
Numerical Analysis

Notes for Math 575A

William G. Faris
Program in Applied Mathematics

University of Arizona

Fall 1992

Contents

1 Nonlinear equations 5
1.1 Introduction . 5
1.2 Bisection . 5
1.3 Iteration . 9

1.3.1 First order convergence 9
1.3.2 Second order convergence 11

1.4 Some C notations . 12
1.4.1 Introduction . 12
1.4.2 Types . 13
1.4.3 Declarations . 14
1.4.4 Expressions . 14
1.4.5 Statements . 16
1.4.6 Function definitions 17

2 Linear Systems 19
2.1 Shears . 19
2.2 Reflections . 24
2.3 Vectors and matrices in C 27

2.3.1 Pointers in C . 27
2.3.2 Pointer Expressions 28

3 Eigenvalues 31
3.1 Introduction . 31
3.2 Similarity . 31
3.3 Orthogonal similarity . 34

3.3.1 Symmetric matrices 34
3.3.2 Singular values . 34
3.3.3 The Schur decomposition 35

3.4 Vector and matrix norms 37
3.4.1 Vector norms . 37

1

2 CONTENTS

3.4.2 Associated matrix norms 37
3.4.3 Singular value norms 38
3.4.4 Eigenvalues and norms 39
3.4.5 Condition number 39

3.5 Stability . 40
3.5.1 Inverses . 40
3.5.2 Iteration . 40
3.5.3 Eigenvalue location 41

3.6 Power method . 43
3.7 Inverse power method . 44
3.8 Power method for subspaces 44
3.9 QR method . 46
3.10 Finding eigenvalues . 47

4 Nonlinear systems 49
4.1 Introduction . 49
4.2 Degree . 51

4.2.1 Brouwer fixed point theorem 52
4.3 Iteration . 52

4.3.1 First order convergence 52
4.3.2 Second order convergence 54

4.4 Power series . 56
4.5 The spectral radius . 56
4.6 Linear algebra review . 57
4.7 Error analysis . 59

4.7.1 Approximation error and roundoff error 59
4.7.2 Amplification of absolute error 59
4.7.3 Amplification of relative error 61

4.8 Numerical differentiation . 63

5 Ordinary Differential Equations 65
5.1 Introduction . 65
5.2 Numerical methods for scalar equations 65
5.3 Theory of scalar equations 67

5.3.1 Linear equations . 67
5.3.2 Autonomous equations 67
5.3.3 Existence . 68
5.3.4 Uniqueness . 69
5.3.5 Forced oscillations 70

5.4 Theory of numerical methods 71
5.4.1 Fixed time, small step size 71
5.4.2 Fixed step size, long time 73

CONTENTS 3

5.5 Systems . 77
5.5.1 Introduction . 77
5.5.2 Linear constant coefficient equations 77
5.5.3 Stiff systems . 81
5.5.4 Autonomous Systems 82
5.5.5 Limit cycles . 84

6 Fourier transforms 87
6.1 Groups . 87
6.2 Integers mod N . 87
6.3 The circle . 89
6.4 The integers . 89
6.5 The reals . 89
6.6 Translation Invariant Operators 90
6.7 Subgroups . 92
6.8 The sampling theorem . 94
6.9 FFT . 95
æ

4 CONTENTS

Chapter 1

Nonlinear equations

1.1 Introduction

This chapter deals with solving equations of the form f(x) = 0, where f is
a continuous function.

The usual way in which we apply the notion of continuity is through
sequences. If g is a continuous function, and cn is a sequence such that
cn → c as n→∞, then g(cn)→ g(c) as n→∞.

Here is some terminology that we shall use. A number x is said to be
positive if x ≥ 0. It is strictly positive if x > 0. (Thus we avoid the mind-
numbing term “non-negative.”) A sequence an is said to be increasing if
an ≤ an+1 for all n. It is said to be strictly increasing if an < an+1 for
all n. There is a similar definition for what it means for a function to be
increasing or strictly increasing. (This avoids the clumsy locution “non-
decreasing.”)

Assume that a sequence an is increasing and bounded above by some
c < ∞, so that an ≤ c for all n. Then it is always true that there is an
a ≤ c such that an → a as n→∞.

1.2 Bisection

The bisection method is a simple and useful way of solving equations. It is
a constructive implementation of the proof of the following theorem. This
result is a form of the intermediate value theorem.

Theorem 1.2.1 Let g be a continuous real function on a closed interval
[a, b] such that g(a) ≤ 0 and g(b) ≥ 0. Then there is a number r in the

5

6 CHAPTER 1. NONLINEAR EQUATIONS

interval with g(r) = 0.

Proof: Construct a sequence of intervals by the following procedure.
Take an interval [a, b] on which g changes sign, say with g(a) ≤ 0 and
g(b) ≥ 0. Let m = (a + b)/2 be the midpoint of the interval. If g(m) ≥ 0,
then replace [a, b] by [a,m]. Otherwise, replace [a, b] by [m, b]. In either
case we obtain an interval of half the length on which g changes sign.

The sequence of left-hand points an of these intervals is an increasing
sequence bounded above by the original right-hand end point. Therefore
this sequence converges as n → ∞. Similarly, the sequence of right-hand
points bn is a decreasing sequence bounded below by the original left-hand
end point. Therefore it also converges. Since the length bn − an goes to
zero as n→∞, it follows that the two sequences have the same limit r.

Since g(an) ≤ 0 for all n, we have that g(r) ≤ 0. Similarly, since
g(bn) ≥ 0 for all n, we also have that g(r) ≥ 0. Hence g(r) = 0. 2

Note that if a and b are the original endpoints, then after n steps one
is guaranteed to have an interval of length (b− a)/2n that contains a root.

In the computer implementation the inputs to the computation involve
giving the endpoints a and b and the function g. One can only do a certain
number of steps of the implementation. There are several ways of accom-
plishing this. One can give the computer a tolerance and stop when the
the length of the interval does not exceed this value. Alternatively, one
can give the computer a fixed number of steps nsteps. The output is the
sequence of a and b values describing the bisected intervals.

void bisect(real tolerance, real a, real b, real (*g)(real))

{

real m ;

while(b - a > tolerance)

{

m = (a+b) / 2 ;

if(g(a) * g(m) <= 0.0)

b = m ;

else

a = m ;

display(a, b) ;

}

}

The construction here is the while loop, which is perhaps the most
fundamental technique in programming.

Here is an alternative version in which the iterations are controlled by
a counter n.

1.2. BISECTION 7

void bisect(int nsteps, real a, real b, real (*g)(real))

{

int n ;

real m ;

n = 0 ;

while(n < nsteps)

{

m = (a+b) / 2 ;

if(g(a) * g(m) <= 0.0)

b = m ;

else

a = m ;

n = n + 1 ;

display(n, a, b) ;

}

}

Algorithms such as this are actual computer code in the programming
language C. It should be rather easy to read even without a knowledge of
C. The key word void indicates that the bisect function is a procedure and
not a function that returns a meaningful value. The parameter declaration
real (*g)(real) indicates that g is a variable that can point to functions
that have been defined (real functions of real arguments). When reading
the text of a function such as bisect, it is useful to read the sign = as
“becomes.”

To make a complete program, one must put this in a program that calls
this procedure.

/* bisection */

#include <stdio.h>

#include <math.h>

typedef double real;

void bisect(int, real, real, real (*)(real));

real quadratic(real) ;

void fetch(int *, real *, real *);

void display(int, real, real) ;

int main()

{

int nsteps;

8 CHAPTER 1. NONLINEAR EQUATIONS

real a, b;

real (*f)(real);

f = quadratic;

fetch(nsteps, a, b);

display(nsteps,a,b);

bisect(nsteps,a,b,f);

return 0;

}

This program begins with declarations of a new type real and of four
functions bisect, quadratic, fetch, and display. The main program
uses these functions to accomplish its purpose; it returns the integer value
0 only to proclaim its satisfaction with its success.

One also needs to define the function quadratic.

real quadratic(real x)

{

return (x * x - 2.0) ;

}

This particular function has roots that are square roots of two. We shall
not go into the dismal issues of input and output involved with fetch and
display.

Another interesting question is that of uniqueness. If g is strictly in-
creasing on [a, b], then there is at most one solution of g(x) = 0.

The easiest way to check that g is strictly increasing on [a, b] is to check
that g′(x) > 0 on (a, b). Then for a ≤ p < q ≤ b we have by the mean value
theorem that g(q) − g(p) = g′(c)(q − p) > 0 for some c with p < c < q.
Thus p < q implies g(p) < g(q).

One can use a similar idea to find maxima and minima. Let g be a
continuous function on [a, b]. Then there is always a point r at which g
assumes its maximum.

Assume that g is unimodal, that is, that there exists an r such that g is
strictly increasing on [a, r] and strictly decreasing on [r, b]. The computa-
tional problem is to locate the point r at which the maximuum is assumed.

The trisection method accomplishes this task. Divide [a, b] into three
equal intervals with end points a < p < q < b. If g(p) ≤ g(q), then r must
be in the smaller interval [p, b]. Similarly, if g(p) ≥ g(q), then r must be
in the smaller interval [a, q]. The method is to repeat this process until a
sufficiently small interval is obtained.

Projects

1.3. ITERATION 9

1. Write a bisection program to find the square roots of two. Find them.

2. Use the program to solve sinx = x2 for x > 0.

3. Use the program to solve tanx = x with π/2 < x < 3π/2.

4. Write a trisection program to find maxima. Use it to find the mini-
mum of h(x) = x3/3 + cosx for x ≥ 0.

Problems

1. Show that sinx = x2 has a solution with x > 0. Be explicit about
the theorems that you use.

2. Show that sinx = x2 has at most one solution with x > 0.

3. Show that tanx = x has a solution with π/2 < x < 3π/2.

4. Show that x5 − x+ 1/4 = 0 has has at least two solutions between 0
and 1.

5. Show that x5 − x+ 1/4 = 0 has has at most two solutions between 0
and 1.

6. Prove a stronger form of the intermediate value theorem: if g is con-
tinuous on [a, b], then g assumes every value in [g(a), g(b)].

7. How many decimal places of accuracy does one gain at each bisection?

8. How many decimal places are obtained at each trisection?

1.3 Iteration

1.3.1 First order convergence

Recall the intermediate value theorem: If f is a continuous function on the
interval [a, b] and f(a) ≤ 0 and f(b) ≥ 0, then there is a solution of f(x) = 0
in this interval.

This has an easy consequence: the fixed point theorem. If g is a contin-
uous function on [a, b] and g(a) ≥ a and g(b) ≤ b, then there is a solution
of g(x) = x in the interval.

Another approach to numerical root-finding is iteration. Assume that
g is a continuous function. We seek a fixed point r with g(r) = r. We can
attempt to find it by starting with an x0 and forming a sequence of iterates
using xn+1 = g(xn).

10 CHAPTER 1. NONLINEAR EQUATIONS

Theorem 1.3.1 Let g be continuous and let xn a sequence such that xn+1 =
g(xn). Then if xn → r as n→∞, then g(r) = r.

This theorem shows that we need a way of getting sequences to converge.
One such method is to use increasing or decreasing sequences.

Theorem 1.3.2 Let g be a continuous function on [r, b] such that g(x) ≤ x
for all x in the interval. Let g(r) = r and assume that g′(x) ≥ 0 for
r < x < b. Start with x0 in the interval. Then the iterates defined by
xn+1 = g(xn) converge to a fixed point.

Proof: By the mean value theorem, for each x in the interval there is
a c with g(x)− r = g(x)− g(r) = g′(c)(x− r). It follows that r ≤ g(x) ≤ x
for r ≤ x ≤ b. In other words, the iterations decrease and are bounded
below by r. 2

Another approach is to have a bound on the derivative.

Theorem 1.3.3 Assume that g is continuous on [a, b] and that g(a) ≥ a
and g(b) ≤ b. Assume also that |g′(x)| ≤ K < 1 for all x in the interval.
Let x0 be in the interval and iterate using xn+1 = g(xn). Then the iterates
converge to a fixed point. Furthermore, this fixed point is unique.

Proof: Let r be a fixed point in the interval. By the mean value
theorem, for each x there is a c with g(x)− r = g(x)− g(r) = g′(c)(x− r),
and so |g(x)− r| = |g′(c)||x− r| ≤ K|x− r|. In other words each iteration
replacing x by g(x) brings us closer to r. 2

We say that r is a stable fixed point if |g′(r)| < 1. We expect convergence
when the iterations are started near a stable fixed point.

If we want to use this to solve f(x) = 0, we can try to take g(x) =
x − kf(x) for some suitable k. If k is chosen so that g′(x) = 1 − kf ′(x) is
small for x near r, then there should be a good chance of convergence.

It is not difficult to program fixed point iteration. Here is a version that
displays all the iterates.

void iterate(int nsteps, real x, real (*g)(real))

{

n = 0 ;

while(n < nsteps)

{

x = g(x) ;

n = n + 1 ;

display(n, x) ;

}

}

1.3. ITERATION 11

1.3.2 Second order convergence

Since the speed of convergence in iteration with g is controlled by g′(r), it
follows that the situation when g′(r) = 0 is going to have special properties.

It is possible to arrange that this happens! Say that one wants to solve
f(x) = 0. Newton’s method is to take g(x) = x − f(x)/f ′(x). It is easy to
check that f(r) = 0 and f ′(r) 6= 0 imply that g′(r) = 0.

Newton’s method is not guaranteed to be good if one begins far from
the starting point. The damped Newton method is more conservative. One
defines g(x) as follows. Let m = f(x)/f ′(x) and let y = x − m. While
|f(y)| > |f(x)| replace m by m/2 and let y = x−m. Let g(x) be the final
value of y.
Projects

1. Implement Newton’s method as a special case of the fixed point iter-
ations. Use this to find the largest root of sinx − x2 = 0. Describe
what happens if you start the iteration with .46.

2. Implement the damped Newton’s method. Use this to find the largest
root of sinx−x2 = 0. Describe what happens if you start the iteration
with .46.

3. Find all roots of 2 sinx − x = 0 numericallly. Use some version of
Newton’s method.

Problems

1. Let g(x) = (2/3)x + (7/3)(1/x2). Show that for every initial point
x0 above the fixed point the iterations converge to the fixed point.
What happens for initial points x0 > 0 below the fixed point?

2. Assume that x ≤ g(x) and g′(x) ≥ 0 for a ≤ x ≤ r. Show that
it follows that x ≤ g(x) ≤ r for a ≤ x ≤ r and that the iterations
increase to the root.

3. Prove the fixed point theorem from the intermediate value theorem.

4. In fixed point iteration with a g having continuous derivative and
stable fixed point r, find the limit of (xn+1−r)/(xn−r). Assume the
iterations converge.

5. Perhaps one would prefer something that one could compute numer-
ically. Find the limit of (xn+1 − xn)/(xn − xn−1) as n→∞.

6. How many decimal places does one gain at each iteration?

12 CHAPTER 1. NONLINEAR EQUATIONS

7. In fixed point iteration with a g having derivative g′(r) = 0 and
continuous second derivative, find the limit of (xn+1 − r)/(xn − r)2.

8. Describe what this does to the decimal place accuracy at each itera-
tion.

9. Calculate g′(x) in Newton’s method.

10. Show that in Newton’s method f(r) = 0 with f ′(r) 6= 0 implies
g′(r) = 0.

11. Calculate g′′(x) in Newton’s method.

12. Consider Newton’s method for x3−7 = 0. Find the basin of attraction
of the positive root. Be sure to find the entire basin and prove that
your answer is correct. (The basin of attraction of a fixed point of
an interation function g is the set of all initial points such that fixed
point iteration starting with that initial point converges to the fixed
point.)

13. Consider Newton’s method to find the largest root of sinx− x2 = 0.
What is the basin of attraction of this root? Give a mathematical
argument that your result is correct.

14. Show that in Newton’s method starting near the root one has either
increase to the the root from the left or decrease to the root from
the right. (Assume that f ′(x) and f ′′(x) are non-zero near the root.)
What determines which case holds?

15. Assume that |xn+1 − r| ≤ K|xn − r|2 for all n ≥ 0. Find a condition
on x0 that guarantees that xn → r as n→∞.

16. Is the iteration function in the damped Newton’s method well-defined?
Or could the halving of the steps go on forever?

1.4 Some C notations

1.4.1 Introduction

This is an exposition of a fragment of C sufficient to express numerical
algorithms involving only scalars. Data in C comes in various types. Here
we consider arithmetic types and function types.

A C program consists of declarations and function definitions. The dec-
larations reserve variables of various types. A function definition describes
how to go from input values to an output value, all of specified types. It

1.4. SOME C NOTATIONS 13

may also define a procedure by having the side effect of changing the values
of variables.

The working part of a function definition is formed of statements, which
are commands to perform some action, usually changing the values of vari-
ables. The calculations are performed by evaluating expressions written
in terms of constants, variables, and functions to obtain values of various
types.

1.4.2 Types

Arithmetic

Now we go to the notation used to write a C program. The basic types
include arithmetic types such as:

char

int

float

double

These represent character, integer, floating point, and double precision
floating point values.

There is also a void type that has no values.
A variable of a certain type associates to each machine state a value of

this type. In a computer implementation a variable is realized by a location
in computer memory large enough to hold a value of the appropriate type.

Example: One might declare n to be an integer variable and x to be a
float variable. In one machine state n might have the value 77 and x might
have the value 3.41.

Function

Another kind of data object is a function. The type of a function depends
on the types of the arguments and on the type of the value. The type of the
value is written first, followed by a list of types of the arguments enclosed
in parentheses.

Example: float (int) is the type of a function of an integer argument
returning float. There might be a function convert of this type defined in
the program.

Example: float (float (*)(float), float, int) is the type of a
function of three arguments of types float (*)(float), float, and int

returning float. The function iterate defined below is of this type.
A function is a constant object given by a function definition. A function

is realized by the code in computer memory that defines the function.

14 CHAPTER 1. NONLINEAR EQUATIONS

Pointer to function

There are no variable functions, but there can be variables of type pointer
to function. The values of such a variable indicate which of the function
definitions is to be used.

Example: float (*)(int) is the type of a pointer to a function from
int to float. There could be a variable f of this type. In some machine
state it could point to the function convert.

The computer implementation of pointer to function values is as ad-
dresses of memory locations where the functions are stored.

A function is difficult to manipulate directly. Therefore in a C expression
the value of a function is not the actual function, but the pointer associated
with the function. This process is known as pointer conversion.

Example: It is legal to make the assignment f = convert.

1.4.3 Declarations

A declaration is a specification of variables or functions and of their types.

