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INTRODUCTION

Probability is one of the great achievements of this
century. Like geometry, it is a way of looking at nature.
There are many ways of approaching natural problems, many
points of view. The geometrical point of view has been with
us for thousands of years. The probabilistic point of view
is another wav of focusing on problems that has been success-
ful in many instances. The purpose of this course is to
learn to think probabilistically. Unfortunately the only way
to learn to think probabilisticallv is to learn the theorems
of probability. Only later,as one has mastere? the theorems,
does the probabilistic point of view begin to emerge while
the specific theorems fade in one's memory: nuch as the
grin on the Cheshire cat.

We begin by giving a bird's-eve view of probability by
examining some of the great unsolved problems of probability
theory. 1It's only by seeing what the unsolved problems
are that one gets a feeling for a field. Don't expect to be
able to understand at this point everything about the problems

we are about to give. They are difficult and are meant to

be just a hint of things to come.
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Pennies on a carpet. We have a rectangular carpet and an
indefinite supply of perfect pennies. What is the proba-
bility that if we drop the pennies on the carpet at random
no two of them will overlap? This problem is one of the
most important problems of statistical mechanics. If we
could answer it we would know, for example, why water boils
at 100°C, on the basis of purely atomic computations.
Nothing is known about this problem.

On the other hand, the one-dimensional version of this
problem can be solved. We shall, in fact, solve it several
different ways. The problem here is to drop n needles of
length h on a stick of length b at random. The probability

that no two needles overlap is:
n

) e

0 if b<nh

=l

Pennies on a carpet Needles on a stick
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The striking difference between the difficulty of a
problem in two dimensions and that of the corresponding
problem in one dimension is called the "dimensional barrier".
It is an illustration of a common problem of physicists:
problems in low dimensions are considerably easier to solve
than their "real world" counterparts.

The only technique that we can presently apply to this
problem is the "method of ignorance" or the "Monte Carlo
method": namely simulate the problem on a computer, and
see what happens. Usually a few iterations will give a re-
markably accurate answer, when the number of coins is small.

Random walk. We consider the grid on the plane with integral

corners. A drunkard starts at the origin and walks in one of
the four directions with equal probability 1/4 to the next
corner. He then repeats this process at the next corner.
It is already an interesting mathematical question to
set up this problem so that one can answer such questions
as for example how long it will take
P
— = the drunkard to get home. The answer

HeME

is not a number but rather a probability

distribution; that is, there is a certain

L probability that he will get home in 1
(0,9)
. step, 2 steps, 3 steps, etc.

S )

a random walk



So this is a typical case for which we ask a question,
and we get an answer that is not a number but rather a
string of numbers each with a suitable probability. We
call this "answering a question probabilistically" or
"using probabilistic reasoning.”

One can completely answer the above question, given
the position and shape of the drunkard's home. This con-
nects with a branch of physics called potential theory.

A question that has never been answered is to find
the probability that after n steps the drunkard has never

retraced his steps. We call such a random walk a self-

avoiding random walk. This is related to the problem of

polymer growth in chemistry. Of course it appears that
this is a very special, stereotyped problem, but it turns
out that if we can solve this stereotyped problem, we can
solve all the others by suitable coordinate changes. This
will be the case also in problems we shall subsequently
encounter,

Cluster analysis. Suppose that we have a collection of

dots arrayed in the plane or in space, much as stars in the
sky. The individual points obey no specific physical law,
but the whole ensemble does. The problem is to invent the

possible physical laws that such ensembles of dots can satisfy.
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For example how can one describe that a pattern of
dots obeys certain clustering structures? Physically it
is sometimes quite obvious: we just look in the sky. But
we want a purely numerical, quantitative description. This
is the theory of stochastic point processes.

Of course this problem is closely related to the problem
of pattern recognition.
Brownian Motion. We must first mention a function called

1 - /2

i

. This

the normal density function: £ (x) =

function occurs so often in nature as well as in probability
that one is tempted to call it the most important function

there is. It looks like this:

this is the famous "bell~curve".

Now a realistic model of the path of a drunkard is one
that wanders in a continuous path starting at the origin.
How does one assign probabilities to paths and what does it
mean to follow a path at random? This was done by Norbert
Wiener who showed that if there is a straight line barrier

in the plane and if we consider the question of where the
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drunkard first hits the barrier we get precisely the normal

density function.

]
)\vvu — probability density of
i hitting each point
along the barrier
!
}
barrier

This fact enables us to compute,just as with the case of
discrete random walks, the probability distribution for when
the drunkard arrives home in terms of the position and shape

of his home. This is the problem of Brownian motion. Unlike

the others, this problem has been completely solved.

Contagion or Percolation. Imagine that we have an orchard

with evenly spaced trees and that at some time some trees
become infected. Suppose that there is a certain probability
that a given infected tree infects one or more neighboring
trees before the given tree dies.

O Vo oo

0 C;} f} €:> % é} orchard with

© Q {;? Q o O infected tree

One of two things can happen: either the infection
stays among small clusters of infected trees and eventually
dies out or the whole orchard is wiped out. One can show
that if the probability of one infected tree infecting another
is p there is a critical probability Pe such that if P<p, the
disease will die out but that if P*P, the disease will

spread forever. How does one compute pc?
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Noise. We consider a signal sent from a radio transmitter
to a receiver but which is perturbed by noise along the way.
The problem of filtering out the noise is a very important
one for electrical engineers. The whole theory of noise
filtering consists of computations involving the normal
density function.

Coin Tossing. The detailed structure of the fluctuations

occurring in the tossing of a fair coin are counter-intuitive.
We imagine a game for which at each toss of a fair coin we
win $1 if it comes up heads and we lose $1 if it comes up
tails. If we graph our net winnings in time we see that it
can cross the time axis if we switch from a net gain to a

net loss or vice versa. If after

a period of time we find that we

have a net gain of zero, what is
IfN\, the most probable number of times

£ NN

net winnings

we crossed over the axis along the

way? The answer is that the most

probable case is no times at all!

In effect one can interpret this as saying that during
a long betting session the most probable occurrence is to
have either a winning streak or a losing streak. Frequent

changes from one to the other are actually unlikely.
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Cell Growth. How does living tissue grow? We consider

a stereotyped case. We start with a little square and then
imagine that with some probability the square produces a new
square on one of its four sides. The growth proceeds on the
boundary by a simple model. What is the pattern that such
growth will produce? What is the probability that the tissue

will enclose an island?

0 m na|

(a) (b) (c)

* % »
The problems described above are just a sampling of the

many interesting unsolved problems of probability. Perhaps

you will be the one to solve one of them...



Chapter I Sets, Events and Probability

Suppose that we toss a coin any number of times and
that we list the information of whether we got heads or

tails on the successive tosses:

The act of tossing this coin over and over again as we have

done is an example of an experiment, and the sequence of

BH's and T's that we have listed is called its experimental

outcome. We now ask what it means, in the context of our
experiment, to say that we got a head on the fourth toss.

We call this an event. While it is intuitively obvious what
an event represents, we want to find a precise meaning for
this concept. One way to do this which is both obvious

and subtle is to identify an event with the set of all ways
that the event can occur. For example, the event "the fourth
toss is a head" is the same as the set of all sequences of
H's and T's whose fourth entry is H. At first it appears
that we have said little, but in fact we have made a conceptual
advance. We have made the intuitive notion of an event into

a concrete notion: events are a certain kind of set.

However a warning is appropriate here. An event is not
the same concept as that of an experimental outcome. An

outcome consists of the total information about the experiment



after it has been performed. Thus while an event may be easy
to describe, the set to which it corresponds consists of a
great many possible experimental outcomes, each being guite
complex. In order to distinguish the concept of an event
from the concept of an experimental outcome we will employ

an artificial term for the latter. We will call it a

sample point. Now a sample point will seldom look like an

actual point in the geometric sense. We use the word "point"
to suggest the "indivisibility" of one given experimental
outcome, in contrast to an event which is made up of a great
many possible outcomes. The term "sample" is suggestive of
the random nature of our experiment, where one particular
sample point is only one of many possible outcomes.

We will begin with a review of the theory of sets, with
which we assume some familiarity. We will then extend the
concept of a set by allowing elements to occur more than
just once. We call such an entity a multiset. By one
more conceptual step, the notion of a probability measure
emerges as an abstraction derived from the multiset concept.
Along the way we will repreatedly return to our coin-tossing
experiment. We do this not only because it is a good example
but also because we wish to emphasize that probability

deals with very special kinds of sets.

1. The Algebra of Sets

In probability we always work within a context, which



we define by specifying the set of all possible experimental
outcomes or equivalently all possible sample points. We

call this set the sample space, typically denoted Q.

The term "sample space" does not help one to visualize §
any more than "sample point" is suggestive of an experimental
outcome. But this is the term that has become standard.
Think of Q as the "context" or "universe of discourse".

It does not, however, in itself define our experiment.

Quite a bit more will be required to do this. One such
requirement is that we must specify which subsets of Q

are to be the events of our experiment. In general not every
subset will be an event. The choice of subsets which are

to be the events will depend on the phenomena to be studied.

We will specify the events of our experiment by specifying
certain very simple events which we will call the "elementary
events", which we then combine to form more complicated events.
The ways we combine events to form other events are called

the Boolean or logical operations. The most important of

these are the following:

union AUB 1is the set of elements either in A

or in B (or both).

intersection ANB 1is the set of elements both in A and
in B .
complement A is the set of elements not in A.




Each of these has a natural interpretation in terms of

events. Let A and B be two events.

AUB is the event "either A or B (or both) occur"
ANB is the event "both A and B occur"

A 4is the event "A does not occur”

Several other Boolean operations are defined in the exercises.

When two events A and B have the property that if
A occurs then B does also (but not necessarily vice versa),
we will say that A is a subevent of B and will write
ACB. In set-theoretic language one would say that A 1is a
subset of B or that B contains A .

The three Boolean operations and the subevent relation
satisfy a number of laws such as commutativity, associativity,
distributivity and so on, which we will not discuss in detail,
although some are considered in the exercises. For example

the DeMorgan laws are the following:

|
C
|

AnB =

|
2
|

AuB =

In terms of events,the first of these says that if it is not
true that both A and B occur, then either A does not
occur or B does not occur (or both), and conversely. One
has a similar statement for the second law. Generally

speaking, drawing a Venn diagram suffices to prove anything

1.4



about these operations. For example, here is the Venn
diagram proof of the first De Morgan law. First draw the

two events A and B:

),

If we shade in the event AnB:

(D

A

Q

then the event AaB consists of the shaded portion of the

following diagram:

i i Q

Next shade in the events A

|

, respectively:

A ““” B Q




Combining these gives us the event AUB:

] S ——

A1 N

A B Q

If we compare this with the event AnB we see that
AnB = AUB .

For more complicated expressions, involving many sets,
and for which the Venn diagram would be extremely complex,it
is very useful to know that there is a way we can simplify
such an expression into an essentially unique expression.
The idea is that every Boolean expression is a union of the
smallest subevents obtainable by intersecting events occurring
in the expression. To be more precise suppose that we have
an expression involving the events Al' A2, . ey An and
unions, intersections and complements in any order nested as

deeply as required. The simplified expression we obtain can

be described in two steps.

. + - - . . .
Step 1. Write A . A and A L. A . This is just a

notational convenience; it has no metaphysical significance.

The expressions

il i2 in
BTAA MR T



as il,iz,---,in take on all possible choices of #1, are

2'“.'An

using Boolean operations. We call these events the atoms

the smallest events obtainable from the events Al,A

defined by Al,A --,An. Notice that in general there can

2"
n
be 2 of them, but that in particular cases some of the atoms may

be empty so there could be fewer than 2™ in all.

A A the events Al’Az’A3

break up  1into (at

most) eight atoms.

A

2 o
Step 2. Any expression involving Al,Az,---,An and
using Boolean operations can be written as a union of

certain of the atoms. There are many procedures that can
be used to determine which of the atoms are to be used.

We leave it as an exercise to describe such a procedure.
The resulting expression will be called the "atomic
decomposition". By using Venn diagrams and atomic decomp-

ositions, any problem involving a finite number of events



can be analyzed in a straightforward way. Unfortunately
many of our problems will involve infinitely many events and

for these we will later need some new ideas.

2. The Bernoulli Sample Space

We now return to the example that began this chapter:
tossing a coin. A sample point for this experiment is an
infinite sequence of ones and zeroes or equivalently of H's
and T's. Just for variety we will also sometimes refer to a
toss of heads as a "success" and tails as a "failure". Even
if we are only concerned with a finite sequence of H's and
T's, which is seemingly more realistic, it is nevertheless
easier for computational reasons to imagine that we could go
on tossing the coin forever. Moreover, we will find that
certain seemingly rather ordinary events can only be
expressed in such a context.

The set of all possible sequences of ones and zeroes

is called the Bernoulli sample space  and the experimental

process of which it forms the basis is called the Bernoulli
process. For the moment we will be a little vague about what a
"process" means, but we will make it precise later. The

events of the Bernoulli sample space consist of certain

subsets of @ . To describe which subsets these are, we

first describe some very simple events called elementary

events. They are the events "the first toss comes up heads",

"the second toss comes up heads", etc. We will write

1.8



Hn for the event "the nth toss comes up heads". The complement
of the event Hn will be devoted Tn = ﬁh ; it is the

event "the nth toss comes up tails." One must be careful
here. It is obvious that the complementary event to "the

nth toss is heads" is "the nth toss is tails." However, it

is less obvious that as sets Hn = Tn , since both Hn and
Tn are infinite sets and it is not easy to imagine what
they "look like". As a rule it is much easier to think in
terms of the events themselves rather than in terms of their
representations as sets.

We can now describe in general what it means for a subset
of © to be an event of the Bernoulli smaple space: an event
is any subset of @ obtainable from the elementary events by
using the operations of complement as well as of unions and
intersections of infinite sequences of events. The fact that
we allow infinite unions and intersections will take some
getting used to. What we are saying is that we allow any
statements about the Bernoulli process which may in principle
be expressed in terms of tosses of heads and tails (elementary
events) using the words "and" (intersection), "or" (union),
"not" (complement) and "ever" (infinite sequences).

To illustrate this we consider the following example of
a Bernoulli event: "a sequence of two successive H's occurs
before a sequence of two T's ever occurs." We will call a
specified finite sequence of H's and T's a run. SO the

event in question is "the run HH occurs before the run TT



ever occurs". Write A for this event. The essence of the
event A 1is that we will continue flipping that coin until
either an HH or a TT occurs. When one of them happens

we may then quit, or we may notjbut it is nevertheless
computationally easier to conceive of the experiment as
having continued forever. Now it ought to be conceptually
clear that it is possible to express A in terms of
elementary Bernoulli events, but at first it may seem
mysterious how to do it. The idea is to break apart A

into simpler events which can each be expressed relatively
easily in terms of elementary events. The whole art of
probability is to make a judicious choice of a manner of
breaking up the event being considered. 1In this case we
break up the event A according to when the first run

of HH occurs. Let An be the event "the run HH occurs
first at the nth toss and the run TT has not yet occurred."
The event A is the (infinite) union of all the An's, and
in turn each An can be expressed in terms of the elementary

events as follows:

A, = HinH, HH ...

A, = ﬁlAHan3 THH. ..

A, = Hlnﬁan3nH4 HTHH. ..

Ag = ﬁlnHanBnH4nH5 THTHH. ..
etc.



Note that not only is A the union of the A 's but also

none of the A['s overlap with any other. 1In other words no
sample point of A has been counted twice. This property will
be very important for probabilistic computations.

As an exercise one might try to calculate tne expression,

"

in terms of elementary events, of the event a run of k heads
occurs before a run of n tails occurs." Later we will develop
tools for computing the probability of such an event guite easily,

and this exercise will guickly convince one of the power of these

tools.

3. The Algebra of Multisets

We now go back to our study of set theory. Our objective
is to extend the concept of a set by allowing elements of sets
to be repeatéd. This more general concept is called a nultiset.
To give an example, suppose that a committee of 10 members has an
election to determine its chairperson. Of the votes that are
cast, 7 are for candidate A, 2 for B and 1 for C. The set of
votes is most easily expressed as a multiset consisting of 10
elements: 7 of type A, 2 of type B and 1 of type C. 1In set-
builder notation we write this {a,a,a,a,a,a,a,b,b,c} . We can
write this more economically as {a7,b2,cl} , the exponents
denoting the number of copies of the element that are in the

multiset. Notice that a set is a special kind of multiset.



As with sets, we can combine multisets to form new
multisets. In some ways these operations are more natural
than the analogous ones for sets. The operations are addition

and multiplication. 1In the exercises we describe one more

operation: subtraction. Given two multisets M and N,

their sum M+N is obtained by combining all the elements of

M and N, counting multiplicities. For example if a occurs
three times in M and twice in N, theh it occurs five times
in M+N. The product MN of M and N is obtained by
multiplying the multiplicities of elements occuring in both

M and N. For example if a occurs three times in M and
twice in N, then it occurs six times in MN. Here are some

more examples:

{a,a,a,b,b} + {a,b,b,b,c} {a,a,a,a,b,b,b,b,b,c}
{a,a,a,b,b} + {a,b,b,b,c} = {a,a,a,b,b,b,b,b,b} ,
{a,b} + {b,c} = {a,b,b,c}

{a,b} « {b,c} = {b}

or using exponent notation:

2
fa>,b%1 + fal,p3,cty = 1at,p2, N
{a31b2} . {alleIcl} = {a3rb6} .
ral,ply + ey = 1al,p?, el

fal,ply « !, ety = )



When A and B are two sets, it now makes sense to
speak of their sum A+B and their product AB. What do
these mean in terms of sets? The product is easy to describe:
it coincides precisely with the intersection AAB. For this
reason it is quite common to write AB for the intersection
of two events. On the other hand, the sum of two sets 1s not
so easy to describe. In general A+B will not be a set even
when both A and B are. The reason is that those elements
occurring both in A and in B will necessarily occur twice
in A+B. However if A and B are disjoint, that is when
AnB is empty, then A+B 1is a set and coincides with AuB.
As this situation is quite important in probability, we will
often write A+B to denote the union of A and B when
A is disjoint from B, and we will then refer to A+B as

the disjoint union of A and B.

4. The Concept of Probability

Consider once again the election multiset introduced in the
last section: {a7,b2,cl} . What percentage of the votes did each
of the candidates receive? An easy calculation reveals that A
received 70% of the total, B received 20% and C received only
10%. The process of converting "raw counts” into percentages
loses some of the information of tne original multiset, since the
percentages do not reveal how many votes were cast. However, the

percentages do contain all the information relevant to an election.

1.13



1.14

By taking percentages we are replacing the complete information
of the number of votes cast for each candidate by the information

of what proportion of votes were cast for eacn candidate relative

to the total number of votes cast. The concept of probability is

an abstraction derived from this situation. Namely, a probability
measure on a set tells one the proportion or size of an element

or a subset relative to the size of the set as a whole. We may
intuitively think of a probability as an assignment of a non-
negative real number to every element of the set in such a way

that the sum of all such numbers is 1. The above multiset {a7,b2,cl}
gives rise to a probability measure which will be demoted in the
following manner. For every subset S of {a,b,c} , we write P(S)

for the proportion of the multiset {a7,b2,cl} , whicn has elements

from S . For example, P({a}) 1is 0.7 because 70% of the elements
of {a7,b2,cl} are a's. Similarly, P({a,b}) is 0.9, P({b,c})

is 0.3, pP({a,b,c}) 1is 1.0 and so on. We call P a probability

measure. It is important to realize that P is defined not on
elements but on subsets. We do this because we observed that events
are subsets of the sample space, and we wiéh to express the concept
of a probability directly in terms of events. As we have seen it

is easier to think directly in terms of events rather than in terms
of sets of outcomes. For this reason we henceforth decree that a

probability measure P on a sample space  1is a function which

assigns a real number P(A) to every event A of @ such that

(1) Pp(@A) >0

(2) P(Q) =1
(3) If Aq,Ay, **° is a sequence of disjoint events, then

P(A] +Ag +ee°) = P(A;) +P(Ap) ++++ oOr more compactly;

] oo

Py By = Ii-p P .



At first it may not be easy to see that these three conditions
capture the concept of "proportion" we described above. The first
two conditions however are easy to understand: we do not allow
outcomes to occur a negative number of times, and the measure of
Q itself is 1 because it is the totality of all possible outcomes.
It is the third condition that is the most difficult to justify.

This condition is called countable additivity. When the sequence

of events consists of just two events A and B, it is obvious.

Let C be the union A{JB. Since A and B are assumed to be
disjoint, C is the same as A + B. Probabilistically this says
that A and B are mutually exclusive alternatives for C: it
occurs if and only if exactly one of A or B occurs. Clearly

if this is so then the probability of C is "distributed" petween
A and B, i.e. P(C) = P(A) + P(B) . The extension of this rule
to an infinite sequence of events is somewhat unintuitive, but one

can get used to it when one sees concrete examples.

Properties of Probability Measures

We now show three important facts about probability measures.
These facts relate the concept of probability to the Boolean concepts

of subevent, union, intersection and complement.

Subevents. If A 1is a subevent of B, then P(A) < P(B) .
Although this should be intuitively clear, we will prove it from

the three conditions for P to be a probability. First observe



that A g; B means that B 1is the disjoint union of A and BN\NA,
where B\A denotes B () A. This
should be clear from the Venn diagram,

or just think of what it says: every

element of B 1is either in A or it
is not and these alternatives are
BN\A 1is shaded mutually exclusive. Therefore condition

(3) implies that

P(B) = P(A + (BNA)) = P(A) + P(B\A) .
By condition (1), P(BN\A) > 0. Therefore,
P(B) = P(A) + P(B~A) > P(A) .

As a consequence we find that since every event A is a subevent
of Q ,

0 < P(A) <P(R) =1.
This corresponds to our intuitive feeling that probability is a
measure of likelihood, ranging from extremely unlikely (zero or

near zero) to extremely likely (1 or close to 1).

Union and Intersection. If A and B are two events, then

p(alUB) = P(A) + P(B) - P(AMB).
To prove this we first write A B as a disjoint union of atoms.
From the Venn diagram it is clear that

AlJ B = (AMB) + (ANB) + (B\A)

Similarly, we can write A and B as (disjoint) unions of atoms:

I

A (A B) + (AN\B)

B (A B) + (BN\A) .
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By condition (3),

P(AUB) = P(AﬁB) + P(ANB) + P(B\ A)
P(A) = P(AYB) + P(AN\ B)
P(B) = P(AMB) + P(B\A).

Now solve for P(ANB) and P(B\A) in the last two expressions
and substitute these into the first. This gives our formula.
The usefulness of this formula is that it applies even when A
and B are not disjoint.

Here is a concrete example. Suppose that we have two coins.
Let A be the event that the first shows heads, and let a = P(A)
be the probability of this. Similarly let B be the event that
the second shows heads, and let b be P(B) . What is the
probability that when we toss both of them at least one shows
heads? Clearly we want P(A\JIN . By the above formula, we find
that P(AlJB) = P(A) + P(B) - P(A(MB) =a +b - P(A(B)
However, we do not yet know how to compute P(A()YB) in terms of
P(A) and P(B) . We will return to this problem in the next

section.

Complement. If A 1is an event, then P(a) =1 - P(A)

To see this simply note that & is the disjoint unior of A and A.
By conditions (2) and (3), we have 1 = P(R) = P(A + A) = P(A) + P(A),
Thus we see that the probability for an event not to occur is
"complementary" to the probability for its occurrance. For example,
if the probability of getting heads when we toss a coin is p, then

the probability of getting tails is gq =1 - p.



5. Independent Events

The notion of independence is an intuitive one derived from
experience: two events are independent if they have no effect on
one another. More precisely if we have two independent events A
and B, then knowing A has occurred does not change the probabil-
ity for B to occur and vice versa. When we have thevnotion of
conditional probability we can make this statement completely
rigorous. Nevertheless even with the terminology we have so far,
the concept of independence is easy to express. We say two events

A and B are independent when

P(A(B) = P(A)P(B)

If we use multiset notation, writing AB for A{j]3, then this
rule is very suggestive: P(AB) = P(A)P(B). It is important to
realize that only independent events satisfy this rule just as

only disjoint events satisfy additivity: P(A+B) = P(A) + P(B).

consider the case of coin tossing. The individual tosses of
the coin are independent: the coin is the same coin after each
toss and has no menory of having been tossed before. As a result,
the probability of getting two heads in two tosses is the square

of the probability of getting one head on one toss.
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As an application consider the two-coin toss problem in the
last section. Since we are tossing two different coins, it seems
reasonable to expect A and B to be independent. Therefore

P(A(\B) = P(A)P(B) = ab. Thus

pP(alJ B)

P(A) + P(B) - P(A(B)

= a + b - ab.
We conclude that the probability for one of the coins to show

heads is a + b - ab.

For any three events A,B and C, we say these events are

independent when:

(1) any pair of the three are independent,
(2) P(AMB(IC) = P(A)P(B)P(C).
It is possible for three events to satisfy (1) but not (2). This

is an important point that is easily missed. Consider again the
two-coin toss problem above. Let C be the event that the two
coins show different faces (one heads the other tails). Then
A,B and C are pairwise independent; for example, knowing that
the first coin shows heads tells one nothing about whether the
other will be the same or different. However the three events
are not independent: the occurrence of any two of them precludes

the third from occurring.

Similarly given any number of events (even an infinite number),

we say that they are independent when

P(A] M A, -2 MA)) = P(B)P(Ay) == P(Ay)

for any finite subcollection Aj,Ap, ***/, Ap of the events.
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6. The Bernoulli Process

This is the process of tossing a biased coin. 1In a given
toss we suppose that the probability is p for heads and g for
tails, where p+q = 1. Generally speaking we will also be
implicitly assuming that both p and g are nonzero, but other
than this we shall make no restriction on what value p could have.
We call p the bias of the coin. A fair coin is a special kind

of biased coin; namely, one with bias p = %% .

We want to assign a probability to every elementary event and
show how this allows us to compute the probability of every other

event. This done in two steps.

F

Step 1. P(Hn) = p and P(Tn) = P(In) = q=1-p. This assignment
is made irrespective of n. In effect we assume that we are
using the same coin (or at least have the same bias) during each

toss.

We have now defined the probability of the elementary events.
But we still cannot determine the probability of an arbitrary event
because noneof the three conditions determines what, for example,
P(Hl(W H2) can be, although they limit the possible choices.
This leads us to our second assumption:

i ip in i ip in
Step 2. P(i OHZ N -- ﬁHn ) = P(H;") P(H,) -+ P(H, ) , where

iy,ip, **+, i, take on all possible choices of £ 1.
Here we have drawn from the physical nature of the phenomenon of
tossing a coin. The question of whether tosses of a real coin are

independent is another question entirely: the question of the
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validity of the model as a means of describing the actual physical

experiment. We will not consider this question until Chapter IVv.

For any other event A of the Bernoulli process, the
probability is calculated by expanding A in terms of the elementary
events (possibly using countable unions) and by using conditions
(1), (2) and (3). It is not always obvious what the best way to
do this might be. There is an "art" to this part of the subject,
and developing one's skill in this art is the whole idea of

learning probability.

Let us return to the event: "9 run of HH occurs before
a run of TT." Recall that this event can be expanded as a disjoint

union:
A= mﬁWH?4-mlmﬂzﬁHy +UﬁmﬂbmH3mH“ 4+ oo
By countable additivity, we compute:

P(p) = P(Hlﬁ H,) + P(Tlﬂﬁzﬁ Hy) + P(Hlﬂ Tzr\H3('\ Hy) + oo

P(Hl)P(HZ) + P(Tl)P(HZ)P(H3) + P(Hl)P(Tz)P(H3)P(H4) + e

2 2 2 2
= p° + gp° + pgp’ + gpap * °°°
= p2 + pqu + e
2 2
+ qgp + gpgp” *t °*°
= p2 (1 + pg + (pq)2 + eee)

+ qu (1 + pg + (pq)2 + eee)

2 1 . 1
ap
1 -pq 1l -pg




We are assuming here that we know how to sum a geometric series:

1 +r + r2 + r3 + e = , if |r| < 1.

1
l-r
We can check our computation of P(A) by a simple expedient:
suppose that the coin is fair, i.e. p =g = 1/2 . In this case
P(A) = 1/2, for either HH occurs before TT or TT occurs
before HH , and since the coin is fair either one of these is
equally likely. And indeed setting p =g = 1/2 in our formula

above shows that this is the case.

Probability measure: a function P on events such that
(1) for every event A, P(A) > O

(2) P&y =1
(3) if A1, A2, ... 1s a sequence of disjoint events,
then
P(A1+A2+~--) = P(A1)+P(A2)+-~-

Properties of probability measures:
(1) -if A and B are disjoint events, then P(A+B)=P(A)+P(B)
(2) if A and B are independent, then P(AB)=P(A)P(B)
(3) if A is a subevent of B, then P(A) < P(B)
(4) if A and B are any two events, then
P(AB) = P(4) + P(B) - P(AMB)
(5) if A is any event, then P(A) = 1-P(A)

Probability Measures




7.

Exercises for

Chapter I Sets, Events and Probabilty

The Algebra of Sets and Multisets

1. If A and B are sets, the stroke of A by B, written

A\B, stands for A[ |B, i.e. those elements of A that are
not in B. As an event A\ B stands for "A occurs but B does
not." Show that the operations of union, intersection and com-

plement can all be expressed using only the stroke operation.

2. The symmetric difference of A and B, written AAB, is

defined by

A A B = (A\B)[J(B\A) .
As an event A A B means "either A occurs or B occurs but
not both." For this reason this operation is also called the

"exclusive or." Use a Venn diagram to illustrate this operation.

3. The set of elements where A implies B, denoted A/B, 1is

A/B = E|_JB.
As an event A/B stands for "if A occurs then B does also."

Use a Venn diagram to illustrate this operation.

4. Using Venn diagrams prove the following:
(a) (a/B)[(B/C) C A/C, i.e. if A implies B and B
implies C, then A implies C.
(o) (a/B)[)(asc) = a/(B[]C), i.e. A implies B and A
implies C if and only if A implies B and C.
(¢) (a/B)[](B/A) = AAB.
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5. Show that for any four sets A, B, C and D, the following
is true: (AlJBYN(c| D) C (a\©) | J(B\D).

6. Prove that any Boolean (logical) expression in

A ., An is a union of atoms. In what sense is this

l’ A2’ . »

union unique?

7. Let B be a multiset. We say that A 1is a sub-multiset

of B if every element of A occurs at least as many times in
B as it does in A . For example, f{a,a,b} 1s a sub-multiset
of {a,a,b,b,c} but not of {a,b,b,}. When A 1s a sub-

multiset of B, it makes sense to speak of the difference of

A and B, written B-A; namely define B-A to be the unique
multiset such that A + (B-A) = B. For example,
{a,a,b,b,c} —{a,a,b} = {b,c}. Suppose henceforth that A
and B are sets. When does B-A coincide with B\A? Prove
that A| JB = A+ B - AB. Compare this with property (b) in

section I1.3.

The Bernoulli Sample Space

8. Give an explicit expression for the event "a run of three
heads occurs before a run of two tails" in terms of elementary
Bernoulli events. Suggest how this might be extended to "a run

of k heads occurs before a run of n tails."

The Concept of Probability

9. In a certain town there are exactly 1000 families that
have exactly three children. Records show that 11.9% have 3 boys,

36.9% have 2 boys, 38.1% have 2 girls and 13.1% have 3 girls.
1.24



Use a multiset to describe this situation. Give an interpre-
tation in terms of probability. What is the probability that in

one of the above families all the children have the same gender?

10. In a factory there are 100 workers. Of the total, 65 are
male, 77 are married and 50 are both married and male. How many
workers are female? What fraction of the female workers are

married? Ask the same questions for male workers.

11. Express P(AUBIJC) in terms of P(A), P(B), P(C),
p(AB), P(AMC), P(B1C) and P(AMYB(C) . Hote the
similarity of this expression with that of property (b) of

section I.3.

12. Let Dl be the event "exactly one of the events A, B and C
occurs." Express P(Dl) in terms of P(A), P(B), P(C), P(A{) B),

p(AC), P(BAYC) and P(AM B C).

13? Condition (3) for a probability measure can be stated in
several other ways. Prove that condition (3) implies each of
(a) and (b) below and that either of these imply condition (3).
(a) If Ay C Ay Q;LA3 C_ -+ is an ascending sequence
of events and if A = Al(j As U A3LJ «s+ . then

P(A) = limP(An) .

n-—>ro

(b) If Ay ;2 As D) Ag _) +++ 1is a descending sequence

of events and if A = A1(\AA2rW A3(\ +++ , then

P(A) = 1imP(Ap)

-+
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Independent Events

14, If A and B form a pair of independent events, show

that the pair A,ﬁ, the pair A, B and the pair A, B are

each a palr of independent events.

15. In exercise 10, are the properties of being male and of
being female independent? Is the property of being male inde-

pendent of being married?

16. The probability of throwing a "6" with a single die is 1/6.
If three dice are thrown independently, what 1is the probability

that exactly one shows a "6"? Use exercise 12.

17. A student applies for two national scholarships. The
probability that he is awarded the first is 1/2, while the
probability for the second is only 1/4. But the probability
that he gets both is 1/6. Are the events that he gets the

scholarships independent of one another. Discuss what this means.

18. A baseball player has a 0.280 batting average. What is the
probability that he gets exactly one hit in the next three times
at bat? See exercise 16. To do this exercise one must assume
that the player's times at bat are independent. Is this a

reasonable assumption?

19. Three pigeons have been trained to peck at one of two
buttons in response to a visual stimulus and do so correctly with
probability p . Three pigeons are given the same stimulus.

What is the probability that the majority peck at the correct

stimulus? Suppose that one of the pigeons sustains an injury
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and subsequently pecks at one or the other button with equal
probability. Which is more likely to be the correct response,
the button pecked by one of the normal pigeons or the button

pecked by a majority of the three pigeons?

20. How many times must one roll a die in order to have a 99%
chance of rolling a "6"? (Answer: 26 times.) If you rolled
a die this many times and it never showed a "6", what would

you think?

The Bernoulli Process

21. A dice game commonly played in gambling houses is Craps.
In this game two dice are repeatedly rolled by a player, called
the "shooter," until either a win or a loss occurs. It is
theoretically possible for the play to continue for any given
number of rolls before the shooter either wins or loses. Com-
puting the probability of a win requires the full use of
condition (3). Because of the complexity of this game, we will
consider here a simplified version.

The probability of rolling a "4" uysing two (fair) dice is
1/12, and the probability of rolling a m7n ig 1/6. What is the
probability of rolling a "y pefore rolling a "7"? This prob-

ability appears as part of a later calculation.

22. (Prendergast) Two technicians are discussing the relative
merits of two rockets. One rocket has two engines, the other
four. The engines used are all identical. To ensure success

the engines are somewhat redundant: the rocket will achieve its
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mission even if half the engines fail. The first technician
argues that the four-engine rocket ought to be the better one.

The second technician then says, "Although I cannot reveal
the failure probability of an engine because it is classified
top secret, I can assure you that either rocket is as likely to
succeed as the other."

The first technician replies, "Thank you. What you just
told me allows me to compute the failure probability both for
an engine and for a rocket."

Can you do this computation also?

23% Let A be the event in the Bernoulli process that the
coin forever alternates between heads and tails. This event
consists of just two possible sample points.

A = { HTHTH+-., THTHe-+ }
Using exercise 13, prove that P(A) = 0. Does this mean that
A is impossible? More generally if an event B 1in the Bernoullil
process consists of only a finite number of sample points, then

P(B) = 0



Chapter II Finite Processes

Historically the theory of probability arose from the
analysis of games of chance, usually based on the toss of a die
or the choice of a card from a deck. For this reason the oldest
probability models have only a finite number of sample roints.
In this chapter we introduce the techniques for computing
probabilities of events in a finite process. We will later see

that these techniques are useful in meny other processes as well.

1. The Basic Models

The basic situation for a finite process is the following.

Imagine that we have a population consisting of individuals. They

may be people, cards or whatever. UlNow choose one individual from
the population. How many ways can we do this? The answer, of
course, is the number of individuals in the population. The
individual we chose is called a sample (of size 1) from the
population. More generally suppose that we choose not Jjust one
but a whole sequence of k individuals from the population.  The
sampling procedure we envision here is successive: we choose one
individual at a time. How many ways can we do this? The answer
will depend on whether the same individual can be chosen more
than once, or equivalently on whether a chosen individual 1is
returned to the population before another is chosen. The two

kinds of sampling are called sampling with replacement and

sampling without replacement. The sequence of chosen individuals

is called a sample of size k.




To illustrate this we consider dice and cards. A single
roll of a die samples one of its six faces. If we roll the die
k times, or equivalently if we roll k dice, we are choosing a
sample of size k with replacement from the population of six
faces. Similarly, a choice of one card from the standard 52
card deck of cards is a sample from a population of 52 individuals.
However, if we deal out k cards, we are choosing a sample of size
k without replacement from the population of cards. Note that in
a sample the order matters, so that a sample of cards is not the
same as a hand of cards, for which the order does not matter.

The description of a finite process given above is called

the sampling model. It is by no means the only model or the

best model for a given situation. For the rest of this section
we congider several other models all of which are mathematically
equivalent.

The occupancy model is the following. We have k balls or

marbles and n boxes. Denote the set of balls by B and the set of
boxes by U (for urns). A placement is a way of placing the balls
into the boxes, each ball in some box., For example, here is a

placement of 4 balls into 5 boxes:

= -

Ly LYy J L J L
A B C D E

In the distribution model we have an alphabet U whose members

are called letters. A word of length k is any sequence of k

letters from the alphabet. The distribution model is easily seen



to be equivalent to the occupancy model: the letters correspond
to the boxes and the positions of the letters in a word correspond

to the balls,

g o

A placement of The corresponding
4 balls into 3% boxes L4 letter word.

If we regard the alphabet U as a population whose individuals

are letters, then it is easy to see that a word is just a sample
with replacement., Therefore the distribution and occupancy
models are both equivalent to the sampling model with replacement.
In terms of the occupancy model, sampling without replacement
means that no box has more than one ball. In terms of the distri-

bution model, this means that no letter appears twice in a word.

The Mathematical Model. In mathematics a placement of

balls is called a function from B to U. Sampling without
replacement corresponds to one-to-one functions.

The Physics Model. In physics the balls are called

particles, and the boxes are called states, while a place-

ment is called a configuration or system. For a given

placement, the occupation number of box i , called Oi,

is the number of balls placed in box i. The occupation
n
numbers trivially satisfy I o; =k = |B|. For example
i=1
saying that the placement corresponds to a one-to-one
function (or sampling without replacement) is the same as

saying 0; equals 0 or 1 for all i . 1In physics such a
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restriction is called an exclusion principle: a given state

may have at most one particle in it. The physics model we

have described here goes by the name of Maxwell-Boltzman

statistics (with or without the exclusion principle). We
shall see other statistics in later sections, which are
more physically realistic.

At this point we can make a dictionary for translating

terms from one model to another.

Model Terminology (terms in one column are equivalent)
Occupancy placement balls B
Distribution word places -
Sampling ordered sample position -
Mathematics function - domain

* .
Physics confiquration particles -
Astrology horoscope planets solar system
Model Terminology
Occupancy bhoxes U at most one ball per box
Distribution letters alphabet no repeated letters
Sampling individuals population without replacement
Mathematics - range one-to-one function
Physics* states - exclusion principle
Astrology signs Zodiac horoscope

* Maxwell-RBoltzman statistics

2.4



2. Counting Rules and Stirling's Formula

Placements in their many variations and ecquivalent forms
are the most commonly encountered objects in nrobability
computations. A roll of dice, a hand of cards, even a con-
figuration of particles in chemistry or physics are all forms
of placements. In this section we will concentrate on the
most basic rules for counting collections of placements. In
section four we will consider the more subtle
kind of counting necessary in the atomic and sub-atomic do-
mains of chemistry and physics.

The First Rule of Counting

The most fundamental rule of counting is one so obvious

that it doesn't seem necessary to dwell on it:

First Rule of Counting. If an object is formed by making a

succession of choices such that there are

n, possibilities for the first choice

n, possibilities for the second choice
etc.
Then the total number of objects that can be made by

making a set of choices is




Hote that by a "succession of choices" we mean that after

the first choice is made, there are n, choices for the
second choice, and similarly for subsequent choices.

We illustrate this rule with some familiar examples.

Throwing Dice. How many ways can we roll three dice? A
roll of three dice requires three "choices": one for each
die . Since each die has six possibilities, there are

63 = 216 rolls of three dice.

Notice that it does not matter whether we view the three
dice as beinag rolled one at a time or all at once. We will
call such choices independent: the rolls of the other dice
do not affect the set of possibilities available to any
given die.

Dealing a Poker Hand. How many ways can we deal five cards

from a deck of 52 cards? (We consider as different two hands having
the same cards but dealt in different orders.) A deal of

five cards consists of five choices. There are 52 choices

for the first card, 51 choices for the second card, etc.

The total number of deals is then 52+51-50-49-48 = 311,875,200.
Unlike the situation for rolls of three dice, the cards

dealt in the above example are not independent choices. The

earlier cards we dealt do affect the set of possibilities for



later cards. However the earlier cards do not affect the
number of possibilities for a given later deal of a card.
Hence the first rule still applies.

Before we consider more complex counting problems we
restate the above two examples in the general language of
distribution and occupancy.

Arbitrary Placements. The total number of ways to place k

balls into n boxes or equivalently the total number of k-
letter words made from an alphabet of n letters is nk:
each ball or letter can be chosen in n wavs independently
of the others.

Placements no two in one box. The total number of ways to

— i ——— —— o————r——

place k balls into n boxes so that no two occupy the same
box or equivalently the total number of k-letter words made
from an alphabet of n letters and having no repeated letters
is

(n')k = n(n-1)...(n=-k+1)

There are k factors in this product, one for each choice.

This product is called the lower or falling factorial.

An important special case of the second formula is
the one for which k = n. Such a placement has a special

name: it is a permutation. For example, if we deal all 52

cards from a standard deck, there are (52)52 = 52¢5]1-50%°*¢3-2-1

ways for this to happen. This is a very large number, and

we will discuss techniques for approximating it below.
Permutations occur so frequently in computations that

we have a special notation for the total number of them.
’ 2.7



Definition, The total number of ways to place n balls
into n boxes, each ball in a different box, or equivalently
the number of n-letter words using all the letters from an

n-letter alphabet is called n-factorial and is written

n! = (n)n = n(n~-l)...3+2-1.

Arbitrary placements of k balls into n boxes nk
Placements no two in one box of
k balls into n boxes (n)k

n balls into n boxes n!=(n)n

Table 1l: Placements

Stirling'!s Formula.

The computation of factorials is so common in probability
that it is a great relief to learn that there is an easy way
to compute them., The method makes use of an approximation
known as Stirling's Formula. The precise mathematical state-

ment is the following:

but in practice this is what one uses:

n_-n
n! ~ne VYZm

Stirling's Formula
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The symbol "=" means "approximately equal to", and in practice

in any expression involving large factorials, we replace each

factorial by the right-hand side of Stirling's Formula above.
For example, the total number of permuatations of a

standard deck of cards is approximately:

50526792 \fiokw = 8.053 x10°7

The Second Rule of Counting.

Poker Hands. Anyone who has played cards knows that one

normally does not care about the order in which one is

dealt a hand of cards. That is, a EEEQ of cards is not the
same as a deal of cards. A poker hand is defined to

be a subset of five cards from a standard deck, and the

order in which the cards are obtained is immaterial. We
cannot count the number of poker hands using the first rule
of counting because they violate the fundamental premise of
that rule: the object must he obtained by successive choices.
However, every poker hand can be dealt in precisely 5! = 120

ways. Therefore the number of poker hands is

52+51-50-49-48 _ 311,875,200 _
-4 = 130 = 2,598,960

This illustrates the second rule of counting, also called
the "shepherd principle": if it is too difficult to count

sheep, count their legs and then divide by four.
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Second Rule of Counting. If we wish to count a set of

objects obtained by making choices but for which the order
of choice does not matter, count as if it did matter and
then divide by a factor: the number of ordered objects per

unordered object.

Let us illustrate this in a more complicated situation.

Bridge Games. How many bridge situations are possible?

By definition a bridge game consists of four people being
dealt 13 cards each. However, the order in which each of
the four hands is dealt does not matter. So we first count
as if the order did matter: this gives 52! possible deals.
But each hand can be dealt 13! ways, and there are four
hands for a total of (131)4 ways to deal a given bridge

game. Therefore there are

221 . 5.36447 « 10°8
(13!)
possible bridge situations. The symbol "=" means "ap-

proximately equal to."

One rnust be careful when applyina the second rule to
make certain that the number of ordered ohjects is the same
for any unordered object. In = Sectiom 4 we will give
an example of this kind of difficulty. Meanwhile you are
now equipped to perform all the (unstarred) counting compu-

tations in the exercises.
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Before we end this section we cannot resist one more
generalization suggested by the above bridge example. Using
the language of the occupancy model, a bridge game consists
of 52 balls being placed in four boxes such that every bhox
has exactly 13 balls. More generally, the numher of ways
that k balls can be placed in n boxes so that el balls are
in the first box, 92 balls are in the second box, etc. is,
by the second rule of counting,

k!

91392!...9n!

Note that for the above formula to make sense we must have

el + 92+...+en =k. This expression, called the multi-

nomial coefficient, is written

( k )_ k!
= 1 1 [
91'92""en 91.92....en.

and is prounced "k choose el,ez,...,en." The numbers
91,92,...,en are called the occupation numbers of the place-
ment.

An important special case of the multinomial coef-
ficient is the case n = 2,when it is called the binomial

coefficient. This number should be a familiar concept from

the binomial expansion in algebra and calculus. DBecause a
placement of balls into two boxes is completely determined

by the choice of those in one of the boxes, we can also
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k
interpret the binomial coefficient (e e ) as the number of
1772 _—

el—element subsets of a k-element set. The binomial coef-

k

ficient is often abbreviated to (g ) = (
l’

), and is then
1 ©1/8,

pronounced simply "k choose el". Using this notation we
can quickly compute the number of poker hands because a poker
hand consists of five cards chosen from 52 cards:

521 (52) 5

(52) = 52 ) = _
5/ ~ '5,47’ ~ BT4A71 — 51

Furthermore, we can use binomial coefficients and the
first rule of counting to find another formula for the
multinomial coefficient. A placement of k balls into n

boxes with occupation numbers 61,62,...,en can be made using

n-1 choices: choose 6. balls from the k balls and put them

1

in the first box, choose 62 balls from the remaining k-6

1

balls and put them in the second box, ..., choose ®,-1 balls

from the remaining k—el—...-en_2 balls and put them in the

next to last box, and finally put the last en = k—el—...—en_l

balls in the last box (no more choice is necessary). Therefore:
61,62,...,Gn Gl 62 en—l



Placements of k balls into n boxes k
with occupation numbers o 91, en

l,...,en 62,...,
] k k
Subsets of size 6 of a set of k balls ‘g) = (e k—e)
Ty

Relationship between multinomial and binomial coefficients

( k ) _ (k ) (k"el) (k"'el_ « o e -—Gn_z)
S RAYERENL o) 9, ®n-1

Table 2: Multinomial and Binomial
Coefficients

3. Computing Probabilities.

Consider a finite sample space Q. The events of { are the
subsets A € Q. We would like to see what a probability measure
P on Q means. Remember that P is defined on events of Q.

An event A € Q may be written as a finite set

A= {wl,wz, ...,wn}

and by additivity any probability measure P must satisfy

P(A) = P({wl}) + P({wz})+---+P({wn})-

We call the events {w}, having just one outcome « € Q, the
atoms of Q. It is important to distinguish between an outcome
and an atom: the atom {w} of an outcome ® 1is the event

"o occurs'. The distinction is roughly the same as that between

- - . . 121 T
a noun and a simple sentence containing it, e.g., between "tree
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and '"This is a tree."

What we have just shown above is that every probability

measure P on a finite sample space Q is determined by its

values on atoms. The value on an arbitrary event A CQ is

then computed by the formula:

P(A) = ) P({uw}).
weA
The values of P on the atoms may be assigned arbitrarily so
long as:
(1) For every atom {w}, 0 < P({w}) <1,
(2) §} P({w)) = 1.

we N
Whenever (1) and (2) hold, P defines a consistent probability

measure on .

The simplest example of a probability measure on a finite

sample space Q 1is the one we will call the equally likely

probability; it is the unique probability measure P on Q

for which every atom is assigned the same probability as any
other. Hence for every atom {w}, P({w}) = 1/|Q|. For more

general events A € @, this probability has a simple formula:

P(A) = Al _ no. of outcomes w € A

[ total no. of outcomes in @

The equally likely probability is quite common in gambling
situations as well as in sampling theory in statistics, although

in both cases great pains are taken to see to it that it really
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is the correct model. For this reason this probability has some-
thing of an air of artificiality about it, even though it or
probability measures close to it do occur often in nature.
Unfortunately nature seems to have a perverse way of hiding the

proper definition of @ from casual inspection.

"at random"

The phrases ''completely at random" or simply
are used to indicate that a given problem is assuming the
equally likely probability. The latter phrase is misleading
because every probability measure defines a concept of randomness
for the samplé space in question. Even certainty for one outcome
is a special case of a probability measure. In Chapter VII we
will justify the use of the description '"completely random' for

the equally likely probability measure. For now we consider some

concrete examples of this probability measure.

Rolling Dice. What is the probability that in a roll of three

dice no two show the same face? We already computed |[Q| in the
last section: |Q| = 216. The event A  in question is ''the
faces of the three dice are all different.'" We think of an
outcome in A as a placement of three balls into 6 boxes so that
no two balls are in the same box. There are (6)3 = 654 = 120

placements with this property. Hence

(6)
_ 3 _ 120 _
P(A)—?——m—SSS

Birthday Coincidences. If n students show up at random in a

classroom, what is the probability that at least two of them have
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the same birthday? In order to solve this problem we will make

some simplifications. We will assume that there are only 365 days
in every year; that is, we ignore leap years. Next we will assume
that every day of the year is equally likely to be a birthday.

Both of these are innocuous simplifications. Much less innocuous

is the assumption that the students are randomly chosen with
respect to birthdays. What we mean is that the individual students'

birthdays are independent dates.

Let B be the event in question, and let A = B¢ be the
complementary event 'no two students have the same birthday."
Now just as we computed in the dice rolling problem above,

(365)n

P(A) = ——— , and hence P(B) =1 -
n n
365 365

(365)n
_ These probabilities

are easily computed on a hand calculator. Here are some values:

n =20, P(A) = 0.5886, P(B) = 0.4114
n =22, P(A) = 0.5243, P(B) = 0.4757
n = 25, P(A) = 0.4313, P(B) = 0.5687
n = 30, P(A) = 0.2937, P(B) = 0.7063

So in a class of 30 students the odds are 7 to 3 in favor of at

least two having a common birthday.

Random Committees. In the U.S. Senate a committee of 50 senators

is chosen at random. What is the probability that Massachusetts
is represented? What is the probability that every state is

represented?



In any real committee the members are not chosen at random.
What this question is implicitly asking is whether random choice
is "fair" with respect to two criteria of fairness. Note that
the phrase "at random'" is ambiguous. A more precise statement
would be that every 50-senator committee is as probable as any

other.

We first count |@Q|, the number of possible committees.

Since 50 senators are being chosen from 100 senators, there are

100
le| = [
50

committees. Let A be the event 'Massachusetts is not represented."
The committees in A consist of 50 senators chosen from the 98

non-Massachusetts senators. Therefore,

98
50

98}/[100] _ (98)50/ (100)55  98)s,

50 50 501 -

Hence P(A) = [ =0T = (100)50

_ 98.97.....49 _ 50-49
= 100.99.98 - 5T - 100.99 = C0-247-

So the answer to our original question is that Massachusetts is
represented with probability 1 - 0.247 = 0.753 or 3 to 1 odds.

This seems quite fair.

Now consider the event A = "every state is represented."

Each committee in A is formed by making 50 independent choices
50

from the 50 state delegations. Hence |A| = 2 and so
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b

_ 550 f{100} _ -14
PA) = 2 /[50] = 10

i.e., essentially impossible. By this criterion random choice

is not a fair way to choose a committee.

We computed the above probability by using Stirling's

Formula as follows:

250 930 930,(501)2 239502020 7750y 2
1007 = 7I00T ] - —T00T  ° ;-100.-100
50 } [§6T§UT] 1007 e =772+ 100

) 250.50100.e"100.2“.50 _ 250.{50]100./2?.5
100199..7100. 7510 (100

= 299, 35100577 - 27°%. 5,77 = 1071%.10 = 10714,

The last approximation above is quite rough. We used only that
2 ~ 1000 and that 1m 1is about 3. All we required was

the order of magnitude of the answer. Using a calculator one
gets the more exact answer:

1.113 x 107 1%
Compare this with the following answer obtained (with much more

effort) without using Stirling's Formula and correct to 5

decimal places:

1.11595 x 10° 1%



4" Indistinguishability.

If we roll three dice, the number of possible outcomes is the
number of placements of three balls in six boxes: 216. Suppose
now that the balls are photons and the boxes are six possible
states. Now how many placements are there? The answer is rather
surprising: only 56. If we consider electrons instead of photons
the answer is even smaller: 20. Moreover, if the six possible
states have the same energy, then the 56 states for photons are
equally likely. The fact that subatomic particles do not behave
as tiny hard balls is one of the major discoveries of physics
in this century. The counting problems one encounters in physics
are more difficult than those of the previous sections, but a deep
understanding of the physics of subatomic particles requires the

concepts we present here.

The reason that photons do not behave as dice or balls is a

consequence of a propetty known as indistinguishability. In other

words, if two photons were interchanged but the rest of the
configuratioﬁ is left unchanged, then the new configuration is
jdentical to the old one. Moreover, given a set of various
possible different configurations, all having the same energy,
each is as likely to occur as any other. For simplicity, suppose
that we have two photons and three states. There are 6 possible

configurations:



number of photons in state #l in state #2 in state #3

2 0 0
1 1 0
1 0 1
0 2 0
0 1

0 0 2

Particles which are indistinguishable and for which any number
of particles can occupy a given state are called bosons, and we

say they obey Bose-Einstein statistics. For example, photons

and hydrogen atoms are bosons.

