1’; -- input clock signal
signal sw0_s : std_logic := ’1’; -- signal made for selecting frequency
signal pwm_s : std_logic := ’0’; -- pulse width modulated signal

-- period of input clock signal
constant clock_period_c : time := 1000000000.0 / get_board_info_f(board_name_g).fclk * 1ns;

-- constant created to short the duration of the simulation process 10 times
constant design_setting1_c : design_setting_t_rec := (255, 10.0, 35.0, 8, 12);

-- c1_c = fclk/(2^depth*2^width) - c1_c = c1_c = 95.3674, fclk = 100 MHz
constant c1_c : real :=

get_board_info_f(board_name_g).fclk/(real((2**design_setting1_c.depth)*(2**design_setting1_c.width)));
-- div_factor_freqhigh_c = (c1_c/f_high)*2^width - threshold value of frequency a = 110592
constant div_factor_freqhigh_c : integer :=

integer(c1_c/design_setting1_c.f_high)*(2**design_setting1_c.width);
-- div_factor_freqlow_c = (c1_c/f_low)*2^width - threshold value of frequency b = 389120
constant div_factor_freqlow_c : integer :=

integer(c1_c/design_setting1_c.f_low)*(2**design_setting1_c.width);

begin

pwmmodulator : entity work.modulator -- modulator module instance
generic map(

design_setting_g => design_setting1_c
)

port map(
clk_in => clk_in_s,
sw0 => sw0_s,
div_factor_freqhigh => conv_std_logic_vector(div_factor_freqhigh_c, 32),
div_factor_freqlow => conv_std_logic_vector(div_factor_freqlow_c, 32),
pwm_out => pwm_s
);

clk_in_s <= not (clk_in_s) after clock_period_c/2; -- generates input clock signal
sw0_s <= ’1’, ’0’ after 25 us;

end;

8.4 Simulating

After you have entered the code for the input stimulus in order to perform simulation:

Step 1. You can start your simulation (see Chapter 3.4 Simulating)

Step 2. Simulate your design for 20 ms (see Chapter 2.6 Simulating - step 9.)

Step 3. Assuming no errors, your simulation result should look similar to Illustration 8.2

Figure 8.2: Simulation Results

In this example we have also shortened the duration of the simulation process by defining the new design_setting1_c
constant in the modulator_tb.vhd file. As you can see from the modulator_tb.vhd source code we shortened the duration of
the simulation process 10 times, so the simulation should now lasts 20 ms instead of 200 ms .

Note: All the information about creating the Modulator module, generating its test bench file and simulating the Modulator
design, you can also find in the Lab 10: "Creating Modulator Module" .

78

Chapter 9

MODULATOR WRAPPER

9.1 Description

• Usage: This module is necessary to support different development boards with different referent clock types (single-
ended and differential clocks). In this module we will instantiate Modulator module and, if needed, differential input
clock buffer. Differential input clock buffer will be instantiated if the target development board has reference clock
source with differential output.

• Block diagram:

Figure 9.1: Modulator wrapper block diagram

• Input ports:

– clk_p: differential input clock signal

– clk_n: differential input clock signal

– sw0: input signal from the on-board switch, used for changing output signal frequency

• Output ports:

– pwm_out: pulse width modulated signal

• Generics:

– this_module_is_top_g: if some module is top, it needs to implement the differential clk buffer, otherwise this
variable will be overwritten by a upper hierarchy layer

– board_name_g: parameter that specifies major characteristics of the board that will be used to implement
the modulator design. Possible choices: """lx9""", """zedboard""", """ml605""", """kc705""", """microzed""", ""so-
cius""". Adjust the modulator_pkg.vhd file to add more

– design_setting_g: user defined settings for the pwm design

• File name: modulator_wrapper_rtl.vhd

MODULATOR WRAPPER

9.2 Creating Module

To create Modulator wrapper module use steps for creating modules, Sub-chapter 2.4.1 Creating a Module Using Vivado
Text Editor .

Modulator wrapper VHDL model:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

library unisim;
use unisim.vcomponents.all;

use work.modulator_pkg.all;

entity modulator_wrapper is
generic(

-- If some module is top, it needs to implement the differential clk buffer,
-- otherwise this variable will be overwritten by a upper hierarchy layer
this_module_is_top_g : module_is_top_t := yes;

-- Parameter that specifies major characteristics of the board that will be used
-- to implement the modulator design
-- Possible choices: """lx9""", """zedboard""", """ml605""", """kc705""", """microzed""", ""socius"

""
-- Adjust the modulator_pkg.vhd file to add more
board_name_g : string := """zedboard""";

-- User defined settings for the pwm design
design_setting_g : design_setting_t_rec := design_setting_c

);

port(
clk_p : in std_logic; -- differential input clock signal
clk_n : in std_logic; -- differential input clock signal
sw0 : in std_logic; -- signal made for selecting frequency
pwm_out : out std_logic -- pulse width modulated signal

-- clk_en : out std_logic -- clock enable port used only for MicroZed board
);

end entity;

architecture rtl of modulator_wrapper is

-- Between architecture and begin is declaration area for types, signals and constants
-- Everything declared here will be visible in the whole architecture

-- input clock signal
signal clk_in_s : std_logic;

-- c1_c = fclk/(2^depth*2^width) - c1_c = 95.3674, fclk = 100 MHz
constant c1_c : real :=

get_board_info_f(board_name_g).fclk/(real((2**design_setting_g.depth)*(2**design_setting_g.width)));
-- div_factor_freqhigh_c = (c1_c/f_high)*2^width - threshold value of frequency a = 110592
constant div_factor_freqhigh_c : integer :=

integer(c1_c/design_setting_g.f_high)*(2**design_setting_g.width);
-- div_factor_freqlow_c = (c1_c/f_low)*2^width - threshold value of frequency b = 389120
constant div_factor_freqlow_c : integer :=

integer(c1_c/design_setting_g.f_low)*(2**design_setting_g.width);

begin

-- in case of MicroZed board we must enable on-board clock generator
-- clk_en <= ’1’;

-- if module is top, it has to generate the differential clock buffer in case
-- of a differential clock, otherwise it will get a single ended clock signal
-- from the higher hierarchy

clk_buf_if_top : if (this_module_is_top_g = yes) generate

clk_buf : if (get_board_info_f(board_name_g).has_diff_clk = yes) generate

ibufgds_inst : ibufgds
generic map(

ibuf_low_pwr => true,
-- low power (true) vs. performance (false) setting for referenced I/O standards
iostandard => "default"

)

port map (
o => clk_in_s, -- clock buffer output
i => clk_p, -- diff_p clock buffer input

80

9.2 Creating Module

ib => clk_n -- diff_n clock buffer input
);

end generate clk_buf;

no_clk_buf : if (get_board_info_f(board_name_g).has_diff_clk = no) generate
clk_in_s <= clk_p;

end generate no_clk_buf;

end generate clk_buf_if_top;

not_top : if (this_module_is_top_g = no) generate
clk_in_s <= clk_p;

end generate not_top;

pwmmodulator : entity work.modulator -- modulator module instance
generic map(

design_setting_g => design_setting_g
)

port map(
clk_in => clk_in_s,
sw0 => sw0,
div_factor_freqhigh => conv_std_logic_vector(div_factor_freqhigh_c, 32),
div_factor_freqlow => conv_std_logic_vector(div_factor_freqlow_c, 32),
pwm_out => pwm_out
);

end;

Note: All the information about creating the Modulator Wrapper module, you can also find in the Lab 10: "Creating
Modulator Module".

81

MODULATOR WRAPPER

82

Chapter 10

DESIGN IMPLEMENTATION

When we have all the necessary design files for our design, we can implement targeting FPGA design. First we should cre-
ate XDC constraints file where we will define placement and timing constraints for our design. Then, we should synthesize
and implement our design (synthesis process is explained in the Sub-chapter 6.5 Synthesis). After design implementation
is completed successfully, we must generate bitstream file and use it to program target FPGA device.

10.1 Creating XDC File

The Vivado IDE software allows you to specify different types of constraints to help improve your design performance. Each
type of constraint serves a different purpose and is recommended under different circumstances. Following are some of
the most commonly used types of constraints:

• Timing Constrains - are typically specified globally but can also be specified for individual paths. Global constraints
include period constraints for each clock, setup times for each input, and clock-to-out constraints for each output. You
can enter timing constraints using the option for the timing constraints creation in the Flow Navigator. This creates a
text-based Xilinx Design Constraints (XDC) file.

• Placement Constraints - for FPGA designs, you can specify placement constraints for each type of logic element,
such as BRAMs, DSPs, LUTs, FFs, I/Os, IOBs, and global buffers. Individual logic gates, such as AND and OR
gates, are mapped into CLB function generators before the constraints are read and cannot be constrained.

• Synthesis Constraints - Synthesis constraints instruct the synthesis tool to perform specific operations. When using
"Vivado Synthesis" for synthesis, synthesis constraints control how "Vivado Synthesis" processes and implements
FPGA resources, such as state machines, multiplexers, and multipliers, during the HDL synthesis and low level
optimization steps. Synthesis constraints also allow control of register duplication and fanout control during global
timing optimization.

Important: The Vivado IDE doesn’t support use of User Constraints File (UCF). UCF constraints are replaced with Xilinx
Design Constraints (XDC). The tool supports XDC, which is based on the industry-standard Synopsys Design Constraints
(SDC).

There are key differences between XDC and UCF constraints. XDC constraints are based on the standard Synopsys
Design Constraints (SDC) format. SDC has been in use and evolving for more than 20 years, making it the most popular
and proven format for describing design constraints.

XDC constraints are combination of:

• Industry standard SDC, and

• Xilinx propriety physical constraints

XDC constraints have the following properties:

• There are not simple strings, but are commands that follow the Tcl semantic

DESIGN IMPLEMENTATION

• They can be interpreted like any other Tcl command by the Vivado Tcl interpreter

• They are read and parsed sequentially the same as other Tcl commands

You can enter XDC constraints in several ways, at different points in the flow:

• Store the constraints in one or more XDC files

• Generate the constraints with Tcl script

There are two different ways of generating an XDC File:

• using Vivado GUI (I/O Planning view)

• using Text Editor

Creating a XDC File using the Vivado GUI (I/O Planning view):

In this step, you will be using the I/O Planning View to place the unplaced pins in the design. In order to assign pins to the
FPGA, you will determine the proper pin assignments by using the "ZedBoard Hardware User’s Guide". This user guide
contains the pin details and a reference master XDC file specifying the location and the I/O standards to be used while
selecting a pin for the design.

In order to apply the constraints to the design, the design has to be synthesized at least ones. Therefore, you will start the
constraints file creation by synthesizing the design and opening the synthesized design. To synthesize your design, follow
the steps explained in the Sub-chapter 6.5.2 Run Synthesis.

To create a XDC file using the Vivado IDE GUI, do the following:

Step 1. Change the layout from the Default Layout to I/O Planning view, in the layout pull-down menu in the main toolbar,
to identify pins that don’t have an assigned location, see Illustration 10.1

Figure 10.1: I/O Planning option

This will change the layout from the Default view to the I/O Planning view, see Illustration 10.2.

84

10.1 Creating XDC File

Figure 10.2: I/O Planning View

The main window of the I/O Planning view displays the package view of the ZedBoard device. Below the Package view,
two additional tabs are populated. One tab displays the list of I/O ports of the design and the second tab displays the list of
package pins on the device package.

Step 2. In the I/O Ports tab, click Expand All option, or just expand Scalar ports, which shows all I/O Ports of your design,
see Illustration 10.3

Figure 10.3: I/O Ports tab

Note that none of the pins in this view have an assigned location.

Grey icons indicate unplaced ports, while yellow icons indicate placed ports. On the Illustration 10.3 we can see that all
I/O ports are coloured grey, since none of them has been placed to a specific pin location. After we assign a pin location to
each of the I/O ports they will be coloured yellow, as can be seen on the Illustration 10.5.

Step 3. To connect your logical with your physical ports, select one scalar port (for example pwm_out) and find in the user
guide for the ZedBoard evaluation board to which pin location you would like to connect your pwm_out port. In our design
we should connect pwm_out port with one of the LED diodes that are physically present on the ZedBoard evaluation board.
If you open ZedBoard user guide you can find that the FPGA pin location of the LD0 diode is T22 and that the I/O standard
that must be used is LVCMOS33.

LVCMOS33 is a low voltage CMOS I/O standard using 3.3V power supply voltage. For more information about this I/-
O standard, please refer to the "JEDEC Standard JESD8C.01, Interface Standard for Nominal 3 V/3.3 V Supply Digital

85

DESIGN IMPLEMENTATION

Integrated Circuits standard.

Step 4. In the I/O Ports tab, click on the pwm_out’s Package Pin column and choose T22 as a pin location to connect the
pwm_out port

Step 5. Click on the pwm_out’s I/O Std column and change the I/O standard from default LVCMOS18 to LVCMOS33

Step 6. Leave all the other pwm_out’s options unchanged, because they are default values

Note: After assigning pin location and I/O standard for pwm_out port, we can notice that I/O Port Properties window
popped up. This is the another way to change port properties, see Illustration 10.4. If you want to apply some changes that
you made, just click the Automatically update button.

Figure 10.4: I/O Port Properties window

Step 7. Repeat these configuration steps for the remaining ports using the pin locations and necessary I/O standards
information shown below:

• clk_p - pin location: Y9, I/O standard: LVCMOS33

• sw0 - pin location: F22, I/O standard: LVCMOS25

Note: All this information has been extracted from the user guide for the ZedBoard evaluation board.

LVCMOS25 is a low voltage CMOS I/O standard using 2.5V power supply voltage. For more information about this I/O
standard, please refer to the “JEDEC Standard JESD8-5A.01, 2.5 V ± 0.2 V (Normal Range) and 1.8 V – 2.7 V (Wide
Range) Power Supply Voltage and Interface Standard for Nonterminated Digital Integrated Circuits” standard.

Note: After all modifications, I/O Ports tab should look like as it is shown on the Illustration 10.5.

Figure 10.5: I/O Ports tab with assigned pin locations and I/O standards

Note that clk_n port doesn’t have assigned pin location and I/O standard. This is because clk_n port is the differential
input pair of clk_p port and our target ZedBoard evaluation board doesn’t have differential reference clock signal.

86

10.1 Creating XDC File

As pins or banks are selected, the corresponding pins or banks become highlighted in the other views. This makes it easier
to see that the pins assigned in each bank meet the I/O banking rules and the grouped appropriately.

As you drag across the package view, yellow icons indicate assigned pins, grey icons indicate unassigned pins and both
displayed indicates assigned I/O banks.

In the Package view you can also notice that:

• the coloured areas between the pins display the I/O banks

• the clock pins are shown as grey hexagons

• the clock-capable pins are shown as blue hexagons

• the power pins (VCC) are shown as red squares

• the ground pins (GND) are shown as green squares

Step 8. When you are finished with the placement constraints, click File / Save Constraints As...

Step 9. In the Save Constraints dialog box, type the name of the constraints file in the File name field. In our case, the
name will be modulator, see Illustration 10.6

Figure 10.6: Save Constraints dialog box

Step 10. In the Save Constraints As dialog box, type the name of the constraint set in the New Constraints set name
field. In our case, the name will be modulator_rtl, see Illustration 10.7

Figure 10.7: Save Constraints As dialog box

Step 11. Click OK and your modulator_rtl constraint set with modulator.xdc file should appear in the Sources window
under the Constraints, see Illustration 10.8

87

DESIGN IMPLEMENTATION

Figure 10.8: Created modulator_rtl constraints set

Step 12. Double-click on the modulator.xdc file to open it, see Illustration 10.9

Figure 10.9: modulator.xdc file with physical constraints

In the modulator.xdc constraints file you can see assigned pin locations and I/O standards for each logical port of our
design. For each logical port two constraints are necessary:

• First constraint connects selected logical port (by using get_ports Tcl command) with specified pin location (by setting
the PACKAGE_PIN property, using set_property Tcl command).

• Second constraint sets the I/O standard that should be used for selected logical port by setting the IOSTANDARD
property, using set_property Tcl command.

As you can see from the code above, there is a quite a lot of difference between XDC and UCF file formats. The fundamental
differences between UCF and XDC files and the migrations from one format to another will be explained in detail in the
Sub-chapter 10.1.2 Migrating UCF Constraints to XDC.

Creating a XDC File using Vivado Text Editor:

The another way to create a XDC constraints file is using Vivado text editor. The steps will be similar like in Sub-chapter
2.4.1 Creating a Module Using Vivado Text Editor.

Here are the steps for creating XDC file using Vivado text editor:

Step 1. Optional: Launch Vivado IDE (if it is not already launched)

Step 2. Optional: Open "Modulator" project (modulator.xpr) (if it is not already opened)

Step 3. In the main Vivado IDE menu, click File -> New File... option to open Vivado text editor

Step 4. In the New File dialog box, type the name of your constraints file (modulator.xdc) in the File name field and
choose to save it into your working directory, on the same place where you saved the rest of your source files

88

10.1 Creating XDC File

Step 5. When you click Save, Vivado IDE will automatically open empty modulator.xdc source file in Vivado text editor

Step 6. Write the constraints into the opened modulator.xdc constraints file, see Illustration 10.9

Note: How to write XCD constraints file will be in detail explained in the Sub-chapter 10.1.2 Migrating UCF Constraints
to XDC.

Step 7. When you finish with constraints file creation, click File -> Save File option from the main Vivado IDE menu, or
just click Ctrl + S to save it

Step 8. In the Vivado Flow Navigator, click the Add Sources command

Step 9. In the Add Sources dialog box, select Add or create constraints option to add the constraints file to the project,
see Illustration 10.10

Figure 10.10: Add Sources dialog box - Add or create constraints option

Step 10. Click Next

Step 11. In the Add or Create Constraints dialog box, click the "+" icon and select Add Files... option

Step 12. In the Add Constraint Files dialog box, browse to the project working directory and select the modulator.xdc
constraints file

Step 13. Click OK and the modulator.xdc constraints file should appear in the Add or Create Constraints dialog box

Step 14. Click Finish and your constraints file should appear under the Constraints in the Sources view, see Illustration
10.8

10.1.1 Defining Timing Constraints

Prior to implementation, there are physical and timing constraints that need to be defined. In the previous steps we have
defined physical constraints. Now, it’s time to define timing constraints also.

To define timing constraints you can choose between two approaches:

• using Constraints Wizard , or

• using Constraints Editor

Defining timing constraints using Constraints Wizard

89

DESIGN IMPLEMENTATION

As we already explained, the Vivado IDE provides Timing Constraints wizard to walk you through the process of creating
and validating timing constraints for the design. The Timing Constraints wizard analyzes the gate level netlist and finds
missing constraints. It is only available in the synthesized and implemented designs.

To define timing constraints using Constraints Wizard, follow the next steps:

Step 1. In the Flow Navigator, under the Synthesis Design section, select first offered Constraints Wizard command

Step 2. When the No Target Constraints File dialog box appear, see Illustration 10.11, just click Define Target option to
associate current design with constraints file

Figure 10.11: No Target Constraints File dialog box

Step 3. In the Define Constraints and Target dialog box, select modulator.xdc file as target constraints file and click OK,
see Illustration 10.12. In the Define Constraints and Target dialog box, you can also create new or add existing constraints
file.

Figure 10.12: Define Constraints and Target dialog box

Step 4. In the Flow Navigator, click ones more Constraints Wizard command to open the introduction page. This page
describes the types of constraints that the wizard will create: Clocks, Input and Output Ports, and Clock Domain Crossings,
see Illustration 10.13. After reading the page, click Next to continue.

90

10.1 Creating XDC File

Figure 10.13: Identify and Recommend Missing Timing Constraints dialog box

Step 5. In the Primary Clocks dialog box, Timing Constraints Wizard will display all the clock sources with a missing clock
definition. Specify 100 MHz frequency for the clk_p clock and wizard will automatically calculate values for Period (ns),
Rise At (ns), Fall At (ns) and Jitter (ns) fields, see Illustration 10.14. Click Next to continue.

Each row of the wizard is a missing constraint. If you would prefer not to enter the constraint, you can uncheck the box
next to the constraint. If you would like more information about how the wizard finds these missing constraints, there is a
Reference button in the lower left-hand corner of the wizard. The reference pages are context specific and contain more
information about the topologies the wizard is looking for and an explanation as to why the constraint is being suggested.

91

DESIGN IMPLEMENTATION

Figure 10.14: Primary Clocks dialog box

Step 6. The primary clock constraints have been added to the design. Next, the wizard looks for unconstrained generated
clocks. Generated clocks are derived from primary clocks in the FPGA fabric. In our design, the wizard determined that
there are no unconstrained generated clocks. In the Generated Clocks dialog box, click Next to continue.

Step 7. Next, the wizard looks for forwarded clocks. A forwarded clock is a generated clock on a primary output port of the
FPGA. These are commonly used for source synchronous buses when the capture clock travels with the data. The wizard
has also determined that there are no unconstrained forwarded clocks in our design. In the Forwarded Clocks dialog box,
click Next to continue.

Step 8. Next, the wizard looks for external feedback delays. MMCM or PLL feedback delay outside the FPGA is used to
compute the clock delay compensation in the timing reports. The wizard did not find any unconstrained MMCM external
feedback delay in our design. In the External Feedback Delays dialog box, click Next to continue.

Step 9. Next, the wizard looks at the input delays. Illustration 10.15 shows the Input Delays page of the Timing Constraints
wizard. There are three sections on the page.

• First section shows all the input ports that are missing input delay constraints in the design. In this table you select
the timing template you would like to use to constraints the input.

• In the second section you provide the delay values for the template. This section will change depending on the
template chosen in the first section.

• In the third section there are three tabs:

– Tcl Command Preview - previews the Tcl commands that will be used to constrain the design

– Existing Set Input Delay Constraints - shows input delay constraints that exist in the design

– Waveform - displays the waveform associated with the template

92

10.1 Creating XDC File

Figure 10.15: Input Delays dialog box

Step 10. Uncheck the sw0 input port in the first section of the Input Delays dialog box, because we don’t need delay period
for this input port. When you successfully finished with all input constraint values, click Next

Step 11. Next, the Output Delays page of the wizard displays all the outputs that are unconstrained in the design, see
Illustration 10.16. The page layout is very similar to the inputs page. Uncheck the pwm_out output port in the first section
of the Output Delays dialog box, because we don’t need delay period for this output port also. When you successfully
finished with all output constraint values, click Next

Figure 10.16: Output Delays dialog box

93

DESIGN IMPLEMENTATION

Step 12. The wizard now looks for any unconstrained combinational paths through the design. A combinational path
is a path that traverses the FPGA without being captured by any sequential elements. Our design doesn’t contain any
combinational paths. In the Combinational Delays dialog box, click Next to continue.

Step 13. Physically exclusive clock groups are clocks that do not exit in the design at the same time. There are no
unconstrained physically exclusive clock groups in our design. In the Physically Exclusive Clock Groups dialog box,
click Next to continue.

Step 14. Logically exclusive clocks with no interaction are clocks that are active at the same time except on shared clock
tree sections. Then these clocks do not have logical paths between each other and outside the shared sections, they are
logically exclusive. There are no unconstrained logically exclusive clock groups with no interaction in our design. In the
Logically Exclusive Clock Groups with No Interaction dialog box, click Next to continue.

Step 15. Logically exclusive clocks with interaction are clocks that are active at the same time except on shared clock tree
sections. When these clocks have logical paths between each other, only the clocks limited to the shared clock tree sections
are logically exclusive and are therefore constrained differently than the logically exclusive clock with no interaction. There
are no unconstrained logically exclusive clock groups with interaction in our design. In the Logically Exclusive Clock
Groups with Interaction dialog box, click Next to continue.

Step 16. The Asynchronous Clock Domain Crossings page recommends constraints for safe clock domain crossings.
Our design does not contain any unconstrained clock domain crossings. Click Next to continue.

Step 17. The Constraints Summary page is the final page of the Timing Constraints wizard, see Illustration 10.17. All
the constraints that were generated by the wizard can be viewed by clicking the links. If you would like to run any reports
once the wizard is finished, you can select them using the check boxes in the wizard. Click Finish to complete the Timing
Constraints wizard.

Figure 10.17: Constraints Summary dialog box

Defining timing constraints using Constraints Editor

To define timing constraints using Constraints Editor, follow the next steps:

Step 1. Select Window -> Timing Constraints option from the main Vivado IDE menu to open the Timing Constraints
window, see Illustration 10.18, or

94

10.1 Creating XDC File

Figure 10.18: Timing Constraints option

select in the Flow Navigator, under the Synthesis Design section, second offered Edit Timing Constraints command

The Timing Constraints window appears in the main window of the Vivado IDE, see Illustration 10.19

Figure 10.19: Timing Constraints window

There are three sections in the Timing Constraints window:

95

DESIGN IMPLEMENTATION

• Constraints tree view - displays standard timing constraints, grouped by category. Double-clicking a constraint in
this section opens a new window to help you define the selected constraint.

• Constraints Spreadsheet - displays timing constraints of the type currently selected in the Constraints tree view. If
you prefer, you can use this to directly define or edit constraints instead of using Constraints wizard.

• All Constraints - displays all the timing constraints that currently exist in the design

The Timing Constraints wizard identifies missing clocks, I/O delays, and clock domain crossings exceptions, but it doesn’t
handle general timing exceptions. We will use the timing constraints editor to create the exceptions that exist in the design.

Define the primary clock constraint by creating a clock object with a specified period. The modulator design has a 100 MHz
clock supplied through differential clock input ports on the FPGA. First define the primary clock object for the design and
then define a PERIOD constraint for the clock object.

Step 2. In the Constraints tree view window of the Timing Constraint editor, double-click on the Create Clock (0) option
under the Clocks (0) section to create a clock constraint

Step 3. In the Create Clock dialog box, enter clock_name (clk_p) in the Clock Name field, see Illustration 10.20

Figure 10.20: Create Clock dialog box

Step 4. Click the icon next to the Source objects field and Specify Clock Source Objects dialog box will appear, see
Illustration 10.20

Note: This step is important to associate the clock input port to the clock definition.

Step 5. In the Specify Clock Source Objects dialog box (see Illustration 10.21), do the following:

• Ensure that I/O Ports is selected from the Find names of type drop-down list

• Enter clk in the empty search field

• Click Find

• In the Find results: 2 section, select clk_p

96

10.1 Creating XDC File

• Click the -> icon to select clk_p

• Click Set

Figure 10.21: Specify Clock Source Objects dialog box

Step 6. In the Create Clock dialog box, specify the period by setting the period property of the clock. In this step, you will
describe the period property and review the waveform details of the clock objects, see Illustration 10.22:

• Enter 10 ns in the Period field in the Waveform section, because 10 ns is the period of the 100 MHz input clock
signal

• Ensure that the Rise at and Fall at fields are set to 0 and 5 respectively, which means that the duty cycle of the input
clock signal will be 50%.

• Click OK to create the clock constraint

97

DESIGN IMPLEMENTATION

Figure 10.22: Create Clock dialog box after specifying the period for the clk_p

The Timing Constraints window now displays the timing constraint applied to the design, see Illustration 10.23

Figure 10.23: Timing Constraints window with the create_clock constraint

Notice that the create_clock XDC command for the created clock is also displayed in the All Constraints view of the Timing
Constraints window.

98

10.1 Creating XDC File

All the timing constraints that have been run are applied to the design that is loaded in the memory. The applied constraints
can be saved by writing them to the XDC file. All the timing constraints applied to the design are available in the All
Constraints view of the Timing Constraints window, see Illustration 10.23.

Step 7. To save your timing constraints to the modulator.xdc constraints file, select File -> Save Constraints command
from the main menu

If you want to verify that the timing constraints have been applied to the modulator.xdc file, do the following:

1. If the modulator.xdc file is already open, click the Reload link in the banner of the modulator.xdc tab to reload the
constraints file from disk.

2. If the modulator.xdc file is not open, select the Sources window, Hierarchy view

3. Expand Constraints folder

4. Double-click on the modulator.xdc file, under the modulator_rtl, to open the file and you should see that your timing
constraints were saved to the XDC file, see Illustrations 10.24 and 10.25

Figure 10.24: modulator.xdc constraints file in the Sources window

Figure 10.25: modulator.xdc file with physical and timing constraints

In the modulator.xdc file you will see four blocks of commands, see Illustration 10.25. First three blocks (first six lines) are
the Physical Constraints and the last line is the Timing Constraint.

99

DESIGN IMPLEMENTATION

10.1.2 Migrating UCF Constraints to XDC

As we already said, the Vivado IDE doesn’t support the UCF constraints used in the ISE Design Suite. You must migrate
the design with UCF constraints to the XDC format.

If you are familiar with the UCF file, it won’t be hard for you to understand how to convert existing UCF file to XDC as a
starting point for creating XDC constraints.

As with UCF, XDC consists of:

• Timing constraints

• Physical constraints

The fundamental differences between XDC and UCF constraints are:

• XDC is sequential language, with clear precedence rules

• UCF constraints are typically applied to nets, for which XDC constraints are typically applied to pins, ports, and cell
objects

• UCF PERIOD constraints and XDC create_clock command are not always equivalent and can lead to different timing
results

• UCF by default doesn’t time between asynchronous clock groups, while in XDC, all clocks are considered related
and timed unless otherwise constrained (set_clock_groups)

• In XDC, multiple clocks can exist on the same object

The Table 10.1 shows the main mapping between UCF constraints to XDC commands.

