
 

SWITCHING THEORY AND 

LOGIC CIRCUITS 



 

COURSE OBJECTIVES 

1. To understand the concepts and techniques associated with the 

number systems and codes 

2. To understand the simplification methods (Boolean algebra & 

postulates, k-map method and tabular method) to simplify the 

given Boolean function. 

3. To understand the fundamentals of digital logic and to design 

various combinational and sequential circuits. 

4. To understand the concepts of programmable logic 

devices(PLDs) 

5. To understand formal procedure for the analysis and design of 

synchronous and asynchronous sequential logic 

 



 

COURSE OUTCOMES 

After completion of the course the student will be able to  

1. Understand the concepts and techniques of number systems 

and codes in representing numerical values in various number 

systems and perform number conversions between different 

number systems and codes. 

2. Apply the simplification methods to simplify the given Boolean 

function (Boolean algebra, k-map and Tabular method). 

3. Implement given Boolean function using logic gates, MSI 

circuits and/ or PLD’s. 



 

COURSE OUTCOMES 

After completion of the course the student will be able to  

4. Design and analyze various combinational circuits like 

decoders, encoders, multiplexers, and de-multiplexers, 

arithmetic circuits (half adder, full adder, multiplier etc). 

5. Design and analyze various sequential circuits like flip-flops, 

registers, counters etc. 

6. Analyze and Design synchronous and asynchronous sequential 

circuits. 

 



UNIT-I 

Introductory Concepts 
(Number systems, Base conversions) 

 

 



Digital Systems 

● Digital systems consider discrete amounts of data 

●     Examples 

● 26 letters in the alphabet 

● 10 decimal digits  

● Larger quantities can be built from discrete values: 

● Words made of letters 

● Numbers made of decimal digits (e.g. 239875.32) 

● Computers operate on binary values (0 and 1) 

● Easy to represent binary values electrically  

● Voltages and currents 

● Can be implemented using circuits 

● Create the building blocks of modern computers 



Understanding Decimal Numbers 

● Decimal numbers are made of decimal digits: 
(0,1,2,3,4,5,6,7,8,9)  Base = 10 

● How many items does decimal number 8653 
represents? 

●   8653     =  8 x103 +  6 x102 +  5 x101 +  3 x100 

● Number = d3 x B3 + d2 x B2 + d1 x B1 + d0 x B0 = Value 

● What about fractions? 

● 97654.35 = 9x104 + 7x103 + 6x102 + 5x101 + 4x100 + 3x10-1 + 5x10-2 

● In formal notation → (97654.35)10 

1 10 100 1000 Weight 



Understanding Octal Numbers 

● Octal numbers are made of octal digits: 
(0,1,2,3,4,5,6,7) 

● How many items does an octal number represent? 

●                    512      64         8         1    =  Weights 

● (4536)8 = 4x83 + 5x82 + 3x81 + 6x80 = (2398)10  

● What about fractions? 

● (465.27)8 = 4x82 + 6x81 + 5x80 + 2x8-1 + 7x8-2 

● Octal numbers don’t use digits 8 or 9  



Understanding Hexadecimal Numbers 

● Hexadecimal numbers are made of 16 digits:  

● (0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F) 

● How many items does a hex number represent? 

                       4096         256         16            1     = Weights 

● (3A9F)16 = 3x163 + 10x162 + 9x161 + 15x160 = 1499910  

● What about fractions? 

● (2D3.5)16 = 2x162 + 13x161 + 3x160 + 5x16-1 = 723.312510 

● Note that each hexadecimal digit can be represented 
with four bits 

● (1110)2 = (E)16 

● Groups of four bits are called a nibble 

● (1110)2 



Understanding Binary Numbers 

● Binary numbers are made of binary digits (bits):  

● 0 and 1 

● How many items does a binary number represent? 

●                     8          4          2         1    =  Weights 

● (1011)2 = 1x23 + 0x22 + 1x21 + 1x20 = (11)10  

● What about fractions? 

● (110.10)2 = 1x22 + 1x21 + 0x20 + 1x2-1 + 0x2-2 

● Groups of eight bits are called a byte  

● (11001001)2 

● Groups of four bits are called a nibble 

●  (1101)2 



Putting It All Together 

● Binary, octal, and 
hexadecimal are similar 

● Easy to build circuits to 
operate on these 
representations 

● Possible to convert 
between the three 
formats 



Why Use Binary Numbers? 

● Easy to represent 0 and 1 
using electrical values 

● Possible to tolerate noise 

● Easy to transmit data 

● Easy to build binary circuits 

AND Gate 

1 

0 

0 



Conversion Between Number Bases 

Decimal 

(base 10) 

Octal 

(base 8) 

Binary 

(base 2) 

Hexadecimal 

(base 16) 

● Learn to convert between bases 

● Already demonstrated how to convert 
from binary to decimal 



Convert an Integer from Decimal to Another Base 

1. Divide decimal number by the base (e.g. 2) 

2. The remainder is the lowest-order digit 

3. Repeat first two steps until no divisor remains 

For each digit position: 

Example for (13)10: 

Quotient 

13/2 =        6      +      1                a0 = 1 

  6/2 =        3      +      0                a1 = 0 

  3/2 =        1      +      1                a2 = 1 

  1/2 =        0      +      1                a3 = 1 

Remainder Coefficient 

Answer (13)10 = (a3 a2 a1 a0)2 = (1101)2 

MSB           LSB 



Convert a Fraction from Decimal to Another Base 

1. Multiply decimal number by the base (e.g. 2) 

2. The integer is the highest-order digit 

3. Repeat first two steps until fraction becomes zero 

For each digit position: 

Example for (0.625)10: 

Integer 

0.625 x 2 =        1      +      0.25         a-1 = 1 

0.250 x 2 =        0      +      0.50         a-2 = 0 

0.500 x 2 =        1      +      0              a-3 = 1 

Fraction Coefficient 

Answer (0.625)10 = (0.a-1 a-2 a-3 )2 = (0.101)2 

MSB           LSB 



The Growth of Binary Numbers 

n  2n 

0 20=1 

1 21=2 

2 22=4 

3 23=8 

4 24=16 

5 25=32 

6 26=64 

7 27=128 

n  2n 

8 28=256 

9 29=512 

10 210=1024 

11 211=2048 

12 212=4096 

20 220=1M 

30 230=1G 

40 240=1T 

Mega 

Giga 

Tera 

Kilo 



Convert an Integer from Decimal to Octal 

1. Divide decimal number by the base (8) 

2. The remainder is the lowest-order digit 

3. Repeat first two steps until no divisor remains 

For each digit position: 

Example for (175)10: 

Quotient 

175/8 =    21      +       7               a0 = 7 

  21/8 =      2      +       5               a1 = 5 

    2/8 =      0      +       2               a2 = 2 

Remainder Coefficient 

Answer (175)10 = (a2 a1 a0)8 = (257)8 



Convert a Fraction from Decimal to Octal 

1. Multiply decimal number by the base (e.g. 8) 

2. The integer is the highest-order digit 

3. Repeat first two steps until fraction becomes zero 

For each digit position: 

Example for (0.3125)10: 

Integer 

0.3125 x 8 =      2      +     0.5             a-1 = 2 

0.5000 x 8 =      4      +     0.0             a-2 = 4  

Fraction Coefficient 

Answer (0.3125)10 = (0.24)8 



Conversion Between Base 16 and Base 2 

● Conversion is easy! 

