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Abstract speed of its processonetwork interface, 1/0O busses, and
disks. It is possible to split aldi system among multiple
Zebra is a networkl& system that increases throughput servers but eachldi must reside on a single server and it is
by striping fle data across multiple servers. Rather than difficult to balance the loads of the fdient servers. For
striping each fe separatelyZebra forms all the new data example, the system directories often lie on a single server
from each client into a single stream, which it then stripes Making that server a hot spot.
using an approach similar to a log-structurée $ystem. In the future, new styles of computing such as multi-
This provides high performance for writes of smadisias ~ media and parallel computation are likely to demand much
well as for reads and writes of ¢er fles. Zebra also writes ~ greater throughput than todayapplications, making the
parity information in each stripe in the style of RAID disk Imitations of a single server even more severe. For

arrays; this increases storage costs slightly but allows thetX@MPple, a single video playback can consume a substantial
. . . : raction of a fie servers bandwidth even when the video is
system to continue operation even while a single storag

) . . ) ecompressedﬂ.\ cluster of workstations can easily exceed the
server is unavailablé prototype implementation of Zebra,  panqwidth of a fe server if they all run video applications
built in the Sprite operating system, provides 4-5 times the simyltaneouslyand the problems will become much worse
throughput of the standard Spritéefsystem or NFS for  when video resolution increases with the arrival of HDTV
large fles and a 20%-3x improvement for writing small Another example is parallel applications. Several research
files. groups are exploring the possibility of using collections of
workstations connected by high-speed low-latency
. networks to run massively parallel applicatiorihese
1 Intr oduction “distributed supercomputers” are likely to present 1/O loads

. ) . . equivalent to traditional supercomputers, which cannot be
Zebra is a network [& system that uses multipldefi handled by todag’ network fie servers.

servers in tandeniThe goal of the system is to provide
greater throughput and availability than can be achieved
with a single serveClientsstripefile data across servers so
that different pieces of data are stored oriedlént servers.
Striping makes it possible for a single client to keep severa
servers busy and it distributes the load among the servers t
reduce the likelihood of hot spots. Zebra also stores parityt

gggrrg]t?c;ur?nwr:irl]e Zi;hor?éng:r’v:rﬁi“scnnZug\illvasbIg to continue Io_g—structure(_:i fe systems (LFS)_ [Rosenblum91]_. Each
i ' . client forms its new data for allldis into a sequential log
In current network fe systems the read and write 4 it stripes across the storage servehss allows even
bandwidth for a singlel is limited by the performance of = g5 fies to benefifrom striping. It also reduces network
a single serverincluding its memory bandwidth and the o\ erhead, simpliéis the storage servers, and spreads write
traffic uniformly across the servers.
This work was supported in part by the National Science Founda- Zebras style of striping also makes it easy to use
tion under grant CCR-8900029, the NatiowWadronautics and  redundancy techniques from RAID disk arrays to improve
SpaceAdministration and thédvanced Research Projegigency  avaijlability and data integrity [Patterson88]. One of the
under contract NAG 2-591, and the California MICRO Program. fragments of each stripe stores parity for the rest of the
stripe, allowing the stripe’data to be reconstructed in the
event of a disk or server failure. Zebra can continue
operation while a server is unavailable. Even if a disk is
totally destroyed Zebra can reconstruct the lost data.
We have constructed a prototype implementation of
Zebra as part of the Sprite operating system [Ousterhout88].

A striping fle system ders the potential to achieve
very high performance using collections of inexpensive
computers and disks. Several stripinkg fsystems have
Ialready been built, such as Swift [Cabrera91] and Bridge

ibble88]. These systems are similar in that they stripe
ata within individual fes, so only lage fies benefifrom
he striping. Zebra uses afdifent approach borrowed from




Although it does not yet incorporate all of the reliability and concurrently by dierent disks.

recovery aspects of the Zebra architecture, it does  Since a RAID has more disks than a traditional disk
demonstrate the performance betseffor reads and writes  storage system, disk failures will occur more often.
of large fies the prototype achieves up to 4 Mbytes/second Fyrthermore, a disk failure anywhere in a RAID can
for a single client with four servers, which is 4-5 times the potentially make the entire disk array unusabteimprove
throughput of either NFS or the standard Sprieedystem.  data integrity a RAID reserves one of the striping units
For small fies the Zebra prototype improves performance within each stripe for parity instead of data (Ségure J:

by more than a factor of 3 over NFSie improvement over  each bit of the parity striping unit contains the exclusive OR
Sprite is only about 20%, howevérhis is because both  of the corresponding bits of the other striping units in the
Zebra and Sprite require the client to notify tie derver of  stripe. If a disk fails, each of its striping units can be
file opens and closes, and when writing smédsfthese  recovered using the data and parity from the other striping
notifications dominate the running timé/ith the addition units of the stripeThe fle system can continue operation
of file name caching to both systems we would expect Zebraduring recovery by reconstructing data on the fl

to have even more of an advantage over Sprite. A RAID offers lage improvements in throughput, data
The rest of the paper isganized as followsSection 2 jntegrity, and availability but it presents two potential
describes the RAID and log-structureldystem  problems.The fist problem is that the parity mechanism
technologies used in Zebra and introduces Zellogiging ~ makes small writes expensive. If all write operations are in
approachSection 3describes the structure of Zebra, which ynits of whole stripes, then it is easy to compute the new
consists of clients, storage servers,la franagerand a  parity for each stripe and write it along with the datais
stripe cleanerSection 4shows how the components of the increases the cost of writes by only 1/(N-1) relative to a
system work together in normal operation; communication system without paritywhere N is the number of disks in the
between the components is basedleftas which describe  array However small writes are much more expensive. In
block creations, updates, and deletidbsction Sdescribes  order to keep the strigeparity consistent with its data, it is
how Zebra restores consistency to its data structures aftepecessary to read the current value of the data block that is
crashes, andection 6shows how the system provides being updated, read the current value of the corresponding
service even while components are doBection 7gives  parity block, use this information to compute a new parity
the status of the Zebra prototype and presents somejock, then rewrite both parity and dafais makes small
performance measurementSection 8 discusses related writes in a RAID about four times as expensive as they

work andSection Sconcludes. would be in a disk array without paritynfortunately the
best size for a striping unit appears to be tens of kilobytes or
2 Striping in Zebra more [Chen90], which is lger than the averagéefisize in

many environments [Baker91], so writes will often be

Zebra distributes|é data over severaldiservers while ~ smaller than a full stripe. _
ensuring that the loss of a single server does fiettahe ~ The second problem with disk arrays is that all the
availability of the dataTo do this Zebra borrows from two ~ disks are attached to a single machine, so its memory and
recent innovations in the management of disk storagel/O system are likely to be a performance bottleneck. For
systems: RAID technology (Redundantrrays of — example, a SCSI I/O bus can accommodate up to eight
Inexpensive Disks) [Patterson88], and log-structurésl fi disks, each with a bandwidth ofZIMbytes/second, but the

systems (LFS) [Rosenblum91]. RAID technology allows SCSI bus has a total bandwidth of only 2-10
Zebra to provide scalableldiaccess performance while Mbytes/secondAdditional SCSI busses can be added, but
using parity instead of redundant copies to guard againsdata must be copied from the SCSI channel into memory
server failuresThe log-structured approach simmi the and from there to a network interface. On the DECstation
parity implementation, reduces the impact of managing and5000/200 machines used for the Zebra prototype these
storing parity and allows clients to batch together small copies can only proceed at about 6-8 Mbytes/secbhel.
writes to improve server f€iency

