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1 Vector Algebra and Index Notation

1.1 Orthonormality and the Kronecker Delta

We begin with three dimensional Euclidean space R3. In R3 we can define

three special coordinate vectors ê1, ê2, and ê3.
1 We choose these vectors to

be orthonormal, which is to say, both orthogonal and normalized (to unity).

We may express these conditions mathematically by means of the dot product

or scalar product as follows:

ê1 · ê2 = ê2 · ê1 = 0

ê2 · ê3 = ê3 · ê2 = 0 (orthogonality) (1.1)

ê1 · ê3 = ê3 · ê1 = 0

and

ê1 · ê1 = ê2 · ê2 = ê3 · ê3 = 1 (normalization). (1.2)

To save writing, we will abbreviate these equations using dummy indices

instead. (They are called ‘indices’ because they index something, and they

are called ‘dummy’ because the exact letter used is irrelevant.) In index

notation, then, I claim that the conditions (1.1) and (1.2) may be written

êi · êj = δij. (1.3)

How are we to understand this equation? Well, for starters, this equation

is really nine equations rolled into one! The index i can assume the values 1,

2, or 3, so we say “i runs from 1 to 3”, and similarly for j. The equation is

1These vectors are also denoted ı̂, ̂, and k̂, or x̂, ŷ and ẑ. We will use all three
notations interchangeably.
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valid for all possible choices of values for the indices. So, if we pick,

say, i = 1 and j = 2, (1.3) would read

ê1 · ê2 = δ12. (1.4)

Or, if we chose i = 3 and j = 1, (1.3) would read

ê3 · ê1 = δ31. (1.5)

Clearly, then, as i and j each run from 1 to 3, there are nine possible choices

for the values of the index pair i and j on each side, hence nine equations.

The object on the right hand side of (1.3) is called the Kronecker delta.

It is defined as follows:

δij =

1 if i = j,

0 otherwise.
(1.6)

The Kronecker delta assumes nine possible values, depending on the

choices for i and j. For example, if i = 1 and j = 2 we have δ12 = 0,

because i and j are not equal. If i = 2 and j = 2, then we get δ22 = 1, and

so on. A convenient way of remembering the definition (1.6) is to imagine

the Kronecker delta as a 3 by 3 matrix, where the first index represents the

row number and the second index represents the column number. Then we

could write (abusing notation slightly)

δij =


1 0 0

0 1 0

0 0 1

 . (1.7)

2



Finally, then, we can understand Equation (1.3): it is just a shorthand

way of writing the nine equations (1.1) and (1.2). For example, if we choose

i = 2 and j = 3 in (1.3), we get

ê2 · ê3 = 0, (1.8)

(because δ23 = 0 by definition of the Kronecker delta). This is just one of

the equations in (1.1). Letting i and j run from 1 to 3, we get all the nine

orthornormality conditions on the basis vectors ê1, ê2 and ê3.

Remark. It is easy to see from the definition (1.6) or from (1.7) that the

Kronecker delta is what we call symmetric. That is

δij = δji. (1.9)

Hence we could have written Equation (1.3) as

êi · êj = δji. (1.10)

(In general, you must pay careful attention to the order in which the indices appear

in an equation.)

Remark. We could have written Equation (1.3) as

êa · êb = δab, (1.11)

which employs the letters a and b instead of i and j. The meaning of the equation

is exactly the same as before. The only difference is in the labels of the indices.

This is why they are called ‘dummy’ indices.
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Remark. We cannot write, for instance,

êi · êa = δij , (1.12)

as this equation makes no sense. Because all the dummy indices appearing in (1.3)

are what we call free (see below), they must match exactly on both sides. Later

we will consider what happens when the indices are not all free.

1.2 Vector Components and Dummy Indices

Let A be a vector in R3. As the set {êi} forms a basis for R3, the vector A

may be written as a linear combination of the êi:

A = A1ê1 + A2ê2 + A3ê3. (1.13)

The three numbers Ai, i = 1, 2, 3, are called the (Cartesian) components of

the vector A.

We may rewrite Equation (1.13) using indices as follows:

A =
3∑
i=1

Aiêi. (1.14)

As we already know that i runs from 1 to 3, we usually omit the limits from

the summation symbol and just write

A =
∑
i

Aiêi. (1.15)

Later we will abbreviate this expression further.

Using indices allows us to shorten many computations with vectors. For
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example, let us prove the following formula for the components of a vector:

Aj = êj ·A. (1.16)

We proceed as follows:

êj ·A = êj ·

(∑
i

Aiêi

)
(1.17)

=
∑
i

Ai(êj · êi) (1.18)

=
∑
i

Aiδij (1.19)

= Aj. (1.20)

In Equation (1.17) we simply substituted Equation (1.15). In Equation (1.18)

we used the linearity of the dot product, which basically says that we can

distribute the dot product over addition, and scalars pull out. That is, dot

products are products between vectors, so any scalars originally multiplying

vectors just move out of the way, and only multiply the final result. Equation

(1.19) employed Equation (1.3) and the symmetry of δij.

It is Equation (1.20) that sometimes confuses the beginner. To see how

the transition from (1.19) to (1.20) works, let us look at it in more detail.

The equation reads ∑
i

Aiδij = Aj. (1.21)

Notice that the left hand side is a sum over i, and not i and j. We say that

the index j in this equation is “free”, because it is not summed over. As j is

free, we are free to choose any value for it, from 1 to 3. Hence (1.21) is really

three equations in one (as is Equation (1.16)). Suppose we choose j = 1.
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Then written out in full, Equation (1.21) becomes

A1δ11 + A2δ21 + A3δ31 = A1. (1.22)

Substituting the values of the Kronecker delta yields the identity A1 = A1,

which is correct. You should convince yourself that the other two cases work

out as well. That is, no matter what value of j we choose, the left hand side

of (1.21) (which involved the sum with the Kronecker delta) always equals

the right hand side.

Looking at (1.21) again, we say that the Kronecker delta together with

the summation has effected an “index substitution”, allowing us to replace

the i index on the Ai with a j. In what follows we will often make this

kind of index substitution without commenting. If you are wondering what

happened to an index, you may want to revisit this discussion.

Observe that I could have written Equation (1.16) as follows:

Ai = êi ·A, (1.23)

using an i index rather than a j index. The equation remains true, because

i, like j, can assume all the values from 1 to 3. However, the proof of (1.23)

must now be different. Let’s see why.

Repeating the proof line for line, but with an index i instead gives us the
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following

êi ·A = êi ·

(∑
i

Aiêi

)
(1.24)

=
∑
i

Ai(êi · êi)?? (1.25)

=
∑
i

Aiδii?? (1.26)

= Ai. (1.27)

Unfortunately, the whole thing is nonsense. Well, not the whole thing. Equa-

tion (1.24) is correct, but a little confusing, as an index i now appears both

inside and outside the summation. Is i a free index or not? Well, there is an

ambiguity, which is why you never want to write such an expression. The

reason for this can be seen in (1.25), which is a mess. There are now three i

indices, and it is never the case that you have a simultaneous sum over three

indices like this. The sum, written out, reads

A1(ê1 · ê1) + A2(ê2 · ê2) + A3(ê3 · ê3)?? (1.28)

Equation (1.2) would allow us to reduce this expression to

A1 + A2 + A3?? (1.29)

which is definitely not equal to Ai under any circumstances. Equation (1.26)

is equally nonsense.

What went wrong? Well, the problem stems from using too many i

indices. We can fix the proof, but we have to be a little more clever. The

left hand side of (1.24) is fine. But instead of expressing A as a sum over i,
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we can replace it by a sum over j! After all, the indices are just dummies. If

we were to do this (which, by the way, we call “switching dummy indices”),

the (correct) proof of (1.23) would now be

êi ·A = êi ·

(∑
j

Ajêj

)
(1.30)

=
∑
j

Aj(êi · êj) (1.31)

=
∑
j

Ajδij (1.32)

= Ai. (1.33)

You should convince yourself that every step in this proof is legitimate!

1.3 Vector Algebra I: Dot Product

Vector algebra refers to doing addition and multiplication of vectors. Addi-

tion is easy, but perhaps unfamiliar using indices. Suppose we are given two

vectors A and B, and define

C := A+B. (1.34)

Then

Ci = (A+B)i = Ai +Bi. (1.35)

That is, the components of the sum are just the sums of the components of

the addends.
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Dot products are also easy. I claim

A ·B =
∑
i

AiBi. (1.36)

The proof of this from (1.3) and (1.16) is as follows:

A ·B =

(∑
i

Aiêi

)
·

(∑
j

Bjêj

)
(1.37)

=
∑
ij

AiBj(êi · êj) (1.38)

=
∑
ij

AiBjδij (1.39)

=
∑
i

AiBi. (1.40)

A few observations are in order. First, (1.36) could be taken as the

definition of the dot product of two vectors, from which we could derive the

properties of the dot products of the basis vectors. We chose to do it this way

to illustrate the computational power of index notation. Second, in Equation

(1.38) the sum over the pair ij means the double sum over i and j separately.

All we have done there is use the linearity of the dot product again to pull

the scalars to the front and leave the vectors to multiply via the dot product.

Third, in Equation (1.39) we used Equation (1.3), while in (1.40) we used the

substitution property of the Kronecker delta under a sum. In this case we

summed over j and left i alone. This changed the j to an i. We could have

equally well summed over i and left the j alone. Then the final expression

would have been ∑
j

AjBj. (1.41)
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But, of course,

∑
i

AiBi =
∑
j

AjBj = A1B1 + A2B2 + A3B3, (1.42)

so it would not have mattered. Dummy indices again!

Lastly, notice that we would have gotten into big trouble had we used

an i index in the sum for B instead of a j index. We would have been very

confused as to which i belonged with which sum! In this case I chose an i

and a j, but when you do computations like this you will have to be alert

and choose your indices wisely.

1.4 The Einstein Summation Convention

You can already see that more involved computations will require more in-

dices, and the formulas can get a little crowded. This happened often to

Einstein. Being the lazy guy he was, he wanted to simplify the writing of

his formulas, so he invented a new kind of notation. He realized that he

could simply erase the summation symbols, because it was always clear that,

whenever two identical dummy indices appeared on the same side of an equa-

tion they were always summed over. Removing the summation symbol leaves

behind an expression with what we call an “implicit sum”. The sum is still

there, but it is hiding.
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As an example, let us rewrite the proof of (1.36):

A ·B = (Aiêi) · (Bjêj) (1.43)

= AiBj(êi · êj) (1.44)

= AiBjδij (1.45)

= AiBi. (1.46)

The only thing that has changed is that we have dropped the sums! We

just have to tell ourselves that the sums are still there, so that any time we

see two identical indices on the same side of an equation, we have to sum over

them. As we were careful to use different dummy indices for the expansions

of A and B, we never encounter any trouble doing these sums. But note

that two identical indices on opposite sides of an equation are never summed.

Having said this, I must say that there are rare instances when it becomes

necessary to not sum over repeated indices. If the Einstein summation con-

vention is in force, one must explicitly say “no sum over repeated indices”.

I do not think we shall encounter any such computations in this course, but

you never know.

For now we will continue to write out the summation symbols. Later we

will use the Einstein convention.

1.5 Dot Products and Lengths

The (Euclidean) length of a vector A = A1ê1+A2ê2+A3ê3 is, by definition,

A = |A| =
√
A2

1 + A2
2 + A2

3. (1.47)
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Hence, the squared length of A is

A2 = A ·A =
∑
i

A2
i . (1.48)

Observe that, in this case, the Einstein summation convention can be con-

fusing, because the right hand side would become simply A2
i , and we would

not know whether we mean the square of the single component Ai or the sum

of squares of the Ai’s. But the former interpretation would be nonsensical

in this context, because A2 is clearly not the same as the square of one of

its components. That is, there is only one way to interpret the equation

A2 = A2
i , and that is as an implicit sum. Nevertheless, confusion still some-

times persists, so under these circumstances it is usually best to either write

A2 = AiAi, in which case the presence of the repeated index i clues in the

reader that there is a suppressed summation sign, or else to simply restore

the summation symbol.

1.6 Dot Products and Angles

Let A be a vector in the plane inclined at an angle of θ to the horizontal.

Then from elementary trigonometry we know that A1 = ê1 · A = A cos θ

where A is the length of A. It follows that if B is a vector of length B along

the x axis, then B = Bê1, and

A ·B = AB cos θ. (1.49)

But now we observe that this relation must hold in general, no matter which

way A and B are pointing, because we can always rotate the coordinate

system until the two vectors lie in a plane with B along one axis.

12



x

y

v

v
′

θ

Active

x

y

v = v
′

x′

y′

θ

Passive

Figure 1: Active versus passive rotations in the plane

1.7 Angles, Rotations, and Matrices

This brings us naturally to the subject of rotations. There are many ways to

understand rotations. A physicist understands rotations intuitively, whereas

a mathematician requires a bit more rigor. We will begin with the intuitive

approach, and later discuss the more rigorous version.

Physicists speak of transformations as being either active or passive.

Consider the rotation of a vector v in the plane. According to the active

point of view, we rotate the vector and leave the coordinate system alone,

whereas according to the passive point of view we leave the vector alone

but rotate the coordinate system. This is illustrated in Figure 1. The two

operations are physically equivalent, and we can choose whichever point of

view suits us.

Consider the passive point of view for a moment. How are the components

of the vector v in the new coordinate system related to those in the old

coordinate system? In two dimensions we can write

v = v1ê1 + v2ê2 = v′1ê
′
1 + v′2ê

′
2 = v′. (1.50)
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By taking dot products we find

v′1 = v · ê′1 = v1(ê1 · ê′1) + v2(ê2 · ê′1) (1.51)

and

v′2 = v · ê′2 = v1(ê1 · ê′2) + v2(ê2 · ê′2). (1.52)

It is convenient to express these equations in terms of matrices. Recall

that we multiply two matrices using ‘row-column’ multiplication. If M is an

m by p matrix and N is a p by n matrix, then the product matrix Q := MN is

an m by n matrix whose ijth entry is the dot product of the ith row of M and

the jth column of N . 2 Using indices we can express matrix multiplication

as follows:

Qij = (MN)ij =
n∑
k=1

MikNkj. (1.53)

You should verify that this formula gives the correct answer for matrix mul-

tiplication.