Electrons differ from photons in that two electrons cannot
have the same state. As a result, if our configuration consists
of two electrons occupying three states, there are only three
possible configurations. The fact that two electrons cannot

occupy the same state is called the Pauli exclusion principle.

Particles which are indistinguishable and which obey the Pauli
exclusion principle are called fermions, and we say they obey

Fermi-Dirac statistics. For example, electrons, neutrons and

protons are fermions.

Fermi-Dirac Statistics: Subsets.

We first count Fermi-Dirac configurations. A Fermi-Dirac
configuration means simply that certain of the states are occupied

(or "filled") and the rest are not. Thus a Fermi-Dirac configuration
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is a subset of the states. Since there are n states and k

particles, there are (E) possible configurations.

Bose-Einstein statistics: multisets.

In order to count placements obeying Bose-Einstein statistics,
we will use the second rule of counting. However the ordered
object corresponding to these placements is a new concept: the

disposition. A disposition if k balls in n Dboxes is a

placement together with the additional information of an arrange-
ment in some order of the balls placed in each box. Another model

for a disposition is a set of k flags arranged on n flagpoles.

\N
—,

Two different dispositions of three flags on two flagpoles.

Yet another model is that of a disposition of k cars in n
traffic lanes on a turnpike.

We can count the number of dispositions using the first
rule of counting. The first ball can be placed n ways. The
second ball has n+l choices: either we place it in an un-
occupied box (n-1 choices) or we place it before or after the
first ball in the occupied box (2 choices). The third ball has
n+2 choices. If there are n-2 unoccupied boxes, we can place
the third ball in two ways into each of the two occupied boxes.

If there are n-1 unoccupied boxes, we can place the third ball
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in three ways into the occupied box.

In general each newly
placed ball creates one more 'box" for the next ball.

1 2 3 1 2 3 1 2 3 1 2
o O O O 9] D i D
/, 4, ’/,
‘\\\ 1/’/ \\ /7;’,/"/ r’,¢€/'lll
AN ) A or e
| \ S ' ’ S P R |
| \ v/ \\ ’»”/ ’ I' SV AV
{ \ ! ' P S AAL SR
N Yo, v 0 O L2C) Ly
First ball second ball third ball

By the first rule of counting, there are

n(n+l)... (n+k-1)
dispositions of k balls in

n boxes. We call this the rising
factorial or n(k)

As with the lower factorial, the k denotes
the number of factors.

We now consider an alternative way to count dispositions.
We first specify the occupancy numbers, then count all dispositions
for the given set of occupancy numbers.

To see this better, we
consider the example of three balls into 2 boxes.

There are four
choices for the occupancy numbers:
e}
3 0
2 1 Possible occupancy numbers for placing
1 2 3 balls into 2 boxes

We now enumerate the dispositions for each set of occupancy
numbers :



1 2 1 2 1 2 1 2

L1235 L2 L3 L2 i 112
22 L] e L2y 2 S
Bl B LA 2 B
(32 1] L2 (3 12 L) 32
Ml B Had S (2 3y T el
2 32y IR IR

The dispositions of 3 balls into 2 boxes.

A glance at the table reveals the following general fact: the
number of dispositions of k balls into n boxes having a given
set of occupation numbers is precisely k! = (k)k, the number

of permutations of k Dballs.

By the second rule of counting, the number of sets of
(k)
occupation numbers is EET"- Now a Bose-Einstein configuration
means that each state has a certain number of particles in it
(possibly none). Thus a Bose-Einstein configuration is nothing
. . . n n(k)

but a set of occupation numbers. We will write <k> for T
by analogy with the binomial coefficient and call it the

multiset coefficient. We use this name because we may interpret
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a Bose-Einstein configuration as being a multiset: a set of
elements together with a nonnegative multiplicity for each element.
For example, {a,c,a,a,c,f,g} 1is a multiset and not a set. The

classical terminology for multiset is combination.

Monomials. Consider for example how many monomials of degree
16 can be made with 10 wvariables xl,...,xlo. Each such monomial
is a product of 16 xi's where some must be repeated and the order
does not matter. Thus each is a l6-multisubset of the set

10y _ 10(16)
{xl,...,xlo}. Therefore there are <l6)'= T~ 2,042,975

monomials.

Particles. What is the probability that a random configuration

of k particles in n states will have occupation numbers
ol,...,en? The answer will depend on the ''physics' of the problem,
i.e., which statistics is to be used: Maxwell-Boltzmann, Fermi-

Dirac or Bose-Einstein. Let A be this event.

(1) Maxwell-Boltzmann. P(A) = (o k 0 )n-k
1729,
(2) Fermi-Dirac. P(A) = O if one of the 0; is greater than one
({{1)_l otherwise
. . n\-1
(3) Bose-Einstein. P(A) = <k>
We try two examples: 3 particles in 5 states with occupation

numbers (1,0,1,1,0) and (0,3,0,0,0).
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(1,0,1,1,0) (0,3,0,0,0)

(1) Maxwell-Boltzmann 6/125 = 0.048 1/125 = 0.008
(2) Fermi-Dirac 1/10 = 0.100 0
(3) Bose-Einstein 1/35 = 0.029 1/35 = 0.029

Notice how Bose-Einstein statistics ''enhances' the probability
of having multiple particles in a single state relative to

Maxwell-Boltzmann statistics.

n n(k)
Arbitrary placements <k> =5
n (n)k
Placements with at most one ball per box (k) =

Table 3: Placements of k indistinguishable balls

into n Dboxes.

5% Tdentities for Binomial and Multiset Coefficients.

The coefficients (E) and (E) satisfy a wealth of
identities. Although these can be proved using the formulas,

they can often be given combinatorial proofs. That is, we

can prove them using only their definitions in terms of "balls

into boxes."

n n-1 n-1 . " "
1. (k) = (k-l) + ( Kk ). To prove this we 'mark' one of
the boxes, say the last one. Let:
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2 = the set of all k-subsets of the n-set U

B = the set of all k-subsets of the n-set U which contain
the last box

C = the set of all k-subsets of the n-set U which do not
contain the last box.

Q@ consists of all (unordered) k element samples from a

population U of size n. B and C are the events

1)

"the sample has the last individual" and 'the sample does not have

the last individual.' As events it is clear that @ = Buw C
and BMNC = @. Therefore |q| = |B|] + |C|. Each of these is easy
to count:

Q| = (E) by the definition of the binomial coefficient.

IB| = (E:%) since each subset in B consists of the last
box together with an arbitrary k-1 element subset of

the other n-1 Dboxes.

IC| = (nil) since each subset &n C consists of a k element

subset of the other n-1 boxes.

Remember that @, B and C are all sets of sets. So

BNAC=@ means that none of the sets in B are also in C.
It does not mean that the sets in B are disjoint from those
in C.

Take for example n = 4, k = 3. The set of boxes is

U= {1,2,3,4}. The events §, B and C are:



Q= {{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}}
B = {{1,2,4}, {1,3,4}, {2,3,4}}
c = {{1,2,3}}

3 3
2) 3)

to distinguish {2,3,4} from {{2,3,4}}, as for example the

Then |Q] = (g) =4, |B] = (;) =3, |c| = () =1. Be careful
former has three elements but the latter has only one. Also be

careful to distinguish subset of (as in '"subset of U") from subset

in (as in "subset in B'").

2. (E) = <kT£> +_<n£1>' This is the multiset analogue of
identity 1. We prove it similarly. <k?1> is the number of k-
multisubsets of the n boxes which contain at least one copy of
the last box: every such multisubset is obtainable by choosing
an arbitrary (k-1)-multisubset of the n boxes and then
throwing in one more copy of the last box. <n£1> is the number
of k-multisubsets of the n boxes which contain no copy of the
last box.

Identity 1 gives rise to Pascal's triangle. Because of
identity 2, multiset coefficients may also be arrayed in a
Pascal-like triangle.

(Ei%) = (E) + (ngl) +. ..+ (E) . We prove this by classifying

3.
the (k+l)-subsets of a set U of n+l boxes according to which
is the lowest numbered box in the subset. We assume that U

consists of boxes numbered 1,2,...,n+l. Let
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A = the set of all (k+l)-subsets of U

Bl = the set of all (k+l)-subsets of U which contain 1
B2 = the set of all (k+l)-subsets of U which contain 2
but not 1
B;.; the set of all (k+l)-subsets of U which contain &
but not 1,2,...58-1
Then A = Bl\JBZ\J... and Bif\Bj =@ (if i # j). Therefore
|A] = [By| + lB2|+... .  Each of these is easy to count:
|A] = (Ei%); |B1| = (E) since every element of B; consists of
box 1 together with a k-subset of the boxes numbered 2,3,...,n+l;

|B2|= (ngl); and so on.

&. <ni#> = (3) +-(?) +...+-<E). This is the multiset analogue
of identity 3. We classify the k-multisubsets of an (ntl)-set
according to how many copies of the last element of the (nt+l)-set

are in the multisubset.

5. ) = E-(n-l). This one is easiest to prove directly

k k k-1
from the formula; however it does have a combinatorial proof.
Suppose we make a table of all k-subsets of an n-set U. For

example, take n =4, k = 3:

}
N

@, 2. @
D, ®. @
D, 3, &

N
.

N
(e 0]



We use k(E) entries when we make this table. We now count the
number of entries in another way. Each element of the n-set U
appears (E:%) times in this table: once for every way of

choosing k-1 elements from the remaining n-1 elements of U.

Therefore there are also n(E:%) entries in the table. Hence:

k@ =D,

6. <E) = E(ET%) We leave the multiset analogue as an exercise.
7. (E) = (n?k) Choosing a k-subset is the same as choosing its
complement, which has (n-k) elements.
i+ K oi0, ]
8 ( Kk )y = ) (2)(k—2) Both of these are proved the same way.
2=0
Start with a set U of n = it+j boxes.
i+ K ig, ]
9. ( Kk = ) <2><k_£> Classify every k-element subset according
=0

to the number of elements among the first
i boxes, in which case k-% of the elements will be among the

last j boxes. Similarly for multisubsets.

10. (8) + (?)+...+(2) = o The left hand side counts the number
of subsets of an n-set. The right

hand side is the number of placements of n distinguishable balls

into two boxes, i.e., also counts the number of subsets of an n-set.

There is no multiset analogue.
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1. &= (DD = & The binomial and multiset

coefficients make sense with n
any real number. This identity is easily proved explicitly. A

combinatorial proof reveals an alternative way to compute the

n+k—1)
k

the number of k-subsets of a set of ntk-1 boxes. For a given

multiset coefficient. The binomial ceceefficient ( counts

k-subset of the boxes, charge the boxes in the k-subset to balls

and change the remaining n-1 boxes into vertical lines marking

the boundaries of n new boxes. For example:
L__JL:ialv/Tl L) the 3-subset consisting of 2, 3, and 5
! ) O l O becomes 3 balls and 2 boundary lines
J s l - and thence 3 (indistinguishable) balls

in 3 boxes.

Therefore (n+t—l) ==<E> )

12. (E} = <§T% Use the above representation of <E>, then

interchange balls and vertical lines.

6. Random Integers

It is intuitively obvious that if we choose an integer
nat random" it will be even with probability 1/2, divisible

by 3 with probability 1/3 and so on. Furthermore, if p and g
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are different prime numbers, then an integer chosen at random
will be divisible by both p and g with probability 1/pq, since
it will be so if and only if it is divisible by the product pqg.
therefore divisibility by p and é are independent events. All
this sounds reasonable except that it is not clear how to make
sense out of the concept of a "randomly chosen integer" in

such a way that every integer is equally likely.

The naive approach is the notion of arithmetic density.

Namely let Q = {1,2,3,...} be the sample space consisting of
all integers, and we take the events to be arbitrary subsets

of @ . For an event A C @, the arithmetic density of A is

d(A) = gim Lilrzro--rn}f\Al

n
N0

if it exists. For example if Dp is the event "n is divisible

by p" or equivalently as a set, D_ = {p,2p,3p,...}, then it

p
% . Moreover if p and g are different

is obvious that d(Dp)

primes then d(Dpn Dq) . Unfortunately there are several

pq
problems with this definition. First of all, d is not de-

fined on all events. Secondly, d is not a probability density
even where it is defined. For example if we decompose the

set of even integers D, into its individual elements

o
(1

, = {2Yu {4ty {6}y ...

we get d(Dz) 1/2 but d({2}) + d({4})+... = 0.
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As an example of an event on which d is not defined
consider the event "the first digit of n is 1". Call this

event Fl. Then

F, = {1,10,11,...,19,100,101,...,199,1000,...}.

|{l,...,n}n F

n

In this case 1

forever wanders between é and

3 and never "settles down" to any limiting value as n-+o,

We shall describe a "better" approach to this problem

which is nevertheless far from being a complete answer.

o0
Recall from calculus that the series I 'lg converges
n=1 n

when s>1 and diverges when s<l. (The usual way one shows
this is the integral test.) The value of this series when
s>1 is written g (s) and is a famous function called the

Riemann zeta function. Computing values of this function

2
is quite difficult, for example 7 (2) = g— . However, we

shall only need the fact that 7 (s) exists.

We now define for an event A C @, the Dirichlet density

. _ 1 1
of A with parameter s to be PS(A) = niA,ns "I -

The Dirichlet densities are easily checked to be probability

For example P_(n) = 1 = T 1
measures. P s (@ nzg s * 7(s) oS t(s)

=]

= 1 -
_C(S) a-s—)—— 1.
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Let us compute the probability of the event'Dp,

1 1
"n is divisible by p". P_(D) = g =5 *T(s7
S P nEDD ns gis
1 1 1 1 1 1 1 1 1
= (—= + P IS = S (o == Held) = “—.r(s)-
pS (2p) S z (s) pS 15 S z (s) pS 5 z (s)

= lg . Similarly, for distinct primes p and q, Ps(Dpr‘Dq)
p

= L = PS(Dp)PS(Dq). Therefore while the Dirichlet density

(pq) ®

of Dp is not the intuitively expected value % , it is
nevertheless true that being divisible by different primes

are independent events.

We find ourselves in a quandary. The notion of arith-
metic density is intuitive, but it is not a probability.
On the other hand the Dirichlet densities are probabilities,
but they depend on a parameter s whose meaning is not easy
to explain. Moreover the Dirichlet densities assign the
events Dp the "wrong" probability.

We get out of this quandary bv a simple expedient: take

the limit fim PS(A). One can prove, although it is very
s+1

difficult to do so, that if the event A has an arithmetic

density, then dA(A) = %2im PS(A). Moreover events such as Fl
s+
now have a density, for one can show that £im PS(Fl) = loglO(Z).
s+

These probabilities have many useful applications in the

theory of numbers.



7. Exercises for

Chapter 11 Finite Processes

The Basic Models

1. I'lip a coin three times. How many ways can this be done?
List them. Convert each to the corresponding placement of 3
balls into 2 boxes. Do any of these placements satisfy the

exclusion principle?

2. Roll a die twice. List in a column'the ways that this can
be done. In the next column list the corresponding placements
of 2 balls into 6 boxes. Mark the ones which satisfy the ex-
clusion principle. In a third column list the corresponding

2-letter words, using the alphabet {A,B,C,D,E,F}.

3. You are interviewing families in a certain district. In

order to ascertain the opinion held by a given family you sample
two persons from the family. Recognizing that the order matters in
which the two persons from one family are interviewed, how many
ways can one sample two persons from a six person family? List

the ways and compare with the lists in exercise 2 above. If

the two persons are interviewed simultaneously so that order no
longer matters, how many ways can one sample two persons from

a 6-person family?

4, Return to exercise 2. In a fourth column list the occupation

numbers of the six boxes.



The Rules of Counting and Stirling's Formula

5. A small college has a soccer team that plays eight games
during its season. In how many ways can the team end its
season with five wins, two losses and one tie? Use a multi-

nomial coefficient.

6. Ten students are travelling home from college in Los Angeles
to their homes in New York City. Among them they have two cars,
each of which will hold six passengers. How many ways can they

distribute themselves in the two cars.

The following two problems require a hand calculator.
7. Compute the order of magnitude of 1000!, i.e., compute the
integer n for which 1000! is épproximately equal to 10“.
[Use a hand calculator and Stirling's Formula to compute the

approximate value of‘loglO(IOOO!).]

8. How many ways can a 100-member senate be selected from a

country having 300 ,000,000 inhabitants?

The Finite Uniform Probability Measure

9. Have the students in your probability class call out their
birthdays until someone realizes there is a match. Record how
many birthdays were called out. We will return to this problem

in EXercise III1.725.

10. Give a formula for the probability that in a class of n
students at least two have adjacent or identical birthdays.
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Ignore leap years. Calculate this probability using a hand

calculator for n = 10, 15, 20 and 25.

11. Compute the probabilities for two dice to show n points,

2 <n < 12. Do the same for three dice.

12. It is said that the Earl of Yarborough used to bet 1000

to 1 against being dealt a hand of 13 cards containing no card
higher than 9 in the whist or bridge order. Did he have a good
bet? In bridge the cards are ranked in each suit from 2 (the
lowest) through 10, followed by the Jack, Queen, King and Ace

in this order.

13. May the best team win! Let us suppose that the two teams
that meet in the World Series are closely matched: the better
team wins a given game with probability 0.55. What 1s the
probability that the better team will win the World Series? Do
this as follows. Treat the games as tosses of a biased coin.
Express the event ''the better team wins" in terms of elementary
Bernoulli events, and then compute the probability. We consider
in exercise VIII.xx how long a series of games is necessary in

order to be reasonably certain that the best team will win.

14. Although Robin Hood is an excellent archer, getting a
"pullseye" nine times out of ten, he is facing stiff opposition
in the tournament. To win he finds that he must get at least four
bullseyes with his next five arrows. However, if he gets five
bullseyes, he runs the risk of exposing his identity to the
sheriff. Assume that if he wishes to miss the bullseye he can

do so with probability 1. What is the probability that Robin wins

the tournament?



15. A smuggler is hoping to avoid detection by customs officials

by mixing some illegal drug tablets in a bottle containing some

innocuous vitamin pills. Only 5% of the tablets are illegal in
a jar containing 400 tablets. The customs official tests five

of the tablets. What is the probability that he catches the
smuggler? [Answer: about 22.7%] Is this a reasonable way

to make a living?

16. Every evening a man either visits his mother, who lives
downtown, or visits his girl friend, who lives uptown (but not
both). In order to be completely fair, he goes to the bus stop
every evening at a random time and takes either the uptown or
the downtown bus, whichever comes first. As it happens each of
the two kinds of buses stops at the bus stop every 15 minutes
with perfect regularity (according to a fixed schedule). Yet

he visits his mother only around twice each month. Why?

17. In a small college, the members of a certain Board are
chosen randomly each month from the entire student body. Two
seniors who have never served on the Board complain that they
have been deliberately excluded from the Board because of their
radical attitudes. Do they have a case? There are 1000 students
in the college and the Board consists of 50 students chosen eight

times every year.

18. The smuggler of exercise 15 passes through customs with no
difficulty even though they test 15 tablets. But upon reaching
home he discovers to his dismay that he accidentally put too

many illegal drug tablets in with the vitamin pills, for he finds
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that 48 of the remaining 385 tablets are illegal. Does he have
reason to be suspicious? The question he should ask 1is the
following: given that he packed exactly 48 illegal pills, what

is the probability that none of the 15 tested were illegal?

19. Using Stirling's formula, compute the probability that a
coin tossed 200 times comes up heads exactly half of the time.
Similarly what is the probability that in 600 rolls of a die,

each face shows up exactly 100 times?

20. The following is the full description of the game of CRAPS.
On the first roll of a pair of dice, 7 and 11 win, while 2, 3
and 12 lose. If none of these occur, the number of dots showing
is called the "point," and the game continues. On every sub-
sequent roll, the point wins, 7 loses and all other rolls cause
the game to continue. You are the shooters what is your prob-

ability of winning?

21. Compute the probability of each of the following kinds of
poker hand, assuming that every five-card poker hand is equally
likely. Note that the kinds of hands listed below are pairwise
disjoint. For example, in normal terminology a straight hand does

not include the straight flush as a special case.

kind of hand definition
(a) M"nothing" none of (b)-(j)
(b) one pair two cards of the same rank
(e) two pair two cards of one rank and two of another
(d) three-of-a-kind three cards of the same rank
(e) straight ranks in ascending order (ace may be low

card or high card but not both at once)
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(f) full house three of one rank and two of another

(g) flush all cards of the same suit

(h) straight flush both (e) and (g)

(1) four-of-a-kind four cards of the same rank

(j) royal flush (h) with ace high

52, Tt is an old Chinese custom to play a dice game in which

six dice are rolled and prizes are awarded according to the
pattern of the faces shown,ranging from "1l faces the same"
(highest prize) to "all faces different."™ List the possible
patterns obtainable and compute the probabilities. Do you notice

any surprises?

23. Some environmentalists want to estimate the number of white-
fish in a small lake. They do this as follows. First 50 whitefish
are caught, tagged and returned to the lake. Some time later
another 50 are caught and they find 3 tagged ones. For each n
compute the probability that this could happen if there are n
whitefish in the lake. For which n 1s this probability the

highest? Is this a reasonable estimate for n?

24, A group of astrologers has, in the past few years, cast some
20,000 horoscopes. Consider only the positions (houses) of the
sun, the moon, Mercury, Venus, Earth, Mars, Jupiter and Saturn.
There are twelve houses in the Zodiac. Assuming complete random-
ness, what is the probability that at least two of the horoscopes

were the same?
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25. In a chess championship, a certain number N of games are
specified in advance. The current champion must win N games in
order to retain the championship, while the challenger must win
more than N 1in order to unseat the champion. The challenger is
somewhat weaker than the champion, being able to win only a dozen
games out of every 25 games which do not end in a tie. If the
challenger is allowed to choose the number N , what should the

challenger choose? [Answer: 12]. Reference: Fox, Math. Teacher

54 (1961), 411-412.

26. The three-person duel is a difficult situation to analyze in
full generality. We consider just a simple special case. Three
individuals, X, Y and 7, hate each other so much they decide to
have a duel only one of which can survive. They stand at the
corners of an equilateral triangle. The probability of a hit by
each of the three participants is 0.5, 0.75 and 1, respectively.
For this reason they decide that they will each shoot at whomever
they wish, taking turns cyclically starting with X and continuing
with Y, then Z, then X agaiﬁ and so on. All hits are assumed to
be fatal. What strategy should each employ, and what are their

probabilities of survival?

History of Probability

Historically, the modern theory of probability can be said
to have begun as a result of a famous correspondence between the
mathematicians Blaise Pascal (1623-62) and Pierre de Fermat (1601-
65). Their correspondence came about as a result of problems put
to Pascal by the Chevalier de Méré, a noted gambler of the time,

We give below two of these problems.
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27. Two gamblers are playing a game wihich 1s interrupted. How
should the stake be divided? The winner of the game was to be
the one who first won 4 deals out of 7. One gambler has so far
won 1 deal and the other 2 deals. They agree to divide tne stake
according to the probability each nhad of winning the game, and
this probability is to be computed by assuming that each player
has equal probability of winning a given game. Express the event
that the first gambler wins in terms of elementary Bernoulli

events. Then compute the probability. [Answer: 5/16].

28. Chevalier de Méré apparently
believed that it is just as probable to show at least one six

in four throws of a single die as it is to show at least one
double-six in twenty-four throws of a pair of dice. However, de
Méré computed the probabilities of these two events and found that
one was slightly above, the other slightly below, 0.5. What are
the exact probabilities? 1In exercise IV. 22, we will consider the
likelihood that de Méré could have found the distinction between

these two probabilities empirically.

29. 1In what was apparently Isaac Newton's only excursion into
probability, he answered a question put to him by Samuel Pepys.
The problem was to determine which is more likely, showing at
least one six in 6 throws of a die, at least two sixes in 12
throws or at least three sixes in 18 throws. Compute these
probabilities and consider the general question of the probability

of showing at least n sixes in 6n throws of a die.
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Indistinguishabllity

30%. Suppose we have a physical system having three energy
levels and two states per energy level (for a total of six
states). If two electrons are in the configuration, what 1s

the probability that they occupy the lowest two energy levels
(one in each level)? Consider the same question for two photons
and two Maxwell-Boltzmann particles. Since the states do not
have the same energy, the states are not "equlprobable.”' Assume
that the probability of one particle being in a state is pro-
portional to e—E where E 1is the energy of the state. In this

problem suppose that the three energy levels have respective

energies 1, 2, and 3.

In the following problem we admittedly oversimplify a bit
too much, but it does illustrate some of the 1ideas and techniques
of modern Physics.

31%, Consider a small piece of metal at ordinary temperatures.
It forms a crystal with the nuclei of its atoms appearing in a
regular fashion throughout the solid. Most of the electrons may
be regarded as being bound to some one nucleus. Some of the
electrons, the ones in the outermost orbitals of an atom, have
more freedom of movement. Call these the valence electrons.

The outermost orbitals of a given atom form an almost continuous
band. Let us suppose that the valence electrons act as bosons
in this environment with any number being allowed in the set of
outermost orbitals of one given atom. Let us suppose also that

the outermost orbitals of one given atom all have the same energy.
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(Neither of these assumptions is actually true.) Let k be the
number cof atoms and let n be the number of valence electrons.
Compute the distribution of 67 , the number of valence electrons
occupying the outermost orbitals of one specific atom. Now in
an actual macroscopic piece of metal, n and k are very large
(being on the order of 1023) and so cannot be measured exactly.
However, the ratio X = {% is usually not toedifficult to find.
Since n and k are so large, we may regard them as being
infinite. The distribution of 61 is then approximated by
letting n and k tend to infinity but in such a way tnat the
ratio X = {% is held fixed. Find this limiting distribution.

Such a distribution can be measured experimentally and used to

compute A as well as to test our model.

Tdentities

n _ n n+l
32. Prove formally that <k> = % <k _]>
33%, Give combinatorial proofs of the above identity as well as

the identity n = (kt1
k n-1

34%, (Give a combinatorial proof of the following identity"

n-1 n n n n
n 2 = 1 + 2 5 + e+ (n-1) N + n

Random Integers

3% Compute 2iT PS(Fi) for i = 2,3,...,9. Now pick out
S

100 addresses at random from a phone book and tabulate the
number having each of the 9 possible first digits (ignore
addresses other than natural number addresses). Do these

fit with the predicted probabilities? Try 1000 addresses.
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Chapter III Random Variables

‘A random variable is a new wayv of answering
questions about nature. For example, suppose we toss a coin.
How long will it take to get the first head? !How can one
answer such a question? Sometimes the first head will appear
on the first toss, sometimes on the next and so on. Clearly
we cannot answer such a question with a single number. The
originality of the probabilistic point of view is that it
answers such a question with a series of possible answers,
each with its own probability.

The intuitive idea of a random variable is that it is
the strengthening of the notion of a variable. Recall from
calculus and algebra that a variable is a symbol together with
a set over which the symbol ranges. For example in calculus
one often says "let x be a variable ranging over the real

numbers" or more succinctly "let x be a real variable." Now

a random variable (or R.V. for short) is a variable together

with the probability that it takes each of its possible values.

In particular an integer random variable is a variable

n ranging over the integers together with the probabhility Ph

that it takes the value n . Implicit in this is that 7 p = 1,
n

which means that the random variable alwavs takes some value



or other. Some of the p, can be zero, which means that these
integers do not occur as values of the random variable. For
example, if P, = 0 whenever n<0, then the random variable is
said to be positive, i.e. it takes only positive integral

values.

1, Integer Random Variables

We're now ready for the precise mathematical defini-
tion. Don't be surprised if at first this notion doesn't ap-
pear to match what we've just been led to expect. It has
taken an enormous amount of time and effort to make this
notion rigorous so it will require some effort and many ex-
amples to make this concept clear.

An integer random variable is a function X defined on a

sample space 2, that takes only integer values. Namely, for

every sample point weQ, X(w) is an integer. The (probability)

distribution of X is the sequence of numbers Ph such that P,
is the probability of the event "X equals n". The event "X
equals n" is usually written (X=n). As a subset of Q , this
event is (X=n) = {weQ:X(w)=n}. We shall generally avoid
writing out this set exnlicitly each time. One should develop

an intuitive feeling for the event (X=n).



0Of course we have implicitlv assumed that the suhsets
(¥=n) reallv are events of the samvle space Q@ . This is a
technical point that will never be of direct concern to us.
Suffice it to say that a fully rigorous definition of an
integer random variahble ista function X on a sample space 9]
such that its values are all integers and such that the subsets
(X=n) are all events of Q .

The probability distribution of an integer R.V. X alwavys

satisfies P, > D for all n and ¥ P, = 1. The former pronertv
n

expresses the fact that the p are prohahilities, while the
latter says that X alwavs takes some value.

The intuitive idea of a random variable relates to the
precise definition of a random variable in the following way.
Whenever we have some measurement with prohabilities, look
for a sample space and a function on it. The random variable
then really comes from ohserving some phenomenon on this sample
space. The fact that we only had a probability distribution
at first arose from the fact that we had forgotten about the
phenomenon from which the measurement came.

Of course all this means little until we have seen ex-

amples,



AThe Bernoulli Process:tossing a coin

Recall that Q is the set of all infinite sequences of
zeros and ones corresponding to the tosses of a biased coin
with probability p of coming up heads (or one) and g coming
up tails (or zero). Let Wl be the waiting time for the
first head. 1In other words we ask the question: how long
do we have to wait to get the first head? The answer is a
probability distribution p,r Where p, is the probability

th

that we must wait until the n toss to get the first head.

In terms of the terminologv of R.V.'s:
P, = P(Wl = n) .

How can we compute this? Well, the event (Wl=n) is

the event: "at the nth toss we get a head and the preceding

n-1 tosses are all tails". 1In terms of elementary events:
(Wl = n) = TlnTzﬂ...nTn_lan .
n-1
Therefore Py = P(Wl=n) = q p.

Just for once let us satisfy ourselves that I P, = 1:
n

P, = I q p=pcLq =pP'yg = P'5; ~ 1. So it checks.



Of course it isn't really necessary that we do this. The
very definition of a probability distribution requires that
it sum to 1. As we shall see probability theory furnishes a
new way to perform some very complicated infinite sums simply
by observing that the terms are related to the probability
distribution of some integer random variable.

Notice that in understanding W, as a random variable
we worked completely probabilistically. We never spoke of
W, as a function. What is W, as a function? For each
wesl, Wl(w) is the first position of the sequence w such that
at that position w has a 1. For example, W1(00011011...)
is 4. However looking at W, as a function is quite unnatural.
One should try to think of Wy purely probabilistically. In-
deed, one might say that probability theory gives one a
whole new way of looking at sets and functions.

Consider another example. TLet W. be the waiting time

for the kth head. The event (Wk=n) is the event: "a head

occurs at the nth toss and exactly k-1 heads occur during the

preceding n-1 tosses." The probability distribution is:

n-1, k-1 n-k

) _ (n—l k n-k
k-1'P q p

p, = P(W=n) = ( k-1 P d .

How does one see this? Well, the k-1 heads can occur in

3.5



any (k-1)-subset of the first n-1 tosses. There are (;:%) such

subsets. For each such subset, the probability of getting
heads in those positions and tails in the others is pk—lqn—k.
Finally the probability of getting a head on the nth toss is
p.

Needless to say it is not very easy to write an explicit
expression for the events (Wk=n) in terms of elementary events

although that is implicit in our computation above.

n-1, k n-k

Notice too that (k_l)p q = 1, a fact that 1is not very

It 8

n=k

easy to prove directly.
Consider the event Xn = { 1 if nth trial is 1 }

0 if nt trial is 0

th

or more succinctly Xh is the n trial. The distribution of

X_ is
n

po=P(Xn=O)=q

pl=P(Xn=l)=p

and all other p, are zero.

Next let Sn be the number of heads in the first n

tosses. The distribution of Sp is:

3.6



n, _k n-k
)pTa

p, = P(Sn = k) = (k 1

because the event (Sn=k) means that ¥k heads and n-k tails

occur in the first n tosses. There are (;) wavs that the k
‘g k n-
heads can appear and each pattern has probability p qn k of

occurring. The fact that I Py = 1l is just the binomial
k
theorem:

(?)pkqn—k - (p+q)n = 1" = 1

N ~M3

k=0

Indeed this is a probabilistic proof of the hinomial theorem.
Incidentally the event (Sn=k) is not the same as the event
(Wk=n). The distinction is that (Wk=n) requires that there

h

be k heads in the first n tosses and that the kt head occur

at the nth toss. (Sn=k) is only the event that k heads occur
in the first n tosses. The distinction is reflected in the

formulas we found for the distributions in each case.

Another way to represent S is:

5 =X

n l+X

2 n °

This illustrates the fact that we may combine random

variables using algebraic operations. After all, random



variables are functions on Q and as such may be added, sub-
tracted, etc. Thus if X and Y are integer R.V.'s on Q , then,
as a function, the random variable X+Y takes the value
X(w)+Y(w) on the sample point wefl. For example (Wk=n) is

the event (Xl+...+X

= k-1)n (X =1) = (S _; = k-Da(X =1).

n-1 n-1
Unfortunately the use of large quantities of symbolism tends
to obscure the underlying simplicity of the question we
asked. We shall try to avoid doing this if possible.

Now consider the random variable Tk’ the length of the

h

gap between the (k-l)St and kt heads in the sequence of

tosses.

w = 0001 00001 1 0O01l...
- =

S

m_ =W
T "1 T

1 T

T

2 3 4 o s @

The Tk's and Wk's are related to each other:

W

]
3

What is the distribution of Tk? When we later have the

notion of conditional prohability we will have a very natural



way to compute this. However we can nevertheless easilv
compute the distribution of T, because of the independence
of the various tosses of the coin. In other words when
computing P(Tk=n) we may imagine that we start just after

the (k-—l)St head has been obtained. Therefore the distri-

bution of Tk is

exactly the same distribution as that of vy

Notice that T, for k>1 is Egglthe same random variable as
Wy, and yet their distributions are the same. How can this
be? Actually we have already seen this phenomenon before but
didn't notice it because it was too trivial an example:
Xy/X5,... are all different random variables, hut thev all have
the same distributions. This phenomenon will occur fre-
quently and is very important.

Definition. Two integer random variahles X and Y are said

to be equidistributed or stochastically identical when

P(X = n) = P(Y = n) for all integers n .

Thus for example W,y and T, are equidistributed R.V.'s.
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Similarly the X_ are equidistributed R.V.'s. Although X

n 1

and X, measure completely different phenomena, they have

exactly the same probabilistic structure.

B.The Bernoulli Process: random walk

Consider the random variables x& given by:

1 if the nth trial is 1
X' =
-1 if the n™ trial is 0
<7 ! - - r1 = —_ 2
X, and X are closely related: kn 2Xn 1. However if we

form the random variable analogous to Sn we measure a quite
different phenomenon. Let Sﬂ = Xi+...+xﬂ, then Sﬂ is the
position of a random walk after n steps: a step to the
right gives +1, a step to the left gives -1, so the sum of
the first n steps is the position at that time.

What is the probability distribution of Sﬂ? This cal-
culation is a good example of a "perturbation" (or change
of variables) applied to a model. We want to compute
P(kﬂ=x). Here we use x for an integer: think of it as a
point on the x-axis. Let h be the numhber of heads and t

the number of tails, both during the first n tosses. Then:

X = h-t and n = h+t .

5olving for h and t agives:
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h = %(x+n) and t = %(n-x).

Therefore:

n %(x+n)q%(n-x)

P(s! = x) = P(S, = %—(x +n)) = (1
-2-(x+n)

C. Independence and Joint Distributions

Recall that two events A and B are independent when
P(AnB) = P(A)P(B). This definition is abstracted from ex-
perience; as for example when tossing a coin, the second time
the coin is tossed, it doesn't remember what happened the
first time. e extend this notion to random variables. In-
tuitively two random variables X and Y are independent if the
measurement of one doesn't influence the measurement of the
other. 1In other words the events expressible in terms of X
are independent of those expressible in terms of Y. We now

make this precise.

Definition. Two integer random variables X and Y are inde-

pendent when
P((X=nl)n(Y=n2)) = P(X=n1)P(Y=n2)
for every pair of integers n,.,n,.

3.11



We illustrate this with our standard example: the
Bernoulli process. Xk and Xn are independent when k#n.
This is obvious from the definition of the Bernoulli process.
Less obvious is that Tk and T, are independent when

k#n. We check this for T, and T2. By previous computations,

nl—l nz—l
P(Ty=n;) = q p and P(T,=n,) = q p .

Now compute P((Ty=n,)a(T,=n,)). The event (T;=ny)a(T,=n,)

means that the first nl+n2 tosses have preciselv the pattern:

00.,..01 00...01

Therefore P((Tl=nl)n(T2=n2)) = q P q p. Since
P((Tl=nl)A(T2=n2)) is the same as P(Tl=nl)P(T2=n2) =

n,-1 n2~l
q Pq p, we conclude that Ty and T, are independent.

On the other hand, Wk and Wn are not independent R.V.'s.
This is intuitively ohvious, but we will check it neverthe-

less in the case of Wl and Wy We previously computed:



P(Wl=nl) = q p

P(W2 = n2) (nz—l)q P .

Now (Wl=nl)n(W2=n2) is the same as the event (Tl=nl)A(T2=n2—nl),

both being the event that the first n, tosses have the pattern:
12

e g nne.

00...01 00...01

l’ll 1’12-'1’1

Therefore, P((Wl=nl)n(W2=n2)) = ‘ 0 if n,<n,

n,—-2
2 2 .
q P if n2>nl

Since P((W1=nl)A(W2=n2)) # P(Wl=nl) P(W2=n2) (in particular

when annZZZ one side is zero and the other is not), Wl and

W, are not independent. In other words Wy influences Wy

When two R.V.'s are not independent, is there a way to
measure the dependence of one of them on the other? 1In
more common parlance, how do we measure the "correlation"
of two R.V.'s? We measure this with the joint distribution

of two random variables.



Definition. For two integer random variables X and Y, the

joint distribution of X and Y is

n,on, = P((X = nl)r\(Y = n,)) .

The numbers S cannot be computed in general from
1772
the individual distributions of X and Y. The joint distri-
bution measures the total dependence of X and Y or equiva-
lently the cause and effect of one R.V. on the other.

Joint distributions have the following properties:

(1) = I c =1, i.e. something must happen.
n,,n
nl n2 1 2

(2) = c, n = P(X = nl) .
1772
2
(3) c = P(Y = n,) .
n, n,,n, 2

The distributions of X and Y considered relative to their

joint distribution are called the marginal distributions or

simply the marginals. Despite the fancy terminology, the
marginals are simply the distributions of X and Y with which

we are already familiar.
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Just as we have the joint distribution of two random
variables, we can have the joint distribution of any finite
collection of random variables. The formulas are so obvious
that we won't bother to write them down explicitly.

We now compute some examples. If X and Y are inde-

pendent random variables with distributions P, = P(X=nl)
1

and r, = P(Y = n,), then their joint distribution is
2

=P
cnl,nz ((X

I

nplalY =mny)) = P(X =ny) P(Y =ny) =p, 1,

Therefore the joint distribution of independent R.V.'s is
the product of the marginals.

Next consider the random variables Wj and W, (j<k).

k

Their joint distribution is

cnl’nz = P((Wj = nl)n(wk = nz)).

Of course we must have nl<n2. The event (Wj=nl)A(Wk=n2)

2y) means that we have j-1 heads in
010...11 00l1l....1 the first nl—l tosses and k-j-1
4 + ; " " - -
n, th kth heads in the "gap" of length n,-ny 1
J . th th
head head hbetween the j and k heads.

Writing all this out gives:



_2fNy~=N

nl—l 3 n,-J 2
C = P((Wj=nl)/\(wk=n2)) =< j-l)p q k_j_l

NNy
=:(nl—l ‘nz—nl—l>pkqn2-k
5-1 k-j-1

The total number of tosses involved is n,: exactly k of
them are heads and nz—k are tails. This furnishes a quick
check that the exponents on p and on q are correct.

As a final example, we compute the joint distribution of
the first k waiting times. For N <n,<...<ny, the joint distri-

bution is:

TP T P((Wy=ny)n (Wy=ny)n ...n(Wyp=ny)).

This is actually quite easy to compute because there is only

one "way" to get the event (Wl=nl)n...n(wk=nk) up to the nﬁh

toss. Therefore:
n.-1 n

c _ l
NysNyeee Ny = P((Wl=nl)A...ﬁ(WK-nk)) = pq jole| ...TP q

-1 .
1 . n,-n,-(k=-j)
k-j 2
)p Iq 1



D". Fluctuations of Random Walks

Recall that the basic random variables of the Random
walk sample space are Xﬁ for n=1,2,... . These are inde-
pendent random variables taking values + 1 with probability
p and q respectively. They represent the direction taken
during the nth step of the random walk. The position of
the random walk after the nth step is then the random variable
Sﬁ = Xi + x5+...+x5. Ye computed the distribution of Sﬁ in
general in section 1. For the special case of a symmetric

random walk,

cnoy oy
P(S'=x)='\ )——.
n n+x n
— 2
We will write p(n,x) for the above probability.

Note that Sﬁ takes onlv even values for even n and only

odd values for odd n,.

For the rest of this section we will consider only the

case of a symmetric random walk, i.e. one for which p = q = % .

First Passage Time and the Reflection Principle

The event (S; = 0) means that the random walk has re-
turned to the origin after n steps. However, it could have

returned many times before. When was the first time it



returned to the origin (or more generally any point a>0)?
We answer this by compouting the probability distribution
of the random variable Ta’ the time when the random walk
first encounters the point a , i.e. the first time n such
that SA = a.

To compute the distribution of T, we use an important

principle called the reflection principle. Consider the

event Cn ax - "the random walk is at position x at time n
14 14

and at some previous time was at position a ". The fol-

lowing is the graph of a typical random walk in Cn a.x®
14 14

Mow observe that every random walk in Cn a.x is necessarily
14 14

at position a for a first time. We take each random walk in

Cn a.x and "pivot" or "reflect" it up to the first time that
’ r7

it reaches position a:



In this way we get a random walk from 2a to x. Con-
versely, any random walk from 2a to x necessarily crosses a
at some time, so every random walk from 2a to x is uniquely
determined in this way! “Now shift the axis so that 2a be-
comes the origin and x becomes the point x-2a. Then we
conclude that P (C ) is the same as P(SA = x-2a). By

n,a,x

symmetry this is the same as P(Sﬁ = 2a-x). Thus

P(Cn ) = o(n,2a-x).

We are now ready to compute P(Ta=n). We first note
that (Ta=n) necessarily implies that the random walk moved
from a-1 to a at step n. Prior to step n the random walk
never achieved position a but ends at position a-1 at step

- . . . " " =4 -
n-1. This is just the "complement" of the event Cn—l,a,a-l'
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-?;\\/, n-1 n

[This random walk is at a-1l at time n-1l so it is in(S'n =a-1).

-1

It never reaches position a so it is not in 7 .]
—_— n-1,a,a~1

More precisely it is the difference of events:

~
"n-l,a,a-1

Putting this all together:

(Ty =n) = (S5 p =al) -7 ) NG, =1).

This is the intersection of independent events. Therefore

— - -
=a-1) Cn—l,a,a—l) P(Xp=1)

il
N
d
N



Ylow C is a subhevent of (35! ,=a-1l) so
e a sube of (S] _4 )

=a-1) )]

o)
D)

P (T4 :n)

I
Nof =

(p(s]_

1 ‘n-1,a,a-1

= % [n(n-1,a-1) 5 (n=-1,2a-(a=1))]

= % [p(a-1,a-1) = »(n-1,a+1)].

Maximum Position

We next ask how far the random walk travels to the
right (i.e. the maximum position achieved). Tet M be this
maximum for an n-step random walk. Conveniently, the events

C, a.x are just what we need to comnute the distribution of
S 4 4

M- Namely, we use the same "trick" of subtracting one of

the Cn a.x’ but this time from another event of this %ind.
’ 14

First note that the event C is a subevent of
n,a+l,x

Cn a.x’ for if a random walk achieves nosition a+l, then it
’ ’

must have some time previouslv heen at oosition a. Thus

- = P(C - P(C = r 23— _
P(Cn,a,x “n,a+l,x ) ( n,a,x) ( n,a+1,x) n(n,2a-x)

- ! c -C e
p(n,2a+2-x). But the event n,a,x Cn,a+1,x means that

the random walk achieved position a hut never achieved

position a+l, i.e. the maximum achieved by the random
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a+l. - - — - - .

a+—— ——— -

i random walk in C -C
Typical °© n,a,x n,a+l,x

walk is precisely a. The only distinction between this
event and the event (Mn=a) is that the latter does not
specify the ending point x specified by the former. So to
o M = L/ - 1
get P(ln a) we add up the p(Cn,a,x Cn,a+l,x) for all possible
values of x. The nermissible values of x ranqge from a down

to any reachable negative point on the x-axis.

Thus P(Mn=a) is this sum:

p(n,2a=-a) - p(n,2a+2-a) (x=a)
+ n(n,2a-(a-1)) - p(n,2a+2-(a-1)) (x=a-1)
+ ... (x<a-1)

which equals



p(n,a) - p(n,a+2)
+ p(n,a+l) - p(n,a+3)
+ p(n,a+2) = p(n,a+4)

+ p(n,a+3) -~ p(n,a+5)

Cancelling in the obvious way, we get:
P(M =a) = p(n,a) + p(n,at+l).
Note that for each a only one of the summands on the right

is nonzero.

We summarize the computations in this table.

=3
i

time of first passage to or through position a.

P(T,=n) = 7 (p(n-1,a-1) - p(n-1,a+l)).

maximum position achieved up to time n.

o

P(Mn=a) = p(n,a) + p(n,a+l).




E. Expectations

Definition. Suppose X is an integer R.V. with distribution

P, = P(X=n).

The expectation or mean or average value of X is

E(X) = n-p. = In-P(X = n) .

z

n n

It can happen that this sum does not exist. We won't worry
about this. 1Implicit in any statement about expectations
is the assumption that the expectations exist.

th

For example if X is the n trial in the Bernoulli

process, E(Xn) = l*p + 0°g = p. The expected or average

value of the nth

toss is p. Needless to say X won't
ever take the value p (except in the trivial cases p = 0,1).
Intuitively, however, if we perform a large number of trials
and then average the results, we will get roughly p .

Before we go on to other computations, we need the

following important result:

Basic Fact. For any two integer random variables,

E(X+Y) = E(X) + E(Y).
The surprising thing about this fact is that it holds re-

gardless of whether X and Y are independent or not.



Proof. Let c_ = P((X=nl)n(Y=n2)) be the joint distri-

1'M2
bution of X and Y. Now X+Y is a new R.V. What is its
distribution? Well, we must consider all possible ways that

X+Y can take on a given value: ¢, = P(X+Y=k) =

P((X=n,)n(¥Y=n,)) z c
-x} I 2 n,+n,=k "1'"2

{nl,nzznl+n2

Therefore the expectation of X+Y is:

E (X+Y)

z qu = k

z cn n
-— [
k k n1+n2—k 17772

= T r (n,+n,)c
n 12 n,,n,

= I n, c + z z
n

n, ,n n2cn n
[ [
17772 n, n, 17772

= T an(X=nl) + I n2P(Y=n2)
n n,
= E(X) + E(Y) .

This completes the proof.



Notice that it should be intuitively obvious that the

expectation of X+Y is L z (n1+n2)c so the Basic Fact
n n ny/Ny
1 2

is actually easier than the size of our proof suggests.

Namely using probabilistic reasoning we proceed as follows.

X+Y takes the "value" n,+n., with probability c . Adding
172 n,,n,

up all cases gives the expectation:

E(X4Y) = L z (n
n; Ny

+n,)c

12 n, ,n,

Now split the sum and take marginals. The result is E(X) + E(Y).
Let's compute some expectations for the Bernoulli pro-

cess. First we compute the "hard way" directly from the defini-

tion, then we compute using the Basic Fact.

Consider Sn’ the number of successes in the first n

trials. The distribution for s, is p, = (E)pkqn—k. So
n n, k n-k
E(S.) =tk p, = Zk()p g . Unfortunately we cannot
n k k
k k=0
simplify this very easily. On the other hand, S = X;+X,+...+X .
Hence, E(Sn) = E(Xl) + E(X2)+...+E(Xn) = np, since all of

these have the same expectation: p. In addition we have

shown that



n
_ n, k n-k _
B(S,) = Ik()pa = =np,

k=0

a fact that is not so easy to prove.
h

Next consider the waiting time for the kt head, Wy -
The distribution for W, is P, = (;:i)pkqn_k. Therefore
E(W,) = Inp_ = I n(n-l)pkqnuk. Again there is no easy
k n n n=k k-1

way to compute this infinite sum. However, W, = T,+T,+...+T,.
Hence, E(Wk) = E(T1)+...+E(Tk). But all the Tl""’Tk are
equidistributed so in particular they all have the same ex-
pectation. Therefore E(Wk) =k E(Tl)’ and we need only
compute one expectation: the expectation of Ty = Wl'
We shall have to resort to some trickery, but it still

isn't too difficult.

- -1 4 ,n a n
E(T,) = I n P(Ty=n) = I n qn p=p L () = p=( L q)
Y a1 1 n=1 n=1 99 dq -y
d q 1l 1l 1l
=p = ) = p(—z.) = p- = = .
dg 1-q (1-q) pz P
Intuitively, it is quite reasonable that E(Tl) = 1/p for

if p is large we don't expect to wait very long for a success,
while if p is small we expect to wait a long time. As before

we get the added bonus of an identity:
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k n-k

E (W) n(Thp "™ = x/p

N8

a fact that is quite hard to believe otherwise.

x
F. The Inclusion-Exclusion Principle

Imagine that we have a well shuffled deck of cards
and that we turn the cards over one at a time. While doing

this we call out the names of the cards in their unshuffled

order (as in Bridge), beginning with the deuce of clubs and
ending with the ace of spades. What is the probability that
none of the cards turned over match the name called out when

it is turned over? The answer (to an accuracy of 10—15

) is é
This is strange for two reasons: it depends on the number e
which shouldn't appear in a finite counting problem, and it
doesn't depend on the number of cards in the deck.

We shall prove this result and several others by an im-
portant formula called the inclusion-exclusion principle.
The proof of this principle will follow easily from the forma-
lism of random variables.

The abstract setting for the principle is the computation
of the probability of the union of events in terms of the

probabilities of the events and of their intersections. For

example if we have two events A and B, then we know that

P(AUB) = P(A) + P(B) - P(AnB).

A B



If we refer to the diagram it is clear what this means:
P(A) + P(B) "counts" P(AAB) twice. Thus we "include"
P(A) and P(B) and then "exclude" P(AaB).

For three events A,B and C we must include, exclude

and then include once again:

P(AuBuC) = P(A) + P(B) + P(C) ~ P(AaB) - P(AnC) - P(BnaC) + P(AnBnC).

It is quite easy to think through the proof of this directlv.
However for the general case it will take a bit more work.

Here is the general formula:

P(Klvhzv...vAn) = ? P(Ai) - .Z.P(AiAA.) + . ? P(AfﬁAjnAk)
1 i<j i<j<k

T (—l)n+lP(Alf\An...n7\ )

2 n

The Inclusion-Exclusion Principle
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Note that the second sum is really a double sum over both
i and j but subject to i<j, the third is a triple sum and
so on.

To prove this principle we introduce a special kind of
integer random variable called an indicator. Let A be an
event, the indicator of A is the integer random variable IA
corresponding to the question "Did A happen?" More pre-

cisely for any sample point weg,

IA(w) = 1 if weA

0 if wgA

One sometimes also sees the notation Xp for the indicator.

We have already encountered such a random variable before.

th

In the Bernoulli process, Ii, is the event "the n toss is

heads" and its indicator IH is the random variable Xn .
n

The probability distribution of the indicator I is

P(AC) for n =0

P, = P(A) for n=1
1 0 otherwise
Therefore the expectation of I is E(IA) = O-P(Ac) + 1-P(A) = P(An).

As a result of this we see that all probhahilities may be re-
duced to the computation of expectations; and one could dis-

pense with sample spaces and events altogether and develop
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probability theory using only random variabhles and expecta-
tions.
We now consider what happens when we add and multiply

indicators. The easy operation is nultiplication: I, I = Iaan

should he obvious. Addition, however, is not so easy hecause

the sum of indicators need not be an indicator: IA + IB

takes value 2 on AnB. However if we put in a correction

term we get an identity: I, + I, =1 + I So while

B AvB AnB*
multiplication corresponds to intersection, addition does
not quite correspond to union.

The last operation we consider is complementation.

Here the result is clear: I c = 1 - IA'
A y

This suggests what

we should do in general to compute IAl”A2“°'°°An in terms

of the Ai's: convert to an intersection by using the DeMorgan

law. Thus:

I c, .C c
n A
Ar/sz...VAn AlnA2 <o MR

c c c

Al A2 : An
=1 - (l—IA )(l-IA )...(l—IA )
1 2 n



We now multiply out the last expression as in high school

algebra:

T A
i i i<y 71 7)
+1

= £ TI. -5 I, I, 4...+ (1" 1 1 ...1

i P My ApTAy, Ay
_ n+l
=L Iy =L IpateetCD" "I aa. L..0A

i ii<j 7173 172 n

Finally we take the expectation of this expression using
the Basic Fact of expectations. The result is the inclusion-
exclusion principle.

We now return to our first question. Think of the sit-
uation as follows. Start with a new unshuffled deck and then
shuffle it. The result is a random permutation of the un-
shuffled deck. WWhat is the probability that no card is in
the same position in both the unshuffled and the shuffled
decks?

