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PREFACE

This collection of exercises is designed to provide a framework for discussion in a junior level
linear algebra class such as the one I have conducted fairly regularly at Portland State University.
There is no assigned text. Students are free to choose their own sources of information. Stu-
dents are encouraged to find books, papers, and web sites whose writing style they find congenial,
whose emphasis matches their interests, and whose price fits their budgets. The short introduc-
tory background section in these exercises, which precede each assignment, are intended only to fix
notation and provide “official” definitions and statements of important theorems for the exercises
and problems which follow.

There are a number of excellent online texts which are available free of charge. Among the best
are Linear Algebra [7] by Jim Hefferon,

http://joshua.smcvt.edu/linearalgebra

and A First Course in Linear Algebra [2] by Robert A. Beezer,

http://linear.ups.edu/download/fcla-electric-2.00.pdf

Another very useful online resource is Przemyslaw Bogacki’s Linear Algebra Toolkit [3].

http://www.math.odu.edu/~bogacki/lat

And, of course, many topics in linear algebra are discussed with varying degrees of thoroughness
in the Wikipedia [12]

http://en.wikipedia.org

and Eric Weisstein’s Mathworld [11].

http://mathworld.wolfram.com

Among the dozens and dozens of linear algebra books that have appeared, two that were written
before “dumbing down” of textbooks became fashionable are especially notable, in my opinion,
for the clarity of their authors’ mathematical vision: Paul Halmos’s Finite-Dimensional Vector
Spaces [6] and Hoffman and Kunze’s Linear Algebra [8]. Some students, especially mathematically
inclined ones, love these books, but others find them hard to read. If you are trying seriously
to learn the subject, give them a look when you have the chance. Another excellent traditional
text is Linear Algebra: An Introductory Approach [5] by Charles W. Curits. And for those more
interested in applications both Elementary Linear Algebra: Applications Version [1] by Howard
Anton and Chris Rorres and Linear Algebra and its Applications [10] by Gilbert Strang are loaded
with applications.

If you are a student and find the level at which many of the current beginning linear algebra
texts are written depressingly pedestrian and the endless routine computations irritating, you might
examine some of the more advanced texts. Two excellent ones are Steven Roman’s Advanced Linear
Algebra [9] and William C. Brown’s A Second Course in Linear Algebra [4].

Concerning the material in these notes, I make no claims of originality. While I have dreamed
up many of the items included here, there are many others which are standard linear algebra
exercises that can be traced back, in one form or another, through generations of linear algebra
texts, making any serious attempt at proper attribution quite futile. If anyone feels slighted, please
contact me.

There will surely be errors. I will be delighted to receive corrections, suggestions, or criticism
at

vii
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erdman@pdx.edu

I have placed the the LATEX source files on my web page so that those who wish to use these exer-
cises for homework assignments, examinations, or any other noncommercial purpose can download
the material and, without having to retype everything, edit it and supplement it as they wish.



Part 1

MATRICES AND LINEAR EQUATIONS





CHAPTER 1

SYSTEMS OF LINEAR EQUATIONS

1.1. Background

Topics: systems of linear equations; Gaussian elimination (Gauss’ method), elementary row op-
erations, leading variables, free variables, echelon form, matrix, augmented matrix, Gauss-Jordan
reduction, reduced echelon form.

1.1.1. Definition. We will say that an operation (sometimes called scaling) which multiplies a row
of a matrix (or an equation) by a nonzero constant is a row operation of type I. An operation
(sometimes called swapping) that interchanges two rows of a matrix (or two equations) is a row
operation of type II. And an operation (sometimes called pivoting) that adds a multiple of one
row of a matrix to another row (or adds a multiple of one equation to another) is a row operation
of type III.

3



4 1. SYSTEMS OF LINEAR EQUATIONS

1.2. Exercises

(1) Suppose that L1 and L2 are lines in the plane, that the x-intercepts of L1 and L2 are 5
and −1, respectively, and that the respective y-intercepts are 5 and 1. Then L1 and L2

intersect at the point ( , ) .

(2) Consider the following system of equations.
w + x+ y + z = 6

w + y + z = 4

w + y = 2

(∗)

(a) List the leading variables .

(b) List the free variables .

(c) The general solution of (∗) (expressed in terms of the free variables) is

( , , , ) .

(d) Suppose that a fourth equation −2w + y = 5 is included in the system (∗). What is
the solution of the resulting system? Answer: ( , , , ).

(e) Suppose that instead of the equation in part (d), the equation −2w − 2y = −3 is
included in the system (∗). Then what can you say about the solution(s) of the
resulting system? Answer: .

(3) Consider the following system of equations:
x+ y + z = 2

x+ 3y + 3z = 0

x+ 3y+ 6z = 3

(∗)

(a) Use Gaussian elimination to put the augmented coefficient matrix into row echelon

form. The result will be

1 1 1 a
0 1 1 b
0 0 1 c

 where a = , b = , and c = .

(b) Use Gauss-Jordan reduction to put the augmented coefficient matrix in reduced row

echelon form. The result will be

1 0 0 d
0 1 0 e
0 0 1 f

 where d = , e = , and

f = .

(c) The solutions of (∗) are x = , y = , and z = .

(4) Consider the following system of equations.

0.003000x+ 59.14y = 59.17

5.291x− 6.130y = 46.78.

(a) Using only row operation III and back substitution find the exact solution of the
system. Answer: x = , y = .

(b) Same as (a), but after performing each arithmetic operation round off your answer to
four significant figures. Answer: x = , y = .
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(5) Find the values of k for which the system of equations{
x+ ky = 1

kx+ y = 1

has (a) no solution. Answer: .

(b) exactly one solution. Answer: .

(c) infinitely many solutions. Answer: .

(d) When there is exactly one solution, it is x = and y = .

(6) Consider the following two systems of equations.
x+ y + z = 6

x+ 2y + 2z = 11

2x+ 3y − 4z = 3

(1)

and 
x+ y + z = 7

x+ 2y + 2z = 10

2x+ 3y − 4z = 3

(2)

Solve both systems simultaneously by applying Gauss-Jordan reduction to an appro-
priate 3× 5 matrix.

(a) The resulting row echelon form of this 3× 5 matrix is

 .

(b) The resulting reduced row echelon form is

 .

(c) The solution for (1) is ( , , ) and the solution for (2) is ( , , ) .

(7) Consider the following system of equations:
x− y − 3z = 3

2x + z = 0

2y + 7z = c

(a) For what values of c does the system have a solution? Answer: c = .

(b) For the value of c you found in (a) describe the solution set geometrically as a subset
of R3. Answer: .

(c) What does part (a) say about the planes x− y− 3z = 3, 2x+ z = 0, and 2y+ 7z = 4
in R3? Answer: .
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(8) Consider the following system of linear equations ( where b1, . . . , b5 are constants).

u+ 2v − w − 2x+ 3y = b1

x− y + 2z = b2

2u+ 4v − 2w − 4x+ 7y − 4z = b3

−x+ y − 2z = b4

3u+ 6v − 3w − 6x+ 7y + 8z = b5

(a) In the process of Gaussian elimination the leading variables of this system are
and the free variables are .

(b) What condition(s) must the constants b1, . . . , b5 satisfy so that the system is consis-
tent? Answer: .

(c) Do the numbers b1 = 1, b2 = −3, b3 = 2, b4 = b5 = 3 satisfy the condition(s) you
listed in (b)? . If so, find the general solution to the system as a function
of the free variables. Answer:

u =

v =

w =

x =

y =

z = .

(9) Consider the following homogeneous system of linear equations (where a and b are nonzero
constants). 

x+ 2y = 0

ax+ 8y+ 3z = 0

by+ 5z = 0

(a) Find a value for a which will make it necessary during Gaussian elimination to inter-
change rows in the coefficient matrix. Answer: a = .

(b) Suppose that a does not have the value you found in part (a). Find a value for b so
that the system has a nontrivial solution.
Answer: b = c

3 + d
3a where c = and d = .

(c) Suppose that a does not have the value you found in part (a) and that b = 100.
Suppose further that a is chosen so that the solution to the system is not unique.
The general solution to the system (in terms of the free variable) is

(
1
α z ,−

1
β z , z

)
where α = and β = .
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1.3. Problems

(1) Give a geometric description of a single linear equation in three variables.

Then give a geometric description of the solution set of a system of 3 linear equations in
3 variables if the system
(a) is inconsistent.
(b) is consistent and has no free variables.
(c) is consistent and has exactly one free variable.
(d) is consistent and has two free variables.

(2) Consider the following system of equations:{−m1x+ y = b1

−m2x+ y = b2
(∗)

(a) Prove that if m1 6= m2, then (∗) has exactly one solution. What is it?
(b) Suppose that m1 = m2. Then under what conditions will (∗) be consistent?
(c) Restate the results of (a) and (b) in geometrical language.
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1.4. Answers to Odd-Numbered Exercises

(1) 2, 3

(3) (a) 2, −1, 1
(b) 3, −2, 1
(c) 3, −2, 1

(5) (a) k = −1
(b) k 6= −1, 1
(c) k = 1

(d)
1

k + 1
,

1

k + 1

(7) (a) −6
(b) a line
(c) They have no points in common.

(9) (a) 4
(b) 40, −10
(c) 10, 20



CHAPTER 2

ARITHMETIC OF MATRICES

2.1. Background

Topics: addition, scalar multiplication, and multiplication of matrices, inverse of a nonsingular
matrix.

2.1.1. Definition. Two square matrices A and B of the same size are said to commute if AB =
BA.

2.1.2. Definition. If A and B are square matrices of the same size, then the commutator (or
Lie bracket) of A and B, denoted by [A,B], is defined by

[A,B] = AB −BA .

2.1.3. Notation. If A is an m×n matrix (that is, a matrix with m rows and n columns), then the
element in the ith row and the jth column is denoted by aij . The matrix A itself may be denoted

by
[
aij
]m
i=1

n

j=1
or, more simply, by [aij ]. In light of this notation it is reasonable to refer to the

index i in the expression aij as the row index and to call j the column index. When we speak

of the “value of a matrix A at (i, j),” we mean the entry in the ith row and jth column of A. Thus,
for example,

A =


1 4
3 −2
7 0
5 −1


is a 4× 2 matrix and a31 = 7.

2.1.4. Definition. A matrix A = [aij ] is upper triangular if aij = 0 whenever i > j.

2.1.5. Definition. The trace of a square matrix A, denoted by trA, is the sum of the diagonal
entries of the matrix. That is, if A = [aij ] is an n× n matrix, then

trA :=

n∑
j=1

ajj .

2.1.6. Definition. The transpose of an n×n matrix A =
[
aij
]

is the matrix At =
[
aji
]

obtained

by interchanging the rows and columns of A. The matrix A is symmetric if At = A.

2.1.7. Proposition. If A is an m× n matrix and B is an n× p matrix, then (AB)t = BtAt.

9
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2.2. Exercises

(1) Let A =


1 0 −1 2
0 3 1 −1
2 4 0 3
−3 1 −1 2

, B =


1 2
3 −1
0 −2
4 1

, and C =

[
3 −2 0 5
1 0 −3 4

]
.

(a) Does the matrix D = ABC exist? If so, then d34 = .
(b) Does the matrix E = BAC exist? If so, then e22 = .
(c) Does the matrix F = BCA exist? If so, then f43 = .
(d) Does the matrix G = ACB exist? If so, then g31 = .
(e) Does the matrix H = CAB exist? If so, then h21 = .
(f) Does the matrix J = CBA exist? If so, then j13 = .

(2) Let A =

[
1
2

1
2

1
2

1
2

]
, B =

[
1 0
0 −1

]
, and C = AB. Evaluate the following.

(a) A37 =


 (b) B63 =




(c) B138 =


 (d) C42 =




Note: If M is a matrix Mp is the product of p copies of M .

(3) Let A =

[
1 1/3
c d

]
. Find numbers c and d such that A2 = −I.

Answer: c = and d = .

(4) Let A and B be symmetric n× n-matrices. Then [A,B] = [B,X], where X = .

(5) Let A, B, and C be n× n matrices. Then [A,B]C +B[A,C] = [X,Y ], where X =
and Y = .

(6) Let A =

[
1 1/3
c d

]
. Find numbers c and d such that A2 = 0. Answer: c = and

d = .

(7) Consider the matrix

1 3 2
a 6 2
0 9 5

 where a is a real number.

(a) For what value of a will a row interchange be required during Gaussian elimination?
Answer: a = .

(b) For what value of a is the matrix singular? Answer: a = .

(8) Let A =


1 0 −1 2
0 3 1 −1
2 4 0 3
−3 1 −1 2

, B =


1 2
3 −1
0 −2
4 1

, C =

[
3 −2 0 5
1 0 −3 4

]
, and

M = 3A3 − 5(BC)2. Then m14 = and m41 = .

(9) If A is an n × n matrix and it satisfies the equation A3 − 4A2 + 3A − 5In = 0, then A is
nonsingular
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and its inverse is .

(10) Let A, B, and C be n×n matrices. Then [[A,B], C] + [[B,C], A] + [[C,A], B] = X, where

X =


.

(11) Let A, B, and C be n×n matrices. Then [A,C] + [B,C] = [X,Y ], where X =
and
Y = .

(12) Find the inverse of


1 0 0 0
1
4 1 0 0
1
3

1
3 1 0

1
2

1
2

1
2 1

. Answer:


.

(13) The matrix

H =


1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


is the 4×4 Hilbert matrix. Use Gauss-Jordan elimination to compute K = H−1. Then
K44 is (exactly) . Now, create a new matrix H ′ by replacing each entry in H
by its approximation to 3 decimal places. (For example, replace 1

6 by 0.167.) Use Gauss-
Jordan elimination again to find the inverse K ′ of H ′. Then K ′44 is .

(14) Suppose that A and B are symmetric n× n matrices. In this exercise we prove that AB
is symmetric if and only if A commutes with B. Below are portions of the proof. Fill in
the missing steps and the missing reasons. Choose reasons from the following list.

(H1) Hypothesis that A and B are symmetric.

(H2) Hypothesis that AB is symmetric.

(H3) Hypothesis that A commutes with B.

(D1) Definition of commutes.

(D2) Definition of symmetric.

(T) Proposition 2.1.7.

Proof. Suppose that AB is symmetric. Then

AB = (reason: (H2) and )

= BtAt (reason: )

= (reason: (D2) and )

So A commutes with B (reason: ).
Conversely, suppose that A commutes with B. Then

(AB)t = (reason: (T) )

= BA (reason: and )

= (reason: and )

Thus AB is symmetric (reason: ). �
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2.3. Problems

(1) Let A be a square matrix. Prove that if A2 is invertible, then so is A.
Hint. Our assumption is that there exists a matrix B such that

A2B = BA2 = I .

We want to show that there exists a matrix C such that

AC = CA = I .

Now to start with, you ought to find it fairly easy to show that there are matrices L and
R such that

LA = AR = I . (∗)
A matrix L is a left inverse of the matrix A if LA = I; and R is a right inverse
of A if AR = I. Thus the problem boils down to determining whether A can have a left
inverse and a right inverse that are different. (Clearly, if it turns out that they must be
the same, then the C we are seeking is their common value.) So try to prove that if (∗)
holds, then L = R.

(2) Anton speaks French and German; Geraldine speaks English, French and Italian; James
speaks English, Italian, and Spanish; Lauren speaks all the languages the others speak
except French; and no one speaks any other language. Make a matrix A =

[
aij
]

with
rows representing the four people mentioned and columns representing the languages they
speak. Put aij = 1 if person i speaks language j and aij = 0 otherwise. Explain the
significance of the matrices AAt and AtA.

(3) Portland Fast Foods (PFF), which produces 138 food products all made from 87 basic
ingredients, wants to set up a simple data structure from which they can quickly extract
answers to the following questions:
(a) How many ingredients does a given product contain?
(b) A given pair of ingredients are used together in how many products?
(c) How many ingredients do two given products have in common?
(d) In how many products is a given ingredient used?

In particular, PFF wants to set up a single table in such a way that:
(i) the answer to any of the above questions can be extracted easily and quickly (matrix

arithmetic permitted, of course); and
(ii) if one of the 87 ingredients is added to or deleted from a product, only a single entry

in the table needs to be changed.

Is this possible? Explain.

(4) Prove proposition 2.1.7.

(5) Let A and B be 2× 2 matrices.
(a) Prove that if the trace of A is 0, then A2 is a scalar multiple of the identity matrix.
(b) Prove that the square of the commutator of A and B commutes with every 2 × 2

matrix C. Hint. What can you say about the trace of [A,B]?
(c) Prove that the commutator of A and B can never be a nonzero multiple of the identity

matrix.
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(6) The matrices that represent rotations of the xy-plane are

A(θ) =

[
cos θ − sin θ
sin θ cos θ

]
.

(a) Let x be the vector (−1, 1), θ = 3π/4, and y be A(θ) acting on x (that is, y = A(θ)xt).
Make a sketch showing x, y, and θ.

(b) Verify that A(θ1)A(θ2) = A(θ1 + θ2). Discuss what this means geometrically.

(c) What is the product of A(θ) times A(−θ)? Discuss what this means geometrically.

(d) Two sheets of graph paper are attached at the origin and rotated in such a way that
the point (1, 0) on the upper sheet lies directly over the point (−5/13, 12/13) on the
lower sheet. What point on the lower sheet lies directly below (6, 4) on the upper
one?

(7) Let

A =


0 a a2 a3 a4

0 0 a a2 a3

0 0 0 a a2

0 0 0 0 a
0 0 0 0 0

 .
The goal of this problem is to develop a “calculus” for the matrix A. To start, recall

(or look up) the power series expansion for
1

1− x
. Now see if this formula works for

the matrix A by first computing (I − A)−1 directly and then computing the power series
expansion substituting A for x. (Explain why there are no convergence difficulties for the
series when we use this particular matrix A.) Next try to define ln(I + A) and eA by

means of appropriate series. Do you get what you expect when you compute eln(I+A)? Do
formulas like eAeA = e2A hold? What about other familiar properties of the exponential
and logarithmic functions?

Try some trigonometry with A. Use series to define sin, cos, tan, arctan, and so on. Do
things like tan(arctan(A)) produce the expected results? Check some of the more obvious
trigonometric identities. (What do you get for sin2A + cos2A − I? Is cos(2A) the same
as cos2A− sin2A?)

A relationship between the exponential and trigonometric functions is given by the
famous formula eix = cosx+ i sinx. Does this hold for A?

Do you think there are other matrices for which the same results might hold? Which
ones?

(8) (a) Give an example of two symmetric matrices whose product is not symmetric.
Hint. Matrices containing only 0’s and 1’s will suffice.

(b) Now suppose that A and B are symmetric n×n matrices. Prove that AB is symmetric
if and only if A commutes with B.

Hint. To prove that a statement P holds “if and only if” a statement Q holds you must
first show that P implies Q and then show that Q implies P. In the current problem, there
are 4 conditions to be considered:
(i) At = A (A is symmetric),

(ii) Bt = B (B is symmetric),
(iii) (AB)t = AB (AB is symmetric), and
(iv) AB = BA (A commutes with B).
Recall also the fact given in
(v) theorem 2.1.7.

The first task is to derive (iv) from (i), (ii), (iii), and (v). Then try to derive (iii) from (i),
(ii), (iv), and (v).
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2.4. Answers to Odd-Numbered Exercises

(1) (a) yes, 142
(b) no, –
(c) yes, −45
(d) no, –
(e) yes, −37
(f) no, –

(3) −6, −1

(5) A, BC

(7) (a) 2
(b) −4

(9)
1

5
(A2 − 4A+ 3In)

(11) A+B, C

(13) 2800, −1329.909



CHAPTER 3

ELEMENTARY MATRICES; DETERMINANTS

3.1. Background

Topics: elementary (reduction) matrices, determinants.

The following definition says that we often regard the effect of multiplying a matrix M on the
left by another matrix A as the action of A on M .

3.1.1. Definition. We say that the matrix A acts on the matrix M to produce the matrix N if

N = AM . For example the matrix

[
0 1
1 0

]
acts on any 2 × 2 matrix by interchanging (swapping)

its rows because

[
0 1
1 0

] [
a b
c d

]
=

[
c d
a b

]
.

3.1.2. Notation. We adopt the following notation for elementary matrices which implement type I
row operations. Let A be a matrix having n rows. For any real number r 6= 0 denote by Mj(r) the

n× n matrix which acts on A by multiplying its jth row by r. (See exercise 1.)

3.1.3. Notation. We use the following notation for elementary matrices which implement type II
row operations. (See definition 1.1.1.) Let A be a matrix having n rows. Denote by Pij the n× n
matrix which acts on A by interchanging its ith and jth rows. (See exercise 2.)

3.1.4. Notation. And we use the following notation for elementary matrices which implement
type III row operations. (See definition 1.1.1.) Let A be a matrix having n rows. For any real
number r denote by Eij(r) the n × n matrix which acts on A by adding r times the jth row of A

to the ith row. (See exercise 3.)

3.1.5. Definition. If a matrix B can be produced from a matrix A by a sequence of elementary
row operations, then A and B are row equivalent.

Some Facts about Determinants

3.1.6. Proposition. Let n ∈ N and Mn×n be the collection of all n×n matrices. There is exactly
one function

det : Mn×n → R : A 7→ detA

which satisfies

(a) det In = 1.
(b) If A ∈Mn×n and A′ is the matrix obtained by interchanging two rows of A, then detA′ =
−detA.

(c) If A ∈ Mn×n, c ∈ R, and A′ is the matrix obtained by multiplying each element in one
row of A by the number c, then detA′ = cdetA.

(d) If A ∈ Mn×n, c ∈ R, and A′ is the matrix obtained from A by multiplying one row of A
by c and adding it to another row of A (that is, choose i and j between 1 and n with i 6= j
and replace ajk by ajk + caik for 1 ≤ k ≤ n), then detA′ = detA.

15
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3.1.7. Definition. The unique function det : Mn×n → R described above is the n × n determi-
nant function.

3.1.8. Proposition. If A = [a] for a ∈ R (that is, if A ∈ M1×1), then detA = a; if A ∈ M2×2,
then

detA = a11a22 − a12a21 .

3.1.9. Proposition. If A,B ∈Mn×n, then det(AB) = (detA)(detB).

3.1.10. Proposition. If A ∈ Mn×n, then detAt = detA. (An obvious corollary of this: in
conditions (b), (c), and (d) of proposition 3.1.6 the word “columns” may be substituted for the
word “rows”.)

3.1.11. Definition. Let A be an n×n matrix. The minor of the element ajk, denoted by Mjk, is

the determinant of the (n− 1)× (n− 1) matrix which results from the deletion of the jth row and
kth column of A. The cofactor of the element ajk, denoted by Cjk is defined by

Cjk := (−1)j+kMjk.

3.1.12. Proposition. If A ∈Mn×n and 1 ≤ j ≤ n, then

detA =
n∑
k=1

ajkCjk.

This is the (Laplace) expansion of the determinant along the jth row.

In light of 3.1.10, it is clear that expansion along columns works as well as expansion along
rows. That is,

detA =

n∑
j=1

ajkCjk

for any k between 1 and n. This is the (Laplace) expansion of the determinant along the kth

column.

3.1.13. Proposition. An n× n matrix A is invertible if and only if detA 6= 0. If A is invertible,
then

A−1 = (detA)−1C t

where C =
[
Cjk
]

is the matrix of cofactors of elements of A.
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3.2. Exercises

(1) Let A be a matrix with 4 rows. The matrix M3(4) which multiplies the 3rd row of A by 4

is


. (See 3.1.2.)

(2) Let A be a matrix with 4 rows. The matrix P24 which interchanges the 2nd and 4th rows

of A is


. (See 3.1.3.)

(3) Let A be a matrix with 4 rows. The matrix E23(−2) which adds −2 times the 3rd row of

A to the 2nd row is


. (See 3.1.4.)

(4) Let A be the 4× 4 elementary matrix E43(−6). Then A11 =


 and

A−9 =


.

(5) Let B be the elementary 4× 4 matrix P24. Then B−9 =


 and

B10 =


.

(6) Let C be the elementary 4× 4 matrix M3(−2). Then C4 =


 and

C−3 =


.

(7) Let A =


1 2 3
0 −1 1
−2 1 0
−1 2 −3

 and B = P23E34(−2)M3(−2)E42(1)P14A. Then b23 =

and b32 = .

(8) We apply Gaussian elimination (using type III elementary row operations only) to put a
4× 4 matrix A into upper triangular form. The result is

E43(5
2)E42(2)E31(1)E21(−2)A =


1 2 −2 0
0 −1 0 1
0 0 −2 2
0 0 0 10

 .
Then the determinant of A is .
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(9) The system of equations: 
2y+3z = 7

x+ y− z = −2

−x+ y−5z = 0

is solved by applying Gauss-Jordan reduction to the augmented coefficient matrix

A =

 0 2 3 7
1 1 −1 −2
−1 1 −5 0

. Give the names of the elementary 3 × 3 matrices X1, . . . , X8

which implement the following reduction.

A
X1−−−−→

 1 1 −1 −2
0 2 3 7
−1 1 −5 0

 X2−−−−→

1 1 −1 −2
0 2 3 7
0 2 −6 −2

 X3−−−−→

1 1 −1 −2
0 2 3 7
0 0 −9 −9


X4−−−−→

1 1 −1 −2
0 2 3 7
0 0 1 1

 X5−−−−→

1 1 −1 −2
0 2 0 4
0 0 1 1

 X6−−−−→

1 1 −1 −2
0 1 0 2
0 0 1 1


X7−−−−→

1 1 0 −1
0 1 0 2
0 0 1 1

 X8−−−−→

1 0 0 −3
0 1 0 2
0 0 1 1

 .
Answer: X1 = , X2 = , X3 = , X4 = ,

X5 = , X6 = , X7 = , X8 = .

(10) Solve the following equation for x:

det


3 −4 7 0 6 −2
2 0 1 8 0 0
3 4 −8 3 1 2
27 6 5 0 0 3
3 x 0 2 1 −1
1 0 −1 3 4 0

 = 0. Answer: x = .

(11) Let A =

0 0 1
0 2 4
1 2 3

. Find A−1 using the technique of augmenting A by the identity matrix

I and performing Gauss-Jordan reduction on the augmented matrix. The reduction can
be accomplished by the application of five elementary 3 × 3 matrices. Find elementary
matrices X1, X2, and X3 such that A−1 = X3E13(−3)X2M2(1/2)X1I.

(a) The required matrices are X1 = P1i where i = , X2 = Ejk(−2) where j =
and k = , and X3 = E12(r) where r = .

(b) And then A−1 =


.

(12) det


1 t t2 t3

t 1 t t2

t2 t 1 t
t3 t2 t 1

 = (1− a(t))p where a(t) = and p = .



3.2. EXERCISES 19

(13) Evaluate each of the following determinants.

(a) det


6 9 39 49
5 7 32 37
3 4 4 4
1 1 1 1

 = .

(b) det


1 0 1 1
1 −1 2 0
2 −1 3 1
4 17 0 −5

 = .

(c) det


13 3 −8 6
0 0 −4 0
1 0 7 −2
3 0 2 0

 = .

(14) Let M be the matrix


5 4 −2 3
5 7 −1 8
5 7 6 10
5 7 1 9

.

(a) The determinant of M can be expressed as the constant 5 times the determinant of

the single 3× 3 matrix

3 1 5
3
3

.

(b) The determinant of this 3 × 3 matrix can be expressed as the constant 3 times the

determinant of the single 2× 2 matrix

[
7 2
2

]
.

(c) The determinant of this 2× 2 matrix is .

(d) Thus the determinant of M is .

(15) Find the determinant of the matrix


1 2 5 7 10
1 2 3 6 7
1 1 3 5 5
1 1 2 4 5
1 1 1 1 1

. Answer: .

(16) Find the determinants of the following matrices.

A =

−73 78 24
92 66 25
−80 37 10

 and B =

−73 78 24
92 66 25
−80 37 10.01

 .
Hint. Use a calculator (thoughtfully). Answer: detA = and detB = .

(17) Find the determinant of the following matrix.
283 5 π 347.86× 101583

3136 56 5 cos(2.7402)
6776 121 11 5
2464 44 4 2

 .
Hint. Do not use a calculator. Answer: .
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(18) Let A =


0 −1

2 0 1
2

0 0 1
2

1
2

1
2 0 −1

2 0

1 0 1
2

1
2

. We find A−1 using elementary row operations to convert the

4× 8 matrix
[
A

... I4

]
to the matrix

[
I4

... A−1

]
.

Give the names of the elementary 4 × 4 matrices X1, . . . , X11 which implement the
following Gauss-Jordan reduction and fill in the missing matrix entries.

0 −1
2 0 1

2

... 1 0 0 0

0 0 1
2

1
2

... 0 1 0 0

1
2 0 −1

2 0
... 0 0 1 0

1 0 1
2

1
2

... 0 0 0 1


X1 //


1 0 1

2
1
2

...