With this as background, observe that we can combine (1.51) and (1.52)

into a single matrix equation:v′1
v′2

 =

ê1 · ê′1 ê2 · ê′1
ê1 · ê′2 ê2 · ê′2

v1

v2

 (1.54)

The 2 × 2 matrix appearing in (1.54), which we call R, is an example of a

rotation matrix. Letting v and v′ denote the column vectors on either side

of R, we can rewrite (1.54) as

v′ = Rv. (1.55)

2This is why M must have the same number of columns as N has rows.
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In terms of components, (1.55) becomes

v′i =
∑
j

Rijvj. (1.56)

The matrix R is the mathematical representation of the planar rotation.

Examining Figure 1, we see from (1.49) and (1.54) that the entries of R are

simply related to the angle of rotation by

R =

cos θ − sin θ

sin θ cos θ

 . (1.57)

According to the active point of view, R represents a rotation of all the

vectors through an angle θ in the counterclockwise direction. In this case the

vector v is rotated to a new vector v′ with components v′1 and v′2 in the old

coordinate system.

According to passive point of view, R represents a rotation of the coor-

dinate system through an angle θ in the clockwise direction. In this case

the vector v remains unchanged, and the numbers v′1 and v′2 represent the

components of v in the new coordinate system.

Again, it makes no difference which interpretation you use, but to avoid

confusion you should stick to one interpretation for the duration of any prob-

lem! (In fact, as long as you just stick to the mathematics, you can usually

avoid committing yourself to one interpretation or another.)

We note two important properties of the rotation matrix in (1.57):

RTR = I (1.58)

detR = 1 (1.59)
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Equation (1.59) just means that the matrix has unit determinant. 3 In

(1.58) RT means the transpose of R, which is the matrix obtained from R

by flipping it about the diagonal running from NW to SE, and I denotes

the identity matrix, which consists of ones along the diagonal and zeros

elsewhere.

It turns out that these two properties are satisfied by any rotation matrix.

To see this, we must finally define what we mean by a rotation. The definition

is best understood by thinking of a rotation as an active transformation.

Definition. A rotation is a linear map taking vectors to vectors that

preserves lengths, angles, and handedness.

The handedness condition says that a rotation must map a right handed

coordinate system to a right handed coordinate system. The first two prop-

erties can be expressed mathematically by saying that rotations leave the dot

product of two vectors invariant. For, if v is mapped to v′ by a rotation R

and w is mapped to w′ by R, then we must have

v′ ·w′ = v ·w. (1.60)

This is because, if we set w = v then (1.60) says that v′2 = v2 (where

v′ = |v′| and v = |v|), so the length of v′ is the same as the length of v (and

similarly, the length of w′ is the same as the length of w), and if w 6= v

then (1.60) says that v′w′ cos θ′ = vw cos θ, which, because the lengths are

the same, implies that the angle between v′ and w′ is the same as the angle

between v and w.

Let’s see where the condition (1.60) leads. In terms of components we

3For a review of the determinant and its properties, consult Appendix B.
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have

∑
i

v′iw
′
i =

∑
i

viwi

=⇒
∑
ijk

(Rijvj)(Rikwk) =
∑
jk

δjkvjwk

=⇒
∑
jk

(
∑
i

RijRik − δjk)vjwk = 0

As the vectors v and w are arbitrary, we can conclude

∑
i

RijRik = δjk. (1.61)

Note that the components of the transposed matrix RT are obtained from

those of R by switching indices. That is, (RT )ij = Rji. Hence (1.61) can be

written ∑
i

(RT )jiRik = δjk. (1.62)

Comparing this equation to (1.53) we see that it can be written

RTR = I. (1.63)

Thus we see that the condition (1.63) is just another way of saying that

lengths and angles are preserved by a rotation. Incidentally, yet another way

of expressing (1.63) is

RT = R−1, (1.64)

where R−1 is the matrix inverse of R. 4

4The inverse A−1 of a matrix A satisfies AA−1 = A−1A = I.
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Now, it is a fact that, for any two square matrices A and B,

detAB = detA detB. (1.65)

and

detAT = detA, (1.66)

(see Appendix B). Applying the two properties (1.65) and (1.66) to (1.63)

gives

(detR)2 = 1 ⇒ detR = ±1. (1.67)

Thus, if R preserves lengths and angles then it is almost a rotation. It is a

rotation if detR = 1, which is the condition of preserving handedness, and it

is a roto-reflection (product of a rotation and a reflection) if detR = −1. The

set of all linear transformations R satisfying (1.63) is called the orthogonal

group, and the subset satisfying detR = 1 is called the special orthogonal

group.

1.8 Vector Algebra II: Cross Products and the Levi

Civita Symbol

We have discussed the dot product, which is a way of forming a scalar from

two vectors. There are other sorts of vector products, two of which are

particularly relevant to physics. They are the vector or cross product, and

the dyadic or tensor product.

First we discuss the cross product. Let B and C be given, and define the
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cross product B ×C in terms of the following determinant: 5

B ×C =

∣∣∣∣∣∣∣∣
ê1 ê2 ê3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣
= (B2C3 −B3C2)ê1 + (B3C1 −B1C3)ê2 + (B1C2 −B2C1)ê3

= (B2C3 −B3C2)ê1 + cyclic. (1.68)

It is clear from the definition that the cross product is antisymmetric,

meaning that it flips sign if you flip the vectors:

B ×C = −C ×B. (1.69)

Just as the dot product admits a geometric interpretation, so does the

cross product: the length of B×C is the area of the parallelogram spanned

by the vectors B and C, and B×C points orthogonally to the parallelogram

in the direction given by the right hand rule. 6 We see this as follows. Let

θ be the angle between B and C. We can always rotate our vectors (or else

our coordinate system) so that B lies along the x-axis and C lies somewhere

in the xy plane. Then we have (see Figure 2):

B = Bê1 and C = C(cos θê1 + sin θê2), (1.70)

so that

B ×C = BCê1 × (cos θê1 + sin θê2) = BC sin θê3. (1.71)

5The word ‘cyclic’ means that the other terms are obtained from the first term by suc-
cessive cyclic permutation of the indices 1→ 2→ 3. For a brief discussion of permutations,
see Appendix A.

6To apply the right hand rule, point your hand in the direction of B and close it in the
direction of C. Your thumb will then point in the direction of B ×C.

19



ê1
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Figure 2: Two vectors spanning a parallelogram
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B
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ψ

θ

Figure 3: Three vectors spanning a parallelepiped

The direction is consistent with the right hand rule, and the magnitude,

|B ×C| = BC sin θ, (1.72)

is precisely the area of the parallelogram spanned by B and C, as promised.

We can now combine the geometric interpretation of the dot and cross

products to get a geometric interpretation of the triple productA·(B×C):

it is the volume of the parallelepiped spanned by all three vectors. Suppose

A lies in the yz-plane and is inclined at an angle ψ relative to the z-axis,

and that B and C lie in the xy-plane, separated by an angle θ, as shown in

Figure 3. Then
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A · (B ×C) = A(cosψê3 + sinψê1) ·BC sin θê3

= ABC sin θ cosψ

= volume of parallelepiped

=

∣∣∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣ , (1.73)

where the last equality follows by taking the dot product of A with the cross

product B ×C given in (1.68). Since the determinant flips sign if two rows

are interchanged, the triple product is invariant under cyclic permutations:

A · (B ×C) = B · (C ×A) = C · (A×B). (1.74)

It turns out to be convenient, when dealing with cross products, to define

a new object that packages all the minus signs of a determinant in a conve-

nient fashion. This object is called the Levi Civita Alternating Symbol. (It

is also called a permutation symbol or the epsilon symbol. We will use any of

these terms as suits us.)

Formally, the Levi Civita alternating symbol εijk is a three-indexed object

with the following two defining properties:

i) ε123 = 1.

ii) εijk changes sign whenever any two indices are interchanged.

These two properties suffice to fix every value of the epsilon symbol. A priori

there are 27 possible values for εijk, one for each choice of i, j, and k, each of

which runs from 1 to 3. But the defining conditions eliminate most of them.

For example, consider ε122. By property (ii) above, it should flip sign when
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we flip the last two indices. But then we have ε122 = −ε122, and the only

number that is equal to its negative is zero. Hence ε122 = 0. Similarly, it

follows that εijk is zero whenever any two indices are the same.

This means that, of the 27 possible values we started with, only 6 of

them can be nonzero, namely those whose indices are permutations of (123).

These nonzero values are determined by properties (i) and (ii) above. So, for

example, ε312 = 1, because we can get from ε123 to ε312 by two index flips:

ε312 = −ε132 = +ε123 = +1. (1.75)

A moment’s thought should convince you that the epsilon symbol gives us

the sign of the permutation of its indices, where the sign of a permutation is

just −1 raised to the power of the number of flips of the permuation from the

identity permutation (123). This explains its name ‘permutation symbol’.

The connection between cross products and the alternating symbol is via

the following formula:

(A×B)i =
∑
jk

εijkAjBk. (1.76)

To illustrate, let us choose i = 1. Then, written out in full, (1.76) reads

(A×B)1 = ε111A1B1 + ε112A1B2 + ε113A1B3

+ ε121A2B1 + ε122A2B2 + ε123A2B3

+ ε131A3B1 + ε132A3B2 + ε133A3B3

= A2B3 − A3B2, (1.77)

where the last equality follows by substituting in the values of the epsilon
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symbols. You should check that the other two components of the cross prod-

uct are given correctly as well. Observe that, using the summation conven-

tion, (1.76) would be written

(A×B)i = εijkAjBk. (1.78)

Note also that, due to the symmetry properties of the epsilon symbol, we

could also write

(A×B)i = εjkiAjBk. (1.79)

1.9 Products of Epsilon Symbols

There are four important product identities involving epsilon symbols. They

are (using the summation convention throughout):

εijkεmnp =

∣∣∣∣∣∣∣∣
δim δin δip

δjm δjn δjp

δkm δkn δkp

∣∣∣∣∣∣∣∣ (1.80)

εijkεmnk = δimδjn − δinδjm (1.81)

εijkεmjk = 2δim (1.82)

εijkεijk = 3!. (1.83)

The proofs of these identities are left as an exercise. To get you started,

let’s prove (1.82). To begin, you must figure out which indices are free and

which are summed. Well, j and k are repeated on the left hand side, so they

are summed over, while i and m are both on opposite sides of the equation,

so they are free. This means (1.82) represents nine equations, one for each

possible pair of values for i and m. To prove the formula, we have to show
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that, no matter what values of i and m we choose, the left side is equal to

the right side.

So let’s pick i = 1 and m = 2, say. Then by the definition of the Kronecker

delta, the right hand side is zero. This means we must show the left hand

side is also zero. For clarity, let us write out the left hand side in this case

(remember, j and k are summed over, while i and m are fixed):

ε111ε211 + ε112ε212 + ε113ε213

+ ε121ε221 + ε122ε222 + ε123ε223

+ ε131ε231 + ε132ε232 + ε133ε233.

If you look carefully at this expression, you will see that it is always

zero! The reason is that, in order to get something nonzero, at least one

summand must be nonzero. But each summand is the product of two epsilon

symbols, and because i and m are different, these two epsilon symbols are

never simultaneously nonzero. The only time the first epsilon symbol in a

term is nonzero is when the pair (j, k) is (2, 3) or (3, 2). But then the second

epsilon symbol must vanish, as it has at least two 2s. A similar argument

shows that the left hand side vanishes whenever i and m are different, and

as the right hand side also vanishes under these circumstances, the two sides

are always equal whenever i and m are different.

What if i = m? In that case the left side is 2, because the sum includes

precisely two nonzero summands, each of which has the value 1. For example,

if i = m = 1, the two nonzero terms in the sum are ε123ε123 and ε132ε132,

each of which is 1. But the right hand side is also 2, by the properties of the

Kronecker delta. Hence the equation holds.

In general, this is a miserable way to prove the identities above, because
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you have to consider all these cases. The better way is to derive (1.81),

(1.82), and (1.83) from (1.80) (which I like to call “the mother of all epsilon

identities”). (The derivation of (1.80) proceeds by comparing the symmetry

properties of both sides.) To demonstrate how this works, consider obtaining

(1.82) from (1.81). Observe that (1.81) represents 34 = 81 equations, as i,

j, m, and n are free (only k is summed). We want to somehow relate it to

(1.82). This means we need to set n equal to j and sum over j. We are

able to do this because (1.81) remains true for any values of j and n. So it

certainly is true if n = j, and summing true equations produces another true

equation. If we do this (which, by the way, is called contracting the indices

j and n) we get the left hand side of (1.82). So we must show that doing

the same thing to the right hand side of (1.81) (namely, setting n = j and

summing over j) yields the right hand side of (1.82). If we can do this we

will have completed our proof that (1.82) follows from (1.81).

So, we must show that

δimδjj − δjmδij = 2δim. (1.84)

Perhaps it would be a little more clear if we restored the summation symbols,

giving ∑
j

δimδjj −
∑
j

δjmδij = 2δim. (1.85)

The first sum is over j, so we may pull out the δim term, as it is independent

of j. Using the properties of the Kronecker delta, we see that
∑

j δjj = 3. So

the first term is just 3δim. The second term is just δim, using the substitution

property of the Kronecker delta. Hence the two sides are equal, as desired.

Example 1 The following computation illustrates the utility of the formulae
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(1.80)-(1.83). The objective is to prove the vector identity

A× (B ×C) = B(A ·C)−C(A ·B), (1.86)

the so-called “BAC minus CAB rule”.

