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1-Numerical Methods for ODEs

1.1 Some Analytical Results: Existence, Uniqueness, Stability

Ordinary differential equations are often used for mathematically model problems in many

branches of sciences, engineering and economy. Such equations are frequently complemented by

the state of the dependent variables at some initial time arising, naturally, the so called initial

value problems- IVP.

The general formulation of an IVP for a system of ODEs is

u′(t) = F (t, u(t)), t > t0, u(t0) = u0, (1.1.1)

with F : IR× IRm → IRm and u0 ∈ IRm.

Existence and Uniqueness Results:

We start by establishing some classical results that enable us to conclude the existence and

uniqueness of a solution of the IVP (1.1.1).

For the scalar case we have:

Theorem 1.1.1 [Picard’s Theorem] Suppose that F is a continuous function in ℛ = {(t, u) ∈
IR2 : t0 ≤ t ≤ T, ∣u− u0∣ ≤ �}. Suppose also that F has the Lipschitz constant L with respect to

the second argument in ℛ. Finally, letting

M = max
ℛ

∣F ∣,

suppose that M(T − t0) ≤ �. Then, there exists a unique continuously differentiable function u

defined on the interval [t0, T ] which satisfies (1.1.1).

The essence of the proof of the Picard’s Theorem is to consider the sequence (un) defined by

u0(t) = u0, un(t) = u0(t) +

∫ t

t0

F (s, un−1(s)) ds n ∈ IN, t ∈ [t0, T ].

As un ∈ C[t0, T ], showing that (un) converges uniformly on [t0, T ] to u defined by

u(t) = u0 +

∫ t

t0

F (s, u(s))ds, t ∈ [t0, T ],
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we conclude that u is continuously differentiable and is solution of (1.1.1).

The idea of the proof will be crucial for the construction of numerical methods for the IVP

(1.1.1).

The Picard’s Theorem has a natural extension to systems of ODEs. For this extension the

modulus ∣.∣ is naturally replaced by the Euclidian norm ∥.∥2 defined on IRm by ∥x∥2 =
(

m
∑

i=1

x2i
)1/2

.

Theorem 1.1.2 [Picard’s Theorem] Suppose that F is a continuous function in ℛ = {(t, v) ∈
IRm+1 : t0 ≤ t ≤ T, ∥v−u0∥2 ≤ �}. Suppose also that F has the Lipschitz constant L with respect

to the second argument in ℛ

∥F (t, w) − F (t, v)∥2 ≤ L∥u− v∥2, (t, w), (t, v) ∈ ℛ. (1.1.2)

Finally, letting

M = max
(t,v)∈ℛ

∥F (t, v)∥2,

suppose that M(T − t0) ≤ �. Then, there exists a unique continuously differentiable function u

defined on the closed interval [t0, T ] which satisfies (1.1.1).

The proof of this results follows the proof of the Theorem 1.1.1 being the sequence (un)

defined analogously. Both proofs can be seen, for example, in the classical book [2].

If the Jabonian matrix of F ,
∂F

∂v
(t, v) = [

∂Fi

∂vj
(t, v)] satisfies

∥∂F
∂v

(t, v)∥2 ≤ L, (t, v) ∈ ℛ, (1.1.3)

then F satisfies the Lipschitz condition (1.1.2). In (1.1.3), the norm ∥.∥2 is the matrix norm

subordinated to the Euclidian vector norm defined.

Let us now consider the linear systems

u′(t) = Au(t) + g(t), t > t0, u(t0) = u0. (1.1.4)

The unique solution of the IVP (1.1.4) admits the representation

u(t) = e(t−t0)Au0 +

∫ t

t0

e(t−s)Ag(s)ds, t ≥ t0. (1.1.5)

In the representation (1.1.5) the exponential of the matrix (t− t0)A represents the sum

∞
∑

n=0

(t− t0)
nAn

n!
.

We remark that the last exponential is defined considering a matrix norm. Since the individual

terms in the power series are bounded by
(t− t0)

n∥A∥n
n!

, it follows that the power series converges

and ∥e(t−t0)A∥ ≤ e(t−t0)∥A∥.

Stability Results:
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A crucial concept on the analysis of the behaviour of the solution of (1.1.1) is the concept

of stability regarding to perturbations of the initial condition. Such concept means that if two

solutions of the same problem starts close enough, then they stay close enough in some interval.

A solution u of the IVP (1.1.1) is said to be stable on the interval [t0, T ] if, for every � > 0,

there exists � > 0 such that for all v0 satisfying ∥u0 − v0∥ < �, the solution of the IVP

v′(t) = F (t, v(t)), t > t0, v(t0) = v0,

is defined on [t0, T ] and satisfies

∥u(t)− v(t)∥ < �, t ∈ [t0, T ].

If u is stable on [t0,∞) (i.e. u is stable on [t0, T ] for all T > t0 with � independent of T ),

then u is said to be stable in the sense of Lyapunov. Moreover, if

lim
t→∞

∥u(t)− v(t)∥ = 0

then u is called asymptotically stable.

The concept of stability depends on the norm used. In the definition of stability, ∥.∥ repre-

sents any norm in IRm.

On the assumptions of Picard’s Theorem, the solution of (1.1.1) is stable. In fact, we have

the following result:

Theorem 1.1.3 Under the assumptions of the Theorem 1.1.2, the solution u of (1.1.1) is stable

in [t0, T ].

Proof: As we have

u(t) = u0 +

∫ t

t0

F (s, u(s)) ds, v(t) = v0 +

∫ t

t0

F (s, v(s)) ds,

then

∥u(t)− v(t)∥2 ≤ ∥u0 − v0∥2 + L

∫ t

t0

∥u(s)− v(s)∥2 ds, t ∈ [t0, T ]. (1.1.6)

From the inequality (1.1.6) we get

d

dt

(

e−Lt

∫ t

t0

∥u(s) − v(s)∥2 ds
)

≤ e−Lt∥u0 − v0∥2,

which is equivalent to

d

dt

(

e−Lt

∫ t

t0

∥u(s)− v(s)∥2 ds+
1

L
e−Lt∥u0 − v0∥2

)

≤ 0. (1.1.7)

The inequality (1.1.7) shows that e−Lt

∫ t

t0

∥u(s)− v(s)∥2 ds +
1

L
e−Lt∥u0 − v0∥2 is a non-

increasing function on [t0, T ]. Consequently,

L

∫ t

t0

∥u(s)− v(s)∥2 ds ≤ ∥u0 − v0∥2
(

eL(t−t0) − 1
)

. (1.1.8)
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Taking into account in (1.1.6) the upper bound (1.1.8) we deduce

∥u(t)− v(t)∥2 ≤ ∥u0 − v0∥2eL(t−t0) , t ∈ [t0, T ],

which conclude the proof.

Let us consider now the linear system (1.1.4). If u and v are solutions of the previous system

with initial conditions u0, v0, respectively, then we obtain

∥u(t)− v(t)∥ ≤ ∥e(t−t0)A∥∥u0 − v0∥.

As we have

∥e�A∥ ≤ e�∥A∥, � > 0, (1.1.9)

we conclude

∥u(t)− v(t)∥ ≤ e(t−t0)∥A∥∥u0 − v0∥. (1.1.10)

Generally, the last inequality does not give useful information because the inequality (1.1.9)

gives a large over-estimation. In fact, for example, for the scalar case with A = −�, � >> 1, we

have ∥e�A∥ = e−�� << e�∥A∥ = e�� and

∣u(t)− v(t)∣ = e−�(t−t0)∣u0 − v0∣.

