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Chapter 1

Lecture 1

In this lecture, we start with a pseudo-historical note on algebra. Next ring is defined
and some examples are briefly mentioned. Ring of polynomials and direct product of
rings are discussed. Then basic properties of ring operations are discussed. At the end,
we define subrings, ring homomorphism, and ring isomorphism

1.1 Introduction: a pseudo-historical note

A large part of algebra has been developed to systematically study zeros of polyno-
mials. The word algebra comes from the name of a book by al-Khwarizmi, a Persian
mathematician, ! where al-Khwarizmi essentially gave algorithms to find zeros of
linear and quadratic equations. Khayyam, another Persian mathematician, made major
advances in understanding of zeros of cubic equations. In the 16th century, Italian
mathematicians came up with formulas for zeros of general cubic and quartic equations.
The cubic case was solved by del Ferro, and Ferrari solved the quartic case. In 1824,
Abel proved that there is no solutions in radicals to a general polynomial equation of
degree at least 5. In 1832, Galois used symmetries (group theory) of system of numbers
of zeros of a polynomial to systematically study them, and he gave the precise condition
under which solutions can be written using radicals (and the usual operations +, —, -, /).

Another problem which had a great deal of influence on shaping modern algebra is
Fermat’s last conjecture: there are no positive integers x,y, z such that ™ + y" = 2"
if n is an integer more than 2. As you can see this problem has two new directions:

1. itis a multi-variable equation,

2. it is a Diophantine equation. This means we are looking for integer solutions
instead of complex or real solutions.

The first direction was important in the development of the algebraic geometry, and the
second one was played a crucial role in the development of algebraic number theory.

1T am Persian, and so I have to start with this!
2In the book A History of Algebra; from al-Khwarizmi to Emmy Noether, by van der Waerden, you can
read about the very interesting history of the solution of cubic equations by del Ferro, Tartaglia, and Cardano.

9



10 CHAPTER 1. LECTURE 1

In this course, I often try to put what we learn in the perspective of these pseudo-
historical remarks.

1.2 Rings: definition and basic examples.

As we mentioned earlier, our hidden agenda is to understand zeros of a polynomial.
Say p(z) is a polynomial with rational coefficients. We would like to understand
properties of a zero a € C of p(z). What exactly does understanding mean here?
Whatever it means, we would expect to be able to do basic arithmetic with a: add and
multiply, and find out if we are getting the same values or not. As we see later, this
means we want to understand various properties of the subring of C that is generated
by a.

Definition 1.2.1. 1. A ring (R,+,-) is a set R with two binary operations: +
(addition) and - (multiplication) such that the following holds:

(i) (R,+) is an abelian group.
(ii) (Associative) For every a,b,c € R, a-(b-¢) = (a-b)-c

(iii) (Distributive) For every a,b,c € R,
a-(b+c)=a-b+a-cand(b+c)-a=b-a+c-a.
2. We say R is a unital ring if there is 1 € R suchthat1-a = a -1 forevery a € R.
3. We say R is a commutative ring ifa - b = b - a for every a,b € R.

Basic examples.

The set Z of integers, the set QQ of rational numbers, the set R of real numbers, and
the set C of complex numbers are unital commutative rings.

Some non-examples.

The set of non-negative integers Z=° is not a ring as (Z=°, +) is not an abelian
group.

The set of even integers 27 is a commutative ring, but it is not unital.

For an integer n more than 1, the set M,, (R) of n-by-n matrices with real entries is
a unital ring, but it is not commutative. In fact, for every ring R and positive integer n,
the set M, (R) of n-by-n matrices with entries in R with the usual matrix addition and
multiplication forms a ring. Moreover, if R is unital, then M,,(R) is also unital.

Ring of integers modulo 7.

The set Z,, of integers modulo n is another important ring. Let us recall that the
residue class [a],, of a modulo n consists all the integers of the form nk + a where k
is an integer. In group theory, you have learned that Z,, = {[0],,...,[n — 1],} can
be identified with the quotient group Z/nZ, and the residue class [a],, of @ modulo n
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is precisely the coset a + nZ of the (normal) subgroup nZ. Let us also recall that for
every a,a’,b,b’ € Z and positive integer n the following holds:

a=d (modn)

b=0 (mod n) } =aa’ =bb'  (mod n).

This implies that the following is a well-defined binary operator on Z,,:
[a]y, - [b]5, = [ab],,
for every a and b in Z. It is easy to check that (Z,,, +, -) is a unital commutative ring.

Exercise 1.2.2. Work out the details of why Z,, is a ring.

Ring of Polynomials.

As we have mentioned earlier, polynomials play an indispensable role in algebra.
Notice that we can and will work with polynomials with coefficients in an arbitrary
ring R. The set of all polynomials with coefficients in a ring R and an indeterminant
is denoted by R[z]. Therefore

R[z] := {ana"™ + -+ ag| n € Z=%, ay, ... ,a, € R}.

We sometimes write Z?:O a;z" instead of a,, " +- - -+ag. In some arguments it is more
convenient to write a polynomial as an infinite sum ZZO a;z* with an understanding
that a1 = ap42 = - -+ = 0 for some non-negative integer n. Based on our experience
of working with polynomials with real or complex coefficients, we define the following
operations:

(Z aixi) + (; bixi) = Z(ai + b))’ (addition)

=0 =0

( i aixi) ( i bixi) = i ( i aiby—;)x" (multiplication)
i=0 i=0 n=0 i=0

forevery Y oo a;x’, Y oo byt € Rlz]. Itis easy to see that (R[z], +,-) is a ring.
Example 1.2.3. Compute ([2]s2 + [1]4)([2]42® + [3]az + [1]4) in Zy[z].

Solution. We start the computation as if the coefficients were real numbers and use the
distribution law. Moreover to simplify our notation, we drop the decoration [ |4, but we
remember that computation of coefficients should be done in Z,. Hence:

([2laz + [Wa)([2]az® + [3]az + [1]4)
=(2-2)2°+(2-3+1-2)2* +(2-1+1-3)x+(1-1)
=xz+ 1.
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Exercise 1.2.4. 1. Compute (x + 1) in Z3[z].

2. Suppose p is prime. Compute (x + 1)P in Z,[z].
(Hint. By the binomial expansion the coefficient of z* in (z + 1)? is (f ) Argue
why (’;) iszeroinZ, if 1 <i <p—1.)

Warning. Prior to this course, you have viewed a polynomial f € R[z] as a function
from R to R. There is, however, a subtle difference between polynomials and functions.
For instance, x, x2, ... are distinct elements of Zs[x], but all of them are the same
functions from Zs to Z,. Notice that two polynomials > .o a;x* and Y i bix® are
equal if and only if a; = b; for every non-negative integer i.

Nevertheless, later we will see that viewing polynomials as functions is extremely
useful.

Direct product of rings

Suppose R, ..., R, are rings. Then the set
Ry x--- xR, = {(7‘1,...,7“”)‘ 71 ERl,...,Tn ERn}

with operations

(r1yeeoyrn) + (Pl i=(ry + 70, 1)
(P15 esmn) = (7o) =0 1)

is aring, and it is called the direct product of R;’s. Notice the operations in the i-th
component are done in R;.

Example 1.2.5. Compute (2,2) - (3,3) in Zs X Zg.

Solution. We notice that 2 -3 = 1in Zs and 2 - 3 = 0 in Zg. Hence we have
(2,2) - (3,3) = (1,0) in Zs x Zg. O
1.3 Basic properties of operations in a ring.

Here we see that some basic computations hold in every ring, and a unital ring R
has a unique identity, which is sometimes denoted by 1.

Lemma 1.3.1. Suppose R is a ring and 0 is the neutral element of the abelian group
(R, +). Then for every a,b € R, the following hold:

1. 0ca=a-0=0.
2. (—a)-b=—(a-b)=a-(=b).

3. (—a)-(-b)=a-b
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Proof. (1) Since 0 = 0+ 0, we have 0- a = (0 + 0) - a for every @ € R. Hence by the
distribution law, we have
0-a=(0-a)+(0-a).

As (R, +) is a group, we deduce that 0 = 0 - a. Similarly we have
a-0=a-(0+0)=(a-0)+ (a-0), which implies that 0 = a - 0.

(2) To show (—a) - b = —(a - b), we need to argue why (a - b) + ((—a) - b) =

(a-b)+ ((—a)-b) =(a+ (—a))-b (distribution law)
=0-b
=0 (by the first part).
By a similar argument, we can deduce that a - (—b) = —(a - b).

(3) Using the second part twice, we obtain the last part as follows:

(~a) - (=b) = ~(a~ (=b)) = ~(~(a b)) =a-b.
This finishes the proof. 0

Lemma 1.3.2. Suppose R is a unital ring. Then there is a unique element 1 € R
such that
lpra=a-1g=a (1.1)

for every a € R.

Proof. Suppose both 1 and 1’ satisfy (1.1). Then

1=1-1 (as 1’ satisfies (1.1))

=1’ (as 1 satisfies (1.1)),
and the claim follows. O
Exercise 1.3.3. Suppose R, ..., R, are unital rings. Show that (1g,, ..., 1R, ) is the

identity of Ry X --- X Ry,.

1.4 Subring and homomorphism.

Whenever you learn a new structure, you should look for subsets that share the same
properties (they are often called sub-), and more importantly maps that preserves those
properties (they are often called homomorphisms).

Definition 1.4.1. Suppose (R, +,0) is a ring. A subset S of R is called a subring of R
if

1. (S,4) is a subgroup of (R, +).

2. S'is closed under multiplication. This means that for every a,b € S, we have
abe S.
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Warning In your book, having an identity is part of the definition of a ring. As a
result a subring of a ring R should contain the identity of R. In our course, we do not
make that assumption for subrings.

Example 1.4.2. Z is a subring of Q. Q is a subring of R. R is a subring of C.
Exercise 1.4.3. 1. What is the smallest subring of C that contains Q and i?
2. What is the smallest subring of C that contains Q and /2?
3. What is the smallest subring of C that contains Q and /2?

Definition 1.4.4. Suppose Ry and Ry are two rings. Then a function f : Ry — Rs is
called a ring homomorphism if for every a,b € Ry

L fla+b)= f(a)+ f(b),
2. fla-b) = f(a)- f(b).

Warning As it has been mentioned earlier, in your book, having an identity is part
of the definition of a ring. As a result a ring homomorphism between two rings A and
B should send 1 4 to 1. In this course, we refer to the ring homomorphisms that send
14 to 1p as unital ring homomorphisms.

Example 1.4.5. For every positive integer n, ¢, : Z — L, cn(a) := [al, is a ring
homomorphism.



Chapter 2

Lecture 2

In this lecture, first we show the subring criterion and present important ring
homomorphisms. Next we define the kernel and the image of a ring homomorphism.
The third topic is on the group of units of a ring, and the definition of a field. As an
important example, we find the group of units of the ring of integers modulo n. Finally
we define zero-divisors and integral domains.

2.1 More on subrings and ring homomorphisms.

We start by defining a ring isomorphism.

Lemma 2.1.1. Suppose f : R1 — Ry is a bijective ring homomorphism. Then
f~': Ry — Ry is a ring homomorphism.

Proof. Since f is a bijection, it is invertible and there is the function f =1 : Ry — R;.
For every a,b € Rs, we have

FFHa) + F7H0) =F(fH @) + F(FH(0)
=a + b.

Hence f~(a +0b) = f~(a) + f~1(b). Similarly we have

FUHa) - f7H0) =F(F (@) - F(FH D))

=a-b.
Hence f~(a-b) = f~1(a) - f~1(b). The claim follows. O

Definition 2.1.2. A bijective ring homomorphism is called a ring isomorphism. We
say two rings are isomorphic if there is a ring isomorphism between them.

As in group theory, two isomorphic rings are essentially the same with different
labelling!
Let us start with subgroup criterion from group theory.

15
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Lemma 2.1.3 (Subgroup criterion). Suppose (G, -) is a group and H is a non-empty
subset. If for every h,h' € H, we have hh'~* € H, then H is a subgroup.

We can use the subgroup criterion in order to show the subring criterion.

Lemma 2.1.4 (Subring criterion). Suppose R is a ring and S is a non-empty subset of
R. If for every a,b € S, we have

1. a—bes, and
2.a-bes,
then S is a subring.

Proof. By the subgroup criterion, we deduce that (.S, +) is a subgroup of (R, +). Since
S is also closed under multiplication, we deduce that S is a subring. O

2.2 Kernel and image of a ring homomorphism.

A good application of the subring criterion is to show that the kernel of a ring
homomorphism and its image are subrings. Let us recall from group theory that the
kernel of a group homomorphism f between two abelian groups A; and As is

ker f := {a € A4] f(a1) =0},
and ker f is a subgroup of A;. We also have that the image of f is

Im f:= {f(a)] @ € A},

and it is a subgroup of A,. Since a ring homomorphism f is also an additive group
homomorphism, we deduce that ker f and Im f are subgroups of the domain of f and
the codomain of f, respectively.

Lemma 2.2.1. Suppose f : Ry — Rg is a ring homomorphism. Then the kernel ker f
of f is a subring of Ry and the image Im f of is a subring of Ro. Moreover for every
a € Aand x € ker f, we have that ax and xa are in ker f.

Remark 2.2.2. Notice that the moreover part of Lemma 2.2.1 is much stronger than
saying ker f is closed under under multiplication. Later, when we are studying ideals
we will come back to this extra property of kernels.

Proof of Lemma 2.2.1. From group theory, we know that ker f and Im f are additive
subgroups. It is enough to show that they are closed under multiplication. We show
a stronger result for ker f, and we will come back to this property when we define an
ideal of a ring. For every a € ker f and every a’ € Ry, we have

fla-d")=f(a) - f(a')=0-f(a')=0, andsoa-a’ € kerf.

For every b,b’ € Im f, there are a,a’ € R; such that b = f(a) and b’ = f(d').
Therefore

b-t = f(a)- f(a') = fla-a/) € Tm f.

This completes the proof. O
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Example 2.2.3. Find the kernel of ¢y, : 7 — L, cn(a) := [a]p.

Solution. You have seen this in group theory: a € ker ¢, if and only if ¢, (a) = 0.
This means a € ker ¢, if and only if [a],, = [0],,. Hence a € ker f if and only if a is a
multiple of n. Therefore ker c,, = nZ. O

Example 2.2.4. Notice that c,, : Z[x] — Ly (], cn (3o aix?) := Y ooy cnla;)z’ is
a ring homomorphism. Find the kernel of c,,.

Proof. Before we describe the kernel of c,,, let us point out that every ring homomor-
phism f : A — B can be extended to a ring homomorphism, which by the abuse of
notation is also denoted by f, between A[x] and Blx]: f : A[z] — B[z] such that
FOo g aixt) == 32, fa;)z" (Justify for yourself why this is the case).

Now notice that ) _;° ; is in the kernel of ¢, if and only if for every i, a; is in the
kernel of ¢,,. Hence ker ¢,, = nZ|x], which means it consists of polynomials that are
multiple of n. O

2.3 A special ring homomorphism

Let’s recall a notation from group theory before going back to ring theory. In group
theory, you have learned that if (G, -) is a group and g € G, then the cyclic group
generated by g is

{9"| n € Z},

and
eqg: L — G,eq(n) :=g" 2.1

is a group homomorphism. You have also learned that when we have an abelian group
A, we often use the additive notation. The cyclic (additive) subgroup generated by
a€ Ais

{nal a € Z},

where na is defined as follows: for a positive integer n we set

na:=a+---+a,
N—_———

n-times

for a negative integer n, we set

na:= (—a) + -+ (—a),

(—n)-times

and for n = 0, na = 0. In the additive setting the group homomorphism e, which is
given in (2.1) is as follows:

€q:Z — A eq(n) :=na. 2.2)

Since aring (R, +, -) with addition + is an abelian group, we can use the same notation
as in group theory. This means for n € Z and a € R, we can talk about na € R.
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Warning. For aring R, an integer n, and a € R, na should not be confused with a
ring multiplication n - a. As it is explained above, this concept is borrowed from group
theory. Notice that the ring multiplication is only defined for two elements of R, and it
is not defined for an integer and an element of R.

Lemma 2.3.1. Suppose R is a unital ring with the identity element 1. Then
e:Z— R, e(n):=nlg

is a ring homomorphism.

Proof. From group theory, we know that e is an abelian group homomorphism. So it
is enough to show that for every integers m and n we have e(mn) = e(m) - e(n). This
is done by a case-by-case consideration, and is not particularly interesting!

Casel. n=0orn=0.

Proof of Case 1. By definition, e(0) = 0 (the first 0 is in Z and the second 0 is in R).
By basics properties of ring operations (see Lemma 1.3.1), we have that0-a = a-0 =0
for every a € R. Therefore for m = 0, we have

e(mn) =¢(0) =0, and e(m) - e(n) = €(0) - e(n) =0-e(n) =0,
and similarly for n = 0, we have
e(mn) =e(0) =0, and e(m) - e(n) = e(m) - e(0) =e(m) -0 =0,

and the claim follows.
Case 2. m,n > 0.

Proof of Case 2. By definition, e(mn) = 1g + - - - + 1 where there are mn-many
1grs. On the other hand,

e(m)-e(n) =g+ -~ +1g) (1 + -+ 1g)

m-times n-times
=1lgp-1g+---+1r-1p (by the distribution law)
mn-times

=1lp+---+1g
————
mn-times

=e(mn).

This shows the claim in Case 2.
Case3. m > 0and n < 0.

Proof of Case 3. Since m is positive and n is negative, mn is negative. Hence
e(mn) = (—1g) + -+ - + (—1g) where there are (—mn)-many —1gs. On the other
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hand,

efm) - e(n) =(La + -+ 1) - ((<Lr) + -+ (=1x)
m-times (—n)-times

=1p-(=1g)+---+1g-(—1g) (by the distribution law)

(—mn)-times

=—(gr-1r)+ -+ —(r-1g) (Lemma 1.3.1)

(—mn)-times
=(-1g)+ -+ (~1g)

(—mn)-times

=e(mn).

This shows the claim in Case 3.
Cased4. m < 0Oandn > 0.
This case is almost identical to Case 3.
Case5. m < Oandn < 0.
We leave this case as an exercise. O

2.4 The evaluation or the substitution map

As it has been already hinted to, polynomials can be viewed as functions. This
means we can evaluate a polynomial. Next we make it more formal.

Proposition 2.4.1. Suppose B is a commutative ring and A is a subring of B. Suppose
b € B. Then the evaluation map

oy Alz] = B, ¢p(f(z)) = f(b)
is a ring homomorphism.

Proof. We need to show that for every fi, fo € A[z] we have

Po(f1(2) + fa(@)) =du(f1(2)) + d(fa()) and
Oo(f1(x) fa (@) =dn(f1(2)) P (f2()).
Both are easy to be checked and we leave it as an exercise. O

Let’s describe the image and the kernel of ¢y.
By the definition of kernel, the kernel of the evaluation map ¢;, : A[x] — B consists
of polynomials that have b as a zero:

ker ¢, = {p(z) € Alz]| p(b) = 0}.

This is an indication of how ring theory can help us to study zeros of polynomials.
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The image of ¢y is

Im ¢y, = {p(b)| p(z) € Alz]} = {Zaibi IneZt ap,... an € A}.

=0

In the next lecture we will show that the image of ¢ is the smallest subring of B
that contains both A and b.
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Lecture 3

3.1 The evaluation or the substitution map

In the previous lecture we defined the evaluation map

oo Alz] = B, du(f(2)) = f(b)
where A is a subring of B and b € B. We observed that

ker ¢ = {p(z) € Alz] | p(b) = 0}.
Next we describe the image of ¢;.

Lemma 3.1.1. Suppose A is a subring of a unital commutative ring B, and b € B.
Then the image of the evaluation map ¢y, is the smallest subring of B that contains both
A andb.

Proof. Since ¢, is a ring homomorphism, its image is a subring. For every a € A,
¢p(a) = a, where a is viewed as the constant polynomial, and ¢, (x) = b. Hence Im ¢
is a subring of B which contains A and b.

Suppose C is a subring of B which contains A and b. Then forevery ag, . .., a, € A,
we have

apg+ab+---+a,b" € C

as C is closed under addition and multiplication. This implies that Im ¢y, is a subset of
C'. The claim follows. O

Definition 3.1.2. Suppose A is a subring of a unital commutative ring B, and b € B.
The smallest subring of B which contains A and b is denoted by Alb].

Warning. The notation A[b] can be confusing because of its similarity with the
ring of polynomials A[z]. You have to notice that b € B is not an indeterminant.
By Lemma 3.1.1, we have that Im ¢, = A[D].

Exercise 3.1.3. Earlier you have seen that the image Q[i] of ¢; : Q[z] — C and the
image Q[v/2] of ¢./5 : Q[z] — C are given only using polynomials of degree at most 1.
You have also observed that to get the entire Q[?/i], one can only use polynomials of
degree at most 3. What do you think is the general rule?

21
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3.2 Units and fields

As it has been pointed out earlier, Khwarizmi was interested in solving degree 1
equations. Now we try to do same in a ring: suppose R is a ring and a,b € R. Does
the equation az = b have a solution in R? Over real numbers, such an equation has a
solution as long as a # 0. In fact, if a # 0, then x = a~1b is the unique solution of
ax = b. So the question is whether or not ¢ has a multiplicative inverse.

Definition 3.2.1. Suppose R is a unital ring. We say a € R is a unit if there is a’ € R
such that a - @' = a' - a = 1. The set of all units of R is denoted by R*.

Lemma 3.2.2. Suppose R is a unital commutative ring and a € R is a unit. Then there
is a unique a’ € R such that a - ' = 1g. (We call such an a’ the multiplicative inverse
(or simply the inverse) of a. The multiplicative inverse of a. is denoted by a™".)

Proof. Suppose a-a’ = a-a” = 1. We have to show that ' = a””. We have

a =d - 1g=d - (a-d")

=(a'-a)-a"” (by the associativity)
=(a-a')-a"” (by the commutativity)
—1p-a" =ad".

Lemma 3.2.3. Suppose R is a unital ring. Then (R*,-) is a group.

Proof. We start by showing that R* is closed under multiplication. Suppose a,b € R*;
then

(a-b)-bt-aH)y=0""a1)(a-b)=1g. (justify this!)

Hencea -b € R*.
Next we show that (R*, -) has an identity. Notice since 1g - 1g = 1, 1g € R*.
Aslgp-a=a-1r = aforevery a € R*, we deduce that 15 is the identity of R*.
Observe that we have the associativity of - for free as R is a ring.
Finally we show that every element of R* has an inverse. Suppose a € R*. Then

a-a~!'=a"!-a=1g. This implies that a~* € R*, which completes the proof. [

Example 3.24. Q* =Q\ {0}, R* =R\ {0}, and C* =C\ {0}.
Example 3.2.5. Find 7*.

Proof. By the definition, a € Z* if and only if aa’ = 1 for some o’ € Z. If aa’ = 1,
then |a||a’| = 1 and |a| and |a’| are two positive integers. Hence |al,|a’| > 1 and
lal|a’| = 1. This implies that |a| = |a’| = 1. Therefore a = £1. As (=1)(-1) =1
and (1)(1) = 1, we deduce that Z* = {1, —1}. O

Example 3.2.6. Find 2! in Zs.
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Proof. Notice that [2]5 - [2]3 = [1]3, and s0 27! = 2in Zj. O

Warning. When we know that we are working with elements of Z,,, we often write
a instead of [a],,. When we are asked to find the inverse of an apparently integer number
a in Z,,, we should not write é We should find an integer a’ such that

aa’ =1 (mod n).

Exercise 3.2.7. Review your notes from either math 109 or math 100 a where the
Jollowing property of the greatest common divisor of two integers is discussed. Suppose
a and b are two non-zero integers. Then

the equation ax + by = c has an integer solution if and only if gcd(a, b) divides c.

This fact can be written in a compact form as oZ + bZ = ged(a, b)Z. (See proposition
2.3.5 of your book.)

Using the above exercise, we can describe the group Z,¢ of units of Z,,.
Proposition 3.2.8. Suppose n is a positive integer. Then
7} = {[a]n| ged(a,n) = 1}.

Proof. Notice that [a],, is a unit in Z,, if and only if for some [z], € Z, we have
[a]n]x]n = [1]n. This means the congruence equation az = 1 (mod n) has a solution.
This in turn means for some integers « and y we have ax — 1 = ny. So we are looking
for as such that the following equation has an integer solution:

ar —ny = 1.
By the above exercise, this happens exactly when ged(a, n) = 1. The claim follows. ]
Euler’s phi function ¢(n) is
{ae€eZ|1<a<n,ged(a,n)=1}.
Hence by Proposition 3.2.8, we have that
|Z| = é(n).
As a corollary of this equation, we can deduce Euler’s theorem.

Theorem 3.2.9 (Euler’s theorem). Suppose n is a positive integer, and ged(a, n) = 1.
Then
a®™ =1 (mod n).

Proof. In group theory, you have learned that if (G, -) is a finite group, then for every
g € G we have
g‘Gl =1.
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We apply this result for the group Z). When ged(a,n) = 1, [al,, € Z). Therefore by
the above discussion we have

™! = [alf™ = 1]

Hence
a®™ =1 (mod n).

O
Definition 3.2.10. A unital commutative ring F is called a field if F* = F \ {0}.
Example 3.2.11. Q, R, and C are fields, and Z is not a field.

Corollary 3.2.12. Suppose n is a positive integer. Then Z., is a field if and only if n is
prime.

Proof. By Proposition 3.2.8, we have that Z,, is a field if and only if
Z \{[0]n} = {laln| ged(a,n) = 1}.

This means 1 < n and every positive integer less than n is coprime with n. The claim
follows. 0

3.3 Zero-divisors and integral domains

Let’s go back to a special case of linear equations: ax = 0. We know that over C,
0 is the unique solution of this equation if a # 0. On the other hand, in Zg, we have
[2]6[3]6 = [0]6, which means 2z = 0 has a non-zero solution in Zg. This brings us to
the following definition.

Definition 3.3.1. Suppose R is a commutative ring. We say a € R is a zero-divisor if
a # 0 and ab = 0 for some non-zero b € R. The set of zero divisors of R is denoted by
D(R).

Definition 3.3.2. A unital commutative ring D is called an integral domain if D has
more than one element (alternatively we can say Op # 1p (why?)) and D has no
zero-divisors.

Example 3.3.3. Z, Q, R, and C are integral domains, and Z¢ is not an integral domain.
Lemma 3.3.4. Suppose R is a unital commutative ring. Then R* N D(R) = &.

Proof. Suppose to the contrary that « € R* N D(R). Then for some a’ € R\ {0} we
have a - o/ = 0. Then
at-(a-d)y=at-0=0.

On the other hand, we have
at-(a-d)y=(a"ta)-d =1g-d =d.

Hence o’ = 0, which is a contradiction. O
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Corollary 3.3.5. Every field F is an integral domain.

Proof. Since Fis a field, 1 € F* = F \ {Op}. Hence 1 # Op. Next we want
to show that F' has no zero-divisors; that means we want to show D(F) = &. By
Lemma 3.3.4, we have that D(F) N F* = @. Since F is a field, F* = F \ {0}.
Altogether we deduce that D(F') = &, and the claim follows. O

Notice that the converse of Corollary 3.3.5 is not correct; for instance Z is an
integral domain, but it is not a field. The converse statement, however, holds for finite
integral domains. Before proving this result, let’s show the cancellation law for integral
domains.

Lemma 3.3.6 (Cancellation law). Suppose D is an integral domain. Then for every
non-zero a € D and b,c € D,

ab=ac implies b=c.

Proof. Since ab = ac, we have a(b — ¢) = 0. Since a # 0 and D does not have
a zero-divisor, we deduce that b — ¢ = 0, which means b = c¢. This completes the
proof. O

Proposition 3.3.7. Suppose D is a finite integral domain. Then D is a field.

Proof. Since D is an integral domain, it is a unital commutative ring and Op # 1p.
So it is enough to show that every non-zero element a € D is a unit. This means we
have to show that for some © € D we have az = 1. Let ¢, : D — D, {,(x) := ax.
With this choice of Z,, it is enough to show that 1 is in the image of ¢,. We will show
that ¢, is surjective. Notice that since D is a finite set, ¢, : D — D is surjective if and
only if it is injective. Therefore it is enough to prove that ¢, is injective. Notice that

lo(b) = Lo(c) =ab = ac (By the cancellation law)
=b=c
Therefore ¢, is injective which finishes the proof. O

3.4 Characteristic of a unital ring

Definition 3.4.1. Suppose R is a ring. Let
NT(R) := {n € Z"| for every a € R,na = 0}. 3.1

If NT(R) is empty, we say that the characteristic of R is zero. If NT(R) is not empty,
the characteristic of R is the minimum of N+ (R). The characteristic of R is denoted
by char(R).

Notice that for every ring R we have that char(R)a = 0 for every a € R.
Let us recall that by Lemma 2.3.1 we have that

e:Z— R,e(n) :=nlg

is a ring homomorphism. The next lemma gives us a clear connection between the ring
homomorphism e and the characteristic of R.
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Lemma 3.4.2. Let R be a unital ring and e : ZZ — R, e(n) := nlp. For every unital
ring R, we have ker e = char(R)Z.

Proof. From group theory, we know that every subgroup of Z is of the form mZ for
some non-negative integer m. Since ker e is a subgroup of Z, for some non-negative
integer ny we have that ker e = nyZ.

If ng = 0, then there is no positive integer n such that nl1p = 0. Hence N*(R) is
empty where N1 (R) is as in (3.1). Therefore char(R) = 0. Thus in this case we have
ker e = char(R)Z.

Now suppose ng # 0. For every n € N*(R), we have nlg = 0 which implies
that n is in ker e = ngZ. Therefore

n > ng if nc Nt(R). (3.2)
On the other hand, for every a € R, we have

nga =a+---+a
N—————

no-times
=(1g-a)+--+ (g a)
no-times
=(lgr+---+1r)-a=(nolg)-a (distribution)
—_————
no-times
=0-a=0 (3.3)
By (3.3), we deduce that
ng € N(R). (3.4)
By (3.2) and (3.4), we deduce that ng = min N*(R) = char(R), and the claim
follows. O

Proposition 3.4.3. Suppose D is an integral domain. Then char(D) is either 0 or a
prime number.

Proof. Suppose to the contrary that char(D) is neither O nor prime. Then either
char(D) is either 1 or of the form ab where a and b are two integers more than 1.
If char(D) = 1, then 1p = Op which is a contradiction as D is an integral domain.
If char(D) = ab and a, b are integers more than 1, then by Lemma 3.4.2 we have
ker e = abZ. Hence e(ab) = 0, which implies that

e(a)-e(b) =0. (3.5)

As D is an integral domain, by (3.5) we deduce that either e(a) = 0 or e(b) = 0. Hence
either a € kere or b € kere. Since ker e = abZ and a and b are integers more than 1,
we get a contradiction. O
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Lecture 4

4.1 Defining fractions

In the previous lecture, we showed that every field is an integral domain, and we
noticed that the converse does not hold in general: for instance Z is an integral domain
but it is not a field. Today we will show every integral domain can be embedded into
a field. Let’s discuss this from the point of view of solving equations. Notice that in
a field every linear equation of the form ax = b has a (unique) solution if a is not
zero. This property does not hold in an arbitrary integral domain. Let’s say we start
with an integral domain D and “add” all the zeros of the equations of the form bz = a
with b # 0 to D. What do we get? Let’s look at the ring of integers Z. In this case,
we get {¢| a,€ Z,b € Z\ {0}}, which is the field Q of rational numbers. We use
our understanding of rational numbers as our guide to create fractions for an arbitrary
integral integral domain D. Every fraction is of the form 7 so it is given by a pair of
elements the numerator a and the denominator b. The numerator is arbitrary and the
denominator is every non-zero element. The subtlety is that two different pairs might
give us the same fractions. In the field of rational numbers we know that § = < if
and only if ad = bc. We use this to identify two different pairs together. Formally, we
define a relation between the pairs, show that this is an equivalence relation, and use
the corresponding equivalence relations to define fractions.

Suppose D is an integral domain. For (a,b) and (¢, d) in D x (D \ {0}), we say
(a,b) ~ (¢,d) if ad = be. Next we check that ~ is an equivalence relation. Recall that
arelation is an equivalence relation if it is reflexive (every element is “equal” to itself!),
symmetric (if x is “equal” to y, then y is “equal” to x), and transitive (if x is “equal”
to y and y is “equal” to z, then x is “equal” to z). This means we have to check the
following:

1. Forevery (a,b) € D x (D\{0}), we have (a,b) ~ (a,b). This holds as ab = ba.

2. For every (a,b), (¢,d) € D x (D \ {0}), if (a,b) ~ (¢,d), then (c,d) ~ (a,b).
This holds as ad = bc implies that cb = da.

3. For every (a,b), (c,d), (e, f) € D x (D\ {0}), if (a,b) ~ (¢,d) and (c,d) ~
(e, f), then (a,b) ~ (e, f). The proof of this part is a bit more involved. Since

27
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(a,b) ~ (¢, d), we have ad = bc, and (¢,d) ~ (e, f) implies that cf = de.
Multiplying both sides of ad = be by f, and multiplying both sides of ¢ f = de
by b, we obtain the following

adf = bef, and cfb = deb.

Hence adf = deb. As d # 0 and D is an integral domain, by the cancellation
law, we have a f = eb. Therefore

(a,b) ~ (e, f)-

Notice that in the last item, we used the condition that D is an integral domain in a
crucial way.
We let § be the the equivalence class [(a,b)], and let

QD) = {7 | (1) € Dx (D\ {o})}.

4.2 Defining addition and multiplication of fractions

Next we will make define two binary operations on Q(D). Again we imitate rational
numbers, and we define

a ¢ ad + be
-+ — = and

@ ¢ _oac
b d’ bd b d° bd

Whenever we are working with equivalence classes, we have to be extra careful.
We need to check whether or not our definitions are independent of the choice of a
representative from equivalence classes.

Let’s make it more concrete by working with fractions. We are defining addition
and multiplication of fractions in terms of their given numerator and denominator. A
priori, it is not clear, why we end up getting the same result if we represent the same
fractions with different numerators and denominators. That means we have to show
that §+ = 2 and gt = Z* imply that

a1d; + byeq B asds + baco 0 a1c1 Gy
bidi  bdy 0 by bady’

We only discuss why the addition is well-defined. The well-definedness of the multipli-
cation is much easier.
We have that ‘“dbl fiblcl = GQdftlbm if and only if
1041 D2 d2

(a1d1 + blcl)(bgdg) = (a2d2 + bgCQ)(bldl) <~ 4.1

(albg)(dldg) + (Cldg)(blbg) = (agbl)(dldg) + (ngl)(blbg).

The second equality in (4.1) holds as we have a;bs = a2b; and cad; = c1ds because

ar _ az e ca
ofb1 = 5 anddl—dz.
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4.3 Fractions form a field

I leave it to you to check that (Q(D), +, -) is a ring. Next we show that Q(D) is
a field by checking that every non-zero element of Q(D) is a multiplicative inverse.
Before showing this, let us show that % is the zero of Q(D) and % is the identity of
Q(D): for every § € Q(D) we have

—_
IS

0 a 0-b+1-a a
T

= =
Sl
p—
>
Sl IS

We also notice that for every non-zero a in D, we have
a

—=—, and —=-—.

a

The first one holds as 0 - @ = 0 - 1 and the second one holds as 1 -a =a - 1.
Suppose § is not zero. Then a # 0. Hence b i5 an element of Q(D). We have that

a

@b _ab 1
b a b-a 1
which means that ¢ is a unit in Q(D). Therefore Q(D) is a field.

4.4 The universal property of the field of fractions

In this section, we show that Q (D) is the smallest field that contains a copy of D.
We have formulate this carefully. First we start by showing that Q)(D) has a copy of
D; this means there is an injective ring homomorphism from D to (D). This will be
done similar to the way we view integers as fractions with denominator 1.

Lemma 4.4.1. Suppose D is an integral domain. Let i : D — Q(D), i(a) := 2.
Then 1 is an injective ring homomorphism.

Remark 4.4.2. Suppose A and B are rings. We say A can be embedded in B or we
say B has a copy of A if there is an injective ring homomorphism from A to B.

Proof of Lemma 4.4.1. We have to show that i(a) + i(b) = i(a + ) and i(a) - i(b) =

i(a - b) for every a,b € D:

a-1+1-b a+b
-1 1

b

and

(=l

=— =i(a-b).

b a-
1 1-1

b
i(a) = i(b) :’%:I Sa-1=1-b=a=b.
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Next we show that if F' is a field which contains a copy of D, then F' contains a
copy of Q(D). In this sense, Q(D) is the smallest field which contains a copy of D.

Theorem 4.4.3. Suppose D is an integral domain and F is a field. Suppose f : D — F
is an injective ring homomorphism. Then

Fraoy = F J(3) = fafm™

is a well-defined injective ring homomorphism. Moreover the following is a commuting
diagram

that means we have fvo 1= f.

Proof. We start by showing that fis well-defined. Suppose {1 = $2. Then a1by =
asby which implies that f(a1b2) = f(az2by). Since f is a ring homomorphism, we
have

fla1)f(b2) = f(a2)f(b1). 4.2)

As f isinjective and b;’s are not zero, we deduce that f(b;)’s are not zero As Fisa ﬁeld
f(b;)’s are units in F. Therefore by (4.2), we have f(ai)f(b1)~! = f(a2)f(be)~?!
This implies that fis well-defined.

I leave it to you to check that fis a ring homomorphism. Next we show that fvis
injective. Let us recall an important result from group theory:

A group homomorphism is injective if and only if its kernel is trivial.

Based on the above mentioned result, to show that fis injective, it is enough to
prove that the kernel of f is trivial:

0=7(3) = f@f®™ = fl@=0 =a=0
where the last implication holds because f is injective.

Finally we prove that the given diagram is commutative. This means we have to
show for every a € D, we have f(i(a)) = f(a). By the definition of f, we have
to show f(a)f(1)~! = f(a). Hence we need to show that f(1) = 1. Notice that
f()=f(1-1) = f(1)- f(1). Since f is injective, f(1) # 0. As F'is afield, f(1)isa
unit. Therefore f(1) = f(1)- f(1) implies that f(1) = 1, which finishes the proof. [

How can we use the Universal Property of Field of Fractions?
The universal property can be used to show that Q(D) is isomorphic to a given
ring F'. We can use the following strategy to show Q(D) ~ F*:

1. Prove that F'is a field.
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2. Find an injective ring homomorphism f : D — F.

3. Use the universal property of field of fractions to get the injective ring homomor-
phism

~ ~ra B
Frao) = F f(3) = fafe) ™

4. Show that every element of F is of the form f(a)f(b)~! for some a,b € D.

The last step implies that fvis surjective. By the third item, we know that fvis

injective. Hence f is a bijective ring homomorphism. This implies that Q(D) ~ F'.
In the next lecture, we use this strategy to show that Q(Z[:]) ~ Q[d].






Chapter 5

Lecture 5

5.1 Using the universal property of the field of fractions.

In the previous lecture we defined the field of fractions of an integral domain and
proved its universal property. We also discussed a four step strategy of proving that the
field of fractions of an integral domain is isomorphic to a given ring.

Example 5.1.1. Prove that Q(Z]i]) ~ Q[i].

Solution. Step 1. Q[i] is a field.

We have already seen how to show Q[é] is a subring of C. So to show it is a field, it
is enough to prove that every non-zero element of Q[¢] is a unit. Let a + bi € Q[i] be a
non-zero element. Then we have

1 a—bi a—bi a b

atbi (a+bi)(a—bi) a2+b2 a2+ b2 N

Since a,b € Q, we have 3137, ﬁ € Q. Hence (a + bi)~! € Q[i]. Notice that
a—+0bi # 0, a—bi # 0and we are allowed to multiply the numerator and the denominator
by a — bi.
Step 2. f : Z[i] — Q[i], f(2) := =.
Then clearly f is an injective ring homomorphism.
Step 3. By the Universal Property of Field of Fractions,
Fr@i) - i, F(2) = s fz)™

z2

is a well-defined injective ring homomorphism.

Step 4. f is surjective.

Suppose a + bi € Q[i]. Then by taking a common denominator for a and b we have
that there are integers r, s and ¢ such that

atbi=""" rrqosiyp),
Therefore fis surjective. B
By Steps 3 and 4, we have that f is an isomorphism. O
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5.2 Ideals

In group theory (and linear algebra), you have seen the importance of kernel of
homomorphisms. Next we find out exactly what subsets of a ring A can be the kernel of a
ring homomorphism from A to another ring. We have already proved thatif f : A — B
is a ring homomorphism, then the kernel of f have the following properties:

1. Forevery z,y € ker f, x — y € ker f, and
2. Forevery z € ker f and a € A, then azx € ker f and za € ker f.

We will show that these conditions are enough to be the kernel of a ring homomorphism.
This brings us to the definition of ideals.

It should be pointed out that this is not the historical route to the theory of ideals.
The theory of ideals started in order to get the factorization property for more general
rings than ring of integers. We will come back to this historical note later when we
define prime ideals.

Definition 5.2.1. Suppose A is a ring, and I is a non-empty subset. We say I is an
ideal of A if

1. Foreveryx,y€l, x —y €l and

2. Foreveryx € I anda € A, then ax € I and xa € 1.
When I is an ideal of A, we write I < A or I < A.

So we have

Lemma 5.2.2. For every ring homomorphism f : A — B, we have that ker f is an
ideal.

Next we construct some ideals.

Lemma 5.2.3. Suppose A is a unital commutative ring, and x1, . ..,x, € A. Then
the smallest ideal of A which contains x1, ..., Ty is

{a1z1+ -+ anxy | a1,...,a, € A}. (5.1)
We denote this ideal by (x1, . .., x,) and we call it the ideal generated by x1, . .., Tp,.

Proof. We start by showing that the set I given in (5.1) is an ideal and it contains x;’s.
Suppose y,y" € I; then

n n
Y = E a;z; and y' = g a,x;
i=1 i=1

for some a;’s and a’’s in A. Hence
7

n

y—y = (i ;i) — (i diwi) = D (0 —aj)wi € 1
1=1 =1

=1
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For every a € A, we have

n

ay = a(z a;T;) = Z(aa,;)xi el
i=1 i=1
This shows that I is an ideal of A. For every iy, we have

iy = 0421 + -+ 04%59—1 + L1awsy + 0425941 + -+ - + 042, € I,

which implies that x;’s are in I.
Next suppose J is an ideal of A which contains x;’s. Then for every a; € A we
have a;z; € A, which in turn implies that

a1y + -+ an®y € J.
Therefore I C J. This finishes the proof. O

We say an ideal [ is a principal ideal if it is generated by one element. By
Lemma 5.2.3, we have that in a unital commutative ring A the principal ideal generated
by x is

() ={ax | a € A}.

We sometimes denote (x) by zA.
As in group theory, we will prove the isomorphism theorems. To get to that, we
start by defining the quotient ring.

5.3 Quotient rings

Suppose I is an ideal of a ring A. Then for every x,y € I, we have x — y € 1.
Hence by the subgroup criterion, I is a subgroup of A. As A is abelian, [ is a normal
subgroup of A. Therefore the set A/I of all the cosets of I form an abelian group under
the following operation

(x+D)+y+1):=(x+y)+1.
Next we define a multiplication on A/I.
Lemma 5.3.1. Suppose I < A. The following is a well-defined operation on A/
(+1)-(y+1)=ay+1
fora+ILy+1eA/L

Proof. Suppose v1 +1 = xo+Tandy; +1 = yo + I. Then zy — 22 € [ and
y1 — Y2 € I. Here we are using a result from group theory which states that for two
cosets a + H and a’ + H we have

a+H=a +Hifandonlyifa —a' € H. (5.2)
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By (5.2), to show z1y; + I = xoy2 + [ it is necessary and sufficient to show that
T1y1 — Tay2 € 1. (5.3)

We show this by adding and subtracting a new term (this method is similar to how we
find the formula for the derivative of product of two functions):

T1y1 — Tay2 =(T1y1 — T1Y2) + (T1y2 — T2y2)
=z1(y1 — y2) + (x1 — x2)Yo2. (5.4)
Since y; —ys € I and ©1 — z2 € I, we have
1 (y1 — vy2), (x1 — 22)y2 € 1. (5.5)

By (5.4), (5.5), and the fact that I is closed under addition we deduce that x1y; —z2y2 €
I. Hence z1y1 + I = x2ys + I which finishes the proof. O

Notice that Lemma 5.3.1 holds for non-commutative rings as well.
Proposition 5.3.2. Suppose Ais a ring and I <t A. Then
1. (A/I,+,") is a ring where for every x + I,y + I € A/I we have
(@+D)+y+1):=(x+y)+I and (x+1I) - (y+1):=ay+1.

2. pr: A— A/l pr(x) := x + I is a surjective ring homomorphism.
3. kerp; = 1.

Remark 5.3.3. The ring A/I is called a quotient ring of A and py is called the natural
quotient map.

Proof of Proposition 5.3.2. Since all the operations are defined in terms of coset repre-
sentatives, it is straightforward to check all the properties of rings and show that A/T is
aring. I leave this as an exercise.

Let’s prove the second item:

pr(z) +pry) = (@+ 1)+ (y+1)=(x+y) +1=pr(r+y),

and
pr(@)-pr(y) = (@+1)-(y+1I) =zy+1=pr(xy).
Every element of A/ is of the form = + I = p;(x), which means that p; is surjective.
Finally notice that

zekerpr © pi(x)=0+1 & z24+1=0+1 & xz€l,
and the claim follows. O
The following is a consequence of Proposition 5.3.2 and Lemma 5.2.2:

Corollary 5.3.4. Suppose A is a ring and I is a subset of A. Then I is the kernel of a
ring homomorphism from A to another ring if and only if I is an ideal.
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5.4 The first isomorphism theorem for rings

In this section, we prove the first isomorphism theorem for rings. Let’s recall the
group theoretic version of this theorem:

Theorem 5.4.1 (The 1st Isomorphism Theorem for Groups). Suppose f : G — G is
a group homomorphism. Then

f:G/kerf —Imf, f(gkerf):= f(g)
is a well-defined group isomorphism.
We use Theorem 5.4.1 to show the following:
Theorem 5.4.2. Suppose f : A — A’ is a ring homomorphism. Then
fiA/ker f —Imf, f(a+kerf):= f(a)
is a ring isomorphism.

Proof. Since f is an additive group homomorphism, by the first isomorphism theorem
for groups we have that f is a well-defined group isomorphism. To finish the proof;, it
is enough to show that f preserves the multiplication:

flay +ker f) = f(zy) = f(2)f(y) = fz +ker f) f(y + ker f),

for every z,y € A. This finishes the proof. O
Example 5.4.3. Suppose n is a positive integer. Then Z/nZ ~ Z,,.
Proof. Let ¢y, : Z — Z,, be the residue map ¢, (z) := [z],. Then ¢, is surjective and

x €kere, & [z], =1[0l, & nlz & ze€nZ.
By the first isomorphism theorem for rings, we have that

Cn L/l — Ly, Tp(x+nZ)=cy(x)

is a ring isomorphism. O

A general strategy of using the first isomorphism theorem to show that a quotient
ring A/I is isomorphic to a ring B is to start with a ring homomorphism f : A — C
where B is a subring of C', and show that Im f = B and ker f = I. This is what we
did in the previous example and what we will do in the next example as well.

Example 5.4.4. We have
Qla]/(2? - 2) ~ Q[v2],

and

QV2] = {a+bvV2]|a,beQ}.
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Proof. Let ¢ s : Q[z] — C be the evaluation map ¢ 5(f(x)) = f(v/2). Then by the
first theorem for rings we have

Q[x]/kercbﬁzhngﬁﬁ.

Recall that we have defined Q[v/2] to be the image Tm ¢ vz of b /5.

Next we find the kernel ker ¢_/5. Notice that V2is azeroof z2 —2, and so 22 — 2 is
inker ¢ /5. Suppose f(x) € ker ¢_s. By the long division, there are ¢(), 7(z) € Q7]
such that

1. f(z) = q(x)(2? — 2) + r(x), and
2. degr < deg(z? — 2).

Since degr < 2, there are a,b € Q such that r(x) = ax + b. As f(v/2) = 0, we
deduce that
0= f(v2) = q(v2) (V2)? = 2) +(aV2 + D).
is 0

Hence av/2 4+ b= 0. Ifa # 0, then V2 = —b/a € Q which is a contradiction as V2
is irrational. Thus @ = 0, which in turn implies that b = 0. This means 7(z) = 0, and
so f(x) = q(x)(x® — 2) € I. Therefore ker ¢ 5 = I.

(We will continue in the next lecture.) ]
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Lecture 6

6.1 An application of the first isomorphism theorem.

In the previous lecture, we were in the middle of the proof of the following result. We
will be generalizing this result later in the course. We will be using similar techniques
to describe the structure of Q[«] where « is a zero of a polynomial.

Example 6.1.1. We have
Qlz]/(a® - 2) ~ Qv

and

QV2 = {a+bV2 | a,beQ}.

Proof. We have already considered the evaluation map ¢ _ s, used the first isomorphism
theorem to show that

Next we used the long division and proved that ker ¢, 5 = (22 —2).

Next we want to show that Q[v/2] = {ag + a1v/2 | ag, a1 € Q}. To show this we
again use the long division.

Elements of Q[v/2] are of the form p(+/2) for some p(z) € Q[z]. By the long
division, there are g(z), r(z) € Q[z] such that

1. p(x) = q(x)(z? — 2) + r(z), and
2. degr < deg(z? — 2).
Hence there are ag, a; € Q such that r(z) = ap + a;2. Therefore
2
p(V2) = q(vV2)(vV2" = 2) + (a0 + a1V2) = ap + a1 V2.
This implies that Q[v/2] = {a¢ + a1v/2 | ag, a1 € Q}, and the claim follows. O

As you can see in this examples, the long division plays an important role in
understanding of polynomials. Next we want to see in what generality the long division
holds.

39



40 CHAPTER 6. LECTURE 6

6.2 Degree of polynomials
Suppose A is a unital commutative ring and
f@)=a+arx+ - +az™ € Alz] and a, #0.

Then we say a,x™ is the leading term of f, and we write Ld(f) := a,z"™. The leading
term contains two information: the leading coefficient a,, and the exponent n of x which
is called the degree of f, and we write deg f = n. We use the following convention for
the zero polynomial:

deg0 = —oo0, and Ld(0):=0.
Example 6.2.1. Find deg((2z + 1)(32% + 1)) in Zg[z].
Solution. By the distribution property we have

(2r+1)(32% +1) = (2-3)2® + 32" + 20+ 1 = 32 + 22 + 1.
0in Z
1n Ze

Hence deg((2z +1)(32% + 1)) = 2. O

Notice that in the above example, deg(2z + 1) = 1 and deg(3z2 + 1) = 2. Hence
sometimes,

deg f - g # deg f + degg.

A closer examination of the above example reveals that existence of zero-divisors is
responsible for the failure of the degree of the product formula. In fact, if at least one
of the leading coefficients of f or g is not a zero-divisor, then we have

deg f-g=deg f+degyg.
Let’s see the details.
Lemma 6.2.2. Suppose A is a unital commutative ring, and f(x), g(z) € Alz].

1. Suppose the leading coefficient of f is a and the leading coefficient of g is b. If
ab # 0, then Ld(fg) = Ld(f) Ld(g) and deg fg = deg f + degg.

2. Suppose that the leading coefficient of f is not a zero-divisor. Then
Ld(fg) =Ld(f)Ld(g) and degfg=deg [+ degg; (6.1)
in particular, if D is an integral domain, then (6.1) holds.
Proof. (1) Suppose
flx)=ao+a1x+ -+ anz™, glx) =by + b1z + -+ bpa™,
a, = a, and b,,, = b. Then

f(2)g(x) = anb,x™ ™™ + terms of degree less than m + n.
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Hence if a,, by, is not zero, then Ld(fg) = anby,z™ ™. Notice that by the assumption
we have a,b,, = ab # 0. Therefore the claim follows as Ld(f) = ax™ and Ld(g) =
bxﬂ’l.

(2) Suppose g is not zero and its leading coefficient is b. Since the leading coefficient
a of f is not a zero divisor, ab # 0. Therefore by part (1), the claim follows. If g = 0,
then fg = 0. Hence deg fg = degg = —oo. As we are using the convention that
—o0 + n = —oo for every n € Z, the claim follows in this case as well.

When D is an integral domain, the leading coefficient of a non-zero f(x) is not a
zero-divisor. Hence we get the claim. If f = 0, then fg = 0. Thus Ld(fg) = 0 =
Ld(f)Ld(g) and deg fg = —0co = —o0 + deg g = deg f + deg g, which finishes the
proof. O

6.3 Zero-divisors and units of ring of polynomials

In this section, we use Lemma 6.2.2 to study the ring of polynomials of integral
domains.

Lemma 6.3.1. Suppose D is an integral domain. Then D[x] is an integral domain.

Proof. Since D is an integral domain, it is a unital commutative ring. Therefore D|[z]
is a unital commutative ring. Since D is an integral domain, it is a non-trivial ring.
As D[x] has a copy of D (constant polynomials), D[z] is a non-trivial ring. So it
remains to show that D|[x] does not have a zero-divisor. Suppose f(x)g(z) = 0 for
some f, g € D[x]. Then deg fg = —o0, and so by Lemma 6.2.2 we have

—oo =deg f +degg.

Therefore not both of deg f and deg g can be integers, and at least one of them is —oo.
This means either f = 0 or g = 0. This means D[z] does not have a zero-divisors. [

Lemma 6.3.2. Suppose D is an integral domain. Then
D[z]* = D*.

Proof. Suppose u € D*. Therefore u~! € D exists. Since D|x] has a copy of D as
the set of constant polynomials, we deduce that u~! € D[z] (notice that D[z] and D
have the same identity). Hence u € D*. This means D* C D[z]*.

Let’s go to the more interesting part where the assumption that D is an integral
domain is actually needed.

Suppose f(x) € D[z]*. This means there is g(z) € D[z] such that f(z)g(x) = 1.
By Lemma 6.2.2, we have that

deg f +degg = deg fg =degl =0.

This, in particular, implies that f and g are not zero, and so their degrees are at least 0.
Therefore deg f and deg g are two non-negative integers that add up to 0. Hence both
of them are zeros. That means f(z) = a € D, g(x) =b € D, and f(z)g(z) = abis 1.
This implies that f(z) = a € D*, which finishes the proof. O
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6.4 Long division

In this section, we will show the most general form of the long division for polyno-
mials. Let’s start with a quick overview of the long division for polynomials. Say we
want to divide

f(x) = apa™ + -+ a1 + ag

by
g(x) = bpa™ + -+ bz + bo.

In the long division algorithm, first we look at the degrees. If deg f = n is smaller
than deg g = m, then we are done! In this case, the quotient is 0 and the remainder
is f(z). If deg f > deg g, then we look for a monomial cx* to multiply by Ld(g) and
end up getting Ld(f); that means (cz*)(b,,2™) = a,z™:

(ca®)

_|_..._|_b0 ) (@™ + - +ag

This means that k¥ + m = n and b,,a = a,,. Since we assumed n > m, n —m > 0,
and we can let k := n — m. The equation b,,c = a,,, however, does not necessarily
have a solution in A. This equation has a solution in A if b, is a unit. In this case,
we see that the desired monomial is (b, a, )z ~™. After finding this monomial, we
subtract (b;,'a,z"~™)g(x) from f(x), get a smaller degree polynomial and continue
this process. This leads us to the following theorem.

Theorem 6.4.1 (Long Division For Polynomials). Suppose A is a unital commutative
ring, f(x), g(x) € Alx] and the leading coefficient of g(x) is a unit in A. Then there are
unique q(x) € Alx] (quotient) and r(x) € Alx] (remainder) that satisfy the following
properties:

f(x) =g(z)q(x) +r(x) and degr < degg. (6.2)

(Whenever you see the phrase and we continue this process, it means that there is
an induction argument in the formal proof.)

Proof. (The existence part) We proceed by the strong induction on deg f. If deg f <
deg g, then ¢(x) = 0 and r(x) = f(z) satisfy (6.2). So we prove the strong induction
step under the extra condition that deg f > degg. Suppose f(z) = > ., a;z’,
g(z) = Z?;O b;x', a,, # 0, and b, # 0. Then by the assumption b,, is a unit in A.
Let

f(x) = f(x) = (b, an)z" g (). (6.3)

Then one can see that deg f < deg f. Hence by the strong induction hypothesis, we
can divide f by g and get a quotient § and a remainder r; this means we have

f(@)=q(z)g(x) +r(x) and degr < degg. (6.4)
By (6.4) and (6.3), we obtain

f(@) = ((b an)z" ™ +q(2)g(z) + r(z) and degr < degg.
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Hence ¢(x) := (b, a,)x"~™ + q(z) and r(z) satisfy (6.2). This completes the proof

of the existence part.
(The uniqueness part) Suppose q1, 1 and go, 2 both satisfy (6.2). We have to prove
that g1 = ¢2 and 1 = 79. As q;, 7; satisfy (6.2). This means

f(@) = qu(x)g(x) +11(x) = g2(2)g(x) + ra(2),
degry < degg, and degry < degg.
Hence we have
(q1(2) — q2(2))g(x) = r2(x) —ri(z) and deg(ry —ri) <degg.  (6.5)

Since the leading coeflicient of g is a unit, it is not a zero-divisor (see Lemma 3.3.4).
Therefore by Lemma 6.2.2 and (6.5), we have

deg(ry — o) = deg((q1 — q2)g) = deg(q1 — ¢2) + degg < degg.

Hence deg(q1 — ¢2) < 0, which implies that ¢; — g2 = 0. Thus by (6.5), we deduce
that 1 = r9. Overall we showed that ¢ = ¢ and ry; = r9, which finishes the proof
the uniqueness. O
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Lecture 7

7.1 The factor theorem and the generalized factor theorems

In the previous lecture we proved a general form of the long division for polynomials.
We proved that if A is a unital commutative ring, we can divide f(x) by g(z) for
f,g € Alx] and a quotient and a remainder if the leading coefficient of ¢ is a unit in A.
In particular, if A is a field, then the leading coefficient of every non-zero polynomial
is a unit. Hence we can divide every polynomial by every non-zero polynomial.

The Factor Theorem is an important application of the long division for polynomials.

Theorem 7.1.1. Suppose A is a unital commutative ring and f(x) € Alx]. Then

1. forevery a € A, there is a unique q(x) € Alz] such that
f(@) = (z —a)q(z) + f(a).

2. (The Factor Theorem) We have that a is a zero of f(x) if and only if there is
q(z) € Alz] such that

f(x) = (x = a)q(x).

Proof. (1) By the long division for polynomials, there are unique ¢(z) and r(x) with
the following properties:

flz)=(z—a)q(x) +r(z) and degr < deg(z —a).

The second property implies that () is a constant, say r(z) = ¢ € A. Then we have
f(x) = (x — a)g(x) + c. Evaluating both sides at x = a, we deduce that ¢ = f(a).
Altogether, we obtain that f(z) = (x — a)g(z) + f(a), which finishes the proof of the
first part.

(2) Suppose a is a zero of f; then f(a) = 0. Therefore by part (1), we have that
f(z) = (x — a)g(x) for some g(x) € Alz].

To show the converse, we can evaluate both sides of f(z) = (x — a)q(z) atx = a,
and deduce that f(a) = 0. This finishes the proof. O
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The factor theorem can be interpreted in terms of the evaluation map: for every
a € A we have

ker ¢, = (x — a),
where ¢, : Alz] = A, ¢a(f(2)) := f(a).
Theorem 7.1.2. Suppose D is an integral domain, f(x) € Dlz], and a1, ...,ay,
are distinct elements of D. Then a, ..., a,, are zeros of f(x) if and only if there is

q(z) € D[z] such that
fl@) = (& —a1) - (x = an)q(x).

Proof. We proceed by the induction on n. The base of induction n = 1 follows from

the Factor Theorem. So we focus on the induction step. Suppose aq,...,a,+1 are
distinct zeros of f(x). Then by the induction hypothesis, there is G(x) € D[z] such that
f@) = (& —a1) - (z - an)q(x). (7.1)

Since a,, 11 is a zero of f(x), by (7.1) we deduce that

0= (ant1 —ai) - (ns1 — an)q(Ant1)- (7.2)

Since a;’s are distinct, a,,41 — a;’s are not zero. As D is an integral domain, it has no
zero-divisor. Therefore by (7.2), we obtain that

q(ant1) = 0.
Hence by the Factor Theorem, there is g(z) € D[z] such that
q(x) = (z — ant1)g(x). (7.3)
By (7.2) and (7.3), we obtain that
f(@)=(z—a1) - (z—an)(z — ant1)q(z).
This finishes the claim. O

Remark 7.1.3. The Factor Theorem holds for every unital commutative ring, but the
Generalized Factor Theorem is true only for integral domains.

Exercise 7.1.4. Give an example where the Generalized Factor Theorem fails.

Corollary 7.1.5. Suppose D is an integral domain and f(z) € D[z] \ {0}. Then f
does not have more than deg f distinct zeros in D.

Proof. Suppose aq, ..., a,, are distinct zeros of f(x). Then by the generalized factor
theorem there is ¢(x) € D[z] such that
flz) = (z—a1) - (x—am)q(z). (7.4)

Comparing the degrees of both sides of (7.4), we get
deg f = m + degq.

Notice that since f is not zero, neither is q. Thus deg g > 0. Hence deg f > m, which
finishes the proof. O
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7.2 An application of the generalized factor theorem

In this section, we prove an interesting result in congruence arithmetic with the help
of the generalized factor theorem. Later, we will prove a generalization of this result
for all finite fields.

Theorem 7.2.1. Suppose p is a prime number. Then
-z =a(@—1)(z—(p—1))
in Zp|z].
Proof. By the Fermat’s little theorem, for every a € Z,, we have a? — a = 0. This
means 0,1, ..., p— 1 are distinct zeros of 2P — x in Z,,. Since Z,, is an integral domain,
we can employ the generalized factor theorem and deduce that there is ¢(x) € Z,[z]
such that
2 —x=z(z—1)--(z— (p—1))g(x). (7.5)
Comparing the degree of the both sides of (7.5), we obtain that p = p + deg q. Hence
q(x) = cis a non-zero constant. Therefore
P —r=cx(r—1)---(x—(p—1)). (7.6)
Comparing the leading coefficients of (7.6), we deduce that ¢ = 1. This implies that
P =z =a(@—1)(r - (p— 1),
and the claim follows. O
As a corollary of Theorem 7.2.1, we deduce Wilson’s theorem.
Corollary 7.2.2. Suppose p is prime. Then (p — 1)! = —1 (mod p).
Proof. By Theorem 7.2.1, we have
2 —x=z(xz—-1)---(x—(p—1)) (7.7)

in Z,[x]. This means that all the coefficients of these polynomials are congruent modulo
p. Let’s compare the coefficients of x. The coefficient of x on the left hand side of (7.7)
is -1, and the coefficient of x on the right hand side of (7.7)is (—1)(—2) --- (—(p—1)).
Therefore

(=1)P"1(p—1)!'=—-1 (mod p). (7.8)
For p = 2, we have (2 — 1)! = —1 (mod 2). So we can and will assume that p # 2.
Therefore p is odd, which implies that (—1)?~! = 1. By (7.8) and (—1)?~! = 1, we
obtain that

(p—1!'=-1 (mod p),

which finishes the proof of Wilson’s theorem. O

We can use polynomial equations to deduce many interesting congruence relations.
The next exercise is another such example.
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Exercise 7.2.3. Suppose p is an odd prime number. Use (x — 1)? = aP — 1 in Zp|z]
and the cancellation law in Z,[x], to deduce that

("71) =0 moap

7

forevery) <i<p—1

7.3 Ideals of ring of polynomials over a field

Let’s go back to the zeros of polynomials. Suppose o € C is a zero of a polynomial.
We would like to understand the ring structure of Q[a]. By the first isomorphism
theorem, we have

Qla]/ ker o ~ Qla]
where ¢, : Q[z] — C is the evaluation at «. To understand the ring structure of Q[«],
we need to study the ideals of Q[z].

