

SWITCHING THEORY AND

LOGIC CIRCUITS

COURSE OBJECTIVES

1. To understand the concepts and techniques associated with the

number systems and codes

2. To understand the simplification methods (Boolean algebra &

postulates, k-map method and tabular method) to simplify the

given Boolean function.

3. To understand the fundamentals of digital logic and to design

various combinational and sequential circuits.

4. To understand the concepts of programmable logic

devices(PLDs)

5. To understand formal procedure for the analysis and design of

synchronous and asynchronous sequential logic

COURSE OUTCOMES

After completion of the course the student will be able to

1. Understand the concepts and techniques of number systems

and codes in representing numerical values in various number

systems and perform number conversions between different

number systems and codes.

2. Apply the simplification methods to simplify the given Boolean

function (Boolean algebra, k-map and Tabular method).

3. Implement given Boolean function using logic gates, MSI

circuits and/ or PLD’s.

COURSE OUTCOMES

After completion of the course the student will be able to

4. Design and analyze various combinational circuits like

decoders, encoders, multiplexers, and de-multiplexers,

arithmetic circuits (half adder, full adder, multiplier etc).

5. Design and analyze various sequential circuits like flip-flops,

registers, counters etc.

6. Analyze and Design synchronous and asynchronous sequential

circuits.

UNIT-I

Introductory Concepts
(Number systems, Base conversions)

Digital Systems

● Digital systems consider discrete amounts of data

● Examples

● 26 letters in the alphabet

● 10 decimal digits

● Larger quantities can be built from discrete values:

● Words made of letters

● Numbers made of decimal digits (e.g. 239875.32)

● Computers operate on binary values (0 and 1)

● Easy to represent binary values electrically

● Voltages and currents

● Can be implemented using circuits

● Create the building blocks of modern computers

Understanding Decimal Numbers

● Decimal numbers are made of decimal digits:
(0,1,2,3,4,5,6,7,8,9)  Base = 10

● How many items does decimal number 8653
represents?

● 8653 = 8 x103 + 6 x102 + 5 x101 + 3 x100

● Number = d3 x B3 + d2 x B2 + d1 x B1 + d0 x B0 = Value

● What about fractions?

● 97654.35 = 9x104 + 7x103 + 6x102 + 5x101 + 4x100 + 3x10-1 + 5x10-2

● In formal notation → (97654.35)10

1 10 100 1000 Weight

Understanding Octal Numbers

● Octal numbers are made of octal digits:
(0,1,2,3,4,5,6,7)

● How many items does an octal number represent?

● 512 64 8 1 = Weights

● (4536)8 = 4x83 + 5x82 + 3x81 + 6x80 = (2398)10

● What about fractions?

● (465.27)8 = 4x82 + 6x81 + 5x80 + 2x8-1 + 7x8-2

● Octal numbers don’t use digits 8 or 9

Understanding Hexadecimal Numbers

● Hexadecimal numbers are made of 16 digits:

● (0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F)

● How many items does a hex number represent?

 4096 256 16 1 = Weights

● (3A9F)16 = 3x163 + 10x162 + 9x161 + 15x160 = 1499910

● What about fractions?

● (2D3.5)16 = 2x162 + 13x161 + 3x160 + 5x16-1 = 723.312510

● Note that each hexadecimal digit can be represented
with four bits

● (1110)2 = (E)16

● Groups of four bits are called a nibble

● (1110)2

Understanding Binary Numbers

● Binary numbers are made of binary digits (bits):

● 0 and 1

● How many items does a binary number represent?

● 8 4 2 1 = Weights

● (1011)2 = 1x23 + 0x22 + 1x21 + 1x20 = (11)10

● What about fractions?

● (110.10)2 = 1x22 + 1x21 + 0x20 + 1x2-1 + 0x2-2

● Groups of eight bits are called a byte

● (11001001)2

● Groups of four bits are called a nibble

● (1101)2

Putting It All Together

● Binary, octal, and
hexadecimal are similar

● Easy to build circuits to
operate on these
representations

● Possible to convert
between the three
formats

Why Use Binary Numbers?

● Easy to represent 0 and 1
using electrical values

● Possible to tolerate noise

● Easy to transmit data

● Easy to build binary circuits

AND Gate

1

0

0

Conversion Between Number Bases

Decimal

(base 10)

Octal

(base 8)

Binary

(base 2)

Hexadecimal

(base 16)

● Learn to convert between bases

● Already demonstrated how to convert
from binary to decimal

Convert an Integer from Decimal to Another Base

1. Divide decimal number by the base (e.g. 2)

2. The remainder is the lowest-order digit

3. Repeat first two steps until no divisor remains

For each digit position:

Example for (13)10:

Quotient

13/2 = 6 + 1 a0 = 1

 6/2 = 3 + 0 a1 = 0

 3/2 = 1 + 1 a2 = 1

 1/2 = 0 + 1 a3 = 1

Remainder Coefficient

Answer (13)10 = (a3 a2 a1 a0)2 = (1101)2

MSB LSB

Convert a Fraction from Decimal to Another Base

1. Multiply decimal number by the base (e.g. 2)

2. The integer is the highest-order digit

3. Repeat first two steps until fraction becomes zero

For each digit position:

Example for (0.625)10:

Integer

0.625 x 2 = 1 + 0.25 a-1 = 1

0.250 x 2 = 0 + 0.50 a-2 = 0

0.500 x 2 = 1 + 0 a-3 = 1

Fraction Coefficient

Answer (0.625)10 = (0.a-1 a-2 a-3)2 = (0.101)2

MSB LSB

The Growth of Binary Numbers

n 2n

0 20=1

1 21=2

2 22=4

3 23=8

4 24=16

5 25=32

6 26=64

7 27=128

n 2n

8 28=256

9 29=512

10 210=1024

11 211=2048

12 212=4096

20 220=1M

30 230=1G

40 240=1T

Mega

Giga

Tera

Kilo

Convert an Integer from Decimal to Octal

1. Divide decimal number by the base (8)

2. The remainder is the lowest-order digit

3. Repeat first two steps until no divisor remains

For each digit position:

Example for (175)10:

Quotient

175/8 = 21 + 7 a0 = 7

 21/8 = 2 + 5 a1 = 5

 2/8 = 0 + 2 a2 = 2

Remainder Coefficient

Answer (175)10 = (a2 a1 a0)8 = (257)8

Convert a Fraction from Decimal to Octal

1. Multiply decimal number by the base (e.g. 8)

2. The integer is the highest-order digit

3. Repeat first two steps until fraction becomes zero

For each digit position:

Example for (0.3125)10:

Integer

0.3125 x 8 = 2 + 0.5 a-1 = 2

0.5000 x 8 = 4 + 0.0 a-2 = 4

Fraction Coefficient

Answer (0.3125)10 = (0.24)8

Conversion Between Base 16 and Base 2

● Conversion is easy!

