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1 Preamble

These notes attempt to give an introduction to some basic aspects of Field Theory and Galois

Theory. Originally, the succeeding sections of these notes constituted a part of the notes

prepared to supplement the lectures of the author on Galois Theory and Ramification Theory

at the All India Summer School in Number Theory held at Pune in June 1991. Subsequently,

the first 6 sections of the Pune Notes were separated and slightly revised to form these “Notes

on Galois Theory”, which were used for pre-conference distribution to the participants of the

NBHM sponsored Instructional School on Algebraic Number Theory (University of Bombay,

December 1994) at the request of the organisers. A few minor revisions have taken place in

the subsequent years.

The main aim of these notes has always been to provide a geodesic, yet complete, presen-

tation starting from the definition of field extensions and concluding with the Fundamental

Theorem of Galois Theory. Some additional material on separable extensions and a section on

Norms and Traces is also included, and some historical comments appear as footnotes. The

prerequisite for these notes is basic knowledge of Abstract Algebra and Linear Algebra not

beyond the contents of usual undergraduate courses in these subjects. No formal background

in Galois Theory is assumed. While a complete proof of the Fundamental Theorem of Galois

Theory is given here, we do not discuss further results such as Galois’ theorem on solvability

of equations by radicals. An annotated list of references for Galois Theory appears at the end

of Section 5. By way of references for the last section, viz., Norms and Traces, we recommend

Van der Waerden’s “Algebra” (F. Ungar Pub. Co., 1949) and Zariski–Samuel’s “Commutative

Algebra, Vol. 1” (Springer-Verlag, 1975).

It appears that over the years, these notes are often used by students primarily interested

in Number Theory. Thus it may be pertinent to remark at the outset that the topics discussed

in these notes are very useful in the study of Algebraic Number Theory1. In order to derive

maximum benefit from these notes, the students are advised to attempt all the Exercises

and fill the missing steps, if any, in the proofs given. The author would appreciate receiving

comments, suggestions and criticism regarding these notes.

1In fact, questions concerning integers alone, can sometimes be answered only with the help of field ex-

tensions and certain algebraic objects associated to them. For instance, Kummer showed that the equation

Xp +Y p = Zp has no integer solution for a class of odd primes p, called regular primes, which include all odd

primes less than 100 except 37, 59 and 67. Even a convenient definition of regular primes, not to mention the

proof of Kummer’s Theorem, involves many of the algebraic notions discussed in these lectures. Indeed, an

odd prime is regular if it doesn’t divide the class number of the cyclotomic field extension |Q(ζp) of |Q. For

details, see H. Edwards’ Springer monograph “Fermat’s Last Theorem” (1977).
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2 Field Extensions

Let K be a field 2. By a (field) extension of K we mean a field containing K as a subfield.

Let a field L be an extension of K (we usually express this by saying that L/K [read: L over

K] is an extension). Then L can be considered as a vector space over K. The degree of L over

K, denoted by [L : K], is defined as

[L : K] = dimK L = the vector space dimension of L over K.

If [L : K] < ∞, we say that L is a finite extension of K or that L is finite over K. A subfield

K of IC such that [K : |Q] < ∞ is called an algebraic number field or simply a number field.

Lemma 1: Finite over finite is finite. More precisely, if L/E and E/K are field extensions,

then

L is finite over K ⇔ L is finite over E and E is finite over K

and, in this case, [L : K] = [L : E][E : K].

Proof: The implication “⇒” is obvious. The rest follows easily from the observation that

if {ui} is an E–basis of L and {vj} is a K–basis of E, then {uivj} is a K–basis of L. 2

Let L/K be a field extension. An element α ∈ L is said to be algebraic over K if it satisfies

a nonzero polynomial with coefficients in K, i.e, ∃ 0 6= f(X) ∈ K[X] such that f(α) = 0.

Given α ∈ L which is algebraic over K, we can find a monic polynomial in K[X] of least

possible degree, satisfied by α. This is unique and is called the minimal polynomial of α over

K. It is easily seen to be irreducible and we will denote it by Irr(α, K). Note that if f(X)

is any monic irreducible polynomial satisfied by α, then we must have f(X) =Irr(α, K) and

that it generates the ideal {g(X) ∈ K[X] : g(α) = 0} in K[X].3 The extension L of K is said

to be algebraic if every element of L is algebraic over K.

Lemma 2: Finite ⇒ algebraic. That is, if L/K is a finite extension, then it is algebraic.

Proof: For any α ∈ L, there must exist a positive integer n such that {1, α, α2, ..., αn} is

linearly dependent over K, thus showing that α is algebraic over K. 2

Exercise 1: Show, by an example, that the converse of the above lemma is not true, in

general.

We now study extensions for which the converse is true.

2Fields are usually denoted by K or k since the German word for field is Körper. Much of Modern

Field Theory was created by the German mathematician E. Steinitz; see his paper “Algebraische Theorie der

Körper”, Crelle Journal (1910), pp. 167–308, for an original exposition.
3It may be instructive to verify the observations made in the last few statements. General Hint: Use the

Division Algorithm in K[X ].
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Definition: Given elements α1, . . . , αn in an extension L of a field K, we define

K[α1, . . . , αn] = the smallest subring of L containing K and α1, . . . , αn

K(α1, . . . , αn) = the smallest subfield of L containing K and α1, . . . , αn.

Note that K[α1, . . . , αn] precisely consists of elements of the form f(α1, . . . , αn) where

f(X1, . . . , Xn) varies over K[X1, . . . , Xn] (= the ring of polynomials in the n variables X1, . . . , Xn

with coefficients in K) whereas K(α1, . . . , αn) precisely consists of elements of the form
f(α1,...,αn)
g(α1,...,αn)

where f(X1, . . . , Xn), g(X1, . . . , Xn) vary over K[X1, . . . , Xn] with g(α1, . . . , αn) 6= 0.

Also note that K(α1, . . . , αn) is the quotient field of K[α1, . . . , αn] in L.

Definition: An extension L of K is said to be finitely generated over K if there exist

α1, . . . , αn in L such that L = K(α1, . . . , αn). We say that L is a simple extension of K if

L = K(α) for some α ∈ L.

For simple extensions, the converse to Lemma 2 is true. In fact, we can say much more.

Lemma 3: Let α be an element in an overfield L of a field K. Then:

K(α)/K is algebraic ⇔ α is algebraic over K ⇔ K[α] = K(α) ⇔ [K(α) : K] < ∞.

Moreover, if α is algebraic over K and f(X) =Irr(α, K), then there exists an isomorphism of

K(α) onto K[X]/(f(X)) which maps α to X, the residue class of X, and the elements of K

to their residue classes.