Data Parity

2.1 RAID siipe > | | |0

RAID is a storage system architecture in which many
small disks work together to provide increased performance
and data availabilityA RAID appears to highdevel
software as a single very tgr and fast disklransfers to or
from the disk array are divided into blocks calkdping
units Consecutive striping units are assigned tdeckht
disks in the array as shown iRigure 1 and can be
transferred in paralle group of consecutive striping units Figure 1 Striping with parity . The storage space of a

; ; RAID disk array is divided into stripes, where each
that spans the array is callecstaipe Lame transfers can stripe contains a striping unit on each disk of the array

proceed at the aggregate bandwidth of all the disks in the  Aj"but one of the striping units hold data; the other

array or multiple small transfers can be serviced striping unit holds parity information that can be used to
recover after a disk failure.
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Figure 2 Perfile striping for a large fie. The fie is File
divided up into stripe units that are distributed among
the servers. Each stripe contains one parity fragment. D
Berkeley RAID project has built a special-purpose memory
system with a dedicated high-bandwidth path between the
network and the disks [Lee92] but even this system can
support only a few dozen disks at full speed. Parity
In order to eliminate the performance bottlenecks
multiple paths must exist between the source or sink of data
and the disks so that tifent paths can be used to reach
different disks. For example, this might be done by File Servers
spreading the disks among fdifent machines on a single (b)
very high speed network, or even by usingfeddnt
networks to reach dérent disks. Unfortunatelythis turns Figure 3 Per-file striping for a small fie. In (a) the fie

the disk array into a distributed system and introduces :‘?asmgﬁ?s%Yweggcﬁcggffe;h(%)s}%giﬁt’irreeriuggnglalgegmal
issues such as who should allocate disk space or comput ongone server but the parity takes as much S'%ace as tl
parity. One of our goals for Zebra was to solve these file.
distributed system problems in a simple arfttieint way
single server then its parity will consume as much space as
2.2 Per-File Striping in a Network File the fie itself, resulting in high storage overhead. In addition,
the approach irrigure 3b) can result in unbalanced disk

SyStem utilization and server loading.

Second, pefile striping also leads to problems with
parity management during updates. If an existitg i§
modified then its parity must be updated to eeflthe
modification. As with RAIDs, small updates like this
require two reads (the old data and the old parity) followed
by two writes (the new data and the new parity).
. . . Furthermore the two writes must be carried out atomically
spans the servers s calecsupe, and the porton of a OIS S 30 MRS T, U8 ST SR

i ) , a client or server crashed) then the parity will be
_ The most obvious way to ganize a striped network ihconsistent with the data; if this parity is used later for
file system is to stripe eachefiseparatelyas shown in  reconstructing lost data, incorrect results will be produced.
Figure 2 We refer to this method gerfile striping Each  Tnere exist protocols for ensuring that two writes to two
file is stored in its own set of stripéss a result, parity is  jifferent fle servers are carried out atomically

computed on a pé'rlg basis because each_ stripe cc_)ntains [Bernstein81] but they are complex and expensive.
data from only one I&. While conceptually simple, péile

ﬁtriping ha§ two drawbacks. Fi_rst, s_mdlésﬁi are dfficult to 23 Log-Structured File Systems and

andle iciently. If a small fie is striped across all of the . T

servers as ifrigure 3a) then each server will only store a Per-Client Striping

very small piece of thelé. This provides little performance

beneft, since most of the access cost is due to network and ~ Zebra solves the problems with gde striping by
disk latencyyet it incurs overhead on every server for every applying techniques from log-structuret fsystems (LFS)

file access.Thus it seems better to handle smalesfi [Rosenblum91l]. LFS is a disk management technique that
differently than lage fies and to store each smalefon a  treats the disk like an append-only I&ghen new fes are
single serveras inFigure b). This leads to problems in  created or existing lés are modigd, the new data are
parity management, howevef a small fie is stored on a  batched together and written to the end of the log welar

A striped network fe system is one that distributeke fi
data over more than ondefiserver in the same way that a
RAID distributes data over multiple diskhis allows
multiple servers to participate in the transfer of a singge fi
The terminology we use to describe a striped netwdegk fi
system is similar to RAIB: a collection of fe data that
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Figure 5 Zebra schematic Clients run applications;
File Servers storage servers store dafehe fle manager and the
stripe cleaner can run on any machine in the system,
Figure 4 Per-client striping in Zebra. Each client although it is likely that one machine will run both of
forms its new fe data into a single append-only log and them.A storage server may also be a client.
stripes this log across the servers. In this examlpl@ fi
spans several servers whillefB is stored entirely on a space reclaimed from the logs? Zebra solves this problem
single serverParity is computed for the log, not for with astripe cleanerwhich is analogous to the cleaner in a

individual files. log-structured fe systemThe next section provides a more

sequential transfers. LFS is particularlfeefive for writing detailed discussion of these issues and several others.
small fies, since it can write manyds in a single transfer;
in contrast, traditional I8 systems require at least two
independent disk transfers for eadb.fRosenblum reported 3 Zebra Components
a tenfold speedup over traditiondefisystems for writing The Zebra fe system contains four main components
small fies. LFS is also well-suited for RAIDs because it 55 shown irFigure 5 clients which are the machines that
batches small writes together intodarsequential transfers  ryn application programstorage serers which store fe
and avoids the expensive parity updates associated withyata: afile manager which manages theldi and directory
small random writes. structure of the @ system; and atripe cleaner which
Zebra can be thought of as a log-structured netwlgrk fi reclaims unused space on the storage sefieese may be
system: whereas LFS uses the logging approach at theny number of clients and storage servers but only a single
interface between aldi server and its disks, Zebra uses the file manager and stripe cleanéfore than one of these
logging approach at the interface between a client and itscomponents may share a single physical machine; for
servers.Figure 4illustrates this approach, which we call example, it is possible for one machine to be both a storage
per-client striping. Each Zebra client gainizes its new & server and a clienT.he remainder of this section describes
data into an append-only log, which it then stripes across theeach of the components in isolatidgction 4then shows
servers.The client computes parity for the log, not for how the components work together to implement operations
individual files. Each client creates its own log, so a single such as reading and writinge, and Section§ and 6
stripe in the fe system contains data written by a single describe how Zebra deals with crashes.

client. _ o We will describe Zebra under the assumption that there
~ Pekclient striping has a number of advantages over per are several storage servers, each with a single disk.
file striping.The frst is that the servers are useficgntly However this need not be the case. For example, storage

regardless of l@¢ sizes: lage writes are striped, allowing servers could each contain several disks managed as a

them to be completed in parallel, and small writes are RAID, thereby giving the appearance to clients of a single

batched together by the log mechanism and written to thedisk with higher capacity and throughput. It is also possible

servers in lage transfers; no special handling is needed for to put all of the disks on a single server; clients would treat

either case. Second, the parity mechanism is sieglifi it as several logical servers, all implemented by the same

Each client computes parity for its own log without fear of physical machineThis approach would still provide many

interactions with other clients. Smalle§ do not have  of Zebras benets: clients would still batch smallds for

excessive parity overhead because parity is not computedransfer over the network, and it would still be possible to

on a peffile basis. Furthermore, parity never needs to bereconstruct data after a disk failure. Howevarsingle-

updated becausddidata are never overwritten in place. server Zebra system would limit system throughput to that
The above introduction to pelient striping leaves  of the one serverand the system would not be able to

some unanswered questions. For example, how lesnbi operate when the server is unavailable.

shared between client workstations if each client is writing .

