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Numerical Solution of Algebraic Equations 

The solution of linear systems of algebraic equations is an important subject of linear 

algebra [1], and the computational considerations needed for computer implementation are 

usually treated in some detail in introductory numerical methods courses. This section simply 

represents a quick review or overview of the subject - it is not intended as a complete treatise on 

this topic. Students with little or no background in this area are referred to one of many good 

numerical methods texts that treat the subject in more detail. The numerical solution of large 

systems of algebraic equations is a direct consequence of the Finite Difference method for 

solving ordinary differential equations (ODEs) or partial differential equations (PDEs). Recall 

that the goal in these techniques is to break the continuous differential equation into a coupled set 

of algebraic difference equations for each finite volume or node in the system. When one has 

only a single independent variable (the ODE case), this process can easily lead to several 

hundred simultaneous equations that need to be solved. For multiple independent variables (the 

PDE case), systems with hundreds of thousands of equations are common. Thus, in general, we 

need to be able to solve large systems of linear equations of the form Ax b=  as part of the 

solution algorithm for general Finite Difference methods. 

There are two general schemes for solving linear systems: Direct Elimination Methods 

and Iterative Methods. All the direct methods are, in some sense, based on the standard Gauss 

Elimination technique, which systematically applies row operations to transform the original 

system of equations into a form that is easier to solve. In particular, this section overviews an 

algorithm for implementation of the basic Gauss Elimination scheme and it also highlights the 

LU Decomposition method which, although functionally equivalent to the Gauss Elimination 

method, does provide some additional flexibility for computer implementation. Thus, the LU 

decomposition method is often the preferred direct solution method for low to medium sized 

systems (usually less than 200-300 equations). 

For large systems, iterative methods (instead of direct elimination methods) are almost 

always used. This switch is required from accuracy considerations (related to round-off errors), 

from memory limitations for physical storage of the equation constants, from considerations for 

treating nonlinear problems, and from overall efficiency concerns. There are several specific 

iterative schemes that are in common use, but most methods build upon the base Gauss Seidel 



method, usually with some acceleration scheme to help convergence. Thus, our focus in this 

brief overview is on the basic Gauss Seidel scheme and on the use of Successive Over 

Relaxation (SOR) to help accelerate convergence. We also give a brief introduction to the 

incomplete-lower-upper (ILU) decomposition method and a short tutorial to the multigrid 

method for solving 2D and 3D problems. 

Direct Methods 

1. Gauss Elimination Method 
The Gauss Elimination Method forms the basis for all elimination techniques. The basic 

idea is to modify the original equations, using legal row operations, to give a simpler form for 

actual solution. The basic algorithm can be broken into two stages: 

1. Forward Elimination (put equations in upper triangular form) 

2. Back Substitution (solve for unknown solution vector) 

To see how this works, consider the following system of equations: 
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Now, with reference to this system of N equations and N unknowns, the Forward Elimination 

Step (with partial pivoting) becomes: 

Step 0:  Create an augmented matrix, [ ]A Ab=%  

Step 1: Determine the coefficient in the i th column with the largest absolute value and 

interchange rows such that this element is the pivot element (i = 1, 2, 3, to N-1) 

Step 2:  Normalize the pivot equation (i.e. divide by the i,i element) 

Step 3  Multiply normalized eqn. i by the j,i  element of eqn. j 

Step 4  Subtract the resultant equation in Step 3 from eqn. j 

repeat Steps 3 and 4 for j = i+1 to N 

go to Step 1 for next i = i+1 to N-1 

and the Back Substitution Step is given by: 

Step 5  , ,/N N NNx b a=  



Step 6  , , ,

1

/
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x b a x a
= +

 
= − 
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∑  

repeat for i = N-1, N-2, to 1 

Note: The primes here indicate that the coefficients at this stage are different from the original 

coefficients. 