Proof: Without loss of generality, we can and will assume that α 6= 0. The first assertion

trivially implies the second. Now, the map ϕ : K[X] → L defined by f(X) 7→ f(α) is clearly

a ring homomorphism whose image is K[α]. If α is algebraic over K, then the kernel of ϕ is

a nonzero prime ideal in K[X] and is hence a maximal ideal (prove!). So K[α] ≃ K[X]/ker ϕ

is a field containing K and α. Therefore K[α] = K(α). Next, if K[α] = K(α), we can write

α−1 = a0 + a1α + · · · + arα
r for some a0, . . . , ar ∈ K with ar 6= 0, which shows that αr+1 lies

in the K–linear span of 1, α, α2, . . . , αr, and consequently so does αr+j for any j ≥ 1. And

since 1, α, α2, . . . clearly span K[α] = K(α), it follows that [K(α) : K] ≤ r + 1 < ∞. If

[K(α) : K] < ∞, Lemma 2 shows that K(α) is algebraic over K. Moreover, if α is algebraic

over K and f(X) =Irr(α, K), then, as noted earlier, ker ϕ is generated by f(X), from which

we get the desired isomorphism between K(α) and K[X]/(f(X)). 2

Exercise 2: If α is algebraic over K, then show that [K(α) : K] equals the degree of

Irr(α, K).

Exercise 3: Try to give a more constructive proof of the fact that if α is algebraic over

K, then K[α] = K(α) by showing that for any g(X) ∈ K[X] with g(α) 6= 0, we can find

h(X) ∈ K[X] such that g(α)−1 = h(α).

The following lemma gives necessary and sufficient conditions for the converse to Lemma 2.
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Lemma 4: Let L be an extension of a field K. Then:

L is finite over K ⇔ L is algebraic and finitely generated over K.

Proof: If L is finite over K, then it is algebraic, and if u1, . . . , un is a K–basis of L, then

clearly L = K(u1, . . . , un). Conversely, if L = K(α1, . . . , αn) for some α1, . . . , αn ∈ K, then

using Lemmas 1 and 3 and induction on n, it is seen that L is finite over K. 2

Let us obtain some useful consequences of the above lemma.

Lemma 5: Algebraic over algebraic is algebraic. More precisely, if L/E and E/K are

field extensions, then:

L is algebraic over K ⇔ L is algebraic over E and E is algebraic over K

Proof: The implication “⇒” is obvious. To prove the other one, take any α ∈ L. Find

b0, b1, . . . , bn ∈ E, not all zero, such that b0 + b1α + · · · + bnαn = 0. Then α is algebraic over

K(b0, b1, . . . , bn), and K(b0, b1, . . . , bn) ⊆ E is algebraic over K. Hence, in view of Lemmas 1,

3 and 4, we see that

[K(α) : K] ≤ [K(b0, b1, . . . , bn, α) : K]

= [K(b0, b1, . . . , bn, α) : K(b0, b1, . . . , bn)][K(b0, b1, . . . , bn) : K]

< ∞

which shows that α is algebraic over K. 2

Lemma 6: Let L be an extension of a field K and let

E = {α ∈ L : α is algebraic over K}.

Then E is a subfield of L containing K.

Proof: Clearly K ⊆ E ⊆ L. Given any α, β ∈ E, by Lemma 3, we see that

[K(α, β) : K] = [K(α, β) : K(α)][K(α) : K] < ∞

and therefore every element of K(α, β) is algebraic over K. So α + β, α − β, αβ ∈ E and if

β 6= 0, then α
β
∈ E, and hence E is a subfield of L. 2

Exercise 4: Given elements α, β, algebraic over a field K, can you explicitly find polynomials

in K[X] satisfied by α + β, αβ? Find, for instance, a polynomial, preferably irreducible,

satisfied by
√

2 +
√

3.
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3 Splitting Fields and Normal Extensions

Galois Theory, at least in its original version, has to do with roots of polynomial equations.

This motivates much of what is done in this section.

Let K be a field. By a root of a polynomial f(X) ∈ K[X] we mean an element α in an

overfield of K such that f(α) = 0. It is easy to see that a nonzero polynomial in K[X] of

degree n has at most n roots (Verify!). The following lemma, usually attributed to Kronecker,

shows, by a method not unlike witchcraft, that roots can always be found.

Lemma 7: Let f(X) ∈ K[X] be a nonconstant polynomial of degree n. Then there exists

an extension E of K such that [E : K] ≤ n and f(X) has a root in E.

Proof: Let g(X) be a monic irreducible factor of f(X). Then (g(X)), the ideal generated

by g(X) in K[X], is a maximal ideal and hence E = K[X]/(g(X)) is a field. Let σ : K[X] → E

be the canonical homomorphism which maps an element in K[X] to its residue class modulo

(g(X)). Note that σ|K is injective and hence K may be regarded as a subfield of E. Let

α = σ(X). Then g(α) = g(σ(X)) = σ(g(X)) = 0, and hence f(α) = 0. From Lemma 3 and

Exercise 2, it follows that [E : K] = deg g(X) ≤ n. 2

Remark: The above proof, though common in many texts, is slightly imprecise. To be

pedantic, an actual extension E of K as in the statement of Lemma 6 can be constructed by

putting

E = (σ(K[X])\σ(K)) ∪ K

where σ is as in the above proof, and by defining field operations on E in an obvious manner.

Note that we then have E ≃ σ(K[X]).

To study the roots of a polynomial f(X) ∈ K[X], it seems natural to be in a nice set

containing all the roots of f(X) and which, in some sense, is the smallest such. This is

afforded by the following.

Definition: Let f(X) ∈ K[X] be a nonconstant polynomial. By a splitting field of f(X)

over K we mean an extension L of K such that f(X) splits into linear factors in L and L is

generated over K by the roots of f(X) in L, i.e.,

(i) f(X) = c(X − α1) . . . (X − αn) for some c ∈ K and α1, . . . , αn ∈ L.

(ii) L = K(α1, . . . , αn).

Lemma 8: Given any nonconstant polynomial f(X) ∈ K[X] of degree n, there exists a

splitting field L of f(X) over K such that [L : K] ≤ n!.

Proof: Induct on n. If n = 1, then L = K does the job. For n > 1, by Lemma

7, we can find an extension E of K such that [E : K] ≤ n and f(X) = (X − α)g(X)

for some α ∈ E and g(X) ∈ E[X]. Since deg g(X) = n − 1 ≥ 1, a splitting field, say

L, of g(X) over E exists. Clearly, L is also a splitting field of f(X) over K; moreover,

[L : K] = [L : E][E : K] ≤ (n − 1)!n = n!. 2
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Notation: Given any fields K and K ′, a homomorphism σ : K → K ′, and a polynomial

f(X) ∈ K[X], by fσ(X) we denote the corresponding polynomial in K ′[X], i.e., if f(X) =
∑

aiX
i then fσ(X) =

∑

σ(ai)X
i. Note that f(X) 7→ fσ(X) gives a homomorphism of

K[X] → K ′[X] which is an isomorphism if σ is an isomorphism.