To be more precise consider the integers 1,...,n

instead of the 52 cards. The sample space is the set @ of all

permutations of 1,...,n. Thus |2] = n! The notation for
permutations is (% ? 3 -een ) , where one should think of
1t2t3 - tn
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the top row as the unshuffled integers and the lower row

as the shuffled ones. A fixpoint of a permutation is a
number j so that ij = j, i.e. the same numher j appears twice
in one column in our notation. For example let n = 3. There

are 6 permutations with number of fixpoints as follows:

permutation number of fixpoints
(123 3
23 1
32 0
(323 1
(323) 0
(132 )

Let F be the event "there is at least one fixpoint".
We want to compute P(F°). Counting F directly is not very
easy, but we can write F as the union of events that we can
count quite easily. Let A; be the event "i is a fixpoint".
Then F = AIUAZU"'UAn' Since the A; are not disjoint we

must apply the principle of inclusion-exclusion:

3.33



P(F) = EP(Ai) - iE.P(AinAj)+...
J

Now an element of A, has 1l as a fixpoint so it is just
a permutation of {2,...,n}. Therefore |Al| = (n-1)! and
similarly |A;| = (n-1)! Any element of A,AA, has two fix-
points so it is a permutation of {3,...,n}. So [A;aA,| = (n-2)!

More generally [A;AR,N...nA | = (n-k)! If we divide by n! we

- (n-k)!

get the probabilities, e.qg. P(Aln...nAk) =

= (m); .

Substituting these into our formula for P(F) gives us:

1 1 1

n n n
P (F) (l)m—i"‘ (Z)TEVZ"“(:;)-(H)—;-...

_ (n), 5 ) (n), 4 . (n)5; 4 _
1! (n)l 2! (n)2 3! (n)3 Ut

1 1 1 11
_ﬁ—ﬁ+ﬁ-...+(_l)n+-n_i—

From calculus you should immediately recognize this expres-
sion as the beginning of the expansion for 1-¢° when x = -1.

This expansion converges so extremely rapidly that it is
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essentially 1-e”1 when, say, n is larger than 7. We

conclude that

c, _ 1
P(F7) = s

to high accuracy (when n>7).

We consider another application. Suppose we have an
infinite collection of halls labelled 1,2,3,..., and suppose
we have n boxes. If we drop the balls into the boxes sequen-
tially, how long do we have to wait until every box con-
tains at least one ball? If this sounds devoid of physical
interest consider the following mathematically equivalent
statement. Suppose we have a molecular beam firing molecules
at a target crystal. Assume that a molecule adheres to the
crystal if it strikes an unoccupied lattice site and re-
bounds (and is lost) if it strikes a previously occupied
site. If we assume that the molecules are fired at random
at the crystal sites, how long must we wait until all the
crystal sites are covered? This problem and perturbations

of it are very real problems in surface physics.



The answer to our question will of course be a
probability distribution. Let W be the waiting time until
all the boxes are occupied. We want to compute Py = P(W<k) .
This is the probability that if we place k balls into n

boxes, then all the boxes are occupied. Let As be the event
th

"the i box is empty". Then (W<k) = AinAgA...nAg. By the
inclusion-exclusion principle,
_ c_,C c
P(w<k) = P(AlnAzn...nAn)
=1 - P(AjvA,v...VA )
=1 - ; P(Ai) + I P(AinAj) - s

i i<j

Now the sample space ¢ consists of all placements (Max-

well-Boltzmann) of k balls into n boxes. Thus IQI = nk. The

event Al consists of all placements of k balls into the last

n-1 boxes. Thus lAll = (n-l)k. Similarly lAlAAzl = (n-2)%
k
and so on. So the probability of Ay is P(Ai) = LE:%L— = (l—%)k ,
n
that of A.,aA. is P(A.AA.) = (n—2)k = (l-g-)k and so on There-

fore:



_ n 1.k n 2.k
PW<k) = 1 - (Ha-0° + Ha-n*- ... .

As a final application of these ideas, we consider the
problem of writing max (xl'XZ""'Xn)' for n real numbhers
XyreeorXpy in terms of their minima. We won't go through
all the details. The idea is to consider the set of real
numbers as being the sample space @ and to use the indicators

For example, I(_w,X)I(_°°

T(ew,x) " ) - (e, x)A(=w,y)

and I + I +

T (~e,min(x,y)) (= ,%) (=o,y) ~ T(=-=,max(x,y))

I(-w,min(x,y)). We leave it as an exercise to show that:

Max (X, ,Xn,eee,X.) = L X.- L min(x, ,x.,) + I min(x.,x%.,X,)
1772 n ;1 i<y i i<i<k i’k

n+l

- e + ... + (1) min(xl,xz,...,xn).



2. General Random Variables

So far we have considered only integer random
variables. We now allow random variables to take any real
value. Unfortunately technical difficulties will appear that
didn't occur with integer random variables. We begin with an
example so that we can gradually work our way into the dif-
ficulties.

Consider the process of dropping a point on the inter-
val [0,a)]. 1Intuitively the point is just as likely to fall
on one part of [0,a] as another. For example it should be
just as probable for the point to fall on the left half of
the interval as to fall on the right half. More generally,
the probability that the point falls in any given subinterval
is proportional to the length of that subinterval. Unfor-
tunately this leads to the inescapable conclusion that the
probability of the point taking any one particular value x
is zero.

So we see that the intuitive concept of an integer
random variable, i.e. of a variable which takes its values

with certain probabilities, is inadequate for describing the



phenomenon of a general random variable. In fact there is

the an intriguing philosophical paradox here: how can the
point land anywhere at all if the probability of its landing
in any one place is zero? We will avoid such seeming para-
doxes by decreeing that the probabilistic structure of a
random variable is given by the probabilities that it takes
values in intervals. More precisely if X is a random variable,
the probabilistic structure of X is given by the probability
that X is between c and d for any real numbers c<d. We write
P(c<X<d) for this probability. For example, if X is the random
variable corresponding to a point dropped at random on [0,a],

then for any pair of real numhers c<d in [0,a],

As another example, let X be an integer R.V. Then

' P(cixig)

I
™
)

There is a neat way to express the probabilistic

structure of random variables in general: the (probability)

distribution function. We define this to be the function

F(x) = P(X<x) .

To compute probabilities on "half-open" intervals we use

the fact that:
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P(c<X<d) = P(X<d) - P(X<c) = F(d) - F(c) .

For intervals in general we use limits and the above formula.
Therefore the probabilistic structure of a random variable
is completely determined by its distribution function.

Consider once again the random variable X corresponding
to dropping a point at random on [0,a]. The distribution

function of X is

F(x) = P(Xig) = 0 if x<0
x/a if O0<x<a

1l if x>a

When a random variabhle has this distribution function we

shall say that it is uniformly distributed on [0,a]. Typically,

distribution functions will have "kinks".

F(xii

A
T

a

X

Graph of the distribution function of a
uniformly distributed random variable



We see that the probabilistic meaning of dropning 2
point at ¥random is tﬁﬁ we have a random variable X
uniformly distributed on B}ﬁﬂ. We misht also say that we
are "choosing" or '"sampling" a point st random from EO,f].
The process of sampling a sequence of n vroints at random

from [p,é] is called the Uniform vprocess. More vrecisely,

a Uniform process of sampling n points from [b,é] is =2
sequence of n independent random variables XT’ X?,..., Xn
uniformly distributed on [b,é]. It is the continuous
analog of the finite sampling process in chapter II. llote
that we do not have to distinguish between sampling with or
without replacement because the vrobability that any two of

the sampled points coincide is zero.

A typical question one may ask about the yniform process
is: what is the length of the gap between zero and the smal-
lest point of the n dropped points. The naive answer is "it
depends on which X; is the smallest". We shall answer the
question with a probability distribution function. More pre-
cisely write X(l) (pronounced "X order 1") for the smallest

point: X(l) = min(xl,...,xn). Then

Xpo XX X
the probabilistic answer to our question
N a
0 X(l) is the distribution function of X(l).

To compute this note that the event
(X(l)>t) is the same as saying that all the X, are greater

than t . Hence:

P(x(l)>t) P((xl>t)n(X2>t)n..A(Xn>t))

P(Xl>t)P(X2>t)...P(Xn>t)

a-t.n
)
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EDf course to justify this computation rigorously we must

define independence for arbitrary random variables. We
will do this in the next sectionu] Therefore the distribution
function of X(l) is

= _ _ a-x,n
F(l)(x) = P(X(l)ix) = l—P(X(l)>x) = l-(—g—) .

mTL

X

Graph of the distribution function of X(l)

The distribution function is more and more "concentrated"
near 0 as n increases: the more points one drops, the more
likely that the first gap is small.

We need a way to express more clearly the fact that
the distribution is more concentrated near 0 for larger n.
Indeed as we shall see, the distribution of a R.V. is not a
very good way to visualize the behavior of the R.V. A

better way is to use the density of the R.V.



The density of a R.V. X is the derivative (if it

exists) of the distribution: £f(x) = d F(x).

ax By calculus,

- 00

X
J f(u)du = F(x). For example the density of Xy in the

uniform process is

1/a 0<x<a

fl (X) =
0 x<0 or x>a
4
fl(X)‘
1l/a i
0 —F

Graph of the density of Xy

Using density we see much more clearly why Xl is said to be
uniformly distributed on [0,a]:

[0,a],

its density is constant on

On the other hand, the density of X(l) is
n(a-x)n-l

O0<x<a
n

f(l)(x) = a

0 x<0 or x>a



£y

n/a

S

0 | 3 X

Graph of the density of X(l) .

Notice how the density is sharply peaked at x=0 just as we

intuitively would expect.

The Concept of Random Variable

We are now ready to give rigorous definitions of
the intuitive ideas in the last section.

Definition. A random variable X is a function from a sample

space ! to the real numbers, with the property that the sub-
sets (X<x) = {wef: X(w)<x} are events of @ for all real

numbers x. The (probability) distribution function of a random

variable ¥ is the function

F(x) = P(X<Xx).

As similarly noted for integer R.V.'s, the technical as-
sumption that the subsets (X<x) are events will never bother

us. We state it for purely grammatical reasons.



Integer Random Variables

Integer R.V.'s are characterized by the fact that
their distribution functions are constant except at inte-

gers, where they have discontinuous jumps.

F(x)4
l —Jb
Py
p2 T N
Dl Y—-
p_2 p—{}_ﬁ%
- <
A i A [ ] =
-2 -1 0 1 2 3

Graph of the distribution function of an integer random

variable.

Being a discontinuous function, the distribution function

of an integer R.V. is rather unpleasant to deal with. As a
result one generally considers instead the probability distri-
bution Pp = P(X=n). It is unfortunate that F(x) and p, are

both referred to as the distribution of an integer R.V.

Continuous Random Variables

A random variable X is a continuous random variable if

its distribution function F(x) is continuous and piecewise

differentiable. The derivative f(x) = F'(x) is called the
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density of X. It is the continuous analogue of the proba-
bility distribution p_ of an integer R.V. This can be made
quite precise using infinitesimals: the probability that X
takes a given value x is the infinitesimal f(x)dx. 1In other
words, the probability that X takes a value in a very small
interval [x,x+h] is close to f(x)h, the smaller the interval,
the closer the approximation.

This suggests that the probability for a continuous
random variable X to take a given value x is not quite zero
but rather infinitesimal, if £(x)#0. So although (X=x) is
an unlikely event, it is not impossible. We will write
dens(X=x) for the density f(x) of ¥ at x. However, one
should take caution when using this notation: dens(X=x)
does not act like a probability P(X=x). To give a concrete
example, let X be uniformly distributed on [0,1]. Then 2X
is uniformly distributed on [0,2]. IHence dens(X=x)=1 #
%—= dens(2X=2x) , even though the events (X=x) and (2X=2x)
are obviously the same. In general, before performing any

calculations involving densities, one should first convert

them to probabilities. For example,

d

dens(X=x) = %; P (X<x) = I= P(2Xi2x)
d 2 =2 = d = -:L i—-
ens(2X=2x) TR D2X2x) = 5 g% P (2X<2x)

therefore, dens(X=x) = 2 dens(2X=2x).

3.46



The density of X acts precisely as a mass density on
the real line, a familiar concept in calculus. Thus, for
example, to compute P(a<X<b) we must integrate the density:

b

P (a<X<b) = J f (x)dx.
a

In the case of an integer R.V. we get a sum:

n
P(k<X<n) = I p. .
== . i
i=k
The integral is the continuous analogue of a sum.

Independence

The concept of the independence of two arbitrary R.V.'s
ought to be obvious, given the definition in the integer

case. Namely two R.V.'s X and Y are independent if the

events (X<x) and (¥Y<y) are independent for any pair of real

numbers x and y:

P ((X<X)A (¥<y)) = P(X<x)P(Y<y) .
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Properties of Densities and Distributions

The distribution function F(x) of an arbitrary R.V.

satisfies:

(1) F(x) < F(y) if x<y
(2) Kim F(x) = 0

K= — 0O

(3) fim F(x) = 1

X 0O
(4) F is left continuous, i.e. Rim F(y) = F(x)

y>X
y X

All these are obvious consequences of the definition of the

distribution function. It is an interesting exercise to

show the converse: any function F (x) satisfying (1)-(4) is

the distribution function of some R.V. X on some sample space.
When X is a continuous R.V., its density f(x) satisfies

properties analogous to those of the distribution P, of an

integer R.V. Namely,

(1) £f(x) >0

(2) J f(x)dx = 1

Joint Distribution and Joint Density

Just as we did for integer random variables, we measure
the correlation of two arbitrary R.V.'s by using a joint dis-

tribution function. The joint distribution function of

R.V.'s X and Y is

F(x,y) = P((X<x)n(Y<y)).
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If X and Y are continuous, then they also have a joint
density:
dens (X=x, Y=y) =

£(x,y) = 4= 5= F(x,y)

In terms of infinitesimals, the probability that X takes
the value x and Y takes the value y is f(x,y) dx dy.
As with ordinary densities, be careful not to treat

dens(X=x, Y=y) as a probability.

'SﬁgﬁéééwfhaE‘Fy,FYméﬁd fx;f;ﬂagﬁaté the distribution
functions and densities of the continuous R.V.'s X and Y

respectively. We can recover these from their joint

counterparts:

o0
J-ﬁ(x,y)dy = fx(x) We call these the marginal
© densities or marginals.

f(x,y)dx = fY(y)

-00
Folx) = 2im P (x,

X yrco (x,y) We won't have much use

for the last two formulas.
F (y) = 2im F(x,y)
X0

In terms of the joint distribution and joint density, two

random variables X,Y are independent if and only if

F (x) F (y)
X Y

F(x,y)

or fix,y) f (x) £ (y)

X Y
3.49



Expectation

For an integer R.V. X, the expectation of X is the

mean or average value of X: E(X) = L np, . For a continuous
n

R.V.X, the expectation is the continuous analogue: E(X) =

[ xf (x)dx, if it exists. One should immediately recognize

oo

this as the center of mass of the mass density given by f(x).

The expectation of a continuous R.V. also satisfies

the property we found so useful for integer R.V.'s:

Basic Fact. For any two continuous random variables X and Y ,

E(X+Y) = E(X) + E(Y).

Proof. This is essentially the same proof as in the integer

case.

E (X+Y) J J (x+y) £ (x,y)dx dy

- 00

[ [+ ]
= J J x f£f(x,y)dx dy + J J vi(x,y)dx dy
0/ =00
[+ ]

- 00

oo

J x fx(x)dx + J ny(y)dy

=00
=00

E(X) + E(Y).

%, The Uniform Process

We now make a detailed investigation of this process
in order to illustrate the concepts we have just introduced.

Recall that the Uniform process of sampling n points from
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ED,Q is the same as a sequence of independent random
variables X1, X2,..., Xn each being uniformly distributed
on the interval [@,é]. For example, these random variables
might be the measurements of the heights of a random sample
of n people. If we wish to ignore the order in which the
people are measured, Wwe simply write down the heights in
increasing order. We call this new sequence the order
statistics of the original sample. In effect we "forget"
what the order of sampling was and consider only the set

of n measurements.

To be more precise we introduce the following notation:

x(l) = min (xl,...,xn)

=<
i

(2) next larger point after x(l)

(n) = max (xl,...,xn)

How are the order statistics distributed? What are their
joint distributions? What are the distributions of the gaps
between successive order statistics? Unlike the gaps in the
Bernoulli process, these are not independent; for if one 1s
big, the others must be small. What are the joint distri-
butions of the gaps? We shall now answer these and other

questions.



Let F(k)(x) and f(k)(x) denote the distribution and
density of the kth order statistic X(k)’ Thus F(k)(x)
< . < : "

P(X(k) < x) Now (X(k) < x) is the event "at least k of

the n points fall in the interval [0,x]". We decompose

this event according to the number
— i(k)4 . of points that actually fall in
0 X a [0,x]. Therefore:
at least k
fall here

- _ 4N, ,X,k,a-x,n-k n X, k+1l ,a-x,n-k-1
F(k)(x) = P(X(k)iX) = (k) (a‘) (——a—-) + (k+l) (-a‘) (T) +

.o + (2)(2)“. For example, the first summand is the

probability that exactly k points fall in [0,x], and hence

exactly n-k fall in (x,al. Similarly for the other sum-

mands. Needless to say this expression is awkward.

Consider now the density f(k)(x). We first compute that

X P((x<x(k)§x+h) and no other X(j) falls
(k)
F :\5 $ 4
+h i =

0 X X a in [x,x+h])
k-1 fall n-k fall

here here @-1y. % k=1, h  a-x-h n-k

k-1 a a

a L]
Here one of the n points falls in [x,x+h]:

probability n-% .
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Next, k-1 of the remaining n-1 points fall in [0,x]:

probability (E:i)(g)k—l. Finally the remaining n-k points

a—x—h)n—k

fall in [x+h,a]l: probability ( A

. Unfortunately

what we really want is P(x<X( < x+h). This appears to be

k)
a much more complicated computation.
However, we never really have to compute this expres-

sion for the following reason. If more than one of the X(j)
fall in [x,x+h]}, the resulting probability involves a factor

of (2)2 (or possibly even a higher power of 2). Thus

k-1 n-k 2 \
P(x<X(k) < x+h) = n(ﬁZi) X h éa—x—h) + Ej * (complicated
a a expression)

Now divide by h and take the limit as h—+0:

P (x<X , , <X+h) 1 JKk-1, .. .n-k
£y (¥) = 2im ® = - pima@phE_fazxh) B (orug
h->0 h->0 a
£ (x) = | n(®1 S GO LaPPIPG
(x) = ] Mg 0 ’ X<
0 otherwise
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We never have to compute the complicated expression be-
cause no matter what it is, it disappears when we let h go
to zero. We shall use this trick repeatedly. In fact it
is precisely because we can make this kind of simpli-
fication that the density is so much more computable than
the distribution.

We now mention an interesting application. The function

f(k)(x) is a probability density so it integrates to 1:

1= e ax = £, ax = [ 11("'1)xk—1(a‘x’n—k d
- (k) - (k) k-1 n X.
—00 0 0 a
Therefore:
a n
J x* " a-x) " Kax = ——%:T— . Thus just as integer
0 1)

R.V.'s allow us to compute certain infinite series proba-
bilistically, continuous R.V.'s furnish a technique for
computing certain definite integrals. We shall see more of
these as we go on,

Next we consider the joint distribution of two order
statistics. For example, how does the tenth point influence
the twentieth? This is an important question in biostatistics,

because of the necessity of biologists to rely on small
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samples. Tables of order statistics allow one to detect
deviations from randomness in a relatively small sample.
As with the above computation it is much more con-
venient to compute the joint density. Let X(j)' X(k) be
two of the order statistics, j<k. Then the joint distri-

bution is

F(j,k) (x,y) = P((X(j) _<_x)n(x(k) <vy))

. . _ 90 9 .
and the density is f(j'k)(x,y) = 3% 3y F(j'k)(x,y). Again

as with the computation above we

. x x+h y y+e need only compute the probability
'0 'I L]  § v a1
of the event "X,., falls in [x,x+h
X(3) X (x) (3) {x,x+h],
X(k) falls in [y,y+e] and no other
points fall in these intervals". We think of these two inter-

vals as dividing [0,a) into 5 boxes into which we drop n dis-

tinguishable balls with occupation numbers: j-1, 1, k-j, 1, n-k.

n
There are > ways
j-1,1,k-j-1,1,n-k

0 X x+h y y+e a
i i 4 I [\
Ly \J L

{ to place the n balls with these

j=1 1 k-j-1 1l n-k
occupation numbers. Therefore

Boxes and occupation
numbers the event in question has proba-

bility



" %y3-1h y=x-h k-j-1 ¢ a-y-¢,n-k
j-1,1,k-j-1,1,n-k/ 2 a a a a

Dividing by he and letting h+0 and e+0 gives the joint

density:

_ n xJ—l(y_x)k—J—l(a_y)n—k
f(- k) (XrY) = n
1 j-1,1,k-j-1,1,n-k a
or
j=-1 k-j-1 n-k
= n! X (v-x) (a-y) .
P30 oY) = 1D TR-5-D TR ! o Moy
0 if x>y
Finally we consider the joint density of all n order
statistics. Let xl<x2<...<xn be real numbers in [0,a]. Now

P(x1<X (1) £ %Xty )n(xy<X 5y < Xothodneoonx <X oy < xp+hp))

h1 h2 hn
= ' ‘___.c .« o0 —
Xq xl+hl X X +hn n! = el because
5 ; ' if al
X(l) “es X(n) there are n! ways of placing the

n points in the intervals
]
[Xl,xl+hl],...,[xn,xn+hn]. The h,'s are chosen so small that
there is no overlap. Therefore the joint density of all n

order statistics is:



nt

f(xl,...,xn) = " if Oixl<x2<...<xnia
0 otherwise
Like all densities, f(xl,...,xn) integrates to 1. Thus

we get the interesting multiple integral:

X X
a n 2 n
J J o o J dx dxz.;)dx =
o Vo 0 non

This is reasonable because the conditions Oixl<x2...<xn§a

3|

determine a "pyramid" cut off the n-cube of side a at one
corner.

The gaps of the uniform process are the distances
between successive points in increasing order. The gap

between 0 and X(l) is written Ll’ the gap between X(j) and

Ll L2 L) L

L2, , ntl
'OJ \ r a‘
w *@ 0 X
X(j+1) is written Lj+1,and the gap between X(n) and a 1is
Lo+1° The order statistics may be written in terms of the
gaps:



X(k) = Ll + L2+...+Lk .
The gaps are not independent: if one is large the others
must be small. But the gaps are nevertheless equidistributed!
When we have conditional probabilities, we will be able to
prove this rigorously. However one can prove this probabi-
listically. Since one of our main objectives is to learn

to think probabilistically, this kind of proof is actually
preferable.

Imagine that we drop n+l points on a circle of circum-
ference a. It is intuitively obvious by symmetry that the
gaps (measured along the circumference) so obtained are all
equidistributed. On the other hand, this experiment is sta-

tistically equivalent to the following experiment. Fix one

o
7 points at random 6 points at random
on a circle on a circle plus a

fixed point O

point (call it 0O) on the circle and then drop n more points

at random. If we cut the circle at 0 and stretch it out
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over the interval [0,a]l, then the gap distributions on [0,a]
are the same as those on the circle (the probhabhility that
another of the n points falls at the same place as O is zero).
Therefore the gap distributions on [0,a] are all equidistributed.
This completes the proof.

Therefore all the gaps are distributed the same as
L, = X(l)' We already computed the density of X(l) so the
density of any gap L; is

n-1

f(x) = EH (a-x) on [0,a].

o8}

The expectation of L, is given by:

ra n-1 a n-1
E(Li) = J X jﬁ(a—x) dx = — J x (a-x) dx ,

but there is an easier way to compute this. Since

E(Ll) = E(L2)=...= E(Ln+1) '

and since L1 + L2+...+ L = a , we conclude that E(Li) = —

n+1l
by the Basic Fact. We can now appreciate the power of the

Basic Fact, for the Li's are not independent.



Similarly we can compute E(X(i)) quite easily. For

X(i) = Dp*e.+Ly implies that E(X(i)) = E(Lj)+...+E(L;) = HTI :

This is certainly what one would intuitively expect, but a
direct computation would be tedious.

Consider now a seeming paradox. Suppose we label a
reference point g on a circle of circumference a, then we
drop n points at random. What is the expected length of the

gap that includes the reference point g? The answer is %%T ’

not % as one might intuitively expect. The paradox lies not

in any contradiction but rather
in having a false intuition. Think
of the experiment in reverse order:

drop n points at random and then

choose a reference point g . Then

g is more likely to fall in a longer
4 points at random gap simply because it is longer.

and a reference point

g. The seeming paradox comes from the

impression that one is performing

the following quite different experiment: drop n points at
random on a circle and then pick a gap at random (i.e. any

gap is as likely to be chosen as any other). This experiment

does indeed have expectation % .
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L, Table of Probability Distributions

Random variables are a central concept in the
theory of probability. For example we saw that the uniform
process is simply the study of n independent, uniformly
distributed random variables. One could regard probability
theory abstractly as the study of certain functions on
sample spaces, which satisfy certain laws. However this
would miss the point, because it is the examples that make
the theory, and we can only learn probability theory by care-
fully studying the examples, especially the important ones.

Random variables are classified by their distributions.
And when one speaks of a distribution one usually has a
standard model in mind. Learning probability theory there-
fore requires learning not just the distribution but also
the natural phenomena that give rise to them. We will now
make a list of distributions and models. We will add to our
list in subsequent chapters.

Bernoulli distribution. X has the Bernoulli distribution

if X is an integer R.V. which takes just two values, O and 1.
This distribution depends on one parameter, p=P(X=0). The
standard model for this distribution is a toss of a biased
coin, X5 with bias p in the Bernoulli process.

Binomial distribution. X has the binomial distribution if

X is an integer R.V. and P(X=k) = (;)pkqn—k. The binomial

distribution depends on two parameters n and p. The standard
model is Sn’ the number of heads in the first n tosses of

the Bernoulli process. Here p measures the "bias" of the coin.
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Geometric (Pascal) distribution. X has the geometric

distribution if X is an integer R.V., and P(X=n) = qn_lp.

The standard models are the waiting time Wl for the first
head in the Bernoulli process and the gap Tk between the

(k—l)St and kth occurrences of heads in the Bernoulli process.

Negative Binomial distribution. X has this distribution if

X is an integer R.V. and P(X=n) = (E:i)qn_kpk. This distri-

bution has one parameter k . The standard model is the kth

waiting time Wy of the Bernoulli process.

Uniform distribution. X has this distribution if X is a

continuous R.V. with density f(x) = ( l/a if 0<x<a .

1 0 otherwise

The standard model is any Xs "dropping a point at random",
in the Uniform process. Here the parameter a is the length

of the interval on which one is dropping (or sampling) points.

Distributions of order statistics. These are sometimes called

the Dirichlet distributions. X has one of these distributions

if X is a continuous R.V. and its density is

k-1 n-k
f(x) = n(i:i) X (a;x) if 0<x<a
a
0 otherwise.
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There are three parameters a,n and k. The standard model

h

is the kt order statistic X(k) of n points dropped at

random on [0,a]l.

The gaps L, between the order statistics

are all models for the distribution having k = 1.

Distribution type parameter (s) model (s)
Bernoulli integer P X. in the Bernoulli
process
Binomial integer n,p Sn (xi when n=1) in the
Bernoulli process
Geometric
(Pascal) integer P W, or any Ty in the Bernoulli
process
Negative
Binomial integer k Wy " " "
Uniform continuous a X5 in the Uniform process
Dirichlet continuous a,n,k X(k) (Li when k=1) in the
Uniform process
Distribution Probability distribution or density Expectation
Bernoulli Py =9 = 1-p, Py =P P
. n, k n-k
Binomial Py = (k)p a np
. _ n-1
Geometric P, = 4 P 1/p
. . . _ ,n-1, n-k k
Negative Binomial P, = (k_l)q P k/p
Uniform f(x) = 1/a on [0,a] a/2
. - k-~ -k -
Dirichlet f(x) = n(:_i)x l(a—x)n ka™n on [0,a] kﬂ/(n+1)

Table of Bernoulli and Uniform Distributions
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5. Exercises for
Chapter III Random Variables

Integer Random Variables

1. The thirteen diamonds are taken from a deck of cards and are
tnorougnly shuffled. One diamond is drawn at random and scored
as follows: two through ten score as their rank, face cards

score ten and the ace scores eleven. Let S be the score,

Describe the sample space and probability measure used in

this problem. Write out S explicitly as a function on the

sample space. Write out the probability measure P explicitly

as a function. Do S and P have the same domain?

2. 1In San Francisco, a drunk leaves a bar and every 10 seconds
staggers either one yard down the street with probability 3/4
or one yard up the street with probability 1/4. Where is the
drunk after one minute? after two minutes? What is his most
likely location in each case? How 1is the most likely location

varying in time?

3. A machine that produces screws is subject to occasional
surges in its power supply. These occur independently during
each second of time with 90% probability and the machine
produces one screw every second. In one version of the machine
there is a fuse that shuts off the machine permanently when a
power surge occurs. We wish to know how many screws the machine
produces after it is turned on. Which random variable

in the Bernoulli process coresponds to this question? Answer

the question.

4. Another version of the machine in exercise 3 has a temporary

circuit breaker so that during a power surge the functioning of
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the machine is interrupted only for one second. Ve run the

machine for one minute and wish to know now many SCrews are

produced. Which random variable in the Bernoulli process cor-

responds to this question? Answer the question.

5. 1In a bridge game the deck is thoroughly shuffled and dealt.
You are dealt a hand containing four spades. How many spades

was your partner dealt?

6. Three office workers take a coffee break. They choose one
of their number at random to pay for the coffee as follows. All
three flip a coin simultaneously and the one having a different
outcome pays for the coffee. If all coins come up tihe same,
they flip the coins again. How long does it take to determine

wnho pays for the coffee?

7. If one has a coin with a bias p # 1/2, one can nevertheless
use it to synthesize a fair coin by the following trick. Flip
the coin twice. 1If the two tosses come out different, we can
say that we got heads if the first toss was heads and tails
otherwise. If the two tosses were the same, we toss the coin
two more times and proceed as above. Show that this produces

a fair coin toss. How many tosses of the biased coin are re-

gquired to produce one "fair toss"?

8? Given any bias p between 0 and 1 and a fair coin, one can
synthesize a biased coin toss with this bias as follows. Write
the binary expansion of g = 1 -p . This is just a sequence of
zeroes and ones after the decimal point (binary point?). Now

start tossing the fair coin. When we get a head write down a
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1 and for a tail write a 0. Compare the sequence we obtain

with the binary expansion of g . Continue tossing until the
first time that the two sequences differ. At this point we

stop and record what happened on the last toss. Show that what
we record is equivalent to a biased coin toss with bias p . How

long does it take to complete such a toss? Does it depend on p?

Independence

9. 1iIn exercise 2, is the position of the drunk after one minute

independent of his position after two minutes?

107 pProve that if X and Y are independent random variables
and if f(x) and g(y) are two functions, then f(X) and g(Y)

are also independent random variables.

Expectation

11. What is the distribution of S in exercise 1? What is its

average value?

12. Compute the average position of the drunk in
exercise 2 after one minute and after two minutes. How is the
drunk's average position changing in time? How do these questions

differ from the questions asked in exercise 2?

13. In the game of Chuck-A-Luck, three dice are agitated in a

cage shaped like a hourglass. A player may wager upon any of

the outcomes 1 through 6. If precisely one die exnhibits that
value, the player wins at even odds; if two dice show that value,
the player wins at 2 to 1 odds; if all three dice show the player's

choice, the payoff is 3 to 1. Tf none of the three dice show the
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player's choice, the player loses. Compute the expected value
of tiue player's winnings on a bet of one dollar on "2". Is the
game fair? If not, suggest payoff odds that would make the game

fair.

14. what is the average number of dots shown by a die tossed
once at random? You wish to maximize the value shown by the die.
If you are allowed to throw the die a second time, when should
you do so? What is the expected value shwon by a die for which

one is allowed one rethrowing?

15. James Bond is imprisoned in a cell from which there are three
obvious ways to escape: an air-conditioning duct, a sewer pipe
and the door (the lock of which doesn't work). The air-conditioning
duct leads agent 007 on a two-hour trip whereupon he falls througn
a trap door onto his head, much to the amusement of his captors.
The sewer pipe is similar but takes five hours to traverse (it
takes longer to swim then to crawl even for James Bond). Each
fall produces temporary amnesia and he is returned to the cell
immediately ofter each fall. Assume that he always immediately
chooses one of the three exits from the cell with probability 1/3.
On the average how long does it take pefore he notices that the

door is unlocked?

16. As new engines are coming off the assembly line in Detroit,
they are tested to determine the maximum deliverable horsepower.
In a lot of 50 engines, 49 deliver a maximum of 200 horsepower,
while one of them doesn't work at all thereby delivering a maximum

of 0 horsepower. What is the average maximum horsepower of the
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engines in the lot? 1Is the average a reasonable description

of the maximum horsepower of the engines in the lot?

17. A gambler hits upon what seems to be a foolproof system.

He begins with a one-dollar bet playing the game of black-or-

Red 1in Roulette, and each time that he loses he doubles the
amount bet over the previous bet until he wins once at which
point he gquits. In this way he stands to recoup his losses when
he finally does win. He realizes tnat there is a small chance
that he will lose everything he has ($1023), but he considers
this probability to be small enough that he can ignore it. The
probability of winning on a given trial is 18/36, in which case
he wins an amount equal to what he originally bet, otherwise he
loses his bet. What is the probability that he eventually wins
and what is his net gain when he does? What is the probability
that he loses all and how much does he lose? What is his average
net gain using this system? 1Is it really foolproof? Is the risk

he is taking a reasonable one?

18. Compute the average length of a Craps game. For the rules

of the game see exercise I11.20.

In the remaining problems of this dection one will need a
hand calculator. In addition we mention the following very use-

ful formula known as Euler's approximation to the harmonic series:

1, 1 e 1
7+t 5+ + =

where 2n denotes the natural logarithm (log,) and 0.57721 ----.--

1 + = g&n(n) + 0.57721 .... '

is known as Euler's constant.
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19. A young baseball fan wants to collect a complete set of

262 baseball cards. The baseball cards are available in a
completely random fashion, one per package of chewing gum, which
she buys twice a day. How long on the average does it take her

to get the complete set?

20. A super power has 262 missiles stored in well separated
silos. An enemy is considering a sneak attack. However, for the
attack to succeed every one of the missiles must be destroyed
(the missiles are MIRVed: each has 5 independent warneads). We
will consider this problem later, but for now we consider the
following simple model. Assume each attacking warhead hits one
of the enemy missiles with each enemy missle being equally likely
to be the one that is hit. How many warheads on the average will

be needed to ensure the destruction of every enemy missile?

21. The analysis in exercise 20 is overoptimistic for several
reasons. There is a significant probability that a given war-
head will hit more of the silos. Furthermore we want no the
average number of warheads required but rather the number of war-
heads needed to ensure with very high probability (say 99%) that
all the enemy missiles have been destroyed. Compute the number
of warheads needed if each attacking warhead has probability 0.75
of hitting its target? Even this is optimistic inasmuch as the
shock waves form nuclear explosions are such that one cannot
expect the various warheads converging on one target or on nearby
targets to be independent. However, it gives one an idea of just

how foolhardy so-called pre-emptive warfare can be.
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22. A molecular beam is firing metal ions toward the face of a

crystal. If an ion strikes an unoccupied site on the crystal, it
promptly occupies that site, otherwise it bounces away and is lost.
Every ion hits the crystal somewhere with each site being equally

likely. If there are 1016

crystal sites, how many ions must the
beam fire at the crystal, on the average, in order to fill every

site?

23. Guests arrive at random at a party, and the host seats them
as they arrive successively one at a time around a large circular
table. Twenty guests arrive, ten single men and ten single women.
On the average how many of the twenty adjacent pairs around the

table will consist of a man and a woman?

24. The host in exercise 23 invites twenty couples to a cocktail
party. As the couples do not know each other, the host decides
to mix his guests by assigning each man to one of the women in
such a way that every possible arrangement is equally likely.

How many couples on the average find themselves assigned to each

other? See exercise 58.

25. Return to exercise II.9 . How many people on the average
call out their birthdays before a match is found, assuming that
one is eventually found? How does it compare with the observed

value?

26. The Polish mathematician Banach kept two match boxes, one in
each pocket. =£Bach box initially contained n matches. Whenever
he wanted a match he reached into one of his pockets completely
at random. When he found that the box he chose was empty, how
many matches were in the other box? how many were there on the
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27. Compute the average energy of the configuration in exercise

I1.30.

28. James Bernoulli proposed the following dice game. The
player pays one dollar and throws a single die. He then throws

a set of n dice, where n is the number shown by the first
die. The total number of dots shown by the n dice is then used
to determine the payoff.

If the number is less than 12 he loses the bet, if
the number equals 12 his dollar is returned, while if the number
exceeds 12 he receives two dollars. Find the expected number
of dots shown by the n dice. 1Is the game favorable to the

player?

29. Nicolas Bernoulli proposed the following coin-tossing game
which has since been called the St. Petersburg paradox. A player
pays an entrance fee of E rubles to the casino. A coin is then
toésed until it comes up heads. If it requires n tosses to get
the first head, the player is paid 2 rubles, for a net gain

of 2" - F rubles. What is the player's expected net gain? [Answer:
infinite net gain no matter how large E is] The paradox arises
from the fact that one is placing no limit on the resources of
the casino. If the casino possesses a total of p=2N rubles,
compute the net expected gain of the player. For the game to be
fair what should E be? [Answer: N+1 rubles] . For example,

if the casino has resources of 33.55 million rubles, wnat entrance

fee would be fair?

30. What is the expected duration of the St. Petersburg game for

the casino mentioned at the end of exercise 297?
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31. What is the probability that in n tosses of a fair coin
two heads never occur in a row, i.e. no run of 2 or more heads

ever occurs?

32. The generalization of Chevalier de Méré's first problem
(exercise II. 27) 1is called the problem of points. The problem
concerns a game between two players

that was interrupted before its conclusion. Suppose that N
points are required to win the game, that player A has N-a points
and that player B has N--b points. 1In a given trial A wins with
probability p and 3 with probability g=1-p. How should the
stakes be divided? The problem was first solved by Montmort.

Can you solve it also?

33. Generalize exercise 14 to produce a kind of analog,for dice
throwing,of draw poker. The player throws five dice. He then
has the option to choose a subset of the dice for rethrowing.
This subset can be empty but cannot consist of all the dice. The
process is thnen repeated for the rethrown dice, continuing until
no more dice may be rethrown. The object is to maximize the
total number of dots showing on the dice. Devise a strategy and
calculate the expected outcome for this strategy. The optimal

strategy will produce an expected outcome of about 24 €§ .

Continuous Random Variables

34. A boy makes a date with nis girl: friend. They are to meet
at some time between 6 PM and 7 PM, but since both are absent-

minded they forget which time they had agreed upon. As a result
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each arrives at a random moment between 6 and 7. Each waits for
10 minutes and if the other fails to appear, he or she promptly
leaves in a blue funk. What is the probability that true love

prevails (at least this one evening)?

35. When five points are chosen uniformly at random from the
interval [1,2], what is the distribution of the natural logarithm

of the smallest point?

36. A gangster stands 10 m from an infinitely long straight
wall. The gangster fires a gun horizontally in a completely
random direction toward the wall. Compute the distribution of
the point on the wall where the bullet hits. Do tiae same for
the distance from the bullet to the point of the wall closest

to the gangster.

37. A median of a random variable X 1is any number u such
that

1 1
P(Xf.U)f_—z‘ and P(Xiu)f_—z—

Prove that tne median of any random variable exists. Does it
have to be unique? Compute it for the gangster distribution in

exercise 36 above.

38? After grading an examination, a teacher arranges the papers

in order by grade. The sample median is the middle grade 1f there are
an odd number of papers and is the average of the two middle

grades otherwise. Give a definition of the sample median in the

Uniform process and compute its distribution.
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39. How far apart are the largest and the smallest points 1in
the Uniform process of sampling n points from [0,a]? We call
this the spread. Compare the spread with the second largest

order statistic, X(n—l) .

40. Show that any function satisfying the four properties of a
distribution function is in fact the distribution of some random

variable on some sample space.

41? One can also develop a theory of discrete order statistics.

For this the interval [0,a] is replaced by the set of integers

{1, 2,+++, A}, each of which is equally likely to be chosen, and

a given integer may be chosen more than once. The formulas one

gets are quite complicated. It should be clear, however, that

when A is large compared to n, the number of points chosen,

we may approximate the discrete order statistics with the continuous
ones. The principle that the gaps are equidistributed holds both
for the discrete and for the continuous cases. Compute tine dis-
tribution of the first order statistic. Note that this is an

integer random variable.

42? During World War II, the Allies estimated the number of

tanks that had been produced by German industry by collecting the
serial numbers of abandoned tanks. There are actually two questions
one can ask here. One can ask for the most likely number of tanks
that have been produced, or one can ask for tne most reasonable
rough estimate of the number. The former guestion would be most
appropriate if we placed a very high value on getting the exact
number, nearby numbers being useless. The latter question 1is

clearly more appropriate in the context of this problem.
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To answer these questions we must rephrase them in the
language of probability. Assume n serial numbers have been

collected, the largest of which is X( The first question

n)
should read: what is the number A of tanks such that when n
numbers are chosen uniformly from {1,:++, A} the probability
that we get the actually observed values is as large as possible.

The answer 1is X( itself. Prove this. We call this the

n)
maximum likelihood estimator of A. See exercise I11.23 for
another example of such an estimator. For the second guestion

we want an estimate of A such that if one makes many estimates
of the same number A by this method we will on the average be

close to the correct value. We will consider this question later

in exercise 52.

43? A biologist is studying organelles in a cell. The organelles
in question are spheres of equal but unknown radius r within a
given type of cell, and they are distributed randomly throughout
the cell. The biologist estimates r by observing a cross-
section of the cell and measuring the radii of the visible granules.
Suppose that n granules are observed and that the largest
observed radius is R(n)‘ Fine the maximum likelihood estimator

of r. The measurements Ry, ¢-+, R of the n radii will not

n

be uniformly distributed. However the random variables
rz-Rf ,...,\/:2 —I%? will be uniformly distributed.

*
44. Compute directly, without first finding densities, the joint
distribution function of the two order statistics X(j) and X(k)

in the Uniform process.
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45? Suppose that Xl'XZ’ cee, X are independent uniformly

n
distributed random variables on the intervals [O,al],...,[O,an]
respectively. Compute the densities and the joint densities of

the order statistics X(l).iX(Z).i'°° <X(n)

*
46. 1In exercise 45 above, compute the distributions of the gaps.
Expectations of Continuous Random Variables

47. Compute the average value of the natural logarithm of the
smallest point among five chosen uniformly from [1,2]. Is this
the same as the natural logarithm of the average value of the

smallest point? Explain this. See exercise 35.

48. Compute the average of the median of the set of order

statistics. See exercise 38.

49. Compute the average values of the random variables in

exercise 36 (the gangster distributions).

50. An enzyme randomly breaks each of 24 identical (and very
long) DNA molecules into two pieces. How long is the shortest

piece produced? What is the average length of the shortest piece?

51. Shuffle a deck of cards and turn up cards one at a time

until the first spade appears. How many cards including the

spade do we expose on the average? {(Answer: %%% = 3.786) More

generally if we are looking for one of n cards in the deck,

how many cards must we expose on the average until we find one
53
n+l

)

of them? (Answer:



* ) .
52. Return to exercise 42. To answer the second gquestion we

require a random variable with the property that its expectation

is A. The maximum likelihood estimator will not do because
E(X ) # AL What should one use? Answer: ntl X
(n) n (n)

Consider next the corresponding guestion for exercise 43.
The situation is now more complicated because the observed radii

are not uniformly distributed. Find a random variable R for this

problem such that E(R) =r. [Answer: —1 R(

n2 -1

*
53. A long DNA molecule is broken into N pieces. Find the

average length of the ith 1ongest piece produced, 1<i<N. Use

probabilistic reasoning as follows. Let n=N-1 so that our
model is the Uniform process of sampling n points from [0,al ,
where a 1is the length of the DWHA molecule. The problem is to

L e+, L i.e. of

()" 7(2)' (n+1) '

the order statistics of the gaps. Here is how to compute L) .

compute the expectations of L

First find P(L(l) >t). Now (L(l) > t) is tne event
(Ll>'t)f\ (L23>t)f\---(\(Ln+l >t) . When this event occurs we
can remove a subsegment of length t from each of the gaps.

The resulting process in the Uniform process of sampling n points

from [0,a- (n+1l)t]. Geometrically the event (L(l) >t) 1is an
n-dimensional cube having side of length a-(n+1l)t. Thus
P(L >t) = GL:JQ;LALE]H . Therefore
(1) a
(a- (n+1)t)P7t
dens(L(l)==t) = n(n+1) 3 . It is now easy to
a
calculate E(L(l)) [Answer: —"ji——EJ . Similarly to compute
(n+1)
Ligy) we simply note that when we remove a subsegment of length
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L(l) from each gap (which we can do since L(l) is the smallest

gap) , what remains is the Uniform process of sampling n-1

points from [0, a-(n+1)L 1. Moreover L(2) is the sum of

(1)

L(l) and the length of the smallest gap in this smaller process.
n +1)L(1)J

This gives E(L(
n2

a (n+1)a a a a [ 1 l]

a - (
2)) [Answer: E(L(z)) = E(L(l)) + E

a

= —_—— o —— = —_— + +
2 2 2 2 2

(n +1) n n“(n+1) (n +1) n(n+1) n+lin+1 n

Continuing by induction we get E(L(i)) for all 1i. [Answer:
:——a———-l-— ¢ o o _l— S

E(L(i)) n-Fl(ni-l+ +r1—i-+2]] . Although the above reasoning

is not, strictly speaking, rigorous, we will show how to make it

completely rigorous in Chapter V. See exercise V. 24.

54? A biologist allows an enzyme to break a DNA molecule into

10 pieces. The original molecule was 10,000 base pairs long.

Upon examining the pieces, the biologist finds that the smallest
is only 10 base pairs long! How probable is it that the smallest
of 10 pieces could be this short or shorter? Use the results

of exercise 53. Does the biologist have a case for believing that
the enzyme attacked the DNA molecule in a non-random fashion?

EAnswers: 8.6%; the event is not at all surprising]

The Inclusion-Exclusion Principle

55. A gambler is playing a sequence of games. For eacn trial he
can cnoose to bet either on heads or on tails of a toss of a fair
coin. If he bets on heads he gains or loses $1 depending on
whether the coin shows heads or tails respectively. Similarly if
he bets on tails he gains or loses $2 if the coin shows tails or
heads respectively. 1In each trial the gambler chooses one or

the otner bet at random betting on neads with probability p.
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Let A Dbe the event that he bets on heads and let B be the
event that the coin shows heads. Write his net gain in one trial

using indicators. [Answer: I,Ig - IpIg + 2IxIg - ZIRIB]

56. The President of the U.S. holds frequent news conferences.
The journalists who attend these conferences are usually the same
group, more or less. Let us suppose that in the first two years
of his term the President answers 400 questions put to him by the
100 regular journalists. During this time 4 of the journalists
aave never been accorded recognition. These four get together and
complain that they are being discriminated against, arguing that
the probability that none of them was ever recognized is only

8 Xl0—8. On the other hand, the President's Press Secretary
argues that the probability for four or more of the journalists

to be ignored is really about 11%, which is not significant
evidence for discrimination. Who is rignt? Formulate the two
models being used and calculate the required probabilities.

Refer to exercise I,i¥ for one model. For the other use the finite
uniform process of sampling with replacement 400 journalists from
among 100. The latter calculation requires a small computer.

In Chapter VI we will develop techniques for approximating the

answer with much less effort. See exercise VI.31.

57. In the game of Treize, popular in seventeentn century France,
13 balls labelled from 1 through 13 were placed in an urn and
drawn out one at a time at random without replacement. The players

th ball drawn was labelled

bet on the waiting time until either the n
n or else the urn was emptied. Compute the distribution of this

waiting time. Generalize to N balls.
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58. An obvious modification of thie game of Treize would be to
allow players to bet on the number of times that the nth
ball drawn was labelled n. Compute the distribution of this

number. Generalize to N balls. What is the average number of

matches?

59. A sociologist claims that he can determine a person's
profession by a single glance. A psychologist decides to test
his claim. She makes a list of 13 professions and chooses
photographs (all in a standard pose) of 13 individuals one in
each profession. She then asks the sociologist to match the
photos with professions. The sociologist identifies only 5
correctly. What do you think of his claim? Note that tais

exercise is closely related to exercise 58.

60? Prove the inclusion-exclusion principle for max and min.
o0
Hint: f I(—w,x)dy = x-¢ , provided c<x.
c
61? Return to the molecular beam in exercise 22. Assume tne
beam fires lO14 ions per second. Compute the distribution of
the waiting time until the crystal is totally covered. Give a
formula. Don't try to evaluate it. In exercise VI.32 we will
show how to compute an accurate approximation for the value of
this expression.
Do the same computation as above for the baseball fan

problem (exercise 19) and for the pre-emptive nuclear attack

problem (exercise 20).



* .
62. In a physical configuration there are b bosons, each in

one of I states. Compute the distribution of the number of
filled states (i.e. the number of states having one or mnore
bosons) .

63? Tne standard card deck used by ESP experimenters is called
the Zener deck. It has twenty-five cards, five eaca of five
kinds. A typical test consists of the experimenter in one room
and the subject in another. The experimenter shuffles the deck

thoroughly and then turns the cards over one at a time at a fixed
rate. Simultaneously, the subject is trying to perceive the
sequence of cards. In order to test wihether the subject's per-
ceived sequence could nave been simply a random guess, we must
calculate the distribution of the number of matches occurring in

a random permutation of the deck relative to some standard ordering

of the deck.

647 In an ancient kingdom the new monarch was required to choose
his queen by the following custom. One hundred prospective
candidates are chosen from the kingdom and once a day for one
hundred days one of the candidates chosen at random was presented
to the monarch. The monarch had the right to accept or reject
each candidate on the day of her presentation. When a given
candidate is rejected she immediately gets married, and so the
monarcil cannot change his mind. Assume that the preferences of
tne monarch can be expressed in a linear order (from the best to
the worst) and that the monarch wants the best candidate, second
best won't do. What strategy should he employ? Wnat is the

probapility that he succeeds in his quest for perfection?
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Suppose that instead of simply ranking the candidates,
the monarch rates each of them on a 0 to 10 scale, i.e. using
some sort of objective criteria, he computes a real number between
0 and 10 for each. Assume that the ratings are uniformly dis-
tributed on [0,10]. Again the monarch wants the best candidate
among the 100. What strategy should he employ now? What is the

probapility of success?



Chapter IV Statistics and the Normal Distribution

The normal distribution arises whenever we make a suc-
cession of imperfect measurements of a quantity that is sup-
posed to have a definite value. If all the students in a
class take the same test, we may think of their grades as
being imperfect measurements of the average capability of the
class. In general, when we make a number of independent
measurements, the average is intuitively going to be an ap-
proximation of the quantity we are trying to find.

On the other hand, the various measurements will tend
to be more or less spread out on both sides of the average
value. We need a measure for how far individual measurements
are spread out around the quantity being measured. This
will tell us, for example, how many measurements must be made
in order to determine the quantity to a certain accuracy. It
will also make it possible to formulate statistical tests to
determine whether or not the data in an experiment fit the

model we have proposed for the experiment.



1. Variance
The variance of a random variable X is a measure of the
spread of X away from its mean.

Definition. ILet X be a random variable whose mean is E(X) = m.

The variance of X is Vvar(X) = E((X-m)z), if this expectation
converges. The square root of the variance is called the

standard deviation of X and is written g(X) = /WVar(X). We

sometimes write oz(X) for Var (X).
If X is an integer random variable having probability distri-

bution P, = P(X=n), then
2
var (X) = % (n-m) Pp, -
n
If X is a continuous random variable whose density is

f(x) = dens(X=x), then
® 2
Var(X) = J (x-m) " £ (x)dx.
In the continuous case we can imagine that f(x) is the

density at x of a thin rod. This rod has total mass 1 and

balances at the mean m. The moment of inertia of this rod



about its balance point is precisely the variance. If we
rotate the rod about m it would have the same angular momentum
if all the mass were concentrated at a distance o(X) from the
point of rotation.

It is possible for a random variable not to have a mean.
It is also possible for a random variable to have a mean but
not to have a finite variance. We shall see examples in the
exercises. However in a great many ohysical processes it is
reasonable to assume that the random variables involved do have
a finite variance (and hence also a mean). For example, on an
exam if the possible scores range from 0 to 100, the measure-
ment of someone's exam score is necessarily going to have a
finite variance.

A useful formula for the variance is the following:
var (x) = E(x%) - E(X)Z.
This is an easy formula to verify. The crucial step is that

the expectation is additive, even when the random variables

involved are not independent.



Var (X) E(X—m)z)

= E(X2—2mx+m2)

= E(X%)-2mE (X) +m2

= E(X%)-2m%+m?

= E(Xz)-mz.

As we just remarked, the expectation is additive. 1In
general it is not multiplicative; that is, E(XY) need not bhe
E(X)E(Y). The variance is a measure of the extent to which
the expectation is not multiplicative when X = Y, for in

this case we have Var (X)=E(X-X)-E(X)E(X). The covariance

of X and Y in general is the difference

Cov(X,Y) = E(XY) - E(X)E(Y).

We will not be using covariances except in a few optional
exercises. Covariances are often used as a measure of the
independence of random variables because of the following

important fact:



Fact. If X and Y are independent random variables,

then E(XY) = E(X)E(Y), or equivalently Cov(X,Y) = O,

Proof. We will only consider the case of integer random
variables. The proof for the continuous case reguires an-
noying technicalities that obscure the basic idea. We leave
these as an exercise.

We compute the distribution of the product XY in terms
of the distributions of X and of Y using the law of alter-

natives and the fact that X and Y are independent.