A declaration consists of a value type and a list of declarators and is
terminated by a semicolon. These declarators associate identifiers with the
corresponding types.

Example: float x, y ; declares the variables x and y to be of type
float.

Example: float (*g)(float) ; declares g as a pointer to function
from float to float.

Example: float iterate(float (*)(float), float, int) ; de-
clares a function iterate of three arguments of types float (*)(float),
float, and int returning float.

1.4.4 Expressions

Variables

An expression of a certain type associates to each machine state a value of
this type.

Primary expressions are the expressions that have the highest prece-
dence. Constants and variables are primary expressions. An arbitrary
expression can be converted to a primary expression by enclosing it in
parentheses.

Usually the value of the variable is the data contained in the variable.
However the value of a function is the pointer that corresponds to the
function.

1.4. SOME C NOTATIONS 15

Example: After the declaration float x, y ; and subsequent assign-
ments the variables x and y may have values which are float.

Example: After the declaration float (*g)(float) ; and subsequent
assignments the variable g may have a pointer to function on float returning
a float value.

Example: After the declaration float iterate(float (*)(float),

float, int) ; and a function definition the function iterate is defined.
Its value is the pointer value that corresponds to the function. Thus if h
is a variable which can point to such a function, then the assignment h =

iterate ; is legal.

Function calls

A function call is an expression formed from a pointer to function expression
and an argument list of expressions. Its value is obtained by finding the
pointer value, evaluating the arguments and copying their values, and using
the function corresponding to the pointer value to calculate the result.

Example: Assume that g is a function pointer that has a pointer to
some function as its value. Then this function uses the value of x to obtain
a value for the function call g(x).

Example: The function iterate is defined with the heading iterate(

float (*g)(float), float x, float n). A function call iterate(square,
z, 3) uses the value of iterate, which is a function pointer, and the val-
ues of square, x, and 3, which are function pointer, float, and integer. The
values of the arguments square, z, and 3 are copied to the parameters g,
x, and n. The computation described in the function definition is carried
out, and a float is returned as the value of the function call.

Casts

A data type may be changed by a cast operator. This is indicated by
enclosing the type name in parentheses.

Example: 7 / 2 evaluates to 3 while (float)7 / 2 evaluates to 3.5.

Arithmetic and logic

There are a number of ways of forming new expressions from old.
The unary operators + and - and the negation ! can form new expres-

sions.
Multiplicative expressions are formed by the binary operators *, / and

%. The last represents the remainder in integer division.
Additive expressions are formed by the binary operators + and -.

16 CHAPTER 1. NONLINEAR EQUATIONS

Relational expressions are formed by the inequalities < and <= and >

and >=.
Equality expressions are formed by the equality and negated equality ==

and !==.
Logical AND expression are formed by &&.
Logical OR expression are formed by ||.

Assignments

Another kind of expression is the assignment expression. This is of the
form variable = expression. It takes the expression on the right, evaluates
it, and assigns the value to the variable on the left (and to the assignment
expression). This changes the machine state.

An assignment is is read variable “becomes” expression.
Warning: This should be distinguished from an equality expression of the

form expression == expression. This is read expression “equals” expression.
Example: i = 0

Example: i = i + 1

Example: x = g(x)

Example: h = iterate, where h is a function pointer variable and
iterate is a function constant.

1.4.5 Statements

Expression statements

A statement is a command to perform some action changing the machine
state.

Among the most important are statements formed from expressions
(such as assignment expressions) of the form expression ;

Example: i = 0 ;

Example: i = i + 1 ;

Example: x = g(x) ;

Example: h = iterate ;, where h is a function pointer variable and
iterate is a function constant.

In the compound statement part of a function definition the statement
return expression ; stops execution of the function and returns the value
of the expression.

Control statements

There are several ways of building up new statements from old ones. The
most important are the following.

1.4. SOME C NOTATIONS 17

A compound statement is of the form:
{ declaration-list statement-list }
An if-else statement is of the form:
if (expression) statement else statement
A while statement is of the form:
while (expression) statement
The following pattern of statements often occurs:
expr1 ; while (expr2) { statement expr 3; }
Abbreviation: The above pattern is abbreviated by the for statement

of the form:
for(expr1 ; expr2 ; expr3) statement

1.4.6 Function definitions

A function definition begins with a heading that indicates the type of the
output, the name of the function, and a parenthesized parameter list. Each
element of the parameter list is a specification that identifies a parameter
of a certain type. The body of a function is a single compound statement.

Example: The definition of square as the squaring function of type
function of float returning float is

float square(float y)

{

return y*y ;

}

The definition of iterate (with parameters g, x, n of types pointer to
function of float returning float, float, and integer) returning float is

float iterate(float (*g)(float), float x, float n)

{

int i ;

i = 0 ;

while (i < n) do

{

x = g(x) ;

i = i + 1 ;

}

return x ;

}

Example: Consider the main program

18 CHAPTER 1. NONLINEAR EQUATIONS

main()

{

float z, w ;

z = 2.0 ;

w = iterate(square, z, 3) ;

}

The function call iterate(square, z, 3) has argument expressions
which are a function square, a float z, and an integer 3. These arguments
are evaluated and the values are copied to the parameters g, x, and n,
which are pointer to function, float, and integer objects. In the course of
evaluation the parameter x changes its value, but z does not change its
value of 2.0. The value returned by iterate(square,z,3) is 256.0. The
ultimate result of the program is to assign 2.0 to z and 256.0 to w.

Chapter 2

Linear Systems

This chapter is about solving systems of linear equations. This is an al-
gebraic problem, and it provides a good place in which to explore matrix
theory.

2.1 Shears

In this section we make a few remarks about the geometric significance of
Gaussian elimination.

We begin with some notation. Let z be a vector and w be another
vector. We think of these as column vectors. The inner product of w and
z is wT z and is a scalar. The outer product of z and w is zwT , and this is
a matrix.

Assume that wT z = 0. A shear is a matrix M of the form I + zwT . It
is easy to check that the inverse of M is another shear given by I − zwT .

The idea of Gaussian elimination is to bring vectors to a simpler form
by using shears. In particular one would like to make the vectors have
many zero components. The vectors of concern are the column vectors of
a matrix.

Here is the algorithm. We want to solve Ax = b. If we can decompose
A = LU , where L is lower triangular and U is upper triangular, then we
are done. All that is required is to solve Ly = b and then solve Ux = y.

In order to find the LU decomposition of A, one can begin by setting
L to be the identity matrix and U to be the original matrix A. At each
stage of the algorithm on replaces L by LM−1 and U by MU , where M is
a suitably chosen shear matrix.

The choice of M at the jth stage is the following. We take M = I+zej ,

19

20 CHAPTER 2. LINEAR SYSTEMS

where ej is the jth unit basis vector in the standard basis. We take z to
have non-zero coordinates zi only for index values i > j. Then M and M−1

are lower triangular matrices.
The goal is to try to choose M so that U will eventually become an

upper triangular matrix. Let us apply M to the jth column uj of the
current U . Then we want to make Muj equal to zero for indices larger
than j. That is, one must make uij + ziujj = 0 for i > j. Clearly this can
be done, provided that the diagonal element ujj = 0.

This algorithm with shear transformations only works if all of the diag-
onal elements turn out to be non-zero. This is somewhat more restrictive
than merely requiring that the matrix A be non-singular.

Here is a program that implements the algorithm.

/* lusolve */

#include <stdio.h>

#include <stdlib.h>

typedef double real;

typedef real * vector;

typedef real ** matrix;

vector vec(int);

matrix mat(int,int);

void triangle(matrix, matrix, int);

void column(int, matrix, matrix, int);

void shear(int, matrix, matrix, int);

void solveltr(matrix, vector, vector, int);

void solveutr(matrix, vector, vector, int);

void fetchdim(int*);

void fetchvec(vector, int);

void fetchmat(matrix, int, int);

void displayvec(vector, int);

void displaymat(matrix, int, int);

int main()

{

int n;

vector b, x, y;

matrix a, l;

2.1. SHEARS 21

fetchdim(&n);

a = mat(n,n);

b = vec(n);

x = vec(n);

y = vec(n);

l = mat(n,n);

fetchmat(a,n,n);

displaymat(a,n,n);

fetchvec(b,n);

displayvec(b,n);

triangle(a,l,n);

displaymat(a,n,n);

displaymat(l,n,n);

solveltr(l,b,y,n);

displayvec(y,n);

solveutr(a,y,x,n);

displayvec(x,n);

return 0;

}

In C the vector and matrix data types may be implemented by pointers.
These pointers must be told to point to available storage regions for the
vector and matrix entries. That is the purpose of the following functions.

vector vec(int n)

{

vector x;

x = (vector) calloc(n+1, sizeof(real));

return x ;

}

matrix mat(int m, int n)

{

int i;

matrix a;

a = (matrix) calloc(m+1, sizeof(vector));

22 CHAPTER 2. LINEAR SYSTEMS

for (i = 1; i <= m ; i = i + 1)

a[i] = vec(n);

return a ;

}

The actual work in producing the upper triangular matrix is done by the
following procedure. The matrix a is supposed to become upper triangular
while the matrix l remains lower triangular.

void triangle(matrix a, matrix l, int n)

{

int j;

for (j=1 ;j<=n; j= j+1)

{

column(j,a,l,n);

shear(j, a, l,n);

}

}

The column procedure computes the proper shear and stores it in the
lower triangular matrix l.

void column(int j, matrix a, matrix l, int n)

{

int i;

for(i = j; i <= n; i = i+1)

l[i][j] = a[i][j] / a[j][j];

}

The shear procedure applies the shear to bring a closer to upper trian-
gular form.

void shear(int j, matrix a, matrix l, int n)

{

int k, i;

for(k=j; k<= n ; k = k+1)

for(i = j+1; i <= n; i = i + 1)

a[i][k] = a[i][k] - l[i][j] * a[j][k];

}

The actual solving of lower and upper triangular systems is routine.

2.1. SHEARS 23

void solveltr(matrix l, vector b, vector y, int n)

{

int i, j;

real sum;

for(i = 1; i <= n; i=i+1)

{

sum = b[i];

for(j= 1; j< i; j = j+1)

sum = sum - l[i][j]*y[j];

y[i] = sum;

}

}

void solveutr(matrix u, vector y, vector x, int n)

{

int i, j;

double sum;

for(i = n; i >=1; i=i-1)

{

sum = y[i];

for(j= i+1; j<= n;j = j+1)

sum = sum - u[i][j]*x[j];

x[i] = sum / u[i][i];

}

}

It would be nicer to have an algorithm that worked for an arbitrary
non-singular matrix. Indeed the problem with zero diagonal elements can
be eliminated by complicating the algorithm.

The idea is to decompose A = PLU , where P is a permutation matrix
(obtained by permuting the rows of the identity matrix). Then to solve
Ax = b, one solves LUx = P−1b by the same method as before.

One can begin by setting P to be the identity matrix and L to be the
identity matrix and U to be the original matrix A. The algorithm uses
shears as before, but it is also allowed to use permutations when it is useful
to get rid of zero or small diagonal elements.

Let R be a permutation that interchanges two rows. Then we replace
P by PR−1, L by RLR−1, and U by RU . Then P remains a permutation
matrix, L remains lower triangular, and U is modified to obtain a non-zero
diagonal element in the appropriate place.
Projects

1. Write a program to multiply a matrix A (not necessarily square) times

24 CHAPTER 2. LINEAR SYSTEMS

a vector x to get an output vector b = Ax.

Problems

1. Check the formula for the inverse of a shear.

2. Show that a shear has determinant one.

3. Describe the geometric action of a shear in two dimensions. Why is
it called a shear?

4. Consider a transformation of the form M = I + zwT , but do not
assume that wT z = 0. When does this have an inverse? What is the
formula for the inverse?

2.2 Reflections

Gaussian elimination with LU decomposition is not the only technique for
solving equations. The QR method is also worth consideration.

The goal is to write an arbitrary matrix A = QR, where Q is an orthog-
onal matrix and R is an upper triangular matrix. Recall that an orthogonal
matrix is a matrix Q with QTQ = I.

Thus to solve Ax = b, one can take y = QTb and solve Rx = y.
We can define an inner product of vectors x and y by x · y = xTy. We

say that x and y are perpendicular or orthogonal if x · y = 0.
The Euclidean length (or norm) of a vector x is |x| =

√
x · x. A unit

vector u is a vector with length one: |u| = 1.
A reflection P is a linear transformation of the form P = I−2uuT , where

u is a unit vector. The action of a reflection on a vector perpendicular to
u is to leave it alone. However a x = cu vector parallel to u is sent to its
negative.

It is easy to check that a reflection is an orthogonal matrix. Further-
more, if P is a reflection, then P 2 = I, so P is its own inverse.

Consider the problem of finding a reflection that sends a given non-zero
vector a to a multiple of another given unit vector b . Since a reflection
preserves lengths, the other vector must be ±|a|b.

Take u = cw, where w = a ± |a|b, and where c is chosen to make u a
unit vector. Then c2w · w = 1. It is easy to check that w · w = 2w · a.
Furthermore,

Pa = a− 2c2wwT · a = a−w = ∓|a|b. (2.1)

Which sign should we choose? We clearly want w ·w > 0, and to avoid
having to choose a large value of c we should take it as large as possible.

2.2. REFLECTIONS 25

However w ·w = 2a · a ± 2|a|b · a. So we may as well choose the sign so
that ±b · a ≥ 0.

Now the goal is to use successive reflections in such a way that Pn · · ·P1A =
R. This gives the A = QR decomposition with Q = P1 · · ·Pn.

One simply proceeds through the columns of A. Fix the column j.
Apply the reflection to send the vector aij for j ≤ i ≤ n to a vector that is
non-zero in the jj place and zero in the ij place for j ≤ i ≤ n.

We have assumed up to this point that our matrices were square matri-
ces, so that there is some hope that the upper triangular matrix R can be
inverted. However we can also get a useful result for systems where there
are more equations than unknowns. This corresponds to the case when A
is an m by n matrix with m > n. Take b to be an m dimensional vector.
The goal is to solve the least-squares problem of minimizing |Ax− b| as a
function of the n dimensional vector x.

In that case we write QTA = R, where Q is m by m and R is m by n.
We cannot solve Ax = b. However if we look at the difference Ax − b we
see that

|Ax− b| = |Rx− y|, (2.2)

where y = QTx.
We can try to choose x to minimize this quantity. This can be done by

solving an upper triangular system to make the first n components of Rx−y
equal to zero. (Nothing can be done with the other m−n components, since
Rx automatically has these components equal to zero.)

The computer implementation of the QR algorithm is not much more
complicated than that for the LU algorithm. The work is done by a trian-
gulation procedure. It goes throught the columns of the matrix a and finds
the suitable unit vectors, which it stores in another matrix h. There is never
any needed to actually compute the orthogonal part of the decomposition,
since the unit vectors for all of the reflections carry the same information.

void triangle(matrix a, matrix h, int m, int n)

{

int j ;

for (j=1;j<=n; j= j+1)

{

select(j,a,h,m) ;

reflm(j, a, h,m,n) ;

}

}

The select procedure does that calculation to determine the unit vector
that is appropriate to the given column.

26 CHAPTER 2. LINEAR SYSTEMS

void select(int j, matrix a, matrix h, int m)

{

int i ;

real norm , sign;

norm = 0.0 ;

for(i = j; i <=m; i = i+1)

norm = norm + a[i][j] * a[i][j] ;

norm = sqrt(norm) ;

if (a[j][j] >= 0.0)

sign = 1.0;

else

sign = -1.0;

h[j][j] = a[j][j] + sign * norm ;

for(i = j+1; i <= m; i = i+1)

h[i][j] = a[i][j] ;

norm = 2 * norm * (norm + fabs(a[j][j]));

norm = sqrt(norm) ;

for(i = j; i <= m; i = i+1)

h[i][j] = h[i][j] / norm ;

}

The reflect matrix procedure applies the reflections to the appropriate
column of the matrix.

void reflm(int j, matrix a, matrix h, int m, int n)

{

int k, i ;

real scalar ;

for(k=j; k<= n ; k = k+1)

{

scalar = 0.0 ;

for(i = j; i <= m; i = i + 1)

scalar = scalar + h[i][j] * a[i][k] ;

for(i = j; i <= m; i = i + 1)

a[i][k] = a[i][k] - 2 * h[i][j] * scalar ;

}

}

In order to use this to solve an equation one must apply the same
reflections to the right hand side of the equation. Finally, one must solve
the resulting triangular system.

Projects

2.3. VECTORS AND MATRICES IN C 27

1. Implement the QR algorithm for solving systems of equations and for
solving least-squares problems.

2. Consider the 6 by 6 matrix with entries aij = 1/(i + j2). Use your
QR program to find the first column of the inverse matrix.

3. Consider the problem of getting the best least-squares approximation
of 1/(1 + x) by a linear combination of 1, x, and x2 at the points 1,
2, 3, 4, 5, and 6. Solve this 6 by 3 least squares problem using your
program.

Problems

1. Show that ifA andB are invertible matrices, then (AB)−1 = B−1A−1.

2. Show that if A and B are matrices, then (AB)T = BTAT .

3. Show that an orthogonal matrix preserves the inner product in the
sense that Qx ·Qy = x · y.

4. Show that an orthogonal matrix preserves length: |Qx| = |x|.

5. Show that the product of orthogonal matrices is an orthogonal matrix.
Show that the inverse of an orthogonal matrix is an orthogonal matrix.

6. What are the possible values of the determinant of an orthogonal
matrix? Justify your answer.

7. An orthogonal matrix with determinant one is a rotation. Show that
the product of two reflections is a rotation.

8. How is the angle of rotation determined by the angle between the unit
vectors determining the reflection?

2.3 Vectors and matrices in C

2.3.1 Pointers in C

Pointer types

The variables of a certain type T correspond to a linearly ordered set of
pointer to T values. In a computer implementation the pointer to T values
are realized as addresses of memory locations.

Each pointer value determines a unique variable of type T . In other
words, pointer to T values correspond to variables of type T . Thus there
are whole new families of pointer types.

28 CHAPTER 2. LINEAR SYSTEMS

Example: float * is the type pointer to float.
Example: float ** is the type pointer to pointer to float.
One can have variables whose values are pointers.
Example: Consider a variable x of type float. One can have a variable

p of type pointer to float. One possible value of p would be a pointer to x.
In this case the corresponding variable is x.

Example: float x, *p, **m ; declares the variables x, p, and m to be
of types float, pointer to float, and pointer to pointer to float.

2.3.2 Pointer Expressions

Indirection

The operator & takes a variable (or function) and returns its corresponding
pointer. If the variable or function has type T , the result has type pointer
to T .