It is desirable to have the estimate

∥e�A∥ ≤ Ke�!, � > 0, (1.1.11)

with constant K > 0 and ! ∈ IR. In this case we obtain the stability estimate

∥u(t)− v(t)∥ ≤ Ke(t−t0)!∥u0 − v0∥. (1.1.12)

If ! < 0 we conclude the asymptotic stability of the solution of the IVP (1.1.4).

The natural question that we should answer is the following: In what conditions holds

(1.1.12)? If A is diagonalizable, A =MDM−1 and then

∥e�A∥ ≤ ∥M∥∥etD∥∥M−1∥ = cond(M)∥etD∥,

where cond(M) denotes the condition number of M. Immediately we obtain

∥e�A∥ ≤ cond(M) max
i=1,...,m

∣et�i ∣ = cond(M) max
i=1,...,m

∣etRe(�i)∣

provided that

∥etD∥ ≤ max
i=1,...,m

∣et�i ∣.

Then, holds (1.1.12) with

! = max
i=1,...,m

Re(�i).
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Nevertheless, an estimate to cond(M) should be obtained. In particular, if A is a normal matrix

(i.e. AA∗ = A∗A where A∗ = ĀT ), then A has a complete set of orthogonal eigenvectors.

Consequently, A =MDM−1, where M is a unitary matrix, and we conclude that

∥e�A∥2 ≤ max
i=1,...,n

∣et�i ∣.

We introduce in what follows a more general convenient concept to obtain bounds for ∥etA∥.

The Logarithmic Norm of Matrices:

Let A in IRm × IRm or in Cm × Cm. The logarithmic norm of A is defined by

�[A] = lim
�→0

∥I + �A∥ − 1

�
, � > 0. (1.1.13)

Lemma 1 The limit in (1.1.13) exists for all matrix norm ∥.∥ and for all matrices A provided

that the matrix norm ∥.∥ satisfies ∥I∥ = 1.

Proof: Let � ∈ (0, 1). We have

∥I + ��A∥ − 1

��
≤ �∥I + �A∥+ (1− �)∥I∥ − 1

��
≤ ∥I + �A∥ − 1

�
,

for � ∈ (0, 1). From the last inequality we conclude that the ratio appearing in (1.1.13) is

monotonically non-decreasing function on �. As

−∥A∥ ≤ ∥I + �A∥ − 1

�
≤ ∥A∥

holds, we conclude that it has finite limit.

Some properties of the logarithmic norm of matrices are presented in the next result.

Proposition 1 For A,B in IRm × IRm or in Cm × Cm we have the following:

1. �[
A] = 
�[A], 
 ≥ 0,

2. �[sI + 
A] = s+ 
�[A], s ∈ IR, 
 ≥ 0;

3. �[A+B] ≤ �[A] + �[B];

4. The logarithmic norm is a continuous function, i.e.

∣�[A]− �[B]∣ ≤ ∥A−B∥;

5. For the matrix norm induced by inner product < ., . > holds the following

�[A] = max
v ∕=0

Re < Av, v >

∥v∥2 ; (1.1.14)
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6. If A ∈ IRm × IRm, then

(a)

�2[A] = �max(
A+AT

2
), (1.1.15)

where �max(
A+AT

2
) denotes the largest eigenvalue of

A+AT

2
;

(b) �1[A] = max
j

(

ajj +
∑

i ∕=j

∣aij∣
)

;

(c) �∞[A] = max
i

(

aii +
∑

j ∕=i

∣aij ∣
)

;

Proof: We have

∥I + �A∥ − 1

�
= max

v ∕=0

∥v + �Av∥ − ∥v∥
�∥v∥

= max
v ∕=0

∥v + �Av∥2 − ∥v∥2
�∥v∥(∥v + �Av∥ + ∥v∥)

= max
v ∕=0

2�Re < Av, v > +�2∥A∥2∥v∥2
�∥v∥(∥v + �Av∥+ ∥v∥)

= max
v ∕=0

�Re < Av, v > + �2

2 ∥A∥2∥v∥2
�∥v∥2 + �

2∥v∥(∥v + �Av∥ − ∥v∥)

and then we conclude (1.1.14).

From Property 5, we easily obtain

< Av, v >=<
A+AT

2
v, v >≤ �max(

A+AT

2
)∥v∥2.

If v is the eigenvector corresponding to �max(
A+AT

2
), then the last inequality holds as

equality.

As �1[A] = max
j

(

∣1
�
+ ajj∣+

∑

i ∕=j

∣aij ∣
)

− 1

�
and when � → 0+ we have ∣1

�
+ ajj∣ =

1

�
+ ajj

we conclude 6b.

The proof of 6c is similar to the proof of 6b.

The importance of the logarithmic norm lies in the following result.

Theorem 1.1.4 Let A ∈ Cm × Cm and ! ∈ IR. We have

�[A] ≤ ! ⇐⇒ ∥e�A∥ ≤ e�!, ∀� ≥ 0.

Proof: Suppose that �[A] ≤ !. We start by noting that

e�A = I + �A+O(�2).

and then

en�A = e�A = lim
�→0

(I + �A)n, (1.1.16)
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for n and � such that n� = �. Otherwise, as �[A] ≤ !, we have

∥I + �A∥ ≤ 1 + !� +O(�2). (1.1.17)

As a consequence

∥(I + �A)n∥ ≤
(

1 + !� +O(�2)
)n → e�!, (1.1.18)

for n and � as before. From (1.1.16) and (1.1.18) we get ∥e�A∥ ≤ e!� .

On the other hand, suppose that ∥e�A∥ ≤ e!� for all � > 0. Since I + �A = e�A +O(�2) it

follows the inequality (1.1.17) from which we obtain �[A] ≤ !.

Using the last characterization result, we can establish asymptotic stability of the solution

of (1.1.4)

∙ with respect to norm ∥.∥2 for real matrices such that < Av, v >≤ 0;

∙ with respect to norm ∥.∥∞ if A has negative diagonal entries and A is row-wise diagonally

dominant;

∙ with respect to norm ∥.∥1 if A has negative diagonal entries and A is column-wise diagonally

dominant.

The Stability of Nonlinear IVP

We intent to study the stability of the solution (1.1.1). Let u and w be two solutions with

initial conditions u0 and w0, respectively. From the Mean Value Theorem for vectorial functions

for Z(t) = u(t)− w(t) holds the following representation

Z ′(t) =

∫ 1

0

∂F

∂v
(t, �u(t) + (1− �)w(t))d�Z(t) =M(t)Z(t) (1.1.19)

Then,
d

dt
∥Z(t)∥ = lim

�→0

∥Z(t+ �)∥ − ∥Z(t)∥
�

= lim
�→0

∥Z(t) + (Z(t+ �)− Z(t))∥ − ∥Z(t)∥
�

= lim
�→0

∥Z(t) + �M(t)Z(t))∥ − ∥Z(t)∥
�

= lim
�→0

∥I + �M(t)∥ − 1

�
∥Z(t)∥.

(1.1.20)

If

�[M(t)] ≤ !, t ≥ t0, (1.1.21)

then we get
d

dt
∥Z(t)∥ ≤ !∥Z(t)∥.
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As from the last inequality we obtain

∥Z(t)∥ ≤ e!(t−t0)∥Z(t0)∥,

we conclude the stability of u on [t0, T ] for some T.

In what conditions the inequality (1.1.21) holds?

Theorem 1.1.5 If the Jacobian of F, JF =
∂F

∂v
, satisfies

�[
∂F

∂v
(t, �u+ (1− �)v)] ≤ !,∀� ∈ [0, 1], (1.1.22)

then

�[

∫ 1

0

∂F

∂v
(t, �u+ (1− �)v) d�] ≤ !. (1.1.23)

Proof: Let M(t) be defined by M(t) =

∫ 1

0

∂F

∂v
(t, �u+ (1− �)v) d�. Then

∥I + �M(t)∥ ≤ max
�=�u+(1−�)v,�∈[0,1]

∥I + �
∂F

∂v
(t, �)∥.