The following lemma will help us prove that a splitting field is unique up to isomorphism.

Lemma 9: Let K and K ′ be fields and σ : K → K ′ be an isomorphism. Let g(X) ∈ K[X]

be an irreducible polynomial and let α and α′ be roots of g(X) and gσ(X) in some extensions

of K and K ′ respectively. Then there exists an isomorphism η : K(α) → K ′(α′) such that

η|K = σ and η(α) = α′.

Proof: Clearly σ gives an isomorphism of K[X] onto K ′[X], which, in turn, induces an

isomorphism of K[X]/(g(X)) onto K ′[X]/(gσ(X)). By Lemma 3, we get an isomorphism of

K(α) onto the former and of K ′(α′) onto the latter. By suitably composing these maps, we

obtain an isomorphism η : K(α) → K ′(α′) such that η|K = σ and η(α) = α′. 2

Note: A field has no proper ideals. This means that a homomorphism of a field (into

a ring) is either injective or maps everything to 0. If L is an extension of K, by a K–

homomorphism of L we mean a homomorphism σ : L → L′, where L′ is some extension of

K, which is identity on K, i.e., σ(c) = c ∀ c ∈ K. Observe that a K–homomorphism is

always injective.4 Also observe that, when L/K is finite, a K–homomorphism σ : L → L is

necessarily an automorphism (= isomorphism onto itself) of L [because σ(L) is a subspace of

L and the vector space dimension over K of L and σ(L) is the same].

Before proving the uniqueness of splitting fields, let us deduce an important consequence

of the above lemma.

Corollary: Let α be algebraic over K and f(X) = Irr(α, K). Let L be any extension of

K containing a splitting field of f(X). Then the number of K–homomorphisms of K(α) to L

is equal to the number of distinct roots of f(X); in particular, this number is ≤ [K(α) : K]

with equality holding if and only if all roots of f(X) are distinct.

Proof: Let α1, . . . , αr ∈ L be all possible distinct roots of f(X). By Lemma 9, there

exist K–isomorphisms ηi : K(α) → K(αi) such that ηi(α) = αi (1 ≤ i ≤ r). Moreover, if

σ : K(α) → L is any K–homomorphism, then fσ(X) = f(X), and hence σ(α) = αi for some

i, which shows that σ = ηi. The inequality r ≤ [K(α) : K] follows from Exercise 2. 2

Lemma 10: Let K and K ′ be fields and σ : K → K ′ be an isomorphism. Let f(X) ∈ K[X]

be any nonconstant polynomial and let L and L′ be splitting fields of f(X) and fσ(X) over

K and K ′ respectively. Then there exists an isomorphism τ : L → L′ such that τ |K = σ.

Moreover, the number of such isomorphisms is ≤ [L : K].

Proof: Let n = deg f(X) = deg fσ(X) ≥ 1. We proceed by induction on n. If n = 1, we

4Indeed, 1 ∈ K and σ(1) = 1 6= 0.
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must have L = K and L′ = K ′, so the assertion follows with τ = σ. Suppose n > 1. Let

g(X) be a monic irreducible factor of f(X). Let α and α′ be roots of g(X) and gσ(X) in L

and L′ respectively. By Lemma 9, we can find a K–isomorphism η : K(α) → K(α′) such that

η|K = σ and η(α) = α′. Now write f(X) = (X − α)h(X) for some h(X) ∈ K(α)[X] and

note that L and L′ are splitting fields of h(X) and hσ(X) over K(α) and K ′(α) respectively.

Using the induction hypothesis, we get the desired isomorphism, and, in view of the above

Corollary, also the desired inequality. 2

Taking K = K ′ and σ to be the identity map in the above Lemma, we get

Corollary: Any two splitting fields over K of a nonconstant polynomial in K[X] are

K–isomorphic. 2

A notion closely related to splitting fields is defined below.

Definition: An extension L of K such that whenever an irreducible polynomial in K[X]

has a root in L it has all its roots in L, is called a normal extension.

And here is the connection.

Lemma 11: Let L/K be a finite extension. Then the following statements are equivalent.

(1) L is a normal extension of K.

(2) L is a splitting field of a polynomial in K[X].

(3) Any K–homomorphism σ : L → L′, where L′ is any extension of L, is an

automorphism of L.

Proof: (1) ⇒ (2): Since L/K is finite, we can write L = K(α1, . . . , αn) for some α1, . . . , αn ∈
L. Let fi(X) = Irr(αi, K) and f(X) =

∏n
i=1 fi(X). Then, by our hypothesis, all the roots of

f(X) are in L. Also L is clearly generated (over K) by these roots.

(2) ⇒ (3): Let L = K(α1, . . . , αn) be a splitting field of some f(X) ∈ K[X] where α1, . . . , αn

are the roots of f(X) in L. If σ : L → L′ is any K–homomorphism, then fσ(X) = f(X) and

hence σ(αi) must be a root of f(X). Since σ is injective, it permutes the roots of f(X), and

therefore σ(L) = L.

(3) ⇒ (1): Let f(X) be any irreducible polynomial having a root α ∈ L. Let β be any

other root of f(X). Let L′ be a splitting field of f(X) over L so that β ∈ L′. By Lemma

9, there exists a K–isomorphism η : K(α) → K(β) such that η(α) = β. By Lemma 10, η

can be extended to a K–isomorphism τ : L′ → L′. Let σ = τ |L. Then, by our hypothesis,

β = σ(α) ∈ L. 2

Remark: The above lemma also holds for infinite algebraic extensions provided in (2) we

replace “a polynomial” by “a family of polynomials”. Verify!

Example: The usual formula for the roots of a quadratic equation shows that an extension

of degree 2 is always normal. Extensions of |Q of degree 2 are called quadratic fields. If ω is

a “primitive n–th root of unity” (i.e., ωn = 1 and ωm 6= 1 for 1 ≤ m < n), then |Q(ω) is a

normal extension of |Q (prove!); it is called the cyclotomic field of the n–th roots of unity.
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Exercise 5: Prove that if an algebraic extension L/K is normal and E is a subfield of L

containing K, then L/E is also normal.

Exercise 6: Show, by an example, that normal over normal need not be normal.