its own log? Zebra solves this problem by introducing a 3.1 Clients

centralfile managerseparate from the storage servers, that

manages metadata such as directories &ndtfributes and Clients are machines where application programs

supervises interactions between cliedtso, how is free execute.When an application reads defithe client must



determine which stripe fragments store the desired datastripe is complete it is never moeifi except to delete the

retrieve the data from the storage servers, and return them tentire stripeA parity fragment, howevecan be overwritten

the applicationAs will be seen belowthe fle manager if data are appended to a partial stripe Geetion 4.2

keeps track of whereldi data are stored and provides this

information to clients when needed/hen an application 3.3 File Manager

writes a fie the client appends the new data to its log by

creating new stripes to hold the data, computing the parity The fie manager stores all of the information in tte fi

of the stripes, and writing the stripes to the storage servers. system except forlé data.We refer to this information as
Clients’ logs do not containlé attributes, directories, metadata it includes fie attributes such as protection

or other metadatalhis information is managed separately information, block pointers that tell wherdefidata are

by the fle manager as described below stored, directories, symbolic links, and speciakfifor 1/0
devices. The fle manager performs all of the usual
3.2 Storage sServers functions of a fe server in a networklé system, such as

name lookup and maintaining the consistency of cliéat fi

The storage servers are the Simp|est part of Zébw caches. Howevethe Zebra fe manager doesnstore any
are just repositories for Stripe fragmepﬁs_far as a storage file data; Where. a traditionalldi _server would ma_nipulate
server is concerned, a stripe fragment is geldslock of ~ data the Zebralé manager manipulates block pointers. For
bytes with a unique identifi The identifer for a fragment ~ example, consider a read operation. In a traditiodel fi
consists of an identdi for the client that wrote the System the client requests the data from tleesterver; in
fragment, a sequence number that idesifthe stripe Zebra the C||Qnt requests block pointers from tHe fi
uniquely among all those written by the client, and dsepf ~ Managerthen it reads the data from the storage servers.
for the fragment within its strip@ll fragments in Zebra are In the Zebra prototype we implemented thée fi
the same size, which should be chosegeaenough to  manager using a Spritdefiserver with a log-structureddi
make network and disk transfersfigient. In the Zebra  system. For each Zebrdefithere is one I in the fle
prototype we use 512-Kbyte fragments. manage's file system, and the “data” in thiefiare an array

Storage servers providerdi operations: of block po'inters that indi'cate where the blocks of data for

Store a fragment This operation allocates space for the Zebra fe are storedThis allows Zebra to use almost all

the fragment, writes the fragment to disk, and records®f the existing Sprite network léi protocols without
the fragment identiéir and disk location for use in sub- modification. Clients open, read, and cache Zebra metadata

sequent access@he operation is synchronous: it does N the same manner that they cache *regular” Spie. fi
not complete until the fragment is safely on diske The_re is nothing in the Zebra ar_ch|tecture that requires
fragment must not already exist unless it is a parity SPrit€ t0 be used as the netwoilk Bystem, however: any
fragment, in which case the new copy of the fragment existing network fe_ server cpu_ld be used in the same way
replaces the oldThis is done in a non-overwrite man- PY Storing block pointers inlés instead of data.

ner to avoid corruption in the event of a crash. The performance of theldi manager is a concern
Append to an existing fragment This operation is because it is a centralized resource. In our implementation
similar to storing a fragment except that it allows a cli- Cliénts must contact theléi manager on each open and
ent to write out a fragment in pieces if it dogdmave close, so communication with thelefi manager is a

enough data tolfithe entire fragment at once (this can Performance bottleneck when clients are accessing small
happen, for example, if an application invokes the files.We believe that this problem can be solved by caching

f sync system call to force data to diskppends are naming information on clients so that thie finanager need
implemented atomically so that a crash during an not be con_tacted for most opens and close_:s. Clie_nt-level
append cannot cause the previous contents of the fragh@Me caching has been used successfully irAE file
ment to be lost. system [Howialrd%S] band Sr;lrhf(la_und that a name cglche

. . . occupying only 40 Kbytes of a clieattnemory can produce
Retrieve a fragment This operation returns part or all ! : : :
of the data frogm a fragmen? It is not necesgary to read> hit rate Of- 97% [Shiri2]. We decided not to |_mplement
the entire fraament: a fra r'nent idemifioffset _and name caching in the Zebra prototype because it would have

9 ' 9 ' ' required major modifiations to the Spritelé system, but

length specify the deS|'red range of.by.tes. we would expect any production version of Zebra to
Delete a fragment This operation is invoked by the jncorporate name caching.

zzlpeuscel?jng;tgh?tnnf.giefsrat%n;efr:; nrgslr(;;;gfrscgzga'ns The centralized nature of thdefimanager also makes
Y ) 9 P its reliability a concern; this issue is addressefdntion 6
available for new fragments.

Identify fragments. This operation provides informa- i
tion about the fragments stored by the sersach as 3.4 Stnpe Cleaner

the most recent fragment written by a client. Itis used  \yhen 5 client writes a new stripe it is initially full of
to find the ends of the clienteigs after a crash. live data. Over time, though, blocks in the stripe become
Stripes are immutable once they are compltstripe  free, either because theite§ are deleted or because the

may be created with a sequence of append operations, buflocks are overwritten. If an application overwrites an
non-parity fragments are never overwritten and once the



existing block of a fe, Zebra doesh’'modify the stripe manager to resolve races between stripe cleaning lend fi
containing the block; instead it writes a new copy of the updatesAll of these deltas will be described in more detail
block to a new stripelhe only way to reuse free space in a in the rest of the paper

stripe is tocleanthe stripe so that it contains no live data Deltas provide a simple and reliable way for the various
whatsoeverthen delete the entire Stl’ip@t this point the system components to communicate changeseta fsince
storage servers will reuse the stripefisk space for new  deltas are stored in the client logs and the logs are reliable,
stripes. each component can be sure that any delta it writes will not

The Zebra stripe cleaner runs as a el process  be lostWhen a client modiéis a block of ali it only needs
and is very similar to the segment cleaner in a log-structuredio write the block and the update delta to the log to ensure
file system. It fist identifes stripes with lge amounts of  that both the fe manager and the stripe cleaner learn of the
free space, then it reads the remaining live blocks out of themodification. After crashes the |[& manager and stripe
stripes and writes them to a new stripe (by appending thentleaner replay deltas from the client logs to recover their
to its clients log). Once this has been done, the stripe state.
cleaner deletes the stripefragments from their storage
servers.Section 4.5describes the cleaning algorithm in 4.2 Writing Files
more detail.

In order for Zebra to run &€iently clients must collect
; large amounts of newl& data and write them to the storage

4 SyStem Operatlon servers in lage batches (ideallyvhole stripes)The existing
structure of the Spriteléi caches made batching relatively
IeasyWhen an application writes new data they are placed
in the clients file cacheThe dirty data arebh'written to a
server until either (a) they reach a threshold age (30 seconds
in Sprite), (b) the cachellf with dirty data, (c) an
application issues dnsync system call to request that data
be written to disk, or (d) theléi manager requests that data
be written in order to maintain consistency among client
caches. In many casetefi are created and deleted before
the threshold age is reached so their data never need to be
written at all [Baker91].

When information does need to be written to disk, the
client forms the new data into one or more stripe fragments
and writes them to storage servers. For ealeh kiiock
written the client also puts an update delta into its log and
rements thel’s version humbein the Zebra prototype
deletion and truncation are handled by tlerfianager
File identifier: a unique identiéir for a fle, analogous so it generates deltas for these Qperations and incr_ements

X ' the fie version numbers appropriatelyn a system with

tq an |-nu_mbe_r In U_NIX fe systgms: ) name caching the deltas for deletion and truncation would
File version identifies the point in time when the pe generated by clients.

change described by the delta occurredlle’s version
number increments whenever a block in theifi writ-

This section describes several of the key algorithms in
Zebra to show how the pieces of the system work togethe
in operation. Most of these algorithms are similar to the
approaches used in log-structureé 8ystems, RAIDs, or
other network fe systems.