Table 10.1 UCF to XDC Mapping

UCF XDC
TIMESPEC PERIOD create_clock, create_generated_clock
OFFSET = IN <x> BEFORE <clk> set_input_delay
OFFSET = OUT <x> BEFORE <clk> set_output_delay
FROM:TO "TS _"2 set_multicycle_path
FROM:TO set_max_delay
TIG set_false_path
NET "clk_p" LOC = AD12 set_property LOC AD12 [get_ports clk_p]
NET "clk_p" IOSTANDARD = LVDS set_property IOSTANDARD LVDS [get_ports clk_p]

According to the Table 10.1, our UCF file will migrate to the XDC in the following way:

ucf constraints:

NET "clk_p" LOC = "Y9" | IOSTANDARD = LVCMOS33;
NET "sw0" LOC = "F22" | IOSTANDARD = LVCMOS25;
NET "pwm_out" LOC = "T22" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;

NET "clk_p" TNM_NET = clk_p;
TIMESPEC TS_clk_p = PERIOD "clk_in" 10 ns HIGH 50%;

xdc constraints:

set_property PACKAGE_PIN Y9 [get_ports clk_p]
set_property PACKAGE_PIN F22 [get_ports sw0]
set_property PACKAGE_PIN T22 [get_ports pwm_out]

set_property IOSTANDARD LVCMOS33 [get_ports clk_p]
set_property IOSTANDARD LVCMOS25 [get_ports sw0]
set_property IOSTANDARD LVCMOS33 [get_ports pwm_out]

create_clock -period 10.000 -name clk_p -waveform {0.000 5.000} [get_ports clk_p]

Note: Information about the types of constraints, how to generate XDC constraints file, differences between UCF and XDC
constraints and how to migrate from UCF to XDC constraints file, you can also find in the Lab 11: "Creating XDC File".

100

10.2 Implementation

10.2 Implementation

10.2.1 About the Vivado Implementation Process

The Vivado Design Suite enables implementation of UltraScale FPGA and Xilinx 7 Series FPGA designs from the variety
of design sources, including RTL designs, netlist designs and IP centric design flows.

Vivado implementation process includes all steps necessary to place and route the netlist onto the FPGA device resources,
while meeting the design’s logical, physical, and timing constraints.

The Vivado implementation is a timing-driven flow. It supports industry standard Synopsys Design Constraints (SDC)
commands to specify design requirements and restrictions, as well as additional commands in the Xilinx Design Constraints
(XDC) format.

The Vivado implementation process includes logical and physical transformations of the design. The implementation
process consists of the following sub-processes:

• Opt Design: Netlist Optimization

Optimizes the logical design to make it easier to fit onto the target Xilinx device:

– Ensures optimal netlist for placement

– Optional in non-project batch flow (but recommended)

– Automatically enables in the project-based flow

Because this is the first view of the assembled design (RTL and IP blocks), the design can usually be further op-
timized. The opt_design command is the next step and performs logic trimming, removing cells with no loads,
propagating constant inputs, and combining LUTs for example LUTs in series that can be combined into fewer LUTs.

• Power Opt Design: Power Optimization

Optimizes design elements to reduce the power demands of the target Xilinx device:

– Disabled in project-based flow (can be set with implementation settings in GUI)

– Power optimization includes a fine-grained clock gating solution that can reduce dynamic power by up to 30%

– Intelligent clock gating optimizations are automatically performed on the entire design and will generate no
changes to the existing logic or clocks

– Algorithm performs analysis on all portions of the design

Note: This step is optional.

• Place Design: Placer

Places the design onto the target Xilinx device:

– Project-based flow (included in implementation stage)

– Non-project batch flow (place_design)

– Can use an input XDEF as a starting point for placement

• Phys Opt Design: Physical Synthesis

Optimizes design timing by replicating drivers of high-fanout nets to distribute the loads:

– Post-placement timing-driven optimization (replicates and places drivers of high fanout nets with negative slack)

– More features coming in future releases (register retiming)

– Available in all flows and can be de-activated in the GUI

– phys_opt_design (run between place_design and route_design)

Note: This step is optional.

• Route Design: Router

Routes the design onto the target Xilinx device:

– Project-based flow (included in implementation stage)

– Non-project batch flow (route_design)

101

DESIGN IMPLEMENTATION

– Router reporting (report_route_status command)

– Check route status of individual nets

The Vivado Design Suite includes a variety of design flows, and supports an array of design sources. In order to generate
a bitstream that can be downloaded onto the FPGA device, the design must pass through implementation process.

Implementation is a series of steps that takes the logical netlist and maps it into the physical array of the target Xilinx device.
These steps include:

• Logic optimization

• Placement of logic cells

• Routing of connections between cells

10.2.2 Run Implementation

Now we will run implementation process from the Flow Navigator, which will trigger synthesis followed by implementation
in one step.

To run the implementation process, please do the following:

Step 1. In the Flow Navigator, click Run Implementation command and wait for implementation to be completed, see
Illustration 10.26

Figure 10.26: Run Implementation command

Note: You can monitor the Implementation progress in the bar in the upperright corner of the Vivado IDE.

Step 2. After the implementation is completed, the Implementation Completed dialog box will appear, see Illustration
10.27

Figure 10.27: Implementation Completed dialog box

Step 3. Select Open Implementation Design option in the Implementation Completed dialog box and click OK to open
the implemented design

102

10.2 Implementation

10.2.3 After Implementation

After implementation process:

• Sources and Netlist tabs do not change. Now as each resource is selected, it will show the exact placement of the
resource on the die (Instance Properties view will show specific details about the resource).

• Timing results have to be generated with the Report Timing Summary

• As each path is selected, the placement of the logic and its connections is shown in the Device view. This is the
cross-probing feature that helps with static timing analysis.

After you have implemented the design (or opened a project that only contains an implemented design), the Flow Navigator
changes again, see Illustration 10.28. Flow Navigator is optimized to provide quick access to the options most frequently
used after implementation (note that most of these reports are the same, except with true-timing information):

Figure 10.28: Implemented Design options

• Constraints Wizard: Open the Timing Constraints wizard

• Edit Timing Constraints: Open the Constraints viewer

• Report Timing Summary: Generates a default timing report (using true timing information)

• Report Clock Networks: Generates a clock tree for the design

• Report Clock Interaction: Verifies constraint coverage on paths between clock domains

• Report Methodology: Performs automated methodology checks and allows you to find design issues early in the
design process

• Report DRC: Performs design rule check on the entire design

• Report Noise: Performs an SSO analysis of output and bidirectional pins in your design

• Report Utilization: Generates a graphic version of the Utilization Report

• Report Power: Provides detailed power analysis reports

Note that the Report Timing Summary is the most important default report because at this point what most designers are
concerned about is meeting their timing objectives and only after completing an implementation does the designer know if
they can actually do that.

103

DESIGN IMPLEMENTATION

Figure 10.29: Report Timing Summary tab

Step 1. To view the clock interaction of the design, expand Implemented Design, under the Implementation in the Flow
Navigator, and select Report Clock Interaction command

Step 2. In the Report Clock Interaction dialog box, type the name of the results in the Results name field and click OK

Step 3. The Clock Interaction report will display in the main Vivado IDE window, see Illustration 10.30

Figure 10.30: Report Clock Interaction tab

This report is helpful to tell us if timing is asynchronous (in case that we didn’t include synchronization circuitry) and if paths
are constrained (in case that we didn’t add timing constraints to cover paths between unrelated clock domains). Green
squares confirm that paths between the two clock domains are constrained.

Step 4. To view the resource utilization of the design, expand Implemented Design, under the Implementation in the
Flow Navigator, and select Report Utilization command

Step 5. In the Report Utilization dialog box, type the name of the results in the Results name field and click OK

Step 6. The Utilization report will display at the bottom of the Vivado IDE, see Illustration 10.31

104

10.2 Implementation

Figure 10.31: Utilization Report tab

Note: You can maximize the utilization report and explore the results.

Note: Information about the Vivado Implementation Process, you can also find in the Lab 12: "Design Implementation" .

10.2.4 Implementation Reports

While the Flow Navigator points to the most important reports, the Reports tab contains several other useful reports, see
Illustration 10.32:

Figure 10.32: Reports tab

Vivado Implementation Log - describes the implementation process and any issues it encountered

IO Report - Lists every signal, its attributes and its final location, see Illustration 10.33. It is always important to double-
click pin assignments before implementing, because the tools can move any pin that is unassigned.

105

DESIGN IMPLEMENTATION

Figure 10.33: IO Report

Utilization Report - describes the amount of FPGA resources used in a text format, see Illustration 10.34

Figure 10.34: Utilization Report

106

10.2 Implementation

Control Sets Report - describes the number of unique control sets in the design Ideally this number will be as small as
possible. Number of control sets describes how control signals were grouped. Control signals include clocks, clock enables,
set, and reset signals. How the tools group them into slices and CLBs will dictate the density of the design in the FPGA.

Figure 10.35: Control Sets Report

DRC Report - Lists the DRC routing checks that were completed

Power Report - describes the operating conditions and the estimated power consumption of your device, see Illustration
10.36

107

DESIGN IMPLEMENTATION

Figure 10.36: Power Report

Route Status Report - reports lists any nets that could not be routed

Figure 10.37: Route Status Report

Timing Summary Report - identifies the default timing for the finished design (with true timing information)

The benefit of automatically generating these reports is that it encourages designers to read more about their design.

10.2.5 Run Post-Implementation Simulation

Simulation can be applied at several points in the design flow. It is one of the first steps after design entry and one of the
last steps after implementation as part of the verifying the end functionality and performance of the design.

Simulation is an iterative process. It might need to be repeated until both the design functionality and the timing are met.

On the Illustration 10.38 is shown the simulation flow of a typical design.

108

10.2 Implementation

Figure 10.38: Simulation Flow

10.2.6 Run Post-Implementation Timing Simulation

You can perform functional or timing simulation after implementation process. Timing simulation is the closest emulation to
actually downloading a design to a device. It allows you to ensure that the implemented design meets functional and timing
requirements and has the expected behavior in the design.

To run post-implementation timing simulation, we must first create test bench for that type of simulation. We can use
existing modulator_tb.vhd test bench file to create new modulator_wrapper_timesim_tb.vhd test bench file:

• change the entity name from modulator_tb to modulator_wrapper_timesim_tb

• change the architecture name from modulator_tb to modulator_wrapper_timesim_tb also

• remove clk_in_s input clock signal and create two input clock differential signals: clk_p_s and clk_n_s

• remove design_setting1_c constant

• remove all the constants related to the div_factor_freqhigh and div_factor_freqlow value calculations: c1_c, div_-
factor_freqhigh_c, div_factor_freqlow_c

• instead of Modulator module instance (pwmmodulator), instantiate Modulator Wrapper module (modulatorwrap-
per) instance

• remove all the generics from the Modulator Wrapper module instance (modulatorwrapper) as it is shown in the
code bellow

This last step is necessary because during the Synthesis process all the generics are being replaced by the values supplied
by the designer. This means that the design that will be implemented will have no generics. Therefore, when we generate
a Post-Implementation Timing Simulation model it can’t contain any generics since they don’t exist any more.

Modulator wrapper test bench file for the timing simulation:

109

DESIGN IMPLEMENTATION

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

entity modulator_wrapper_timesim_tb is
generic(

-- Parameter that specifies major characteristics of the board that will be used
-- to implement the modulator design
-- Possible choices: """lx9""", """zedboard""", """ml605""", """kc705""", """microzed""", ""socius"

""
-- Adjust the modulator_pkg.vhd file to add more
board_name_g : string := """zedboard""";

-- User defined settings for the pwm design
design_setting_g : design_setting_t_rec := design_setting_c
);

end entity;

architecture tb of modulator_wrapper_timesim_tb is

signal clk_p_s : std_logic := ’1’; -- differential input clock signal
signal clk_n_s : std_logic := ’0’; -- differential input clock signal
signal sw0_s : std_logic := ’1’; -- signal made for selecting frequency
signal pwm_s : std_logic := ’0’; -- pulse width modulated signal

-- period of input clock signal
constant clock_period_c : time := 1000000000.0 / get_board_info_f(board_name_g).fclk * 1ns;

begin

modulatorwrapper : entity work.modulator_wrapper -- modulator_wrapper module instance
port map(

clk_p => clk_p_s,
clk_n => clk_n_s,
sw0 => sw0_s,
pwm_out => pwm_s
);

clk_p_s <= not (clk_p_s) after clock_period_c/2; -- generates input clock signal
clk_n_s <= not (clk_n_s) after clock_period_c/2; -- generates input clock signal
sw0_s <= ’1’, ’0’ after 25 us;

end;

After we have created a new test bench file (modulator_wrapper_timesim_tb.vhd) we must include it in our design:

Step 1. In the Flow Navigator, under the Project Manager , click Add Sources command

Step 2. In the Add Sources dialog box, choose Add or create simulation sources option and click Next

Step 3. In the Add or Create Simulation Sources dialog box, click on the Specify simulation set drop-down list and
choose Create Simulation Set... option

Step 4. In the Create Simulation Set dialog box, enter a name for the new simulation set or leave sim_6 as a name and
click OK

Step 5. In the Add or Create Simulation Sources dialog box, under the new sim_6 simulation set, click "+" icon and
select Add Files... option

Step 6. In the Add Source Files dialog box, select modulator_wrapper_timesim_tb.vhd source file and click OK

Step 7. In the Add or Create Simulation Sources dialog box, click Finish and your new test bench file should appear in
the Sources window, under the Simulation Sources / sim_6

Step 8. In the Sources window, select new sim_6 simulation set, right-click on it and choose Make Active option

Step 9. Select the modulator_wrapper_timesim_tb - tb (modulator_wrapper_timesm_tb.vhd) file, right-click on it and
choose Set as Top option

After we have added a new modulator_wrapper_timesim_tb.vhd test bench file into the design, we can start post-
implementation timing simulation:

Step 1. In the Flow Navigator, click on the Run Simulation command and choose Run Post-Implementation Timing
Simulation option, see Illustration 10.39

110

10.2 Implementation

Figure 10.39: Run Post-Implementation Timing Simulation option

Note: If your Vivado IDE notify an error that compiler cannot find package (modulator_pkg.vhd), that means that Vivado
simulator has not included package automatically. Here are the steps to correct this problem:

Step 1. First step will be to add modulator_pkg.vhd file into the sim_6 simulation set. To do that, click the Add Sources
command

Step 2. In the Add Sources dialog box, choose Add or create simulation sources option and click Next

Step 3. In the Add or Create Simulation Sources dialog box, choose sim_6 as simulation set from the Specify simula-
tion set drop-down list, click the "+" icon and select Add Files... option

Step 4. In the Add Source Files dialog box, choose modulator_pkg.vhd file and click OK

Step 5. In the Add or Create Simulation Sources dialog box, click Finish and your modulator_pkg.vhd source file will
be added under the sim_6 simulation set

Step 6. To see where is added modulator_pkg.vhd source file (because it is not visible in the Sources view, in the
Hierarchy tab, under the sim_6 simulation set), click on the Libraries tab and expand sim_6 simulation set, see Illustration
10.40

Figure 10.40: Libraries tab with added modulator_pkg.vhd file

As you can see from the picture above, modulator_pkg.vhd source file is now located in the library xil_defaultlib, as it
should be.

Note: If you would like to see real compile order of your source files, open the Compile Order tab, beside the Libraries
tab. If you are not satisfied with the automatically generated compile order of your source files, you can change it in the
following way:

• To manually move some file from one place to another, Manual Compile Order option must be turned on. Before
start moving process, tool will ask you would you like to turn on the Manual Compile Order option, see Illustration
10.41

111

DESIGN IMPLEMENTATION

Figure 10.41: Move Sources dialog box - Manual compile order

• Click Yes and the selected source file will be moved to the place of your choice

Step 7. After all those modifications, we can turn back into the Hierarchy tab, select modulator_wrapper_timesim_tb.-
vhd simulation model and start ones more our post-implementation timing simulation

After implementation, the simulation information is much more complete, so you can get a better perspective on how the
functionality of your design is meeting your requirements.

After you select a post-implementation functional simulation, the functional netlist is generated and the UNISIM libraries
are used for simulation.

After you select a post-implementation timing simulation, the timing netlist and the SDF file are generated.

Step 8. Simulate your design for 200 ms (see Chapter 2.6 Simulating with Vivado Simulator – step 9.)

Step 9. Assuming no errors, your simulation result should look similar to Illustration 10.42

Figure 10.42: Timing Simulation Results

As you can see the results of timing simulation (waveform of the pwm_s signal) look identical to the results of functional
simulation. This means that the desired functionality is preserved after all implementation steps have been performed.
What is identical is the desired functionality (the shape of the pwm_s signal), but the timing properties of the pwm_s signal
simulated using functional and timing simulation are significantly different, as can be seen from the following Illustrations
(10.43 and 10.44).

Figure 10.43: Functional Simulation Results

112

10.3 Generate Bitstream File

Figure 10.44: Timing Simulation Results (with signal delays)

Illustration 10.44 shows how big is the pwm_s signal delay related to the rising edge of the input clock signal (clk_p_s).
This signal delay is illustrated with two markers (yellow and blue) and it amounts 7820 ns.

Note: You can see that timing simulation lasts much longer than functional simulations. This is the reason why timing
simulation is not often used in practice.

10.3 Generate Bitstream File

You can run the bitstream file generation process after your design has been completely routed for FPGAs. The bitstream
file generation process produces a bitstream for Xilinx device configuration. After the design is completely routed, you must
configure the device to execute the desired function.

To generate the bitstream file:

Step 1. In the Flow Navigator, under Program and Debug, click on the Generate Bitstream command, see Illustration
10.45

Figure 10.45: Generate Bitstream command

Note that the Generate Bitstream process will try to resynthesize and implement the design if any of process is out of
date.

Step 2. Click Yes to acknowledge running of the processes that are needed for bitstream generation

Step 3. Click Cancel in the Bitstream Generation Completed dialog box

Note: Information about how to generate bitstream file, you can also find in the Lab 12: "Design Implementation".

10.4 Program Device

After you have generated the bitstream file, the next step will bi to download it into the target FPGA device. In our case it
will be ZedBoard evaluation board.

The Vivado tool offers Open Hardware Manager to use the native in-system device programming capabilities that are built
into the Vivado IDE.

The Vivado IDE tool includes functionality that allows you to connect to your hardware, containing one or more FPGA
devices, to program them and debug your design on the real hardware. Connecting to hardware can be done either from
the Vivado IDE GUI or by using Tcl commands. In both cases, the procedure is the same:

113

DESIGN IMPLEMENTATION

Step 1. For the ZedBoard evaluation board, connect the Digilent USB JTAG cable of your ZedBoard board to the Windows
machine’s USB port

Step 2. Ensure that the board is plugged in and powered on

Step 3. Make sure that the board settings are proper

Step 4. In the Flow Navigator, under the Program and Debug, click Open Hardware Manager command, see Illustration
10.46

Figure 10.46: Open Hardware Manager command

The another way to open the hardware manager is to select Flow -> Open Hardware Manager option from the main
Vivado menu

Step 5. The next step in opening a hardware target is connecting to the hardware server that is managing the connection
to the hardware target. You can do this on three ways:

• Use the Open target selection in the Hardware Manager view, to open a recent or a new hardware targets, see
Illustration 10.47

Figure 10.47: Hardware Manager view

• Use the Open Target command, under the Open Hardware Manager in the Program and Device section, to open
new or recent hardware targets, see Illustration 10.48

Figure 10.48: Open Target command

• Use Tcl commands to open a connection to a hardware target

Step 6. Click on the Open New Target command. The Open New Hardware Target wizard provides an interactive way
for you to connect to a hardware server and target, see Illustration 10.49

114

10.4 Program Device

Figure 10.49: Open Hardware Target dialog box

Step 7. In the Open Hardware Target dialog box, click Next

Step 8. In the Hardware Server Settings dialog box, specify or select a local or remote server, depending on what
machine your hardware target is connected to. Leave the default Local server and click Next , see Illustration 10.50

Local server: Use this setting if your hardware target is connected to the same machine on which you are running the
Vivado IDE. The Vivado software automatically starts the Vivado hardware server (hw_server) application on the local
machine.

Remote server: Use this setting if your hardware target is connected to a different machine on which you are running the
Vivado IDE. Specify the host name or IP address of the remote machine and the port number for the hardware server
(hw_server) application that is running on that machine.

Figure 10.50: Hardware Server Settings dialog box

115

DESIGN IMPLEMENTATION

Step 9. In the Select Hardware Target dialog box, select the appropriate hardware target from the list of targets that are
managed by the hardware server. Note that when you select a target, you will see the various hardware devices that are
available on the hardware target, see Illustration 10.51

Figure 10.51: Select Hardware Target dialog box

Note: If one or more of the devices is unknown to Vivado tool, you can provide the instruction register (IR) length directly
in the Hardware Devices table of the Open Hardware Target wizard, see Illustration 10.51

Step 10. Click Next

Step 11. In the Open Hardware Target Summary dialog box, click Finish to connect to the hardware described in the
summary window, see Illustration 10.52

116

10.4 Program Device

Figure 10.52: Open Hardware Target Summary dialog box

Ones you finish opening a connection to a hardware target, the Hardware window is populated with the hardware server,
hardware target, and various hardware devices for the open target, see Illustration 10.53

Figure 10.53: Hardware view after opening a connection to the hardware target

Step 12. You can program the hardware device right-clicking on the device in the Hardware window and selecting the
Program Device... option, see Illustration 10.54

117

DESIGN IMPLEMENTATION

Figure 10.54: Program Device option

The another way to program your device is to select Program device option from the Hardware Manager view and choose
the target device (xc7z020_1), as it is shown on the Illustration 10.55

Figure 10.55: Program device option from the Hardware Manager view

In the Program Device window, click Program to program your device, see Illustration 10.56

Figure 10.56: Program Device window

Note: As a convenience, Vivado IDE automatically uses .bit file for the current implemented design as the values for the
programming file property of the first matching device in the open hardware target.

Ones the progress dialog box has indicated that the programming is 100% complete, you can check that the hardware
device has been programmed successfully by examining the DONE status in the Hardware Device Properties view, see
Illustration 10.57

118

10.4 Program Device

Figure 10.57: Hardware Device Properties window

After downloading your design into the ZedBoard device, led diode on the board will start blinking. The speed of blinking
will be chosen depends on the position of the two-state on-board switch sw0.

If you want to close a hardware target, right-click on the hardware target in the Hardware window and select Close Target
option from the popup manu, see Illustration 10.58

Figure 10.58: Close Target option

If you want to close a connection to the hardware server, right-click on the hardware server in the Hardware window and
select Close Server option from the popup menu, see Illustration 10.59

Figure 10.59: Close Server option

Assuming no errors occurs, you can test your design with a Vivado logic analyzer or an oscilloscope.

Note: Information about how to program an FPGA device, you can also find in the Lab 12: "Design Implementation".

119

DESIGN IMPLEMENTATION

10.5 Modifications in case of using different development boards

In case of using some other development board, some small modifications to accommodate your design to the new devel-
opment board, must be done.

These modifications will be illustrated in case of using Virtex-7 (VC707) development board.

Difference between ZedBoard and Virtex-7 development board is that ZedBoard has single-ended reference clock, while
Virtex-7 has differential reference clock. The other difference between these two boards is the frequency of the reference
clock. ZedBoard has 100 MHz reference clock, while Virtex-7 has 200 MHz reference clock.

Step 1. Change the type of the target FPGA device

• In the Project Summary window (Project Settings) click on the Project part: ZedBoard Zynq Evaluation and
Development Kit (xc7z020clg484-1), see Illustration 10.60

Figure 10.60: Project Settings window

• In the Project Settings dialog box, click on the icon beside Project device field to browse the another development
board, see Illustration 10.61

Figure 10.61: Project Settings dialog box

In the Select Device dialog box, select Virtex-7 VC707 Evaluation Platform and click OK, see Illustration 10.62

120

10.5 Modifications in case of using different development boards

Figure 10.62: Select Device dialog box

Step 2. Change the xdc constraints file

Open the modulator.xdc file from your working directory and make the following changes:

set_property LOC E19 [get_ports clk_p];
set_property LOC E18 [get_ports clk_n];
set_property LOC AV30 [get_ports sw0];
set_property LOC AM39 [get_ports pwm_out];

set_property IOSTANDARD LVDS [get_ports clk_p];
set_property IOSTANDARD LVDS [get_ports clk_n];
set_property IOSTANDARD LVCMOS18 [get_ports sw0];
set_property IOSTANDARD LVCMOS18 [get_ports pwm_out];

create_clock -period 5.000 -name clk_p -waveform {0.000 2.500} [get_ports clk_p]

The things that we changed in the xdc file:

• Placement Constraints - find in the User Guide for the Virtex-7 (VC707) development board pin locations where you
would like to connect the input differential clock (clk_p, clk_n) and the sw0 and pwm_out ports.

• Timing Constraints - change the period of the input clock signal. For Virtex-7 (VC707) development board, you have
to change input clock period from 10 ns to 5 ns, because Virtex-7 (VC707) development board has 200 MHz input
clock frequency.

Step 3. Change the source codes

Because we changed the target development board, from ZedBoard to Virtex-7 (VC707), we must accommodate the whole
system to the new parameters.

Changes that must be done are listed below.

121

DESIGN IMPLEMENTATION

If you want to add some other development board that is not on the list of the available development boards in our design,
please open the modulator_pkg.vhd source file and add the desired development board information.

modulator_pkg.vhd:

• Add the name of the new development board in the board_type_t type declaration:

type board_type_t is (lx9, zedboard, ml605, kc705, vc707, microzed, socius);

• Create a new constant for the new development board. Constant must be a structure of type board_setting_t_rec.
In that structure you must declare the following parameters:

– the name of the new development board defined in the board_type_t type declaration

– the frequency of the input clock signal in MHz

– is the input clock differential (yes) or not (no), using a has_diff_clk_t type field

-- place the information about the new boards here:

constant lx9_c : board_setting_t_rec := (lx9, 100000000.0, no); -- Spartan-6
constant zedboard_c : board_setting_t_rec := (zedboard, 100000000.0, no); -- Zynq-7000
constant ml605_c : board_setting_t_rec := (ml605, 200000000.0, yes); -- Virtex-6
constant kc705_c : board_setting_t_rec := (kc705, 200000000.0, yes); -- Kintex-7
constant vc707_c : board_setting_t_rec := (vc707, 200000000.0, yes); -- Virtex-7
constant microzed_c : board_setting_t_rec := (microzed, 33333333.3, no); -- MicroZed
constant socius_c : board_setting_t_rec := (socius, 50000000.0, no); -- Socius

modulator_wrapper_rtl.vhd and modulator_tb.vhd:

• Change the type of your development board. In our case it will be from zedboard to vc707.

-- Parameter that specifies major characteristics of the board that will be used
-- to implement the modulator design
-- Possible choices: """lx9""", """zedboard""", """ml605""", """kc705""", """vc707""", """microzed""",

"""socius"""
-- Adjust the modulator_pkg.vhd file to add more
board_name_g : string := """vc707""";

122

Chapter 11

DEBUGGING DESIGN

In this chapter we will show how user can debug a design. We will use two types of analyzers, Vivado Logic Analyzer as
an integrated Vivado analyzer and oscilloscope as an external debugging device.

11.1 Inserting ILA and VIO Cores into Design

In this chapter you will learn how to debug your FPGA design by inserting an Integrated Logic Analyzer (ILA) core and
Virtual Input/Output (VIO) core using the Vivado IDE. You will take advantage of integrated Vivado logic analyzer functions
to debug and discover some potential root causes of your design.

There are two flows (methods) supported in the Vivado Debug Probing:

1. HDL Instantiation Debug Probing Flow

2. Using the Netlist Insertion Debug Probing Flow

This chapter will illustrate "Using the Netlist Insertion Debug Probing Flow" between Vivado logic analyzer, ILA 6.2, VIO
3.0 and Vivado IDE. Details about how to use the "HDL Instantiation Debug Probing Flow" can be found in the Chapter 14
"Appendix".

LogiCORE IP Integrated Logic Analyzer (ILA) v6.2 core

The LogiCORE IP Integrated Logic Analyzer (ILA) core is a customizable logic analyzer core that can be used to monitor the
internal signals of a design. The ILA core includes many advanced features of modern logic analyzers, including boolean
trigger equations, and edge transition triggers. Because the ILA core is synchronous to the design being monitored, all
design clock constraints that are applied to your design are also applied to the components of the ILA core.

ILA core general features are:

• user-selectable number of probe ports and probe_width

• multiple probe ports, which can be combined into a single trigger condition

• AXI interface on ILA IP core to debug AXI IP cores in a system

The following illustration is a symbol of the ILA v6.2 core.

DEBUGGING DESIGN

Figure 11.1: Symbol of the ILA v6.2 core

Signals in the FPGA design are connected to ILA core clock and probe inputs. These signals, attached to the probe inputs,
are sampled at design speed and stored using on-chip block RAM (BRAM). The core parameters specify the number of
probes, trace sample depth, and the width for each probe input. Communication with the ILA core is conducted using an
auto-instantiated debug core hub that connects to the JTAG interface of the FPGA.

Note: If you want to read and learn more about the ILA v6.2 core, please refer to "LogiCORE IP Integrated Logic Analyzer
(ILA) v6.2 Product Guide".

LogiCORE IP Virtual Input/Output (VIO) v3.0 core

The LogiCORE IP Virtual Input/Output (VIO) core is a customizable core that can both monitor and drive internal FPGA
signals in real time. The number of width of the input and output ports are customizable in size to interface with the FPGA
design. Because the VIO core is synchronous to the design being monitored and/or driven, all design clock constraints
that are applied to your design are also applied to the components inside the VIO core. Run time interaction with this core
requires the use of the Vivado logic analyzer feature. Unlike the ILA core, no on-chip or off-chip RAM is required.

VIO core general features are:

• provides virtual LEDs and other status indicators through input ports

• includes optional activity detectors on input ports to detect rising and falling transitions between samples

• provides virtual buttons and other controls indicators through output ports

• includes custom output initialization that allows you to specify the value of the VIO core outputs immediately following
device configuration and start-up

• run time reset of the VIO core to initial values

The following illustration is a symbol of the VIO v3.0 core.

