
Java USB API for Windows

Java USB API for Windows

Diploma Thesis at the Institute for Information Systems, ETH Zürich

Michael Stahl

September 18th 2003

Diploma Professor:
Prof. Moira C. Norrie

Supervisor:
Beat Signer

Michael Stahl 1

Java USB API for Windows

Contents

1 Introduction ..6

2 Motivation ...7

3 USB Overview...8

3.1 USB Terminology .. 8
3.2 PC Host .. 9
3.3 USB Cable.. 10
3.4 Hub Device... 10
3.5 I/O Device... 11
3.6 Information Flow ... 12
3.7 Descriptors .. 12

4 Java USB API for Windows ...13

4.1 USB Driver Stack for Windows.. 13
4.2 Framework of the Java USB API ... 14

5 Java USB API usb.windows Design..16

5.1 Host and Enumeration Processes... 16
5.2 Windows Class.. 18

5.2.1 Windows Class Native Side Design ... 20
5.3 USB Class .. 20

5.3.1 USB Class Native Side Design... 21
5.4 DeviceImpl Class... 23

5.4.1 DeviceImpl Class Native Side Design .. 25
5.4.1.1 openHandle.. 25
5.4.1.2 closeHandle ... 25
5.4.1.3 getFriendlyDeviceName... 25
5.4.1.4 getAttachedDeviceType... 26
5.4.1.5 getNumPorts .. 27
5.4.1.6 getDriverKeyNameOfDeviceOnPort .. 27
5.4.1.7 getExternalHubName... 27
5.4.1.8 getDeviceDescriptor... 28
5.4.1.9 getConfigurationDescriptor .. 28
5.4.1.10 getUniqueDeviceID .. 28

5.5 JUSB Class .. 28
5.5.1 JUSB Class Native Side Design... 29

5.5.1.1 getDevicePath.. 29
5.5.1.2 JUSBReadControl.. 30
5.5.1.3 getConfigurationBuffer ... 32
5.5.1.4 doInterruptTransfer .. 32

6 jUSB Driver ...33

6.1 DeviceExtension ... 33
6.2 Important Members of DeviceExtension Structure ... 34

6.2.1 DeviceDescriptor .. 34
6.2.2 ConfigurationDescriptors .. 34
6.2.3 InterfaceList .. 35
6.2.4 InterfaceClaimedInfo... 36
6.2.5 EndpointContext ... 36

6.3 Dispatch Routine... 37
6.4 Synchronization Techniques ... 37
6.5 I/O Control Codes.. 38

6.5.1 IOCTL TransferType... 40
6.6 Control Transfer .. 41
6.7 Interrupt Transfer .. 41
6.8 BulkTransfer .. 42

Michael Stahl 2

Java USB API for Windows

7 User Installation ...43
7.1 Resources.. 43
7.2 Installation of the jUSB Driver and jUSB DLL .. 43

8 Developers Installation ..44

8.1 Resources.. 44
8.2 Setting the Environment Variables ... 44
8.3 Unzip the JavaUSBComplete.Zip File ... 46
8.4 Java USB API for Windows.. 46

8.4.1 Creating the Java Native Headers.. 46
8.4.2 Directory and File Description... 47

8.5 jUSB DLL.. 47
8.5.1 Visual C++ 6.0 Project Setting.. 47

8.5.1.1 Project Settings without the DDK... 48
8.5.1.2 Windows 2000.. 48
8.5.1.3 Project Settings with an Installed DDK .. 49

8.5.2 Directory and File Description... 51
8.6 JUSB Driver ... 53

8.6.1 How to Build the Driver ... 53
8.6.1.1 No Driver Executable Built ... 54

8.6.2 Directory and File Description... 54

9 Conclusion..56

Appendix A: IOCTL codes used by the JUSB framework..57

I JUSB IOCTL codes ... 57
II Other IOCTLs... 58

Appendix B: Global Unique Identifier GUID ..59

Appendix C : Device Interface Classes ...60

I Introduction to Device Interfaces .. 60
II Register Device Interfaces in a Driver .. 60

Appendix D: Replacement of origin driver with the JUSB driver62

I Install the JUSB driver.. 62
II USB Device with an INF file.. 62
III Class USB Devices ... 63
IV How to change Registry Security Attributes.. 65

Appendix E: Java Native Interface Linking Error..66

Appendix F: A sample of DbgView with HP Scanjet 4100C67

Appendix G: About The CD-ROMs...69

Literature..70

Index ...72

Michael Stahl 3

Java USB API for Windows

List of Tables
Table 1: USB data transfer types ... 12
Table 2: Allowable endpoint maximum packet sizes in bytes .. 12
Table 3: Descriptor types.. 12
Table 4: Creating an USB host... 18
Table 5: Host Interface of the Java USB API ... 19
Table 6: Dynamically loading of HostFactory ... 19
Table 7: getDevicePath and getHostControllerPath function in jusb.cpp .. 20
Table 8: Bus interface of the Java USB API... 21
Table 9: Additional method getBusNum in the USB class ... 21
Table 10: getRootHubName JNI function... 21
Table 11: IOCTL_USB_GET_ROOT_HUB_NAME ... 22
Table 12: DriverKeyName example ... 23
Table 13: FriendlyDeviceName example ... 23
Table 14: JNIEXPORT function for deviceImpl class... 25
Table 15: Node connection information of a hub ... 26
Table 16: Node information of a hub included the hub descriptor.. 27
Table 17: Hub Descriptor structure and its members... 27
Table 18: Unique id .. 28
Table 19: DeviceSPI methods.. 29
Table 20: JNIEXPORT functions for JUSB class ... 29
Table 21: Device path of an USB device in Windows 2000/XP ... 29
Table 22: GetDevicePath JNI function ... 30
Table 23: Control request for endpoint zero in Windows driver stack.. 32
Table 24: Corresponding IOCTL code for control request (n.i.: not implemented yet) 32
Table 25: Common members within a DEVICE_EXTENSION structure ... 33
Table 26: Initialization of a spin lock object .. 38
Table 27: Use of a spin lock object .. 38
Table 28: Definition of an IOCTL.. 39
Table 29: CTL_CODE macro parameters .. 39
Table 30: Skeleton of DispatchControl... 40
Table 31: UsbBuildInterruptOrBulkTransferRequest macro... 42
Table 32: Setting the environment variables .. 45
Table 33: CLASSPATH setting .. 45
Table 34: Path setting... 45
Table 35: JAVAHOME setting .. 45
Table 36: JUSBPATH setting ... 46
Table 37: DDKPATH setting... 46
Table 38: Files in the usb.windows package.. 47
Table 39: Project settings in Windows 2000 without DDK ... 48
Table 40: Project settings in Windows XP without DDK .. 49
Table 41: Project settings in Windows 2000 with the DDK installed.. 49
Table 42: Definition of bmRequest constants only under Windows 2000... 50
Table 43: Modified getAttachedDeviceType function (Windows 2000).. 50
Table 44: Project settings in Windows XP with installed DDK ... 51
Table 45: Folders in JusbDll Folder.. 51
Table 46: Descriptions of files in the jusb folder... 53
Table 47: Build environment from the DDK.. 53
Table 48: Output of jUSB driver build process ... 54
Table 49: Files and its description in the JusbDriver folder.. 55
Table 50: USB_DEVICE_DESCRIPTOR structure.. 57
Table 51: STRING_REQUEST and USB_STRING_DESCRIPTOR structures... 58
Table 52: GUID_DEFINTERFACE_ JUSB_DEVICES... 59
Table 53: Fragment of the jusb.inf file. ... 63
Table 54:Change of Regitry Entries for a JUSB Device... 65
Table 55: Error while trying to modify registry entries .. 65
Table 56: Dumpbin command to see the export function of a DLL.. 66
Table 57: Output of dumpbin command ... 66
Table 58: A mangled function name by the compiler ... 66
Table 59: DdgView output of a device using the JUSB driver.. 68

Michael Stahl 4

Java USB API for Windows

List of Figures
Figure 1: Standard USB designation.. 8
Figure 2: PC host software for USB is defined in layers .. 9
Figure 3: USB cable connector types [27].. 10
Figure 4: Logical view of an I/O device .. 11
Figure 5: USB driver stack for Windows... 13
Figure 6: Java USB API layer for Windows.. 14
Figure 7: Class overview with its interaction .. 18
Figure 8: How to recognise modification on the bus structure ... 24
Figure 9 :Registry entry of driver and device description ... 26
Figure 10 : Control transfer process with its setup packet ... 30
Figure 11: DeviceDescriptor memory allocation... 34
Figure 12: ConfigurationDescriptors memory allocation structure ... 35
Figure 13: InterfaceList memory allocation structure ... 36
Figure 14: InterfaceClaimedInfo memory allocation structure.. 36
Figure 15:EndpointContext memory allocation structure ... 37
Figure 16: Using a spin lock to guard a shared resource... 38
Figure 17: IOCTL transfer types and DeviceIoControl WinAPI functions .. 41
Figure 18: File composition of jUSB DLL project ... 52
Figure 19: Using GUIDGEN to generate GUID.. 59
Figure 20: Registry entries in HKLM\SYSTEM\CurrentControlSet\Enum\USB ... 64
Figure 21: Registry entries for a jUSB device .. 65

Michael Stahl 5

Java USB API for Windows

1 Introduction
The goal of this diploma thesis is to extend the Java USB API to the Windows
operating system as a part of the open source project jUSB [18].

This documentation presents an overview of the universal serial bus (USB) to
provide the fundamental understanding of the Java USB API. Common USB
terminologies are also explained in detail.

The concept of the jUSB API for Windows will be introduced which includes a
presentation of the USB driver stack for Windows and the principal framework of
the Java USB API.

The design approach to implement the usb.windows package for the Java USB
API is separated into two parts. One part deals with the enumeration and
monitoring of the USB while the other part looks into the aspects of
communicating with USB devices in general. Both parts are implemented using
Java Native Interface (JNI) to access native operation on the Windows operating
system. The jUSB dynamic link library (DLL) provides the native functions that
realise the JNI interface of the Java usb.windows package.

Communication with an USB device is managed by the jUSB driver. The
structures and important aspects of the jUSB driver are introduced in chapter 6.
The chapter itself is a summary and covers only some fraction of the driver
implementation. A lot of useful information about driver writing and the internal
structures can be looked up in Walter Oney’s book “Programming The Microsoft
Driver Model” [4].

A lot of important programs and resources are used to work with the Java USB
API for Windows project. Therefore, two chapters have been included to simplify
the installation for end users and developers.

Acknowledgement
I am very grateful to my supervising assistant Beat Signer for always having the
time to answer my question. Thanks also to the other members of the GlobIS
group, the members of the OMS-Lab and especially to Prof. Moira C. Norrie, for
the opportunity of my diploma thesis.

Michael Stahl 6

Java USB API for Windows

2 Motivation
The European project Paper++ (Disappearing Computer Programme, IST-2000-
26130) develops various technologies to enhance physical paper by digital
augmentation [23]. As a part of the project, we are evaluating different kind of
reading devices for position detection on paper. Due to the lack of an existing
USB driver for Java programming environment, at the moment we are restricted
to using only readers transmitting information over the serial port (RS232).

The goal of this diploma thesis is to develop a USB driver for the J2SE 1.4
programming environment [9] supporting any kind of USB device (different
device classes). Based on experience from an earlier project Java HID-USB API
for Windows), a Windows USB binding conforming to the already existing jUSB
interface definition [18] should be implemented.

The idea is to provide some kind of a Java wrapper classes based on the Java
native Interface (JNI) [17] mapping the corresponding Java USB calls to the
underlying Windows driver system. The existing jUSB API will be used as a
guideline and the final Java USB driver should support reading from the USB
port as well as transmitting information to USB devices.

Michael Stahl 7

Java USB API for Windows

3 USB Overview

Host

Root Hub

Hub

I/O Device

Compound Device

Composite Device

Speed

3.1 USB Terminology
The USB specification introduced new terms that are used throughout the USB
literature. This section introduces those terms and presents an overview.

A typical configuration has a single PC host with multiple devices interconnected
by USB cables. The PC host has an embedded hub, also called the root hub,
which typically contains two or more USB ports.

Figure 1: Standard USB designation

Device configuration range from simple to complex:
• Hub: If a device contains only additional downstream USB ports, then it

is called simply a hub.
• I/O device: An I/O device adds capability to the host. It has a single

upstream connection and interacts with the real world to create or
consume data on behalf of the PC host.

• Compound device: If a device includes both I/O and hub functionality, it
is called a compound device. A keyboard that includes additional USB
downstream ports is such an example.

• Composite device: If a single device implements two or more sets of
device functions, it is called a composite device. For example an
eyecam camera with a camera and dual audio channels and a
microphone is a composite device

As far the PC host is concerned, devices are the important feature, and as many
as 126 devices can be interconnected using external hubs up to five levels deep
(in Figure 1 the hub level is three levels deep).

USB 2.0 supports three device speeds. The USB specification version 1.1
defined only two device speeds, such as low speed at 1.5 Mbps and full speed
at 12 Mbps. The high speed at 480 Mbps has been added in USB specification
2.0. Low speed devices are the cheapest to manufacture and are adequate for
supporting low data rate devices such as mice, keyboards, and a wealth of other
equipment designed to interact with people. The introduction of high speed data
rate enables high bandwidth devices such as full colour page scanners, printers
and mass storage devices.

Michael Stahl 8

Java USB API for Windows

Client Software

System Software

Host Controller

3.2 PC Host
A typical configuration has a single PC host. The PC host runs an USB aware
operating system software that supports two distinct functions: initialization and
monitoring of all USB devices.

The USB initialization software is active all the time and not just during the PC
host powered-on. Because the initialization software is always active, USB
devices can be added and removed at any time, also known as Plug and Play.
Once a device is added to the host, the device is enumerated by the USB
initialization software and assigned a unique identifier that is used at run time.

Figure 2 shows how the USB host software is layered (layering supports many
different software solutions).
On the top Client Software is being executed to achieve the desired USB
device functionality. The application software is written in user mode and
therefore does not harm the operating system when errors occure. Class
libraries gain access in user mode to class driver functions. A class is a grouping
of devices with similar characteristics that can be controlled by a generic class
device driver. Examples of classes include mass-storage devices,
communication devices, audio devices, human-interface devices (HID) and
some more that can be found at www.usb.org. If a device does not fit into one or
more of these predefined classes, then a specific device driver has to be written
for the device. Device drivers are executed in the kernel mode and must
therefore be validated and tested to be error free. Next to the Client Software
layer follows the USB System Software layer. Enumerating processes and USB
monitoring is the major task of this layer. It is also responsible for recognising
removal and attachments of devices. The deepest layer is the USB Host
Controller. It is the hardware and software that allows USB devices to be
attached to the host.

Figure 2: PC host software for USB is defined in layers

Michael Stahl 9

Java USB API for Windows

Connectors

Maximum Length

3.3 USB Cable
A USB Cable transports both power supply and data signals.

The power supplied by the USB cable is an important benefit of the USB
specification. A simpler I/O device can rely on the USB cable for all its power
needs and will not require the traditional “black brick” plugged into the wall. The
power resource is carefully managed by the USB, with the hub device playing
the major role. A hub or an I/O device can be self-powered or bus-powered.

• Self-powered is the traditional approach in which the hub or I/O device
has an additional power cable attached to it.

• A bus-powered device relies solely on the USB cable for its power
needs and is often less expensive.

The USB cable connectors were specifically designed with the power pins longer
than the signal pins so that power would always be applied before signals. Two
different connector types were defined, to ensure that illegal configurations could
not be made. An “A”-type connector defines the downstream end of the cable,
and a “B”-type connector defines the upstream end (Figure 3).

Figure 3: USB cable connector types [27]

The maximum cable length is 5 meters between a hub and a device. With up to
five levels of hubs we reach a length of 30 meters from the PC host to the
device.

External Hub

3.4 Hub Device
The hub has two major roles: power management and signal distribution.

An external hub has one upstream connection and multiple downstream
connections. The USB specification does not limit the number of downstream
connections. The most popular hub size has four downstream ports.

A hub can be self-powered or bus-powered. The self-powered hub can provide
up to 500mA to each of its downstream ports while a bus-powered has a
maximum of 500mA to all the ports.

Michael Stahl 10

Java USB API for Windows

Logical View

Endpoint

Interface

Pipes

Configuration

3.5 I/O Device
A PC host creates data for or consumes data from the real world as shown in
Figure 1. A scanner is a good example of a data-creating I/O device and a
printer of a data consuming I/O device.

Figure 4: Logical view of an I/O device

The software (or logical) view of the USB connection is shown in Figure 4. This
diagram is best explained bottom up.
The term endpoint is used to describe a point where data enters or leaves a
USB system. An IN endpoint is a data creator, and an OUT endpoint is a data
consumer. Note that the data direction is relative to the PC host – if we
remember that the PC host is the “master” controlling all data movements, then
the data direction is easy to understand.

A typical real-world connection may need multiple IN and/or OUT endpoints to
implement a reliable data-delivery scheme. This collection of endpoints is called
an interface and is directly related to a real-world connection. The operating
system will have a software driver that corresponds to each interface. The
operating system uses the term pipe to describe the logical connection between
a software driver on the PC host and the interface on the I/O device. There is
always a one-to-one mapping between software drivers and interfaces.

A collection of interfaces is called a configuration, and only one configuration
can be active at a time. A configuration defines the attributes and features of a
specific model. Using configuration allows a single USB connection to serve
many different roles, and the modularity of this system solution saves in
development time and support costs.

Michael Stahl 11

Java USB API for Windows

Transfer Types

Control Transfer

Bulk Transfer

Interrupt Transfer

Isochronous Transfer

3.6 Information Flow
USB defines four methods of transferring data, as summarized in Table 1. The
methods differ in the amount of data that can be moved in a single transaction in
whether any particular periodicity or latency can be guaranteed, and in whether
errors will be automatically corrected. Each method corresponds to a particular
type of endpoint.

Transfer
Type

Description Lossless? Latency Guarantee?

Control Used to send and
receive structured
information of control
nature

Yes Best effort

Bulk Used to send or
receive blocks of
unstructured data

Yes No

Interrupt Like a bulk pipe but
includes maximum
latency

Yes Polled at guaranteed
minimum rate

Isochronous Used to send or
receive blocks of
unstructured data
with guaranteed
periodicity

No Read or written at
regular intervals

Table 1: USB data transfer types

Endpoints have several attributes in addition to their type. One endpoint attribute
is the maximum amount of data that the endpoint can provide or consume in a
single transaction. Table 2 indicates the maximum values for each endpoint type
for each speed of device. In general, any single transfer can involve less than
the maximum amount of data that the endpoint is capable of handling.

Transfer Type High Speed Full Speed Low Speed
Control 64 8,16,32 or 64 8
Bulk < 512 8,16,32 or 64 not allowed
Interrupt < 1024 < 64 < 8
Isochronous < 3072 < 1023 not allowed

Table 2: Allowable endpoint maximum packet sizes in bytes

3.7 Descriptors
USB devices maintain on-board data structures known as descriptors to allow for
self-identification to host software. Table 3 lists the different descriptor types.

Descriptor Type Description
Device Describes an entire device
Configuration Describes one of the configurations of a device
Interface Describes one of the interfaces that is part of

configuration
Endpoint Describes one of the endpoints belonging to an interface
String Contains a human readable Unicode string describing

the device, a configuration, an interface, or an endpoint.

Table 3: Descriptor types

Michael Stahl 12

Java USB API for Windows

4 Java USB API for Windows
This chapter will give an overview of how the Java USB API for Windows will be
implemented. To understand this approach, we give a short introduction to the
USB driver stack for Windows. At the end, we present the final framework which
we are going to implement as part of this project.

USB Layers

Host Controller Driver

USB Driver
(USBD.sys)

Configuration

4.1 USB Driver Stack for Windows
The developers of Microsoft Windows indeed transformed the USB specification
as close as possible to the Windows operating system environment. Therefore,
we find some layers of drivers that support USB to the Windows operating
system. All layers shown in Figure 5 are closely related to Figure 2 in Chapter
3.2. Figure 5 illustrates the USB driver stack for Windows.

Figure 5: USB driver stack for Windows

The visualisation of the hardware functions of the USB Host Controller for
operating system components takes either place through the USB host controller
driver UHCD.sys or the open host controller Interface OpenHCI.sys driver. The
interfaces to those drivers are not documented by Microsoft and therefore not
usable for end users [1].
The driver above the host controller driver is USBD.sys called the USB driver.
This driver plays an important role in the USB driver model. Configuration of the
attached devices, requests of device information, monitoring and control of the
bus structure is all part of this driver. Further, it is responsible for allocation and
monitoring of the available resources such as bandwidth and power
management. Another task of the USB driver is to control the data stream in
both directions and exporting interfaces to controlling several USB devices.