The other direction is given by the indirection or dereferencing operator
*. Applying * to an pointer value gives the variable (or function) corre-
sponding to this value. This operator can only be applied to pointer types.
If the value has type pointer to T , then the result has type T .

Example: Assume that p is a variable of type pointer to float and that
its value is a pointer to x. Then *p is the same variable as x.

Example: Assume that m is a variable of type pointer to pointer to float.
The expression *m can be a variable whose values are pointer to float. The
expression **m can be a variable whose values are float.

Example: If f is a function pointer variable with some function pointer
value, then *f is a function corresponding to this value. The value of this
function is the pointer value, so (*f)(x) is the same as f(x).

Pointer arithmetic

Let T be a type that is not a function type. For an integer i and a pointer
value p we have another pointer value p+i. This is the pointer value asso-
ciated with the ith variable of this type past the variable associated with
the pointer value p.

Incrementing the pointer to T value by i corresponds to incrementing
the address by i times the size of a T value.

The fact that variables of type T may correspond to a linearly ordered
set of pointer to T values makes C useful for models where a linear strucure
is important.

When a pointer value p is incremented by the integer amount i, then
p+i is a new pointer value. We use p[i] as a synonym for *(p+i). This is
the variable pointed to by p+i.

2.3. VECTORS AND MATRICES IN C 29

Example: Assume that v has been declared float *v. If we think of v
as pointing to an entry of a vector, then v[i] is the entry i units above it.

Example: Assume that m has been declared float **m. Think of m as
pointing to a row pointer of a matrix, which in turn points to an entry of
the matrix. Then m[i] points to an entry in the row i units above the
original row in row index value. Furthermore m[i][j] is the entry j units
above this entry in column index value.

Function calls

In C function calls it is always a value that is passed. If one wants to
give a function access to a variable, one must pass the value of the pointer
corresponding to the variable.

Example: A procedure to fetch a number from input is defined with the
heading void fetch(float *p). A call fetch(&x) copies the argument,
which is the pointer value corresponding to x, onto the the parameter,
which is the pointer variable p. Then *p and x are the same float variable,
so an assignment to *p can change the value of x.

Example: A procedure to multiply a scalar x times a vector given by w

and put the result back in the same vector is defined with the heading void

mult(float x, float *w). Then a call mult(a,v) copies the values of the
arguments a and v onto the parameters x and w. Then v and w are pointers
with the same value, and so v[i] and w[i] are the same float variables.
Therefore an assignment statement w[i] = x * w[i] in the body of the
procedure has the effect of changing the value of v[i].

Memory allocation

There is a cleared memory allocation function named calloc that is very
useful in working with pointers. It returns a pointer value corresponding
to the first of a specified number of variables of a specified type.

The calloc function does not work with the actual type, but with the
size of the type. In an implementation each data type (other than function)
has a size. The size of a data type may be recovered by the sizeof()

operator. Thus sizeof(float) and sizeof(float *) give numbers
that represent the amount of memory needed to store a float and the amount
of memory need to store a pointer to float.

The function call calloc(n, sizeof(float)) returns a pointer
to void corresponding to the first of n possible float variables. The cast
operator (float *) converts this to a pointer to float. If a pointer variable
v has been declared with float *v ; then

v = (float *) calloc(n, sizeof (float)) ;

30 CHAPTER 2. LINEAR SYSTEMS

assigns this pointer to v. After this assignment it is legitimate to use the
variable v[i] of type float, for i between 0 and n-1.

Example: One can also create space for a matrix in this way. The
assignment statement

m = (float **) calloc(m, sizeof (float *)) ;

creates space for the row pointers and assigns the pointer to the first row
pointer to m, while

m[i] = (float *) calloc(n, sizeof (float)) ;

creates space for a row and assigns the pointer to the first entry in the row
to m[i]. After these assignments we have float variables m[i][j] available.

Chapter 3

Eigenvalues

3.1 Introduction

A square matrix can be analyzed in terms of its eigenvectors and eigenval-
ues. In this chapter we review this theory and approach the problem of
numerically computing eigenvalues.

If A is a square matrix, x is a vector not equal to the zero vector, and
λ is a number, then the equation

Ax = λx (3.1)

says that λ is an eigenvalue with eigenvector x .
We can also identify the eigenvalues as the set of all λ such that λI −A

is not invertible.
We now begin an abbreviated review of the relevant theory. We begin

with the theory of general bases and similarity. We then treat the theory
of orthonormal bases and orthogonal similarity.

3.2 Similarity

If we have an n by n matrix A and a basis consisting of n linearly indepen-
dent vectors, then we may form another matrix S whose columns consist of
the vectors in the basis. Let Â be the matrix of A in the new basis. Then
AS = SÂ. In other words, Â = S−1AS is similar to A.

Similar matrices tend to have similar geometric properties. They always
have the same eigenvalues. They also have the same determinant and trace.
(Similar matrices are not always identical in their geometrical properties;
similarity can distort length and angle.)

31

32 CHAPTER 3. EIGENVALUES

We would like to pick the basis to display the geometry. The way to do
this is to use eigenvectors as basis vectors, whenever possible.

If the dimension n of the space of vectors is odd, then a matrix always
has at least one real eigenvalue. If the dimension is even, then there may
be no real eigenvalues. (Example: a rotation in the plane.) Thus it is often
helpful to allow complex eigenvalues and eigenvectors. In that case the
typical matrix will have a basis of eigenvectors.

If we can take the basis vectors to be eigenvectors, then the matrix Â
in this new basis is diagonal.

There are exceptional cases where the eigenvectors do not form a basis.
(Example: a shear.) Even in these exceptional cases there will always be
a new basis in which the matrix is triangular. The eigenvalues will appear
(perhaps repeated) along the diagonal of the triangular matrix, and the
determinant and trace will be the product and sum of these eigenvalues.

We now want to look more closely at the situation when a matrix has
a basis of eigenvectors.

We say that a collection of vectors is linearly dependent if one of the
vectors can be expressed as a linear combination of the others. Otherwise
the collection is said to be linearly independent.

Proposition 3.2.1 If xi are eigenvectors of A corresponding to distinct
eigenvalues λi, then the xi are linearly independent.

Proof: The proof is by induction on k, the number of vectors. The
result is obvious when k = 1. Assume it is true for k − 1. Consider
the case of k vectors. We must show that it is impossible to express one
eigenvector as a linear combination of the others. Otherwise we would have
xj =

∑
i 6=j cixi for some j. If we apply A−λjI to this equation, we obtain

0 =
∑
i 6=j ci(λi − λj)xi. If ci 6= 0 for some i 6= j, then we could solve for

xi in terms of the other k− 2 vectors. This would contradict the result for
k − 1 vectors. Therefore ci = 0 for all i 6= j. Thus xj = 0, which is not
allowed. 2

If we have n independent eigenvectors, then we can put the eigenvectors
as columns of a matrix X. Let Λ be the diagonal matrix whose entries
are the corresponding eigenvalues. Then we may express the eigenvalue
equation as

AX = XΛ. (3.2)

Since X is an invertible matrix, we may write this equation as

X−1AX = Λ. (3.3)

This says that A is similar to a diagonal matrix.

3.2. SIMILARITY 33

Theorem 3.2.1 Consider an n by n matrix with n distinct (possibly com-
plex) eigenvalues λi. Then the corresponding (possibly complex) eigenvec-
tors xi form a basis. The matrix is thus similar to a diagonal matrix.

Let Y be a matrix with column vectors yi determined in such a way
that Y T = X−1. Then Y TAX = Λ and so A = XΛY T . This leads to the
following spectral representation.

Let yi be the dual basis defined by yTi xj = δij . Then we may represent

A =
∑
i

λixiy
T
i . (3.4)

It is worth thinking a bit more about the meaning of the complex eigen-
values. It is clear that if A is a real matrix, then the eigenvalues that are
not real occur in complex conjugate pairs. The reason is simply that the
complex conjugate of the equation Ax = λx is Ax̄ = λ̄x̄. If λ is not real,
then we have a pair λ 6= λ̄ of complex conjugate eigenvalues.

We may write λ = a+ ib and x = u + iv. Then the equation Ax = λx
becomes the two real equations Au = au − bv and Av = bu + av. The
vectors u and v are no longer eigenvectors, but they can be used as part of
a real basis. In this case instead of two complex conjugate diagonal entries
one obtains a two by two matrix that is a multiple of a rotation matrix.

Thus geometrically a typical real matrix is constructed from stretches,
shrinks, and reversals (from the real eigenvalues) and from stretches, shrinks,
and rotations (from the conjugate pair non-real eigenvalues).
Problems

1. Find the eigenvalues of the 2 by 2 matrix whose first row is 0, −3 and
whose second row is −1, 2. Find eigenvectors. Find the similarity
transformation and show that it takes the matrix to diagonal form.

2. Find the spectral representation for the matrix of the previous prob-
lem.

3. Consider a rotation by angle θ in the plane. Find its eigenvalues and
eigenvectors.

4. Give an example of two matrices with the same eigenvalues that are
not similar.

5. Show how to express the function tr(zI−A)−1 of complex z in terms
of the numbers trAn, n = 1, 2, 3,

6. Show how to express the eigenvalues of A in terms of tr(zI −A)−1.

34 CHAPTER 3. EIGENVALUES

7. Let zwT and z′w′T be two one-dimensional projections. When is
their product zero? If the product is zero in one order, must it be
zero in the other order?

8. Show that for arbitrary square matrices trAB = trBA.

9. Show that tr(AB)n = tr(BA)n.

10. Show that if B is non-singular, then AB and BA are similar.

11. Show that if AB and BA always have the same eigenvalues, even if
both of them are singular.

12. Give an example of square matrices A and B such that AB is not
similar to BA.

3.3 Orthogonal similarity

3.3.1 Symmetric matrices

If we have an n by n matrix A and an orthonormal basis consisting of
n orthogonal unit vectors, then as before we may form another matrix Q
whose columns consist of the vectors in the basis. Let Â be the matrix of
A in the new basis. Then again Â = Q−1AQ is similar to A. However in
this special situation Q is orthogonal, that is, Q−1 = QT . In this case we
say that Â is orthogonal similar to A.

The best of worlds is the case of a symmetric real matrix A.

Theorem 3.3.1 For a symmetric real matrix A the eigenvalues are all real,
and there is always a basis of eigenvectors. Furthermore, these eigenvectors
may be taken to form an orthonormal basis. With this choice the matrix Q
is orthogonal, and Â = Q−1AQ is diagonal.

3.3.2 Singular values

It will be useful to have the observation that for a real matrix A the matrix
ATA is always a symmetric real matrix. It is easy to see that it must have
positive eigenvalues σ2

i ≥ 0. Consider the positive square roots σi ≥ 0.
These are called the singular values of the original matrix A. It is not
difficult to see that two matrices that are orthogonally equivalent have the
same singular values.

We may define the positive square root
√
ATA as the matrix with the

same eigenvectors as ATA but with eigenvalues σi. We may think of
√
ATA

as a matrix that is in some sense the absolute value of A.

3.3. ORTHOGONAL SIMILARITY 35

Of course one could also look at AAT and its square root, and this
would be different in general. We shall see, however, that these matrices
are always orthogonal similar, so in particular the eigenvalues are the same.

To this end, we use the following polar decomposition.

Proposition 3.3.1 Let A be a real square matrix. Then A = Q
√
ATA,

where Q is orthogonal.

This amounts to writing the the matrix as the product of a part that
has absolute value one with a part that represents its absolute value. Of
course here the absolute value one part is an orthogonal matrix and the
absolute value part is a symmetric matrix.

Here is how this can be done. We can decompose the space into the
orthogonal sum of the range of AT and the nullspace of A. This is the
same as the orthogonal sum of the range of

√
ATA and the nullspace of√

ATA. The range of AT is the part where the absolute value is non-
zero. On this part the unit size part is determined; we must define Q on
x =
√
ATAy in the range in such a way as to have Qx = Q

√
ATAy = Ay.

Then |Qx| = |Ay| = |x|, so Q sends the range of AT to the range of A and
preserves lengths on this part of the space. However on the nullspace of A
the unit size part is arbitrary. But we can also decompose the space into
the orthogonal sum of the range of A and the nullspace of AT . Since the
nullspaces of A and AT have the same dimension, we can define Q on the
nullspace of A to be an arbitrary orthogonal transformation that takes it
to the nullspace of AT .

We see from A = Q
√
ATA that AAT = QATAQT . Thus AAT is similar

to ATA by the orthogonal matrix Q. The two possible notions of absolute
value are geometrically equivalent, and the two possible notions of singular
value coincide.

3.3.3 The Schur decomposition

We now consider a real matrix A that has only real eigenvalues. Then this
matrix is similar to an upper triangular matrix, that is, AX = XÂ, where
Â is upper triangular.

In the general situation the vectors xi that constitute the columns of X
may not be orthogonal. However we may produce a family qi of orthogonal
vectors, each of norm one, such that for each k the subspace spanned by
x1, . . . ,xk is the same as the subspace spanned by q1, . . . ,qk.

Let Q be the matrix with columns formed by the vectors qi. This

36 CHAPTER 3. EIGENVALUES

condition may be expressed by

Xik =
∑
j≤k

RjkQij . (3.5)

In other words, X = QR, where Q is orthogonal and R is upper triangular.
From this equation we may conclude that R−1Q−1AQR = Â, or

Q−1AQ = U, (3.6)

where Q is orthogonal and U = RÂR−1 is upper triangular. This is called
the Schur decomposition.

Theorem 3.3.2 Let A be a real matrix with only real eigenvalues. Then
A is orthogonal similar to an upper triangular matrix U .

The geometrical significance of the Schur decomposition may be seen as
follows. Let Vr be the subspace spanned by column vectors that are non-
zero only in their first r components. Then we have AQVr = QUVr. Since
UVr is contained in Vr, it follows that QVr is an r-dimensional subspace
invariant under the matrix A that is spanned by the first r column vectors
of Q.
Problems

1. Consider the symmetric 2 by 2 matrix whose first row is 2, 1 and
whose second row is 1, 2. Find its eigenvalues. Find the orthogonal
similarity that makes it diagonal. Check that it works.

2. Find the spectral decomposition in this case.

3. Find the eigenvalues of the symmetric 3 by 3 matrix whose first row
is 2, 1, 0 and whose second row is 1, 3, 1 and whose third row is 0,
1, 4. (Hint: One eigenvalue is an integer.) Find the eigenvectors and
check orthogonality.

4. Find the singular values of the matrix whose first row is 0, -3 and
whose second row is -1, 2.

5. Find a Schur decomposition of the matrix in the preceding problem.

6. Give an example of two matrices that are similar by an invertible
matrix, but cannot be made similar by an orthogonal matrix.

7. Show that an arbitrary A may be written A = Q1DQ2, where D is a
diagonal matrix with positive entries and Q1 and Q2 are orthogonal
matrices.

3.4. VECTOR AND MATRIX NORMS 37

3.4 Vector and matrix norms

3.4.1 Vector norms

We shall use three vector norms. The first is the 1-norm

|x|1 =

n∑
i=1

|xi|. (3.7)

The second is the 2-norm

|x|2 =

√√√√ n∑
i=1

|xi|2. (3.8)

The final one is the ∞-norm

|x|∞ = max
1≤i≤n

|xi|. (3.9)

They are related by the inequalities

|x|∞ ≤ |x|2 ≤ |x|1 ≤ n|x|∞. (3.10)

3.4.2 Associated matrix norms

There are three matrix norms associated with the three vector norms. These
are given for p = 1, 2,∞ by

‖A‖p = min{M | |Ax|p ≤M |x|p}. (3.11)

Here are the explicit forms. The 1-norm is easy to compute.

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |. (3.12)

The 2-norm is the difficult one.

‖A‖2 = max
1≤i≤n

σi = σmax, (3.13)

where σi ≥ 0 are the singular values of A.
The ∞-norm is just as easy as the 1-norm.

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |. (3.14)

38 CHAPTER 3. EIGENVALUES

The ∞ and 1 norms are related by ‖A‖∞ = ‖AT ‖1. For the 2-norm we
have the important relation ‖A‖2 = ‖AT ‖2.

There is a very useful interpolation bound relating the 2-norm to the
other norms.

Proposition 3.4.1

‖A‖2 ≤
√
‖A‖1‖A‖∞. (3.15)

3.4.3 Singular value norms

It is sometime useful to define other norms in terms of singular values.
Here are three such norms defined in terms of the singular values σi ≥ 0 of
A (where the σ2

i are eigenvalues of ATA.) We distinguish these from the
previous definitions by the use of a square bracket. (This is not standard
notation.)

The first is the trace norm

‖A‖[1] = tr(
√
ATA) =

n∑
i=1

σi, (3.16)

This is difficult to compute, because of the square root.
The second is the Hilbert-Schmidt norm

‖A‖[2] =
√

tr(ATA) =

√√√√ n∑
i=1

σ2
i . (3.17)

This one is easy to compute.
The final one is the uniform norm

‖A‖[∞] = max
1≤i≤n

σi. (3.18)

This again is difficult to compute.
They are related by the inequalities

‖A‖[∞] ≤ ‖A‖[2] ≤ ‖A‖[1] ≤ n‖A‖[∞]. (3.19)

Why are these norms useful? Maybe the main reason is that ‖A‖[∞] =
‖A‖2, and so

‖A‖2 ≤ ‖A‖[2]. (3.20)

This gives a useful upper bound that complements the interpolation bound.

3.4. VECTOR AND MATRIX NORMS 39

3.4.4 Eigenvalues and norms

From now on we deal with one of the norms ‖A‖p and denote it by ‖A‖. The
fundamental relation between norms and eigenvalues is that every eigen-
value λ of A satisfies |λ| ≤ ‖A‖. This is an equality for symmetric matrices.
However in general it is not such an accurate result. The following is often
a much better bound.

Theorem 3.4.1 Every eigenvalue λ of A satisfies the inequality

|λ| ≤ ‖An‖ 1
n (3.21)

for every n = 1, 2, 3,

3.4.5 Condition number

Let A be an invertible square matrix. Consider one of the p-norms ‖A‖p,
where p is 1, 2, or ∞. In this section we shall abbreviate this as ‖A‖. We
are most interested in the case p = 2. Unfortuately, this is the case when
it is most difficult to compute the norm.

We want to measure how far A is from being invertible. The standard
measure is

cond(A) = ‖A‖‖A−1‖. (3.22)

When this is not too much larger than one, then the matrix is well-conditioned,
in the sense that calculations with it are not too sensitive to perturbations
(small errors). (When the number is very large, then the matrix may be
ill-conditioned, that is, extremely sensitive to perturbations.)