Determine the 4-bit binary value for each hex digit

● Note that there are 16 different values of four bits

● Easier to read and write in hexadecimal

● Representations are equivalent!

3A9F16 = 0011 1010 1001 11112

3 A 9 F

Conversion Between Base 16 and Base 8

1. Convert from Base 16 to Base 2

2. Regroup bits into groups of three starting from right

3. Ignore leading zeros

4. Each group of three bits forms an octal digit

352378 = 011 101 010 011 1112

5 2 3 7 3

3A9F16 = 0011 1010 1001 11112

3 A 9 F

Binary Addition

● Binary addition is very simple

 1 1 1 1 0 1

+ 1 0 1 1 1

0

1

0

1

1

1 1 1 1

1 1 0 0

carries

= 61

= 23

= 84

Binary Subtraction

● We can also perform subtraction (with borrows in
place of carries)

● Let’s subtract (10111)2 from (1001101)2 …

1 0 0 1 1 0 1

- 1 0 1 1 1

borrows

0

0 10

1

0

10

1 0

0 10

1

10

1 1

= 77

= 23

= 54

Binary Multiplication

Binary multiplication is much the same as decimal
multiplication, except that the multiplication
operations are much simpler…

 1 0 1 1 1

X 1 0 1 0

 0 0 0 0 0

 1 0 1 1 1

 0 0 0 0 0

 1 0 1 1 1

 1 1 1 0 0 1 1 0

Summary

● Binary numbers are made of binary digits (bits)

● Binary and octal number systems

● Conversion between number systems

● Addition, subtraction, and multiplication in binary

Introductory Concepts
(Complements)

How To Represent Signed Numbers

● Plus and minus signs are used for decimal numbers:

● 25 (or +25), −16, etc

● In computers, everything is represented as bits

● Three types of signed binary number representations:

● signed magnitude

● 1’s complement
● 2’s complement

● In each case: left-most bit indicates the sign:
 ‘0’ for positive and ‘1’ for negative

Signed Magnitude Representation

000011002 = 1210

Sign bit Magnitude

100011002 = −1210

Sign bit Magnitude

● The left most bit is designated as the sign bit while
the remaining bits form the magnitude

● The sign bit should not be included in addition /
subtraction operations

One’s Complement Representation

● The one’s complement of a binary number is done
by complementing (i.e. inverting) all bits

 1’s comp of 00110011 is 11001100

 1’s comp of 10101010 is 01010101

● For a n-bit number N the 1’s complement is
 (2

n − 1) − N

● Called “diminished radix complement” by Mano

● To find the negative of a 1’s complement number
take its 1’s complement

000011002 = 1210

Sign bit Magnitude

111100112 = −1210

Sign bit Code

One’s Complement Representation

1000 − 7

0000 0

0111 7

. .

. .

0110 6

0001 1

1111 − 0

1110 − 1

. .

. .

1001 − 6

4 bits


16 combinations

Two’s Complement Representation

● The two’s complement of a binary number is done
by complementing (inverting) all bits then adding 1

 2’s comp of 00110011 is 11001101

 2’s comp of 10101010 is 01010110

● For an n-bit number N the 2’s complement is
 (2

n−1) − N + 1

● Called “radix complement” by Mano

● To find the negative of a 2’s complement number
take its 2’s complement

000011002 = 1210

Sign bit Magnitude

111101002 = −1210

Sign bit Code

Two’s Complement Shortcuts

● Algorithm 1: Complement each bit then add 1 to the
result

 N = 01100101

 10011010

 + 1

 10011011

● Algorithm 2: Starting with the least significant bit,
copy all of the bits up to and including the first ‘1’
bit, then complement the remaining bits

 N = 0 1 1 0 0 1 1 0

 [N] = 1 0 0 1 1 0 1 0

[N] = 10011011

 01100100

 + 1

 01100101

Two’s Complement Representation

1000 − 8

0000 0

0111 7

. .

. .

0110 6

0001 1

1111 − 1

1110 − 2

. .

. .

1001 − 7

4 bits


16 combinations

Finite-Precision Number Representation

● Machines that use 2’s complement arithmetic can
represent integers in the range

 − 2
n-1

 ≤ N ≤ 2n-1 − 1

 n is the number of bits used for representing N

 Note that 2
n-1 − 1 = (011..11)2 and − 2

n-1
 = (100..00)2

● 2’s complement code has more negative numbers
than positive

● 1’s complement code has 2 representations for zero

● For a n-bit number in base (i.e. radix) z there are z
n

different unsigned values (combinations)

 (0, 1, …zn-1
)

1’s Complement Subtraction

● Using 1’s complement representation, subtracting
numbers is also easy

Step 1: Take 1’s complement of 2nd operand

Step 2: Add binary numbers

Step 3: Add carry as a low order bit

● For example: (+12)10 − (1)10

(+12)10 = +(1100)2

 = 011002

(−1)10 = −(0001)2

 = 111102 in 1’s comp.