Determine the 4-bit binary value for each hex digit 

● Note that there are 16 different values of four bits 

● Easier to read and write in hexadecimal 

● Representations are equivalent! 

3A9F16 =  0011  1010  1001  11112 

3 A 9 F 



Conversion Between Base 16 and Base 8 

1. Convert from Base 16 to Base 2 

2. Regroup bits into groups of three starting from right 

3. Ignore leading zeros 

4. Each group of three bits forms an octal digit 

352378 =    011  101  010  011  1112 

5 2 3 7 3 

3A9F16 =  0011  1010  1001  11112 

3 A 9 F 



Binary Addition 

● Binary addition is very simple 

 1  1  1  1  0  1 

+     1  0  1  1  1 

   --------------------- 

0 

1 

0 

1 

1 

1 1 1 1 

1 1 0 0 

carries 

= 61 

= 23 

= 84 



Binary Subtraction 

● We can also perform subtraction (with borrows in 
place of carries) 

● Let’s subtract (10111)2 from (1001101)2 … 

1  0  0  1  1  0  1 

-  1  0  1  1  1 

------------------------ 

borrows 

0 

0 10 

1 

0 

10 

1 0 

0 10 

1 

10 

1 1 

= 77 

= 23 

= 54 



Binary Multiplication 

Binary multiplication is much the same as decimal 
multiplication, except that the multiplication 
operations are much simpler… 

      1  0  1  1  1 

X             1  0  1  0 

----------------------- 

          0  0  0  0  0 

       1  0  1  1  1 

    0  0  0  0  0 

 1  0  1  1  1 

----------------------- 

 1  1  1  0  0  1  1  0 



Summary 

● Binary numbers are made of binary digits (bits) 

● Binary and octal number systems 

● Conversion between number systems 

● Addition, subtraction, and multiplication in binary 



Introductory Concepts 
(Complements) 

 
 



How To Represent Signed Numbers 

● Plus and minus signs are used for decimal numbers: 

● 25 (or +25), −16, etc 

● In computers, everything is represented as bits 

● Three types of signed binary number representations: 

● signed magnitude 

● 1’s complement 
● 2’s complement 

● In each case: left-most bit indicates the sign: 
 ‘0’ for positive and ‘1’ for negative 



Signed Magnitude Representation 

000011002 = 1210 

Sign bit Magnitude 

100011002 =  −1210 

Sign bit Magnitude 

● The left most bit is designated as the sign bit while 
the remaining bits form the magnitude 

● The sign bit should not be included in addition / 
subtraction operations 



One’s Complement Representation 

● The one’s complement of a binary number is done 
by complementing (i.e. inverting) all bits 

   1’s comp of 00110011 is 11001100 

   1’s comp of 10101010 is 01010101 

● For a n-bit number N the 1’s complement is 
   (2

n − 1) − N 

● Called “diminished radix complement” by Mano 

● To find the negative of a 1’s complement number 
take its 1’s complement 

000011002 = 1210 

Sign bit Magnitude 

111100112 =  −1210 

Sign bit Code 



One’s Complement Representation 

1000 − 7 

0000 0 

0111 7 

. . 

. . 

0110 6 

0001 1 

1111 − 0 

1110 − 1 

. . 

. . 

1001 − 6 

4 bits 

 
16 combinations 



Two’s Complement Representation 

● The two’s complement of a binary number is done 
by complementing (inverting) all bits then adding 1 

   2’s comp of 00110011 is 11001101 

   2’s comp of 10101010 is 01010110 

● For an n-bit number N the 2’s complement is 
   (2

n−1) − N + 1 

● Called “radix complement” by Mano 

● To find the negative of a 2’s complement number 
take its 2’s complement 

000011002 = 1210 

Sign bit Magnitude 

111101002 =  −1210 

Sign bit Code 



Two’s Complement Shortcuts 

● Algorithm 1: Complement each bit then add 1 to the 
result 

    N = 01100101 

           10011010 

    +                1 

  10011011 

● Algorithm 2: Starting with the least significant bit, 
copy all of the bits up to and including the first ‘1’ 
bit, then complement the remaining bits 

 N  = 0 1 1 0 0 1 1 0 

  [N]  = 1 0 0 1 1 0 1 0 

[N] = 10011011 

         01100100 

      +               1 

         01100101 



Two’s Complement Representation 

1000 − 8 

0000 0 

0111 7 

. . 

. . 

0110 6 

0001 1 

1111 − 1 

1110 − 2 

. . 

. . 

1001 − 7 

4 bits 

 
16 combinations 



Finite-Precision Number Representation 

● Machines that use 2’s complement arithmetic can 
represent integers in the range 

   − 2
n-1

 ≤ N ≤ 2n-1 − 1 

 n is the number of bits used for representing N 

     Note that 2
n-1 − 1 = (011..11)2 and − 2

n-1
 = (100..00)2 

● 2’s complement code has more negative numbers 
than positive 

● 1’s complement code has 2 representations for zero 

● For a n-bit number in base (i.e. radix) z there are z
n
 

different unsigned values (combinations) 

  (0, 1, …zn-1
) 



1’s Complement Subtraction 

● Using 1’s complement representation, subtracting 
numbers is also easy 

Step 1:  Take 1’s complement of 2nd operand 

Step 2:  Add binary numbers 

Step 3:  Add carry as a low order bit 

● For example: (+12)10 − (1)10 

(+12)10 = +(1100)2 

            = 011002  

(−1)10    = −(0001)2 

            = 111102 in 1’s comp. 

     0 1 1 0 0  

   - 0 0 0 0 1 

     1 1 

     0 1 1 0 0  

+ 1 1 1 1 0 

-------------- 

  1  0 1 0 1 0 

             1 

-------------- 

     0 1 0 1 1 

Add carry 

Final  

Result 

1’s comp 

Add 



2’s Complement Subtraction 

● Using 2’s complement representation, subtracting 
numbers is also easy 

Step 1:  Take 2’s complement of 2nd operand 

Step 2:  Add binary numbers 

Step 3: Ignore the resulting carry bit 

● For example: (+12)10 − (1)10 

(+12)10 = +(1100)2 

            = 011002 

(−1)10    = −(0001)2 

            = 111112 in 2’s comp. 