124

11.1 Inserting ILA and VIO Cores into Design

Figure 11.2: Symbol of the VIO v3.0 core

Note: If you want to read and learn more about the VIO v3.0 core, please refer to "LogiCORE IP Virtual Input/Output (VIO)
v3.0 Product Guide".

Insertion of debug cores in the Vivado tool is presented in a layered approach to address different needs of the diverse
group of Vivado users:

• The highest level is a simple wizard that creates and configures Integrated Logic Analyzer (ILA) cores automatically
based on the selected set of nets to debug

• The next level is the main Debug window allowing control over individual debug cores, ports and their properties

• The lowest level is the set of Tcl debug commands that you can enter manually or replay as a script

Netlist insertion debug probing flow can be used to insert ILA cores only. If you need the VIO core, like in our design, it
must be inserted using the following steps:

Step 1. In the Vivado Flow Navigator, under the Project Manager, click the IP Catalog command

Step 2. In the IP Catalog window, in the Search field, search for the VIO (Virtual Input/Output) IP core. After you selected
the VIO core, in the Details window, under the main IP Catalog window, you will find all the necessary information about
selected IP core, see Illustration 11.3

125

DEBUGGING DESIGN

Figure 11.3: IP Catalog window with selected VIO core

Step 3. Double-click on the VIO (Virtual Input/Output) IP core and Vivado IDE will create a new skeleton source for your
VIO core

The window that will be opened is used to set up the general VIO core parameters, see Illustration 11.4

Figure 11.4: VIO core configuration window - General Options

Step 4. In the VIO (Virtual Input/Output) (3.0) window, enter vio_core_name (vio_core) in the Component Name field

Step 5. In the General Options tab, leave Input Probe Count to be 1 and Output Probe Count also to be 1, because we
will need one input probe for pwm_out signal and one output probe for sw0 signal, see Illustration 11.4

126

11.1 Inserting ILA and VIO Cores into Design

Step 6. In the PROBE_IN Ports(0..0) tab leave Probe Width of the PROBE_IN0 Probe Port to be 1, because our pwm_out
signal is 1 bit signal, see Illustration 11.5

Figure 11.5: VIO core configuration window - PROBE_IN Ports(0..0) tab

Step 7. In the PROBE_OUT Ports(0..0) tab, leave Probe Width of the PROBE_OUT0 Probe Port to be 1, because our
sw0 signal is also 1 bit signal, see Illustration 11.6

Figure 11.6: VIO core configuration window - PROBE_OUT Ports(0..0) tab

Step 8. Click OK

127

DEBUGGING DESIGN

Step 9. In the Generate Output Products window click Generate, see Illustration 11.7

Figure 11.7: Generate Output Products window for VIO core

Note: After VIO core generation, your VIO core should appear in the Sources window, see Illustration 11.8

Figure 11.8: Sources tab with generated VIO core

The first step in inserting the ILA core into our design is to add debug nets to the project. Following are some of the
methods how to add debug nets using the Vivado IDE:

• Add mark_debug attribute to the target XDC file

set_property mark_debug true [get_nets sine_ampl_s*]
set_property mark_debug true [get_nets freq_trig_s*]

Note: Use these attributes in synthesized design only! Do not use them with pre-synthesis or elaborated design nets.

• Add mark_debug attribute to HDL files

VHDL:

attribute mark_debug : string;
attribute keep: string;
attribute mark_debug of sine_ampl_s : signal is "true";
attribute mark_debug of freq_trig_s : signal is "true";

Verilog:

(* mark_debug *) wire sine_ampl_s;
(* mark_debug *) wire freq_trig_s;

128

11.1 Inserting ILA and VIO Cores into Design

• Right-click and select Mark Debug or Unmark Debug on Synthesis netlist

• Use Tcl prompt to set the mark_debug attribute. For example:

set mark_debug true [get_nets sine_ampl_s*]
set mark_debug true [get_nets freq_trig_s*]

This applies the mark_debug on the current, open netlist.

In this tutorial we will use only the second method of adding debug nets. The following steps will show you how to add
debug nets to your HDL file (modulator_rtl.vhd) and how to synthesize your design using Vivado IDE.

Step 10. Open the existing modulator_rtl.vhd source file and add the following code lines into the architecture of the
modulator design:

attribute mark_debug : string;
attribute keep : string;

attribute mark_debug of sine_ampl_s : signal is "true";
attribute mark_debug of freq_trig_s : signal is "true";

Now, your modulator_rtl.vhd source file should look like the code bellow:

...
architecture rtl of modulator is

attribute mark_debug : string;
attribute keep : string;

-- amplitude counter
signal ampl_cnt_s : std_logic_vector(design_setting_g.depth-1 downto 0);
-- current amplitude value of the sine signal
signal sine_ampl_s : std_logic_vector(design_setting_g.width-1 downto 0);
-- signal which frequency depends on the sw0 state
signal freq_trig_s : std_logic := ’0’;

attribute mark_debug of sine_ampl_s : signal is "true";
attribute mark_debug of freq_trig_s : signal is "true";

begin
...

Step 11. Save the modulator_rtl.vhd source file with new changes

After configuring and generating the VIO core, we should make a new module (modulator_vio_rtl.vhd) where we will
connect the existing design (modulator_rtl.vhd) with the VIO core (see Figure 11.9).

Figure 11.9: Connection between VIO core and Modulator module

129

DEBUGGING DESIGN

As you can see from the picture above (Figure 11.9), we have to connect only Modulator module with the VIO core, because
ILA core will be inserted later, in the design netlist.

To create a modulator_vio_rtl.vhd module, use steps for creating modules, Chapter 2.4.1 Creating a Module Using
Vivado Text Editor .

modulator_vio_rtl.vhd:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

library unisim;
use unisim.vcomponents.all;

use work.modulator_pkg.all;

entity modulator_vio is
generic(

-- If some module is top, it needs to implement the differential clk buffer,
-- otherwise this variable will be overwritten by a upper hierarchy layer
this_module_is_top_g : module_is_top_t := yes;

-- Parameter that specifies major characteristics of the board that will be used
-- to implement the modulator design
-- Possible choices: """lx9""", """zedboard""", """ml605""", """kc705""", """microzed""", """socius

"""
-- Adjust the modulator_pkg.vhd file to add more
board_name_g : string := """zedboard""";

-- User defined settings for the pwm design
design_setting_g : design_setting_t_rec := design_setting_c
);

port(
clk_p : in std_logic; -- differential input clock signal
clk_n : in std_logic; -- differential input clock signal
pwm_out : out std_logic -- pulse width modulated signal

-- clk_en : out std_logic -- clock enable port used only for MicroZed board
);

end entity;

architecture rtl of modulator_vio is

signal clk_in_s : std_logic;
signal pwm_s : std_logic_vector (0 downto 0);
signal sw0_s : std_logic_vector (0 downto 0);

-- c1_c = fclk/(2^depth*2^width) - c1_c = 95.3674, fclk = 100 MHz
constant c1_c : real := get_board_info_f(board_name_g).fclk/(real((2**design_setting_g.depth)*(2**
design_setting_g.width)));

-- div_factor_freqhigh_c = (c1_c/f_high)*2^width - threshold value of frequency a = 110592
constant div_factor_freqhigh_c : integer := integer(c1_c/design_setting_g.f_high)*(2**design_setting_g.
width);

-- div_factor_freqlow_c = (c1_c/f_low)*2^width - threshold value of frequency b = 389120
constant div_factor_freqlow_c : integer := integer(c1_c/design_setting_g.f_low)*(2**design_setting_g.
width);

-- vio_core component definition
component vio_core

port (
clk : in std_logic;
probe_in0 : in std_logic_vector (0 downto 0);
probe_out0 : out std_logic_vector (0 downto 0)

);
end component;

begin

-- in case of MicroZed board we must enable on-board clock generator
-- clk_en <= ’1’;

-- if module is top, it has to generate the differential clock buffer in case
-- of a differential clock, otherwise it will get a single ended clock signal
-- from the higher hierarchy

pwm_out <= pwm_s (0);

clk_buf : if (get_board_info_f(board_name_g).has_diff_clk = yes) generate

ibufgds_inst : ibufgds
generic map(

ibuf_low_pwr => true,
-- low power (true) vs. performance (false) setting for referenced I/O standards
iostandard => "default"

130

11.1 Inserting ILA and VIO Cores into Design

)

port map (
o => clk_in_s, -- clock buffer output
i => clk_p, -- diff_p clock buffer input
ib => clk_n -- diff_n clock buffer input

);
end generate clk_buf;

no_clk_buf : if (get_board_info_f(board_name_g).has_diff_clk = no) generate
clk_in_s <= clk_p;

end generate no_clk_buf;

-- modulator module instance
modulator: entity work.modulator(rtl)

generic map(
design_setting_g => design_setting_g
)

port map(
clk_in => clk_in_s,
sw0 => sw0_s(0),
div_factor_freqhigh => conv_std_logic_vector(div_factor_freqhigh_c, 32),
div_factor_freqlow => conv_std_logic_vector(div_factor_freqlow_c, 32),
pwm_out => pwm_s(0)
);

-- vio_core component instance
vio: vio_core

port map (
clk => clk_in_s,
probe_in0 => pwm_s,
probe_out0 => sw0_s
);

end;

After we made a new VHDL module (modulator_vio_rtl.vhd), we must also modify the modulator_rtl.xdc file, because
we don’t have any more sw0 port. The new content of the xdc file is shown in the code below.

modulator_vio.xdc file:

set_property PACKAGE_PIN Y9 [get_ports clk_p]
set_property PACKAGE_PIN T22 [get_ports pwm_out]

set_property IOSTANDARD LVCMOS33 [get_ports clk_p]
set_property IOSTANDARD LVCMOS33 [get_ports pwm_out]

create_clock -period 10.000 -name clk_p -waveform {0.000 5.000} [get_ports clk_p]

After finishing with the modifications, we must return to the Vivado IDE and do the following:

Step 12. Remove modulator_wrapper_rtl.vhd source file from the design

Step 13. Add modulator_vio_rtl.vhd and modulator_vio.xdc files in the Modulator design with Add Sources option:

• modulator_vio_rtl.vhd as Design Source file, and

• modulator_vio.xdc as Constraints file

Step 14. Remove the old modulator.xdc file from the design

Step 15. In the Sources window, right-click on the modulator_vio_rtl.vhd file and select Set as Top option

Step 16. In Project Manager, click the Project Settings command, see Illustration 11.10

Figure 11.10: Project Settings command

131

DEBUGGING DESIGN

Step 17. In the Project Settings dialog box, select Synthesis option from the left pane

Step 18. In the Synthesis window, change the flatten_hierarchy option from rebuilt to none as it is shown on the
Illustration 11.11 and click OK

The reason for changing this setting to none is to prevent the synthesis tool from performing any boundary optimization for
this tutorial.

Figure 11.11: Project Settings dialog box

Step 19. In the Vivado Flow Navigator, click Run Synthesis command (Synthesis option) and wait for task to be
completed, see Illustration 11.12

Figure 11.12: Run Synthesis command

Step 20. After the synthesis is completed, choose Open Synthesized Design option in the Synthesis Completed dialog
box, see Illustration 11.13

132

11.1 Inserting ILA and VIO Cores into Design

Figure 11.13: Open Synthesized Design option

Step 21. Open Debug Layout, if it is not already opened

Step 22. In the Debug window, expand dbg_hub and Unassigned Debug Nets folders, if they are not already expanded.
Illustration 11.14 shows assigned debug nets to the VIO core and debug nets that were marked in the modulator_rtl.vhd
source file with mark_debug attributes and that we will assign to the ILA core.

Figure 11.14: Debug tab with unassigned debug nets

Step 23. Select the Netlist tab, beside Sources tab and expand Nets folders of the modulator_vio and modulator
module, see Illustration 11.15

133

DEBUGGING DESIGN

Figure 11.15: Netlist window with expanded Nets folders

In the expanded Nets folders you will find nets that exist in our design. Nets that we marked with mark_debug attributes
are designated with green bug sign. These nets will be used to verify and debug our design.

If you are not satisfied with the marked nets and you want to mark some new or unmark some existing net, you have an
opportunity to do that from the Netlist window in the following way:

• Select the net, right-click on it, and choose Mark Debug or Unmark Debug option, see Illustration 11.16

Figure 11.16: Mark and Unmark Debug option

• In the Confirm Debug Net(s) dialog box (in case of marking new debug net), click OK, see Illustration 11.17

134

11.1 Inserting ILA and VIO Cores into Design

Figure 11.17: Confirm Debug Net(s) dialog box

The next step after marking nets for debugging is to assign them to debug cores. The Vivado IDE provides Set Up Debug
wizard to help guide you through the process of automatically creating the debug cores and assigning the debug nets to
the inputs of the cores.

To use the Set Up Debug wizard to insert the debug cores, do the following:

Step 24. In the Debug window, select Set Up Debug button to launch the wizard, see Illustration 11.18

Figure 11.18: Set Up Debug button

The another way to launch this wizard is to select Tools -> Set up Debug... option from the Vivado IDE main menu, see
Illustration 11.19

135

DEBUGGING DESIGN

Figure 11.19: Tools -> Set up Debug option

Step 25. In the Set Up Debug dialog box, click Next to open Nets to Debug dialog box, see Illustration 11.20

Figure 11.20: Set Up Debug dialog box

Step 26. In the Nets to Debug dialog box you will find nets that you have marked for debugging, see Illustration 11.21

136

11.1 Inserting ILA and VIO Cores into Design

Figure 11.21: Nets to Debug dialog box

In the Nets to Debug dialog box, you have also an opportunity to add more nets or remove existing nets from the table.
Click Find Nets to Add... button to open Find Nets dialog box, see Illustration 11.22

Figure 11.22: Find Nets dialog box

Step 27. If you are satisfied with the debug net selection, click OK

Step 28. In the Nets to Debug dialog box, select target debug net, right-click on it and choose Select Clock Domain...
option to change the clock domain that will be used to sample value on the net, see Illustration 11.23

137

DEBUGGING DESIGN

Figure 11.23: Select Clock Domain option

Note: The Set Up Debug wizard attempts to automatically select the appropriate clock domain for the debug net by
searching the path for synchronous elements.

Step 29. In the Select Clock Domain dialog box modify clock domain as needed, see Illustration 11.24. Be aware that
each clock domain present in the table results in a separate ILA v6.2 core instance.

Figure 11.24: Select Clock Domain dialog box

Step 30. Select the same clock domain for freq_trig_s net, because signals captured by the same ILA core must have the
same clock domain, Illustration 11.25

138

11.1 Inserting ILA and VIO Cores into Design

Figure 11.25: Nets to Debug dialog box - with specified clock domains

Step 31. Ones you are satisfied with the debug net selection, click Next

Step 32. In the ILA Core Options dialog box, set Sample of data depth option to 2048 value, enable Capture control
option, leave all parameters unchanged and click Next, see Illustration 11.26

Figure 11.26: ILA Core Options dialog box

Important: The Set Up Debug wizard inserts one ILA core per clock domain!

The nets that were selected for debug are assigned automatically to the probe ports of the inserted ILA v6.2 cores. The
last wizard screen shows the core creation summary displaying the number of clocks found and ILA cores to be created
and/or removed, see Illustration 11.38

Step 33. If you are satisfied with the results, click Finish to insert and connect the ILA v6.2 cores in your synthesized
design netlist, see Illustration 11.27

139

DEBUGGING DESIGN

Figure 11.27: Set up Debug Summary dialog box

Step 34. The debug nets are now assigned to the ILA v6.2 debug core, what you can see in the Debug window, see
Illustration 11.28

Figure 11.28: Debug window with assigned debug nets

The generated ILA core you can also find in the Netlist window, see Illustration 11.29

140

11.2 Debug a Design using Integrated Vivado Logic Analyzer

Figure 11.29: Netlist window with generated ILA core

Step 35. Implement your design with Run Implementation option from the Flow Navigator / Implementation (see Sub--
Chapter 10.2.2 Run Implementation)

Step 36. Generate bitstream file with Generate Bitstream option from the Flow Navigator / Program and Debug (see
Sub-Chapter 10.3 Generate Bitstream File)

Step 37. Program your ZedBoard device (see Sub-Chapter 10.4 Program Device)

Note: All the information about the Vivado Netlist Instantiation Debug Probing Flow, such as its design flow and cores, how
to generate, configure and instantiate some of them, as well as how to connect them with your existing design, you can
also find in the Lab 13: "Vivado Logic Analyzer" .

11.2 Debug a Design using Integrated Vivado Logic Analyzer

Ones you have the debug cores in your design, you can use the run time logic analyzer features to debug the design in
hardware. The Vivado logic analyzer feature is used to interact with new ILA, VIO, and JTAG-to-AXI Master debug cores
that are in your design.

To access the Vivado logic analyzer feature:

Step 1. In the Vivado Flow Navigator, click the Open Hardware Manager command in the Program and Debug section,
see Illustration 11.30

Figure 11.30: Open Hardware Manager command

Step 2. Repeat steps from the Chapter 10.4 Program Device to program your FPGA device with the .bit file

Step 3. After programming the FPGA device with the .bit file that contains the ILA v6.2 and VIO v3.0 cores, the Hardware
window now shows the ILA and VIO cores that were detected after scanning the device, see Illustration 11.31

141

DEBUGGING DESIGN

Figure 11.31: Hardware window showing the ILA and VIO debug cores

Step 4. The next step in design debugging process is to set up the ILA core. When the debug cores are detected
upon refreshing a hardware device, the default dashboard for each debug core is automatically opened. The default ILA
Dashboard can be seen on the Illustration 11.32

Figure 11.32: ILA Properties window

Every default dashboard contains windows relevant to the debug core the dashboard is created for. The default dashboard
created for the ILA debug core contains five windows, as can be seen on the previous illustration:

• Settings window

• Status window

• Trigger Setup window

• Capture Setup window

• Waveform window

As you can see from the illustration above, ILA Dashboard is the central location for all status and control information of
the ILA core. You can use the ILA Dashboard to interact with the ILA core in several ways:

• Use BASIC and ADVANCED trigger modes to trigger on various events in hardware

• Use ALLWAYS and BASIC capture modes to control filtering of the data to be captured

• Set the data depth of the ILA capture window

142

11.2 Debug a Design using Integrated Vivado Logic Analyzer

• Set the trigger position to any sample within the capture window

• Monitor the trigger and capture status of the ILA debug core

Step 5. In the ILA Settings window, under the Capture Mode Settings, configure the following parameters:

• set Capture mode to BASIC

• leave Window data depth on the 2048 value, and

• set Trigger position in window to 1000

Capture mode - selects what condition is evaluated before each sample is captured:

• ALWAYS: store a data sample during a given clock cycle regardless of any capture conditions

• BASIC: store a data sample during a given clock cycle only if the capture condition evaluates "true"

Data Depth - sets the data depth of the ILA core captured data buffer. You can set the data depth to any power of two from
1 to the maximum data depth.

Trigger Position - sets the position of the trigger mark in the captured data buffer. You can set the trigger position to any
sample number in the captured data buffer. For instance, in the case of a captured data buffer that is 1024 sample deep:

• sample number 0 corresponds to the first (left- most) sample in the captured data buffer

• sample number 1023 corresponds to the last (right-most) sample in the captured data buffer

• sample numbers 511 and 512 correspond to the two "center" samples in the captured data buffer

Step 6. The next step will be to decide what ILA debug probes you want to participate in the trigger condition. Open
Debug Probes window by clicking Window -> Debug Probes option from the main Vivado IDE menu to see all the
probes corresponding to the ILA core.

Step 7. Go to the Debug Probes window, select the desired ILA debug probes (in our case it will be only the freq_trig_s
debug probe), right-click on it and choose Add Probes to Basic Capture Setup option, see Illustration 11.33.

Figure 11.33: Add Probes to Basic Capture Setup option

The another way to add debug probes to the Basic Capture Setup window is to drag and drop the probes from the Debug
Probes window to the Basic Capture Setup window.

Important: Only probes that are in the Basic Trigger Setup or Basic Capture Setup window participate in the trigger
condition. Any probes that are not in the window are set to "don’t care" values and are not used as part of the trigger
condition.

143

DEBUGGING DESIGN

Note: If you want to remove probes from the Basic Capture Setup window, select the probe, right-click on it and choose
Remove option.

The Debug Probes window contains information about the nets that you probed in your design using the ILA and/or VIO
cores. This debug probe information is extracted from your design and stored in a data file that typically has an .ltx file
extension. Normally, the ILA probe file is automatically created during implementation process. This file is automatically
associated with the FPGA hardware device if the probes file is called debug_nets.ltx and is found in the same directory as
the bitstream file that is associated with the device.

Step 8. Now, when the ILA debug probe freq_trig_s is in the Basic Capture Setup window, see Illustration 11.34, we can
create trigger condition and debug probe compare values.

Figure 11.34: Basic Capture Setup window with the freq_trig_s debug probe

Step 9. In the Basic Capture Setup window, select the Operator cell in for a given ILA debug probe (freq_trig_s) to open
the Operator dialog box. Select == (equal) option, as it is shown on the Illustration 11.35.

Figure 11.35: ILA probe Operator dialog box

The ILA probe trigger comparators are used to detect specific equality or inequality conditions on the probe inputs to the

144

11.2 Debug a Design using Integrated Vivado Logic Analyzer

ILA core. The trigger condition is the result of a Boolean "AND", "OR", "NAND", or "NOR" calculation of each of the ILA
probe trigger comparator results.

Step 10. Repeat the same procedure with the Radix and Value cells and set its parameters on the following way:

• Radix: [B] (Binary)

• Value: R (0-to-1 transition)

As you can see from the illustration above, the Basic Capture Setup window contains three fields that you can configure:

• Operator: This is the comparison operator that you can set to the following values:

– == (equal)

– != (not equal)

– < (less then)

– <= (less then or equal)

– > (greater than)

– >= (greater than or equal)

• Radix: This is the radix or base of the Value that you can set to the following values:

– [B] Binary

– [H] Hexadecimal

– [O] Octal

– [A] ASCII

– [U] Unsigned Decimal

– [S] signed Decimal

• Value: This is the comparison value that will be compared (using the Operator) with the real-time on the nets(s) in
the design that are connected to the probe input of the ILA debug core. Depending on the radix settings, the Value
string is as follows:

– Binary

* 0 : logical zero

* 1 : logical one

* X : don’t care

* R : rising or low-to-high transition

* F : falling or high-to-low transition

* B : either low- to-high or high-to-low transitions

* N : no transition (current sample value is the same as the previousvalue)

– Hexadecimal

* X : All bits corresponding to the value string character are "don’t care" values

* 0-9 : Values 0 through 9

* A-F : values 10 through 15

– Octal

* X : All bits corresponding to the value string character are "don’t care" values

* 0-7 : Values 0 through 7

– ASCII

* Any string made up of ASCII characters

– Unsigned Decimal

* Any non-negative integer value

– Signed Decimal

* Any integer value

145

DEBUGGING DESIGN

Step 11. After we set all the ILA core parameters, we can run or arming the ILA core trigger. We can run or arm the ILA
core trigger in two different modes:

• Run Trigger mode - arms the ILA core to detect the trigger event that is defined by the ILA core trigger condition
and probe compare values

To run this mode, click the Run Trigger button in the Hardware or Debug Probes window.

• Run Trigger Immediate mode – arms the ILA core to trigger immediately regardless of the settings of the ILA core
trigger condition and probe compare values. This command is useful for capturing any values present at the probe
inputs of the ILA core.

To run this mode, click the Run Trigger Immediate button in the Hardware or Debug Probes window.

You can also arm the trigger by selecting and right-clicking on the ILA core (hw_ila_1) in the Hardware window and
selecting Run Trigger or Run Trigger Immediate option from the popup menu, see Illustration 11.36

Figure 11.36: Run Trigger option

Step 12. Once the ILA core captured data has been uploaded to the Vivado IDE, it is displayed in the Waveform Viewer,
see Illustration 11.37

Figure 11.37: Content of the waveform window after trigger has been detected

146

11.2 Debug a Design using Integrated Vivado Logic Analyzer

Step 13. In the waveform window, select sine_ampl_s[11:0] probe port, right-click on it and select Radix -> Unsigned
Decimal option to convert binary value to unsigned decimal

Now, when you click Zoom Fit option your waveform window should look the same as it is shown on the Illustration 11.38,
where you can see debug probes and trigger position that we specified.

Figure 11.38: Waveform window with debug probes and specified trigger position

Step 14. Zoom In few times and you can see the first results, see Illustration 11.39

Figure 11.39: Zoomed in results in the waveform window

If you compare results obtained by the Vivado logic analyzer (Illustration 11.39) with the results obtained by the behavioral
simulation of the PWM module (Illustration 11.40), you can see that the signals sine_ampl_s and sine_out_s have identical
waveforms. This means that the implemented Modulator design in the FPGA is behaving in the same way as it was
predicted by the simulation.

Figure 11.40: Results of the behavioral simulation of the PWM module

Note: To get results of the behavioral simulation of the PWM module, repeat steps from the Sub-chapter 7.4 Simulating.

If you would like to compare more result values from the Vivado logic analyzer with the results from the behavioral simulation
of the PWM module, run the ILA core trigger as much as you need.

The ILA core can capture data samples when the core status is Pre-Trigger, Waiting for Trigger or Port-Trigger, see Illustra-
tion 11.35. As we already said, Capture mode selects what condition is evaluated before each sample is captured. Basic

147

DEBUGGING DESIGN

Capture mode stores a data sample during a given clock cycle only if the capture condition evaluates "true". We used
freq_trig_s signal to do the signal capturing.

Capture condition is a Boolean combination of events that is detected by match unit comparators that are attached to the
trigger ports of the core. Only when this combination is detected, data will be stored in the ILA’s buffer.

To be able to capture at least one period of the sine signal and to store it in the ILA buffer, we have to use capture condition
feature. After triggering the ILA core, in the waveform viewer change the Waveform Style from Digital to Analog and your
captured waveform should look like as the waveform on the Illustration 11.41

Figure 11.41: Captured waveform of the sine signal

From the illustration above we can see that data depth that we have selected for the ILA buffer is too big for this example.
We can decrease the ILA buffer data depth from 131072 to 1024 and speed up the process of signal capturing. After
decreasing ILA buffer data depth, your captured waveform of the sine signal should look like as the waveform on the
Illustration 11.42.

Figure 11.42: Captured waveform of the sine signal with 2048 ILA buffer data depth

Step 15. Go back to the Debug Probes window, select hw_vio_1, right-click on it and choose Add Probes to VIO Window
option, see Illustration 11.43

148

11.2 Debug a Design using Integrated Vivado Logic Analyzer

Figure 11.43: Add Probes to VIO Window option

Step 15. In the VIO Probes window you will see two 1-bit probes, pwm_s and sw0_s, see Illustration 11.45. pwm_s
probe is actually connected to the pwm_out output port of the Modulator module, as can be seen on the Figure 11.9 and
from the modulator_ila_vio_rtl.vhd source code. Similarly, sw0_s probe is connected to the sw0 input port of the Modulator
module.

Figure 11.44: VIO Probes window

In the VIO Probes window, you can observe the rate of change of the pwm_s signal. You can change the frequency of the
pwm_s signal by changing the value of the sw0_s probe from 0 to 1 and from 1 to 0, see Illustration 11.45. The change in
frequency of the pwm_s signal can be also observed on the development board. Now, sw0_s probe has taken the role of
the switch sw0, present on the development board.

149

DEBUGGING DESIGN

Figure 11.45: Changing the sw0_s value

Note: All the information about debugging the design using the Vivado Logic Analyzer, such as how to configure and run
it and how to analyze your design using this tool, you can also find in the Lab 14: "Debug a Design using Integrated
Vivado Logic Analyzer".

11.3 Oscilloscope

An oscilloscope is a type of electronic instrument that creates a two- dimensional graph of one or more electrical potential
differences. Typically horizontal, or x-axis, represents function of time and vertical, or y-axis, represents voltage.