Consequently

�[M(t)] ≤ lim
�→0

max
�

∥I + � ∂F
∂v (t, �)∥ − 1

�

≤ max
�
�[
∂F

∂v
(t, �)]

≤ !.

In order to justify the second inequality we point out that, with

�(�)[A] =
∥I + �A∥ − 1

�
, � > 0,

for any matrix A, we have

�(�)[�A1 + (1− �)A2] ≤ ��(�)[A1] + (1− �)�(�)[A2], � ∈ [0, 1].

Hence, �(�) is convex and, due to this fact, � is continuous in A.This implies that � is also

convex and thus continuous in A being the limit of a convergent sequence of convex functions.

Furthermore, the sequence is monotone. We conclude that the convergence of �(�)[A] to �[A]

is uniform on a bounded close matrix set which implies the second inequality.

Finally we establish the stability result for the solution of (1.1.1).

Theorem 1.1.6 If the Jacobian of F,
∂F

∂v
, satisfies (1.1.22), then the solution u of (1.1.1) is

stable on [t0, T ].
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1.2 Discretizations for ODEs

The �-Method

We introduce below a family of numerical methods, firstly for the scalar case - the �−methods.

We define in [t0, T ] the grid {tn, n = 0, . . . , N} with tn+1 = tn + Δt, with the step size

Δt =
T − t0
N

. We seek a numerical approximation un to the solution of (1.1.1). Integrating

(1.1.1) between to consecutive mesh points tn and tn+1 we deduce

u(tn+1) = u(tn) +

∫ tn+1

tn

F (s, u(s)) ds, n = 0, . . . , N − 1. (1.2.1)

Considering the one-parameter family of integration rules of the form

∫ tn+1

tn

g(s) ds ≃ Δt
(

(1− �)g(tn) + �g(tn+1)
)

, (1.2.2)

with the parameter � in [0, 1], and applying (1.2.2) with g(s) = F (s, u(s)) we find the following

one-parameter family of methods : given u0, we define

un+1 = un +Δt
(

(1− �)F (tn, un) + �F (tn+1, un+1)
)

, n = 0, . . . , N − 1, (1.2.3)

parameterised by � ∈ [0, 1].When � = 0 we obtain the explicit Euler’s method, being the implicit

Euler’s method defined when � = 1. The trapezium rule method is obtained for � =
1

2
.

Example 1 Let consider the IVP

u′(t) = −50(u − cos(t)), t ∈ (0, 1], u(0) = 0. (1.2.4)

In Figure 1 we plot the numerical solutions obtained with the �-methods for � = 0, 1, 0.5.

The numerical solution obtained with the explicit Euler’s method presents some oscillations

near to t = 0 for Δt ≥ 1

44
. We point out that the solution of the IVP (1.2.4) is given by

u(t) =
502

502 + 1

(

cos(t)− e−50t
)

+
sin(t)

502 + 1
, t ∈ [0, 1].

Example 2 The explicit Euler’s method applied to the IVP (1.1.1) with m = 2 is given by
⎧

⎨

⎩

u1,n+1 = u1,n +ΔtF1(tn, u1,n, u2,n)

u2,n+1 = u2,n +ΔtF2(tn, u1,n, u2,n), n = 0, . . . , N
(1.2.5)

with u1,0 = u1(t0), u2,0 = u2(t0). We consider

F1(t, u1(t), u2(t)) = du1(t) +
1

�
u2(t)

and

F2(t, u1(t), u2(t)) = −1

�
u2(t).
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Figure 1: Numerical results obtained with the explicit Euler, implicit Euler and trapezium rule
methods for the IVP (1.2.4).
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Figure 2: Numerical approximations for u1 obtained with the explicit Euler and implicit Euler
methods
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Figure 3: Numerical approximations for u2 obtained with the explicit Euler and implicit Euler
methods
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In the numerical experiments we took u1(0) = 1, u2(0) = 0.5 and d = 1. The numerical results

plotted in Figures 2 and 9 were obtained for several values of � and Δt.

We point out that for �→ 0 the explicit Euler’s methods requires a very small step size.

The Runge-Kutta Methods:

Another class of methods often used on the numerical computations is the Runge-Kutta

methods. On the evaluation of the numerical approximation at time level tn+1, un+1, the

methods of this class only use the numerical approximation at time level tn.

We consider in what follows the class of s-stage Runge-Kutta methods defined by

un+1 = un +Δt
s

∑

r=1

crkr, (1.2.6)

with

kr = F (tn + arΔt, un +Δt

s
∑

i=1

briki), r = 2, . . . , s. (1.2.7)

A convention for (1.2.6)-(1.2.7) frequently used is

ar =

s
∑

j=1

brj . (1.2.8)

This formula is natural since it implies that the Runge-Kutta method gives the same approxi-

mation values for the non-autonomous system w′(t) = F (w, t) as for the augmented system

⎛

⎝

w’

t’

⎞

⎠ =

⎛

⎝

F (w, t)

1

⎞

⎠ .

The coefficients of the R-stage Runge-Kutta methods can be condensed in the Butcher table:

a1 b11 b12 b13 . . . b1s−1 b1s
a2 b21 b22 b23 . . . b2s−1 b2s
a3 b31 b32 b33 . . . b3R−1 b3R
. . . . . .
as bs1 bs2 bs3 . . . bss−1 bss

c1 c2 c3 . . . cs−1 cs

The method (1.2.6) is called explicit if bij = 0 for j ≥ i, i, j = 1, . . . , s, since then the internal

approximations ki can be computed one after another from an explicit relation. Otherwise the

method is called implicit due to the fact that ki, i = 1, . . . , s, must be obtained from a system

of linear or nonlinear equations.

The explicit s-stage Runge-Kutta methods can be represented by the following Butcher-table



Computational Mathematics J.A.Ferreira 15

a2 b21
a3 b31 b32
. . . . . .
as bs1 bs2 bs3 . . . bss−1

c1 c2 c3 . . . cs−1 cs

The computational cost increases when we consider an implicit method. Let us consider the

application of a �-method. If F is linear in the second argument then, in each time step, we

need to solve a linear system Aun+1 = b. This system can be solved using a direct method like

Gaussian elimination with pivoting strategies or a stationary iterative method

vm+1 = Bvm + c.

Those methods define a sequence (vm) which should converge to un+1 and we can consider

∙ Jacobi method :

B = D−1(L+ U), c = D−1b,

where D, −L and −U represent the diagonal, strictly lower triangular and strictly upper

triangular parts of A, respectively;

∙ Gauss-Seidel method :

B = (D − L)−1U, c = (D − L)−1b;

∙ successive overrelaxation method (SOR) :

B = (D − !L)−1
(

!U + (1− !)D
)

, c = !
(

D − !L
)−1

b, ! ∈ [0, 1].

(See the convergence of the previous iterative methods).

Another class of methods can be used, the so called non-stationary methods like step descendent

methods.

However, if F is nonlinear in the second argument then we need to solve in each time level a

non linear system G(un+1) = 0. The most popular method to solve this problem is the Newton’s

method which defines a sequence (vm) as follows

vm+1 = vm − G(vm)

G′(vm)
,

for the scalar case. In the vectorial case we have

vn+1 = vm + Cm

where Cm is the solution of the linear system

JG(vm)Cm = −G(vm).