Theorem 7.3.1. Suppose F is a field. Then every ideal of F[x] is principal.

Proof. Suppose I is an ideal of F'[x]. If I is the zero ideal, we are done. Suppose I is
not zero, and choose po(z) € I such that

deg po = min{degp | p € I\ {0}};

deg po is the smallest among the degrees of non-zero polynomials of I. The next claim
finishes the proof.

Claim. I = (pg).

Proof of Claim. Since pg isin I, (pp) C I. Next we want to show that every element
of I isin (pg). Suppose f(x) € I. We have to show that f(x) is a multiple of po(x).
Since F is a field every non-zero element of F' is a unit. This implies that the leading
coefficient of py is a unit in 7', and so we can use the long division and divide f(z) by
po(z). Let ¢(z) be the quotient and r(x) be the remainder of f(x) divided by po(x):
this means

f(x) =po(x)q(x) +r(z) and degr < degpo. (7.9)
Since f(x),po(x) € I, r(x) = f(z) — po(x)q(x) € I. Asr € I, degr < deg py and
deg py is the smallest degree of non-zero polynomials of I, we obtain that r(x) = 0.
Therefore f(z) = po(z)g(x) € (po(x)). This completes the proof of the Claim. [J

Definition 7.3.2. Suppose D is an integral domain. We say D is a Principal Ideal
Domain (PID) if every ideal of D is principal.

Example 7.3.3. The ring Z of integers and the ring F'[z] of polynomials over a field F
are PIDs.

Let’s recall that the way we proved Z is a PID is by using a result from group theory
which asserts that every subgroup of Z is of the form nZ for some integer n. This result,
in part, was proved using the long division for integers. As we see, there is a common
technique of using a long division to prove that Z and F'[z] are PIDs. This brings us to
the definition of Euclidean Domain.
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7.4 Euclidean Domain

In mathematics, we often find a common pattern, extract the essence of various
proofs, and introduce a new object that has only the needed properties. The advantage
of this process is that for new examples we can focus on only the needed properties.

Definition 7.4.1. An integral domain D is called a Euclidean domain if there is a norm
function N : D — Z=° with the following properties:

1. N(d) =0ifand only ifd = 0.
2. Foreverya € Dandb € D\ {0}, there are q,r € D such that

(i) a =bqg+r, and
(ii) N(r) < N(b).

In a Euclidean Domain, we have a form of a long division, and this help us prove
that every Euclidean Domain is a PID.

Theorem 7.4.2. Suppose D is a Euclidean Domain. Then D is a PID.

Proof. Suppose [ is an ideal of D. If I is zero, we are done. Suppose [ is not zero.
Choose ag € I such that N (ag) is the smallest among the norm of the non-zero elements
of I:

N(ag) =min{N(a) |a € T\ {0}}.

The following Claim finishes the proof.

Claim. I = {ag).

Proof of Claim. Since ag € I, we have (ag) C I. Next we show that every element
of I is a multiple of ag. For a € I, by the main property of Euclidean Domains, there
are ¢, € D such that

a=apqg+r, and N(r) < N(agp). (7.10)

Since a,a¢ € I, wehaver = a —agq € I. Asr € I, N(r) < N(ap), and N(aop)
is the smallest norm of non-zero elements of I, we obtain that » = (0. Therefore
a = apq € (ap). This completes the proof of the Claim. O

Notice that because of the long division for integers, the function N : Z —
7Z2° N(a) := |a| makes Z a Euclidean domain. Similarly the long division for poly-
nomials and the function N : F[z] — Z=° N(f(z)) := 29¢¢/ (with the convention
that 27°° = 0) makes F'[z] a Euclidean domain when F is a field.

Next we use the concept of Euclidean Domain to prove that the Gaussian integers
Z[i] is a PID. In the next lecture, we will prove:

Theorem 7.4.3. The ring Z[i| of Gaussian integers is a Euclidean domain. Therefore
Zl[i) is a PID.
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Lecture 8

8.1 Gaussian integers

In the other lecture, we defined Euclidean Domain and proved that every Euclidean
domain is a PID. We have also pointed out that Z and F'[z], where F is a field, are
Euclidean domains. Next we want to prove that the ring Z[i] of Gaussian integers is a
Euclidean domain, and so it is a PID.

Theorem 8.1.1. Z[i] is a Euclidean domain and a PID.

Proof. To show Z]i] is a Euclidean domain, we have to find a norm function with the
desired properties. Let

N : Z[i) = Z2°, N(2) := |z|?,

where |z| is the complex norm. Notice that for every integers a and b, we have N (a +
bi) = a® + b € Z=Y. Next notice that for every complex number z, we have

N(z)=0&|2|=0&2=0.

It is remained to show a type of division property for Z[i] with respect to the function N.

We start with the division in C: for every z € Z[i] and
w € Z[i]\ {0}, consider Z € C. Notice that the square tiling
in the given figure implies that there is ¢ € Z[i] such that

V2
i—q‘ST,and

= — q s in the central square. Therefore

— : V2
so the complex norm of r := z — wq is at most 5= |q| < |q|.

Since z,w, q are in Z[], so is r. Altogether we obtain the existence of ¢, € Z[i] such
that
z=qw+r, and N(r)< N(q).

This shows that the ring of Gaussian integers is a Euclidean domain. Earlier we have
seen that every Euclidean domain is a PID, which finishes the proof. O
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Exercise 8.1.2. Letw := 5 + ?i, and Z|w) := {a + bw | a,b € Z}. Use a similar
method as in the proof of Theorem 8.1.1 to show that Z|w) is a PID.

8.2 Algebraic elements and minimal polynomials

Let’s go back to zeros of polynomials.

Definition 8.2.1. 1. We say a € C is an algebraic number if it is a zero of a
polynomial f(x) € Qlx].
2. More generally, when F is a subfield of another field E', we say a € E is
algebraic over F if « is a zero of a polynomial f(x) € Fx].

3. A complex number « is called transcendental if it is not algebraic.

4. Assuming F is a field extension of F, we say o € E is transcendental over F' if it
is not algebraic over F.

Example 8.2.2. /2 is an algebraic number, and there are interesting and not so easy
results that the Euler number e and 7 are transcendental.

One can easily see that, for F is a field extension of F', o € F is algebraic over F'
if and only if the kernel ker ¢, of the evaluation map

¢ : Flz] = B, ¢a(f(2)) := f(a)

is non-zero. In this setting, our goal is to understand the structure of the ring F'[«].
So far we have seen many such examples: Q[i], Q[v/2], etc. In the examples we have
discussed, we described the elements of these rings as certain linear combinations, and
proved that all of these rings are fields. We want to generalize these results.

Notice that by the first isomorphism theorem we have

F[z]/ ker ¢4 ~ Fla]. 8.1

This means we need to investigate ker ¢,,. For instance we immediately deduce the
following:

Corollary 8.2.3. Suppose E is a field extension of F, and o € E is transcendental
over F. Then Fa] ~ Flx].

Proof. Since « is transcendental over F', ker ¢, = 0. Therefore by (8.1), the claim
follows. 0

Next we use the fact that F/[z] is a PID to describe ker ¢, when o € E is algebraic
over F.

Theorem 8.2.4 (The minimal polynomial). Suppose E is a field extension of F, and
« € Eis algebraic over F'. Then the following statements hold.

UIn this case we say F is a field extension of F.



8.2. ALGEBRAIC ELEMENTS AND MINIMAL POLYNOMIALS 53

1. There is a unique non-constant monic polynomial m.(x) € F|x] such that
ker ¢o = (mq(x)). (Mo (x) € F[z] is called the minimal polynomial of « over

2. The minimal polynomial m(x) € F[z] is a non-constant monic polynomial
which cannot be written as a product of smaller degree polynomials in F|x).

Proof. (1) Since F'[z] is a PID, there is f(x) € F[x] which generates ker ¢,,. Since «
is algebraic over F', f(x) is not zero. We also know that non-zero constant functions
are not in the kernel of ¢,. Hence f(x) is not a constant polynomial. Suppose

F(@) = ana™ + -+ ao

and a,, # 0. Then a,, is a unit in F' (as F'is a field). Let

f(z) = a;lf(x) =z" + (a;lan,l)xn_l 4+t (a;lao).
Since f(x) = a; ' f(x) € (f(z)) and f(x) = a,f(x) € (f), we deduce that
<f> = <f> = ker ¢q.

This shows the existence of a monic non-constant polynomial which generates ker ¢,,.
Next we show the uniqueness of such a polynomial. It is clear that uniqueness is a
special case of the following Claim.

Claim. Suppose f1 and f are non-constant monic polynomials in F[z], and

(f1) = (f2). Then f1 = fa.

Proof of Claim. Since (f1) = (f2), there are polynomials ¢1,¢2 € F[z] such that
fiz1 = fo and foqo = f1. Comparing the degrees of the sides, we deduce that

deg f1 +deggi = deg fo and deg fo + degge = deg fi. (8.2)

Notice that since f; # 0, so are g;’s. Therefore deg g; > 0. Hence by (8.2), we have
deg f1 < deg f> and deg fo < deg f1. This implies that deg f; = deg f, and so
¢i’s are non-zero constants. Suppose ¢1(z) = ¢ € F*. Then we have cf; = fo.
Comparing the leading coefficients of both sides, we obtain that ¢ = 1. Therefore

f1 = fo, and the claim follows. O

(2) Suppose to the contrary that m,(z) = g(z)h(z) for some g(x), h(z) € Flx]
with deg g, deg h < degm,,. Then

Pa(9)¢a(h) = da(ma) =0

implies that either g € ker ¢,, or h € ker ¢, (notice that F' has no zero-divisors). As
ker ¢, is generated by m, (), either mq (x)|g(z) or mq (x)|h(z). Since g and h are
not zero, we deduce that either deg m,, < deg g or degm,, < deg h. This contradicts
that deg g, deg h < degm,,. O

Next we prove the converse of the second part of Theorem 8.2.4. This result will
help us to actually find the minimal polynomial m,, () for some algebraic elements.
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Theorem 8.2.5 (Characterization of minimal polynomials). Suppose E is a field ex-
tension of F, and o € E is algebraic over F. Then a monic non-constant polynomial
p(z) in F[z] is the minimal polynomial of « if and only if p(a)) = 0 and p(x) cannot
be written as a product of smaller degree polynomials in F'[z].

Proof. Part (2) of Theorem 8.2.4 gives us (=), and so we focus on (<).

Since p(a) = 0, p(z) is in ker ¢,. As ker ¢, is generated by the minimal poly-
nomial m,, we obtain that p(z) = m,(x)q(z) for some ¢(z) € F[z]. Since p(z)
cannot be written as a product of smaller degree polynomials in F[z], we deduce that
deg m,, = degp and ¢(x) is a non-zero constant polynomial. Suppose ¢(z) = c € F.
Then comparing the leading coefficients of both sides of cm (z) = p(z), it follows
that ¢ = 1. Thus m (z) = p(z), and the claim follows. O

It is useful to notice that m,, () has the smallest degree among non-zero polynomials
in F[z] that have « as a zero.

Proposition 8.2.6. Suppose E is a field extension of F', and o € F is algebraic over
F. Then the following statements hold.

1. For f(x) € Flz], f(a) = 0 if and only if mq ()| f(x) in Flx].

2. Suppose « is a zero of a non-zero polynomial p(xz) € F[z]. If degp < degmy,
then there is a non-zero constant ¢ such that p(z) = cmeq ().

Proof. (1) We have f(a) =0 f € ker ¢ = (ma(2)) © ma(z)|f(x).

(2) Since p(a) = 0, by the first part we have that p(x) is a (non-zero) multiple
of m,(z); that means there is a non-zero polynomial ¢(x) € F|x] such that p(x) =
q(x)me(z). As degp < degm,, we deduce that

deg m,, > degp = degm, + degq, which implies that degq = 0.

This means ¢ is a non-zero constant, and the claim follows. O

8.3 Elements of quotients of ring of polynomials

Let’s recall that one of our goals is to understand the ring structure of F'[a] and
describe its elements. By the discussions in the previous section, we have F'[a] ~
F[z]/{mq(x)). The next result, which is based on the long division for polynomials,
gives us a description of elements of the quotient ring of a ring of polynomials by a
monic polynomial.

Proposition 8.3.1. Suppose A is a unital commutative ring, and p(x) € Alz] is a
monic polynomial of degree n. > 1. Then every element of A[x| can be uniquely written
as

ap+arz 4+ an_12" "+ (p(x))

for some ag, ... ,a,_1 € A.



8.3. ELEMENTS OF QUOTIENTS OF RING OF POLYNOMIALS 55

Proof. Existence. For every f(z) € A[z], by the long division for polynomials there
are unique g(z) € Alx] (the quotient) and 7(z) € A[z] (the remainder) such that

L. f(z) = q(z)p(x) + r(z), and
2. degr < degp.

The second item means that r(z) = Z?;Ol a;x for some a; € A. The firstitem implies
that f(z) — r(z) € (p(z)). Altogether we have

F@) + @) = 3wt + (o).
1=0

n—1

Uniqueness. Suppose Y7 ' a;z’ + (p(x)) = S0~ ala’ + (p(x)). Then h(z) :=
Z;:ol a;rt — Z?;ol alz® is a multiple of p(z) and has degree at most n — 1. As
degp = n and p(z) is monic, the only multiple of p(z) that has degree less than n is 0.
Hence Z?;OI a;x’ = Z?;OI alz®, which implies the uniqueness part. O
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Lecture 9

9.1 Elements of F'[o]

One of our main goals is to understand the ring structure of Q[«] for an algebraic
number «. In the previous lecture we showed that for a field extension E of F' and
o € I that is algebraic over I, there is a unique monic non-constant polynomial
meq(x) € F[z] such that

1. Forevery f(x) € Flz], f(a) = 0if and only if mq (x)|f(x).

2. For a monic polynomial p(z) € F[x], we have that p(z) = m, () if and only if
p(a) = 0 and p(z) cannot be written as a product of smaller degree polynomials
in Fx].

3. Fla] ~ Flz]/(ma(z)).

The polynomial m,, () € F[x] is called the minimal polynomial of « over F. ! Because
of the third property, we described elements of the quotient ring F'[z]/(p(x)) where
p(z) is a polynomial of degree n > 1. Using the long division for polynomials, we
proved that every element of this quotient ring can be uniquely written as r(z) + (p(x))
for some r(x) € F[x] with degr < n — 1. Base on these results, we immediately get a
fairly good description of elements of F'[«].

Theorem 9.1.1. Suppose FE is a field extension of F, and o € E is algebraic over F.
Suppose the degree of the minimal polynomial m.(z) of o over F' is n. Then every
element of F'|c] can be uniquely written as

ao+ ara+ -+ ap_1a"?

for some a;’s in F.

LA better notation for m () should include F' as well, as the minimal polynomial of o only makes
sense after we specify F'. That is why in some texts mq, () is denoted by m, (). Here we assume that
we know what F' is from the context in which « is discussed.
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Proof. By the first isomorphism theorem for rings, we know that

bo 1 Fla]/(ma(z)) = Flal, o (f(z) + (ma(@))) = f(e) ©.D

is an isomorphism. By Proposition 8.3.1, every element of F'[z]/(m(x)) can be
uniquely written as (Z?:_Ol a;x") + (mq(z)) for some a;’s in F. Hence by (9.1), we

obtain that every element of F'[«] can be uniquely written as

¢a(7§ aix') + (ma(x))) = "z::l a; .

This completes the proof. O

Note that Theorem 9.1.1 is a generalization of many examples that we have discussed
so far, e.g.

Qli] = {a+bi|a,bcQ} because m;g(z)=2?+1,
and

(@[\3/5] = {ap + a V2 + asV/4 | ag,aq, a0 € Q} because m%@(a:) =23 -2

9.2 Irreducible elements

By now it is clear that in order to understand the ring structure of F'[a] for a given «
which is algebraic over F', we have to figure out a way to find the minimal polynomial
mq(x) € F[z]. Theorem 8.2.5 gives us a key characterization of m,, («) which brings
us to the definition of irreducible elements.

Definition 9.2.1. Suppose D is an integral domain. We say d € D is irreducible if
1. d ¢ D* U{0}, and
2. Ifd = ab for some a,b € D, then either a € D* orb € D*.

For instance an integer n is irreducible in Z if n = +p for some prime number p.
Let me warn you that later we will define prime elements of an integral domain, and
irreducible and prime elements do not always coincide!

Lemma 9.2.2. Suppose F is a field. Then p(x) € F[z] is irreducible if and only if p(z)
is not constant and it cannot be written as a product of smaller degree polynomials in

Proof. (=) Since f(x) is irreducible, f(z) ¢ Flz]* U {0}. As Flz]* = F* =
F\ {0}, we obtain that f(z) is not constant. Now suppose to the contrary that f(x) =
g(x)h(z) and deg g, deg h < deg f. This implies that g(z) and h(x) are not constant
polynomials. On the other hand, since f(x) is irreducible, f(x) = g(z)h(z) implies
thateither g € F[x]* orh € F[z]*. As F[x]* = F*, we deduce that either deg g = 0
or deg h = 0, which is a contradiction.
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(<) Suppose f(z) = g(x)h(z). Since f cannot be written as a product of smaller
degree polynomials in F'[z], we have that either degg > deg f or degh > deg f.
As deg f = degg + degh, we deduce that either degg = 0 or degh = 0. That
means either g € F'\ {0} or h € F'\ {0}. Since F is a field, we obtain that either
g € F* = Flz]* or h € F* = F[z]*. This completes the proof. O

Now, some of the properties of minimal polynomials can be phrased in a more
compact form.

Corollary 9.2.3 (Minimal polynomials and irreducibility). Suppose E is a field exten-
sion of F, a € E is algebraic over F, and p(x) € F[x] is a monic polynomial. Then
p(z) = ma(z) if and only if p(a) = 0 and p(x) is irreducible.

Proof. This is an immediate consequence of Theorem 8.2.5 and Lemma 9.2.2. O

This motivates us to answer the following questions:

1. Assuming that D is an integral domain or a PID, what can we say about ideals
that are generated by irreducible elements and their quotient rings?

2. Can we come up with certain mechanisms to find out whether a given monic
polynomial is irreducible?

We start by answering the first question. We have already pointed out that irre-
ducible elements of the ring of integers are essentially prime numbers. Therefore for an
irreducible element p of Z we have that Z/(p) is a field. We will show that this result
holds for every PID.

Let’s begin by understanding when exactly two principal ideals are equal.

Lemma 9.2.4. Suppose D is an integral domain, and a,b € D. Then (a) = (b) if and
only if a = bu for some unit u.

Proof. We notice that (a) = (b) if and only if a € (b) and b € (a). This means
(a) = (b) & Jz,y € D,a = bx and b = ay. 9.2)

(<) If a = bu for some unit u, then b = au~'. Therefore by (9.2), we have
(a) = (b).

(=) Ifa = 0, then b € (a) implies that b = 0. Therefore a = 1 - b and there is
nothing to prove.

Suppose a # 0, and z,y € D are as in (9.2). Then

a = bx = (ay)x = a(yx).

By the cancellation law, we deduce that yx = 1 (notice that D is an integral domain
and a # 0, and so we are allowed to use the cancellation law). Hence x is a unit, which
finishes the proof. O

Lemma 9.2.4 immediately gives us a description for units in terms of ideals.
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Lemma 9.2.5. Suppose A is a unital commutative ring, and a € A. Then a is a unit if
and only if (a) = A.

Proof. (=) Assuming that a is a unit, we have that ' = (a’a™')a € (a) for every
a’ € A. This means that A = (a).

(<) If (a) = A, then 1 € (a), which implies that 1 = aa’ for some o’ € A.
Therefore a is a unit. O

Lemma 9.2.5 help us to describe fields in terms of their ideals.

Lemma 9.2.6. Suppose F is a unital commutative ring. Then F is a field if and only if
F has exactly two distinct ideals {0} and F.

Proof. (=) Since F'is a field, F and {0} are distinct. Now suppose I is a non-zero
ideal of F'. Then there is a non-zero element a in I. Since F'is a field, a is a unit in F'.
Hence by Lemma 9.2.5

F={a)CI.

This means I = F.
(<) Since F and {0} are distinct, 0 ¢ F*. So it is enough to show that every
non-zero element of F' is a unit. Suppose a € F'\ {0}, and consider (a). As F' is the

only non-zero ideal of F', we have F' = (a) = aF. Hence by Lemma 9.2.5, a is a unit
in F'. This finishes the proof. O

We also notice that in a field F, there is no irreducible element as F' = F'* U {0}.
So when we are studying irreducible elements, we can and will assume that the given
integral domain is not a field.

Lemma 9.2.7. Suppose D is an integral domain which is not a field. Then a € D is
irreducible if and only if (a) is a maximal ideal among proper principal ideals.

Let’s begin by explaining various phrases in the statement of Lemma 9.2.7. Suppose
3} is a collection of subsets of a given set X, Then we say A € ¥ is a maximal element
of ¥ if there is no element B € ¥ that contains A as a proper subset. In mathematical
language, it means

A € ¥Yismaximal ifandonly if VB € ¥, AC B= B = A.

In Lemma 9.2.7, the collection X is {I < D | I is principal, I # D}. Altogether, we
can rewrite Lemma 9.2.7 as follows.

Suppose D is an integral domain which is not a field, and a € D. Then a is
irreducible in D if and only if {(a) # D and for every b € D,

(a) C (b) = either (a) = (b) or (b) = D.
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Proof of Lemma 9.2.7. (<) Suppose « is irreducible in D and (a) C (b). As a is
irreducible, it is not a unit. Therefore by Lemma 9.2.5, (a) is a proper ideal.

As a € (b), a = bc for some ¢ € D. Since a is irreducible, either b € D* or
c € D*. If b € D*, then by Lemma 9.2.5 we have (b) = D. If ¢ € D*, then by
Lemma 9.2.4, {(a) = (b).

(<) Since (a) is a proper ideal, by Lemma 9.2.5 a is not a unit. Next we argue why
a#0.

Suppose to the contrary that ¢ = 0. Then for every non-zero element b € D, we
have (a) C (b). Hence by the assumption (b) = D. This together with Lemma 9.2.5
implies that b is a unit. This means every non-zero element of D is a unit, which implies
that D is a field. This is a contradiction.

Next let’s assume that a = be for some b,c € D. Then (a) C (b). By the
assumption, we deduce that either (a) = (b) or (b) = D. Therefore by Lemma 9.2.4
and Lemma 9.2.5, we deduce that either there is © € D such thata = bu or b € D*.
In the former case, by the cancellation law, we have ¢ = v € D* and in the latter case,
b € D*. This means « is irreducible. O

9.3 Maximal ideals and their quotient rings

Based on Lemma 9.2.7, we know that irreducibility is an information about principal
ideals, and so we gain more information when D is a PID. If D isa PID and a € D is
irreducible, then (a) is maximal among all proper ideals. This brings us to the definition

of maximal ideals.

Definition 9.3.1. Suppose A is a unital commutative ring and I I A. We say I is a
maximal ideal if it is maximal among proper ideals; that means

VJ<AICJ= either =1orJ=A.
So by Lemma 9.2.7 and Lemma 9.2.6, we immediately obtain the following:
Lemma 9.3.2. Suppose D is a PID, and a € D. Then
1. for a # 0, we have that (a) is a maximal ideal if and only if a is irreducible.
2. {0} is a maximal ideal if and only if D is a field.
The next Proposition gives us the key property of maximal ideals.

Proposition 9.3.3. Suppose A is a unital commutative ring and I < A. Then I is a
maximal ideal if and only if A/I is a field.

We start with the corresponding lemma which describes ideals of a quotient ring.

Lemma 9.3.4. Suppose A is a unital commutative ring and I < A. Then J is an ideal
of A/I if and only if J = J/I for some J < A which contains I.
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Proof. (=) Suppose J is an ideal of A/I, and let
J={acAla+I€eJ}.

Then for every a € I, wehavea +1 =0+1 € J, and so a € J. Therefore I C J.
Next we show that .J is an ideal of A. Suppose a,a’ € J. Thena + I,a’ +1 € J. As
J is an ideal, we have (a + I) — (a’ + I) € J. This implies that (a — a’) + I € J, and
soa—a' € J. Fora € J, we have that a + I € J. Since J is an ideal of A/I, for
every b € A, we have that (b + I)(a + I) € J. Therefore ba + I € J. Hence ba € J.
Altogether we have that J is an ideal, it contains I, and

J={a+I|acJ}=J/I

(<) From group theory we know that J/I is a subgroup of A/I. Now suppose
a+I € J/ITandb+1 € A/I. Since J is an ideal of A and a € J, we have that ab € J.
Hence (a4 I)(b+ I) € J/I. Thus J/I is an ideal of A/I. O

Proof of Proposition 9.3.3. By Lemma 9.2.6, A/I is a field if and only if it has exactly
two ideals I /I and A/I. By Lemma 9.3.4, every ideal of A/I is of the form .J/I where
J is an ideal of A which contains I. Hence A/I has exactly two ideals if and only if I
and A are the only ideals of A which contain I and I # A. The latter happens exactly
when [ is a maximal ideal. This completes the proof. O

We immediately get the following corollary for PIDs.

Corollary 9.3.5. Suppose that D is a PID and not a field, and a € D. Then D/{a) is
a field if and only if a is irreducible in D.

Proof. By Proposition 9.3.3, D/(a) is a field if and only if (a) is a maximal ideal. By
Lemma 9.3.2 and the assumption that D is not a field, (a) is a maximal ideal if and
only if a is irreducible. This completes the proof. O

94 Fla]is afield!

Now we are well-prepared to prove the following:

Theorem 9.4.1. Suppose E is a field extension of F, and o € E is algebraic over F'.
Then F|«] is a field.

Proof. We have already proved that Fa] ~ F|[z]/(mqa r(x)) where mq p(x) is the
minimal polynomial of a over F' (see (9.1) and Theorem 8.2.4). We further showed
that m,, p(x) is irreducible in F[z] (see Corollary 9.2.3), and F[z] is a PID (see
Theorem 7.3.1) which is not a field (see Lemma 6.3.2). Then by Corollary 9.3.5, we
deduce that F'[z]/(mq, r(x)) is a field. Thus F'[a] is a field. O

As you can see in this proof, we do not show the existence of the multiplicative
inverse of an element in a direct way. So for a given algebraic number o sometimes it is
tricky to express the inverse of p(«) in terms of a linear combination of 1, o, a2, - - .

Exercise 9.4.2. Suppose a € Cis a zero of 13 — x + 1. Express a1, (a+ 1)1, and
(a? + 1)~ Y in the form ag + aja + aza? for some ag, ay,as € Q.



Chapter 10

Lecture 10

We have seen that many properties of F'[a] where « is algebraic over F' depends
on the minimal polynomial m, g (x) of @ over F. So it is crucial to have a method of
finding m, p(x). Let’s recall that the key property of the minimal polynomial is the
following:

p(x) = Mmq,p(x) if and only if p(a) = 0, p(x) is monic and irreducible in F[x].

We will prove a series of irreducibility criteria which help us find minimal polyno-
mials of certain algebraic elements.

10.1 Irreducibility and zeros of polynomials

We start with pointing out a consequence of the factor theorem.
Lemma 10.1.1. Suppose F is a field, and f(x) € F|[z].

1. Ifdeg f = 1, then f is irreducible.

2. Ifdeg f > 2 and f has a zero in F, then f is not irreducible.

3. Suppose deg f = 2 or 3. Then f is irreducible in F|x] if and only if f does not
have a zero in F'.

Proof. (1) Suppose deg f = 1. Then clearly it is not constant. If f = gh, then
1 = deg g + deg h, which implies that we cannot have deg g, deg h < 1. Therefore f
is irreducible.

(2) Suppose deg f > 2 and f(a) = O for some a € F'. Then by the factor theorem,
thereis g(xz) € F[z] suchthat f(z) = (x—a)g(x). Hence deg g = deg f —1 < deg f
and deg(z — a) < deg f. Therefore f(z) is not irreducible in F[z].

(3) Suppose deg f = 2 or 3 and f(x) is not irreducible. Then there are g, h €
F[z] such that f(z) = g(x)h(x) and deg g, degh < deg f < 3. These imply that
degg,degh > 1 and deg f = degg + degh < 3. Hence either degg = 1 or
deg h = 1. Without loss of generality, we can and will assume that deg g = 1. Thus
g(x) = ag + a1z for some ag,a; € F and a; # 0. Then —aoafl € F'is a zero of
g(z), which implies that f(x) has a zero in F. O
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Example 10.1.2. 1. f(x) := 2% — 2 + 1 is irreducible in Z3[z].
2. Zslz]/{f(x)) is a field of order 27.

Proof. (1) Since deg f = 3, f is irreducible in Z3[z] if and only if it does not have a
zero in Zs. As we have seen earlier, by the Fermat’s little theorem, 23—z + 1 does
not have a zero in Zs, which finishes the proof of part one.

(2) Since f(x) is irreducible and Z3[x] is a PID, (f(x)) is a maximal ideal of Z3[x]
(see Lemma 9.3.2). Therefore Zs[x]/{f(x)) is a field (see Proposition 9.3.3). We have
proved that every element of Zs[xz]/(f(x)) can be uniquely written as r(x) + { f(x)) for
a polynomial r(z) € Zs[x] with degree at most 2. Notice that there are 27 polynomials
of degree at most 2 in Z3[x]. (see Proposition 8.3.1). O

Exercise 10.1.3. Every odd degree polynomial in R|x] is not irreducible.

10.2 Rational root criterion

Next we give an effective criterion for finding out whether or not a polynomial in
Z[x] has a zero in Q.

Proposition 10.2.1 (Rational root criterion). Suppose
f@) =anz™ +ap_12"" + - +ag € Z[z],
ag # 0, and a, # 0. If f(2) = 0 for some b, c € Zwith ¢ # 0 and ged(b, ¢) = 1, then
blag and c|ay,.

(The denominator divides the leading coefficient and the numerator divides the
constant term.)

Proof. Since f (%) = 0, multiplying both sides by c", we have
A" + ap_1b" e+ 4 a1+ apc” = 0. (10.1)
This implies that
apb” = —c(an,lbnfl 4 Fabd” 4 aocnfl) is a multiple of c.
Since ged(b, ¢) = 1 and c|a,,b", by Euclid’s lemma, c|a,,. Similarly (10.1) implies that
apc” = —b(anb"_1 +a, 10" 2+ 4 alc”_l) is a multiple of b.
Therefore again by Euclid’s lemma we deduce b|ag. This finishes the proof. O

The rational root criterion has many implications. Here is one of them:

Corollary 10.2.2. Suppose f(x) € Z[z] is a monic polynomial. Then every rational
zero of f is an integer which is the divisor of the constant term f(0).
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Proof. Suppose % isazero of f and ged(b, ¢) = 1. Then by the rational root criterion, ¢
divides the leading coefficient which is 1. Hence ¢ = £1. This implies that % =+beZ
Another application of the rational root criterion implies that b divides the constant
term. This completes the proof. O

Example 10.2.3. Suppose f(z) = 2™ + ap,_12" 1 + -+ + a1z + 1 € Z[z]. Prove
that f has a rational zero if and only if either f(1) = 0 or f(—1) = 0.

Proof. By Corollary 10.2.2, since f is a monic integer polynomial, every rational zero
of f is integer and it is a divisor of the constant term which is 1. Hence a rational zero
of f is either 1 or —1. This finishes the proof. O

10.3 Mod criterion: zeros

Though Corollary 10.2.2 theoretically gives us a relatively good algorithm for
finding out the rational zeros of a monic integer polynomial, but from computational
point of view it might be a daunting task to evaluate a polynomial of degree 20 at
2. On the other hand, finding what 2" modulo 5 is actually easy! This means from
computational point of view it is better to work with integers modulo a small positive
integer. The following lemma shows us how we can employ this technique.

Lemma 10.3.1. Suppose A and B are unital commutative rings, and c: A — B is a
ring homomorphism. Then

1. c: Alz] — Blx], c( Yo aixi) = >, c(a;)x" is a ring homomorphism.
2. Fora € Aandb € B, let

$a : Alz] = A, ¢a(f(2)) := fla) and ¢y : Blz] = B, ¢u(g(x)) := g(b)

be the corresponding evaluation maps. Then for every a € A we have
c(Ba(f(@))) = be(a) (c(f(2)))-

Proof. Both parts are easy to check and I leave the task of writing the details as an
exercise. N

Lemma 10.3.1 immediately implies that if f(z) € A[z] has a zero in A, then c(f)
has a zero in B. The contrapositive of this statement is often used.

Suppose ¢ : A — B is a ring homomorphism, and f(x) € Alz]. If ¢(f(x)) does
not have a zero in B, then f(x) does not have a zero in A.

Here is one important example.

Lemma 10.3.2. Suppose f(x) € Z[x] is a monic polynomial. If f(x) does not have a
zero in Ly, for some positive integer n, then f(x) does not have a zero in Q.

The common steps for proving statements of this type where we want to show
certain property &2 passes from Z,, to Q are:



66 CHAPTER 10. LECTURE 10

0. Look at the contrapositive, and start with Q.
1. Show that we can pass to Z.
2. Use the residue maps and pass to Z,,.
Usually Step 1 is the hard step where we want to go from Q to Z.

Proof of Lemma 10.3.2. Suppose f(x) has a zero in Q. Since f(x) € Z[z] is monic,
by Corollary 10.2.2 f(z) has a zero a € Z. Then by Lemma 10.3.1, ¢,,(a) := [a], is
a zero of ¢, (f) where ¢,, : Z — Z,,. (We simply say that a is a zero of f(z) in Z,,).
This shows that the contrapositive of the claim holds, which finishes the proof. O

Lemma 10.3.2 in conjunction with Fermat’s little theorem can become a very strong
tool. Let’s recall that Fermat’s little theorem states

a? =a foreverya € Z,.

Hence a?” = (aP)P = aP = a for every a € Z,. Therefore inductively we can show
that the following holds:
For every positive integer n, prime p, and a € Zy,

—a (10.2)

By (10.2), we have that for non-negative integers cy, . . . , ¢, prime p, and a € Z,, the

following holds:
ac"anFCn—lp"_l+-~+CO — gCntteo

This gives us a fast algorithm for finding large powers of elements in Z,,. This makes it
easier to evaluate (large degree) polynomials in Z,,.

Example 10.3.3. Suppose p is prime. Prove that f(x) := 2P’ +px1’2_p —z+(2p+1)
does not have a rational zero.

Proof. We will show that f(x) does not have a zero in Z,. Notice that f(z) modulo p
is 27" — 2 + 1. Hence for every a € Zj, we have

fla)=a” —a+1=1, (10.3)

where the last equality holds because of (10.2). By (10.3), f(z) does not have a zero
in Z,,. By Lemma 10.3.2, we deduce that f(z) does not have a zero in Q. This finishes
the proof. O
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Lecture 11

In the previous lecture, we showed that if F is a field, f(x) € F[z] is a polynomial
with degree at least 2, and f(x) has a zero in F, then f is not irreducible. We further
showed that the converse holds if the degree of f is either 2 or 3. Then we proved the
rational root criterion and use it to show that if f(z) € Z[z] is a monic polynomial
which does not have a zero in Z,, for some positive integer n, then f does not have a
zero in Q. We proved the the contrapositive by first passing from Q to Z, and then from
7. 10 Zy,.

We can use the residue maps to find out if a polynomial f(x) € Z[z] is irreducible
or not.

Theorem 11.0.1 (mod-p criterion). Suppose f(x) € Z[x] is a monic polynomial and
p is a prime number. If f(x) is irreducible in Zy[x), then f(x) is irreducible in Q[x].

The proof of this theorem has many steps. The general strategy is the same as the
one explained in Section 10.3. We prove the contrapositive statement, and it will be
done by (1) going from Q to Z and (2) going from Z to Z,. The main difficulty is in
the first step, where we need Gauss’s Lemma.

11.1 Content of a polynomial with rational coefficients.

Before we go to the proof, we point out an important difference between being
irreducible in Q[x] and being irreducible in Z[z].

Example 11.1.1. 2z is irreducible in Q[x), but it is not irreducible in Z|x).

Proof. By Lemma 10.1.1, we know that every degree 1 polynomial with coefficients in
a field is irreducible. Therefore 2z is irreducible in Q[z]. On the other hand, 2x is 2
times 2 and neither 2 nor z is a unit in Z[z] as Z[z]* = 2> = {1, —1}. O

In fact in general if the greatest common divisor of the coefficients of a non-constant

integer polynomial f(x) is not 1, then f(x) cannot be irreducible in Z[z]. This is the
case as we can simply factor out the greatest common divisor of the coefficients of f
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and write f(x) as a product of two non-unit elements of Z[x]. This brings us to the
definition of the content of an integer polynomial.

Definition 11.1.2. Suppose f(x) := anz™ +- - -+ ag € Z[z] is a non-zero polynomial.
The content of f is the greatest common divisor of the coefficients ag, . . . , a,,, and we
denote it by o f). !

Example 11.1.3. 1. «(22% — 6) = 2 and a(22® — 62 + 3) = 1.
2. The content of a monic integer polynomial is 1.

Using properties of the greatest common divisors, one can prove the following basic
properties of content of polynomials.

Lemma 11.1.4. Let n be a positive integer, ¢,, : Z[x] — Z,[x] be the modulo n residue
map, a € Z\ {0}, and suppose f(x), g(x) € Z[x] are two non-zero polynomials. Then

1. a(af(@)) = lala(f)
2. Ifo(f) = d, then L f(x) € Z[z] and a(4 f(z)) = 1.
3. nla(f) ifand only if | € ker c,,.
Proof. Part one follows from the fact that
ged(aag, . . ., aay,) = |al ged(ag, . . ., am).

The second part is equivalent to the following property of the greatest common divisor:

ged(ag, ..., am,) =d implies ged (%0, ce %n) =1.

The last part is a consequence of the following statement:

nlag,...,nla, ifandonlyif n|ged(ag,...,am).
O
Definition 11.1.5. We say f(z) € Z[z] is a primitive polynomial if a(f) = 1.
Lemma 11.1.6. For every f € Z[x], there is a primitive polynomial f such that
f(@) = alf)F(@).
Proof. This is equivalent to part (2) of Lemma 11.1.4. O

Next, we extend the definition of confent to polynomials in Q[z].

Lemma 11.1.7. For every non-zero polynomial f(x) € Q[x], there are unique positive
rational number q and primitive polynomial f such that f(x) = qf(x). Moreover for

f(x) € Z[z), ¢ = ().

IThe content of f is often denoted by c(f), but we use the notation cy, for the residue map modulo n.
So to avoid the possible confusion, we write (f) for the content of f.
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Proof. (Existence) After multiplying by the common denominator n of the coefficients

of f, we get an integer polynomial f(z); that means f(z) := nf(z) € Z[z]. By

Lemma 11.1.6, there is a primitive polynomial f(x) such that f(z) = a(f)f(z).
Overall we get

a(f)f(z) =nf(x) whichimplies that f(z) = @f(m)

This completes proof of existence.

Lemma 11.1.6 implies that for f(z) € Z[z], we have that ¢ = () satisfies the
desired result.

(Uniqueness) Suppose q1, 2 € Q are positive and q; f(z) = gaf5(z) for some
primitive polynomials f, () and fy(x). Suppose ¢; = " for some positive integers
mq, mo and n. Then mlfl = mQ?Q, which implies that

my = a(mif,) = a(maf,) = mo.
Hence q; = go. This in turn implies that f, (z) = fo(z). The existence follows. [

Definition 11.1.8. The unique rational number given in Lemma 11.1.7 is called the
content of f, and it is denoted by o(f).

Let’s point out the Part (1) of Lemma 11.1.4 holds for polynomials in Q|z].
Lemma 11.1.9. For every non-zero f(x) € Q[z] and a € Q \ {0}, we have
a(af(x)) = lala(f(z))-

Proof. By the definition of the content, there is a primitive polynomial f(x) such that

f(x) = a(f)f(x). Hence af(x) = (ac(f))f(x). As £ f(z) are primitive, we deduce
that a(af(x)) = |a]a(f), which finishes the proof. O

11.2 Gauss’s lemma

Gauss’s lemma is the critical result that help us pass from Q to Z.

Lemma 11.2.1 (Gauss’s lemma, version 1). If f and g are two primitive polynomials,
then f g is also primitive.

Proof. Suppose to the contrary that a(fg) # 1. Then there is a prime p which divides
a(fg). Hence c,(fg) = 0 (by Part (3) of Lemma 11.1.4). Therefore ¢, (f)c,(g) = 0.
Notice that as Z,, is an integral domain, so is Z,[z]. Therefore ¢, (f)c,(g) = 0 implies
that either ¢, (f) = 0 or ¢,(g) = 0. Another application of Part (3) of Lemma 11.1.4
gives us that either p|a(f) or p|a(g). This contradicts the assumption that both f and
g are primitive. O

Lemma 11.2.2 (Gauss’s lemma, version 2). Suppose f and g are two non-zero polyno-
mials in Q[x]. Then

a(fg) = a(f)a(g).
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Proof. By Lemma 11.1.7, there are primitive polynomials f and g such that

f(x) =a(f)f(z) and g(z) = a(g)g(z). (11.1)

By (11.1), we have that
f(@)g(z) = a(f)alg) fg. (11.2)

=a(f)a(g)a(f(x)g(z)). (11.3)
By the first version of Gauss’s lemma, o(f(z)g(x)) = 1. Hence (11.3) implies that

a(fg) = a(f)e(g).
This completes the proof. O

11.3 Factorization: going from rationals to integers.

The following is the main result of this section, which gives us Step 1 of proof of
Theorem 11.0.1. This result says that having a non-trivial decomposition in over Q, we
can get a non-trivial decomposition over Z.

Theorem 11.3.1. Suppose f(x) is a primitive polynomial and f(x) = []}_, gi(x) for
some g; € Q|x]. Then there are primitive polynomials §,;(x) such that

9i(x) = a(g:)g;(2), Ha(gi) =1, and f(z)= H§¢($)~
i=1 '
Proof. By the second version of Gauss’s lemma, we have

(f) = a(ﬁgi) - ﬁa(gi) which implies that ﬁa(gi) — 1. (114
1=1 =1

i=1

The last implication holds as «(f) = 1. Next notice that by the definition of the content,
there are primitive polynomials g, (x) such that g;(x) = a(g;)7;(z), and so

L5 = T (0t00 ') = (IToto)) T =
i=1 i=1 i=1
This finishes the proof. O

We have already pointed out that a subtle difference between being irreducible in
Q[z] and being irreducible in Z[z] is having a non-trivial content. By Theorem 11.3.1,
we can show that this is the only thing that one needs to be worried about:

Corollary 11.3.2. Suppose f(x) is primitive and deg f > 1. Then f(x) is irreducible
in Z[z] if and only if it is irreducible in Q|x].
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Proof. We prove the contrapositive of this statement. Suppose f(z) is not irreducible
in Q[z]. As deg f > 1, not being irreducible implies that f(x) = g1 (x)ga(x) for some
smaller degree polynomials g1, g2 € Q[z]. By Theorem 11.3.1, there are primitive
polynomials g, such that

f(z) =7,(2)gs(x) and degy;, =degg; > 1. (11.5)

By (11.5), we deduce that f(z) is not irreducible in Z[z].

Now let’s assume that f(x) is not irreducible in Z[z]. Since deg f > 1, it is
not a unit. Hence not being irreducible implies that there are non-unit polynomials
hi,ha € Z[x] such that f(z) = hy(z)h2(x). We claim that deg h; > 1. Suppose to
the contrary that deg h; = 0. This means that h;(z) = ¢ € Z and ¢ # +1 (as h; is not
a unit). This implies that c|a(f) which contradicts the assumption that f is primitive.
Hence deg h; > 1, and so f(x) is not irreducible in Q[x]. O

11.4 Mod criterion: irreducibility

Now we are ready to prove the mod-p irreducibility criterion (Theorem 11.0.1). We
show the following slightly stronger result.

Theorem 11.4.1. Suppose f(x) € Q[z] is primitive, p is prime which does not divide
the leading coefficient of f(x), and ¢, : Z[x| — Zy[x] is the modulo p residue map. If
cp(f(x)) is irreducible in Zy|x], then f(x) is irreducible in Q[z].

Proof. As ithas been mentioned earlier, we show the contrapositive of this statement. So
suppose f(x) is not irreducible in Q[x]. Hence f(z) is either a constant polynomial or it
can be written as product of two smaller degree polynomials. Since ¢, ( f) is irreducible
in Zy[x], ¢p(f) is not constant. Hence f(x) cannot be constant either. Therefore there
are non-constant polynomials g;(z) € Q[z] such that f(x) = ¢1(x)g2(z). As f(z) is
primitive, by Theorem 11.3.1 there are non-constant primitive polynomials g, such that

f(z) =7,(z)g2(z). (11.6)

This equality implies that the leading coefficient of f is the product of the leading
coefficients of g;’s. Since p does not divide the leading coefficient of f, we obtain that
p does not divide the leading coefficient of g,’s. Hence

degcy(g;) = degg; = degg; > 1.
Another application of (11.6) implies that
& (f) = (91)ep(G2),

which means that ¢, (f) can be written as a product of two smaller degree polynomials.
As Z, is a field, we deduce that ¢, ( f) is not irreducible in Zj,[z]. This completes the
proof of the contrapositive statement. O
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Lecture 12

In the previous lecture, we proved many important results on irreducibility of integer
polynomials in Q[z]. We proved Gauss’s lemma and used to show that a monic non-
constant integer polynomial can be written as a product of two non-constant primitive
polynomials if and only if it is not irreducible in Q[x]. We used this result to show the
mod-p irreducibility criterion.

12.1 An example on the mod irreducibility criterion.

Later we will show that for every prime p and a € ZX, P — = + a is irreducible in
Z,,. This result in combination with the mod p irreducibility criteria can be quit helpful.

Example 12.1.1. Prove that f(z) := 7 — T2 + 212 + 142% — 8z + 11 is irreducible
in Q[z].

Proof. Notice that f () modulo 7 is 27 —z+4. By the mentioned result, this polynomial
is irreducible in Z,[z]. We also notice that f(z) is monic, it is primitive, and the leading
coefficient is not a multiple of 7. Therefore by the mod-p irreducibility criteria, f(x) is
irreducible in Q[z]. O

For small degree and small primes p, one can go over all the polynomials and cross
out all the multiples of smaller degree polynomials. This way we can get the list of all
the irreducible polynomials of small degree in Z,, [x]. Based on the mod-p irreducibility
criteria and using the list of small degree irreducible polynomials of Z,[x], we can find
lots of irreducible polynomials in Q[z].

Example 12.1.2. 1. Prove that x* + x + 1 is irreducible in 7).

2. Prove that f(x) := 5a* + 223 — 202022 + 2021z + 1 is irreducible in Q|z].

Proof. (1) For every a € Z, and every positive integer n, we have that a” = a.
Hence a* + a + 1 = 1 for every a € Zy. This means this polynomial does not
have a degree one factor. Hence it is enough to show that it does not have a degree
2 factor. There are exactly 22 degree 2 polynomials in Zz[z]. Let’s the list of them:
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22,22 + 1,22 + 2,22 + = + 1. Notice that the first three have zeros in Zs, and so they
cannot possibly be a factor of 2% + z + 1. Next we use the long division and divide
zt+ 2+ 1by2? +x+ 1. Wededuce that 2? + 2z + 1 = (22 + 2 + 1) (2 + z) + 1,
and so the remainder is 1 # 0. Hence z* + x + 1 does not have degree 1 or 2 factors.
If * + = + 1 is not irreducible in Zy[z], then it can be written as a product of two
non-constant polynomials. Since the degree of these factors should add up to 4, we
get deduce that one of the factors should be of degree 1 or 2. This is a contradiction.
Hence 2* + x + 1 is irreducible in Zy[x].

(2) Notice that f(x) is primitive, the leading coefficient is odd, and f(z) modulo 2
is 4 + x + 1 which is irreducible in Zy[z]. Hence by the mod-p irreducibility criterion,
f(z) is irreducible in Q[z]. O

12.2 Eisenstein’s irreducibility criterion
One of the most elegant irreducibility criteria is due to Eisenstein.

Theorem 12.2.1. Let f(z) = apa™+ -+ a1x + ag € Z[z] and p be prime. Suppose

pfan, plan-i,..., plag, and p*{ ao.
Then f(x) is irreducible in Q[x].

Here we start our proof in a systematic manner, but we finish it by showing an
ad-hoc result. One gets a better understanding of the final stage using the Unique
Factorization property of the ring of polynomials with coefficients in a field. The
Unique Factorization property will be proved later in the course.

Proof of Theorem 12.2.1. Suppose to the contrary that there are non-constant polynomi-
als g1, g2 € Q] such that f(x) = g1(x)ga2(z). Then there are primitive polynomials
g,(x) such that g;(x) = a(g;)g;(z) (see Lemma 11.1.7), and by the second version of
Gauss’s lemma «(f) = a(g192) = a(g1)a(gz). Altogether we obtain that

f(z) = a(f) g1(z)g2(z). (12.1)

Notice that 1d(f) = «(f)1d(g;) 1d(g,) together with the assumption that p does not
divide the leading coefficient a,, imply the p does not divide 1d(g; ) and 1d(g,). Next
we look at the equation 12.1 modulo p to obtain that ¢, (f) = cp(a(f))cp(G1)cp(Fa).
By the assumption on the divisibility of all the non-leading coefficients by p, we deduce
that

cplan)z™ = cp(a(f)) cp(g1)ep(Fa)- (12.2)

Since p does not divide 1d(g; ), we have that deg(c,(g;)) = deg(g;) > 0. Equation 12.2
takes us to the following lemma:

Lemma 12.2.2. Suppose F is a field and §,, G, € F[z] are two non-constant polyno-
mials such that G, (x)gy(x) = ca™ for some ¢ € F*. Then g,(0) = go(0) = 0.
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Proof. Suppose to the contrary that g; (0) # 0. Set
g1(x) =brz" + -+ bz +by and Gy(x) =csz® + - + 17 + co,

where b;,¢; € F, b,,cs € F*. The contrary assumption g, (0) # 0 implies that
by € F*. Suppose s’ is the smallest non-negative integer such that ¢ # 0. This
means

cy € F* and Gy(x) = coz® + - +coz® .

Consider the coefficient of z*" in g, ()g,(z). Since every term of g, (x) is of degree
at least ', we deduce that the coefficient of 2" in g, ()7, () is bocs # 0. We also
notice that s’ < s < s+ r = n; this implies that g, (z)g, () has at least two non-zero
terms and it cannot be equal cz™. This is a contradiction. By symmetry, we obtain that
75(0) = 0, which completes proof of Lemma. O

By Lemma 12.2.2 and (12.2), we deduce that

p(91)(0) = ¢,(g2)(0) = 0.

This means p|g; (0) and p|g,(0). Hence

p’19:(0)g5(0).

On the other hand, ag = f(0) = a(f)g,(0)g,(0) is a multiple of g, (0)g,(0). Hence
p?|ag, which is a contradiction. This completes proof of Eisenstein’s irreducibility
criterion. O

Example 12.2.3. Prove that f(z) := 3% — 32 + Tw — 2 is irreducible in Q[z].

Proof. First we find the content (f) and the primitive form f of f. To find the content
of a polynomial first we factor out a common denominator of the coefficients, and take
the greatest common divisor of the numerators of the coefficients:

3 1

5 6 4 3 —

So the primitive form of f(z) is

33 x 5)xb — (22 x 4)x3 + (66 x )z — (6 x 3))

f(x) = (33 x 5)x° — (22 x 4)z> + (66 x 7)x — (6 x 3)

Notice that since o f) is a unit in Q, f(z) is irreducible in Q[z] if and only if f(x) is
irreducible in Q[x]. Next we check that we can apply Eisenstein’s irreduciblity criterion
for p = 2, and deduce that f is irreducible in Q[z]:

21 (33 x 5), 2/(22 x 4), 2|(66 x 7), 2|(6 x 3),and 2 { (6 x 3),
and the claim follows. O

Next we discuss a tricky application of Eisenstein’s irreducibility criterion. As you
will see, the polynomial given in the next example at the first glance has nothing to do
with Eisenstein’s irreducibility criterion. After applying a useful trick, however, we
will get a polynomial where the hypothesis of Eisenstein’s criterion clearly hold.
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Example 12.2.4. Suppose pis prime. Then f(x) := 2P~ 1 +aP~24. ..+ 1isirreducible
in Q[z].
Proof. Notice that

f@)(z—1) =@’ +aP 4 da) — (2P 2P 2 1) = 2P — 1,

and so f(z) = Z=L. Let g(y) := f(y + 1). Then

z—1

oly) = (y+1y)1’—1 :yp1+<pfl)yp2+...+<7;>,

Notice that p 1 1, p (17’) for every integer i € [1,p — 1], and p? { (11’) Hence by Eisen-
stein’s irreducibility criterion, we have that g(y) is irreducible in Q[y]. Finally notice
that if f(z) = fi1(z)f2(z) for two non-constant polynomials f; and f in Q[z], then
fly+1)= fi(y+1)fa(y + 1), which implies that g(y) can be written as a product
of two non-constant polynomials in Q[y]. This contradicts the irreducibility of g(y) in

Qly]- O

12.3 Factorization: existence, and a chain condition

Let’s go back to Lemma 12.2.2, and see what really we can say about the factors of
x™. Notice that z is an irreducible element of F'[x], and so all the irreducible factors of
a™ are z. If F'[x] has the Unique Factorization property, then all the irreducible factors
of g, (x)’s are x as well. This means g, = ¢;z™ for some ¢; € F* and positive integer
n;.

Definition 12.3.1. An integral domain D is called a Unique Factorization Domain
(UFD) if every non-zero non-unit element of D can be written as a product of irreducible
elements (the existence part), and the irreducible factors are unique up to reordering
and multiplying by a unit (the uniqueness part).

Example 12.3.2. The ring of integers is a UFD. Let’s understand that the flexibility
given in the uniqueness part are needed. In 7, 2,3, —2, and —3 are irreducible and
2 x 3 = (—3) x (—2). Hence for the uniqueness we have to allow a reordering of the
factors and a possible multiplication by units.

We start with investigating the existence part for an arbitrary integral domain D.
Suppose d € D is a non-zero non-unit element. We would like to write d as a product
of irreducible elements. We go through the following pseudo-algorithm:

1. If d is irreducible, we are done.

2. If d is not irreducible, then there are non-zero non-unit elements dy, d; € D such
that d = d, d}.

3. Repeat this process for each one of the factors.
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If this process terminates, we end up writing d as a product of irreducible elements.
Let’s see what it means for this process to not terminate. We can visualize this process
with a binary rooted tree, where all the vertices are labeled by non-zero non-units and
label of each vertex is the product of its children.

Let’s translate this to the language of ideals. Saying that d is a multiple of d; is
equivalent to (d) C (d;). Recall that (d) = (d;) if and only if d = ud; for some
u € D* (see Lemma 9.2.4). Hence (d) = (d;) if and only if dyu = dyd}. By the
cancellation law and d} not being a unit, we deduce that we have an infinite ascending
chain of (principal) ideals:

(d) G (d) G (d2)--- -
This takes us to the definition of Noetherian rings.

Definition 12.3.3. A ring A is called Noetherian if there is no infinite ascending chain
of ideals. That means if Iy C I C - - - is an ascending chain of ideals of A, then for
some positive integer ng we have Ip,, = I 41 =---.

The above discussion on the existence of a factorization into irreducible elements
immediately gives us the following result.

Proposition 12.3.4. Suppose D is a Noetherian integral domain. Then every non-zero
non-unit element of D can be written as a product of irreducible elements of D.

Proposition 12.3.4 would not be a satisfactory result unless we have an effect way
of determining whether or not an integral domain is Noetherian.

Lemma 12.3.5. Suppose A is a unital commutative ring. Then A is Noetherian ring if
and only if every ideal of A is finitely generated.

(An ideal I is called finitely generated if there is a finite set {ay, ..., a,} such that
I=/{ay,...,a,) (see Lemma 5.2.3).)

Proof. (=) Suppose to the contrary that there is an ideal I which is not finitely generated.
Inductively we define a sequence of elements {a; }$2, of I such that

(a1) € (ar,a2) C -+ -,
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which contradicts the assumption that A is Noetherian. Let a; be an element of . Since
I is not finitely generated, (a) is a proper subset of I. Hence there is az € I \ (a1).
Again, as I is not finitely generate, (a1, as) is a proper ideal of I. Therefore there is
az € I'\ {a1,as). We continue this process inductively, and the proof can be completed
as it is explained above.

(<) Suppose I; C I C --- is an ascending chain of ideals of A. Consider
I :=J;2, I;. Next we prove that I is an ideal of A.

For every a,a’ € I, there are positive integers 7 and 7’ such that a € I; and a’ € I;.
Without loss of generality we can and will assume that ¢ < ¢, and so I; C I;,. Therefore
a,a’ € I;;. Hence a — a’ € I;s, which implies thata — a’ € I.

For every a € I, there is a positive integer 4 such that a € I;,. Hence for every
r € A, we have that ra € I;, which implies that ra € I. This completes the proof of
the claim that [ is an ideal.

Since [ is an ideal, it is finitely generated. Hence there are a;, .. ., a,, € I such that
I = (ay,...,ay). Notice that a; € I implies that a; € I}, for some positive integer
n;. Suppose m := max{ki,...,k,}. Then I, contains I, for every i. Therefore
ay,...,a, € I,. This implies that

(at, .+ an) L.

Hence for every j > m, we have
Lel|JLi=(a,....an) C I, C I, (12.3)
i=1

By (12.3), we obtain that I,,, = I; for every j > m. This means that A is Noetherian.
O

We immediately deduce that a PID is Noetherian, and so every non-zero non-unit
element can be factored into irreducible elements.

Corollary 12.3.6. Suppose D is a PID. Then D is Noetherian and every non-zero
non-unit element of D can be written as a product of irreducible elements.

Proof. Since D is a PID, every ideal is principal. Hence every ideal is finitely generated.
Therefore by Lemma 12.3.5, D is Noetherian. By Proposition 12.3.4, we obtain that
every non-zero non-unit element of D can be written as a product of irreducible
elements. O



Chapter 13

Lecture 13

In the previous lecture we said an integral domain is called a unique factorization
domain if every non-zero non-unit element can written as a product of irreducible
elements (the existence part) and the irreducible factors are unique up to reordering and
multiplying by units (the uniqueness part). We showed that the existence part holds
in a Noetherian integral domain (see Proposition 12.3.4 together with Lemma 12.3.5).
Today we will investigate the uniqueness part.

13.1 Factorization: uniqueness, and prime elements.

Let’s first formulate what the unigueness precisely means: suppose p1, . .., Dy, and
Q- - -, qn are irreducible elements of D. If
P Pm = Q1 (13.1)

then p1 = wi1q;,, p2 = U2gi,, and so on, for some u; € D* and a permutation
1+—41,...,mw+ 1, of 1,2 ... n;in particular m = n. This means we need to show
if an irreducible element p divides a product of irreducible elements g;’s, then p = ug;
for some unit v and some index j. This takes us to the definition of prime elements.

Definition 13.1.1. Suppose D is an integral domain.
1. Fora,b € D, we say a divides b and write a|b if there is d € D such that b = ad

2. A non-zero non-unit element p of D is called prime when for every a,b € D, if
plab, then either pla or p|b.

Base on the above discussion, for uniqueness to hold, we need to have that every
irreducible element is prime. Next we show this statement and its converse hold.

Proposition 13.1.2. Let D be an integral domain. Suppose every non-zero non-unit

element of D can be written as a product of irreducible elements. Then D is a UFD if
and only if every irreducible element is prime.

79
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The formal proof has many little details that make the proof a bit hard to digest.
The idea of proof, however, is rather simple. For that reason first I write an outline of
the proof:

Outline of proof. (=) Suppose p is irreducible and p|ab. Then ab = pd for some
d € D. We decompose a, b, and d into irreducible factors. We notice that p is an
irreducible factor of the left hand side, and so by the uniqueness of irreducible factors,
it should be an irreducible factor of either a or b. This means that either p|a or p|b.

(<) The existence part is given as an assumption. So we focus on the uniqueness
part. Starting with p; - - - p,, = q1 - - - qn, Using the assumption that p; is prime, we
can find an index 7; such that p1|q;,. As g;, is irreducible, we can deduce that p; is ¢;,
upto multiplying by a unit. Now we cancel out p; and continue by induction on the
number of involved irreducible factors.

Proof. (=) Suppose p is an irreducible element. We have to show that p is prime. Since
p is irreducible, it is not either zero or unit. Now suppose for a,b € D, p|ab. Notice
that if either a = 0 or b = 0, we are done as p|0. So without loss of generality we can
and will assume that a and b are non-zero. By the assumption either a is a unit or it can
be written as product of irreducible elements. A similar statement holds for b. Suppose
a=uqi- - q¢mand b = U qnt1 - g, for irreducible elements ¢, . . ., g, and units
u, . Then p|(uw’ [T}, ¢;). This means there is d € D such that pd = uu’ [}, ¢;.
Notice that the right hand side of this equation cannot be zero, and so d # 0. Therefore
d ="ty --- ¥, for some irreducible elements ¢1, . . ., {;, and a unit u”. Hence

u'ply - Uy = ud'qr - g (13.2)

Since p is not a unit, the right hand side of Equation 13.2 cannot be a unit. Therefore
n > 1. As p and q; are irreducible, so are u”p and uu’q;. By the assumption the
irreducible elements u”p, £1, - - - , £}, are the same as uu'qq, . . ., g, upto reordering and
multiplying by units. Hence there is a unit & and an index j such that

p = ug;. (13.3)

Notice that, if j < m, then Tg;|a, and if j > m, then Tg;|b. Therefore by (13.3), we
obtain that either p|a or p|b. This shows that p is prime.
(<) By the assumption every non-zero non-unit element can be written as a product

of irreducible elements. So we focus on the uniqueness part. Suppose py, ..., pn, and
q,---,qn are irreducible elements and
We have to show that m = n, there is a reordering ¢1, .. .,%,, of 1,...,m, and units

u; such that p; = u;q;, for every j.

We proceed by induction on n. By (13.4), we have that p; divides g1 - - - ¢,,. Since
every irreducible element is prime, p; is prime. Whenever a prime element divides
product of certain elements, it should divide one of them. Hence there is an index ¢;
such that p;|g;,. This means ¢;, = pjuy for some u; € D. Since g;, is irreducible,
either p; is a unit or u; is a unit. As p; is irreducible, it is not a unit. Hence w4 is a
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unit. Overall we showed that there are an index 4; and a unit u; such that ¢;;, = u1p;.
This implies that

P1-Pm = U1P191 " 4iy—19i1+1 """ An,

and so by the cancellation law, we obtain

P2 Pm = ULGL " iy —1Gi1+1 " * Gn- (13.5)

If m = 1, the left hand side is 1. Hence all the terms in the right hand side are units.
This means n = 1, and we are done. For m > 2, the left hand side is not a unit, and so
n # 1. Hence there is ¢;, factor in the right hand side of (13.5). Then u;g;, is also
irreducible. By the induction hypothesis, we deduce that m — 1 = n — 1, and there are
areordering i2,...,%, of 1,...,4; — 1,41 + 1,...,m, and units u; for every index
J € [2,m] such that g;; = u;p;. This finishes the proof. O

13.2 Prime elements and prime ideals

In this section we investigate prime elements. We have seen that in an integral
domain an element p is irreducible if and only if the ideal generated by p is maximal
among proper principal ideals (see Lemma 9.2.7). As we want to understand the
connection between prime and irreducible elements, we study properties of the principal
ideals that generated by prime elements. By the definition, p is a prime element of
an integral domain D if (1) p is not either zero or unit, and (2) for every a,b € D, if
p|ab, then either p|a or p|b. We start with translating the concept of divisibility to the
language of ideals.