     0 1 1 0 0  

   - 0 0 0 0 1 

     1 1 

     0 1 1 0 0  

+ 1 1 1 1 1 

-------------- 

  1  0 1 0 1 1 
Final  

Result 

2’s comp 

Add 

Ignore 

Carry 



2’s Complement Subtraction 

● Example 2: (13)10 − (5)10 

(13)10 = +(1101)2 = (01101)2 

(−5)10  = −(0101)2 = (11011)2 

● Adding these two 5-bit codes: 

 0 1 1 0 1  

+ 1 1 0 1 1 

1   0 1 0 0 0 

● Discarding the carry bit, the sign bit is seen to be 
zero, indicating a positive result 

     Indeed: (01000)2 = +(8)10 

Carry 



2’s Complement Subtraction 

● Example 3: (5)10 − (12)10 

   (5)10 = +(0101)2 = (00101)2 

(−12)10 = −(1100)2 = (10100)2 

● Adding these two 5-bit codes: 

 0 0 1 0 1  

+ 1 0 1 0 0 

0   1 1 0 0 1 

● Here, there is no carry bit and the sign bit is 1. 
This indicates a negative result, which is what we 
expect: (11001)2 = – (7)10 

Carry 



Summary 

● Binary numbers can also be represented in octal and 
hexadecimal  

● Easy to convert between binary, octal, and 
hexadecimal 

● Signed numbers are represented in 3 codes: signed 
magnitude, 1’s complement, or 2’s complement 

● 2’s complement code is most important 
(only 1 representation for zero) 

● Important to understand the treatment of the sign bit 
for 1’s and 2’s complement codes 



Introductory  Concepts 

(Codes) 

 



Binary Coded Decimal 

● Binary Coded Decimal (BCD) represents each 
decimal digit with four bits 

Ex.     0011 0010 1001 

 

● This is NOT the same as 0011001010012 

● Why do this? Because people think in decimal 

Digit BCD 
Code Digit BCD 

Code 

0 0000 5 0101 

1 0001 6 0110 

2 0010 7 0111 

3 0011 8 1000 

4 0100 9 1001 

3 2 9 

=  32910 



Putting It All Together 

● BCD is not very efficient 

● Used in early computers 
(1940s, 1950s) 

● Used to encode numbers 
for seven-segment 
displays 

● Easier to read? 



Gray Code 

● Gray code is not a number 
system 

It is an alternate way to 
represent four bit data 

● Only one bit changes from one 
decimal digit to the next 

● Useful for reducing errors in 
communication 

● Can be scaled to larger 
numbers 

Digit Binary Gray 
Code 

   0  0000  0000 

   1  0001  0001 

   2  0010  0011 

   3  0011  0010 

   4  0100  0110 

   5  0101  0111 

   6  0110  0101 

   7  0111  0100 

   8  1000  1100 

   9  1001  1101 

  10  1010  1111 

  11  1011  1110 

  12  1100  1010 

  13  1101  1011 

  14  1110  1001 

  15  1111  1000 



ASCII Code 

● American Standard Code for Information Interchange 

● ASCII is a 7-bit code, frequently used with a 8th bit for 
error detection (more about that later) 

Character ASCII (bin) ASCII (hex) Decimal Octal 

A 1000001 41 65 101 

B 1000010 42 66 102 

C 1000011 43 67 103 

… 

Z 

a 

… 

1 

‘ 



ASCII Codes and Data Transmission 

● ASCII Codes  

● A – Z (26 codes), a – z (26 codes) 

● 0 – 9 (10 codes), others (@#$%^&*….) 
● Transmission susceptible to noise 

● Typical transmission rates (1500 Kbps, 56.6 Kbps) 

● How to keep data transmission accurate? 



Parity Codes 

● Parity codes are formed by concatenating a parity 
bit, P to each code word C 

● In an even-parity code, the parity bit is specified so 
that the total number of ones is even 

● In an odd-parity code, the parity bit is specified so 
that the total number of ones is odd 

Information Bits P 

1 1 0 0 0 0 1 1 

 

Added even parity bit 

0 1 0 0 0 0 1 1 

 

Added odd parity bit 



Parity Code Example 

Concatenate a parity bit to the ASCII code for the 
characters “0”, “X”, and “=” to produce both odd-
parity and even-parity codes 

Character ASCII Odd-Parity 
ASCII 

Even-Parity 
ASCII 

0 0110000 10110000 00110000 

X 1011000 01011000 11011000 

= 0111100 10111100 00111100 



Binary Data Storage 

● Binary cells store individual bits of data 

● Multiple cells form a register 

● Data in registers can indicate different values 

● Hex (binary) 

● BCD 

● ASCII 

Binary Cell 

0 0 1 0 1 0 1 1 



Register Transfer 

● Data can move from a register to a register 

● Digital logic used to process data 

Register A Register B 

Register C 

Digital Logic 

   Circuits 



Transfer of Information 

● Data input at keyboard 

● Shifted into place 

● Stored in memory 

NOTE: Data input in ASCII 



Building a Computer 

● We need processing 

● We need storage 

● We need communication 

 

 

 

● You will learn to use and 
design these components 



Summary 

● Although 2’s complement is most important, other 
number codes exist 

● ASCII code is used to represent characters (such as 
those on the keyboard) 

● Registers store binary data 



Unit-II 
Boolean Algebra and  

Logic gates 
  



Digital Systems 

● Analysis problem: 

 

 

 

 

● Determine the binary output for each input combination 

● Design problem: given a task, develop a circuit 
that accomplishes that task 

● Many possible implementations 

● “Best” circuit: based on some criterion (size, power, 
performance, etc.) 

. 

. 
 

. 

. 
 

Logic 
Circuit 

Inputs Outputs 



Toll Booth Controller 

● Consider the design of a toll booth controller 

● Inputs: quarter, car sensor 

● Outputs: gate-lift signal, gate-close signal 

 

 

 

● If driver pitches in quarter, raise gate 

● When car has cleared gate, close gate 

Logic 
Circuit 

$.25 

Car? 

Raise gate 

Close gate 



Describing Circuit Functionality: Inverter 

● Basic logic functions have symbols 

● The same functionality can be 
 represented with a truth table 

● Truth table completely specifies outputs for all input 
combinations 

● This is an inverter 

● An input of 0 is inverted to a 1 

● An input of 1 is inverted to a 0 

A Y 

0 1 

1 0 

Input Output 

A Y 

Symbol 

Truth Table 



The AND Gate 

● This is an AND gate 

● If the two input signals 

 are asserted (i.e. high) the  

 output will also be asserted. 

 Otherwise, the output will 

 be deasserted (i.e. low) 

A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

A 

B 
Y 

Truth Table 

A B 



The OR Gate 

● This is an OR gate 

● If either of the two 

 input signals is  

 asserted, or both of  

 them are, the output  

 will be asserted 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

A 

B 
Y 

A 

B 



Describing Circuit Functionality: Waveforms 

● Waveforms provide another approach for 
representing functionality 

● Values are either high (logic 1) or low (logic 0) 

● Can you create a truth table from the waveforms? 

x y f 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

AND Gate 



Consider three-input gates 

3 Input OR Gate 



Ordering Boolean Functions  

● How to interpret A  B + C? 

 Is it A  B ORed with C ? 

 Is it A ANDed with B + C ? 

