RFIC Design and Testing for Wireless Communications A Full-Day Tutorial at VLSI Design & Test Symposium July 23, 2008

Lecture 1: Introduction

Vishwani D. Agrawal, vagrawal@eng.auburn.edu

Foster Dai, <u>daifa01@auburn.edu</u>

Auburn University, Dept. of ECE, Auburn, AL 36849, USA

Abstract

This tutorial discusses design and testing of RF integrated circuits (RFIC). It is suitable for engineers who plan work on RFIC but did not have training in that area, those who work on IC design and wish to sharpen their understanding of modern RFIC design and test methods, and engineering managers. It is an abbreviated version of a one-semester university course. Specific topics include semiconductor technologies for RF circuits used in a wireless communications system; basic characteristics of RF devices – linearity, noise figure, gain; RF front-end design – LNA, mixer; frequency synthesizer design – phase locked loop (PLL), voltage controlled oscillator (VCO); concepts of analog, mixed signal and RF testing and built-in self-test; distortion – theory, measurements, test; noise – theory, measurements, test; RFIC SOCs and their testing.

Objectives

To acquire introductory knowledge about integrated circuits (IC) used in radio frequency (RF) communications systems.
 To learn basic concept of design of RFIC.
 To learn basic concepts of RFIC testing.

Outline

□ Introduction to VLSI devices used in RF communications

- SOC and SIP
- Functional components
- Technologies
- Design concepts
- Test concepts
 - Basic RF measurements
 - Distortion characteristics
 - Noise
 - SOC testing and built-in self-test (BIST)

References

- 1. M. L. Bushnell and V. D. Agrawal, *Essentials of Electronic Testing for Digital, Memory & Mixed-Signal VLSI Circuits*, Boston: Springer, 2000.
- 2. J. Kelly and M. Engelhardt, *Advanced Production Testing of RF, SoC, and SiP Devices*, Boston: Artech House, 2007.
- 3. B. Razavi, *RF Microelectronics*, Upper Saddle River, New Jersey: Prentice Hall PTR, 1998.
- 4. J. Rogers, C. Plett and F. Dai, *Integrated Circuit Design for High-Speed Frequency Synthesis*, Boston: Artech House, 2006.
- 5. K. B. Schaub and J. Kelly, *Production Testing of RF and System-on-a-chip Devices for Wireless Communications*, Boston: Artech House, 2004.

Schedule

09:30AM - 10:00AM	Lecture 1	Introduction	Agrawal
10:00AM - 11:00AM	Lecture 2	RF Design I	Dai
11:00AM - 11:30AM	Break		
11:30AM - 13:00PM	Lecture 3	RF Design II	Dai
13:00PM – 14:00PM	Lunch		
14:00PM – 15:00PM	Lectures 4	RF Testing I	Agrawal
15:00PM – 15:30PM	Break		
15:30PM - 17:30PM	Lectures 5-7	RF Testing II	Agrawal
	Lecture 8	RF BIST	Dai

An RF Communications System

An Alternative RF Communications System

Components of an RF System

Radio frequency

- Duplexer
- LNA: Low noise amplifier
- PA: Power amplifier
- RF mixer
- Local oscillator
- Filter

□ Intermediate frequency

- VGA: Variable gain amplifier
- Modulator
- Demodulator
- Filter

Mixed-signal

- ADC: Analog to digital converter
- DAC: Digital to analog converter

Digital

 Digital signal processor (DSP)

Duplexer

TDD: Time-Division Duplexing

- Same Tx and Rx frequency
- RF switch (PIN or GaAs FET)
- Less than 1dB loss

FDD: Frequency-Division Duplexing

- Tx to Rx coupling (-50dB)
- More loss (3dB) than TDD
- Adjacent channel leakage

TDD command

LNA: Low Noise Amplifier

□ Amplifies received RF signal

Typical characteristics:

Noise figure	2dB
• IP3	– 10dBm
• Gain	15dB
Input and output impedance	50Ω
Reverse isolation	20dB
Stability factor	>1

Technologies:

- Bipolar
- CMOS

Reference: Razavi, Chapter 6.

PA: Power Amplifier

Feeds RF signal to antenna for transmission

Typical characteristics:

+20 to +30 dBm • Output power • Efficiency 30% to 60% • IMD **– 30dBc** • Supply voltage 3.8 to 5.8 V • Gain 20 to 30 dB • Output harmonics – 50 to – 70 dBc • Power control Stability factor >1

Technologies:

- GaAs
- SiGe

Reference: Razavi, Chapter 9.

On-off or 1-dB steps

Mixer or Frequency (Up/Down) Converter

Translates frequency by adding or subtracting local oscillator (LO) frequency

Typical characteristics:

Noise figure	12dB
• IP3	+5dBm
• Gain	10dB
Input impedance	50Ω
Port to port isolation	10-20dB

Tecnologies:

- Bipolar
- MOS

Reference: Razavi, Chapter 6.

Passive Mixer

Active Mixer

LO: Local Oscillator

Provides signal to mixer for down conversion or upconversion.

□ Implementations:

- Tuned feedback amplifier
- Ring oscillator
- Phase-locked loop (PLL)
- Direct digital synthesizer (DDS)

Phase Splitter

Splits input signal into two same frequency outputs that differ in phase by 90 degrees.

□ Used for image rejection.

SOC: System-on-a-Chip

- All components of a system are implemented on the same VLSI chip.
- Requires same technology (usually CMOS) used for all components.
- Components not implemented on present-day SOC:
 Antenna
 Power amplifier (PA)

SIP: System-in- Package

- Several chips or SOC are included in a package.
- Routing within SIP may be provided via a semiconductor substrate.
- **RF** communications system may contain:
 - SIP, containing
 - SOC consisting of
 - CMOS digital and mixed-signal components (DSP, ADC, DAC)
 - CMOS LNA and mixers
 - CMOS DDS
 - Filters
 - Power amplifier (PA)
 - Antenna

RFIC Design and Testing for Wireless Communications A Full-Day Tutorial at VLSI Design & Test Symposium

July 23, 2008

Lecture 2: RF Design I

Vishwani D. Agrawal

Foster Dai

Auburn University, Dept. of ECE, Auburn, AL 36849, USA

Phase Lock Loop Integer-N Frequency Synthesizer

 $f_o = N \cdot f_{\text{ref}}$

N is an integer \rightarrow the minimum step size = $f_r \rightarrow$ to get a smaller step size, the reference frequency must be made smaller \rightarrow N must be higher in order to generate the same f_o . \rightarrow larger phase noise (in-band noise magnified 20logN times by the loop).

Fractional-N Concept

If the loop divisor *N* is a fractional number, e.g., N=K/F, where K and F are integer numbers \rightarrow the minimum step size = $f_r/F \rightarrow$ can achieve small step size without lowering the reference frequency \rightarrow loop divisor N can be small in order to generate the same $f_o \rightarrow$ better phase noise (in-band noise magnified 20logN times by the loop).

How can we design a fractional divider? Divider is a digital block and its output transits only at the input clock edge \rightarrow we can only generate integer frequency divider!!

Dual-modulus divider P/P+1: by toggling between the two integer division ratios, a fractional division ratio can be achieved by time-averaging the divider output. As an example, if the control changes the division ratio between 8 and 9, and the divider divides by 8 for 9 cycles and by 9 for 1 cycle and then the process repeats itself, then the average division ratio will be:

$$\overline{N} = \frac{8 \times 9 + 9 \times 1}{10} = 8.1$$

Fractional-N Synthesizer with a Dual Modulus Prescaler

Fractional Accumulator Operations

Accumulator operations with F = 8, K = 1

clock cycle <i>i</i>	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
y _i	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2
<i>y</i> _{<i>i</i>-1}	NA	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1
C _{out}	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0

Accumulator operations with F = 8, K = 3

clock cycle <i>i</i>	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
y _i	0	3	6	1	4	7	2	5	0	3	6	1	4	7	2	5	0	3	6
<i>y</i> _{<i>i</i>-1}	NA	0	3	6	1	4	7	2	5	0	3	6	1	4	7	2	5	0	3
C _{out}	1	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0

Fractional-N Frequency Synthesizer with a Multi-Modulus Divider

$$N_{\rm MMD} = P_1 + 2^1 P_2 + \dots 2^{n-2} P_{n-1} + 2^{n-1} P_n + 2^n$$

Fractional-N Spurious Components

Any repeatable pattern in the time domain causes spurious tones in the frequency domain.

The fractional accumulator periodically generates the carry out that toggles the loop division ratio \rightarrow spurious tones at multiples of the carryout frequency $f_r \cdot (K/F)$, which is the step size of the fractional-N synthesizer. \rightarrow the smaller the step size is, the closer the spur locates to the carrier.