 0 1 1 0 0

 - 0 0 0 0 1

 1 1

 0 1 1 0 0

+ 1 1 1 1 0

 1 0 1 0 1 0

 1

 0 1 0 1 1

Add carry

Final

Result

1’s comp

Add

2’s Complement Subtraction

● Using 2’s complement representation, subtracting
numbers is also easy

Step 1: Take 2’s complement of 2nd operand

Step 2: Add binary numbers

Step 3: Ignore the resulting carry bit

● For example: (+12)10 − (1)10

(+12)10 = +(1100)2

 = 011002

(−1)10 = −(0001)2

 = 111112 in 2’s comp.

 0 1 1 0 0

 - 0 0 0 0 1

 1 1

 0 1 1 0 0

+ 1 1 1 1 1

 1 0 1 0 1 1
Final

Result

2’s comp

Add

Ignore

Carry

2’s Complement Subtraction

● Example 2: (13)10 − (5)10

(13)10 = +(1101)2 = (01101)2

(−5)10 = −(0101)2 = (11011)2

● Adding these two 5-bit codes:

 0 1 1 0 1

+ 1 1 0 1 1

1 0 1 0 0 0

● Discarding the carry bit, the sign bit is seen to be
zero, indicating a positive result

 Indeed: (01000)2 = +(8)10

Carry

2’s Complement Subtraction

● Example 3: (5)10 − (12)10

 (5)10 = +(0101)2 = (00101)2

(−12)10 = −(1100)2 = (10100)2

● Adding these two 5-bit codes:

 0 0 1 0 1

+ 1 0 1 0 0

0 1 1 0 0 1

● Here, there is no carry bit and the sign bit is 1.
This indicates a negative result, which is what we
expect: (11001)2 = – (7)10

Carry

Summary

● Binary numbers can also be represented in octal and
hexadecimal

● Easy to convert between binary, octal, and
hexadecimal

● Signed numbers are represented in 3 codes: signed
magnitude, 1’s complement, or 2’s complement

● 2’s complement code is most important
(only 1 representation for zero)

● Important to understand the treatment of the sign bit
for 1’s and 2’s complement codes

Introductory Concepts

(Codes)

Binary Coded Decimal

● Binary Coded Decimal (BCD) represents each
decimal digit with four bits

Ex. 0011 0010 1001

● This is NOT the same as 0011001010012

● Why do this? Because people think in decimal

Digit BCD
Code Digit BCD

Code

0 0000 5 0101

1 0001 6 0110

2 0010 7 0111

3 0011 8 1000

4 0100 9 1001

3 2 9

= 32910

Putting It All Together

● BCD is not very efficient

● Used in early computers
(1940s, 1950s)

● Used to encode numbers
for seven-segment
displays

● Easier to read?

Gray Code

● Gray code is not a number
system

It is an alternate way to
represent four bit data

● Only one bit changes from one
decimal digit to the next

● Useful for reducing errors in
communication

● Can be scaled to larger
numbers

Digit Binary Gray
Code

 0 0000 0000

 1 0001 0001

 2 0010 0011

 3 0011 0010

 4 0100 0110

 5 0101 0111

 6 0110 0101

 7 0111 0100

 8 1000 1100

 9 1001 1101

 10 1010 1111

 11 1011 1110

 12 1100 1010

 13 1101 1011

 14 1110 1001

 15 1111 1000

ASCII Code

● American Standard Code for Information Interchange

● ASCII is a 7-bit code, frequently used with a 8th bit for
error detection (more about that later)

Character ASCII (bin) ASCII (hex) Decimal Octal

A 1000001 41 65 101

B 1000010 42 66 102

C 1000011 43 67 103

…

Z

a

…

1

‘

ASCII Codes and Data Transmission

● ASCII Codes

● A – Z (26 codes), a – z (26 codes)

● 0 – 9 (10 codes), others (@#$%^&*….)
● Transmission susceptible to noise

● Typical transmission rates (1500 Kbps, 56.6 Kbps)

● How to keep data transmission accurate?

Parity Codes

● Parity codes are formed by concatenating a parity
bit, P to each code word C

● In an even-parity code, the parity bit is specified so
that the total number of ones is even

● In an odd-parity code, the parity bit is specified so
that the total number of ones is odd

Information Bits P

1 1 0 0 0 0 1 1



Added even parity bit

0 1 0 0 0 0 1 1



Added odd parity bit

Parity Code Example

Concatenate a parity bit to the ASCII code for the
characters “0”, “X”, and “=” to produce both odd-
parity and even-parity codes

Character ASCII Odd-Parity
ASCII

Even-Parity
ASCII

0 0110000 10110000 00110000

X 1011000 01011000 11011000

= 0111100 10111100 00111100

Binary Data Storage

● Binary cells store individual bits of data

● Multiple cells form a register

● Data in registers can indicate different values

● Hex (binary)

● BCD

● ASCII

Binary Cell

0 0 1 0 1 0 1 1

Register Transfer

● Data can move from a register to a register

● Digital logic used to process data

Register A Register B

Register C

Digital Logic

 Circuits

Transfer of Information

● Data input at keyboard

● Shifted into place

● Stored in memory

NOTE: Data input in ASCII

Building a Computer

● We need processing

● We need storage

● We need communication

● You will learn to use and
design these components

Summary

● Although 2’s complement is most important, other
number codes exist

● ASCII code is used to represent characters (such as
those on the keyboard)

● Registers store binary data

Unit-II
Boolean Algebra and

Logic gates

Digital Systems

● Analysis problem:

● Determine the binary output for each input combination

● Design problem: given a task, develop a circuit
that accomplishes that task

● Many possible implementations

● “Best” circuit: based on some criterion (size, power,
performance, etc.)

.

.

.

.

Logic
Circuit

Inputs Outputs

Toll Booth Controller

● Consider the design of a toll booth controller

● Inputs: quarter, car sensor

● Outputs: gate-lift signal, gate-close signal

● If driver pitches in quarter, raise gate

● When car has cleared gate, close gate

Logic
Circuit

$.25

Car?

Raise gate

Close gate

Describing Circuit Functionality: Inverter

● Basic logic functions have symbols

● The same functionality can be
 represented with a truth table

● Truth table completely specifies outputs for all input
combinations

● This is an inverter

● An input of 0 is inverted to a 1

● An input of 1 is inverted to a 0

A Y

0 1

1 0

Input Output

A Y

Symbol

Truth Table

The AND Gate

● This is an AND gate

● If the two input signals

 are asserted (i.e. high) the

 output will also be asserted.

