EXPLOITING FILE SYSTEM AWARENESS FOR IMPROVEMENTS TO
STORAGE VIRTUALIZATION

Vivek Lakshmanan

A research paper submitted in conformity with the requirements
for the degree of Master of Science
Graduate Department of Computer Science
University of Toronto

Copyright () 2009 by Vivek Lakshmanan

Abstract

Exploiting File System Awareness for Improvements to Storage Virtualization

Vivek Lakshmanan
Master of Science
Graduate Department of Computer Science
University of Toronto

2009

File systems are tasked with storing, organizing, and retrieving valuable data for long peri-
ods of time. This requires them to provide excellent fault-tolerance and reliability standards
throughout their extended lifetime. As a result, most file systems follow a conservative devel-
opment model and evolve slowly. In comparison, the underlying storage hardware, as well as
the requirements of the modern storage environment are changing much more rapidly. Due to
the growing adoption of Storage Virtualization, hardware configurations have grown in com-
plexity, but the file system is shielded from the details by the block interface. This puts file
systems at a disadvantage when trying to make efficient use of the underlying hardware and
in general, acts as an impediment to meeting higher-level goals for the storage stack entirely
from within the file system. At the same time, the block interface also obfuscates most of the
vital file system context from the hardware, limiting its ability to compensate for the file sys-
tem’s limitations and make sound decisions for the entire storage system. We show that simple
hints from the file system exposed to a cognisant block layer can be effective in achieving
high-level goals for the storage system without requiring functional modifications to existing
components of the storage stack, like the file system itself or the block interface. We demon-
strate the viability of our approach by achieving significantly improved corruption detection
and failure recovery performance without causing a discernible slowdown in most normal file

system workloads. In fact, we sped-up certain metadata-heavy workloads by upto 60%.

i

Contents

1 Introduction
1.1 ResearchProblem
1.2 Possible Solutions L
1.3 Proposal e
1.4 Contributions
1.5 Chapter Overview ot
2 Background and Motivation
2.1 FSCK . . . e
2.1.1 Effect of ext3 File System Layoutonfsck
3 Design
3.1 DesignGoals
3.2 Major Components vt e e e e e e e e
33 FileSystemHints
33.1 Granularity
332 ExplicitHints
333 InferredHints
3.4 Remapping Mechanismo L
3.4.1 Remapping Data Structure,
3.4.2 Exploiting Journaling Support Lo

il

343 FailureModel
34.4 FailureRecovery
345 PreventingLock-Ino oL
3.5 RemappingPolicy

Prototype Implementation

4.1 Remapping Mechanism Lo
4.1.1 Overhead
4.2 Changes to the ext3 File System
4.2.1 Exposing MetadataHints,
4.22 File System Recovery
4.3 Modifications to the NBD Protocol
Evaluation
5.1 Evaluation Platform
5.2 Evaluation Methodology
52.1 Benchmarks.
5.2.2 Choosing Remapping Target Device
5.3 Online Performance
5.3.1 Custom Microbenchmark
54 FSCKPerformance
5.5 Discussion. e
Related Work
6.1 Information Gap in Storage Systems
6.1.1 Smarter File Systems oL Lo
6.1.2 Smarter Block Layer
6.1.3 Improved Cooperation Between File System and Block Layer
6.2 Storage Virtualization Lo

v

26
27
28
29
29
31
32

33
33
34
34
36
36
39
39
40

6.3 File System Consistency Check Performance

7 Future Work
7.1 ShortTerm e e
7.2 LongerTerm e
7.2.1 Integrating Solid State Disks in Existing Storage Systems

7.2.2 Generic Block Level Remapping Mechanism

8 Conclusion

Bibliography

50
50
51
51
51

52

53

List of Tables

4.1 Overhead Per Remap Region Segment with 8192 Blocks

vi

List of Figures

L1 top . . o o e 2
2.1 tOP .« o e e 10
2.2 0P« o e e e e e 11
41 0P . . o e e 27
42 0P . v o e e 28
5.1 bottom o e e e e 37
5.2 DbOttOmM e e e e 37
5.3 bottom e e 38
54 DOttom s, 39

vii

Chapter 1

Introduction

The traditional storage stack is a hierarchical design (see Figure 1.1). The file system is usually
the component of the operating system tasked with organizing, storing, and retrieving data. It
interacts with an abstract representation of the underlying hardware, known as the block layer,
through a thin interface. And the block layer in-turn, interacts directly with the underlying
hardware. File systems are expected to store persistent data reliably for long periods of time.
They are expected to provide excellent fault-tolerance and various self-healing capabilities.
Due to their sensitive nature, most file systems go through lengthy development and testing
cycles, making for an inherently conservative development model that is highly resistant to
change. In comparison, hardware configurations, hardware specifications, as well as the re-
quirements from storage systems, all change much more rapidly.

We briefly survey a few of the changes in the storage landscape in the last decade to provide

some context:

Changes in Hardware Configuration Several new approaches to tailor storage systems to
the needs of the deployment have emerged in recent years. Storage Virtualization has
been one of the key reasons why this has been possible. Storage Virtualization refers
to the ability to abstract away the physical location of data from its identity. It exploits

the abstraction provided by the block layer to integrate emerging technologies and ca-

CHAPTER 1. INTRODUCTION 2

Applications App 1 App 2 App 3

Virtual File System

'

Local File System
Block Layer
L

Network
Block —
Storage Array Device

Operating
System

Figure 1.1: A high-level overview of the modern storage stack.

pabilities into existing hardware configurations. For instance, Volume Management on
commodity operating systems allows users to merge several backing disks into a sin-
gle logical view and provide advanced features like software RAID [17, 9]. Similarly,
Storage Area Networks (SANs) scale storage virtualization to levels necessary for adop-
tion by enterprises. SANs allow the collective storage capacity of the environment to
be pooled and multiplexed for several clients through high-speed interconnects. With
the recent popularity of whole-system virtualization and live-migration, SANs provide
uninterrupted access to the data even as the client instance migrates across the network.
Another network storage technology is iSCSI, which offers similar features without the
high initial cost of a dedicated Fibre channel network by leveraging commodity inter-

connects.

Changes in Hardware Characteristics Traditional storage systems have relied on the as-
sumption that disks fail in a fail-stop manner. However, it is only recently that the failure-

models of storage hardware are being properly understood. For instance, recent studies

CHAPTER 1. INTRODUCTION 3

have shown increasing rates of latent sector errors and signs of transient failures in the
storage stack [4]. Another phenomena is the mixing of fundamentally different stor-
age hardware within the same storage system to leverage differences in the performance
characteristics and costs. For instance, storage systems for HPC environments often use
slower archival media like tapes for long term storage, but disks are used to cache re-
cently accessed data. More recently, emergence of new storage media like Flash, with
very different performance, reliability, and power-usage have prompted debate over the

ideal approach for integrating them in modern storage systems [8].

Changes in User Requirements Priorities for deployments might change over time. For in-
stance, recent years have seen power consumption become a significant concern for stor-

age systems.

1.1 Research Problem

Rapid changes, as described above, in storage hardware, combined with the changing demands
of modern storage deployments are in conflict with stability and reliability goals of the file
system. As a result, file systems may not be able to make effective use of storage hardware to
meet higher-level goals, whether related to performance, reliability, or power.

Our work is aimed at improving the interaction between existing file systems and the under-
lying storage hardware to meet higher-level goals for the storage stack without compromising

their stability and reliability, nor requiring modifications to the standard block interface.

1.2 Possible Solutions

One solution is to expose the details of the entire storage stack to the file system. With this
information, the file system can be designed to implement complex reliability, failure recovery,

and power conservation policies. There are two challenges that make this approach impractical:

CHAPTER 1. INTRODUCTION 4

e As previously mentioned, file systems are designed with stability and reliability in mind.
Adding such features would significantly increase the possibility of bugs in the file sys-
tem, which carries the risk of permanent data loss. Even relatively simple file systems
with years of active testing and development have been shown to suffer from a number
of serious bugs [43, 4]. Most modern file systems are rewrite-in-place, e.g. NTFS and
Ext3, that maintain a static on-disk layout for compatibility. This dramatically limits

their dynamism.

e Secondly, the block layer interface is extremely thin and does not allow the file system to
glean information about the underlying hardware easily. As a result, a number of inter-
esting black-box techniques have been proposed to determine certain hardware charac-
teristics. For instance, Talagala et al. proposed micro-benchmarks that could be used to
estimate low-level disk geometry, and latencies [37]. Some file systems use similar tech-
niques to determine RAID stripe widths, etc. [10]. However, as storage virtualization

increases in complexity, such mechanisms will not be as effective.

We feel that modifying the file system to cater to new developments in the storage stack is

fraught with danger, and in some cases, impractical.

1.3 Proposal

The more practical alternative in our opinion is to optimize the storage layer for the hosted file
system. However, the block interface obfuscates file system context from the storage layer. Our
approach is to expose file system hints to the storage layer so that the overall goals of the storage
stack can be met. This approach has been recognized before by others as being powerful and
practical. For instance, Semantically Smart Disks leverage in-depth understanding of rewrite-
in-place file systems like ext2 to infer file system operations, and are able to provide powerful
features such as secure deletion and journaling for file systems that don’t support it [33]. We

consider this form of black-box inferencing promising, but we choose a similar approach of

CHAPTER 1. INTRODUCTION 5

providing hints directly to the storage layer. The challenge we face is that while the hints
provided to the storage layer need to be flexible enough to allow powerful policies to be crafted,
they should not require a departure from the existing block interface.

These hints and corresponding policies allow the block layer to address a large number of
the problems associated with Storage Virtualization. For instance, even the interaction between
the file system and a storage array, one of the simplest forms of Storage Virtualization, is
littered with problems and missed opportunities for offering powerful new features due to the

lack of visibility across the block layer:

Performance Without accurate knowledge of the RAID parameters the file system may make
block allocation decisions that causes related data to straddle disk stripes, which can lead
to poor I/O performance. Stein showed that in several cases a random block allocation
policy was less sensitive to changes in storage virtualization parameters like the RAID
stripe size, and in fact, performed better than the complicated block allocation heuristics
of a popular local file system [36]. Another problem is the possible concentration of
crucial metadata on a single disk. This can not only reduce the effective parallelism
available to the storage system, but also dramatically increase the possibility and impact

of failure in the overburdened disk.