● Order of precedence for Boolean algebra: AND 
before OR 

● Note that parentheses are needed here: 



Boolean Algebra 

● A Boolean algebra is defined as a closed algebraic 
system containing a set K of two or more elements 
and the two operators, • and + 

● Useful for identifying and minimizing circuit 
functionality 

● Identity elements 

 a + 0 = a 

 a • 1 = a 

● 0 is the identity element for the + operation 

● 1 is the identity element for the • operation 



Commutativity and Associativity of the Operators 

● Commutative Property: 

 For every ‘a’ and ‘b’ in K, 
 a + b = b + a 

 a • b = b • a 

● Associative Property: 

 For every ‘a’, ‘b’, and ‘c’ in K, 
 a + (b + c) = (a + b) + c 

 a • (b • c) = (a • b) • c 



Distributivity of the Operators and Complements 

● Distributive Property: 
 For every ‘a’, ‘b’, and ‘c’ in K, 

 a + ( b • c ) = ( a + b ) • ( a + c ) 

 a • ( b + c ) = ( a • b ) + ( a • c ) 

● The Existence of the Complement: 
 For every ‘a’ in K there exists a unique element called a’ (or ā) 

(complement of a) such that, 

 a + a’ = 1 

 a • a’ = 0 

● To simplify notation, the • operator is frequently 
omitted.  When two elements are written next to 
each other, the AND (•) operator is implied 

 a + b • c = ( a + b ) • ( a + c ) 

 a + bc = ( a + b )( a + c ) 



Duality 

● The principle of duality is an important concept: 
If an expression is valid in Boolean algebra, the 
dual of that expression is also valid 

● To form the dual of an expression, replace all + 
operators with • operators, all • operators with + 
operators, all ones with zeros, and all zeros with 
ones 

● Form the dual of the equation: 

 a + (bc) = (a + b)(a + c) 

      Following the replacement rules: 

 a(b + c) = ab + ac 

● Take care not to alter the location of the 
parentheses if they are present 



Involution 

● This theorem states: 

 a’’ = a               a = a 

● Remember that: 

    aa’ = 0              a a = 0 

    a+a’=1              a + a = 1 

 Therefore, a’ is the complement of a 
and a is also the complement of a’ 

● Taking the double inverse of a value produces the 
initial value 



Absorption 

● This theorem states: 

 a + ab = a   a(a+b) = a 

● To prove the first half of this theorem: 

  a + ab  = a • 1 + ab 

    = a (1 + b) 

    = a (b + 1) 

    = a (1) 

  a + ab  = a 



DeMorgan’s Theorem 

● A key theorem in simplifying Boolean algebra 
expressions is DeMorgan’s Theorem.  It states: 

 (a + b)’ = a’b’  (ab)’ = a’ + b’ 
  a + b   = a • b   a • b   = a  + b 

● Example: Complement and simplify the expression  

 a(b + z(x + a’)) 

a (b + z ( x + a’))  = a + (b + z (x + a’)) 
  = a + b (z (x + a’)) 
  = a + b (z + (x + a’)) 
  = a + b (z + x  a) 

  = a + b (z + x a) 



Summary 

● Basic logic functions can be made from AND, OR, and 
NOT (invert) functions 

● The behavior of digital circuits can be represented 
with waveforms, truth tables, or symbols 

● Primitive gates can be combined to form larger 
circuits 

● Boolean algebra defines how binary variables can be 
combined 

● Rules for associativity, commutativity, and 
distribution are similar to algebra 

● DeMorgan’s rules are important 
● Will allow us to reduce circuit sizes 



UNIT-II 
Boolean Algebra and Logic 

gates 



Boolean Functions 

● Boolean algebra deals with binary variables and 
logic operations 

● Function results in binary 0 or 1 

x 
0 
0 
0 
0 
1 
1 
1 
1 

y 
0 
0 
1 
1 
0 
0 
1 
1 

z 
0 
1 
0 
1 
0 
1 
0 
1 

 
 
 
 
 
 
 
 
 

xy 
0 
0 
0 
0 
0 
0 
1 
1 

x 

y 

z 

G = xy +yz 

yz 

xy 

How to transit between an equation, a 

circuit, and a truth table? 

 
 
 
 
 
 
 
 
 

yz 
0 
0 
0 
1 
0 
0 
0 
1 

 
 
 
 
 
 
 
 
 

G 
0 
0 
0 
1 
0 
0 
1 
1 



Representation Conversion 

● Need to transit between a Boolean expression, a 
truth table, and a circuit (symbols) 

● Conversion between truth table and expression is 
easy 

● Conversion between expression and circuit is easy  

● Conversion to truth table is more difficult  

Truth 

Table 

Circuit   Boolean 

Expression 



Truth Table to Expression 

● Converting a truth table to an expression 

● Each row with an output of 1 becomes a “product term” 

● Sum the “product terms” together 

x 
0 
0 
0 
0 
1 
1 
1 
1 

y 
0 
0 
1 
1 
0 
0 
1 
1 

z 
0 
1 
0 
1 
0 
1 
0 
1 

 
 
 
 
 
 
 
 
 

G 
0 
0 
0 
1 
0 
0 
1 
1 

xyz + xyz’ + x’yz 

Any Boolean Expression can be  

represented in sum of products form! 



Equivalent Representations of Circuits 

● All three formats are equivalent 

● Number of 1’s in truth table output column equals 
AND terms for Sum-of-Products (SOP) 

x y z 

x 
0 
0 
0 
0 
1 
1 
1 
1 

y 
0 
0 
1 
1 
0 
0 
1 
1 

z 
0 
1 
0 
1 
0 
1 
0 
1 

 
 
 
 
 
 
 
 
 

G 
0 
0 
0 
1 
0 
0 
1 
1 

G = xyz + xyz’ + x’yz 

G 

● ● ● 

● ● 
● 

● ● ● 



Reducing Boolean Expressions 

● Is this the smallest possible implementation of this 
expression?  No! 

● Use Boolean Algebra rules to reduce complexity 
while preserving functionality 

● Step 1: Use Theorem 1 (a + a = a) 

• xyz + xyz’ + x’yz = xyz + xyz + xyz’ + x’yz 

● Step 2: Use distributive rule a(b + c) = ab + ac 

• xyz + xyz + xyz’ + x’yz = xy(z + z’) + yz(x + x’) 

● Step 3: Use Postulate 3 (a + a’ = 1) 

• xy(z + z’) + yz(x + x’) = xy.1 + yz.1 

● Step 4: Use Postulate 2 (a . 1 = a) 

● xy.1 + yz.1 = xy + yz = xyz + xyz’ + x’yz  

G = xyz + xyz’ + x’yz 



Reduced Hardware Implementation 

● Reduced equation requires less hardware! 

● Same function is implemented! 

x y z 

x 
0 
0 
0 
0 
1 
1 
1 
1 

y 
0 
0 
1 
1 
0 
0 
1 
1 

z 
0 
1 
0 
1 
0 
1 
0 
1 

 
 
 
 
 
 
 
 
 

G 
0 
0 
0 
1 
0 
0 
1 
1 

G = xyz + xyz’ + x’yz = xy + yz 

G 

● ● 

● ● 



Minterms and Maxterms 

● Each variable in a Boolean expression is a literal 

● Boolean variables can appear in normal (x) or 
complemented form (x’) 

● Each AND combination of terms is a minterm 

● Each OR combination of terms is a maxterm 

        For example: 

 

x    y    z          Minterm 

0    0    0        x’y’z’    m0    

0    0    1        x’y’z     m1 

… 

1    0    0        xy’z’     m4 

… 

1    1    1        xyz       m7 

 

        For example: 

 

x    y    z          Maxterm 

0    0    0        x+y+z     M0    

0    0    1        x+y+z’    M1 

… 

1    0    0        x’+y+z    M4 

… 

1    1    1        x’+y’+z’   M7 

 



Representing Functions with Minterms 

● Minterm number is same as row position in truth table 
(starting with 0 at the top) 

● Shorthand way to represent functions 

x 
0 
0 
0 
0 
1 
1 
1 
1 

y 
0 
0 
1 
1 
0 
0 
1 
1 

z 
0 
1 
0 
1 
0 
1 
0 
1 

 
 
 
 
 
 
 
 
 

G 
0 
0 
0 
1 
0 
0 
1 
1 

G = xyz + xyz’ + x’yz 

G = m7 + m6 + m3 = Σ(3, 6, 7) 



Complementing Functions 

● Minterm number is same as row position in truth table 
(starting with 0 at the top) 

● Shorthand way to represent functions 

G = xyz + xyz’ + x’yz 

G’ = (xyz + xyz’ + x’yz)’ =  ? 

x 
0 
0 
0 
0 
1 
1 
1 
1 

y 
0 
0 
1 
1 
0 
0 
1 
1 

z 
0 
1 
0 
1 
0 
1 
0 
1 

 
 
 
 
 
 
 
 
 

G 
0 
0 
0 
1 
0 
0 
1 
1 

 
 
 
 
 
 
 
 
 

G’ 
1 
1 
1 
0 
1 
1 
0 
0 

Can we find a simpler representation? 



