
MATH 8445, University of Minnesota
Numerical Analysis of Differential Equations

Lecture notes on

Numerical Analysis of

Partial Differential Equations

– version of 2011-09-05 –

Douglas N. Arnold

c©2009 by Douglas N. Arnold. These notes may not be duplicated without explicit permission from the author.

Contents

Chapter 1. Introduction 1
1. Basic examples of PDEs 1
1.1. Heat flow and the heat equation 1
1.2. Elastic membranes 3
1.3. Elastic plates 3
2. Some motivations for studying the numerical analysis of PDE 4

Chapter 2. The finite difference method for the Laplacian 7
1. The 5-point difference operator 7
2. Analysis via a maximum principle 10
3. Consistency, stability, and convergence 11
4. Fourier analysis 13
5. Analysis via summation by parts 15
6. Extensions 17
6.1. Curved boundaries 17
6.2. More general PDEs 20
6.3. More general boundary conditions 21
6.4. Nonlinear problems 21

Chapter 3. Linear algebraic solvers 23
1. Classical iterations 23
2. The conjugate gradient method 29
2.1. Line search methods and the method of steepest descents 29
2.2. The conjugate gradient method 31
2.3. Preconditioning 38
3. Multigrid methods 40

Chapter 4. Finite element methods for elliptic equations 49
1. Weak and variational formulations 49
2. Galerkin method and finite elements 50
3. Lagrange finite elements 51
4. Coercivity, inf-sup condition, and well-posedness 53
4.1. The symmetric coercive case 54
4.2. The coercive case 55
4.3. The inf-sup condition 55
5. Stability, consistency, and convergence 56
6. Finite element approximation theory 57
7. Error estimates for finite elements 62

3

4 CONTENTS

7.1. Estimate in H1 62
7.2. Estimate in L2 63
8. A posteriori error estimates and adaptivity 64
8.1. The Clément interpolant 64
8.2. The residual and the error 67
8.3. Estimating the residual 68
8.4. A posteriori error indicators 69
8.5. Examples of adaptive finite element computations 70

Chapter 5. Time-dependent problems 75
1. Finite difference methods for the heat equation 75
1.1. Forward differences in time 76
1.2. Backward differences in time 78
1.3. Fourier analysis 79
1.4. Crank–Nicolson 79
2. Finite element methods for the heat equation 80
2.1. Analysis of the semidiscrete finite element method 81
2.2. Analysis of a fully discrete finite element method 83

CHAPTER 1

Introduction

Galileo wrote that the great book of nature is written in the language of mathemat-
ics. The most precise and concise description of many physical systems is through partial
differential equations.

1. Basic examples of PDEs

1.1. Heat flow and the heat equation. We start with a typical physical application
of partial differential equations, the modeling of heat flow. Suppose we have a solid body
occupying a region Ω ⊂ R3. The temperature distribution in the body can be given by a
function u : Ω × J → R where J is an interval of time we are interested in and u(x, t) is
the temperature at a point x ∈ Ω at time t ∈ J . The heat content (the amount of thermal
energy) in a subbody D ⊂ Ω is given by

heat content of D =

∫
D

cu dx

where c is the product of the specific heat of the material and the density of the material.
Since the temperature may vary with time, so can the heat content of D. The change of
heat energy in D from a time t1 to a time t2 is given by

change of heat in D =

∫
D

cu(x, t2) dx−
∫
D

cu(x, t1) dx

=

∫ t2

t1

∂

∂t

∫
D

cu dx dt =

∫ t2

t1

∫
D

∂(cu)

∂t
(x, t) dx dt.

Now, by conservation of energy, any change of heat in D must be accounted for by heat
flowing in or out of D through its boundary or by heat entering from external sources (e.g.,
if the body were in a microwave oven). The heat flow is measured by a vector field σ(x, t)
called the heat flux, which points in the direction in which heat is flowing with magnitude
the rate energy flowing across a unit area per unit time. If we have a surface S embedded
in D with normal n, then the heat flowing across S in the direction pointed to by n in unit
time is

∫
S
σ · n ds. Therefore the heat that flows out of D, i.e., across its boundary, in the

time interval [t1, t2], is given by

heat flow out of D

∫ t2

t1

∫
∂D

σ · n ds dt =

∫ t2

t1

∫
D

div σ dx dt,

where we have used the divergence theorem. We denote the heat entering from external
sources by f(x, t), given as energy per unit volume per unit time, so that

∫ t2
t1

∫
D
f(x, t) dx dt

1

2 1. INTRODUCTION

gives amount external heat added to D during [t1, t2], and so conservation of energy is
expressed by the equation

(1.1)

∫ t2

t1

∫
D

∂(cu)

∂t
(x, t) dx dt = −

∫ t2

t1

∫
D

div σ ds dt+

∫ t2

t1

∫
D

f(x, t) dx dt,

for all subbodies D ⊂ Ω and times t1, t2. Thus the quantity

∂(cu)

∂t
+ div σ − f

must vanish identically, and so we have established the differential equation

∂(cu)

∂t
= − div σ + f, x ∈ Ω,∀t.

To complete the description of heat flow, we need a constitutive equation, which tells
us how the heat flux depends on the temperature. The simplest is Fourier’s law of heat
conduction, which says that heat flows in the direction opposite the temperature gradient
with a rate proportional to the magnitude of the gradient:

σ = −λ gradu,

where the positive quantity λ is called the conductivity of the material. (Usually λ is just
a scalar, but if the material is thermally anisotropic, i.e., it has preferred directions of heat
flow, as might be a fibrous or laminated material, λ can be a 3× 3 positive-definite matrix.)
Therefore we have obtained the equation

∂(cu)

∂t
= div(λ gradu) + f in Ω× J.

The source function f , the material coefficients c and λ and the solution u can all be functions
of x and t. If the material is homogeneous (the same everywhere) and not changing with
time, then c and λ are constants and the equation simplifies to the heat equation,

µ
∂u

∂t
= ∆u+ f̃ ,

where µ = c/λ and we have f̃ = f/λ. If the material coefficients depend on the temperature
u, as may well happen, we get a nonlinear PDE generalizing the heat equation.

The heat equation not only governs heat flow, but all sorts of diffusion processes where
some quantity flows from regions of higher to lower concentration. The heat equation is the
prototypical parabolic differential equation.

Now suppose our body reaches a steady state: the temperature is unchanging. Then the
time derivative term drops and we get

(1.2) − div(λ gradu) = f in Ω,

where now u and f are functions of f alone. For a homogeneous material, this becomes the
Poisson equation

−∆u = f̃ ,

the prototypical elliptic differential equation. For an inhomogeneous material we can leave
the steady state heat equation in divergence form as in (1.2), or differentiate out to obtain

−λ∆u+ gradλ · gradu = f.

1. BASIC EXAMPLES OF PDES 3

To determine the steady state temperature distribution in a body we need to know not
only the sources and sinks within the body (given by f), but also what is happening at the
boundary Γ := ∂Ω. For example a common situation is that the boundary is held at a given
temperature

(1.3) u = g on Γ.

The PDE (1.2) together with the Dirichlet boundary condition (1.3) form an elliptic bound-
ary value problem. Under a wide variety of circumstances this problem can be shown to
have a unique solution. The following theorem is one example (although the smoothness
requirements can be greatly relaxed).

Theorem 1.1. Let Ω be a smoothly bounded domain in Rn, and let λ : Ω̄→ R+, f : Ω̄→
R, g : Γ → R be C∞ functions. Then there exists a unique function u ∈ C2(Ω̄) satisfying
the differential equation (1.2) and the boundary condition (1.3). Moreover u is C∞.

Instead of the Dirichlet boundary condition of imposed temperature, we often see the
Neumann boundary condition of imposed heat flux (flow across the boundary):

∂u

∂n
= g on Γ.

For example if g = 0, this says that the boundary is insulated. We may also have a Dirichlet
condition on part of the boundary and a Neumann condition on another.

1.2. Elastic membranes. Consider a taut (homogeneous isotropic) elastic membrane
affixed to a flat or nearly flat frame and possibly subject to a transverse force distribution,
e.g., a drum head hit by a mallet. We model this with a bounded domain Ω ⊂ R2 which
represents the undisturbed position of the membrane if the frame is flat and no force is
applied. At any point x of the domain and any time t, the transverse displacement is
given by u(x, t). As long as the displacements are small, then u approximately satisfies the
membrane equation

ρ
∂2u

∂t2
= k∆u+ f,

where ρ is the density of the membrane (mass per unit area), k is the tension (force per
unit distance), and f is the imposed transverse force density (force per unit area). This is
a second order hyperbolic equation, the wave equation. If the membrane is in steady state,
the displacement satisfies the Poisson equation

−∆u = f̃ ,

f = f/k.

1.3. Elastic plates. The derivation of the membrane equation depends upon the as-
sumption that the membrane resists stretching (it is under tension), but does not resist
bending. If we consider a plate, i.e., a thin elastic body made of a material which resists
bending as well as stretching, we obtain instead the plate equation

ρ
∂2u

∂t2
= −D∆2u+ f,

4 1. INTRODUCTION

where D is the bending modulus, a constant which takes into account the elasticity of the
material and the thickness of the plate (D = Et3/[12(1− ν2)] where E is Young’s modulus
and ν is Poisson’s ratio). Now the steady state equation is the biharmonic equation

∆2u = f̃ .

Later in this course we will study other partial differential equations, including the equa-
tions of elasticity, the Stokes and Navier–Stokes equations of fluid flow, and Maxwell’s equa-
tions of electromagnetics.

2. Some motivations for studying the numerical analysis of PDE

In this course we will study algorithms for obtaining approximate solutions to PDE
problems, for example, using the finite element method. Such algorithms are a hugely
developed technology (we will, in fact, only skim the surface of what is known in this course),
and there are thousands of computer codes implementing them. As an example of the sort of
work that is done routinely, here is the result of a simulation using a finite element method
to find a certain kind of force distribution, the so-called von Mises stress, engendered in a
connecting rod of a Porsche race car when a certain load is applied. The von Mises stress
predicts when and where the metal of the rod will deform, and was used to design the shape
of the rod.

Figure 1.1. Connector rods designed by LN Engineering for Porsche race
cars, and the stress distribution in a rod computed with finite elements.

But one should not get the idea that it is straightforward to solve any reasonable PDE
problem with finite elements. Not only do challenges constantly arise as practitioners seek
to model new systems and solve new equations, but when used with insufficient knowledge
and care, even advance numerical software can give disastrous results. A striking example
is the sinking of the Sleipner A offshore oil platform in the North Sea in 1991. This occured
when the Norwegian oil company, Statoil, was slowly lowering to the sea floor an array
of 24 massive concrete tanks, which would support the 57,000 ton platform (which was to
accomodate about 200 people and 40,000 tons of drilling equipment). By flooding the tanks
in a so-called controlled ballasting operation, they were lowered at the rate of about 5 cm
per minute. When they reached a depth of about 65m the tanks imploded and crashed to
the sea floor, leaving nothing but a pile of debris at 220 meters of depth. The crash did not
result in loss of life, but did cause a seismic event registering 3.0 on the Richter scale, and
an economic loss of about $700 million.

2. SOME MOTIVATIONS FOR STUDYING THE NUMERICAL ANALYSIS OF PDE 5

An engineering research organization, SINTEF, was appointed to investigate the accident
and released a sequence of 16 reports, which they summarized as follows:

The conclusion of the investigation was that the loss was caused by a failure in
a cell wall, resulting in a serious crack and a leakage that the pumps were not
able to cope with. The wall failed as a result of a combination of a serious error
in the finite element analysis and insufficient anchorage of the reinforcement
in a critical zone.

A better idea of what was involved can be obtained from this photo and sketch of the
platform. The 24 cells and 4 shafts referred to above are shown to the left while at the sea
surface. The cells are 12 meters in diameter. The cell wall failure was traced to a tricell, a
triangular concrete frame placed where the cells meet, as indicated in the diagram below.
To the right of the diagram is pictured a portion of tricell undergoing failure testing.

Figure 1.2. Top row: Offshore platform like the failed Sleipner design, di-
agram of structure, and concrete cells at sea surface. Bottom row: diagram
showing the location and design of a tricell, and tricell failure testing.

6m

The post accident investigation traced the error to inaccurate finite element approxima-
tion of one of the most basic PDEs used in engineering, the equations of linear elasticity,
which were used to model the tricell (using the popular finite element program NASTRAN).
The shear stresses were underestimated by 47%, leading to insufficient design. In particular,
certain concrete walls were not thick enough. More careful finite element analysis, made
after the accident, predicted that failure would occur with this design at a depth of 62m,
which matches well with the actual occurrence at 65m.

CHAPTER 2

The finite difference method for the Laplacian

With the motivation of the previous section, let us consider the numerical solution of the
elliptic boundary value problem

(2.1) ∆u = f in Ω, u = g on Γ.

For simplicity we will consider first a very simple domain Ω = (0, 1)× (0, 1), the unit square
in R2. Now this problem is so simplified that we can attack it analytically, e.g., by separation
of variables, but it is a very useful model problem for studying numerical methods.

1. The 5-point difference operator

Let N be a positive integer and set h = 1/N . Consider the mesh in R2

R2
h := { (mh, nh) : m,n ∈ Z }.

Note that each mesh point x ∈ R2
h has four nearest neighbors in R2

h, one each to the left,
right, above, and below. We let Ωh = Ω∩R2

h, the set of interior mesh points, and we regard
this a discretization of the domain Ω. We also define Γh as the set of mesh points in R2

h

which don’t belong to Ωh, but which have a nearest neighbor in Ωh. We regard Γh as a
discretization of Γ. We also let Ω̄h := Ωh ∪ Γh

To discretize (2.1) we shall seek a function uh : Ω̄h → R satisfying

(2.2) ∆h uh = f on Ωh, uh = g on Γh.

Here ∆h is an operator, to be defined, which takes functions on Ω̄h (mesh functions) to
functions on Ωh. It should approximate the true Laplacian in the sense that if v is a smooth
function on Ω̄ and vh = v|Ω̄h

is the associated mesh function, then we want

∆h vh ≈ ∆ v|Ωh

for h small.
Before defining ∆h, let us turn to the one-dimensional case. That is, given a function vh

defined at the mesh points nh, n ∈ Z, we want to define a function D2
hvh on the mesh points,

so that D2
hvh ≈ v′′|Zh if vh = v|Zh. One natural procedure is to construct the quadratic

polynomial p interpolating vh at three consecutive mesh points (n− 1)h, nh, (n + 1)h, and
let D2

hvh(nh) be the constant value of p′′. This gives the formula

D2
hvh(nh) = 2vh[(n− 1)h, nh, (n+ 1)h] =

vh
(
(n+ 1)h

)
− 2vh(nh) + vh

(
(n− 1)h

)
h2

.

D2
h is known as the 3-point difference approximation to d2/dx2. We know that if v is C2 in

a neighborhood of nh, then limh→0 v[x − h, x, x + h] = v′′(x)/2. In fact, it is easy to show

7

8 2. THE FINITE DIFFERENCE METHOD FOR THE LAPLACIAN

Figure 2.1. Ω̄h for h = 1/14: black: points in Ωh, purple: points in Γh.

by Taylor expansion (do it!), that

D2
hv(x) = v′′(x) +

h2

12
v(4)(ξ), for some ξ ∈

(
x− h, x+ h

)
,

as long as v is C4 near x. Thus D2
h is a second order approximation to d2/dx2.

Now returning to the definition of the ∆h ≈ ∆ = ∂2/∂x2 + ∂2/∂y2, we simply use the
3-point approximation to ∂2/∂x2 and ∂2/∂y2. Writing vmn for v(mh, nh) we then have

∆h v(mh, nh) =
vm+1,n − 2vmn + vm−1,n

h2
+
vm,n+1 − 2vmn + vm,n−1

h2

=
vm+1,n + vm−1,n + vm,n+1 + vm,n−1 − 4vmn

h2
.

From the error estimate in the one-dimensional case we easily get that for v ∈ C4(Ω̄),

∆h v(mh, nh)−∆ v(mh, nh) =
h2

12

[
∂4v

∂x4
(ξ, nh) +

∂4v

∂y4
(mh, η)

]
,

for some ξ, η. Thus:

Theorem 2.1. If v ∈ C2(Ω̄), then

lim
h→0
‖∆h v −∆ v‖L∞(Ωh) = 0.

1. THE 5-POINT DIFFERENCE OPERATOR 9

If v ∈ C4(Ω̄), then

‖∆h v −∆ v‖L∞(Ωh) ≤
h2

6
M4,

where M4 = max(‖∂4v/∂x4‖L∞(Ω̄), ‖∂4v/∂y4‖L∞(Ω̄)).

The discrete PDE ∆h uh = f on Ωh is a system of M = (N − 1)2 linear equations in the
unknown values of uh at the mesh points. Since the values of uh are given on the boundary
mesh points, we may regard (2.2) as a system of M2 linear equations in M unknowns. For
example, in the case N = 4, M = 9, the system is

−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4





u1,1

u2,1

u3,1

u1,2

u2,2

u3,2

u1,3

u2,3

u3,3


=



h2f1,1 − u1,0 − u0,1

h2f2,1 − u2,0

h2f3,1 − u3,0 − u4,1

h2f1,2 − u0,2

h2f2,2

h2f3,2 − u4,2

h2f1,3 − u0,3 − u1,4

h2f2,3 − u2,4

h2f3,3 − u4,3 − u3,4


The matrix may be rewritten as A I O

I A I
O I A


where I is the 3× 3 identity matrix, O is the 3× 3 zero matrix, and

A =

−4 1 0
1 −4 1
0 1 −4

 .

For general N the matrix can be partitioned into (N − 1) × (N − 1) blocks, each in
R(N−1)×(N−1): 

A I O · · · O O
I A I · · · O O
O I A · · · O O
...

...
...

. . .
...

...
O O O · · · I A

 ,

where I and O are the identity and zero matrix in R(N−1)×(N−1), respectively, and A ∈
R(N−1)×(N−1) is the tridiagonal matrix with −4 on the diagonal and 1 above and below the
diagonal. This assumes the unknowns are ordered

u1,1, u2,1, . . . , uN−1,1, u1,2, . . . , uN−1,N−1,

and the equations are ordered similarly.
The matrix can be created as in Matlab with the following code.

10 2. THE FINITE DIFFERENCE METHOD FOR THE LAPLACIAN

I = speye(n-1);

e = ones(n-1,1);

A = spdiags([e,-4*e,e],[-1,0,1],n-1,n-1);

J = spdiags([e,e],[-1,1],n-1,n-1);

Lh = kron(I,A) + kron(J,I)

Notice that the matrix has many special properties:

• it is sparse with at most 5 elements per row nonzero
• it is block tridiagonal, with tridiagonal and diagonal blocks
• it is symmetric
• it is diagonally dominant
• its diagonal elements are negative, all others nonnegative
• it is negative definite

2. Analysis via a maximum principle

We will now prove that the problem (2.2) has a unique solution and prove an error
estimate. The key will be a discrete maximum principle.

Theorem 2.2 (Discrete Maximum Principle). Let v be a function on Ω̄h satisfying

∆h v ≥ 0 on Ωh.

Then maxΩh
v ≤ maxΓh

v. Equality holds if and only if v is constant.

Proof. Suppose maxΩh
v ≥ maxΓh

v. Take x0 ∈ Ωh where the maximum is achieved.
Let x1, x2, x3, and x4 be the nearest neighbors. Then

4v(x0) =
4∑
i=1

v(xi)− h2 ∆h v(x0) ≤
4∑
i=1

v(xi) ≤ 4v(x0),

since v(xi) ≤ v(x0). Thus equality holds throughout and v achieves its maximum at all the
nearest neighbors of x0 as well. Applying the same argument to the neighbors in the interior,
and then to their neighbors, etc., we conclude that v is constant. �

Remarks. 1. The analogous discrete minimum principle, obtained by reversing the in-
equalities and replacing max by min, holds. 2. This is a discrete analogue of the maximum
principle for the Laplace operator.

Theorem 2.3. There is a unique solution to the discrete boundary value problem (2.2).

Proof. Since we are dealing with a square linear system, it suffices to show nonsingu-
larity, i.e., that if ∆h uh = 0 on Ωh and uh = 0 on Γh, then uh ≡ 0. Using the discrete
maximum and the discrete minimum principles, we see that in this case uh is everywhere
0. �

The next result is a statement of maximum norm stability.

Theorem 2.4. The solution uh to (2.2) satisfies

(2.3) ‖uh‖L∞(Ω̄h) ≤
1

8
‖f‖L∞(Ωh) + ‖g‖L∞(Γh).

3. CONSISTENCY, STABILITY, AND CONVERGENCE 11

This is a stability result in the sense that it states that the mapping (f, g) 7→ uh is
bounded uniformly with respect to h.

Proof. We introduce the comparison function φ(x) = [(x1 − 1/2)2 + (x2 − 1/2)2]/4,
which satisfies ∆h φ = 1 on Ωh, and 0 ≤ φ ≤ 1/8 on Ω̄h. Set M = ‖f‖L∞(Ωh). Then

∆h(uh +Mφ) = ∆h uh +M ≥ 0,

so

max
Ωh

uh ≤ max
Ωh

(uh +Mφ) ≤ max
Γh

(uh +Mφ) ≤ max
Γh

g +
1

8
M.

Thus uh is bounded above by the right-hand side of (2.3). A similar argument applies to
−uh giving the theorem. �

By applying the stability result to the error u − uh we can bound the error in terms of
the consistency error ∆h u−∆u.

Theorem 2.5. Let u be the solution of the Dirichlet problem (1.2) and uh the solution
of the discrete problem (2.2). Then

‖u− uh‖L∞(Ω̄h) ≤
1

8
‖∆u−∆h u‖L∞(Ω̄h).

Proof. Since ∆h uh = f = ∆u on Ωh, ∆h(u − uh) = ∆h u −∆u. Also, u − uh = 0 on
Γh. Apply Theorem 2.4 (with uh replaced by u− uh), we obtain the theorem. �

Combining with Theorem 2.1, we obtain error estimates.

Corollary 2.6. If u ∈ C2(Ω̄), then

lim
h→0
‖u− uh‖L∞(Ω̄h) = 0.

If u ∈ C4(Ω̄), then

‖u− uh‖L∞(Ω̄h) ≤
h2

48
M4,

where M4 = max(‖∂4u/∂x4
1‖L∞(Ω̄), ‖∂4u/∂x4

2‖L∞(Ω̄)).

3. Consistency, stability, and convergence

Now we introduce an abstract framework in which to understand the preceding analysis.
It is general enough that it applies, or can be adapted to, a huge variety of numerical methods
for PDE. We will keep in mind, as an basic example, the 5-point difference discretization
of the Poisson equation with homogeneous boundary conditions, so the PDE problem to be
solved is

∆u = f in Ω, u = 0 on Γ,

and the numerical method is

∆huh = fh in Ωh, uh = 0 on Γh.

Let X and Y be vector spaces and L : X → Y a linear operator. Given f ∈ Y , we seek
u ∈ X such that Lu = f . This is the problem we are trying to solve. So, for the homogeneous
Dirichlet BVP for Poisson’s equation, we could take X to be the space of C2 functions on
Ω̄ which vanish on Γ, Y = C(Ω̄), and L = ∆. (Actually, slightly more sophisticated spaces

12 2. THE FINITE DIFFERENCE METHOD FOR THE LAPLACIAN

should be taken if we wanted to get a good theory for the Poisson equation, but that won’t
concern us now.) We shall assume that there is a solution u of the original problem.

Now let Xh and Yh be finite dimensional normed vector spaces and Lh : Xh → Yh a linear
operator. Our numerical method, or discretization, is:

Given fh ∈ Yh find uh ∈ Xh such that Lhuh = fh.

Of course, this is a very minimalistic framework so far. Without some more hypotheses, we
do not know if this finite dimensional problem has a solution, or if the solution is unique.
And we certainly don’t know that uh is in any sense an approximation of u.