The Configuration of the USB devices is handled by the default pipe number
zero (EP0). For each USB device, the USB driver creates a data channel to
endpoint zero (EP0) after the operating system has been booted. Through this
channel, configuration is done beginning at the root hub. The configuration
process encompasses requesting the descriptor of each USB device and
assigns a unique address to the device. With help of the descriptor data
(especially the vendor id and the product id) the corresponding device driver can

Michael Stahl 13

Java USB API for Windows

Interface to the
USB Driver

Hub Driver
(USBHUB.sys)

Class Driver

Mini Driver

be localized, loaded, and further configuration can be applied to the device using
the loaded device driver.

The interface to the USB driver (USBD.sys) is documented by Microsoft to user
mode direction (see DDK [6] for more information). It establishes the initial point
for the utilization of USB through applications. User programs running in user
mode do not directly have access to this interface. The realisation of such
access involves an additional driver module (either a Device Driver or a Class
Driver as shown in Figure 5) that react to certain function calls from the user
mode and pass them down to the USB driver (as I/O request packet (IRP)
containing an USB request block (URB)).

The tree structure of the USB is managed by the hub. The configuration of the
hubs and their dynamic administration of the tree structure is handled by the hub
driver (USBHUB.sys). The major tasks of a hub driver are:

• configuration of the hubs
• controlling and power management for each port
• to initiate the signals suspend, resume and reset at each port.

On top of the hub driver we find a lot of drivers that belong either to a device
specific driver, a mini driver or a class driver. A class driver manages a group of
devices which have similar functions. A mini driver is used when a device nearly
fits into a class driver but some functions differ from the class driver. The mini
driver implements only the extra features that are not supported by the class
driver. If a device does not fit to any class driver then the vendor has to supply a
device specific driver. This results in supplying a “.sys” driver file for installation
of the USB device.

Knowing the USB driver stack for Windows leads to the framework of the Java
USB API.

Conceptual Design

4.2 Framework of the Java USB API
The core Java USB API provides a singleton host that monitors all USB busses.
The host is responsible for enumerating the USB devices on the Java side and
update its listeners as soon as a device has been attached or removed. We can
see a close correlation to the work of the USB hub driver (USBHUB.sys) and the
USB driver (USBD.sys) in the USB driver stack. In fact, they are responsible for
the tree structure and to enumerate the devices.

Figure 6: Java USB API layer for Windows

According to the usbview example delivered with the DDK [6], we know that it is
possible to enumerate all the devices (hubs included) and even the host
controllers. John Hyde shows another example how to display the USB tree

Michael Stahl 14

Java USB API for Windows

Replace the Origin Driver
through the JUSB Driver

structure in Windows [2]. The common thing both examples have in common is
that they are executed in user mode. The conclusion is that we do not have to
write a driver to enumerate and control the USB tree structure for the Java USB
API. Of course, these user mode functions are performed with the
DeviceIoControl WinAPI function which uses the handle to the corresponding
hub driver. A driver is still required but it is already supplied by the Microsoft
operating system. A small disadvantage is that undocumented I/O Control
(IOCTL) codes are used. This forces one to use the examples as
documentation, which is far away from an optimal documentation. Anyway,
creating a framework using existing user mode functions simplifies the writing of
the Java USB driver. We use the Win API user mode function as shown in the
usbview example to enumerate and monitor the USB tree structure as shown in
Figure 6.

To perform device specific operations we need to write a device driver mapping
the user mode function to the related kernel mode function as shown in the right
part of Figure 6. This involves the jUSB driver to handle different kinds of IOCTL
codes to maintain all the functionality supported by the Java USB API.
The Question may arise of how to assign the jUSB driver to any kind of USB
device. Usually, a USB device is plugged in and the driver is loaded
automatically. This is still preferable but instead of loading the original driver for
the USB device we want the system to load the jUSB driver (details about the
installation of a new device are given in Appendix D). Of course, this will take
away all the functionality the origin driver supported but this functionality should
now be provided by the Java USB API. Using the new API we can build the
functionality we want from the device in Java and do no longer have to care
about C, JNI and driver writing on the Windows platform. Chapter 5 is going to
present in a first part the implementation of functions not using the JUSB driver
while the other part describes the driver implementation for the Java USB API.

Michael Stahl 15

Java USB API for Windows

Introduction

5 Java USB API usb.windows Design
The design of the usb.windows package for the Java USB API is built on the
usb.core package. This is a constraint of my diploma thesis and therefore I am
bound to some given relation. The functionality is as noted in the design phase
separated in two parts. The first part contains all work to create a Host and enu-
merate all devices on the busses. We even get the device descriptor and the
default configuration descriptor (index equal to zero) of every USB device at-
tached to the bus. The first part does not depend on the driver the device uses.
To access all information as mentioned before we must have objects of a
DeviceImpl instance. The functionality of DeviceImpl objects is restricted. There
is no way to use functions which are part of the DeviceSPI class (see javadoc of
Java USB API [10]).
The second part depends on the driver the device uses. All devices that are not
configured to use the jUSB driver will be put into the NonJusb class. The Non-
Jusb class does as well implement the DeviceSPI interface, because it is neces-
sary according to the usb.core API, but it will throw only IOExceptions indicating
that DeviceSPI cannot be used to access the device. In the opposite way we put
all devices using the jUSB driver in the JUSB class. The DeviceSPI interface is
partly implemented and supports reading data and doing control transfer to the
device.
In the following section we are going to describe how the first part of the Java
USB API application is implemented and how the communication looks like un-
derneath the responsible objects.

Windows Class

Watcher Class

Polling

HostImpl Class

5.1 Host and Enumeration Processes
The Windows class which extends the HostFactory class contains to inner
classes the HostImpl and the Watcher class. The Watcher class (Figure 7:)
implements the Runnable interface and is therefore used for thread activity. The
Windows class runs the Watcher thread as a daemon thread. This means as
soon as our main application is finished, the Watcher thread will terminate as
well. Within the run method, method scan should be called anytime when
something has changed on the bus. The notification of USB structure changes
we wanted to implement with a call-back function to the USB native on Windows
with the aid of the RegisterDeviceNotification function. It is better if the Watcher
only starts the scan method when really something has changed on the bus. In
the usbview example this notification is done with RegisterDeviceNotification.
This will call an event which can be handled in the WindowProc call-back func-
tion. Unfortunately this call-back depends on a window application. This means
we can only fetch that event in a window object. So far we have only native calls
in the jUSB DLL. We tried to make a fake window, which was not visible for the
user to catch than the WM_DEVICECHANGE event, which is broadcasted when
a change on the USB happened. This topic has some related aspects in user
forums, but it seems to be that every one fight with the same problem. Register-
DeviceNotification is not usable in a DLL! If someone gets a solution we will be
happy to here it.
Anyway the Windows class polls now every two seconds the bus to look for
changes on the USB structure. The major task of the scan method in the
Watcher class is to find out through a native call how many USB host controllers
the current machine supports. It creates for every USB host controller a new
USB object. It checks first of all if there already exist a USB object. In the case of
already having a USB object it will just call the scanBus method of this USB ob-
ject to monitor if changes have been occurred. In the other case a USB object
will be created and put to the HashTable of current busses (Figure 7:).

The HostImpl class takes care over all USB busses found on the computer. It
implements all methods from the usb.core.Host class.

The USB class is responsible to keep control over its bus. This means an USB
object knows about all its devices and can access them through an address that

Michael Stahl 16

Java USB API for Windows

USB Class

Naming Convention

scanBus

Enumeration

JUSB or NonJUSB

is given at enumeration time. The major work is done through the scanBus
method. At first, it creates the root hub which exists only once for a USB bus
(host) (Figure 7:). To avoid misunderstanding between the names of the Host
class as they can be found in the Java USB API and the host of an USB bus, we
briefly explain their differences. The Host class is an abstract definition for all
USB busses on a system. Every USB bus consists always of a host and a root
hub. The USB class does implement a host as defined in the USB specification.
Therefore we can say that the USB class itself represents a host as known in
common sense. Every USB object contains a root hub. This fact indicates that
the USB class itself must be a host in USB topology.

The scanBus method in the USB object gets now the native rootHubName of
that given hostcontroller and creates a new NonJUSB for that root hub (Figure
7:). This will be done in either way if we have already an existing root hub or
not. This design is made in that way because we call the enumerateHubPorts
method in DeviceImpl recursively to get all devices on the bus and the bus
structure itself. The root hub creation starts this recursion and therefore we need
to create it for each scan. In other words the enumeration is done by the devices
itself and every device that exists on the current bus will add itself to the USB
object. To avoid always getting notified by the USBListener that a new root hub
is created we check if we already have a root hub for that bus and do only notify
the USBListener when there was no root hub before. In the other case we create
the root hub again without notifying its listeners.

The NonJUSB and the JUSB class delegate most work to their superclass
DeviceImpl (Figure 7:). The DeviceImpl class has two constructors, one is
used for the root hub and the other one is used when the device is either a USB
device or an external root hub. The DeviceImpl object will get some information
about the USB device itself. Through native calls it will get to know how many
ports it has and what kind of device type is connected to each of their ports. The
port can be free (no device connected) or a device or even a hub can be con-
nected. If a hub is connected we recursively call the enumerateHubPorts method
to get all the children of the hub (Figure 7:).

The enumerateHubPorts method is in charge to update the bus structure. It
knows the recent structure from the oldDevices member. It compares those
members with the currently processed device. If the currently processed device
can be found at the same address in the oldDevices member, we check the de-
vice to make sure that it is still the same. In case of a device (not a hub) the de-
cision is made in one step. We only check if the device’s current unique ID cor-
respond to the recent device unique ID. If not, we remove the recent device from
the bus and add the current device to the bus and inform the listeners about a
removal and an attachment. In case of having a hub we have to check all its
ports recursively down, to make sure that everything remains the same. If we
remove a hub, we have to inform the listeners about a removal of the hub and all
its children that used to be connected to it. In both cases when a device is new
to the bus or it has changed we create a new NonJUSB or JUSB object de-
pending on the friendly driver name and add it to the USB object (Figure 7:).

At the moment when a friendly driver name starts with “JUSB Driver --:”, this is a
public string constant, called A_JUSB_DRIVER declared in the Windows class,
we create a JUSB object and otherwise a NonJUSB object.
In either way whether we created a JUSB or NonJUSB object we get the device
descriptor through the getDeviceDescriptor method from their superclass. This
method is not part of the DeviceSPI, but makes it possible to read the descriptor
of any device (Figure 7 :). Furthermore, we get the default configuration de-
scriptor in the same way (Figure 7:). If a device has multiple configurations,
we only get the configuration with index zero!

Michael Stahl 17

Java USB API for Windows

Figure 7: Class overview with its interaction

Creating a Host

5.2 Windows Class
The Windows class which extends the HostFactory contains two inner classes
the HostImpl and the Watcher class. This section explains the Window class.

The Java usb.core package supports classes that need to be implemented in the
usb.windows package. The core subject of his API is the HostFactory itself. The
HostFactory class is responsible to setup an OS-specific environment. The
HostFactory in the usb.windows package is in charge to instantiate a valid envi-
ronment for Windows XP and 2000. This is all done with the following code:

Host host = HostFactory.getHost();

Table 4: Creating an USB host

With the method getHost of the interface HostFactory we get a Host object re-
turned. The Host is responsible to monitor all universal serial busses on a given

Michael Stahl 18

Java USB API for Windows

Terminology

HostImpl Class

Bug

Operating Sytsem Names

Watcher

machine. There can be more than one USB host controller on a computer. Every
USB host controller can manage up to 126 USB devices.

To prevent a misunderstanding in the USB topology of Windows operating sys-
tems, one universal serial bus is managed by one Host Controller. So the host
we create through the Java USB API as in the example above, has nothing to do
with the Host Controller from the Windows operating system. In fact a host con-
troller in the Windows OS corresponds to a Bus object according to this Java
USB API. This means that if we have more than one host controller on our
Windows PC, we will also have more USB busses. The number of busses is
equal to the amount of host controllers.

The Windows class in the usb.windows package has to implement the Host in-
terface. This includes all methods in the Host interface. The following table will
list those methods:

Bus [] getBusses() Returns an array of Bus instances. Remember
the number of Bus instance will be equal to the
number of host controllers on your computer.

void addUSBListener(USBListener) Adds a call back for USB structure changes.
As soon as a device or a bus gets removed or
attached to the bus, any class which extends
the class USBListenerAdapter gets notified.
The abstract class USBListenerAdapter im-
plements already the USBListener interface.
This is the reason why we have to extend our
class that will be in charge to handle USB
structure changes from the USBListener-
Adapter.

void removeUSBListener(USBListener) Will remove the callback for USB structure
changes.

Device getDevice(PortIdentifier) not implemented yet!

Table 5: Host Interface of the Java USB API

The HostFactory dynamically loads the host for the operating system it runs on.
There is a bug in the usb.core package. The method getHost checks for the
operating system name and then tries to load the class usb.<os-name>.<OS-
name>. In Java this looks as follows:

String os = System.getProperty ("os.name");
String classname = “usb." + os.toLowerCase () + "." + os);

Object temp;
temp = Class.forName (classname);
temp = ((Class)temp).newInstance ();
return ((HostFactory) temp).createHost ();

Table 6: Dynamically loading of HostFactory

This works perfectly for Linux. Linux becomes the OS name “Linux” and this
results to a correct classname: “usb.linux.Linux”.
Among Windows XP the OS name is “Windows XP” and the classname would
look like this: “usb.windows xp.Windows xp”. This is not a valid Java package
name and even not a valid class name, because spaces within a class or pack-
age name are not allowed. For windows 2000 the OS name is
“Windows 2000”!

We fixed this bug by checking the operating system’s name for windows and if
“windows” is a substring of the operating system name, we will load
usb.windows.Windows package. The Windows version should run among
Windows 2000/XP/2003. There is not a guarantee that this Windows class sup-
ports Windows 95,98 and ME.

The Watcher class is a daemon thread which is responsible of the current Host.

Michael Stahl 19

Java USB API for Windows

Watcher It monitors all changes of the USB structure. At initialization, we scan all USB
busses on the system and create the appropriate USB object. In a later scan we
check if the busses, exactly there host controller names, remains. When a bus
has been removed we notify the listeners about a removal or attachment of a
bus. This case will hardly ever happen, because the removal or attachment of a
bus is usually done by exchanging a piece of hardware which should be done
while power off.

To get all host controller on the Windows operating system we use the native
method getHostControllerDevicePath(i). This method returns a device path to
the ith host controller. The variable i has to be incremented from zero to the
amount of host controllers. It will return null as soon the variable i is to high.

SetupDiXxx-Function

Device Path

5.2.1 Windows Class Native Side Design
The implementation of getHostControllerDevicePath is in the file jusbJNIwin-
dows.cpp. The new guid interface is used to get all host controllers on the
Windows operating system. The most work is done in using the SetupDiXxx API
function. Because Windows 2000 does not support the GUID interface for host
controller we need another way to get the device path on Windows 2000 oper-
ating system. This is solved in that the device path always starts with “\\.\HCDx”
where x is the ith host controller.

// Windows XP
getDevicePath(&GUID_DEVINTERFACE_USB_HOST_CONTROLLER,
 (int)number);

// Windows 2000
getHostControllerPath(int number);
/*
This function is being called, when we execute getDevicePath with number 0
and fail, which means that we are not able to find at least one host. Then we
try the Windows 2000 function. If we fail again, we do not have a host con-
troller on the system or are running under another operating system.
*/

Table 7: getDevicePath and getHostControllerPath function in jusb.cpp

What is a device path?
A device path is used to execute CreateFile WinAPI function which returns a
device handle to the specific device. With the device handle we can call
DeviceIoControl with an appropriate IOCTL code to get more information about
the device itself. In that case the device would be the host controller.

Bus Interface

5.3 USB Class
The USB class implements the Bus interface from the usb.core API. This in-
volves to implement the following methods shown in Table 8:

String getBusId() Returns a host specific stable identifier for
this bus.

Device getDevice(address) Returns an object representing the device
with the specified address (1 through 127),
or null if no such device exists.

Host getHost() Returns the USB host to which this bus is
connected.

Device getRootHub() Returns the root hub of this bus, if it is
known yet. The root hub is always the
device with address 0. This is according to
the USB implementation of the Java USB
Windows API

Michael Stahl 20

Java USB API for Windows

Host Controller Name

Table 8: Bus interface of the Java USB API

An additional method is implemented to the USB class. This method is called
getBusNum and listed in Table 9.

int getBusNum() Returns the number assigned to this bus.
This number is from 1 to the number of host
controller on the Windows machine.

Table 9: Additional method getBusNum in the USB class

The method getBusId returns the host controller name of the Windows operating
system. This name may as follows:
„Intel(R) 82801DB/DBM USB Universal Host Controller - 24C4”
This name is unique according to the other host controllers on a Windows ma-
chine.

The only native method in USB class is getRootHubName. ScanBus uses this
method to start the enumeration process. It creates with the given root hub name
a NonJusb object, which itself starts the recursive enumeration by calling its
superclass DeviceImpl. The enumerateHubPorts method of DeviceImpl is
responsible to let the recursion run or terminate. As soon there are not more
hubs found on a port the recursion will stop.

getRootHubName

Description of a JNI
function

5.3.1 USB Class Native Side Design
The file jusbJNIusb.cpp contains the implementation of getRootHubName. To
succeed the getRootHubName method a valid host controller device path has to
be given as input parameter. The hostControllerDevicePath is a private member
of the USB object. Its initialization is done in the constructor of the USB object.
Refer to Table 10 to see the code fragment of getRootHubName.

1
2

3
4

5

6
7

JNIEXPORT jstring JNICALL Java_usb_windows_USB_getRootHubName
(JNIEnv *env, jobject obj, jstring hcdDevicePath)
{
 …
 hcdHandle = CreateFile(hcdDevPath, …, ….);
…
 rootHubName = getRootHubName(hcdHandle);

 if(!CloseHandle(hcdHandle)) { …} // an error occured
return rootName;
}

Table 10: getRootHubName JNI function

1. The head of a Java Native Interface method looks mostly this fashion.
The complicated and not very readable function name is coming from
the JNI naming convention. Every native method starts with Java_ fol-
lowed by the package names (usb_windows_USB_), separated by a
‘_’ instead of a ‘.’ as we are used to on Java side. Finally we append the
native method name to the previous name.

2. The parameter env stands for the Java environment and the obj
parameter refers to the Java class this method belongs to. The third pa-
rameter in that case is now the host controller device path as a type of
jstring.

3. Some initialisation has to be done at this point. We have to convert the
jstring hcdDevicePath to a type of PCHAR hcdDevPath variable. Look at
the source code to see how this is done.

4. To get some information from the host controller we need at first a host
controller handle, which is done through CreateFile WinAPI function.

5. We call getRootHubName method with a valid host controller handle.
See at the next section how this function succeeds the demanded ac-
tion.

6. Finally we always close a handle. Open handles can slow down the

Michael Stahl 21

Java USB API for Windows

operating system.
7. We return the rootName as type of jstring.

The interesting thing in the getRootHubName JNI function is the C method
getRootHubName that takes a host controller handle as its argument. The
DeviceIoControl API function is used to send the IOCTL_USB_GET_ROOT_-
HUB_NAME command to the host controller. This IOCTL code is undocumented
by Microsoft but used in the usbview example in the DDK. Its use can be
summarised as:
Call DeviceIoControl WinAPI function with function code
IOCTL_USB_GET_ROOT_HUB_NAME to receive the USB_ROOT_HUB_-
NAME structure. We will receive a structure which contains only 6 bytes, 4 bytes
for the AuctualLength and 2 bytes for the RootHubName which is an array of
wide chars. Both are members of the USB_ROOT_HUB_NAME structure. In a
second way we have to allocate memory in the size of ActualLength for the
output buffer and call DeviceIoControl WinAPI function again to obtain the whole
root hub name
The following code snippet shows the important parts. Error handling is omitted
to clarify the main aspects.