Complementing Functions 

Step 1: assign temporary names 

● b + c → z 

● (a + z)’ = G’ 

Step 2: Use DeMorgans’ Law 

● (a + z)’ = a’ • z’  

Step 3: Resubstitute (b+c) for z 

● a’ • z’ = a’ • (b + c)’  

Step 4: Use DeMorgans’ Law 

● a’ • (b + c)’ = a’ • (b’ • c’) 

Step 5: Associative rule 

● a’ • (b’ • c’) = a’ • b’ • c’   

G’ = (a + b + c)’  

G = a + b + c  

G’ = a’ • b’ • c’ = a’b’c’  

G = a + b + c  



Complementation Example 

● Find complement of F = x’z + yz 

F’ = (x’z + yz)’ 
● DeMorgan’s 

F’ = (x’z)’ • (yz)’ 
● DeMorgan’s 

F’ = (x’’+z’) (y’+z’) 
● Reduction → eliminate double negation on x 

F’ = (x+z’) (y’+z’) 

This format is called product of sums 



Conversion Between Canonical Forms 

● Easy to convert between minterm and maxterm 
representations 

● For maxterm representation, select rows with 0’s 

x 
0 
0 
0 
0 
1 
1 
1 
1 

y 
0 
0 
1 
1 
0 
0 
1 
1 

z 
0 
1 
0 
1 
0 
1 
0 
1 

 
 
 
 
 
 
 
 
 

G 
0 
0 
0 
1 
0 
0 
1 
1 

G = xyz + xyz’ + x’yz 

G = m7 + m6 + m3 = Σ(3, 6, 7) 

G = M0M1M2M4M5 = π(0,1,2,4,5)  

G = (x+y+z)(x+y+z’)(x+y’+z)(x’+y+z)(x’+y+z’)  



Representation of Circuits 

● Any logic expression can be represented in a 2-level 
circuit 

● Circuits can be reduced to minimal 2-level 
representations 

● Sum−of−products representation is most common in 
industry 



Summary 

● Truth table, circuit, and Boolean expression 
formats are equivalent 

● Easy to translate a truth table to SOP and POS 
representations 

● Boolean algebra rules can be used to reduce circuit 
size while maintaining functionality 

● All logic functions can be made from AND, OR, and 
NOT 

● Easiest way to understand: Do examples! 



UNIT-II 
Boolean Algebra and  

Logic Gates 



Boolean Functions 

● Boolean algebra deals with binary variables and 
logic operations 

● Function results in binary 0 or 1 

x 
0 
0 
0 
0 
1 
1 
1 
1 

y 
0 
0 
1 
1 
0 
0 
1 
1 

z 
0 
1 
0 
1 
0 
1 
0 
1 

 
 
 
 
 
 
 
 
 

F 
0 
0 
0 
0 
1 
0 
1 
1 F = x(y+z’) 

x 

y 

z 
z’ 

y+z’ F = x(y+z’) 



● Each truth table represents one possible function 
(AND, OR … etc) 

● If there are N inputs, there are 22N 

● For example, if N is 2 then there are 16 possible 
truth tables 

● So far, we have defined 2 of these functions 

● 14 more are possible 

● Why consider new functions? 

● Cheaper hardware, more flexibility 

Logic functions of N variables 

x 
0 
0 
1 
1 

y 
0 
1 
0 
1 

G 
0 
0 
0 
1 



The NAND Gate 

● The NAND gate is a combination of an AND gate 
followed by an inverter 

● NAND gates have several interesting properties… 

● NAND(a,a) → (aa)’ = a’ → NOT(a) 

● NAND’(a,b) → (ab)’’ = ab → AND(a,b) 

● NAND(a’,b’) → (a’b’)’ = a+b → OR(a,b) 

A B Y 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

A 

B 
Y 

Y = A B 



The NAND Gate 

● Those three properties show that: 

● a NAND gate with both of its inputs driven by the same 
signal is equivalent to a NOT gate 

● a NAND gate whose output is complemented is equivalent to 
an AND gate 

● a NAND gate with complemented inputs acts as an OR gate 

● Hence, we can use a NAND gate to implement all 
three of the elementary operators 
(AND, OR, NOT) 

● Therefore, ANY switching function can be 
constructed using only NAND gates.  Such a gate is 
said to be primitive or functionally complete 
(Universal Gate) 



A 
Y 

A 

B 

Y 

Y 

A 

B 

NOT Gate 

AND Gate 

OR Gate 

NAND Gates into Other Gates 

What are these circuits? 



The NOR Gate 

● A NOR gate is a combination of an OR gate followed 
by an inverter 

● NOR gates also have several interesting properties… 

● NOR(a,a) → (a+a)’ = a’ → NOT(a) 

● NOR’(a,b) → (a+b)’’ = a+b → OR(a,b) 

● NOR(a’,b’) → (a’+b’)’ = ab → AND(a,b) 
A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

A 

B 
Y 

Y = A + B 



Functionally Complete Gates 

● Just like the NAND gate, the NOR gate is functionally 
complete…any logic function can be implemented 
using just NOR gates 

● Both NAND and NOR gates are very valuable as any 
design can be realized using either one 

● It is easier to build an IC chip using all NAND or NOR 
gates than to combine AND, OR, and NOT gates 

● NAND/NOR gates are typically faster in switching and 
cheaper to produce 



NOT Gate 

OR Gate 

AND Gate 

NOR Gates into Other Gates 

What are these circuits? 