4.1 Communication via Deltas

A client’s log contains two kinds of informatiobnlocks
anddeltas A block is just a piece of raw data fromla fi.e.
the information that is read and written by applications.
Deltas identify changes to the blocks inla,fand are used
to communicate these changes between the clients)ehe fi
managerand the stripe cleandfor example, a client puts a
delta into its log when it writes aldi block, and the I ;
manager subsequently reads the delta to update the metada'ff(’flc
for that block. Deltas contain the following information: e

To benefi from the multiple storage servers it is
ten or deletedThe version numbers allow deltas in dif- important for a client to transfer fragments to all of the
ferent logs to be ordered during crash recavery storage servers concurrentlyVe added support for
) . ; . . asynchronous remote procedure calls to Sprite to allow
Block number: identifies a particular block by its posi-  ¢lients to do thisA client can also transfer the next stripe
tion within the fle. fragment to a storage server while the server is writing the
Old block pointer: gives the fragment identfi and  current stripe fragment to disk, so that both the network and
offset of the blocls old storage location. If this delta is the disk are kept bus¥he client computes the parity as it
for a new block then the old block pointer has a special writes the fragments and at the end of each stripe the client
null value. writes the parity to complete the stripe. In the Zebra
New block pointer. gives the fragment idendi and prototype the client also sends the stspgeltas to thelé
offset for the bloclks new storage location. If this delta manager and stripe cleanghis improves performance by
is for a block deletion then the new block pointer has a avoiding disk accesses for thdefimanager and stripe
special null value. cleaner to read the deltas from the log, but itisetessary
Deltas are created whenever blocks are added te, a fi for correct operation. If the client crashes before sending the
deleted from a I, or overwrittenAll of these are called deltas then thelé manager and stripe cleaner will read the
update deltasDeltas are also created by the stripe cleanerdeltas from the log on their own.
when it copies live blocks out of stripes; these are called  If a client is forced to write data in small pieces (e.g.
cleaner deltasLastly reject deltasare created by theldi because an application invokesync frequently) then it



fills the stripe a piece at a time, appending to tisé gtripe there is locality of fe access so that groups desi are

fragment until it is full, then fling the second fragment, and written together and then later read togetti@s approach

so on until the entire stripe is fuNvhen writing partial might improve read performancé/e speculate that such

stripes the client has two choices for dealing with parity locality exists but we have not attempted to verify its

First, it can delay writing the parity until the stripe is existence or capitalize on it in Zebra.

complete.This is the most &tient alternative and it is

relatively safe (the client has a copy of the unwritten parity 4.4 Client Cache Consistency

so information will be lost only if both a disk is destroyed

and the client crashes). For even greater protection the client  |f a network fie system allows clients to cachke filata

can update the strigeparity fragment each time it appends and also allows ligs to be shared between clients, then

to the stripe. Parity fragments written in this way include a cache consistency is a potential problem. For example, a

count of the number of bytes of data in the stripe at the timeclient could write a fe that is cached on another client; if

the fragment was written, which is used to determine thethe second client subsequently reads teeifimust discard

relationship between the parity and the data after crashesis stale cached data and fetch the new dfs#techose to use

Parity updates are implemented by storage servers in a northe Sprite approach to consistenafnich involves flishing

overwrite fashion, so either the old parity or the new parity or disabling caches whenlefs are opened [Nelson8g],

is always available after a crash. because it was readily available, but any other approach
The rate at which applications invokeync will have could have been used as wdlhe only changes for Zebra

a lage impact on Zebra’ performance (or any othetefi occur when a clientdkhes a e from its cache. Instead of

systems) becausef sync’s require synchronous disk just returning dirty data to ddiserverthe Zebra client must

operations. Baker et. al [Baker92b] found that under awrite the dirty blocks to a storage server and then tae fi

transaction processing workload up to 90% of the segmentgnanager must process all of the deltas for the blocks so that

written on an LFS ke system were partial segments caused it can provide up-to-date block pointers to other clients.

by an fsync. Such a workload would have poor ) .

performance on Zebra as well. Fortunatéey found that 4.5 Strlpe Cleanlng

on non-transaction processing worklodds/nc accounted

for less than 20% of the segments written. The first step in cleaning is to select one or more stripes
] ) to clean.To do this intelligently the stripe cleaner needs to
4.3 Readmg Files know how much live data is left in each stripe. Deltas are

used to compute this informatiorThe stripe cleaner

File reads in Zebra are carried out in almost the sameprocesses the deltas from the client logs and uses them to
fashion as in a non-striped networle fsystemThe client keep a running count of space utilization in each existing
opens and closes théefin the same way as for a non-Zebra stripe. For each delta the cleaner increments the utilization
file; in Sprite this means a remote procedure call to lie fi of the stripe containing the new block (if any), and
manager for each open or close. Reading data is a two-stegecrements the utilization of the stripe that contained the
operation in the Zebra prototype. First the client must fetchold block (if any). In addition, the cleaner appends all of the
the block pointers from theléi managerthen it reads the deltas that refer to a given stripe to a specialffir that
file data from the storage servefdis results in an extra  stripe, called thestripe status R, whose use will be
RPC relative to a non-stripedefisystem; a better approach described belowThe stripe status Ifis are stored as
would be to return the block pointers as the result of theordinary Zebra fes. Note that a single update or cleaner
open RPC. In the prototype this extra RPC takes 2 ms if thedelta can déct two diferent stripes; a copy of the delta is
file manager has the block pointers cached, and 19.5 m@ppended to the statuke$ for both stripes.
otherwise As many as 2048 block pointers can be returned Given the utilizations computed above the stripe
by the RPC, allowing all of the block pointers fdesiupto  cleaner fist looks for stripes with no live data. If any are
8 Mbytes in size to be fetched in a single RPC. Zebra clientsfound then the cleaner deletes the strifegjments from
cache both block pointers and data, so this information isthe storage servers and also deletes the corresponding stripe
only fetched on the it access to ald; name caching status fies. If there are no empty stripes and more free space
would eliminate most of the open and close RPCs as well. is needed then the cleaner chooses one or more stripes to

For lage fies being accessed sequentialBebra clean. The policy it uses for this is identical to the one
prefetches data far enough ahead to keep all of the storagéescribed by Rosenblum [Rosenblum91], i.e. a cost-tienefi
servers busyAs with writing, asynchronous RPCs are used analysis is done for each stripe, which considers both the
to transfer data from all of the storage servers concurrentlyamount of live data in the stripe and the age of the data.
and to read the next stripe fragment on a given server from  There are two issues in cleaning a stripe: identifying the
disk while transferring the previous one over the network to live blocks, and copying them to a new strifae stripe
the client. status fies make the ffst step easy: the cleaner reads the

The Zebra prototype does not attempt to optimize readsdeltas in the stripe’status fe and fnds blocks that haven’
of small fles: each fe is read from its storage server in a yet been deletedVithout the stripe statuslds this step
separate operation, just as for a non-stripéal diystem. would be much more ditult, since the deltas that cause
However it is possible to prefetch smalle by reading  blocks to become free could be spread throughout the
entire stripes at a time, even if they crosslfioundaries. If  stripes in the ke system.