Lemma 13.2.1. Suppose D is an integral domain, and a,b € D.
1. albifand only if b € (a) if and only if (b) C (a).
2. alb and b|a if and only if a = bu for some unit u.
Proof. We have that a|b if and only if b = ac for some ¢ € D. Since
(a) ={ar |r € D}

(see Lemma 5.2.3), the claim follows.
By the first part, we have a|b and b|a if and only if (a) = (b). The latter happens if
and only if a = bu for some unit » (see Lemma 9.2.4). O

By Lemma 13.2.1, we have that p € D is prime if and only if (1) (p) is a non-zero
proper ideal (see Lemma 9.2.5) and (2) if ab € (p), then either a € (p) or b € (p). This
takes us to the definition of prime ideals.

Definition 13.2.2. Suppose A is a unital commutative ring and I is an ideal of A. we
say I is a prime ideal if (1) I is proper (that means I # A), and (2) if ab € I for some
a,b € D, then eithera € I orb € 1.

Hence we immediately deduce the following interpretation of prime elements in
the language of principal ideals:
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Lemma 13.2.3. Suppose D is an integral domain and p € D. Then p is a prime
element if and only if p # 0 and (p) is a prime ideal.

We have seen that an ideal [ in a unital commutative ring is maximal if and only if
the quotient ring A/ is a field (see Proposition9.3.3). Next we understand when an
ideal is prime in terms of the corresponding quotient ring.

Lemma 13.2.4. Suppose A is a unital commutative ring and I is an ideal of A. Then
I is a prime ideal if and only if A/1 is an integral domain.

Proof. (=) Since I is a proper ideal, A/ is a non-trivial ring. Next we show that A/
does not have a zero-divisor. Suppose (a + I)(b+ I) = 0+ I for some a,b € A. This
means that ab € I. As I is a prime ideal, either a € I or b € I. From this we deduce
that eithera + 1 =0+ T orb+ I =0+ I. Hence A/I is an integral domain.

(<) Since A/I is an integral domain, A/I is a non-trivial ring. Therefore I is a
proper ideal. Now suppose ab € I. Then (a + I)(b+ I) = 0+ I. Since A/I is an
integral domain, we have that eithera +1 = 04 I or b+ I = 0 + I. Hence either
a € Iorb e I. Altogether, we deduce that [ is a prime ideal. O

We immediately obtain that every maximal ideal is prime.

Corollary 13.2.5. Suppose A is a unital commutative ring and I is an ideal of A. If I
is a maximal ideal, then I is a prime ideal.

Proof. Suppose I is amaximal ideal. Then A/I is a field (see Proposition 9.3.3). Hence
A/I is an integral domain, which implies that I is a prime ideal (by Lemma 13.2.4). [
13.3 Prime vs irreducible

Next we investigate the connections between prime and irreducible elements. In
view of Proposition 13.1.2, such a connection can help us prove that certain integral
domains are UFD.

Lemma 13.3.1. Suppose D is a PID. Then every irreducible element of D is prime.

Proof. Suppose p is irreducible in D. Then by Lemma 9.3.2, (p) is a maximal ideal of
D. Therefore by Corollary 13.2.5, (p) is a prime ideal. Since p # 0 (as p is irreducible)
and (p) is a prime ideal, by Lemma 13.2.3 we deduce that p is a prime element. [

The converse of Lemma 13.3.1 is true in every integral domain.

Lemma 13.3.2. Suppose D is an integral domain and p € D. If p is a prime element,
then p is irreducible.

Proof. Since p is prime, it is not either zero or unit. Hence to show it is irreducible, we
have to argue why p = ab implies that either a is a unit or b is a unit.
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For a,b € D suppose p = ab. Since p is prime and p|ab, we deduce that either p|a
or p|b. This means that either a = pa’ for some a’ € D or b = pb’ for some b’ € D. In
the former case, we have

a = pa’ = aba’ which implies that ba’ = 1. (13.6)

(Notice that since p is prime, it is not zero. Hence a and b are not zero, and so we are
allowed to use the cancellation law.) By (13.6), we obtain that b is a unit. Similarly we
can show that b = pb’ implies that a is a unit. Altogether we have that p = ab implies
that either a is a unit or b is unit. This completes this proof. O

An immediate consequence of the above lemmas is the following theorem.
Theorem 13.3.3. Suppose D is a PID. Then
1. An element d € D is irreducible if and only if it is prime.

2. Disa UFD.

Proof. Since D is an integral domain, by Lemma 13.3.2 every prime is irreducible.
Since D is a PID, by Lemma 13.3.1 every irreducible is prime.

The existence part of being a UFD follows from Corollary 12.3.6. The Uniqueness
part of being a UFD follows from the first part and Proposition 13.1.2. O

As a corollary we deduce the following:

Theorem 13.3.4. The following rings are UFD: Z, F|x] where F is a field, Z[i], and
Z|w] where w := 71%‘/773

Proof. We have proved that all of these rings are Euclidean domains. This implies that
they are PIDs. Hence they are UFDs. O
13.4 Some integral domains that are not UFD.

We have seen some interesting examples that are UFDs. Now we want to see that
there are many interesting integral domains that are not UFDs.

Example 13.4.1. The ring Z[/—6] := {a + b\/—6 | a,b € Z} is not a UFD.

Proof. By Proposition 13.1.2, it is enough to find an irreducible element which is not a
prime element. To show an element is irreducible, first we have to prove it is not a unit.
Therefore we have to describe units of this ring. Let

N:Z[V—6] = Z, N(z):=|z%

Notice that N (z122) = N(21)N(22) for every z1, zo € Z[/—6].
Claim 1. z € Z[/—6] is a unit if and only if N(z) = 1.
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Proof of Claim 1. (=) Since z € Z[\/—6]*, there is z’ € Z[/—6] such that
zz' = 1. Hence

N(z2") = 1 which implies that N(2)N (') = 1.

Therefore N(z) € Z* = {£1}. Since N(z) is non-negative, we deduce that N (z) = 1.
(<) Suppose N(z) = 1. and x = a + b\/—6. Then

(a4 bvV6)(a — bV6) = 1,

which implies that z = a + b\/—6 € Z[/—6]* as a — by/—6 € Z[\/—6]. This
completes the proof of Claim 1.

Claim 2. \/—6 is irreducible in Z[/—6).

Proof of Claim 2. Since N(y/—6) = 6 # 1, by Claim 1, v/—6 is not a unit. Now
suppose v/—6 = wy for some z,y € Z[/—6]. Then

N(v/=6) = N(xy) which implies that 6 = N (z)N(y). (13.7)

If neither  nor y are units, by Claim 1 and (13.7) we have that either N (z) = 2 or
N (y) = 2. This means the next claim completes the proof of Claim 2.

Claim 3. There is no x € Z[\/—6] such that N (z) = 2.

Proof of Claim 3. Suppose N (a + b\/—6) = 2 for some a,b € Z. Then

a? +6b% = 2. (13.8)

If b # 0, then 60 > 6. This implies that a® + 66> > 6, which means (13.8) cannot
hold. Hence b = 0, in which case (13.8) implies that b2 = 2, which is not possible as
\/2 is irrational.

Claim 4. \/—6 is not prime in Z[/—6).

Proof of Claim 4. Suppose to the contrary that v/—6 is prime. Then v/—6|2 x 3
implies that either /—6|2 or v/—6|3. This means there is z € Z[v/—6] such that either
2y/—6 = 2 or z/—6 = 3. Comparing the norms of both sides, we obtain that either
6N (z) =4o0r6N(z) =9. This is a contradiction as 6 { 4 and 6 1 9.

Altogether, we found an irreducible element which is not prime, and so Z[\/TG] is
not a UFD. O
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Lecture 14

We have proved that
Euclidean Domain =- PID = UFD.

We have also showed a method to works with rings of the form Z[a]| where « is a
zero of a monic integer quadratic polynomial. We argued how using a norm function
sometimes we can find elements that are irreducible but not prime, and deduce that the
given integral domain is not a UFD.

14.1 Ring of integer polynomials is a UFD.

Next we show that Z[z] is a UFD. Remember that this is not a PID as the ideal
(2, x) is not a principal ideal of Z[x].

Theorem 14.1.1. The ring Z[z) is a UFD.
There are three main ingredients in the proof:
1. Zis a UFD,
2. Q[x] is a UFD, and

3. Trreducibility of a polynomial in Q[x] is equivalent to the irreducibility of the
primitive form the polynomial in Z[z] (Gauss’s lemma).

Lemma 14.1.2. Suppose c € Z. Then we have that
1. cisirreducible in Z if and only if it is irreducible in Z[z].
2. cis prime in Z if and only if it is prime in Z[z).

Proof. (1) (=) Since c is irreducible in Z, it is not 0 or £1. As Z[z]* = {1}, we
deduce that ¢ is not zero or a unit in Z[z]. Now suppose ¢ = f(x)g(z). Comparing
the degrees of both sides, we deduce that f(z) = a € Z and g(x) = b € Z. As cis
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irreducible in Z, ¢ = ab implies that either a = £1 or b = +1. Therefore either f(x)
is a unit or g(z) is a unit. This means c is irreducible in Z[z].

(<) As cis irreducible in Z[z], ¢ is not zero or 1. Hence ¢ is a non-zero non-unit
element of Z. Suppose ¢ = ab for some a,b € Z. Then either a € Z[z]* orb € Z[z]*.
Since Z[z]* = Z*, we deduce that either a € Z* or b € Z*. Hence c is irreducible in
Z.

(2) (=) Suppose c|f(x)g(z) for some f, g € Z[z]. Then there is ¢(z) € Z[z] such
that cq(x) = f(xz)g(x). Hence |c|a(q) = a(f)a(g), which implies that c|a(f)a(g).
Since cis prime in Z, we have that either c|a.( f) or c|a(g). As a(f)|f(x) and a(g)|g(z)
in Z|[x], we deduce that either ¢|f(x) or ¢|g(z).

(«<=) Suppose c|ab for some integers a and b. Viewing a and b as constant polynomi-
als, as ¢ is prime in Z[x], we deduce that either c|a or c|b in Z[z]. This means for some
f(z) € Z[x] we have that either cf(z) = a or ¢f (x) = b. Comparing the degrees, we
deduce that f(x) € Z. Hence c|a or ¢|b in Z. This means c is prime in Z. O

Next we show that the primitive form f(z) of a polynomial f(z) in Q[z] captures
the divisibility properties of f(z) in Q[z].

Let’s recall that for every non-zero polynomial f(xz) € Q[z], there is a unique
primitive polynomial f(x) € Z[z] such that f(x) = a(f)f(z) where a(f) € Q* is
the content of f.

Proposition 14.1.3. Suppose f, g € Q[x] are two non-zero polynomials, and f(z), g(x)
Z[x] are their primitive forms, respectively.

1. We have that f € Q[x]* if and only if f(x) € Z[z]*.

2. We have that f|g in Q[z] if and only if f|g in Z[x).

3. We have that f is irreducible in Q[z] if and only if f is irreducible in Z[x).
4. We have that f is prime in Q[x] if and only if f is prime in Z[x).

Proof. (1) f(x) € Q[z]* if and only if f(x) = ¢ € Q*. The latter occurs if and only
if f(2) = £a(f). Notice that f(z) = +a(f) precisely when f(x) = £1. Altogether
we have that f(x) € Q[x]* if and only if f(z) € Z[z]*.

(2) (=) Since f(x)|g(x) in Q[z], there is a polynomial ¢(z) € Q[z] such that
g(x) = f(x)q(x). Let g(x) be the primitive form of ¢(z). Then

a(g)g(z) = a(f) f(z)alq)g(x). (14.1)
By Gauss’s lemma, we have
a(g) = a(f)alq) = alq). (14.2)

By (14.1) and (14.2), we deduce that g(z) = f(z)g(z), which implies that f|g in Z[z].
(<) Since f|g in Z[z], there is a polynomial h(x) € Z[z] such that g(x) =
f(z)h(x). Hence
9(x) = a(9)g(x) = alg) f(x)h(z) = (alg)a(f) " h(x)) f(z),
is in Q[z]
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which implies that f(x)|g(z) in Q[x].

(3) Since f(z) = a(f)f(z) and a(f) € Q[z]*, f(x) is irreducible in Q[z] if
and only if f(x) is irreducible in Q[x]. By part (1) we can assume that deg f > 1.
By Corollary 11.3.2, we have that f(x) is irreducible in Q[z] precisely when it is
irreducible in Z[z]. This finishes the proof.

(4) (=) Suppose f|hy(x)ha(z) for some hi, hy € Z[z]. This means that there
is g(z) € Z[z] such that hy(z)he(z) = f(x)q(x) = (a(f)"'q(z))f(x). Hence
f(@)|hi(x)ha(z) in Q[z]. Since f is prime in Q[x], we deduce that either f(z)|hi(x)
in Q[x] or f(x)|h2(z) in Q[z]. By part (2), we have that either f|h; in Z[x] or f|hs in
Z[x]. Notice that h;|h; in Z[x]. Altogether we obtain that either f|h in Z[z] or f|hs.
This means that f is prime in Z[z].

(<=) Suppose f|g1g- for some g1, go € Q[x]. By part (2), we deduce that f divides
the primitive form of ¢; g2 in Z[z]. By Gauss’s lemma, we have that the primitive form
of g1 g is the product of the primitive forms of g; and go. Hence f|g,7, in Z[x]. Since
£ is prime in Z[x], either f|g; in Z[z] or f|g, in Z[x]. Another application of part
(2) implies that either f|g; in Q[z] or f|g2 in Q[z]. This means that f is prime in
Ql[z]. O

Proof of Theorem 14.1.1. Existence part. Suppose f(z) € Z[x] is a non-zero non-
unit polynomial. We have to show that we can write f(z) as a product of irreducible
elements. If f(x) is a constant function, then f(z) = a € Z. As Z is a UFD, a can
be written as a product of irreducible elements of Z. By Lemma 14.1.2, irreducible
elements of Z are also irreducible in Z[x]. Hence f(x) can be written as a product of
irreducible elements of Z|x].

Next we assume that f(x) is not a constant polynomial and consider its primitive
form f(x). Hence f(x) = a(f)f(z), where a(f) is the content of f. Notice that
a(f) € 7Z can be viewed as a constant polynomial, and so it can be written as a product
of irreducible elements of Z[z] (unless it is 1). Next we view f(x) as a non-constant
polynomial in Q[x]. Since Q[z] is a UFD, f(z) can be written as a product of irreducible
elements of Q[z]. Say p;(z) € Q[z] are irreducible and f(z) = [}, pi(z). Suppose
p;(x) is the primitive form of p;(x). By Theorem 11.3.1, we have

flz) = H@(az)- (14.3)

By Proposition 14.1.3, part (3), we have that p,’s are irreducible in Z[x].

Altogether we end up getting a factorization of f(x) into irreducible elements of
Z[z].

Uniqueness part. By Proposition 13.1.2, it is sufficient to show that every irre-
ducible element of Z[z] is prime. Suppose f(x) € Z[x] is irreducible. The decom-

position f(z) = «a(f)f(x) implies that either f(x) is a constant polynomial or it is
primitive and f(z) = f(x).

Case 1. f(z) = a is constant.

By Lemma 14.1.2, part (1), a is irreducible in Z. Since Z is a UFD, a is prime in Z.
Hence by Lemma 14.1.2, part (2), f(x) = a is prime in Z[x].

Case 2. f(z) = f(x) is primitive.
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Since f(z) is irreducible in Z[z], by Proposition 14.1.3 part (3), f () is irreducible
in Q[x]. Since Q[z] is a UFD and f(z) is irreducible in Q[x], f(z) is prime in Q[z].
By Proposition 14.1.3 part (4), f is prime in Z[x]. This means f(z) = f(z) is prime
in Z[x], which finishes the proof. O

Theorem 14.1.1 is a special case of the following theorem:
Theorem 14.1.4. Suppose D is a UFD. Then D|x] is a UFD.

Going through the main ingredients of the above proof, we notice that we have to
use the field of fractions F' := Q(D) of D. As F'[z] is a PID, we know that it is a UFD.
So if we manage to define a primitive form of a non-zero polynomial Q(D)[z] with
properties as in Proposition 14.1.3, we can go through the above proof and show that
Theorem 14.1.4 holds.

To define a primitive form of polynomials in Q(D)[z], following the case of integer

polynomials, we need to define the greatest common divisor of finitely many elements
of a UFD D.

Proposition 14.1.5. Suppose D is a UFD. Then for non-zero elements aq, . . . , a,, there
is d € D with the following properties:

1. dlay,...,d|ay,.
2. Ifd'|ay,...,d'|ay, then d'|d.

If dy and ds satisfy the above properties, then di = uds for some u € D*.
An element d € D which satisfies the above properties is called a greatest common
divisor of a1, ..., ap.



Chapter 15

Lecture 15

In the previous lecture we proved that Z[z] is a UFD, and mentioned that in general
DJz] is a UFD if D is a UFD. We pointed out the missing ingredient in proving this
general statement is a generalization of Gauss’s lemma in the context of UFDs. In order
to formulate this general form, we need to know what greatest common divisor mean in
a UFD.

15.1 Valuations and greatest common divisors in a UFD

We prove the following result and use it to define a greatest common divisor of
finitely many elements of a UFD.

Proposition 15.1.1. Suppose D is a UFD. Then for non-zero elements a, . . . , a,, there
is d € D with the following properties:

1. dlay,...,d|ay.
2. Ifd|ay,...,d'|ay, then d'|d.

If dy and ds satisfy the above properties, then d; = uds for some u € D*.
An element d € D which satisfies the above properties is called a greatest common
divisor of a1, ..., ap.

We start by recalling that in a UFD every non-zero non-unit element can be written
as a product of irreducible factors and these irreducible factors are unique up to a
multiplication by a unit. In order to avoid the need for multiplication by a unit, we fix a
subset Zp, of irreducible elements of D with the following properties:

1. Every element of &p is irreducible.

2. For every irreducible element p of D, there is a unique element p € &p, such
that p = up for some unit u.

Let’s recall that p = up for some unit u precisely when (p) = (p). We also notice that
in a UFD and element p is irreducible if and only if it is prime. The latter holds exactly

&9



90 CHAPTER 15. LECTURE 15

when p is prime. An element p is prime if and only if (p) is a prime ideal. Altogether,
we obtain that there is a bijection between & and the set of non-zero principal prime
ideals of D. Notice that there are many choices for such a set. Here we fix one such set
and many of the functions that will be defined later depend on this choice.

Since D is a UFD, for every a € D \ {0}, there are unique u, € D* and non-
negative integers n, such that

a = ugq H prr.

PEPD

We use the following functions to refer these values. Let o : D \ {0} — D* and
vp : D\ {0} — Z=° be such that for every a € D \ {0} the following holds

a=o(a) H pUr(@),

PEXD

This means vy, (a) is the power of p in the factorization of a with respect to the prime
factors &p. Notice that every a € D \ {0} has only finitely many irreducible factors.
This means only finitely many v, (a)’s are non-zero for p € &?p. Therefore this product
has finitely many terms (the rest are 1).

To understand the function o better, let’s go over the case of ring of integers. The
classical convention in the definition of a prime number is slightly different from the
way we have defined prime elements of Z. The subtle difference is that in the classical
setting a prime number must be positive, but in the modern language, say, —2 is also
considered a prime element of the ring of integers. In a sense the classical convention
factors integers with respect to

Py, ={p € Z | pis a positive prime element of the ring Z}.

With this choice, o(a) is precisely the sign of a; that means it is 1 when « is positive,
and it is —1 when a is negative. Because of this, even for an arbitrary UFD, we call
o(a) the sign of a. Inspired with the case of D = Z, we let

la| := o(a) ta = H ptr(@).
PEZD

For every a € D \ {0}, v,(a) is called the p-valuation of a. Here are basic properties
of these functions.

Proposition 15.1.2. Suppose D is a UFD, a,b € D \ {0}. Then
1. a) o(ab) =o(a)o(b).
b) |ab| = |a|[b].
c) vp(ab) = vy(a) + v,(b) for every p € Pp.
2. albifand only if v,(a) < v,(b) for everyp € Pp.

3. There is w € D> such that a = ub if and only if v,(a) = v,(b) for every
pE Pp.
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Proof. (1) By the factorization of a and b with respect to &p, we have
a=o(a) H p»@ and b= o(b) H pr (), (15.1)
PEXD PEPD
Multiplying equations given in (15.1), we deduce that
ab= (o(a)o(®)) [T p=r @,
PEZD

Notice that since o(a) and o (b) are units, so is o(a)o(b). Hence by the uniqueness of
this factorization, we obtain that

o(ab) = o(a)o(b) and wvy,(ab) = v,(a) + vy(b) (15.2)
for every p € &p. Hence
|abl = o/(ab) ™" (ab) = (o(a)~"a) (o (b)~"b) = |al[b].

(2) (=) Suppose a|b. Then for d € D, we have b = ad. Hence for every p € &Zp we
have
up(b) = vp(ad) = vp(a) + vp(d) = vp(a).

(<) We start with the prime factorizations of a and b (with respect to &p) a =
o(@) e, p»(@) and b = o (b) e, p?r(®) . We want to write b as a multiple of
a. This makes us to consider

di= [ p®=v@,

PEXD

and notice that d € D as v,(b) > v,(a) and v,(b) = v,(a) = 0 except for finitely
many p’s. Hence

b:o’(b) H p“p(b)

PEXD
:g(b) H p“p(b)_vp(a) H pvp(a)
PELD PEXD

=(o(b)do(a) ).

This implies that a|b as o(a) is a unit.

(3) By part (2) we have that v, (a) = v, (b) for every p € &p exactly when a|b and
bla. By Lemma 13.2.1, we have that a|b and b|a holds if and only if a = bu for some
unit u. This completes the proof. O

Next we extend these functions to the group Q(D)* of units of the field of fractions
of D. This is needed as we have to work with the ring of polynomials Q(D)[z] in order
to show that D|x] is a UFD.

Proposition 15.1.3 (Basic properties of valuations and the sign function). Suppose D
is a UFD and Q(D) is the field of fractions of D. Then
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1. The following functions are well-defined group homomorphisms:

o :Q(D)* = D*, 0(%) = o(a)o(b)™L.
vy B = 7, v,,(%) = vp(a) — v, (D).
Lo s ey, [5] =

2. ker|-| = D* and ||q|| = |q| for every ¢ € Q(D)*.

3. Let G(D) be the image of |-|. Thenm : D* x G(D) — Q(D)*, m(u,q) := uq
is a group isomorphism.

Proof. (1) Here we just check why these functions are well-defined. I leave to you to
check why these maps are group homomorphisms.

Suppose § = ¢ for some a,b,c,d € D\ {0}. Then ad = bc. Applying the
functions o, v, and o to the both sides of this equality, by Proposition 15.1.2, we obtain
that

o(a)o(d) = a(b)a(c), wvp(a)+vp(d) = vy(b) + vp(c), and |a||d] = |b]|c

Therefore
o(a)a(b)™ = o(Q)o(d) ™, vy(a) — vp(b) = vy(c) — vy(d), and 1o = T

This shows that the given functions are well-defined.
(2) ¢ is in the kernel of | - | if and only if [¢| = 1. By part (1), the latter holds
exactly when I%I = 1. This is equivalent to having |a| = |b|. By Proposition 15.1.2,

|a| = |b| holds if and only if a = bu for some unit u. Altogether we have that

a

a u
ker | - - ==
5 € er\|<:>b 1

for some v € D*. Hence ker | - | = D*.

The other claim of Part (2) follows from the definition of | - |.

(3) Since Q(D)* is abelian, m is a group homomorphism. For every ¢ € Q(D)*,
we have

q=o(q)lgl =m(a(q),lq|)

which implies that m is surjective.

Now suppose (u, q) € kerm. Then ¢ = v~ € D* N G(D). Then by Part (2), we
have ¢ = |q| = |u~!| = 1. This means that ker m is trivial, and so m is injective. This
finishes the proof. O
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15.2 Greatest common divisor for UFDs

Using valuations, we can study common divisors of a finite set of non-zero elements
of a UFD and prove Proposition 15.1.1.

Proof of Proposition 15.1.1. Suppose aq, ..., a, are non-zero elements of a UFD D.
By Proposition 15.1.2, b € D \ {0} is a common divisor of a;’s exactly when v, (b) <

vp(a;) for every index ¢ and every p € &p. Hence we have

blai,...,bla, < v,(b) < min{vy(ai),...,vy(a,)} foreveryp € Pp.  (15.3)

Notice that min{vy,(a1),...,vp(a,)} = 0 except for finitely many p’s, and so
d:= H pmin{vp(al) ..... vp(an)}
PEXD

is an element of G(D) N D. By (15.3), we deduce that
blai,...,bla, < bld.

This shows the existence part of Proposition 15.1.1.

Now suppose d; and ds satisfy the mentioned properties in Proposition 15.1.1. This
means d;’s are common divisors of ay, . . . , a,, and every common divisorof aq, . . ., a,
is a divisor of d;’s. Therefore d; |d2 and da|d;. Hence by Lemma 13.2.1, there is a unit
w such that do = udy. As d;’s are in G(D), we obtain that m(1, d2) = m(u, dq) where
m is the group isomorphism given in Part (3) of Proposition 15.1.2. Thus d; = ds.
This completes the proof. O

The greatest common divisor of ay,...,a, € D \ {0} is the unique d € G(D)
which is given by Proposition 15.1.1, and from the proof it is clear that

acd(ar, ..o an) = [ prinnenopan), (15.4)

PEPD

Notice that gcd depends on the choice of &p, but its value up to a multiplication by
a unit is independent of the choice of &p. Now it is easy to get the following basic
properties of the gcd function, and we leave it as an exercise.

Proposition 15.2.1. In the above setting, suppose a1, . ..,a, € D\ {0}. Then
1. Foreveryc € D\ {0}, ged(cay, ..., ca,) = |c|ged(aq, . .., an).

2. Ifged(ay, ..., an) = d, then % € D and ged(%, ..., %) = 1.

15.3 Content of polynomials: UFD case

Now we are ready to define the content of f(x) € D[z] where D is a UFD.
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Definition 15.3.1. Suppose D is a UFD and f(z) := apz™ + -+ 4+ a1z + ag € D|x]
is a non-zero polynomial. The content of f is

a(f) = ged(an, an-1,...,a0),
where ged is defined as in (15.4). We say f(x) € Dlx] is primitive if o(f) = 1.
By Proposition 15.2.1, we deduce the following properties of the content function.

Lemma 15.3.2. Suppose D is a UFD, f,g € D[z]| are non-zero polynomials, and
a € D\ {0}. Then

1. aaf) = lala(f)
2. Ifo(f) = d, then % f(x) € D[z] and o3 f(z)) = 1.

3. Ford € D\{0}, d|a(f) ifand only if c4(f) = Owhere cq : D[x] — (D/(d))[z]
is the natural quotient map.

By Part (2) of Lemma 15.3.2, every f(z) € D[z]\ {0} can be written as a(f) f(z)
and f(x) is a primitive polynomial.

Next we define the content of a non-zero polynomial f(x) € Q(D)|[x] where Q(D)
is the field of fractions of D.

Lemma 15.3.3. Suppose D is a UFD and Q(D) is the field of fractions D. Then for
every non-zero polynomial f € Q(D)[x] there are unique q € G(D) and primitive
polynomial f € D[x] such that f(x) = qf (z).

Proof. (Existence) Suppose f(z) = Y., %z’ for some a;,b; € D. Letd :=

[1\_g |bi|. Then f(z) := d f(z) € D[x]. Then by Lemma 15.3.2, f(z) = a(f) f(x)
and f(z) is primitive. Hence we have that

1) = @) = D,

Notice that since «(f) and d are in the image of | - |, % € G(D). This shows the
existence part. o

(Uniqueness) Suppose q1,q2 € G(D), f1, fo € D[z] are primitive polynomials,
and q1 f1(x) = q2fo(x). Suppose ¢q; := F fori = 1,2. Let d := |dy||d2|; then
dg; € D. Hence (dg1) f,(x) = (dg2) f5(z), which implies that

a((dg1)f1(x)) = o((dga) f2())-

Therefore by Part (1) of Lemma 15.3.2, we have |dg;| = |dgz|. Since d,q; € G(D), by
Part (2) of Proposition 15.1.2 we have that |dg;| = dg;. Thus dq; = dga, which implies
that g1 = ¢o. This in turn gives us that f; = f,, and the uniqueness follows. O

The unique element ¢ € G/(D) given in Lemma 15.3.3 is called the content of f(x)
and it is denoted by «(f), and the primitive polynomial f(z) given in Lemma 15.3.3 is
called the primitive form of f(x).
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15.4 Gauss’s lemma for UFDs.

Having the definition of the content of a polynomial in Q(D)[z], we can formulate
and prove Gauss’s lemma for UFDs.

Lemma 15.4.1. Suppose D is a UFD, and f,g € Dlz| are primitive. Then fg is
primitive.

Proof. Suppose to the contrary that fg is not primitive. Then there is p € &p which
divides a(fg). This means all the coefficients of fg are in (p). Therefore ¢,(fg) =0
where ¢, : D[z] — (D/(p))[] is the natural quotient map. Notice that since D is
a UFD and p is irreducible, p is a prime element of D. Hence (p) is a prime ideal.
This implies that D/(p) is an integral domain. Thus (D/(p))[x] is also an integral
domain. Knowing that ¢,(f)c,(g) = 0 and (D/(p))[x] is an integral domain, we
obtain that either ¢,(f) = 0 or ¢,(g) = 0. This means either p|a(f) or p|a(g), which
is a contradiction as a(f) = a(g) = 1. O

Lemma 15.4.2. Suppose D is a UFD. Then for every f,g € Q(D)[z] \ {0} we have
a(fg) = a(f)alg).

Proof. By the definition of the content, we have

f(z)=a(f)f(x) and g(z)= a(g)g(x) (15.5)

and f(z) and g(z) are primitive polynomials. By (15.5), we obtain that

f@)g(z) = (a(f)alg)) f(2)g(=). (15.6)

By the first version of Gauss’s lemma for UFDs, we have that f(z)g(z) is primitive.
Since a(f), a(g) € G(D), wehave o f)a(g) € G(D). By (15.6), a( f)a(g) € G(D),
f(2)g(z) being a primitive polynomial, and the definition of content of a polynomial,
we have that a(fg) = a(f)a(g). This completes the proof. O

The following is an immediate consequence of the second version of Gauss’s lemma
for UFDs.

Corollary 15.4.3. Ler prim : Q(D)[z] \ {0} — DIz]\ {0}, prim(f) be the primitive
form of f. Then

prim(fg) = prim(f) prim(g)
Jor every f,g € Q(D)[xz] \ {0}.

Proof. We have f = a(f) prim(f), g = a(g) prim(g), and fg = a(fg) prim(fg).
Hence by the second version of Gauss’s lemma for UFDs, we obtain that

prim(fg) = prim(f) prim(g).

This completes the proof. O
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Now we have all the needed tools to redo the proof of why Z[z] is a UFD and obtain
its generalization. I leave it to you to go over the proof and make sure all the arguments
go through to prove the following theorem.

Theorem 15.4.4. If D is a UFD, then D|x] is a UFD.
By induction, one can easily show the following.
Corollary 15.4.5. If D is a UFD, then D[x1, ..., x,) is a UFD.

In particular, we have that Z[z1, ..., z,] and F[z1,...,z,] where F'is a field, are
UFDs.



Chapter 16

Lecture 16

We have used the central problem of understanding zeros of polynomials as our
point of reference in exploring algebra. So far we have worked under the assumption
that we are given a field extension E of F' that contains a zero « of f(x) € F[z] and
among other things proved:

1. There is a unique polynomial m, r(x) € F[z] with the following properties:

a) «ais azero of g(x) € F[z] if and only if mq, p(x)|g(x).

b) p(x) = mq, p(x) if and only if p(x) is a monic irreducible element of F[x]
and p(a) = 0.

2. Fla] > Flz]/(ma,r(x)).
3. Fla] is a field.

4. Every element of F[«] can be uniquely written as an F'-linear combination of
La,...,a"" ! where n := deg my, r(x).

Next we want to answer the following questions:

1. For f(z) € F[xz], can we find a field extension E of F' that contains a zero of f?
Is there a field extension that contains all the zeros of f?

2. Do we have a canonical choice for such a field extension? Can we talk about the
smallest field extension that contains all the zeros of f?
16.1 Existence of a splitting field.

In this section we prove that every polynomial f(x) € F[x] can be decomposed to
linear factors over a field extension.

Proposition 16.1.1. Suppose F isafieldand f(x) € F|x]is a non-constant polynomial.
Then there are a field extension E of F and o, . . ., oy, such that

97
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1. f(z)=alx — 1) (x — an), where a = 1d(f) is the leading coefficient of f,
and

2. E=Flag,...,ap).

Here F[ay, ..., ay,] is the subring of F that is generated by F' and «;’s. By adding
«;’s one-by-one, we see that

Flag,...,a,] = (Flag,...,an—1])an),
and so
Flag,...,a,] = {Zcio/f sl | e Fi= (il,...,in)}.
A field extension E of F' which satisfies the properties of Proposition 16.1.1 is called a
splitting field of f(x) over F.

To prove this result, we start with finding a single linear factor in a field extension
when f is irreducible.

Lemma 16.1.2. Suppose F is a field and f(x) € F[x] is an irreducible polynomial.
Then there are a field extension E of F and o € E such that (o) = 0 and E = F|a).

To find such a field extension, we make a backward argument. If £ = F'[a], then
we have that

0 : Flz]/(ma,r(z)) = E,0(9(z) + (ma,r(2))) = g(a

)
is an isomorphism. Notice that since f(«) = 0, mq r(2)|f(x). As f(z) is irreducible
in Flx] and mq, p(x)|f(z), there is ¢ € F* such that f(z) = c¢mq, p (). This implies
that (mq p(x)) = (f(x)). Hence there is an isomorphism from F[x]/(f(z)) to E
which sends = + (f(x)) to . This shows us what we should choose for E and .

Proof. Let E := Flz]/(f). Since F is a field, F'[z] is a PID. As F'[z] is a PID and
f € F[z] is irreducible, (f) is a maximal ideal of F'[z]. Therefore F'[x]/(f) is a field.

Next we show that E is a field extension of . Let [ := (f),andi : F — E,i(c) :=
c+ I. Ttis easy to see that ¢ is a ring homomorphism which sends 17 to 1g. Thus
ker i is a proper ideal of F'. Since 0 is the only proper ideal of a field, we obtain that
ker¢ = 0. This implies that  is injective. Hence F is a field extension of F.

Now we show that a := = + I € E is a zero of f. In order to evaluate f at o, we
have to view the coeflicients of I as elements of E. This means we have to work with
the copy of F'in E. Suppose

f@) =anz™ + -+ aop.
Then
fa) =i(an)a™ + - +i(ao)
=(an+D+D"+---+ (a0 + 1)
=(ana" + -+ +ag) +1
=f(x)+1=0+1.
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The last equality holds because f(x) € I. Notice that 0 + I is the zero of E. Hence
J(a) =0.

Finally every element of E is of the form

m m

(ijxj) + 1= Zi(bj)aj € F[O{]
7=0 7=0
Hence E = F[«a]. This completes the proof. O

Proof of Proposition 16.1.1. We proceed by the strong induction on deg f. We start
with the base of induction. Suppose deg f = 1. Then f(x) = ax + b = a(z + b/a).
Then o := —b/a € Fisazeroof f(x). Then E := F and a € E satisfy the properties
mentioned in the statement of Proposition 16.1.1. This completes the proof of the base
case.

To prove the strong induction step, we consider two cases.

Case 1. f is not irreducible in F[x].

In this case, there are non-constant g, h € F[z] such that f(x) = g(z)h(z). So
deg g,deg h < deg f. By the strong induction hypothesis, there are a field extension
FEi of Fand oy, ..., q,, € F such that

g(z) =blx —ay) - (z — an) (16.1)

where b = 1d(g) and
E1 :F[Oél,...,()(m]. (162)

Another application of the strong induction hypothesis implies that there are a field
extension F of F; and (31,...,8r € E such that

hz) =c(x —p1)- - (x — By) (16.3)

where ¢ = 1d(h) and
E=E[p,....B% (16.4)

Altogether we obtain that
F(2) = g@)h(z) = (be)(z = an) -+ (@ — am)(@ = Br) - (= By,
and
E: (F[oq,...,am])[ﬁl,...,ﬂk] :F[al,...,am,ﬁl,...,,@k].

And the claim follows in this case.
Case 2. f(z) € Flx] is irreducible.
In this case, by Lemma 16.1.2, there are a field extension E; of F' and o € E; such
that
fla)=0 and E; = Fla].

By the factor theorem, there is g(x) € F1[x] such that

fz) = (z = a)g(x).
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Notice that deg g < deg f, and so by the strong induction hypothesis, there are a field
extension F of F and aq, ..., «, € E such that

g(x) =blx — o) (x — o) (16.5)
where b = 1d(g) and
E1 :F[al,...,an]. (166)

Altogether we have that

f(x) = (& —a)g(x) = b(z —a)(a =) - (z — an),

and
E = (Fla))[a1,...,an] = Fla,aq, ... an)].

This completes the proof. O

16.2 Towards uniqueness of a splitting field.

In this section among other things we show that two splitting fields of f(z) over F
are isomorphic. The results of this section play an important role in Galois theory.

Similar to the proof of the existence part, we start with adding one zero of an
irreducible factor. We formulate a result which is essentially proved in the discussion
prior to the proof of Lemma 16.1.2.

Lemma 16.2.1. Suppose F'is a field and f(z) € F[x] is irreducible. Assume E is a
field extension of E and o € E such that

fl@)=0 and E = Fla].

Then B
bo  Fl2]/(f) = E, ¢4(9(x) + (f)) = g(a)

is an isomorphism.

Proof. we have that

6ot Flal/(map(@)) = B, G,(9(a) + (ma.p(@) = gla)  (167)

is an isomorphism. Notice that since f(a) = 0, mqo r(z)|f(z). As f(x) is irreducible
in Flx] and mq, p(x)|f(z), there is ¢ € F* such that f(z) = c¢mq, p (). This implies
that (mq, r(z)) = (f(x)). Therefore the claim follows form (16.7). O

Lemma 16.2.1 can be viewed as a type of uniqueness result for such a field. In the
next lemma, we strengthen this uniqueness result in a way which makes it more suitable
for a later use in an inductive argument.

Roughly the next lemma says that if we have two copies of a field, let’s call them F}
and F, and an irreducible polynomial f; € F[z], then the copy of fi in Fy[z], let’s
call it fo, is irreducible, and after adding a zero o of f; to F; and adding a zero a of
fo to Fy, we end up getting isomorphic fields.
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Lemma 16.2.2. Suppose F and I’ are fields and 0 : F — F" is an isomorphism. Let
f(z) € F[x] be an irreducible polynomial. Suppose E is a field extension of F, o € E,
E' is a field extension of F', and o' € FE satisfy the following properties:

1. f(a) =0and E = Fla].
2. 0(f)(&/) =0and E' = F'[d/].

Then there is a unique isomorphism 0 : E — E' such that for every a € F, g(a) = 0(a)

~

and O(a) = .

Notice that the ring isomorphism 6 : F' — F" can be extended to a ring isomorphism
from F[z] to F'[z] that is also denoted by 6:

9( i aixi) = i 6(a;)x'.

1=0 =0

Roughly for f € F[z], 6(f) is the copy of f in F'[z].
The conclusion of Lemma 16.2.2 is often captured in the following diagram as it is
often better to see what we can prove. We say the following is a commutative diagram:

E--Y5 F
QN

This means all directed paths in the diagram with the same start and endpoints lead to
the same result.
Our proof can be summarized in the following diagram:

)

E — —
7T T T e
F F

Going though the above diagram, we give the details of the proof.

Proof of Lemma 16.2.2. Lemma 16.2.1 gives us the first block in the diagram in (16.8).
To understand the second block, we start with a ring homomorphism from the numerator
of the left hand side to the right hand side. Let

0: Fla] — F'[2]/{0(f)), 6(g):=6(g)+ (6(/))-



102 CHAPTER 16. LECTURE 16

Notice that 6 is the composite of  with the quotient map
p: '] — F'[z]/(0(f)),

and so 0 is a surjective ring homomorphism. By the first ring isomorphism we have
that

0: F[x}/ker§—> F'[z]/(6(f)), 0(g+ ker 0) :=0(g) + (0(f)) (16.9)

is a ring isomorphism. We also have that g € ker 6 if and only if

and the latter holds precisely when g € (f). This implies that ker 6= (f). Hence by
(16.9), we have that @ is an isomorphism from F[z]/(f) to F'[z]/{0(f)). This gives
us the middle block in the diagram given in (16.8). We also notice that since 6 is an
isomorphism and f € F[z] is irreducible, 6(f) is irreducible in F'[z]. As o/ € E’
is a zero of (f), another application of Lemma 16.2.1 gives us the last block in the
diagram given in (16.8). The composite of the ring isomorphisms in the first row give
us an isomorphism 9 : E — E’ and because the diagram in (16.8) is a commutative
diagram, the claim follows. O

Lemma 16.2.2 will be used to show that splitting fields of f(z) € F[x] are isomor-
phic.
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Lecture 17

In the previous lecture we proved the existence of a splitting field (see Proposi-
tion 16.1.1), and to work towards the uniqueness of splitting fields, we proved that
adding zeros of an irreducible polynomial and its twin in another copy of the base field
give us isomorphic fields (see Lemma 16.2.1).

From Lemma 16.2.1, we immediately obtain that adding two zeros of an irreducible
polynomial to the base field give us two isomorphic fields.

Corollary 17.0.1. Suppose F is a field and f(x) € Fx]| is irreducible. Suppose E
and E' are field extensions of F, o € E and o' € E' are zeros of f(x). Then there is
a ring isomorphism 0 : Fla] — F'[d/] such that

Bg(e) = g(a’)
for every g(z) € F|x].

Proof. By Lemma 16.2.2, there is a ring isomorphism 0 : F|a] — F[o/] such that
6(c) = cforevery c € F, and f(a) = o’. Then, for every g(z) = Y1 , c;a’ € F[a]
we have

Blg(@) =6 cia’) = B(c)f(a) =Y cia = g(a).
=0 =0 =0

This completes the proof. O

Exercise 17.0.2. Suppose E is a field extension of F and a,a’ € E are algebraic
over F. Suppose g(a) — g(&') for every g(x) € Flz] is a well-defined map. Then
Mo, r(x) = My r(z), and so they are zeros of a single irreducible polynomial in

17.1 Extension of isomorphisms to splitting fields.
Now we are ready to prove the uniqueness of splitting fields. The following theorem

plays an important role in Galois theory and understanding symmetries of splitting
fields.
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Theorem 17.1.1. Suppose F and F' are fields, and 0 : F — F' is a ring isomorphism.
Let f(z) € F|z] \ F. Suppose E is a splitting field of f over F, and E' is a splitting
field of 0(f) over F'. Then 0 can be extended to an isomorphism 6 : E — E'. This

-~

means that for every ¢ € F, we have 6(c) = 0(c).

The conclusion of Theorem 17.1.1 can be captured in the following commutative
diagram.

E -5 F
FYsp

A dashed arrow means that this function was not initially given, and having other
functions, we can find this one in a way that results in obtaining a commutative diagram,
and a hooked arrow means that it is a natural inclusion map.

Proof. We proceed by induction on deg f. If deg f = 1, then f has a zero in F', and
0(f) has a zero in F'. Therefore E = F and E/ = F’. Hence we can choose 8 = 6.

To prove the induction step, we start by recalling what it means that F and E’ are
splitting fields. Since F is a splitting field of f over F, there are ay, ..., a, € E such
that

E=Flay,...,a] and f(z)=alz—a1) - (z — an), (17.1)
where a = 1d(f). Similarly we have that there are o, ..., a), € E’ such that
E' =F'[a),...,al] and O(f(z))=d'(z—a)) - (z —al), (17.2)

where o’ = 1d(0(f)). Since v is a zero of f, we have that m,, p is an irreducible
factor of f in F'[x]. Therefore 6(m,, r) is an irreducible factor of 6( f) in F’[x]. Since
x — a’s are irreducible factors of 0(f) in E'[x], O(mq, r) divides 8(f) in E'[z] and
E'[z] is a UFD, we deduce that

O(ma,r) = (x —0j) - (& — af,) (17.3)

ik

for some i1,...,7;. After the rearranging the indexes, if needed, we can and will
assume that  — o] is a factor of 8(mg, ) which means o] is a zero of 6(mq, r).
Since my, p is irreducible in F[z] and o is a zero of (mq, F), by Lemma 16.2.2

there is ring isomorphism 8, : F [a1] — F'[c}] which is an extension of € (this means
the diagram in (17.4) is a commutative diagram), and 0; (a1) = .

T T (17.4)

Notice that by the factor theorem, there is g € (F[c1])[z] such that

f(z) = (z — ar)g(x). (17.5)
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By (17.5) and (17.1), we deduce that
9(z) = a(z —az) - (x — an). (17.6)

Applying 51 to the both sides of (17.5), we obtain that

~ ~ ~

01(f) = (x = 01(1))01(g)- (17.7)
Since 1 (o) = a}, by (17.2), it follows that
O1(9) = d'(z —ay) - (z —ap). (17.8)
By (17.6), after adding zeros of g to F[a1]
(Floa])[ag, ..., an] = Flag, ..., ap)

we get E. Hence E is a splitting field of g over F'[a]. Similarly, by (17.8), after adding
zeros of 51( ) to F'[c}] we get E'. Therefore E is a splitting field of 51( ) over F'[o].
Since deg g < deg f, we can and will apply the induction hypothesis. By the induction
hypothesis, we obtain a ring isomorphism 9 : E — E’' which is an extension of 01 (see
the commutative diagram given in (17.9)).

E ----2-—-3 > E
T ) T (17.9)
Flo] F'laq]

E—" @
Flay] —2 F'la)] (17.10)
F—2 5 F
we deduce that @ is an extension of 6, which completes the proof. O

The idea of the above proof is easy:
1. Find an irreducible factor of f in F[x], say h(z).
2. Add a zero of h to F and a zero of (k) to F, and find 6, : Flon] — F'[o}].

3. View E as a splitting field of g and E’ as a splitting field of 0 (g). Use induction
hypothesis.
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Based on Theorem 17.1.1, we can prove the uniqueness of splitting fields up to an
isomorphism.

Theorem 17.1.2. Suppose F is a field, f(x) € F|x]\ F, and E, E' are splitting fields
of f(x) over F. Then there is a ring isomorphism 0 : E — E' such that 0| = idp;

that means for every ¢ € F we have that 6(c) = c.

Proof. Notice thatidg : I' — F' is an isomorphism, and so by Theorem 17.1.1, there
is a ring isomorphism 0 : E — E’ which is an extension of idg. This completes the
proof. O

17.2 Two examples

In general giving a precise description of a splitting field of a polynomial is a very
hard task. In this section, we learn two examples where to some extend we can describe
a splitting of the given polynomial.

Example 17.2.1. Let (,, := €>™/™. Then Q|(,] is a splitting field of x™ — 1 over Q.

Proof. Notice that the multiplicative order of ¢, is n. Hence (¢})" = 1 for every
integer j in [0, 1), and 1,(,, ..., (7! are distinct. Therefore these are distinct zeros
of ™ — 1. Thus by the generalized factor theorem, comparing the degrees and the
leading coeflicients, we obtain that

1= (= )= G = G,

Hence E := Q[1,(y, .. .,¢7 1] is a splitting field of 2™ — 1 over Q. Notice that
Q[¢n] C E. Since ¢J € Q[(¢,] for every integer j, we have that E C Q[(,,]. The claim
follows. O

Example 17.2.2. Let ,, := *™/". Then Q[(,,, /2] is a splitting field of ™ — 2 over
Q.

Proof. Notice that (¢} {/2)™ = 2 for every integer j. Hence /2,¢, V/2,...,(0 71 3/2
are distinct zeros of ™ — 2. Therefore by the generalized factor theorem, comparing
degrees and leading coefficients, we obtain that

n n n/=n—1
CC"—QZ(JJ—ﬁ)(m—gn\/i)--~(m—<n\/§ )-

Therefore E := Q[{/2,(, 4/2,...,¢"~13/2] is a splitting field of 2™ — 2 over Q.

Notice that ¢, := (¢, ¥/2)(3/2)~! € E. Hence Q[¥/2,(,] C E. We also have that

¢J /2 € Q[¢n, /2] for every integer j. This implies that £ C Q[3/2, (], and the

claim follows. U

Next we use splitting fields to study finite fields.
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Lecture 18

In the previous couple of lectures we proved the following results about splitting
fields.

Theorem (Existence (See Proposition 16.1.1)). Suppose Fis a field and f € F[x]\ F.
Then there is a s splitting field E of f over F.

Let’s recall that F is called a splitting field of f over F if there are vy, ...,a, € E
such that f(z) = a(z — a1) - (¥ — ay,), forsome a € F,and E = Flay, ..., ay).

Theorem (Uniqueness (See Theorem 17.1.2)). Suppose F is a field and | € F|x]\ F,

E, E' are splitting fields of f over F. Then there is 0 : E — E' such that for every
ceF,0(c)=c

For field extensions E and E’ of F', we say a ring isomorphism 9:E — E'isan
F-isomorphism if §(c) = c for every c € F.
The Uniqueness result was proved using the following isomorphism extension

theorem.

Theorem (Isomorphism extension (See Theorem 17.1.1)). Suppose F and F' are fields,
0 : F — F' is an isomorphism, and f(x) € F|z] \ F. Suppose E is a splitting field
of f over F, and F' is a splitting field of 0(f) over F'. Then there is an isomorphism
0 : E — E' which is an extension of 0.

Prove of Isomorphism Extension Theorem is based on the following result on
sending a zero of an irreducible polynomial to another zero.

Theorem (Sending a zero to another (See Lemma 16.2.2)). Suppose F and F' are
fields, f is irreducible in F[x]. Suppose E is a field extension of which contains a zero

aof f, and E' is a field extension of F' which contains a zero of 0(f). Then there is
0 : Floa] — F'[o/] which is an extension of 0 and 0(a) = o'

Now we use these results to study finite fields.
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18.1 Finite fields: uniqueness

Suppose F'is a finite field. Then its characteristic is a prime number p.

Lemma 18.1.1 (Order of a finite field). Suppose F' is a finite of characteristic p. Then
|F'| = p™ for some positive integer n.

Proof. Since F' is a finite integral domain, p is prime. Suppose ¢ is a prime factor of
|F'|. Then by Cauchy’s theorem from group theory, there is a € F such that the additive
order of a is ¢. Since char(F') = p, pa = 0. This implies that the additive order ¢ of a
divides p. As ¢ and p primes, we deduce that £ = p. Hence the only prime factor of
|F'| is p, which implies that | F'| is a power of p. This completes the proof. O

We have seen that 27 — z =[], cz, (z — a). Next we generalize this to any finite
field. We start with the following lemma, which can be viewed as a generalization of
Fermat’s little theorem.

Lemma 18.1.2. Suppose F is a finite field of order q. Then a? = a for every a € F.

Proof. If a = 0, then clearly we have that a? = a. If @ # 0, then a is a unit. Hence
alF*1 = 1 as we know that in every (multiplicative) group G we have g!¢l = e. Since
Fis a field, we have |F¥| = |F| — 1 = ¢ — 1. Therefore a?~! = 1, which implies that
a? = a. This completes the proof. O

Theorem 18.1.3. Suppose F is finite field of order q. Then

2 —x = H(a:foz)

aeF
in Fx].

Proof. By Lemma 18.1.2, every a € F'is a zero of 9 — x. Hence by the generalized
factor theorem, there is g(z) € F'[x] such that

z? —x = g(x) H(m—a). (18.1)

acF
Comparing the degrees of both sides, we deduce that g is a non-zero constant. Sub-
sequently comparing the leading coefficients of both sides of (18.1), we obtain that
g = 1. The claim follows. O

Theorem 18.1.4 (Uniqueness). Suppose F'is a finite field of order ¢ = p™ where p is
a prime number. Then F'is a splitting field of ©9 — x over Z,,. In particular, if F' and
F' are two fields of order q, then they are isomorphic.

Proof. By Lemma 18.1.1, we obtain that the characteristic of F"is p. Hence Z,, can be
viewed as a subfield of F'. By Theorem 18.1.3, we have that 9 — x can be factored as
a product of degree one polynomials over F', and adding zeros of 7 — x to Z,,, we get
the entire F'. Hence F is a splitting field of 7 — x over Z,.

If F and F” are fields of order g, then both of them are splitting fields of ¢ — x
over Z,. Hence by Theorem 17.1.2, F and F" are isomorphic. This completes the
proof. O
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18.2 Finite fields: towards existence

We want to show the existence of a finite field of order ¢ = p™ where p is prime
and n is a positive integer. By Theorem 18.1.4, we have to consider a splitting field F/
of z9 — x over Z, and show that it has ¢ elements. So in this section, we let I be a
splitting field of x¢ — x over Z,, and

F:={acE|a?=a}.
Lemma 18.2.1. In the above setting, F'is a field.

Proof. To show F is a field, we prove that is closed under addition, multiplication,
negation, and inversion.

Notice that since the characteristic of F' is a prime number p, the Frobenius map
o :E — E,o(a) := aP is aring homomorphism (see Problem 4 in Week 1 assignment).
Therefore

o™ . E-sE oM™)=a"
is also a ring homomorphism. Notice that F is the set of fixed points of o(™); that
means that
F={acE|s"™(a)=a}).

For every «, 8 € F, we have
o™ (a+8) = c™(a)+0™(B) = a+f and o™ (a-f) = ¢ (a)-c"™(B) = a-b.

Soa + fand « - B are in F'. Therefore F' is closed under addition and multiplication.
For o € F' we also have that

oM (—a) = -0 (a) = —a,
and so —a € F. Suppose o € F'\ {0}. Thena~! € E, and
o) = (@) = () a7,
which implies that «~! € F'. This completes the proof. O

Next we want to show that | F'| = ¢, which completes the proof of the existence of a
field of order q.

Corollary 18.2.2. In the above setting, the order of F is the same of the number of
distinct zeros of x9 — x in F.

Proof. Since F is a splitting field of 7 — x over Z,, there are oy, ...,y € E such

that
q

2 -z = H(x — ;).
i=1
Notice that o € F'if and only if « is a zero of 7 — x. Since F is an integral domain,
we obtain that
F={a,...,an}.

The claim follows. O
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By Corollary 18.2.2, we have that |F'| = ¢ if and only if zeros of 27 — z in its
splitting field are distinct. So we need to find a mechanism to determine whether zeros
of a polynomial in its splitting field are distinct.

18.3 Separability: having distinct zeros in a splitting field.

We need to come up with a technique of finding out whether or not f(z) has a
multiple zero. Recall that we say a € A is a multiple zero of f if f(z) = (v — a)?g(z)
for some g(z) € A[x]. We use an idea from calculus: a polynomial f(x) € C[x] has a
multiple zero at z if and only if f(z) = f’(2) = 0. This means we need to define the
derivative of a polynomial in A[z] for an arbitrary unital commutative ring A.

Definition 18.3.1. Suppose f(x) := > =, a;x" € Alx] where A is a unital commuta-
tive ring. We let

fla) = iaa'", (18.2)
=1

and call it the derivative of f.

Sometimes it is useful to write the sum in (18.2) starting from 0
f(z)= Z ja;r' L.
i=0
One can check that the following properties of ordinary derivatives still hold for

polynomials in a general setting.

Lemma 18.3.2. Suppose A is a unital commutative ring, f,g € Alx], and a,b € A.
Then the derivative of af (x) + bg(x) is af'(x) + bg'(x) and the product rule

(f9) = fg+fd
holds.

Proof. ltis easy to check that (af +bg)’ = af’ 4 bg’. Here we only discuss the product
rule. Suppose f(x) = >7° a;a* and g(x) = Y77 bja’. Then the coefficient of z*

in fgis
C = Z al-bj.

i+j=k,i,j>0

Thus (fg)' = Y5 kega™ . Since f/(x) = 3272 daa’tand g (x) = 3272 jbjai 1,
the coefficient of ¥~ in f'g is
Z iaibj

i+j=k,i,j>0

and the coefficient of z*~ ' in fg¢’ is

> jagb;.

i+j=k,i,j>0
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Hence

flg+ fgd = Z ( Z (i —l—j)aibj)xk_l = chkxk_l.
k=0

k=0 i+j=k,i,j>0
The claim follows. O

Lemma 18.3.3. Suppose A is a unital commutative ring andfora € Aand f,g € Alz],
we have f(x) = (v — a)?g(x). Then f(a) = f'(a) = 0.

Proof. Clearly f(a) = 0. By the product rule, we have that
fl(@) = (z = a)*g(2) + 2(z — a)g(z) = (z — a)((z — a)g' () + 29(2)).
Hence f’(a) = 0. The claim follows. O

Proposition 18.3.4. Suppose F' is a field, f(x) € Fx]| \ F, and E is a splitting field
of f over F. Then f(x) does not have multiple zeros in E if and only if ged(f, ') =1
in F[z]'.

Proof. (=) Suppose ged(f, f') # 1. Then there is a non-constant monic polynomial
¢(z) € Flx] which divides both f(x) and f’(x). Since E is a splitting field of f over
F, there are o, ..., a, € E such that

flx) =a(x —a1)-- (z - an),

for some a € F. As q(z)|f(z), ¢ — ;’s are irreducible in E[z], and E[z] is a UFD,
we have that

q(z) = (r —aqy) -+ (& — i)
for some i1, ..., i. Since ¢(x)|f’(x), we have that f'(a;,) = 0. After rearranging the

indexes, if necessary, we can and will assume that i, = 1. Thus f’(a;) = 0. By the
product rule, we have that f/(z) is equal to

a((—as)- - (@—an)+(@—ar) (@—as) - - (T—an)+ - +(@—ar) -+ (T—an1)).

Hence
fllan) = alaq — ag) -+ (a1 — an).

Therefore f’(a1) = 0 implies that a; = «; for some index j > 2. This means f has
multiple zeros.

(<) Suppose f(x) = (x — a)?g(z). Then by Lemma 18.3.3, f/(a) = 0. As
f'(x) € F[z], we deduce that m, p(z)|f'(x) in Flz]. Similarly, since f(a) = 0 and
f(z) € F[z], we have mq, p ()| f(z). Therefore m,, r(z) is a common divisor of f
and f’ in F[x], which implies that gcd(f, f’) # 1. This completes the proof. O

!Here we are using the convention that the greatest common divisor of polynomials with coefficients in
a field are monic.
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18.4 Finite field: existence

Let’s recall some of the notation and results from Section 18.2. Let ¢ = p™ where p
is a prime and n is a positive integer. Let I be a splitting field of 29 — x over Z,,. Let

F:={acE|a?=a}.

By Lemma 18.2.1, I is a field, and by Corollary 18.2.2, the order of F'is the number
of distinct zeros of ¢ — z in E.

Lemma 18.4.1. In the above setting,

F|=gq.

Proof. Since |F| is the number of distinct zeros of 9 — x in its splitting field, it is
enough to show that 7 — x does not have multiple zeros in its splitting fields. By
Proposition 18.3.4, f(x) := 2% — x does not have multiple zeros in E if and only if
ged(f, f') = 1in F[z]. Notice that f'(z) = qz? ! —1 = —1in F[z] as char(F) = p.
Hence ged(f, f/) = 1, and the claim follows. O

Altogether, we have proved:

Theorem 18.4.2 (Existence). Suppose p is prime and n is positive integer. Then there
is a finite field of order p".

Theorem 18.4.3 (Construction). Finite field of order p™ is a splitting field of 2" — x
over Ly,.

We let IF,» denote a finite field of order p™. Notice that by Theorem 18.4.2, there is
such a finite field, and by Theorem 18.1.4, IF,» is unique up to an isomorphism.
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Lecture 19

19.1 Vector spaces over a field

Let’s recall a couple of results that we have proved a while ago.

Proposition. (See Proposition 8.3.1) Suppose F' is a field and f(x) € Flz] is a
polynomial of degree n. Then every element of F[x|/{f) can be uniquely written as

col+ T+ +ep Tt
for some co,...,cn_1 € F where1l:=1+ (f)andT =z + (f).

Proposition. (See Theorem 9.1.1) Suppose E is a field extension oof F, and o € E is
algebraic over F. Suppose deg mq, p = n. Then every element of F|a] can be uniquely
written as

-1
co+ecia+---+cp_1a”

for some co, -+ ,cp_1 € F.

In both of these statements, elements are uniquely written as an F'-linear combi-
nation of certain elements. This is similar to the main property of a basis in a vector
space. It brings us to the definition of a vector space over a field F'.

Definition 19.1.1. Suppose F' is a field. We say V is a vector space over F if:
(1) (V,+) is an abelian group.

(2) There is a scalar multiplication F' x V. — V and for every c € F andv € V,
the scalar multiplication of c by v is denoted by c - v (or simply cv). This scalar
multiplication is supposed to have the following properties.

a) Foreverycy,co € Fandv €'V,
(c1+e) - v=cr-v+eg-v.
b) Foreveryc € F andvy,vs €V,

¢ (v +v2) =c-v1+c-va.

113
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c) ForeveryveV,1-v=nu.
Example 19.1.2. Suppose F is a field and n is a positive integer. Then

F" =Fx.--xF
—_——

n times

is a vector space with respect to the following scalar multiplication
¢ (ar,...,an) = (cay,...,cap).
Another example which plays an important role in this course is the following.

Example 19.1.3. Suppose A is a unital ring, F is a subfield of A, and 1 4 = 1p. Then
A is a vector space over F with respect to the following scalar multiplication:

Vee Fla€e A, c-a:=ca
where ca is the multiplication in A.
Let’s recall some basic terminologies in linear algebra.

Definition 19.1.4. Suppose V is a vector space over a field F.

1. Wesay vy,--- ,v, € V are F-linearly independent if, for ¢y, ...,c, € F,
c1 v+ -+ cpv, = 0implies thatcy = --- = ¢, = 0.
2. Ifvy,...,v, €V are not F-linearly independent, we say they are F'-linearly
dependent.

3. We say {v1,...,v,} C V is an F-spanning set if every element of V can be
written as an F'-linear combination of vy, . . ., vy,; that means for every v € V
there are ¢y, . . ., c, € F such that

V=0C V1t "+ Cn-Up.

When {v1,...,v,} is an F-spanning set, we say vy, . .., v, span V.
4. We say (v1,...,vy,) is an F-basis of V if vy, ..., v, are F-linearly independent
and {vy,...,v,} is an F-spanning set.

Though a basis is formally an ordered set, we sometimes refer to a set as a basis if
itis an F'-spanning set and consists of F'-linearly independent vectors.
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19.2 Subspace and linear map

As always, when we learn a new math object, we should talk about its substructures
and the maps that preserves its structure.

Definition 19.2.1. Suppose V is vector space over a field F. We say W C V is a
subspace of V' if W is closed under addition and scalar multiplication.

Definition 19.2.2. Suppose V;, and Vs, are two vector spaces over a field F'.
1. Wesay f : Vi — Vs is F-linear if
Fo+) = )+ () and fle-v) = c- f(v)
for every ¢ € F and v,v' € V; alternatively we can write f(cv + v') =
cf (v) + f(0).
2. Wesay f : V1 — V4 is an isomorphism of F'-vector spaces if
a) fis F-linear,
b) f is bijective, and

c) f~Vis F-linear.

It is a good exercise to show that if f is F-linear and it is bijective, then f~! is
F-linear. So the last condition for being an F'-vector space isomorphism is redundant.

Let’s also point out that similar to Lemma 1.3.1, one can use the distribution
properties and show that

0F~’U:OV and C-OVZOV
foreveryv € Vandc € F.

Lemma 19.2.3. Suppose V is a vector space over a field F, and v, . .. ,v, € V. Then
the smallest subspace of V' which contains v;’s is

{icivi | Ci EF}.
=1

(This is denoted by Spanp{v1,...,v,} or Spang(vi,...,vy,), and it is called either
the F'-span of v;’s, or the subspace spanned by vy, ..., V).

Proof. Suppose W is a subspace of V' which contains v;’s. Since W is closed under
scalar multiplication, we have c;v; € W for every ¢; € F'. Since W is closed under
addition, we deduce that 3", ¢;v; € W. Hence Spanp (v1,...,v,) C W.