Design a Fractional-N Synthesizer Architecture

for synthesizing 11 channels from 819.2 MHz to 820.96 MHz with a step size of 160 kHz and reference comparison frequency of $f_r/R=5.12$ MHz. Determine the frequencies of fractional-*N* spurious components.

Solution: The synthesizer step size is given by

Since the comparison frequency is f/R = 5.12 MHz, the fractional accumulator size can be chosen as: $F = \frac{f_r}{R} \cdot \frac{1}{160 \text{ kHz}} = \frac{5120 \text{ kHz}}{160 \text{ kHz}} = 32$

which can be implemented using a 5-bit accumulator. The accumulator input, i.e., the fine tune frequency word K, can be programmed from 0 to 10 to cover the 11 channels from 819.2 MHz to 820.96 MHz with step size of 160 kHz (the first channel does not require any fractionality). The integer divisor ratio, i.e., the coarse tune frequency word I, can be determined by the channel frequency. For instance, the first channel frequency is synthesized as:

$$\frac{f_r}{R}\left(I + \frac{0}{F}\right) = \frac{f_r}{R} \cdot I = 819.2 \text{ MHz}$$

which leads to /= 160. Hence, the loop total divisor is given by N = 160 + K/32, where K = 0, 1, ... 10.

Simulated Fractional Accumulator Output

Loop divisor N = 160 + 1/32 and the comparison frequency fr/R = 5.12 MHz

PLL Frequency Synthesizer

Open Loop Transfer Function

$$\left(\frac{\theta_{\rm o}}{\theta_{\rm R}}\right)_{\rm open\ loop} = \frac{K_{\rm VCO}K_{\rm PD}K_{\rm CP}(1+sC_1R)}{s^2N(C_1+C_2)(1+sC_sR)}$$

 C_2 (about $C_1/10$) adds a high frequency pole to clean up high frequency ripple on the control line.

Closed Loop Transfer Function

MMD Architecture Using 2/3 Cells

$$N_{MMD} = 2^{n} + 2^{n-1}C_{n-1} + 2^{n-2}C_{n-2} + \dots + 2C_{1} + C_{0}$$

For 3 bit MMD, $N_{MMD}(n = 3) = 8 + 4C_{2} + 2C_{1} + C_{0} = 8 \sim 15$

Say, we need an MMD with division ratios: 128-135.

 $N = 2^7 + 2^6 C_6 + 2^5 C_5 + 2^4 C_4 + 2^3 C_3 + 2^2 C_2 + 2^1 C_1 + C_0$

The division ratios obtained using 2/3 cells: 128-255.

Dual Modulus Prescaler – 2/3 Cell

 $mod_{in}=1 and C=1 \rightarrow F_o/F_{in}=1/3; mod_{in}=1 and C=0 \rightarrow F_o/F_{in}=1/2 mod_{in}=0 and p=x \rightarrow F_o/F_{in}=1/2$

Tri-State PFD Circuit

Positive edge-triggered D flip-flop with active low reset and hidden *D*=1

PFD Dead Zone

Phase/Frequency Detector

Tri-State Phase/Frequency Detector

Differential Charge Pump Circuitry

2nd Order Passive Loop Filters

The 2nd-order filter is the highest order passive RC filter that can be built without series resistors between the charge pump and the VCO tune line

$$F(s) = \frac{(1 + sC_1R)}{s(C_1 + C_2)(1 + sC_sR)}$$
$$C_s = \frac{C_1C_2}{C_1 + C_2}$$

3rd Order Passive Loop Filters

 $C_t = C1 + C2 + C3$

Comparison of open loop gain and phase in a second, third, and fourth order PLL

PLL Phase Noise and Spurs

Single sideband (SSB) phase noise power spectral density (PSD) to carrier ratio is defined as the ratio of power in one phase modulation sideband per Hertz bandwidth, at an offset $\Delta \omega$ away from the carrier, to the total signal power in units of [dBc/Hz]:

$$PN_{SSB}(\Delta\omega) = 10\log\left[\frac{Noise(\omega_{LO} + \Delta\omega)}{P_{carrier}(\omega_{LO})}\right]$$

PLL output $v_{out}(t) = V_o \cos(\omega_{LO}t + \varphi_n(t))$ Random fluctuations in the phase $\varphi_n(t) = \varphi_p \sin(\omega_m t)$ $v_{out}(t) = V_0 \cos[\omega_{LO}t + \varphi_p \sin(\omega_m t)] = V_0 [\cos(\omega_{LO}t)\cos(\varphi_p \sin(\omega_m t)) - \sin(\omega_{LO}t)\sin(\varphi_p \sin(\omega_m t))]$ For a small phase fluctuation: $v_0(t) = V_0 [\cos(\omega_{LO}t) - \varphi_p \sin(\omega_m t)\sin(\omega_{LO}t)]$ $= V_0 [\cos(\omega_{LO}t) - \frac{\varphi_p}{2} [\cos(\omega_{LO} - \omega_m)t - \cos(\omega_{LO} + \omega_m)t]]$ $PN_{SSB}(\Delta \omega) [\frac{dBc}{Hz}] = 10 \log \left[\frac{\frac{1}{2} (\frac{V_0 \varphi_p}{2})^2}{\frac{1}{2} V_0^2}\right] = 10 \log \left[\frac{\varphi_p^2}{4}\right] = 10 \log \left[\frac{\varphi_{rms}^2}{2}\right]$

The rms phase noise or jitter:

$$\varphi_{\rm rms}(\Delta f) = \frac{180}{\pi} \sqrt{10^{\frac{PN_{\rm DSB}(\Delta f)}{10}}} = \frac{180\sqrt{2}}{\pi} \sqrt{10^{\frac{PN_{\rm SSB}(\Delta f)}{10}}} \left[{\rm deg}/{\sqrt{\rm Hz}} \right]$$

The integrated rms phase noise or jitter:

$$\operatorname{Fitter}_{\mathrm{rms}}\left[rms\,\operatorname{deg}\right] = \sqrt{\int_{\Delta f_1}^{\Delta f_2} \varphi_{\mathrm{rms}}^2(f) df}$$

Spectrum analyzer basic block diagram

Getting the Best Sensitivity Requires Three Settings

- Narrowest resolution bandwidth
- Minimum RF attenuation
- Sufficient video filter to smooth noise (VBW < 0.01 Resolution BW)

PLL Phase Noise Sources

In-band PLL Phase Noise

$$S_{0}(f) = \left[\frac{S_{REF}}{R^{2}} + S_{R} + S_{N} + \frac{S_{PD} + S_{LPF}}{k_{PD}^{2}}\right] \left(\frac{Nk_{PD}G_{LPF}k_{VCO}}{Ns + k_{PD}G_{LPF}k_{VCO}}\right)^{2} \rightarrow \left[\frac{S_{REF}}{R^{2}} + S_{R} + S_{N} + \frac{S_{PD} + S_{LPF}}{k_{PD}^{2}}\right] N^{2}$$

PLL magnifies the noise from the reference, phase detector, LPF and the dividers by the amount of 20logN dB \rightarrow Smaller N leads to lower in-band noise.

For integer-N Synthesizer: output frequency Fo=Fref*N, step size = Fref \rightarrow cannot simultaneously achieve fine step size and small N \rightarrow poor in-band noise performance.

For fractional-N Synthesizer: output frequency Fo=Fref*(N+K/F), step size = Fref/F \rightarrow can achieve fine step size and small N simultaneously. \rightarrow better in-band noise performance.

Out-of-Band PLL Phase Noise

The noise outside of the PLL bandwidth is determined by the VCO phase noise, namely,

$$S_{0}(f) = S_{VCO} \left(\frac{1}{1 + k_{PD}G_{LPF}k_{VCO}/Ns} \right)^{2} \xrightarrow{s \to \infty} S_{VCO}$$
$$S_{VCO}(\Delta f) = 10 \log \left\{ \frac{FkT}{2P_{s}} \left[1 + \left(\frac{f_{0}}{2\Delta f \cdot Q_{L}}\right)^{2} \right] \cdot \left[1 + \frac{f_{c}}{|\Delta f|} \right] \right\}$$

Flicker 1/f noise is caused by trapping in the semiconductor material. Flicker noise corner fc is an empirical parameter depending on the device size and processing. For CMOS, fc is found to be 3~7 kHz typically and for bipolar transistors fc is about as 50 kHz. Notice that fc has impact only on close-in noise. Q_L is the loaded Q of the resonant circuit, ranging from 5~20 for on-chip resonator and 40~80 for off-chip tank. Ps is the average signal power at output of the oscillator active device, and F is oscillator effective noise factor.