Once the live blocks have been ideetifithe stripe

cleanerwhich executes as a udevel process, copies them Type of | Block Pointer | Update | Issue Reject
to a new stripe using a special kernel cBle kernel call Delta Matches? Pointer? Delta?
reads one or more blocks from storage servers, appends

them to its client log, and writes the new log contents to the | Update Yes Yes No
storage servers. For each block a cleaner delta is included in

the clients log. The kernel call for cleaning blocks has the Cleaner Yes Yes No
same dect as reading and rewriting the blocks except that

(a) it doesrt open the fe or invoke cache consistency Update No Yes Yes
actions, (b) it needh’copy data out to the uskavel stripe Cleaner No NoO Yes
cleaner process and back into the kernel again, (c) it doesn’

update last-modidid times or version numbers fdef, and

(d) the deltas that it generates are marked as cleaner deltas Table 1 File managerdelta processingWhen a delta
instead of update deltas. arrives at the & managerthe old block pointer in the

. . delta is compared with the current block pointethey
One concern about the stripe cleaner is how much of  do not match (the bottom two scenarios) then a ioonfl

the systens resources it will consume in copying blocks. has occurred.

We do not have measurements of Zebra under real

workloads, but we expect the cleaning costs for Zebra to bereflects the update delta, not the cleaner de€hi approach
comparable to those for other log-structuréeidiystems. In  results in wasted work by the cleaner in the unusual case
a transaction-processing benchmark on a nearly full diskwhere a conitt occurs, but it avoids synchronization in the
Seltzer found that cleaning accounted for 60-80% of all common case where there is no dohfl

write trafic and signitantly afected system throughput The file manager detects coinfs by comparing the old
[Seltzer93]. However in a software development plock pointer in each incoming delta with the block pointer
benchmark that is more typical of workstation workloads stored in the fe manages metadata; if they are téfent it
Seltzer found cleaning costs to be negligible. Rosenblummeans that the block was simultaneously cleaned and
measured production usage of LFS on Sprite for severalypdated.Table 1shows the four scenarios that can occur
months and found that only 2-7% of the data in stripes thatThe fist two scenarios represent the cases where there is no
were cleaned were live and needed to be copiedconfict: the deltas old block pointer matches theefi
[Rosenblum91]. Based on these measurements we believmanage’ls current block pointeso the fe manager updates

that the cleaning overhead will be low for typical its block pointer with the new block pointer in the delta. If
workstation workloads but more work is needed to reducean update delta arrives with an old block pointer that dbesn’

the overheads for transaction-processing workloads. match, it can only mean that the block was cleaned (any
. . other update to the block is prevented by the cache
4.6 Conflicts Between Cleaning and consistency protocol); theldi manager updates its block
File Access pointer with the new block pointer from the delta. If a

cleaner delta arrives with an old block pointer that daesn’

Itis possible for an application to modify or deletde fi Match, it means that the block has already been updated so
block at the same time that the stripe cleaner is copying it the cleaned copy is irrelevant: the cleaner delta is ignored.
Without any synchronization a client could modify the In both of the cases where thiefmanager detects a
block after the cleaner reads the old copy but before theconfict it generates a reject delta, which is placed in the
cleaner rewrites the block, in which case the new dataclient log for its machin€lhe old block pointer in the reject
would be lost in favor of the rewritten copy of the old data. delta refers to the cleaned copy of the block and the new
In the original LFS this race condition was avoided by Pointer is null to indicate that this block is now fréée
having the cleaner lockldis to prevent them from being reject delta is used by the stripe cleaner to keep track of
modified until after cleaning wasnfshed. Unfortunately ~ Stripe usage; without it the stripe cleaner would have no

this produced lock convoys thatfedtively halted all ~ way of knowing that the block generated by the cleaner is

normal fle accesses during cleaning and resulted inunused.

significant pauses. It is also possible for an application to read a block at
Zebras stripe cleaner uses an optimistic approach the same time that it is being cleaned. For example, suppose

similar to that of Seltzer et al. [Seltzer93]. It doédotk that a client has retrieved a block pointer from the fi

any fles during cleaning or invoke any cache consistency manager but the block is moved by the cleaner before the
actions. Instead the Stripe cleaner just Copies the block an@"ent retrieves it. If the client then tries to use the out-of-
issues a cleaner delta, assuming optimistically that itsdate block pointerone of two things will happen. If the
information about the block is correct and the block hasn’ block’s stripe still exists then the client can use it safely
been updated recentlyf in fact the block was updated since the cleaner didnmodify the old copy of the block. If
while the cleaner was cleaning it, an update delta will bethe stripe has been deleted then the client will get an error
generated by the client that made the change. Regardless dfom the storage server when it tries to read the old.copy
the order in which these deltas arrive at th}arﬁanager‘[he This error indicates that the block pointer is out of date: the
file manager makes sure that theafipointer for the block  client simply discards the pointer and fetches an up-to-date



version from the fé manager servers, fe manager and stripe manager; each of the
problems is a potential inconsistency between system
4.7 Adding a Storage Server componentsThe frst problem is that stripes may become
internally inconsistent (e.g. some of the data or parity may
Zebras architecture makes it easy to add a new storagebe written but not all of it); the second problem is that
server to an existing systeml! that needs to be done is to  information written to stripes may become inconsistent with
initialize the new servés disk(s) to an empty state and metadata stored on théefimanager; and the third problem
notify the clients, fe managerand stripe cleaner that each is that the stripe clearierstate may become inconsistent
stripe now has one more fragment. From this point on with the stripes on the storage servétese three problems
clients will stripe their logs across the new servidre are discussed separately in the subsections that follow

existing stripes can be used as-is even though they don’  The solutions to all of the consistency issues are based
cover all of the servers; in the few places where the systermon logging and checkpoints. Logging means that operations
needs to know how many fragments there are in a stripeare ordered so it is possible to tell what happened after a
(such as reconstruction after a server failure), it can detecparticular time and to revisit those operations in order
the absence of a fragment for a stripe on the new server antdogging also implies that information is never maatifiin
adjust itself accordinglyOver time the old stripes will  place, so if a new copy of information is incompletely
gradually be cleaned, at which point their disk space will be written the old copy will still be availabléd checkpoint
used for longer stripes that span all of the servers. Olddefines a system state that is internally consist&ot.
stripes are likely to be cleaned before new ones since theyecover from a crash, the system initializes its state to that of
will probably contain less live data. If it should become the most recent checkpoint, then reprocesses the portion of
desirable for a particularldi to be reallocated immediately the log that is newer than the checkpoint.

to use the additional bandwidth of the new serirés can The combination of these two techniques allows Zebra
be done by copying theldiand replacing the original with o recover quickly after crashes. It need not consider any
the copy information on disk that is older than the most recent
checkpoint. Zebra is similar to other logginge feystems
5 Restoring ConsistenC)After such as LFS, Episode_[Chqtani92], and the Cedar F_ile
System [Hagmann87] in this respect. In contrade fi
Crashes systems without logs, such as the BSD Fast File System

, [McKusick84], cannot tell which portions of the disk were
There are two general issues that Zebra must addresgeing modifed at the time of a crash, so they must re-scan

when a client or server machine crashes: consistency angy| of the metadata in the entiréefsystem during recovery
availability. If a crash occurs in the middle of an operation

then data structures may be left in a partially-mediBtate i i

after the crash. For example, thie fimnanager might crash 5.1 Internal Strlpe ConS|stency
before processing all of the deltas written by clients; when it
reboots its metadata will not be up-to-date with respect to
information in the clientsfogs. This section describes how
Zebra restores internal consistency to its data structure
after crashesThe second issue is availabilityhich refers

to the systens' ability to continue operation even while a

component is down. Zebsr'approach to availability is  complete. I a stripe is missing a single fragment then the
described irSection 6 missing data can be reconstructed using the other stripes in

