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Aim

Compute (possibly long-term) motion of a
set of points (or curves/surfaces) under
some dynamical equations



Numerical Methods

 Numerical Integration
« Optimisation and numerical linear algebra
* Finite Differences and Finite Elements




Relevant Books

Iserles, A First Course in the Numerical
Analysis of Dynamical Equations, Cambridge

_eimkuhler & Reich, Simulating Hamiltonian
Dynamics, Cambridge

Hairer, Lubich & Wanner, Geometric
Numerical Integration, Springer

Lots more

Numerical Optimisation

— Nocedal & Wright, Numerical Optimisation,
Springer




Getting Started

z = f(2), 2(tg) = 2° € R*

» Defines a 1-parameter family {®¢ f+>0
with flow map

d:(20) = 2(t; 2°) : RF — R*

* Make approximations {Qbﬁt(zo)}?:o
to true solution 2™ = ¥R, (2")



Approximation

* Integrate 2 = f(z) over (small) [t,t + 0t]

ot
2(t + 6t) — 2(t) = /0 F(2(t +7))dr

~ Y bif(a(t+ 7))



n.4




Piecewise Linear Approximations

e Euler 2" = 2"+ Atf(2")
o Implicit Euler 2" = 2™ + Atf(z"*1)
* Trapezoidal

2= 2 A + f(E)

o |mplicit Midpoint

2= " L ALS (1

(2™ + z”“))



Second Order System

d2q
@ — Q(Q)

e Introduce g =v , ¥ = g(q)

» Then solve __( v )
-\ g(g)

VA
where
( ) Jacobian



Second-Order System

e So Euler's method becomes
qn+1 — qn 1 At ‘U”
v = o 4 At g(q")

 Example: Lennard-Jones oscillator

q="v :1 —-12  _—6
b= (0 ?(a) = a q






Higher-Order Integrators

=2 ALY bif(Z;)
1=1

Zi — il AtZazjf(Zj)
1=1



Runge-Kutta 4

lezn

1
Zy = 2" + S At f(Z1)
1
3z = 2" + §At f(Z2)
1
Zy=2"+ §At f(Z3)

L %At(f(zl) + 2f(Z2) + 2f(Z3) + f(Z4))






kidpoint




Runge-kutta 4




‘Generic’ Procedure

Choose numerical integration method
Choose stepsize

Run

Monitor error (or perform error analysis)
Decide whether or not to trust



Hamiltonian Systems

H: RExRT 5 R

. q
p=—Vy,H(q,p)
2 =JV,H(z)
0 I
(%

Structure matrix



Partitioning

» If can splitinto ¢ = g(q,p) , p = h(q,p)
e Can solve independently with different
guadrature points

q”’+1 =q" + At pﬂ'Jrl Euler-A

pn—l—l _ pn - At vng(qn)
n+1l _ n n
Euler-8 4 = qg"+ Atp

pn—l—l _ pn - At vng(qn—l—l)



Combine with a Halfstep

L T 1 T
prTE =pt = SAtV V(g
q”*? =q +Atp”+2
pntl =prta - gﬂt VVi(g")

e Stormer-Verlet method
e Leapfrog



Properties of Hamiltonian Systems

 H s a first integral

H'(y)f(y) =0 Vy
H(y(t)) = H(yo)
— There may be others

« Hamiltonian systems are symplectic

e Hamiltonian systems with smooth
bounded H give diffeomorphic flow maps



Symplecticness

Basic object: 2D parallelogram in R
Spanned by vectors

q q
§ = ( gp ) - ( zf’ )
(d=1) Oriented area — det( g; zi )
= P — &P

Area preservation



Symplecticness

e (d>1) Sum of oriented areas of
projections of parallelograms onto (¢;,p;)

Zdet( 5'11 z}j )

=& Jn ( 0 I )
Skew-symmetric J =

bilinear function: —1 0
Two-form Structure matrix




Definition of Symplectic Map

« Amap ¥ in phase space R?¢ is
symplectic with respect to structure
matrix J if its Jacobian ¥2(z) satisfies

v, () T M, (2) = 71

e (Linear) A : R24 —, R24 s symplectic if
At gtA=J"1
= Q(AE, An) = Q(&,m) YE,1 € R*



Hamiltonian Flows are Symplectic

e (Poincare, 1899) For Hamiltonian
systems with H(qg,p) twice continuously
differentiable on U C R?, for fixed t,

flow @; is symplectic



The Wedge Product
Q(&,n) = SZJ”??