P (XY=n) £ P(XY=n|X=k)P (X=k)

k

= 1 P(Y=n/k|X=k)P (X=k)
k

= § P(Y=n/k)P(X=k).
k

Therefore the expectation of XY is

E (XY) % nP(XY¥=n)

n

= ¥ n £ P(Y=n/k)P(X=k)
n k

= I

I nP(Y=n/k)P(X=k).
n k



Finally change variables to j and k where j = n/k. Then

E (XY) L I jkP(¥=j) P(X=k)
J

)
k
= I jP(y=3j)ZIk P(X=k)

j k
= E(X)E(Y). This completes the proof.

We add that it is possible for non-independent random
variables X and Y to satisfy E(XY)=E(X)E(Y). As a result the
covariance is not a true measure of independence.

Now whereas the expectation is additive whether the
random variables are independent or not, the variance need
not be additive in general. The most important consequence
of the above fact is that for independent random variables

X and Y, the variance is additive.

var (X+Y) E((X+Y)2) - (E(X+Y))2

E(X%+2XY+Y%) - (E(X)+E(Y))?

E (X2) +2E (XY) +E (Y2) -E (X) =2E (X) E(Y) ~E (Y) 2

E(X?) - E(X)% + E(Y%) - E(Y)?

var (X) + var (Y).



In terms of the standard deviations, o(X+Y) = /02(X)+02(Y);
the standard deviations of independent random variables act
like the components of a vector whose length is o(X+Y).

There are two more properties of the variance that are
important for us. Both are quite obvious:

Var (cX) = c2 var (X) Var (X+c) = Var(X).

The first expresses the fact that the variance is a quadratic

concept. The second is called shift invariance. It should

be obvious that merelv shifting the value of a random variable
X by a constant only changes the mean and not the spread of

the measurement about the mean.

(0) var(X) = E(X%)-E(X)?2 0(X) = YVar(%)

(1) If X and Y are independent random variables having

finite variance, then:

Var (X+Y) = Var (X)+Var (Y) 0(XHY) = Vo2 (X)+0° (Y)
(2) var(cX) = c2Var(X) o(cX) = co(X)
(3) Var(X+c) = Var (X) og(X+c) = o(X)

Basic Properties of Variance and Standard Deviation




We now compute the variances of some of the random
variables we have encountered so far in the Bernoulli, Uni-

form and Poisson processes.

Bernoulli Process

Consider a single toss of a biased coin. This is
described by any random variable X of the Bernoulli process.
Recall that X = 0 if nth toss is tails

1 if nth toss 1is heads

Since 12 = 1 and O2 = 0, Xi is the same as Xn' Therefore

. . 2 2
the variance of any Xn is Var(Xn) = E(Xn)—E(Xn) =

2 _ 2 _
E(Xn)-E(Xn) = p-p = P4g.
\ A
Var(Xn) ] o(Xn)
1/4 + 1/2 T
0 I ™p 0 I 7p
The variance of a toss of The standard deviation of a
a coin whose bias is p. toss of a coin whose bias

is p.

Notice that the largest variance corresponds to a fair coin



(p=1/2). We intuitively think of a fair coin as having the
most "spread out" distribution of all biased coins; while
the more biased a coin is, the more its distribution is
"concentrated" about its mean.

Next consider the number of successes Sn in n tosses of
a biased coin. Since S,= X1+X2+...+Xn is the sum of n inde-
pendent random variables all of whose variances are the same,
Var(Sn) = nVar(Xl) = npq. If we tried to compute Var(Sn)
directly from the definition, we get

n
Var(s ) = E((Sn—np)z) = I (k-np)z(r]z)pkqn—k .

k=0

That this is npg is far from obvious.
We leave the computation of the variances of the gaps
T

" and the waiting times W, as exercises.

var (T, ) = Iy Var (W, ) =

hSH

Uniform Process

Consider a point X dropped at random uniformly on [0,a].
Clearly the average value of the point is a/2, the midpoint of

[0,a). The variance is



E(X%) - E(X)?

var (X) =

ra

= x2 dens (X=x)dx - {%]2
’0
ra

= x2 % dx - [%]2
/0

_;[i]a_ei

T al|s3 0 4

_L o2 _af
a 3 -
2

_ a
12 -

So the standard deviation is 2 - 2. =0.2887a. We can

YIZ  2/3

think of this in the following way. Given a uniform bar of
length a, its midpoint is the center of mass. If the bar
were set spinning around its center of mass, the angular
momentum would be the same if the mass were all at a distance

-2 _ from the center of rotation.

2/3

We leave it as an exercise to compute the variances of
the gaps and the order statistics of the Uniform process.

Notice that we cannot use the fact that X(k) = I +L2+...+L

1 k

because the gaps are not independent.



2
an

Var(L.) = 5
(n+l) " (n+2)

_ a’k (n-k+1)

Var (X )
(n+1l) " (n+2)

(x)’

"e summarize the above computations in this table.

Distribution Model (s) ‘ Expectation Variance
Bernoulli X; in the Bernonllj p Pq
rrocess
Binomial Sn(xi when n=1) in the np npq
Bernoulli process
. 2
Geometric Wl or any T, in the 1l/v a/p
Bernoulli process
. . k
Negative Binomial wk in the Bernoulli k/p q/p2
process
Uniform Xy in the Uniform process a/2 a2/12
2
. -k+1
Dirichlet X (L. when k=1) in the ka/(n+l) E_Eiﬂjk__l
(k) i
. . (n+1) " (n+2)
Uniform process
Table of Means and Variances
Standardization

If we shift a random variahle X by a constant, replacing
X by X+c or if we make a scale change, multiplying X by a
nonzero constant, we have not altered X in a significant wav.
We have only reinterpreted a measurement of X hy a linear
change of variables. The idea of standardization is to
choose a single "standard" random variable among all those
related to one another by a linear change of variables. Then
in order to determine if two random variables are "essentially"

the same we should compare their standardized versions.
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Definition. A random variable X is standard or standardized

if E(X)

0 and Var(X) = 1. 1If X has finite variance, then

where m = E(X) and ¢ = o(X), is standard. We call (X-m) /o

the standardization of X. A physicist would say that 533

expresses X in "dimensionless units."
The covariance of the standardizations of two random

variables X and Y is called the coefficient of correlation

and is written P(X’Y)' It is easy to prove that If(X,Y)ls 1
and that f(X,Y) = Cov(¥X,Y)/ (¢(X)g(Y)), and we leave these

as exercises. Because of the importance of standardization,
we will prove that the standardization of a random variable

is really standard.

Fact. If X has finite variance, then (X-m)/g is standard,
Proof
E( (X-m) /o) = E(XL—m = m;m -0
Var { (X-m) /o) = lj var (X-m) (Basic fact 2)
o
= Lj var (X) (Basic fact 3)
o
=1 (since 02=Var(x))

We call 0(X) the standard deviation because of its ap-

pearance in the standardization. We think of ¢(X) as being
the natural unit for measuring how far a given observation
of X deviates from the mean. The importance of standardiza-

tion will gradually emerge in the next few sections.
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2. The Bell-Shaped Curve

In this section we introduce one of the most important
distributions in probability: the normal distribution. The
traditional explanation for the importance of the normal
distribution relies on the Central Limit Theorem, which we
will discuss in the next section. However we feel that the
exXplanation, using entropy and information, given in chapter
VII is better because it provides a context which explains
the ubiquity not only of the normal distribution but of

several other important distributions as well.

Definition. A continuous random variable X is said to have

the normal or Gaussian distribution with mean m and variance

02 if

1 - (x-m) 2 /252

oviw

dens (X=x) =

For brevity we will write simply "X is N(m,oz)". Some
authors write N{(m,o) instead of N(m,oz); one should beware.
Unlike most distributions, the formula for the normal
density comes with the mean and standard deviation already
specified. We should, however, verify that m and 02 really

are the mean and variance. In fact it isn't obvious that this



formula actually defines the density of a continuous random vari-
able. To verify these facts we use the following basic formula,
which everyone ought to have seen in a calculus course at

some time:

™ 2
To prove this let A = J e ® dx. Then, since x is a dummy
-~ 00

o 2 2 © —x2 o 2
variable, A = J e ¥ dy also. Therefore A" = J e dx J e ¥ dy.

- 0O

Now we switch to polar coordinates and integrate:

© © 2 2
A2 = J J e”(x ty )dy

0
27 -

= J —% e t ] de
0 0

Hence A = /7 .
We use this formula first to show that the normal density

really defines a density. We first change variables to
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y = (EZE) so that ov2 dy = dx. Then

ov2

J“ 1 e-(x—m)2/202

dx = f
—ogy2m - gy27

1 J“
= e
/S -
= 1.

Next we compute E(X) when X is N(m,oz).
. X~
change of coordinates y = —— .

ov2

1 e—(x—m)2/2o2 dx
ov2m

E (X) X

Il
Ny
| 8
8

w | L o2
J (oVZy+m) » e™Y
~o o/2T

[ -2d
f (cv2 y+m)e y ¢y

"z
%3

3 =

2l g D

e

0 + m.

Note that x =

/2 dy

f y e y dy + — f e™Y Y

2

Y /7 dy

2
-y~ dy

Again we use the

ov2 y+m.



2

Finally we leave it as an exercise to show that Vvar(X) = o
It can be done using integration by parts.

Although these computations look messy, we are in-
escapably forced to consider this density function because
this is the distribution corresponding to the concept of

total randomness or complete randomness. In Chapter VII

we will make this concept more vrecise, So it is important
that one have an intuitive idea of what it means for a
random variable to be normal. We suggest that the fol-
lowing properties of the normal distribution be memorized,
and one should familiarize oneself with the use of the tables

giving values of the normal distribution function.

R £(x) . 2/2 f (x) 1 —(x—m)2/202
f(x)=—-ue "
m
TyooT2 7 1 3 m-20 m-og m m+0
. 2
The standard normal density N(0,1) The normal density N(m,o0”)

The normal density function is symmetric about the
mean m and the maximum value is taken at the mean. Beyond
3.50 units from m, the value of the normal density is es-
sentially zero. The natural unit for measuring deviations
from the mean is the standard deviation. When x is the de-
viation from the mean measured in this natural unit, then
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we get the standard normal density. Most tables for the

normal distribution are tables of the standard normal density.

The curve becomes steeper
and higher at the mean as
0 gets smaller.

>
>

X

Various normal densities with mean 0

- In all of the following X is standard normal, N(0,1).

The area within one standard

deviation of the mean is 68.27%

/// ' of the total area, i.e.
P(-1<xX<1) = .6827.




The area within two
standard deviations of
the mean is 95.45%, of
the total area, i.e.
P(—ngig) = ,9545,

The area within three
standard deviations of
the mean is 99.73% of
the total area, i.e.
P(—3§x§}) = ,9973.

In addition one should memorize the following two cases:

The area within 1.96 standard deviations of the mean is 0.95

The area within 2.58 standard deviations of the mean is 0.99

These will be important when we compute significance levels.

Occasionally one will see tables of the error function,

erf(t). This function is closely related to the normal distri-

bution although it is not the samne:

1 t 2
erf(t) = P(|Y|<t) = = f e ¥ ay ,
-t

4
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where Y has distribution N(0,1/2). 1If X has the standard
normal distribution, then

P(-x<X<x) = erf(§~)
- V2

and

P(X<x) = 1/2 + erf(X) /2 .
- V2

3. The Central Limit Theorem

The traditional explanation for the importance of the
normal distribution relies on the Central Limit Theorem.
Briefly, this theorem states that the average of n independent
equidistributed random variables tends to the normal distri-
bution no matter how the individual random variables are dis-
tributed. The explanation for the ubiquity of the normal
distribution then goes as follows. Suppose that X is the
random variable representing the measurement of a definite
quantity but which is subject to chance errors. The various
possible imperfections (minute air currents, stray magnetic
fields, etc.) are supposed to act like independent equi-
distributed random variables whose sum is the total error
of the measurement X. Unfortunately this explanation fails
to be very convincing because there is no reason to suppose
that the various contributions to the total error are either
independent or equidistributed. We will have to wait until
Chapter VII to find a more fundamental reason for the
appearance of the normal distribution. The explanation

given there uses the concepts of entropy and information.
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Intuitively, the sum of independent, equidistributed random
variables is progressively more disordered as we add more

and more of them. As a result the standardization of the sum
necessarily approaches having a normal distribution as n+o,
This tendency to become disordered is exhibited even when the
random variables are not quite independent and equidistributed.
It is this tendency that accounts for the ubiquity of the
normal distribution.

Nevertheless the Central Limit Theorem is of importance
in probability and statistics, particularly in the theory of
hypothesis testing which we will be discussing in the next
section. Moreover the proof of the Central Limit Theorem is
more difficult than our intuitive justification would lead
us to believe. We will now give a precise statement of this
theorem. The proof is sketched in section 6.

Suppose that Xl’XZ""’Xn"" are independent equidistri-
buted randcm variables whose common mean and variance are

2 _
m = E(xi) and o = Var (Xi). Let Sn be the sum X1+...+Xn.

Then the mean of Sn is E(Sn) E(Xl) + E(X2)+...+E(Xn) = nm,

and its variance is Var (Sn) var (Xl) + Var (X2)+...+Var(xn)=n02,
since the Xi's are independent and equidistributed. Therefore
the standard deviation of S is o(s)) = VVariSn) = vno.

lHence the standardization of Sn is

Sn—nm _ X1+X2

n ovn ovn

+...+X_-nm
n

The Standardization of a Sum of Independent, Equidistri-
buted Random Variables whose common mean and variance

are m and 02 respectively.
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This is an important formula to remember. The Central Limit
Theorem then says that Y, tends toward the normal distribution

as n-rw,

Central Limit Theorem. If X.,X,,...,X_,... are independent
172 n

equidistributed random variables with mean m and variance

02, then

2
X, +X +...+Xn—nm 1 J t -x"/2

P(Y <t) = P( 1 2 < —
- ovn V2T

For example, in the Bernoulli process the random
variable Sy is the sum of independent equidistributed random

variables Xy whose common mean is m = p and whose common

Sn—np
tends toward the

variance is 02 = pq. Then Y, =

=3
q
Q

standard normal distribution. That is, Sn is approximately
distributed according to N(np,npq). This approximation is

surprisingly accurate even for small values of n.

The distribution of SL+
in the Bernoulll process
using a fair coin.
Superimposed is the

normal distribution

N(2,1)
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For example, we know that P(1 < ng 3) =1 - -1% = 0.875. On
the other hand, when X is N(2,1), P(0.5 < X < 3.5) = 0.8664

(since 0.5 and 3.5 are each 1.5¢ from the mean 2). You can see

that the fit is quite close.
The two most common manifestations of the Central Limit
Theorem are the following:
(1) As n-+», the sum Sn "tends" to the distribution N(nm,n02)
(2) As n»», the sample average ﬁésn/n "tends" to the
. , , 2
distribution N(m,c"/n).

The expectation of the sample mean is the mean as we already

noticed:

E(M = Ee(-D) = = =m,

hence the sample mean is an approximation to the true

mean m, The spread of the sample mean depends on the
2

— o
variance Var(m) = Var(s,/n) = Var(Sn)/h2 = no?/n® = .

Intuitively it is clear that as n»=, the sample average will
be a better and better approximation to the mean m. The
Central Limit Theorem tells us precisely how good an approxi-

mation it is. In the following drawings we assume m = 0.

As n»», the distribution of
Sn tends to broaden. The

n=1 spread of Sn is proportional

%HZL} to /n .




As n+o, the distribution of m
tends to become steeper. The
spread of m is proportional to

1//n .

We remark that the independence of the random variables
is essential in the Central Limit Theorem. For example, the
gaps L, of the Uniform process are equidistributed, but their

sum L1+L2+...+Ln+l is the length of the interval, which we

know with certainty.

Statistical Measurements

Suppose we make n measurements Xl'XZ""'Xn of the same
quantity. Implicitly we are assuming that these measurements
are equidistributed and independent random variables. Each
measurement has a distribution whose mean is the quantity we
wish to measure. But the measurements are imperfect and so
tend to be spread to a certain extent on both sides of the mean.

Statisticians refer to this situation as a "random sample.”

Definition. A random sample of size n is a set of n inde-

pendent, equidistributed random variables Xl,Xz,...,Xn.



In the next two sections we will consider the problem
of measuring the mean of a distribution using random samples.
In particular we would 1ike to know how small a random sample
is sufficient for a given measurement. If we wish to determine
the average number of cigarettes smoked per day by Americans,
it would be highly impractical to ask every American for this
information. Statistics enables one to make accurate measure-
ments based on surprisingly small samples.

In addition to the measurement problem, we will also
consider the problem of using a random sample as a means for
making predictions of the future. The prediction will, of
course, be a probabilistic one: with a certain probability
the next measurement will lie within a certain range. For all
the statistical problems we will study, we will assume only
that the variance of each measurement X, is finite. In most
cases this is a reasonable assumption especially if the measure-
ments lie in a finite interval. For example, the number of
cigarettes smoked by one individual in one day is necessarily
between 0 and 106.

The general procedure can be summed up in the following

rule.

Main Rule of Statistics. In any statistical measurement we

may assume that the individual measurements are distributed

according to the normal distribution N(m,oz).
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4,25
To use this rule we first find the mean n and variance

02 from information given in our problem or by using the

sample mean m and/or sample variance 32 defined helow. We
then standardize the random variables required in the problem.
Finally we use tables of the standard normal distribution to
solve the problem. We will see many examples of this basic
procedure. As stated, the main rule
says only that our results will be "reasonable" if we assume
that the measurements are normally distributed. We can
actually assert more. In the absence of better information,
we must assume that a measurement is normally distributed.
In other words if several models are possible, we must use
the normal model unless there is a significant reason for
rejecting it.

When the mean m and/or the variance 02 of the measurements

Xi are not known, the following random variahles mav he used

as approximations.

The sample mean m = (X1+X,+...+Xn)/n anproximates m.

(%, =) 24 (2, = 24 Lo (2 - 2

n-1

The sample variance o

apnroximates the variance o©

For example an exam graded on a scale of 0-100 is

given in a class of 100 students. The sample mean is found
to be 81 with sample variance 100 (standard deviation 10).
Based on this data, we can predict that if the exam is given
to another student, the student will score between 61 and 100
with probability 0.95 (within 20 of m). In actual exam sit-
uations, the distribution of an individual exam score is more
complicated than the normal distribution, but in the absence

of any better information we follow the Main Rule.



When the mean m is known but the variance is not, there is a
slightly hetter approximation to the variance:

The sample variance (when m is known)

2 2 R
2 (Xl—m) +(X2~m) +...+X}\n m)

n
also approximates the variance 02.
The reason for the different denominators in the two expressions is
subtle. We leave it as an exercise to show that the expecta-
tions of the random variables are
— _2 2
E(m) = m and F(o ) = © ’

where second equation holds for either sample variance. The distri-

2
butions of the random variables m and ¢ are very important in sta-

tistics and we will undertake to compute some cases, leaving

the rest as exercises.

4, Significance Levels

Let us begin with an example. We are presented with a
coin having an unknown bias p. We are told that the coin is
fair, but we are susvicious and would like to check this as-
sertion. So we start tossing the coin. After 100 tosses we
get only 41 heads. Do we have reason to suspect that the
coin is not fair?

In such an experiment, we carefully examine the model we
have postulated in order to determine what kind of behavior

is consistent with the model. If the observed behavior is

4.26



consistent with the model we have no reason to suppose that
the coin is unfair. 1In this case the postulated model is the
Bernoulli process with bias p = 1/2.

The average value of S100 is 50 for our postulated
model. We are interested in the possible deviation of Sloo
from its mean value 50, because very large deviations are
unlikely in the model but would not be if the coin is unfair.
The usual statistical procedure in such a case is to deter-
mine precisely how large a deviation from the mean is
reasonable in the model. Since S100 has the binomial distri-
bution, we could in principle do this using only the formula
for this distribution. However the computation is ex-
tremely difficult. On the other hand, we know that Sloo is
very close to having the normal distribution N(50,25). 1In
other words, (5100450)/ 5 has approximatelv the standard
normal distribution.

We now look in a table of the standard normal distri-

bution. There we find that

5100—50

P(-1.96 < 5

< 1.96) = 0.95,

or

P(40.2 < S < 59.8) = 0.95 .

100

Since 41 falls in this range, we conclude that our suspicions
about the unfairness of the coin are groundless. The dif-

ference 1-0.95 = 0.05 is called the significance level of our

test. We then say "the experiment has no significance at the
0.05 level."” Notice that we say no significance. Statis-
tically speaking, a significant result occurs only when a

postulated model is rejected.



Looking at the reasoning a bit more carefully, we have
said the following. Assuming that the coin is fair, about
95% of the time we will get between 40 and 60 heads when we
toss the coin 100 times. But 5% of the time we will not be

within this range.

The significance level represents the
probability that we will reject the
postulated model even though this

’model is correct.

Notice the indirectness of this kind of reasoning. We say
nothing about whether or not the coin is really fair or un-
fair, or even that it is fair or unfair with a certain proba-
bility. Statistics never tells one anything for certain,
even in the weak sense of probabhilistic certainty. All we
can do is devise tests for determining at some significance
level whether or not the data we have collected are consis-
tent with the model. Because of the abbreviated terminology
that statisticians and scientists frequently use when discus-
sing the result of an experiment, one should be careful not
to ascribe properties to statistical statements, which they

do not possess.



The 0.05 significance level is so commonly used by
statisticians and scientists that this level is assumed when
no significance level is specified. The 0.01 significance
level is also common, and an experiment is said to be very

significant if this level is being used. For example, in

our coin tossing test we found that getting 41 heads was

not (statistically) significant. On the other hand, getting

39 heads would be significant but would not be very significant,
while getting 35 heads would be very significant.

It is important to point out that the choice of a signi-
ficance level is part of the design of one's experiment. It
cannot be "calculated" after the data are collected. Doing
5o is intellectual and scientific dishonesty of the worst
kind, for if one does this consistently it violates the
whole statistical framework within which the scientific com-
munity works. Generally speaking, the choice of a significance
level is determined by considerations having nothing to do
with probability or statistics. For example, if one is
testing to see if a certain commonly used chemical could be
a cause of a disease, we would certainly want a very sig-
nificant result before recommending that the chemical be
banned, with all the political and economic repercussions

that such a decision could have.
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.ot us consider another example. We are given a die,
and we wish to test Qhether it is loaded. We decide to
consider whether "3" is special, and we choose to work at
the 0.05 significance level. Our experiment consists of
rolling the die 120 times, and we find that "3" comes up 25
times. Our postulated model is now the Bernoulli process
with bias p = 1/6. The mean and variance of a single roll
arem = p = 1/6 and 02 = pq = 5/36. Therefore the number of

S

threes, is approximately N(120/6, 120°5/36) = N(20,100/6),

120
and hence (8120-20)/3/10 is approximately N(0,1). Our experi-

ment is significant at the 0.05 level only if |(Slzo—20)/€/10|>1.96.
In our case S;,, = 25 so l(SlZO—ZO)/g/lO| = |5/&/10| = /3/2.

This is not larger than 1.96. Therefore the experiment is

not significant, and we have no reason to suspect that the die

is loaded.

Rule of Thumb

A quick rule of thumb for testing the Bernoulli process
(to be used only if one is in a hurry) is the following. 1If
one tosses n times a coin with bias p, then the result is
significant if the number of heads lies outside np + 2v/npq

very significant " " " " " " " np + 3vnpq



5. Confidence Intervals

The concept of a confidence interval is a variation
on the statistical themes we have just heen describing. In-
stead of testing a hypothesis,one is interested in accuracy
of a measurement or in prediction of the future.

Let us consider a very simple example of the prediction
of the future. Suppose we have two competing airlines on a
given route, both having the same departure time. Suppose
that every day exactly 1000 passengers show up and that each
one chooses one or the other airline with probability 1/2,
independently of the other passengers. Both airlines want
to be able to accommodate as many passengers as possible.
They could do this, of course, by providing 1000 available
seats. Needless to say this would be disasterously expensive,
particularly since the probability that all 1000 seats would
ever be needed is essentially zero. By providing 1000 seats
we would have absolute certainty that there will never be an
overflow, if we are willing to accept a 5% chance of an over-
flow, the number of seats we must provide decreases dramatically.

To compute this we again use the normal approximation of
the binomial distribution. The model we are using is the

Bernoulli process with bias p = 1/2. The variance of a



single toss is 1/4. The number of passengers choosing one
particular airline is leOO' which has approximately the
distribution N(500,250). Hence (81000—500)/5/IU is almost
N(0,l). We now look up in a table of the standard normal

distribution that number t for which

P(Yiﬁ) = 0.95

We find that t = 1.645. This tells us that

P((SlOOO—SOO)/5/10 < 1.645) = 0.95
or P(SIOOOiSZG) = 0.95.

We need only provide 526 seats to have 95% confidence of not

having an overflow. This is quite a dramatic drop from 1000

seats. Even for 99% confidence we need only a few more seats:

P((S1000=500)/5v/10 < 2.33) = 0.99
or P(S1900 < 537) = 0.99.
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We speak of the interval [0,526] as being a 95%

confidence interval for $1000° In general any interval

[a,b] for which P(a<X<b) = .95 is called a 95% confidence
interval for the random variable X. When X is normally dis-
tributed (or approximately normally distributed) with dis-

tribution N(m,oz), we generally use either a one-sided con-

fidence interval or a two-sided confidence interval. A

one-sided interval is of the form (-«,t] or of the form [t,=).
A two-sided interval is chosen to be symmetric about the mean:
[m-t,m+t]. When testing statistical hypotheses, one uses
either a one-sided or atwo-sided confidence interval. The

corresponding tests are then referred o as a single-tail or a

double-tail test respectively.

Now we consider the problem of the accuracy of statistical
measurements. Suppose we wish to determine the percentage of
adult Americans who smoke. To find out this number we ran-
domly sample n persons. How many persons do we have to
sample in order to determine the percentage of smokers to
two decimal place accuracy? Of course, we can determine this
percentage to this accuracy with absolute certainty only by
asking virtually the whole population, because there is

always the chance that those not asked will all be smokers.



Therefore we must choose a confidence level. The usual
level is 95% so we will use this.

The model we are using is the Bernoulli process with
bias p, where p is the percentage we are trying to compute.
Each person we ask will be a smoker with probability p. If
we randomly ask n persons, the number who smoke divided by
n will be an approximation p to p. This number is the sample
mean m = S,/n. We use the Central Limit Theorem in its
second manifestation. We find that p=m has approximately
the distribution N(p,oz/n), where 02 = pg. Therefore
(m-p)/(c/v/n) is approximately N(0,1). We require a two-

sided interval in this problem:
P(—l.96i(ﬁ~p)/(o//ﬁ)5_1.96) = 0.95
or P({m-p| < 1.960/v/n) = 0.95

We want to choose n so that lﬁ—pl < 0.005 in order to have
two place accuracy. That is, 1.960/Yn = 0.005 or n“(l.54x105)02.
Unfortunately to compute 02=pq we must know p. However we
know that 02 takes its largest value when p=q=1/2. Therefore
n<(1.54x10°) (0.25)=3.85x10%. In other words, to determine

the percentage of smokers with 95% confidence we must sample

up to 38,500 persons.



In practice one would first determine p to one decimal place
accuracv. This requires only a sample of 385 versons. Using
this number, one can compute o more precisely. Using this
better value of 0 we can determine more precisely how many
persons must be sampled in order to find p to two decimal
place accuracy. For example suppose that with the smaller
sample we find that p = 0.65 + 0.05. The worst case for 02
is now pg=(0.6) (0.4) = 0.24. We must then sample n=37,000
persons to determine p to within 0,005,

One must be careful not to confuse the accuracy with
the confidence. The accuracy tells us how accuratelv we think
we have measured a certain quantity. The confidence tells us
the probability that we are right. To illustrate the dis-
tinction between these two concepts we consider the above
measurement problem with two accuracies and three confidence
levels. 1In general, improving confidence does not require
much more effort while increasing accuracy requires a great

~deal of additional effort.

Accuracy
0.05 (one decimal place) 0.005 (two decimal places)
|
95% 385 38,500
Confidence 993 667 66,700
99.9% | 1,089 o L ~__log,900

The number of individuals that must be sampled to determine

the percentage having a certain property (in the worst case

p=1/2)
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In the exercises we consider more examples of significance
levels and confidence intervals. Some of these have a distinct
air of the supernatural about them. How for example is it pos-
sible to make conclusions about the television preferences of
a population of 200 million persons based on a sample of only
400 of them? 1In fact the size of the population is irrelevant
to the statistical analysis. (It arises only when one con-
fronts the problem of making a random sample from a very large
population. This is a very difficult problem for statisticians.)

*
6. The Proof of the Central Limit Theorem

If you are familiar with the concept of the Fourier transform,
the proof of the Central Limit Theorem is not very difficult to
understand. We will sketch the proof leaving the details as an

exercise.

Let X be a sequence of independent equidistributed

X .
172 -
random variables having finite variance. Without loss of generality,
we may assume that they are standard. Set Sn = X1 + X2+...+Xn
We wish to show that the distribution of Sn//ﬁ tends to the

standard normal distribution.

Recall that the Laplace transform of a function f(x) is

defined to be the function ¢()) = fg e-Axf(x)dx, defined for
A >0 when f(x) 1is the density of a random variable. If we
replace the nonnegative parameter ) by a purely imaginary

one, iz, for -« < ¢ < =, we obtain a transform known as the

Fourier transform:

() = jw e12%¢ () dx,

-

defined for all real numbers . By deMoivre's theorem,
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elt¥ - cos(zx) + i sin(zx), so that y(g) may be written as

[0}

v(g) = Jw cos (zx) f(x)dx + ij sin(zgx)f(x)dx,

-0

where each of the two integrals are real. When £f(x) 1is the

density of a random variable X, we say $(z) 1is the characteristic

function of X.

We begin by calculating some values of the characteristic

function y(z). At zero we get

v (0) = Jw e0f (x)dx = fw £(x)dx = 1

b

since f(x) 1is a density. Similarly, the values of the derivatives
of y(z) at zero can be computed by 'differentiation under the

integral sign."

© 18} .
v™ (o) = f 4 o1 t%e (x)dx

-o dg
= wa(ix)neicxf(x)dx,
so that sy = @) waxneicxf(x)dx
= (H'EET).
In other words, wn(O) is (i)n times the nth moment of X.
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If we assume that X has finite variance, then E(X) and
E(Xz) exist, and we may apply the Taylor expansion theorem to

conclude that
— v 1" 2 2
p(g) = w(0) + ' (0)z + %"(0)z" + o(T7), as ¢ » 0.
If X 1is standard, then
_ 2 2
p(z) = 1 - %57 + o(g7), as ¢ - 0.

The Fourier transform satisfies the same convolution property

as the Laplace transform:

Fact. 1If wx(c) and wY(c) are the characteristic functions of
random variables X and Y and if X and Y are independent,

then wX+Y(C) = wx(g)wY(g) is the characteristic function of X + Y.

Proof. We may write the characteristic function wx(;) of X as

(@ = | eFTEeoan = 5@,
By the multiplicative property of expectations of independent
R.V.'s,

by (D) = E@IEEDy gttty - petypcelth

= Ug (D) Uy (2). Q.E.D.
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Therefore, if Xl’X2’°°'

distributed standard random variables, having characteristic

is a sequence of independent equi-

function y(g), then their sum Sn has characteristic function
w(C)n. By a change of variables, the random variable Sn//ﬁ
has characteristic function w(C//ﬁ)n. Utilizing the Taylor

expansion computed above, we find that

2
Y/ P = (- (5% + o(E)P as & >0
/n n /n
= (1 - g; Cz + 0(%9)n as n - ©

(with ¢ fixed)

Now we know from calculus that

2 2
a - Crfz)n > e © /2, as n - o

and we leave it as an exercise to show that this also works

when we have the extra o(%) term. Therefore, the characteristic
2

function of the standardized sum S_//n approaches e /2

as n » o, for every fixed ¢.

2
We now suspect that e © /2 is the characteristic function

of the standard normal distribution. This can be proved a number
of ways. One could first show that the convolution of normal
distributions is normal so that if Xl’XZ"" are all standard

normal distributions then so is Sn//ﬁ. It then follows by the
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above result that the characteristic function of the standard
normal distribution must be e-cz/z. One can also compute this
characteristic function directly by differentiating under the

integral sign and using an integration by parts. We leave this

as an exercise.

The Central Limit Theorem follows from the above calculation

and the following two properties of the characteristic function:

Property 1 (Fourier inversion). Different probability distributions

have different characteristic functions.

Indeed, if ¢(z) has the property that ffwlw(a)|dc < «, then

one may use the Fourier inversion formula to compute £(x) in

terms of Y (z):
1 (7 -irx
f(x) = 5 J e p(z)de.

Property 2 (Continuity). If a sequence of characteristic functions

W1s¥9,-.. converges to a characteristic function ¢ in the sense

that for all ¢,

lim y_(g) = v(z)

n->o

then the probability distributions corresponding to the wn(;)

converge to that of y¢(g) as n » .




*
7 . The Law of Large Numbers

The law of large numbers is the statement that is often
taken as justification of the definition of probability in
terms of frequency. For example, what does it mean to say
that the probability is 1/2 for getting a head when a fair
coin is tossed? In the frequentist point of view, one says
that this means the proportion of heads in a very large number
of tosses will be very close to 1/2. But this is really beg-
ging the question in some sense as we will see.

Let xl'x2"" be independent equidistributec random
variables with common mean m and common variance 02<w. We
would like to say that (xl+x2+...+xn)/n approaches m as n;w. But these
are random variables so we can only speak of the probability

that the limit is m.

The Law of Large Numbers

X, +X

1ot 4y

P{(2im =m) = 1.

n->co

n

This is essentially just a psychological theorem, for it
does not provide the information necessary for concrete ap-

plications. The Central Limit Theorem is far more useful,

and in fact the law of large numbers is a consequence of

the Central Limit Theorem. We leave the proof as an exercise.
In any case the law of large numbers is a purely mathe-

matical theorem. 1In order for it to make sense we must al-

ready have the concepts of probability, random variables,
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means, variances, etc. We cannot use this as the definition
of probability. But we cannot even use the law of large

numbers as a justification of the frequentist point of view.

This point of view says that probabilities represent a
physically measureable quantity (at least in principle).
But there is no concept of a physical "measurement" cor-

responding to the mathematical concept of the limit

X1+X2+ cee +Xn

f2im
n-»o

n

The relationship between physical experiments and the theory
of probability is much more subtle than the frequentist

point of view would have one believe.

The law of large numbers is not very useful in applications
because it does not specify how large a sample is required to
achieve a given accuracy. However it does have interesting

theoretical applications. We will see one in section VII.2 (the

Shannon Coding Theorem). Another theorem which has great usefulness
in probability theory is the Bienaymé-Chebyshev Inequality. Its
importance stems primarily from its simplicity.

Bienaymé-Chebysnev Inequality Let X be a random variable with

mean E(X) = m and variance Var(X) :cya, then for all t >0,
P(IX - m| >t) < g°/t°.
Proof
Suppose that X is a continuous R.V. with density f(x). The
proof in the case of an integer R.V. is similar. Clearly we may

assume that m is zero, for if not we just replace X by X - m.
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0'2 = Var(X) = E(Xz) = g xzf(x)dx ES' xzf(x)dxzf tzf(x)dx
(x| >t >t

-

- 1;25;( f(x)dx = t2 p( |X| >t). The second inequality is
(2t

a consequence of the fact that x° Z'tz in the domain of integration.

If we now solve for P( |X| > t) we get the desired inequality.

The last result we will consider in this section is one of
the most astonishing facts about probability: the Kolmogorov
Zero-One law. As with the other theorems in this section it has
little practical usefulness, but it has many theoretical applic-
ations. The law of large numbers, for example, can be proved
using it.

Suppose that X1,X2,... is a sequence of random variables
which are independent but not necessarily equidistributed.

A tail event A is an event such that

(1) A is defined in terms of the random variables Xl’XZ""

(2) A is independent of any finite set of the Xi's,i.e.

P(A| (xl=tl)n(x2=t2)n...n(xn=tn)) = P(a) ,
for any n<e~ and any set of ti's.

Kolomogorov Zero-One Law If A is a tail event, then P(A)=0

or 1.

At first it seems that there cannot be anv tail events
except for @ and Qc,because tail events seem both to depend on the
Xi's and not to depend on the Xi's. HHowever there are, in

fact, many nontrivial examples. Here is one. Toss a fair

coin infinitely often, and write X_ = +1 if the nt? toss is heads

th

-1 if the n toss is tails



o X!
Now let A be the event " —% converges." This is a tail
n=1
event because the converge or divergence of a series is

determined by the terms of the series but is independent of

any finite set of them. We all should know at least two ex-

% diverges but
1 n

amples from calculus:

o8
™~ 8

n 1 I

verges to #n(2). What we are doing is to change the signs of

[+

the harmoaic series I
n=1
is the probability that

% randomly and independently. P(A)
a random choice of signs yields a
convergent series. The zero-one law tells us that P(A) can
only be 0 or 1l; there are no other possibilities. In fact
P(A) = 1; we leave this as an exercise.

As another example, suppose that a monkey is trained to
hit the keys of a typewriter and does so at random, each key
having a certain probability of being struck each time, in-
dependently of all other times. Let A be the event "the
monkey evantually types out Shakespeare's Hamlet." Again
this is clearly a tail event and so P(A) = 0 or 1. This is
easy to see. Hamlet has about 2x105 characters and could be
written with a typewriter having 100 keys. Suppose each key
has probability .01 of being typed. The probability of

5
2x10 .during a given "session" of

typing Hamlet is p = (.01)
2x105 keystrokes. The probability of not typing Hamlet in

one session is q = l-p<l. The probability that in infinitely

many sessions the monkey never types out Hamlet is fim qn=0.
n->oo
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Therefore P(A) = 1. On the other hand, the expected waiting

400,000

time until the monkey types out Hamlet is about 10 key-

strokes. If the monkey could type one keystroke every

nanosecond, the expected waiting time until the monkey types
out Hamlet is so long that the estimated age of the universe is
insignificant by comparison.

Needless to say this is not a practical method for writing
plays. The Kolomogorov zero-one law has little practical useful-
ness. But it does have theoretical uses, and it shows how

counter-intuitive probability theory can be.
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8. Exercises for
Chapter IV Statistics and the Normal Distribution

Variance

1. Suppose that X is a random variable whose density is

(B—l)x_B if x> 1 , where g8 > 1. Show:
0 if x <1

dens (X=x)

(a) X has neither mean nor variance if 1 < g < 2.

(b) X has mean %5% if g > 2, but has no variance if

N

< g < 3.

(¢) X has variance Bél if g > 3.
(B-2)°(B-3)

2. Let X be the random variable Sﬁ in the symmetric Bernoulli

process random walk model. Let Y = x2.

Then X and Y are obviously
dependent random variables. Show that Cov(X,Y) = 0. Hence the

converse to the Fact in section IV.,14 is false.

3. Verify the following formula which holds for arbitrary random
variables Xl’XZ""’Xn (not necessarily independent) so long as

both sides exist:

Var (X{+X,+...#X ) = ) Var(X;) + 2 } COV(Xi,Xj).
i i<j
Use this formula and the exchangeability of the gaps in the uniform

process to compute Var(X(k)).
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4. Prove that if X and Y are independent continuous R.V.'s,

then E(XY) = E(X)E(Y). To do this one must split X into

positive R.V.'s x* and X~ such that X = X' - X . For example,

define X' by X' = (X if X > 0
0 if X < 0.

Do the same for Y. Note also that dens (XY= z

X =x) #dens(y=§|x=x).

5. Prove that for any two random variables X and Y,

E(XY) < E(X

) (Schwartz Inequality). Use this to

prove that the correlation coefficient of X and Y satisfies

B - Cov(X,Y)
lp(X,¥Y)] < 1. Also show that p(X,Y) S0 )
6. Let Xl’XZ""’Xn be a set of independent random variables

not necessarily equidistributed but all having the same mean and
variance 02. Prove that the sample mean has expectation m and
that both sample variances have expectation 02. Also compute

the variance of the sample mean. Can you compute the variance

of either sample variance?

Notice that the denominator must be different for the two
sample variances. This denominator is called the number of

degrees of freedom by statisticians. Intuitively, each estimation

of a parameter of the unknown distribution causes a loss of one
degree of freedom in the random sample.
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7. 1In exercise III.10 we saw that if X and Y are independent

then g(X) and h(Y) are also independent for any two functions

g and h. It follows that g(X) and h(Y) are also uncor-
related. Prove the converse: if g(X) and h(Y) are un-
correlated for every pair of functions g and h, then X and Y

are independent.

Normal Distribution

8. ©Using the normal distribution table compute:

(a) P(-.5<X<.5), where X 1is N(0.1) [Answer: 0.383]

(b) P( X < -2), where X is N(0,1) [ 0.0228]
(c¢) P(Y > 5), where Y 1s N(0,4) [ " 0.00621
(d) P(1 <Y < &), where Y 1s N(-2,9) [ " 0.1359]

9. Find a number o such that

(a) P( X > a) = 0.03, where X is N(0,1) [1.88 ]
(b) P(-a <X<a) = 0.08, where X 1s N(0,1) [1.555]
(c) P(-2-a <Y< a-2) = 0.10, where Y is N(-2,9) [4.935]
(d) P(Y > a) = 0.98, where Y 1is N(0,4) [-4.126]
10. Show explicitly that the normal distribution N(m,OZ) really
does have variance 02
Significance Levels
11. A prestigious scientific journal announces as part of its
editorial policy that only results significant at the .01 level

will be acceptable for publication (and conversely any result
significant at the .01 level is acceptable). They reason that by
doing so_tneir readership will have the confidence that at most

1% of the published results will be incorrect. Discuss the fallacy
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of this policy. [Hearing about this new policy, 1000 conscientious
experimenters formulate 1000 wrong scientific hypotheses. On tne
average 10 of them would find a significant result, and tnese 10
would then be entitled to publish their results. Let's say that
these 10 articles constitute the first issue of the journal after
the new policy is instituted. We would find that the journal
policy allowed 100% of the published results to be wrong. Clearly
the journal policy is a result of a misunderstanding of the nature
of statistical hypothesis testing: significant at the .01 level

does not mean that there is only a 1% chance that one is wrong.]

12. In a scientific paper you read the following: "In four of
our experiments the data are significant at the .05 level. The
fifth experiment, however, is significant at the .01 levell"”

Wnat is misleading about this?

13. A population scientist believes that roughly 50% of the
population is female, but doesn't want to be too hasty. So he
decides to be cautious and to test whether or not at least 45%

of tne population is female. To do this he takes a random
sample of 100 persons. If he discovers that only 40 of them are
female, does he have sufficient evidence to reject the model that
(at least) 45% of the population is female? Use a Bernoulli
process with p = .45 and a one-sided significance test.
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14. A statistician wonders just how careful the scientist in
exercise 13 was when he made his random sample. Is 40 significantly
different from the expected value of 50? 1Is 40 significantly
smaller than 50? What do you think of the sampling technique of

the scientist? [Answer: Yes; yes; not much.]

15. You own a company that produces medium quality left-handed
screws. About 1% of the screws produced by one machine are
defective. As the screws are produced, the defective ones are
found and discarded. A count is kept of the number of defective
screws produced each hour. The machine is readjusted whenever tne
number of defective screws produced is significantly greater than
1%. You may regard this as a Bernoulli process.
The machine makes 10,000 screws per hour. Describe a procedure

for determining when the machine is out of adjustment at the 0.05

level and at the 0.01 level.

16. A congressman wishes to vote according to the "will of the
people" on a certain bill. ©Now in this case one wishes to know
whether the percentage p of his constituency in favor of the
bill is above or below 50%. Clearly if p 1is close to 1/2 a
rather large sample will be required to distinguish between the
two possibilities. How is this reflected in a statistical test?
For example suppose that a poll is made soliciting the opinion of
a certain number of voters chosen at random. Use a .05 signifi-
cance level to decide what the congressman should do in each of

the following cases.



Number of pollees Number of pollees in favor of the bill

100 54
100 41
500 267
500 225
1000 534
Note that the congressman has three choices in each case: (a)

vote for the bill, (b) vote against the bill or (c) order a

larger sample be taken.

17. A company wishes to test the effectiveness of a new magazine
advertising campaign. It decides that the campaign is effective
if the proportion of subscribers to the magazine who use their
product is twice as large as the proportion of non-subscribers who
do so. A 10% significance level is agreed upon. It is known that
15% of the general population use the firm's product. A sample

of 50 subscribers is ordered and it is found that 10 use the
product. What does this suggest about the advertising campaign?
[Answer: One cannot say that the advertising campaign was un-

successful].

18. A study has shown that in a certain profession the women are
receiving only 88% as much on the average, as their male
counterparts receive. However, the study is several years old
and a women's organization wants to determine if the women in this
profession are losing relative to the men. It is known that the
men in the profession now receive 138% of the pay they received
when the above study was conducted. A random sample of female
professionals is made. The average pay of these women was found
to be the following (as a percentage of the current average pay
of men in the profession): 70%, 78%, 80%, 83%, 84%, 86%, 87%, 96%.
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Compute the sample mean and sample standard deviation. At the
.05 significance level are the women in this profession losing
ground relative to the men? Does this coincide with your "gut

feeling" in this problem? [Answer: No; no]

19. The Food and Drug Administration (FDA) suspects that a drug
company 1is producing a certain pill with a purity less than that
required by law. The law allows at most 5 parts per million (ppm)
of a certain impurity. An FDA laboratory tests a random sample

of 50 pills. They find that the pills have a sample mean impurity
of 5.4 ppm and a sample variance of 4.38 (ppm)z. Can they

assert that the pills do not comply with the law? We will return

to this question in exercise V.47, [Answer: If the law only re-

quires that the average amount of impurity is 5ppm then we cannot

reject the possibility that the manufacturer is complying wita tae

law. ]
20. A paper company was a major polluter of a small river for
many years. When antipollution laws were enacted it reacted

slowly at first but later made a major effort to control its
pollution. Unfortunately the firm suffered from its earlier re-
calcitrance by acquiring a public image as a major polluter. Indeed
a very large sample revealed that close to 90% considered tne firm
to be a major polluter. To counter this they began a public
relations campaign. After the campaign a random sample of 200
individuals were asked whether the company was still a major
polluter. It was found that 174 felt this way. Did the campaign

have a significant effect? [Answer: No]
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21. (Hans Zeisel). Dr. Benjamin Spock, author of a famous book
on baby care, and others were initially convicted of conspiracy
in connection with the draft during the Vietnam war. The defense
appealed, one ground being the sex composition of the jury panel.
The jury itself had no women, but chance anc¢ challenges could
make that happen. Although the defense might have claimed that
tne jury lists (from which the jurors are chosen) siaould contain
55% women, as in the general population, tiney did not. Instead
they complained that six judges in the court averaged 29% women
in their jury lists, but the seventh judge, before whom Spock was
tried, had fewer, not just on this occasion but systematically.

The last 9 jury lists for that judge contained the following

counts:
Proportion

Women Men Total women

8 42 50 0.16

9 41 50 0.18

7 43 590 0.14

3 50 53 0.06

9 41 50 0.18

19 110 129 0.15

11 59 70 0.16

9 91 100 0.09

11 34 45 0.24
Grand totals 86 511 597 0.144

Did the jury lists for this judge have a significantly smaller
percentage of women? Because of the seriousness of the case, use

an extremely small significance level: 0.0001.

22. It has been said that Chevalier de Méré actually observed
tne subtle distinction in probability between obtaining at least
one six in four throws of a die and obtaining at least one double-

six in twenty-four throws of a pair of dice. See exercise II1.28
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Could he have done sc? Since he did not have access to the
elaborate machinery of the normal distribution and significance
tests, it is difficult to imagine what he might have deduced
about any observations he might have made.

However, we could ask what is the probability that he would
not have observed a difference between the two experiments in a certain
numoer of trials. Let Xn be the number of times out of n
trials that at least one six is obtained in four throws of a die.
Let Y be the corresponding random variable for the double-six
trial. What is the probability that Xn - Yn is positive?

Since de Méré's calculation showed that Y should have been the
more probable of the two, such an observation would have shocked
him. For definiteness compute this probability for n =10, 100,
200, 500, 1000, 2000 and 5000. How many times would de Méré have
had to have tried both possibilities in order to reject (at the 5%
level) this explanation of his perplexity? How many throws of one
or two dice does this involve? What can one one conclude?
[Answer: 3900 and 109,200. Conclusion: Either de Méré tried
this experiment a great number of times or else we cannot dismiss

the possibility that he did not in fact succeed in detecting the

difference between the two probabilities.]

23. A political scientist wishes to determine if there is a
significant difference between the preferences of voters in two

similar neighborhoods of a city with respect to an upcoming race

for mayor. Samples of 30 voters are taken from each of the neign-
borhoods. In one sample 12 voters prefer the incumbent while in
the other neighborhcod 19 do so. Using a 10% significance level,
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decide whether there is a significant difference between the

neighborhoods. [Answer: Yes]

24. A medical researcher samples 100 records of adults having
diagnosed coronary heart disease from one city, taking care to
ensure that the sample is random. The average cholesterol value
for these individuals was found to be 296, and the sample standard
deviation was 30. The researcher then took a random sample of

200 pecople from the same city who never had diagnosed heart
disease. The mean cnolesterol value for this sample was 310, and
the sample standard deviation was 50. Do individuals without
diagnosed heart disease have a significantly larger cholesterol

value than those with diagnosed heart disease? [Answer: Yes]

25. A small college soccer team won its conference championship
9 times in the first 20 years of its existence. Then for the
next twenty years it won only 3 times. 1Is this significant?

Is it very significant? [Answer: Yes; no].

26. When the president of the company in exercise 20 discovered
that the questionnaire used in the post-campaign sample included
the word "still," she was incensed: the question seemed biased
in favor of a yes answer. Accordingly, she immediately proceeded
to write her own questionnaire and take a new random sample.

The only change was the omission of the word "still." 1In this
new sample of 200 individuals only 160 felt that the company was
a major polluter. Did the alteration of the questionnaire have

a significant effect? Did the public relations campaign have a

significant effect? [Answers: Yes; yes]
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Confidence Intervals

27. Using the information in exercise 24, give a 90% confidence
interval for the following:

(a) the individual cholesterol values of individuals without
heart disease;

(b) the individual cholesterol values of indiciduals with neart
disease;

(c) the mean cnolesterol value of all individuals witunout heart
disease;

(d) the mean cnolesterol value of all individuals with heart

disease.

[Answers: 296 * 49.35; 310 * 82.25; 296 * 5; 310 * 6]

28. If a set of grades on a statistics examination are approxi-
mately normally distributed with a mean of 82 and a standard
deviation of 6.9, find:

(a) The lowest passing grade if the lowest 10% of the students
are given Fs.

(b) The highest B if the top 5% of the students are given As.

29. The average life of a certain type of engine is 10 years,
with a standard deviation of 3.5 years. The manufacturer replaces
free all engines tnat tail while under guarantee. If he is

willing to replace only 2% of the engines that fail, now long a

guarantee should he offer? Assume a normal distribution.



30. The braking distances of two cars, F and C, from

50 kK.p.n. are normally distributed, one with mean 30m and

standard deviation 8m, the other with mean 35m and standard de-
viation 5m. If they both approach each other on a1 narrow mountain
road and first see each otner when they are 100m apart, what 1is

the probability that they avoid a collision? [Answer: .9999]

31. If the probability of a male birtn is 0.512, what is the
probability that there will be fewer boys than girls in 1000 births?

[Answer: 0.215]

32. A multiple-choice guiz has 100 gquestions each with four
possible answers of which only one is the correct answer. What

is the probability that sheer guesswork yields from 10 to 30
correct answers for 40 of the 100 problems about which the student

nas no knowledge?

33. A firm wishes to estimate (witih a maximum error of 0.05
and a 98% confidence level) the proportion of consumers
who use its product. How large a sample will be required in order

to make such an estimate if the preliminary sales reports indicate
that about 25 percent of all consumers use the firm's product?
How large a sample would be needed if no preliminary information

were available?

34. A sponsor of a weekly television program is interested in
estimating the proportion of the city population who regularly
watch its program. The sponsor wishes the estimate to be made
with a 90% confidence level and an error of at most 4%. The

sponsor nas no information concerning the proportion of viewers who
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watch the program. How large a sample will be required to make

the estimate?

35. A person has just hired a building contractor to build a
house. The house will bc built in three stages. First, the
contractor lays the foundation; second, the frame and exterior
are built; and last a subcontractor puts in the wiring, plumbing,
and interior. Each stage must be completed before the next is
started. In attempting to get an estimate of when the house
will be totally completed, the purchaser is able to get the

following information from those in charge of each stage.

Stage Expected Time of Completion of Stage Standard Deviation

(in Weeks) (in Weeks)
I 3 1
11 8 2
I1T 5 2

What is the expected value and standard deviation of completion
time for the house, assuming the completion times of the stages
are independent?

[Answer: 16 weeks and 3 weeks]

36. The College Entrance Examination Board verbal and math¢matical
aptitude scores are approximately normally distributed with mean
500 and standard deviation 100 except that scores above 800 and
and below 200 are arbitrarily reported as 800 and 200 respectively.

What percentage of the students taking the verbal exam score above
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800 or below 200? [Answer: about 0.3%]

37. You are the head of a polling company, and you have a contract
to determine the percentage of the electorate in favor of a can-
didate. There are 1,000,000 members of the electorate, and each
member chooses his/her opinion independently. Your contract
specifies that you must determine the percentage to within 1% with

5% confidence or to within 5% with 1% confidence. Whiclh is cheaper?

38. A professor at a small college walks to school each day. On
the average the trip takes 15 minutes with a standard deviation of
3 minutes. Assume a normal distribution. If the professor's first
class is at 10:30 AM, when must the professor leave home in order
to be 95% certain of arriving on time? If the college serves
coffee from 10:00 AM to 10:30 AM how often would the professor

have coffee before class if the professor left home at 10:10 AM

every day? [Answers: 10:10 AM; 0.952].

39. Suppose that resisters can be purchased each with a resistance
that is uniformly distributed between 900 § and 1100 Q. If 10 sucn
resisters are connected in parallel, what is the probability that

their total resistance will be within 5% of 10,000 Q ?