In many respects the consistency issues in Zebra are théne fragment. If a stripe is missing more than one fragment
same as in other networklefisystems. For example, thiefi  then it is discarded along with any subsequent stripes in the
manager will have to restore consistency to all of its same client log, efectively truncates the cliestlog to the
structures on disk. Since thiefmanager uses the same disk |ast recoverable strip@his means that data being written at
structures as a non-stripedefsystem, it can also use the the time of a crash can be lost or partially written, just as in
same recovery mechanism. In the Zebra prototype thepther fie systems that maintain UNIX semantics.

mhetadata is stored in a I(r)]g—structléréd ﬁ)t/)st;mb SO we u?ﬁ When a storage server crashes and recovers, two forms
the LFS recovery mechanism described by Rosenblum stripe inconsistency are possible. First, if a stripe

[Rosenblum9l].The fie manager must also recover the gaument was being written at the time of the crash then it
information that it uses to ensure client cache consistency;

; ) . ~“Ymight not have been completely writtelfo detect
for this Zebra uses the same approach as in Sprite, which igycomplete stripe fragments, Zebra stores a simple
to let clients reopen theirldés to rebuild the client cache

X ! . checksum for each fragme#ifter a storage server reboots
consistency state [Nelson88]. If a client crashes thenléhe fi g g

, ' it verifies the checksums for fragments written around the
manager cleans up its data structures by closing all of th&ime of the crash and discards any that are incomplete.
client’s open fes, also in the same manner as Sprite.

. . The second inconsistency after a storage server crash is
However Zebra introduces three consistency problems

h . helefi h | it wont contain fragments for new stripes written while
that are not present in othelefisystemsThese problems i\ as downAfter the storage server reboots it queries other

arise from the distribution of system state among the storage

When a client crashes it is possible for fragments to be
missing from stripes that were in the process of being
written. The fle manager detects client crashes and recovers
n behalf of the client: it queries the storage servers to
identify the end of the clied’log and veriis that any
stripes that could have beenfezted by the crash are



storage servers tonfi out what new stripes were written. for the stripe fes are fished before writing the checkpoint.

Then it reconstructs the missing fragments as described in  when the stripe cleaner restarts after a crash, it reads in
Section 6.2and writes them to diskhe prototype does not  the utilizations and log positions, then starts processing

yet do this reconstruction. deltas again at the saved log positions. If a crash occurs after
. appending deltas to a stripe staties ut before writing the
5.2 Stripes vs. Metadata next checkpoint, then the statute ficould end up with

o _ duplicate copies of some deltdhese duplicates are easily
The fie manager must maintain consistency betweenweeded out when the cleaner processes the statis fi
the client logs and its metadafa to do this it must ensure
that it has processed all of the deltas written by clients and . .
updated its metadata accordingBuring normal operation 6 Avallab”'ty
the fie manager keeps track of its current position in each

client's log and at periodic intervals it forces the metadata to  OQur goal for Zebra is for the system to continue to
disk and writes a checkpoinidfithat contains the current provide service even if some of its machines have crashed.

positions. If a client crashes, théefmanager checks with A Single failure of either a storage seruée fle manager

the storage servers todi the end of the cliest'log and or the stripe cleaner should not prevent clients from

make sure it has processed all of the deltas in the log. If thé2cCeSSIng ks, neither should any number of client failures

file manager crashes, then when it reboots it processes all @fect the remaining clients. Each of the system components

the deltas that appear in the client logs after the positionsS discussed separately in the sections belte prototype
stored in the last checkpoint, thereby bringing the metadata0€S not yet implement all of these features, as noted.
up-to-date A checkpoint is relatively small (a few hundred .

bytes) since all it contains is current log positions for each 6.1 Client Crashes

client, but it does have a performance impact because the ] )
metadata is fished before it is written. Decreasing the The only way that one client can prevent other clients
checkpoint interval improves thelfimanages recovery ~ ffom accessing lés is through the cache consistency
time at the expense of normal operation; we anticipate that rotocol: if a client has alé open and cached then other
checkpoint interval on the order of several minutes will clients’ access to the Ié is restricted to prevent

provide acceptable recovery time without sigumifitly inconsistenciesAfter a client crash thelé manager closes

There are two complications in replaying deltas, both of cached by other clients.

which are solved with version number3he fist

complication is that some of the deltas may have already6-2 Storage ManagerCrashes
been processed and applied to the metadétas will
happen if the e manager crashes after it writes metadata , . ! . . e
out to disk but before it writes a new checkpoint. If an failure of a single storage server using algorithms similar to

update delta is encountered that has already been applioSe described for RAIDs [Patterson88p read a fe
then its version number will be less than that of tee ind ~ While @ storage server is down, a client must reconstruct any
it is ignored.As in normal operation, a cleaner delta is SUP€ fragment that was stored on the down sefves is

applied only if its old block pointer matches thée fi done by computing the parity of all the other fragments in
manage's current block pointer fthe same stripe; the result is the missing fragmNmmes

intended for the down server are simply discarded; the
storage manager will reconstruct them when it reboots, as
described irSection 5.11n the prototype clients are capable
of reconstruction, but only under manual control. Clients do
not yet automatically reconstruct fragments when a server
crashes.

Zebras parity mechanism allows it to tolerate the

The second complication is that ke fcould have been
modified by several diérent clients, resulting in deltas for
the fie in several client logsThe fle manager must replay
the deltas for eachldi in the same order that they were
originally generated. If theléi manager encounters a delta
during replay whose version number is greater than the

file's version numbeit means that there are deltas in some __ FOr lage sequential reads reconstruction is relatively
other client log that must be replayexsti In this case the 'NEXpPensive. all the fragments of the stripe are needed

file manager must delay the processing of the delta until all@"YWay so the only additional cost is the parity calculation.
the intervening deltas have been processed from the othe or small reads reconstruction is expensive since it requires

client logs reading all the other fragments in the stripe. If small reads
' are distributed uniformly across the storage servers then
5.3 Stripes vs. CleanelState reconstruction doubles the average cost of a read.

In order for the stripe cleaner to recover from a crash 6.3 File Manager Crashes

without completely reprocessing all of the stripes in tlee fi

system, it checkpoints its state to disk at regular intervals. Thebfie manager is a criltlic?l hrgs_ource for tf:je ent]ire
The state includes the current utilizations for all of the SYSt€m because it manages all of treesystem metadata. |

stripes plus a position in each client log, which idesgithe e Metadata is stored non-redundantly on teenfanager
last delta processed by the stripe cleahey buffered data ~ then the e system will be unusable whenever thie fi



manager is down and the loss of the fhanages disk will substantial performance improvements for small writes.
destroy the fe systemWe believe that these problems can For our measurements we used a cluster of DECstation-
be eliminated by using the Zebra storage servers to store thgo00 Model 200 workstations connected by an FDDI ring
file manages metadata. Instead of using a local disk, the (maximum bandwidth 100 Mbits/secon@he workstations

file manager writes the metadata to a virtual disk are rated at about 20 integer SPECmarks and each contained
represented as a ZebriefiUpdates to the metadata will be 32 Mbytes of memoryin our benchmarks the memory
added to the e manages client log as part of the virtual  pandwidth is at least as important as CPU speed; these
_d|sk fl!e and striped across the storage servers with parity workstations can copy lge blocks of data from memory to
just like any other Zebra |é. This provides higher  memory at about 12 Mbytes/second but copies to or from
performance for the metadata than storing it on a local diskdisk controllers and FDDI interfaces run at only about 8
and also improves its availability and integrityhis Mbytes/second. Each storage server is equipped with a
approach also allows thelefi manager to run on any single RZ57 disk with a capacity of about 1 Gbyte and an
machine in the network, since it dodsdépend on having  average seek time of 15 nie disks transfer Ige blocks
local access to a disk. If théefimanages machine should  of data at about 2 Mbytes/second, but the SCSI bus and
break then the I8 manager can be restarted on another controller can only sustain about 1.6 Mbytes/second.
machine. Of course, if theldi manager crashes Zebra will We had a total of eight workstations available for
be unavailable until thelé manager restarts, but it should running these experimentghe minimum congjuration we

be possible to restart théefimanager quickly [Baker92a]. tested consisted of one client, one storage seavef one