A 
Y 

Y 

A 

B 

A 

B 

Y 



The XOR Gate (Exclusive-OR) 

● This is a XOR gate 

● XOR gates assert their output 

 when exactly one of the inputs 

 is asserted, hence the name 

● The switching algebra symbol 

 for this operation is : 

 1  1 = 0 and 1  0 = 1 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

A 

B 
Y Y = A  B 



The XNOR Gate 

● This is a XNOR gate 

● This functions as an 

 exclusive-NOR gate, or 

 simply the complement of 

 the XOR gate 

● The switching algebra symbol 

 for this operation is : 

 1  1 = 1 and 1  0 = 0 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

A 

B 
Y 

Y = A  B 



NOR Gate Equivalence 

NOR Symbol, Equivalent Circuit, Truth Table 



DeMorgan’s Theorem 

● A key theorem in simplifying Boolean algebra 
expression is DeMorgan’s Theorem.  It states: 

 (a + b)’ = a’b’  (ab)’ = a’ + b’ 
  a + b   = a • b   a • b   = a  + b 

● Example: Complement and simplify the expression  

 a(b + z(x + a’)) 

a (b + z ( x + a’))  = a + (b + z (x + a’)) 
  = a + b (z (x + a’)) 
  = a + b (z + (x + a’)) 
  = a + b (z + x  a) 

  = a + b (z + x a) 



Example 

Determine the output expression for the following 
circuit and simplify it using DeMorgan’s Theorem 



Universality of NAND gate 



Universality of NOR gate 



Example 



Interpretation of the two NAND gate symbols 

DeMorgan’s Theorem 



Interpretation of the two OR gate symbols 

DeMorgan’s Theorem 



Summary 

● Basic logic functions can be made from NAND, and 
NOR functions 

● The behavior of digital circuits can be represented 
with waveforms, truth tables, or Boolean expressions 

● Primitive gates can be combined to form larger 
circuits 

● Boolean algebra defines how binary variables can be 
combined with NAND, NOR 

● DeMorgan’s rules are important 
Allow conversion to NAND/NOR representations 



K-MAP 



x y F 

0 0 1 

0 1 1 

1 0 0 

1 1 0 

Karnaugh maps 

● Alternate way of representing Boolean functions 

● A Karnaugh map is a graphical tool for assisting in 
the general simplification procedure 

● Each row in the truth table is represented by a square 

● Each square represents a minterm 

 

 

0 1 
y 

x 

0 

1 

1 

0 0 

1 

 

 

0 

0 

1 

x’y’ 

xy’ xy 

x’y 
1 

y 
x 

x 

y 

F = Σ(m0,m1) = x’y + x’y’ 



Karnaugh Maps 

● Two variable maps 

 

 

 

● Three variable maps 

 

 

 

 

0 
A 

1 0 

1 

B 
0 1 

0 

1 
F=AB+AB 

0 
A 

1 1 

1 

B 
0 1 

0 

1 

0 
A 

1 1 

1 

00 01 

0 

1 

BC 

0 

1 1 

1 

11 10 

F=ABC +ABC +ABC + ABC + ABC + ABC 

F=AB +AB +AB 

A B C F 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 

+ 



+AB  

Karnaugh maps 

  Numbering scheme is based on Gray code 

• e.g. 00, 01, 11, 10 

• Only a single bit changes in code for adjacent map cells 

• Observe the variable transitions 

 

 

00 01 
BC 

A 

0 

1 

 

 

11 10 

A 

C 

B 

0 0 

0 0 

1 1 

1 1 

0    1     3      2 

4    5     7      6 

F(A,B,C) = m(0,2,6,7) = A’C’   

 

00 01 
BC 

A 

0 

1 

 

 

11 10 

A 

C 

B 

1    0     0      1 

0    0     1      1 

 

 

00 01 
BC 

A 

0 

1 

 

 

11 10 

A 

C 

B 

G(A,B,C) = B 



Karnaugh Maps 

● Two variable maps 

 

 

 

● Three variable maps 

0 
A 

1 0 

1 

B 
0 1 

0 

1 
F=AB+AB 

0 
A 

1 1 

1 

B 
0 1 

0 

1 F=A+B 

F=A 

0 
A 

1 1 

1 

00 01 

0 

1 

BC 

0 

1 1 

1 

11 10 

F=AB +AB +AB 

F=ABC +ABC +ABC + ABC + ABC + ABC 

     +BC       +BC  



More Karnaugh Map Examples 

Examples 

f = a' 

b 
0 1 

0 

1 

a 
0 1 

0 1 

f = b 

a 
bc 

00 01 11 10 

0 

1 

0 0 1 0 

0 1 1 1 

cout = ac 

0 1 

0 

1 

b 

a 
1 1 

0 0 

a 
bc 

00 01 11 10 

0 

1 

0 0 1 1 

0 0 1 1 

f = b 

1. Circle the largest groups possible 

2. Group dimensions must be a power of 2 

3. Remember what circling means! 

+bc   + ab 



Application of Karnaugh Maps: The One-bit Adder 

Adder 

Cin 

Cout 

S 
B 

A 

A B Cin S Cout 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

+ 

S = A’B’Cin + A’BCin’ + AB’Cin’ + ABCin 

Cout = A’BCin + A B’Cin + ABCin’ + ABCin 

= A’BCin + ABCin + AB’Cin + ABCin + ABCin’ + ABCin 

= BCin + ACin + AB 

= (A’ + A)BCin + (B’ + B)ACin + (Cin’ + Cin)AB 

= 1·BCin + 1· ACin + 1· AB 

How to use a Karnaugh 

Map instead of the 

Algebraic simplification? 



0 

0 

0 

1 1 1 

0 1  

 

00 01 
BC 

A 

0 

1 

 

 

11 10 

A 

C 

B 

Application of Karnaugh Maps: The One-bit Adder 

Adder 

Cin 

Cout 

S 
B 

A 

Karnaugh Map for Cout 

Now we have to cover all the 1s in the 

Karnaugh Map using the largest 

rectangles and as few rectangles 

as we can. 

A B Cin S Cout 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

+ 

Cout = BCin  Cout = BCin + AB Cout = BCin + AB + ACin 



0 

1 

1 

0 1 0 

1 0  

 

00 01 
BC 

A 

0 

1 

 

 

11 10 

A 

C 

B 

Application of Karnaugh Maps: The One-bit Adder 

Adder 

Cin 

Cout 

S 
B 

A 

Karnaugh Map for S 

Now we have to cover all the 1s in the 

Karnaugh Map using the largest 

rectangles and as few rectangles 

as we can. 

A B Cin S Cout 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

+ 

S = A B’ C’in + A’B’Cin +A’ BC’in  + A B Cin 

No Possible Reduction! 



Summary 

● Karnaugh map allows us to represent functions with 
new notation 

● Representation allows for logic reduction 

● Implement same function with less logic 

● Each square represents one minterm 

● Each circle leads to one product term 

● Not all functions can be reduced 



K-MAP 



Karnaugh Maps for 4−Input Functions 

● Represent functions of 4 inputs with 16 minterms 

● Use same rules developed for 3-input functions 



1 

   F(A,B,C,D) = m( 0, 2, 3,  5, 6, 7, 8, 10, 11, 14, 15) 

F = 

1 0 

1 1 0 0 

1 1 0 

1 0 

+ B’D’ + A’BD C 

1 1 

1 1 



0 

F = 

1 0 

0 0 0 0 

1 1 0 

1 1 

+ B’CD + A’B’D A’C  

0 0 

1 0 

Design Examples 

K-map for LT 



1 

F = 

0 0 

0 1 0 0 

0 0 0 

0 0 

+ ABCD + A’BC’D A’B’C’D’ 

1 0 

0 1 

Design Examples 

K-map for EQ 

+ AB’CD’ 



0 

F = 

0 1 

1 0 1 1 

0 0 1 

0 0 

+ ABD’ + BC’D’ AC’  

0 1 

0 0 

Design Examples 

K-map for GT 



Physical Implementation 

Step 1: Truth table 

Step 2: K-map 

Step 3: Minimized sum-of-products 

Step 4: Physical implementation 
with gates 



A B C D 

EQ 

Physical Implementation 

1 

0 0 

0 1 0 0 

0 0 0 

0 0 

1 0 

0 1 

F = + ABCD + A’BC’D A’B’C’D’ + AB’CD’ 