 Otherwise, the output will

 be deasserted (i.e. low)

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

A

B
Y

Truth Table

A B

The OR Gate

● This is an OR gate

● If either of the two

 input signals is

 asserted, or both of

 them are, the output

 will be asserted

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

A

B
Y

A

B

Describing Circuit Functionality: Waveforms

● Waveforms provide another approach for
representing functionality

● Values are either high (logic 1) or low (logic 0)

● Can you create a truth table from the waveforms?

x y f

0 0 0

0 1 0

1 0 0

1 1 1

AND Gate

Consider three-input gates

3 Input OR Gate

Ordering Boolean Functions

● How to interpret A  B + C?

 Is it A  B ORed with C ?

 Is it A ANDed with B + C ?

● Order of precedence for Boolean algebra: AND
before OR

● Note that parentheses are needed here:

Boolean Algebra

● A Boolean algebra is defined as a closed algebraic
system containing a set K of two or more elements
and the two operators, • and +

● Useful for identifying and minimizing circuit
functionality

● Identity elements

 a + 0 = a

 a • 1 = a

● 0 is the identity element for the + operation

● 1 is the identity element for the • operation

Commutativity and Associativity of the Operators

● Commutative Property:

 For every ‘a’ and ‘b’ in K,
 a + b = b + a

 a • b = b • a

● Associative Property:

 For every ‘a’, ‘b’, and ‘c’ in K,
 a + (b + c) = (a + b) + c

 a • (b • c) = (a • b) • c

Distributivity of the Operators and Complements

● Distributive Property:
 For every ‘a’, ‘b’, and ‘c’ in K,

 a + (b • c) = (a + b) • (a + c)

 a • (b + c) = (a • b) + (a • c)

● The Existence of the Complement:
 For every ‘a’ in K there exists a unique element called a’ (or ā)

(complement of a) such that,

 a + a’ = 1

 a • a’ = 0

● To simplify notation, the • operator is frequently
omitted. When two elements are written next to
each other, the AND (•) operator is implied

 a + b • c = (a + b) • (a + c)

 a + bc = (a + b)(a + c)

Duality

● The principle of duality is an important concept:
If an expression is valid in Boolean algebra, the
dual of that expression is also valid

● To form the dual of an expression, replace all +
operators with • operators, all • operators with +
operators, all ones with zeros, and all zeros with
ones

● Form the dual of the equation:

 a + (bc) = (a + b)(a + c)

 Following the replacement rules:

 a(b + c) = ab + ac

● Take care not to alter the location of the
parentheses if they are present

Involution

● This theorem states:

 a’’ = a a = a

● Remember that:

 aa’ = 0 a a = 0

 a+a’=1 a + a = 1

 Therefore, a’ is the complement of a
and a is also the complement of a’

● Taking the double inverse of a value produces the
initial value

Absorption

● This theorem states:

 a + ab = a a(a+b) = a

● To prove the first half of this theorem:

 a + ab = a • 1 + ab

 = a (1 + b)

 = a (b + 1)

 = a (1)

 a + ab = a

DeMorgan’s Theorem

● A key theorem in simplifying Boolean algebra
expressions is DeMorgan’s Theorem. It states:

 (a + b)’ = a’b’ (ab)’ = a’ + b’
 a + b = a • b a • b = a + b

● Example: Complement and simplify the expression

 a(b + z(x + a’))

a (b + z (x + a’)) = a + (b + z (x + a’))
 = a + b (z (x + a’))
 = a + b (z + (x + a’))
 = a + b (z + x a)

 = a + b (z + x a)

Summary

● Basic logic functions can be made from AND, OR, and
NOT (invert) functions

● The behavior of digital circuits can be represented
with waveforms, truth tables, or symbols

● Primitive gates can be combined to form larger
circuits

● Boolean algebra defines how binary variables can be
combined

● Rules for associativity, commutativity, and
distribution are similar to algebra

● DeMorgan’s rules are important
● Will allow us to reduce circuit sizes

UNIT-II
Boolean Algebra and Logic

gates

Boolean Functions

● Boolean algebra deals with binary variables and
logic operations

● Function results in binary 0 or 1

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

xy
0
0
0
0
0
0
1
1

x

y

z

G = xy +yz

yz

xy

How to transit between an equation, a

circuit, and a truth table?

yz
0
0
0
1
0
0
0
1

G
0
0
0
1
0
0
1
1

Representation Conversion

● Need to transit between a Boolean expression, a
truth table, and a circuit (symbols)

● Conversion between truth table and expression is
easy

● Conversion between expression and circuit is easy

● Conversion to truth table is more difficult

Truth

Table

Circuit Boolean

Expression

Truth Table to Expression

● Converting a truth table to an expression

● Each row with an output of 1 becomes a “product term”

● Sum the “product terms” together

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

G
0
0
0
1
0
0
1
1

xyz + xyz’ + x’yz

Any Boolean Expression can be

represented in sum of products form!

Equivalent Representations of Circuits

● All three formats are equivalent

● Number of 1’s in truth table output column equals
AND terms for Sum-of-Products (SOP)

x y z

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

G
0
0
0
1
0
0
1
1

G = xyz + xyz’ + x’yz

G

● ● ●

● ●
●

● ● ●

Reducing Boolean Expressions

● Is this the smallest possible implementation of this
expression? No!

● Use Boolean Algebra rules to reduce complexity
while preserving functionality

● Step 1: Use Theorem 1 (a + a = a)

• xyz + xyz’ + x’yz = xyz + xyz + xyz’ + x’yz

● Step 2: Use distributive rule a(b + c) = ab + ac

• xyz + xyz + xyz’ + x’yz = xy(z + z’) + yz(x + x’)

● Step 3: Use Postulate 3 (a + a’ = 1)

• xy(z + z’) + yz(x + x’) = xy.1 + yz.1

● Step 4: Use Postulate 2 (a . 1 = a)

● xy.1 + yz.1 = xy + yz = xyz + xyz’ + x’yz

G = xyz + xyz’ + x’yz

Reduced Hardware Implementation

● Reduced equation requires less hardware!