Exercise 7: Show that if L/K is any finite extension, then we can find a least normal

extension of K containing L (as a subfield), i.e., an extension N of L such that N/K is

normal, and no proper subfield of N containing L is normal over K; note that any such N is

finite over K. Show that any two least normal extensions of K containing L are K–isomorphic.

4 Separable Extensions

Let K be a field. An irreducible polynomial in K[X] is said to be separable if all its roots (in

its splitting field) are distinct. An element α, which is algebraic over K, is said to be separable

if Irr(α, K) is a separable polynomial. An algebraic extension L of K is called separable if

every element of L is separable over K.

Assuming an extension to be separable can lead to nice consequences such as the following

Lemma 12 (Primitive Element Theorem): Finite separable extensions are simple.

Proof: Let L/K be a finite separable extension. If K is finite, then so is L, and using

the well-known fact that the multiplicative group of the nonzero elements of a finite field is

cyclic,5 we can find θ ∈ L which generates N = L \ {0}; clearly L = K(θ), and thus L/K

is simple. Now assume that K is infinite. Obviously L is finitely generated over K and so it

suffices to show that if L = K(α, β), then we can find a “primitive element” θ ∈ L so that

L = K(θ). Let f(X) = Irr(α, K) and g(X) = Irr(β, K). Suppose α1, . . . , αm and β1, . . . , βn

are the roots of f(X) and g(X) respectively with α1 = α and β1 = β. By hypothesis, αi 6= αj

and βi 6= βj for all i 6= j. Since K is infinite, we can find an element c ∈ K such that

c 6= αi − αj

βr − βs

for all choices of i, j, r, s such that 1 ≤ i, j ≤ m, 1 ≤ r, s ≤ n and r 6= s.

Let θ = α+cβ and h(X) = f(θ−cX). Clearly h(X) ∈ K(θ)[X] and h(β) = 0. Also h(βj) 6= 0

for j ≥ 2 lest c = αi−α
β−βj

for some i ≥ 1. It follows that the GCD of g(X) and h(X) in K(θ)[X]

must be X − β. Hence β ∈ K(θ), and consequently, α ∈ K(θ). Thus K(θ) = K(α, β) = L. 2

Remark: Note that the above proof actually shows that if either one of α or β is separable

over K, then K(α, β)/K is simple.

To check separability, the notion of derivatives comes in handy. In Algebra, derivatives

can be defined in a purely formal manner (i.e., without involving limits) as follows. Given

5A proof of this fact may be taken as an exercise. A hint is to take the maximum order, say m, of the

elements of the multiplicative group, and note that the order of every element divides m whereas the equation

Xm = 1 has at most m solutions in the field.
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any f(X) ∈ K[X], let f(X) =
∑n

i=0 aiX
i, with ai ∈ K, and define the derivative of f(X),

denoted by f ′(X), by f ′(X) =
∑n

i=1 iaiX
i−1. The usual properties such as linearity [i.e.,

(af ± bg)′ = af ′ ± bg′], product rule [i.e., (fg)′ = f ′g + fg′], can be easily checked using this

definition. Now recall that an element α in an extension L of K is called a multiple root of

f(X) ∈ K[X] if f(X) = (X − α)2g(X) for some g(X) ∈ L[X].

Lemma 13: Let f(X) be an irreducible polynomial in K[X]. Then

f(X) has a multiple root ⇔ f ′(X) = 0.

Proof: If α is a multiple root of f(X), then, by the product rule, f ′(α) = 0. But f(X),

being irreducible, is a polynomial of the least degree satisfied by α, which contradicts the fact

that deg f ′(X) < deg f(X) unless f ′(X) = 0. Conversely if f ′(X) = 0, then any root of f(X)

is a multiple root. 2

Exercise 8: Let ZZ/pZZ be the field of residue classes of integers modulo a prime number p.

Let q = pn and IFq denote the splitting field of Xq − X over ZZ/pZZ. Show that IFq is a finite

field containing q elements and that it is a separable and normal extension of ZZ/pZZ.6

Exercise 9: Let F be a finite field. Show that |F |, the cardinality of F , must equal pn for

some prime p, and that F is isomorphic to IFpn.

Definition: A field K is said to be perfect if either char(K), the characteristic of K, is 0,

or char(K) = p 6= 0 and K = Kp, i.e., for any α ∈ K, there exists β ∈ K such that α = βp.

Lemma 14: Any algebraic extension of a perfect field is separable.

Proof: Let K be a perfect field and L be an extension of K. Let α ∈ L and Irr(α, K) =

f(X) =
∑n

i=0 aiX
i. If α is not separable, then f(X) has multiple roots and hence f ′(X) =

∑n
i=1 iaiX

i−1 = 0. In case char(K) = 0, we get ai = 0 for all i ≥ 1, which is a contradiction.

In case char(K) = p 6= 0, we have ai = 0 if p 6 |i. Since K is perfect, we can find bi ∈ K such

that ai = bp
i , and thus f(X) = g(X)p where g(X) =

∑

p|i biX
i/p ∈ K[X], which contradicts

the irreducibility of f(X). 2

Exercise 10: Prove that the converse of Lemma 14 is also true. That is, if K is a field such

that every algebraic extension of K is separable, then K is perfect.

Exercise 11: Prove that a finite field is perfect.

Exercise 12: Show that not everything is perfect! More precisely, let k be a field of char-

acteristic p 6= 0, and K = k(t) be the field of rational functions in an indeterminate t over

k. Let L be an algebraic extension of K containing a root of Xp − t. Show that L is not

separable over K. In particular, inseparable (= not separable) extensions and imperfect (=

not perfect) fields do exist.

6Finite fields are often called Galois fields, and IFq is sometimes denoted by GF (q); these fields were first

studied by E. Galois in a paper, published in 1830, entitled “Sur la theorié des nomberes”.
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Exercise 13: Let L/K be a finite extension of degree n. Show that L/K is separable if and

only if there are n distinct K–homomorphisms of L into N , for any normal extension N/K

containing L as a subfield. [Hint: Use Lemma 12 and the Corollary to Lemma 9]. Further show

that if L/K is separable and E is a subfield of L containing K, then each K–homomorphism

of E into N has exactly [L : E] distinct extensions to L.

Exercise 14: Show that separable over separable is separable. More precisely, if L/E and

E/K are algebraic extensions, then show that L/K is separable iff both L/E and E/K are

separable. [Hint: For the nontrivial implication, reduce to the case of finite extensions and

use Exercise 13]. Deduce that if α1, . . . , αn are algebraic and separable over a field K, then

K(α1, . . . , αn) is a separable extension of K. Further deduce that if L/K is a finite separable

extension and N is a least normal extension of K containing L, then N/K is also a finite

separable extension [in this case N is called a least Galois extension of K containing L].