In the case of the 2-norm this condition number has a simple interpre-
tation. Let σ2

i be the eigenvalues of ATA. Then

cond(A) =
σmax

σmin
. (3.23)

Problems

1. Evaluate each of the six matrix norms for the two-by-two matrix
whose first row is 0, −3 and whose second row is −1, 2.

2. In the preceding problem, check the interpolation bound.

3. In the preceding problem, check the Hilbert-Schmidt bound.

4. In the preceding problem, check the bound on the eigenvalues for
n = 1, 2, 3 and for each of the three p norms.

40 CHAPTER 3. EIGENVALUES

5. Give an example of a matrix A for which the eigenvalue λ of largest
absolute value satisfies |λ| < ‖A‖ but |λ| = ‖An‖1/n for some n.

6. Prove the assertions about the concrete forms of the p-norms ‖A‖p,
for p = 1, 2, ∞.

7. Prove that the 2-norm of a matrix is the 2-norm of its transpose.

3.5 Stability

3.5.1 Inverses

We next look at the stability of the inverse under perturbation. The fun-
damental result is the following.

Proposition 3.5.1 Assume that the matrix A has an inverse A−1. Let E
be another matrix. Assume that E is small relative to A in the sense that
‖E‖ < 1/‖A−1‖. Let Â = A− E. Then Â has an inverse Â−1, and

A−1 − Â−1 = −A−1EÂ−1. (3.24)

Proof: Assume that (A − E)x = 0. Then x = A−1Ax = A−1Ex.
Hence |x| ≤ ‖A−1‖‖E‖|x|. Thus |x| = 0, so x is the zero vector. This
proves that Â = A − E is invertible. The identity relating A−1 and Â−1

follows by algebraic manipulation. 2

We may write the hypothesis of the theorem in terms of the relative size
of the perturbation as ‖E‖/‖A‖ < 1/cond(A). Thus for an ill-conditioned
matrix, one can only take very small relative perturbations.

Furthermore, we may deduce that

‖A−1 − Â−1‖ ≤ ‖A−1‖|E‖‖Â−1‖ (3.25)

which says that

‖A−1 − Â−1‖/‖Â−1‖ ≤ cond(A)‖E‖/‖A‖. (3.26)

Relative changes in matrices are controlled by condition numbers.

3.5.2 Iteration

Sometimes one wants to solve the equation Ax = b by iteration. A natural
choice of fixed point function is

g(x) = x + C(b−Ax). (3.27)

3.5. STABILITY 41

Here C can be an arbitrary non-singular matrix, and the fixed point will
be a solution. However for convergence we would like C to be a reasonable
guess of or approximation to A−1.

When this is satisfied we may write

g(x)− g(y) = (I − CA)(x− y) = (A−1 − C)A(x− y). (3.28)

Then if ‖A−1 − C‖‖A‖ < 1, the iteration function is guaranteed to shrink
the iterates together to a fixed point.

If we write the above condition in terms of relative error, it becomes
‖A−1 − C‖/‖A−1‖ < 1/cond(A). Again we see that for an ill-conditioned
matrix one must make a good guess of the inverse.

3.5.3 Eigenvalue location

Let A be a square matrix, and let D be the diagonal matrix with the same
entries as the diagonal entries of A. If all these entries are non-zero, then
D is invertible. We would like to conclude that A is invertible.

Write A = DD−1A. The matrix D−1A has matrix entries aij/aii so
it has ones on the diagonal. Thus we may treat it as a perturbation of
the identity matrix. Thus we may write D−1A = I − (I −D−1A), where
I − D−1A has zeros on the diagonal and entries −aij/aii elsewhere. We
know from our perturbation lemma that if I −D−1A has norm strictly less
than one, then D−1A is invertible, and so A is invertible.

The norm that is most convenient to use is the ∞ norm. The condition
for I−D−1A to have∞ norm strictly less than one is that maxi

∑
j 6=i

|aij |
|aii| <

1. We have proved the following result on diagonal dominance.

Proposition 3.5.2 If a matrix A satisfies for each i∑
j 6=i

|aij | < |aii|, (3.29)

then A is invertible.

Let B be an arbitrary matrix and let λ be a number. Apply this result
to the matrix λI −B. Then λ is an eigenvalue of B precisely when λI −B
is not invertible. This gives the following conclusion.

Corollary 3.5.1 If λ is an eigenvalue of B, then for some i the eigenvalue
λ satisfies

|λ− bii| ≤
∑
j 6=i

|bij |. (3.30)

42 CHAPTER 3. EIGENVALUES

The intervals about bii in the corollary are known as Gershgorin’s disks.
Problems

1. Assume Ax = b. Assume that there is a computed solution x̂ = x−e,
where e is an error vector. Let Ax̂ = b̂, and define the residual vector
r by b̂ = b− r. Show that |e|/|x| ≤ cond(A)|r|/|b|.

2. Assume Ax = b. Assume that there is an error in the matrix, so
that the matrix used for the computation is Â = A − E. Take the
computed solution as x̂ defined by Âx̂ = b. Show that |e|/|x̂| ≤
cond(A)‖E‖/‖A‖.

3. Find the Gershgorin disks for the three-by-three matrix whose first
row is 1, 2, −1, whose second row is 2, 7, 0, and whose third row is
−1, 0, −5.

3.6. POWER METHOD 43

3.6 Power method

We turn to the computational problem of finding eigenvalues of the square
matrix A. We assume that A has distinct real eigenvalues. The power
method is a method of computing the dominant eigenvalue (the eigenvalue
with largest absolute value).

The method is to take a more or less arbitrary starting vector u and
compute Aku for large k. The result should be approximately the eigen-
vector corresponding to the dominant eigenvalue.

Why does this work? Let us assume that there is a dominant eigenvalue
and call it λ1. Let u be a non-zero vector. Expand u =

∑
i cixi in the

eigenvectors of A. Assume that c1 6= 0. Then

Aku =
∑
i

ciλ
k
i xi. (3.31)

When k is large, the term c1λ
k
1xi is so much larger than the other terms

that Aku is a good approximation to a multiple of x1.
[We can write this another way in terms of the spectral representation.

Let u be a non-zero vector such that yT1 u 6= 0. Then

Aku = λk1x1y
T
1 u +

∑
i6=1

λki xiy
T
i u. (3.32)

When k is large the first term will be much larger than the other terms.
Therefore Aku will be approximately λk1 times a multiple of the eigenvector
x1.]

In practice we take u to be some convenient vector, such as the first
coordinate basis vector, and we just hope that the condition is satisfied.
We compute Aku by successive multiplication of the matrix A times the
previous vector. In order to extract the eigenvalue we can compute the
result for k+ 1 and for k and divide the vectors component by component.
Each quotient should be close to λ1.
Problems

1. Take the matrix whose rows are 0, −3 and −1, 2. Apply the matrix
four times to the starting vector. How close is this to an eigenvector.

2. Consider the power method for finding eigenvalues of a real matrix.
Describe what happens when the matrix is symmetric and the eigen-
value of largest absolute value has multiplicity two.

3. Also describe what happens when the matrix is not symmetric and
the eigenvalues of largest absolute value are a complex conjugate pair.

44 CHAPTER 3. EIGENVALUES

3.7 Inverse power method

The inverse power method is just the power method applied to the matrix
(A− µI)−1. We choose µ as an intelligent guess for a number that is near
but not equal to an eigenvalue λj . The matrix has eigenvalues (λi − µ)−1.
If µ is closer to λj than to any other λi, then the dominant eigenvalue of
(A − µI)−1 will be (λj − µ)−1. Thus we can calculate (λj − µ)−1 by the
power method. From this we can calculate λj .

The inverse power method can be used to search for all the eigenvalues of
A. At first it might appear that it is computationally expensive, but in fact
all that one has to do is to compute an LU or QR decomposition of A−µI.
Then it is easy to do a calculation in which we start with an arbitrary
vector u and at each stage replace the vector v obtained at that stage with
the result of solving (A− µI)x = v for x using this decomposition.
Projects

1. Write a program to find the dominant eigenvalue of a matrix by the
inverse power method.

2. Find the eigenvalues of the symmetric matrix with rows 16, 4, 1, 1
and 4, 9, 1, 1 and 1, 1, 4, 1 and 1, 1, 1, 1.

3. Change the first 1 in the last row to a 2, and find the eigenvalues of
the resulting non-symmetric matrix.

3.8 Power method for subspaces

The power method for subspaces is very simple. One computes Ak for large
k. Then one performs a decomposition Ak = QR. Finally one computes
Q−1AQ. Miracle: the result is upper triangular with the eigenvalues on
the diagonal!

Here is why this works. Take e1, . . . , er to be the first r unit basis
vectors. Then ei =

∑
j cijxj , where the xj are the eigenvectors of A corre-

sponding to the eigenvalues ordered in decreasing absolute value. Thus for
the powers we have

Akei =
∑
j

cijλ
k
jxj . (3.33)

To a good approximation, the first r terms of this sum are much larger than
the remaining terms. Thus to a good approximation the Akei for 1 ≤ i ≤ r
are just linear combinations of the first r eigenvectors.

We may replace the Akei by linear combinations that are orthonormal.
This is what is accomplished by the QR decomposition. The first r columns

3.8. POWER METHOD FOR SUBSPACES 45

of Q are an orthonormal basis consisting of linear combinations of the Akei
for 1 ≤ i ≤ r.

It follows that the first r columns of Q are approximately linear combi-
nations of the first r eigenvectors. If this were exact, then Q−1AQ would
be the exact Schur decomposition. However in any case it should be a good
approximation.

[This can be considered in terms of subspaces as an attempt to apply
the power method to find the subspace spanned by the first r eigenvectors,
for each r. The idea is the following. Let Vr be a subspace of dimension
r chosen in some convenient way. Then, in the typical situation, the first
r eigenvectors will have components in Vr. It follows that for large k the
matrix Ak applied to Vr should be approximately the subspace spanned by
the first r eigenvectors.

However we may compute the subspace given by Ak applied to Vr by
using the QR decomposition. Let

Ak = Q̃kR̃k (3.34)

be the QR decomposition of Ak. Let Vr be the subspace of column vectors
which are non-zero only in their first r components. Then R̃k leaves Vr
invariant. Thus the image of this Vr by Q̃k is the desired subspace.

We expect from this that Q̃k is fairly close to mapping the space Vr into
the span of the first r eigenvectors. In other words, if we define Uk+1 by

Uk+1 = Q̃−1
k AQ̃k, (3.35)

then this is an approximation to a Schur decomposition. Thus one should
be able to read off all the eigenvalues from the diagonal.]

This method is certainly simple. One simply calculates a large power
of A and finds the QR decomposition of the result. The resulting orthogo-
nal matrix give the Schur decomposition of the original A, and hence the
eigenvalues.

What is wrong with this? The obvious problem is that Ak is an ill-
conditioned matrix for large k, and so computing the QR decomposition is
numerically unstable. Still, the idea is appealing in its simplicity.

Problems

1. Take the matrix whose rows are 0, −3 and −1, 2. Take the eigenvector
corresponding to the largest eigenvalue. Find an orthogonal vector
and form an orthogonal basis with these two vectors. Use the matrix
with this basis to perform a similarity transformation of the original
matrix. How close is the result to an upper triangular matrix?

46 CHAPTER 3. EIGENVALUES

2. Take the matrix whose rows are 0, −3 and −1, 2. Apply the matrix
four times to the starting vector. Find an orthogonal vector and form
an orthogonal basis with these two vectors. Use the matrix with this
basis to perform a similarity transformation of the original matrix.
How close is the result to an upper triangular matrix?

3.9 QR method

The famous QR method is just another variant on the power method for
subspaces of the last section. However it eliminates the calculational diffi-
culties.

Here is the algorithm. We want to find approximate the Schur decom-
position of the matrix A.

Start with U1 = A. Then iterate as follows. Having defined Uk, write

Uk = QkRk, (3.36)

where Qk is orthogonal and Rk is upper triangular. Let

Uk+1 = RkQk. (3.37)

(Note the reverse order). Then for large k the matrix Uk+1 should be a good
approximation to the upper triangular matrix in the Schur decomposition.

Why does this work?
First note that Uk+1 = RkQk = Q−1

k UkQk, so Uk+1 is orthogonal similar
to Uk.

Let Q̃k = Q1 · · ·Qk and R̃k = Rk · · ·R1. Then it is easy to see that

Uk+1 = Q̃−1
k AQ̃k. (3.38)

Thus Uk+1 is similar to the original A.
Furthermore, Q̃kR̃k = Q̃k−1UkR̃k−1 = AQ̃k−1R̃k−1. Thus the kth stage

decomposition is produced from the previous stage by multiplying by A.
Finally, we deduce from this that

Q̃kR̃k = Ak. (3.39)

In other words, the Q̃k that sets up the similarity of Uk+1 with A is the same
Q̃k that arises from the QR decompositon of the power Ak. But we have
seen that this should give an approximation to the Schur decomposition of
A. Thus the Uk+1 should be approximately upper triangular.
Projects

1. Implement the QR method for finding eigenvalues.

3.10. FINDING EIGENVALUES 47

2. Use the program to find the eigenvalues of the symmetric matrix with
rows 1, 1, 0, 1 and 1, 4, 1, 1 and 0, 1, 9, 5 and 1, 1, 5, 16.

3. Change the last 1 in the first row to a 3, and find the eigenvalues of
the resulting non-symmetric matrix.

3.10 Finding eigenvalues

The most convenient method of finding all the eigenvalues is the QR method.
Once the eigenvalues are found, then the inverse power method gives an easy
determination of eigenvectors.

There are some refinements of the QR method that give greater effi-
ciency, especially for very large matrices.

The trick is to work with Hessenberg matrices, which are matrices with
zeros below the diagonal below the main diagonal.

The idea is to do the eigenvalue determination in two stages. The first
stage is to transform A to Q−1AQ = Â, where Â is a Hessenberg matrix.
This is an orthogonal similarity transformation, so this gives a matrix Â
with the same eigenvalues.

This turns out to be an easy task. The idea is much the same as the idea
for the QR decomposition, except that the reflections must be applied on
both sides, to make it an orthogonal similarity transformation. No limiting
process is involved.

One builds the matrix Q out of reflection matrices, Q = Pn · · ·P1. At
the jth stage the matrix is Pj · · ·P1AP1 · · ·Pj . The unit vector determining
the reflection Pj is taken to be zero in the first j components. Furthermore
it is chosen so that application of Pj on the left will zero out the components
in the jth column below the entry below the diagonal entry. The entry just
below the diagonal entry does not become zero. However the advantage is
that the application of Pj on the right does not change the jth column or
any of the preceding columns.

Now that the matrix is in Hessenberg form, we note that the QR algo-
rithm preserves Hessenberg form. We take the first U1 = Â, which is in
Hessenberg form. Then we may easily compute that

Uk+1 = RkUkR
−1
k . (3.40)

Thus each Uk is in Hessenberg form, since Hessenberg form is preserved by
multiplication by upper triangular matrices.

This is very advantageous, since at each stage we must decompose Uk =
QkRk and then multiply out RkQk. Since Uk is in Hessenberg form, the

48 CHAPTER 3. EIGENVALUES

reflection vectors used in the decomposition are each vectors that have only
two non-zero components. The arithmetic is much reduced.

æ

Chapter 4

Nonlinear systems

4.1 Introduction

This chapter deals with solving equations of the form f(x) = 0, where f is
a continuous function from Rn to Rn. It also treats questions of roundoff
error and its amplification in the course of a numerical calculation.

In much of what we do the derivative f ′ of such a function f will play
an essential role. This is defined in such as way that

f(x + h)− f(x) = f ′(x)h + r, (4.1)

where the remainder is of higher than first order in the vector h. Thus the
derivative f ′(x) is a matrix. If we write this in variables with y = f(x),
then the derivative formula is

∆y ≈ f ′(x)∆x. (4.2)

If we write these relations in components, we get

fi(x + h) = fi(x) +

n∑
j=1

∂fi(x)

∂xj
hj + ri. (4.3)

Thus the derivative matrix is the matrix of partial derivatives. Using vari-
ables one writes

∆yi ≈
n∑
j=1

∂yi
∂xj

∆xj . (4.4)

The same idea is often expressed in differential notation

dyi =

n∑
j=1

∂yi
∂xj

dxj . (4.5)

49

50 CHAPTER 4. NONLINEAR SYSTEMS

There are several interpretations of such a function. Two of the most
important are the interpretation as a transformation and the interpretation
as a vector field.

When we think of a function g as a transformation, we may think of
x as being a point in one space and y = g(x) as being a point in some
other space. For each x there is a corresponding y. It is illuminating to
look at the consequence of a change of coordinate system. Say that we
have z coordinates that are functions of the x coordinates, and we have w
coordinates that are functions of the y coordinates. In that case we have

∂wi
∂zj

=
∑
k

∂wi
∂yk

∑
r

∂yk
∂xr

∂xr
∂zj

. (4.6)

This says that the new derivative matrix is obtained from the original ma-
trix by multiplying on each side by matrices representing the effect of the
coordinate transformations.

A variant is when we think of the function as a transformation from a
space to the same space. In that case we may write x̂ = g(x) and think of
x as the coordinates of the original point and x̂ as the coordinates of the
new point.

In this case there is only the change from x to z coordinates, so the
change of variable formula becomes

∂ẑi
∂zj

=
∑
k

∂ẑi
∂x̂k

∑
r

∂x̂k
∂xr

∂xr
∂zj

. (4.7)

We shall see in the problems that there is a special situation when this
change is a familiar operation of linear algebra.

When we think of a function f as a vector field, then we think of x as
being a point in some space and y = f(x) as being the components of a
vector attached to the point x.

Let us look at the effect of a change of coordinates on the vector field
itself. We change from x to z coordinates. Let us call the new components
of the vector field ȳ. Then if we look at a curve tangent to the vector field,
we see that along the curve

ȳi =
dz̄i
dt

=
∑
k

∂zi
∂xk

dxk
dt

=
∑
k

∂zi
∂xk

yk. (4.8)

So the vector field is changed by multiplication on the left by a matrix:

ȳi =
∑
k

∂zi
∂xk

yk. (4.9)

4.2. DEGREE 51

How about the partial derivatives of the vector field? Here the situation
is ugly. A routine computation gives

∂ȳi
∂zj

=
∑
r

∑
k

[
∂2zi

∂xr∂xk
yk +

∂zi
∂xk

∂yk
∂xr

]
∂xr
∂zj

. (4.10)

This does not even look like matrix multiplication. We shall see in the
problems that there is a special situation where this difficulty does not
occur and where we get instead some nice linear algebra.
Problems

1. Consider a transformation x̂ = g(x) of a space to itself. Show that
at a fixed point the effect of a change of coordinates on the derivative
matrix is a similarity transformation.