1
2

3

4

5
6

7
8

9

10

11
12

13

PCHAR getRootHubName(HANDLE HostController)
{
 BOOL success;
 ULONG nBytes;
 PUSB_ROOT_HUB_NAME pRootHubNameW;
 PCHAR rootHubNameA;
…
 pRootHubNameW = (PUSB_ROOT_HUB_NAME)
 GlobalAlloc(GPTR, sizeof(USB_ROOT_HUB_NAME));

 success = DeviceIoControl(HostController,
 IOCTL_USB_GET_ROOT_HUB_NAME,
 0,
 0,
 pRootHubNameW, //&rootHubName
 sizeof(USB_ROOT_HUB_NAME), //sizeof(rootHubName)
 &nBytes,
 NULL);

 nBytes = pRootHubNameW->ActualLength; //rootHubName.ActualLength
 GlobalFree(pRootHubNameW);

 pRootHubNameW = (PUSB_ROOT_HUB_NAME)GlobalAlloc(GPTR,nBytes);

 success = DeviceIoControl(HostController,
 IOCTL_USB_GET_ROOT_HUB_NAME,
 NULL,
 0,
 pRootHubNameW,
 nBytes,
 &nBytes,
 NULL);

 rootHubNameA = WideStrToMultiStr(pRootHubNameW->RootHubName);
 GlobalFree(pRootHubNameW);

 return rootHubNameA;
}

Table 11: IOCTL_USB_GET_ROOT_HUB_NAME

1. A pointer to a USB_ROOT_HUB_NAME structure, which is declared in
usbioctl.h [28]

2. A pointer to the return value
3. Allocate memory to keep a USB_ROOT_HUB_NAME structure. The

GPTR Flag indicates that the memory is fixed and its content initialized
with zeros.

Michael Stahl 22

Java USB API for Windows

4. Get the root hub name
5. Output buffer
6. Output buffer size
7. The length of the root hub name
8. free the recently allocated memory for the pRootHubNameW pointer
9. Allocate memory to keep the entire root hub name
10. Get the root hub name with an output buffer big enough to keep the en-

tire root hub name
11. convert the wide string to a 8 bit string
12. free the memory of pRootHubName
13. return the root hub name

Description

getNumPorts

getAttachedDevice

getDriverKeyNameOf-
DeviceOnPort

getFriendlyDevicName

getUniqueDeviceID

5.4 DeviceImpl Class
The DeviceImpl class is one of the core classes for enumerating the USB. It is
only used for hubs. The whole enumerating process is done to search for a hub
and then to check its ports to determine what kind of devices are attached to it.
We get the device and configuration descriptor by asking the hub driver about
the devices that are attached to the ports. We do never access the device di-
rectly, but rather through the hub itself. We gain a lot of useful information in
asking the hub about the devices that are attached to it. By means of that infor-
mation a decision can be made whether the device uses the jUSB driver or not.
This will result in creating a JUSB object for a device using the jUSB driver and
for all other ones we get a NonJUSB object. To satisfy all this constraints help, is
needed from a native method to get access to a hub by openHandle and close-
Handle method. This methods dispatch just to WinAPI functions CreateFile and
CloseFile. As soon as we got a handle to a hub, we can gather information about
the ports of the hub and the hub itself. At first we want to know how many ports
the current hub actually has. This request will be satisfied with the native method
getNumPorts.
In a second step we iterate now over all ports of this hub and do the following
steps at each port:

1. getAttachedDevice implemented as a native method is first called. it re-
turns a constant depending on the ports connectivity. This is either the
value EXTERNAL_HUB, USB_DEVICE or NO_DEVICE_CONNECTED.

2. If we have no device connected we go to the next port.
3. For an external hub or a device we call the native method get-

DriverKeyNameOfDeviceOnPort to get the driverkeyname which will
look similar to this:

 {745A17A0-74D3-11D0-B6FE-00A0C90F57DA} \0001

{<device interface class>}\<number>

Table 12: DriverKeyName example

4. With the driver key name and the native method getFriendlyDevice-
Name we receive a readable name for the driver key. This looks in the
case we have just a normal USB device with its own driver as shown in
Table 13 first line. In case we use a jUSB driver it looks like the second
line in Table 13

 Logitech WheelMouse (USB)

JUSB Driver --: MyPen as Testboard

Table 13: FriendlyDeviceName example

5. To identify devices, hubs included, and recognise modification on the
bus, a unique id is used. The native method getUniqueDeviceID will re-
turn a unique id for a device. This unique id consists of the current de-
vice address, the port it is connected to, the vendor id, the product id,
the revision number, version number and some class and configuration
issues.

6. At the end we either create a new JUSB object, when the friendly device
name starts with “JUSB Driver --:” or otherwise a NonJUSB object

Michael Stahl 23

Java USB API for Windows

There are two more native methods to get the device and configuration descrip-
tor. Those methods are called from the subclass NonJUSB and JUSB to initialize
their appropriate device and configuration descriptor. The sub classed objects do
not get their device and configuration descriptor. They ask the hub they are con-
nected to, to retrieve their descriptors.

Why the address given at enumerating by the USBD driver is not unique
enough in the Java USB API implementation?
Every device that is found during enumeration is put into the member devices
in the USB class, which is an array of DeviceImpl objects elements. The index
of this array corresponds to the device’s addresses. The root hub which is a
device too, has always the address zero. The other addresses for devices are
given through the USBD driver by the operating system. To detect modifica-
tion on the bus, we compare the currently found devices with the oldDevices
member which represents the devices from a recent scan. If the devices on
the same address are identical, no listeners are notified. But if the devices are
different we have to notify the listener about a removal and an attachment of a
new device.

Suppose we have the following situation on the USB bus. A root hub, an ex-
ternal hub attached on port 1 to the root hub and a device attached on port 1
to the external hub. The first time the member oldDevices of the USB class is
null and after the first scan we have the following devices in the member de-
vices of USB class as shown in Figure 8: scanBus 0.

Figure 8: How to recognise modification on the bus structure

If we now detach device X from the external hub and attach it again to the
external hub, but rather on port 3, we got the same enumeration in respect to
the addresses of the devices (Figure 8: scanBus 1). If we compare the mem-
ber oldDevices and devices to each other according to its address, we would
find the same device at address 2 and therefore not notify the USBListener. In
fact that would be incorrect since we had a modification on the bus. If every
device has a unique device id, we are able to recognise modification on the

Michael Stahl 24

Java USB API for Windows

bus. Consider the scanBus 1 Figure 8 and look at the unique device id (UDI).
We have still a device at address 2 but this time it is not the same with respect
to the unique device id to the member oldDevices. The corollary is to inform
the USBListeners that device X has been removed and attached again to the
bus, but this time on port 3 of the external hub.

5.4.1 DeviceImpl Class Native Side Design
The native functions of the DeviceImpl class are implemented in
jusbJNIdeviceImpl.cpp. In the next section we explain those native functions.

jint JNICALL Java_usb_windows_DeviceImpl_openHandle
jint JNICALL Java_usb_windows_DeviceImpl_closeHandle
jstring JNICALL Java_usb_windows_DeviceImpl_getFriendlyDeviceName
jint JNICALL Java_usb_windows_DeviceImpl_getAttachedDeviceType
jint JNICALL Java_usb_windows_DeviceImpl_getNumPorts
jstring JNICAL Java_usb_windows_DeviceImpl_getDriverKeyNameOfDeviceOnPort
jstring JNICALL Java_usb_windows_DeviceImpl_getExternalHubName
jbyteArray JNICALL Java_usb_windows_DeviceImpl_getDeviceDescriptor
jbyteArray JNICALL Java_usb_windows_DeviceImpl_getConfigurationDescriptor
jstring JNICALL Java_usb_windows_DeviceImpl_getUniqueDeviceID

Table 14: JNIEXPORT function for deviceImpl class

5.4.1.1 openHandle
A handle for a device we get with the known device path and the Windows API
function CreateFile.
This native function returns either a INVALID_HANDLE_VALUE by failure or a
device handle by success. The INVALID_HANDLE_VALUE is defined in the
error.h file from the Microsoft SDK [24].

5.4.1.2 closeHandle
It closes open handles. The CloseHandle WinAPI function takes as argument a
handle and closes it. We have to take care about open handles, because some
open handles that are never closed can affect that the device may not be
opened again through another application or the same application. The best way
is to close open handle as soon as we got the appropriate information or we do
not need any access to the device.

5.4.1.3 getFriendlyDeviceName
The friendly device name is closely related to the getDriverKeyNameOfDevice-
OnPort function (see 5.4.1.6). Every device has one ore more entries in the
registry, where parameters and device specific matters are stored. Because
USB is hot pluggable we need a way to gather information about the device that
is attached to the USB. The Bus driver recognises when a device is being at-
tached and requests the device for the device descriptor. Out of this information
the vendor id and the product id is extracted. The operating system checks if that
information fits to an entry in the registry. If there is no concordance, the operat-
ing system checks all the INF-files for a match. As a last resort, the hardware
assistant will ask the user to provide the driver information on a disk.
The getFriendlyDeviceName function looks up the DeviceDesc entry in the reg-
istry, which contains a human readable and understandable name for a given
driver. The driver name look as follows {36FC9E60-C465-11CF-8056-
444553540000}\0030, where the whole part between the brackets {…} suits to
an interface class for a device and next to the slash is a number that identifies
exactly one instance of the device. getFriendlyDeviceName is the JNI export
function and the major task is done by the DriverNameToDeviceDesc function
(Figure 9).

Michael Stahl 25

Java USB API for Windows

Figure 9 :Registry entry of driver and device description

With the aid of that friendly driver name, the decision is possible whether a USB
device belongs to the JUSB class or to the NonJUSB classes. When the device
description starts with “JUSB Driver --:” a JUSB object will be created.

The DriverNameToDeviceDesc function is in the file devnode.cpp which comes
with the usbview example from the DDK. CM_Get_DevNode_Registry_Property
is available for use in Windows 2000 and Windows XP. It may be altered or un-
available in subsequent versions. Applications should use the SetupDiGet-
DeviceRegistryProperty function. The doDriverNameToDeviceDesc in the
helperFunction.cpp file uses those SetupDiXxx function but does not work prop-
erly together with the Java Native Interface. The modification and correction of
this function is put to future work (see at conclusions).

5.4.1.4 getAttachedDeviceType
While we enumerate all devices through the root hub and external hub, we need
to know what kind of device is attached to each of the hub ports. This function
returns some symbolic constants as NO_DEVICE_CONNECTED, EXTER-
NAL_HUB or a USB_DEVICE is connected to the asked port. These constants
are defined on the Java side, in the DeviceImpl class. To gain the attached type
information of a hubs port, we use the undocumented IOCTL_USB_GET_-
NODE_CONNECTION_INFORMATION in a DeviceIoControl call (This function
is shown in the usbview example but more precise and clearly arranged in an
example of Intel by John Hyde [5].

The structure sent to and returned from the hub driver provides the following
information.

1

2

3

typedef struct _NODE_CONNECTION_INFORMATION{
 ULONG ConnectionIndex;
 DEVICE_DESCRIPTOR DeviceDescriptor;
 UCHAR CurrentConfigurationValue;
 BOOLEAN LowSpeed;
 BOOLEAN DeviceIsHub;
 UCHAR DeviceAddress[2];
 UCHAR NumOfOpenPipes[4];
 UCHAR ConnectionStatus[4];
 USB_PIPE_INFO PipeInfo[32];
} NODE_CONNECTION_INFORMATION,
PNODE_CONNECTION_INFORMATION;

Table 15: Node connection information of a hub

1. Specifies the port we look at
2. Is true when the device connected to this hub on port ConnectionIndex

is an external hub. False denote that it is a USB device.

Michael Stahl 26

Java USB API for Windows

3. ConnectionStatus contains some info about the connection itself. This
value can have one of the following values:

• DeviceConnected
• NoDeviceConnected
• DeviceGeneralFailure
• DeviceCauseOverCurrent
• DeviceNotEnoughPower
• DeviceNotEnoughBandwith
• DeviceHubNestedToDeeply (not defined in Windows 2000)
• DeviceInLegacyHub (not defined in Windows 2000)
• DeviceFailedEnumeration

5.4.1.5 getNumPorts
If a hub is found we need to know how many ports it supports. GetNumPorts
sends an IOCTL_USB_GET_NODE_INFORMATION to the hub driver and fills in
the following structure Table 16:

1

typedef struct _NODE_INFORMATION{
 USB_HUB_NODE NodeType;
 HUB_DESCRIPTOR HubDescriptor;
 BOOLEAN HubIsBusPowered;
} NODE_INFORMATION, *PNODE_INFORMATION;

Table 16: Node information of a hub included the hub descriptor

1. The HUB_DESCRIPTOR structure (Table 17) contains among other
things the bNumberOfPorts member which we were looking for.

typedef struct _HUB_DESCRIPTOR{
 UCHAR bDescriptorLength;
 UCHAR bDescriptorType;
 UCHAR bNumberOfPorts;
 UCHAR wHubCharacteristics[2];
 UCHAR bPowerOnToPowerGood;
 UCHAR bHubCbontrolCurrent;
 UCHAR bRemoveAndPowerMask[64];
} HUB_DESCRIPTOR, *PHUB_DESCRIPTOR;

Table 17: Hub Descriptor structure and its members

The following paper was very helpful to get information how to query a hub with
IOCTL codes [5]. The annoying thing is that most of this hub IOCTL codes are
not documented but used in a lot of examples how to get access to a hub. This
involves a lot of reading of source code, but makes it hard to vary the code
sample, because we do not get out of the example, how the IOCTL code
handles its input and output buffer nor the structure members.

5.4.1.6 getDriverKeyNameOfDeviceOnPort
GetDriverKeyNameOfDeviceOnPort returns the driver name from the registry for
that USB device (see 5.4.1.3 and Figure 9

Figure 9 :Registry entry of driver and device description

). With the aid of the IOCTL_USB_-GET_NODE_CONNECTION_DRIVERKEY-
_NAME and the USB_NODE_-CONNECTION_DRIVERKEY_NAME structure
can the hub provide the driver name of the device that is attached on a given
port.

5.4.1.7 getExternalHubName
GetExternalHubName returns a readable name for the hub device. The informa-
tion is received while sending an IOCTL_USB_GET_NODE_CONNECTION_-
NAME to the hub driver with the DeviceIoControl WinAPI function. The buffer
returned from DeviceIoControl contains the desired external hub name.

Michael Stahl 27

Java USB API for Windows

5.4.1.8 getDeviceDescriptor
This function enables to retrieve the device descriptor of the USB device at-
tached at a given downstream port of the hub. The good thing is we do not need
to know the device path of the USB device to get the device descriptor, we only
need to request the hub which does gathering the desired information. This is
the reason we do not need a driver to enumerate the devices, but still able to
access the functionality the USB device supports. At least we learn what device
is connected to. The getDeviceDescriptor function uses the hub specific IOCTL
code, IOCTL_USB_GET_NODE_CONNECTION_INFORMATION, and the port
number to succeed the request.

5.4.1.9 getConfigurationDescriptor
The getConfigurationDescriptor function returns the configuration descriptor from
the device attached to a given port number of the hub. It uses the
IOCTL_USB_GET_DESCRIPTOR_FROM_NODE_CONNECTION IOCTL code
to obtain the complete configuration descriptor included all interface and end-
point descriptors.

5.4.1.10 getUniqueDeviceID
The unique device id is a string which consists of some attributes from the de-
vice descriptor and port information. The function is implemented similar to get-
DeviceDescriptor described in 5.4.1.8. The composition of the unique id is ex-
plained in Table 18.

Unique id composition:

USB/Adr_AAA&Port_BBB&Vid_CCCC&Pid_DDDD&Rev_EEEE&Ver_FFFF&
DevClass_GG&DevSubClass_HH&NumC_JJ

AAA: The device address assigned by the operating system (1…126)
BBB: Port number where the device is attached to (usually 1…4)
CCCC: Vendor id from the device descriptor
DDDD: Product id from the device descriptor

The following members of the unique id specify more precise the device and
therefore the id should really be unique.

EEEE: The revision number
FFFF: The version number of the device
GG: The device class it belongs to
HH: The subclass the device belongs to
JJ: The number of configurations

Table 18: Unique id

5.5 JUSB Class
The JUSB class contains all USB devices that are running with the jUSB driver.
All native method will need the device path of the device to provide access to the
driver. The device path is searched by means of the VID and PID which is
passed as argument to the native method getDevicePath to retrieve the
Windows device path of that device.

The final implementation of the jUSB driver should support all methods of the
DeviceSPI class listed in Table 19. The highlighted methods in Table 19 are
implemented. The method readControl is partly implemented. If we call a read-
Contol request to the device it will answer the request or throw an exception
depending on the setup packet we sent (see 5.5.1.2).

Michael Stahl 28

Java USB API for Windows

DeviceSPI Methods

 public byte [] getConfigBuf (int n) throws IOException;

public void setConfiguration (int n) throws IOException;
public byte [] readControl (byte type, byte request, short value,
 short index, short length);
public void writeControl (byte type, byte request, short value,
 short index, byte buf []);
public byte [] readBulk (int ep, int length);
public void writeBulk (int ep, byte buf []);
public int clearHalt (byte ep);
public byte [] readIntr (int ep, int len);
public void writeIntr (int ep, byte buf []);
public String getClaimer (int ifnum);
public void claimInterface (int ifnum);
public void setInterface (int ifnum, int alt);
public void releaseInterface (int ifnum);
public Device getChild (int port);

Table 19: DeviceSPI methods

At the moment there is only interrupt transfer and a part of the control transfer
available in the JUSB class. All the other transfer types (bulk and isochronous)
are not implemented yet. For future work the bulk transfer can analogous be built
to the interrupt transfer. Possible steps to implement bulk transfer in the jUSB
API for Windows:

1. Define a native method such as doBulkTransfer in the JUSB class which
extends the signature of readBulk with the argument device path.

2. Create the new JNI header file with javah.
3. Implement the doBulkTransfer JNI function in the jUSB DLL.
4. Define a new IOCTL code for doBulkTransfer.
5. Implement the IOCTL functionality in the jUSB driver.

This effort needs knowledge in driver writing.

5.5.1 JUSB Class Native Side Design
The native functions of the JUSB class are implemented in jusbJNIjusb.cpp. The
following function in Table 20 will be explained in the next subchapters.

JNIEXPORT jstring JNICALL Java_usb_windows_JUSB_getDevicePath
JNIEXPORT jbyteArray JNICALL Java_usb_windows_JUSB_JUSBReadControl
JNIEXPORT jbyteArray JNICALL Java_usb_windows_JUSB_getConfigurationBuffer
JNIEXPORT jbyteArray JNICALL Java_usb_windows_JUSB_doInterruptTransfer

Table 20: JNIEXPORT functions for JUSB class

guidgen

5.5.1.1 getDevicePath
The getDevicePath function takes as input parameter a string containing product
id (PID) and vendor id (VID) of the device. It calls the getDevicePath (C/C++)
function which returns the ith device path of a given device interface. The device
interface we call for is GUID_DEFINTERFACE_JUSB_DEVICES which is de-
fined in guids.h file and was created with the help of guidgen (Appendix B con-
tains more information about GUID and the guidgen program).

\??\USB#Vid_<VID>&Pid_<PID>#<Instance-Num>#{<Device Interface Class>}

<VID>: The vendor id of the USB device
<PID>:The product id of the USB device
<Instance-Num>: An automatic generated number by the operating system
<Device Interface Class>: The GUID of a device interface class
 (e.g. as defined in guids.h)

Table 21: Device path of an USB device in Windows 2000/XP

Every USB device using the jUSB driver belongs to this device interface class (to
retrieve more information about device interface classes refer to Appendix C).

Michael Stahl 29

Java USB API for Windows

The device path of each USB device in the Windows operating system 2000 and
XP looks as follows shown in Table 21.

When retrieved the device path of the ith USB device, we compare the VID and
PID to the VID and PID of the searched USB device. If the comparison corre-
sponds to the VID and PID then a device has been found and we return its de-
vice path. This implies if we have to identical devices, we return only the first
one. To distinguish between two identical devices is subject of future work. Table
22 presents a fragmentation of the getDevicePath JNI function.

JNIEXPORT jstring JNICALL Java_usb_windows_JUSB_getDevicePath
(JNIEnv *env, jobject obj, jstring pidAndVid){
…
 PCHAR deviceIdentity = (PCHAR)env->GetStringUTFChars(pidAndVid, 0);
…
 while(!found){
 devPath =
 getDevicePath((LPGUID)&GUID_DEFINTERFACE_JUSB_DEVICES, i);

 if(devPath != 0){
 //try to find the substring deviceIdentity in the devPath
 find = strstr(devPath,deviceIdentity);
 // find won't be NULL if we found such a string
 if(find != NULL) found = TRUE; // we found a devicePath
 i++; // look for the next device
 }
 else found = TRUE; // we did not find a matching, but quit the while loop
 }
…
 env->ReleaseStringUTFChars(pidAndVid, deviceIdentity);
 return devicePath;
}

Table 22: GetDevicePath JNI function

Setup Packet

5.5.1.2 JUSBReadControl
First about the name of this function. Why JUSBReadControl and not just
ReadControl as is used in the Java DeviceSPI class? The reason is to avoid a
mangled function naming by the Visual C++ compiler (see Appendix E for more
information). With naming that function as it is called now, the compiler did give
the right export name as we defined it.