Next we show that Span(vy, ..., v,) is a subspace. Suppose ¢ € F and w, w’ are
in Spang(vi,...,v,). Thenw = Y7, ¢;v; andw’ = 37| v, for some ¢;, ¢, € F.
Hence

n

n n
cw+w' =c¢ E civ; + E vy = E (cc; + ¢)v; € Spang(vy,...,v,).
i=1 i=1 i=1



116 CHAPTER 19. LECTURE 19

Therefore Spany (v, ..., vy, ) is a subspace.
Finally we notice that

vi=0-v14+--4+0-v,1+1-v;,+0-viy1+---+0-v, € Spang(vy,...,v,).

Altogether, we proved that Span(v1,. .., v,) is a subspace which contains v;’s and
every other subspace that contains v;” contains Span(vy, . ..,v,) as a subset. This
completes the proof. O

Next lemma shows the importance of Example 19.1.2.

Lemma 19.2.4. Suppose V' is a vector space over a field F, and B := (vy,...,v,) is
an F-basis of V. Then

1. for everyv € V, there is a unique
(c1,...,¢n) €EF"
such that v = civ1 + -+ + cpvp. Welet [v]s == (c1,...,¢n).
2. ThemapV-— F"™ v — [v]y is a vector space isomorphism.

Proof. (1) Since B spans V, every v € V can be written as an F'-linear combination
of v;’s; that means that there are ¢;’s in F' such that

V=1CU1 + -+ CpUpn.

Now we want to show the uniqueness. So suppose >\, ¢;v; = Y., c;v; for some
¢i,c; € F. Then
(c1 — vy + -+ (cn — c))vn = 0. (19.1)
As v;’s are F-linearly independent and ¢; — ¢, € F, by (19.1) we have that¢; — ¢, = 0
for every . Hence
(c1y. yen) = (c),. .., ch).

(2) By part (1), v — [v]ss is well-defined and it is the inverse function of
F" =V, (c1,...,¢n) — chi.
i=1

Hence v — [v]ws is a bijection. Let [v]s = (a1,...,a,) and [v']s = (a},...,al).

'
Then v = Y. | a;v; and v’ = Y. | ajv;. Therefore for every c,¢’ € F, we have
cv+ ' =31 (ca; + a’al)v;, which implies that

[cv + cv']g =(cay + cal, ... ca, +al)
=c(ay,...,an) +(dl,...,al)

=c[v]s + V'],

this completes the proof. O



19.3. DIMENSION OF A VECTOR SPACE 117

19.3 Dimension of a vector space

The following theorem plays helps us define the dimension of a vector space and
more.

Theorem 19.3.1. Suppose V is a vector space over a field F. Suppose {v1,...,v,}

is an F-spanning set, and w1, . . . , Wy, are F-linearly independent. Then n > m.
Proof. Inductively we will find distinct indexes 1, . . . , %5, such that for every integer k
in [07 m] ’

{v1,. o \{viys ooy v }) U{wr, oo wi )

is an F'-spanning set. We are substituting w; for v;, in {v1, ..., v, } and still spanning
V.
Notice that finding these distinct indexes

1<it,...,im<n

implies that m < n, and the claim follows.

The base of induction (k = 0) follows from the assumption that {vy,...,v,} is
an F'-spanning set. Now we show the induction step. Suppose we have already found
i1,...,1 such that

{v1, . yon b\ {viys ooy v }) U{wr, oo wi )

is an F-spanning set. To simplify our notation, after rearranging v;’s, we can and will
assume thati; = 1,...,4; = k; and so

Spanp (Wi, ..., Wiy Vgt 1, -« -5 Un) = V. (19.2)

In particular, w1 can be written as an F-linear combination of wy, . . . , Wk, Vg+1,- - -, Un.
Hence there are ¢;’s in F’ such that

Wgt1 = CLW1 + *++ + CRWE + Cp41Vk4+1 + - + CpUn. (19.3)

Claim. There exists j > k + 1 such that ¢; # 0.
Proof of Claim. If not, wy4, = Zle c;w;. This contradicts the assumption that w;’s
are F'-linearly independent.

Without loss of generality, after rearranging v;’s, we can and will assume that

ckt1 # 0.

Claim. Spang (w1, ..., Wkt1, Vkt2,-.-,0n) = V.
Proof of Claim. Because of (19.2), to show the Claim it is sufficient to prove that vy
is in the F-span of wy, ..., W41, Vk+2,- - ., Upn. By (19.3),

k

n
Ck+1Vk+1 = — g CiW; + Wg41 — E CiV;.
i=1 i=k+2
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Notice that since ci1 # 0 and F'is a field, c,;il exists. Hence

k n
-1 -1 -1
Vg1 = — g (Chp1 Ci)Wi + Wiy — g (CrqrCi)vi
i=1 i=k+2
€ Spanp (Wi, . .+, Wet1, Vkt2, -+ -5 Un)s
and the claim follows. O

Theorem 19.3.2. Suppose V is a vector space over a field F'. Suppose V is the F'-span
of a finite set {v1,...,v,}. Then

1. V has an F-basis which is a subset of {v1,...,vn}.
2. IfB = (wy,...,wy) and B’ = (wi, ..., wy;,) are two F-bases, then m = k.

The size of a basis of V' is called the dimension of V over F' and we denote it by
dimF V.

Proof of Theorem 19.3.2. (1) Suppose {v;,, ..., v; }isamaximal subsetof {vy,...,v,}
that consists of F-linearly independent vectors. Then for every j & {i1,..., %}, the
vectors vj, , . . ., Vs, , v; are F-linearly dependent. This means there are ¢y, ..., Cpmy1 €

F that are not all zero and

C1iy + o+ eV, + Cpp1v; = 0.

1 . .
m41 EXists (as F'is

Since v;, , . .., v;,, are F-linearly independent, ¢,,+1 # 0. Hence ¢
a field). Therefore

vj == (1), =+ = (Cp16m)vi,
€Spanp (v, ..., v,,). (19.4)
Since (19.4) holds for every j not in {41, ..., %, }, we deduce that
Spang (viy, ..., v, ) = Spangp(vy,...,v,) = V.
Hence (v;,,...,v;,, ) is an F-basis as it consists of F-linearly independent vectors and
it is an F'-spanning set.

(2) Since {w1, ..., wy,} is an F-spanning set and w1, ..., w) are F-linearly in-
dependent, by Theorem 19.3.1 we have k < m. Similarly, since {w},...,w}} is an
F'-spanning set and wy, . .., w,, are F-linearly independent, by Theorem 19.3.1 we
have m < k. Altogether we get m = k, and this completes the proof. O

19.4 Quotient spaces

Similar to groups and rings, we want to define the quotient of a vector space.
Suppose V' is a vector space over a field F', and W is a subspace of V. Then in
particular W is a (normal) subgroup of V. Hence we can consider the abelian group
V/W.
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Proposition 19.4.1. Suppose V is a vector space over a field F', and W is a subspace
of V.. Then the following is a well-defined scalar multiplication

FxVIW =sV/W, (o+W)—c-(v+W):=co+W.

Moreover V/W with its quotient abelian group structure and the above given scalar
product is an F'-vector space.

Proof. Let’s start with arguing why - is a well-defined operation. So assuming v; +W =
ve + W, we have to show that cv; + W = cvs + W for every ¢ € F. Notice that
v1+W = vo+W implies that v; —vy € W. As W is closed under scalar multiplication,
we have that ¢(v; — vg) € W for every ¢ in F'. Therefore cv; — cvg € W, from which
we deduce that cv; + W = cvy + W. This shows that - is a well-defined operation.

Next, we check why V/W is an F'-vector space. For every ¢ € F and v1,vy € V,
we have

c (v + W)+ (v2+W)) =c- ((v1 +v2) + W)
=c(vy +v9) + W
=(cvy + cvo) + W
=(cv1 + W) + (cva + W)
=c-(v1 +W)+c-(v2+W).

Similarly we can check that
(ci4c) - (wW+W)=c1-(v+W)+c2-(v+W)

for every c1,co € Fandv € V.
Finally we observe that

1-(w+W)=1Qv)+W=0v+W
for every v € V. This completes the proof. O

Notice that the natural quotient map
pw V= V/W, pw) :=v+W

is F'-linear and ker pyy = W.
Since by Lemma 19.2.4 an F'-vector space of a given dimension is unique up to an
isomorphism, we want to understand the dimension of V/W.

Proposition 19.4.2. Suppose V is a vector space over F and W is a subspace of V.
Then

dimp W + dimpg V/W =dimg V;

in particular if one of the sides is finite, then the other side is finite as well.
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Proof. Firstnotice that if dimp V' < oo, then there is a finite F-spanning set {v1, ..., v, }.
Then by Theorem 19.3.1, every subset of W that consists of F'-linearly independent
vectors has cardinality at most n; in particular, dimgp W < oo. We also observe that
{vi + W,...,v, + W} is an F-spanning subset of V//W, and so by the first part of
Theorem 19.3.2, we have dimp V/W < oco. Hence from this point on, we can and will
assume that

dimpW =m < oo and dimpV/W =k < oo.

Suppose (w1, . .., wy,) is an F-basis of W, and (vy + W, ..., v, + W) is an F-basis
of V/W. We show that (w1, ..., W, v1, -, V) is an F-basis of V. We prove this in
two steps. First we show this is an F'-spanning set, and second we show that it consists
of F'-linearly independent vectors.

Step 1. Spanp (w1, ..., Wy, v1,- - ,vk) = V.

Proof of Step 1. Let W’ := Spangp(wy, ..., Wn,v1, - ,vg). Then W C W' as
w;’s span W and they are in W’. Hence W’ /W is a subspace of V//W. Since v; + W’s
are in W’ /W and they span V/W, we deduce that W/ /W = V/W. Therefore by the
correspondence theorem for the subgroups of a quotient group, we have that V' = W',
(We can avoid using the correspondence theorem and use the following argument: for
every v € V, knowing that v+ W € W’ /W, we can deduce that there is w’ € W such
that v + W = w’ + W. This means v — w’ = w for some w € W C W’. Hence

v=w+weWw.

Altogether we proved that every element v of V' is in W. Therefore V = W".)
Step 2. wq, ..., Wn,v1, -,V are F-linearly independent.
Proof of Step 2. Suppose

m k
> cwi+ Y emiju; =0 (19.5)
i=1 j=1

for some ¢;’s in F'. Then

m k
pW(Zciwi + Zcm+jvj) = 0,
i=1 j=1

where pw : V. — V/W, pw(v) := v+ W is the natural quotient map. Since
W = ker py, we obtain that

k
D emiy - pw(v) =0,
=1

and so
Cmi1 (V1 + W)+ 4 emik - (v + W) =0. (19.6)

As v; + W’s are F-linearly independent, we deduce that ¢,;,11 = -+ = ¢pqr = 0.
Hence by (19.5), we obtain that

m
E C;w; = 0.
i=1
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As w;’s are F-linearly independent, we have ¢; = - - - = ¢, = 0. Altogether we deduce
that all the coefficients in (19.6) are zero. This completes the proof of the second step.
By Steps 1 and 2, we obtain that

(Wi e ey Wi, V1, - vy V)
is an F'-basis. Hence
dimpV =m+k = dimp W + dimp V/W,

which completes the proof. O

19.5 The first isomorphism theorem for vector spaces

Similar to groups and rings, next we prove the first isomorphism theorem. Then we
use this result to show the kernel-image theorem.

Theorem 19.5.1. Suppose Vi and Vs are two F-vector spaces, and f : Vi — Vs is an
F'-linear map. Then

1. Tm(f) is a subspace of Va, and ker f is a subspace of V.

2. f:Vi/kerf = Imf, f(vi+kerf):= f(vy)isanisomorphism of F-vector
spaces.

3. dimp(ker f) + dimp(Im f) = dimp V1.

Proof. (1) Since f is an additive group homomorphism, Im f is a subgroup of V5 and
ker f is a subgroup of V7. So it is sufficient to prove that Im f and ker f are closed
under scalar multiplication. Suppose vy € Im f. Then vy = f(vy) for some vy € V;.
Hence for every c € F', we have

cvg = cf(v1) = f(cvy) € Im f.

This shows that Im f is closed under scalar multiplication, and so it is a subspace of V5.
Suppose v; € ker f and ¢ € F'. Then

flevy) =cf(v1) =c0 =0,

which implies that cv; € ker f. Hence ker f is closed under scalar multiplication,
which implies that ker f is a subspace of V7.
(2) By the first isomorphism theorem for groups, we have that

fiWi/ker f = Tm f, f(vr+kerf):= f(v1)

is a well-defined group isomorphism. So to show that £ is an F-vector space isomor-
phism, it suffices to argue why f preserves the scalar multiplication. For every c € F'
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and v, € V7, we have

fle- (o1 +ker f)) =f(cvr + ker f)
=f(cv1)
=cf(v1)
=c- f(vy +ker f),

and part (2) follows.
(3) By Proposition 19.4.2 and the second part, we have

dimp(Im f) = dimp(Vy/ ker f) = dimp Vi — dimp(ker f),

and the claim follows. O
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Lecture 20

We have proved basic properties of vector spaces over a field F'. Here we will
explore their implications in field theory.

20.1 Previous results in the language of linear algebra

We have motivated our digression to vector spaces over fields by considering the
conclusions of Proposition 8.3.1 and Theorem 9.1.1. Here we rephrase those conclusions
using terminologies from linear algebra.

Proposition 20.1.1. Suppose F is a field and f(x) € F[z] is a polynomial of degree n,
where n is a positive integer. Then (1,7, . .. , ") is an F-basis of F[z]/{f), where
Z' = a' + (f) for every integer i in [0,n — 1]. In particular, dimp F[z]/{f) = deg f.

Proof. By Proposition 8.3.1, every element of F[z]/(f) can be uniquely written as
n—1
(coterz+-+cp1z" )+ (f) = Z G
i=0

Hence the F-span of {1, 7,..., 7"~ '} is F[z]/(f). Moreover if 3.7 ¢;7" = 0, then
because of the uniqueness the above expression we obtain that ¢;’s are 0. This implies
that 1,7, ..., 2" ! are F-linearly independent. The claim follows. O

Proposition 20.1.2. Suppose E is a field extension of F, and o € E is algebraic over
F. Then (1,c,...,a" ') is an F-basis of F|a] where n = deg my, . In particular,
dimp Fla] = deg mq, p.

Proof. By Theorem 9.1.1, every element of F'[a] can be uniquely written as

-1
co+ecia+--+cp_1a”

forsomeco, ..., c,—1 € F wheren = deg m,, p. Hence the F-spanof {1, v, ..., a" '}
is F[a]. Moreover if Z;’;Ol c;a' = 0, then because of the uniqueness the above ex-
pression we obtain that ¢;’s are 0. This implies that 1, v, ..., a" ! are F-linearly
independent. The claim follows. O

123
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20.2 Finite fields and vector spaces

Suppose F is a finite field and V' is a vector space over F'. If dimg V = n, then by
Lemma 19.2.4, we have that V' ~ I, and so

|V| = |F|dimrV, (20.1)
This helps us get a strong condition for the tower of finite fields.

Proposition 20.2.1. IfF,~ can be embedded into Fyn, then m|n.

Proof. If Fm can be embedded into IF),», we can view IF,» as a vector space over Fp,m.
Since these are finite sets, dim]Fpm F,» = d < oo. Hence by (20.1), we have

|Fyn| = [Fpm|%,  which implies that 1 = md.

This completes the proof. O

One can use the cardinality of the group of units of finite fields to prove the same
result. Assuming that [F,» can be embedded in F},», we deduce that the group of units
of Fm can be embedded into the group of units of Fp». Hence p™ — 1|p™ — 1. From
this one can show that m|n. As you can see the presented proof, which is based on
linear algebra, is much more natural.

Exercise 20.2.2. Suppose m and n are positive integers and m|n. Prove that F,m can
be embedded into Fpn.

20.3 Tower rule for field extensions

We have already seen in Proposition 20.2.1 how useful it is to think about a field
extension E of F' as an F'-vector space.

Definition 20.3.1. Suppose E is a field extension of F. Then we can view E as an
F-vector space (see Example 19.1.3). The dimension dimp E of E as an F-vector
space is denoted by [E : F| and it is called the degree of this field extension.

Theorem 20.3.2 (Tower rule). Suppose L is a field extension of E,
and FE is a field extension of F. Then

L
[L:F|=[L:E|E:FJ 5 (20.2)
in particular, if one of the sides is finite, then the other side is finite as ‘
well. F
We often use a diagram as in (20.2) to show field extensions. In this type of diagram,
we connect two fields if one is a subfield of the other. The subfield is located lower than

the larger field.
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Proof of Theorem 20.3.2. If [L : F] = n < oo, then there is a finite F-spanning set
{v1,...,v,}. Hence the L-span of {vy,...,v,} is also L, and so by Theorem 19.3.2,
[L : E] < n. And also, by Proposition 19.4.2, we have

[E: F)=dimp F <dimp L < co.
Therefore from this point on, we can and will assume that
[L:E]=m<oo and [E:F]=n<oo.

Suppose ({1, ...,4y) is an E-basis of L, and (ey,...,e,) is an F-basis of E. We
prove that
{ie; |1 <i<m,1<j<n}

(with respect to some ordering) is an F'-basis of L. We do this in two steps.

Step 1. Spany(fe; |1 <i<m,1<j<n)=L.

Proof of Step 1. Every ¢ € L can be written as an E-linear combination of /;’s.
This means there are x; € E such that

Every element of £ can be written as an F'-linear combination of e;’s. Hence for every
i, there are y;; € I’ such that

Ti =Yi1€1 + -+ Yinen. (20.4)
By (20.3) and (20.4), we deduce that

m n

f:zm:xifz‘:Z( llijej)gi
i—1 1

=1 j=
= E Yij &;ej.
1<is<m,1<j<n

This means £ can be written as an F-linear combination of /;e;’s. This completes the
proof of Step 1.

Step 2. /;e;’s are F'-linearly independent.

Proof of Step 2. Suppose

S yijilie; =0 (20.5)

1<i<m,1<j<n

for some y;;’s in F. Then by (20.5), we have

Z (Z yijej>£i =0. (206)
=1 j=1
Notice that for every 4, z; := Y_7_) Y7 yije; is in E. Since ¢;’s are E-linearly

independent, by (20.6) we deduce that x; = 0 for every i. Hence we have

n n

> wije; =0 (20.7)

j=1j5=1
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for every index i. Since e;’s are F'-linearly independent, by (20.7) we obtain that
1i; = 0 for every pair of indexes 7 and j. This completes the proof of the second step.
By Steps 1 and 2, we deduce that

[L:F]={tlie; |1<i<m,1<j<n}|=mn=][L:E|E:F],

which completes the proof.

20.4 Some applications of the Tower Rule for field extensions
Here we mention some examples on how one can use the Tower Rule.

Example 20.4.1. Suppose FE is a field extension of Q such that [E : Q] = 2™ for some
positive integer n. Then x> — 2 is irreducible in Fz].

Proof. Suppose to the contrary that 2% — 2 is not irreducible in E[z].
Then by the irreducibility criterion for degree 2 and 3 polynomials
(see 10.1.1), we deduce that there is o € E which is a zero of 23 — 2. E
Then Q[a] is an intermediate field; that means we have the tower
of field extensions given in (20.9). Hence by the Tower Rule (see

Theorem 20.3.2), we have [E : Q] = [E : Q[a]][Q[e] : Q]. Therefore Qle] (209)
by Proposition 20.1.2 and our hypothesis, we obtain that ‘
2" = [E : Q[a]] deg ma,@- (20.8) Q

So we it is useful to find the minimal polynomial m, g of @ over Q. Notice that « is a
zero of 2 — 2, 23 — 2 is monic, and by Eisenstein’s irreducibility criterion (see Theo-
rem 12.2.1), 23 — 2 is irreducible in Q[z]. Hence by Theorem 8.2.5, m, o(z) = 23 —2.
Thus by (20.8), 3 is a divisor of 2" which is a contradiction. This completes the

proof. O

Example 20.4.2. Suppose E is a field extension of F' and o € E is algebraic over F.
Suppose [F[a] : F]is odd. Then F[a] = F[a?].

Proof. Notice that F[a] is a field extension of F[a?].
So we have the tower of field extensions given in (20.11). Hence

by the Tower Rule (see Theorem 20.3.2), we have Flo]
[Fla] - F] = [Flo] : Fla®]|[F[o”] : F] ‘
F[OzQ] (20.11)
Therefore by Proposition 20.1.2 and our hypothesis, we obtain
that ‘
(deg M, Flaz))[Fa?] : F]is odd. (20.10) P

By (20.10), we have that deg m, p[42] is 0dd. Notice that «v is a zero of 22—a? € Fla?].
Hence deg m, ro2) < 2. As the only positive odd integer less than or equal to 2 is 1,
we have deg m, pa2) = 1. This implies that o € F[o?], and so F[o] C F[o?]. The

claim follows. O
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Example 20.4.3. Suppose o, 8 € C are algebraic over Q. Let f(x) := mq o(x) and
g(x) :=mgg(x). Then

f is irreducible in (Q[f])[x] <= g¢ is irreducible in (Q[a])[x].

Proof. (=) We will be using the right and the left legs of the diagram given in (20.12).

Qlev, 5]

PN
Qla] Q[A]
\ ! /

Going through the right leg of the diagram in (20.12), using the Tower Rule (see
Theorem 20.3.2) and Proposition 20.1.2, we obtain that

[Qla, 8] : Q] =[Qe, 8] : Q[B]]IQ[A] : Q)
=(deg ma,g[s)) (deg ms,)- (20.13)

(20.12)

Notice that since « is a zero of f, f is monic and irreducible in (Q[S])[z], by The-
orem 8.2.5, we have m, qig(z) = f(z) = ma,q(x). Hence, by (20.13), we have
that

[Qla, B] : Q] = (deg mq,g)(deg mp,q). (20.14)

Going through the left leg of the diagram in (20.12), using the Tower Rule (see Theo-
rem 20.3.2) and Proposition 20.1.2, we obtain that

[Qlev, 8] : Q] =[Q[a, 8] : Q[]][Q[e] : Q]
=(deg mg,q[a])(deg ma,q)- (20.15)

By (20.14) and (20.15), we deduce that
degmg gla) = degmg q- (20.16)
Notice that since 3 is a zero of mg g € (Q[a])[x], we obtain that
mg qlal| degmg g. (20.17)
By (20.16) and (20.17), we obtain that g(x) = mg,q(x) = mg g[s](x). This implies
that g(x) is irreducible in (Q[a])[x].

(<) This direction follows by a similar argument. O

Let’s remark that if L is a field extension of F, F is a field extension of F', and
a € L is algebraic over F), then « is a zero of my, p € E[z]. Hence mq, g|mq, r; this
is a generalization of (20.17).
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20.5 Algebraic closure in a field extension

Suppose F is a field extension of F. The algebraic closure of F in E is the set of
all the elements of E that are algebraic over F'. Here we will prove that the algebraic
closure of F'in E is a subfield of E. We start with proving that a field extension of
finite degree is an algebraic extension.

Lemma 20.5.1. Suppose E is a field extension of F of finite degree. Then every o € E
is algebraic over F.

We say a field extension F of F'is an algebraic extension if every a € F is algebraic.
So we are proving that a field extension of finite degree is algebraic.

Proof of Lemma 20.5.1. Suppose [E : F] = n. Then by Theorem 19.3.1, every n + 1
elements of F are F'-linearly dependent. Hence 1, v, . .., o’ are F'-linearly dependent.
Thus there are cg, ..., c, € F that are not all zero and

co+ca+---+ca =0.
This means that « is algebraic over F'. O

Theorem 20.5.2 (Algebraic closure in a field extension). Suppose F is a field extension
of F. Let
K = {a € E | ais algebraic over F'}.

Then K is a field extension of F'.

Proof. Suppose o, 3 € K. Then by Proposition 20.1.2, we have [Flo] : F]| =
deg mq, p < 00. Moreover as (3 is algebraic over F'[a], we have [Fa, 5] : Fla]] < 0.
Hence by the Tower Rule (see Theorem 20.3.2) we obtain that

[Fla, 8] : F] = [Fla, 8] : Flo]][Fla] : F] < . (20.18)

By Lemma 20.5.1 and (20.18), we deduce that F'[«, 3] is an algebraic extension of F;
this means that F'[a, 6] C K. This implies that ' C K, « & 8 and «f are in K, and
if B # 0, then B! is in K, as well. Altogether, we deduce that K is field extension
of F'. This completes the proof. O
20.6 Tower of algebraic extensions

Here we show another application of the tower rule on algebraic extensions.

Proposition 20.6.1. Suppose E is an algebraic extension field of F' and L is an alge-
braic extension field of E. Then L is an algebraic extension field of F'.

Proof. Suppose o € L. Then « is algebraic over E. Suppose

Mme.p(r) =2" + en12" 4+ e
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is the minimal polynomial of a over E. Hence « is algebraic over Fleg, ..., e,_1].
Notice that since e;’s are algebraic over F', by the Tower rule by an argument similar to
(20.18) inductively we can show that

[Fleo, .. en_1]: F] < o0. (20.19)
As « is algebraic over F'leg, ..., en—_1],
[Fleg, ... en—1][a] : Fleo,...,en—1]] < o0. (20.20)

Hence by the Tower Rule, (20.19), and (20.20), we have
[Fleg, ... en—1,0a]: F] < 0.

Therefore by Lemma 20.5.1, « is algebraic over F'. This completes the proof. O

20.7 Geometric constructions by ruler and compass

Let’s recall some ancient Euclidean geometry problems. Can we construct /2, ,
or angle 20° using ruler and compass? Let’s formulate it properly what it means to
construct a number. We start with a unit segment. The end points are considered
constructed. If two points are constructed, then the line which passes through them is
considered constructed. The circles that are centered at one of these points and pass
through the other are called constructed. The points of intersection of constructed
circles and lines are considered constructed points. A number is called constructed
if its absolute value is the distance of two constructed points. The following theorem
gives us an excellent understanding of constructed points.

Theorem 20.7.1. Suppose the initial points are (0,0) and (1,0). If («, B) is a con-
structed point, then [Q[a] : Q] and [Q[8] : Q] are powers of 2.

Here only the main ideas will be presented. To get to the point («, ), we have
to construct finitely many lines and circles, and consider their intersection points. To
find the coordinates of intersection points we end up solving degree 1 and degree 2
polynomials with coefficients that are in the ring generated by the coordinates of the
constructed points that we have so far. This means there is a tower of field extensions

Q::FOQFlg"'an

such that [F;y; : F;] = 2 for every ¢ and « € F,,. By the Tower Rule, [F), : Q] is
power of 2. Since Q[a] is an intermediate subfield, by the Tower Rule we deduce that
[Q[«] : Q] divides [F}, : Q). Hence [Q[a] : Q] is a power of 2.

Corollary 20.7.2. /2 and 7 cannot be constructed by ruler and compass.

Proof. By Theorem 20.7.1, if « can be constructed by ruler and compass, then [Q[«] :
Q] is a power of 2. In particular, « is algebraic. Hence 7 cannot be constructed (we
do not prove this here, but it can be proved that 7 is not algebraic over Q). Notice that
degm 5.0 = 3 and so {/2 cannot be constructed by ruler and compass. O
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Exercise 20.7.3. Show that deg mcos 200,90 = 3, and use this to deduce the angle 20°
cannot be constructed by ruler and compass. (Hint: cos 30 = 4 cos®> @ — 3 cos¥.)

By the above Exercise, we can deduce that there is no general method of dividing a
given angle into three equal parts using only ruler and compass.



Chapter 21

Lecture 21

By now we have a basic understanding of vector spaces over a field and how it can
help us study field extensions. We go back and further study splitting fields. Here we
focus on the splitting field of 2™ — 1 over Q. Let us recall that by Example 17.2.1, we
have that Q[¢,,] is a splitting field of " — 1 over Q, where ¢,, := ¢>™*/™, and

" —1l=(x—-1)(r—C) - (x -, 2L1)

This field has a historical significance, because of its role in the initial modern attempts
towards proving Fermat’s last conjecture. We want to answer a very basic question
about this field: what is [Q[(,] : Q]? By Proposition 20.1.2, we have

[Q[¢n] : Q] = degme, -

Hence we need to find the minimal polynomial of (,, over Q.

21.1 Cyclotomic polynomials

In this section, we will arrive at the definition of the n-th cyclotomic polynomial.
This will be done as we investigate the minimal polynomial of (,, over Q.

Notice that since ¢, is a zero of ™ — 1, me, @ divides 2™ — 1. Hence by (21.1)
and the fact the C[z] is a UFD, we deduce that

Mao(@) = (x =) (z = )

for some integers ¢;’s in [1,n]. As (, is a zero of m¢, @, without loss of generality, we
can and will assume that 7; = 1.

By Lemma 16.2.2, if F is a field extension of F' and o, &’ € E are two zeros of
an irreducible polynomial f € F[z], then there is an F-isomorphism 6 : Fla] —
F[c] such that 8(«) = o'; an F-isomorphism is a ring isomorphism which F-linear.
Applying this result for the two zeros (,, and (7 of the irreducible polynomial me, 0 €
Q[x], we obtain a Q-isomorphism 6; : Q[¢,] — Q[¢7] such that 6;(¢,,) = (7. Notice
that, since 6; is a ring isomorphism, the multiplicative order of (,, and 6;((,) are

131
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the same. As o(g"*) = ﬁ?g)),k)’ 0(Cn) = n, and 6,(¢,) = . we deduce that

ged(n,i;) = 1 for every j. This takes us to the definition of the n-th cyclotomic
polynomial.

Definition 21.1.1. The n-th cyclotomic polynomial is

Su2)= [ (-

1<i<n,ged(i,n)=1

In particular, ®,, is a monic polynomial of degree ¢(n), wherer ¢ is the Euler-phi
function.

By the above discussion, we have that m¢, o(z) divides ®,,(x) in C[z]. We will
prove that m¢,, o(x) = @, (z).

21.2 Cyclotomic polynomials are integer polynomials

The following is a key property of cyclotomic polynomials that, among other things,
help us prove cyclotomic polynomials are integer polynomials.

Theorem 21.2.1. For every positive integer n, we have

" —1= H Dy(z). (21.2)
d|

Before we go to the details of the proof of Theorem 21.2.1, let us compare the
degrees of the both sides of (21.2):

n=>Y¢(d). (21.3)
d|n
Proof of this formula is based on the partitioning of the set [1..n] := {1,...,n} in

terms of the greatest common divisor of the elements with n. To be more precise, we
let
Can = {i €[l.n] | ged(i,n) = d}. (21.4)

Then {Cy,, | d|n} is a partitioning of [1..n]. Moreover

i€ Capn <= ged(i,n) =d <= i=djand ged (j,@) — 1.

d
Hence

Cun={dj | j € C1,5} which imlies that |Cyp| = |Ch,a| = ¢(g). (21.5)
Therefore

n=|Ln] =" [Can| = Z¢(g>
dn

d|n
Finally we notice that as d ranges over all the positive divisors of n, so does 7; that
means d — % is a bijection from the set of positive divisors of n to itself. Hence
2 A(F) = 2 gpn @(d), and (21.3) follows. We will be following the same steps to
prove (21.2).
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Proof of Theorem 21.2.1. Since 2™ — 1 = [,y ,(z — ¢)and {Cy, | din}is a
partition of [1..n], we have that

2 —1=]] [] @-¢. (21.6)

dn i€Cq,n
By (21.5), we have that
II @G=¢)= TI @-¢h. 21.7)
1€Cq,n j€C1,%

Notice that ¢4 = e(?m/m4 = ¢2m/(3) = (4. So by (21.7), we deduce that
H (x—C') = H (x—(%) =&xn (7). (21.8)
i€Cq,n 0<j< % ,gcd(4,%)=1

By (21.6) and (21.8), we obtain

2" —1=]]®s (). (21.9)

d|n

As it is mentioned earlier, d +— % is a bijection from the set of positive divisors of n to
itself. Hence by (21.9), (21.2) follows. O

Using we are ready to prove that cyclotomic polynomials are integer polynomials.
Corollary 21.2.2. For every positive integer n, ®,(z) € Z[z].

Proof. We proceed by strong induction on n. The base case is clear as &1 (z) = = — 1.
Next we prove the strong induction step. By the strong induction hypothesis, for every
positive integer m < n, ®,,,(x) € Z[z]. Hence

Up(z):= [ @alx)€zz], (21.10)
d|n,d#n
and as ®4’s are monic, ¥,,(x) is monic as well. By Theorem 21.2.1, we have
2" —1=0,(x)V,(x). (21.11)

Asz™ —1,VU,(x) € Z[z] and ¥, () is monic, by the Long Division for elements in
Z[z] (see Theorem 6.4.1) there are unique g(z), r(x) € Z[x] such that

1. 2" — 1 =q(x)V,(z) + r(x) and
2. degr < degV¥,,.

Using the Long Division for elements in C[x], we see that the same ¢ and r are the
quotient and remainder of ™ — 1 divided by ¥,,(x) as elements of C[z]. By (21.11),
however, we have that the quotient and the remainder of ™ — 1 divided by ¥,,(x) as
elements of C|[x] are ®,,(x) and 0, respectively. Hence ®,,(z) = ¢(z) € Z[z], and the
claim follows. O
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Let us remark that the last part of the above argument implies the following:

Lemma 21.2.3. Suppose A is a subring of a unital commutative ring B and 1 € A.
Suppose f,g € Alz] and1d(f) € A*. If f|g in Blz], then f|g in Alx].

Use long division in A[z] and B[z] to prove this Lemma. I leave it to you to fill out
the details.

21.3 Cyclotomic polynomials are irreducible
The main goal of this section is to prove the following:
Theorem 21.3.1. For every integer n, ®,,(x) is irreducible in Q|x].

As before the general steps are proceeding by contradiction, going from Q to Z,
and using the residue maps modulo primes. The last step, however, will be more subtle
than the other examples that we have done so far.

Proof of Theorem 21.3.1. Suppose to the contrary that ®,, (z) is not irreducible in Q[z].
Then ®,,(x) = f(z)g(x) for some non-constant smaller degree polynomials f and g.
Since ®,,(x) is a monic integer polynomial, it is a primitive polynomial. By Gauss’s
lemma (see Corollary 15.4.3), we have ®,,(x) = f(x)g(z) where f and g are primitive
forms of f and g, respectively. Notice that ¢, is a zero ®,,, it is either a zero of f or
a zero of g. Without loss of generality, we can and will assume that ¢,, is a zero of f.
Every other zero ¢ of f is a zero of ®,,(x), and so the multiplicative order of ¢ (as an
element of C*) is n.

(Here is where the magic is happening.)

If p is a prime which does not divide n and ¢ € C* has multiplicative order n, then
the multiplicative order of (? is also n. Therefore (? is a zero of ®,,(x), and so itis a
zero of either f or 3.

Claim 1. If € is a zero of f and p is a prime which does not divide n, then (P is a
zero of f as well.

Proof of Claim 1. Suppose to the contrary that f(¢?) # 0. Since o(¢?) = n, ®,,(¢?) =
0. As f(¢?) # 0 and ®,,(CP) = f(¢P)g(¢P), we deduce that g(¢P) = 0. This means
¢ is a common zero of f(z) and g(z?). Thus m¢ g(z) is a common divisor of f(z)
and g(xP) in Q[xz]. Let h(z)Z[x] be the primitive form of m¢ g(x). By Gauss’s lemma
(see Corollary 15.4.3), h(x) is a common divisor of f(z) and g(zP) in Z[z]. As f is
monic, so is . Therefore ¢, (k) is a common divisor of ¢, (f(x)) and ¢, (g(z?)) where
¢p : Z[z] — Zy|x] is the residue map modulo p. Notice that % is a monic non-constant
polynomial, so is ¢, (h).

(Here you see why we considered raising to power p at the first place.)

Since Z,,[x] is of characteristic p, by Fermat’s little theorem we have

cp(h(x))? = cp(h(zP)). (21.12)
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To see this better, notice that in Z,[x] we have

N aaiy = @'y =3 ai(a?).
i=0 i=0 =0

So ¢, (h) is a non-constant common divisor of ¢, (f) and ¢,(g)?. Let £(x) be a prime
factor of ¢, (h). Then £(x) divides ¢, (g)?, and so £(z) divides ¢, (g) as Z,[z] is a UFD.
Therefore /()% divides

eo(Fep(@) = cp(f9) = cp(Pn). 21.13)

As ¢y (®,,) divides 2" — 1 in Z,[z], £(z)? divides 2™ — 1 in Z,[z]. Hence 2" — 1
has multiple zeros in its splitting field over Z,. By Proposition 18.3.4, we deduce
that ged(2™ — 1,nz™~!) # 1. This is a contradiction as p { n and z { 2™ — 1. This
completes the proof of Claim 1. O

Claim 2. Suppose i is a positive integer and ged(i,n) = 1. If ( is a zero of £, then
(% is a zero of f.

Proof of Claim 2. We proceed by induction on the number k of prime factors of 7.
In the base case of £k = 0, we have ¢ = 1, and there is nothing to prove. Suppose
i = p1 - - - Pk+1, Where p;’s are primes that do not divide n. By the induction hypothesis
¢PrPr is a zero of f. By Claim 1, we deduce that

(¢PrPr )Pk+1 - Ci
is a zero of f. This completes the proof of Claim 2. O

By Claim 2, since (,, is a zero of f, ¢} is a zero of f if i is a positive integer
and ged(i,n) = 1. This implies that ®,,(z) divides f, which is a contradiction as
deg f < deg ®@,,. This completes the proof. O

21.4 The degree of cyclotomic extensions

Field Q[¢,,] is called a cyclotomic extension.

Theorem 21.4.1. Suppose n is a positive integer and C,, := €2™/™. Then the minimal
polynomial of (,, over Q is m¢,, o(x) = @, () and [Q[(,] : Q] = ¢(n).

Proof. We have that (, is a zero of ®,,(z), ®,,(x) is a monic polynomial, and ®,, ()
is irreducible in Q[z] (by Theorem 21.3.1). Hence by Theorem 8.2.5, we have that
me, o(z) = ®,(z). By Proposition 20.1.2, we have

[Q[¢n] : Q] = degmy, g = deg @, = ¢(n),

which completes the proof. O
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Lecture 22

22.1 The group of automorphism of a field extension.

Through out this course one of our main goals has been understanding zeros of
polynomials. We proved the existence and the uniqueness (up to an isomorphism) of
a smallest field which contains all the zeros of a given polynomial (a splitting field).
A better understanding of splitting fields can help us to learn more about the zeros of
polynomials. One of our main tools of characterizing (intricate) objects is their group of
symmetries. The group of symmetries of a field extension E of F' is defined as follows.

Definition 22.1.1. For a field extension E of I, let
Autp(E) :={0: E — E | 0 is a ring isomorphism, and F-linear}.

An element of Autp(FE) is called an F-automorphism. An F-linear, ring homomor-
phism is called an F'-homomorphism.

One can easily see that Aut(FE) is a group under composition. We would like to
know how much Aut(F) tells us about the field extension.

Similar to the proof of the uniqueness of splitting fields, we need to work with two,
possibly different, copies of the base field F', and with not necessarily surjective ring
homomorphisms: we proved the isomorphism extension theorem in order to deduce
the uniqueness of splitting fields up to an isomorphism. That is why we introduce the
following notation.

Definition 22.1.2. Suppose 6 : F — F' is a field isomorphism, E is a field extension
of F, and L' is a field extension of F'. Then

Embg(E,L') := {0 : E — L' | 8 injective ring homomorphism and 0| = 6}

and an element of Emby(E, L") is called an 8-embedding. An isomorphism which is
an 6-embedding is called an 0-isomorphism, and the set of 0-isomorphisms is denoted
by Isog(E,L"). When F' = F and 0 = idp, we write Embg(E, L") instead of
Embiqg, (E, L). Instead of saying id p-embedding, we say F-embedding.
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Notice that 6 is in Emby (E, L) exactly when the following is a commutative
diagram.

E-%,

F— F
Lemma 22.1.3. [f[E : F] < 0o, then Embp(F, E) = Autp(E).

Proof. Clearly Autp(E) C Embp(E, E). Suppose § € Embg(FE, E). To show
that 6 is an F-automorphism, it suffices to argue why 6 is surjective. By the first
isomorphism theorem for vector spaces (see Theorem 19.5.1), we have

dimp Im(6) + dimp ker(6) = dimp E.

Since 6 is a injective, ker # = 0. Hence dimp Im(#) = dimp E. Since Imp(0) is a
subspace of E and it has the same dimension as F, by Proposition 19.4.2 Im(6) = E.
This completes the proof. O

The following easy lemma is the corner stone of our understanding of the group of
symmetries of algebraic field extensions.

Lemma 22.1.4. Suppose 0 : F — F' is a field isomorphism, E is a field extension of
F, and L' is a field extension of F'. Suppose f(x) € F|x] and o € E is a zero of f.
Then

for every 6 € Emby(E, L"), é\(a) is a zero of O(f).
In particular, if L is a field extension of F, then
for every F-embedding 0:F— L, O() is a zero of f.

Proof. Suppose f(z) = >.1  ¢;z'. Then Y " c;a’ = 0. Therefore

-~

0= é(z ciai) = 0(c)b(a) = 0(c)ba) = 0(f)(0(a)),
i=0 i=0 i=0
and the claim follows. O

22.2 Normal extensions

The following theorem and the ideas involved in its proof play an important role in
our understanding of field extensions of finite degree.

Theorem 22.2.1. Suppose E is a field extension of F and [E : F] < oco. Then the
following statements are equivalent.

1. Thereis f € F[z] such that E is a splitting field of f over F.
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2. For every field extension L of E and 6 € Autp(L), we have §(F) = E.

3. Forevery$ € E,mgp(x)=(x— 1) - (x — Bp) for some B4, ..., B € E.

Each one of these properties gives us a very different perspective of the given field
extension.

1. The first property (in terms of splitting fields) is very concrete and one can
construct many examples with it.

2. The second property gives us a relation between symmetries of field extensions
of E over F' and symmetries of ¥ over F'. It is quite surprising that a property

about E’ and F tells us something about symmetries of every field extension of
E.

3. In contrast with the second property, the third property is completely internal. It
is all about £ and F' and no other additional information is involved.

The second and the third properties make sense even if the given field extension is
not of finite degree. The first property, however, implies that the field extension is of
finite degree. One can talk about a splitting field of a family of polynomials, replace the
statement with this extended notation, and still get equivalent properties. This is a key
result for understanding algebraic extensions of infinite degree. Here, however, we do
not discuss infinite degree algebraic extensions.

Definition 22.2.2. Suppose E is an algebraic extension of F. We say E is a normal
field extension of F if the third property in Theorem 22.2.1 holds.

Proof of Theorem 22.2.1. (1) = (2) Since F is a splitting field of f over F', there are
ai,...,a, € Esuch that

f@)=1d(f) [[(x =) and E=Flas,...,an].
i=1
Suppose L is a field extension of F and § € Autpr(L). Then by Lemma 22.1.4, 6(«;)
is a zero of f in L. Since a1, ..., a,, are the only zeros of f in £ C L, we obtain that

O(e;) € {ag,...,an} (22.1)

for every i. As 6 is injective, form (22.1) we deduce that § permutes elements of
{a1,...,a,}. Therefore

O(FE)=0(Flay,...,an)) =0(F)[0(1),...,0(an)] = Floa,...,an]) = E.

(2) = (3) This is the most technical part of the proof. For every 5 € E, we want to
show that there are 3;’s in E such that mg p(z) = [];~, (x — B3;). The second property
is about the field extensions of E/. Hence we need to work with field extensions
of E that contain all the zeros f3; of mg r, say L is such a field. Since 3 and j;
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are zeros of the irreducible polynomial mg p(z), by Lemma 16.2.2 there is an F'-
isomorphism 6; : F[3] — F[f;] such that 8,(3) = ;. If we manage to extend 6; to an
F-automorphism 0; of L, then by hypothesis, §;(E) = E, which implies that

is in E, and the claim follows. Hence we focus on extending 6, to an F-isomorphism
from L to itself. This reminds of the isomorphism extension theorem (see Theo-
rem 17.1.1). By the isomorphism extension theorem, we can extend 6; to an F'-
automorphism @ of L if L is a splitting field of a polynomial over F'.

Altogether we have proved that the claim follows if we show the existence of a field
L with the following properties.

1. L is a field extension of F.
2. There are f3;’s in L such that mg p(z) =[]/~ (x — ;).
3. Thereis f € Fx] such that L is a splitting field of f over F.

Notice that the conditions (2) and (3) are satisfied by a splitting field of mg r over I,
but this field does not necessarily contain E as a subfield. The following is a common
technique that is used to construct a field which is a splitting field of a polynomial over
F and contains E as a subfield. !

Suppose (71, - .-, 7Vn) is an F-basis of E, and let

f(@) = mg p(x)my, p(2) - ma, p(z) € Flz].

Suppose L is a splitting field of f over F. Clearly L satisfies the first and the second
desired properties that are mentioned above. Next we show that L is a splitting field of
f over F. Since L is a splitting field of f over F, there are 3;’s and ~; ;’s in L such that

m m;

mg (@) =[[(x—8) and my p(@)=[[@-,, @22
i=1 j=1
and
L:E[ﬂla"~75m7’71,17~~'77n,mn]~ (223)
Since v; € E C Lis a zero of m, r, v € {Vi1,---,%,m, ;- Hence without loss of

generality we can and will assume that y; 1 = y; for every .

Notice that (22.3) means that if a subfield of L contains E, 3;’s and v; ;’s, then
it is the entire L. On the other hand, as ~;’s form an F'-basis of F, if a subfield of L
contains F' and +;’s, then it contains E. Altogether we obtain that a subfield of L which
contains F, 3;’s, and y; ;’s is the entire L. This means

L:F[ﬂla-~~7ﬂma71,1a-'-37n,mn]- (224)

By (22.2) and (22.4), we deduce that L is a splitting field of f over F. This gives us a
field L with the mentioned desired properties, and the claim follows.

'We will use this method to show the existence of a normal closure of a field extension.
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(3) = (1) We use the same technique as in the proof of the previous step. Suppose
(Y1, -+ ,7n) is an F-basis of E, and let
9(x) = mqy p(2) - My, ().

By hypothesis, m.,,  can be written as a product of degree one factors in E/[x]. Hence
there are «;’s in F such that

g(x) = (r —a1) - (r — aq). (22.5)
We also notice that ;’s are zeros of g in F, and so
vi € {a1,...,aq} (22.6)
for every i. Therefore

E = SpanF(’yla"w’-Yn) QF[’Yh?ﬁYn}
CFlag,...,aq) CE.

Hence £ = Flay,...,a,], which together with (22.5) implies that E is a splitting
field of g over F'. This completes the proof. O






Chapter 23

Lecture 23

23.1 The group of automorphism of normal field extensions.

Using Theorem 22.2.1, we obtain the following result on the group of automor-
phisms.

Proposition 23.1.1. Suppose E is a normal extension of F and [E : F| < co. Then
1. For every field extension L of F,
TLE': Autp(L) — AutF(E), TL’E(Q) = 9|E

is a well-defined group homomorphism. Moreover kerrp p = Autg(L); in
particular, Aut g (L) is a normal subgroup of Autp(L).

2. For every extension L of E which is a finite normal extension of F, ry g is
surjective and
Autp(L)/ Autg(L) ~ Autp(E).

Proof. (1) Since FE is a finite normal extension of F', by Theorem 22.2.1 for every
field extension L of E and every § € Autp(L), 6(F) = E. Hence 0|g is an F-
automorphism of E. Therefore 7, g is a well-defined map. It is easy to check that it is
a group homomorphism.

Notice that 6 € kerry, g if and only if 8| = idg. Hence kerrp g = Autg(L).
From group theory, we know that kernel of a group homomorphism is a normal sub-
group.

(2) Let’s start by understanding what the surjectivity of 77, r means. It means that
every § € Auty(E) can be extended to an F-automorphism of L. By the isomorphism
extension theorem,  can be extended to an F-isomorphism from L to itself if L is a
splitting field of a polynomial f € F'[z]. Let’s explain why this is the case. If L is a
splitting field of f € F[z] over F, then by f = 0(f) and E = 6(E), we observe that
L is also a splitting field of §(f) over §(E)). Therefore by the isomorphism extension
theorem (see Theorem 17.1.1) we get the desired extension.

143
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Since L is a finite normal extension of F', by Theorem 22.2.1 there is f € F'[z] such
that L is a splitting field of f over F'. Hence as explained above by the isomorphism
extension theorem, there is § € Autp (L) such that 8| = 6, and so ry, g is surjective.

By the first isomorphism theorem for groups, we have

AutF(L)/kerrLE ~ IIIl?"L,E7

and so
Autp(L)/ Autg(L) ~ Autp(E).
This completes the proof. [
. o N L -
The following commutative diagram captures the surjectivity of
rr,e when L is a finite normal extension of F'. In this diagram, ‘ B
every row i§ an isomorphism, and the dashed arrow means that E 2
for a given 6, we can find  that makes the diagram commutative. ‘
Fo_id

23.2 Normal extensions and tower of fields

When we learn about a property of field extensions, we have to ask ourselves how it
behaves in a tower of fields. For instance, by the Tower Rule, we know that for a tower
of fields F' C E C L, L is a finite extension of F' if and only if L is a finite extension
of F and F is a finite extension of F'. We will see that normal extensions do not have
such a nice behavior. We, however, start with a positive result.

Lemma 23.2.1. Suppose F' C E C L is a tower of field extensions. Then the following
holds.

1. Forevery 8 € L, mg glmga p in E[z].
2. If L is a normal extension of F, then L is a normal extension of E.

Proof. (1) Since 8 is a zero of mg p(z) € E[z], by Proposition 8.2.6 we have that
mg, g divides mg p in E[z].

(2) Since L is a normal extension of F, for every 3, mg r(z) can be written as
a product of degree one factors in L[z]. By part one, mg g divides mg g in E[z],
and so mg g divides mg r in L]z]. Since L[z] is a UFD, degree one polynomials
are irreducible in L[z], m 8,F can be written as a product of degree one factors, and
mg,g|mga,r in L[z], we obtain that mg, g can be written as product of degree one factors
in L[z]. This means L is a normal extension of E, which completes the proof. O

The following examples show us that the normal extension property cannot be
deduced for other parts of a tower.

By Example 17.2.2 and Theorem 22.2.1, Q[(,,, /2] is a normal extension of Q.

We, however, claim that the intermediate field Q| W] is not a normal extension of Q
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if n > 2. By Eisenstein’s criterion, 2™ — 2 is irreducible in Q[z]. As /2 is a zero

of 2™ — 2, by Theorem 8.2.5 m %Q(m) = 2" — 2. This polynomial has at most two

real zeros, and so not all of its zeros are in Q[ {/2]. Therefore Q[</2] is not a normal
extension of Q. Notice that if [E : F'] = 2, then for every o € E \ F we have

l1<degmagp=|Fla]: F|<|E:F|=2.

,F [ [ ] ] [ ] Q[CS; \3/5]

Hence for every a@ € F, we have 1 < degmq,r < 2, L

L
and so all the zeros of m,, r are in E. Therefore E is ‘
a normal extension of F. This implies that Q[v/2] is = E> QY2
a normal extension of Q[v/2] and Q[v/2] is a normal ‘
extension of Q, but as we showed above Q[{‘/ﬁ] is not a
F

. F
normal extension of Q.

23.3 Normal closure of a field extension

Suppose FE is a finite field extension of F'. We prove the existence of a smallest
field extension of E which is a normal extension of F.

Proposition 23.3.1. Suppose F is a finite field extension of F. Then there is a field
extension L of E such that the following holds:

1. L is a normal extension of F.

2. If L is a field extension of E and L' is a normal extension of F, then there is an
E-embedding 6 : L — L'.

In particular, if L1 and Lo satisfy the above properties, then there is an E-isomorphism
0: L1 — Lg.

A field L which satisfies the properties mentioned in Proposition 23.3.1 is called a
normal closure of the field extension F of F'.

Proof. We use an identical technique as in the proof of Theorem 22.2.1 (going from
(2) to (3)). Suppose (71, - - -,74) is an F-basis of E. Let L be a splitting field of

f(@) == my, p(z) - My, p(2)
over E. Then there are «y; ;’s in L such that for every 4

nq

myr(@) = [[(@—9;) and L=EMmi..... Yan,. (23.1)
j=1

Since v; € F is a zero of m%p(x) and ¥ C L, we can and will assume that 7y; 1 = ;
for every i. Therefore

E = Spangp(v1,..,7) € Flvis 9] € Flvi1,- -5 Ydnal- (23.2)
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By (23.2), we obtain that

L=FE[yi1, - Ynd € Flyia, -5 %an.) € L.

Hence L = F[y11,.-.,%dn,), and so by (17.2) we deduce that L is a splitting field of
f over F. Hence by Theorem 22.2.1, L is a normal field extension of F.

Suppose L’ is a field extension of E and L’ is a normal extension of F'. Then for
every i,y; € L’. Since L' is a normal extension of F, there are ’y’ ’s in L' such that

Uz

my, r(x) =[x =1, (23.3)

j=1

Then L := E[y{ 1,---,%qn,] € L' is a splitting field of f(x) over E. Therefore
by the uniqueness of splitting fields (see Theorem 17.1.2) there is an E-isomorphism
0:L— L". AsL"isasubfield of L', § can be viewed as an element in Embg (L, L').

If Ly and L satisfy these conditions, then there are §; € Embg(Lq, Ly) and
0y € Embg(Ls, L1). As L;’s are finite field extensions of E, we deduce that 6;’s are
isomorphisms. This completes the proof. O

23.4 Normal extension and extending embeddings

The following result on extending embeddings is a variant of the isomorphism
extension theorem.

Proposition 23.4.1. Suppose F' C E C L is a tower of fields, and L is a finite normal
extension of F. Suppose 6 € Embp(E,L). Then there is 0 € Autp(L) such that
b5 = 0.

Proof. Since L is a finite normal extension of F, there is f € F'[z] such that L is a
splitting field of f over I'. So there are «;’s in L such that

H z—qa;) and L= Flag,..., ).
i=1

Notice that since E and 6(F) contain F as a subfield, L can be viewed as a splitting
field of f over E and also as a splitting field of 6(f) = f over 0( ). Thus by the

isomorphism extension theorem, there is 9 : L — L such that 0| g = 0, and this
completes the proof. O

23.5 Group of automorphisms of a field extension

For every field extension I of F', by Lemma 22.1.4 and Lemma 16.2.2, the following
is a bijection

Embg(Fla),E) = {a/ € E | mq r(a’) =0}, 60— 0(a). (23.4)
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Then by (23.4) we have
| Embp(Flal, E)| = # of distinct zeros of mq p in E < degmqg,r = [Fla] : F).
Suppose E is a finite normal extension of /' and E = F'[«]. Then
| Autp(B)| < (B F)

and equality holds if m, r has distinct zeros in E. This takes us to the following
questions.

1. What if E is not of the form F[«] for some «?
2. When can we be sure that £ = F'[a] for some a?
The following theorem addresses the first question (and more!).

Theorem 23.5.1. Suppose 0 : F — F' is a field isomorphism, and f(xz) € F[x].
Suppose E is a splitting field of f over F, and E' is a splitting field of 0(f) over F'.
Then

|Isog(E, E")| < [E : F).

Moreover the equality holds if irreducible factors of f in F[x] do not have multiple
zeros in F.

This is an extremely important result. Proof of this theorem has some similarities
with the proof of the isomorphism extension theorem (see Theorem 17.1.1).

Proof of Theorem 23.5.1. We proceed by strong inductionon [E : F|. If [E : F] =1,
then F = F and E' = F’, and so Isog(E, E’) = Isop(F, F’) = {6} has exactly 1
element, and equality holds.

Suppose E # F'. Hence f has azero o € E which is notin F'. Notice that for every
0 € Isog(E, E'), we have §|F[a] is in Embg(F'[a], E’). Notice that by Lemma 22.1.4

Emby(Flo], E') = {o/ € E' | 8(mq.r)(a’) =0}, 6 6(a) (23.5)

is a well-defined function. Since a ring homomorphism 6, : F[a] — E’ is uniquely
determined by 6, | and 6, (), the function given in (23.5) is injective. If o is a zero
of (mq, ) in E’, then by Lemma 16.2.2 there is 6, € Isog(F'[a], F’[c/]), and so the
function given in (23.5) is a bijection. Hence

| Embg (F'[a], E')| =+# of distinct zeros of mq,  in E
<degmg r = [Fla] : FJ. (23.6)
For every 61 € Embg(F'[a], E'), notice that E is a splitting field of f over F[a], and
E’ is a splitting field of () = 01(f) over F'[f1(c)]. Since [E : Fla]] < [E : F], by

the strong induction hypothesis, we have

|Isog, (E, E')| < [E : Fla]]. (23.7)
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Hence
|Tsog (E, E')| = > | Isog, (E, E')
01€Emby (F[a],E’)
< [E : Fla]]| Embg(Fa], E')| (by (23.7))
<[E:F[a]][Fla]: F] = [E: F). (by (23.6))

To prove the moreover part, we go back through the above argument and show the
equalities hold. If « is a zero of f, then m, p is an irreducible factor of f in F'[z].
Then, by hypothesis, m,, r has distinct zeros in E/. Hence by Proposition 18.3.4,
ged(ma,rymy, p) = 1. Thus ged(0(ma,r),0(ma,r)’) = 1, and so by Proposi-
tion 18.3.4, 0(mq, ) has distinct zeros in E’. Therefore by (23.6), we have

| Embg(Fla], E')| = [Flo] : F). (23.8)

As in the above argument, we want to use the strong induction hypothesis to obtain
that | Isog, (E, E')| = [E : F[a]] for every 61 € Emby(F|a], E'). We have already
pointed out that F is a splitting field of f over F'[a] and E’ is a splitting field of 6, (f)
over F'[0;(«)]. To use the strong induction hypothesis for 6,1, F, and F’, it is enough
to show that all the irreducible factors of f in (F'[a])[z] do not have multiple zeros in
E. Let p(x) be a monic irreducible factor of f. Then there is 5 € E which is a zero of
p. Hence by Theorem 8.2.5, p(x) = mg, p[o). Hence by Lemma 23.2.1, p(x)|mg r in
(F[a])[x]. Since mg p is an irreducible factor of f in F'[z], by hypothesis it does not
have multiple zeros in E. Hence its divisor p does not have multiple zeros in E, either.
Therefore by the strong induction hypothesis, we have

| Isog, (E, E')| = [E : Fla]]. (23.9)
Hence
|ISO@(E,EI)| = Z ‘15001(E’E/)‘
01€Emby (F[a],E’)
= [E : Fla]]| Embg(Fa], E')] (by (23.9))
=[E: F[o]|[Fla]: F] = [E : F]. (by (23.8))

This completes the proof. O
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Lecture 24

24.1 Separable polynomials

To have a simpler formulation of Theorem 23.5.1, we define separable polynomials
as follows.

Definition 24.1.1. Suppose F is a field and f € F|x]. We say [ is separable (in F'[z])
if its irreducible factors in F[x] do not have multiple zeros in a splitting field of f over
F.

Let us make two remarks:

1. The way we defined separability of f € F[z] depends on both the polynomial
f and the field F. For instance every polynomial f € F[x] is separable as an
element of E[x| where E is a splitting field of f over F' (Notice that all the
irreducible factors of f in E[x] are of degree 1 and so they do not have multiple
zeros). On the other hand, 2P — ¢ is irreducible in F,(¢) and it has multiple
zeros in its splitting field. To show the latter you can use the fact that either the
derivative of this polynomial is zero or 27 — t = (z — {/t)P.

2. If p € F[z] is irreducible, then by Proposition 18.3.4, p is separable in F'[z] if
and only if ged(p, p’) = 1 in F[z]. Notice that if E is a field extension of F’
and ged(p,p’) = 1in Fx], then ged(p, p’) = 1 in E[z] as well. Hence for an
irreducible polynomial p € F'[z], separability only depends on the polynomial.

By the special case of Theorem 23.5.1 for F = F’ and 6 := id, we obtain the
following:

Theorem 24.1.2. If E is a finite normal extension of F, then | Autp(E)| < [E : F).

Theorem 24.1.3. Suppose E is a splitting field of a separable polynomial f € F|x]
over F. Then | Auwtp(E)| = [E : F).
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24.2 Separable and Galois extensions
We start by defining separable field extensions.

Definition 24.2.1. Suppose E is an algebraic field extension of F. We say F is a
separable extension of F' if, for every a € E, my, r is a separable element of Fx].

Theorem 24.2.2. Suppose F is a finite field extension of F. Then the following state-
ments are equivalent.

1. E is a normal separable extension of F.
2. Eis a splitting field of a separable f € F[x] over F.
3. |Autp(E)| =[E: F).

Proof. (1) = (2). Suppose (Y1,.-.,7vm) is an F-basis of E. Since E is a normal

extension of F', there are ; ; € E such that m., () = [[;%, (x — i ;). Let

m
f@) =] ma.r) =]]@ =)
i=1 i
We notice that ; € E is among {7i 1, ,Yin; }- SO
E 2 F[fyl717 M 777”7”771] 2 SpanF(717 e 777’”) = E

Hence F is a splitting field of f over F. Since F is a separable extension of f,
m., r’s do not have multiple zeros in E. Hence f is separable in F'[x] (notice that that
m., r(z)’s are irreducible in F[z]).

(2) = (3). It follows from Theorem 24.1.3.

(3) = (1). For every a € E, we have

| Autp(E)| = > | Isog(E, E)|
0cEmbp (F[a],E)

(By Theorem 23.5.1) <[E: F[a]]|Embg(F[a], E)|
(By (23.4)) =[E : F[a]] - (#of distinct zeros of my p in E)  (24.1)

On the other hand, by hypothesis and the Tower Rule, we have
|Autp(E)| = [E: F| = [E: Flo]][Flo] : F]. (24.2)
Hence by (24.2), (24.1), and Proposition 20.1.2, we obtain that
#of distinct zeros of m,, g in E > [Fla] : F] = degma, r.
Therefore mq, r has deg m, r distinct zeros in E. Hence the following holds.

1. There are oy, . .., o, € E such that my p(x) = ]2, (x — o).
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2. mq,r does not have multiple zeros in . The first assertion implies that E is
a normal extension of F', and form the second statement we deduce that F is a
separable extension of F'. This completes the proof.

O

Definition 24.2.3. An algebraic field extension E of F is called a Galois extension if
it is normal and separable.

Galois extensions will be explored more later.






Chapter 25

Lecture 1

25.1 Review

Let us start by recalling some of the important results and terminologies that we
have already mentioned on field theory and zeros of polynomials.

Splitting fields

Suppose F'is a field and f € F[x] \ F. Then there is an extension field E of F'
such that for some a1, ..., a, € E we have

1. f()=Wd(f)(z —a1) - (x — o), and

2. E=Floa,... 00

Such a field extension is called a splitting field of f over F' (See Proposition 16.1.1).
We refer to F' as the base field.

Field extension

If F'is a subfield of E, we say E is called an extension field of F', and the pair of
fields is called a field extension and it is denoted by F'/F. Admittedly this notation
might be a bit confusing. One should understand from the context if E/F denotes a
field extension or the quotient of the vector space E' by the vector space F'. The field F'
is called the base of this field extension.

Finite field extension

A field extension E/F is called a finite extension if it has a finite index [E : F/,
where [E : F] := dimp F (See Section 19.1).
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Algebraic field extension

A field extension E/F is called an algebraic extension if every o € E is algebraic
over the base field F'. Recall that « is called algebraic over F' if « is a zero of a
non-constant polynomial f € F[z].