We proceed as follows (summation convention in force):

(A× (B ×C))i = εijkAj(B ×C)k (1.87)

= εijkAjεklmBlCm (1.88)

= (δilδjm − δimδjl)AjBlCm (1.89)

= AjBiCj −AjBjCi (1.90)

= (B(A ·C)−C(A ·B))i. (1.91)

and we are done.

This was a little fast, perhaps. So let us fill in a few of the steps. Observe that

we choose to prove that the left and right hand sides of (1.86) are the same by

proving their components are the same. This makes sense according to the way in

which we introduced cross products via epsilon symbols.

Equation (1.87) is obtained from (1.78), leaving B × C temporarily unex-

panded. In (1.88) we apply (1.78) again, this time to B × C. Notice that we

had to choose different dummy indices for the second epsilon expansion, otherwise

we would have gotten into trouble, as we have emphasized previously. In (1.89)

we did a few things all at once. First, we commuted the Aj and εklm terms. We

can always do this because, for any value of the indices, these two quantities are

just numbers, and numbers always commute. Second, we permuted some indices

in our head in order to bring the index structure of the epsilon product into the

form exhibited in (1.81). In particular, we substituted εlmk for εklm, which we can

do by virtue of the symmetry properties of the epsilon symbol. Third, we applied
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(1.81) to the product εijkεlmk. To get (1.90) we used the substitution property of

the Kronecker delta. Finally, we recognized that AjCj is just A · C, and AjBj

is A · B. The equality of (1.90) and (1.91) is precisely the definition of the ith

component of the right hand side of (1.86). The result then follows because two

vectors are equal if and only if their components are equal.

1.10 Determinants and Epsilon Symbols

Given the close connection between cross products and determinants, it

should come as no surprise that there are formulas relating determinants

to epsilon symbols. Consider again the triple product (1.73). Using the

epsilon symbol we can write

A · (B ×C) =
∑
k

Ak(B ×C)k =
∑
ijk

εkijAkBiCj =

∣∣∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣ (1.92)

Thus,

detA =

∣∣∣∣∣∣∣∣
A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣∣∣ =
∑
ijk

εijkA1iA2jA3k. (1.93)

We could just as well multiply on the left by ε123, because ε123 = 1, in which

case (1.93) would read

ε123 detA =
∑
ijk

εijkA1iA2jA3k. (1.94)

As the determinant changes sign whenever any two rows of the matrix are

27



switched, it follows that the right hand side has exactly the same symmetries

as the left hand side under any interchange of 1, 2, and 3. Hence we may

write

εmnp detA =
∑
ijk

εijkAmiAnjApk. (1.95)

Again, using our summation convention, this would be written

εmnp detA = εijkAmiAnjApk. (1.96)

Finally, we can transform (1.96) into a more symmetric form by using prop-

erty (1.83). Multiply both sides by εmnp, sum over m, n, and p, and divide

by 3! to get 7

detA =
1

3!
εmnpεijkAmiAnjApk. (1.97)

1.11 Vector Algebra III: Tensor Product

So, what is a tensor anyway? There are many different ways to introduce the

notion of a tensor, varying from what some mathematicians amusingly call

“low brow” to “high brow”. In keeping with the discursive nature of these

notes, I will restrict the discussion to the “low brow” approach, reserving a

more advanced treatment for later work.

To start, we define a new kind of vector product called the tensor prod-

uct, usually denoted by the symbol ⊗. Given two vectors A and B, we

can form their tensor product A ⊗ B. A ⊗ B is called a tensor of order

2. 8 The tensor product is not generally commutative—order matters. So

7Because we have restricted attention to the three dimensional epsilon symbol, the
formulae in this section work only for 3 × 3 matrices. One can write formulae for higher
determinants using higher dimensional epsilon symbols, but we shall not do so here.

8N.B. Many people use the word ‘rank’ interchangeably with the word ‘order’, so that
A ⊗ B is then called a tensor of rank 2. The problem with this terminology is that it
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B ⊗A is generally different from A⊗B. We can form higher order tensors

by repeating this procedure. So, for example, given another vector C, we

have A⊗B⊗C, a third order tensor. (The tensor product is associative, so

we need not worry about parentheses.) Order zero tensors are just scalars,

while order one tensors are just vectors.

In older books, the tensor A ⊗B is sometimes called a dyadic product

(of the vectors A and B), and is written AB. That is, the tensor product

symbol ⊗ is simply dropped. This generally leads to no confusion, as the

only way to understand the proximate juxtaposition of two vectors is as a

tensor product. We will use either notation as it suits us.

The set of all tensors forms a mathematical object called a graded alge-

bra. This just means that you can add and multiply as usual. For example, if

α and β are numbers and S and T are both tensors of order s, then αT +βS

is a tensor of order s. If R is a tensor of order r then R ⊗ S is a tensor of

order r + s. In addition, scalars pull through tensor products

T ⊗ (αS) = (αT )⊗ S = α(T ⊗ S), (1.98)

and tensor products are distributive over addition:

R⊗ (S + T ) = R⊗ S +R⊗ T . (1.99)

Just as a vector has components in some basis, so does a tensor. Let

conflicts with another standard usage. In linear algebra the rank of a matrix is the number
of linearly independent rows (or columns). If we consider the components of the tensor
A ⊗B, namely AiBj , to be the components of a matrix, then this matrix only has rank
1! (The rows are all multiples of each other.) To avoid this problem, one usually says that
a tensor of the form A1 ⊗A2 ⊗ · · · has rank 1. Any tensor is a sum of rank 1 tensors,
and we say that the rank of the tensor is the minimum number of rank 1 tensors needed
to write it as such a sum.

29



ê1, ê2, ê3 be the canonical basis of R3. Then the canonical basis for the

vector space R3 ⊗ R3 of order 2 tensors on R3 is given by the set êi ⊗ êj, as

i and j run from 1 to 3. Written out in full, these basis elements are

ê1 ⊗ ê1 ê1 ⊗ ê2 ê1 ⊗ ê3

ê2 ⊗ ê1 ê2 ⊗ ê2 ê2 ⊗ ê3

ê3 ⊗ ê1 ê3 ⊗ ê2 ê3 ⊗ ê3

. (1.100)

The most general second order tensor on R3 is a linear combination of

these basis tensors:

T =
∑
ij

Tijêi ⊗ êj. (1.101)

Almost always the basis is understood and fixed throughout. For this reason,

tensors are often identified with their components. So, for example, we often

do not distinguish between the vector A and its components Ai. Similarly,

we often call Tij a tensor, when it is really just the components of a tensor

in some basis. This terminology drives mathematicians crazy, but it works

for most physicists. This is the reason why we have already referred to the

Kronecker delta δij and the epsilon tensor εijk as ‘tensors’.

As an example, let us find the components of the tensor A⊗B. We have

A⊗B = (
∑
i

Aiêi)⊗ (
∑
j

Bjêj) (1.102)

=
∑
ij

AiBjêi ⊗ êj, (1.103)

so the components of A ⊗B are just AiBj. This works in general, so that,

for example, the components of A⊗B ⊗C are just AiBjCk.

It is perhaps worth observing that a tensor of the form A⊗B for some
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Figure 4: Reflection through a plane

vectorsA andB is not the most general order two tensor. The reason is that

the most general order two tensor has 9 independent components, whereas

AiBj has only 6 independent components (three from each vector).

1.12 Problems

1) The Cauchy-Schwarz inequality states that, for any two vectors u and v in
Rn:

(u · v)2 ≤ (u · u)(v · v),

with equality holding if and only if u = λv for some λ ∈ R. Prove the
Cauchy-Schwarz inequality. [Hint: Use angles.]

2) Show that the equation a · r = a2 defines a two dimensional plane in three
dimensional space, where a is the minimal length vector from the origin to
the plane. [Hint: A plane is the translate of the linear span of two vectors.
The Cauchy-Schwarz inequality may come in handy.]

3) A reflection σ through a plane H with unit normal vector n̂ is a linear map
satisfying (i) σ(x) = x, for x ∈ H, and (ii) σ(n̂) = −n̂. (See Figure 4.)
Find an expression for σ(x) in terms of x, n̂, and the dot product. Verify
that σ2 = 1, as befits a reflection.

4) The volume of a tetrahedron is V = bh/3, where b is the area of a base and
h is the height (distance from base to apex). Consider a tetrahedron with
one vertex at the origin and the other three vertices at positions A, B and
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C. Show that we can write

V =
1
6
A · (B ×C).

This demonstrates that the volume of such a tetrahedron is one sixth of the
volume of the parallelepiped defined by the vectors A, B and C.

5) Prove Equation (1.80) by the following method. First, show that both sides
have the same symmetry properties by showing that both sides are anti-
symmetric under the interchange of a pair of {ijk} or a pair of {mnp}, and
that both sides are left invariant if you exchange the sets {ijk} and {mnp}.
Next, show that both sides agree when (i, j, k,m, n, p) = (1, 2, 3, 1, 2, 3).

6) Using index notation, prove Lagrange’s identity:

(A×B) · (C ×D) = (A ·C)(B ·D)− (A ·D)(B ·C).

7) For any two matrices A and B, show that (AB)T = BTAT and (AB)−1 =
B−1A−1. [Hint: You may wish to use indices for the first equation, but for
the second use the uniqueness of the inverse.]

8) Let R(θ) and R(ψ) be planar rotations through angles θ and ψ, respectively.
By explicitly multiplying the matrices together, show that R(θ)R(ψ) =
R(θ + ψ).

[Remark: This makes sense physically, because it says that if we first rotate
a vector through an angle ψ and then rotate it through an angle θ, that the
result is the same as if we simply rotated it through a total angle of θ + ψ.
Incidentally, this shows that planar rotations commute, which means that we
get the same result whether we first rotate through ψ then θ, or first rotate
through θ then ψ, as one would expect. This is no longer true for rotations
in three and higher dimensions where the order of rotations matters, as you
can see by performing successive rotations about different axes, first in one
order and then in the opposite order.]

2 Vector Calculus I

It turns out that the laws of physics are most naturally expressed in terms of

tensor fields, which are simply fields of tensors. We have already seen many

32



r(t)
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ϕ

Figure 5: An observer moving along a curve through a scalar field

examples of this in the case of scalar fields and vector fields, and tensors are

just a natural generalization. But in physics we are not just interested in

how things are, we are also interested in how things change. For that we

need to introduce the language of change, namely calculus. This leads us

to the topic of tensor calculus. However, we will restrict ourselves here to

tensor fields of order 0 and 1 (scalar fields and vector fields) and leave the

general case for another day.

2.1 Fields

A scalar field ϕ(r) is a field of scalars. This means that, to every point r

we associate a scalar quantity ϕ(r). A physical example is the electrostatic

potential. Another example is the temperature.

A vector field A(r) is a field of vectors. This means that, to every

point r we associate a vector A(r). A physical example is the electric field.

Another example is the gravitational field.
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2.2 The Gradient

Consider an observer moving through space along a parameterized curve r(t)

in the presence of a scalar field ϕ(r). According to the observer, how fast is

ϕ changing? For convenience we work in Cartesian coordinates, so that the

position of the observer at time t is given by

r(t) = (x(t), y(t), z(t)). (2.1)

At this instant the observer measures the value

ϕ(t) := ϕ(r(t)) = ϕ(x(t), y(t), z(t)) (2.2)

for the scalar field ϕ. Thus dϕ/dt measures the rate of change of ϕ along the

curve. By the chain rule this is

dϕ(t)

dt
=
∂ϕ

∂x

dx

dt
+
∂ϕ

∂y

dy

dt
+
∂ϕ

∂z

dz

dt

=

(
dx

dt
,
dy

dt
,
dz

dt

)
·
(
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂y

)
= v ·∇ϕ, (2.3)

where

v(t) =
dr

dt
=

(
dx

dt
,
dy

dt
,
dz

dt

)
(2.4)

is the velocity vector of the particle. The quantity ∇ is called the gradient

operator. We interpret Equation (2.3) by saying that the rate of change of

ϕ in the direction v is

dϕ

dt
= v · (∇ϕ) = (v ·∇)ϕ. (2.5)
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Figure 6: Some level surfaces of a scalar field ϕ

The latter expression is called the directional derivative of ϕ in the direc-

tion v.

We can understand the gradient operator in another way.

Definition. A level surface (or equipotential surface) of a scalar field

ϕ(r) is the locus of points r for which ϕ(r) is constant. (See Figure 6.)

With this definition we make the following

Claim 2.1. ∇ϕ is a vector field that points everywhere orthogonal to the

level surfaces of ϕ and in the direction of fastest increase of ϕ.

Proof. Pick a point in a level surface and suppose that ∇ϕ fails to be or-

thogonal to the level surface at that point. Consider moving along a curve

lying within the level surface (Figure 7). Then v = dr/dt is tangent to the

surface, which implies that

dϕ

dt
= v ·∇ϕ 6= 0,

a contradiction. Also, dϕ/dt is positive when moving from low ϕ to high ϕ,

so ∇ϕ must point in the direction of increase of ϕ.
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Figure 7: Gradients and level surfaces

Example 2 Let T = x2 − y2 + z2 − 2xy + 2yz + 273. Suppose you are at the

point (3, 1, 4). Which way does it feel hottest? What is the rate of increase of the

temperature in the direction (1, 1, 1) at this point?

We have

∇T
∣∣∣
(3,14)

= (2(x− y),−2y − 2x+ 2z, 2z + 2y)
∣∣∣
(3,1,4)

= (4, 0, 10).

Since
dT

dt
= v ·∇ϕ,

the rate of increase in the temperature depends on the speed of the observer. If

we want to compute the rate of temperature increase independent of the speed of

the observer we must normalize the direction vector. This gives, for the rate of

increase
1√
3

(1, 1, 1) · (4, 0, 10) = 8.1.