0 0 1
2

1
2

...

1
2 0 −1

2 0
...

0 −1
2 0 1

2

...



X2 //


1 0 1

2
1
2

...

0 0 1
2

1
2

...

0 0 −3
4 −1

4

...

0 −1
2 0 1

2

...


X3 //


1 0 1

2
1
2

...

0 −1
2 0 1

2

...

0 0 −3
4 −1

4

...

0 0 1
2

1
2

...



X4 //


1 0 1

2
1
2

...

0 1 0 −1
...

0 0 −3
4 −1

4

...

0 0 1
2

1
2

...


X5 //


1 0 1

2
1
2

...

0 1 0 −1
...

0 0 1 1
3

...

0 0 1
2

1
2

...



X6 //


1 0 1

2
1
2

...

0 1 0 −1
...

0 0 1 1
3

...

0 0 0 1
3

...


X7 //


1 0 1

2
1
2

...

0 1 0 −1
...

0 0 1 0
...

0 0 0 1
3

...



X8 //


1 0 1

2
1
2

...

0 1 0 −1
...

0 0 1 0
...

0 0 0 1
...


X9 //


1 0 1

2
1
2

...

0 1 0 0
...

0 0 1 0
...

0 0 0 1
...



X10 //


1 0 1

2 0
...

0 1 0 0
...

0 0 1 0
...

0 0 0 1
...


X11 //


1 0 0 0

...

0 1 0 0
...

0 0 1 0
...

0 0 0 1
...


Answer: X1 = , X2 = , X3 = , X4 = ,

X5 = , X6 = , X7 = , X8 = .

X9 = , X10 = , X11 = .
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(19) Suppose that A is a square matrix with determinant 7. Then

(a) det(P24A) = .

(b) det(E23(−4)A) = .

(c) det(M3(2)A) = .
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3.3. Problems

(1) For this problem assume that we know the following: If X is an m ×m matrix, if Y is
an m × n matrix and if 0 and I are zero and identity matrices of appropriate sizes, then

det

[
X Y
0 I

]
= detX.

Let A be an m× n matrix and B be an n×m matrix. Prove carefully that

det

[
0 A
−B I

]
= detAB .

Hint. Consider the product

[
0 A
−B I

] [
I 0
B I

]
.

(2) Let A and B be n× n-matrices. Your good friend Fred R. Dimm believes that

det

[
A B
B A

]
= det(A+B) det(A−B).

He offers the following argument to support this claim:

det

[
A B
B A

]
= det(A2 −B2)

= det[(A+B)(A−B)]

= det(A+B) det(A−B) .

(a) Comment (helpfully) on his “proof”. In particular, explain carefully why each of
the three steps in his “proof” is correct or incorrect. (That is, provide a proof or a
counterexample to each step.)

(b) Is the result he is trying to prove actually true?

Hint: Consider the product

[
I B
0 A−B

] [
A+B 0

0 I

]
.

(3) Let x be a fixed real number which is not an integer multiple of π. For each natural
number n let An =

[
ajk
]

be the n× n-matrix defined by

ajk =


0, for |j − k| > 1

1, for |j − k| = 1

2 cosx, for j = k.

Show that detAn =
sin(n+ 1)x

sinx
. Hint. For each integer n let Dn = detAn and prove that

Dn+2 − 2Dn+1 cosx+Dn = 0.

(Use mathematical induction.)
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3.4. Answers to Odd-Numbered Exercises

(1)


1 0 0 0
0 1 0 0
0 0 4 0
0 0 0 1



(3)


1 0 0 0
0 1 −2 0
0 0 1 0
0 0 0 1



(5)


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(7) −8, −1

(9) P12, E31(1), E32(−1), M3(−1
9), E23(−3), M2(1

2), E13(1), E12(−1)

(11) (a) 3, 2, 3, −2

(b)

 1 −1 1
−2 1

2 0
1 0 0


(13) 100, 0, −72

(15) −10

(17) 6

(19) (a) −7
(b) 7
(c) 14





CHAPTER 4

VECTOR GEOMETRY IN Rn

4.1. Background

Topics: inner (dot) products, cross products, lines and planes in 3-space, norm of a vector, angle
between vectors.

4.1.1. Notation. There are many more or less standard notations for the inner product (or dot
product) of two vectors x and y. The two that we will use interchangeably in these exercises are
x · y and 〈x,y〉.

4.1.2. Definition. If x is a vector in Rn, then the norm (or length) of x is defined by

‖x‖ =
√
〈x,x〉 .

4.1.3. Definition. Let x and y be nonzero vectors in Rn. Then ](x,y), the angle between x
and y, is defined by

](x,y) = arccos
〈x,y〉
‖x‖ ‖y‖

4.1.4. Theorem (Cauchy-Schwarz inequality). If x and y are vectors in Rn, then

|〈x,y〉| ≤ ‖x‖ ‖y‖ .

(We will often refer to this just as the Schwarz inequality.)

4.1.5. Definition. If x = (x1, x2, x3) and y = (y1, y2, y3) are vectors in R3, then their cross
product, denoted by x× y, is the vector (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

25
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4.2. Exercises

(1) The angle between the vectors (1, 0,−1, 3) and (1,
√

3, 3,−3) in R4 is aπ where a= .

(2) Find the angle θ between the vectors x = (3,−1, 1, 0, 2, 1) and y = (2,−1, 0,
√

2, 2, 1)
in R6. Answer: θ = .

(3) If a1, . . . , an > 0, then ( n∑
j=1

aj

)( n∑
k=1

1

ak

)
≥ n2.

The proof of this is obvious from the Cauchy-Schwarz inequality when we choose the
vectors x and y as follows:

x = and y = .

(4) Find all real numbers α such that the angle between the vectors 2i + 2j + (α − 2)k and
2i + (α− 2)j + 2k is π

3 . Answer: α = and .

(5) Which of the angles (if any) of triangle ABC, with A = (1,−2, 0), B = (2, 1,−2), and
C = (6,−1,−3), is a right angle? Answer: the angle at vertex .

(6) The hydrogen atoms of a methane molecule (CH4) are located at (0, 0, 0), (1, 1, 0), (0, 1, 1),
and (1, 0, 1) while the carbon atom is at (1

2 ,
1
2 ,

1
2). Find the cosine of the angle θ between

two rays starting at the carbon atom and going to different hydrogen atoms.

Answer: cos θ = .

(7) If a, b, c, d, e, f ∈ R, then

|ad+ be+ cf | ≤
√
a2 + b2 + c2

√
d2 + e2 + f2.

The proof of this inequality is obvious since this is just the Cauchy-Schwarz inequality
where x = ( , , ) and y = ( , , ) .

(8) The volume of the parallelepiped generated by the three vectors i + 2j − k, j + k, and
3i− j + 2k is .

(9) The equations of the line containing the points (3,−1, 4) and (7, 9, 10) are

x− 3

2
=
y − j
b

=
z − k
c

where b = , c = , j = , and k = .

(10) The equations of the line containing the points (5, 2,−1) and (9,−4, 1) are

x− h
a

=
y − 2

−3
=
z − k
c

where a = , c = , h = , and k = .

(11) Find the equations of the line containing the point (1, 0,−1) which is parallel to the line
x− 4

2
=

2y − 3

5
=

3z − 7

6
.

Answer:
x− h
a

=
y − j
b

=
z + 1

4
where a = , b = , h = , and j = .

(12) The equation of the plane containing the points (0,−1, 1), (1, 0, 2), and (3, 0, 1) is x+ by+
cz = d where b = , c = , and d = .

(13) The equation of the plane which passes through the points (0,−1,−1), (5, 0, 1), and
(4,−1, 0) is ax+ by + cz = 1 where a = , b = , and c = .

(14) The angle between the planes 4x + 4z − 16 = 0 and −2x + 2y − 13 = 0 is
a

b
π where

a = and b = .
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(15) Suppose that u ∈ R3 is a vector which lies in the first quadrant of the xy-plane and has
length 3 and that v ∈ R3 is a vector that lies along the positive z-axis and has length 5.
Then
(a) ‖u× v‖ = ;
(b) the x-coordinate of u× v is 0 (choose <, >, or =);
(c) the y-coordinate of u× v is 0 (choose <, >, or =); and
(d) the z-coordinate of u× v is 0 (choose <, >, or =).

(16) Suppose that u and v are vectors in R7 both of length 2
√

2 and that the length of u− v
is also 2

√
2. Then ‖u + v‖ = and the angle between u and v is .
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4.3. Problems

(1) Show that if a, b, c > 0, then
(

1
2a+ 1

3b+ 1
6c
)2 ≤ 1

2a
2 + 1

3b
2 + 1

6c
2.

(2) Show that if a1, . . . , an, w1, . . . , wn > 0 and
∑n

k=1wk = 1, then( n∑
k=1

akwk

)2

≤
n∑
k=1

ak
2wk.

(3) Prove that if (a1, a2, . . . ) is a sequence of real numbers such that the series

∞∑
k=1

ak
2 con-

verges, then the series
∞∑
k=1

1

k
ak converges absolutely.

You may find the following steps helpful in organizing your solution.
(i) First of all, make sure that you recall the difference between a sequence of numbers

(c1, c2, . . . ) and an infinite series

∞∑
k=1

ck.

(ii) The key to this problem is an important theorem from third term Calculus:

A nondecreasing sequence of real numbers converges if and only if it is bounded. (∗)
(Make sure that you know the meanings of all the terms used here.)

(iii) The hypothesis of the result we are trying to prove is that the series
∞∑
k=1

ak
2 converges.

What, exactly, does this mean?

(iv) For each natural number n let bn =

n∑
k=1

ak
2. Rephrase (iii) in terms of the se-

quence (bn).
(v) Is the sequence (bn) nondecreasing?
(vi) What, then, does (∗) say about the sequence (bn)?

(vii) For each natural number n let cn =
n∑
k=1

1

k2
. What do we know about the sequence

(cn) from third term Calculus? What does (∗) say about the sequence (cn)?

(viii) The conclusion we are trying to prove is that the series
∞∑
k=1

1

k
ak converges absolutely.

What does this mean?

(ix) For each natural number n let sn =
n∑
k=1

1

k
|ak|. Rephrase (viii) in terms of the se-

quence (sn).
(x) Explain how for each n we may regard the number sn as the dot product of two

vectors in Rn.
(xi) Apply the Cauchy-Schwarz inequality to the dot product in (x). Use (vi) and (vii) to

establish that the sequence (sn) is bounded above.
(xii) Use (∗) one last time—keeping in mind what you said in (ix).
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4.4. Answers to Odd-Numbered Exercises

(1)
3

4

(3)
(√
a1,
√
a2, . . . ,

√
an
)
,
(

1√
a1
, 1√

a2
, . . . , 1√

an

)
(5) B

(7) a, b, c, d, e, f

(9) 5, 3, −1, 4

(11) 4, 5, 1, 0

(13) 1, 3, −4

(15) (a) 15
(b) >
(c) <
(d) =
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VECTOR SPACES





CHAPTER 5

VECTOR SPACES

5.1. Background

Topics: real and complex vector spaces, vectors, scalars.

In the following definition F may be taken to be an arbitrary field. For this collection of
exercises, however, we will be interested in only two cases, F = R (the field of real numbers) and
F = C (the field of complex numbers).

5.1.1. Definition. A vector space is a set V together with operations of addition and scalar
multiplication which satisfy the following axioms:

(1) if x, y ∈ V , then x + y ∈ V ;
(2) (x + y) + z = x + (y + z) for every x, y, z ∈ V (associativity);
(3) there exists 0 ∈ V such that x + 0 = x for every x ∈ V (existence of additive identity);
(4) for every x ∈ V there exists −x ∈ V such that x + (−x) = 0 (existence of additive

inverses);
(5) x + y = y + x for every x, y ∈ V (commutativity);
(6) if α ∈ F and x ∈ V , then αx ∈ V ;
(7) α(x + y) = αx + αy for every α ∈ F and every x, y ∈ V ;
(8) (α+ β)x = αx + βx for every α, β ∈ F and every x ∈ V ;
(9) (αβ)x = α(βx) for every α, β ∈ F and every x ∈ V ; and

(10) 1 x = x for every x ∈ V .

When F = R we speak of V as a real vector space and when F = C we call it a complex
vector space.

5.1.2. Definition. An n× n-matrix is nonsingular if its determinant is not zero.

33
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5.2. Exercises

(1) Let V be the set of all real numbers. Define an operation of “addition” by

x� y = the maximum of x and y

for all x, y ∈ V . Define an operation of “scalar multiplication” by

α� x = αx

for all α ∈ R and x ∈ V .
Under the operations � and � the set V is not a vector space. The vector space

axioms (see 5.1.1 (1)–(10) ) which fail to hold are , , , and .

(2) Let V be the set of all real numbers x such that x ≥ 0. Define an operation of “addition”
by

x� y = xy + 1

for all x, y ∈ V . Define an operation of “scalar multiplication” by

α� x = α2x

for all α ∈ R and x ∈ V .
Under the operations � and � the set V (is/is not) a vector space. If it is

not, list all the vector space axioms (see 5.1.1 (1)–(10) ) which fail to hold. Answer: The
axioms which are not satisfied are .

(3) Let V be R2, the set of all ordered pairs (x, y) of real numbers. Define an operation of
“addition” by

(u, v)� (x, y) = (u+ x+ 1, v + y + 1)

for all (u, v) and (x, y) in V . Define an operation of “scalar multiplication” by

α� (x, y) = (αx, αy)

for all α ∈ R and (x, y) ∈ V .
Under the operations � and � the set V is not a vector space. The vector space

axioms (see 5.1.1 (1)–(10) ) which fail to hold are and .

(4) Let V be R2, the set of all ordered pairs (x, y) of real numbers. Define an operation of
“addition” by

(u, v)� (x, y) = (u+ x, 0)

for all (u, v) and (x, y) in V . Define an operation of “scalar multiplication” by

α� (x, y) = (αx, αy)

for all α ∈ R and (x, y) ∈ V .
Under the operations � and � the set V is not a vector space. The vector space

axioms (see 5.1.1 (1)–(10) ) which fail to hold are , , and .

(5) Let V be the set of all n× n matrices of real numbers. Define an operation of “addition”
by

A�B = 1
2(AB +BA)

for all A, B ∈ V . Define an operation of “scalar multiplication” by

α�A = 0

for all α ∈ R and A ∈ V .
Under the operations � and � the set V is not a vector space. The vector space

axioms (see 5.1.1 (1)–(10) ) which fail to hold are , , and .
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(6) Below are portions of proofs of four results about vector spaces which establish the fact
that multiplying a vector x by the scalar −1 produces −x, the additive inverse of x. Fill
in the missing steps and the missing reasons. Choose reasons from the following list.

(H) Hypothesis

(1)–(10) Vector space axioms, see 5.1.1

(PA) Proposition A

(PB) Proposition B

(PC) Proposition C

(RN) Property of the Real Numbers

5.2.1. Proposition (A). A vector x in a vector space V has at most one additive inverse.
That is, if y and z are vectors in V such that x + y = 0 and x + z = 0, then y = z.

Proof. Suppose that x + y = 0 and x + z = 0. Then

y = (reason: )

= y + (x + z) (reason: )

= (reason: (2) )

= (x + y) + z (reason: )

= (reason: (H) )

= (reason: (5) )

= z (reason: ).

�

5.2.2. Proposition (B). If x ∈ V where V is a vector space and x + x = x, then x = 0.

Proof. If x ∈ V and x + x = x, then

x = x + 0 (reason: )

= (reason: (4) )

= (x + x) + (−x) (reason: )

= (reason: (H) )

= 0 (reason: ).

�

5.2.3. Proposition (C). If x is a vector in a vector space V , then 0x = 0.

Proof. If x ∈ V , then

0x = (0 + 0) x (reason: )

= (reason: (8) )

Thus 0x = 0 (reason: ). �
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5.2.4. Proposition (D). If x is a vector in a vector space V , then (−1)x is −x, the
additive inverse of x.

Proof. If x ∈ V , then

x + (−1) · x = (reason: (10) )

=
(
1 + (−1)

)
· x (reason: )

= 0 · x (reason: )

= 0 (reason: ).

It then follows immediately from that (−1) · x = −x. �

(7) In this exercise we prove that multiplying the zero vector by an arbitrary scalar produces
the zero vector. For each step of the proof give the appropriate reason. Choose reasons
from the following list.

(1)–(10) Vector space axioms 5.1.1.

(PB) Proposition 5.2.2

(RN) Property of the Real Numbers

5.2.5. Proposition (E). If 0 is the zero vector in a vector space and α is a scalar, then
α · 0 = 0.

Proof. Let 0 be the zero vector of some vector space. Then for every scalar α

α · 0 = α · (0 + 0) reason:

= α · 0 + α · 0 reason:

It then follows immediately from that α · 0 = 0. �

(8) In this exercise we prove that the product of a scalar and a vector is zero if and only if
either the scalar or the vector is zero. After each step of the proof give the appropriate
reason. Choose reasons from the following list.

(H) Hypothesis.

(1)–(10) Vector space axioms 5.1.1.

(PC),(PE) Propositions 5.2.3 and 5.2.5, respectively.

(RN) Property of the Real Numbers.

5.2.6. Proposition. Suppose that x is a vector and α is a scalar. Then αx = 0 if and
only if α = 0 or x = 0.

Proof. We have already shown in and that if α = 0 or x = 0,
then αx = 0.

To prove the converse we suppose that αx = 0 and that α 6= 0; and we prove that
x = 0. This conclusion results from the following easy calculation:

x = 1 · x reason:

=

(
1

α
· α
)
· x reasons: and

=
1

α
· (α · x) reason:

=
1

α
· 0 reason:

= 0 reason: . �
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5.3. Problems

(1) Prove that if V is a vector space, then its additive identity is unique. That is, show that

if 0 and 0̃ are vectors in V such that x + 0 = x for all x ∈ V and x + 0̃ = x for all x ∈ V ,
then 0 = 0̃.

(2) Let V be the set of all real numbers x such that x > 0. Define an operation of “addition”
by

x� y = xy

for all x, y ∈ V . Define an operation of “scalar multiplication” by

α� x = xα

for all α ∈ R and x ∈ V .
Prove that under the operations � and � the set V is a vector space.

(3) With the usual operations of addition and scalar multiplication the set of all n×n matrices
of real numbers is a vector space: in particular, all the vector space axioms (see 5.1.1 (1)–
(10) ) are satisfied. Explain clearly why the set of all nonsingular n × n matrices of real
numbers is not a vector space under these same operations.
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5.4. Answers to Odd-Numbered Exercises

(1) 3, 4, 7, 8

(3) 7, 8

(5) 2, 4, 10

(7) 3, 7, PB



CHAPTER 6

SUBSPACES

6.1. Background

Topics: subspaces of a vector space

6.1.1. Definition. A nonempty subset of M of a vector space V is a subspace of V if it is closed
under addition and scalar multiplication. (That is: if x and y belong to M , so does x + y; and if
x belongs to M and α ∈ R, then αx belongs to M .

6.1.2. Notation. We use the notation M � V to indicate that M is a subspace of a vector space V .

6.1.3. Notation. Here are some frequently encountered families of functions:

F = F [a, b] = {f : f is a real valued function on the interval [a, b]} (6.1.1)

P = P[a, b] = {p : p is a polynomial function on [a, b]} (6.1.2)

P4 = P4[a, b] = {p ∈ P : the degree of p is less than 4} (6.1.3)

Q4 = Q4[a, b] = {p ∈ P : the degree of p is equal to 4} (6.1.4)

C = C[a, b] = {f ∈ F : f is continuous} (6.1.5)

D = D[a, b] = {f ∈ F : f is differentiable} (6.1.6)

K = K[a, b] = {f ∈ F : f is a constant function} (6.1.7)

B = B[a, b] = {f ∈ F : f is bounded} (6.1.8)

J = J [a, b] = {f ∈ F : f is integrable} (6.1.9)

(A function f ∈ F is bounded if there exists a number M ≥ 0 such that |f(x)| ≤ M for all x in

[a, b]. It is (Riemann) integrable if it is bounded and
∫ b
a f(x) dx exists.)

6.1.4. Definition. If A and B are subsets of a vector space then the sum of A and B, denoted by
A+B, is defined by

A+B := {a + b : a ∈ A and b ∈ B}.

6.1.5. Definition. Let M and N be subspaces of a vector space V . IfM∩N = {0} and M+N = V ,
then V is the (internal) direct sum of M and N . In this case we write

V = M ⊕N.
In this case the subspaces M and N are complementary and each is the complement of the
other.

39
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6.2. Exercises

(1) One of the following is a subspace of R3. Which one?

The set of points (x, y, z) in R3 such that
(a) x+ 2y − 3z = 4.

(b)
x− 1

2
=
y + 2

3
=
z

4
.

(c) x+ y + z = 0 and x− y + z = 1.
(d) x = −z and x = z.
(e) x2 + y2 = z.

(f)
x

2
=
y − 3

5
.

Answer: ( ) is a subspace of R3.

(2) The smallest subspace of R3 containing the vectors (2,−3,−3) and (0, 3, 2) is the plane
whose equation is ax+ by + 6z = 0 where a = and b = .

(3) The smallest subspace of R3 containing the vectors (0,−3, 6) and (0, 1,−2) is the line
whose equations are x = a and z = by where a = and b = .

(4) Let R∞ denote the vector space of all sequences of real numbers. (Addition and scalar
multiplication are defined coordinatewise.) In each of the following a subset of R∞ is
described. Write yes if the set is a subspace of R∞ and no if it is not.
(a) Sequences that have infinitely many zeros (for example, (1, 1, 0, 1, 1, 0, 1, 1, 0, . . . )).

Answer: .

(b) Sequences which are eventually zero. (A sequence (xk) is eventually zero if there is
an index n0 such that xn = 0 whenever n ≥ n0.) Answer: .

(c) Sequences that are absolutely summable. (A sequence (xk) is absolutely summable if∑∞
k=1|xk| <∞.) Answer: .

(d) Bounded sequences. (A sequence (xk) is bounded if there is a positive number M such
that |xk| ≤M for every k.) Answer: .

(e) Decreasing sequences. (A sequence (xk) is decreasing if xn+1 ≤ xn for each n.)
Answer: .

(f) Convergent sequences. Answer: .

(g) Arithmetic progressions. (A sequence (xk) is arithmetic if it is of the form (a, a+ k,
a+ 2k, a+ 3k, . . . ) for some constant k.) Answer: .

(h) Geometric progressions. (A sequence (xk) is geometric if it is of the form (a, ka, k2a, k3a, . . . )
for some constant k.) Answer: .

(5) Let M and N be subspaces of a vector space V . Consider the following subsets of V .
(a) M ∩N . (A vector v belongs to M ∩N if it belongs to both M and N .)
(b) M ∪N . (A vector v belongs to M ∪N if it belongs to either M or N .)
(c) M +N . (A vector v belongs to M +N if there are vectors m ∈M and n ∈ N such

that v = m + n.)
(d) M −N . (A vector v belongs to M −N if there are vectors m ∈M and n ∈ N such

that v = m− n.)

Which of (a)–(d) are subspaces of V ?

Answer: .
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(6) For a fixed interval [a, b], which sets of functions in the list 6.1.3 are vector subspaces of
which?

Answer:

� � � � � � � .

(7) Let M be the plane x + y + z = 0 and N be the line x = y = z in R3. The purpose of
this exercise is to confirm that R3 = M ⊕N . This requires establishing three things: (i)
M and N are subspaces of R3 (which is very easy and which we omit); (ii) R3 = M +N ;
and (iii) M ∩N = {0}.
(a) To show that R3 = M +N we need R3 ⊆ M +N and M +N ⊆ R3. Since M ⊆ R3

and N ⊆ R3, it is clear that M + N ⊆ R3. So all that is required is to show that
R3 ⊆ M + N . That is, given a vector x = (x1, x2, x3) in R3 we must find vectors
m = (m1,m2,m3) in M and n = (n1, n2, n3) in N such that x = m + n. Find two
such vectors.

Answer: m =
1

3
( , , )

and n =
1

3
( , , ).

(b) The last thing to verify is that M ∩N = {0}; that is, that the only vector M and N
have in common is the zero vector. Suppose that a vector x = (x1, x2, x3) belongs to
both M and N . Since x ∈M it must satisfy the equation

x1 + x2 + x3 = 0. (1)

since x ∈ N it must satisfy the equations

x1 = x2 and (2)

x2 = x3. (3)

Solve the system of equations (1)–(3).

Answer: x = ( , , ) .

(8) Let C = C[−1, 1] be the vector space of all continuous real valued functions on the interval
[−1, 1]. A function f in C is even if f(−x) = f(x) for all x ∈ [−1, 1]; it is odd if f(−x) =
−f(x) for all x ∈ [−1, 1]. Let Co = {f ∈ C : f is odd } and Ce = {f ∈ C : f is even }. To
show that C = Co ⊕ Ce we need to show 3 things.

(i) Co and Ce are subspaces of C. This is quite simple: let’s do just one part of the proof.
We will show that Co is closed under addition. After each step of the following proof
indicate the justification for that step. Make your choices from the following list.

(A) Arithmetic of real numbers.

(DA) Definition of addition of functions.

(DE) Definition of “even function.”

(DO) Definition of “odd function.”

(H) Hypothesis (that is, our assumptions or suppositions).
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Proof. Let f , g ∈ Co. Then

(f + g)(−x) = f(−x) + g(−x) reason:

= −f(x) + (−g(x)) reason: and

= −(f(x) + g(x)) reason:

= −(f + g)(x). reason:

Thus f + g ∈ Co. reason . �

(ii) Co∩Ce = {0} (where 0 is the constant function on [−1, 1] whose value is zero). Again
choose from the reasons listed in part (i) to justify the given proof.

Proof. Suppose f ∈ Co ∩ Ce. Then for each x ∈ [−1, 1]

f(x) = f(−x) reason:

= −f(x). reason:

Thus f(x) = 0 for every x ∈ [−1, 1]; that is, f = 0. reason: . �

(iii) C = Co + Ce. To verify this we must show that every continuous function f on [−1, 1]
can be written as the sum of an odd function j and an even function k. It turns
out that the functions j and k can be written as linear combinations of the given
function f and the function g defined by g(x) = f(−x) for −1 ≤ x ≤ 1. What are
the appropriate coefficients?

Answer: j = f + g

k = f + g.

(9) Let M be the line x = y = z and N be the line x = 1
2y = 1

3z in R3.

(a) The line M is the set of all scalar multiples of the vector ( 1 , , ).

(b) The line N is the set of all scalar multiples of the vector ( 1 , , ).

(c) The set M + N is (geometrically speaking) a in R3; its equation is ax +
by + z = 0 where a = and b = .

(10) Let M be the plane x− y + z = 0 and N be the plane x+ 2y − z = 0 in R3. State in one
short sentence how you know that R3 is not the direct sum of M and N .

Answer: .

(11) Let M be the plane 2x − 3y + 4z + 1 = 0 and N be the line
x

4
=
y

2
=
z

3
in R3. State in

one short sentence how you know that R3 is not the direct sum of M and N .

Answer: .

(12) Let M be the plane x + y + z = 0 and N be the line x − 1 = 1
2y = z + 2 in R3. State in

one short sentence how you know that R3 is not the direct sum of M and N .

Answer: .

(13) Let M be the line x = y = z and N be the line
x

4
=
y

2
=
z

3
in R3. State in one short

sentence how you know that R3 is not the direct sum of M and N .

Answer: .
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(14) Let M be the plane x+ y + z = 0 and N be the line x = −3
4y = 3z. The purpose of this

exercise is to see (in two different ways) that R3 is not the direct sum of M and N .

(a) If R3 were equal to M ⊕ N , then M ∩ N would contain only the zero vector. Show
that this is not the case by finding a nonzero vector x in R3 which belongs to M ∩N .

Answer: x = ( , , 1 ) .

(b) If R3 were equal to M ⊕N , then, in particular, we would have R3 = M + N . Since
both M and N are subsets of R3, it is clear that M +N ⊆ R3. Show that the reverse
inclusion R3 ⊆ M + N is not correct by finding a vector x ∈ R3 which cannot be
written in the form m + n where m ∈M and n ∈ N .

Answer: x = (−6, 8, a) is such a vector provided that a 6= .

(c) We have seen in part (b) that M +N 6= R3. Then what is M +N?

Answer: M +N = .
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6.3. Problems

(1) Let M and N be subspaces of a vector space V . Consider the following subsets of V .
(a) M ∩N . (A vector v belongs to M ∩N if it belongs to both M and N .)
(b) M ∪N . (A vector v belongs to M ∪N if it belongs to either M or N .)
(c) M +N . (A vector v belongs to M +N if there are vectors m ∈M and n ∈ N such

that v = m + n.)
(d) M −N . (A vector v belongs to M −N if there are vectors m ∈M and n ∈ N such

that v = m− n.)