Reliability and Failure Recovery Ordinary RAID arrays redistribute stripes across disks trans-
parently. With little insight into the complexity of the underlying storage hardware, the
file system is unable to implement replication or block allocation strategies to provide

variable fault tolerance capabilities for data.

Power Conservation Given the scale of modern storage systems, there is heightened interest
in scaling down power consumption dramatically. For similar reasons as above, the file
system is unable to adapt its I/O requests for avoiding spun-down disks or exploiting

power efficient hardware like Flash [22].

However, with the help of hints from the file system, the storage array could avoid placing

CHAPTER 1. INTRODUCTION 6

blocks likely to be accessed together across RAID stripes. This would be quite simple for
example, if the file system informed the block layer of related blocks during block allocation. If
the storage array could distinguish data from metadata, it could detect inordinately high traffic
for metadata being directed to a single disk and take corrective action. With additional insight,
such as the identity of related blocks, the storage array would be able to implement interesting
replication policies. For instance, frequently accessed files could be replicated within a disk,
as well as striped across an array to allow graceful degradation beyond the failures tolerable
by the RAID configuration [32]. Important metadata could be mirrored or checksummed as
per the user’s fault tolerance requirements [14]. Lastly, the storage array can be designed to
distribute blocks to enforce a desired level of power savings. This can be achieved either by
redirecting I/O to lower-power storage hardware like Flash, or by redirecting requests targeted

at spun-down disks to active ones [22].

In this work, we wish to demonstrate that hints from the file system can be exploited to meet
overall goals of the storage stack at the block layer. In particular, we demonstrate how simple
hints from the file system can be used to address the longstanding challenge of improving
File System Consistency Check (fsck) performance for a popular rewrite-in-place file system,
Ext3, without requiring any functional modifications to the file system that may jeopardize its

reliability.

File systems like Ext3 scatter metadata across the disk to reduce seeks to the corresponding
data and improve online performance. However, with the increase in main memory capacity,
most metadata remains in cache once accessed, making the motivation for this design decision
mostly obsolete. However, fsck, the file system consistency checker for Ext3, requires travers-
ing all the metadata blocks in the disk, and is adversely affected by this decision. As volume
sizes increase, fsck time has been consistently increasing. Though file systems like Ext3 use
journaling to reduce the need for fsck runs to recover from unexpected crashes, fsck is still
recommended after recovering from a disk failure. Moreover, with the increasing concerns of

transient errors in the storage stack, frequent fsck checks become an easy mechanism to scrub

CHAPTER 1. INTRODUCTION 7

the disks for inconsistencies. However, the performance cost of fsck is prohibitively high for
even moderate-sized volumes at the moment.

We aim to demonstrate the viability of our approach by improving fsck performance at the
block layer by exploiting simple hints from the file system. We assume that consumption of
additional disk space or requiring additional volumes is an acceptable price to pay for reduced
failure recovery times.

Our solution has been designed with the following guidelines in mind:
1. The file system should expose the hints to the storage layer with minimal modifications

2. The hints must be simple enough to not require modifications to the standard block inter-
face. At the same time, these hints must provide enough information to the storage layer

so that the desired goals can be achieved.

3. Existing fault-tolerance and recovery guarantees provided by the file system must not be

violated.

4. Online performance must not suffer unduly.

1.4 Contributions

We make the following contributions in this work:

e We show how even stable file systems can benefit from providing hints to the block layer.
In particular, we demonstrate how this approach can be used to improve failure recovery
times by improving the performance of fsck, and other metadata heavy workloads for

existing file systems.

e We provide a generic remapping mechanism at the block layer that allows modifying the
block layout on the underlying hardware arbitrarily, while isolating the file system from

such changes.

CHAPTER 1. INTRODUCTION 8
1.5 Chapter Overview

We begin by providing an extended motivation for choosing improving failure recovery time
as an important goal for the storage stack in Chapter 2. Chapter 3 provides a detailed design of
our approach, while Chapter 4 provides details of our prototype. We quantify the impact of our
approach by evaluating its performance in Chapter 5. Chapter 6 provides an overview of the
existing work in this area. We provide a sampling of other improvements to the storage stack
our approach enables, and that we wish to pursue in the future in Chapter 7. Lastly, we present

our conclusions in Chapter 8.

Chapter 2

Background and Motivation

Our research is focussed on exploring how file system hints can be used by the storage layer to
meet the overall goals of the storage stack. In this thesis, we focus on a single goal: improving
the time to detect and recover from file system corruption. In particular, we demonstrate how
file system consistency check (fsck) performance can be improved using our approach. The
rest of this chapter provides insights into the problems existing block layouts pose to fast file

system consistency checks.

2.1 FSCK

Users expect their persistent data to be available and consistent at all times. As a result, storage
hardware and software is expected to meet very high standards of reliability and fault toler-
ance. File systems, being an integral component of the storage stack, are some of the most
meticulously developed subsystems of operating systems. Nonetheless, their fault-tolerance
characteristics are constantly being tested in the wild as hardware deployments grow in com-
plexity. Even relatively simple, stable file systems have proved to be vulnerable when faced
with the emerging threats of transient I/O failures [15, 43]. Journaling [38] and soft-updates
[12] are two online techniques that have been adopted by the file system community at large

for providing quick recovery from unexpected crashes. However, they do not provide adequate

CHAPTER 2. BACKGROUND AND MOTIVATION 10

Time Taken Per Pass in FSCK

100
50
BO
70
60
50
40
30
20
10 +—

% of total time taken

Passl Pass2 Pass3 Pass 4 Pass 5
Pass #

Figure 2.1: Contribution to total fsck time made by each phase for a run on a 40 GB disk
at 91% utilization containing mostly MP3s. Pass 1 corresponds to verifying all blocks are
accounted for in each file. Pass 2 traverses directory entries to verify they are valid. Pass 3
checks that the root directory of the file system can be reached from every valid directory. Pass
4 verifies that link counts are accurate for valid files. Finally, Pass 5 verifies that accounting

information, like used/free space, block counts, etc. for the file system are accurate.

protection against such problems. This is because they assume the integrity of unmodified sec-
tions of the file system image. Silent data corruption and bitrot can affect the integrity of the
stored data and not be detected by the mechanisms mentioned above. fsck provides an easy and
ubiquitous way to verify the integrity of the storage system.

A significant problem with file system corruption is the ease with which it can propagate
across the image. Bairavasundaram et. al. used type-aware fault injection to demonstrate that
even stable commercial-grade file systems can propagate corruption and lead to catastrophic
data loss [4]. Frequent runs of fsck can reduce the time to detect inconsistencies, and avoid
widespread corruption propagation throughout the on-disk file system image. However, this
ubiquitous recovery mechanism is not exercised often due to its poor performance. For in-
stance, it takes over 2 hours for a simple consistency check on a 33% filled ext3 file system on
a 1.7 TB volume. This time grows much larger based on how spread-out the metadata blocks
are on disk. Some large-scale storage systems require days, not hours, for completing a con-

sistency check, tilting the balance in favour of restoring from a tape backup and loosing some

CHAPTER 2. BACKGROUND AND MOTIVATION 11

Figure 2.2: Block layout on the Ext3 file system. Metadata blocks (darker) point to data blocks

(lighter) and are placed next to the data they point to.

data, rather than taking the system offline and performing a lengthy file system consistency

check [40].

Fsck performs its checks in a number of passes. The first iterates through inodes to identify
allocated blocks and verify file sizes. The second verifies the directory structure. The third
verifies directory connectivity with the file system’s root directory. The fourth verifies refer-
ence counts, and the fifth checks if summary information is accurate. The first two passes are
most time consuming for fsck since they deal with traversing the metadata blocks on disk, as
shown in figure 2.1. The problem is caused by dynamically allocated metadata blocks. To
improve read performance, they are allocated close to the data they point to. As a result, during
consistency checks, the disk spends a large amount of time seeking from one metadata location
to another while reading only a small fraction of all the blocks on disk. This is due to a design
decision made by early file systems when main memory was not sufficient to avoid access-
ing the disk for metadata-heavy and sequential workloads. However, the increase in primary
memory size over the years has resulted in most metadata blocks being cached in the operating
system buffer cache, thus rendering this heuristic redundant for maintaining good sequential
read performance. Next, we examine how block layout affects fsck performance in ext3 in

detail.

CHAPTER 2. BACKGROUND AND MOTIVATION 12

2.1.1 Effect of ext3 File System Layout on fsck

The ext3 file system was inspired by the Fast File System (FFS). Like FFS, it splits the disk
into logical segments called block groups (known as cluster groups in FFS). This design allows
improved accounting and management of metadata. Inodes, data structures that aggregate
information about files, are allocated statically at file system creation' and distributed evenly
across the block groups. Their allocation status is tracked by bitmaps that are placed close to
their corresponding bitmaps. Most of the rest of the blocks are left as unused, free for storing
data. However, certain metadata blocks are allocated dynamically so they are close to the

corresponding data blocks. We discuss each type of these blocks next:

Indirect Blocks For small files, the inode itself contains pointers to a list of blocks that contain
data. However, for larger files, pointers to the on-disk blocks are maintained in metadata
called indirect blocks. As the file grows in size, another layer of indirection is created in
the form of double-indirect blocks, where each entry in the block is a pointer to an indi-
rect block. Lastly, for really large files, a triple indirect block which contains addresses

of double indirect blocks can also be allocated.

Directory Blocks Directory blocks contain name and inode number pairs. These blocks form
the hierarchical namespace we traditionally associate with a file system. These blocks

need to be accessed to resolve the location of files on disk.

Figure 2.2 shows how metadata is allocated close to the blocks it points to. Since the
metadata needs to accessed first to locate the associated data, the access to the data block can be
serviced without requiring additional seeks. As a result, accessing the data pointed-to by these
metadata blocks can be done with little to no seeking, while metadata heavy workloads, like
fsck, require significant amounts of seeking. If sufficient main memory is available, subsequent

accesses to the metadata can be serviced entirely from the buffer cache, but a workload like

'Support for dynamic inode expansion has been added in recent years but for the sake of simplicity, we restrict
ourselves to the canonical ext3 on-disk layout.