In fact, up until now, there is no way to compare u to uh, since they belong to different
spaces. For this reason, we introduce a representative of u, rhu ∈ Xh. We can then talk
about the error rhu−uh and its norm ‖rhu−uh‖Xh

. If this error norm is small, that means
that uh is close to u, or at least close to our representative rhu of u, in the sense of the norm.

In short, we would like the error to be small in norm. To make this precise we do what
is always done in numerical analysis: we consider not a single discretization, but a sequence
of discretizations. To keep the notation simple, we will now think of h > 0 as a parameter
tending to 0, and suppose that we have the normed spaces Xh and Yh and the linear operator
Lh : Xh → Yh and the element fh ∈ Yh for each h. This family of discretizations is called
convergent if the norm ‖rhu− uh‖Xh

tends to 0 as h→ 0.
In our example, we take Xh to be the grid functions in L∞(Ω̄h) which vanish on Γh, and

Yh to be the grid functions in L∞(Ω), and equip both with the maximum norm. We also
simply define rhu = u|Ωh

. Thus a small error means that uh is close to the true solution u
at all the grid points, which is a desireable result.

Up until this point there is not enough substance to our abstract framework for us to be
able to prove a convergence result, because the only connection between the original problem
Lu = f and the discrete problems Lhuh = fh is that the notations are similar. We surely
need some hypotheses. The first of two key hypotheses is consistency, which say that, in
some sense, the discrete problem is reasonable, in that the solution of the original problem
almost satisfies the discrete problem. More precisely, we define the consistency error as
Lhrhu − fh ∈ Yh, a quantity which we can measure using our norm in Yh. The family of
discretizations is called consistent if the norm ‖Lhrhu− fh‖Yh

tends to 0 as h→ 0.
Not every consistent family of discretizations is convergent (as you can easily convince

yourself, since consistency involves the norm in Yh but not the norm in Xh and for con-
vergence it is the opposite). There is a second key hypothesis, uniform well-posedness of
the discrete problems. More precisely, we assume that each discrete problem is uniquely
solvable (nonsingular): for every gh ∈ Yh there is a unique vh ∈ Xh with Lhvh = gh. Thus
the operator L−1

h : Yh → Xh is defined and we call its norm ch = ‖L−1
h ‖L(Yh,Xh) the stability

constant of the discretization. The family of discretizations is called stable if the stability
constants are bounded uniformly in h: suph ch <∞. Note that stability is a property of the
discrete problems and depends on the particular choice of norms, but it does not depend on
the true solution u in any way.

With these definition we get a theorem which is trivial to prove, but which captures the
underlying structure of many convergence results in numerical PDE.

Theorem 2.7. Let there be given normed vector spaces Xh and Yh, an invertible linear
operator Lh : Xh → Yh, an element fh ∈ Yh, and a representative rhu ∈ Xh. Define uh ∈ Xh

4. FOURIER ANALYSIS 13

by Lhuh = fh. Then the norm of the error is bounded by the stability constant times the
norm of the consistency error. If a family of such discretizations is consistent and stable,
then it is convergent.

Proof. Since Lhuh = fh,

Lh(rhu− uh) = Lhrhu− fh.
Applying L−1

h we obtain

rhu− uh = L−1
h (Lhrhu− fh),

and taking norms we get

‖rhu− uh‖Xh
= ‖L−1

h ‖L(Yh,Xh)‖Lhrhu− fh‖Yh
,

which is the desired result. �

Remark. We emphasize that the concepts of convergence, consistency, and stability
depend on the choice of norms in Xh, Yh, and both, respectively. The norm in Xh should
be chosen so that the convergence result gives information that is desired. Choosing a weak
norm may make the hypotheses easier to verify, but the result of less interest. Similarly, fh
must be chosen in a practical way. We need fh to compute uh, so it should be something we
know before we solve the problem, typically something easily computed from f . Similarly as
well, rhu should be chosen in a reasonable way. For example, choosing rhu = L−1

h fh would
give rhu = uh so we definitely have a convergent method, but this is cheating: convergence is
of no interest with this choice. The one other choice we have at our disposal is the norm on
Yh. This we are free to choose in order to make the hypotheses of consistency and stability
possible to verify. Note that weakening the norm on Yh makes it easier to prove consistency,
while strengthening it makes it easier to prove stability.

Returning to our example, we see that the first statement of Theorem 2.1 is just the
statement that the method is consistent for any solution u ∈ C2(Ω̄), and the second statement
says that the consistency error is O(h2) if u ∈ C4(Ω̄). On the other hand, if we apply
Theorem 2.4 with g = 0, it states that the stability constant ch ≤ 1/8 for all h, and so the
method is stable. We then obtain the convergence result in Corollary 2.6 by the basic result
of Theorem 2.7.

4. Fourier analysis

Define L(Ωh) to be the set of functions Ωh → R, which is isomorphic to RM , M = (N−1)2.
Sometimes we think of these as functions on Ω̄h extended by zero to Γh. The discrete
Laplacian then defines an isomorphism of L(Ωh) onto itself. As we just saw, the L∞ stability
constant, ‖∆−1

h ‖L(L∞,L∞) ≤ 1/8. In this section we use Fourier analysis to establish a similar
L2 stability result.

First consider the one-dimensional case. With h = 1/N let Ih = {h, 2h, . . . , (N − 1)h},
and let L(Ih) be the space of functions on Ih, which is an N − 1 dimensional vectorspace.
On L(Ih) we define the inner product

〈u, v〉h = h
N−1∑
k=1

u(kh)v(kh),

14 2. THE FINITE DIFFERENCE METHOD FOR THE LAPLACIAN

with the corresponding norm ‖v‖h.
The space L(Ih) is a discrete analogue of L2(I) where I is the unit interval. On this

latter space the functions sinπmx, m = 1, 2, . . ., form an orthogonal basis consisting of
eigenfunctions of the operator −d2/dx2. The corresponding eigenvalues are π2, 4π2, 9π2,
We now establish the discrete analogue of this result.

Define φm ∈ L(Ih) by φm(x) = sinπmx, x ∈ Ih. It turns out that these mesh functions
are precisely the eigenvectors of the operator D2

h. Indeed

D2
hφm(x) =

sin πm(x+ h)− 2 sinπmx+ sin πm(x− h)

h2
=

2

h2
(cos πmh− 1) sinπmx.

Thus

D2
hφm = −λmφm, λm =

2

h2
(1− cos πmh) =

4

h2
sin2 πmh

2
.

Note that

0 < λ1 < λ2 < · · · < λN−1 <
4

h2
.

Note also that for small m << N , λm ≈ π2m2. In particular λ1 ≈ π2. To get a strict lower
bound we note that λ1 = 8 for N = 2 and λ1 increases with N .

Since the operator D2
h is symmetric with respect to the inner product on L(Ih), and the

eigenvalues λm are distinct, it follows that the eigenvectors φm are mutually orthogonal.
(This can also be obtained using trigonometric identities, or by expressing the sin functions
in terms of complex exponentials and using the discrete Fourier transform.) Since there are
N − 1 of them, they form a basis of L(Ih).

Theorem 2.8. The functions φm, m = 1, 2, . . . , N − 1 form an orthogonal basis of
L(Ih). Consequently, any function v ∈ L(Ih) can be expanded as v =

∑N−1
m=1 amφm with

am = 〈v, φm〉h/‖φm‖2
h, and ‖v‖2

h =
∑N−1

m=1 a
2
m‖φm‖2

h.

From this we obtain immediately a stability result for the one-dimensional Laplacian. If
v ∈ L(Ih) and D2

hv = f , we expand v in terms of the φm:

v =
N−1∑
m=1

amφm, ‖v‖2
h =

N−1∑
m=1

a2
m‖φm‖2

h.

Then

f = −
N−1∑
m=1

λmamφm, ‖f‖2
h =

N−1∑
m=1

λ2
ma

2
m‖φm‖2

h ≥ 82‖v‖2
h.

Thus ‖v‖h ≤ ‖f‖h/8.
The extension to the two-dimensional case is straightforward. We use the basis φmn =

φm ⊗ φn, i.e.,

φmn(x, y) := φm(x)φn(y), m, n = 1, . . . , N − 1,

for L(Ωh). It is easy to see that these (N − 1)2 functions form an orthogonal basis for L(Ωh)
equipped with the inner product

〈u, v〉h = h2

N−1∑
m=1

N−1∑
n=1

u(mh, nh)v(mh, nh)

5. ANALYSIS VIA SUMMATION BY PARTS 15

and corresponding norm ‖ · ‖h. Moreover φmn is an eigenvector of −∆h with eigenvalue
λmn = λm + λn ≥ 16. The next theorem follows immediately.

Theorem 2.9. The operator ∆h defines an isomorphism from L(Ωh) to itself. Moreover
‖∆−1

h ‖ ≤ 1/16 where the operator norm is with respect to the norm ‖ · ‖h on L(Ωh).

Since the ‖v‖h ≤ ‖v‖L∞(Ωh) we also have consistency with respect to the discrete 2-norm.
We leave it to the reader to complete the analysis with a convergence result.

5. Analysis via summation by parts

Fourier analysis is not the only approach to get an L2 stability result. Another uses
summation by parts, the discrete analogue of integration by parts.

Let v be a mesh function. Define the backward difference operator

∂xv(mh, nh) =
v(mh, nh)− v((m− 1)h, nh)

h
, 1 ≤ m ≤ N, 0 ≤ n ≤ N.

In this section we denote

〈v, w〉h = h2

N∑
m=1

N∑
n=1

v(mh, nh)w(mh, nh),

with the corresponding norm ‖ · ‖h (this agrees with the notation in the last section for mesh
functions which vanish on Γh).

Lemma 2.10. If v ∈ L(Ωh) (the set of mesh functions vanishing on Γh), then

‖v‖h ≤
1

2
(‖∂xv‖h + ‖∂yv‖h).

Proof. It is enough to show that ‖v‖h ≤ ‖∂xv‖h. The same will similarly hold for ∂y as
well, and we can average the two results.

For 1 ≤ m ≤ N , 0 ≤ n ≤ N ,

|v(mh, nh)|2 ≤

(
N∑
i=1

|v(ih, nh)− v((i− 1)h, nh)|

)2

=

(
h

N∑
i=1

|∂xv(ih, nh)|

)2

≤

(
h

N∑
i=1

|∂xv(ih, nh)|2
)(

h
N∑
i=1

12

)

= h

N∑
i=1

|∂xv(ih, nh)|2.

Therefore

h

N∑
m=1

|v(mh, nh)|2 ≤ h

N∑
i=1

|∂xv(ih, nh)|2

16 2. THE FINITE DIFFERENCE METHOD FOR THE LAPLACIAN

and

h2

N∑
m=1

N∑
n=1

|v(mh, nh)|2 ≤ h2

N∑
i=1

N∑
n=1

|∂xv(ih, nh)|2,

i.e., ‖v‖2
h ≤ ‖∂xv‖2

h, as desired. �

This result is a discrete analogue of Poincaré’s inequality, which bounds a function in
terms of its gradient as long as the function vanishes on a portion of the boundary. The
constant of 1/2 in the bound can be improved. The next result is a discrete analogue of
Green’s Theorem (essentially, integration by parts).

Lemma 2.11. If v, w ∈ L(Ωh), then

−〈∆h v, w〉h = 〈∂xv, ∂xw〉h + 〈∂yv, ∂yw〉h.

Proof. Let v0, v1, . . . , vN , w0, w1, . . . , wN ∈ R with w0 = wN = 0. Then

N∑
i=1

(vi − vi−1)(wi − wi−1) =
N∑
i=1

viwi +
N∑
i=1

vi−1wi−1 −
N∑
i=1

vi−1wi −
N∑
i=1

viwi−1

= 2
N−1∑
i=1

viwi −
N−1∑
i=1

vi−1wi −
N−1∑
i=1

vi+1wi

= −
N−1∑
i=1

(vi+1 − 2vi + vi−1)wi.

Hence,

− h
N−1∑
i=1

v((i+ 1)h, nh)− 2v(ih, nh) + v((i− 1)h, nh)

h2
w(ih, nh)

= h

N∑
i=1

∂xv(ih, nh)∂xw(ih, nh),

and thus

−〈D2
xv, w〉h = 〈∂xv, ∂xw〉h.

Similarly, −〈D2
yv, w〉h = 〈∂yv, ∂yw〉h, so the lemma follows. �

Combining the discrete Poincaré inequality with the discrete Green’s theorem, we imme-
diately get a stability result. If v ∈ L(Ωh), then

‖v‖2
h ≤

1

2
(‖∂xv‖2

h + ‖∂yv‖2
h) = −1

2
〈∆h v, v〉h ≤

1

2
‖∆h v‖h‖v‖h.

Thus

‖v‖h ≤ ‖∆h v‖h, v ∈ L(Ωh),

which is a stability result.

6. EXTENSIONS 17

Figure 2.2. Gray points: Ω̊h. Black points: Ω∂
h. Blue points: Γh.

6. Extensions

6.1. Curved boundaries. Thus far we have studied as a model problem the discretiza-
tion of Poisson’s problem on the square. In this subsection we consider a variant which can
be used to discretize Poisson’s problem on a fairly general domain.

Let Ω be a smoothly bounded open set in R2 with boundary Γ. We again consider the
Dirichlet problem for Poisson’s equation, (2.1), and again set Ωh = Ω ∩ R2

h. If (x, y) ∈ Ωh

and the segment (x+ sh, y), 0 ≤ s ≤ 1 belongs to Γ, then the point (x+h, y), which belongs
to Ωh, is a neighbor of (x, y) to the right. If this segment doesn’t belong to Ω we define
another sort of neighbor to the right, which belongs to Γ. Namely we define the neighbor to
be the point (x + sh, y) where 0 < s ≤ 1 is the largest value for which (x + th, y) ∈ Ω for
all 0 ≤ t < s. The points of Γ so constructed (as neighbors to the right or left or above or
below points in Ωh) constitute Γh. Thus every point in Ωh has four nearest neighbors all of

which belong to Ω̄h := Ωh ∪ Γh. We also define Ω̊h as those points in Ωh all four of whose
neighbor belong to Ωh and Ω∂

h as those points in Ωh with at least one neighbor in Γh. See
Figure 2.2.

In order to discretize the Poisson equation we need to construct a discrete analogue of
the Laplacian ∆h v for mesh functions v on Ω̄h. Of course on Ω̊h, ∆h v is defined as the usual
5-point Laplacian. For (x, y) ∈ Ω∂

h, let (x+h1, y), (x, y+h2), (x−h3, y), and (x, y−h4) be the
nearest neighbors (with 0 < hi ≤ h), and let v1, v2, v3, and v4 denote the value of v at these
four points. Setting v0 = v(x, y) as well, we will define ∆h v(x, y) as a linear combination of
the five values vi. In order to derive the formula, we first consider approximating d2v/dx2(0)
by a linear combination of v(−h−), v(0), and v(h+), for a function v of one variable. By
Taylor’s theorem

α−v(−h−) + α0v(0) + α+v(h+) = (α− + α0 + α+)v(0) + (α+h+ − α−h−)v′(0)

+
1

2
(α+h

2
+ + α−h

2
−)v′′(0) +

1

6
(α+h

3
+ − α−h3

−)v′′′(0) + · · · .

18 2. THE FINITE DIFFERENCE METHOD FOR THE LAPLACIAN

Thus, to obtain a consistent approximation we must have

α− + α0 + α+ = 0, α+h+ − α−h− = 0,
1

2
(α+h

2
+ + α−h

2
−) = 1,

which give

α− =
2

h−(h− + h+)
, α+ =

2

h+(h− + h+)
, α0 =

−2

h−h+

.

Note that we have simply recovered the usual divided difference approximation to d2v/dx2:

α−v(−h−)+α0v(0)+α+v(h+) =
[v(h+)− v(0)]/h+ − [v(0)− v(−h−)]/h−

(h+ + h−)/2
= 2v[−h−, 0, h+].

Returning to the 2-dimensional case, and applying the above considerations to both
∂2v/∂x2 and ∂2v/∂y2 we arrive at the Shortley–Weller formula for ∆h v:

∆h v(x, y)

=
2

h1(h1 + h3)
v1 +

2

h2(h2 + h4)
v2 +

2

h3(h1 + h3)
v3 +

2

h4(h2 + h4)
v4 −

(
2

h1h3
+

2

h2h4

)
v0.

Using Taylor’s theorem with remainder we easily calculate that for v ∈ C3(Ω̄),

‖∆ v −∆h v‖L∞(Ωh) ≤
2M3

3
h,

where M3 is the maximum of the L∞ norms of the third derivatives of v. Of course at the
mesh points in Ω̊h, the truncation error is bounded by M4h

2/6 = O(h2), as before, but for
mesh points neighboring the boundary, it is reduced to O(h).

The approximate solution to (2.1) is uh : Ω̄h → R determined again by 2.2. This is a
system of linear equations with one unknown for each point of Ωh. In general the matrix
won’t be symmetric, but it maintains other good properties from the case of the square:

• it is sparse, with at most five elements per row
• it has negative diagonal elements and non-negative off-diagonal elements
• it is diagonally dominant.

Using these properties we can obtain the discrete maximum principle with virtually the same
proof as for Theorem 2.2, and then a stability result as in Theorem 2.4 follows as before. In
this way we can easily obtain an O(h) convergence result.

However, we can improve this result by modifying our previous analysis. Although the
truncation error is only O(h) at some points, we will now show that the error is O(h2) at all
mesh points.

Let Xh denote the space of mesh functions defined on Ω̄h and which vanish on the mesh
points in Γh. On this space we continue to use the maximum norm. Let Yh denote the space
of mesh functions defined on the interior mesh points only, i.e., on Ωh. On this space we
shall use a different norm, namely,

(2.4) ‖f‖Yh
:= max

{
max
x∈Ω̊h

|f(x)|, hmax
x∈Ω∂

h

|f(x)|
}
.

6. EXTENSIONS 19

Thus we use the maximum norm except with a weight which decreases the emphasis on the
points with a neighbor on the boundary. The advantage of this norm is that, measured in
this norm, the consistency error is still O(h2):

‖∆hu−∆u‖Yh
≤ max

(
M4

6
h2, h

2M3

3
h

)
= O(h2).

We will now show that the Shortley-Weller discrete Laplacian is stable from Xh to Yh. For the
argument we will use the maximum principle with a slightly more sophisticated comparison
function.

Before we used as a comparison function φ : Ω̄h → R defined by φ(x1, x2) = [(x1−1/2)2 +
(x2 − 1/2)2]/4, where (1/2, 1/2) was chosen as the vertex because it was the center of the
square (making ‖φ‖L∞ as small as possible while satisfying ∆hφ ≡ 1). Now, suppose that Ω
is contained in the disk of some radius r about some point p. Then we define

(2.5) φ(x) =

{
[(x1 − p1)2 + (x2 − p2)2]/4, x ∈ Ωh,

[(x1 − p2)2 + (x2 − p2)2]/4 + h, x ∈ Γh

Thus we perturb the quadratic comparison function by adding h on the boundary. Then
φ is bounded independent of h (‖φ‖L∞ ≤ r2/4 + h ≤ r2/4 + 2r). Moreover ∆hφ(x) = 1,

if x ∈ Ω̊h, since then φ is just the simple quadratic at x and all its neighbors. However, if
x ∈ Ω∂

h, then there is an additional term in ∆hφ(x) for each neighbor of x on the boundary
(typically one or two). For example, if (x1 − h1, x2) ∈ Γh is a neighbor of x and the other

neighbors are in Ω̊h, then

∆hφ(x) = 1 +
2

h1(h1 + h)
h ≥ h−1,

since h1 ≤ h. Thus we have

(2.6) ∆hφ(x) ≥

{
1, x ∈ Ω̊h,

h−1, x ∈ Ω∂
h.

Now let v : Ω̄h → R be a mesh function, and set M = ‖∆hv‖Yh
(weighted max norm of the

Shortley-Weller discrete Laplacian of v). If x ∈ Ω̊h, then M ≥ |∆hv(x)| and ∆hφ(x) = 1, so

∆h(Mφ)(x) ≥ |∆hv(x)|.
If x ∈ Ω∂

h, then M ≥ h|∆hv(x)| and ∆hφ(x) ≥ h−1, so again

∆h(Mφ)(x) ≥ |∆hv(x)|.
Therefore

∆h(v +Mφ) ≥ 0 on Ωh.

We can then apply the maximum principle (which easily extends to the Shortley-Weller
discrete Laplacian), to get

max
Ω̄h

v ≤ max
Ω̄h

(v +Mφ) ≤ max
Γh

(v +Mφ) ≤ max
Γh

v + c‖∆hv‖Yh
,

where c = ‖φ‖L∞ . Of course, we have a similar result for −v, so

‖v‖L∞(Ω̄h) ≤ ‖v‖L∞(Γh) + c‖∆hv‖Yh
.

20 2. THE FINITE DIFFERENCE METHOD FOR THE LAPLACIAN

In particular, if v vanishes on Γh, then

‖v‖L∞(Ω̄h) ≤ c‖∆hv‖Yh
, v ∈ Xh,

which is the desired stability result. As usual, we apply the stability estimate to v = u−uh,
and so get the error estimate

‖u− uh‖L∞(Ω̄h) ≤ c‖∆hu−∆u‖Yh
= O(h2).

Remark. The perturbation of h on the boundary in the definition (2.5) of the comparison
function φ, allowed us to place a factor of h in front of the Ω∂

h terms in the Yh norm (2.4) and
still obtain stability. For this we needed (2.6) and the fact that the perturbed comparison
function φ remained bounded independent of h. In fact, we could take a larger perturbation
by replacing h with 1 in (2.5). This would lead to a strengthening of (2.6), namely we could
replace h−1 by h−2, and still have φ bounded independently of h. In this way we can prove
stability with the same L∞ norm for Xh and an even weaker norm for Yh:

‖f‖Yh
:= max

{
max
x∈Ω̊h

|f(x)|, h2 max
x∈Ω∂

h

|f(x)|
}
.

We thus get an even stronger error bound, with Th = ∆hu − ∆u denoting the truncation
error, we get

‖u− uh‖L∞(Ω̄h) ≤ cmax
{
‖Th‖L∞(Ω̊h), h

2‖Th‖L∞(Ω∂
h)

}
≤ cmax

{
M4h

2,M3h
3
}

= O(h2).

This estimate shows that the points with neighbors on the boundary, despite having the
largest truncation error (O(h) rather than O(h2) for the other grid points), contribute only
a small portion of the error (O(h3) rather than O(h2)).

This example should be another warning to placing too much trust in a naive analysis
of a numerical method by just using Taylor’s theorem to expand the truncation error. Not
only can a method perform worse than this might suggest, because of instability, it can also
perform better, because of additional stability properties, as in this example.

6.2. More general PDEs. It is not difficult to extend the method and analysis to
more general PDEs. For example, instead of the Poisson equation, we may take

∆u− a ∂u
∂x1

− b ∂u
∂x2

− cu = f,

where a, b, and c are continuous coefficient functions on the square Ω̄. The difference method
takes the obvious form:

∆hu(x)− a(x)
u(x1 + h, x2)− u(x1 − h, x2)

h
− b(x)

u(x1, x2 + h)− u(x1, x2 − h)

h
− c(x)u(x) = f(x), x ∈ Ωh.

It is easy to show that the truncation error is O(h2). As long as the coefficient c ≥ 0, a version
of the discrete maximum principle holds, and one thus obtains stability and convergence.

6. EXTENSIONS 21

6.3. More general boundary conditions. It is also fairly easy to extend the method
to more general boundary conditions, e.g., the Neumann condition ∂u/∂n = g on all or
part of the boundary, although some cleverness is needed to obtain a stable method with
truncation error O(h2) especially on a domain with curved boundary. We will not go into
this topic here, but will treat Neumann problems when we consider finite elements.