K-map for EQ 

EQ 



Karnaugh Maps 

● Four variable maps 

 

 

 

 

 

● Need to make sure all 1’s are covered 

● Try to minimize total product terms  

● Design could be implemented using NANDs and NORs 

F=BC  

0 
AB 

1 1 

0 

00 01 

00 

01 

CD 

0 

0 1 

1 

11 10 

F=ABC +ACD +ABC 

                +AB CD +ABC +AB C 

1 

1 0 

1 11 

10 

1 

1 1 

1 + AC +CD  + AD  



Karnaugh Maps: Don’t Cares 

● In some cases, outputs are undefined 

● We “don’t care” if the circuit produces a ‘0’ or a ‘1’ 
● This knowledge can be used to simplify functions 

D 

0 0 

1 1 

X 0 

X 1 

A 

1 1 

0 X 

0 0 

0 0 

B 

C 

CD 

AB 

00 

01 

11 

10 

00 01 11 10 

- Treat X’s like either 1’s or 0’s 

- Very useful 

- OK to leave some X’s uncovered 



+ B’C’D             Without don’t cares 

F(A,B,C,D) =  (1,3,5,7,9) + d(6,12,13) 

 

 

Karnaugh Maps: Don’t Cares 

0 1 

0 1 

1 0 

1 X 
B 

X X 

0 1 

0 0 

0 0 

D 

A 

F=A’D 

AB 
CD 

00 

01 

11 

10 

00 01 11 10 

C F 
0 0 
0 1 
1 0 
1 1 
0 0 
0 1 
1 X 
1 

0 

0 

1 

1 

0 

0 

1 

1 

D 
0 
1 
0 
1 
0 
1 
0 
1 

0 

1 

0 

1 

0 

1 

0 

1 

1 

0 

1 

0 

0 

X 

X 

0 

0 

A 
0 
0 
0 
0 
0 
0 
0 
0 

1 

1 

1 

1 

1 

1 

1 

1 

+ 

B 
0 
0 
0 
0 
1 
1 
1 
1 

0 

0 

0 

0 

1 

1 

1 

1 

+ 

+ C’D             With don’t cares 

f = A'D + B'C'D  
 without don't cares 

F=A’D 

C 



Don’t Care Conditions 

● In some situations, we don’t care about the value of a 
function for certain combinations of the variables 

● these combinations may be impossible in certain contexts 

● or the value of  the function may not matter when the 
combinations occur 

● In such situations we say the function is incompletely 
specified and there are multiple (completely specified) 
logic functions that can be used in the design 

● so we can select a function that gives the simplest circuit 

● When constructing the terms in the simplification 
procedure, we can choose to either cover or not cover 
the don’t care conditions 



0 
AB 

x x 

1 

00 01 

00 

01 

CD 

0 

x 1 

0 

11 10 

1 

x 0 

1 11 

10 

1 

1 1 

x 

Map Simplification with Don’t Cares 

F=ACD 

0 
AB 

x x 

1 

00 01 

00 

01 

CD 

0 

x 1 

0 

11 10 

1 

x 0 

1 11 

10 

1 

1 1 

x 

    ABCD 

Alternative covering: 

+B +AC 

+BC +ABC +AC F=                                               



F(A,B,C,D) =  (2,3,9,11,13) + d(6,14) 

 

Karnaugh Maps: Product of Sums 

F = AC‘D + AB‘D + A‘B‘C 

0 

AB 

0 0 

0 

00 01 

00 

01 

CD 

1 

0 x 

1 

11 

0 

0 1 

1 11 

10 

0 

1 0 

x 

00 01 11 10 



G(A,B,C,D) =  (0,1,4,5,7,8,10,12,15) + d(6,14) 

 

Karnaugh Maps: Product of Sums 

1 

AB 

1 1 

1 

00 01 

00 

01 

CD 

0 

1 x 

0 

11 

1 

1 0 

0 11 

10 

1 

0 1 

x 

00 01 11 10 

G = AD‘ + A‘C‘ + BC 



F(A,B,C,D) =  (2,3,9,11,13) + d(6,14) 

 

 

Karnaugh Maps: Product of Sums 

0 

AB 

0 0 

0 

00 01 

00 

01 

CD 

1 

0 x 

1 

11 

0 

0 1 

1 11 

10 

0 

1 0 

x 

00 01 11 10 

 F’= (B‘+C‘) F = AC‘D  F = AC‘D + A‘B‘C F = AC‘D + A‘B‘C+ AB‘D   F’= (B‘+C‘) (A+C)  F’= (B‘+C‘) (A+C)(A’+D) 



Prime Implicants 

Any single 1 or group of 1s in the Karnaugh map of a 
function F is an implicant of F. 

A product term is called a prime implicant of F if it  
cannot be combined with another term to eliminate a 
variable.  

Implicants: 

(a),(c),(d),(e) 

Prime Implicants: 

(d),(e) 

1 
AB 

00 01 

00 

01 

CD 

1 

1 1 

1 

11 10 

1 

1 1 

11 

10 

(a) A’B’C 

(b) BD 

(c) A’B’C’D’ 
(d) A’C 

(e) A’B’D’ 



Essential Prime Implicants 

A product term is an essential prime implicant if there is a 
minterm that is only covered by that prime implicant 

The minimal sum-of-products form of F must include 
all the essential prime implicants of F 



Examples to Illustrate Terms 

0 X 

1 1 

1 0 

1 0 
 B 

1 0 

0 0 

1 1 

1 1 

D 

00 

01 

11 

10 

00 01 11 10 AB 

CD 
 
C 

 A 

essential 

AC,             A’D,  CD,   A‘BC‘,  BC'D' 

minimum cover: AC + A‘D + BC'D' 



5 prime implicants: 

BD, ABC, AC'D,  

Examples to Illustrate Terms 

minimum cover: 4 essential implicants 

0 0 

1 1 

1 0 

1 0 

0 1 

0 1 

1 1 

0 0 

 B 

D 

00 

01 

11 

10 

00 01 11 10 AB 

CD 
 
C 

 A 

5 prime implicants: 

BD,  

5 prime implicants: 

BD, ABC, AC'D, A'BC' A'CD 

 

5 prime implicants: 

BD, ABC 

5 prime implicants: 

BD, ABC, AC'D, A'BC‘, 



Summary 

● K-maps of four literals were considered  

● Larger examples exist 

● Don’t care conditions help minimize functions 

● Output for don’t cares are originally undefined 

● Result of minimization is a minimal sum-of-products 

● Result contains prime implicants 

● Essential prime implicants are required in the 
implementation 



NAND-NAND & NOR-NOR Networks 

DeMorgan’s Law:  

  (a + b)’ = a’ b’             (a b)’ = a’ + b’ 
   a + b   =  a b                a b   = a  + b 

 

 

   a + b   = (a’ b’)’           (a b)  = (a’ + b’)’ 
   a + b   =  a  b                a b   =  a  + b 

 

 

push bubbles or introduce in pairs or remove pairs 



NAND-NAND Networks 

Mapping from AND/OR to NAND/NAND 



Implementations of 2-Level Logic 

● Sum-of-products 

● AND gates to form product terms 
(minterms) 