If temperature were measured in Kelvins and distance in meters this last answer

would be in K/m.
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Figure 8: A hyperbola meets some level surfaces of d

2.3 Lagrange Multipliers

One important application of the gradient operator is to constrained opti-

mization problems. Let’s consider a simple example first. We would like

to find the point (or points) on the hyperbola xy = 4 closest to the origin.

(See Figure 8.) Of course, this is geometrically obvious, but we will use the

method of Lagrange multipliers to illustrate the general method, which is

applicable in more involved cases.

The distance from any point (x, y) to the origin is given by the function

d(x, y) =
√
x2 + y2. Define h(x, y) = xy. Then we want the solution (or

solutions) to the problem

minimize d(x, y) subject to the constraint h(x, y) = 4.
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d(x, y) is called the objective function, while h(x, y) is called the constraint

function.

We can interpret the problem geometrically as follows. The level surfaces

of d are circles about the origin, and the direction of fastest increase in d

is parallel to ∇d, which is orthogonal to the level surfaces. Now imagine

walking along the hyperbola. At a point Q on the hyperbola where ∇h is

not parallel to ∇d, v has a component parallel to ∇d, 9 so we can continue

to walk in the direction of the vector v and cause the value of d to decrease.

Hence d was not a minimum at Q. Only when ∇h and ∇d are parallel (at

P ) do we reach the minimum of d subject to the constraint. Of course, we

have to require h = 4 as well (otherwise we might be on some other level

surface of h by accident). Hence, the minimum of d subject to the constraint

is achieved at a point r0 = (x0, y0), where

∇d|r0 = λ∇h|r0 (2.6)

and h(r0) = 4, (2.7)

and where λ is some unknown constant, called a Lagrange multiplier.

At this point we invoke a small simplification, and change our objective

function to f(x, y) = [d(x, y)]2 = x2 + y2, because it is easy to see that

d(x, y) and f(x, y) are minimized at the same points. So, we want to solve

the equations

∇f = λ∇h (2.8)

and h = 4. (2.9)

9Equivalently, v is not tangent to the level surfaces of d.

38



In our example, these equations become

∂f

∂x
= λ

∂h

∂x
⇒ 2x = λy (2.10)

∂f

∂y
= λ

∂h

∂y
⇒ 2y = λx (2.11)

h = 4 ⇒ xy = 4. (2.12)

Solving them (and discarding the unphysical complex valued solution) yields

(x, y) = (2, 2) and (x, y) = (−2,−2). Hardly a surprise.

Remark. The method of Lagrange multipliers does not tell you whether you

have a maximum, minimum, or saddle point for your objective function, so you

need to check this by other means.

In higher dimensions the mathematics is similar—we just add variables.

If we have more than one constraint, though, we need to impose more condi-

tions. Suppose we have one objective function f , but m constraints, h1 = c1,

h2 = c2, . . . , hm = cm. If ∇f had a component tangent to every one of

the constraint surfaces at some point r0, then we could move a bit in that

direction and change f while maintaining all the constraints. But then r0

would not be an extreme point of f . So ∇f must be orthogonal to at least

some (possibly all) of the constraint surfaces at that point. This means that

∇f must be a linear combination of the gradient vectors ∇hi. Together with

the constraint equations themselves, the conditions now read

∇f =
m∑
i=1

λi∇hi (2.13)

hi = ci (i = 1, . . . ,m). (2.14)
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Remark. Observe that this is the correct number of equations. If we are in Rn,

there are n variables and the gradient operator is a vector of length n, so (2.13)

gives n equations. (2.14) gives m more equations, for a total of m+ n, and this is

precisely the number of unknowns (namely, x1, x2, . . . , xn, λ1, λ2, . . . , λm).

Remark. The desired equations can be packaged more neatly using the La-

grangian function for the problem. In the preceding example, the Lagrangian

function is

F = f −
∑
i

λihi. (2.15)

If we define the augmented gradient operator to be the vector operator given

by

∇′ =
(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn
,
∂

∂λ1
,
∂

∂λ2
, . . . ,

∂

∂λm

)
,

then Equations (2.13) and (2.14) are equivalent to the single equation

∇′F = 0. (2.16)

This is sometimes a convenient way to remember the optimization equations.

Remark. Let’s give a physicists’ proof of the correctness of the method of

Lagrange multipliers for the simple case of one constraint. The general case follows

similarly. We want to extremize f(r) subject to the constraint h(r) = c. Let r(t)

be a curve lying in the level surface Σ := {r|h(r) = c}, and set r(0) = r0. Then

dr(t)/dt|t=0 is tangent to Σ at r0. Now restrict f to Σ and suppose f(r0) is an

extremum. Then f(r(t)) is extremized at t = 0. But this implies that

0 =
df(r(t))
dt

∣∣∣∣
t=0

=
dr(t)
dt

∣∣∣∣
t=0

· ∇f |r0
. (2.17)
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Hence ∇f |r0 is orthogonal to Σ, so ∇f |r0 and ∇h|r0 are proportional.

2.4 The Divergence

Definition. In Cartesian coordinates, the divergence of a vector field

A = (Ax, Ay, Az) is the scalar field given by

∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

. (2.18)

Example 3 If A = (3xz, 2y2x, 4xy) then ∇ ·A = 3z + 4xy.

N.B. The gradient operator takes scalar fields to vector fields, while the

divergence operator takes vector fields to scalar fields. Try not to confuse

the two.

2.5 The Laplacian

Definition. The Laplacian of a scalar field ϕ is the divergence of the

gradient of ϕ. In Cartesian coordinates we have

∇2ϕ = ∇ ·∇ϕ

=
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
. (2.19)
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Example 4 If ϕ = x2y2z3 + xz4 then ∇2ϕ = 2y2z3 + 2x2z3 + 6x2y2z+ 12xz2.

2.6 The Curl

Definition. The curl of a vector field A is another vector field given by

∇×A =

∣∣∣∣∣∣∣∣
ı̂ ̂ k̂

∂x ∂y ∂z

Ax Ay Az

∣∣∣∣∣∣∣∣ (2.20)

= ı̂ (∂yAz − ∂zAy) + cyclic. (2.21)

In this definition (and in all that follows) we employ the notation

∂x :=
∂

∂x
, ∂y :=

∂

∂y
, and ∂z :=

∂

∂z
. (2.22)

Example 5 Let A = (3xz, 2xy2, 4xy). Then

∇×A = ı̂(4x− 0) + ̂(3x− 4y) + k̂(2y2 − 0) = (4x, 3x− 4y, 2y2).

Definition. A is solenoidal (or divergence-free) if ∇ · A = 0. A is

irrotational (or curl-free) if ∇×A = 0.

Claim 2.2. DCG≡0. i.e.,

i) ∇ · (∇×A) ≡ 0.
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ii) ∇×∇ϕ ≡ 0.

Proof. We illustrate the proof for (i). The proof of (ii) is similar. We have

∇ · (∇×A) = ∇ · (∂yAz − ∂zAy, ∂zAx − ∂xAz, ∂xAy − ∂yAx)

= ∂x(∂yAz − ∂zAy) + ∂y(∂zAx − ∂xAz) + ∂z(∂xAy − ∂yAx)

= ∂x∂yAz − ∂x∂zAy + ∂y∂zAx − ∂y∂xAz + ∂z∂xAy − ∂z∂yAx

= 0,

where we used the crucial fact that mixed partial derivatives commute

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
, (2.23)

for any twice differentiable function.

2.7 Vector Calculus with Indices

Remark. In this section we employ the summation convention without comment.

Recall that the gradient operator ∇ in Cartesian coordinates is the vector

differential operator given by

∇ :=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= (∂x, ∂y, ∂z). (2.24)

It follows that the ith component of the gradient of a scalar field ϕ is just

(∇ϕ)i = ∂iϕ. (2.25)
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Similarly, the divergence of a vector field A is written

∇ ·A = ∂iAi. (2.26)

The Laplacian operator may be viewed as the divergence of the gradient, so

(2.25) and (2.26) together yield the Laplacian of a scalar field ϕ:

∇2ϕ = ∂i∂iϕ. (2.27)

Finally, the curl becomes

(∇×A)i = εijk∂jAk. (2.28)

Once again, casting formulae into index notation greatly simplifies some

proofs. As a simple example we demonstrate the fact that the divergence of

a curl is always zero:

∇ · (∇×A) = ∂i(εijk∂jAk) = εijk∂i∂jAk = 0. (2.29)

(Compare this to the proof given in Section 2.6.) The first equality is true

by definition, while the second follows from the fact that the epsilon tensor

is constant (0, 1, or −1), so it pulls out of the derivative. We say the last

equality holds “by inspection”, because (i) mixed partial derivatives commute

(cf., (2.23)) so ∂i∂jAk is symmetric under the interchange of i and j, and

(ii) the contracted product of a symmetric and an antisymmetric tensor is

identically zero.

The proof of (ii) goes as follows. Let Aij be a symmetric tensor and Bij
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be an antisymmetric tensor. This means that

Aij = Aji (2.30)

and

Bij = −Bji, (2.31)

for all pairs i and j. Then

AijBij = AjiBij (using (2.30)) (2.32)

= −AjiBji (using (2.31)) (2.33)

= −AijBij (switching dummy indices i and j) (2.34)

= 0. (2.35)

Be sure you understand each step in the sequence above. The tricky part

is switching the dummy indices in step three. We can always do this in a

sum, provided we are careful to change all the indices of the same kind with

the same letter. For example, given two vectors C and D, their dot product

can be written as either CiDi or CjDj, because both expressions are equal

to C1D1 +C2D2 +C3D3. It does not matter whether we use i as our dummy

index or whether we use j—the sum is the same. But note that it would not

be true if the indices were not summed.

The same argument shows that εijk∂i∂jAk = 0, because the epsilon tensor

is antisymetric under the interchange of i and j, while the partial derivatives

are symmetric under the same interchange. (The k index just goes along for

the ride; alternatively, the expression vanishes for each of k = 1, 2, 3, so the

sum over k also vanishes.)

Let us do one more vector calculus identity for the road. This time, we
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prove the identity:

∇× (∇×A) = ∇(∇ ·A)−∇2A. (2.36)

Consider what is involved in proving this the old-fashioned way. We first

have to expand the curl of A, and then take the curl of that. So we the first

few steps of a demonstration along these lines would look like this:

∇× (∇×A) = ∇× (∂yAz − ∂zAy, ∂zAx − ∂xAz, ∂xAy − ∂yAx)

= (∂y (∂xAy − ∂yAx)− ∂z (∂zAx − ∂xAz) , . . . )

= . . . .

We would then have to do all the derivatives and collect terms to show that we

get the right hand side of (2.36). You can do it this way, but it is unpleasant.

A more elegant proof using index notation proceeds as follows:

[∇× (∇×A)]i = εijk∂j(∇×A)k (using (2.28))

= εijk∂j(εklm∂lAm) (using (2.28) again)

= εijkεklm∂j(δlAm) (as εklm is constant)

= (δilδjm − δimδjl)∂j∂lAm (from (1.81))

= ∂i∂jAj − ∂j∂jAi (substitution property of δ)

= ∂i(∇ ·A)−∇2Ai, ((2.26) and (2.27))

and we are finished. (You may want to compare this with the proof of (1.86).)

46



2.8 Problems

1) Write down equations for the tangent plane and normal line to the surface
x2y + y2z + z2x+ 1 = 0 at the point (1, 2,−1).

2) Old postal regulations dictated that the maximum size of a rectangular box
that could be sent parcel post was 108′′, measured as length plus girth. (If
the box length is z, say, then the girth is 2x + 2y, where x and y are the
lengths of the other sides.) What is the maximum volume of such a package?

3) Either directly or using index methods, show that, for any scalar field ϕ and
vector field A,

(a) ∇ · (ϕA) = ∇ϕ ·A+ ϕ∇ ·A,

(b) ∇× (ϕA) = ∇ϕ×A+ ϕ∇×A, and

(c) ∇2(ϕψ) = (∇2ϕ)ψ + 2∇ϕ ·∇ψ + ϕ∇2ψ.

4) Show that, for r 6= 0,

(a) ∇ · r̂ = 2/r, and

(b) ∇× r̂ = 0.

5) A function f(r) = f(x, y, z) is homogeneous of degree k if

f(ar) = akf(r) (2.37)

for any nonzero constant a. Prove Euler’s Theorem, which states that, for
any homogeneous function f of degree k,

(r ·∇)f = kf. (2.38)

[Hint: Differentiate both sides of (2.37) with respect to a and use the chain
rule, then evaluate at a = 1.]

6) A function ϕ satisfying ∇2ϕ = 0 is called harmonic.

(a) Using Cartesian coordinates, show that ϕ = 1/r is harmonic, where
r = (x2 + y2 + z2)1/2 6= 0.
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(b) Let α = (α1, α2, α3) be a vector of nonnegative integers, and define
|α| = α1 + α2 + α3. Let ∂α be the differential operator ∂α1

x ∂α2
y ∂α3

z .
Prove that any function of the form ϕ = r2|α|+1∂α(1/r) is harmonic.
[Hint: Use vector calculus identities to expand out ∇2(rnf) where
f := ∂α(1/r) and use Euler’s theorem and the fact that mixed partials
commute.]

7) Using index methods, prove the following vector calculus identities:

(a) ∇ · (A×B) = B · (∇×A)−A · (∇×B).

(b) ∇(A ·B) = (B ·∇)A+ (A ·∇)B +B × (∇×A) +A× (∇×B).

3 Vector Calculus II: Other Coordinate Sys-

tems

3.1 Change of Variables from Cartesian to Spherical

Polar

So far we have dealt exclusively with Cartesian coordinates. But for many

problems it is more convenient to analyse the problem using a different coordi-

nate system. Here we see what is involved in translating the vector operators

to spherical coordinates, leaving the task for other coordinate systems to the

reader.