Figure 10 : Control transfer process with its setup packet

Michael Stahl 30

Java USB API for Windows

The control transfer includes a setup stage, which can be followed by an optional
data stage in which additional data moves to or from the device, and a status
stage, in which the device either response with an ACK packet or a STALL
packet or does not response at all (Figure 10). The content of a setup packet
contains 8 bytes and its members are shown in Figure 10 (corresponds to USB
specification [27] chapter 9.3 and 9.4 which contains information about USB
device request and standard device requests).

The standard USB 2.0 specification and the usb.core ControlMessage class
process the control transfer as follows:
All USB devices respond to request from the host on the device’s Default Pipe.
These requests are made using control transfers which contain all parameters in
a Setup packet of exactly eight bytes.

The Windows implementation of control transfer is far away from the USB stan-
dard. The setup packet for control transfer is separated depending on the re-
quest code (Request type in Figure 10). This fact is stated in the DDK by Micro-
soft as follows:
All USB devices support endpoint zero for standard control requests. Devices
can support additional endpoints for custom control requests .For endpoints
other than endpoint zero, drivers issue the URB_FUNCTION_CONTROL_-
TRANS-FER URB request. The UrbControlTransfer.SetupPacket member of the
URB specifies the initial setup packet for the control request. See the USB
specification for the place of this packet in the protocol.

In other words while having a request type (as defined in Figure 10) of class or
vendor, we are able to use the setup packet as it is used in usb.core
ControlMessage class. In the case the value of request type is set to standard
then we need to unpack the setup packet and according to the bRequest (sec-
ond byte of the setup packet) use one of the following DDK macro (listed in
Table 23) in the jUSB driver to achieve the request.

USB Feature Requests : (CLEAR_FEATURE, SET_FEATURE)
USB devices support feature requests to enable or disable certain Boolean device
settings. Drivers use the UsbBuildFeatureRequest support routine to build the URB
feature request.

USB Status Requests : (GET_STATUS)
Devices support status requests to get or set the USB-defined status bits of a device,
endpoint, or interface. Drivers use the UsbBuildGetStatusRequest to build the URB
status request.

Get or Set the Configuration : (GET_CONFIGURATION, SET_CONFIGURATION)
Use UsbBuildGetDescriptorRequest. Drivers use the URB_FUNCTION_GET_CON-
FIGURATION URB to request the current configuration. The driver passes a one-byte
buffer in UrbControlGetConfiguration.TransferBuffer, which the bus driver fills in with
the current configuration number.

Get USB Descriptors : (GET_DESCRIPTOR)
The device descriptor contains information about a USB device as a whole. To obtain
the device descriptor, use UsbBuildGetDescriptorRequest to build the USB request
block (URB) for the request.

Get or Set Interfaces: (GET_INTERFACE, SET_INTERFACE)
To select an alternate setting for an interface, the driver submits an
URB_FUNCTION_SELECT_INTERFACE URB. The driver can use the
UsbBuildSelectInterfaceRequest routine to format this URB. The caller supplies the
handle for the current configuration, the interface members, and the new alternate
settings. Drivers use the URB_FUNCTION_GET_CONFIGURATION URB to request
the current setting of an interface. The UrbControlGetInterface.Interface member of the
URB specifies the interface number to query. The driver passes a one-byte buffer in
UrbControlGetInterface.TransferBuffer, which the bus driver fills in with the current
alternate setting.

USB Class and Vendor Requests

Michael Stahl 31

Java USB API for Windows

To submit USB class control requests and vendor endpoint zero control requests,
drivers use one of the URB_FUNCTION_CLASS_XXX or URB_FUNCTION_VEN-
DOR_XXX requests. Drivers can use the UsbBuildVendorRequest routine to format
the URB.

Table 23: Control request for endpoint zero in Windows driver stack

That fact described above does not make the implementation of control transfer
easy. We have two possibilities to execute a setup request.

1. Define one IOCTL code and send the full setup packet with the help of
DeviceIoControl WinAPI function to the jUSB driver and let the driver do
the work.

2. Unpack the setup packet in the jUSB DLL and define a lot of IOCTL
codes that activate a specific request as described in Table 23.

We decided to implement the second approach. This allows error handling in the
jUSB DLL which still runs in user mode and therefore does not end up in a blue
screen if we missed a point.
The following IOCTL codes (in Table 24) are used to execute the control re-
quests. How to use those IOCTL code is described in Appendix A.

bRequest IOCTL code
GET_STATUS IOCTL_JUSB_GET_STATUS
CLEAR_FEATURE n.i.
SET_FEATURE n.i.
SET_ADDRESS n.i.
GET_DESCRIPTOR
Device Descriptor:
Configuration Descriptor:
String Descriptor:

IOCTL_JUSB_GET_DEVICE_DESCRIPTOR
IOCTL_JUSB_GET_CONFIGURATION_DESCRIPTOR
IOCTL_JUSB_GET_STRING_DESCRIPTOR

SET_DESCRIPTOR n.i.
GET_CONFIGURATION n.i.
SET_CONFIGURATION n.i.
GET_INTERFACE n.i.
SET_INTERFACE n.i.
SYNCH_FRAME n.i.

Table 24: Corresponding IOCTL code for control request (n.i.: not imple-
mented yet)

5.5.1.3 getConfigurationBuffer
The getConfigurationBuffer function is implemented with a DeviceIoControl func-
tion call (IOCTL = IOCTL_JUSB_GET_CONFIGURATION_DESCRIPTOR) to
the jUSB driver. Refer to Appendix A to get more information about this IOCTL
code.

5.5.1.4 doInterruptTransfer
The doInterruptTransfer function is implemented with a DeviceIoControl function
call (IOCTL = IOCTL_JUSB_INTERRUPT_TRANSFER) to the jUSB driver. Re-
fer to Appendix A to get more information about this IOCTL code.

Michael Stahl 32

Java USB API for Windows

6 jUSB Driver
Driver writing and driver development is very complex. We refer to the book
written by Walter Oney “Programming The Microsoft Windows Driver Model” [4]
to get into driver development within the Windows operating system. The
following sections highlight some aspects of the jUSB driver. We have to
mention that the jUSB driver is built out of the bulkusb driver delivered with the
DDK.

6.1 DeviceExtension
The structure DEVICE_EXTENSION contains information about the device’s
state (its current configuration. The initialization should be done in the
AddDevice routine. This routine will be called only once for each device, exactly
when we attach the device to the host.
The members of DEVICE_EXTENSION and the management are free to invent,
so that they satisfy our hardware, in our case we should be able to handle all
request from and to the jUSB API.
There are some common members that can be found in most drivers (refer to
part 1 in Table 25) and in the part 2 of Table 25 there are jUSB driver specific
members.

1
2
3
4
5
6

7

8
9
10
11
12
13
14
15

typedef struct _DEVICE_EXTENSION{
 /* Part 1 */
 PDEVICE_OBJECT DeviceObject;
 PDEVICE_OBJECT LowerDeviceObject;
..PDEVICE_OBJECT PhysicalDeviceObject;
 UNICODE_STRING ifname;
 IO_REMOVE_LOCK RemoveLock;
 DEVSTATE devState;
 DEVSTATE previousDevState;
 DEVICE_POWER_STATE devicePower;
 SYSTEM_POWER_STATE systemPower;
 DEVICE_CAPABILITIES deviceCapabilities;
 /* Part 2 */
 USBD_CONFIGURATION_HANDLE CurrentConfigurationHandle;
..USBD_CONFIGURATION_HANDLE PreviousConfigurationHandle;
 PUSB_DEVICE_DESCRIPTOR DeviceDescriptor;
 PUSB_CONFIGURATION_DESCRIPTOR * ConfigurationDescriptors;
 ULONG CurrentConfigurationIndex;
 ULONG PreviousConfigurationIndex;
 PUSBD_INTERFACE_INFORMATION * InterfaceList;
 PCLAIMED_INTERFACE_INFO * InterfaceClaimedInfo;
 PENDPOINT_CONTEXT * EndpointContext;
 KSPIN_LOCK IoCountLock;

} DEVICE_EXTENSION, *PDEVICE_EXTENSION

Table 25: Common members within a DEVICE_EXTENSION structure

1. It is useful to have the DeviceObject pointer.
2. The address of the device object immediately below this device object.

This is used for passing IRP down the driver stack.
3. A few service routines require the address of the PDO instead of some

higher device object in the same stack.
4. The member ifname records the interface name to that device. This will

always be set to GUID_DEFINTERFACE_JUSB_DEVICES.
5. It is used to solve the synchronization problem, when it is safe to remove

this device object by calling IoDeleteDevice.
6. We need to keep track of the current plug and play state and the current

Michael Stahl 33

Java USB API for Windows

power status state of our device. DEVSTATE is an enumeration that we
declare elsewhere.

7. Records the current ConfigurationHandle. This will be used if the
method getConfiguration is invoked by the jUSB API. This value must be
updated as soon getConfiguration(n) gets called. If there is no nth Con-
figuration, return an error and set the ConfigurationHandle to the old
one.

8. Contains the current Device Descriptor for this USB device. So far the
setDeviceDescriptor method in jUSB API is not implemented and there-
fore the device descriptor will remain the same (for detailed information
see 6.2.1).

9. Keeps an array of all configuration descriptors for this device (more info
see 6.2.2).

10. Holds the current Configuration index.
11. Holds the previous Configuration index.
12. An array that contains information about every interface of the current

configuration in this device. The USBD_INTERFACE_INFORMATION
structure itself contains information about all pipes that belong to that
interface (more info see 6.2.3).

13. An array of CLAIMED_INTERFACE_INFO values to indicate if a specific
interface is claimed or not and who is the current claimer (for more in-
formation see 6.2.4).

14. An array which keeps information about all the endpoints in the current
configuration (for more information see 6.2.5).

15. see at 6.4

6.2 Important Members of DeviceExtension Structure
To keep device information and its state current of a device using the jUSB
driver, we need some useful member in the DeviceExtension structure. The fol-
lowing section will present those members and its structure. All of those mem-
bers are always initialized when a jUSB device is attached to the bus. We set
always the first configuration of an USB device as default. Most USB devices
have just one configuration. The reason to configure the device at initialization is
to gain access to the device. Preciously we will handle IRP_MN_START_-
DEVICE that is a minor function of the IRP_MJ_PNP.
The function DispatchPnP in PlugPlay.c processes those IRPs. The function
HandleStartDevice will call a sub function ReadAndSelectDescriptors which
starts all setup settings for the the jUSB device.

6.2.1 DeviceDescriptor
The DeviceDescriptor is a pointer that points to a USB_DEVICE_DESCRIPTOR
structure. This structure can be type casted to PCHAR for giving this value back
to JNI. Device descriptor has always a size of 18 bytes.

Figure 11: DeviceDescriptor memory allocation (yellow: allocated memory)

6.2.2 ConfigurationDescriptors
The ConfigurationDescriptors variable is an array of pointers to a USB_CONFIG-
URATION_DESCRIPTOR. It is initialized in the function ConfigureDevice. The
following steps have to be done to correctly initialize this variable. The number of
configuration we get from the DeviceDescriptor structure member
bNumConfiguration. The first step is to allocate enough memory to keep all the
pointers that point to a possible configuration of the device (Figure 12: position
1). In a second step we get all those configuration descriptors by repeating the
following procedure:

1. Allocate enough memory to keep only the configuration descriptor. This
can be done because the USB_CONFIGURATION_DESCRIPTOR

Michael Stahl 34

Java USB API for Windows

structure is predefined in usb100.h and therefore we can calculate its
size.
After having received the configuration descriptor we can get the infor-
mation about the total size of the whole configuration descriptors
including all interface and endpoint descriptors through the member
wTotalLength. (Figure 12: position 2)

2. Allocate memory in the exact size of wTotalLength and call the
_URB_CONTROL_DESCRIPTOR_REQUEST again to get the complete
configuration descriptor (Figure 12: position 3)

Figure 12: ConfigurationDescriptors memory allocation structure (yellow:
allocated memory, orange: additional allocated memory)

6.2.3 InterfaceList
The InterfaceList variable is an array of pointers to a USBD_INTERFACE-
_INFORMATION structure that is predefined in the DDK in usb100.h. The size of
InterfaceList is exactly the number of currently available interfaces in the current
configuration of the device. Every USBD_INTERFACE_INFORMATION
structure contains information about the interface and about all pipes. The pipe
information is kept in the USBD_PIPE_INFORMATION structure.

Michael Stahl 35

Java USB API for Windows

Figure 13: InterfaceList memory allocation structure (yellow: allocated
memory)

6.2.4 InterfaceClaimedInfo
InterfaceClaimedInfo is an array of pointers to a CLAIMED_INTERFACE_INFO
structure. That structure contains so far only one member claimed, that indicates
if an interface has been claimed by a user or not. The size of the Interface-
ClaimedInfo array is the same as the size of InterfaceList array.

Figure 14: InterfaceClaimedInfo memory allocation structure (yellow: allo-
cated memory)

6.2.5 EndpointContext
EndpointContext is an array of pointers which points to an
ENDPOINT_CONTEXT structure. The size of this array is always 30. This
means we can have a maximum of 30 endpoints, so called pipes, for an USB
device. This is related to the USB 2.0 specification chapter 5.3.1.2 (Non
Endpoint Zero Requirements) and chapter 8.3.2.2 (Endpoint Field).
The endpoint numbers correspond to the index of the EndpointContext array,
except that we have to add one to the index of the array to get the pipe number.

Michael Stahl 36

Java USB API for Windows

For every endpoint the configuration of the device supports, we fill in such a
ENDPOINT_CONTEXT structure at the exact position. All other entries of the
EndpointContext array point to NULL.

Further we assume that every endpoint is unique to a configuration and its in-
terfaces.
A short excursus to interfaces and endpoints. Related to the USB 2.0 specifica-
tion, a configuration can have one or more configuration. Each configuration can
have one or more interfaces and a maximum amount of 30 endpoints (the two
endpoints for the default pipe are excluded). The endpoints have to be unique in
the configuration, which means that they can not be shared through several in-
terface in the same configuration.

Figure 15:EndpointContext memory allocation structure (yellow: allocated
memory)

6.3 Dispatch Routine
Before a driver can process I/O request, it has to define what kind of operation it
supports. This section describes the meaning of the dispatch mechanism of the
I/O Manager and how a driver activates some I/O function codes that it receives.

Every I/O operation of Windows 2000/XP is managed through packets. For
every I/O request an associated I/O request packet (IRP) exists, that is created
by the I/O Manager. The I/O Manager writes a function code in the MajorField of
the IRP, which uniquely identifies the request. Furthermore the MajorField
serves the I/O Manager to decide which dispatch routine should be loaded. In
case a driver does not support a requested operation, the I/O Manager will
return an error message to the caller. Dispatch routines have to be implemented
by the developer. What kind of dispatch routine the driver supports and will
process is in the developer decision.

Spin Lock Objects

6.4 Synchronization Techniques
To support synchronously access shared data in the symmetric multiprocessing
world of Windows XP, the kernel lets us define any number of spin lock objects.
To acquire a spin lock, code on the CPU executes an atomic operation that tests
and then sets a memory variable in such a way no other CPU can access the
variable until the operation completes. If the test shows that the lock was
previously free, the program continues. If the test indicate that a lock was
previously held, the program repeats the test-and-set in a tight loop: it “spins”.
Eventually the owner releases the block by resetting the variable, whereupon
one of the waiting CPUs’ test-and-set operation will report the lock as free.
The next figure shows the concept of using a spin lock:

Michael Stahl 37

Java USB API for Windows

Consideration about
SpinLock

Spin Lock Initialization

Use of Spin Lock

Figure 16: Using a spin lock to guard a shared resource

There are some facts about spin locks we have to be aware while writing code.
First of all, if a CPU already owns a spin lock and tries to obtain it a second time,
the CPU will deadlock. No usage counter or owner identifier is associated with a
spin lock; somebody either owns a lock or not.
In addition, acquiring a spin lock raises the IRQL to DISPATCH_LEVEL auto-
matically and must therefore be in nonpaged memory.

In the jUSB driver we find some variable identifiers that are of type
KSPIN_LOCK in the driver’s device extension. The type KSPIN_LOCK is
defined in wdm.h as ULONG_PTR. We have for example an IOCountLock spin
object in the device extension of the jUSB driver (see 6.1).
This object has to be initialized in the AddDevice routine for later use.

NTSTATUS AddDevice(…){
 …
 PDEVICE_EXTENSION deviceExtension = …;
 KeInitializeSpinLock(&deviceExtension->IOCountLock);
 …
}

Table 26: Initialization of a spin lock object

After the spin lock object has been initialized it can be used in any dispatch rou-
tine. The following example shows how to use the spin lock object.

LONG IoIncrement(…){
 KIRQL oldIrql; // to keep the Kernel Interrupt Request Level
 PDEVICE_EXTENSION deviceExtension = …;

 KeAcquireSpinLock(&DeviceExtension->IOCountLock, &oldIrql);
 …
 …// code between those SpinLock routines is atomarly executed
 …// no other process which calls IoIncrement enter this section
 …// as long IOCountLock spin is not released by the current process.
 …
 KeReleaseSpinLock(&DeviceExtension->IOCountLock, oldIrql);
 …
}

Table 27: Use of a spin lock object

6.5 I/O Control Codes
To communicate with the driver without using ReadFile or WriteFile from the
Windows API, we can use the supported DeviceIoControl function. This allows

Michael Stahl 38

Java USB API for Windows

IOCTL Definition

IOCTL Structure

user mode access to driver specific features. I/O Control codes (IOCTL) are
depending on the developer. It is the developer’s charge to manage and handle
the IOCTL. In the jUSB driver we need as well IOCTL codes to modify or get
some information about the driver states. The definition of all IOCTL the jUSB
driver supports can be found in the ioctls.h file and Appendix A contains more
detailed information about those IOCTL’s. A fragment of this header file is
presented in the following table.

#ifndef CTL_CODE
#pragma message("CTL_CODE undefined. Include winioctl.h or wdm.h")
#endif

#define IOCTL_JUSB_GET_DEVICE_DESCRIPTOR CTLCODE(\
 (FILE_DEVICE_UNKNOWN, \
 0x8000, \
 METHOD_BUFFERED, \
 FILE_ANY_ACCESS)

Table 28: Definition of an IOCTL

The pragma message is just a help in case someone forget to include the
header file winioctl.h that defines the CTL_CODE macro for user program. The
“\” represents just a new line without any new line character!

The structure of an IOCTL code is a 32 bit value and it is defined as follows:

31 - 16 15 - 14 13 - 2 1 - 0
DeviceType RequiredAccess ControlCode TransferType

DeviceType 0x0000 to 0x7FFF reserved for Microsoft
0x8000 to 0xFFFF free to use

RequiredAccess FILE_ANY_ACCESS
FILE_READ_DATA
FILE_WRITE_DATA
FILE_READ_DATA | FILE_WRITE_DATA

ControlCode 0x000 to 0x7FF reserved for Microsoft
0x800 to 0xFFF free to use

TransferType METHOD_BUFFERED
METHOD_IN_DIRECT
METHOD_OUT_DIRECT
METHOD_NEITHER

Table 29: CTL_CODE macro parameters

Each user mode call to a DeviceIoControl WinAPI function causes the I/O Man-
ager to create an IRP with the major function code
IRP_MJ_DEVICE_CONTROL and to send that IRP to the driver dispatch routine
at the top of the stack for the addressed device.

Michael Stahl 39

Java USB API for Windows

DispatchControl

A skeleton dispatch function for control code operation looks like this:

1

2

NTSTATUS DispatchControl(IN PDEVICE_OBJECT DeviceObject,
 IN PIRP Irp)
{
 ULONG code;
 PVOID ioBuffer;
 ULONG inputBufferLength;
 ULONG outputBufferLength;
 ULONG info;
 NTSTATUS ntStatus;
 PDEVICE_EXTENSION deviceExtension;
 PIO_STACK_LOCATION irpStack;
 info = 0;
 irpStack = IoGetCurrentIrpStackLocation(Irp);
 code = irpStack->Parameters.DeviceIoControl.IoControlCode;
 deviceExtension=
 (PDEVICE_EXTENSION)DeviceObject->DeviceExtension;
 ioBuffer = Irp->AssociatedIrp.SystemBuffer;
 inputBufferLength =
 irpStack->Parameters. DeviceIoControl.InputBufferLength;
 outputBufferLength =
 irpStack->Parameters.DeviceIoControl.OutputBufferLength;
 …
 switch(code) {
 case IOCTL_JUSB_GET_DEVICE_DESCRIPTOR:
 … // do something here
 break;
 case IOCTL_...:
 … // do something here
 break;
 default :
 ntStatus = STATUS_INVALID_DEVICE_REQUEST;
 }

 Irp->IoStatus.Status = ntStatus;
 Irp->IoStatus.Information = info;
 IoCompleteRequest(Irp, IO_NO_INCREMENT);
 return ntStatus;
}

Table 30: Skeleton of DispatchControl

1. The next few statements extract the function code and buffer sizes from
the parameters union in the I/O stack. We often need this value no mat-
ter which specific IOCTL we are processing.