6.4. Nonlinear problems. Consider, for example, the quasilinear equation

∆u = F (u, ∂u/∂x1, ∂u/∂x2),

with Dirichlet boundary conditions on the square. Whether this problem has a solution,
and whether that solution is unique, or at least locally unique, depends on the nature of the
nonlinearity F , and is beyond the scope of these notes. Supposing the problem does have a
(locally) unique solution, we may try to compute it with finite differences. A simple scheme
is

∆huh = F (uh, ∂x1uh, ∂x2uh), x ∈ Ωh,

where we use, e.g., centered differences like

∂x1uh(x) =
u(x1 + h, x2)− u(x1 − h, x2)

2h
, x ∈ Ωh.

Viewing the values of uh at the M interior mesh points as unknowns, this is a system of M
equations in M unknowns. The equations are not linear, but they have the same sparsity
pattern as the linear systems we considered earlier: the equation associated to a certain
grid point involves at most 5 unknowns, those associated to the grid point and its nearest
neighbors.

The nonlinear system is typically solved by an iterative method, very often Newton’s
method or a variant of it. Issues like solvability, consistency, stability, and convergence can
be studied for a variety of particular nonlinear problems. As for nonlinear PDE themselves,
many issues arise which vary with the problem under consideration.

CHAPTER 3

Linear algebraic solvers

The finite difference method reduces a boundary value problem for a PDE to a linear
algebraic system Ax = f , with A ∈ Rn×n and f ∈ Rn. The solution of this system dominates
the computation time. (For the 5-point Laplacian on a square with h = 1/N , then n =
(N −1)2.) The simplest way to solve this is through some variation of Gaussian elimination.
Since the matrix A is symmetric positive definite (for the 5-point Laplacian on a square, for
instance), we can use the Cholesky decomposition. Cholesky usually requires O(n3) = O(N6)
floating point additions and multiplications (more precisely n3/6+O(n2), but this is reduced
in this case, because of the sparsity of the matrix. Gaussian elimination is not able to exploit
the full sparsity of A (since when we factor A as LLT with L lower triangular, L will be much
less sparse that A), but it is able to exploit the fact that A is banded : in the natural ordering
all the nonzero entries are on the main diagonal or on one of the first N − 1 sub- or super-
diagonals. As a result, the storage count is reduced from O(n2) = O(N4) to O(nN) = O(N3)
and the operation count is reduced from O(N6) to O(nN2) = O(N4).

For the 3-dimensional case 7-point Laplacian on a cube, the matrix is n × n with n =
(N − 1)3, with the bandwidth (N − 1)2. In this case, elimination (e.g., Cholesky) would
require storage O(nN2) = O(N5) and an operation count of O(nN4) = O(N7).

Fortunately, far more efficient ways to solve the equations have been devised. In fact,
algorithm improvements from the early 1960s to the late 1990s are estimate to account
for a speed-up of about 107 when solving the 7-point Laplacian or similar problems on a
64× 64× 64 grid. This is summarized in the following table, taken from Figure 5, page 53
of Computational Science: Ensuring America’s Competitiveness, a 2005 report to the Presi-
dent of the United States from the President’s Information Technology Advisory Committee
(PITAC). See also Figure 13, page 32 of the DOE Office of Science report A science-based
case for large-scale simulation, 2003.

1. Classical iterations

Gaussian elimination and its variants are called direct methods, meaning that they pro-
duce the exact solution of the linear system in finite number of steps. (This ignores the effects
of round-off error, which is, in fact, a significant issue for some problems.) More efficient
methods are iterative methods, which start from an initial guess u0 of the solution of the
linear system, and produce a sequence u1, u2, . . . , of iterates which—hopefully—converge
to the solution of the linear system. Stopping after a finite number of iterates, gives us an
approximate solution to the linear system. This is very reasonable. Since the solution of
the linear system is only an approximation for the solution of the PDE problem, there is
little point in computing it exactly or nearly exactly. If the numerical discretization provides

23

24 3. LINEAR ALGEBRAIC SOLVERS

Figure 3.1. Algorithmic speedup from early 1960s through late 1990s for
solving the discrete Laplacian on a cubic mesh of size 64 × 64 × 64. The
comparison line labelled “Moore’s Law” is based on a speedup by a factor of
two every 18 months.

about 4 significant digits, we would be happy if the linear solver provides 4 or maybe 5 digits.
Further accuracy in the linear solver serves no purpose.

For an iterative method the goal is, of course, to design an iteration for which

(1) the iteration is efficient, i.e., the amount of work to compute an iteration should not
be too large: typically we want it to be proportional to the number n of unknowns;

(2) the rate of convergence of the iterative method is fast, so that not too many iterations
are needed.

First we consider some classical iterative methods to solve Au = f . One way to motivate
such methods is to note that if u0 is some approximate solution, then the exact solution u
may be written u = u0+e and the error e = u−u0 is related to the residual r = f−Au0 by the
equation Ae = r. That is, we can express u as a residual correction to u0: u = u0 +A−1(f −
Au0). Of course, this merely rephrases the problem, since computing e = A−1(f − Au0)
means solving Ae = r for e, which is as difficult as the original problem of solving Au = f
for u. But suppose we can find some nonsingular matrix B which approximates A−1 but is
less costly to apply. We are then led to the iteration u1 = u0 + B(f − Au0), which can be
repeated to give

(3.1) ui+1 = ui +B(f − Aui), i = 0, 1, 2,

1. CLASSICAL ITERATIONS 25

Of course the effectiveness of such a method will depend on the choice of B. For speed of
convergence, we want B to be close to A−1. For efficiency, we want B to be easy to apply.
Some typical choices of B are:

• B = ωI for some ω > 0. As we shall see, this method will converge for symmetric
positive definite A if ω is a sufficiently small positive number. This iteration is often
called Richardson iteration.
• B = D−1 where D is the diagonal matrix with the same diagonal elements as A.

This is called the Jacobi method.
• B = E−1 where E is the lower triangular matrix with the same diagonal and sub-

diagonal elements of A. This is the Gauss–Seidel method.

Another way to derive the classical iterative methods, instead of residual correction, is
to give a splitting of A as P +Q for two matrices P and Q where P is in some sense close to
A but much easier to invert. We then write the equations as Pu = f −Qu, which suggests
the iteration

ui+1 = P−1(f −Qui).
Since Q = A− P , this iteration may also be written

ui+1 = ui + P−1(f − Aui).
Thus this iteration coincides with (3.1) when B = P−1.

Sometimes the iteration (3.1) is modified to

ui+1 = (1− α)ui + α[ui +B(f − Aui)], i = 0, 1, 2, . . . ,

for a real parameter α. If α = 1, this is the unmodified iteration. For 0 < α < 1 the iteration
has been damped, while for α > 1 the iteration is amplified. The damped Jacobi method will
come up below when we study multigrid. The amplified Gauss–Seidel method is known as
SOR (successive over-relaxation). This terminology is explained in the next two paragraphs.

Before investigating their convergence, let us particularize the classical iterations to the
discrete Laplacian −∆2

h in one or two dimensions. In one dimension, the equations are

−um+1 + 2um − um−1

h2
= fm, m = 1, . . . , N − 1,

where h = 1/N and u0 = uN = 0. The Jacobi iteration is then simply

umi+1 =
um−1
i + um+1

i

2
+
h2

2
fm, m = 1, . . . , N − 1,

The error satisfies

emi+1 =
em−1
i + em+1

i

2
,

so at each iteration the error at a point is set equal to the average of the errors at the
neighboring points at the previous iteration. The same holds true for the 5-point Laplacian
in two dimensions, except that now there are four neighboring points. In an old terminology,
updating the value at a point based on the values at the neighboring points is called relaxing
the value at the point.

For the Gauss–Seidel method, the corresponding equations are

umi+1 =
um−1
i+1 + um+1

i

2
+
h2

2
fm, m = 1, . . . , N − 1,

26 3. LINEAR ALGEBRAIC SOLVERS

and

emi+1 =
em−1
i+1 + em+1

i

2
, m = 1, . . . , N − 1.

We can think of the Jacobi method as updating the value of u at all the mesh points
simultaneously based on the old values, while the Gauss–Seidel method updates the values
of one point after another always using the previously updated values. For this reason the
Jacobi method is sometimes referred to as simultaneous relaxation and the Gauss–Seidel
method as successive relaxation (and amplified Gauss–Seidel as successive overrelaxation).
Note that the Gauss–Seidel iteration gives different results if the unknowns are reordered. (In
fact, from the point of view of convergence of Gauss–Seidel, there are better orderings than
just the naive orderings we have taken so far.) By contrast, the Jacobi iteration is unaffected
by reordering of the unknowns. The Jacobi iteration is very naturally a parallel algorithm:
if we have many processors, each can independently update one or several variables.

Our next goal is to investigate the convergence of (3.1). Before doing so we make some
preliminary definition and observations. First we recall that a sequence of vectors or matrices
Xi converges linearly to a vector or matrix X if there exists a positive number r < 1 and a
number C such that

(3.2) ‖X −Xi‖ ≤ Cri, i = 1, 2,

In particular this holds (with C = ‖X − X0‖) if ‖X − Xi+1‖ ≤ r‖X − Xi‖ i = 0, 1,
For a linearly convergent sequence, the rate of linear convergence is the infimum of all r
for which there exists a C such that (3.2) holds. In a finite dimensional vector space, both
the notion of linear convergence and the rate of linear convergence are independent of a
choice of norm. In investigating iterative methods applied to problems with a mesh size
parameter h, we will typically find that the rate of linear convergence depends on h. Typical
is an estimate like ‖Xi‖ ≤ Cri where all we can say about r is r ≤ 1 − chp for some
positive constants c and p. In order to interpret this, suppose that we want the error to
be less than some tolerance ε > 0. Thus we need to take m iterations with Crm ≤ ε, or
rm ≤ C−1ε, or m ≥ | log(C−1ε)|/| log r| (note that log r < 0 and log(C−1ε) < 0 unless already
‖(‖X −X0) ≤ ε). Now, for r = 1 − chp, | log r| ≈ |chp|, so the number of iterations needed
will be about m = Kh−p, with K = c−1| log(C−1ε)|. In short, linear convergence with rate
r = 1 − chp means that the number of iterations required to reduce the error to a given
tolerance will be O(h−p).

Next we recall that the spectrum σ(G) of a matrix G ∈ Rn×n is its set of eigenvalues, a
set of at most n complex numbers. The spectral radius ρ(G) = maxλ∈σ(G) |λ|. Now consider
the L2-matrix norm ‖G‖2 corresponding to the Euclidean norm on Rn. Then

‖G‖2
2 = sup

06=x∈Rn

(Gx)TGx

xTx
= sup

06=x∈Rn

xT (GTG)x

xTx
= ρ(GTG),

(GTG is a symmetric positive semidefinite matrix and its spectral radius is the maximum

of its Rayleigh quotient). That is, ‖G‖2 =
√
ρ(GTG). If G is symmetric, then GTG = G2,

so its eigenvalues are just the squares of the eigenvalues of G, and ρ(GTG) = ρ(G2), so
‖G‖2 = ρ(G). Independently of whether G is symmetric or not, for any choice of norm on
Rn, the corresponding matrix norm certainly satisfies ‖G‖ ≥ ρ(G). The next theorem shows
that we nearly have equality for some choice of norm.

1. CLASSICAL ITERATIONS 27

Theorem 3.1. Let G ∈ Rn×n and ε > 0. Then there exists a norm on Rn such that the
corresponding matrix norm satisfies ‖G‖ ≤ ρ(G) + ε.

Proof. We may use the Jordan canonical form to write SGS−1 = J where S is an
invertible matrix and J has the eigenvalues of G on the diagonal, 0’s and ε’s on the first
superdiagonal, and 0’s everywhere else. (The usual Jordan canonical form is the case ε = 1,
but if we conjugate a Jordan block by the matrix diag(1, ε, ε2, . . .) the 1’s above the diagonal
are changed to ε.) We select as the vector norm ‖x‖ := ‖Sx‖∞. This leads to ‖G‖ =
‖SGS−1‖∞ = ‖J‖∞ ≤ ρ(A) + ε (the infinity matrix norm, is the maximum of the row
sums). �

An important corollary of this result is a criterion for when the powers of a matrix tend
to zero.

Theorem 3.2. For G ∈ Rn×n, limi→∞G
i = 0 if and only if ρ(G) < 1, and in this case

the convergence is linear with rate ρ(G).

Proof. For any choice of vector norm ‖Gn‖ ≥ ρ(Gn) = ρ(G)n, so if ρ(G) ≥ 1, then Gn

does not converge to 0.
Conversely, if ρ(G) < 1, then for any ρ̄ ∈ (ρ(G), 1) we can find an operator norm so that

‖G‖ ≤ ρ̄, and then ‖Gn‖ ≤ ‖G‖n = ρ̄n → 0. �

We now apply this result to the question of convergence of the iteration (3.1), which we
write as

ui+1 = (I −BA)ui +Bf = Gui +Bf,

where the iteration matrix G = I − BA. The equation u = Gu + Bf is certainly satisfied
(where u is the exact solution), and so we have another way to view a classical iteration:
it is a one-point iteration for this fixed point equation. The error then satisfies ei+1 = Gei,
and the method converges for all starting values e0 = u − u0 if and only if limi→∞G

i = 0,
which, as we have just seen, holds if and only if ρ(G) < 1, in which case the convergence
is linear with rate of linear convergence ρ(G). Now the condition that the ρ(G) < 1 means
that all the eigenvalues of G = I − BA lie strictly inside the unit circle in the complex
plane, or equivalently that all the eigenvalues of BA lie strictly inside the circle of radius 1
in the complex plane centered at the point 1. If BA has real eigenvalues, then the condition
becomes that all the eigenvalues of BA belong to the interval (0, 2). Note that, if A is
symmetric positive definite (SPD) and B is symmetric, then BA is symmetric with respect
to the inner product 〈u, v〉A = uTAv, so BA does indeed have real eigenvalues in that case.

As a first example, we consider the convergence of the Richardson method for an SPD
matrix A. Since the matrix is SPD, it has a basis of eigenvectors with positive real eigenvalues

0 < λmin(A) = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax(A) = ρ(A).

The eigenvalues of BA = ωA are then ωλi, i = 1, . . . , n, and the iteration converges if and
only if 0 < ω < 2/λmax.

Theorem 3.3. Let A be an SPD matrix. Then the Richardson iteration um+1 = um +
ω(f − Aum) is convergent for all choices of u0 if and only if 0 < ω < 2/λmax(A). In this
case the rate of convergence is

max(|1− ωλmax(A)|, |1− ωλmin(A)|).

28 3. LINEAR ALGEBRAIC SOLVERS

Note that the optimal choice is given by ωλmax(A) − 1 = 1 − ωλmin(A), i.e., ωopt =
2/[λmax(A) + λmin(A)], and, with this choice of ω, the rate of convergence is

λmax(A)− λmin(A)

λmax(A) + λmin(A)
=
κ− 1

κ+ 1
,

where κ = λmax(A)/λmin(A) = ‖A‖2‖A−1‖2 is the spectral condition number of A. Of course,
in practice we do not know the eigenvalues, so we cannot make the optimal choice. But even
if we could, we would find very slow convergence when κ is large, as it typically is for
discretizations of PDE.

For example, if we consider A = −D2
h, then λmin ≈ π2, λmax ≈ 4/h2, so κ = O(h−2), and

the rate of convergence is like 1− ch2 for some c. Thus the converge is indeed very slow (we
will need O(h−2) iterations).

Note that for A = −D2
h the Jacobi method coincides with the Richardson method with

ω = h2/2. Since λmax(A) < 4/h2, we have ω < 2/λmax(A) and the Jacobi method is
convergent. But again convergence is very slow, with a rate of 1 − O(h2). In fact for any
0 < α ≤ 1, the damped Jacobi method is convergent, since it coincides with the Richardson
method with ω = αh2/2.

For the Richardson, Jacobi, and damped Jacobi iterations, the approximate inverse B is
symmetric, but this is not the case for Gauss–Seidel, in which B is the inverse of the lower
triangle of A. Of course we get a similar method if we use BT , the upper triangle of A. If we
take two steps of Gauss–Seidel, one with the lower triangle and one with the upper triangle,
the iteration matrix is

(I −BTA)(I −BA) = I − (BT +B −BTAB)A,

so this double iteration is itself a classical iteration with the approximate inverse

(3.3) B̄ := BT +B −BTAB.

This iteration is called symmetric Gauss–Seidel. Now, from the definition of B̄, we get the
identity

(3.4) ‖v‖2
A − ‖(I −BA)v‖2

A = 〈B̄Av, v〉A.

It follows that 〈B̄Av, v〉A ≤ ‖v‖2
A, and hence that λmax(B̄A) ≤ 1. Thus the symmetrized

Gauss–Seidel iteration is convergent if and only if λmin(B̄A) > 0, i.e., if and only if B̄A
is SPD with respect to the A inner product. This is easily checked to be equivalent to B̄
being SPD with respect to the usual inner product. When this is the case (3.4) implies that
‖(I − BA)v‖A < ‖v‖A for all nonzero v, and hence the original iteration is convergent as
well.

In fact the above argument didn’t use any properties of the original approximate inverse
B. So what we have really proved this more general theorem.

Theorem 3.4. Let ui+1 = ui +B(f −Aui) be an iterative method in residual correction
form, and consider the symmetrized iteration, i.e., ui+1 = ui + B̄(f − Aui) with B̄ given by
(3.3). Then the symmetrized iteration is convergent if and only if B̄ is SPD, and, in that
case, the original iteration is convergent as well.

2. THE CONJUGATE GRADIENT METHOD 29

Returning to Gauss–Seidel, we write A = L+D+LT where D is diagonal and L strictly
lower diagonal, so B = (L+D)−1 and

B̄ = BT +B −BTAB = BT (B−1 +B−T − A)B

= BT [(L+D) + (LT +D)− (L+D + LT)]B = BTDB,

which is clearly SPD whenever A is. Thus we have proven:

Theorem 3.5. The Gauss–Seidel and symmetric Gauss–Seidel iterations are convergent
for any symmetric positive definite linear system.

It is worth remarking that the same result is not true for the Jacobi iteration: although
convergence can be proven for many of the SPD matrices that arise from discretizations of
PDE, it is easy to construct an SPD matrix for which Jacobi iteration does not converge. As
to the speed of convergence, for Gauss–Seidel applied to the discrete Laplacian, the analysis
is much trickier than for Jacobi, but it can again be proven (or convincingly demonstrated
via simple numerical experiments) that for A = −D2

h the rate of convergence is again is
about 1− ch2, as for Jacobi, although the constant c is about twice as big for Gauss–Seidel
as for Jacobi.

For both of these iterations, applied to the 5-point Laplacian, the cost of an iteration is
O(n) = O(N2), and we need O(h−2) = O(N2) iterations to achieve a given decrease in the
error. Thus the total cost will be O(N4) operations to achieve a given reduction factor, the
same order as for banded Cholesky. In 3 dimensions, the situation is more favorable for the
iterative methods. In this case, the cost of an iteration is O(n) = O(N3), and we will again
need O(N2) iterations, for a total cost of O(N5), compared to O(N7) for banded Cholesky.

For SOR, the analysis is more complicated, but can be carried out in a similar way. A
careful analysis for ∆h, which can be found in many texts, shows that there is an optimal
value of the relaxation parameter α, and for that value, the spectral radius behaves like
1 − ch rather than 1 − ch2. This is significantly more efficient, giving O(N) rather than
O(N2) operations. However, in practice it can be difficult or impossible to find the optimal
relaxation parameter, and the convergence is quite sensitive to the choice of parameter.

2. The conjugate gradient method

2.1. Line search methods and the method of steepest descents. We now restrict
to the case where A is SPD. In this case the solution u of Au = f is also the unique minimizer
of the function F : Rn → R,

F (v) =
1

2
vTAv − vTf

This is a quadratic functional with a unique minimum, which can be found by solving the
equation ∇F (u) = 0, i.e., Au = f . Now, for any v, w ∈ Rn, we can write

1

2
vTAv =

1

2
[w + (v − w)]TA[w + (v − w)] =

1

2
wTAw +

1

2
(v − w)TA(v − w) + (v − w)TAw,

so

F (v) = F (w) +
1

2
(v − w)TA(v − w) + (v − w)T (Aw − f).

30 3. LINEAR ALGEBRAIC SOLVERS

If we take w = u the last term vanishes, giving

F (v) = F (u) +
1

2
(v − u)TA(v − u),

which again shows that u is the unique minimizer of F , and helps us to visualize F (u). Its
graph is an upward opening paraboloid with vertex at v = u and height F (v) = −vTAv/2.

Now one way to try to find a point in a vector space is through a line search method:

choose initial iterate u0

for i = 0, 1, . . .
choose si ∈ Rn

choose λi ∈ R
set ui+1 = ui + λisi

end

At each step the search direction si and step length λi are chosen to, hopefully, get us nearer
to the desired solution vector. If the goal is to minimize a function F : Rn → R (quadratic
or not), a reasonable choice (but certainly not the only reasonable choice) of search direction
is the direction of steepest descent of F at ui, i.e., si = −∇F (ui). In our quadratic case, the
steepest descent direction is si = f − Aui = ri, the residual. Thus the Richardson iteration
can be viewed as a line search method with steepest descent as search direction, and a fixed
step size.

Also for a general minimization problem, for any choice of search direction, there is an
obvious choice of stepsize, namely we can do an exact line search by minimizing the function
of one variable λ 7→ F (ui + λsi). Thus we must solve sTi ∇F (ui + λsi) = 0, which, in the
quadratic case, gives

(3.5) λi =
sTi ri
sTi Asi

.

If we choose the steepest descent direction with exact line search, we get si = ri, λi =
rTi ri/r

T
i Ari, giving the method of steepest descents :

choose initial iterate u0

for i = 0, 1, . . .
set ri = f − Aui
set ui+1 = ui +

rT
i ri

rT
i Ari

ri
end

Thus the method of steepest descents is a variant of the Richardson iteration ui+1 =
ui + ω(f − Aui) in which the parameter ω depends on i. It does not fit in the category of
simple iterations ui+1 = Gui +Bf with a fixed iteration matrix G which we analyzed in the
previous section, so we shall need to analyze it by other means.

Let us consider the work per iteration of the method of steepest descents. As written
above, it appears to require two matrix-vector multiplications per iteration, one to compute

2. THE CONJUGATE GRADIENT METHOD 31

Ari used in defining the step length, and one to compute Aui used to compute the residual,
and one to compute Ari used in defining the step length. However, once we have computed
pi := Ari and the step length λi we can compute the next residual without an additional
matrix-vector multiplication, since ui+1 = ui + λiri implies that ri+1 = ri − λipi. Thus we
can write the algorithm as

choose u0

set r0 = f − Au0

for i = 0, 1, . . .
set pi = Ari
set λi =

rT
i ri
rT
i pi

set ui+1 = ui + λiri
set ri+1 = ri − λipi

end

Thus, for each iteration we need to compute one matrix-vector multiplication, two Eu-
clidean inner products, and two operations which consist of a scalar-vector multiplication and
a vector-vector additions (referred to as a SAXPY operation). The matrix-vector multipli-
cation involves roughly one addition and multiplication for each nonzero in the matrix, while
the inner products and SAXPY operations each involve n multiplications and additions. If
A is sparse with O(n) nonzero elements, the entire per iteration cost is O(n) operations.

We shall show below that if the matrix A is SPD, the method of steepest descents
converges to the solution of Au = f for any initial iterate u0, and that the convergence is
linear with the same rate of convergence as we found for Richardson extrapolation with the
optimal parameter, namely (κ − 1)/(κ + 1) where κ is the spectral condition number of A.
This means, again, that the convergence is slow if the condition number is large. This is
quite easy to visualize already for 2× 2 matrices. See Figure 3.2.