For each of the sets (a)–(d) above, either prove that it is a subspace of V or give a
counterexample to show that it need not be a subspace of V .

(2) Let C = C[0, 1] be the family of continuous real valued functions on the interval [0, 1].
Define

f1(t) = t and f2(t) = t4

for 0 ≤ t ≤ 1. Let M be the set of all functions of the form αf1 + βf2 where α, β ∈ R.
And let N be the set of all functions g in C which satisfy∫ 1

0
tg(t) dt = 0 and

∫ 1

0
t4g(t) dt = 0.

Is C the direct sum of M and N? (Give a careful proof of your claim and illustrate it
with an example. What does your result say, for instance, about the function h defined
by h(t) = t2 for 0 ≤ t ≤ 1.)

(3) Let V be a vector space.
(a) LetM be a family of subspaces of V . Prove that the intersection

⋂
M of this family

is itself a subspace of V .
(b) Let A be a set of vectors in V . Explain carefully why it makes sense to say that the

intersection of the family of all subspaces containing A is “the smallest subspace of
V which contains A”.

(c) Prove that the smallest subspace of V which contains A is in fact the span of A.

(4) In R3 let M be the line x = y = z, N be the line x = 1
2y = 1

3z, and L = M +N . Give a
careful proof that L = M ⊕N .

(5) Let V be a vector space and suppose that V = M ⊕N . Show that for every v ∈ V there
exist unique vectors m ∈ M and n ∈ N such that v = m + n. Hint. It should be clear
that the only thing you have to establish is the uniqueness of the vectors m and n. To this
end, suppose that a vector v in V can be written as m1 + n1 and it can also be written
as m2 + n2 where m1, m2 ∈M and n1, n2 ∈ N . Prove that m1 = m2 and n1 = n2.
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6.4. Answers to Odd-Numbered Exercises

(1) (d)

(3) 0, −2

(5) (a), (c), and (d)

(7) (a) 2x1−x2−x3 , −x1 +2x2−x3 , −x1−x2 +2x3 , x1 +x2 +x3 , x1 +x2 +x3 , x1 +x2 +x3 ,
(b) 0, 0, 0

(9) (a) 1, 1
(b) 2, 3
(c) plane, 1, −2

(11) M is not a subspace of R3.

(13) M +N is a plane, not all of R3.





CHAPTER 7

LINEAR INDEPENDENCE

7.1. Background

Topics: linear combinations, span, linear dependence and independence.

7.1.1. Remark. Some authors of linear algebra texts make it appear as if the terms linear de-
pendence and linear independence, span, and basis pertain only to finite sets of vectors. This is
extremely misleading. The expressions should make sense for arbitrary sets. In particular, do not
be misled into believing that a basis for a vector space must be a finite set of vectors (or a sequence
of vectors). While it is true that in most elementary linear algebra courses the emphasis is on
the study of finite dimensional vector spaces, bases for vector spaces may be very large indeed. I
recommend the following definitions.

7.1.2. Definition. Recall that a vector y is a linear combination of distinct vectors x1, . . . ,
xn if there exist scalars α1, . . .αn such that y =

∑n
k=1 αkxk. Note: linear combinations are finite

sums. The linear combination
∑n

k=1 αkxk is trivial if all the coefficients α1, . . .αn are zero. If at
least one αk is different from zero, the linear combination is nontrivial.

7.1.3. Example. In R2 the vector (8, 2) is a linear combination of the vectors (1, 1) and (1,−1)
because (8, 2) = 5(1, 1) + 3(1,−1).

7.1.4. Example. In R3 the vector (1, 2, 3) is not a linear combination of the vectors (1, 1, 0) and
(1,−1, 0).

7.1.5. Definition. Suppose that A is a subset (finite or not) of a vector space V . The span of
A is the set of all linear combinations of elements of A. Another way of saying the same thing:
the span of A is the smallest subspace of V which contains A. (That these characterizations are
equivalent is not completely obvious. Proof is required. See problem 3 in chapter 6. We denote the
span of A by spanA. If U = spanA, we say that A spans U or that U is spanned by A.

7.1.6. Example. For each n = 0, 1, 2, . . . define a function pn on R by pn(x) = xn. Let P be the
set of polynomial functions on R. It is a subspace of the vector space of continuous functions on R.
Then P = span{p0,p1,p2 . . . }. The exponential function exp, whose value at x is ex, is not in the
span of the set {p0,p1,p2 . . . }.

7.1.7. Definition. A subset A (finite or not) of a vector space is linearly dependent if the zero
vector 0 can be written as a nontrivial linear combination of elements of A; that is, if there exist
vectors x1, . . . ,xn ∈ A and scalars α1, . . . , αn, not all zero, such that

∑n
k=1 αkxk = 0. A subset

of a vector space is linearly independent if it is not linearly dependent.

Technically, it is a set of vectors that is linearly dependent or independent. Nevertheless, these
terms are frequently used as if they were properties of the vectors themselves. For instance, if
S = {x1, . . . ,xn} is a finite set of vectors in a vector space, you may see the assertions “the set S is
linearly independent” and “the vectors x1, . . . xn are linearly independent” used interchangeably.

7.1.8. Example. The (vectors going from the origin to) points on the unit circle in R2 are linearly

dependent. Reason: If x = (1, 0), y =
(
−1

2 ,
√

3
2

)
, and z =

(
1
2 ,
√

3
2

)
, then x + y + (−1)z = 0.
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7.1.9. Example. For each n = 0, 1, 2, . . . define a function pn on R by pn(x) = xn. Then the set
{p0,p1,p2, . . . } is a linearly independent subset of the vector space of continuous functions on R.
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7.2. Exercises

(1) Show that in the space R3 the vectors x = (1, 1, 0), y = (0, 1, 2), and z = (3, 1,−4) are
linearly dependent by finding scalars α and β such that αx + βy + z = 0.

Answer: α = , β = .

(2) Let w = (1, 1, 0, 0), x = (1, 0, 1, 0), y = (0, 0, 1, 1), and z = (0, 1, 0, 1).

(a) We can show that {w,x,y, z} is not a spanning set for R4 by finding a vector u in
R4 such that u /∈ span{w,x,y, z}. One such vector is u = (1, 2, 3, a) where a is any
number except .

(b) Show that {w,x,y, z} is a linearly dependent set of vectors by finding scalars α, γ,
and δ such that αw + x + γy + δz = 0.
Answer: α = , γ = , δ = .

(c) Show that {w,x,y, z} is a linearly dependent set by writing z as a linear combination
of w, x, and y. Answer: z = w + x + y.

(3) Let p(x) = x2 + 2x − 3, q(x) = 2x2 − 3x + 4, and r(x) = ax2 − 1. The set {p, q, r} is
linearly dependent if a = .

(4) Show that in the vector space R3 the vectors x = (1, 2,−1), y = (3, 1, 1), and z = (5,−5, 7)
are linearly dependent by finding scalars α and β such that αx + βy + z = 0.

Answer: α = , β = .

(5) Let f1(x) = sinx, f2(x) = cos(x+π/6), and f3(x) = sin(x−π/4) for 0 ≤ x ≤ 2π. Show that
{f1, f2, f3} is linearly dependent by finding constants α and β such that αf1−2f2−βf3 = 0.

Answer: α = and β = .

(6) In the space C[0, π] let f , g, h, and j be the vectors defined by

f(x) = 1

g(x) = x

h(x) = cosx

j(x) = cos2 x

2
for 0 ≤ x ≤ π. Show that f , g, h, and j are linearly dependent by writing j as a linear
combination of f , g, and h.

Answer: j = f + g + h.

(7) Let u = (λ, 1, 0), v = (1, λ, 1), and w = (0, 1, λ). Find all values of λ which make {u,v,w}
a linearly dependent subset of R3. Answer:

(8) Let u = (1, 0,−2), v = (1, 2, λ), and w = (2, 1,−1). Find all values of λ which make
{u,v,w} a linearly dependent subset of R3. Answer:

(9) Let p(x) = x3 − x2 + 2x + 3, q(x) = 3x3 + x2 − x − 1, r(x) = x3 + 2x + 2, and s(x) =
7x3 + ax2 + 5. The set {p, q, r, s} is linearly dependent if a = .
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(10) In the space C[0, π] define the vectors f , g, and h by

f(x) = x

g(x) = sinx

h(x) = cosx

for 0 ≤ x ≤ π. We show that f , g, and h are linearly independent. This is accomplished
by showing that if αf + βg + γh = 0, then α = β = γ = 0. So we start by supposing that
αf + βg + γh = 0; that is,

αx+ β sinx+ γ cosx = 0 (1)

for all x ∈ [0, π].

(a) We see that γ must be zero by setting x = in equation (1).

Now differentiate (1) to obtain

α+ β cosx = 0 (2)

for all x ∈ [0, π].

(b) We see that α must be zero by setting x = in equation (2).

Differentiate (2) to obtain

−β sinx = 0 (3)

for all x ∈ [0, π].

(c) We conclude that β = 0 by setting x = in (3).
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7.3. Problems

(1) In the space C[0, 1] define the vectors f , g, and h by

f(x) = x

g(x) = ex

h(x) = e−x

for 0 ≤ x ≤ 1. Use the definition of linear independence to show that the functions f , g,
and h are linearly independent.

(2) Let a, b, and c be distinct real numbers. Use the definition of linear independence to give
a careful proof that the vectors (1, 1, 1), (a, b, c), and (a2, b2, c2) form a linearly independent
subset of R3.

(3) Let {u,v,w} be a linearly independent set in a vector space V . Use the definition of
linear independence to give a careful proof that the set {u + v,u + w,v + w} is linearly
independent in V .

(4) You are the leader of an engineering group in the company you work for and have a
routine computation that has to be done repeatedly. At your disposal is an intern, Kim,
a beginning high school student, who is bright but has had no advanced mathematics. In
particular, Kim knows nothing about vectors or matrices.

Here is the computation that is needed. Three vectors, a, b, and c are specified
in R5. (Denote their span by M .) Also specified is a (sometimes long) list of other vectors
S = {v1,v2, . . . ,vn} in R5. The problem is to
(1) determine which of the vectors in S belong to M , and
(2) for each vector vk ∈ S which does belong to M

find constants α, β, and γ such that vk = αa + βb + γc.
Kim has access to Computer Algebra System (Maple, or a similar program) with a Lin-

ear Algebra package. Write a simple and efficient algorithm (that is, a set of instructions)
which will allow Kim to carry out the desired computation repeatedly. The algorithm
should be simple in the sense that it uses only the most basic linear algebra commands
(for example, Matrix, Vector, Transpose, RowReducedEchelonForm, etc. in Maple). Re-
member, you must tell Kim everything: how to set up the appropriate matrices, what
operations to perform on them, and how to interpret the results. The algorithm should
be as efficient as you can make it. For example, it would certainly not be efficient for Kim
to retype the coordinates of a, b, and c for each new vk.

Include in your write-up an actual printout showing how your algorithm works in some
special case of your own invention. (For this example, the set S need contain only 5 or 6
vectors, some in U , some not.)

(5) The point of this problem is not just to get a correct answer to (a)–(c) below using tools
you may have learned elsewhere, but to give a careful explanation of how to apply the
linear algebra techniques you have already encountered to solve this problem in a systematic
fashion. For background you may wish to read a bit about networks and Kirchhoff’s laws
(see, for example, [7] Topic: Analyzing Networks, pages 72–77 or [1] Electrical Networks,
pages 538–542).

Consider an electrical network having four nodes A, B, C, and D connected by six
branches 1, . . . , 6. Branch 1 connects A and B; branch 2 connects B and D; branch 3
connects C and B; branch 4 connects C and D; branch 5 connects A and C; and branch 6
connects A and D.
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The current in branch k is Ik, where k = 1, . . . , 6. There is a 17 volt battery in
branch 1 producing the current I1 which flows from A to B. In branches 2, 4, and 5 there
are 0.5 ohm resistors; and in branches 1, 3, and 6 there are 1 ohm resistors.

(a) Find the current in each branch. (Explain any minus signs which occur in your
answer.)

(b) Find the voltage drop across each branch.

(c) Let pn be the potential at node n = A, B, C, D. The voltage drop across the branch
connecting node j to node k is the difference in the potentials at nodes j and k.
Suppose the network is grounded at D (so that pD = 0). Find the potential at the
other nodes.
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7.4. Answers to Odd-Numbered Exercises

(1) −3, 2

(3) 7

(5)
√

3− 1,
√

6

(7) −
√

2, 0,
√

2

(9) −3





CHAPTER 8

BASIS FOR A VECTOR SPACE

8.1. Background

Topics: basis, dimension.

8.1.1. Definition. A set B (finite or not) of vectors in a vector space V is a basis for V if it is
linearly independent and spans V .

8.1.2. Example. The vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1) constitute a basis for
the vector space R3.

8.1.3. Example. More generally, consider the vector space Rn of all n-tuples of real numbers. For
each natural number k between 1 and n let ek be the vector which is 1 in the kth-coordinate and 0
in all the others. Then the set {e1, e2, . . . , en} is a basis for Rn. It is called the standard basis
for Rn.

8.1.4. Example. For each n = 0, 1, 2, . . . define a function pn on R by pn(x) = xn. Then the set
{p0,p1,p2, . . . } is a basis for the vector space P of polynomial functions on R.

Two important facts of linear algebra are that regardless of the size of the space every vector
space has a basis and that every subspace has a complement.

8.1.5. Theorem. Let B be a linearly independent set of vectors in a vector space V . Then there
exists a set C of vectors in V such that B ∪ C is a basis for V .

8.1.6. Corollary. Every vector space has a basis.

8.1.7. Corollary. Let V be a vector space. If M � V , then there exists N � V such that
M ⊕N = V .

The next theorem says that any two bases for a vector space are the same size.

8.1.8. Theorem. If B and C are bases for the same vector space, then there is a one-to-one
correspondence from B onto C.

8.1.9. Definition. A vector space V is finite dimensional if it has a finite basis. Its dimension
(denoted by dimV ) is the number of elements in the basis. If V does not have a finite basis it is
infinite dimensional.

8.1.10. Theorem. If M and N are subspaces of a finite dimensional vector space, then

dim(M +N) = dimM + dimN − dim(M ∩N) .

55
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8.2. Exercises

(1) Let u = (2, 0,−1), v = (3, 1, 0), and w = (1,−1, c) where c ∈ R. The set {u,v,w} is a
basis for R3 provided that c is not equal to .

(2) Let u = (1,−1, 3), v = (1, 0, 1), and w = (1, 2, c) where c ∈ R. The set {u,v,w} is a basis
for R3 provided that c is not equal to .

(3) The dimension of M2×2, the vector space of all 2× 2 matrices of real numbers is .

(4) The dimension of T2, the vector space of all 2×2 matrices of real numbers with zero trace
is .

(5) The dimension of the vector space of all real valued polynomial functions on R of degree
4 or less is .

(6) In R4 let M be the subspace spanned by the vectors (1, 1, 1, 0) and (0,−4, 1, 5) and let
N be the subspace spanned by (0,−2, 1, 2) and (1,−1, 1, 3). One vector which belongs to
both M and N is (1, , , ). The dimension of M ∩ N is and the
dimension of M +N is .
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8.3. Problems

(1) Exhibit a basis for M2×2, the vector space of all 2× 2 matrices of real numbers.

(2) Exhibit a basis for T2, the vector space of all 2 × 2 matrices of real numbers with zero
trace.

(3) Exhibit a basis for S3, the vector space of all symmetric 3× 3 matrices of real numbers.

(4) Let U be the set of all matrices of real numbers of the form

[
u −u− x
0 x

]
and V be the

set of all real matrices of the form

[
v 0
w −v

]
. Exhibit a basis for U, for V, for U + V, and

for U ∩V.

(5) Prove that the vectors (1, 1, 0), (1, 2, 3), and (2,−1, 5) form a basis for R3.

(6) Let V be a vector space and A be a linearly independent subset of V . Prove that A is
a basis for V if and only if it is a maximal linearly independent subset of V . (If A is a
linearly independent subset of V we say that it is a maximal linearly independent set if
the addition of any vector at all to A will result in a set which is not linearly independent.)

(7) Let V be a vector space and A a subset of V which spans V . Prove that A is a basis for V
if and only if it is a minimal spanning set. (If A is a set which spans V we say that it is a
minimal spanning set if the removal of any vector at all from A will result in a set which
does not span V .)
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8.4. Answers to Odd-Numbered Exercises

(1) −2

(3) 4

(5) 5



Part 3

LINEAR MAPS BETWEEN VECTOR
SPACES





CHAPTER 9

LINEARITY

9.1. Background

Topics: linear maps between vector spaces, kernel, nullspace, nullity, range, rank, isomorphism.

9.1.1. Definition. A function f : A → B is one-to-one (or injective) if u = v in A whenever
f(u) = f(v) in B.

9.1.2. Definition. A function f : A→ B is onto (or surjective) if for every b ∈ B there exists
a ∈ A such that b = f(a).

9.1.3. Definition. A function f : A → B is a one-to-one correspondence (or bijective) if
it is both injective and surjective (one-to-one and onto).

9.1.4. Definition. A map T : V →W between vector spaces is linear if

T (x + y) = Tx + Ty for all x, y ∈ V (9.1.1)

and
T (αx) = αTx for all x ∈ V and α ∈ F. (9.1.2)

Here F = R if V and W are real vector spaces and F = C if they are complex vector spaces.
A scalar valued linear map on a vector space V is a linear functional.

A linear map is frequently called a linear transformation, and, in case the domain and
codomain are the same, it is often called a (linear) operator. The family of all linear transfor-
mations from V into W is denoted by L(V,W ). We shorten L(V, V ) to L(V ).

Two oddities of notation concerning linear transformations deserve comment. First, the value
of T at x is usually written Tx rather than T (x). Naturally the parentheses are used whenever
their omission would create ambiguity. For example, in (9.1.1) above Tx + y is not an acceptable
substitute for T (x + y). Second, the symbol for composition of two linear transformations is
ordinarily omitted. If S ∈ L(U, V ) and T ∈ L(V,W ), then the composite of T and S is denoted
by TS (rather than by T ◦ S). As a consequence of this convention when T ∈ L(V ) the linear
operator T ◦ T is written as T 2, T ◦ T ◦ T as T 3, and so on.

For future reference here are two obvious properties of a linear map.

9.1.5. Proposition. If T : V →W is a linear map between vector spaces, then T (0) = 0.

9.1.6. Proposition. If T : V →W is a linear map between vector spaces, then T (−x) = −Tx for
every x ∈ V .

You should prove these propositions if (and only if) it is not immediately obvious to you how to
do so.

9.1.7. Definition. Let T : V →W be a linear transformation between vector spaces. Then kerT ,
the kernel of T , is defined to be the set of all x in V such that Tx = 0. The kernel of T is also
called the nullspace of T . If V is finite dimensional, the dimension of the kernel of T is the nullity
of T .

Also, ranT , the range of T , is the set of all y in W such that y = Tx for some x in V . If the
range of T is finite dimensional, its dimension is the rank of T .
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9.1.8. Notation. Let V be a vector space. We denote the identity map on V (that is, the map
x 7→ x from V into itself) by IV , or just I.

The following fundamental result is proved in most linear algebra texts.

9.1.9. Theorem. If T : V →W is a linear map between finite dimensional vector spaces, then

rank(T ) + nullity(T ) = dimV .

9.1.10. Definition. Let T : V → W and S : W → V be linear maps. If ST = IV , then T is a
right inverse for S and S is a left inverse for T . The mapping T is invertible (or is an
isomorphism) if there exists a linear transformation, which we denote by T−1 : W → V , such that

TT−1 = IW and T−1T = IV .

The vector spaces V and W are isomorphic if there exists an isomorphism T from V to W .

9.1.11. Notation. Let V and W be vector spaces. We denote by L(V,W ) the set of all linear
maps from V into W and by L(V ) the set of all linear operators T : V → V .
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9.2. Exercises

(1) Define T : R3 → R4 by

Tx = (x1 − x3, x1 + x2, x3 − x2, x1 − 2x2)

for all x = (x1, x2, x3) in R3.
(a) Then T (1,−2, 3) = ( , , , ) .

(b) Find a vector x ∈ R3 such that Tx = (8, 9,−5, 0).

Answer: x = ( , , ).

(2) Define T : R4 → R3 by

Tx = (2x1 + x3 + x4, x1 − 2x2 − x3, x2 − x3 + x4)

for all x = (x1, x2, x3, x4) in R4.

(a) Then T (2, 1,−1, 3) = ( , , ) .

(b) Find a vector x ∈ R4 such that Tx = (3,−1,−3).

Answer: x = ( , , , ).

(3) Let T be the linear map from R3 to R3 defined by

T (x, y, z) = (x+ 2y − z, 2x+ 3y + z, 4x+ 7y − z).

The kernel of T is (geometrically) a whose equation(s) is(are) ;

and the range of T is geometrically a whose equation(s) is(are) .

(4) Let T : R3 → R3 be the linear transformation whose action on the standard basis vectors
of R3 is

T (1, 0, 0) = (1,−3
2 , 2)

T (0, 1, 0) = (−3, 9
2 ,−6)

T (0, 0, 1) = (2,−3, 4).

Then T (5, 1,−1) = ( , , ) . The kernel of T is the whose
equation is x + ay + bz = 0 where a = and b = . The range of T is the

whose equations are
x

2
=
y

c
=
z

d
where c = and where d = .

(5) Let P be the vector space of all polynomial functions on R with real coefficients. Define
linear transformations T , D : P → P by

(Dp)(x) = p′(x)

and

(Tp)(x) = xp(x)

for all x ∈ R.

(a) Let p(x) = x3−7x2+5x+6 for all x ∈ R. Then ((D+T )(p))(x) = x4−ax3+bx2−bx+c
where a = , b = , and c = .

(b) Let p be as in (a). Then (DTp)(x) = ax3−bx2 +cx+6 where a = , b = ,
and c = .

(c) Let p be as in (a). Then (TDp)(x) = ax3 − bx2 + cx where a = , b = ,
and c = .

(d) Evaluate (and simplify) the commutator [D,T ] := DT − TD.
Answer: [D,T ] = .

(e) Find a number p such that (TD)p = T pDp + TD. Answer: p = .
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(6) Let C = C[a, b] be the vector space of all continuous real valued functions on the interval
[a, b] and C1 = C1[a, b] be the vector space of all continuously differentiable real valued
functions on [a, b]. (Recall that a function is continuously differentiable if it has a
derivative and the derivative is continuous.) Let D : C1 → C be the linear transformation
defined by

Df = f ′

and let T : C → C1 be the linear transformation defined by

(Tf)(x) =

∫ x

a
f(t) dt

for all f ∈ C and x ∈ [a, b].
(a) Compute (and simplify) (DTf)(x). Answer: .

(b) Compute (and simplify) (TDf)(x). Answer: .

(c) The kernel of T is .

(d) The range of T is {g ∈ C1 : }
(7) In this exercise we prove that a linear transformation T : V → W between two vector

spaces is one-to-one if and only if its kernel contains only the zero vector. After each step
of the proof give the appropriate reason. Choose reasons from the following list.

(DK) Definition of “kernel”.

(DL) Definition of “linear”.

(DO) Definition of “one-to-one”.

(H) Hypothesis.

(Pa) Proposition 9.1.5.

(Pb) Proposition 9.1.6.

(VA) Vector space arithmetic (consequences of vector space axioms, definition of

subtraction of vectors, etc.)

Proof. Suppose that T is one-to-one. We show that kerT = {0V }. Since 0V ∈ kerT
(reason: and ), we need only show that kerT ⊆ {0V }; that is, we show that
if x ∈ kerT , then x = 0V . So let x ∈ kerT . Then Tx = 0W (reason: and )
and T0V = 0W (reason: ). From this we conclude that x = 0V (reason: and

).
Now we prove the converse. Suppose that kerT = {0V }. We wish to show that T is

one-to-one. Let x, y ∈ V and suppose that Tx = Ty. Then

T (x− y) = T (x + (−y)) reason:

= Tx + T (−y) reason:

= Tx + (−Ty) reason:

= Tx− Ty reason:

= 0W reason: and

Then x − y ∈ kerT (reason: ). So x − y = 0V (reason: ); that is, x = y
(reason: ). Thus T is one-to-one (reason: and ). �

(8) Let C1(R) be the vector space of all functions defined on the real line R which have
continuous derivatives at each point of R and C(R) be the vector space of continuous
functions on R. Define the function T : C1(R)→ C(R) by

(Tf)(t) = f ′(t) + 3f(t)
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for every t ∈ R. (Notice that T is a linear map.) The kernel of T is the set of all scalar
multiples of the function g where g(t) = for each t. Thus the kernel of the linear
map T is the solution space of the differential equation .

(9) Let C2(R) be the vector space of all functions defined on the real line R which have
continuous second derivatives at each point of R and C(R) be the vector space of continuous
functions on R. Define the function T : C2(R)→ C(R) by

(Tf)(t) = f ′′(t) + f(t)

for every t ∈ R. (Notice that T is a linear map.) Assume that the kernel of T is two
dimensional. Then kerT = span{g, h} where g(t) = and h(t) = for
all t. Thus the kernel of the linear map T is the solution space of the differential equa-
tion .

(10) Define a function k on the unit square [0, 1]× [0, 1] by

k(x, y) =

{
x, for 0 ≤ x ≤ y ≤ 1

y, for 0 ≤ y < x ≤ 1
.

Define an integral operator K on the vector space C[0, 1] of continuous real valued functions
on [0, 1] by

(Kf)(x) =

∫ 1

0
k(x, y)f(y) dy

for 0 ≤ x ≤ 1. Find the function Kf when f is the function defined by f(x) = x2 for
0 ≤ x ≤ 1.

Answer: (Kf)(x) = .

(11) Let T : R3 → R3 : x 7→ (x1 + 3x2 − 2x3, x1 − 4x3, x1 + 6x2).

(a) The kernel of T is a in R3 given by the equation(s)

.

(b) The range of T is a in R3 given by the equation(s)

.

(12) Let T : R2 → R3 : (x, y) 7→ (2x− 3y, x+ 2y + 1, 5x− 2y). State in one short sentence how
you know that T is not a linear transformation.

Answer: .

(13) Let a = (1, 0, 0, 0), b = (1, 1, 0, 0), c = (1, 1, 1, 0), and d = (1, 1, 1, 1). Suppose that
T : R4 → R7 is a mapping such that T (a) = T (b) = T (c) = T (d) = 0 and that
T (3,−19, 7,−8) = (1, 1, 1,−3, 6, 2, 5). State in a short sentence or two how you know
that T is not a linear transformation.

Answer: .

(14) Suppose that T : R3 → R3 is a mapping (not identically zero) whose range is contained in
the paraboloid z = x2 + y2. State in a short sentence or two how you know that T is not
a linear transformation.

Answer: .

(15) Let T : R2 → R4 : (x, y) 7→ (2x−3y, x−7y, x+2y+1, 5x−2y). State in one short sentence
how you know that T is not a linear transformation.

Answer: .
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(16) Let a = (1, 1, 0) and b = (0, 1, 1), and c = (1, 2, 1). Suppose that T : R3 → R5 is a
mapping such that T (a) = T (b) = 0 and that T (c) = (1,−3, 6, 2, 5). State in a short
sentence or two how you know that T is not a linear transformation.

Answer: .

(17) Suppose that T : R2 → R2 is a mapping (not identically zero) such that T (1, 1) = (3,−6)
and T (−2,−2) = (−6, 3). State in a short sentence or two how you know that T is not a
linear transformation.

Answer: .
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9.3. Problems

(1) Let T : V →W be a linear transformation between vector spaces and let N be a subspace
of W . Define T←(N) := {v ∈ V : Tv ∈ N}. Prove that T←(N) is a subspace of V .

(2) Prove that a linear transformation T : R3 → R2 cannot be one-to-one and that a linear
transformation S : R2 → R3 cannot be onto. Generalize these assertions.

(3) Prove that one-to-one linear transformations preserve linear independence. That is: Let
T : V →W be a one-to-one linear transformation between vector spaces and {x1,x2, . . . ,xn}
be a linearly independent subset of V . Prove that {Tx1, Tx2, . . . , Txn} is a linearly in-
dependent subset of W . Hint. To prove that the vectors Tx1, Tx2, . . . , Txn are linearly
independent, it must be shown that the only linear combination of these vectors which
equals zero is the trivial linear combination. So suppose that

∑n
k=1 αkTxk = 0 and prove

that every αk must be zero. Use the result proved in exercise 7.

(4) The goal of this problem is to understand and write up an introduction to invertible
linear transformations. Your write-up should explain with spectacular clarity the basic
facts about invertible linear transformations. Include answers to the following questions—
giving complete proofs or counterexamples as required. (But don’t number things in your
report to correspond with the items that follow.)
(a) If a linear transformation has a right inverse must it have a left inverse?
(b) If a linear transformation has a left inverse must it have a right inverse?
(c) If a linear transformation has both a left and a right inverse, must it be invertible?