Simulated PLL Phase Noise Sources

Simulated PLL Phase Noise With Loop Effect

Comparison of Measured and Simulated Phase Noise

Frequency Band	Simulated Phase Noise	Measured Phase Noise
3.2- 3.3GHz	0.44°rms	0.50°rms
4.1- 4.3GHz	0.50°rms	0.535°rms

Parameter	Value
<i>C</i> ₁	3nF
<i>C</i> ₂	600pF
R	600Ω

References

- □ J. Rogers, C. Plett, and F. Dai, "Integrated Circuit Design for High-Speed Frequency Synthesis," Boston: Artech House, 2006.
- □ F. Dai and C. Stroud, "Analog and Mixed-Signal Test Architectures," Chapter 15 in System-on-Chip Test Architectures: Nanometer Design for Testability, Morgan Kaufmann Publishers, 2007.
- □ J. Rogers, F. Dai and C. Plett, "Frequency Synthesis for Multi-band Wireless Networks," Chapter 15 in *Emerging Wireless Technologies -- From System to Transistors*, CRC Press, 2007.
- □ B. Razavi, *RF Microelectronics*, Upper Saddle River, New Jersey: Prentice Hall PTR, 1998.
- J. Rogers, F. F. Dai, M. S. Cavin, and D. G. Rahn, "A Fully Integrated Multi-Band SD Fractional-N Frequency Synthesizer for a MIMO WLAN Transceiver RFIC," *IEEE Journal of Solid-State Circuits*, vol. 40, no. 3, pp. 678-689, March, 2005.

RFIC Design and Testing for Wireless Communications A Full-Day Tutorial at VLSI Design & Test Symposium

July 23, 2008

Lecture 3: RF Design II

Vishwani D. Agrawal

Foster Dai

Auburn University, Dept. of ECE, Auburn, AL 36849, USA

Phase Noise Specification of Oscillators

Where P_o is the power in the tone at the frequency of oscillation and N_o is the noise power spectral density at some specified offset from the carrier. Phase noise is usually specified in *dBc/Hz*, meaning noise at 1-Hz bandwidth measured in decibels with respect to the carrier.

LC Resonator – Core of Oscillators

□ If $i(t) = I_{pulse} \delta(t)$ is applied to a parallel resonator, the time

domain response of the system can be found as:

$$v_{out} = \frac{\sqrt{2}I_{pulse}e^{\frac{-t}{2RC}}}{C}\cos\left(\sqrt{\frac{1}{LC} - \frac{1}{4R^2C^2}} \bullet t\right)$$

Oscillation frequency

In most oscillators,

 $|R| >> \sqrt{L/C}$

 ω_{OSC}

 ω_{OSC}

 $\frac{1}{LC} - \frac{1}{4R^2C^2}$

Damped LC resonator with current step applied.

Adding Negative Resistance Through Feedback to Resonator

The addition of negative resistance to the circuit to overcome losses in a) a parallel resonator or b) a series resonator.

Linear model of an oscillator as a feedback control system.

Barkhausen Criterion

Closed loop gain

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{H_1(s)}{1 - H_1(s)H_2(s)}$$

 Condition for oscillation: denominator approaches zero. → To find the closed-loop poles

$$1 - H_1(s)H_2(s) = 0$$

• For sustained oscillation at constant amplitude, the pole must be on the $j\omega$ axis. For the openloop analysis $H_1(j\omega)H_2(j\omega) = 1$

positive feedback with gain larger than or equal to 1.

 Barkhausen criterion, which states that for sustained oscillation at constant amplitude, the gain around the loop is 1 and the phase around the loop is 0 or some multiple of 2π.

$$\left|H_{1}(j\omega)\right|\left|H_{2}(j\omega)\right| = 1$$

$$\angle H_1(j\omega)H_2(j\omega) = 2n\pi$$

VCO Output Spectral Purity

Noise in one sideband in a 1Hz bandwidth:

VCO Output Spectrum

Popular Implementation of Feedback to Resonator

Resonators with feedback. (a) Colpitts Oscillator. (b) Hartley Oscillator (not suitable for IC). (c) -G_m oscillator.

Waveform of an LC resonator with losses compensated. The oscillation grows until a practical constraint limits the amplitude.

Negative Resistance of Colpitts Amplifier

$$v_{in} = i_{in}(jX_1 + jX_2) + g_m v_{be}(jX_2)$$

Negative Impedance, if X₁ and X₂ are the same type

$$Z_{in} = \frac{v_{in}}{i_{in}} = -g_m X_1 X_2 + j(X_1 + X_2)$$

$$Z_{m} = \frac{g_m}{1} + \frac{1}{1}$$

$$Z_{in} = -\frac{g_m}{\omega^2 C_1 C_2} + \frac{1}{j\omega C_1} + \frac{1}{j\omega C_2}$$

To start the oscillation,

$$-g_m X_1 X_2 > R_L$$
$$g_m > R_L \omega^2 C_1 C_2$$

Load reactance needs to equal $-j(X_1+X_2) \rightarrow$ add an inductor

Oscillation frequency

$$f_{osc} = \frac{1}{2\pi} \left[\frac{1}{L_3} \left(\frac{1}{C_1} + \frac{1}{C_2} \right) \right]^{7/2}$$

Impedance Transform for LC Oscillator

Figure 7.6 (a) Direct feedback from collector to emitter, (b) insertion of an impedance transformer, (c) use of an explicit transformer.

Passive Impedance Transformer

Impedance seen by tank = (1+L₂/L₁)²/g_m

→ needs a (a) large cap. Figure 7

Frequency synthesizer design I (PLL), FDAI, 2008

(b)

- Gm Amplifier to Cross-Coupled LC Oscillator

Negative Resistance of – Gm Oscillator

- Both transistors are biased identically,
- $Z_i = \frac{-2}{g_m}$ $g_m > \frac{2}{R_p}$
- Condition for oscillation is that

where Rp is the equivalent parallel resistance of the resonator.

VCO Mathematical Model

Output frequency of an ideal VCO: $w_{out} = w_{FR} + K_{vco} V_c$

Sinusoidal output:
$$y(t) = A \cos \left(w_{FR} t + K_{vco} \int_{-\infty}^{t} V_c dt \right)$$

Open loop Q : $Q = (w_0/2) |d\varphi/dw|$

Where w_0 is the center frequency ϕ is the phase of open loop transfer function

PMOS VCO with Automatic Amplitude Control

- Large V_{tune} range (almost from 0V ~ Vcc V).
- Tank can be connected to ground rather than DC →lower phase noise and diodes can be connected in the proper polarity without additional biasing.
- PMOS transistors can be operated into saturation without affecting the VCO noise performance → higher output swing than bipolar VCO.
- High phase noise below 100kHz offset (due to high flicker noise) → can be tolerated by wider loop bandwidth (> 100kHz).

Linear or Additive Phase Noise - Leeson's Formula

 \mathcal{N}

Oscillator Phase Noise
$$\Phi_n(t)$$

$$V_{OSC} = A\cos[\omega_0 t + \phi_n(t)]$$

 $H(\mathbf{c})$

Noise close loop transfer function

 Open loop transfer function H(s) = H₁(s)H₂(s)

$$\frac{N_{out}(s)}{N_{in}(s)} = \frac{H_1(s)}{1 - H(s)}$$

 (\mathbf{c})

$$H(j\omega) \approx H(j\omega_0) + \Delta\omega \frac{dH}{d\omega}$$

Oscillation conditions

$$H(j\omega_0) = 1 \longrightarrow H_1(j\omega_0) = H_1$$

Noise power

$$\left|\frac{N_{out}(s)}{N_{in}(s)}\right|^{2} = \frac{\left|H_{1}\right|^{2}}{\left(\Delta\omega\right)^{2}\left|\frac{dH}{d\omega}\right|^{2}}$$

 At resonance, the phase changes much faster than magnitude, and |H|=1 near resonance. → ignore amplitude noise and AM to PM conversion as well.

• If feedback path is unity, then H_1 =H, and since |H|=1 near resonance

$$\left|\frac{N_{out}(s)}{N_{in}(s)}\right|^{2} = \frac{\omega_{0}^{2}}{4Q^{2}(\Delta\omega)^{2}}$$

Phase noise is quoted as an absolute noise referred to the carrier power

$$PN = \frac{\left|N_{out}(s)\right|^{2}}{2P_{s}} = \left(\frac{\left|H_{1}\right|\omega_{0}}{\left(2Q\Delta\omega\right)}\right)^{2} \left(\frac{\left|N_{in}(s)\right|}{2P_{s}}\right)$$

- Ps is the signal power at active device input.
- If the transistor and bias were noiseless, then the only noise present would be due to the resonator losses. The transistors and the bias will add noise to the minimum noise of

$$\left|N_{in}\left(s\right)\right|^{2} = kT$$

Active Device noise:

Re

- **I** If ρ is the fraction of cycle for which the transistors are completely switched, in_t is the noise current injected into the oscillator from the bias during this time.
- \Box During transitions (1- ρ), the transistors act like an amplifier, and collector shot noise i_{cn} usually dominates.