In Number Theory, the fields occurring are algebraic extensions of |Q or ZZ/pZZ, and thus,

in view of Lemma 14 and Exercise 11, we only have to deal with separable extensions.

5 Galois Theory

Let K be a field. Given any polynomial f(X) ∈ K[X] having distinct roots, the splitting

field L of f(X) over K is a finite, normal and separable extension. The essence of Galois

theory lies in the association of a group G, known as Galois group, to such a polynomial or

more generally, to an extension L/K with the above properties. Intrinsic properties of the

polynomial f(X) (or the extension L/K) are nicely captured in this group. A main result of

Galois Theory establishes a one–to–one correspondence between the subgroups of G and the

subfields of L containing K. This enabled Galois to obtain his celebrated results in Theory of

Equations.7

To describe the Galois group and the said correspondence, let us begin with some

Definitions: Let L/K be a field extension.

(1) The Galois group of L/K, denoted by Gal(L/K), is defined by

Gal(L/K) = the group of all K–automorphisms of L

7Galois showed that the equation f(X) = 0 is solvable by radicals (like the quadratic equation) if and only

if G, the Galois group of f(X), is a solvable group. The Galois group of a general equation of degree n turns

out to be Sn, which is not solvable for n ≥ 5, and thus general equations of degree 5 or more cannot be solved

by radicals. For details, see any of the references given at the end of this section. It may be worth noting that

Evariste Galois, the inventor of Galois theory, did his work at a very early age. He was born in October 1811,

and he died twenty years and seven months later in a duel.
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(2) L/K is said to be a Galois extension if it is finite, normal and separable.8

(3) For a subgroup H of Gal(L/K), the fixed field of H , denoted by LH , is defined by

LH = {α ∈ L : σ(α) = α for all σ ∈ H}.

Note that Gal(L/K) is indeed a group (with composition of maps as the group operation)

and that LH is a subfield of L containing K. Also note that if L/K is a Galois extension,

then for any subfield E of L containing K, L/E is also a Galois extension (cf. Exercise 5)

and Gal(L/E) is a subgroup of Gal(L/K).

Theorem 1 (Fundamental Theorem of Galois Theory): Let L/K be a Galois ex-

tension. Then Gal(L/K) is a finite group of order [L : K], and there is a bijection between

the subfields E of L containing K and the subgroups H of Gal(L/K), given by

E 7→ Gal(L/E) with the inverse given by H 7→ LH .

In particular, K is the fixed field of Gal(L/K).

Note that this bijection is inclusion–reversing. It also has additional nice properties which

can be deduced from the above Theorem.

Corollary (Supplement to the Fundamental Theorem of Galois Theory): Let

L/K be a Galois extension and E be a subfield of L containing K. Then E/K is a finite

separable extension, and

E/K is a normal extension ⇔ Gal(L/E) is a normal subgroup of Gal(L/K)

and, in this case,

Gal(E/K) is isomorphic to the quotient group
Gal(L/K)

Gal(L/E)
.

A proof of the above Theorem will be given by piecing together the following lemmas.

Lemma 15: Let L/E be a Galois extension. Then Gal(L/E) is a finite group of order

[L : E] and E is its fixed field.

Proof: By Primitive Element Theorem, L = E(α) for some α ∈ L. Now Irr(α, E) is of

degree n = [L : E] and, since L/E is normal and separable, it has n distinct roots in L.

By Corollary to Lemma 9, we see that there are exactly n distinct E–automorphisms of L,

i.e, |Gal(L/E)| = n. If β is in the fixed field of Gal(L/E) and β 6∈ E, then we can find

β ′ ∈ L such that β ′ 6= β and β ′ is a root of Irr(β, E). By Lemma 9, there exists an E–

isomorphism η : E(β) → E(β ′) with η(β) = β ′, and, by Lemma 10, this can be extended to

8It may be noted that by a Galois extension, some authors mean an extension which is algebraic, normal,

and separable, i.e., they don’t require it to be finite.
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an E–automorphism σ : L → L. Now σ ∈ Gal(L/E) and σ(β) = β ′ 6= β, which contradicts

the assumption on β. 2

The following result is a key step in the proof of the above Theorem.

Lemma 16: Let L/K be a field extension and H be a finite subgroup of Gal(L/K). Then

L/LH is a Galois extension and Gal(L/LH) = H .

Proof: Let α ∈ L and H = {σ1, . . . , σn} where σ1, . . . , σn are distinct elements so arranged

that {σ(α) : σ ∈ H} = {σ1(α), . . . , σm(α)} for some m ≤ n. Notice that σ1(α), . . . , σm(α) are

distinct and for any τ ∈ H , we have

{τσ1(α), . . . , τσm(α)} = {τσ(α) : σ ∈ H} = {σ1(α), . . . , σm(α)}.

Consider the polynomial

f(X) =

m
∏

i=1

(X − σi(α)) and note that f τ (X) =

m
∏

i=1

(X − τσi(α)) =

m
∏

i=1

(X − σi(α)) = f(X).

So every τ ∈ H fixes the coefficients of f(X), and hence f(X) ∈ LH [X]. Also f(α) = 0 and

if g(X) = Irr(α, LH), then g(σi(α)) = σi(g(α)) = 0 for all i = 1, . . . , m. Thus deg g(X) ≥
deg f(X), and, since g(X) is the minimal polynomial of α over LH , we have g(X) = f(X).

Therefore α is algebraic and separable over LH , and moreover, [LH(α) : LH ] = m ≤ n = |H|.
Now choose α ∈ L such that [LH(α) : LH ] is maximal. Then we must have L = LH(α). To

see this, assume the contrary. Then we can find β ∈ L such that β 6∈ LH and we note that,

by Lemma 1, [LH(α, β) : LH ] > [LH(α) : LH ] and that, by Lemma 12, LH(α, β) is a simple

extension of LH . But this contradicts the maximality of [LH(α) : LH ]. Hence L = LH(α) and

thus L/LH is a Galois extension. Moreover, H ⊆ Gal(L/LH) and, in view of Lemma 15, we

have Gal(L/LH) = [L : LH ] = deg Irr(α, LH) ≤ |H|. Therefore H = Gal(L/LH). 2

Remark: Note that the subfield K did not play any role in the above proof. In fact, we

could have taken H to be any finite group of automorphisms of L.

Proof of the Fundamental Theorem of Galois Theory: Let L/K be a Galois extension.