2.2. The conjugate gradient method. The slow convergence of the method of steep-
est descents motivates a far superior line search method, the conjugate gradient method. CG
also uses exact line search to choose the step length, but uses a more sophisticated choice of
search direction than steepest descents.

For any line search method with exact line search, u1 = u0 + λ0s0 minimizes F over the
1-dimensional affine space u0 + span[s0], and then u2 = u0 + λ0s0 + λ1s1 minimizes F over
the 1-dimensional affine space u0 + λ0s0 + span[s1]. However u2 does not minimize F over
the 2-dimensional affine space u0 + span[s0, s1]. If that were the case, then for 2-dimensional
problems we would have u2 = u and we saw that that was far from the case for steepest
descents.

However, it turns out that there is a simple condition on the search directions si that
ensures that u2 is the minimizer of F over u0 + span[s0, s1], and more generally that ui
is the minimizer of F over u0 + span[s0, . . . , si−1]. Such a choice of search directions is
very favorable. While we only need do 1-dimensional minimizations, after k steps we end
up finding the minimizer in an k-dimensional space. In particular, as long as the search
directions are linearly independent, this implies that un = u.

32 3. LINEAR ALGEBRAIC SOLVERS

Figure 3.2. Convergence of steepest descents with a quadratic cost function.
Left: condition number 2; right: condition number: 10.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Theorem 3.6. Suppose that ui are defined by exact line search using search directions
which are A-orthogonal: sTi Asj = 0 for i 6= j. Then

F (ui+1) = min{F (u) |u ∈ u0 + span[s0, . . . , si] }.

Proof. Write Wi+1 for span[s0, . . . , si]. Now

min
u0+Wi+1

F = min
y∈u0+Wi

min
λ∈R

F (y + λsi).

The key point is that the function (y, λ) 7→ F (y + λsi) decouples into the sum of a function
of y which does not depend on λ plus a function of λ which does not depend on y. This is
because ui ∈ u0 + Wi, so sTi Aui = sTi Au0 = sTi Ay for for any y ∈ u0 + Wi, thanks to the
A-orthogonality of the search directions. Thus

F (y + λsi) =
1

2
yTAy + λsTi Ay +

λ2

2
sTi Asi − yTf − λsTi f

=

(
1

2
yTAy − yTf

)
+

[
λ2

2
sTi Asi − λsTi (f − Aui)

]
.

Since only the term in brackets involves λ, the minimum occurs when λ minimizes that term,
which is when λ = sTi (f − Aui)/sTi Asi, which is the formula for exact line search. �

Any method which uses A-orthogonal (also called “conjugate”) search directions has the
nice property of the theorem. However it is not so easy to construct such directions. By
far the most useful method is the method of conjugate gradients, or the CG method, which
defines the search directions by A-orthogonalizing the residuals ri = f − Aui:

• s0 = r0

• si = ri −
i−1∑
j=0

sTj Ari

sTj Asj
sj.

2. THE CONJUGATE GRADIENT METHOD 33

This sequence of search directions, together with the exact line search choice of step length
(3.5) defines the conjugate gradient. The last formula (which is just the Gram-Schmidt
procedure) appears to be quite expensive to implement and to involve a lot of storage, but
fortunately we shall see that it may be greatly simplified.

Lemma 3.7. (1) Wi = span[s0, . . . , si−1] = span[r0, . . . , ri−1].
(2) The residuals are l2-orthogonal: rTi rj = 0 for i 6= j.
(3) There exists m ≤ n such that W1 (W2 (· · · (Wm = Wm+1 = · · · and u0 6= u1 6=
· · · 6= um = um+1 = · · · = u.

(4) For i ≤ m, { s0, . . . , si−1 } is an A-orthogonal basis for Wi and { r0, . . . , ri−1 } is an
l2-orthogonal basis for Wi.

(5) sTi rj = rTi ri for 0 ≤ j ≤ i.

Proof. The first statement comes directly from the definitions. To verify the second
statement, note that, for 0 ≤ j < i, F (ui + trj) is minimal when t = 0, which gives
rTj (Aui− f) = 0, which is the desired orthogonality. For the third statement, certainly there
is a least integer m ∈ [1, n] so that Wm = Wm+1. Then rm = 0 since it both belongs to
Wm and is orthogonal to Wm. This implies that um = u and that sm = 0. Since sm = 0
um+1 = um = u. Therefore rm+1 = 0, which implies that sm+1 = 0, um+2 = u, etc.

The fourth statement is an immediate consequence of the preceding ones. For the last
statement, we use the orthogonality of the residuals to see that sTi ri = rTi ri. But, if 0 ≤ j ≤
i,then

sTi rj − sTi r0 = sTi A(u0 − uj) = 0,

since u0 − uj ∈ Wi. �

Since si ∈ Wi+1 and the rj, j ≤ i are an orthogonal basis for that space for i < m, we
have

si =
i∑

j=0

sTi rj
rTj rj

rj.

In view of part 5 of the lemma, we can simplify

si = rTi ri

i∑
j=0

rj
rTj rj

= ri + rTi ri

i−1∑
j=0

rj
rTj rj

,

whence

si = ri +
rTi ri

rTi−1ri−1

si−1.

This is the formula which is used to compute the search direction. In implementing this
formula it is useful to compute the residual from the formula ri+1 = ri − λiAsi (since
ui+1 = ui + λisi). Putting things together we obtain the following implementation of CG:

34 3. LINEAR ALGEBRAIC SOLVERS

choose initial iterate u0, set s0 = r0 = f − Au0

for i = 0, 1, . . .

λi =
rTi ri
sTi Asi

ui+1 = ui + λisi
ri+1 = ri − λiAsi
si+1 = ri+1 +

rTi+1ri+1

rTi ri
si

end

At each step we have to perform one multiplication of a vector by A, two dot-products,
and three SAXPYs, very similar to steepest descents (one more SAXPY). Here is the algo-
rithm written out in full in pseudocode:

choose initial iterate u
r ← f − Au
r2← rT r
s← r
for i = 0, 1, . . .
t← As (matrix multiplication)
s2← sT t (dot product)
λ← r2/s2
u← u+ λs (SAXPY)
r2old← r2
r ← r − λt (SAXPY)
r2← rT r (dot product)
s← r + (r2/r2old)s (SAXPY)

end

The conjugate gradient method gives the exact solution in n iterations, but it is most
commonly used as an iterative method and terminated with far fewer operations. A typical
stopping criterion would be to test if r2 is below a given tolerance. To justify this, we shall
show that the method is linearly convergence and we shall establish the rate of convergence.
For analytical purposes, it is most convenient to use the vector norm ‖u‖A := (uTAu)1/2,
and its associated matrix norm.

We start with a third characterization of Wi = span[s0, . . . , si−1] = span[r0, . . . , ri−1].

Lemma 3.8. Wi = span[r0, Ar0, . . . , A
i−1r0] for i = 1, 2, . . . ,m.

Proof. Since dimWi = i, it is enough to show that Wi ⊂ span[r0, Ar0, . . . , A
i−1r0],

which we do by induction. This is certainly true for i = 1. Assume it holds for some i.
Then, since ui ∈ u0 + Wi, ri = f − Aui ∈ r0 + AWi ∈ span[r0, Ar0, . . . , A

ir0], and therefore
Wi+1, which is spanned by Wi and ri belongs to span[r0, Ar0, . . . , A

ir0], which completes the
induction. �

2. THE CONJUGATE GRADIENT METHOD 35

The space span[r0, Ar0, . . . , A
i−1r0] is called the Krylov space generated by the matrix A

and the vector r0. Note that we have as well

Wi = span[r0, Ar0, . . . , A
i−1r0] = { p(A)r0 | p ∈ Pi−1 } = { q(A)(u− u0) | q ∈ Pi, q(0) = 0 }.

Here Pi denotes the space of polynomials of degree at most i. Since ri is l2-orthogonal to
Wi, u− ui is A-orthogonal to Wi, so

‖u− ui‖A = inf
w∈Wi

‖u− ui + w‖A.

Since ui − u0 ∈ Wi,
inf
w∈Wi

‖u− ui + w‖A = inf
w∈Wi

‖u− u0 + w‖A.

Combining the last three equations, we get

‖u− ui‖A = inf
q∈Pi
q(0)=0

‖u− u0 + q(A)(u− u0)‖A = inf
p∈Pi
p(0)=1

‖p(A)(u− u0)‖A.

Applying the obvious bound ‖p(A)(u−u0)‖A ≤ ‖p(A)‖A‖u−u0‖A we see that we can obtain
an error estimate for the conjugate gradient method by estimating

K = inf
p∈Pi
p(0)=1

‖p(A)‖A.

Now if 0 < ρ1 < · · · < ρn are the eigenvalues of A, then the eigenvalues of p(A) are p(ρj),
j = 1, . . . , n, and ‖p(A)‖A = maxj |p(ρj)|. Thus1

K = inf
p∈Pi
p(0)=1

max
j
|p(ρj)| ≤ inf

p∈Pi
p(0)=1

max
ρ1≤ρ≤ρn

|p(ρ)|.

The final infimum can be calculated explicitly, as will be explained below. Namely, for any
0 < a < b, and integer n > 0,

(3.6) min
p∈Pn

p(0)=1

max
x∈[a,b]

|p(x)| = 2(√
b/a+1√
b/a−1

)n
+

(√
b/a−1√
b/a+1

)n .
This gives

K ≤ 2(√
κ+1√
κ−1

)i
+
(√

κ−1√
κ+1

)i ≤ 2

(√
κ− 1√
κ+ 1

)i
,

where κ = ρn/ρ1 is the condition number of A. (To get the right-hand side, we suppressed
the second term in the denominator of the left-hand side, which is less than 1 and tends to
zero with i, and kept only the first term, which is greater than 1 and tends to infinity with
i.) We have thus proven that

‖u− ui‖A ≤ 2

(√
κ− 1√
κ+ 1

)i
‖u− u0‖A,

1Here we bound maxj |p(ρj)| by maxρ1≤ρ≤ρn
|p(ρ)| simply because we can minimize the latter quantity

explicitly. However this does not necessarily lead to the best possible estimate, and the conjugate gradient
method is often observed to converge faster than the result derived here. Better bounds can sometimes be
obtained by taking into account the distribution of the spectrum of A, rather than just its minimum and
maximum.

36 3. LINEAR ALGEBRAIC SOLVERS

which is linear convergence with rate

r =

√
κ− 1√
κ+ 1

.

Note that r ∼ 1 − 2/
√
κ for large κ. So the convergence deteriorates when the condition

number is large. However, this is still a notable improvement over the classical iterations.
For the discrete Laplacian, where κ = O(h−2), the convergence rate is bounded by 1 − ch,
not 1− ch2.

The above analysis yields a convergence estimate for the method of steepest descent as
well. Indeed, the first step of conjugate gradients coincides with steepest descents, and so,
for steepest descents,

‖u− u1‖A ≤
2

√
κ+1√
κ−1

+
√
κ−1√
κ+1

‖u− u0‖A =
κ− 1

κ+ 1
‖u− u0‖A.

Of course, the same result holds if we replace u0 by ui and u1 by ui+1. Thus steepest
descents converges linearly, with rate (κ− 1)/(κ+ 1) (just like Richardson iteration with the
optimal parameter). Notice that the estimates indicate that a large value of κ will slow the
convergence of both steepest descents and conjugate gradients, but, since the dependence
for conjugate gradients is on

√
κ rather than κ, the convergence of conjugate gradients will

usually be much faster.
The figure shows a plot of the norm of the residual versus the number of iterations for

the conjugate gradient method and the method of steepest descents applied to a matrix
of size 233 arising from a finite element simulation. The matrix is irregular, but sparse
(averaging about 6 nonzero elements per row), and has a condition number of about 1, 400.
A logarithmic scale is used on the y-axis so the near linearity of the graph reflects linear
convergence behavior. For conjugate gradients, the observed rate of linear convergence is
between .7 and .8, and it takes 80 iterations to reduce the initial residual by a factor of
about 106. The convergence of steepest descents is too slow to be useful: in 400 iterations
the residual is not even reduced by a factor of 2.

Remark. There are a variety of conjugate-gradient-like iterative methods that apply to
matrix problems Au = f where A is either indefinite, non-symmetric, or both. Many share
the idea of approximation of the solution in a Krylov space.

Our analysis of conjugate gradients and steepest descents depended on the explicit so-
lution of the minimization problem given in (3.6). Here we outline the proof of this result,
leaving the details as an exercise.

The Chebyshev polynomials are defined by the recursion

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x) for n = 1, 2, . . .,

so Tn is a polynomial of degree n. From this follows two explicit formulas for Tn:

Tn(x) = cos(n arccosx), Tn(x) =
1

2
[(x+

√
x2 − 1)n + (x−

√
x2 − 1)n],

with the first equation valid for |x| ≤ 1 and the second valid for |x| ≥ 1.
The polynomial Tn satisfies |Tn(x)| ≤ 1 on [−1, 1] with equality holding for n+ 1 distinct

numbers in [−1, 1]. This can be used to establish the following: for any α < 1, there does not

2. THE CONJUGATE GRADIENT METHOD 37

Figure 3.3. Convergence of conjugate gradients for solving a finite element
system of size 233. On the left 300 iterations are shown, on the right the first
50. Steepest descents is shown for comparison.

0 50 100 150 200 250
10

−40

10
−30

10
−20

10
−10

10
0

10
10

iterations

no
rm

 o
f r

es
id

ua
l

CG

SD

0 10 20 30 40 50
10

−2

10
−1

10
0

10
1

10
2

iterations
no

rm
 o

f r
es

id
ua

l

Figure 3.4. The quintic polynomial equal to 1 at 0 with the smallest L∞

norm on [2, 10]. This is a scaled Chebyshev polynomial, and so the norm can
be computed exactly.

0 2 4 6 8 10 12
−0.2

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10
−0.05

−0.025

0

0.025

0.05

0.075

0.1

exist any polynomial q ∈ Pn with q(α) = Tn(α) and |q(x)| < 1 on [−1, 1]. In other words,
Tn minimizes of maxx∈[−1,1] |p(x)| over all polynomials in Pn which take the value Tn(α) at
α.

Scaling this result we find that

p(x) =

[
Tn

(
−b+ a

b− a

)]−1

Tn

(
2x− b− a
b− a

)
solves the minimization problem (3.6) and gives the minimum value claimed. This polyno-
mial is plotted for n = 5, a = 2, b = 10 in Figure 3.4.

38 3. LINEAR ALGEBRAIC SOLVERS

2.3. Preconditioning. The idea is we choose a matrix M ≈ A such that the system
Mz = c is relatively easy to solve. We then consider the preconditioned system M−1Ax =
M−1b. The new matrix M−1A is SPD with respect to the M inner product, and we solve
the preconditioned system using conjugate gradients but using the M -inner product in place
of the l2-inner product. Thus to obtain the preconditioned conjugate gradient algorithm, or
PCG, we substitute M−1A for A everywhere and change expressions of the form xTy into
xTMy. Note that the A-inner product xTAy remains invariant under these two changes.
Thus we obtain the algorithm:

choose initial iterate u0, set s0 = r̄0 = M−1f −M−1Au0

for i = 0, 1, . . .

λi =
r̄Ti Mr̄i
sTi Asi

ui+1 = ui + λisi
r̄i+1 = r̄i − λiM−1Asi

si+1 = r̄i+1 +
r̄Ti+1Mr̄i+1

r̄Ti Mr̄i
si

end

Note that term sTi Asi arises as the M -inner product of si with M−1Asi. The quantity
r̄i is the residual in the preconditioned equation, which is related to the regular residual,
ri = f − Aui by ri = Mr̄i. Writing PCG in terms of ri rather than r̄i we get

choose initial iterate u0, set r0 = f − Au0, s0 = M−1r0

for i = 0, 1, . . .

λi =
rTi M

−1ri
sTi Asi

ui+1 = ui + λisi
ri+1 = ri − λiAsi
si+1 = M−1ri+1 +

rTi+1M
−1ri+1

rTi M
−1ri

si

end

Thus we need to compute M−1ri at each iteration. Otherwise the work is essentially the
same as for ordinary conjugate gradients. Since the algorithm is just conjugate gradients for
the preconditioned equation we immediately have an error estimate:

‖ui − u‖A ≤ 2

(√
κ− 1√
κ+ 1

)i
‖u0 − u‖A,

where κ now is the ratio of the largest to the least eigenvalue of M−1A. To the extent that
M approximates A, this ratio will be close to 1 and so the algorithm will converge quickly.

The matrix M is called the preconditioner. A good preconditioner should have two prop-
erties. First, it must be substantially easier to solve systems with the matrix M than with

2. THE CONJUGATE GRADIENT METHOD 39

the original matrix A, since we will have to solve such a system at each step of the precon-
ditioned conjugate gradient algorithm. Second, the matrix M−1A should be substantially
better conditioned than A, so that PCG converges faster than ordinary CG. In short, M
should be near A, but much easier to invert. Note that these conditions are similar to those
we look for in defining a classical iteration via residual correction. If ui+1 = ui +B(f −Aui)
is an iterative method for which B is SPD, then we might use M = B−1 as a preconditioner.
For example, the Jacobi method suggests taking M to be the diagonal matrix with the same
diagonal entries as A. When we compute M−1ri in the preconditioned conjugate gradient
algorithm, we are simply applying one Jacobi iteration. Similarly we could use symmetric
Gauss-Seidel to get a preconditioner.

In fact, we can show that conjugate gradients preconditioned by some SPD approximate
inverse always converges faster than the corresponding classical iterative method. For if λ is
an eigenvalue of BA, then −ρ ≤ 1− λ ≤ ρ where ρ is the spectral radius of I −BA, and so

λmin(BA) ≥ 1− ρ, λmax(BA) ≤ 1 + ρ, κ(BA) ≤ 1 + ρ

1− ρ
.

Thus the rate of convergence for the PCG method is at most√
κ(BA)− 1√
κ(BA) + 1

≤

√
1+ρ
1−ρ − 1√
1+ρ
1−ρ + 1

=
1−

√
1− ρ2

ρ
.

The last quantity is strictly less than ρ for all ρ ∈ (0, 1). (For ρ small it is about ρ/2, while
for the important case of ρ ≈ 1 − ε with ε small, it is approximately 1 −

√
2ε.) Thus the

rate of convergence of PCG with B as a preconditioner is better than that of the classical
iteration with B as approximate inverse.

Diagonal (Jacobi) preconditioning is often inadequate (in the case of the 5-point Lapla-
cian it accomplishes nothing, since the diagonal is constant). Symmetric Gauss-Seidel is
somewhat better, but often insufficient as well. A third possibility which is often applied
when A is sparse is to determine M via the incomplete Cholesky factorization. This means
that a triangular matrix L is computed by the Cholesky algorithm applied to A, except that
no fill-in is allowed: only the non-zero elements of A are altered, and the zero elements left
untouched. One then takes M = LLT , and, so M−1 is easy to apply. Yet, other precondi-
tioners take into account the source of the matrix problem. For example, if a matrix arises
from the discretization of a complex partial differential equation, we might precondition it
by the discretization matrix for a simpler related differential equation (if that lead to a linear
systems which is easier to solve). In fact the derivation of good preconditioners for important
classes of linear systems remain a very active research area.

We close with numerical results for preconditioned conjugate gradients with both the di-
agonal preconditioner and incomplete Cholesky factorization as preconditioner. In Figure 3.5
we reproduce the results shown in Figure 3.3, together with these preconditioned iterations.
By fitting the log of the norm of the residual to a linear polynomial, we can compute the
observed rates of linear convergence. They are The preconditioned methods are much more

steepest descents 0.997 PCG (diag.) 0.529
conjugate gradients 0.725 PCG (IC) 0.228

40 3. LINEAR ALGEBRAIC SOLVERS

effective. Diagonal preconditioning reduces the number of iterations needed by conjugate
gradients to reduce the initial error by a factor of 10−6 from 80 to 44. Incomplete Cholesky
preconditioning reduces further to 18 iterations.

Figure 3.5. Convergence of conjugate gradients for solving a finite element
system of size 233, unpreconditioned, diagonally preconditioned, and precon-
ditioned by incomplete Cholesky factorization. Steepest descents is shown as
well. On the left 300 iterations are shown, on the right the first 50.

0 50 100 150 200 250
10

−200

10
−150

10
−100

10
−50

10
0

10
50

iterations

no
rm

 o
f r

es
id

ua
l

CG

SD

PCG (diag)

PCG (IC)

0 10 20 30 40 50
10

−30

10
−20

10
−10

10
0

10
10

iterations

no
rm

 o
f r

es
id

ua
l

CG
PCG (diag)

SD

PCG (IC)

3. Multigrid methods

Figure 3.6 shows the result of solving a discrete system of the form −∆huh = f using the
Gauss–Seidel iteration. We have take h = 64, and chosen a smooth right-hand side vector
f which results in the vector uh which is shown in the first plot. The initial iterate u0,
which is shown in the second plot, was chosen at random, and then the iterates u1, u2, u10,
u50, and u500 are shown in the subsequent plots. In Figure 3.7, the maximum norm error
‖uh − ui‖/‖uh‖ is plotted for i = 0, 1, . . . , 50.

These numerical experiments illustrate the following qualitative properties, which are
typical of the Gauss–Seidel iteration applied to matrices arising from the discretization of
elliptic PDEs.

• If we start with a random error, the norm of the error will be reduced fairly quickly
for the first few iterations, but the error reduction occurs much more slowly after
that.
• After several iterations the error is much smoother, but not much smaller, than

initially. Otherwise put, the highly oscillatory modes of the error are suppressed
much more quickly by the iteration than the low frequency modes.

The first observation is valid for all the methods we have studied: Richardson, Jacobi,
damped Jacobi, and Gauss–Seidel. The second obervation—that Gauss–Seidel iteration
smooths the error—is shared damped Jacobi with α < 1, but not by Jacobi itself.

If we take the Richardson method with ω = 1/λmax(A) for the operator A = −D2
h,

it is very easy to see how the smoothing property comes about. The initial error can be
expanded in terms of the eigenfunctions of A: e0 =

∑n
m=1 ci sinmπx. The mth component

3. MULTIGRID METHODS 41

Figure 3.6. Iterative solution to −∆huh = f , h = 1/64, using Gauss–Seidel.
The random initial iterate is rapidly smoothed, but approaches the solution
uh only very slowly.

exact solution initial iterate

iterate 1 iterate 2

iterate 10 iterate 50

42 3. LINEAR ALGEBRAIC SOLVERS

Figure 3.7. Error in the Gauss–Seidel iterates 0 through 50 in l∞ (•).

in this expansion is multiplied by 1 − λm/λmax = 1 − λm/λn at each iteration. Thus the
high frequency components, m ≈ n, are multiplied by something near to 0 at each iteration,
and so are damped very quickly. Even the intermediate eigenvalues, λm ≈ λn/2 are damped
reasonably quickly (by a factor of about 1/2 at each iteration). But the low frequency modes,
for which λm � λn, decrease very slowly.

This also explains the first observation, that the norm of the error decreases quickly
at first, and then more slowly. The norm of the error has contributions from all modes
present in the initial error. Those associated to the higher frequency modes disappear in a
few iterations, bringing the error down by a significant fraction. But after that the error is
dominated by the low frequency modes, and so decays very slowly.

The same analysis applies to damped Jacobi with positive damping, and shows that
undamped Jacobi doesn’t have the smoothing property: the mth mode is multiplied by
about 1 − 2λm/λn, and so convergence is very slow for low frequency modes and also the
highest frequency modes λm ≈ λn. For the intermediate modes, λm ≈ λn/2, convergence is
very fast.

Establishing the smoothing property for Gauss–Seidel is more complicated, since the
eigenfunctions of the Gauss–Seidel iteration don’t coincide with those of A even for A = −D2

h.
However both numerical study and careful analysis show that Gauss–Seidel does indeed have
the smoothing property for discretized elliptic operators.