(That is, must the left and right inverse be the same?)
(d) If a linear transformation T has a unique right inverse is T necessarily invertible?

Hint. Consider ST + S − I, where S is a unique right inverse for T .
(e) What is the relationship between a linear transformation being one-to-one and onto

and being invertible?
(f) Let {v1, . . . ,vn} be a linearly independent set of vectors in V . What condition should

a linear transformation T : V →W satisfy so that {Tv1, . . . , Tvn} is a linearly inde-
pendent subset of W?

(g) Let {u1, . . . ,un} be a basis for a subspace U of V . What conditions should a linear
transformation T : V → W satisfy so that {Tu1, . . . , Tun} is a basis for the sub-
space T (U)?

(h) Suppose the vectors v1, . . . ,vn span the vector space V and T : V → W is a linear
transformation. If {Tv1, . . . , Tvn} is a basis for W what can you conclude about the
vectors v1, . . . ,vn? What can you conclude about the linear transformation T?

(i) When are two finite dimensional vector spaces isomorphic? (Give a simple—but
nontrivial—necessary and sufficient condition on the spaces.)

(j) Suppose S : V → V is linear and V has finite dimension. What is the relationship
between the following properties of S?

(1) S is one-to-one.
(2) S is onto.
(3) S is an isomorphism.

(5) A sequence of vector spaces and linear maps

· · · −→ Vn−1
jn−−−−→ Vn

jn+1−−−−→ Vn+1 −→ · · ·
is said to be exact at Vn if ran jn = ker jn+1. A sequence is exact if it is exact at each
of its constituent vector spaces. A sequence of vector spaces and linear maps of the form

0 −→ U
j−−−−→ V

k−−−−→ W −→ 0 (1)

is a short exact sequence. (Here 0 denotes the trivial 0-dimensional vector space, and
the unlabeled arrows are the obvious linear maps.)
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(a) The sequence (1) is exact at U if and only if j is injective.
(b) The sequence (1) is exact at W if and only if k is surjective.
(c) Let U and V be vector spaces. Then the following sequence is short exact:

0 −→ U
ι1−−−−→ U × V π2−−−−→ V −→ 0.

The indicated linear maps are defined by

ι1 : U → U × V : a 7→ (a, 0)

and

π2 : U × V → V : (a, b) 7→ b.

(d) Suppose a < b. Let K be the family of constant functions on the interval [a, b], C1 be
the family of all continuously differentiable functions on [a, b], and C be the family of
all continuous functions on [a, b]. Specify linear maps j and k so that the following
sequence is short exact:

0 −→ K j−−−−→ C1 k−−−−→ C −→ 0.

(e) Let C be the family of all continuous functions on the interval [0, 2]. Let E1 be
the mapping from C into R defined by E1(f) = f(1). (The functional E1 is called
“evaluation at 1”.)
Find a subspace F of C such that the following sequence is short exact.

0 −→ F ι−−−−→ C E1−−−−→ R −→ 0.

(f) Suppose that the following sequence of finite dimensional vector spaces and linear
maps is exact.

0 −→ Vn
fn−−−−→ Vn−1

fn−1−−−−→ · · · f2−−−−→ V1
f1−−−−→ V0 −→ 0

Show that
n∑
k=0

(−1)k dim(Vk) = 0.

9.3.1. Definition. It is frequently useful to think of functions as arrows in diagrams.
For example, the situation j : R → U , f : R → S, k : S → T , h : U → T may be
represented by the following diagram.

W V
j

//

U

W

h

��

U X
f // X

V

g

��

The diagram is said to commute (or to be a commutative diagram) if j◦h = g◦f .

(g) Suppose that in the following diagram of vector spaces and linear maps

0 // U

f
��

j // V

g
��

k // W

h
��

// 0

0 // U ′
j′
// V ′

k′
// W ′ // 0

the rows are exact and the left square commutes. Then there exists a unique linear
map h : W →W ′ which makes the right square commute.
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In parts (h)–(k) consider the diagram

0 // U

f
��

j // V

g
��

k // W

h
��

// 0

0 // U ′
j′
// V ′

k′
// W ′ // 0

where the rows are exact and the squares commute.
(h) If g is surjective, so is h.
(i) If f is surjective and g is injective, then h is injective.
(j) If f and h are surjective, so is g.
(k) If f and h are injective, so is g.

(6) Let V and W be vector spaces. Prove that (under the usual pointwise operations of
addition and scalar multiplication) L(V,W ) is a vector space.
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9.4. Answers to Odd-Numbered Exercises

(1) (a) −2, −1, 5, 5
(b) 6, 3, −2

(3) line, −x
5

=
y

3
= z, plane, 2x+ y − z = 0

(5) (a) 7, 8, 5
(b) 4, 21, 10
(c) 3, 14, 5
(d) I
(e) 2

(7) Pa, DK, H, DK, Pa, H, DO, VA, DL, Pb, VA, H, VA, DK, H, VA, DO, H

(9) sin t, cos t, y′′ + y = 0

(11) (a) line,
x

4
= −3y

2
= z

(b) plane, 2x− y − z = 0

(13) R4 is the span of a, b, c, and d, all of which T takes to 0; so were T linear, its range would
contain only 0.

(15) T does not map 0 to 0.

(17) If T were linear, then T (−2,−2) would be −2T (1, 1) = −2(3,−6) = (−6, 12).



CHAPTER 10

LINEAR MAPS BETWEEN EUCLIDEAN SPACES

10.1. Background

Topics: linear mappings between finite dimensional spaces, a matrix as a linear map, the repre-
sentation of a linear map as a matrix.

10.1.1. Proposition. Let T ∈ L(V,W ) where V is an n-dimensional vector space and W is an
m-dimensional vector space and let {e1, e2, . . . , en} be a basis for V . Define an m × n-matrix [T ]
whose kth column (1 ≤ k ≤ n) is the column vector Tek. Then for each x ∈ V we have

Tx = [T ]x.

The displayed equation above requires a little interpretation. The left side is T evaluated at x;
the right side is an m × n matrix multiplied by an n × 1 matrix (that is, a column vector). Then
the asserted equality can be thought of as identifying

(1) two vectors in Rm,
(2) two m-tuples of real numbers, or
(3) two column vectors of length m (that is, m× 1 matrices).

If we wished to distinguish rigorously between column vectors and row vectors and also wished to
identify m-tuples with row vectors, then the equation in the preceding proposition would have to
read

Tx =
(
[T ](xt)

)t
.

To avoid the extra notation in these notes we will not make this distinction. In an equation interpret
a vector as a row vector or as a column vector in any way that makes sense.

10.1.2. Definition. If V and W are finite dimensional vector spaces with bases and T ∈ L(V,W ),
then the matrix [T ] in the preceding proposition is the matrix representation of T . It is also
called the standard matrix for T

71
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10.2. Exercises

(1) Let T : R4 → R3 be defined by

Tx = (x1 − 3x3 + x4, 2x1 + x2 + x3 + x4, 3x2 − 4x3 + 7x4)

for every x = (x1, x2, x3, x4) ∈ R4. (The map T is linear, but you need not prove this.)

(a) Find [T ]. Answer:


 .

(b) Find T (1,−2, 1, 3). Answer: .

(c) Find
(
[T ]((1,−2, 1, 3)t)

)t
. Answer: .

(d) Find kerT . Answer: kerT = span{ } .

(e) Find ranT . Answer: ranT = .

(2) Let T : R3 → R4 be defined by

Tx = (x1 − 3x3, x1 + x2 − 6x3, x2 − 3x3, x1 − 3x3)

for every x = (x1, x2, x3) ∈ R3. (The map T is linear, but you need not prove this.) Then

(a) [T ] =




.

(b) T (3,−2, 4) = .

(c) kerT = span{ } .

(d) ranT = span{ } .

(3) Let Pn be the vector space of all polynomial functions on R with degree strictly less than n.
The usual basis for Pn is the set of polynomials 1, t, t2, t3, . . . , tn−1. Define T : P3 → P5

by

Tf(x) =

∫ x

0

∫ u

0
p(t) dt

for all x, u ∈ R.
(a) Then the matrix representation of the linear map T (with respect to the usual

bases for P3 and P5 is




.

(b) The kernel of T is .

(c) The range of T is span{ } .
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(4) Let P4 be the vector space of polynomials of degree strictly less than 4. Consider the
linear transformation D2 : P4 → P4 : f 7→ f ′′.

(a) Then the matrix representation
[
D2
]

of D2 (with respect to the usual basis {1, t, t2, t3}

for P4) is given by
[
D2
]

=


 .

(b) kerD2 = span{ } .

(c) ranD2 = span{ } .

(5) Let P4 be the vector space of polynomials of degree strictly less than 4 and T : P4 → P5

be the linear transformation defined by (Tp)(t) = (2 + 3t)p(t) for every p ∈ P4 and t ∈ R.
Then the matrix representation of T (with respect to the usual basis {1, t, t2, t3} for P4)
is given by

[T ] =




.

(6) Let T : R3 → R3 be the linear transformation whose standard matrix is

1 1 0
0 1 1
1 0 −1

. We

know that T is not onto because the only vectors (u, v, w) that are in the range of T are
those that satisfy the relation u+ av + bw = 0 where a = and b = .

(7) Let T be the linear map from R3 to R3 defined by

T (x, y, z) = (3x+ 2y + z , x+ 3z , −y + 4z).

(a) The matrix representation of T is given by

[T ] =


 .

(b) The range of T is (geometrically speaking) a whose equation is

.
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10.3. Problems

(1) Define T : R3 → R2 by

Tx = (x1 + 2x2 − x3, x2 + x3)

for all x = (x1, x2, x3) in R3.
(a) Explain how to find [T ], the matrix representation for T .
(b) Explain how to use [T ] to find T (x) when x = (−1, 2,−1).
(c) Explain how to use [T ] to find a vector x in R3 such that Tx = (0, 1).

Carry out the computations you describe.

(2) Let P be the vector space of all polynomial functions on R with real coefficients. Define
linear transformations T , D : P → P by

(Dp)(x) = p′(x)

and
(Tp)(x) = x2p(x)

for all x ∈ R.
Explain carefully how to find matrix representations for the linear transformations

D+T , DT , and TD (with respect to the usual basis {1, t, t2} for the space of polynomials
of degree two or less). Carry out the computations you describe. Use the resulting matrices
to find ((D+T )(p))(x), (DTp)(x), and (TDp)(x) where p(x) = 3x2 + 4x− 3 for all x ∈ R.

(3) Define T : R2 → R3 by

Tx = (x1 − x2, x2 − x1, x1 + x2)

for all x = (x1, x2) in R2.
(a) Explain carefully how to find [T ], the matrix representation for T .
(b) How do we use [T ] to find T (1,−2)?
(c) Are there any nonzero vectors x in R2 such that Tx = 0? Explain.
(d) Under what conditions is a vector (u, v, w) in the range of T? Explain.

(4) Let C1([0, 1]) be the vector space of all functions defined on the interval [0, 1] which have
continuous derivatives at each point and C([0, 1]) be the vector space of continuous func-
tions on [0, 1]. Define a function T : C1([0, 1])→ C([0, 1]) by

(Tf)(x) =

∫ x

0
f(t) dt+ f ′(x)

for every x ∈ [0, 1].
(a) Prove that the function T is linear.
(b) Let f(x) = sinx and g(x) = cosx for all x ∈ [0, 1]. Explain why one of these functions

belongs to the kernel of T while the other does not.

(5) Let P4 be the vector space of polynomials of degree strictly less than 4. Consider the
linear transformation D2 : P4 → P4 : f 7→ f ′′. Explain carefully how to find [T ], the
matrix representation of D2 (with respect to the usual basis {1, t, t2, t3} for P4). Then
explain how to use [T ] to find kerD2 and ranD2.
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10.4. Answers to Odd-Numbered Exercises

(1) (a)

1 0 −3 1
2 1 1 1
0 3 −4 7


(b) (1, 4, 11)
(c) (1, 4, 11) (or [1 4 11])
(d) (1,−9, 2, 5)
(e) R3

(3) (a)


0 0 0
0 0 0
1
2 0 0
0 1

6 0
0 0 1

12


(b) {0}
(c) x2, x3, x4

(5)


2 0 0 0
3 2 0 0
0 3 2 0
0 0 3 2
0 0 0 3


(7) (a)

3 2 1
1 0 3
0 −1 4


(b) plane, u− 3v + 2w = 0





CHAPTER 11

PROJECTION OPERATORS

11.1. Background

Topics: projections along one subspace onto another.

11.1.1. Definition. Let V be a vector space and suppose that V = M ⊕ N . We know that for
each v ∈ V there exist unique vectors m ∈ M and n ∈ N such that v = m + n (see problem 5 in
chapter 6). Define a function EMN : V → V by EMNv = n. The function EMN is the projection
of V along M onto N . (Frequently we write E for EMN . But keep in mind that E depends on
both M and N .)

11.1.2. Theorem. Let V be a vector space and suppose that V = M ⊕N . If E is the projection
of V along M onto N , then

(i) E is linear;
(ii) E2 = E (that is, E is idempotent);
(iii) ranE = N ; and
(iv) kerE = M .

11.1.3. Theorem. Let V be a vector space and suppose that E : V → V is a function which satisfies

(i) E is linear, and
(ii) E2 = E.

Then
V = kerE ⊕ ranE

and E is the projection of V along kerE onto ranE.

11.1.4. Theorem. Let V be a vector space and suppose that V = M ⊕N . If E is the projection
of V along M onto N , then I − E is the projection of V along N onto M .
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11.2. Exercises

(1) Let M be the line y = 2x and N be the y-axis in R2. Then

[EMN ] =

[
a a
−b c

]
and [ENM ] =

[
c a
b a

]
where a = , b = , and c = .

(2) Let P be the plane in R3 whose equation is x− z = 0 and L be the line whose equations
are y = 0 and x = −z. Let E be the projection of R3 along L onto P and F be the
projection of R3 along P onto L. Then

[E] =

a b a
b c b
a b a

 and [F ] =

 a b −a
b b b
−a b a


where a = , b = , and c = .

(3) Let P be the plane in R3 whose equation is x + 2y − z = 0 and L be the line whose

equations are
x

3
= y =

z

2
. Let E be the projection of R3 along L onto P and F be the

projection of R3 along P onto L. Then

[E] =
1

3

 a −b c
−d d d

a− 2d −b+ 2d c+ 2d

 and [F ] =
1

3

3d 3e −3d
d e −d
2d 2e −2d


where a = , b = , c = , d = , and e = .

(4) Let P be the plane in R3 whose equation is x − y − 2z = 0 and L be the line whose
equations are x = 0 and y = −z. Let E be the projection of R3 along L onto P and F be
the projection of R3 along P onto L. Then

[E] =

 a b b
−a c c
a −a −a

 and [F ] =

 b b b
a −a −c
−a a c


where a = , b = , and c = .

(5) Let E be the projection of R3 along the z-axis onto the plane 3x− y + 2z = 0 and let F
be the projection of R3 along the plane 3x− y + 2z = 0 onto the z-axis.

(a) Then [E] =


.

(b) Where does F take the point (4, 5, 1)? Answer: ( , , ) .

(6) Let M be the y-axis and N be the plane x+ y − 2z = 0 in R3.

(a) Then the projection EMN of R3 along M onto N is


.

(b) The projection ENM takes the vector (3, 2, 1) to ( , , ).
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11.3. Problems

(1) Let E be a projection on a vector space. Show that a vector x belongs to the range of E
if and only if Ex = x. Hint. Recall (from Theorems 11.1.2 and 11.1.3) that a projection
is a linear map E such that E2 = E.

(2) Prove Theorem 11.1.2.

(3) Prove Theorem 11.1.3.

(4) Prove Theorem 11.1.4. Hint. Use Theorem 11.1.3.

(5) Let P be the plane in R3 whose equation is x− z = 0 and L be the line whose equations
are y = 0 and x = 1

2z. Explain carefully how to find the matrix representation of the

operator ELP , that is, the projection of R3 along L onto P . Carry out the computation
you describe.

(6) Let L be the line in R3 whose equations are x = y and z = 0, and let P be the plane
whose equation is x−z = 0. Explain carefully how to find the matrix representation of the
operator ELP , that is, the projection of R3 along L onto P . Carry out the computation
you describe.

(7) Let P be the plane in R3 whose equation is x − 3y + z = 0 and L be the line whose
equations are x = −2y = −z. Explain carefully how to find the matrix representation of
the operator ELP of R3 along L onto P and the projection EPL of R3 along P onto L.

(8) Prove that a linear transformation between vector spaces has a left inverse if and only if
it is injective.

(9) Prove that a linear transformation between vector spaces has a right inverse if and only if
it is surjective.
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11.4. Answers to Odd-Numbered Exercises

(1) 0, 2, 1

(3) 0, 6, 3, 1, 2

(5) (a)

 1 0 0
0 1 0
−3

2
1
2 0


(b) 0, 0, 9

2



Part 4

SPECTRAL THEORY OF VECTOR
SPACES





CHAPTER 12

EIGENVALUES AND EIGENVECTORS

12.1. Background

Topics: characteristic polynomial, eigenvalues, eigenvectors, eigenspaces, algebraic multiplicity
and geometric multiplicity of an eigenvalue.

12.1.1. Definition. A number λ is an eigenvalue of an operator T on a vector space V if
ker(λIV − T ) contains a nonzero vector. Any such vector is an eigenvector of T associated with
λ and ker(λIV − T ) is the eigenspace of T associated with λ. The set of all eigenvalues of the
operator T is its (point) spectrum and is denoted by σ(T ).

If M is an n × n matrix, then det(λIn − M) (where In is the n × n identity matrix) is a
polynomial in λ of degree n. This is the characteristic polynomial of M . A standard way
of computing the eigenvalues of an operator T on a finite dimensional vector space is to find the
zeros of the characteristic polynomial of its matrix representation. It is an easy consequence of the
multiplicative property of the determinant function (see proposition 3.1.9) that the characteristic
polynomial of an operator T on a vector space V is independent of the basis chosen for V and
hence of the particular matrix representation of T that is used.

12.1.2. Theorem (Spectral Mapping Theorem). If T is an operator on a finite dimensional vector
space and p is a polynomial, then

σ(p(T )) = p(σ(T )).

That is, if σ(T ) = {λ1, . . . , λk}, then σ(p(T )) = {p(λ1), . . . , p(λk)}.
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12.2. Exercises

(1) IfA =

1 −1 4
3 2 −1
2 1 −1

, then the eigenvalue has corresponding eigenvector ( , 1 , 1 ) ,

the eigenvalue has corresponding eigenvector ( , 4 , 1 ) , and the eigenvalue
has corresponding eigenvector ( , 2 , 1 ) .

(2) Let A =

0 0 2
0 2 0
2 0 0

.

(a) The eigenvalues of A are , , and .
(b) The matrix A has a one-dimensional eigenspace.

It is the span of the vector ( 1 , , ).
(c) The matrix A has a two-dimensional eigenspace.

It is the span of the vectors ( 1 , 0 , ) and ( 0 , 1 , ).

(3) Choose a, b and c in the matrix A =

0 1 0
0 0 1
a b c

 so that the characteristic polynomial of
A is −λ3 + 4λ2 + 5λ+ 6.

Answer: a = ; b = ; and c = .

(4) Suppose that it is known that the matrix A =

 1 0 −1√
3 a 17

2 0 b

 has eigenvalues 2 and 3 and

that the eigenvalue 2 has algebraic multiplicity 2. Then a = and b = .

(5) The matrices A =

[
a 1
−2 d

]
and B = 1

25

[
114 48
48 86

]
have the same eigenvalues.

Then a = and d = .

(6) Let A =

3 4 2
0 1 2
0 0 0

.

(a) The eigenvalues of A are , , and .

(b) The matrix A has three one-dimensional eigenspaces. They are spanned by the vectors
( , , ), ( , , ), and ( , , ),
respectively.

(7) Let A =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

.

(a) The eigenvalues of A−I are (which has algebraic multiplicity ) and
(which has algebraic multiplicity ).

(b) The determinant of A− I is .

(8) Let T be the operator on R3 whose matrix representation is

 1 −1 0
0 0 0
−2 2 2

. Then the

eigenvalues of the operator T 5 − 3T 4 + T 3 − T 2 + T − 3I are , , and .
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12.3. Problems

(1) Suppose that A and B are n× n matrices. Prove that σ(AB) = σ(BA). Hint. Show that
if λ is an eigenvalue of AB, then it is also an eigenvalue of BA. Deal with the cases λ = 0
and λ 6= 0 separately.

(2) Let c ∈ R. Suppose that A is an n × n matrix and that the sum of the entries in each
column of A is c. Prove that c is an eigenvalue of A. Hint. Consider the sum of the row
vectors of the matrix A− cI.

(3) This is a problem in cryptography. Read about Hill ciphers, then decode the following
Hill 3-cipher given that the first two words of the plaintext are known to be “My candle”.
(See for example [1], section 11.16.)

OGWGCGWGKK.EWVD.XZJOHZWLNYH USTFAIOS.A.KBN
JRCENYQZV,IE LTGCGWGKC YYBLSDWWODLBVFFOS.H

In many discussions of Hill ciphers letters of the alphabet are assigned numbers from
0 to 25 and arithmetic is done modulo 26. The encoding here is done slightly differently.
Here each letter is assigned its numerical position in the alphabet (including Z which is
assigned 26). Furthermore, a space between words is assigned 27, a comma is assigned 28,
and a period is assigned zero. Thus, for this code, all arithmetic should be done modulo 29.
(One reason for this is that some computer algebra systems have problems calculating
inverses mod 26.) Note: the ciphertext contains exactly three spaces.
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12.4. Answers to Odd-Numbered Exercises

(1) −2, −1, 1, −1, 3, 1

(3) 6, 5, 4

(5) 2, 6 (or 6, 2)

(7) (a) −1, 3, 3, 1
(b) −3



CHAPTER 13

DIAGONALIZATION OF MATRICES

13.1. Background

Topics: similarity of matrices, triangular and diagonal matrices, diagonalization, annihilating and
minimal polynomials, algebraic and geometric multiplicity of an eigenvalue, the Cayley-Hamilton
theorem.

13.1.1. Definition. Two operators R and T on a vector space V are similar if there exists an
invertible operator S on V such that R = S−1TS.

13.1.2. Proposition. If V is a vector space, then similarity is an equivalence relation on L(V ).

13.1.3. Definition. Let V be a finite dimensional vector space and B = {e1, . . . , en} be a basis
for V . An operator T on V is diagonal if there exist scalars α1, . . . , αn such that Tek = αke

k for
each k ∈ Nn. Equivalently, T is diagonal if its matrix representation [T ] = [tij ] has the property
that tij = 0 whenever i 6= j.

Asking whether a particular operator on some finite dimensional vector space is diagonal is,
strictly speaking, nonsense. As defined the operator property of being diagonal is definitely not a
vector space concept. It makes sense only for a vector space for which a basis has been specified.
This important, if obvious, fact seems to go unnoticed in many beginning linear algebra texts, due,
I suppose, to a rather obsessive fixation on Rn in such courses. Here is the relevant vector space
property.

13.1.4. Definition. An operator T on a finite dimensional vector space V is diagonalizable if
there exists a basis for V with respect to which T is diagonal. Equivalently, an operator on a finite
dimensional vector space with basis is diagonalizable if it is similar to a diagonal operator. If a
matrix D is diagonalizable and Λ = S−1DS is diagonal, we say that the matrix S diagonalizes D.

13.1.5. Theorem. Let A be an n × n matrix with n linear independent eigenvectors. If S is a
matrix with these eigenvectors as columns, then S diagonalizes A. The entries along the diagonal
of the resulting diagonal matrix are all eigenvalues of A.

13.1.6. Definition. A polynomial is monic if its leading coefficient is 1. Thus a polynomial of
degree n is monic if it takes the form xn + an−1x

n−1 + · · ·+ a1x+ a0.

13.1.7. Definition. Let p be a polynomial of degree at least one and T be an operator on some
vector space. We say that p is an annihilating polynomial for T (or that p annihilates T )
if p(T ) = 0. For example, if T 3 − 4T 2 + T − 7I = 0, then the polynomial p defined by p(x) =
x3 − 4x2 + x− 7 is an annihilating polynomial for T .

13.1.8. Definition. Let T be an operator on a finite dimensional vector space. The minimal
polynomial of T is the unique monic polynomial of smallest degree which annihilates T . (It is
left as a problem to verify the existence and the uniqueness of such a polynomial: see problem 8.)

13.1.9. Theorem (Cayley-Hamilton Theorem). On a finite dimensional vector space the charac-
teristic polynomial of an operator T annihilates T .

Paraphrase: Every matrix satisfies its characteristic equation.
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13.1.10. Definition. A square matrix A =
[
aij
]

is upper triangular if aij = 0 whenever i > j.
A matrix is triangulable (or triangulizable) if it is similar to an upper triangular matrix.

13.1.11. Theorem. Let T be an operator on a finite dimensional vector space and let {λ1, . . . , λk}
be its distinct eigenvalues. Then:

(1) T is triangulable if and only if its minimal polynomial can be factored into a product of
linear factors. That is, if and only if there are positive integers r1, . . . , rk such that

mT (x) = (x− λ1)r1 . . . (x− λk)rk .
(2) T is diagonalizable if and only if its minimal polynomial has the form

mT (x) = (x− λ1) . . . (x− λk).

13.1.12. Corollary. Every operator on a complex finite dimensional vector space is triangulable.

13.1.13. Definition. An operator is nilpotent if some power of the operator is 0.
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13.2. Exercises

(1) Let A =

1 1 1
1 1 1
1 1 1

. The characteristic polynomial of A is λp(λ − 3)q where p =

and q = .

The minimal polynomial of A is λr(λ− 3)s where r = and s = .

(2) Let T be the operator on R4 whose matrix representation is


0 1 0 −1
−2 3 0 −1
−2 1 2 −1
2 −1 0 3

.

The characteristic polynomial of T is (λ− 2)p where p = .

The minimal polynomial of T is (λ− 2)r where r = .

(3) Let T be the operator on R3 whose matrix representation is

3 1 −1
2 2 −1
2 2 0

.

(a) Find the characteristic polynomial of T .

Answer: cT (λ) = (λ− 1)p(λ− 2)q where p = and q = .

(b) Find the minimal polynomial of T .

Answer: mT (λ) = (λ− 1)r(λ− 2)s where r = and s = .

(c) Find the eigenspaces M1 and M2 of T .

Answer: M1 = span { } and M2 = span { }.

(4) Let T be the operator on R5 whose matrix representation is


1 0 0 1 −1
0 1 −2 3 −3
0 0 −1 2 −2
1 −1 1 0 1
1 −1 1 −1 2

.

(a) Find the characteristic polynomial of T .

Answer: cT (λ) = (λ+ 1)p(λ− 1)q where p = and q = .

(b) Find the minimal polynomial of T .

Answer: mT (λ) = (λ+ 1)r(λ− 1)s where r = and s = .

(c) Find the eigenspaces V1 and V2 of T .

Answer: V1 = span { } and

V2 = span { }.

(5) Let T be an operator whose matrix representation is


0 0 0 0 0
0 0 0 0 0
3 1 0 0 0
0 0 0 1 2
0 0 0 −1 −1

.

(a) Regarding T as an operator on R5 find its characteristic polynomial and minimal
polynomial.

Answer: cT (λ) = λp(λ2 + 1)q where p = and q = .

and mT (λ) = λr(λ2 + 1)s where r = and s = .

(b) Regarded as an operator on R5 is T diagonalizable? . Is it triangulable?
.



90 13. DIAGONALIZATION OF MATRICES

(c) Regarded as an operator on C5 is T diagonalizable? . Is it triangulable?
.

(6) Let T be the operator on R3 whose matrix representation is

 2 0 0
−1 3 2
1 −1 0

.

(a) Find the characteristic and minimal polynomials of T .

Answer: cT (λ) = (λ− 1)p(λ− 2)q where p = and q = .

and mT (λ) = (λ− 1)r(λ− 2)s where r = and s = .

(b) What can be concluded from the form of the minimal polynomial?

Answer:

(c) Find a matrix S (if one exists) that diagonalizes [T ]. What is the diagonal form Λ of

[T ] produced by this matrix? Answer: S =

 a b a
b b −c
−b a b

 where a = , b = ,

and c = ; and Λ =

λ 0 0
0 µ 0
0 0 µ

 where λ = and µ = .

(7) Let T be the operator on R3 whose matrix representation is

 8 −6 12
−18 11 18
−6 −3 26

.

(a) Find the characteristic and minimal polynomials of T .

Answer: cT (λ) = (λ− 5)p(λ− 20)q where p = and q = .

and mT (λ) = (λ− 5)r(λ− 20)s where r = and s = .

