
The Second Extended File System (ext2fs)

CSCI780: Linux Kernel Internals
Fall 2001

Anne Shepherd

The ext2 file system 1

Background

• Early versions of Linux were based on Tannenbaum’s Minix filesystem, but Minix proved

inadequate as Linux matured.

• The Extended File System was created by Remy Card, Theodore T’so, and Stephen

Tweedie. It removed Minix’s limitations on max fs size and max file name size, but still

had problems.

• In 1993/1994 Card, T’so, and Tweedie introduced the Second Extended

Filesystem(ext2), which has become the most widely used Linux filesystem.

The ext2 file system 2

Ext2fs features

• Ext2fs supports standard Unix file types, and added support for long file names and very

large partition sizes (on some architectures). It reserves some blocks for the superuser

(5 per cent is the default) to allow sysadmins to recover from situations where user

processes fill up the filesystem.

• Ext2fs also allows users to set file attributes, choose file semantics (BSD or SVR4),

and logical block size (1k, 2k, or 4k).

• Fast symbolic links (which use no data blocks) are implemented: the target name is

stored in the inode itself, not in a data block, up to a certain length (currently 60

characters).

• The fs keeps track of the filesystem state, so the filesystem checker, ext2fsck, can

decide whether to check the filesystem on boot.

The ext2 file system 3

Ext2fs performance optimizations

• The ext2fs code was written with a view toward speeding up i/o.

• Ext2fs uses readaheads to take advantage of buffer cache management. Readaheads

are done both on regular files and on directory reads.

• Allocation optimizations are used to reduce disk head seeks. Related inodes and data

blocks are clustered into Block Groups; the kernel tries to allocate disk blocks for a file

within that file’s own block group.

• The filesystem preallocates a group of adjacent blocks when writing data to a file. The

fs’s authors claim that this results in good write performance under heavy load; and

the fact that it allocates contiguous blocks to files speeds up reads as well.

The ext2 file system 4

Physical Layout of an ext2 partition

The first block in any ext2 partition is reserved for the partition’s boot sector. (The rest

of the partition is made up of block groups). All block groups are the same size. Because

they are stored sequentially, the kernel can easily find a block group on a disk just from its

index number.

The system tries to keep all the data blocks belonging to a given file in its home block

group. The idea here is to reduce file fragmentation.

The ext2 file system 5

Every block group contains some redundant information:

• a copy of the file system superblock

• copies of all group descriptors

The kernel uses only the versions of these items in block 0. They are replicated in the

other blocks for the use of the filesystem checker. If, when it performs a consistency check

on the file system, it finds that the block 0 superblock has been corrupted, it can use one

of the other copies to replace it (and the group descriptors) and bring the file system back

to an acceptable state.

The ext2 file system 6

Block group 0 Block group n

Super

 Block

 Inode
Group Descriptors Data Blocks Inode table

 Dat

Bitmap

a Block

 * Figure adapted from Bovet et al, Understanding the Linux Kernel

Block groups 1 − (n−1)Block
Boot

Bitmap

1 block n blocks 1 block 1 block multiple blocks multiple blocks

The ext2 file system 7

The ext2 physical superblock

(from fs/ext2 fs.h:

struct ext2_super_block {

__u32 s_inodes_count; /* Inodes count */

__u32 s_blocks_count; /* Blocks count */

__u32 s_r_blocks_count; /* Reserved blocks count */

__u32 s_free_blocks_count; /* Free blocks count */

__u32 s_free_inodes_count; /* Free inodes count */

__u32 s_first_data_block; /* First Data Block [always 1 --pls]*/

__u32 s_log_block_size; /* Block size */

/* s_log_block_size expresses block size as a power of 2, using 1024

* bytes as the unit. So 0 would be a 1024-byte block, 1 a 2048-byte

* block, etc. Note that the fragmentation stuff (below) is not yet

* implemented --pls */

__s32 s_log_frag_size; /* Fragment size */

__u32 s_blocks_per_group; /* # Blocks per group */

__u32 s_frags_per_group; /* # Fragments per group */

__u32 s_inodes_per_group; /* # Inodes per group */

__u32 s_mtime; /* [last] Mount time */

__u32 s_wtime; /* Write time */

The ext2 file system 8

/* fields below cause the filesystem checker (ext2fsck) to

* run after a predefined number of mounts or a certain amount of

* time has passes since the last check. --pls */

__u16 s_mnt_count; /* Mount count */

__s16 s_max_mnt_count; /* Maximal mount count [before check]*/

__u16 s_magic; /* Magic signature */

__u16 s_state; /* File system state */

__u16 s_errors; /* Behaviour when detecting errors */

__u16 s_minor_rev_level; /* minor revision level */

__u32 s_lastcheck; /* time of last check */

__u32 s_checkinterval; /* max. time between checks */

__u32 s_creator_os; /* OS */

__u32 s_rev_level; /* Revision level */

__u16 s_def_resuid; /* Default uid for reserved blocks*/

__u16 s_def_resgid; /* Default gid for reserved blocks */

. . .

__u8 s_prealloc_blocks; /* Nr of blocks to try to preallocate*/

__u8 s_prealloc_dir_blocks; /* Nr to preallocate for dirs */

__u16 s_padding1; /* Padding to the end of the block */

__u32 s_reserved[204];

};

The ext2 file system 9

ext2 superblock operations (from /include/linux/ext2 fs.h)

static struct super_operations ext2_sops = {

read_inode: ext2_read_inode,

write_inode: ext2_write_inode,

put_inode: ext2_put_inode,

delete_inode: ext2_delete_inode,

put_super: ext2_put_super,

write_super: ext2_write_super,

statfs: ext2_statfs,

remount_fs: ext2_remount,

};

The ext2 file system 10

The ext2 group descriptor (from /include/linux/ext2 fs.h)

struct ext2_group_desc

{

__u32 bg_block_bitmap; /* [number of] Blocks bitmap block */

__u32 bg_inode_bitmap; /* [number of]Inodes bitmap block */

/* the next field actually holds the block number of the first block

* of the inode table --pls*/

__u32 bg_inode_table; /* Inodes table block */

__u16 bg_free_blocks_count; /* Free blocks count */

__u16 bg_free_inodes_count; /* Free inodes count */

__u16 bg_used_dirs_count; /* Directories count */

__u16 bg_pad; /* alignment to word boundary --pls*/

__u32 bg_reserved[3]; /* nulls to pad out 24 bytes --pls*/

};

Each bitmap must be stored in a single block, so the size of the block is relevant here:

a 1k block can contain a bitmap mapping the states of 8192 blocks; a 4k block, 32,768

blocks.

The ext2 file system 11

The ext2 physical inode (from /include/linux/ext2 fs.h)

struct ext2_inode {

__u16 i_mode; /* File mode */

__u16 i_uid; /* Low 16 bits of Owner Uid */

/* The highest-order bit of i_size is not used, effectively limiting

* the file size to 2GB, though there are ways of getting around this

* on certain 64-bit architectures. --pls */

__u32 i_size; /* Size in bytes */

__u32 i_atime; /* [last] Access time */

__u32 i_ctime; /* Creation time */

__u32 i_mtime; /* Modification time */

__u32 i_dtime; /* Deletion Time */

__u16 i_gid; /* Low 16 bits of Group Id */

__u16 i_links_count; /* Links count */

/* Note that each file is currently stored in a whole number of

* blocks, so an empty file will start out with one block.

* This may change when/if fragmentation is implemented --pls*/

__u32 i_blocks; /* Blocks count */

__u32 i_flags; /* File flags */

union...osd1; /* big union to hold os-specific stuff --pls*/

__u32 i_block[EXT2_N_BLOCKS]; /* Pointers to [data] blocks */

The ext2 file system 12

__u32 i_generation; /* File version (for NFS) */

__u32 i_file_acl; /* File ACL */

__u32 i_dir_acl; /* Directory ACL */

__u32 i_faddr; /* Fragment address */

union...osd2, /* big union to hold os-specific stuff --pls*/

};

Note that there is no inode number stored in the physical inode, even though the VFS

layer required each file to have a unique inode number. This is because ext2 just uses the

inode number as a key to retrieve the inode descriptor from disk–its value can be derived

from the block group number and relative position inside the inode table.

