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Chapter 2

Divisibility and the Euclidean
Algorithm

Definition 2.1 For integers a and b, b 6= 0, b is called a divisor of a, if there exists an integer c such that
a = bc. A number other than 1 is said to be a prime if its only divisors are 1 and itself. An integer other than
1 is called composite if it is not prime.

Notation.

1. b|a means b is a divisor of a.

2. b 6 | a means b is not a divisor of a.

Fact 2.1 The following are easy to show.

1. 1|a for all a ∈ Z,

2. a|a for all a 6= 0,

3. a|b implies a|bc, for all c ∈ Z,

4. a|b and b|c implies a|c,
5. a|b and a|c implies a|b± c,

6. Every prime is a positive integer. 2 is the smallest prime.

Theorem 2.2 The set of primes is infinite.

Proof outline: Assume the set of primes is finite and let them be p1, . . . , pk, for some k ≥ 1. Now consider
the number n =

∏k
i=1 pi +1. It is easy to see that none of the primes p1, . . . , pk is a divisor of n and n is larger

than any of them. Hence n must be a prime, contradicting the assummption. 2

Theorem 2.3 The Fundamental theorem of arithmetic. Every integer n > 1 may be expressed uniquely
in the form

∏k
i=1 pαi

i , for some k ≥ 0, where pi, 1 ≤ i ≤ k are the primes in order and αi ≥ 0 for 1 ≤ i ≤ k.

13



14 CHAPTER 2. DIVISIBILITY AND THE EUCLIDEAN ALGORITHM

Theorem 2.4 The division algorithm Given any two integers a, b > 0, there exist unique integers q, r with
0 ≤ r < b, such that a = bq + r = b(q + 1) − (b − r) and min(r, b − r) ≤ b

2 . q is the quotient and r the
remainder obtained by dividing b into a.

Notation. We use the notation adivb and amodb to denote the quotient q and remainder r (respectively)
obtained by dividing b into a.

Definition 2.2 d ∈ Z is a common divisor of a, b ∈ Z if d|a and d|b. d is called the greatest common
divisor (GCD) of a and b if it is the largest among the common divisors of a and b.

Notation.

1. pα||a means pα|a and pα+1 6 | a.

2. gcd(a, b) denotes the GCD of a and b.

Theorem 2.5 There exist integers x, y such that gcd(a, b) = ax + by, provided a > 0 or b > 0.

Proof outline: The proof depends upon the following claims which are easily proven.

1. S = {au + bv|au + bv > 0, u, v ∈ Z} 6= ∅.
2. d = min S is a common divisor of a and b.

3. d = gcd(a, b).

2

Corollary 2.6 T = {ax + by|x, y ∈ Z} is exactly the set of all multiples of d = gcd(a, b).

Theorem 2.7 The Euclidean theorem If a = bq + r then gcd(a, b) = gcd(b, r).

Proof outline: Let d = gcd(a, b). the the following are easy to prove.

1. d is a common divisor of b and r.

2. Let c = gcd(b, r). Then c|a and c ≤ d.

2

Note: It is not necessary for q and r chosen in the above theorem to be the quotient and remainder obtained
by dividing b into a. The theorem holds for any integers q and r satisfying the equality a = bq + r.

The Euclidean theorem directly gives us an efficient algorithm to compute the GCD of two numbers.

Algorithm 2.1 The Euclidean Algorithm

algorithm euclid(a, b)
begin

if (b=0) then a
else euclid (b, a mod b)

end
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Fibonacci Numbers

Theorem 3.1 gcd(Fn+1, Fn) = 1 for all n ≥ 1.

Proof: For n = 1, the claim is clearly true. Assume for some n > 1, gcd(Fn+1, Fn) 6= 1 Let k ≥ 2 be the
smallest integer such that gcd(Fk+1, Fk) = d 6= 1. Clearly since Fk+1 = Fk +Fk−1, it follows that d|Fk−1, which
contradicts the assumption. 2

Theorem 3.2 Fm+n = Fm−1Fn + FmFn+1, for all m > 0 and n ≥ 0.

Proof outline: By induction on n for each fixed m. 2

Theorem 3.3 For m ≥ 1, n ≥ 1, Fm|Fmn.

Proof outline: By induction on n. 2

Lemma 3.1 If m = nq + r, for m,n > 0, then gcd(Fm, Fn) = gcd(Fn, Fr).

Proof: We have Fm = Fnq+r = Fnq−1Fr + FnqFr+1 by theorem 3.2. Hence gcd(Fm, Fn) = gcd(Fnq−1Fr +
FnqFr+1, Fn). We know that gcd(a + c, b) = gcd(a, b) when b|c. Hence since Fn|Fnq, we have Fn|FnqFr+1.

Claim. gcd(Fnq−1, Fn) = 1. If d = gcd(Fnq−1, Fn), then d|Fnq−1 and d|Fn which implies d|Fnq. But d|Fnq−1

and d|Fnq implies d = 1.

Hence
gcd(Fm, Fn)

= gcd(Fnq−1Fr + FnqFr+1, Fn)
= gcd(Fnq−1Fr, Fn)
= gcd(Fr, Fn since gcd(Fnq−1, Fn) = 1
= gcd(Fn, Fr

2

Theorem 3.4 The GCD of two fibonacci numbers is again a fibonacci number. In fact, gcd(Fn, Fm) =
Fgcd(n,m).

15
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Proof: Lemma 3.1 essentially tells us that something very similar to the Euclidean algorithm works here too.
The correpondence is made clear by the following.

gcd(Fn, Fm)
n = mq0 + r2 implies = gcd(Fm, Fr2)
m = r2q1 + r3 implies = gcd(Fr2 , Fr3)

...
...

rn−2 = rn−1qn−2 + rn implies = gcd(Frn−1 , Frn)
rn−1 = rnqn−1 + 0 = Frn

Since rn|rn−1 we have Frn |Frn−1 . Hence gcd(Fn, Fm) = Frn = Fgcd(n,m). 2

Corollary 3.5 Converse of theorem 3.3. Fm|Fn implies m|n.

Proof: Fm|Fn implies Fm = gcd(Fm, Fn) = Fgcd(m,n) which in turn implies m = gcd(m,n) whence m|n. 2

Theorem 3.6 The following identities hold.

1.
n∑

i=1

Fi = Fn+2 − 1

2.
F 2

n = Fn+1Fn−1 + (−1)n−1

3.
Fn =

αn − βn

√
5

where α = 1+
√

5
2 and β = 1−√5

2 are the solutions of the quadratic x2 = x + 1.

Proof:

1.
F1 = F3 − F2

F2 = F4 − F3

...
Fn = Fn+2 − Fn+1

Adding the above equations and cancelling all Fi, 3 ≤ i ≤ n + 1,
∑n

i=1 Fi = Fn+2 − F2 = Fn+2 − 1.

2. Consider
F 2

n − Fn+1Fn+2 . . . (1)
= Fn(Fn−1 + Fn−2)− Fn+1Fn−1

= (Fn − Fn+1)Fn−1 + FnFn−2

= −Fn−1Fn−1 + FnFn−2

= (−1)(F 2
n−1 − FnFn−2) . . . (2)

(1) and (2) are essentially the same except for the initial sign and the fact that subscripts have all been
reduced by 1. We may continue this process of reducing the subscripts with alternating signs to obtain
F 2

n − Fn+1Fn−1 = (−1)n−1(F1 − F2F0) = (−1)n−1.
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3. By induction on n. For n = 1 it is trivial. Assuming Fn =
αn − βn

√
5

, we have

Fn+1

= Fn + Fn−1

=
αn − βn

√
5

+
αn−1 − βn−1

√
5

=
αn−1(α + 1)− βn−1(β + 1)√

5

=
αn+1 − βn+1

√
5

The last step is obtained from the previous step using the identities α2 = α + 1 and β2 = β + 1, since
they are both solutions of the equation x2 = x + 1.

2

Theorem 3.7 Every positive integer may be expressed as the sun of distinct fibonacci numbers.

Proof: We actually prove the following claim.

Claim. Every number in the set {1, 2, . . . , Fn − 1} is a sum of distinct numbers from {F1, F2, . . . , Fn−2}.
We prove this claim by induction on n. For n = 1 it is trivial. Assume the claim is true for n = k. Choose
any N such that Fk < N < Fk+1. We have N − Fk−1 < Fk+1 − Fk−1 = Fk. By the induction hypothesis,
N − Fk−1 is representable as a sum of distinct numbers from {F1, F2, . . . , Fk−2}. By adding Fk we get that N
is representable as a sum of distinct numbers from {F1, F2, . . . , Fk−2, Fk−1} 2
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Chapter 4

Continued Fractions

Definition 4.1 A continued fraction is of the form

a0 +
b1

a1 +
b2

a2 +
b3

. . .

where a0 ∈ R and a1, a2, . . . , b1, b2, . . . are all positive reals.

Example 4.1 The following simple infinite continued fraction represents the real number
√

13. (Prove it!)

3 +
4

6 +
4

6 +
4
. . .

Definition 4.2 Our interest will be restricted to continued fractions where b1 = b2 = b3 = . . . = 1. Such a
continued fraction is denoted by the list [a0; a1, a2, . . .]. It is said to be finite if this list is finite, otherwise it is
called infinite. It is said to be simple if all the elements of the list are integers. We often use the abbreviation
SFCF to refer to “simple finite continued fractions”.

Fact 4.1 Any SFCF represents a rational number.

Theorem 4.2 Every rational number may be expressed as a simple finite continued fraction.

Corollary 4.3 If 0 < a/b < 1 then a0 = 0.

Fact 4.4 If a/b = [a0; a1, a2, . . . , an], then if an > 1, we may also write a/b = [a0; a1, a2, . . . , an − 1, 1]. Hence
every rational number has at most two representations as a SFCF

Example 4.2 Fn+1/Fn = [1; 1, 1, . . . , 1, 2] = [1; 1, 1, . . . , 1, 1, 1] where Fn+1 and Fn are consecutive fibonacci
numbers.

19
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Definition 4.3 Let a/b = [a0; a1, a2, . . . , an] be a SFCF. Then Ck = [a0; a1, a2, . . . , ak] for 0 ≤ k ≤ n is called
the k-th convergent of a/b.

Note.

1. We will often regard SFCFs as being interchangeable with their values as rational nmumbers.

2. It is clear from fact 4.1 and theorem 4.2 that convergents too may be regarded both as SFCFs and as
rational numbers.

Fact 4.5 Ck with ak replaced by ak +
1

ak+1
yields Ck+1.

Definition 4.4 For [a0; a1, a2, . . . , an] let

p0 = a0 q0 = 1
p1 = a1a0 + 1 q1 = a1

pk = akpk−1 + pk−2 qk = akqk−1 + qk−2 for 2 ≤ k ≤ n

Lemma 4.1 For the SFCF [a0; a1, a2, . . . , an], Ck =
pk

qk
for 0 ≤ k ≤ n.

Proof outline: By induction on k 2

Note. In the sequel we will assume unless otherwise stated, that we have a SFCF [a0; a1, a2, . . . , an] whose
convergents are Ck and in each case Ck =

pk

qk
.

Theorem 4.6
pkqk−1 − qkpk−1 = (−1)k−1

Proof outline: By induction on k. 2

Corollary 4.7 For 1 ≤ k ≤ n, pk and qk are relatively prime, i.e. gcd(pk, qk) = 1.

Proof outline: If d = gcd(pk, qk) then d|pkqk−1− qkpk−1 = (−1)k−1. But since d ≥ 1, it implies that d = 1. 2

Lemma 4.2 qk−1 ≤ qk for 1 ≤ k ≤ n and whenever k > 1, qk−1 < qk.

Theorem 4.8 The convergents of an SFCF satisfy the following properties.

1. The even-indexed convergents form an increasing chain, i.e. C0 < C2 < C4 < . . .

2. The odd-indexed convergents form a decreasing chain, i.e. C1 > C3 > C5 > . . .

3. Every even-indexed convergent is smaller than every odd-indexed convergent.

Proof outline: Consider Ck+2 − Ck = (Ck+2 − Ck+1) + (Ck+1 − Ck). Show that sgn(Ck+2 − Ck) = (−1)k.
The first two parts then follow from this. To show the last part notice that for any j, we may first show again
C2j < C2j−1 and C2j+1 > C2j . Then for any i, j we have

C0 < C2 < . . . C2j < C2j+2i < C2j+2i−1 < C2i−1 < . . . < C1

2
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Algorithm 4.1 The Simple Continued Fraction Algorithm

algorithm scfa (x)
begin

i := 0; x[0] := x; a[0] := floor(x[0]);
print (a[0]);
while (x[i] <> a[i]) do
begin

x[i+1] := 1/(x[i] - a[i]);
a[i+1] := floor(x[i+1]);
print (a[i+1]); i := i+1

end
end.

Theorem 4.9 Agorithm scfa(x) returns a finite list [a0; a1, a2, . . . , an] if and only if x is rational, in which
case x = [a0; a1, a2, . . . , an].

Proof outline: (⇒) If [a0; a1, a2, . . . , an] is returned by the algorithm, it is easy to show by induction on i that
x0 = [a0; a1, a2, . . . , ai−1, xi], for each i. Then clearly x = x0 is a rational number with the stipulated value.

(⇐) Suppose x is a rational. Then starting with a0 = bx0c and xi+1 = 1/(xi − ai) we have that each xi is
rational, say ui/ui+1. We then have

xi+1 =
1

xi − ai

=
1

ui/ui+1 − bui/ui+1c
=

ui+1

ui − ui+1bui/ui+1c
=

ui+1

ui mod ui+1

The transformation that takes xi to xi+1 maps the pair (ui, ui+1) to (ui+1, ui mod ui+1) which is precisely
the transformation of the euclidean algorithm (algorithm 2.1), which we know terminates on integer inputs,
eventually (when ui/ui+1 = bui/ui+1c, which is the termination condition xi = ai of this algorithm. 2

Theorem 4.10 scfa(a/b) = [a0; a1, a2, . . . , an] iff E(a, b) = n.

We know that the linear diophantine equation (10.1) ax+by = c has a solution if and only if gcd(a, b)|c. Further
we also know that if (x0, y0) is a particular solution then the set of all solutions is given by

x = x0 + (b/d)t y = y0 − (a/d)t

for d = gcd(a, b) and all integer values of t.

It follows therefore that ax + by = c admits solutions iff (a/d)x + (b/d)y = c/d admits of solutions. It is also
clear that gcd(a/d, b/d) = 1.

Lemma 4.3 If (x0, y0) is a solution of the equation ax + by = 1, where gcd(a, b) = 1, then (cx0, cy0) is a
solution of ax + by = c
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Theorem 4.11 The equation ax + by = 1 has a solution

x = qn−1 y = −pn−1 if n is odd, and
x = −qn−1 y = pn−1 if n is even

Proof outline: Let a/b = [a0; a1, a2, . . . , an]. then Cn−1 = pn−1/qn−1 and Cn = pn/qn = a/b. Since
gcd(pn, qn) = 1 = gcd(a, b), it follows that pn = a and qn = b. Further since pnqn−1 − qnpn−1 = (−1)n−1 we
have aqn−1 − bpn−1 = (−1)n−1, which yeilds the required solutions depending upon whether n is even or odd.
2
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Simple Infinite Continued Fraction

Definition 5.1 The expression

a0 +
1

a1 +
1

a2 +
1
. . .

where a0, a1, a2, . . . is an infinite sequence s.t. a0 ∈ Z and ∀i ≥ 1 ai ∈ N is called a simple infinite
continued fraction (SICF), denoted by the list [a0; a1, a2, . . .].

Theorem 5.1 The convergent of the SICF satisfy the infinite chain of inequalities
C0 < C2 < C4 < . . . < Cn < . . . < C2n+1 < . . . < C5 < C3 < C1

Proof: Similar to Theorem 4.8 2

Theorem 5.2 The even and odd convergent of a SICF converges to same limit.

Proof: From Theorem 5.1 it is clear that {C2n} forms a bounded monotonicaly increasing sequence bounded
by C1 and {C2n+1} forms a bounded monotonically decreasing sequence bounded by C0 and so both will be
converges to limit, say α and α′ respectively. Clearly,

α− α′ < C2n+1 − C2n

From Theorem 4.6 ,

0 ≤| α− α′ |< 1
q2n.q2n+1

< 1
q2
2n

proof follows from the fact that we can make 1
q2
2n

arbitrarily small as qi increases without bound for large i. 2

Definition 5.2 The value of the SICF can be defined as the limit of the sequence of rational numbers Cn =
[a0; a1, a2, . . . , an] (n ≥ 0 ) i.e. the SICF [a0; a1, a2, . . .] has the value limn→∞ Cn.

Note : The existence of the limit in the above definition is direct from the Theorem 5.1 , Theorem 5.2 and
from the fact that the subsequences of {Cn} , even and odd numbered convergents ,converge to same limit α
and so {Cn} will also converge to the limit α.

23
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Example 5.1 Find the value of the SICF [1, 1, 1, . . .] (Golden ratio).
Sol : say φ = [1, 1, 1, . . .] and Cn = [1, 1, 1, . . . , 1]︸ ︷︷ ︸

n + 1 terms
From above definition,

φ = lim
n→∞

Cn

= 1 +
1

limn→∞ Cn−1

= 1 +
1
φ

⇒ φ =
1 +

√
5

2

As the other root of the quadratic equation φ2 − φ− 1 = 0 is negative.

Definition 5.3 A simple periodic continued fraction is denoted by list

[a0; a1, . . . , an, . . . , an+k−1]

where bar over an, . . . , an+k−1 represent that the block (an, . . . , an+k−1) is in repetition. This block is called the
period of expantion and the number of elements in the block is called length of the block.

Theorem 5.3 Every SICF represents an irrational number.

Proof: Let C = [a0; a1, a2, . . .] be a SICF and {Cn} be a sequence of convergent. Clearly , for any successive
convergents Cn and Cn+1 , C lies in between Cn and Cn+1

⇒ 0 < | C − Cn | < | Cn+1 − Cn | = 1
qnqn+1

let us assume limit of convergent is a rational number , say a
b for a, b ∈ Z and b > 0

⇒ 0 < | a

b
− pn

qn
| < 1

qnqn+1

⇒ 0 < | aqn − bpn | < b

qn+1

As b is constant and ∀i qi < qi+1 (Lemma 4.2)

⇒ ∃N ∈ N s.t. ∀n ≥ N,
b

qn+1
< 1

⇒ 0 < | aqn − bpn | < 1, ∀n ≥ N

This is a contradiction as | aqn − bpn |∈ N , lies between 0 and 1 . 2

Theorem 5.4 If x = [a0; a1, a2, . . .] = [b0; b1, b2, . . .] then an = bn∀n ≥ 0
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Proof: Since C0 < x < C1 and a1, b1 ∈ N

a0 < x < a0 +
1
a1

⇒ a0 < x < a0 + 1

b0 < x < b0 +
1
b1

⇒ b0 < x < b0 + 1

This implies that a0 = b0 , since the greatest integer of x from one inequality is a0 and from other is b0 .
Proof follows from the repetition of the argument on [ak+1, ak+2, . . .] and [bk+1, bk+2, . . .] by assuming that
ai = bi for 0 ≤ i ≤ k 2

Corollary 5.5 Distinct continued fractions represent distinct irrationals.

Note : Theorem 5.3 and Theorem 5.4 together say that every SICF represents a unique irrational number.

Theorem 5.6 Any irrational number x can be written as [a0; a1, a2, . . . , an−1, xn], where a0 is a integer ,∀i ai ∈
N and for all n xn is irrational.

Proof outline: By induction on n. 2

Theorem 5.7 If x = [a0; a1, a2, . . . , an−1, xn] , s.t. ∀n ≥ 2 xn ∈ R+ , a0 ∈ Z and ∀i ai ∈ N then

x =
xnpn−1 + pn−2

xnqn−1 + qn−2

Proof: (By induction on n) For n = 2 ,

x = [a0; a1, x2] =
x2(a0a1 + 1) + a0

x2a1 + 1

=
x2p1 + p0

x2q1 + q0

,the result is true. Assume the result hold for n = k .i.e

[a0; a1, . . . , ak−1, xk] =
xkpk−1 + pk−2

xkqk−1 + qk − 2

For n = k + 1, replace xk by ak + 1
xk+1

⇒ x = [a0; a1, . . . , ak−1, ak +
1

xk+1
]

=
(ak + 1

xk+1
) + pk−2

(ak + 1
xk+1

) + qk−1

=
xk+1pk + pk−1

xk+1qk + qk−1

and so the result hold for all n. 2

Corollary 5.8 If xm(n) = [am, am+1, . . . , an−1, xn], m < n and limn→∞ xm(n) = ym , then for m ≥ 2 ,

x = [a0; a1, a2 . . .] = [a0, a1, . . . , am−1, ym]

=
ympm−1 + pm−2

ymqm−1qm−2
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Proof: Let m be fixed integer. Then by definition,

x = limn→∞[a0; a1, . . . , am−1[am, am+1, . . . , an]]
= limn→∞[a0; a1, . . . , am−1, xm(n)]

Since f(α) = [a0; a1, . . . , am−1, α] is contineous function ,

⇒ x = [a0; a1, . . . , am−1, limn→∞xm(n)]
= [a0; a1, . . . , ym]

now result holds from Theorem 5.6 for m ≥ 2. 2

Theorem 5.9 For any irrational x ,

| x− Cn−1 | = 1
qnqn−1

Proof: From Theorem 5.6,

x− Cn−1 =
xnpn−1 + pn−2

xnqn−1 + qn − 2
− pn−1

qn−1

=
(−1)n−1

(xnqn−1 + qn−2)qn−1

Since xn > an ,

| x− Cn−1 | =
1

(xnqn−1 + qn−2)qn−1

<
1

(anqn−1 + qn−2)qn−1

=
1

qnqn−1

2

Lemma 5.1 If x > 1 and x + 1
x <

√
5 then x < α (=

√
5+1
2 ) and 1

x = −β (=
√

5−1
2 )

Sol : For x > 1, function x + 1
x increases without bounds. Given,

x +
1
x

<
√

5

⇒ (x− α)(x− β) < 0

This implies, either x > α and x < −β or x < α and x > −β.Since α > −β, so only second relation will hold .
Now ,

x < α

⇒ 1
x

>
2√

5 + 1
=
√

5− 1
2

= −β

Theorem 5.10 Every irrational number can be uniquely represent as a SICF.Equivalently,
If x is an irrational number , a0 = [x] and ak = [xk−1] for k = 1, 2 . . . , where x = a0 + 1

x0
and xi = ai+1 + 1

xi+1

for i = 0, 1, 2, . . . then x = [a0; a1, a2, . . .]
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Proof: The first n convergents of [a0; a1, . . .] are same as the first n convergents of [a0; a1, . . . , an.xn].Thus
n + 1th convergent of [a0; a1, . . . , an, xn] from Theorem 5.6 is

x =
xnpn + pn−1

xnqn + qn−1

however ,

x− Cn =
(−1)n+1

(xnqn + qn−1)qn

For n > 1, n− 1 ≤ (n− 1)2 ≤ q2
n < (xnqn + qn−1)qn , this implies that the denominator becomes infinite as n

increases and so ,

x− lim
n→∞

Cn = limn→∞(x− Cn) = 0

hence , every irrational number uniquely represents an infinite simple continued fraction.(uniqueness follows
from Theorem 5.4) 2

Corollary 5.11 For any irrational number x ,

| x− pn

qn
| < 1

qnqn+1
<

1
q2
n

where Cn = pn

qn
is nth convergent.

Example 5.2 Prove that e is an irrational number.
Sol : Proof by contradiction,
Assume that e = a

b , a > b > 0 is an rational number.Then for n > b and also n > 1 ,

N = n! ( e−
n∑

k=0

1
k!

)

= n! (
∑

k>n

1
k!

)

since , e =
∑

n≥0
1
n! . Also note that the number N is a positive integer,

⇒ N =
1

n + 1
+

1
(n + 1)(n + 2)

+
1

(n + 1)(n + 2)(n + 3)
+ . . .

<
1

n + 1
+

1
(n + 1)(n + 2)

+
1

(n + 2)(n + 3)
+ . . .

=
2

n + 1
< 1

since n > 1 . This is a contradiction as n is a positive integer. This implies that e must be a irrational.

Theorem 5.12 For any irrational number x > 1 , the n + 1th convergent of 1
x and the nth convergent of x are

reciprocal to each other.
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Proof outline: Let x = [a0, a1, a2, . . .]. Now proof follows from the observation,

1
x

= 0 +
1

[a0, a1, a2. . . .]

= lim
n→∞

(0 +
1

[a0, a1, . . . , an]
)

= lim
n→∞

[a, a0, a1, . . . , an]

= [0, a0, a1, . . .]

2

Corollary 5.13 For any irrational x in between 0 and 1 , the n + 1th covergent of x and nth convergent of 1/x
are reciprocal to each other.



Chapter 6

Rational Approximation of Irrationals

In this chapter we consider the problem of finding good rational approximations to an irrational number x.

Definition 6.1 The best approximation to a real number x relative to n is the rational number p/q closest to
x such that 0 < b ≤ n.

The next theorem shows that continued fraction convergents are the best approximations relative to their
denominators.

Lemma 6.1 Let cn = pn

qn
be the nth convergent of SICF representation of x. If a, b ∈ Z with 1 ≤ b ≤ qn+1,

then | qnx− pn | ≤ | bx− a |

Proof: Consider the equation [
pn pn+1

qn qn+1

] [
y
z

]
=

[
a
b

]

Note that
pn pn+1

qn qn+1
= (−1)n+1

So, the equation has unique integer solutions given by
yo = (−1)n+1(aqn+1 − bpn+1)
zo = (−1)n+1(bpn − aqn)

Claim.yo 6= 0
If yo = 0 then aqn+1 = bpn+1. We know that gcd(pn+1, qn+1) = 1. The two facts imply qn+1 | b which in turn
implies b ≥ qn+1, which is a contradiction.

We now consider two cases depending on value of zo:
Case: zo = 0
⇒ bpo = aqn and since yo ∈ Z, | qnx− pn |≤| bx− a |. Hence proved.

Case: zo 6= 0
Claim.yozo < 0
If zo < 0 then yoqn + zoqn+1 = b ⇒ yoqn = b− zoqn+1 > 0 ⇒ yo > 0.
If zo ≥ 0 then, b < qn+1 ⇒ yoqn = b− zoqn+1 < 0 ⇒ yo < 0.

29
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As x lies between pn

qn
and pn+1

qn+1
, (x− pn

qn
) and (x− pn+1

qn+1
) have opposite signs.Hence (qnx−pn) and (qn+1x−pn+1)

have opposite signs.

pnyo + pn+1zo = a

qnyo + qn+1zo = b

| bx− a | = | yo(qnx− pn) + zo(qn+1x− pn+1) |
= | yo | | qnx− pn | + | zo | | qn+1x− pn+1 |
≥ | qnx− pn |

where the second equality follows because | a + b |=| a | + | b | if a and b have same signs.

2

Theorem 6.1 If 1 ≤ b ≤ qn then | x− pn

qn
|≤| x− a

b |

Proof: Assume the statement is false.

| qnx− pn | = qn | x− pn

qn
|

> b | x− a

b
|

= | bx− a |

which contradicts the previous lemma. 2

Hence continued fraction convergents are the best approximations to irrationals relative to their denominators.

Theorem 6.2 If x = [a0, a1 . . . an−1, xn], xn ∈ R+ for all n ≥ 0 then x = xnpn−1+pn−2
xnqn−1+qn−2

Proof: By induction on n.
Base:For n = 2 ,

x = [a0; a1, x2] =
x2(a0a1 + 1) + a0

x2a1 + 1

=
x2p1 + p0

x2q1 + q0

I.H. Assume the result holds for n = k .i.e

[a0; a1, . . . , ak−1, xk] =
xkpk−1 + pk−2

xkqk−1 + qk − 2

For n = k + 1, replace xk by ak + 1
xk+1

⇒ x = [a0; a1, . . . , ak−1, ak +
1

xk+1
]

=
(ak + 1

xk+1
) + pk−2

(ak + 1
xk+1

) + qk−1

=
xk+1pk + pk−1

xk+1qk + qk−1

and so the result holds for all n. 2
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Lemma 6.2 If x > 1 and x + 1/x <
√

5 then

i. x < α =
√

5+1
2

ii. 1
x > −β =

√
5−1
2

Proof: Note that α and β are roots of equation x + 1/x =
√

5.

x + 1/x <
√

5 ⇒ (x− α)(x− β) < 0

The two possibilities are α < x < −β) or −β < x < α. The first one is ruled out as we are given that
x > 1 > −β. So, we have −β < x < α which proves the first claim.
Now, x < α ⇒ x <

√
5+1
2 ⇒ 1

x > 2√
5+1

=
√

5−1
2 which proves the second claim. 2

Theorem 6.3 Hurwitz’s Theorem Given an irrational x, there exist many rationals a/b such that

| x− a

b
|< 1√

5b2
(6.1)

Proof: We first prove certain claims
Claim. If 6.1 is false for any consecutive Cn−1 and Cn, then rn + 1/rn <

√
5 where rn = qn/qn−1.

We are given | x− pn−1
qn−1

| ≥ 1√
5q2

n−1
and | x− pn

qn
| ≥ 1√

5q2
n

. So, | x−Cn−1 | + | x−Cn | ≥ 1√
5
( 1

q2
n

+ 1
q2

n−1
). Since

x lies between Cn−1 and Cn, | x− Cn−1 | + | x− Cn |= | pn

qn
− pn−1

qn−1
|= 1

qn−1qn
. Hence,

1
qn−1qn

≥ 1√
5
( 1

q2
n

+ 1
q2

n−1
)

⇒ qn

qn−1
≥ 1√

5
( q2

n

q2
n−1

+ 1)

⇒ rn ≥ 1√
5
(r2

n + 1)
⇒ rn + 1/rn ≤ √

5

Claim. Atleast one of three consecutive convergents satisfies 6.1
Assume none of Cn−1, Cn and Cn+1 satisfy 6.1. Using the previous claim, rn + 1/rn <

√
5. But by lemma 6.2

rn < α and 1/rn > −β. Similarly, rn+1 < α and 1/rn+1 > −β.

qn+1 = anqn + qn−1

⇒ rn+1 = an +
1
rn

< αn +
√

5− 1
2

<

√
5 + 1
2

(6.2)

where the last inequality follows since rn+1 < α. Combining the last two inequalities, we get an < 1, which is
a contradiction and the claim is proved.

Since an irrational has infinite convergents, Hurwitz’s theorem follows from the claim. 2

Theorem 6.4 For any constant c >
√

5 , Hurwitz’s theorem does not hold.
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Proof: Consider the irrational number α = [1, 1 . . .]. There exists n ≥ 0 such that, αn = α ,pn = Fn and
qn = Fn−1.

lim
n→inf

(
qn

qn+1
) = lim

n→inf
(
qn

pn
) =

1
α

= −β

| α− pn

qn
| =

1
qn−1(αnqn−1 + qn−2)

=
1

q2
n(αn+1 + qn−1

qn
)

Consider the term αn+1 + qn−1
qn

.

lim
n→inf

αn+1 + qn−1
qn

= α +−β =
√

5

So, for any c >
√

5, αn+1 + qn−1
qn

> c for only a finite number of n’s. We have shown that if | x− a
b |< 1

2b2 then
a
b is a convergent.Now,

| α− pn

qn
| =

1
q2
n(αn+1 + qn−1

qn
)

<
1

cq2
n

<
1

2q2
n

where the first inequality holds only for a finite number of convergents and the second inequality holds only
for rationals which are convergents. Hence there are only a finite number of rationals of the form a

b such that
| α− a

b < 1
cb2 for c >

√
5. 2



Chapter 7

Quadratic Irrational(Periodic
Continued Fraction)

Definition 7.1 An element x ∈ R is a quadratic irrational if it is irrational and satisfies a quadratic polyno-
mial.
Thus, e.g., (1 +

√
5)/2 is a quadratic irrational. Recall that

1 +
√

5
2

= [1, 1, 1, . . .]

Definition 7.2 A periodic continued fraction is a continued fraction [a0, a1, . . . , an, . . .] such that.

an = an+h

for a fixed positive integer h and all sufficiently large n. We call h the period of the continued fraction.

Example 7.1 Consider the periodic continued fraction [1, 2, 1, 2, . . .] = [1, 2].

[1, 2] = 1 +
1

2 + 1
1+ 1

2+ 1
1+···

,

Lemma 7.1 1) A periodic continued fraction represent a quadratic irrationals.
2) Any quadratic irrational has SPCF representation.

Theorem 7.1 Every quadratic irrational has SPCF representation.
Proof Outline : Let say that x is a quadratic irrational.

x = b+
√

d
c

where b, d, c ∈ Z but d is squarefree integer.
let say

33
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x = m+
√

d
s0

where s0|(d−m2)

ai = [xi] xi =
mi +

√
d

si

mi+1 = aisi −mi

si+1 =
d−m2

i+1

si

Claim : mi, si are all integers.
Proof : By induction on i.
Base Case : m0 and s0 are b and c and b, c ∈ Z
Let say it is true for i. mi, si are integers and si|(d−m2

i+1).
then

si+1 = d−m2
i+1

si
= d−(aisi−mi)

2

si

⇒ d−m2
i

si
+ 2aimi − a2

i si

⇒ si+1 is an integer and si+1 = 0

because otherwise d = m2
i+1 contractiong the property of d.

Claim : x is a periodic .
Proof : say x = mi−

√
d

si
since the conjugate of quotients equals quotients of conjugates.

x = xnpn−1+pn−2
xnqn−1+qn−2

for any x > 0

pk = qkpk−1 + pn−2

pk = okqk−1 + qn−2

for all k ≥ 0

x = xnpn−1+pn−2
xnqn−1+qn−2

manipulate it.

xn = −(
xqn−2 + pn−2

xqn−1 + pn−1
)

= −qn−2

qn−1
(
x− pn−2

qn−2

x− pn−1
qn−1

)

⇒ xn = −qn−2

qn−1
(
x− pn−2

qn−2

x− pn−1
qn−1

) < 0

because

lim
n→∞

pn−1

qn−1
= x

x < 0 for sufficiently s.t.
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xn > 0

where

xn =
m +

√
d

sn
, xn =

m−
√

d

sn

xn − xn =
2
√

d

si
> 0

⇒ sn > 0 similarly sn+1 > 0
sn.sn+1 = d−m2

n+1 ≤ d

sn ≥ sn.sn+1 ≤ d

m2
n+1 < m2

n+1 + sn.sn+1 < d

⇒ 0 ≤ |mn+1| <
√

d

mi = mj forall j < k

so that

sj = sk

and

x = [a0, . . . , aj−1, aj , . . . , ak−1]

so every quadratic irrationals has SPCF representation

Theorem 7.2 Every SPCF has quadratic representation.
Proof : First suppose that

[a0, a1, . . . , an, an+1, . . . , an+k]

is a periodic continued fraction. Set α = [an+1, an+2, . . .]. Then

α = [an+1, . . . , an+k, α],

so

α = αpn+k+pn+k−1
αqn+k+qn+k−1

.

(We use that α is the last partial convergent.) Thus α satisfies a quadratic equation. Since the ai are all
integers, the number

[a0, a1, . . .] = [a0, a1, . . . , an, α]

= a0 +
1

a1 + 1
a2+···+α

can be expressed as a polynomial in α with rational coefficients, so [a0, a1, . . .] also satisfies a quadratic polyno-
mial. Finally, α 6∈ Q because periodic continued fractions have infinitely many terms.
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Theorem 7.3 The CF expansions of a qudratic irrationals x is purely periodic iff x > 1 and −1 ≤
x < 0
Proof : (⇐=) Assume x > 1 and −1 ≤ x < 0

xi+1 =
1

xi − ai
;

1
xi+1

= xi − ai

as

x = [a0, . . .]

so

x > 1 ⇒ a0 ≥ 1 ai ≥ 1 ∀i > 0
x > 1 and a0 ≥ 1 ⇒ 1

xi+1
= xi − ai < −1

By induction : let say

−1 < x < 0

⇒ −1 <
1

xi+1
< 0

⇒ ai = − 1
xi+1

x is quadratic irrationals and hence is periodic

∃j > i ai = aj and xi = xj

so xi = xj

aj−1 = − 1
xj

= − 1
xi

= ai−1

Proof : (=⇒) Assume

x = [a0, a1, . . . , an−1]
x = [a0, a1, . . . , an−1, x]

x =
xpn−1 + pn−2

xqn−1 + qn−2

F (x) = x2qn−1 + x(qn−2 − pn−1 − pn−2

there won’t be any imaginary roots for this equation

Two roots α and β ,
a0 > 1, x ≥ 1 a0 = an ⇒ an > 0 ⇒ a0 = 0
a0, . . . , an−1 are all the one of α, α > 1
To proove that −1 < α < 0
Claim : F (−1) and F (0) have opposite sign.

F (0) = pn−2 < 0
F (−1) = qn−1 − qn−2 + pn−2 − pn−1 > 0

for n > 1



Chapter 8

Primes and ther Infinitude

It will be another million years, at least, before we understand the primes. - P. Erdös

For any integer m ∈ Z+, define Zm = {0, 1, . . . , m − 1} as the set of positive integers less than m. Consider a
relation ≡m⊂ Z+ × Z+, where a ≡m b if and only if m | (a− b).

≡m is an equivalence relation

• Reflexive: a ≡m a, for all a ∈ Z+.

• Symmetric: If a ≡m b, then a− b = k1m. So b− a = −k1m, and b ≡m a.

• Transitive: If a ≡m b (implying that a − b = k1m) and b ≡m c (implying that b − c = k2m), then
a− c = (k1 + k2)m, and hence a ≡m c.

Therefore, we can partition the set of integers into m equivalence classes, corresponding to the remainder the
number leaves when divided by m. Therefore, any integer a ∈ Z is mapped to a number r ∈ Zm, where a ≡m r.
Let [a] denote the remainder of a when divided by m. Therefore, a ≡m [a], where [a] < m.

The equivalence relation is preserved under addition (+), subtraction (−) and multiplication (×). Let a =
qam + ra, with 0 ≤ ra < m, and b = qbm + rb with 0 ≥ rb < m. Then [a] = ra and [b] = rb. Therefore
[a] ◦ [b] = ra ◦ rb, where ◦ ∈ {+,−,×}.

• [a] +m [b] = [a + b]. [a + b] = [qam + ra + qbm + rb] = [(qa + qb)m + (ra + rb)] = [ra + rb] = [a] + [b].

• [a]−m [b] = [a− b]. [a− b] = [qam + ra − qbm− rb] = [(qa − qb)m + (ra − rb)] = [ra − rb] = [a]− [b].

• [a]×m [b] = [a×b].[a×b] = [(qam+ra)× (qbm+rb)] = [qaqbm
2 +(rbqa +raqb)m+rarb] = [rarb] = [a]× [b].

Multiplicative Inverse We say b ∈ Zm is the multiplicative inverse of a if

ab ≡m 1

Theorem 8.1 The elements of Zm which have multiplicative inverses are exactly those that are relatively prime
to m.
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Proof: By definition, b is a multiplicative inverse of a if and only if ab ≡m 1. Therefore, ab = qm + 1 ⇒
ab−mq = 1. Recall from linear diaphantine equations that ax+ by = c has a solution if and only if gcd(a, b) | c.
Therefore, for the multiplicative inverse b to exist, we require that gcd(a,m) | 1 ⇒ gcd(a,m) = 1. Therefore, if
a has a multiplicative inverse, then it must be relatively prime to m. 2

Corollary 8.2 For every prime number p, every non-zero element in Zp has a multiplicative inverse.

Recall that a group is defined as a set S, together with a binary operation S × S → S, satisfying the following
axioms (where we write a ∗ b for the result of applying the binary operation to the two elements a, b ∈ S.)