If we consider an implicit Runge-Kutta method and F is linear in the second argument then

in the computation of the parameters kr, r = 1, . . . , s, a linear system with s × m equations

should be solved. Otherwise if F is nonlinear in the second argument the computation of the

mentioned parameters requires the computation of the solution of a nonlinear system with s×m
equations.
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1.3 The one-step methods

1.3.1 Consistency

The methods considered before belong to the class of one-step methods. Such methods are

characterized by the use of un on the computation of un+1. The family of one-step methods

admits the representation

un+1 = un +Δt�(tn, un, un+1,Δt), n = 0, . . . , N − 1, u0 = u(t0). (1.3.1)

For the particular case of the explicit methods we have the representation

un+1 = un +Δt�(tn, un,Δt), n = 0, . . . , N − 1, u0 = u(t0). (1.3.2)

In (1.3.1) and (1.3.2), un ∈ IRm and � : [t0, T ]×IR2m×[0,Δt0] → IRm, � : [t0, T ]×IRm×(0,Δt0] →
IRm, respectively, for some Δt0.

Let us replace in (1.3.1) un by u(tn). We define the truncation error Tn by

Tn =
u(tn+1)− u(tn)

Δt
− �(tn, u(tn), u(tn+1),Δt). (1.3.3)

The one-step method (1.3.1) is said consistent with the equation u′(t) = F (t, u(t)), if

lim
Δt→0,n→∞

Tn = 0, nΔt ≤ T − t0.

As we have

lim
Δt→0

Tn = lim
Δt→0

u′(tn) +O(Δt)− �(tn, u(tn), u(tn) +O(Δt),Δt),

we conclude that the one-step method (1.3.1) is consistent if and only if

F (t, u) = �(t, u, u, 0),

provided that � is a continuous function. Furthermore, if the order of the truncation error is p,

which means that

∥Tn∥ ≤ CΔtp, n = 0, . . . , N − 1, (1.3.4)

where C is Δt independent, and p is the largest positive integer satisfying the last inequality,

then the one-stem method (1.3.1) is said with consistency order p.

Example 3 The truncation error of the explicit Euler’s method is given by

Tn =
1

2
Δtu′′(t̄), t̄ ∈ [tn, tn+1].

For truncation error the implicit method holds

Tn = −1

2
Δtu′′(t∗), t∗ ∈ [tn, tn+1].

The consistency order of the Euler’s method is equal to one provided that u has bounded second

derivative.
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Example 4 The consistency order of the trapezium rule method is equal to two. In fact, we

have

Tn =
Δt

2
u′′(tn) +O(Δt2)− Δt

2
Fu(t, u(tn))u

′(tn) = O(Δt2).

Example 5 The explicit Euler’s method applied to the IVP (1.1.1) with m = 2 is given by

⎧

⎨

⎩

u1,n+1 = u1,n +ΔtF1(tn, u1,n, u2,n)

u2,n+1 = u2,n +ΔtF2(tn, u1,n, u2,n), n = 0, . . . , N
(1.3.5)

with u1,0 = u1(t0), u2,0 = u2(t0). Such method has the following truncation error

Tn =
Δt

2

⎛

⎝

u′1(t̄)

u′1(t
∗)

⎞

⎠

with t̄, t∗ ∈ [tn, tn+1]. For the implicit version of the method (1.3.5) we have an analogous

truncation error.

Example 6 The explicit two-stage R-K method is second-order consistent provided that

c1 + c2 = 1, a2c2 = b21c2 =
1

2
.

Then a2 = b21, c2 =
1

2a2
, c1 = 1− 1

2a2
.

For a2 =
1

2
, we obtain the modified Euler’s method

un+1 = un +ΔtF (tn +
Δt

2
, un +

Δt

2
F (tn, un)) (1.3.6)

The improved Euler’s method is obtained for a2 = 1,

un+1 = un +
Δt

2
(F (tn, un) + F (tn+1, un +ΔtF (tn, un))) . (1.3.7)

Example 7 The explicit tree-stage R-K method is third-order consistent provided that

⎧



















⎨



















⎩

c1 + c2 + c3 = 1,

c2a2 + c3a3 =
1

2
,

c2a
2
2 + c3a

2
3 =

1

3
,

c3a2b32 =
1

6
.

(1.3.8)

The system (1.3.8) defines a two-parameter family of 3-stage R-K methods. Notables exam-

ples of this family are
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1. the Heun method

un+1 = un +
1

4
Δt

(

k1 + 3k3
)

k1 = F (tn, un)

k2 = F (tn +
1

2
Δt, un +

1

3
Δtk1)

k3 = F (tn +
2

3
Δt, un +

2

3
Δtk2),

(1.3.9)

with the Butcher-table

1

3

1

3
2

3
0

2

3
1

4
0

3

4

2. the standard third-order R-K method

un+1 = un +
1

6
Δt

(

k1 + 4k2 + k3
)

k1 = F (tn, un)

k2 = F (tn +
1

2
Δt, un +

1

2
Δtk1)

k3 = F (tn+1, un −Δtk1 + 2Δtk2),

(1.3.10)

with the Butcher-table

1

2

1

2
1 −1 2

1

6
4
6

1

6

1.3.2 Convergence

Let en = u(tn)−un, n = 0, . . . , N, be the global error of the approximation un. The one-step

method is said to be convergent if

en → 0,Δt→ 0, n→ ∞, nΔt ≤ T − t0.

If

∥en∥ ≤ CΔtq

with C time independent and Δt ∈ (0,Δt], where Δt0 is an upper bound for the time stepsize,

being q the largest positive number with the above property, then the one-step method is said

with order q.
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For the one-step method (1.3.2), the truncation error Tn and the global error en are related

by the following equality

en+1 = en +Δt
(

�(tn, u(tn),Δt)− �(tn, un,Δt)
)

+ΔtTn, n = 0, . . . , N − 1. (1.3.11)

Then, if � has a Lipschitz constant L with respect to the second argument, we deduce that

∥en+1∥ ≤ (1 + ΔtL)∥en∥+Δt∥T∥, n = 0, . . . , N − 1, (1.3.12)

with ∥T∥ = max
j=0,...,N−1

∥Tj∥.

∥en∥ ≤ (1 + ΔtL)n∥e0∥+ ∥T∥(1 + ΔtL)n − 1

L
. (1.3.13)

We proved the following convergence result:

Theorem 1.3.1 Let un, n = 0, . . . , N, be the numerical approximation to the solution of (1.1.1)

defined by the explicit method (1.3.2). Let us suppose that � is continuous and satisfies a

Lipschitz condition with respect to its second argument in ℛ(ℛ is defined in Picard’s theorem)

with Lipschitz constant L. If ∥un − u0∥ ≤ �, n = 1 . . . , N, then

∥en∥ ≤ enΔtL∥e0∥+ ∥T∥e
nΔtL − 1

L
, n = 1, . . . , N, (1.3.14)

where ∥T∥ = max
j=0,...,N−1

∥Tj∥.

As a corollary of the Theorem 1.3.1, we immediately conclude that, under the assumption

of the Theorem 1.3.1, if the one-step method (1.3.2) is consistent, then it is also convergent.

Furthermore, if the order of the truncation error is p, then the order or the global error is at

least also p.

The quality of the estimate (1.3.14) strongly depends on enΔtL∥e0∥. This last quantity is

related with the propagation in time of ∥e0∥. If the initial error is very small, the previous

quantity should remains bounded and also small.

The proved result can be extended to the one-step method (1.3.1). In fact, if we assume that

∥�(tn, un, un+1,Δt)− �(tn, ũn, ũn+1,Δt)∥ ≤ L
(

∥un − ũn∥+ ∥un+1 − ũn+1∥
)

,

then we obtain for the error the estimate

∥en+1∥ ≤ 1 + ΔtL

1−ΔtL
∥en∥+

Δt

1−ΔtL
∥Tn∥, (1.3.15)

provided that 1−ΔtL > 0.