First we recall the relationship between Cartesian coordinates and spher-

ical polar coordinates (see Figure 9):

x = r sin θ cosφ r = (x2 + y2 + z2)1/2

y = r sin θ sinφ θ = cos−1 z

(x2 + y2 + z2)1/2
(3.1)

z = r cos θ φ = tan−1 y

x
.
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Figure 9: Spherical polar coordinates and corresponding unit vectors

3.2 Vector Fields and Derivations

Next we need the equations relating the Cartesian unit vectors x̂, ŷ, and ẑ,

to the spherical polar unit vectors r̂, θ̂, and φ̂. To do this we introduce a

new idea, namely the idea of vector field as derivation. We have already

encountered the basic idea above. Suppose you walk along a curve r(t) in

the presence of a scalar field ϕ. Then the rate of change of ϕ along the curve

is
dϕ(t)

dt
= (v ·∇)ϕ. (3.2)

On the left side of this expression we have the derivative of ϕ along the curve,

while on the right side we have the directional derivative of ϕ in a direction

tangent to the curve. We can dispense with ϕ altogether, and simply write

d

dt
= v ·∇. (3.3)
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That is, d/dt, the derivative with respect to t, the parameter along the curve,

is the same thing as directional derivative in the v direction. This allows us

to identify the derivation d/dt and the vector field v. 10 To every vector

field there is a derivation, namely the directional derivative in the direction

of the vector field, and vice versa, so mathematicians often identify the two

concepts.

For example, let us walk along the x axis with some speed v. Then

d

dt
=
dx

dt

∂

∂x
= v

∂

∂x
, (3.4)

so (3.3) becomes

v
∂

∂x
= vx̂ ·∇. (3.5)

Dividing both sides by v gives

∂

∂x
= x̂ ·∇, (3.6)

which is consistent with our previous results. Hence we write

∂

∂x
←→ x̂ (3.7)

to indicate that the derivation on the left corresponds to the vector field on

the right. Clearly, an analogous result holds for ŷ and ẑ. Note also that

(3.6) is an equality whereas (3.7) is an association. Keep this distinction in

mind to avoid confusion.

Suppose instead that we were to move along a longitude in the direction

10A derivation D is a linear operator obeying the Leibniz rule. That is, D(φ + ψ) =
Dφ+Dψ, and D(φψ) = (Dφ)ψ + φDψ.
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of increasing θ. Then we would have

d

dt
=
dθ

dt

∂

∂θ
, (3.8)

and (3.3) would become
dθ

dt

∂

∂θ
= vθ̂ ·∇. (3.9)

But now dθ/dt is not the speed. Instead,

v = r
dθ

dt
, (3.10)

so (3.9) yields
1

r

∂

∂θ
= θ̂ ·∇. (3.11)

This allows us to identify
1

r

∂

∂θ
←→ θ̂. (3.12)

We can avoid reference to the speed of the observer by the following

method. From the chain rule

∂

∂r
=

(
∂x

∂r

)
∂

∂x
+

(
∂y

∂r

)
∂

∂y
+

(
∂z

∂r

)
∂

∂z

∂

∂θ
=

(
∂x

∂θ

)
∂

∂x
+

(
∂y

∂θ

)
∂

∂y
+

(
∂z

∂θ

)
∂

∂z
(3.13)

∂

∂φ
=

(
∂x

∂φ

)
∂

∂x
+

(
∂y

∂φ

)
∂

∂y
+

(
∂z

∂φ

)
∂

∂z
.
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Using (3.1) gives

∂x

∂r
= sin θ cosφ

∂y

∂r
= sin θ sinφ

∂z

∂r
= cos θ

∂x

∂θ
= r cos θ cosφ

∂y

∂θ
= r cos θ sinφ

∂z

∂θ
= −r sin θ (3.14)

∂x

∂φ
= −r sin θ sinφ

∂y

∂φ
= r sin θ cosφ

∂z

∂φ
= 0,

so

∂

∂r
= sin θ cosφ

∂

∂x
+ sin θ sinφ

∂

∂y
+ cos θ

∂

∂z
(3.15)

∂

∂θ
= r cos θ cosφ

∂

∂x
+r cos θ sinφ

∂

∂y
−r sin θ

∂

∂z
(3.16)

∂

∂φ
= −r sin θ sinφ

∂

∂x
+r sin θ cosφ

∂

∂y
. (3.17)

Now we just identify the derivations on the left with multiples of the corre-

sponding unit vectors. For example, if we write

∂

∂θ
←→ αθ̂, (3.18)

then from (3.16) we get

αθ̂ = r cos θ cosφ x̂+ r cos θ sinφ ŷ − r sin θ ẑ. (3.19)

The vector on the right side of (3.19) has length r, which means that α = r,

and we recover (3.12) from (3.18). Furthermore, we also conclude that

θ̂ = cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ. (3.20)
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Continuing in this way gives

r̂ ←→ ∂

∂r
(3.21)

θ̂ ←→ 1

r

∂

∂θ
(3.22)

φ̂←→ 1

r sin θ

∂

∂φ
(3.23)

and

r̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ (3.24)

θ̂ = cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ (3.25)

φ̂ = − sinφ x̂+ cosφ ŷ. (3.26)

If desired, we could now use (3.1) to express the above equations in terms of

Cartesian coordinates.

3.3 Derivatives of Unit Vectors

The reason why vector calculus is simpler in Cartesian coordinates than in

any other coordinate system is that the unit vectors x̂, ŷ and ẑ are constant.

This means that, no matter where you are in space, these vectors never

change length or direction. But it is immediately apparent from (3.24)-(3.26)

(see also Figure 9) that the spherical polar unit vectors r̂, θ̂, and φ̂ vary in

direction (though not in length) as we move around. It is this difference that

makes vector calculus in spherical coordinates a bit of a mess.

Thus, we must compute how the spherical polar unit vectors change as
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we move around. A little calculation yields

∂r̂

∂r
= 0

∂r̂

∂θ
= θ̂

∂r̂

∂φ
= sin θ φ̂

∂θ̂

∂r
= 0

∂θ̂

∂θ
= −r̂ ∂θ̂

∂φ
= cos θ φ̂ (3.27)

∂φ̂

∂r
= 0

∂φ̂

∂θ
= 0

∂φ̂

∂φ
= −(sin θ r̂ + cos θ θ̂)

3.4 Vector Components in a Non-Cartesian Basis

We began these notes by observing that the Cartesian components of a vector

can be found by computing inner products. For example, the x component

of a vector A is just x̂ ·A. Similarly, the spherical polar components of the

vector A are defined by

A = Arr̂ + Aθθ̂ + Aφφ̂. (3.28)

Equivalently,

A = r̂(r̂ ·A) + θ̂(θ̂ ·A) + φ̂(φ̂ ·A). (3.29)

3.5 Vector Operators in Spherical Coordinates

We are finally ready to find expressions for the gradient, divergence, curl,

and Laplacian in spherical polar coordinates. We begin with the gradient

operator. According to (3.29) we have

∇ = r̂(r̂ ·∇) + θ̂(θ̂ ·∇) + φ̂(φ̂ ·∇). (3.30)

In this formula the unit vectors are followed by the derivations in the direction

of the unit vectors. But the latter are precisely what we computed in (3.21)-
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(3.23), so we get

∇ = r̂∂r + θ̂
1

r
∂θ + φ̂

1

r sin θ
∂φ. (3.31)

Example 6 If ϕ = r2 sin2 θ sinφ then ∇ϕ = 2r sin2 θ sinφ r̂+2r sin θ cos θ sinφ θ̂+

r sin θ cosφ φ̂.

The divergence is a bit trickier. Now we have

∇ ·A = (r̂∂r + θ̂
1

r
∂θ + φ̂

1

r sin θ
∂φ) · (Arr̂ + Aθθ̂ + Aφφ̂). (3.32)

To compute this expression we must act first with the derivatives, and then

take the dot products. This gives

∇ ·A = r̂ · ∂r(Arr̂ + Aθθ̂ + Aφφ̂)

+
1

r
θ̂ · ∂θ(Arr̂ + Aθθ̂ + Aφφ̂)

+
1

r sin θ
φ̂ · ∂φ(Arr̂ + Aθθ̂ + Aφφ̂). (3.33)

With a little help from (3.27) we get

∂r(Arr̂ + Aθθ̂ + Aφφ̂)

= (∂rAr)r̂ + Ar(∂rr̂) + (∂rAθ)θ̂ + Aθ(∂rθ̂) + (∂rAφ)φ̂+ Aφ(∂rφ̂)

= (∂rAr)r̂ + (∂rAθ)θ̂ + (∂rAφ)φ̂, (3.34)

∂θ(Arr̂ + Aθθ̂ + Aφφ̂)

= (∂θAr)r̂ + Ar(∂θr̂) + (∂θAθ)θ̂ + Aθ(∂θθ̂) + (∂θAφ)φ̂+ Aφ(∂θφ̂)

= (∂θAr)r̂ + Arθ̂ + (∂θAθ)θ̂ − Aθr̂ + (∂θAφ)φ̂, (3.35)
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and

∂φ(Arr̂ + Aθθ̂ + Aφφ̂)

= (∂φAr)r̂ + Ar(∂φr̂) + (∂φAθ)θ̂ + Aθ(∂φθ̂) + (∂φAφ)φ̂+ Aφ(∂φφ̂)

= (∂φAr)r̂ + Ar(sin θ φ̂) + (∂φAθ)θ̂

+ Aθ(cos θ φ̂) + (∂φAφ)φ̂− Aφ(sin θ r̂ + cos θ θ̂). (3.36)

Taking the dot products and combining terms gives

∇ ·A = ∂rAr +
1

r
(Ar + ∂θAθ) +

1

r sin θ
(Ar sin θ + Aθ cos θ + ∂φAφ)

=

(
∂Ar
∂r

+
Ar
r

)
+

(
1

r

∂Aθ
∂θ

+
Aθ cos θ

r sin θ

)
+

1

r sin θ

∂Aφ
∂φ

=
1

r2

∂

∂r

(
r2Ar

)
+

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ
∂φ

. (3.37)

Well, that was fun. Similar computations, which are left to the reader

:-), yield the curl:

∇×A =
1

r sin θ

[
∂

∂θ
(sin θAφ)− ∂Aθ

∂φ

]
r̂

+
1

r

[
1

sin θ

∂Ar
∂φ
− ∂

∂r
(rAφ)

]
θ̂

+
1

r

[
∂

∂r
(rAθ)−

∂Ar
∂θ

]
φ̂, (3.38)

and the Laplacian

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (3.39)

Example 7 Let A = r2 sin θ r̂ + 4r2 cos θ θ̂ + r2 tan θ φ̂. Then ∇ · A =
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4r cos2 θ/ sin θ, and ∇×A = −r r̂ − 3r tan θ θ̂ + 11r cos θ φ̂.

3.6 Problems

1) The transformation relating Cartesian and cylindrical coordinates is

x = ρ cos θ ρ = (x2 + y2)1/2

y = ρ sin θ θ = tan−1 y

x
(3.40)

z = z z = z

Using the methods of this section, show that the gradient operator in cylin-
drical coordinates is given by

∇ = ρ̂∂ρ +
1
ρ
θ̂∂θ + ẑ∂z. (3.41)

4 Vector Calculus III: Integration

Integration is the flip side of differentiation—you cannot have one without

the other. We begin with line integrals, then continue on to surface and

volume integrals and the relations between them.

4.1 Line Integrals

There are many different types of line integrals, but the most important type

arises as the inverse of the gradient function. Given a parameterized curve

γ(t) and a vector field A, the line 11 integral of A along the curve γ(t) is

usually written ∫
γ

A · d`, (4.1)

11The word ‘line’ is a bit of a misnomer in this context, because we really mean a ‘curve’
integral, but we will follow standard terminology.
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where d` is the infinitessimal tangent vector to the curve. This notation fails

to specify where the curve begins and ends. If the curve starts at a and ends

at b, the same integral is usually written

∫ b

a

A · d`, (4.2)

but the problem here is that the curve is not specified. The best notation

would be ∫ b

a;γ

A · d`, (4.3)

or some such, but unfortunately, no one does this. Thus, one usually has to

decide from context what is going on.

As written, the line integral is merely a formal expression. We give it

meaning by the mathematical operation of ‘pullback’, which basically means

using the parameterization to write it as a conventional integral over a line

segment in Euclidean space. Thus, if we write γ(t) = (x(t), y(t), z(t)), then

d`/dt = dγ(t)/dt = v is the velocity with which the curve is traversed, so

∫
γ

A · d` =

∫ t1

t0

A(γ(t)) · d`
dt
dt =

∫ t1

t0

A(γ(t)) · v dt. (4.4)

This last expression is independent of the parameterization used, which

means it depends only on the curve. Suppose t∗ = t∗(t) were some other
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parameterization. Then we would have

∫ t∗1

t∗0

A(γ(t∗)) · v(t∗) dt∗ =

∫ t1

t0

A(γ(t∗(t))) · dγ(t∗(t))

dt∗
dt∗

=

∫ t1

t0

A(γ(t)) · dγ(t)

dt

dt

dt∗
dt∗

=

∫ t1

t0

A(γ(t)) · dγ(t)

dt
dt.

Example 8 Let A = (4xy,−8yz, 2xz), and let γ be the straight line path from

(1, 2, 6) to (5, 3, 5). Every straight line segment from a to b can be parameterized

in a natural way by γ(t) = (b−a)t+a. This is clearly a line segment which begins

at a when t = 0 and ends up at b when t = 1. In our case we have

γ(t) = [(5, 3, 5)− (1, 2, 6)]t+ (1, 2, 6) = (4t+ 1, t+ 2,−t+ 6),

which implies

v(t) = γ̇(t) = (4, 1,−1).