 $|N_{(x)}|^{2} - kT + \frac{i_{nt}^{2}R_{p}}{2} + i^{2}R_{(1-x)}$

$$F = 1 + \frac{i_{nt}^{2}R_{p}}{2kT}\rho + \frac{i_{cn}^{2}R_{p}(1-\rho)}{kT}$$

$$PN = \left(\frac{|H_{1}|\omega_{0}}{(2Q\Delta\omega)}\right)^{2} \left(\frac{FkT}{2Ps}\right)$$

 It has been assumed that flicker noise is insignificant at the frequencies of interest. This may not be the case for CMOS designs. If ω_c represents the flicker noise corner where flicker noise and thermal noise are equal,

$$PN = \left(\frac{|H_1|\omega_0}{(2Q\Delta\omega)}\right)^2 \left(\frac{FkT}{2Ps}\right) \left(1 + \frac{\omega_c}{\Delta\omega}\right)$$

Assuming unity feedback, oscillator output spectrum density

Simulated PLL Phase Noise Sources

Simulated PLL Phase Noise With Loop Effect

Comparison of Measured and Simulated Phase Noise

RFIC Design and Testing for Wireless Communications A Full-Day Tutorial at VLSI Design & Test Symposium

July 23, 2008

Lecture 4: Power and Gain Measurements

Vishwani D. Agrawal

Foster Dai

Auburn University, Dept. of ECE, Auburn, AL 36849, USA

Testing

- Definition: Having designed and fabricated a device, testing must determine whether or not the device is free from any manufacturing defect.
- Testing is distinctly different from *verification*, which checks the correctness of the design.
- **Forms of testing:**
 - Production testing
 - Characterization testing
Production Testing

- Applied to every manufactured device
- Major considerations
 - Reduce cost; minimize test time per device.
 - Maximize quality; reduce defect level (DL), defined as fraction of bad devices passing test.

Reference

 M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory & Mixed-Signal VLSI Circuits, Boston: Springer, 2000, Chapter 3.

Method of Production Testing

Automatic Test Equipment (ATE) System

Some Features of Production ATE

Binning: Tested DUTs are grouped as

- Passing the entire test
- Failing any of the tests
- Failing because of dc test
- Failing because of RF Test
- Failing speed (maximum clock frequency) test
- Multisite testing: Testing of several DUTs is parallelized to reduce the test cost.
- □ Test time for a typical device: 1 2 seconds.
- □ Testing cost of a device: 3 5 cents.

Characterization Testing

- Performed at the beginning of production phase.
- Objective: To verify the design, manufacturability, and test program.

Method:

Few devices tested very thoroughly
Failures are often diagnosed
Tests are more elaborate than the production tests
Test time (and testing cost) not a consideration
Test program is verified and corrected in necessary
ATE system and additional laboratory setup may be used

RF Tests

Basic tests

- Scattering parameters (S-parameters)
- Frequency and gain measurements
- Power measurements
- Power efficiency measurements
- Distortion measurements
- □ Noise measurements

Scattering Parameters (S-Parameters)

□ An RF function is a two-port device with

• Characteristic impedance (Z_0) :

- $Z_0 = 50\Omega$ for wireless communications devices
- $Z_0 = 75\Omega$ for cable TV devices
- Gain and frequency characteristics

□ S-Parameters of an RF device

- S₁₁ : input return loss or input reflection coefficient
- S₂₂: output return loss or output reflection coefficient
- S₂₁: gain or forward transmission coefficient
- S₁₂: isolation or reverse transmission coefficient

S-Parameters are complex numbers and can be expressed in decibels as 20 × log | S_{ii} |

Active or Passive RF Device

Input return loss Output return loss Gain Isolation

$$S_{11} = b_1/a_1$$

 $S_{22} = b_2/a_2$
 $S_{21} = b_2/a_1$
 $S_{12} = b_1/a_2$

S-Parameter Measurement by Network Analyzer

Application of S-Parameter: Input Match

- Example: In an S-parameter measurement setup, rms value of input voltage is 0.1V and the rms value of the reflected voltage wave is 0.02V. Assume that the output of DUT is perfectly matched. Then S₁₁ determines the *input match*:
 - **S**₁₁ = 0.02/0.1 = 0.2, or $20 \times \log(0.2) = -14$ dB.
 - Suppose the required input match is –10 dB; this device passes the test.
- \Box Similarly, S₂₂ determines the output match.

Gain (S₂₁) and Gain Flatness

- An amplifier of a Bluetooth transmitter operates over a frequency band 2.4 – 2.5GHz. It is required to have a gain of 20dB and a gain flatness of 1dB.
- Test: Under properly matched conditions, S₂₁ is measured at several frequencies in the range of operation:
 S₂₁ = 15.31 at 2.400GHz
 - S₂₁ = 14.57 at 2.499GHz
- **From the measurements:**
 - At 2.400GHz, Gain = 20×log 15.31 = 23.70 dB
 At 2.499GHz, Gain = 20×log 14.57 = 23.27 dB

 Result: Gain and gain flatness meet specification. *Measurements* at more frequencies in the range may be useful.

Power Measurements

Receiver

- Minimum detectable RF power
- Maximum allowed input power
- Power levels of interfering tones

Transmitter

- Maximum RF power output
- Changes in RF power when automatic gain control is used
- RF power distribution over a frequency band
- Power-added efficiency (PAE)
- Power unit: dBm, relative to 1mW
 - Power in dBm = 10 × log (power in watts/0.001 watts)
 - Example: 1 W is 10×log 1000 = 30 dBm
 - What is 2 W in dBm?

Power Spectrum Measurements

- **Spur measurement**
- □ Harmonic measurement
- □ Adjacent channel interference

Spur Measurement

- □ "Spur" is a spurious or unintended frequency in the output of an RF device.
- **Example:** Leakage of reference frequency used in the phase detector of PLL.
- A spur can violate the channel interference standard of a communication system.
- Complete power spectrum measured in characterizing phase to determine which interfering frequencies should be checked during production testing.

Harmonic Measurements

- Multiples of the carrier frequency are called harmonics.
- Harmonics are generated due to nonlinearity in semiconductor devices and clipping (saturation) in amplifiers.
- Harmonics may interfere with other signals and must be measured to verify that a manufactured device meets the specification.

Adjacent Channel Power Ratio (ACPR)

- Ratio of average power in the adjacent frequency channel to the average power in the transmitted frequency channel.
- Also known as adjacent channel leakage ratio (ACLR).
- □ A measure of transmitter performance.

Power-Added Efficiency (PAE)

- Definition: Power-added efficiency of an RF amplifier is the ratio of RF power generated by the amplifier to the DC power supplied:
 - $\blacksquare PAE = \Delta P_{RF} / P_{DC} \text{ where}$
 - $\Delta P_{RF} = P_{RF}(output) P_{RF}(input)$

• $P_{dc} = V_{supply} \times I_{supply}$

Important for power amplifier (PA).

1 – PAE is a measure of heat generated in the amplifier, i.e., the battery power that is wasted.

In mobile phones PA consumes most of the power. A low PAE reduces the usable time before battery recharge.

PAE Example

Following measurements are obtained for an RF power amplifier:

RF Input power	=	+2dBm
RF output power	=	+34dBm
DC supply voltage	=	3V
DUT current	=	2.25A

PAE is calculated as follows: P_{RF}(input) = 0.001 × 10^{2/10} = 0.0015W P_{RF}(output) = 0.001 × 10^{34/10} = 2.5118W P_{dc} = 3× 2.25 = 6.75W PAE = (2.5118 - 0.00158)/6.75 = 0.373 or 37.2%

Automatic Gain Control Flatness(SOC DUT)

Tester pseudocode:

- Set up input signal to appropriate frequency and power level
- Set up output measurement equipment to receive output signal when triggered
- Program SOC AGC to first gain level and trigger receiver
 - Cycle SOC AGC to next gain level
 - Wait long enough to capture relevant data
 - Cycle to next gain level and repeat though all levels
- Transfer time-domain data to host computer for processing
 - Power at ith gain level = 20 × log [V_R(i)² + V_i(i)²]^{1/2} + 13 dBm for 50Ω characteristic impedance, where V_R and V_i are the measured real and imaginary voltages

AGC – Other Characteristics

AGC Characteristics to be Verified

- Gain errors and missing levels
- Overshoots and undershoots settling time
- □ Finite (non-zero) transition times
- Varying gain steps nonlinearity; DNL (differential nonlinearity) and INL (integral nonlinearity) similar to ADC and DAC