The inequality (1.3.15) implies

∥en+1∥ ≤ e
2(n+1)Δt L

1−Δt0L ∥e0∥+ max
0≤i≤N−1

∥Ti∥
1

2L

(

e
2nΔt L

1−Δt0L − 1
)

, (1.3.16)

for Δt ∈ (0,Δt0] with 1− LΔt0 > 0. From (1.3.16) the convergence estimate

∥en+1∥ ≤ max
0≤i≤N−1

∥Ti∥
1

2L

(

e
2nΔt L

1−Δt0L − 1
)

, (1.3.17)

is deduced.
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1.3.3 Stability

In the analysis of numerical methods for IVP the term stability, like in the context of the

theory of IVP, is a sort of collective noun for properties about the perturbation sensitivity

during the evolution in time. In the widest sense of the word, stability should mean that the

difference between any two solutions defined by (1.3.1) for the same step size remains bounded in

same suitable defined way. A stronger concept is contractivity which means that the mentioned

difference will not increase in time. Stability in the aforementioned sense allows an increase in

this difference but not beyond any bound. Clearly that contractivity implies stability.

The one-step method (1.3.1) is called C-stable if real numbers C and Δt0 exist such that

∥un+1 − ũn+1∥ ≤ (1 + ΔtC)∥un − ũn∥,∀Δt ∈ (0,Δt0] (1.3.18)

where un+1 and ũn+1 are defined by (1.3.1).

In (1.3.18) the constant C is Δt independent. The increase on the initial perturbations

∥u0 − ũ0∥ remains bonded by e(T−t0)C∥u0 − ũ0∥. The magnitude of the bound depends on C.

In the particular case that the upper bound (1.3.18) holds with a positive constant Cc ≤ 1

replacing 1 +ΔtC then the method (1.3.1) is called contractive. If Cc < 1, then we have the so

called strictly contractive.

In the definition of the previous stability properties, the step size is restricted by Δt0. If

there isn’t any restriction to the step size then we say that the method (1.3.1) is unconditionally

C-stable or unconditionally contractive.

Another very important concept in the context on numerical methods for IVP is the absolute

stability. This concept is introduced considering the test equation

u′(t) = �u(t), � ∈ C, u(t0) = u0. (1.3.19)

Even though this equation is very simple, it is used as a model to predict the stability behaviour

of numerical methods for general nonlinear systems.

Let us consider (1.3.1) applied to (1.3.19). We get

un+1 = R(z)un, z = Δt�, (1.3.20)

where R : C → C is a polynomial or rational function. R is called stability function of the

method (1.3.1). If R is such that ∣R(z)∣ ≤ 1, then we say that the method is absolutely stable at

z. Of course that, if the method is absolutely stable at z, then ∣un+1∣ ≤ ∣un∣ for any pair (Δt, �)

such that Δt� = z.

The set S = {z ∈ C : ∣R(z)∣ ≤ 1} is called the region of absolute stability. If S ⊆ C− = {z ∈
C : Rez ≤ 0}, then we have unconditional absolute stability of the method when applied to the

test equation (1.3.19), which means that we have absolute stability without any condition on

the step size Δt. In this case the method is said to be A-stable.

Example 8 The stability function of the �-method is given by

1. � = 0

R(z) = 1 + z;
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2. � = 1

R(z) =
1

1− z
;

3. � ∈ (0, 1)

R(z) =
1 + (1− �)z

1− �z
.

Consequently, the stability region are

1. � = 0 : the circle with center (−1, 0) and radius 1,

2. � = 1 : the complement of the open circle with center (0, 1) and radius 1;

3. � =
1

2
: the semi-plan Rez ≤ 0.

1.3.4 The �-Method

Stability Analysis

Let us consider �-method applied to the linear IVP

u′(t) = Au(t) + g(t), t > 0, u(t0) = u0. (1.3.21)

The application of the �-method to the last problem enable us to obtain

un+1 = R(ΔtA)un + (I − �ΔtA)−1Δtgn+�, (1.3.22)

with

R(ΔtA) = (I − �ΔtA)−1(I + (1− �)ΔtA),

and

gn+� = (1− �)g(tn) + �g(tn+1).

If we consider two numerical approximations defined by the �-method with different initial

conditions u0 and ũ0, we get for wn+1 = un+1 − ũn+1 the following equation

wn+1 = R(�A)n+1w0. (1.3.23)

Hence, the power R(�A)n+1 determines the growth of the initial error w0. We note that

(I − �ΔtA)−1 =
∞
∑

j=0

(�ΔtA)j

provided that �Δ∥A∥ is sufficiently small. Then

R(ΔtA) = I +ΔtA+O(Δt2),

and thus

∥R(ΔtA)∥ ≤ (1 + CΔt), (1.3.24)

for Δt∥A∥ small enough and C depending on ∥A∥. From (1.3.23) and (1.3.24) we conclude the

C-stability of the �-method.

As ∥A∥ can be very large, the estimate (1.3.24) is then useless. Better bounds can be deduced

by invoking the stability region.
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Theorem 1.3.2 Suppose that ∥.∥ is an absolutely vector norm and A =MDM−1 where cond(M) ≤
k and D is a diagonal matrix, D = diag(�j). If Δt�j ∈ S, for all j, then

∥R(ΔtA)n∥ ≤ k, ∀n. (1.3.25)

Proof: From the fact A =MDM−1 it can be easily seen that

R(ΔtA) =MR(ΔtD)M−1

and, therefore,

R(ΔtA) =MR(ΔtD)M−1.

As R(ΔtA) = Diag(R(Δt�j) we conclude the proof using the fact that the vector norm is

absolute.1

Theorem 1.3.2 enable us to establish C stability. In fact, if k ≤ 1 + ΔtC for some constant

C, then the �-method is C-sable.

Considering normal matrices in the last result we obtain the corollary below mentioned.

Corollary 1 Suppose that A is a normal matrix. If Δt�j ∈ S, for all j, then

∥R(ΔtA)∥2 ≤ 1.

For a large number of applications, Theorem 1.3.2 gives a sufficient condition for stability.

However, for non diagonalizable matrices or diagonalizable matrices such that cond(M) is large

the mentioned result does not allow to conclude stability. In what follows we establish a result

based on the logarithmic norms, which can be very helpful.

Theorem 1.3.3 Suppose that the vectorial norm is induced by an inner product < ., . > . If

Re < Av, v >≤ !∥v∥2, ∀v ∈ Cm, (1.3.26)

then

∥R(ΔtA)∥ ≤ sup
Rez≤Δt!

∣R(z)∣ ≤ max
(

∣R(Δt!)∣, ∣R(∞)∣
)

. (1.3.27)

provided that

1− !�Δt > 0. (1.3.28)

Proof: Let Z = ΔtA and consider w1 = R(Z)w0 which can be rewritten as

w1 = (I + (1− �)Z)(I − �Z)−1w0 = u+ (1− �Z)u

with u = (I − �Z)−1w0. We also have w0 = u− �Zu. Let v =
u

∥u∥ . It is easy to show that

∥w1∥2
∥w0∥2

=
1 + 2(1− �)Re < Zv, v > +(1− �)2∥Zv∥2

1− 2�Re < Zv, v > +�2∥Zv∥2 . (1.3.29)

1A norm ∥.∥ in IRn is said absolute norm if for any two vectors u, such that ∣ui∣ = ∣vi∣, ∥u∥ = ∥v∥. In this case
the norm of a diagonal matrix is the maximum of the absolute value of the diagonal components.
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The quotient (1.3.29) admits the representation

∥w1∥2
∥w0∥2

= ∣R(�)∣2, � = Re < Zv, v > +i
√

∥Zv∥2 −Re < Zv, v >2. (1.3.30)

SinceRe� = Re < Zv, v >≤ Δt! it follows that ∥R(Z)∥ is bounded by sup{∣R(z)∣ : Rez ≤ Δt!}.
Using the Theorem of Maximum Modulus2, we obtain

∥R(Z)∥ ≤ max{∣R(Δt!), ∣1 − 1

�
∣}.

provided that 1−Δt�! > 0.