Normal extension

A field extension F/F is called a normal extension if it is an algebraic extension
and for every o € E' the minimal polynomial m,, r of o over I’ decomposes into linear
factors over E. This is equivalent to saying that ' contains a copy of a splitting field of
Mq,F over I

Separable extension

A field extension E/F is called a separable extension if it is an algebraic extension
and for every o € E, the minimal polynomial m, r of o over F' is a separable
polynomial of F[z]. Recall that an irreducible polynomial f of F'[z] is called a separable
polynomial of F'[z] if it does not have multiple zeros in its splitting field over F'. By
Proposition 18.3.4, a polynomial f € F[x] does not have multiple zeros in its splitting
field if and only if ged(f, f/) = 1. A polynomial f € F[z] is called a separable
polynomial of F[x] if it is not constant and all of its irreducible factors are separable in

Important results about finite normal extensions

Suppose E/F is a finite field extension. Then the following are equivalent state-
ments (See Theorem 22.2.1):

1. E/F is a normal extension.
2. Eis a splitting field of a polynomial f € F[z] over F.
3. If L/FE is a field extension and 0 € Autp (L), then 0(E) = E.
If E/F is a finite normal extension, then
rr. g Autp(L) — Autp(E), rp g(0) :=0|g

is a well-defined group homomorphism and its kernel is Autg(L); in particular
Autg(L) is a normal subgroup of Autz (L) and Autg(L)/ Autg(L) is isomorphic
to a subgroup of Autyr(E) (see Proposition 23.1.1).

If E/F is a finite normal extension, L/ F is a finite extension, and L/ F' is a normal
extension, then r, g is surjective; this means every 6 € Autp(E) can be extended to
an F-automorphism 0 € Aut r(L). In this case, we have

Autp(L)/ Autg(L) ~ Autp(F).
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Important results about splitting fields

Suppose 0 : F' — F’ is a field isomorphism and f € F[z]. Suppose E is a splitting
field of f over F' and E’ is a splitting field of (f) over F’. Let

Isog(E,E') :={0:E > E' | 0|p = 6}.
(the set of all possible isomorphisms that are extension of #). Then
1. (Uniqueness) Isog(FE, E') # @ (see Theorem 17.1.2).
2. (Upper bound) | Isog(E, E')| < [E : F] (see Theorem 23.5.1).

3. (Separable case) |Isog(E, E')| = [E : F]if f is a separable polynomial in F[x]
(see Theorem 23.5.1).

Finite Galois extension

Suppose F/F is a finite field extension. Then the following statements are equiva-
lent (see Theorem 24.2.2):

1. E/F is a splitting field of a separable polynomial f of F'[z] over F.
2. |Autp(E)| = [E: F).
3. E/F is anormal and separable extension.

A field extension E/ F is called a Galois extension if it is a normal separable extension.

25.2 Symmetries and field extensions
In many parts of mathematics, we can classify objects based on their group of

symmetries. We do the same in field theory. We will try to answer the following
questions:

1. How much the group of symmetries of a field extension can tell us about the field
extension?

2. What are the possible intermediate subfields of a field extension E/F?
3. How can we understand the group structure of Autp(E)?

To get a better understanding of Aut(FE) and answering the above questions, we work
with the natural action of Autp(E) on E.
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Recalling basics of group actions

Let us recall basics of group actions. We say a group G acts on a set X if there is a
binary operation
GxX—->X(g,2)—g-x

with the following properties:
1. foreveryx € X,1-x=u=x.
2. foreveryxz € X, g1,92 € G, g1 - (92 - ) = (g192) - =.

Two important notion related with an action of a group G on a set X are G-orbit of x
and the stabilizer subgroup of G with respect to x. The G-orbit of z is either denoted
by 0, or G - x and it is

Oy, :={g-x|ge€G}.

The stabilizer subgroup of G with respect to x is
Gy ={9€eGlg -z=uc}
Orbit-Stabilizer Theorem states that
G/Gy—> G-z, gG,—g-x
is a bijection; in particular, if &, is a finite orbit, then

|Ox] = [G 2 Gl

Orbits of symmetries of algebraic extensions

Symmetries of every object X naturally acts on X. Let’s see this for the case of a
field extension £/ F. The group of symmetries of a field extension E/F is Autp(E).
For o € E and 0 € Autp(FE), we let

0-a:=0().

Then for every « € E, idg -a = idg(a) = « and for every 01,0 € Autp(FE) and
o € E we have

91 . (92 . a) = 01(02(0[)) = (01 9] HQ)(O[) = (01 o 62) - Q.

Hence Autp(F) acts on E. The next lemma gives us some understanding of the orbits
and the stabilizer subgroups of this group action.

Lemma 25.2.1. Suppose E/F is an algebraic extension. Then for every « € E, the
following statements hold.

1. The orbit O, of o under the action of Autg(F) is a subset of all the zeros of
Ma,r(x) in E.
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2. The stabilizer subgroup of Autp(E) with respect to o is Aut (o) (E). In partic-
ular,
[Autp(E) : Autp[a](E)] = ‘ﬁa|.

Proof. (1) Suppose mq,p(z) = >0 a;x'. Then i a;a® = 0. Hence for every
0 € Autp(FE), we have

0= H(Z a;ot) = Zaiﬁ(a)i.
i=0 =0
This means that 6(«) € E is a zero of m,, p(x). Hence
Autp(E)-a C{ad € E|mqr(a)) =0}

(2) The element @ is in the stabilizer subgroup of Autp(E) with respect to « if and
only if f(a) = «. Since 0|r = idF, we obtain that 6 is in the stabilizer subgroup of
Autp(E) with respect to « exactly when 6| go) = id p]. The claim follows. O

25.3 Finite Galois extensions and orbits of their symmetries
By Lemma 25.2.1, we have that
|Autp(E) - af < degmq, F-

Next we show that the equality holds precisely when E/F is a Galois extension. We
prove this statement only for finite extensions.

Theorem 25.3.1. Suppose E/F is a finite extension. Then E/F is a Galois extension
if and only if for every a € E,

|Autp(E) - o = deg mq, F-

Moreover, if E/F is a finite Galois extension, then

mar(e)= ] (x—d),

a’'€0,
where Oy := Autp(E) - a.
Proof. (=) Since E/F is a normal extension, there are 1, . .., o, € F such that
M r(x)=(r—a1) - (x —ay). (25.1)

Since « and «; are zeros of an irreducible polynomial m,, g in F[z], by Lemma 16.2.2
there is an F-isomorphism 6; : F[a] — F|a;] such that 6;(«) = «;. Since E/F
is a finite normal extension, by Proposition 23.4.1, there is §; € Autz(E) such that
Oilpia) = 0i.
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In particular, there is 6; € Autp(FE) such that @-(a) = . 5

This implies that {1, . .., «, } is a subset of the orbit &, := E---Y,F

Autp(E) - o. On the other hand, by Lemma 25.2.1 we have ‘ ‘

O, is a subset of {1, ..., a,}. Altogether we obtain that 0,

Oy = {0a,...,an}. Since E/F is separable, m, r does Flo] —— Fla]

not have multiple zeros in its splitting field. This means that ‘ ‘

ay’s are distinct. Therefore |0, | = n = degmq, p. P id P
(<) Let O, := {a,...,a,}. Inspired by the previous part, we want to show that

M, r(z) = [[i, (z — a;). Since a;’s are distinct zeros of m, p, by the generalized
factor theorem (see 7.1.2) there is ¢(x) € E[z] such that

Me,r(x) = q(z)(x —aq) - (v — o). (25.2)

By hypothesis, n = degm,, r. Therefore comparing the degree and the leading
coefficients of both sides of (25.2), we obtain that ¢(x) = 1. Thus

Ma,r(2) = (T —a1) - (z — ap). (25.3)

By (25.3), we deduce that the minimal polynomial m,,  can be decomposed into linear
factors over E. Hence E/F is a normal extension. From (25.3), we also obtain that
M, F has distinct zeros in its splitting field. Hence E/F is a separable extension.
Altogether, we have E'/F is a Galois extension, which completes the proof. O

25.4 Subgroups and intermediate subfields

In this section, we show that the set of fixed points Fix(G) of a subgroup G of the
group of symmetries of a finite field extension £/ F gives us an intermediate subfield
and E/Fix(G) is a Galois extension. Later we will see that is indeed gives us a bijection
between subgroups of Auty(FE) and intermediate subfields if E/F is a finite Galois
extension.

Suppose E/F is a field extension and G is a subgroup of Auty(FE). Let

Fix(G) :=={a € E |Vl € G,0(a) = a}.

Lemma 25.4.1. Suppose E/F is a field extension and G is a subgroup of Autp(E).
Then F C Fix(G) C FE is a chain of fields.

Proof. Notice that for every a € F and every § € G C Autp(E), we have 6(a) = a.
Hence F C Fix(G). Clearly Fix(G) C E. Next we argue why Fix(G) is a subfield of
E. For every a, 8 € Fix(G) and 6 € G, we have

O(a —B) =0(a) —0(8) = a =B
Hence oo — € Fix(G). Similarly we have

0(af) = 0()0(B) = ap,
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and so o € Fix(G). Therefore Fix(G) is a subring of E.
Suppose a € Fix(G) is a non-zero element. Since E is a field, «=! € E. For
every 6 € (G, we have
fla™')=0(a) P =a" .

Thus o € Fix(G). This shows that Fix(G) is a subfield of E, which completes the
proof. O

Theorem 25.4.2. Suppose E/F is a finite field extension and G is a finite subgroup of
Autp(E). Then the following statements hold.

1. Forevery a € E, mq rix(c) () = [ [y eq.o(® — ) where G - acis the G-orbit

of a.
2. The field extension E/ Fix(G) is Galois.

The first item is inspired by Theorem 25.3.1, but here we are saying that it is
enough to only consider G-orbit instead of Autgiy(q) (E)-orbit. Later we will show
that G = AutFiX(G) (E)

Proof. Let fo,c(7) = [[yecq.o(x —a'). We have to show that fo, ¢ = mq Fix(a)
in particular, we need to show that all the coefficients of f, ¢ are fixed under the action
of G. We extend the action of G to the ring of polynomials F[x], and we need to show
that 0(fo,¢) = fa.q forevery 6 € G. For every 6 € G, we have

0(fac)= ][] (z—0(a)). (25.4)

a’€G-a

Hence we need to understand what we get as we apply 6 € G to the elements of a
G-orbit. For every o/ € G - «, there is 8’ € G such that o = 6'(«). Hence

0(a')=0(0'(a)) = (008)(a) €G- a.
ea

Thus o’ — 6(c’) induces a map from G - a to G - . Similarly o/ — 671 (a/) induces
amap from G - o to itself. As 6~ is the inverse of #, we deduce that § simply permutes
elements of the G-orbit G - a. Hence (25.4) implies that

0(fac)= [[ (x—0a") = fac
a”’eGa

for every 6 € G. This means all the coefficients of f,, ¢ are fixed by all the elements of
G. Hence
fa,c € Fix(GQ)[z]. (25.5)

Next notice that « is in the G-orbit of o as @ = idg(a) and idg € G. Hence avis a
zero of f,, . Therefore by (25.5), we have that

Ma Fix(Q) ‘fa,G (256)



160 CHAPTER 25. LECTURE 1

in Fix(G)[z] (see Proposition 8.2.6); in particular, we obtain

deg mq Fix(q) < deg fo.c = |G - al. (25.7)
On the other hand, by Lemma 25.2.1, we have

| Autpiy(a) (E) - af < degmq pix(q)- (25.8)
Notice that for every 6 € GG, we have H\FiX(G) = idpix(q), and so

G C Autpixe) (E). (25.9)
By (25.7), (25.8), and (25.9), we obtain that
| Autpix(e) (E) - of < degma rixe) < |G - o] < [Autpixc) (E) - of.

Hence all these quantities are equal. In particular,

deg My Fix(q) = | Autrix(g)(E) - of (25.10)

and
deg mq rix(q) = deg fa,c- (25.11)

By (25.10) and Theorem 25.3.1, we deduce that £/ Fix(G) is a Galois extension. By
(25.6) and (25.11), we obtain that

Mq Fix(G) = foz,G = H (1' - O/)

a’'€G-a

which completes the proof. O
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Lecture 2

So far we have proved that if E/F is a finite field extension and G is a subgroup of
Autp(E), then
Fix(G) :={a € E |Vl € G,0(a) = a}

is an intermediate subfield of E/F and F/ Fix(G) is a Galois extension.

26.1 Fixed points of a subgroup.

We want to show that [E : Fix(G)] = |G| and deduce that Autpi ) (E) = G. To
show this, we start with the following lemma.

Lemma 26.1.1. Suppose E is a field and G is a subgroup of Aut(E). For § € G and
c:=(c1,...,¢n) € E™ let 0(c) := (0(c1),...,0(cn)). Suppose V is a subspace of
E™ which satisfies the following properties:

1. V # {0} and
2. V is G-invariant; that mean for every 8 € Gandc € V, 0(c) € V.

Then V has a non-zero G-fixed point, that means V N (Fix(G))™ # {0}.
Proof. For c € E™, let {(c) be the number of non-zero components of c. Let
m :=min{l(c) |c € V\ {0}}.

Notice that since V' # {0}, m is a positive integer. Suppose ¢y € V is such that
E(Co) =m.

Notice that in this setting, if x € V and ¢(x) < m, then x = 0. In what follows,
we start with cg and apply a series of algebraic manipulation which does not either
increase the number of non-zero components or take us outside of V, and at the end we
make sure that the number of non-zero components decreases at least by one. By the
earlier remark, we deduce that the final vector should be zero. This will help us obtain
the desired result. This technique is very useful and common.

161
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After rearranging the components, if needed, we can and will assume that
c=(a1,...,Qn,0,---,0).
Since V is closed under scalar multiplication, a; 'c € V. Let ¢’ := a; *c. Then

! :(15627"'7ﬁm705"'70)'

Since V' is G-invariant, for every § € G we have 0(c’) € V. As V is closed under
subtraction, we obtain that ¢’ — 6(c’) € V. Notice that

C, - G(C/) = (07/82 - 9(/82)7 cee 7Bm - 9(/67n)70a .. '70)7

and so £(c’ — 0(c’)) < m. Hence every § € G, we have ¢’ = 6(c’). Therefore
¢’ € VN (Fix(G))™, which completes the proof as ¢’ # 0. O

Proposition 26.1.2. Suppose E is a field and G is a finite subgroup of Aut(E). Then
[E : Fix(G)] < |G

Proof. Suppose G = {01 = idg,09,...,0,} and ;s are distinct. Suppose to the
contrary that [E' : Fix(G)] > n. Hence there are ey, ..., e,11 € E that are Fix(G)-
linearly independent. Let

V; = (0'1(62‘),. .. ,O’n(ei)) € E"

fori € [1..(n + 1)]. Since dimg E™ = n, vq,...,v,41 are E-linearly dependent.
This means
n+1

V= {C = (c1,..,np1) € EMT| Zcivi = O}

i=1

has a non-zero element.
Claim 1. V is a subspace.

Proof of Claim 1. We need to show that V' is closed under subtraction and scalar
multlphcatlon Suppose ¢,c¢’ € V. Then anll ¢iv; = 0 and Zl"ﬂl av; = 0.
Hence Z (c, — ¢;)v; = 0, which implies that c — ¢’ € V. For e € E, we have
(XM ev 1) = 52" !(e¢;)v; = 0. This means ec € V. Claim follows. O

Claim 2. V is G-invariant.

Proof of Claim 2. Suppose c € V. Then Z:LJT ¢;v; = 0. The j-th component of

PO 11 ¢iv; is Z i 010](61) For every o € G, we have

n+1
Z o(ci)o(oj(e;)) = 0. (26.1)
i=1
Notice that
G:{Jool,.. ,000n}. (26.2)

By (26.1) and (26.2), we deduce that Zz 1 ' o(c, i)o;(e;) = 0 for every j'. This implies
that 327"+ o(¢;)vi = 0. Thus o(c) € V, which completes the proof of Claim 2. [
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By Claim 1, Claim 2, and Lemma 26.1.1, there is a non-zero vector
(a1,...,an41) € VN (Fix(G))". (26.3)

This means that Z?:Jrll a;v; = 0. Since the first component of v; is e;, we obtain
that Z?jll a;e; = 0. As a;’s are in Fix(G), we deduce that e;’s are Fix(G)-linearly

dependent. This is a contradiction, which completes the proof. O

The following is an immediate corollary of these results.

Theorem 26.1.3. Suppose E is a field and G is a finite subgroup of Aut(E). Then
E/ Fix(G) is a Galois extension, [E : Fix(G)] = |G|, and Autgiyc)(E) = G.

Proof. Let F := Fix(G). Then by Proposition 26.1.2, we have
[E: F] <|G| < . (26.4)

‘We also notice that
G - AU-tFix(G) (E) = AutF(E) (265)

By (26.4), (26.5), and Theorem 25.4.2, we deduce that F'/ Fix(G) is a Galois extension.
Hence by Theorem 24.2.2, we have

[E: Fix(G)] = | Autpixa)(£)]. (26.6)
By (26.4), (26.5), and (26.6), we obtain
[E : Fix(G)] = | Autrixq) (B)| = |G| = [E : Fix(G)].

Hence [E : Fix(G)] = |G| and |G| = | Autgix(c)(£)|. The latter together with (26.5)
implies that G = Autpix () (£), which completes the proof. O

Corollary 26.1.4. Suppose E/F is a finite field extension. Then E/F is a Galois
extension if and only if Fiz(Autp(E)) = F.

Proof. (=) Since E/F is a finite Galois extension, by Theorem 24.2.2
[E: F] = | Autp(E)|. (26.7)
Applying Theorem 26.1.3 for G := Autp(E), we obtain that
| Autp(E)| = [E : Fix(Autr(F))]. (26.8)
Notice that ' C Fix(Autr(F)), and so by (26.7), (26.8), and the Tower Rule, we
obtain that [Fix(Autg(F)) : F| = 1. Hence Fix(Autp(E)) = F.

(<) Since F = Fix(Autp(F)), by Theorem 26.1.3, E/F is a Galois extension.
This completes the proof. O
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26.2 Fundamental Theorem of Galois Theory

In this section, we prove the Fundamental Theorem of Galois theory. In order to
avoid a very long statement, we split this theorem into two parts. The first theorem
gives us a concrete correspondence between the set

Int(E/F) := {K | K is an intermediate subfield of E/F'}
of intermediate subfields of £/ F and the set
Sub(Autp(E)) :={H | H < Autp(E)}.
of all the subgroups of Autg(E).

Theorem 26.2.1 (Fundamental Theorem of Galois Theory: correspondence). Suppose
E/F is a finite Galois extension. Then

U Int(E/F) — Sub(Autp(E)), ¥(K):= Autg(E) , and
® : Sub(Autp(E)) —» Int(E/F), ®(G) :=Fix(G)

are inverse of each other.

Proof. We need to show that we have ¥(®(G)) = G for every G < Autp(FE) and
®(U(K)) = K for every intermediate subfield K.

Notice that, for a subgroup G, ¥(®(G)) = Autpic()(E), and by Theorem 26.1.3
the latter is G. Hence ¥ (®(G)) = G.

For an intermediate subfield K, (¥ (K)) = Fix(Autk (F)) and we want to show
that this is . By Corollary 26.1.4, we have Fix(Autx (F)) = K exactly when E/K
is a Galois extension. Hence the claim follows as soon as we show E/K is Galois for
every intermediate subfield.

To show E/ K is a Galois extension, we can argue that for every o € F, the minimal
polynomial m, x of a over K can be decomposed as a product of degree one factors
(normal extension) and all of its zeros are distinct (separable extension).

We start with our hypothesis that F'/F' is a Galois extension. Since F/F is Galois,
the above properties hold for the minimal polynomial m,, 7 of a over F'. This means
there are distinct elements o, . .., a, € F such that

Ma,p(x) = (T —a1) - (z — ap). (26.9)

Notice that mq, p(x) € F[z] C K|[x] and « is a zero of m,, p(x). Hence by Proposi-
tion 8.2.6, My, i (x) divides mq () in K[z]. Therefore m,, k() divides mq, p(z)
in Efx]. By (26.9), x — a’s are all the irreducible factors of m, p(z) in E[z]. As
E[z] is a UFD, we obtain that

Mo,k (T) = (x — ) (¢ — a,,) (26.10)

for some integers 1 < i1 < -+ < 4y, < n. By (26.10), we deduce that m, g can
be factored as a product of degree one factors in F[z] and all of its zeros are distinct.
Claim follows. O



26.2. FUNDAMENTAL THEOREM OF GALOIS THEORY 165

Let’s make a few remarks:

1. Properties of field extensions have the tendency to stay at the surface! We have
seen that if '/ F is a normal extension and K is an intermediate subfield of £/ F,
then £/ K is normal extension, but the extension over the base field K/ F is not
necessarily a normal extension (see Section 23.2). In Theorem 26.2.1, we see
that if £/ F is a finite Galois extension and K is an intermediate subfield of E/F,
then E/K is a finite Galois extension. In the second part of the Fundamental
Theorem of Galois Theory, we give a group theoretic criterion for the extension
of an intermediate subfield over the base field be a Galois extension.

2. Using the Tower Rule, we have seen that F/F is a finite extension if and only if
both E/K and K/ F are finite extensions for every intermediate subfield K of
E/F. We will show that the same property holds for separable extensions.

3. Notice that Int(E/F') and Sub(Autr(F)) are partially ordered by inclusion,
where E/F is a finite Galois extension. From this point of view, ® and ¥ are
order reversing bijections. That means in the setting of Theorem 26.2.1, if
Hy < Hj are two subgroups of Auty(F), then ®(Hsy) C ®(H;) (if « is fixed
under the action of Hy, then it is also fixed under the action of H;). Similarly,
if K1 C K5 are two intermediate subfields of E/F, then U(K,) C W(K;) (if
restriction of an automorphism to K is identity, then its restriction to K is also
identity).

Theorem 26.2.2 (Fundamental Theorem of Galois Theory: index and normal). Suppose
E/F is a finite Galois extension. Let

U :Int(E/F) — Sub(Autp(E)), ¥(K):= Autg(FE) , and
O : Sub(Autp(E)) — Int(E/F), ®(G) :=Fix(G).
Then the following holds.

1. For K1 C Ky inInt(E/F), [¥(K;) : U(K3)] = [Ks : Ki]. For Gy C Gs in
Sub(AutF(E)), [@(Gl) . (I)(GQ)] = [GQ . Gl]

2. Forevery K € Int(E/F), K/F is a normal extension if and only if ¥(K) is a
normal subgroup of Autp(E).

For every N € Sub(Autp(E)), N is a normal subgroup of Autp(E) if and
only if ®(N)/F is a normal extension.

3. For an intermediate subfield K of E/F, K/F is a normal extension if and only
if K/F is a Galois extension.

Proof. 1. As E/K is a Galois extension, by Theorem 24.2.2 we obtain
|[U(K)| =|Autg (F)| = [E : K]. (26.11)
By (26.11) and the Tower Rule we deduce that

S ek eor

[(W(Ky) : W(K)]
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From (26.12) and the correspondence part of the fundamental theorem of Galois theory,
we obtain

[©(G1) : ©(G2)] = [Y(D(G2)) : ¥(P(Gh))] =[Gz : Gul.

2. Suppose N is a normal subgroup of Autz(E). We want to show that Fix(N)/F
is a normal extension. This means we have to show that, for every o € Fix(IV), the
minimal polynomial m,, p(z) of & over F' can be decomposed as a product of linear
factors in Fix(N)[z].

Since E/F is a finite Galois extension, by Theorem 25.3.1 we have

mor@)= J[ (@-d). (26.13)

a’€Autp(E)-o

By (26.13) and the above argument, we obtain that Fix(N')/F is a normal extension as
soon as we show
Autp(E) - o C Fix(N). (26.14)

The assertion of (26.14) holds if and only if o(6(«)) = 0(«) for every 6 € Autp(F)
and 0 € N. Notice that 0=t og o € N for every § € Autp(E) and 0 € N as
N is a normal subgroup of Autz(E). Since o € Fix(N)ando~tofoo € N for
every € Autp(FE) and 0 € N, we obtain that (07! 0 § 0 0)(a) = a. Therefore
o(0(a)) = () for every € Autp(F) and o € N. Altogether we deduce that
(26.14) holds, and so by (26.13), all the zeros of mq, r are in Fix(/V) and they are
distinct. Hence Fix(IN)/F is a Galois extension. This means we have proved that

N < Autp(F) = ®(N)/F is a Galois extension. (26.15)

Next suppose K/ F is a normal extension. Then by Proposition 23.1.1, Aut i (F) is
a normal subgroup of Autz(E). This means ®(K) is a normal subgroup of Autg(E).

One can finish the proof of the second step using the correspondence part of the
fundamental theorem of Galois theory.

3. If K/F is a normal extension, then ¥(K) is a normal subgroup of Autp(E).
Hence by (26.15), ®(V(K))/F is a Galois extension. Therefore by the correspondence
part of the fundamental theorem of Galois theory, we obtain that K /F is a Galois
extension. This completes the proof. O

Corollary 26.2.3. If E/F is a Galois extension, then Int(E/F') is finite.

Proof. By the correspondence part of the fundamental theorem of Galois theory, there
is a bijection between Int(E/F') and Sub(Aut p(E)). Since Autp (F) is a finite group,
the claim follows. O

Next we extend the above corollary.

Proposition 26.2.4. Suppose E/F is a finite separable extension. Then Int(E/F) is
finite.

Remark 26.2.5. In fact we will prove that, if E/F is a finite separable extension and
L/F is anormal closure of E/F, then L/ F is a Galois extension.
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Proof of Proposition 26.2.4. Suppose (aq,...,q,) is an F-basis of E. Let L be a
splitting field of f(z) := []}"_; ma, r(z) over E. As in the proof of Proposition 23.3.1,
L is a splitting field of f over F'. For the sake of convenience, we go over the argument.
Since L is a splitting field of f over E, there are a;; € L such that

Moy, P (T) = (T — i) (T = Qim,),
and
L =Elai1,.. . anm, ]

Since E C L, we can and will assume that ov;; = «;. Then
Floa1, ..., Qnm,] 2 Spangp(aq,...,a,) = E.

Hence
F[au, ey anmn] 2 E[O[ll, e ,Olnmn} = L

Therefore L is a splitting field of f over F.

Notice that f is a separable polynomial in F[z] as E/F is a separable extension.
Hence L/F is a splitting field of a separable polynomial over F', and so by Theo-
rem 24.2.2, L/ F is a finite Galois extension. Thus by Corollary 26.2.3, Int(L/F') is
finite. As Int(E/F) C Int(L/F'), we obtain that Int(E/F) is finite. This completes
the proof. O
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Lecture 3

27.1 Fundamental theorem of algebra

In this section, we use easy analysis and the fundamental theorem of Galois theory
to prove the fundamental theorem of algebra.

Theorem 27.1.1. Suppose f € Clz|\ C. Then f has a zero in C.

Proof. Suppose to the contrary that there is f € C[z] \ C with no complex zeros. Let
E be a splitting field of f over C. Let L/R be a normal closure of E//R. Notice that if
p(x) € R[z] is irreducible, then p’(x) is a non-constant polynomial of lower degree,
and so ged(p, p’) = 1. Therefore, every non-constant polynomial in R[] is separable.
Hence L/R is a Galois extension. Let G := Autg(L) and P be a Sylow 2-subgroup
of G. Let K := Fix(P). Then by the fundamental theorem of Galois theory we have

[G: P] = [Fix(P) : Fix(G)] = [K : R]. (27.1)

By (27.1), we obtain that [K : R] is odd. Notice that for every o € K, by the Tower Rule
[R[a] : R] divides [K : R], and so [R]a] : R] is odd. This implies that deg mq r(x) is
odd for every a € K. Notice that if p(z) € R[z] is a monic odd degree polynomial,
then lim, o p(z) = oo and lim,_, . p(z) = —oo. Hence by the intermediate
value theorem, p has a real zero. Therefore if p(z) € R[z] is monic, irreducible, and
of odd degree, then degp = 1. Altogether, we obtain that degm, r = 1 for every
a € K. This means K = R. Therefore Fix(P) = Fix(G), and so by the fundamental
theorem of Galois theory, we deduce that G = P. This means G is a finite 2-group. If
|G| > 4, then by the first Sylow theorem there are subgroups G3 C G of G such that
[G : G1] = 2 and [G : G| = 4. Thus by the fundamental theorem of Galois theory,
[Fix(G1) : R] = 2. Hence for every a € Fix(G1) \ R, we have that Fix(G1) = R[¢]
and m, g is a degree 2 irreducible element of R[x]. Notice that such a polynomial
has a complex zero o. Since [C : R] = 2, C = R[o/]. Hence both C and Fix(G1)
are isomorphic to R[z]/(m r). Because [G; : G2, by the fundamental theorem of
Galois theory [Fix(G2) : Fix(G1)] = 2. Since Fix(G1) ~ C, we obtain that C has an
extension field E such that [E : C] = 2. Hence for every o € E'\ C, m,, ¢ is a monic

169



170 CHAPTER 27. LECTURE 3

quadratic irreducible element of C|[x]. Next we show that there is no such polynomial
and get a contradiction.

For every a,b € C, % + ax + b = 0 if and only if (z + a/2)? = (a?/4) — b.
Writing the right hand side in polar coordinates, we get the equation (z + a/2)? = re®
for some r € RZ% and § € R. Clearly +/r¢*%/? — (a/2) € C satisfy this equation.
Hence every monic degree complex polynomial has a complex zero. This completes
the proof. O

Going through the above proof, one can see that the crucial properties of C and R
are the following items:

1. Every non-linear irreducible polynomial in R[z] is of even degree.
2. If[E: R] =2, then F ~ C.
3. Every degree 2 polynomial in C|[x] has a zero in C.

It is a good exercise to formulate a more general setting for which a similar statement
holds.

27.2 Primitive Element Theorem

In Proposition 26.2.4, we proved that Int(FE/F) is a finite set if E/F is a finite
separable extension. Here we give a necessary and sufficient condition for Int(E/F')
to be a finite set.

Theorem 27.2.1. (Primitive Element Theorem: intermediate subfields) Suppose E | F
is a finite extension. Then Int(E/F) is finite if and only if E = F|a] for some « € E.

We say o € E is a primitive element of a field extension E/F if the smallest
subfield of F which contains F' and « is E. In this case, we write E = F(«), and we
say E//F is a simple extension.

Proof of Theorem 27.2.1. (=) We proceed by strong induction on [E : F|]. Since
Int(E/F) is a finite set, there is an intermediate subfield K of Int(E/F') such that
there is no other intermediate subfield that is strictly between K and E. Alternatively
we can say that there is K € Int(E/F') which is maximal among proper subfields of E.
Notice that Int(K/F') is a subset of Int (E/ F'), and so it is finite. As [K : F] < [E : F],
we can use the induction hypothesis for the extension & /F and deduce that K = F[5]
for some 8 € K. Since K is maximal among proper subfields of E, forevery v € E\ K
we have E = K[v]. Altogether, we obtain that E = F'[3,7].

If F is a finite field, then E is also a finite field as E// F' is a finite extension. Since
the multiplicative group of a finite field is cyclic, there is @ € E such that E* = («).
Therefore E = F'[a], and the claim follows. So without loss of generality we can and
will assume that F' is infinite.

Claim. There is ¢ € F such that E = F[3 + cy].
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Proof of Claim. Consider the function
F - Int(E/F), cw— F[B+cy].

Since F is infinite and Int(E/ F) is finite, there are pairwise distinct elements c1, ca, . . .
in F' that are mapped to the same L € Int(E/F'). This means for every index ¢ we
have L = F[f3 4 ¢;7]. Therefore

B+ ciyand B+ coy € L (27.2)

By (27.2), we obtain that (84 c1v) — (8 +c2y) € L. Asc; —co € F*, we deduce that
v € L. Because ¢; € F' C Land v € L, by (27.2) we obtain that 5 € L. Altogether,
F[B3,~] is a subset of L, which implies that L = E. This completes the proof of
Claim. O

(<) Suppose E = F[a]. Consider the following function
g:Int(E/F) — Elz], ¢(K):=mqxk(z).

We prove that (1) image of g is finite and (2) g is injective. Then one immediately
obtains that the domain of g is finite, which is the desired result.

Claim 1. For every K € Int(E/F'), g(K) is a monic divisor of mq p(z) in E[z].
In particular, the image of g is finite.

Proof of Claim 1. For every K € Int(E/F), mq r(x) € K[z] and « is a zero of
mq,r(x). Hence by Proposition 8.2.6, mq, x divides mq p(z) in K[z]. Therefore
g(K) divides mq () in E[z]. O

Claim 2. g is injective.

Proof of Claim 2. Before we go to the proof of injectivity, let’s point out that for every
L € Int(E/F) we have E = L[a], and so

[E: L] =[Lla]: L] = degmg, = degg(L). (27.3)

Now suppose (K1) = g(K2) = 2™ + €, 12™ 1 + -+ + ¢ for some K; and Ko
in Int(E/F'). By (27.3), we obtain that

[E:K;]=m (27.4)

for j = 1,2. we also notice that e;’s are in K1 and K as g(K;) = ma,k, (v) € Kj;[z].
Hence K := F'leq, ..., em—1] is a subfield of K;’s and

9(K;) =a™ + ep13™ "+ -+ eg € Ka]. (27.5)

Since « is a zero of g(K;), by (27.5) we obtain that mq, x () divides g(kK;) in K[z].
Hence by (27.3), we deduce that

[E: K] <m. (27.6)

As K is a subfield of K;, by the Tower Rule, (27.4) and (27.6), we obtain that K = K
for j = 1,2. Hence K1 = K>, and this completes the proof. O
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O

The following is an immediate consequence of Theorem 27.2.1.

Theorem 27.2.2 (Primitive Element Theorem: separable case). Suppose E/F is a
finite separable extension. Then E = F[a] for some o € E.

Proof. As E/F is afinite separable extension, by Proposition 26.2.4 Int(E/ F) is finite.
Hence by Theorem 27.2.1, E = F[a] for some « € E. This completes the proof. [J

27.3 Separable closure of the base field of an algebraic extension

Primitive Element Theorem for finite separable extensions gives us an extra motiva-
tion to systematically study separability condition and investigate how it behaves in a
tower of field extensions.

Let’s recall that an algebraic extension E/F is separable if for every @ € F,
mq, r(x) does not multiple zeros in its splitting field over F'. The next lemma shows
us exactly when an irreducible polynomial f(z) € F'[z] is separable; in particular, we
see that in certain sense irreducible polynomials are rarely not separable.

Lemma 27.3.1. Suppose F is a field and f(x) € F|[x] is irreducible. Then f € F|[z]
is separable if and only if ' # 0.

Proof. An irreducible polynomial is separable if and only if it does not multiple zeros
in its splitting field. By Lemma 18.3.3, the latter holds exactly when ged(f, f) = 1.
Since f is irreducible, it is not divisible by a non-constant polynomial of degree smaller
than deg f. Hence either ged(f, f') is a constant multiple of f or it is 1. Notice that
ged(f, f') is a constant multiple of f precisely when f divides f’. Since deg f is
smaller than deg f, f divides f’ if and only if f’ = 0. Let’s summarize what we have
inferred so far:

1. f € Flx]is separable < gcd(f, f') = 1.
2. ged(f, f') = Lorged(f, f') ~ f.
3. ged(f, f) ~ f = [If
4. f|ff < f'=0.
Hence f € F[z] is not separable if and only if f = 0. This completes the proof. [
The following is an important corollary of Lemma 27.3.1.
Corollary 27.3.2. Suppose F'is a field of characteristic zero. Then for every non-

constant polynomial | € F|x], deg f' = deg f — 1 and every non-constant polynomial
in F[z] is separable.
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Proof. Suppose f(z) = > i, a;z" € Flz]anddeg f = n. Then f'(z) = Y1 | iz~ L.
Notice that since char(F) = 0, nlp # 0. Asdegf = n, a, # 0. Therefore
(nlp)(an) = na, # 0, which implies that deg f' = n — 1.

If p(x) € F[z] is irreducible, then p is not a constant polynomial. Hence degp’ =
degp — 1; in particular p’ # 0. Therefore by Lemma 27.3.1, p € F'[z] is separable.

An arbitrary non-constant polynomial f € F[z] is separable if and only if all of
its irreducible factors in F'[z] are separable. Since all the irreducible polynomials of
F'[z] are separable we conclude that all non-constant polynomials of F'[x] are separable.
This completes the proof. O

Corollary 27.3.3. Suppose F is a field of characteristic zero. Then every algebraic
extension E | F is separable.

Proof. This immediately follows form Corollary 27.3.2. O

Next we see what happens when char(F') = p > 0.

Proposition 27.3.4. Suppose F is a field of characteristic p > 0 and g(x) € Flx] is
irreducible. Then there are gse,, € F|x] and k € 720 with the following properties.

1. gsep is irreducible and separable in F|x].
k
2. g(x) = gsep(a?).

Proof. If g is separable, then let gsop, := g and £ = 0, and claims hold. If g is not
separable, then by Lemma 27.3.1, ¢/(z) = 0. Suppose g(z) := > i, a;z". Then
¢’ = 0 implies that for every positive integer ¢ we have ia; = 0. If the characteristic p
does not divide 7, then (ilp) € F*. Hence (ilp)a; = ia; = 0 implies that a; = 0.
Therefore

g(z) = Z apia?. (27.7)
i=0
Let g1 (z) := Y ;o apiz’. Thus by (27.7), we conclude that g(z) = g1 (z?).
Claim. g; is irreducible in F[z].

Proof of Claim. Suppose to the contrary that there are non-constant polynomials h;
and hs in F[z] such that g; () = hy(x)ha(z). Then g(x) = g1(aP) = hq(2P)hg(aP)
and h;(xP)’s are non-constant polynomials. This contradicts the hypothesis that g is
irreducible in F'[z]. U

Now we can repeat this argument for g;. Formally we use strong induction on deg g.
The base of induction follows from the fact that every degree 1 polynomial in F'[x]
is separable. So we focus on the strong induction step. We have already discussed
the case where ¢ is separable. Thus we can and will assume that g is not separable in
F[z]. In this case, by the above argument, there is an irreducible polynomial g; such

that g(z) = g1(zP). In particular, we have deg g; = defg < deg g. Hence the strong
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induction hypothesis can be applied to g;, and we obtain that there are a separable
irreducible polynomial gse, in F[z] and a non-negative integer k such that

k

91(2) = gsep (¥ ).
This implies that

k k+1

9(7) = 91(2") = gsep((2P)") = Gsep (¥

).
This completes the proof of the strong induction step. O

The polynomial gy, is called the separable form of g. We use separable forms of
minimal polynomials in an algebraic extension F/F in order to define the separable
closure of the base field F'in E.

Theorem 27.3.5. Suppose E/F is an algebraic closure. Let
Esep = {a € E | my, p(z) is separable in F[z]}.
Then the following statements hold.
1. Esep, € Int(E/F) and Eep/ F is separable.
2. Ifchar(F) =0, then Egp, = E.

3. If char(F') = p > 0, then for every a € E, aP’ € Esep for some non-negative
integer k.

Proof. 1. We need to show that, if o, 5 € Esp, and a # 0, then o & 3, a3, and a1
are in Eg,.

Since o and J are in Egep, f(x) := mq, r(z)mg,r(x) is separable in F[z]. Let L
be a splitting field of f over F[«, 3]. This means that there are ;’s and 3;’s in L such
that

Mo r(2) = (x—ar)---(z =), mgr(@)=(@-7F) - (&=5),

and

L= (Flo, 8]y yar, B1,. .., Bs]
Since « and 3 are in L, we can and will assume that «; = « and 5; = 3. Hence
L:F[ah"waraﬁla"wﬁs]'

This means L is generated by F' and the zeros of f, and so L is a splitting field of f over
F. Since f € F[x] is separable, by Theorem 24.2.2 we obtain that L/F is a Galois
extension. Hence

for every v € L, m. p(z) is a separable element of F'[z]. (27.8)
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As Fla, 8] € LN E, by (27.8) we infer that F'[«, ] C Esep. In particular, a + 3, af3,
and o~ ! are in Eyep, and F' C Ep,. This implies that E., is an intermediate subfield
of E/F. Clearly Ee,/F is a separable extension.

2. If char(F') = 0, then by Corollary 27.3.2 every polynomial in F'[x] is separable.
Hence Eg, = E.

3. For every a € E, let so p(z) € F[z] be the separable form of mq p(x)
(see Proposition 27.3.4); that means s, g () := (Mg F)sep is @ separable irreducible
element of F'[z] and for some non-negative integer k (this integer depends on «;) we
have .

Mo, F(T) = Sa,r(a? ). (27.9)
By (27.9), we conclude that o?" is a zero of Sq,F. Since s, r is a monic irreducible
element of F'[x], by Theorem 8.2.5 we infer that the minimal polynomial m F of

o?" over F is Sa,r. Hence m_,» () is a separable element of F'[z]. Therefore ar*
is in Egep. This completes the proof. O
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Lecture 4

28.1 Purely inseparable extensions

Motivated by Theorem 27.3.5, we define purely inseparable extensions. An alge-
braic extension E'/F' is called an purely inseparable extension if one (and so all) of the
statements in the following proposition holds.

Proposition 28.1.1. Suppose F is field of characteristic p > 0. Suppose E/F is an
algebraic extension. Then the following statements are equivalent.

1. Eyp, = F; that means for every o € E\ F, mq, p(x) is not separable in F[x).

2. E*/F* is p-torsion; that means for every o € E, there is a non-negative integer
k
k such that o € F.

3. Forevery a € E, there are a € F and k € Z=° such that m, (z) = P —

Proof. (1) = (2). By Theorem 27.3.5, for every o € E, there is a non-negative integer
k such that o" € FEgep. Therefore the claim follows as ., = F' by hypothesis.

(2) = (3). If & = 0, then m,, (x) = x and there is nothing to prove. So without
loss of generality we can and will assume that « € E*. Since E* /F* is p-torsion,
there is a non-negative integer k such that (aF"*)P" = F*_ Then the order o(aF'*) of
aF* in E* /F* divides p*. Hence o(aF*) = p*° for some non-negative integer k.
Let a := oP"°. Notice that a € F and « is a zero of 27"° — a. Therefore

Me, r(2) divides 2" — ain Flz]. (28.1)

Notice that since char(F') = p, we have

ko

0 —a=a"" — o = (z—a)? (28.2)
By (28.1), (28.2), and the fact that F/[x] is a UFD, we conclude that
Ma,r(r) = (z —a)™, (28.3)
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for some positive integer m which is at most p¥°. Comparing the constant terms of
both sides of (28.3) and using the fact that all the coefficients of m, () are in F', we
infer that o™ € F. Hence (aF*)™ = F*, and so o(aF*) divides m. Therefore m
is a multiple of p¥0. As m is a positive integer, at most p*°, and a multiple of p*, we
conclude that m = p*°. This means

Mo (x) = (z — a)P0 = 27" — P = 27" —q,

which completes proof of this part.

(3) = (1). Forevery « € E \ F, the minimal polynomial M, F is of degree at least
2. On the other hand, by hypothesis, mq, r(z) = zP" — a for some non-negative integer
kand a € F. Since degm, r(z) is more than one, we conclude that k is positive.
Hence the derivative m;, . of m, r is zero as the characteristic of F" is p. Hence m,, r
is not separable in F/[z], which means « ¢ Eq,. This implies that s, = F, which
completes the proof. O

Combining Proposition 28.1.1 with Theorem 27.3.5, we conclude the following
theorem.

Theorem 28.1.2. Suppose E/F is an algebraic extension. Then
1. E/Egy, is purely inseparable, and
2. Esep/F is separable.

Based on the definition of Eye, we see that if K/ F is separable and K € Int(E/F),
then K C Fgp.

28.2 Block-Tower Phenomena for separable extensions

As we have mentioned it earlier, properties of field extensions have the tendency of
staying at the surface. If a property can be easily deduced for the bottom portion of a
tower, then we often can deduce that this property satisfies a block-tower phenomena!
Here are a few examples and non-examples:

1. Finite extensions satisfy a block-tower phenomena: F/F is finite if and only if
E/K and K/F are finite for every K in Int(E/F).

2. Algebraic extensions satisfy a block-tower phenomena: F/F is algebraic if and
only if E/K and K/F are algebraic for every K in Int(E/F).

3. Normal extensions do not satisfy a block-tower phenomena: If E/F is a normal
extension, then E/K is a normal extension, but K/ F is not necessarily a normal
extension.

4. Normal extensions do not satisfy a block-tower phenomena: If £/K and K/F
are normal extensions for some K in Int(E/F’), K/ F is not necessarily a normal
extension.
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5. Galois extensions do not satisfy a block-tower phenomena: If E/F is Galois,
E/K is Galois for every K in Int(E/F'), but K/F is not necessarily Galois. In
fact, K/ F is Galois if and only if Autk (F) is a normal subgroup of Autp(FE).

Next we want to show that separable extensions satisfy a block-tower phenomena.

Theorem 28.2.1. Suppose E/F is an algebraic extension and K € Int(E/F'). Then
E/F is separable if and only if E /K and K/ F are separable.

Proof. (=) (The bottom portion) For every a € K, mq, () is separable in F'[x] as
a € F and E/F is separable. Hence K/ F is separable.

(The top portion) We need to show that m, g () does not have multiple zeros in its
splitting field, for every o € E. Our hypothesis implies that m, g (x) does not multiple
zeros in its splitting field as E/F is separable. Similar to the proof of Theorem 27.2.1,
we can argue that my, i (x) divides mq, p () in K[z]. To see this, notice that o is a
zero of my, g and my, g is in K[z]. As divisors of a polynomial with distinct linear
factors cannot have multiple zeros, we conclude that m,, i () is separable. Therefore
E/K is separable.

(<=) To show the claim, it is (necessary and) sufficient to show that £ = Fg,.
If char(F') = 0, then polynomial is separable; so E = E,. Hence without loss of
generality we can and will assume that char(F) = p > 0.

Since K/ F is a separable extension, K C Eep.

Let’s first see a less detailed argument: every a € E is separable over K. Since
K C Egep, we deduce that « is separable over Eep. Since E'/ Eqe,, is purely inseparable,
we conclude that o € Ee,. Hence B = Eye,.

Now let’s have a more detailed almost identical argument: for every o € F,
Mma, k() does not have multiple zeros in its splitting field over K. Since K C Eqp,
by a similar argument as above (see also 27.2.1) we have that mq, g,,,, divides mq k.
Hence mq, g,,, does not have multiple zeros in its splitting field over Eg.,. Hence
by Lemma 27.3.1, my, Edep(a:) # 0. Notice that since E/Eqe,, is purely inseparable,

by Proposition 28.1.1 mq .., () = 2?" — q for some non-negative integer k£ and

k
a € Fgep. Hence my, B, (®) = pFaP” ~1 which is zero unless & = 0. In this case,
Mq, B,,, () = & — a, which implies that

o =a € FEyp.

This completes the proof. O

28.3 Solvability by radicals

Let’s go back to zeros of polynomials and one of the main motivations of Galois for
developing his theory. As it has been mentioning at the beginning of this lecture note,
by works of many including Khwarizmi, Khayam, del Ferro, and Ferrari, we know that
zeros of polynomials of degree at most 4 can be described in terms of the coefficients
of the given polynomial using +, —, -, /, and {/-. Abel showed that there is no general
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formula f(ag,...,a4) in terms of the above operations such that f(ag,...,as) is a
zero of

ac5+a4x4—|—-~-—|—ao.
Using symmetries of splitting fields, Galois gave a group theoretic condition which is
necessary and sufficient for a polynomial f € F[z] to be solvable by radicals (at least
when char(F) = 0 and F has enough roots of unity). Our next goal is to carefully
formulate Galois’s solvability by radicals theorems and prove them.

Definition 28.3.1. Suppose F is a field and f € F[x]\ F.
1. We say E/F is a radical extension if there is a chain of fields
F=FRCHhCcC---CF,=F
such that for every i, F; 11 = F;[oy] and o'" € F; for some positive integer n;
(it is customary to write c; = "/a; for some a; € Ij).

2. We say f is solvable by radicals if there is a radical extension E/F such that f
can be written as a product of degree 1 factors in E|x]; alternatively we can say
if there is L € Int(E/F) which is a splitting field of f over F.

The building blocks of a radical extension are of the form K[{/a]/ K. We have seen
this type of extensions in Example 17.2.2. Kummer studied this type of extensions in
connection with Fermat’s last conjecture, and he observed the importance of existence
of n-th roots of unity in the base field. That is why an extension of the form K| /a]/K
where K contains n distinct n-th roots of unity is called a Kummer extension.

Proposition 28.3.2. Suppose F is a field and there is ( € F' that has multiplicative
order n. Then

1. F[{/a]/F is Galois, where {/a is a zero of 2™ — a.

2. fo i Autp(F[/a)) — {1,¢,..., ¢, fa(0) = Q(WVEE) is an injective group
homomorphism. In particular, Autp(F[{/al) is cyclic.

Proof. Since o(¢) = n, 1,¢,...,¢(" ! are pairwise distinct, and (¢*)" = 1 for every
integer i. Hence (' {/a)™ = a for every integer i and {/a,( {/a,...,(" 1 {/a are
pairwise distinct. Hence F[{/a] is a splitting field of 2™ — a over F' and 2™ — a is
separable. Therefore by Theorem 24.2.2, F'[{/a]/F is a finite Galois extension. By
Lemma 22.1.4, every 6 € Autp(F[+{/a]) permutes zeros of every polynomial in F'[z].
Hence 6 permutes zeros of ™ — a, and so

0(%/a) € {/a,C¥/a,... . C" " ¥/a}.

This shows that f, is a well-defined function. Next we show that f, is a group homo-
morphism. For 01,03 € Autp(F[{/a]), we have

01(02(/a)) =01(fa(02) V/a)
cF
=fa(02)01(Va)
=fa(02) fa(01) Va.
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Hence f, (61 0 62) = f,(01)fa(62), which means that f, is a group homomorphism.

Notice that an element 6 of Aut(F'[{/a]) is uniquely determined by 6( ¥/a). If
fa(0) = 1, then (/a) = {/a. This implies that § = id. Hence f, is an injective
group homomorphism.

As f, is an injective group homomorphism, the domain of f, is isomorphic to a
subgroup of its codomain. Since the codomain of f,, is a cyclic group and subgroups of
cyclic groups are cyclic, we conclude that the domain of f, is cyclic. This completes
the proof. O

Suppose E/F is a radical extension. Hence there is a chain of fields
F=FKh<chc --Ck,=F

such that F; 1 = F;[ »/a;] for some a; € F; and positive integer n;. In order to get
Kummer extensions as building blocks of this chain, we need to add enough roots
of unity to the base field. For every i, we need to have n; distinct n;-th roots of
unity in F;. Let n := lem(ng,...,n,,). Then for every ¢, n/n; is a positive integer,
a = a?/ni € F,. and F;1 = F;[{/a]]. So without loss of generality we can and
will assume that all n;’s are equal to n.

If the base field contains an element ¢ of multiplicative order n, then F;[ {/a;]/ F;
is a Kummer extension for every index ¢. By Proposition 18.3.4, ™ — 1 has n distinct
zeros in its splitting field over F if and only if gcd(z™ — 1,n2™~!) = 1. The latter
holds exactly when char(F’) { n. Next we show that this condition is enough in order
to get an element of multiplicative order n in a splitting field of ™ — 1 over F'.

Lemma 28.3.3. Suppose F is a field, n is a positive integer, and char(F') { n. Let E
be a splitting field of x™ — 1 over F. Then there is ( € E such that the multiplicative
order of C isn and E = F[(].

Proof. Consider the function E* — E*, « > o™. Since F is commutative, this is a
group homomorphism. Let A,, be the kernel of this group homomorphism. Then C,,
is a subgroup of £ and

Cn:={aeEX|a"—-1=0}

Notice that since char(F) { n, ged(z™ — 1,na2""1) = 1. Therefore by Proposi-
tion 18.3.4 2™ — 1 has distinct zeros in E. Hence |C,,| = n. We also notice that for
every positive integer d, there are at most d elements « of the group C,, such that
a? = 1. Therefore by a result from group theory, we conclude that C,, is a cyclic group.
Let ¢ be a generator of C,,. As |C,,| = n, the multiplicative order of ¢ is n. Hence
1,¢, ..., ¢" ! are distinct zeros of 2™ — 1. Therefore by the generalized factor theorem,
comparing degrees, and leading coefficients, we obtain that

1= (@D =) (= (Y,

This implies that E = F[(, ..., (" '] = F[¢], which completes the proof. O



182 CHAPTER 28. LECTURE 4

Starting with a radical extension E'/F' (with certain assumption on char(F')), we
can use Lemma 28.3.3 and find another radical extension E’/F such that E C E’ and
all the building blocks of E’/F are Kummer extensions except possibly the first one!

Since E/F is a radical extension, there is a positive integer n and a chain of fields

F=FCkhC---CFy,=E

such that F;; = F;[{/a;] for some a; € Fj. Let E' be a splitting field of 2™ — 1
over E. Then by Lemma 28.3.3, there is ¢ € E’ that has multiplicative order n. Let
E; := F;[C]. Then we have

FCECE C--CE,=F

and Ey = F[¢] and E; 1, = E;[{/a;] for every index i. Therefore for every i, E; 1 /E;
is a Kummer extension. It is remained to get a better understanding of the first block

FIC]/F.

Proposition 28.3.4. Suppose F is a field, n is a positive integer, and char(F') 1 n. Let
E be a splitting field of x™ — 1 over F. Then

1. C,:={a € E|a™ = 1} is a cyclic group of order n.

2. the restriction map v : Autp(E) — Awt(Cy), 7(0) := 0|¢, is an injective
group homomorphism. In particular, Autp(E) can be embedded into Z.) and is
abelian.

Proof. The first part follows from Lemma 28.3.3. Every § € Auty(F) permutes zeros
of 2™ — 1. Hence §(C,,) = C,, for every 0 € Autp(E). Therefore 0|¢, is a group
automorphism of C,,. This implies that r is a well-defined function. As the restriction
of composite of two automorphisms is the same as the composite of restrictions of these
automorphisms, we have that r is a group homomorphism. Next we notice that since
E is generated by F’ and elements of C,,, an automorphism 6 € Aut(E) is uniquely
determined by its restriction on C),. This means 7 is injective.

Finally from group theory we know that the group of automorphisms of a cyclic
group of order n is isomorphic to Z.<; this follows from the fact that o(¢™) = o(g) if
and only if ged(o(g), m) = 1. O

We would like to relate our information on the symmetries of the building blocks
of a radical extension to symmetries of the radical extension itself. As we have learn so
far, the group of symmetries of an extension is richest when the extension is Galois. So
Next we will replace E by an extension field E’ of F such that E’/F is both radical
and Galois. Then using the above chain of fields, we will prove an interesting property
of Autp(E").



Chapter 29

Lecture 5

Let’s recall that a field extension E/F is called a radical extension if there is a
chain of subfields
F=FRCcCKhc---Chk,=FE

such that F; 1 = F;[;] and o' = a; for some n; € Z and a; € F;. Wesay f € F|x]

i
is solvable by radicals over F if there is a radical extension E/F such that

fl@) =1d(f)(z — 1) (& — aa)

for some av, . .., aq € E; alternatively we can say that there is L € Int(E/F') which
is a splitting field of f over F'. Next we investigate radical extensions further.

29.1 Radical extensions

The main goal of this section is to prove the following theorem.

Theorem 29.1.1. Suppose E/F is a radical extension. Then there is L/ E such that
L/F is a Galois radical extension.

To prove this theorem we start by proving a few lemmas. In the first one, we show
that radical extensions satisfy a block-tower phenomenon.

Lemma 29.1.2. [f L/E and E/F are radical extensions, then L/ F is a radical exten-
sion.

Proof. Since L/FE is a radical extension, there is a chain of subfields
E:Longgng =L

such that
Li+1 = LZ[OQ} and o™ =aqa; € L; (29.1)

for 0 < ¢ < m. Since E/F is aradical extension, there is a chain of subfields

F:EogElggET:E

183
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such that
Ei+1 =F; [Bz] and 5:”1 =b, € E; (29.2)

for 0 < ¢ < r. Considering the chain of fields
F=FEyCEC---CE=E=LyCLi C---CLyp=1L
by (29.1) and (29.2), we conclude that L/ F' is a radical extension. O]
An important example of a radical extension which is also Galois is the following.

Lemma 29.1.3. Suppose aq,...,a, € F, E is a splitting field of
(" —ay) (2" — am)
over F, and char(F') = 0. Then E/F is a Galois radical extension.
Proof. Since F is a splitting field of a polynomial in F'[x] over F', E//F is a normal ex-
tension (see Theorem 22.2.1). As char(F') = 0, E// F is separable (see Theorem 27.3.5).
Hence F/F is a Galois extension.
Since F is a splitting field of (z™ —ay) - - - (™ —ayy, ) over F), there are a1, . - . , iipy

in F such that
" —a; = (z—apn) (T — ip)

forevery 1 < i < m,and E = Floaq1,...,Qmy]. Consider the following chain of
fields
F C Flag1] € Flaar, 2] € -+ € Float, - -+, Q] = E.

Notice that at every step we adding a zero of 2™ — a; for some i. Hence E/F is a
radical extension. O

The next lemma is of independent interest. We have seen instances of this lemma
in other proofs.

Lemma 29.1.4. Suppose E/F is a finite normal extension and f € F[x]. Let L be a
splitting field of f over E. Then L/F is a normal extension.

Proof. Since L is a splitting field of f over F, there are oy, ..., aq € L such that

fl@) =1d(f) (@ — 1) (& — aa)

and L = Elay, ..., aq4).
Since E/ F is a finite normal extension, E is a splitting field of some monic g € F[x]
over F' (see Theorem 22.2.1). This means there are 51, - - - , 5,, € E such that

g(x) =(x—P1) - (z = Bm)
and E = F[f1, ..., Bm]. Hence
f(@)g(x) =1d(f)(z — 1) (z — aa)(z = B1) - (x = Bm)

and L = F[B1,...,Bm,01,...,aq4]. Therefore L is a splitting field of f(z)g(z) €
F[z] over F. We conclude that L/ F' is a finite normal extension (see Theorem 22.2.1).
O
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Now we have all the needed tools to prove Theorem 29.1.1.

Proof of Theorem 29.1.1. We proceed by strong inductionon [E : F|. If [E : F| =1,
then F = F and L := F satisfies the claim. Since E/F is a radical extension, there is
a chain of fields

F=FhchC - CFyn=FE

such that F; 11 = F;[oy] and o' = a; € F; for every i. Therefore F,,, /F is a radical
extension and [F,,, : F] < [E : F]. Hence bu the induction hypothesis, there is a field
extension K/ F,, such that K/F is a Galois radical extension.

Next we would like to find a field extension L/K such that

1. L contains a copy of E = F,[a;,], and
2. L/F is a Galois and radical extension.

Notice that av» = a,, € F,, € K. So 2™ — a,, should have a zero in L. Since
L/F and K/F are supposed to be Galois extensions, for every § € Autp(K) there is
fe Autp (L) such that §|E = 6. Hence if a € L is a zero of 2™ — a,,, then 5(04) is
a zero of 2 — B(ay,) = ™ — O(ay, ). This suggests that we need to consider

gx):=J[ @ —6(am)).

0cAutp (K)
Claim. g(z) is in F[z].

Proof of Claim. Every ¢/ € Autp(K) permutes factors of g, and so 6'(g) = ¢ for
every 0 € Autp(K). This means all the coefficients of ¢ are fixed by Autp(K).
Since K/ F is a finite Galois extension, by the Fundamental Theorem of Galois Theory
Fix(Autp(K)) = F. The claim follows. O

Let L be a splitting field of g over K. As 0(a,,) is in K for every 0 € Autp(K),
by Lemma 29.1.3 L/K is a radical extension. Since K/F is a radical extension, by
Lemma 29.1.2 we obtain that L/ F' is a radical extension. Since g(z) € F[z] (by the
above Claim), K/ F' is Galois, and L is a splitting field of g over K, by Lemma 29.1.4
L/F is a Galois extension.

Finally we need to show that E = F,,[a,,] can be embedded into L. Since
aym — = 0, Mg, F,, divides 2" — a,,. As 2™ — a,, divides g(z) and g(z)
decomposes into linear factors over L, there is o € L which is a zero of m,,,, r,,. Since
Ma,, F,, i irreducible in F,,[z], by Corollary 17.0.1 there is an F,,-isomorphism
0 : Fy o] = Fi[d/]. Using the facts that E = F, [ay,] and F,[o] is a subfield of
L, we obtain an F'-embedding of F into L. This completes the proof. [

29.2 Solvable by radicals

Suppose F is a field of characteristic 0 and f € F[z] is solvable by radicals. Then
there is a radical extension E/F and K € Int(E/F’) such that K is a splitting field f



186 CHAPTER 29. LECTURE 5

over F'. By Theorem 29.1.1, there is L/ E such that L/F is Galois and radical. Hence
there is a chain
F=FKCrhnc - Ckyn=1L

such that F; 1 = Fj[a;] and o' = a; € F;. To make each block of the above tower
of fields into a Kummer extension, we need to add enough roots of unity to the base
field. Let n := lem(nq, ..., n,,) and let L be a splitting field of 2™ — 1 over L. Since
2™ — 1 € F[z] and L/F is a finite Galois extension, by Lemma 29.1.4 we conclude

that E/F is a finite Galois extension. By Lemma 29.1.3, E/L is a radical extension.
As L/F is aradical extension as well, by Lemma 29.1.2 L/ F is a radical extension.
Since char(F') = 0, by Proposition 28.3.4 there is ¢ € L such that o(¢) = n,

" —1l=(x—-1)(z—-0 - (x—-¢"),

and L = L[(].
Let E; := F;[(]. Then

FCEYCE C CEpy1=1L, (29.3)

Ei+1 = Eiloy), ' = a; € By, and Ey = F[¢]. Hence E;11/E; is a Kummer exten-
sion; in particular, by Proposition 28.3.2, Aut g, (F;+1) is cyclic. By Proposition 28.3.4,
Ey/F is a Galois extension and Autp(Ej) is abelian.

Applying Galois’s bijection between intermediate subfields of L /F' and subgroups
of Aut F(f) to the tower fields given in (29.3) we obtain the following chain of sub-
groups: R N R

Autp(L) > Autg, (L) > --- > Autg,, ., (L) = 1. (29.4)
For every i, E;1/E; is a Galois extension. Hence by the Fundamental Theorem of Ga-
lois Theory, Autpg, , , (L) is a normal subgroup of Aut B (L), and by Proposition 23.1.1

we obtain
Autg, (L)/ Autg,,, (L) =~ Autg, (Eit1). (29.5)

Since E;41/F; is a Kummer extension, Autg, (E;41) is cyclic. Notice that because
Ey/F is a Galois extension and Autp(Ejp) is abelian, we have that Autg, (L) is a
normal subgroup of Aut (L), and

Autp( )/AutEO( ) AutF(Eo) (29.6)

is abelian. Let G := Autp(L) and G; := Autg, (L). Then by (29.4), (29.5), and
(29.6), we obtain the following chain of subgroups

and G/Gy, Go/G1, ..., Gy /G4 are abelian.

All these fields and groups are not intrinsic of the polynomial f. These are all
auxiliary tools to understand K/ F where K € Int(L / F) is a splitting field of f over
F. Notice that Aut g (L) is a normal subgroup of Autz(L) and

AutF( )/AutK( ) Autp( ) (298)
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Let N := AutK(E); so by (29.8) N < G and Autp(K) ~ G/N. Therefore by (29.4),
we obtain the following chain of subgroups of Autr(K)

Autp(K) =~ G/N B pn(Go) B pn(G1) B - B pn(Gim) B pN (Gmy1) = 1,
where py : G — G/N,pn(g) := gN is the natural quotient map.
Lemma 29.2.1. In the above setting, pn(G;)/pn(Git1) is an abelian group.

Proof. Forevery g,¢ € G;, we have to show that

(8 (9)pn (Gis1)) (pn (9PN (Giv1)) = (o8 ()N (Gig1)) (0N (9)PN (Gig))-

This is equivalent to

pn(g) ton(9) ton (9PN (9) € PN (Git). (29.9)

Since py is a group homomorphism, (29.9) holds exactly when py(g'~1g~1g'g) €
pn(Giy1). So it suffices to show that ¢'"1g~1¢g’g € G;,1. Notice that G; /G, is
abelian, and so g¢'Gi+1 = ¢’gGi,1, which implies that ¢'~'g~'¢g’g € G;;1. The
claim follows. O

This brings us to the definition of solvable groups.