2. Consider a vector field with components y = f(x) in the x coordinate
system. Show that at a zero of the vector field the effect of a change
of coordinates on the derivative matrix is a similarity transformation.

4.2 Degree

The intermediate value theorem was a fundamental result in solving equa-
tions in one dimension. It is natural to ask whether there is an analog of
this theorem for systems. There is such an analog; one version of it is the
following topological degree theorem.

We say that a vector y is opposite to another vector x if there exists
c ≥ 0 with y = −cx.

Theorem 4.2.1 Let f be a continuous function on the closed unit ball B
in Rn with values in Rn. Let ∂B be the sphere that is the boundary of B.
Assume that for each x in ∂B the vector f(x) is not opposite to x. Then
there exists a point r in B such that f(r) = 0.

This is called a topolological degree theorem because there is an invari-
ant called the degree which under the hypotheses of this theorem has the
value one. In general, if the degree is non-zero, then there is a fixed point.

The proof of this theorem is much more difficult than the proof of the
intermediate value theorem, and it will not be attempted here.

When n = 1 we are essentially in the situation of the intermediate value
theorem. The unit ball B is the closed interval [−1, 1], and the boundary
∂B consists of the two points −1 and 1. The computational problem thus
consists of checking the value of a function on these two end points.

52 CHAPTER 4. NONLINEAR SYSTEMS

Unfortunately, the theorem does not lead to a particularly efficient com-
puter implementation when n > 1. (However perhaps something can be
done when n = 2.) The problem is that the boundary ∂B is an infinite set,
and one has to do a calculation involving the whole boundary to check the
presence of a root.
Problems

1. Show how to derive the intermediate value theorem as a corollary of
the degree theorem.

2. Find a example in two dimensions where the degree theorem applies
to guarantee the existence of the root, but where the root cannot be
calculated by elementary means.

4.2.1 Brouwer fixed point theorem

The degree theorem has implications for the existence of fixed points. The
most famous such result is the Brouwer fixed point theorem.

Theorem 4.2.2 Let g be a continuous function on the closed unit ball B
in Rn with values in Rn. Let ∂B be the sphere that is the boundary of B.
Assume g sends ∂B into B. Then g has a fixed point.

Proof: Let f(x) = x−g(x) defined on the closed unit ball B. We want
to show that for some x in B the vector f(x) = 0.

Suppose that for all x in B the vector f(x) 6= 0. Then g maps ∂B into
the interior of the unit ball. Consider x in ∂B. If f(x) is opposite to x,
then g(x) = (1 + c)x with c ≥ 0, which is impossible. Therefore f(x) is
never opposite to x. But then the degree theorem leads to a contradiction.
2

Unfortunately, this proof only reduces the Brouwer theorem to the de-
gree theorem, and does not provide a self-contained proof. Again the ap-
paratus of algebraic topology is necessary for a satisfactory treatment.

Two subsets Rn are homeomorphic if there is a one-to-one correspon-
dence between them that is continuous in both directions. The Brouwer
fixed point theorem applies to a subset that is homeomorphic to the closed
unit ball. Thus it applies to a closed ball of any size, or to a closed cube.

4.3 Iteration

4.3.1 First order convergence

Another approach to numerical root-finding is iteration. Assume that g is
a continuous function. We seek a fixed point r with g(r) = r. We can

4.3. ITERATION 53

attempt to find it by starting with an x0 and forming a sequence of iterates
using xn+1 = g(xn).

Theorem 4.3.1 Let g be continuous and let xn a sequence such that xn+1 =
g(xn). Then if xn → r as n→∞, then g(r) = r.

This theorem shows that we need a way of getting sequences to converge.
In higher dimensions the most convenient approach is to have a bound on
the derivative.

How do we use such a bound? We need a replacement for the mean
value theorem. Here is the version that works.

Lemma 4.3.1 Let g be a function with continuous derivative g′. Then

|g(y)− g(x)| ≤ max
0≤t≤1

‖g′(zt)‖ |y − x|, (4.11)

where zt = (1− t)x + ty lies on the segment between x and y.

The way to prove the lemma is to use the identity

g(y)− g(x) =

∫ 1

0

g′(zt)(y − x) dt. (4.12)

Theorem 4.3.2 Let B be a set that is homeomorphic to a closed ball.
Assume that g is continuous on B and that g maps B into itself. Then g
has a fixed point. Assume also that B is convex and that ‖g′(z)‖ ≤ K < 1
for all z in B. Let x0 be in B and iterate using xn+1 = g(xn). Then
the iterates converge to the fixed point. Furthermore, this fixed point is the
unique fixed point in B.

Proof: The Brouwer theorem guarantees that there is a fixed point r
in the interval. By the mean value theorem, for each x we have xn+1− r =
g(xn) − g(r). By the lemma the norm of this is bounded by K times the
norm of x− r. In other words each iteration replacing x by g(x) brings us
closer to r. 2

We see that that r is a stable fixed point if ‖g′(r)‖ < 1. However there
is a stronger result. Recall that the power of a matrix has a norm that gives
a much better bound on the eigenvalues. We may compute the derivative of
themth iterate gm(x) and we get g′(gm−1(x))g′(gm−2(x)) · · ·g′(g(x))g′(x).
At the fixed point with g(r) = r this is just the power g′(r)m. So near the
fixed point we expect that

xn+m − r = gm(xn)− gm(r) ≈ g′(r)m(xn − r). (4.13)

We see that if ‖g(r)m‖ < 1 then the fixed point r is stable.
If we want to use this to solve f(x) = 0, we can try to take g(x) = x−

Cf(x) for some suitable matrix K. If C is chosen so that g′(x) = 1−Cf ′(x)
is small for x near r, then there should be a good chance of convergence.

54 CHAPTER 4. NONLINEAR SYSTEMS

4.3.2 Second order convergence

Since the speed of convergence in iteration with g is controlled by g′(r), it
follows that the situation when g′(r) = 0 is going to have special properties.

It is possible to arrange that this happens. Say that one wants to solve
f(x) = 0. Newton’s method is to take g(x) = x− f ′(x)−1f(x). It is easy to
check that f(r) = 0 and f ′(r) non-singular imply that g′(r) = 0.

Newton’s method is not guaranteed to be good if one begins far from
the starting point. The damped Newton method is more conservative. One
defines g(x) as follows. Let m = f ′(x)−1f(x) and let y = x −m. While
|f(y)| ≥ |f(x)| replace m by m/2 and let y = x−m. Let g(x) be the final
value of y.
Projects

1. Newton’s method for systems has the disadvantage that one must
compute many partial derivatives. Steffensen’s method provides an
alternative. The method is to iterate with g(x) = x − w, where w
is the solution of J(x)w = f(x). For Newton’s method J(x) = f ′(x),
but for Steffensen’s method we approximate the matrix of partial
derivatives by a matrix of difference quotients. Thus the i, j entry of
J(x) is (fi(x + hjej)− fi(x))/hj), where hj = αj(f(x)). Here α is a
function that vanishes at zero. Thus as f(x) approaches zero, these
difference quotients automatically approach the partial derivatives.

There are various possible choices for the function α. One popular
choice is the identity αj(z) = zj , so that hj = fj(x). The disadvan-
tage of this choice is that hj can be zero away from the root.

Another method is to take each component of α to be the length, so
that αj(z) = |z| and hj = |f(x)|. This choice of α is not differentiable
at the origin, but in this case this is not a problem.

Perhaps an even better method is to take αj(z) to be the minimum
of |z| and some small number, such as 0.01. This will make the
difference matrix somewhat resemble the derivative matrix even far
from the solution.

The project is to write a program for solving a system of non-linear
equations by Steffensen’s method. Try out the program on a simple
system for which you know the solution.

2. Use the program to solve the following system.

x3 − 3xy2 − 6z3 + 18zw2 − 1 = 0

3x2y − y3 − 18z2w + 6w3 = 0

4.3. ITERATION 55

xz − yw − 1 = 0

yz + xw = 0

Find a solution near the point where (x, y, z, w) is (0.6, 1.1, 0.4,−0.7).

Problems

1. Let B be the ball of radius r centered at c. Assume that ‖g′(z)‖ ≤
K < 1 for all z in B. Suppose that a is in B and that a and g(a)
satisfy Kr +K|a− c|+ |g(a)− c| ≤ r. Show that g maps B into B.

2. Let g(x) = x − Cf(x). Show that if C approximates f ′(x)−1 in the
sense that ‖C − f ′(x)−1‖‖f ′(x)‖ is bounded below one near the fixed
point, then iteration with g starting near the fixed point converges to
the fixed point.

3. Calculate g′(x) in Newton’s method.

4. Show that in Newton’s method f(r) = 0 with f ′(r) invertible implies
g′(r) = 0.

5. The following problems deal with the theory of Steffensen’s method.
For simplicity we deal with the scalar case. Thus the method con-
sists of iteration with g(x) = x − f(x)/m(x), where m(x) = (f(x +
α(f(x)))−f(x))/α(f(x)). The function α is chosen so that α(0) = 0.
Let r be a root of f , so that f(r) = 0, and assume that f ′(r) 6= 0.
The first problem is to compute m(r) and m′(r).

6. Show that g′(r) = 0 and that g′′(r) = (2m′(r)− f ′′(r))/f ′(r).

7. Let xn+1 = g(xn) and assume xn → r as n to ∞. Evaluate the limit
of (xn+1 − r)/(xn − r)2 as n→∞.

8. What if α(z) = |z|, so that α is not differentiable at 0. Is it still true
that g′(r) = 0.

9. Another interesting problem is to examine the situation when the
iterations give increasing or decreasing sequences of vectors. Show
that if the matrix f ′(x)−1 has positive entries and f(x) has positive
entries, then g(x) ≤ x.

10. This leads to the problem of finding when a matrix A has the property
that A−1 has positive entries. Show that if A = D − N , where
D is diagonal and N is off-diagonal and D ≥ 0 and N ≥ 0 and
‖D−1N‖∞ < 1, then A−1 has only positive entries.

56 CHAPTER 4. NONLINEAR SYSTEMS

11. Show that if in this situationA−1 exists but we have only ‖D−1N‖∞ ≤
1, then the same conclusion holds.

12. Assume that x ≥ r implies f(x) ≥ 0. We want to see when x ≥ r
implies g(x) ≥ r. Evaluate g′(z) terms of f ′′(z) and show that it is
sufficient that all the second partial deriviatives in this expression are
positive.

4.4 Power series

Let C be a matrix with ‖C‖ < 1. Then (1 − C)−1 exists. We may most
easily see this by expanding C in a power series. By summing this series
we see that ‖(1− C)−1‖ ≤ 1/(1− ‖C‖).

Recall that in general ‖Ck‖ ≤ ‖C‖k. Thus there is an interesting gen-
eralization to the case when ‖Ck‖ < 1 for some k. We observe that

(1− C)−1 = (1 + C + C2 + · · ·+ Ck−1)(1− Ck)−1. (4.14)

It follows that also in this situation (1− C)−1 exists.
Problems

1. Find a bound for (1 + C)−1 in terms of ‖C‖ and ‖Ck‖.

2. Show that if A−1 exists and ‖(EA−1)k‖ < 1 for some k, then (A −
E)−1 exists.

4.5 The spectral radius

The spectral radius ρ(A) of a square matrix A is the maximum absolute
value of an eigenvalue. Even if the matrix is real, it is important in this
definition that all complex eigenvalues are considered. The reason for this
importance is that with this definition we have the following theorem.

Theorem 4.5.1 The norms of powers An and the spectral radius of A are
related by

lim
n→∞

‖An‖ 1
n = ρ(A). (4.15)

Proof:
It is easy to see that for all n it is true that ρ(A) ≤ ‖An‖ 1

n . The problem
is to show that for large n the right hand side is not much larger than the
left hand side.

4.6. LINEAR ALGEBRA REVIEW 57

The first thing to do is to check that |z| < 1/ρ(A) implies that (I−zA)−1

exists. (Otherwise 1/z would be an eigenvalue of A outside of the spectral
radius.)

The essential observation is that (I − zA)−1 is an analytic function of
z for |z| < 1/ρ(A). It follows that the power series expansion converges
in this disk. Thus for |z| with |z| < 1/ρ(A) there is a constant c with
‖(zA)n‖ = |z|n‖An‖ ≤ c.

We have shown that for every r < 1/ρ(A) there is a c with ‖An‖ 1
n ≤

c
1
n /r. Take 1/r to be larger than but very close to ρ(A). Take n so large

that c
1
n /r is still close to ρ(A). Then ‖An‖ must be larger than but close

to ρ(A). 2

Let us look at this proof in more detail. The essential point is the
convergence of the power series. Why must this happen? It is a miracle of
complex variable: the Cauchy integral formula reduces the convergence of
an arbitrary power series inside its radius of convergence to the convergence
of a geometric series.

Look at the Cauchy integral formula

(I − wA)−1 =
1

2πi

∫
(1− zA)−11/(z − w) dz, (4.16)

where w is inside the circle of integration |z| = r and r < 1/ρ(A). We may
expand in a geometric series in powers of w/z. From this we see that the
coefficients of the expansion in powers of w are

An =
1

2πi

∫
(1− zA)−11/zn+1 dz. (4.17)

This proves that ‖An‖ ≤ c/rn, where

c =
1

2πr

∫
‖(I − zA)−1‖ d|z| (4.18)

over |z| = r.
Notice that as r approaches 1/ρ(A) the bound c will become larger, due

to the contribution to the integral from the singularity at z = 1/λ.
Problems

1. Show that it is false in general that ρ(A + B) ≤ ρ(A) + ρ(B). Hint:
Find 2 by 2 matrices for which the right hand side is zero.

4.6 Linear algebra review

We briefly review the various similarity representations of matrices. We are
interested in the case of a real square matrix A.

58 CHAPTER 4. NONLINEAR SYSTEMS

There is always a (possibly complex) matrix S and a (possibly complex)
upper triangular matrix J such that S−1AS = J . Thus A has the Jordan
representation A = SJS−1. The eigenvalues of A occur on the diagonal of
J .

Assume that A has distinct eigenvalues. Then the eigenvectors of A
form a basis. Then there is always a (possibly complex) matrix S and a
(possibly complex) diagonal matrix D such that S−1AS = D. Thus A has
the spectral representation A = SDS−1. The eigenvalues of A occur on the
diagonal of D. The eigenvectors form the columns of the matrix S.

Assume that A has real eigenvalues (not necessarily distinct). Then
there is always an orthogonal matrix Q and an upper triangular matrix U
such that Q−1AQ = U . Thus A has the Schur representation A = QUQ−1

where Q−1 = QT . The eigenvalues of A occur on the diagonal of U .
Assume that A is symmetric, so A = AT . Then A has real eigenvalues

(not necessarily distinct). The eigenvectors of A may be chosen so as to
form an orthonormal basis. There is always an orthogonal matrix Q and
a diagonal matrix D such that Q−1AQ = D. Thus A has the spectral
representation A = QDQ−1 where Q−1 = QT . The eigenvalues of A occur
on the diagonal of D. The eigenvectors may be chosen to form the columns
of the matrix Q.

4.7. ERROR ANALYSIS 59

4.7 Error analysis

There are several sources of error in numerical analysis. There are some
that are obvious and inescapable, such as the input error in data from the
outside world, and the inherent representation error in the precision that
is available in the output.

4.7.1 Approximation error and roundoff error

However there are two main sources of error. One is the approximation
error. This is the error that is due to approximating limits by finite arith-
metical operators. It is sometimes called truncation error and sometimes
called discretization error, depending on the context.

The most common tool for treating approximation error is Taylor’s
formula with remainder. The idea is that a function such as f(x) =
f(a) + f ′(a)(x − a) + 1/2f ′′(a)(x − a)2 + r is approximated by a poly-
nomical p(x) = f(a) + f ′(a)(x − a) + 1/2f ′′(a)(x − a)2. The advantage
is that the polynomial can be computed by addition and multiplication,
which are operations supported by the computer. The disadvantage is that
there is an error r. One hopes that the error r is small, and that one can
prove that it is small.

There are other forms of approximation error, but in every case the
challenge is to find algorithms for which the approximation error is small.
This is a general mathematical problem, perhaps the central problem in
analysis. In this respect numerical analysis appears as nothing more than
a subset of analysis.

Of course some parts of numerical analysis have no approximation error.
For instance, the formulas for inverting a matrix using the LU or QR
decomposition are exact.

Examples that we have encountered where there is approximation error
are root-finding and eigenvalue computation. In each of these cases the
computation is only exact when one performs infinitely many iterations,
which is impossible on the computer.

The other main source of error is roundoff error. This is due to the
fact that computer does not do exact arithmetic with real numbers, but
only floating point arithmetic. This source of error is peculiar to numerical
analysis.

4.7.2 Amplification of absolute error

We want an algorithm to have the property that it does not magnify round-
off error needlessly. For a start we do an analysis of absolute error.

60 CHAPTER 4. NONLINEAR SYSTEMS

For the purposes of analysis, imagine that we want to compute a func-
tion y = f(x). Then dy = f ′(x)dx, so small input error is amplified by the
entries in the matrix f ′(x). If this matrix has large entries, then the prob-
lem in inherently ill-conditioned with respect to absolute error. Nothing
can be done to remedy this.

Example: Consider the problem of solving a polynomial equation p(z) =
0. The roots are functions of the coefficients. Let a be one of the coefficients,
say the coefficient of zm. Then the root y satisfies an equation p(y) =
P (a, y) = 0. Differentiate this equation with respect to a. We obtain
ym + p′(y)dy/da = 0, where p′(z) is the derivative of the polynomial with
respect to z. This shows that the problem of finding the root y as a function
of the coefficient a is not well-posed when p′(y) = 0, that is, when y is a
multiple root.

However, even if the problem is well-conditioned, a poor choice of al-
gorithm can give trouble. Say that our numerical algorithm is to compute
z = h(x) and then y = g(z). Then we have an intermediate stage at which
we can introduce roundoff errors. We have dy = g′(z)dz, so if g′(z) is large,
which can happen, then we can have these intermediate errors amplified.