40. When a thumbtack is tossed, it falls on its flat head with
probability p. What must you do to find p to within p/10

at significance level 0.05? at significance level 0.01?

41. You own a telephone company that services two cities A
and B, each having 5000 customers. You would like to link your
exchange with the more distant city, C. You estimate that
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during the busiest time each customer will require a line to C
with probability .0l. You want to be sure that there are enough
lines to C so that there is only‘a 1% chance that at the busiest
time some customer will be unable to get a line to C. Each
trunkline to C will cost $10,000. You have two options. Either
link A and B as if they were separate exchanges or link the
entire exchange to C. In the second option, additional equip-

ment costing $50,000 would be needed. Which option is cheaper?

42. A clinical trial is conducted to determine if a certain type
of drug has an effect on the incidence of a certain disease. A
sample of 100 rats was kept in a controlled environment and 50

of the rats were given the drug. Of the group not given the drug
(the control group), there were 12 incidences of the disease,

while 9 of the other group contracted it. Compute a 90% confidence
interval for the difference in probability of contracting the
disease between a rat given the drug and a control rat. [Answer:

0.06 £+ 0.134]

Hypothesis Testing

43. A statistician named Burr relates the following story.
"Having bought a bag of roasted chestnuts, the author
walked home in the dark eating them with much gusto.
After eating about 20, he arrived home, and, in open-
ing the remaining 10 under the light, he found that 7
contained worms. What is the probability that none

of the 20 contained worms? Or to phrase the problem
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better for statistical analysis: If there were
only 7 wormy chestnuts among the original 30, what
is the probability of drawing the first 20 all free

from worms?"

44, Since there is no reason to believe that the salaries of
individuals will be normally distributed, only in very large
samples can we expect the mean to be normally distributed. With
this in mind reexamine exercise 18. Regardless of the distribution
of salaries of the female professionals, half the salaries will be
above the median salary. Suppose that the salaries of the male
professionals are known to have a median that is 97% of the mean.
This situation would be typical since the presense of a few very
high salaries can cause the mean to be somewhat unrepresentative.
Does it now appear that the female professionals are gaining or
losing relative to the men? [Answer: the median salary of the
women is 83.5%, while 38% of 97% is 85.4%. So it appears that
they are losing ground, but the result is again not significant.
Using a Bernoulli process to model this, if the median salary

of all women were 85.4%, then each woman's salary would have
probability 0.5 of exceeding this figure. We observe that 3 of
the 8 salaries do so. The probability that 3 (or fewer) would do
so by chance alone is (0.5)8 + 8(0.5)8 + (g)(O.S)8 + (g)(O.S)8

= 0.363 which is too large for us to reject this modelJ

45. (Certificate) In a certain survey of the work of chemical
research workers, it was found, on the basis of extensive data,

that on average each one required no fume hood for 60 per cent
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of the time, one for 30 per cent and two for 10 percent; three
or more were never required. If a group of four éhemists worked
independently of one another, how many fume hoods should be
available in order to provide adequate facilities for at least 95
per cent of the time?

Compute the probability distribution of the number of fume
hoods needed by the four chemists. Then use this to answer

the question.

46. In exercise 45, how many fume hoods would be required to
satisfy a group of 50 chemists at least 95 per cent of the time?

Use a normal approximation.

47. A governmental agency is responsible for protecting the fish
populations of the lakes in a certain region. By means of many
observations in the past it sets lower bounds for populations,in
each lakeyof various species of fish. If it is later found that
one species in a given lake has gone below the specified lower
bound, the agency has the power to enforce limits on the pollutants
which the factories bordering on the lake may discharge into the
lake. How can the agency determine whether the lower limit has
been reached? One way to do so is to employ the procedure de-
scribed in exercise II.23. Let the lower limit be L . Ve first
capture n fish, tag them and return them to the lake. Some
time later, we drop a net, capture m fish and count how many
are tagged. Describe how to find a number T so that there is

only a 5% chance that T or more tagged fish will be found when
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there are L or more fish in the lake. We will return to this

problem in exercise VI, XX.

48. (Silvey) An investigation was carried out on two suggested
antidotes to the consequences of drinking, these being (a) 2 1b

of mashed potatoes and (b) a pint of milk. Ten volunteers were
used, five to each antidote, the allocation to antidote being
random. One hour after each had drunk the same quantity of alcohol
and swvallowed the appropriate antidote, a blood test was carried
out and the following levels (mg/ml) of alcohol in the blood

were recorded:

(a) 76 52 92 80 70

(b) 110 96 74 105 125

By means of the runs test, decide whether there is sufficient
evidence to conclude that one treatment is more effective than

the other.

49. (Guenther) Suppose that it is hypothesized that twice as
many automobile accidents resulting in deaths occur on Saturday

and Sunday as on other days of the week. That is, the probability
that such accidents occur on Saturday is 2/9, on Sunday is 2/9,

and o1 each other day of the week is 1/9. From the national record
file, cards for 90 accidents are selected at random. These yield

the following distribution of accidents according to the days of

the week:
Sun. Mon. Tues. Wed. Thurs. Fri. Sat.
30 6 8 11 7 10 18

Do these data tend to support or contradict the hypothesis?

Use a 5% significance level.
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50. We wish to test whether or not the successive outcomes of a
roulette wheel are random. For simplicity we will only record
whether the ball fell into a red or a black slot of the wheel.

In twenty spins of the wheel we observe the sequence:
RRBRRBBBBRBRRRRRBBBR. Applying the runs test and using a 5%
significance level, are the successive outcomes random? What does

this suggest about this roulette wheel?

51. (Pazer & Swanson) A political scientist wishes to determine
if the political preference of homeowners is independent of their
immediately adjacent neighbors. A sequence of sixteen homeowners,
along the same side of a street, were interviewed, and based
upon their responses were designated as either more conservative
than their median C, or less conservative than their median L.
Here is the resulting sequence:

L, ¢, L,C,¢CCC L, L,C L,L, L, L, C, C.
Using the run test and a 5% level of significance, determine
whether there is any evidence that political opinions are indepen-

dent of one's neighbors (at least for this particular street).

52? We all have taken laboratory courses at some time or other,
and the temptation to "fudge" data on our report has certainly
occurred to us. What we may not have realized is that one can
devise a statistical test to determine whether or not such fudging
took place. Suppose that a biologist wishes to prove that a
certain genetic trait follows the classical Mendelian laws. 'n
this theory a trait is determined by two genes,one acquired from

each of the two parents. Let us say that there are two alleles
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(possibilities) for a given gene, one dominant A and one recessive
a. Then there are three different genotvpes: AA, Aa and aa.
Let us suppose, as it often happens, that AA and Aa are indistin-
guishable. By successive inbreeding the biologist has access to
two individuals known to have genotypes AA and aa, respectively.
When these are crossed the offspring all have genotype Aa. But
when two of the offspring are crossed we find that the three
genot ypes AA, MAa and aa appear among their offspring with prob-
abilities 1/4, 1/2 and 1/4 respectively. Of course since we can-
not actually distinguish AA from Aa, this means that on the average
3/4 of the offspring exhibit the dominant trait and 1/4 exhibit
the reccessive one. Let us suppose that the biologist produces
10,326 offspring from a pair of Aa parents. INe observes that
7746 have the dominant trait and 2580 the recessive one. These
are very close to the expected numbers 7744.5 and 2581.5 so he
concludes that the experiment tends to support the hypothesis that
this trait obeys the Mendelian laws.

Compute the probability that such an experiment would actually
result in as close a fit with the theory as the biologist actually
found. At the 5% level .can one reject the hypothesis that the

experiment was properly carried out? [Answers: about 3.6%, yes].

The Law of Large Numbers

53. How many times must one toss a fair coin in order to have
95% confidence that it really is fair? Compare the number obtained
by using the Bienaymé-Chebychev inequality with what we get using

the Central limit theorem.



54. Let X be a standard random variable (i.e. E(X) = 0 and
E(Xz) = 1). Using the Bienaymé-Chebychev inequality, computc
the smallest o so that:

(a) P(-a<X<a) > .95

(b) P(-a <X<a) > .99

(c) P(X > a) < .05

(d) P(X > a)

i A

.01

Compare these values with the corresponding ones for case of X

being N(0,1)

55%

Let X be a nonnegative random variable. Prove that
P(X > a) < E(X)/a, for any a > 0, whether X has a variance
or not. This is known as Markov's inequality. Show that Markov's

inequality implies the Bienaymé-Chebychev inequality.

56% Prove the Law of Large Numbers for probability distributions
having finite variance, using the Central Limit Theorem. The
Law of Large MNumbers is in fact true for all probability dis-
tributions possessing a mean, but his is much more difficult to

prove.

[oo]

57° Show that X!/n converges with probability 1, where
n=1
]

Xn is equally likely to be either +1 or -1.

587 Explore experimentally what it means for a random variable not to
have an expectation. Write computer programs to sinulate

the St. Petersburg game (Exercise III.29) and the gangster dis-
tribution (exercise III.36). In each case print out two columns

of numbers. The first column shows the number of times the random
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experiment has been repeated, and the second shows the sample
average of all the trials made so far. For the gangster dis-
tribution one should print a third column showing the median of
all tne trials made so far. This last number is the hardest to
compute, and unlike the sample mean it requires that all the
previous trials be stored in an array. Give an intuitive inter-
pretation for what it means for a random variable not to have a

finite expectation.



Chapter V Conditional Probability

The theory of probability consists largely in
making precise the probabilistic language that already forms
part of our language. In effect the purpose of this course
is to learn to "speak probability" properly. The lowest
level of our probabilistic language is the event. This cor-
responds to simple phrases that are either true or false.
For example in the Bernoulli process ", is the event "the
ith toss is heads". Random variables represent the next
level: simple quantitative questions. For example one
might ask: "how long must one toss a coin until the first
head appears?" 1If we use the convention 0 = false and 1 =

true, every event may also be regarded as a random variable

by using the indicator.

Conditional probability allows probabilistic reasoning.
That is, we may now ask compound questions. For example,
"if the first toss of a coin is tails, how long must one wait
until the first head appears?“ Moreover, we can split apart
and combine such questions into new questions. The pre-

cise meaning of such expressions is not alwavs obvious and



is the source of many seeming paradoxes and fallacies. As

a simple example, the question, "if the first toss is heads,
is the second toss heads?" is very different from the
question, "are the first two tosses heads?" The probability

of the first is p while that of the second is p2.

1. Discrete Conditional Probability

We begin with the definition and properties of
the conditional probability of events.

Definition. Let A and S be events such that P(S) > 0. The

conditional probability of A given S is

P (AnS)

P(AIS) ='T(§)—— .

A The event S is called the condition.

The conditional probability P(A|S)

2]

answers the question: "if S has oc-
cured, how probable is A?" 1In efféct we have altered our
sample space. Since we know that S has occured, the sample
space is now S. The event A given that S has occured must

now be interpreted as AnS, and the probability is P (AnS)
normalized by the probability of S so that the total proba-
bility is 1. Ordinary probabilities are the special case of
conditional probabilities where the condition is the sample
space Q: P(A) = P(A[Q).
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Law of Alternatives

Suppose that instead of knowing that a certain
event has occurred, we know that one of several possibilities
has occurred, which are mutually exclusive. Call these al-
ternatives AyrAyreee There may possibly be infinitely
many alternatives. More precisely the Ay form a set of al-

ternatives if

-
o
’-J.
>
o
]

g if 1 # j (mutually exclusive)
(2) u.A, =0 (exhaustive)

(3) P(Ai) > 0 for all i .

Then for any event B:

P(B) = P(B|A))P(A;) + P(B[A,))P(A))+ ...

Law of Alternatives

To verify this law we simply expand and cancel. The A; are

disjoint so the events BaA; are also disjoint.



P(BlAl)P(Al) + P(B|A,)P(A)+ ...

P(BAAl) P(BnaA,)

= __ﬁTKIT P(Al) + _—5TK;T P(A2)+ e
= P(BnA;) + P(BnAy)+ ...

= P((BrA) U (BrAy)u .. .)

= P(BA(AQNALU...))

= P(BnQ)

= P (B)

If the alternatives Ai are not exhaustive, we can
still make sense of the law of alternatives provided all
probabilities involved are conditioned by the event A = U A, .
More precisely we shall call a set of events Ai a set of al-

ternatives for A if

(1) Aiqu #0 if i # j (mutually exclusive)

(2) UiAi = A

(3) P(Ai) >0 for all i

Then for any event B:

P(B|A) = P(BlAl)P(AllA) + P(BIAZ)P(AZIA)+ -

Conditional Law of Alternatives




Bayes'! Law

One of the features of probability as we have developed it
so far is that all events are treated alike: 1in principle no
events are singled out as '"causes" while others become "effects."
Bayes! law, however, is traditionally stated in terms of causes
and effects. Although we will do so also, one should be careful
not to ascribe metaphysical significance to these terms.
Historically, this law has been misapplied in a great number of
cases precisely because of such a misunderstanding.

We are concerned with the following situation. Suppose we
have a set of alternatives A1, A2,... which we will refer to as
""causes'", Suppose we also have an event B which we will call the
"effect". The idea is that we can observe whether the effect B
has or has not occurred but not which of the eaquses A1,A?,...
has occurred. The question is to determine the probability that
a given cause occurred given that we have observed the effect.
We assume that we know the probability for each of the causes
to occur, P(Ai), as well as the conditional probability  for B
to occur given each cause, P(BIAi). The probability P(A;) is
called the a priori probability of Ai’ and we seek the probability
P(AilB) which we call the a posteriori probability of A;. If the
alternatives A; represent various experimental hypotheses, and B
is the result of some experiment, then Bayes' law allows us to
compute how the observation of B changes the probabilities of

these hypotheses.

P(Bl4;)P(A;)
J213(13!1\;3.)13(1\;3.)

P(AilB) =

Bayes' Law
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Proof of Bayes' Law

L.et A and B be any two events having positive probability.

By the definition of conditionasl probability,

P(BlA) = %&% and P(A|B) = %(,—%%.

As a result we have two ways to express P(AB):
P(BIA)P(A) = P(AB) = P(A|B)P(B).

Solving for P(A|B) gzives:

P(BlA)P(A)

P(AlB) :—p—(g)— .

Now apply this fact to the case for which A is Ai and use the
law of alternatives to compute the denominator. The resulting

expression is Bayes' law.

Law of Successive Conditioning

Suppose we have n events Bl’BZ""’Bn such that
P(BZABBA...ABn)>O. Then we can compute P(BlABZA...ABn)

using a sequence of conditional probabilities.

P(BlnB n...ABn) =

2

P (B, |B,n.. .AB ) +P(B,[B3yN...nB )...P(B__,|B) ‘P(B_)

Law of Successive Conditioning

To prove this we just expand and cancel. This law cor-
responds to the intuitive idea that the probability of
several events occurring is the product of their individual
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probabilities. This idea is correct provided we intervret
"individual probability" to mean the appropriate conditional

probability.

By using the law of alternatives and the law of suc-
cessive conditioning we split the computation of an ordinary
or a conditional probability into a succession of conditional
probabilities. In effect we férm compound, nested, condi-

tional questions out of simple questions.

Independence

Suppose that A and B are two events. If either A
or B has probability zero of occurring, then A and B are
trivially independent events. If P(A)>0 and P(B)>0, then
the concept of the independence of the events A and B is
best stated by using conditional probability. Namely each

of the following are equivalent statements:

(1) A and B are independent

(2) P(A]|B)

P (A7)

(3) P(B|A) = P(B)

Using this terminology we can see much more clearly that the
independence of two events A and B means that knowing one
has occurred does not alter the probability that the other
will occur, or equivalently that the measurement of one does

not affect the measurement of the other.
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2. Gaps and Runs in the Bernoulli Process

Recall that T, is the gap between the (i—l)St and
the ith success. We claimed that the T, are independent
random variables, using an intuitive probabilistic argument.

We now have the terminology for making this argqument rigorous.
The key notion is the law of alternatives.
Consider the conditional probability of the gap Ti+1

being n given that all of the preceding gaps are known:

P(T;,q = n| (T1=k)n(Ty=ky)n. . oA (T, =k;)).
Computing this probability is quite easy for it corresponds
to exactly two patterns of H's and T's (up to some toss):

k=k,+k +...+ki

1752

L N

™T...T™H TT...T™M TT..¢e¢c.e. HTT...TH
ky k, k,

TT...TH TT...TH TT........ HTT...TH TT...TH
— " ——— ——— e N

k1 k2 ki n

_ _ _ _ _ k+n-i-1 _i+l
P((Tl—kl)A(Tz—kz)n...A(Ti—ki)A(Ti+l—n)) = q P
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Therefore

k+n-i-1_i+1

= = = = _—_q p =
P(T,,,=n[(Ty=k,)n(Ty=k,)a. .. A(T;=k,)) k—ipi q

Although the above computation is not very dif-
ficult, there is an easier way to see it. Think of the

condition

(Tl=kl)n...A(Ti=ki)

as changing our sample space. The new sample space con-
sists of all infinite sequences of H's and T's, but renumbered

starting with k+1 = k thot. .otk 41 This new sample space

1
is identical to the Bernoulli sample space except for the
renumbering and the fact that T4l is now the waiting time

for the first success. Therefore

_ — _ _ . .n-1
P(T; =0 | (T1=k)a(Ty=k)n..on(Ti=k,)) = g “p.
The key to the effective use of conditional probability is

that it changes the sample space and hence the interpreta-

tion of the random variables defined on the old sample space.



We now apply the law of alternatives. The events
(Tl=kl)n(T2=k2)A...n(Ti=ki) '
as the kj's take on all positive integer values, form a

set of alternatives; for the set of sample points belonging

to none of them is an event whose probability is zero.

= i ) P(Ti+l=nl(Tl=kl)n...n(Ti=ki))-P((Tl=kl)n...n(Ti=kiH
l s o o l

=L «rve¢ % qn"lp P((Tl=kl)n...h(Ti=ki))

ky -eoky
=q" 1oz v g P((Ty=kq)n .. A(T, =k, ))

ky «e-ky

n-1

=q 'p.

Notice that the only fact we used about the events
(Tl=kl)ﬂ...ﬂ(Ti=ki) was that they form a set of alternatives.
An immediate consequence is that the gaps T; are all equi-
distributed. Furthermore, if we use the definition of

conditional probability we have that
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P(Ti+l=n) = P(Ti+l=nl (Tfkl)" - n(Ti=ki))

P((Tl=kl)n...A(Ti=kl)n(Ti+l=n))
P((T1=Kl)a...n(Ti=ki))

or

P((Tl=kl)n...rﬂTi=ki)n(Ti+l=n)) = P((Tl=kl)ﬂ...A(Ti=ki))P(Ti+l=n)

By mathematical induction we have that

P((Tl=kl)h...n(Ti=ki)n(Ti+l=n)) = P(T =kl)...P(Ti=ki)P(Ti+l=n),

i.e. that the T, are independent.

We can now see more clearly how the Ti are related.
They have the same distribution, but they are not the same.
They have this property because the measurement of the ith gap
"really" occurs in a +fferent sample Space than the first gap,
but this new sample space is identical to the ordinary Bernoulli
sample space except for how we number the tosses.

We went into detail for this argument to illustrate a
nontrivial use of the law of alternatives. We will be more

abbreviated in the future,



As an illustration of the law of alternatives, we
consider a problem mentioned in chapter II. Namely, what
is the probahility that a run of h heads occurs before a run
of t tails? Let A be this event. We solve this problem by
using the following fact: when a run of less than h heads
is "broken" by getting a tail, we must "start over" and
similarly for runs of tails.

First we use the law of alternatives:

P(A) = P(Alx1 = 1)P(X) = 1) + P(Alx1 = 0)P(X, = 0)

Write u = P(A|X; = 1) and v = P(AlX; =0) so that

P(A) = up + vq.

Next we use the conditional law of alternatives for

each of P(A|X1=1) and P(AIX1=0). Consider the first one.

We know that we gnt a head on the first toss so the run
has started. We then "wait" to see if the run will be
broken. That is, let Bt be the waiting time for the first
tail starting with the second toss. Either we get a tail
and break the run or we get enough heads so that A occurs.

More precisely,

P(A|X,=1) = P (A (Xy=1)A (B <h)) P (B <h)
+ P(A[ (X;=1)a (B >h))P (B >h).
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For the first alternative the run of heads has been broken
by a tail. Hence P(Al(xl=l)n(Bt<h)) = P(A[X;=0) = v, for
the earlier heads have no effect on subsequent tosses. All
that matters is that we "started" with a tail. On the other
hand, P(AI(Xl=l)n(Btzh)) = 1 because the condition implies

that A has in fact occurred. Therefore,

u = P(A|x;=1)

vP(Bt<h) + l-P(Btzh)

h h-1

vil-pt ™l o+ 1. M h

Remember that for Bt we start counting on the second toss, so

that P(B _<h) is really the conditional probability P(Bt<h|xl=l).

The computation for P(A[X;=0) is analogous to that
above. Let Bh be the waiting time for the first head
starting with the second toss. Then

P(Alx,=0) = P(A] (X{=0)A(B, <t))P B <t)
+ P(A[(X;=0)A(B >£))P(B >t).

Here P(A|(X;=0)A(B >t)) = 0 because the condition implies

that A has not occurred. The probability P(Al(xl=0)n(Bh<t))

is u because the run of tails has been broken. Therefore,

v = P(A|X1=0) = u[l—qt_l] + 0.[qt_lJ )
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Combining the two equations above gives us the system

of equations:

- h-
h l) + p 1

e
il

ve(l-p
v = ue (1-q%71).

Solve for u and v and substitute:

P(A) = up + vq =

P
h-1, t-1 h-1 t-1
P q -pP q

We check this by considering the special case h=t and
p=g=1/2. As we expect by symmetry, P(A) = 1/2.

3. Sequential Sampling

In most sampling situations, for example sampling
people in a population, we generally sample the population
without replacement, i.e. the same individual cannot be
chosen more than once in one sample. For such a sampling
procedure, the successive choices are not independent of
one another; for with each choice, the population (and hence
the sample space) gets smaller.

For very large populations this would seem to be a
small effect. But on smaller populations it can be pro-
nounced. For example, suppose we play a card guessing game.
We draw a card at random from a deck, try to guess the suit,
look to see if our guess was correct and then place the card
aside. If we continue to sample the cards this way, the
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probabilities for getting a card of a given suit change con-
stantly. Indeed, we will always know for certain what the
suit of the last card drawn will be.

The problem of sequential sampling is to describe the
dependence of each of the choices on the other choices. The

idealized model is the following. We have an urn containing

r red balls and b black balls. We select a ball at random
from the urn, note its color and then place it aside. This
procedure is repeated until n balls have been chosen from
the urn. Define the random variables X; by:

th

i ball is red

X. = 1l if the i
th

0 if the i ball is black

The problem is to find the distributions and the correla-
tions of the X,

Notice that we have switched the roles of the balls
and the boxes. In the occupancy model we place balls into
boxes. In the sampling model the balls become the positions
in the sample and the bhoxes become individuals in a popu-
lation. In the sequential sampling model it is traditional
to view the population more concretely as a collection of
colored balls in an urn.

Consider the first choice X The probability distri-

bution of Xl is

0) =

b
r+b

Mo
o
I

= P(Xl

1) =

]
3

Py = P(X;



Next consider the second choice X2. To compute its dis-

tribution we must use the law of alternatives. For example

P(X2=0|X1=0) is Egg%T because there is one fewer black

ball in the urn.

Pg = P(X,=0) = P(X2=0|X1=0)P(X1=0)+P(X2=0|X1=l)-P(X1=l)

_ b1 b _ b . r
r+b-1 r+b r+b-1 r+b

_ (b-1) +b+b-r
(r+b-1) (r+b)

_ b(r+b-1)

~ (r+b-1) (r+b)

_ b

T r+b

Similarly,
Py = P(Xp=1) = .

The random variables X, and X, are equidistributed! This
is quite unexpected. One wonders whether this is an ac-
cident of algebra or there is some deep principle here. If
the latter, we would expect that all the Xy have the same

distribution. As we shall see this is indeed the case.



The seeming paradox arises from the fact that we are not
considering the random variables conditionally. For ex-
ample, in the card guessing game above, if we chose not to
look at the first 51 cards sampled, we would have no reason
to suppose that the last card sampled has any special
properties: it doesn't "know" that the other cards have

been sampled.

Exehangeability

As often happens in mathematics, the situation only
becomes clear when we consider it from a broader perspective.

Consider the joint distribution of all the Xi's:

Cil,...,in = P((Xl=il)ﬂ(X2=iz)ﬁ...ﬂ(Xn=in))

where the il""’in take on the values 0 and 1 arbitrarily.

We compute this by using the law of successive conditioning:

Cireenry = p(xl=1l)p(x2=12|x1=1l)p(x3=13|(xl=il)n(x2=12))...

For example, if n = 6 and (il'iZ""'iG) = (0,1,1,0,1,1),

then
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c - b r . _r-1 = b-l . r-2 . r-3
0,1,1,0,1,1 r+b r+b-1 r+b-2 r+b-3 r+b-4 r+b-5

(b), (r),
= Zr+b56

Each factor is the number of balls of the appropriate color
at the time divided by the number of balls in the urn at
the time. More generally, if we have drawn a sequence of

k reds and j blacks, then the probability is

(b) . (r),

C- 7o e e =T—lﬁ—
1, ln r+b) . k

Jj+

The probability of drawing a given sequence of reds and
blacks depends only on the number of reds and blacks drawn.

In other words P((Xl=il)ﬁ(X2=i2)ﬂ...ﬂ(Xn=in)) is the same if

we permute the il,...,in leaving the Xj's alone (or equiva-
lently if we permute the Xj's leaving the ij's alone). For

example, P((Xl=il)n(X2=i2)ﬂ...ﬂ(Xn=in))=P((Xl=i2)ﬂ(X2=il)ﬂ...ﬂ(Xn=inD

Since we can compute the individual distributions of
the Xj's from the joint distribution by taking marginals, we
immediately get that the xj's are equidistributed. Moreover
the joint distribution of, say, Xy and Xg is the same as

that of Xl and X2:



P((Xl=il)ﬁ(X5=i2)) = P(Xl=il)m(X2=i2))

and the latter is easy to compute. In general the joint

distribution of any k of the Xj's is the same as that of the
first k of them. All these facts follow from the fact that
the joint distribution of the Xj's is unchanged when we per-
mute the Xj's. This is the real reason that the choices in

sequential sampling are equidistributed.

Definition. Random variables (either integer or continuous)

Xl""'xn are said to be exchangeable when their joint distri-

bution (or density) is a symmetric function.

An example of a set of exchangeable random variables
we have already seen is a set of independent, equidistributed
random variables. If X,,X, and X, are independent, equi-

distributed integer R.V.'s, then

P((Xl=il)m(X2=i2)m(X3=i3)) = P(Xl=il)P(X2=i2)P(X3=i3)

P
1

P.

p
2 13

i, v i

But as we have just seen, being exchangeable is not as strong

a condition as being independent and equidistributed.
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We mention in passing that being exchangeable is not
really that much more general than being independent and
equidistributed. There is a deep theorem of probability
theory which, roughly speaking, says that every set of ex-
changeable random variables can be "synthesized" from inde-
pendent equidistributed random variables by suitable con-

ditioning.

The Pélya Urn Process

A slightly more general sampling model than sampling
either with replacement or without replacement is called the

Pélya Urn Process. In this process we begin with an urn con-

taining r red balls and b black balls. We draw a ball at
random. If it is red, we put the drawn ball plus c more
red balls into the urn. If it is black, we put the drawn
ball plus d more black balls into the urn. We then repeat
this. Sampling with replacement is the case c¢=d=0, and
sampling without replacement is the case c=d=-1.

This process was originally introduced as a model of
epidemics. If we think of the red balls as diseased indi-
viduals, then each discovery of a red ball increases the
likelihood that other balls will be red (c>0). There are
obvious defects in such a model which we will not pursue.
We will just think of this process as a general form of

sampling.
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As before let Xl""'xn be the successive results of
drawing n balls in the Pélya Urn Process. The computation
of the joint distribution of the Xj's is much the same as

before. For example,

C1,1,0,0,1 = P((Xl=l)ﬂ(X2=l)ﬂ(X3=0)0(X4=0)0(X5=l))

r ., r+c | o} . b+d . r+2c
r+b r+b+c r+b+2c r+b+2c+d r+b+2c+2d

In general, the Xj's will not be exchangeable, but if ¢=d,
they are. For those who like formulas, the probability of

drawing j blacks and k reds in any order is

“(3) (k)
r b
P Q)
r+b (J+k)

(o]

provided that d=c#0 and is

rjbk

(r+b

)j+k

if c=d=0.



*
4. The Arcsine Law of Random Walks

We use the same notation as in section III.1D, The
arcsine law is the distribution of the time of the last
visit of a random walk to the origin. More precisely,
consider a random walk up to time 2n, and ask when the last
time was that the random walk visited the origin. Let Lon
be the time of the last visit. Clearly the random walk can
only visit the origin during even-numbered times. We want,
therefore, to compute P(L2n=2k) for all k between 0 and n.

Now examine the event (L2n=2k). We can rephrase this
event as saying that the random walk was at the origin at

time 2k, and that from then on the random walk never visited

the origin:

(L2n=2k) = (Sék=0)n (Sék+l#0)/\(sék+2#0)ﬂ P A(Sén#O).

The law of successive conditioning tells us that

= = - " = | -
P(L, =2k) = P(LG—2k|52k—0)P(52k 0) .

-— | : » -
Now P(LG—2k|52k—0) is the same as P(L, 0). This fol

n-2k_
lows from the independence of the steps of the random walk.
We know how to compute P(Sék=0) so we must find a way to

compute
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P(L2n-2k=0) = P((Si#O)r\(Sé#O)ﬂ cee A(Sén_zk#o)).

For this we use the law of alternatives, conditioning on

which way the walk went during the first step:

P ( 0) = P(L, 5 =0[X]=+1)P(X{=+1)

Lon-2x~ 2n-

+

P( =0|Xy=-1)P(X{=-1) .

Lon-2k

1l — [ . 1 = e,
2-P(L2n_2k—o|x1-+1)+2P(L2n_2k-0|xi- 1).

By symmetry both of the above conditional probabilities are

the same. Thus

P( 0) = p( =°|Xi = =1),

Lon-2k~ Lon-2x

If we now change coordinates we may consider the "walk" as

starting at (1,-1):

(::; starting point
We now see that we have a familiar situation. P(LG_2k=0|Xi=-l)

is the probability that the random walk travels no farther



J
/

to the right than the origin in the first 2a-2k-1 steps,
i.e. P<M2n-2k-1=0)’ where M 1s the maximum position of the

/
random walk in the first n steps (see section IV.2a). Thus

= e = = - _"‘ - -
P(Lyn-px=0lXj=-1)=P(M, _, _.=0)}p(2n-2k 1,0)+p(2n-2k-1,1).
It is easy to see that p(2n-2k-1,0) = 0, Thus

2n~2k-1
P(LG_2k=0) = p(2n-2k-1,1) = ; .

(2n-2k-1)! 1

(n=k) ! (n=-k=171 22n=2k-

(2n-2k) ! (n-k)

1
(n=k) ' (n=k) ! (2n=2k) ) 22n—2E-I

1

—— = p(2n-2k,0).
n-k 22n=2K

Returning to our original problem, we find that

P(L, =2k) = P(Lyn-2x=0) P (S5, =0)

p(2n-2k,0)p(2k,0) .

We now show why this is called the arcsine law. Using

Stirling's formula, we find that



2n=2k 2k

1
p(2n-2k,0)p (2k,0) = —=
’ ’ n-k k | 21

(2n-2k) ! (2k) ! 1
((n-k) )% (k1?2 2

2n

(2n-2k) 212k srEoIR) (2k) 2K /IETEET 1
(n_k)2n-fk 27 (n=k) k2k 2Tk Z2n

2

22n-2k 22k 1 1

/YT(n-k) vm 22n m/k (n=k)

Hence
- 1
m/k (n-k)

P(L2n=2k)

= - 1
. Then P(L, =2k) * —————- .

TTnvx(I-xi

Thus when n is large the distribution function of L

Set x = £
n

2n’ P(L2n-<--2k)'

is approximately equal to the area from 0 to k/n of the

function f(x) = ———l—————-:

TVX(1-X)

k/n
P(L, <2k) = J 4
Ne-
0 mwwx{l-x

Using the substitution y = /X%, we find that



arcsin (vX).

AN

= 3 arcsin(y) =

Thus

arcsin(?E%n).

ST

P (L, <2k)

Summarizing,

Let L, be the time of the last visit of a 2n~step random

walk to the origin. Then

B et

P (L, =2k) = p(2n-2k,0)p(2k,0) = —‘l_‘-‘_"

w/k(n=k)

and P(L2n§2k) = arcsin (vk/n).

A0

The Arcsine Law

Here is an example of this law. A gambler plays a
fair game, betting one dollar every ten seconds on the toss
of a fair coin. If the gambler plays for a whole year, what
is the probability that the last time the gambler "broke even"

occurred after one day of play (i.e. the gambler had either a

5.26



"winning streak" or a "losing streak" for 364 days). The
arcsine law provides an excellent approximation of this

probability:

P ( 8640) = ,0333,

L3153600 =
i.e. about one chance in 30. This is amazingly large. One
can analyze the fluctuations of coin tossing in even more
detail. The surprising conclusion is that it is very unlikely
for a random walk to spend close to the same amount of time

on both sides of the origin. Thus while the average value

of SA is zero for all n; nevertheless, individual random

walks with high probability will exhibit behavior that a naive

observer would regard as being very unrandom.

5. Continuous Conditional Probability

Consider the Uniform process of sampling n points
th
from the interval (0,a). Suppose we know that the k
point in order, X(k), was t . Given this information, what

is the smallest point, X(l)? It seems reasonable to answer

this question with the conditional probability distribution

F(x) = P(X 4y < x|X gy = t)
of X(l) given that X(k) = t, Unfortunately, we know that
P (X = t) = 0; so that, technically speaking, the above

(k)
conditional probability does not make sense.
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On the other hand, it is easy to compute what

P(X(l) < xlx(k) = t) ought to mean. For suppose that
X(k) = t. This means that exactly k-1 points have fallen
in the interval [0,t]. The random variable X(l) should

therefore be reinterpreted as the first order statistic of
the 'niform process of dropping k-1 points in the interval

[0,t]. Therefore

P (X < x[X(py = 8)

k)

it
{ d
i
—~—~
\l/

(1)

Notice that we do not have to "choose" the k-1 points

which are to fall in [0,1}. This choice is already im-

plicit in the fact that we have conditioned by (X = t).

(k)
Although we cannot make sense, in general, of a condi-
tional probability P(A|B) when P(B) = 0, we can do so

when B is the event (X=t) for a continuous random variable

X. We will call this the continuous conditional probability

(although we shall often drop the adjective "continuous.")

The following is the formal definition of this concept. But
one rarely uses the definition directly. As with the
ordinary conditional probability, the best way to compute a
continuous conditional probability is to regard the condition
as defining a new sample space and to reinterpret the events
and random variables of the o0ld sample space in this new

sample space.



Definition. For an event A and a continuous random variable

X, the continuous conditional probability of A given that

X =t is

gim P(A]t<X<t+e)
e+0
P(An(t<X<t+e))

P (t<X<t+e)

P(A|X=t)

= fim
e~+0

provided that it exists.

Notice that we do not divide by €. The reason is that
€ appears in both the numerator and the denominator. If

you wish, P(A|X=t) is the limit:

gim P (An(t<X<t+e)) /e
e+*0 T P(t<X<t+e)/e

Both the numerator and the denominator in this limit
have "densities" as their limits.

Just to make sure, we will compute P(X(l)ixlx(k)=t)
directly from the definition to see that we get what we

computed earlier. We know from our computation in section

Iv.6 that
k-1 n-k 2
P(t<X(k)it+s) = n(;:i) £ £ (a;t—s) + 57. (complicated expres-
a a sion)
Next we compute P((X(l)>x)n(t<x(k)§;+s)). Except for a term

having a factor of sz, this event corresponds to having k-1
points in the interval [x,t], one point in [tlt+s] and the

rest in [t+e,a]. Therefore,
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P((X(1)>x)n(t<x(k)§;+g)) =

n(n--l (t—x)kml-e-(a—t—e)n_k 2

k-1’ - + 55 . (complicated expression)

a
We now combine the above two computations.

P((X(1)>x)n(t<x(

P(t<x(k)it+e)

k)§ﬁ+e))

n(£:i)(t-X)k—l'€°(a—t~e)n_k'a-n + 62-(expression)
n(i:i)tk_l'E'(a—t—e)n—k°a—n + ez;(expression)

s as ¢—0 .

Finally we get P(X(l)fx[x(k)=t)= 1 - (Egﬁ)k-l as before.

Needless to say this is the hard way to compute this.
Consider one more example. Suppose we know that the

first point, Xl' is t. Given this, what is the smallest

point, X(l)? Again the answer is a probability distribution:

F(x) = P(X 1,5 x|X,=t).

We split this into two cases.

Case 1 x<t. 0 X t a,

5.30



By the independence of the X.'s in the Uniform process,

P(X (l)<x|X =t) should be interpreted as P(X(l)<x) but in

the Uniform process of sampling n-1 points from [0,a)l. That

is, knowing that X; is t does not influence whether any other
a- x)n 1

points are smaller than x. Therefore, P(X( <x|X =t)=1-(

Case 2 x >t 0 t % a
¥ A
X,
Here the fact that Xl=t means that (X(l)ix) has oc-
curred. Therefore, P(X (l)<x|X =t) = 1.
F (x) A
1 r
i
1 i .
t a X

The Conditional Distribution F(x)=P(X(l)§x|Xl=t)

Combining these two cases, we find that P(X(l)<x|x =t)
is not a continuous function. When we condition by (Xl=t),
the random variable X(l) becomes discontinuous. This will
often be the case for conditional distributions. Later we

will develop techniques for using discontinuous random

variables as if they were continuous.
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The Continuous Law of Alternatives

One of the most important facts about continuous
conditioning is that the law of alternatives has a con-
tinuous version. Indeed continuous conditional probabilities
are important primarily because of this. Recall that if a
set of events Al'AZ"" form a set of alternatives, then the

probability of any event B is

P (B)

i

2 P(B|A;)P(A;).

For continuous conditional probabilities, we replace the

alternatives A, by the "alternatives" (X=t), where t takes

on all real values, and we replace the sum by an integral.
For any continuous random variable X and event A for

which the continuous conditional probabilities P(A|X=t)

exist,

o«

P(a) = J P(A|X=t) dens(X=t)dt

Continuous Law of Alternatives

We will give a rigorous proof of this law. The key fact

we need is the Mean Value Theorem of Calculus. Recall what



this says. If f is a continuous function on the interval

[a,b], then for some point X between a and b,

f(x) = 5% ja f(x)ax.

Proof of the Continuous Law of Alternatives

Let €>0 be a small number. Divide up the real line

into intervals of length € by the points tn = ne.

. . <X<t, R .
Take Bl to be the event (tl X—t1+l) Then the Bl form a set

of alternatives. By the (ordinary) law of alternatives,

P(A) =) P(A|B;)P(3,)
1
=>° P(Alt; <X<t +e)P (£, <X<t, +¢)
) < <

By the mean value theorem applied to f(t) = dens(X=t),

there is some ti 1n the interval [ti’ti+l] such that
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Jti+l

— _ 1 _ 1
f(ti) = A f(t)dt = X P(ti<Xf_ti+€)
1 t. 1
i
or P(ti<X§;i+g) = f(ti)Ati.
Therefore

P (A) =Z%P(A|ti<xiti+e)f(Ei)Ati.

Now as ¢+0 this last sum approaches

J P(A|X=t)f (t)dt,

by the definition of the integral. We have therefore
proved the continuous law of alternatives.

Notice that we used the fact that the density of X,
f(t) = dens(X=t), is continuous. Actually, in practice
it will only be piecewise continuous. This technical de-
tail will never bother us. The continuous law of alter-

natives holds in this case also.



6. Conditional Densities

In most computations concerning continuous random
variables, the densities are much easier to handle. We
can give density versions of conditional probability, con-
tinuous conditional probability and the continuous law of
alternatives.

Let us begin with the simplest case: conditional
density. Suppose we have an event B such that P(B)>0 and
a random variable Y. The distribution of Y given that R has

occurred is

F(s) = P(Y<s|B).

In general it is possible that a continuous random variable
can fail to be continuous after conditioning, as we saw in

the previous section. But if it is still continuous, we may

speak of the conditional density of Y given B:

_d

dens (Y=s|B) = F'(sg) = I P(Y<s|B).

If the event B is of the form (X=t), then the condi-

tional density can be defined by a limiting process just as



we did in the last section. More precisely, the continuous

conditional density of Y given X = t is

dens (Y=s|X=t) = f2im dens (Y=s|t<X<t+e) ,
e+0

if this limit exists. If dens (X=t)#0, then

dens ((Y=s) n (X=t))

dens (Y=s|X=t) = dens (X=t) ,
exactly as one would expect.
Consider again the example of section 5, The con-

ditional density dens(X(l)=x|X(k)=t), when x<t, is the same

as the density dens(x(l)=x) but for the process of dropping

k-1 points on [0,t], i.e.

(k-1) (t-x) %2

dens (X 1y = x|X(k)=t) 1 .
We could also compute this as follows:
dens ((X ,,=x)n (X, ,=t))
= = (1) (k)
dens(x(l)—x|x(k)—t) Jens (X ——=0) .

(k)



Two two densities on the right were computed in section T177.3%:

n-l) tk_l(a-t)n“k

(k-l n
a

dens (X t) = n

(k)

n ) (t—x)k—z(a-t)n-k

0,1,k-2,1,n-k n

dens((x(l)=x)n(x(k)=t)) =( N

Therefore,

dens(x(l)=xlx(k)=t)

( n ) k-2 n-k
\0,1,k-2,1,n-k J(t-x) (a-t)
n(@He T a-e)n 7k

(k=1) (t-x) X2
tk-l

The Continuous Bayes' Law

By using conditional densities one can formulate a

continuous version of Bayes' law. Suppose we have two
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random variables X and Y. We call X the '"cause" and Y the
"effect", For examnle X may represent a parameter in an
experiment, which we cannot measure directly, while Y is some
directly measureable quantity. We want to determine the
effect on the distribution of X given a particular observation
of Y. As in the discrete Bayes' law, we assume that we know
the a priori distribution of X, dens(X=x), as well as the
conditional densities of Y given a value of X, dens(Y:y'X:x).
By a calculation almost identical to the one for the discrete

Bayes' law, we have this formula:

dens (Y=y| X=x)dens(X=x)
S dens(Y=y|X=t )dens(X=t)dt

dens(X:x'Y:y) =

Continuous Bayes!' Law

Continuous Law of Successive Conditioning

In a similar manner as that above, one can state a
continuous analog of the law of successive conditioning.

We leave the details as an exercise.

If X1,X2,...,X are a sequence of continuous random

n

variables, then their joint density is given by:

dens(X1:t X =t n:tn) =

12 DIt
= dens(X1:t1)dens(X2:t2|X1:t1)-°-

v -den::—;(Xn:'t',nlX1=t.I yo ooy Xn_1=tn_1 )

Continuous Law of Successive Conditioning




7. Gaps in the Uniform Process

As an application and illustration of the conditioning
techniques just introduced, we give a detailed and rigorous
treatment of the gaps Li in the Uniform process. We begin
with a problem posed in the introduction. Namely, if we drop
a set of needles, each of length h, on a stick of length b,

what is the probability that none of the needles overlap?

Needles on a Stick

We first restate the problem in terms of the (fniform
process. The position of a given needle is completely
determined by its left endpoint. The process of dropping
n needles of length h on a stick of length h is then the

same as dropping n points on the interval ([0,b-h]. Write

a=b-h.

5 needles of length h on a stick of length b

= 5 points on an interval of length a = b-h

Now two needles are non-overlapping if and only if

their left endpoints are at least distance h apart. Let A

be the event "n needles on a stick of length b = a+h do

5.39
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not overlap". Then

P(A, ) = P((Ly>h)n(Ly>h)n ... n(L >h))

min L.\ > h
= P((Ziiin l> - >

We will first compute the probability of a slightly

different event. Let Ba n be the event "n points dropped

r

on [0,a]l] are all at least distance h from each other and

fron the right endpoint."” This is exactly the same as Aa n
[4

but we have added the condition that the last gap, Ln+l’

also be larger than h, i.e.

>
il

(Ly>h)n (Ly>h)n ... n (L >h)

w
i

>h).

(Lzzh)ﬂ(L33h)ﬂ...n(anh)n(Ln+l_

To compute P(B_ ) we condition on the position of the
r

largest point:

P(Ba’n) = I_wP(Ba’nlx(n)=t)dens(X(n)=t)dt
a-h -1
=J P(B, X )=t)EH t"t at
(n-1)h a,n n a



Here the limits of integration stem from the fact that

B, , can only occur if the largest point falls so that the
r

rightmost gap, L1’ is larger than h and so that there is
enough "room" for n-1 gaps of size h to the left of X(n)'

Now P (B | X
a

n (n)=t) is the same as the probability of drop-
r

ping n-1 points on [0,t] so that all gaps are at least h
and also so that the largest point, X(n—l)' falls at least

distance h from t. Thus

P (B =t) = P(B ).

a,nlx(n) t,n-1

We may therefore use mathematical induction. For if

we write pn(a) = P(Ba n), then
r

n n-

p._(a) =
n (n-1)h a

Ia—h 1

Consider pl(a). This is the probability that a point
dropped on [0,a] falls farther than distance h from a. So

pl(a) = Eéﬁ . More generally the above inductive formula

(a-nh )“ .

can be used to deduce that pn(a) = 3
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To compute P(Aa n) from what we know about P(Ba n)'

’ ’

we condition on the largest point X(n)' It is easy to see

that P(Aa’nlx(n)=t) = P(Bt,n—l)' Therefore, as above,

P(A, ) = J—m P(Aa’nlx(n)=t)dens(X(n)=t)dt

a -1
= | P (B )27 at
J(n-l)h t,n-1 an
n 2 t-(n-1)h\""1 n-1
='-i;l- (—nt ) tn dt
a” | (n-1)h
a
_n_ | (¢-tn-1m”
a" n (n-1)h
(a- (n-1)h)"
n
a
_ (b-nh n .
= b—h) (provided b2nh)

Exchangeability of the gaps

Recall that we stated in section I1.3 that the gaps
Li in the Uniform process are equidistributed but that we
gave only an intuitive justification. We can now give a

rigorous proof using conditional density.
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Consider the first two gaps. The density of L1 is

n(a—t1)n—1

dens(LI:t1) = - . Therefore, by the law of alternatives,
a

dens (L,=t,) = J-m dens(L2=tzlLl=tl)dens(Ll=tl)dtl.

Now the conditional density dens(L2=t2[Ll=tl) is the same as
that of the first gap in the Uniform process of dropping n-1

points on the interval [tl,a]. Therefore

n-2
(n—l)(a—tl—tz)

dens(L2=t2|Ll=tl) if Oitzia’tl

n-1
(a-tl)
0 otherwise
Hence:
a-t, (n—l)(a—tl-—tz)n—2 n(a—tl)n"l
dens (L,=t,) = . dt
2 72 n-1 n 1
0 (a—tl) a

Ja--t2
_ (n-1) (n) e n-2
= o _—__;H—— (a tl t2) dtl
n-1737%2
_ (n-1) (n) [ _ (a-ty-ty) }
2 _ n-1 0
n 1

n—
"-'r—i' (a"tz)
a

Therefore Ly and L, are equidistributed.
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We end with an example of the use of the law of suc-
cessive conditioning. We compute the joint density of the

gaps Ll""’Ln+l=

L.=t =t ) =

dens(L1:t1, S>=tsseey L=t

= dens(Ll=tl)-dens(L2=t2|Ll=tl)-dens(L3=t3|L1=t1,L2=t2)~°-
The conditional density

dens(Lj=tj|L1=t1,L2=t2,...,L. =t, )

Jj=1 j=1

is the same as the density of the first gap in the Uniform

process of dropping n-j+l1 points on [tl+...+tj_l,a]:

(n-j+1) (a-t, -t n=J

2_0 . o—tj)

(a-t,-t,-...~-t )

1752 -1

Therefore

o]

if tl+...+tn+l=a

o |

dens(L1=t1, L2:t2,..., Ln+.]:tn+1) =
0 otherwise

by cancellation.



The joint density of any collection of gaps can be
computed from the above formula by taking marginals with
respect to all the other gaps. As a result we see that all
the gaps are equidistributed. Even more is true: the gaps
are exchangeable! At first this does not seem correct, but
it is possible to see it intuitively if we return to the
"points on a circle" interpretation of the Uniform process

as in section III.5.

An immediate, and by no means obvious, consequence
of the exchangeability of the gaps is that the covariance
of any pair of them is the same as that of the first two.
This implies paradoxically that the correlation between

the first two gaps is the same as that between L1 and Li

for any il

Table of Conditioning Laws

Probabilities Densities
et _ P(AnB) _ _da

Conditioning [ P(A|B) = —prgy— dens (X=t|B)=z¢ P(X<t|B)
Continuous P(A|Y=s) = dens(X=t[Y=s)=dens((X=E)ﬂ(Y=S))
) PPN dens (Y=s)
Conditioning

=gim P(A|s<Y<l+e) = 2im S P (X<t|s<Y¥Y<s+e)

h at al =
e+0 e~+0

Types of Conditioning



Probabilities Densities

Conditioning| P(B)= ZP(BIAi)P(Ai) dens (Y=s)=1I dens(Y=s|Ai)P(Ai)
i :

1

Continuous P (B)

= J P (B|X=t)dens (X=t)dt
Conditioning -

dens (Y=s)=

J dens (Y=s|X=t)dens (X=t)dt

-0

Law of Alternatives

P(B|A; )P(4;)

p(a.lB) =
* > P(B|Aj)P(Aj)
J

dens(szlY:y) - °jenS(Y:lezx)dens(xzx)
g dens(Y:y'X:t)dens(X:t)dt
-0

Bayes' Law

P(BjnByn...nB ) = P(Bl)P(BZIBl)P(B3|BlﬂB2)...

P(BnIBlman...an_l)

dens(Xith, X2=t2;..., Xn:tn) =

= dens(Xl=tl)dens(X2=t2|Xl=tl)...

dens(Xn=tn| X1:t1,..., Xn-1:tn-1)

Law of Successive Conditioning
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8. The Algebra of Probability Distributions

Very early in our study of random variables we noted that
we can perform algebraic operations on them to get new random
variables. We did not, however, me2ke any systematic study of
what effect an algebraic operation has on the distributicn of
the random variables involved. For exzmple, if X is a
continuous random variable with density f(x), what is the

density of ZX? The answer is most assuredly not 2f(x). In

1./X
Ef(?{) .

fact about algebraic operations on random variables: the

fact, the correct answer is This illustrates a basic
effect of a simple operation on a random variable is seldom

reflected in a simple way on its density. In this section we
consider two kinds of operations on random variables: 'change
of variables" on a single random variable and the sum of two

independent random variables.

Change of Variables

Let X be a continuous random variable, whose density is
f(x). Let g(x) be an increasing function. We wish to deter-
mine the distribution of the random variable g(X). To do so
we must consider the distribution function of X, not just its
density. Accordingly, let F(x) be P(X € x), so that
f(x) = F'(x). The distribution function of g(X) is given by
P(g(X) € x). Now we assumed that g(x) was an increasing
function, so it has an inverse function G(y) which is also
increasing. Therefore,

P(g(X) €x) = P(G(g(X)) € G(x)) = PX K G(x)) = F(G(x)).
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To get the density of g(X) we differentiate this, using the
chain rule:
dens(g(X)=x) = F'(G(x))G'(x) = f(G(x))G"(x).
By the inverse function principle of Calculus, G'(x) = 1/g'(G(x)).

Therefore, we have shown:

dens(g(X)=x) = L(GG))
g' (G(x))

Change of Variables Formula

An immediate consequence of this formula is that for any
continuous random variable X with distribution function F(x),
F(X) is uniformly distributed on [0,1]. Thus every continuous
random variable is, by a change of variables, expressible in
terms of any other. This fact can be used in computer simul-
ations of stochastic processes. Most computer systems provide
a pseudo-random number generator which produces, with each call,

an independent, uniformly distributed pseudo-random number from

[0,1 . Call this number RED. If we wish to simulate a
random variable X whose distribution function is F(x), we
Just use G(RND), where G(y) is the inverse function of
F(x).
The change of varisbles formula we have given applies
only to an increasing function g(x). For a decreasing
function, the only change is that the sign of the right-hand
side must be reversed. For more complicated functions g(x),
one must partition the domain of g(x) into intervals on which
it is increasing or decreasing and apply the change of variables
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formula to each such interval. The results must then be
combined to get the density of g(X). leedless to say this

can get quite intricate.

Sums of Independent Random Variables

Suppose that X and Y are two random variables. Their
sum is again a random variable, X+Y. For example, in the uni-
form process, X(z) = L;+L,. Now if we know the distributions
of X and Y, can we compute the distribution of the sum X+Y?

In general, the answer is no, for we need the joint distri-
bution in order to compute the distribution of the sum. 1In

the above example, we cannot compute the distribution of X(2)

from the distributions of Ll and L2 alone, we must know also
the joint distribution of L, and L,.

On the other hand, if X and Y are independent, we can
compute their joint distribution from their individual dis-
tributions. As a result we expect that the distribution of
X+Y has some reasonable expression in terms of the distributions
of X and Y. Suppose for the moment that X and Y

are independent, integer random variables with distributions

P (X=n)

Pn

P(Y=n) q,

Then by the law of alternatives,

I P(X+Y=n|Y=k)P (¥Y=k)
k

P (X+Y=n)

= ¢ P(X=n-k|Y=k)P(Y=k).
k
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Since X and Y are independent, P(X=n-k|Y=k) = P(X=n-k).