~ We have not yet implemented this approach to file managerin the maximum corduration there were
improving the fie manages availability and integrityA three clients, four storage servers and ofe rfianager
similar approach has been proposed by Cabrera and Longuring the measurements thke finanager did not generate
for the Swift fle system [Cabrera91] for making its storage checkpoints, nor was the stripe cleaner running. Each data

mediator highly available. point was collected by running the benchmark 10 times and
. averaging the results.
6.4 St”pe Cleaner Crashes For comparison we also measured a standard Sprite

. ) configuration and an Ultrix/NFS cogifiration.The Sprite
Crashes of the stripe cleaner are relatively easy togystem used the normal Sprite network protocols with a log-
handle.The stripe cleaner need not be running in order for giryctured fe system as the disk storage manader

to restart before disk space is exhausfddof the stripe  configuration had a slightly faster server CPU and slightly
cleanefs state is stored in the Zebriefsystem, so if the  faster disks. The NFS server included a 1-Mbyte

stripe cleanés machine becomes permanently unavailable prestoServe card for Hafing disk writes.

the stripe cleaner can be restarted onfardifiit machine. The frst benchmark consisted of an application that

writes a single very lge fie (12 Mbytes) and then invokes
7 Prototype Status and Performance fsync to force the ife to disk. We ran one or more

instances of this application on fdifent clients (each

The implementation of the Zebra prototype began in writing a different fie) with varying numbers of servers,

April 1992. As of August 1993 Zebra supports all of the and computed the total throughput of the system (total
usual UNIX fie operations, the cleaner is functional, and number of bytes written by all clients divided by elapsed
clients can write parity and reconstruct fragmefite fie time). Figure 6graphs the results.
manager and cleaner both checkpoint their states and are Even with a single client and seryétebra runs at
able to recover after a failuréhe prototype does not yet about twice the speed of either NFS or Spriftkis is
implement all of the crash recovery and availability features because Zebra usesdarblocks and its asynchronous RPC
of Zebra, howevelThe metadata is not yet stored on the allows it to overlap disk operations with network transfers.
storage servers as describedSiection 6.3 clients do not  The limiting factor in this case is the sergedisk system,
automatically reconstruct stripe fragments when a storagewhich can only write data at about 1.1 Mbyte/seca¥s!.
server crashes, storage servers do not reconstruct missingervers are added in the single-client case Zebra’
fragments after a crash, and thie fmanager and stripe performance increases by more than a factor of 2 to 2.4

cleaner are not automatically restarté have simpligd  Mbytes/second with four servefEhe non-linear speedup in
the prototype by choosing not to |r_nplement name cachingFigure 6occurs because the benchmark runs in two phases:
or support for concurrent write-sharing. in the frst phase the applicatiorldi the kerneb file cache

The rest of this section contains some preliminary by writing the fie, and in the second phase the clent’
performance measurements made with the protofijpe. kernel fushes its cache by transferring stripes to the servers.
measurements show that Zebra provides a factor of 4-5These phases are not overlapped and only the second phase
improvement in throughput for ige reads and writes benefis from additional storage servevghen we measured
relative to either NFS or the Spritéefisystem, but its lack  the second phase alone we found that the throughput scales
of name caching prevents it from providing much of a nearly linearly from 1.1 Mbytes/second with one server to
performance advantage for smale$i. We estimate that a 3.8 Mbytes/second with four servers, at which point the
Zebra system with name caching would also provide client's FDDI interface saturates. Performance with two or
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Figure @ Total system thioughput for large file Figure 7. Throughput for large file reads Each client
writes. Each client ran a single application that wrote ¢ ran a single application that read a 12-Mbyte. fin
12-Mbyte fle and then fished the fé to disk. In multi- multi-server confiurations data were striped across all
server confjurations data were striped across all the the servers with a fragment size of 512 KbyTée line
servers with a fragment size of 512 Kbytes. Parity wa labeled “1 client (recon)” shows reconstruction
only computed for the line labeled “1 client w/ parity”. performance: one server was unavailable and the clier

) o ) ) had to reconstruct the missing stripe fragments. Foi
more clients is limited entirely by the servers, so it scales example, the system represented by the left-most poin
linearly with the number of servers. had two servers, one of which was unavailable.

Figure 6also shows the throughput for a single client
when it generates and writes parity; the throughput is
measured in terms of usefulefidata not including parity
Zebra incurs almost no overhead for parity aside from the
obvious overhead of writing more data to more servers. In
the best case Zebra's throughput with two servers and parity
should be the same as the throughput with one server and n
parity, since it is writing one byte of parity for each byte of
data; the performance Figure 6is only slightly less than
this. Ideally Zebra's throughput with four servers and parity
should be the same as the throughput with three servers and
no parity In reality it is somewhat less than this because the
client CPU is saturated in the former but not in the latter

Figure 7shows Zebra throughput for reading Ige
files. Zebras performance for reading is better than for
writing because the servers can read data from their disks at
the full SCSI bandwidth of 1.6 Mbytes/secdFtilis a single
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Figure 8 Performance for small writes. A single client

client can read alé at 1.6 Mbytes/second from a single created 2048 liés, each 1 Kbyte in length, thenghed
server and three clients can achieve a total bandwidth of 5.2 all the fies to a single serveFhe elapsed time is divided
Mbytes/second with four servef@yvo servers can saturate a into four components: the time to open and close th
single client, howevercausing the single client curve in files, the time for the application to write the data, the

. time for the client to fish its cache, and the time for the
Figure 7to level of at 2.8 Mbytes/seconét that speed the server to flish its cache to disk. For NFS, eadd fias
client is spending most of its time copying data between the flushed as it was close@he two rightmost bars are
application, the fe cache, and the networkhis overhead estimates for Sprite and Zebra if name caching wer
could be reduced signifintly by modifying the Sprite implemented.

kernel to use the FDDI interfase'DMA capability to in a two server system is a mirror image of its data block

g:gﬁ;err;{;]ceorrmggn i?}te(%?]rli(ntg?r?}keedtgtgILeeﬁ;[/Iv)grlr?etr?ufthb fi and therefore reconstruction dodsm@quire any additional
’ i .. computation by the clienThe throughput doesnincrease
The performance of reads that require reconstruction ismych with additional servers because the client CPU has
shown in the line labeled “1 client (recon)” kiigure 7 In saturated due to additional copying and exclusive-or
this test one of the storage servers was unavailable and thgperations to reconstruct the missing data.
client had to reconstruct any stripe fragments stored on that Figure 8shows the elapsed time for a single client to
server by reading all of the other fragments in each stripe

and computing their paritWith two servers the throuahout write small fles. In the NFS and Sprite tests the client was
| computing their paritwith tw OUINPUL ~\yriting to a single fe serverwhile the Zebra test used one
during reconstruction is only slightly less than in normal