CHAPTER 2. BACKGROUND AND MOTIVATION 13

fsck must pay a high initial penalty for accessing metadata blocks.

We plan on improving file system consistency check performance by clustering metadata
blocks closer together. Normal buffered workloads would not notice a significant performance
hit since subsequent accesses can be served from the operating system’s cache. However,
workloads like fsck which require traversal of most metadata blocks on disk can be sped up

dramatically.

Chapter 3

Design

We wish to ensure that the stability and availability goals of the file system dont become an
impediment to its ability to keep up with the dynamism of storage hardware, and meet high-

level goals for the storage stack.

Our solution is to expose hints from the file system to the block layer which are simple
enough to be embedded in existing block interfaces, but at the same time, informative enough
to allow powerful policies to be implemented at the block layer. To improve file system con-
sistency check performance, the block layer needs to be able to distinguish between metadata
and data blocks. Given the hierarchical nature of the storage stack, the block layer does not
have enough exposure to file system context to do so in a generic manner. Instead, we propose

the file system expose hints to the storage layer directly.

This chapter provides a detailed description of our design. We begin by stating the primary
design goals of the system, followed by a discussion of the key components of the system.
We then discuss file system hints and the related challenges to finding the right granularity
and medium to expose these to the block layer. We then provide the design of the remapping
mechanism in detail. Lastly, we briefly discuss the remapping policy used in this work and

possible enhancements in the future.

14

CHAPTER 3. DESIGN 15

3.1 Design Goals

Our solution has been designed with the following guidelines in mind:
1. The file system should expose hints to the storage layer with minimal modifications

2. The hints must be simple enough to not require modifications to the standard block inter-
face. At the same time, these hints must provide enough information to the storage layer

so that the desired goals can be achieved.

3. Existing fault-tolerance and recovery guarantees provided by the file system must not be

violated.

4. Online performance must not suffer unduly.

3.2 Major Components

Our proposed solution for improving fsck performance leverages file system hints through two

main components:

Storage Mechanism The block layer can use the file system hints to initiate various storage
mechanisms. In this work we implemented a block remapper which maps a block to a
different region on disk or an entirely different device, and makes this mapping persis-
tent. Additional storage mechanims can be added to act upon file system hints for various
purposes. For instance, infrastructure for replicating and checksumming selected blocks

could be added [14].

Storage Policy Policies allow the system to use the hints provided by the file system and the
storage mechanisms provided by the storage layer to achieve high-level goals. In our
case, the policy remaps metadata blocks and clusters them closer together in order to

reduce failure recovery time.

CHAPTER 3. DESIGN 16

3.3 File System Hints

File system hints expose some parts of the file system’s context to the block layer. Finding the
correct granularity and the ideal delivery mechanism to expose these hints to the block layer
was an important consideration for us to meet the design goals stated above. We discuss these

in greater detail here.

3.3.1 Granularity

Our aim is to ensure that the hints are generic enough to avoid over-specialization for a specific

file system, and specific enough to allow administrators to implement interesting policies.

For our goal of clustering metadata blocks, we simply require the file system to differentiate
metadata blocks from data blocks. However, more complex schemes are feasible and would al-
low more powerful policies. For instance, exposing relationships between blocks could further
improve clustering. This could be achieved by identifying blocks associated with the same file,
or the same user. For dynamically allocated metadata, exposing their deallocation can help the
block layer minimize space overhead for our remapping mechanism. In addition, this could

enable more complex features like secure deletion [31, 30].

3.3.2 Explicit Hints

It is possible to use fields in existing block interfaces to expose hints to the block layer. For
instance, Meisner et. al. have recently proposed using the group ID field in the SCSI command
set to provide differentiated service to workloads on hybrid storage systems XXX: need citation.
In this approach, hints are passed in-band, along with I/O requests, and the block layer can
implement its policies by intercepting and acting upon them synchronously. This is the model

we primarily adopt because it requires minimal changes to existing block-level interfaces and

CHAPTER 3. DESIGN 17

simplifies the implementation of the storage mechanism '. An alternative would have been
for the file system to expose hints to the block layer asynchronously but we dont discuss this

approach here.

3.3.3 Inferred Hints

Most current file systems follow a largely static block layout. The block layer can be made
aware of this layout and infer information about file system operations by simply doing range
checks on I/O request locations to implement some policies. The body of work on Semanti-
cally Smart Disks has explored this approach in detail and also sheds light on the complexity
of inferring high-level file system operations through this approach [33]. However, we do
leverage some well-known semantics of our target file system, Ext3, to design our remapping
mechanism, as described in section 3.4.1. Though the same information - i.e. the layout and
size of block groups could have been sent to the file system through an explicit hint, we de-
cided against this approach since this information rarely changes between different file system

images of Ext3.

3.4 Remapping Mechanism

The remapping mechanism allows clustering of blocks. We allow blocks to be remapped to
arbitrary locations in the remap disk, providing significant flexibility for implementing clus-
tering policies at the storage layer. However, as a result, the remapping information must be
recorded, persisted, and kept consistent even in the presence of system failures. As a result, the

storage layer must maintain a persistent remapping data structure.

'Our prototype uses the Network Block Device which doesn’t natively support such features which required a
slight modification to Linux’s NBD protocol, see the next Chapter for details.

CHAPTER 3. DESIGN 18

3.4.1 Remapping Data Structure

The data structure used to maintain remapping information is crucial to maintaining fast online
performance, because it must be traversed to identify whether a block is remapped or not, and
the location of a remapped block. A Radix Tree is a common data structure for storing this
information. This makes sense when any logical block accessed by the file system might be
remapped. However, for improving fsck performance, we can restrict ourselves to just the
metadata blocks. Metadata only constitutes a small portion of the blocks on disk. As a result,
the effective remappings possible are only a small subset of the blocks on disk. We adopted
the Inverted Page Table (IPT) as our remapping data structure, since it is used for storing page
tables on 64 bit architectures where the effective physical memory is only a fraction of the
overall 64 bit address space. Support for different remapping data structures can be added as
needed for other storage policies. In addition to the IPT, we maintain a bitmap which tracks

the allocation status of the blocks in the remap region.

We split the remap region into equal length segments. Each segment manages the metadata
for a single block group of the base file system. There are several reasons for this design. First,
the target file system, Ext3, performs coarse grained clustering by preferring to keep related
metadata within the same block group. For instance the inode allocator in Ext3 tries to allocate
new inodes such that the files in the same directory are stored in the same blockgroup, close
to the directory. Our approach can automatically leverage clustering of metadata in the remap
region. Second, by having each segment maintain its IPT and bitmap, we avoid unnecessary
contention on a global radix tree during peak loads. Block level remapping solutions which
do not exploit file system hints, like [20], are susceptible to this problem. This can be con-
sidered an example of where our design exploits inferred hints, since the block layer exploits

knowledge of the file system without hints directly from it.

CHAPTER 3. DESIGN 19

Remapping Mechanism Requirements

Our remapping mechanism tries to provide good online performance with reasonable overhead,
while upholding the consistency semantics of the file system. Below, we summarize how these

requirements are met by our design.

Consistency Recall that we aim to uphold the existing fault tolerance and reliability prop-
erties of the file system. However, by introducing additional metadata at the block layer, it is
possible that the block layer’s state can become inconsistent with that of the file system. For
instance, if the file system issues a request that results in a remapping, and the block layer
acknowledges the request without making all intermediate modifications to the IPT blocks per-
sistent on disk, a failure could result in the data being inaccessible. This problem can occur
even if we exploit the file system’s support for journaling, as explained in Section 3.4.2. Given
that we remap file system metadata blocks, the file system could become grossly inconsistent.
To avoid this situation, we use delayed acknowledgements, i.e. we make sure the block layer
never acknowledges a write request until all metadata associated with it is on disk as well.
This provides the semantics that the file system expects off a regular disk and the consistency

requirements of the file system are maintained.

Performance Fast block resolution can be implemented by caching most of the remapping
information in memory. For a 1.7 TB file system, the storage layer would need roughly 2 GB
of RAM to maintain the remapping information entirely in memory. Given the specifications
of modern high-end storage arrays, this overhead is manageable and can be tailored to the
deployment by tuning the size of remap segments to correspond to the data-metadata ratio
in the file system. It is possible in some cases for the IPT chains to grow long, but, in our
experience, this has not been an issue, especially given that the time for accessing the IPT is
easily dwarfed by disk access latency.

However, delaying acknowledgements may effect performance negatively. This is because

CHAPTER 3. DESIGN 20

for each write request that requires an update to the remapping information, the segment’s
bitmap, a HAT block, and upto 2 IPT blocks may be required. To improve I/O performance,
the delayed acknowledgements approach does not impose any ordering on the remap informa-
tion blocks it flushes to disk, as long as all the dependent block are written to disk before it

acknowledges the I/O request to the file system.

Note that the overhead for flushing the remap blocks to disk only needs to be paid when the
remapping information is updated. Read and writes to remapped blocks which do not require
updates to the remapping information can be serviced directly without incurring the above
overhead. Therefore, only metadata block allocation and deallocations incur an overhead. We
implemented a number of performance optimizations that further reduce the impact of delayed

acknowledgements.

First, we allow multiple outstanding requests to the block layer. This provides the potential
of batching together updates to the same remapping blocks. This allows us to trade latency for
throughput. A similar approach was used in Parallax [20]. An alternative would have been to
implement a secondary journal in the storage layer. Instead of delaying acknowledgement of
requests that require an update to the remapping data structures till all dependant blocks have
been written to disk, we could simply ensure that the block and a corresponding entry in the
log representing the source and destination of the new remapping is persisted before acknowl-
edging the request. This would reduce the latency of block remapping requests. However, this
will require an additional journal write, and a journal region, increasing the space overhead
in the remap region. We have currently adopted the former approach, though a journal based
approach can also be supported if necessary. For instance, if the file system does not support
journaling, the latency of properly remapping metadata can be reduced by using a journal in

the remapping layer.

The other major performance optimization involves exploiting the journaling support avail-
able most modern file systems to convert the remapping of metadata blocks into an asyn-

chronous operation so that it is no longer on the critical write path, while upholding the relia-

CHAPTER 3. DESIGN 21

bility guarantees provided by the journaling file system. We discuss this optimization in greater

detail in the next Section.