● OR gate to form sum 
 
 
 
 

● Product-of-sums 

● OR gates to form sum terms 
(maxterms) 

● AND gates to form product 



Two-level Logic using NAND Gates 

● Replace minterm AND gates with NAND gates 

● Place compensating inversion at inputs of OR gate 



Two-level Logic using NAND Gates (cont’d) 

● OR gate with inverted inputs is a NAND gate 

● DeMorgan's:  A' + B' = (A • B)'         A + B = A • B 

● Two-level NAND-NAND network 

● Inverted inputs are not counted 

● In a typical circuit, inversion is done once and signal is 
then distributed 



Z = [ (A  •  B)'  • (C   • D)'  ]' 
   = [ (A' + B')  •  (C' + D')  ]' 
   = [ (A' + B')' + (C' + D')'  ] 

   =   (A  •  B)   + (C  • D)  

Conversion Between Forms (cont’d) 

Example: verify equivalence of two forms 

A 

B 

C 

D 

Z 

A 

B 

C 

D 

Z 

NAND 

NAND 

NAND 



● x = (A + B + C) (D + E) F  +  G 

● Factored form – not written as two-level S-o-P 

● 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate 

● 10 wires (7 literals plus 3 internal wires) 

A 
B 
C 
 
D 
E 
 
F 
G 

X 

Multi-level Logic 



Conversion of Multi-level Logic to NAND Gates 

F = A (B + C D) + B C' 



Exclusive-OR Circuits 

Exclusive-OR (XOR) produces a HIGH output 
whenever the two inputs are at opposite levels 



Exclusive-NOR (XNOR) produces a HIGH output 
whenever the two inputs are at the same level 

Exclusive-NOR Circuits 



XOR Function 

XOR function can also be implemented with AND/OR 
gates (also NANDs) 



XOR Function 

● Even function – even number of inputs are 1 

● Odd function  – odd number of inputs are 1 



Parity Generation and Checking 



Summary 

● Follow rules to convert between AND/OR 
representation and symbols 

● Conversions are based on DeMorgan’s Law 

● NOR gate implementations are also possible 

● XORs provide straightforward implementation for 
some functions 

● Used for parity generation and checking 

● XOR circuits can also be implemented using 
AND/ORs 



The Problem  

● How can we convert from a circuit drawing to an 
equation or truth table? 

● Two approaches 

● Create intermediate equations 

● Create intermediate truth tables 

A 

B 

C 

A 

B 

C’ 

Out 



Label Gate Outputs  

1. Label all gate outputs that are functions of input 
variables 

2. Label gates that are functions of input variables 
and previously labeled gates 

3. Repeat process until all outputs are labeled 

A 

B 

C 

A 

B 

C’ 

Out 

R 

S T 



Approach 1: Create Intermediate Equations  

 Step 1: Create an equation for each gate output 
based on its inputs 

• R = ABC 

• S = A + B 

• T = C’S 

• Out = R + T  
A 

B 

C 

A 

B 

C’ 

Out 

R 

S T 



Approach 1: Substitute in subexpressions  

 Step 2: Form a relationship based on input variables 

• R = ABC 

• S = A + B 

• T = C’S = C’ (A + B) 

• Out = R+T = ABC + C’(A+B) 

A 

B 

C 

A 

B 

C’ 

Out 

R 

S T 



Approach 1: Substitute in subexpressions  

 Step 3:  Expand equation to SOP 

• Out = ABC + C’(A+B) = ABC + AC’ + BC’ 

A 

C’ 

Out 

B 

C’ 

A 

B 

C 



Approach 2: Truth Table  

 Step 1: Determine outputs for 
functions of input variables 

A 
0 
0 
0 
0 
1 
1 
1 
1 

B 
0 
0 
1 
1 
0 
0 
1 
1 

C 
0 
1 
0 
1 
0 
1 
0 
1 

 
 
 
 
 
 
 
 
 

R 
0 
0 
0 
0 
0 
0 
0 
1 

 
 
 
 
 
 
 
 
 

S 
0 
0 
1 
1 
1 
1 
1 
1 A 

B 

C 

A 

B 

C’ 

Out 

R 

S T 



Approach 2: Truth Table  

 Step 2: Determine outputs for 
functions of intermediate 
variables. 

A 
0 
0 
0 
0 
1 
1 
1 
1 

B 
0 
0 
1 
1 
0 
0 
1 
1 

C 
0 
1 
0 
1 
0 
1 
0 
1 

T = S • C’ 

 
 
 
 
 
 
 
 
 

R 
0 
0 
0 
0 
0 
0 
0 
1 

 
 
 
 
 
 
 
 
 

S 
0 
0 
1 
1 
1 
1 
1 
1 

 
 
 
 
 
 
 
 
 

T 
0 
0 
1 
0 
1 
0 
1 
0 

 
 
 
 
 
 
 
 
 

C’ 
1 
0 
1 
0 
1 
0 
1 
0 A 

B 

C 

A 

B 

C’ 

Out 

R 

S T 



Approach 2: Truth Table  

 Step 3: Determine outputs 
for function. 

A 
0 
0 
0 
0 
1 
1 
1 
1 

B 
0 
0 
1 
1 
0 
0 
1 
1 

C 
0 
1 
0 
1 
0 
1 
0 
1 

 
 
 
 
 
 
 
 
 

R 
0 
0 
0 
0 
0 
0 
0 
1 

 
 
 
 
 
 
 
 
 

S 
0 
0 
1 
1 
1 
1 
1 
1 

 
 
 
 
 
 
 
 
 

T 
0 
0 
1 
0 
1 
0 
1 
0 

 
 
 
 
 
 
 
 
 

Out 
 0 
 0 
 1 
 0 
 1 
 0 
 1 
 1 

Out = R + T 

A 

B 

C 

A 

B 

C’ 

Out 

R 

S T 



More Difficult Example  

Note labels on interior nodes 



More Difficult Example: Truth Table  

● Remember to determine intermediate variables 
starting from the inputs 

● When all inputs are determined for a gate, 
determine its output 

● The truth table can be reduced using K-maps 

A 
0 
0 
0 
0 
1 
1 
1 
1 

B 
0 
0 
1 
1 
0 
0 
1 
1 

C 
0 
1 
0 
1 
0 
1 
0 
1 

 
 
 
 
 
 
 
 
 

F2 

0 
0 
0 
1 
0 
1 
1 
1 

 
 
 
 
 
 
 
 
 

F’2 

1 
1 
1 
0 
1 
0 
0 
0 

 
 
 
 
 
 
 
 
 

T1 

0 
1 
1 
1 
1 
1 
1 
1 

 
 
 
 
 
 
 
 
 

T2 

0 
0 
0 
0 
0 
0 
0 
1 

 
 
 
 
 
 
 
 
 

T3 

0 
1 
1 
0 
1 
0 
0 
0 

 
 
 
 
 
 
 
 
 

F1 

0 
1 
1 
0 
1 
0 
0 
1 



Summary 

● Important to be able to convert circuits into truth table 
and equation form 

● WHY? Leads to minimized sum of products representation 

● Two approaches illustrated 

● Approach 1: Create an equation with circuit outputs 
dependent on circuit inputs 

● Approach 2: Create a truth table which shows relationship 
between circuit inputs and circuit outputs 

● Both results can then be minimized using K-maps 