(b) What can be concluded from the form of the minimal polynomial?

Answer:

(c) Find a matrix S (if one exists) that diagonalizes [T ]. What is the diagonal form Λ of

[T ] produced by this matrix? Answer: S =

a b c
d −a a
b c b

 where a = , b = ,

c = , and d = ; and Λ =

λ 0 0
0 µ 0
0 0 µ

 where λ = and µ = .

(8) Let Pn be the space of polynomials of degree strictly less than n and D be the differenti-
ation operator on Pn. Then
(a) the only eigenvalue of D is λ = ;
(b) the corresponding eigenspace is the span of ;
(c) the algebraic multiplicity of λ is ; and
(d) the geometric multiplicity of λ is .
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13.3. Problems

(1) Prove that the trace function is a similarity invariant on the family of n×n matrices; that
is, prove that if A and B are similar n × n matrices, then trA = trB. Hint. Prove first
that if M and N are n× n matrices, then MN and NM have the same trace.

(2) Prove that the determinant function is a similarity invariant on the family of n×n matrices;
that is, prove that if A and B are similar n× n matrices, then detA = detB.

(3) Prove that if two matrices are diagonalized by the same matrix, then they commute.

(4) Prove that if a matrix A is diagonalizable, then so is every matrix similar to A.

(5) Show that if A is an n × n matrix of real (or complex) numbers, then trA is the sum of
the eigenvalues of A and detA is their product.

(6) Suppose that T is an operator on a finite dimensional complex vector space and that
σ(T ) = {0}. Show that T is nilpotent.

(7) Let T be an operator on a finite dimensional vector space.

(a) Show that if p is an annihilating polynomial for T , then the minimal polynomial mT

divides p. Hint. Suppose that p annihilates T (so that the degree of p is at least as
large as the degree of mT ). Divide p by mT . Then there exist polynomials q (the
quotient) and r (the remainder) such that

p = mT q + r and degree of r < degree of mT .

Conclude that r = 0.

(b) Show that the minimal polynomial mT and the characteristic polynomial cT have
exactly the same roots (although not necessarily the same multiplicities). Hint. To
show that every root of mT is also a root of cT , it is enough to know that mT divides
cT . Why is that true?
To obtain the converse, suppose that λ is a root of cT : that is, suppose that λ is an
eigenvalue of T . Use the spectral mapping theorem 12.1.2 to show that mT (λ) = 0.

(8) Let T be an operator on a finite dimensional vector space V . Show that there is a unique
monic polynomial of smallest degree which annihilates T . Hint. This asks for a proof
of the existence and the uniqueness of the minimal polynomial for the operator T . The
existence part is easy: If there are any polynomials at all which annihilate T , surely there
is one of smallest degree. (How do we know that there is at least one polynomial that
annihilates T?) We want the annihilating polynomial of smallest degree to be monic—is
this a problem?

To verify the uniqueness of the minimal polynomial, consider the case of degree one
separately. That is, suppose that p and q are monic annihilating polynomials of degree
one. How do we know that p = q? Then consider polynomials of higher degree. Suppose
that p and q are monic annihilating polynomials of smallest degree k where k > 1. What
can you say about p− q?
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13.4. Answers to Odd-Numbered Exercises

(1) 2, 1, 1, 1

(3) (a) 1, 2
(b) 1, 2
(c) (1, 0, 2), (1, 1, 2)

(5) (a) 3, 1, 2, 1
(b) no, no
(c) no, yes

(7) (a) 1, 2, 1, 1
(b) T is diagonalizable
(c) 2, 1, 0, 3, 5, 20



CHAPTER 14

SPECTRAL THEOREM FOR VECTOR SPACES

14.1. Background

Topics: the spectral theorem for finite dimensional vector spaces (writing a diagonalizable operator
as a linear combination of projections).

The central fact asserted by the finite dimensional vector space version of the spectral theorem
is that every diagonalizable operator on such a space can be written as a linear combination of
projection operators where the coefficients of the linear combination are the eigenvalues of the
operator and the ranges of the projections are the corresponding eigenspaces. Here is a formal
statement of the theorem.

14.1.1. Theorem (Spectral theorem: vector space version). Let T be a diagonalizable operator
on a finite dimensional vector space V , and λ1, . . . , λk be the (distinct) eigenvalues of T . For
each j let Mj be the eigenspace associated with λj and Ej be the projection of V onto Mj along
M1 + · · ·+Mj−1 +Mj+1 + · · ·+Mk. Then

(i) T = λ1E1 + · · ·+ λkEk,
(ii) I = E1 + · · ·+ Ek, and
(iii) EiEj = 0 when i 6= j.

For a proof of this result see, for example, [8], page 215, theorem 11.
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14.2. Exercises

(1) Let T be the operator on R2 whose matrix representation is

[
−7 8
−16 17

]
.

(a) Find the characteristic polynomial and minimal polynomial for T .

Answer: cT (λ) = and mT (λ) = .

(b) The eigenspace M1 associated with the smaller eigenvalue λ1 is the span of ( 1 , ).

(c) The eigenspace M2 associated with the larger eigenvalue λ2 is the span of ( 1 , ).

(d) We wish to write T as a linear combination of projection operators. Find the (matrix
representations of the) appropriate projections E1 and E2 onto the eigenspaces M1

and M2, respectively.

Answer: E1 =

[
a b
a b

]
, where a = and b = , and E2 =

[
−c c
−d d

]
, where

c = and d = .

(e) Compute the sum and product of E1 and E2.

Answer: E1 + E2 =

 ; and E1E2 =

 .

(f) Write T as a linear combination of the projections found in (d).

Answer: [T ] = E1 + E2.

(g) Find a matrix S which diagonalizes [T ]. What is the associated diagonal form Λ
of [T ]?

Answer: S =

[
1 1
a b

]
, where a = and b = , and Λ =

 .

(2) Let T be the operator on R3 whose matrix representation is−2 −1 −6
−6 −1 −12
2 1 6

 .
(a) Find the characteristic polynomial and minimal polynomial for T .

Answer: cT (λ) = andmT (λ) = .

(b) The eigenspaceM1 associated with the smallest eigenvalue λ1 is the span of (3 , , ).

(c) The eigenspaceM2 associated with the middle eigenvalue λ2 is the span of (1 , , ).

(d) The eigenspaceM3 associated with the largest eigenvalue λ3 is the span of (1 , , ).

(e) We wish to write T as a linear combination of projection operators. Find the (matrix
representations of the) appropriate projections E1, E2, and E3 onto the eigenspaces
M1, M2, and M3, respectively.

Answer: E1 =

 a c a
2a c 2a
−b c −b

; E2 =

 −b d c
−2a a c
b −d c

; and E3 =

c −d −a
c −b −2a
c d a

, where

a = , b = , c = , and d = .

(f) Write T as a linear combination of the projections found in (e).

Answer: [T ] = E1 + E2 + E3.

(g) Find a matrix S which diagonalizes [T ]. What is the associated diagonal form Λ
of [T ]?
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Answer: S =

 a b b
2a a c
−c −b −b

, where a = , b = , and c = , and

Λ =

 .

(3) Find a matrix A whose eigenvalues are 1 and 4, and whose eigenvectors are (3, 1) and
(2, 1), respectively.

Answer: A =


.
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14.3. Answers to Odd-Numbered Exercises

(1) (a) λ2 − 10λ+ 9, λ2 − 10λ+ 9
(b) 1
(c) 2
(d) 2, −1, 1, 2

(e)

[
1 0
0 1

]
,

[
0 0
0 0

]
(f) 1, 9

(g) 1, 2,

[
1 0
0 9

]
(3)

[
−5 18
−3 10

]



CHAPTER 15

SOME APPLICATIONS OF THE SPECTRAL THEOREM

15.1. Background

Topics: systems of linear differential equations, initial conditions, steady state solutions, the func-
tional calculus for operators on finite dimensional vector spaces, Markov processes.

15.1.1. Theorem. Let
du

dt
= Au (15.1.1)

be a vector differential equation (that is, a system of ordinary linear differential equations) where
A is an n × n matrix and suppose that u0 = u(0) is an initial value of the system. If A is
a diagonalizable matrix (so that A = SΛS−1 for some diagonal matrix Λ and some invertible
matrix S), then the equation (15.1.1) has the solution

u(t) = eAtu0 = SeΛtS−1u0.

15.1.2. Definition. A Markov matrix is a square matrix with nonnegative entries and with
each column adding to 1.

15.1.3. Proposition (Facts about Markov matrices.). Let A be a Markov matrix. Then

(i) λ1 = 1 is an eigenvalue.
(ii) The eigenvector e1 corresponding to λ1 is nonnegative and it is a steady state.
(iii) The other eigenvalues satisfy |λk| ≤ 1.
(iv) If any power of A has all entries strictly positive, then |λk| < 1 for all k 6= 1 and Aku0 →

u∞ where the steady state u∞ is a multiple of e1.
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15.2. Exercises

(1) Let A =

[
−1 1
1 −1

]
.

(a) The eigenvalues of A are λ1 = and λ2 = .

(b) The corresponding eigenvectors are e1 = (1, a) and e2 = (a,−a) where a = .

(c) Then eAt = a

[
1 + e−bt 1− e−bt
1− e−bt 1 + e−bt

]
where a = and b = .

(d) Let u(t) = (x(t), y(t)). The general solution to the system of equations
du

dt
= Au

with initial conditions x0 = 3 and y0 = 1 is x(t) = a + be−ct and y(t) = a − be−ct
where a = , b = , and c = .

(e) Find the steady state solution to the system
du

dt
= Au under the initial condi-

tions given in (d). That is, find u∞ =

[
x∞
y∞

]
where x∞ = limt→∞ x(t) and y∞ =

limt→∞ y(t).
Answer: u∞ =


.

(2) Suppose that at time t the population y(t) of a predator and the population x(t) of its
prey are governed by the equations

dx

dt
= 4x− 2y

dy

dt
= x+ y.

If at time t = 0 the populations are x = 300 and y = 200, then the populations at
all future times t are x(t) = aebt + 200ect and y(t) = debt + aect where where a = ,
b = , c = , and d = . The long run ratio of populations of prey to predator
approaches to .

(3) Use matrix methods to solve the initial value problem consisting of the system of differential
equations

du

dt
= 4u− v − w

dv

dt
= u+ 2v − w

dw

dt
= u− v + 2w

and the initial conditions

u(0) = 2 v(0) = −2 w(0) = 7.

Answer: u(t) = aebt − eat; v(t) = aebt − ceat; and w(t) = aebt + deat where a = ,
b = , c = , and d = .

(4) Consider the initial value problem: y′′− y′− 2y = 0 with the initial conditions y0 = 3 and
y′0 = 3.

(a) Express the differential equation in the form
du

dt
= Au where u = (y, z) and z = y′.

Then A is the matrix

[
a b
c b

]
where a = , b = , and c = .
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(b) The smaller eigenvalue of A is and the larger is . The corresponding
eigenvectors are (1, a) and (1, b) where a = and b = .

(c) The diagonal form of A is Λ =

[
a 0
0 b

]
where a = and b = .

(d) Find the diagonalizing matrix S for A. That is, find S so that Λ = S−1AS. Answer:

S =

[
1 1
a b

]
where a = and b = .

(e) The matrix eAt is
1

a

[
bect + edt −ect + edt

−bect + bedt ect + bedt

]
where a = , b = , c = ,

and d = .

(f) The solution to the initial value problem is y(t) = .

(5) Use the spectral theorem to solve the initial value problem

y′′′ − 3y′′ + 2y′ = 0

where y(0) = 2, y′(0) = 0, and y′′(0) = 3.

Answer: y(t) = a+ bet+ cedt where a = , b = , c = , and d = .

(6) Let G0 = 0 and G1 =
1

2
. For each k ≥ 0 let Gk+2 be the average of Gk and Gk+1.

(a) Find the transition matrixA which takes the vector (Gk+1, Gk) to the vector (Gk+2, Gk+1).

Answer: A =


.

(b) Find a diagonal matrix Λ which is similar to A.

Answer: Λ =


.

(c) Find a matrix S such that A = SΛS−1.

Answer: S =


.

(d) Determine the long run behavior of the numbers Gk.

Answer: G∞ := limk→∞Gk = .

(7) Let T be the operator on R2 whose matrix representation is

[
−7 8
−16 17

]
. Use the spectral

theorem to find
√
T . (A square root of T is an operator whose square is T .)

Answer:
√
T =

[
−1 a
b c

]
where a = , b = , and c = .

(8) Let A =

[
4 3
1 2

]
. Find A100. (Write an exact answer—not a decimal approximation.)

Answer: A100 =
1

4


.
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(9) Let T be the operator on R3 whose matrix representation is

 2 −2 1
−1 1 1
−1 2 0

.

(a) Write T as a linear combination of projections.

Answer: T = c1E1 + c2E2 + c3E3 where c1 = , c2 = , c3 = ,

E1 =

a b −b
a b −b
a −b b

, E2 =

b a b
b a b
b a b

, and E3 =

 b −b a
−b b a
−b b a

 where a = and

b = .

(b) Calculate the following: E1E2 =


; E1E3 =


;

E2E3 =


.

(c) E1 + E2 + E3 =


.

(d) Write T 3 as a linear combination of E1, E2, and E3.

Answer: T 3 = E1+ E2+ E3.

(10) Let A be the matrix whose eigenvalues are λ1 = −1, λ2 = 1/2, and λ3 = 1/3, and whose

corresponding eigenvectors are e1 =

1
0
1

, e2 =

 1
−1
0

, and e3 =

 0
−1
0

.

(a) Solve the difference equation xk+1 = Axk (where xk =

ukvk
wk

) subject to the initial

condition x0 =

10
20
30

.

Answer: uk = a(−b)k − cdk, vk = cdk, and wk = a(−b)k where a = , b = ,
c = , and d = .

(b) Each xk can be written as a linear combination of the vectors ( , , )
and ( , , ).

(c) The value of x1000 is approximately ( , , ) .

(11) Let A be as in the preceding exercise. Solve the differential equation
dx

dt
= Ax subject to

the initial conditions x0 =

10
20
30

. Answer: x(t) =
(
ae−t − bect, bect, ae−t

)
where a = ,

b = , and c = .

(12) Suppose three cities A, B, and C are centers for trucks. Every month half of the trucks in
A and half of those in B go to C. The other half of the trucks in A and the other half of
the trucks in B stay where they are. Every month half of the trucks in C go to A and the
other half go to B.
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(a) What is the (Markov) transition matrix which acts on the vector

a0

b0
c0

 (where a0 is
the number of trucks initially in A, etc.)?

Answer:


.

(b) If there are always 450 trucks, what is the long run distribution of trucks? Answer:
a∞ = , b∞ = , c∞ = .
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15.3. Problems

(1) Initially a 2100 gallon tank M is full of water and an 1800 gallon tank N is full of water
in which 100 pounds of salt has been dissolved. Fresh water is pumped into tank M at a
rate of 420 gallons per minute and salt water is released from tank N at the same rate.
Additionally, the contents of M are pumped into N at a rate of 490 gallons per minute
and the contents of N are pumped into M at a rate sufficient to keep both tanks full.

How long does it take (to the nearest second) for the concentration of salt in tank M
to reach a maximum? And how much salt is there (to three significant figures) in M at
that time?

(2) Show that if A is a diagonalizable n× n matrix, then

det(expA) = exp(trA) .

Hint. What would be a reasonable definition of expA if A were a diagonal matrix?

(3) Explain carefully how to use matrix methods to solve the initial value problem

y′′ − y′ − 6y = 0

under the initial conditions y0 = −2 and y′0 = 14. Carry out the computations you
describe.

(4) Explain carefully how to use matrix methods to solve the initial value problem consisting
of the system of differential equations

dv

dt
= −v + w

dw

dt
= v − w

and the initial conditions

{
v(0) = 5

w(0) = −3.

Carry out the computation you describe.

(5) Show how to use the spectral theorem to solve the initial value problem consisting of the
system of differential equations

du

dt
= −7u− 5v + 5w

dv

dt
= 2u+ 3v − 2w

dw

dt
= −8u− 5v + 6w

and the initial conditions

u(0) = 2 v(0) = 1 w(0) = −1.

(6) Explain carefully how to use the spectral theorem to find a square root of the matrix

A =

[
2 1
1 2

]
. Illustrate your discussion by carrying out the computation.

(7) Let A =

0 1 0
0 0 0
0 0 0

.

(a) Does A have a cube root? Explain.

(b) Does A have a square root? Explain.

(8) Let A be a symmetric 2×2 matrix whose trace is 20 and whose determinant is 64. Suppose
that the eigenspace associated with the smaller eigenvalue of A is the line x− y = 0. Find
a matrix B such that B2 = A.
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15.4. Answers to Odd-Numbered Exercises

(1) (a) 0, −2
(b) 1
(c) 1

2 , 2

(d) 2, 1, 2

(e)

[
2
2

]
(3) 3, 2, 5, 4

(5) 7
2 , −3, 3

2 , 2

(7) 2, −4, 5

(9) (a) −1, 1, 3, 0, 1
2

(b)

0 0 0
0 0 0
0 0 0

,

0 0 0
0 0 0
0 0 0

,

0 0 0
0 0 0
0 0 0


(c)

1 0 0
0 1 0
0 0 1


(d) −1, 1, 27

(11) 30, 20, 1
2





CHAPTER 16

EVERY OPERATOR IS DIAGONALIZABLE PLUS
NILPOTENT

16.1. Background

Topics: generalized eigenspaces, nilpotent operators

16.1.1. Definition. An operator T on a vector space is nilpotent if Tn = 0 for some n ∈ N.
Similarly, a square matrix is nilpotent if some power of it is the zero matrix.

16.1.2. Theorem. Let T be an operator on a finite dimensional vector space V . Suppose that the
minimal polynomial for T factors completely into linear factors

mT (x) = (x− λ1)r1 . . . (x− λk)rk

where λ1, . . . λk are the (distinct) eigenvalues of T . For each j let Wj = ker(T − λjI)rj and Ej be
the projection of V onto Wj along W1 + · · ·+Wj−1 +Wj+1 + · · ·+Wk. Then

V = W1 ⊕W2 ⊕ · · · ⊕Wk,

each Wj is invariant under T , and I = E1 + · · ·+ Ek. Furthermore, the operator

D = λ1E1 + · · ·+ λkEk

is diagonalizable, the operator
N = T −D

is nilpotent, and N commutes with D.

16.1.3. Corollary. Every operator on a finite dimensional complex vector space is the sum of a
diagonal operator and a nilpotent one.

16.1.4. Definition. Since, in the preceding theorem, T = D+N where D is diagonalizable and N
is nilpotent, we say that D is the diagonalizable part of T and N is the nilpotent part of T .
The subspace Wj = ker(T −λjI)rj is generalized eigenspace associated with the eigenvalue λj .
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16.2. Exercises

(1) Let T be the operator on R2 whose matrix representation is

[
2 1
−1 4

]
.

(a) Explain briefly why T is not diagonalizable.

Answer: .

(b) Find the diagonalizable and nilpotent parts of T . Answer: D =

[
a b
b a

]
and

N =

[
−c c
−c c

]
where a = , b = , and c = .

(2) Let T be the operator on R2 whose matrix representation is

[
4 −2
2 0

]
.

(a) Explain briefly why T is not diagonalizable.

Answer: .

(b) Find the diagonalizable and nilpotent parts of T . Answer: D =

[ ]
and

N =

[ ]

(3) Let T be the operator on R3 whose matrix representation is

1 1 0
0 1 0
0 0 0

.

(a) The characteristic polynomial of T is (λ)p(λ− 1)q where p = and q = .

(b) The minimal polynomial of T is (λ)r(λ− 1)s where r = and s = .

(c) Explain briefly how we know from (b) that T is not diagonalizable.

Answer: .

(d) The eigenspaceM1 (corresponding to the smaller eigenvalue of T ) is span{( , , 1)}
and the eigenspaceM2 (corresponding to the larger eigenvalue) is span{(1 , , )}.

(e) Explain briefly how we know from (d) that T is not diagonalizable.

Answer: .

(f) The generalized eigenspace W1 (corresponding to the smaller eigenvalue) is W1 =
span{( , , 1)} and the generalized eigenspace W2 (corresponding to the larger
eigenvalue) is span{(1, a, a) , (a, 1, a)}, where a = .

(g) The (matrix representing the) projection E1 of R3 along W2 onto W1 is

a a a
a a a
a a b


where a = and b = .

(h) The (matrix representing the) projection E2 of R3 along W1 onto W2 is

a b b
b a b
b b b


where a = and b = .

(i) The diagonalizable part of T is D =

a b b
b a b
b b b

 and the nilpotent part of T is

N =

b a b
b b b
b b b

 where a = and b = .
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(j) A matrix S which diagonalizes D is

a b a
a a b
b a a

 where a = and b = .

(k) The diagonal form Λ of the diagonalizable part D of T is

a a a
a b a
a a b

 where a =

and b = .

(l) Show that D commutes with N by computing DN and ND.

Answer: DN = ND =

a b a
a a a
a a a

 where a = and b = .

(4) Let T be the operator on R3 whose matrix representation is

1 1 0
0 1 1
0 0 0

.

(a) The characteristic polynomial of T is (λ)p(λ− 1)q where p = and q = .

(b) The minimal polynomial of T is (λ)r(λ− 1)s where r = and s = .

(c) Explain briefly how we know from (b) that T is not diagonalizable.

Answer: .

(d) The eigenspaceM1 (corresponding to the smaller eigenvalue of T ) is span{(1 , , )}
and the eigenspaceM2 (corresponding to the larger eigenvalue) is span{(1 , , )}

(e) Explain briefly how we know from (d) that T is not diagonalizable.

Answer: .

(f) The generalized eigenspace W1 (corresponding to the smaller eigenvalue) is W1 =
span{(1 , , )} and the generalized eigenspace W2 (corresponding to the
larger eigenvalue) is span{(1, a, a) , (a, 1, a)}, where a = .

(g) The (matrix representing the) projection E1 of R3 along W2 onto W1 is

a a b
a a −b
a a b


where a = and b = .

(h) The (matrix representing the) projection E2 of R3 along W1 onto W2 is

a b −a
b a a
b b b


where a = and b = .

(i) The diagonalizable part of T is D =

a b −a
b a a
b b b

 and the nilpotent part of T is

N =

b a a
b b b
b b b

 where a = and b = .

(j) A matrix S which diagonalizes D is

 a a b
−a b a
a b b

 where a = and b = .

(k) The diagonal form Λ of the diagonalizable part D of T is

a a a
a b a
a a b

 where a =

and b = .

(l) When comparing this exercise with the preceding one it may seem that the correct

answer to part (i) should be that the diagonalizable part of T is D =

1 0 0
0 1 0
0 0 0

 and
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the nilpotent part of [T ] is N =

0 1 0
0 0 1
0 0 0

, because D is diagonal, N is nilpotent,

and [T ] = D +N . Explain briefly why this is not correct.

Answer: .

(5) Let T be the operator on R3 whose matrix representation is

3 1 −1
2 2 −1
2 2 0

.

(a) The characteristic polynomial of T is (λ− 1)p(λ− 2)q where p = and q = .

(b) The minimal polynomial of T is (λ− 1)r(λ− 2)s where r = and s = .

(c) The eigenspaceM1 (corresponding to the smaller eigenvalue of T ) is span{(1 , , )}
and the eigenspaceM2 (corresponding to the larger eigenvalue) is span{(1 , , )}.

(d) The generalized eigenspace W1 (corresponding to the smaller eigenvalue) is
span{(1 , , )} and the generalized eigenspace W2 (corresponding to the larger
eigenvalue) is span{(1, a, b) , (0, b, a)}, where a = and b = .

(e) The diagonalizable part of T is D =

 a a b
b c b
−c c c

 and the nilpotent part of T is

N =

 c b −a
c b −a
2c b −c

 where a = , b = , and c = .

(f) A matrix S which diagonalizes D is

a a b
b a b
c b a

 where a = , b = , and

c = .

(g) The diagonal form Λ of the diagonalizable part D of T is

λ 0 0
0 µ 0
0 0 µ

 where λ =

and µ = .

(h) Show that D commutes with N by computing DN and ND.

Answer: DN = ND =

 a b −c
a b −c
2a b −a

 where a = , b = , and c = .

(6) Let T be the operator on R4 whose matrix representation is


0 1 0 −1
−2 3 0 −1
−2 1 2 −1
2 −1 0 3

.

(a) The characteristic polynomial of T is (λ− 2)p where p = .

(b) The minimal polynomial of T is (λ− 2)r where r = .

(c) The diagonalizable part of T is D =


a b b b
b a b b
b b a b
b b b a

 where a = and b = .

(c) The nilpotent part of T is N =


−a b c −b
−a b c −b
−a b c −b
a −b c b

 where a = , b = , and
c = .
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(7) Let T be the operator on R5 whose matrix representation is


1 0 0 1 −1
0 1 −2 3 −3
0 0 −1 2 −2
1 −1 1 0 1
1 −1 1 −1 2

.

(a) Find the characteristic polynomial of T .

Answer: cT (λ) = (λ+ 1)p(λ− 1)q where p = and q = .

(b) Find the minimal polynomial of T .

Answer: mT (λ) = (λ+ 1)r(λ− 1)s where r = and s = .

(c) Find the eigenspaces M1 and M2 of T .

Answer: M1 = span{(a, 1, b, a, a)} where a = and b = ; and

M2 = span{(1, a, b, b, b), (b, b, b, 1, a)} where a = and b = .
(d) Find the diagonalizable part of T .

Answer: D =


a b b b b
b a −c c −c
b b −a c −c
b b b a b
b b b b a

 where a = , b = , and c = .

(e) Find the nilpotent part of T .

Answer: N =


a a a b −b
a a a b −b
a a a a a
b −b b −b b
b −b b −b b

 where a = and b = .

(f) Find a matrix S which diagonalizes the diagonalizable part D of T . What is the
diagonal form Λ of D associated with this matrix?

Answer: S =


a b a a a
b a b a a
b a a b a
a a a b b
a a a a b

 where a = and b = .

and Λ =


−a 0 0 0 0
0 a 0 0 0
0 0 a 0 0
0 0 0 a 0
0 0 0 0 a

 where a = .
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16.3. Problems

(1) Explain in detail how to find the diagonalizable and nilpotent parts of the matrix A =−3 −4 5
6 8 −6
−2 −1 4

. Carry out the computations you describe.

(2) Consider the matrix A =

2 0 −2
0 0 2
0 2 0

. In each part below explain carefully what you are

doing.
(a) Find the characteristic polynomial for A.
(b) Find the minimal polynomial for A. What can you conclude from the form of the

minimal polynomial?
(c) Find the eigenspace associated with each eigenvalue of A. Do the eigenvectors of A

span R3? What can you conclude from this?
(d) Find the generalized eigenspaces W1 and W2 associated with the eigenvalues of A.
(e) Find the projection operators E1 of R3 onto W1 along W2 and E2 of R3 onto W2

along W1.
(f) Find the diagonalizable part D of A. Express D both as a single matrix and as a

linear combination of projections.
(g) Find a matrix S which diagonalizes D. What is the resulting diagonal form Λ of D?
(h) Find the nilpotent part N of A. What is the smallest power of N which vanishes?

(3) Let T be the operator on R3 whose matrix representation is

1 −1 0
1 3 −1
0 0 1

.

(a) Explain how to find the characteristic polynomial for T . Then carry out the compu-
tation.

(b) What is the minimal polynomial for a matrix? Find the minimal polynomial for T
and explain how you know your answer is correct. What can you conclude from the
form of this polynomial?

(c) Find the eigenspaces associated with each eigenvalue of T . Do the eigenvectors of T
span R3? What can you conclude from this?

(d) Find the generalized eigenspaces W1 and W2 associated with the eigenvalues of T .
(e) Find the projection operators E1 of R3 onto W1 along W2 and E2 of R3 onto W2

along W1.
(f) Find the diagonalizable part D of T . Express D both as a single matrix and as a

linear combination of projections.
(g) Find a matrix S which diagonalizes D. What is the resulting diagonal form Λ of D?
(h) Find the nilpotent part N of T . What is the smallest power of N which vanishes?
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16.4. Answers to Odd-Numbered Exercises

(1) (a) The single one-dimensional eigenspace does not span R2. (OR: the minimal polyno-
mial (λ− 3)2 has a second degree factor–see theorem 13.1.11.)