Therefore,

P(X+Y=n) = IP(X=n-k)P(¥Y=k)
k
= ﬁ Ph-x %

The distribution r_ = I p g, 1is called the (discrete)
n X n-k*k _

convolution of the distributions Pn and q,-

In the case of integer random variables, we can see
clearly what the convolution means: P(X+Y=n), is the sum

of all possible "ways" that X+Y can equal n: X=k and Y=n-k,
for all possible k. 1In the continuous case, the sum is re-

placed by an integral, but the idea is the same.

Suppose that X and Y are continuous random variables

having densities

dens (X=x) = f (x)
dens (Y=x) = g(x).
dens (X+Y=t) = J dens(X+Y=t'x=s)dens(x=s)ds

- 00
=I dens (Y=t-s|X=s) £ (s)ds
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[}

f ‘dens(Y=t-s)f(s)ds

]

J g(t-s)f(s)ds.

The function

h(t) = I g(t-s)f(s)ds

is called the convolution of f and g, which we shall write

h = f*g .,

We have just proved that: a sum of independent continuous

random variables corresponds to convolution of the densities.

The convolution of two functions is an important ope-
ration which appears in numerous contexts, for example dynamical
systems in engineering and optics in physics, to name Jjust two.
Its appearance in probability theory is perhaps the most easily
understood context in which the convolution arises. Actually
there are many operations similar to the one above that go by
the name "convolution." For example if we consider the special
case of two continuous, positive, independent random variables

X and Y, the density of their sum is

t
h(t) = J g(t-s)f(s)ds ,
0

because f(s) = 0 if s<0 and g(t-s) = 0 if s>t, This is the

form of the definition one sees most commonly.
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Although it is not obvious from the definition, con-
volution is a commutative, associative operation. That is,

for densities f,g and h:

f*g = g*f

(f*qg) *h f* (g*h).
These follow from the fact that addition of random variables

is commutative and associative, respectively.

As an example of a convolution, we show a result which
is implicit in many of the calculations in chapter IV: the
sum of normally distributed random variables is again normal.
We will just take the case of two standard normal random
variables, and leave the general case as an exercise. Ry
definition, the convolution of the standard normal density

with itself is given by:

oo
—ézexp(-x2/2)& exp(-(y-x)2/2) dx
ew 2w
-y0 °0
2 .2 ’
= 4 exp [-X m ;2xy—x ] dx
2 "
—
1 2 = -9x2+2x
= —— oxp(=y~/2) exnp LJ——jg;QX dx
2 o -

= L exp(-y</2) S exp [;X(X-YX] dx

s OC)

Using the change of variables t=x-y/2, this becomes:
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oc

eXp(-yg/a) S exp [—(u+y/2)(u—y/2>] du

O

l

n
3

o0

= exp(-y°/2) S exp(-u2+>’2/‘+) du

O

|

AN
3

>

= exp(-y2/2+y2/l+) S exp(-ug) du

-0

o
S

- L eXp(—yZ/u)\/ T

o
- exp(-ye/(zo‘*)), where g = y2.

»*
9. Geometric Probability




10. Exercises for

Chapter V Conditional Probability

Discrete Conditional Probability

1. A game is played with six double-sided cards. One card nas
"1" on one side and "2" on the other. Two cards have "2" and

"3" on the two sides. And the last thiree have "3" and "4" on
them. The six cards are shuffled by one person. A random card
is then drawn and held in a random orientation between two other
persons, each of whom sees only one side of the card. The winner
is the one seeing the smaller number. Suppose that tnhne first
person chooses the "2/3" card. Compute the probabilities each

of the two persons thinks he/she has for winning.

2. A person is given an urn and is told it contains 4 balls:

2 red and 2 black. He draws two of the balls at random without
replacing them, and both turn out to be red. He puts these aside.
What is the probability that the next ball drawn is black? Another
person in the room has been blindfolded during all of the preceding.
After taking off her blindfold, she takes a ball out of the urn
at random. She knows which balls were originally in the urn and
that two have been drawn so far but does not know their color.
What does she think the probability of drawing a black ball is?
How could the fact that she was blindfolded nhave any effect on

the probability of the next drawing of a ball? Explain.

3. Place k balls into n boxes at random. If the first box

is empty, what is the probability that the second is also?
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4. During a poker game a kibitzer manages to get a brief glimpse
of one of the hands (and no other hands). 1In this glimpse he
sees only that one card in the hand is an ace. He did not notice
which ace it was. What is the probability that the hand has at
least two aces? 1If the kibitzer noticed that one card is a black
ace, what is the probability that the hand has at least two aces?
Finally suppose the kibitzer saw that the hand had the Ace of
Spades. Discuss whether such glimpses are really possible. The
"moral” of this example is that (conditional) probabilities of
events change considerably when one learns kinds of information

that have no obvious relevance.

5. Three prisoners are informed by their jailer that one of them
has been chosen at random to be executed and that the other two
are to be freed. They are told they will learn their fate in

one week's time. Prisoner A asks the jailer to tell him privately
the name of a fellow prisoner who will be set free, claiming that
there would be no harm in divulging this information, since he
already knows that at least one will go free, and he cannot inform
the prisoner in question about his good fortune. The jailer
refuses to tell prisoner A, pointing out that if A knew the name
of one of his fellows to be set free, then his own probability of
being executed would rise from 1/3 to 1/2, since he would then

be one of two prisoners; and this would be cruel. Wahat do you

think of the jailer's reasoning? Be precise.

6. You are playing bridge. Assume that the deck is thorougnly
shuffled. If you receive 4 hearts, how many did your partner

receive? Generalize to the case of receiving I hearts.
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7. (Neyman-Pearson errors) A commuter has the choice of taking
the train to work or of driving to work. If she takes the train
she will get to work on time about one time in four. If she takes
her car, she is almost certain of getting to work on time, but at
considerable inconvenience. Although she calls the transit company
every morning, their information is wrong a third of the time.

So she adopts the following strategy: if the transit company says
the train will be late, she always takes her car, and if not she
takes her car a third of the time at random. Compute how probable
it is that she will be late. What is the probability that she
takes her car even though she would have been on time if she had
taken the train? This kind of "mistake" is known as a Neyman-

Pearson Error of Type I. She makes an Error of Type II if the

train is late when she takes it. Compute the probability that

she makes an error of type II. Note that the probability of

either kind of error is a conditional probability. Furthermore

in order to make the above computations, one must assume a number
of independence properties of the various events. State explicitly
any assumptions you must make in this problem. The probability

of an error of type I is called the significance level of the

decision, and 1 minus the probability of an error of type II is
called the power of the decision. One should re-examine statistical
hypothesis testing using this terminology. When several tests

are available one clearly would like the one with the largest

power for a given significance level. Unfortunately, however, in
practice one rarely knows precisely what model will be implied

by the rejection of the hypothesis being tested, so computing the

power of a test is not as easy as it seems.
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8 . Suppose that the commuter in exercise 7 scores the two
inconveniences of being late and of driving the car at 1 and 2
respectively. What is her optimal strategy? Do the same with

1 and 2 interchanged.

9. An event A of positive probability is said to be favorable
to an event B if

P(B|A) > P(B),
in other words, if we know that A has occurred then the probability
that B has occurred also is the same as it was or is greater.
Note that if A is independent of B, then it is favorable to B.
Suppose we have a family having two children. Let A be the
event "the first child is a girl," let B be the event "the second
child is a girl," and let C be the event "the two children have
different Zender." Show that A and B are both favorable to C
but that A()YB is not. Similarly show that C is favorable to
both A and B but not to A(YB . Give examples to show that an
event can be favorable to two others without favoring their union
and conversely that two events can favor a third without their

union doing so.

10. (Simpson's paradox) A new treatment for a disease has just
become available but is still experimental and is very expensive.
In a teaching hospital with a large budget a random sample of 100
patients with the disease are randomly broken into two groups, one
having 90 patients the other 10. The larger group is treated. 30
of these show clear improvement and only one of the members of the

other group does. In a city hospital with a smaller budget a
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similar test is made but now the smallér group gets the treatment.
In this group 9 show improvement while in the untreated group half
improve and half do not. In either case the treatment seems to

be effective. However, if we view this as one sample of 200,

100 of which are treated and the other 100 are not, then a dif-
ferent picture emerges. Of the treated patients 39 improve and

of the untreated patients some 46 improve. This seems to suggest
that the treatment actually decreases ones chance for improvement.

Explain the apparent paradox here.

Bayes' Law

11. There are three children in a family. A friend is told that
at least two of them are boys. What is the probability that all |
three are boys? The friend is then told that the two are the
oldest two children. Now what is the probability that all three
are boys? Use Bayes! Law to explain this. Assume throughout
that boys are as likely as girls and that each child is indepen-

dently either a boy or a girl.

12. A student is about to take a gquiz. If he studies, he will
pass with probability .99, but if he goes to the dorm party his
chances of passing decline to 1/2. The next day he passes the

exam. Did he go to the party?

*
13. Use Bayes!' law to compute the probability in exercise 7

that the commuter took the train given that she was on time.



i4. Three boxes each contain two coins. One has two silver
coins, one has two gold coins, and one has one of each. A box
is chosen completely at random and a coin is chosen at random from

that box. It is gold. 1Is the other coin in the box gold also?

15. The manufacturer of screws in exercise IV.18 1is producing
good screws 99% of the time but now the machine that detects the
flawed screws is itself out of adjustment, producing an incorrect
decision 10% of the time. What is the probability that a discarded

screw 1is really flawed?

l6. A lie detector test is known to be 80% reliable when the
person is quilty and 95% reliable when the person is innocent.

If a suspect was chosen from a group of suspects of which only 1%
have ever committed a crime, and the test indicates tnat he is

quilty, what is the probability that he is innocent?

17. 1In the optimal choice problem (exercise TIL.6%4 ) the correct
strategy is to make no decision for a certain length of time (say
k days) and then to choose the best candidate of all those seen
up to that point. If the monarch chooses the jth candidate what

is the probability that she is the best candidate?

*
18. In exercise 17 above compute the probability that the monarch

h candidate using the above strategy. Use tihis

will choose the jt
to find the probability that this strategy succeeds. For wiich

k will this be maximized? Generalize to N candidates.



*
19. Use Bayes' law to compute the probability of each of the
kinds of hands in exercise II.2% given that one has at least one

pair.
Continuous Conditional Probability
20. A target is a disk of radius 1lm. A bullet is fired at the

disk and hits it. Assume the bullet's mark has a uniform dis-
tribution, i.e., the probability that it hits a region A is
proportional to the area of A. How far from the center does the

bullet hit?

21. A scimitar is a sward shaped like a circular arc (at least
for this problem). Suppose that during a Turkish festival n
Turks throw their scimitars independently and at random along a
circle of circumference a. Suppose that each scimitar has arc
length h along this circle. What is the probability that none

of the scimitars overlap?

Circle of circumference a with
4 nonoverlapping scimitars.
22, In the Uniform process of sampling n > 2 points from [0,a],
what is the probability that the first three gaps are all less than

b?
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23, For 1 <1i< 3j<k<n, compute the joint density of X(i)

nd X given that X,., = t .
a (k) given (3)
24, Let Ll,Lz,---, Ln+l be the gaps in the Uniform process
of sampling n points from [0,a]. Find the distributions of the

order statistics of the gaps, i.e., put the gaps in order, getting

the random variables ++, L Then compute their

Ly by

expectations. Compare this with the scimitar problem (exercise

(n+l) °

21) above and with the broken DNA problem (exercise I1IT.53) .

25. Compute the distribution of the median gap in the Uniform

process of sampling n points from [0,a].

26. 1In the Uniform process of sampling n points from [0,a],
what is the probability that the largest gap is at least twice

as large as the smallest gap?

27. Given positive numbers tj, ty, ..., thel s what is the prob-
ability that in the uniform process, for all i=1,2,...,n+1,

the ith gap is greater than ti

*
28. Give a rigorous statement and proof of the identity

dens(X=t, Y= 8)
dens (Y = s)

dens(X=t|Y¥=s) =

*
29. Give a rigorous (e - §) proof of the continuous law of

alternatives.

*
30. Define a cluster of size k and width € to be a sequence
of k points contained in an interval of length ¢ . In the
Uniform process how many clusters of size Kk and width € are

there? 5.61



Exchangeability

31. Drop r red points and b black points (r+b=n) at
random uniformly on [0,al. What is the probability that a

run of h red points precedes a run of t black points?

32. Compute the probability that at least one of the four

players in a bridge game is dealt a yarpborough. Hote that the
four hands are not independent but are exchangeable. Compare this
answer with what you would get if you dealt the four hands inde-

pendently from four different decks. Use the result of exercise

I1.42.

*
33. (Discrete Needles on a Stick Problem). Choose k numbers
from the set {1,2...,n} at random. What is the probability

tuat no two are closer than a units apart? Note that the
answer depends on whether one uses Fermi-Dirac, Bose-Einstein

or Maxwell-Boltzmann statistics.

347 (Discrete Scimitars on a Circle Problem). Choose k numbers
from the set of integers modulo n. What is the probability that

no two have a difference congruent modulo n to one of the integers
in the set {-a+1, ...,-2,-1,0,1, ...,a-1}? As in exercise 33

above, the depends on which kind of statistics we use.

Change of Variables

35. Find the distributions of the following random variables in

terms of that of the random variable X :

(a) Y =X + ¢, where ¢ 1is a constant,
(b) Y = aX + b, where a and b are constants,
(c) Y = |x]|



35. (Continued)
(d) Y = /X , where X 1is a positive random variable ,

(e) Y 1n(X), where X is a positive random variable

and 1ln denotes the natural logarithm.

36. A point is dropped at random (uniformly) on a square of
side a. What is the distance of this point from tne center of

the square?

37. Let S be the speed of a molecule in a uniform gas at
equilibrium. Then S 1is a positive random variable wihose
density is given by dens(S=s) = 4\/b3/ﬂ sze—bsz for s>0,
where b 1is a constant which depends on the absolute temperature
and mass of the molecule. Find the density of the kinetic energy
1 2

E of the molecule, E = 2mS

38. Suppose that a long DNA molecule of length a is broken at
random into two pieces. Compute the distribution of the ratio
of the length of the longer piece by that of the shorter piece.
Compute the ratio of the expected sizes of the longer and shorter
pieces and the expected ratio of the longer and shorter pieces.
[Answers: 3 and «]. Do the same for a molecule broken into

3 pieces.

39. (Student's t-distribution) The key fact behind much of
modern statistical theory is the Central Limit Theorem: the
standardization of a sum of independent, equidistributed random
variables is normally distributed in the limit as the sample size
gets large. Now we remarked in chapter IV that if we do not know

the variance of the random variables, then we can approximate
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it using the sample variance. Unfortunately, if we only have a
samll sample, the fact that the sample variance is being uséd
instead of the actual variance can result in the standardized
sum having a distribution considerably different from a normal
distribution even if the original sequence of random variables
were all normally distributed. This fact was first pointed out
by William Gosset, who wrote under the pseudonym of "Student."”
We will now consider his computation.

Let Xy, ***,X be a sequence of independent, normally

n
distributed R.V.'s with mean m and variance o2 . The sample
mean is m = %?(Xl + ees + Xn) and the sample variance 1is
-2 _ _1 — 2 — 2 .
g = Ejji((xl-—m) + oese + (Xn-m) ). We wish to compute the
. . . » - n
distribution of the random variable t = (m-~m) — . Note that
g
this R. V. is not defined for n=1. For the purposes of com-
puting the distribution of t we may assume that Xy, **°*, X,
have distribution N(0,1). Then for n=2, t 1s the random
X1+X2
variable . It is easy to check that Xl+X2 and
RETNRY
1 2

Xl-—X2 both have distribution N(0,2) and are independent.

More generally show that t has the same distribution as the

ratio
X
/32 3 '
+l.l +Y
\ Yl n-~1
where X,Yl, ---,Yn_l are independent and have the standard

normal distribution. The distribution of t is called the

Student's t-distribution with n -1 degrees of freedom.
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When n=2, the distribution of t 1is the same (up to a scale
change) as the gangster distribution in exercise III.xx. GSee
exercise xx below. Compute the Student's t-distribution explicitly

for the case of 1 degree of freedom.

40? Let X and Y be independent, uniformly distributed
random variables on [0,1]. Prove that cos (27X)v/-22n(Y) has
distribution N(0,1). This fact is useful for generating a
sequence of independent, normally distributed pseudo-random
numbers by computer, since most computers have a pseudo-random
number generator that produces a sequence of independent ,

uniformly distributed pseudo-random numbers from [0,1].

*
41. Let X -H,Xn pe a sequence of independent, standard normal

17
random variables. Compute the distributions of the order statistics
X(l)’ '..’X(n) of these random variables. Write a computer
prograﬁ that uses a numerical integration to find an approximation
for E(X(j)) accurate to 3 decimal places. Then make a table

of E(X(l)) for n between 1 and 20.

42% 1In a college cafeteria ice cream is available for the evening
meal in servings that vary in weight according to a normal distri-
bution with a standard deviation of 100 gm. The cafeteria workers
maintain about 15 servings for students to choose from. Every

day student A chooses the smallest serving available while student
D chooses the largest. Over the school year (200 meals), how much

more ice cream does student D eat than student A?
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43% Drop n points at random independently and uniformly on a
square of a side a. How close is the point closest to the

center of the square?

44> Drop n+1 points at random independently and uniformly
on a square of side a . What is the distance to the nearest
neighbor of the first point? (This is the pennies-on-a-carpet
problem mentioned in the introduction and is currently an un-

solved problem.)

Convolutions 9£ Random Variables

45. (Rayleigh distribution) Let X and Y be independent
random variables having distribution N(O,oz). Find the distri-
bution of JXZ + Y2 . We can interpret this as tne distribution

of the deviation of an object from a target point when the object
is dropped onto the target from above. X and Y are the de-
viations in the x and y directions with respect to rectangular

coordinate system whose origin is at the target point.

46. TFor the situation described above, consider a circle and a
square of the same area, both centered at the target point.
Which is more likely to contain the point where the object lands?

Hint: use probabilistic reasoning.

47. (X?-—distribution)

Return to exercise IV.19. The FDA should be just as concerned
with variance as with the mean quantity of impurity. For example,
if a company produces pills with an average of 4 ppm impurities

but a variance of 4 (ppm)z, 31% of the pills it is producing are

5.66



below standard. One can test a sample variance just as one can
test a sample mean. The distribution of the sample variance of
a random sample of size n from a normally distributed popu-

lation is called the chi-square distribution with n -1 degrees

of freedom. If the mean is known and not simply computed from
the data of the random sample, then the distribution is the chi-

square distribution with n degrees of freedom. See exercise 6.

The chi-square distribution can be computed as follows. First
compute the distribution of X2 , when X is N(0,02) . This

is the chi-square with one degree of freedom and mean 02 . For
the general case let Xy cees Xy be independent random variables
each distributed as N(O,oz) . The sum i%(xi + ---+-X§) has the
distribution of the chi-square with mean 02 . Compute the
variance of the chi-square distribution. [Answer: 304]. Now

for large samples, we can use the Central Limit Theorem to conclude

that the chi-square is approximately normally distributed. What

4
is its variance? [Answer: 2%— 1 Now suppose that the FDA
determines that 9 ppm impurity is possibly hazardous. It would

seem reasonable to require that no more than 1 pill per thousand
can have this much impurity. Does the drug company examined in
exercise IV.19 conform to this requirement? Use 95% one-sided
confidence intervals both for the mean and for the variance.
Note that the number of degrees of freedom in our sample is 49

not 50. [Answer: Nol
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48. Return to exercise IV.39. Suppose that the resisters are
in parallel rather than series. Using a suitable normal approxi-
mation find a 95% confidence interval for the resistance of this

circuit.

*
49. 1In exercise III1.36, the gangster sprays the wall with a

machine gun, shooting n bullets independently, each in a random

direction toward the wall. What is the distribution of the sum
of the positions of the n bullet holes? Assume that the median
(I117.37) is the zero point and that distances are measured in
meters. What is the distribution of the average position of the
n bullet holes? Does this result explain what you observed

in exercise IV.587?

50? Compute the density of the sum of n independent, uniformly

distributed random variables on ([0,a].

*
51. Give a rigorous proof of the convolution theorem.

Geometric Probability

52. In a circus carnival game, a player tosses a gquarter onto
the surface of a table ruled in a checkerboard pattern of two-
inch squares, which is further subdivided into one-inch squares
by lines of another color. A quarter is %én in diameter. If
it falls entirely inside one of the two-inch squares, the player
receives 50¢ (his original quarter plus another). If it falls
inside one of the one-inch squares, he receives a prize worth

about twenty dollars. Otherwise the player receives nothing.

wWhat is the probability of winning each prize, and what is the
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average return on ones investment for one toss of a quarter?

53. Choose four points at random on a circle. Call them

X X X, and X What is the probability that the chords

17 727 73 4 -
XIXE and igi; intersect? Hint: use a symmetry argument.
54. A captain of a ship can determine its position by using radio
bearings from transmitters on shore. These only give a direction

so 1t is necessary to use at least two such bearings to determine
the position. However, because of errors of measurement, one
usually takes three bearings and the position lines are then plotted

on a map as in the example beiow. The ship is assumed to lie inside the

triangle formed by the tnree lines. All we know about the errors of
measurement in the three bearings is that they are independent and
symmetric about the true bearing. What is the probability that the

ship actually lies inside the triangle? [Answer: 1/4] .

—>
55. Let X be a randomly oriented unit vector in 3-space. Show
tiiat the length L of the projection of X on the x-axis (i.e., the
x-component of i) is uniformly distributed on {0,1] and that

E(L) = 1/2.
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56. (Feller) What is the length of a random segment intersecting

a unit sphere? More precisely, let P be a point on the sphere,
and let L be a line through P in a random direction. Let S be
the length of the intersection of L with the sphere. What is the

distribution of 53? [Answer: uniformly distributed on [0,2]].

57. Let i be as in exercise 55, and let U be the length of
the projection of X on the (x,y)-plane. Show that U has prob-
ability density f£(t) = t//1-t%> for 0 < t < 1 and that

E(U) =7T/4

58. Let L be the length of the x-coordinate of a randomly oriented
unit vector in 2-space. Show that L has probability density

f(x) = 2/(ﬂ/l-x2) for 0 < x <1 and that E(L) = 2/71 .

59. (Feller) Why are two violins twice as loud as one? Tnis may
sound facetious at first until one recalls that loudness is pro-
portional to the square of the amplitude of the vibration. The
incoming waves may be represented by random unit vectors, the length
being the amplitude and the angle the phase. When two violins are
played, the resulting vector is the vector sum of the two vectors,
but since they come from different sources we may regard them as
being independent random vectors. Show that the expected value of
the square of the length of the sum of the two vectors is twice the

expected value of the square of the length of one of them.

60. An isosceles triangle is formed by a unit vector in the
x-direction (i.e., in 2-space either (1,0) or (-1,0)) and another

in a random direction. Find the distribution of the length of the
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third side. Do this both in 2-space and in 3-space.

random unit vector

N

isosceles
triangle

(2-space)

6l1l. What is the probability that a random quadratic polynomial,
2 . . .
ax + bx + ¢, has real roots. Here the coefficients are independent

and uniformly distributed on [0,1].

62. A needle of length & 1is dropped on a grid ruled in a checker-
board pattern with rulings spaced a units apart. What is the average

number of lines the needle crosses?

63. A planet contains five small islands which we may regard as
five independent random points on a sphere. What is the probability

that at least four lie in the same hemisphere?

64. Let P and Q be two independent random points on a circle
whose center is 0. What is the distribution of the angle P0OQ? Do

the same for two points on a sphere.

Fluctuation Theory

65. (Epstein) A gambling house offers the following game. After
paying an entrance fee E , a coin is tossed until the number of
heads exceeds the number of tails. The player is then paid the
number of dollars equal to the number of times the coin was tossed.

What is the average amount of money that the player expects to receive?

[Answer: infinite] 5.71



66. A random walk in two or more diménsions is simply two or more
independent one-dimensional random walks acting simultaneously.

What is the probability that a two-dimensional random walk, starting
from the origin, eventually returns to the origin? If it returns,
how long, on the average,'does it take to do so? Do the same for a
three-dimensional random walk. [Answers: probability 1, infinitely

long time, probability about 0.239].

67* If the gambling house in exercise 65 above has only N dollars
available for winners, what is a fair entrance fee E for the game

described there?

Supvlementary Exercises

68. Rewrite the following vague conversation using the language of
probability theory. You may assume that it is possible to distin-
guish between "good weather" and "bad weather'" unambiguously.

"The Weather Bureau isn't always right, but I would say that
they are right more often than not," said Alice thoughtfully.

"Ah, but what comfort is it during miserable weather to know
that the forecast was right? If it's wrong that isn't going to
affect the likelihood of good weather," retorted Bob.

"You may be right, but that doesn't contradict what I said,
even though the forecast is pessimistic only about twice a week,"

answered Alice mnersuasively.



Chapter VI The Poisson Process

The Poisson process is the third basic stochastic process,
the first two being the Bernoulli and Uniform processes. It
can be defined in many ways. We will start with a more abstract
approach in section 1. 1In this section we concentrate on some
of the random variables occurring in this process. In the next
two sections we give a more'intuitive development of the
Poisson process based on what we already know about the Uniform
and Bernoulli processes. Once we have thoroughly established
the properties of the Poisson process, we then turn thinrs
around by showing that the Uniform process can be obtained by

conditioning the Poisson process!

1. Continuous Waiting Times

Suppose we toss a coin k times and that we get k
tails. It is intﬁitively obvious that on the next toss
there is the same probability for heads as ever: the coin
does not remember what took place in the past. We can ex-
press the fact that a coin has no memory in terms of the

single waiting time W, as follows
P(Wl>k+nlwl>k) = P(W;>n).

The probability that one will get a run of k+n tails given
that one has just gotten a run of k tails is simply the
probability that one will get the additional n tails: the
preceding tails neither help nor hurt. I!low long one must

wait does not depend on how long one has already waited.
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In real life if one is waiting for an incident to
take place there is no abstract entity flipping an abstract
coin during small discrete time intervals determining when
the incident is to occur. For example one might be standing
next to a Geiger counter waiting for a click. The waiting

time in this case is continuous, but like the Bernoulli

waiting time the waiting time has no memory. We express

this using conditional probability.

Definition. A positive continuous random variable W is

said to have the exponential distribution when

P (W>t+s|W>S)= P (W>t)

for all positive t,s.

We will also call W a continuous memoryless waiting time, althouqh we

will see that the value of W need not represent time. The
exponential distribution is an ubiquitous distribution ap-
pearing in the most unexpected places.

What is surprising about random variables having the
exponential distribution is that the seemingly innocuous as-
sumption we have made in defining this concept determines the
probability distribution of W but for a single parameter. To
see this let G(t) = P(W>t). The condition P (W>t+sjW>s) = P(W>t)
may also be written P((W>t+s)n (W>s)) = P(W>t)P(W>s). But the
event (W>t+s) is a subevent of the event (W>s). Therefore
(W>t+s)n(W>s) = (W>t+s). So we may equally well characterize

a continuous memoryless waiting time by the condition:



P(Wst+s) = P(W>t)P(W>s) ’
or in terms of G:

G(t+s) = G(t)G(s).

From this equation alone we can, using calculus, deduce
that G(t) = KeCt for suitable constants K and C. Those who
have seen this done before can skip the next paragraph.

If we think of G(t+s) as a function of two variables

t and s, we may compute the partial derivatives by the
chain rule of calculus:
3 (t+s)

-a—E G(t+S) = G (t+S)'a—t

i

G' (t+s)

Similarly, %g G(t+s) = G'(t+s). Next we differentiate

G(t)G(s) with respect to both t and s:

9 _ (G(t)G(s)) = G'(t)G(s)

t

QL

3 - '
35 (G(t)G(s)) = G(t)G'(s)
Therefore
G'(t)G(s) = G'(t+s) = G(t)G'(s).

Divide both sides by G(t)G(s) to get



Now this must hold no matter what t and s are. Therefore

G'(t)

Gt =C
for some constant C . Finally if we integrate both sides
we get

n|G(t)| = Ct + D

for some constant D , and this is the same as

G(t) = KeCt

for some constant K.

The distribution of W is therefore

F(t) = P(W<t) = 1-G(t) = 1-keCF  for t>0.
Since we must have 2im F(t) = 1, the constant C must be
>0
negative. Write o = -C. Since we must also have
2im F(t) = 2im F(t) = 0, the constant K must be 1. We
treo t-0

conclude that the probability distribution of a continuous
waiting time W is
=ot

F(t) = P(W<t) = l-e 0 ,

for some positive constant a; and its density is

£(t) = qe Ot



We now see why We say that W is exponentially distributed.

f£(t) 3 F(t) 4

The density and distribution of a continuous waiting time.

The parameter o may be interpreted as the frequency of the
incidents in time: roughly speaking, o incidents occur per
unit time "on the average."

The power of probabilistic reasoning (made rigorous
by conditional probability) is that we may compute the
distribution of a random variable without referring to a
sample space or to events of it. The distribution is defined
purely in phenomenological terms, i.e., in terms of the
oObserved phenomena only. |

Consider for example that we have a collection of
points dropped independently and uniformly throughout the
entire infinite plane. By "uniformly" we mean that the
probability of finding a point in a region of finite area t
depends only on the area t (not on its shape or location).

By "independently" we mean that for two disjoint regions



the prohabilitv of finding a point in one region is inde-
pendent of finding a point in the other. Write P(T>t) for
the probability of finding no point in a region of area t.
Then

P(T>t+s) = P(T>t)P(T>s).

Therefore, as above,

P(T>t) = e ’

where o may be interpreted as the density of the points
dropped on the plane. It is reasonable to regard T as a
"waiting area",i.e., "how large an area must a region be in
order to find a point in the region?"

Consider next a collection of stars distributed at
random in a large region of space. How far away is the

nearest neighbor to a star in this region? This is quite

similar to the above problem, but we now have three di-
mensions. Instead of a region of some area t, we use a
spherical volume of radius r whose center is the given star.

If the average density of the stars is o, then

P (Nearest neighbor is more than r units away) = e

Suppose we are in a forest with randomly located trees.
llow far can one see if one looks in one particular direction?
By symmetry one may assume that one looks along the positive
x-axis from the origin. Assume also, for simplicity, that
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the trees are all p units in radius. Let T be the random
variable "how far can one see along the x-axis?" If T is
larger than t , then there are no centers of trees in the

region indicated below:

~ ~
p e/i\
you—" =+ t -~
/ /

VD e . - s m— e . e —— —— —

The identation on the left side is a consequence of the fact
that one happens to be standing at that point. The area of
the dotted region is the same as that of a rectangle of sides

t and 2p. Therefore

p(T>t) = e 2Pt
Needless to say this is an idealized model (trees do not all
have the same radius), but it illustrates the basic idea
One gets a very similar model when one studies the ef-
fect of a beam of high energy protons entering a detector
consisting of a tank of liquid hydrogen. Here the "trees"
are the nuclei of the hydrogen atoms, although we should
build the model in three dimensions instead of two.
To summarize, every "waiting time" for which the

future does not depend on the past exhibits exponential decay.



The Gamma Distribution

We just saw that the analog for continuous random variables
of the random variable W1 in the Bernoulli process is an
exponential random variable. We now ask for the analog of the
kth waiting time W, in the Bernoulli process. Now the kth
waiting time is the sum of the first k gaps in the Bernoulli
process: Wk = T1 + T2 + cee + Tk; and the gaps are independent.
Therefore we could have computed the distribution of Wk by
convolving the distributions of the gaps, all of which are

geometric random variables. As an example, the

distribution of W2 is then the convolution of the distribution

of T,, ¢ 'p, with itself, i.e.

n-1
-k)-1_ k-1
q(n ) Pq p =
k=1 x

n-2_ 2 -2 2
q

P(W2=n) = p = (n-1)°qn P .

[ e I

1

Consider now the continuous analogue of a waiting time:
the exponential distribution. The sum of two independent
exponentially equidistributed random variables Ty and T, may
be regarded as the waiting time for the second occurrence,
Wy = Tqy+T,, just as in the Bernoulli process. In the next
chapter we shall build a more concrete model on which to
define this random variable . Although we haven't yet defined
the Ti's on a specific sample space, we can nevertheless
compute the distribution of the continuous waiting time W,.

at

It is the convolution of ae with itself:



dens(W2=t)
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More generally, the density of the kth waiting time

X is the convolution

-at -at
oe * ge * ... *qge .

k times

Wy is the sum T1+T2+...+Tk of k independent exponentially
distributed random variables, all with parameter a. This

convolution is easily computed:

aktk_l -at
dens (Wk-—-t) = -(k—__r)—!- e o

We call this the Gamma Distribution. Notice that it has two

parameters: o and k.

We end this section by computing the means and variances
of the continuous waiting times. It is an easy exXercise to
verify that if T is exponentially distributed, then E(T) = 1/«.
where ® is the parameter defining the distribution of T. This
coincides with our intuitive feeling that ™ is an "intensity."
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The variance of T is easily computed by using integration

by parts twice.

Var(T) = E(T2) - E(T)2

= Jo t? we™2t gt - (42
o
t2 -at t -t 2 - tjw 1
R L L
o o 0 o
_ 20 _ 1
3 2
o o
_ 1
T2
o

So the standard deviation o(T) is the same as the mean
E(T): both are 1l/a.

Because the kth waiting time wk of the Poisson process
is the sum of k independent, equidistributed exponential

random variables, the variance of W

 is k/aZ.

2. Comparing the Bernoulli and Uniform Processes

We could at this point simply define the Poisson process
to be a sequence of independent, exponentially distributed
random variables, having the same parameter o . But we
prefer to take a different approach, which builds on the
two processes we have slready thoroughly studied. We there-
fore now give a detailed comparison of the Bernoulli and
Uniform processes emphasizing their similarities and their
differences. The Poisson process will be a "limit" of both

grocesses so that, in a sense, it furnishes a formal link
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between them. In so doing we will discover some new aspects

of both these processes.

Parameters

The Bernoulli process depends on a single parameter:
the bias p of the coin. The uniform process depends on two
parameters: the length a of the interval and the number n
of points sampled. There is already a certain asymmetry

here. The number of points per unit interval, a = g, is
called the intensity of the uniform process. Different
uniform processes having the same intensity are quite similar,

especially when n is large.

Sample Spaces

The sample space ¢ of the Bernoulli process is the set
of all sequences of zeroes and ones. To every such sequence
we can associate a set of natural numbers: the set of

positions having ones. For example,

(0,1,1,0,1,1,0...) corresponds to {2,3,5,6,...}.

This gives us a new way of looking at @ . It is the set of
all subsets of the natural numbers.

The sample space Q of the uniform process is the set of
all sequences (xl,xz,...,xn) of real numbers such that
Oixiﬁa. There seems to be little similarity between this

sample space and the Bernoulli sample space.
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Events
The elementary events of the Bernoulli process are the
subsets H = (Xn=1) = "the nth toss is heads." The ele-

mentary events of the uniform process are the subsets

(sixi<t) = "the ith point falls in ([s,t)". In both cases
the events in general are obtained by intersections, comple-

ments and unions from the elementary events.

Random Variables

Up to now we have viewed the random variables X, of
the Bernoulli process and X of the uniform process as being
fundamental. But there is an alternative point of view. We
could equally well define the Bernoulli process by the random

variables Sn’ the number of successes in the first n tosses.

We should write this sép): to denote the fact that it de-

pends on the parameter p. We know that Sép) has binomial

distribution with bias p:

(p) _ _ (n, k n-k

Similarly we could define the uniform process by the

random variables Un a(t), the number of points falling in
14
the interval [0,t). These are random variables we have not
yet seen. For each t in [0,a], Un,a(t) is an integer random
variable. 1In fact, one can easily see that Un a(t) has the bi-
4

nomial distribution, for points fall in [0,t) or in [t,a] with
the same probability as a tossed coin with bias p = ; lands

heads or tails, respectively. Therefore,
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_ _ (n, &tk tyn-k
P(Un’a(t) = k) = () (-7 .

We shall abbreviate Un a(t) to simply U(t). For each
’
t, U(t) is a new random variable. When a collection of
random variables depend on a continuous parameter, we call

the collection a random function. Be careful not to think

of this as a "randomly chosen function" any more than a
random variable is a "randomly chosen variable."
Next we compare the waiting time W, for the K th success

in the Bernoulli process with the xth

order statistic X(k)'
If we think of [0,a] as part of a time axis, there is clearly
an analogy between these two random variables. Compare

their distribution and density:

_ _ (-1, n-k k
_ _ ¢n=1,n t, k-1 t,n-k
dens(X(k)—t) = (.13 (1-3) .

These are quite similar indeed except that in the latter

case a factor of % has become g, as a result of differentiation.

We finally come to the gaps in these two processes.
In the Bernoulli process, the gaps T, are equidistributed

with geometric distribution:

6.13



The gaps L; of the uniform process are also equidistributed,
having the Dirichlet distribution:

n-1
= =D, ot

The analogy between these two cases is quite striking.
However, the analogy breaks down because the gaps Ti»
are independent, whereas the gaps L;are not. To be sure
the L; try as hard as they can to be independent — they are
exchangeable —but this is not enough. Another way to see
the difference between the two processes is to return to the
"fundamental" random variables Sh and U(t). The difference
S1"5m is the number of successes between m and n. Similarly

U(t)-U(s) is the number of points falling between s and t.

Now if (ml,nll and (m2,n2] are disjoint intervals

{ L { 3 LI \ L ]

5] Am T { T s I T T Tk
S =S S -8 U(t,)~-U(s,) u(t,)-U(s,)
n1 m1 n, “m, 1 1l 2 2

of integers, then the random variables S_ -S and S_ -S
i Bl | N2
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are independent. But even if [sl,tl) and [sz,tz) are dis-
joint subintervals of [0,a], U(tl)-U(sl) and U(tz)—U(sz)
are not independent.

The difficulty stems from the fact that the uniform
process is on a finite interval and a finite number of points
whereas the Bernoulli process is not limited in this way:
[Whether we choose to limit the Bernoulli process to a given
finite number of tosses is irrelevant, for we can always
continue it if we wish. The uniform process has no such
option. We can always drop more points, but we cannot ex-
tend the interval to a longer one without totally altering

our process.]

These considerations suggest that there is a third
process that makes the analogy perfect. Just letting the length go
to infinity doesn't work because we cannot make sense of
sampling a single point or a finite number of points uni-
formly from an infinite interval. We would like to have a
process that is both uniform on an infinite interval and

samples an infinite number of points. This works provided



we let a and n go to infinitely simultaneously while keeping

the intensity a=g fixed. Intuitively, because the number of
points per unit interval remains the same, in the limit one
will have the same intensity, and the uniform processes will
converge to a new process,.

For example, consider the density of a gap as a and

n become large:

n £ n-1
dens(Li=t) = ;(1-5)
n
ta
_ o ( l—n—)
ta
(l-n——) .
X n X
We know from calculus that 2im (1+H) = e, Therefore if
n-+eo
ae”tO ~-at
we let n tend to «», the above expression becomes TI=0y = e .

That is, in the limit the gaps become exponentially distri-
buted. This is exactly what we would expect, for the gaps of
the Bernoulli process are waiting times, and we would hope
that the gaps of the new process will be continuous waiting

times.



consider another example:; the joint density of two
gaps. In the uniform process this density is not the
product of the individual densities. In the limit, however,

the joint density of two gaps is the product
dens((Ll=tl)n(L2=t2)) = dens((X(l)=tl)n(X(2)=tl+t2))

_ n(n-1) <1 _ tl+t2 >n-2
= ——5— —_

a
a

a(t.+t,) \ O
. (a-_l_)<1_,_l__2_ )

a n

a(t,+t,) \ 2
(1___1_2_>

n

—a(tl+t2)

, aze _ < —atl>< —at2>
—_— = |\ ae ae

(1-0) 2

of the densities. So in the new process the gaps are in-
dependent and equidistributed, just as in the Bernoulli
process. This helps to confirm our feeling that this is

the correct approach.

As a final example, we consider the limit of the

random function Un a(t) as a,n»*~. Recall that
14



k n-k

- - MYy -t
P(Un,a(t) = k) = (k)(a) (1 a)
_ [y @t (1-at n-k
k! n n
at n-k e—at
As in the last two examples, we can see that (l-—H >

because k is a fixed integer. The limit of the first two

(), (at)"
factors is a bit harder. First write them as: T X -
* n

(n)y (at)k
Then interchange denominators to get: X ° %l .

n

The

second factor is now independent of n and a. The first factor

is:

n(n-1)...(n-k+1)
n°‘n ... n

= 1-a-head.oak

Each of these factors approaches 1 as n+». Since there are
a fixed number of them, their product approaches 1 as n=+«,

Therefore,

k
2im P(U_ _(t) = k) = (“Ei e Ot
noase Prd
n
_Sa
a



Since Un a(t) is the fundamental random function of
(4
its limit will be the fundamental

the uniform process,
We shall write Na(t) or

random function of the new process.

N(t) for this limit:

k

t) -at
P(N_ (t)=k) = (;! e ®

Notice that the distribution of Na(t) depends only on the

We call this distribution the Poisson distri-

product at.

bution. More precisely:

Definition. An integer random variable X is said to have

the Poisson distribution with parameter A if

k

A -A .
P(X=k) = E!—e if k_>_0

0 if k<O0.

The expectation of such a random variable is

E(X) = £ k P(X = k)
k



= e 2 Ak-1 ]
k=1 !
= re re?
=\ .
Therefore, E(Na(t)) = at.

If we imagine that an infinite number of points are
spread on the interval [0,«») with density a, then N(t) is the
number of points that have fallen in the interval (0,t).

The average number of points that fall in [0,t) is

E(N (t)) = at, and the average number of points per unit

= a. This justifies calling a the density

interval is El%lEll

or intensity of the process.

Notice that we may no longer speak of which point has
fallen first, which is second and so on. If we return to the
uniform process for a moment, we can see why this would be so.
Originally we used XprXgree., X as the defining random variables
of the uniform process. If we use the random function Un,a(t)'

we can no longer distinguish which point is which. All we know
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is which point is X(l)' which is X(2)' and so on. For ex-

ample X(l) =t if U a(t) = 0 and U,

n, a(s) = 1 for s>t. We

[
can recover the entire uniform process if we know all the random
functions Ul,a(t)' UZ,a(t)""' Un,a(t)' But when we let
a,n+» we only use the random function Un a(t). As a result

14
the order statistics make sense in the Poisson process, but
there is no analogue of the random variables Xy of the uni-

form process.

3. The Poisson Sample Space

So far we have discussed the Poisson process from two
points of view. We first considered it purely phenomeno-
logically via the random variables T, and Wk' Next we con-
sidered it as the limit of uniform processes as the length
of the interval increases. We must reconcile these two ap-

proaches, and we do so by an explicit construction of a model.

The Poisson sample space

is @ = {all rare sequences}, where a rare se-

o
quence is a set of points,[0,~) such that every finite inter-
val has at most finitely many points of the rare sequence,
i.e. the sequence doesn't cluster. To avoid confusion the

points of a rare sequence are called incidents or blips.

Don't confuse this notion with the concept of a sample point.
The sample points of Q in this case are the rare sequences

(not the blips).



Defining Q@ this way seems very natural because the
Poisson process is the limit of the uniform process (of in-
tensity a) on [0,a] as a+w. Unfortunately we have allowed
n to approach infinity as well. So the intensity is not an

intrinsic part of the Poisson sample space as it was for the

uniform sample space, where the intensity is § . The Bame sit-
uation occurs for the Bernoulli process. There the sample
space is the same whatever the bias of our coin. It is only
through the definition of the probability P that we can say
that "the average number of heads in n tosses is np." 1In a
similar way, we shall define a probability P on the Poisson
sample space so that the average number of points falling on
any interval of length t is at.

We define the probability P on § by means of the random
function N(t). We already saw in the last section what the
distributions of the random variables N(t) ought to be. We
will see in a moment how this point of view leads immediately
to probabilities on the elementary Poisson events. All the
distributions of the other random variables on § will be de-
rived from the distributions of the N(t). We make three

fundamental assumptions:



(1) For every nonnegative real number t, N(t) is a non-
negative integer random variable whose value is the number
of blips in the interval [0,t). More generally for s<t,
N(t)-N(s) is also an integer random variable whose value is

the number of blips in the interval [s,t).

k
(2) PM(E) - N(s) = k) = {altm8)) omalt™s) ie ocsct,
That is, on any subinterval [s,t) of [0,~), the number of
blips occurring has a Poisson distribution. Notice that we
assume the density of the blips is independent of the
location of the subinterval. In particular,

k

P(N(t) = k) = -(-OLE—),—— e ot
(3) 1I1f [sl,tl) and [sz,tz) are disjoint subintervals of [0,»),
then N(tl)—N(sl) and N(tz)—N(sz) are independent random
variables. In other words, what happens on disjoint sub-
intervals are independent of one another.

The above three fundamental assumptions implicitly de-

fine the events of Q. Assumption (1) implies that (N(t)-N(s)=k)
is an event of 9 for all t and k. We had a different notation

for this event in section I.4:
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s, t

]

{all rare sequences having k blips in

k the interval [s,t)}

(N(t)-N(s) = k).

The above fundamental assumptions may be rewritten in terms

of events as follows.

(1) The subsets s, t of  are the elementary Poisson
k

events. An arbitrary event of Q is obtained from elementary

events by intersections, complements and unions.

k
(2) P<[s,t]> = (a(}t:-!-s)) om0 (t-s)

k L
provided that [sl,tl) and [SZ'tz) are disjoint intervals.

(3) [ sl'tl ] and [ sz,t2 ] are independent events

Unfortunately there is a problem with the definition
of P above. How do we know that conditions (1), (2) and (3)
do not imply some subtle contradiction? For the Bernoulli and
the uniform processes it was quite obvious that our defini-
tion gives a unique value for P(A) no matter how the event A

is written in terms of elementary events. Although we have



given many reasons for believing that the Poisson process
should be well-defined, we haven't proved it vet. [If you
are willing to believe that the Poisson process is well-
defined, you can skip lightly over the rest of this section.]

c
For example, consider the event [sét] ; i.e., the

event that one or more blips occur in the interval [s,t).

We could also write this as:

s,t s,t
(5671 = (3771 v 35710 ..

The probability of the event on the left hand side above is:

C
P(15%1 )= 1 - 2(15;%1)
=1 - e—a(t—s) .

On the other hand, because the events [sit],[sét],... are
disjoint, the probability of the right hand side is the fol-

lowing. [Recall that the Taylor series expansion of ea(t-s) is

-

2
1 + a(t-s) +(ELE%§D +

POI5151) + R(I5 D+ ..

2
= a(t-s)e ®(t78) 4 iglg:gll— o-al(t-s)
(ea(t-s) _ l)e—a(t_s)
=1 - e—a(t-s)'



So we get the same answer either way.
As another example, if r<s<t, then k blips occur in
[r,t) if and only if some occur in [r,s) and the rest occur

in [s,t). In symbols:

595~ ()

We can therefore compute [rét] in two ways. The first way

is:

. late-r® —a(eon)

r,t
P([k]) X1 .

The second way is the following. It is quite complicated

and requires all of our assumptions on P.

P55 =P [EJ [(£+51 o (54
LAY~ S k-t
k r,s s,t
= 2, PR D
2=
k-2
k (a(s -r ))2 -a(s -r ) (a(t -s )) -a(t-s)
= 7 71 e (k-2)! €
2=0 y
k . ' k-2 -a(t-r)
= z %‘ (s =-r )2 %W (t -s )k—l e
2=0 ° *
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((s-r) + (t-—s))k e-a(t—r)

oK (t-r) ¥  -a(t-r)
___k! e .

Notice our use of the Binomial formula. In any case, we again
get the same answer either way.

Are there other relations among the events [sét] not

obtainable from the above two examples? The answer is no,
but this is not easy to prove: we leave this as an exercise.
In any case we have now shown that P is consistently defined.
One can in fact show that in some sense every possible proba-
bility on the Poisson sample space is a perturbation of the
probability P we have just defined (for example, a could

vary in time).



Sums of Independent Poisson Random Variables

The Poisson process has an important property we
now discuss. Imagine that we have two independent
Poisson processes of intensities o and B. To dis-
tinguish them we color the blips of the first process
red and the blips of the second process blue. Now sup-

pose we are color-blind. What we will see is a

| X - a Py A S > a AV4 >

r

Two independent Poisson processes x = red
= blue

Poisson process with intensity o + B. Let Nred(t) and

N (t) be the random functions of the red and blue

blue
processes respectively. We are saying that Nred(t) + Nblue(t)
has Poisson distribution with parameter (o+B)t.
Let's prove this. Since we assumed Nred(t) and
Nblue(t) are independant, the distribution of the
N (t) + N (t) is the convolution of their individual
red blue

distributions.

(t)=n-k)

Il
Il o~13

P(I\]red(t)'|'1\]blue(t)=n) P(Nred(t)=k)P(Nblue

0

—at (Bt)R7K

_Bt
k1 © n-K) ¥

e

n n
t -(a+B)t n! k_ n-k
© kzo KT (oK1 & P



n
= B (Bt 4 gy

((a + B)E)" ~(a+B)t
n! :

The last expression is the Poisson distribution with

parameter (a+B8)t. Thus the sum of independent Poisson

random variables is again Poisson. This is an important

property of the Poisson process, and we will find some very

deep applications of it in later sections.

Physical Systems and the Poisson Process

We have already mentioned several examples of exponentially
distributed random variables in section {1 . The Poisson
process is a sequence of independent exponentially distributed

random variables so we shouldn't be surprised at its ubiquity.

Geiger Counters

The first example that comes to mind immediately is the
sequence of clicks of a Geiger counter. If we are measuring
the radiation of a radioactive sample, the clicks are al-
most the blips of a Poisson process. Of course, we know that
the intensity o will gradually decrease as the sample decays.
However, if we choose to measure time so that a becomes
constant, the Poisson process is an almost perfect model of
the physical system. Even if we measure time in the usual

units, the model is very close.
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Quality Control

Suppose we have a continuous assembly process (say of a
rope or wire) and that this process occasionally produces
tiny defects randomly on the rope. If we know the length of
the rope and the number of defects, then the uniform process
is a good model of this system. On the other hand if we know
only the average number of defects per unit length (from prior
experience), then the Poisson process 1s a better model. Even
if we also know the length of the rope to be produced, the Poisson
process is the better model.

One can use such models for Quality Control. If a
long length of rope is being produced, one can sample portions
of the rope to determine if the number of defects per unit
length is exceeding a specified level of acceptance, as
might happen if an assembly machine is out of adjustment.

For example, if the average density of the defects on

the rope is %ﬁ defect/foot, then the probability of no de-

1007
fects on a rope of length 10 feet is e = e ~. The
] 2 v
(10® -pelo
probability of exactly two defects is —— e =ze .

Blips from Space

Suppose one is aiming a radio telescope toward one di-
rection in the sky. The signal one is receiving is a se-
quence of irregularly spaced radio bursts or "blips". 1Is
the signal simply noise or is it a broadcast from some station?
By comparing statistical properties of the blips with the

known properties of the Poisson process one can distinguish
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random noise from a broadcast signal with a certain proba-

bility of error.

Seeds on a Cornfield

There is a two-dimensional model analogous to the Pois-
son process. For a region A in the plane, let u(A) be the
area of A. We replace the random function N(t) by a random
function N(A) = number of blips in the region A. The funda-

mental assumptions on N(A) are:

(1) For every region A, N(A) is an integer random variable,

the number of blips occurring in the region.

K
(2) P(N(A) = k) = mf“!‘)—) @A) 4 o §(A) has the

Poisson distribution with parameter au (A7) .

(3) If A and B are disjoint regions, then N(A) and N(B) are
independent random variables. [0f course, we could produce
a model of this kind in any number of dimensions.]

An example of such a process is the process of sprinkling
seeds from an airplane randomly onto a field with some intensity
o, the average number of seeds per unit area. As another ex-
ample, we might have stars spread randomly throughout a
large volume of space with some average density o of stars
per unit volume.

These are just a small selection of an enormous range of
examples of the Poisson process occurring in nature. In
fact it is the most common of the four basic stochastic pro-

cesses. We shall now see how the Poisson process can enrich
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our understanding of the first two stochastic processes;
moreover it will give us a powerful tool for computing

probability distributions in these processes.

Gaps and Waiting Times

We must now check that in our model the distributions
of the gaps and the waiting times correspond to our earlier
computations. Consider first the waiting time Wy for the kth
blip.

h

(Wkit) means that the kt blip has not yet occurred by time

t, or equivalently that k-1 or fewer blips have occurred in
the interval [0,t). 1In terms of N(t):

(W >t) = (N(t)=0)u(N(t)=1)u...u(N(t)=k-1).

The events of the right hand side being disjoint, we may

compute:
P(W,>t) = P(N(t)=0) + P(N(t)=1)+...+P(N(t)=k-1)
2 k-1
_ _~at -at (at) -at (at) -at
= e + ate +——2——e +.-.+We .
. , . . d _d
The density of W, is the derivative JE (P(Wkit)) = HE(l_P(Wk>t))‘
: =) = —sy= _ d _ _d -at
Since P(Wk—t) = 0, dens(Wk—t)— £ P(Wkit)“ aE(e +
-at (ctt)k_l -at
e ). When we differentiate the latter

at e +o..+ _zk——]_)!

expression, each term except for the first gives rise to two terms.
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-at_a2te—at)+(a2 at a’ t e—at

te -

-dens(wk=t)=(—ae_at)+(ae

oK Lek=2 ¢ oKkl ~at

...t (—(k—_ﬂ—!—e -We ).

All the terms then cancel except for the last one so that

ctktk_l -at
dens (Wk=t)=w e ’

which is the gamma distribution. 1In particular, the first
waiting time (the first gap) is exponentially distributed.

To show that the gaps are independent and exponentially
distributed with parameter o we use the continuous law of
successive conditioning and the continuous law of alternatives
in exactly the same way that we used the ordinary law of
successive conditioning and the ordinary law of alternatives
to compute the distributions of the gaps of the Bernoulli
process in section V.2. The verification is left as an ex-

ercise.