The idea behind the multigrid method is to create an iterative method which reduces all
components of the residual quickly by putting together two steps. First it applies the approx-
imate inverse from Gauss–Seidel or another classical iterative method with the smoothing
property to the residual. This greatly reduces the high frequency components of the resid-
ual, but barely reduces the low frequency components. The new residual, being relatively
smooth, can then be accurately approximated on a coarser mesh. So, for the second step,
the residual is (somehow) transferred to a coarser mesh, and the equation solved there, thus

3. MULTIGRID METHODS 43

reducing the low frequency components. On the coarser mesh, it is of course less expensive
to solve. For simplicity, we assume for now that an exact solver is used on the coarse mesh.
Finally this coarse mesh solution to the residual problem is somehow transferred back to the
fine mesh where it can be added back to our smoothed approximation.

Thus we have motivated the following rough outline of an algorithm:

(1) Starting from an initial guess u0 apply a fine mesh smoothing iteration to get an
improved approximation ū.

(2) Transfer the residual in ū to a coarser mesh, solve a coarse mesh version of the
problem there, transfer the solution back to the fine mesh, and add it back to ū to
get ¯̄u.

Taking ¯̄u for u1 and thus have described an iteration to get from u0 to u1 (which we can
then apply again to get from u1 to u2, and so on). In fact it is much more common to also
apply a fine mesh smoothing at the end of the iteration, i.e., to add a third step:

3. Starting from ¯̄u apply the smoothing iteration to get an improved approximation ¯̄̄u.

The point of including the third step is that it leads to a multigrid iteration which is sym-
metric, which is often advantageous (e.g., the iteration can be used as a preconditioner for
conjugate gradients). If the approximation inverse B used for the first smoothing step is not
symmetric, we need to apply BT (which is also an approximate inverse, since A is symmetric)
to obtain a symmetric iteration.

We have just described a two-grid iteration. The true multigrid method will involve not
just the original mesh and one coarser mesh, but a whole sequence of meshes. However, once
we understand the two-grid iteration, the multigrid iteration will follow easily.

To make the two-grid method more precise we need to explain step 2 more fully, namely
(a) how do we transfer the residual from the fine mesh to the coarse mesh?; (b) what problem
do we solve on the coarse mesh?; and (c) how do we transfer the solution of that problem
from the coarse mesh to the fine mesh? For simplicity, we suppose that N = 1/h is even
and that we are interested in solving Ahu = f where A = −D2

h. Let H = 2h = (N/2)−1.
We will use the mesh of size H as our coarse mesh. The first step of our multigrid iteration
is then just

ū = u0 +Bh(f − Ahu0),

where Bh is just the approximate inverse of Ah from Gauss–Seidel or some other smoothing
iteration. The resulting residual is f − Ahū. This is a function on the fine mesh points
h, 2h, . . . , (N − 1)h, and a natural way to transfer it to the coarse mesh is restrict it to the
even grid points 2h, 4h, . . . , (N −2)h = H, 2H, . . . , (N/2−1)H, which are exactly the coarse
mesh grid points. Denoting this restriction operator from fine grid to coarse grid functions
(i.e., from RN−1 → RN/2−1) by PH , we then solve AHeH = PH(f − Ahūh) where, of course,
AH = −D2

H is the 3-point difference operator on the coarse mesh. To transfer the solution eH ,
a coarse grid function, to the fine grid, we need a prolongation operator QH : RN/2−1 → RN−1.
It is natural to set QHeH(jh) = eH(jh) if j is even. But what about when j is odd: how
should we define QHeH at the midpoint of two adjacent coarse mesh points? A natural
choice, which is simple to implement, is QHeH(jh) = [eH((j − 1)h) + e((j + 1)h)]/2. With
these two operators second step is

¯̄u = ū+QHA
−1
H PH(f − Ahū).

44 3. LINEAR ALGEBRAIC SOLVERS

And then final post-smoothing step is

¯̄̄u = ¯̄u+BT
h (f − Ah ¯̄u).

Actually this does not give a symmetric iteration. To obtain symmetry we need Qh = cP T
H

and that is not the case for the grid transfer operators we defined. We have

(3.7) QH =



1/2 0 0 0 · · · 0
1 0 0 0 · · · 0

1/2 1/2 0 0 · · · 0
0 1 0 0 · · · 0
0 1/2 1/2 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1/2


,

but PH as we described it, consists only of 0’s and 1’s. Therefore one commonly takes a
different choice for PH , namely PH = (1/2)QT

H . This means that the transferred coarse grid
function doesn’t just take the value of the corresponding fine grid function at the coarse grid
point, but rather uses a weighted average of the fine grid function’s values at the point in
question and the fine grid points to the left and right (with weights 1/4, 1/2, 1/4). With
this choice, QHAhPH is symmetric; in fact, QHAhPH = AH . This is a useful formula. For
operators other than the Ah = −D2

h, we can use the same intergrid transfer operators,
namely QH given by (3.7) and PH = (1/2)QT

H , and then define the coarse grid operator by
AH = QHAhPH .

Remark. In a finite element context, the situation is simpler. If the fine mesh is a
refinement of the coarse mesh, then a coarse mesh function is already a fine mesh function.
Therefore, the operator QH can be taken simply to be the inclusion operator of the coarse
mesh space into the fine mesh space. The residual in u0 ∈ Sh is most naturally viewed as
a functional on Sh: v 7→ (f, v) − B(u0, v). It is then natural to transfer the residual to the
coarse mesh simply by restricting the test function v to SH . This operation STh → STH is
exactly the adjoint of the inclusion operator SH → Sh. Thus the second step, solving the
coarse mesh problem for the restricted residual is obvious in the finite element case: we find
eH ∈ SH such that

B(eH , v) = (f, v)−B(ū, v), v ∈ SH ,

and then we set ¯̄u = ū+ eH ∈ Sh.

Returning to the case of finite differences we have arrived at the following two-grid
iterative method to solve Ahuh = fh.

3. MULTIGRID METHODS 45

uh = twogrid(h,Ah, fh, u0)
input: h, mesh size (h = 1/n with n even)

Ah, operator on mesh functions
fh, mesh function (right-hand side)
u0, mesh function (initial iterate)

output: uh, mesh function (approximate solution)

for i = 0, 1, . . . until satisfied
1. presmoothing: ū = ui +Bh(fh − Ahui)
2. coarse grid correction:

2.1. residual computation: rh = fh − Ahū
2.2. restriction: H = 2h, rH = PHrh, AH = PHAhQH

2.3. coarse mesh solve: solve AHeH = rH
2.4. prolongation: eh = QHeH
2.5. correction: ¯̄u = ū+ eh

3. postsmoothing: uh ← ui+1 = ¯̄u+BT
h (fh − Ah ¯̄u)

end

Algorithm 3.1: Two-grid iteration for approximately solving Ahuh = fh.

In the smoothing steps, the matrix Bh could be, for example, (D − L)−1 where D is
diagonal, L strictly lower triangular, and Ah = D − L− LT . This would be a Gauss–Seidel
smoother, but there are other possibilities as well. Besides these steps, the major work is in
the coarse mesh solve. To obtain a more efficient algorithm, we may also solve on the coarse
mesh using a two-grid iteration, and so involving an even coarser grid. In the following
multigrid algorithm, we apply this idea recursively, using multigrid to solve at each mesh
level, until we get to a sufficiently coarse mesh, h = 1/2, at which point we do an exact solve
(with a 1× 1 matrix!).

46 3. LINEAR ALGEBRAIC SOLVERS

uh = multigrid(h,Ah, fh, u0)
input: h, mesh size (h = 1/n with n a power of 2)

Ah, operator on mesh functions
fh, mesh function (right-hand side)
u0, mesh function (initial iterate)

output: uh, mesh function (approximate solution)

if h = 1/2 then
uh = A−1

h fh
else

for i = 0, 1, . . . until satisfied
1. presmoothing: ū = ui +Bh(f − Ahui)
2. coarse grid correction:

2.1. residual computation: rh = fh − Ahū
2.2. restriction: H = 2h, rH = PHrh, AH = PHAhQH

2.3. coarse mesh solve: eH = multigrid(H,AH , rH , 0)
2.4. prolongation: eh = QHeH
2.5. correction: ¯̄u = ū+ eh

3. postsmoothing: uh ← ui+1 = ¯̄u+BT
h (f − Ah ¯̄u)

end
end if

Algorithm 3.2: Multigrid iteration for approximately solving Ahuh = f .

Figure 3.8 shows 5 iterations of this multigrid algorithm for solving the system −∆huh =
f , h = 1/64, considered at the beginning of this section, starting from a random initial
guess (we would get even better results starting from a zero initial guess). Compare with
Figure 3.6. The fast convergence of the multigrid algorithm is remarkable. Indeed, for
the multigrid method discussed here it is possible to show that the iteration is linearly
convergent with a rate independent of the mesh size (in this example, it is roughly 0.2).
This means that the number of iterations needed to obtain a desired accuracy remains
bounded independent of h. It is also easy to count the number of operations per iteration.
Each iteration involves two applications of the smoothing iteration, plus computation of
the residual, restriction, prolongation, and correction on the finest mesh level. All those
procedures cost O(n) operations. But then, during the coarse grid solve, the same procedures
are applied on the grid of size 2h, incurring an additional cost of O(n/2). Via the recursion
the work will be incurred for each mesh size h, 2h, 4h, Thus the total work per iteration
will be O(n + n/2 + n/4 + . . . + 1) = O(n) (since the geometric series sums to 2n). Thus
the total work to obtain the solution of the discrete system to any desired accuracy is itself
O(n), i.e., optimal.

3. MULTIGRID METHODS 47

Figure 3.8. Iterative solution to −∆huh = f , h = 1/64, using multigrid.

initial iterate iterate 1

iterate 2 iterate 3

iterate 4 iterate 5

CHAPTER 4

Finite element methods for elliptic equations

1. Weak and variational formulations

Model PDE: − div a gradu+ cu = f in Ω

Here Ω is a bounded domain in Rn; 0 < a ≤ a(x) ≤ ā, 0 ≤ c(x) ≤ c̄

First consider the homogeneous Dirichlet BC: u = 0 on ∂Ω.

Assuming that a ∈ C1(Ω̄), c ∈ C(Ω̄), u ∈ C2(Ω̄) satisfies the PDE and BC (a strong
solution), then it also satisfies the weak formulation:

Find u ∈ H̊1(Ω) such that∫
(a gradu · grad v + cuv) =

∫
fv, v ∈ H̊1(Ω),

A solution of the weak formulation need not belong to C2(Ω̄), but if it does, then it is a
strong solution.

The variational formulation is completely equivalent to the weak formulation

u = argmin
v∈H̊1(Ω)

∫
Ω

[
1

2
(a grad v · grad v + cv2)− fv]

Extensions: Neumann BC, Robin BC, mixed BC, inhomogeneous Dirichlet BC. First
order term to the PDE (then the problem is not symmetric and there is no variational
formulation, but weak formulation is fine).

All these problems can be put in the weak form: Find u ∈ V such that

(4.1) b(u, v) = F (v), v ∈ V,

where V is a Hilbert space (H1 or H̊1), b : V × V → R is a bilinear form, F : V → R is
a linear form. (The inhomogeneous Dirichlet problem takes this form if we solve for u− ug
where ug is a function satisfying the inhomogeneous Dirichlet BC ug = g on ∂Ω.) For
symmetric problems (no first order term), the bilinear form b is symmetric, and the weak
form is equivalent to the variational form:

u = argmin
v∈V

[
1

2
b(v, v)− F (v)].

49

50 4. FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS

2. Galerkin method and finite elements

Let Vh be a finite dimensional subspace of V . If we replace the V in the weak formulation
with Vh we get a discrete problem: Find uh ∈ Vh such that

(4.2) b(uh, v) = F (v), v ∈ Vh.

This is called the Galerkin method. For symmetric problems it is equivalent to the Rayleigh–
Ritz method, which replaces V by Vh in the variational formulation:

uh = argmin
v∈Vh

[
1

2
b(v, v)− F (v)].

The Galerkin solution can be reduced to a set of n linear equations in n unknowns where
n = dimVh by choosing a basis. Adopting terminology from elasticity, the matrix is called
the stiffness matrix and the right hand side is the load vector.

Comparing (4.1) and (4.2), we find that the error in the Galerkin method u−uh satisfies

(4.3) b(u− uh, v) = 0, v ∈ Vh.

This relation, known as Galerkin orthogonality, is key to the analysis of Galerkin methods.
To define a simple finite element method, we suppose that Ω is a polygon in R2 and let Th

be a simplicial decomposition of Ω (covering of Ω̄ by closed triangles so that the intersection
of any two distinct elements of Th is either empty or a common edge or vertex. Let

M1
0 (Th) = { v ∈ C(Ω) |V |T ∈ P1(T)∀T ∈ Th } = { v ∈ H1(Ω) |V |T ∈ P1(T)∀T ∈ Th },

and M̊1
0 (Th) = H̊1(Ω) ∩M1

0 (Th). The P1 finite element method for the Dirichlet problem is

the Galerkin method with Vh = M̊1
0 (Th).

We can use the Lagrange (hat function) basis for Vh to ensure that (1) the matrix is
sparse, and (2) the integrals entering into the stiffness matrix and load vector are easy to
compute.

Figure 4.1. A hat function basis element for M1
0 (Th).

In the special case where Ω is the unit square, and Th is obtained from a uniform m×m
partition into subsquares, each bissected by its SW-NE diagonal (so n = (m − 1)2), the
resulting stiffness matrix is exactly the same as the matrix of the 5-point Laplacian.

3. LAGRANGE FINITE ELEMENTS 51

3. Lagrange finite elements

This section is written mostly for 2D, although extending to n dimensions is straightfor-
ward.

A finite element space is a space of piecewise polynomials with respect to a given trian-
gulation (simplicial decomposition) Th, but not just any space of piecewise polynomials. It
is constructed by specifying the following things for each T ∈ Th:

• Shape functions : a finite dimensional space V (T) consisting of polynomial functions
on T .
• Degrees of freedom: a finite set of linear functionals V (T)→ R which are unisolvent

on V (T). This means that real values can be assigned arbitrarily to each DOF, and
these determine one and only one element of V (T). In other words, the DOF form
a basis for the dual space of V (T).

We further assume that each degree of freedom on T is associated to a subsimplex of T , i.e.,
to a vertex, an edge, or T itself (in 2D). Moreover, if a subsimplex is shared by two different
triangles in T1 and T2 in Th, the DOFs for T1 and T2 associated to the subsimplex are in
1-to-1 correspondence.

When all this is specified, the assembled finite element space is defined as all functions
v ∈ L2(Ω) such that

• v|T ∈ V (T) for all T ∈ Th
• The DOFs are single-valued in the sense that whenever q is a subsimplex shared by
T1 and T2, then the corresponding DOFs on applied to v|T1 and v|T2 take on the
same value.

Note that we do not specify the interelement continuity explicitly. It is determined by the
fact that the shared DOFs are single-valued.

The reason for this definition is that it is easy to construct and compute with piecewise
polynomial spaces defined in this way. First of all, we immediately obtain a set of global
degrees of freedom, by considering all the degrees of freedom associated with all the sub-
simplices of the triangulation. An element of the FE space is uniquely determined by an
arbitrary assignment of values to the global degrees of freedom. Thus the dimension of the
FE space is the sum over the subsimplices of the number of degrees of freedom associated
to the subsimplex. A basis for the FE space is obtained by setting one of the global DOFs
to 1 and all the rest to zero. The resulting basis function is supported in the union of the
triangles which contain the subsimplex. Thus we have a local basis (small supports), and
will obtain a sparse stiffness matrix.

The simplest example is the P1 element, or Lagrange element of degree 1, discussed above.
Then the shape functions are simply the linear polynomials: V (T) = P1(T) (dimension
equals 3 is 2D). The degrees of freedom on T are the evaluation functionals associated to
the 3 vertices. These DOFs are certainly unisolvent: a linear function in 2D is determined
by its value at any 3 non-colinear points. Clearly any continuous piecewise linear function
belongs to the FE space, since it can be specified by assigning its vertex values. Conversely,
if v is an element of the assembed FE space and two triangles T1 and T2 share a common
edge e, then v|T1 and v|T2 must agree on all of e, since on e they are both linear functions,
and they agree at the two end points of e (a linear function in 1D is determined by its value
at any 2 distinct points). This shows that the assembled FE space consists precisely of the

52 4. FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS

continuous piecewise linears. The global degrees of freedom are the vertex values, and the
corresponding local basis consists of the hat functions.

For the Lagrange element of degree 2, the shape functions are V (T) = P2(T). There is
one DOF associated to each vertex (evaluation at the vertex), and one associated to each
edge (evaluation at the midpoint of the edge). Let us check unisolvence. Since dimV (T) = 6
and there are 6 DOFs on T , we must show that if all 6 DOFs vanish for some v ∈ V (T),
then v ≡ 0. For this choose a numbering of the vertices of T , and let λi ∈ P1(R2), i = 1, 2, 3,
denote the linear function that is 1 on the ith vertex and which vanishes on the opposite
edge, e of T . Thus the equation λi = 0 is the equation of the line through the edge e. Since
v vanishes at the two endpoints and the midpoint of e, v|e vanishes (a quadratic in 1D which
vanishes at 3 points is zero). Therefore v is divisible by the linear polynomial λi, for each
i. Thus v is a multiple of λ1λ2λ3. But v is quadratic and this product is cubic, so the only
possibility is that v ≡ 0. It is easy to check that the assembled space is exactly the space
M2

0 (Th) of continuous piecewise quadratic functions. There is one basis function associated
to each vertex and one to each edge.

Figure 4.2. Basis functions for M2
0 (Th).

Note: the linear functions λi are the barycentric coordinate functions on T . They satisfy
λ1 + λ2 + λ3 ≡ 1.

Higher degree Lagrange elements are defined similarly. V (T) = Pr(T). dimV (T) =
(r+ 1)(r+ 2)/2. There is 1 DOF at each vertex, r− 1 on each edge, and (r− 2)(r− 1)/2 in
each triangle. Note that 3× 1 + 3× (r− 1) + (r− 2)(r− 1)/2 = (r+ 1)(r+ 2)/2. The DOFs

4. COERCIVITY, INF-SUP CONDITION, AND WELL-POSEDNESS 53

are the evaluation functionals at the points with barycentric coordinates all of the form i/r
with 0 ≤ i ≤ r and integer.

Additional material covered here, notes not available: Data structures for triangulations,
the finite element assembly process (loops over elements).

Other finite element spaces. Cubic Hermite finite elements. Shape functions are P3(T)
for a triangle T . Three DOFs for each vertex v: u 7→ u(v), u 7→ (∂u/∂x)(v), u 7→ (∂u/∂y)(v);
and one DOF associated to the interior u 7→

∫
T
v (alternatively, evaluation at the barycenter).

Proof of unisolvence. Note that the assembled finite element space belongs to C0 and H1,
but not to C1 and H2.

Figure 4.3. Cubic Hermite element.

Quintic Hermite finite elements (Argyris elements). Shape functions are P5(T) for a
triangle T . Six DOFs for each vertex v: evaluation of u, both 1st partials, and all three 2nd
partials of u at v. One DOF for each edge: evaluation of ∂u/∂n at midpoint. Unisolvent,
H2.

Figure 4.4. Quintic Hermite element.

4. Coercivity, inf-sup condition, and well-posedness

First we consider this in an abstract framework, in which we are given a Hilbert space
V , a bounded bilinear form b : V × V → R and a bounded linear form F : V → R, and the
problem we wish to solve is

(4.4) b(u, v) = F (v), v ∈ V.
We will analyze the Galerkin method using the ideas of stability and consistency we intro-
duced in Chapter 2, § 1.2. Recall that there we studied a problem of the form find u ∈ X
such that Lu = f where L mapped the vector space X where the solution was sought to

54 4. FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS

the vector space Y where the data f belonged. For the problem (4.4), the solution space
X = V , and the data space Y = V ∗, the dual space of V . The linear operator L is simply
given by

Lw(v) = b(w, v) w, v ∈ V.
So the problem (4.4) is simply: given F ∈ V ∗ find u ∈ V such that Lu = F .

First of all, before turning to discretization, we consider the well-posedness of this prob-
lem. We have already assumed that the bilinear form b is bounded, i.e., there exists a
constant M such that

|b(w, v)| ≤M‖w‖‖v‖, w, v ∈ V,
where, of course, the norm is the V norm. This implies that the operator L : V → V ∗ is a
bounded linear operator (with the same bound).

We will now consider hypotheses on the bilinear form b that ensure that the problem
(4.4) is well-posed. We will consider three cases, in increasing generality.

4.1. The symmetric coercive case. First we assume that the bilinear form b is sym-
metric (b(w, v) = b(v, w)) and coercive, which means that there exists a constant γ > 0, such
that

b(v, v) ≥ γ‖v‖2, v ∈ V.
In this case b(w, v) is an inner product on V , and the associated norm is equivalent to the
V norm:

γ‖v‖2
V ≤ b(v, v) ≤M‖v‖2

V .

Thus V is a Hilbert space when endowed with the b inner product, and the Riesz Represen-
tation Theorem gives that for all F ∈ V ∗ there exists a unique u ∈ V such that

b(u, v) = F (v), v ∈ V,

i.e., (4.4) has a unique solution for any data, and L−1 : V ∗ → V is well-defined. Taking
v = u and using the coercivity condition we immediately have γ‖u‖2

V ≤ F (u) ≤ ‖F‖V ∗‖u‖V ,
so ‖u‖V ≤ γ−1‖F‖V , i.e., ‖L−1‖L(V ∗,V) ≤ γ−1.

In short, well-posedness is an immediate consequence of the Riesz Representation Theo-
rem in the symmetric coercive case.

As a simple example of the utility of this result, let us consider the Neumann problem

− div a gradu+ cu = f in Ω, a
∂u

∂n
= 0 on ∂Ω

where 0 < a ≤ a(x) ≤ ā, 0 < c ≤ c(x) ≤ c̄. The weak formulation is: Find u ∈ V such that

b(u, v) = F (v), v ∈ V,

where V = H1,

b(w, v) =

∫
Ω

(a gradw · grad v + cuv), F (v) =

∫
Ω

fv.

Clearly the bilinear form b is bounded with M = max(ā, c̄), and is coercive with γ =
min(a, c). It follows that the weak formulation is well-posed. It admits a unique solution
and ‖u‖H1 ≤ γ−1‖F‖(H1)′ ≤ γ−1‖f‖L2 .

4. COERCIVITY, INF-SUP CONDITION, AND WELL-POSEDNESS 55

4.2. The coercive case. Even if we dispense with the assumption of symmetry, co-
ercivity implies well-posedness. From coercivity we have γ‖w‖2 ≤ b(w,w) = Lw(w) ≤
‖Lw‖V ∗‖w‖, so

(4.5) ‖w‖ ≤ γ−1‖Lw‖V ∗ , w ∈ V.
This immediately leads to three conclusions:

• L is one-to-one.
• If L is also onto, so L−1 is well-defined, then ‖L−1‖L(V ∗,V) ≤ γ−1.
• The range W = L(V) is closed in V ∗.

The first two points are immediate. For the third, suppose that for some u1, u2, . . . ∈ V ,
Lun converges to some G ∈ V ∗. We must show that G = Lu for some u ∈ V . Since Lun
converges in V ∗ it forms a Cauchy sequence. Using (4.5) we conclude that un forms a Cauchy
sequence in V , and so converge to some u in V . Since L is bounded Lun → Lu in V ∗, so
Lu = G, showing that indeed W is closed in V ∗.

It remains to show that L is onto, i.e., the closed subspace W = L(V) is the whole of V ∗.
If W were a strict closed subspace of V ∗ then there would exist a nonzero element v ∈ V
such that G(v) = 0 for all G ∈ W , i.e., b(w, v) = Lw(v) = 0 for all w ∈ V and this particular
v. But, taking w = v and using coercivity we get a contradiction.