● Same function is implemented!

x y z

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

G
0
0
0
1
0
0
1
1

G = xyz + xyz’ + x’yz = xy + yz

G

● ●

● ●

Minterms and Maxterms

● Each variable in a Boolean expression is a literal

● Boolean variables can appear in normal (x) or
complemented form (x’)

● Each AND combination of terms is a minterm

● Each OR combination of terms is a maxterm

 For example:

x y z Minterm

0 0 0 x’y’z’ m0

0 0 1 x’y’z m1

…

1 0 0 xy’z’ m4

…

1 1 1 xyz m7

 For example:

x y z Maxterm

0 0 0 x+y+z M0

0 0 1 x+y+z’ M1

…

1 0 0 x’+y+z M4

…

1 1 1 x’+y’+z’ M7

Representing Functions with Minterms

● Minterm number is same as row position in truth table
(starting with 0 at the top)

● Shorthand way to represent functions

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

G
0
0
0
1
0
0
1
1

G = xyz + xyz’ + x’yz

G = m7 + m6 + m3 = Σ(3, 6, 7)

Complementing Functions

● Minterm number is same as row position in truth table
(starting with 0 at the top)

● Shorthand way to represent functions

G = xyz + xyz’ + x’yz

G’ = (xyz + xyz’ + x’yz)’ = ?

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

G
0
0
0
1
0
0
1
1

G’
1
1
1
0
1
1
0
0

Can we find a simpler representation?

Complementing Functions

Step 1: assign temporary names

● b + c → z

● (a + z)’ = G’

Step 2: Use DeMorgans’ Law

● (a + z)’ = a’ • z’

Step 3: Resubstitute (b+c) for z

● a’ • z’ = a’ • (b + c)’

Step 4: Use DeMorgans’ Law

● a’ • (b + c)’ = a’ • (b’ • c’)

Step 5: Associative rule

● a’ • (b’ • c’) = a’ • b’ • c’

G’ = (a + b + c)’

G = a + b + c

G’ = a’ • b’ • c’ = a’b’c’

G = a + b + c

Complementation Example

● Find complement of F = x’z + yz

F’ = (x’z + yz)’
● DeMorgan’s

F’ = (x’z)’ • (yz)’
● DeMorgan’s

F’ = (x’’+z’) (y’+z’)
● Reduction → eliminate double negation on x

F’ = (x+z’) (y’+z’)

This format is called product of sums

Conversion Between Canonical Forms

● Easy to convert between minterm and maxterm
representations

● For maxterm representation, select rows with 0’s

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

G
0
0
0
1
0
0
1
1

G = xyz + xyz’ + x’yz

G = m7 + m6 + m3 = Σ(3, 6, 7)

G = M0M1M2M4M5 = π(0,1,2,4,5)

G = (x+y+z)(x+y+z’)(x+y’+z)(x’+y+z)(x’+y+z’)

Representation of Circuits

● Any logic expression can be represented in a 2-level
circuit

● Circuits can be reduced to minimal 2-level
representations

● Sum−of−products representation is most common in
industry

Summary

● Truth table, circuit, and Boolean expression
formats are equivalent

● Easy to translate a truth table to SOP and POS
representations

● Boolean algebra rules can be used to reduce circuit
size while maintaining functionality

● All logic functions can be made from AND, OR, and
NOT

● Easiest way to understand: Do examples!

UNIT-II
Boolean Algebra and

Logic Gates

Boolean Functions

● Boolean algebra deals with binary variables and
logic operations

● Function results in binary 0 or 1

x
0
0
0
0
1
1
1
1

y
0
0
1
1
0
0
1
1

z
0
1
0
1
0
1
0
1

F
0
0
0
0
1
0
1
1 F = x(y+z’)

x

y

z
z’

y+z’ F = x(y+z’)

● Each truth table represents one possible function
(AND, OR … etc)

● If there are N inputs, there are 22N

● For example, if N is 2 then there are 16 possible
truth tables

● So far, we have defined 2 of these functions

● 14 more are possible

● Why consider new functions?

● Cheaper hardware, more flexibility

Logic functions of N variables

x
0
0
1
1

y
0
1
0
1

G
0
0
0
1

The NAND Gate

● The NAND gate is a combination of an AND gate
followed by an inverter

● NAND gates have several interesting properties…

● NAND(a,a) → (aa)’ = a’ → NOT(a)

● NAND’(a,b) → (ab)’’ = ab → AND(a,b)

● NAND(a’,b’) → (a’b’)’ = a+b → OR(a,b)

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

A

B
Y

Y = A B

The NAND Gate

● Those three properties show that:

● a NAND gate with both of its inputs driven by the same
signal is equivalent to a NOT gate

● a NAND gate whose output is complemented is equivalent to
an AND gate

● a NAND gate with complemented inputs acts as an OR gate

● Hence, we can use a NAND gate to implement all
three of the elementary operators
(AND, OR, NOT)

● Therefore, ANY switching function can be
constructed using only NAND gates. Such a gate is
said to be primitive or functionally complete
(Universal Gate)

A
Y

A

B

Y

Y

A

B

NOT Gate

AND Gate

OR Gate

NAND Gates into Other Gates

What are these circuits?

The NOR Gate

● A NOR gate is a combination of an OR gate followed
by an inverter

● NOR gates also have several interesting properties…

● NOR(a,a) → (a+a)’ = a’ → NOT(a)

● NOR’(a,b) → (a+b)’’ = a+b → OR(a,b)

● NOR(a’,b’) → (a’+b’)’ = ab → AND(a,b)
A B Y

0 0 1

0 1 0

1 0 0

1 1 0

A

B
Y

Y = A + B

Functionally Complete Gates

● Just like the NAND gate, the NOR gate is functionally
complete…any logic function can be implemented
using just NOR gates

● Both NAND and NOR gates are very valuable as any
design can be realized using either one

● It is easier to build an IC chip using all NAND or NOR
gates than to combine AND, OR, and NOT gates

● NAND/NOR gates are typically faster in switching and
cheaper to produce

NOT Gate

OR Gate

AND Gate

NOR Gates into Other Gates

What are these circuits?