The Uniform Process from the Poisson Process

We built the model of the Poisson process by thinking
of what happens to the uniform process as the length of
the interval gets larger. We can turn this around; by
conditioning the Poisson process to have exactly n blips
in the interval [0,a], we get the uniform process.

To see this we compute the conditional probability

_ P((N(t)=k) n(N(a)=n))

P(N(t) = k[N(a) = n) 5N (a)=n) .
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Now (N(a)=n)n(N(t)=k) says that n blips occur in [0,a) and
that k of them occur in [0,t). 1In other words k blips occur

in [0,t) and n-k occur in [t,a). These are disjoint inter-

vals; therefore

P((N(t)=k)n(N(a)-N(t)=n-k))

P(N(t)=k|N(a)=n) P(N(a)=n)

_ P(N(t)=k)P(N(a)-N(t)=n-k)
P (N(a)=n)

o)X —at (a(a-t))P* —a(a-t)

_ Tkt __°© (n=K) !
n
(agi o~0a
- n! tk(a—t)nmk
kI (n-Kk)! 0
_ .n, t.k,. t Dk
= (@D .

We recognize this as the distribution of Un a(t). Since we
’

can express any computation about order statistics in terms

of the random function Un a(t), we can in principle compute

’
anything about order statistics by conditioning the Poisson
process.

For example, we can compute the densities of the order

statistics without using a limit argument as we did in section d. 8.

dens(X( =t) dens (Wk=t|N(a)=n)

k)

dens((wk=t)n(N(a)=n))
p(N({a)=n)
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I1f you feel uneasy about the use of a mixture of a density

and a probability in the above computation just rewrite it as:

ol

dens(Wk=t)n(N(a)=n)) = 3E P((Wkit)n(N(a)=n)).
The event (Wk<t) is the same as saying at least k blips occur
in [O,t), i.e. (wk<t) = (N(t)=k)n(N(t)=k+l)n... . On the
other hand, if we know that the kth blip has occurred at
time t, then (N(a)=n) and (N(a) -N(t)=n-k) are the same

event. Therefore

dens((Wk=t)n(N(a)—N(t)=n—k))

dens (X P(N(a)=n)

=t) =

(k)

dens(Wk=t)P(N(a)—N(t)=n—k)
P (N(a)=n-k)

aktk-l .
k-1)! (n-k)!

n! tk_l(a—t)n_
(k~-1) ! (n—k) ! n

- (Bl

Notice that when a Poisson process is conditioned

by (N(a) = n), the result is always the uniform process
of sampling n points from {0,a] no matter what the
intensity was in the original Poisson process. This is
further confirmation that the Poisson process is the
process of sprinkling points at random on {0,«).
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L. The Schr¥dinger Method

One of the most striking applications of the Poisson
process is to the discrete problem of counting the number
of ways of putting balls into boxes. We consider the
problem in full generality. That is, we want a technique
whereby if we are given k balls and n boxes and if we
are given any restrictions whatsoever on the occupation
numbers, then we can compute how many ways this can be
done. For example, one might restrict each box to contain
zero, one or two balls. For small k and n, one could
exhaustively enumerate the possibilities. But for k
and n even as small as 10, this is already a very non-
trivial problem. As another example, suppose we require
that if the third box has an odd number of balls then the
fifth box has a multiple of seven balls in it. We need
a very systematic procedure if we are to give a
reasonable solution to such a counting problem. The tach-
nique we will develop is due to Schrédinger, and we call

it the randomization technique for reasons we will see in

the next section.

We begin with a formula from calculus whose signifi-
cance is seldom made very clear: Taylor's formula. The
difficulty stems from a common misconception that one is
supposed to use this formula to compute the Taylor expan-
sion of a function. Although in principle this is possible,

this is quite misleading. In fact one usually computes
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the Taylor expansion by some other technique (and there
are many such techniques). One uses the Taylor formula
to compute the values of the derivatives of the function

at 0 rather than the other way around!

Taylor's formula. Every function £ that can be

differentiated infinitely many times at O has a

unique power series expansion, called the Taylor expan-

sion of £ at O:

£0) + £°(0)x + 2£°(0)x? + ++» + L £ ()™ 4 .o

The notation f(n)(O) is an abbreviation for

gt
—f (%) .
[éxn x=0

For example, if one wishes to compute the Taylor
expansion of f(x) = ¥ (1l+x), one should not start dif-
ferentiating repeatedly. The best way is to use the

binomial expansion:

a a o
(1+x)~ = 1 + (l)x + (2)x2 +oees
o (a)k
where the binomial coefficient (k) = T makes sense

for any number o as we already noted in section III.6.

So for example

f(x) = /(1+x) = 1 + (l{Z]x + (lé2)x2 + osee

and by Taylor's formula we see that

3! " 1le
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Suppose that we are given some conditions on the
occupation numbers of n boxes. The number of ways we
can place k balls into the n boxes subject to these

conditions is nkP(Bk), where Bk is the event:

Bk = "a placement of k balls into n
boxes satisfies the given conditions

on the occupation numbers."

This event is a subset of the sample space Q of all
placements of k balls into n boxes, eachbbeing equally
likely.

To compute P(Bk) we construct "physical" boxes from
an interval of length [0,1] by cutting it into subin-
tervals each of length ;/n. Then P(Bk) is the probab-

ility that n points dropped

*%
1/6 1/3 1/2 2/3 5/6 1

6 boxes made from [0,1]

at random uniformly on [0,1] will saﬁisfy the given
conditions on the occupation numbers. This converts any
balls-into~boxes problem into a computation of the
pProbability of a certain event of the uniform process.
Now comes the important step. We ask a different

question. What is the probability that for a rare sequence
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of blips on [0,~) those blips falling in [0,1] satisfy
the given conditions? Call this event A. At first it
appears that the computation of P(A) 1is a much harder
problem, but we shall see that it is actually much easier.
Once we know P{(A), we still do not yet know P(Bk) because
the events are in completely different processes.
However, we just saw that whenever we condition the Poisson
process by the event (N(a) = k), the result is a Uniform

process. Therefore,

P(B,) = P(A[N(1) k),

and this holds no matter what the intensity @ of the
original Poisson process. The relationship between P (A)
and the condition probabilities P(A|N(1l) = k) is given by

the law of alternatives:

P(A) = ) P(A|N(1) = k)P(N(1) = k)
k=0
w k
= ) P(B,) or e .
koo kKT

If we multiply both sides of this equation by ea, we get

the important formula:

P(A)ea

I

Il ~18
Lae]
os]
IQ

The left hand side is a function f(a) of the variable a

because A is an event of the Poisson process, which depends
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on the intensity o. The probabilities P(By), on the other

hand, do not depend on oa. Therefore, by the Taylor formula,

do

k
[E-E(p(meo‘):] i

da
a=0

Consider the following example. Suppose that the con-

k
d
o=0

or

P(Bk)

ditions on the occupation-numbers are that Gi be zero or

one for all boxes 1i. We computed P(Bk) for this case in
(n)

gection III.2: P(Bk) = kk . To compute this using the
n

randomization technique we must first compute P(A), where

A 1is the event "either no blips or just one blip occur in
each of the n subintervals of length %ﬁ of [0,1}." 1If
we write A; for the event "box i (i.e. the subinterval
[(i-1)/n,i/n) of [0,1] has either no blips or just one

blip," then

A=A1ﬁ Azﬁ s e r”An.

In terms of elementary Poisson events,

i-1 i i-1 i
’ [ ] i-1 .
[ ]u[ 1“}(031@ S 1)
So P(A;) = e_OL/n + % e"/n _ (1 + %)e—a/n.

Now comes the crucial step. In the Poisson process, the
number of blips in disjoint intervals are independent of one
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another. This is not true for the uniform process, and it
is not true for occupation numbers of balls into boxes. It
s this fact about the Poisson process that makes this
technique so effective. P(A) 1is easy to compute because
the computation of P(Ai) is a routine application of the
definition of the Poisson process, and P(A) 1is the product

P(A,)P(A,)+-P(A).

Pa) = (1 + 3V (14 DT et (14 YN
n,f;ctors
n
= (l + %) e_a.
o a n dk o n

a

dk n-

The formula -P(B,) = ———[l + E) is a perfectly
k dak n =0

legitimate answer to this problem. We can, however, put
n
this into a nicer form by first expanding (l + %) using

the binomial formula and by doing little rearranging:

aent - O
+ =} = =
n k=0 k’ 'n
I s ¥
k=0 ki nk
_oB My ot
k=0 nk k!
(n)
Therefore P(Bk) = i exactly as we got previously.
n
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It appears that this is the harder way to compute this answer,
but that is only because this example is special. In most
cases this technique is considerably easier.

As a harder example consider the event B, = "every box
has at least one ball in it." We computed P(Bk) in section
Ly.8, using the inclusion-exclusion principle. This was
quite an elaborate argument. To compute P(Bk) using
randomization, we first compute P(A), where A = "all n

boxes of [0,1] have at least one blip." As above, let

A, = "box 1 has at least one blip." Then
i-1 i c
14 -
Ai = n n so that P(Ai) =1 - e a/n. Hence
0
P@) = (1-e~%™™ na pa)e® = (1-e MDDl = (/)N
Therefore

k n
P(B,) = [—d—k-(e“/“ - 1) ]
dao
o

Now we could leave the answer in this form, but we can derive

=0 .

a better expression by using the binomial formula and the

well-known Taylor expansion of the exponential function.

n . -
@™ - ™ = ¥ (M-I eV
j=0

Il
~1
~

o]
| S—
T
H
(]
hr~18
||-=
~
o]
0
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Therefore, P (B,) = _z

DRCEEIOICERRREICE
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N co G IR

For another example, suppose we want every box to have

at most two balls. By now one should be able to compute this

immediately:
-a/n | o _-a/n a2 —a/ny "
P(A) = (e + = e + —— e j
n 2
2n
2 N
p(ale® = (1 + 2 + 2
n 2
2n
k , I
_ d o o
P(B,) = I:——E @+ + =) A‘ .
da 2n
—o=0

Summary

To compute P(By), where B, is the event "a placement
of k balls into n boxes satisfies certain given condi-
tions on the occupation numbers," we do the following:
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Let A be the event of the Poisson process that

"the rare sequence of blips on [0,«) has the property
that the blips falling in [0,1] satisfy the given
conditions on the occupation numbers.® Box i 1is now
the subinterval [:iil ' i).

Compute P(A). This will be a function of o.
Generally this will not be difficult to compute because
what happens in disjoint intervals of the Poisson

process are independent of one another.

k
Apply the formula: P(B,) = d_ p(a)e” . One can
k dak 0=0

often apply some formulas such as the binomial formula,
to expand P(A)eOt thereby deriving another expression

for P(Bk).



5. Randomized and Compound Processes

Randomization is a general term for the method whereby
new stochastic processes are created by allowing a para-
meter of a given stochastic process to be chosen randomly

according to some distribution.

Randomized Uniform Process

For example, consider the uniform process of sampling
n points from the interval [0,a]. Suppose that instead
of sampling a fixed number n of points we sample a random
number N of points. That is, we consider the two-step
process:
1) Choose a number N of points to be sampled,
according to some probability distribution:

P(N = n) = P,

2) Once N 1is known, sample that many points

from [0,a] according to the uniform process.

We have replaced the fixed number n of points by the integer
random variable N, having probability distribution
P(N = n) = Py The result is a new stochastic process, the

randomized uniform process.

Every question we have asked about the ordinary uniform
process can now be asked for the randomized process. To

compute the answers in this new process, we use the law of
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alternatives. PFor example, we might ask what the probability
is for exactly k ©points to be in the interval [0,t].

Call this event A We want to compute P (A ). By the

k,t’ k,t

law of alternatives,

P(A, )=

Ne~18

i OP[Ak,t|N = n}P(N = n).
Now P(Ak,th = n) 1is the probability that exactly k points
are in [0,t] but in the ordinary uniform process of samp-
ling a fixed number n of points from [0,a]. We computed
this probability back in section VI.1l, where we denoted it

by P(U . (t) = k).

| ]
|

0 t a
;b—ﬂ g N — —
k points n-k points
k n-k
- = = = (M (Y -t
P(A ([N =n) = P(U _(t) =k) = LG @ -2 .
Therefore the unconditional probability P(A ) in the

k,t

randomized uniform process is

o n-k
W = IO -9 e

P(A

If the probabilities p, have a nice form, then it may be
possible to simplify this expression, but normally the

answer to a question about a randomized process will be in
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the form of an infinite series.

There are two reasons why one would randomize a

stochastic process. The first is that it allows one to

produce more general models of phenomena, which can be more

realistic reflections of the phenomena being studied. We

shall see examples of these in the exercises. Perhaps more

important is the second reason: randomization can be used

as a very powerful and effective computational tool. In

fact this is one of the most important uses of probability

theory. Problems that cannot be solved by direct means can

be solved by allowing certain parameters to be random vari-

ables. The technique of the last section is just one of

these.

Consider another example in the randomized uniform

process. Let By be the event "in the process of sampling

N points uniformly from [0,1], all the points appear in

[0,tl." Then
P(B) = ) P(B [N
n=0
by the law of alternatives.
ability that all the points
ling n points from [0,1]

P(B,|N = n) = tn, since we

el

n)P(N = n),

Now P(B,_,|N = n) 1is the prob-

el
of the ordinary uniform process of samp-
occur in {[0,t]. Therefore,

have chosen the length of the

interval to be 1. Therefore,

P(By) = Xotnpn.
n=
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This is a function of t that is usually called the

generating function of the sequence {p_}.

The technique of generating functions is important
both in probability theory and in other branches of mathe-
matics. Unfortunately it is usually defined by fiat with
little motivation beyind saying that it is useful. Using prob-

ability theory we see more intuitively how it arises. Namely,

given a sequence {pn} forming a probability distribution,
the generating function f£f(t) = ngo pntn of the sequence

is the probability that a random number of points, the number
chosen according to the distribution p . When sampled from
the unit interval, all occur in the subinterval [0,t]. 1In
other words, the generating function is a way of studying

a sequence {pn} by setting up a certain experiment using
the sequence {pn} and by studying the properties of this
experiment. This is the underlying reason why this

technique turns out to be so useful.

Randomized Poisson Process

Now consider the Poisson process. Since this process
may be regarded as being the uniform process as n and a
approach infinity but with a = g fixed, we see that the
intensity o 1is the analog in the Poisson process of the

number of points sampled in the uniform process. The

randomized Poisson process is a Poisson process but with a

random intensity A (capital alpha) instead of a fixed
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intensity. More precisely, this process is again a two-step
process:
1) Choose an intensity a according to the
density function g(a) = dens(A = o) of
the positive continuous random variable A.
2) Observe a rare sequence of blips in the
Poisson process having the chosen intensity.
Let T be the waiting time for the first blip in the
randomized Poisson process. To compute the distribution of
T, we use the law of alternatives but this time the con-

tinuous version.

P(T >t) = J P(T >t]A=a)dens (A = a)da.
0

The conditional probability P(T >t|A = a) is computed in

the ordinary Poisson process with intensity o. Therefore:

P(T >t) = J.e_atg(a)da.

0
The function g(t) = f:e-atg(a)da is called the Laplace
transform of the function g(a).

The Laplace transform is an important technique in
engineering and in the sciences as well as in mathematics.
We now see why. If we are given a function g(a) forming
the probability density of a positive random variable, we
can study g(a) by setting up an experiment and then
studying the properties of the experiment. The experiment

consists of waiting for the first blip of a Poisson process
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whose intensity is chosen according to the density gl(a).
The probability distribution of this experiment is 1 = é(t),
where @(t) is the Laplace transform of g(a).

As a simple example of this point of view, we can
explain an important property of the Laplace transform: the
Laplace transform of the convolution of functions is the
product of their Laplace transforms:

/\ AA

fxg = fqg.
Suppose that f(a) and g(a) are the densities of indepen-
dent random variables A and B. Their convolution is the
density of the sum A + B. Let T be the waiting time for
the first gap in the Poisson process with random intensity
A + B. We can compute P(T > t) 1in two ways. Since the
density of A + B 1is fxg, we know that P(T > t) = f:;.
On the other hand, we may view the event (T > t) in
another way. Sprinkle blips on [0,®) with intensity A
and then with intensity B. Then (T >t) = (TA.>t)f\(TB2>t),
where TA is the waiting time for the first A-blip and
Ty is the waiting time for the first B-blip. Since these

two kinds of blips were sprinkled independently,

P(T > t) = P(T, > t)P(Ty > t) = £(t)g(t). Therefore
A AN
fxg = fqg.

Yoga Randomizing by an integer or a continuous random vari-
able results in a "generating function" or a "transform" of
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the distribuytion or density, respectively.

All transforms can be given a probabilistic (possibly
quantum probabilistic) interpretation, The Fourier trans-
form is perhaps the deepest example of a transform, since

it is intimately connected with quantum mechanics.

Finite Sampling Processes

The finite sampling process or balls-into-boxes can
also be randomized. Namely we choose a random number K of
balls and then place them randomly into the n boxes. If
we can make a judicious choice of distribution for K, then
we can possibly make computations in the finite sampling process
easier. It was Schrddinger's observation that a good choice
for the distribution of K 1is the Poisson distribution.

The reason that the Poisson distribution works so well
is the fact about the Poisson process noted earlier: if we
combine two independent Poisson processes with intensities
o and B, the result is a Poisson process with intensity
a + B. In terms of the Poisson distribution this says that
if X and Y are independent Poisson random variables of
parameters A and u, then X + Y has Poisson distribution
with parameter A + y. We simply reverse this. Suppose
that K has Poisson distribution with parameter o. Then
K=K, + K + *°** + Kn, where the K; are independent
Poisson random variables each with parameter o/n. The
randomized finite sampling process then "sulits up'" into

n independent randomized finite sampling processes. LEach of
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' I ¥ R B Y | randonize L L sy Jeree Split up K Lo JL_§ cceve [
n boxes n boxes n boxes
Ordinary finite Randomized finite n independent
process process randomized finite
processes

these randomized finite processes consists of placing a

random number Ki of balls into one box. In the last sec-

tion we used a more specific model. There K was N(1),
the number of points occuring in [0,1) in the Poisson
. . 1 1 1
process of intensity a. Then N(1) = Nl(H} + NZ(H}4----4-Nn(H)
is a sum of n independent Poisson random variables each of
intensity o/n, where Ni(%) is the number of points occurring
1

in [(i-L/n,i/m), ie. N () =n@) - n(

i-1
n )'

“n

By randomizing, we made non-independent random variables
(the occupation numbers) independent. We return to the
non-randomized process by conditioning the randomized one,
using the law of alternatives.

A generalization of this process immediately comes to
mind. We could just as easily drop balls into boxes of dif-

ferent sizes. That is, such that the balls are not equally
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likely to fall into the various boxes. The Schrddinger
technique works Jjust as well in this case; the only change
required is that K be split into a sum K 4otk , where
K, is Poisson with parameter Pijas Py being the prob-
ability that any given ball falls in box i. This is the
physicists' model of a classical statistical mechanical

system. Here P; is related to the energy of the state rep-

resented by box 1i.
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Distribution Type Parameter (s) Model (s)

Exponential continuous o W1 or any Tk in

the Poisson process

Gamma continuous o,k Wk in the Poisson
process
Poisson integer A N(t) 1in the Poisson

process, where

A = ot.
Distribution Distribution or Density Mean Variance
Exponential £(t) = ae OF 1/ 1/ @
k, k=1
ot~ o mat g k/ ot
Gamma f(t) =TT © /X /
Xk -2
Poisson Py = %7 © hN A

Table of Poisson Distributions

Fact If N and M are independent Poisson random variables
whose parameters are A and yu, respectively, then N + M

is also Poisson but with parameter X + yu.




Bernoulli Poisson Uniform
p = bias o = intensity or n = no. of points sampled.
average n r of a = length of interval.
blips per unit interval. n
3= intensity.
X, = outcame of i™ toss. X; = ith point sampled.
independent independent
equidistributed equidistributed

Binomial distribution

Uniform distribution

Sn = no. of successes in
first n tosses.

Binamial distribution

N(t) = no. of blips
in [0,t).

Poisson distribution

U(t) = no. of points
in [0,t).

Binamial distribution

W = kth waiting time. Wk = kth waiting time. X(k) = kth order statistic.

Negative binomial Gamma distribution Dirichlet distribution
distribution

Ti =1 gap. Ti =1 gap Li =1 gap.

independent independent not independent

equidistributed equidistributed exchangeable

Geametric distribution

Exponential distribution

Dirichlet distribution

Table of Analogies: Bernoulli, Poisson and Uniform Process




7. Exercises for

Chapter VI. The Poisson Process

1. You are the captain of the Bicentennial Eagle, a spaceship

that has just returned from hyperspace to ordinary space, only
to encounter the debris of a recently destroyed planet. The
debris consists of essentially spherical rocks 20m in radius.
The destroyed planet was originally the same size as the earth,
and its debris is now uniformly scattered throughout a region
10%m in radius. Your manuvering jets are temporarily out of
order. If you are headed directly toward the center of the
debris, what are your chances of getting all the way through
the debris without a collision? Assume that your ship has a
circular cross-section of radius 10m. Explain any assumptions

you may be making.

4 . .
2. At 5 x 10 km/hour how long would you have in exercise 1
to repair your manuvering jets before your chances of a collision
reach 10%? Explain precisely what you are computing in this

problem.

3. A beam of protons is accelerated to high energy and is deflected
so that it encounters a pool of liquid hydrogen. The tracks of the
protons in the beam are visible in this detector, and one can

easily see where a proton in the beam collides with a proton in

the pool of liquid hydrogen. Describe how far a given proton

travels before it collides with a proton in the pool.



4. There exist enzymes that attack only a certain nucleotide
sequence in a chromosome. Describe a means of testing whether or

not a given nucleotide sequence appears randomly in a given chromosome.

5. In the birthday coincidence problem (exercise II. 9), the paradox
comes from thinking that one is looking for another person with the
same birthday as your birthday. Compute the distribution of the
number of persons chosen at random you must ask until you find one
with the same birthday as yours. What kind of distribution is it?
Find an exponential distribution that approximates it. Compute

the average value of this random variable as well as the number of
persons one must ask in order to have a 50% chance of finding one

with your birthday.

6. How does the answer to exercise 5 change if we include February

29th as a possible birthdate?

7. Roughly speaking, the relationship between the birthday problem
in exercise 5 and the birthday coincidence problem in exercise II. 9
is that in either case we have a certain number of pairs of persons
from which we look for a birthday coincidence, but that in the former
problem we consider a collection of pairs all of which have one given
person in common whereas in the latter we consider all pairs from a

set of persons. For example we saw that in a class of 23 students

there is about a 50% chance of a birthday coincidence. Such a class
23 + 22 . . .
has (%f) == = 253 pairs of students. Compare this with

the last part of your answer to exercise 5.
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8. In a large class the students call out their birth-
days until someone in the class finds that his or her birtnday ihas
been called. Technically this is not a random variable since it is
possible that no pair of students have the same birthday. However,
if we assume that a match will eventually be found, then it is a
random variable which is approximately exponentially distributed.
Find the parameter for this exponential distribution, and compute

its mean. Compare with exercise III.25.

9. A sociobiologist wishes to test whether or not birds of a certain
species practice territorial spacing of their nest locations. Com-
pute the distribution of the distance of a given nest from its nearest

neighbor. Use this to formulate a statistical test.

lOf Let Y see , Y be n independent, exponentially distributed

17 Yttt ¥y
random variables, each with parameter o . Compute the order statistics

Y( < Y( < e of these random variables. One can do this

o < Y
1) - 2) — — (n)
in two ways. Either change variables and convert to a Uniform process
(see section V.8) or use a modification of the reasoning used

in exercise II1I.53 which was made rigorous in section V.7 ("needles

on a stick problem") .

11% Compute the expectations E(Y ) in exercise 10 above. Compare

(1)
with the expectations of the order statistics of the gaps in the

Uniform process (exercise III.53).

12f (Feller) Three persons A, B and C arrive at a post office
simultaneously. There are two counters, and these are taken immediately
by A and B. Assume the service time of a given individual is ex-

ponentially distributed with parameter o . Assume also that different
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Chapter VII Entropy and Information

That probability is closely connected with information
should come as no surprise after problems such as exercise
¥,5 (the jailer paradox). What entropy does is to make this
connection precise. In section 1 we discuss entropy for
finite-valued random variables. In the next section we give
a dramatic application of the law of large numbers
to information theory: the Shannon Coding Theorem. Finally
in section 3> we turn to the case of continuous random variables
and prove that essentially all the interesting distributions
we have seen in probability theory may be defined by entropy

considerations.

1. Discrete Entropy

We will start by defining entropy for integer random
variables taking only finitely many values. Later in a
step-by-step procedure, we will extend the concept to continuous

random variables.

Partitions.

A random variable is said to be a finite-valued random

variable if it takes finitely many values. For example, Sn
in the Bernoulli process is finite-valued since it can only
take on values from 0 to n.

If X is a finite-valued random variable whose values are
1,2,3,...,n, then X determines the events (X=1), (X=2), ..., (X=n).
Moreover, every outcome of Q is in exactly one of these events.

We call this situation a partition of Q:
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In general, a partition v of 2 is a collection of nonempty

events Bl'BZ""'Bn called the blocks of 7 such that:

(a) no two blocks intersect,
(b) everyv sample point is in some block, i.e.

U Bi = Q0 .
i

The only difference between a random variable X and a par-
tition 1 is that a random variable consists not only of a
partition but also of a lahel (the value X takes on that block)
for each block. The partition 7 (X) defined by X is the par-
tition whose blocks are (X=1), (X=2),...,(X=n), i.e. 7(X) is
obtained by ignoring the particular labels that X attaches to
the events it defines.

More generally suppose that we have a number of finite-
valued random variables Xl""’Xr' The smallest events that

one can define by these random variables are the events



(X1=11)fj(X2=12)r\... A(Xr=lr) ,
and any event definable by the random variables Xl,...,xr
is necessarily a union of some of the above events. The
partition whose blocks are the above events is called the

(joint) partition w(Xl,...,Xr) defined by Xl,...,X The

r.

partition w(Xl,...,Xr) is related to the partitions
w(Xl), w(XZ),...,w(Xr) by means of the operation on partitions
called the meet. 1In general if o and 1 are two partitions,
whose blocks are Cl'CZ""' C2 and Dl'DZ""’Dn respectively,
then the meet of ¢ and 1, written oAt is the partition whose
blgcks are Cif\Dj whenever they are nonempty. In terms of
the meet, n(xl,xz,...,xr) = w(Xl)An(XZ)A...An(Xr).

As the joint distribution of random variables determines
everything about their "correlation" so the joint partition
of a set of partitions determines their correlation. In par-
ticular, it is easy to see that independence of random variables
is really a property of the partitions defined by them. Let ©

and t be two partitions. We say o and T are independent if and

only if

P(CAD) = P(C)P(D)

for all blocks C of 0 and D of t . When ¢ and Tt are indepenlent
we can display the sample space Q as a "checkerboard"
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typical block of T

TN

T Q

typical block of ¢

o "

whose rows are blocks of 1, whose columns blocks of o, and such
that the "area" is proportional to the probability.

The meet is the analog for partitions of the inter-
section of sets. There is a whole algebra of partitions
analogous to that for sets. For example, there is an analog
of set union called the join of partitions and written ovrt.

We leave it as an exercise to decide how this ought to be
defined. We will not have need of this particular operation.

Another notion from sets is that of subset, and its analog
for partitions will be very important for us. We say that a

partition o with blocks Cl,Cz,..., Cl is finer than a partition

T with blocks Dl’Dz""'Dm if every block Ci of 0 is contained
in some block Dj of 1. We write o<t for this relation. If X
and Y are finite-valued random variables, then w(X)<w(Y) means

that an observation of X is sufficient to determine anything

one might ask about Y. The technical term for this relation

is that X is a sufficient statistic for Y. More generally,




if Xl'X2""'Xn are a collection of finite-valued random

variables such that n(Xl,...,Xn) is finer than w(Y), we say

that Xl’X2"“’Xn is sufficient for Y. 1In practice one often

finds that in a particular experiment one wants the value of
Y but that the random variables one actually measures form a
sequence Xl’X2"“ . If for some n,Xl,Xz,...,Xn is suf-
ficient for Y, then one can in principle compute Y from the
measurements of the X's. One also says that Xl,...,Xn

code for Y.

Entrogz

The reason for introducing partitions is that the "infor-
mation content" of a finite-valued random variable X is a
property of the collection of events defined by X and not by
the particular labels X happens to assign to these events.

We now make this precise. The entropy of a partition m whose

blocks are the events Bl’B2""'Bn is defined by

1
Hz(“) = ?_P(Bi) logz(-P—rB—D-),

where by convention 0°log2(%) is defined to be 0. The entropy

of a finite-valued random variable X is the entropy of its

partition:



HZ(X) = HZ(N(X)).

We remark that 1og2 could be replaced by logb for any
base b>0. The only effect on Hz(w) is to multiply by the
scale factor 1ogb(2), i.e. we merely alter the units in which
the entropy is measured. The use of 1og2 is traditional. 1In

this case we say that Hz(n) is measured in bits. More gene-
. . 1
rally, we will write Hb(n) for iP(Bi) 1Ogb(§T§;T)' If we

use H(rm) without a subscript we mean that the base b should
be taken to be e, the base of the natural logarithms. We
say that H(m) is measured in nats (natural digits).

Consider the example of tossing a biased coin with bias
p, i.e. consider a partition consisting of one or two blocks.

If p is 1, then we know for certain that the coin will always

. o 1 . 1, _
show heads. In this case HZ(X) =0 1og2(6) + 1 1og2(r) = 0.

Entropy zero corresponds to total certainty. Now suppose

that p is somewhat less than 1. The toss is now somewhat less
predictable, and we find that the entropy is a small positive
number. As p decreases, the entropy gradually increases,

reaching a maximum when p = 1/2. For a fair coin



1 1 1 1 . .
HZ(X)= 7°10g2(2) + I-log2(2)= > + 5 = 1 bit. Finally, as

p decreases from 1/2 to 0, the entropy again decreases to

zero; for now the toss is becoming increasingly predictable.

A

0.5 1 P

More generally suppose that m has n blocks. Shannon
proved that Hz(n) takes its maximum value precisely when all
n outcomes are equally likely. 1In this case the entropy is
Hz(“) = logz(n) bits or H(m) = 2n(n) nats. We will now prove
this. All of our later characterizations of distributions
having maximum entropy rely on the same basic technique we

will use in this case. The key fact is this inequality:



y=2n (u)

¥

n(u) < u-1 for all u > 0

and 2n(u) u-1l if and only if u =1

Basic logarithmic inequality

This fact is easy to prove using Calculus: f(u) = 2n(u)-u+l
has derivative £'(u) = & - 1 so f£'(u)>0 for u<l and £'(u)<0
for u>l, i.e. f(u) takes its maximum value at u=l.

Now compare H(m) to 2n(n) using the above inequality:

n
. 1
H(w) - 2n(n) = T P(B.)|2n - 2n(n)
i=1 1 [?lBii]
n 1
= L P(B.)an .
i=1 1 [PIBiin]
n
< EP(BJ.)[PI:; n—l]
i=1 i



nl n
= I (H) - I P(Bi)
i=1 i=1
=1-1=0.

The fact that the probabilities of the n blocks add up to 1,
n

z P(Bi) = 1, is used twice above: in the first equality and
i=1

in the second last one. In any case we find that if m has n
blocks then H(w) < &n(n).

When is equality possible? In our derivation of

H(m) < #¢n(n), equality can fail in only one of the steps:

1 1 . . . .
Zn[P Bi n] < §T§ITH - 1 for all i. Now the basic logarithmic

inequality tells us that this will be an equality if and only

for all i. This

Sl

. 1 _ i _
if B(B,Tn - 1 for all blocks, i.e. P(B)) =

completes our proof.
When X has a partition 7 all of whose blocks have the

same probability, we say that X is completely random or

totally random, although this is not quite the best terminology.

One should really say that X has maximum uncertainty. (Equiva-

lently, the measurement of X gives one the maximum information

about the outcome of an experiment, of any random variable



having the same number of outcomes.) It is unfortunate

that it has become standard terminology to describe such
random variables as being simply "random". For example,

one often says "choose a card at random" rather than "choose
a card completely at random", as if there were no other way
to choose a card from a deck. In fact most "random" suffles
of a deck are far from being completely random (see exercise 4);
as a result, choosing a card or dealing a hand is not totally
random and the probabilities computed in exercise III.4 would
seldom be achieved in an actual game. On the other hand, the
terminology suggests that they are. This is the price one
pays for using a vague, imprecise language to describe
probabilitic concepts.

Properties of Entropy

So far we have discussed examples of the entropy of some
random variables. Although these examples provide some moti-
vation for our definition of entropy they leave unanswered
the basic question of why this formula and not some other is
the one we use to define entropy. We will now consider why
our formula is the only possible one. We will do this by
finding three self-evident properties that ought to hold for
any reasonable measure of information (or entropy). It then
turns out that our definition of entropy is the only one that

satisfies all these properties.
7.10



We begin with the most obvious of properties. As we have
defined it, H is a function of partitions of the sample space.
However, it should be clear that we want H to depend only on
the set of probabilities of the blocks of the partition. In
fact, we want H to depend only on the positive probabilities
which occur. Moreover, we want H to be a continuous function
of these probabilities. This is a convenience only. We
could, with a great deal of effort, derive continuity from
other more complex conditions; but we would rather concentrate
on the important issues. We summarize the conditions on H we
have just described before going on to the difficult question
of conditional entropy.

Entropy property 1. An entropy 1is a function H defined on

sets {p1,p2,...,pn} of nonnegative real numbers, which
satisfy p1+p2+°”+pn = 1.

Entropy property 2. If H is an entropy function, then for any

set {pT,pa,...,pn} on which H is defined, H satisfies:

H(p1 )p2’° .o ’pn’O) = H(p1 ,p2’° . ’pn)-

In other words, H depends only on the nonzero pi's in a given set.

Entropy property 3. An entropy function is continuous.

There are two ways to think of the concept of conditional
entropy, and the fact that they are equivalent is our next
property of entropy. To illustrate the ideas involved, we
consider the following simple weighing problem. We have
three coins, some of which may be counterfeit (but not all).
Counterfeit coins are distinguishable from normal coins by

the fact that they are lighter. We are given a balance scale,

— -~ 1



and we wish to find out which, if any, of the coins are
counterfeit. The sample space for this problem consists
of seven sample points, one for each possible set of good
coins. We denote them as follows:
£, = [1, 2,3, 12, 13, 23, 123}.
Now what happens when we put the first two coins on each
side of the scale? The sample space is partitiohed into
three blocks corresponding to the three possible outcomes
of the weighing: g = §12,123,3} , {2,23} , (1,13} . After
recording the result of this weighing, we then place the
second and third coins on the two sides of the scale. The
result of this second weighing is to partition each of the
blocks of the first weighing:
212,123,351  becomes f12%, f123%, §3]
{2,233 becomes {2; R ?23{
51,13; beccmes ;1} s éﬁ}; .
The combined information of the two weighings is represented
by the partition into seven blocks, eéch with one sample point.
Call this partition 9T. Conditional entropy is concerned with
the effect of the second weighing, given that the first has
occurred. One way to analyze this is to look at each block
a& of the partition of the first weighing and to analyze the
situation as if <Ti were the whole sample space. In general,

for an event A and a partition ‘T we define the conditional

entropy of T given A, written H(T |A), to be the entropy of
the partition 'c']r\A, TZ(\A,... that 7T induces on A. Thus

in the above weighing problem we have three conditional
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entropies, one for each possible outcome of the first weighing:
H(7r |oy), H(m|g ;) and H(T |<r3). The conditional entropy
of 7Tt given g is then defined to be the average of these.

More precisely, if Tt and @ are any two partitions of a
sample space ) such that 9T is finer than G, we define the

conditional entropy of 7r given o to be the average value of

H( v |0 ) over all blocks G, of Q'
Hwlo) =STPp(a (T o).

On the other hand, we would 1like to think of inform~ation
as a "gquantity" that increases as we ask more and more questions
about our experiment. Therefore, the conditional entropy of 7T
given < ought to be the net increase in entropy from < to 7T.
In other words, we require our entropy function to satisfy:

Entropy property 4. If 97 is a finer partition than g, then

H(T|a) = H(F) - H(0o).

The last property we require is one that we have already
discussed. The partition having maximum entropy among all
partitions with a given number of blocks is the one for
with all the blocks have the same probability.

Entropy property 5. If H is an entropy function, then for

any set {p1,p2,...,pn} on which H is defined, H satisfies:

11

1
H(p17p2"'°’pn) S H(n, H,---, 'h').

We are now ready for the following remarkable fact: if
H satisfies the above five properties, then H is given by the

formula introduced earlier in this chepter, except for a

possible scale change.



Unigeness of Entropy If H is a function satisfying the
five properties of an entropy function, then there is a

constant C such that H is given by:

}'I(p1,p2,'°°,pn) = Czpi loga(pi)°
1

The proof is rather technical, so we suggest omitting
it on the first reading, returning to it later. We first
apply property 4 to the partition consisting of just one
block: (L itself. By definition H((ul.) is the same as H(L).
Therefore, H({}) = H({L) - HELL) = O,

We now define a function f(n) by H(%, %,..., %). We have
just shown that f(1) = O, and we want to calculate f(n) in
general. Using properties 2 and 5, we show that f(n) is
increasing:

r(n) =ik, .., D - H(%,...,-}l,o)g H(;lT,..., nl1) = f(n+1).

k-1

liext we consider a partition o consisting of n blocks

each of which has probability —EéT . Then subdivide each of
n

these into n parts, each of which has the same probability.
call the resulting partition Jv . The conditional entropy
H(ﬂr\(Ti) for each block T is clearly given by f(n). Thus
the conditional entropy H(ww|o) is f(n). By property i,

f(n) = H(w]e) = H(™) - H(T) = £(n¥) - £(a® 7). Therefore,

if we apply this fact k times, we obtain: f(nk) = kf(n).



Now fix two positive integers n and k. Since the

exponential function is an increasing function, there is

an integer b such that: 2° < nf < 2°*'. We now avply the

two facts about f(n) obtained above to this relation:

b+1)

f(2b) < f(nk)'f f(2 (f is increasing)

bf(2) < kf(n) < (b+1)f(2)

Now divide these inequalities by kf(2):

b f(n) b+1
k = f(2)= k -

N

Now apply the increasing function log? to the inequalities
2° < < 2P*1. This gives that b < k log,(n) < b+1. If we
divide thesa by k we obtain:
b . b+1
x < loga(n)g_ =
It follows that both f(n)/f(2) and logz(n) are in the interval

[—E, %—2—!] This implies that £(n)/f(2) and log,(n) can be no
farther apart than %, the length of this interval. But n and
k were arbitrary positive integers. So if we let k get very
large, we are forced to conclude that f(n)/f(2) coincides with
logz(n). Thus for positive integers n, we have:
f(n) = f(2)log2(n).

We will define the constant C to be -f(2). Since f(2) > f(1) = O,
we know that C is negative.

We next consider a set {p1,p2,...,pn} of positive
rational numbers such that p1+p2+---+pn = 1. Let N be their

common denominator, i.e., p; = ai/N, for all i, where each a;

is an integer and a1+a2+---+an = N. Let o be a partition
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corresponding to the set of probabilities {p1,p2,...,pn} .

th viock

Let 77 be a partition obtained by breaking up the i
of @ into ay parts. Then every block of 7T has probability
1/li. By definition of conditional entropy, H(W |c7i) = f(a;)

and H(W| @) = SpH(T|a,) = Zpi fa;) = =€ Zpilogz(ai).
1 1 1

By property 4, on the other hand, we have:
H(w o) = a(w) - H(T) = £(N) - H(g) = -Clog,(N) ~H(O).
Combining the two expressions for H(w |0 ) gives us:

H(G) = ~Clog,(N) + C Zpiloga(ai)
i

i

C [—Zpi logz(N) + zi‘.pi log;(ai)J

1

I

c [Zp; (og,(a;) - 108,00)]
1

I

c [ X, 108,(a;/M)]
1

C 2.p; log(p;).
1

By continuity (property 3), H must have this same formula
for all sets fp, ,p2,...,pn} on which it is defined. This
completes the proof.

We leave it as an exercise to show that the above formula
for entropy actually satisfies the five postulated properties.
We conclude by giving an interpretation of independence of
partitions in terms of conditional entropy. Intuitively if
IC and ¢ are indevendent then their joint entropy H(WAT )

is the sum of the individual entropies: H(TJw) + H(o ). 1In

terms of conditional entropy, this says that H(7wag | ) = H(1).



2% The shannon Coding Theorem

A consequence of Entropy property 4 of the last section
is that if we wish to answer a question X by means of a se-
quence of questions Sl’SZ""'Sn' the joint entropy of
Sl’SZ""’Sn must be at least as large as the entropy of X,
and hence the sum of the entropies of the Si's must be at
least as large as the entropy of X. 1In particular, if the
Si's are yes-no questions, then H2(Si)§; and we get the crude
inequality nZBz(X). The problem of finding a set of suf-
ficient statistics for a random variable X is called the

coding problem for X, and the sequence Sl'SZ""'Sn~iS said

to code X. As we will see in the exercises, the kinds of

questions one may ask are usually restricted to some class
of questions. Devising particular codes is a highly nontrivial
task.

One of the reasons that coding is so nontrivial in general
is that one is usually required to answer a whole sequence
of gquestions Xl'XZ"" produced by some process, and as a
result one would like to answer the questions in the most
efficient way possible. Consider one example. Suppose that

X takes value 0 with probabhility 0.85 and takes values 1



through 200 each with probability 7.5 x 10—4. Then HZ(X)
is less than 1. Simply by counting one can see that at
least 8 yes-no questions will be needed to achieve a suf-
ficient statistic for X, even though the entropy suggests
that one should be able to determine X with a single yes-no
question.

Shannon's Theorem states that for any finite-valued
random variable X, it is possible to encode efficiently a
sequence of independent copies of X provided that:

(1) one encodes a block Xl'XZ""'Xn all at one time,

(2) one is willing to accept a small probability

of error, £>0, that a block is incorrectly coded,
such that € can be made arbitrarily small,
Since one frequently encounters sequences of random variables
in actual practice, it is not unreasonable to encode them
in blocks. The small probability of error is also accept-
able since it can be made arbitrarily small. Consider for
example the random variable X mentioned in the preceding
paragraph. Since HZ(X)<1' Shannon's Theorem says that there
is a block size n such that a sequence of n independent

copies of X, Xl,...,Xn,can be encoded with a sequence of n



yes=-no questions Sl""’sn' Consider that the sequence of
Xi's can take one of 201" values, while the sequence of

Si's takes on at most 2" possible values and you will begin
to appreciate Shannon's Theorem.
We must first make precise the idea that a sequence of

random variables "almost" codes for another sequence. TLet

Xl""’xn and Sl,...,Sr be two sequences of random variables.

We say that Sl""'sr is almost sufficient for Xl,...,Xn
with confidence 1l-¢ if there is an event A such that

(1) P(A) = l-¢

(2) 8,]A,...,8 |A is sufficient for X;[A,...,X_ [A,

where Xi]A is the random variable X conditioned
by the occurrence of A.
Put another way, condition (2) says that the joint vartition
H(Sl)h...Aﬂ(Sr) when restricted to A is finer than

W(Xln ...Aﬂ(Xn) when restricted also to A.

Shannon's Coding Theorem. Let X;,X,,..., be a sequence of

independent equidistributed finite-valued random variables

such that HZ(Xi) = h. For any €>0 no matter how small and

any §>0 no matter how small, there is an integer N such that

J 1 o [
for any block size n>N, one can find a sequence 01’82""’"[hn+6n]

g£ [hn+8n] random variables each taking two values, which is

almost sufficient for Xy rXgpeen Xy with confidence 1l-¢.
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The confidence 1l-¢ represents the probability that the
Si's are able to code for a particular sequence of values
of Xl'XZ""'Xn' The expression [hn+6n] stands for the
smallest integer larger than hn+8n. Finally, by entropy
considerations we know that at least [nh] S's will be needed
to code for xl'X2""'Xn' The additional 8n S's represent
an extra set of S's beyond those required by entropy, but
they can be chosen to be as small a fraction of the total
set of S's as we please.
Proof. One begins by defining a sequence of random variables
Yi/Y5,... by decreeing that if X; takes value n then Y, takes
value P(Xi=n). For example, if Xi took values 1,...,n each
with probability % , then Y, would take value %-with prob-
ability 1.

These random variables have two properties we need.
The first is that the Yi's are independent. This is an im-
mediate consequence of the fact that the Xi's are so. The
second fact is that the expected value of logz(l/Yi) is h,

the entropy of X To see this we simply compute:

E(log, (1/Y.)) I log,(1/P(X;=n))P(X;=n)

n

Hz(Xi) = h ,
since logz(l/Yi) takes value logz(l/P(Xi=n)) when Xi = n.
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The sequence 10g2(1/Y1), 1og2(1/Y2),... is a sequence
of independent equidistributed random variables each with
mean h. By the Law of Large Numbers,

1og2(1/Y1)+1og2(1/Y2)+...+1og2(1/Yn)

Pl2im = h| = 1.
n-»oo n

= 1
Now log, (1/Y,)+log, (1/Y,)+...+log, (1/Y ) = 1og2‘?_?____1rJ ]

1 2..0 n
Therefore:
.1 1
P{%im =log, (g—=—=—) = h| = 1.
[n*w n 2 Y1Y2"'Yn ]
This says that for n large enough the expression 1 log 1
n 2 Y1Y2'°'Yn

will be as close to h as we please with as high a probability
as we please. The probability we want is l-€¢, and we want

L 109, {c——2 | to be within & of h with this probability:
n 2 Y1Y2...Yn

1 1
p||2 100, [yt | - n
n Z{Yle...Yn]

As one might expect, the event A in the definition of a set

of almost sufficient statistics will be the abhove event:

_ 1 1 )
A= 'H 1°gz{y Cowmesa Bin h'<5
1 2 n) ~
l 2... n

(—n6<10g2{?—?—l——?— - nh <nd).
12...n

L TP



Exponentiating every term in the above pair of inequalities

preserves the inequalities so

A= (2 -n6<Y_?l___?__. z-nh<2n6)
12...n
- (2—n6+nh < g7 1 — < 2n6+nh)
1Y2---¥p
_ -nh+n§ ~-nh-né
= (2 > Y Y,...Y > 2 ).

We are now ready for the crucial step in the proof. We
count how many blocks of the joint partition ﬂ(Xl)Aﬂ(Xz)A...Aﬂ(Xn)
are contained in the event A. Suppose that there are r such

blocks; call them Bl'B Br' Each of these blocks is of

2,..-'
the form (x1=11)/\(x2=i2)r\.../\(Xn=1n). If we sum the

probabilities of all such events we get l:

T P((x1=i1)r\(x2=iz)n .../w(xn=in)) =1,

1,,600,1
1’ "“n

Since the Xi's were assumed to be independent, this means that

. T _ P(X1=il)P(X2=i2)...P(Xn=in) = 1.
ll""’ln

Now each of the above factors is, by definition, the value

that the corresponding Y, takes:
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each Y, taking the value appropriate to the blocks Bj’ But

,-nh-nd

for these blocks we know that YlYZ"‘Yn> . Hence

2-nh—n6 &
1 j=1

I ™

J
I _-nh-né
Now the terms of the sum I 2 do not depend on the

block Bj’ So we find that

r.z-nh-nd <1
or that r<2nh+n6 R
i.e. there are fewer than 2nh+n6 blocks in A.



We are now ready to code the random variables
Xl’XZ""’Xn' Number the blocks in A in binary using [nh+n§]
binary digits starting with 00...01 and ending with 11...11.

nh+n§ 2[nh+n6]_l

Note that because r«2 , we will have at most

blocks in A. We assign the binary number 00...00 to all
blocks outside A.

The random variable Si is defined to be the ith

digit
of the block in which the outcome occurs. By definition
Sl’SZ""’S[nh+n5]' when restricted to A, are sufficient

for Xl’XZ""’Xn when restricted to A. When all the Si's
take the value 0, we are unable to determine the values of
Xl'XZ""’Xn’ but when the Si's take any other set of values,
we can compute all the values of xl,xz,...,xn.

This completes the proof.

The usual form in which one sees this theorem is called
the Shannon Channel Coding Theorem. The problem here is to
transmit information through a noisy channel. The channel
we consider is called the Binary Symmetric Channel. Each
bit of information one transmits through the BSC is either
left alone or changed. The probability that it is changed
is p, the same for all bits, and each bit is altered or not

independently of the others. The BSCuis.equivalent to the

Bernoulli process, coin tossing, with bias p.



Transmission through the BSC proceeds as follows. A
message k bits long is first sent through an encoder where
it is changed into a string of n bits. This string of bits
is then transmitted through the BSC to a decoder that con-

verts the received n bits into

k bits n bits _______ n bits

k bits
Bob »| encoder BSC | =4decoder_

—» Alice

a string of k bits, which we hope is the same as the original
message. The problem is to design the encoder and decoder
so that the probability of error per transmitted bit is smal-

ler than some preassigned value and so that the redundancy %

is as::small as possible. Equivalently, we want the rate of

transmission % to be as high as possible.

We may think of the noise as a sequence of Bernoulli
random variables Xl'XZ""'Xn that are added to the signal.
Let h = HZ(Xi) =p logz(%) + q logz(%). Then the input
signal plus the noise constitute a total entropy of k+nh
bits. The decoder can ask at most n questions about the
data it receives, since it receives just n bits of data.
From these n questions it must determine both the noise and
the original signal, hence k+nh<n. Put another way, the
decoder may ask just n-k questions in order to determine the
noise and eliminate it. Thus k+nh<n or n-nh>k. Hence 1-h>k/n.
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This says that the rate of communication through the BSC can
never be greater than l-h. One calls 1-h the capacity of
the channel.

The Shannon Channel Coding Theorem says that for any
rate r less than the channel capacity l-h it is possible to
choose k and n so that k/n>r and to design an encoder and
decoder so that the (average) probability of error per mes-
sage bit is as small as we please. The proof is very similar

to the proof we just gave for the Shannon Coding Theorem.
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3. Continuous Entropy

We now consider what entropy means for continuous
random variables. The concepts in this case are by no means
as self-evident as in the case of a finite-valued random
variable,

Relative Entropy

The most obvious way to begin is to try to "finitize".
Let X be a continuous random variable taking values in some
finite interval. For simplicity take this interval to be
[0,a]. Now exactly as in Calculus, we partition (or sub-
divide) this interval into n blocks Bl’BZ""’Bn' The ith
block is the subinterval [(i-1)a/n, ia/n). Define a new
random variable Y  that takes value (i-1)a/n whenever X

takes a value in the block Bi' We call Yn the nth

truncation
of X. We show why we use this name by means of an example.
Suppose that a=1 and that n = 1000. Now imagine that we per-
form our experiment and that the outcome X is

.1415926... .

The value of Y1000 in this case would he
.141000...,

i.e. we truncate the value of X to 3 decimal places. Clearly

the truncations of X will be better and better approximations
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to X as n+», Moreover the truncations are finite-valued
random variables.

One might add that in practice one always uses a truncation
in an actual experiment. It is only in our idealized mathe-
matical models that one can speak of an arbitrary real number.

Now compute the entropy of Y . By definition of Yn’

P[Y ; (i—l)a] _ P[(i—l)a < x < 33] ) F[li] ) F((i-l)a],
n n n - n n n

where F(t) is the probability distribution of X. Thus

H(Y) rzlp[ =(_i‘_1_)£]zn 1
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The crucial step in the computation is the mean value theorem
of Calculus: if F is differentiable on the interval [s,t],
then for some x between s and t

F'(x) (t-s) = F(t)=F(s).

We apply this to each block Bi' Each block has length %, so
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where each x; is some point in the block B;. If we write

£(t) = F'(t) for the density of X, then the first term above

is
n
1 a
T f£(x;) &n = .
i=1 i [fixii] n
This is just the Riemann sum for our partition of [0,al. So

as n+» this approaches

Jaf(x) Qn[%—](-—-r] dx.
0 X

Next consider the second term above. We may write this as
n n a
an(a') E_ f(x-)ﬁ' -

Except for the factor Qn(%), we would have a Riemann sum for

a
J f(x)dx = 1. However the factor Qn(%) means that as n-e,
0

a
H(Yn) > Jof(x) Qn[f%iT}dx + n(n) - n(a).
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So as n-o, H(Yn)+w.

The difficulty is easily seen. As we partition [0,al]
into finer and finer blocks, the random variable Yn is
taking an enormous number of values, some fraction of which
are roughly equally likely. This is an artifact of our sub-
division process and ought to be eliminated. We do this by
measuring not the absolute entropy of Y, but rather the dif-
ference between the entropy of Yn and the maximum possible -
entropy of a random variable taking n values. We call this

the relative entropy of Y :

Relative entropy of Y = H(Yn) - n(n).

In other words, instead of measuring how far Yn is from

being completely certain, we measure how close Yn is to

being completely random. For finite-valued random variables
these two ways of measuring entropy are equivalent, but when
we take the limit as n+x, only the relative entropy converges.

We therefore define:

Relative entropy of X = gim (relative entropy of Yn)
n-+oo

a 1
IO f(X) &n [m‘y}dx - !Ln(a).



For this notion of entropy, the case of total random-
ness will be represented by a relative entropy of zero.
Less uncertain random variables will have a negative relative
entropy. Continuous random variables can have arbitrarily
large negative entropy: complete certainty is impossible for
continuous random variables.

Which continuous random variables will have entropy
zero? In other words, what is the continuous analogue of
the equally likely probability distribution? To answer this

we proceed as we did for finite-valued random variables. TlLet

X be any continuous R.V. taking values in [0,a]. Then
ra ( 1
relative entropy of X = f(x)¢n ]dx - 2n(a)
Jo kE(X5
R ]dx - tn(a) [af(x)dx
Jo He 0
a 1 ]
= f(x)[SLn( - gn(a)ldx
0 f(x)

' 1
0 f (X) Zn[m)—a] dx

a
1

< f(x) - 1ldx
~Jo f3x5a

a a
= gi-[f(x)dx

o @ 0
=1-1=0 .