From Lemma 15, it follows that the composite of the maps given by E 7→ Gal(L/E) and

H 7→ LH is identity, i.e., Gal(L/E) is a subgroup of Gal(L/K) and LGal(L/E) = E. From

Lemma 16, it follows that the other composite is identity, i.e., LH is a subfield of L containing

K, L/LH is a Galois extension, and Gal(L/LH) = H . Thus we have a bijection as desired. 2

Proof of the Supplement to FTGT: Let L/K be a Galois extension and E be a sub-

field of L containing K. The finiteness and separability of E/K is obvious. For any σ ∈
Gal(L/K), σ(E) is a subfield of L containing K, and it is easy to see that

Gal(L/σ(E)) = σGal(L/E)σ−1.
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From Lemma 11, it follows that

E/K is a normal extension ⇔ σ(E) = E for all σ ∈ Gal(L/K).

Consequently, if E/K is a normal extension, then Gal(L/E) is a normal subgroup of Gal(L/K).

To prove the converse, note that for any σ ∈ Gal(L/K), by Lemma 15, we have that

the fixed field of Gal(L/E) = E and the fixed field of σGal(L/E)σ−1 = σ(E).

Therefore if Gal(L/E) is a normal subgroup of Gal(L/K), we have σ(E) = E for any

σ ∈Gal(L/K), and hence E/K is normal. In the case E/K is normal, it is Galois, and

the map σ 7→ σ|E defines a group homomorphism of Gal(L/K) into Gal(E/K). By Lemma

10, any K–automorphism of E can be extended to a K–automorphism of L, which shows that

this group homomorphism is surjective. Hence Gal(E/K) is isomorphic to the quotient group

Gal(L/K)/Gal(L/E). 2

Remark: Let f(X) ∈ K[X] be a nonconstant polynomial of degree n having distinct roots

α1, . . . , αn. Let L = K(α1, . . . , αn) be the splitting field of f(X) over K. Then Gal(L/K)

is called the Galois group of f(X) over K, and may be denoted by Gf . Note that a K–

automorphism of L gives a permutation of the n roots α1, . . . , αn, which uniquely determines

this automorphism. Thus Gf can be considered as a subgroup of Sn, the group of all permu-

tations of n symbols. A more concrete definition of Gf , which doesn’t involve automorphisms,

is as follows.

Gf = {σ ∈ Sn : Φ(ασ(1), . . . , ασ(n)) = 0 whenever Φ(X1, . . . , Xn) ∈ K[X1, . . . , Xn]

satisfies Φ(α1, . . . , αn) = 0}.

Exercise 15: Let f(X) and Gf be as in the above Remark. Prove that f(X) is irreducible

if and only if Gf is transitive. [A subgroup H of Sn is said to be transitive if for any i, j ∈
{1, . . . , n}, there exists σ ∈ H such that σ(i) = j.]

Exercise 16: Let F be a finite field containing q elements and E be a finite extension of

F . Show that E/F is a Galois extension and that Gal(E/F ) is cyclic; in fact, the “Frobenius

map” α 7→ αq defines an F–automorphism of E, which generates Gal(E/F ).

Definition: A Galois extension L/K is said to be abelian (resp: cyclic) if its Galois group

Gal(L/K) is abelian9 (resp: cyclic).

Exercise 17: Let E and F be subfields of a field L and K be a subfield of E ∩ F . Let EF

denote the smallest subfield of L containing E and F (this looks like {
∑

αiβi : αi ∈ E, βi ∈
9The term ‘abelian’ is derived from the name of the Norwegian mathematician N. H. Abel who proved,

around 1829, that a certain class of equations is always solvable by radicals. In the modern terminology, this

is precisely the class of equations whose Galois group is commutative. The usage of ‘abelian’ seems to have

been initiated by L. Kronecker who, in 1853, announced that the roots of every abelian equation with integer
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F}, and is called the compositum of E and F ). Show that if E/K is Galois, then so is EF/F ,

and that σ 7→ σ|E is an injective homomorphism of Gal(EF/F ) into Gal(E/K) which is an

isomorphism if K = E ∩ F . Also show that if E/K and F/K are Galois and K = E ∩ F ,

then Gal(EF/K) ≃ Gal(E/K) × Gal(F/K). In particular, if Gal(E/K) and Gal(F/K) are

abelian, then so is Gal(EF/K), and thus one can talk of the maximal abelian extension of K

in L.

Exercise 18: Let L/K be a Galois extension and G = Gal(L/K). Let H be the commutator

subgroup of G, i.e, the subgroup generated by the elements στσ−1τ−1 as σ, τ vary over elements

of G. Show that H is a normal subgroup of G and the fixed field LH is an abelian extension

of K with Gal(LH/K) isomorphic to the ‘abelianization’ of G, viz., G/H . Further show that

LH is, in fact, the maximal abelian extension of K contained in L.

There is more to Galois Theory than what has been discussed so far. Our objectives being

limited, we haven’t said anything about computing the Galois group of a given polynomial

or a given extension. No general method is known. There are, however, various techniques

which sometimes help in determining the Galois group. It may be mentioned that one of

the major open problems in the area, called the Inverse Problem of Galois Theory or the

Construction Problem of Number Theory, is whether any finite group G is the Galois group

of some (normal) extension of |Q. 10 As an aid for further studies, we give below a list of

relevant books with some (highly subjective) remarks.

Annotated List of Reference for Galois Theory

Books on Galois Theory, or Abstract Algebra in general, seem quite abundant these days.

We will mention only a few.

[1] E. Artin, Galois Theory, 2nd Ed., Notre Dame Press, 1956.

a classic little text on which most of the modern treatments of Galois theory are based.

[2] M. Artin, Algebra, Prentice Hall Inc., 1991 (Ch. 14).

a novel text on Algebra with a friendly introduction to the rudiments of Galois Theory.

[3] H. Edwards, Galois Theory, Springer GTM 101, 1984.

a historically guided treatment; contains a translation of Galois’ original memoirs.

[4] I. Herstein, Topics in Algebra, 2nd Ed., John Wiley, 1975 (Ch. V).

elementary and verbose; may be well–suited for an undergraduate course

coefficients can be represented as rational functions of roots of unity, a result which is nowadays known as

the Kronecker–Weber Theorem and is usually expressed as: every abelian extension of |Q is contained in a

cyclotomic field. In an 1870 paper, Kronecker formally defined “abstract abelian groups” and proved what is

now known as the Structure Theorem for Finite Abelian Groups. To get an idea of Abel’s work on solvability

by radicals, see Van der Waerden’s enchanting book “A History of Algebra”, Springer (1985).
10It is not difficult to see that the answer is Yes if G is an abelian group. For recent work on this problem,

see the article by B. Matzat in the MSRI Proceedings on “Galois groups over |Q” published by Springer (1988)

or his german book “Konstruktive Galoistheorie”, Springer LNM 1284 (1987).
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[5] T. Hungerford, Algebra, Springer GTM 73, 1980 (Ch. V).

a useful reference; contains a treatment applying also to infinite extensions.