• associativity: for all a, b and c in S, (a ∗ b) ∗ c = a ∗ (b ∗ c).

• identity element: there is an element e in S such that for all a in S, e ∗ a = a = a ∗ e.

• inverse element: for all a in S there is a b in S such that a ∗ b = e = b ∗ a.

A group whose operation is commutative (that is, a ∗ b = b ∗ a for all a, b ∈ S is also called a Abelian or
commutative group. Let [Zp,+p, 0] define a abelian group, where Zp is the set, and the binary operation is the
addition operation modulo p (+p). For all a, b and c in S, (a +p b) +p c = a +p (b +p c). Further, 0 ∈ Zp is
the identity element since for all a ∈ Zp, a +p 0 = a = 0 +p a. Finally, there exists an inverse element for every
element a ∈ Zp = p− a.

[Zp,×p, 1] is also an abelian group. For associativity, we require that for all a, b and c in Zp, we have (a ×p

b) ×p c = a ×p (b ×p c). If a = qa · p + ra, b = qb · p + rb and c = qc · p + rc, with 0 ≤ ra, rb, rc < p, then
a× b = qaqbp

2 + (qa + qb)p + rarb. Therefore, a×p b = rarb mod p, which means that (a×p b)×p c = rarbrc mod
p. Similary, we have a ×p (b ×p c) = rarbrc mod p. Further 1 ∈ Zp is the identity element since for all a ∈ Zp,
a×p 1 = a = 1×p a. Finally, there exists an inverse element for every element a ∈ Zp by the corollary.

We know that a number p > 1 is a prime number if it has no non-trivial factors (other than 1 and p itself).
The following are some simple observations about any prime number p.

1. p | ab ⇒ p | a or p | b.

2. p | a1a2 . . . ak ⇒ p | ai for some 1 ≤ i ≤ k.

3. p | q1q2 . . . qk ⇒ p = qi for some 1 ≤ i ≤ k, where q1, q2, . . . , qk are all primes.

We are used to considering primes only on natural numbers. Here is another set of primes over a different set.
Consider the set of all even numbers Ze. The set Ze has the following properties:

• for all a, b, c ∈ Ze, a + (b + c) = (a + b) + c - associativity.

• for all a ∈ Ze, there is an element −a ∈ Ze, such that a + 0 = 0 + a = a, and 0 ∈ Ze - identity element.

that this set forms an abelian group since it satisfies associativity, has an identity element (0), and for every
even number x ∈ Ze, the negation −e is the unique inverse element under the operation +. Therefore, we
have a notion of primality over the ring of even numbers. The only primes in Ze are the numbers of the form
2 · (2k + 1), since they have no factorizations over Ze.

Theorem 8.3 Fundamental Theorem of Arithmetic Every positive integer n > 1 is a product of prime
numbers, and its factorization into primes is unique up to the order of the factors.
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Proof: Existence: By Induction. In the base case, n = 2 and n = 3 are both primes, and hence the theorem
holds. Let us suppose that the hypothesis holds for all m < n. The number n is either prime, in which case
the hypothesis holds (1× n), or composite, in which case n = ab with a < n and b < n. Since both a and b are
products of primes (by induction hypothesis) the theorem holds for n.

Uniqueness: Let us assume that n has two representations n1 = pe1
1 pe2

2 . . . pek

k , and n2 = qd1
1 qd2

2 . . . qek

k .
Without loss of generality, assume that p1 < p2 < . . . < pk and that q1 < q2 < . . . < ql. Let P = {p1, p2, . . . , pk}
amd Q = {q1, q2, . . . , ql}. We will first prove that P = Q (which implies that l = k and pi = qi. We will
then show that ei = di for 1 ≤ i ≤ k, and that would imply that the two factorizations are identical, hence
completing the proof of uniqueness.

Let us suppose that P 6= Q. Let x ∈ P and x /∈ Q. Then we have x | n1. Since x is a prime, there is no
y ∈ Q such that x | y. Therefore, x - n2. But since n1 = n2, we arrive at a contradiction, so that if x ∈ P then
x ∈ Q. Similarly, by symmetry, we have if x ∈ Q then x ∈ P . Hence P = Q, and therefore pi = qi.

Next, we will show that ei = di for all 1 ≤ i ≤ k. Suppose ei 6= di for some 1 ≤ i ≤ k. Let ci = max(ei, di).
Once again, pci

i | n is one representation and not in the other. That is impossible, therefore ei = di for all
1 ≤ i ≤ k. 2

Theorem 8.4 There are an infinite number of prime numbers.

Proof: We present a proof by contradiction. Assume that there are a finite number m of primes which are
p1, p2, . . ., pm. Consider the natural number p = p1p2 . . . pm + 1. We have that p - pi for 1 ≤ i ≤ m. Since any
number must have a unique prime factorization, and the prime factorization of p does not have pi for 1 ≤ i ≤ m,
there must be some other primes that appear in its prime factorization. Therefore, we arrive at a contradiction
and our initial assuption that there are only a finite number of primes does not hold. 2

Corollary 8.5 If pi is the ith prime number, with p1 = 2, we can claim that pm+1 ≤ p since there is a prime
factor of p that is not covered in p1, p2, . . ., pm.

Theorem 8.6 If the pn denotes the nth prime, then pn ≤ 22n−1
(the first prime p1 = 2).

Proof: We present a proof by induction on n. Induction Hypothesis: For all n ≤ k, if pn denotes the nth
prime, then pn ≤ 22n−1

. Base Case: If n = 1, then pn = 2, and 22n−1
= 220

= 2, hence 2 ≤ 2. Induction Case:
In the induction case, let us assume that the induction hypothesis holds for all n ≤ k. Then:

pk+1 ≤ p1p2 . . . pk + 1 by Corollary 2
≤ 220

221
. . . 22k−1

+ 1 by IH
≤ 220+21...+2k−1

≤ 22k−1 + 1 Summing up 2i

≤ 22k

And that completes the proof. 2

Corollary 8.7 There are at least n + 1 primes that are less than 22n

.

Claim 8.1 The product of any two terms of the form 4n + 1 is also of the form 4n + 1.
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Proof: Consider n1 = 4k1+1 and n2 = 4k2+1. Therefore n1n2 = (4k1+1)(4k2+1) = 16k1k2+4(k1+k2)+1 =
4k + 1 with k = 4k1k2 + (k1 + k2). 2

Theorem 8.8 There are an infinite number of primes of the form 4n + 3.

Proof: We present a proof by contradiction. Let us assume that q1, q2, . . ., qk are the only primes that are of
the form 4n + 3. Consider the number N :

N = 4Πk
i=1qi − 1

= 4(Πk
i=1qi − 1) + 3

Since N is odd, all its factors must be odd. Hence, all its factors are either of the form 4n + 1 or 4n + 3. Since
the product of two numbers of the form 4n + 1 is also a number of the form 4n + 1 (from the previous claim),
we require that N has at least one factor of the form 4n + 3. Therefore, there exists a prime number r that is
of the form 4n + 3 that is a factor of N . Further, no qi is a factor of N . Therefore, N has a factor that is of the
form 4n + 3 other than the qi for 1 ≤ i ≤ k. But by our assumption qi are the only prime numbers of the form
4n + 3. This brings us to a contradiction and hence there are an infinite number of primes of the form 4n + 3.
2

Generalizing, we may wish to ask if there are any primes of a general form a + ib, where a and b are integers
and i ranges over the naturals.

Theorem 8.9 If the n terms of the arithmetic progression

p, p + d, p + 2d, . . . , p + (n− 1)d

are all prime numbers, then the common difference d is divisible by every prime q < n.

Proof: We present a proof by contradiction. Assume on the contrary that a prime number q < n exists such
that q - d. Consider the set

S = {p + id | 0 ≤ i < q}

Claim 8.2
S ≡q {0, 1, . . . , q − 1}

Proof: (Of the claim) We will prove this using the fact that two different elements of the set S yield distinct
remainders when divided by the prime q. Consider any two elements e1 = p + id ∈ S and e2 = p + jd ∈ S.
We have e1 − e2 = (i − j)d. Since q - d and i − j < q ⇒ q - i − j, and q is prime, it follows that q - e1 − e2.
Therefore, e1 and e2 are not congruent modulo the prime p. 2

Therefore, |S| = q, and there must exist an element p + kd ∈ S such that p + kd ≡q 0. This brings us to a
contradiction since all terms of the arithmetic progression are primes. Therefore, our assumption that q - d
fails, and the proof is complete. 2

Theorem 8.10 Dirichlet’s Theorem: If a and b are relatively prime (that is gcd(a, b) = 1), then there are
infinite primes of the form a + ib, i ∈ {0, 1, . . . , }.

Remark 8.1 Note that the requirement gcd(a, b) = 1 is crucial. If gcd(a, b) = k with k > 1, then it is clear
that k | a + ib. Since all numbers of the form a + ib are unique and at most one of them can be k, there can
be no more than one prime in this series. In other words, Dirichlet’s theorem asserts that any series a + ib has
infinite primes if there is no simple reason to support the contrary. In the previous theorem, we proved a special
case of Dirichlet’s Theorem for a = 3 and b = 4.
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Proof: (Sketch) The proof is based on showing that if gcd(a, b) = 1, then the series:

∑
p≡ba

1
p

is divergent. If the series is divergent, then indeed there must be infinitely many primes p such that p ≡b a.
Note that p ≡b a implies that p = qb + a for some quotient q and 1 ≤ a < b. 2

Lemma 8.1 Let n ≥ 1 throughout.

1. 2n ≤
(

2n
n

)
< 22n

2.
∏

n<p≤2n p |
(

2n
n

)

3. Let r(p) satisfy pr(p) ≤ 2n < pr(p)+1, then
(

2n
n

)
| ∏

p≤2n pr(p)

4. If n > 2 and 2n/3 < p ≤ n, then p -
(

2n
n

)
.

5.
∏

p≤n p < 4n.

Proof:

1. As 2n− k ≥ 2(n− k) for 0 ≤ k < n, we have

2n ≤ 2n
n

2n− 1
n− 1

. . .
n + 1

1
=

(
2n
n

)

Also as
(

2n
n

)
is one of the terms in the binomial expansion of (1 + 1)2n, we have:

(
2n
n

)
< (1 + 1)2n = 22n

2. This follows as each prime in the interval [n + 1, 2n] divides (2n)! but not n!

3. The exponent of p in n! is
∑r(p)

j=1 [n/pj ]. Therefore, the exponent of p in
(

2n
n

)
is

r(p)∑

j=1

{[2n/pj ]− 2[n/pj ]} ≤
r(p)∑

j=1

1 = r(p)

The last inequality holds as each term in curly brackets is either 0 or 1. Taking the product over primes
p ≤ 2n, we get the desired result.

4. If p satisfies 2n/3 < p ≤ n, then p occurs once in the prime factorization of n! and twice in (2n)! (as

3p > 2n), hence as p > 2, p -
(

2n
n

)
.

5. This is proved by complete induction. Let P (n) denote the proposition to be proved. Clearly P (1), P (2)
and P (3) hold, and if m > 1, we have P (2m) as:

∏

p≤2m

p =
∏

p≤2m−1

p < 42m−1 < 42m
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So we may suppose n = 2m + 1 and m ≥ 2. Each prime p in the interval [m + 2, 2m + 1] is a factor of(
2m + 1

m

)
, hence, if we assume P (m + 1) holds,

∏

p≤2m+1

p ≤
(

2m + 1
m

) ∏

p≤m+1

p <

(
2m + 1

m

)
4m+1.

But
(

2m + 1
m

)
is one of the two central terms in the binomial expansion of (1 + 1)2m+1, and so,

(
2m + 1

m

)
<

1
2
(1 + 1)2m+1 = 4m

Thus P (m + 1) implies P (2m + 1) and the inductive proof is complete.

2

Theorem 8.11 Bertrand’s Postulate: If n > 0 then there is a prime p satisfying n < p ≤ 2n.

Proof: In order to prove the theorem, we only consider large n. In particular, we assume that the theorem
holds for n < 750, as it can be observed by inpsection. We present a proof by contradiction. Assume that
there exists some large n such that there is no prime p such that n < p ≤ 2n. Consider the binomial coefficient(

2n
n

)
. From Lemma 8.1, we have that all prime factors p of

(
2n
n

)
satisfy p ≤ 2n/3. Let s(p) be the largest

power of p which divides
(

2n
n

)
, so by lemma 8.1, we have

ps(p) ≤ 2n

If s(p) > 1, then p ≤ √
2n. It follows that no more than [

√
2n] primes occur in

(
2n
n

)
with exponent larger

than 1. Therefore, we have (
2n
n

)
≤ (2n)

√
2n

∏

p≤2n/3

p.

Now
(

2n
n

)
> 4n

2n+1 (since
(

2n
n

)
is the largest term in the binomial expansion of (1+1)2n which has 2n+1

summands). Thus we have
4n

2n + 1
< (2n)

√
2n

∏

p≤2n/3

p

Since
∏

p≤m < 4m, we have
4n

2n + 1
< (2n)

√
2n42n/3

For reasonably large n, we may assume that 2n + 1 < (2n)2, so canceling 42n/3 we have:

4n/3 < (2n)2+
√

2n

or, taking logarithms,
n ln 4

3
< (2 +

√
2n) ln 2n

This is clearly false for large n. In fact, for n = 750, we have

325 =
750 · 1.3

3
< (2 +

√
1500) ln 1500 < 41 · 7.5 < 308

Hence, the result holds for n ≥ 750. As mentioned earlier, the result holds by inspection for n < 750. 2
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Conjectures:

• The twin prime conjecture: There are many pairs of primes p, q where q = p + 2. For examples:

3, 5; 17, 19; 881, 883; 1997, 1999; 109 + 7, 109 + 9;

Let π2(x) be the number of prime pairs less than x, so for example

π2(103) = 35 and π2(106) = 8164

The twin prime conjecture states that

π2(x) →∞ as x →∞

Using very complicated arguments based on the idea of a sieve Chen showed that there are infinitely many
pairs of integers p, p + 2 where p is a prime and p + 2 has at most two prime factors.

• The Goldbach conjecture: Any even positive integer, greater than 2, can be expressed as a sum of two
primes. For example:

8 = 3 + 5, 80 = 37 + 43, 800 = 379 + 421, 8000 = 3943 + 4057.
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Chapter 9

Tchebychev’s Theorem

9.1 Primes and their Distribution

The following results have been discussed in the earlier chapter

Theorem 9.1 There is an infinitude of Primes

Theorem 9.2 pn ≤ 22n−1

Theorem 9.3 There is an infinite number of primes of the form 4n + 3

Theorem 9.4 There is no Arithmetic Progression with all primes

Theorem 9.5 If n > 2 terms of the AP p, p + d, ... are all primes, then q|d for all primes q < n

Proof: by contradiction. Assume q < n is a prime s.t. q 6| n. We claim that the first q terms of the
AP yield distinct remainders mod q.` by contradiction suppose 0 ≤ i < j < q(p + id) mod q ⇔ (p + jd)
mod q. Hence (j − i)d mod q = 0. Therefore q | j − i or q | d and neither is possible. Therefore we have
R = {a mod q, (a+ d) mod q, . . . (a+(q− 1)d) mod q} = {0, . . . q− i} There is a composite a+ id with q | a+ id
2

Theorem 9.6 There are arbitrarily large gaps between primes, i.e. for every positive integer k, there exist k
consecutive composite members.

Proof: This can be easily seen as ∀ positive integers k we have

(k + 1)! + 2, . . . , (k + 1)! + k + 1. (9.1)

j | (k + 1)! + j, ∀j ∈ 2, . . . , k + 1 (9.2)

2

Definition 9.1 pα || n means pα | n but pα+1 6| n

45



46 CHAPTER 9. TCHEBYCHEV’S THEOREM

Theorem 9.7 If for prime p and n ≥ 1 pα || n! then

α =
∞∑

i=1

b n

pi
c =

l∑

i=1

b n

pi
c (9.3)

where pl ≤ n < pl+1

Proof: By Induction on n.Clearly n = 0 and n = 1 are trivial cases. Say this is true for n − 1.Therefore we
have

β =
∞∑

i=1

bn− 1
pi

c and pβ || (n− 1)! (9.4)

Claim 9.1 α− β = k

Proof:

α− β =
l∑

i=1

b n

pi
c −

l∑

i=1

bn− 1
pi

c =
l∑

i=1

b n

pi
c − bn− 1

pi
c (9.5)

But we know that
b n

pi
c − bn− 1

pi
c = {1 if pi| n

o otherwise (9.6)

And therefore
α− β = k (9.7)

2 We therefore have α = β + k where pk || n and hence since n! = n(n− 1)! and from above we have
pβ || (n− 1)! therefore pα || n! 2

Corollary 9.8 For all m,n prime p for pα || n!
m! , α =

∑
i≥1b n

pi c − bm
pi c

Lemma 9.1 For any prime p, integer n

Definition 9.2

µ(p, n) such that P µ(p,n) ||
(

2n
n

)
(9.8)

ν(p, n) such that pν(p,n) ≤ 2n < pν(p,n)+1 (9.9)

then
µ(p, n) ≤ ν(p, n) (9.10)

Proof: We know that (
2n
n

)
=

2n!
n!n!

(9.11)

Now from the previous corollary we get

µ(p, n) =
ν(p,n)∑

i=1

b2n

pi
c − 2b n

pi
c (9.12)

for each j ≥ 1

b2n
pi
c − 2b n

pi
c <

2n

pi
− 2 n

pi
− 1 = 2 (9.13)
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but we have
b2n

pi
c − 2b n

pi
c ≤ 1 (9.14)

therefore we have
µ(p, n) ≤ ν(p, n) (9.15)

2

Corollary 9.9 (
2n
n

)
=

∏

p≤2n

pµ(p,n) (9.16)

Lemma 9.2 (
2n
n

)
|

∏

p≤2n

pν(p,n) (9.17)

Proof:

pµ(p,n) ||
(

2n
n

)
since µ(p, n) ≤ ν(p, n) (9.18)

(
2n
n

)
=

∏

p≤2n

pµ(p,n) |
∏

p≤2n

pν(p,n) (9.19)

2

Fact 9.10 ∏

n≤p≤2n

p |
(

2n
n

)
(9.20)

since for every p such that n ≤ p ≤ 2n
p | (2n)!; p 6| n! (9.21)

π(x) = number of primes ≤ x for all positive x ∈ < (9.22)

Corollary 9.11

nπ(2n)−π(n) ≤
(

2n
n

)
≤ (

2n
)π(2n) (9.23)

Proof: ∏

n<p≤2n

p ≤
(

2n
n

)
≤

∏

p≤2n

pν(p,n) (9.24)

We know that ∏

n<p≤2n

n ≤
∏

n<p≤2n

p (9.25)

and
pν(p,n) ≤ 2n (9.26)

∏

n<p≤2n

n ≤
(

2n
n

)
≤

∏

p≤2n

2n (9.27)

or we have

nπ(2n)−π(n) ≤
(

2n
n

)
≤ (

2n
)π(2n) (9.28)

2
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Theorem 9.12 Tchebyshev’s Theorem:For x ≥ 2 and x ∈ <

a
x

logx
< π(x) ≤ b

x

logx
(9.29)

for some real constants a and b

Proof:

Claim 9.2
a =

log2
4

(9.30)

We have (
2n
n

)
≤ (

2n
)π(2n) (9.31)

But since (
2n
n

)
=

n∏

j=1

n + j

j
≥ 2n (9.32)

and since for j ∈ {1, 2, . . . , n} we have n+j
j ≥ 2 and since 2n ≤ (

2n
)π(2n) we have taking logarithm on both

sides
nlog2 ≤ π(2n)log(2n) (9.33)

π(2n) ≥ n
log2

log(2n)
(9.34)

for x ≥ 2, choose n such that 2n ≤ x < 2n + 2 . n ≥ 1 ⇒ 2n ≥ 2 ⇒ 4n ≥ 2n + 2 ⇒ n ≥ 2n+2
4 . Therefore

π(2n) ≥ 2n + 2
4

log2
logx

≥ log2
4

x

logx
(9.35)

Therefore

a =
log2
4

(9.36)

Claim 9.3
b = 32log2 (9.37)

We have

nπ(2n)−π(n) ≤
(

2n
n

)
≤ 22n (9.38)

hence we have π(2n)− π(n) ≤ 2n log2
logn where n > 1. Let 2n = 2r for r ≥ 3. Plugging into the previous equation

we get

π(2r)− π(2r−1) ≤ 2r log2
log2r−1

=
2r

r − 1
(9.39)

Taking summation on both sides yields

2j∑
r=3

π(2r)− π(2r−1) ≤
2j∑

r=3

2r

r − 1
(9.40)

or we have

π(22j)− π(22) ≤
2j∑

r=3

 2r

r − 1
 (9.41)
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But we know that π(22) = 0, therefore the above equation yields

π(2j) ≤
j∑

r=3

2r

r − 1
+

2j∑

r=j+1

2r

r − 1
≤

j∑
r=2

2r +
2j∑

r=j+1

2r

j
(9.42)

But we know that
2j∑

r=j+1

2r

j
≤ 22j+1

j
and

j∑
r=2

2r ≤ 2j+1 (9.43)

Therefore we have

π(2j) ≤ 22j+1

j
+ 2j+1 (9.44)

Now since for j ≥ 2 we have j < 2j and hence 2j+1j < 22j+1 and therefore 2j+1 < 22j+1

j .Hence

π(22j) ≤ 2
22j+1

j
(9.45)

Hence for j ≥ 2 we have
π(22j)

22j
≤ 4

j
(9.46)

Clearly this also holds for j = 1. Therefore for any x ∈ < there is a unique j such that

22j−2 ≤ x ≤ 22j (9.47)

and hence
π(x)

x
≤ π(22j)

22j−2
= 4

π(22j)
22j

<
16
j

(9.48)

Also taking logarithms on both sides in the previous equation we have

2j − 2log2 ≤ logx ≤ 2jlog2 (9.49)

Therefore
1
j
≤ 2

log2
logx

(9.50)

And therefore finally we have
π(x)

x
≤ 32

log2
logx

(9.51)

And hence the result.

2



50 CHAPTER 9. TCHEBYCHEV’S THEOREM



Chapter 10

Linear congruences, Chinese
Remainder Theorem and Fermat’s
Little Theorem

10.1 Linear Diophantine Equations

Definition 10.1 Diophantine equations are equations with integer coefficients and which admit only integral
solutions.

The simplest Diophantine equation is of the form:

ax + by = c (10.1)

Such an equation is called a Linear Diophantine Equation(LDE) in 2 unknowns. We now state the necessary
and sufficient conditions for such an equation to have an integral solution.

Theorem 10.1 The LDE ax + by = c has a solution iff gcd(a, b)|c.

Proof:
(=⇒) If (x0, y0) is a solution, then gcd(a, b)|(ax0 + by0). Clearly then gcd(a, b) also divides the RHS, viz. c.
(⇐=) Using extended Euclid’s algorithm, find (x0, y0) such that ax0 + by0 = d where d = gcd(a, b). Since d|c,
(x0c/d, y0c/d) is an integral solution of the original LDE. 2

Theorem 10.2 The set of all solutions of the LDE ax + by = c is given by: x = x0− (b/d)u, y = y0 + (a/d)u,
where (x0, y0) is a particular solution and d = gcd(a, b).

Proof: Let d = gcd(a, b), a = rd and b = sd.
Let (x0, y0) be a particular solution and (x′, y′) be any other solution of the LDE.

ax0 + by0 = c = ax′ + by′ (10.2)
⇒ a(x0 − x′) = b(y′ − y0) (10.3)
⇒ r(x0 − x′) = s(y′ − y0) (10.4)
⇒ r|(y′ − y0) ∧ s|(x0 − x′) because gcd(r, s) = 1 (10.5)

51
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Therefore, ∃u, s.t x′ = x0 − su = x0 − (b/d)u and y′ = y0 + ru = y0 + (a/d)u. 2

We now give a procedure that computes a particular solution for the given LDE. All the other solutions can be
derived using this particular solution.

Algorithm 10.1 Solving a Linear Diophantine Equation

Procedure(LDE(ax + by = c))
Let (d, x′, y′) = ExtendedEuclid(a, b).
If d|c then

x0 ← cx′/d
y0 ← cy′/d
return (x0, y0)

else print ”No solutions”
EndProc.

Note that Algorithm 10.1 is merely a restatement of Theorem 10.1 which gives a constructive guideline for
solving any given LDE.

10.2 Linear congruences

Definition 10.2 Let a, b, n be integers. Then a is said to be congruent to b modulo m, denoted as

a ≡ b mod m or alternatively as a ≡m b (10.6)

if m|(a− b).

Properties of linear congruences

1. a1 ≡m b1 ∧ a2 ≡m b2 ⇒ a1 ± a2 ≡m b1 ± b2

2. a1 ≡m b1 ∧ a2 ≡m b2 ⇒ a1a2 ≡m b1b2

3. ac ≡m bc ⇒ a ≡m′ b where m′ = m/gcd(c,m)

4. Given a fixed integer m, for each integer a, there is an integer r, such that 0 ≤ r < m and a ≡m r.

These properties can be easily proved by expressing a ≡m b as a = b + km. We prove Property 4 which leads
to some interesting results.

Proof: (Property 4) Define Zm = {0, 1, . . . , m − 1}. This is the set of all possible remainders when any
integer is divided by m. Hence if a leaves a remainder r when divided by m then a = r + km for some k.
Therefore a ≡m r and r ∈ Zm. 2

The set Zm has some interesting properties.

1. If a, b ∈ Zm, then ∀◦ ∈ {+,−, ∗},∃c ∈ Zm s.t c ≡m a ◦ b

2. By Property 1, it is clear that ≡m is an equivalence relation over Zm which is preserved under modular
addition, subtraction and multiplication.

The next thing that comes to the mind is division. The modular counterpart of division is called a ’multiplicative
inverse’.
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Definition 10.3 Given integers a, m, an integer b is the multiplicative inverse of a modulo m if ab ≡m 1. We
say that a−1 = b.

Note that a multiplicative inverse need not exist for any arbitrary integer a. For example, 2 doesn’t have a
multiplicative inverse modulo 4. Theorem 10.3 puts down necessary and sufficient conditions for existence of
an inverse.

Theorem 10.3 Elements of Zm which have multiplicative inverses are precisely those that are relatively prime
to m.

Proof: Rewrite the equation ax ≡m 1 as ax − my = 1. By Theorem 10.1, this LDE can be solved iff
gcd(a, m) = 1. 2

Corollary 10.4 If p is prime, then all elements in Zp except 0 have multiplicative inverses.

Note that by Property 1, it is clear that 〈Zm,+, 0〉 and 〈Zp − {0}, ∗, 1〉 (where p is prime) are abelian groups.
Further, 〈Zp, +, ∗, 0, 1〉 is a commutative ring.

We now come to solving single variable linear congruences and demonstrate the correspondence between the
congruences and LDEs.

Theorem 10.5 ax ≡m b has a solution iff gcd(a,m)|b. If d = gcd(a,m) and d|b then ax ≡m b has d mutually
incongruent solutions modulo m.

Proof: The congruence can be rewritten as a linear Diophantine equation

ax−my = b (10.7)

The first part of the proof is obvious from Theorem 10.1. Now, if (x0, y0) is a particular solution, then from
Theorem 10.2, we know that all solutions of this LDE are given by:

x′u = x0 + (m/d)u, y′u = y0 + (a/d)u. (10.8)

We claim that (x′0, y
′
0), (x

′
1, y

′
1), . . . , (x

′
d−1, y

′
d−1) are mutually incongruent solutions. Take any two distinct

solutions, say (x′i, y
′
i) and (x′j , y

′
j) and let 0 ≤ i < j < d. Therefore,

x′j − x′i = (j − i)m/d (10.9)

Clearly, if m|(x′j − x′i) then d|(j − i) which is not possible because 1 ≤ j − i ≤ d− 1. So (x′i, y
′
i) and (x′j , y

′
j) are

incongruent. Since i and j were arbitrary, {(x′u, y′u)|0 ≤ u < d} consists of mutually incongruent solutions. 2

Corollary 10.6 If gcd(a,m) = 1 then a has a unique multiplicative inverse modulo m.

10.3 Chinese Remainder Theorem

Theorem 10.7 [Chinese Remainder Theorem] Let m1, . . . , mr be pairwise relatively prime numbers. Then the
system of equations

x ≡mi ai (1 ≤ i ≤ r) (10.10)

has a unique solution modulo M , where M =
∏r

i=1 mi.
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Proof: Let M =
∏r

i=1 mi, and Mi = M/mi. Now,

i 6= j ⇒ gcd(mi,mj) = 1 (10.11)
⇒ gcd(Mi, mi) = 1 (10.12)
⇒ M−1

i (modulo mi) exists and is unique (Theorem 10.5) (10.13)

Define x0 =
∑r

i=1 MiM
−1
i ai. Now by definition of Mi, if i 6= j then mj |Mi. Therefore,

∀j, x0 ≡mj
MjM

−1
j aj ≡mj

aj (10.14)

Hence, x0 is a solution of the system of equations. We claim that x0 is unique modulo M =
∏r

i=1 mi. Let x′0
be another solution of the system. Therefore,

∀i, x0 ≡mi x′0 (10.15)
⇒ ∀i, mi|(x0 − x′0) (10.16)

Now since i 6= j ⇔ gcd(mi,mj) = 1, so (m1m2 . . . mr)|(x0 − x′0). Therefore,

r∏

i=1

mi(= M)|(x0 − x′0) (10.17)

Hence, x0 is unique modulo M =
∏r

i=1 mi 2

10.4 Fermat’s Little Theorem

Theorem 10.8 [Fermat’s Little Theorem] If p is prime, then for any integer a, ap ≡p a.

Proof: If p|a, then ap ≡p 0 ≡p a. So let us assume that p doesn’t divide a. Consider the numbers
a, 2a, 3a, . . . , (p− 1)a.

Claim: Any two distinct numbers from the above sequence are incongruent modulo p.
Take any two numbers from the sequence, say ia and ja where i < j. Then, ia ≡p ja ⇒ p|(j− i) since p doesnt’t
divide a. But 1 ≤ i < j < p, so p cannot divide j − i. Hence ia and ja are incongruent modulo p.
Therefore, for each element ia, ∃j, s.t,

ia ≡p j (10.18)

where, 1 ≤ j < p and j is determined uniquely by i. Multiplying Eq. 10.18 over all i, we get:

1.2 . . . (p− 1)ap−1 ≡p

∏

j∈{1,2,...,p−1}
j (10.19)

(p− 1)!ap−1 ≡p (p− 1)! (10.20)
ap−1 ≡p 1 Since gcd((p− 1)!, p) = 1 (10.21)

ap ≡p a (10.22)

Note that when we vary i in the LHS of Eq. 10.18, we get a different value of j each time. This accounts for
the (p− 1)! term in the RHS of subsequent equations. 2

Theorem 10.9 If ap ≡q a and aq ≡p a where p 6= q are primes, then apq ≡pq a.

Proof: By Fermat’s Little Theorem, we have ap ≡p a, Taking exponents on both sides,

apq ≡p aq ≡p a (10.23)
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Similarly,
apq ≡q ap ≡q a (10.24)

Hence,
p|apq − a and q|apq − a (10.25)

Since gcd(p, q) = 1, we have
pq|apq − a (10.26)

Hence,
apq ≡pq a (10.27)

2
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Chapter 11

Euler’s φ function, Generalisation of
FLT, CRT

11.1 Introduction

In this lecture, we will discuss Euler′s Theorem, Generalisation of Fermat Little Theorem and Chinese Remainder
Theorem.

11.2 EULER′s PHI-FUNCTION

For n ≥ 1, The number φ(n) denote the number of postive integer not exceeding n , that are relatively prime
to n.

Example 11.1 φ(1) = 1 φ(2) = 1 φ(3) = 2 φ(4) = 2 . . .
φ(7) = 6 φ(10) = 4 φ(30) = 8 . . .

Fact 11.1 φ(1) = 1 since gcd(1, 1) = 1
for n > 1 gcd(n, n) = n 6= 1 ⇒ n is not relatively prime to n.

Definition 11.1 For n ≥ 1, φ(n) can be characterised as the number of postive integers less than n and
relatively prime to it. The function φ is usually called the Euler phi-function after its originator , ( sometimes
the totient ), the functional notion φ(n), however, is credited to Gauss.

φ(n) = | Φ(n) |
where Φ(n) = { mi | 0 < mi ≤ n , mi are relatively prime to n }

Fact 11.2 if n is prime then every number less than n is relatively prime to it , ie φ(n) = n− 1.

Theorem 11.3 if p is a prime and k > 1 , then

φ(pk) = pk − pk−1 = pk(1− 1
p )
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Proof gcd ( n, pk ) = 1 if and only if p does not divide n.
There pk−1 integers between 1 and pk which are divisible by p , namely p , 2p , 3p , . . . , ( pk − 1 )p.
Thus the set { 1 , 2 , . . . , pk } contains exactly pk − pk−1 integers which are relatively prime to pk

so by definition of φ, φ(pk) = pk − pk−1

Example 11.2 φ(9) = φ(32) = 32 − 3 = 6 {1, 2, 4, 5, 7, 8}
φ(16) = φ(42) = 24 − 23 = 8 {1, 3, 5, 7, 9, 11, 13, 15}

Theorem 11.4 The function φ is a multiplicative function
φ (m n) = φ (m) φ (n)

whenever m and n have no common factor ( gcd(m , n) = 1 )

Theorem 11.5 If an integer n > 1 has the prime factorisation n = pk1
1 pk2

2 . . . pkr
r then

φ (n) = (pk1
1 − pk1−1

1 ) (pk2
2 − pk2−1

2 ) . . . (pkr
r − pkr−1

r )

φ (n) = n (1− 1
p1

) (1− 1
p2

) . . . (1− 1
pr

)

Proof By Induction on r , the number of distinct prime factors of n . It is true for r = 1, Then
φ(pk1

1 ) = (pk1
1 − pk1−1

1 ) . Let it holds for r = i, since gcd ( pk1
1 pk2

2 . . . pki
i , p

ki+1
i+1 ) = 1. Now,

by definition of multiplicative function -

φ((pk1
1 pk2

2 . . . pki
i )pki+1

i+1 ) = φ(pk1
1 . . . pki

i ) φ(pki+1
i+1 )

= φ(pk1
1 . . . pki

i ) (pki+1
i+1 - p

ki+1−1
i+1 )

Invoking the induction assumption first factor on right hand side becomes

φ(pk1
1 . . . p

ki+1
i+1 ) = (pk1

1 − pk1−1
1 ) . . . (pki

i − pki−1
i ) (pki+1

i+1 - p
ki+1−1
i+1 )

This serve to complete the induction step, as well as the proof.

Example 11.3 φ(360)
prime factor of 360 = 23325

So φ (360) = 360(1− 1
2 )(1− 1

3 )(1− 1
5 ) = 96

Theorem 11.6 for n>2 , φ(n) is an even integer.

Proof Consider two cases when n is power of 2 and when n is not power of two .
(1) Let n is a power of 2 n = 2k k ≥ 2
φ (n) = φ(2k) = 2k(1− 1

2 ) = 2k−1 ie even integer
(2) n does not happen to be power of 2 then it divisible by an odd prime p , then n = pk m
where k ≥ 1 and gcd(pk, m) = 1
By multiplicative nature of phi-function -
φ (n) = φ(pk m) = φ(pk) φ (m) = pk−1(p− 1)φ (m)
Hence φ(n) is even because 2 | p− 1 .

11.3 FERMAT’s THEOREM

Theorem 11.7 Let p denote prime integer. If p does not divide a then ap−1 ≡p 1
So for every integer a , ap ≡p a



11.4. EULER′S GENERALIZATION OF FERMAT′S THEOREM 59

Proof Euler in his landmark result generalized this theorem for any integer ( described in next section ), so
proof of this theorem can be obtained as a corollary to next theorem.

11.4 EULER′s GENERALIZATION of FERMAT′s THEOREM

Theorem 11.8 for any integer n >1 , if gcd(a,n) = 1, then aφ(n) ≡n 1

Example 11.4 n = 30, a = 11,
we have 11φ(30) ≡30 118 ≡30 1214 ≡30 14 ≡30 1

As a preclude to launching our proof of Euler′s Generalization of Fermet′s theorem , we require a preliminary
lemma -
Lemma Let n > 1, gcd(a,n)=1, if m1 , m2 , . . . , mφ(n) are the postive integers less than n and
relatively prime to n , then am1 , am2 , am3 , . . . , amφ(n) are congruent modulo n to m1 , m2 ,
. . . , mφ(n) in some order.

if gcd (a, n) = 1 , and Let Φ(n) = { m1 , m2 , . . . , mφ(n) }
Then {ami | mi ∈ Φ(n)} ≡n Φ(n) in some order

Proof
fact1 Observe that no two of the integers am1 , am2 , am3 , . . . , amφ(n) are congruent modulo n .

ami 6≡n amj for all i 6= j
otherwise mi ≡n mj

fact2 since gcd (a, n) = 1 gcd(mi, n) = 1 ⇒ gcd (ami, n) = 1 for all i 1 ≤ i ≤
φ(n) , from these two facts ami ≡n mj ∈ Φ(n) for some j.
This proves that the number am1 , am2 , am3 , . . . , amφ(n) and numbers m1 , m2 , m3 , . . . ,
mφ(n) are identical ( modulo n ) in certain order.

Theorem 11.9 n∈ Z+ and gcd (a, n) = 1 , then aφ(n) ≡n 1

Proof Let n>1. Let m1 , m2 , m3 , . . . , mφ(n) be postive integer less than n which are relatively
prime to n. Then m1 , m2 , m3 , . . . , mφ(n) be reduced residue system modulo n.
⇒ am1 , am2 , am3 , . . . , amφ(n) is also reduced residue system modulo n.
hence corrosponding to each mi there is one and only one amj such that mi ≡n amj So from previous
lemma, am1 , am2 , am3 , . . . , amφ(n) are congruent, not necessarily in order of appearance, to m1 , m2 ,
m3 , . . . , mφ(n) So on taking the product of these φ(n) congruences, we get -

∏φ(n)
i=1 ami ≡n

∏φ(n)
i=1 mi

⇒ aφ(n)
∏φ(n)

i=1 mi ≡n

∏φ(n)
i=1 mi

aφ(n) ≡n1

since gcd(mi, n) = 1 and
∏

mi has inverse modulo n , so we cancel out this from both side.
case if p is prime, Then φ(p) = p− 1 so, whenever gcd(a, p) = 1 , we get

aφ(p) ≡ p 1 ⇒ ap−1 ≡p 1
which is Fermat′ Theorem
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11.5 GAUSS′s THEOREM

Gauss noticed some remarkeble features of phi-function, namely, that sum of the values of φ(d) , as d
ranges over the postive divisors of n, is equal to n itself.

For each postive integer n ≥ 1
n =

∑
d|n φ(d)

The sum being extended over all postive divisors of n.

Proof The integers between 1 and n can be partitioned into classes such that each class Sd = {
m | gcd(m, n) = d , 1≤ m ≤ n } where d | n
ie if d is postive divisor of n, we put the integer m in the class Sd provided gcd(m, n) = d

S1 = Φ (n) Sn = {n}

claim : Sd = Φ (n/d) for each d | n, since gcd ( m, n ) = d ; if and only if gcd (m/d, n/d) = 1
Thus the number of integers in class Sd is equal to number of postive integers not exceeding n/d which are
relatively prime to n/d, in other words, equal to φ (n/d)
| Sd | = { m | gcd ( m/d , n/d ) = 1 } = φ (n/d)
Then m is in Sd if and only if m/d is in Φ (n/d)∑

d|n φ(d) =
∑

d|n φ(n/d) =
∑

d|n |Sd| = n

Example 11.5 Let n = 10 , so postive divisors of n are 1 , 2 , 5 , 10 . So the classes Sd are :

S1 = {1, 3, 7, 9} S2 ={2, 4, 6, 8}
S5 = { 5 } S10 = { 10 }

φ(1) = 1 φ(2) = 1 φ(5) = 4 φ(10) = 4

⇒ ∑
d|n φ(d) =

∑
d|n φ(n/d) =

∑
d|n |Sd| = n

Theorem 11.10 For n>1, the sum of postive integers less than n and relatively prime to n is 1
2nφ(n) .