(b) 3, 0, 1

(3) (a) 1, 2
(b) 1, 2
(c) The minimal polynomial has a second degree factor (see theorem 13.1.11).
(d) 0, 0, 0, 0
(e) The eigenspaces do not span R3.
(f) 0, 0, 0
(g) 0, 1
(h) 1, 0
(i) 1, 0
(j) 0, 1
(k) 0, 1
(l) 0, 1

(5) (a) 1, 2
(b) 1, 2
(c) 0, 2, 1, 2
(d) 0, 2, 1, 0
(e) 1, 0, 2
(f) 1, 0, 2
(g) 1, 2
(h) 4, 0, 2

(7) (a) 1, 4
(b) 1, 2
(c) 0, 1, 1, 0
(d) 1, 0, 2
(e) 0, 1
(f) 0, 1, 1





Part 5

THE GEOMETRY OF INNER PRODUCT
SPACES





CHAPTER 17

COMPLEX ARITHMETIC

17.1. Background

Topics: complex arithmetic, absolute value and argument of a complex number, De Moivre’s
theorem.
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17.2. Exercises

(1) Re

(
2 + 3i

3− 4i

)
= .

(2) Im

(
2− 3i

2 + 3i

)
= .

(3)

∣∣∣∣21 + 7i

1− 2i

∣∣∣∣ = a
√
b where a = and b = .

(4) Arg(−2
√

3 + 2i) = .

(5) Let z =
2−
√

3− (1 + 2
√

3)i

1 + 2i
. Then z10 = a(1− bi) where a = and b = ,

|z10| = , and Arg z10 = .

(6) If z =
1√
2

(1− i), then z365 = a+ bi where a = and b = .

(7) The cube roots of −27 are a+ bi, a− bi, and c+ di where a = , b = ,
c = , and d = .

(8) The complex number w = 1 + 2i has 13 thirteenth roots. The sum of these roots is a+ bi
where a = and b = .

(9) Let z1 = (1 , i , 1 + i), z2 = (i , 0 , 1− i), and z3 = (−1 , 1 + 2i , 7 + 3i). Show that the set
{z1, z2, z3} is linearly dependent in C3 by finding scalars α and β such that αz1 + βz2 −
z3 = 0.

Answer: α = and β = .

(10) Let A =


1 1 1 i
1 i 1 i
0 1 + i 0 0
2 0 2 2i

. Then the rank of A is and the nullity of A is .

(11) Let A =

0 1 1
0 i 1
i i i

. Then A−1 =
1

2

−2a c −2b
a+ b −a− b c
a− b a+ b c

 where a = , b = ,

and c = .

(12) If A =

 i 0 −i
−2i 1 −1− 4i
2− i i 3

, then A−1 =

−a− ai b+ ai −a+ bi
a− di −c+ ai −a− di
−a+ bi b+ ai −a+ bi

 where a = ,

b = , c = , and d = .

(13) Consider the initial value problem: y′′ + 4y = 0 with the initial conditions y0 = 3 and
y′0 = 2.

(a) Express the differential equation in the form
du

dt
= Au where u = (y, z) and z = y′.

Then A is the matrix

[
a b
−c a

]
where a = , b = , and c = .

(b) The eigenvalues of A are and ; and the corresponding eigenvectors are
(1, a) and (1,−a) where a = .

(c) The diagonal form of A is Λ =

[
a 0
0 −a

]
where a = .
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(d) Find the diagonalizing matrix S for A. That is, find S so that Λ = S−1AS. Answer:

S =

[
1 1
a −a

]
where a = .

(e) Find the matrix eAt. Express your answer in terms of real trigonometric functions—

not complex exponentials. Answer: eAt =

[
f(t) a g(t)
−b g(t) f(t)

]
where a = ,

b = , f(t) = , and g(t) = .

(f) The solution to the initial value problem is y(t) = .

(14) Let A =

[
5 −12
2 −5

]
.

(a) Find the eigenvalues of A. Answer: λ1 = ; λ2 = .

(b) Find a factorization of A in the form SΛS−1 where Λ is a diagonal matrix.

Answer: S =


; Λ =


; S−1 =


.

(c) Find a square root of A. Answer:
√
A =



.
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17.3. Problems

(1) Explain in detail how to find all the cube roots of i.

(2) Show that three points z1, z2, and z3 in the complex plane form an equilateral triangle if
and only if

z1
2 + z2

2 + z3
2 = z1z2 + z1z3 + z2z3.
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17.4. Answers to Odd-Numbered Exercises

(1) − 6
25

(3) 7, 2

(5) 512,
√

3, 1024, −π
3

(7) 3
2 , 3

√
3

2 , −3, 0

(9) 2− i, 1 + 3i

(11) 1, i, 0

(13) (a) 0, 1, 4
(b) 2i, −2i, 2i
(c) 2i
(d) 2i
(e) 1

2 , 2, cos 2t, sin 2t,
(f) 3 cos 2t+ sin 2t





CHAPTER 18

REAL AND COMPLEX INNER PRODUCT SPACES

18.1. Background

Topics: inner products in real and complex vector spaces, the Schwarz inequality, the parallelogram
law, the Pythagorean theorem, the norm induced by an inner product, the metric induced by a norm,
orthogonal (or perpendicular) vectors, the angle between two vectors, rowspace and columnspace
of a matrix.

18.1.1. Definition. Let V be a (real or complex) vector space. A function which associates to
each pair of vectors x and y in V a (real or complex) number 〈x,y〉 (often written x ·y) is an inner
product (or a dot product) on V provided that the following four conditions are satisfied:

(a) If x, y, z ∈ V , then
〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.

(b) If x, y ∈ V and α ∈ C (or R), then

〈αx,y〉 = α〈x,y〉.
(c) If x, y ∈ V , then

〈x,y〉 = 〈y,x〉.
(d) For every nonzero x in V we have 〈x,x〉 > 0.

Conditions (a) and (b) show that an inner product is linear in its first variable. It is easy to see
that an inner product is conjugate linear in its second variable. (A complex valued function f
on V is conjugate linear if f(x + y) = f(x) + f(y) and f(αx) = αf(x) for all x, y ∈ V and
α ∈ C.) When a mapping is linear in one variable and conjugate linear in the other, it is often called
sesquilinear (the prefix “sesqui-” means “one and a half”). Taken together conditions (a)–(d)
say that the inner product is a positive definite conjugate symmetric sesquilinear form. When a
vector space has been equipped with an inner product we define the norm (or length) of a vector
x by

‖x‖ :=
√
〈x,x〉;

(Notice that this is same definition we used in 4.1.2 for vectors in Rn.)

18.1.2. Notation. There are many more or less standard notations for the inner product of two
vectors x and y. The two that we will use interchangeably in these exercises are x · y and 〈x,y〉.

18.1.3. Example. For vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) belonging to Rn define

〈x, y〉 =

n∑
k=1

xkyk .

Then Rn is an inner product space.

18.1.4. Example. For vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) belonging to Cn define

〈x, y〉 =
n∑
k=1

xkyk .

Then Cn is an inner product space.
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18.1.5. Example. Let l2 be the set of all square summable sequences of complex numbers. (A
sequence x = (xk)

∞
k=1 is square summable if

∑∞
k=1|xk|2 <∞.) (The vector space operations are

defined pointwise.) For vectors x = (x1, x2, . . . ) and y = (y1, y2, . . . ) belonging to l2 define

〈x, y〉 =
∞∑
k=1

xkyk .

Then l2 is an inner product space. (It is important to recognize that in order for this definition to
make sense, it must be verified that the infinite series actually converges.)

18.1.6. Example. For a < b let C([a, b]) be the family of all continuous complex valued functions
on the interval [a, b]. For every f , g ∈ C([a, b]) define

〈f, g〉 =

∫ b

a
f(x)g(x) dx.

Then C([a, b]) is an inner product space.

18.1.7. Definition. Let x and y be nonzero vectors in a real vector space V . Then ](x,y), the
angle between x and y, is defined by

](x,y) = arccos
〈x,y〉
‖x‖ ‖y‖

(Notice that this is the same definition as the one given in 4.1.3 for vectors in Rn.)

18.1.8. Definition. Two vectors x and y in an inner product space V are orthogonal (or
perpendicular) if 〈x,y〉 = 0. In this case we write x ⊥ y. Similarly if M and N are nonempty
subsets of V we write M ⊥ N if every vector in M is orthogonal to every vector in N . When one
of the sets consists of a single vector we write x ⊥ N instead of {x} ⊥ N . When M is a nonempty
subset of V we denote by M⊥ the set of all vectors x such that x ⊥ N . This is the orthogonal
complement of M .

18.1.9. Definition. A real valued function f on an inner product space V is uniformly contin-
uous if for every number ε > 0 there exists a number δ > 0 such that |f(x)− f(y)| < ε whenever
‖x− y‖ < δ in V .

The following result is one we have already seen for Rn (see 4.1.4).

18.1.10. Theorem (Cauchy-Schwarz inequality). If x and y are vectors in a (real or complex)
inner product space, then

|〈x,y〉| ≤ ‖x‖ ‖y‖ .
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18.2. Exercises

(1) In C3 let x = (3 + 2i, 1 − i, i) and y = (1 − 2i, 1 − i, 4 + i). Then ‖x‖ = ; ‖y‖ =
; and 〈x,y〉 = .

(2) In C2 let x = (2 − 4i, 4i) and y = (2 + 4i, 4). Then ‖x‖ = ; ‖y‖ = ; and
〈x,y〉 = .

(3) In C2 let x = (3− 2 i,
√

3 i) and y = (1 + i, 1− i). Then ‖x‖ = ; ‖y‖ = ; and
〈x,y〉 = 1−

√
a+ (

√
a− b) where a = and b = .

(4) Make the family of 2× 2 matrices of real numbers into an inner product space by defining

〈A,B〉 := tr(AtB) (see problem 7) for A, B ∈ M2,2(R). Let U =

[
1 4
−3 5

]
and V =[

α2 α− 1
α+ 1 −1

]
. Find all values of α such that U ⊥ V in the inner product space M2,2(R).

Answer: α = and .

(5) Let w =

(
i√
3
,
i√
3
,
i√
3

)
, x =

(
− 2i√

6
,
i√
6
,
i√
6

)
, y =

(
i√
6
,
i√
6
,− 2i√

6

)
, and

z =

(
0 ,− i√

2
,
i√
2

)
.

(a) Which three of these vectors form an orthonormal basis for C3?

Answer: , , and .
(b) Write (1, 0, 0) as a linear combination of the three basis vectors you chose in part (a).

(Use 0 as the coefficient of the vector which does not belong to the basis.)

Answer: (1, 0, 0) = − i√
a

w +
2 i√
2a

x + by + cz where a = , b = , and

c = .

(6) Find all real numbers α such that the angle between the vectors 2 i + 2 j + (α − 2) k and
2 i + (α− 2) j + 2 k is π

3 . Answer: α = and .

(7) Let f(x) = x and g(x) = x2 for 0 ≤ x ≤ 1. Then the cosine of the angle between f and

g in the inner product space C([0, 1]) of all continuous real valued functions on [0, 1] is
a

4
where a = .

(8) Let f(x) = x and g(x) = cosπx for 0 ≤ x ≤ 1. In the inner product space C([0, 1]) of all

continuous real valued functions on [0, 1] the cosine of the angle between f and g is −a
√
b

c2

where a = , b = , and c = .

(9) Let f(x) = x2 and g(x) = 1− cx where 0 ≤ x ≤ 1 and c is a constant. If c = , then
f ⊥ g in the inner product space C([0, 1]) of continuous real valued function on [0, 1].

(10) In R4 the subspace perpendicular to both (1, 4, 4, 1) and (2, 9, 8, 2) is the span of the vectors
(−4, a, b, a) and (−b, a, a, b) where a = and b = .

(11) A complex valued function f on the interval [−π, π] is said to be square integrable if∫ π
−π|f(x)|2 dx < ∞. Let F([−π, π]) be the family of all square integrable complex valued

functions on [−π, π]. This family is an inner product space under the usual pointwise
operations of addition and scalar multiplication and the inner product defined by

〈f ,g〉 =
1

2π

∫ π

−π
f(x)g(x) dx

for all f , g ∈ F([−π, π]). Actually the preceding sentence is a lie: to be correct we
should identify any two square integrable functions which differ only on a set of Lebesgue
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measure zero and work with the resulting equivalence classes. Then we have an inner
product space. What we actually have here is a so-called semi-inner product. For the
purposes of the current exercise, however, this correction turns out to be unimportant;
ignore it.

For each integer n (positive, negative, or zero) define a function en by

en(x) = einx for −π ≤ x ≤ π.

(a) Then each en belongs to F([−π, π]) and ‖en‖ = for every integer n.

(b) If m 6= n, then 〈em, en〉 = .

Now let f(x) =

{
0 if −π ≤ x < 0,

1 if 0 ≤ x ≤ π.
(c) Then 〈f , e0〉 = .

(d) If n is odd, then 〈f , en〉 = .

(e) If n is even but not zero, then 〈f , en〉 = .

(f) Write the sum of the middle eleven terms of the Fourier series for f in simplified form.
Hint: Use problem 8 in this chapter.

Answer:

5∑
n=−5

〈f , en〉en = a+b sinx+c sin 3x+d sin 5x where a= , b= ,

c = , and d = .
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18.3. Problems

(1) Prove that if x ∈ V and 〈x,y〉 = 0 for all y ∈ V , then x = 0.

(2) Let S, T : V → W be linear transformations between real inner product spaces. Prove
that if 〈Sv,w〉 = 〈Tv,w〉 for all v ∈ V and w ∈W , then S = T .

(3) Prove that if V is a complex inner product space and T ∈ L(V ) satisfies 〈Tz, z〉 = 0 for
all z ∈ V , then T = 0. Hint. In the hypothesis replace z first by x+y and then by x+ iy.

(4) Show that the preceding result does not hold for real inner product spaces.

(5) Let V be a complex inner product space and S, T ∈ L(V ). Prove that if 〈Sx,x〉 = 〈Tx,x〉
for all x ∈ V , then S = T .

(6) Prove the Schwarz inequality 18.1.10. Hint. Let α = 〈y,y〉 and β = −〈x,y〉 and expand
‖αx + βy‖2. This hint leads to a slick, easy, and totally unenlightening proof. Perhaps
you can find a more perspicuous one.

The polarization identity If x and y are vectors in a complex inner product space, then

〈x, y〉 = 1
4(‖x+ y‖2 − ‖x− y‖2 + i ‖x+ iy‖2 − i ‖x− iy‖2) .

What is the correct identity for a real inner product space?

(7) Let M2,2(R) be the vector space of all 2 × 2 matrices of real numbers. Show that this
space can be made into an inner product space by defining 〈A,B〉 := tr(AtB) for all A,
B ∈M2,2(R).

(8) Prove that for every real number θ

eiθ = cos θ + i sin θ .

Derive from this that cos θ = 1
2

(
eiθ + e−iθ

)
and sin θ = 1

2i

(
eiθ − e−iθ

)
.

(9) Let x and y be vectors in an inner product space. Prove that

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.
Give a geometric interpretation of this result.

(10) Show that the norm function ‖ · ‖ : V → R on an inner product space is uniformly contin-
uous.
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18.4. Answers to Odd-Numbered Exercises

(1) 4, 2
√

6, 2 + 12 i

(3) 4, 2, 3, 5

(5) (a) w, x, y
(b) 3, 0, 0

(7)
√

15

(9)
4

3

(11) (a) 1
(b) 0

(c)
1

2

(d) − i

nπ
(e) 0

(f)
1

2
,

2

π
,

2

3π
,

2

5π



CHAPTER 19

ORTHONORMAL SETS OF VECTORS

19.1. Background

Topics: orthonormal sets of vectors, orthonormal bases, orthogonal complements, orthogonal direct
sums, Gram-Schmidt orthonormalization, the QR-factorization of a matrix.

19.1.1. Definition. A set B of vectors in an inner product space is orthonormal if x ⊥ y
whenever x and y are distinct vectors in B and ‖x‖ = 1 for every x ∈ B. The set B is a
maximal!orthonormal set provided that it is orthonormal and the only orthonormal set which
contains B is B itself.

19.1.2. Theorem. Let B = {e1, . . . , en} be an orthonormal set in an inner product space V . Then
the following are equivalent.

(a) B is a maximal orthonormal set in V .
(b) If 〈x, ek〉 = 0 for k = 1, . . . , n, then x = 0.
(c) The span of B is all of V .
(d) If x ∈ V , then x =

∑n
k=1〈x, ek〉ek. (the Fourier series for x.)

(e) 〈x,y〉 =
∑n

k=1〈x, ek〉〈ek,y〉 for all x, y ∈ V .

(f) ‖x‖2 =
∑n

k=1|〈x, ek〉|2 for every x ∈ V .
(g) dimV = n.

19.1.3. Definition. An orthonormal set in an inner product space V which satisfies any (and hence
all) of the conditions listed in the preceding theorem is called an orthonormal basis for V .

19.1.4. Definition. An n × n matrix of real numbers is an orthogonal matrix if its column
vectors are an orthonormal basis for Rn. An n×n matrix of complex numbers is a unitary matrix
if its column vectors are an orthonormal basis for Cn.

19.1.5. Theorem (QR-factorization). If A is an n × n matrix of real numbers, then there exist
an orthogonal matrix Q and an upper triangular matrix R such that A = QR. If A is an n × n
matrix of complex numbers, then there exist a unitary matrix Q and an upper triangular matrix R
such that A = QR.

(For a proof of the preceding theorem see [9], pages 425–427.)

19.1.6. Definition. Let M and N be subspaces of an inner product space V . We say that the
space V is the orthogonal direct sum of M and N if M + N = V and M ⊥ N . In this case
we write

V = M ⊕N.

Caution: Since the same notation is used for direct sums of vector spaces and orthogonal direct
sums of inner product spaces, close attention should be paid to the context in which these concepts
arise. For example, if M is the x-axis and N is the line y = x in R2, is it true that R2 = M ⊕N?
Yes, if R2 is regarded as a vector space. No, if it is regarded as an inner product space.
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19.2. Exercises

(1) Use the Gram-Schmidt procedure to find an orthonormal basis for the subspace of R4

spanned by w1 = (1, 0, 0, 0), w2 = (1, 1, 1, 0), and w3 = (1, 2, 0, 1). The basis consists of

the vectors e1 = ( 1 , 0 , 0 , 0 ); e2 =
1

a
( 0 , 1 , 1 , b ); and e3 =

1

c
( b , 1 , −1 , 1 ) where

a = , b = , and c = .

(2) Let P4 = P4([0, 1]) be the vector space of polynomials of degree strictly less than 4 with
an inner product defined by

〈p,q〉 =

∫ 1

0
p(x)q(x) dx

for all p, q ∈ P4. Let w0(x) = 1, w1(x) = x, w2(x) = x2, and w3(x) = x3 for 0 ≤ x ≤
1. Use the Gram-Schmidt process to convert the ordered basis {w0,w1,w2,w3} to an
orthonormal basis {e0, e1, e2, e3} for P4.

Answer: e0(x) =

e1(x) =
√
a(bx− 1) where a = and b =

e2(x) =
√
a(bx2 − bx+ 1) where a = and b =

e3(x) =
√
a(bx3 − cx2 + dx− 1) where a = , b = ,

c = , and d =

(3) Find the QR factorization of A =

[
3 0
4 5

]
.

Answer: A = QR =
1

a

[
b −c
c b

] [
a c
0 b

]
where a = , b = , and c = .

(4) Let A =

0 0 1
0 1 1
1 1 1

. The QR-factorization of A is A = QR

where Q =


 and R =


.

(5) Let A =

1 4 −2
1 3 −1
1 2 −1

. The QR-factorization of A is A = QR

where Q =

a b −ab
a 0 2ab
a −b −ab

 and R =

3a 9a −4a
0 2b −b
0 0 ab

 where a = and b = .



19.3. PROBLEMS 129

19.3. Problems

(1) Let {e1, e2, . . . , en} be a finite orthonormal subset of an inner product space V and x ∈ V .
Show that

n∑
k=1

|〈x, ek〉|2 ≤ ‖x‖2.

Hint. Multiply out
〈
x−

∑n
k=1〈x, ek〉ek,x−

∑n
k=1〈x, ek〉ek

〉
.

(2) Let M be a subspace of an inner product space V .
(a) Show that M ⊆M⊥⊥.
(b) Prove that equality need not hold in (a).
(c) Show that if V is finite dimensional, then M = M⊥⊥.

(3) Let M and N be subspaces of an inner product space. Prove that

(M +N)⊥ = M⊥ ∩N⊥.

(4) Let M be a subspace of a finite dimensional inner product space V . Prove that V =
M ⊕M⊥.

(5) Give an example to show that the conclusion of the preceding problem need not hold in
an infinite dimensional space.

(6) Prove that if an inner product space V is the orthogonal direct sum M⊕N of two subspaces
M and N , then N = M⊥.

(7) Prove that if f is a linear functional on a finite dimensional inner product space V , then
there exists a unique vector a ∈ V such that

f(x) = 〈x,a〉

for every x ∈ V .

(8) In beginning calculus you found (by making use of the p-test) that the series
∞∑
k=1

1

k2

converges. But you were not given a means of discovering what the series converges to.
Now you have enough machinery to accomplish this.

We denote by L2[0, 2π] the vector space of all complex valued functions f defined on
the interval [0, 2π] such that ∫ 2π

0
|f(t)|2 dt <∞.

(As in exercise 11 of chapter 18 this isn’t quite correct: the members of L2 are technically
equivalence classes of functions. For the purposes of this problem, use the preceding
not-quite-right definition.)

On the space L2[0, 2π] we define the following inner product

〈f ,g〉 =
1

2π

∫ 2π

0
f(t)g(t) dt.

For each integer n (positive, negative, or zero) define the function en on [0, 2π] by

en(x) = einx

for 0 ≤ x ≤ 2π.

(a) Show that {en : n is an integer} is an orthonormal set in L2[0, 2π].
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In part (b) you may use without proof the following fact: for every function f in the
inner product space L2[0, 2π]

‖f‖2 =

∞∑
k=−∞

|〈f , ek〉|2 (∗)

That is, in L2[0, 2π] the square of the length of a vector is the sum of the squares of
its Fourier coefficients with respect to the orthonormal family given in part (a). This
is the infinite dimensional version of Parseval’s formula.

(b) Find the sum of the infinite series
∞∑
k=1

1

k2
. Hint. Apply (∗) to the function f(x) = x.
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19.4. Answers to Odd-Numbered Exercises

(1)
√

2, 0,
√

3

(3) 5, 3, 4

(5)
1√
3

,
1√
2





CHAPTER 20

QUADRATIC FORMS

20.1. Background

Topics: quadratic forms, quadric surfaces, positive (and negative) definite, positive (and negative)
semidefinite, indefinite.

20.1.1. Definition. A symmetric matrix A on a real inner product V is positive definite if
〈Ax,x〉 > 0 for every x 6= 0 in V . It is negative definite if 〈Ax,x〉 < 0 for every x 6= 0 in V . It
is indefinite if there are vectors x and y in V such that 〈Ax,x〉 > 0 and 〈Ay,y〉 < 0. Of course
an operator on a finite dimensional vector space is positive definite, negative definite, or indefinite
of its matrix representation is positive definite, etc.

The following useful result (and its proof) can be found on page 250 of [10].

20.1.2. Theorem. Let A be an n× n matrix. Then the following conditions are equivalent:

(a) A is positive definite;
(b) xtAx > 0 for every x 6= 0 in Rn;
(c) every eigenvalue λ of A is strictly positive;
(d) every leading principal submatrix Ak (k = 1, . . . , n) has strictly positive determinant; and
(e) when A has been put in echelon form (without row exchanges) the pivots are all strictly

positive.

In the preceding, the leading principal submatrix Ak is the k × k matrix which appears in the
upper left corner of A.
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20.2. Exercises

(1) Suppose that A is a 3× 3 matrix such that 〈Ax,x〉 = x1
2 + 5x2

2− 3x3
2 + 6x1x2− 4x1x3 +

8x2x3 for all x ∈ R3. Then A =

a b c
b d e
c e f

 where a = , b = , c = , d = ,

e = , and f = .

(2) A curve C is given by the equation 2x2 − 72xy + 23y2 = 50. What kind of curve is C?
Answer: It is a(n) .

(3) The equation 5x2 + 8xy + 5y2 = 1 describes an ellipse. The principal axes of the ellipse
lie along the lines y = and y = .

(4) The graph of the equation 13x2−8xy+7y2 = 45 is an ellipse. The length of its semimajor
axis is and the length of its semiminor axis is .

(5) Consider the equation 2x2 + 2y2 − z2 − 2xy + 4xz + 4yz = 3.

(a) The graph of the equation is what type of quadric surface?

Answer: .

(b) In standard form the equation for this surface is

u2 + v2 + w2 = .

(c) Find three orthonormal vectors with the property that in the coordinate system they
generate, the equation of the surface is in standard form.

Answer:
1√
6

( 1 , , ),
1√
2

( , , 0 ), and
1√
3

( 1 , , ).

(6) Determine for each of the following matrices whether it is positive definite, positive semi-
definite, negative definite, negative semidefinite, or indefinite.

(a) The matrix

 2 −1 −1
−1 2 −1
−1 −1 2

 is .

(b) The matrix

−2 1 1
1 −2 −1
1 −1 −2

 is .

(7) Determine for each of the following matrices whether it is positive definite, positive semi-
definite, negative definite, negative semidefinite, or indefinite.

(a) The matrix

1 2 3
2 5 4
3 4 9

 is .

(b) The matrix


1 2 0 0
2 6 −2 0
0 −2 5 −2
0 0 −2 3

 is .

(c) The matrix

0 1 2
1 0 1
2 1 0

2

is .

(8) Let B =

2 2 4
2 b 8
4 8 7

. For what range of values of b is B positive definite?

Answer: .
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(9) Let A =

a 1 1
1 a 1
1 1 a

. For what range of values of a is A positive definite?

Answer: .
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20.3. Problems

(1) You are given a quadratic form q(x, y, z) = ax2 + by2 + cz2 + 2dxy+ 2exz+ 2fyz. Explain
in detail how to determine whether the associated level surface q(x, y, z) = c encloses a
region of finite volume in R3 and, if it does, how to find that volume. Justify carefully all
claims you make. Among other things, explain how to use the change of variables theorem
for multiple integrals to express the volume of an ellipsoid in terms of the lengths of the
principal axes of the ellipsoid.

Apply the method you have developed to the equation

11x2 + 4y2 + 11z2 + 4xy − 10xz + 4yz = 8.
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20.4. Answers to Odd-Numbered Exercises

(1) 1, 3, −2, 5, 4, −3

(3) −x, x

(5) (a) hyperboloid of one sheet
(b) −1, 1
(c) 1, −2, 1, −1, 1, 1

(7) (a) indefinite
(b) positive definite
(c) positive definite

(9) a > 1





CHAPTER 21

OPTIMIZATION

21.1. Background

Topics: critical (stationary) points of a function of several variables; local (relative) maxima and
minima; global (absolute) maxima and minima.

21.1.1. Definition. Let f : Rn → R be a smooth scalar field (that is, a real valued function on
Rn with derivatives of all orders) and p ∈ Rn. The Hessian matrix (or second derivative
matrix) of f at p, denoted by Hf (p), is the symmetric n× n matrix

Hf (p) =

[
∂2f

∂xi∂xj
(p)

]n
i=1

n

j=1

=
[
fij(p)

]
.

21.1.2. Theorem (Second Derivative Test). Let p be a critical point of a smooth scalar field f
(that is, a point where the gradient of f is zero). If the Hessian matrix Hf is positive definite at
p, then f has a local minimum there. If Hf is negative definite at p, then f has a local maximum
there. If Hf is indefinite at p, then f has a saddle point there.
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21.2. Exercises

(1) Notice that the function f defined by f(x, y) = (x2 − 2x) cos y has a critical point (sta-
tionary point) at the point (1, π). The eigenvalues of the Hessian matrix of f are
and ; so we conclude that the point (1, π) is a (local
minimum, local maximum, saddle point).

(2) Use matrix methods to classify the critical point of the function

f(x, y) = 2x2 + 2xy + 2x+ y4 − 4y3 + 7y2 − 4y + 5

as a local maximum, local minimum, or saddle point.

(a) The only critical point is located at ( , ).

(b) It is a .

(3) Use matrix methods to classify the critical point of the function

f(x, y, z) =
1

2
x4 − xy + y2 − xz + z2 − x+ 3

as a local maximum, local minimum, or saddle point.

(a) The only critical point is located at ( , , ).

(b) It is a .

(4) Notice that the function f defined by f(x, y) = −1+4(ex−x)−5x sin y+6y2 has a critical
point (stationary point) at the origin. Since the eigenvalues of the Hessian matrix of f are

(both positive, both negative, of different signs) we conclude that
the origin is a (local minimum, local maximum, saddle point).

(5) Use matrix methods to classify each critical point of the function

f(x, y) = y3 − 4

3
x3 − 2y2 + 2x2 + y − 7

as a local maximum, local minimum, or saddle point.

Answer: ( 0 , 1
3 ) is a .

( 0 , ) is a .

( , 1
3 ) is a .

( , ) is a .

(6) Use matrix methods to classify each critical point of the function

f(x, y, z) = x2y − 4x− y sin z for 0 < z < π

as a local maximum, local minimum, or saddle point.