A
Y

Y

A

B

A

B

Y

The XOR Gate (Exclusive-OR)

● This is a XOR gate

● XOR gates assert their output

 when exactly one of the inputs

 is asserted, hence the name

● The switching algebra symbol

 for this operation is :

 1  1 = 0 and 1  0 = 1

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

A

B
Y Y = A  B

The XNOR Gate

● This is a XNOR gate

● This functions as an

 exclusive-NOR gate, or

 simply the complement of

 the XOR gate

● The switching algebra symbol

 for this operation is :

 1  1 = 1 and 1  0 = 0

A B Y

0 0 1

0 1 0

1 0 0

1 1 1

A

B
Y

Y = A  B

NOR Gate Equivalence

NOR Symbol, Equivalent Circuit, Truth Table

DeMorgan’s Theorem

● A key theorem in simplifying Boolean algebra
expression is DeMorgan’s Theorem. It states:

 (a + b)’ = a’b’ (ab)’ = a’ + b’
 a + b = a • b a • b = a + b

● Example: Complement and simplify the expression

 a(b + z(x + a’))

a (b + z (x + a’)) = a + (b + z (x + a’))
 = a + b (z (x + a’))
 = a + b (z + (x + a’))
 = a + b (z + x a)

 = a + b (z + x a)

Example

Determine the output expression for the following
circuit and simplify it using DeMorgan’s Theorem

Universality of NAND gate

Universality of NOR gate

Example

Interpretation of the two NAND gate symbols

DeMorgan’s Theorem

Interpretation of the two OR gate symbols

DeMorgan’s Theorem

Summary

● Basic logic functions can be made from NAND, and
NOR functions

● The behavior of digital circuits can be represented
with waveforms, truth tables, or Boolean expressions

● Primitive gates can be combined to form larger
circuits

● Boolean algebra defines how binary variables can be
combined with NAND, NOR

● DeMorgan’s rules are important
Allow conversion to NAND/NOR representations

K-MAP

x y F

0 0 1

0 1 1

1 0 0

1 1 0

Karnaugh maps

● Alternate way of representing Boolean functions

● A Karnaugh map is a graphical tool for assisting in
the general simplification procedure

● Each row in the truth table is represented by a square

● Each square represents a minterm

0 1
y

x

0

1

1

0 0

1

0

0

1

x’y’

xy’ xy

x’y
1

y
x

x

y

F = Σ(m0,m1) = x’y + x’y’

Karnaugh Maps

● Two variable maps

● Three variable maps

0
A

1 0

1

B
0 1

0

1
F=AB+AB

0
A

1 1

1

B
0 1

0

1

0
A

1 1

1

00 01

0

1

BC

0

1 1

1

11 10

F=ABC +ABC +ABC + ABC + ABC + ABC

F=AB +AB +AB

A B C F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

+

+AB

Karnaugh maps

 Numbering scheme is based on Gray code

• e.g. 00, 01, 11, 10

• Only a single bit changes in code for adjacent map cells

• Observe the variable transitions

00 01
BC

A

0

1

11 10

A

C

B

0 0

0 0

1 1

1 1

0 1 3 2

4 5 7 6

F(A,B,C) = m(0,2,6,7) = A’C’

00 01
BC

A

0

1

11 10

A

C

B

1 0 0 1

0 0 1 1

00 01
BC

A

0

1

11 10

A

C

B

G(A,B,C) = B

Karnaugh Maps

● Two variable maps

● Three variable maps

0
A

1 0

1

B
0 1

0

1
F=AB+AB

0
A

1 1

1

B
0 1

0

1 F=A+B

F=A

0
A

1 1

1

00 01

0

1

BC

0

1 1

1

11 10

F=AB +AB +AB

F=ABC +ABC +ABC + ABC + ABC + ABC

 +BC +BC

More Karnaugh Map Examples

Examples

f = a'

b
0 1

0

1

a
0 1

0 1

f = b

a
bc

00 01 11 10

0

1

0 0 1 0

0 1 1 1

cout = ac

0 1

0

1

b

a
1 1

0 0

a
bc

00 01 11 10

0

1

0 0 1 1

0 0 1 1

f = b

1. Circle the largest groups possible

2. Group dimensions must be a power of 2

3. Remember what circling means!

+bc + ab

Application of Karnaugh Maps: The One-bit Adder

Adder

Cin

Cout

S
B

A

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

+

S = A’B’Cin + A’BCin’ + AB’Cin’ + ABCin

Cout = A’BCin + A B’Cin + ABCin’ + ABCin

= A’BCin + ABCin + AB’Cin + ABCin + ABCin’ + ABCin

= BCin + ACin + AB

= (A’ + A)BCin + (B’ + B)ACin + (Cin’ + Cin)AB

= 1·BCin + 1· ACin + 1· AB

How to use a Karnaugh

Map instead of the

Algebraic simplification?

0

0

0

1 1 1

0 1

00 01
BC

A

0

1

11 10

A

C

B

Application of Karnaugh Maps: The One-bit Adder

Adder

Cin

Cout

S
B

A

Karnaugh Map for Cout

Now we have to cover all the 1s in the

Karnaugh Map using the largest

rectangles and as few rectangles

as we can.

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

+

Cout = BCin Cout = BCin + AB Cout = BCin + AB + ACin

0

1

1

0 1 0

1 0

00 01
BC

A

0

1

11 10

A

C

B

Application of Karnaugh Maps: The One-bit Adder

Adder

Cin

Cout

S
B

A

Karnaugh Map for S

Now we have to cover all the 1s in the

Karnaugh Map using the largest

rectangles and as few rectangles

as we can.

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

+

S = A B’ C’in + A’B’Cin +A’ BC’in + A B Cin

No Possible Reduction!