[6] N. Jacobson, Basic Algebra I, 2nd Ed., W. H. Freeman, 1985 (Ch. IV).

the introduction to the chapter is highly readable and informative; the 2nd Ed. has a valuable

section on mod p reduction.

[7] S. Lang, Algebra, 2nd Ed., Addison–Wesley, 1984 (Ch. VII, VIII).

a neat exposition of the elements of Galois theory as well as more advanced material; contains a

good collection of exercises.

[8] TIFR Mathematical Pamphlet on Galois Theory, No. 3, 1965.

short, self–contained, neat, and thorough; seek elsewhere for motivation and history.

6 Norms and Traces

In the study of finite field extensions L/K, a useful passage from L to K is provided by

the functions called Norm and Trace. These notions can be used in defining the so called

discriminant, which plays an important role in Number Theory.

Definition: Let L/K be a finite extension of degree n and α be any element of L. Let

(aij) be an n × n matrix, with entries in K, corresponding to the K–linear transformation

x 7→ αx of L into itself, i.e., for some K–basis {u1, . . . , un} of L, we have

αui =
n

∑

j=1

aijuj i = 1, . . . , n.

The trace of α w.r.t. L/K, denoted by TrL/K(α) or simply Tr(α), is defined by

Tr(α) =

n
∑

i=1

aii.

The norm of α w.r.t. L/K, denoted by NL/K(α) or simply N(α), is defined by

N(α) = det(aij).

We also define the field polynomial of α w.r.t. L/K 11 to be the polynomial Φ(X) ∈ K[X]

given by

Φ(X) = det(Xδij − aij) [where δij is the Kronecker delta].

Note that TrL/K(α), NL/K(α), and Φ(X) are independent of the choice of a K–basis of L, and

depend only upon the extension L/K and the element α.

11this is sometimes called the characteristic polynomial of α w.r.t. L/K; indeed, it is the characteristic

polynomial of the matrix (aij) [or the corresponding linear transformation] in the sense of Linear Algebra.
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Lemma 17: Let L/K be a finite extension of degree n and α ∈ L. Then:

(1) TrL/K is a K–linear map, i.e.,

TrL/K(aα + bβ) = aTrL/K(α) + bTrL/K(β) ∀ a, b ∈ K, α, β ∈ L.

(2) NL/K is multiplicative, i.e.,

NL/K(αβ) = NL/K(α)NL/K(β) ∀α, β ∈ L.

(3) For any a ∈ K, we have

TrL/K(a) = na and NL/K(a) = an.

Proof: Assertions (1) and (2) follow from the fact that (aaij + bbij) and (
∑n

k=1 bikakj) are

n×n matrices corresponding to the K–linear transformations x 7→ (aα+bβ)x and x 7→ (αβ)x,

where (aij) and b(ij) are n×n matrices corresponding to the K–linear transformations x 7→ αx

and x 7→ βx. Moreover, for any a ∈ K, (aδij) is a matrix corresponding to the K–linear

transformation x 7→ ax, and hence we get (3). 2

Note that a field polynomial is monic of degree equal to the degree of the corresponding

extension. Its relation to the trace and the norm is given in the following

Lemma 18: Let L/K be a finite extension of degree n and α ∈ L. Let Φ(X) = Xn +

a1X
n−1 + · · · + an be the field polynomial of α w.r.t. L/K. Then TrL/K(α) = −a1 and

NL/K(α) = (−1)nan.

Proof: Let aij be a matrix corresponding to the K–linear transformation x 7→ αx of L into

itself. Expanding det(Xδij−aij), it is easily seen that the coefficient of Xn−1 is −(a11+· · ·+ann)

and the constant coefficient is (−1)n det(aij). 2

Lemma 19: Let L/K be a finite extension, α ∈ L, and Φ(X) be the field polynomial of

α w.r.t. L/K. Suppose E is a subfield of L containing K such that α ∈ E and Ψ(X) is the

field polynomial of α w.r.t. E/K. Then

Φ(X) = Ψ(X)[L:E]

and, in particular,

TrL/K(α) = [L : E]
(

TrE/K(α)
)

and NL/K(α) =
(

NE/K(α)
)[L:E]

.

Proof: Let {u1, . . . ur} be an E–basis of L and {v1, . . . , vs} be a K–basis of E. Then

{uivj : 1 ≤ i ≤ r, 1 ≤ j ≤ s}, ordered lexicographically (say), is a K–basis of L. If (ajl) is

the s × s matrix such that

αvj =

s
∑

l=1

ajlvl j = 1, . . . , s
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then, for 1 ≤ i ≤ r and 1 ≤ j ≤ s, we have

α(uivj) =
s

∑

l=1

ajl(uivl) =
∑

1≤k≤r

1≤l≤s

ajlδik(ukvl).

Now (ajlδik) [where (i, j) and (k, l) vary, in a lexicographic order, over the set {1, . . . , r} ×
{1, . . . , s}] is the rs × rs matrix corresponding to the K–linear transformation x 7→ αx of L

into itself. The rs × rs identity matrix can be represented as (δikδjl), and so

Φ(X) = det (Xδikδjl − ajlδik) = det (δik[Xδjl − ajl]) = [det (Xδjl − ajl)]
r .

Thus Φ(X) = Ψ(X)[L:E]. The rest is evident. 2

Corollary: Let L/K be a finite extension and α ∈ L. Then the field polynomial Φ(X)

of α w.r.t. L/K is a power of the minimal polynomial of α over K. In fact, Φ(X) =

[Irr(α, K)][L:K(α)].

Proof: Let Ψ(X) be the field polynomial of α w.r.t. K(α)/K. Then Ψ(X) is a monic

polynomial in K[X] with Ψ(α) = 0 and deg Ψ(X) = [K(α) : K] = deg Irr(α, K). Hence

Ψ(X) = Irr(α, K). Our assertion now follows from the previous Lemma. 2

Remark: The field polynomial is usually easy to compute and, in view of the above results,

it often helps in finding the minimal polynomial.

We now proceed to give an alternate expression for the trace and norm.

Definition: Two elements α and α′ in an extension of a field K are said to be conjugates

of each other if there exists a K–isomorphism of K(α) onto K(α′) which maps α to α′.

Note that, in view of Lemma 9, α and α′ are conjugates over K if and only if they have

the same minimal polynomial over K. Also note that α and α′ are conjugates over K if and

only if α′ = σ(α) for some K–homomorphism σ of K(α) into an extension of K containing α′.