2. Handles all the various IOCTL operation we support

METHOD_BUFFERED

METHODE_IN_DIRECT

METHODE_OUT_
DIRECT

6.5.1 IOCTL TransferType
With METHOD_BUFFERED, the I/O Manager creates a kernel-mode temp
buffer which is big enough to hold the larger of the user-mode input and output
buffers. When the dispatch routine gets control, the user mode input data is
available in the temp buffer. Before completing the IRP, we need to fill the copy
buffer with the output data that we want to send back to the application. The
IoStatus.Information field in the IRP is equal to the numbers of output bytes
written. Always check the length of the buffers, because we are the only one
who knows how long the buffers should be. Finish processing the input data
before overwriting the copy buffer with the output data.

Both METHODE_IN_DIRECT and METHOD_OUT_DIRECT are handled the
same way in the driver. METHODE_IN_DIRECT needs read access.
METHOD_OUT_DIRECT needs read and write access. With both of these
methods, the I/O Manager provides a kernel-mode temp buffer for the input data

Michael Stahl 40

Java USB API for Windows

METHOD_NEITHER

and for the output data.

METHOD_NEITHER is often used when no data transfer for a current IOCTL is
used.

Figure 17: IOCTL transfer types and DeviceIoControl WinAPI functions

6.6 Control Transfer
The design of handling control transfer in user mode is described in chapter
3.5.1.2. The decision we made uses different IOCTL codes for the different kind
of request types. In the jUSB driver we have to handle those IOCTL codes that
will be sent by means of the DeciceIoControl WinAPI function to the jUSB driver
(see chapter 6.5 and Figure 17 for more information about IOCTL codes).

Table 24 at chapter 5.5.1.2 list the IOCTL code we have to implement in the
driver. The input and output parameter of all those IOCTL are explained in
Appendix A. The DDK macro function to handle standard request are all listed in
Table 23 at chapter 5.5.1.2.

6.7 Interrupt Transfer
Interrupt transfer is implemented with the help of an IOCTL code namely the
IOCTL_JUSB_INTERRUPT_TRANSFER code. As input we have the endpoint
address to which we want process an interrupt transfer. The address contains
the pipe number and the direction of data flow. The transferFlag variable (line 8
in Table 31) is either USBD_TRANSFER_DIRECTION_IN for an IN endpoint or
USBD_TRANSFER_DIRECTION_OUT for an out endpoint. Because we keep
all information up to date in the deviceExtension, we know all about each pipe
the device supports. With the help of the member EndpointContext (chapter
6.2.5) we are able to get the desired pipe handle to process the interrupt trans-
fer. Of course, if the input request tries to execute an interrupt transfer to a pipe
that either does not exist nor the direction nor the type corresponds to the end-
point descriptor, than an invalid status has to be returned.

If all input checks are successful the UsbBuildInterruptOrBulkTransferRequest
macro from the DDK can be used to build an USB interrupt request. The request
is stored in the urb variable (line 2 in Table 31). This USB request Block (URB)
will be sent to the lower driver in this case to the USB driver (usbd.sys) which
does the duty.

Michael Stahl 41

Java USB API for Windows

We do not have to be concerned about the intervals of executing this request in
the jUSB driver. This is the task of the person which uses the jUSB API. The
interval time is known from the endpoint descriptor and the Java programmer
has to take care to execute periodically the readIntr method.

1
2
3
4
5
6
7
8
9

10

UsbBuildInterruptOrBulkTransferRequest(
 &urb,
 sizeof(struct _URB_BULK_OR_INTERRUPT_TRANSFER),
 deviceExtension->EndpointContext[pipeNum]->PipeHandle,
 ioBuffer,
 NULL,
 inputBufferLength,
 transferFlag | USBD_SHORT_TRANSFER_OK,
 NULL
);

ntStatus = SendAwaitUrb(DeviceObject,&urb,&ulLength);

Table 31: UsbBuildInterruptOrBulkTransferRequest macro

6.8 BulkTransfer
Bulk transfer is not implemented yet. We think it should be possible to implement
bulk transfer corresponding to the interrupt transfer. A design using IOCTL
codes allows us to send input parameters such as endpoint address to the driver
to do bulk transfer on the desired pipe. It should be considered that for bulk
transfer we may better define an IOCTL code with transfer type
METHOD_OUT_DIRECT or METHOD_IN_DIRECT to get rid of copying a temp
buffer to the kernel mode.

If we figure out how to use ReadFile and WriteFile WinAPI function to perform a
bulk transfer to a given pipe, we better use these functions. At the moment we
did not find a solution for this idea.

Michael Stahl 42

Java USB API for Windows

7 User Installation
This section describes the installation of the Java USB API for Windows for end
users.

7.1 Resources

JavaUSB.ZIP
The Java USB API includes the binaries of the jUSB DLL and the jUSB driver.
JavaUSB.ZIP can be downloaded from http://www.steelbrothers.ch/jusb/. Be
sure to download the Java USB resources for end users which is called
JavaUSB.ZIP

Netbeans IDE
Is a full-featured integrated environment for Java Developers [21]. We used
Netbeans to develp the Java side of the Java USB API. Netbeans is freely
available on http://www.netbeans.org. Of course any other environment with a
Java compiler can be used to extend or run the Java USB API.

7.2 Installation of the jUSB Driver and jUSB DLL

jUSB DLL
Copy the jusb.dll from the folder \InstallationFiles\JusbDll to the \system32 folder
of your Windows directory.

Compile the usb.windows package in Netbeans. Attach a USB device to the
USB and run RunUSBControllerTest.

jUSB Driver
First, we have to register the JUSB driver in the Windows registry. Therefore, we
need to double click on the jusb.reg file which is located in the
\InstallationFiles\JusbDriver folder. A Window will pop up asking if we are sure to
add the information of jusb.reg to the registry. After clicking on yes, a
confirmation will be displayed and the information will be added to the registry.
This process of registering the jUSB driver has to be executed only once.

After the jUSB driver has been registered, we have to copy the jusb.sys file (the
driver) to the \system32\drivers folder of the Windows directory.

jUSB driver test
The following procedure can be used to test the driver:

1. Connect an USB mouse to the USB port.
2. Run RunUSBControllerTest and note down the VID and PID which is

displayed out, next to the uniqueID.
3. Download Debug View v4.21 from http:/www.sysinternals.com/ntw2k-

/utilities.shtm and start the debugger. This is only for controlling
purposes.

4. Change the registry entries as described in Appendix D.
5. Disconnect the USB mouse and connect it again.
6. The debugger should display some information. This information are

generated by the jUSB driver

Michael Stahl 43

http://www.netbeans.org/

Java USB API for Windows

8 Developers Installation
The purpose of an open source project is that other developers modify and en-
hance the existing framework. This section should provide a help to install and
setup the environment to rapidly start with developing. The most annoying thing
in developers work is spending a lot of time to install the programming environ-
ment. We try to make this step as easy as possible.

JavaUSBComplete

Visual C++

Platform SDK 2003

DDK XP

External Debugger

Netbeans

JDK 1.4.1

8.1 Resources
To develop on the current Java USB API project some resources are required:

JavaUSBComplete.ZIP
The Java USB API sources including the native libraries and the jUSB driver.
This source can be downloaded on http://www.steelbrothers.ch/jusb/. Be sure
you download the Java USB complete resources for developers which is called
JavaUSBComplete.ZIP

Microsoft Visual C++ or the new version Microsoft Visual .NET
Microsoft Visual C++ or the new version Microsoft Visual .NET programming
environment has to be used. We developed a big part of the Java USB API for
Windows on Microsoft Visual C++ Version 6.0.

Microsoft Software SDK 2003 or later
The Microsoft software developer kit is needed to support the core libraries. The
latest SDK can be downloaded from the MSDN developers site
(http://www.microsoft.com/msdownload/platformsdk/sdkupdate/). Only the Core
SDK is needed (168 MB). The required size for the complete installation is
480MB.

Microsoft Driver Development Kit (DDK) XP or 2003
The DDK is used to build the JUSB driver. Unfortunately, the DDK is not made
available for download by Microsoft. An order is demanded, but they will send
the DDK for free apart of the expenses for delivery. The DDK page can be found
at the following url: http://www.microsoft.com/whdc/ddk/.

DbgView
We used the debug view program DbgView which can be freely downloaded
from http://www.sysinternals.com. This program intercepts calls made to
DbgPrint and KdPrint by device drivers and OutputDebugString made by Win32
programs. It allows for viewing and recording of debug session output on your
local machine or across the Internet without an active debugger [25]. This tool
has been a big benefit for developing either user or kernel mode programming.

Netbeans IDE
Is a full-featured integrated environment for Java Developers [21]. We used
Netbeans to develp the Java side of the Java USB API. Netbeans is freely
available from http://www.netbeans.org. Of course any other environment with a
Java compiler can be used to extend or run the Java USB API.

Java Runtime Environment J2SE 1.4.1
The premier solution for rapidly developing and deploying mission-critical, enter-
prise applications, J2SE provides the essential compiler, tools, runtimes, and
APIs for writing, deploying, and running applets and applications in the Java
programming language [9]. We compiled the Java USB API with the JDK version
1.4.1 [8].

8.2 Setting the Environment Variables
Different kinds of environment variables have to be adjusted. Some of them are

Michael Stahl 44

http://dict.leo.org/?p=/37m..&search=unfortunately
http://www.microsoft.com/whdc/ddk/
http://www.sysinternals.com/
http://www.netbeans.org/

Java USB API for Windows

Environment Variables

CLASSPATH

Path

JAVAHOME

JUSBPATH

specific for the Netbeans IDE and others for settings in the Visual C++ project. If
those environment variables are not set correctly, parts of the software environ-
ment will not work correctly. Table 32 shows where the environment variables
can be set.

Windows 2000
1. Start Settings Control Panel System
2. choose category: Advanced
3. choose: Environment Variables…
4. Edit, delete or make a new system variable

Windows XP

1. Start Control Panel System
2. choose category: Advanced
3. choose: Environment Variables
4. Edit, delete or create a new system variable

Table 32: Setting the environment variables

The following environment variables have to be set. The value given in this con-
text can be seen as an example. This belongs to the settings we specified in our
computer and they will vary on other system. The example should give a hint of
what the path may look like.

CLASSPATH
The class path tells SDK tools and applications where to find third-party and
user-defined classes - that is, classes that are not Java extensions or part of the
Java platform. The class path needs to find any classes you have compiled with
the javac compiler - its default is the current directory to conveniently enable
those classes to be found. We may need to extend the CLASSPATH variable,
because other settings are defined too. Extension are made by a semicolon ‘;’.

Variable Value
CLASSPATH F:\Studium\JavaUSB\JavaSources

Table 33: CLASSPATH setting

Path
While trying to compile a Java source with javac or creating a JNI header file
with javah and receiving the following error message: ‘javac’ is not recognized as
an internal or external command or ‘javah’ not found then the Path variable need
to be set to the path where the binaries of those commands are. This variable
needs in all probability to be extended.

Variable Value
Path C:\Programme\s1studio_jdk\j2sdk1.4.1_02\bin;

Table 34: Path setting

JAVAHOME
This variable points to the root directory of the Java runtime environment. This
setting enables the Visual C++ programming environment to find the Java Native
Interface header files, such as jni.h.

Variable Value
JAVAHOME C:\Programme\s1studio_jdk\j2sdk1.4.1_02

Table 35: JAVAHOME setting

JUSBPATH
This variable points to the JavaUSB directory. This setting is used when a de-
veloper does not have the DDK [6] installed but still wants to try compiling and

Michael Stahl 45

Java USB API for Windows

JUSBPATH

DDKPATH

modifying the JUSB DLL. This provides the Visual C++ project settings where to
find the additional header file which would have been on the DDK from
Microsoft. These DDK header file we use can be found in the JusbDll\external-
header-file\ddk folder.

Variable Value
JUSBPATH F:\Studium\JavaUSB

Table 36: JUSBPATH setting

DDKPATH
Points to the root directory of the current installed DDK.

Variable Value
DDKPATH C:\WINDDK\2600.1106

Table 37: DDKPATH setting

8.3 Unzip the JavaUSBComplete.Zip File
To work with the JUSB DLL the JavaUSBComplete.Zip file needs to be ex-
tracted. For further examples we assume that the JavaUSBComplete.Zip file is
unzipped in a folder, named JavaUSB.

Make sure not to copy the JavaUSB folder within a folder path containing
spaces in the name for example “C:\Documents and Setting\...”. This will
lead to error in the build environment for the driver (see 8.6.1.1).

After successfully unzipping the JavaUSBComplete.Zip file, four folders should
be seen in the JavaUSB folder:

• Installation Files: Contains all files for end users that want to use the
Java USB API in application.

• JavaSources : Complete Java source code of the Java USB API. Chap-
ter 8.4 gives an overview of the folder contents.

• JusbDll: All C/C++ source files which are used to create the JUSB DLL
and the JNI implementation of the Java USB API. Chapter 8.5 will ex-
plain the contents of this folder in detail.

• JusbDriver: Driver relevant resources to build the driver. Chapter 8.6
presents al the files belonging to the JUSB driver and how the driver can
be built.

8.4 Java USB API for Windows
All the needed files to implement or extend the Java USB API can be found in
the usb.windows package which is in the \JavaSources\usb\windows folder. As
development environment any text editor can be used or Netbeans IDE as we
did. Make sure that you start compiling the classes from the root directory of the
package. For example if we want to compile the Windows class, we need to be
in the JavaSources directory. Run the command line program and enter the fol-
lowing command: javac usb.windows.Windows.java.

javah

8.4.1 Creating the Java Native Headers
To implement the native methods which are specified in the Java classes, we
need to create the appropriate C-header files. This is done in using the com-
mand javah. Suppose we add a new native method to the JUSB class and want
to create the C-header file then use the following command:

javah –jni usb.windows.USB

The corresponding header file usb_windows_USB.h is put into the Java root
directory, which should be JavaSources. Remember while creating the JNI

Michael Stahl 46

Java USB API for Windows

header file that we always have to write the whole package name of the class
and need to call the command from the Java root directory. If we disregard this
restriction and call javah just in the current Windows directory then we would get
a JNI header file named as USB.h. The information about the package is lost
and this leads to error while loading the JUSB DLL [3].

8.4.2 Directory and File Description
We describe only the files belonging to the Windows package. For the descrip-
tion of the whole Java USB project refer to [18].

The usb.windows package files are in the following directory path:
\JavaSources\usb\windows. Table 38 lists those files.

Filename Description
DeviceImpl.java Implements the class to which all USB devices be-

longs to either running as a JUSB device or not.

JUSB.java Contains methods that can be used for devices that
are adapted for the JUSB driver. This class does
implement the DeviceSPI class.

NonJUSB.java Does implement the DeviceSPI method in throwing
only IOExceptions otherwise it does nothing else.

USB.java This class implements the Bus class and provide
access to a USB bus.

USBException.java Contains the USBExceptions that are thrown when
having a USB specific error.

Windows.java This class implements a singleton USB host.

Table 38: Files in the usb.windows package

Installation of JUSB DLL

8.5 jUSB DLL
This section provides information for developer interested in extending the jUSB
DLL for the Java USB API. There is a little operating system version conflict
between Windows 2000 and Windows XP that we encounter while creating the
DLL on Windows 2000. All the development has been made on Windows XP
Professional and a full installation of the DDK [6] and SDK [24]. To give
developers on Windows 2000 the opportunity to extend this Java USB API a
specific section introduce the different project settings in the Visual C++ envi-
ronment. We recommend new developers to use Windows XP or higher envi-
ronments for developing the Java USB API for Windows.

At first, the Microsoft SDK 2003 has to be installed on the computer.

Start the Visual C++ environment and open the workspace (File Open Work-
space…) jusb.dsw which can be found in the JusbDll\jusb\ folder. Before start
editing and working on the files, we need to set the project setting depending on
the operating system we are currently running. Next subsection is going to ex-
plain the project settings in detail. To do the setting in the Visual C++ environ-
ment choose Project Settings and then choose the appropriate rubric.

8.5.1 Visual C++ 6.0 Project Setting
Some project settings need to be done to successfully build the JUSB dynamic
link library. The setting depends on the Windows Version (2000 or XP) and if we
have installed the driver development kits or not.

Michael Stahl 47

Java USB API for Windows

In all cases we need the proper installation of the Microsoft SDK 2003. To make
sure the SDK is added to the Visual C++ project check (Tools Options..

Directories) check if the following entry “C:\Programme\Microsoft SDK\include”
depending on where we installed the SDK is on the top by the include files.

Attention of the Environ-
ment Variables

Project Settings in
Windows 2000
without the DDK

Comment Out Functions

8.5.1.1 Project Settings without the DDK
To make it possible to build the dynamic link library without the driver develop-
ment kit from Microsoft, the used header file from the DDK are made available in
the following folder: \JusbDll\external-header-file\ddk.

The next paragraph describes the project settings for Windows 2000 and XP.
Because we use environment variables, we have to be aware of one important
fact for the settings. Usually the environment variable are used in the project
settings as follows:

$(JUSBPATH)\JusbDll\external-header-file\java\include\

but if the environment variable contains spaces in the string, for example
JUSBPATH defined as “C:\Documents and Settings\JavaUSB” then we need to
quote the entry in the project settings!

“$(JUSBPATH)\JusbDll\external-header-file\java\include\”

If we do not care about this fact, the compiler will not build the DLL and ends
with an error like : error LNK 1104: cannot open file “Documents.obj”.
Thereby belongs the Documents.obj file to the the name of C:\Documents where
in fact does not exist. To make sure that such an error does not occur, choose
an environment variable value with no spaces within the path or quote all the
project settings where an environment variable is used.
In the following example we assume to have environment variable values with-
out any spaces within the string.

8.5.1.2 Windows 2000

Add the SDK to Options as described in 8.5.1 and then set the following project
settings as in Table 39.

Rubric C/C++:
Category: Preprocessors
Additional include directories:
$(JUSBPATH)\JusbDll\external-header-file\java\include\,
$(JUSBPATH)\JusbDll\external-header-file\java\include\win32\,
$(JUSBPATH)\JusbDll\external-header-file\ddk\inc\,
$(JUSBPATH)\JusbDll\jni\,
$(JUSBPATH)\JusbDll\external-header-file\ddk\inc\w2k\

Rubric Link
Category: General
Object/Library modules: (add the following entries to the existing)
$(JUSBPATH)\JusbDll\external-lib-file\w2k\setupapi.lib
$(JUSBPATH)\JusbDll\external-lib-file\hid.lib

Table 39: Project settings in Windows 2000 without DDK

If we now build the JUSB DLL we get some error of SPDRP_XXX undeclared
identifier. This happens because we tried to use the new SetupDiXxx API func-
tion to retrieve registry information. Windows 2000 does not support completely
those functions. Therefore we need to comment out 3 functions in the helper-
Function.cpp file. These are:

• getRegistryPropertyString
• doDriverNameToDevicesDesc

Michael Stahl 48

Java USB API for Windows

Project Settings in
Windows XP
without DDK

• getRegistryInfo
Further we need to comment out the three function prototype in the jusb.h file.
We do not use these function either in Windows XP, but they are already coded
to be used for future work on the Java USB API.
After having done those changes the JUSB DLL should be built without any er-
rors.

Windows XP
The jusb.dsw project contains all the current settings and therefore no additional
settings should be necessary. The following setting should be predefined:

Rubric C/C++:
Category: Preprocessors
Additional include directories:
$(JUSBPATH)\JusbDll\external-header-file\java\include\,
$(JUSBPATH)\JusbDll\external-header-file\java\include\win32\,
$(JUSBPATH)\JusbDll\external-header-file\ddk\inc\,
$(JUSBPATH)\JusbDll\jni\

Rubric Link
Category: General
Object/Library modules: (add the following entries to the existing)
setupapi.lib
$(JUSBPATH)\JusbDll\external-lib-file\hid.lib

Table 40: Project settings in Windows XP without DDK

Project Settings in
Windows 2000
with DDK

Function need to be
out documented in
Windows 2000

8.5.1.3 Project Settings with an Installed DDK
If the DDK is installed, it does not make sense to use the DDK header provided
in the JavaUSB folder and is appropriated to use the original DDK header files.
The paragraph “Attention to environment variables” in 8.5.1.1 still has its validity.

Windows 2000
Next to the project settings there must be done additional changes in different
source files. First, set the project settings according to Table 41.