Now the logarithmic inequality tells us that the above in-

equality is an equality if and only if E%ETE = 1 or f(x) = % .

In other words, the maximum entropy occurs precisely when X

has the uniform distribution on [0,a].

Boltzmann Entropy

The notion of relative entropy is fine for random
variables taking values in a finite interval, but most con-
tinuous random variables we have seen do not have this property.
The most natural way to try to extend entropy to arbitrary
continuous random variables is to use a limiting process similar
to what we used for extending entrooy from finite-valued random
variables to finite-interval random variables. We will do
this first for positive random variahles before going on to
the general case.

Let T be a positive continuous random variable (i.e.

p(T<0) = 0). For a>D, we define the restriction of T to [0,a]

to be the random variable T_ = T|(T<a). By this we mean that

Ta takes the value of T conditioned on the occurrence of (ng).

We already saw this in the definition of almost sufficient
statistics. The probability distribution of T, is given by

P(T <t) = P(T<t|T<a), and the density of T_ is then given by



a
dens(Ta=t) = f(t)/[ f(u)du, if 0<t<a
0 0 ) if t>a or t<0,
where f(t) = dens(T=t). Write Ca = —El————— for the above
f(u)du
0

normalization constant. Clearly T, will he a better and
better approximation to T as a»>»., As with truncations, re-
strictions are always used in an actual experiment.

It would be nice if we could define the relative en-
tropy of T to be the limit of the relative entropy of T  as

a+», but unfortunately this diverges:

a
. _ 1 -
relative entropy of T, = [Oca f(t)en E;fTET dt-2n(a)~>

as a-»w,

As before the difficulty is that we are not measuring en-

tropy properly. The case of total randomness, entropy zero,

is the uniform distribution on [0,a];but as a+»~ this distri-
bution ceases to make sense. So we are attempting to measure
the entropy of T relative to that of a nonexistent distribution!
What should we do? We no longer have either total certainty

or total uncertainty from which to measure entropy.



What we do is to "renormalize" our measurement of en-
tropy so that the entropy of the uniform distribution on
[0,a] is f&n(a) rather than 0. We do this by analogy with
the "equally likely" distribution on n points whose entropy
is 2n(n). There is no really convincing justification for
this choice of normalization. The entropy defined in this

way is called the Boltzmann or differential entropy:

H(T) = 2im[(relative entropy of Ta) + 2n(a)]l

a+®

a+» /0

a

® 1
= f(t)n ]dt,
fo [f(tj

if this improper integral exists. The same definition works,
in fact, for any continuous random variable.

We now ask which positive continuous random variables
take maximum Boltzmann entropy. Let T be such a R.V., and let
u = E(T) be its expectation. To bound the entropy of T we

use a method known as the Lagrange multiplier method. This

method is appropriate wherever we wish to maximize some



quantity subject to constraints. In this case the constraints

that the density function f(t) of T must satisfy are:

J f(t)dt = 1 and J tf(t)dt = u.
0 0

Multiply the constraints by constants o and 8 to be determined
later and subtract both from the entropy of T. Then proceed

as in all our previous maximum entropy calculations:

o] 1 o0 o0
H(T) -a-Bu = j f(t)ln[ ]dt - a[_f(t)dt—BJ'tf(t)dt
lo ey

0 0

° 1
= f(t)[ln{ } -a-Bt}dt
Jo 46

" 1
= | £(t)n at
Jo {f(t)ea+€t}

A

rw
1
£(t) - 1lat
0 [f(t)e"‘+Bt

——

= e~ Bty -J £(t)dt
)0 0

[ —a-Bt]e
= 9_7r_. -1
L ]o

-Q
e

=g - 1 (if 8>0).
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By the basic logarithmic inequality, the above inequality

is an equality if and only if ———}—EIBE-= 1l or f(t) = e-m-Bt

f(t)e

We now use the constraints to solve for a and B:

1 = J £(t)dt = J e % Btqt = —
0 0
e o] [eo] -
p o= J tf(t)dt = J te” @ Btar = .
0 0 B
Therefore B = e * = Bzu or 8 = 1/u = e”*., The function f(t)

thus has the form

F(t) = L o /¥,
u

i.e. T is exponentially distributed with parameter 1/u.
Moreover, the entropy of T is H(T) = a+Bu = 1+&n(u). There-
fore we see that as p gets large T can have arbitrarily high
entropy. Thus there is no positive random variable having
maximum entropy among all such random variables.

Standard Entropy

The reason we had to specify the expectation of a posi-

tive random variable in order to find the one having maximum entropy

arises from an important distinction between finite entropy
and Boltzmann entropy: the choice of units in which we

measure our random variable alters the Boltzmann entropy but
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has no effect on the finite entropy. Indeed, the entropy of
a finite-valued random variable depends only on the partition
it defines. For example, if X is uniformly distributed on
(0,1], then Y=2X is uniformly distributed on [0,2]1. Al-
though Y represents the same phenomenon as X, the difference
being the units with which we measure distance, ohviously an
observation of X is more certain than an observation of Y (one
bit more certain to be precise). More generally, for any
continuous random variable X,H(C X) = H(X) + &n(C).

In order to speak of the entropy of the phenomenon repre-
sented by a random variable, independent of scale changes,
we introduce vyet one more notion of entropy. The standard
entropy of a random variable is the Boltzmann entropy of its
standardization. Using the notion of standard entropy we can
ask an important question. Which continuous random variables
have the maximum standard entropy? The answer is that, up to
changes of scale, there is exactly one such random variahle
and it is a random variable we have not vet seen hefore: the
normal distribution. This random variable forms the basis
of the Wiener process,the last of the four principal stochastic
processes of probability theory.

We now compute this random variable. Since we want the
random variable to have maximum standard entropy, we may as-

sume it is standard. Tet ¥ be such a random variable, and
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let f£(x) be its density. We maximize H(X) by the method of
Lagrange multipliers we used above, but now there are three

constraints:

[o.o] o] Cb’,

J f(x)dx = 1, [ xf(x)dx = 0, [ x“f(x)dx = 1.
One of the constraints being zero we need just two para-
meters o and B to he determined later:

e 2]

H(X) -a-8 = [ f(x)ln[%%;Tde - aJ f(x)dx-BJ x2f(x)dx

- 00

= mef(x)[zn[f%ET)—a-BXZ]dX

= [ £(x) In |2 | ax
-0 f(x)ea+8x

< J £(x) 1 - 1ljdx
- f(x)ea+8x

-q o 2 _
_e I e W4y 1 (u = /B x)
/B e
-0
=e \/—_Ti_l.
1



o 2
The fact that J e™ Qdu = /7 is a standard fact from Cal-

© 2
culus. The proof proceeds as follows. Let A = J e™™ qu.

o]
Then since u is just a dummy variable, A = f eV dv as well.
- 00

Hence

Now switch to polar coordinates. Then r2 = u2 + v2, dudv = rdrde

and the limits of integration are 0<@<2m and 0<r<w:

5 2T o _r2
A" = J J e rdrde
0

0
- J2n [_].e-r?J de
o & Z 0
2m
= I % de = 7
0

Hence A =71 .
Returning to our bound on the entropy of H(X), we know
by the basic logarithmic inequality that this will be an

B...
Q X
e

equality if and only if f(x) = . We now use the

constraints to solve for o and 8.



1= [ f(x)dx =

!
N—
| 8
8

()
i

R

|
>

"

Q
"

1 = J x2f(x)dx = J x2e'-°‘“Bx dx

1 —
= 0 +-2—8e aV‘n';B.

Therefore e %= /g77 = 28/8/m from which we conclude that
g = 1/2 and e % = 1//27 . Hence the maximum entropy among
all standard continuous random variables is achieved precisely

when

e—x2/2 .

dens (X =x) =

1
/I

We say that X has the standard normal distribution in this

case. More generally by changing the origin (zero point) and
unit of measurement (scale) we get a collection of random

variables, each determined by its mean and variance.



Definition. A continuous random variable X is said to have

the normal or Gaussian distribution with mean m and variance

6% if
2 2
dens (X=x) = 1 e-(x-m) /207 .
ovV2m
For brevity we will write that X is N(m,oz). Some authors

write N(m,o) instead of N(m,oz); one should beware. We leave
it as an exercise to verify that the above density really
does define a probability distribution with mean m and variance
02 and that all of them have the standard normal distribution
as their common standardization.

There are more distributions determined by maximum en-
tropy, especially those in statistical thermodynamics and
quantum mechanics, but I trust that you now see the basic

ideas.

Summarx

The four principal processes of probability theory are all
determined by maximum entropy properties. We summarize this

here.



Type of Entropy

Class of Random Variables

Definition

(Finite partition)
entropy

Finite~-valued

1

n
_ 1

H(X) = H(T(X))

Relative entropy

Continuous with
values in [0, a]

a 1
JO f(x)ﬁn[fT§T]dx—2n(a)

Boltzmann entropy

Continuous

hag 1
H(X) = fo f(X) ln(mr] dx

Standard entropy

Continuous

H{’Sﬂj = H(X)=-2n(0)

Types of Entropy

Process Distribution/Model Class of Random Variables for

which entropy is maximized

Sampling Finite uniform on n points Random variables taking at
Placements of 1 ball into n boxes most n values

Uniform Uniform on [0,a] Continuous random variables
Sampling one point completely taking values in [0,al
at random from [0,a] (Relative or Boltzmann

entropy)

Poisson Exponential, intensity a Positive continuous random
Continuous memoryless variables of mean l/a.
waiting time, intensity o (Boltzmann entropy)

Wiener Normal, N(ng2) Continuous random variables

Position of a continugus
random walk of rate ¢“ starting %ﬁ

having mean m and variance

02 (Boltzmann entropy)

Maximum Entropy Distributions



Distribution Entropy Relative entropy Boltzmann Standard

entropv entronvy
Finite uniform on n 1og2(n) hits - —_ —_
points

Uniform on [0,al] - 0 o'n (a) %-Qn(lZ)
~ 1.,2425 nats

Exponential, intensity a - - 1-%n(a) 1

Normal, N(m,oz) - ~ ¢n(ov2me); in(V2me)
= 1.4189 nats|
| |

Values of entropy



L, Exercises for

Chapter VII Entropy and Information

A visitor to an imaginary country finds that the inhabitants
of city A always tell the truth, while the inhabitants of
city B always lie. The visitor wants to know which city

he is in. He may ask only yes-no direct questions. (A ques-
tion such as "If I were to ask you what city I am in, what
would you say?" are indirect and would only confuse an
inhabitant.) How many questions must the visitor ask? Note
that an inhabitant of city A could be temporarily residing
in city B and vice versa.

You are given twelve coins, one of which is counterfeit,
and a balance. The counterfeit coin is either light or
heavy, you do not know which. How many weighings are
necessary to determine which coin is counterfeit?

You are given five coins, some of which may be counterfeit.
A counterfeit coin is lighter than a good coin, and all
counterfeit coins weigh the same. Again you are given a
balance. How many weighings are necessary to find all

of the counterfeit coins?

A deck of 52 cards is said to have been randomly shuffled
if all 52! permutations are equally likely. What we
normally regard as being a random shuffle is in fact very
far from random. For example, the cut-and-interlace
shuffle (also called the perfect shuffle) has the following
property. If a new deck (in the standard Bridge order:

2 of clubs, 3 of clubs,...,ace of spades) is perfectly
shuffled, "cut" at a point 4m cards from the top, and dealt
as in a Bridge game, then each of the four players will
receive all the cards of one suit. It is known that
frequent Bridge players are capable of consistently
achieving a perfect shuffle.

How much information is contained in a random shuffle?
in a perfect shuffle? in a random cut? How many
independent random cuts are needed to achieve a completely
random shuffle?

Let N be an integer between 1 and 2000. Divide N by
6, 10, 22 and 35, and find the remainders. How much
information about N do these four remainders tell you?

$how that the entropy of the normal distribution N(m,o2)
is 1092(0/2ﬂ0) bits. Use this to answer the following
question. _A coin is tossed 1000 times, getting 368 heads
and 632 tails. How much additional information will one
more toss of the coin give one?
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h .

7. Suppose that the imaginary country of exercise 1
has another city C where the inhabitants alternately tell the
truth and lie. What is the smallest number of questions the

visitor must ask to find out which city he is in.

Generalize problems 2 and 3 above to an arbitrary number
of coins.

Let f(x) be a differentiable function defined on [o,a].
Assume that f(o) = 0 and that |f'(x)| < b for all x in
[o,al]. Find an upper bound on the amount of information
necessary to determine the value of f(x) at every

x € [0,a] with an error not exceeding € > 0.

You are playing a variation of "20 questions." A chooses
a number between 1 and 1,000,000, and B must find this
number by asking yes-no questions about it, except that

B asks random questions. How long does it take for B to
find the number? Let T be the time needed for B to find
the number.

Let kl k2,... be a sequence of numbers such that
iig (k logz( n)) = c. Let T, be as in exercise 9 above

but for the problem of guessing a number between 1 and 20

prove that 1M p(r =k ) = e"1/2¢c,
n-—>o n n



VIII Markov Chains

All the processes we have considered so far have been
based on sequences of independent equidistributed random
variables. We now consider processes which are based on
sequences of dependent random variables but for which the
dependence is of the simplest possible kind: the future

depends on the present but not on the past.

1. The Markov Property

Let Xo’ X Xz,.... be a sequence of integer random

1'

variables. We think of the values of the Xn's as being

the states of the Markov chain. Thus if (Xn = 1), we say

the process is in state 1 at time n. Moreover, if

(Xn = i) and (Xn+l = j), then we say there was a transi-

tion from state 1 to state j at time n.

Definition. A sequence X,, X of integer random variables

1rece

forms a Markov chain if for any integers io,il,....,in,
P(Xn = 1nl(X0 i) n (X, = 14)n e m(xn_l = ln—l))
=pP(x =i lx ;=1 _7)-

In other words, the future states of the Markov chain arc
dependent only on the present state and not on how the
Markov chain reached the present state. We call this condi-

tion the Markov property.




The conditional probability

P... = P(X

1jn n+l J,xn = 1)

is called the transition probability from state i to state

j at time n. By the law of alternatives, the probability

distribution of Xn is determined by the transition prob-

+1
abilities and the probability distribution of X

P (X = I P(X =j|Xn=i)P(X = i)

n+1 = 3J) n+1 n

= I pijnP(Xn = 1i).
As a result we see that all the probability distributions of
the Xn's as well as all their joint distributions are
determined by the distribution of X0 and the transition
probabilities.,

We have seen several examples of Markov chains already.
The Bernoulli process is a Markov chain having two states:

heads and tails, or 1 and 0. 1In this case the transition

probabilities are given by

oon

Prop = 9 Py, =P

(the probability distribution of X can be anything).

0

Another example is the sequential sampling process. Here

8.2



the state is the number of red balls in the urn. For if we
know the number of red balls in the urn as well as the
number of balls chosen so far (i.e. the time we can compute
how many black balls are in the urn.

The sequential sampling process has the property that
the transition probabilities depend not only on the states
i and j but also on n, the number of balls chosen soO
far. In such a case our process is continually changing or

inhomogeneous. In this chapter we will only study Markov

chains such that the transition probabilities are independent

of time.

Definition A Markov chain X ,, X,,... is said to be

homogeneous if the transition probabilities

Piy = P(Xy = 1lXn = 3)

do not depend on n.

Many apparently inhomogeneous Markov chains can be reinter-
preted as homogeneous Markov chains, so that this concept is
not as special as it may at first appear. For example, if
we define a wstate" of the sequential sampling process to be
the pair of numbers: (no. of red balls, no. of black balls),
then the sequential sampling process is a homogeneous Markov

chain.



When we write the transition probabilities pij as a

matrix we get a matrix M called the transition probability

matrix of the Markov chain.

input state —o>

output state

The rows represent the starting states and the columns rep-
resent the ending states, during each unit of time. The
transition probability matrix determines the Markov chain
except for the probability distribution of X, - The entries
of the matrix must be between 0 and 1, and the sum of the
entries of each row is 1. On the other hand, we can say

nothing about the columns.

Definition A row vector (with possibly infinitely many

coefficients) is said to be a stochastic vector if all entries

are between 0 and 1 and the sum of all coefficients is 1.
A square matrix (with possibly infinitely many rows) is

called a stochastic matrix if its rows are all stochastic

vectors.



The term "stochastic vector" is simply another way of look-
ing at the probability distribution of an integer random
variable. We see that distributions and Markov chains give
rise to a new way of looking at vectors and matrices. A
pair consisting of a stochastic matrix M and a stochastic
vector u determines a unique Markov chain such that 4 is
the row vector corresponding to the distribution of X and
M is the transition probability matrix.

We call the distribution of X, the initial distribution

of the Markov chain. As we have already remarked, the
distributions of X,, X,, X3,..... are determined succes-

sively by the formula

P (X = j) = %, p..P(X

n+l i 1] n ).

In terms of matrices, this says that if Gn is the stochas-

tic vector corresponding to the distribution of Xn' then

c¥

ntl =~ n

is the stochastic vector corresponding to X where

n+l’
> . R >

un~M is the product of the matrices u, and M. 1In other
words, the transition from time n to time n+l in a

Markov chain corresponds to matrix multiplication. More

generally, we can iterate the above formula to get



showing explicitly how the distributions of the Xn's

depend on Go and M.

The Bernoulli Process

The Bernoulli process, as the process of tossing a

coin, is a Markov chain whose transition matrix is

q P
M=
q P
Notice that MP® = M for all n and that a M = [g,p] no

]

matter what the initial distribution is.

On the other hand if we use the random walk inter-
pretation of the Bernoulli process, we get a very different
Markov chain. In this case the states are the integers,
both positive and negative. The state represents the posi-

tion of the random walk at the given time.

— -

The transition probabilities are:

i

p if 3J i+l (move right)

pP.. = g 1if 3 i-1 (move left)

1]
0 in all other cases



The matrix of this Markov chain is an infinite matrix part

of which looks like this:

Unlike the coin-tossing manifestation of the Bernoulli
process, the powers M? of this transition matrix are
progressive more complicated. Moreover, the behavior of
this Markov chain does depend on the initial distribution
X,- Typically X, will take some value 1 with probab-

ility 1, in which case we say that i 1is the starting point

of the random walk. If we start at i = 0, the successive
distributions X,, X,, X;,.... of this Markov chain are:
>
X, u, = [ =+ 0, 0, 1, 0, 0, ¢+ ]
>
X]_ ul = [ - 0, g, 0, p. 0, *°° 1]
>
X, u, = [ s qzl 0, 2pgq, 0, pzr cee ]



When p =g = 1/2 we say the random walk is symmetric.

In this case the transition matrix M is symmetric.

As we have already remarked, the random walk model
and the coin-tossing model are both interpretations of a
single process: the Bernoulli process. However, the two
models correspond to very different Markov chains, and
hence one asks completely different questions about the two
models. For example, we will consider the question of how
long it takes for the random walk to return to its starting
point. One might also consider how many times the random
walk crosses the origin. These questions will be considered
not only for random walks but also for more general Markov
chains. A great number of physical and chemical phenomena
can be modelled using Markov chains and random walks in
particular. For example, polymer growth can be modelled
using two- and three-dimensional random walks. A two-
dimensional random walk is just a pair of independent

one-dimensional random walks proceeding simultaneously.

2. The Ruin Problem

Suppose that we are gambling in a casino. Suppose
that we bet $1 on each play and that we win another dollar
with probability p and lose the dollar with probability
d. This situation is modelled by a random walk. The
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starting point X0 is our initial fortune, and the state

at the time n is our fortune at that time. Unfortunately,
the random walk model we have just considered does not take
into consideration the fact that we cannot continue playing
if we run out of money. Furthermore, there is a number c
(possibly very large) such that if we ever succeed 1in
reaching this state the gambling house must stop allowing
us to play (or we may simply choose to stop playing if our
fortune ever reaches c).

The Markov chain corresponding to this situation is

called a random walk with absorbing barriers. The barriers

are the states 0 and c, and these have the property that
once one of them occurs, the subsequent states of the Markov

chain are all this same state.:

o P

<

(o]
—_ 4
Q

initial fortune

This Markov chain has only finitely many states so the
transition probability matrix M is an ordinary square
matrix. All rows of M except the first and last have the
same form as the rows of the barrierless random walk. The

top and bottom rows



M = - -
c-1 qg 0 p
c 0O 0 1

have a 1 as the first and last entries respectively,
indicating that if either of these states is a starting
state, then the ending state is the same state.

Other kinds of barriers are possible. Suppose that if
our fortune decreases to zero at any time, we are given a
$1 advance (or loan) from an outside source ("Daddy") so

that we can continue to play. We call this a reflecting

barrier. Still another possibility is the elastic barrier

for which we are either reflected or remain in the same
state depending on some probability. In other words "Daddy"
will give us a loan, but we may have to wait for it. The
transition matrix for a random walk having a reflecting

barrier at ¢ and an elastic barrier at 0 has this form:
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barrier — [s r o i
qg 0 p
qg 0 p
M = .
q 0 p
] o 1o R

A problem of obvious relevance to any gambler is the
probability, for a given initial fortune, that the random
walk will reach state 0 Dbefore reaching state c. 1f
the gambler's fortune ever reaches state zero, we say the
gambler is "ruined". For this reason this problem has come

to be called the ruin problem. This is only the beginning

of the general question of how Markov chains behave in the
long run, which we will consider later in this chapter.

Let A Dbe the event "in the random walk with absorbing

barriers, the walk reaches 0 before reaching c¢". Then
the ruin problem is to compute uj = P(A|X0 = 3), for all
j. Now u is 1 because X = 0 means we are ruined

0 0

from the start; and u, is 0 for the opposite reason.

For j # 0, ¢ we use the conditional law of alternatives

(see section V.1l) conditioning on the possible values of

X,. There are only two alternatives, (X, = j-1) or

1

(X, = j+1), when (X, = J). Therefore,
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I
I

P(AlX0 J) P(AI(X0=j)+w(X1=j—l))P(Xl=j—l[X0=j)

+

P(Al (X0=j) I (X1=j+l) )P(X1=j+l lX0=j)

it

P(A|X1=j—l)q + P(A|X1=j+l)p,

by the Markov property and the definition of the transition
probabilities. We now make the important observation that
in a homogeneous Markov chain we may view any of the random
variables X 6 as the initial distribution of the segquence
X X

X .... which is itself a Markov chain having

n’ “n+l’ “n+2’

the same transition matrix as the original Markov chain

. L’ Xz""‘ . In other words, except for the numbering
of the random variables and the initial distribution, this
new Markov chain is the same as the old Markov chain. Since
A is the event that the gambler is eventually ruined, it
does not depend on the numbering of the random variables

Xo, X,v X34++.. . That is, we don't care when the gambler

is ruined. Hence

P(Alx, = j-1) = Uy g
and P(A|X, = j+1) = S+1°
Therefore, uj = P(AIXo = j) = uj_lq + uj+lp, for 0 < j < c.

An equation of the above form is called a difference

equation, while the conditions u, = 1 and u, = 0 are

its boundary conditions. A difference equation can be

solved in a manner exactly analogous to a differential

equation, except that instead of exponential functions

ax , ] .
u(x) = e we use the functions uj = aj, where o 1is a
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constant. We'll proceed by steps to emphasize the simul-

arity with differential eguation techniques.

Step 1. Determine the possible values for a.

If we substitute uj = oJ in the equation
ua., = u._lq + uj+lp, we get o

J
by 03”1, we find that o = g + o’p, a quadratic equation

IR S S L

q + p. Dividing

in . Solving for o we find that

1 + /i-4pg _ 1 * y1-4p+4p? _ 1 = (1-2p) _ €, 1}
2p 2p 2p p '

Notice that there are two cases. When p = q = 1/2, there
is a double root o = 1; and when P # g, there are two

distinct roots.

Step 2. Find the general solution to the difference equation.
When there are distinct roots, the general

solution is just an arbitrary linear combination of the

functions uj as o ranges over all roots. Thus when

p # 9, the general solution 1is

| .
u, =c, (@) + C, (1)
3
= Cl(%) + Cz’

On the other hand, if there are multiple roots we must

use functions of the form a], ja

], jzu],'-'- using as
many as the multiplicity of o as a root. Therefore the
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general solution when p =g = 1/2 is

_ J . J
uj = C1(l) + C,+j(1)

C1 + Czj

Step 3. Use the boundary conditions to find the particular

solution.
The boundary conditions are wu, = 1 and u, = 0. So
when p # g we have:
q o
u, = 1 = CI(E) +C, =C, +C,
g c
uc=0=C1(§) +C2.

Solving for C, and C, we find that

C

L =10 - (@/p©)

~(q/p) /(1 - (a/p)©).

C,

Hence the particular solution we seek is

_ (a/p3 - (/P ©

1 - (a/p)°

u.
J

On the other hand, when p qg = 1/2, we have

Il
@

u, = 1= C, + CZ'O

u,=0=C, + C,*C .

Solving for C; and C, we find that



c, =1

C

) -1/c.

Hence the solution in this case is
ua. =1 - j/c.
3 J
summarizing, we find that the probability of ruin starting

from the initial fortune 3 1is

1 - j/c, if p =g = 1/2 (the game is fair)

P(A[X,=7) .
(a/p) 3-(a/p) €

1 - (q/p)C

if p # g (the game is unfair)

The Solution to the Ruin Problem

The so-called gambler's ruin paradox refers to the fact

that the above probabilities are very close to 1 when
perfectly reasonable values of p, 4d, j and c¢ are used.

For example, suppose that a gambler has an initial fortune

of $500. Suppose that the gambler decides to be smart and
will quit the moment his fortune reaches $1000. He is play-
ing $1 bets on black or red in the game of roulette. In

this game p = 18/38 and g = 20/38. He reasons that although
the game is unfair, the odds against his eventual win are

only 10:9. This would be true if he bet his entire $500 on
one turn of the wheel. However, by betting only S1 at a

time his probability of ruin is, by the above formula,
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(20/18)°99 _ (20/1g)1000

P(A|X,=500)
’ 1 - (20/18) 1000
_ | _ (20018)%90 _ 4
(20/18)1900 _
vo1 - (10/9) 200
> 1 - 10722,
Therefore, the gambler has less than one chance in lO22 of

eventually winning!

On the other hand, this says nothing about how long it
will take for the gambler to be ruined nor whether the
gambler will enjoy occasional "winning streaks". One can
clearly see that it will take many more than 500 turns of
the wheel on the average before the gambler is ruined.
Moreover, one can show that "winning streaks" and "losing
streaks" (when suitably defined) are actually probable
events during long betting sessions. So the "structure" of
the gambler's ruin is much more complicated than the solution
to the ruin problem suggests. Tt is this complexity that the
gambler is presumably paying for when he bets smaller bets
instead of the one grand $500 bet on a single turn of the
wheel.

We end by considering what happens when ¢ —> =, One
can think of this as a random walk with just one absorbing
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barrier. It corresponds to the gambling situation in which

the house has infinite resources, and the gambler sets no
1imit on how much he is willing to win. There are three

cases.

Unfair game to the gambler: p < gq. 1In this case,

J c c-j _
g, = ta/p)” - (9/p) "~ . (p/9) -1 _, 0-1_

) 1 - (a/P)° (p/a) - 1 0 -1

as ¢ —> =, because p/q < l. So the gambler certainly

loses in this case. This is no surprise.

Fair game: p =g = 1/2. 1In this case,

uj =1- j/c —>1 as c —> o,

Therefore, the gambler eventually loses even in a fair game.

Unfair game to the house: p > g. 1In this case qg/p < 1

4 = (a/p)3 - (a/p)°

) 1 - (a/p)° " a/e)”

Hence there is a positive probability that the gambler

continues winning forever. This follows essentially from

SO

the fact that p > g produces a "drift" of the random walk

to the right as if there were a force acting in the positive

direction. _
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3. The Graph of a Markov Chain

The graph of a homogeneous Markov chain is an effective
method of describing and picturing a Markov chain. Moreover,
by using these graphs we can view all homogeneous Markov
chains as being "random walks" but on the graph rather than
on a straight line.

Let us begin with a simple example. This is a simple
model of machine operation. We suppose that there are two
states 1 = "the machine runs" and 2 = "the machine is
broken down". During each unit of time (say every hour),
the machine either works or doesn't work. There is a certain
probability P, that a working machine will stay working
and a probability P, that a broken machine will still be
broken. If we assume that these apply to the machine during
each unit of time independently of previous states, then this
model is a homogeneous Markov chain. Its transition matrix
is

P, Py = 1-p

11

Py =1l-Pyp P,

To picture this Markov chain we draw two points
(vertices) to represent the states. We then draw lines
(edges) between these vertices, with arrowheads to denote
direction, indicating the possiblity of passage from one

state to another (or the same) state.
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1
— The Graph of a

\\/’// _”/////// ;> two-state Markov
\\\-_. \\V, chain.

Py, P

We now think of the model as describing the motion of a
point along the edges of this graph. During each unit
of time, the point follows exactly one of the edges in
the indicated direction to its other end. The label of
the edge denotes the probability that that edge will be
chosen. We may think of the point as representing the
position of someone "walking" on the graph in which case
our model represents a "random walk on the graph."

As graphs, the various random walks we considered in

the last section look like the following:

P P P
r\\q/r\q/\ﬁ,/ﬂl o
-2 -1 0 1 2

Random walk (no barriers)

P P p
1w d sCa Xy e gla L
0 1 2 c-2 c-1 c

Random walk (absorbing barriers)
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1 P P P

N SN TN
. q . q . s 00 Q*‘ \q _ .&l_’/-
o —"T "2 c-2 " e-1 c

Random walk (reflecting barriers)

The only features that change in the above models are the

boundaries. There are three kinds of boundaries:
1 r
- N
1 G<__ “ - s C(

absorbing boundary reflecting boundary elastic boundary

Definition The graph of a homogeneous Markov chain

consists of
(a) one vertex for every state,
(b) for every pair of states i and j such
that pij # 0, a directed edge from state
i to state j.
Notice that we do not have an edge from state i to state

j if pij = 0.

The Ehrenfest Diffusion Model

The Ehrenfest model attempts to explain the following
physical experiment. A container is divided into two equal
parts by a removable wall. We place k gas molecules in
the one part and r - k in the other. Then we remove the
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wall and wait for a time. If we

k - r-k

molecules molecules

.

N

N\
removable wall

now reinsert thewall, we will find almost the same number
of particles in each part no matter how many particles were
initially placed in the two parts. To find an explanation

for this phenomenon is called the diffusion problem.

This model was one of the earliest successful attempts
to explain the phenomenon of diffusion using probability.
Much more sophisticated models now exist, but it is best to
start with the simplest model. For this model we imagine
that we have two urns or containers filled with r balls or
particles, k in urn 1 and r-k in urn 2. The state of

the model is

A transition from state k
to state k-1.

k balls -—> <— r-k balls




the number of particles in urn 1. A transition of the model
consists of transferring one particle from one urn to the
other urn. Therefore, there are two possible transitions
from state k: to state k-1 or to state k+1. The

transition probabilities are assigned in such a way that

every particle has the same probability of being transferred
to the other urn as any other particle. Therefore the

transition probabilities are:

Pk, k-1 = K/r

Pr,x+1 (r-k)/r

Or using graphs the transitions from k 1look like this:

X/t .k—l
k
r—k\)'k-f-l

The entire graph of this Markov chain is

r-1 r-k+1 r-k 2

r
J/’/i——/’x-\ e i //é_-/‘\\\ﬂ. * e @ ///];/\.® L m /—\
R_ e .r,// K_i P K_lf// K\L_/L——//
0 1 2 k-1 k k+1 r~- r-1 r

R

The graph of the Ehrenfest Diffusion Model
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In other words, this Markov chain is a random walk with
reflecting barriers but with a "central force" tending to
keep the state near %. We will consider in section 5
what it means to say that the state of this model

"tends" to be near r/2.

Balls into Boxes

Problems of placing balls into boxes can often be
stated in terms of Markov chains. For example, suppose we
are sequentially placing balls into n boxes and that we
want to know how fast the boxes are being "filled". The
state of this Markov chain is the number of boxes having

at least one ball. The transitions are either from a state

k to the same state if the next ball goes into an already
occupied box or to the state k+1 if the next ball occupies

a new box. Since each

k/n

!;E The transitions from state
k >e k+1

k in the Balls into Boxes

E%E Markov chain

box is equally likely to contain the next ball, the
probabilities for these two cases are k/n and 1-k/n
respectively. The graph of this Markov chain looks 1like

this:



S

The graph of the Balls into Boxes Markov Chain

A Genetics Model

The laws of genetics in biology are intrinsically
probabilistic. We will cdnsider a very simplified model
but one which exhibits the basic ideas. We imagine that a
relatively small population of females is introduced to a
large ambient population. Consider a single gene having
two alleles: a dominant allele A and a recessive allele
a. Suppose that the distribution of the three possible
genotypes is [p, g, r] in the ambient population, i.e.
the fraction of the ambient population having genotype AA
is p, having Aa is g and having aa 1is r. If the
females mate the males randomly (at least with respect to
this gene), then the distribution of the genotypes in
successive generations of females in the subpopulation will
form a Markov chain.

The states of the Markov chain are the three genotypes,

and the transitions consist of the change of state from a

mother to her daughter. The probabilities for parents having
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given genotypes are the well-known Mendelian

parents
mother father
AA AA
AA Aa
AA aa
Aa AA
Aa Aa
Aa aa
aa AA
aa Aa
aa aa

laws:
children
AA Aa aa
1 0 0
1/2 1/2 0
0 1 0
1/2 1/2 0
1/4 1/2 1/4
0 1/2 1/2
0 1 0
0 1/2 1/2
0 0 1

The Mendelian probabilities for a pair of alleles of

one gene.

Since we know the distribution of the genotypes in the

ambient population, and since we have assumed the females

mate randomly with respect to this gene, we can compute the

probabilities for each given female genotype to give rise

to a given daughter genotype:

mother

Aa

aa

daughter
AA Aa aa
p + gq/2 qg/2 +r 0
p/2 + g/4 1/2 q/4 + x/2
0 p + q/2 q/2 + r

.25



This is the transition matrix of the Markov chain. The

graph of the Markov chain is:

9/2 + r q/4 + r/2
AR 7 - RAa "7 77—~ _aa
o= \0‘/ e
A ,*‘\_ ) e X . o
e \\ p/2 + g/4 fﬂ/) p + g/2
N M
p + q/2 1/2 q/2 + r

We will leave it as an exercise to alter this model
to include "preferences" of females of a given genotype
for males of another (or the same) genotype as well as to
include "survival probabilities" for each of the genotypes
of the daughters. One can also construct a model that
includes the variation of the distribution of the genotypes
of both sexes. The resulting model is a pair of interacting
Markov chains acting simultaneously.

Unlike our other examples of Markov chains, we have not
considered this Markov chain as a "random walk." We could
do so by considering only one "line" of females: a mother,
her oldest daughter, her oldest daughter, etc. But as long
as the number of children born by a female is independent of
her genotype, it is more reasonable to regard this Markov
chain as the sequence of distributions of the successive
female generations.

More generally, we can view any Markov chain not as a
random walk by a single particle but as a random walk by a
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very large population of particles all simultaneously

"walking" on the graph. It is this point of view that is
best when we consider the long term behavior of a Markov
chain. The behavior of a single particle along its walk
can be quite intricate. But the general behavior of the

whole population of points is very predictable and stable.

4., The Markov Sample Space

We have seen three definitions of a Markov chain so far.
We first defined it to be a sequence X,, X;, X3,.... oOf
random variables satisfying the Markov property. We then
saw that it is equivalent to specify a stochastic matrix and
a stochastic vector. Finally we saw that we can visualize
Markov chains as random walks on graphs. But a Markov
chain is a stochastic process so we must have a sample space
and a probability.

The sample space  of a Markov chain consists of all
possible infinite paths along edges of its graph. By
"infinite" we mean that the path has a starting point but no
ending point. 1In other words, the sample space is the set
of all possible sequences (igy, i,, i2,....) of states. This
formulation is formally analogous to the definition of the
Bernoulli process (coin tossing) which is a special case.

To define the probability on { we need the transition
matrix M and the stochastic vector 30 representing the
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initial distribution. It is standard notation to write

o

n (n)
ij Pij

for the entries of the matrix M ; is the prob-

ability for the Markov chain to be in state Jj given that
it was in state i exactly n units of time previously.
The components of 30 are usually denoted by a; - The
elementary events of the sample space  are the subsets

(Xn = i), i.e. the set of all paths whose nth
vertex corresponds to state 1i. The probability of an
elementary event is given by

P(X_ = i) = T a.p®,

n . 1
i 373

So far this process is defined analogously to the Bernoulli
process. However, we do not postulate that elementary
events are independent. Instead we specify their probabil-

ities to be

P((an = 11) n (an = 12)0 e r\\(Xnk = lk))
(n, -n )
= a.pggl) (na=ny) | p k k-1
3 J°J1, 1;1, lk—llk

In particular, we define

P((Xy = ig) n(X; = i,)n »os n(X_ = i)

= a, P, . P: . *** P, .
i,51,i, Ti,1, i i



This last expression determines the preceding ones.

Definition Given a stochastic matrix M = (pij) and a

stochastic vector 30 = (ai), the Markov chain whose transi-

tion probability matrix is M and whose initial distribution

is U is defined by

—_ 0

(1) the sample space { 1is the set of all possible sequen

ces of states (io, il,....);

(2) the elementary events are the subsets (X = i) of all
th . .
sequences whose n entry is 1i;
(3) the probability is defined by
P((XQ=io)m(X1=il)m---ﬂ(Xn=in))=ai P. . Py ; **°P; ..

0 0

Connectivity

We now classify Markov chains with respect to various
properties relevant to their long term behavior. The most
obvious property is connectivity. If we draw the graph of

the Markov chain, it should be clear what

CC_=0 —0

1 3 4

A Markov chain having two connected parts

we mean when we say the graph is disconnected: it is made

up of two or more parts having no edges between the parts.
If the graph is not disconnected, we say the Markov chain
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is connected. Clearly each connected part of a disconnected
Markov chain acts like a Markov chain by itself, independent
of the rest of the Markov chain. Because of this we will

always assume our Markov chains are connected.

Persistence and Transience

The next property we consider is recurrence. Having
once occurred, a state must occur again or it may not. More
precisely, let Ai be the event "state 1 eventually
occurs at some time after 0." Then either P(AiIXQ =1i) =1
or P(A.|X, = 1) < 1. We call those two possibilities

1

persistence and transience.

Definition A state 1 1is persistent if the probability of
returning to state i (after it has occurred at least
once) is 1. A state i is transient if the probability

is positive for the state i never to occur again.

Now, having once occurred, a persistent state must necessarily
occur infinitely many times: each time it occurs, we repeat
the argument that it must occur once more, so it can never
"stop" occurring.

Consider the various random walks we have seen so far.
In the random walk with absorbing barriers, the barriers

are obviously persistent. Notice that in this case only one
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of the persistent states can occur during any one "walk".
Although persistent states occur infinitely often if they
ever occur at all, it is quite possible in a connected
Markov chain for a persistent state never to occur. The
interior states in the random walk with absorbing barriers
are all transient because we know with probability 1 that
either one or the other barrier will be encountered even-
tually. In the random walk with one absorbing barrier and
one reflecting (or elastic) barrier, there is just one
persistent state. On the other hand, if both barriers are
reflecting or elastic, all the states become persistent.

We leave it as an exercise to prove these last two statements

using the solution to the ruin problem.

Finiteness

With respect to persistence and transience, there is a
striking difference between finite and infinite Markov
chains. 1In a finite Markov chain some state must be persis-
tent. But for infinite Markov chains it is quite possible
for every state to be transient. Consider the ordinary bharrier-
less random walk. Suppose that the random walk is not
symmetric, say p > g. Recall that in our solution to the
ruin problem, we noted that there is a positive probability,
1 - (q/p)j, such that, starting in state 7j, the random walk

forever drifts to the right and never encounters state 0.
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Now, if we start in state 0, the next state is state 1
with probability p, and from here the probability is

I - q/p for 0 never to occur again. Therefore

with probability p(l-gq/p) = p - q >0, state 0 never
occurs again. By the same argument all the states of a

nonsymmetric barrierless random walk are

probability of never

propability of going back to state
going to state 1 ;’_\’ /l___._q/.? _T-5 0 from state 1.

< | | | | | ] ] | | ]

I | | | I T 1 ] 1 i

-4 -3 -2 -1 0 1 2 3 4 5

>

The probability of never returning to state 0 is at least pP~d.

transient. 1In the long run, a nonsymmetric random walk
drifts forever either to the right if p »> q or to the left
if p < qg.

On the other hand, for the symmetric random walk every
state is persistent. In our solution to the ruin problem,
we noted that starting in state j > 0, state 0 eventually
occurs with probability 1, and this generalizes to any two
states 1 and j. So not only is every state persistent,

but also every state occurs infinitely often.

Periodicity
The last property we will consider is periodicity. An
example of a periodic Markov chain is the following:

5

1».\/ §r\.4
4
2



We will give a precise definition later. Such a MarkoV

chain will "cycle" endlessly with period 4 in a merry-go-round
fashion. These are not very interesting Markov chains with
respect to long term behavior since they all essentially

look more or less like this one. More precisely, one can
prove that one can divide the states into classes

G G,re0.-:G

v G, in such a way that the graph of the Markov

t

chain looks like this:

The only edges in the

. graph are from states in

G . Gi to states in G

G, <=
Aégy t~—
' i+l
\Q\ or from states in G to

G, t
\)Gazy

— states in G..

1

And moreover, the long term behavior of each piece G; is
just as if it were a Markov chain by itself. For this reason

we will assume that our Markov chains are not periodic.

Ergodicity

Having gone through all the above preliminaries we
find that the most interesting Markov chains with respect to
their long term behavior are finite, connected and nonperiodic.

We will assume in addition that every state is persistent.



The reason for this is that in a finite Markov chain no
transient state can occur more than finitely many times.

Hence all transient states eventually cease to be relevant.

Definition A homogeneous Markov chain is said to be
ergodic if it is finite, connected and nonperiodic, and if

all its states are persistent.

For the rest of this chapter we will study only

ergodic Markov chains.

5. Steady States of Ergodic Markov Chains

The most surprising fact about ergodic Markov chains
is that the long term behavior of such a Markov chain is
independent of the initial distribution X,. That is, no

matter what the initial distribution X the distributions

07
of the Xn's as n —> » will tend toward one particular
distribution which we call the steady state or invariant
distribution.

The best way to view this distribution is take the
point of view mentioned at the end of section 3,

Instead of thinking of the Markov chain as the motion of a

single particle along the graph, we think of an entire
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population of particles as simultaneously "walking" along
the graph. The steady state distribution has the property
that although individual particles are in constant motion,
the population as a whole has a fixed distribution. So if
we choose not to distinguish one particle from another, we
would perceive no change as the Markov chain proceeds in

time.

Definition For any Markov chain X,, X;, X;/+..., a

probability distribution for X, such that all the Xi's

are equidistributed is called a steady state or invariant

distribution of the Markov chain.

To find a steady state distribution we make use of the
terminology of vectors and matrices that we introduced in
section 1. If we write 30 for the vector correspond-
ing to the initial distribution and if M is the transi-

tion matrix, then

is the vector corresponding to the distribution of Xx' Now
if 31 = GQ, then clearly all subsequent distributions will
be the same as the first two. Hence a steady state distribu-
tion corresponds to an eigenvector whose eigenvalue is 1.

Finding all such eigenvectors for a given matrix M 1is a
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simple exercise in linear algebra (simultaneous equations).
Having found all such eigenvectors, the steady state distri-
butions are those whose components are between 0 and 1

and add to 1.

Consider for example the machine operation model

p12

Py (T O pa

Yo
L L Pp Pp
whose transition matrix is , where p, = 1l - Py,
Py Py
and P, =1 - py. TO find a steady state distribution we
must solve
[x,, x,] = [x,, x,1p, P,
Py Py
Xl = lell + X2p21
or for x, and x,. This system
X, = X P, * X,Pp

of equations reduces to the single equation

Py

1 P

Therefore the general eigenvector belonging to the eigenvalue
1 is

cli, p,/p, 1.

8.36



This will be a stochastic vector provided
C + Cplz/p21 = 1.

Solving for C, we find that the invariant distribution of

this Markov chain is p

21 12
- 1 [ "
p12 t P p12 t p2]

or in terms of XO,

P(X. = 1) = Pa
0 Py, t Py
P
P(X =2) = —— .
¢ Py, + Py

For example, if the machine breaks down with probability
1/10 every hour and if a broken machine will go back into
service with probability 1/2 every hour, then the machine

will be running

Py .5 .5

5
P, * P, .1+ .5 . 6

of the time. Moreover, this will be true in the long run
whether the machine is initially running or initially

broken down.



Waiting Times and the Recurrence Theorem

In all the stochastic processes we have studied so far,
the waiting times have played a crucial role. So it is also
with Markov chains. For each state j, we define the random
variable Tj to be the waiting time for return to state j,
given that one starts in state Jj. More generally we have
the waiting times Tij for the occurance of state j

starting from state i. In terms of Markov events
(T,.=n) = (X,=1i) n (X #3)0 «ev a (X _1#3) 0 (X =3).

Of course, we have that Tj = Tjj' For Markov chains in

general these arenot really random variables because one

may have states for which ZP(Tij=n) # 1 (in fact one can
n

have P(Ti.=n) = 0 for all n). We call such an object

]
a defective random variable. However, we specifically chose

to restrict attention to ergodic Markov chains because in
this case all the waiting times are ordinary random vari-
ables.

There is a slight technicality that we ought to
mention briefly. The waiting times Tij are not defined
on the same sample space. In fact Tij is defined on
the Markov chain for which X, takes initial value i with
probability 1.

(n)

The standard notation for P(Tj=n) is fj and for

P(Tij=n) is fi?). The random variable Tj is also called
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the recurrence time of state j, and its expectation
(n)
]

j. We can now give a precise definition of what it means

is called the mean recurrence time of state

E(T.) =L nf
J n
for a Markov chain to be ergodic.

Definition A finite, connected Markov chain 1is ergodic if

(1) for every state j, ZP(Tj=n) = 1 (every state
n

is persistent),

(n)

(2) for every state 3J, pjj > 0 except for at
most a finite number of times n (no state

is periodic).

The most important facts about waiting times are

contained in the following remarkable

Recurrence Theorem For any finite, ergodic Markov chain,
(n)
iJ
(2) the components of the steady state distribution

(1) p —> l/E(Tj) as n —> » for all i and 3],

are l/E(Tj).

One can rewrite statement (1) in the form

lim P(X_ = j) = 1/E(T:).
n ]
n—>w
Combining this with statement (2), we find that ergodic
Markov chains satisfy an analogue of the Central Limit

Theorem:
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No matter what the initial distribution is, the distri-
butions of the random variables Xn of an ergodic Markov

chain necessarily converge to the steady state distribution.

Furthermore, the steady state distribution may be regarded
as specifying the average time the random walk exists in
the various states. We then have that the average length
of time between occurrences of state i 1is the inverse of
the average time spent in state 1i. While this is an

intuitively clear result, it is far from being easy to prove.

The Ehrenfest Diffusion Model

We illustrate the Recurrence Theorem for a nontrivial

example. In this model the transition probabilities are
i/r if j=1-1
pij = 1 - i/r if J=1+1
0 otherwise

We begin by computing the steady state distribution. We

must solve the system of equations

]
p,/t, if 3 =0

P] = ]Z_plpl] = {pr_l/rl lf ] = r
o) (E:iil)+p. (iil) otherwise
j-1 r j+1t r

The third equation gives us a recursive expression for p
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i £ . .ot
in terms o pj_l and pj_2

= r=j+l i+l
pj pj—l( r ) + pj+l( r }s
i+1ly _ - r-j+1
pj+l( r ) Py pj—l(——%— )
r r-j+1

Now using the fact that p, = p,/r, we solve by setting
p, = 1 (the solution is only determined up to a scalar
multiple so it doesn't matter what we use for p,) and by

applying the above recursion successively. This gives:

p, =1
p, =T
_ r r _ r(r-1)
P, =3 - 1"'3 773
_or(r-1) ,xr _ . CAx-1) r(r-1) (r-2)
P, 2 3 3 2.3

A pattern is clearly developing. It seems that pj = (§).

In fact, the formula



is just a combination of indentities (1) and (5) in section
II.5.

Therefore the eigenvectors belonging to eigenvalue 1
of the transition matrix for this Markov chain has jth
component C[?}, for any constant C # 0. For the steady
state distribution we must choose C so that ZC[?} = 1.
But we know that %[g] = 2% (identity (10) of iection

IT.5). Therefore C = 2"F. The steady state distribution
therefore has

P(X, = j) = (?)2*.

This is none other than the binomial distribution for «r
tosses of a fair coin! 1In other words, it is as if we
placed the particles of the Ehrenfest model into the two
urns one at a time according to the toss of a fair coin.

We know that the binomial distribution is closely
approximated by the normal distribution. Therefore X, is
very close to having the distribution N(Wﬁ ,:94)

(p =q=1/2 and n = r). Therefore X, - r/2 is

vr/4
approximately N(0,1). Suppose that we use confidence
level 99.9%. Then
X, - x/2
P[—3.3 < < 3.3} = .999
/74 J

implies that P[IX0 - r/2] < 1.65/r) = .999. 1In an actual
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experiment, r will be of the order 1024. Consider the
case r = 1024. If we replace the barrier between the

urns, we will find with probability .999 that

< 1.65 x 10

%, - 5 x 1023 12

Although 1.65 x 1012 is a very large number, it is less
than 10—ll of the number of particles in either urn, so
that any departure of X, from being exactly r/2 would
be very difficult to detect.

The value of P(X, = j) when X, has the steady state

distribution is 1/E(Tj) by the Recurrence Theorem. Again

using the normal approximation, we have that

B(ry) = LZE Q202 Yr

12;r . When r = 1024, this

This may seem to be very large, but this is

If j =1r/2, we get E(Tj)
is about 1012.
only because the unit of time we are using is very small.

On the other hand, if j =0 and r = 1024

24
E(T,) = 1/P(X, = 0) = 27 = 210°% = 141023,

, then

Even if our
time scale is as small as 10_Sosec, this waiting time

dwarfs even the waiting time mentioned in section IV."

(on the writing of Hamlet at random by a monkey). Clearly

this state does not occur very often.



6. Exercises for

Chapter VIII Markov Chains

1. Compute the probability of the gambler's ruin for a gambler
having initial fortune $500 and upper limit on winnings $1000,

who is playing roulette and who is making bets of $10 on red or
black; do the same for bets of $100. What advice would you give

to the gambler? to the gambling casino?

2. In doing homework problems each success improves the chance
of another success, while each failure tends to increase the
chance of subsequent failure. Build a Markov chain model for

this.

3. Consider the following model of the spread of disease. There
are N persons in the population. Some are sick and the rest
are not.
(a) when a sick person meets a healthy one, the healthy one
becomes sick with probability «a,
(b) all encounters are between pairs of persons,
(c) all possible encounters in pairs are equally likely,
(d) omne such encounter occurs per unit time,
(e) during each unit of time each sick person recovers
with probability B independently of (a) - (d) and
of the pervious time spent sick.
Let Xn be the number of sick persons at time n. Write the

transition matrix for this Markov chain, and draw its graph.
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4%. Alter the genetics model in section 3 to include a genetic
advantage for one of the genotypes (say, for the Aa genotype) .
How would you include a perference by females having certain
genotypes for males having certain other genotypes. Assume that
the genotypes AA and Aa are indistinguishable from one

another.

5%, Prove that in a finite random walk without absorbing barriers,

all states are persistent.

6. A man has two girl friends A and B, one living uptown and
one living downtown, respectively. He either visits one of his

girl friends on a given evening, OT he stays at home. The day
after an evening at home he goes to the bus stop at a random time
and takes whichever bus comes first, the bus uptown or the bus
downtown, visiting A or B, respectively. The buses run in

both directions during every 15 minute interval, on a fixed
schedule. The man is not too compatiblé with A, for after a

visit to her, he stays home the next evening with probability

9/10 and visits her again with probability 1/10. On the other
hand, he is quite compatible with B; after a visit to her,

he visits her again the next evening with probability 9/10 and stays
home with probability 1/10. Set up the Markov chain for this
process. Much to the man's surprise, he spends as many evenings
with A as with B on the average. Compute how frequently

he spends his evening at home, on the average. See exercise LLl.i&.
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7. Compute the steady state distribution of the genetics model
in section 3. Notice that it is not in general the same as the

distribution of genotypes in the larger population.

8%, Compute the steady state distribution for the more general

genetics models in exercise 4.

9. Compute the steady state of the symmetric finite Markov chain
with reflecting barriers. How often does "Daddy'" advance you a

loan on the average?

10. 1In exercise TI.2 the San Francisco bar in question is 100
yards uphill from the Bay, but the drunk's home is only 10 yards
uphill from the bar. How probable is it that the drunk falls

into San Francisco Bay before finding his way home?

11. 1In a chemical solution there are initially N molecules,
each being one of types A, B, C or D. During every unit of
time exactly one collision occurs between a pair of these
molecules, all possible collisions being equally likely. During
such a collision nothing happens unless the colliding molecules
are A and B or are C and D. If A and B collide, there
is a probability o« that they react and become a pair of C

and D molecules. If C and D collide, there is a
probability B that they become A and B. 1In chemical symbols:

o
—_
A+ 3B —¢C+D.

B
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The state of this system is totally determined by the number of
A molecules. Let the number of A molecules at time n be Xp.
What is the transition matrix for this Markov chain? What is the

steady state number of molecules of each kind?

12. Same as exercise 11 above, but for the autocatalytic
reaction
a
A+ATB+A.

13*%. Generalize exercises 11 and 12 to an arbitrary
number of initial molecules of each kind. Can the reaction rate

constants be determined from the steady state distribution?
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