The condition (1.3.26) is equivalent to �[A] ≤ !. As a consequence, using the upper bound

for the logarithmic norm, we establish an upper bound to ∥R(ΔtA)∥. Fixing Δt0, such that

max
(

∣R(Δt!)∣, ∣1− 1

�
∣
)

≤ 1, Δt ∈ (0,Δt0]

we conclude that the �-method is contractive. Furthermore, if

max
(

∣R(Δt!)∣, ∣1 − 1

�
∣
)

≤ 1 + CΔt, Δt ∈ (0,Δt0]

we conclude the C-stability of the �-method.

Corollary 2 If �[A] ≤ 0 and � ≥ 1

2
then

∥R(ΔtA)∥ ≤ 1.

Proof: We only point out that we have ∥R(ΔtA)∥ ≤ ∣1− 1
� ∣ ≤ 1.

Immediately, if � ≥ 1

2
, we conclude that the �-method is unconditionally contractive. For

� <
1

2
we need to impose a restriction on the step size Δt in order to get stability.

Theorem 1.3.3 is valid just for norms induced by inner products. For a general norm we have

the following characterization valid for implicit Euler’s method only.

Theorem 1.3.4 Let A in Cm × Cm and ! ∈ IR. Then,

�[A] ≤ ! if and only if ∥(I −ΔtA)−1∥ ≤ 1

1− !Δt

provided that 1− !Δt > 0.

2Theorem of the Maximum Modulus: Let � be a non-constant complex function which is analytic on a set
D ⊂ C and continuous on D. Then

max
D

∣�(z)∣ = max
∂D

∣�(z)∣,

where ∂D denotes the boundary of D.
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Proof: Suppose that �[A] ≤ !. As we have

�[B] ≥ −∥Bv∥
∥v∥ , v ∕= 0,

considering w1 = (I −ΔtA)−1w0, w0 = (I −ΔtA)w1, and then, taking B = ΔtA− I, we obtain

∥w0∥ ≥ −�[ΔtA− I]∥w1∥ ≥ (1−Δt!)∥w1∥.

Thus, if 1−Δt! > 0, we deduce that I −ΔtA is nonsingular and

∥(I −ΔtA)−1∥ ≤ (1−Δt!)−1.

On the other hand, assuming that the latter inequality holds for Δt small enough, then using

the series expansion (I −ΔtA)−1 =

∞
∑

j=0

(ΔtA)j which holds if Δt∥A∥ < 1, it follows that

∥I +ΔtA∥ ≤ ∥(I −ΔtA)−1∥+O(Δt2) ≤ 1

1−Δt!
+O(Δt2).

Consequently, we obtain �[A] ≤ !.

Theorem 1.3.4 stands that, if �[A] ≤ ! and Δt0 is such that 1−Δt0! > 0, then we obain

∥un+1 − ũn+1∥ ≤
(

1 +
!

1−Δt0!
Δt

)

∥un − ũn∥,

which means that the implicit Euler’s method is C-stable.

For nonlinear problems we have the following extension:

Theorem 1.3.5 Let ∥.∥ be a given norm. Suppose that

�[
∂F

∂v
(tn+1, �)] ≤ !.

Then for any two numerical approximations for the solution of (1.1.1) defined by the implicit

Euler’s method we have

∥un+1 − ũn+1∥ ≤ 1

1−Δt!
∥un − ũn∥ (1.3.31)

provided that 1− !Δt > 0.

Proof: By the Mean Value Theorem, we have, for wn+1 = un+1 − ũn+1,

(

I −Δt

∫ 1

0

∂J

∂v
(tn+1, �un+1 + (1− �)ũn+1) d�

)

wn+1 = wn. (1.3.32)

Let M(tn+1) denotes

∫ 1

0

∂J

∂v
(tn+1, �un+1 + (1− �)ũn+1) d�.

As
∥wn∥
∥wn+1∥

≥ −�[−I +ΔtM(tn+1)],
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and, by Proposition 1 and Theorem 1.1.5, we get

�[−I +ΔtM(tn+1) ≤ −1 + Δ�[M(tn+1)] ≤ −1 +Δt!.

So, we deduce
∥wn∥
∥wn+1∥

≥ (1−Δt!)

which allow us to conclude (1.3.31).

Convergence

The Linear Case

Let us start by considering the � method applied to (1.3.21). Let Tn be the truncation error.

Then for the error en holds the representation

en+1 = en +Δt(1− �)Aen + �ΔtAen+1 +ΔtTn.

It follows that

en+1 = R(ΔtA)en + (I −Δt�)A)−1ΔtTn. (1.3.33)

Supposing that

∥R(ΔtA)n∥ ≤ k, nΔt ≤ T − t0, (1.3.34)

from (1.3.33) we obtain

∥en∥ ≤ k∥e0∥+ kΔt

n−1
∑

j=0

∥(I − �ΔtA)−1∥∥Tj∥. (1.3.35)

Using the definition of R, we have

(I −Δt�A)−1 = �R(ΔtA) + (1− �)I

3 and then (I−Δt�A)−1 is bounded if we can bound R(ΔtA). As we are assuming that (1.3.34)

holds, we deduce that exists (I −Δt�A)−1 and its norm is bounded by some constant C. Con-

sequently, from (1.3.35), we establish

∥en∥ ≤ k∥e0∥+ kC(T − t0)∥T∥, (1.3.36)

where ∥T∥ represents the maximum of the truncation error. For � = 1/2, ∥T∥ ≤ C ′Δt2 and

∥T∥ ≤ C ′Δt in the other cases. Thus, using the fact e0 = 0, we obtain

∥en∥ ≤ C∗Δtp, nΔt ≤ T − t0, (1.3.37)

where C∗ stands for the product of constants that arise above.

3 �R(ΔtA) = �I + �(I − �ΔtA)−1ΔtA
= �I − (I − �ΔtA)−1(I − �ΔtA) + (I − �ΔtA)−1
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The estimate (1.3.37) establishes the convergence of the �-method when applied to the IVP

(1.3.21). On the proof of this convergence, the stability inequality (1.3.34) has an important

role. Obviously, if ∥R(ΔtA)∥ ≤ k̂, then k := k̂n. So, in k̂ >> 1 then k is very large and then

the estimate (1.3.37) does not give helpful information. If k̂ = 1 + ΔtC for some C, we have

C-stability, and then in (1.3.37) k = eC(T−t0) which is bounded.

The Nonlinear Case

We consider in what follows the application of �-method to the IVP (1.1.1). Let Tn be the

truncation error and en the global error. For these two errors we have

en+1 = en + (1− �)Δt
(

F (tn, u(tn))− F (tn, un)
)

+�Δt
(

F (tn+1, u(tn+1))− F (tn+1, un+1)
)

+ΔtTn,

and, using the Mean Value Theorem, we obtain

en+1 = en + (1− �)Δt

∫ 1

0

∂F

∂v
(tn, �u(tn) + (1− �)un) d�(u(tn)− un)

+�Δt

∫ 1

0

∂F

∂v
(tn+1, �u(tn+1) + (1− �)un+1) d�(u(tn+1)− un+1) + ΔtTn.