Rubric C/C++:
Category: Preprocessors
Additional include directories:
$(JAVAHOME)\include\,
$(JAVAHOME)\include\win32\,
$(DDKPATH)\inc\w2k\,
$(DDKPATH)\inc\ddk\w2k\,
$(JUSBPATH)\JusbDll\jni\

Rubric Link
Category: General
Object/Library modules: (add the following entries to the existing)
$(DDKPATH)\lib\w2k\i386\setupapi.lib
$(DDKPATH)\lib\w2k\i386\hid.lib

Table 41: Project settings in Windows 2000 with the DDK installed

If we now build the JUSB DLL we get some error of the form SPDRP_XXX un-
declared identifier. This happens because we tried to use the new SetupDiXxx
API function to retrieve registry information. Windows 2000 does not completely
support those functions. Therefore, we need to comment out 3 functions in the
helperFunction.cpp file. These are:

• getRegistryPropertyString
• doDriverNameToDevicesDesc

Michael Stahl 49

Java USB API for Windows

New Constants definition
in jusb.h running on
Windows 2000

Out document
some line in
getAttachedDeviceType
function

Project Settings in
Windows XP
with the DDK

• getRegistryInfo
Further, we have to comment out the three function prototypes in the jusb.h file.
We do not use these function either in Windows XP, but they are already coded
to be used for future work on the Java USB API.
We also need to activate the comment out definition in jusb.h for bmRequest.Dir,
bmRequest.Type and bmRequest.Recipient which will be found almost on the
top. The reason for that definition is because we already used those constants
which are defined in usb100.h in the DDK. The DDK file usb100.h in Windows
2000 does not define those constants. In the newer version of DDK XP they are
defined in usb100.h. Table 42 shows the correct settings for Windows 2000.

// Only used when running on Windows 2000!
//bmRequest.Dir
#define BMREQUEST_HOST_TO_DEVICE 0
#define BMREQUEST_DEVICE_TO_HOST 1

//bmRequest.Type
#define BMREQUEST_STANDARD 0
#define BMREQUEST_CLASS 1
#define BMREQUEST_VENDOR 2

//bmRequest.Recipient
#define BMREQUEST_TO_DEVICE 0
#define BMREQUEST_TO_INTERFACE 1
#define BMREQUEST_TO_ENDPOINT 2
#define BMREQUEST_TO_OTHER 3

Table 42: Definition of bmRequest constants only under Windows 2000

Furthermore, we need to comment out some else branches in the getAttached-
DeviceType function in jusb.cpp. The reason for that is the modification from the
usbioctl.h header file in the DDK. The USB_CONNECTION_STATUS enumera-
tion type has been extended with two members (DeviceHubNestedTooDeeply
and DeviceInLegacyHub). Those members are not known in the Windows 2000
environment and we therefore have to comment out those lines as shown in
Table 43.

int getAttachedDeviceType(HANDLE hubHandle, int portIndex){
…
 if(…){
 …
 }else if(connectionInfo.ConnectionStatus[0] == DeviceNotEnoughBandwidth){
 return -5;
 }else /* if(connectionInfo.ConnectionStatus[0] == DeviceHubNestedTooDeeply){
 return -6;
 }else if(connectionInfo.ConnectionStatus[0] == DeviceInLegacyHub){
 return -7;
 else */ if(connectionInfo.ConnectionStatus[0] == DeviceFailedEnumeration){
 return -8;
 }else return 0;
…
}

Table 43: Modified getAttachedDeviceType function (Windows 2000)

After having done those changes, the JUSB DLL should be built without any
errors.

Windows XP
Table 44 shows all the additional settings.

Rubric C/C++:
Category: Preprocessors

Michael Stahl 50

Java USB API for Windows

Project Settings in
Windows XP
without the DDK

Additional include directories:
$(JAVAHOME)\include\,
$(JAVAHOME)\include\win32\,
$(DDKPATH)\inc\wxp\,
$(DDKPATH)\inc\ddk\wxp\,
$(JUSBPATH)\JusbDll\jni\

Rubric Link
Category: General
Object/Library modules: (add the following entries to the existing)
setupapi.lib
$(DDKPATH)\lib\wxp\i386\hid.lib

Table 44: Project settings in Windows XP with installed DDK

8.5.2 Directory and File Description
All the files required to build the jUSB DLL are available in the JusbDll folder.
The folders within the JusbDll folder are listed in Table 45.

Foldername Description
jusb Contains all C++ source files, C-header files and all

the files to create the project workspace for the Visual
C++ environment.

jni Contains all JNI header files that are created with
javah. The header files are named automatically when
executing javah. These header files should not be
modified. If new native methods have been added to a
Java class, run javah with the modified Java class to
acquire the corresponding JNI header file, and copy
that header file if necessary in that folder.

external-lib-file Contains libraries which are used when no DDK is
installed (see 8.5.1.1).

external-header-file Contains header files that are used when no DDK is
installed (see 8.5.1.1).

Table 45: Folders in JusbDll Folder

The files in the jni, external-lib-file and external-header-file folder are not ex-
plained in detail. The important files for developers are in the jusb folder which
will be described in the following paragraphs.

Figure 18 provides an overview about the files which are related to each other.
The general framework decision was to provide for every automatically created
JNI header file its own file where the implementation is done. Furthermore, the
decision was made to keep the function code within these implementation files
as short as possible to keep it readable. If a function implementation becomes
more complex, an external function was made to process the desired request.
These external functions are put in the jusb.cpp, helperFunction.cpp and
devnode.cpp files. Figure 18 represents this partitioning in the block B. All three
blocks A, B and C represent one function body.

Michael Stahl 51

Java USB API for Windows

Figure 18: File composition of jUSB DLL project

Filename Description
guids.h Contains the GUID for

GUID_DEFINTERFACE_JUSB_DEVICES which the
jUSB driver registers when a device uses the JUSB
driver. With the aid of this GUID we are able to lo-
cate JUSB devices. More about GUID can be found
in Appendix X .

ioctls.h Contains all the IOCTL codes which are available in
the jUSB driver.

jusb.h Definition of structures, variables and constants.
Further, it contains also all function prototypes that
are used in more than one file.

devnode.cpp Contains one function that retrieves the DeviceDesc
registry entry from a given driver name. This file may
be obsolete for future work and should be replaced
with the new registry function, such as getRegis-
tryPropertyString, getRegistryInfo and doDriver-
NameToDeviceDesc which are already implemented
in the helperFunctions.cpp.

helperFunctions.cpp Contains function to process complicated requests.
jusb.cpp Is the entry point for the DLL. It contains also func-

tion to process complicated requests.

jusbJNIdeviceimpl.cpp Implements the JNI function of the Java DeviceImpl
class.

jusbJNIjusb.cpp Implements the JNI function of the Java JUSB class.

jusbJNIusb.cpp Implements the JNI function of the Java USB class.

jusbJNIwindows.cpp Implements the JNI function of the Java Windows
class.

jusb.dsw Visual C++ Workspace

jusb.dsp Visual C++ Project

Michael Stahl 52

Java USB API for Windows

jusb.html
jusb.mak
jusb.opt
jusb.ncb

The next four files belonging to the Visual C++ envi-
ronment.

Table 46: Descriptions of files in the jusb folder

8.6 JUSB Driver
This section describes all parts of the jUSB driver. Useful information is provided
to build and develop the jUSB driver. It is absolute necessary that the SDK [24]
and the DDK [6] from Microsoft is installed and the relevant environment
variables are correctly set.

The build process depends not on the operating system we develop. The proce-
dure is identical in Windows 2000 and Windows XP, because we assume having
installed on both operating systems the DDK XP version.

The Microsoft® Windows® Driver Development Kit (DDK) release for Microsoft®
Windows® XP incorporates a number of significant design changes. The most
important of these include: a new setup program, new build environments, a
redesign of the layout of the installed headers and libraries, and new build tools
that make the new DDK a stand-alone product. A feature has also been added
to the build environment to help developers identify the use of deprecated func-
tions in their code at build time [22].

8.6.1 How to Build the Driver
As introduction we present a section (Table 47) of the paper New in the DDK for
Windows XP [22].

New Build Environment
A number of important changes have been made to the Windows DDK build
environment. For one, the Windows DDK now includes a complete set of tools
for building drivers. Microsoft® Visual C++® is no longer required to be in-
stalled to use the DDK. Use of the included tools for all Windows 2000 and
Windows XP drivers is expected within the shipping build environment. This
version of the Windows DDK does not support building Windows XP or Win-
dows 2000 drivers using a version of Microsoft Visual C++ earlier than the
one supplied with the DDK. Attempts to use an incorrect version of Visual C++
will result in the following error message from the compiler:

error C1189: #error : Compiler version not supported by Windows DDK

This requirement is due to the reliance on many new features within this tool
set for proper functioning of the include build environment. The compiler,
linker, and supporting files, such as C Run-Times (CRTs), should be consid-
ered an atomic unit within the build environment. It is likely that mixing the
supporting tool files of Visual C++ versions 5 or 6 with those in this DDK re-
lease, which are based on the new Visual C++ version 7 code base, will result
in errors in the binaries. Using the provided build environment and build tools
is thus strongly recommended to ensure generation of valid binaries [22].

Table 47: Build environment from the DDK

The conclusion of the section in Table 47 is that we can not build the jUSB driver
within Visual C++ Version 6.0 because the compiler version does not correspond
to the DDK version. To compile the jUSB driver within Visual C++ environment,
an update of Visual C++ is required (Visual .NET). We started developing the
driver in Visual C++ environment and did not change the environment during the
project. Therefore we build the driver with the build environment delivered within
the DDK but still edit the code within the Visual C++ environment.

Michael Stahl 53

Java USB API for Windows

Building Steps

Screen Shot of Building
Process

Build the jUSB driver:

1. Start the Win XP Checked Build Environment (also in Windows 2000)
(Start Programs Development Kits Windows DDK 2600.1106
BuildEnvironments Win XP Checked Build Environment)

2. Change the directory path so that it points to the sys folder which is a
subfolder of JusbDriver. For example:

- change the drive: F: <enter>
- change the folder path: cd JavaUSB\JusbDriver\sys <enter>

3. Enter command: build –cZ <enter>
Some states of the building process are printed on the output screen (an
output example is shown in Table 48).
The most important statement is : 1 executable built
If this statement is missing check chapter 8.6.1.1 for more information

4. The compiled jUSB driver (jusb.sys) can be found in the following sub-
folder of the sys folder: \objchk_wxp_x86\i386

5. Copy the jusb.sys file into the system32\drivers\ folder of the Windows
main directory.
If there is already a registered jUSB driver in the directory, only a re-
placement of the jsub.sys file needs to be done. Otherwise if it is the first
time using the jUSB driver refer to chapter 7.2 (user installation) for
more information about how to register the jUSB driver.

F:\Studium\JavaUSB\JusbDriver\sys>build -cZ
BUILD: Adding /Y to COPYCMD so xcopy ops won't hang.
BUILD: Object root set to: ==> objchk_wxp_x86
BUILD: Compile and Link for i386
BUILD: Examining f:\studium\javausb\jusbdriver\sys directory for files to compile.
BUILD: Building generated files in f:\studium\javausb\jusbdriver\sys directory
BUILD: Compiling f:\studium\javausb\jusbdriver\sys directory
Compiling - jusb.rc for i386
Compiling - driverentry.c for i386
Compiling - plugplay.c for i386
Compiling - power.c for i386
Compiling - control.c for i386
Compiling - wmi.c for i386
Compiling - readwrite.c for i386
Compiling - generating code... for i386
BUILD: Linking f:\studium\javausb\jusbdriver\sys directory
Linking Executable - objchk_wxp_x86\i386\jusb.sys for i386
BUILD: Done

 8 files compiled
 1 executable built

F:\Studium\JavaUSB\JusbDriver\sys>

Table 48: Output of jUSB driver build process

8.6.1.1 No Driver Executable Built
In case of missing the statement: “1 executable built” as shown in Table 48
check the buildchk_wxp_x86.log file. If the string “’jvc’ is not recognised as an
internal or external command” then your folder path to the JusbDriver folder
contains somewhere spaces.
Spaces are not allowed in the driver path!
Solution: Copy the JusbDriver folder in a path with no spaces and do build the
driver again as described in 8.6.1.

8.6.2 Directory and File Description
The files for the jUSB driver are all in the JusbDriver\sys\ folder. The following
Table 49 lists all those file.

Filename Description

Michael Stahl 54

Java USB API for Windows

Control.c Implements the DispatchControl function which
handle all I/O request packet (IRP) with function
code IRP_MJ_DEVICE_CONTROL in the major
field of the IRP.

Driver.h Header file containing all definition of structs and
global variables used in the driver.

DriverEntry.c The entry point to the jUSB driver. Similar to a
main file.

guids.h The definition of the device interface, a global
unique identifier named GUID_DEFINTERFACE-
_JUSB_DEVICES

ioctls.h The definition of IOCTL codes handled by the
jUSB driver.

jusb.inf The INF file used to register the jUSB driver to a
device using an INF file.

jusb.reg File to register the jUSB driver in the Windows
registry.

jusb.bmf
jusb.mof

Used in the makefile to build the jUSBdriver.

jusb.rc Resources file containing information about the
jUSB driver.

PlugPlay.c Implements the DispatchPnP function which
handles all I/O request packet (IRP) with function
code IRP_MJ_PNP in the major field of the IRP.

Power.c Implements the DispatchPower function which
handles all I/O request packet (IRP) with function
code IRP_MJ_POWER in the major field of the
IRP.

ReadWrite.c Implements the DispatchReadWrite function which
handles all I/O request packet (IRP) with function
code IRP_MJ_READ or IRP_MJ_WRITE in the
major field of the IRP. This file is leftover from the
bulkusb project and is not used so far in the jUSB
driver. Some functions are used in other files and
therefore this file has not been removed.

Wmi.c Implements the WmiRegistration function.

All the other file in this folder belongs either to the project settings for Visual
C++ or to the build process. There are not further described.

Table 49: Files and its description in the JusbDriver folder

Michael Stahl 55

Java USB API for Windows

9 Conclusion
The goal of this diploma thesis was to extend the Java USB API fort the
Windows operating system.

The goal could not be reached but a part of the jUSB project is working.

The enumeration and monitoring facility of the universal serial bus with the Java
USB API is complete and working. Communication to a jUSB device such as
interrupt transfer and control transfer are partly implemented and has been suc-
cessfully tested on USB devices. Bulk transfer and isochronous transfer are not
supported at the moment but are subjects of future work. The project, as it is,
provides a basic framework for the Java USB API for Windows and developers
are welcomed to modify and build a stable jUSB distribution.

The following subjects have put to future work:

• Writing a stable jUSB driver including documentation
• Implement the methods of the DeviceSPI interface in the jUSB DLL and

in the jUSB driver.
• Implement the DriverNameToDeviceDesc function in devnode.c with the

SetupDiXxx function to read registry entries.

The difficulty was to understand what is going on in a driver and how all the re-
quests have to be handled that they correspond to the current Windows Driver
Model. The project time was too short to understand completely driver writing
and modelling but still a very interesting topic.

Michael Stahl 56

Java USB API for Windows

Appendix A: IOCTL codes used by the JUSB
framework
IOCTL codes are used within the DeviceIoControl user mode API function to
retrieve information from a device. These IOCTL codes allow programmers to
access kernel mode functionality from within the user mode,. The following list
presents all jUSB driver IOCTL codes, The supplied input structure and its
corresponding output structure. In some cases, the input structure is the same
as the output structure but this is not always the case.

I: JUSB IOCTL codes
The following IOCTL codes are used in the jUSB driver and defined in ioctls.h
file.

I a) IOCTL_JUSB_GET_DEVICE_DESCRIPTOR
Returns the device descriptor in the output buffer. The output buffer must have
the size of the USB_DEVICE_DESCRIPTOR structure. The input buffer is not
being treated, so we can put this parameter to NULL. The members of this
structure are described in the DDK or on the online MSDN documentation [19].

typedef struct _USB_DEVICE_DESCRIPTOR {
 UCHAR bLength ;
 UCHAR bDescriptorType ;
 USHORT bcdUSB ;
 UCHAR bDeviceClass ;
 UCHAR bDeviceSubClass ;
 UCHAR bDeviceProtocol ;
 UCHAR bMaxPacketSize0 ;
 USHORT idVendor ;
 USHORT idProduct ;
 USHORT bcdDevice ;
 UCHAR iManufacturer ;
 UCHAR iProduct ;
 UCHAR iSerialNumber ;
 UCHAR bNumConfigurations ;
} USB_DEVICE_DESCRIPTOR, *PUSB_DEVICE_DESCRIPTOR ;

Table 50: USB_DEVICE_DESCRIPTOR structure

I b) IOCTL_JUSB_GET_CONFIGURATION_DESCRIPTOR
Returns the ith configuration descriptor of the device. Two steps are necessary
to successfully execute this IOCTL code. The input and output buffer belongs to
the DeviceIoControl WinAPI function.

1. Step
Input buffer: Index of type USHORT
Output buffer: NULL
nReturnedBytes: Contains the length of the ith configuration descriptor

2. Step
Input buffer: Index of type USHORT
Output buffer: The size of nReturnedBytes, type of UCHAR
nReturnedBytes: Contains the length of the ith configuration descriptor

I c) IOCTL_JUSB_GET_STRING_DESCRIPTOR
Retrieves the string descriptor from a given index and language. To dynamically
allocate memory for the string descriptor we will need two DeviceIoControl calls.
The first call returns the USB_STRING_DESCRIPTOR structure without the
driver key name, but tells in the bLength member, how many bytes the string
descriptor needs. In a second call we provide a buffer big enough to hold the

Michael Stahl 57

Java USB API for Windows

entire length of the string descriptor and the STRING_REQUEST structure. To
tell the driver which string descriptor we look for a STRING_REQUEST structure
is always put at the beginning of the input and output buffer to send the input
parameters to the jUSB driver.

typedef struct _STRING_REQUEST{
 UCHAR ucDescriptorIndex;
 USHORT usLangId;
} STRING_REQUEST, * PSTRING_REQUEST;

typedef struct _USB_STRING_DESCRIPTOR {
 UCHAR bLength ;
 UCHAR bDescriptorType ;
 WCHAR bString[1] ;
} USB_STRING_DESCRIPTOR, *PUSB_STRING_DESCRIPTOR ;

Table 51: STRING_REQUEST and USB_STRING_DESCRIPTOR structures

I d) IOCTL_JUSB_GET_STATUS
Returns the status for the specified recipient (bmRequestType) which is always
two bytes (further information can be found in the USB specification chapter
9.4.5). The input buffer consists of two bytes of type USHORT. The first byte
contains the bmRequestType and the second byte the wIndex field. The output
buffer will contain the data that is returned by the GET_STATUS request.

I e) IOCTL_JUSB_INTERRUPT_TRANSFER
This IOCTL code invokes the jUSB driver to do a synchronously interrupt
request to the driver. The input buffer must be as big as the number of bytes we
want to read. To tell the driver of which endpoint we want to read, we set the first
byte of the input buffer with the endpoint address. When successfully complete
the request the output buffer contains the bytes readed. For more information
look at the source, which is in the DoInterruptTransfer function in the Control.c
file.

II: Other IOCTLs
The following IOCTL:

• IOCTL_USB_GET_NODE_CONNECTION_NAME
• IOCTL_USB_GET_NODE_CONNECTION_INFORMATION
• IOCTL_USB_GET_NODE_CONNECTION_DRIVERKEY_NAME
• IOCTL_USB_GET_NODE_INFORMATION
• IOCTL_USB_GET_DESCRIPTOR_FROM_NODE_CONNECTION
• IOCTL_USB_GET_ROOT_HUB_NAME

are applied in the usbview example (DDK) or very clearly arranged in an
example by John Hide which is online available on:

www.intel.com/intelpress/usb/examples/DUSBVC.PDF

We do not explain this IOCTL codes any further.

Michael Stahl 58

Java USB API for Windows

GUIDGEN

Start GUIDGEN

Appendix B: Global Unique Identifier GUID
The Windows driver model introduces a new naming scheme for devices which
is language neutral. The schema relies on the concept of a device interface,
which is basically a specification of how software can access hardware. Each
device interface is uniquely identified by a 128-bit GUID [4].

The procedure of creating a GUID to be used in a device driver involves running
either UUIDGEN or GUIDGEN and then capturing the resulting identifier in a
header file. GUIDGEN is easier to use because it allows to format the GUID for
use with the DEFINE_GUID macro and to copy the resulting string to the
Clipboard (see Figure 19).

The created GUID is saved in the guids.h file which can be found in the
\JusbDll\jusb folder or \JusbDriver\sys and which looks as follows:

// {07D25E7A-CBDD-4f69-9BE1-FCCF14F4B299}
DEFINE_GUID(GUID_DEFINTERFACE_JUSB_DEVICES,
0x7d25e7a, 0xcbdd, 0x4f69, 0x9b, 0xe1, 0xfc, 0xcf, 0x14, 0xf4, 0xb2, 0x99);

Table 52: GUID_DEFINTERFACE_ JUSB_DEVICES

The name of the GUID is GUID_DEFINTERFACE_JUSB_DEVICES and it is
used to identify the JUSB devices within the JUSB DLL.