3.4.2 Exploiting Journaling Support

Most modern file systems have adopted journaling to provide a degree of protection against
inconsistency due to unexpected failures. We have already discussed in Section 2.1 why simply
relying on journaling or soft-updates is not sufficient and a full file system consistency check
continues to be relevant. However, we exploit journaling to reduce the effective performance
overhead of adding (or removing) block remappings due to delayed acknowledgments.

The standard journaling support on Ext3 maintains a hidden file on disk where metadata
blocks are journaled. Periodically the contents of the journal are checkpointed to their actual
location on disk and the head of the journal is updated. To minimize the online performance
impact due to delayed acknowledgements, our hints identifying metadata blocks are exposed
to the block layer only during journal checkpointing, which is a background task, while jour-
nal updates which are in the critical path are allowed to pass-through as regular data writes.
Exploiting journal checkpointing for passing hints to the block layer also offers the added ad-
vantage that by the time journal checkpointing is initiated, short-lived metadata allocations
have likely already been purged. This can happen with workloads that create and delete files
rapidly, for example compilation workloads, which avoids added overhead.

Note that the support for journaling does not obviate the need for delayed acknowledge-
ments. However, the delay is attached to the asynchronous journal write-back and not the orig-
inal write. Even though the journal can replay committed but un-checkpointed transactions, we
must make sure all intermediate block updates in the remapping data structure are written to
disk before acknowledging the original request. If the checkpoint requests are acknowledged
too early, the file system could complete the journal transaction and erase its journal entries
before the block-layer’s remapping information has been flushed to disk, and a system failure

would result in the data from the just completed transaction being irrecoverably lost!

CHAPTER 3. DESIGN 22

Journal write-back is not entirely free. In Ext3, journaled buffers are pinned in main mem-
ory till their checkpoint is complete. As a result, metadata blocks requiring updates to the
remapping information in the block layer will cause increase memory consumption during
journal commits. Another factor that can influence performance is the frequency with which
the journal contents are checkpointed. This is dependant on a number of variables. For in-
stance, if the free space in the journal reaches a threshold, or their is limited main memory left,
the journal write-back thread is activated. There is also a static timeout that triggers the journal
write-back periodically. Nonetheless, delayed acknowledgements during checkpointing, we
are able to reduce the effective performance overhead of metadata clustering at the block layer

sufficiently.

There has been previous work that has tried to exploit journaling for improving file system

reliability from the block layer. Please refer to 6.

3.4.3 Failure Model

Hardware Failure One of the benefits of our remapping approach is that we can use either
faster or more fault tolerant hardware for the remapping region, providing improved perfor-
mance or fault tolerance for metadata operations. The remapped blocks are just as vulnerable
to transient faults in the storage stack as they are in the original file system. Since the goal of
our current system is to improve consistency check performance, we do not attempt to prevent
possible corruption of these blocks and assume the file system consistency checker will do the
needful. However, it is possible to establish a complimentary goal of improving fault tolerance
for metadata blocks by implementing additional policies which may replicate or checksum

remapped blocks in a similar manner to I/O Shepherding [14].
In the event of power failure or similar occurrences, the file system recovery mechanism

should restore the system to the same state as an unmodified one. We discuss failure recovery

in Section 3.4.4.

CHAPTER 3. DESIGN 23

Software Bugs Since we leverage existing file systems, we are not immune to bugs in their
implementation. However, by minimizing changes to the file system, we guarantee their effect
is no different on our storage system than on any other existing deployment. Moreover, we
refrain from making any modifications to the file system consistency checker, which should
restore our system to the same functional state as an unmodified one. Bugs in our block layer
implementation may be an additional source of vulnerability, however, we argue that since
our remapping mechanism is relatively simple, it is easier to test and verify than an entire file

system.

3.4.4 Failure Recovery

So far we have seen how our remapping mechanism works under normal conditions. We will

now discuss the approach we used for recovering from failures.

Consistency with File System State

Assuming the file system supports journaling, all committed but not yet checkpointed transac-
tions would be replayed during file system recovery. The file system’s hinting support should
embed the metadata vs. data hints in its journal entries. In our remapping mechanism, adding
or removing remapping entries is idempotent, provided the relative ordering of the operations
is maintained, which the journaling mechanism ensures [38]. As a result, when the journal is
replayed, previously acknowledged block remapping operations still in the journal transaction
will be replayed in sequential order, thus ensuring the remapping information will be consistent

with the state of the file system by the end of journal recovery.

Internal Consistency

Though consistency with file system state can be reached by replaying the journal during recov-
ery, the remapping information may not be entirely internally consistent. In particular, some

space in the remapping region may be wasted. For instance, if a failure occurs while the storage

CHAPTER 3. DESIGN 24

server is flushing the IPT table to disk, some blocks, such as the IPT’s bitmap may be written
to disk but the corresponding updates to the IPT blocks may not have been flushed. As a result,
a block in the remap region is lost. This inconsistency can be reconciled by performing a quick
traversal of the remapping information to garbage collect unused references as it is retrieved
from disk at load time. Since only a small amount of remapping information is required per
segment and all of it is clustered together, this garbage collection can be done very quickly.
We have not yet implemented such a recovery mechanism in our current prototype, and leave it
for the near future. It is important to note that the lack of the garbage collector does not affect

correctness in the presence of a journaling file system.

3.4.5 Preventing Lock-In

One problem that plagues storage systems is that adoption of a particular file system or block
layer solution forces the user to keep using the chosen solution. Our block-level remapping
mechanism has an additional feature that allows users to stop our system partially or com-
pletely. For instance, suppose the file system is no longer able to provide hints to the block
layer. Our remapping mechanism will then treat all incoming requests as pass through and no
longer allocate or deallocate metadata blocks. At the same time, previously remapped blocks
will continue to be accessible, as long as our block layer solution continues to be used. How-
ever, if one wishes to detach a file system entirely from our system, our remapping information
allows rewriting the remapped blocks to their home location on the base file system. the ac-
tively remapped blocks can be rewritten to their home location on the base file system. Once

completed, the base file system can be mounted directly, with all its changes entirely intact.

3.5 Remapping Policy

The remapping policy for improving consistency check performance dictates that metadata

blocks be remapped to a separate region and clustered closer together, thereby dramatically

CHAPTER 3. DESIGN 25

cutting down on disk seeks experienced by fsck. The remapping policy controls how the meta-
data blocks are clustered. Despite the fact that hints provided by the file system simply sepa-
rate metadata blocks from data blocks, the remapping policy can still be fairly influential. For
instance, more sophisticated approaches can be based on access patterns for improving perfor-
mance of online metadata-heavy workloads, or based on known access-patterns for improving
fsck. With additional hints, such as the type of metadata blocks, or additional context from the
file system, more interesting policies can be implemented. We discuss some of these ideas in
Chapter 7.

We will now take a closer look at the implementation of our prototype.

Chapter 4

Prototype Implementation

A logical view of our prototype can be seen in Figure 4.1. As previously mentioned, our
base file system is Ext3 - a popular rewrite-in-place file system actively used in a number
of commercial deployments. The file system interacts with the block layer which eventually
passes block requests to a pseudo-block device called the Network Block Device (NBD) [39]
available as part of the Linux Kernel. The Network Block Device converts block requests from
the file system to a custom protocol over TCP to a server which acts upon the requests. The
NBD server interacts with disks through the raw pseudo file system exposed in Linux and in
order to bypass the buffer cache, it uses direct I/O for all its I/O requests. Our block remapping
mechanism lies primarily in user space in the server while a modified version of the NBD
module and the ext3 file system reside in the client. We chose to use this split design because it
made prototyping, experimentation, and evaluation easier. Our server has been implemented on
top of Akash, a storage server built to study cache partitioning in shared storage environments

[35].

In this chapter we discuss the intricacies of our prototype implementation. We begin by
discussing the remapping datastructure introduced in Section 3.4.1 in greater detail. We then
describe the changes we made to the Ext3 file system to pass hints to the block layer. Finally,

we present the changes required to the NBD protocol to pass file system hints between the

26

CHAPTER 4. PROTOTYPE IMPLEMENTATION 27

Application

File System

¥

Block Layer

¥

Network

Block Device
Mapping Info

Kernel

Server

Figure 4.1: This diagram shows the current prototype. The file system and the NBD module on
the client have been modified so that hints can be passed over the network to the server which

hosts the remapping module and the backing disks.

client and the server.

4.1 Remapping Mechanism

The design of the IPT data structure can be seen in Figure 4.2. Given the LBN for an incoming
request, it is hashed into the Hash Anchor Table (HAT) which contains the head of a chain of
IPT entries. Each IPT entry consists of the LBN of the target block in the remap region, the
LBN of the source block in the base file system, a pointer to the next IPT entry in the chain,
and an additional 4 bytes currently left as spare. The IPT entry list is traversed to resolve the
incoming request to an LBN in the remap region. Metadata block allocations result in additions
to the end of the IPT chain. Similarly, when dynamically allocated metadata like indirect and
directory blocks are deallocated, the corresponding remappings can be removed. One natural

optimization we would like to pursue for the future is a small cache, which stores the last few

CHAPTER 4. PROTOTYPE IMPLEMENTATION

Hash Anchaor Table

Rel. BN

Inverted Page

Table

Physical BN

LBN

28

Figure 4.2: Physical block resolution on an Inverted Page Table given a Logical Block Number

(LBN).

Table 4.1: Overhead Per Remap Region Segment with 8192 Blocks

Block Type Number of Blocks
Hash Anchor Table 8
IPT Entries 32
Bitmap 1
Superblock/summary 1

resolved LBNs and their translations to avoid the overhead of the traversing the IPT. However,

in our experience, since almost all of the IPT stays in memory in the server, translations are not

a source of performance problems when compared to disk 1/0.

Our infrastructure addresses blocks using 32-bit logical block numbers (LBNs) which al-

lows us to address upto 16 TBs of data in the base file system, given 4 KB blocks. This

corresponds to the limits of a standard ext3 file system at the moment.

4.1.1 Overhead

The overhead associated with maintaining the remapping metadata can be seen in table 4.1. It

currently amounts to 42 blocks per 8192 remapped blocks in the remap region - an overhead

of roughly 0.5%. Note that we expect metadata blocks to be only a fraction of the number of

CHAPTER 4. PROTOTYPE IMPLEMENTATION 29

blocks in the base file system. In table 4.1 we assume 25% of the blocks in the file system are

metadata which is an overestimation for most deployments.