We can examine this amplification effect rather crudely in terms of the
norm of the matrix g′(z). Or we can write out the entries explicitly as

dyi =
∑
k

∂yi
∂zk

dzk (4.19)

and perform a detailed analysis.
From the chain rule, we always have f ′(x) = g′(z)h′(x). So, roughly

speaking, for a fixed problem of computing f(x), we want to choose an
algorithm so as to take g′(z) to have a reasonably small norm, not greatly
exceeding the norm of f ′(x). This keeps the norm of h′(x) from being
small, but this norm does not matter. (The whole point is not to needlessly
amplify roundoff errors from intermediate stages.)

We say that an algorithm is numerically stable if the errors that are
introduced from intermediate stages are not much larger than the inherent
roundoff errors that arize from the input error and the representation error.

A problem can be well-conditioned, but we can make the mistake of
choosing a numerically unstable algorithm. This leads to wrong answers!

Example: Here is a classic example. Say that one wants to compute the
function y = f(x) =

√
x+ 1−

√
x for large x. One does this in stages. The

first stage is to compute z =
√
x+ 1 and w =

√
x. (Note that z2 − w2 =

1.) The second stage may be performed in two ways. The obvious but
undesirable way is to compute y = z − w. The better way is to compute
y = 1/(z + w).

4.7. ERROR ANALYSIS 61

The derivative dy/dx is very small when x is large. Errors in x are
damped. However in the undesirable method ∂y/∂z = 1 and ∂y/∂w = −1,
which are not small. So errors in z and w are not damped.

With the better method, the partial derivatives are ∂y/∂z = −1/(z+w)2

and ∂y/∂w = −1/(z + w)2. Errors in z and w are damped. Clearly this
method is preferable.

Example: Fix 0 < a < 1. Let b = a + 1/a. Consider the problem of
solving the recurrence relation xn+1 = bxn−xn−1 with x1 = a and x0 = 1.
It is easy to see that the solution is xk = ak. Clearly dxk/da = kak−1 is
small. The problem is well-posed.

However the recurrence relation is a terrible way to compute the answer.
The reason is that this is essentially computing the matrix power in(

xk+1

xk

)
=

(
b −1
1 0

)k (
a
1

)
. (4.20)

The largest eigenvalue of the matrix is 1/a > 1, so for large k this has very
large norm. Errors (from earlier stages of taking the power) are very much
amplified!

4.7.3 Amplification of relative error

The arithmetic used in most computers is floating point arithmetic, so the
roundoff error is more or less independent of the size of the number. It
should be thought of as a relative error. Thus the amplification effect of
relative error is what is actually important.

The formula for the dependence of relative error in the output on relative
error in an intermediate stage is

dyi
yi

=
∑
k

zk
yi

∂yi
∂zk

dzk
zk

. (4.21)

It is of course possible to think of this as the formula for the absolute
error amplifiation for logarithms

d log |yi| =
∑
k

∂ log |yi|
∂ log |zk|

d log |zk|. (4.22)

In this sense it falls under the scope of the analysis of the previous section.
Ultimately, however, the result is that the amplification of relative error

is given by a matrix with entries (zk/yi)(∂yi/∂zk). We want this to be a
small matrix. We have no control over the yi, since this is simply the output
value. But the algorithm controls the size of the intermediate number zk.

62 CHAPTER 4. NONLINEAR SYSTEMS

The conclusion is that, unless there is a compensating small derivative, we
prefer small sizes of the numbers zk that occur in intermediate steps of the
computation.

Example: Say that one wants to compute y = f(x) = x+ 2 at x = 2. A
bad algorithm is to compute z = 1000001x and w = 1000000x and compute
y = z − w + 2. The reason is that a relative error of a millionth in z or w
will give a completely wrong answer. Big numbers have been introduced
needlessly.

Example: Say that one wants to compute y = f(x) = x + 2 at x = 2.
One algorithm is to compute z = 1000000x and then y = 1/1000000z + 2.
This introduces a big number z, but in this case it does no harm. The
reason is that the small dy/dz compensates the large z.

Example: Let us repeat the example of the function f(x) =
√
x+ 1 −√

x, this time making the analysis using relative error. The first stage is to
compute z =

√
x+ 1 and w =

√
x. (Note that z2 − w2 = 1.) The second

stage may be performed in two ways. The obvious but undesirable way is
to compute y = z − w. The better way is to compute y = 1/(z + w).

The relative error amplification inherent in the problem is (x/y)dy/dx
which evaluates to −x/(zw), a quantity bounded by one. The problem is
well-conditioned.

However in the undesirable method we have (z/y)∂y/∂z = z(z+w) and
also (w/y)∂y/∂w = −w(z + w), which are very large. So relative errors in
z and w are amplified.

With the better method, the partial derivatives are given by the expres-
sions (z/y)∂y/∂z = −z/(z+w) and (w/y)∂y/∂w = −w/(z+w). This does
not amplify relative error, and so this method is numerically stable. Note
that in this particular example the advantage of the better method is the
same in the absolute error analysis and the relative error analysis. This is
because the two algorithms deal with the precisely the same numbers in
the intermediate stage.

Problems

1. Say that f(a, y) = 0 defines y as a function of a. When is this problem
of determining y from a well-posed?

2. Consider the problem of finding y = e−x for large values of x. One
strategy is to use the nth partial sum of the Taylor series expansion
about zero. How large must n be chosen so that the approximation
error is smaller than some small ε > 0?

3. Methods using Taylor series can have problems with roundoff errror.
Consider the problem of finding y = e−x for large x. Here are two

4.8. NUMERICAL DIFFERENTIATION 63

methods. Neither is particularly good, but one is considerably better
than the other. The problem is to give a relative error analysis.

The first method is to compute y = z +w, where z is the nth partial
sum of the Taylor series of y is powers of x about zero. The other term
w is the remainder (which we assume can be well-approximated).

The second method is to compute y = 1/u. Here u = z +w, where z
is the nth partial sum of the Taylor series of u in powers of x about
zero. The other term is the remainder (which we assume again can
be well-approximated).

4.8 Numerical differentiation

Let us apply our analysis of error to the example of numerical differenti-
ation. We want to start from x and compute y′ = f ′(x). The relative
error amplification is (x/y′)(dy′/dx) and so it is controlled by the second
derivative f ′′(x). So the problem is well-conditioned in most circumstances.

The method of numerical differentiation is to compute z = f(x+h) and
w = f(x) and approximate y′ by (z−w)/h. This is supposed to be a good
approximation when h is very small.

The relative amplification factor from z is given by (z/y′)∂y′/∂z. In
this approximation this is (z/y′)(1/h). This is ordinarily huge when h is
very small. Therefore numerical differentiation is not a numerically stable
way of computing derivatives.

There is one exceptional case when numerical differentiation is not so
bad. This is one f(x) is itself small, comparable to h. Then factors such
as z/h are of order one, which is acceptable.

Newton’s method for solving equations is to iterate using g(x) = x −
f(x)/y′, where y′ = f ′(x). Steffensen’s method is to apply numerical dif-
ferentiation with h = f(x) to avoid having to compute a formula for the
derivative. Why is this justified, if numerical differentiation is not a nu-
merically stable process?

The answer is first that this is precisely the case when numerical differ-
entiation is not so bad. Furthermore, the numerical differentiation is not
the final stage. We are actually interested in computing g(x), and the rela-
tive error amplification quantity is (y′/g(x))∂g(x)/∂y′ = −1/(y′g(x))f(x).
As we approach the solution the factor f(x) gets very small, so in this final
stage the relative error is damped by a huge amount. Thus the iteration is
very stable with respect to errors in the numerical derivative.

Problems

64 CHAPTER 4. NONLINEAR SYSTEMS

1. Take f(x) =
√
x and consider the problem of computing the difference

quotient (f(x+ h)− f(x))/h for small h. Discuss numerical stability
of various algorithms.

2. Take f(x) = 1/x and consider the problem of computing the difference
quotient (f(x+ h)− f(x))/h for small h. Discuss numerical stability
of various algorithms.

3. Consider the problem of computing the derivative f ′(x). One may
compute either (f(x+h)− f(x))/h, or one may compute (f(x+h)−
f(x− h))/(2h). Compare these from the point of view of approxima-
tion error.

4. Say that one takes Steffensen’s method with h = f(x)2 instead of
h = f(x). What is the situation with numerical stability?

5. How about with h = f(x)3?

æ

Chapter 5

Ordinary Differential
Equations

5.1 Introduction

This chapter is on the numerical solution of ordinary differential equations.
There is no attempt to cover a broad spectrum of methods. In fact, we
stick with the simplest methods to implement, the Runge-Kutta methods.

Our main purpose is to point out that there are two different problems
with the approximation of ordinary differential equations. The first is to
get an accurate representation of the solution for moderate time intervals
by using a small enough step size and an accurate enough approximation
method. The second is to get the right asymptotic behavior of the solution
for large time.

5.2 Numerical methods for scalar equations

We consider the equation
dy

dt
= g(t, y) (5.1)

with the initial condition y = y0 when t = t0.
The simplest numerical method is Euler’s method, which is the first-

order Runge-Kutta method. Fix a step size h > 0. Set tn = t0 + nh. The
algorithm is

yn+1 = yn + hg(tn, yn). (5.2)

Here is a program in ISETL (Interactive Set Language).

65

66 CHAPTER 5. ORDINARY DIFFERENTIAL EQUATIONS

g := :t,y -> y + exp(t) * cos(t): ;

t := 0.0 ; y := 0.0 ;

dt := 0.01 ;

while t < 3.14 do

dy := g(t,y) * dt ;

y := y + dy ;

t := t + dt ;

writeln t, y , exp(t) * sin(t) ;

end ;

Another method is the implicit or backward Euler’s method. This is
given by

yn+1 = yn + hg(tn+1, yn+1). (5.3)

It would seem that this would never be used, because one has to solve an
equation for yn+1 at each step. However we shall see that this method has
important stability properties that can be crucial in some situations.

Euler’s method is not very accurate, since the slopes are computed only
at the beginning of the time step. A better method would take the average
of the slopes at the beginning and at the end. This is the implicit trapezoid
method. This is given by

yn+1 = yn + h
1

2
[g(tn, yn) + g(tn+1, yn+1)]. (5.4)

Again this requires solving an equation for yn+1 at each stage.
The trouble is that we don’t know the slope at the end. The solution

is to use the Euler method to estimate the slope at the end. This gives
an explicit trapezoid method which is a second order Runge-Kutta method.
The formula is

yn+1 = yn + h
1

2
[g(tn, yn) + g(tn+1, yn + hg(tn, yn))]. (5.5)

Here is a program.
g := :t,y -> y + exp(t) * cos(t): ;

t := 0.0 ; y := 0.0 ;

dt := 0.01 ;

while t < 3.14 do

dye := g(t,y) * dt ;

dy := (1/2) * (g(t,y) + g(t+dt,y+dye)) * dt ;

y := y + dy ;

t := t + dt ;

writeln t, y , exp(t) * sin(t) ;

end ;

Problems

5.3. THEORY OF SCALAR EQUATIONS 67

1. Find the solution of
dy

dt
= y + et cos t (5.6)

with y = 0 when t = 0. What is the value of the solution at y = π.

2. Solve this numerically with Euler’s method and compare.

3. Solve this numerically with the trapezoid second order Runge Kutta
and compare.

4. Compare the Euler and trapezoid second order Runge Kutta method
with the (left endpoint) Riemann sum and trapezoid rule methods for
numerical integration.

5. Another method is to use midpoints: dy = g(t + dt/2, y + dye/2)dt
where dye = g(t, y)dt. This is another second-order Runge-Kutta
method. Program this and solve the equation numerically. How does
this compare in accuracy with the other methods?

5.3 Theory of scalar equations

5.3.1 Linear equations

Linear equations are easy to solve. The general homogeneous linear equa-
tion is

du

dt
= a(t)u. (5.7)

It may be solved by separation of variables du/u = a(t) dt.
It is then easy to find the solutions of the linear equation

dy

dt
= a(t)y + s(t) (5.8)

The trick is to let u(t) be a solution of the corresponding homogeneous
equation and try y = c(t)u(t). Then it is easy to solve for c(t) by integration
of dc(t)/dt = s(t)/u(t).

5.3.2 Autonomous equations

The general autonomous equation is

dy

dt
= f(y). (5.9)

68 CHAPTER 5. ORDINARY DIFFERENTIAL EQUATIONS

An equilibrium point is a solution of f(r) = 0. For each equilibrium point
we have a solution y = r.

Near an equilibrium point f(y) ≈ f ′(r)(y − r). An equilibrium point r
is attractive if f ′(r) < 0 and repulsive if f ′(r) > 0.

One can attempt to find the general solution of the equation by inte-
grating ∫

1

f(y)
dy =

∫
dt. (5.10)

Problems

1. If a population grows by dp/dt = .05p, how long does it take to double
in size?

2. The velocity of a falling body (in the downward direction) is given
by dv/dt = g − kv, where g = 32 and k = 1/4. If v = 0 when t = 0,
what is the limiting velocity as t→∞?

3. Consider dy/dt = ay + b where y = y0 when t = 0. Solve for the case
when a 6= 0. Fix t and find the limit of the solution y as a→ 0.

4. A population grows by dp/dt = ap − bp2. Here a > 0, b > 0, and
0 < p < a/b. Find the solution with p = p0 at t = 0. Do this by
letting u = 1/p and solving the resulting differential equation for u.

5. Do the same problem by integrating 1/(ap− bp2) dp = dt. Use partial
fractions.

6. In the same problem, find the limiting population as t→∞.

Projects

1. Write a program to solve an ordinary differential equation via the
explicit trapezoid method.

2. Use your program to explore the solutions of dx/dt = x − x3. Try
many different initial conditions. What pattern emerges? Discuss the
limit of x as t→∞ as a function of the initial condition x0.

5.3.3 Existence

We want to explore several questions. When do solutions exist? When are
they uniquely specified by the initial condition? How does one approximate
them numerically?

5.3. THEORY OF SCALAR EQUATIONS 69

We begin with existence. Consider the equation

dy

dt
= g(t, y) (5.11)

with initial condition y = y0 when t = t0. Assume that g is continuous.
Then the solution always exists, at least for a short time interval near t0.
One proof of this is based on using Euler’s method with step sizes h > 0 to
generate approximate solutions. One then takes the limit h → 0 and uses
a compactness argument to show that these approximate a solution.

In general, however, we have only local existence. An example is given
in the problems.
Problems

1. Consider the differential equation

dy

dt
= y2 (5.12)

with initial condition y = y0 when t = 0. Find the solution. For
which t does the solution blow up?

2. Sketch the vector field in phase space (with dx/dt = 1). Sketch a
solution that blows up.

3. Can this sort of blow up happen for linear equations? Discuss.

5.3.4 Uniqueness

Assume in addition that g has continuous derivatives. Then the solution
with the given initial condition is unique. This fact is usually proved using
a fixed point iteration method.

Uniqueness can fail when g is continuous but when g(t, y) has infinite
slope as a function of y.
Problems

1. Plot the function g(y) = sign(y)
√
|y|. Prove that it is continuous.

2. Plot its derivative and prove that it is not continuous.

3. Solve the differential equation

dy

dt
= sign(y)

√
|y| (5.13)

with the initial condition y = 0 when t = 0. Find all solutions for
t ≥ 0.

70 CHAPTER 5. ORDINARY DIFFERENTIAL EQUATIONS

4. Substitute the solutions back into the equation and check that they
are in fact solutions.

5. Sketch the vector field in phase space (with dx/dt = 1).

6. Consider the backward Euler’s method for this example. What am-
biguity is there in the numerical solution?

5.3.5 Forced oscillations

We consider the non-linear equation

dy

dt
= g(t, y). (5.14)

Assume that g(t, y) has period T , that is, g(t + T, y) = g(t, y). It will
not necessarily be the case that all solutions have period T . However there
may be a special steady-state solution that has period T .

Here is the outline of the argument. Assume that a < b and that
g(t, a) ≥ 0 for all t and g(t, b) ≤ 0 for all t. Then no solution can leave the
interval [a, b]. Thus if y = φ(t, y0) is the solution with y = y0 at t = 0, then
h(y0) = φ(T, y0) is a continuous function from [a, b] to itself. It follows that
h has a fixed point. But then if we take the initial condition to be this fixed
point we get a periodic solution.

We can sometimes get to this fixed point by iterations. Let y′ be ∂y/∂y0.
Then

dy′

dt
=
∂g(t, y)

∂y
y′. (5.15)

Also y′ = 1 at t = 0 and y′ = h′(y0) at t = T . It follows that h′(y0) > 0.
Assume that ∂g(t, y)/∂y < 0. Then h′(y0) < 1 and so we can hope that

fixed point iterations of h converge. This would say that every solution in
the interval converges to the periodic solution.
Problems

1. Consider the equation

dy

dt
= g(y) + s(t) (5.16)

with periodic forcing function s(t). Find conditions that guarantee
that this has a periodic solution.

2. Apply this to the equation

dy

dt
= ay − by2 + c sin(ωt). (5.17)

5.4. THEORY OF NUMERICAL METHODS 71

3. Experiment with numerical solutions. Which solutions converge to
the periodic solution?

5.4 Theory of numerical methods

5.4.1 Fixed time, small step size

We want to approximate the solution of the differential equation

dy

dt
= f(t, y) (5.18)

with initial condition y = y0 at t = 0. For convenience we denote the
solution of the equation at a point where t = a by y(a).

The general method is to find a function φ(t, y, h) and compute

yn+1 = yn + hφ(tn, yn, h). (5.19)

Here h > 0 is the step size and tn = nh.
Example: Let φ(t, y, h) = f(t, y). This is Euler’s method.
Example: Let φ(t, y, h) = (1/2)[f(t, y) +f(t+h, y+hf(t, y))]. This is a

second-order Runge-Kutta method which we will call the explicit trapezoid
method.

Example: Let φ(t, y, h) = f(t + h/2, y + hf(t, y)/2). This is another
second-order Runge-Kutta method, the explicit midpoint method.

We will always pick the method so that φ(t, y, 0) = f(t, y). Such a
method is said to be consistent.

Why is one method better than other. One criterion is obtained by
looking at the exact solution y(t). If

y(tn+1) = y(tn) + hφ(tn, y(tn), h) + Tn+1, (5.20)

then the remainder term Tn is called the local truncation error.
The local truncation error may be computed as a Taylor series about

tn in powers of h. If the local truncation error only contains only powers
of order p+ 1 or more, then the method is said to have order at least p.