Thus we have shown that for a bounded coercive bilinear form, symmetric or not, the
abstract weak formulation (4.4) is well-posed. This result is known as the Lax-Milgram
theorem.

4.3. The inf-sup condition. It turns out to be very useful to consider a much more
general case. Suppose that, instead of coercivity, we assume that

(1) (inf-sup condition) There exists γ > 0 such that for all 0 6= w ∈ V there exists
0 6= v ∈ V such that

b(w, v) ≥ γ‖w‖‖v‖.
(2) (dense range condition) For all 0 6= v ∈ V there exists a w ∈ V such that b(w, v) 6= 0.

We shall see that it is easy to adapt the proof of the Lax-Milgram theorem to this case.
Note that the inf-sup condition can be written

inf
0 6=w∈V

sup
06=v∈V

b(w, v)

‖w‖‖v‖
> 0,

which explains its name. The dense range condition is equivalent to the condition that the
range W = L(V) is dense in V ∗. Clearly coercivity implies both these conditions (take
v = w for the first and w = v for the second). In the symmetric case the second condition
follows from the first. In any case, using these two conditions it is easy to carry out the
above argument, as we do now.

The bound (4.5) follows directly from the inf-sup condition. Again this implies L is 1-to-1
and that W = L(V) is closed in V ∗, and furnishes a bound on ‖L−1‖ if L is onto. Since L
has dense range, by the second condition, and closed range, it is indeed onto.

This version is in some sense the most general possible. If (4.4) is well-posed, so L−1 :
V ∗ → V exists, then it is a simple matter of untangling the definitions to see that

inf
06=w∈V

sup
06=v∈V

b(w, v)

‖w‖‖v‖
= ‖L−1‖−1

L(V ∗,V),

56 4. FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS

and so the inf-sup condition holds with γ = 1/‖L−1‖−1
L(V ∗,V). Thus the inf-sup condition and

dense range condition are equivalent to well-posedness.

5. Stability, consistency, and convergence

Now we turn to discretization, again using the framework of Chapter 2, § 1.2. First we
consider the coercive (but not necessarily symmetric) case. Thus we suppose again that
b : V × V → R is a bounded, coercive bilinear form, with constants M and γ. Consider
Vh a finite dimensional subspace of V . Restricting the bilinear form b to Vh × Vh defines an
operator Lh : Vh → V ∗h , and restricting F to Vh gives a linear form Fh : Vh → R. Galerkin’s
method is just Lhuh = Fh. We will show that this method is consistent and stable, and so
convergent.

Stability just means that Lh is invertible with the stability constant given by ‖L−1
h ‖L(V ∗h ,Vh).

Since b is coercive over all of V it is certainly coercive over Vh, and so the last section implies
stability with stability constant γ−1. In short, if the bilinear form is coercive, then for any
choice of subspace the Galerkin method is stable with the stability constant bounded by the
inverse of the coercivity constant.

To talk about consistency, as in Chapter 2, we need to define a representative rhu of
the solution u in Vh. A natural choice, which we shall make, is that rh : V → Vh is the
orthogonal projection so that

‖u− rhu‖ = inf
v∈Vh

‖u− v‖.

The consistency error is

‖Lhrhu− Fh‖V ∗h = sup
06=v∈Vh

|(Lhrhu− Fh)(v)|
‖v‖

.

But (Lhrhu−Fh)(v) = b(rhu, v)−F (v) = b(rhu−u, v), so |(Lhrhu−Fh)(v)| ≤M‖u−rhu‖‖v‖.
Therefore the consistency error is bounded by

M inf
v∈Vh

‖u− v‖.

We therefore obtain the convergence estimate

‖rhu− uh‖ ≤Mγ−1 inf
v∈Vh

‖u− v‖.

We can then apply the triangle inequality to deduce

‖u− uh‖ ≤ (1 +Mγ−1) inf
v∈Vh

‖u− v‖.

This is the fundamental estimate for finite elements. It shows that finite elements are qua-
sioptimal, i.e., that the error in the finite element solution is no more than a constant multiple
of the error in the best possible approximation from the subspace. The constant can be taken
to be 1 plus the bound of the bilinear form times the stability constant.

Remark. We obtained stability using coercivity. From the last section we know that
we could obtain stability as well if we had instead of coercivity, a discrete inf-sup condition:
There exists γ > 0 such that for all 0 6= w ∈ Vh there exists 0 6= v ∈ Vh such that

b(w, v) ≥ γ‖w‖‖v‖.

6. FINITE ELEMENT APPROXIMATION THEORY 57

(In the finite dimensional case the dense range condition follows from the inf-sup condition

since an operator from Vh to V ∗h which is 1-to-1 is automatically onto)̇ The big difficulty
however is that the fact that b satisfies the inf-sup condition over V does not by any means
imply that it satisfies the inf-sup condition over a finite dimensional subspace Vh. In short, for
coercive problems stability is automatic, but for more general well-posed problems Galerkin
methods may or may not be stable (depending on the choice of subspace), and proving
stability can be difficult.

6. Finite element approximation theory

In this section we turn to the question of finite element approximation theory, that is of
estimating

inf
v∈Vh

‖u− v‖1

where Vh is a finite element space. For simplicity, we first consider the case where Vh =
M1

0 (Th), the Lagrange space of continuous piecewise linear functions on a given mesh Th
where Th is a simplicial decomposition of Ω with mesh size h = maxT∈Th

diamT . (Note: we
are overloading the symbol h. If we were being more careful we would consider a sequence
of meshes Ti with mesh size hi tending to zero. But the common practice of using h as both
the index and the mesh size saves writing subscripts and does not lead to confusion.)

First we need some preliminary results on Sobolev spaces: density of smooth functions,
Poincaré inequality, Sobolev embedding Hs(Ω) ⊂ C(Ω̄) if s > n/2.

Theorem 4.1 (Poincaré inequality). Let Ω be a bounded domain in Rn with Lipschitz
boundary (e.g., smooth boundary or a polygon). Then there exists a constant c, depending
only on Ω, such that

‖u‖L2(Ω) ≤ c‖ gradu‖L2(Ω), u ∈ H1(Ω) such that

∫
Ω

u = 0.

The same inequality holds for all u ∈ H̊1(Ω), or even for all u ∈ H1(Ω) which vanish on a
non-empty open subset of the boundary.

The result for u of mean value zero is sometimes called the Poincaré–Neumann inequality.
In one dimension it is called Wirtinger’s inequality. The result for u ∈ H̊1(Ω) is sometimes
called the Poincaré–Friedrichs inequality or just the Friedrichs inequality.

One proof of this result is based on Rellich’s theorem that H1(Ω) is compactly embedded
in L2(Ω). Other proofs are more explicit. Here we give a very simple proof of the Poincaré–
Neumann inequality in one dimension.

If u ∈ C1(Ī) where I is an interval of length L, and
∫
u = 0, then there exists a point

x0 ∈ I such that u(x0) = 0. Therefore

|u(x)|2 = |
∫ x

x0

u′(s) ds|2 ≤ |
∫
I

|u′(s)| ds|2 ≤ L

∫
I

|u′(s)|2 ds.

Integrating, we get ‖u‖ ≤ L‖u′‖. This can be extended to u ∈ H1 using density of C∞ in
H1.

An alternative proof uses Fourier cosine series: u(x) =
∑∞

n=1 an cosnπx/L (where the
sum starts at n = 1, since

∫
u = 0). This gives the result ‖u‖ ≤ L/π‖u′‖, in which the

58 4. FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS

constant is sharp (achieved by u(x) = cos πx/L). In fact the result can be proved with
the constant d/π, d =diameter of Ω for any convex domain in n-dimensions (Payne and
Weinberger, Arch. Rat. Mech. Anal. 5 1960, pp. 286–292). The dependence of the constant
on the domain is more complicated for non-convex domains.

Multi-index notation: In n-dimensions a multi-index α is an n-tuple (α1, . . . , αn) with
the αi non-negative integers. We write |α| = α1 + · · ·+αn for the degree of the multi-index,
α! = α1! · · ·αn!,

|α| = α1 + · · ·+ αn, α! = α1! · · ·αn!, xα = xα1
1 · · ·xαn

n , Dαu =
∂|α|u

∂xα1
1 · · · ∂xαn

n

.

Thus a general element of Pr(Rn) is p(x) =
∑
|α|≤r aαx

α, and a general constant-coefficient

linear partial differential operator of degree r is Lu =
∑
|α|≤r aαD

αu. Taylor’s theorem for a
smooth function defined in a neighborhood of a point x0 ∈ Rn is

u(x) =
∑
|α|≤m

1

α!
Dαu(x0)(x− x0)α +O(|x− x0|m+1)

We write α ≤ β ⇐⇒ αi ≤ βi, i = 1, . . . , n. We have

Dαxβ =

{
β!

(β−α)!
xβ−α, α ≤ β,

0, otherwise.

In particular Dαxα = α!.
Let Ω be a bounded domain in Rn with Lipschitz boundary (for our applications, it will

be a triangle). It is easy to see that the DOFs

u 7→
∫

Ω

Dαu, |α| ≤ r,

are unisolvent on Pr(Ω). Therefore we can define Pr : Hr(Ω)→ Pr(Ω) by∫
Ω

DαPru(x) dx =

∫
Ω

Dαu(x) dx, |α| ≤ r.

It follows immediately from this definition that DβPru = Pr−|β|D
βu for |β| ≤ r.

Remark. The rth Taylor polynomial of u at x0 is Tru given by

DαTru(x0) = Dαu(x0), |α| ≤ r.

So Pru is a sort of averaged Taylor polynomial of u.

Let u ∈ Hr+1(Ω). Then u− Pru has integral zero on Ω, so the Poincaré inequality gives

‖u− Pru‖ ≤ c1

∑
|α|=1

‖Dα(u− Pru)‖ = c1

∑
|α|=1

‖Dαu− Pr−1(Dαu)‖,

for some constant c1 depending only on Ω (where we use the L2(Ω) norm). Applying the
same reasoning to Dαu − Pr−1(Dαu), we have ‖Dαu − Pr−1(Dαu)‖ is bounded by the sum
of the norms of second partial derivatives, so

‖u− Pru‖ ≤ c2

∑
|α|=2

‖Dαu− Pr−2(Dαu)‖.

6. FINITE ELEMENT APPROXIMATION THEORY 59

Continuing in this way we get

‖u− Pru‖ ≤ cr
∑
|α|=r

‖Dαu− P0(Dαu)‖ ≤ C
∑
|α|=r+1

‖Dαu‖.

For any |β| ≤ r may also apply this result to Dβu ∈ Hr+1−|β| to get

‖Dβu− Pr−|β|Dβu‖ ≤ C
∑

|γ|≤r−|β|+1

‖DγDβu‖

so
‖Dβ(u− Pru)‖ ≤ C

∑
|α|=r+1

‖Dαu‖.

Since this holds for all |β| ≤ r, we

‖u− Pru‖Hr ≤ c|u|Hr+1 , u ∈ Hr+1(Ω).

We have thus given a constructive proof of the follow important result.

Theorem 4.2 (Bramble-Hilbert lemma). Let Ω be a Lipschitz domain and r ≥ 0. Then
there exists a constant c only depending on the domain Ω and on r such that

inf
p∈Pr

‖u− p‖Hr ≤ c|u|Hr+1 , u ∈ Hr+1(Ω).

Remark. This proof of the Bramble-Hilbert lemma, based on the Poincaré inequality,
is due to Verfürth (A note on polynomial approximation in Sobolev spaces, M2AN 33, 1999).
The method is constructive in that it exhibits a specific polynomial p satisfying the estimate
(namely Pru). Based on classical work of Payne and Weinberger on the dependence of the
Poincaré constant on the domain mentioned above, it leads to good explicit bounds on the
constant in the Bramble-Hilbert lemma. A much older constructive proof is due to Dupont
and Scott and taught in the textbook of Brenner and Scott. However that method is both
more complicated and it leads a worse bound on the contant. Many texts (e.g., Braess)
give a non-constructive proof of the Bramble-Hilbert lemma based on Rellich’s compactness
theorem.

Now we derive an important corollary of the Bramble-Hilbert lemma.

Corollary 4.3. Let Ω be a Lipschitz domain and r ≥ 0, and π : Hr+1(Ω) → Pr(Ω) be
a bounded linear projection onto Pr(Ω). Then there exists a constant c which only depends
on the domain Ω, r, and the norm of π such that

‖u− πu‖Hr ≤ c|u|Hr+1 .

Note: the hypothesis means that π is a bounded linear operator mapping Hr+1(Ω) into
Pr(Ω) such that πu = u if u ∈ Pr(Ω). Bounded means that ‖π‖L(Hr+1,Hr) < ∞. It doesn’t
matter what norm we choose on Pr, since it is a finite dimensional space.

Proof.

‖u− πu‖Hr = inf
p∈Pr

‖(u− p)− π(u− p)‖Hr

≤ (1 + ‖π‖L(Hr+1,Hr)) inf
p∈Pr

‖u− p‖Hr+1 = c(1 + ‖π‖)|u|Hr+1 .

�

60 4. FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS

Figure 4.5. Mapping between the reference triangle and an arbitrary triangle.

@
@
@

@
@

@
@@

v̂0 v̂1

v̂2 �
�
�
�
�

��
A
AA
v0

v1v2

��
��

��
�1F

XXXXXXXXXXXXXXXzf̂ R

J
J
J
J
J
J
Ĵ

f

As an example of the corollary, let Ω = T̂ be the unit triangle with vertices v̂0 = (0, 0),

v̂1 = (1, 0), and v̂2 = (0, 1), r = 1, and let π = IT̂ the linear interpolant: IT̂u ∈ P1(T̂) and

IT̂u(v̂i) = u(v̂i), i = 0, 1, 2. The IT̂u is defined for all u ∈ C(
¯̂
T) and ‖IT̂u‖L∞ ≤ ‖u‖L∞ ≤

c‖u‖H2 , where we use the Sobolev embedding theorem in the last step (and c is some absolute
constant). From the corollary we get

(4.6) ‖u− IT̂u‖H1(T̂) ≤ c|u|H2(T̂).

This result will turn out to be a key step in analyzing piecewise linear interpolation.
The next step is to scale this result from the unit triangle to an arbitrary triangle T .

Suppose the vertices of T are v0, v1, and v2. There exists a unique affine map F taking v̂i
to vi, i = 0, 1, 2. Indeed,

Fx̂ = v0 +Bx̂, B = (v1 − v0|v2 − v0),

where the last notation means that B is the 2 × 2 matrix whose columns are v1 − v0 and
v2−v0. The map F takes T̂ 1-to-1 onto T . Since the columns of B are both vectors of length
at most hT , certainly the four components bij of B are bounded by hT .

Now to any function f on T we may associate the pulled-back function f̂ on T̂ where

f̂(x̂) = f(x) with x = Fx̂.

I.e., f̂ = f ◦ F . See Figure 4.5.
Next we relate derivatives and norms of a function f with its pull-back f̂ . For the

derivative we simply use the chain rule:

∂f̂

∂x̂j
(x̂) =

2∑
i=1

∂f

∂xi
(x)

∂xi
∂x̂j

=
2∑
i=1

bij
∂f

∂xi
(x).

Similarly,

∂2f̂

∂x̂j∂x̂l
(x̂) =

2∑
i=1

2∑
k=1

bijbkl
∂2f

∂xi∂xk
(x),

etc. Thus we have ∑
|α|=r

|Dαf̂(x̂)| ≤ c‖B‖r
∑
|β|=r

|Dβf(x)|.

6. FINITE ELEMENT APPROXIMATION THEORY 61

In the same way we have ∑
|β|=r

|Dβf(x)| ≤ c‖B−1‖r
∑
|α|=r

|Dαf̂(x̂)|.

Now ‖B‖ = O(hT). We can bound ‖B−1‖ by introducing another geometric quantity, namely
the diameter ρT of the inscribed disk in T . Then any vector of length ρT is the difference
of two points in T (two opposite points on the inscribed circle), and these are mapped by

B−1 to two points in T̂ , which are at most
√

2 apart. Thus, using the Euclidean norm
‖B−1‖ ≤

√
2/ρT , i.e., ‖B−1‖ = O(ρ−1

T). We have thus shown∑
|α|=r

|Dαf̂(x̂)| ≤ chrT
∑
|β|=r

|Dβf(x)|,
∑
|β|=r

|Dβf(x)| ≤ cρ−rT
∑
|α|=r

|Dαf̂(x̂)|.

Now let us consider how norms map under pull-back. First we consider the L2 norm.
Let |T | denote the area of T . Changing variables from x̂ to x = Fx̂, we have

‖f‖2
L2(T) =

∫
T

|f(x)|2 dx = 2|T |
∫
T̂

|f̂(x̂)|2 dx̂ = 2|T |‖f̂‖2
L2(T̂)

.

That is, ‖f‖L2(T) =
√

2|T |‖f̂‖L2(T̂). Next consider the Hr seminorm:

|f |2Hr(T) =

∫
T

∑
|β|=r

|Dβf(x)|2 dx ≤ cρ−2r
T

∫
T

∑
|α|=r

|Dαf̂(x̂)|2 dx = 2c|T |ρ−2r
T

∫
T̂

∑
|α|=r

|Dαf̂(x̂)|2 dx̂,

so
|f |Hr(T) ≤ c

√
|T |ρ−rT |f̂ |Hr(T̂).

Similarly,

|f̂ |Hr(T̂) ≤ c
1√
|T |

hrT |f |Hr(T).

Now let u ∈ H2(T), and let û ∈ H2(T̂) be the corresponding function. We saw in (4.6)
that

‖û− IT̂ û‖H1(T̂) ≤ c|û|H2(T̂).

Now it is easy to see that the pull-back of ITu is IT̂ û (both are linear functions which equal

u(vi) at the vertex v̂i). Therefore û− IT̂ û = ̂u− ITu. We then have

‖u− ITu‖L2(T) ≤ c
√
|T |‖û− IT̂ û‖L2(T̂) ≤ c

√
|T ||û|H2(T̂) ≤ ch2

T |u|H2(T),

and

|u− ITu|H1(T) ≤ c
√
|T |ρ−1

T |û− IT̂ û|H1(T̂) ≤ c
√
|T |ρ−1

T |û|H2(T̂) ≤ ch2
T/ρT |u|H2(T).

If the triangle T is not too distorted, then ρT is not much smaller than hT . Let us define
σT = hT/ρT , the shape constant of T . We have proved:

Theorem 4.4. Let T be a triangle with diameter hT , and let IT be the linear interpolant
at the vertices of T . Then there exists an absolute constant c such that

‖u− ITu‖L2(T) ≤ ch2
T |u|H2(T), u ∈ H2(T).

Moreover there exists a constant c′ depending only on the shape constant for T such that

|u− ITu|H1(T) ≤ c′hT |u|H2(T), u ∈ H2(T).

62 4. FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS

Now we have analyzed linear interpolation on a single but arbitrary triangle, we can just
add over the triangles to analyze piecewise linear interpolation.

Theorem 4.5. Suppose we have a sequence of triangulations Th with mesh size h tending
to 0. For u a continuous function on Ω̄, let Ihu denote the continuous piecewise linear
interpolant of u on the mesh Th. Then there exists an absolute constant c such that

‖u− Ihu‖L2(Ω) ≤ ch2|u|H2(Ω), u ∈ H2(Ω).

If the mesh sequence is shape regular (i.e., the shape constant is uniformly bounded), then
there exists a constant c′ depending only on a bound for the shape constant such that

|u− Ihu|H1(Ω) ≤ c′h|u|H2(Ω), u ∈ H2(Ω).

In a similar fashion, for the space of Lagrange finite elements of degree r we can analyze
the interpolant defined via the degrees of freedom.

Theorem 4.6. Suppose we have a sequence of triangulations Th with mesh size h tending
to 0. Let Vh be the space of Lagrange finite elements of degree r with respect to the mesh,
and for u a continuous function on Ω̄, let Ihu denote the interpolant of u into Vh defined
through the degrees of freedom. Then there exists an absolute constant c such that

‖u− Ihu‖L2(Ω) ≤ chs|u|Hs(Ω), u ∈ Hs(Ω), 2 ≤ s ≤ r + 1.

If the mesh sequence is shape regular (i.e., the shape constant is uniformly bounded), then
there exists a constant c′ depending only on a bound for the shape constant such that

|u− Ihu|H1(Ω) ≤ c′hs−1|u|Hs(Ω), u ∈ Hs(Ω), 2 ≤ s ≤ r + 1.

Thus for smooth u (more precisely, u ∈ Hr+1), we obtain the rate of convergence O(hr+1)
in L2 and O(hr) in H1 when we approximation with Lagrange elements of degree r.

The proof of this result is just the Bramble-Hilbert lemma and scaling. Note that we
must assume s ≥ 2 so that u ∈ Hs is continuous and the interpolant is defined. On the
other hand we are limited to a rate of O(hr+1) in L2 and O(hr) in H1, since the interpolant
is exact on polynomials of degree r, but not higher degree polynomials.

7. Error estimates for finite elements

7.1. Estimate in H1. To be concrete, consider the Dirichlet problem

− div a gradu = f in Ω, u = 0 on ∂Ω,

with a coefficient a bounded above and below by positive constants of Ω and f ∈ L2. The
weak formulation is: find u ∈ V = H̊1(Ω) such that

(4.7) b(u, v) = F (v), v ∈ V,
where b(u, v) =

∫
Ω

gradu · grad v dx, F (v) =
∫

Ω
fv dx. Clearly b is bounded: |b(w, v)| ≤

M‖w‖1‖v‖1, (with M = sup a). By Poincaré’s inequality, Theorem 4.1, b is coercive:
b(v, v) ≥ γ‖v‖2

1.
Now suppose that Ω is a polygon and let Vh be the space of Lagrange finite elements of

degree r vanishing on the boundary with respect to a mesh of Ω of mesh size h, and define
uh to be the finite element solution: uh ∈ Vh,

b(uh, v) = F (v), v ∈ Vh.

7. ERROR ESTIMATES FOR FINITE ELEMENTS 63

By the fundamental estimate for finite element methods, proven in Section 5,

‖u− uh‖1 ≤ c inf
v∈Vh

‖u− v‖1,

(where c = 1 + Mγ−1). Then we may apply the finite element approximation theory sum-
marized in Theorem 4.6, and conclude that

(4.8) ‖u− uh‖1 ≤ chr‖u‖r+1

as long as the solution u belongs to Hr+1. If u is less smooth, the rate of convergence will
be decreased accordingly.

In short, one proves the error estimate in H1 by using quasi-optimality in H1 (which
comes from coercivity), and then finite element approximation theory.

7.2. Estimate in L2. Now let g ∈ L2(Ω) be a given function, and consider the compu-
tation of G(u) :=

∫
Ω
ug dx, which is a functional of the solution u of our Dirichlet problem.

We ask how accurately G(uh) approximates G(u). To answer this, we define an auxilliary
function φ ∈ V by

b(w, φ) = G(w), w ∈ V.
This is simply a weak formulation of the Dirichlet problem

− div a gradφ = g in Ω, φ = 0 on ∂Ω.

We will assume that this problem satisfies H2 regularity, i.e., the solution φ ∈ H2(Ω) and
satisfies

‖φ‖2 ≤ c‖g‖0.

This is true, for example, if Ω is either a convex Lipschitz domain or a smooth domain and
a is a smooth coefficient.

Remark. Note that we write b(w, φ) with the trial function φ second and the test
function w first, the opposite as for the original problem (4.7). Since the bilinear form
we are considering is symmetric, this is not a true distinction. But if we started with an
nonsymmetric bilinear form, we would still define the auxilliary function φ in this way. In
short φ satisfies a boundary value problem for the adjoint differential equation.

Now consider the error in G(u):

G(u)−G(uh) =

∫
Ω

(u− uh)g dx = b(u− uh, φ) = b(u− uh, φ− v)

for any v ∈ Vh, where the second equality comes from the definition of the auxilliary function
φ and the third from Galerkin orthogonality (4.3). Therefore

|G(u)−G(uh)| ≤M‖u− uh‖1 inf
v∈Vh

‖φ− v‖1.