4.2 Changes to the ext3 File System

The ext3 file system does not expose hints to the block layer by default. Our design for improv-
ing fsck performance calls on the file system to distinguish metadata blocks from data when
issuing write requests. Therefore, minor changes to the ext3 file system have been made so it

exposes these hints to the block layer.

4.2.1 Exposing Metadata Hints

As discussed in Section 3.4.2, in order to minimize overhead in the write-path, we only em-
bed our hints in requests corresponding to metadata checkpointing. We do this by annotating
a descriptor for metadata block updates. We currently only annotate indirect and directory
block updates. The ext3 file system’s journaling code wraps the block update with another
descriptor pointing it towards a destination in the journal. As a result, our original annotation
is obscured and the write request generated for the journal I/O has no annotation. Once the
journal transaction for the block has been committed however, the descriptor pointing to the
journal is stripped-off and the subsequent checkpointing request would contain the annotation.
This block request is passed to the NBD block device which relays them to the storage server
along with its annotation.

Recall that metadata like indirect and directory blocks are dynamically allocated. As a
result, these can transition from being regular data blocks to metadata and back. Given that we
only allocate a fraction of the total volume size for clustering metadata in the remap region,
it may be desirable to undo remappings as metadata blocks are deallocated. However, there
is a possibility the block is reallocated as metadata shortly thereafter, forcing us to pay the

performance penalty for wasted updates to the remapping information. As a result, there is

CHAPTER 4. PROTOTYPE IMPLEMENTATION 30

a space-time tradeoff with accurately tracking deallocations for metadata blocks. In order to
keep our approach applicable to a variety of workloads, we decided to track and undo mappings
for deallocated metadata and save space in the remapping region. However, the approach we

use to hint deallocations to the block layer is different for each type of block.

Indirect Block Deallocation

As far as the file system is concerned, an indirect block is still allocated till the corresponding
bit in the block bitmap is unset and written to disk. However, tracking deallocations on this
operation would require keeping the last updated copy in memory in the server, and then fig-
uring out what blocks used to be indirect and were recently unset in the bitmap. Instead, we
decided to pursue an optimization. In Ext3 deallocation of an indirect block involves zeroing
out the indirect block, followed by its removal from an inode, or from another indirect block.
However, the entire operation is not committed till the corresponding entry in the bitmap is
unset.

The internal journal in Ext3 has a fixed maximum size, of roughly 128 MB. As a result,
some transactions, like a large delete can not fit entirely within journal transaction and must be
broken up. In order to guarantee consistency despite failures between a delete which is split
between two transactions, the deletion must be carried out in strict order. Hence, the indirect
block is zeroed in a bottom up manner when deleting or truncating a file.

We indicate deallocation of the indirect block by tagging the checkpointing request that
zeros it out, instead of tagging the unset of the bitmap. This approach is convenient for passing
hints to the block layer and eases the remapping policy implementation in the block layer. On
seeing an indirect block deallocation tag, the block layer removes the existing remapping for
the block and redirects the write request to the location requested by the file system to begin
with.

Tagging the zeroing of the indirect block as a deallocation also retains correctness since

any subsequent reallocation as an indirect block would be tagged as metadata, in response to

CHAPTER 4. PROTOTYPE IMPLEMENTATION 31

which the block layer can update its remapping. If instead, the block is used as ordinary data,
no updates to the remapping need to be made. In all cases, the current state of the block can be

accessed by read requests correctly.

Directory Block Deallocation

Unlike in the case of indirect blocks, the deletion of a directory may not actually require any
updates to them. As a result, hinting directory block deallocation to the block layer is more
challenging. Directory blocks are normally deallocated when the directory inode is removed.
Although directory deletion requires that it be empty, i.e. the only valid entries in the directory
may be either ”.” or ”..”, the actual deletion requires a process similar to that followed for
deallocating an indirect block discussed above. We tag a directory block as being deallocated
when it becomes empty. Note that unlike indirect blocks, the file system may not actually
deallocate the emptied block in most cases. However, this approach still retains correctness.
If the file system does deallocate the directory block after emptying it, our remapping remains
consistent. However, if the file system updates it as a directory block, the request would be

tagged as a reallocation and the block layer would need to create a fresh remapping and redirect

the block to the remap region.

4.2.2 File System Recovery

Our basic block type tags (metadata/data) are maintained in a descriptor attached to the in-
memory version of the block that is used for checkpointing by the Linux Kernel. This informa-
tion is pinned in memory until the checkpoint request is acknowledged by the disk. However,
in the case of an unexpected system failure, this in-memory information will be lost. The jour-
nal replay during recovery will not have the hint attached and our remapping mechanism will
not be able to exploit the lost hints from the file system to implement its policy for the replayed
requests.

To avoid this, we needed to make minor modifications to ext3’s journaling layer to write

CHAPTER 4. PROTOTYPE IMPLEMENTATION 32

block-type hints as part of the journal transaction to disk. In addition, the recovery mechanism
in the file system is correspondingly updated to read the block type tagging from the journal and
retransmit the requests to the block layer. Note that this is the only modification we have made
that affects any on-disk state. However, unlike the main file system, the journal is transient and
does not need to remain consistent across versions of the file system, provided any necessary

recovery of left over transactions is completed before an upgrade.

4.3 Modifications to the NBD Protocol

Linux’s NBD provides a simple protocol to pass read and write requests. This is functionally
equivalent to the most common features in the standard SCSI command set used to talk to
disks. However, it does not readily allow passing file system hints to the block layer as the
SCSI command set does (see section 3.3.2). As a result, we made minor modifications to the

packets used by the NBD to pass some additional tags.

Chapter 5

Evaluation

In this chapter we will try to demonstrate that our approach of combining file system hints with
a block-level remapping mechanism can implement powerful policies. Specifically, we show
that our approach is effective at improving failure recovery times without requiring fundamen-
tal redesigns of parts of the storage stack. In this chapter we briefly discuss our evaluation
strategy and some preliminary performance results. We quantify the improvements to fsck
through artificially aged file system images and compare against unmodified Ext3. At the same
time we demonstrate that our approach imposes very little overhead for some standard file sys-
tem workloads. We then present a detailed discussion of our evaluation, problems encountered,

and possible future improvements.

5.1 Evaluation Platform

Our prototype consists of a Network Block Device server, its corresponding NBD module, and
a slightly modified version of the Ext3 file system. The NBD server is implemented entirely
in user space and resides on a remote machine with direct access to raw disks, while the client
machine needs to install the NBD kernel module and mount the modified Ext3 file system on
the NBD pseudo block device. For our evaluations we used two Dell SC-1450 servers with

2 Dual-core Xeon CPUs@3.60 GHz, 2 GB of main memory, a 250 GB SATA disk and a 36

33

CHAPTER 5. EVALUATION 34

GB SCSI disk respectively. Both are connected to a dedicated 1 Gigabit Ethernet switch. One
was used as the server and provided raw block-level storage to the other, which acts as the
client. The server is running Debian 5 with the accompanying 2.6.26-2 kernel, while the client
is running Debian 4 and a custom built Linux 2.6.23 kernel. We dont explicitly require these

versions of the operating system for our prototype but we have not tested on other platforms.

5.2 Evaluation Methodology

File system consistency check performance is highly dependant on the block layout of file sys-
tem images. It is extremely sensitive to fragmentation and gets considerably worse with the
age of the file system. It is a challenge to artificially generate a file system image that exhibits
a realistic amount of fragmentation in a compressed amount of time [34]. Moreover, the aging
workload must be repeatable in order to make a fair comparison of file system consistency
check performance. We experimented with a number of aging alternatives, but settled on com-
pilebench due to its repeatability, ease of use, and realistic workload [18]. We describe our

benchmarking methodology next.

5.2.1 Benchmarks

In addition to being our aging mechanism, we use compilebench as another benchmark. It
artificially ages file systems by generating a large number of directories and issuing 1/O rep-
resentative of several iterations of compiling, deleting, and patching the Linux kernel’s source
trees. We added a flag to the compilebench script to prevent it from deleting the created direc-
tory structure after a benchmarking run is complete. We run fsck on this artificially aged file
system to compare fsck performance.

Compilebench creates 20 directories of Linux kernel sources initially, followed by 30 op-

erations randomly chosen from the following:

e Additional kernel source tree expansions.

CHAPTER 5. EVALUATION 35

Patching an existing kernel source tree. This operation results in several files in the

directory tree being modified.

Compiling the kernel source tree. This results in several additional files being created in

the directory tree.

Reading an entire source tree. This exercises data and metadata.

Cleaning the kernel sources. This selectively deletes files throughout the directory tree.

Deleting an entire source tree.

Running stat on each file in one of the source trees source trees. This is a typical metadata

intensive operation.

The seed for the random number generator to choose an operation is kept constant, therefore
subsequent runs result in the same operations being repeated.
We then run custom microbenchmarks proposed by Piernas et al. in [25]. This consists of

the following operations:

Read-meta (r-m) : Find files larger than 2 KB in a directory tree. This should only read

metadata blocks.

Read-data-meta (r-dm) : Read all regular files in a directory tree. This accesses data and

metadata blocks.

Write-meta (w-m) : Create a directory tree with empty files. This only causes writes to meta-

data blocks.

Write-data-meta (w-dm) : Create a directory tree. This should write to data and metadata

blocks.

Read-write-meta (rw-m) : Copy a directory tree with only empty files. This should cause

both reads and writes to the metadata blocks.

CHAPTER 5. EVALUATION 36

Read-write-data-meta (rw-dm) : Copy a directory tree containing non-empty files. This

should cause reads and writes to both metadata and data.