Example: Euler’s method has order one.
Example: The explicit trapezoid method described above has order two.
Remark: A consistent method has order at least one.
Let εn = y(tn)− yn. This is the error at step n. We see that

εn+1 − εn = h[φ(tn, y(tn), h)− φ(tn, yn, h)] + Tn+1 (5.21)

72 CHAPTER 5. ORDINARY DIFFERENTIAL EQUATIONS

Assume that we have the inequality

|φ(t, y1, h)− φ(t, y2, h)| ≤ L|y1 − y2| (5.22)

for some constant L. This would follow from a bound on the y partial
derivative of φ. We call this the slope bound.

Assume also that we have a bound Tn+1 ≤ Khp+1. We call this the
local truncation error bound.

Theorem 5.4.1 Assume that the one-step numerical method for solving
the ordinary differential equation dy/dt = f(t, y) satisfies the slope bound
and the local truncation error bound. Then the error satisfies the global
truncation error bound

|εn| ≤ Khp
eLtn − 1

L
. (5.23)

This bound is a worst case analysis, and the error may not be nearly
as large as the bound. But there are cases when it can be this bad. Notice
that for fixed time tn the bound gets better and better as h → 0. In fact,
when the order p is large, the improvement is dramatic as h becomes very
small.

On the other hand, for fixed h, even very small, this bound becomes
very large as tn →∞.

Obviously, it is often desirable to take p to be large. It is possible
to classify the Runge-Kutta methods of order p, at least when p is not too
large. The usual situation is to use a method of order 2 for rough calculation
and a method of order three or four for more accurate calculation.

We begin by classifying the explicit Runge-Kutta methods of order 2.
We take

φ(t, y, h) = (1− c)f(t, y) + cf(t+ ah, y + ahf(t, y)). (5.24)

We see that every such method is consistent, and hence of order one.
The condition that the method be of order 2 works out to be that ac = 1/2.

There is a similar classification of methods of order 3 and 4. In each
case there is a two-parameter family of Runge-Kutta methods. By far the
most commonly used method is a particular method of order 4. (There are
methods of higher order, but they tend to be cumbersome.)
Problems

1. Prove the bound on the global truncation error.

2. Carry out the classification of methods of order 2.

5.4. THEORY OF NUMERICAL METHODS 73

5.4.2 Fixed step size, long time

In order to study the long time behavior, it is useful to begin with the
autonomous equation

dy

dt
= f(y). (5.25)

If r is such that f(r) = 0, then r is a stationary or equilibrium point. If
also f ′(r) < 0, then r is stable.

The numerical method is now of the form

yn+1 = yn + hφ(yn, h). (5.26)

It is natural to require that the method satisfies the condition that f(y) = 0
implies φ(y, h) = 0.

This is an iteration with the iteration function g(y) = y + hφ(y, h).
Under the above requirement the equilibrium point r is a fixed point with
g(r) = r. Such a fixed point r is stable if g′(r) = 1 + hφ′(r, h) is strictly
less then one in absolute value.

If f ′(y) < 0 for y near r, then for h small one might expect that
φ′(r, h) < 0 and hence g′(r) < 1. Furthermore, for h small enough we
would have g′(s) > −1. So a stable equilibrium of the equation should
imply a stable fixed point of the numerical scheme, at least for small values
of h.

How small? We want g′(r) = 1 + hφ′(r, h) > −1, or hφ′(r, h) > −2.
Thus a rough criterion would be hf ′(r) > −2.

In some problems, as we shall see, there are two time scales. One time
scale suggests taking a comparatively large value of time step h for the
integration. The other time scale is determined by the reciprocal of the
magnitude of f ′(r), and this can be very small. If these scales are so
different that the criterion is violated, then the problem is said to be stiff.
(We shall give a more precise definition later.)

A class of problems where stiffness is involved is for equations of the
form

dy

dt
= f(t, y), (5.27)

where there is a function y = r(t) with f(t, r(t)) = 0 and with ∂f(t, r(t))/∂y <
0 and very negative. The dependence of r(t) on t is slow compared with
the fast decay of the solution y to y = r(t). Thus one might want to take
a moderate sized time step h suitable for tracking y = r(t). However this
would be too large for tracking the decay in detail, which we might not
even care to do. Thus we need a numerical method that gives the decay
without worrying about the details of how it happens.

74 CHAPTER 5. ORDINARY DIFFERENTIAL EQUATIONS

What can we do for a stiff problem? One solution is to use implicit
methods.

The general implicit method is to find a function φ(t, y, z, h) and com-
pute

yn+1 = yn + hφ(tn, yn, yn+1, h). (5.28)

Here h > 0 is the step size and tn = nh.
Example: Let φ(t, y, z, h) = f(t, z). This is backward Euler’s method.
Example: Let φ(t, y, z, h) = (1/2)[f(t, y) + f(t + h, z)]. This is a

second-order implicit Runge-Kutta method often called the implicit trape-
zoid method.

Example: Let φ(t, y, z, h) = f(t + h/2, (y + z)/2). This is another
second order implicit Runge-Kutta method, known as the implicit mid-
point method.

The difficulty with an implicit method is that at each stage one must
solve an equation for yn+1. However an implicit method may be more useful
for stiff problems.

Consider the special case of an autonomous equation. The implicit
method amounts to iteration by an iteration function defined implicitly by

g(y) = y + hφ(y, g(y), h). (5.29)

The derivative is given by

g′(y) =
1 + hφ1(y, g(y), h)

1− hφ2(y, g(y), h)
. (5.30)

Here φ1(y, z, h) and φ2(y, z, h) denote the partial derivatives of φ(y, z, h)
with respect to y and z, respectively. At a fixed point r with g(r) = r this
is

g′(r) =
1 + hφ1(r, r, h)

1− hφ2(r, r, h)
. (5.31)

The condition that |g′(r)| < 1| translates to

|1 + hφ1(r, r, h)| < |1− hφ2(r, r, h)|. (5.32)

If the two partial derivatives are both strictly negative, then this condition
is guaranteed for all h > 0, no matter how large, by the inequality

−φ1(r, r, h) ≤ −φ2(r, r, h). (5.33)

This says that the implicit method must have at least as much dependence
on the future as on the past. Thus a stiff problem requires implicitness.

5.4. THEORY OF NUMERICAL METHODS 75

The implicit methods require solving equations at each step. In some
cases this may be done by algebraic manipulation. In other cases an itera-
tion method must be used.

The most obvious iteration method is to use the iteration function

s(z) = yn + hφ(tn, yn, z, h). (5.34)

One could start this iteration with yn. The fixed point of this function is the
desired yn+1. The trouble with this method is that s′(z) = hφ2(tn, yn, z, h)
and for a stiff problem this is very large. So the iteration will presumably
not converge.

How about Newton’s method? This is iteration with

t(z) = z − z − yn − hφ(t, yn, z, h)

1− hφ2(t, yn, z, h)
. (5.35)

This should work, but the irritation is that one must compute a partial
derivative.
Problems

1. Consider a problem of the form dy/dt = −a(y − r(t)) where a > 0
is large but r(t) is slowly varying. Find the explicit solution of the
initial value problem when y = y0 at t = 0. Find the limit of the
solution at time t as a→∞.

2. Take a = 10000 and r(t) = sin t. Use y0 = 1. The problem is to
experiment with explicit methods with different step sizes. Solve the
problem on the interval from t = 0 to t = π. Use Euler’s method with
step sizes h = .01, .001, .0001, .00001. Describe your computational
experience and relate it to theory.

3. The next problem is to do the same experiment with stable im-
plicit methods. Use the backward Euler’s method with step sizes
h = .01, .001.

4. Consider the general implicit method of the form

φ(t, y, z, h) = c1f(t+ a1h, y+ a1(z − y)) + c2f(t+ a2h, y+ a2(z − y))
(5.36)

Find the condition that ensures that this is first order.

5. Find the condition that ensures that it is second order.

6. Consider an autonomous equation and assume that f ′(y) < 0 for all
y in some interval in the region of interest. Find the condition for
stability of the method at a fixed point for a stiff problem.

76 CHAPTER 5. ORDINARY DIFFERENTIAL EQUATIONS

7. Are there second order methods for stiff problems that are stable?
Discuss.

8. We have required that every zero of f(y) also be a zero of φ(y, h).
When is this satisfied for Runge-Kutta methods?

9. Consider a Taylor method of the form φ(y, h) = f(y)+(1/2)f ′(y)f(y)h.
When is the requirement satisfied for such Taylor methods?

5.5. SYSTEMS 77

5.5 Systems

5.5.1 Introduction

We now turn to systems of ordinary differential equations. For simplicity,
we concentrate on autonomous systems consisting of two equations. The
general form is

dx

dt
= f(x, y) (5.37)

dy

dt
= g(x, y). (5.38)

Notice that this includes as a special case the equation dy/dt = g(t, y).
Thus may be written as a system by writing it as

dx

dt
= 1 (5.39)

dy

dt
= g(x, y). (5.40)

In general, if we have a system in n variables with explicit time depen-
dence, then we may use the same trick to get an autonomous system in
n+ 1 variables.

We may think of an autonomous system as being given by a vector
field. In the case we are considering this is a vector field in the plane with
components f(x, y) and g(x, y). If we change coordinates in the plane, then
we change these coordinates.

In general, the matrix of partial derivatives of this vector field transforms
in a complicated way under change of coordinates in the plane. However at
a zero of the vector field the matrix undergoes a similarity transformation.
Hence linear algebra is relevant!

In particular, two eigenvalues (with negative real parts) of the lineariza-
tion at a stable fixed point determine two rates of approach to equilibrium.
In the case when these rates are very different we have a stiff problem.

5.5.2 Linear constant coefficient equations

The homogeneous linear constant coefficient system is of the form

dx

dt
= ax+ by (5.41)

dy

dt
= cx+ dy. (5.42)

78 CHAPTER 5. ORDINARY DIFFERENTIAL EQUATIONS

Try a solution of the form

x = veλt (5.43)

y = weλt. (5.44)

We obtain the eigenvalue equation

av + bw = λv (5.45)

cv + dw = λw. (5.46)

This has a non-zero solution only when λ satisfies λ2−(a+d)λ+ad−bc = 0.
We can express the same ideas in matrix notation. The equation is

dx

dt
= Ax. (5.47)

The trial solution is

x = veλt. (5.48)

The eigenvalue equation is

Av = λv. (5.49)

This has a non-zero solution only when det(λI −A) = 0.

Growth and Decay

The first case is real and unequal eigenvalues λ1 6= λ2. This takes place
when (a − d)2 + 4bc > 0. There are two solutions corresponding to two
independent eigenvectors. The general solution is a linear combination of
these two. In matrix notation this is

x = c1v1e
λ1t + c2v2e

λ2t. (5.50)

When the two eigenvalues are both positive or both negative, the equilib-
rium is called a node. When one eigenvalue is positive and one is negative,
it is called a saddle. An attractive node corresponds to an overdamped
oscillator.

Oscillation

The second case is complex conjugate unequal eigenvalues λ = α + iω
and λ̄ = α − iω with α = (a + d)/2 and ω > 0. This takes place when
(a−d)2 +4bc < 0. There are two independent complex conjugate solutions.
These are expressed in terms of eλt = eαteiωt and eλ̄t = eαte−iωt. Their real

5.5. SYSTEMS 79

and imaginary parts are independent real solutions. These are expressed in
terms of eαt cos(ωt) and eαt sin(ωt).

In matrix notation we have complex eigenvectors u±iv and the solutions
are

x = (c1 ± ic2)eαte±iωt(u± iv). (5.51)

Taking the real part gives

x = c1e
αt(cos(ωt)u− sin(ωt)v)− c2eαt(sin(ωt)u + cos(ωt)v). (5.52)

If we write c1 ± ic2 = ce±iθ, these take the alternate forms

x = ceαte±i(ωt+θ)(u± iv). (5.53)

and
x = ceαt(cos(ωt+ θ)u− sin(ωt+ θ)v). (5.54)

From this we see that the solution is characterized by an amplitude c and
a phase θ. When the two conjugate eigenvalues are pure imaginary, the
equilibrium is called a center. When the two conjugate eigenvalues have a
non-zero real part, it is called a spiral (or a focus). An center corresponds to
an undamped oscillator. An attractive spiral corresponds to an underdamped
oscillator.

Shearing

The remaining case is when there is only one eigenvalue λ = (a+d)/2. This
takes place when (a− d)2 + 4bc = 0. In this case we neeed to try a solution
of the form

x = peλt + vteλt (5.55)

y = qeλt + wteλt. (5.56)

We obtain the same eigenvalue equation together with the equation

ap+ bq = λp+ v (5.57)

cp+ dq = λq + w. (5.58)

In practice we do not need to solve for the eigenvector: we merely take p, q
determined by the initial conditions and use the last equation to solve for
v, w.

Im matrix notation this becomes

x = peλt + vteλt (5.59)

with
Ap = λp + v. (5.60)

80 CHAPTER 5. ORDINARY DIFFERENTIAL EQUATIONS

Inhomogeneous equations

The general linear constant coefficient equation is

dx

dt
= Ax + r. (5.61)

When A is non-singular we may rewrite this as

dx

dt
= A(x− s), (5.62)

where s = −A−1r is constant. Thus x = s is a particular solution. The gen-
eral solution is the sum of this particular solution with the general solution
of the homogeneous equation.
Problems

1. Find the general solution of the system

dx

dt
= x+ 3y

dy

dt
= 5x+ 3y.

2. Find the solution of this equation with the initial condition x = 1 and
y = 3 when t = 0.

3. Sketch the vector field in the above problem. Sketch the given solution
in the x, y phase space. Experiment to find a solution that passes
very close to the origin, and sketch it.

4. Write the Taylor series of ez about z = 0. Plug in z = iθ, where
i2 = −1. Show that eiθ = cos θ + i sin θ.

5. Find the general solution of the system

dx

dt
= x+ 5y

dy

dt
= −x− 3y.

6. Find the solution of this equation with the initial condition x = 5 and
y = 4 when t = 0.

7. Sketch the vector field in the above problem. Find the orbit of the
given solution in phase space. Also plot x versus t and y versus t.

5.5. SYSTEMS 81

8. A frictionless spring has mass m > 0 and spring constant k > 0. Its
displacement and velocity x and y satisfy

dx

dt
= y

m
dy

dt
= −kx.

Describe the motion.

9. A spring has mass m > 0 and spring constant k > 0 and friction
constant f > 0. Its displacement and velocity x and y satisfy

dx

dt
= y

m
dy

dt
= −kx− fy.

Describe the motion in the case f2 − 4k < 0 (underdamped).

10. Take m = 1 and k = 1 and f = 0.1. Sketch the vector field and the
solution in the phase plane. Also sketch x as a function of t.

11. In the preceding problem, describe the motion in the case f2 − 4k >
0 (overdamped). Is it possible for the oscillator displacement x to
overshoot the origin? If so, how many times?

12. An object has mass m > 0 and its displacement and velocity x and y
satisfy

dx

dt
= y

m
dy

dt
= 0.

Describe the motion.

13. Solve the above equation with many initial condition with x = 0 and
with varying value of y. Run the solution with these initial conditions
for a short time interval. Why can this be described as “shear”?

5.5.3 Stiff systems

Stiff systems are ones where the eigenvalues near an equilibrium point have
real parts describing very different decay rates. This situation may be
illustrated by simple homogeneous constant coefficient systems such as an
oscillator.

82 CHAPTER 5. ORDINARY DIFFERENTIAL EQUATIONS

Problems

1. Consider the system

dx

dt
= v (5.63)

m
dv

dt
= −kx− cv, (5.64)

where m > 0 is the mass, k > 0 is the spring constant, and c > 0 is the
friction constant. We will be interested in the highly damped situa-
tions, when m is small relative to k and c. Take k and c each 10 times
the size of m. Find the eigenvalues and find approximate numerical
expressions for them. Find approximate numerical expressions for the
eigenvectors. Describe the corresponding solutions.

2. In this preceding problem, which eigenvalue describes very rapid mo-
tion in phase space, and which eigenvalue describes slow motion in
phase space? Describe the solution starting from an arbitrary initial
condition. There are two stages to the motion. The first takes place
until t is comparable to m/c. The second takes place until t is com-
parable to c/k. Describe the two stages in terms of motion in phase
space. Which variable or variables (displacement x and velocity v)
are making the main change in each of these two stages?

3. Produce pictures of the solutions in phase space. Do this with enough
initial conditions to confirm the analysis in the last problem. Sketch
the results. Confirm them by x versus t and v versus t pictures.

5.5.4 Autonomous Systems

The general autonomous system is

dx

dt
= f(x, y) (5.65)

dy

dt
= g(x, y). (5.66)

An equilibrium point is a solution of f(r, s) = 0 and g(r, s) = 0. For
each equilibrium point we have a solution x = r and y = s.

Near an equilibrium point

f(x, y) ≈ a(x− r) + b(y − s) (5.67)

g(x, y) ≈ c(x− r) + d(y − s), (5.68)

5.5. SYSTEMS 83

where a = ∂f(x, y)/∂x, b = ∂f(x, y)/∂y, c = ∂g(x, y)/∂x, and d =
∂g(x, y)/∂y, all evaluated at x = r and y = s. So near the equilibrium
point the equation looks like a linear equation.

Assume that the eigenvalues of the linear equation are real. Then the
equilibrium point is attractive if they are both negative. On the other hand,
assume that the eigenvalues of the linear equation are complex conjugates.
Then the equilibrium point is attractive if the real part is negative. In
general the equilibrium point is classified by the behavior of the linearized
equation at that point.

A first example is the non-linear pendulum equation. This is

dx

dt
= y (5.69)

ml
dy

dt
= −mg sin(x)− cy. (5.70)

Here x is the angle and y is the angular velocity. The parameters are the
mass m > 0, the length l > 0, and the gravitational acceleration g > 0.
There may also be a friction coefficient c ≥ 0. The first equation is the
definition of angular velocity. The second equation is Newton’s law of
motion: mass times acceleration equals force.

There are two interesting equilibrium situations. One is where x = 0
and y = 0. In the case we use sin(x) ≈ x to find the linear approximation
The other interesting situation is when x − π = 0 and y = 0. In this case
we use sin(x) ≈ −(x− π). The minus sign makes a crucial difference.

A second example is the predator-prey system. This is

dx

dt
= (a− by −mx)x (5.71)

dy

dt
= (cx− d− ny)y. (5.72)

Here x is the prey and y is the predator. The prey equation says that the
prey has a natural growth rate a, are eaten by the predators at rate by, and
compete with themselves with rate mx. The predator equation says that
the predators have a growth rate cx− d at food level x and compete with
themselves at rate ny. The parameters are strictly positive, except that we
allow the special case m = 0 and n = 0 with no internal competition. We
are only interested in the situation x ≥ 0 and y ≥ 0.