Figure 19: Using GUIDGEN to generate GUID

The output in Figure 19 does not correspond to the output in Table 52 because
the guidgen has been executed again for documentation purposes and will
hopefully never return the same result.

Start GUIDGEN with: Start Run and enter guidgen

The guidgen programm is part of the SDK and is installed in the
\MicrosoftSDK\Bin folder.

Michael Stahl 59

Java USB API for Windows

Appendix C : Device Interface Classes
Device interface classes are the means by which drivers make devices available
to applications and other drivers.

I: Introduction to Device Interfaces
Any driver of a physical, logical, or virtual device to which user-mode code can
direct I/O requests must supply some sort of name for its user-mode clients.
Using the name, a user-mode application (or other system component) identifies
the device from which it is requesting I/O.
In Windows NT® 4.0 and earlier versions of the NT-based operating system,
drivers named their device objects and then set up symbolic links in the registry
between these names and a user-visible Win32® logical name.
For Windows® 2000 and later, drivers do not name device objects. Instead, they
make use of device interface classes. A device interface class is a way of ex-
porting device and driver functionality to other system components, including
other drivers, as well as user-mode applications. A driver can register a device
interface class, than enable an instance of the class for each device object to
which user-mode I/O requests might be sent.
Each device interface class is associated with a GUID. The system defines
GUIDs for common device interface classes in device-specific header files. Ven-
dors can create additional device interface classes.
For example, three different types of mice could be members of the same device
interface class, even if one connects through a USB port, a second through a
serial port, and the third through an infrared port. Each driver registers its device
as a member of the interface class GUID_DEVINTERFACE_MOUSE. This
GUID is defined in the header file ntddmou.h.
Typically, drivers register for only one interface class. However, drivers for de-
vices that have specialized functionality beyond that defined for their standard
interface class might also register for an additional class. For example, a driver
for a disk that can be mounted should register for both its disk interface class
(GUID_DEVINTERFACE_DISK) and the mountable device class (MOUNT-
DEV_MOUNTED_DEVICE_GUID).
When a driver registers an instance of a device interface class, the I/O Manager
associates the device and the device interface class GUID with a symbolic link
name. The link name is stored in the registry and persists across system boots.
An application that uses the interface can query for instances of the interface
and receive a symbolic link name representing a device that supports the inter-
face. The application can then use the symbolic link name as a target for I/O
requests.

II: Register Device Interfaces in a Driver
IoRegisterDeviceInterface registers a device interface class, if it has not been
previously registered, and creates a new instance of the interface class. A driver
can call this routine several times for a given device to register several interface
classes and create instances of the classes. A function or filter driver typically
registers device interfaces in its AddDevice routine.
If the device interface class has not been registered previously, the I/O Manager
creates a registry key for it, along with instance-specific persistent storage under
the key.
A driver registers an interface instance once and then calls IoSetDeviceinter-
faceState to enable and disable the interface.
Registered interfaces persist across operating system reboots. If the specified
interface is already registered, the I/O Manager passes its name in
SymbolicLinkName and returns the informational success status
STATUS_OBJECT_NAME_EXISTS.

Most drivers use a NULL reference string for a device interface instance. If a
driver uses a non-NULL reference string, it must do additional work, including

Michael Stahl 60

Java USB API for Windows

possibly managing its own namespace and security.
Callers of this routine are not required to remove the registration for a device
interface when it is no longer needed. Device interface registrations can be re-
moved from user mode, if necessary.

Callers of IoRegisterDeviceInterface must be running at IRQL =
PASSIVE_LEVEL in the context of a system thread.

Michael Stahl 61

Java USB API for Windows

Appendix D: Replacement of origin driver with the
jUSB driver
Once we want to develop a device with the Java USB API it comes to the point
where we need to replace the origin driver from the device and force the device
to use the JUSB driver. This section explains how we can configure any USB
device to the JUSB driver. There are two situations we come across when we
attach a device to the USB bus:

• The hardware assistant starts and looks for an appropriate INF file that
contains further information about the driver to be installed.

• The operating system automatically loads the appropriate driver for the
USB device. This is usually done for devices associated with a class
driver. Windows supports all known class drivers from the standard USB
specification.

Both situations demand for a different procedure to install the JUSB driver.
There are some aspects to concern about, which will be explained in the next
two sections.

Register the JUSB Driver

I: Install the jUSB driver
Before we can configure a USB device to use the JUSB driver, we need to install
the driver. If the USB device is configured with an INF file, we can pass to 0. In
all other cases, we need to register the JUSB driver to the Windows registry and
put the driver file JUSB.sys into the \WINDOWS\SYSTEM32\DRIVERS folder.
To register this driver double click on the jusb.reg file in the “\JUSBDriver\Treiber
Installations Dateien”. This will add the JUSB driver to the registry. For additional
devices we do not have to repeat this process, because the JUSB driver remains
in the registry as long as no changes to the registry are made.
The entry can be found in HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001
\Services\JUSB

II: USB Device with an INF file
If an USB device comes with its own driver attached on an external disk, then in
most cases an INF-file is supplied for that driver. The first thing we have to do if
we do not know the vendor and product id of the device is reading the first para-
graph of 0 to get the id’s. In a second step we do prepare the INF file for the
JUSB driver for our own needs. Open the jusb.INF file (should be concerned as
a default file) from the \InstallationFiles\JusbDriver folder (Table 53 shows the
content of jusb.inf file). The INF file contains several sections which are denoted
within brackets (‘[‘, ‘]’). To distinguish this INF file from other INF files using the
JUSB driver we save the default jusb.INF file under an appropriate name which
belongs to the USB device we want to add, e.g. the device we want to work with
is called MyPen [20].

1. Save jusb.inf as e.g. jusb-mypen.inf
2. section [SourceDiskFiles]:

change JUSB.inf to jusb-mypen.inf
3. section [JavaUSBDevices]

change two times the VID and PID according to the VID and PID the
USB device is identified.

4. section [JUSB.Files.Inf]
change JUSB.inf to jusb-mypen.inf

5. section [String]
change VID and PID. The DeviceDesc string has to be set, so that it
starts with the “JUSB Driver --:”.

6. Save jusb-mypen.inf in the \InstallationFiles\JusbDriver folder.

; Installation inf for the JUSB (Java USB) driver

Michael Stahl 62

Java USB API for Windows

;
; (c) Copyright 2003 ETH Zürich Institute for Information Systems
;

[Version]
Signature="$CHICAGO$"
Class=USB
ClassGUID={36FC9E60-C465-11CF-8056-444553540000}
provider=%ETHGLOBIS%
DriverVer=07/28/2003

[SourceDisksNames]
1="JUSB Installation Disk",,,

[SourceDisksFiles]
JUSB.sys = 1
JUSB.inf = 1

[Manufacturer]
%MfgName%=JavaUSBDevices

[JavaUSBDevices]
%USB\VID_0A93&PID_0002.DeviceDesc%=JUSB.Dev, USB\VID_0A93&PID_0002
…

[JUSB.Files.Ext]
JUSB.sys

[JUSB.Files.Inf]
JUSB.Inf

 [Strings]
ETHGLOBIS="ETH Zürich Institute for Information Systems"
MfgName="Stahl"
;FriendlyDeviceName has always to start with "JUSB Driver --:"
;
;In case of a device having a friendly device name starts with "JUSB Driver --:"
;the Java USB API will put that device in the JUSB class, In the other case
;the device will be put to the NonJUSB class.
;
USB\VID_0A93&PID_0002.DeviceDesc="JUSB Driver --: JUSB Device"
JUSB.SvcDesc="JUSB.Sys Java USB Driver"

Table 53: Fragment of the jusb.inf file. Highlighted are the sections that
have to be modified to fit for other USB devices

Replace the driver using the Device Manager in Windows. According to the ex-
ample we are looking for a device called MyPen. At this point we can update the
driver. The sources for the jUSB driver are found in the
InstallationFiles\JusbDriver.

III: Class USB Devices
A class USB device is usually automatically recognised by the Windows operat-
ing system and the corresponding driver is loaded for that device. The hardware
assistant may inform that it found a new USB device and its driver has been
successfully loaded. If we have such a device, then we need to edit the registry
to make that device available to the JUSB driver. The steps are related to a
mouse which is the class of a Human Interface Device (HID). A mouse can be
attached to the computer and without any settings the mouse can be used. This
is exactly what we do first of all, we attach the USB device we want to configure
for the JUSB driver to the USB bus. In a second step we need to know the ven-
dor (VID) and product id (PID) of the device. This can be done in the following
ways:

• Start RunUSBControllerTest.java. This will do a scan of the USB bus

Michael Stahl 63

Java USB API for Windows

and display its attached devices. With the friendly device name we are
able to identify the device we just attached. If we have two identical de-
vices, detach one of them, so we are sure to see only the connected de-
vice we are looking for. Look at the uniqueID string to get the vendor id (
Vid_xxxx) and the product id (Pid_xxxx).

• Use the usbview executable from the DDK to get those informations.
• Look in the registry under HKEY_LOCAL_MACHINE\SYSTEM\Current-

ControlSet\Enum\USB. This approach is like look and guess. The first
two approaches are recommended to retrieve the VID and PID.

As soon we know the PID and the VID we start the registry editor (use Start-
>Run and type “regedit”). Go to the following folder:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\USB.
In that folder are all USB devices that once have been attached to the USB bus.
It contains a ROOT_HUB and a ROOT_HUB20 folder in which the settings and
information about the root hubs on the system can be found. Plenty of folders
named like Vid_xxxx&Pid_xxxx represent devices belonging to those VID and
PID. The mouse we are going to configure for the JUSB driver has VID 046d and
PID c00e (in Figure 20 (1.) a folder name containing the VID and PID).

Figure 20: Registry entries in HKLM\SYSTEM\CurrentControlSet\Enum-
\USB

This means we have found the mouse device in the registry. The subfolders (
Figure 20 (2.)) contain instances of a mouse device. We may have more USB
devices with the same VID and PID and for each of those an instance will be
created. If we select this instance (in our example there is only one) we get
some registry properties on the right hand side To change the properties of that
device instance, the security attributes of the instance folder may have to be
changed to write access otherwise the registry entry cannot be changed (for
more information see 0). Table 54 lists the entries that have to be changed to
configure the device for the JUSB driver.

Class USB
ClassGUID {36FC9E60-C465-11CF-8056-444553540000}

Is the system supplied setup class for USB [26].
DeviceDesc JUSB Driver --: <the recent DeviceDesc name>
Driver {07D25E7A-CBDD-4f69-9BE1-FCCF14F4B299}\nnnn

{07D25E7A-CBDD-4f69-9BE1-FCCF14F4B299}: is the
GUID for the JUSB Driver Interface Class. This GUID is
defined in JUSBDriver\sys\guids.h.
nnnn: a number like 0001. For every JUSB Driver in-
crement this number. There should not exist another
JUSB driver with the same number.

ParentIdPrefix delete the complete entry
Service JUSB

Michael Stahl 64

Java USB API for Windows

Table 54:Change of Regitry Entries for a JUSB Device

The complete list of settings for a JUSB device is presented in Figure 21

Figure 21: Registry entries for a jUSB device

In Windows XP a reboot of the system is not required, but at least the device has
to be unplugged and plugged again to the bus so the change in the registry
takes effect. As soon these properties are set, the device is now being recog-
nised as a JUSB device and will process all request to the JUSB driver. In fact
the assumption is made that the JUSB driver is already in the
C:\WINDOWS\SYSTEM32\DRIVERS folder. Otherwise it needs to be copied to
that location.
The example with the mouse shows the effect of not working correct anymore.
The mouse can be moved but no cursor can be seen. In other words, the mouse
device is in the control of the JUSB driver, hopefully not out of control!

IV: How to change Registry Security Attributes
We may encounter the following error messages as displayed in Table 55 when
trying to modify the registry values.

Windows 2000/XP: Error Editing Value
Cannot edit <value>: Error writing the value’s new content

Table 55: Error while trying to modify registry entries

The reason for that failure is because the Windows operating system in the basic
setting only grants read access to registry entries. To change the security per-
mission we must log in as system administrator and perform the following steps
depending on the Windows version:

Windows 2000:

1. Security permissions have to be set with RegEdt32 (Start Run, enter
RegEdt32).
Select the HKEY_LOCAL_MACHINE window. Open the following fold-
ers: SYSTEM, ControlSet001, Enum. Select the USB folder and choose
Security Permissions… in the registry editor menu. Give “Everyone”
full control access and apply the new changes. Close RegEdt32.

2. Start regedit (Start Run, enter regedit) and do the necessary changes
as described in 0.

Windows XP:

1. Start regedit (Start Run, enter regedit) and choose the folder where
new settings have to be applied. Right click and go to Permissions…
and set “Everyone” to full control access.

2. In case no Permissions… field is available in the context menu, other
settings in the folder options have to be done (Explorer Tools Folder
Options View) under Advanced settings, clear “Use simple file sharing
[Recommended]”. After this setting the security tag should be visible.

Michael Stahl 65

Java USB API for Windows

DUMPBIN command

Output of DumpBin

Mangled function name

Appendix E: Java Native Interface Linking Error
The steps to implement the Java native methods on the C/C++ side are the
following:

1. Declare a method in a Java class as native.
private native byte[] JUSBReadControl(String devicePath, byte type,byte request,
 short value, short index, short length);

2. Create the JNI header file with javah.
javah –jni usb.windows.JUSB

3. Include the header file in the C/C++ file that implements this native
function.

4. Build the DLL

Usually we assume that the DLL function name corresponds to the function
name we supplied in the JNI header file. In fact the compiler creates the function
name according to the JNI header file.
Unfortunately, we encountered a problem that a Java native method got a fatal
linking error while running the Java main program. We did step 1 to 4 as usual
but the main application still claimed that no native method of that name exists in
the DLL. The reason of such a failure is in mangling the function name by the
Visual C++ Compiler. In other words: the compiler creates a new name for the
JNI native function which does not correspond to the origin header file and
therefore cannot be found by the Java native interface. To eliminate this
malfunction of the compiler we used the dumpbin [7] command to get the
names of the DLL supported functions. According to the dump function names
we are able to check if a name mangling has happened or not. Look at the
source of JUSBReadControl method in the JUSB class for further information.

The dumpbin command can be used as follows:

dumpbin /EXPORTS /LINKERMEMBER C:\WINDOWS\SYSTEM32\jusb.dll
Table 56: Dumpbin command to see the export function of a DLL
The output of that command is shown in Table 57.

Dump of file C:\WINDOWS\SYSTEM32\jusb.dll
 Section contains the following exports for jusb.dll

1 0 000010AF _Java_usb_windows_DeviceImpl_closeHandle@12
2 1 00001050 _Java_usb_windows_DeviceImpl_getAttachedDeviceType@16
3 2 00001069 _Java_usb_windows_DeviceImpl_getConfigurationDescriptor@16
…
11 A 0000110E _Java_usb_windows_JUSB_JUSBReadControl@32
12 B 00001005 _Java_usb_windows_JUSB_doInterruptTransfer@20
13 C 00001104 _Java_usb_windows_JUSB_getConfigurationBuffer@16
14 D 000010F5 _Java_usb_windows_JUSB_getDevicePath@12
15 E 00001064 _Java_usb_windows_USB_getRootHubName@12
16 F 0000106E _Java_usb_windows_Windows_getHostControllerDevicePath@12
17 10 0000100F _Java_usb_windows_Windows_getHostControllerName@12

Table 57: Output of dumpbin command
A mangled function name has the following structure:

_Java_usb_Windows_JUSB_readControl@@YGPAV_jbyteArray@@PAUJNIEnv_@
@PAV_jobject@@PAV_jstring@@PAV1@@Z

Table 58: A mangled function name by the compiler

Michael Stahl 66

Java USB API for Windows

Appendix F: A sample of DbgView with HP Scanjet
4100C
Table 59 shows the output of DbgView when we attach a device that is using the
JUSB driver. This output is just for information. No further explanation will be
given.

AddDevice
create DeviceObject

Start Device

Configure the
DeviceExtension
from the Device

The configured
DeviceDescriptor

The configured
ConfigurationDescriptors

The current
ConfigurationDescriptor
and its interfaces and their
endpoints

The content of the
EndpointContext member

 000 0.00000000 - Running under NT

 001 0.00037351 - ENTER AddDevice: DriverObject 821B0ED0, pdo 81E9C5D0
 002 0.00042743 - AddDevice : deviceObject created --> 81D88D80
 005 0.00046263 - AddDevice DELEGATE : to WMI
 006 0.00047352 - ENTER WmiRegistration
 007 0.00050872 - EXIT WmiRegistration
 008 0.00052213 - AddDevice INITIALIZE : attach our driver to device stack
 009 0.00053526 - AddDevice INITIALIZE : Register device interfaces
 011 0.00073920 - AddDevice INITIALIZE : WDM version: Win XP or better
 012 0.00080792 - END: AddDevice

 013 0.00084340 - ENTER DispatchPnp IRP:IRP_MN_?????
 014 0.00087190 - DispatchPnp (IRP_MN_START_DEVICE) will be sent to the lower driver
 015 0.00099957 - ENTER DispatchPnp IRP_MN_QUERY_RESOURCE_REQUIREMENTS
 016 0.00107332 - DispatchPnp (IRP_MN_START_DEVICE) will be sent to the lower driver
 017 0.00113813 - ENTER DispatchPnp IRP_MN_FILTER_RESOURCE_REQUIREMENTS
 018 0.00115545 - DispatchPnp (IRP_MN_START_DEVICE) will be sent to the lower driver

 019 0.00117305 - ENTER DispatchPnp IRP:IRP_MN_START_DEVICE
 020 0.00118423 - ENTER HandleStartDevice
 021 0.00241204 - ENTER ReadAndSelectDescriptors
 034 0.02080823 - ENTER ConfigureDevice: ConfigIndex:0

 053 0.08289461 - Entering DispatchPower: IRP_MN_WAIT_WAKE
 054 0.08292646
 055 0.08293819 >>>>>>>>>>>>>>> DEVICE DESCRIPTOR <<<<<<<<<<<<<<<<<<<
 056 0.08296026 18 0x01 0x0100 0x00 0x00 0x00 0x08 0x03F0 0x0101 0x0100 0x01
0x02 0x03 1
 057 0.08296892
 058 0.08298150 >>>>>>>>>>>>>>> CONFIGURATION DESCRIPTOR [0] <<<<<<<<<<<<
 059 0.08299742 9 0x02 wTotalLength(39 Bytes) bNumInterfaces(0x01) 0x00 0x60 0x00
 060 0.08300608
 061 0.08301502
 062 0.08302815 >>>>>>>>>>>>>>> CURRENT CONFIGURATION DESCRIPTOR [0] <<
 063 0.08304072 CurrentConfigurationHandle : 0X81E60ED0
 064 0.08305162 NumberTotalEndpoints : 3
 065 0.08306195 INTERFACE [0]
 066 0.08307452 - InterfaceHandle : 0X81DAEA08
 067 0.08308542 - InterfaceNumber : 0
 068 0.08309632 - Class : 0
 069 0.08310749 - SubClass : 0
 070 0.08311866 - Protocol : 0
 071 0.08312956 - AlternateSetting : 0
 072 0.08314046 * Claimed : 0
 073 0.08315135 ENDPOINT (Pipe) [0]
 074 0.08316252 - Address : 0X81
 075 0.08317510 - PipeHandle : 0X81DAEA24
 076 0.08318851 - Type : 0X2 (00:Control 01:Isochronous 02:Bulk 03:Interrupt)
 077 0.08319940 - Interval : 0
 078 0.08321058 - MaxPacketSize : 0X40
 079 0.08322231 - MaxTransferSize : 0XFFC0
 080 0.08323320 ENDPOINT (Pipe) [1]
 081 0.08324438 - Address : 0X2
 082 0.08325639 - PipeHandle : 0X81DAEA44
 083 0.08326980 - Type : 0X2 (00:Control 01:Isochronous 02:Bulk 03:Interrupt)
 084 0.08328098 - Interval : 0
 085 0.08329243 - MaxPacketSize : 0X10
 086 0.08330416 - MaxTransferSize : 0XFFC0
 087 0.08331506 ENDPOINT (Pipe) [2]
 088 0.08332623 - Address : 0X83
 089 0.08333852 - PipeHandle : 0X81DAEA64
 090 0.08335193 - Type : 0X3 (00:Control 01:Isochronous 02:Bulk 03:Interrupt)
 091 0.08336339 - Interval : 0XFA
 092 0.08337428 - MaxPacketSize : 0X1
 093 0.08338602 - MaxTransferSize : 0XFFC0
 094 0.08339496
 095 0.08340557 ENDPOINT CONTEXT [0]
 096 0.08341619 - PipeOpen : 0
 097 0.08342708 - PipeNumber : 1
 098 0.08343770 - PipeInterfaceNumber : 0
 099 0.08344999 - PipeDirection : 1 (0:HostToDevice 1:DeviceToHost)
 100 0.08346200 - PipeHandle : 81DAEA24
 101 0.08347066
 102 0.08348100 ENDPOINT CONTEXT [1]

Michael Stahl 67

Java USB API for Windows

Device running

Surprise Removal

Important:
Free all allocated memory
for DeviceExtension
members

Unload Driver

 103 0.08349162 - PipeOpen : 0
 104 0.08350223 - PipeNumber : 2
 105 0.08351285 - PipeInterfaceNumber : 0
 106 0.08352514 - PipeDirection : 0 (0:HostToDevice 1:DeviceToHost)
 107 0.08353743 - PipeHandle : 81DAEA44
 108 0.08354609
 109 0.08355643 ENDPOINT CONTEXT [2]
 110 0.08356705 - PipeOpen : 0
 111 0.08357766 - PipeNumber : 3
 112 0.08358856 - PipeInterfaceNumber : 0
 113 0.08360085 - PipeDirection : 1 (0:HostToDevice 1:DeviceToHost)
 114 0.08361342 - PipeHandle : 81DAEA64
 115 0.08362404 NO ENDPOINT CONTEXT [3]
 116 0.08363465 NO ENDPOINT CONTEXT [4]
 …
141 0.08389865 NO ENDPOINT CONTEXT [29]

143 0.08437190 - ENTER DispatchPnp IRP:IRP_MN_QUERY_CAPABILITIES
 144 0.08452890 - ENTER DispatchPnp IRP:IRP_MN_QUERY_PNP_DEVICE_STATE
 145 0.08455376 - DispatchPnp IRP_MN_START_DEVICE) will be sent to the lower driver
 146 0.08457220 - ENTER DispatchPnp IRP:IRP_MN_QUERY_DEVICE_RELATIONS
 147 0.08461550 - DispatchPnp:(IRP_MN_START_DEVICE) will be sent to the lower driver
 148 5.08966503 - Entering DispatchPower: IRP_MN_SET_POWER

At this point the JUSB Device is initialized and ready to handle
request from the Java USB API

…
(Device is attached)

…
…

The following lines show what happens
when the device is removed from the USB bus.