∑
gcd(k,n)=1;1≤k<n k = 1

2nφ(n)

Proof Let k1, k2, . . . kφ(n) be the postive integers less than n and relatively prime to n. Now,since gcd(k ,
n) = 1 if and only if gcd(n-k , n) = 1, Then
k1 + k2 + . . . + kφ(n) = (n - k1) + (n - k2) + . . . + (n - kφ(n)) = φ(n) n - ( k1 + k2 + . . . + kφ(n))
So

∑
k∈φ(n) k =

∑
k∈φ(n)(n− k) = φ(n)n−∑

k∈φ(n) k. Thisemplies
∑

k∈φ(n) k = 1
2nφ(n)

Example 11.6 n = 30 , φ(30) = 8 these 8 integers { 1, 7, 11, 13, 17, 19, 23, 29} are
less than 30 and are relatively prime to 30 . Then

∑ {1, 7, 11, 13, 17, 19, 23, 29} = 120 = 1
2 30 8

11.6 Different Proof of CRT

Euler′s generalisation of Fermat Little Theorem leads to a different proof of Chinese Remainder Theorem. if
gcd (mi,mj) = 1 for i 6= j . Then system of linear congruences x ≡mi ai ,for i = 1,2, . . . , r
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admits a simultaneous solution.
Let M =

∏r
i=1 mi Mi = M

mi

The integer x = a1M
φ(m1)
1 + . . . + arM

φ(mr)
r =

∑r
i=1 ai M

φ(mi)
i full-fills our requirements. Hence x ≡mi

ai Mφ(mi) but since gcd (Mi,mi) =1 , we have

M
φ(mi)
i ≡mi 1

and so x ≡mi
ai for each i.

This application is one of the usefulness of Euler’s Theorem in Number Theory.

11.7 Significance of CRT

a � (a1, a2, . . . , ar)
b � (b1, b2, . . . , br)

these representation are unique upto M =
∏

mi

(a± b) mod M � ((a1 ± b1)modm1, (a2 ± b2)modm2, . . . , (ar ± br)modmr)

(ab) mod M
= (

∑r
i=1 ai M

φ(mi)
i )(

∑r
j=1 bj M

φ(mj)
j ) mod M

= (
∑r

i,j=1 ai bj M
φ(mi)
i M

φ(mj)
j ) mod M for all i 6= j , M | M

φ(mi)
i M

φ(mj)
j

≡M

∑r
i=1 aibiM

2φ(mi)
i is a unique solution of system of equation modulo M

� ( (a1b1) mod m1, . . . , (arbr) mod mr)
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Chapter 12

Congrunces of Higher Degree

Definition 12.1 Let a, b, n be integers. Then a is said to be congruent to b modulo m, denoted as

a ≡ b mod m$or alternatively as a ≡m b (12.1)

if m|(a− b).

Definition 12.2 Let f(x) be any polynomail with integer coefficients then higher order congruence equation will
typically look like this.

f(x) ≡m 0 (12.2)

Fact 12.1 if all coeffients of the polynomial are multiples of m then every integer is a solution to the equation
2.2.

Theorem 12.2 if we primie factorize m then m can be represented as m =
∏k

i=1 pαi
i such that pαi

i |m, where
αi ≥ 1 for each i, and 1 ≤ i ≤ k then f(x) ≡m 0 is equivalent to f(x) ≡p

αi
i

0 for each pi.

this is equivalent to the following claims.

Claim 12.1 if u is a solution of f(x) ≡m0 then u is a solution of every equation f(x) ≡p
αi
i

0.

Claim 12.2 if f(x) ≡p
αi
i

0 has no solutions for some i, 1 ≤ i ≤k then f(x)≡m0 has no solutions.

Claim 12.3 if each of f(x) ≡p
αi
i

0 has solutions a1
i , a

2
i , . . . a

ki
i which are all mutually incongurent solutions then

take u as any linear combination of solutions u ≡m

∑k
i=1 mibia

ji

i where mi = m/pαi
i and bi ≡p

αi
i

m−1
i and the

resulting value u is a solution of f(x) ≡m 0.

Proof:
proof for the first claim is
if f(x) ≡m 0 has a solution u then

1. f(u) ≡m 0 then m|f(u)

2. m|f(u) implies that pαi
i |f(u) for each i

63
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3. for each i if pαi
i |f(u) implies that f(u) ≡p

αi
i

0

2

Proof for the second claim is very similar to the above and it can be easily proven.

Now we will prove our third claim.
Proof:

1. pαi
i |mj ∀j 6= i (from the construction of mj .)

2. u ≡p
αi
i

mibiai ≡p
αi
i

ai(from the construction of mi and bi.)

3. f(u) ≡p
αi
i

f(ai) ≡p
αi
i

0 from the fact that ai is a solution f(u) ≡p
αi
i

0.

4. it means that ∀i pαi
i |f(u).

5.
∏k

i=1 pαi
i |f(u) implies that m|f(u)

6. m|f(u) implies that f(u) ≡m 0

2

With that proof our problem of finding a solution to f(x) ≡m 0 reduces to a problem of finding a solution to
f(x) ≡p

αi
i

0, where p is a prime.

Fact 12.3 if f(x) ≡pα
i

0 has a solution u then u is a solution of f(x) ≡pβ
i

0 for all 1 ≤ β ≤ α.

Fact 12.4 f(x) =
∑n

i=1aix
i, where an 6= 0 then the kth derivative of f is a polynomial with degree ≤ n− k.

Fact 12.5 tailers expansion of f(x + h) is f(x) + hf ′(x) + h2

2! f
′′(x) + · · ·+ hn

n! f
n(x), as f t(x) = 0 when t > n.

Theorem 12.6 solving f(x) ≡pα 0

Proof: if r is a solution to f(x) ≡pα 0 then f(r) ≡pt 0 for t = 1, 2, . . . , α.

consider α ≥ 2. if there is a solution ui
α of f(x) ≡pα 0 then there is solution uji

α−1 of f(x) ≡pα−1 0 such that
ui

α ≡pα−1 uji

α−1 + vpα−1 for some integer v. By applying tailers expansion

0 ≡pα f(ui
α) ≡pα f(uji

α−1 + vpα−1) ≡pα f(uji

α−1) + f ′(uji

α−1)vpα−1 (12.3)

but f(uji

α−1) ≡pα−1 0. so from equation (2.3) we can write

f ′(uji

α−1)v ≡p
−1

pα−1
f(uji

α−1) (12.4)

if we know the solutions of f(x) ≡pα−1 0 then from eq 2.4 we can find all the solutions of v and then uji

α−1+vpα−1

will be solutions of f(x) ≡pα 0

some times it may happen that there are no v corresponding to some uji

α−1. it only means that there are no
solutions of f(x) ≡pα 0 arising from this particular uji

α−1.
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In solving f(x) ≡pα 0 where α ≥ 2, we start with the solutions u
(j)
1 of f(x) ≡p 0. Picking each one of those

solutions and find the possible values for v by solving the equation 2.4 and then from uji

α−1 + vpα−1 we can find
out the solutions for higher order degrees. 2

We have now reduced the problem of solving a f(x) ≡m 0 to congruences with prime moduli. as before we write
f(x) =

∑n
i=0aix

i ≡p 0

Theorem 12.7 if the degree n of f(x) ≡p 0 is greater than or equal to p, then either every integer is a solution
of f(x) ≡p 0 or there is a polynomial g(x) having integral coefficients,with leading coefficient 1,and such that
g(x) ≡p 0 is of degree less than p and the solutions of g(x) ≡p 0 are precisely those of f(x) ≡p 0.

Proof:

If we divide f(x) by xp − x we obtain f(x) = q(x)(xp − x) + r(x) where q(x) is a polynomial with integral
coefficients and degree less than p.Fermat’s theorem shows that up − u ≡p 0, and hence f(u) ≡p r(u) for every
integer u.

Therefore if r(x) is zero, or every other coefficient in r(x) is divisible by p, then every integer is a solution of
f(x) ≡p 0.

The only other possibility is r(x) =
∑k

j=0bjx
j , where k < p, with atleast one coefficient not divisible by p. Let

bk be the coefficient with largest subscript k such that gcd(p, bk) = 1.Then ∃b, an integer such that bbk ≡p 1
and clearly r(x) ≡p 0 and br(x) ≡p 0 have the same solutions. 2
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Chapter 13

Lagrange’s Theorem

Hitesh Chaudhary
hitesh@cse.iitd.ernet.in

13.1 Lecture 12

13.1.1 Theorem 12.1

f(x) =
∑n

i=0 aix
i, an 6∼=p 0 if n < p then

either, (1) every integer is a solution of f(x)
or, (2) ∃g(x) with integeral coefficients such that
(a)deg(g) < p
(b) leading coefficient is 1
such that the roots of g(x) are precisely the roots of f(x)

13.1.2 Theorem 12.2 - Lagrange’s Theorem

f(x) ∼=p 0 has atmost n mutually incongurant solutions, if not, then every integer is solution.
Also, deg(f) = n < p
Proof: By indution
Base Case: for n = 0; a0 = an 6∼=p 0 therefore no solution
Induction Step: Assume theorem is true forall deg < n

We need to prove for deg = n
Proof by contradiction: Suppose f(x) has more than n roots, u1, u2, · · · , un, un+1 and lets g(x) = f(x) −
an

∏n
i=1(x− ui)

Here, deg(g) < n since deg(f) = n & highest order term will be cancelled . Also u1, u2, · · · , un are roots of g(x)
As g satisfies the theorem ⇒ either g has atmost n-1 solution or every integer is its solution.
From above we know g has n solutions ⇒ g has all integer solutions
∀ integer v, g(v) ∼=p 0 ∼=p f(v)− an

∏n
i=1(x− ui)

putting v = un+1, f(un+1) = 0, now an

∏n
i=1(x− ui) must be = 0

as an 6∼=p 0
⇒ p | (un+1 − un) for some i
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⇒ un+1
∼=p ui which is contradiction. Hence f(x) has not more than n roots.

We have:

• f(x) has atmost min(deg(f), p) roots if every integer is not a solution

• ∀ai, p | ai, for deg(f) < p iff all integers are roots of f(x)

13.1.3 Theorem 12.3

f(x) ∼=p 0 with an
∼=p 1 has n mutually incongruent solutions iff

xp − x = f(x)q(x) + p s(x)
(note: deg(s) < n as we are dividing xp − x by f(x) )
Proof: (⇒)
Suppose f(x) has n roots then xp − x = f(x)q(x) + r(x) where r(x) = 0 or deg(r) < n
For all solutions u, f(u) ∼=p 0, u ⊥ p
⇒ up − u ∼=p 0 ∼=p r(u) ⇒ r(x) = 0 or p | r(u)
This is true for all u ⇒ p is factor for every coefficient of r(x) ⇒ r(x) = p s(x)

Proof:(⇐)
Assume, xp − x = f(x)q(x) + p s(x)
∀ integers u, By FLT, up − u ∼=p 0,
also up − u ∼=p 0 = f(u)q(u) + p s(u). Note, p s(u) ∼=p 0
⇒ f(u)q(u) ∼=p 0
Now, f(x)q(x) is a polynomial of degree p, nth coefficient of f(x), is ∼=p 1 and xp has coefficient 1.
Therefore leading coefficient of q(x) is ∼=p 1
Also, deg(f) = n and therefore deg(q) = p− n
f(x) and q(x) has atmost n and p− n mutually congruent roots.
(Since leading coefficients of f(x) and q(x) ∼=p, therefore all integers are not their roots)
Also f(x) cant have less than n roots otherwise, deg(f(u)q(u)) will be less than p
⇒ f(x) has exactly n roots.

Theorem(Cor of Lagranges’s Theorem)

If d | p− 1 then xd − 1 ∼=p 0 has exactly d solutions
Proof:
By FLT, (xd − 1)f(x) = xp−1 − 1 ∼=p 0 where f(x) = xd + x2d + · · ·+ x(k−1)d where p− 1 = kd
⇒ xp−1 − 1 ∼=p 0 ⇒ (p− 1) mutually incongruent solutions
Also, deg(f) = p− d− 1 ⇒ f(x) has exactly p− 1− d solutions
Therefore, xd − 1 has exactly d solutions.



Chapter 14

Primitive Roots and Euler’s Criterion

14.1 Euler’s Criterion and Strengthened Euler’s Criterion

The Quadratic Reciprocity Law deals with the solvability of quadratic congruences.It therefore seems appropri-
ate to begin by considering the congruence

ax2 + bx + c ≡p 0 (14.1)

where p is an odd prime and a 6≡p 0 that is, gcd(a, p) = 1. The supposition that p is an odd prime implies that
gcd(4a, p) = 1.(if p is even prime i.e 2, then gcd(4a, 2) = 1 doesnot hold).Thus, congruence (1.1) is equivalent
to

4a(ax2 + bx + c) ≡p 0.

Using the identity

4a(ax2 + bx + c) = (2ax + b)2 − (b2 − 4ac)

the last-written congruence may be expressed as

(2ax + b)2 ≡p (b2 − 4ac)

Now put y = 2ax + b and d = b2 − 4ac to get
y2 ≡p d (14.2)

If x ≡p x0 is a solution of (1.1), then y ≡p 2ax0 + b satisfies the congruence (1.2).Conversely, if y ≡p y0 is a
solution of (1.2), then 2ax ≡p y0 − b can be solved to obtain a solution of (1.1).
Thus, the problem of finding a solution to the quadratic congruence (1.1) is equivalent to that of finding a
solution to a linear congruence and a quadratic congruence of the form

x2 ≡p a (14.3)

If p|a,then (1.3) has x ≡p 0 as its only solution.To avoid trivialities, let us assume hereafter that p 6 |a.
Granting this, whenever x2 ≡p a admits a solution x = x0, then there is also a second solution x = p −
x0((p− x0)

2 ≡p p2 − 2px0 + x2
0 ≡p x2

0 ≡p a.This second solution is not congruent to the first.For x0 ≡p p− x0

implies that 2x0 ≡p 0,or x0 ≡p 0, which is impossible because p 6 |a.By Lagrange’s Theorem, these two solutions

69



70 CHAPTER 14. PRIMITIVE ROOTS AND EULER’S CRITERION

exhaust the incongruent solutions of x2 ≡p a. In short: x2 ≡p a has exactly two solutions or no solutions.
The major effort in this presentation is directed towards providing a test for the existence of solutions of the
congruence

x2 ≡p a, gcd(a, p) = 1

To put it differently,we wish to identify those integers a which are perfect squares modulo p.

Definition 14.1 Let p be an odd prime and gcd(a, p)=1.If the congruence x2 ≡p a has a solution, then a is
said to be a quadratic residue of p.Otherwise,a is called a quadratic nonresidue of p.

The point to be borne in mind is that if a ≡ b mod p, then a is quadratic residue of p, if and only if b is a
quadratic residue of p.
Thus,we need only determine the quadratic character of those positive integers less than p in order to ascertain
that of any integer.

Theorem 14.1 (Euler’s Criterion).Let p be an odd prime and gcd(a,p)=1.Then a is a quadratic
residue of p if and only if a

(p−1)
2 ≡p 1

Proof: Suppose that a is a quadratic residue of p, so that x2 ≡p a admits solution, call it x1.Since
gcd(a, p)=1,evidently gcd(x1, p)=1.We may therefore appeal to Fermat’s Theorem to obtain

a
(p−1)

2 ≡p (x2
1)

(p−1)
2 ≡p xp−1

1 ≡p 1

For the opposite direction, assume that a
(p−1)

2 ≡p 1 holds and let r be the primitive root of p(The primitive
roots are explained in the next section and the proof in the reverse direction can be read after reading next
section).Then a ≡p rk for some integer k, with 1 ≤ k ≤ p− 1.a(p−1)/2) ≡p rk(p−1)/2 ≡p 1
By Theorem 1.3, the order of r (namely,p − 1) must divide the exponent k(p − 1)/2.The implication is that k
is an even integer, say k = 2j.Hence

(rj)2 = r2j = rk ≡p a,

making the integer rj a solution of the congruence x2 ≡p a.This proves that a is a quadratic residue of prime p.
Now if p(as always) is an odd prime and gcd(a, p)=1 then

(a(p−1)/2 − 1)(a(p−1)/2 + 1) = ap−1 − 1 ≡p 0,

the last congruence being justified by Fermat’s Theorem.Hence either

a(p−1)/2 ≡p 1 or a(p−1)/2 ≡p −1,

but no both.For, if both congruences held simultaneously, then we would have 1 ≡p −1, or equivalently, 2 ≡p 0
impliesp|2, which conflicts with our hypothesis.Since a quadratic nonresidue of p does not satisfy a(p−1)/2 ≡p 1,
it must therefore satisfy (a(p−1)/2 ≡p −1).This observation provides an alternate nonresidue of p if and only if
a(p−1)/2 ≡p −1

2
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Corollary 14.2 (Strengthened Euler’s Criterion). Let p be an odd prime and gcd(a, p)=1.Then a
is a quadratic residue or nonresidue of p according as

a(p−1)/2 ≡p 1 or a(p−1)/2 ≡p −1

14.2 The Order of an Integer Modulo n

Definition 14.2 Let n > 1 and gcd(a, n)=1.The order of a modulo n is the smallest positive integer k such
that ak ≡n 1

Observe that if two integers are congruent modulo n, then they have the same order modulo n.For if a ≡n b,
implies that ak ≡n bk, when bk ≡n 1.
It should be emphasized that our definition of order n concerns only integers a for which gcd(a, n) = 1.Indeed,if
gcd(a, n) > 1, then we know that the linear congruence ax ≡n 1 has no solution(The linear congruence ax ≡n b
has a solution if and only if d|b,where d = gcd(a, n).Here d > 1 and b = 1, so d 6 |b.) ;hence the relation

ak ≡n 1, k ≥ 1

cannot hold, for this would imply that x = ak−1 is a solution of ax ≡n 1.Thus,whenever there is reference to
the order of a modulo n, it is assumed that gcd(a, n) = 1,even if it is not explicitly stated.

Theorem 14.3 Let the integer a have order k modulo n.Then ab ≡n 1 if and only if k|b; in particular, k|φ(n).

Proof: Suppose to begin with that k|b, so that b = jk for some integer j.Since ak ≡n 1, (ak)j ≡n 1j(a ≡n b
implies ak ≡n bk) or ab ≡n 1.
Conversely, let b be any positive integer satisfying ab ≡n 1.By the division algorithm, there exists q and r such
that b = qk + r, where 0 ≤ r < k,consequently,

ab = aqk+r = (ak)q
ar

By hypothesis both ab ≡n 1 and ak ≡n 1, the implication of which is that ar ≡n 1.Since 0 ≤ r < k, we end up
with r = 0;otherwise, the choice of k as the smallest positive integer such that ak ≡n 1 is contradicted. Hence
b = qk and k|b.
Theorem 1.3 expedites the computation when attempting to find the order of an integer a modulo n:instead of
considering all powers of a, the exponents can be restricted to the divisors of φ(n). 2

Theorem 14.4 If a has order k modulo n, then ai ≡n aj if and only if i ≡k j.

Proof: First,suppose that ai ≡n aj ,where i ≤ j.Since a is relatively prime to n, we can cancel a power of a to
obtain ai−j ≡n 1.According to theorem 1.3, this last congruence holds only if k|i− j, which is just another way
of saying that i ≡k j.
Conversely, let i ≡k j.Then we have i = j + qk for some integer q.By the definition of k, ak ≡n 1, so that

aj ≡n aj+qk ≡n aj(ak)q ≡n aj

which is the desired conclusion 2

Corollary 14.5 If a has order k modulo n , then the integers a, a2, a3, ....., ak are incongruent modulo n
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Proof: If ai ≡n aj for 1 ≤ i ≤ j ≤ k, then the theorem insures that i ≡k j.But this is impossible unless
i = j.Hence a, a2, .., ak are incongruent modulo n. 2

Theorem 14.6 If the integer a has order k modulo n and b > 0, then ab has order k|gcd(b, k) modulo n.

Proof: Let d = gcd(b, k).Then we may write b = b1d and k = k1d, with gcd(b1, k1) = 1.Clearly,

(ab)k1 = (ab1d)k/d = (ak)b1 ≡n 1

If ab is assumed to have order r modulo n,then theorem 1.3 asserts that r|k1.On the other hand, since a has
order k modulo n, the congruence

abr ≡n (ab)r ≡n 1.

indicates that k|br;in other words, k1d|b1dr.But gcd(k1, b1) = 1 and therefore k1|r.This divisibility relation,when
combined with the one obtained obtained earlier(r|k1),gives

r = k1 = k/d = k/gcd(b, k)

proving the theorem. 2

Corollary 14.7 Let a have oder k modulo n.Then ab has order k if and only if gcd(b, k) = 1.

14.3 Primitive Roots of Primes

Definition 14.3 If gcd(a, n) = 1 and a is of order φ(n) modulo n, then a is a Primitive Root of n.

More generally, one can prove that primitive roots exist for any prime modulus, a result of fundamental impor-
tance. While it is possible for a primitive root of n to exist when n is not a prime, there is no reason to expect
that every integer n will possess a primitive root;indeed, the existence of primitive roots is more an expection
than a rule

Theorem 14.8 Let gcd(a, n) = 1 and let a1, a2, a3, ..., aφ(n) be the positive integers less than n and relatively
prime to n.If a is a primitive root of n,then

a1, a2, a3, ..., aφ(n)

are congruent modulo n to a1, a2, a3, ..., aφ(n), in some order.

Proof: Since a is relatively prime to n, the same holds for all the powers of a;hence, each ak is congruent
modulo n to some one of the ai.The φ(n) numbers in the set [a1, a2, a3, ..., aφ(n)] are incongruent by the corollary
to theorem 1.4.As the powers are incongruent to each other and each one is congruent to some one of ai,these
powers must represent the integers a1, a2, a3, ..., aφ(n). 2 One consequence of what has just been proved is
that, in those cases in which a primitive root exists, we can know state exactly how many there are,

Corollary 14.9 If n has a primitive root, then it has exactly φ(φ(n)) of them
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Proof: Suppose that a is a primitive root of n.By the theorem, any other primitive root of n is found among
the members of the set [a1, a2, a3, ..., aφ(n)].But the number of powers ak, 1 ≤ k ≤ φ(n), which has order φ(n)
is equal to the number of integers k for which gcd(k, φ(n) = 1(rest of the integers have order less than φ(n)
because for all such integers l, gcd(l, φ(n)) > 1) i.e the power of the a should be relatively prime to φ(n) for it
to be a primitive root.;there are φ(φ(n)) such integers, hence φ(φ(n)) primitive roots of n. 2

Theorem 14.10 If p is a prime number and d|p − 1,then there are φ(d) incongruent integers having order d
modulo p

Proof: Let d|p−1 and ψ(d) denote the number of integers k, 1 ≤ k ≤ p−1, which have order d modulo p.Since
each integer between 1 and p− 1 has order d for some d|p− 1 (using theorem 1.3),

p− 1 =
∑

d|p−1 ψ(d)

At the same time,Gauss’ theorem tells us that

p− 1 =
∑

d|p−1 φ(d)

and so,putting together, ∑

d|p−1

ψ(d) =
∑

d|p−1

φ(d) (14.4)

Our aim is to provide that ψ(d) ≤ φ(d) for each divisor d of p−1, since this, in conjunction with equation (1.4),
would produce the equality ψ(d) = φ(d) 6= 0(otherwise, the first sum would be strictly smaller than the second)

Given an arbitrary divisor d of p − 1, there are two possibilities:either ψ(d) = 0 or ψ(d) > 0.If ψ(d) = 0, then
certainly ψ(d) ≤ φ(d).Suppose that ψ(d) > 0, so that there exists an integer a of order d.Then the d integers
a, a2, ...., ad are incongruent modulo p(if ai ≡p aj for 1 ≤ i < j ≤ d, then a(j−i) ≡p 1 where j − i < d and hence
contradicting that d is the order) and each of them satisfies the polynomial congruence

xd − 1 ≡p 0 (14.5)

for,(ak)d ≡p (ad)k ≡p 1.By the corollary to Lagrange’s theorem, there can be no other solutions of (1.5).If follows
that any integer which has order d modulo p must be congruent to one of a, a2, ...., ad.But only φ(d) of the just
mentioned powers have order d,namely those ak for which the exponent k has the property gcd(k, d)=1.Hence,
in the present situation,ψ(d) = φ(d),and the number of integers having order d modulo p is equal to φ(d).This
establishes the result we set out to prove.
2 Taking d = p− 1 in the above Theorem, we arrive at

Corollary 14.11 If p is a prime,then there are exactly φ(p− 1) incongruent primitive roots of p.

An illustration is afforded by the prime p = 13.For this modulus,1 has order 1;12 has order 2;3 and 9 have order
3;5 and 8 have order 4;4 and 10 have order 6; and four integers, namely 2,6,7,11 have order 12.Thus

∑
d/12 ψ(d) = ψ(1) + ψ(2) + ψ(3) + ψ(4) + ψ(6) + ψ(12)

= 1 + 1 + 2 + 2 + 2 + 4 = 12
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as it should.Notice too that

ψ(1) = 1 = φ(1), ψ(4) = 2 = φ(4)

ψ(2) = 1 = φ(2), ψ(6) = 2 = φ(6)

ψ(3) = 2 = φ(3), ψ(12) = 4 = φ(12, )



Chapter 15

Quadratic Reciprocity

15.1 Legendre Symbol

Legendre Symbol: for given Prime p and any a
⌊

a
p

⌋
≡p a(p−1)/2 ≡p





1 if a is a quadratic residue of p
0 if p|a
-1 if a is quadratic non residue of p

Some facts:

1.
⌊

a
p

⌋ ⌊
b
p

⌋
=

⌊
ab
p

⌋

2.
⌊

a2

p

⌋
=1 given any

⌊
a
p

⌋

3. a ≡p b implies
⌊

a
p

⌋
=

⌊
b
p

⌋

4.
⌊

1
p

⌋
=1

5.
⌊ −1

p

⌋
=

{
1 if p ≡4 1 · · · (i)
-1 if p ≡4 −1

since p = 4k + 1 or 4k + 3 all primes of the form (p− 1)/2 = 2k or 2k + 1

6. x2 ≡p −1 has a solution iff p is of the form 4k + 1 (from fact (i) )

Theorem 15.1 For odd prime p,
∑p

a=1

⌊
a
p

⌋
=0

Proof: if p|a then
⌊

a
p

⌋
=0;

else gcd(a, p) = 1, so there will be exactly (p-1)/2 a’s are quadratic residues of p and remaining (p-1)/2 will be
quadratic non residue of p
2

Corollary 15.2 The quadratic residues of (prime) p are congruent modulo p to the even powers of primitive
roots. Conversely, the quadratic non-residues are congruent to odd powers of primitive root.
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15.2 Gauss’ Lemma

Theorem 15.3 For any odd prime p and a such that a⊥p
S = {a, 2a, 3a, . . . (p− 1)a/2}
T = {b ∈ S | b mod p > p div 2}
then

⌊
a
p

⌋
= (−1)|T |

Proof: The elements of S are all distinct modulo p
We would break set S into two sets {r1, r2, . . . rm} = U = {r | 0 < r ≤ p/2, b modp = r, b ∈ S}
and {s1, s2, . . . sn} = V = {s | p/2 < s < p, b modp ≤ s, b ∈ S}
p being odd prime, p/2 is not an integer.
S = {r1, r2, . . . rm} ∪ {s1, s2, . . . sn}
m + n = (p− 1)/2

Claim 15.1 r1, r2, . . . rm, p− s1, p− s2, . . . p− sn are all disjoint

Proof: This follows from the fact that all elements of S are disjoint.
r1, r2, . . . rm are disjoint
s1, s2, . . . sn are disjoint
if ri = p− sj

=⇒ ri + sj = p
assume ri came from ka and sj came from ma then ri + sj ≡p 0
=⇒ p|(k + m)
therefore disjoint ( both k,m are less than p/2 hence k + m < p ) 2

Therefore {r1, r2 . . . rm, p− s1, p− s2 . . . p− sn} = {1, 2, . . . (p− 1)/2}∏{r1, r2 . . . rm, p− s1, p− s2 . . . p− sn} =
∏{1, 2, . . . (p− 1)/2} = ((p− 1)/2)!

((p−1)/2)! = r1r2 . . . rm(p−s1)(p−s2) . . . (p−sn) ≡p (−1)nr1, r2, . . . rm, s1, s2 . . . sn we know that {r1, r2 . . . rn, s1, s2 . . . sn} ≡p

S Therefore ((p− 1)/2)! ≡p (−1)n
∏

S = (−1)na(p−1)/2((p− 1)/2)!
as p is relatively prime to (p− 1)/2
so we can cancel ((p− 1)/2)! on both sides
Therefore a(p−1)/2(−1)n ≡p 1
multiply both sides with (−1)n

Therefore a(p−1)/2 ≡p (−1)n

n = |T |⌊
a
p

⌋
= a(p−1)/2 ≡p (−1)|T |

2

Consequence
⌊

2
p

⌋
=

{
1 if p ≡8 1 or p ≡8 7
-1 if p ≡8 3 or p ≡8 5

⌊
2
p

⌋
= (−1)n where n is the number of numbers in {2, 4, 6 . . . (p− 1)} whose remainder > (p− 1)/2

S = {2a | 1 <= a <= (p− 1)/2}
T = {b ∈ S | b > (p− 1)/2}
2a ≤ (p− 1)/2 iff a <= p div 4
p = 8k + 1 ⇒ p div 4 = 2k and (p− 1)/2 = 4k ⇒ n = 2k
p = 8k + 3 ⇒ n = 2k + 1
p = 8k + 5 ⇒ n = 2k + 1
p = 8k + 7 ⇒ n = 2k + 2
when p ≡8 1 or p ≡8 7 then n is even

Therefore
⌊

2
p

⌋
=1



15.3. GAUSS’ RECIPROCITY LAW 77

q/2

(q−1)/2

(p−1)/2

p/2

px=qy

Figure 15.1: Graph

15.3 Gauss’ Reciprocity Law

For Odd primes p and q⌊
p
q

⌋⌊
q
p

⌋
= (−1)((p−1)/2)((q−1)/2)

Consider the Lattice points in the rectangle (x, y) where both x, y ∈ W(Whole Number Set)
Therefore (p− 1)/2)((q − 1)/2) lattice points in the interior of rectangle.

Claim 15.2 No Lattice points on the diagonal

Proof: If there were then py = qx
as p & q are distinct and x & y are bounded by p/2 & q/2 which can’t happen
Which means diagonal splits it into two equal triangles.
2

Claim 15.3
∑(p−1)/2

j=1 jq div p Lattice points in the lower triangle

Proof: Take any vertical line on integer i.e line x = j where j is an integer.
Then that line has jq div p lattice points on that line So total number of lattice points in the lower triangle are∑(p−1)/2

j=1 jq div p
2

Claim 15.4
∑(q−1)/2

i=1 ip div q lattice points in the upper triangle

proof similar to earlier claim

We know already ((p− 1)/2)((q − 1)/2) lattice points
Therefore ((p− 1)/2)((q − 1)/2) =

∑(p−1)/2
j=1 jq div p +

∑(q−1)/2
i=1 ip div q⌊

p
q

⌋
= (−1)m where m =

∑(p−1)/2
j=1 jq div p (by Gauss’ lemma)
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⌊
q
p

⌋
= (−1)n where n =

∑(q−1)/2
i=1 ip div q

⌊
p
q

⌋ ⌊
q
p

⌋
= (−1)((p−1)/2)((q−1)/2) Those lattice points repressent {r | r = b mod p , b ∈ S, 0 < r <

p/2}&{s | s = b mod p , b ∈ S, p/2 < s < p}
as equation of diagonal is py = qx Everything above diagonal represents y > qx/p & below diagonal y < qx/p

Example 15.1
⌊

29
53

⌋
=

⌊
53
29

⌋
as 29 ≡4 1 and 53 ≡4 1

⌊
29
53

⌋
=

⌊
53
29

⌋
=

⌊
53 mod 29

29

⌋
=

⌊
24
29

⌋
=

⌊
8
29

⌋⌊
3
29

⌋
=

⌊
2
29

⌋ ⌊
2
29

⌋⌊
2
29

⌋⌊
3
29

⌋

as any square gives 1

=
⌊

2
29

⌋⌊
3
29

⌋
= (−1)

⌊
3
29

⌋
( as 29 ≡8 5)

⌊
3
29

⌋
=

⌊
29
3

⌋
as 29 ≡2 1 & 3 ≡2 1

⌊
29
3

⌋
=

⌊
29mod3

3

⌋
=

⌊
2
3

⌋
= −1

Therefore
⌊

29
53

⌋
= (−1)(−1) = 1

Therefore 29 is a perfect square modulo 53.
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Applications of Quadratic Reciprocity
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Theorem 16.1 Let p be an odd prime and a = ±2k0pk1
1 pk2

2 . . . pkm
m where p1, p2, . . . , pm are odd primes. Then,

•
⌊

a
p

⌋
=

⌊ ±1
p

⌋ ⌊
p1

p

⌋k1
⌊

p2

p

⌋k2

. . .

⌊
pm

p

⌋km

•
⌊

1
p

⌋
= 1 ∀p

•
⌊ −1

p

⌋
=

{
1 if p ≡4 1

−1 if p 6≡4 1

•
⌊

2
p

⌋
=

{
1 if p ≡8 1 or p ≡8 7

−1 if p ≡8 3 or p ≡8 5

• if pi > p then,
⌊

pi

p

⌋
=

⌊
pi (mod p)

p

⌋
. So it’s sufficient to consider primes < p.

Proof: If a ≡p b, then the congruences x2 ≡p a and x2 ≡p b have exactly the same solutions, if any
at all. Thus either both x2 ≡p a and x2 ≡p b are solvable, or none of them has a solution. Hence⌊

pi

p

⌋
=

⌊
pi (mod p)

p

⌋
as both pi and pi (mod p) are equal modulo p. 2

• if pi < p

⌊
pi

p

⌋
=





⌊
p
pi

⌋
if p ≡4 1 or pi ≡4 1

−
⌊

p
pi

⌋
if p ≡4 pi ≡4 3

Proof:
⌊

p
q

⌋ ⌊
q
p

⌋
= (−1)((p−1)/2)((q−1)/2) from Gauss’s reciprocity law. Now, the number ((p-

1)/2).((q-1)/2) is even if and only if at least one of the integers p and q is of the form 4k + 1. If
both are of the form 4k + 3, then ((p-1)/2).((q-1)/2) is odd. 2

79



80 CHAPTER 16. APPLICATIONS OF QUADRATIC RECIPROCITY

Claim 16.1 2x0y ≡p −b has a unique solution.
Proof: Given equation has a solution if gcd(2x0, p)| − b.
For unique solution, gcd(2x0, p) = 1.
gcd(2x0, p) = gcd(x0, p) as p is odd prime. If gcd(x0, p) > 1, it can only be p as p is prime.
Let gcd(x0, p) = p.
gcd(x0, p) = p ⇒ p|x0 ⇒ x0 = c.p
⇒ x2

0 = c2.p2 = b.pn + a ⇒ a = 0asa ⊥ p.
But a is not zero. Hence we get a contradiction if gcd(x0, p) = p.
Hence gcd(x0, p) = 1 ⇒ 2x0 ⊥ p
Hence 2x0y ≡p −b has a unique solution. 2

Theorem 16.2 If p is an odd prime with a ⊥ p, then x2 ≡pn a has a solution iff
⌊

a
p

⌋
= 1.

Proof: (⇒) Let u be a solution of x2 ≡pn a.
u = x2 = q.pn + a ≡p a

∴ a is a quadratic residue of p and hence
⌊

a
p

⌋
= 1

(⇐) Let
⌊

a
p

⌋
= 1 (⇒)x2 ≡p a has a solution u. Proof is by induction on n.

Induction Hypothesis: Assume x2 ≡pn a has a solution x0.
To prove: x2 ≡pn+1 has a solution x2

0 = b.pn+1 + a
From previous claim, let 2x0y ≡p −b has unique solution y0.
Then, 2x0y0 ≡p −b ⇒ p|2x0y0 + b ⇒ 2x0y0 + b = dp · · · 1
Let x1 = x0 + y0p

n

Squaring both sides,
x2

1 = (x0 + y0p
n)2 = x2

0 + 2x0y0p
n + y2

0p2n

⇒ x2
1 = a + bpn + 2x0y0p

n + y2
0p2n (By induction hypothesis)

⇒ x2
1 = a + (b + 2x0y0)pn + y2

0p2n = a + dpn+1 + y2
0p2n (By equation 1)

⇒ x2
1 = a + pn+1(d + y2

0pn−1), (n-1) ≥ 0 ∀ n ≥ 1
⇒ x2

1 ≡n+1 a
Hence proved. 2

Theorem 16.3 Let a be an odd integer. Then,x2 ≡2 a always has a solution.
Proof: If a is odd, then a ≡2 1 always. Any odd integer x satisfies this equation. 2

Theorem 16.4 Let a be an odd integer. Then, x2 ≡4 a has a solution iff a ≡4 1.
Proof: Since x is odd, let x = 2k + 1.
x2 = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k + 1) + 1 ≡4 1 Since square of every odd integer is 1 modulo 4, hence
x2 ≡4 a has solution only if a ≡4 1. Note that every odd integer is a solution. 2

Theorem 16.5 Let a be an odd integer. Then, x2 ≡2n a, n ≥ 3 has a solution iff a ≡8 1.
Proof: Any solution must be odd since a is odd.
let x = 2k + 1
∴ x2 − 1 = (2k + 1)2 − 1 = 4k(k + 1)
Since one of k and (k+1) must be even, ∴ 8|(x2 − 1) i.e. x2 ≡8 1.
Hence solution can exist only if a ≡8 1. Now we prove existence of solution.
Proof by induction on n: Let ≡8 1.
Induction Hypothesis: x2 ≡2n a, n ≥ 3 has a solution.
To prove: x2 ≡2n+1 a, n ≥ 3 has a solution.
by induction Hypothesis, x2

0 = b2n + a where x0 and a are odd.
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Also, x0y ≡2 −b has a unique solution since gcd(x0,2) = 1 as x0 is odd. Let that solution be y0.
∴ 2|x0y0 + b . Let x0y0 + b = 2j
Now, consider x1 = x0 + y02n−1 . Squaring, we get,
x2

1 = x2
0 + x0y02n + y2

022(n−1) = a + (b + x0y0)2n + y2
022(n−1)

x2
1 = a + j2n+1 + y2

022(n−1) ≡2n+1 a if 2(n-1) ≥ n+1 ⇒ n ≥ 3.
Hence Proved. 2

Theorem 16.6 Let n = 2k0pk1
1 pk2

2 . . . pkm
m be the prime factorization of n. For any a ⊥ n, x2 = ≡n a has a

solution iff

1.
⌊

a
pi

⌋
= 1 ∀ 1 ≤ i ≤ m and

2. a ≡2,4 1 if k0 ∈ {1,2 } and a ≡8 1 if k ≥ 3.

Proof: x2 = ≡n a has a solution iff the following system of equations has a solution:
x2 ≡2 a

∨
x2 ≡22 a

∨
. . .