Answer: The critical points are (−1 , , ), which is a ;
and ( 1 , , ), which is a (local minimum, local max-
imum, saddle point).

(7) The function f defined by f(x, y) = x2y2−2x−2y has a stationary point at ( , ).
At this stationary point f has a (local minimum, local
maximum, saddle point).
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21.3. Problems

(1) Use matrix methods to classify each critical point of the function

f(x, y, z) = x3y + z2 − 3x− y + 4z + 5

as a local maximum, local minimum, or saddle point. Justify your conclusions carefully.

(2) Let f(x, y, z) = x2y − yez + 2x + z. The only critical point of f is located at (−1, 1, 0).
Use the second derivative test to classify this point as a local maximum, local minimum,
or saddle point. State the reasons for your conclusion clearly.

(3) Notice that the function f defined by f(x, y, z) = x2y + 2xy + y − yez−1 + 2x+ z + 7 has
a critical point (stationary point) at (−2, 1, 1). Use the second derivative test to classify
this point as a local maximum, local minimum, or saddle point. State the reasons for your
conclusion clearly.

(4) Explain in detail how to use matrix methods to classify each critical point of the function

f(x, y) = −1

2
xy +

2

x
− 1

y

as a local maximum, local minimum, or saddle point. Carry out the computations you
describe.
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21.4. Answers to Odd-Numbered Exercises

(1) −2, −1, local maximum

(3) (a) 1,
1

2
,

1

2
(b) local minimum

(5) saddle point, 1, local minimum, 1, local maximum, 1, 1, saddle point

(7) 1, 1, saddle point



Part 6

ADJOINT OPERATORS





CHAPTER 22

ADJOINTS AND TRANSPOSES

22.1. Background

Topics: adjoint of an operator, transpose of an operator, conjugate transpose.

22.1.1. Definition. Let T : V →W be a linear transformation between real inner product spaces.
If there exists a linear map T t : W → V which satisfies

〈Tv,w〉 = 〈v, T tw〉
for all v ∈ V and w ∈W , then T t is the transpose of T .

In connection with the definition above see problem 1.

22.1.2. Theorem. Let T : Rn → Rm be a linear transformation. Then the transpose linear trans-
formation T t exists. Furthermore, the matrix representation [T t] of this transformation is the
transpose of the matrix representation of T .

22.1.3. Definition. Let V be a real inner product space and T be an operator on V whose
transpose exists. If T = T t, then T is symmetric. If T commutes with its transpose (that is, if
TT t = T tT ) it is normal.

22.1.4. Definition. If
[
aij
]

is an m× n matrix, its conjugate transpose is the n×m matrix[
aji
]
.

22.1.5. Definition. Let T : V → W be a linear transformation between complex inner product
spaces. If there exists a linear map T ∗ : W → V which satisfies

〈Tv,w〉 = 〈v, T ∗w〉
for all v ∈ V and w ∈ W , then T ∗ is the adjoint (or conjugate transpose, or Hermitian
conjugate) of T . (In many places, T ∗ is denoted by TH or by T †.)

22.1.6. Theorem. Let T : Cn → Cm be a linear transformation. Then the adjoint linear trans-
formation T ∗ exists. Furthermore, the matrix representation [T ∗] of this transformation is the
conjugate transpose of the matrix representation of T .

22.1.7. Definition. Let V be a complex inner product space and T be an operator on V whose
adjoint exists. If T = T ∗, then T is self-adjoint (or Hermitian). If T commutes with its adjoint
(that is, if TT ∗ = T ∗T ) it is normal. A matrix is normal if it is the representation of a normal
operator.

22.1.8. Definition. Let V and W be inner product spaces. We make the vector space V ⊕W into
an inner product space as follows. For v1,v2 ∈ V and w1,w2 ∈W let

〈 (v1,w1), (v2,w2) 〉 := 〈v1,v2〉+ 〈w1,w2〉.
(It is an easy exercise to verify that this is indeed an inner product on V ⊕W .)
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22.2. Exercises

(1) Let C([0, 1],C) be the family of all continuous complex valued functions on the inter-
val [0, 1]. The usual inner product on this space is given by

〈f ,g〉 =

∫ 1

0
f(x)g(x) dx.

Let φ be a fixed continuous complex valued function on [0, 1]. Define the operator Mφ on
the complex inner product space C([0, 1],C) by Mφ(f) = φf . Then

Mφ
∗ = .

(2) Let A =

[
3− i 2 + 2i

1

1− i
3i

]
. Find Hermitian (that is, self-adjoint) matrices B and C such

that A = B + iC. Hint. Consider A±A∗.

Answer: B =
1

a

[
4c b+ c i

b− c i d

]
and C =

1

a

[
−a b− c i
b+ c i 4c

]
, where a = ,

b = , c = , and d = .

(3) Let P3 be the space of polynomial functions of degree strictly less than 3 defined on the in-

terval [0, 1]. Define the inner product of two polynomials p, q ∈ P3 by 〈p, q〉 =
∫ 1

0 p(t)q(t) dt.
Then the matrix representation of the transpose of the differentiation operator D on the

space P3 (with respect to its usual basis {1, t, t2}) is


. Hint. The

answer is not the transpose of the matrix representation of D.

(4) Let V be a complex inner product space. Define an operator T : V ⊕ V → V ⊕ V by

T (x,y) = (y,−x).

Then T ∗(u,v) =( , ).
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22.3. Problems

(1) Let T : V → W be a linear map between real inner product spaces. If S : W → V is a
function which satisfies

〈Tv,w〉 = 〈v, Sw〉
for all v ∈ V and all w ∈W , then S is linear (and is therefore the transpose of T ).

(2) Prove theorem 22.1.2. Show that, in fact, every linear map between finite dimensional real
inner product spaces has a transpose.

(3) Let T be a self-adjoint operator on a complex inner product space V . Prove that 〈Tx,x〉
is real for every x ∈ V .

(4) Let T be an operator on a complex inner product space whose adjoint T ∗ exists. Prove
that T ∗T = 0 if and only if T = 0.

(5) Let V be a complex inner product space and let φ be defined on the set A(V ) of operators
on V whose adjoint exists by

φ(T ) = T ∗ .

Show that if S, T ∈ A(V ) and α ∈ C, then (S + T )∗ = S∗ + T ∗ and (αT )∗ = αT ∗. Hint.
Use problem 5 in chapter18.
Note: Similarly, if V is a real inner product space, A(V ) is the set of operators whose
transpose exists, and φ(T ) := T t, then φ is linear.

(6) Let T be a linear operator on a complex inner product space V . Show if T has an adjoint,
then so does T ∗ and T ∗∗ = T . Hint: Use problem 5 in chapter 18. (Here T ∗∗ means(
T ∗
)∗

.)
Note: The real inner product space version of this result says that if T is an operator
on a real inner product space whose transpose exists, then the transpose of T t exists and
T tt = T .

(7) Let S and T be operators on a complex inner product space V . Show that if S and T
have adjoints, then so does ST and (ST )∗ = T ∗S∗. Hint. Use problem 5 in chapter 18.
Note: The real inner product space version of this says that if S and T are operators
on a real inner product space and if S and T both have transposes, then so does ST and
(ST )t = T tSt.

(8) Let A : V → V be an operator on a real inner product space. Suppose that At exists and
that it commutes with A (that is, suppose AAt = AtA). Show that kerA = kerAt.

(9) Let A and B be Hermitian operators on a complex inner product space. Prove that AB
is Hermitian if and only if AB = BA.

(10) Show that if T : V →W is an invertible linear map between complex inner product spaces
and both T and T−1 have adjoints, then T ∗ is invertible and (T ∗)−1 = (T−1)∗.
Note: The real inner product space version of this says that if T : V →W is an invertible
linear map between real inner product spaces and both T and T−1 have transposes, then
T t is invertible and (T t)−1 = (T−1)t.

(11) Every eigenvalue of a self-adjoint operator on a complex inner product space is real. Hint.
Let x be an eigenvector associated with an eigenvalue λ of an operator A. Consider λ‖x‖2.

(12) Let A be a self-adjoint operator on a complex inner product space. Prove that eigenvectors
associated with distinct eigenvalues of A are orthogonal. Hint. Use problem 11. Let x
and y be eigenvectors associated with distinct eigenvalues λ and µ of A. Start your proof
by showing that λ〈x, y〉 = µ〈x, y〉.
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22.4. Answers to Odd-Numbered Exercises

(1) M
φ

(3)

−6 2 3
12 −24 −26
0 30 30





CHAPTER 23

THE FOUR FUNDAMENTAL SUBSPACES

23.1. Background

Topics: column space; row space; nullspace; left nullspace, lead variables and free variables in a
matrix, rank, row rank and column rank of as matrix.

23.1.1. Definition. A linear transformation T : Rn → Rm (and its associated standard matrix
[T ]) have four fundamental subspaces: the kernels and ranges of T and T t. Over the years a rather
elaborate terminology has grown up around these basic notions.

The nullspace of the matrix [T ] is the kernel of the linear map T .
The left nullspace of the matrix [T ] is the kernel of the linear map T t.
The column space of [T ] is the subspace of Rm spanned by the column vectors of the ma-

trix [T ]. This is just the range of the linear map T .
And finally, the row space of [T ] is the subspace of Rn spanned by the row vectors of the

matrix [T ]. This is just the range of the linear map T t.
For a linear transformation T : Cn → Cm the terminology is the same. EXCEPT: in the

preceding five paragraphs each appearance of “T t ” must be replaced by a “T ∗ ” (and, of course,
Rn by Cn and Rm by Cm).

23.1.2. Definition. The row rank of a matrix is the dimension of its row space and the column
rank of a matrix is the dimension of its column space.

23.1.3. Proposition. The rank of a matrix A is the dimension of the largest square submatrix of
A with nonzero determinant.

Two useful facts that you may wish to keep in mind are:

(i) row equivalent matrices have the same row space (for a proof see [8], page 56); and
(ii) the row rank of a matrix is the same as its column rank (for a proof see [8], page 72).

Note that according to the second assertion the rank of a linear map T , the row rank of its matrix
representation [T ], and the column rank of [T ] are all equal.

23.1.4. Theorem (Fundamental Theorem of Linear Algebra). If T is an operator on a finite
dimensional complex inner product space, then

kerT = (ranT ∗)⊥.

23.1.5. Corollary. If T is an operator on a finite dimensional complex inner product space, then

kerT ∗ = (ranT )⊥.

23.1.6. Corollary. If T is an operator on a finite dimensional complex inner product space, then

ranT = (kerT ∗)⊥.

23.1.7. Corollary. If T is an operator on a finite dimensional complex inner product space, then

ranT ∗ = (kerT )⊥.
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Note: With the obvious substitutions of T t for T ∗, the preceding theorem and its three corollaries
remain true for finite dimensional real inner product spaces.
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23.2. Exercises

(1) Let T : C3 → C3 be the operator whose matrix representation is

[T ] =

 1 i −1
1 + i 3− i −2
1− 2i −6 + 5i 1

 .
(a) The kernel of T (the nullspace of [T ]) is the span of

{( , , 10 ) }.

(b) The range of T (the column space of [T ]) is the span of

{ ( 1 , 0 , ) , ( 0 , 1 , ) }.

(c) The kernel of T ∗ (the left nullspace of T ∗) is the span of

{ ( 3 , , ) }.

(d) The range of T ∗ (the row space of [T ])is the span of

{ ( 10 , 0 , ), ( 0 , 10 , ) }.

(2) Find a basis for each of the four fundamental subspaces associated with the matrix

A =

1 2 0 1
0 1 1 0
1 2 0 1

 .
(a) The column space of A is the plane in R3 whose equation is .

It is the span of { ( 1 , 0 , ) , ( 0 , 1 , ) }.
(b) The nullspace of A is the span of { ( , -1 , , 0 ) , ( , 0 , 0 , 1 ) }.
(c) The row space of A is the span of { ( 1 , 0 , , 1 ) , ( 0 , , 1 , 0 ) }.
(d) The left nullspace of A is the line in R3 whose equations are = = 0.

It is the span of { ( , , 1 ) }.

(3) Let A =

1 2 0 2 −1 1
3 6 1 1 −2 1
5 10 1 5 −4 3

.

(a) Find a basis for the column space of A.

Answer:

{ ( 1 , 0 , ) , ( 0 , , 1 ) }.

(b) The column space of A is a plane in R3. What is its equation?

Answer: .

(c) The dimension of the row space of A is .

(d) Fill in the missing coordinates of the following vector so that it lies in the row space
of A.

(4, , 6 , , , ).

(e) The dimension of the nullspace of A is .

(f) Fill in the missing coordinates of the following vector so that it lies in the nullspace
of A.

( , 1 , , 1 , 1, 1 ) .
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(4) Let T : R5 → R3 be defined by

T (v, w, x, y, z) = (v − x+ z, v + w − y, w + x− y − z).

(a) Find the matrix representation of T .

(b) The kernel of T (the nullspace of [T ]) is the span of

{ ( , , 1 , 0 , 0) , ( 0 , 1 , 0 , 1 , 0 ) , ( -1 , 1 , 0 , , 1 ) }.

(c) The range of T (the column space of [T ]) is the span of

{ ( 1 , , -1 ) , ( 0 , 1 , ) }.

Geometrically this is a .

(d) The range of T t (the row space of [T ]) is the span of

{ ( 1 , 0 , , 0 , 1 ) , ( , , , -1 , -1 ) }.

(e) The kernel of T t (the left nullspace of [T ]) is the span of

{ ( 1 , , ) }.

Geometrically this is a .

(5) Let A be the matrix


1 0 2 0 −1
1 2 4 −2 −1
0 1 1 −1 0
2 3 7 −3 −2

. Find the following subspaces associated with A.

(a) The column space of A is the span of

{ (1 , 0 , -1/2 , ) , (0 , 1 , , ) }.

(b) The row space of A is the span of

{ (1 , 0 , , 0 , ) , (0 , 1 , 1 , , 0 ) }.

(c) The nullspace of A is the span of

{ ( , -1 , 1 , 0 , 0) , ( 0 , 1 , 0 , , 0 ) , ( 1 , 0 , 0 , , ) }.

(d) The nullspace of At is the span of

{ ( , , 1 , 0 ) , (-1/2 , , 0 , 1 )}.

(6) Let A =


1 −2 −1 3 2
−2 4 2 −6 −4
5 −10 −1 15 0
3 −6 1 9 −4
3 −6 −1 9 1
0 0 2 0 −5

.

(a) The nullspace of A is the span of

{(2 , 1 , 0 , 0 , 0) , ( , 0 , 0 , 1 , 0) , ( , 0 , , 0 , 1)}.
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(b) The row space of A is the span of

{(1 , −2 , 0 , , −1/2 ) , (0 , 0 , 1 , , )}.

(c) The column space of A is the span of

{(1 , −2 , 0 , , 1/2 , ) , (0 , 0 , 1 , , , 1/2)}.

(d) The left nullspace of A is the span of

{(2, , 0,−1, 1, 0, 0) , ( , 1, 0, 0, 0, 0) , (−1/2, 0, , 0, 1, 0) , ( , 0,−1/2, 0, 0, 1)}

(7) Let A =

1 2 1
2 4 3
3 6 4

.

(a) Fill in coordinates of the following vector x so that it is perpendicular to the rowspace
of A. Answer: x = (10, , ) .

(b) Fill in coordinates of the following vector y so that it is perpendicular to the columnspace
of A. Answer: y = (3, , ) .

(8) In this exercise we prove a slightly different version of the fundamental theorem of linear
algebra than the one given in theorem 23.1.4. Here we work with real inner product
spaces and the scope of the result is not restricted to finite dimensional spaces, but we
must assume that the linear map with which we are dealing has a transpose.

23.2.1. Theorem (Fundamental theorem of linear algebra). Suppose that V and W are
arbitrary real inner product spaces and that the linear transformation T : V → W has a
transpose. Then

kerT =
(
ranT t

)⊥
.

We prove the preceding theorem. For each step in the proof give the appropriate
reason. Choose from the following list.

DK Definition of “Kernel”

DO Definition of “Orthogonal”

DOC Definition of “Orthogonal Complement”

DR Definition of “Range”

DT Definition of “Transpose”

H Hypothesis

PIP Elementary Property of Inner Products

Proof. We must show two things: (i) kerT ⊆ (ranT t)⊥ and (ii) (ranT t)⊥ ⊆ kerT .
To prove (i) we suppose that x ∈ kerT and prove that x ∈ (ranT t)⊥. Let v be a vector

in ranT t. Then there exists a vector w in W such that v = T tw (reason: ). We
compute the inner product of x and v.

〈x, v〉 = 〈x, T tw〉
= 〈Tx,w〉 (reason: )

= 〈0, w〉 (reason: and )

= 0 (reason: )

From this we infer that x ⊥ v (reason: ) and consequently that x ∈ (ranT t)⊥

(reason: ).
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To prove the converse we suppose that x ∈ (ranT t)⊥ and show that x ∈ kerT . We
know that x ⊥ ranT t (reason: and ). If w ∈W then the vector T tw belongs
to ranT t (reason: ); so x ⊥ T tw for all w ∈W . Thus for all w ∈W

0 = 〈x, T tw〉 (reason: )

= 〈Tx,w〉 (reason: )

It follows from this that Tx = 0 (reason: ). That is, x ∈ kerT (reason: ).
�

(9) The matrix

[
x y z
y 1 x

]
has rank one if and only if the point (x, y, z) lies on the parametrized

curve r(t) = ( , t , ) in R3. Hint. Use proposition 23.1.3.

(10) Let A be the 3 × 4 matrix whose nullspace is the subspace of R4 spanned by the vectors
(1, 0, 1, 0) and (0, 1, 1, 0). Then the vectors ( , , , 0 ) and ( 0 , , , )
form an orthonormal basis for the row space of A.

(11) Let T : R3 → R2 be the linear transformation whose matrix representation is

[
1 0 2
1 1 4

]
and let x = (5, 4,−9).

(a) Find u ∈ kerT and v ∈ ranT t such that x = u + v.

Answer: u = ( , , ) and v = ( , , ).

(b) Find y ∈ ranT and z ∈ kerT t such that Tx = y + z.

Answer: y = ( , ) and z = ( , ).
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23.3. Problems

(1) Let T : R5 → R4 be a linear transformation whose matrix representation is

[T ] =


1 2 0 −5 3
−2 −4 3 1 0
−1 −2 3 −4 3
1 2 3 −14 9

 .

Gauss-Jordan reduction applied to [T ] yields the matrix B =


1 2 0 −5 3
0 0 1 −3 2
0 0 0 0 0
0 0 0 0 0

 and ap-

plied to the transpose of [T ] yields C =


1 0 1 3
0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

.

(a) From the matrices above we can read off the dimension of the range of T and write
down a basis for it. Explain carefully.

(b) From the matrices above we can read off the dimension of the range of the transpose
of T and write down a basis for it. Explain carefully.

(c) From the matrices above we can write down two equations which a vector (v, w, x, y, z)
must satisfy to be in the kernel of T . Explain carefully. What are the equations?
Also explain carefully how we obtain from these equations the dimension of the kernel
of T and find a basis for it. Carry out the calculation you describe.

(d) From the matrices above we can write down two equations which a vector (w, x, y, z)
must satisfy to be in the kernel of the transpose of T . Explain carefully. What are the
equations? Also explain carefully how we obtain from these equations the dimension
of the kernel of T t and find a basis for it. Carry out the calculation you describe.

(2) Let T : R6 → R3 be a linear transformation whose matrix representation is

[T ] =

1 2 0 2 −1 1
3 6 1 1 −2 1
5 10 1 5 −4 3

 ,
Gauss-Jordan reduction applied to [T ] yields the matrix B =

1 2 0 2 −1 1
0 0 1 −5 1 −2
0 0 0 0 0 0

,

and applied to the transpose of [T ] yields C =


1 0 2
0 1 1
0 0 0
0 0 0
0 0 0
0 0 0

.

(a) From the matrices above we can read off the dimension of the range of T and write
down a basis for it. Explain carefully.

(b) From the matrices above we can read off the dimension of the range of the transpose
of T and write down a basis for it. Explain carefully.

(c) From the matrices above we can write down two equations which a vector (u, v, w, x, y, z)
in R6 must satisfy to be in the kernel of T . Explain carefully. What are the equa-
tions? Also explain carefully how we obtain from these equations the dimension of
the kernel of T and find a basis for it. Carry out the calculation you describe.

(d) From the matrices above we can write down two equations which a vector (x, y, z) in
R3 must satisfy to be in the kernel of the transpose of T . Explain carefully. What
are the equations? Also explain carefully how we obtain from these equations the



156 23. THE FOUR FUNDAMENTAL SUBSPACES

dimension of the kernel of T t and find a basis for it. Carry out the calculation you
describe.

(3) Let T : R6 → R5 be the linear transformation whose matrix representation is

A = [T ] =


1 2 −1 −2 3 0
0 0 0 1 −1 2
2 4 −2 −4 7 −4
0 0 0 −1 1 −2
3 6 −3 −6 7 8

 .
You may use the following fact: the reduced row echelon forms of the augmented matrix
[A |b ] and of At are

B =


1 2 −1 0 0 8 3b1 + 2b2 − b3
0 0 0 1 0 −2 −2b1 + b2 + b3
0 0 0 0 1 −4 −2b1 + b3
0 0 0 0 0 0 b2 + b4
0 0 0 0 0 0 −7b1 + 2b3 + b5

 and C =


1 0 0 0 7
0 1 0 −1 0
0 0 1 0 −2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , respectively.

Suppose that x =


t
u
v
w
y
z

.

(a) What are the free variables of the system Ax = 0 and which are the lead variables?
How do you know?

(b) What is the rank of A? Why?
(c) Write a general solution to the homogeneous equation Ax = 0 as a linear combination

of vectors in R6 using the free variables as coefficients. Explain.
(d) Explain how to find the dimension of and a basis for the kernel of T . Do so.
(e) Explain how to find the dimension of and a basis for the range of T . Do so.

(f) What conditions must the vector b =


b1
b2
b3
b4
b5

 satisfy in order that the nonhomogeneous
equation Ax = b have solutions?

(g) Find, if possible, the general solution to the nonhomogeneous equation Ax =


1
−3
2
3
3

.

(Write your answer as a general solution to the homogeneous equation plus a partic-
ular solution.)

(h) Explain how to find the dimension of and a basis for the range of T t. Do so.
(i) Explain how to find the dimension of and a basis for the kernel of T t. Do so.

(4) Prove the three corollaries to the fundamental theorem of linear algebra 23.1.4 for complex
inner product spaces.
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23.4. Answers to Odd-Numbered Exercises

(1) (a) 9− 3 i, 3− i
(b) 3, −2
(c) −2, −1
(d) −9− 3 i, −3− i

(3) (a) 2, 1
(b) 2x+ y − z = 0
(c) 2
(d) 8, −22, 2, −8
(e) 4
(f) −4, 6

(5) (a)
1

2
,

1

2
,

3

2
(b) 2, −1, −1
(c) −2, 1, 0, 1

(d)
1

2
, −1

2
, −3

2

(7) (a) −5, 0
(b) 3, −3

(9) t2, t3

(11) (a) 6, 6, −3, −1, −2, −6
(b) −13, −27, 0, 0





CHAPTER 24

ORTHOGONAL PROJECTIONS

24.1. Background

Topics: orthogonal and unitary operators, orthogonal projections

24.1.1. Definition. A linear operator T : V → V on a real inner product space is orthogonal if
it is invertible and T t = T−1. A matrix is orthogonal if it is the representation of an orthogonal
operator. An operator T on a complex inner product space V is unitary if it is invertible and
T ∗ = T−1. A matrix is unitary if it is the representation of a unitary operator.

The definitions for orthogonal and unitary matrices given above differs from the ones offered
in 19.1.4. In problem 8 you are asked to show that in both cases the definitions are equivalent.

24.1.2. Definition. An operator T on an inner product space V is an isometry if it preserves
the distance between vectors. Equivalently, T is an isometry if ‖Tx‖ = ‖x‖ for every x ∈ V .

24.1.3. Definition. Let V be an inner product space and suppose that it is the vector space direct
sum of M and N . Then the projection EMN : V → V is an orthogonal projection if M ⊥ N
(that is if V is the orthogonal direct sum of M and N).

24.1.4. Proposition. A projection E on a complex inner product space V is an orthogonal pro-
jection if and only if E is self-adjoint. On a real inner product space a projection is orthogonal if
and only if it is symmetric.

For a proof of (the real case of) this result see exercise 4.

24.1.5. Definition. We say that a linear operator T on an inner product space V is positive
(and write T ≥ 0) if 〈Tx,x〉 ≥ 0 for all x ∈ V . If S and T are two linear operators on V , we say
that Q dominates (or majorizes) P if Q− P ≥ 0. In this case we write P ≤ Q.
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24.2. Exercises

(1) The matrix representation of the orthogonal projection operator taking R3 onto the plane

x+ y + z = 0 is


.

(2) Find a vector u = (u1, u2, u3) in C3 such that the matrix


1
m

−1
m u1

i
m

−i
m u2

1−i
m

1−i
m u3

 is unitary.

Answer: u =
1√
n

(2 + ai, 3− bi, c+ di) where a = , b = , c = , d = ,

m = , and n = .

(3) The orthogonal projection of the vector (2, 0,−1, 3) on the plane spanned by (−1, 1, 0, 1)
and (0, 1, 1, 1) in R4 is 1

5 (1, a, b, a) where a = and b = . The matrix which

implements this orthogonal projection is
1

5


c −d e −d
−d e d e
e d c d
−d e d e

 where c = , d = ,

and e = .

(4) Let E be a projection operator on a real inner product space. Below we prove (the real
case of) proposition 24.1.4: that E is an orthogonal projection if and only if E = Et. Fill
in the missing reasons and steps. Choose reasons from the following list.

(DK) Definition of “kernel”.

(DL) Definition of “linear”.

(DO) Definition of “orthogonal”.

(DOP) Definition of “orthogonal projection”.

(DT) Definition of “transpose”.

(GPa) Problem 5 in chapter 6.

(GPb) Problem 1 in chapter 11.

(GPc) Problem 5 in chapter 18.

(GPd) Problem 6 in chapter 22.

(H1) Hypothesis that M ⊥ N .

(H2) Hypothesis that E = Et.

(PIP) Elementary property of Inner Products.

(Ti) Theorem 11.1.2, part (i).

(Tiii) Theorem 11.1.2, part (iii).

(Tiv) Theorem 11.1.2, part (iv).

(VA) Vector space arithmetic (consequences of vector space axioms, etc.)

Let E = EMN be a projection operator on a real inner product space V = M ⊕ N .
Suppose first that E is an orthogonal projection. Then M ⊥ N (reason: ) . If x
and y are elements in V , then there exist unique vectors m, p ∈ M and n, q ∈ N such
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that x = m + n and y = p + q (reason: ) . Then

〈Ex,y〉 = 〈E(m + n),p + q〉
= 〈Em + En,p + q〉 reason: and

= 〈0 + En,p + q〉 reason: and

= 〈En,p + q〉 reason:

= 〈n,p + q〉 reason: and

= 〈n,p〉+ 〈n,q〉 reason:

= 0 + 〈n,q〉 reason: and

= 〈m,q〉+ 〈n,q〉 reason: and

= 〈x,q〉 reason:

= 〈x, Eq〉 reason: and

= 〈x,0 + Eq〉 reason:

= 〈x, Ep + Eq〉 reason: and

= 〈x, E(p + q)〉 reason: and

= 〈x, Etty〉 reason:

= 〈Etx,y〉 reason: .

From this we conclude that E = Et (reason: ) .
Conversely, suppose that E = Et. To show that M ⊥ N it is enough to show that

m ⊥ n for arbitrary elements m ∈M and n ∈ N .

〈n,m〉 = 〈En,m〉 reason: and

= 〈n, Etm〉 reason:

= 〈n, Em〉 reason:

= 〈n,0〉 reason: and

= 0 reason:

Thus m ⊥ n (reason: ) .

Note: Of course, the complex inner product space version of the preceding result says that
if E is a projection operator on a complex inner product space, then E is an orthogonal
projection if and only if it is self-adjoint.

(5) Let P be the orthogonal projection of R3 onto the subspace spanned by the vectors (1, 0, 1)

and (1, 1,−1). Then [P ] =
1

6

a b c
b b −b
c −b a

 where a = , b = , and c = .

(6) Find the image of the vector b = (1, 2, 7) under the orthogonal projection of R3 onto the

column space of the matrix A =

 1 1
2 −1
−2 4

.

Answer: ( , , ).

(7) Let u = (3,−1, 1, 4, 2) and v = (1, 2,−1, 0, 1). Then the orthogonal projection of u onto
v is

( , , , , ).
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(8) Let u = (8,
√

3,
√

7,−1, 1) and v = (1,−1, 0, 2,
√

3). Then the orthogonal projection of u

onto v is
a

b
v where a = and b = .