Considering the notation

M(tn) :=

∫ 1

0

∂F

∂v
(tn, �u(tn) + (1− �)un) d�,

we get for the error en+1, en the following equality

(I − �ΔtM(tn+1))en+1 = (I + (1− �)ΔtM(tn))en +ΔtTn, (1.3.38)

which can be rewritten in the following form

ẽn+1 = (I + (1− �)ΔtM(tn))(I − �ΔtM(tn))
−1ẽn +ΔtTn, (1.3.39)

where

ẽn+1 = (I − �ΔtM(tn+1))en+1, ẽn = (I − �ΔtM(tn))en.

If we assume that

�[
∂F

∂v
(t, v)] ≤ 0,∀t, v,

then, for vectorial norms induced by inner products and for � ≥ 1

2
, we have

∥R(ΔtM(tn))∥ ≤ 1,

which implies

∥ẽn+1∥ ≤ ∥ẽn∥+Δt∥Tn∥. (1.3.40)
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From (1.3.40) we get

∥ẽn+1∥ ≤ ∥ẽ0∥+
n
∑

j=0

Δt∥Tj∥ ≤ ∥ẽ0∥+ nΔt∥T∥, (1.3.41)

where ∥T∥ is defined as before.

Taking into account that (I−�ΔtM(tn))
−1 = �R(ΔtM(tn))+(1−�)I and ∥R(ΔtM(tn))∥ ≤

1, we deduce that

∥(I −Δt�M(tn))
−1∥ ≤ 1.

This upper bound implies that

∥en+1∥ = ∥(I −Δt�M(tn))
−1ẽn+1∥ ≤ ∥ẽn+1∥,

and then, from (1.3.41), the following estimate

∥en+1∥ ≤ ∥(I − �ΔtM((t0))e0∥+ nΔt∥T∥ (1.3.42)

can be established. Finally, another upper bound can be obtained if we take the estimate

∥M(t0)∥ ≤ L, where L represents the Lipschitz constant

∥en+1∥ ≤ (1 + LΔt)∥e0∥+ nΔt∥T∥. (1.3.43)

1.4 Stiff systems

The problems called stiff are diverse and it is rather cumbersome to give a rigorous mathe-

matic definition of stiffness. Consequently, in the literature, there are various definitions. Hairer

and Wanner, in their book [14], wrote that While the intuitive meaning of stiff is clear for all

specialists, much controversy is going on about its correct mathematical definition. They agree

that the most pragmatical opinion is also historically the first one: stiff equations are equations

where certain implicit methods perform better, usually tremendously better, than the explicit

ones. This idea of stiff equation is based on the use of numerical methods.

We will introduce in what follows the concept of stiff equations, trying not to use the per-

formance of some numerical methods. The essence of stiffness is given by Dekker and Verwer in

their book [4]: The essence of stiffness is that the solution to be computed is slowly varying but

that perturbations exist which are rapidly damped.

Let us consider some illustrative examples of stiffness.

Example 9 Let F be a slowly varying smooth function and � be a parameter such that � << 0.

Let u be the solution of the IVP

u′(t) = �u(t) + F ′(t)− �F (t), t > 0, u(0) = u0. (1.4.1)

The solution of the IVP (1.4.1) is given by

u(t) = F (t) + e�t(u0 − F (0)).

As � << 0, after a very short time distance, the behaviour of the term e�t(u0 − F (0)) does

not influence the behaviour of u. Nevertheless, for short time distance, u is determined by the
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mentioned term. Such term is called transient term, stiff component of u or strongly varying

component of u. The term F (t) is called nontransient, smooth component or slowly varying

component of u.

Let us now consider the integration of (1.4.1) over the time interval [tn, tn+1] of length Δt

u(tn+1) = e�Δt(u(tn)− F (tn)) + F (tn+1).

This expression show that if there is an perturbation of the smooth component, such perturbation

is rapidly damped.

Let us consider now the Explicit and the Implicit Euler’s methods

un+1 = (1 + �Δt)(un − F (tn)) + F (tn) + ΔtF ′(tn),

un+1 = (1− �Δt)−1(un − F (tn)) + (1− �Δt)−1(F (tn) + ΔtF ′(tn+1)− �ΔtF (tn+1)).

If we take un as a perturbation of F (tn), then, in the Explicit method, the perturbation un−F (tn)
is damped if Δt ∈ (0,

2

−�), which implies a severe restriction on the time step size. Otherwise,

the implicit method simulates the behaviour of the continuous model for all Δt.

Regarding the approximation of F (tn+1) by the corresponding terms of both methods, for the

explicit method the term F (tn)+ΔtF (tn) is acceptable approximation for F (n+1) with Δt larger

than the imposed by the stability behaviour. This situation is typical when explicit method is

applied to a stiff problem. Of course that for the implicit method we have (1 − �Δt)−1(F (tn) +

ΔtF ′(tn+1)− �ΔtF (tn+1))− F (tn+1) → 0.

In Figures 4 and 5 we plot the numerical solutions obtained with the explicit and implicit

Euler methods. The implicit method performs tremendously better than the explicit one. When

� decreases drastically then the restriction for the time stepsize is in fact very severe as we can

see in Figure 10

Example 10 Let us consider again the IVP defined in Example 2. The solution of such problem

is given by

u(t) =

⎡

⎢

⎢

⎣

edt
edt − e−�−1t

1 + d�

0 e−�−1t

⎤

⎥

⎥

⎦

u0.

The second component e−�−1t of the solution dies after a short period. This component, the

transient one, determines the solution only for small times. After the transient time, the solution

is determined by the smooth component edt. This problem is considered also stiff. We point out

that the problem is considered stiff only on the nontransient phase.

We consider now the Explicit and the Implicit Euler’s methods defined by

un+1 =

⎡

⎣

1 + Δtd Δt�−1

0 1−Δt�−1

⎤

⎦un,
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Figure 4: Numerical approximations obtained with the explicit Euler and implicit Euler methods
for F (t) = et and � = −100.
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Figure 5: Numerical approximations obtained with the explicit Euler and implicit Euler methods
for F (t) = et and � = −1000.



Computational Mathematics J.A.Ferreira 31

un+1 =

⎡

⎢

⎢

⎢

⎣

1

1−Δtd

Δt�−1

(1−Δtd)(1 + Δ�−1

0
1

1 + Δt�−1

⎤

⎥

⎥

⎥

⎦

un.

On the transient phase both methods perform satisfactorily because they are computing an

approximation to e−Δt�1 using 1 −Δt�−1 and 1− Δt

�+Δt
. After this phase, the transient com-

ponent died and the behaviour of the solution is determined by edt. Obviously, in this phase, the

explicit method becomes inefficient .

We next discuss the concept of stifness for the general linear problem

u′(t) = Au(t) + r(t), t > 0, u(t0) = u0, (1.4.2)

where A ∈ IRm × IRm and r denotes a source smooth term. The obvious way to define stiffness

for the linear system is by using the nature of the eigenvalues �i, i = 1, . . . ,m. The linear IVP

(1.4.2) is stiff if

1.

∃�i : Re�i << 0, (1.4.3)

2.
∃�i : ∣�i∣is small when compared with the modulus
of the eigenvalues satisfying the first requirement,

(1.4.4)

3.

∕ ∃�i : Re�i >> 0, (1.4.5)

4.

∕ ∃�i : Im�i >> 0 unlessRe�i << 0. (1.4.6)

Of course that if (1.4.2) is stiff according to the last definition then it is also stiff in the sense

introduced before.