2. The LU Decomposition Method 
The Gauss Elimination Method has the disadvantage that all right-hand sides (i.e. all the 

b vectors of interest for a given problem) must be known in advance for the elimination step to 

proceed. The LU Decomposition Method outlined here has the property that the matrix 

modification (or decomposition) step can be performed independent of the right hand side vector. 

This feature is quite useful in practice - therefore, the LU Decomposition Method is usually the 

Direct Scheme of choice in most applications. 

To develop the basic method, let us break the coefficient matrix into a product of two 

matrices, 

A LU=  (2) 

where L is a lower triangular matrix and U is an upper triangular matrix. Now, the original 

system of equations Ax = b, becomes 

LUx b=  (3) 

This expression can be broken into two problems, 

,Ly b Ux y= =  (4) 

The rationale behind this approach is that the two systems given in Eq. (4) are both easy to solve; 

one by forward substitution and the other by back substitution. In particular, because L is a lower 

triangular matrix, the expression Ly = b can be solved with a simple forward substitution step. 

Similarly, since U has upper triangular form, Ux = y can be evaluated with a simple back 

substitution algorithm. 

Thus the key to this method is the ability to find two matrices L and U that satisfy Eq. (4). 

Doing this is referred to as the Decomposition Step and there are a variety of algorithms 

available. Three specific approaches are as follows: 

 

 



•  Doolittle Decomposition: 
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Because of the specific structure of the matrices, a systematic set of formulae for the components 

of L and U results. 

•  Crout Decomposition: 
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The evaluation of the components of L and U is done in a similar fashion as above. 

•  Cholesky Factorization: 

For symmetric, positive definite matrices, where and 0 for all  x 0  T TA A x Ax= > ≠  

then, 

andT TU L A LL= =  (7) 

and a simple set of expressions for the elements of L can be obtained (as above). Once the 

elements of L and U are available (usually stored in a single N×N matrix), Matlab's standard 

equation solver (using the backslash notation, x = A\b), uses several variants of the basic LU 

Decomposition method depending on the form of the original coefficient matrix (see the Matlab 

help files for details). 

3.    LU Decomposition in 1D 
The LU decomposition method is very trivial for 1D problems where the discretization of 

the ODE or the PDE leads to a three point stencil and a tridiagonal matrix A. It is easy to show, 

that the system of equations that we need to solve, and for the purpose of clarity, we denote by 

Ax = f, in matrix form reads 
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The solution of this problem can be represented as a two-step procedure that is explained below. 

Step 1: Decompose the coefficient matrix A into a product of lower and upper triangular 

matrices: 

A = LU=
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From the equality of the two matrices, we have: 

1 1 1 1; / ; ; 2,3, ,k k k k k k ka b a c k nα β α α β− −= = = − = K  (10) 

Step 2: Solve the system of equations LUx = f, by first solving Lg = f using forward substitution, 

and then solving Ux = g using backward substitution. Then, the solution of Lg = f is represented 

as: 

1 1 1; ; 2,3, ,k k k kg f g f g k nβ −= = − = K , (11) 

And the solution of Ux = g as: 

1/ ; [ ] / ; 1, 2, , 2,1n n n k k k k kx g x g c x k n nα α+= = − = − − K  (12) 

Iterative Methods  
For large systems of equations, an iterative solution scheme for the unknown vector can 

always be written in the form 

1p Px Bx c+ = +  (13) 

where B is the iteration matrix, c is a constant vector and p is an iteration counter. Convergence 

of this scheme is guaranteed if the largest eigenvalue of the iteration matrix is less that unity, 

where ρ = spectral radius = 
max

λ . Therefore, if ρ < 1 the iterative scheme will converge. If 



ρ << 1, the iterative scheme converges very rapidly. If 1ρ ≈  but less than unity, the scheme will 

be slowly converging. The iteration algorithm will diverge if the spectral radius is greater than 

unity. Convergence is tested during the iterative process by computing the largest relative change 

from one iteration to the next, and comparing the absolute value of this result with some desired 

tolerance. If the maximum relative change is less than the desired accuracy, then the process is 

terminated. If this condition is not satisfied, then another iteration is performed. 