Now finite element approximation theory and 2-regularity tell us

inf
v∈Vh

‖φ− v‖1 ≤ ch‖φ‖2 ≤ ch‖g‖0.

Thus
|G(u)−G(uh)| ≤ ch‖u− uh‖1‖g‖0 ≤ chr+1‖u‖r+1‖g‖0.

In short, if g ∈ L2(Ω), the error in G(u) =
∫

Ω
ug dx is O(hr+1), one power of h higher than

the H1 error.

64 4. FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS

A very important special case is when g = u− uh. Then G(u)−G(uh) = ‖u− uh‖2
0, so

we have

‖u− uh‖2
0 ≤ ch‖u− uh‖1‖u− uh‖0,

or

‖u− uh‖0 ≤ ch‖u− uh‖1 ≤ chr+1‖u‖r+1.

That is, the L2 error in the finite element method is one power of h higher than the H1 error.

Remark. The idea of introducing an auxilliary function φ, so we can express G(u− uh)
or ‖u − uh‖2

0 as b(u − uh, φ) and estimate it using Galerkin orthogonality is the Aubin–
Nitsche duality method. If we use it to estimate G(u−uh) where g is smoother than L2 and
we have higher order elliptic regularity, we can get even higher order estimates, so called
negative-norm estimates.

8. A posteriori error estimates and adaptivity

The error estimate (4.8) is a typical a priori error estimate for the finite element method.
It indicates that, as long as we know a priori that the unknown solution of our problem
belongs to Hr+1, then the error ‖u − uh‖1 will converge to zero as O(hr). By contrast an
a posteriori error estimate attempts to bound the error in terms of uh, allowing the error
in the finite element solution to be approximated once the finite element solution itself has
been calculated. One important use of a posteriori error estimates is in estimating how
accurate the computed solution is. Another relates to the fact that the some a posteriori
error estimates give a way of attributing the error to the different elements of the mesh.
Therefore they suggest how the mesh might be refined to most effectively decrease the error
(basically by subdividing the elements which are contributing a lot to the error). This is the
basic idea of adaptivity, which we shall discuss below.

8.1. The Clément interpolant. First we need a new tool from finite element approx-
imation theory. Suppose we are given a polygonal domain Ω and a mesh of mesh size h. Let
Vh be the usual Lagrange finite element space of degree r. Given a continuous function u
on Ω̄, we may define the interpolant Ihu of u into Vh through the usual degrees of freedom.
Then we have the error estimate

‖u− Ihu‖t ≤ chs−t‖u‖s, u ∈ Hs(Ω),

valid for integers 0 ≤ t ≤ 1, 2 ≤ s ≤ r + 1. See Theorem 4.6 (the constant c here depends
only on r and the shape regularity of the mesh). We proved this result element-by-element,
using the Bramble-Hilbert lemma and scaling. Of course this result implies that

inf
v∈Vh

‖u− v‖t ≤ chs−t‖u‖s, u ∈ Hs(Ω),

for the same ranges of t and s. The restriction t ≤ 1 is needed, since otherwise the functions
in Vh, being continuous but not generally C1, do not belong to H t(Ω). Here we are concerned
with weakening the restriction s ≥ 2, so we can say something about the approximation by
piecewise polynomials of a function u that does not belong to H2(Ω). We might hope for
example that

inf
v∈Vh

‖u− v‖0 ≤ ch‖u‖1, u ∈ H1(Ω).

8. A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY 65

In fact, this estimate is true, and is important to the development of a posteriori error
estimates and adaptivity. However it can not be proven using the usual interpolant Ihu,
because Ihu is not defined unless the function u has well-defined point values at the node
points of the mesh, and this is not true for a general function u ∈ H1. (In 2- and 3-dimensions
the Sobolev embedding theorem implies the existence of point values for function in H2, but
not in H1.)

The way around this is through a different operator than Ih, called the Clément inter-
polant, or quasi-interpolant. For each polynomial degree r ≥ 1 and each mesh, the Clément
interpolant Πh : L2(Ω)→ Vh is a bounded linear operator. Its approximation properties are
summarized in the following theorem.

Theorem 4.7 (Clément interpolant). Let Ω be a domain in Rn furnished with a sim-
plicial triangulation with shape constant γ and maximum element diameter h, let r be a
positive integer, and let Vh denote the Lagrange finite element space of continuous piecewise
polynomials of degree r. Then there exists a bounded linear operator Πh : L2(Ω)→ Vh and a
constant c depending only on γ and r such that

‖u− Πhu‖t ≤ chs−t‖u‖s, u ∈ Hs(Ω),

for all 0 ≤ t ≤ s ≤ r + 1, t ≤ 1.

Now we define the Clément interpolant. Let µi : C(Ω̄) → R, i = 1, . . . , N , be the usual
DOFs for Vh and φi the corresponding basis functions. Thus the usual interpolant is

Ihu =
∑
i

µi(u)φi, u ∈ C(Ω̄).

To define the Clément interpolant we let Si denote the support of φi, i.e., the union of
triangles where φi is not identically zero (if µi is a vertex degree of freedom this is the union
of the elements with that vertex, if an edge degree of freedom, the union of the triangles
with that edge, etc.). Denote by Pi : L2(Si)→ Pr(Si) the L2-projection. Then we set

Πhu =
∑
i

µi(Piu)φi, u ∈ L2(Ω).

The usual interpolant Ihu is completely local in the sense that if u vanishes on a particular
triangle T , then Ihu also vanishes on T . The Clément interpolation operator is not quite
so local, but is nearly local in the following sense. If u vanishes on the set T̃ , defined to be
the union of the triangles that share at least one vertex with T (see Figure 4.6), then Πhu
vanishes on T . In fact, for any 0 ≤ t ≤ s ≤ r + 1,

(4.9) ‖u− Πhu‖Ht(T) ≤ chs−tT ‖u‖Hs(T̃), u ∈ Hs(T̃),

where the constant depends only on the shape regularity of the mesh and r. From (4.9),
using the shape regularity, the estimate of Theorem 3.7 easily follows.

To avoid too much technicality, we shall prove (4.9) in the case of linear elements, r = 1.
Thus we are interested in the case t = 0 or 1 and t ≤ s ≤ 2. Let T be a particular triangle
and let zi, µi, φi, Si denote its vertices and corresponding DOFs, basis functions, and their
supports, for i = 1, 2, 3. Note that it is easy to see that

(4.10) ‖φi‖L2(T) ≤ |T |1/2 ≤ chT , ‖ gradφi‖L2(T) ≤ ch−1
T |T |

1/2 ≤ c,

66 4. FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS

Figure 4.6. Shown in brown Sz for a vertex z and in blue T̃ for a triangle T .

where the constants may depend on the shape constant for T . Next, using the Bramble–
Hilbert lemma and scaling on Si, we have for 0 ≤ t ≤ s ≤ 2,

(4.11) ‖u− Piu‖Ht(Si) ≤ chs−tT ‖u‖Hs(Si).

In performing the scaling, we map the whole set Si to the corresponding set Ŝi using the
affine map F which takes one of the triangles T in Si to the unit triangle T̂ . The Bramble–
Hilbert lemma is applied on the scaled domain Ŝi. Although there is not just a single domain
Si—it depends on the number of triangles meeting at the vertex zi and their shapes—the
constant which arises when applying the Bramble–Hilbert lemma on the scaled domain can
bounded on the scaled domain in terms only of the shape constant for the triangulation (this
can be established using compactness).

We also need one other bound. Let i and j denote the indices of two different vertices
of T . For u ∈ L2(T̃), both Piu and Pju are defined on T . If û denotes the corresponding

function on the scaled domain ˆ̃T , then we have

‖Piu− Pju‖L∞(T) = ‖P̂iû− P̂jû‖L∞(T̂) ≤ c‖P̂iû− P̂jû‖L2(T̂)

≤ c(‖P̂iû− û‖L2(T̂) + ‖P̂jû− û‖L2(T̂))

≤ c(‖P̂iû− û‖L2(Ŝi)
+ ‖P̂jû− û‖L2(Ŝj))

where the first inequality comes from equivalence of norms on the finite dimensional space
P1(T̂) and the second from the triangle inequality. Both of the terms on the right-hand side
can be bounded using the Bramble-Hilbert lemma and scaled back to Si, just as for (4.11).
In this way we obtain the estimate

(4.12) ‖Piu− Pju‖L∞(T) ≤ chsT |T |−1/2‖u‖Hs(T̃).

Therefore also

(4.13) |µi(Piu− Pju)| ≤ chsT |T |−1/2‖u‖Hs(T̃).

Now on the triangle T with vertices numbered z1, z2, z3 for simplicity,

Πhu =
3∑
i=1

µi(Piu)φi.

8. A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY 67

Since P1u is a linear polynomial on T ,

u− Πhu = (u− P1u)−
3∑
i=2

µi(Piu− P1u)φi.

The first term on the right hand side is bounded using (4.11):

‖u− P1u‖Ht(T) ≤ chs−tT ‖u‖Hs(T̃).

For the second term we have

‖µi(Piu− P1u)φi‖Ht(T) ≤ ‖Piu− P1u‖L∞(T)‖φi‖Ht(T),

which satisfies the desired bound by (4.10) and (4.13).
For the next section an important special case of (4.9) is

(4.14) ‖u− Πhu‖L2(T) ≤ chT‖u‖H1(T̃).

Another case is H1 boundedness:

(4.15) ‖u− Πhu‖H1(T) ≤ c‖u‖H1(T̃).

We draw one more conclusion, which we will need below. Let T̂ denote the unit triangle,
and ê one edge of it. The trace theorem then tells us that

‖û‖2
L2(ê) ≤ c(‖û‖2

L2(T̂)
+ ‖ grad û‖2

L2(T̂)
), û ∈ H1(T̂).

If we use linear scaling to an arbitrary triangle, we get

‖u‖2
L2(e) ≤ c(h−1

T ‖u‖
2
L2(T) + hT‖ gradu‖2

L2(T)), u ∈ H1(T),

where the constant depends only on the shape constant of T . If we now apply this with u
replaced by u−Πhu and use (4.14) and (4.15), we get this bound for the Clément interpolant:

(4.16) ‖u− Πhu‖L2(e) ≤ ch1/2
e ‖u‖H1(T̃),

where he is the length of the edge e, T is a triangle containing e, and c depends only on the
shape constant for the mesh.

8.2. The residual and the error. Consider our usual model problem

− div a gradu = f in Ω, u = 0 on ∂Ω,

with a continuous positive coefficient a on Ω̄ and f ∈ L2. The weak formulation is to find
u ∈ V satisfying

b(u, v) = F (v), v ∈ V,
where V = H̊1(Ω) and

b(w, v) =

∫
a gradw · grad v dx, F (v) =

∫
fv dx, w, v ∈ V.

The bilinear form is bounded and coercive on H̊1:

|b(w, v)| ≤M‖w‖1‖v‖1, b(v, v) ≥ γ‖v‖2
1, w, v ∈ V.

Now let U ∈ V be any function (we will be interested in the case where U = uh, a finite
element approximation of u). The residual in U is the linear functional R(U) ∈ V ∗ given by

R(U)w = F (w)− b(U,w), w ∈ V.

68 4. FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS

Clearly R(U)w = b(u−U,w). It follows immediately that |R(U)w| ≤M‖u−U‖1‖w‖1 for all
w ∈ V , or, equivalently, that ‖R(U)‖V ∗ ≤M‖u−U‖1. On the other hand, taking w = u−U
and using the coercivity, we get γ‖u− U‖2

1 ≤ R(U)(u− U) ≤ ‖R(U)‖V ∗‖u− U‖1. Thus

M−1‖R(U)‖V ∗ ≤ ‖u− U‖1 ≤ γ−1‖R(U)‖V ∗ .

In short, the V ∗ norm of the residual R(U) is equivalent to the H1 norm of the error u−U .

8.3. Estimating the residual. Now let Vh be the Lagrange finite element subspace
of V corresponding to some mesh Th and some polynomial degree r, and let uh be the
corresponding finite element solution. We have just seen that we may estimate the error
‖u− uh‖1 be estimating the V ∗ error in the residual

R(uh)w = F (w)− b(uh, w), w ∈ V.

This quantity does not involve the unknown solution u, so we may hope to compute it a
posteriori, i.e., after we have computed uh.

Next we use integration by parts on each element T of the mesh to rewrite R(uh)w:

R(uh)w =
∑
T∈Th

∫
T

(fw − a graduh · gradw) dx

=
∑
T

∫
T

(f + div a graduh)w dx−
∑
T

∫
∂T

a
∂uh
∂nT

w ds.

Consider the final sum. We can split each integral over ∂T into the sum of the integrals of
the three edges of T . Each edge e which is not contained in the boundary comes in twice.
For such an edge, let T− and T+ be the two triangles which contain e and set

Re(uh) = −a
(
∂uh|T−
∂nT−

+
∂uh|T+

∂nT+

)
∈ L2(e)

on e. Since nT− = −nT+ the term in parenthesis is the jump in the normal derivative of uh
across the edge e. Also, for T ∈ Th, we set RT (uh) = f + div a graduh ∈ L2(T). Then

(4.17) R(uh)w =
∑
T

∫
T

RT (uh)w dx+
∑
e∈E0

∫
e

Re(uh)w ds.

Next we use Galerkin orthogonality : since uh is the finite element solution, we have

b(u− uh, v) = 0, v ∈ Vh.

In terms of the residual this says that

R(uh)w = R(uh)(w − v), v ∈ Vh.

In particular, we may choose v = Πhw, the Clément interpolant in this equation. Combining
with (4.17) (with w replaced by w − Πhw) we get
(4.18)

R(uh)w = R(uh)(w − Πhw) =
∑
T

∫
T

RT (uh)(w − Πhw) dx+
∑
e∈E0

∫
e

Re(uh)(w − Πhw) ds.

8. A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY 69

Now we bound the terms on the right hand side of (4.18) for w ∈ H̊1. First we use (4.14)
to get∫

T

RT (uh)(w − Πhw) dx ≤ ‖RT (uh)‖L2(T)‖w − Πhw‖L2(T) ≤ chT‖RT (uh)‖L2(T)‖w‖H1(T̃).

Therefore

|
∑
T

∫
T

RT (uh)(w − Πhw) dx| ≤

(∑
T

h2
T‖RT (uh)‖2

L2(T)

)1/2(∑
T

‖w‖2
H1(T̃)

)1/2

.

Using shape regularity,
∑

T ‖w‖2
L2(T̃)

≤ c‖w‖2
H1(Ω), and so we have

(4.19) |
∑
T

∫
T

RT (uh)(w − Πhw) dx| ≤ c

(∑
T

h2
T‖RT (uh)‖2

L2(T)

)1/2

‖w‖1.

In a similar way, but using (4.16), we get

(4.20) |
∑
e∈E0

∫
e

Re(uh)(w − Πhw) ds| ≤ c

(∑
e

he‖Re(uh)‖2
L2(e)

)1/2

‖w‖1.

Combining (4.18), (4.19), and (4.20), we get

|R(uh)w| ≤ c

(∑
T

h2
T‖RT (uh)‖2

L2(T) +
∑
e

he‖Re(uh)‖2
L2(e)

)1/2

‖w‖1,

or

‖R(uh)‖V ∗ ≤ c

(∑
T

h2
T‖RT (uh)‖2

L2(T) +
∑
e

he‖Re(uh)‖2
L2(e)

)1/2

.

In view of the equivalence of the V ∗ norm of the residual and the H1 norm of the error, this
gives us the a posteriori error estimate

(4.21) ‖u− uh‖1 ≤ c

(∑
T

h2
T‖RT (uh)‖2

L2(T) +
∑
e

he‖Re(uh)‖2
L2(e)

)1/2

,

which is a key result.

8.4. A posteriori error indicators. The a posteriori error estimate (4.21) contains
terms associated to each triangle and to each interior edge. We are going to base our
adaptive strategy on refining those triangles for which the corresponding quantity for either
the triangle itself or for one of its edges is large. Therefore we associate to each triangle an
error indicator consisting of the sum of these terms:

η2
T := h2

T‖RT (uh)‖2
L2(T) +

1

2

∑
e⊂∂T

he‖Re(uh)‖2
L2(e)

70 4. FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS

The factor of 1/2 is usually used, to account for the fact that each edge belongs to two
triangles. In terms of the error indicators, we can rewrite the a posteriori estimate as

‖u− uh‖1 ≤ c

(∑
T

η2
T

)1/2

.

Our basic adaptive strategy then proceed via the following SOLVE-ESTIMATE-MARK-
REFINE loop:

• SOLVE: Given a mesh, compute uh
• ESTIMATE: For each triangle T compute ηT . If (

∑
T η

2
T)1/2 ≤ tol, quit.

• MARK: Mark those elements T for which ηT is too large for refinement.
• REFINE: Create a new mesh with the marked elements refined.

We have already seen how to carry out the SOLVE and ESTIMATE steps. There are a
number of possible strategies for choosing which elements to mark. One of the simplest is
maximal marking. We pick a number ρ between 0 and 1, compute ηmax = maxT ηT , and refine
those elements T for ηT ≥ ρηmax. Another approach, which is usually preferred is Dörfler
marking, in which a collection of elements S is marked so that

∑
T∈S η

2
T ≥ ρ2

∑
T∈Th

η2
T , i.e.,

we mark enough elements that they account for a given portion ρ of the total error. The
program on the next page shows one way to implement this.

Once we have marked the elements, there is the question of how to carry out the refine-
ment to be sure that all the marked elements are refined and there is not too much additional
refinement. In 2-dimensions this is quite easy. Most schemes are based either on dividing
each triangle in two, or dividing the marked triangles into 4 congruent triangles. Generally,
after refining the marked elements, additional elements have to be refined to avoid hanging
nodes in which a vertex of an element fall in the interior of the edge of a neighboring ele-
ment. In 3-dimensions things are more complicated, but good refinement schemes (which
retain shape regularity and avoid hanging nodes) are known.

8.5. Examples of adaptive finite element computations. On the next page we
present a bare-bones adaptive Poisson solver written in FEniCS, displayed on the next page.
This code uses Lagrange piecewise linear finite elements to solve the Dirichlet problem

−∆u = 1 in Ω, u = 0 on ∂Ω,

with Ω an L-shaped domain and f ≡ 1, with the error indicators and marking strategy
described above. The solution behaves like r2/3 sin(2θ/3) in a neighborhood of the reentrant
corner, and so is not in H2. The results can be seen in Figure 4.7. The final mesh has 6,410
elements, all right isoceles triangles, with hypotenuse length h ranging from 0.044 to 0.002.
If we used a uniform mesh with the smallest element size, this would require over 3 million
elements. Figure 4.8 displays an adaptive mesh in 3D.

8. A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY 71

"""

Adaptive Poisson solver using a residual-based energy-norm error

estimator

eta_h**2 = sum_T eta_T**2

with

eta_T**2 = h_T**2 ||R_T||_T**2 + c h_T ||R_dT||_dT**2

where

R_T = f + div grad u_h

R_dT = 2 avg(grad u_h * n) (2*avg is jump, since n switches sign across edges)

and a Dorfler marking strategy

Adapted by Douglas Arnold from code of Marie Rognes

"""

from dolfin import *

from sys import stdin

from numpy import zeros

Stop when sum of eta_T**2 < tolerance or max_iterations is reached

tolerance = 0.04

max_iterations = 20

Create initial mesh

mesh = Mesh("l-shape-mesh.xml")

mesh.order()

figure(0) # reuse plotting window

Define boundary and boundary value for Dirichlet conditions

u0 = Constant(0.0)

def boundary(x, on_boundary):

return on_boundary

SOLVE - ESTIMATE - MARK - REFINE loop

for i in range(max_iterations):

*** SOLVE step

Define variational problem and boundary condition

Solve variational problem on current mesh

V = FunctionSpace(mesh, "CG", 1)

u = TrialFunction(V)

v = TestFunction(V)

f = Constant(1.0)

a = inner(grad(u), grad(v))*dx

L = f*v*dx

u_h = Function(V)

solve(a==L, u_h, DirichletBC(V, u0, boundary))

— continued on next page —

72 4. FINITE ELEMENT METHODS FOR ELLIPTIC EQUATIONS

*** ESTIMATE step

Define cell and edge residuals

R_T = f + div(grad(u_h))

get the normal to the cells

n = V.cell().n

R_dT = 2*avg(dot(grad(u_h), n))

Will use space of constants to localize indicator form

Constants = FunctionSpace(mesh, "DG", 0)

w = TestFunction(Constants)

h = CellSize(mesh)

Assemble squared error indicators, eta_T^2, and store into a numpy array

eta2 = assemble(h**2*R_T**2*w*dx + 4.*avg(h)*R_dT**2*avg(w)*dS) # dS is integral over interior edges only

eta2 = eta2.array()

compute maximum and sum (which is the estimate for squared H1 norm of error)

eta2_max = max(eta2)

sum_eta2 = sum(eta2)

stop error estimate is less than tolerance

if sum_eta2 < tolerance:

print "Mesh %g: %d triangles, %d vertices, hmax = %g, hmin = %g, errest = %g" \

% (i, mesh.num_cells(), mesh.num_vertices(), mesh.hmax(), mesh.hmin(), sqrt(sum_eta2))

print "\nTolerance achieved. Exiting."

break

*** MARK step

Mark cells for refinement for which eta > frac eta_max for frac = .95, .90, ...;

choose frac so that marked elements account for a given part of total error

frac = .95

delfrac = .05

part = .5

marked = zeros(eta2.size, dtype=’bool’) # marked starts as False for all elements

sum_marked_eta2 = 0. # sum over marked elements of squared error indicators

while sum_marked_eta2 < part*sum_eta2:

new_marked = (~marked) & (eta2 > frac*eta2_max)

sum_marked_eta2 += sum(eta2[new_marked])

marked += new_marked

frac -= delfrac

convert marked array to a MeshFunction

cells_marked = MeshFunction("bool", mesh, mesh.topology().dim())

cells_marked.array()[:] = marked

*** REFINE step

mesh = refine(mesh, cells_marked)

plot(mesh, title="Mesh q" + str(i))

print "Mesh %g: %d triangles, %d vertices, hmax = %g, hmin = %g, errest = %g" \

% (i, mesh.num_cells(), mesh.num_vertices(), mesh.hmax(), mesh.hmin(), sqrt(sum_eta2))

stdin.readline()

plot(mesh)

interactive()

8. A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY 73

Figure 4.7. Adaptive solution of Poisson’s equation by the FEniCS program
on the preceding page. Shown are the input mesh, the computed adaptive
mesh, and a blow-up of that mesh near the re-entrant corner, as well as the
final solution.

Figure 4.8. An adaptive mesh in 3-dimensions produced by Michael Holst
using his MC code. (The colors relate to partitioning among processors for
parallel computation.)

CHAPTER 5

Time-dependent problems

So far we have considered the numerical solution of elliptic PDEs. In this chapter we will
consider some parabolic and hyperbolic PDEs.

1. Finite difference methods for the heat equation

In this section we consider the Dirichlet problem for the heat equation: find u : Ω̄ ×
[0, T]→ R such that

∂u

∂t
(x, t)−∆u(x, t) = f(x, t), x ∈ Ω, 0 ≤ t ≤ T,(5.1)

u(x, t) = 0, x ∈ ∂Ω, 0 ≤ t ≤ T.(5.2)

Since this is a time-dependent problem, we also need an initial condition:

u(x, 0) = u0(x), x ∈ Ω.