Definition 29.2.2. We say a group G is solvable if there is a chain of subgroups
G:=Ny>N>---B>N,, =1
such that N; /N1 is abelian for every index i.

Altogether we have proved the following theorem of Galois.

Theorem 29.2.3 (Galois). Suppose F is a field of characteristic zero, and f(x) in
F[z]\ F. Let K be a splitting field of f over F. If f is solvable by radicals over F,
then Autg (K) is solvable.

From group theory we know that A,, is a non-abelian simple group if n > 5.
Using this we show that A,, and S,, are not solvable if n > 5. Hence if Auty(K) is
isomorphic to either A,, or S,, with n > 5 where K is a splitting field of f over F,
then f is not solvable by radicals over F'.






Chapter 30

Lecture 6

We proved Galois’s theorem which asserts if I is a field of characteristic zero
and f € F[z] is solvable by radicals over F', then Autp(K) is solvable where K is a
splitting field of f over F'. Here we go over some of the basic properties of solvable
groups and use them to show that there are degree 5 polynomials in Q[z] that are not
solvable by radicals over Q.

30.1 Basics of solvable groups

In this section, we review some of the basic properties of solvable groups.
Proposition 30.1.1. Suppose G is solvable. Then the following holds.

1. If N G, then G/N is solvable.

2. If H < G, then H is solvable.

3. Suppose N QG. If N and G/N are solvable, then G is solvable.
Proof. Since G is solvable, there is a chain of subgroups
G=G >G> -->G,=1

such that G; /G, 11 is abelian for every integer 0 < i < m.
() Let py : G — G/N,pn(g) := gN. Then by the virtue of the proof of
Lemma 29.2.1, we have pny (G;)/pn(Gi+1) is abelian, and

G/N =:pn(Go) B pn(G1) -+ 2 py(Gm) = 1.

Hence G/N is solvable.

(2) Forevery i, consider p : HNG; — G;/G;41,p(h) :== hG,;4+1. Thenh € HNG,
is in the kernel of p if and only if hG; 11 = G;41. This holds exactly when A is in G, 1.
Hence kerp = (HNG;)NG;+1 = HNG,41. Therefore HNG; 41 is a normal subgroup
of HNG; and by the first isomorphism theorem for groups, (H N G;)/(H NG;41) can

189
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be embedded into G;/G41. In particular, (H N G;)/(H NG;41) is abelian. Therefore
considering the following chain of subgroups

H=(HNGo)>(HNG) > & (HNGp) =1

we deduce that H is solvable.
(3) Let’s recall the following result form group theory:

Proposition 30.1.2. Suppose G is a group and N is a normal subgroup of G. The the
following is a bijection:

{H|N<H<G}—Sub(G/N), Hr— H/N.

Moreover Hi /N < Hy/N ifand only if N < Hy < Hy, and if N < Hy < Hs, then

Hy /N < Hy /N and 1205 ~ L.

Since G/N is solvable, by Proposition 30.1.2 there are N < GG; < G such that

G/N =Gy/N>G/N>---> G, /N =1, (30.1)
and Gi{ J/VN is abelian for every . Hence by Proposition 30.1.2, we have
G=Gy>G>--->G, =N, (30.2)
and Gi ~ _G/N_ig abelian.

Git1 — Gip1/N
Since N is solvable, there is a chain of subgroups

N=Ny> N >-->N, =1 (30.3)

such that N; /N, is abelian. Notice that the chain of subgroups given in (30.2) end
where the chain of subgroups in (30.3) start. Hence we get the following chain of
subgroups

G=Go>G1>---B2Gp=N=Ng>N D---I>Np=1,

and notice that the quotient of each subgroup by the next one is abelian. Hence G is
solvable. This completes the proof. O

Next we show that a solvable simple group is a cyclic group of prime order.

Lemma 30.1.3. If G is a solvable simple group, then G is a cyclic group of prime
order.

Proof. Since G is solvable, it has a proper normal subgroup N such that G /N is abelian.
As G is simple, it does not have a non-trivial normal subgroup. Hence N = 1, which
means G is abelian. Therefore every subgroup of GG is normal. As G is simple, it does
not have a normal subgroup. We conclude that G has exactly two subgroups {1} and
G; that means

Sub(G) = {{1},G}. (30.4)
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By (30.4), we deduce that (g) = G forevery g € G \ {1}. If there is g € G that has
infinite order, then (g?) # (g). This contradicts (30.4). So every element g of G has
finite order. Suppose p is a prime factor of o(g) where g € G \ {1}. By Cauchy’s
theorem, G has an element gq of order p. By (30.4), G = (go). This completes the
proof. O

Corollary 30.1.4. Ifn > 5, A, and S,, are not solvable.

Proof. If n > 5, A,, is a non-abelian simple group. Hence by Lemma 30.1.3, A,, is not
solvable. Since A,, is a subgroup of .S,, and A,, is not solvable, by Proposition 30.1.1
Sy, is not solvable. This completes the proof. O

30.2 Galois groups and permutations

When E/F is a Galois extension, the group Autz(E) is called the Galois group
of E/F, and it is denoted by Gal(E/F). For a polynomial f € F|[z], the group
of F-automorphism of a splitting field K of f over F'is denoted by ¥ r. The next
proposition helps us get a concrete understanding of ¢ r as a subgroup of permutations
of zeros of f in K. When f € F[z] is separable, K/ F' is a Galois extension and ¢
is called the Galois group of f over F.

Proposition 30.2.1. Suppose F' is a field, f € F[x]\ F, and K is a splitting field of f
over F'. Suppose

X ={o,...,an} CK
is such that f(z) =1d(f) [[;—,(z — o). Let Sx be the symmetric group of X. Then

1. The restriction r : Autp(K) — Sx, r(0) := 0|x is a well-defined injective
group homomorphism.

2. If K’ is another splitting field of f over F, then there is an isomorphism

c:Autp(K) = Autp(K').

Proof. For every 0 € Autp(K), 6(«;) is a zero of §(f) (see Lemma 22.1.4). Since
f € Flz], 0(«;) is a zero of f. As X is the set of all the zeros of f in K, we conclude
that (X) C X for every § € Autp(K). As X is a finite set and 6 is injective, we
deduce that 0| x : X — X is a bijection. Hence r is a well-defined function. Because
the restriction of composite of two bijections is the composite of restrictions of those
functions, we have that r is a group homomorphism. Since K = F[ay, ..., a,], every
0 € Autp(K) is uniquely determined by its values at a1, . . . , a,. Hence 6| x uniquely
determines ¢, which means that r is injective.

(2) Since K and K’ are splitting fields of f over F', by Theorem 17.1.2 there is an
F-isomorphism o : K — K’. Let

c: Autp(K) — Autp(K'), c(@):=0c0foc '
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Notice that composite of F-isomorphisms is an F-isomorphism. Hence ¢(#) is indeed
an element of Autp(K"). For every 01,05 € Autp(K), we have

c(fr06y)=0c0(f1060) 00t =(cob 00 No(aobhyoot)=c(h1)o0c(b).
This means that c is a group homomorphism. It is easy to see that

dAutp(K') = Autp(K), d(@):=0'00 00
is the inverse of ¢, and so c is a bijection. This completes the proof. O

We let ¢ r be the image of 7. By Proposition 30.2.1, ¢ r is a subgroup of the
symmetric group of Sgeg r and it only depends on (f, F') up to a group isomorphism.
By Galois’s theorem (Theorem 29.2.3), for a field of characteristic zero and f € F|x],
we have that

[ is solvable by radicals over F' = % p is solvable.

30.3 Examples of polynomials that are not solvable by radicals

In this section, we use Corollary 30.1.4 and Galois’s theorem, to find polynomials
f € QJz] that are not solvable by radicals over Q. This is done based on the following
lemma and a result from group theory.

Lemma 30.3.1. Suppose p is prime, | € Q|x] is irreducible of degree p, and f has 2
non-real complex zeros and p — 2 real zeros. Then we can label zeros of f in a way
that 9y p contains (1,2, ...,p) and (1, a) for some integer a € [2, p).

Proof. Suppose f(x) =1d(f)(x —aq)-- - (x — ap) for a;’s in C. We further assumed
that «; € C\ R. Let

K :=Qlaq,..., ).

Then K is a splitting field of f over Q. Let’s recall that ¢; g is the subgroup of
permutations of {aq,. .., a,} that are induced by elements of Autg(K). We will
rearrange the zeros and identify the group of permutations of {a, ..., a,} with S,.
Notice that since char(Q) = 0, f is separable. Hence K is a splitting field of a separable
polynomial over @, which implies that K /Q is a Galois extension (see Theorem 24.2.2).
Therefore

7

Since f is irreducible in Q[z] and «y is a zero of f, f(z) = 1d(f)ma, r(x) (see
Proposition 8.2.6). Hence

= [K: Q] (30.5)

degma, .0 = p- (30.6)

By the Tower Rule, we obtain that [Q[a4] : Q] divides [K : Q]. Therefore by (30.5),
(30.6), and Proposition 20.1.2, we conclude that p divides |4} g|. By Cauchy’s theorem,
there is 0 € ¥ g that has order p. Let’s recall from group theory that if the cycle type
of a permutation o € S, is (n1,...,ng), then the order of ¢ is lem(ng, ..., ny) and
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ni + ...+ n, = p. Hence o(o) = p for o € S, implies that o is a cycle of length p.
So ¢ is the cycle
(ar,0(ar),...,0" Hay)).

We relabel «;’s and let
ag :=o0(a), az :=o(az),..., ap = oc(ap_1).

So o is represented by (1,2,...,p) in Sp.

Let 7 : C — C be the complex conjugation. Then 7 € Autg(C). Since K/Q is
a normal extension, by Proposition 23.1.1 7| € Autg(K). Notice that Fix(7) = R.
Hence p — 2 roots are fixed by 7 and the other two non-real zeros are swapped by 7.
We have already assumed that «v; is one of the non-real zeros. Suppose «, is the other
non-real zero of f. Hence with respect to this labeling of «;’s, 7|k is represented by
(1, a). This completes the proof. O

Exercise 30.3.2. Suppose p is prime. Then {((1,2,...,p),(1,a)) = S, for every
integer a in [2, p).

By Exercise 30.3.2 and Lemma 30.3.1, we conclude the following.

Theorem 30.3.3. If f € Q[x] is irreducible, deg f = p is prime, f has 2 non-real
complex zeros and p — 2 real zeros, then G5 g ~ Sp. In particular, f is not solvable by
radicals over Q if p > 5.

Proof. The first part is an immediate consequence of Lemma 30.3.1 and Exercise 30.3.2.
The second part can be deduced from the first part, Corollary 30.1.4, and Galois’s
solvability theorem (see Theorem 29.2.3). O]

Exercise 30.3.4. Show that x° — 16x + 2 is not solvable by radicals over Q.
Existence of a degree 5 polynomial which is not solvable by radicals implies that

there is no general formula in terms of +, —, -, /, /- to solve degree 5 equations.

30.4 Finite solvable groups and prime order factors

Next we want to prove the converse of Galois’s solvability theorem (see Theo-
rem 29.2.3).

Theorem 30.4.1 (Galois). Suppose F is a field of characteristic zero and | € F|[z].
Then f is solvable by radicals over F if and only if 9  is solvable.

Theorem 29.2.3 implies (=). So we focus on (<). We start with the following
group theoretic lemma.

Lemma 30.4.2. Suppose G is a finite solvable group. Then there is a chain of subgroups
G=G >G> ---bG,=1

such that G;/G;11’s are cyclic groups of prime order.
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Proof. Since G is solvable, there is a chain of a subgroups
G:160E61E”'Ead+1:1

such that CAY'Z-/@H is abelian. Since G is finite éi/éi+1 is a finite abelian group.
Claim. If A is a finite abelian group, then there is a chain of subgroups

A=A A > A, =1
such that A; /A1 is cyclic group of prime order for every i.

Proof of Claim. We proceed by strong induction on |A|. If |A| = 1, there is nothing
to prove. If |A| > 1, then | A| has a prime factor p. By Cauchy’s theorem, A has an
element of order p. Since A is abelian, (a) is a normal subgroup and A/{a) is abelian.
As |A/{a)| < |A], by the strong induction hypothesis, there is a chain of subgroups

A _ _
— =AbA D> DA =1 (30.7)
(@)

such that A; /A; ;1 is cyclic of prime order. By Proposition 30.1.2, for every i, A; = {(‘Li

for some subgroup A; of A which contains (a). Hence by (30.7), we conclude that
A=A A DDA = (a) (30.8)

Notice that .

Zz‘+1 Aig1/(a) Ai+1.

Therefore A;/A;11 is a cyclic group of prime order for every i. Let 4,47 = 1 and
notice that A, /A1 ~ (a) is a cyclic group of a prime order. Hence the chain of

subgroups

A=A A A =1
satisfies the desired property. This completes the proof. O

By the above claim, for every ¢, there is a chain of subgroups

G
S = A DAp D > A, =1

)

i+1

such that A?Zn is a cyclic group of prime order for every j. By Proposition 30.1.2,
W)

there are subgroups G; of @z which contain éi—&-l and A;; = Gjy; /éi+1- Hence

Ay Gij/éiJrl - Gij

Aij+1) Gi(j+1)/éi+1 -~ Gy

are cyclic groups of prime order. Notice that A;,,, = 1 implies that G,,,, = éz‘+1 for
every ¢. Consider the following chain of subgroups
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G:éoszE"'EGOmOZ
élzGHIZ"'IzGlmlz

Gi=CGa1 > > G, =1,
and the claim follows. O

Next we will focus on finite Galois extensions E/F where Gal(E/F) is cyclic.






Chapter 31

Lecture 7

The main goal of this section is to prove Galois’s solvability theorem (see Theo-
rem 30.4.1). We will be working on (<=).

31.1 A tower of cyclic Galois extensions with roots of unity

Suppose F' is a field of characteristic zero and f € F[z]. Then
f is solvable by radicals over F' <= %} p is solvable.

We have already proved (=). Suppose K is a splitting field of f over F' and Autp(K)
is solvable. Then by Lemma 30.4.2, there is a chain of subgroups

AutF(K) = Go EGI E IZGerl = 1,

such that G;/G;41 is a cyclic group of prime order. Let F; := Fix(G;) for every
i. Then by the fundamental theorem of Galois theory, K/ F; is a Galois group and
Autp, (K) = G;. Since G4 is anormal subgroup of G, by the fundamental theorem
of Galois theory F;1/F; is a Galois extension, and by Proposition 23.1.1 we obtain
that

~ AutFi(K) - Gi

AUtF,L' (FlJrl) — AUtFH_l (K) Gi+1 .

Hence Autg, (F;41) is a cyclic group of prime order. Following Kummer, we add
enough roots of unity to the base field. Let n := [K : F|, and suppose L is a
splitting field of ™ — 1 over K. Then by Lemma 29.1.4, L/F is a normal extension.
Since char(F') = 0, by Theorem 27.3.5 L/F is a separable extension. Hence L/F
is a Galois extension. By Proposition 28.3.4, there is ( € L such that o(¢) = n,
e —1 =117y (z — ¢"), and L = K[¢]. Let E; := F;[¢]. Thus we have

FCEyCELC---CEpp1 =L (31.1)
Notice that F;[(] is a splitting field of 2™ —1 over F; as 2™ — 1 = H?;OI(:E—(Z'). Hence

E;/F; is a Galois extension (notice that since the characteristic of all these fields are
zero, all these field extensions are separable). We also notice that since 2" — 1 € F;[x],

197
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F;,1/F; is a Galois extension, and F; 1 is a splitting field
of ™ — 1 over F;11, by Lemma 29.1.4 ;4 /F; is a Galois Ei
extension. By Proposition 23.1.1, the restriction map from
Autp, (Fiq1) to Autg, (F;11) is surjective and its kernel is /
Autp,,, (Eit1). Notice that E;
AU.tFiJrl (EiJrl) N Autg, (EiJrl) =id.
Fita

Hence Autg,(E;+1) can be embedded into Autg, (Fii1).

As subgroups of cyclic groups are cyclic, we conclude that /

Autg, (E;41) is cyclic. F;
Moreover | Autg, (E;1)| divides | Autp, (Fi1)|- As Fy11/F; is a Galois group,
| Autp, (Fi+1)| = [Fit1 : Fi]. Hence by the Tower Rule, [F; 1 : F;] divides [K : F].
Therefore, we conclude that | Autg, (F;+1)| divides n. Altogether, we conclude the
following lemma.

Lemma 31.1.1. Suppose F is a field of characteristic zero and f € F[x]. Suppose
Y r is a solvable group of order n and K is a splitting field of f over F. Then there
are a tower of fields

FCEyCEL C---C Epya,

and € Ey such that o(¢) = n, Ey = F[(], Em+1 = K[(], Eiy1/E; is a Galois
extension, Autg, (E;11) is cyclic, and [E; 41 : E;] divides n.

Next we will study the blocks of the tower given in Lemma 31.1.1. This will be
done by proving Hilbert’s theorem 90.

31.2 Hilbert’s theorem 90

To formulate Hilbert’s theorem 90, we need to define the norm function.
Definition 31.2.1. Suppose E/F is finite Galois extension. Then for o € E, we let
NE/F(Oé) = H 9(0[),
0cAutp (E)

and we call it the norm of c.

Lemma 31.2.2. Suppose E/F is a finite Galois extension. Then for every o € E, we
have Ng p(a) € F, and Ngp : E* — F* is a group homomorphism.

Proof. Forevery ' € Autp(E), we have

o (Npsr(e) =0/ J]  6(e)

9€AutF(E)

= JI @e0)»

HEAutF(E)

= JI 0@ =nNgmra).

HEAUtF(E)
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Hence N/ p(a) € Fix(Autp(E)). As E/F is afinite Galois extension, Fix(Autp(E)) =
F. Therefore Ny, p(c) € F.
For a1, as € E*, we have

Ng/p(oaios) = H O(a1aa)
GGAHtF(E)

= JI o) J] 0(e)

0cAutp(E) 0cAutp(E)

=Ng/r(a1)Ng/r(az).
This completes the proof. O

Theorem 31.2.3 (Hilbert’s theorem 90). Suppose E/F is a finite Galois extension, and
Autp(E) is a cyclic group generated by o. Then for o € E, we have Ngp(a) = 1if

and only if « = %forsome 5 e E*.
We start with proof of (<). Suppose [E : F] = n. Then
Autp(E) = {id,0,--- , 0" '}.
Hence

Ngp(o(8)) =0(8) a(a(B))--- 0" 2(a(B)) " (a(B))
=o(B) a*(B)--- 0" (B) B = Nesr(B).
Therefore by Lemma 31.2.2, we have

U(ﬂ)) _ Ng/r(o(8)) _ Ng/r(B)
B Ng/r(B) Ng/r(B)

To show the other direction, we start with proving Dirichlet’s independence of characters.

NE/F( —1.

Theorem 31.2.4 (Dirichlet’s independence of characters). Suppose E is a field, G is a
group, and
X1y-+-sXn : G — E*

are distinct group homomorphisms. Then x;’s are E-linearly independent; that means
if for some e; € E,

e1x1(g) + -+ enxnlg) = 0forevery g € G,

Proof. Suppose to the contrary that x;’s are F-linearly dependent, and consider

V:.={(e1,...,en) € E™| ZeiXi =0}.
i=1
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By >" ,eixi =0,wemean ) . e;x;(g) = 0 forevery g € G. Notice that V is a
subspace of £, and by the contrary assumption V' # 0.
We also notice that, if (eq, ..., e,) € V, then for every go, g € G, we have

Z eiXi(gog) = 0.
i=1

Therefore Y. (eixi(g90))xi(9) = 0, which means Y. (e;x:(g0))xi = 0. Alto-
gether, we have that for every go € G,

(61, ) 6”) € V implies (61X1(90)v ) ean(QO)) ev. (31.2)
Let¢: E™ — [0,n],{(e1,...,en) :=|{i] e; # 0}]. Let
m = min{l(v) | v € V'\ {0}}. (31.3)

Suppose vg € V and £(vg) = m. After rearranging the x;’s, we can and will assume
that
Vo = (61,...,67”,0,...,0)

for some e; € E*. Notice that m # 1 as otherwise x1(g) = 0 for every g € G. This
contradicts the fact that x1(g) € E* forevery g € G. Since x1 # Xo, there is go € G
such that x1(go) # Xx2(g0)- By (31.2), we have

(61X1(g0)7"' 7eme(90)707"' 70) eV. (314)

Since V is a subspace, by (31.4), we deduce that

(e1x1(g0), -+ s emXm(90), 0, ,0) = x1(go)(€1;- -, €m,0,...,0) € V.

This means that

w = (0,e2(x2(90) — x1(90)); - - -, em(Xm(g0) — x1(90)),0,...,0) € V. (31.5)

By (31.5), we have ¢(w) < m. Thus by (31.3) and (31.5), we obtain that w = 0. Hence

e2(x2(g90) — x1(g90)) = 0, which is a contradiction as es # 0 and x1(g0) # Xx2(90)-
This completes the proof. O

Proof of Hilbert’s theorem 90. We have already proved (=-). So we focus on (<).
Suppose Ng,p(a) = 1 for some o € E. We want to show that o = % for some
B € E*. Equivalently, we want to show that o~ *o(3) = 3 for some 3 € E*. Let

T,:E — E, Ty(e) :==a to(e).

This part is not needed in the proof, but it explains some hidden logic behind the
argument. We notice that T,, is an F-linear function, and we would like to show T, (/3)
for some non-zero element 8 € E. This is equivalent to saying that 1 is eigenvalue
of T,,. Later we will discuss that minimal polynomial of a linear map and show that
eigenvalues are zeros of minimal polynomial.
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We continue with understanding of 77%. Notice that
T2(e) = Tola to(e)) = a to(ato(e)) = (a ta(a)™h) o?(e).

Hence

Inductively we can show that
Ti(e) = (ac(a)---o" Ha)) Lol (e). (31.6)
Substituting n for ¢ in (31.6), we obtain
T2 (e) = (ao(a) - 0" (a))"'0™(¢) = Npr(a) e = ¢;
this means
0 =id. (31.7)

Let’s go back to what our goal is. We want to show that 7, has a non-zero fixed point.
A common technique of finding a fixed point for a group action is looking at the center
of mass of an orbit. Here {id, T,,, ..., 7" "'} is acting on E. So for every e € E,

e+ Tule) + o+ TR )

showed be a fixed point of T,,. Since this action is linear, e + T, (e) + - -- + T* 1 (e)
should be a fixed point of T,,. After showing this, it would only remain to show that
e+Ty(e)+ -+ T2 L(e) # 0 for some e € E. Forevery e € F, we have

Tale+Tale) + -+ T37 (€)) =Tale) + - + T3 (e) + T3 (e)
=T.(e)+---+T" 1 e) +e. (31.8)
Notice that by (31.6), we have T} (¢) = e;0%(e) where e; := (ao(a) -0~ (a))"! €
E. Hence
e+ Tole)+ - +T  e) =id(e) +ero(e) + - +en10" (e). (31.9)
Since id,o,...,0" "1 : EX — E* are distinct group homomorphisms, by Dirich-

let’s independence of characters theorem (see Theorem 31.2.4) id, o,...,0" ! are
E-linearly independent. Thus for some e € F,

B:=id(e) +ero(e) + -+ en_10" " (e) # 0. (31.10)

Then by (31.8), (31.9), and (31.10), we conclude that T,, () = 8 and 8 # 0. Therefore

a~to(B) = B3, which implies that o = %B) This completes the proof. O
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31.3 Cyclic extensions with enough roots of unity

The main goal of this section is to understand cyclic extensions that are related with
Galois’s solvability theorem (see Lemma 31.1.1).

Theorem 31.3.1. Suppose F is a field of characteristic zero and E | F is a finite Galois
extension such that:

1. Autp(FE) is a cyclic group of order n and it is generated by o.
2. There is ¢ € F such that o(¢) = n.

Then E = F[{/a] for some a € F, where {/a is a zero of ™ — a. (This means E | F
is a Kummer extension.)

Proof. Notice that

Negp(Q)=C-0(¢)-- 0" M) =(- ¢ (=¢"=1.

n times

Hence by Hilbert’s theorem 90, ¢ = % for some 3 € E*. Therefore o(83) = (0.

This implies that 02(8) = o((B) = (o(B) = ¢*B. Inductively we can show that
a(B) = ('B for every positive integer i. Hence the Aut(E)-orbit of 3 is

Op = {B,(B,....¢" 1B}

As o(¢) = n, all these elements are distinct. Since E/F is a Galois extension, by
Theorem 25.3.1

n—1
mpp(@) =[] @-8)=1[@-p. GLI1)
B'els i=0

Notice that
n(n—1)

Ng/p(B)=B-0(B)--- 0" " (B)=B-¢B---"'B=¢ =z -B" (3112

n(n—1)

We have (¢~ 2 )% = ¢"(»=1) = 1. Therefore ¢ = 41. Hence by (31.11) and
(31.12), we conclude that

B" =+Ng/r(B) € F.

Let a := 3" € F. Then for every integer i, we have (¢*3)" = 3" = a. Therefore by
the generalized factor theorem, comparing degrees and leading coefficients, we obtain
that

" —a=(x—B)(x—CB)---(x—C"1B). (31.13)

By (31.11) and (31.13), we conclude that mg p(z) = 2™ — a. Thus [F[8] : F] = n,
and by the Tower Rule, we conclude that

E = F[B] = F[{/a],

which completes the proof. O
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31.4 Completing proof of Galois’s solvability theorem

In this section, we complete the proof of Theorem 30.4.1, which states
f is solvable by radicals over F if and only if 9y p is solvable

where F is a field of characteristic zero and f € F[z] \ F. We have already proved
(<) (see Theorem 29.2.3). So we focus on (=). Let K be a splitting field of f over F'
and [K : F| = n. Then by Lemma 31.1.1, there are a tower of fields

FCEyC-- CEmqa,

and ¢ € Ej such that o(¢) = n, By = F[(], Emt+1 = K|[(], Ei+1/E; is a Galois
extension, Aut g, (F;41) is cyclic, and [E; 41 : E;] divides n.

Hence by Theorem 31.3.1, E;j 1 = E;[ »y/a;] for some a; € E; and a divisor n; of
n. Therefore E,,, 1/ F is aradical extension. As K is a subfield of F, 1, we conclude
that f is solvable by radicals over F'. This completes the proof.






Chapter 32

Lecture 8

We have been studying zeros of polynomials extensively. For a given polynomial
| € F[z], we proved the existence of an algebraic extension E/F such that f can be
decomposed into linear factors in F[x]. We can roughly say that all the zeros of f are
in E. Next we want to see if there is an algebraic extension F'/F which contains all
the zeros of all non-constant polynomials over F'.

32.1 Algebraically closed fields

By the fundamental theorem of algebra, all the zeros of a non-constant polynomial
in C|x] are in C. In this case, we do not need to go to an algebraic extension to find all
the zeros of non-constant polynomials. This brings us to the definition of algebraically
closed fields.

Definition 32.1.1. We say a field F is algebraically closed if every f € F|x] \ F has
azeroin F.

Proposition 32.1.2. Suppose F'is a field. Then the following statements are equivalent.

1. Forevery f € F|x], there are a1, ..., oy € F such that
fl@)=1d(f)(x—a1) - (z — an). (32.1)

2. Fis algebraically closed.
3. If E/F is algebraic extension, then E = F.

Similar to many other properties of fields, we have two types of description: internal
(based on properties of F[x]) and external (based on extensions of F’).

Proof. (1) = (2). For every non-constant polynomial f € F[z], there are ;’s in F’
such that (32.1) holds. Evaluating both sides of (32.1) at a1, we conclude that a; € F'
is a zero of F'. So every non-constant polynomial in F'[x] has a zero in F. This means
F is algebraically closed.

205
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(2) = (3). Suppose E/F is an algebraic extension. To show that £ = F', we argue
that every element o € Eisin F. Forevery a € I, m,, r is a non-constant polynomial
in F[z]. Hence m,, r has a zero o € F as F is algebraically zero. Therefore by the
factor theorem (see Theorem 7.1.1), mq, r(z) = (x — o’)g(x) for some g(x) € F|x].
Since mq p(z) is irreducible in F'[z] (see Theorem 8.2.4) and it is monic, we obtain
that m,, p(z) = ¢ — . Hence @ = o’ € F. Therefore E = F.

(3) = (1). Suppose f € F|z] \ F. Let E be a splitting field of f over F'. Then
E/F is an algebraic extension, and so by hypothesis £ = F. This means there are
Qai, ..., € F such that (32.1) holds. This completes the proof. O]

32.2 Zorn’s lemma

Our next goal is to show the existence of an algebraic extension F'/F such that F/
is algebraically closed. Such an extension is called an algebraic closure of F'. Later we
prove that there is a unique algebraic closure of F' up to an F-isomorphism. Intuitively
we order all the monic polynomials in F'[z]\ F" and consider the chain of splitting fields
of these polynomials each one over the previous one. Finally we take the union of this
chain. This way we end up getting an algebraic field extension E/F which contains
all the zeros of polynomials in F[z] \ F. One can show that every algebraic extension
of F is I and conclude that F is an algebraic closure of F'. We could make the above
argument formal using induction if there are only countably many polynomials in F'[x].
When there are uncountably many polynomials in F'[z] \ F), it is not clear what we
mean by ordering them and what previous can mean.

To have a formal inductive argument beyond countable sets that are naturally ordered,
we need to use concepts, axioms, and results from set theory. In set theory, there are
results like transfinite induction and well-ordering theorem that can be viewed as needed
extensions for having inductive arguments beyond countable sets. These results are
based on the following rather intuitive axiom from set theory.

Axiom of Choice. Suppose I and X are non-empty sets and { X; };c is a collection
of non-empty subsets of X; that means i — X, is a function from I to P(X) \ {@}
where P(X) is the power set ' of X. Then we can choose one element from each X;;
that means there is a function f : I — X such that f(i) € X; for everyi € I.

Similar to basic number theory, where one often uses the well-ordering principle
of positive integers as a replacement for inductive arguments, in algebra we often use
a result known as Zorn’s lemma as a replacement for (well-ordering theorem and)
transfinite induction. So next we introduce the needed concepts to formulate Zorn’s
lemma. Later we will provide a pseudo-reasoning on why Zorn’s lemma is well-suited
for many algebraic arguments.

We say a non-empty set X is a partially ordered set with a partial order < if X isa
relation between some of the elements of > with the following properties:

1. (Reflexive) For every a € 3, a X a.

2. (Anti-symmetric) For every a,b € 3, if a < band b < a, thena = b.

I'The power set of X is the set of all the subsets of X.
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3. (Transitive) For every a,b,c € X, ifa < band b < ¢, then a < c.

A partially ordered set will be simply called a poset. The following two examples
are our main sources of constructing many posets.

Example 32.2.1. Suppose X is a set and P(X) is its power set. Then P(X) partially
ordered by inclusion C is a poset.

Example 32.2.2. Suppose X is a poset with partial order <. Then < makes every
non-empty subset of Y. into a poset.

Definition 32.2.3 (Chain). A poset ¢ with a partial order < is called a chain (or totally
ordered set) if for every a,b € € eithera < borb < a.

Example 32.2.4. Suppose X is a non-empty set and { A;}52, is a sequence of subsets
of X. If
A1 CA C -

7

then {A; | i € Z*} is a chain with respect to inclusion.

Definition 32.2.5 (Upper bound). Suppose X is a poset with a partial order < and A
is a non-empty subset of 3. Then we say u € X is an upper bound of A if for every
a € Awehave a < u.

Definition 32.2.6 (Maximal). Suppose . is a poset with a partial order <. We say
m € X is a maximal element of X if the only element a of X that satisfies m < a is m.

The following is an important example in algebra.

Example 32.2.7. Suppose A is a unital ring, and X is the set of all proper ideals of A.
A maximal element of the poset X with respect to inclusion is a maximal ideal.

Next we see an example of a chain with no maximal element.

Example 32.2.8. Let ¢ := {[0,n] | n € ZT}. Then € is a chain with respect to the
inclusion, and € has no maximal elements.

Maximum vs maximal. Let’s remark that maximal elements of a poset X are not
necessarily maximum in 3J; that means if m € X is maximal, we do not necessarily
have that a < m for every a € A. If ¥ is a chain, however, then every maximal element
of ¥ is maximum in .

Theorem 32.2.9 (Zorn’s Lemma). Suppose X is a poset such that every subchain € of
> has an upper bound in 3. Then Y. has a maximal element.

Assuming all the axioms of set theory besides the axiom of choice, we have that
axiom of choice is equivalent to Zorn's lemma.

Instead of proving this result, we will see how one can use Zorn’s lemma and why it is
so effective in algebra.
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32.3 Maximal ideals

In this section, we use Zorn’s lemma to prove the following important result in ring
theory.

Theorem 32.3.1. Suppose A is a unital commutative ring and Iy is a proper ideal of
A. Then there is M < A such that Iy C M, and M is a maximal ideal of A.

Proof. LetY := {J < A| I, C Jand J # A}. Notice that Iy € 3, and so X is a
poset with inclusion as its partial order. To see why the poset ¥ is helpful, we argue
that the assertion of theorem follows from the existence of a maximal element in 3. We
do this by proving the following:

Step 1. A maximal element M of . is a maximal ideal of A and Iy C M.

Proof of Step 1. Suppose J is a proper ideal of A and M C J. Then Iy C J as
Iy € M and M C J. Hence J € Y. Since M is a maximal element of >, J € > and
M C J, we conclude that M = J. Hence M is a maximal ideal of A. As M isin X,
Ip € M. This completes proof of the Claim.

To show X has a maximal element, we employ Zorn’s lemma (see Theorem 32.2.9).
Hence it is sufficient to show that every chain 4’ C X has an upper bound.

Here is the key place. The following pseudo-argument shows why we often can
find an upper bound for a chain consisting of algebraic objects, which in part shows
effectiveness of Zorn’s lemma in algebraic settings.

Suppose ¢’ is a chain consisting of certain algebraic objects. Then | J; . I satisfies
the same algebraic properties. This is the case as the algebraic objects are often defined
in terms of properties of operations and algebraic operations involve only finitely many
elements of | J; . I. Since every finitely many elements in a chain have a maximum,
the given finitely many elements of ( J; ., [ are in a single I € €. As every element of
% has the desired algebraic properties, we obtain the same properties for | ;.o I.

The following step is an instance of the above pseudo-argument.

Step 2. Suppose € is a chain of ideals of A. Then .J :=|J; . 1 is an ideal of A.

Proof of Step 2. For every z, 2’ € J, there are I,I' € € such that z € I and
2’ € I'. Since € is a chain, either I C I’ or I’ C I. Without loss of generality we can
and will assume that I C I’. Hence x,z’ € I’. As I’ is an ideal of A, for every a € A,
we have ax + x’ € I’. Therefore ax + 2’ € Jas I’ C J. Thus J is an ideal of A. This
completes the proof of Step 2.

In the next steps, we show that the ideal J given in Step 2 is an upper bound of %
in X if € C X is a chain.

Step 3. Suppose € C ¥ is a chain. Then J := ;. I is a proper ideal of A.

Proof of Step 3. By Step 2, we know that .J is an ideal of A. So if, on the contrary,
J is not a proper ideal, then 1 € J. Hence 1 € [ for some I € €. Therefore we obtain
that [ = A for some I € ¥. This contradicts the fact that 4 consists of proper ideals.

Step 4. Suppose ¢ C ¥ is a chain. Then J = J ;. I is in X.

Proof of Step 4. By Step 3, J is a proper ideal of A. It is remained to show that
Iy C J. Suppose [ € €. Then Iy C I and I C J, and so Iy C I. This completes the
proof of Step 4.

Step 5. Suppose ¢ C ¥ is a chain. Then J := ;o I is an upper bound of €.
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Proof of Step 5. By Step 4, J € X. Notice that for every I € €, we have I C J.
This implies Step 5.

By Step 5 and Zorn’s lemma, we conclude that 3 has a maximal element M. This
completes the proof in view of Step 1. O

32.4 Existence of algebraic closure: one zero of every polynomial

The main goal of this section is to show the following Proposition which plays an
important role in proving the existence of an algebraic closure of a field.

Proposition 32.4.1. Suppose F is a field. Then there is an algebraic extension K/F
such that every non-constant polynomial in F'|x] has a zero in K.

Let’s start by recalling how we can find an extension which contains a zero of a
given non-constant polynomial f. In this case, we take an irreducible factor p of f and
consider E := F[x]/(p). Since p is irreducible, (p) is a maximal ideal. Hence F is a
field and it has a copy of F' as a subfield. Moreover oy := = + (p) € E is a zero of f
(as it is a zero of p and p divides f) (See Lemma 16.1.2).

To find an extension field which contains a zero of all non-constant polynomials in
F[z], we consider a ring of polynomials with infinitely many variables; one for each
f € F[z]\ F. Let

A:=Flzys| f € Flz]\ FI.

Similar to the case of one polynomial, we want to find a maximal ideal M of A such
that xy + M € A/M is a zero of f. If we find such a maximal ideal, then A/M is an
extension field of F' which contains a zero oy of f for every f € F[z] \ F. Notice that
x5+ M isazeroof fif and only if f(x¢) + M = 0+ M. This means oy := x5 + M
is a zero of f exactly when f(xs) € M. Therefore we would like to show the existence
of a maximal ideal M of A which contains f(x) for every f € F[x]\ F. The latter is
equivalent to saying that

IhCM (32.2)

where I is the ideal of A which is generated by f(z¢)’s. By Theorem 32.3.1, there
is a maximal ideal M of A which contains [, as a subset exactly when I is a proper
ideal. So next we show that [ is a proper ideal of A.

Lemma 32.4.2. Suppose F is a field and A := Flz; | f € Flz]\ F) is the ring of
polynomials with infinitely many variables; one for each f € F[x]\ F. Let Iy be the
ideal of A which is generated by { f(xs) | f € F[z]\ F'}. Then Iy is a proper ideal.

Proof. Suppose to the contrary that /o = A. Then 1 € Iy. This implies that there are
fi € F[z]\ F and a; € A such that

L=aifiles) +asfoles) + -+ anfalzy,). (32.3)

Notice that only finitely many terms and variables are needed to express a;’s and
Equation (32.3). To simplify our notation, let’s rename the involved variables. We
start by renaming x ¢,’s to x;’s, and the rest of the involved variables will be named
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Zpg1s- .-, Tm. This means we can and will view a;’s as polynomials in F[z1, . .., 2]
and (32.3) can be rewritten as

1= al(xla s 7xm)f1(x1) +eee an(xla v 7xm)fn(xn) (324)

We want to show that (32.4) is not possible. Notice that if (32.4) holds, then for every
field extension E/F and 1, ..., 8, € E we should have

1= a/l(ﬁh e aﬁm)fl(ﬁl) +--- 4+ an(ﬁh e 76m)fn(6n) (325)

because of substituting 3;’s for z;’s in both sides of (32.4) (the useful principle of
viewing polynomials as functions). We get a contradiction if f;(5;) = 0 for every i. To
this end, we let E be a splitting field of [T, f;(z) over F, and let 3; € E be a zero of

fi fori € [1..n]. The rest of 3;’s can be any element in F; say 5,41 = -+ = B, := 0.
As we said earlier, by (32.5) we obtain 1 = 0 which is a contradiction. This completes
the proof. O

Now we can prove the following lemma.

Lemma 32.4.3. Suppose F is a field. Then there is a field extension L/ F such that
every non-constant polynomial in F[z] has a zero in L.

Proof. Let A:= Flay | f € Flz]\ F),and Iy := (f(zys) | f € Flz] \ F). Then by
Lemma 32.4.2, I is a proper ideal of A. Hence by Theorem 32.3.1, there is a maximal
ideal M of A which contains Io. Let L := A/M and ay := xy+M € L. Since M isa
maximal ideal of A, A/M is a field. We also notice that non-zero constant polynomials
are units in A, and so M does not contain any non-zero constant polynomial. This
implies that ¢ — ¢ + M is an embedding of F into L. Hence L is an extension field of
F. Forevery f € F[z]\ F, we have

flay) = f(zg) + M =0+ M,

where the last equation holds in view of f(xf) € Iy C M. This completes the
proof. O

Proof of Proposition 32.4.1. By Lemma 32.4.3, there is a field extension L/F which
contains a zero of every non-constant polynomial of F[z]. This means for every
f € Flz] \ F, there is oy € L such that f(ay) = 0. Let K € Int(L/F) be the
algebraic closure of F'in L. Notice that for every f € F[z] \ F, oy € L is algebraic
over F as it is a zero of f. Hence oy € K for every f € F[z]\ F. Therefore K/F
is an algebraic extension which contains a zero of every non-constant polynomial in
Flz]. O



Chapter 33

Lecture 9

33.1 Ecxistence of an algebraic closure

The main goal of this section is to prove the existence of an algebraic closure of a
field. We say F is an algebraic closure of F if F /F is an algebraic extension and F is
algebraically closed.

Theorem 33.1.1. Every field F has an algebraic closure F.
Proof. Let Fy := F'. By applying Proposition 32.4.1, we obtain a tower of fields
IWhWChCha: -
such that for every ¢
1. F;i1/F; is an algebraic extension, and
2. every non-constant polynomial in Fj[x] has a zero in F; .

LetF := U;’io. Using the rough principle of union of a chain of algebraic objects
should satisfy similar properties, we expect F to be a field
Step 1. F is a field.

Proof of Step 1. For every a,b € F, there are 7 and j such that @ € F; and b € Iy Let
k := max(i,j) and notice that F; U F; = F},. Hence for every a,b € F there is a
positive integer k such that a, b € F},. We define the addition and multiplication of a
andbasa+ banda-bin Fy if a,b € F). Notice that if ¢ and b are in Fj as well, then
either a + b and a - b in F}, and Fj are the same as either F}, is a subfield of Fj or Fj is
a subfield of F},. Hence there are well-defined operations on F. For every a,b, ¢ € F,
there are 4, j, and k such that a € F}, b € F};, and ¢ € F},. Hence a,b, c € F,. where
r := max(i,j,k). As F, is a field, we have thata + 0 = 04+a = a,a -1 = a,
(a+b)+c=a+(b+c),a+b=b+a,a-b=b-a,a-(b+c)=a-b+a-c,there
is —a € F, such that a + (—a) = 0, there is a=* € F,. if a # 0. This completes the
proof of Step 1. O

Step 2. ' /F is an algebraic extension.

211
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Proof of Step 2. Suppose o € F. Then a € F; for some positive integer 7. As
F1/Fy,...,F;/F;_; are algebraic extensions, F;/Fj is an algebraic extension (see
Proposition 20.6.1). Hence « is algebraic over Fy = F. O

Step 3. F is algebraically closed.

Proof of Step 3. We want to show that every non-constant polynomial in Flx] has a
zero in F. Suppose

g(z) == apr™ 4+ -+ a1z +ap € Flz]\ F.

Asa; € F,q; € F,,, for some positive integer n;. Let n be the maximum of 1, ooy M
Then g(z) € F,[z] \ F,. Hence g has a zero in F,, ;. Hence g has a zero in F. This
completes the proof. O

By Step 2 and Step 3, we deduce that F is an algebraic closure of F. The claim
follows. =

33.2 Isomorphism extension theorem for algebraic closures.

In this section, we prove an isomorphism extension theorem for algebraic closures
and as a particular case, we obtain the uniqueness of algebraic closures up to an
isomorphism.

Theorem 33.2.1 (The isomorphism extension for algebraic closures). Suppose F' and
F’ are fields, 0 : F — F' is an isomorphism, and F, F are algebraically closures of
F and F', respectively. Then there is an isomorphism 0 : F — T such that |F = 0.

Roughly the isomorphism extension for algebraic closures hold because they can be
viewed as the union of a family of splitting fields of polynomials in F'[z] \ F over F.
We can construct the extension 6 by gluing the F'-isomorphism extensions for splitting
fields. The gluing process, however, needs a set theoretic “permission” as there might
be uncountably many splitting fields involved. Similar to the proof of the existence of
algebraic closures, we use Zorn’s lemma to avoid using an inductive argument.

Proof of Theorem 33.2.1. Let
S:={(E,¢) | EcInt(F/F)and ¢: E — F such that ¢|p = 6}.

We say (E1, ¢1) < (B2, ¢2) if By C Fy and ¢o|g, = ¢1.
Step 1. (X, X) is a poset.

Proof of Step 1. (Reflexive) Clearly (E, ¢) < (E, ¢).
(Anti-symmetric) Suppose (E1, ¢1) < (Ea, ¢2) and (Es, ¢2) < (E1,¢1). Then
E1 Q E2 and E2 Q El, and so E1 = EQ. As ¢2|E1 = d)l and E1 = EQ, ¢1 = ¢2.
(Transitive) Suppose (1, 1) < (E2, ¢2) and (E2, ¢2) < (E3,¢3). Then By C
FEs and F5 C FE3,and so 1 C FE3. As ¢ is an extension of ¢ and ¢3 is an extension
of ¢, we obtain that ¢3 is an extension of ¢1. Thus (E1, ¢1) < (Es3, ¢3). O
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Next we use Zorn’s lemma to show that > has a maximal element.

Step 2. Suppose € := {(E;, ¢;) | i € I} C Y is a chain. Let E := | J,.; E; and
¢ E—F, d(e) = ¢i(e) ife € E;. Then E € Int(F /F), ¢ is well-defined, ¢ is an
extension of 0, and (E;, ;) < (E, @) for every i € 1.

Proof of Step 2. Suppose a,b € E \ {0}. Then there are 7, j € I such that a € E; and
b € E;. Since € is a chain, either (E;, ¢;) < (Ej, ¢;) or (Ej, ¢;) < (Es, ¢;). Without
loss of generality, we can and will assume that (E;, ¢;) < (£}, ¢;). Hence E; C E;
and ¢; is an extension of ¢;. Therefore a, b € E;, which implies that a£b, a-b*! € E;.
Thus a + b,a-b*' € E as E; C E. Therefore E € Int(F /F).

Next we show that ¢ is well-defined. Suppose e € E isin F; and E; for ¢, 5 € 1.
Since % is a chain, without loss of generality we can and will assume that (E;, ¢;) <
(Ej, ¢j). Hence E; C E; and ¢, is an extension of ¢,. Therefore ¢;(e) = ¢;(e). This
implies that ¢ is well-defined.

It remains to show that ¢ is an embedding which is an extension of 6. Suppose
a,b € E. As we proved in Step 1, a,b € E; forsome ¢ € I. Thena + b,a -b € E;,
and so

p(a+b) =¢i(a+b) = @(a) + ¢z( ) = ¢(a) + ¢(b)
¢(a-b) =¢i(a-b) = ¢i(a) - $i(b) = ¢(a) - H(b)-

This means that ¢ is a ring homomorphism. For every a € F andevery: € I, a € E;,
and so ¢(a) = ¢;(a) = O(a) as ¢; is an extension of §. This implies that ¢ is an
extension of §. Since F is a field and ¢ # 0, ¢ is injective. Therefore ¢ : £ — Fisan
embedding and it is an extension of 0. Hence (E, ¢) € ¥. Foreveryi € I, E; C FE
and ¢|g, = ¢;. This means (E;, ¢;) < (E, ¢), which completes proof of Step 2. [

By Zorn’s lemma and Step 2, ¥ has a maximal element.
Step 3. Suppose (L, 0) is a maximal element of ¥. Then L = F.

Proof of Step 3. Suppose to the contrary that o € F\L. Since F and F are alge-
braically closed, there are a1, ..., o, € Fand o, ..., al, € F such that

Ma,(x) = (x—ay) - (x—ay) and mg(a) o) (x) = (x—a]) - (—a,). (33.1)

Then L := Loy, ..., ap) isasplitting field of mg, 1, over L and L' =0(L)[a),... o]
is a splitting field of mg(q),o(1,) Over 6( ). Hence by the isomorphism extension for
splitting fields (see Theorem 17.1.1), 0 can be extended to an 1somorphlsm 0:L— 1L
In particular, 6 is an extension of 6. Hence (L f) € ¥ and (L 9) (L 0). Since (L, 9)
is a maximal element of 3, we conclude that (L, 0) (L,6). This is a contradiction
asael)\ L. O

Step 4. There is an F-isomorphism 0:F — T which is an extension of 0.
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Proof of Step 4. By Step 3, there is an embedding 6 : F — F which is an extension
of . Then 6(F) is algebraically closed and 0(F) € Int(il F /F). Therefore F is an
algebraic extension field of the algebralcally closed field 6(L ) By Proposition 32.1.2,

we deduce that (L ) = F. This means 0 is an isomorphism, which completes the
proof. O

O

An immediate corollary of the isomorphism extension for algebraic closures is the
uniqueness of algebraic closures up to an F-isomorphism.

Theorem 33.2.2 (Uniqueness of algebraic closures). Suppose Fisa ﬁeld and F
are algebraic closures of F'. Then there is an F-isomorphism 9:F>F.

Proof. Let 6 := idp be the identity function from F' to F'. Then by the isomorphism
N —

extension for algebraic extensions, there is an isomorphism 6 : F — F which is an

extension of 6. This means 6 is an F'-isomorphsims, which completes the proof. [

33.3 Basic properties of algebraic closures

In this section, we show some of the basic properties of algebraic closures.

Definition 33.3.1. We say a field F is a perfect field if either char(F) = 0 or
char(F) = p > 0 and FP = F; this means the Frobenius map ¢ : F' — F, ¢(a) := aP
is an isomorphism.

Proposition 33.3.2. Suppose F is a field and F is an algebraic closure of F. Then
1. F /F is a normal extension.

2. F /F is a Galois extension if and only if F is a perfect field.

Proof. (1) Since F is an algebraic closure of F', F /F is an algebraic extension. As F
is algebraically closed, for every a € F, m,, r can written as a product of linear factors
in F[z]. This implies part one.

(2) (=) If char(F') = 0, there is nothing to prove. So without loss of generality
we can and will assume that char(F) = p > 0. As F is algebraically closed, for every
a € F, there is o € F which is a zero of 2P — a. This means

P _ p

af —a=aP —aP = (z — a)P.

Therefore m,, p divides (x — a)P, which implies that
Ma,r(z) = (z — a)’ (33.2)

for some positive integer i. As F /F is a separable extension, m, r(z) does not
have multiple zeros in its splitting field over F'. Hence by (33.2), we obtain that
Mq, r(2) = ¢ — . This means « € F, which implies that

a=aP e FP,
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Since this is true for every a € F, we deduce that F' = FP.

(<) If char(F) = 0, then by Theorem 27.3.5 F /F is a separable extension.
Hence together with part (1), we conclude that F /F is a Galois extension. Suppose
char(F) = p > 0. Every a € F is algebraic over F'. By Proposition 27.3.4, there is a
separable irreducible polynomial s, r(z) € F[z] and a non-negative integer k such

that mq, p(z) = 5()‘7F(l’pk). Suppose
Sa,r(z) =2™ + Cm_12™ 4y € Flz]. (33.3)

Since F'? = F, there are d;’s in F’ such that ¢; = df for every i. Therefore by (33.3),
we obtain

ma’p(m) ::L'"ka + dgl_lx(m—l)Pk 4t dg

=@ Fdpa™VP T L dg)? ifk >0, (33.4)

By (33.4), we reach to a contradiction as mq g (x) € F[z] is irreducible and

g + dm,lx(m_l)pkil +---+dy € Flz].
Hence k = 0, which means m, ¢ = So,r. This implies that mq r € F' [x] is separable
for every a € F. O

Corollary 33.3.3. A field F is perfect if and only if every algebraic extension E/F is
separable.

Proof. (=) Let E be an algebraic closure of E. Then E/F is an algebraic extension as
E/E and E/F are algebraic extensions (see Proposition 20.6.1). As F is algebraically
closed, we deduce that E is an algebraic closure of F'. Therefore by Proposition 33.3.2,
E/F is a Galois extension as F is perfect. In particular, E//F is a separable extension.
As E € Int(E/F), we conclude that E/F is a separable extension.

(<=) Suppose F is an algebraic closure of F.. By hypothesis, F /F is separable. By
part (1) of Proposition 33.3.2, F /F is a normal extension. Hence we conclude that
F /F is a Galois extension. Hence by part (2) of Proposition 33.3.2, we deduce that F’
is perfect. This completes the proof. O

The next result shows that if add all the zeros of polynomials in F'[z] to F', we end
up getting an algebraically closed field.

Proposition 33.3.4. Suppose F is a field and F is an algebraic closure of F. Let
Int¢ ,(F /F) :={E € Int(F /F) | E/F is a finite normal extension}.
Then F = UEeIntf,n(F/F) E.

Proof. Bvery a € F is algebraic over F. Since F is algebraically closed,
Mo r()=(r—a1) - (z—ap)

for some o = @, ag,...,a, € F. Let E := Flay,...,a,). Then E is a splitting
field of mq,  over F'. Hence E/F is a finite normal extension (see Proposition 23.1.1).
Thus E € Int; ,(F /F'). This completes the proof as « € E. O
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33.4 Group of automorphisms of algebraic closures

In this brief section, we briefly outline how Autr(F) looks like where F is an
algebraic closure of F'.

Lemma 33.4.1. Suppose F is a field, F is an algebraic closure of F, and E €
Ints ,(F /F). Let rp : Autp(F) — Autp(E) be the restriction map rg(0) := 0| .
Then 1 is a well-defined surjective group homomorphism and ker rp = Autg(F).

Proof. Forevery o € E and § € Autp(F), §(a) is a zero of mg p. Since E/F is
a normal extension, m,, r decomposes into linear factors in E|[x]. Hence §(a) € E.
This implies that g is well-defined. It is clear that rf is a group homomorphism. Next
we show that rg is surjective. Suppose § € Autr(F). Notice that F is algebraically
closed and F /F is algebraic, and so F is an algebraic closure of E. Therefore by
the isomorphism extension for algebraically closed (see Theorem 33.2.1), there is an
isomorphism 9 : F — T which is an extension of 6. Notice that 6 is an F-isomorphism,
so is f. Therefore 6 € Aut r(F) and 0 = rE(é) This shows that r is surjective.
Finally suppose 6 € ker r ;. This means §| 5 = idg, which implies that § € Autp (F).
This completes the proof. O

If E,E' € Int; (F/F)and E C E’, then by a similar argument as in the proof
of Lemma 33.4.1 we have that

re g Autp(E') = Autp(E), re g(0) :=0|g
is a well-defined group homomorphism. Notice that
TE =TE EOTE. (33.5)
Lemma 33.4.2. Suppose F is a field, F is an algebraic closure of F. Let
r: Autp(F) — I[I Aute(®), r0) = (re®).
E€lnt; , (F /F)
Then r is an injective group homomorphism.

Proof. Since rg’s are group homomorphisms, 7 is a group homomorphism. Suppose 6
is in the kernel of . Then for every E € Int; ,(F /F'), we have 0| g = idg. Therefore
by Proposition 33.3.4, we have § = id. This completes the proof. O

Next we want to understand the image of r. By (33.5), we have that the image of r
is a subset of

G(F/F) = {(GE) | VE C El, E, E' e Intfyn(F/F), TE’,E(QE’) = 9E}
In fact one can show that the image of 7 is G(F /F'), which implies the following result.

Theorem 33.4.3. Suppose F' is a field and F is an algebraic closure of F. Then
r: Autp(F) — G(F /F) is an isomorphism.
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I leave the proof of Theorem 33.4.3 as an exercise. Here are the steps for proving
the surjectivity of r. Suppose (0g) € G(F /F'). Let : I — F be 0(«) := 0g(a) if
a € Fand E € Int; ,(F /F).

1. Show that ¢ is well-defined. To show this notice that if £y, Ea € Ints (F /F),
then there is E'5 € Ints ,(F /F') such that By, E; C Ej.

2. Show that 6 is a homomorphism, and then prove that 6 is an F-automorphism.

3. Finally observe that r(0) = (0g).






Chapter 34

Lecture 10

34.1 Galois correspondence for algebraic closures

Suppose F is a field and F is an algebraic closure of F'. By Proposition 33.3.2, we
have that F /F' is a Galois extension if and only if F is perfect. So we assume that I’
is perfect, and investigate how much Galois’s correspondence between Int(F /F) and
Sub(Autx(F)) hold. As in the fundamental theorem of Galois theory, we let

U : Int(F /F) — Sub(Autp(F)), U(E) := Autp(F), (34.1)

d
" ® : Sub(Autp(F)) — Int(F /F), ®(H) := Fix(H). (34.2)

Proposition 34.1.1. Suppose F is a field and F is an algebraic closure of F. Then for
every E € Int(F /F), we have

Fix(Autg(F)) = E.

Proof. Clearly E C Fix(Autg(F)). Suppose to the contrary that o is in Fix(Aut g (F))
but not in E. Hence deg mq, g > 2. Suppose o’ € F is another zero of mq, . Hence
there is an E-isomorphism 6 : E[a] — E[a']. Notice that F is an algebraic closure of
E[a] and E[o/]. Therefore by the isomorphism extension for algebraic closures (see
Theorem 33.2.1), there is an isomorphism 9 :F — T which is an extension of . This
implies that f € Aut (F) and 5(01) = o. Therefore c is not in Fix(Autz(F)), which
is a contradiction. O

By Proposition 34.1.1, we have ® o W = id. Therefore W and @ are inverse of each
other from Int(F /F') to the image of ¥

{Autp(F) | E € nt(F /F)}.

Later we will see that there are a lot of subgroups of Autz(F) which are not in the

image of W. One can define a topology on Autx(F) called the Krull topology and with
respect to this topology the image of ¥ consists of all closed subgroups of Aut g (F).
We do not go to the definition of the Krull topology here, but we refer to the image of

U as the closed subgroups of Autr(F).

219
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Proposition 34.1.2. Let ¥ and ® be as in (34.1) and (34.2). Then ¥ and ® induce
bijections between

{E € Int(F /F) | E/Fis a normal extension}, and

{N € Sub(Autr(F)) | N is a normal closed subrgoup}.

Moreover if E/F is a normal extension, then

Proof. Suppose E/F is a normal extension. We want to show that Autz(F) is a
normal subgroup of Autg(F). For every 6 € Autp(F) and « € E, 6(«) is another
zero of mg, p. Since E'/F is a normal extension, f(«) is in E. Therefore the restriction
map

E: Autp(F) — AutF(E), rE(G) = H‘E

is a well-defined function. It is clear that rg is a group homomorphism. By defini-
tion, we have that ker rg = Autg(F). Therefore Autg(F) is a normal subgroup of
Autr(F). Notice that F is an algebraic closure of E as well. Hence by the isomorphism
extension theorem for algebraic closures (see Theorem 33.2.1), every 6 € Autp(FE)
can be extended to an element 6 € Aut (F). This means r is surjective. Thus by the
first isomorphism theorem for groups, we have

Next let’s assume that NV is a normal subgroup of Autr(F). We want to show that
Fix(NN)/F is a normal extension. Suppose o € Fix(NN). We want to show m,, r can
be decomposed into linear factors in (Fix(V))[z]. As F is algebraically closed, there
are

a1 = Q09,0 , 0 €F

such that
M, r(x) = (z—a1) - (x — ay).

Hence, for all ¢, by Lemma 16.2.2, there is an F-isomorphism 6; : F[a;] — F[«;] such
that 6; (1) = «;. Notice that F is an algebraic closure of F[a;] for every j. Hence by
the 1somorphlsm extension theorem for algebraic closures (see Theorem 33.2.1), there
are ; : F — F such that 6; |Flay] = 0s. In particular, 0; € Auty(F) and 6;(o1) = .

We want to use f; (1) = ay, a1 € Fix(N), and N < Autp(F) to show o; €
Fix(N).

This means we want to show that o(«;) = «; for every o € N. The equality
o(a;) = a; holds if and only if

o(6;(0n)) = 0;(cr). (34.3)
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Notice that (34.3) is equivalent to

o~

(0 00 00;)(a1) = o. (34.4)

K2

Since N is a normal subgroup of Autz(F) and o € N, we have 9:-71 ocob; € N.
Therefore (34.4) holds as oy € Fix(V). This completes the proof. O

34.2 Statement of the cyclic case of Kummer theory and pairing

Inspired by Galois theory, one can believe that group theoretic properties of Aut z (F),
viewed as external properties should have infernal counterparts. In this section, we
start our investigation of the following question.

Question 34.2.1. What can we say about the finite cyclic quotients of Autp(F) by its
closed subgroups? How about the finite abelian quotients?

We have proved that normal closed subgroups of Aut (F) are of the form Aut g (F)

Autr(B) Ayt (E). So Question 34.2.1

where F/F is a normal extension. Moreover = o~
Autg (F)

can b rephrased as follows.

Question 34.2.2. What are internal counterparts of finite cyclic or abelian extensions
E/F (where E CF)?

We have proved that if Autr(F) is a cyclic group of order n, char(F) = 0, and
F contains an element ¢ of multiplicative order n, then E/F is a Kummer extension;
this means £ = F[{/a] for some a € F where {/a € F is a zero of ™ — a (see
Theorem 31.3.1). Following Kummer, we will be working under the assumption that
char(F') = 0 and F' has enough roots of unity.

Theorem 34.2.3 (Kummer theory: cyclic case). Suppose F' is a field of characteristic
zero and there is ¢ € F' such that o(() = n. Let

Intz, (F /F) :={FE € Int(F /F) | E/F is Galois and Autp(E) < Z,},

and
Cyc(F*/F*") := {(a(F*")) | a € F*}.

Then the following functions are inverse of each other

A Cye(F* [FX") = Intg, (F /), A({a(F*") := F[¥/a),
and
EX" N FX
—px—

Moreover (a(FXi» ~ Autp(F[{/a)) for every a € F*, and Autp(E) ~ A(FE) for
every E € Inty, (F /F).

A :Intg, (F/F) — Cyc(F*/F*"), A(E):=
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Proof of Theorem 34.2.3 is based on the following function which is called a
Kummer pairing. Let

fiAutp(E) x A(E) = M, f(o,a):= @, (34.5)

where a := o™ € F* forsomea € EX anda := o (F*")and M,, := {1,(,..., ("1}

Lemma 34.2.4. Suppose F is a field of characteristic zero which contains an element
¢ of order n. Suppose E/F is an algebraic extension and f is the Kummer pairing
given in (34.5). Then f is well-defined.

o(a)

Proof. We need to address two issues: why =~ is in M,, and why it only depends
on @ := o™ (F*") and it is independent of the choice of a. Notice that « is a zero of
2" —a. Then a, (e, . . ., (" Lo are distinct zeros of £ — a. By the generalized factor

theorem, comparing degrees and leading coefficients, we obtain that
" —a=(z—a)(x—Ca)---(x— (" ta). (34.6)

As 2" —a € F[z], every 0 € Autp(FE) permutes zeros of 2" — a. Hence o(a) = (‘v
for some integer ¢ in [0, n — 1]. This implies that @ € M,.

If o} (F*") = af(F*") for some a1, € EX with ol € F, then there are
a,c € F* such that o} = ajc” = a € F*. Hence a; and cay are two zeros of
2™ — a. By (34.6), we conclude that a; = (%ca for some integer i in [0,n — 1].
Therefore . ]

o(ar)  o(Ccaz)  (leo(a)  o(am)

&3] CiCOQ CiCOQ Qg

This completes the proof. O

Lemma 34.2.5. Suppose F is a field of characteristic zero which contains an element
¢ of order n. Suppose E/F is an algebraic extension and f is the Kummer pairing
given in (34.5). Then f is a group homomorphism with respect to each component
separately.

Proof. First component. Suppose o1, 09 € Autp(E)anda := a(F*") where a = o™
for some o € E*. Suppose

flor,@) = ¢ and f(o9,a@) = (™, (34.7)

‘We want to show . ‘ o
f(Ul o 0276) _ <z1 .sz — 411-"—12_ (348)
By (34.7), we have o1 () = (" and 02() = (*2cv. Hence

01 OO’(Oé) = Ul(CiQa) _ Cizo.l(a) — Ciz . Cila _ C11+i20é.

o002 (a)

Therefore = (h1+% which implies (34.8), and this shows that f is a group
homomorphism with respect to the first component.
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Second component. Suppose o € Autp(E) and, fori = 1,2, @; := a;(F*")
where a; = ] for some o; € E*. Let

flo, @) = (" and f(0, @) = (™. (34.9)
We want to show
floyay-ap) = ¢, (34.10)
By (34.9), we have o(a1) = ("1 and o(ae) = (*2ap. Hence

0(a1a2) = O'(Oél)O'(Ckz) = Cilal . Ci"‘ag = Ci1+i2a10[2.