All inodes are 128 bytes long, so a 1k block holds 8 inodes, and a 4k block wil contain

32 inodes. To calculate the size of your inode table, divide the total number of inodes in

a group (found in the superblock’s s inodes per group) by the number of inodes per

block.

The ext2 file system 13

inode

direct blocks

indirect blocks

blocks
double indirect

* figure copied from Remy Card, "Design and implementation of the second extended file system"

The ext2 file system 14

The i block field of the inode is an array that contains the addresses of the inode’s

associated data blocks. It has EXT2 N BLOCKS = 15 (the default) entries. Indirection goes

from direct through triple-indirect as follows:

• The first EXT2 NDIR BLOCK = 12 of these directly contain addresses of data blocks.

• The next entry, at index EXT2 IND BLOCK = 12, holds the address of the first indirect

block, a block that contains addresses of data blocks.

• The entry found at index EXT2 DIND BLOCK = 13 contains the address of the double

indirect block, which in turn holds addresses of indirect blocks which hold addresses of

data blocks.

• Finally, at index EXT2 TIND BLOCK = 15 there is an address of a block containing

addresses to blocks containing addresses to blocks.

The ext2 file system 15

A couple of things to note about block addressing:

• The way it is set up favors small files. If your file has 12 blocks or less, you need only

look at the i block array and go straight to the data block you need. With long files,

several disk accesses may be necessary, depending on the level of indirection.

• Block size, of course, has a direct effect on the amount of indirection. Though

triple-indirection may be necessary for a very large file on a filesystem with blocks of

size 1k, with 4k block sizes, any file of 2GB or less (the maximum file size allowed by

ext2 on 32 bit architectures) can be addressed with at most double indirection.

The ext2 file system 16

Data Blocks Addressing: Example

In this example, we will assume a block size of 1kb, so b = 1024 in the calculations

below. We divide by 4 in the formulas below because each logical block number is stored

in 4 bytes.

• The first 12 entries in the i block[] array contain addresses to logical block numbers

0 through 11.

• The single-indirect entry at index 12 will eventually get you to blocks beginning with

block 12 and going up to block (b
4 + 11), with b being the block size; so in our

example, the single indirect block addresses blocks 12 - 267.

• The double-indirect entry at index 13 will address blocks from (b
4 + 12) through

((b
4)

2 + b
4 + 11); with a 1k block that’s blocks 268 through 65803

• The triple-indirect entry at index 14 can address blocks from ((b
4)

2 + b
4 + 12) through

((b
4)

3 + (b
4)

2 + b
4 + 12)–that’s a lot of blocks: from 65804 through (theoretically)

16843019.

The ext2 file system 17

Bitmaps

Ext2fs keeps track of allocated inodes and blocks using bitmaps. Each bitmap must fit in

a single block.

The Group Descriptor contains fields containing the block numbers of the blocks bitmap

and the inode bitmap for its group. The bitmaps encode the availability of blocks and

inodes.

Because it would take up too much RAM to keep all bitmaps cached at all times, the

filesystem instead uses two bitmap caches (one for blocks, one for inodes), each holding

EXT2 MAX GROUP LOADED (currently defined as 8) bitmaps. The replacement algorithm is

LRU, but this the LRU cache is maintained only if there are > EXT2 MAX GROUP LOADED

Block Groups in the filesystem.

The ext2 file system 18

Keeping filesystem information handy

A lot of ext2 disk data structure information is copied into RAM when the file system is

mounted. Data that will be frequently used (for example, some superblock information

and the group descriptors) will be kept always cached; it will not be removed from the

buffer cache till the partition is unmounted. The kernel ensures this by keeping the usage

counter on the buffers that holds the information greater than 0 at all times.

Other information, like block and inode bitmaps, is kept in the buffer cache in fixed-limit

mode: there is room for a certain number of these in the cache. Old ones are flushed to

disk when we run out of room.

Inodes and data blocks are cached while in use, then removed from cache in the usual

course of events when they are no longer being used.

The ext2 file system 19

In some instances, special memory data structures are used to hold the information

in the buffer cache. To contain needed superblock information the kernel uses the

ext2 sb info struct; for inode information, the ext2 inode info struct. VFS data

structures associated with these structs will have pointers pointing to them.