RF Communications Standards

	Frequency range (MHz)	Channel bandwidth (MHz)	Data rate (Mbps)	Modulation format
802.11b (WLAN)	2400-2500	22	11	ССК
802.11a/g (WLAN)	2400-2500 (g) 5000-6000 (a)	16.8	54	OFDM, 52 subcarriers (4 pilots, 48 data channels)
802.16a (WIMAX)	2000-11000 3 most common bands: 2500, 3400, 5800	1.25-20	Up to 75	OFDM, 256 Subcarriers(200 actually used; 192 are data channels
802.15 (UWB) GSM	3100-10600 3 bands: 890-960 1710-1880 1850-1990	528 0.200	53.3-480 0.270	OFDM GMSK
CDMA 2000	450, 800, 1700, 1900, 2100	1.25	0.060-0.100	CDMA
Bluetooth	2,400-2,500	1		FSK

RFIC Design and Testing for Wireless Communications A Full-Day Tutorial at VLSI Design & Test Symposium July 23, 2008

Lecture 5: Testing for Distortion

Vishwani D. Agrawal

Foster Dai

Auburn University, Dept. of ECE, Auburn, AL 36849, USA

Distortion and Linearity

- An unwanted change in the signal behavior is usually referred to as *distortion*.
- The cause of distortion is nonlinearity of semiconductor devices constructed with diodes and transistors.
- **Linearity**:
 - Function f(x) = ax + b, although a straight-line is not referred to as a linear function.
 - Definition: A linear function must satisfy:
 - f(x + y) = f(x) + f(y), and
 - f(ax) = a f(x), for all scalar constants a

Linear and Nonlinear Functions

Generalized Transfer Function

Transfer function of an electronic circuit is, in general, a nonlinear function.

Can be represented as a polynomial:

- $\mathbf{v}_{0} = \mathbf{a}_{0} + \mathbf{a}_{1} \mathbf{v}_{i} + \mathbf{a}_{2} \mathbf{v}_{i}^{2} + \mathbf{a}_{3} \mathbf{v}_{i}^{3} + \cdots$
- Constant term a₀ is the dc component that in RF circuits is usually removed by a capacitor or high-pass filter.
- For a linear circuit, $a_2 = a_3 = \cdots = 0$.

Effect of Nonlinearity on Frequency

Consider a transfer function, v_o = a₀ + a₁ v_i + a₂ v_i² + a₃ v_i³
 Let v_i = A cos ωt
 Using the identities (ω = 2πf):

 cos² ωt = (1 + cos 2ωt)/2
 cos³ ωt = (3 cos ωt + cos 3ωt)/4

 We get,

• $v_o = a_0 + a_2 A^2 / 2 + (a_1 A + 3 a_3 A^3 / 4) \cos \omega t$ + $(a_2 A^2 / 2) \cos 2\omega t + (a_3 A^3 / 4) \cos 3\omega t$

Problem for Solution

 \Box A diode characteristic is, I = I_s ($e^{\alpha V} - 1$) \Box Where, V = V₀ + v_{in}, V₀ is dc voltage and v_{in} is small signal ac voltage. Is saturation current and α is a constant that depends on temperature and the design parameters of diode. Using the Taylor series expansion, express the diode current I as a polynomial in v_{in}.

 $\mathbf{0}$

 \mathbf{V}

Linear and Nonlinear Circuits and Systems

Linear devices:

- All frequencies in the output of a device are related to input by a proportionality, or weighting factor, independent of power level.
- No frequency will appear in the output, that was not present in the input.
- Nonlinear devices:
 - A true linear device is an idealization. Most electronic devices are nonlinear.
 - Nonlinearity in amplifier is undesirable and causes distortion of signal.
 - Nonlinearity in mixer or frequency converter is essential.

Types of Distortion and Their Tests

Types of distortion:

- Harmonic distortion: single-tone test
- Gain compression: single-tone test
- Intermodulation distortion: two-tone or multitone test
 - Source intermodulation distortion (SIMD)
 - Cross Modulation

Testing procedure: Output spectrum measurement

Harmonic Distortion

Harmonic distortion is the presence of multiples of a fundamental frequency of interest. *N* times the fundamental frequency is called *N*th harmonic.

Disadvantages:

Waste of power in harmonics.

Interference from harmonics.

Measurement:

- Single-frequency input signal applied.
- Amplitudes of the fundamental and harmonic frequencies are analyzed to quantify distortion as:
 - Total harmonic distortion (THD)
 - Signal, noise and distortion (SINAD)

Problem for Solution

❑ Show that for a nonlinear device with a single frequency input of amplitude *A*, the *n*th harmonic component in the output always contains a term proportional to *Aⁿ*.

Total Harmonic Distortion (THD)

- THD is the total power contained in all harmonics of a signal expressed as percentage (or ratio) of the fundamental signal power.
- \Box THD(%) = [(P₂ + P₃ + · · ·) / P_{fundamental}] × 100%
- Or THD(%) = $[(V_2^2 + V_3^2 + \cdots) / V_{\text{fundamental}}^2] \times 100\%$
 - Where P₂, P₃, ..., are the power in watts of second, third, ..., harmonics, respectively, and P_{fundamental} is the fundamental signal power,
 And V₂, V₃, ..., are voltage amplitudes of second, third, ..., harmonics, respectively, and V_{fundamental} is the fundamental signal amplitude.
- □ Also, THD(dB) = 10 log THD(%)

\Box For an ideal distortionless signal, THD = 0% or – ∞ dB

THD Measurement

- THD is specified typically for devices with RF output.
- The fundamental and harmonic frequencies together are often beyond the bandwidth of the measuring instrument.
- Separate power measurements are made for the fundamental and each harmonic.
- □ THD is tested at specified power level because
 - THD may be small at low power levels.
 - Harmonics appear when the output power of an RF device is raised.

Signal, Noise and Distortion (SINAD)

□ SINAD is an alternative to THD. It is defined as

SINAD (dB) = $10 \log_{10} [(S + N + D)/(N + D)]$

where

- S = signal power in watts
- N = noise power in watts
- D = distortion (harmonic) power in watts

□ SINAD is normally measured for baseband signals.

Problems for Solution

- □ Show that SINAD (dB) > 0.
- Show that for a signal with large noise and high distortion, SINAD (dB) approaches 0.
- Show that for any given noise power level, as distortion increases SINAD will drop.
- □ For a noise-free signal show that SINAD (dB) = ∞ in the absence of distortion.

Gain Compression

- The harmonics produced due to nonlinearity in an amplifier reduce the fundamental frequency power output (and gain).
 This is known as *gain compression*.
- As input power increases, so does nonlinearity causing greater gain compression.
- A standard measure of Gain compression is "1-dB compression point" power level P_{1dB}, which can be
 - Input referred for receiver, or
 - Output referred for transmitter
Linear Operation: No Gain Compression

109

Cause of Gain Compression: Clipping

Effect of Nonlinearity

Assume a transfer function, v₀ = a₀ + a₁ v₁ + a₂ v₁² + a₃ v₁³
Let v₁ = A cos ωt
Using the identities (ω = 2πf):

cos² ωt = (1 + cos 2ωt)/2
cos³ ωt = (3 cos ωt + cos 3ωt)/4

We get,

v₀ = a₀ + a₂A²/2 + (a₁A + 3a₃A³/4) cos ωt + (a₂A²/2) cos 2ωt + (a₃A³/4) cos 3ωt

Gain Compression Analysis

DC term is filtered out.
 For small-signal input, A is small

 A² and A³ terms are neglected
 v_o = a₁A cos ωt, small-signal gain, G₀ = a₁

 Gain at 1-dB compression point, G_{1dB} = G₀ - 1
 Input referred and output referred 1-dB power:

 P_{1dB(output)} - P_{1dB(input)} = G_{1dB} = G₀ - 1

1-dB Compression Point

Testing for Gain Compression

Apply a single-tone input signal:

- 1. Measure the gain at a power level where DUT is linear.
- 2. Extrapolate the linear behavior to higher power levels.
- 3. Increase input power in steps, measure the gain and compare to extrapolated values.
- 4. Test is complete when the gain difference between steps 2 and 3 is 1dB.
- Alternative test: After step 2, conduct a binary search for 1-dB compression point.

Example: Gain Compression Test

\Box Small-signal gain, $G_0 = 28 dB$

Input-referred 1-dB compression point power level,

 $P_{1dB(input)} = -19 \text{ dBm}$

□ We compute:

1-dB compression point Gain, G_{1dB} = 28 – 1 = 27 dB

Output-referred 1-dB compression point power level,

 $P_{1dB(output)} = P_{1dB(input)} + G_{1dB}$ = -19 + 27= 8 dBm

Intermodulation Distortion

Intermodulation distortion is relevant to devices that handle multiple frequencies.