∨
x2 ≡2k0 a · · · (0)

x2 ≡
p

k1
1

a · · · (1)
x2 ≡

p
k2
2

a · · · (2)
...
x2 ≡

p
ki
i

a · · · (i)
...
x2 ≡pkm

m
a · · · (m)

Let equation i has solutions ui and u′i modulo pki
i .

Now, x =
m∑

i=0

ui.
n

pki
i

satisfies all the above equations

Since a is a quadratic residue of pi ∀1 ≤ i ≤ m, hence
⌊

a
pi

⌋
= 1.

Proof of part (2) follows from theorem (16). 2

Definition 16.1 Jacobi Symbol: For any a and odd n, Jacobi symbol is defined as


 a

n


 =

k∏

i=1

⌊
a
pi

⌋αi

where n =
k∏

i=1

pαi
i

Fact 16.7

 a

n


 = 1 does not imply that a is a quadratic residue of n.

Fact 16.8 a is a quadratic residue of n iff gcd(a, n) = 1 and a is a quadratic residue of of every prime factor
of n.
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Chapter 17

The Jacobi Symbol

Definition 17.1 Jacobi Symbol: For any a and odd n, Jacobi symbol is defined as


 a

n


 =

k∏

i=1

⌊
a
pi

⌋αi

where, n =
k∏

i=1

pαi
i

and

⌊
a
p

⌋
is the Legendre Symbol.

The Jacobi symbol has many properties that make its use the easiest way to evaluate a Legendre symbol.
Suppose m and n are positive odd integers, and a and b are any integers. Then the Jacobi symbol satisfies the
following:

1. When n is a prime, the Jacobi symbol reduces to the Legendre symbol. Analogously to the Legendre
symbol, the Jacobi symbol is commonly generalized to have value


 m

n


 = 0 if m | n

giving 
 n

n


 = 0

as a special case.

2. The Jacobi symbol is not defined for n ≤ 0 or n even.

3.

 −1

n


 = 1 if n ≡4 1, and


 −1

n


 = −1 if n ≡4 3

4.

 a

m





 a

n


 =


 a

mn




5.

 a

m





 b

m


 =


 ab

m



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6. if a ≡m b, then

 a

m


 =


 b

m




Theorem 17.1 If n is odd then 
 −1

n


 = (−1)

n−1
2

and 
 2

n


 = (−1)

n2−1
8

Proof:


 −1

n


 =

k∏

i=1

⌊ −1
pi

⌋
...where, n =

k∏

i=1

pi

=
k∏

i=1

(−1)
pi−1

2

= (−1)
Pk

i=1
pi−1

2

= (−1)
n−1

2 ...Using, ab−1
2 ≡2

a−1
2

b−1
2


 2

n


 =

k∏

i=1

⌊
2
pi

⌋

=
k∏

i=1

(−1)
p2

i−1
8

= (−1)
Pk

i=1
p2

i−1
8

= (−1)
n2−1

8 ...Using, a2b2−1
8 ≡8

a2−1
8

b2−1
8

2

Theorem 17.2 If m and n are odd and m ⊥ n. then

 m

n





 n

m


 = (−1)

m−1
2

n−1
2

Proof: Consider,

m =
k∏

i=1

pi and n =
l∏

j=1

qj
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Then, using the fact that m ⊥ n otherwise there will be a pi and qj whose
⌊

pi

qj

⌋
= 0, we get,


 m

n


 =

k∏

i=1

l∏

j=1

⌊
pi

qj

⌋

=
k∏

i=1

l∏

j=1

⌊
qj

pi

⌋
(−1)

pi−1
2

qj−1
2

=

 n

m


 (−1)

Pk
i

Pl
j

pi−1
2

qj−1
2

=

 n

m


 (−1)(

Pk
i

pi−1
2 )(

Pl
j

qj−1
2 )

=

 n

m


 (−1)(

m−1
2 )( n−1

2 ) ...Using, ab−1
2 ≡2

a−1
2

b−1
2

Multiplying both sides by

 n

m


 and Using


 n

m





 n

m


 = 1,


 m

n





 n

m


 = (−1)

m−1
2

n−1
2

2

Jacobi Algorithm Now, we will detail an algorithm to evaluate

 a

n


.

Suppose n is odd and 0 < a < n.

a = 2kn′ (where, n′ is odd)
 a

n


 =


 2

n




k 
 n′

n


 (Using, a ≡m b =⇒


 a

m


 =


 b

m


)

= (−1)k n2−1
8


 n′

n




= (−1)k n2−1
8 + n−1

2
n′−1

2


 n

n′


 (Using,


 m

n





 n

m


 = (−1)

m−1
2

n−1
2 )

Now,
n = qn′ + a′ (0 < a′ < n′)

 n
n′


 =


 a′

n′


 (Using,


 n′

n′


 = 0)

Hence we get, 
 a

n


 = (−1)k n2−1

8 + n−1
2

n′−1
2


 a′

n′




We started with (a, n) and arrived at a smaller pair (a′, n′).

Note:

1. S = k n2−1
8 + n−1

2
n′−1

2 is odd iff

k ≡2 1 and
n2 − 1

8
≡2 1

XOR
n− 1

2
≡2 1 and

n− 1
2

≡2 1
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2. 
 0

n


 = 1 if n = 1

= 0 otherwise

Here is how the algorithm works.

a0 = 2k1n1

n0 = q1n1 + a1

a1 = 2k2n2

n1 = q2n2 + a2

.

.

am−1 = 2kmnm

nm−1 = qmnm + am

The moment when am becomes 0, the algorithm terminates.

Algorithm 17.1 The Jacobi Algorithm:

algorithm jacobi(a, n)
begin
a <- a mod n;
t <- 1;
while (a<>0) do
begin

while (a is even) do
begin
a <- a div 2;
if (n mod 8 = {3,5} ) then t <- -t;

end
swap (a,n);
if (a mod 4 = 3 and n mod 4 = 3) then t <- -t;
a <- a mod n;

end
if (n=1) then return(t) else return(0);

end



Chapter 18

Elementary Algebraic Concepts

Definition 18.1 SemiGroup A Semigroup S =< S,� > is a set of elements S, and a binary operation called
the semigroup product, such that

• S is closed under the Semigroup product �
• � is Associative

Definition 18.2 Left & Right Identities An element i ∈ S is a left identity if

∀a ∈ S, i� a = a

Similarly, an element i ∈ S is a right identity if

∀a ∈ S, a� i = a

Fact 18.1 A semigroup cannot have distinct left and right identities.

iL � iR = iL Since iR is the right identity
iL � iR = iR Since iL is the left identity
⇒ iL = iR

An element which is both a left & right identity is called an Identity.

Fact 18.2 Identity elements if they exist are unique.

From the above discussion it follows that a Semigroup can have more than one Left Identities, provided it doesnt
have any Right Identities. But if there is even one Right Identity, all the Left Identities collapse into one. Same
holds for the Right Identities too.

Definition 18.3 Monoid A Semigroup with an Identity element is called a Monoid.

87
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A Monoid can be respresented as
µ =< M,�, 1 >

where M is a set closed under �, � is an associative binary operator, and 1 is the Identity.

• Set of all Postive Numbers with 1 as the Identity element under the Binary Operation Multiplication
forms a Monoid

• Set of all Strings with Empty String as the Identity elemetns forms a monoid under Concatenation.

Definition 18.4 Inverse Given a Monoid

µ =< M,�, 1 >

an element a ∈ M is the left inverse of the element b ∈ M if

a� b = 1

As is intuitive, b is the right inverse of a.

Theorem 18.3 If every element of a monoid posseses a left inverse, then the left inverse is also the right
inverse.

Proof: Let b is the left inverse of a, and c is the left inverse of b

⇒ b� a = 1, c� b = 1

Consider,
b� (a� b) = (b� a)� b Since � is Associative

= 1� b
= b

c� (b� (a� b)) = c� b
= 1

However,
((c� b)� (a� b)) = a� b [c is the LI of b]

So, we have
1 = c� (b� (a� b))

= ((c� b)� (a� b)) [� is Associative]
= a� b

⇒ b is the Right Inverse of a as well. 2

Theorem 18.4 If every element of a Monoid possesses a left inverse, then the inverses are unique.

Proof: Lets prove this using Contradiction. Assume b and c are the two left inverses of a.

b� a = 1, c� a = 1

So, we have
1� b = 1� b

(b� a)� b = (c� a)� b [From above]
b� (a� b) = c� (a� b) [� - Associative]

b� 1 = c� 1 [b is LI of a, so b is also RI of a]
b = c

2
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Definition 18.5 Group A Monoid in which unique inverses are guaranteed is called a Group.

Mathematically, a Group is defined as
G =< G,�, 1,−1 >

where G is the set closed under the associative binary operator �, 1 is the identity element and −1 is the unique
inverse.
If � is Commutative, then the group is called an Abelian Group.

Fact 18.5 Given a group G,
(a−1)−1 = a

(a� b)−1 = b−1 � a−1

• Integers under Addition form a Group

• Zp, set of integers from 1 to the prime p, forms a group under Multiplication (mod p)

Definition 18.6 Finite Group If G is a finite group, then

o(G) = |G|

Definition 18.7 Subgroup For any group G, H ⊆ G is a subgroup of G provided H is a group.

1, G are the Trivial Subgroups of G

Fact 18.6 If H is a subgroup of G, then

1 ∈ H
a ∈ H ⇒ a−1 ∈ H Since H is closed under �

Theorem 18.7 Lagrange’s Theorem : If G is a finite group and H is a subgroup of G, then

o(H)|o(G)

Proof:

Claim 18.1 The relation ≡H⊆ G×G such that

a ≡H b (read as: a is equivalent to b modulo H)
iff ab−1 ∈ H

is an equivalence relation.

• Reflexivity a ≡H a since, a� a−1 = 1 ∈ H
Hence it is reflexive.

• Symmetry
a ≡H b

⇒ ab−1 ∈ H
⇒ (ab−1)−1 ∈ H
⇒ (b−1)−1a−1 ∈ H
⇒ ba−1 ∈ H
⇒ b ≡H a
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• Transitivity
a ≡H b

⇒ ab−1 ∈ H
b ≡H c

⇒ bc−1 ∈ H
⇒ (ab−1)(bc−1) ∈ H
⇒ ac−1 ∈ H
⇒ a ≡H c

Definition 18.8 Right Coset For each a ∈ G, define Ha as the Right Coset of a, where

Ha = {h.a|h ∈ H}

Definition 18.9 Equivalence Class For any a ∈ G, define [a]H as the Equivalence Class of a, where

[a]H = {a′|a ≡H a′}

Claim 18.2 Ha = [a]H

=⇒ Ha ⊆ [a]H , since for any h ∈ H,

a� (ha)−1 = a� a−1 � h−1

= h−1 ∈ H
⇒ a ≡H ha
⇒ ha ∈ [a]H

⇐= [a]H ⊆ Ha,
For any g ∈ [a]H ,

a ≡H g
⇒ ag−1 ∈ H
⇒ (ag−1)−1 ∈ H
⇒ ga−1 ∈ H
⇒ (ga−1)� a ∈ H � a
⇒ g ∈ Ha

Hence, Ha = [a]H

Claim 18.3 For any a, b ∈ H, Ha = Hb or Ha

⋂
Hb = φ

It follows from the fact that Equivalence Classes divide the set into disjoint partitions.

Claim 18.4 There is a 1-1 correspondence between Ha and Hb, ∀a.b ∈ G

` Ha = Hb is obvious.
otherwise ha 7→f hb for h ∈ H.
If f is not 1-1,

h1b = h2b
⇒ h1 = h2

Hence f is a bijection. Therefore, |Ha| = |Hb|
Since the group is entirely partitioned among equivalence classes which are disjoint, so if there are k equivalence
classes,
k × o(H) = o(G) 2
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Corollary 18.8 A group with Prime order can have only trivial subgroups.

Remark 18.1 Converse of Lagrange’s Theorem is not true.
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Chapter 19

Sylow’s Theorem

Given any element a of a finite group G. Consider the set of all powers of a, a0, a1, . . .. Here a0 = 1 is the
identity element and a1 is the element a itself.

Definition 19.1 Order of an element of a group is defined to be mink s.t. ak = 1.

Definition 19.2 Define < a >= {1, . . . , ak−1}. < a > is a cyclic subgroup of G.

Definition 19.3 For a subset H ⊆ G define < H >= {ab|a, b ∈ H or < H >}. If < H >= G, then H is
called a set of generators for G.

Corollary 19.1 Every finite group of prime order is a cyclic group.

Proof: Take any a ∈ G, a 6= 1, O(< a >)|O(G), then, O(< a >) = O(G). 2

Corollary 19.2 Every cyclic group is commutative.

Sylow’s Theorem

Lagrange’s theorem only talks about the order of the subgroup of a group. It does not answer the reverse
question of whether there exists a subgroup of a given order. Sylow’s theorem answers this question albeit only
for some values of the order of the subgroup.

Theorem 19.3 If p is a prime and pα|O(G) then G has a subgroup of order pα.

Proof: Assume O(G) = n = pαm (note that pα may not be the highest power of p in n.) Consider subsets of
G of size pα. The number of such subsets is

(
pαm
pα

)
=

pαm(pαm− 1) . . . (pαm− pα + 1)
pα(pα − 1) . . . 1

. (19.1)

Claim 19.1 If pβ‖m then pβ‖
(

pαm
pα

)
.

93
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Proof: For any γ, pγ‖(pαm− i) iff pγ‖(pα − i). All pγ ’s cancel out leaving pβ which is then the highest power

of p that divides
(

pαm
pα

)
. 2 2

Definition 19.4 M = {M ∈ G s.t. |M | = pα},∃β s.t. pβ‖m

Let us define a relation on the set M. M ∼ N if ∃g ∈ G s.t. M = Ng.

Claim 19.2 The relation defined above is an equivalence relation.

Proof: The relation as defined above is:

• Reflexive: take g = 1 in the relation above. Hence M ∼ M, ∀M .

• Symmetric: If M = Ng, then, ∀c ∈ N, ∃a ∈ M s.t. a = cg. Multiplying both sides by g−1, ∀a ∈ M, ∃c ∈
N s.t. ag−1 = c. Hence, N = Mg−1, implies N ∼ M .

• Transitive: If M ∼ N and N ∼ O, then ∃g, g′ s.t. ,M = Ng and N = Og′. Hence, M = Og′g and hence
M ∼ O.

2

Claim 19.3 ∃ atleast one equivalence class [N ]∼ ∈M/ ∼ s.t. pβ+1 6 | |[N ]∼|.

Proof: Assume that every equivalence class is s.t. pβ+1| |[M ]∼| where M ∈ M. We know that |M| =(
pαm
pα

)
. This implies that pβ+1| |M| =

(
pαm
pα

)
. Choose [N ]∼ = {M1, . . . ,MK}Z s.t. pβ+1 6 ||[N ]∼|.

Obviously, ∀Mi,Mj ∈ [N ]∼,∃g ∈ G s.t. Mi = Mjg. Let H = {g ∈ G|M1 = M1g}. 2

Claim 19.4 H is a subgroup of G.

Proof: We show that H is closed, has the identity element and elements in H also have their inverses in H.

• If g1, g2 ∈ H, then, M1 = M1g2 = (M1g1)g2 = M1(g1g2). Hence H is closed under ·.
• The element 1 is the identity element of the group H.

• For any g ∈ G, the inverse of g in G also belongs to H. For any element a ∈ M1,∃c ∈ M1 s.t. a = cg. As
The mapping from M1 to M1 is one-to-one ∀c ∈ M1, ∃a ∈ M1, s.t. c = ag−1. Hence g−1 ∈ H.

Hence H is a subgroup of G. 2

Theorem 19.4 kO(H) = O(G).

Proof: We construct a bijection between [N ]∼ and the set of right cosets of G/H of H. By construction of H
we get the equivalence:

(Ha = Hb) ≡ (ab−1 ∈ H) ≡ (M1ab−1 = M1) ≡ (M1a = M1b),∀a, b ∈ G. (19.2)

That is whenever a and b are in the same right coset of H (or their cosets are equal, respectively) they form
the same M1a = m!b, name it N . N ∈ [N ]∼ because Nb−1 = M1. Hence, N ∼ M1. So Ha → M1a, ∀a ∈ G,
defines a mapping from G/H to [N ]∼. Since N ∈ [N ]∼, N is some Mj , j ∈ 1, . . . , k. Conversely, each Mj is of
the form M1a for some a ∈ G by definition. So the mapping Ha → M1a,∀a ∈ G is in fact a bijection. 2
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Claim 19.5 O(H) = pα.

Proof:

pβ ‖ m (19.3)
=⇒ pα+β ‖ pαm (19.4)

= kO(H). (19.5)

As
pβ+1 6 |k (19.6)

so
pα|O(H). (19.7)

This implies O(H) ≥ pα.

|M1| = pα. Consider any a ∈ M1. For any h, h′ ∈ H,

ah ∈ M1 (19.8)
ah′ ∈ M1. (19.9)

Also ah = ah′ implies that h = h′. Therefore M1 has ≥ O(H) distinct elements. Thus, O(H) = pα. 2

Rings and Fields

Definition 19.5 A ring < R, +, ·, 0, 1 > s.t.

1. < R, +, 0 > is an abelian group.

2. < R, ·, 1 > is a monoid.

3. · distributes over +.

For eg. Integers form a ring under addition and multiplication.

Definition 19.6 R is a commutative ring if · is commutative. For eg. 2 × 2 non-singular matrices over reals
form a ring but not a commutative ring.

Definition 19.7 R is a field if < R− {0}, ·, 1 > is an abelian group. For eg. Zp is a field for any prime p.

Theorem 19.5 Zm for any composite m is not a field.

Proof: If m is not a prime then ∃a ∈ Zm s.t. gcd(a,m) 6= 1. This implies that ax ≡m 1 has no solution, which
means that 6 ∃b ∈ Zm s.t. ab ≡m 1. 2



96 CHAPTER 19. SYLOW’S THEOREM



Chapter 20

Finite Abelian Groups & Dirichlet
Characters

20.1 Introduction

Definition 20.1 An Abelian group is a set G with a binary operation ◦ satisfying the following conditions:

• For all a, b, c ∈ G, we have, a ◦ (b ◦ c) = (a ◦ b) ◦ c (the associative law)

• There is an element e ∈ G s.t. a ◦ e = a for all a ∈ G

• For any a ∈ G there exists b ∈ G such that a ◦ b = e( existence of an inverse)

• For all a, b ∈ G, we have, a ◦ b = b ◦ a(the commutative law)

A finite abelian group G′ ⊆ G where G is finite but not necessarily abelian.
Since a ∈ G, order(a) exists.

aorder(a) = 1 ∈ G′

Definition 20.2 Define ind(a,G′) as the smallest positive integer such that

aind(a,G′) ∈ G′

Then, 1 ≤ ind(a,G′) ≤ order(a)

Theorem 20.1 Let G′ ⊆ G be a subgroup of a finite abelian group G. Let a ∈ G−G′ and h = ind(a, G′)

G′′ = {xak|x ∈ G′, 0 ≤ k < h}
Then G” is a subgroup of G s.t.
(i) G′ ⊂ G′′

(ii) |G”| = h|G′|

Proof: (i) Consider xaj ∗ yak where x, y ∈ G′, 0 ≤ j, k < h

Case1 : j + k < h ⇒ xaj ∗ yak = xyaj+k ∈ G′′

Case2 : j + k ≥ h ⇒ aj+k ∈ G′ ⊂ G′′

But, aj+k = ahai where0 ≤ h < i
Now, ah = 1 and ai ∈ G′
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Hence G” is closed under *

Now we need to show that xak has an inverse in G”
Let the inverse be x−1an−k

This is something of the form xah+i where 0 ≤ i < h
i.e. (xah)ai ∈ G′′

Hence (i) proved

(ii) For each element a ∈ G′ we can get at most h elements in G′′ i.e.

a0, a1, ...., ah−1

If |G′| = m then all we need to show is that the resulting hm elements in G′′ are distinct. We prove this by
contradiction. Assume

xaj = yak

⇒ x = yak−j

Without loss of generality, we assume, h > k ≥ j. Then

xy−1 = ak−j ∈ G′

We know that k − j < h and h is the smallest positive integer s.t. ah ∈ G′

⇒ k − j = 0

⇒ x = y

Hence, |G”| = h|G′| 2

20.2 Characters of Finite Abelian Groups

Definition 20.3 A character is a complex valued function which is multiplicative.

Complex Valued: f maps each element in a group to a complex number.
Multiplicative: f(a)f(b) = f(ab) and ∃c ∈ G : f(c) 6= 0

Fact 20.2 Every group has a character f(a) = 1∀a ∈ G called the Principal Character

Theorem 20.3 If f is a character of a finite abelian group G then f(e) = 1 (where e is the identity element)
and each f(a), a ∈ G is a root of unity.

Proof: For some c ∈ G
f(c) 6= 0

⇒ f(ce) = f(c) = f(c)f(e)

⇒ f(e) = 1

Now, consider any a ∈ G, order(a) = n
an ≡ e

f(an) = f(a)n = 1 = f(e)

Hence, every f(a) is a root of unity. 2
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Theorem 20.4 A finite abelian group of order n has exactly n distinct characters.

Proof:
` {e} = G0 ⊂ G1 ⊂ ...... ⊂ Gn = G

Gi+1 = 〈Gi; ai+1〉, ai+1 3 Gi

Proof by Induction follows:

Base Case: {e} has exactly one character.

Induction Step:
Assume Gi has |Gi| characters.
Elements of Gi+1 are given by xak

i+1, x ∈ Gi

Let fi be a character of Gi

We now define f̂i as

f̂i(x) = fi(x)∀x ∈ Gi

f̂i(xak
i+1) = f̂i(x)f̂i(ai+1)k

= fi(x)f̂i(ai+1)k

Let h = ind(ai+1, Gi

⇒ ah
i+1 = c ∈ Gi

Define f̂i(ai+1) as the hth root of fi(c)
(Note: f(c) 6= 0 since all fi(c) are roots of unity.)

f̂i(ai+1) is one of h possible roots of fi(c)
Hence there are at most h extensions for each character of Gi

Claim 20.1 f̂i(defined using one of the hth roots of f(c)) is a character of Gi+1

Claim 20.2 There are h possible extensions of each character of Gi

Outline of Proof No two extensions f̂i and ĝi can be identical since that would mean fi and gi are identical.

Hence there are exactly h|Gi| = |Gi+1| characters of Gi+1. 2

Definition 20.4 If f and g are characters of a finite abelian group G then

(f ∗ g)(a) = f(a)g(a)

Theorem 20.5 For any finite abelian group G, define

Ĝ = {f |f is a character of G}

then 〈Ĝ, ∗, f1〉 is a finite abelian group (f1 is the principal character) where f−1 ≡ 1
f

Proof: If g is the inverse of f then g(a) = 1
f(a)

⇒ f−1(a) = f(a−1) =
1

f(a)

Since G is abelian, Ĝ is abelian with the same order. 2
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Definition 20.5 Given
G = {a1, a2, ...., an}
Ĝ = {f1, f2, ...., fn}

define A(G) as
A(G) = [aij ] = [fi(aj)]

Theorem 20.6 The sum of the elements in row i of A is given by
∑n

r=1 fi(ar) = n if i = 1
= 0 otherwise

Proof: If i = 1, fi = f1, the principal character, then
n∑

r=1

f1(ar) = 1 ∗ n = n

If i 6= 1, ∃b ∈ G|fi(b) 6= 1 otherwise fi = f1

S =
n∑

r=1

fi(ar) =
n∑

r=1

fi(bar) = fi(b)S

⇒ S(1− fi(b)) = 0

Since f1(b) 6= 1, S = 0

2

Corollary 20.7 The sum of the elements in column j of A is given by
∑n

r=1 fr(aj) = n if aj = e
= 0 otherwise

Definition 20.6 Define A∗ as the conjugate transpose of A.

A∗ = [a∗ij ] = [f̄j(ai)]

Theorem 20.8 AA∗ = nI

Proof: B = AA∗

bij =
∑n

r=1 fi(ar)f̄j(ar)
=

∑n
r=1(fi ∗ f̄j)(ar)

=
∑n

r=1(fk)(ar)

where
fk =

fi

fj
= 1 iff i = j

bij = n if i = j
= 0 otherwise

⇒ B = nI

2

Corollary 20.9 A∗A = nI
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20.3 Characters of a Finite Abelian Group

• Every finite abelian group has as many characters as the order of the group.

• A character is a complex valued multiplicative function.

• The characters of a finite abelian group form a finite abelian group of the same order with the principal
character as the identity element.

• For each character f and a ∈ G, f(a) is a root of unity.

• A(G) = [aij ] = [fi(aj)]

• A has an inverse A∗ i.e. AA∗ = nI

• Orthogonality Properties

1. ∑n
r=1 fi(ar) = n if fi is the principal

= 0 otherwise

2. ∑n
r=1 fr(aj) = n if aj = e

= 0 otherwise

20.4 Dirichlet Characters

For any integer m, φm is a finite abelian group under multiplication.

Definition 20.7 S is called a Reduced Residue System if |S| = φ(m) and S ≡ φm Any φ(m) numbers that
are mutually congruent modulo m form a Reduced Residue System.

Fact 20.10 Each S has φ(m) characters.

For any character f ,
a ≡m b ⇒ f(a) = f(b)

Definition 20.8 For any reduced residue system modulo m, S and character f , we define a Dirichlet Char-
acter, χf (n) as

χf (n) = f(n) if n⊥m
0 otherwise

Fact 20.11 There are φ(m) Dirichlet Characters.

Definition 20.9 The Dirichlet Character corresponding to f1 is called the Principal Dirichlet Character.

Theorem 20.12 The φ(m) Dirichlet Characters are:

1. multiplicative

2. periodic

3. Let f be any function s.t. f(n) = χ(n) if m⊥n, then f is a character of the group.
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Proof:

1. multiplicative - follows from multiplicativity of characters.

2. periodic - follows from a ≡m b ⇒ f(a) = f(b)

2

Theorem 20.13 The conjugate of each Dirichlet Character is also a Dirichlet Character.
∑φ(m)

r=1 χr(k)χ̄r(l) = φ(m) ifk ≡m l, l⊥m
0 otherwise

The proof follows from orthogonality properties of characters.

Before we move on to the next theorem we need to study Abel’s Identity.

Definition 20.10 An arithmetical function is a real/complex valued function on positive integers.

Theorem 20.14 Abel’s Identity: Let a(n) be an arithmetical function and let

A(x) =
∑

n≤x

a(n)

where A(x) = 0 if x < 1.If f is a function with a continuous derivative on the interval [y, z] , 0 < y < z,then

∑

y<n≤z

a(n)f(n) = A(z)f(z)−A(y)f(y)−
∫ z

y

A(t)f ′(t)dt

Analysis: a(n) is a set of impulses.
A(n) is a step function.
f ′(t) is continuous ⇒ f(t) is continuous.

Proof: Let k = byc and m = bzc, then
∑

y<n≤z a(n)f(n) =
∑m

n=k+1 a(n)f(n)

=
∑m

n=k+1[A(n)−A(n− 1)]f(n)

=
∑m

n=k+1 A(n)f(n)−∑m−1
n=k A(n)f(n + 1)

=
∑m−1

n=k+1 A(n)(f(n)− f(n + 1)) + A(m)f(m)−A(k)f(k + 1)

=
∑m−1

n=k+1 A(n)(f(n)− f(n + 1)) + (A(z)f(z)− ∫ z

m
A(t)f ′(t)dt)− (A(y)f(y) +

∫ k+1

y
A(t)f ′(t)dt)

Now

f(n + 1)− f(n) =
∫ n+1

n

f ′(t)dt

∑m−1
n=k+1 A(n)(f(n)− f(n + 1)) = −∑m−1

n=k+1 A(n)
∫ n+1

n
f ′(t)dt

= − ∫ m

k+1
A(t)f ′(t)dt
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Substituting above, we get

∑

y<n≤z

a(n)f(n) = A(z)f(z)−A(y)f(y)−
∫ z

y

f ′(t)dt

Since limits on integrals cover this range. 2

We now proceed to the next theorem.

Theorem 20.15 Let χ be a non-principal Dirichlet character modulo k and let f be a non-negative valued
function with a continuous negative derivative f ′(x) for all x > x0. Then for all x, y : x0 ≤ x ≤ y

1. ∑
x<n<y

χ(n)f(n) = O(f(x))

2. If limx→∞, then
∑∞

n=1 χ(n)f(n) converges and for x ≥ x0

∑

n≤x

χ(n)f(n) =
∞∑

n=1

χ(n)f(n) + O(f(x))

Proof:

1. χ is an arithmetical function, hence Abel’s Identity holds.

A(x) =
∑

n≤x

χ(n)

From orthogonality properties,

A(k) =
k∑

n=1

χ(n) = 0

χ(n) is periodic
⇒ A(mk) = A(k) = 0

Now, |A(x)| ≤ φ(k) for all x

⇒ A(x) = O(1)

From Abel’s Identity,
∑

x<n≤y χ(n)f(n) = f(y)A(y)− f(x)A(x)− ∫ y

x
A(t)f ′(t)dt

= O(f(y)) + O(f(x)) + O(
∫

)

= O(f(x))

2. For x ≥ x0 ∑∞
n=1 χ(n)f(n) =

∑
n≤x χ(n)f(n) + limy→∞

∑
x<n≤y χ(n)f(n)

=
∑

n≤x χ(n)f(n) + O(f(x))

Hence Proved. 2
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Chapter 21

Dirichlet Products

Definition 21.1 The Mobius Function denoted by µ is defined as:

µ(n) =





1 if n = 1.

(−1)k if n =
∏k

i=1 pi where i 6= j =⇒ pi 6= pj .
0 if n contains a square.

(21.1)

Fact 21.1 For n ≥ 1, the function µ(n) is multiplicative and

∑

d|n
µ(d) =

⌊
1
n

⌋
=

{
0 if n > 1
1 if n = 1 (21.2)

Proof: Since,

∑

d|n
µ(d) = µ(1) +

k∑

i=1

µ(pi) +
∑

i 6=j

µ(pipj) + . . . µ(p1p2 . . . pk)

= 1 +
(

k
1

)
(−1) +

(
k
2

)
(−1)2 + . . . +

(
k
k

)
(−1)k.

= (1− 1)k.

= 0.

2

Theorem 21.2 For n ≥ 1, φ(n) =
∑

d|n µ(d)
(

d
n

)
.

105
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Proof:

Since φ(n) =
n∑

k=1

1

=
∑

k=1

b 1
gcd(k, n)

c

=
∑

d|gcd(k,n)

µ(d) =
∑

d|n

n∑

d|k
µ(d)

=
∑

d|n
µ(d)

n/d∑

l=1

(1) =
∑

d|n
µ(d)(

n

d
).

2

Definition 21.2 If f and g are arithmetical functions then their Dirichlet product or convolution is the func-
tion h = f ? g where

h(n) =
∑

d|n
f(d)g

(n

d

)
=

∑

d.e=n

f(d)g(e) (21.3)

Fact 21.3 h is also arithmetical.

Fact 21.4 ? is both commutative and associative.

Proof: Consider f ? (g ? h) and let i = g ? h. Then,

(f ? i)n =
∑

a.b=n

f(a)i(b)

=
∑

a.b=n

f(a)
∑

c.d=b

g(e)h(d)

=
∑

a.c.d=n

f(a)g(c)h(d) = (f ? g) ? h.

2

Fact 21.5 I(n) =
⌊

1
n

⌋
is the identity function for ? and

f ? I = f = I ? f.

Fact 21.6 Let f be arithmetical with f(1) 6= 0. Then there exists unique f−1 given by,

f−1(1) =
1

f(1)

f−1(n) =
−1

f(n)

∑

d|n,d<n

f
(n

d

)
f−1(d) for n > 1
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Proof: We derive f−1 in this proof.

Since f ? f−1 = I.

Which implies, f(1)f−1(1) = 1.

Hence f−1(1) =
1

f(1)
.

Also for any n 6= 1,
∑

d|n
f

(n

d

)
f−1(d) = 0.

Thus,
∑

d|n,d<n

f
(n

d

)
f−1(d) = −f(1)f−1(n).

Hence, f−1(n) =
−1

f(n)

∑

d|n,d<n

f
(n

d

)
f−1(d).

The group of these functions is abelian and hence, (f ?g)−1 = f−1?g−1. Also the inverse of the Mobius function
µ is µ itself.

2

Theorem 21.7 Mobius Inversion Formula:

f(n) =
∑

d|n
g (d) iff g(n) =

∑

d|n
f (d)µ

(n

d

)
= (f ? µ)n.

Definition 21.3 Mangoldt Function Λ is defined as:

Λ(n) =
{

log(p) if n = pm for some prime p
0 otherwise

Fact 21.8 If n ≥ 1, log(n) =
∑

d|n Λ(d).

Proof: if n =
∏k

i=1(p
αi
i ), then

log(n) =
k∑

i=1

αilog(pi)

=
k∑

i=1

αi∑

j=1

Λ(pj
i )

=
∑

d|n
Λ(d).

2

Theorem 21.9 For n ≥ 1,
Λ(n) =

∑

d|n
µ(d)log

(n

d

)
= −

∑

d|n
µ(d)log(d).
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Proof:

Since log(n) =
∑

d|n
Λ(d).

Using the Mobius Inversion Formula, Λ(n) =
∑

d|n
log(d)µ

(n

d

)

=
∑

d|n
µ(d)(log(n)− log(d))

= log(n)
∑

d|n
µ(d)−

∑

d|n
µ(d)log(d)

= 0.

2

Generalized Convolutions

Let f be a real or complex valued function on the [0,∞) with F (x) = 0 for 0 < x < 1. Let a be an arithmetical
function s.t.

(a ◦ F )(x) =
∑

n≤x

a(n)F
(x

n

)
(21.4)

If F is arithmetical then a ◦ F = a ? F .

Theorem 21.10 If a and b are arithemtical and F is as defined above, then

a ◦ (b ◦ F ) = (a ? b) ◦ F (21.5)

.

Proof:

{a ◦ (b ◦ F )}(x) =
∑

n≤x

a(n)
∑

m≤x

x

n
b(x)F

( x

mn

)
. (21.6)

=
∑

mn≤x

a(n)b(m)F
( x

mn

)
. (21.7)

= {(a ? b) ◦ F (x)}. (21.8)

2

Fact 21.11 I(n) is the identity function for ◦.

Proof: (I ◦ F )(x) =
∑

n≤x F
(

x
n

)
= F (x). 2

Generalized Inversion

If a has a Dirichlet inverse a−1, then

G(x) =
∑

n≤x

a(n)F
(x

n

)
, where G = a ◦ F.

iff F (x) =
∑

n≤x

a−1(n)G
(x

n

)
, where F = a−1 ◦G.
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Also if G = a ◦ F , then a−1 ◦G = a−1 ◦ (a ◦ F ) = (a−1 ? a) ◦ F = I ◦ F ◦ F .

Partial Sums of Dirichlet Products

Theorem 21.12 If h = f ? g, let

H(x) =
∑

n≤x

h(n)

G(x) =
∑

n≤x

g(n)

and F (x) =
∑

n≤x

f(n).

Then H(x) =
∑

n≤x

f(n)G
(x

n

)

=
∑

n≤x

g(n)F
(x

n

)
.

Definition 21.4

Let U(x) =
{

0 if 0 < x < 1;
1 if x ≥ 1.

(21.9)

Proof: Let F = f ◦ U , G = g ◦ U and H = h ◦ U . Therefore,

f ◦G = f ◦ (g ◦ U) .

= (f ? g) ◦ U (from Theorem 1.10 ).
= (g ? f) ◦ U (using commutativity).
= h ◦ U.

The proof then follows from the definition of F , G and H above. 2

Corollary 21.1 If F (x) =
∑

n≤x f(n) then,
∑

n≤x

∑

d|n
f(d) =

∑

n≤x

f(n)bx
n
c =

∑

n≤x

F
(x

n

)
.

Proof:
∑

n≤x

∑

d|n
f(d) =

∑

n≤x

∑

d|n
f(d)g

(n

d

)
.

=
∑

n≤x

(f ? g)

=
∑

n≤x

f(n)G
(x

n

)

=
∑

n≤x

g(n)F
(x

n

)

=
∑

n≤x

F
(x

n

)
.

2
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Chapter 22

Primes are in P

Overview

In this lecture we study the recent result from Manindra Agrawal, Neeraj Kayal and Nitin Saxena of the Indian
Institute of Technology, Kanpur. The paper is titled “Primes is in P”, and solves this longstanding open problem.

The paper presents a polynomial time algorithm for recognizing prime numbers, solving a longstanding open
problem in Complexity Theory, and passing a milestone in the centuries-old journey towards understanding
prime numbers.

We describe below a version of the algorithm of Agrawal, Kayal and Saxena, and sketch a proof of correctness.

Problem Description and Methodology

We want a polynomial-time method to determine if a given number n is prime, that is, a method that termi-
nates after performing O((log n)c) steps of computation. To put the problem in perspective, the previous best
algorithm for primality testing is due to Adleman, Pomerane and Rumely and runs in (logn)logloglogn time,
which as we can see is not polynomial in the length of the number n. Before describing the algorithm, we look
at an identity for primeness.

Lemma 22.1 (a) If n is prime, then (X − a)n ≡n Xn − a.

(b) If gcd(a, n) = 1 and n is composite, then (X − a)n 6=n Xn − a.

Proof: (Sketch)

(a) If n is prime
(

n
i

)
≡n 0 for i = 1, 2, . . . , n− 1 and an ≡n a.

(b) If n is composite and p is a prime factor of n, then the coefficient of Xp in (X−a)n, is
(

n
p

)
(−a)n−p 6=n 0.

2

This lemma leads naturally to the algorithm as described in Fig. 22.1..

If (X − 1)n ≡n Xn − 1, then n is prime, otherwise it is composite.

Figure 22.1: A primality testing algorithm

111
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This algorithm classifies numbers correctly as prime and composite; unfortunately, it cannot be implemented
efficiently. There are two difficulties. First, the straightforward method for computing the polynomial (X−1)n,
requires n − 1 multiplications, and we are allowing ourselves only O((log n)c) time. This is not a serious
problem. It is well-known that one can compute powers more efficiently by repeated squaring (see Figure 22.2).
Interestingly, the use of repeated squaring for computing powers seems to have originated in India, but in the

If n is a k-bit number, then for i = 0, 1, 2, . . . , k, compute bi ≡n (X − 1)2
i

by repeated squaring, starting
from b0 = X− 1. Let n =

∑k
j=0 εi2i, εi ∈ {0, 1} be the binary expansion of n. Then, (X− 1)n =

∏k
i=0 bεi

i .

Figure 22.2: Powering by repeated squaring

absence of email, it took some time for the word to get around. The procedure is reported to have existed as
early as 200 B.C.

The second problem with the algorithm of Figure 22.1, and this is more serious, is that the polynomial (X−a)n

has too many coefficients, potentially n + 1, and computing such a polynomial even by the repeated squaring,
is not feasible in O((log n)c) steps. The key idea in the new primality test is to perform computations modulo
a polynomial of small degree. This way, the number of coefficients in the polynomial stays small.

Input: A integer n ≥ 2.

Step 1: If n is of the form ab, for integers a, b ≥ 2, then n is composite.

Step 2: Choose the smallest prime r, so that r does not divide n, and the order of n modulo r is divisible
by a prime q ≥ b2√r log nc+ 2. Let ` = b2√r log nc+ 1.

Step 3: For a = 2, 3, . . . , `, if a divides n, then n is composite.

Step 4: For a = 1, 2, . . . , `, if (X − a)n 6=Xr−1,n Xn − a, then n is composite.

Step 5: If n has not been declared composite by the earlier steps, then n is prime.