5.2.2 Choosing Remapping Target Device

Our approach allows dynamically allocated metadata like directory and indirect blocks to be
moved to a separate volume - the remapping device. This can be either a separate disk or
another partition. Using a separate disk enables additional parallelism, but requires investment
in additional hardware. The metadata disk must be considered at least as reliable as the disk
containing data since crucial metadata would be stored on it. However, since there are far fewer
metadata blocks than data blocks in most file systems, this allows the disk to be much smaller
in size. In our evaluation we assume a 1:4 ratio for metadata to data. Thus, the 250 GB SATA
disk is partitioned with only the first 95GB formatted with Ext3. We leave the rest for storing
the remapping information when evaluating the alternative of placing data and metadata on the
same disk but in different partitions, or otherwise, leave it unused. The first 11GB of the SCSI
disk store the server’s operating system and applications, while the remaining 25GB is used as
our remapping target when evaluating performance with separate data and metadata disks. We
evaluate both of these alternatives in terms of their online usage and file system consistency

check performance.

5.3 Online Performance

It is important to remember that improving file system consistency check performance must
not come at the cost of dramatically reduced online performance. As a result, providing com-
parable online performance is a prerequisite to pursuing any effort that tries to improve fsck
performance. At the same time, remapping metadata might also improve performance for some
other common metadata workloads. As a result we find it worthwhile to present our online per-

formance evaluation.

CHAPTER 5. EVALUATION 37

Performance on CompileBench

|
<& [[
& |
S
» 2
8« | |
g &) ,ao (r——
S & € S L
] L oF Remap w/ Multiple
H e | | | Disks
a = I
o 059 W Remap w/ Multiple
o = | | Partitions
& Vanilla Ext3
&@ [[
&
2
& 0o 05 1 1.5
@
e
&

Throughput Normalized by
Vanilla Ext3

Figure 5.1: Average throughput for compilebench’s operations normalized by Ext3 perfor-

mance on kernel source trees. Higher values are better.

CompileBench Metadata Operations
Performance

Remap w/ Multiple
Disks

&
& B Remap w/ Multiple
Partitions

& & | Vanilla Ext3

Operations

& 0 0.5 1 1.5

Elapsed time normalized by
Vanilla Ext3 Performance

Figure 5.2: Elapsed time for metadata heavy tasks reported by compilebench normalized by

Ext3 performance. Note that lower values are better here.

CHAPTER 5. EVALUATION 38

Performance on Custom Microbenchmark

-
[=- 3]

Vanilla Ext3

[

MRemap w Mutiple
partitions
Remap w Multiple
Disks

o oo o
(=R SN

Elapsed Time Normalized to
Ext3 Performance

w-am r-m W-m r-am rw-m - del
am

Operations

Figure 5.3: Elapsed time for operations from a custom benchmark described in section 5.2.1

normalized by Ext3 performance. Lower numbers are better here.

Compilebench Results

We ran compilebench on a freshly formatted Ext3 file system stored on the 95GB partition of
the SATA disk as described above. The results from compilebench can be viewed in Figures ??
and 5.2. Compilebench measures elapsed time for each benchmark iteration and tracks the total
size of the data set for each benchmark. It reports its results in the form of average throughput
for data heavy workloads which is calculated from the known dataset size and elapsed time

across all runs. Metadata heavy workloads are reported in elapsed time.

The results show that for most data heavy operations, our approach adds virtually no over-
head, and in fact most operations show a slight improvement, even when metadata is located
on a partition on the same disk as data. The remapping approach performs particularly well
on metadata heavy tasks such as cleaning a kernel source tree, running stat operations, and
deleting a source tree. The additional disk seems to provide up to a 20% boost for a number
of data operations. We attribute this to the additional parallelism the second disk provides.
For metadata heavy tasks like stat and delete, the remapping approach performs significantly

better.

CHAPTER 5. EVALUATION 39

Read-Only FSCK Time on Aged File
System

00 _J—
Other Phases

o 4+— — WEDirectory Check
] Inode Check

[

so4— —

Elapsed Time (in secs)
-
wm

Vanilla Remap w Remap w/
Ext3 Multiple Multiple
Partitions Disks

Phases

Figure 5.4: Elapsed time for an fsck consistency verification run in read-only mode. This
compares our approach against vanilla Ext3 with metadata on the same partition as data, and

on a separate disk.

5.3.1 Custom Microbenchmark

We ran the custom microbenchmark to better understand online performance of our remapping
approach. Its results can be seen in Figure 5.3. For metadata-only workloads, our approach is
significantly better, as we see improvements of 40-80%. For operations like the expansion of a
kernel source tree that write to data and metadata, we seem to incur a slight overhead of 5-10%.
However, for operations that both read and write to data and metadata, the single partition
solution performs very poorly. This is because of our decision to only remap dynamically
allocated blocks like directory and indirect blocks. Operations that require frequent accesses
to inodes still stored in their original location in the data disk incur the overhead of seeking
across partitions when traversing from metadata (like a directory entry) to the inode it points

to. This overhead disappears with the additional parallelism of a second disk.

5.4 FSCK Performance

We now discuss the results from running fsck on an Ext3 file system on a pass through NBD

server and on our prototype with two different configurations: one with both data and metadata

CHAPTER 5. EVALUATION 40

stored on the same disk but in different partitions, and the other where the metadata is stored
on a separate disk. Each of the file system images have been aged using the same workload
generated by compilebench.

Figure 5.4 shows the results from a fsck run on a file system utlizing roughly 11 GB of the
95GB available in the partition. Verification of file size and accounting for allocated blocks is a
dominant contributor to the fsck execution time, followed by verification of directory integrity.
Using our approach, even with a single disk we are able to reduce the time required to verify
directory integrity by roughly three times, this is further improved by adding an additional disk.
However, verifying the integrity of inodes does not show a similar reduction. We once again
attribute this to the separation of indirect and directory blocks away from inodes in our system.

We provide more insight into the problem in section 5.5.

5.5 Discussion

Our prototype demonstrates that it is possible to leverage simple hints from the file system to
implement powerful policies using our block remapping approach. In particular, we demon-
strated that we could dramatically reduce failure recovery times for an existing file system
without requiring functional changes to it.

Though the results of our evaluation are encouraging, our decision to not remap every meta-
data block seems to cause some performance problems, particularly when using a single disk
with separate partitions. For instance, one of the custom micro-benchmarks tries to copy a
large directory tree. This requires metadata and data to be both written and read. Moreover,
this operation requires updates to a large number of inode blocks. Recall that the inode table is
partitioned into equal-length segments stored in every block group. Since we do not remap in-
ode blocks, operations like directory tree copying require the disk to fetch data from the remap
region as well as the data region. When a single disk is used to store both the data and meta-

data region in separate partitions, this forces the disk to incur lengthy seeks, causing substantial

CHAPTER 5. EVALUATION 41

overhead for such operations. A similar phenomena limits the performance improvements in

the inode verification phase of fsck as well.

One approach to reducing this penalty is to simply add an additional disk. In our tests,
this was quite successful. However, when this is not possible, remapping inodes could also be
considered. Since inodes are not dynamically allocated, the overhead associated with delayed
writes for allocation and de-allocation does not apply, thus runtime performance should not

suffer. We plan on evaluating this policy in the near future.

We also noticed that the actual number of metadata blocks allocated on our test runs was
much smaller than the 25% we had conservatively estimated. We believe metadata and fsck
performance can be improved further by tuning the size of our remapping region segments to

better reflect the amount of metadata in the file system.

One important note about our evaluation is that we allowed updates from the client to be
stored in the buffer cache in the server. Ideally we would have used direct I/O which would
replicate the behaviour of modern disks by acknowledging updates only after they have been
persisted. As aresult, the prototype evaluated above would not provide the same fault-tolerance

guarantees as we had designed for.

We decided against using direct I/O because it imposed penalties of up to 10 times on any
workload running on the client. We postulate that since the NBD server is multi-threaded, it
reorders incoming request streams, which may well be sequential, into random 1/O requests.
With direct I/O, all requests seemed to pass directly to the disk, without the possibility of coa-
lescing with neighbouring updates. As a result, every workload on the client seemed to exhibit
the characteristics of random I/O, thus making it impossible to accurately gauge performance
improvements due to our remapping mechanism. With buffered I/O, incoming requests are
allowed to coalesce and better utilize the disks. We plan on investigating this problem further

and finding an appropriate solution.

To summarize, we feel these initial performance evaluations are satisfactory and encour-

aging. Our current heuristics for allocating remapped blocks within the metadata disk are

CHAPTER 5. EVALUATION 42

extremely simplistic. This leaves room for further work. One of our immediate goals is to
evaluate the fault tolerance and recovery properties of our approach. We would also like to
evaluate our approach against other similar approaches like DualFS.

We now discuss the prior work that has influenced our research.

Chapter 6

Related Work

In this work, we have shown how our approach of combining strategically placed hints from
file systems, with a simple remapping mechanism, and specifiable policies can be used to meet
overall goals of the storage stack. In this chapter we place our work in the context of existing
research in storage systems, and in particular, work related to bridging the so-called informa-
tion gap in the storage stack. We also discuss other recent block-level remapping mechanisms.
Finally, since we dedicated the assessment of our approach to boosting recovery time from file
system failure by improving fsck performance, we discuss some of the other recent efforts in

achieving the same goal.

6.1 Information Gap in Storage Systems

We have highlighted previously that the lack of insight across layers in the storage stack, par-
ticularly between the file system and the underlying hardware, leads to missed opportunities
for performance optimizations or interesting reliability and fault tolerance features XXX: Add
track back to the section where we mentioned this!. This so-called information gap between
the file system and the hardware has been a popular area of research and has been approached
from various directions. However, one of three themes is dominant in most work in this space:

improved insight for file systems to the underlying hardware, more exposure for hardware to

43

CHAPTER 6. RELATED WORK 44

the file system above it, or an intermediate approach suggesting greater cooperation. We sum-

marize some of this work here.