 \Box Consider an input signal with two frequencies ω_1 and ω_2 :

 $v_i = A \cos \omega_1 t + B \cos \omega_2 t$

Nonlinearity in the device function is represented by

 $v_0 = a_0 + a_1 v_1 + a_2 v_1^2 + a_3 v_1^3$ neglecting higher order terms Therefore, device output is

> $v_0 = a_0 + a_1 (A \cos \omega_1 t + B \cos \omega_2 t)$ DC and fundamental 2nd order terms + a_2 (A cos $\omega_1 t$ + B cos $\omega_2 t$)² 3rd order terms + a_3 (A cos $\omega_1 t$ + B cos $\omega_2 t$)³

Problems to Solve

Derive the following:

 $v_o = a_0 + a_1 (A \cos \omega_1 t + B \cos \omega_2 t)$ $+ a_2 [A^2 (1 + \cos \omega_1 t)/2 + AB \cos (\omega_1 + \omega_2)t + AB \cos (\omega_1 - \omega_2)t$ $+ B^2 (1 + \cos \omega_2 t)/2]$ $+ a_3 (A \cos \omega_1 t + B \cos \omega_2 t)^3$ $\blacksquare \text{ Hint: Use the identity:}$ $\blacksquare \cos \alpha \cos \beta = [\cos(\alpha + \beta) + \cos(\alpha - \beta)] / 2$ $\blacksquare \text{ Simplify } a_3 (A \cos \omega_1 t + B \cos \omega_2 t)^3$

Two-Tone Distortion Products

Order for distortion product mf_1 \pm nf_2 is |m| + |n|

Nunber of distortion products				Frequencies	
Order	Harmonic	Intermod.	Total	Harmonic	Intrmodulation
2	2	2	4	2f ₁ , 2f ₂	$f_1 + f_2, f_2 - f_1$
3	2	4	6	$3f_1, 3f_2$	$2f_1 \pm f_2$, $2f_2 \pm f_1$
4	2	6	8	$4f_1$, $4f_2$	$2f_1 \pm 2f_2$, $2f_2 - 2f_1$, $3f_1 \pm f_2$, $3f_2 \pm f_1$
5	2	8	10	$5f_1$, $5f_2$	$3f_1 \pm 2f_2$, $3f_2 \pm 2f_1$, $4f_1 \pm f_2$, $4f_2 \pm f_1$
6	2	10	12	6f ₁ , 6f ₂	$3f_1 \pm 3f_2$, $3f_2 - 3f_1$, $5f_1 \pm f_2$, $5f_2 \pm f_1$, $4f_1 \pm 2f_2$, $4f_2 \pm 2f_1$
7	2	12	14	7f ₁ , 7f ₂	$\begin{array}{l} 4f_1 \pm 3f_2 , 4f_2 - 3f_1 , 5f_1 \pm 2f_2 , 5f_2 \pm 2f_1 ,\\ 6f_1 \pm f_2 , 6f_2 \pm f_1 \end{array}$
Ν	2	2N – 2	2N	Nf ₁ , Nf ₂	

Problem to Solve

Order	Harmonics (MHz)	Intermodulation products (MHz)
2	200, 202	1, 201
3	300, 3003	99, 102 , 301, 302
4	400, 404	2, 199, 203, 401, 402, 403
5	500, 505	98, 103 , 299, 304, 501, 503, 504
6	600, 606	3, 198, 204, 399, 400, 405, 601, 603, 604, 605
7	700, 707	97, 104 , 298, 305, 499, 506, 701, 707, 703, 704, 705, 706

Intermodulation products close to input tones are shown in **bold**.

Second-Order Intermodulation Distortion

120

Higher-Order Intermodulation Distortion

Problem to Solve

For A = B, i.e., for two input tones of equal magnitudes, show that:

Output amplitude of each fundamental frequency, f₁ or f₂, is

$$a_1 A + - a_3 A^3$$

Output amplitude of each third-order intermodulation frequency, 2f₁ – f₂ or 2f₂ – f₁, is

$$\frac{3}{4}$$
 a₃ A³

Third-Order Intercept Point (IP3)

□ IP3 is the power level of the fundamental for which the output of each fundamental frequency equals the output of the closest third-order intermodulation frequency. □ IP3 is a figure of merit that quantifies the third-order intermodulation distortion. \Box Assuming $a_1 >> 9a_3 A^2 / 4$, IP3 is given by $a_1 IP3 = 3a_3 IP3^3 / 4$ $a_1 A$ Output 3a₃ A³ / 4 $IP3 = [4a_1 / (3a_3)]^{1/2}$

Α

IP3

Test for IP3

- Select two test frequencies, f₁ and f₂, applied in equal magnitude to the input of DUT.
- Increase input power P₀ (dBm) until the third-order products are well above the noise floor.
- Measure output power P₁ in dBm at any fundamental frequency and P₃ in dBm at a third-order intermodulation frquency.
- Output-referenced IP3:
 OIP3 = $P_1 + (P_1 P_3) / 2$ Input-referenced IP3:
 IIP3 = $P_0 + (P_1 P_3) / 2$

= OIP3 – G

Because, Gain for fundamental frequency, $G = P_1 - P_0$

IP3 Graph

Input power = $20 \log A dBm$

125

Example: IP3 of an RF LNA

- Gain of LNA = 20 dB
- □ RF signal frequencies: 2140.10MHz and 2140.30MHz
- Second-order intermodulation distortion: 400MHz; outside operational band of LNA.
- Third-order intermodulation distortion: 2140.50MHz; within the operational band of LNA.
- **Test:**
 - Input power, P₀ = 30 dBm, for each fundamental frequency
 - Output power, P₁ = 30 + 20 = 10 dBm
 - Measured third-order intermodulation distortion power, P₃ = 84 dBm
 - OIP3 = 10 + [(10 (84))] / 2 = + 27 dBm
 - $\blacksquare IIP3 = -10 + [(-10 (-84))] / 2 20 = +7 dBm$

Source Intermodulation Distortion (SIMD)

- When test input to a DUT contains multiple tones, the input may contain intermodulation distortion known as SIMD.
- Caused by poor isolation between the two sources and nonlinearity in the combiner.
- SIMD should be at least 30dB below the expected intermodulation distortion of DUT.

Cross Modulation

Cross modulation is the intermodulation distortion caused by multiple carriers within the same bandwidth.

Examples:

- In cable TV, same amplifier is used for multiple channels.
- Orthogonal frequency division multiplexing (OFDM) used in WiMAX or WLAN use multiple carriers within the bandwidth of the same amplifier.

Measurement:

- Turn on all tones/carriers except one
- Measure the power at the frequency that was not turned on

 B. Ko, et al., "A Nightmare for CDMA RF Receiver: The Cross Modulation," Proc. 1st IEEE Asia Pacific Conf. on ASICs, Aug. 1999, pp. 400-402.

RFIC Design and Testing for Wireless Communications A Full-Day Tutorial at VLSI Design & Test Symposium July 23, 2008

Lecture 6: Testing for Noise

Vishwani D. Agrawal

Foster Dai

Auburn University, Dept. of ECE, Auburn, AL 36849, USA

What is Noise?

Noise in an RF system is unwanted random fluctuations in a desired signal.

Noise is a natural phenomenon and is always present in the environment.

Effects of noise:

- Interferes with detection of signal (hides the signal).
- Causes errors in information transmission by changing signal.
- Sometimes noise might imitate a signal falsely.

All communications system design and operation must account for noise.

Describing Noise

- Consider noise as a random voltage or current function, x(t), over interval – T/2 < t < T/2.</p>
- **\Box** Fourier transform of x(t) is X_T(f).
- \Box Power spectral density (PSD) of noise is power across 1 Ω
 - $S_x(f) = \lim_{T \to \infty} [E\{|X_T(f)|^2\}/(2T)]$ volts²/Hz

This is also expressed in dBm/Hz.

Thermal Noise

- Thermal (Johnson) noise: Caused by random movement of electrons due to thermal energy that is proportional to temperature.
- Called white noise due to uniform PSD over all frequencies.
- Mean square open circuit noise voltage across R Ω resistor [Nyquist, 1928]:

 $v^2 = 4hfBR / [exp(hf/kT) - 1]$

- Where
 - Plank's constant h = 6.626 × 10³⁴ J-sec
 - Frequency and bandwidth in hertz = f, B
 - Boltzmann's constant k = 1.38×10^{-23} J/K

Absolute temperature in Kelvin = T

Problem to Solve

Given that for microwave frequencies, hf << kT, derive the following Rayleigh-Jeans approximation:

 $v^2 = 4kTBR$

❑ Show that at room temperature (T = 290K), thermal noise power supplied by resistor R to a matched load is ktB or – 174 dBm/Hz.