1.   The Gauss Seidel Method 
Let us take the original system of equations given by Ax = b and convert it into the 

classical Gauss Seidel iterative scheme. To do this, let us break the original matrix into three 

specific components, or  

A L D U= + +  (14) 

where the three matrices on the right hand side, in sequence, are strictly lower triangular, 

diagonal, and strictly upper triangular matrices. Now, substituting this into the original 

expression gives 

( )L D x Ux b+ + =  (15) 

or 

( )L D x b Ux+ = −  (16) 

If we premultiply by 1( )L D −+  and notice that the solution vector appears on both sides of the 

equation, we can write the equation in an iterative form as 

 1 1 1( ) ( )p px L D Ux L D b+ − −= − + + +  (17) 

Clearly this is in the standard form for iterative solutions as defined in Eq. (13), where the 

iteration matrix is given by 

1( )B L D U−= − +  (18) 

and the constant vector is written as 

1( )c L D b−= +  (19) 

This form of the iteration strategy is useful for the study of the convergence properties of model 

problems. It is, however, not particularly useful as a program algorithm for code implementation. 

For actual implementation on the computer, one writes these equations differently, never having 

to formally take the inverse as indicated above. In practice, Eq. (17) is written in iterative form as  



1 1p p pDx b Lx Ux+ += − −  (20) 

or 

( )1 1 1p p px D b Lx Ux+ − += − −  (21) 

This specific form is somewhat odd at first glance, since 1px +  appears on both sides of the 

equation. This is justified because of the special form of the strictly lower triangular matrix, L. 

This can be seen more clearly if the matrix equations are written using discrete notation. In 

discrete form Eq. (21)  can be expanded as 

1
1 1

1 1

1 i N
p p p
i i ij j ij j

j j iii

x b a x a x
a

−
+ +

= = +

 
= − − 

 
∑ ∑  (22) 

where the diagonal elements of 1D−  are simply 1 iia and the limits associated with the 

summations account for the special structure of the L and U matrices.  

2. The Successive Over-Relaxation (SOR) Method 
To improve the rate of convergence, one might consider using a weighted average of the 

results of the two most recent estimates to obtain the next best guess of the solution. If the 

solution is converging, this might help extrapolate to the real solution more quickly. This idea is 

the basis of the SOR method. In particular, let α  be some weight factor with a value between 0 

and 2. Now, let’s compute the next value of 1px +  to use in the Gauss-Seidel method as a linear 

combination of the current value, 1px + , and the previous solution, px , as follows: 

1 1| (1 ) with 0 2     p p p
newx x xα α α+ += + − < <  (23) 

Note that if α  is unity, we simply get the standard Gauss Seidel method (or whatever base 

iterative scheme is in use). When α  is greater that unity, the system is said to be over-relaxed, 

indicating that the latest value, 1px + , is being weighted more heavily (weight for px is negative). 

If, however, α  is less than one, the system is under-relaxed, this time indicating that the 

previous solution, px , is more heavily weighted (positive weight values). The idea, of course, is 

to choose the relaxation parameter to improve convergence (reduce the spectral radius). This is 

most often done in a trial and error fashion for certain classes of problems (experience helps 

here). Some more advanced codes do try to estimate this quantity as part of the iterative 

calculation, although this is not particularly easy. 