To see the pwm signal on the oscilloscope, follow these steps:

Step 1. Connect the USB Connector to the Starter Kit Board Connector and to the PC

Step 2. Connect the oscilloscope’s probe to some expansion connector on the Starter Kit Board (see Illustration 11.46)

Figure 11.46: Using oscilloscope for viewing PWM signal

Step 3. Power on the ZedBoard development board

Step 4. In the modulator_wrapper_rtl.vhd file made the following modifications:

• add a new pwm_osc output port in the modulator entity declaration:

150

11.3 Oscilloscope

pwm_osc: out std_logic;

• in the architecture add a new temporary signal declaration:

signal temp_out_s: std_logic;

• in the port map of the pwm module (pwmmodule) connect the pwm_out port with the temp_out_s signal:

pwm_out => temp_out_s;

• at the and of the architecture connect the pwm_out and pwm_osc ports with the temp_out_s signal:

pwm_out <= temp_out_s;
pwm_osc <= temp_out_s;

Now, the modulator_oscilloscope_rtl.vhd source file should look like the code below.

modulator_oscilloscope_rtl.vhd:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

library unisim;
use unisim.vcomponents.all;

entity modulator_oscilloscope is
generic(

-- If some module is top, it needs to implement the differential clk buffer,
-- otherwise this variable will be overwritten by a upper hierarchy layer
this_module_is_top_g : module_is_top_t := yes;

-- Parameter that specifies major characteristics of the board that will be used
-- to implement the modulator design
-- Possible choices: """lx9""", """zedboard""", """ml605""", """kc705""", """microzed""", ""socius"

""
-- Adjust the modulator_pkg.vhd file to add more
board_name_g : string := """zedboard""";

-- User defined settings for the pwm design
design_setting_g : design_setting_t_rec := design_setting_c
);

port(
clk_p : in std_logic; -- differential input clock signal
clk_n : in std_logic; -- differential input clock signal
sw0 : in std_logic; -- signal made for selecting frequency
pwm_out : out std_logic; -- pulse width modulated signal
pwm_osc : out std_logic -- pulse width modulated signal for the oscilloscope

-- clk_en : out std_logic -- clock enable port used only for MicroZed board
);

end entity;

architecture rtl of modulator_oscilloscope is

-- input clock signal
signal clk_in_s : std_logic;

-- temporary signal
signal temp_out_s : std_logic;

-- c1_c = fclk/(2^depth*2^width) - c1_c = 95.3674, fclk = 100 MHz
constant c1_c : real :=

get_board_info_f(board_name_g).fclk/(real((2**design_setting_g.depth)*(2**design_setting_g.width)));
-- div_factor_freqhigh_c = (c1_c/f_high)*2^width - threshold value of frequency a = 110592
constant div_factor_freqhigh_c : integer :=

integer(c1_c/design_setting_g.f_high)*(2**design_setting_g.width);
-- div_factor_freqlow_c = (c1_c/f_low)*2^width - threshold value of frequency b = 389120
constant div_factor_freqlow_c : integer :=

integer(c1_c/design_setting_g.f_low)*(2**design_setting_g.width);

begin

-- in case of MicroZed board we must enable on-board clock generator
-- clk_en <= ’1’;

-- if module is top, it has to generate the differential clock buffer in case
-- of a differential clock, otherwise it will get a single ended clock signal

151

DEBUGGING DESIGN

-- from the higher hierarchy

clk_buf_if_top : if (this_module_is_top_g = yes) generate

clk_buf : if (board_name_g.has_diff_clk = yes) generate

ibufgds_inst : ibufgds
generic map(

ibuf_low_pwr => true,
-- low power (true) vs. performance (false) setting for referenced I/O standards
iostandard => "default"

)

port map (
o => clk_in_s, -- clock buffer output
i => clk_p, -- diff_p clock buffer input
ib => clk_n -- diff_n clock buffer input

);
end generate clk_buf;

no_clk_buf : if (board_name_g.has_diff_clk = no) generate
clk_in_s <= clk_p;

end generate no_clk_buf;

end generate clk_buf_if_top;

not_top : if (this_module_is_top_g = no) generate
clk_in_s <= clk_p;

end generate not_top;

pwmmodulator : entity work.modulator -- modulator module instance
generic map(

design_setting_g => design_setting_g
)

port map(
clk_in => clk_in_s,
sw0 => sw0,
div_factor_freqhigh => conv_std_logic_vector(div_factor_freqhigh_c, 32),
div_factor_freqlow => conv_std_logic_vector(div_factor_freqlow_c, 32),
pwm_out => temp_out_s
);

pwm_out <= temp_out_s;
pwm_osc <= temp_out_s;

end;

Step 5. In the XDC file add location of the pwm_osc port. Location of the pwm_osc port should be chosen in such way to
allow easy access for the oscilloscope’s probe

Step 6. Return to the Flow Navigator and synthesize your design with Run Synthesis option from the Flow Navigator /
Synthesis (see Sub-chapter 6.5.2 Run Synthesis)

Step 7. Implement your design with Run Implementation option from the Flow Navigator / Implementation (see Sub--
Chapter 10.2.2 Run Implementation)

Step 8. Generate bitstream file with Generate Bitstream option from the Flow Navigator / Program and Debug (see
Sub-Chapter 10.3 Generate Bitstream File)

Step 10. Program your ZedBoard device (see Sub-Chapter 10.4 Program Device)

Step 4. Configure the oscilloscope, and if your oscilloscope’s settings are correct, you should see a pwm_out signal on the
display, see Illustration 11.47

152

11.3 Oscilloscope

Figure 11.47: PWM signal measured by oscilloscope

Note: All the information about the Oscilloscope, how to use it and how to analyze your design on it, you can also find in
the Lab 15: "Oscilloscope" .

153

DEBUGGING DESIGN

154

Chapter 12

MODULATOR DESIGN TARGETING SOCIUS
DEVELOPMENT BOARD

12.1 Description

• Usage: This module will be used to target socius development board. Socius development board is a small, portable
electronic device that can be easily powered, developed by the "so-logic" company. This module will be composed
of two separate VHDL models:

– modulator_socius_rtl.vhd model and

– modulator_socius_clk_rtl.vhd model which will be the top model of the design

The main component of the socius development board is Zynq-7000 AP SoC. The Zynq-7000 family is based on the
Xilinx All Programmable SoC (AP SoC) architecture. The Zynq-7000 AP SoC is composed of two major functional
blocks: Processing System (PS) and Programmable Logic (PL). Since existing LEDs and switches on the socius
board are connected to the PS part of the Zynq FPGA, it would require programming PS part of the Zynq FPGA,
which is not topic of this tutorial. It is the main topic in the "Basic Embedded System Design" tutorial.

In our design we will program PL part of the Zynq FPGA with modulator_socius_rtl.vhd model. PS part is also
required to generate clock signal for the Modulator design, since the only reference clock source on the socius board
is connected to the PS part of the Zynq FPGA. Properly configured PS part is described in the socius_xz_lab_ps_-
bd component. Both of these components, modulator_socius and socius_xz_lab_ps_bd, will be contained in the
modulator_socius_clk_rtl.vhd model, see block diagram below.

• Block diagram:

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

Figure 12.1: Modulator block diagram for socius development board

• Input ports:

– ps_clk_i: input clock signal from socius development board

• File name: modulator_socius_clk_rtl.vhd

12.2 Creating Project

Our first step will be to create new project. The following steps describe how to create ARM-based hardware platform for
socius development board:

Step 1. Launch the Vivado software:

Select Start -> All Programs -> Xilinx Design Tools -> Vivado 2016.4 -> Vivado 2016.4 and the Vivado Getting
Started page will appear

156

12.2 Creating Project

Step 2. On the Getting Started page, choose Create New Project option

Step 3. In the Create a New Vivado Project dialog box, click Next and the wizard will guide you through the process of a
new project creation

Step 4. In the Project Name dialog box specify the name and the location of the new project:

• In the Project name field type modulator_socius as the name of the project

• In the Project location field specify the location where project data will be stored

• Leave Create project subdirectory option enabled and

• Click Next

Step 5. In the Project Type dialog box choose RTL Project option, select Do not specify sources at this time and click
Next

Step 6. In the Default Part dialog box select Parts option and set the following parameters as it is shown on the Illustration
12.2

Figure 12.2: Default Part dialog box

Step 7. Click Next

Step 8. In the New Project Summary dialog box click Finish if you are satisfied with the summary of your project. If you
are not satisfied, you can go back as much as necessary to correct all the questionable issues.

After we finished with the new project creation, in a few seconds Vivado IDE Viewing Environment will appear, see Illustra-
tion 12.3.

157

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

Figure 12.3: Vivado IDE Viewing Environment with created modulator_socius project

12.3 Creating Module

As we already said, in our design we will program PL part of the Zynq FPGA with modulator_socius_rtl.vhd model. Since
existing LEDs and switches on the socius board are connected to the PS part of the Zynq FPGA, we have to instantiate
Integrated Logic Analyzer (ILA) and Virtual Input/Output (VIO) cores into our design. All the information about ILA and VIO
cores you can find in the Chapter 11 "Debugging Design" of this tutorial.

Both, ILA and VIO cores will be instantiated into our design, where VIO core will be instantiated using the "HDL Instantiation
Debug Probing Flow" and ILA core using the "Netlist Insertion Debug Probing Flow", because netlist insertion debug
probing flow can be used to insert ILA cores only. All these information you can also find in the Chapter 11 "Debugging
Design" of this tutorial where both flows are explained in detail. ILA core will be used to monitor PWM signal width change
and VIO core will be used to replace on-board switch used for changing output signal frequency.

Step 1. Instantiate VIO core into our design using steps for VIO core instantiation, explained in the Sub-chapter 11.1
"Inserting ILA and VIO Cores into Design" of this tutorial. Use the same core customizations as it is explained in this
sub-chapter:

• In the VIO (Virtual Input/Output) (3.0) window, enter vio_core_name (vio_core) in the Component Name field

• In the General Options tab, leave Input Probe Count to be 1 and Output Probe Count also to be 1, because we
will need one input probe for pwm_out signal and one output probe for sw0 signal

• In the PROBE_IN Ports(0..0) tab leave Probe Width of the PROBE_IN0 Probe Port to be 1, because our pwm_out
signal is 1 bit signal

• In the PROBE_OUT Ports(0..0) tab, leave Probe Width of the PROBE_OUT0 Probe Port to be 1, because our sw0
signal is also 1 bit signal

• Click OK

After VIO core generation, your VIO core should appear in the Sources window, see Illustration 12.4

158

12.3 Creating Module

Figure 12.4: Source tab with generated VIO core

ILA core will be instantiated into our design using "Netlist Insertion Debug Probing Flow", explained in the Sub-chapter 11.1
of this tutorial. We will use mark_debug attribute to add debug nets (pwm_s and count_s) to our HDL file (modulator_-
socius_rtl.vhd). As we already said ILA core will be used to monitor PWM signal width change, where pwm_s signal will
represent PWM signal and count_s will measure the duration of the high pulse of the PWM signal.

In our design despite ILA and VIO cores, we will also have to instantiate Modulator module and counter which will measure
the duration of the PWM pulse, see Figure 12.1. Both of these instances, plus ILA and VIO core instances will be included
within modulator_socius_rtl.vhd VHDL model.

Step 2. To include all the necessary Modulator module source files (frequency_trigger_rt.vhd, counter_rtl.vhd, modulator_-
pkg.vhd, sine_rtl.vhd, sine_top_rtl.vhd, pwm_rtl.vhd and modulator_rtl.vhd) into our design, in the Flow Navigator, use Add
Sources command to add the files and after adding your Sources window should look like as it is shown on the Illustration
12.5.

Figure 12.5: Source tab with generated VIO core and Modulator module

Step 3. To create and add modulator_socius_rtl.vhd and modulator_socius_clk_rtl.vhd source files use steps for
creating modules, explained in Sub-chapter 2.4.1 Creating a Module Using Vivado Text Editor of this tutorial. Content
of the source files you can find in the text below.

modulator_socius_rtl.vhd VHDL model:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

library work;
use work.modulator_pkg.all;

entity modulator_socius is
generic(

-- User defined settings for the pwm design
board_setting_g : board_setting_t_rec := socius_c;
design_setting_g : design_setting_t_rec := design_setting_c
);

port(
clk_in : in std_logic
);

end entity;

architecture structural of modulator_socius is

159

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

-- Between architecture and begin is declaration area for types, signals and constants
-- Everything declared here will be visible in the whole architecture

-- MODULATOR SECTION STARTS! --
attribute mark_debug : string;
attribute keep : string;

signal pwm_s : std_logic_vector (0 downto 0);
signal sw0_s : std_logic_vector (0 downto 0);
signal count_s : std_logic_vector (31 downto 0) := (others => ’0’);

attribute mark_debug of pwm_s : signal is "true";
attribute mark_debug of count_s : signal is "true";

constant c1_c : real := board_setting_g.fclk/(real((2**design_setting_g.depth)*(2**
design_setting_g.width)));

constant div_factor_freqhigh_c : integer := integer(c1_c/design_setting_g.f_high)*(2**design_setting_g.
width);

constant div_factor_freqlow_c : integer := integer(c1_c/design_setting_g.f_low)*(2**design_setting_g.
width);

-- vio_core component definition
component vio_core

port (
clk : in std_logic;
probe_in0 : in std_logic_vector (0 downto 0);
probe_out0 : out std_logic_vector (0 downto 0)

);
end component;

begin

-- modulator module instance
modulator_i: entity work.modulator(rtl)

generic map(
design_setting_g => design_setting_g
)

port map(
clk_in => clk_in,
sw0 => sw0_s(0),
div_factor_freqhigh => conv_std_logic_vector(div_factor_freqhigh_c, 32),
div_factor_freqlow => conv_std_logic_vector(div_factor_freqlow_c, 32),
pwm_out => pwm_s(0)
);

-- vio_core component instance
vio_i: vio_core

port map (
clk => clk_in,
probe_in0 => pwm_s,
probe_out0 => sw0_s
);

-- Counter for measuring the duration of the high pulse of the PWM signal
measurement_counter_p: process
begin

wait until rising_edge(clk_in);
if (pwm_s(0) = ’0’) then

count_s <= (others => ’0’);
else

count_s <= count_s + 1;
end if;

end process;

end architecture;

PS part of the Zynq FPGA is also required to generate clock signal for the Modulator_socius design. Properly configured
PS part is described in the socius_xz_lab_ps_bd component of the modulator_socius_clk_rtl.vhd VHDL model. The
complete modulator_socius_clk_rtl.vhd VHDL model you can find in the text below:

modulator_socius_clk_rtl.vhd VHDL model:

library ieee;
use ieee.std_logic_1164.all;

entity socius_clk_top is
port(

-- expansion top slot
pl_io_t_io_p_io : inout std_logic_vector (18 downto 0);
pl_io_t_io_n_io : inout std_logic_vector (18 downto 0);
-- expansion main slot
pl_io_m_io_p_io : inout std_logic_vector (18 downto 0);
pl_io_m_io_n_io : inout std_logic_vector (18 downto 0);
-- expansion bottom slot
pl_io_b_io_p_io : inout std_logic_vector (18 downto 0);
pl_io_b_io_n_io : inout std_logic_vector (18 downto 0);

160

12.3 Creating Module

-- ps io
ps_ddr3_addr : inout std_logic_vector(14 downto 0);
ps_ddr3_ba : inout std_logic_vector(2 downto 0);
ps_ddr3_cas_n : inout std_logic;
ps_ddr3_ck_n : inout std_logic;
ps_ddr3_ck_p : inout std_logic;
ps_ddr3_cke : inout std_logic;
ps_ddr3_cs_n : inout std_logic;
ps_ddr3_dm : inout std_logic_vector(3 downto 0);
ps_ddr3_dq : inout std_logic_vector(31 downto 0);
ps_ddr3_dqs_n : inout std_logic_vector(3 downto 0);
ps_ddr3_dqs_p : inout std_logic_vector(3 downto 0);
ps_ddr3_odt : inout std_logic;
ps_ddr3_ras_n : inout std_logic;
ps_ddr3_reset_n : inout std_logic;
ps_ddr3_we_n : inout std_logic;
ps_ddr_vrn : inout std_logic;
ps_ddr_vrp : inout std_logic;
ps_clk_i : inout std_logic;
ps_por_n_i : inout std_logic;
ps_srst_n_i : inout std_logic;
ps_phy_mdc_io : inout std_logic;
ps_phy_mdio_io : inout std_logic;
ps_phy_rx_clk_io : inout std_logic;
ps_phy_rx_ctrl_io : inout std_logic;
ps_phy_rxd_io : inout std_logic_vector(3 downto 0);
ps_phy_tx_clk_io : inout std_logic;
ps_phy_tx_ctrl_io : inout std_logic;
ps_phy_txd_io : inout std_logic_vector(3 downto 0);
ps_i2c_scl_io : inout std_logic;
ps_i2c_sda_io : inout std_logic;
ps_led_error_n_io : inout std_logic;
ps_led_front_n_io : inout std_logic_vector(1 downto 0);
ps_led_sdcard_n_io : inout std_logic;
ps_sw0_a_io : inout std_logic;
ps_sw0_b_io : inout std_logic;
ps_sw1_a_io : inout std_logic;
ps_sw1_b_io : inout std_logic;
ps_sw2_a_io : inout std_logic;
ps_sw2_b_io : inout std_logic;
ps_sw3_a_io : inout std_logic;
ps_sw3_b_io : inout std_logic;
ps_uart_rx_io : inout std_logic;
ps_uart_tx_io : inout std_logic;
ps_qspi_cs_n_io : inout std_logic;
ps_qspi_data_io : inout std_logic_vector(3 downto 0);
ps_qspi_clk_io : inout std_logic;
ps_sdio_clk_io : inout std_logic;
ps_sdio_cmd_io : inout std_logic;
ps_sdio_data_io : inout std_logic_vector(3 downto 0);
ps_usb_clk_io : inout std_logic;
ps_usb_data_io : inout std_logic_vector(7 downto 0);
ps_usb_dir_io : inout std_logic;
ps_usb_nxt_io : inout std_logic;
ps_usb_stp_io : inout std_logic

);
end entity;

architecture structural of socius_clk_top is

component socius_xz_lab_ps_bd is
port (
pl_clk0 : out STD_LOGIC;
pl_clk1 : out STD_LOGIC;
pl_clk2 : out STD_LOGIC;
pl_clk3 : out STD_LOGIC;
pl_int_bot : in STD_LOGIC_VECTOR (0 to 0);
pl_int_mid : in STD_LOGIC_VECTOR (0 to 0);
pl_int_soc : in STD_LOGIC_VECTOR (0 to 0);
pl_int_top : in STD_LOGIC_VECTOR (0 to 0);
pl_reset_n : out STD_LOGIC;
ddr3_cas_n : inout STD_LOGIC;
ddr3_cke : inout STD_LOGIC;
ddr3_ck_n : inout STD_LOGIC;
ddr3_ck_p : inout STD_LOGIC;
ddr3_cs_n : inout STD_LOGIC;
ddr3_reset_n : inout STD_LOGIC;
ddr3_odt : inout STD_LOGIC;
ddr3_ras_n : inout STD_LOGIC;
ddr3_we_n : inout STD_LOGIC;
ddr3_ba : inout STD_LOGIC_VECTOR (2 downto 0);
ddr3_addr : inout STD_LOGIC_VECTOR (14 downto 0);
ddr3_dm : inout STD_LOGIC_VECTOR (3 downto 0);
ddr3_dq : inout STD_LOGIC_VECTOR (31 downto 0);
ddr3_dqs_n : inout STD_LOGIC_VECTOR (3 downto 0);
ddr3_dqs_p : inout STD_LOGIC_VECTOR (3 downto 0);
fixed_io_mio : inout STD_LOGIC_VECTOR (53 downto 0);
fixed_io_ddr_vrn : inout STD_LOGIC;
fixed_io_ddr_vrp : inout STD_LOGIC;
fixed_io_ps_srstb : inout STD_LOGIC;
fixed_io_ps_clk : inout STD_LOGIC;

161

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

fixed_io_ps_porb : inout STD_LOGIC;
sdio_0_cdn : in STD_LOGIC;
usbind_0_port_indctl : out STD_LOGIC_VECTOR (1 downto 0);
usbind_0_vbus_pwrselect : out STD_LOGIC;
usbind_0_vbus_pwrfault : in STD_LOGIC;
pl_iic_1_sda_i : in STD_LOGIC;
pl_iic_1_sda_o : out STD_LOGIC;
pl_iic_1_sda_t : out STD_LOGIC;
pl_iic_1_scl_i : in STD_LOGIC;
pl_iic_1_scl_o : out STD_LOGIC;
pl_iic_1_scl_t : out STD_LOGIC;
pl_spi_0_sck_i : in STD_LOGIC;
pl_spi_0_sck_o : out STD_LOGIC;
pl_spi_0_sck_t : out STD_LOGIC;
pl_spi_0_io0_i : in STD_LOGIC;
pl_spi_0_io0_o : out STD_LOGIC;
pl_spi_0_io0_t : out STD_LOGIC;
pl_spi_0_io1_i : in STD_LOGIC;
pl_spi_0_io1_o : out STD_LOGIC;
pl_spi_0_io1_t : out STD_LOGIC;
pl_spi_0_ss_i : in STD_LOGIC;
pl_spi_0_ss_o : out STD_LOGIC;
pl_spi_0_ss1_o : out STD_LOGIC;
pl_spi_0_ss2_o : out STD_LOGIC;
pl_spi_0_ss_t : out STD_LOGIC;
pl_uart_1_txd : out STD_LOGIC;
pl_uart_1_rxd : in STD_LOGIC;
pl_bram_bot_addr : out STD_LOGIC_VECTOR (15 downto 0);
pl_bram_bot_clk : out STD_LOGIC;
pl_bram_bot_din : out STD_LOGIC_VECTOR (31 downto 0);
pl_bram_bot_dout : in STD_LOGIC_VECTOR (31 downto 0);
pl_bram_bot_en : out STD_LOGIC;
pl_bram_bot_rst : out STD_LOGIC;
pl_bram_bot_we : out STD_LOGIC_VECTOR (3 downto 0);
pl_bram_mid_addr : out STD_LOGIC_VECTOR (15 downto 0);
pl_bram_mid_clk : out STD_LOGIC;
pl_bram_mid_din : out STD_LOGIC_VECTOR (31 downto 0);
pl_bram_mid_dout : in STD_LOGIC_VECTOR (31 downto 0);
pl_bram_mid_en : out STD_LOGIC;
pl_bram_mid_rst : out STD_LOGIC;
pl_bram_mid_we : out STD_LOGIC_VECTOR (3 downto 0);
pl_bram_soc_addr : out STD_LOGIC_VECTOR (15 downto 0);
pl_bram_soc_clk : out STD_LOGIC;
pl_bram_soc_din : out STD_LOGIC_VECTOR (31 downto 0);
pl_bram_soc_dout : in STD_LOGIC_VECTOR (31 downto 0);
pl_bram_soc_en : out STD_LOGIC;
pl_bram_soc_rst : out STD_LOGIC;
pl_bram_soc_we : out STD_LOGIC_VECTOR (3 downto 0);
pl_bram_top_addr : out STD_LOGIC_VECTOR (15 downto 0);
pl_bram_top_clk : out STD_LOGIC;
pl_bram_top_din : out STD_LOGIC_VECTOR (31 downto 0);
pl_bram_top_dout : in STD_LOGIC_VECTOR (31 downto 0);
pl_bram_top_en : out STD_LOGIC;
pl_bram_top_rst : out STD_LOGIC;
pl_bram_top_we : out STD_LOGIC_VECTOR (3 downto 0)

);
end component socius_xz_lab_ps_bd;

-- Between architecture and begin is declaration area for types, signals and constants
-- Everything declared here will be visible in the whole architecture

--bram register interface soc
signal pl_bram_soc_addr_s : std_logic_vector (15 downto 0);
signal pl_bram_soc_din_s : std_logic_vector (31 downto 0);
signal pl_bram_soc_dout_s : std_logic_vector (31 downto 0);
signal pl_bram_soc_en_s : std_logic;
signal pl_bram_soc_rst_s : std_logic;
signal pl_bram_soc_we_s : std_logic_vector (3 downto 0);
--bram register interface mid
signal pl_bram_mid_addr_s : std_logic_vector (15 downto 0);
signal pl_bram_mid_din_s : std_logic_vector (31 downto 0);
signal pl_bram_mid_dout_s : std_logic_vector (31 downto 0);
signal pl_bram_mid_en_s : std_logic;
signal pl_bram_mid_rst_s : std_logic;
signal pl_bram_mid_we_s : std_logic_vector (3 downto 0);
--bram register interface top
signal pl_bram_top_addr_s : std_logic_vector (15 downto 0);
signal pl_bram_top_din_s : std_logic_vector (31 downto 0);
signal pl_bram_top_dout_s : std_logic_vector (31 downto 0);
signal pl_bram_top_en_s : std_logic;
signal pl_bram_top_rst_s : std_logic;
signal pl_bram_top_we_s : std_logic_vector (3 downto 0);
--bram register interface bot
signal pl_bram_bot_addr_s : std_logic_vector (15 downto 0);
signal pl_bram_bot_din_s : std_logic_vector (31 downto 0);
signal pl_bram_bot_dout_s : std_logic_vector (31 downto 0);
signal pl_bram_bot_en_s : std_logic;
signal pl_bram_bot_rst_s : std_logic;
signal pl_bram_bot_we_s : std_logic_vector (3 downto 0);

162

12.3 Creating Module

-- declaration for fixed signal PL to PS
signal pl_clk0_s : std_logic;
signal pl_clk1_s : std_logic;
signal pl_clk2_s : std_logic;
signal pl_clk3_s : std_logic;
signal pl_reset_n_s : std_logic;

-- ps signals
signal ps_mio_s : std_logic_vector(53 downto 0);

--uart, i2c, spi signals
signal uart_rxd_s : std_logic;
signal uart_txd_s : std_logic;
signal spi_io0_i_s : std_logic;
signal spi_io0_o_s : std_logic;
signal spi_io0_t_s : std_logic;
signal spi_io1_i_s : std_logic;
signal spi_io1_o_s : std_logic;
signal spi_io1_t_s : std_logic;
signal spi_sck_i_s : std_logic;
signal spi_sck_o_s : std_logic;
signal spi_sck_t_s : std_logic;
signal spi_ss1_o_s : std_logic;
signal spi_ss2_o_s : std_logic;
signal spi_ss_i_s : std_logic;
signal spi_ss_o_s : std_logic;
signal spi_ss_t_s : std_logic;
signal iic_scl_i_s : std_logic;
signal iic_scl_o_s : std_logic;
signal iic_scl_t_s : std_logic;
signal iic_sda_i_s : std_logic;
signal iic_sda_o_s : std_logic;
signal iic_sda_t_s : std_logic;

--interrupt signals to ps
signal pl_int_soc_s : std_logic;
signal pl_int_top_s : std_logic;
signal pl_int_mid_s : std_logic;
signal pl_int_bot_s : std_logic;

begin

-- modulator module instance
modulator_i: entity work.modulator_socius(structural)

port map(
clk_in => pl_clk0_s
);

-- instance of processor system PS
socius_xz_lab_ps_bd_i: component socius_xz_lab_ps_bd

port map (
ddr3_addr => ps_ddr3_addr,
ddr3_ba => ps_ddr3_ba,
ddr3_cas_n => ps_ddr3_cas_n,
ddr3_ck_n => ps_ddr3_ck_n,
ddr3_ck_p => ps_ddr3_ck_p,
ddr3_cke => ps_ddr3_cke,
ddr3_cs_n => ps_ddr3_cs_n,
ddr3_dm => ps_ddr3_dm,
ddr3_dq => ps_ddr3_dq,
ddr3_dqs_n => ps_ddr3_dqs_n,
ddr3_dqs_p => ps_ddr3_dqs_p,
ddr3_odt => ps_ddr3_odt,
ddr3_ras_n => ps_ddr3_ras_n,
ddr3_reset_n => ps_ddr3_reset_n,
ddr3_we_n => ps_ddr3_we_n,
fixed_io_ddr_vrn => ps_ddr_vrn,
fixed_io_ddr_vrp => ps_ddr_vrp,
fixed_io_mio => ps_mio_s,
fixed_io_ps_clk => ps_clk_i,
fixed_io_ps_porb => ps_por_n_i,
fixed_io_ps_srstb => ps_srst_n_i,
pl_uart_1_rxd => uart_rxd_s,
pl_uart_1_txd => uart_txd_s,
pl_spi_0_io0_i => spi_io0_i_s,
pl_spi_0_io0_o => spi_io0_o_s,
pl_spi_0_io0_t => spi_io0_t_s,
pl_spi_0_io1_i => spi_io1_i_s,
pl_spi_0_io1_o => spi_io1_o_s,
pl_spi_0_io1_t => spi_io1_t_s,
pl_spi_0_sck_i => spi_sck_i_s,
pl_spi_0_sck_o => spi_sck_o_s,
pl_spi_0_sck_t => spi_sck_t_s,
pl_spi_0_ss1_o => spi_ss1_o_s,
pl_spi_0_ss2_o => spi_ss2_o_s,
pl_spi_0_ss_i => spi_ss_i_s,
pl_spi_0_ss_o => spi_ss_o_s,
pl_spi_0_ss_t => spi_ss_t_s,
pl_iic_1_scl_i => iic_scl_i_s,

163

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

pl_iic_1_scl_o => iic_scl_o_s,
pl_iic_1_scl_t => iic_scl_t_s,
pl_iic_1_sda_i => iic_sda_i_s,
pl_iic_1_sda_o => iic_sda_o_s,
pl_iic_1_sda_t => iic_sda_t_s,
sdio_0_cdn => ’1’, -- pl_sd_cd_n_i,
usbind_0_port_indctl => open,
usbind_0_vbus_pwrfault => ’1’, -- pl_usb_fault_n_i,
usbind_0_vbus_pwrselect => open,
pl_bram_bot_addr => pl_bram_bot_addr_s,
pl_bram_bot_clk => open,
pl_bram_bot_din => pl_bram_bot_din_s,
pl_bram_bot_dout => pl_bram_bot_dout_s,
pl_bram_bot_en => pl_bram_bot_en_s,
pl_bram_bot_rst => pl_bram_bot_rst_s,
pl_bram_bot_we => pl_bram_bot_we_s,
pl_bram_mid_addr => pl_bram_mid_addr_s,
pl_bram_mid_clk => open,
pl_bram_mid_din => pl_bram_mid_din_s,
pl_bram_mid_dout => pl_bram_mid_dout_s,
pl_bram_mid_en => pl_bram_mid_en_s,
pl_bram_mid_rst => pl_bram_mid_rst_s,
pl_bram_mid_we => pl_bram_mid_we_s,
pl_bram_soc_addr => pl_bram_soc_addr_s,
pl_bram_soc_clk => open,
pl_bram_soc_din => pl_bram_soc_din_s,
pl_bram_soc_dout => pl_bram_soc_dout_s,
pl_bram_soc_en => pl_bram_soc_en_s,
pl_bram_soc_rst => pl_bram_soc_rst_s,
pl_bram_soc_we => pl_bram_soc_we_s,
pl_bram_top_addr => pl_bram_top_addr_s,
pl_bram_top_clk => open,
pl_bram_top_din => pl_bram_top_din_s,
pl_bram_top_dout => pl_bram_top_dout_s,
pl_bram_top_en => pl_bram_top_en_s,
pl_bram_top_rst => pl_bram_top_rst_s,
pl_bram_top_we => pl_bram_top_we_s,
pl_clk0 => pl_clk0_s,
pl_clk1 => pl_clk1_s,
pl_clk2 => pl_clk2_s,
pl_clk3 => pl_clk3_s,
pl_reset_n => pl_reset_n_s,
pl_int_soc(0) => pl_int_soc_s,
pl_int_top(0) => pl_int_top_s,
pl_int_mid(0) => pl_int_mid_s,
pl_int_bot(0) => pl_int_bot_s
);

-- assignment of MIO to board names

ps_mio_s (53) <= ps_phy_mdio_io;
ps_mio_s (52) <= ps_phy_mdc_io;
ps_mio_s (51) <= ps_uart_tx_io;
ps_mio_s (50) <= ps_uart_rx_io;
ps_mio_s (49) <= ps_led_error_n_io;
ps_mio_s (48 downto 47) <= ps_led_front_n_io(1 downto 0);
ps_mio_s (46) <= ps_led_sdcard_n_io;
ps_mio_s (45 downto 42) <= ps_sdio_data_io;
ps_mio_s (41) <= ps_sdio_cmd_io;
ps_mio_s (40) <= ps_sdio_clk_io;
ps_mio_s (39) <= ps_usb_data_io(7);
ps_mio_s (38) <= ps_usb_data_io(6);
ps_mio_s (37) <= ps_usb_data_io(5);
ps_mio_s (36) <= ps_usb_clk_io;
ps_mio_s (35) <= ps_usb_data_io(3);
ps_mio_s (34) <= ps_usb_data_io(2);
ps_mio_s (33) <= ps_usb_data_io(1);
ps_mio_s (32) <= ps_usb_data_io(0);
ps_mio_s (31) <= ps_usb_nxt_io;
ps_mio_s (30) <= ps_usb_stp_io;
ps_mio_s (29) <= ps_usb_dir_io;
ps_mio_s (28) <= ps_usb_data_io(4);
ps_mio_s (27) <= ps_phy_rx_ctrl_io;
ps_mio_s (26 downto 23) <= ps_phy_rxd_io;
ps_mio_s (22) <= ps_phy_rx_clk_io;
ps_mio_s (21) <= ps_phy_tx_ctrl_io;
ps_mio_s (20 downto 17) <= ps_phy_txd_io;
ps_mio_s (16) <= ps_phy_tx_clk_io;
ps_mio_s (15) <= ps_i2c_sda_io;
ps_mio_s (14) <= ps_i2c_scl_io;
ps_mio_s (13) <= ps_sw3_b_io;
ps_mio_s (12) <= ps_sw3_a_io;
ps_mio_s (11) <= ps_sw2_b_io;
ps_mio_s (10) <= ps_sw2_a_io;
ps_mio_s (9) <= ps_sw1_b_io;
ps_mio_s (8) <= ps_sw1_a_io;
ps_mio_s (7) <= ps_sw0_b_io;
ps_mio_s (6) <= ps_qspi_clk_io;
ps_mio_s (5 downto 2) <= ps_qspi_data_io;
ps_mio_s (1) <= ps_qspi_cs_n_io;
ps_mio_s (0) <= ps_sw0_a_io;

164

12.3 Creating Module

end architecture;

Note: Don’t forget to set modulator_socius_clk_rtl.vhd source file to be the top file!