Other Noise Types

- Shot noise [Schottky, 1928]: Broadband noise due to random behavior of charge carriers in semiconductor devices.
- Flicker (1/f) noise: Low-frequency noise in semiconductor devices, perhaps due to material defects; power spectrum falls off as 1/f. Can be significant at audio frequencies.
- Quantization noise: Caused by conversion of continuous valued analog signal to discrete-valued digital signal; minimized by using more digital bits.
- Quantum noise: Broadband noise caused by the quantized nature of charge carriers; significant at very low temperatures (~0K) or very high bandwidth (> 10¹⁵ Hz).
- Plasma noise: Caused by random motion of charges in ionized medium, possibly resulting from sparking in electrical contacts; generally, not a concern.

Measuring Noise

Expressed as noise power density in the units of dBm/Hz.

□ Noise sources:

Resistor at constant temperature, noise power = kTB W/Hz.

- Avalanche diode
- Noise temperature:
 - T_n = (Available noise power in watts)/(kB) kelvins
- Excess noise ratio (ENR) is the difference in the noise output between hot (on) and cold (off) states, normalized to reference thermal noise at room temperature (290K):

ENR = $[k(T_h - T_c)B]/(kT_0B) = (T_h / T_0) - 1$

Where noise output in cold state is takes same as reference.

10 log ENR ~ 15 to 20 dB

Signal-to-Noise Ratio (SNR)

SNR is the ratio of signal power to noise power.

Noise Factor and Noise Figure

Noise factor (F) is the ratio of input SNR to output SNR:
 F = (S_i /N_i) / (S_o /N_o)
 = N_o / (GN_i) when S_i = 1W and G = gain of DUT
 = N_o / (kT₀ BG) when N_i = kT₀ B for input noise source
 F ≥ 1
 Noise figure (NF) is noise factor expressed in dB:
 NF = 10 log F dB
 0 ≤ NF ≤ ∞

Cascaded System Noise Factor

□ Friis equation [Proc. IRE, July 1944, pp. 419 – 422]:

$$F_{sys} = F_{1} + \frac{F_{2}-1}{G_{1}} + \frac{F_{3}-1}{G_{1}G_{2}} + \cdots + \frac{F_{n}-1}{G_{1}G_{2}\cdots G_{n-1}}$$

$$Gain = G_{1}$$

$$Gain = G_{1}$$

$$F_{1} = F_{1}$$

$$Gain = G_{2}$$

$$Gain = G_{3}$$

$$Gain = G_{3}$$

$$Gain = G_{n}$$

$$Gain = G_{n}$$

$$Gain = F_{n}$$

$$F_{n} = F_{n}$$

$$Gain = G_{n}$$

$$F_{n} = F_{n}$$

Measuring Noise Figure: Cold Noise Method

Example: SOC receiver with large gain so noise output is measurable; noise power should be above noise floor of measuring equipment. Gain G is known or previously measured. \Box Noise factor, F = N_o / (kT₀BG), where • N_o is measured output noise power (noise floor) B is measurement bandwidth • At 290K, kT₀ = – 174 dBm/Hz Noise figure, NF = 10 log F $= N_{o} (dB) - (-174 dBm/Hz) - B(dB) - G(dB)$ □ This measurement is also done using S-parameters. 139

Y – Factor

- Y factor is the ratio of output noise in hot (power on) state to that in cold (power off) state.
- $\square Y = N_h / N_c$ $= N_h / N_0$
- □ Y is a simple ratio.
- **Consider**, $N_h = kT_hBG$ and $N_c = kT_0BG$

 $\Box \text{ Then } N_h - N_c = kBG(T_h - T_0) \text{ or } kBG = (N_h - N_c) / (T_h - T_0)$

- □ Noise factor, $F = N_h / (kT_0 BG) = (N_h / T_0) [1 / (kBG)]$
 - = $(N_h / T_0) (T_h T_0) / (N_h N_c)$
 - = ENR / (Y 1)

Measuring Noise Factor: Y – Factor Method

- Noise source provides hot and cold noise power levels and is characterized by ENR (excess noise ratio).
- Tester measures noise power, is characterized by its noise factor F₂ and Y-factor Y₂.
- \Box Device under test (DUT) has gain G₁ and noise factor F₁.
- Two-step measurement:
 - Calibration: Connect noise source to tester, measure output power for hot and cold noise inputs, compute Y₂ and F₂.
 - Measurement: Connect noise source to DUT and tester cascade, measure output power for hot and cold noise inputs, compute compute Y₁₂, F₁₂ and G₁.

Use Friis equation to obtain F₁.

Cascaded System Measurement

■ $Y_{12} = N_{h12} / N_{c12}$, where • N_{h12} = measured power for hot source • N_{c12} = measured power for cold source ■ $F_{12} = ENR / (Y_{12} - 1)$ ■ $G_1 = (N_{h12} - N_{c12}) / (N_{h2} - N_{c2})$

Problem to Solve

Show that from noise measurements on a cascaded system, the noise factor of DUT is given by

$$F_2 - 1$$

 $F_1 = F_{12} - \frac{1}{G_1}$
Phase Noise

 Phase noise is due to small random variations in the phase of an RF signal. In time domain, phase noise is referred to as *jitter*.
 Understanding phase:

Effects of Phase Noise

Similar to phase modulation by a random signal.

Two types:

Long term phase variation is called *frequency drift*.

- Short term phase variation is phase noise.
- Definition: Phase noise is the Fourier spectrum (power spectral density) of a sinusoidal carrier signal with respect to the carrier power.

 $L(f) = P_n / P_c$ (as ratio)

= P_n in dBm/Hz – P_c in dBm (as dBc)

P_n is RMS noise power in 1-Hz bandwidth at frequency f
 P_c is RMS power of the carrier

Phase Noise Analysis

 $[V + \delta(t)] \sin [\omega t + \varphi(t)] = [V + \delta(t)] [\sin \omega t \cos \varphi(t) + \cos \omega t \sin \varphi(t)]$

≈ $[V + \delta(t)] \sin \omega t + [V + \delta(t)] \phi(t) \cos \omega t$

In-phase carrier frequency with amplitude noise White noise $\delta(t)$ corresponds to noise floor

Quadrature-phase carrier frequency with amplitude and phase noise Short-term phase noise corresponds to phase noise spectrum

Phase spectrum, $L(f) = S_{\phi}(f)/2$ Where $S_{\phi}(f)$ is power spectrum of $\phi(t)$

Phase Noise Measurement

- Phase noise is measured by low noise receiver (amplifier) and spectrum analyzer:
 - Receiver must have a lower noise floor than the signal noise floor.
 - Local oscillator in the receiver must have lower phase noise than that of the signal.

Phase Noise Measurement

Phase Noise Measurement Example

- **Spectrum analyzer data:**
 - **RBW = 100Hz**
 - Frequency offset = 2kHz
 - P_{carrier} = 5.30 dBm
 - P_{offset} = 73.16 dBm
- □ Phase noise, L(f) = $P_{offset} P_{carrier} 10 \log RBW$ = -73.16 - (-5.30) - 10 log 100
 - = 87.86 dBc/Hz
- Phase noise is specified as " 87.86 dBc/Hz at 2kHz from the carrier."

Problem to Solve

Consider the following spectrum analyzer data:

- RBW = 10Hz
- Frequency offset = 2kHz
- P_{carrier} = 3.31 dBm
- P_{offset} = 81.17 dBm

Determine phase noise in dBc/Hz at 2kHz from the carrier.

RFIC Design and Testing for Wireless Communications A Full-Day Tutorial at VLSI Design & Test Symposium July 23, 2008

Lecture 7: ATE and SOC Testing

Vishwani D. Agrawal

Foster Dai

Auburn University, Dept. of ECE, Auburn, AL 36849, USA

Automatic Test Equipment (ATE)

□ ATE provides test facility for:

- Digital and memory devices
- Analog devices (analog instrumentation)
- RF devices (AWG arbitrary waveform generators, LNA, noise source, RF sources, filters, PMU – power measurement units, Spectrum analyzer)
- Test fixtures, load-boards, handlers
- Cost of ATE: \$500,000 to \$2M, or higher
- □ Testing cost of chip ~ 3 5 cents/second

Variables in Cost of Testing

Shifts per day:	3
Hours per shift:	8
□ Yield:	80%
Utilization:	60% (significant effort for calibration)
Depreciation:	5 years
Cost of ATE:	\$1M
Cost of handler:	\$250,000
Test time:	1.5 seconds
Handler index time:	1 second

Problem to Solve

□ Find the testing cost for a good device shipped using the data given in the previous slide.

Testing Cost

Tester time per year: T = $365 \times 24 \times 3600 \times 0.6$ = 18,921,600 s□ Number of devices tested per year: = 7,568,640 $I N_T = T/(1.5 + 1.0)$ □ Number of good devices produced per year: **N** = N_T × Yield = 7,568,640 × 0.8 = 6,054,912 **Testing cost per year:** $\square C = (1,000,000 + 250,000)/5 = 250,000 dollars$ Testing cost per device shipped: ■ Cost = C/N = 4.13 cents

Reducing Test Cost

Ping-pong testing: Use the same ATE with multiple handlers.
 Multisite testing: Test multiple chips together, typically, 4, 16, ...
 Built-in self-test (BIST): Applicable to SOC and SIP devices.
 Low-cost testers.