Figure 22.3: The new primality testing algorithm PTA of Agrawal, Kayal and Saxena

Definition 22.1 f(x) ≡Xr−1,n g(x) if the coefficients of the respective terms of f(x) and g(x) are equal mod
n and the degree of the terms are equated mod r.

To implement Step 2 of the procedure described in Fig. 22.3, we try all primes, starting from 2, one after the
other. If at any stage we discover a non-trivial divisor of n, we declare that n is composite. It can be shown
that for all large n, the prime r in Step 2, can be chosen to be O((log n)6). We refer the reader to the original
paper for a justification of this claim, which is based on a theorem due to Fouvry (1985). Assuming this, it
is straightforward to check that this algorithm runs in polynomial-time. We will concentrate only on showing
that this algorithm is correct.

Proof of Correctness

It is easy to verify, using Lemma 22.1, that if n is prime, this algorithm will never declare that it is composite.
So, we only need to argue that composite numbers are not declared prime. Compare Step 4 to the inefficient
primality test of Figure 22.1. The only difference is that we are now performing the computations modulo
Xr−1. The main danger in this is that even if (X−a)n 6=n Xn−a, it could be that (X−a)n ≡Xr−1,n Xn−a.
To compensate for this, we now verify the identity for ` different values of a, instead of trying just one value,
namely 1. The main point of the Agrawal, Kayal and Saxena paper is that this is adequate compensation.
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To see this, let us assume the opposite and show that this leads to a contradiction.

Assumption: n is a composite number and the PTA algorithm declares that it is prime.

Because the number n passes all tests in Step 4, we know that

for a = 1, 2, . . . , `, (X − a)n ≡Xr−1,n Xn − a. (22.1)

Note that in the above identity we can replace the n in (mod Xr − 1, n) by any divisor of n. Let p be a prime
divisor of n. [Most of our discussion is valid for any prime divisor of n. In the end we will choose a special
prime divisor of n based on the conditions established in Step 2.] Then, we have

for a = 1, 2, . . . , `, (X − a)n ≡Xr−1,n Xn − a. (22.2)

Since p is prime, we always have (see Lemma 22.1(a))

for a = 1, 2, . . . , `, (X − a)p ≡Xr−1,n Xp − a. (22.3)

We thus see that the numbers n and p satisfy similar identities in (22.2), (22.3).

Claim 22.1 Suppose

(X − a)m1 ≡Xr−1,p Xm1 − a and
(X − a)m2 ≡Xr−1,p Xm2 − a.

Then, (X − a)m1m2 ≡Xr−1,p Xm1m2 − a.

Proof:
The second assumption says that (X − a)m2 − (Xm2 − a) ≡p (Xr − 1)g(X), for some polynomial g(X). By
substituting Xm1 for X in this identity, we get

(Xm1 − a)m2 − (Xm1m2 − a) ≡p (Xm1r − 1)g(Xm1).

Since Xr − 1 divides Xm1r − 1, this shows that (Xm1 − a)m2 ≡Xr−1,p Xm1m2 − a. Using this and the first
assumption, we obtain

(X − a)m1m2 = (Xm1 − a)m2 ≡Xr−1,p Xm1m2 − a.

2

Now starting from (22.2) and (22.3), and repeatedly applying the above claim, we see that for each m of the
form pinj , (i, j ≥ 0), we have (X − a)m ≡Xr−1,p Xm − a, for a = 1, 2, . . . , `. (The case i, j = 0 corresponds to
m = 1, and is trivially true.)

Consider the list L = (pinj : 0 ≤ i, j ≤ b√rc). This list has (
√

r+1)2 > r numbers. Thus, we have two numbers
in the list that are congruent modulo r. Let these numbers be m1 = pi1nj1 and m2 = pi2nj2 = m1 + kr, where
(i1, j1) 6= (i2, j2). From now on we will concentrate on just these two elements of the list. Since Xr ≡Xr−1 1,
we have (X − a)m2 = Xm1+kr − a = Xm1 − a ≡Xr−1,p (X − a)m1 . That is,

for a = 1, 2, . . . , `, (X − a)m1 ≡Xr−1,p (X − a)m2 . (22.4)

Claim 22.2 m1 = m2.

We will prove this claim below. Let us first complete the proof of correctness by assuming this claim. From this
claim and the definition of m1 and m2 we see that pi1nj1 = pi2nj2 . Since (i1, j1) 6= (i2, j2) and p is prime, this
implies that n is a power of p. That is n = ps for some s. If s ≥ 2, Step 1 of the algorithm would already have
declared that n is composite. This contradicts our assumption that the algorithm declares that n is prime. On
the other hand, if s = 1, then n is prime, again contradicting our assumption that n is composite. We have
proved that the algorithm is correct assuming Claim 22.2.
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Proof of Claim 22.2: Let h(X) be an irreducible factor of (Xr − 1)/(X − 1). Then, from (22.4) we see that

for a = 1, 2, . . . , `, (X − a)m1 ≡h(X),p (X − a)m2 . (22.5)

That is, each element of the field Fp[X]/(h(X)) of the form X − a satisfies the equation Zm1 − Zm2 = 0. Note
that if e1 and e2 are two elements that satisfy this equation, then e1e2 also satisfies this equation. Thus, each
element of the set

S =

{∏̀
a=1

(X − a)αa : αa ∈ {0, 1}
}

satisfies this equation. We will argue (based on the choice of r in Step 2) that S has 2` distinct elements. Thus,
the equation Zm1 − Zm2 = 0 has at least 2` roots in the field Fp[X]/(h(X)). Note that m1,m2 ≤ n2

√
r < 2`.

That is, this polynomial has more roots than its degree. So, it must be the zero polynomial, that is m1 = m2,
and we are done.

We need to argue that the 2` products of the form
∏`

a=1(X − a)αa , αa ∈ {0, 1}, give distinct elements in
Fp[X]/(h(X)). By Step 3, p > `. So, X − a, for a = 1, 2, . . . , `, are distinct irreducible elements of Fp[X]. Since
elements of Fp[X] factorize uniquely into irreducible factors, the 2` products,

∏`
a=1(X − a)αa , αa ∈ {0, 1}, are

distinct elements of Fp[X]. But are they distinct in Fp[X]/(h(X))? Each such product is a distinct element of
Fp[X] of degree at most `, so the difference of any two is a non-zero polynomial of degree at most `. If we can
somehow ensure that the degree of h(X) is at least ` + 1, then these products will be distinct in Fp[X]/(h(X)).

How do we ensure that h(X) has degree at least ` + 1? Recall that the number p in the argument so far is an
arbitrary prime divisor of n. It is time to choose p. By Step 2, we know that the order of n modulo r is divisible
by a prime q ≥ ` + 1. Since q is prime there must be a prime factor p of n whose order w modulo r is divisible
by q. In particular, w ≥ q ≥ ` + 1. Fix one such p.

Claim 22.3 w divides deg(h), so deg(h) ≥ w ≥ ` + 1. (Actually, deg(h) = w, but we won’t need this.)

Proof:
Let η be a root of h(X) in a suitable extension of Fp. Since h(X) divides Xr − 1, we have ηr = 1. Since η 6= 1
(h is irreducible) and r is prime, the order of η in this field is r. Since r does not divide p (because r does not
divide n in Step 2), η, ηp, ηp2

, . . . , ηpw−1
, are distinct elements of the field. Since, h(X)p = h(Xp), and h(η) = 0,

we have h(ηpi

) = 0 for i = 0, 1, . . . , w − 1. So h(X) has at least w distinct roots in a field. Thus, h(X) must
have degree at least w.
We have Xr = 1 in Fp[X]/(h(X)), because h(X) divides Xr − 1. In the implementation of Step 2, we ensure
that r does not divide n; in particular, r 6= p. So, 1 is not a root of (Xr − 1)/(X − 1) in Fp, and h(X) 6= X − 1.
Since r is prime, and X 6= 1, the order of X in Fp[X]/(h(X)) is exactly r. But the order of an element must
divide the order, pdeg(h) − 1, of the multiplicative group of the field. That is, r divides pdeg(h) − 1, implying
that w divides deg(h). This completes the proof of Claim 22.3 and Claim 22.2. 2

The above claims immmediately lead to the central theorem of this lecture.

Theorem 22.1 The procedure PTA declares that a number p is prime only if p is prime.

[This lecture was delivered by Prof. Jaikumar from Tata Institute of Fundamental Research, Mumbai.]
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Chapter 23

Akshat Verma

23.1 Example 1

Example 23.1 Show that the prime divisors of 2p − 1, where p is any odd prime are of the form 2kp + 1.

In order to prove the above, we first prove a general result.

Theorem 23.1 If p and q are odd primes and q|ap − 1, then either q|a− 1 or q = 2kp + 1 for some integer k.

Proof: Since q|ap − 1, we have
ap =q 1 (23.1)

Also, by FLT, we have
aq−1 =q 1 (23.2)

We also know that if order of a modulo q should be a factor of all r such that ar =q 1. Hence, the order of a
modulo q should be either p or 1, as p is prime. If the order of a modulo q is 1, we have q|a− 1.Otherwise,
By the earlier argument, q − 1 should also be a multiple of p, i.e.,

q − 1 = kp (23.3)

Hence, q = kp + 1. Also, since we have the fact that q is odd, we get q = 2kp + 1. 2 We now make the note
that a − 1 for a = 2 is 1 and hence, the first case of Theorem 1 is not possible. Hence, all odd prime divisors
of 2p − 1 have the form 2kp + 1. We also note that there are no even divisors of 2p − 1 as it is an odd number.
This completes the required proof.

23.2 Example 2

Example 23.2 Assume that p and q are distinct odd primes such that p− 1|q− 1. If gcd(a, pq) = 1, show that
aq−1 =pq 1.

Since a and pq has no common factors and p and q are prime, we know that gcd(a, p) = gcd(a, q) = 1. Hence,
we know the following from FLT:

ap−1 =p 1 (23.4)

aq−1 =q 1 (23.5)

117
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By the assumption that p− 1|q − 1, we have

q − 1 = k(p− 1) for some k ≥ 1 (23.6)

Hence, we have
aq−1 = ak(p−1) = a(p−1)k

=p 1k = 1 (23.7)

i.e., aq−1 =p 1. or
p|aq−1 − 1 (23.8)

. Also, by Eqn. 23.5 we have
q|aq−1 − 1 (23.9)

By Eqn. 23.9 and 23.8 and the fact that p and q are primes, we have

pq|aq−1 − 1 (23.10)

This proves the required statement.

23.3 Example 3

Theorem 23.2 Show the more general result of the mulitplicativity of Euler’s function, i.e, show that

φ(ab) =
dφ(a)φ(b)

φ(d)
(23.11)

where d = gcd(a, b).

Proof: Let us express d as a product of its prime factors pi, i.e.,

d = pα1
1 ...pαk

k

Similarly, we can write a and b as

a = pα1
1 ...pαk

k p
αk+1
k+1 ...p

αk+m

k+m (23.12)

b = pα1
1 ...pαk

k p
α′k+1
k+1′ ...p

α′k+n

(k+n)′ (23.13)

Now, we use the following theorem

φ(m) = mΠp|m(1− 1
p
) (23.14)

where the product is over all the distinct prime roots p of m.

It is easy to see now that

φ(ab) = ab((1− 1
p1

)...(1− 1
pm

))((1− 1
pk+1′

)...(1− 1
pk+n′

)) (23.15)

= a((1− 1
p1

)...(1− 1
pm

))b((1− 1
pk+1′

)...(1− 1
pk+n′

)) (23.16)

= φ(a)
φ(b)

(1− 1
p1

)...(1− 1
pk

)
(23.17)

=
φ(a)φ(b)

φ(d)
d

(23.18)

=
φ(a)φ(b)d

φ(d)
(23.19)

2
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23.4 Example 4

Theorem 23.3 For n ≥ 2,

u2n−1 = u2
n + u2

n−1 (23.20)
u2n = u2

n+1 − u2
n−1 (23.21)

Proof: The proof is by induction.
Base Case: n = 2

u3 = 2 = 1 + 1 = u2
2 + u2

1 (23.22)
u4 = 3 = 4− 1 = u2

3 − u2
1 (23.23)

Induction Hypothesis:
Let us assume that the theorem holds for n = k; then we have

u2k−1 = u2
k + u2

k−1 (23.24)
u2k = u2

k+1 − u2
k−1 (23.25)

Induction Step:
Adding the two equations we get:

u2k+1 = u2
k+1 + u2

k (23.26)

This completes the proof for the odd case. Also, we have

u2k+2 = u2k+1 + u2k (23.27)
= u2

k+1 + u2
k + u2

k+1 − u2
k−1 (23.28)

= u2
k+1 + u2

k + u2
k + u2

k−1 + 2ukuk−1 − u2
k−1 (23.29)

= u2
k+1 + u2

k + u2
k + 2uk(uk+1 − uk) (23.30)

= u2
k+1 + u2

k + 2ukuk+1 − u2
k (23.31)

= (uk+1 + uk)2 − u2
k (23.32)

= u2
k+2 − u2

k (23.33)

2

23.5 Example 5

Theorem 23.4 If p′ is a prime such that p′ ≡4 1 and if p = 2p′ + 1 is also a prime, then 2 is a primitve root
(mod p).

Proof: By Fermat’s Little Theorem, we have

2p−1 ≡p 1 (23.34)

So, to prove that 2 is a primitve root modp, we only need to show that there does not exist a k < p− 1, s.t.

2k ≡p 1 (23.35)

To show this, we assume that there does exist such a k and without loss of generality we take the smallest such
k. Hence, k is the order of a modulo p. Because of Eqns. 23.34 and 23.35, we have k|(p − 1). Also, we have
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p = 2p′+ 1. Hence, we have k|2p′, which means that either k = 2 or k = p′. It is obvious that k 6= 2 as 22 ≡p 4.
Hence, the only possible case is k = p′, i.e.,

2p′ ≡p 1 (23.36)

2(p−1)/2 ≡p 1 (23.37)

Also, p′ = 4n + 1 and p = 2p′ + 1 leads to p ≡8 3. Hence,
⌊

2
p

⌋
= −1, i.e. , there does not exist any such k

and p− 1 is the order of 2 (mod p), i.e., 2 is a primitive root of p. 2
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Rahul Gupta

24.1 Linear Congruences

Exercise 24.1 If p is an odd prime, then prove that there are infinite primes of the form 2kp + 1. You may
use the result that if b is prime, then xa ≡b 1 ⇒ a|(b− 1) ∨ x ≡b 1.

Solution: Note that the result is immediate from Dirichlet’s theorem. Here we present an alternate proof. We
shall prove the result by contradiction. Assume that there are only r primes of the form 2kp + 1. Let p1, . . . , pr

those r primes. Define s and t as

s = 2p1p2 . . . pr (24.1)
t = sp−1 + sp−2 + . . . + 1 (24.2)

=
(sp − 1)
s− 1

(24.3)

Note that since pi = 2kip + 1, we have pi ≡p 1. Hence s ≡p 2. Now consider a prime divisor q of t. Hence,

sp ≡q 1 (24.4)

Therefore, either s ≡q 1 or p|(q − 1).

1. Consider the case s ≡q 1. If s ≡q 1, then si ≡q 1 for all i. Hence,

t ≡q p (24.5)

But since q divides t, therefore, t ≡q 0. So it must be that p = q. But if p = q, then s ≡q 1 ≡p 1, which
contradicts s ≡p 2. So, this case is impossible.

2. Consider the case p|(q − 1). Therefore, q = 2kp + 1, since (q − 1) is even and a multiple of p. So q must
one of the pi’s. So q|s and consequently q|si for 1 ≤ i ≤ p− 1. Therefore t ≡q 1 which violates t ≡q 0.

So, there are an number of infinite primes of the form 2kp + 1 where p is an odd prime. 2

24.2 Euler Function

Exercise 24.2 Define S(m) = {a | φ(a) = m , a > 0}. Prove that

121
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1. S(m) is finite for all m.

2. S(m) = φ whenever m is an odd integer greater than 1.

Solution: Let the unique prime factorization of any integer a in S(m) be given by:

a = p1
k1p2

k2 . . . pr
kr (24.6)

Therefore,

φ(a) =
i=r∏

i=1

(pki
i − pki−1

i ) (24.7)

=
i=r∏

i=1

pki−1
i (pi − 1) (24.8)

If φ(a) = m, then surely (pi − 1)|m for all 1 ≤ i ≤ r. Since there are only finite number of divisors of m, then
our possible choices for pi are restricted. If m has dm different divisors, then we can choose a maximum of dm

different primes. Further, since (pi − 1)|m, we have

pki−1
i ≤ m, 1 ≤ i ≤ r. (24.9)

or ki ≤ 1 +
log(m)
log(pi)

(24.10)

≤ 1 +
log(m)
log(2)

(24.11)

Hence, we have a finite upper bound on the possible prime factors and also their exponents. Therefore, the
number of a’s such that φ(a) = m, is finite. Infact,

|S(m)| ≤ dm(1 +
log(m)
log(2)

) (24.12)

Further, pki−1
i (pi − 1) is even for all primes pi except when pi = 2 and ki = 1. Hence, for all odd m > 1,

S(m) = φ. 2

24.3 Primitive Roots

Exercise 24.3 Prove that if n > 2, then the product of all primitive roots of n is congruent to 1 modulo n.

Solution: Let a be any one of the primitive roots of n. Now, all the primitive roots of n lie in the set

R = {ai | gcd(ai, n) = 1} (24.13)

Let {ai1 , ai2 , . . . , aim} be all the primitive roots of n, where m = φ(φ(n)). Therefore, the required product is
given by

π = ai1+i2+...+im (24.14)

Claim 24.1 The sum of all numbers coprime to an even integer b is divisible by φ(b).

Proof: Let S =
∑

j⊥b j. If j is coprime, then so is b− j. Therefore,

S =
∑

j⊥b

(b− j) (24.15)

= bφ(b)− S. (24.16)
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So, S = 1
2bφ(b). And hence φ(b)|b whenever b is even. 2

Now, φ(n) is always even since n > 2. Therefore the claim applies, and all the φ(φ(n)) integers that are coprime
to φ(n) add up to be a multiple of φ(n), say kφ(n). Hence,

π = akφ(n) (24.17)
≡n 1 (because a ⊥ n) (24.18)

2

24.4 Quadratic Reciprocity

Exercise 24.4 Prove that if p and q are two distinct primes that differ by 4, then atleast one of the equations
x2 ≡pq 5 , x2 ≡pq 10 has no solutions.

Solution: We shall prove the result by contradiction. Assume that both the given equations have atleast one
solution each. Hence 5 and 10 are quadratic residues modulo pq. Therefore they are also quadratic residues
modulo p and q.

⌊
5
pq

⌋
= 1 (24.19)

⌊
10
pq

⌋
= 1 (24.20)

⇒
⌊

5
p

⌋
= 1 and

⌊
10
p

⌋
= 1 (24.21)

⇒
⌊

5
q

⌋
= 1 and

⌊
10
q

⌋
= 1 (24.22)

Note that the case p = 5 and q = 2 doesn’t arise because p and q differ by exactly 4. Now since the Legendre
symbol is multiplicative, we get

⌊
2
p

⌋
=

⌊
10
p

⌋
/

⌊
5
p

⌋
= 1 and

⌊
2
q

⌋
=

⌊
10
q

⌋
/

⌊
5
q

⌋
= 1 (24.23)

Now,
⌊

2
p

⌋
= 1 ⇔ p ≡8 ±1. Hence both p and q are of the form ±1 mod 8. The various possibilites for p− q

(mod 8) are 0,2,6. Since p− q ≡8 4, we arrive at a contradiction. So, atleast one of the given congruences has
no solution. 2

24.5 Quadratic Residues

Exercise 24.5 Assuming p to be an odd prime, prove the following :

1. Product of all quadratic residues of p is ≡p (−1)(p+1)/2.

2. If p ≡4 1 then the sum of all quadratic residues of p equals 1
4p(p− 1).

Solution: (1) Let r be any primitive root of p. The set of quadratic residues of p is exactly equal to the set
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{r2k | 2 ≤ 2k ≤ p− 1}. Hence the product of the quadratic residues is given by

π =
(p−1)/2∏

k=1

r2k (24.24)

= r
P(p−1)/2

k=1 2k (24.25)
= r(p−1)(p+1)/4 (24.26)
= (r(p−1)/2)(p+1)/2 (24.27)

Now since r is a primitive root, therefore, r(p−1)/2 ≡p −1. This is so because the only other choice for r(p−1)/2

is 1, which is impossible because orderp(r) = p− 1. Hence,

π ≡p (−1)(p+1)/2 (24.28)

2 Solution: (2) Let p = 4k + 1. Take any arbitrary integer x ∈ [1, p− 1]. Let y = p− x. y is the mirror
image of x about the point (p− 1)/2 on the real axis. We have,

x ≡p −y (24.29)

⇒ x(p−1)/2 ≡p (−1)(p−1)/2y(p−1)/2 (24.30)

⇒ x(p−1)/2 ≡p y(p−1)/2, since (p− 1)/2 is even. (24.31)

Therefore, x is a quadratic residue ⇔ y is a quadratic residue. Hence, we can conclude the following

• The residues are split equally before and after (p− 1)/2(= 2k) (Strictly speaking, 2k is a part of the first
half). Moreover, since p is a prime, there are exactly (p − 1)/2(= 2k) quadratic residues. Out of these,
exactly k lie in [1, 2k].

• The sum of a quadratic residue x ∈ [1, 2k] and its ’mirror’ residue p− x is p, which is independent of x.

Hence the total sum of all residues is given by
∑

x is a q.r in [1,2k] x + p− x = kp = 1
4 (p− 1)p. 2
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Gaurav Gupta

25.1 Fibonacci Numbers

Exercise 25.1 Prove that, for any number m, there must be a Fibonacci number Fk such that Fk ≡m 0, and
further that, k ≤ m2

Solution: Begin by considering the set A,

(ai, i = 1, 2, 3, ..|an ≡m Fn)

Since the terms of that sequence are remainders left on division by m, they are numbers between 0 and m− 1,
of which there are m. Further, there are only m2 ordered pairs of remainders possible. (There are m choices
for the first number in the ordered pair, and for each choice, m choices for the second number.) We now make
two observations:

1. Because of the addition rule for congruences, the ai sequence satisfies an+2 ≡m an+1 + an. This means
that once we know two terms of the sequence, all the rest are determined.

2. F0 ≡m 0 and F1 ≡m 1. Thus, the ordered pair of remainder (0,1) occurs.

Since there are m2 + 1 remainders arising from the Fibonacci numbers F0 through Fm2 , but only m2 different
ordered pairs of remainders, implying m2 different remainders (By 1st Observation), the remainders must repeat
(By Pigeonhole principle). Further, since they are uniquely defined forwards and backwards, and since 0 occurs
at F0, 0 must reoccur. Hence, there are Fibonacci numbers divisible by m, regardless of what m is. 2

25.2 Fermat’s Little theorem

Exercise 25.2 Show that, every possible divisor of the number Fn = 22n

+ 1, n ≥ 5, has the form

p = h.2n+2 + 1

with an integer h.
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Solution: If p | Fn = 22n

+ 1, then

22n ≡p −1 mod p
=⇒ 22n+1 ≡p 1
=⇒ 22n+2 ≡p 1 since a ≡n b =⇒ ak ≡n bk

=⇒ 22n+2 − 1 ≡p 0

Now, we make use of Fermat’s little theorem which is as follows:

Theorem 25.1 If p is a prime number and a is a natural number, then

ap ≡p a

Furthermore, if p does not divide a, then there exists some smallest exponent d such that

ad − 1 ≡p 0

and d divides p− 1.

Getting back to our problem, we conclude that we have

2n+2 | (p− 1)
=⇒ p = h.2n+2 + 1

2

25.3 Chinese Remainder Theorem

Exercise 25.3 Prove that, x2 ≡n x has exactly 2k different solutions, where k is the number of distinct primes
of n.

Solution: Let n = m1m2...mk, where mi, 1 ≤ i ≤ k are powers of distinct primes. We know:

x2 ≡n x =⇒ x(x− 1) ≡n 0

Note that, mi are relatively prime, we have:

{x | x(x− 1) ≡n 0} ⇐⇒ {x | x(x− 1) ≡mi 0,∀1 ≤ i ≤ k}
So, the number of solutions should be the same for both sets. Also note:

gcd(x, x− 1) = 1

So the solution of x(x− 1) ≡mi
0 must satisfy:

x ≡mi
0

∨
x ≡mi 1,∀1 ≤ i ≤ k

So we can get 2k different systems. By the Chinese Remainder theorem, each system must have one unique
solution modulo n = m1m2...mk. Furthermore, we can also show that these systems have distinct solutions.
If two different systems have the same solution x, then within these two systems must exist the following two
different equations associated with some mi:

x ≡mi
0

x ≡mi 1

But this is impossible.
So we can conclude that the equation x2 ≡n x has exactly 2k different solutions. 2
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25.4 Euler’s Criterion

Exercise 25.4 Give solutions for :
x2 ≡79 5

Solution: Note that 79 is an odd prime, and gcd(5,79)=1, ie 79 does not divide 5. So our problem can be
generalized to solving

x2 ≡p a

where p is odd and gcd(a, p) = 1.

=⇒ a
(p−1)

2 ≡p 1 by Euler’s criterion

Now, for x = ±a
p+1
4 we have

x2 ≡p a
p+1
2 ≡p aa

p−1
2 ≡p a

Thus the solution of x2 ≡p a are x ≡p ±a
p+1
4 . (We know that there are exactly two solutions mod p)

Applying this to x2 ≡79 5: we have p = 79 and (p+1)
4 = 20, so the solutions are x ≡79 ±520.

Now, 520 ≡79 20. Hence the solutions are x ≡79 ±20. 2

25.5 GCD

Exercise 25.5 If gcd(b, c) = 1, prove that

gcd(a, bc) = gcd(a, b)gcd(a, c)

Solution: Suppose gcd(b, c) = 1. Let
e = gcd(a, bc)
f = gcd(a, b)
g = gcd(a, c)

f | b and g | c =⇒ gcd(f, g) = 1 (0)
f | a and g | a =⇒ fg | a (1)
f | b and g | c =⇒ fg | bc (2)
(1) and (2) =⇒ fg | gcd(a, bc) = e (3)

Next, f = ax + by, g = aX + cY

fg = (ax + by)(aX + cY )
= a2xX + acxY + bayX + bcyY (4)

But, e | a, e | bc =⇒ e | RHS(4) =⇒ e | fg ... (5)
From (3) and (5), we obtain that e = fg. 2
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Chapter 26

Ashish Rastogi

26.1 Greatest Common Divisor

Exercise 26.1 A polynomial f with integer coefficients is called primitive if

f(x) = a0 + a1x + . . . anxn and (a0, a1, . . . , an) = 1.

Prove that the product of two primitive polynomials is primitive.

Answer Suppose f and g are two primitive polynomials. That is

f(x) =
n1∑

i=0

aix
i and g(x) =

n2∑

i=0

bix
i

where (a0, a1, . . . , an) = (b0, b1, . . . , bn) = 1. The product of two primitive polynomials h(x) = f(x) · g(x). We
have

h(x) =
n1+n2∑

i=0

cix
i where ci =

i∑
t=0

atbi−t

We need to show that (c1, c2, . . . , cn1+n2) = 1 given that (a1, a2, . . . , an1) = 1 and (b1, b2, . . . , bn2) = 1. The
fact that (a1, a2, . . . , an1) = 1 implies that there does not exist a prime p such that p | ai for all 1 ≤ i ≤ n1.
Similarly, there does not exist a prime p such that p | bi for all 1 ≤ i ≤ n2.

Claim 26.1 The prime p divides ck for all k < i + j.

Proof: We have

ck =
k∑

t=0

atbk−t

We claim that in any term atbk−t of the above summation, either t < i or k − t < j. In order to observe this,
assume that in some term of the summation, we have both t ≥ i and k − t ≥ j. Then summing these two
inequalities we get t + (k − t) ≥ i + j (⇒) k ≥ i + j, but since k < i + j, we arrive at a contradiction.

Since in any term atbk−t for 0 ≤ t ≤ k, we have either t < i or k − t < j, it follows that either at ∈
{a0, a1, . . . , ai−1} or bk−t ∈ {b0, b1, . . . , bj−1}. Therefore we have either p | at (if at ∈ {a0, a1, . . . , ai−1}) or
p | bk−t (if bt ∈ {b0, b1, . . . , bj−1}). In both cases, we have p | atbk−t. Therefore since p | atbk−t for all 0 ≤ t ≤ k,
it follows that p | ∑k

t=0 atbk−t (⇒) p | ck. 2
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Claim 26.2 The prime p does not divide ci+j.

Proof: We have

ci+j =
i+j∑
t=0

atbi+j−t

We will that p divides all terms in the expansion of ci+j except aibj . First of all, note that since p - ai and
p - bj and since p is prime, p - aibj . Now consider any term atbi+j−t with t 6= i. Once again, for any term
of the expansion of ci+j , we claim that either t < i or i + j − t < j. For the sake of contradiction, assume
that t > i and i + j − t > j. Further, since t 6= i, we have t > i + 1. Adding the two inequalities, we get
i+ j > i+ j +1, which brings us to a contradiction. Therefore, for any term atbi+j−t with t 6= i, we have either
p | at or p | bi+j−t. It follows that p | ∑i

t=0,t 6=i +jatbi+j−t. But since p - aibj , we have p - ci+j . 2

Therefore, for any prime p, we have shown that there exists an integer m (0 ≤ m ≤ n1 + n2) such that p|cl

for 1 ≤ l < m and p - cm. Therefore, there is no prime p such that p | cl for 0 ≤ l ≤ n1 + n2. It follows that
(c0, c1, . . . , cn1+n2) = 1, which completes the proof.

26.2 General Number Theory

Exercise 26.2 Prove that Sn defined as

Sn =
1
2

+
1
3

+ . . . +
1
i

+ . . . +
1
n

is not an integer for all positive integers n ≥ 2.

Answer We present a proof by contradiction. Let us assume that Sn is an integer for some integer n. Let k
be an integer such that 2k ≤ n < 2k+1. Note that since n ≥ 2, k ≥ 1.

Claim 26.3 The minimum integer m such that for all 2 ≤ i ≤ n, i | m is

m = 2k · 3 · 5 · 7 · 9 · . . .

Proof: Any integer i such that 2 ≤ i ≤ n, we have i = 2j · (2l + 1), where 2l + 1 < m and j ≤ k. Therefore
2j | m and 2l + 1 | m. Therefore 2j · (2l + 1) | m. Hence, we have i | m for all 2 ≤ i ≤ n. 2

Consider the number Sn ·m,
Sn ·m =

m

2
+

m

3
+ . . . +

m

i
+ . . . +

m

n

Note that since k ≥ 1, m must be even. Assuming that Sn is an integer, Sn · m is also even (product of an
integer with an even number is also even). We will show that

∑n
i=2

m
i is an odd integer, which is impossible

since Sn ·m =
∑n

i=2
m
i , thus arriving at a contradiction.

Firstly, note that m
i is an integer for each i ≤ 2 ≤ n since i | m (from the claim). Further, for each i ≤ 2 ≤ n,

except for i = 2k, we have i = 2j · (2l + 1) where j < k. Therefore we have

m

i
=

2k · 3 · 5 · 7 · 9 · . . .
2j · (2l + 1)

= 2k−j · (product of odd numbers)



26.3. FIBONACCI NUMBERS 131

Since j < k, k − j ≥ 1 and therefore 2k−j · (product of odd numbers) is an even number. Therefore,

i 6=2k∑

i=2..n

m

i
= an even integer

For i = 2k, m
i = m

2k = 3 · 5 · 7 · 9 · . . . which is a product of odd numbers, and hence must be odd.

i 6=2k∑

i=2..n

m

i
+

m

2k
= an even integer + an odd integer = an odd integer

And therefore
n∑

i=2

m

i
= an odd integer

We have shown that Sn ·m is even and
∑n

i=2
m
i is odd, but since Sn ·m =

∑n
i=2

m
i , this is impossible. Hence

our assumption that Sn is an integer fails and we arrive at a contradiction.

26.3 Fibonacci Numbers

Exercise 26.3 Let Fn be the nth term in the Fibonacci sequence. Show that a prime p > 5 divides either Fp−1

or Fp+1.

Answer Consider the nth Fibonacci number Fn. Let α and β be the two roots of x2 − x − 1, such that
α = 1+

√
5

2 . We have:

Fn =
αn − βn

√
5

Plugging in α = 1+
√

5
2 and β = 1−√5

2 , we get

Fn =
( 1+

√
5

2 )n − (1−√5
2 )n

√
5

=
(1 +

√
5)n − (1−√5)n

2n
√

5

=
n∑

i=0

{ (
n
i

)
(
√

5)i1n−i −
(

n
i

)
(−
√

5)i1n−i
}
/(2n

√
5)

which recuces to

=
odd i≤n∑

i=1

(
n
i

)
5i/22

2n
√

5

=
odd i≤n∑

i=1

(
(

n
i

)
5(i−1)/2)/(2n−1)

Therefore

Fn2n−1 =
(

n
1

)
+

(
n
3

)
5 +

(
n
5

)
52 + . . . (26.1)

If n is some prime number p > 5, then we have

Fp2p−1 =
(

p
1

)
+

(
p
3

)
5 +

(
p
5

)
52 + . . . + 5(p−1)/2
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Note that 2p−1 ≡p 1 (from Fermat’s Little Theorem). Further, since p is a prime
(

p
i

)
≡p 0 for all 1 ≤ i < p.

Taking modulo p on both sides, the above equation reduces to

Fp ≡p 5(p−1)/2

From Euler’s criterion, we know that if p is an odd prime and (a, p) = 1, then a(p−1)/2 ≡p ±1. Therefore,
plugging a = 5 in this equation, we have

Fp ≡p ±1

Recall from the lectures that F 2
n = Fn+1Fn−1 + (−1)n−1. If n is an odd prime then n− 1 is even and hence the

identity reduces to
F 2

p = Fp+1Fp−1 + 1

Since Fp ≡p ±1, we have F 2
p ≡p 1, and therefore

Fp+1Fp−1 ≡p 0

Since p is a prime, therefore either p | Fp+1 or p | Fp−1, which completes the proof.

26.4 Quadratic Residues

Exercise 26.4 Let p be a prime. The Diophantine equation

x2 + y2 = p

is soluble in integers x and y if and only if p = 2 or p ≡4 1.

Answer Note that 2 = 12 + 12 and therefore x2 + y2 = 2 has a solution in integers. Next, we consider primes
p > 2.

⇒ First we show that if x and y are integer solutions to the equation x2 +y2 = p, then p ≡4 1. Note that since p
is an odd prime, both x and y cannot be even or odd at the same time. Without loss of generality, assume that
x is even and y is odd. We have x2 ≡4 0 (since x is even) and y2 ≡4 1 (since y is odd). Therefore x2 + y2 ≡4 1,
which completes one side of the proof.

(⇐) Now, we show that if p ≡4 1 then x2 + y2 = p is soluble in integers. We will first show that there exists
an integer x0 such that 0 < x0 < p/2 where x2 + 1 ≡p 0. Rewriting this equation, we need to show that that
x2 ≡p −1 ⇒ x2 ≡p p− 1. Therefore, we need to show that p− 1 is a quadratic residue modulo p.

Recall that a is a quadratic residue modulo a prime p if p - a and x2 ≡p a is soluble. By Euler’s criteria, we
know that a is a quadratic residue modulo p if and only if

a(p−1)/2 ≡p 1

Consider (p− 1)(p−1)/2,

(p− 1)(p−1)/2

≡p (−1)(p−1)/2 since −1 ≡p (p− 1)
= (−1)((4v+1)−1)/2 since p ≡4= 1, so p = 4v + 1
= (−1)2v

= 1

Since (p− 1)(p−1)/2 ≡p 1, from Euler’s criteria, it follows that p− 1 is a quadratic residue modulo p. Therefore,
x2 ≡p (p− 1) ⇒ x2 ≡p −1 has two solutions, say x1 and x2. We know that x2 = p− x1, and therefore, atleast
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one of the solutions must be less than p/2. Therefore, there exists an integer x = x0 satisfying 0 < x0 < p/2
and x2

0 ≡p −1 ⇒ x2
0 + 1 ≡p 0. Therefore

x2 + y2 = kp

has a solution {x0, 1} for some positive k. Note that since x0 < p/2, we have x2
0 + 1 = p2/4 + 1 < p2. Since

x2
0 + 12 = kp < p2, it follows that k < p.

Consider {x1, y1} such that x0 ≡k x1 and y0 ≡k y1 with −k/2 < x1 ≤ k/2 and −k/2 < y1 ≤ k/2. This is easily
enforced by the observation that if x0 ≡k m then x0 ≡k k −m, and if m > k/2 then k −m ≤ k/2.

x2
1 + y2

1 = (x0 − ck)2 + (y0 − dk)2

= x2
0 − 2ckx0 + (ck)2 + y2

0 − 2dky0 + (dk)2

= x2
0 + y2

0 + k(−2cx0 + c2k − 2dy0 + d2k)
≡k x2

0 + y2
0

≡k 0

Since x1 ≤ k/2 and y1 ≤ k/2, we have x2
1 +y2

1 ≤ 2(k/2)2. Since x2
1 +y2

1 ≡k 0 = k′k. From the above observation
we have k′k < 2(k/2)2 ⇒ k′ < k.

Note that we have a solution {x0, y0} for the equation x2 + y2 = kp where p ≡4 1 and k < p. The main idea
of the proof is as follows: using {x0, y0} and {x1, y1} just described above, we will construct another pair of
integers {x2, y2} such that x2

2 + y2
2 = jp with j < k. Hence, using a solution of x2 + y2 = kp, we get a solution

to x2 + y2 = jp, with j < k. This reduction step can be repeated until j = 1, and then we have the solution to
x2 + y2 = 1 · p.

Observe that
x0x1 + y0y1 = x0(x0 − ck) + y0(y0 − dk)

= x2
0 − x0ck + y2

0 − y0dk
= x2

0 + y2
0 + k(−cx0 − dy0)

≡k x2
0 + y2

0

Similarly,
x0y1 − x1y0 = x0(y0 − dk)− (x0 − ck)y0

= x0y0 − x0dk − x0y0 + cky0

= k(−x0d + cy0)
≡k 0

Claim 26.4 For integers i1, i2, i3 and i4, we have

(i21 + i22)(i
2
3 + i24) = (i1i3 + i2i4)2 + (i1i4 − i2i3)2

Proof: Expanding the left hand side, we get i21i
2
3 + i21i

2
4 + i22i

2
3 + i22i

2
4 . Expanding the right hand side, we have

i21i
2
3 + i22i

2
4 + 2i1i3i2i4 + i21i

2
4 + i22i

2
3 − 2i1i4i2i3 = i21i

2
3 + i22i

2
4 + i21i

2
4 + i22i

2
3 = i21i

2
3 + i21i

2
4 + i22i

2
3 + i22i

2
4 which is the

same as the left hand side. 2 Setting i1 = x0, i2 = y0, i3 = x1 and i4 = y1 in the above equation we get

(x2
0 + y2

0)(x2
1 + y2

1) = (x0x1 + y0y1)2 + (x0y1 − x1y0)2 = kp · k′k = k′k2p (26.2)

Since x0x1 +y0y1 ≡k 0, we have x0x1 +y0y1 = x2k for some x2 and x0y1−x1y0 ≡k 0, we have x0y1−x1y0 = y2k
for some y2. Plugging this in equation 26.2, we get

(x2k)2 + (y2k)2 = k′k2p

and cancelling k2, we get
x2

2 + y2
2 = k′p

Hence we have obtained an integer pair {x2, y2} that is a solution to x2 + y2 = k′p knowing a solution to
x2 + y2 = kp with k > k′. The result follows by successive repetition of this reduction until k′ = 1, which is
when we have a solution pair {xt, yt} such that x2

t + y2
t = 1 · p, which is what is desired.
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26.5 Multiplicative Functions and Perfect Numbers

Exercise 26.5 Define the function σ(n) as
σ(n) =

∑

d|n
d

An integer n is called a perfect number if σ(n) = 2n. For example for the number 6, we have σ(6) = 1+2+3+6 =
2 ·6 = 12, and therefore 6 is a perfect number. Prove that all even perfect numbers are of the form 2p−1(2p−1),
where both p and 2p − 1 are both primes.