Thus∫
γ
A · d`

=
∫ 1

0
(4(4t+ 1)(t+ 2),−8(t+ 2)(−t+ 6), 2(4t+ 1)(−t+ 6)) · (4, 1,−1) dt

=
∫ 1

0
(16(4t+ 1)(t+ 2)− 8(t+ 2)(−t+ 6)− 2(4t+ 1)(−t+ 6)) dt

=
∫ 1

0
(80t2 + 66t− 76) dt =

80
3
t3 + 33t2 − 76t

∣∣∣∣1
0

= −49
3
.
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Physicists usually simplify the notation by writing

d` = v dt = (dx, dy, dz). (4.5)

Although this notation is somewhat ambiguous, it can be used to good effect

under certain circumstances. Let A = ∇ϕ for some scalar field ϕ, and let γ

be some curve. Then∫
γ

∇ϕ · d` =

∫
γ

(
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

)
· (dx, dy, dz)

=

∫
γ

dϕ

= ϕ(b)− ϕ(a).

This clearly demonstrates that the line integral (4.4) is indeed the inverse

operation to the gradient, in the same way that one dimensional integration

is the inverse operation to one dimensional differentiation.

Recall that a vector field A is conservative if the line integral
∫
A · d`

is path independent. That is, for any two curves γ1 and γ2 joining the

points a and b, we have ∫
γ1

A · d` =

∫
γ2

A · d`. (4.6)

We can express this result another way. As d` → −d` when we reverse

directions, if traverse the curve in the opposite direction we get the negative

of the original path integral:∫
γ−1

A · d` = −
∫
γ

A · d`, (4.7)
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where γ−1 represents the same curve γ traced backwards. Combining (4.6)

and (4.7) we can write the condition for path independence as∫
γ1

A · d` = −
∫
γ−1
2

A · d` (4.8)

⇒
∫
γ1

A · d`+

∫
γ−1
2

A · d` = 0 (4.9)

⇒
∮
γ

A · d` = 0, (4.10)

where γ = γ1 + γ−1
2 is the closed curve obtained by following γ1 from a to

b and then γ−1
2 from b back to a. 12 The line integral of a vector field A is

usually called the circulation of A, so A is conservative if the circulation

of A vanishes around every closed curve.

Example 9 Consider the vector field A = (x2 − y2, 2xy) in the plane. Let γ1

be the curve given by y = 2x2 and let γ2 be the curve given by y = 2
√
x. Let the

endpoints be a = (0, 0) and b = (1, 2). This situation is sufficiently simple that a

parameterization is unnecessary. We compute as follows:∫
γ1

A · d` =
∫
γ1

(Ax dx+Ay dy) =
∫
γ1

(x2 − y2) dx+ 2xy dy

=
∫ 1

0
(x2 − 4x4) dx+ 4x3 · 4x dx

=
[
x3

3
− 4x5

5
+

16x5

5

]∣∣∣∣1
0

=
1
3

+
12
5

=
41
15
.

In the computation above we substituted in y as a function of x along the curve,

then used the x limits. We could just as well have solved for x in terms of y and

then solved the integral in the variable y instead. We do this in the next integral

12The circle on the integral sign merely serves to remind us that the integral is taken
around a closed curve.
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to avoid messy square roots. Since x = (y/2)2 along γ2, we get∫
γ2

A · d` =
∫
γ2

(Ax dx+Ay dy) =
∫
γ2

(x2 − y2) dx+ 2xy dy

=
∫ 2

0

(
y4

16
− y2

)
· y

2
dy +

y3

2
dy

=
[
y6

160

]∣∣∣∣2
0

=
2
5
.

Evidently, these are not equal. Hence the vector field A = (x2 − y2, 2xy) is not

conservative.

But suppose we began with the vector field A = (x2− y2,−2xy) instead. Now

carrying out the same procedure as above would give
∫
γ1
A·d` = −11/3 =

∫
γ2
A·d`.

Can we conclude from this that A is conservative? No! The reason is that we have

only shown that the line integral of A is the same along these two curves between

these two endpoints. But we must show that we get the same answer no matter

which curve and which endpoints we pick. Now, this vector field is sufficiently

simple that we can actually tell that it is indeed conservative. We do this by

observing that A ·d` is an exact differential, which means that it can be written

as dϕ for some function ϕ. In our case the function ϕ = (x3/3) − xy2. (See the

discussion below.) Hence

∫
γ
A · d` =

∫ (1,2)

(0,0)
dϕ = ϕ(1, 2)− ϕ(0, 0) = −11

3
, (4.11)

which demonstrates the path independence of the integral. Comparing this analy-

sis to our discussion above shows that the reason why A ·d` is an exact differential

is because A = ∇ϕ.

Example 9 illustrates the fact that any vector field that can be written as

the gradient of a scalar field is conservative. This brings us naturally to the

question of determining when such a situation holds. An obvious necessary
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condition is that the curl of the vector field must vanish (because the curl of a

gradient is identically zero). It turns out that this condition is also sufficient.

That is, if ∇ × A = 0 for some vector field A then A = ∇ϕ for some ϕ.

This follows from a lemma of Poincaré that we will not discuss here. 13

Example 10 Consider again the two vector fields from Example 9. The first one,

namely A = (x2 − y2, 2xy, 0), satisfies ∇×A = 4y k̂, and so is non-conservative,

whereas the second one, namely A = (x2 − y2,−2xy, 0), satisfies ∇×A = 0 and

so is conservative, as previously demonstrated.

This gives us an easy criterion to test for conservative vector fields, but

it does not produce the corresponding scalar field for us. To find this, we use

partial integration. Suppose we are given a vector field A = (Ax, Ay, Az).

If A = ∇ϕ for some ϕ, then

∂ϕ

∂x
= Ax,

∂ϕ

∂y
= Ay, and

∂ϕ

∂z
= Az. (4.12)

Partially integrating these equations gives

ϕ =

∫
Ax dx+ f(y, z), (4.13)

ϕ =

∫
Ay dy + g(x, z), and (4.14)

ϕ =

∫
Az dz + h(x, y), (4.15)

where f , g, and h are unknown functions of the given variables. 14 If (4.13)-

13There is one caveat, which is that the conclusion only holds if the region over which
the curl vanishes is simply connected. Roughly speaking, this means the region has no
‘holes’.

14We are integrating the vector field components with respect to one variable only, which
is why it is called partial integration.
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(4.15) can be solved consistently for a function ϕ, then A = ∇ϕ.

Example 11 Let A = (x2 − y2,−2xy, 0) as in Example 9. To show that it can

be written as the gradient of a scalar field we partially integrate the components

to get

ϕ =
∫

(x2 − y2) dx+ f(y, z) =
1
3
x3 − xy2 + f(y, z),

ϕ =
∫

(−2xy) dy + g(x, z) = −xy2 + g(x, z), and

ϕ = 0 + h(x, y).

These equations can be made consistent if we choose

f = 0, g =
1
3
x3, and h =

1
3
x3 − xy2. (4.16)

so ϕ = (x3/3) − xy2 is the common solution. The reader should verify that this

procedure fails for the nonconservative vector field A = (x2 − y2, 2xy, 0).

4.2 Surface Integrals

Let S be a two dimensional surface in space, and let A be a vector field.

Then the flux of A through the surface S is∫
S

A · dS. (4.17)

In this formula dS = n̂dS, where dS is the infinitessimal area element on

the surface and n̂ points orthogonally to the surface. As before, this integral

is defined in terms of a parameterization. A surface is a two dimensional

object, so it depends on two parameters, which we will usually denote by

u and v. Let σ(u, v) : R2 → R3 be such a parameterization. As u and v
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line of

constant u

on S

σv

line of

constant v
on S

σu

n

u

v

σ

S

Figure 10: A parameterized surface

vary over some domain D ⊆ R2, σ(u, v) traces out the surface S in R3. (See

Figure 10.)

If we fix v and let u vary, then we get a line of constant v on S. The

tangent vector field to this line is just σu := ∂σ/∂u. Similarly, σv := ∂σ/∂v

gives the tangent vector field to the lines of constant u. The normal vector

to the surface 15 is therefore

n = σu × σv. (4.18)

15When we say ‘the’ normal vector, we really mean ‘a’ normal vector, because the vector
depends on the parametrization. Even if we normalize the vector to have length one there
is still some ambiguity, because a surface has two sides, and therefore two unit normal
vectors at every point. If one is interested in, say, the flux through a surface in one
direction, then one must select the normal vector in that direction. If the surface is closed,
then we usually choose the outward pointing normal in order to be consistent with Gauss’
theorem. (See the discussion below.)
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Now we define the surface integral in terms of its parameterization:∫
S

A · dS =

∫
D

A(σ(u, v)) · n dudv. (4.19)

Once again, one can show the integral is independent of the parameterization

by changing variables.

Example 12 Let A = (y, 2y, xz) and let S be the paraboloid of revolution

obtained by rotating the curve z = 2x2 about the z axis, where 0 ≤ z ≤ 3. To

compute the flux integral we must first parameterize the surface. One possible

parameterization is

σ = (u, v, 2(u2 + v2)),

while another is

σ = (u cos v, u sin v, 2u2).

Let us choose the latter. Then the domain D is 0 ≤ u ≤
√

3/2 and 0 ≤ v ≤ 2π.

Also,

σu = (cos v, sin v, 4u) and σv = (−u sin v, u cos v, 0),

so

n = σu × σv =

∣∣∣∣∣∣∣∣
ı̂ ̂ k̂

cos v sin v 4u

−u sin v u cos v 0

∣∣∣∣∣∣∣∣ = (−4u2 cos v,−4u2 sin v, u).

(Note that this normal points inward towards the z axis. If you were asked for the
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flux in the other direction you would have to use −n instead.) Thus∫
S
A · dS =

∫
D
A(σ(u, v)) · n dudv

=
∫
D

(u sin v, 2(u sin v), (u cos v)(2u2)) · (−4u2 cos v,−4u2 sin v, u) dudv

=
∫
D

(−4u3 sin v cos v − 8u3 sin2 v + 2u4 cos v)dudv

The first and third terms disappear when integrated over v, leaving only

∫
S
A · dS = −8

∫ √3/2

0
u3 du

∫ 2π

0
sin2 v dv = −2u4

∣∣∣√3/2

0
· π = −9

2
π.

4.3 Volume Integrals

We will usually consider only volume integrals of scalar fields of the form∫
V

f dτ,

where dτ is the infinitessimal volume element. For example, in Cartesian

coordinates we would compute∫
V

f(x, y, z) dx dy dz.

In any other coordinate system we must use the change of variables theorem.

Theorem 4.1. Let F : X → Y be a map from X ⊆ Rn to Y ⊆ Rn, and let

f be an integrable function on Y . Then∫
Y

f dy1 . . . dyn =

∫
X

(f ◦ F ) | det J | dx1 . . . dxn, (4.20)
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where J is the Jacobian matrix of partial derivatives:

Jij =
∂yi
∂xj

. (4.21)

The map F is the change of variables map, given explicitly by the functions

yi = Fi(x1, x2, . . . , xn). Geometrically, the theorem says that the integral

of f over Y is not equal to the integral of f ◦ F over X, because the map-

ping F distorts volumes. The Jacobian factor compensates precisely for this

distortion.

Example 13 Let f = x2y2z2, and let V be a sphere of radius 2. It makes sense

to change variables from Cartesian to spherical polar coordinates because then

the domain of integration becomes much simpler. In the above theorem the ‘x’

coordinates are (r, θ, φ) and the ‘y’ coordinates are (x, y, z). The Jacobian factor

can be computed from (3.14):

|J | =

∣∣∣∣∣∣∣∣
sin θ cosφ r cos θ cosφ −r sin θ sinφ

sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

∣∣∣∣∣∣∣∣ = r2 sin θ.

Hence ∫
V
f(x, y, z) dx dy dz =

∫ 2

0
r2 dr

∫ π

0
sin θ dθ

∫ 2π

0
dφ f(r, θ, φ)

=
∫ 2

0
r2 dr

∫ π

0
sin θ dθ

∫ 2π

0
dφ (r2 sin2 θ cos2 φ)

· (r2 sin2 θ sin2 φ)(r2 cos2 θ).

The r integral is ∫ 2

0
r8 dr =

1
9
r9 =

512
9
.
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The θ integral is∫ π

0
sin θ(sin4 θ cos2 θ) dθ = −

∫ π

0
(1− cos2 θ)2(cos2 θ)d(cos θ)

=
[
−cos3 θ

3
+

cos5 θ

5

]∣∣∣∣π
0

=
2
3
− 2

5
=

4
15
.

The φ integral is∫ 2π

0
sin2 φ cos2 φdφ =

1
4

∫ 2π

0
sin2 2φdφ =

1
8

∫ 4π

0
sin2 φ′ dφ′ =

π

4
.

Putting everything together gives∫
V
f dτ =

512
9
· 4

15
· π

4
=

512
135

π.

4.4 Problems

1) Verify that each of the following vector fields F is conservative in two ways:
first by showing that ∇ × F = 0, and second by finding a function ϕ such
that F = ∇ϕ.

(a) F = (1,−z,−y).

(b) F = (3x2yz − 3y, x3z − 3x, x3y + 2z).

(c) F =

(
y√

1− x2y2
,

x√
1− x2y2

, 0

)
.

2) By explicitly evaluating the line integrals, calculate the work done by the
force field F = (1,−z,−y) on a particle when it is moved from (1, 0, 0) to
(−1, 0, π) (i) along the helix (cos t, sin t, t), and (ii) along the straight line
joining the two points. (iii) Do you expect your answers to (i) and (ii) to be
the same? Explain.
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3) Let A = (y2, 2x, 1). Evaluate the line integral∫
γ
A · d`

between (0, 0, 0) and (1, 1, 1), where

(a) γ is the piecewise linear path from (0, 0, 0) to (1, 0, 0) to (1, 0, 1) to
(1, 1, 1).

(b) γ is the path going from (0, 0, 0) to (1, 1, 0) along an arc of the circle
x2 + y2 − 2y = 0, and then from (1, 1, 0) to (1, 1, 1) along a straight
line segment.