(9) Let u = (5, 4, 3, 1
2) and v = (1, 2, 0,−2). Then the orthogonal projection of u onto v is

a

b
v where a = and b = .

(10) Find the point q in R3 on the ray connecting the origin to the point (2, 4, 8) which is
closest to the point (1, 1, 1).

Answer: q =
1

3
( , , ) .

(11) Let e1 =
(

2
3 ,

2
3 ,−

1
3

)
and e2 =

(
−1

3 ,
2
3 ,

2
3

)
be vectors in R3. Notice that {e1, e2} is an

orthonormal set.

(a) Find a vector e3 whose first coordinate is positive such that B = {e1, e2, e3} is an

orthonormal basis for R3. Answer:
1

3
( , , ).

(b) Suppose that x is a vector in R3 whose Fourier coefficients with respect to the basis B
are: 〈x, e1〉 = −2; 〈x, e2〉 = −1; and 〈x, e3〉 = 3. Then x = ( , , ).

(c) Let y be a vector in R3 whose Fourier coefficients with respect to B are

〈y, e1〉 =

√
8−
√

37;

〈y, e2〉 =

√
5−
√

13; and

〈y, e3〉 =

√
3 +
√

13 +
√

37.

Then the length of the vector y is .

(d) The orthogonal projection of the vector b = (0, 3, 0) onto the plane spanned by e1

and e2 is
2

3
( , , ).

(e) The orthogonal projection of the vector b = (0, 3, 0) onto the line spanned by e3 is
1

3
( , , ).

(f) What vector do you get when you add the results of the projections you found in
parts (d) and (e)? Answer: ( , , ).
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24.3. Problems

(1) Prove that an operator T : V → V on a finite dimensional real inner product space V is
orthogonal if and only if it is an isometry. Similarly, on a finite dimensional complex inner
product space an operator is unitary if and only if it is an isometry.

(2) Prove that an operator T : V → V on a finite dimensional real inner product space V
is orthogonal if and only if T tT = I. What is the corresponding necessary and suffi-
cient condition on a finite dimensional complex inner product space for an operator to be
unitary?

(3) Show that if an operator U on a complex inner product space is both Hermitian and
unitary, then σ(U) ⊆ {−1, 1}.

(4) Let P and Q be orthogonal projections on a real inner product space. Show that their
sum P + Q is an orthogonal projection if and only if PQ = QP = 0. Hint. Use proposi-
tion 24.1.4.

(5) Explain in detail how to find the matrix which represents the orthogonal projection of R3

onto the plane x+ y − 2z = 0. Carry out the computation you describe.

(6) Let P and Q be orthogonal projection operators on a real inner product space V .
(a) Show that the operator PQ is an orthogonal projection if and only if P commutes

with Q.
(b) Show that if P commutes with Q, then

ran(PQ) = ranP ∩ ranQ .

Hint. To show that ranP ∩ ranQ ⊆ ran(PQ) start with a vector y in ranP ∩ ranQ
and examine PQy.

(7) Let P and Q be orthogonal projections on an inner product space V . Prove that the
following are equivalent:
(a) P ≤ Q;
(b) ‖Px‖ ≤ ‖Qx‖ for all x ∈ V ;
(c) ranP ⊆ ranQ;
(d) QP = P ; and
(e) PQ = P .

Hint. First show that (d) and (e) are equivalent. Then show that (a) ⇒ (b) ⇒ (c) ⇒
(d) ⇒ (a). To prove that (b) ⇒ (c) take an arbitrary element x in the range of P ; show
that ‖Qx‖ = ‖x‖ and that consequently ‖(I − Q)x‖ = 0. To prove that (d) ⇒ (a) show
that (I − P )Q is an orthogonal projection; then consider ‖(I − P )Q‖2.

(8) In 19.1.4 and 24.1.1 the definitions for unitary matrices differ. Show that they are, in fact,
equivalent. Argue that the same is true for the definitions given for orthogonal matrices.
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24.4. Answers to Odd-Numbered Exercises

(1)
1

3

 2 −1 −1
−1 2 −1
−1 −1 2


(3) 3, 4, 3, 1, 2

(5) 5, 2, 1

(7)
2

7
,

4

7
, −2

7
, 0,

2

7

(9) 4, 3

(11) (a) 2, −1, 2
(b) 1, −3, 2
(c) 4
(d) 1, 4, 1
(e) −2, 1, −2
(f) 0, 3, 0



CHAPTER 25

LEAST SQUARES APPROXIMATION

25.1. Background

Topics: least squares approximation.
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25.2. Exercises

(1) Let A =

 1 1
2 −1
−2 4

.

(a) Find an orthonormal basis {e1, e2, e3} for R3 such that {e1, e2} spans the column
space of A.

e1 = 1
n( a , b , −b )

e2 = 1
n( b , a , b )

e3 = 1
n( b , −b , −a )

where a = , b = , and n = .

(b) To which of the four fundamental subspaces of A does e3 belong?

Answer: e3 belongs to the of A.

(c) What is the least squares solution to Ax = b when b = (1, 2, 7)?

Answer: x̂ = ( , ) .

(2) Find the best least squares fit by a straight line to the following data: x = 1 when t = −1;
x = 3 when t = 0; x = 2 when t = 1; and x = 3 when t = 2.

Answer: x = + t.

(3) At times t = −2, −1, 0, 1, and 2 the data y = 4, 2, −1, 0, and 0, respectively, are observed.
Find the best line to fit this data. Answer: y = Ct+D where C = and D = .

(4) The best (least squares) line fit to the data: y = 2 at t = −1; y = 0 at t = 0; y = −3 at

t = 1; y = −5 at t = 2 is y = − a

10
− b

5
t where a = and b = .

(5) Consider the following data: y = 20 when t = −2; y = 6 when t = −1; y = 2 when t = 0;
y = 8 when t = 1; y = 24 when t = 2. Find the parabola which best fits the data in the
least squares sense.

Answer: y = C +Dt+ Et2 where C = , D = , and E = .

(6) Consider the following data: y = 2 when t = −1; y = 0 when t = 0; y = −3 when t = 1;
y = −5 when t = 2. Find the parabola which best fits the data in the least squares sense.

Answer: y = C +Dt+ Et2 where C = , D = , and E = .

(7) Find the plane 50z = a+ bu+ cv which is the best least squares fit to the following data:
z = 3 when u = 1 and v = 1; z = 6 when u = 0 and v = 3; z = 5 when u = 2 and v = 1;
z = 0 when u = 0 and v = 0.
Answer: a = ; b = ; c = .

(8) Consider the following data: y = 4 at t = −1; y = 5 at t = 0; y = 9 at t = 1.

(a) Then the best (least squares) line which fits the data is y = c + dt where c =
and d = .

(b) The orthogonal projection of b = (4, 5, 9) onto the column space of A =

1 −1
1 0
1 1

 is

( , , ) .

(9) The best least squares solution to the following (inconsistent) system of equations


u = 1

v = 1

u+ v = 0is u = and v = .
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25.3. Problems

(1) Explain in detail how to use matrix methods to find the best (least squares) solution to

the following (inconsistent) system of equations


u = 1

v = 1

u+ v = 0

. Carry out the computation
you describe.

(2) The following data y are observed at times t: y = 4 when t = −2; y = 3 when t = −1;
y = 1 when t = 0; and y = 0 when t = 2.
(a) Explain how to use matrix methods to find the best (least squares) straight line

approximation to the data. Carry out the computation you describe.
(b) Find the orthogonal projection of y = (4, 3, 1, 0) on the column space of the matrix

A =


1 −2
1 −1
1 0
1 2

.

(c) Explain carefully what your answer in (b) has to do with part (a).
(d) At what time does the largest error occur? That is, when does the observed data

differ most from the values your line predicts?
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25.4. Answers to Odd-Numbered Exercises

(1) (a) 1, 2, 3
(b) left nullspace
(c) 1, 2

(3) −1, 1

(5) 2, 1, 5

(7) −6, 73, 101

(9)
1

3
,

1

3
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CHAPTER 26

SPECTRAL THEOREM FOR REAL INNER PRODUCT
SPACES

26.1. Background

Topics: the spectral theorem for finite dimensional real inner product spaces.

26.1.1. Definition. An operator T on a finite dimensional real inner product space with an
orthonormal basis is orthogonally diagonalizable if there exists an orthogonal matrix which
diagonalizes T .

The following theorem (together with its analog for complex spaces) is the fundamental struc-
ture theorem for inner product spaces. It says that any symmetric operator on a finite dimensional
real inner product space can be written as a linear combination of orthogonal projections. The
coefficients are the eigenvalues of the operator and the ranges of the orthogonal projections are the
eigenspaces of the operator.

26.1.2. Theorem (Spectral Theorem for Finite Dimensional Real Inner Product Spaces). Let T
be a symmetric operator on a finite dimensional real inner product space V , and λ1, . . . , λk be the
(distinct) eigenvalues of T . For each j let Mj be the eigenspace associated with λj and Ej be
the projection of V onto Mj along M1 + · · · + Mj−1 + Mj+1 + · · · + Mk. Then T is orthogonally
diagonalizable, the eigenspaces of T are mutually orthogonal, each Ej is an orthogonal projection,
and the following hold:

(i) T = λ1E1 + · · ·+ λkEk,
(ii) I = E1 + · · ·+ Ek, and
(iii) EiEj = 0 when i 6= j.
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26.2. Exercises

(1) Let T be the operator on R3 whose matrix representation is
1
3 −2

3 −2
3

−2
3

5
6 −7

6

−2
3 −7

6
5
6

 .
(a) Find the characteristic polynomial and minimal polynomial for T .

Answer: cT (λ) = .

mT (λ) = .

(b) The eigenspaceM1 associated with the smallest eigenvalue λ1 is the span of (1 , , ).

(c) The eigenspaceM2 associated with the middle eigenvalue λ2 is the span of ( , ,−1).

(d) The eigenspaceM3 associated with the largest eigenvalue λ3 is the span of ( , 1 , ).

(e) Find the (matrix representations of the) orthogonal projections E1, E2, and E3 onto
the eigenspaces M1, M2, and M3, respectively.

Answer: E1 =
1

m

a a a
a a a
a a a

; E2 =
1

n

 b −c −c
−c a a
−c a a

; E3 =
1

2

d d d
d a −a
d −a a

 where

a = , b = , c = , d = , m = , and n = .

(f) Write T as a linear combination of the projections found in (e).

Answer: [T ] = E1 + E2 + E3.

(g) Find an orthogonal matrix Q (that is, a matrix such that Qt = Q−1) which diagonal-
izes T . What is the associated diagonal form Λ of T?

Answer: Q =


a√
b

c√
bc

0
a√
b
− a√

bc
a√
c

a√
b
− a√

bc
− a√

c

 and Λ =

λ 0 0
0 µ 0
0 0 ν

 where a = , b = ,

c = , λ = , µ = , and ν = .

(2) Let T be the operator on R3 whose matrix representation is2 2 1
2 2 −1
1 −1 −1

 .
(a) The eigenspaceM1 associated with the smallest eigenvalue λ1 is the span of ( 1 , , ).

(b) The eigenspaceM2 associated with the middle eigenvalue λ2 is the span of ( 1 , , ).

(c) The eigenspaceM3 associated with the largest eigenvalue λ3 is the span of ( 1 , , ).

(d) Find the (matrix representations of the) orthogonal projections E1, E2, and E3 onto
the eigenspaces M1, M2, and M3, respectively.

Answer: E1 =
1

mn

 a −a −b
−a a b
−b b c

; E2 =
1

m

 a −a a
−a a −a
a −a a

; E3 =
1

n

a a d
a a d
d d d


where a = , b = , c = , d = , m = , and n = .

(e) Write T as a linear combination of the projections found in (d).

Answer: [T ] = E1 + E2 + E3.

(f) Find an orthogonal matrix Q (that is, a matrix such that Qt = Q−1) which diagonal-
izes T . What is the associated diagonal form Λ of T?



26.2. EXERCISES 173

Answer: Q =


a√
bc

a√
b

a√
c

− a√
bc
− a√

b
a√
c

− c√
bc

a√
b

0

 and Λ =

λ 0 0
0 µ 0
0 0 ν

 where a = , b = ,

c = , λ = , µ = , and ν = .
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26.3. Problem

(1) Let A =

 1 −4 2
−4 1 −2
2 −2 −2

.

(a) Does A satisfy the hypotheses of the spectral theorem 26.1.2 for symmetric operators
on a finite dimensional real inner product space? Explain.

(b) Explain how to find an orthogonal matrix which diagonalizes the matrix A. Carry
out the computation you describe.

(c) Explain in careful detail how to write the matrix A in part (b) as a linear combination
of orthogonal projections. Carry out the computations you describe.
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26.4. Answers to the Odd-Numbered Exercise

(1) (a) λ3− 2λ2−λ+ 2 (or (λ+ 1)(λ− 1)(λ− 2) ); λ3− 2λ2−λ+ 2 (or (λ+ 1)(λ− 1)(λ− 2) )
(b) 1, 1
(c) 2, −1
(d) 0, −1
(e) 1, 4, 2, 0, 3, 6
(f) −1, 1, 2
(g) 1, 3, 2, −1, 1, 2





CHAPTER 27

SPECTRAL THEOREM FOR COMPLEX INNER PRODUCT
SPACES

27.1. Background

Topics: the spectral theorem for finite dimensional complex inner product spaces.

27.1.1. Definition. An operator T on a finite dimensional real inner product space with an
orthonormal basis is unitarily diagonalizable if there exists an orthogonal matrix which diag-
onalizes T .

27.1.2. Theorem (Spectral Theorem for Finite Dimensional Complex Inner Product Spaces). Let
T be a normal operator on a finite dimensional complex inner product space V , and λ1, . . . , λk be
the (distinct) eigenvalues of T . For each j let Mj be the eigenspace associated with λj and Ej
be the projection of V onto Mj along M1 + · · · + Mj−1 + Mj+1 + · · · + Mk. Then T is unitarily
diagonalizable, the eigenspaces of T are mutually orthogonal, each Ej is an orthogonal projection,
and the following hold:

(i) T = λ1E1 + · · ·+ λkEk,
(ii) I = E1 + · · ·+ Ek, and
(iii) EiEj = 0 when i 6= j.

27.1.3. Theorem. Let T be an operator on a finite dimensional complex inner product space V .
Then the following are equivalent:

(1) T is normal;
(2) T is unitarily diagonalizable; and
(3) V has an orthonormal basis consisting of eigenvectors of T .

177



178 27. SPECTRAL THEOREM FOR COMPLEX INNER PRODUCT SPACES

27.2. Exercises

(1) Let A =

[
2 1 + i

1− i 3

]
.

(a) Use the spectral theorem 27.1.2 to write A as a linear combination of orthogonal
projections.

Answer: A = αE1 + βE2 where α = , β = , E1 =
1

3

[
2 −1− i

]
,

and E2 =
1

3

[
1 1 + i

]
.

(b) Find a square root of A.

Answer:
√
A =

1

3

[
4 1 + i

]
.

(2) Let T be the operator on C2 whose matrix representation is

[
0 1
−1 0

]
.

(a) The eigenspace V1 associated with the eigenvalue −i is the span of ( 1 , ).

(b) The eigenspace V2 associated with the eigenvalue i is the span of ( 1 , ).

(c) The (matrix representations of the) orthogonal projections E1 and E2 onto the eigenspaces

V1 and V2, respectively, are E1 =

[
a b
−b a

]
; and E2 =

[
a −b
b a

]
where a = and

b = .

(d) Write T as a linear combination of the projections found in (c).

Answer: [T ] = E1 + E2.

(e) A unitary matrix U which diagonalizes [T ] is

[
a a
−b b

]
where a = and b = .

The associated diagonal form Λ = U∗[T ]U of [T ] is

 .

(3) Let N =
1

3

4 + 2i 1− i 1− i
1− i 4 + 2i 1− i
1− i 1− i 4 + 2i

.

(a) The matrix N is normal because NN∗ = N∗N =

a b b
b a b
b b a

 where a = and

b = .

(b) Thus according to the spectral theorem 27.1.2N can be written as a linear combination
of orthogonal projections. Written in this form N = λ1E1 +λ2E2 where λ1 = ,

λ2 = , E1 =

a a a
a a a
a a a

, and E2 =

 b −a −a
−a b −a
−a −a b

 where a = and

b = .

(c) A unitary matrix U which diagonalizes N is

a −b −c
a b −c
a d 2c

 where a = ,

b = , c = , and d = . The associated diagonal form Λ = U∗NU

of N is


.
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(4) Let T be an operator whose matrix representation is

[
1 2
−1 −1

]
.

(a) Regarded as an operator on R2 is T triangulable? . As an operator on R2 is it
diagonalizable? .

(b) Show that T regarded as an operator on C2 is diagonalizable by finding numbers c

and d such that the matrix S =

[
−2 −2
c d

]
is invertible and S−1TS is diagonal.

Answer: c = and d = .

(c) Show that despite being diagonalizable (as an operator on C2) T is not normal.

Answer: TT ∗ =


 6=


 = T ∗T .

(d) Explain briefly why the result of part (c) does not contradict Theorem 27.1.3.

(5) Let T be the operator on C3 whose matrix representation is
1

6

 8− i 5− 2i 2 + 4i
−5 + 2i 8− i −4 + 2i
−2− 4i −4 + 2i 14 + 2i

.

(a) Find the characteristic polynomial and minimal polynomial for T .

Answer: cT (λ) = .

mT (λ) = .

(b) The eigenspaceM1 associated with the real eigenvalue λ1 is the span of (1 , , ).

(c) The eigenspaceM2 associated with the complex eigenvalue λ2 with negative imaginary
part is the span of ( 1 , , ).

(d) The eigenspaceM3 associated with the remaining eigenvalue λ3 is the span of ( 1 , , ).

(e) Find the (matrix representations of the) orthogonal projections E1, E2, and E3 onto
the eigenspaces M1, M2, and M3, respectively.

Answer: E1 =
1

m

 1 −b bc
b a −c
−bc −c d

; E2 =
1

n

 1 b e
−b a e
e e e

; E3 =
1

p

1 −b −b
b a a
b a a


where a = , b = , c = , d = , e = , m = , n = , and
p = .

(f) Write T as a linear combination of the projections found in (e).

Answer: [T ] = E1 + E2 + E3.

(g) Find a unitary matrix U which diagonalizes T . What is the associated diagonal form
Λ of T?

Answer: U =


a√
bc

a√
b

a√
c

d√
bc

− d√
b

d√
c

− bd√
bc

e√
b

d√
c

 and Λ =

λ 0 0
0 µ 0
0 0 ν

 where a = , b = ,

c = , d = , e = , λ = , µ = , and ν = .

(h) The operator T is normal because TT ∗ = T ∗T =
1

6

 a −bc 2bc
bc a −2b
−2bc −2b d

 where

a = , b = , c = , and d = .
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(6) Let T be the operator on C3 whose matrix representation is
1

3

5 + 2i 2− i 2− i
2− i 5− i 2 + 2i
2− i 2 + 2i 5− i

.

(a) Find the characteristic polynomial and minimal polynomial for T .

Answer: cT (λ) = .

mT (λ) = .

(b) The eigenspace M1 associated with the real eigenvalue λ1 is the span of (1 , , ).

(c) The eigenspaceM2 associated with the complex eigenvalue λ2 with negative imaginary
part is the span of ( , , −1).

(d) The eigenspaceM3 associated with the remaining eigenvalue λ3 is the span of ( ,−1 , ).

(e) Find the (matrix representations of the) orthogonal projections E1, E2, and E3 onto
the eigenspaces M1, M2, and M3, respectively.

Answer: E1 =
1

m

a a a
a a a
a a a

; E2 =
1

n

b b b
b c −c
b −c c

; E3 =
1

6

 d −e −e
−e a a
−e a a

 where

a = , b = , c = , d = , e = , m = , and n = .

(f) Write T as a linear combination of the projections found in (e).

Answer: [T ] = E1 + E2 + E3.

(g) Find an orthogonal matrix Q (that is, a matrix such that Qt = Q−1) which diagonal-
izes T . What is the associated diagonal form Λ of T?

Answer: Q =


a√
b

0 c√
bc

a√
b

a√
c
− a√

bc
a√
b
− a√

c
− a√

bc

 and Λ =

λ 0 0
0 µ 0
0 0 ν

 where a = , b = ,

c = , λ = , µ = , and ν = .
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27.3. Problems

(1) Let N be a normal operator on a finite dimensional complex inner product space V. Show
that ‖Nx‖ = ‖N∗x‖ for all x ∈ V .

(2) Let N be a normal operator on a complex finite dimensional inner product space V. Show
that if λ1, . . . , λk are the eigenvalues of N , then λ1, . . . , λk are the eigenvalues of N∗.

(3) Let T be as in exercise 4. Show by direct computation that there is no invertible 2 × 2

matrix S =

[
a b
c d

]
of real numbers such that S−1TS is upper triangular.



182 27. SPECTRAL THEOREM FOR COMPLEX INNER PRODUCT SPACES

27.4. Answers to Odd-Numbered Exercises

(1) (a) 1, 4, −1 + i, 1, 1− i, 2
(b) 1− i, 5

(3) (a)
8

3
,

2

3

(b) 2, 1 + i,
1

3
,

2

3

(c)
1√
3

,
1√
2

,
1√
6

, 0,

2 0 0
0 1 + i 0
0 0 1 + i


(5) (a) λ3−5λ2 + 8λ−6 (or (λ2−2λ+ 2)(λ−3) ); λ3−5λ2 + 8λ−6 (or (λ2−2λ+ 2)(λ−3) )

(b) i, −2i
(c) −i, 0
(d) i, i
(e) 1, i, 2, 4, 0, 6, 2, 3
(f) 3, 1− i, 1 + i
(g) 1, 2, 3, i, 0, 3, 1− i, 1 + i
(h) 19, 7, i, 40
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](x,y) (angle between x and y), 25, 122
x · y (inner product of x and y), 121
M ⊥ N (two sets are orthogonal), 122
x ⊥ y (two vectors are orthogonal), 122
M � V (M is a subspace of V ), 39
〈x,y〉 (inner product), 121
[T ] (matrix representation of T ), 71
[A,B] (commutator of A and B), 9
TS (notation for composition of linear maps), 61
〈x,y〉 (inner product of x and y), 25, 121
x · y (inner product of x and y), 25, 121
M ⊕N (direct sum of M and N), 39
‖x‖ (norm of a vector x), 121
At (transpose of A), 9

M⊥ (the orthogonal complement of M), 122

action
of a matrix, 15

additive
inverses, 33

adjoint
of a linear map, 145

angle, 25, 122
annihilating polynomial, 87
associative, 33

basis, 55
orthonormal, 127
standard, 55

bijective, 61
bounded function, 39

Cn

as an inner product space, 121
C([a, b])

as an inner product space, 122
Cauchy-Schwarz inequality, 25, 122
Cayley-Hamilton theorem, 87
characteristic polynomial, 83
cofactor, 16
column

rank, 149
column index, 9
column space, 149
combination

linear, 47
commutative, 33

diagram, 68

commutator, 9
commute, 9, 68
complement

orthogonal, 122
complementary subspaces, 39
conjugate

Hermitian, 145
linear, 121
transpose, 145

of a linear map, 145
of a matrix, 145

continuous
uniformly, 122

continuously differentiable, 64
cross product, 25

definite
negative, 133
positive, 133

dependence
linear, 47

determinant, 16
detA (determinant of A), 16
diagonal matrix, 87
diagonalizable, 87

conditions to be, 88
orthogonally, 171
part of an operator, 105
unitarily, 177

diagonalizing matrix, 87
diagram, 68

commutative, 68
differentiable

continuously, 64
differential equations, 97
dimension, 55
dimV (dimension of V ), 55
direct sum, 39

orthogonal, 127
dominate, 159

EMN (projection along M onto N), 77
eigenspace, 83

generalized, 105
eigenvalue, 83
eigenvector, 83
electrical networks

problem on, 51
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equivalent
row, 15

even function, 41
exact sequence, 67
expansion

Laplace, 16

factorization
QR-, 127

finite dimension, 55
Fourier series, 127
function

even, 41
odd, 41
square integrable, 123
uniformly continuous, 122

functional
linear, 61

fundamental theorem of linear algebra, 149, 153

generalized eigenspace, 105

Hermitian
conjugate, 145
operator, 145

Hessian matrix, 139

IV (identity operator on V ), 62
identity

additive, 33
identity map, 62
indefinite, 133
independence

linear, 47
index

column, 9
row, 9

inequality
(Cauchy-)Schwarz, 122

infinite dimensional, 55
injective, 61
inner product, 25, 121

space
Cn as a, 121
Rn as a, 121
C([a, b]) as a, 122
l2 as a, 122

integrable, 39
inverse

additive, 33
left, 62
right, 62

invertible, 62
isometry, 159
isomorphic, 62
isomorphism, 62

kerT (the kernel of T ), 61
kernel, 61

L(V )
linear operators on V , 61

L(V,W )
linear maps between vector spaces, 61

l2
as an inner product space, 122
square summable sequences, 122

Laplace expansion, 16
leading principal submatrix, 133
left

inverse, 12, 62
nullspace, 149

length, 25
Lie bracket, 9
linear, 61

combination, 47
trivial, 47

conjugate, 121
dependence, 47
functional, 61
independence, 47
map, 61

adjoint of a, 145
conjugate transpose of a, 145
Hermitian conjugate of a, 145
transpose of a, 145

operator, 61
sesqui-, 121
transformation, 61

majorize, 159
map

linear, 61
Markov matrix, 97
matrix

conjugate transpose of a, 145
diagonal, 87
diagonalizing, 87
Hessian, 139
Markov, 97
nilpotent, 105
nonsingular, 33
normal, 145
notation for, 9
orthogonal, 127, 159
representation of an linear map, 71
second derivative, 139
standard, 71
symmetric, 9
transpose of a, 9
unitary, 127, 159
upper triangular, 9

maximal
linearly independent set, 57
orthonormal set, 127

minimal polynomial, 87
existence and uniqueness of, 91

minimal spanning set, 57
minor, 16
monic polynomial, 87

negative
definite, 133
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networks
problem on, 51

nilpotent, 88, 105
part of an operator, 105

nonsingular, 33
norm, 25, 121
normal

matrix, 145
operator, 145

nullity, 61
nullspace, 61, 149

left, 149

odd function, 41
one-to-one, 61

correspondence, 61
onto, 61
operator

adjoint of an, 145
diagonalizable part of an, 105
Hermitian, 145
linear, 61
nilpotent, 105
nilpotent part of an, 105
normal, 145
orthogonal, 159
positive, 159
self-adjoint, 145
symmetric, 145
transpose of an, 145
unitary, 159

orthogonal, 122
complement, 122
diagonalization, 171
direct sum, 127
matrix, 127, 159
operator, 159
projection, 159

orthonormal, 127
basis, 127

perpendicular, 122
pivoting, 3
point spectrum, 83
polarization identity, 125
polynomial

annihilating, 87
characteristic, 83
minimal, 87

existence and uniqueness of, 91
monic, 87

positive
definite, 133
operator, 159

principal submatrix, 133
product

cross, 25
inner, 25, 121

projection
along one subspace onto another, 77
orthogonal, 159

QR-factorization, 127

Rn

as an inner product space, 121
ranT (the range of T ), 61
range, 61
rank

column, 149
of a linear map, 61
row, 149

representation
matrix, 71

Riemann integrable function, 39
right

inverse, 12, 62
row

equivalent matrices, 15
operations, 3
rank, 149

row index, 9
row space, 149

scaling, 3
Schwarz inequality, 25, 122
second derivative

matrix, 139
test, 139

self-adjoint
operator, 145

sequence
exact, 67

sesquilinear, 121
short exact sequence, 67
σ(T ) (spectrum of T ), 83
similar, 87
space

vector, 33
span, 47
spanA (the span of the set A), 47
spectral mapping theorem, 83
spectral theorem

for finite dimensional complex inner product
spaces, 177

for finite dimensional real inner product spaces, 171
for finite dimensional vector spaces, 93

spectrum, 83
square integrable function, 123
square summable, 122
standard

basis for Rn, 55
matrix for a linear map, 71

submatrix
leading principal, 133

subspace, 39
subspaces

complementary, 39
sum

direct, 39
summable

square, 122
surjective, 61
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swapping, 3
symmetric

matrix, 9
operator, 145

system
of differential equations, 97

trace, 9
trA (trace of A), 9
transformation

linear, 61
transpose

conjugate, 145
of a matrix, 9
of an operator, 145

triangulable, 88
conditions to be, 88

triangular
upper, 9

trivial
linear combination, 47

uniformly continuous, 122
unitary

diagonalization, 177
matrix, 127, 159
operator, 159

upper
triangular, 9

upper triangular, 88

vector
space, 33

complex, 33
real, 33
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