Step 4. Now is the time to create and add constraints file for the socius board, modulator_socius.xdc. To create and add
constraints file, please use steps from the Sub-chapter 10.1 "Creating XDC File", where it is in detail explained in paragraph
"Creating a XDC File using Vivado Text Editor". The complete modulator_socius.xdc constraints file you can find in the
text below.

modulator_socius.xdc constraints file:

set properties for bitstream genration
set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
#set_property BITSTREAM.GENERAL.XADCENHANCEDLINEARITY ON [current_design]
#set_property BITSTREAM.GENERAL.XADCPOWERDOWN ENABLE [current_design]

set configuration bank voltages
set_property CFGBVS VCCO [current_design]
set_property CONFIG_VOLTAGE 3.3 [current_design]

set condition for power analyzer
set_operating_conditions -ambient_temp 50
set_operating_conditions -board small
set_operating_conditions -airflow 250
set_operating_conditions -heatsink low
set_operating_conditions -board_layers 12to15

unrelate clock domains in PL for clocks genrated in PS f
#set_false_path -from [get_clocks clk_fpga_1] -to [get_clocks clk_fpga_0]
#set_false_path -from [get_clocks clk_fpga_0] -to [get_clocks clk_fpga_1]
#set_clock_groups -asynchronous -group clk_fpga_0 -group clk_fpga_1

only for power designs
#set_property C_CLK_INPUT_FREQ_HZ 300000000 [get_debug_cores dbg_hub]
#set_property C_ENABLE_CLK_DIVIDER false [get_debug_cores dbg_hub]
#set_property C_USER_SCAN_CHAIN 1 [get_debug_cores dbg_hub]
#connect_debug_port dbg_hub/clk [get_nets pl_clk3]

Push flip flops to IOBs
#set_property IOB true [get_cells -hier *io_i_s_reg*]
#set_property IOB true [get_cells -hier *io_o_reg*]
#set_property IOB true [get_cells -hier *io_t_reg*]

PL pins with fixed functionality for xz1 and xz2

set_property PACKAGE_PIN M14 [get_ports pl_b35_m14_io]
set_property IOSTANDARD LVCMOS33 [get_ports pl_b35_m14_io]
set_output_delay -clock [get_clocks clk_fpga_0] -max 1.000 [get_ports pl_b35_m14_io]
set_output_delay -clock [get_clocks clk_fpga_0] -min 0.500 [get_ports pl_b35_m14_io]

set_property PACKAGE_PIN M15 [get_ports pl_b35_m15_io]
set_property IOSTANDARD LVCMOS33 [get_ports pl_b35_m15_io]
set_output_delay -clock [get_clocks clk_fpga_0] -max 1.000 [get_ports pl_b35_m15_io]
set_output_delay -clock [get_clocks clk_fpga_0] -min 0.500 [get_ports pl_b35_m15_io]

set_property PACKAGE_PIN T19 [get_ports pl_hsw_good_i]
set_property IOSTANDARD LVCMOS33 [get_ports pl_hsw_good_i]
set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000 [get_ports pl_hsw_good_i]
set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500 [get_ports pl_hsw_good_i]

set_property PACKAGE_PIN V13 [get_ports pl_phy_reset_n_o]
set_property IOSTANDARD LVCMOS33 [get_ports pl_phy_reset_n_o]

set_property PACKAGE_PIN T15 [get_ports pl_sd_cd_n_i]
set_property IOSTANDARD LVCMOS33 [get_ports pl_sd_cd_n_i]

set_property PACKAGE_PIN J15 [get_ports pl_pwm_fan_o]
set_property IOSTANDARD LVCMOS33 [get_ports pl_pwm_fan_o]

set_property PACKAGE_PIN R19 [get_ports pl_pwr_en_i]
set_property IOSTANDARD LVCMOS33 [get_ports pl_pwr_en_i]
set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000 [get_ports pl_pwr_en_i]
set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500 [get_ports pl_pwr_en_i]

set_property PACKAGE_PIN G14 [get_ports pl_rtc_out_i]
set_property IOSTANDARD LVCMOS33 [get_ports pl_rtc_out_i]
set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000 [get_ports pl_rtc_out_i]
set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500 [get_ports pl_rtc_out_i]

set_property PACKAGE_PIN U13 [get_ports pl_usb_reset_n_o]
set_property IOSTANDARD LVCMOS33 [get_ports pl_usb_reset_n_o]
set_output_delay -clock [get_clocks clk_fpga_0] -min 1.000 [get_ports pl_usb_reset_n_o]
set_output_delay -clock [get_clocks clk_fpga_0] -max 0.500 [get_ports pl_usb_reset_n_o]

set_property PACKAGE_PIN T14 [get_ports pl_usb_fault_n_i]
set_property IOSTANDARD LVCMOS33 [get_ports pl_usb_fault_n_i]

165

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000 [get_ports pl_usb_fault_n_i]
set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500 [get_ports pl_usb_fault_n_i]

#set_property PACKAGE_PIN M14 [get_ports pl_b35_m14_io]
#set_property IOSTANDARD LVCMOS33 [get_ports pl_b35_m14_io]
#set_output_delay -clock [get_clocks clk_fpga_0] -max 1.000 [get_ports pl_b35_m14_io]
#set_output_delay -clock [get_clocks clk_fpga_0] -min 0.500 [get_ports pl_b35_m14_io]

#set_property PACKAGE_PIN M15 [get_ports pl_b35_m15_io]
#set_property IOSTANDARD LVCMOS33 [get_ports pl_b35_m15_io]
#set_output_delay -clock [get_clocks clk_fpga_0] -max 1.000 [get_ports pl_b35_m15_io]
#set_output_delay -clock [get_clocks clk_fpga_0] -min 0.500 [get_ports pl_b35_m15_io]

#set_property PACKAGE_PIN T19 [get_ports pl_hsw_good_i]
#set_property IOSTANDARD LVCMOS33 [get_ports pl_hsw_good_i]
#set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000 [get_ports pl_hsw_good_i]
#set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500 [get_ports pl_hsw_good_i]

#set_property PACKAGE_PIN V13 [get_ports pl_phy_reset_n_o]
#set_property IOSTANDARD LVCMOS33 [get_ports pl_phy_reset_n_o]
#set_output_delay -clock [get_clocks clk_fpga_1] -max 1.000 [get_ports pl_phy_reset_n_o]
#set_output_delay -clock [get_clocks clk_fpga_1] -min 0.500 [get_ports pl_phy_reset_n_o]

#set_property PACKAGE_PIN T15 [get_ports pl_sd_cd_n_i]
#set_property IOSTANDARD LVCMOS33 [get_ports pl_sd_cd_n_i]

#set_property PACKAGE_PIN J15 [get_ports pl_pwm_fan_o]
#set_property IOSTANDARD LVCMOS33 [get_ports pl_pwm_fan_o]
#set_output_delay -clock [get_clocks clk_fpga_1] -max 1.000 [get_ports pl_pwm_fan_o]
#set_output_delay -clock [get_clocks clk_fpga_1] -min 0.500 [get_ports pl_pwm_fan_o]

#set_property PACKAGE_PIN R19 [get_ports pl_pwr_en_i]
#set_property IOSTANDARD LVCMOS33 [get_ports pl_pwr_en_i]
#set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000 [get_ports pl_pwr_en_i]
#set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500 [get_ports pl_pwr_en_i]

#set_property PACKAGE_PIN G14 [get_ports pl_rtc_out_i]
#set_property IOSTANDARD LVCMOS33 [get_ports pl_rtc_out_i]
#set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000 [get_ports pl_rtc_out_i]
#set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500 [get_ports pl_rtc_out_i]

#set_property PACKAGE_PIN U13 [get_ports pl_usb_reset_n_o]
#set_property IOSTANDARD LVCMOS33 [get_ports pl_usb_reset_n_o]
#set_output_delay -clock [get_clocks clk_fpga_0] -min 1.000 [get_ports pl_usb_reset_n_o]
#set_output_delay -clock [get_clocks clk_fpga_0] -max 0.500 [get_ports pl_usb_reset_n_o]

#set_property PACKAGE_PIN T14 [get_ports pl_usb_fault_n_i]
#set_property IOSTANDARD LVCMOS33 [get_ports pl_usb_fault_n_i]
#set_input_delay -clock [get_clocks clk_fpga_0] -max 5.000 [get_ports pl_usb_fault_n_i]
#set_input_delay -clock [get_clocks clk_fpga_0] -min 4.500 [get_ports pl_usb_fault_n_i]

Finally, we must configure the Zynq PS part to work on socius development board. This includes a number of configuration
steps. All the PS configuration steps can be done using the Vivado GUI, by creating a block design. However, since this
task includes a lot of manual settings of the Zynq PS, a better approach would be to do this manual configuration only once
and then to create a Tcl script file that can be used in all future configurations of the Zynq PS part. The Tcl script that
should be used to correctly configure Zynq PS to work on socius board is socius_xz_lab_ps_bd.tcl. This Tcl script file is
too long to be shown in the tutorial, so ask your instructor for details.

Step 5. Next step is to execute the socius_xz_lab_ps_bd.tcl Tcl file in the Vivado IDE. Go to the Tcl console window and
type the following and press enter:

source <path>/socius_xz_lab_ps_bd.tcl

Where <path> stands for the full path to the folder where the socius_xz_lab_ps_bd.tcl Tcl file is stored.

Figure 12.6: Tcl Console window

After Vivado has finished with the Tcl script execution, a created block diagram containing Zynq PS will be visible in the
Vivado IDE, as shown on the Illustration 12.7.

166

12.3 Creating Module

Figure 12.7: Block diagram of Zynq PS configured to run on socius board

Step 6. In the Vivado Flow Navigator, click Run Synthesis command and wait for task to be completed

Step 7. After the synthesis is completed, choose Open Synthesized Design option in the Synthesis Completed dialog
box

Step 8. Open Debug Layout (if it is not already opened) and in the Debug window, select Set Up Debug button to launch
the Set Up Debug wizard. In the Set Up Debug wizard add pwm_s and count_s nets to ILA core, as it is explained in
steps 23 - 32 in the Sub-chapter 11.1 "Inserting ILA and VIO Cores into Design".

Note: Pay attention to enable Capture control feature for ILA in step 31!

Step 9. Implement your design with Run Implementation option from the Flow Navigator / Implementation (see Sub--
Chapter 10.2.2 Run Implementation)

Step 10. Generate bitstream file with Generate Bitstream option from the Flow Navigator / Program and Debug (see
Sub-Chapter 10.3 Generate Bitstream File)

Step 11. Program your socius board (see Sub-Chapter 10.4 Program Device)

Step 12. When the socius board is programmed, select File -> Export -> Export Hardware... option from the main
Vivado IDE menu

Step 13. In the Export Hardware dialog box, you don’t have to include bistream file, so just click OK

In order to get the internal FPGA clock running, we must run some application on the processing system. In order to do
this, following steps must be performed:

Step 14. Select File -> Launch SDK from the main Vivado IDE menu

Step 15. In the Launch SDK dialog box, make sure that both Exported location and Workspace are set to Local to
Project and click OK

SDK will be launched in a separate window.

To create an application project, do the following:

Step 16. Select File -> New -> Application Project and the Application Project dialog box will appear

Step 17. In the Project name field, type a name of the new project, in our case it will be modulator_socius and click Next

Step 18. In the Templates dialog box, choose one of the available templates to generate a fully-functioning application
project. You can choose Hello World template and click Finish.

Step 19. In the Project Explorer select your application project (modulator_socius), right-click on it and select Run As
-> Launch on Hardware (System Debugger) option

167

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

Step 20. Turn back to the Vivado IDE and in the Hardware window of the Hardware Manager right-click on the FPGA
device (xc7z020) and select Refresh Device option

After refreshing the FPGA device the Hardware window now shows the ILA and VIO cores that were detected after scanning
the device and default dashboard for each debug core is automatically opened. The default ILA dashboard can be seen on
the Illustration 12.8.

Figure 12.8: ILA Dashboard

Step 21. Open the VIO dashboard by clicking the hw_vios tab and press green + button in the middle of the VIO dashboard
to add the probes

Step 22. In the Add Probes window select both pwm_s and sw0_s probes and click OK, see Illustration 12.9

Figure 12.9: Add Probes to the VIO window

Step 23. In the VIO Probes window you will see two 1-bit probes, pwm_s and sw0_s, see Illustration 12.10. pwm_s
probe is actually connected to the pwm_out output port of the Modulator module, as can be seen on the Figure 11.9 and

168

12.3 Creating Module

from the modulator_vio_rtl.vhd source code. Similarly, sw0_s probe is connected to the sw0 input port of the Modulator
module.

Figure 12.10: VIO Probes window

In the VIO Probes window, you can observe the rate of change of the pwm_s signal. You can change the frequency of the
pwm_s signal by changing the value of the sw0_s probe from 0 to 1 and from 1 to 0, see Illustration 12.11. The default
sw0_s value is 0.

Figure 12.11: Changing the sw0_s value

Step 24. Turn back to the ILA dashboard by clicking the hw_ila_1 tab and in the Trigger Setup window press green +
button in the middle to add the probes

Step 25. In the Add Probes window select only pwm_s_1 probe and click OK, see Illustration 12.12

169

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

Figure 12.12: Add Probes to the Trigger Setup window

Step 26. Now, when the ILA debug probe pwm_s_1 is in the Trigger Setup window, we can create trigger conditions and
debug probe compare values. In the Trigger Setup window, leave == (equal) value in the Operator cell, [H] (Hexadecimal)
value in the Radix cell and set the Value parameter to be 0 (logical zero), as it is shown on the Illustration 12.13.

Figure 12.13: Changing the Compare Values in the Trigger Setup window

Step 27. In the main ILA Properties window, change the Capture mode to be BASIC in the Capture Mode Settings
section

Step 28. In the Capture Setup window press green + button in the middle to add the probes

Step 29. In the Add Probes window select only pwm_s_1 probe and click OK, see Illustration 12.14

170

12.3 Creating Module

Figure 12.14: Add Probes to the Capture Setup window

Step 30. In the Capture Setup window, leave == (equal) value in the Operator cell, [B] (Binary) value in the Radix cell
and set the Value parameter to be F (1-to-0 transition), as it is shown on the Illustration 12.15.

Figure 12.15: Changing the Compare Values in the Capture Setup window

Step 31. After we set all the ILA core parameters, we can run the ILA core trigger unit by pressing the Run Trigger button.

Once the ILA core captured data has been uploaded to the Vivado IDE, it is displayed in the Waveform Viewer, see
Illustration 12.16.

Note: After triggering the ILA core, in the waveform viewer change the count_s_0 Waveform Style from Digital to Analog,
and your captured waveform should look like as the waveform on the Illustration 12.16.

Figure 12.16: Captured waveform of the sine signal, when sw0=0

171

MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD

Step 32. Turn back to the VIO Probes window and change the Value of the sw0_s signal from 0 to 1, see Illustration 12.11

Step 33. Arm the trigger ones more and after triggering the ILA core your captured waveform should look like as the
waveform on the Illustration 12.17

Figure 12.17: Captured waveform of the sine signal, when sw0=1

Note: By comparing the waveforms shown on Illustrations 12.16 and 12.17 we can observe that they differ in the amplitude
value. This is expected since the waveforms actually represent the width of the PWM pulse generated by the modulator
module. Since the frequencies of two generated PWM signals differ (one has a frequency of 1 Hz and the other of 3.5
Hz) and the PWM pulse width measurement module always uses the same frequency for measuring the duration of the
PWM pulse, when the PWM frequency increases the duration of the PWM pulse will decrease, therefore decreasing the
amplitude of the output signal of the PWM pulse width measurement module.

172

Chapter 13

DESIGNING WITH IPs

This chapter will guide you through the process of IP core creation, customization and integration into your design. Vivado
Design Suite offers IP Packager and IP Integrator tool to help you with the process of designing with IP.

The Vivado Design Suite provides multiple ways to use IP in a design. The Vivado IDE provides an IP-Centric design flow
that enables you to add IP modules to your project from various design sources. IP-Centric design flow helps you quickly
turn design and algorithms into reusable IP. Illustration 13.1 illustrates the IP-Centric design flow.

Figure 13.1: Vivado IP-Centric Design Flow

You can customize and add an IP into the project using the IP Catalog from the Vivado IDE. In the IP Catalog you can add
the following:

• Modules from System Generator for DSP designs (MATLAB/Simulink algorithms) and Vivado High-Level Synthesis
designs (C/C++ algorithms)

• Third party IP

• User designs packaged using IP Packager

The available methods to work with IP in a design are:

• Use the Managed IP Flow to customize IP and generate output products, including a Synthesized Design Checkpoint
(DCP)

• Use IP in either Project or Non-Project modes by referencing the created Xilinx Core Instance (XCI) file, which is a
recommended method for large projects with many team members

• Create and add IP within a Vivado Project. Access the IP Catalog in a project to create and add IP to design. Store
the IP either inside the project or save it externally to the project, which is the recommended method for projects with
small team sizes

• Create and customize IP and generate output products in a non- project script flow, including generation of a Syn-
thesized Design Checkpoint (DCP)

In this tutorial we will show you how to create and add user designs in the IP Catalog, packaged using the IP Packager
tool and how you can instantiate your IP into the project using IP Catalog or IP Integrator tools.

DESIGNING WITH IPs

13.1 IP Packager

The Vivado IP Packager is a tool designed on the IEEE IP-XACT standard. It provides any Vivado user the ability to
package a design at any stage of the design flow and prepare it for use in the Vivado environment. The IP user can then
instantiate IP into their design either by using the IP Catalog or IP Integrator. The Illustration 13.2 shows the flow of the IP
packaging and IP usage, using the IP Catalog.

Figure 13.2: IP Packaging and Usage Flow

As you can see from the illustration above, the IP developer uses the IP Packager to package HDL and other IP source
files and create an archive (zip file). The packaged IP is then given to the user and added to the IP Catalog. When the IP
is in the IP Catalog, a user can select the IP and create a customization for their design.

The Vivado IDE contains a Create and Package IP wizard that helps and guides you step-by-step through the IP creation
and packaging steps. The Create and Package IP wizard offers the following functions:

• Create IP using source files and information from a project

• Create IP from a specified directory

• Create a template AXI4 peripheral that includes the HDL, drivers, a test application, a Bus Functional Model (BFM),
and an example template

The following steps describe how to use the Package IP wizard to package IP. You can use the IP Packager within your
existing Vivado project or you can create a new Vivado project for IP you want to package.

Step 1. Close the existing Modulator project with the File -> Close Project option from the main Vivado IDE menu and in
the Vivado Getting Started page choose Create New Project option

Step 2. In the Create a New Vivado Project dialog box, click Next, see Illustration 13.3

Figure 13.3: Create a New Vivado Project dialog box

174

13.1 IP Packager

Step 3. In the Project Name dialog box, enter a name of a new project and specify directory where the project data files
will be stored. Name the project frequency_trigger, verify the project location and click Next, see Illustration 13.4

Figure 13.4: Project Name dialog box

Step 4. In the Project Type dialog box, verify that the RTL Project is selected and the Do not specify sources at this
time option is unchecked and click Next, see Illustration 13.5

Figure 13.5: Project Type dialog box

Step 5. In the Add Sources dialog box, click + icon and choose Add Files... option to add HDL and Netlist files to your
project, see Illustration 13.6

175

DESIGNING WITH IPs

Figure 13.6: Add Sources dialog box

Step 6. In the Add Source Files dialog box, select frequency_trigger_rtl.vhd source file and click OK, see Illustration
13.7

Figure 13.7: Add Source Files dialog box

Step 7. In the Add Sources dialog box, select VHDL as the target language and ensure that you select Copy sources
into project option, because Xilinx strongly recommends the source files are present within the project, see Illustration
13.8

176

13.1 IP Packager

Figure 13.8: Add Sources dilaog box with added source file

Step 8. Click Next

Step 9. In the Add Existing IP (optional) dialog box, click Next

Figure 13.9: Add Existing IP (optional) dialog box

Step 10. In the Add Constraints (optional) dialog box, remove if there are some constraints files, and click Next, see
Illustration 13.10

177

DESIGNING WITH IPs

Figure 13.10: Add Constraints (optional) dialog box

Step 11. In the Default Part dialog box, ensure that the ZedBoard Zynq Evaluation and Development Kit is selected
and click Next, see Illustration 13.11

Figure 13.11: Default Part dialog box

Step 12. In the New Project Summary dialog box, click Finish if you are satisfied with the summary of your project or go
back as much as necessary to correct all the questionable issues, see Illustration 13.12

178

13.1 IP Packager

Figure 13.12: New Project Summary dialog box

After we finished with the new project creation, in a few seconds Vivado IDE will appear with the created frequency_trigger
project, see Illustration 13.13

Figure 13.13: Created new frequency_trigger project

Step 13. In the Vivado Flow Navigator, under the Project Manager, click Project Settings command and choose IP
from the left pane, see Illustration 13.14. Global IP project settings are available to help you be more productive when
customizing IP.

179

DESIGNING WITH IPs

Step 14. In the IP window, select Packager tab and fill the fields as it is shown on the Illustration 13.14.

Packager sets default values for packaging new IP, including vendor, library and taxonomy. This category also allows you to
set the default behavior when opening the IP Packager and allows you to specify file extension to be filtered automatically.
If necessary, you can change the default values for packaging IP during the IP packaging process.

Note: Ensure that the Create archive of IP option is enabled in the After Packaging section to deliver an archive file.

Figure 13.14: Packager window with configured settings that will be applied after packaging process

Our next step will be to package frequency_trigger project. To package a Vivado project as IP, do the following:

Step 15. In the main Vivado IDE menu, select Tools -> Create and Package IP... option, see Illustration 13.15

Figure 13.15: Create and Package IP option

180

13.1 IP Packager

Step 16. In the Create and Package IP dialog box, click Next, see Illustration 13.16

Figure 13.16: Create and Package IP dialog box

Step 17. In the Choose Create Peripheral or Package IP dialog box, choose Package your current project option and
click Next, see Illustration 13.17

Figure 13.17: Choose Create Peripheral or Package IP dialog box

Step 18. In the Package Your Current Project dialog box, choose IP Location and type of the Packaging IP in the
project, see Illustration 13.18

181

DESIGNING WITH IPs

Figure 13.18: Package Your Current Project dialog box

• IP Location: The directory in which the tool creates the IP Definition. The default is the project sources directory.

• Packaging IP in the project:

– Include .xci files: If the project you are packaging includes subcores, package only the IP customization XCI
file. By deciding to include the XCI files, the IP Packager packages only the XCI file of the IP customization.
This creates a subcore reference to the parent IP and allows the packaged XCI file to be managed by the
Vivado tool. The advantage is that the IP can easily be upgraded to the latest release by using the Vivado IP
Upgrade methodology.

– Include IP generated files: Packages the generated RTL and XDC sources of the IP customization.

Step 19. In the New IP Creation dialog box, click Finish, see Illustration 13.19.

Figure 13.19: New IP Creation dialog box

182

13.1 IP Packager

If you have selected either Package your current project or Package a specified directory option, the New IP Creation
dialog box opens automatically to summarize the information the wizard gathered about the project, and creates a basic IP
package in a staging area as shown on the illustration above.

Step 20. In the Package IP dialog box, click OK and Package IP - frequency_trigger window will automatically appear
on the right side of the Vivado IDE, see Illustration 13.20

Review the IP Packaging steps in the Package IP page:

• Identification: Information used to identify your IP

• Compatibility: Configure the parts and/or families of Xilinx devices that are compatible with your IP

• File Groups: Individual files for your IP are grouped into specific file groups

• Customization Parameters: Specify the parameters to customize your IP

• Ports and Interfaces: Top-level ports and interfaces for your IP

• Addressing and Memory: Specify the memory-maps or address spaces

• Customization GUI: Configure the parameters that appear on each page of the Customization GUI

• Review and Package: Summary of the IP and repackaging

Step 21. In the Package IP - frequency_trigger window, in the Identification section, fill in fields as it is shown on the
Illustration 13.20

Figure 13.20: Identification window

As you can see from the illustration above, Package IP wizard automatically choose MyIPs category, as the default category
to store packaged IP.

The Categories option allows the IP designer to select various categories to help classify the new IP Definition. When IP
definition is added to the IP Catalog, the IP will be listed under the specified categories.

Step 22. After we finished with the IP Identification, select the Review and Package option in the Package IP window
and check the specified project directory folder to make sure that the new archive file was added, see Illustration 13.21.

The default naming convention for the archive is:

<vendor>_<library>_<name>_<version>.zip

In our case, the name of the zip file should be:

So-Logic_modulator_frequency_trigger_1.0.zip

The user can change the default name and location of the archive by selecting the edit link next to the Create archive of
IP name in the After Packaging selection, see Illustration 13.21.

183

DESIGNING WITH IPs

Figure 13.21: Review and Package window

Step 23. Click edit link next to the Create archive of IP name in the After Packaging selection to change the name and
the location of the archive, see Illustration 13.22

Figure 13.22: Package IP dialog box

Step 24. In the Package IP dialog box, change the Archive name to be:

So-Logic_modulator_frequency_trigger_1.0.zip

Step 25. Before you change the Archive location, create a new folder, ip_repository, in the same folder where the
frequency_trigger project was created. This new folder will be a place where we will keep all IPs (.zip files) that we will
create.

Step 26. In the Package IP dialog box, change the Archive location to the new ip_repository folder, see Illustration
13.23

Figure 13.23: Package IP dialog box with selected new archive location

Step 27. Click OK and you should see all the modifications that we made in the After Packaging sector of the Review
and Package window, see Illustration 13.24

184

13.1 IP Packager

Figure 13.24: Review and Package window with new archive information

Step 28. If you are satisfied with the Package IP information, click the Package IP button at the bottom of the Review and
Package window to finish with the frequency_trigger IP packaging process

Step 29. In the Flow Navigator, under the Project Manager, click IP Catalog command to verify the presence of our
frequency_trigger IP in the IP Catalog

Step 30. In the IP Catalog, search for the frequency_trigger_v1_0 IP, see Illustration 13.25

If you select the frequency_trigger_v1_0 IP, all the data that we entered in the process of the IP creation should appear
in the Details window, see Illustration 13.25.

Figure 13.25: frequency_trigger IP in the IP Catalog

Now, when you know the procedure for IP creation, repeat the steps (1-29) to create the rest of the IPs (counter, digital_sine
and pwm), necessary for the Modulator project, with the following exceptions:

Counter IP:

• Name the project "counter" when you start new project creation

• In the project creation process, in the Add Source Files dialog box, choose counter_rtl.vhd source file and click
OK

• In the Packager IP wizard, in the Review and Package window, click edit link next to the Create archive of IP name
in the After Packaging selection to change the name and the location of the archive:

– Change the Archive name to be: So-Logic_modulator_counter_1.0.zip

185

DESIGNING WITH IPs

– Change the Archive location to the new ip_repository folder

Digital Sine IP:

• Name the project "digital_sine" when you start new project creation

• In the project creation process, in the Add Source Files dialog box, choose sine_rtl.vhd and modulator_pkg.vhd
source files and click OK

• In the Packager IP wizard, in the Review and Package window, click edit link next to the Create archive of IP name
in the After Packaging selection to change the name and the location of the archive:

– Change the Archive name to be:

So-Logic_modulator_digital_sine_1.0.zip

– Change the Archive location to the new ip_repository folder

Pwm IP:

• Name the project "pwm" when you start new project creation

• In the project creation process, in the Add Source Files dialog box, choose pwm_rtl.vhd and frequency_trigger-
_rtl.vhd source files and click OK

• In the Packager IP wizard, in the Review and Package window, click edit link next to the Create archive of IP name
in the After Packaging selection to change the name and the location of the archive:

– Change the Archive name to be: So-Logic_modulator_pwm_1.0.zip

– Change the Archive location to the new ip_repository folder

Now, when all IPs are created, it’s time to create a new project, modulator_ip, where we will instantiate these IPs.