(c) Should the answers to (a) and (b) have been the same? Explain.

4) The helicoid admits the parameterization σ = (u cos v, u sin v, av). Compute
the area of the helicoid over the domain 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π.

5) Compute the surface integral
∫
S F · dS, where F = (1, x2, xyz) and the

surface S is given by z = xy, with 0 ≤ x ≤ y and 0 ≤ y ≤ 1.

5 Integral Theorems

Let f be a differentiable function on the interval [a, b]. Then, by the Funda-

mental Theorem of Calculus∫ b

a

f ′(x) dx = f(b)− f(a). (5.1)

In this section we discuss a generalization of this theorem to functions of many

variables. The best formulation of this theorem is expressed in the language

of manifolds and differential forms, which are, unfortunately, slightly beyond

the scope of these lectures. Therefore we will have to content ourselves with

rather more pedestrian formulations.
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5.1 Green’s Theorem

The simplest generalization of the Fundamental Theorem of Calculus to two

dimensions is Green’s Theorem. 16 It relates an area integral over a region

to a line integral over the boundary of the region.

Let R be a region in the plane with a simple closed curve boundary ∂R.17

Then we have

Theorem 5.1 (Green’s Theorem). For any differentiable functions P and

Q in the plane, ∫
R

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∮
∂R

(P dx+Qdy), (5.2)

where the boundary ∂R is traversed counterclockwise.

Sketch of Proof. The proof of Green’s theorem is included in most vector

calculus textbooks, but it is worth pointing out some of the basic ideas

involved. Consider a square in the plane with lower left corner at (a, a)

and upper right corner at (b, b). Then

∫
R

∂P

∂y
dx dy =

∫ b

a

dx

∫ b

a

∂P (x, y)

∂y
dy

=

∫ b

a

(P (x, b)− P (x, a)) dx,

where the last equality follows from the Fundamental Theorem of Calculus.

The boundary ∂R consists of the four sides of the square, oriented as follows:

γ1 from (a, a) to (b, a), γ2 from (b, a) to (b, b), γ3 from (b, b) to (a, b), and γ4

16Named after the British mathematician and physicist George Green (1793-1841).
17In this context, the notation ∂R does not mean ‘derivative’. Instead it represents

the curve that bounds the region R. A simple closed curve is a closed curve that has no
self-intersections.
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from (a, b) to (a, a). Considering the meaning of the line integrals involved,

we see that∫
γ1

P dx =

∫ b

a

P (x, a) dx,

∫
γ3

P dx =

∫ a

b

P (x, b) dx,

and (since x is fixed along γ2 and γ4),∫
γ2

P dx =

∫
γ4

P dx = 0,

from which it follows that∮
∂R

P dx =

∮
γ1+γ2+γ3+γ4

P dx =

∫ b

a

(P (x, a)− P (x, b)) dx.

Thus we have shown that∫
R

∂P

∂y
dx dy = −

∮
∂R

P dx.

A similar argument yields∫
R

∂Q

∂x
dx dy =

∮
∂R

Qdy.

Adding these two results shows that the theorem is true for squares.

Now consider a rectangular region R′ consisting of two squares R1 and

R2 sharing an edge e. By definition of the integral as a sum,∫
R′
f dx dy =

∫
R1

f dx dy +

∫
R2

f dx dy
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for any function f . But also∮
∂R′

(g dx+ h dy) =

∮
∂R1

(g dx+ h dy) +

∮
∂R2

(g dx+ h dy)

for any functions g and h, because the contribution to the line integral over

∂R1 coming from e is exactly canceled by the contribution to the line integral

over ∂R2 coming from e, since e is traversed one direction in ∂R1 and the

opposite direction in ∂R2. It follows that Green’s theorem holds for the

rectangle R′, and, by extension, for any region that can be obtained by

pasting together squares along their boundaries. By taking small enough

squares, any region in the plane can be built this way, so Green’s theorem

holds in general.

5.2 Stokes’ Theorem

Consider a three dimensional vector field of the form A = P ı̂ + Q̂. Note

that

∇×A =

∣∣∣∣∣∣∣∣
ı̂ ̂ k̂

∂x ∂y ∂z

P Q 0

∣∣∣∣∣∣∣∣ = (∂xQ− ∂yP )k̂. (5.3)

Let S be a region in the xy plane with boundary ∂S. Let dS = k̂ dx dy be

the area element on S. Then Green’s theorem can be written∫
S

(∇×A) · dS =

∮
∂S

A · d`. (5.4)

By a similar argument to that given above in the proof of Green’s theorem,

this formula holds for any reasonable surface S in three dimensional space,

provided ∂S is traversed in such a way that the surface normal points ‘up-
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wards on the left’ at all times. (Just paste together infinitessimal squares to

form S.) In the general case it is known as Stokes’ Theorem. 18

Note that this is consistent with the results of Section 4.1. If the vector

field A is conservative, then the right side of (5.4) vanishes for every closed

curve. Hence the left side of (5.4) vanishes for every open surface S. The only

way this can happen is if the integrand vanishes everywhere, which means

that A is irrotational. Thus, to test whether a vector field is conservative we

need only check whether its curl vanishes.

5.3 Gauss’ Theorem

Yet another integral formula, called Gauss’ Theorem 19 or the divergence

theorem has the following statement. Let V be a bounded three dimensional

region with two dimensional boundary ∂V oriented so that its normal vector

points everywhere outward from the volume. Then, for any well behaved

vector field A, ∫
V

(∇ ·A) dτ =

∮
∂V

A · dS, (5.5)

where dτ is the infinitessimal volume element of V .

5.4 The Generalized Stokes’ Theorem

There is a clear pattern in all the integral formulae (5.1), (5.4), and (5.5). In

each case we have the integral of a derivative of something over an oriented

n dimensional region equals the integral of that same something over the

18Named after the British mathematician and physicist Sir George Gabriel Stokes (1819-
1903).

19Not to be confused with Gauss’ Law.
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oriented n − 1 dimensional boundary of the region. 20 This idea is made

rigorous by the theory of differential forms. Basically, a differential form

ω is something that you integrate. Although the theory of differential forms

is beyond the scope of these lectures, I cannot resist giving the elegant gen-

eralization and unification of all the results we have discussed so far, just to

whet your appetite to investigate the matter more thoroughly on your own:

Theorem 5.2 (Generalized Stokes’ Theorem). If ω is any smooth n−1 form

with compact support on a smooth oriented n-dimensional surface M , and if

the boundary ∂M is given the induced orientation, then∫
M

dω =

∫
∂M

ω. (5.6)

5.5 Problems

1) Evaluate
∮
SA · dS using Gauss’ theorem, where

A = (x2 − y2, 2xyz,−xz2),

and the surface S bounds the part of a ball of radius 4 that lies in the first
octant. (The ball has equation x2 + y2 + z2 ≤ 16, and the first octant is the
region with x ≥ 0, y ≥ 0, and z ≥ 0.)

20In the case of (5.1) we have an integral over a line segment [a, b] (thought of as oriented
from a to b) of the derivative of a function f equals the integral over a zero dimensional
region (thought of as oriented positively at b and negatively at a) of f itself, namely
f(b)− f(a).
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A Permutations

Let X = {1, 2, . . . , n} be a set of n elements. Informally, a permutation

of X is just a choice of ordering for the elements of X. More formally,

a permutation of X is a bijection 21 σ : X → X. The collection of all

permutations of X is called the symmetric group on n elements and is

denoted Sn. It contains n! elements.

Permutations can be represented in many different ways, but the simplest

is just to write down the elements in order. So, for example, if σ(1) = 2,

σ(2) = 4, σ(3) = 3, and σ(4) = 1 then we write σ = 2431. The identity

permutation, sometimes denoted e, is just the one satisfying σ(i) = i for all i.

For example, the identity permutation of S4 is e = 1234. If σ and τ are two

permutations, then the product permutation στ is the composite map σ ◦ τ .

That is, (στ)(i) = σ(τ(i)). For example, if τ(1) = 4, τ(2) = 2, τ(3) = 3, and

τ(4) = 1, then τ = 4231 and στ = 2431. The inverse of a permutation σ is

just the inverse map σ−1, which satisfies σσ−1 = σ−1σ = e.

A transposition is a permutation that switches two numbers and leaves

the rest fixed. For example, the permutation 4231 is a transposition, because

it flips 1 and 4 and leaves 2 and 3 alone. It is not too difficult to see that Sn

is generated by transpositions. This means that any permutation σ may be

written as the product of transpositions.

Definition. A permutation σ is even if it can be expressed as the product

of an even number of transpositions, otherwise it is odd. The sign of a

permutation σ, written (−1)σ, is +1 if it is even and −1 if it is odd.

21A bijection is a map that is one-to-one (so that i 6= j ⇒ σ(i) 6= σ(j)) and onto (so
that for every k there is an i such that σ(i) = k).
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Example 14 One can show that the sign of a permutation is the number of

transpositions required to transform it back to the identity permutation. So 2431 is

an even permutation (sign +1) because we can get back to the identity permutation

in two steps: 2431 1↔2−−−→ 1432 2↔4−−−→ 1234.

Although a given permutation σ can be written in many different ways as

a product of transpositions, it turns out that the sign of σ is always the same.

Furthermore, as the notation is meant to suggest, (−1)στ = (−1)σ(−1)τ .

Both these claims require proof, which we omit.

B Determinants

Definition. Let A by an n × n matrix. The determinant of A, written

detA or |A|, is the scalar given by

detA :=
∑
σ∈Sn

(−1)σA1σ(1)A2σ(2) . . . Anσ(n). (B.1)

Remark. In general, determinants are difficult to compute because the above

sum has n! terms. There are tricks for special kinds of determinants, but few

techniques for general matrices. One general method that works nicely in a wide

variety of circumstances is called Dodgson condensation, named after Charles

Lutwidge Dodgson, also known as Lewis Carroll, the inventor of Alice in Wonder-

land. (Look it up.)
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Example 15

det

a11 a12

a21 a22

 =

∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣ = a11a22 − a12a21. (B.2)

Example 16 det I = 1 because the only term contributing to the sum in (B.1)

is the one in which σ is the identity permutation, and its sign is +1.

Definition. The transpose AT of the matrix A has components

(AT )ij := Aji. (B.3)

Remark. The transpose matrix is obtained simply by flipping the matrix about

the main diagonal, which runs from A11 to Ann.

Lemma B.1.

detAT = detA. (B.4)

Proof. An arbitrary term of the expansion of detA is of the form

(−1)σA1σ(1)A2σ(2) . . . Anσ(n). (B.5)

As each number from 1 to n appears precisely once among the set σ(1), σ(2),

. . . , σ(n), the product may be rewritten (after some rearrangement) as

(−1)σAσ−1(1)1Aσ−1(2)2 . . . Aσ−1(n)n, (B.6)
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where σ−1 is the inverse permutation to σ. For example, suppose σ(5) = 1.

Then there would be a term in (B.5) of the form A5σ(5) = A51. This term

appears first in (B.6), as σ−1(1) = 5. Since a permutation and its inverse

both have the same sign (because σσ−1 = e implies (−1)σ(−1)σ
−1

= 1),

Equation (B.6) may be written

(−1)σ
−1

Aσ−1(1)1Aσ−1(2)2 . . . Aσ−1(n)n. (B.7)

Hence

detA =
∑
σ∈Sn

(−1)σ
−1

Aσ−1(1)1Aσ−1(2)2 . . . Aσ−1(n)n. (B.8)

As σ runs over all the elements of Sn, so does σ−1, so (B.8) may be written

detA =
∑

σ−1∈Sn

(−1)σ
−1

Aσ−1(1)1Aσ−1(2)2 . . . Aσ−1(n)n. (B.9)

But this is just detAT .

Remark. Equation (B.9) shows that we may also write detA as

detA :=
∑
σ∈Sn

(−1)σAσ(1)1Aσ(2)2 . . . Aσ(n)n. (B.10)

B.1 The Determinant as a Multilinear Map

Recall that a map T : Rn → R is linear if T (av + bw) = aTv + bTw for all

vectors v and w and all scalars a and b. A map S : Rn×Rn× · · · ×Rn → R
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is multilinear if S is linear on each entry. That is, we have

S(. . . , av + bw, . . . ) = aS(. . . ,v, . . . ) + bS(. . . ,w, . . . ). (B.11)

Theorem B.2. The determinant, considered as a map on the rows or columns

of the matrix, is multilinear.

Proof. We show that the determinant is linear on the first row of A. A

similar argument then shows that it is linear on all the rows or columns,

which means it is a multilinear function. Let A(av + bw, . . . ) be the matrix

obtained by replacing the first row of A by the vector av + bw. From (B.1),

we have

detA(av + bw, . . . ) =
∑
σ∈Sn

(−1)σ(avσ(1) + bwσ(1))A2σ(2) · · ·Anσ(n)

= a
∑
σ∈Sn

(−1)σvσ(1)A2σ(2) · · ·Anσ(n)

+ b
∑
σ∈Sn

(−1)σwσ(1)A2σ(2) · · ·Anσ(n)

= a detA(v, . . . ) + b detA(w, . . . ).

Lemma B.3. (1) The determinant changes sign whenever any two rows or

columns are interchanged. (2) The determinant vanishes if any two rows or

columns are equal. (3) The determinant is unchanged if we add a multiple

of any row to another row or a multiple of any column to another column.
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Proof. Let B be the matrix A except with rows 1 and 2 flipped. Then

detB =
∑
σ∈Sn

(−1)σB1σ(1)B2σ(2) · · ·Bnσ(n)

=
∑
σ∈Sn

(−1)σA2σ(1)A1σ(2) · · ·Anσ(n)

=
∑

σ′τ∈Sn

(−1)σ
′τA2(σ′τ)(1)A1(σ′τ)(2) · · ·An(σ′τ)(n). (B.12)

In the last sum we have written the permutation σ in the form σ′τ , where

τ is the transposition that flips 1 and 2 and σ′ is some other permutation.