6.1.1 Smarter File Systems

Some have argued that file systems should be able to adapt to the characteristics of the un-
derlying hardware to improve performance. For instance, Schindler et al. argued that the file
system should be provided details of the underlying hardware so that the file system’s block
allocator can optimize the block layout [28]. Others have proposed black-box techniques for
inferring hardware characteristics which can be used to achieve similar goals [37, 41]. We feel
the pace of advances in storage hardware poses a challenge to such an approach. Since file
systems follow a slow and methodical development model due to their sensitive nature, they
are likely to lag significantly behind the state of the hardware, thus being unable to exploit its
features appropriately. Another problem is caused by storage virtualization. The “disk”, as
seen by the file system may in fact be a share on a SAN. In such environments the “disk” may
change dynamically and in some cases, while the file system is still online. Moreover, being
part of the operating system, file systems are required to be general and applicable to a variety
of deployments. As a result, their heuristics need to be simple and inherently best-effort. For
instance, improved interoperability with sophisticated storage appliances cannot come at the
price of support for ordinary desktop environments. Maintaining consistent state on disk de-
spite power failures, tolerating fail-stop or transient hardware faults, and adhering to expected
semantics (e.g. POSIX) under edge conditions continue to be significant challenges even for
simple, stable, and heavily tested file systems [4, 43, 26, 15]. As a result, most existing com-
mercial file systems choose to exploit only coarse-grained information about the underlying
hardware, like RAID stride and stripe sizes [10].

Faibish et al. suggested that varying Service Level Objectives (SLOs) could be met if the
file system separated metadata into a separate region in the block address space, allowing dif-

ferent quality of disks to be used for each [11]. Interestingly, they suggest that an alternative,

CHAPTER 6. RELATED WORK 45

but less desirable approach would have been to use a block level indirection mechanism which
would separate metadata from data. They decided against this because it would require infor-
mation about the file system semantics as well as the underlying hardware to be placed in the
block layer, violating the separation between the layers. In our approach, we are able to pro-
vide this block-level indirection without requiring significant knowledge of the file system by
taking advantage of in-band and out-of-band hints from the file system, while the remapping
layer provides a generic mechanism which can be leveraged through policies to achieve the
SLOs they identified and many other goals easily.

DualFS is a modified version of ext2 which implements metadata vs. data separation ex-
plicitly as above [24]. The metadata region is log structured, which provides journaling for
ext2 and avoids an extra copy from the journal to the original location in the base file system
that ext3’s journal checkpointing has to provide.

Recent commercial endeavours like ZFS take a more extreme approach by providing the
file system an unobscured view, and direct control of the hardware [21]. This allows it to
provide powerful features such as variable block sizes and pluggable block allocation policies
[6, 7]. Though impressive and powerful, this approach is a complete departure from the layered

storage stack and may reduce interoperability with existing infrastructure.

6.1.2 Smarter Block Layer

In the meantime, there have been attempts to bridge the information gap from the opposite
perspective, suggesting that storage hardware could provide useful optimizations and features
if they gained visibility into file system semantics. Sivathanu et al. demonstrated that it was
possible to infer semantic information about FFS-like file systems at the disk, which could be
used to implement a variety of features including: track-aligned extents, a smarter cache for
disks, secure deletion, and adding journaling support for older file systems [33]. D-GRAID
uses file system semantic knowledge embedded in the storage array to place blocks in a fault-

isolated manner, such that data could remain accessible despite additional disk failures than

CHAPTER 6. RELATED WORK 46

tolerable by the RAID configuration [32].

We feel such approaches are promising, and our solution leans towards this model. How-
ever, transparently inferring file system semantics in the disk for general consumption is not
trivial and requires duplicating a lot of the file system semantics in the hardware. This adds
additional complications to the storage hardware, when it may not be necessary. Disk or array
firmware is already complex, amounting to several thousand lines of code, and is thought to
be a contributor to silent data corruption [3]. Adding file system semantics might only make
matters worse. Since the file system is the most informed about its own semantics, we feel it
is much more practical for it to expose some of this information to the block layer, rather than
the block layer having to infer it.

I/0 Shepherding pioneered the approach of piggybacking on file system journaling to im-
plement powerful reliability and fault tolerance policies in the block layer without incurring
significant performance overhead [14]. Our approach of only tagging journal checkpoint re-
lated I/O requests with hints was inspired by the Shepherd’s chained-transaction mechanism.
It is important to note that their approach is not truly a block-layer solution. The Shepherd was
placed within the journaling layer of ext3, where it interposed on journal commits and check-
points to implement their desired policies. In contrast, our approach simply required minor
modifications to the file system so it distinguishes metadata from data, something we argue file
systems should support natively. The actual policy enforcement mechanism lies entirely in the
storage layer. As a result, we are able to avoid risking the stability of the file system, while

accomplishing our goal of improving failure recovery times for the storage system.

6.1.3 Improved Cooperation Between File System and Block Layer

A natural middle-ground for the above contrasting approaches is a more cooperative model,
where the file system exposes hints to the block layer, which the block layer tries to exploit.
Our work fits in this category. However, the challenge here is to identify the right granularity

at which useful information from the file system can be exposed to the block layer.

CHAPTER 6. RELATED WORK 47

Many proposals have identified the thin block interface as a significant barrier to improved
cooperation between the file system and the storage hardware. Object-based storage is the
most prominent alternative [13]. These storage systems out-source layout management to the
disk. The file system or other clients have the ability to specify variable sized objects and
relationships between them, making informed block allocation at the disk possible. Another
recent proposal was to allow file systems to suggest a range of candidate blocks as targets for
writes, giving the disk freedom to choose blocks that would yield the least latency [2]. Others
have shown how exposing liveness information to disks can help with secure deletion of files
and improved security [31, 30].

Though the object-based interface has had some adoption in high-performance computing
environments, the vast majority of disks still follow the traditional block interface. Given the
momentum behind the existing interface, other arbitrary modifications to it would face far too
much resistance.

However, our approach of limiting ourselves to in-band and simple out-of-band hints allows
us to not require a new block interface. The in-band hints can be passed using underutilized
fields in the command set. This approach is also being pursued by Mesnier et al. to integrate

Solid State Disks in existing storage arrays for offering differentiated services [19].

6.2 Storage Virtualization

We used existing paradigms from the storage virtualization community to implement our sys-
tem, particularly, the remapping mechanism. Block remapping has been exploited in several
different contexts. Our approach is similar in design to most of these, though selectively remap-
ping blocks based on file system hints, leveraging file system journaling for reducing online
performance overheads, and the ability to execute arbitrary block placement policies, is unique
to the best of our knowledge. We provide a brief survey of recent work that leverages block

level remapping.

CHAPTER 6. RELATED WORK 48

Parallax is a storage server that can scale for a large number of virtual machines [20].
It implements several interesting features like light-weight snapshotting for virtual machine
disk images it hosts, as well as disconnected operation. It splits storage resources such that
each virtual machine gets its own isolated block address space, and remaps requests to the
corresponding physical location using an approach similar to page tables in operating systems.
Our remapping mechanism’s design was inspired by their work, though our need to only remap
metadata blocks significantly simplified our implementation.

Other recent projects that leverage block remapping are:

BORG This is a dynamic optimizer that reorders blocks on disk based on block-level traces

collected online [5].

WorkOut This is a smarter storage array that redirects incoming write requests to spare disks

while a RAID array is rebuilt, thus boosting rebuild time [42].

Everest It relieves overloaded disks during peak load by redirecting incoming writes tem-
porarily to disks with low utilization [23]. The authors used a similar approach to im-
prove power efficiency of enterprise storage systems by allowing disks to be spun-down,

and redirecting incoming write requests temporarily to active disks [22].

Our remapping mechanism could be made generic enough to subsume a lot of the features
these projects provide. However, they do not provide the ability to exploit file system hints,

and are not particularly configurable for general usage.

6.3 File System Consistency Check Performance

Recall that the single objective we tried to achieve in this work was reducing corruption de-
tection and failure recovery time for existing file systems. Though most existing file systems
come with a corresponding consistency checker, increases in volume sizes have left much to

be desired for their performance. We have discussed the problems that the block layout on

CHAPTER 6. RELATED WORK 49

FFS-like file systems pose for fsck and its resulting poor performance in section 2.1. Though
consistency checks were largely considered obsolete with the introduction of journaling, con-
cern about corruption in the storage stack has renewed interest in them. ChunkFS tried to ad-
dress fsck performance by splitting large volumes into smaller chunks where metadata would
rarely leak references across chunks. As a result, the fsck performance could be dramatically
improved [16].

Recently, there has been interest in improving file system consistency check performance of
existing file systems like ext3 by modifying the block allocator to cluster blocks closer together
[27]. This is in many ways the ideal solution for the problem, since fast consistency verification
should be a primary design goal of the file system. Though a patch of roughly 1900 lines to
modify the ext3 file system had been pursued for months on the Linux Kernel Mailing List, this
change was not merged despite significant support from file system developers. This highlights

the resistance to modifying stable file systems which our solution side-steps.

Chapter 7

Future Work

We have demonstrated that our approach of exposing simple hints from the file system can
facilitate significant improvement in failure recovery performance for existing file systems.
We therefore feel confident that we can use our approach to attempt other, more lofty goals for
the storage stack. We present a small selection of the further work we are considering both for
the short term within the scope of this project, as well as some larger projects that may become

possible due to the insights collected during this work.

7.1 Short Term

We would like to pursue more insightful block allocation strategies in the metadata region
in the future. Even though we get interesting performance improvements already, we feel
improved block allocation using the hints from the file system can improve performance much
more. We would also like to experiment with remapping metadata blocks like inodes and study
what affects they have on both online and fsck performance. We would like to conduct more
performance evaluations of our system and compare against similar projects like DualFS. We
also wish to thoroughly evaluate the fault tolerance and failure recovery claims we made in

Chapter 3.

50

CHAPTER 7. FUTURE WORK 51

7.2 Longer Term

7.2.1 Integrating Solid State Disks in Existing Storage Systems

There is considerable excitement about the possibility of integrating Flash based disks in stor-
age systems [1]. Their improved read performance and low power consumption make them
interesting candidates for adoption in the enterprise. However, they also suffer from peculiar
problems like limited write-endurance and the need for batched cleaning. This raises concerns
about using these disks with existing file systems. File system level hints combined with our
block level remapping mechanism could provide an interesting opportunity to use SSDs in
new unique ways. Since seek times are not a concern with Flash, once could imagine taking
periodic snapshots of metadata on existing magnetic disks and transferring them to flash to
carry out quick file system consistency checks. There is also the possibility to off-load request

streams to

7.2.2 Generic Block Level Remapping Mechanism

A large amount of recent research in storage virtualization has had to struggle with similar im-
plementation challenges: providing a fast block remapping mechanism, keeping this mapping
consistent despite failures, and implementing their desired remapping policy [42, 5, 22, 23].
We feel there are common primitives in all this work that if exposed through a declarative

language, would allow complex storage servers to be built with relative ease.