= > Q0(&%,7")
1=1
d



The Wedge Product

o Useful way to check

symplecticness

d§ = 1b,(q, p)dq + 1, (q, p)dp

dp = 5 (q,p)dq -

e Symplectic means
dg N\ dp = dq N\

-2(q, p)dp

dp



Symplectic Integrators

e Can numerical integrators preserve any
of these properties?

dg™tt Adp™Tt = dg™ A dp™



Euler-B 1s Symplectic

qn—l—l — qn 1 At pn
p"tt =p" — At Vao(g")

dg"tt Adp" Tt =d(¢™ + Atp™ ) A dp™ T
= dg" A dp™tt + At dp™tt A dp™t!
=dq" ANd(p™ — AtV H(q",p" )
= dq" N dp"™



Midpoint Rule is Symplectic
2T = " %m JVH(2"t2)

2t =t %At JVH(2”+%)

* Rewrite:
2"l = 2"+ At JVH(z”JV%)
zn—l—% _ l (Zn+l _I_zn)

2



Midpoint Rule is Symplectic

1
dz"t =dz" + At JH,, 5 (dz”+1 + dz”)

. Compute wedge products with J ~1dz"
and J tdz"T!

= Jldz" L A de" T = J71de™ A d2™



Symplectic Discretisation

e Spatial truncation

— Reduce PDE to system of Hamiltonian ODES
» Grid
» Particles
o Timestep finite dim ODES by symplectic
method



Euler Equations

Constructing a diffeomorphic warp requires
solving the Euler equations on Diff(IR?)

: =
m = t+ad s _1..m
A~im u==Gsxm

u—m := Au '1‘
'f Green’s Function
Scalar function for A

rotationally invariant
and diagonal

Momentum
Velocity Inertia operator



Euler Equations on Diff(R")

m+u-Vm+Vu! -m+m(divu) =0

e Also known as EPDiIff
* Find geodesic by (non-linear) optimisation

 There are exact solutions with momentum
concentrated at a finite set of points



For Fluids: Point Vortices

decompressor



For Images: Point Particles

e Start from vector field
= Z%G(Qi(t) =
i—1

 Compute Lagrangian and discretise via
particle ansatz

$t)_zpz LE_Q*L t))



Discretisation

* Write as (discrete) Hamiltonian via Legendre
transform

1
H=2) pipiGla—q)
6]

* Choose G (corresponds to metric)
.Ak = (1 — @@2}’% length scale

Ay — Ay = exp(—€?V?)




Getting to Hamiltonian Form

e Legendre transform

_ _ oL
H(q,p) =p"¢—L(g,§) p= g

 Mapping from fibre T,Q to T *Q (fibre
derivative)

FL(u,e) = (u,DsL(u,e))



Point Particles

4 = ZG(HQH — g;l)p;
J

- > e ) VGl — s ) 72—

b T — il
j J

e 4 conserved quantities

— H, linear momentum Zpi and angular
momentum th. X p;
(



Integration

 Now just integrate particles forward in time
— Euler
— Runge-Kutta
— Symplectic Integrator
— Marker-and-Cell methods

e Use test particles (zero momentum) for
rest of image



Entrainment

QuickTime™ and a
H.264 decompressor
are needed to see this picture.



Dynamics of the System

* Depends on choice of metric (via G)

e Pairs of particles interact in 3 main ways:
— Scattering
— Capture (‘dipole’)
— Ejection



Dipoles

QuickTime™ and a
decompressor
are needed to see this picture.



Finally: Some Image Stuff

Initial Final Change

e 9 point particles, 47.7 seconds
e 7 points added, 180 seconds optimisation
 Matlab code



Registration

Initial Final Change

e 10 point particles on skull (3 minutes)
11 more added (3 minutes)



Simultaneous Optimisation

Reference Free Image Grid

Reference Free Image
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Symplectic Integration

Equations of motion are Hamiltonian
Flow therefore symplectic
Can use a symplectic integrator

Unfortunately, only have implicit methods
— And need to solve down to round-off error

— But we do have good initial guesses

— And the Jacobian comes for ‘free’



Marker-and-Cell

Interpolate particle momenta onto grid

Calculate velocity field on grid
— Fourier transform

— Multigrid

Interpolate back to particles
Used for atmospheric dynamics

— Over 1 million points
— Linear in number of particles



| Marker-and-Cell



Momentum Sheets

e Consider a line defined by a set of
particles

— Same dynamics
— Particle relabelling symmetry

 Investigate stability in various metrics
for different initial perturbations



QuickTime™ and a
Cinepak decompressor
are needed to see this picture.
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