This implies that Z{2122) — ¢i1+i2 and (34.10) follows. This completes the proof. [J

Q1o

By Lemma 34.2.5, we conclude that for oy € Autpr(F) and ag € A(E),
fao s Autp(E) — M, fz,(0):= f(o,a0) (34.11)

and
foA(E) = My, f°°@a) := f(oo,a) (34.12)

are group homomorphisms.

34.3 Functions in the cyclic case of Kummer theory

In this section, we prove that the functions A and A given in Theorem 34.2.3 are
well-defined. To show A({a(F*"))) := F[{/a] is a well-defined function, we need
to address two issues: F[{/a] € Intz, (F /F) and F[{/a] depends only on the cyclic
group (a(F*™)) and it is independent of the choice of a. By Proposition 28.3.2, F[ {/a]
isin Intz, (F /F). We go over its prove. By (34.6) and having ¢ € F, we conclude that
F[+/a] is a splitting field of ™ — a over F'. This implies that F'[{/a]/F is a normal
extension. As char(F) = 0, F[{/a]/F is a separable extension. Hence F[{/a]/F is
a Galois extension. Let @ := a(F*"). By (34.11), fz(0) := U(&‘/EE) is a well-defined
group homomorphism.

Lemma 34.3.1. Suppose F is a field of characteristic zero and it has an element  of
order n. Suppose a € F, {/ais azero of ™ — a and E := F[{/a). Let

fo: Autp(F[3/a]) = My, fa(o) = “(jf),

where @ := a(F*"). Then fa is a well-defined injective group homomorphism. In
particular, F|¥/a] € Intg, (F /F).

Proof. By Lemma 34.2.4 and (34.11), fz is a well-defined group homomorphism.
Suppose fz(0) = 1 for some o € Autr(FE). Then o({/a) = {/a, which implies that
o = id. This completes the proof. O
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Lemma 34.3.2. Suppose F'is a field of characteristic zero and it has an element ( of
order n. Suppose a1,as € F* and {ai(F*")) = (as(F*")). Then

Fly/ar) = Fly/a).

Proof. Because (a1(F*")) = (az(F*™)), a1 = abc™ for some ¢ € F* and integer
i € [0,n—1]. Because ¢ € F, {/a1 € F[/az] which implies that F'[ {/a71] C F[/az].
By symmetry we have F'[ ¢/as] C F'[{/a1]. This completes the proof. O

By Lemma 34.3.1 and Lemma 36.2.2, we deduce that the function A given in
Theorem 34.2.3 is well-defined.

Next we want to show that the function A given in Theorem 34.2.3 is well-defined.
Here we need to address only one issue: why A(E) isacyclic groupif E € Intz, (F /F).

Lemma 34.3.3. Suppose F is a field of characteristic zero and it has an element of
order n. Suppose F is an algebraic closure of F and E € Intg, (F /F). Suppose
Autp(E) = (00) and f7° : A(E) — M, is given in (34.12). Then f°° is an injective
group homomorphism and A(E) is cyclic.

Proof. By Lemma 34.2.5 and (34.12), f° is a group homomorphism. Suppose
foo(@ = 1,a = a(F*"), a = o™ for some o € E*. Then f7°(a) = #
Therefore og(«r) = «, which implies that o € Fix({op)). As E/F is Galois and
Autp(E) = (00), by Theorem 24.2.2 we have I' = Fix((0y)). Hence o € F', which
implies thata = a™ € F*". Thus@ = a(F*") = 1. We conclude that ker f7° = {1},
and so f7° is injective. Therefore A(FE) can be embedded into the cyclic group M,,.
As all the subgroups of a cyclic subgroup is cyclic, we deduce that A(E) is cyclic. This

completes the proof. O
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35.1 Kummer theory: the cyclic case

The main goal of this section is to prove Theorem 34.2.3. In Section 34.3, we have
proved that

A : Cyc(F*/F*") = Intg, (F/F), A({a(F*"))):= F[{/a),

and
EX" N FX
Fx"
are well-defined. Next we want to prove that A o A = id, which is equivalent to

A :Intg, (F /F) — Cyc(F*/F*"), A(E):=

F["axnﬂFX

o = (a(F*™)). (35.1)

As ({/a)™ € F*™, a(F*") is in the left hand side of (35.1). Hence

F[/a]*" N FX

e D (a(F*™)). (35.2)

Suppose b := b(F*") € A(F[/a]). We want to show that b is in (a(F*")). By
definition of A(F[{/a]), there is 8 € F[{/a]* such that B (F*™) = b(F*"). Hence
by Lemma 36.2.2, F[3] = F[{/b]. Then F[¥/b] € Int(F[{/a]/F). Notice that by
Lemma 34.3.1, F[V/b], F[{/a] € Intz, (F /F) and

fr i Autp(F[V]) — M, and fz: Autp(F[{/a]) — M, (35.3)

are injective group homomorphisms. On the there hand, by the fundamental theorem of
Galois theory, if o generates Autp (F|[{/a)), then o] F| /5 generates Aut r(F[/D]).
Hence

Im f; = <fB(JO|F[(L/B])> and  Im fz = (fz(00)), (35.4)

and by (35.3), | Im f5| = [(00|p[ /5| divides |Im fz| = [(00)|. As Im f; and Im f7
are subgroups of the cyclic group M, and the order of Im f; divides the order of Im fz,

225
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we conclude that Im f; C Im f5, which together with (35.4) implies that

ool gy ) = faloo)' (35.5)

for some non-negative integer i. By (35.5), we obtain that ”0(,\%5) = (”0(,,\%5)) )

Yo\ _ ; Vb i v i
Hence 00< %) = Van which means that va © Fix({0¢)). As F[{/a]/F is a

Galois,
Fix(Autp(F[{/a]) = Fix((o0)) = F.

Altogether, we conclude that Ub=c {/&i for some ¢ € F'*. Therefore
b=bF*")=a'(F*") € (a(F*")). (35.6)

By (35.6) and (35.2), we obtain that A o A = id.

Since A o A = id, A and A induce a bijection between the domain of A and the
image of A. Hence to show A and A are inverse of each other it is enough to show that
A is surjective.

For every E € Intg, (F /F), by Theorem 31.3.1, E = F[{/a] for some a € F,
which means £ = A({a(F*"))). Therefore A is surjective, and so A o0 A = id.

Next we want to show that Autp(E) ~ A(E) for every E € Inty, (F/F).
Suppose Autr(E) = (0¢) and A(E) = (ao(F*™)). Then by Lemma 34.3.1 and
Lemma 34.3.3,

fa, t Autp(F[/ag]) = M, and f°:A(E) - M, (35.7)
injective group homomorphisms, where @y := ag(F*"). Therefore

A(E) =(§7°(@0)) = (f(00,)) and
Autp(E) ~{fa,(00)) = (£(00,0)). (35.8)

By (35.8), we conclude that A(E) ~ Autp(F). Finally, we have
Autp(F[{/a])

which completes the proof of Theorem 34.2.3.

A(F[{/a)) = Ao A({a(F*™))) = (a(F*")),

12

35.2 Dual of abelian groups

Our next goal is to prove the abelian case of Kummer theory. To prove this result, we
need to study dual of finite abelian groups and show further properties of the Kummer
pairing. In this section, we introduce the dual of a finite abelian group, and prove some
of its basic properties. It is worth pointing out that some of these properties can be
proved using classification of finite abelian groups in a more straightforward fashion.
Here, however, we present an approach that avoids using the classification of finite
abelian groups.
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Definition 35.2.1. Suppose A is a finite abelian group. We let
A :=Hom(A4, S")

where S* := {z € C | |z| = 1}, and we call A the dual of A. Elements x of A are
called characters of A.

The dual A of a finite abelian group A is a group itself under the pointwise multi-
plication.

Lemma 35.2.2. Suppose A is a finite abelian group, and A is the dual of A. For

o~

X1,X2 € Aand a € A, we let (x1 - x2)(a) := x1(a)x2(a). Then (4, ") is an abelian
group.

Proof. First we show that x1 - x2 is in A. For a1, as € A, we have that

(x1 - x2)(a1a2) =x1(a1a2)x2(araz2)
=x1(a1)x1(az2)x2(a1)x2(az)
=(x1(a1)xz2(a1))(x1(az2)x2(az2))
=(x1 - x2)(a1)(x1 - x2)(az).

This means that x; - x2 € A. Notice that for every xi, X2 € Aanda € A, we have

(x1 - x2)(a) = xa(a)xa(a) = x2(a)x1(a) = (x2 - x1)(a),

which means x1 - x2 = x2 - X1-

Let 1 4 be the trivial group homomorphism 1 4(a) = 1 for every a € A. Then
(1a-x)(a)=T14a(a)x(a) = x(a)foreverya € Aand x € A. Hence 14 - x =  for
every x € A. As (//1\, -) is abelian, we conclude that 1 4 is the neutral element of A,

Forevery y € A, let y ' : A — 51, (x"1)(a) := x(a)~. Then it is easy
to see that y ! A
XThx=xoxT

is a group homomorphism, and so x~! € A. We also notice that
! = 1 4. This completes the proof. O

By classification of finite abelian groups, we know that every such group is a direct
product of finitely many circle groups. Using this result, we can show that A ~ A
for every finite abelian group A. In this section, without using the classification of
finite abelian groups, we prove a slightly weaker result. The following lemma plays
an important role in the study of dual of abelian groups. It roughly says that A has
enough elements to separate elements of A: one can distinguish points of A using the
test functions from A.

Lemma 35.2.3. Suppose A is a finite abelian group. Then, for every a € A\ {1},
there is x € A such that x(a) # 1.

Proof. Suppose o(a) = d. Let {4 € S* be an element of order d (say (g := e*). As
(a) and ((4) are cyclic groups of order d, X : (a) — S*,X(a’) := (!, for every integer
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i is an injective group homomorphism (and Im ) is the cyclic group ((4)). We will
show that y has an extension y € A; in particular, x(a) = X(a) = (4 # 1. Let

S:={(H,x) |H<AacHxeHx|a =X}

Notice that ({(a),Xx) € %, and so ¥ is non-empty. Let’s also point out that ¥ is a finite
set. This is the case because for every y € A and o’ € A,

x(@) 4 = x(a14) = x(1) =1,

and so x(a’) has at most | A|-many possibilities for every a’ € A. Our goal is to show
that there is (A4, x) in X; this means we are looking for a largest possible element
of in 2. To make sense of this, we introduce the following partial order on . For
(Hi,x1), (H2,x2) € 3, we say (Hy,x1) < (Hz,x2) if Hi < Hy and x2|n,. Itis
easy to see that X is a poset with respect to <. As X is a non-empty finite set, it has a
maximal element. Suppose (H, x) is a maximal element of . We can finish the proof
by showing that H = A.

Suppose to the contrary that there is ¢’ € A\ H. We want to extend y to an

element x’ € (H,a') where (H, a') is the group generated by a and H. Notice that if
we manage to extend x to a character of (H, a'}, this would contradict the maximality
of (H,x) in X.

To extend  to a character of (H, a’), we start by describing elements of (H, a’).
Since A is abelian, every subgroup is normal. So we can consider the quotient group
A/H. As H is in the kernel of the quotient map py : A — A/H, we have that

pr((H,d")) = (pu(a’)) = ('H) = {a"H [i=0,1,....d =1}  (359)

where d is the order of ' H in A/H. Because cosets of H in (H,a') is a partition
of (H,a'), we conclude that every element of (H, a’) can be written as a’*h for some
integer ¢ in [0,d — 1] and h € H.

Next we notice that to find an extension x’ of x in (ﬂ), we only need to find
a suitable choice for x'(a’). Since py(a’)? = py(1), @’ = hg for some hy € H.
Therefore for every possible extension x’ of x, we have

X' (@) = x'(a") = X/ (ho) = x(ho). (35.10)

Hence x/(a’) should be a zero of 2% — x(hg). Since hy is of finite order, y(ho) is a
root of unity and so all the zeros of x¢ — x(hg) are also roots of unity; in particular
they are in S'. Suppose ¢ # 1 is a zero of 2% — x(hg), and let

X'(a'h) := ¢*x(h)

for every integer ¢ and h € H. We want to show that X’ is a well-defined extension of
X.

Suppose a’"*h; = a'*2hy for some integers i1,i5 and hy, hy € H. We have to
show that " x(h1) = (2 (hy). Because ' hy = a2 hy, we have a’1 ~2 = hyh '
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Therefore pr (') =" = py (1) as hohy' € H. This implies that the order of pgr(a’)
divides i; — 72, and so “—*2 is an integer. Hence

i]—ig

hohi' = a2 = (@) T = hy T (35.11)

By (35.11), we conclude that

i1—ig ig—ig

X(hahi ') = x(hy T ) = x(ho) T~ = (¢) T =T,

Hence (%' x(h1) = ¢*2x(hz), which implies that X’ is well-defined.
Next we check that x’ is a group homomorphism. Suppose g, ¢’ € (a, H). Then
g = a'h and ¢’ = a® K’ for some integers 4,4’ and h, h’ € H. Therefore

ip—ig
d

X' (99") = X' ((a’h)(a” 1)) = X/ (@™ hI) = ¢ x(hh/), (35.12)
and
X (9)X (') = X (@)X (@’ h') = (C'x (W) (¢ x(I')) = ¢H x(h)x(h'). (35.13)

By (35.12) and (35.13), we conclude that x’ is a group homomorphism. Clearly x’(h) =
x(h) for every h € H and x'(a) = ¢ # 1. Altogether, we have ((a, H), x) € %,
(H,x) < ({a, H),x'), and H # (a, H). This is a contradiction as (H, x) is a maximal
element of >.. This completes the proof. O
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36.1 Dual of abelian groups

Lemma 35.2.3 shows us that /Alllas plenty of elements to separate points of A. The
next lemma says that the order of A cannot be more than the order of A.

Lemma 36.1.1. Suppose A is a finite abelian group and A is its dual. Then |j| < |A|.

Proof. We proceed by strong induction on |A|. Since A is a finite group, it has a
maximal subgroup M. As A is abelian, every subgroup is normal and we can consider
the quotient group A/M. Because of the bijection between subgroups of A/M and
subgroups of A that contain M as a subgroup (see Proposition 30.1.2)and maximality
of M, we deduce that A/M does not have a non-trivial proper subgroup. Hence
A/M is a cyclic group of prime order (see Lemma 30.1.3); say |A/M| = p. Suppose
A/M = (aM) and aP = b; then b € M. Every x € A is uniquely determined by x|/
and y(a). Notice that x| € M. Suppose x|M =% € M:; then

x(a)? = x(a”) = x(b) = x(b).

Hence x(a) is a zero of 2P — X(b). This means for a given %, x(a) has at most p
possibilities. Altogether we conclude that

A=1=>( X >

xeA  xeM (isazeroof o —X(b) xe A, x| =X, x(a)=¢
S X )=Xe-nm
xeM (isazeroof zP—X(b) xeM

<p|M| = |A],

where the last inequality holds because of the strong induction hypothesis. This com-
pletes the proof. [

Now we are ready to prove our main result on dual of abelian groups.

231
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Theorem 36.1.2. Suppose A is a finite abelian group and Ais its dual. Then |A\ | = |4]
and
is an isomorphism.

Recall that A consists of functions on A, and ¢ (a) can be viewed as an evaluation
at a map.

Proof. First we start by showing that ¢ is a well-defined function. For every a € A, let
¢, : A — S be the evaluation at a map; that means

We claim that £, is a group homomorphism and so it belongs to the dual of A. For
every x1, x2 € A, we have

Ca(x1 - x2) = (x1 - x2)(a) = x1(a)xa(a) = La(Xx1)la(X2),

and so £, € A. Next we show that a +— £, is a group homomorphism from A to A. For
every aj,as € Aand x € A, we have

lara; (X) = X(a1a2) = x(a1)x(a2) = Lo, (X)las () = (Lay * Lay)(X),
and s0 £g, 4, = Lo, + Lo, for every aq, as € A. This implies that
(A=A l(a) =1L,

is a group homomorphism. At this step, we show that / is injective. To show this, it is
necessary and sufficient that £(a) # 1 3 if a # 1. For a # 1, by Lemma 35.2.3, there

is x € A such that x(a) # 1. Hence £,(x) # 1, which means (¢(a))(x) # 1. Thus
{(a) # 1 3, which implies that £ is injective. In particular, we have

Al < |A. (36.1)
On the other hand, by Lemma 36.1.1, we have
4] < |A] < |Al. (36.2)
By (36.1) and (36.2), we conclude that
Al =|4] = |A]. (36.3)

As(: A — Ais an injective group homomorphism and |A| = | 4|, we deduce that ¢ is
an isomorphism. This completes the proof. O
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We finish our discussion of dual of abelian groups by looking at the characters of
an abelian group of exponent n.

Suppose A is a finite abelian group whose exponent divides n; that means o™ = 1
for every a € A. Then for every x € A and a € A, we have

and so x(a) = e*%" for some integer k. This means A is the same as Hom(A, (C,,))

where ¢, := ei* . Therefore, if F is a field which contains an element ¢ of order n,
then for every abelian group A of exponent n the dual A of A can be identified with
Hom(A, M,,) where M,, := (().

Let’s also observe that if A is a finite abelian group whose exponent divides n, then
the exponent of A is also a divisor of n. This holds because

(X")(a) = x(a)" = x(a") = x(1) =1

for every a € A.

36.2 Statement of finite abelian case of Kummer theory

In this section, we state the finite abelian case of Kummer theory and prove that the
involved functions are well-defined. In this section F is a field and F is an algebraic
closure of F. Let Intay, ,(F /F) be the set of all E € Int(F /F) such that E/F is a
finite Galois extension and Aut (E) is an abelian group of exponent n, and

Subg(F*/F*") ;= {A < F*/F*" | Ajis finite}.

Theorem 36.2.1 (Kummer theory: abelian case). Suppose F is a field of characteristic
zero which contains an element of order n. Suppose ¥ is an algebraic closure of F'. Let

Az Subp(F*/F*") = Intap o (F /F), A(A) := F[3/a; | a;(F*") € A
where y/a; € F is a zero of x™ — a;, and
A :Intay, ,(F /F) — Subg(F*/F*"), A(E) == (E*" N F*)/F*".

Then A and A are inverse of each other. Moreover for every E € Int,y, »(F /F),

—

Autp(E) ~ A(E).

o —

In the proof, we give a concrete isomorphism between Autp(E) and A(E). We
start by showing that A and A are well-defined.

Lemma 36.2.2. In the above setting, A is well-defined.

Proof. To show A is well-defined, we have to show why F|[{/a; | a;(F*") € Al is in
Int,y . (F /F), why it does not depend on the choice of coset representatives a;’s and
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Suppose A := {a1(F*"),...,am(F*")} and /a; € Fisazero of 2™ —a;. Then
g(z) =TT~ (™ — a;) can be written as

m n—1
g(x) = H H(ﬂc — I /ay).
i=1 j=0

Hence F[¢7 t/a; | 1 <i < m,0 < j < n]isa splitting field of g over F'. Notice that

Pl yai | 1<i <m,0<j <n] = Fl/ar,..., ¢/an]

as ¢ € F. Hence F[3/a1, ..., {/an,)/F is a finite normal extension. Since char(F') =
0, every algebraic extension of F is separable. Hence F'[{/ay,. .., {/a.,]/F is a finite
Galois extension. Let E := F[{/a, ..., {/an) and @; := a;(F*"). By the Kummer
pairing and (34.11),

fZ : AutF(E) - Mn X X Mm fZ(U) = (fﬁ1 (U)v RN fﬁm (U))

is a group homomorphism.
Claim. f5 is injective.

Proof of Claim. Suppose fx(c) = (1,...,1). Then, for every ¢, fz,(¢) = 1, which
means o({/a;) = {/a;. Since E = F[{/a1,..., {/am), we conclude that o = id.
The claim follows. O

By the above Claim, we deduce that Aut(E) can be embedded in M, X - - - X M,
and so Auty(F) is an abelian group of exponent n.
Finally, let’s assume that a;(F'*") = a/,(F*") for every i. We have to show that

Fl3/ai,..., Yam) = F[}/d;,..., V/al).

Since a;(F*") = a,(F*"), a} = a;d} for some d; € F*. Hence {/a] and {/a;d;
are zeros of " — aj. As ( € F, we obtain that {/a} = ¢; {/a; for some ¢; € F*.
Hence

F[{/d |1<i<m]=Fle/a; |1 <i<m]=F[/a; | 1<i<m)].
This completes the proof. O
Lemma 36.2.3. In the above setting A is well-defined.
Proof. We need to show that A(F) is a finite group. Suppose
Auwtp(E) :={o1,...,0k}.
By the Kummer pairing and (34.12),
FELAE) = My x % My, f2(@) = (f7 @), .., /7 (@)).

Claim. fF is injective.
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Proof of Claim. Suppose fF(a) = (1,...,1) where @ = a(F*") and a = o™ for
some o € E*. Then, for every i, f7i(a) = 1, which implies that % = 1. Therefore
ais in Fix(Autp(F)). Since E/F is a finite Galois extension, Fix(Autp(E)) = F.
Hence a € F. Therefore @ = (a")(F*") = F*" =1 ¢ F*/F*". This completes
the proof of injectivity of f¥. O

By the above Claim, A(F) can be embedded into M,, X --- x M,, and so it is
finite. This completes the proof. O

36.3 Kummer pairing is a perfect pairing

We have proved that A and A given in Theorem 36.2.1 are well-defined (see
Lemma 36.2.2 and Lemma 36.2.3). The main step to show A and A are inverse
is the following proposition.

Proposition 36.3.1. Suppose E € Intyy, ,,(F /F) and let f be the Kummer pairing
given in (34.5). Then f is a perfect pairing; that means

T AE) = Aute(B),  (f(@)(0) = falo) = f(o,a)
is an isomorphism.

—

Proof. We start by noticing that by (34.11), fz € Autp(E). Forevery ay,a; € A(E),

which means ]?(6162) = f(ﬁl) . f(Eg). Hence f is a group homomorphism.

Next, we show that fis injective. Suppose f(a) = 1. Thenforevery o € Autp(E),
(f(a))(a) = 1, which means f(o,a@) = 1. Notice that f(c,a) = @ where a € E*
is a zero of 2™ — a. Hence o(a) = « for every 0 € Autp(E). Therefore o €
Fix(Autr(E)), which implies that o« € F as E/F is a finite Galois extension. Thus
@ = o™ (F*"™) = 1. This implies that F is injective.

Finally we want to show that fis surjective. Suppose x € Am) This means
X : Autp(E) — M, is a group homomorphism. Let N := ker x. Then by the
fundamental theorem of Galois theory, K := Fix(N) € Int(E/F), K/F is a Galois
extension, N = Aut g (F), and

AutF(E)

Autp(K) ~ At (B)

(36.4)

As Autg (F) = ker , by the first isomorphism theorem for groups and (36.4) we have

Autp(K) ~Imyx < M,. (36.5)
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By (36.5), K € Intz, (F /F). Hence by the surjectivity of A from the cyclic case of
Kummer theory (see Theorem 34.2.3), we have that K = F| {/b]] for some Vb € E
andb € F. Letb := b(F*") € A(E). Then for every ¢ € Autr(F), we have

(f(8))(0) = f(0.b) = (0] va))- (36.6)
By (36.6), we conclude that Im f(B) = Im f, and so it is a cyclic subgroup of M,,.
Moreover, by Lemma 34.3.1 and (36.5), we have

~—

[T f(b)| = [Im f5| = [ Autp(F[VD])] = | Autp(K)| = [Tmx]. (36.7)
As Im J?(E) and Im x are subgroups of the cyclic group M,, and they have the same
order, we conclude that

o~ —

Im f(b) = Im x. (36.8)

Since Autr(K) is cyclic and the restriction map from Autp(E) to Autp(K) is sur-
jective, there is 09 € Autp(E) such that Autp(K) is generated by o¢|x. Hence

Imf(g) =Im f; = <UO({;\£E) >

We also notice that if 0| = o’|, then (67! 0o 0 € Autg(E). Because ker y =
Aut g (F), we conclude that x(o) = x(o’). Hence

(36.9)

Im x = (x(00)). (36.10)

By (36.8), (36.9), and (36.10), we conclude that

UO(%))i 36.11)

x(00) = ( b

~

for some integer ¢ such that ged(é, m) = 1, where m := | Im f(b)|. Hence by (36.11),
we obtain that

x(00) = fz (o0lKk)- (36.12)

For every o € Autp(FE), o|lx = ag| x for some integer j. Therefore o = O’éT for
some 7 € Autk (F). Notice that ker y = Autg (FE), and so

X(0) =x(o}7) = x(00)’
=f5 (o0l ) = fz (oh] k)
~fz (1) = () (0):

This means f(y) = X. Therefore fis surjective. This completes the proof that the
Kummer pairing f is a perfect pairing. O
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36.4 Perfect pairings

The main goal of this section is to prove the following property of perfect pairings.
We formulate this result only for the Kummer pairing.

Proposition 36.4.1. In the setting of Theorem 36.2.1, let A := Autp(FE) and B :=
A(E). Let f : A x B — S* be the Kummer pairing given in (34.5). Let

f:A—= B, (f(a)(®) = f(a,b).
Then fis an isomorphism.

Proof. Notice that by (34.12), f(a) € B. Forevery ay,a; € Aand b € B, we have

(f(a1az))(b) =f(araz,b) = f(a1,b)f(az,b)

and so f(ajas) = f(a1) - f(as). This means that f : A — B is a group homomor-
phism.
Next we show that f is injective. Suppose to the contrary that there is @ # 1 such

that f(a) = 1. Then for every b € B, we have

fla;b) = 1. (36.13)
Since a # 1, by Lemma 35.2.3, there is xo € /T such that

Xo(a) # 1. (36.14)

Since by Proposition 36.3.1 ]? . B — Ais surjective, there is by € B such that

~

f(bo) = x0- Hence

~

xo(a) = (f(bo))(a) = f(a,bo)- (36.15)

By (36.13), (36.14), and (36.15), we get a contradiction. This shows that fis injective.
Since f : B — A is an isomorphism,

|B| = |A|. (36.16)

By Theorem 36.1.2, we have that
|A|=|A| and |B|=|B|. (36.17)
By (36.16) and (36.17), we deduce that |A| = |B|. As f : A — B is injective and

|A|l = |§ |, we conclude that f is a bijection, and so it is an isomorphism. This completes
the proof. O
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36.5 Proof of Kummer theory: abelian case

In this section, we finish the proof of Theorem 36.2.1. We start by proving that
AoA =id. Suppose A(E) = {a1(F*"),...,am(F*")}. We have to show that E =
F[y/at, ..., {/am). Since a;(F*") € A(E), there is o; € E such that a;(F*") =
a(F*™). Hence a; = al'c? for some ¢; € F'*. Therefore /a; = (¢?c;)a; for some
integer j. Because ¢/ € F, we conclude that Y/a; € E. Therefore

F[/az,. .., Yam) C E. (36.18)

Suppose ¢ € Autp( yar,..., van) (E)- Then o(3/a;) = {/a; for every i. This implies
that f(o,a;) = 1 where @; := a;(F*"). This means f(c') = 1. By Proposition 36.4.1,
£ is an isomorphism, and so o = id. Hence Autp|yar,..., ya,) (E) = {id}. Therefore
by the fundamental theorem of Galois theory, we have E = F[{/a1, ..., {/an,). This
shows that A o A = id.

Next we show that A o A = id. Suppose

A= {a (F*"), .. am(F*")} < F*JF*"

o E:=AA) = F[t/a1,..., ¥/an)-
We have to show that A(F) = A.

For every i, {/a;" € EX"NF*, andso A C A(E).

Suppose to the contrary that A C A(FE). Then by Theorem 36.1.2, (X(TE\)) # 1.
So there is a non-trivial group homomorphism %, : # — St Let

Xo : A(E) = S, xo(z) := X(zA).

Then A C ker xo. Since by Proposition 36.4.1 f: Autp(E) — A/(E\) is an isomor-
phism, there is 0g € Autp(E) such that f(og) = xo. Therefore, for every @ € A(E),
we have

f(o0,a) = (f(00))(@) = xo(@). (36.19)
By (36.19) and A C ker g, we conclude that f(og,a;) = 1. This means
ool /A7) = Y
foreveryi. As E = F[{/ai, ..., {/an)and oo( 3/a;) = {/a;, we deduce that o = id.

Hence xo = f(00) = f(id) = 1, which is a contradiction. This completes the proof.



Chapter 37

Lecture 13

The common theme of studying zeros of polynomials has been our main source of
motivation for introducing and understanding various parts of algebra. So far we have
been mainly studying zeros of single variable polynomials. Next we want to move to a
multivarible polynomials. Clearly the easiest case would be equations of degree one,
also know as linear equations:

a;rr  + air2 + -+ AT, =b
(37.1)

aAm1%1 + Gm2T2 + 0+ Appn = bm

We have seen this type of equations in linear algebra, at least when a;;’s and b;’s are
complex numbers. In linear algebra, we use vector spaces and linear transformations
to systematically study linear equations, and our main algorithmic source for solving a
system of equations as in (37.1) is the Gauss-Jordan elimination process. Considering
the elimination process only uses +, —, -, and /, it is not surprising that the same process
works for a system of linear equations over an arbitrary field. This method, however,
does not necessarily work for an arbitrary (unital commutative) ring. For instance,
consider the easiest case, where we have only one variable and one equation, over an
arbitrary unital commutative ring A. This means we want to solve the equation ax = b
for some a,b € A. We know that this equation has a solution if and only if b is in the
ideal generated by a. If A is not an integral domain, then this equation might have more
than one solution. So it is only natural to expect that the structure of ideals of A and
other ring theoretic properties of A play a vital role in solving (37.1).

37.1 Module theory: basic examples

In this section, we introduce R-modules where R is a unital commutative ring.
Modules are natural extensions of vector spaces from fields to rings.

Definition 37.1.1. Suppose R is a unital commutative ring and M is an abelian group.
We say M is an R-module if there is a scalar multiplication 7 x M — M, (r,m) — r-m
with the following properties:

239



240 CHAPTER 37. LECTURE 13

1. 1-m = mforeverym € M,
2. 11 (rg-m) = (r1r2) - mforeveryri,ro € Rand m € M,

3. (ri4+re)-m=ri-m+re-m,andr-(my+mg) =r-mq+r-msforevery
r,r1,r0 € Rand my,mo,m € M.

Here is a list of important examples of modules.

1. (Vector spaces) If F'is a field, then V' is an F-module exactly when V' is an
F'-vector space.

2. (Free modules) Suppose R is a unital commutative ring. Then R" := Rx---xX R
is an R-module with respect to the following scalar multiplication:

e (ryy e ry) = (rry, o, TTy)
for every r,7r1,...,7, € R.

3. (Direct product) Suppose My, ..., M, are R-modules. Then
[ M=y M,
i=1

is an R-module with respect to the following scalar multiplication:

oMy, .o, mp) = (r-my,...,r-mpy).

4. (Ideals) Suppose R is a unital commutative ring and [ is a subgroup of (R, +).
Then I is an R-module with respect the ring multiplication of R as its scalar
multiplication if and only if I is an ideal of R.

5. (Ring extensions) Suppose R’ is a unital commutative ring and R is a subring
of R’ such that 1z = 1x. Then R’ is an R-module with respect to the scalar
multiplication given by the ring multiplication of R'.

6. (Abelian groups) Suppose (A, +) is an abelian group. Then A is a Z-module
with respect to the following scalar multiplication:

a+---+a if n > 0,
—_———
n times
n-a:=<(—a)+--+(—a) ifn<0,

—mn times

0 if n = 0.
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37.2 The first isomorphism theorem

As always, when we define a new object, we have to define its substructures and
homomorphisms.

Definition 37.2.1. Suppose M is an R-module. We say N C M is a submodule of M
if N is a subgroup of (M, +) and it is closed under scalar multiplication (this means
thatr -n € N foreveryr € Randn € N).

Notice that if NV is a submodule of an R-module M, then N is an R-module with
respect to the restriction of operations of M to V.

Definition 37.2.2. Suppose M and M’ are R-modules. Then f : M — M’ is called
an R-module homomorphism if

f(mi+mz) = f(m1) + f(m2) and  f(r-m)=r-f(m)
for everyr € R and m,my, mg € M.

Lemma 37.2.3. Suppose f : M — M’ is an R-module homomorphism. Then Im f is
submodule of M and ker [ is a submodule of M.

Proof. From group theory, we know that Im f and ker f are subgroups of M and M’,
respectively. So it is sufficient to show that Im f and ker f are closed under scalar
multiplication.

Suppose y € Im f. Then y = f(m) for some m € M. Hence for every r € R, we
have

r-y=r-f(m)=f(r-m)€lmf.

This shows that Im f is closed under scalar multiplication.

Next suppose m € ker f. Then f(m) = 0. We have to show that r - m € ker f.
This means we need to prove f(r-m) = 0. As f is a module homomorphism, we have
to show r - f(m) = 0. Because f(m) = 0, we obtain the desired result by showing
that - 0 = 0 for every r € R. Notice that

r-0=7r-(0+0)=r-0+r-0,
and so 7 - 0 = 0. This completes the proof. O

Similar to groups, rings, and vector spaces, we want to prove the first isomorphism
theorem for modules. So we need to define quotient of modules.

Proposition 37.2.4. Suppose M is an R-submodule and N C M is a submodule.
Then

RxM/N — M/N, r-(m+N):=r-m+N

is a well-defined and abelian group M /N with respect to this scalar multiplication
is an R-module. Moreover py : M — M/N,py(m) := m + N is an R-module
homomorphism, py is surjective, and ker py =.
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Proof. We start by showing that 7 - (m + N) :=r - m + N is well-defined. Suppose
mi; + N = mgo + N. Then m; — mo € N, and so for every r € R, we have
r-(my —mg) € N as N is a submodule. This implies that

(r-mq) + (r-(—mg)) € N. (37.2)
Notice that
r-(—me)+r-ma=1-((—m2)+me)=7-0=0,
which implies that - (—ms2) = —r - ma. Therefore by (37.2), we obtain that
r-my—1-mg € N.

Hence r - m1 + N = r - mgo + N. This shows that - is well-defined.

Since all the operations in M /N are defined in terms of coset representatives
and operations of M, one can easily check that these operations satisfy properties of
modules. Here we just check one of the distribution properties.

For my,me € M and r € R, we have

- ((m1+N)+ (mz+ N)) =r- ((m1+mz) + N)
=(r-(m1+mg)) + N
=(r-mi+7r-mo)+ N
=(r-mi+N)+(r-mg+N)
=r-(mp+ N)+r-(ma2+ N).
From group theory , we know that pyy : M — M/N is a surjective group homomor-

phism and ker p)y = N. Soitis enough to argue why p preserves scalar multiplication.
For every r € R and m € M, we have

py(r-m)=r-m+N=r-(m+N)=r-py(m),
which implies that py is an R-module homomorphism. This completes the proof. [
Now we are ready to prove the first isomorphism theorem for modules.

Theorem 37.2.5 (The first isomorphism theorem for modules). Suppose f : M — M’
is an R-module homomorphism. Then

f:M—=TImf, f(m):=f(m)+kerf
is an R-module isomorphism.

Proof. From group theory, we know £ is a group isomorphism. So it is enough to show
that f preserves scalar multiplication. For every » € R and m € M, we have

flr-(m+ker f)) =f(r-m+ker f)
—f(r-m) = - f(m)
=r- f(m + ker f).

This completes the proof. O
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37.3 Noetherian modules

Let’s recall that if a vector space V over a field F' is a span of finitely many vectors,
then it is isomorphic to F'™ for some integer n and every subspace of V' is also finitely
generated. In this section, we want to understand to what extent we can generalize these
properties to modules. We start by defining finitely generated modules and proving that
summation and intersection of two submodules is a submodule.

Lemma 37.3.1. Suppose M is an R-module, N1, No C M are submodules, and
mi,...,mMy € M. Then

1. N1 N Ny is a submodule.
2. N1+ Ny :={n1 +ng | n1 € Ni,n2 € Na} is a submodule.

3 A{ri-mi+---+ry-my | r1,...,my € R} is the smallest submodule of M
which contains my, ..., m,. We denote this submodule by (mq,...,m,) or
Rmi+ - -4+ Rm,,.

Proof. From group theory, we know that Ny N Ny and N; + N, are subgroups of M.
So to show they are submodules of M, it is enough to argue why they are close under
scalar multiplication.

Suppose m € N1 N Ny. Let¢ = 1 or 2. Then m € N;. As N, is a submodule,
r-m € N, forevery r € R. Hence r - m € Ny N Ny. This implies that Ny N N is a
submodule of M.

Next we want to show that N1 + N5 is close under scalar multiplication. Suppose
m € N1+ Ns. Then m = n1 + ny for some n; € N7 and ny € N». Hence for every
r € R, we have

rem=r-(n+ng)=r-ny+r-na. (37.3)

Notice that r - n; € N; fort = 1,2 as N, is a submodule. Therefore by (37.3), we
conclude that - m € Ny + N,. This implies that N; 4+ N5 is a submodule.

Let N:={ri-my+---+7ry, -my|ry,...,r € R}. Next we show that N is a
submodule of M. To this end, we have to prove that N is close under taking difference
and scalar multiplication. Suppose z, ' € N. Then there are r;’s and 7}’s in R such
that

r=ri-mi+-+rympandz’ =71 omy 4o+l my,.

Hence
n n n n

r—a = (Zri-mi)—(Zﬂmi) = Z(ri-mi—rg-mi) = Z(ri—rg) -m; € N,
i=1 i=1 i=1 i=1

and

n

n n
r-x:r-Zrimi:Z%(ri-mi):Z(rri)-mi eEN
i=1 i=1

i=1
for every r € R. This shows that [V is a submodule. Next we show that m; € N for
every index ¢. To see this we notice that

m;=0-my+---+0-m_1+1-m;+0-mjyy1+---+0-m, €N.
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To finish the proof, we show that if K is a submodule of M which contains m;’s, then
N C K. Suppose K is a submodule of M and m; € K for every index 7. Since K is
close under scalar multiplication and m; € K, we obtain that r; - m; € K for every
r; € R. As K is close under addition and r; - m; € K for every index ¢, we deduce
that " , r; - m; € K. This implies that N is a subset of K, which completes the
proof. O

We say a module M is finitely generated if M = (my, ..., m,) for some m;’s in
M. We say M is a cyclic R-module if M = (m) for some m € M.

Lemma 37.3.2. An R-module M is cyclic if and only if M ~ R/I for some ideal I.

Proof. (=) Suppose M = (m). This means every element of M is of the form r - m
for some r € R. Hence the function f : R — M, f(r) := r - m is a surjective function.
Next we show that f is an R-module homomorphism. For r1, 7, € R, we have

fri+ry)=(r1+ra) -m=ri-m+ro-m=f(ry)+ f(rz)

and
ri- f(r2) =ri-(r2-m) = (rir2) -m = f(rira),
which implies that f is an R-module homomorphism. By the first isomorphism theorem

for modules, we obtain that
M ~ R/ ker f.

Notice that ker f is a submodule of R, and so ker f is an ideal of R. The claim follows.

(«<=) Suppose [ is an ideal of R. Then every element of R/I is of the form r + [ =
r - (14 I), which implies that R/ is generated by 1 + I as an R-module. This means
R/I is a cyclic R-module. This completes the proof. O

Next we show that a cyclic module is rarely a free module. This shows a contrast
with the vector space case.

Lemma 37.3.3. Suppose R is a ring and I is a proper non-trivial ideal of R. Then
R/I # R™ for every non-negative integer n.

Proof. Suppose to the contrary that there is an R-module isomorphism f : R/I — R".
Since I # R, R/I # 0. Hence n > 1. Suppose 19 € I \ {0}. Then for every r € R

TO'(T+I):TOT+I:0+I.

Therefore o - f(r+ 1) = f(ro- (r+ 1)) = f(0+ 1) = 0 for every r € R. Hence
ro - Im f = 0. As f is surjective, ro - (1,...,1) = (0,...,0), which implies that
ro = 0. This is a contradiction. O

Next we focus on finite generatedness of submodules of a finitely generated module.
We consider R as an R-module. We have already pointed out that / C R is a submodule
if and only if I is an ideal of R. Hence I is generated by z1, ..., z, as an ideal if and
only if it is generated by z;’s as an R-submodule. Hence all the submodules of R are
finitely generated exactly when every ideal of R is finitely generated. By Lemma 12.3.5,
all ideals of R are finitely generated precisely when R is Noetherian. This brings us to
two points:
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1. If R is not Noetherian, then R is a finitely generated R-module which has sub-
modules that are not finitely generated.

2. Finite generatedness of submodules can be related to an ascending chain condition
as it is the case for rings.

Definition 37.3.4. Suppose M is an R-module. We say M is Noetherian if it does not
have an infinite strictly ascending chain of submodules. This means if M1y C My C - - -
are submodules of M, then My, = My 4+1 = - - - for some integer ny.

Notice that because R-submodules of R are ideals of R, R is a Noetherian ring if and
only if R is a Noetherian R-module. Similar to rings, we have the following proposition.

Proposition 37.3.5. Suppose M is an R-module. Then M is Noetherian if and only if
every submodule of M is finitely generated.

Proof. (=) Suppose to the contrary that M has a submodule which is not finitely gener-
ated. Inductively we define a strictly ascending chain of finitely generated submodules
of M. Let Ny := {0}. Since N is not finitely generated, N # N,. Hence there is
my € N\ Np. Let Ny := (my). Since N is not finitely generated and N is finitely
generated, there is my € N \ Ny. Let Ny := (my,ms). We repeat this argument.
Suppose we have already found my, ..., my € N such that

NiC N2 G- C Ny

where N; := (mq,...,m;). Since N is not finitely generated, there is my+; € N\ Ny.
Let
Niy1:=(ma,...,Mpy1).

Then Ny € Niy1 € N. Hence by induction there is a strictly ascending chain
NoC N, C---

of submodules of N. This contradicts the hypothesis that A/ is Noetherian. O
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Lecture 14

In this section, we continue with the study of Noetherian modules.

38.1 Noetherian modules
We continue proof of Proposition 37.3.5.

Proof of Proposition 37.3.5. (<) Suppose all submodules of M are finitely generated.
Let My C M; C --- be an ascending chain of submodules of M. Let N := Ufio M;.
Claim. N is a submodule of M.

Proof of Claim. Suppose n,n’ € N. Then there are indexes ¢ and j such that n € M;
and n’ € M;. Without loss of generality we can and will assume that ¢ < j. Then
M; C M;, and so n,n’ € M;. Hence n — n’ € M; and rn € M; for every r € R.
Therefore n — n’,rn € N, which implies that N is a subgroup and closed under
multiplication. The claim follows. O

By hypothesis and the above claim, N = (ny,...,ng). Asn; € Nand N =
Uj=o Mj, there is an index r; such that n; € M,,. Let 7 := max{ri,...,7}. Then
M,, € M, for every i. Hence nq,...,n, € IN. Therefore

(n1,...,ng) C M,. (38.1)

By (38.1), we conclude that U;io M; C M,. Thus, for every i > r, we have both
M; C M, and M; C M,. Therefore

My =My =,

which completes the proof. O
The following proposition gives us a better understanding of Noetherian modules.

Proposition 38.1.1. Suppose A, B, C are submodules of M and B C A. Then

1. A'is Noetherian if and only if B and A/ B are Noetherian.

247
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2. If A and C are Noetherian, then A + C' is Noetherian.

Proof. 1. (=) If A is Noetherian, every submodule of A is finitely generated. Hence
every submodule of B is finitely generated as submodules of B are also submodules of
A. Therefore by Proposition 37.3.5, B is Noetherian. To show A/ B is Noetherian, we
start by proving a correspondence result for submodules of A/B.

Claim. The function f(A’) := A’/ B is a bijection between submodules of A which
contains B and submodules of A/B.

Proof of Claim. 1t s easy to see that f is well-defined. Because of the correspondence
theorem for groups (see Theorem 30.1.2), we obtain that f is injective. Finally we
argue why this function is surjective. Suppose A’ is a submodule of A /B; in particular,
Aisa subgroup of A/B. Hence by the correspondence theorem for group quotients,
A=A /B for some subgroup A’ of A which contains B. Next we show that A’ is
a submodule of A. As A’ is a subgroup, it is enough to show that A’ is closed under
scalar multiplication. Fora’ € A’,a’ + B € A'. Hence for every r € R, we have
r-(a'+B) € A'. This implies that ra’ + B € A’/B, and so ra’ € A’. Therefore A’
is a submodule. This completes proof of Claim. O

To show A/ B is Noetherian, by Proposition 37.3.5 it is enough to show that every
submodule A’ of A /B is finitely generated. By the above Claim, A=A /B for some
submodule A’ of A (which contains B as a submodule). Since A is Noetherian, A’ is
finitely generated. So A’ = {}_" | r; - a; | r; € R} for some a} € A’. Then

n

A =A/B={> ri (d;+B)|r € R} =(a)+B,....a, +B).

i=1

Hence A’ is finitely generated. This shows that A/B is Noetherian.

(<) To show A is Noetherian, it is enough to show every submodule N of A is
finitely generated (see Proposition 37.3.5). Considering our hypothesis is on B and
A/ B, we use the projection of N to A/B and its intersection with B. Notice that since
pp : A — A/B is a module homomorphism, the restriction pg|x of pg to N is also
a module homomorphism. Therefore pp(N) is a submodule of A/B. From group
theory, we know that pg(N) = (N + B)/B; here is how one can show this equality:

pp(N)={n+ B|Vn € B}
—{(n+b)+B|VneNVoe B} =(N+B)/B. (382

Hence (N + B)/B is a submodule of A/B and N N B is a submodule of B. Since A/B
and B are Noetherian modules, by Proposition 37.3.5 we conclude that (N + B)/B

and N N B are finitely generated modules. Hence there are nq,...,n; € N and
nf,...,n, € N such that
pe(N)=(n1+B,...,ng+B) and NNB={(n],...,ny). (38.3)
We want to show that IV is generated by n1,...,ng,nf,...,n). Let

N/ = <n17...,nk,n&7-"?nl/€>'
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Claim. N = N'.

Proof of Claim. Since n;’s and n}’s are elements of N, we have N’ C N. Next we
want to show that N is a subset of N’. Suppose n € N. We have to write n as an
R-linear combination of n;’s and n’;’s. First we do this for the projection pp(n) of n.
Since pp (V) is generated by n; + B’s, there are r;’s in R such that

k
n—i—Bzrl-(n1+B)+~--+rk-(nk—|—B):(Zri-ni)—i—B. (38.4)
i=1

By (38.4), we conclude that
k
n—> ri-n; €B. (38.5)
i=1

As n and n;’s are in N, we also have that n — Zle r; - n; € N. Therefore by (38.5),

we deduce that
k

n— r,-n; € NN B. (38.6)
i=1

Because N N B is generated by n}’s, (38.6) implies that there are r;-’s in R such that

k
n—Zri'nZ—:r'l'n/1+"~+r2~n2. (38.7)
i=1

By (38.7), we obtain that

k ¢
A ! !
n:Zri-ni—FZTj-njeN,
i=1 j=1

which completes proof of the claim. O

The above claim implies that every submodule of A is finitely generated, and so by
Proposition 37.3.5, A is Noetherian. This completes proof of the first part.

2. Let pc : M — M/C be the natural quotient map. Then by (38.2), we have
pc(A) = (A+ C)/C. Hence pcla : A — (A+ C)/C is a surjective module
homomorphism. Therefore by the first isomorphism theorem, we conclude

A A+cC
ker(pcla) —  C

Notice that ker(pc|a) = kerpe N A = C' N A. Hence by (38.8), we conclude (the
second isomorphism theorem for modules)

(38.8)

A A+C

~

ANnC C

, (38.9)
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As A is Noetherian, by the first part, A/A N C' is Noetherian. Hence by (38.9), we
conclude that (A + C)/C is Noetherian.

Since C' and (A 4 C)/C are Noetherian, by the first part, we deduce that A + C'is
Noetherian. This completes the proof. [

The following theorem is an important consequence of Proposition 38.1.1. Roughly
it says a ring can be its own worst enemy! More precisely, if R is a Noetherian R-module,
then every finitely generated R-module is Noetherian.

Theorem 38.1.2. Suppose R is Noetherian. Then every finitely generated R-module is
Noetherian.

We start by showing that every finitely generated R-module is a quotient of R™ for
some positive integer n. We will be using this result later as well.

Lemma 38.1.3. Suppose R is a unital commutative ring and M is an R-module. If
M = (my,...,my), then
f:R" =M, f(ri,...,rn) = Zri -my

is a surjective R-module homomorphism.

Proof. Since M is generated by m;’s, every element of M is an R-linear combination
of m;’s. Hence f is surjective. Next we show that f is an R-module homomorphism.
For every r;’s, ré’s, and r in R, we have

n
Z mz—l—Zr ml—ermi—FT;--mi)
i=1

flri,ooomn) + fry, ...,

ZH-H" =flri+7r,...;rn+7))

i—1
=f((ri,...,rn) + (r,...,70)),

<.

and
for-(ri,...,mn) =f(rr, ..., rry) = Z(rm) My
i=1
:Zr~(ri-mi) zr-Zri-mi
i=1 i=1
=r- f(ri,...,m)-
This completes the proof. O

Proof of Theorem 38.1.2. Suppose M = (mq,...,m,), and let

f:R"—= M, f(ri,...,mn) ::Zrzwmi.
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Then by Lemma 38.1.3 and the first isomorphism theorem, we obtain that
M ~ R"/Xker f. (38.10)

Hence by Proposition 38.1.1, to prove M is Noetherian, it is sufficient to show that R™
is Noetherian for every positive integer n.
For every integer in [1..n], let

N;:={0} x--- x {0} x R x {0} x --- x {0},

where the ¢-th term is R. Notice that N; ~ R as an R-module. Hence N;’s are
Noetherian R-modules. By applying the second part of Proposition 38.1.1 repeatedly
we conclude that Ny + - - - + N, is a Noetherian R-module. Since R = Ny +---+ N,
we obtain that R" is a Noetherian R-module. This completes the proof. O

Corollary 38.1.4. Suppose D is a PID. Then every finitely generated D-module is
Noetherian.

Proof. Notice that since every ideal of a PID is principal, all ideals of D are finitely
generated. Hence D is a Noetherian ring. Hence claim follows from Theorem 38.1.2.
O

38.2 Finitely generated modules and cokernel of matrices

In this section, we use Theorem 38.1.2 to give a concrete connection between
finitely generated modules of Noetherian rings and system of linear equations. To
formulate our next result, we start by defining image and cokernel of a rectangular
matrix A € M, ,,(R).

Definition 38.2.1. Suppose R is a ring and A € M,, ,, (R). Then the image of A is
ImA:={Ax|x€ R"} C R",
where we view R™ and R™ as the set of column vectors. The cokernel of A is

R'I’L
ImA°

Coker A :=

Notice that x — Ax is an R-module homomorphism from R™ to R", and so Im A
is a submodule of R™. Hence it makes sense to consider the quotient of R™ by Im A
and Coker A is an R-module.

Proposition 38.2.2. Suppose R is a Noetherian ring and M is a finitely generated
R-module. Then there is Ay € My, (R) such that M ~ Coker Apy.
Proof. Suppose M = (my, ..., my), and let

n

f:R"—= M, f(ri,...,mn) ::Zrzwmi.

i=1
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Then by Lemma 38.1.3, f is a surjective R-module homomorphism. Therefore by the
first isomorphism theorem, M ~ R™/ker f. Since R is Noetherian and R" is a finitely
generated R-module, by Theorem 38.1.2 R™ is a Noetherian R-module. Hence by
Proposition 37.3.5 all submodules of R™ are finitely generated. Thus ker f is a finitely
generated R-module. Suppose

ker f = Rvi +---+ Rvy, (38.11)
for some v;’s in R™. Then ker f is the image of
Ay = [v1--- V] € My, i (R).

Hence M ~ Coker A);, which completes the proof. O

38.3 Reduced row/column operations, Smith normal form.

Proposition 38.2.2 indicates the importance of understanding image of a matrix.
Notice that I is in the image of A if and only if Ax = [F has a solution. This takes us
back to solving system of linear equations. As we have mentioned at the beginning of
Chapter 37, solving linear equations over a ring R is closely related to structure of ideals
of R. From the point of view of structure of ideals, Euclidean domains are the easiest to
consider after fields. For the rest of this section we assume that R = D is a Euclidean
domain. In linear algebra, we have learned how to use the Gauss-Jordan elimination
process to solve system of linear equations with complex coefficients. In this section,
we recall the reduced row and column operations and see how much elimination can be
achieved over a Euclidean domain.

Let’s recall that there are two types of row reduction operations. For two distinct
integers ¢, j € [1..n],

aj .
Bij(r)
— | a; +ra;

an

This operator multiplies the j-th row by r and adds it to the ¢-th row; it only changes
the i-th row. The second type of operators, S;; simply swaps the i-th and the j-th rows

Similarly there are two types of column reduction operators. For two distinct
integers i,j € [L.m], £;(r) multiplies the j-th column by r and adds it to the i-th
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column; it only changes the i-th column, and Szfj swaps the ¢-th and the j-th columns.
Notice that

ap al 7 a_]
eii(r)| + | =laitra; |, and s 1| = o (38.12)
an a, 7l a;
where
) 1 r ) 0 1
ei(r) = : : and s =

Similarly we have

(af -+ a,)ej(r)= ( aj + ra) ) and (38.13)

(@) - al)s; = ( a, - a )

It is worth mentioning that s;;s;; = I and for every r,r’ € R and indexes 7 and j we
have
eij(r)ei;(r') = eij(r+1r');

in particular, e;;(r)e;;(—r) = I for every r € R. Hence s;; and e;;(r) are invertible
matrices; that means they are units in M,,(R). The group of units of M,, (R) is denoted
by GL, (R). The matrices e;;(r)’s are called elementary matrices, and the group
generated by e;;(r)’s is denoted by E,, (R). The group generated by e;;(r)’s and s;;’s
is denoted by Ef(R) By (38.12) and (38.13), we obtain the following result.

Lemma 38.3.1. Suppose R is a ring and A, A’ € M, ,,(R). We can go from Ato A’
by applying a series of row or column reduction operators if and only if A’ = UAV
for some U € EE(R) and V € EL(R).

This takes us to the defining the following relation between elements of M,, ,,, (R).
For A, A" € M, ,,(R), we say A ~ A’ if A’ = UAV for some U € EX(R) and
V € EX(R). By Lemma 38.3.1, we have that A ~ A’ exactly when one can go from
A to A’ by applying a series of row and columns reduction operators.
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Lemma 38.3.2. In the above setting, ~ is an equivalence relation.

Before we get to the proof, let’s point out that we can replace EX (R) and E (R)
with any other subgroups of GL,,(R) and GL,, (R), and still get an equivalence relation.
One way of proving this is by showing that (U, V') - A := UAV ~! is a group action of
EX(R) x EX(R) on M, ,,,(R) and observing that A ~ A’ precisely when A and A’
are in the same EZ (R) x EZ (R)-orbit. Here we present a direct argument.

Proof. (Reflexive) Since A = I, Al,,, A ~ A.
(Symmetric) Suppose A ~ A’. Then A’ = U AV, which implies that

A=U"tAVL (38.14)

As U € EX(R) and EX(R) is a group, we have that U~' € EX(R). Similarly
V! € EE(R). Therefore by (38.14), A ~ A'.

(Transitive) Suppose A; ~ Ay and A ~ As. Then there are U, U’ € EX(R) and
V,V' € EX(R) such that

A2 = UA1V and Ag, = U/AQVI. (3815)

Thus A3 = (U'U)A;(VV'). Since EX(R) and EE (R) are groups, UU’ € EX(R)
and VV' € EZ (R). Therefore Az ~ A;, which completes the proof. O

In the reduction process, we are looking for a simple form of A in the same equiva-
lence class with respect to ~ as A. Here by simple we mean as sparse as possible; that
means we are looking for a representative of the class of A with respect to ~ which has
the maximum possible zero entries.

Let’s recall the elimination process over the field of complex numbers. If A = 0,
we are done. If not, after swapping the needed rows and columns, we can and will
assume that a1 # 0. Then aq;’s and a;;1’s are multiples of a11, and so after multiplying
the first row by a suitable element (here it is f%) and adding it to the i-th row, we
get a matrix with zeros in its first column except at the (1, 1) position. Similarly after
multiplying the first column by a suitable element (here it is — Z—ﬁ) and adding it to the
j-th column, we get a matrix of the form

ag; 0 -+ 0
0

(38.16)
B

0
Now we can repeat this process for B. Notice that the row and the column operations

for B can be extended to operations for the entire matrix given in (38.16), and these
operations do not change the first row and the first column. At the end, we get a matrix of

the form (g 8) , where D = diag(dy, ..., d,), for some non-zero d;’s. In the above
process, we used the fact that in a field if a11 # 0, then a1z = a1; and a117 = an
have solutions. In a Euclidean domain, this is false in general, but we can still divide

a;1’s and aq;’s by a11, and replace them by a remainder of this division. Repeating
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this process, by the virtue of the Euclid algorithm, we can get to the greatest common
divisor of all the entries, and after swapping the needed rows and columns, we can
assume that a1 divides all the entries of A. Now we can continue as we did for fields.
Here is a precise statement and argument.

Proposition 38.3.3. Suppose D is a Euclidean domain and A € M, ,,(D)\ {0}. Then
there is A" € My, 1, (D) such that A" ~ A, and A’ = (C(l)l 2) and A" = d1 A" for
some di € D and A" € M,, ,, (D).

Proof. Let’s recall that since D is a Euclidean domain, it has a norm function N :
D — ZZ0 such that N(d) = 0 if and only if d = 0, and for every a,b € D \ {0} there
are ¢ and r in D such that a = bg + r and N(r) < N(b). The element g is called a
quotient of a divided by b and the element r is called a remainder of a divided by b
(see Section 7.4).

Let ng := min{N(a},) | [a};] ~ Aand a}; # 0}. This means 1 is the smallest
norm of all the non-zero entries of all the matrices that we can reach to starting from A
and using the row and the column reduction operations. Notice that by swapping the
i-the row with the first row and the j-th column with the first column, we can move the
(i, j)-entry to the (1,1) position. Hence

no := {N(a,,) | [a;;] ~ Aand a., # 0}.

We will not be using this equation in the proof, but it gives us a better understanding of
no.

Claim 1. Suppose A" ~ A, A" = [a;], and N(a'y) = no. Then a},|a}; and
ay|ay; for everyi € [1.n] and j € [1..m].

Proof of Claim 1. Since D is a Euclidean domain, there are ¢;,7; € D such that
ay; = ay1q; +rj and N(r;) < N(ajy). Then the (1, j)-entry of E};(—q;)(A) is
r;. After swapping the j-th column and the first column of this matrix, we end up
getting a matrix A” whose (1,1)-entry is r; and A” ~ A. Therefore either r; = 0 or
N(r;j) > ng. Since N(r;) < N(a’;) = no, we conclude that 7; = 0. This means that
ay|ay ;. By a similar argument, we can show that a/;[a;;, and the claim follows. [

Now that every entry in the first row and the first column is a multiple of a/, we
can change them to zero by applying suitable row and column reduction operations.

Claim 2. There is A” € M, (D) such that A” ~ A, A" = (%1 g) , and
N(dl) = ng.

Proof of Claim 2. By Claim 1, there is A" € M,, (D) such that A" ~ A, A" = [a] ],
and a’,|aj; and aj, |ay; for every i and j. Hence there are g;1’s and g1;’s in D such
that a;; = aj;¢i1 and aj; = ay;q1;. Hence after applying the row and the column
operations E}1 (—qi1;) and E;1(—g;1) one after another to A’, we end up with a matrix
/
A" € M,y (D) such that A” ~ A and A” = <“11

0 .
0 B) . Notice that

A" =E  (—qim) 0 0 By (—q12) © Eni(—gn1) 0 -+ - 0 Eg1(—qa1)(A4").
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Since the (1, 1) entry stays the same, we still have that the norm of the (1, 1) entry is
ng. This implies the claim. O

di 0

s 1 " __
Claim 3. Suppose A A AT = ( 0 B

all i and j, where B = [b;;].

), and N (dy) = no. Then dy|b; for

Proof of Claim 3. Suppose to the contrary that d; 1 b;; for some ¢ and j. Notice that
b;; is the (i + 1, j + 1)-entry of A”. Hence after adding the (i + 1)-th row of A" to its
first row, we get a matrix which has

(di b - biga—1))

as its first row. Since D is a Euclidean domain, there are ¢, » € D such thatb;; = dig+7
and N(r) < N(di) = no. Because d; { b;;, 7 # 0. Multiplying the first column
of this matrix by —¢ and adding it to the (j + 1)-th column, we end up getting r as
the (1,7 + 1)-entry of the new matrix. After swapping the first and the (j + 1)-th
columns, we obtain a matrix A" such that A"’ ~ A and its (1, 1)-entry is r. This is a
contradiction as r # 0 and N (r) < ng. O

Claim 3 completes the proof. O

By repeated application of Proposition 38.3.3 for submatrices of A, we obtain a
similar result as the case of matrices with entries in a field.

Theorem 38.3.4 (Smith Normal Form). Suppose D is a Euclidean domain, and

A € M, (D) \ {0}. Then A ~ O), where T = diag(ds,...,d,) for some

T
0 0
dy,...,d, € D such that dy|ds| - - - |d,; this means d;|d; 1 for every i € [1..r).

Matrix (g 8) which is given in Theorem 38.3.4 is called a Smith normal form
of A.

Proof of Theorem 38.3.4. We proceed by induction on min{m, n}. By Proposition 38.3.3,
there is A" € M, ,(D) such that A’ ~ A and A’ = <%1 d OB,> for some B’ in

1
M(n—1),(m—-1)(D). From this, the base of induction immediately follows. So we focus
on the induction step. If B’ = 0, then we are done. If not, then by the induction

. , , , diag(dy,...,d.) O

hypothesis, there are d,...,d,. € D such that B’ ~ 0 0 and
dy|dh| - - - |dl.. Now we make two comments. First, multiplication by d; commutes
with row and column reduction operations. Second, the row and the column reduction
operations that are applied to d; B’ can be extended to A’, and these operations do not
change the first row and the first column. This holds because the only non-zero entry of
A’ in the first row and the first column is in the (1, 1)-position. Hence

dy 0 0

A~ |0 diag(didy,....did) 0],
0 0 0
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and so dy,dy = dqd), ..., d, ;= did.. satisfy the desired properties. This completes
the proof. O






Chapter 39

Lecture 15

In this section, first we give a classification of finitely generated modules over a
Euclidean domain. This will be done using the fact that every finitely generated module
over a Noetherian ring is isomorphic to the cokernel of a matrix (see Proposition 38.2.2)
and existence of a Smith normal form over Euclidean domains (see Theorem 38.3.4).
Next using this classification, we obtain a classification of finitely generated and finite
abelian groups. Finally we further study linear transformations (over a field), and point
out their connections with ring and module theory. Later these connections will be
exploited to prove the existence of a rational canonical form of a matrix.

39.1 Finitely generated modules over a Euclidean Domain

By Proposition 38.2.2, we know that every finitely generated module over a Noethe-
rian ring is isomorphic to the cokernel of a matrix. The next lemma shows that applying
row and column reduction operations do not change the cokernel of a matrix up to
an isomorphism. This result will enable us to use a Smith normal form to study the
cokernel of a matrix over a Euclidean domain.