The ext2 file system 20

The ext2 sb info struct

An ext2 partition is associated not only with an ext2 superblock, but with a VFS superblock
as well. The u field of this structure is used to store filesystem-specific data. When the
ext2 partition is mounted, the field will point to a struct ext2 sb info, defined in
/include/linux/ext2 fs sb.h.

struct ext2_sb_info {

unsigned long s_frag_size; /* Size of a fragment in bytes */

unsigned long s_frags_per_block;/* Number of fragments per block */

unsigned long s_inodes_per_block;/* Number of inodes per block */

unsigned long s_frags_per_group;/* Number of fragments in a group */

unsigned long s_blocks_per_group;/* Number of blocks in a group */

unsigned long s_inodes_per_group;/* Number of inodes in a group */

unsigned long s_itb_per_group;

/* Number of inode table blocks per group */

unsigned long s_gdb_count; /* Number of group descriptor blocks */

unsigned long s_desc_per_block; /* Number of group descriptors per block */

unsigned long s_groups_count; /* Number of groups in the fs */

struct buffer_head * s_sbh; /* Buffer containing the super block */

struct ext2_super_block * s_es;

/* Pointer to the super block in the buffer */

The ext2 file system 21

struct buffer_head ** s_group_desc;

unsigned short s_loaded_inode_bitmaps;

unsigned short s_loaded_block_bitmaps;

unsigned long s_inode_bitmap_number[EXT2_MAX_GROUP_LOADED];

struct buffer_head * s_inode_bitmap[EXT2_MAX_GROUP_LOADED];

unsigned long s_block_bitmap_number[EXT2_MAX_GROUP_LOADED];

struct buffer_head * s_block_bitmap[EXT2_MAX_GROUP_LOADED];

unsigned long s_mount_opt;

uid_t s_resuid;

gid_t s_resgid;

unsigned short s_mount_state;

unsigned short s_pad;

int s_addr_per_block_bits;

int s_desc_per_block_bits;

int s_inode_size;

int s_first_ino;

};

The ext2 file system 22

.

Ext2 partition

Super
Block

Group

 Desc.

Group

Desc.

Group

Desc.

Block

Bitmap

Inode

Bitmap

* Figure taken from Bovet et al, Understanding the Linux Kernel

VFS

super_block

 ext2_sb_info

s_es

s_sbh

s_group_desc

s_block_bitmap[n]

s_inode_bitmap[m]

buffer buffer buffer buffer buffer buffer

b.h. b.h. b.h. b.h. b.h. b.h.

The ext2 file system 23

Likewise, the inode is associated with the memory data structure ext2 inode info,

defined in /include/linux/ext2 fs i.h. This struct includes, among other things:

• Fields in the physical inode that aren’t mirrored in the VFS inode;

• The index into block group at which the inode belongs;

• Fields used for preallocation;

• As-yet-unimplemented fragmentation information.

The ext2 file system 24

How files use disk blocks

Different types of files use disk blocks differently:

• Regular files start out empty–they need data blocks only when they begin to have data.

They can also be emptied by a truncate() operation.

• Directories use data blocks to store information about the files under them. This

information is stored in structs ext2 dir entry 2.

• A symbolic link requires a data block only if the path name is longer than 60 characters

(it uses a single block in this case); if the path name is less than 60 characters, it is

stored in the inode and no date blocks are needed.

• Pipes, sockets, and device files keep all necessary information in the inode, so they use

no data blocks.

The ext2 file system 25

The ext2 dir entry 2 struct

From include/linux/ext2 fs.h:

struct ext2_dir_entry_2 {

__u32 inode; /* Inode number */

__u16 rec_len; /* Directory entry length */

__u8 name_len; /* [actual] Name length */

__u8 file_type; /* for example. 1 is regular file,

* 2 is directory, 5 is named pipe--pls*/

char name[EXT2_NAME_LEN]; /* File name */

};

The rec len field represents the actual record length, rounded up to the next 4-byte

value. It serves the same purpose as a “next” pointer in a linked list, by signifying the

offset where we can find the next entry in the directory.