: . . I . storage server and ondefimanagerAlthough Zebra is
operation with a single server; this is because a parity bIOCksubstantially faster than NFS for this benchmark, it is only



8 RelatedWork

100
1 3 E IEKA/I (I;Ii:;Lli Most of_ the key ideas in Zebra were deriv_ed from prior
80— - B Client CPU work in disk arrays and log-structurediefi systems.
] However there are many other related projects in the areas
S b ss C'_DU of striping and availability
£60° O SSDisk RAID-Il [Lee92], DataMesh [Wkes92], and
5 TickerTAIP [Cao93] all use RAID technology to build high-
R 40 performance fe servers. RAID-II uses a dedicated high-
. bandwidth data path between the network and the disk array
20 to bypass the slow memory system of the server host.
8 DataMesh is an array of processor/disk nodes connected by
i a high-performance interconnect, much like a parallel
0— - ] - ] ] machine with a disk on each nodg&ickerTAIP is a
Zebra Sprite Zebra Sprite Zebra Sprite refinement of DataMesh that focuses on distributing the
Large Write  Large Read  Small Write functions of the traditionally centralized RAID controller
Figure 9 Resource utilizations. Utilizations of the fe across multiple processors, thus removing the controller as a
managerSgFMéIDCZUPU %”%.d;fkd c|_|enttEPU, and StOtLaQE single point of failure. In all of these systems the striping is
B e 7o, ok Sung e BISiOUS e intemal to the serverwhereas in Zebra the  clients
client, a single fe managerand a single storage server; participate in striping fes.
the Sprite system consisted of a single client and a sing| RADD (Redundant Array of Distributed Disks)

file serverwhich serves as bothdimanager and storage

server Parity was not computed [Schloss90] is similar to RAID in that it uses parity to

withstand the loss of a disk, but it féifs by separating the
about 20% faster than Spritéhe main reason for this is  9iSkS geographically to decrease the likelihood of losing
that neither Zebra nor Sprite caches naming information; Multiple disks. Furthermore, RADD does not stripe data;
each open and close requires a separate RPC to either tHB€ data stored on each disk are logically independent, thus
file server or fe managerand the fjure shows that most of ADD does not improve the performance of individual data
the time is spent in these RP@#e rightmost bars in the =~ 3CCESSES. S _
figure estimate the times for Sprite and Zebra if name  Several other stripinglé systems have been built over
caching were implemented; the estimates were made byhe last several years. Some, such as HPFS [Poston88]
running the same benchmark directly on a Spiigesirver ~Stripe across local disks; others, such as sfs¢tsa93] and
Zebra is signifiantly faster than Sprite during the cache- Bridge [Dibble90] stripe across I/O nodes in a parallel
flush portion of the benchmark. Both systemsgmethe ~ COmputer; but to our knowledge only one, Swift
small fies into lage blocks for writing, but Sprite doesn’  [Cabrera91], stripes across servers in a netwiglsyistem.
do it until the data have reached the server: edehisi ~ All of these systems use pitle striping, so they work best
transferred over the network in a separate messagaVith large fies. Swift's performance while reading and
exchange. Zebra batches theledi together before ~ Wwriting large fies improves nearly linearly as the number of
transferring over the network, which is moré@ént. servers increases to three, but the CPUs and disks for Swift
Figure 9 shows the utilizations of various system &'€ much slower than those for Zebra so its absolute

components during the benchmarks, both for Zebra and foP€rformance is lower than Zebra'd perfile parity
Sprite. For lage reads and writes the Zebrie finanager's ~ mechanism is planned for Swift, although it does not appear
CPU and disk are almost idle; the system could scale to!© resolve the potential problems with smaésiand atomic.
dozens of storage servers before theerfianager becomes a  Parity updatesThe implementation of this mechanism is
performance bottleneck. In comparison to Sprite, Zebra hagcurrently in progress and performance measurements should
higher utilizations of the client CPU, server CPU, and Pe forthcoming.
server disk; this causes Zebra to complete the benchmark ~ There have also been several recent reseafwttsefo
faster improve the availability of networklé systems, such as
For small writes both Zebra and Sprite spend most of LOCUS [Valker83], Coda [Satyanarayanan90], = Deceit
their time in synchronous RPCs to open and cldes.fin  [01€9€l90], Ficus [Guy90] and Harp [LiskovOINI of
both systems the sum of client CPU utilization are fi hese systems replicate data by storing complete copies,
manager CPU utilization is nearly 100%: it cannot exceed Which results in higher storage and update costs than
100% because the RPCs do not allow much overlap in2€Pras parity scheme. Harp uses write-behind logs with
processing between the two CPUS. In both Zebra and Sprit&Ninterruptible power supplies to avoid synchronous disk
it appears that the server CPU will saturate with the additionOPerations and thereby reduce the update overhead. In
of a second client; without name caching the server cpu2ddition, some of the systems, such as Locus and Coda, use
will be a performance bottleneck. the replicas to improve performancg by allowing a client to
access the nearest replica; Zebgarity approach does not
permit this optimization.

Another approach to highly availabléefiservice is to



design fie servers that can quickly reboot after a software There are at least four areas where we think Zebra could
failure [Baker92a]The idea is to reboot thddiserver so  benefi from additional work:

QUICk|y that fle service is not interrupted'.his alternative Name Caching Without name Caching, Zebra provides
does not require redundant copies or pakity neither does only about a 20% speedup for small writes in compari-
it allow the system to continue operation in the event of a son to a non-striped SpritdefisystemWe think that a
hardware failure. system with name caching would provide a much
Zebra borrows its log structure from LFS greater speedup.
[Rosenblum91], a high-performance write-optimizeld fi Transaction processingWe expect Zebra to work well
system.A recent paper by Seltzer et. al [Seltzer93] has  on the same workloads as LFS, which includes most
shown that adding extents to FR8cKusick84 results in a workstation applications. Howevehere is little expe-
file system (Called EFS) that has Comparable performance to rience with LFS in a transaction processing environ-
LFS on lage reads and writes. HoweyetFS does not ment and Seltz& measurements suggest that there
improve performance for smalllds as does LFS and may be performance problems [Seltzer93]. More work
therefore Zebra, nor does it address the parity and striping  js needed to understand the problems and see if there
issues presented by a striped netwdekdystem. are simple solutions.

The create and delete deltas used by Zebra are similar  Metadata. It was convenient in the Zebra prototype to
to the active and deleted sublists used in the Grapevine mail use a fe in an existing fe system to store the block
Sy_stem to mana_ge entrle_s In a registration database pointers for each Zebradj but this approach dafs
[Birrell82]. Grapevine used timestamps whereas Zebra uses  from a number of inditiencies We think that the sys-

version numbers, but they each allow the system to establish  tem could be improved if the metadata structures were
an order between diérent sources of information and to redesigned from scratch with Zebra in mind.

recover from crashes. Small reads. It would be interesting to verify whether
there is enough locality in smalldireads for prefetch-

9 Conclusions ing of whole stripes to provide a substantial perfor
mance improvement.

Zebra takes two ideas that were originally developed Overall we believe that Zebrafefs higher throughput,
for managing disk subsystems, striping with parity and log- availability, and scalability than today’ network fie
structured fe systems, and applies them to netwol& fi Systems at the cost of only a small increase in system
systems.The result is a networkld system with several ~complexity
attractive properties:

Performance Lamge fies are read or written 4-5 times  1( Acknow|edgments

as fast as other networlefisystems and smallds are

written 20%-3x faster We are grateful to our paper shepherd Paul Leach and
Scalability. New disks or servers can be added incre- the anonymous referees for their advice on improving this
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