Lemma 39.1.1. Suppose R is a unital commutative ring and A, A" € M,, ,,(R).
Suppose there are U € GL,,(R) and V € GL,,(R) such that A’ = UAV. Then
Coker(A) ~ Coker(A’). In particular, if A ~ A’, then Coker(A) ~ Coker(A’)
(recall that ~ means that A’ can be obtained from A by a series of row and column
reduction operations; see Lemma 38.3.2)

Proof. Note that Im A’ = A'R™ = UAV R™. Since V is invertible, VR™ = R™.
Hence
ImA’ = UAR™ = U Im A. (39.1)

Because U is invertible, /iy : R™ — R™, {yy(x) := Ux is an R-module isomorphism.
Let f : R™ — Coker A’, f(x) :={y(x)+Im A’. Since f is the composite of two sur-
jective R-module homomorphisms ¢;; and the natural quotient map R — R™/Im(A’),
it is surjective. Notice that x € ker f exactly when ¢;;(x) € Im A’. Hence by (39.1),
we obtain that the kernel of f is Im A. Therefore by the first isomorphism theorem,
R"/Im A ~ Coker A’. This means Coker A ~ Coker A.

259
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By Lemma 38.3.1, if A ~ A/, then there are U € Ef(R) and V € E;(R), then
A" = UAV. As Ef(R) C GL,(R) and E-(R) C GL,,(R), by the first part we
conclude that Coker(A) ~ Coker(A’). This completes the proof. O

Theorem 39.1.2. Suppose D is a Euclidean domain and M is a finitely generated
D-module. Then there are non-negative integer n and dy, . .. ,d, € D\ {0} such that
d1|d2‘ cee |dr and

Proof. Every Euclidean domain is a PID (see Theorem 7.4.2). By Corollary 12.3.6,
every PID is Noetherian. Hence by Proposition 38.2.2, M is isomorphic to the cokernel
diag(dy, . ..

0 »dr) 8) is a Smith normal form

of some Ays € My, (R). Suppose (

of Ajy; this means d;|dz| - - - |d, and

diag(ds,...,d,) 0
AMN(lag( A ) 0)

(see Theorem 38.3.4). By Lemma 39.1.1, we obtain that

M =~ Coker(Aps) ~ Coker (dlag(dl(’)' e dr) 8) . (39.2)
Notice that the image of <d1ag(d1(,). ) 8) is equal to
(dr) x -+ x (d) x {0} x --- x {0}. (39.3)
By (39.2) and (39.3), we conclude that
Dx---xDxDx---xD D D
M ~ ~—— XX —— X D",
(dy) -+ x(dy) x {0} > --- x {0}~ (du) (dr)
This completes the proof. O

39.2 Finitely generated abelian groups
In this section, we classify finitely generated abelian groups.
Theorem 39.2.1. Every finitely generated abelian group is isomorphic to
2™ X Lg, X -+ X ZLq,

for some positive integer n and d;’s such that dy|ds| - - - |d,-.
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Proof. Every finitely generated abelian group A is a finitely generated Z-module.
Since Z is a Euclidean domain, by Theorem 39.1.2 there are non-negative integer n
and dy,...,d, € Z\ {0} such that dy|cdots|d, and

Z Z
A7 X —— X -+ X .
(d1) (dy)

Since (d;) = (—d;) for every i, without loss of generality we can and will assume that
d;’s are positive integers. Hence A >~ Z" X Z4, X - -- X Zq4, as abelian groups. This
completes the proof. O

(39.4)

Corollary 39.2.2 (Classification of finite abelian groups). Suppose A is a finite abelian
group. Then A ~ L4, X -+- X Zq, for some positive integers d;’s such that dy| - - - |d,.

Proof. By Theorem 39.2.1,

A7 X Lg, X -+ X Lyg,
for some positive integer n and d;’s such that d;|ds| - - |d,. Since A is finite, we
conclude that n = 0. This completes the proof. O

39.3 Linear transformations and matrices

In this section, we discuss the connection between linear transformations and
matrices. Having an arsenal of results from ring and module theory in our disposal,
we will prove the existence of a rational canonical from, the Cayley-Hamilton theorem,
and further connections between the minimal and the characteristic polynomials of a
linear transformation.

Suppose F' is a field and V is a finite dimensional vector space over F'. For a given
F-basis B := (vy,...,v,) of V, we get an F-isomorphism between V' and the set
M,, 1 (F') of column vectors. Hence

[v]s = | if v=cv+-+cuo,.

Notice that
[vi]‘B = €, (395)

where e; is an n-by-1 column vector with 1 in its ¢-th component and zero in every
other. Sometimes we simply write F'" instead of M,, 1 (F).
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Suppose T : V' — V is an F'-linear transformation. Then 7'(v;)’s uniquely deter-
mine 7" as we have

Tw) = ZciT(vi), where D =[],
i=1
Cn
Hence T is uniquely determined by n column vectors [T'(v1)]ss, - - -, [T(vn)]s. We

put these column vectors together and get an n-by-n matrix and denote it by [T']s. This
means

[T]% = [tij] if T(Uj) = tljvl + -4 tnj’Uj for every j € [1’[’L]

Since the j-th column of [T]w is [T'(v;)]ss, we have [T'(v;)]s = [T]wse;, and so by
(39.5), we obtain that
[T(vj)]s = [T]s[vj]s. (39.6)

From (39.6), we conclude that for every ¢;’s in F', we have
T cvls =1 ¢;T(w;)ls =D ¢i[T(v;)]»
j=1 j=1 j=1
= Z Cj [T]sB [’Uj]% = [T]% [Z CZ"UZ‘}:B. (397)
j=1 j=1

By (39.7), we deduce that
[T(v)ls = [T]s[v]s

for every v € V. This is equivalent to saying that the following is a commutative
diagram.

v LT .,v

H\Bl lm%

Fn — s

[T]wm x
where the bottom row means multiplication by [T, i.e. x — [T]sx. We call [Ty
the matrix representation of T with respect to the basis B.

From encoding point of view, the more sparse the matrix representation [T
is the better. Here by sparse, we mean having many zero entries. A sparse matrix
representation can help us from both computational and theoretical point of view. Later
we will come back to the problem of finding a sparse matrix representation of a linear
transformation. For now we want to understand the connection between different matrix
representations of a given linear transformation.

Suppose B := (vy,...,v,) and B’ := (v}, ..., v]) are two F-bases of V. Since
v;’s are linearly independent, there is an F-linear map S : V' — V such that S(v;) := v}
for every i. Because the F'-span of v}’s is V, S is surjective. As v}’s are F-linearly
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independent, S is injective. Hence S : V' — V is an isomorphism. Moreover since
[v;]s = [v]]s = e for every i, we have that the following is a commutative diagram.

Vv S .v

| 38

This means we have
[S(v)]sr = [v]s (39.8)

for every v € V. Therefore [S]w [v]m: = [v]p forallv € V.
For every linear transformation 7' : V' — V, the following is a commutative
diagram.

F" [T]%/ X F"

TH%' [-mf

[Slar x| V —L 5 V |[S]ar x

|t

o —— F"
[T]w x
Hence [T]p: = [S]! [T][S]w . This means every two matrix representations of a
given linear transformation are conjugate of each other.

Conversely, we show that every conjugate of [T']ss is a matrix representation of 7.
Suppose S := [sij] € GL,(F), and let v} := >71" | s;50;. Then B’ := (v},...,v;,)
is an F'-basis of V, and

[l = S[v]]m
for every j. Hence [v]s = S[v]ws for all v € V. Thus by the above discussion,
[T)s: = S™YT)»S, and the converse follows.

Therefore the task of finding a simple matrix representation can be interpreted as a
search for a sparse conjugate of a matrix.

A linear transformation 7" : V' — V is also called an F'-endomorphism of V', and
the set of all endormorphisms of V' is denoted by Endr (V). The following lemma
shows that End (V') is a ring which is isomorphic to M,, (F).

Lemma 39.3.1. Suppose F is a field and V is a vector space over F. Suppose B :=
(v1,...,vy) is an F-basis of V. Then

Endp(V) = M, (F), T — [T]s
is a bijection, and its inverse is given by
M, (F) — Endp(V), A — A4,
where A a(v) := Lg (A[v]ss ). Moreover, for every Ty, To € Endg(V), we have
[Ty + To]s = [Th]s + [To]s  and [Ty o Ta)w = [Th]s[T2]s.-

In particular, (Endp(V), 4+, 0) is a ring and it is isomorphic to M,,(F).
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Proof. Since {g, multiplication by A, and [-]ss are F-linear, A4 € Endp (V). Because
L and [-] are inverse of each other, for all A € M,,(F') and v € V, we have

[Aals[v]s = [Aa(v)]s = Alv]s.

Hence [A 4] = A.
Similarly for all T € Endr (V') and v € V, we obtain

Aire ()]s = [T]s[vls = [T(v)]»,

which implies that A7y, (v) = T'(v) forallv € V. Hence A1), = T Altogether, we
conclude that T +— [T']s is a bijection and A — A4 is its inverse.
For every v € V, we have

[T1 + TQ]%[U]% T (’U) + T (1})]%

(Th + To)(v)]s = 2
( [T1]s[v]e + [T2]s[v]es

=[T1(v)]s + [T2(v)]
([Th])m + [To]s)[v]

and so [T} + Ts]s = [Th]ss + [T2]s. Similarly we have

[
B

)

[T o To)m [v]s =[(Th o T2)(v)]e = [T1(T2(v))]m
[T1]»[T2(v)]s = [T1]» ([T2]s [v]s)
([T1]os [To]s) [v]

which 1rnphes that [Tl o TQ]sB = [Tl]‘B [TQ]% .
The rest of the claims immediately follow. O

39.4 Linear maps, evaluation map, and minimal polynomial

In the study of zeros of polynomials, we saw the importance of evaluation maps. In
this section, we employ a similar idea to study linear transformations.

Suppose T' € Endp(V), and let ¢ : Flz] = Endpr(V), ér(f) := f(T) be the
evaluation at 7" map. Since scalar transformations are in the center of Endr(V'), the
same argument as in the proof of Lemma 3.1.1 implies that ¢ is a ring homomorphism.
The image of ¢ is denoted by F'[T']. Notice that F'[T'] is a commutative subring of
End (V') which is isomorphic to F'[x]/ ker ¢r.

Notice that by Lemma 39.3.1, we have dimp Endz (V) = dimp M, (F) = n?,
Hence dimp F[T] < n? < oco. Therefore dim F(keFr[z]T) < o0, which implies that
ker ¢ # 0. Because scalar endomorphisms are in F[T], dimp F[T] > 1. Thus
ker ¢ is a proper ideal. Since F[z] is a PID and ker ¢ is a proper non-zero ideal,
there is a unique monic non-constant polynomial my rp € F[z] such that

ker ¢T = <mT7F>.

The polynomial myp r is called the minimal polynomial of T'. Altogether we have
proved the following.
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Lemma 39.4.1. Suppose F' is a field and V is a finite dimensional F-vector space.
For an F-linear map T : V — V, there is a unique non-constant monic polynomial
my p € Flz] such that for every p(x) € F|[z], we have p(T) = 0 if and only if
mr,r(x)|p(z).

For a given basis B := (v1, ..., v,), by Lemma 39.3.1, M, (F') — Endp(V)A —
A4 is aring isomorphism. Let m 4 p(x) := my, r(x) and call it a minimal polynomial
of A. A priori it is not clear why m 4 1 does not depend on the choice of basis in the
definition of A — A 4. The next lemma, however, shows that m 4 r only depends on A.

Lemma 39.4.2. Suppose A € M,,(F), and let ¢4 : F|x] — M, (F), pa(f) := f(A).
Then the following statements hold.

1. The minimal polynomial m s r is the unique monic generator of ker ¢ o; in
particular, it only depends on A.

2. The image F[A] of ¢4 is isomorphic to F[A ] where Ay € Endp(F™) is given
by A a(x) := Ax.

3. IfS e GLn(F), then mg-1A8 F = MAF.

Proof. 1. Since M,,(F) — Endp(F™), A — A4 is a ring isomorphism, for every
f € F[z] we have
Arca) = f(Aa).

Hence f € ker ¢ 4 if and only if f € ker ¢ ,. Part 1 follows.

2. By the first isomorphism theorem, F'[A] ~ F'[x]/ker ¢ 4. By part 1, ker p4 =
ker ¢, , , and so by another application of the first isomorphism theorem we conclude
that

Flz]/ker a4 = Flx]/ker ¢x, ~ F[Aa].

This implies the second part.
3. Since both A and S~!AS are matrix representations of \ 4, we deduce that

MAF = M), F =MS-14AS8 F,

which completes the proof. O






Chapter 40

Lecture 16

In this section, we use the classification of finitely generated modules over a Eu-
clidean domain to find a fairly sparse matrix representation called a rational canonical
form of a linear transformation 7" : V' — V where V is a finite dimensional vector
space over F'. Along the way, we also prove the Cayley-Hamilton theorem and other
properties of the characteristic and minimal polynomials of 7.

40.1 Linear maps, evaluation map, module structure

As we have seen in Section 39.4, for a given linear transformation T : V' —
V', we can consider the evaluation map ¢ : F[z] — Endp(V), and ¢ is a ring
homomorphism. Via the ring homomorphism ¢, we can view V' as an F'[z]-module.
Here is a precise formulation of this result.

Lemma 40.1.1. Suppose F' is a field and V is a finite dimensional vector space over
F.LetT :V — Visan F-linear map. For f € F[z] andv € V, let

frvi=or(flo=f(T)(v). (40.1)
Then V is an F[x]-module with respect to the scalar multiplication given by (40.1)

Proof. 1t is straightforward to check that the scalar multiplication given in (40.1) sat-
isfies all the properties of modules. Here we go through only one of the distribution
properties. Suppose f1, fo € F[z] and v € V. Then

(fi+ f2) v =07(f1 + f2)(v) = (¢7(f1) + 7 (f2))(v)
=7 (f1)(v) + or(f2)(v) = fr v+ fo- 0.

O

Notice that F'[z]-module structure of V' and its F'-vector space structure are com-
patible. This is the case because constant polynomials are sent to scalar linear trans-
formations: for every ¢ € F and v € V, we have ¢ (c)(v) = cv where cv is the
scalar product of ¢ by v as an F'-vector space. By this remark, we deduce that, if

267
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B = (v1,...,vy,) is an F-basis of V, then v;’s generate V' as an F'[z]-module as well.
Hence V is a finitely generated F'[z]-module. Since F[z] is a Euclidean domain, by
Theorem 39.1.2 there are a non-negative integer k and dy, ..., d, € F[z]\ {0} such
that
Fla] Fla]
V ~ Flz]* x X e X (40.2)
{d1) (dr)
as an F[z]-module and d4] - - - |d,. Since V is a finite dimensional vector space over

F and F'[z] is an infinite dimensional vector space over F', by (40.2) we conclude that
k = 0. Thus

(40.3)

Notice that if d; is a non-zero constant, then (d;) = F[x] and % =0, and so such a

factor can be dropped. Let’s also observed that multiplying d;’s by a non-zero constant
does not change the ideals (d;)’s. Hence without loss of generality we can and will
assume that d;’s are monic non-constant polynomials. Let’s summarize what we have
obtained so far.

Lemma 40.1.2. Suppose F'is a field and V is a finite dimensional F-vector space.
Suppose T : V' — V isan F-linear map. Then' V' can be viewed as an F|x]-module with
the scalar multiplication given in (40.1), and there are non-constant monic polynomials
dy,...,d, € Flx] such that dy|---|d, and

40.2 Reduction to the cyclic case.

In this section, we see how the module structure of V' given in Lemma 40.1.2 can
help us get a matrix representation of 7 that is of block form and its non-zero blocks
can only be on the diagonal. Moreover the associated blocks are related to the case
where the vector space is isomorphic to F'[z]/(d) for some d as an F'[z]-module. Notice
that by Lemma 37.3.2, an F'[z]-module is isomorphic to F'[z]/(d) exactly when it is a
cyclic F'[z]-module. Altogether, we are reducing the problem of finding a sparse matrix
representation of T to the case where V' is a cyclic F'[x]-module.

Suppose d;’s are given as in Lemma 40.1.2, and

. Fla] Fla]
0: ) @) -V
Fz]

is an F[z]-module isomorphism. Let M :=

we have

X oo X Zi[f; Then for all m € M

T(O(m)) =z -0(m) =0(x-m).
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This means that the following is a commutative diagram.

M 25 M

0| Jo

V.77V

Hence if B := (mq,...,m,) is an F-basis of M, then 0(B) := (0(m1),...,0(my,))
is an F-basis of V and [zx]s = [T]y(x). Roughly this diagram implies that after
identifying M with V, zx gets identified with 7. Hence xx and 7' share matrix
representations. Here is a more formal argument of why the last equality holds: suppose
[zx]e = [rij]. Then - m; = > r;ym,; for all j. As 0 is an F[z]-module

homomorphism, we obtain that §(z - m;) = = - 8(m;) = T'(#(m;)). Therefore

n n
T(0(my)) = 0(z - m;) = 9(2 Timg) = Zrije(mi)7
i=1 i=1

which implies that [T]g(g) = [ri;].

Since every matrix representation of zx is a matrix representation of 7' (and vice
versa), we will find a sparse matrix representation of x x.
Let M; :=0x---X i%] x -+ x 0 for all 7. Notice that M;’s are F'[x]-submodules
of M, M = My +---+ M,, and if v; € M; \ {0}, then v;’s are linearly independent.
Hence if B, is an F-basis of M;, then B := B; U --- U B, (with this ordering) is
an F-basis of M. Because M, is an F'[x]-submodule, for every m € B; the element
x - m is an F-linear combination of elements of 9B8;. Hence [z x|y is a matrix of the
following form:

[QL‘X]&Bl 0 0
0 [Z‘X]s32 0
: : ' : (40.4)
0 0 o [ax]m,

Thus to make this matrix representation more sparse, we should focus on x x for a
cyclic F[z]-module of the form F'[x]/(d) where d is a non-constant monic polynomial.

40.3 Cyclic case, companion matrix, and rational canonical form

In this section, we find a nice matrix representation of ' x for a cyclic F[z]-module
of the form F[x]/(d(z)) where d(z) := 2™ + ap—12™ 1 + -+ + a9 € F[z]. We
also find its minimal polynomial.

By Proposition 20.1.1, B := (1,7,...,7™"!) is an F-basis of % where 7% =
2% + (d) for every non-negative integer i. Notice that

TS 725 72 25 2 gL 2 (40.5)
For every i € [0..(m — 1)], we have [T']y = e;;1 where (ey, ..., e,,) is the standard

basis of F'*. We also notice that

" 4+ 1T+ ag =0
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which implies that

m—1 m—1 —ag
[@"]s = [— aiﬂ =) (~a)ei = ; : (40.6)
=0 ® =0 —Am—1
By (40.5) and (40.6), we obtain that
0 0 O 0 —ag
1 00 0 —-a
010 --- 0 —as
[tx]s =|. . . . . . (40.7)
00 0 -+ 0 —am-2
000 -+ 1 —am

Let C(d) be the matrix given in (40.7). We call C(d) the companion matrix of the
monic polynomial d(z) = 2™ + ap,_12™ L + -+ + ag.

To find the minimal polynomial of zx : F<([;§] — % we need to find the kernel

of the evaluation map ¢, . Notice that (xx)* = z*x for every non-negative integer 4.

Hence for every polynomial f(z) € F[z], we have ¢« (f) = f(x)x. This means for

every g + (d) € 1?([;5] , we have

Gax (f)(g + (d)) = f(z)g(x) + (d).

Hence f € ker ¢, if and only if d|fg for every g € F[z]. Hence ker ¢, = (d).
Because d is a monic polynomial which generates ker ¢, «, we conclude that the
minimal polynomial of =X is d. Therefore we obtain the following result.

Lemma 40.3.1. Suppose d € F|[z] is a monic non-constant polynomial. Then the
minimal polynomial of the companion matrix C(d) is d(z).

By (40.4) and (40.7), we obtain the following result.
Theorem 40.3.2 (Rational canonical form). Suppose V is a finite dimensional vector

space over a field F, and T : V — V is an F-linear map. Then T has a matrix
representation of the form

cd) - 0
: : (40.8)
0 - O(dy)
for some monic non-constant polynomials d;’s in F[x] such that d1| - - - |d,.

The matrix given in (40.8) is called a rational canonical form of T'.
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40.4 The Cayley-Hamilton Theorem

In this section, we define the characteristic polynomial of a linear map, give a
connection with a rational canonical form of a linear map, and prove the Cayley-
Hamilton Theorem.

Definition 40.4.1. Suppose R is a unital commutative ring and A € M,,(R). The
characteristic polynomial of A is fa(z) := det(xI — A) where I — A € M,,(R][z]).
Suppose F is a field, V is a finite dimensional vector space over F', and *B is an F'-basis
of V. The characteristic polynomial of an F-linear map T : V' — V with respect to
the basis B is fir), (). '

Lemma 40.4.2. Suppose R is a unital commutative ring, F is a field and V' is a finite
dimensional vector space over F.

1. If A, A’ € M,,(R) are conjugate of each other, then fa(x) = far ().

2. IfB and B’ are two F-bases of V, then the characteristic polynomials of T with
respect to B and B’ are the same.

Proof. (1) Since A and A’ are conjugate of each other, there is S € GL,,(R) such that
A" = SAS~!. Because determinant is multiplicative we have

det(A’) =det(SAS™!) = det(S) det(A) det(S™1)
=det(S) det(S™1) det(A) = det(SS™ 1) det(A)
=det(I) det(A) = det(A).

(2) Since [T']os and [T]ss+ are conjugate of each other, by part (1), fi7], = fi7],, - This
completes the proof. O

By the second part of Lemma 40.4.2, we deduce that the characteristic polynomial
of a linear map does not depend on the choice of a basis of the vector space. The
characteristic polynomial of a linear map 7" : V' — V is denoted by fr.

Lemma 40.4.3. Suppose d(x) € F|x] is a monic polynomial and C(d) is its the
companion matrix. Then the characteristic polynomial of C(d) is d.

Proof. We proceed by induction on the degree of d. If degd = 1, thend(z) =z +a
and C(d) = [—al. So fc(q)(x) = det([z + a]) = x 4 a. Next we prove the induction

"Look at the HW assignment week 8 for the definition and properties of determinant.
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step. We expand the determinant of 21 — C(d) with respect to the first column. Hence

zr 0 --- ao x 0 .- ay
71 €T e aq 71 €T e ao
det | . . . =x det
0 0 -+ xz4+am- 0 0 -+ z+ama
0 0 aon
-1 =z as
+ det .
0O 0 -+ x+am-1

We use the induction hypothesis for the first term, and expand the determinant of the
second term with respect to the first row. We obtain the following.

fe@(@) =z(@™ ! + apmo1a™ P+t ar)
0 -1 ... 0
+(_1)1+(7rz—1)a0 det
0 0 —
::C(gjmfl + am—liim*Q I al) + (71)m+m72a0

:xm + am,1$m/_1 + -+ aix + ag = d(x)
This completes the proof. O

Theorem 40.4.4. Suppose dy, . ..,d, € F[x] are monic polynomials, dy| - - - |d,, and
diag(C(dy),...,C(d,)) is a rational canonical form of a linear map T : V — V.
Then following statements hold.

1 mypp(x) = dr(z).

2. fr(z) = di(x) - dv(2).

3. (Caley-Hamilton Theorem) f1(T)) = 0.

4. Suppose p(x) € Fla] is irreducible. Then p(x)| fr(x) if andonly if p(x)[m.p ().
Proof. Let A := diag(C(d,),...,C(d,)). Then

fr(z) = fa(z) and  mrp(z)=mar(r).
For every polynomial f € Flz], we have
f(A) = diag(f(C(da)), ..., f(C(dy)))-

Hence f(A) = 0 if and only if f(C(d;)) = 0 for every . By Lemma 40.3.1,
me(d,),r(x) = di(x). Therefore f(A) = 0 exactly when d;(x)|f(x) for all . Since
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dy|---|d,, we obtain that f(A) = 0 precisely when d,.|f. Thus ma p(z) = d,(z).
Next we want to find the characteristic polynomial of A:

fa(x) =det(diag(z — C(dy),...,aI — C(d;)))

=[[det@I — C(di)) =[] fow) (@) (by Lemma 40.4.3)
=1

= Hdz(x)

Since mr p(z) = d.(x) and fr(z) = []._, di(x), mr r(z)| fr(z). Hence
fr(T) =0.

Suppose p is an irreducible factor of fr(z). Since fr(z) = [[;_, di(z), p| fr. and
p is prime, p divides d; for some i. Since d;|d,. for all i, we conclude that p|d,.. As
my, r(z) = d,(x), we obtain that p|mr . This completes the proof. O
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Lecture 17

In our study of zeros of multivariable polynomials, we investigated system of linear
equations over unital commutative rings. We developed module theory and gave an
algorithm for solving system of linear equations over a Euclidean domain. In the next
step, we consider two related directions to extend our exploration:

1. Studying single variable polynomials over an arbitrary unital commutative ring.
2. Studying multivariable polynomials over a field.

Since Flx1, ..., 2,] is essentially (F[z1, ..., %n—1])[zy], it is not surprising that any
result related to the first task has implications towards the second one.

Suppose A is a unital commutative ring. We would like to understand ring theoretic
properties of A[x]. Here are some results that we have proved earlier:

1. If D is an integral domain, then D[z] is an integral domain. (See Lemma 6.3.1)
2. If Fis a field, then F[z] is a PID. (See Theorem 7.3.1)
3. If D is a UFD, then D|[z] is a UFD. (See Theorem 15.4.4)

One of the key results which is instrumental in proving these results is the long
division (see Theorem 6.4.1). Let’s recall the long division algorithm.

Suppose A is a unital commutative ring and g € A[z] such that (1d(g)) = A where
1d(g) is the leading coefficient of g. Then for every f € A[x] there is a unique r € Alx]
such that f + {(g) = r + (g) and degr < degg.

So the long division algorithm gives us a (canonical) simple coset representative of
[+ {(g) if the leading coefficient of g generates the entire ring of coefficients.

The existence part of the long division is derived from the following algorithm.

Step 1. If deg f < deg g, we are done. Return r := f.

Step 2. If deg f > deg g, there is a monomial cz* such that Ld(f) = Ld(g)(cz¥). Let
fnew A fold - (C'Ik)g

Here are a few comments about the above algorithm:

275
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1. It terminates as deg fyew is less than deg foq.
2. Atevery step, we do not leave the coset f + (g) since fuew + (g) = foua + (9)-

3. the key reason that it actually works is because Ld(f) € (Ld(g)) unless deg f is
less than deg g.

There are a few ways to generalize long division. But the general idea stays the same:
considering a grading on the given ring and clearing the leading term in the process.

41.1 Generalized long division
In this section, we present some generalizations of long division.

Lemma 41.1.1. Suppose A is a unital commutative ring and g1, . . ., gn € Alz] such
that

(1d(g1),...,1d(gn)) = A. (41.1)

Then for every f € Alx), there is v € A[zx] such that
f+{g, - ygn)=r+{q1,...,9n) and degr < max(deggi,...,deggn).
Proof. We follow the same algorithm as in the case when n = 1.
Step 1. If deg f < max(degg,...,degg,), we are done. Return r := f.
Step 2. If deg f > max(deg g, ...,degg,), then
Ld(f) € (Ld(g1), - -, Ld(gr))- (41.2)
Here is why (41.2) holds. By (41.1)
ld(f) = a1ld(g1) + - - 4 an1d(gn)
for some a;’s in A. Therefore we obtain that
Ld(f) = (a1x9°8 /=489 Ld(gy) + - - + (a,29°8 7748 9) Ld(g,,). (41.3)
Suppose a;’s are as in (41.3), and let

foew < fold — ((alxdegf—deggl)gl et (anmdegf—deggn)gn).

Notice that deg frew < deg foiq and

fnew + <gla'~~7gn> = f01d+ <gla‘~~vgn>'

Hence this algorithm terminates and returns a desired r. O
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A closer look at the proof of Lemma 41.1.1 shows that the key properties to have
are

ld(f) € (1d(g1),---,1d(gn)) (41.4)

and
Ld(f) € (Ld(g1), ., Ld(ga)- (415)

The following results are good examples of how one can use the conditions given in
(41.4) and (41.5).

Lemma 41.1.2. Suppose A is a untial commutative ring, [ A Alx), and g1, ...,gn € I
are such that

Id(f) € Ad(g1),.-.,1d(gn)) (41.6)
fJorall f € 1. Then for every f € I, there is r € I such that

f+{n, - ygn)=7r+{01,...,9n) and degr < max(degg,...,deggy).

Lemma 41.1.3. Suppose A is a untial commutative ring, [ A Alx), and ¢1,...,g9n € I
are such that
Ld(f) € (Ld(¢1),-..,Ld(gn))- (41.7)

Then I = {g1,...,Gn)-

Proof of Lemma 41.1.2. We follow an almost identical line of argument as in the proof
of Lemma 41.1.1. Consider the following algorithm:

Step 1. If deg f < max(degg,...,degg,), we are done. Return r := f.

Step 2. If deg f > max(degg,...,deggy,), then
Ld(f) € (Ld(¢1),...,Ld(gg))- (41.8)
Here is why (41.8) holds. By (41.6)
d(f) = ai1d(g1) + -+ + an 1d(gn)
for some a;’s in A. Therefore we obtain that
LA(f) = (a129°8 /=989 Ld(g;) + - - - + (a,z9°8 S48 9) Ld(g,,). (41.9)
Suppose a;’s are as in (41.9), and let

frew < fold — ((alxdcgf*dcggl)gl 4+t (anxdcgf*dcggn)gn)_
Notice that deg fiew < deg foiq and

fnew + <gla"'7gn> = fold + <gla-~'7gn>~

Moreover, since foq and g;’s are in I, 80 is fnew. Hence this algorithm terminates and
returns a desired 7. O
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Proof of Lemma 41.1.3. Since g;’sarein I, (g1, ..., g,) C I. Next by strong induction
on degree, we show that every f € I'isin (g1,...,gn). This will be done essentially
following a similar generalized long division algorithm. By hypothesis, Ld(f) is in the
ideal generated by Ld(g;)’s. Hence there are ¢;’s in A[z] such that

Ld(f) = q1 Ld(g1) + - - + ¢ Ld(gn)- (41.10)

Suppose deg f = m, deg g; = m;, and g;(z) = ¢;2™ ™ + g, where g; € A[x] does
not have a monomial of degree (m — m;). Notice that if m < m;, then ¢; = 0. Then
none of the terms of

¢, Ld(g1) + -+ -+, Ld(gn)

is of degree m. Therefore by (41.10), we obtain
Ld(f) = (crz™ ™) Ld(g1) + - - + (cpx™ ™) Ld(gn). (41.11)

Let B
f(@):= f(@) = ((cz™ ™ )g1 + -+ + (o™ ™ )gn). (41.12)

Then because of (41.11), deg f < deg f. Moreover since f and g;’s are in I, so is
f. Hence by the strong induction hypothesis, f € (g1, ..., gn). Thus by (41.12), we
conclude that f € (g1, ..., gn). This completes the proof. O

By Lemma 41.1.3, we deduce that to generate an ideal I of A[x], it is enough to
generate all the leading terms. Next we focus more on leading coefficients.

Lemma 41.1.4. Suppose A is a unital commutative ring and I is an ideal of Alx]. Let

(1) :=A{1d(f) | f € I\{0}} U {0},
and
Iy (1) :={1d(f) | f € I,deg f =m} U {0}
for every non-negative integer m. Then 1d(I) and 1d,,,(I) are ideals of A.

Proof. Suppose c¢1,cs € 1d(I). Then there are f1, fo € I such that Ld(f;) = ¢;z™
for some non-negative integers m;’s. Without loss of generality, we can and will assume
that my < mo. Then, if ¢; + ¢o # 0, then

Ld(l‘m27m1f1 + f2) = ((31 + Cg)$m2

Hence c; + ¢ is the leading coefficient of ™2~ "™ f; + fo. Notice that "2~ f; + f
isin I as f;’s are in I. Therefore ¢; + ¢ is either O or it is the leading coefficient of an
element of I. Hence in either case ¢; + ¢o € 1d(1).

For every a € A, either ac; = 0 or ld(af1) = acy. In either case, ac; € 1d(I).
Altogether, we obtain that 1d(7) is an ideal of A.

Next we show that 1d,,, () is an ideal. We start by discussing why it is closed under
addition. If ¢;,co € 1d,,(I), then there are f, fo € I such that Ld(f;) = ¢;z™ for
i = 1,2. Hence either ¢; + co = 0 or Ld(f1 + f2) = (¢1 + ¢2)z™. In either case,
¢1 + c2 € 1d,,(I). For a € A, either ac; = 0 or Ld(af;) = ac;z™. Therefore in
either case, ac; € 1d,,,(I). Since 1d,, (I) is closed under addition and multiplication by
elements of A, we conclude that 1d,, (1) is an ideal of A. This completes the proof. [
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41.2 Hilbert’s basis theorem

We have proved many results connecting (generating) an ideal of A[z]| with ideals
of A. So we are well-placed to prove that if every ideal of A is finitely generated, then
all ideals of A[z] are finitely generated. Recall that all ideals of a ring R are finitely
generated if and only if R is Noetherian.

Theorem 41.2.1 (Hilbert’s basis theorem). Suppose A is a Noetherian unital commu-
tative ring. Then A|x] is Noetherian.

Proof. By Lemma 12.3.5, we know that A[z] is Noetherian if and only if every ideal
of A[z] is finitely generated. Suppose I is an ideal of A[x]. By Lemma 41.1.3, it is
enough to show that there are g1, ..., g, € I such that forall f € I,

Ld(f) € <Ld(g1), AR Ld(gn)>

Let Ld([) be the ideal generated by Ld(f)’s as f ranges in I.
Claim. There are g1, ..., g, € I such that LA(I) = (Ld(g1),...,Ld(gn)).

Proof of Claim. Since A is Noetherian, 1d(7) is a finitely generated ideal. Hence there
are f1,..., fm € I such that

By (41.9), if f € I and deg f > max(deg f1,...,deg f,), then

Next we want to generate all the leading terms Ld( f) of polynomials f € I with deg f
less than k := max(deg f1,...,deg f,). By Lemma 41.1.4,1d;(I)’s are ideals of A
for every integer i in [0, k). Since A is Noetherian, 1d,(7) is a finitely generated ideal.

Hence for every index i, there are f;1,..., fin, € I such that deg f;; = i for every
index j and

1d; (1) = Ad(fi1), - - -, 1d(fin,))- (41.15)
Next we show that if f € I and deg f = 7 for some non-negative integer 7 < k, then
Notice that 1d(f) € 1d;(f), and so by (41.15), there are ay, ..., a,, € A such that

Because of (41.17), we conclude that

Ld(f) =1d(f)a’ = (ar1d(fi) + - -+ + an, 1d(fin,))2’

By (41.18), we deduce that (41.16) holds. By (41.14) and (41.16), we obtain that for
all f €1,

Ld(f) € (LA(f), Ld(fi;) |1 <r <m,0<i <k, 1<j<mny).
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This implies that
Ld(I) = (LA(f,),Ld(fi;) | 1 <r<m,0<i<k,1<j<n;
as f,’s and f;;’s are in /. This completes the proof of Claim. O
By above Claim and Lemma 41.1.3, we conclude that I is a finitely generated ideal.

This completes the proof of Hilbert’s basis theorem. O

41.3 Finitely generated rings and algebras

Hilbert’s basis theorem implies that many of the rings that we have been working
with are Noetherian. Here is an immediate corollary of Hilbert’s basis theorem.

Corollary 41.3.1. Suppose A is a Noetherian unital commutative ring. Then Alz1, . .., zy]
is Noetherian.

Proof. We proceed by induction on n. The case of n = 0 follows from the hypothesis.

So we focus on the induction step. By the induction hypothesis, A[x1,...,2,] is
Noetherian. Hence by Hilbert’s basis theorem, (A[z1, ..., %y])[Zn+1] is Noetherian.
This completes the proof. O

Corollary 41.3.2. The rings Z|x1, ..., 2,] and Flz1, ..., x,], where F is a field, are
Noetherian.

Proof. This follows from Corollary 41.3.1 and the fact that the ring of integers and
fields are Noetherian. O

Corollary 41.3.2 implies that every finitely generated ring or finitely generated
F-algebra is Noetherian.

Definition 41.3.3. (1) We say a unital commutative ring A is finitely generated if there
are ai, ..., a, € A such that the smallest subring of A which contains a;’s is A.

(2) Suppose F is field. We say a unital commutative ring A is called a finitely
generated F-algebra if F' is a subring of A, 1p = 14, and there are ay, .. .,a, in A
such that the smallest subring of A which contains F and a;’s is A. In this case we
write A = Flay, ..., ay).

The following easy lemma implies that every finitely generated ring is a quotient
of the ring of polynomials Z[x1, . . ., x,] for some positive integer n and every finitely
generated F-algebra is a quotient of the ring of polynomials F[x1, ..., x,] for some
positive integer n.

Lemma 41.3.4. 1. Suppose A is generated by a1, . . ., a, as a ring. Then the fol-

lowing is a surjective homomorphism Z[x1, . .., T,] — A,
. . 1/1 ... i . . i]‘ - .. i
E My, i Ty 7 Ty 7 E e(Miy,....i,)ay -+ ay'
ilv---ain 7;17--471'77,

where e : Z — A, e(m) := ml, (see Lemma 2.3.1)
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2. Suppose F' is a field and A is a finitely generated F-algebra. Suppose A =
Flay,...,ay,). Then the evaluation map

Gay....an - FlT1,- - 2n] = A, P,
is a surjective ring homomorphism.
Proof. We leave the proof as an exercise. O
We obtain the following important consequence of Hilbert’s basis theorem.

Theorem 41.3.5. Suppose A is either a finitely generated ring or a finitely generated
F-algebra, where F is a field. Then A is Noetherian.

Proof. By Lemma41.3.4, Aisisomorphictoeither Z[x1,...,x,]/lor Flz1,...,z,]/]
for some integer n and ideal I. Since a quotient of a Noetherian ring is Noetherian, by
Corollary 41.3.2 we obtain that A is Noetherian. This completes the proof. O






Chapter 42

Lectures 18 and 19

In this section, we want to study zeros of multivariable polynomials with coefficients
in a field. As we have mentioned in Section 38.3, a system of linear equations can be
solved using the GAuss-Jordan elimination process. In the higher degree setting, we
will use an argument inspired by the elimination process to find one solution of the
given system of polynomial equations if it has a solution.

42.1 Set of common zeros and vanishing polynomials

In the single variable case, we have seen the importance of viewing polynomials as
functions and exploring the connection between zeros of polynomials and ideals of ring
of polynomials. We start by observing a similar connection in a multivariable setting.

For a subset S of F[x1,...,xy], let

Z(S):={ac F"| f(a)=0forall f € S}.
For a subset V of F'", let
I(V):={f € Flz1,...,z,] | f(v)=0forallv € V}.

Alternatively we can say that f € I(V) if and only if the restriction f|y of f to V' is
zero where we are viewing f as a function from F" to F. For V' C F™, let Fun(V, F)
be the set of functions from V' to F'. Then it is easy to see that Fun(V, F') is a ring with
respect to pointwise addition and multiplication; that means (f 4 ¢)(x) = f(x) + g(x)
and (f-g)(x) := f(x)g(x) forevery x € V. By means of evaluation, we get a function

F[th,zn}%Fun(‘/,F), f'_>f|V (421)
It is easy to see that this is a ring homomorphism. From the definition I(V"), we have
that I(V) is the kernel of the ring homomorphism given in (42.1). The next lemma

gives us basic properties of Z and 1.

Lemma 42.1.1. Suppose F'is a field.

283
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1. Functions I and Z are inclusion-reversing. That means for every Vi C Vo C F™,
I(V3) C I(V1), and for every S1 C Sy C Flay,...,xy], Z(S2) C Z(S1).

2. ForeveryV C F™ I(V)isanideal of Flx1,...,zy], and V C Z(I(V)).

3. Forevery S C Flxy,...,x,), (D) CI(Z(S)).

4. For every S C Flz1,...,xy,), Z(S) = Z((S)) and there are finitely many
polynomials g1, . .., gm Such that

Z(8) = Z({g1,- -+, gm})-

Proof. (1)If f € I(V3), then f|y, = 0. Since Vi C V3, we conclude that f|y, = 0.
Therefore f € I(Vy). This shows that I(V3) C I(V7).

Suppose v € Z(S3). Then for every f € Ss, f(v) = 0. As S} C Sy, for every
f € 51 we have f(v) = 0. Hence v € Z(S7). This means Z(S2) C Z(S2).

(2)Forallv € Vand f € I(V), f(v) = 0. Hence v is a common zero of elements
of I(V). Thismeans v € Z(I(V)). Hence V C Z(I(V)).

We have already mentioned that (V') is the kernel of the ring homomorphism

Flz1,...,z,) = Fan(V, F), [~ flv.

Hence I(V) is an ideal.

(3) Forall f € Sandv € Z(S), f(v) = 0. Hence f|z(s) = 0. Therefore
S CI(Z(S)). Because I(Z(9)) is an ideal, we obtain that (S)I(Z(.5)).

(4) Since (S) C I(Z(S)), forall v € Z(S) and f € (S) we have f(v) = 0.
Hence v € Z((S)). Hence Z(S) C Z((S)). Because Z is an order-reversing map and
S C (S), we conclude that Z((S)) C Z(S). Altogether, we obtain that

Z(8) = Z((5))

Finally by Hilbert’s basis theorem, every ideal of F'[z1, ..., ;] is finitely generated.
Therefore there are g1, ..., g, € Fz1,...,2,] such that (S) = (g1, ..., gn). Hence

Z(8)=2((S) =Z({g1,---,90)) = Z({g1,-- - gn})-

This completes the proof. O

42.2 Our general approach for finding a solution
Solving a system of polynomial equations
g1(z1, ..., z,) =0
(42.2)
gm (21, ..., 2n) =0

is the same as understanding Z(I) where [ is the ideal generated by g;’s. As we
mentioned earlier, we use an approach inspired by the elimination process to find one
element of Z(I) if possible. Eliminating variable x,, roughly means:
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1. Deriving equations from (42.2) where x,, does not appear.

2. Finding x,, interms of x4, ..., Zp_1.
Notice that the first item essentially means considering I N F'[z1, ..., z,—1]. Next for
a given

(ala"'aan—l) € Z(IOF['/E17~"7$7L—1])7

we have to find z,, = a,, which satisfies (42.2). This can be interpreted as follows.
Consider the projection

7:Z(I)—= Z(INF[z1,...,2n-1]), m(a1,...,0n) = (a1,...,Qn_1).

The above approach suggests that 7 is a surjective map; finding a point (a1, ...,a,—1)
in the codomain, we look for (ay, ..., a,) in the preimage 7! of (a1, ...,a,_1). In
general, it is, however, not true that 7 is surjective. To avoid this problem, instead of
projecting to a standard (n — 1)-dimensional subspace, we will carefully choose a
projection to an (n — 1)-dimensional subspace. To find out, how the needed projection
can be chosen, we start with the standard projection 7 and find out when 7 is not
surjective. Next we make a linear change of coordinates to avoid the bad cases, and
make sure that 7 is surjective.

We also notice that one cannot expect that even a single variable polynomial to have
a zero in F' unless F' is algebraically closed. So we will be assuming that the following
holds:

Our standing assumption. Suppose F' is an algebraically closed field and [ is an
ideal of F[z1,...,2,]. Suppose a := (ay,...,anp—1)isin Z(I N Flxy,...,Tn_1])
and 71 (a) = @ where

m:Z(I) = ZINFx1,...,¢50-1]), T(a1,..., ) = (Q1,...,Qp_1).

Notice that 77! (a) = @ if and only if Z(¢4(I)) = & where

ba(f) = flar,...,an_1,2,) € Flz,].

Since the map ¢, of evaluation at a is surjective, ¢, () is an ideal of F'[x,,]. Because
Flz,] is a PID, ¢a(I) = (pa(z,)) for some polynomial p,(z,) € F[z,]. Hence
Z(¢a(l)) is the same as the set of zeros of p,(xz,) in F. Since F is algebraically
closed, every non-unit polynomial F'[x,,] has a zero in F. Therefore Z(¢a(I)) = @
exactly when p, () is a non-zero constant polynomial. Thus ¢,(I) = & precisely
when 1 € ¢,(I). Hence our standing assumption implies that there is f € I such that
¢a(f) =1.Let A:= Flay,...,xpn_1], view F[z1,...,x,] as A[z,], and write

f= faxy + -+ fizn + fo
for some f;’sin A. Then ¢,(f) = 1 implies that

1= fa(a)zl + -+ fi(a)z, + fo(a).
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Hence we obtain

fa(@) = fa—1(a) =--- = fi(a) =0, and fy(a) = 1. (42.3)

For every g € I, we will look for elements of the form r f + sg in A where r, s € A[z,,].
Notice that for every such element, we have rf +sg € IN A, and so (rf + sg)(a) = 0.
This brings us to the following question.

Question 42.2.1. Suppose R is a unital commutative ring. For f,g € R|x], how can
we find elements in (f,g) N R?

We will be studying Question 42.2.1 in the next section.

42.3 Resultant of two polynomials

Let’s start investigating Question 42.2.1 with the case where R = F'is a field. In
this case, F'[z] is a PID and (f, g) = {(ged(f, g)). So (f,g) N F # 0 exactly when
ged(f, g) = 1. Using Euclid’s algorithm, we can find r, s € F'[z] such that

ged(f,g) =rf + sg. (42.4)

From computational point of view, we are interested in polynomials r and s that satisfy
(42.4) and have small degrees.

Lemma 42.3.1. Suppose F is a field and f, g € F|x]. Then there are r, s € F[x] such
that
ged(f,g) =rf+sg, degr <degg, anddegs < deg f.

Proof. Since F[z] is a PID, there are 7, § € F'[x] such that
ged(f,g) =7f + sg. (42.5)
by the long division for elements of F'[x], there are ¢1, g2, 7, s € F[x] such that
r=qg+r degr <degg,ands = qof + s, degs < deg f. (42.6)
By (42.5) and (42.6), we conclude that
ged(f, 9) =(qug +7)f + (q2f + s)g
=9f(@1 +q2) +7f + sg. 42.7)
By (42.7), we obtain that
9f(q1 + q2) = ged(f, 9) —rf — s9,
which implies that

deg g + deg f + deg(q1 + ¢2) <max(deg(ged(f,g)),degr + deg f,deg s + deg g)
<deg f +degg—1.
Hence deg(q1 + ¢2) < —1. Therefore g1 + g2 = 0. Thus by (42.7), we obtain

ged(f, g) = rf + sg. This completes the proof as degr < deg g and deg s < deg f
by (42.6). O
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Inspired by Lemma 42.3.1, we consider only pairs (7, s) in R[z] x R[z] such that
degr < deg g and deg s < deg f. Let

P, :={h € R[z] | degh < i},
and consider the following map
C: Py X Py1 — Piym—1,

L(r,s):=rf+ sg, (42.8)

where d := deg f and m := degg. Notice that ¢ is an R-module homomorphism.
Moreover since every element of P; can be uniquely written as

ag+a1x + -+ + a;x’

for some a;’s in R, ¢ can be represented by the following matrix:

fo 90
fi fo g1 go
: f1 : g1
fa—1 : o fo gme : 9o
R(f,g) = € Myim(R).
(1.9) fa  faa1 fi Im  Gm—1 g1 a+m(R)
fd B : 9m . :
fa—1 Im—1
fd 9m

where f = fgz? 4+ -+ fix + fo, g = gmax™ + -+ 17+ go» fa # 0, gm # 0,
there are m columns of f;’s and d columns of g;’s. Notice that

(1 =z e R(f9)=(f - @™f) g (9 1g)). (42.9)

Multiplying both sides of (42.9) by the adjoint adj(R(f, g)) of R(f,g), we obtain that

det(R(f,9)) (1 = atm1) € Miga.a((f, 9))- (42.10)

The determinant det(R(f, g)) of R(f, g) is called the resultant of f and g, and it is
denoted by r(f, g). Altogether we conclude.

Lemma 42.3.2. Suppose R is a unital commutative ring and f, g € R|x]. Then

r(f,g) € (f,9) N R.

Proof. By (42.10), r(f,g) € (f,g). Since R(f,g) € Mgrm(R) and r(f, g) is the
determinant of det(R(f, g)), we have that r(f, g) € R. This completes the proof. [
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42.4 What happens if 7 is not surjective

In this section, we work under our standing assumption and find a strong condition
on I. Let’s recall that under the standing assumption, by (42.3) there is f € A[xz,]
where A := F[x1,...,2,_1] such that f = Z?:o fiz!, and

fa@)=---=fi(a) =0 and fo(a) =0.
For every g € I, by Lemma 42.3.2 we obtain
r(f,9) € INFlay,. .., o). 42.11)
Sincea € Z(I N Flzy,...,zy], by (42.11) we conclude
(r(f,9))(a) =0 (42.12)

for every g € I. This means det(R(f, g)(a)) = 0. Notice that by (42.3), R(f, g)(a)
is equal to

fo(a) go(a)
fia)  fo(a) g1(a) go(a)
: fita) : g1(a)
fa—1(a) : o fo(@) gmei(a) : o go(a)
fd(a) fd—l(a) fl (a) gm(a) gm—l(a) g1 (a)
fd(ﬂ) i gm(a)
o faeai(a) o gmei(a)
fa(a) gm(a)
is equal to
1 go(a)
1 g91(a) go(a)
' g1(a)
L gm-1(a) : o go(a)
gm(a) gm,l(a) g1 (a)
9m (a)
Im—1 (a)
gm(a)

Hence R(f, g)(a) is an upper-triangular matrix with diagonal entries equal to
1,...,1,gm(a),...,gm(a).
——
m-times d-times

Therefore r(f, g)(a) = det(R(f, g)(a)) = gm(a)?. Since r(f, g)(a) = 0, we deduce
that g,,(a) = O for every g € I. Let’s summarize what we have proved.
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Lemma 42.4.1. Suppose F is an algebraically closed field, I is anideal of F[x1, . .., xy],
ac Z(INF[xy,...,7,_ 1], and 7~ 1(a) = @ where

7:Z(I) = Z(INF[x1,...,Tn-1]),7(a1,...,an) :=(a1,...,Qn—1).
Then for every g = > g;z', € I with g; € Flz1,...,z,_1] and g, # 0, we have
gm(a) =0.

42.5 Finding a suitable linear change of coordinates

In this section, we show that after a linear change of coordinates, we can find
g = gmxp' + - g12y + go in I such that g,,, is a non-zero constant. By this result and
Lemma 42.4.1, we conclude that 7 is surjective. This in turn shows that Z(I) is not
empty.

Lemma 42.5.1. Suppose F is an infinite field, and h € F[xq,...,z,] \ F.
1. Foreveryd = (aq,...,an_1) € F" 105 : Flay,...,2,] = Fl21,..., 7],
05(f) = f(x1 + 1Tp,y -+ o, Tp1 + 1T, Tp)
is an F-isomorphism.
2. Thereis & € F"~! such that
0a(f) = cap + hp_1a™ "4+ by
for some h;’sin Flxy,...,2,—1] and c € F*.
Proof. (1) Notice that for @, 3 € Fn—1,
05 o Qg(f) :9E(x1 F 1Ty, Bl + Qe 1T, )
=f(z1+ a1zn + B1Tn, -, Tne1 + 1Ty + Br1Tn, Tn)
=05, 5(f).

In particular, 05 0 0_5 = 0_g o 05 = id, which implies that 0 is bijective. It is easy
to check that 0 is an F'-linear ring homomorphism.

(2) Since 65 is an F-linear map and every polynomial is an F'-linear combination
of monomials, we start with understanding 6z (x!) where x! := z' - - - zin. We have

n—1
0s(x') =[] (; + agwn)’s - 2y
j=1
n—1
:<H(0‘j)ij)$?+7’m71$?’_l + -+ 70, (42.13)
j=1
where m = i1+ - -+i, andr;’sarein F[zq, ..., X,—1]. The summation iy +- - - +iy, is

called the total degree of the monomial x! and it is denoted by either deg x or ||i|;. By
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(42.13), the coefficient of 2" in 04 (x1) is ¢5 (x1) where @ = (a1, ..., 0m_1,1);
this means it is x! evaluated at &’. Another consequence of (42.13) is that the degree
of O (x') as a polynomial in terms of the variable x,, is at most ||i[|;.

Suppose h = >, ¢;x'. Then

0z(h) = Z cifa (x)
= cilpa ()il + pi(an)), (42.14)

where pi(z,) € (F[z1,...,2n_1])[zn] is a polynomial of degree at most ||i||; — 1.
The total degree of h is defined to be

max{[[il| | ¢ # 0},
and it is denoted by deg h. Suppose m := deg h, and let

h = Z oxt;

llilli=m

this means £ is the sum of all the monomials of A that have the maximum possible total
degree. Then by (42.14), we conclude that

0a(h) = Y cida (x)a) +p(xn)

llifli=m
=g ( Z ax)z™ + p(z,)
i1 =m
=h(a@" )z + p(en), (42.15)
where p(z,,) € (Flx1,...,Zn-1])[xs] is a polynomial of degree at most m — 1. Next

we will find @ such that ~(a”’) # 0. By this result and (42.15), we will finish the proof
of Lemma.

Claim. If F is an infinite field and & € Flzy, ..., z3] \ {0}, then (&) # 0 for
some @ € F*.

Proof of Claim. We proceed by induction on the number £ of variables. By Corol-
lary 7.1.5, a single variable polynomial of degree m in F[x] has at most m distinct
zeros in F'. Since F is an infinite field, E/(a) # 0 for some o € F. Next we show the
induction step. Suppose

B = hpa + - + ho

for some h;’s in F[xy,...,x_1] and h,, # 0. By the induction hypothesis,
hm(ala BREE) akfl) # 0

for some «;’s in F'. Hence

—/
hi(ai,...,op1,2k) = hm(a, ... yap_1)2g 4 -+ holay, ..., ap—1)
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is a non-zero single variable polynomial. Therefore by the single variable case,

-/

h (alv' . 'aakflaak) # 0
for some o, € F. This completes proof of the Claim. O

To finish proof of Lemma 42.5.1, we let
— _
h(ml,.. sy Ly — 1) h(l‘l,...,l‘n,hl).
Notice that since all the monomials of & have the same total degree, T is a non-zero

Eolynomlal Hence by the above Claim, I (@) # 0 for some @ € F"~L. Therefore
h(@") # 0. Thus by (42.15), we deduce that 0z (h) has the desired form. ThlS completes
the proof. O

It is worth pointing out that 6z ( f) is evaluating f at

1 —Q T
1 —ap_ Tp—1
1 Tn

This is another hidden relation of our argument for higher degree polynomial equations
and the reduced row-column process.

42.6 Hilbert’s Nullstellensatz

In this section, we prove Hilbert’s Nullstellensatz which gives us the necessary
and sufficient condition for a system of polynomial equations to have a zero over an
algebraically closed field.

Theorem 42.6.1 (Hilbert’s Nnullstellensatz, v.1). Suppose F' is an algebraically closed
field, and I is an ideal of F|x1, . ..,xy,]. Then Z(I) # & ifand only if 1 & I.

Proof. (=)If1 €I, thenZ(I) =@

(<) We proceed by induction on the number n of variables. For the base of
induction, we notice that F'[z] is a PID. Hence I = (p(x1)) for some polynomial p.
Since 1 ¢ I, p is not a nonn-zero constant polynomial. As F' is algebraically closed, p
has a zero in F'. Therefore Z(I) # &. Next we prove the induction step. If I = 0, then
Z(I) = F™, and there is nothing to prove. So we can and will assume that there is a
non-constant polynomial % in I. By Lemma 42.5.1, there is @ € F™~! such that

0z(h) = ca™ + hp_12 ™' + -+ hy (42.16)

for some h;’s in Fxy,...,2,-1] and ¢ € F*. Since 05 is an isomorphism (see
Lemma 42.5.1), 0z(I) is an ideal of F[x1,...,x,]|. By (42.16) and Lemma 42.5.1,
m:Z(0x(1)) = Z(0x(I) N Flzy, ..., 2n-1]),

(a1, ... an) = (a1,...,Gn-1).
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is surjective. Since 1 & I, 1 & 05(I). Therefore 1 & 05(I N Flz1,...,2,—1]). Hence
by the induction hypothesis, Z(0z(I) N Fx1,...,2,-1]) # <. Since 7 is surjective,
Z(0z(I)) # . Notice that
(@1, an) € Z(02(D)) <Y1 € L,02(f) a1, ., an) = 0
<:>Vf € Ia f(al +aiap, ..., an—1 + an—lanaan) =0
S(a1+ a1an, ..oy ap—1 + ap_1an,a,) € Z(I).
Therefore Z(I) # @. This completes the proof. O

Hilbert’s Nullstellensatz has many implications. For instance we can classify all
the maximal ideals of F'[z1,...,x,] when F is algebraically closed.

Theorem 42.6.2 (Hilbert’s Nullstellensatz, v.2). Suppose F is an algebraically closed
field. Then the following is a bijection:

F" — Max(F[xy,...,x,]), ar—I({a}),
where Max(+) is the set of all the maximal ideals. Moreover
ar,. .. an) = (@1 — a1, o — an).

Proof. Fora € F", let ¢, : F[z1,...,2,] — F be the map of evaluation at a. Then
by the first isomorphism theorem,

Flxy,...,x,)/ ker o ~ F.

Hence ker ¢4 € Max(F[z1,...,x,]). Notice that ker ¢ = I({a}). Therefore the
given map is well-defined.

Next we show injectivity. Notice that z; — a;’s are in I({a}) ifa = (a1,...,a,).
Hence Z(I({a})) = {a}. Therefore I({a}) = I({a’}) implies that a = a’, and we
deduce the injectivity.

Finally we show the surjectivity. Suppose M € Max(F[x1,...,x,]). Then by
Hilbert’s Nullstellensatz, version 1, there is a € Z(M ). Hence M C I({a}). Because
M is a maximal ideal, M C I({a}), and I({a}) is a proper ideal, we conclude that
M = I({a}). We obtain the surjectivity.

Since z; — a;’s are in I({a}) where a := (a1, ..., a,), we have that

<x1 —ai, ..., Tn *an> - I({a}) (42.17)

Notice that Ld(z; — a;) = z;. Hence every non-constant monomial is in the ideal
generated by Ld(z; — a;)’s. Since I({a}) is a proper ideal, for every f € I\ {0},
Ld(f) is a non-constant monomial. Therefore

Ld(f) € (Ld(z1 — a1),...,Ld(z, — an)) (42.18)
for every f € I({a}). By (42.17), (42.18), and Lemma 41.1.3, we deduce that
(k1 —a1,...,xn —ay) = I({a}).

This completes the proof. O
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Using the second version of Hilbert’s Nullstellensatz, we can understand points of
Z(I) in terms of maximal ideals.

Theorem 42.6.3 (Hilbert’s Nullstellensatz, v.3). Suppose F' is an algebraically closed

fieldand I is anideal of F[x| := Fx1,. .., xy,]. Then the following maps are bijections:
Z(I) = {M e Max(F[x]) | I C M}, awr I({a}), (42.19)
(M € Max(F[x]) | I € M} — Max (@) M ¥ (42.20)

and
Z(I) — Max (@) a s @ (42.21)

Proof. Forevery a € Z(I), we have that I C I(a). By the second version of Hilbert’s
Nullstellensatz, I({a}) is in Max(F'[x]). Therefore the map given in (42.19) is well-
defined. By the second version of Hilbert’s Nullstellensatz, a — I({a}) is injective.
Next we show surjectivity of the map given in (42.19). Suppose M € Max(F[x]) and
I C M. Then by the second version of Hilbert’s Nullstellensatz, M = I({a}) for
some a € F™. So I C I({a}), which means a € Z(I). This shows that the map given
in (42.19) is surjective.
By Lemma 9.3.4, we know that the following is a bijection

- F J
(2P 1ca - {7 %} T 2 (42.22)
Since this bijection preserves inclusion, we deduce that it sends maximal ideals to
maximal ideals. Hence the function given in (42.20) is a bijection.
The map given in (42.21) is the composite of the bijections given in (42.19) and
(42.20). Hence it is a bijection. This completes the proof. O

Another version of Hilbert’s Nullstellensatz gives us a complete understanding of
I(Z(I)). This means that it answers the following question:

What are the polynomials that vanish on the common zeros of elements of 1?

Notice that if f* € I for some positive integer n, then f™| z(y = 0. Hence
flzy = 0, which means that

{f € F[x] | f* € Ifor some positive integer n} C I(Z(I)). (42.23)

The left hand side of the inclusion given in (42.23) is called the radical of I and it
is denoted by v/I. Our final version of Hilbert’s Nullstellensatz states the equality in
(42.23) holds.

Theorem 42.6.4 (Hilbert’s Nullstellensatz, v.4). Suppose F' is an algebraically closed
field and I is an ideal of F|x1, . .., x,). Then I(Z(I)) = /1.

Proof. By (42.23), we have that /T C I(Z(I)). Now assume that f & v/I. We want
to show that f ¢ I(Z(I)). This means we would like to show that there is a € F™
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such that for every g € I, g(a) = 0 and f(a) # 0. Since an element of F' is non-zero
if and only if it is a unit, we are looking for a € F™ and b € F’ such that

g(a) =0forevery g € I and f(a)b=1. (42.24)

Existence of (a,b) € F™ x F so that (42.24) holds is equivalent saying that the
following system of polynomial equations

g(x) =0forevery g € I and f(x)y —1=0 (42.25)

have a common zero in F" "1, By the first version of. Hilbert’s Nullstellensatz, the
system of equations given in (42.25) has a common zero in F™*! if and only if the
ideal J generated by I and f(x)y — 1 in (F'[x])[y] is a proper ideal. Suppose to the
contrary that 1 € J. This implies that

1= firi(y) + -+ fare(y) + (fy — 1)s(y) (42.26)
forsome f;"sin F[x]and 1, ..., 7y, s € (F[x])[y]. Consider ¢ inthe field F (w1, ..., 2y)
of fractions of F[x1,...,z,], and evaluate r;’s and s at % This means we consider

the map of evaluation at %

o1 (FIx))lyl = F(x),61(r) = T(;)

and apply it to the both sides of (42.26). This way, we obtain

1 1
1= fm(f) T fkrk(f). 42.27)
f f
Notice that rl(%) = Jf’; for some p; € F[x]and d; € Z*. Let N := max(dy, ..., d).

Then multiplying both sides of (42.27) by f~, we obtain that

N=fig+ -+ fran

for some ¢;’s in F'[x]. Therefore % is in the ideal generated by f;’s. Hence fV € I
as f;’s are in I. This implies that f € v/T, which is a contradiction. This completes the
proof. O

Notice that if P is a prime ideal, then /P = P. This is the case as for a prime
ideal P, f* € P for some positive integer n implies that f € P. Hence by the fourth
version of Hilbert’s Nullstellensatz, we have

I(Z(P)) =P

for every prime ideal P of F[x] when F is an algebraically closed field F'.
Here is an interesting consequence of Hilbert’s Nullstellensatz in ring theory.

Proposition 42.6.5. Suppose F' is an algebraically closed field. Then for every prime
ideal P of F[x1,...,xy), we have

P= N M.

MeMax(F[x]),PCM
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Proof. By the fourth version of Hilbert’s Nullstellensatz, we have P = I(Z(P)).

Hence
P=1(Z(P)= () I{a})= N M

acZ(P) MeMax(F[x]),PCM

where the last equality holds because of the third version of Hilbert’s Nullstellensatz.
This completes the proof. O

42.7 Final remarks

Let’s finish by mentioning that not surprisingly zeros of multivariable polynomials
are much more complicated than their single variable counterpart. In the single variable
case, Z(I) is either a finite set or F.. Many of the interesting surfaces or manifolds that
we know can be viewed as the set of real or complex zeros certain system of polynomial
equations. Here are some examples:

1. Sphere: 22 + y? + 22 = 1.

2. Special linear group: SL,,(C) := {A € M, (C) | det A = 1}.
3. A curve related to Fermat’s last conjecture: X" 4+ Y" = 1.
4. Equation related to Markoff triples: x2 + y? + 22 = 3xyz.

5. Elliptic curves: y? = 23 + ax + b.

Thinking about these equations from geometric point of view gives us the needed
language to ask many interesting questions, helps us use results and tools from geometry
and topology, and brings us many unexpected connections.
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