Answer (⇒) If n = 2p−1(2p − 1) and 2p − 1 is prime (note, this implies p is prime by Chapter 29, Example
2). The divisors of n are 2i for 1 ≤ i ≤ (p− 1), and 2j(2p − 1) for 1 ≤ j ≤ (p− 1). Therefore we must evaluate
the sum

p−1∑

i=1

2i +
p−1∑

j=1

2j(2p − 1)

Observe that
∑p−1

i=1 2i = 2p − 1. Therefore, we have

2p − 1 +
p−1∑

j=1

2j(2p − 1)

= (2p − 1)(
p−1∑

j=1

2j + 1)

= (2p − 1)(2p − 1 + 1)

= (2p − 1)2p

= 2 · 2p−1(2p − 1) = 2n

Therefore, n is perfect.

(⇐) For this part of the proof, we will assume that n is an even and perfect number, and show that n is of
the form 2p−1(2p− 1). Since n is even, we can extract the largest power of 2 from n and write it as n = 2k−1n′,
where n′ is an odd and k ≥ 2.

Claim 26.5 σ is a multiplicative function. That is

(m,n) = 1 ⇒ σ(mn) = σ(m) · σ(n)

Proof: Consider
σ(mn) =

∑

d|mn

d

If (m,n) = 1, then a divisor d of mn can be uniquely expressed as d = d1d2, where d1|m and d2|n, and
(d1, d2) = 1. Therefore, any term appearing in the expansion of σ(mn) will appear uniquely as a product of d1

and d2 in σ(m) · σ(n) and no other terms will appear. 2
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Since σ is multiplicative we have

σ(n) = σ(2k−1)σ(n′)

= (2k − 1)σ(n′) (since σ(2i) = 1 + 2 + 22 + . . . 2i = 2i+1 − 1)

= 2n (by hypothesis since n is perfect)

= 2kn′

Since (2k − 1) - 2k, it must be that (2k − 1) | n′. Therefore, we have n′ = (2k − 1)n′′. Note that

σ(n′) =
σ(n)

(2k − 1)
=

2kn′

(2k − 1)
=

2k(2k − 1)n′′

2k − 1
= 2kn′′

Note that n′′ | n′. Consider
n′ + n′′ = (2k − 1)n′′ + n′′ = 2kn′′ = σ(n′)

It follows that n′ and n′′ must be the only factors of n′, since if that were not the case, then σ(n′) > n′+n′′. So
n′′ = 1 and n′ is prime. Hence n′ = 2k − 1 and n = 2k−1(2k − 1). Note, once again, from Chapter 29, Example
2, that since 2k − 1 is prime, k must too, necessarily be prime.

Remark The only perfect numbers less than 106 are 6, 28, 496 and 8128. This exercise presented here
characterizes even perfect numbers. It is not known if there are infinitely many perfect numbers or if any odd
perfect numbers exist.
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Chapter 27

Dhan Mahesh

27.1 Exercise 1

If Fn= 22n

+ 1 , n > 1 is a prime, then 2 is not a primitive root of Fn

Solution:
Clearly 2 is a primitive root of 5 = F1

since 22n+1 − 1 = (22n

+ 1)(22n − 1)
22n+1 ≡Fn 1
=⇒ Order2(Fn) ≤ 2n+1

but Fn is prime.
∴ φ(Fn) = Fn − 1 = 22n

but we know that 22n

> 2n+1, n > 1
∴ Order2(Fn) is smaller than φ(Fn).
by the definition of Primitive root, 2 can’t be primitive root of Fn.

27.2 Exercise 2

Can we extend Quadratic reciprocity law for Jacobian Symbol for -ve integers with the conditions that

 m

n




exists when both m,n are odd (and positive) and

 m
−n


 =


 m

n


 and


 a
±1


 = 1 ?

Solution:

1. m is -ve and n is +ve
 m

n


 =


 −x

n


 =


 −1

n





 x

n


 = (−1)(n−1)/2


 x

n




& we have

 n

m


 =


 n
−x


 =


 n

x




by Q R Thm
 x

n





 n

x


 = (−1)(x−1)(n−1)/4

∴

 m

n





 n

m


 = (−1)−(n−1)(m+1)/4+(n−1)/2 = (−1)(n−1)(1−m)/4

2. m is +ve and n is -ve
similar as above and we would get
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
 m

n





 n

m


 = (−1)(m−1)(1−n)/4

3. if both m and n are -ve
 m

n


 =


 m
−y


 =


 m
−1





 m

y


 =


 m

y


 =


 −x

y


 =


 −1

y





 x

y


 = (−1)(y−1)/2


 x

y





 n

m


 =


 n
−x


 =


 n
−1





 n

x


 =


 n

x


 = (−1)(x−1)/2


 y

x




∴

 m

n





 n

m


 = (−1)(y−1)/2(−1)(x−1)/2


 x

y





 y

x


 = (−1)(x−1)/2+(y−1)/2+(x−1)(y−1)/4 =

(−1)(x+1)(y+1)/4 = (−1)(n−1)(m−1)

So we can see from above cases that QR Law can be extended to -ve integers also, but only when both m, n
are -ve with the conditions specified.

27.3 Exercise 3

1. Prove that if p is prime and p|ap − bp then p2|ap − bp

2. Prove that if a2 ≡8 1 then a2α−2 ≡2α 1

Solution:

1. By Fermat’s Little Thm ap ≡p a and bp ≡p b
∴ (ap − bp) ≡p (a− b)
p|(ap − bp) ( given)
=⇒ p|(a− b) ∴ a = pk + b
∴ ap − bp = (b + kp)p − bp = bp − bp + ppkp + (p

1 )bp−1pk . . . + (p
i )p

ikibp−i . . .
So p2|(ap − bp)
Hence Proved

2. Lemma 27.1 If p is prime and a ≡pα b then apx ≡pα+x bpx

Proof: Proof by Mathematical Induction
Base cases: for x = 0, this is obvious
for x = 1 by Fermat’s Little thm ap ≡p a and bp ≡p b
∴ ap ≡pα+1 bp

IH: If it is true for x = k i.e apk ≡px+α bpk

then it is true for x = k + 1 also.. i.e.apk+1 ≡px+α+1 bpk+1

apk ≡px+α bpk

apk+1
= apx ∗ ap ≡px

b ∗ap ≡p bpx ∗ b

∴ apk+1 ≡px+α+1 bpk+1

Hence proved
2

a2 ≡8 1 consider a2 as c and p = 2, α = 3, b = 1.. So it becomes c ≡23 1
So by above part(1) ,c2x ≡2x+3 12x

=⇒ a22x

≡2x+3 1
If we put α = 2x + 2 we will get the required result
a2α−2 ≡2α 1
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27.4 Exercise 4

Lemma 27.2 The product of the positive integers less than m and prime to m is congruent to −1 modulo m if
m = 4, pnor 2pnwith p an odd prime , but product is congruent to +1 modulo m for all other moduli.

Proof: If m = 4, the product 1 ∗ 3 ≡4 −1
If m = pn, let t be a quadratic non residue of the odd prime p, and let ai, where i = 1, 2 . . . , φ(pn), be the
least positive integers forming a reduced residue system modulo pn. Then, for each ai, the congruence aix ≡p t
doesn’t exists. The integers ai are, therefore, separated into φ(pn)/2 pairs, and if P is the product of these
pairs,
P ≡pn tφ(pn)/2

But t(p−1)/2 ≡p −1, and hence
(t(p−1)/2)pn−1

= (−1 + kp)pn−1

and tp
n−1(p−1)/2 = −1 + Mpn

Therefore tφ(pn)/2 ≡pn −1
and P ≡pn −1
If m = 2pn, let s be a quadratic nonresidue modulo p, and let t satisfy both of the congruences
x ≡p s
x ≡2 1
Therefore, t is an odd quadratic nonresidue of 2pn, for if x2 ≡2pn t had a solution, then t ≡p s would be a
quadratic residue of p. The congruences aix ≡2pn t now pair the positive integers ai, where i = 1, 2, . . . , φ(2pn),
that are less than 2pn and prime to 2pn. If P represents the product of these pairs, we find that
P ≡2pn tφ(2pn)/2

But t(p−1)/2 ≡p −1, and thus tφ(pn)/2 ≡pn . However, t is odd, and φ(2pn) = φ(pn). Therefore, P ≡2pn −1

If m = 2, the product will be 1 ( hence true)

If m = 2u, where u > 2, then -1 is a quadratic nonresidue of 2u. Hence, the congruences aix ≡2u −1,
where the ai range through the positive integers less than 2u and prime to 2, separate these integers into 2u−2

pairs. In this case, therefore , if P again represents the product of these pairs, P ≡2u (−1)2
u−2 ≡2u 1.

Finally suppose that m doesn’t in any above category.. then we would be able to write m = 2upn1
1 pn2

2 · · · pnr
r .

Let s be a quadratic nonresidue modulo p1, and let t satisfy both the congrueces
x ≡p1 s
x ≡2p2p3···pr 1
Then t is a quadratic nonresidue of m. Again, if the ai, where i = 1, 2 . . . φ(m) are the positive integers less
than m and prime to m, then the congruences aix ≡m t pair the ai and, as before, the Product P of the ai is
such that
P ≡m tφ(m)/2

But t(p1−1)/2 ≡p1 −1, and tφ(m)/2 ≡p
n1
1
−1. However, since φ(pni

i ) is even and φ(m) = φ(pn1
1 )φ(pn2

2 ) · · ·φ(pnr
r ),

tφ(m)/2 ≡p
n1
1

1
Moreover, t = 1+2p2p3 · · · prk, so that tφ(m)/2 = (1+2p2p3 · · · prk)φ(m)/2, and tφ(m)/2 ≡p

n2
2 p

n3
3 ···pnr

r
1. Further-

more, t2
u−1 ≡2u 1, and thus tφ(m)/2 ≡2u 1. Therefore, tφ(m)/2 ≡m 1, and P ≡m 1. Hence proved.

2

27.5 Exercise 5

Write down the Quadratic Residues of 13.
Solution:
To answer this, we will see two lemmas
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Lemma 27.3 The Quadratic residues of an odd prime p coincide with teh even powers of any primitive root of
p.

Proof: Consider the congruences x2 ≡p a with gcd(a, p) = 1. then if r is a primitive root of p, because the
powers r, r2, r3, . . . , rp−1 form a reduced residue system modulo p, either
a ≡p r2k

ora ≡p r2k+1

In first case, it is evident that a is a quadratic residue of p, for (rk)2 ≡p a. Applying Euler’s Criterion to the
second case, if
(r2k+1)(p−1)/2 ≡p 1
the exponent of r must be multiple of p − 1. But then (2k + 1)/2 would have to be an integer, and that is
impossible. Hence, in the second case a is a quadratic nonresidue of p. Thus the set of quadratic residues of p
consists of the even powers of a primitive root of p.
2

13 is a odd prime and 2 is a primitive root of 13, so the quadratic residues of 13 are 22 ≡13 4, 24 ≡13 3, 28 ≡13

9, 210 ≡13 10, and212 ≡13 1.

Lemma 27.4 The integers 12, 22, . . . ((p− 1)/2)2 are the incongruent quadratic residues of the odd prime p.

Proof: We can say that a2 ≡p (p − a)2, we need only the integers 12, 22 . . . ((p − 1)/2)2 to determine the
quadratic residues modulo p. Each of these integers is evidently a quadratic residue of p, but, more than that,
no two of them are congruent modulo p, for if
a2
1 ≡p a2

2

then (a1 − a2)(a1 + a2) ≡p 0
and p divides at least one of a1 − a2 and a1 + a2. But since both a1 and a2 are positive and less than p/2,
neither a1 − a2 nor a1 + a2 is divisible by p. These (p− 1)/2 integers, therefore, yield all the quadratic residues
of p.
2

So by the above lemma , we can say that 12 ≡13 1, 22 ≡13 4, 32 ≡13 9, 42 ≡13 3, 52 ≡13 12, 62 ≡13 10. and the
quadratic residues of 13.



Chapter 28

Mayank Kumar

28.1 GCD

Exercise 28.1 Show that for any integers x,m and n with m,n ≥ 0,

gcd(xm − 1, xn − 1) = abs(xgcd(m,n) − 1)

Solution We will prove that LHS divides RHS and RHS divides LHS. Since the two sides are both positive in
sign, so this will clearly prove that LHS = RHS.
(=⇒)
Lets assume that d is a divisor of gcd(xm − 1, xn − 1). So, d|xm − 1 and d|xn − 1.
⇒ xm ≡ 1 (mod d) and xn ≡ 1(mod d).
We can find integers u and v such that mu + nv = g = gcd(m,n), then

xg ≡ xmu+nv ≡ (xm)u(xn)n ≡ 1u1v ≡ 1(modd)

so d|abs(xg − 1).
(⇐=)
Conversely suppose that d|xg − 1. Then xg ≡ 1 (mod d), so xm ≡ (xg)m/g ≡ 1(mod d). Similarly, xn ≡ 1(mod
d). So d divides both xm − 1 and xn − 1, and hence divides gcd(xm − 1, xm − 1).
Hence proved.

28.2 Fibonacci Numbers

Exercise 28.2 Show that if the Fibonacci number F(n) is prime then n is prime. More precisely prove the
implication

m|n ⇒ F (m)|F (n)

Solution First of all lets prove that
m|n ⇒ F (m)|F (n)

using the principle of induction on l = n
m

Base case Base Case is trivial, since m = n ⇒ F (m)|F (n)
Propogation Step Let us assume that the claim is true for l = k.

141
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To Prove Claim is also true for l = k+1
Proof

k + 1 = n
m + 1

= n+m
m

So, it only remains to prove that if F (m)|F (n) then F (m)|F (n + m)
Let F (n) = p ∗ F (m)

F (n + m) = F (n− 1) ∗ F (m) + F (n) ∗ F (m + 1)
= F (m)(F (n− 1) + p ∗ F (m + 1))

Hence proved.
If F(n) is prime, then there exists no m such that m|n, otherwise from the above proof we would have F (m)|F (n).
Hence n is also a prime.

28.3 Euler’s Phi Function

Exercise 28.3 Prove that φ(n) is even for any n ≥ 3

Solution
Approach 1: We know that, φ(n) counts the number of integers m, 1 ≤ m ≤ n− 1 which are relatively prime to
n.
Claim If m is relatively prime to n, then so is n−m.
Proof Let us assume that there is a k > 1 such that k|(n−m) and k|n. This would imply that k|(n− (n−m)),
or simply k|m, which in turn says that gcd(m,n) ≥ k > 1, which is a contradiction.
Therefore the numbers m, 1 ≤ m ≤ n− 1 which are relatively prime to n come in pairs (m,n−m). It is clear
that m 6= n−m, otherwise n = 2×m, and n is not relatively prime to m. Hence the number φ(n) is even.
Approach 2: Consider,

[1]2n = [1]n
[n− 1]2n = [−1]2n

= [1]n

If n ≥ 3, [−1]n 6= [1]n
Also [−1]n, [1]n form a subgroup of the group < Gn, 1,× > of order 2.
So, by Lagrange’s theorem we have 2|o(Gn) = φ(n), i.e φ(n) is even.

28.4 Chinese Remainder Theorem

Exercise 28.4 Argue that, under the definitions of Chinese Remainder Theorem, if gcd(a,n)=1, then

(a−1modn) ↔ ((a−1
1 modn1), (a−1

2 modn2), ..., (a−1
k modnk))

Solution From Chinese Remainder Theorem, we know that

(amodn) ↔ ((amodn1), (amodn2), ..., (amodnk))

Since, gcd(a,n) = 1, they are relatively prime, and hence a−1modn is defined. Similarly a−1modni is also
defined. Now substituing a−1 in place of a in the above relationwe get,

(a−1modn) ↔ ((a−1modn1), (a−1modn2), ..., (a−1modnk))

It remains to prove that,
(a−1

i modni) = (a−1modni)
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Consider,
a ∗ (a−1

i modni)(modni)
= (ai ∗ a−1

i )(modni)
= 1(modni)

Hence,
(a−1modn) ↔ ((a−1

1 modn1), (a−1
2 modn2), ..., (a−1

k modnk))

28.5 Jacobi Symbol

Exercise 28.5 Let n ≥ 1 be an odd integer. Calculate the Jacobi symbol

(
5

3× 2n + 1
)

Solution Since 5 ≡ 1 mod 4, the quadratic reciprocity law gives

(
5

3× 2n + 1
) = (

3× 2n + 1
5

)

To determine the value of 3× 2n + 1 modulo 5, we distinguish the cases n ≡ 1 mod 4 and n ≡ 3 mod 4.

• Case n ≡ 1 mod 4 Then n = 4k + 1 with an integer k ≥ 0 and

3.2n = 3.24k+1 = 3.2.(24)k = 6.16k ≡ 1.1k ≡ 1mod5

hence
(
3× 2n + 1

5
) = (

1 + 1
5

) = (
2
5
) = −1

• Case n ≡ 3 mod 4 Then n = 4k + 3 with an integer k ≥ 0 and

3.2n = 3.24k+3 = 3.23.(24)k = 24.16k ≡ (−1).1k ≡ −1mod5

hence
(
3× 2n + 1

5
) = (

−1 + 1
5

) = (
0
5
) = 0
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Chapter 29

Hitesh Chaudhary

29.1 Fermat’s Little Theorem

Exercise 29.1 Show 7 | 22225555 + 55552222

Solution: By FLT, n7 ≡7 n.
So for natural numbers q and r, n7q+r ≡7 (n7)q.nr ≡7 nq.nr ≡7 nq+r

Now, 2222 ≡7 3 and 5555 ≡7 4 ≡7 −3.
Thus 22225555 + 55552222 ≡7 35555 + (−3)2222

≡7 3793+4 + (−3)317+3

≡7 3113+6 + (−3)45+5

≡7 317+0 + (−3)7+1

≡7 32+3 + (−3)1+1

≡7 32(33 + 1)
≡7 32.28 ≡7 0

2

29.2 Tchebychev’s Theorem

Exercise 29.2 Let β be the positive real number less than 1. Show if the integer N is very large enough, there
exist a prime between βN and N .

Solution: Lets β < 1. By Tchebychev’s Theorem, π(n) ∼ n
log n and π(βn) ∼ βn

log βn ∼ βn
log n+log β ∼ βn

log n

Therefore, for sufficiently large n, π(n) > π(βn). Hence there is atleast one prime between βn and n. 2

29.3 Prime Numbers

Exercise 29.3 Show that a2 + b2 + c2 + d2 is never prime.

Solution: Any composite number C can always be written as a product in atleast 2 ways. (As 1.C is always
possible). Lets C = ab = cd then C | ab. Set c = mn such thatm is part which divides a and n is the part which
divides b. Then there are p and q such that
a = mp , b = nq

145
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Solving ab = cd for d gives, d = ab
c = (mp)(nq)

mn = pq. It then follows that
S = a2 + b2 + c2 + d2

= m2p2 + n2q2 + m2n2 + p2q2

= (m2 + q2)(n2 + p2)
It therefore follows that a2 + b2 + c2 + d2 can never be prime.

2

29.4 Congruences

Exercise 29.4 f(x) of degree k and f(x) ≡ 0 (mod p) have k solutions. and f(x) = f1(x)f2(x) . Then number
of incongruent solutions of f1(x) ≡ 0(mod p) is equal to its degree and similarly for f2(x)

Solution: Let f1(x) = b0x
l + ... + bl and f2(x) = c0x

m + ... + cm where b0 6≡ 0c0 6≡ 0(mod p) . Then,
f(x) = b0c0x

l+m + ... + blcm(mod p), l+m = k Each solution of f(x) ≡ 0 (mod p) will be solution of at least
one of the congruences, f1(x) ≡ 0(mod p) or f2(x) ≡ 0(mod p) . Conversely is also true.
Now if number of incongruent solutions of f1(x) ≡ 0 (mod p) or f2(x) ≡ 0(mod p) were less than respectively l
or m, then numbfer of solutions of f(x) ≡ 0(mod p) would be less than l+m = k which is contrary to hypothesis.
Thus f1(x) ≡ 0(mod p) must have l solutions and f2(x) ≡ 0(mod p) must have m solutions. 2

29.5 Continued Fractions

Exercise 29.5 If a is vlaue of continued fraction < a0; a1, ... > and rn = Pn(a0,a1,...,an)
Qn(a0,...,an) is nth partial quotient

then, 1
2QnQn+1

< |a− Pn

Qn
| < 1

QnQn+1
< 1

Q2
n

Solution: As proved in lecture,
for k = -1, 0, ... we have Pk+1Qk −Qk+1Pk = (−1)k, Pk+2Qk −Qk+2Pk = (−1)kxk+2

Also, if rn denotes nth partial quotient then for each n , r2n < r2n+2 and r2n+1 < r2n−1 and for all m, n,
r2m < rwn+1

from above assertions we have,
|a− Pn

Qn
| ≤ | Pn+1

Qn+1
− Pn

Qn
| = 1

QnQn+1
< 1

Q2
n

because Qn+1(a0, ..., an+r) = an+1Qn(a0, ..., an) + Qn−1(a0, ..., an) >

Qn(a0, ..., an)
Similarly, |a− Pn

Qn
| = | Pn+2

Qn+2
− Pn

Qn
| = an+2

QnQn+2
= an+2

Qn(an+2Qn+1Qn+1+Qn) ≥ 1
Qn(Qn+Qn+1)

> 1
2QnQn+1

2



Chapter 30

Satish Parvataneni

30.1 CRT

Theorem 30.1 Show that ∃x for any n such that x + 1, x + 2, . . . , x + n are composit numbers.

Proof: Given any n, from the fact the primes are infinite we can list out n prime numbers p1, p2, . . . , pn .

Fact 30.2 By CRT for any m1,m2, . . . , mr pair wise relatively prime numbers the system of equations

x ≡mi aiwhere1 ≤ i ≤ r (30.1)

has a unique solution modulo M where M =
∏r

i=1 mi

so for p1, p2, . . . , pn primes (which are pair wise relatively prime numbers) we can find out an x which satisfies
the system of equations Eqn. 30.1 for a1 = −1, a2 = −2, . . . , an = −n.

System of equations become
x ≡pi ai (30.2)

where 1 ≤ i ≤ n and a1 = −1, a2 = −2, . . . an = −n.

From the above system of equations we can conclude that p1|x+1, p2|x+2, . . . , pn|x+n and hence proved. 2

30.2 FLT

Theorem 30.3 if p and q are distinct primes, prove that pq−1 + qp−1 ≡ 1 mod pq

Proof:

Fact 30.4 By FLT if p is a prime and p 6 | a then ap−1 ≡ 1( mod p)

As p and q are distinct primes p 6 | p and q 6 | p by FLT

pq−1 ≡ 1 mod q (30.3)

147
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qp−1 ≡ 1 mod p (30.4)

As pq−1|p and qp−1|q are trivially true we can write

qp−1 ≡ 0 mod q (30.5)

pq−1 ≡ 0 mod p (30.6)

From Eqn. 30.3 and Eqn. 30.5
pq−1 + qp−1 ≡ 1 mod q (30.7)

and From Eqn. 30.4 and Eqn. 30.6
pq−1 + qp−1 ≡ 1 mod p (30.8)

Theorem 30.5 if a ≡ b mod n1 and a ≡ b mod n2 and gcd(n1, n2) = 1 then a ≡ b mod n1n2

Proof: Let c=a-b then n1|c and n2|c, integers r and s can be found such that c = rn1 = sn2.
Given gcd(n1, n2) = 1 allows us to write 1 = xn1 + yn2 for some choice of integers x and y.Multiplying the last
equation by c then

c = c ∗ 1 = c(n1x + n2y) = n1cx + n2cy. (30.9)

If appropriate substitutions are now made on the right hand side, then

c = n1(sn2)x + n2(rn1)y = n1n2(sx + ry) (30.10)

Substituting c=a-b in the above equation we get a ≡ b mod n1n2 and hence proved.

2

From the above fact and Eqn. 30.7 and Eqn. 30.8 we can conclude that

pq−1 + qp−1 ≡ 1 mod pq (30.11)

2

30.3 GCD

Theorem 30.6 Prove that gcd of two postive integers always divide their LCM

Proof: Let a and b be any two positive integers, d is the gcd(a,b) and l is the lcm(a,b), By definition

l = ak1 = bk2.
d|a and d|b ie a = dc1 and b = dc2

if we find gcd(d,l) it reduces to gcd(d, ak1) and on further reduction gcd(d, dc1k1) hence gcd(d,l) comes out to
be d and hence d|l . 2
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30.4 Linear Congruences

Theorem 30.7 if x ≡ a mod n prove that either x ≡ a mod 2n or x ≡ a + n( mod 2n)

Proof:
x− a = kn from x ≡ a mod n (30.12)

x− a = k12n + r on dividing kn by 2n where 0 ≤ r < 2n (30.13)

k12n + r = kn (30.14)

r = kn− k12n (30.15)

r = n(k − 2k1) (30.16)

As 0 ≤ r < 2n the value of k − 2k1 can be either 0 or 1.

• when k − 2k1 is zero then the value of r is zero and hence Eqn. 30.13 reduces to x − a = k12n which is
equal to x ≡ a mod 2n

• when k − 2k1 is one then the value of r is n and hence Eqn. 30.13 reduces to x − a = k12n + n which is
equal to x ≡ a + n mod 2n

2

30.5 Primes

Theorem 30.8 if p ≥ 5 is a prime number ,show that p2 + 2 is composite

Proof: In order to prove the above we first prove a general result.

Theorem 30.9 Any prime number number greater than 3 has a remainder 1 or 5 when divided by 6

Proof: Any integer n can be represented in the following form.

n = 6 ∗ q + r where0 ≤ r < 6. (30.17)

Hence we have 6 choices for r : 0, 1, 2, 3, 4, 5. From the fact that n is a prime and therefore it is not divisible
by 2 or 3 we can analyze these 6 choices.

1. r is 0 then n=6*q and clearly it is divisible by 2 which is not possible since n is a prime.

2. r is 1 then it is possible.

3. r is 2 then n=6*q+2 and clearly it is divisible by 2 which is not possible since n is a prime.

4. r is 3 then n=6*q+3 and clearly it is divisible by 3 which is not possible since n is a prime.

5. r is 4 then n=6*q+4 and clearly it is divisible by 2 which is not possible since n is a prime.

6. r is 5 then it is possible.
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we can see that the only possible remainders for n divided by 6 are 1 and 5. 2

Hence any prime p ≥ 5 can be in one of the forms 6k+1 or 6k+5.

• if p is of 6k+1 form then p2 + 2 = 6k + 12 + 2 which reduces to 36k2 + 12k + 3 which is clearly divisible
by 3 and hence it is composite.

• if p is of 6k+5 form then p2 + 2 = 6k + 52 + 2 which reduces to 36k2 + 60k + 27 which is clearly divisible
by 3 and hence it is composite.

2



Chapter 31

Bipin Tripathi

31.1 Euler φ function, FLT

Example Let m > 1 and n > 1, Prove that φ(m ∗ n) = φ(m)φ(m)gcd(m,n)
φ(gcd(m,n))

Proof
case 1 If gcd(m,n) = 1 and φ is a multiplicative function then

φ(m ∗ n) = φ(m) ∗ φ(n) = φ(m)φ(m)gcd(m,n)
φ(gcd(m,n))

case 2 if gcd(m,n) 6= 1 then
Let d = gcd(m,n) = pa1

1 . . . . . . pat
t , a1 ≥ 1, . . . . . . , at ≥ 1

and m = pb1
1 . . . . . . pbt

t M n = pc1
1 . . . pct

t N (Where gcd(M,N) = 1) and p1, . . . , pt do not divide
MN. Hence m ∗ n = pb1+c1

1 . . . pbt+ct
t M ∗N ,

φ(m ∗ n) = φ(pb1+c1
1 ) . . . . . . φ(pbt+ct

t )φ(M) ∗ φ(N)
since φ(pk) = pk(1− 1/p)
φ(m ∗ n) = pb1+c1−1

1 (p1 − 1) . . . . . . pbt+ct−1
t (pt − 1)φ(M) ∗ φ(N)

now,
φ(m)φ(n)d

φ(d) = φ(p
b1
1 )......φ(p

bt
t )φ(M)φ(p

c1
1 )......φ(p

ct
t )φ(N)(p

a1
1 ......p

at
t )

φ(p
a1
1 )......φ(p

at
t )

φ(m)φ(n)d
φ(d) = p

b1−1
1 (p1−1)......p

bt−1
t (pt−1)φ(M)p

c1−1
1 (p1−1)......p

ct−1
t (pt−1)φ(N)(p

a1
1 ......p

at
t )

p
a1−1
1 (p1−1)......p

at−1
t (pt−1)

φ(m)φ(n)d
φ(d) = pb1+c1−1

1 (p1 − 1) . . . . . . pbt+ct−1
t (pt − 1)φ(M) ∗ φ(N)

φ(m)φ(n)d
φ(d) = φ(m ∗ n)

31.2 Congruences of higher degree

Example Show that the congruence x2 ≡ 1(mod2k) has exactly four solutions mod 2k, namely x ≡ ±1 or
x ≡ ±(1 + 2k−1)(mod2k), when k ≥ 3.Show that when k = 1 there is one solution and when k = 2 there are
two solutions mod 2k.

Proof
Let x2 ≡ 1(mod2k) then 2k|x2 − 1 ⇒ 2k|(x− 1)(x + 1)
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since gcd((x− 1), (x + 1)) = 2 ⇒ gcd((x− 1)/2, (x + 1)/2) = 1, for k ≥ 3 2k−2|((x− 1)/2 ∗ (x + 1)/2) and also
as k − 2 ≥ 1 ⇒ 2|((x− 1)/2 ∗ (x + 1)/2)

Case 1 if 2|(x− 1)/2 then 2 does not divide (x + 1)/2 so we get 2k−2|(x− 1)/2 ⇒ 2k−1|(x− 1)
Hence x ≡ 1(mod2k−1) or equivalently x ≡ 1 or 1 + 2k−1(mod2k)

Case 2 if 2|(x + 1)/2 then similarily the case1 we can get x ≡ −1 or −(1 + 2k−1)(mod2k)

Conversely , suppose x ≡ ±1 or ±(1 + 2k−1)(mod2k)
then x ≡ ±1(mod2k−1) ⇒ x = ±1 + K2k−1,
Hence x2 = 1± 2K ∗ 2k−1 + (K2k−1)2

= 1±K ∗ 2k + K2 ∗ 22k−2

≡ 1(mod2k) as 2k − 2 ≥ k

Now for k=1 ,
x2 ≡1 ( mod 2) has solution x ≡ 1(mod 2)

Now for k=2 ,
x2 ≡1 ( mod 4) has solution x ≡ ±1 (mod 4)

31.3 Quadratic Irrational

Example Let d = a2 + b, where a,b ∈ N, b > 1 and b|2a.Prove that [
√

d] = a and that
√

d has the continued
fraction expression

√
d = [a, 2a

b , 2a]

Hence , or otherwise , derive the continued fraction expression for
√

D2 −D, when D > 2 is a postive integer.
Conversely, if the continued fraction expression of

√
d has period length 2, show that d = a2 + b, where a,b

∈ N, b > 1 and b|2a.

Proof
Let d = a2 + b, where a,b ∈ N, b > 1 and b|2a
a2 < d ≤ a2 + 2a < (a + 1)2

⇒ a <
√

d < a + 1 and a = [
√

d]
Now x0 =

√
d, p0 = 0, q0 = 1, a0 = [

√
d] = a

xi = pi+
√

d
qi

, pi+1 = ai ∗ qi − pi, qi+1 = d−p2
i+1

qi

p1 = a0 ∗q0−p0 = a∗1−0 = a, q1 = d−p2
1

q0
= a2+b−a2

1 = b, x1 = p1+
√

d
q1

= a+
√

a2+b
b , a1 = [x1] = 2a/b

,
p2 = 2a

b b− a = a, q2 = a2+b−a2

b = 1, x2 = a+
√

a2+b
1 , a2 = [x2] = 2a,

p3 = 2a ∗ 1− a = a, q3 = a2+b−a2

1 = b, x3 = a+
√

a2+b
b = x1

Hence
√

d =
√

a2 + b = [a, 2a
b , 2a]

Next , Let D > 2 , , D ∈ N then D2 −D = (D − 1)2 + (D − 1), and D − 1|2(D − 1)
Hence

√
D2 −D = [D − 1, 2, 2D − 2]

Conversely, the continued fraction expression of
√

d has period length 2,
before going further, let take following theorem :
Theo. : If postive integer d is not a perfect square , the simple continued fraction expression of

√
d has the

form

√
d = [a0, a1, a2, . . . . . . ar−1, 2a0] with a0 = [

√
d]
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So for [a0, a1, 2a0] = a0 + x−1 so that x = [a1, 2a0], observing that x = [a1, 2a0, a1, 2a0] = [a1, 2a0, x]
we get x = a1 + (2a0 + x−1)−1, solving this for x−1 and discarding the negative solution, we get x−1 = a0 +

√
d

So instead of solving x−1 take another way
Suppose

√
d = [a0, a1, 2a0] , a1 6= 2a0

then x = a0 +
√

d = [2a0, a1] = 2 ∗ a0 + 1
a1+

1
x

= 2a0 + x
a1x+1

Hence a1x
2 + x = 2a0a1x + 2a0 + x

a1x
2 = 2a0a1x + 2a0

⇒ a1(a2
0 + 2

√
da0 + d) = 2a0a1(a0 +

√
d) + 2a0

⇒ a1d = a2
0a1 + 2a0

⇒ d = a2
0 + 2a0

a1
= a2 + b

where a = a0 and b = 2a0
a1

6= 1 here b ∈ N

31.4 Congruence, Euclidian Algorithm

Example
(a) If a ≥ 1 , b ≥ 1 , prove that gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1.
(b) Prove that gcd(a,b)=gcd(a+bc,b) for any integers a , b ,and c.

(a) Proof
Let a ≥ 1 , b ≥ 1 and d = gcd(a, b) and e = gcd(2a − 1, 2b − 1)
then d|a , d|b and e|2a − 1 , e|2b − 1
now 2d − 1|2a − 1,2d − 1|2b − 1 so 2d − 1|e
Assume d = gcd(a, b) = ax− by, where x and y are postive integers.
also 2a ≡1 ( mod e ), so 2ax ≡1 ( mod e )
similarly 2b ≡1 ( mod e ), so 2by ≡1 ( mod e )
Hence 2ax ≡ 2by ( mod e ) ⇒ 2ax−by ∗ 2by ≡ 2by( mod e )
Hence 2ax−by ≡ 1 ( mod e ) ⇒ e|2d − 1
since 2d − 1|e and e|2d − 1 then e = 2d − 1 ⇒ gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1.

(b) Proof
We first show that the common divisors of a and b is identical to the set of common divisors of a+bc and b.
For if d divides a and b then it divides bc and hence a+bc , while if d divides a + bc and b then it divides
bc and hence (a+bc) - bc = a. Now gcd(a,b) is a common divisor of a and b , so by the above it is acommon
divisor of a+bc and b, so it divides gcd(b,a+bc) by definition of gcd(b,a+bc) . Similarly , gcd(b,a+bc) divides
gcd(a,b). So gcd(a,b) = ± gcd(b,a+bc), but since both gcd(a,b) and gcd(b,a+bc) are nonnegative ,by definition
,therefore

gcd(a,b)= gcd(b,a+bc)

31.5 Primitive Roots

Example For an odd prime p show that there are as many primitive roots of 2pn as of pn.

Proof
(⇒) Let r is primitive root of 2pn, by definition of primitive roots : if r is primitive root of 2pn then
rφ(2pn) ≡2pn 1 and rk 6≡2pn 1 for all postive integers k < φ(2pn) hence gcd(r, 2pn) =1
Now φ(2pn) = φ(pn) since p is odd prime and rφ(2pn) ≡2pn1
then rφ(pn) ≡2pn 1 and we have gcd(r, pn) =1 because gcd(r, 2pn) =1
we claim r is a primitive root of pn,
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Assume r is not primitive root of pn, then there is a k < φ(pn) such that rk ≡pn 1 ⇒ pn|rk − 1 and also r is
such that gcd(r, 2pn) = 1
so rk is odd because 2pn will be even ⇒ rk − 1 is even and also pn is odd.
when we say pn|rk − 1 ( i.e. an odd number is dividing an even number ) so 2pn should also divide rk − 1 ,
hence 2pn|rk − 1 ⇒ rk ≡2pn 1
since φ(pn) = φ(2pn) and k < φ(pn) then r is not primitive root of 2pn ⇒ Contradiction
⇒ r is of primitive root of pn

Hence if r is primitive root of 2pn then r is also primitive root of pn

(⇒) Let r is primitive root of pn. either r is an odd integer or even integer ( if r is even, then r + pn

is odd and is still a primitive root of pn). Then gcd(r, 2pn) =1.
The order m of r modulo 2pn must divide φ(2pn) = φ(pn)
But rm ≡2pn 1 implies that rm ≡pn 1 , and so φ(pn)|m. Together these divisibility conditions forces m = φ(2pn)
making r a primitive root of 2pn.
Hence if r is primitive root of pn then r is also primitive root of 2pn

So for an odd prime p, there are as many primitive roots of 2pn as of pn.



Chapter 32

Amit Agarwal

32.1 Example 1

Example 32.1 Show that the Carmichael numbers are square-free and the product of atleast three primes.

Proof: Suppose for contradiction that p2|n. Let g be a generator modulo p2, i.e., an integer s.t. gp(p−1) is the
lowest power of g which is ≡p2 1. (it is easily proved that such a g always exists.)
Let n′ be the product of all primes other than p which divide n. By the Chinese Remainder Theorem, there is
an integer b satisfying the two congruences:

b ≡p2 g (32.1)

and
b ≡n′ 1. (32.2)

Then b is like g, a generator modulo p2, and it also satisfies gcd(b, n) = 1, since it is not divisible by p or any
prime which divides n′. We claim that n is not a pseudoprime to the base b. To see this, we notice that if
bn−1 ≡n 1 holds, then, since p2|n, we automatically have bn−1 ≡p2 1. But in that case p(p − 1)|n − 1, since
p(p− 1) is the order of b modulo p2. However, n− 1 ≡p −1, since p|n, and this means that n− 1 is not divisible
by p(p− 1). This contradiction proves that there is a base b for which n fails to be a pseudoprime.

Lemma 32.1 If n is square free, then n is a Carmichael number iff p− 1|n− 1 for every prime p dividing n.

Proof: First Suppose that p − 1|n − 1 for every p dividing n. Let b be any base, where gcd(b, n) = 1. Then
for every prime p dividing n we have: bn−1 is a power of bp−1, and so

bn−1 ≡p 1. (32.3)

Thus, bn−1 − 1 is divisible by all of the prime factors p of n, and hence by their product, which is n. Hence,

bn−1 ≡n 1∀b. (32.4)

Conversely, suppose that there is a p s.t. p− 1 does not divide n− 1. Let g be an integer which generates Z∗p.
Find an integer b which satisfies:

b ≡p g (32.5)
b ≡n

p
1. (32.6)
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Then

gcd(b, n) = 1 (32.7)
bn−1 ≡p gn−1. (32.8)

But gn−1 6≡p 1, because n− 1 is not divisible by the order modulo p− 1 of g. Hence, bn−1 6≡p 1, and so n is not
prime. 2 Now it remains to rule out the possibility that n = pq is the product of two distinct primes.
Suppose that p ≤ q. Then, if n were a Carmichael number, we would have n− 1 ≡q−1 0, by lemma 32.1. But

n− 1 = p(q − 1 + 1)− 1 (32.9)
≡q−1 p− 1 (32.10)
6≡q−1 0 (32.11)

since 0 ≤ p− 1 ≤ q − 1. This concludes the proof. 2

32.2 Example 2

Definition 32.1 A prime of the form 2n − 1 is called a Mersenne prime. An interesting theorem relating to
Mersenne primes is that if 2n − 1 is a prime, then, so is n.