Chapter 8

Conclusion

We have shown that simple hints from the file system, can be exploited at the block layer to
meet overall goals for the storage systems, which were otherwise harder to achieve. In par-
ticular, we tried to address the classical problem of reducing failure recovery time for existing
file systems, while requiring no functional modifications to file systems. Our performance
evaluations indicate that out approach is able to halve the fsck time for an artificially aged file
system and at the same time improve performance for a number of other metadata workloads.
Our online performance evaluations based on microbenchmarks indicated that for data heavy
workloads we suffered a slight performance of up to 5% on all but benchmark. We feel these
results are quite encouraging and feel this approach could be useful in practise. We hope to
use this technique to meet other overall goals for the storage stack, such as improving power-

efficiency, performance, and reliability in the future.

52

Bibliography

[1]

(2]

[3]

[4]

[5]

Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and
Rina Panigrahy. Design tradeoffs for ssd performance. In ATC’08: USENIX 2008 An-
nual Technical Conference on Annual Technical Conference, pages 57-70, Berkeley, CA,

USA, 2008. USENIX Association.

Ashok Anand, Sayandeep Sen, Andrew Krioukov, Florentina I. Popovici, Aditya Akella,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Suman Banerjee. Avoiding
file system micromanagement with range writes. In Proceedings of the Operating Systems

Design and Implementation (OSDI), pages 161-176, 2008.

Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
Garth R. Goodson, and Bianca Schroeder. An analysis of data corruption in the storage

stack. Transactions of Storage, 4(3):1-28, 2008.

Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin Agrawal, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, and Michael M. Swift. Analyzing the effects of
disk-pointer corruption. In Proceedings of the International Conference on Dependable

Systems and Networks (DSN’08), June 2008.

Medha Bhadkamkar, Jorge Guerra, Luis Useche, Sam Burnett, Jason Liptak, Raju Ran-
gaswami, and Vagelis Hristidis. Borg: Block-reorganization for self-optimizing storage

systems. In Seltzer and Wheeler [29], pages 183—196.

53

BIBLIOGRAPHY 54

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

J. Bonwick and B. Moore. ZFS - The Last Word in File Systems. http://

opensolaris.org/os/community/zfs/docs/zfs_last.pdf.

Jim Bonwick. ZFS Block Allocation. http://blogs.sun.com/bonwick/

entry/zfs block_allocation Accessed Feb. 19, 2009.

Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. Gordon: using flash memory
to build fast, power-efficient clusters for data-intensive applications. In ASPLOS ’09: Pro-
ceeding of the 14th international conference on Architectural support for programming

languages and operating systems, pages 217-228, New York, NY, USA, 2009. ACM.

Microsoft Corporation. Dynamic Disks and Volumes Technical Reference. http://

technet .microsoft.com/en-us/library/cc785638.aspx.

Andreas Dilger. [RFC] Store RAID stride in superblock. http://www.
mail-archive.com/linux-ext4@vger.kernel.org/msg01774.html

Accessed Feb. 19, 2009.

Sorin Faibish, Stephen Fridella, Peter Bixby, and Uday Gupta. Storage virtualization

using a block-device file system. SIGOPS Oper. Syst. Rev., 42(1):119-126, 2008.

Gregory Ganger, Yale Patt, Gregory R. Ganger, and Yale N. Patt. Soft updates: a solution
to the metadata update problem in file systems. ACM Transactions on Computer Systems,

18:127-153, 2000.

Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff Butler, Fay W. Chang, Howard Go-
bioff, Charles Hardin, Erik Riedel, David Rochberg, and Jim Zelenka. A cost-effective,

high-bandwidth storage architecture. SIGOPS Oper. Syst. Rev., 32(5):92-103, 1998.

Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha Krishnan, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. Improving file system reliability with i/o shepherding. In

BIBLIOGRAPHY 55

Proceedings of the Symposium on Operating Systems Principles (SOSP), pages 293-306,
2007.

[15] Haryadi S. Gunawi, Cindy Rubio-Gonzalez, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Ben Liblit. EIO: Error Handling is Occasionally Correct. In Pro-
ceedings of the Sixth USENIX Conference on File and Storage Technologies (FAST ’08),

San Jose, CA, February 2008.

[16] Val Henson, Arjan van de Ven, Amit Gud, and Zach Brown. Chunkfs: Using divide-and-
conquer to improve file system reliability and repair. In Proceedings of the Workshop on

Hot Topics in System Dependability (HotDep), 2006.

[17] A.J. Lewis. LVM HOWTO. http://www.tldp.org/HOWTO/LVM-HOWTO.

[18] Chris Mason. Compilebench. http://oss.oracle.com/~mason/

compilebench/.

[19] Mike Mesnier, Scott Hahn, and Brian McKean. Making the most of your SSD: A case for
Differentiated Storage Services. http://www.usenix.org/events/fast09/

wips_posters/mesnier_poster.pdf.

[20] Dutch T. Meyer, Gitika Aggarwal, Brendan Cully, Geoffrey Lefebvre, Michael J. Fee-
ley, Norman C. Hutchinson, and Andrew Warfield. Parallax: Virtual disks for virtual
machines. In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on

Computer Systems 2008(Eurosys '08), pages 41-54, New York, NY, USA, 2008. ACM.

[21] Sun Microsystems. Zfs. http://opensolaris.org/os/community/zfs.

[22] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write off-loading: prac-
tical power management for enterprise storage. In FAST'08: Proceedings of the 6th
USENIX Conference on File and Storage Technologies, pages 1-15, Berkeley, CA, USA,
2008. USENIX Association.

BIBLIOGRAPHY 56

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Dushyanth Narayanan, Austin Donnelly, Eno Thereska, Sameh Elnikety, and Antony I. T.
Rowstron. Everest: Scaling down peak loads through i/o off-loading. In Richard Draves

and Robbert van Renesse, editors, OSDI, pages 15-28. USENIX Association, 2008.

Juan Piernas, Toni Cortes, and José M. Garcia. Dualfs: a new journaling file system
without meta-data duplication. In Proceedings of the international conference on Super-

computing, pages 137-146, 2002.

Juan Piernas and Sorin Faibish. Dualfs: A new journalling file system for linux. In
Proceedings of the Linux Storage & Filesystem Workshop, feb 2007. http://ditec.

um.es/~piernas/dualfs/presentation-1sf07-final.pdf.

Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Iron file systems. In Pro-
ceedings of the Symposium on Operating Systems Principles (SOSP), pages 206-220,
2005.

Abhishek Rai. Re: [CALL FOR TESTING] Make Ext3 fsck way faster [2.6.24-rc6 -

mmpatch]. http://1kml.org/1lkml/2008/1/23/38.

Jiri Schindler, John Linwood Griffin, Christopher R. Lumb, and Gregory R. Ganger.
Track-aligned extents: Matching access patterns to disk drive characteristics. In FAST
'02: Proceedings of the Conference on File and Storage Technologies, pages 259-274,
Berkeley, CA, USA, 2002. USENIX Association.

Margo I. Seltzer and Richard Wheeler, editors. 7th USENIX Conference on File and
Storage Technologies, February 24-27, 2009, San Francisco, CA, USA. Proceedings.
USENIX, 2009.

Gopalan Sivathanu, Swaminathan Sundararaman, and Erez Zadok. Type-safe disks. In
Proceedings of the Operating Systems Design and Implementation (OSDI), pages 15-28,
2006.

BIBLIOGRAPHY 57

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Muthian Sivathanu, Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Life or death at block-level. In OSDI’04: Proceedings of
the 6th conference on Symposium on Opearting Systems Design & Implementation, pages

26-26, Berkeley, CA, USA, 2004. USENIX Association.

Muthian Sivathanu, Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Improving storage system availability with d-graid. In FAST ’04: Pro-
ceedings of the 3rd USENIX Conference on File and Storage Technologies, pages 15-30,
Berkeley, CA, USA, 2004. USENIX Association.

Muthian Sivathanu, Vijayan Prabhakaran, Florentina 1. Popovici, Timothy E. Denehy,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Semantically-smart disk sys-

tems. In USENIX Conference on File and Storage Technologies, pages 73-88, 2003.

Keith A. Smith and Margo I. Seltzer. File system aging—increasing the relevance of file

system benchmarks. SIGMETRICS Perform. Eval. Rev., 25(1):203-213, 1997.

Gokul Soundararajan, Daniel Lupei, Saeed Ghanbari, Adrian Daniel Popescu, Jin Chen,
and Cristiana Amza. Dynamic resource allocation for database servers running on virtual
storage. In FAST’09: Proccedings of the 7th conference on File and storage technologies,

pages 71-84, Berkeley, CA, USA, 2009. USENIX Association.

Lex Stein. Stupid file systems are better. In HOTOS’05: Proceedings of the 10th confer-
ence on Hot Topics in Operating Systems, pages 5-5, Berkeley, CA, USA, 2005. USENIX

Association.

N. Talagala, R. Arpaci-Dusseau, and D. Patterson. Micro-benchmark based extraction of

local and global disk characteristics. Technical report, Berkeley, CA, USA, 2000.

Stephen C. Tweedie. Linuxexpo ’98 journalling the ext2fs filesystem page 1 journaling

the linux ext2fs filesystem, 1998.

BIBLIOGRAPHY 58

[39] Wouter Verhelst. Network block device. http://nbd.sourceforge.net/.

[40] Ric Wheeler. Re: [CALL FOR TESTING] Make Ext3 fsck way faster [2.6.24-rc6 -
mmpatch], January 2008. http://lkml.indiana.edu/hypermail/linux/

kernel/0801.1/3174.html.

[41] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt, and John Wilkes. On-line ex-
traction of scsi disk drive parameters. SIGMETRICS Perform. Eval. Rev., 23(1):146-156,
1995.

[42] Suzhen Wu, Hong Jiang, Dan Feng, Lei Tian, and Bo Mao. Workout: I/o workload
outsourcing for boosting raid reconstruction performance. In Seltzer and Wheeler [29],

pages 239-252.

[43] Junfeng Yang, Can Sar, and Dawson Engler. Explode: a lightweight, general system for
finding serious storage system errors. In Proceedings of the Operating Systems Design

and Implementation (OSDI), 2006.