 149 11.50900799 - ENTER DispatchPower: DeviceObject 81D88D80,IRP_MN_SET_POWER
 150 11.50906666 - ENTER DispatchPower: DeviceObject 81D88D80, IRP_MN_WAIT_WAKE
 151 11.50908453 Lower drivers failed the wait-wake Irp
 152 11.50934127 - ENTER IdleNotificationRequestComplete
 153 11.50960443 - ENTER DispatchPnp IRP:IRP_MN_QUERY_DEVICE_RELATIONS
 154 11.50962762 - DispatchPnp(IRP_MN_START_DEVICE) will be sent to the lower driver
 155 11.50964215 - ENTER DispatchPnp IRP:IRP_MN_QUERY_DEVICE_RELATIONS
 156 11.50971227 - DispatchPnp (IRP_MN_START_DEVICE) will be sent to the lower driver
 157 11.50973518 - ENTER DispatchPnp IRP:IRP_MN_SURPRISE_REMOVAL
 158 11.55099629 - ENTER DispatchPnp IRP:IRP_MN_REMOVE_DEVICE
 159 11.55100271
 160 11.55102227 - ENTER WmiDeRegistration
 161 11.55116363 - EXIT WmiDeRegistration ntStatus:

 162 11.70122935 - FREE MEMORY OF : EndpointContext[0]
 163 11.70124834 - FREE MEMORY OF : EndpointContext[1]
 164 11.70126036 - FREE MEMORY OF : EndpointContext[2]
 165 11.70127153 - FREE MEMORY OF : EndpointContext
 166 11.70128438 - FREE MEMORY OF : InterfaceList[0]
 167 11.70129556 - FREE MEMORY OF : InterfaceList
 168 11.70130813 - FREE MEMORY OF : InterfaceClaimedInfo[0]
 169 11.70131930 - FREE MEMORY OF : InterfaceClaimedInfo
 170 11.70133215 - FREE MEMORY OF : ConfigurationDescriptors[0]
 171 11.70134361 - FREE MEMORY OF : ConfigurationDescriptors
 172 11.70135478 - FREE MEMORY OF : DeviceDescriptor
 173 11.72126402 - ENTER DriverUnload
 174 11.72128050 - FREE registryPath->Buffer

 175 11.72129167 - EXIT DriverUnload

Table 59: DdgView output of a device using the JUSB driver

Michael Stahl 68

Java USB API for Windows

Literature

Books:

[1] H.J Kelm (Hrsg.), 1999.

USB Universal Serial Bus, Franzis-Verlag , Poing.
ISBN 3-7723-7962-1

[2] John Hyde, 2001.
USB Design by Example 2nd Edition. Intel Press.
ISBN 0-9702846-5-9

[3] Rob Gordon, 1998.
Essential JNI: Java Native Interface, Prentice Hall PTR, New Jersey.
ISBN 0-13-679895-0

[4] Walter Oney, 2003.
Programming the Microsoft Windows Driver Model, 2nd Edition. Microsoft
Press, Redmond, Washington.
ISBN 0-7356-1803-8

Internet:

[5] DisplayUSB.cpp:

http://www.intel.com/intelpress/usb/examples/DUSBVC.PDF

[6] Driver Development Kits (DDK):
http://www.microsoft.com/whdc/ddk/

[7] DumpBin:
http://h18009.www1.hp.com/fortran/docs/vf-html/pg/pg4exdmb.htm

[8] Java 2 Platform, Standard Edition (J2SE), Version 1.4.1:
http://java.sun.com/j2se/1.4.1/index.html

[9] Java 2 Platform, Standard Edition (J2SE):
http://java.sun.com/j2se/

[10] Java API (javadoc):
http://jusb.sourceforge.net/apidoc/overview-summary.html

[11] Java Book Online - German:
http://www.galileocomputing.de/openbook/javainsel2/

[12] Java Book Online - German:
http://www.javabuch.de/

[13] Java Native Interface How To Use:
http://www.acm.org/crossroads/xrds4-2/jni.html

[14] Java Native Interface Introduction:
http://www.javaworld.com/javaworld/jw-10-1999/jw-10-jni.html

[15] Java Native Interface Specification:
http://java.sun.com/products/jdk/1.2/docs/guide/jni/spec/jniTOC.doc.html

[16] Java Native Interface Tutorial:
http://java.sun.com/docs/books/tutorial/native1.1/

Michael Stahl 70

Java USB API for Windows

[17] Java Native Interface:
http://java.sun.com/j2se/1.4.2/docs/guide/jni/index.html

[18] Java USB Project Page:
http://jusb.sourceforge.net/

[19] MSDN Platform:
http://msdn.microsoft.com/library/

[20] MyPen:
https://entry2.credit-suisse.ch/cs/business/p/s/de/mypen.pdf

[21] Netbeans DIE:
http://www.netbeans.org

[22] New in DDK for Windows XP:
http://msdn.microsoft.com/library/en-us/dndevice/html/newinwinxpddk-.asp

[23] Paper++ :
http://www.paperplusplus.net/

[24] Platform Microsoft SDK 2003:
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/

[25] Sysinternals (Debug Viewer):
http://www.sysinternals.com

[26] System-Supplied Device Setup Classes:
http://www.osr.com/ddk/install/setup-cls_2i1z.htm

[27] Universal Serial Bus Specification 2.0:
http://www.usb.org/developers/docs

[28] USB_ROOT_HUB_NAME structure:
http://www.osr.com/ddk/buses/usbstrct_1iya.htm

Michael Stahl 71

Java USB API for Windows

Index

A
A_JUSB_DRIVER (Constant) ... 16
AddDevice ... 33, 37, 60
addUSBListener (Java) .. 18

B
bRequest... 30
bug ... 18
bulk transfer ... 12, 28, 42
Bus (Interface).. 20
bus-powered ... 10

C
cable ... 10
change registry security attributes 65
class driver ... 9, 13
CLASSPATH... 44
Client Software... 9
CloseFile (WinAPI) ... 23
closeHandle (Java) ... 23
closeHandle (JNI)... 25
CM_Get_DevNode_Registry_Property (WinAPI)........... 25
composite device.. 8
compound device ... 8
configuration .. 11
ConfigurationDescriptors ... 33, 34
ConfigureDevice .. 34
connector type

“A”-type connector .. 10
“B”-type connector .. 10

control transfer ... 12, 28, 30, 41
ControlCode ... 38
ControlMessage (Class) ... 30
core Java USB API... 14
CreateFile (WinAPI) .. 20, 23
creating the JNI header files ... 46
CTL_CODE ... 38
CurrentConfigurationHandle.. 33
CurrentConfigurationIndex .. 33

D
data stage.. 30
DbgView .. 44, 67
DDKPATH... 44
DEFINE_GUID.. 59
descriptors .. 12

configuration.. 12
device... 12
endpoint ... 12
interface ... 12
string .. 12

developers installation.. 44
device interface class.. 29, 60
device path ... 20, 29
DEVICE_EXTENSION (Struct)...................................... 33
deviceCapabilities .. 33
DeviceDescriptor.. 33, 34
DeviceImpl (Class)... 16, 23

DeviceIoControl (WinAPI)...20, 38
DeviceObject ..33
devicePower..33
DeviceSPI (Interface) ...16, 28
DeviceType...38
devState ..33
dispatch routine...37
DispatchControl..38
DispatchPnP..34
doDriverNameToDeviceDesc (C/C++)25
doInterruptTransfer (JNI)..32
downstream...10
DriverNameToDeviceDesc (C/C++)25
DUMPBIN..66

E
embedded hub..Siehe root hub
endpoint ..11

in direction ...11
out direction..11
zero...30

ENDPOINT_CONTEXT (Struct).....................................36
EndpointContext ...33, 36
enumerateHubPorts (Java) ..16, 20
enumerating the USB..23
environment variables

CLASSPATH...44
DDKPATH...44
JAVAHOME..44
JUSBPATH ..44
Path...44
settings..44
Windows 2000..44
Windows XP ..44

error C1189...53
external hubs...8
EXTERNAL_HUB (Constant)23, 26

F
file composition of jUSB DLL..51
full speed...8
function code ..37

G
getAttachedDevice (Java) ...23
getAttachedDeviceType (JNI) ..26
getBusId (Java) ...20
getBusNum (Java) ..20
getBusses (Java)..18
getConfigurationBuffer (JNI) ...32
getConfigurationDescriptor (JNI)28
getDevice (Java) ...18, 20
getDeviceDescriptor (C/C++)...28
getDeviceDescriptor (Java)...16
getDeviceDescriptor (JNI) ..28
getDevicePath (C/C++)...20, 29
getDevicePath (Java) ..28
getDevicePath (JNI)..29
getDriverKeyNameOfDeviceOnPort (Java)23
getDriverKeyNameOfDeviceOnPort (JNI).................25, 27

Michael Stahl 72

Java USB API for Windows

getExternalHubName (JNI).. 27
getFriendlyDeviceName (Java) .. 23
getFriendlyDeviceName (JNI) ... 25
getHost (Java) .. 18, 20
getHostControllerDevicePath (JNI) 18, 20
getHostControllerPath (C/C++) 20
getNumPorts (Java) .. 23
getNumPorts (JNI) ... 27
getRootHub (Java) ... 20
getRootHubName (C/C++) .. 21
getRootHubName (JNI) ... 20
getUniqueDeviceID (Java) ... 23
getUniqueDeviceID (JNI) .. 28
global unique identifier .. 59
GUID..................................... Siehe global unique identifier
GUID_DEFINTERFACE_JUSB_DEVICES............. 29, 59
guidgen... 29, 59
guids.h.. 29

H
HandleStartDevice ... 34
HashTable (Class) .. 16
high speed .. 8
host... 9
Host (Interface) .. 18
host controller driver .. 13
hostControllerDevicePath .. 21
HostFactory (Class).. 16, 18
HostImpl (Class) .. 16, 18
hub device .. 8, 10
hub driver ... 13
HUB_DESCRIPTOR (Struct) .. 27

I
I/O control codes .. 38
I/O device... 8, 11
I/O Manager ... 37, 60
I/O request.. 37
ifname .. 33
INF file... 62
install the JUSB driver ... 62
installation

for developer.. 44
interface.. 11
InterfaceClaimedInfo ... 33, 36
InterfaceList ... 33, 35
interrupt transfer... 12, 28, 41
IoCountLock .. 33
IOCTL_JUSB_GET

_CONFIGURATION_DESCRIPTOR 30, 57
_DEVICE_DESCRIPTOR 30, 38, 57
_STATUS .. 30, 58
_STRING_DESCRIPTOR..................................... 30, 57

IOCTL_JUSB_INTERRUPT_TRANSFER..................... 58
IOCTL_USB_GET

_DESCRIPTOR_FROM_NODE_CONNECTION28, 58
_NODE_CONNECTION_DRIVERKEY_NAME 27, 58
_NODE_CONNECTION_INFORMATION... 26, 28, 58
_NODE_CONNECTION_NAME......................... 27, 58
_NODE_INFORMATION 27, 58
_ROOT_HUB_NAME .. 21, 58

ioctls.h.. 38
IoRegisterDeviceInterface.. 60
IoSetDeviceinterfaceState .. 60
IRP ... 37
IRP_MJ_DEVICE_CONTROL 38

IRP_MJ_PNP..34
IRP_MN_START_DEVICE...34
isochronous transfer..12

J
Java Runtime Environment J2SE 1.4.1.............................44
javah ...46
JAVAHOME ..44
JavaUSB.ZIP ..43
JavaUSBComplete.Zip ...46

Installation Files ...46
JavaSources ..46
JusbDll..46
JusbDriver ..46

John Hyde ...26
JUSB (Class)...16, 28, 66
jUSB DLL

building process..47
jUSB driver

building process..53
test ..43

JUSB Driver --:...16
jusb.inf ..62
JUSBPATH ..44
JUSBReadControl (Java) ..66
JUSBReadControl (JNI) ...30

K
KeAcquireSpinLock ...37
KeInitializeSpinLock ..37
KeReleaseSpinLock..37
kernel mode ..9
KSPIN_LOCK..37

L
linking error ..66
low speed ..8
LowerDeviceObject ..33

M
MajorField ..37
mangled function names ...66
METHOD_BUFFERED...40
METHOD_NEITHER ..40
METHOD_OUT_DIRECT...40
METHODE_IN_DIRECT ..40
Microsoft Driver Development Kit...................................44
Microsoft Software SDK 2003 ...44
Microsoft Visual C++ ...44
mini driver ..13

N
Netbeans IDE..43, 44
NO_DEVICE_CONNECTED (Constant)23, 26
NODE_INFORMATION (Struct)27
NonJusb (Class) ..16

O
openHandle (Java) ..23
openHandle (JNI)..25
OpenHCI.sys..............................Siehe host controller driver

Michael Stahl 73

Java USB API for Windows

P
Path .. 44
PhysicalDeviceObject .. 33
pipe... 11
pragma message ... 38
PreviousConfigurationHandle .. 33
PreviousConfigurationIndex .. 33
previousDevState ... 33

R
ReadAndSelectDescriptors... 34
ReadFile (WinAPI) .. 38
regedit .. 65
RegEdt32.. 65
register the JUSB driver ... 62
RegisterDeviceNotification (WinAPI) 16
registry ... 25
RemoveLock .. 33
removeUSBListener (Java) .. 18
replace the origin driver ... 62
request type .. 30
RequiredAccess.. 38
root hub .. 8
Runnable (Interface)... 16
RunUSBControllerTest .. 43

S
scanBus (Java).. 16, 20
self-powered... 10
setup packet.. 30
setup stage .. 30
SetupDiGetDeviceRegistryProperty (WinAPI)................ 25
SetupDiXxx (WinAPI) ... 20
spin lock ... 37
status stage ... 30
STRING_REQUEST (Struct) .. 57
symbolic link name .. 60
synchronization techniques .. 37
systemPower .. 33

T
transfer types .. 12

bulk .. 12
control.. 12
interrupt ... 12
isochronous .. 12

TransferType.. 38, 40

U
UHCD.sys..................................Siehe host controller driver
unique id ...28
upstream ...10
upstream port ..10
URB_FUNCTION_CONTROL_TRANSFER30
USB (Class) ..16, 20
USB driver..13
USB driver stack for Windows ...13
USB Host Controller...9
USB System Software ..9
usb.core...16
usb.windows ...16
USB_DEVICE (Constant) ..23, 26
USB_STRING_DESCRIPTOR (Struct)57
usb100.h..35
UsbBuildFeatureRequest ..30
UsbBuildGetDescriptorRequest..30
UsbBuildGetStatusRequest...30
UsbBuildInterruptOrBulkTransferRequest41
UsbBuildSelectInterfaceRequest30
UsbBuildVendorRequest ..30
USBD driver ...23
USBD.sys .. Siehe USB Driver
USBD_INTERFACE_INFORMATION (Struct)35
USBD_PIPE_INFORMATION (Struct)...........................35
USBHUB.sys..Siehe hub driver
USBListener (Class) ...16, 23
usbview...14, 58
use the JUSB driver ..62
user installation...43
user mode..9
uuidgen ...59

V
Visual C++ 6.0 Project Setting ...47

with installed DDK...49
Windows XP ..49
Windows2000 ..49

without DDK..48
Windows 2000 ...48
Windows XP ..48

W
Watcher (Class) ..16, 18
WindowProc (WinAPI) ..16
Windows (Class)...16, 18
winioctl.h ..38
WM_DEVICECHANGE..16
WriteFile (WinAPI) ..38

Michael Stahl 74

	Introduction
	Motivation
	USB Overview
	USB Terminology
	PC Host
	USB Cable
	Hub Device
	I/O Device
	Information Flow
	Descriptors

	Java USB API for Windows
	USB Driver Stack for Windows
	Framework of the Java USB API

	Java USB API usb.windows Design
	Host and Enumeration Processes
	Windows Class
	Windows Class Native Side Design

	USB Class
	USB Class Native Side Design

	DeviceImpl Class
	DeviceImpl Class Native Side Design
	openHandle
	closeHandle
	getFriendlyDeviceName
	getAttachedDeviceType
	getNumPorts
	getDriverKeyNameOfDeviceOnPort
	getExternalHubName
	getDeviceDescriptor
	getConfigurationDescriptor
	getUniqueDeviceID

	JUSB Class
	JUSB Class Native Side Design
	getDevicePath
	JUSBReadControl
	getConfigurationBuffer
	doInterruptTransfer

	jUSB Driver
	DeviceExtension
	Important Members of DeviceExtension Structure
	DeviceDescriptor
	ConfigurationDescriptors
	InterfaceList
	InterfaceClaimedInfo
	EndpointContext

	Dispatch Routine
	Synchronization Techniques
	I/O Control Codes
	IOCTL TransferType

	Control Transfer
	Interrupt Transfer
	BulkTransfer

	User Installation
	Resources
	Installation of the jUSB Driver and jUSB DLL

	Developers Installation
	Resources
	Setting the Environment Variables
	Unzip the JavaUSBComplete.Zip File
	Java USB API for Windows
	Creating the Java Native Headers
	Directory and File Description

	jUSB DLL
	Visual C++ 6.0 Project Setting
	Project Settings without the DDK
	Windows 2000
	Project Settings with an Installed DDK

	Directory and File Description

	JUSB Driver
	How to Build the Driver
	No Driver Executable Built

	Directory and File Description

	Conclusion
	Appendix A: IOCTL codes used by the JUSB framework
	I: JUSB IOCTL codes
	I a) IOCTL_JUSB_GET_DEVICE_DESCRIPTOR
	I b) IOCTL_JUSB_GET_CONFIGURATION_DESCRIPTOR
	I c) IOCTL_JUSB_GET_STRING_DESCRIPTOR
	I d) IOCTL_JUSB_GET_STATUS
	I e) IOCTL_JUSB_INTERRUPT_TRANSFER

	II: Other IOCTLs

	Appendix B: Global Unique Identifier GUID
	Appendix C : Device Interface Classes
	I: Introduction to Device Interfaces
	II: Register Device Interfaces in a Driver

	Appendix D: Replacement of origin driver with the jUSB drive
	I: Install the jUSB driver
	II: USB Device with an INF file
	III: Class USB Devices
	IV: How to change Registry Security Attributes

	Appendix E: Java Native Interface Linking Error
	Appendix F: A sample of DbgView with HP Scanjet 4100C
	Literature
	Index