Example 32.2 Let p be a Mersenne prime, let q = p2, and let i be a root of X2 + 1 = 0, so that Fp = Fp(i).
Suppose that the integer a2 + b2 is a generator of F∗p. Prove that a + bi is a generator of F∗q .

Proof: We have

(a + bi)p+1 = (ap + bpip)(a + bi) (32.12)
= (a− bi)(a + bi) (32.13)
= a2 + b2. (32.14)

Claim 32.1 If (a + bi)m ∈ Fp, then p + 1|m.

Proof: Let
d = gcd(m, p + 1). (32.15)

We see that
(a + bi)d ∈ Fp. (32.16)

But since p + 1 is a power of 2, if d ≤ p + 1 we find that (a + bi)
p+1
2 is an element of Fp whose square is a2 + b2.

Claim 32.2 a2 + b2 is not a residue.

Proof: Any power of a residue is a residue, so none of the nonresidues can occur as a power. 2 Hence,
d = p + 1 and p + 1|m. 2 Now, suppose that

n = n′(p + 1) (32.17)

is such that (a + bi)n = 1 (note that p + 1|n by the claim).
Then

(a2 + b2)n′ = 1. (32.18)

So p− 1|n′ because a2 + b2 is a generator of F∗p. 2
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32.3 Example 3

Example 32.3 Let m = pα1
1 . . . pαr

r be an odd integer, and suppose that a is prime to m and is the square of
some integer modulo m. Find x s.t. x2 ≡m a. Suppose that for each j you know a nonresidue modulo pj, i.e.,

an integer nj s.t.
(

nj

pj

)
= −1. For each fixed p = pj suppose you know some x0 s.t. x2

0 ≡p a. Show how you

can then find some x = x0 + x1p + . . . + xα−1p
α−1 s.t. x2 ≡α

p a.

Proof: We use induction on α.

To go from α− 1 to α, suppose you have an (α− 1)-digit base-p integer x′ s.t.

x′2 ≡pα−1 a. (32.19)

To determine the last digit xα−1 ∈ {0, 1, . . . , p−1} of x = x′+xα−1p
α−1, write x′2 = a+ bpα−1 for some integer

b, and then work modulo pα as follows:

x2 = (x′ + xα−1p
α−1)2 ≡pα x′2 + 2x0xα−1p

α−1 (32.20)
= a + pα−1(b + 2x0xα−1). (32.21)

So it suffices to choose
Xα−1 ≡p −(2x0)−1b (32.22)

Claim 32.3 2x0 is invertible.

Proof: Since p is odd, and a ≡p x2
0 is prime to p. 2 2

32.4 Example 4

Example 32.4 Prove that ∏

all primes p

1
1− 1

p

(32.23)

diverges to infinity. Using this prove that the sum of the reciprocals of the primes diverges.

Proof: Expand each term in the product in a geometric series:

(1 +
1
p

+
1
p2

+ . . .). (32.24)

In expanding all the parentheses, the denominators will be all possible expressions of the form

pα1
1 . . . pαr

r . (32.25)

According to the Fundamental Theorem, every positive integer n occurs exactly once as such an expression.
Hence the product is equal to the harmonic series

∞∑
n=1

1
n

(32.26)

which we know diverges.



158 CHAPTER 32. AMIT AGARWAL

For the second part, we first note that for x ≤ 1
2 , we have

x ≥ −1
2

log(1− x). (32.27)

When x = 1
p for prime p, the previous result holds. Now take the log of the product in the previous part:

log(
∏

all primes p

1
1− 1

p

) =
∑

all primes p

− log(1− 1
p
). (32.28)

By the result in equation 32.27 the RHS is less than

2
∑

all primes p

1
p

(32.29)

which is the sum of the reciprocals of the primes. Since we know that the product in 32.23 diverges, the sum
of the reciprocals of the primes also diverges. 2

32.5 Example 5

Example 32.5 Suppose that m is either a power pα of a prime p ≥ 2 or else twice an odd prime power. Prove
that, if x2 ≡m 1, then either x ≡m 1 or x ≡m −1. Also this is always false if m is not of the form pα or p2α,
and m 6= 4.

Proof: Suppose that m = 2pα. Since m|(x2 − 1) = (x + 1)(x − 1), we must have α powers of p appearing in
both x + 1 and x− 1 together. But since p ≥ 3, it follows that p cannot divide both x + 1 and x− 1 (since they
are only two apart from one another). Thus all the of the p’s must divide one of them. If pα|x + 1, this means
that x ≡pα −1; if pα|x − 1, then x ≡pα 1. Finally, since 2|x2 − 1 it follows that x must be odd, i.e., x ≡2 1.
Thus, either x ≡2pα 1 or x ≡2pα −1. The proof for the case m = pα is the first part of the earlier proof.

First, if m ≥ 8 is a power of 2, it’s easy to show that x = m
2 + 1 gives a contradiction to the earlier part.

Next suppose that m is not a prime power (or twice a prime power), and

pα‖m. (32.30)

Set
m′ =

m

pα
. (32.31)

We can use the Chinese Remainder theorem to find an x which is ≡pα 1 and ≡m′ −1.

Let x = rpα + 1 and x = sm′ − 1. Consider

x2 = (rpα + 1)(sm′ − 1) (32.32)
= rsṁ− (rpα + 1) + 1 + (sm′ − 1) + 1− 1. (32.33)

Hence x2 ≡m 1. But x ≡m 0 by the Chinese Remainder Theorem. This contradicts the first part. 2



Chapter 33

Vipul Jain

33.1 Primes and their Distribution

Theorem 33.1 1. Prove that if n > 2, then there exists a prime p satisfying n < p < n!.

2. For n > 1, show that every prime divisor of n! + 1 is an odd integer greater than n.

Proof:

1. Consider (n! - 1). Let p be a prime factor of (n! - 1). If (n! -1) is a prime, p = (n! - 1). If (n! - 1) is
composite, then a 6 | (n! - 1) ∀ positive integer 2 ≤a ≤ n since a | n! but a 6 | 1. So p ¿ n. Since (n! - 1) is
composite, p < n!. Hence prime number p satisfies n < p < n!.

2. If n = 1, then n! + 1 = 2 which is even and has 2 as a prime factor. If n > 1, then n! is even as 2 is
a factor of n!. This means that (n! + 1) is odd ∀ n > 1. So all prime factors of n are odd. Let p be a
prime factor of (n! + 1). We note that ∀ 1 < a ≤ n, (n! + 1) ≡a = 1. ∴ all prime factors of (n! + 1) are
greater than n and this completes the proof.

2

33.2 Linear Congruence

Exercise 33.1 (Ancient Chinese Problem) A band of 17 pirates stole a sack of gold coins. When they tried to
divide the fortune into equal proportions, 3 coins remained. In the ensuing brawl over who should get the extra
coins, one pirate was killed. The wealth was redistributed, but this time an equal division left 10 coins. Again
an argument developed in which another pirate was killed. But now, the total fortune was evenly distributed
among the survivors. What was the least number of coins that could have been stolen?

Solution: Let the number of coins stolen was x. We form Linear congruences from given data.

x = 3 (mod 17) (33.1)
x = 10 (mod 16) (33.2)
x = 0 (mod 15) (33.3)

159
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17*16*15 = 4080. ∴ we need to find x (mod 4080) that satisfies all three congruences (From Chinese Remainder
theorem). Since r3 = 0, we only need todetermine Ni and xi for i = 1 and 2.
r1 = 3, N1 = 16*15 = 240
Solving 240x1 ≡17 1 gives x1 = 9 as solution.
r2 = 10, N2 = 17*15 = 255
Solving 255x2 ≡16 1 gives x2 = -1 as solution.
Thus, x = 3*240*9 + 10*255*(-1) = 3930 (mod 4080) are the solutions. Since we want smallest positive solution,
x = 3930 is the solution. Hence the least number of coins that could have been stolen is 3930.

2

33.3 The Fibonacci Sequence

Theorem 33.2 Show that the sum of the squares of the first n Fibonacci numbers is given by the formula

u2
1 + u2

2 + u2
3 + · · ·+ u2

n = unun+1 (33.4)

Proof:

un+1 = un + un−1 (33.5)
⇒ un = un+1 − un−1 (33.6)

u2
1 = u1u2 ( as u1 = u2 = 1 ) (33.7)

∀n ≥ 2 (un−1 is defined only if n ≥ 2)

u2
n = un.un = un.(un + un−1) ( from(33.6) ) (33.8)

⇒ u2
n = un.un+1 − un.un−1 (33.9)

Now consider u2
1 + u2

2 + u2
3 + · · ·+ u2

n.

u2
1 + u2

2 + u2
3 + · · ·+ u2

n−1 + u2
n = u1u2 + (u2u3 − u2u1) + (u3u4 − u3u2) + . . .

+(un−1un − un−1un−2) + (unun+1 − unun−1) (33.10)
= unun+1 ( As all other terms cancel out ) (33.11)

2

33.4 Euler’s Phi function

Theorem 33.3 Prove that the equation φ(n) = φ(n + 2) is satisfied by n = 2(2n - 1) whenever p and 2p - 1
are both odd primes.

Proof: First, note that for integers m and n such that gcd(m,n) = 1, φ(mn) = φ(m)φ(n) because φ is a
multiplicative function.

If 2p-1 is prime, then

φ(n) = φ(2(2p− 1)) = φ(2(2p− 1) = φ(2)φ(2p− 1) = 1.((2p− 1)− 1) = 2p− 2 (33.12)

Now, n + 2 = 2(2p - 1) + 2 = 4p. Since p is odd, we have

φ(n + 2) = φ(4p) = φ(4)φ(p) = 2(p− 1) = 2p− 2 (33.13)

∴ φ(n) = φ(n + 2) if n = 2(2p - 1) where both p and (2p - 1) are primes. 2
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33.5 Fermat’s Little Theorem

Theorem 33.4 Prove that if p is an odd prime and k is an integer satisfying 1 ≤ k ≤ (p-1), then the binomial

coefficient
(

p− 1
k

)
≡p (−1)k.

Proof:
(

p− 1
k

)
=

(p− 1)!
(p− 1− k)!k!

(33.14)

=
(p− 1)(p− 2) . . . (p− k)

k!
(33.15)

=
p{(p− 2)(p− 3) . . . (p− k))}

k!
+

(−1)11!{(p− 2)(p− 3) . . . (p− k))}
k!

(33.16)

=
p{(p− 2)(p− 3) . . . (p− k))}

k!
+

(−1)11!p{(p− 3)(p− 4) . . . (p− k))}
k!

+
(−1)22!{(p− 3)(p− 4) . . . (p− k))}

k!
(33.17)

=
... (33.18)

=
p{(p− 2)(p− 3) . . . (p− k))}

k!
+

(−1)11!p{(p− 3)(p− 4) . . . (p− k))}
k!

+ · · ·+ (−1)k−1(k − 1)!pk−1(p− k)
k!

+
(−1)k−1(k − 1)!pk

k!
+

(−1)kk!
k!

(33.19)

=
p{(p− 2)(p− 3) . . . (p− k))}

k!
+

(−1)11!p{(p− 3)(p− 4) . . . (p− k))}
k!

+ · · ·+ (−1)k−1(k − 1)!pk−1(p− k)
k!

+
(−1)k−1(k − 1)!pk

k!
+ (−1)k (33.20)

Now, from (33.20), we conclude that p{(p−2)(p−3)...(p−k))}
k! + (−1)11!p{(p−3)(p−4)...(p−k))}

k! + . . . + (−1)k−1(k−1)!pk−1(p−k)
k!

+ (−1)k−1(k−1)!pk

k! is an integer as (−1)k is an integer and left hand side of equation is also an integer. Also,
p is prime and k < p, hence gcd(p,k!) = 1. Since we can take out p common from p{(p−2)(p−3)...(p−k))}

k! +
(−1)11!p{(p−3)(p−4)...(p−k))}

k! + . . . + (−1)k−1(k−1)!pk−1(p−k)
k! + (−1)k−1(k−1)!pk

k! , it is divisible by p. Hence we get

p{(p− 2)(p− 3) . . . (p− k))}
k!

+
(−1)11!p{(p− 3)(p− 4) . . . (p− k))}

k!
≡p 0

+ · · ·+ (−1)k−1(k − 1)!pk−1(p− k)
k!

+
(−1)k−1(k − 1)!pk

k!
(33.21)

From (33.20) and (33.21), we get
(

p− 1
k

)
≡p (−1)k (33.22)

This completes the proof. 2
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Chapter 34

Tushar Chaudhary

34.1 Fibonacci numbers

Exercise 34.1 Show that F(n) is a multiple of 3 iff 4|n

Solution (=⇒)
F (n + 4) = F (n + 3) + F (n + 2)

= 2 ∗ F (n + 2) + F (n + 1)
= 3 ∗ F (n + 1) + F (n)

This proves that if F(n) is a multiple of 3, F(n+4) is also a multiple of 3. Since F(0) is 0(3*0), it goes on to say
that every fourth Fibonacci number is a multiple of 3. Hence if 4|n, F(n) is a multiple of 3.

(⇐=)
We know that gcd(F(n),F(n+1)) = 1.
So since 3|F (n), F (n + 1) can not be a multiple of 3. Similarly since 3|F (n + 4), F(n+3) can not be a multiple
of 3.
F(n+2) = F(n+1) + F(n)
Since 3|F (n) and F(n+1) is not a multiple of 3, F(n+2) can not be a multiple of 3.
Hence proved.

34.2 Chinese Remainder Theorem

Exercise 34.2 Under the definitions of Chinese Remainder Theorem, prove that the number of roots of the
equation f(x) ≡ 0 (mod n) is equal to the product of the number of roots of each of the equations f(x) ≡ 0 (mod
n1),f(x) ≡ 0 (mod n2),...,f(x) ≡ 0 (mod nk).

Solution By Corollary 33.22 in ”Introduction to Algorithms - Cormen, Leiserson, Rivest”, we know that the
equation

ax ≡ b(modn)

has d distinct solutions, where d = gcd(a, n) or no solutions. The equation has d distinct solutions in the case
when gcd(a,n) | b. Without the loss of generality, lets assume f(x) = ax - b.
Case 1 When the system has d distinct solutions.
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In this case, gcd(a,n) | b. Number of solutions will be equal to gcd(a,n). Since all ni are factors of n, they all
divide b. hence each of the k equations will have gcd(a, ni) solutions.
It remains to prove that

gcd(a, n) =
k∏
1

gcd(a, ni)

The above result follows from the fact that all nis are pairwise relatively prime.
Case 2 When the system has no solutions.
In this case, gcd(a,n) does not divide b.
Then gcd(gcd(a, n), b) = k 6= gcd(a, n). Hence gcd(a,n) = kk’ where k’ and b are relatively prime. Since all ni

are pairwise relatively prime, atleast one ni divides k’ and hence does not divide b. The equation corresponding
to that ni will have no roots. Hence proved.

34.3 Wilson’s Theorem

Exercise 34.3 Wilson’s Theorem states that if p is a prime, then (p−1)! ≡ −1(modp). Prove that the converse
is also true if p ≥ 2: in other words, show that if p is an integer, p ≥ 2and(p− 1)! ≡ −1(modp) then p is prime.

Solution Suppose that (p− 1)! ≡ −1(modp) and that 1 ≤ a ≤ p− 1 is a divisor of p. Thus

a|(p− 1)!

but also
(p− 1)! ≡ −1(moda)

⇒ a|(p− 1)! + 1

⇒ a|1
hence a must be 1.
So the only positive divisors of p are p and 1. Hence, if p ≥ 2, p is a prime.

Hence proved.

34.4 GCD, Continued Fractions

Exercise 34.4 In the Euclidean algorithm for finding gcd(a, b), we use repeated division with quotient and
remainder

a = q0b + r0

b = q1r0 + r1

r0 = q2r1 + r2

.....,

rk−2 = qkrk−1 + 0

Prove that the continued fraction for a
b is [q0 : q1, q2, ......, qk].
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Solution We prove by induction on k, the number of non-zero remainders got in the Euclidean algorithm. As
base case we consider k=0,1.

For k=0, a = q0b . The continued fraction for a
b in this case is simply [q0].

For k=1, a = q0b + r0; b = q1r0 + 0. The computation for the continued fraction in this case gives
a
b = q0 + r0

b
= q0 + 1

b
r0

= q0 + 1
q1

= [q0 : q1]

Propogation Step : If the result is true for the Euclidean Algorithm with k non-zero remainders and for continued
fractions with k terms, then the result holds for k+1 as well.

For the k+1 case, we have a = q0b + r0; b = q1r0 + r1; r1 = q2r1 + r2; .....; rk−1 = qk+1rk + 0
Now we know that for b, r0, the continued fraction is

q1 +
1

q2 + 1
q3+

1
....

Then a
b = q0 + r0

b
a

b
= q0 +

1
q1 + 1

q2+
1

q3+ 1
....

i.e [q0 : q1, q2, ......, qk+1]

Hence Proved

34.5 Fermat’s Little Theorem

I confess that Fermat’s Theorem as an isolated proposition has very little interest for me, because I
could easily lay down a multitude of such propositions, which one could neither prove nor dispose of.
–Karl Friedrich Gauss (1777-1855)

Exercise 34.5 (a)Suppose a is a quadratic residue modulo some prime p > 2. Prove that a is not a primitive
(b)Let p be a prime.What is the value of

∑p−1
a=1 ap mod p root mod p.

Solution (a) Assume a ≡ x2 mod p; Raising both sides to the power p−1
2 we get

a
p−1
2 ≡ xp−1 ≡ 1modp

by Fermat’s Little Theorem.

Thus a has at most order p−1
2 which implies that a cannot be a primitive root mod p since primitive roots

have order p-1.

Solution (b) By Fermat’s Little Theorem we have,

ap−1 ≡ 1modp
⇒ ap ≡ amodp

⇒ S :=
∑p−1

a=1 ap ≡ ∑p−1
a=1 a

= p(p−1)
2 modp
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If p = 2 then S ≡ 1mod2.
If p > 2, then S ≡ 0modp since p|p(p− 1) but does not divide 2.



Chapter 35

Keshav Kunal

35.1 Infinitude of Primes

Exercise 35.1 Use Bertrand’s Postulate to show that:

1. If n > 6, then n can be expressed as the sum of distinct primes.

2. The equation
1
n

+
1

n + 1
· · ·+ 1

n + k
= m

does not admit positive integer solutions.

3. The equation
n! = mk

has integer solutions if at least one of k, n or m is 1.

Solution: Bertrand’s Postulate states that if n > 0, then there is a prime p satisfying n < p ≤ 2n.

1. Proof by Induction:
Base: 7 = 5 + 2
I.H.:Assume true for all k, 6 < k ≤ n.
If n + 1 is a prime, we are done. Assume n + 1 is not a prime. Using the postulate, there exists a prime
p, n+1

/ 2 < p < n. Using the I.H., n + 1− p can be expressed as sum of distinct primes,say p1 + p2 . . . + pj .
Also, p > n + 1− p and hence n + 1 = p1 + p2 . . . + pj + p where each prime is distinct.

2. Case 1: 1 ≤ k < n.
1
n

+
1

n + 1
+ · · ·+ 1

n + k
<

1
n

+
1

n + 1
· · ·+ 1

2n
≤ 1

So, m < 1 and there is no integer solution.
Case 2: 1 ≤ n ≤ k.
Consider the biggest prime p, n < p ≤ n + k. Such a prime exists by Bertrand’s postulate.

1
n

+
1

n + 1
· · ·+ 1

n + k
=

Σk
i=0Πj 6=i(n + j)

Πjn + j

In the numerator, p divides all terms except the one corresponding to i = p − n. Also, p divides the
denominator. Hence the denominator does not divide the numerator and the value is not integral.
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3. Consider the prime factors of n!. If n! = mk for k ≥ 2, every prime factor should occur atleast twice in
the prime factorization of n!. Now, consider the largest prime p such that n/2 < p ≤ n. Clearly p|n! but
p2 6 | n! as p is the only number between 1 and n which divides p. So, there exist no solutions for k > 1.

Trivial solutions can be constructed when either of n, k or m is 1.

2

35.2 Quadratic Residues

Exercise 35.2 Show that very positive integer can be expressed as the sum of four squares.

Solution:

Claim 35.1 If two integers can be expressed as the sum of four squares, so can their product.

Proof. Assume n1 = a2 + b2 + c2 + d2 and n2 = x2 + y2 + z2 + t2. Note that n1 can be expressed as αᾱ, where
α = a + bi + cj + dk. Similarly, n2 = ββ̄, where β = x + yi + zj + tk. Now,

(a2 + b2 + c2 + d2)(x2 + y2 + z2 + t2) = αᾱββ̄

ββ̄ is real and so commutes with ᾱ. Thus,

n1n2 = αᾱββ̄ = αββ̄ᾱ

= αβᾱβ

= (ax− by − cz − dt)2 + (ay + bx + ct− dz)2 + (az − bt + cx + dy)2 + (at + bz − cy + dx)2

(35.1)

Hence the product can be expressed as the sum of four squares.
The next two claims will show that any prime number can be expressed as the sum of four squares.

Claim 35.2 There exist integers a, b, c, d such that a2 + b2 + c2 + d2 = mp, where m < p.

There are 1
2 (p− 1) quadratic residues in Zp. Since 0 is also a square,Zp contains 1

2 (p+1) squares. The two sets
{x2 + 1|x ∈ Zp} and {−x2|x ∈ Zp} contain 1

2 (p + 1) elements each in Zp. Now, 2 · 1
2 (p + 1) = p + 1 > number

of distinct elements in Zp. So, there exist integers such that x2 + y2 + 1 ≡p 0. x2 ≡p (p− x)2, so if 0 ≤ x < p,
either x or p− x < p

2 . There exist integers x, y with 0 ≤ x, y < p
2 such that

x2 + y2 + 12 + 02 ≡p 0 ⇒ x2 + y2 + 12 + 02 = mp

Now x2, y2 < (p
2 )2. Hence x2 + y2 + 12 + 02 < p2

2 + 1 < p2 for p > 2. So the factor m in 35.2 is less than p
which completes the proof of the claim.

Claim 35.3 Any odd prime p can be expressed as the sum of four squares.

From the previous claim we have,

a2 + b2 + c2 + d2 = mp, wherem < p
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case: m is even
a, b, c, d can be divided into two pairs such that a pair contains both even or both odd numbers. wlog assume
(a, b) and (c, d) form such pairs. Using

(
a + b

2
)2 + (

a− b

2
)2 + (

c + d

2
)2 + (

c− d

2
)2 =

1
2
(a2 + b2 + c2 + d2)

we can find a m′ < m such that m′p can be expressed as the sum of four squares.
case: m is odd
Choose numerically least x, y, z, t such that x ≡m a, y ≡m b, z ≡m c and t ≡m d. It is easy to see that

a2+b2+c2+d2 ≡m 0x2+y2+z2+t2 ≡m 0ax+by+cz+dt ≡m 0ay−bx−ct+dz ≡m 0az+bt−cx−dy ≡m 0at−bz+cy−dx ≡m 0

Using α = a− bi− cj − dk and the proof of 35.1, we get

(a2+b2+c2+d2)(x2+y2+z2+t2) = (ax+by+cz+dt)2+(ay−bx−ct+dz)2+(az+bt−cx−dy)2+(at−bz+cy−dx)2

Since numerically least values have been chosen, x, y, z, t < m
2 and hence

x2 + y2 + z2 + t2 = m′m <
(m

2

)2

· 4 = m2

Dividing the equation 35.2 by m2 gives m′p, wherem′ < m as the sum of four squares.
We have shown that for an odd prime p,we can progressively choose smaller values of m such that mp can be
expressed as sum of four squares. Hence following this method of descent, we can finally express p as the sum
of four squares.

Since every number has a unique prime factorization, using the previous claim we can express each prime(note
that 2 = 02 +02 +12 +12) as a sum of four squares and then use claim35.1 repeatedly to get four squares which
sum up to the number. 2

35.3 Approximation of Irrationals

Exercise 35.3 Show that for an irrational number α, the convergent pn

qn
is the best approximation to α relative

to any y satisfying

1. y < qn+1 if an+1 = 1

2. y < qn−1 + an+1qn/2 if an+1 > 1

Hence show that 22/7 is the best approximation to π relative to any integer less than 54. Solution: We shall
consider case (ii) when n is even. Choose β = 2α− pn/qn which implies α− pn

qn
= β − α. So, we have

pn

qn
< α <

pn+1

qn+1
< β <

pn−1

qn−1

Consider the interval I (pn

qn
, δ) where δ lies midway between pn+1

qn+1
and pn−1

qn−1
. We claim that it contains the

interval (pn

qn
, β) by proving the following claim

Claim: β < δ
Proof. A rational number lying strictly between pn

qn
and pn−1

qn−1
has the form

T (s, t) =
spn−1 + tpn

sqn−1 + tqn
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Note that δ = T (2, an+1) = T (1, an+1/2). We will show that β < T (1, θ) for θ ≤ an+1/2.

β < T (1, θ) ⇐⇒ 2α− pn

qn
<

pn−1

qn−1
− θ

qn−1(qn−1 + θqn)

But we know that,
pn−1

qn−1
=

pn

qn
+

1
qnqn−1

and α− pn

qn
<

1
qnqn+1

Using the above results we get,

2
qnqn+1

<
1

qnqn−1
− θ

qn−1(qn−1 + θqn)

=
1

qn(qn−1 + θqn)
⇒ qn(qn−1 + 2θqn) < an+1qn

⇒ qn−1

2qn
+ θ <

an+1

2

Hence as qn−1 < qn, the equation (35.3) holds if θ ≤ qn+1/2 which completes the proof of the claim.
Now suppose u/v is a rational number in interval I. As the length of this interval is greater than u/v − pn

qn
,

0 <
uqn − vpn

qnv
<

1
qn(qn−1 + an+1qn/2)

The numerators and denominators of these fractions are integers and hence we get v > qn−1 + an+1qn/2. This
implies that no rational number in the interval I has a denominator less than qn−1 + an+1qn/2 which implies
pn

qn
is the best approximation.

Note that the SICF representation of π = [3, 7, 15 . . .]. Using the theorem 22/7 is the best approximation
to π relative to any integer less than 1 + 15.7/2 = 53 1

2 . 2

35.4 Congruences

Exercise 35.4 Show that the equation

(7a + 1)x3 + (7b + 2)y3 + (7c + 4)z3 + (7d + 1)xyz = 0

has no non-trivial solutions

Solution: We will show that the equation

(7a + 1)x3 + (7b + 2)y3 + (7c + 4)z3 + (7d + 1)xyz ≡7 0

⇐⇒ (x3 + 2y3 + 4z3 + xyz ≡7 0

has no non-trivial solution which proves the result because any non-trivial solution to eqn.(35.4) will also be a
non-trivial solution to it. We will use the following claim,
Claim:x3 ≡7 0, +1,−1
This claim can be proved by considering all possible values of x modulo 7.

Consider the following cases for eqn.(35.4).
Case: z ≡7 0. The equation reduces to x3 + 2y3 ≡7 0 which does not have a non-trivial solution.
Case:z 6≡7 0. The equation reduces to x3 + 2y3 ± 4± xy ≡7 0. Consider the following sub cases.



35.5. DIVISIBILITY 171

1. x ≡7 0. The equation reduces to 2y3 ± 4 ≡7 0, which does not have a solution.

2. y ≡7 0. The equation reduces to x3 ± 4 ≡7 0, which does not have a solution.

3. x ≡7 ±1, y ≡7 ±1. The equation reduces to ±1± 2± 4± 1 ≡7 0, which does not have a solution.

2

35.5 Divisibility

Exercise 35.5 The Farey series Fn of order n is the increasing sequence of all irreducible fractions lying between
0 and 1 whose denominators do not exceed n, so 0 ≤ a ≤ b ≤ n and (a, b) = 1. For instance the Farey series
of order 4 is 0/1, 1/4.1/3, 1/2, 2/3 . . .. Assume that a/b,c/d,e/f are consecutive terms in the series Fn. Show
that:

1. bc− ad = 1

2. c/d = (a + e)/(b + f)

3. Use the above parts to find the two terms which succeed 3/7 in F11

Solution:

1. The general solutions of bx− ay = 1 are given by

x = x0 + ta , y = y0 + tb

Choose t such that n− b < y ≤ n. So x/y ∈ Fn and x/y ≥ c/d. We will show x/y = c/d by contradiction.
Assume x/y > c/d.So,we have

x/y − a/b ≥ 1/dy

c/d− a/b ≥ 1/bd

Also,

1/by = (bx− ay)/by

= x/y − a/b

≥ 1/dy + 1/bd

= (b + y)/bdy

> n/bdy

≥ 1/by

which is a contradiction.

2. From the previous part we know that,

bc− ad = 1
de− cf = 1

Solving for c and d, we get c = a+e
be−af and d = b+f

be−af .Hence we get the result.

3. The next two terms are 4/9 and 5/11.

2
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Chapter 36

Akrosh Gandhi

36.1 Euclidean Algorithm

Exercise 36.1 Prove that if m ≥ n, then a2n

+ 1 devides a2m − 1. Also show that a, m, n are positive integer
with m ≥ n, Then

gcd(a2m

+ 1, a2n

+ 1) =
{

1 if a is even
2 if a is odd

Proof: As we have given m > n let a ≥ 1, then we can say that m ≥ n+1 and (a2n+1−1) = (a2n

+1)(a2n −1)
so that (a2n

+ 1)|(a2n+1 − 1). since m ≥ n + 1, a2n+1 − 1 devides a2m − 1 because 2n+1|2m. so concludingly we
can say (a2n

+ 1)|(a2m − 1).
let d = gcd(a2m

+1, a2n

+1) then d|a2m

+1 and d|a2m

+1. From previous result (a2n

+1)|(a2m −1) so d|a2m −1,
Hence d|(a2m

+ 1)− (a2m − 1) , this implies d|2. d is 1 or 2 and hence gcd(a2m

+ 1, a2n

+ 1) is 1 or 2.
if a is even then a2m + 1 is odd so that gcd(a2m

+ 1, a2n

+ 1) = 1
if a is odd then a2m

+ 1 is even so that gcd(a2m

+ 1, a2n

+ 1) = 2

2

36.2 Linear Conrguence

Exercise 36.2 Let p be an odd prime and r > 1. Show that there are exactly two solution (mod pr) to the
congruence x2 ≡ 1(modpr). More generally, show that if gcd(a, pr) = 1 then congruence x2 ≡ a(modpr) either
has no solution or has two solution mod pr.

Proof: if x2 ≡ 1(modpr) then x2− 1 ≡ 0(modpr) so p|(x− 1)(x + 1). Since p|pr and p is prime, it follows that
either p|(x − 1) or p|(x + 1) (or both). However if it divides both factor then p divides 2 = (x + 1) − (x − 1),
which is impossible, since p is an odd prime. Hence p divides exactaly one of x± 1.
if p|(x− 1) then gcd(x + 1, pr) = 1, so from pr|(x− 1)(x + 1) we deduce that pr|(x− 1), that is, x ≡ 1(modpr).
Similarly, if p|(x + 1) then x ≡ −1(modpr). Hence the congruence x2 ≡ 1(modpr) has two solution mod pr,
namely x ≡ ±1(modpr).
More generally, if gcd(a, pr) = 1 and x2 ≡ a(modpr) then gcd(a, p) = 1. We need to show that if x2 ≡ y2(modpr)
with gcd(a, p) = 1 then y ≡ ±x(modpr). As before, we have pr|(x− y)(x + y), so either p|(x− y) or p|(x + y).
These cannot both occur, since otherwise p divides (x + y) + (x − y) = 2x, which is impossible. Hence either
gcd(x + y, pr) = 1 or gcd(x− y, pr) = 1 and therefore x ≡ y(modpr) or x ≡ −y(modpr). 2
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36.3 Periodic Continued Fraction

Exercise 36.3 Let N be a positive integer(not square). Let pj and qj are defined as notes. From continued
fraction of

√
N , let Sn is defined as in mn+

√
N

Sn
. Then proove for every non negative integer n we have p2

n−1 −
Nq2

n−1 = (−1)nSn.

Proof: As we know earlier that quadratic irrational α = m0+
√

N
S0

.Let put m0 = 0 and S0 = 1 then we have
α =

√
N . pj and qj are defined as pj = pj−1aj + pj−2 and qj = qj−1aj + qj−2.

Write
√

N = [a0, a1, . . . , an−1, an] This is periodic continued fraction so

√
N =

anpn−1 + pn−2

anqn−1 + qn−2
=

(mn +
√

N)pn−1 + Snpn−2

(mn +
√

N)qn−1 + Snqn−2

(36.1)

Which implies
Nqn−1 + (mnqn−1 + Snqn−2)

√
N = (mnpn−1 + Snpn−2) + pn−1N (36.2)

Since
√

N is irrational,

mnqn−1 + Snqn−2 = pn−1 and mnpn−1 + Snpn−2 = Nqn−1

By apply simple mathematics ,

p2
n−1 −Nq2

n−1 = Sn(pn−1qn−2 − pn−2qn−1) (36.3)

As follows from notes that pn−1qn−2 − pn−2qn−1 = (−1)n we proved that
p2

n−1 −Nq2
n−1 = (−1)nSn Hence proved.

2

36.4 Quadratic Reciprocity

Exercise 36.4 If p is a prime and p = x2 + ny2, where x, y, nZ, prove that gcd(x, y) = 1 and
⌊ −n

p

⌋
= 1.

Proof: Let say d = gcd(x, y), then d is divisor of both x and y, so d|x and d|y, but we have p = x2 + ny2

so d|p, but p is prime hence d is either 1 or p. if d is p then p|x ,but that is not possible,because it contradict
p > x2, so d is 1, hence gcd(x, y) = 1.
Next,

x2 + ny2 ≡ 0(modp) (36.4)
x2 ≡ −ny2(modp) (36.5)

Now it is clear that p couldnt devide y other wise p|y ⇒ p|x, and which is not possible.

Let y′y ≡ 1(modp) , then (xy′)2 ≡ −n(modp), so
⌊ −n

p

⌋
= 1.

2
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36.5 MultiplicativeFunction

Exercise 36.5 Let m, n ∈ N with gcd(m, n) = 1. Show that the positive divisors d of mn are precisely
the numbers of the form kl where k, l are any positive divisors of m, n respectively, and that each d can be
represented in this form in only one way.
A function f :N → N is called a multiplicative function if f(mn) = f(m)(n) whenever gcd(m, n) = 1. Let σ(n)
denote the sum af all positive divisors of n, and let τ(n) denote the number of positive divisors of n. Show that
σ and τ are multiplicative functions.

Proof: As gcd(m,n) = 1, we can write m = pe1
1 . . . per

r and n = qf1
1 . . . qfs

s , where p1, . . . , pr q1, . . . , qs are
distinct primes and e1, . . . , er, f1, . . . , fs > 0. By uniqueness fo prime factorisations, any positive divisord of mn
can be written uniquely as d = p1 . . . prq1 . . . qs with 0 ≤ ai ≤ ei for each i and 0 ≤ bj ≤ fj for each j. Thus,
writting k = pa1

1 . . . par
r and l = qb1

1 . . . bbs
s , we have d = kl,with k, l positive divisors of m, n respectively.

Conversely if k, l are positive divisors of m,n respectively then clearly d = kl is a positive divisors of mn. Each
d has a unique representation in this form: by the unique factorisation of d into primes, each primes factors pi,
occurring in d must be a factor of k (since pi does not divide n) and similarly each prime factor qj in d must
come from l.
Let by using the defination of σ(n), that it demote the sum af all positive divisors of n, so.

σ(mn) =
∑

d|mn

d (36.6)

=
∑

k|l,l|n
kl (36.7)

=


∑

k|m
k





∑

l|n
l


 (36.8)

= σ(m)σ(n). (36.9)

and,

τ(mn) =
∑

d|mn

1 =
∑

k|m

∑

l|n
1 =


∑

k|m
1





∑

l|n
1


 = τ(m)τ(n) (36.10)

so both σ and τ are multiplicative function. 2
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Chapter 37

Sai Pramod Kumar

37.1 Congruences

Exercise 37.1 (a)Suppose that m is either a power pα of a prime p > 2 or else twice an odd prime power.Prove
that, if x2 ≡m 1, then either x ≡m 1 or x ≡m −1.
(b)Prove that part (a) is always false if m is not of the form pα or 2pα.
(c)Prove that if m is an odd number which is divisible by r different primes, then the congruence x2 ≡m 1 has
2r different solutions for 0 and m.

Solution: (a)For example, suppose that m = 2pα.Since m|(x2 − 1) = (x + 1)(x − 1), we have α powers of p
appearing in both x + 1 and x − 1 together. But since p ≥ 3, it follows that p cannot divide both x + 1 and
x− 1(which are only 2 apart from each other), and so all the p′s must divide one of them.
If pα|x + 1, then x ≡pα −1. If pα|x − 1, then x ≡pα 1. Finally, since 2|(x2 − 1) it follows that x must be odd,
i.e., x ≡2 1 ≡2 −1.
Using the property of congruences:If a ≡m b, a ≡n b and m and n are relatively prime, then a ≡mn b, either
x ≡2pα 1 or x ≡2pα −1.
(b)If x is not of the form pα or 2pα or 4, the other possibilities are m = 2α where α > 2 or m=pαm′ where m′ 6= 2
Case 1: Suppose x = m/2 + 1 where m = 2α

x2 = m2/4 + 1 + m ≡m 1
=⇒ x ≡m 1 and x ≡m −1
But x = m/2 + 1 =⇒ x 6≡ 1 or x 6≡ −1 which is a contradiction.

Therefore m can’t be of the form 2α.
Case 2: Suppose m = pαm′, where m′ > 2 and pα ‖ m,
Using CRT, we can find a common solution for
x ≡pα 1 and x ≡m′ −1
=⇒ x2 ≡pα 1 and x2 ≡m′ 1
=⇒ x2 ≡pαm′ 1 ≡m 1
If x ≡m 1 =⇒ x ≡m′ 1 because gcd(m′, pα) = 1
Since x is a solution for x ≡m′ −1, its a contraction for x to satisfy both x ≡m′ −1 and x ≡m′ 1

If x ≡m −1 =⇒ x ≡pα −1 again raising a contradiction

Therefore m can’t be of the form pαm′.
Hence, part (a) is always false if m is not of the form pα or 2pα.
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(c)m = p1p2 . . . pr where p′is 1 ≤ i ≤ r are distinct primes
If x2 ≡m 1, ∀i.
Let x′i and x′′i be 2 solutions. Let yi be such that y2

i ≡pi 1

x ≡p1 y1

...
x ≡pr yr

Using CRT, x2 ≡pi y2
i ≡pi 1 =⇒ x2 ≡m 1

There are r equations and x an take 2 values for each equation. So, we have 2r different sets of r equations
giving 2r different solutions.Each distinct value of x for an equation x ≡pi

yi yields a different solution because,
if x1 and x2 yield the same solution then
x1 ≡m x2 =⇒ x1 ≡pi x2 ≡pi yi =⇒ x1 and x2 are not different solutions.Therefore there are 2r different
solutions.