BIST for a SOC ZIF Transceiver

ZIF SOC BIST

- □ Test implemented at baseband.
- □ Loopback between A/D and D/A converters.
- **DSP** implemented with digital BIST.
- Test amplifier (TA) implemented on chip; is disabled during normal operation.
- □ A test procedure:
 - Test DSP using digital BIST.
 - Apply RF BIST:
 - Pseudorandom bit sequence generated by DSP
 - Upconverted by transmitter chain and applied to receiver through TA
 - Down converted signal compared to input bit sequence by DSP to analyze bit error rate (BER)
 - BER correlated to relevant characteristics of SOC components

Advantage: Low tester cost. Disadvantage: Poor diagnosis.

References

□ SOC BIST

- J. Dabrowski, "BiST Model for IC RF-Transceiver Front-End," Proc. 18th IEEE International Symp. on Defect and Fault Tolerance in VLSI Systems, 2003.
- D. Lupea, et al., "RF-BIST: Loopback Spectral Signature Analysis," Proc. Design, Automation and Test in Europe Conf., 2003.

BIST for power amplifier

 F. Obaldia, et al., "On-Chip Test Mechanism for Transceiver Power Amplifier and Oscillator Frequency," US Patent No. 20040148121A1, 2004.

Low-cost testing

 F. Goh, et al., "Innovative Technique for Testing Wide Bandwidth Frequency Response," Wireless Broadband Forum, Cambridge, UK, 2004.

RFIC Design and Testing for Wireless Communications A Full-Day Tutorial at VLSI Design & Test Symposium

July 23, 2008

Lecture 8: RF BIST

Vishwani D. Agrawal

Foster Dai

Auburn University, Dept. of ECE, Auburn, AL 36849, USA

Purpose

Develop Built-In Self-Test (BIST) approach using direct digital synthesizer (DDS) for functionality testing of analog circuitry in mixed-signal systems

Provides BIST-based measurement of

- Amplifier linearity (IP3)
- Gain and frequency response
- Implemented in hardware
 - IP3, gain, and freq. response measured

Outline

- Overview of direct digital synthesizers (DDS)
- □ 3rd order inter-modulation product (IP3)
- □ BIST architecture
 - Test pattern generator
 - Output response analyzer
- **Experimental results**
 - Implementation in hardware
 - IP3 Measurements

Direct Digital Synthesis (DDS)

DDS ⇒ generating deterministic communication carrier/reference signals in discrete time using digital hardware
 converted into analog signals using a DAC

□ Advantages

- Capable of generating a variety of waveforms
- High precision ⇒ sub Hz
- Digital circuitry
 - Small size ⇒ fraction of analog synthesizer size
 - Low cost

Easy to implementation

Typical DDS Architecture

Analog and mixed signal testing, FDAI, 2008

Intermodulation

- Two signals with different frequencies are applied to a nonlinear system
 - Output exhibits components that are not harmonics of input fundamental frequencies
- Third-order intermodulation (IM3) is critical
 Very close to fundamental frequencies

Mathematical Foundation

- Input 2-tone: x(t)=A₁cos ω₁t + A₂ cos ω₂t
 Output of non-linear device: y(t)=α₀+α₁x(t)+α₂x²(t)+α₃x³(t)+...
 Substituting x(t) into y(t): y(t) = ½α₂(A₁²+A₂²) + 5x A + 3/x A (A 2+2A 2)]===x t+ 5x A + 3/x
 - + $[\alpha_1A_1 + \frac{3}{4}\alpha_3A_1(A_1^2 + 2A_2^2)]\cos\omega_1 t + [\alpha_1A_2 + \frac{3}{4}\alpha_3A_2(2A_1^2 + A_2^2)]\cos\omega_2 t$
 - $+ \frac{1}{2}\alpha_{2}(A_{1}^{2}\cos 2\omega_{1}t+A_{2}^{2}\cos 2\omega_{2}t)$
 - + $\alpha_2 A_1 A_2 [\cos(\omega_1 + \omega_2) t + \cos(\omega_1 \omega_2) t]$
 - + $\frac{1}{4}\alpha_{3}[A_{1}^{3}\cos 3\omega_{1}t + A_{2}^{2}\cos 3\omega_{2}t]$
 - + $\frac{3}{4}\alpha_{3}\{A_{1}^{2}A_{2}[\cos(2\omega_{1}+\omega_{2})t+\cos(2\omega_{1}-\omega_{2})t]$ + $A_{1}A_{2}^{2}[\cos(2\omega_{2}+\omega_{1})t+\cos(2\omega_{2}-\omega_{1})t]\}$

freq

 $2\omega_1 - \omega_2 \ \omega_1 \ \omega_2 \ 2\omega_2 - \omega_1$

3rd order Intercept Point (IP3)

IP3 is theoretical input power point where 3rd-order distortion • and fundamental output lines intercept $\Delta P[dB]$ IIPadBm]= +P_{in} [dBm] • Practical measurement with spectrum analyzer IM₃ $20\log(\frac{3}{4}\alpha_{3}A^{3})$ $\alpha_1 A$ -20log($\alpha_1 A$) IP3 fundamental $\frac{3}{4} \alpha_3 A^2$ $\Delta \mathsf{P}$ freq $2\omega_1 - \omega_2 \ \omega_1 \ \omega_2 \ 2\omega_2 - \omega_1$

Analog and mixed signal testing, FDAI, 2008

169

2-tone Test Pattern Generator

- Two DDS outputs are superimposed using adder to generate 2-tone waveform used for IP3 measurement
- F_r 1 and F_r 2 control frequencies of 2-tone waveform

Analog and mixed signal testing, FDAI, 2008

Actual 2-tone IP3 Measurement

- Outputs of DAC and DUT taken with scope from our experimental hardware implementation
- Typical △P measurement requires expensive, external spectrum analyzer
 - For BIST we need an efficient output response analyzer

Analog and mixed signal testing, FDAI, 2008

Output Response Analyzer

- Multiplier/accumulator-based ORA
- Multiply the output response by a frequency
- Accumulate the multiplication result
- Average by # of clock cycles of accumulation
 Gives DC value proportional to power of signal at that frequency
- Advantages
 - Easy to implement
 Low area overhead
 Exact frequency control
 More efficient than FFT

DC₁ Accumulator

- $y(t) \ge f_2 \Rightarrow DC_1 \approx \frac{1}{2}A_2^2 \alpha 1 \quad y(t)$
- Ripple in slope due to low frequency components
 - Longer accumulation f₂
 reduces effect of ripple
 Simulation Results

Actual Hardware Results

DC.

Σ

Х

 $\alpha_1 A$

 $\frac{3}{4} \alpha_3 A^2$

Freq

 $f_2 2f_2 - f_1$

DC₂ Accumulator

- $y(t) \ge f_2 \Rightarrow DC_2 \approx \frac{3}{8}A_1^2A_2^2\alpha 3$
- Ripple is bigger for DC₂
 - Test controller needed to obtain DC₂ at integral multiple of 2f₂-f₁ Simulation Results

Analog and mixed signal testing, FDAI, 2008

BIST-based ΔP Measruement

- DC₁ & DC₂ same proportionality to power at f_2 & $2f_2-f_1$
- Only need DC₁ & DC₂ from accumulators to calculate $\Delta P = 20 \log (DC_1) - 20 \log (DC_2)$

Analog and mixed signal testing, FDAI, 2008

BIST Architecture

- BIST-based IP3 measurement
 - Reduce circuit by repeating test sequence for DC₂
- BIST-based Gain & Frequency Response is subset

Analog and mixed signal testing, FDAI, 2008

Experimental Implementation of BIST

- □ TPG, ORA, test controller, & PC interface circuits
 - Three 8-bit DDSs and two 17-bit ORA accumulators
 - Implementation in Verilog
 - Synthesized into Xilinx Spartan 2S50 FPGA
- □ Amplifier device under test implemented in FPAA

More Hardware Results

Spectrum analyzer

BIST IP3 Measurement Results

- Good agreement with actual values for $\Delta P < 30$ dB
- For measured $\Delta P > 30$ dB, the actual ΔP is greater
 - Good threshold since $\Delta P < 30$ dB is of most interest

Conclusion

BIST-based approach for analog circuit functional testing

- DDS-based TPG
- Multiplier/accumulator-based ORA
- Good for manufacturing or in-system circuit characterization and on-chip compensation
 - Amplifier linearity (IP3)
 - Gain and frequency response
- Measurements with hardware implementation
 - Accurately measures IP3 ≤ 30dB
 - Measurements of IP3 > 30dB imply higher values