For simplicity, we will assume Ω = (0, 1)× (0, 1) is the unit square in R2 (or the unit interval
in R). Let us consider first discretization in space only, which we have already studied.
Following the notations we used in Chapter 2, we use a mesh with spacing h = 1/N , and let
Ωh be the set of interior mesh points, Γh the set of boundary mesh points, and Ω̄h = Ωh∪Γh.
The semidiscrete finite difference method is: find uh : Ω̄h × [0, T]→ R such at

∂uh
∂t

(x, t)−∆huh(x, t) = f(x, t), x ∈ Ωh, 0 ≤ t ≤ T,

uh(x, t) = 0, x ∈ ∂Ωh, 0 ≤ t ≤ T.

uh(x, 0) = u0(x), x ∈ Ωh.

If we let Umn(t) = uh((mh, nh), t), then we may write the first equation as

U ′mn(t)− Um+1,n(t) + Um−1,n(t) + Um,n+1(t) + Um,n−1(t)− 4Umn(t)

h2
= fmn(t),

0 < m,n < N, 0 ≤ t ≤ T.

Thus we have a system of (n−1)2 ordinary differential equations, with given initial conditions.
One could feed this system of ODEs to an ODE solver. But we shall consider simple ODE

solution schemes, which are, after all, themselves finite difference schemes, and analyze them
directly. We shall focus on three simple schemes, although there are much more sophisticated
possibilities.

For a system of ODEs, find u : [0, T]→ Rm such that

u′(t) = f(t, u(t)), 0 ≤ t ≤ T, u(0) = u0,

75

76 5. TIME-DEPENDENT PROBLEMS

(where f : [0, T]×Rm → Rm, u0 ∈ Rm) the simplest discretization is Euler’s method. For a
given timestep k > 0, let tj = jk, j = 0, 1, . . ., and define uj = uh(tj) ∈ Rm for j = 0, 1, . . .
by uh(0) = u(0), and

uj+1 − uj
k

= f(tj, uj), j = 0, 1,

Explicitly,
uj+1 = uj + kf(tj, uj), j = 0, 1,

An alternative method is the backward Euler method or implicit Euler method

uj+1 − uj
k

= f(tj+1, uj+1), j = 0, 1,

This method involves solving the algebraic system

uj+1 − kf(tj+1, uj+1) = uj, j = 0, 1,

This is a linear or nonlinear algebraic system according to whether f is linear or nonlinear
in u, i.e., according to whether the original ODE system is linear or nonlinear.

1.1. Forward differences in time. Now consider the application of Euler’s method
to the semidiscretized heat equation. We take the timestep k = T/M for some integer M ,
so that the discrete time values are 0, k, 2k, . . . , T = Mk. Writing U j

mn for uh((mh, nh), jk)
we get the explicit method

(5.3)
U j+1
mn − U j

mn

k
− (∆hU)jmn = f jmn,

i.e.,
U j+1
mn = U j

mn + k[(∆hU)jmn + f jmn], 0 < m,n < N, j = 0, 1

This is called the forward-centered difference method for the heat equation, because it uses
forward differences in time and centered differences in space.

We shall analyze the forward-centered scheme (5.3) as usual, by establishing consistency
and stability. Let ujmn = u((mh, nh), tj) denote the restriction of the exact solution, the
consistency error is just

Ej
mn : =

uj+1
mn − ujmn

k
− (∆hu)jmn − f jmn(5.4)

=

[
uj+1
mn − ujmn

k
− (∆hu)jmn

]
−
[(

∂u

∂t
−∆u

)
((mh, nh), jk)

]
.(5.5)

In Chapter 2 we used Taylor’s expansion to get∣∣(∆hu)jmn −∆u((mh, nh), jk)
∣∣ ≤ c1h

2,

where
c1 = (‖∂4u/∂x4‖L∞(Ω̄×[0,T]) + ‖∂4u/∂y4‖L∞(Ω̄×[0,T]))/12.

Even easier is ∣∣∣∣uj+1
mn − ujmn

k
− ∂u

∂t
((mh, nh), jk)

∣∣∣∣ ≤ c2k,

where c2 = ‖∂2u/∂t2u‖L∞/2. Thus

|Ej
mn| ≤ c(k + h2),

1. FINITE DIFFERENCE METHODS FOR THE HEAT EQUATION 77

with c = max(c1, c2).
Next we establish a stability result. Suppose that a mesh function U j

mn satisfies (5.3).
We want to bound an appropriate norm of the mesh function in terms of an appropriate
norm of the function f jmn on the right hand side. For the norm, we use the max norm:

‖U‖L∞ = max
0≤j≤M

max
0≤m,n≤N

|U j
mn|.

Write Kj = max0≤m,n≤N |U j
mn|, and F j = max0≤m,n≤N |f jmn|. From (5.3), we have

U j+1
mn = (1− 4k

h2
)U j

mn +
k

h2
(U j

m−1,n + U j
m+1,n + U j

m,n−1 + U j
m,n+1) + kf jmn.

Now we make the assumption that 4k/h2 ≤ 1. Then the 5 coefficients of U on the right
hand side are all nonnegative numbers which add to 1, so it easily follows that

Kj+1 ≤ Kj + kF j.

Therefore K1 ≤ K0 + kF 0, K2 ≤ K0 + k(F 0 + F 1), etc. Thus max0≤j≤M Kj ≤ K0 +
T max0≤j<M F j, where we have used that kM = T . Thus, if U satisfies (5.3), then

(5.6) ‖U‖L∞ ≤ ‖U0‖L∞(Ωh) + T‖f‖L∞ ,

which is a stability result. We have thus shown stability under the condition that k ≤ h2/4.
We say that the forward-centered difference method for the heat equation is conditionally
stable.

Now we apply this stability result to the error ejmn = ujmn − U j
mn, which satisfies

ej+1
mn − ejmn

k
− (∆he)

j
mn = Ej

mn,

with E the consistency error (so ‖E‖L∞ ≤ c(k + h2)). Note that E0
mn = 0, so the stability

result gives

‖e‖L∞ ≤ T‖E‖L∞ .

Using our estimate for the consistency error, we have proven the following theorem.

Theorem 5.1. Let u solve the heat equation (5.1), and let U j
mn be determined by the

forward-centered finite difference method with mesh size h = 1/N and timestep k = T/M .
Suppose that k ≤ h2/4. Then

max
0≤j≤M

max
0≤m,n≤N

|u((mh, nh), jk)− U j
mn| ≤ C(k + h2),

where C = cT with c as above.

In short, ‖u− uh‖L∞ = O(k + h2).
The requirement that 4k/h2 ≤ 1 is not needed for consistency. But it is required to prove

stability, and a simple example shows that it is necessary for convergence. See Figure 5.1.
An even simpler example would be the 1D case, for which we obtain stability under the
condition k ≤ h2/2.

78 5. TIME-DEPENDENT PROBLEMS

Figure 5.1. Centered differences in space and forward differences in time
for the Dirichlet problem for the heat equation on the unit square. The mesh
size is h = 1/20, and the timestep is k = 1/800 on the left and k = 1/1600 on
the right. On the left we show the result after 18 time steps, i.e., t = 18/800 =
.0225. On the right we show the result after 36 time steps (the same time).
The computation on the right remains stable for long times.

1.2. Backward differences in time. Next we consider of backward differences in time,
i.e., the backward Euler method to solve the semidiscrete system. Then (5.3) becomes

(5.7)
U j+1
mn − U j

mn

k
− (∆hU)j+1

mn = f j+1
mn .

This is now an implicit method. Instead of writing down uj+1
h explicitly in terms of ujh, we

need to solve for the vector of its values, U j+1
mn , from a system of linear equations:

U j+1
mn − k∆hU

j+1
mn = U j

mn + kf j+1
mn , 0 < m,n < N,

or, written out,

(5.8) (1 + 4µ)U j+1
mn − µ(U j+1

m+1,n + U j+1
m−1,n + U j+1

m,n+1 + U j+1
m,n−1) = U j

mn + kf j+1
mn ,

with µ = k/h2. This is a sparse system of (N − 1)2 equations in (N − 1)2 unknowns with
the same sparsity pattern as ∆h. Since −∆h is symmetric and positive definite, this system,
whose matrix is I − k∆h, is as well.

Remark. The computational difference between explicit and implicit methods was very
significant before the advent of fast solvers, like multigrid. Since such solvers reduce the
computational work to the order of the number of unknowns, they are not so much slower
than explicit methods.

Now suppose that (5.8) holds. Let Kj again denote the maximum of |U j
mn|. Then there

exists m,n such that Kj+1 = sU j+1
mn where s = ±1. Therefore sU j+1

mn ≥ sU j+1
m+1,n and similarly

for each of the other three neighbors. For this particular m, n, we multiply (5.8) by s and
obtain

Kj+1 = sU j+1
mn ≤ sU j

mn + skf j+1
mn ≤ Kj + k‖f j+1‖L∞ .

From this we get the stability result (5.6) as before, but now the stability is unconditional:
it holds for any h, k > 0. We immediately obtain the analogue of the convergence theorem
Theorem 5.1 for the backward-centered method.

1. FINITE DIFFERENCE METHODS FOR THE HEAT EQUATION 79

Theorem 5.2. Let u solve the heat equation (5.1), and let U j
mn be determined by the

backward-centered finite difference method with mesh size h = 1/N and timestep k = T/M .
Then

max
0≤j≤M

max
0≤m,n≤N

|u((mh, nh), jk)− U j
mn| ≤ C(k + h2),

where C = cT with c as above.

1.3. Fourier analysis. As we did for the Poisson problem, we can use Fourier analysis
to analyze difference schemes for the heat equation. Recall that for a mesh function v on Ωh

we defined the norm

‖u‖2
h = h2

N−1∑
m=1

N−1∑
n=1

|u(mh, nh)|2,

and the corresponding inner product. We then showed that −∆h had an orthogonal basis
of eigenfunctions φmn with corresponding eigenvalues satisfying

2π2 ≈ λ1,1 ≤ λmn ≤ λN−1,N−1 < 8/h2.

Consider now the forward-centered difference equations for the heat equation ∂u/∂t = ∆u,
with homogeneous Dirichlet boundary data, and given initial data u0 (for simplicity we
assume f ≡ 0). We have

U j+1
mn = GU j

mn,

where the G = I + k∆h. By iteration, we have

‖U j‖ ≤ ‖G‖j‖U0‖.

Thus we have L2 stability if and only if the spectral radius of G is bounded by 1. Now the
eigenvalues 1− kλmn, so they satisfy 1− 8k/h2 < µ < 1, so the spectral radius condition is
satisfies if 1− 8k/h2 ≥ −1, i.e., k ≤ h2/4. In this way, Fourier analysis leads us to the same
conditional stability condition we obtained above.

If we consider instead the backward-centered difference scheme, then the corresponding
operator G is G = (I + k∆h)

−1 with eigenvalues (1 + kλmn)−1, which has spectral radius
bounded by 1 for any k > 0. Thus we obtain unconditional stability.

1.4. Crank–Nicolson. Although we are free to choose the timestep and space type
as we like for the backward-centered method, accuracy considerations still indicate that we
should take k = O(h2), so very small timesteps. It is natural to seek a method which is second
order in time as well as space. If we use the trapezoidal method for time discretization, the
resulting fully discrete scheme is called the Crank–Nicolson method. It is an implicit method
given by

U j+1
mn − U j

mn

k
− 1

2
[(∆hU)j+1

mn + (∆hU)jmn] =
1

2
[f jmn + f j+1

mn].

We leave it as an exercise to show that the Crank–Nicolson scheme is unconditionally stable
scheme with respect to the L2 norm, with error O(h2 + k2).

80 5. TIME-DEPENDENT PROBLEMS

2. Finite element methods for the heat equation

In this section we consider the initial boundary value problem for the heat equation

∂u

∂t
(x, t)− div a(x) gradu(x, t) = f(x, t), x ∈ Ω, 0 ≤ t ≤ T,

u(x, t) = 0, x ∈ ∂Ω, 0 ≤ t ≤ T,

u(x, 0) = u0(x), x ∈ Ω.

We have allowed the thermal conductivity a to be variable, assuming only that it is bounded
above and below by positive constants, since this will cause no additional complications. We
could easily generalize further, allowing a variable specific heat (coefficient of ∂u/∂t), lower
order terms, and different boundary conditions.

Now we consider finite elements for spatial discretization. To derive a weak formulation,
we multiply the heat equation (5.1) by a test function v(x) ∈ H̊1(Ω) and integrate over Ω.
This gives∫

Ω

∂u

∂t
(x, t)v(x) dx+

∫
Ω

a(x) gradu(x, t) · grad v(x) dx =

∫
Ω

f(x, t)v(x) dx, 0 ≤ t ≤ T.

Writing 〈 · , · 〉 for the L2(Ω) inner product and b(w, v) =
∫

Ω
a gradw · grad v dx, we may

write the weak formulation as

〈∂u
∂t
, v〉+ b(u, v) = 〈f, v〉, v ∈ H̊1(Ω), 0 ≤ t ≤ T.

For the finite element method it is often useful to think of u(x, t) as a function of t taking

values in functions of x. Specifically, we may think of u mapping t ∈ [0, T] to u(·, t) ∈ H̊1(Ω).

Specifically, we may seek the solution u ∈ C1([0, T], H̊1(Ω)), which means that u(·, t) ∈
H̊1(Ω) for each t, that u is differentiable with respect to t, and that ∂u(·, t)/∂t ∈ H̊1(Ω) for

all t. Thus when we write u(t), we mean the function u(·, t) ∈ H̊1(Ω).

Now let Vh ⊂ H̊1(Ω) denote the usual space of Lagrange finite elements of degree r with
respect to a triangulation of Ω. For a semidiscrete finite element approximation we seek uh
mapping [0, T] into Vh, i.e., uh ∈ C1([0, T], Vh), satisfying

(5.9) 〈∂uh
∂t

, v〉+ b(uh, v) = 〈f, v〉, v ∈ Vh, 0 ≤ t ≤ T.

We also need to specify an initial condition for uh. For this we choose some u0
h ∈ Vh which

approximates u0 (common choices are the L2 projection or the interpolant).
We now show that this problem may be viewed as a system of ODEs. For this let φi,

1 ≤ i ≤ D be a basis for Vh (for efficiency we will choose a local basis). We may then write

uh(x, t) =
D∑
j=1

αj(t)φj(x).

Plugging this into (5.9) and taking the test function v = φi, we get∑
j

〈φj, φi〉α′j(t) +
∑
j

b(φj, φi)αj(t) = 〈f, φi〉.

2. FINITE ELEMENT METHODS FOR THE HEAT EQUATION 81

In terms of the mass matrix, stiffness matrix, and load vector:

Mij = 〈φj, φi〉, Aij = 〈φj, φi〉, Fi(t) = 〈f, φi〉,
this can be written

Mα′(t) + Aα(t) = F (t), 0 ≤ t ≤ T.

This is a system of linear ODEs for the unknown coefficients α = (αj(t)). The initial
condition uh(0) = u0

h can be written α(0) = α0 where u0
h =

∑
j α

0
jφj.

We now turn to fully discrete approximation using the finite element method for dis-
cretization in space, and finite differences for discretization in time. Consider first using
Euler’s method for time discretization. This leads to the system

M
αj+1 − αj

k
+ Aαj = F j,

or

Mαj+1 = Mαj + k(−Aαj + F j).

Notice that for finite elements this method is not truly explicit, since we have to solve an
equation involving the mass matrix at each time step.

The backward Euler’s method

M
αj+1 − αj

k
+ Aαj+1 = F j+1,

leads to a different linear system at each time step:

(M + kA)αj+1 = Mαj + kF j+1,

while Crank–Nicolson would give

(M +
k

2
A)αj+1 = (M − k

2
A)αj +

k

2
(F j + F j+1).

2.1. Analysis of the semidiscrete finite element method. Before analyzing a fully
discrete finite element scheme, we analyze the convergence of the semidiscrete scheme, since
it is less involved. The key to the analysis of the semidiscrete finite element method is to
compare uh not directly to u, but rather to an appropriate representative wh ∈ C1([0, T], Vh).
For wh we choose the elliptic projection of u, defined by

(5.10) b(wh, v) = b(u, v), v ∈ Vh, 0 ≤ t ≤ T.

From our study of the finite element method for elliptic problems, we have the L2 estimate

(5.11) ‖u(t)− wh(t)‖ ≤ chr+1‖u(t)‖r+1, 0 ≤ t ≤ T.

If we differentiate (5.10), we see that ∂wh/∂t is the elliptic projection of ∂u/∂t, so

‖∂u
∂t

(t)− ∂wh
∂t

(t)‖ ≤ chr+1‖∂u
∂t

(t)‖r+1, 0 ≤ t ≤ T.

Now

(5.12)
〈∂wh
∂t

, v〉+ b(wh, v) = 〈∂wh
∂t

, v〉+ b(u, v)

= 〈∂(wh − u)

∂t
, v〉+ 〈f, v〉, v ∈ Vh, 0 ≤ t ≤ T.

82 5. TIME-DEPENDENT PROBLEMS

Let yh = wh − uh. Subtracting (5.9) from (5.12), we get

〈∂yh
∂t

, v〉+ b(yh, v) = 〈∂(wh − u)

∂t
, v〉, v ∈ Vh, 0 ≤ t ≤ T.

Now, for each t we choose v = yh(t) ∈ Vh. Note that for any function y ∈ C1([0, T];L2(Ω)),

‖y‖ d
dt
‖y‖ =

1

2

d

dt
‖y‖2 = 〈∂y

∂t
, y〉.

Thus we get

(5.13) ‖yh‖
d

dt
‖yh‖+ b(yh, yh) = 〈∂(wh − u)

∂t
, yh〉 ≤ ‖

∂(wh − u)

∂t
‖‖yh‖,

so
d

dt
‖yh‖ ≤ ‖

∂(wh − u)

∂t
‖ ≤ chr+1‖∂u

∂t
(t)‖r+1.

This holds for each t. Integrating over [0, t], we get

‖yh(t)‖ ≤ ‖yh(0)‖+ chr+1‖∂u
∂t
‖L1([0,T];Hr+1(Ω)).

For yh(0) we have

‖yh(0)‖ = ‖wh(0)− uh(0)‖ ≤ ‖wh(0)− u(0)‖+ ‖u0− uh(0)‖ ≤ chr+1‖u0‖r+1 + ‖u0− uh(0)‖.

Thus, assuming that the exact solution is sufficiently smooth and the initial data uh(0) is
chosen so that ‖u0 − uh(0)‖ = O(hr+1), we have

‖yh‖L∞([0,T];L2(Ω)) = O(hr+1).

Combining this estimate with the elliptic estimate (5.11) we get an estimate on the error

‖u− uh‖L∞([0,T];L2(Ω)) = O(hr+1).

Remark. We can put this analysis into the framework of consistency and stability in-
troduced in Section 3. We take our discrete solution space Xh as C1([0, T];Vh), and the
discrete operator Lh : Xh → Yh := C([0, T];V ∗h) is

(Lhuh)(v) = 〈∂uh
∂t

, v〉+ b(uh, v), uh ∈ Xh, v ∈ Vh, 0 ≤ t ≤ T.

Thus our numerical method is to find uh ∈ Xh such that Lhuh = Fh, where

Fh(v) =

∫
fv dx, v ∈ Vh, 0 ≤ t ≤ T.

As a representative rhu ∈ Xh of the exact solution u we use the elliptic projection wh. Then
the consistency error is given by

E(v) := 〈∂wh
∂t

, v〉+ b(wh, v)− 〈f, v〉, v ∈ Vh, 0 ≤ t ≤ T.

In the first part of our analysis we showed that

E(v) = 〈∂(wh − u)

∂t
, v〉,

2. FINITE ELEMENT METHODS FOR THE HEAT EQUATION 83

so |||E||| = O(hr+1), where the norm we use on Yh is

|||E||| =
∫ T

0

sup
06=v∈Vh

|E(v)|
‖v‖

dt.

The second part of the analysis was a stability result. Essentially we showed that if uh ∈ Xh

and Fh ∈ Yh satisfy Lhuh = Fh, then

max
0≤t≤T

‖uh‖ ≤ ‖uh(0)‖+ |||Fh|||.

Remark. In the case of finite elements for elliptic problems, we first got an estimate
in H1, then an estimate in L2, and I mentioned that there are others possible. In the
case of the parabolic problem, there are many other estimates we could derive in different
norms in space or time or both. For example, by integrating (5.13) in time we get that
‖yh‖L2([0,T];H1(Ω)) = O(hr+1). For the elliptic projection we have ‖u − wh‖H1(Ω) = O(hr) for
each t, so the triangle inequality gives ‖u− uh‖L2([0,T];H1(Ω)) = O(hr).

2.2. Analysis of a fully discrete finite element method. Now we turn to the
analysis of a fully discrete scheme: finite elements in space and backward Euler in time.
Writing ujh for uh(·, jk) (with k the time step), the scheme is

(5.14) 〈u
j+1
h − ujh
k

, v〉+ b(uj+1, v) = 〈f j+1, v〉, v ∈ Vh, j = 0, 1,

We initialize the iteration by choosing u0
h ∈ Vh to be, e.g., the interpolant, L2 projection, or

elliptic projection. Notice that, at each time step, we have to solve the linear system

(M + kA)αj+1 = Mαj + kF j+1,

where αj is the vector of coefficients of ujh with respect to a basis, and M , A, and F , are the
mass matrix, stiffness matrix, and load vector respectively.

To analyze this scheme, we proceed as we did for the semidiscrete scheme, with some
extra complications coming from the time discretization. In particular, we continue to use
the elliptic projection wh as a representative of u. Thus the consistency error is given by

〈w
j+1
h − wjh
k

,v〉+ b(wj+1
h , v)− 〈f j+1, v〉

= 〈u
j+1 − uj

k
, v〉+ b(uj+1, v)− 〈f j+1, v〉+ 〈(w

j+1
h − uj+1)− (wjh − uj)

k
, v〉

= 〈u
j+1 − uj

k
− ∂uj+1

∂t
, v〉+ 〈(w

j+1
h − uj+1)− (wjh − uj)

k
, v〉 = 〈zj, v〉,

where the last line gives the definition of zj. Next we estimate the two terms that comprise
zj, in L2. First we have

‖u
j+1 − uj

k
− ∂uj+1

∂t
‖ ≤ k

2
‖∂

2u

∂t2
‖L∞(L2),

by Taylors theorem. Next,

(wj+1
h − uj+1)− (wjh − uj)

k
=

1

k

∫ (j+1)k

jk

∂

∂t
[wh(s)− u(s)] ds,

84 5. TIME-DEPENDENT PROBLEMS

so

‖(wj+1
h − uj+1)− (wjh − uj)

k
‖ ≤ chr+1‖∂u

∂t
‖L∞([jk,(j+1)k];Hr+1(Ω).

Thus we have obtained a bound on the consistency error:

〈w
j+1
h − wjh
k

, v〉+ b(wj+1
h , v)− 〈f j+1, v〉 = 〈zj, v〉, v ∈ Vh, j = 0, 1,

with

‖zj‖ ≤ c(k‖∂
2u

∂t2
‖L∞([0,T];L2(Ω)) + hr+1‖∂u

∂t
‖L∞([0,T];Hr+1(Ω)) =: E, j = 0, 1,

Combining with the scheme (5.14), we get (for yh = wh − uh)

〈y
j+1
h − yjh
k

, v〉+ b(yj+1
h , v) = 〈zj, v〉, v ∈ Vh.

We conclude the argument with a stability argument. Choose v = yj+1
h ∈ Vh. This becomes:

‖yj+1
h ‖

2 + kb(yj+1
h , yj+1

h) = 〈yjh + kzj, yj+1
h 〉,

so
‖yj+1

h ‖ ≤ ‖y
j
h‖+ kE,

and, by iteration,
max

0≤j≤M
‖yjh‖ ≤ ‖y

0
h‖+ TE.

In this way we prove that

max
0≤j≤M

‖uj − ujh‖ = O(k + hr+1).

Exercise for the reader: analyze the convergence of the fully discrete finite element method
using Crank–Nicolson for time discretization. In the stability argument, you will want to
use the test function v = (yj+1

h + yjh)/2.