2

37.2 Infinite Continued Fractions

Exercise 37.2 Prove that for n ≥ 1,

ξ − hn

kn
= (−1)n

k−2
n (ξn+1+ < 0, an, an−1, ..., a2, a1 >)−1

Solution:

ξ − rn = ξ − hn

kn
=

ξn+1hn + hn−1

ξn+1kn + kn−1
− hn

kn
(37.1)

=
kn(ξn+1hn + hn−1)− hn(ξn+1kn + kn−1)

kn(ξn+1kn + kn−1)
(37.2)

=
−(hnkn−1 − hn−1kn)
kn(ξn+1kn + kn−1)

(37.3)

=
−(−1)n−1

kn(ξn+1kn + kn−1)
(hiki−1 − hi−1ki = (−1)i−1) (37.4)

Claim 37.1 kn/kn−1 =< an, an−1, ..., a2, a1 >
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Proof:

kn/kn−1 =
ankn−1 + kn−2

kn−1
(37.5)

= an +
1

kn−1/kn−2
(37.6)

= an +
1

an−1 + 1
kn−2/kn−3

(37.7)

= an +
1

an−1 +
1

an−2 +
1

. . . + a1 +
k−1

k0

(k−1 = 0) (37.8)

=< an, an−1, ..., a1 >

2

Continuing from Eqn. 37.8

=
(−1)n

kn(ξn+1kn + kn−1)
(37.9)

=
(−1)n

k2
n(ξn+1 + kn−1/kn)

(37.10)

= (−1)n
k−2

n (ξn+1+ < 0, an, an−1, ..., a2, a1 >)−1 (37.11)

by using Claim 37.2, kn−1/kn = 1
kn/kn−1

=< 0, an, an−1, .., a2, a1 >

2

37.3 Diophantine Equations

Exercise 37.3 Let a, b and c be positive integers such that gcd(a, b) = 1.Assuming that c|ab is not an integer,
prove that the number N of solutions of ax+by = c in positive integers is bc/abc or bc/abc + 1.Assumng furthur
that c/a is an integer, prove that N = bc/abc.

Solution:

We know that ax + by = c has solutions only if gcd(a, b)|c and the solutions are of the form x = x1 + b
g t and

y = y1 − a
g t where (x1, y1) is a solutions and g = gcd(a, b).

For x to be positive, t > −(g/b)x1

For y to be positive, t > −(g/a)y1

We restrict t to the range −(g/b)x1 < t < (g/a)y1 for solutions to be in positive integers. The smallest allowable
value for t is b−(g/b)x1 + 1c and the largest value is −b−(g/a)y1 + 1c. The no.of solutions is then

N = −b−(g/a)y1 + 1c − b−(g/b)x1 + 1c+ 1 (37.12)
= −(b−(g/a)y1c+ b−(g/b)x1 + 1c) (37.13)
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Using theorem, bxc+ byc ≤ bx + yc ≤ bxc+ byc+ 1, where x and y are real numbers. we get,

−(b−(g/a)y1 − (g/b)x1c+ 1) ≤ N ≤ −(b−(g/a)y1 − (g/b)x1c)

Since −(g/a)y1 − (g/b)x1 = −(g/(ab))(by1 + ax1) = −gc/(ab), we have

−b−gc/(ab)c − 1 ≤ N ≤ −b−gc/(ab)c
We have g = 1,
Case 1: if c/(ab) is not an integer,
−b−c/(ab)c − 1 ≤ N ≤ −b−c/(ab)c
−b−c/(ab)c − 1 = bc/abc
Therefore, the number of solutions N is bc/abc or bc/abc+ 1.

Case 2: if c/a is an integer,
Then a specific solution of ax + by = c would be x1 = c/a and y1 = 0.
N = −(b−(g/a)y1c+ b−(g/b)x1 + 1c) = −(b−c/(ab)c+ 1) = b(c/(ab)c
Therefore, the number of solutions N is bc/(ab)c.

2

37.4 Primitive Roots

Exercise 37.4 Show that there are (p−1)/2 quadratic residues and (p−1)/2 quadratic nonresidues for an odd
prime p and find them.

Solution:

Denote quadratic residues by r, nonresidues by n.
r
(p−1)/2
1 = 1 and r

(p−1)/2
2 = 1 implies that r1r2 is also a quadratic residue.

n
(p−1)/2
1 = −1 and n

(p−1)/2
2 = −1 implies that n1n2 is also a quadratic residue.

r(p−1)/2 = 1 and n(p−1)/2 = −1 implies that rn is a quadratic non residue.

Let g be the primitive root of an odd prime p.We have g(p−1)/2 = −1. We can infer that all the even powers
of g,i.e g2, g4, g6..., gp−1, are quadratric residues because (g2)(p−1)/2 = g(p−1)/2g(p−1)/2 = (−1)2. Similarly,
g4, g6, ...., gp−1 can be reduced to (−1)k where k is even. Hence they are quadratic residues.
Similarly, we can claim that g1, g3, ...., gp−2 can be reduced to (−1)l where l is odd. Hence they are quadratic
non-residues.

Using the theorem that if gcd(a, n) = 1 and let a1, a2, ..., aφn be the positive integers less than n and relatively
prime to n and a is a primiive root of n, then

a, a2, ..., aφn

are congruent modulo n to a1, a2, ..., aφn
in some order.

Therefore, g1, g2, g3, ...., g(p−1) are equivalent to 1,2,...(p-1) in some order and there are (p-1)/2 quadratic
residues namely g2, g4, g6..., gp−1 and (p-1)/2 nonresidues namely g, g3, g5, ..., gp−2.

2
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37.5 Quadratic Reciprocity

Exercise 37.5 Prove that
∑p

m=1

⌊
am + b

p

⌋
= 0, assuming a 6≡p 0.Also prove that

⌊
ab
p

⌋
=

⌊
a
p

⌋⌊
b
p

⌋
and

⌊
a
p

⌋
=

⌊
b
p

⌋
ifa ≡p b .

Solution: There is a one-to-one mapping between m and am + b. ( For m1,m2, if am1 + b = am2 + b =⇒
m1 ≡p m2 which is a contradiction).
Therefore

∑p
m=1

⌊
am + b

p

⌋
=

∑p
m=1

⌊
m
p

⌋

We know that there are (p − 1)/2 quadratic residues and (p − 1)/2 quadratic nonresidues(shown in previous

poblem). For all quadratic residues i,

⌊
i
p

⌋
= 1 and all quadratic nonresidues j,

⌊
j
p

⌋
= −1. Thus the sum is

0.

Furthur,
⌊

ab
p

⌋
= (ab)(p−1)/2 = a(p−1)/2b(p−1)/2 =

⌊
a
p

⌋⌊
b
p

⌋
and

a ≡p b =⇒ a(p−1)/2 ≡p b(p−1)/2 =⇒
⌊

a
p

⌋
=

⌊
b
p

⌋

2
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Chapter 38

Tariq Aftab

38.1 Congruences of higher degree

Exercise 38.1 Look at the following Definition and answer the following questions:

Definition 38.1 A series
∑∞

n=1 an
zn

n is H-entire if an ∈ N+ for all n. Two H-entire series series
∑∞

n=0 an
zn

n

and
∑∞

n=0 bn
zn

n are said to be congruent (mod n) if an ≡ bn(mod n)

1. Show that if f (z ) and g(z ) are H-entire series, then the same is true of

f ′(z),
∫ z

0

f(t)dt, f(z)g(z),
f(z)m

m!
if f(0) = 0. (38.1)

2. Show that for any non-prime m > 4

(ez − 1)m−1 ≡ 0(mod m) (38.2)

In particular show that

(ez − 1)3 ≡ 2
∞∑

k=1

z2k+1

(2k + 1)!
(mod 4) (38.3)

3. For prime p, by using the periodicity (mod p) of the coefficients show that

(ez − 1)p−1 ≡ −
∞∑

k=1

zk(p−1)

(k(p− 1))!
(38.4)

Solution:

1. Let f(z) =
∑∞

n=0 an
zn

n! and g(z) =
∑∞

n=0 bn
zn

n! . We then find that

f ′(z) =
∞∑

n=0

an+1
zn

n!
(38.5)

∫ z

0

f(t)dt =
∞∑

n=1

an−1
zn

n!
(38.6)
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f(z)g(z) =
∞∑

n=0

n∑
m=0

ambn−m

(
n
m

)
zn

n!
(38.7)

Therefore all these series are H-entire.We now prove the final series to be H-entire using induction. Suppose
f(0) = 0 and f(z)m−1

(m−1)! are H-entire.Since f and f ′ are H-entire the same is true for

f(z)m−1

(m− 1)!
f ′(z) (38.8)

Therefore it is also true for ∫ z

0

f(t)m−1

(m− 1)!
f ′(t)dt =

f(z)m

m!
(38.9)

Which proves the last equation to be H-entire by induction.

2. By part 1 we see that (ez − 1)m−1 = (m − 1)!g(z) where g(z) is H-entire, since for non-prime m > 4;
(m− 1)! ≡ 0(mod m){let m = pq. Now if p 6= q as both p and q < (m− 1) the result is obvious. If p = q
then we have the case that m = p2 with p prime; if p 6= 2, p and 2p are both smaller than (p2 − 1) which
is the result}, we find

(ez − 1)m ==
m∑

h=0

(
m
h

)
ehz(−1)m−h =

∞∑
n=0

[
m∑

h=0

(−1)m−h

(
m
h

)
hn]

zn

n!
(38.10)

{We assume 00 = 1} therefore in particular we have

(ez − 1)3 =
∞∑

n=1

[3− 3× 2n + 3n]
zn

n
≡ [3 + 3n]

zn

n
(mod 4) (38.11)

Now we know that 32 ≡ 1(mod 4), hence 3 + 32p+1 ≡ 2(mod 4) and 3 + 32p ≡ 0(mod 4), which yields:

(ez − 1)3 ≡ 2
∞∑

k=1

z2k+1

(2k + 1)!
(mod 4) (38.12)

3. We now apply the formula with m = p− 1; and setting

(ez − 1)p−1 =
∞∑

n=1

an
zn

n!
, (38.13)

But the formula hp−1 = 1(mod p) implies that an+p−1 ≡ an(mod p), and the coefficients are periodic; on
the other hand, we know that (p− 1)! ≡ −1(mod p), hence:

(ez − 1)p−1 = zp−1 + . . . ≡ (−1)
zp−1

(p− 1)!
+ . . . (mod p) (38.14)

Which definitely gives us

(ez − 1)p−1 ≡ −
∞∑

k=1

zk(p−1)

[k(p− 1)]!
(mod p) (38.15)

2

38.2 Divisibility

Exercise 38.2 Let Fn = 22n

+ 1. Show that Fn divides Fm − 2 if n < m, and from this deduce that Fn and
Fm are relatively prime if m 6= n. From the latter statement deduce a proof of the existence of an infinitude of
primes.
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Solution: Let k ∈ N be such that m = n + k.Also let u = 22n

. We therefore have:

Fm − 2
Fn

=
Fn+k − 2

Fn
=

22n+k − 1
22n + 1

=
u2k − 1
u + 1

(38.16)

But we know that
u2k − 1
u + 1

= u2k−1 − u2k−2 + . . .− 1 (38.17)

Which is an integer.Hence Fn divides Fm−2.Now let d = gcd(Fn, Fm);since d | Fn from above we have d | Fm−2.
Also since d | Fm also we have d | 2. But because both Fn and Fm are odd, d = 1, and therefore Fn and Fm are
relatively prime. We also see that the mapping of N into the set of prime numbers which assigns to each integer
n the smallest prime factor of Fn is therefore injective, so there are indifinitely many prime numbers. 2

38.3 Euler’s Totient Function

Exercise 38.3 We define
Nk = e

P
p≤x logp (38.18)

With φ being the Euler’s Function and ν(n) the number of prime factors of n, show that:

ν(n) < k and
φ(n)

n
>

φ(Nk)
Nk

for n < Nk (38.19)

Solution: Let q = qa1
1 qa2

2 . . . q
aj

j be the prime factorization of n, with q1 ≤ q2 ≤ . . . ≤ qj . Then we’ll have

2 ≤ q1, 3 ≤ q2, . . . , pi ≤ qi for 1 ≤ i ≤ j (38.20)

This implies that:
Nj = 2.3 . . . pj ≤ n (38.21)

Since by Hypothesis, n < Nk and the sequence Nk is strictly increasing, we deduce that

j ≤ k − 1 and since ν(n) = j, (38.22)

we have ν(n) < k. Now

φ(n)
n

=
j∏

i=1

(1− 1
qi

) (38.23)

≥
j∏

i=1

(1− 1
pi

) (38.24)

≥
k−1∏

i=1

(1− 1
pi

) =
φ(Nk−1)

Nk−1
(38.25)

And since we have
φ(Nk−1)

Nk−1
=

1
(1− 1

pk
)
φ(Nk)

Nk
>

φ(Nk)
Nk

(38.26)

Therefore we finally have
φ(n)

n
>

φ(Nk)
Nk

(38.27)

2
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38.4 Fibonacci Numbers

Exercise 38.4 Show that the Fibonacci Numbers (Fn)n∈N, where F0 = 0, F1 = 1 and for n ≥ 0, Fn+2 =
Fn+1 + Fn, is equidistributed mod 5

Solution: We have mod 5: F0 = 0, F1 = 1, . . . , F20 = 0, F21 = 1 and therefore for n = 0 and n = 1 we
have Fn+20 = Fn. By induction one deduces from this that the sequence is periodic with period 20. It only
remains to be established by a further direct calculation that whenever n ∈ {0, 1, . . . , 19}, Fn exactly every
value mod 5 four times. More generally, Fn is periodic mod 5k where (k ≥ 1 is an integer.) with period 4.5k

and in each period it takes each value mod 5k four times, hence it is equidistributed mod 5k. In addition if Fn

is equidistributed mod q where q > 1 an integer, q is necessarily of the form 5k. 2

38.5 Tchebychev’s Theorem

Exercise 38.5 The Prime Number Theorem states that

π(x) = O(
x

logx
) (38.28)

We define
ν(x) =

∑

p≤x

logp (38.29)

Show the equivalence of the Prime Number Theorem with

1. ν(x) ∼ x

2. pn ∼ nlogn (pn being the nth prime number)

Solution:

1. We have
ν(x) =

∑

p≤x

logp ≤ logx
∑

p≤x

1 = π(x)logx (38.30)

Not ∀δ ∈ (0, 1) : ν(x) ≥ ∑
xδ<p≤x logp

≥ δlogx(π(x)− π(xδ)) (38.31)

δπ(x)logx− xδlogx (38.32)

Assuming the Prime Number Theorem we deduce from this that

limdν(x)
x
e ≤ 1 and limbν(x)

x
c ≥ δ (38.33)

for all δ ∈ (0, 1). Hence we have limbν(x)
x c ≥ 1 and therefore ν(x) ∼ x. Conversely if ν(x) ∼ x we have

using the first equation

limbπ(x)logx

x
c ≥ 1 (38.34)

from which we have

xδ ∼ π(x) and from limdπ(x)logx

x
e ≤ 1

δ
(38.35)

Which gives us the Prime Number Theorem
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2. For each n ≥ 1 we have π(pn) = n. If the Prime Number Theorem is assumed, we have when n →∞

n ∼ pn

logpn
(38.36)

logn ∼ logpn and pn ∼ nlogpn ∼ nlogn (38.37)

Let’s now assume that for all x ≥ 2
Pπ(x) ≤ x ≤ Pπ(x)+1 (38.38)

If for infinite n we assume that pn ∼ nlogn we deduce that for infinite x the extreme terms are equivalent
to π(x)logπ(x) and consequently

x ∼ π(x)logπ(x) (38.39)

And hence
logx ∼ logπ(x) and π(x) ∼ x

logπ(x)
∼ x

logx
(38.40)

2
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Chapter 39

Vikas Bansal

39.1 Generalisation of Euler’s Thoerem *

Theorem 39.1 Euler’s generalisation of Fermat’s theorem. If (a, k) = 1, then

aφ(m) ≡ 1(mod m).

Theorem 39.2 Prove that aλ(n) ≡ 1 (mod n), where

n = pe1
1 pe2

2 . . . pem
m is the prime expansion of n, gcd(a, n) = 1 and λ(n) = lcm(φ (pe1

1 ) , φ (pe2
2 ) , . . . , φ (pem

m )).

Proof: It is easy to see that φ (pei
i ) |λ(n) for each i. Also from Euler’s generalisation of Fermat’s Theorem

defined above,
aφ(p

ei
i ) ≡ 1(mod (pei

i )) for each i.

Raising to power λ(n)

φ(p
ei
i ) , we get aλ(n) ≡ 1(mod (pei

i )) for each i.

⇒ (pei
i ) | (aλ(n) − 1

)
for each i. Since pei

i ’s are coprime, their product also divides
(
aλ(n) − 1

)
.

Hence

n |
(
aλ(n) − 1

)

⇒ aλ(n) ≡ 1(mod n).

2

39.2 Primes and Congruence

Example 39.1 Let p and q be primes. If p2 divides 2q − 1, then 2( p−1
2 ) ≡ 1( mod p2) and moreover 2p−1 ≡ 1

(mod p2).

Proof: If p divides 2q − 1, then 2q ≡ 1 (mod p). Let d be the algebraic order of the group 2(modulo p). Then
d divides the prime q hence it must be q itself.
Using Fermat’s little theorem, 2p−1 ≡ 1 (mod p) and d also divides (p−1). Since (p−1) is even we get, q|(p−1).

189
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Or, p = 2kq + 1 for some integer k. Hence 2q = 2( p−1
2k ) ≡ 1 (mod p2).

Raising to kth power we get,
2

p−1
2 ≡ 1(mod p2).

Squaring this equation (modulo p2) completes the proof.

Example 39.2 Prove that n divides N =
∑

r=1 n− 3r(r!) iff n is a prime number.

Proof: N = 1(1!) + 2(2!) + . . . + (n− 3)[(n− 3)!]. r(r!) can be written as (r + 1)!− r!.Therefore

N = (2!− 1!) + (3!− 2!) + . . . + [(n− 2)!− (n− 3)!] = (n− 2)!− 1.

Multiplying through by n− 1 and adding n to both sides, we get

(n− 1)N + n = (n− 1)! + 1.

Using Wilson’s Theorem that n is a prime iff n divides (n− 1)! + 1, from the above equation we get n is prime
iff n divides (n− 1)N . But n and n− 1 are always relatively prime, so n divides N . 2

2

39.3 Diophantine Equations

Example 39.3 If y and z are natural numbers satisfying

y3 + 4y = z2.

prove that y is of the form 2k2.

Proof: Let k2 denote the greatest square which divides k and let y = nk2. Then n cannot have repeated
factors, o/w a square greater than k2 would divide y.

y3 + 4y = z2.

gives
y(y2 + 4) = z2,

nk2(y2 + 4) = z2,

hence
k2|z2 ⇒ k|z.

Let z = mk. Then nk2(y2 + 4) = z2 ⇒ n(y2 + 4) = m2. Or n(y2 + 4) is a perfect square. But according to
assumption, n does not have repeated factors. Thus all the factors of n must occur again in y2 + 4.i.e.

n|(y2 + 4).

Also since y = nk2, n|n2k4 + 4, and n|4. Hence n = 1, 2 or 4. Since n has no repeated factors, n 6= 4. If n = 1,
then y2 + 4 = m2. But no two squares differ by 4. Hence n has to be 2 for any solutions to exist. Hence y is of
the form 2k2.

2
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39.4 Chinese Remainder Theorem

Example 39.4 A square free integer is an integer n which is not divisible by the square of a prime. Show that
∀ k, ∃ m such that m + 1, m + 2, . . . m + k are all not square free.

Proof: Choose p1, p2, . . . pk to be k distinct primes,for any given k. Consider the k congruences,

x ≡ −1(mod p2
1).

x ≡ −2(mod p2
2).

x ≡ −3(mod p2
3).

...

x ≡ −k(mod p2
k).

Using the Chinese Remainder Theorem, these congruences have common solutions. Consider any solution x.
We obtain, p2

1|(x + 1), p2
2|(x + 2), . . . p2

k|(x + k). Hence each of x + 1, x + 2, . . . x + k is divisible by a square of
a prime. Therefore x is the required solution.

2

39.5 Algebraic Number Theory (Fields)

Example 39.5 Prove that for any prime p > 2 the sum

1
13

+
1
23

+
1
33

+ . . . +
1

(p− 1)3

if written as a rational number a/b has the property that p|a.

Theorem 39.3 Zp is a field iff m is a prime number.

Proof: Consider the field Zp. Since Zp is a field, each element (except 0) of Zp has a multiplicative inverse.
Therefore the term 1/a2 in the field Zp can be written as b2 where b is the multiplicative inverse of a in Zp.Hence
in the field Zp the equivalent problem is ”Prove that the sum 1

13 + 1
23 + 1

33 + . . . + 1
(p−1)3 is the zero element

of the field”. But the inverses of the elements 1,2,3 . . . , p− 1 are the same elements in some order. So the sum
1
13 + 1

23 + 1
33 + . . . + 1

(p−1)3 can be written as 13 + 23 + 33 + . . . + (p− 1)3 = p2(p−1)2

4 = a. Since p is a prime,
(p− 1)2 is divisible by 4. Therefore this sum is zero in Zp, except in the case p = 2 when divisibility by 4 will
not hold.

2

39.6 Greatest Integer Function

Example 39.6 Let S be the set of integers given by [nα] and [nβ] for n = 1,2,3 . . ., where [] denotes the
Greatest Integer Function. Prove that S consists of every positive integer, each appearing exactly once, if α and
β are positive irrational numbers such that 1

α + 1
β = 1.
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Proof: Suppose there is an integer k which does not belong to S. Hence ∃ an integer n such that

nα < k and (n + 1)α > k + 1. (39.1)

Similarly ∃ an integer m such that
mβ < k and (n + 1)β > k + 1. (39.2)

Using the properties of the Greatest Integer Function. Using the above inequalities 1.10 and 1.11, we get

n + m <
k

α
+

k

β
(39.3)

and (n + 1) + (m + 1) >
k + 1

α
+

k + 1
β

. (39.4)

⇒ (n + m) < k and (n + m + 1) > k. (39.5)
⇒ (k − 1) < (n + m) < k. (39.6)

Which is a contradiction since (m + n) is an integer and it cannot lie between two consecutive integers.
Now we prove that ∃ no integer which appears more than once.Suppose on the contrary this holds, i.e

∃ k such that [nα] = [mβ] = k. (39.7)

⇒ k

α
< n <

k + 1
α

and
k

β
< m <

k + 1
β

. (39.8)

⇒ k < n + m < k + 1. (adding the equations from 1.17) (39.9)

Which is a contradiction ( same as above). Hence the result holds. 2



Chapter 40
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40.1 Chinese Remainder Theorem

Exercise 40.1 (Genralization of CRT)

Let m1,m2, . . . , mk be positive integers.Then Given integers x1, x2, . . . , xk,the system of congruences

x ≡ xi(mod mi) 1 ≤ i ≤ k

has a solution iff xi ≡ xj (mod gcd(mi,mj)) forall i 6= j.Moreover if solution exist it is unique (mod
lcm(m1,m2, . . . , mk)).

Proof:

Suppose the solution of the system exist we have to show that xi ≡ xj (mod gcd(mi,mj)). we have,

x ≡ xi(mod mi)
and x ≡ xj(mod mj)

where 1 ≤ i, j ≤ k and i 6= j. clearly,

x ≡ xi(mod gcd(mi,mj))
and x ≡ xj(mod gcd(mi,mj))

Since solution of the system exist
⇒ xi ≡ xj(mod gcd(mi,mj))

Conversely, given xi ≡ xj (mod gcd(mi,mj)) we have to show that the solution of the system exist.

we will prove this by constructing the solution of the system using given condition.For this we will first take a
pair of congruence and reduce it into a single congruence.

Suppose we have a pair
x ≡ x1(mod m1) x ≡ x2(mod m2)

Then x = x1 + km1 for some k.Since x ≡ x2 (mod m2), This implies

x1 + km1 = x2 (mod m2)
or km1 = x2 − x2 (mod m2)

193
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let d = gcd(m1,m2) then d | x2 − x1.Thus,

k
m1

d
=

x2 − x− 1
d

(mod m2/d)

Since we know if gcd(a, n) = d then the congruence ax ≡ b (mod n) has a solution iff d | b and solution is
unique modulo n/d, this implies that the congruence has a unique solution t ≡ t1 (mod m2/d).Substituting
k = k1 + jm2/d in x = x1 + km1 we find x = x1 + k1m1 + jm1m2/d.Hence x = x1 + k1m1 (mod lcm(m1,m2)).

By repeating the process k − 1 times, we find the solution to a system of k congruences.

To prove uniqueness, Suppose system has two solutions x and y s.t.

x = xi(mod mi) 1 ≤ i ≤ k

and y = xi(mod mi) 1 ≤ i ≤ k

then x− y ≡ 0 (mod mi) for 1 ≤ i ≤ k, hence x ≡ y (mod lcm(m1,m2, . . . , mk)). 2

40.2 Euler’s φ-Function

Definition 40.1 (Generalization of Euler’s φ-function)

Let a1, a2, . . . , ak be a set of arbitrary integers.Define

ψ(n; a1, a2, . . . , ak) =| {h | 1 ≤ h ≤ n, h + aiis relative prime to n for all i, 1 ≤ i ≤ k} |
also denoted simply by ψ(n)

Example 40.1 For example if a1 = 0,a2 = 1 for k = 2 and n = 15 , then ψ(15) is the number of h , 1 ≤ h ≤ 15
, for which h+0 , h+1 both relative prime to 15. Since there are only three such values of h (namely h = 1, 7, 13),
⇒ ψ(15; 0, 1) = ψ(15) = 3.

Fact 40.1 for a1, a2, . . . , ak = 0 , ψ(n) = φ(n).

Exercise 40.2 (i) For relative prime numbers , ψ is multiplicative function. i.e.If (m,n)=1, ψ(mn) = ψ(m)ψ(n).

(ii) If canonical form of the n is pα1
1 pα2

2 . . . pαr
r and if ti, 1 ≤ i ≤ r,denotes the number of integers among

e1, e2, . . . , ek which are incongruent modulo pi, then

ψ(n) =
n

p1p2 . . . pr
(p1 − t1)(p2 − t2) . . . (pr − tr)

= n(1− t1
p1

)(1− t2
p2

) . . . (1− tr
pr

)

Proof:

(i) Choose integers r and s such that,

r ≡ 1(mod m), r ≡ 0(mod n)
s ≡ 0(mod m), s ≡ 1(mod n)

Then as x and y ranges over the complete set of residues 1, 2, . . . , m modulo m and 1, 2, . . . , n,modulo n respec-
tively , the mn numbers

z = rx + sy(mod mn)



40.2. EULER’S φ-FUNCTION 195

ranges over a complete set of residue , modulo mn.

For if ,

rx1 + sy1 ≡ rx2 + sy2(mod mn)
⇒ r(x1 − x2) ≡ s(y2 − sy1)(mod mn)

i.e.

r(x1 − x2) ≡ s(y2 − sy1)(mod m)
and r(x1 − x2) ≡ s(y2 − y1)(mod n)

Consequently , x1 ≡ x2(mod m) and y2 ≡ y1(mod n) and the mn values of the z form a complete set of residue
,modulo mn.

Hence for each ai , 1 ≤ i ≤ k, there exist a pair of integers xi and yi, Such that

ai ≡ rxi + syi(mod mn)

i.e.

ai ≡ 1.xi(mod m)
and ai ≡ 1.yi(mod n)

Now , we get

z + ai ≡ r(x + xi) + s(y + yi)(mod mn)

We know that z + ai is relative prime to mn iff it is relative prime to both m and n

Now, z + ai is relative prime to m iff x + xi is relative prime to m , and z + ai is relative prime to n iff y + yi

is relative prime to n.

This showes that x + ai is relative prime to m and y + ai is relative prime to n.This occurs for all i = 1, 2 . . . , k
simultaneously for all ψ(m) values of x of the set 1, 2, . . . , m and for all ψ(n) values of y of the set 1, 2 . . . , n.

This gives ψ(m)ψ(n) as the number of permissible values of z for which the z +a1, z +a2, . . . , z +ak are relative
prime to mn, which is ψ(mn).Hence proved.

(ii) First we will show that for power of prime, i.e for n = pα and α ≥ 1, value of ψ(pα) = pα−1(p− t) , where
t is number of distinct residues modulo p among a1, a2 . . . , ak.

Let r1, r2, . . . , rt be the non-negative residue , modulo p of a1, a2 . . . , ak.And arrange the number n in pα rows
each having n integers as

1 2 · · · p− 1 p
p + 1 p + 2 · · · 2p− 1 2p

...
...

. . .
...

...

(pα−1p + 1) (pα−1p + 2)
. . . (pα − 1) pα

Then in the first row there are p − t integers incongruent modulo p to the −r1,−r2, . . . ,−rt s.t. h + r1, h +
r2, . . . , h + rt are relative prime to p (and so relative prime to pα).

Also each number in a column headed by one of these p− t integers h would provide an h s.t. h + ri, 1 ≤ i ≤ t,
are each relative prime to p.Thus ψ(pα) = pα−1(p− t).
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Now ,Since ψ is multiplicative function,

ψ(n) = ψ(pα1
1 pα2

2 . . . pαr
r )

= ψ(pα1
1 )ψ(pα2

2 ) . . . ψ(pαr
r )

= pα1−1
1 (p1 − t1)pα2−1

2 (p2 − t2) . . . pαr−1
r (pr − tr)

=
n

p1p2 . . . pr
(p1 − t1)(p2 − t2) . . . (pr − tr)

= n(1− t1
p1

)(1− t2
p2

) . . . (1− tr
pr

)

2

40.3 General Number Theory

Definition 40.2 (Farey Sequences)

Farey sequence of order n is the increasing sequence of the irreduciable rational fractions between 0 and 1, both
inclusive, whose denominators do not exceeds n..

Example 40.2 For example , Farey sequence of order 6 is

0
1
,
1
6
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
5
6
,
1
1

Exercise 40.3 (i) if a1/b1 and a2/b2 be two consecutive terms in farey sequence,then a2b1 − a1b2 = 1.

(ii) if a1/b1, a2/b2 and a3/b3 are three consecutive terms of Farey sequence,then a2/b2 = (a1 + a3)/(b1 + b3).

(iii) Two consecutive term of a Farey sequence of order n , for n greater then 1,have different denominators.

(iv) Prove that the number of terms in the Farey sequence of order n is 1+φ(1)+φ(2)+ . . .+φ(n), where φ(k)
denotes Euler’s φ-function.

Proof:

(i) Since first two terms of any Farey sequence are 0/1 and 1/n so the result holds when n=1.Next, let n > 1.Let
a1/b1 and a2/b2 are terms in Farey sequence.Since the fractions in the sequence are in their lowest terms i.e.
(a1, b1) = (a2, b2) = 1.This showes that there exist a solution x = x0 and y = y0 of the equation

b1x + (−a1)y = 1

and so the general solution ,for t arbitrary integer , are x = x0 + a1t and y = y0 + b1t

Sice the set on integer w, n − b1 < w ≤ n, form a complete set of residues, modulo b1 , choose t so that
n − b1 < y0 + b1t ≤ n.Now since a1, b1 and y are all positive integers,we have from equation bx = 1 + ay that
x > 0. Moreover since b1x = 1 + a1y ≤ 1 + a1n,we have

x ≤ 1 + a1n

b1
≤ 1 + (b1 − 1)n

b1
< n

Hence,since (x, y) = 1, 0 ≤ n − b1 < y ≤ n and 0 < x < n this implies x/y is a term in the farey sequence of
order n.Now from b1x + (−a1)y = 1 , we have

x

y
− a1

b1
=

1
b1y

> 0
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and so
x− y =

1 + a1y − b1y

b1
≤ 1− y

b1
≤ 0

if x/y is not the successor of a1/b1,
x

y
− a2

b2
=

b2x− a2y

b2y
≥ 1

b2y

On the other hand,
a2

b2
− a1

b1
≥ 1

b1b2
⇒ x

y
− a1

b1
≥ b1 + y

b1b2y
>

n

b1b2y

however,
1

b1y
=

x

y
+

a1

b− 1
>

n

b1b2y
ge

1
b1y

Which is a contradiction.Therefore x/y must be a2/b2 and so a2b1 − a1b2 = 1.

(ii) The result follows from the last result , by applying it for two terms at a time and by simple manipulation.

(iii) Let a1/b1 and a2/b2 be two consecutive terms of the sequence.Given n > 1, so there are atleast three terms
in the Farey sequence of order n.If a1/b1 is the first term, the next term will be 1/n.If a2/b2 is the last term of
the sequence , a1/b1 is (n− 1)/n and a2/b2 is 1/1

Assume that b1 > 1 . If b1 = b2 , then b1 > a2 ≥ a1 + 1 and since a1 < a2 ≤ b1 − 1

a1

b1
<

a1

b1 − 1
<

a1 + 1
b1

≤ a2

b2

Since 0 < a1/(b1− 1) < 1,we have a term of the sequencse between two consecutive terms of the sequence. This
is a contradiction to our assumption that b1 = b2

(iv) Proof followe from the facts that if a/b is an element in Farey sequence then (a, b) = 1, and for any
b(denominator) , 1 ≤ b ≤ n the possible a s.t a/b is an element in Farey sequence are φ(a) exactly. 2

40.4 Quadratic Residue

Exercise 40.4 (Sum of Two Squares)

Let the positive integer n = lm2 , where l is not divisible by the square of a prime .Then n can be written as a
sum of two squares iff l contains no prime factor of the form 4m + 3 .

Answer For example 20 = 5.22 = 42 + 22 and 90 = 2.32.5 = 92 + 32 but 12 = 3.22 can not be written as a
sum of two squares.

Claim 40.1 If m > 1 and if k is the least integer greater than
√

m , then for an integer a relative prime to m
there exist positive integers x and y , 0 ≤ x, y ≤ k − 1 , such that either ay ≡ x(mod m) or ay ≡ −x (mod m)

Proof: Consider the set S = {ay + x|0 ≤ x, y ≤ k − 1}. Note that m lies between squares of k − 1 and k i.e
(k− 1)2 ≤ m < k2. Observe that k = 2 for m = 2 , k = 2 for m = 3 , and k ≤ (k− 1)2 when k ≥ 3.This showes
that k ≤ m for m ≥ 2.
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Since the cardinality of S is k2 (> m) , atleast two of them must belong to same residue class modulo m.Suppose

ay1 + x1 ≡ ay2 + x2(mod m)

we then have
a(y1 − y2) ≡ x2 − x1(mod m)

Since y1 6≡ y2(mod m) and x1 6≡ x2(mod m) (by assumption) , set x =| x2 − x1 | and y =| y1 − y2 | where
1 ≤ x, y ≤ k − 1.Then we have solutions x and y of either ay ≡ x (mod m) when y1 − y2 and x2 − x1 have sign
or ay ≡ −x (mod m) when y1 − y2 and x2 − x1 have opposite signs. 2

Claim 40.2 The product of two sum of two squares is sum of two squares.

Proof: Proof is direct from the identity

(p2 + q2)(r2 + s2) = (pr + qs)2 + (ps− qr)2

2

Corollary 40.1 If each m1,m2 . . . , mk ,∀k ≥ 2 , is a sum of two squares ,then m1.m2 . . .mk is also a sum of
two squares.

Claim 40.3 Every prime m of the form 4k + 1 can be written as a sum of two squares.

Proof: Since -1 is a quadratic residue of m = 4k + 1(?),

a2 + 1 ≡ 0(modm)

is solvable.By claim 0.1 there exist positive integer x and y , each less than
√

m , s.t.

ay ≡ ±x(modm)

Now ,
a2y2 + y2 ≡ 0(modm) ⇒ x2 + y2 ≡ 0(modm)

Hence
x2 + y2 = mn

where n ≥ 1. But , since x2 + y2 < 2m, p = x2 + y2. 2

Now we will prove the main result by usying these three claims-

Since

w2 ≡
{

0(mod4) when w is even
1(mod4) when w is odd

This implies for any x and y , x2 + y2 6≡ 3 (mod 4). Hence , no prime of the form 4m + 3 can be written as a
sum of two squares.Moreover every prime not of the form 4m +3 can be written as the sum of the two squares,
since 2 = 12 + 12.

⇒
Suppose that n = lm2 is a sum of two squares , we have to show that l can not have a prime factor of the form
4m + 3.

This is obvious for l = 1 and l = 2. Take l ≥ 3 . Let n = lm2 = a2 + b2, where ab 6= 0, d = (a, b), a = da0, b =
db0, (a0, b0) = 1
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If d > 1 , let d = qrd1 where r ≥ 1 and (d1, q) = 1.Since d2 | n , q | m and m = qsm1, where (m1, q) = 1.If
r > s, then 2r ≥ 2s + 2. Since the highest power of q deviding lm2 is not greater than 2s + 1, 2r ≤ 2s + 1.This
is a contradiction. Hence , since d2 | n and r ≤ s, we see that d2 | m2.say m2 = d2m2

0.This showes , since

lm2
0 =

a2 + b2

d2
= a2

0 + b2
0

we have a2
0 + b2

0 ≡ 0(modl). Next, let p be an odd prime factor of l. Since (a0, b0) = 1,(a0b0, p) = 1.Let c satisfy
the congruence a0c ≡ 1(modp).Then, since a2

0 + b2
0 ≡ 0(modp),

(a0c)2 + (b0c)2 ≡ 0(modp) ⇒ (b0c)2 ≡ −1(modp)

Now since -1 is quadratic residue of p, p must be of the form 4m + 1.

⇐
now we will show that ,when l contains no square of a prime and no prime factor of the form 4m + 3 , n = lm2

case1 : when l = 1 , we have n = m2 + 02

case2 : when l > 1 , let l = p1p2 . . . pk be canonical decomposition of l.Each of these prime is either 2 or
of the form 4m + 1 and so a sum of two squares. Hence from claim0.2, l is a sum of two squares , say
l = p2 + q2.Therefore

n = lm2 = (pm)2 + (qm)2

Fact 40.2 The Diophantine equation n = x2 + y2 is solvable in integers iff n has the property stated above.

40.5 Sylow Theorem

Theorem 40.3 If p is a prime and pα || O(G) then G has a subgroup of order pα , called Sylow p-subgroup G
or just Sylow subgroup.

Exercise 40.5 Using Sylow Theorem prove that,

(i) If a prime p divides the order of a finite group G (= pαm, (p,m) = 1), then G contain an element of the
order p.

(ii) using part (i), prove that there are exactly two isomorphism classes of groups of order 6.

Proof: (i) From Sylows theorem, let H be a subgroup of order pα and let x be an elemet of H s.t. x 6= 1(identity).
Since we know that the order of a element divides the order of the groups , this implies that x divides pα so it
is pr for some r , 0 < r ≤ α.Then xpr−1

has order p.

(ii)According to claim(i) a group of order 6 must contain an element of order 3 and an element of order 2.Let
x be an element of order 3 and y be an element of order 2 in G s.t.

G = {xiyj | 0 ≤ i ≤ 2, 0 ≤ j ≤ 1}
form a distinct element of group.For if xiyj = xpyq this implies xi−p = yq−j .Every power of x except the identity
has order 3, and every power of y except the identity has order 2.Thus xi−p = yq−j = 1, which shows that p = i
and q = j.Since G has order 6, the six element 1, x, x2, y, xy, x2y run through the whole group.In particular, yx
must be one of them.
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clearly yx 6= y because this will imply that x = 1, also y 6= 1, x, x2 for similer reasons.Therefore,

either yx = xy or yx = x2y

holds in G.Either of these relations , together with x3 = 1 and y2 = 1 form the multiplication table for the
group.Therefore there are atmost two isomorphism classes of order 6. 2