Summary

● Karnaugh map allows us to represent functions with
new notation

● Representation allows for logic reduction

● Implement same function with less logic

● Each square represents one minterm

● Each circle leads to one product term

● Not all functions can be reduced

K-MAP

Karnaugh Maps for 4−Input Functions

● Represent functions of 4 inputs with 16 minterms

● Use same rules developed for 3-input functions

1

 F(A,B,C,D) = m(0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15)

F =

1 0

1 1 0 0

1 1 0

1 0

+ B’D’ + A’BD C

1 1

1 1

0

F =

1 0

0 0 0 0

1 1 0

1 1

+ B’CD + A’B’D A’C

0 0

1 0

Design Examples

K-map for LT

1

F =

0 0

0 1 0 0

0 0 0

0 0

+ ABCD + A’BC’D A’B’C’D’

1 0

0 1

Design Examples

K-map for EQ

+ AB’CD’

0

F =

0 1

1 0 1 1

0 0 1

0 0

+ ABD’ + BC’D’ AC’

0 1

0 0

Design Examples

K-map for GT

Physical Implementation

Step 1: Truth table

Step 2: K-map

Step 3: Minimized sum-of-products

Step 4: Physical implementation
with gates

A B C D

EQ

Physical Implementation

1

0 0

0 1 0 0

0 0 0

0 0

1 0

0 1

F = + ABCD + A’BC’D A’B’C’D’ + AB’CD’

K-map for EQ

EQ

Karnaugh Maps

● Four variable maps

● Need to make sure all 1’s are covered

● Try to minimize total product terms

● Design could be implemented using NANDs and NORs

F=BC 

0
AB

1 1

0

00 01

00

01

CD

0

0 1

1

11 10

F=ABC +ACD +ABC

 +AB CD +ABC +AB C

1

1 0

1 11

10

1

1 1

1 + AC +CD  + AD 

Karnaugh Maps: Don’t Cares

● In some cases, outputs are undefined

● We “don’t care” if the circuit produces a ‘0’ or a ‘1’
● This knowledge can be used to simplify functions

D

0 0

1 1

X 0

X 1

A

1 1

0 X

0 0

0 0

B

C

CD

AB

00

01

11

10

00 01 11 10

- Treat X’s like either 1’s or 0’s

- Very useful

- OK to leave some X’s uncovered

+ B’C’D Without don’t cares

F(A,B,C,D) =  (1,3,5,7,9) + d(6,12,13)

Karnaugh Maps: Don’t Cares

0 1

0 1

1 0

1 X
B

X X

0 1

0 0

0 0

D

A

F=A’D

AB
CD

00

01

11

10

00 01 11 10

C F
0 0
0 1
1 0
1 1
0 0
0 1
1 X
1

0

0

1

1

0

0

1

1

D
0
1
0
1
0
1
0
1

0

1

0

1

0

1

0

1

1

0

1

0

0

X

X

0

0

A
0
0
0
0
0
0
0
0

1

1

1

1

1

1

1

1

+

B
0
0
0
0
1
1
1
1

0

0

0

0

1

1

1

1

+

+ C’D With don’t cares

f = A'D + B'C'D
 without don't cares

F=A’D

C

Don’t Care Conditions

● In some situations, we don’t care about the value of a
function for certain combinations of the variables

● these combinations may be impossible in certain contexts

● or the value of the function may not matter when the
combinations occur

● In such situations we say the function is incompletely
specified and there are multiple (completely specified)
logic functions that can be used in the design

● so we can select a function that gives the simplest circuit

● When constructing the terms in the simplification
procedure, we can choose to either cover or not cover
the don’t care conditions

0
AB

x x

1

00 01

00

01

CD

0

x 1

0

11 10

1

x 0

1 11

10

1

1 1

x

Map Simplification with Don’t Cares

F=ACD

0
AB

x x

1

00 01

00

01

CD

0

x 1

0

11 10

1

x 0

1 11

10

1

1 1

x

 ABCD

Alternative covering:

+B +AC

+BC +ABC +AC F=

F(A,B,C,D) =  (2,3,9,11,13) + d(6,14)

Karnaugh Maps: Product of Sums

F = AC‘D + AB‘D + A‘B‘C

0

AB

0 0

0

00 01

00

01

CD

1

0 x

1

11

0

0 1

1 11

10

0

1 0

x

00 01 11 10

G(A,B,C,D) =  (0,1,4,5,7,8,10,12,15) + d(6,14)

Karnaugh Maps: Product of Sums

1

AB

1 1

1

00 01

00

01

CD

0

1 x

0

11

1

1 0

0 11

10

1

0 1

x

00 01 11 10

G = AD‘ + A‘C‘ + BC

F(A,B,C,D) =  (2,3,9,11,13) + d(6,14)

Karnaugh Maps: Product of Sums

0

AB

0 0

0

00 01

00

01

CD

1

0 x

1

11

0

0 1

1 11

10

0

1 0

x

00 01 11 10

 F’= (B‘+C‘) F = AC‘D F = AC‘D + A‘B‘C F = AC‘D + A‘B‘C+ AB‘D F’= (B‘+C‘) (A+C) F’= (B‘+C‘) (A+C)(A’+D)

Prime Implicants

Any single 1 or group of 1s in the Karnaugh map of a
function F is an implicant of F.

A product term is called a prime implicant of F if it
cannot be combined with another term to eliminate a
variable.