The ext2 file system 26

Example: reading a directory entry

Say you want to list all the entries in a directory, with their inode numbers:

/* toyls.c

*

* adapted from Stevens, Advanced Programming in the

* Unix Environment, p. 4

*

* Note that in the case of a symlink, the inode number stored in the

* dirent is the link inode, not the target inode. If you need

* the target inode, use the stat utility with -l opiton:

*

* stat -l <linkfilename>

*/

#include <sys/types.h>

#include <dirent.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char* argv[])

{

The ext2 file system 27

DIR *dp;

struct dirent *dirp;

if(argc != 2){

printf("\nUsage: toyls <directory name> \n");

exit(1);

} /* print usage and exit */

if((dp = opendir(argv[1])) != NULL){

printf("\n");

while((dirp = readdir(dp)) != NULL) {

printf("%s, %li \n", dirp->d_name, dirp->d_ino);

} /* while there’s more to read */

closedir(dp);

} /* if we can open the dir */

return 0;

}

The dirent structs looks like this:

struct dirent {

The ext2 file system 28

long d_ino;

__kernel_off_t d_off;

unsigned short d_reclen; // --length of whole struct + k,

// (0 <= k <= 3) --pls

char d_name[256]; /* We must not include limits.h! */

};

struct linux_dirent {

unsigned long d_ino;

unsigned long d_off;

unsigned short d_reclen;

char d_name[1];

};

...and this one is used by the system to keep track of where we are in the list of directory
entries:

struct getdents_callback {

struct linux_dirent * current_dir;

struct linux_dirent * previous;

int count;

int error;

};

The ext2 file system 29

The readdir(3) call is handled by glibc by repeated calls to getdents(). (It stores
the current information statically and clobbers it at each call, so it is not thread-safe).
Once in the kernel, we find ourselves in (from /fs/readdir.c):

asmlinkage long sys_getdents

(unsigned int fd, void * dirent, unsigned int count)

{

struct file * file;

struct linux_dirent * lastdirent;

struct getdents_callback buf;

int error;

error = -EBADF;

file = fget(fd);

if (!file)

goto out;

buf.current_dir = (struct linux_dirent *) dirent;

buf.previous = NULL;

buf.count = count;

buf.error = 0;

/* Note that filldir() is a function, defined in /fs/readdir.c --pls*/

The ext2 file system 30

error = vfs_readdir(file, filldir, &buf);

Now we are in vfs readdir():

int vfs_readdir(struct file *file, filldir_t filler, void *buf)

{

struct inode *inode = file->f_dentry->d_inode;

int res = -ENOTDIR;

if (!file->f_op || !file->f_op->readdir)

goto out;

down(&inode->i_sem);

down(&inode->i_zombie);

res = -ENOENT;

if (!IS_DEADDIR(inode)) {

lock_kernel();

res = file->f_op->readdir(file, buf, filler);

unlock_kernel();

}

up(&inode->i_zombie);

up(&inode->i_sem);

out:

return res;

The ext2 file system 31

}

...which takes us at last to (in /fs/ext2/dir.c):

static int ext2_readdir(struct file * filp,

void * dirent, filldir_t filldir)

{

int error = 0;

unsigned long offset, blk;

int i, num, stored;

struct buffer_head * bh, * tmp, * bha[16];

struct ext2_dir_entry_2 * de;

struct super_block * sb;

int err;

struct inode *inode = filp->f_dentry->d_inode;

sb = inode->i_sb;

stored = 0;

bh = NULL;

The ext2 file system 32

/* mask to get just the offset --pls*/

offset = filp->f_pos & (sb->s_blocksize - 1);

/* remember that the file in question is (or should be) a directory.

* as we go into the loop, stored == 0 --pls*/

while (!error && !stored && filp->f_pos < inode->i_size) {

/* right-shift by sb->s_blocksize_bits to get the block number (blk is

* a long int) --pls*/

blk = (filp->f_pos) >> EXT2_BLOCK_SIZE_BITS(sb);

/* going into the call below, the 0 means create = false --pls*/

bh = ext2_bread (inode, blk, 0, &err);

ext2 bread() reads a data block assigned to an inode. It calls ext2 getblk() (from

/fs/ext2/inode.c to find the appropriate memory block.