Step 31. Create new Vivado project, modulator_ip, without adding any source file

The following steps will show you how to add packaged IP to the IP Catalog:

Step 32. Open ip_repository folder with packaged IPs (.zip files) and extract each IP separately

Step 33. Then, In the Flow Navigator, under the Project Manager , click Project Settings command and choose IP from
the left pane

Step 34. In the IP window, select Repository Manager tab, see Illustration 13.26

Repository Manager lets you add or remove user repositories and establish precedence between repositories.

186

13.1 IP Packager

Figure 13.26: Repository Manager window

Step 35. In the Repository Manager window, click + icon to add the desired repository, see Illustration 13.26

Step 36. In the IP Repositories window, choose ip_repository folder and click Select

Step 37. In the Add Repository dialog box, click OK to add the selected repository (ip_repository with 4 IPs) to the project,
see Illustration 13.27

Figure 13.27: Add Repository dialog box

Step 38. In the Repository Manager window, when ip_repository is added to the IP Repositories section, click OK, see
Illustration 13.28

187

DESIGNING WITH IPs

Figure 13.28: Repository Manager with selected ip_repository

Step 39. In the Flow Navigator, under the Project Manager, click IP Catalog command to verify the presence of the
previously created IPs in the IP Catalog.

Step 40. Double-click on the frequency_trigger_v1_0 IP core and Vivado IDE will create a new skeleton source for your
IP

The window that will be opened is used to set up the general frequency_trigger core parameters, see Illustration 13.29

188

13.1 IP Packager

Figure 13.29: frequency_trigger IP configuration window

Step 41. In the frequency_trigger_v1_0 (1.0) dialog box, change the Component Name to be frequency_trigger_ip
and click OK

Step 42. In the Generate Output Products dialog box, click Generate, see Illustration 13.30

Figure 13.30: Generate Output Products window for frequency_trigger_ip core

Note: After frequency_trigger_ip core generation, your frequency_trigger_ip core should appear in the Sources window,
see Illustration 13.31

189

DESIGNING WITH IPs

Figure 13.31: Sources window with generated frequency_trigger_ip IP

After we generate frequency_trigger_ip IP, we should repeat the same procedure for the counter_v1_0 IP:

Step 43. In the IP Catalog, double-click on the counter_v1_0 IP core and Vivado IDE will create a new skeleton source
for the counter_v1_0 IP

The window that will be opened is used to set up the general counter core parameters, see Illustration 13.32

Figure 13.32: counter IP configuration window

Step 44. In the counter _v1_0 (1.0) dialog box, change the Component Name to be counter_ip and configure the rest
of the parameters:

• Cnt Value G to be 255

• Depth G to be 8

Note: To know how to configure the right values, open the modulator_rtl.vhd source file and find out how it is done in the
original design:

counterampl : entity work.counter(rtl) -- counter module instance
generic map(

cnt_value_g => design_setting_g.cntampl_value,
depth_g => design_setting_g.depth
)

190

13.1 IP Packager

Step 45. Click OK

Step 46. In the Generate Output Products dialog box, click Generate

Note: After counter_ip core generation, your counter_ip core should appear in the Sources window.

After we generate frequency_trigger_ip and counter_ip IPs, we should repeat the same procedure for the sine_v1_0 IP:

Step 47. In the IP Catalog, double-click on the sine_v1_0 IP core and Vivado IDE will create a new skeleton source for
the sine_v1_0 IP

The window that will be opened is used to set up the general sine core parameters, see Illustration 13.33

Figure 13.33: sine IP configuration window

Step 48. In the sine _v1_0 (1.0) dialog box, change the Component Name to be sine_ip and configure the rest of the
parameters:

• Depth G to be 8

• Width G to be 12

Note: To know how to configure the right values, open the modulator_rtl.vhd source file and find out how it is done in the
original design:

sine : entity work.sine(rtl) -- digital sine module instance
generic map (

depth_g => design_setting_g.depth,
width_g => design_setting_g.width
)

Step 49. Click OK

Step 50. In the Generate Output Products dialog box, click Generate

Note: After sine_ip core generation, your sine_ip core should appear in the Sources window.

After we generate frequency_trigger_ip, counter_ip and sine_ip IPs, we should repeat the same procedure for the last
pwm_v1_0 IP:

Step 51. In the IP Catalog, double-click on the pwm_v1_0 IP core and Vivado IDE will create a new skeleton source for
the pwm_v1_0 IP

191

DESIGNING WITH IPs

The window that will be opened is used to set up the general pwm core parameters, see Illustration 13.34

Figure 13.34: pwm IP configuration window

Step 52. In the pwm _v1_0 (1.0) dialog box, change the Component Name to be pwm_ip and configure the rest of the
parameters:

• Width G to be 12

Note: To know how to configure the right values, open the modulator_rtl.vhd source file and find out how it is done in the
original design:

pwmmodule : entity work.pwm (rtl) -- pwm module instance
generic map (

width_g => design_setting_g.width,
)

Step 53. Click OK

Step 54. In the Generate Output Products dialog box, click Generate

Note: After pwm_ip core generation, all the generated cores should appear in the Sources window, see Illustration 13.35

Figure 13.35: Sources window with all four generated IPs

192

13.1 IP Packager

After configuring and generating all four necessary IPs (frequency_trigger_ip, counter_ip, sine_ip and pwm_ip), we will
create a top-level VHDL module, modulator_ip_rtl.vhd, where we will connect these IPs, see Figure 13.36.

Figure 13.36: Connection between generated IPs

To create a module, use steps for creating modules, Chapter 2.4.1 Creating a Module Using Vivado Text Editor.

modulator_ip_rtl.vhd:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_textio.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

library unisim;
use unisim.vcomponents.all;

entity modulator_ip is
generic (

-- User defined settings for the pwm design
design_setting_g : design_setting_t_rec := design_setting_c

);

port (
clk_in : in std_logic; -- input clock signal
sw0 : in std_logic; -- signal made for selecting frequency
div_factor_freqhigh : in std_logic_vector (31 downto 0); -- input clock division when sw0 = ’1’
div_factor_freqlow : in std_logic_vector (31 downto 0); -- input clock division when sw0 = ’0’
pwm_out : out std_logic -- pulse width modulated signal

);
end entity;

architecture rtl of modulator_ip is

signal ampl_cnt_s : std_logic_vector (7 downto 0);

193

DESIGNING WITH IPs

signal sine_ampl_s : std_logic_vector (11 downto 0);
signal freq_trig_s : std_logic;

-- frequency_trigger_ip component definition
component frequency_trigger_ip

port (
clk_in : in std_logic;
sw0 : in std_logic;
div_factor_freqhigh : in std_logic_vector (31 downto 0);
div_factor_freqlow : in std_logic_vector (31 downto 0);
freq_trig : out std_logic

);
end component;

-- counter_ip component definition
component counter_ip

port (
clk_in : in std_logic;
cnt_en : in std_logic;
cnt_out : out std_logic_vector (7 downto 0)

);
end component;

-- sine_ip component definition
component sine_ip

port (
clk_in : in std_logic;
ampl_cnt : in std_logic_vector (7 downto 0);
sine_out : out std_logic_vector (11 downto 0)

);
end component;

-- pwm_ip component definition
component pwm_ip

port (
clk_in : in std_logic;
sw0 : in std_logic;
sine_ampl : in std_logic_vector (11 downto 0);
div_factor_freqhigh : in std_logic_vector (31 downto 0);
div_factor_freqlow : in std_logic_vector (31 downto 0);
pwm_out : out std_logic

);
end component;

begin

-- frequency_trigger_ip component instance
freq_trig: frequency_trigger_ip

port map (
clk_in => clk_in,
sw0 => sw0,
div_factor_freqhigh => div_factor_freqhigh,
div_factor_freqlow => div_factor_freqlow,
freq_trig => freq_trig_s

);

-- counter_ip component instance
counter: counter_ip

port map (
clk_in => clk_in,
cnt_en => freq_trig_s,
cnt_out => ampl_cnt_s

);

-- sine_ip component instance
sine: sine_ip

port map (
clk_in => clk_in,
ampl_cnt => ampl_cnt_s,
sine_out => sine_ampl_s

);

-- pwm_ip component instance
pwm: pwm_ip

port map (
clk_in => clk_in,
sw0 => sw0,
sine_ampl => sine_ampl_s,
div_factor_freqhigh => conv_std_logic_vector(conv_integer(div_factor_freqhigh)/(2**

design_setting_g.width), 32),
div_factor_freqlow => conv_std_logic_vector(conv_integer(div_factor_freqlow)/(2**

design_setting_g.width), 32),
pwm_out => pwm_out

);
end;

After we finished with the modulator_ip_rtl.vhd module creation, we should create new modulator_ip_wrapper_rtl.vhd
module in the same way as it was done for the Modulator module example, see Chapter 9. MODULATOR WRAPPER.

194

13.1 IP Packager

The block diagram and source code of the Modulator IP wrapper is shown in the text below.

Figure 13.37: Modulator IP wrapper block diagram

Modulator IP wrapper VHDL model:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

library unisim;
use unisim.vcomponents.all;

use work.modulator_pkg.all;

entity modulator_ip_wrapper is
generic(

-- If some module is top, it needs to implement the differential clk buffer,
-- otherwise this variable will be overwritten by a upper hierarchy layer
this_module_is_top_g : module_is_top_t := yes;

-- Parameter that specifies major characteristics of the board that will be used
-- to implement the modulator design
-- Possible choices: """lx9""", """zedboard""", """ml605""", """kc705""", """microzed""", ""socius"

""
-- Adjust the modulator_pkg.vhd file to add more
board_name_g : string := """zedboard""";

-- User defined settings for the pwm design
design_setting_g : design_setting_t_rec := design_setting_c

);

port(
clk_p : in std_logic; -- differential input clock signal
clk_n : in std_logic; -- differential input clock signal
sw0 : in std_logic; -- signal made for selecting frequency
pwm_out : out std_logic -- pulse width modulated signal

-- clk_en : out std_logic -- clock enable port used only for MicroZed board
);

end entity;

architecture rtl of modulator_ip_wrapper is

-- input clock signal
signal clk_in_s : std_logic;

-- c1_c = fclk/(2^depth*2^width) - c1_c = 95.3674, fclk = 100 MHz
constant c1_c : real :=

get_board_info_f(board_name_g).fclk/(real((2**design_setting_g.depth)*(2**design_setting_g.width)));
-- div_factor_freqhigh_c = (c1_c/f_high)*2^width - threshold value of frequency a = 110592
constant div_factor_freqhigh_c : integer :=

integer(c1_c/design_setting_g.f_high)*(2**design_setting_g.width);
-- div_factor_freqlow_c = (c1_c/f_low)*2^width - threshold value of frequency b = 389120
constant div_factor_freqlow_c : integer :=

integer(c1_c/design_setting_g.f_low)*(2**design_setting_g.width);

begin

-- in case of MicroZed board we must enable on-board clock generator
-- clk_en <= ’1’;

-- if module is top, it has to generate the differential clock buffer in case
-- of a differential clock, otherwise it will get a single ended clock signal
-- from the higher hierarchy

195

DESIGNING WITH IPs

clk_buf_if_top : if (this_module_is_top_g = yes) generate

clk_buf : if (get_board_info_f(board_name_g).has_diff_clk = yes) generate

ibufgds_inst : ibufgds
generic map(

ibuf_low_pwr => true,
-- low power (true) vs. performance (false) setting for referenced I/O standards
iostandard => "default"

)

port map (
o => clk_in_s, -- clock buffer output
i => clk_p, -- diff_p clock buffer input
ib => clk_n -- diff_n clock buffer input

);
end generate clk_buf;

no_clk_buf : if (get_board_info_f(board_name_g).has_diff_clk = no) generate
clk_in_s <= clk_p;

end generate no_clk_buf;

end generate clk_buf_if_top;

not_top : if (this_module_is_top_g = no) generate
clk_in_s <= clk_p;

end generate not_top;

modulatorip : entity work.modulator_ip -- modulator_ip module instance
generic map(

design_setting_g => design_setting_g
)

port map(
clk_in => clk_in_s,
sw0 => sw0,
div_factor_freqhigh => conv_std_logic_vector(div_factor_freqhigh_c, 32),
div_factor_freqlow => conv_std_logic_vector(div_factor_freqlow_c, 32),
pwm_out => pwm_out
);

end;

After we finished with the modulator_ip_rtl.vhd and modulator_ip_wrapper_rtl.vhd module creation, we should return
to the Vivado IDE and do the following:

Step 55. Add modulator_ip_rtl.vhd, modulator_ip_wrapper_rtl.vhd and modulator.xdc files in the "modulator_ip"
project with Flow Navigator Add Sources option. We should also add modulator_pkg.vhd source file.

• modulator_ip_rtl.vhd, modulator_ip_wrapper_rtl.vhd and modulator_pkg.vhd as Design Source file, and

• modulator.xdc as Constraints file

Step 56. Synthesize your design with Run Synthesis option from the Flow Navigator / Synthesis (see Sub-chapter
6.5.2 Run Synthesis)

Step 57. Implement your design with Run Implementation option from the Flow Navigator / Implementation (see Sub--
Chapter 10.2.2 Run Implementation)

Step 58. Generate bitstream file with Generate Bitstream option from the Flow Navigator / Program and Debug (see
Sub-Chapter 10.3 Generate Bitstream File)

Step 59. Program your ZedBoard device (see Sub-Chapter 10.4 Program Device)

Note: All the information about designing with IPs, like how to create and package an IP, how to add it to the IP Catalog,
how to customize and generate packaged IP, you can also find in the Lab 16: "Designing with IPs - IP Packager" .

13.2 IP Integrator

To accelerate the creation of highly integrated and complex designs, Vivado Design Suite is delivered with IP Integrator
(IPI) which provides a new graphical and Tcl-based IP- and system-centric design development flow.

Rapid development of smarter systems requires levels of automation that go beyond RTL-level design. The Vivado IP
Integrator accelerates IP- and system-centric design implementation by providing the following:

196

13.2 IP Integrator

• Seamless inclusion of IPI sub-systems into the overall design

• Rapid capture and packing of IPI designs for reuse

• Tcl scripting and graphical design

• Rapid simulation and cross-probing between multiple design views

• Support for processor or processor-less designs

• Integration of algorithmic and RTL-level IP

• Combination of DSP, video, analog, embedded, connectivity and logic

• Matches typical designer flows

• Easy to reuse complex sub-systems

• DRCs on complex interface level connections during design assembly

• Recognition and correction of common design errors

• Automatic IP parameter propagation to interconnected IP

• System-level optimizations

The Xilinx Vivado Design Suite IP Integrator feature lets you create complex system designs by instantiating and intercon-
necting IP cores from the Vivado IP Catalog onto a design canvas.

You can create designs interactively through the IP Integrator design canvas GUI, or using a Tcl programming interface.
You will typically construct design at the AXI interface level for greater productivity, but you may also manipulate designs at
the port level for more precise design control.

In this tutorial you will instantiate a few IPs in the IP Integrator tool and then stitch them up to create an IP sub-system
design. While working on this tutorial, you will be introduced to the IP Integrator GUI, run design rule checks (DRC) on
your design, and then integrate the design in a top-level design in the Vivado Design Suite. Finally, you will run synthesis
and implementation process, generate bitstream file and run your design on the ZedBoard development board.

The following steps describe how to use the IP Integrator within your project:

Step 1. Close the existing modulator_ip project with the File -> Close Project option from the main Vivado IDE menu
and in the Vivado Getting Started page choose Create New Project option

Step 2. In the Create a New Vivado Project dialog box, click Next to confirm the new project creation

Step 3. In the Project Name dialog box, enter a name of a new project and specify directory where the project data files
will be stored. Name the project modulator_ipi, verify the project location, ensure that Create project subdirectory is
checked and click Next

Step 4. In the Project Type dialog box, verify that the RTL Project is selected and the Do not specify sources at this
time option is unchecked and click Next

Step 5. In the Add Sources dialog box, ensure that the Target language is set to VHDL and click Next. You can add
sources later, under the design canvas in the Vivado IP Integrator to create a subsystem design.

Step 6. In the Add Existing IP (optional) dialog box, click Next

Step 7. In the Add Constraints (optional) dialog box, click Next

Step 8. In the Default Part dialog box, ensure that the ZedBoard Zynq Evaluation and Development Kit is selected and
click Next

Step 9. In the New Project Summary dialog box, review the project summary and click Finish if you are satisfied with the
summary of your project or go back as much as necessary to correct all the questionable issues

The new project, modulator_ipi, will be automatically opened in the Vivado IDE.

Step 10. In the Flow Navigator, expand IP Integrator and select Create Block Design command, see Illustration 13.38

197

DESIGNING WITH IPs

Figure 13.38: Create Block Design option

Step 11. In the Create Block Design dialog box, specify modulator_ipi name of the block design in the Design name
field and click OK, see Illustration 13.39

Figure 13.39: Create Block Design dialog box

The Vivado IDE will display a blank design canvas. You can quickly create complex subsystem by integrating IP cores in it,
see Illustration 13.40

Figure 13.40: Vivado IDE with a blank design canvas

198

13.2 IP Integrator

Step 12. To add our previously packaged IPs (frequency_trigger_v1_0, counter_v1_0, sine_v1_0 and pwm_v1_0) to
the IP Catalog, please repeat the steps 32 - 38 from the Sub-chapter 13.1 IP Packager.

Step 13. The modulator_ipi design is empty. To get started, add IPs from the IP Catalog. You can do that on three ways:

• In the design canvas, right-click and choose Add IP... option, see Illustration 13.41, or

Figure 13.41: Add IP option

• Use the Add IP link in the IP Integrator canvas, see Illustration 13.42, or

Figure 13.42: Add IP link

• Click on the Add IP button in the IP Integrator sidebar menu, see Illustration 13.43

199

DESIGNING WITH IPs

Figure 13.43: Add IP button

Step 14. In the IP Catalog, search for the frequency_trigger_v1_0 core, see Illustration 13.44

Figure 13.44: frequency_trigger_v1_0 core in the IP Catalog

Step 15. When you find it, press enter on the keyboard or simply double- click on the frequency_trigger_v1_0 core in
the IP Catalog and the selected core will be automatically instantiated into the IP Integrator design canvas, see Illustration
13.45

200

13.2 IP Integrator

Figure 13.45: Automatically instantiated frequency_trigger_v1_0 core in the IP Integrator design canvas

Step 16. Right-click in the IP integrator canvas and select the Add IP... option to add the rest of the necessary IPs
(counter_v1_0, sine_v1_0 and pwm_v1_0). At this point, the IP Integrator canvas should look like as it is shown on the
Illustration 13.46

Figure 13.46: IP Integrator design canvas with all four instantiated IPs

Step 17. Double-click on the each of the IP cores to re-customize it. Re- customize IPs on the same way as it is done in
the previous Sub-chapter 13.1 IP Packager (steps: 41, 44, 48 and 52), see Illustrations 13.47, 13.48, 13.49 and 13.50

201

DESIGNING WITH IPs

Figure 13.47: frequency_trigger_v1_0 re-customization dialog box

Figure 13.48: counter_v1_0 re-customization dialog box

202

13.2 IP Integrator

Figure 13.49: sine_v1_0 re-customization dialog box

Figure 13.50: pwm_v1_0 re-customization dialog box

Step 18. After we re-customize all four IPs, the IP Integrator canvas should look like as it is shown on the Illustration 13.51

203

DESIGNING WITH IPs

Figure 13.51: IP Integrator design canvas with all four re-customized IPs

Step 19. The last IP necessary for our design is the Constant IP. Add Constant IP four times into the block design.
Two Constant IP instances will be connected to the div_factor_freqhigh(31:0) and div_factor_freqlow(31:0) ports of
the frequency_trigger_v1_0 module and remaining two instances to the div_factor_freqhigh(31:0) and div_factor_-
freqlow(31:0) ports of the pwm_v1_0 module, see Illustration 13.52.

Figure 13.52: IP Integrator design canvas with instantiated Constant IPs

204

13.2 IP Integrator

Step 20. Double-click on the first Constant (xlconstant_0) block and set the Const Width value to 32 and Const Value
value to 110592, see Illustration 13.53

• Const Width to 32 - because div_factor_freqhigh port that we would like to connect to is 32-bit wide

• Const Value to 110592 - because 110592 is the number that divides frequency of the input clock signal (100 MHz)
to the required frequency, see Table 1.2

Figure 13.53: Constant block re-customization dialog box

Step 21. Do the same procedure with the second Constant (xlconstant_1) IP block. Set the Const Width value to 32
and Const Value value to 389120

Step 22. In the third Constant (xlconstant_2) IP block, set the Const Width value to 32 and Const Value value to 27

• Const Value to 27 (110592/4096=27) - because PWM module must operate at 2width (212 = 4096) higher frequency
then the Sine module. This is required in order to generate correct pwm signal, as described earlier

Step 23. In the forth Constant (xlconstant_3) IP block, set the Const Width value to 32 and Const Value value to 95
(389120/4096=95)

After we added all necessary IPs for our design, the next step will be to connect IPs between themselves. Make connections
on the same way as it is shown on the . Here are the steps how to make these connections:

Step 24. First step will be to create new ports:

• Select clk_in pin, right-click on it and select Create port... option, see Illustration 13.54

205

DESIGNING WITH IPs

Figure 13.54: Create Port option

• In the Create Port dialog box, check is the port name clk_in in the Port name field, leave all other parameters
unchanged and click OK, see Illustration 13.55

Figure 13.55: Create Port dialog box

• Repeat the same procedure for sw0 and pwm_out pins. After these modifications, the IP Integrator design canvas
should look like as it is shown on the Illustration 13.56

206

13.2 IP Integrator

Figure 13.56: IP Integrator design canvas with new ports

Step 25. Next step will be to connect the IPs:

Place the cursor on top of the desired pin and you can notice that the cursor changes into a pencil indicating that a
connection can be made from that pin. Clicking the left mouse button a connection starts. Click and drag the cursor from
one pin to another. You must press and hold down the left mouse button while dragging the connection from one pin to
another. As you drag the connection wire, a green checkmark appears on the port indicating that a valid connection can be
made between these points. The Vivado IP Integrator highlights all possible connections points in the subsystem design
as you interactively wire the pins and ports. Release the left mouse button and Vivado IP integrator makes connection
between desired ports. Repeat this procedure until all the pins become associated, see Illustration 13.57

207

DESIGNING WITH IPs

Figure 13.57: IP Integrator design canvas with connected IPs

Step 26. From the sidebar menu of the design canvas, run the IP subsystem design rule checks by clicking the Validate
Design button

Alternatively, you can do the same by selecting Tools -> Validate Design from the main menu, see Illustration 13.58, or

Figure 13.58: Validate Design option from the main menu

by clicking the design canvas and selecting Validate Design button from the main toolbar menu, see Illustration 13.59

208

13.2 IP Integrator

Figure 13.59: Validate Design button from the main toolbar menu

Step 27. ln the Validate Design dialog box, click OK, see Illustration 13.60

Figure 13.60: Validate Design dialog box

Step 28. At this point, you should save the IP integrator design. Use the File -> Save Block Design command from the
main menu to save the design.

Step 29. In the Sources window, select modulator_ipi, right- click on it and choose Create HDL Wrapper... option, see
Illustration 13.61

Figure 13.61: Create HDL Wrapper option

Step 30. In the Create HDL Wrapper dialog box, select Let Vivado manage wrapper and auto-update option and click
OK, see Illustration 13.62

Figure 13.62: Create HDL Wrapper dialog box

209

DESIGNING WITH IPs

Step 31. After the HDL wrapper is generated, you should see it in the Sources window, see Illustration 13.63

Figure 13.63: Sources window with generated modulator_ipi HDL wrapper

Step 32. The last step in our design will be to crate and add modulator_ipi_rtl.xdc constraints file. The content of the
modulator_ipi_rtl.xdc constraints file is shown in the text below:

set_property LOC Y9 [get_ports clk_in];
set_property LOC F22 [get_ports sw0];
set_property LOC T22 [get_ports pwm_out];

set_property IOSTANDARD LVCMOS33 [get_ports clk_in];
set_property IOSTANDARD LVCMOS25 [get_ports sw0];
set_property IOSTANDARD LVCMOS33 [get_ports pwm_out];

create_clock -period 10.000 -name clk_p -waveform {0.000 5.000} [get_ports clk_p]

Step 33. Add modulator_ipi_rtl.xdc file in the modulator_ipi project as constraints file, see Illustration 13.64

Figure 13.64: Sources window with added modulator_ipi_rtl.xdc constraints file

Step 34. Synthesize your design with Run Synthesis option from the Flow Navigator / Synthesis (see Sub-chapter
6.5.2 Run Synthesis)

Step 35. Implement your design with Run Implementation option from the Flow Navigator / Implementation (see Sub--
Chapter 10.2.2 Run Implementation)

Step 36. Generate bitstream file with Generate Bitstream option from the Flow Navigator / Program and Debug (see
Sub-Chapter 10.3 Generate Bitstream File)

4Step 37. Program your ZedBoard device (see Sub-Chapter 10.4 Program Device)

210

13.3 Debugging IP Integrated Designs

Note: All the information about how to design with IPs using Vivado IP Integrator tool, how to create complex system
design by instantiating and interconnecting IP cores from the Vivado IP Catalog onto a design canvas, you can also find in
the Lab 17: "Designing with IPs - IP Integrator" .

13.3 Debugging IP Integrated Designs

In-system debugging allows you to debug your design in real-time on your target hardware. IP Integrator provides ways
to instrument your design for debugging, which will be explained in this sub-chapter. In the earlier sub-chapters we have
explained that Vivado IDE has two different flows for debugging. One is the HDL Instantiation Debug Probing Flow and
the other one is Using the Netlist Insertion Debug Probing Flow. Choosing the flow depends on your preferences and
types of nets/signals that you are interested in debugging. In this tutorial we will explain both flows on the same, Modulator
IP integrated design.

Details about how to debug your IP Integrator design using the "HDL Instantiation Debug Probing Flow" can be found in
the Chapter 14 "Appendix".

Using the Netlist Insertion Flow in IP Integrator

As shown in the Sub-chapter 11.1 Inserting ILA and VIO Cores into Design, in this flow you will mark nets that you
are interested in analyzing in the block design. Marking nets for debug in the block design offers more control in terms of
identifying debug signals during coding and enabling/disabling debugging later in the flow.

To start debugging process using the Netlist Insertion Flow in IP Integrator tool, please do the following:

Step 1. Right-click on the modulator_ipi block design canvas and select Add IP... option

Step 2. In the IP Catalog, search for VIO core, select it and double- click on it to instantiate the VIO core in the IP Integrator
canvas

Step 3. In case of VIO core, use default configuration settings

Step 4. Remove sw0 port from the IP Integrated canvas and connect the VIO core with the rest of the IPs in the same way
as it is shown on the Figure 11.9, see Illustration 13.65

Figure 13.65: IP Integrator design canvas with connected VIO core

Step 5. The next step will be to mark nets for debug

211

DESIGNING WITH IPs

Nets can be marked for debug in the block design by highlighting them, right-clicking and selecting Debug, see Illustration
13.66

Step 6. Mark sine_ampl_s and freq_trig_s nets for debug

Figure 13.66: Debug option

The nets that have been marked for debug will show a small bug icon placed on top of the net in the block design. Likewise,
a bug icon can be seen placed on the nets to be debugged in the Design Hierarchy window as well.

Step 7. Generate output products by clicking on the Generate Block Design command or by highlighting the block design
in the sources window, right-clicking and selecting Generate Output Products option, see Illustration 13.67

Figure 13.67: Generate Block Design command

Note: Generate outputs needed for synthesis, simulation and implementation processes.

Step 8. In the Generate Output Products dialog box, click Generate

Step 9. Marking the nets for debug places the MARK_DEBUG attribute on the net which can be seen in the generated top-
level HDL file. This is important because prevents the Vivado tools from optimizing and renaming the nets, see Illustration
13.68

212

13.3 Debugging IP Integrated Designs

Figure 13.68: MARK_DEBUG attributes in the generated HDL file

Step 10. Remove modulator_ipi_rtl.xdc constraints file from the design and add new modulator_ila_vio_rtl.xdc con-
straints file which doesn’t contain sw0 port constraint

Step 11. The next step is to synthesize the design by clicking on the Run Synthesis command from the Flow Navigator,
under the Synthesis drop-down list

Step 12. In the Synthesis Completed dialog box, select Open Synthesized Design option and click OK

Step 13. The Schematic and the Debug window opens

Step 14. In the Debug window, click on the Set up Debug icon to launch Set up Debug wizard to guide you through the
process of automatically creating the debug cores and assigning the debug nets to the inputs of the cores

Step 15. Please refer to the Sub-chapter 11.1 Using the Inserting ILA and VIO Cores into Design and repeat steps 24
- 32 where is in detail explained how to use Set up Debug wizard, how to choose nets and how to connect them to debug
cores

Note: Pay attention that maybe some marked debug probes in the Nets to Debug dialog box (step 26) would not have
specified clock domain. In that case open Select Clock Domain dialog box, choose ALL_CLOCK instead of default GL-
OBAL_CLOCK nets type, select clk_in_IBUF as a new clock domain and click OK. Repeat the same procedure for the
both (sine_ampl_s and freq_trig_s) debug nets.