There are several equilibria. One corresponds to total extinction. Also
when m > 0 one can have a situation when the predator is extinct and
where x = a/m is the natural prey carrying capacity. Whem m = 0, on
the other hand, there is there is no natural limit to the size of the prey
population: we interpret a/m = +∞.

84 CHAPTER 5. ORDINARY DIFFERENTIAL EQUATIONS

The most interesting equilibrium takes place when the natural predator
growth rate cx− d with x = a/m at the prey carrying capacity is positive.
This says that the predator can live off the land.

Problems

1. For the pendulum problem with no friction, find the linearization at
x = 0, y = 0. Discuss the nature of the equilibrium.

2. Consider the pendulum problem. Find oscillatory solutions that are
near the zero solution, but not too near. How large can the solutions
be before the pendulum can no longer be used as a clock?

3. For the pendulum problem with no friction, find the linearization at
x = π, y = 0. Discuss the nature of the equilibrium.

4. Find at least two different kinds of oscillatory solutions that pass
near x = π, y = 0. Sketch plots that illustrate these different kinds
of solutions.

5. For the pendulum problem, describe the nature of the two equilibria
when there is friction.

6. Consider the predator-prey equations with internal competition. Find
the nature of the equilibrium corresponding to total extinction.

7. Find the nature of the equilibrium corresponding to extinction of the
predators. There are two situations, depending on the sign of the
predator natural growth rate.

8. Find the nature of the equilibrium corresponding to coexistence. Dis-
cuss its stability.

9. Sketch representative solutions.

10. Find the nature of the equilibrium corresponding to coexistence when
there is no internal competition.

11. Sketch representative solutions.

5.5.5 Limit cycles

Now we come to an essentially non-linear effect: oscillations that are sta-
bilized by the non-linearity.

5.5. SYSTEMS 85

The classic example is

dx

dt
= v (5.73)

dv

dt
= −kx− g(x)v. (5.74)

This is an oscillator in which the friction coefficient g(x) is a function of
position. There is a constant r > 0 such that g(x) < 0 for |x| < r and
g(x) > 0 for |x| > r. Thus when |x| is small the oscillator gets a boost. A
standard example is g(x) = c(x2 − r2).

Change variables to y = v+G(x), where G′(x) = g(x). Then this same
oscillator becomes

dx

dt
= y −G(x) (5.75)

dy

dt
= −kx. (5.76)

The equation is often studied in this form.
Problems

1. Take the van der Pol oscillator in x, y space with G(x) = x3 − ax.
Investigate the Hopf bifurcation. Sketch your results.

2. Take the non-linear van der Pol oscillator in x, v space with g(x) =
a(x2 − 1). Take a > 0 increasingly large. The result is a relaxation
oscillator. Make plots in the x, v plane. Also make x versus t and v
versus t plots and interpret them.

æ

86 CHAPTER 5. ORDINARY DIFFERENTIAL EQUATIONS

Chapter 6

Fourier transforms

6.1 Groups

We want to consider several variants of the Fourier transform at once. The
unifying idea is that the Fourier transform deals with complex functions
defined on commutative groups. (Recall that a commutative group is a set
with operations of addition and subtraction that satisfy the usual proper-
ties.) Here are the groups that we shall consider.

The first is the group of all real numbers.
The second is the group of all integer multiples of n∆x, where ∆x > 0

is a fixed real number. This is a subgroup of the real numbers, since the
sum or difference of any two n∆x is also of the same form.

The third is the group of all real numbers mod L, where L > 0 is fixed.
This is the circle group, where the circle has circumference L. Two real
numbers determine the same element if they differ by an integer multiple
of L. Thus the circle group is a quotient group of the real numbers.

The final group is the group of all integer multiples n∆x mod L = N∆x.
This is a subgroup of the circle group. It is also a quotient group of the
integer group. It is finite with precisely N elements.

6.2 Integers mod N

We first consider the Fourier transform on the group G of integers mod N .
This is a finite group with elements {0, 1, . . . , N −1} extended periodically.

It is helpful to think of the integers as being embedded in the reals at a
spacing ∆x. Then the integers mod N may be thought of as embedded in
the reals mod L = N∆x.

87

88 CHAPTER 6. FOURIER TRANSFORMS

We consider a complex function f on the group G. This may also
be thought of as a function on the integers spaced by ∆x with period
L = N∆x.

The Fourier transform is another complex function defined on the dual
group Ĝ. This is another group of integers mod N, but it is regarded as
embedded in the real line with spacing ∆k, where ∆k = 2π/(N∆x) = 2π/L.
Thus the Fourier transform is periodic with period N∆k = 2π/∆x.

We think of frequencies from 0 to N∆k/2 as positive frequencies. We
think of freqencies from N∆k/2 to N∆k as negative frequencies. The fre-
quency of least oscillation is 0, which is identified with N∆k. The frequency
of maximum oscillation is N∆k/2.

The Fourier transform is

f̂(k) =
∑
x∈G

e−ikxf(x) ∆x, (6.1)

where the sum is over N consecutive points spaced at interval ∆x.
This may be written more explicitly as

f̂(m∆k) =

N−1∑
n=0

e
−i2πmn

N f(n∆x) ∆x. (6.2)

The inversion formula is then

f(x) =
∑
k∈Ĝ

eikxf̂(k) ∆k/(2π), (6.3)

where the sum is over N consecutive points k with spacing ∆k.
This may be written more explicitly as

f(n∆x) =

N−1∑
m=0

e
i2πmn
N f̂(m∆k) ∆k/(2π). (6.4)

Here is a proof of the inversion formula. We wish to show that

f(x) =
1

N

∑
k

eikx
∑
y

e−ikyf(y) =
1

N

∑
y

∑
k

eik(x−y)f(y). (6.5)

But it is easy to sum the geometric series

1

N

∑
k

eikz (6.6)

and see that it is zero unless z = 0 mod L, in which case it is one.

6.3. THE CIRCLE 89

6.3 The circle

We now consider the Fourier transform on the circle group G, thought of
as the reals mod L.

The dual group in this case is Ĝ, thought of as the integers spaced with
interval ∆k = 2π/L.

The Fourier transform is

f̂(k) =

∫ L

0

e−ikxf(x) dx. (6.7)

The inversion formula is

f(x) =
1

L

∑
k

eikxf̂(k). (6.8)

These formulas may be obtained from the finite case. Take the sum
over k to run from −N∆k/2 = −π/∆x to N∆k/2 = π/∆x, counting the
end point at most once. Then let N →∞ and ∆x→ 0 keeping L = N∆x
fixed.

6.4 The integers

We now consider the Fourier transform on the integers, thought of as spaced
at interval ∆x.

The dual group in this case is Ĝ, thought of as the circle of circumference
2π/∆x.

The Fourier transform is

f̂(k) =
∑

e−ikxf(x) ∆x. (6.9)

The inversion formula is

f(x) =

∫ 2π/∆x

0

eikxf̂(k) dk/(2π). (6.10)

These formulas may be obtained from the finite case by taking the sum
on x to range from −N∆x/2 to N∆x/2 (counting end points only once)
and then letting N →∞ with fixed ∆x.

6.5 The reals

We now consider the Fourier transform on the group G of reals.

90 CHAPTER 6. FOURIER TRANSFORMS

The dual group in this case is Ĝ, again the reals.
The Fourier transform is

f̂(k) =

∫ ∞
−∞

e−ikxf(x) dx. (6.11)

The inversion formula is

f(x) =

∫ ∞
−∞

eikxf̂(k) dk/(2π). (6.12)

These formulas may be obtained from the circle case integrating x from
−L/2 to L/2 and letting L→∞ or from the integer case by integrating k
from −π/∆x to π/∆x and letting ∆x→ 0.

The notation has been chosen to suggest that x is position and k is wave
number (spatial frequency). It is also common to find another notation in
which t is time and ω is (temporal) frequency. For the record, here are the
formulas in the other notation.

The Fourier transform is

f̂(ω) =

∫ ∞
−∞

e−iωtf(t) dt. (6.13)

The inversion formula is

f(t) =

∫ ∞
−∞

eiωtf̂(ω) dω/(2π). (6.14)

6.6 Translation Invariant Operators

We now want to explore the uses of the Fourier transform. It is convenient
to look at the transform in a unified framework. Thus we write in all cases
the Fourier transform as

f̂(k) =

∫
G

e−ikxf(x) dx. (6.15)

The inversion formula is

f(x) =

∫
Ĝ

eikxf̂(k) dk/(2π). (6.16)

The fundamental observation is that the Fourier transform does good
things with respect to translation. Define Uyf(x) = f(x − y). Then we

have that the Fourier transform of Uyf at k is e−iky f̂(k). In other words,
translation is converted to a multiplicative factor.

6.6. TRANSLATION INVARIANT OPERATORS 91

Here is a generalization. Define the convolution g ∗ f of two functions
as the function defined by

(g ∗ f)(x) =

∫
G

g(y)f(x− y) dy. (6.17)

Thus convolution is weighted translation. The Fourier transform of g ∗ f
evaluated at k is then ĝ(k)f̂(k). Again this is a multiplicative factor.

Here are some special cases. Let

δ+f(x) =
1

∆x
(f(x+ ∆x)− f(x)). (6.18)

This has Fourier transform (1/∆x)(eik∆x − 1)f̂(k). Let

δ−f(x) =
1

∆x
(f(x)− f(x−∆x)). (6.19)

This has Fourier transform (1/∆x)(1− e−ik∆x)f̂(k). Let

δ0f(x) =
1

2
(δ+ + δ−)f(x) =

1

2∆x
(f(x+ ∆x)− f(x−∆x)). (6.20)

This has Fourier transform (i/∆x) sin(k∆x)f̂(k). We may take ∆x→ 0 in
these formulas and conclude that the first derivative is represented in the
Fourier transform by multiplication by ik.

We may also represent the second derivative in the same way. The most
useful formula is

δ2f(x) = δ+δ−f(x) =
1

(∆x)2
(f(x+ ∆x)− 2f(x) + f(x−∆x)). (6.21)

This has Fourier transform −(2/∆x)2 sin2(k∆x/2)f̂(k). In the limit ∆x→
0 this gives −k2f̂(k).

It is not hard to check that the Fourier transform of the reversed con-
jugate f(−x) is the conjugate f̂(k). It follows that the Fourier transform

of the ”correlation”
∫
G
f(y − x)g(y) dy is f̂(k)ĝ(k). From the inversion for-

mula it follows that∫
G

f(y − x)g(y) dy =

∫
Ĝ

eikxf̂(k)ĝ(k) dk/(2π). (6.22)

A very important special case is obtained by taking f = g and x = 0. This
gives the Plancherel theorem∫

G

|f(y)|2 dy =

∫
Ĝ

|f(k)|2 dk/(2π). (6.23)

92 CHAPTER 6. FOURIER TRANSFORMS

6.7 Subgroups

We now want to consider a more complicated situation. Let G be a group.
Let H be a discrete subgroup. Thus for some ∆y > 0 the group H consists
of the multiples n∆y of ∆y. We think of this subgroup as consisting of
uniformly spaced sampling points. Let Q be the quotient group, where we
identify multiples of ∆y with zero.

The group G has a dual group Ĝ. The elements of Ĝ that are multiples
of 2π/∆y form the dual group Q̂, which is a subgroup of Ĝ. The quotient
group, where we identify multiples of 2π/∆y with zero, turns out to be Ĥ.
These dual groups may all be thought of as consisting of angular frequencies.

We can summarize this situation in diagrams

H −→ G −→ Q (6.24)

and

Q̂ −→ Ĝ −→ Ĥ. (6.25)

The arrow between two groups means that elements of one group uniquely
determine elements of the next group. Furthermore, an element of the
group G or Ĝ that is determined by an element of the group on the left
itself determines the element 0 of the group on the right.

The first main example is when G is the reals, H is the subgroup of
integer multiples of ∆y, and Q is the circle of circumference ∆y. Then Ĝ is
the reals (considered as angular frequencies), Q̂ is the subgroup of multiples
of ∆r = 2π/∆y, and Ĥ is the circle of circumference ∆r.

The other main example is when G is the circle of circumference L =
N∆y, H is the subgroup of order N consisting of integer multiples of ∆y,
and Q is the circle of circumference ∆y. Then Ĝ is the integers spaced by
∆k = 2π/L, Q̂ is the subgroup of multiples of ∆r = 2π/∆y = N∆k, and
Ĥ is the group of order N consisting of multiples of ∆k mod N . In this
example integrals over Ĝ and Ĥ are replaced by sums.

We begin with f defined on G. Its Fourier transform is∫
G

e−ikxf(x) dx = f̂(k) (6.26)

defined for k in Ĝ. The inversion formula then gives

f(x) =

∫
Ĝ

eikxf̂(k)
dk

2π
. (6.27)

We now restrict the inversion formula to the discretely sampled points

6.7. SUBGROUPS 93

y in the subgroup H and obtain

f(y) =

∫
Ĝ

eiky f̂(k)
dk

2π
=

∫
Ĥ

∑
r∈Q̂

ei(k+r)y f̂(k + r)
dk

2π
. (6.28)

We observe that there is an aliasing effect. The act of discrete sampling
implies that all frequencies k + r that differ by a multiple of ∆r from k
show up under the alias of k. The reason for this is simply that

ei(k+r)y = eikreiry = eikr (6.29)

when y is in H (one of the discretely sampled points). This is because ry
is a multiple of ∆r∆y = 2π.

Thus we obtain that for y in H

f(y) =

∫
Ĥ

eiky
∑
r∈Q̂

f̂(k + r)
dk

2π
. (6.30)

This is of the form of an inversion formula for the group H. Therefore we
have identified the Fourier transform of f restricted to H. The proves the
following fundamental result.

The Poisson summation formula says that the restriction of f to H has
Fourier transform ∑

y∈H
e−ikyf(y) ∆y =

∑
r∈Q̂

f̂(k + r). (6.31)

Here H consists of multiples of ∆y and Q̂ consists of multiples of 2π/∆y.
This formula says that replacing an integral by a Riemann sum has the

effect of replacing the Fourier transform by a sum of the transforms over
aliased frequencies.

Thus, for instance, when we want to take the Fourier transform of a
function on the circle of length L, and we approximate the transform by a
Riemann sum with length ∆y, then the aliased frequencies r are spaced by
2π/∆y. Thus we want to take the ∆y sufficiently small so that the f̂(k+r)
are close to zero except when r = 0.

An immediate consequence is the following somewhat more general
shifted Poisson summation formula.∑

y∈H
e−ik(x+y)f(x+ y)∆y =

∑
r∈Q̂

eirxf̂(k + r). (6.32)

This is obtained by applying the Poisson summation formula to g(z) =

f(x+ z) and noting that ĝ(k) = eikxf̂(k).

94 CHAPTER 6. FOURIER TRANSFORMS

An important special case of the Poisson summation formula is obtained
if we take k = 0: ∑

y∈H
f(y)∆y =

∑
r∈Q̂

f̂(r). (6.33)

Even this form leads to remarkable identities.

6.8 The sampling theorem

We may ask to what extent f restricted to the sampling points in H deter-
mines f on the other points. The Fourier transform of f restricted to H is∑
r f(k + r) restricted to the frequency band Ĥ. (Often Ĥ is thought of

as the frequency band running from −∆r/2 to ∆r/2; however any band of
length ∆r would do.)

We can try to define a function fH(x) on the entire group G from this
Fourier transform by the formula

fH(x) =

∫
Ĥ

eikx
∑
r∈Q̂

f̂(k + r)
dk

2π
. (6.34)

We can change variable and write

fH(x) =
∑
r∈Q̂

e−irx
∫
Ĥ+r

eiuxf̂(u)
du

2π
. (6.35)

Thus fH(x) has contributions from all frequency bands, but with a confus-
ing exponential factor in front.

However note that when y is in H, then fH(y) = f(y). Thus fH inter-
polates f at the sampling points.

Another way of writing fH(x) is as

fH(x) =

∫
Ĥ

eikx
∑
y∈H

e−ikyf(y) ∆y
dk

2π
=
∑
y∈H

KH(x− y)f(y)∆y (6.36)

where

KH(x) =

∫
Ĥ

eikx
dk

2π
. (6.37)

This formula expresses fH(x) directly in terms of the values f(y) at the
sampling points y.

Now assume in addition that the original Fourier transform f̂ is band-
limited, that is, it vanishes outside of Ĥ. In that case it is easy to see that
fH(x) = f(x) for all x in G. This is the sampling theorem: A band-limited
function is so smooth that it is determined by its values on the sampling
points.

6.9. FFT 95

6.9 FFT

It is clear that the obvious implementation of the Fourier transform on the
cyclic group of order N amounts to multiplying a matrix times a vector and
hence has order N2 operations. The Fast Fourier Transform is another way
of doing the computation that only requires order N log2N operations.

Again the setup is a group G and a subgroup H. Again we take Q to
be the quotient group. We have

f̂(k) =

∫
Q

e−ikx[
∑
y∈H

e−ikyf(x+ y)∆y]
dx

∆y
. (6.38)

The Fast Fourier Transform is a special case. We take G to be a discrete
group given by multiples of ∆x, and we take H to be the subgroup of even
elements. Then Q is a two element group consisting of 0 and ∆x. The
formula becomes

f̂(k) =
1

2
[
∑
y∈H

e−ikyf(y) ∆y + e−ik∆x
∑
y∈H

e−ikyf(y + ∆x) ∆y], (6.39)

where the sum is over y which are multiples of ∆y = 2∆x. Here k is a
multiple of ∆k = 2π/(N∆x).

Again we may write this more explicitly as

f̂(m∆k) = [

N/2−1∑
n=0

e−i2πmn/(N/2)f(2n∆x)+e−i2πm/N
N/2−1∑
n=0

e−i2πmn/(N/2)f((2n+1)∆x)] ∆x

(6.40)
If the order of G is N , an even number, then this expresses the Fourier

transform on G as the sum of two Fourier transforms on H, a group of
order N/2. This allows a recursive computation of the Fourier transform.

The number of operations required is of order CN = N log2N . One
can see this as follows. For a group of order 1, no computation is required,
so C1 = 0. For a group of order N , one must have already computed two
transforms of order N/2, which took CN/2 operations. Then one has to
compute the N values, so CN = 2CN/2 +N . This determines CN .

A typical application of the FFT is to compute a convolution. A con-
volution of two functions on a group of order N is a straightforward order
N2 operation. However the indirect computation by Fourier transforms
is much more rapid. The Fourier transform of each function is of order
N logN . The multiplication of the Fourier transforms is order N . The in-
verse Fourier transformation of the product is order N logN . So the whole
computation is order N logN , which is much faster.

æ