/* Going into this call, create == 0. Other params are as they

* were going into ext2_bread(). --pls*/

struct buffer_head * ext2_getblk(struct inode * inode,

long block, int create, int * err)

The ext2 file system 33

{

struct buffer_head dummy;

int error;

dummy.b_state = 0;

dummy.b_blocknr = -1000;

/* upon return from the following call, dummy should hold the buffer

* head we want. create is still 0. --pls*/

error = ext2_get_block(inode, block, &dummy, create);

ext2 get block() calls ext2 block to path() to find how deep the indirection tree is
(if it is, e.g., at a double or triple indirect address) and get the appropriate addresses; then
fills dummy with the appropriate information.

*err = error;

/* buffer_mapped is a flag. It should be true here. --pls*/

if (!error && buffer_mapped(&dummy)) {

struct buffer_head *bh;

The /fs/buffer.c function getblk(), as Joy ably explained in the last presentation,
accesses the buffer for us and puts the result in bh.

The ext2 file system 34

bh = getblk(dummy.b_dev, dummy.b_blocknr,

inode->i_sb->s_blocksize);

. . .

return bh;

}

return NULL;

}

back in ext2 readdir(). We do a readahead because users are quite likely to read more
than one or two directory entries–in fact, very often this is used for getdents(), where all
the entries will be read, so it makes sense to read ahead.

. . .

/* Do the readahead */

/* offset == 0 means that we just started, so now is the time to

* read ahead. --pls*/

if (!offset) {

/* EXT2_BLOCK_SIZE_BITS is blocksize in number of bits. For

* a 1k block, it will = 10, for a 4k block, 12 So we will

* end up reading ahead 8 blocks if we are using 1k blocks, 2

* blocks if using 4k blocks. --pls*/

for (i = 16 >> (EXT2_BLOCK_SIZE_BITS(sb) - 9),

The ext2 file system 35

num = 0; i > 0; i--) {

tmp = ext2_getblk (inode, ++blk, 0, &err);

if (tmp && !buffer_uptodate(tmp) &&

!buffer_locked(tmp))

bha[num++] = tmp;

else

brelse (tmp);

}

/* if there are any that need to be marked up-to-date, ll_rw_block

* will do that. --pls */

if (num) {

ll_rw_block (READA, num, bha);

for (i = 0; i < num; i++)

brelse (bha[i]);

}

}

revalidate:

/* If the dir block has changed since the last call to

* readdir(2), then we might be pointing to an invalid

* dirent right now. Scan from the start of the block

The ext2 file system 36

* to make sure. */

/* version is set whent the inode is read and when an lseek has to

* change the f_pos indicator to match the offset --pls*/

if (filp->f_version != inode->i_version) {

for (i = 0; i < sb->s_blocksize && i < offset;) {

de = (struct ext2_dir_entry_2 *)

(bh->b_data + i);

/* It’s too expensive to do a full

* dirent test each time round this

* loop, but we do have to test at

* least that it is non-zero. A

* failure will be detected in the

* dirent test below. */

if (le16_to_cpu(de->rec_len) <

EXT2_DIR_REC_LEN(1))

break;

i += le16_to_cpu(de->rec_len);

}

offset = i;

/* the & ~ masks off everything below the block size level. This is

* then OR-ed with offset, to set the f_pos pointer so we can find the

The ext2 file system 37

* next entry. --pls*/

filp->f_pos = (filp->f_pos & ~(sb->s_blocksize - 1))

| offset;

filp->f_version = inode->i_version;

}

while (!error && filp->f_pos < inode->i_size

&& offset < sb->s_blocksize) {

de = (struct ext2_dir_entry_2 *) (bh->b_data + offset);

if (!ext2_check_dir_entry ("ext2_readdir", inode, de,

bh, offset)) {

/* On error, skip the f_pos to the

next block. */

filp->f_pos =

(filp->f_pos | (sb->s_blocksize -

1)) + 1;

brelse (bh);

return stored;

}

offset += le16_to_cpu(de->rec_len);

if (le32_to_cpu(de->inode)) {

/* We might block in the next section

The ext2 file system 38

* if the data destination is

* currently swapped out. So, use a

* version stamp to detect whether or

* not the directory has been modified

* during the copy operation.