Step 16. You are now ready to implement your design and generate a bitstream file. You can immediately click on the
Generate Bitstream command in the Flow Navigator, under the Program and Debug drop-down list

Step 17. Since, you have made changes to the netlist by inserting an ILA core, a dialog box with a question should the
design be saved prior to generating bitstream file will pop up, see Illustration 13.69

Figure 13.69: Save Project dialog box

Step 18. Click Save in the Save Project dialog box

The benefit of saving the project is that if the signals marked for debug remain the same in the original block design, then
there is no need to insert the ILA core after synthesis manually as these constraints will take care of it.

213

DESIGNING WITH IPs

Step 19. Program your ZedBoard device (see Sub-Chapter 10.4 Program Device)

Step 20. After programming your design, you should get the same results as we presented in the Sub-chapter 11.2 Debug
a Design using Integrated Vivado Logic Analyzer of this tutorial.

Note: All the information about how to debug your IP integrated design using the Netlist Insertion Flow, you can also find
in the Lab 18: "Debugging IP Integrated Designs".

13.4 Creating Modulator IP Core with AXI4 Interface

Advanced eXtensible Interface (AXI) is a standard ARM communication protocol. Xilinx adopted the AXI protocol for IP
cores beginning with Spartan-6 and Virtex-6 families and continues to use it with new 7 Series and Zynq-7000 families.

AXI is part of ARM AMBA, a family of micro controller buses. The first version of AXI was first included in AMBA 3.0. AMBA
4.0 includes the second version of AXI, AXI4, which we are using now in our designs.

There are three types of AXI4 interfaces:

• AXI4-Full - for high-performance memory-mapped requirements

• AXI4-Lite - for simple, low-throughput memory-mapped communication

• AXI4-Stream - for high-speed streaming data

In the Vivado IDE you can access Xilinx IP with an AXI4 interface directly from the Vivado IP Catalog and instantiate that
IP directly into an RTL design. In the IP Catalog, the AXI4 column shows IP with AXI4 interfaces that are supported and
displays the which interfaces are supported by the IP interface.

To integrate our Modulator design in some processor-based system, we need to have AXI interface in our design. In order
to show how to work with AXI interface we will add three internal registers: "div_factor_freqhigh", "div_factor_freqlow" and
"sw0". The first two registers, "div_factor_freqhigh" and "div_factor_freqlow" will be connected to the div_factor_freqhigh
and div_factor_freqlow ports of the Modulator module and will be used for storing division factor values. The third register,
"sw0" register, will be connected to the sw0 port of the Modulator module. With this configuration we can change the
content of these three registers through AXI interface and easily change the frequency of the pwm signal generation. Block
diagram of the new Modulator design with AXI interface is presented on the Illustration 13.70.

Figure 13.70: Modulator design with AXI interface

214

13.4 Creating Modulator IP Core with AXI4 Interface

From the illustration above we can see that we should create a new Modulator module (for example modulator_axi) with
integrated AXI interface and instantiated modulator module (modulator_rtl.vhd). At the end we should package this new
module as a new IP, e.g. modulator_axi_ip.

The Vivado IDE provides a way to create a new AXI4 peripheral through Create and Package IP wizard. This wizard
takes you through all the required steps and settings necessary for creation of an IP with selected AXI interface (Full, Lite
or Stream). This wizard automatically creates interface logic for selected AXI interface type (AXI peripheral block on the
Illustration 13.70) and allows user to add user specific logic inside this AXI enabled IP (Modulator module on the Illustration
13.70). In our example, we will configure wizard to create an AXI IP with one AXI-Lite interface. Within AXI peripheral block
we will create four 32-bit configuration registers:

• the first register (sw0 REGISTER in the block diagram) will be used to replace the sw0 switch from the board

• the second register (div_factor_freqhigh REGISTER in the block diagram) will be used to write div_factor_freqhigh
values in it

• the third register (div_factor_freqlow REGISTER in the block diagram) will be used to write div_factor_freqlow
values in it

• the fourth register (4. unused REGISTER in the block diagram) will not be used. This register will be generated
automatically by the wizard because the minimum number of AXI registers that must be generated is four.

The first step in creating a new modulator_axi design will be to create a new project:

Step 1. Close the existing modulator_ipi project with the File -> Close Project option from the main Vivado IDE menu
and in the Vivado Getting Started page choose Create New Project option

Step 2. In the Create a New Vivado Project dialog box, click Next to confirm the new project creation

Step 3. In the Project Name dialog box, enter a name of a new project and specify directory where the project data files
will be stored. Name the project modulator_axi, verify the project location, ensure that Create project subdirectory is
checked and click Next

Step 4. In the Project Type dialog box, verify that the RTL Project is selected and the Do not specify sources at this
time option is checked and click Next

Step 5. In the Default Part dialog box, ensure that the ZedBoard Zynq Evaluation and Development Kit is selected and
click Next

Step 6. In the New Project Summary dialog box, review the project summary and click Finish if you are satisfied with the
summary of your project or go back as much as necessary to correct all the questionable issues

The new project, modulator_axi, will be automatically opened in the Vivado IDE.

Step 7. To create AXI4 peripheral and to integrate it into our design we will use Create and Package IP wizard to guide
us through all the required steps and settings. In the Vivado IDE main menu, select Tools -> Create and Package IP...
option, see Illustration 13.71

Figure 13.71: Create and Package IP... option

Step 8. In the Create and Package IP dialog box, click Next

215

DESIGNING WITH IPs

Figure 13.72: Create and Package IP dialog box

Step 9. In the Create Peripheral, Package IP or Package a Block Design dialog box, choose to Create a new AXI4
peripheral and click Next, see Illustration 13.73

Figure 13.73: Choose Create Peripheral or Package IP dialog box

Step 10. In the Peripheral Details dialog box, give the peripheral an appropriate name (modulator_axi_ip), description
and location, and click Next

216

13.4 Creating Modulator IP Core with AXI4 Interface

Figure 13.74: Peripheral Details dialog box

Note: The Display Name you provide shows in the Vivado IP Catalog. You can have different names in the Name
and Display Nameb fields. Any change in the Name filed reflects automatically in the Display Name filed, which is
concatenated with the Version field.

Step 11. In the Add Interfaces dialog box, we can configure AXI interface. We will use AXI Lite interface, it will be Slave
to the PS, and we will use the minimum number of 4 32-bit registers of the offered 512 registers. In our design we need
only three registers (sw0, div_factor_freqhigh and div_factor_freqlow), so the last one will be unused. Looking to this, we
will stick with the default values and just click Next

217

DESIGNING WITH IPs

Figure 13.75: Add Interfaces dialog box

Step 12. In the last Crate Peripheral dialog box, select Edit IP option and click Finish, see Illustration 13.76. Another
Vivado window will open, which will allow you to modify the peripheral that we just created, see Illustration 13.77.

Figure 13.76: Create Peripheral dialog box

Step 13. In the Package IP - modulator_axi_ip window, in the Identification section, fill some basic information about
your new modulator_axi_ip IP, see Illustration 13.77

218

13.4 Creating Modulator IP Core with AXI4 Interface

Figure 13.77: Identification window

At this point, the peripheral that has been generated by Vivado is an AXI Lite slave, that contains 4x32-bit read/write
registers. What we want is to add our Modulator module to the modulator_axi_ip IP and connect it with the three AXI
registers, see block diagram on the Figure 13.70 from the beginning of this chapter.

Step 14. In the Flow Navigator, click Add Sources command to add all the necessary Modulator module source files
(frequency_trigger_rt.vhd, counter_rtl.vhd, modulator_pkg.vhd, sine_rtl.vhd, sine_top_rtl.vhd, pwm_rtl.vhd and modulator-
_rtl.vhd) and after adding your Hierarchy tab should look like as it is shown on the Illustration 13.78

Note: In the Add or Create Design Sources dialog box don’t forget to enable Copy sources into IP Directory option.

Figure 13.78: Hierarchy tab after adding all the necessary source files in the IP

Step 15. Now is the time to modify AXI peripheral. Open the branch "modulator_axi_ip_v1_0 - arch_imp", see Illustration
13.79

219

DESIGNING WITH IPs

Figure 13.79: Hierarchy tab with opened modulator_axi_ip_v1_0 - arch_imp branch

Step 16. Double-click on the "modulator_axi_ip_v1_0_S00_AXI_inst" file to open it

Step 17. In the "modulator_axi_ip_v1_0_S00_AXI.vhd" file make the following changes:

• add modulator_pkg package

• in the entity declaration, add depth_g and width_g generics in the generic map, below the first comment line "--
Users to add parameters here"

• in the entity declaration, add pwm_out port as 1-bit output port in the port map, below the comment line "-- Users
to add ports here", see Illustration 13.80

• create constant design_setting_c, as it is shown on the Illustration 13.80

Figure 13.80: Modified modulator_axi_ip_v1_0_S00_AXI.vhd file - part 1

220

13.4 Creating Modulator IP Core with AXI4 Interface

Figure 13.81: Modified modulator_axi_ip_v1_0_S00_AXI.vhd file - part 2

Step 18. Now, at the end of this source code find the comment "-- Add user logic here" and below this comment
instantiate Modulator module. Connect Modulator module ports to the AXI peripheral on the same way as it is shown on
the Illustration 13.82

Figure 13.82: modulator_axi_ip_v1_0_S00_AXI.vhd file with instantiated Modulator module

Step 19. Save the file

Step 20. You should notice that the modulator_rtl.vhd source file has been integrated into the hierarchy, because we
have instantiated it within the AXI peripheral, see Illustration 13.83

221

DESIGNING WITH IPs

Figure 13.83: Hierarchy window with integrated Modulator module within AXI peripheral

Step 21. Now, double-click on the "modulator_axi_ip_v1_0 - arch_imp" file to open it

Step 22. In the "modulator_axi_ip_v1_0.vhd" file make the following changes:

• in the entity declaration, add depth_g and width_g generics in the generic map, below the first comment line "--
Users to add parameters here"

• in the entity declaration, add pwm_out port as 1-bit output port in the port map, below the comment line "-- Users
to add ports here", see Illustration 13.84

Figure 13.84: Modified modulator_axi_ip_v1_0.vhd source file - part 1

Step 23. Now, in the modulator_axi_ip_v1_0_S00_AXI component declaration add depth_g and width_g generics in the
generic map and pwm_out port in the port map, see Illustration 13.85

222

13.4 Creating Modulator IP Core with AXI4 Interface

Figure 13.85: Modified modulator_axi_ip_v1_0.vhd source file - part 2

Step 24. In the modulator_axi_ip_v1_0_S00_AXI component instance assign depth_g and width_g generics to their
values and connect pwm_out port of the modulator_axi_ip_v1_0_S00_AXI component to the pwm_out port of the IP, see
Illustration 13.86

Figure 13.86: Modified modulator_axi_ip_v1_0.vhd source file - part 3

Step 25. Save the file

Step 26. In the Package IP - modulator_axi_ip window, open Compatibility section and click "+" icon to add the family
with whom you want your packaged IP core to be compatible. Beside Zynq family we will also add Kintex-7 family, see
Illustration 13.87.

Zynq-7000 family is also used in "Embedded System Design Tutorial", when illustrating how to build an embedded system
around ARM processor. Since this packaged IP core will be used in ARM-based embedded system we must make it
compatible with Zynq-7000 family.

223

DESIGNING WITH IPs

Figure 13.87: Compatibility window

Step 27. In the Package IP - modulator_axi_ip window, open File Groups section, and click Merge changes from File
Groups Wizard link, see Illustration 13.88

Figure 13.88: File Groups window

Step 28. In the Package IP - modulator_axi_ip window, open Customization Parameters section, and click Merge
changes from Customization Parameters Wizard link. After merging changes from Customization Parameters Wizard,
Customization Parameters window should look like as it is show on the Illustration 13.89.

Note: After this step, you should get a green tick not only in Customization Parameters section, but also in Ports and
Interfaces and Customization GUI sections.

Figure 13.89: Customization Parameters window after merging changes from Customization Parameters Wizard

Step 29. In the Customization Parameters window, unhide the Hidden Parameters and hide the Customization Param-

224

13.4 Creating Modulator IP Core with AXI4 Interface

eters, because we would like to have only depth_g and width_g visible in the modulator_axi_ip_v1.0 IP Customization
GUI.

If you would like to unhide some IP Parameter, select it, right-click on it, choose Edit Parameter... option and in the Edit
IP Parameter dialog box enable Visable in Customization GUI option and click OK, see Illustration 13.90.

If you would like to hide some IP Parameter, just disable the Visable in Customization GUI option in the Edit IP Parameter
dialog box.

Figure 13.90: Edit IP Parameter window

Step 30. Now, open Review and Package section and click Re- Package IP option, see Illustration 13.91

Figure 13.91: Review and Package window

The new AXI peripheral with instantiated Modulator module in it will be packaged and the Vivado window for the peripheral
should be automatically closed. We should now be able to find our modulator_axi_ip IP in the IP Catalog.

Step 31. Open IP Catalog and search for modulator_axi_ip IP, see Illustration 13.92. When you find it, double-click on it
to customize and generate the IP.

225

DESIGNING WITH IPs

Figure 13.92: IP Catalog with modulator_axi_ip IP

Step 32. ln the modulator_axi_ip_v1.0 (1.0) customization window, check is Depth G set to 8 and Width G to 12 and if it
is, click OK, see Illustration 13.93

Figure 13.93: Customize IP - modulator_axi_ip_v1.0

Step 33. In the Generate Output Products dialog box, click Generate to generate the modulator_axi_ip_0 IP

Step 34. In the Sources window expand modulator_axi_ip_0 IP to see what the tool has created for us

Step 35. When you try to expand modulator_axi_ip_0 IP, Show IP Hierarchy dialog box will appear. Click OK to open
the modulator_axi_ip_0 IP hierarchy, see Illustration 13.94

226

13.4 Creating Modulator IP Core with AXI4 Interface

Figure 13.94: Show IP Hierarchy dialog box

Step 36. ln the Sources window expand all the levels of modulator_axi_ip_0 IP hierarchy, see Illustration 13.95. You can
see the structure of the modulator_axi_ip_0 IP.

Figure 13.95: Sources window with modulator_axi_ip_0 sources hierarchy

Step 37. At the end, we must verify our Modulator IP core with AXI4 interface

To write appropriate test bench file for our new Modulator IP core with AXI4 interface, we must first get acquainted with
AXI4-Lite interface signals. The AXI4-Lite interface signals are listed and described in the Table 12.1.

Table 12.1: AXI4_Lite Interface Signals Descriptions

Signal Name I/O Initial State Description
AXI Global System
Signals
S_AXI_ACLK I - AXI Clock.
S_AXI_ARESETN I - AXI Reset, active-low.
AXI Write Address
Channel Signals
S_AXI_AWADDR[C_S_A-
XI_ADDR_WIDTH-1:0]

I - AXI write address. The
write address bus gives the
address of the write
transaction.

S_AXI_AWPROT[2:0] I - AXI write address
protection signal. "000"
value is recommended.
Infrastructure IP passes
Protection bits across a
system.

227

DESIGNING WITH IPs

S_AXI_AWVALID I - Write address valid. This
signal indicates that valid
write address and control
information are available.

S_AXI_AWREADY O 0 Write address ready. This
signal indicates that the
slave is ready to accept an
address and associated
control signals.

AXI Write Data Channel
Signals
S_AXI_WDATA[C_S_AXI-
_
DATA_WIDTH-1:0]

I - Write data.

S_AXI_WSTRB[C_S_AXI-
_DATA_WIDTH/8-1:0]

I - Write strobes. This signal
indicates which byte lanes
to update in memory.

S_AXI_WVALID I - Write valid. This signal
indicates that valid write
data and strobes are
available.

S_AXI_WREADY O 0 Write ready. This signal
indicates that the slave can
accept the write data.

AXI Write Response
Channel Signals
S_AXI_BRESP[1:0] O 0 Write response. This

signal indicates the status
of the write transaction:
"00" = OKEY, "10" =
SLVERR

S_AXI_BVALID O 0 Write response. This
signal indicates the a valid
write response is available.

S_AXI_BREADY I - Response ready. This
signal indicates that the
master can accept the
response information.

AXI Read Address
Channel Signals
S_AXI_ARADDR[C_S_A-
XI_
ADDR_WIDTH-1:0]

I - Read address. The read
address bus gives the
address of a read
transaction.

S_AXI_ARPROT[2:0] I - AXI read address
protection signal. "000"
value is recommended.
Infrastructure IP passes
Protection bits across a
system.

228

13.4 Creating Modulator IP Core with AXI4 Interface

S_AXI_ARVALID I - Read address valid. When
High, this signal indicates
that the read address and
control information is valid
and remains stable until
the address
acknowledgement signal,
S_AXI_ARREADY, is High.

S_AXI_ARREADY O 0 Read address ready. This
signal indicates that the
slave is ready to accept an
address and associated
control signals.

AXI Read Data Channel
Signals
S_AXI_RDATA[C_S_AXI-
_
DATA_WIDTH-1:0]

O 0 Read data.

S_AXI_RRESP[1:0] O 0 Read response. This
signal indicates the status
of the read transfer.

S_AXI_RVALID O 0 Read valid. This signal
indicates that the required
read data is available and
the read transfer can
complete.

S_AXI_RREADY I - Read ready. This signal
indicates that the master
can accept the read data
and response information.

In this table only one part of the AXI4-Lite interface signals is presented, relevant to our design. If you want to see the rest
of the AXI4-Lite interface signals, please consult "LogiCORE IP AXI4-Lite IPIF" Product Guide for Vivado Design Suite. In
this document you will find all the necessary information how to create a test bench file for Modulator module with AXI4-Lite
interface.

Considering that we have four 32-bit registers in our design, our test bench task will be to change the content of these
registers through AXI4-Lite interface and, by doing so, to change the frequency of the generated pwm signal.

On the Illustration 13.96 AXI4-Lite single write operation timing diagram is presented. Using to this diagram, we will create
stimulus component in the test bench file for our design.

229

DESIGNING WITH IPs

Figure 13.96: AXI4-Lite single write operation timing diagram

From the illustration above we can see that we must first generate AXI-Lite input clock signal (S_AXI_ACLK). After that,
the important thing is to reset AXI4-Lite interface (by setting S_AXI_ARESETN signal to value ’0’). In our case, reset will
be 10 clock cycles wide. Considering that the reset is low-level sensitive, we will set it to ’0’ and wait for 10 falling edges
of the AXI-Lite clock signal. After that, we will release the reset signal, setting it to ’1’. From that moment, we will wait for
the next falling edge of the AXI-Lite clock signal and write div_factor_freqhigh value (S_AXI_WDATA) in the appropriate
register (2nd register, see Figure 13.70). To know what will be the address location of the "div_factor_freqhigh" register, we
must first understand the structure of S_AXI_AWADDR signal.

Figure 13.97: S_AXI_AWADDR signal

S_AXI_AWADDR is a 4-bit wide signal. AXI address space is byte addressable. Since we are using 32-bit registers, their
addresses must be aligned on 32-bit word address boundaries. This means that values of two least significant bits (bits 0
and 1) of S_AXI_AWADDR signal are not relevant when we are addressing 32-bit registers and can have arbitrary values.
On the other hand two most significant bits (bits 2 and 3) are used to select desired 32-bit register. In our case, internal
32-bit registers address map will have the following structure:

Table 12.2: Internal Registers Address Map of the Modulator IP Core

Internal Register Name S_AXI_AWADDR Value
"sw0" register "0000" (0)
"div_factor_freqhigh" register "0100" (4)
"div_facator_freqlow" register "1000" (8)
"4. unused" register "1100" (12)

Now when we know the structure of the internal registers address space, we will assign "0100" value to the S_AXI_AWA-
DDR signal since it is the address location of the "div_factor_freqhigh" register. We should also validate this address (by
setting S_AXI_AWVALID signal to ’1’) and write desired div_factor_freqhigh value in the "div_factor_freqhigh" register (by
setting S_AXI_WDATA to appropriate value). After that we should validate that the write data is valid (setting S_AXI_WV-
ALID to ’1’) and that all four bytes of write data should be written in the selected internal register (setting S_AXI_WSTRB
to "1111"). When S_AXI_WSTRB = "1111" that means that we would like to write data using all four byte lanes. We should
also activate S_AXI_BREADY signal, because this signal indicates that master can accept a write response. After the
first data write, we will wait for S_AXI_AWREADY signal to be first ’1’ and then ’0’ after one clock cycle, and then we will
deactivate AXI Write Address Channel and AXI Write Data Channel signals, completing one write transaction on the AXI
bus. Next we will write div_factor_freqlow value in the "div_factor_freqlow" register by repeating the same procedure. At
the end, we will repeat the same procedure once more, to write appropriate value to the "sw0" register.

230

13.4 Creating Modulator IP Core with AXI4 Interface

The complete test bench file for Modulator IP core with AXI4 interface is shown below.

modulator_axi_ip_tb.vhd:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

entity modulator_axi_ip_tb is
end entity;

architecture tb of modulator_axi_ip_tb is

-- AXI Write Address Channel Signals
signal s00_axi_awaddr_s : std_logic_vector(3 downto 0) := (others=>’0’);
signal s00_axi_awprot_s : std_logic_vector(2 downto 0) := (others=>’0’);
signal s00_axi_awvalid_s : std_logic := ’0’;
signal s00_axi_awready_s : std_logic;
-- AXI Write Data Channel Signals
signal s00_axi_wdata_s : std_logic_vector(31 downto 0):= (others=>’0’);
signal s00_axi_wstrb_s : std_logic_vector(3 downto 0) := (others=>’0’);
signal s00_axi_wvalid_s : std_logic := ’0’;
signal s00_axi_wready_s : std_logic;
-- AXI Write Response Channel Signals
signal s00_axi_bresp_s : std_logic_vector(1 downto 0);
signal s00_axi_bvalid_s : std_logic;
signal s00_axi_bready_s : std_logic := ’0’;
-- AXI Read Address Channel Signals
signal s00_axi_araddr_s : std_logic_vector(3 downto 0) := (others=>’0’);
signal s00_axi_arprot_s : std_logic_vector(2 downto 0) := (others=>’0’);
signal s00_axi_arvalid_s : std_logic := ’0’;
signal s00_axi_arready_s : std_logic;
-- AXI Read Data Channel Signals
signal s00_axi_rdata_s : std_logic_vector(31 downto 0);
signal s00_axi_rresp_s : std_logic_vector(1 downto 0);
signal s00_axi_rvalid_s : std_logic;
signal s00_axi_rready_s : std_logic := ’0’;
-- AXI Global System Signals
signal s00_axi_aclk_s : std_logic := ’0’;
signal s00_axi_aresetn_s : std_logic := ’1’;

-- pulse width modulated signal
signal pwm_out_s : std_logic;

-- 100 MHz
constant clock_frequency_c : real := 100000000.0;

-- period of AXI-lite input clock signal
constant clock_period_c : time := 1000000000.0 / clock_frequency_c * 1ns;

-- constant created to short the duration of the simulation process 10 times
constant design_setting1_c : design_setting_t_rec := (255, 10.0, 35.0, 8, 12);

-- c1_c = fclk/(2^depth*2^width) - c1_c = 95.3674, fclk = 100 MHz
constant c1_c : real := clock_frequency_c/(real((2**design_setting1_c.depth)*(2**design_setting1_c.
width)));

-- div_factor_freqhigh_c = (c1_c/f_high)*2^width - threshold value of frequency a = 110592
constant div_factor_freqhigh_c : integer := integer(c1_c/design_setting1_c.f_high)*(2**
design_setting1_c.width);

-- div_factor_freqlow_c = (c1_c/f_low)*2^width - threshold value of frequency b = 389120
constant div_factor_freqlow_c : integer := integer(c1_c/design_setting1_c.f_low)*(2**design_setting1_c
.width);

begin

-- modulator_axi_ip IP instance
axi: entity work.modulator_axi_ip_0

port map(
s00_axi_awaddr => s00_axi_awaddr_s,
s00_axi_awprot => s00_axi_awprot_s,
s00_axi_awvalid => s00_axi_awvalid_s,
s00_axi_awready => s00_axi_awready_s,
s00_axi_wdata => s00_axi_wdata_s,
s00_axi_wstrb => s00_axi_wstrb_s,
s00_axi_wvalid => s00_axi_wvalid_s,
s00_axi_wready => s00_axi_wready_s,
s00_axi_bresp => s00_axi_bresp_s,
s00_axi_bvalid => s00_axi_bvalid_s,
s00_axi_bready => s00_axi_bready_s,
s00_axi_araddr => s00_axi_araddr_s,
s00_axi_arprot => s00_axi_arprot_s,
s00_axi_arvalid => s00_axi_arvalid_s,
s00_axi_arready => s00_axi_arready_s,
s00_axi_rdata => s00_axi_rdata_s,
s00_axi_rresp => s00_axi_rresp_s,
s00_axi_rvalid => s00_axi_rvalid_s,

231

DESIGNING WITH IPs

s00_axi_rready => s00_axi_rready_s,
s00_axi_aclk => s00_axi_aclk_s,
s00_axi_aresetn => s00_axi_aresetn_s,
pwm_out => pwm_out_s

);

-- generates AXI-lite input clock signal
s00_axi_aclk_s <= not (s00_axi_aclk_s) after clock_period_c/2;

stimulus_generator_p : process
begin

-- reset AXI-lite interface. Reset will be 10 clock cycles wide
s00_axi_aresetn_s <= ’0’;
-- wait for 10 falling edges of AXI-lite clock signal
for i in 1 to 10 loop

wait until falling_edge(s00_axi_aclk_s);
end loop;
-- release reset
s00_axi_aresetn_s <= ’1’;
wait until falling_edge(s00_axi_aclk_s);

-- write div_factor_freqhigh value into appropriate register
s00_axi_awaddr_s <= "0100";
s00_axi_awvalid_s <= ’1’;
s00_axi_wdata_s <= conv_std_logic_vector(div_factor_freqhigh_c, 32);
s00_axi_wvalid_s <= ’1’;
s00_axi_wstrb_s <= "1111";
s00_axi_bready_s <= ’1’;
wait until s00_axi_awready_s = ’1’;
wait until s00_axi_awready_s = ’0’;
wait until falling_edge(s00_axi_aclk_s);
s00_axi_awaddr_s <= "0000";
s00_axi_awvalid_s <= ’0’;
s00_axi_wdata_s <= conv_std_logic_vector(0, 32);
s00_axi_wvalid_s <= ’0’;
s00_axi_wstrb_s <= "0000";
wait until s00_axi_bvalid_s = ’0’;
wait until falling_edge(s00_axi_aclk_s);
s00_axi_bready_s <= ’0’;
wait until falling_edge(s00_axi_aclk_s);

-- write div_factor_freqlow value into appropriate register
s00_axi_awaddr_s <= "1000";
s00_axi_awvalid_s <= ’1’;
s00_axi_wdata_s <= conv_std_logic_vector(div_factor_freqlow_c, 32);
s00_axi_wvalid_s <= ’1’;
s00_axi_wstrb_s <= "1111";
s00_axi_bready_s <= ’1’;
wait until s00_axi_awready_s = ’1’;
wait until s00_axi_awready_s = ’0’;
wait until falling_edge(s00_axi_aclk_s);
s00_axi_awaddr_s <= "0000";
s00_axi_awvalid_s <= ’0’;
s00_axi_wdata_s <= conv_std_logic_vector(0, 32);
s00_axi_wvalid_s <= ’0’;
s00_axi_wstrb_s <= "0000";
wait until s00_axi_bvalid_s = ’0’;
wait until falling_edge(s00_axi_aclk_s);
s00_axi_bready_s <= ’0’;
wait until falling_edge(s00_axi_aclk_s);

-- we are waiting for one period of pwm signal when sw0=0
wait for 100 ms;

-- write value sw0=1 into appropriate register
s00_axi_awaddr_s <= "0000";
s00_axi_awvalid_s <= ’1’;
s00_axi_wdata_s <= conv_std_logic_vector(1, 32);
s00_axi_wvalid_s <= ’1’;
s00_axi_wstrb_s <= "1111";
s00_axi_bready_s <= ’1’;
wait until s00_axi_awready_s = ’1’;
wait until s00_axi_awready_s = ’0’;
wait until falling_edge(s00_axi_aclk_s);
s00_axi_awaddr_s <= "0000";
s00_axi_awvalid_s <= ’0’;
s00_axi_wdata_s <= conv_std_logic_vector(0, 32);
s00_axi_wvalid_s <= ’0’;
s00_axi_wstrb_s <= "0000";
wait until s00_axi_bvalid_s = ’0’;
wait until falling_edge(s00_axi_aclk_s);
s00_axi_bready_s <= ’0’;
wait until falling_edge(s00_axi_aclk_s);

wait;
end process;

end;

232

13.4 Creating Modulator IP Core with AXI4 Interface

After you have entered the code for the input stimulus in order to perform simulation, follow the next steps:

Step 1. In the Sources window, under the Simulation Sources / sim_1, select modulator_axi_ip_tb - tb file

Step 2. In the Flow Navigator, under the Simulation, click on the Run Simulation button

Step 3. Choose the only offered Run Behavioral Simulation option, see Illustration 13.98, and your simulation will start

Figure 13.98: Run Behavioral Simulation option

Step 4. The tool will compile the test bench file and launch the Vivado simulator

Step 5. In the Vivado simulator, open Scopes window and expand modulator_axi_ip_tb -> axi -> U0 design units and
select modulator_axi_ip_v1_0_S00_AXI_inst design unit

Step 6. In the Vivado Objects window select our four registers slv_reg0[31:0], slv_reg1[31:0], slv_reg2[31:0] and slv_-
reg3[31:0] and move them to waveform window

Step 7. Simulate your design for 120 ms

Step 8. Go to the beginning of the simulation result, zoom out few times and find the moment where s00_axi_aresetn_s
signal is changing from 0 to 1. Your simulation results should look like as it is shown on the Illustration 13.99. From the
simulation results we can see that our system works as we predicted.