Let L/K be a finite separable extension of degree n, α ∈ L, and N be a normal extension

of K containing L [such N exists by Exercise 7; it can, for example, be the least Galois

extension of K containing L]. By Lemma 12 and the Corollary to Lemma 9, we see that there

exist exactly n distinct K–isomorphisms σ1, . . . , σn of L into N . Clearly, σi(α) and α are

conjugates over K for each i with 1 ≤ i ≤ n. The n elements σ1(α), . . . , σn(α) will be called

the conjugates of α w.r.t. L/K; these are uniquely determined provided we fix our N . Note

that these n elements need not be distinct; in fact, the number of distinct conjugates among

these is [K(α) : K] and each of these is repeated exactly [L : K(α)] times. (This follows from

Exercise 12. Verify!)

Lemma 20: Let L/K be a finite separable extension of degree n and α ∈ L. Fix a normal

extension N of K containing L. Then:
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(1) TrL/K(α) is the sum of all conjugates of α w.r.t. L/K. In particular, if L/K is Galois,

then

TrL/K(α) =
∑

σ∈Gal(L/K)

σ(α).

(2) NL/K(α) is the product of all conjugates of α w.r.t. L/K. In particular, if L/K is

Galois, then

NL/K(α) =
∏

σ∈Gal(L/K)

σ(α).

Proof: Let r = [L : K(α)] and s = [K(α) : K]. If τ1, . . . , τr are the distinct K–

homomorphisms of K(α) into N , then τ1(α), . . . , τs(α) are precisely the distinct conjugates of

α w.r.t. L/K and the minimal polynomial of α over K factors as

Irr(α, K) =
s

∏

j=1

(X − τj(α))

Now the conjugates σ1(α), . . . , σn(α) of α w.r.t. K are nothing but τ1(α), . . . , τs(α) each

repeated r times. Hence, by the Corollary to Lemma 19, we see that

Φ(X) =

n
∏

i=1

(X − σi(α))

where Φ(X) denotes the field polynomial of α w.r.t. L/K. In view of Lemma 18, the above

identity readily implies (1) and (2). 2

Remark: In the above Lemma and the discussion preceding that, we could have replaced

N by an algebraic closure12 of K (assumed to contain L). Fixing an algebraic closure K of K,

one can define Gal(L/K), for any separable extension L/K with L ⊆ K, to be the set of all

K–homomorphisms of L into K. With this convention, the displayed identities for the trace

and norm in Lemma 20 remain valid for any finite separable extension L/K. Our definition

of Gal(L/K) applies only to Galois extensions but it has the advantage that we don’t have to

talk about algebraic closures, and that we can legitimately call it the Galois group.

Exercise 19: Let L/K be a finite separable extension and E be a subfield of L containing

K. Prove the following transitivity properties of the trace and norm.

TrL/K = TrE/K ◦ TrL/E and NL/K = NE/K ◦ NL/E .

12By an algebraic closure of a field K we mean an algebraic extension K of K such that every nonconstant

polynomial in K[X ] has a root in K. It can be shown that every field K has an algebraic closure with the

property that any algebraic extension of K is isomorphic to some subfield of it; further any two algebraic

closures of K are K–isomorphic. For details, see Lang’s “Algebra”.
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Let A be a ring (always assumed to be commutative with unity). Recall that an element

α in an overring of A (i.e., a ring containing A as a subring) is said to be integral over A if

it satisfies a monic polynomial with coefficients in A. The integral closure of A in an overring

L is defined as the set of all the elements in L which are integral over A, and can be seen

to be a subring of A. A domain is said to be normal or integrally closed if it is equal to its

integral closure in its quotient field. Note that ZZ is an example of a normal domain. The

integral closure of ZZ in an algebraic number field is called the ring of (algebraic) integers

in that algebraic number field. The integral closure of ZZ in a cyclotomic field (i.e., a field

obtained by adjoining to |Q a primitive n–th root of unity) is sometimes referred to as a ring

of cyclotomic integers.

Exercise 20: Let A be a domain, K its quotient field, and α an element in a finite separable

extension L of K. Show that if α is integral over A, then so is every conjugate of α w.r.t.

L/K. Deduce that if A is normal, then the field polynomial of α w.r.t. L/K and the minimal

polynomial of α over K have coefficients in A, and TrL/K(α) and NL/K(α) are elements of A.

Remark: Given a finite extension L/K of degree n and elements u1, . . . , un in L, we

define the discriminant of u1, . . . , un w.r.t. L/K, denoted by DiscL/K(u1, . . . , un), to be

det
(

TrL/K(uiuj)
)

. If {u1, . . . , un} and {v1, . . . , vn} are any two K–bases of L and vi =
∑n

j=1 aijuj, then DiscL/K(v1, . . . , vn)i = [det(aij)]
2DiscL/K(u1, . . . , un), and thus one of them

vanishes iff the other does. It can be seen that the discriminant of a K–basis of L is nonzero

iff L/K is separable. Now suppose L/K is separable, L = K(α), and f(X) = Irr(α, K). Let

α(1), . . . , α(n) be a set of conjugates of α w.r.t. L/K. Then we have:

DiscL/K(1, α, . . . , αn−1) =
∏

1≤i<j≤n

(

α(i) − α(j)
)2

= (−1)
n(n−1)

2 NL/K(f ′(α)).

If f(X) happens to be X2 + bX + c or X3 + pX + q, then we can verify that the above

discriminant equals b2 − 4c or −4p3 − 27q2, as is to be expected. It may be noted that in the

Theory of Equations, the classical discriminant of a quadratic, cubic, etc. is generalised to

the discriminant of a polynomial of any degree, say g(X) = a0X
m + a1X

m−1 + · · · + am, by

defining it as the “resultant” Res(g(X), g′(X)) of the polynomial and its derivative. 13 It is

not difficult to see that these two notions of discriminant aren’t really different. In fact, they

differ only by (−1)n(n−1)/2.

13Briefly, the resultant of two polynomials in one variable X , is the result of elimination of X between

them. In greater detail, if φ(X) = b0X
r + b1X

r−1 + · · · + br and ψ(X) = coX
s + c1X

s−1 + · · · + cs are two

polynomials, then, upon letting bi = 0 if either i < 0 or i > r and cj = 0 if either j < 0 or j > s, the resultant

Res(φ, ψ) is defined as the determinant of the (r+ s)× (r+ s) matrix whose (i, j)–th entry, for 1 ≤ j ≤ r+ s,

is bj−i if 1 ≤ i ≤ r and is cj+r−i if r + 1 ≤ i ≤ r + s. See, for example, Van der Waerden’s book on Algebra

for a discussion of the resultant.
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