*/

unsigned long version = filp->f_version;

unsigned char d_type = DT_UNKNOWN;

. . .

/* filldir() fills in the blanks of the dirent structure. --pls*/

error = filldir(dirent, de->name,

de->name_len,

filp->f_pos,

le32_to_cpu(de->inode),

d_type);

if (error)

break;

if (version != filp->f_version)

goto revalidate;

stored ++;

}

/* now move the pointer down to the next record. --pls*/

The ext2 file system 39

filp->f_pos += le16_to_cpu(de->rec_len);

}

offset = 0;

brelse (bh);

}

UPDATE_ATIME(inode);

return 0;

}

Back in sys getdents():

if (error < 0)

goto out_putf;

error = buf.error;

lastdirent = buf.previous;

if (lastdirent) {

/* put_user eventually gets us to an assembler routine that

* will get this stuff into the user’s space --pls*/

put_user(file->f_pos, &lastdirent->d_off);

error = count - buf.count;

}

The ext2 file system 40

out_putf:

fput(file);

out:

return error;

}

The ext2 file system 41

Making and mounting an ext2 partition

Here’s how to make and mount your very own ext2 partition on a floppy disk:

1. First, you have to format the floppy. Take a regular 1.4M DOS-formatted (or
unformatted, but most of them are DOS these days) floppy, insert into the floppy drive,
and type at the prompt:

> fdformat /dev/fd0h1440

(see the fdformat man page for more details).

2. When the formatting has finished, tell mke2fs to make the file system using default
settings. On one of the department systems, type:

> /sbin/mke2fs /dev/fd0

These are the messages I got when I tried it:

mke2fs 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09

Filesystem label=

OS type: Linux

Block size=1024 (log=0)

Fragment size=1024 (log=0)

The ext2 file system 42

184 inodes, 1440 blocks

72 blocks (5.00%) reserved for the super user

First data block=1

1 block group

8192 blocks per group, 8192 fragments per group

184 inodes per group

Writing inode tables: done

Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 38 mounts or

180 days, whichever comes first. Use tune2fs -c or -i to override.

3. Now mount the floppy:

> mount /mnt/floppy

You can use mount to see what filesystems are currently mounted:

> mount

/dev/hda4 on / type ext2 (rw)

none on /proc type proc (rw)

usbdevfs on /proc/bus/usb type usbdevfs (rw)

/dev/hda3 on /scratch type ext2 (rw)

The ext2 file system 43

none on /dev/pts type devpts (rw,gid=5,mode=620)

va:/var/spool/mail on /var/spool/mail type nfs (rw,addr=128.239.2.31)

automount(pid744) on /home type autofs \

(rw,fd=5,pgrp=744,minproto=2,maxproto=3)

mom:/export/home/mom2 on /home/mom2 type nfs

(rw,rsize=8192,wsize=8192,soft,quota,nfsvers=2,addr=128.239.2.57) \

mom:/export/home/mom0 on /home/mom0 type nfs

(rw,rsize=8192,wsize=8192,soft,quota,nfsvers=2,addr=128.239.2.57) \

mom:/export/home/scratch4 on /home/scratch4 type nfs

(rw,rsize=8192,wsize=8192,soft,nfsvers=2,addr=128.239.2.57) \

va:/home/va on /home/va type nfs

(rw,rsize=8192,wsize=8192,soft,addr=128.239.2.31) \

/dev/fd0 on /mnt/floppy type ext2 (rw,nosuid,nodev,user=plshep)

4. When you want to unmount, type:

> umount /mnt/floppy

The ext2 file system 44

References

• Tin Siladin, The Proc and Ext2 file systems, Summer 1997

• Carter Rabase, The Ext2 file system, Spring 1999

• M. Beck, et al, Linux Kernel Internals, 2/e

• Remy Card, et al, The Linux Kernel Book

• Remy Card, et al, Design and Implementation of the Second Extended Filesystem

• Daniel Bovet, et al, Understanding the Linux Kernel

• Linux Cross Reference

The ext2 file system 45