By definition, the action of σ′τ on the numbers (1, 2, 3, . . . , n) is the same as

the action of σ′ on the numbers (2, 1, 3, . . . , n). But by the properties of the

sign, (−1)σ
′τ = (−1)σ

′
(−1)τ = −(−1)σ

′
, because all transpositions are odd.

Also, σ′ ranges over all permutations of Sn as σ′τ does, because the map

from Sn to Sn given by right multiplication by τ is bijective. Putting all

this together (and switching the order of two of the A terms in (B.12)) gives

detB = −
∑
σ′∈Sn

(−1)σ
′
A1σ′(1)A2σ′(2) · · ·Anσ′(n)

= − detA. (B.13)

The same argument holds for columns by starting with (B.10) instead. This

proves property (1). Property (2) then follows immediately, because if B is

obtained fromA by switching two identical rows (or columns), thenB = A, so

detB = detA. But by Property 1, detB = − detA, so detA = − detA = 0.

Property (3) now follows by the multilinearity of the determinant. Let v be
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the first row of A and let w be any another row of A. Then, for any scalar b,

detA(v + bw, . . . ) = detA(v, . . . ) + b detA(w, . . . ) = detA, (B.14)

because the penultimate determinant has two identical rows (w appears in

the first row and its original row) and so vanishes by Property (2). The same

argument works for any rows or columns.

B.2 Cofactors and the Adjugate

We now wish to derive another way to compute the determinant. To this

end, let us investigate the coefficient of A11 in detA. By (B.1) it must be

∑
σ′∈Sn

(−1)σ
′
A2σ′(2) . . . Anσ′(n), (B.15)

where σ′ means a general permutation in Sn that fixes σ(1) = 1. But

this means the sum in (B.15) extends over all permutations of the num-

bers {2, 3, . . . , n}, of which there are (n− 1)!. A moment’s reflection reveals

that (B.15) is nothing more than the determinant of the matrix obtained

from A by removing the first row and first column. As this idea reappears

later, we introduce some convenient notation. The n − 1 by n − 1 matrix

obtained from A by deleting the ith row and jth column is denoted A(i|j).

Definition. Let Aij be an element of a matrix A. The minor of Aij is

detA(i|j).

By the previous discussion, the coefficient of A11 appearing in detA is

precisely its minor, namely detA(1|1). Now consider a general element Aij.

What is its coefficient in detA? Well, consider the matrix A′ obtained from

A by moving the ith row up to the first row. To get A′ we must execute
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i − 1 adjacent row flips, so by Lemma B.3, detA′ = (−1)i−1 detA. Now

consider the matrix A′′ obtained from A′ by moving the jth column left to

the first column. Again by Lemma B.3 we have detA′′ = (−1)j−1 detA′. So

detA′′ = (−1)i+j detA. Now the element Aij appears in the (11) position in

A′′, so by the reasoning used above, its coefficient in detA′′ is the determinant

of A′′(1|1). But this is just detA(i|j). Hence the coefficient of Aij in detA

is (−1)i+j detA(i|j). This leads to another

Definition. The signed minor or cofactor of Aij is the number given by

(−1)i+j detA(i|j). We denote this number by Aij

We conclude that the coefficient of Aij in detA is just its cofactor Aij.

Now consider the expression

A11A11 + A12A12 + · · ·+ A1nA1n. (B.16)

Thinking of the Aij as independent variables, each term in (B.16) is distinct

(because, for example, only the first term contains A11, etc.). Moreover, each

term appears in (B.16) precisely as it appears in detA (with the correct sign

and correct products of elements of A). Finally, (B.16) contains n(n−1)! = n!

terms, which is the number that appear in detA. So (B.16) must be detA.

Equation (B.16) is called the (Laplace) expansion of det A by the first

row.

Thinking back over the argument of the previous paragraph we see there

is nothing particularly special about the first row. We could have written a

corresponding expression for any row or column. Hence we have proved the

following
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Lemma B.4. The determinant of A may be written

detA =
n∑
j=1

AijAij, (B.17)

for any i, or

detA =
n∑
i=1

AijAij, (B.18)

for any j.

Remark. This proposition allows us to write the following odd looking but often

useful formula for the derivative of the determinant of a matrix with respect to

one of its elements (treating them all as independent variables):

∂

∂Aij
detA = Aij . (B.19)

We may derive another very useful formula from the following considera-

tions. Suppose we begin with a matrix A and substitute for the ith row a new

row of elements labeled Bij, where j runs from 1 to n. Now, the cofactors

of the Bij in the new matrix are obviously the same as those of the Aij in

the old matrix, so we may write the determinant of the new matrix as, for

instance,

Bi1Ai1 +Bi2Ai2 + · · ·+BinAin. (B.20)

Of course, we could have substituted a new jth column instead, with similar

results.

Now suppose we let the Bij be the elements of any row of A other than the

ith. Then the expression in Equation (B.20) will vanish, as the determinant
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of any matrix with two identical rows is zero. This gives us the following

result:

Ak1Ai1 + Ak2Ai2 + · · ·+ AknAin = 0, k 6= i. (B.21)

Again, a similar result holds for columns. We call the cofactors appearing in

(B.20) alien cofactors, because they are the cofactors properly correspond-

ing to the elements Aij, j = 1, . . . , n, of the ith row of A rather than the kth

row. We may summarize (B.21) by saying that expansions in terms of alien

cofactors vanish identically.

Now we have the following

Definition. The adjugate matrix of A, written adjA is the transpose of

the matrix of cofactors. That is, (adjA)ij = Aji.

Lemma B.5. For any matrix A we have

A(adjA) = (adjA)A = (detA)I. (B.22)

Proof. Consider the ikth element of A(adjA):

[A(adjA)]ik =
n∑
j=1

Aij(adjA)jk =
n∑
j=1

AijAkj. (B.23)

If i 6= k this is an expansion in terms of alien cofactors and vanishes. If i = k

then this is just the determinant of A. Hence [A(adjA)]ik = (detA)δik. This

proves the first half. To prove the second half, note that (adjA)T = (adjAT ).

That is, the transpose of the adjugate is the adjugate of the transpose. (Just

trace back the definitions.) Hence, using the result (whose proof is left to

the reader) that (AB)T = BTAT for any matrices A and B,

[(adjA)A)]T = AT (adjA)T = ATadjAT = (detAT )I = (detA)I. (B.24)
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Definition. A matrix A is singular if detA = 0 and non-singular oth-

erwise.

Lemma B.6. A matrix A is invertible if and only if it is non-singular. If it

is non-singular, its inverse is given by the expression

A−1 =
1

detA
adjA. (B.25)

Proof. Follows immediately from Lemma B.5.

B.3 The Determinant as Multiplicative Homomorphism

Theorem B.7. Let {vi} and {wj} be two collections of n vectors each,

related by a matrix A according to

wj =
n∑
i=1

Aijvi. (B.26)

Let D(v1,v2, . . . ,vn) be the determinant of the n× n matrix whose rows are

the vectors v1, . . . ,vn. 22 Then

D(w1,w2, . . . ,wn) = (detA) D(v1,v2, . . . ,vn). (B.27)

Proof. By hypothesis

D(w1,w2, . . . ,wn)

= D(A11v1 + A21v2 + · · ·+ An1vn, . . . , A1nv1 + A2nv2 + · · ·+ Annvn).

22Later this expression will mean the determinant of the n × n matrix whose columns
are the vectors v1, . . . ,vn. This will not affect any of the results, only the arguments.
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Expanding out the right hand side using the multilinearity property of the

determinant gives a sum of terms of the form

Aσ(1)1Aσ(2)2 . . . Aσ(n)nD(vσ(1), . . . ,vσ(n)),

where σ is an arbitrary map of {1, 2, . . . , n} to itself. If σ is not a bijection

(i.e., a permutation) then two vector arguments of D will be equal and the

entire term will vanish. Hence the only terms that will appear in the sum

are those for which σ ∈ Sn. But now, by a series of transpositions of the

arguments, we may write

D(vσ(1), . . . ,vσ(n)) = (−1)σD(v1,v2, . . . ,vn),

where (−1)σ is the sign of the permutation σ. Hence

D(w1,w2, . . . ,wn) =
∑
σ∈Sn

(−1)σAσ(1)1Aσ(2)2 . . . Aσ(n)nD(v1, . . . ,vn).

This brings us to the main theorem of this section, which is a remarkable

multiplicative property of determinants. 23

23Let X and Y be sets, each equipped with a natural multiplication operation. So,
for example, given two elements x1 and x2 in X, their product x1x2 also belongs to
X (and similarly for Y ). If φ maps elements of X to elements of Y , and if φ(x1x2) =
φ(x1)φ(x2), then we say that φ is a multiplicative homomorphism from X to Y . (The word
homomorphism comes from the Greek ‘oµoζ’ (‘homos’), meaning the same, and ‘µoρφη’
(‘morphe’), meaning shape or form.) Equation (B.28) is expressed mathematically by
saying that the determinant is a multiplicative homomorphism from the set of matrices
to the set of scalars. Incidentally, both matrices and scalars also come equipped with
an addition operation, which makes them into objects called rings. A homomorphism
that respects both the additive and multiplicative properties of a ring is called a ring
homomorphism. But the determinant map from matrices to scalars is nonlinear (that is,
det(A+B) 6= detA+ detB), so the determinant fails to be a ring homomorphism.
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Theorem B.8. For any two matrices A and B,

det (AB) = (detA)(detB). (B.28)

Proof. Choose (v1,v2, . . . ,vn) = (ê1, ê2, . . . , ên) where êi is the ith canonical

basis vector of Rn, and let

wj =
n∑
i=1

(AB)ijvi. (B.29)

Let D(w1,w2, . . . ,wn) be the determinant of the matrix whose rows are the

vectors w1, . . . ,wn. Then by Theorem B.7,

D(w1,w2, . . . ,wn) = (det (AB))D(ê1, ê2, . . . , ên). (B.30)

On the other hand, if

uk =
n∑
i=1

Aikvi, (B.31)

then, again by Theorem B.7,

D(u1,u2, . . . ,un) = (detA)D(ê1, ê2, . . . , ên). (B.32)

But expanding (B.29) and using (B.31) gives

wj =
n∑
i=1

n∑
k=1

AikBkjvi (B.33)

=
n∑
k=1

Bkjuk. (B.34)
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So using Theorem B.7 again we have, from (B.34)

D(w1,w2, . . . ,wn) = (detB)D(u1,u2, . . . ,un). (B.35)

Combining (B.32) and (B.35) gives

D(w1,w2, . . . ,wn) = (detB)(detA)D(ê1, ê2, . . . , ên). (B.36)

The proposition now follows by comparing (B.30) and (B.36) and using the

fact that D(ê1, ê2, . . . , ên) = 1.

Corollary B.9. If A is invertible we have

det (A−1) = (detA)−1. (B.37)

Proof. Just use Theorem B.8:

1 = det I = det (AA−1) = (detA)(detA−1). (B.38)

B.4 Cramer’s Rule

A few other related results are worth recording.

Theorem B.10 (Cramer’s Rule). Let v1,v2, . . . ,vn be n column vectors.

Let x1, . . . , xn ∈ k be given, and define

v =
n∑
j=1

xjvj. (B.39)
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Then, for each i we have

xiD(v1,v2, . . . ,vn) = D(v1, . . . , v︸︷︷︸
ith place

, . . . ,vn). (B.40)

Proof. Say i = 1. By multilinearity we have

D(v,v2, . . . ,vn) =
n∑
j=1

xjD(vj,v2, . . . ,vn). (B.41)

By Lemma B.3 every term on the right hand side is zero except the term

with j = 1.

Remark. Cramer’s rule allows us to solve simultaneous sets of linear equations

(although there are easier ways).

Example 17 Consider the following system of linear equations:

3x1 + 5x2 + x3 = −6

x1 − x2 + 11x3 = 4

7x2 − x3 = 1.

We may write this as

x1


3

1

0

+ x2


5

−1

7

+ x3


1

11

−1

 =


−6

4

1

 .

The three column vectors on the left correspond to the vectors v1, v2, and v3

above, and constitute the three columns of a matrix we shall call A. By Theorem

B.10 this system has the following solution:
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x1 =
1

detA

∣∣∣∣∣∣∣∣
−6 5 1

4 −1 11

1 7 −1

∣∣∣∣∣∣∣∣ , x2 =
1

detA

∣∣∣∣∣∣∣∣
3 −6 1

1 4 11

0 1 −1

∣∣∣∣∣∣∣∣ , x3 =
1

detA

∣∣∣∣∣∣∣∣
3 5 −6

1 −1 4

0 7 1

∣∣∣∣∣∣∣∣ .
(Of course, one still has to evaluate all the determinants.)

Corollary B.11. Let v1,v2, . . . ,vn be the n column vectors of an n by n

matrix A. Then these vectors are linearly dependent if and only if

D(v1,v2, . . . ,vn) = detA = 0.

Proof. Suppose the vi are linearly dependent. Then w :=
∑

i civi = 0 for

some constants {ci}ni=1, not all of which vanish. Suppose ci 6= 0. Then

0 = D(v1,v2, . . . , w︸︷︷︸
ith place

, . . . ,vn) = ci detA,

where the first equality follows because a determinant vanishes if one en-

tire column vanishes and the second equality follows from Theorem B.10.

Conversely, suppose the vi are linearly independent. Then we may write

êi =
∑n

j=1Bjivj for some matrix B, where the êi are the canonical basis

vectors of Rn. Then by Theorem B.7,

1 = D(ê1, ê2, . . . , ên) = (detB)D(v1,v2, . . . ,vn) = (detB)(detA). (B.42)

Hence detA cannot vanish.
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Remark. Corollary B.11 shows that a set v1,v2, . . . ,vn of vectors is a basis for

Rn if and only if D(v1,v2, . . . ,vn) 6= 0.
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