 



3.   Incomplete LU decomposition for 2D and 3D problems 

Within incomplete factorization schemes [ 2 ] for 2D problems, the matrix A is 

decomposed into a product of lower (L) and upper (U) triangular matrices, each of which has 

four non-zero diagonals in the same locations as the ones of the original matrix A.  The unknown 

elements of the L and U matrices are selected in such a way that the five diagonals common to 

both A and A’= LU are identical and the four superfluous diagonals represent the matrix N, i.e., 

A’=A+N .  Thus, rather than solving the original system of equations Ax=b, one solves the 

modified system LUx=b+Nx, by solving successively the matrix equations LV=b+Nx and V=Ux, 

where V is an auxiliary vector.  It is important to note that the four superfluous terms of N affect 

the rate of convergence of the ILU method.  Stone [3] suggested the introduction of partial 

cancellation, which minimizes the influence of these additional terms and accelerates the rate of 

convergence of the ILU method.  By using a Taylor series expansion, the superfluous terms 

appearing in A’ are partially balanced by subtracting approximately equal terms. 

 

4.    Multigrid Method 

The multi-grid method represents an improvement over the SOR and ILU methods in 

terms of iterative techniques available for solving large systems of equations [4]. The basic 

principle behind the multi-grid method is to reduce different Fourier components of the error on 

grids with different mesh sizes.  Most iterative techniques work by quickly eliminating the high-

frequency Fourier components, while the low-frequency ones are left virtually unchanged.  The 

result is a convergence rate that is initially fast, but slows down dramatically as the high-

frequency components disappear. The multi-grid method utilizes several grids, each with 

consecutively coarser mesh sizes. Each of these grids acts to reduce a different Fourier 

component of the error, therefore increasing the rate of convergence with respect to single grid 

based methods, such as an SOR. 

Practical multigrid methods were first introduced in the 1970s by Brandt [5]. These 

methods can solve elliptic PDEs discretized on N grid points in O(N) operations. The “rapid” 

direct elliptic solvers discussed in Ref. [6] solve special kinds of elliptic equations in O(NlogN) 

operations. The numerical coefficients in these estimates are such that multigrid methods are 

comparable to the rapid methods in execution speed. Unlike the rapid methods, however, the 

multigrid methods can solve general elliptic equations with nonconstant coefficients with hardly 



any loss in efficiency. Even nonlinear equations can be solved with comparable speed. 

Unfortunately there is not a single multigrid algorithm that solves all elliptic problems. Rather 

there is a multigrid technique that provides the framework for solving these problems. You have 

to adjust the various components of the algorithm within this framework to solve your specific 

problem. We can only give a brief introduction to the subject here. In this approach, the method 

obtains successive solutions on finer and finer grids. You can stop the solution either at a pre-

specified fineness, or you can monitor the truncation error due to the discretization, quitting only 

when it is tolerably small. 

From One-Grid, through Two-Grid, to Multigrid 

The key idea of the multigrid method can be understood by considering the simplest case 

of a two-grid method. Suppose we are trying to solve the linear elliptic problem 

Lu = f  (24) 

where L is some linear elliptic operator and f is the source term. When one discretizes Eq. (24) on 

a uniform grid with mesh size h, the resulting set of linear algebraic equations arises 

Lhuh = fh (25) 

Let  hu%  denote some approximate solution to Eq. (25). We will use the symbol uh to denote the 

exact solution to the difference equations. Then the error in hu%  or the correction is 

 h h hv u u= − %  (26) 

The residual or defect is 

 h h h hd L u f= −%  (27) 

Since Lh is linear, the error satisfies 

 h h hL v d= −  (28) 

At this point we need to make an approximation to Lh in order to find vh. The classical 

iteration methods, such as Jacobi or Gauss-Seidel, do this by finding, at each stage, an 

approximate solution of the equation 

 ˆ ˆh h hL v d= −  (29) 

where ˆ
hL  is a “simpler” operator than Lh. For example, ˆ

hL  is the diagonal part of Lh for Jacobi 

iteration, or the lower triangle for Gauss-Seidel iteration. The next approximation is generated by 

 ˆnew
h h hu u v= +% %  (30) 



Now consider, as an alternative, a completely different type of approximation for Lh, one 

in which we “coarsify” rather than “simplify.” That is, we form some appropriate approximation 