Implicants:

(a),(c),(d),(e)

Prime Implicants:

(d),(e)

1
AB

00 01

00

01

CD

1

1 1

1

11 10

1

1 1

11

10

(a) A’B’C

(b) BD

(c) A’B’C’D’
(d) A’C

(e) A’B’D’

Essential Prime Implicants

A product term is an essential prime implicant if there is a
minterm that is only covered by that prime implicant

The minimal sum-of-products form of F must include
all the essential prime implicants of F

Examples to Illustrate Terms

0 X

1 1

1 0

1 0
 B

1 0

0 0

1 1

1 1

D

00

01

11

10

00 01 11 10 AB

CD

C

 A

essential

AC, A’D, CD, A‘BC‘, BC'D'

minimum cover: AC + A‘D + BC'D'

5 prime implicants:

BD, ABC, AC'D,

Examples to Illustrate Terms

minimum cover: 4 essential implicants

0 0

1 1

1 0

1 0

0 1

0 1

1 1

0 0

 B

D

00

01

11

10

00 01 11 10 AB

CD

C

 A

5 prime implicants:

BD,

5 prime implicants:

BD, ABC, AC'D, A'BC' A'CD

5 prime implicants:

BD, ABC

5 prime implicants:

BD, ABC, AC'D, A'BC‘,

Summary

● K-maps of four literals were considered

● Larger examples exist

● Don’t care conditions help minimize functions

● Output for don’t cares are originally undefined

● Result of minimization is a minimal sum-of-products

● Result contains prime implicants

● Essential prime implicants are required in the
implementation

NAND-NAND & NOR-NOR Networks

DeMorgan’s Law:

 (a + b)’ = a’ b’ (a b)’ = a’ + b’
 a + b = a b a b = a + b

 a + b = (a’ b’)’ (a b) = (a’ + b’)’
 a + b = a b a b = a + b

push bubbles or introduce in pairs or remove pairs

NAND-NAND Networks

Mapping from AND/OR to NAND/NAND

Implementations of 2-Level Logic

● Sum-of-products

● AND gates to form product terms
(minterms)

● OR gate to form sum

● Product-of-sums

● OR gates to form sum terms
(maxterms)

● AND gates to form product

Two-level Logic using NAND Gates

● Replace minterm AND gates with NAND gates

● Place compensating inversion at inputs of OR gate

Two-level Logic using NAND Gates (cont’d)

● OR gate with inverted inputs is a NAND gate

● DeMorgan's: A' + B' = (A • B)' A + B = A • B

● Two-level NAND-NAND network

● Inverted inputs are not counted

● In a typical circuit, inversion is done once and signal is
then distributed

Z = [(A • B)' • (C • D)']'
 = [(A' + B') • (C' + D')]'
 = [(A' + B')' + (C' + D')']

 = (A • B) + (C • D) 

Conversion Between Forms (cont’d)

Example: verify equivalence of two forms

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

● x = (A + B + C) (D + E) F + G

● Factored form – not written as two-level S-o-P

● 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate

● 10 wires (7 literals plus 3 internal wires)

A
B
C

D
E

F
G

X

Multi-level Logic

Conversion of Multi-level Logic to NAND Gates

F = A (B + C D) + B C'

Exclusive-OR Circuits

Exclusive-OR (XOR) produces a HIGH output
whenever the two inputs are at opposite levels

Exclusive-NOR (XNOR) produces a HIGH output
whenever the two inputs are at the same level

Exclusive-NOR Circuits

XOR Function

XOR function can also be implemented with AND/OR
gates (also NANDs)

XOR Function

● Even function – even number of inputs are 1

● Odd function – odd number of inputs are 1

Parity Generation and Checking

Summary

● Follow rules to convert between AND/OR
representation and symbols

● Conversions are based on DeMorgan’s Law

● NOR gate implementations are also possible

● XORs provide straightforward implementation for
some functions

● Used for parity generation and checking

● XOR circuits can also be implemented using
AND/ORs

The Problem

● How can we convert from a circuit drawing to an
equation or truth table?

● Two approaches

● Create intermediate equations

● Create intermediate truth tables

A

B

C

A

B

C’

Out

Label Gate Outputs

1. Label all gate outputs that are functions of input
variables

2. Label gates that are functions of input variables
and previously labeled gates

3. Repeat process until all outputs are labeled

A

B

C

A

B

C’

Out

R

S T

Approach 1: Create Intermediate Equations

 Step 1: Create an equation for each gate output
based on its inputs

• R = ABC

• S = A + B

• T = C’S

• Out = R + T
A

B

C

A

B

C’

Out

R

S T

Approach 1: Substitute in subexpressions

 Step 2: Form a relationship based on input variables

• R = ABC

• S = A + B

• T = C’S = C’ (A + B)

• Out = R+T = ABC + C’(A+B)

A

B

C

A

B

C’

Out

R

S T

Approach 1: Substitute in subexpressions

 Step 3: Expand equation to SOP

• Out = ABC + C’(A+B) = ABC + AC’ + BC’

A

C’

Out

B

C’

A

B

C

Approach 2: Truth Table

 Step 1: Determine outputs for
functions of input variables

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

R
0
0
0
0
0
0
0
1

S
0
0
1
1
1
1
1
1 A

B

C

A

B

C’

Out

R

S T

Approach 2: Truth Table

 Step 2: Determine outputs for
functions of intermediate
variables.

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

T = S • C’

R
0
0
0
0
0
0
0
1

S
0
0
1
1
1
1
1
1

T
0
0
1
0
1
0
1
0

C’
1
0
1
0
1
0
1
0 A

B

C

A

B

C’

Out

R

S T

Approach 2: Truth Table

 Step 3: Determine outputs
for function.

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

R
0
0
0
0
0
0
0
1

S
0
0
1
1
1
1
1
1

T
0
0
1
0
1
0
1
0

Out
 0
 0
 1
 0
 1
 0
 1
 1

Out = R + T

A

B

C

A

B

C’

Out

R

S T

More Difficult Example

Note labels on interior nodes

More Difficult Example: Truth Table

● Remember to determine intermediate variables
starting from the inputs

● When all inputs are determined for a gate,
determine its output

● The truth table can be reduced using K-maps

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

F2

0
0
0
1
0
1
1
1

F’2

1
1
1
0
1
0
0
0

T1

0
1
1
1
1
1
1
1

T2

0
0
0
0
0
0
0
1

T3

0
1
1
0
1
0
0
0

F1

0
1
1
0
1
0
0
1

Summary

● Important to be able to convert circuits into truth table
and equation form

● WHY? Leads to minimized sum of products representation

● Two approaches illustrated

● Approach 1: Create an equation with circuit outputs
dependent on circuit inputs

● Approach 2: Create a truth table which shows relationship
between circuit inputs and circuit outputs

● Both results can then be minimized using K-maps