Figure 13.99: Simulation results - writing to div_factor_freqhigh and div_factor_freqlow registers

Step 9. Zoom fit and then zoom in few times around 100 ms and you will see the "sw0" register change, see Illustration
13.100

233

DESIGNING WITH IPs

Figure 13.100: Simulation Results - changing the value of sw0 register

Step 10. lf you zoom out a few times more, you can also see the pwm frequency change, when sw0=0 and when sw0=1,
see Illustration 13.101

Figure 13.101: Simulation Results - pwm signal frequency change as a result of the change of the sw0 register value

234

Chapter 14

APPENDIX

14.1 HDL Instantiation Debug Probing Flow

Vivado Logic Analyzer is a integrated logic analyzer. In this chapter you will learn how to debug your FPGA design by
inserting an Integrated Logic Analyzer (ILA) core and Virtual Input/Output (VIO) core using the Vivado IDE. You will take
advantage of integrated Vivado logic analyzer functions to debug and discover some potential root causes of your design.

This chapter will illustrate overall integration flows between Vivado logic analyzer, ILA 6.2, VIO 3.0 and Vivado IDE. There
are two flows (methods) supported in the Vivado Debug Probing:

1. HDL Instantiation Debug Probing Flow

2. Using the Netlist Insertion Debug Probing Flow

APPENDIX

Figure 14.1: Vivado Logic Analyzer Design Flow

As we already said, the HDL instantiation flow is one of the two flows supported in the Vivado Debug Probing. The HDL
instantiation debug probing flow involves the manual customization, instantiation, and connection of various debug core
components directly in the HDL design source. Debug cores that are supported in this flow, in the Vivado tool, are:

• Integrated Logic Analyzer (ILA) core v6.2

• Virtual Input/Output (VIO) core v3.0

• Integrated Bit Error Ratio Tester (IBERT) core v3.0

• JTAG to AXI Master core v1.1

LogiCORE IP Integrated Logic Analyzer (ILA) v6.2 core

The LogiCORE IP Integrated Logic Analyzer (ILA) core is a customizable logic analyzer core that can be used to monitor the
internal signals of a design. The ILA core includes many advanced features of modern logic analyzers, including boolean
trigger equations, and edge transition triggers. Because the ILA core is synchronous to the design being monitored, all
design clock constraints that are applied to your design are also applied to the components of the ILA core.

ILA core general features are:

• user-selectable number of probe ports and probe_width

• multiple probe ports, which can be combined into a single trigger condition

236

14.1 HDL Instantiation Debug Probing Flow

• AXI interface on ILA IP core to debug AXI IP cores in a system

The following illustration is a symbol of the ILA v6.2 core.

Figure 14.2: Symbol of the ILA v6.2 core

Signals in the FPGA design are connected to ILA core clock and probe inputs. These signals, attached to the probe inputs,
are sampled at design speed and stored using on-chip block RAM (BRAM). The core parameters specify the number of
probes, trace sample depth, and the width for each probe input. Communication with the ILA core is conducted using an
auto-instantiated debug core hub that connects to the JTAG interface of the FPGA.

Note: If you want to read and learn more about the ILA v6.2 core, please refer to "LogiCORE IP Integrated Logic Analyzer
(ILA) v6.2 Product Guide".

LogiCORE IP Virtual Input/Output (VIO) v3.0 core

The LogiCORE IP Virtual Input/Output (VIO) core is a customizable core that can both monitor and drive internal FPGA
signals in real time. The number of width of the input and output ports are customizable in size to interface with the FPGA
design. Because the VIO core is synchronous to the design being monitored and/or driven, all design clock constraints
that are applied to your design are also applied to the components inside the VIO core. Run time interaction with this core
requires the use of the Vivado logic analyzer feature. Unlike the ILA core, no on-chip or off-chip RAM is required.

VIO core general features are:

• provides virtual LEDs and other status indicators through input ports

• includes optional activity detectors on input ports to detect rising and falling transitions between samples

• provides virtual buttons and other controls indicators through output ports

• includes custom output initialization that allows you to specify the value of the VIO core outputs immediately following
device configuration and start-up

• run time reset of the VIO core to initial values

The following illustration is a symbol of the VIO v3.0 core.

237

APPENDIX

Figure 14.3: Symbol of the VIO v3.0 core

Note: If you want to read and learn more about the VIO v3.0 core, please refer to "LogiCORE IP Virtual Input/Output (VIO)
v3.0 Product Guide".

LogiCORE IP Integrated Bit Error Ratio Tester (IBERT) for 7 Series GTX Transceivers v3.0 core

The customizable LogiCORE IP Integrated Bit Error Ratio Tester (IBERT) core for 7 Series FPGA GTX transceivers is
designed for evaluating and monitoring the GTX transceivers. This core includes pattern generators and checkers that are
implemented in FPGA logic, and access to ports and the dynamic reconfiguration port attributes of the GTX transceivers.
Communication logic is also included to allow the design to be run time accessible through JTAG.

IBERT core general features are:

• provides a communication path between the Vivado serial I/O analyzer feature and the IBERT core

• provides a user-selectable number of 7 series FPGA GTX transceivers

• transceivers can be customized for the desired line rate, reference clock rate, reference clock source, and data path
width

• requires a system clock that can be sources from a pin or one of the enabled GTX transceivers

Note: If you want to read and learn more about the IBERT v3.0 core, please refer to "LogiCORE IP Integrated Bit Error
Ratio Tester (IBERT) for 7 Series GTX Transceivers v3.0 Product Guide".

LogiCORE IP JTAG to AXI Master v1.1 core

The LogiCORE JTAG to AXI Master IP core is a customizable core that can generate the AXI transactions and drive the
AXI signals internal to FPGA in the system. The AXI bus interface protocol can be selected using a parameter in the IP
customization Vivado IDE. The width of AXI data bus is customizable. This IP can drive AXI4-Lite or AXI4 Memory Mapped
Slave through an AXI4 interconnect. Run time interaction with this core requires the use of the Vivado logic analyzer
feature.

JTAG to AXI Master core general features are:

• provides AXI4 master interface

• option to set AXI4 and AXI4-Lite interfaces

• user selectable AXI data width - 32 to 64

• user selectable AXI ID width up to four bits

• Vivado logic analyzer Tcl Console interface to interact with hardware

• support AXI4 and Lite transactions

238

14.1 HDL Instantiation Debug Probing Flow

The following illustration shows an AXI system that uses the JTAG to AXI Master core as an AXI Master.

Figure 14.4: JTAG to AXI Master System

The JTAG to AXI Master core can communicate to all the downstream slaves and can coexist with the other AXI Master in
this system.

Note: If you want to read and learn more about the JTAG to AXI Master v1.1 core, please refer to "LogiCORE IP JTAG to
AXI Master v1.1 Product Guide".

Important: The IBERT IP core and JTAG to AXI Master IP core won’t be used in this tutorial!

Using the HDL Instantiation Debug Probing Flow, you will generate an ILA v6.2 and VIO v3.0 IP cores using the Vivado IP
Catalog and instantiate the core in a design manually as you would with any other IP core.

Step 1. Before you start ILA and VIO core generation, you must first create a new project (modulator_ila_vio) for Zed-
Board Zynq Evaluation and Development Kit board

Step 2. Add Modulator design source files into the project (frequency_trigger_rtl.vhd, counter_rtl.vhd, modulator_pkg.vhd,
sine_rtl.vhd, sine_top_rtl.vhd, pwm_rtl.vhd, modulator_rtl.vhd, modulator_wrapper_rtl.vhd) using Add Sources command
from the Flow Navigator

Step 3. Select modulator_wrapper_rtl.vhd source file, right-click on it and select Set as Top option

ILA Core Generation

To configure and generate the ILA core, use the following steps:

Step 1. In the Vivado Flow Navigator, under the Project Manager , click the IP Catalog command, see Illustration 14.5

Figure 14.5: IP Catalog command

Step 2. In the IP Catalog window, in the Search field, search for the ILA (Integrated Logic Analyzer) IP core. After you
selected the ILA core, in the Details window, under the main IP Catalog window, you will find all the necessary information
about the selected IP core, see Illustration 14.6

239

APPENDIX

Figure 14.6: IP Catalog window with selected ILA core

Step 3. Double-click on the ILA (Integrated Logic Analyzer) IP core and Vivado IDE will create a new skeleton source for
your ILA core

The window that will be opened is used to set up the general ILA core parameters, see Illustration 14.7

Figure 14.7: ILA core configuration window - General Options tab

Step 4. In the ILA (Integrated Logic Analyzer) (6.2) window, enter ila_core_name (ila_core) in the Component Name

240

14.1 HDL Instantiation Debug Probing Flow

field

Step 5. In the General Options tab, select Native Monitor Type, choose maximum value for Sample Data Depth (131072),
enable Capture Control option and leave all the other parameters unchanged, see Illustration 14.7

Step 6. Select Probe_Ports(0..0) tab and change the Probe Width [1..4096] of the PROBE0 probe port from 1 to 13, see
Illustration 14.8

We configured the probe width of the PROBE0 probe port to 13, because the width of the sine_ampl_s signal, that we
want to see in the Vivado Logic Analyzer, is 12 bits and the width of the freq_trig_s signal is 1 bit.

Figure 14.8: ILA core configuration window - Probe_Ports(0..0) tab

Step 7. Click OK

Step 8. In the Generate Output Products window click Generate, see Illustration 14.9

241

APPENDIX

Figure 14.9: Generate Output Products window for ILA core

Note: After ILA core generation, your ILA core should appear in the Sources window, see Illustration 14.10

Figure 14.10: Sources tab with generated ILA core

Note: If you want to find product guide of the selected IP core

• right-click on the selected IP core in the IP Catalog window and choose Product Guide option, see Illustration 14.11.
This option will open for you Xilinx web page for the selected IP core

242

14.1 HDL Instantiation Debug Probing Flow

Figure 14.11: Product Guide option

• the another way is to double-click on the selected IP core in the IP Catalog window and in the main window of the
selected IP core, click Documentation button and choose Product Guide option, see Illustration 14.12. This option
will also open for you Xilinx web page for the selected IP core.

Figure 14.12: Documentation / Product Guide option

VIO Core Generation

243

APPENDIX

To configure and generate the VIO core, use the following steps:

Step 1. In the IP Catalog window, in the Search field, search for the VIO (Virtual Input/Output) IP core. After you selected
the VIO core, in the Details window, under the main IP Catalog window, you will find all the necessary information about
selected IP core, see Illustration 14.13

Figure 14.13: IP Catalog window with selected VIO core

Step 2. Double-click on the VIO (Virtual Input/Output) IP core and Vivado IDE will create a new skeleton source for your
VIO core

The window that will be opened is used to set up the general VIO core parameters, see Illustration 14.14

244

14.1 HDL Instantiation Debug Probing Flow

Figure 14.14: VIO core configuration window - General Options

Step 3. In the VIO (Virtual Input/Output) (3.0) window, enter vio_core_name (vio_core) in the Component Name field

Step 4. In the General Options tab, leave Input Probe Count to be 1 and Output Probe Count also to be 1, because we
will need one input probe for pwm_out signal and one output probe for sw0 signal, see Illustration 14.14

Step 5. In the PROBE_IN Ports(0..0) tab leave Probe Width of the PROBE_IN0 Probe Port to be 1, because our pwm_out
signal is 1 bit signal, see Illustration 14.15

Figure 14.15: VIO core configuration window - PROBE_IN Ports(0..0) tab

245

APPENDIX

Step 6. In the PROBE_OUT Ports(0..0) tab, leave Probe Width of the PROBE_OUT0 Probe Port to be 1, because our
sw0 signal is also 1 bit signal, see Illustration 14.16

Figure 14.16: VIO core configuration window - PROBE_OUT Ports(0..0) tab

Step 7. Click OK

Step 8. In the Generate Output Products window click Generate, see Illustration 14.17

Figure 14.17: Generate Output Products window for VIO core

Note: After VIO core generation, your VIO core should appear in the Sources window, see Illustration 14.18

246

14.1 HDL Instantiation Debug Probing Flow

Figure 14.18: Source tab with generated VIO core

ILA and VIO Core Instantiation

After configuring and generating ILA and VIO cores, we should make a new module (modulator_ila_vio_rtl.vhd) where
we will connect the existing design (modulator_rtl.vhd) with ILA and VIO cores (see Figure 14.19). By doing so, for the
sw0 port control it wont be necessary to use switch on the development board. Instead, we will use one of the VIO core’s
outputs to control the sw0 port. This will enable us to change the state of the sw0 port inside the Vivado Logic Analyzer.

To create the new modulator_ila_vio_rtl.vhd file, you can use existing modulator_wrapper_rtl.vhd file, making the
following changes:

• remove sw0 port from the port map

• create internal signals pwm_s ,sw0_s and debug_data_s as std_logic_vectors

• declare ILA and VIO core components

• in the Modulator module instance connect:

– sw0 port to the 0’th bit of the sw0_s signal

– pwm_out port to the 0’th bit of the pwm_out_s signal

– debug_data port with the vdebug_data_s signal

• instantiate and connect ILA and VIO cores as it is shown on the Figure 14.19.

247

APPENDIX

Figure 14.19: Connection between the ILA core, VIO core and Modulator module

Now we will create an VHDL module (modulator_ila_vio_rtl.vhd) that will make connection between the ILA core, VIO
core and Modulator module (modulator_rtl.vhd).

To create a module, use steps for creating modules, Chapter 2.4.1 Creating a Module Using Vivado Text Editor .

To help you to correctly instantiate the ILA and VIO cores into your design, Xilinx tools always provide an instantiation
template stored in the ∗.vho file in case of VHDL language or ∗.veo file in case of Verilog language usage.

In our case ILA core instantiation template file is located in the following folder:

modulator/modulator.srcs/sources_1/ip/ILA_core/ILA_core.vho

Similarly, VIO core instantiation template file is located in the following folder:

modulator/modulator.srcs/sources_1/ip/VIO_core/VIO_core.vho

One possible way to implement the modulator_ila_vio_rtl.vhd module is shown below.

modulator_ila_vio_rtl.vhd :

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

library unisim;
use unisim.vcomponents.all;

use work.modulator_pkg.all;

entity modulator_ila_vio is
generic(

-- If some module is top, it needs to implement the differential clk buffer,
-- otherwise this variable will be overwritten by a upper hierarchy layer
this_module_is_top_g : module_is_top_t := yes;

-- Parameter that specifies major characteristics of the board that will be used
-- to implement the modulator design
-- Possible choices: """lx9""", """zedboard""", """ml605""", """kc705""", """microzed""", ""socius"

""
-- Adjust the modulator_pkg.vhd file to add more
board_name_g : string := """zedboard""";

248

14.1 HDL Instantiation Debug Probing Flow

-- User defined settings for the pwm design
design_setting_g : design_setting_t_rec := design_setting_c
);

port(
clk_p : in std_logic; -- differential input clock signal
clk_n : in std_logic; -- differential input clock signal
pwm_out : out std_logic -- pulse width modulated signal

-- clk_en : out std_logic -- clock enable port used only for MicroZed board
);

end entity;

architecture rtl of modulator_ila_vio is

signal clk_in_s : std_logic;
signal pwm_s : std_logic_vector (0 downto 0);
signal sw0_s : std_logic_vector (0 downto 0);
signal debug_data_s : std_logic_vector (12 downto 0);

-- c1_c = fclk/(2^depth*2^width) - c1_c = 95.3674, fclk = 100 MHz
constant c1_c : real :=

get_board_info_f(board_name_g).fclk/(real((2**design_setting_g.depth)*(2**design_setting_g.width)));
-- div_factor_freqhigh_c = (c1_c/f_high)*2^width - threshold value of frequency a = 110592
constant div_factor_freqhigh_c : integer :=

integer(c1_c/design_setting_g.f_high)*(2**design_setting_g.width);
-- div_factor_freqlow_c = (c1_c/f_low)*2^width - threshold value of frequency b = 389120
constant div_factor_freqlow_c : integer :=

integer(c1_c/design_setting_g.f_low)*(2**design_setting_g.width);

-- ila_core component definition
component ila_core

port (
clk : in std_logic;
probe0 : in std_logic_vector (12 downto 0)
);

end component;

-- vio_core component definition
component vio_core

port (
clk : in std_logic;
probe_in0 : in std_logic_vector (0 downto 0);
probe_out0 : out std_logic_vector (0 downto 0)
);

end component;

begin

-- in case of MicroZed board we must enable on-board clock generator
-- clk_en <= ’1’;

-- if module is top, it has to generate the differential clock buffer in case
-- of a differential clock, otherwise it will get a single ended clock signal
-- from the higher hierarchy

pwm_out <= pwm_s (0);

clk_buf : if (get_board_info_f(board_name_g).has_diff_clk = yes) generate

ibufgds_inst : ibufgds
generic map(

ibuf_low_pwr => true,
-- low power (true) vs. performance (false) setting for referenced I/O standards
iostandard => "default"

)

port map (
o => clk_in_s, -- clock buffer output
i => clk_p, -- diff_p clock buffer input
ib => clk_n -- diff_n clock buffer input

);
end generate clk_buf;

no_clk_buf : if (get_board_info_f(board_name_g).has_diff_clk = no) generate
clk_in_s <= clk_p;

end generate no_clk_buf;

-- modulator module instance
modulator: entity work.modulator(rtl)

generic map(
design_setting_g => design_setting_g
)

port map(
clk_in => clk_in_s,
sw0 => sw0_s(0),
div_factor_freqhigh => conv_std_logic_vector(div_factor_freqhigh_c, 32),
div_factor_freqlow => conv_std_logic_vector(div_factor_freqlow_c, 32),

249

APPENDIX

pwm_out => pwm_s(0),
debug_data => debug_data_s
);

-- ila_core component instance
ila: ila_core

port map (
clk => clk_in_s,
probe0 => debug_data_s
);

-- vio_core component instance
vio: vio_core

port map (
clk => clk_in_s,
probe_out0 => sw0_s,
probe_in0 => pwm_s
);

end;

As you can see from the picture above (Figure 14.19), we have added the debug_data output port to the Modulator module
(modulator_rtl.vhd) and connected it to the PROBE0 input port of the ILA core. This is important, because we will connect
the internal sine_ampl_s and freq_trig_s signals from the Modulator module to the debug_data port, and use them as
the trigger/data signals for the ILA core.

As we can also see from the picture above (Figure 14.19), we have connected the sw0 input port of the Modulator module
to the PROBE_OUT0 output port of the VIO core. This is also important, because now we don’t need any physical switch
from the development board to drive the sw0 input port. Now, this is done using an synchronous output port from the VIO
core (sw0_s signal). This signal can be controlled within the Vivado Logic Analyzer tool to change the value of the sw0
input port, and by doing so the frequency of the pwm_out signal.

To make these modifications, modulator_rtl.vhd source code must be modified as it is shown bellow:

Modulator VHDL model:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_textio.all;
use ieee.std_logic_unsigned.all;

use work.modulator_pkg.all;

library unisim;
use unisim.vcomponents.all;

entity modulator is
generic(

-- User defined settings for the pwm design
design_setting_g : design_setting_t_rec := design_setting_c
);

port(
clk_in : in std_logic; -- input clock signal
sw0 : in std_logic; -- signal made for selecting frequency
div_factor_freqhigh : in std_logic_vector(31 downto 0); -- input clock division when sw0 = ’1’
div_factor_freqlow : in std_logic_vector(31 downto 0); -- input clock division when sw0 = ’0’
pwm_out : out std_logic; -- pulse width modulated signal
debug_data : out std_logic_vector (12 downto 0)
);

end entity;

architecture rtl of modulator is

-- amplitude counter
signal ampl_cnt_s : std_logic_vector(design_setting_g.depth-1 downto 0);
-- current amplitude value of the sine signal
signal sine_ampl_s : std_logic_vector(design_setting_g.width-1 downto 0);
-- signal which frequency depends on the sw0 state
signal freq_trig_s : std_logic := ’0’;

begin

freq_ce : entity work.frequency_trigger(rtl) -- frequency trigger module instance
port map(

clk_in => clk_in,
sw0 => sw0,
div_factor_freqhigh => div_factor_freqhigh,
div_factor_freqlow => div_factor_freqlow,
freq_trig => freq_trig_s
);

250

14.1 HDL Instantiation Debug Probing Flow

counterampl : entity work.counter(rtl) -- counter module instance
generic map(

cnt_value_g => design_setting_g.cntampl_value,
depth_g => design_setting_g.depth
)

port map (
clk_in => clk_in,
cnt_en => freq_trig_s,
cnt_out => ampl_cnt_s
);

sine : entity work.sine(rtl) -- digital sine module instance
generic map(

depth_g => design_setting_g.depth,
width_g => design_setting_g.width
)

port map(
ampl_cnt => ampl_cnt_s,
clk_in => clk_in,
sine_out => sine_ampl_s
);

pwmmodule : entity work.pwm (rtl) -- pwm module instance
generic map (

width_g => design_setting_g.width
)

port map (
clk_in => clk_in,
sw0 => sw0,
sine_ampl => sine_ampl_s,
div_factor_freqhigh => conv_std_logic_vector(conv_integer(div_factor_freqhigh)/(2**

design_setting_g.width), 32),
div_factor_freqlow => conv_std_logic_vector(conv_integer(div_factor_freqlow)/(2**

design_setting_g.width), 32),
pwm_out => pwm_out
);

debug_data (11 downto 0) <= sine_ampl_s;
debug_data (12) <= freq_trig_s;

end;

After we made a new VHDL module (modulator_ila_vio_rtl.vhd), we must also modify the modulator_rtl.xdc file, be-
cause we don’t have any more sw0 port. The new content of the xdc file is shown in the code below.

modulator_ila_vio.xdc file:

set_property PACKAGE_PIN Y9 [get_ports clk_p]
set_property PACKAGE_PIN T22 [get_ports pwm_out]

set_property IOSTANDARD LVCMOS33 [get_ports clk_p]
set_property IOSTANDARD LVCMOS33 [get_ports pwm_out]

create_clock -period 10.000 -name clk_p -waveform {0.000 5.000} [get_ports clk_p]

After finishing with the modifications, we must return to the Vivado IDE and do the following:

Step 1. Remove modulator_wrapper_rtl.vhd source file from the design

Step 2. Add modulator_ila_vio_rtl.vhd and modulator_ila_vio.xdc files in the modulator design with Add Sources
option:

• modulator_ila_vio_rtl.vhd as Design Source file, and

• modulator_ila_vio.xdc as Constraints file

Step 3. Remove the old modulator.xdc file from the design

Step 4. In the Sources window, right-click on the modulator_ila_vio_rtl.vhd file and select Set as Top option

Step 5. Made the necessary changes in the modulator_rtl.vhd source file as it is explained in the text above

Step 6. Synthesize your design with Run Synthesis option from the Flow Navigator / Synthesis (see Sub-chapter 6.5.2
Run Synthesis)

Step 7. Implement your design with Run Implementation option from the Flow Navigator / Implementation (see Sub--
Chapter 10.2.2 Run Implementation)

251

APPENDIX

Step 8. Generate bitstream file with Generate Bitstream option from the Flow Navigator / Program and Debug (see
Sub-Chapter 10.3 Generate Bitstream File)

Step 9. Program your ZedBoard device (see Sub-Chapter 10.4 Program Device)

14.2 Using the HDL Instantiation Debug Probing Flow in IP Integrator

As shown in the previous chapter "HDL Instantiation Debug Probing Flow", we will instantiate an Integrated Logic Analyzer
(ILA) and Virtual Input/Output (VIO) cores into our IP integrator design and connect nets in the same way as it is shown on
the Figure 11.9.

To start debugging process using the HDL Instantiation Flow in IP Integrator tool, please do the following:

Step 1. Create new project modulator_ipi_hdl

Step 2. In the modulator_ipi_hdl project create new modulator_ipi_hdl block design

Step 3. Add previously packaged IPs (frequency_trigger_v1_0, counter_v1_0, sine_v1_0 and pwm_v1_0) to the IP Catalog
by repeating the steps 32 - 38 from the Sub-chapter 13.1 IP Packager.

Step 4. Add all four IPs (frequency_trigger_v1_0, counter_v1_0, sine_v1_0 and pwm_v1_0) to the modulator_ipi_hdl
block design

Step 5. Customize the IPs on the same way as it is explained in the Sub-chapter 13.2 IP Integrator, step 17

Step 6 Add four Constant IP blocks to the modulator_ipi_hdl block design and customize them on the same way as it is
explained in the Sub-chapter 13.2 IP Integrator, steps 22 - 25

Step 7. Add also ILA and VIO IPs to the modulator_ipi_hdl block design

Step 8. Leave VIO core as it is

Step 9. In the IP Integrator canvas, double-click on the ILA core to re- configure it

Step 10. In the General Options tab of the ILA core, re-configure the following parameters:

• Set Monitor Type to be Native, instead of AXI

• Set Number of Probes to 2

• Set Sample Data Depth to be on the maximum 131072 samples

252

14.2 Using the HDL Instantiation Debug Probing Flow in IP Integrator

Figure 14.20: ILA core configuration window - General Options tab

Step 11. In the Probe_Ports(0..7) tab of the ILA core, re- configure the following parameters:

• Set the Probe Width [1..4096] of the PROBE0 probe port to be 12

• Leave the Probe Width [1..4096] of the PROBE1 probe port to be 1

We configured the probe width of the PROBE0 probe port to 12 and PROBE1 to 1, because the width of the sine_ampl_s
signal, that we want to see in the Vivado Logic Analyzer, is 12 bits and the width of the freq_trig_s signal is 1 bit.

253

APPENDIX

Figure 14.21: ILA core configuration window - Probe_Ports(0..7) tab

Step 12. In case of VIO core, use default configuration settings

Step 13. Connect the ILA core with the rest of the IPs in the same way as it is shown on the Figure 14.19

Step 14. Remove sw0 port from the IP Integrated canvas and connect the VIO core with the rest of the IPs in the same
way as it is shown on the Figure 14.19, see Illustration 14.22

Figure 14.22: IP Integrator design canvas with connected ILA and VIO cores

Step 15. Create and add modulator_ipi_hdl.xdc constraints file to the project. The content of the modulator_ipi_hdl.xdc
constraints file is shown in the text below:

254

14.2 Using the HDL Instantiation Debug Probing Flow in IP Integrator

set_property PACKAGE_PIN Y9 [get_ports clk_in]
set_property PACKAGE_PIN T22 [get_ports pwm_out]

set_property IOSTANDARD LVCMOS33 [get_ports clk_in]
set_property IOSTANDARD LVCMOS33 [get_ports pwm_out]

create_clock -period 10.000 -name clk_p -waveform {0.000 5.000} [get_ports clk_p]

Step 16. Validate your design by selecting Tools -> Validate Design from the main menu

Step 17. Select modulator_ipi_hdl, right-click on it and choose Create HDL Wrapper... option

Step 18. Synthesize your design with Run Synthesis option from the Flow Navigator / Synthesis (see Sub-chapter
6.5.2 Run Synthesis)

Step 19. Implement your design with Run Implementation option from the Flow Navigator / Implementation (see Sub--
Chapter 10.2.2 Run Implementation)

Step 20. Generate bitstream file with Generate Bitstream option from the Flow Navigator / Program and Debug (see
Sub-Chapter 10.3 Generate Bitstream File)

Step 21. Program your ZedBoard device (see Sub-Chapter 10.4 Program Device)

Step 22. After programming your design, you should get the same results as we presented in the Sub-chapter 11.2 Debug
a Design using Integrated Vivado Logic Analyzer of this tutorial.

255

	INTRODUCTION
	Motivation
	Purpose of this Tutorial
	Structure of this Tutorial
	Objectives of this Tutorial
	One Possible Solution for the Modulator Design
	Design Flow
	Vivado Design Suite and it's Use Modes
	Differences between Project and Non-Project Mode

	FREQUENCY TRIGGER
	Description
	Creating a New Project
	Vivado Integrated Design Environment
	Creating Module
	Creating a Module Using Vivado Text Editor

	Creating Test Bench
	Simulating with Vivado Simulator

	COUNTER
	Description
	Creating Module
	Creating Test Bench
	Simulating

	SINE PACKAGE
	Description
	Creating Module

	DIGITAL SINE
	Description
	Creating Module

	DIGITAL SINE TOP
	Description
	Creating Module
	Creating Test Bench
	Simulating
	Synthesis
	Description
	Run Synthesis
	After Synthesis
	Synthesis Reports
	Schematic View

	PWM
	Description
	Creating Module
	Creating Test Bench
	Simulating

	MODULATOR
	Description
	Creating Module
	Creating Test Bench
	Simulating

	MODULATOR WRAPPER
	Description
	Creating Module

	DESIGN IMPLEMENTATION
	Creating XDC File
	Defining Timing Constraints
	Migrating UCF Constraints to XDC

	Implementation
	About the Vivado Implementation Process
	Run Implementation
	After Implementation
	Implementation Reports
	Run Post-Implementation Simulation
	Run Post-Implementation Timing Simulation

	Generate Bitstream File
	Program Device
	Modifications in case of using different development boards

	DEBUGGING DESIGN
	Inserting ILA and VIO Cores into Design
	Debug a Design using Integrated Vivado Logic Analyzer
	Oscilloscope

	MODULATOR DESIGN TARGETING SOCIUS DEVELOPMENT BOARD
	Description
	Creating Project
	Creating Module

	DESIGNING WITH IPs
	IP Packager
	IP Integrator
	Debugging IP Integrated Designs
	Creating Modulator IP Core with AXI4 Interface

	APPENDIX
	HDL Instantiation Debug Probing Flow
	Using the HDL Instantiation Debug Probing Flow in IP Integrator

	Index