LH of Lh on a coarser grid with mesh size H (we will always take H = 2h, but other choices are 

possible). The residual equation is now approximated by 

LHvH = -dH  (31) 

Since LH  has smaller dimension, this equation will be easier to solve than Eq. (28). To define the 

defect dH on the coarse grid, we need a restriction operator R  that restricts dh to the coarse grid: 

dH = Rdh . (32) 

The restriction operator is also called the fine-to-coarse operator or the injection operator. Once 

we have a solution Hv%  to Eq. (31), we need a prolongation operator P that prolongates or 

interpolates the correction to the fine grid: 

 H Hv Pv% %  (33) 

The prolongation operator is also called the coarse-to-fine operator or the interpolation operator. 

Both R and P are chosen to be linear operators. Finally the approximation hu%  can be updated: 

 new
h h hu u v= +% % %  (34) 

One step of this coarse-grid correction scheme is thus: 

•  Compute the defect on the fine grid from Eq. (27). 

•  Restrict the defect by Eq. (32). 

•  Solve Eq. (31) exactly on the coarse grid for the correction. 

•  Interpolate the correction to the fine grid by Eq. (33). 

•  Compute the next approximation by Eq. (34). 

Let us contrast the advantages and disadvantages of relaxation and the coarse-grid 

correction scheme. Consider the error vh expanded into a discrete Fourier series. Call the 

components in the lower half of the frequency spectrum the smooth components and the high-

frequency components the nonsmooth components. We have seen that relaxation becomes very 

slowly convergent in the limit h → 0, i.e., when there are a large number of mesh points. The 

reason turns out to be that the smooth components are only slightly reduced in amplitude on each 

iteration. However, many relaxation methods reduce the amplitude of the nonsmooth 

components by large factors on each iteration: They are good smoothing operators. For the two-

grid iteration, on the other hand, components of the error with wavelengths 2H are not even 



representable on the coarse grid and so cannot be reduced to zero on this grid. But it is exactly 

these high-frequency components that can be reduced by relaxation on the fine grid! This leads 

us to combine the ideas of relaxation and coarse-grid correction: 

•  Pre-smoothing: Compute hu  by applying ν1 ≥ 0 steps of a relaxation method to hu% . 

•  Coarse-grid correction: As above, using hu  to give new
hu  . 

•  Post-smoothing: Compute new
hu%  by applying ν2 ≥ 0 steps of the relaxation method to 

new
hu . 

It is only a short step from the above two-grid method to a multigrid method. Instead of 

solving the coarse-grid defect Eq. (31) exactly, we can get an approximate solution of it by 

introducing an even coarser grid and using the two-grid iteration method. If the convergence 

factor of the two-grid method is small enough, we will need only a few steps of this iteration to 

get a good enough approximate solution. We denote the number of such iterations by γ. 

Obviously, we can apply this idea recursively down to some coarsest grid. There the solution is 

found easily, for example by direct matrix inversion or by iterating the relaxation scheme to 

convergence. One iteration of a multigrid method, from finest grid to coarser grids and back to 

finest grid again, is called a cycle. The exact structure of a cycle depends on the value of γ, the 

number of two-grid iterations at each intermediate stage. The case γ = 1 is called a V-cycle, 

while γ = 2 is called a W-cycle (see Fig. 1). These are the most important cases in practice. Note 

that once more than two grids are involved, the pre-smoothing steps after the first one on the 

finest grid need an initial approximation for the error v. This should be taken to be zero. 

Smoothing, Restriction, and Prolongation Operators 

The most popular smoothing method, and the one you should try first, is Gauss-Seidel, 

since it usually leads to a good convergence rate. The exact form of the Gauss-Seidel method 

depends on the ordering chosen for the mesh points. For typical second-order elliptic equations 

like our model problem, it is usually best to use red-black ordering, making one pass through the 

mesh updating the “even” points (like the red squares of a checkerboard) and another pass 

updating the “odd” points (the black squares). When quantities are more strongly coupled along 

one dimension than another, one should relax a whole line along that dimension simultaneously. 

Line relaxation for nearest-neighbor coupling involves solving a tridiagonal system, and so is 

still efficient. Relaxing odd and even lines on successive passes is called zebra relaxation and is 



usually preferred over simple line relaxation. Note that SOR should not be used as a smoothing 

operator. The over-relaxation destroys the high-frequency smoothing that is so crucial for the 

multigrid method. 

A succint notation for the prolongation and restriction operators is to give their symbol. 

The symbol of P is found by considering vH to be 1 at some mesh point (x,y), zero elsewhere, and 

then asking for the values of PvH. The most popular prolongation operator is simple bilinear 

interpolation. It gives nonzero values at the 9 points (x, y), (x + h, y), . . . , (x − h, y − h), where 

the values are 1 1
2 41, , ,K . 
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Figure 1  Structure of multigrid cycles. S denotes smoothing, while E denotes exact solution on 

the coarsest grid. Each descending line \ denotes restriction ® and each ascending line / denotes 

prolongation (P). The finest grid is at the top level of each diagram. For the V-cycles (γ=1) the E 

step is replaced by one 2-grid iteration each time the number of grid levels increases by one. For 

the W-cycles (γ=2) each E step gets replaced by two 2-grid iterations. 

 

 

 

 



Its symbol is therefore 

 

1 1 1
4 2 4

1 1
2 2

1 1 1
4 2 4

1

 
 
 
  

 . (35) 

  

The symbol of R is defined by considering vh to be defined everywhere on the fine grid, and then 

asking what is Rvh at (x, y) as a linear combination of these values. The simplest possible choice 

for R is straight injection, which means simply filling each coarse-grid point with the value from 

the corresponding fine-grid point. Its symbol is “[1].” However, difficulties can arise in practice 

with this choice. It turns out that a safe choice for R is to make it the adjoint operator to P. Then, 

take P to be bilinear interpolation, and choose uH = 1 at (x, y), zero elsewhere. Then take P to be 

bilinear interpolation, and choose uH = 1 at (x, y), zero elsewhere. Finally, the symbol of R is  

 

1 1 1
16 8 16

1 1 1
8 4 8

1 1 1
16 8 16

 
 
 
  

 (36) 

Note the simple rule: The symbol of R is 1/4 the transpose of the matrix defining the symbol of P. 

This rule is general whenever R = P† and H = 2h. The particular choice of R in Eq. (36) is called 

full weighting. Another popular choice for R is half weighting, “halfway” between full weighting 

and straight injection. Its symbol is 

 

1
8

1 1 1
8 2 8

1
8

0 0
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A similar notation can be used to describe the difference operator Lh. For example, the standard 

differencing of the model problem, Eq. (29), is represented by the five-point difference star 

 
2

0 1 0
1

1 4 1

0 1 0
hL

h

 
 = − 
  

 (38) 

If you are confronted with a new problem and you are not sure what P and R choices are likely to 

work well, here is a safe rule: Suppose mp is the order of the interpolation P (i.e., it interpolates 

polynomials of degree mp - 1 exactly). Suppose mr is the order of R, and that R is the adjoint of 

some P (not necessarily the P you intend to use). Then if m is the order of the differential 



operator Lh, you should satisfy the inequality mp + mr > m. For example, bilinear interpolation 

and its adjoint, full weighting, for Poisson’s equation satisfy mp + mr = 4 > m = 2. 

Of course the P and R operators should enforce the boundary conditions for your problem. 

The easiest way to do this is to rewrite the difference equation to have homogeneous boundary 

conditions by modifying the source term if necessary. Enforcing homogeneous boundary 

conditions simply requires the P operator to produce zeros at the appropriate boundary points. 

The corresponding R is then found by R = P†. 
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