The previous concept of stiffness allows now the introduction the stiffness for the nonlinear

IVP (1.1.1). If the eigenvalues of the Jacobian of F , JF at u(t) for t = t̃, satisfies (1.4.3)-(1.4.6),

then we say that (1.1.1) is stiff at t̃. Let us suppose that we perturb u(t̃) to ũ(t̃). As, for t > t̃,

w(t) = ũ(t)− u(t) satisfies

w′(t) =M(t)w(t), t > t̃, w(t̃) = ũ(t̃)− u(t̃),

where M(t) =

∫ 1

0
JF (t, �ũ(t) + (1− �u(t))) d�, then, if u varies slowly for t > t̃, and w(t)

contains rapidly damped components solutions, or, even the hole solution w(t) is rapidly damped,

we say that the IVP (1.1.1) is stiff for t ≥ t̃.

It should be stressed that there is not a satisfactory mathematical definition of stiffness

for a nonlinear problem. Nevertheless the stiff problems from practice are well recognized. In
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fact, any physical problem modelled by the IVP (1.1.1) with physical components with greatly

differing time constant leads to a stiff problem. The physical components with the smallest time

constants show a very rapid change and make the problem stiff. The slowly varying solution of

a stiff problem is determined by the latter components.

It is well assumed that a property of the stiff problems is the presence of a large Lipschitz

constant. Hence, the error estimates for the one-step methods established in Section 1.4 are not

helpful for this kind of problems. Error estimates obtained using the logarithmic norms can be

more convenient for stiff problems.

1.5 The Runge-Kutta Methods

The class of s stage Runge-Kutta methods was introduced in Section 1.3. We present in

what follows some results on the Runge-Kutta methods

a1 b11 b12 b13 . . . b1s−1 b1s
a2 b21 b22 b23 . . . b2s−1 b2s
a3 b31 b32 b33 . . . b3s−1 b3s
. . . . . .
as bs1 bs2 bs3 . . . bss−1 bss

c1 c2 c3 . . . cs−1 cs

1.5.1 The Order Conditions

As introduced before, the s-stage R-K methods is consistent if the truncation error Tn,

defined by

ΔtTn = u(tn+1)− u(tn)−Δt

s
∑

i=1

ciki

with

ki = F (tn +Δtai, u(tn) + Δt
s

∑

j=1

bijkj),

satisfies

∥Tn∥ = O(Δt), ∀n : Δt ≤ T − t0.

If

∥ΔtTn∥ = ∥u(tn+1)− u(tn)−Δt

s
∑

i=1

ciki∥ = O(Δtp+1),

then the s-stage R-K method is consistent with order equal to p.

As we have

ΔtTn =

p
∑

m=1

1

m!
Δtmu(m)(tn) +

1

(p+ 1)!
Δtp+1u(p+1)(tn + �Δt)

−Δt
s

∑

j=1

ci

(

p−1
∑

m=1

1

m!
Δtmk

(m)
i (0) +

1

p!
Δtpk

(p)
i (�iΔt)

)

,

(1.5.1)

with �, �i ∈ [0, 1], the conditions for the consistency order can be established for explicit Runge-

Kutta methods.
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Example 11 Let us consider the explicit 4-stage R-K method. Using (1.5.1) it is a tedious task

to compute the conditions for the coefficients of the method such that the consistency order is 4.

Considering that ai =

i−1
∑

j=1

bij such conditions can be reduced to

c1 + c2 + c3 + c4 = 1

c2a2 + c3a3 + c4a4 =
1

2

c2a
2
2 + c3a

2
3 + c4a

2
4 =

1

3

c2a
3
2 + c3a

3
3 + c4a

3
4 =

1

4

c3a3b32a2 + c4a4(b42a2 + b43a3) =
1

8

c3b32 + c4b42 = c2(1− a2)

c4b43 = c3(1− a3)

c4(1− a4) = 0

(1.5.2)

(see [14], pg 133-136). Examples of fourth consistency order are given in the following Butcher

tables

1

2

1

2

1

2
0

1

2

1 0 0 1

1

6

2

6

2

6

1

6

1

3

1

3

2

3
−1

3
1

1 1 −1 1

1

8

3

8

3

8

1

8

We presented until explicit R-K methods with p stages and p consistency order for p ≤ 4. Is

it possible to construct an explicit s stage R-K method with s consistency order? The answer

to this question was given by several authors independently. For instance, Butcher proved the

following result which can be seen in [14] (pg-173).

Theorem 1.5.1 For p ≥ 5 no explicit R-K method exists of order p with s = p stages.

As far as the existence of implicit R-K methods is concerned, we remark that we should

compute, at each iteration, the solution of nonlinear system

ki = F (tn + aiΔt, un +Δt

s
∑

j=1

bijkj), i = 1, . . . , s.



Computational Mathematics J.A.Ferreira 34

The computation of the consistency order was made by assuming that ki is differentiable with

respect to the time step size. A sufficient condition guarantying the legitimation to compute ki
and k′i(0) is given in what follows.

Theorem 1.5.2 Let F be continuous in the first argument and Lipschitz with constant L with

respect to the second argument. If

Δt <
1

Lmaxi=1,...,s
∑s

j=1 ∣bij ∣
, (1.5.3)

then there exists a unique solution defined by the implicit s-stage Runge-Kutta method. Moreover,

if F is p times continuously differentiable, then ki, i = 1, . . . , s, are in Cp with respect to the

time step size.

Proof: Let IF : IRsm → IRsm be defined by

IF(K) = (IFi(K)) = (Fi(tn +Δtai, un +Δt
s

∑

j=1

bijkj))

with K = (k1, . . . , ks).

In IRsm we consider the norm

∥K∥ = max
i=1,...,s

∥ki∥.

As IF satisfies de Lipschitz condition, we have

∥IF(K1)− IF(K2)∥ ≤ Δt max
i=1,...,s

s
∑

j=1

∣bij ∣∥K1 −K2∥ < ∥K1 −K2∥,

and, using (1.5.3), we conclude that IF is a contraction with respect to the last norm.

The differentiability of ki is a consequence of the Implicit Function Theorem for

K − IF(K) = 0.

We point out that the application of the last result implies the use of a very small step size

for large Lipschitz constants. Nevertheless, we apply this result in the last context.

Example 12 The implicit 2-stage R-K method with the coefficients satisfying

c1 + c2 = 1

c1a1 + c22a2 =
1

2

c1a
2
1 + c2a

2
2 =

1

3

c1(b11a1 + b12a2) + c2(b21a1 + b22a2) =
1

6

(1.5.4)

has consistency order equal to 3. An example of a third order consistency R-K method is given

in the following Butcher table
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 0

1− 
 1− 2
 


1

2

1

2


 =
3±

√
3

6
.

Butcher established a sufficient condition for the consistency order of a general s-stage R-K

method ([4]).

Theorem 1.5.3 If
s

∑

i=1

cia
m−1
i =

1

m
,m = 1, . . . , p, (1.5.5)

s
∑

j=1

bija
m−1
j =

ami
m
, i = 1, . . . , s,m = 1, . . . , q, (1.5.6)

and
s

∑

i=1

cia
m−1
i bij =

cj
m
(1− amj ), j = 1, . . . , s,m = 1, . . . , ℓ, (1.5.7)

with p ≤ q + ℓ+ 1, p ≤ 2q + 2, then the consistency order order of the method is equal to p.

Let us look to the previous conditions. The R-K methods are constructed, replacing in the

Picard’s sequence,

u(tn+1) = u(tn) +

∫ tn+1

tn

F (t, u(t)) dt = u(tn) + Δt

∫ 1

0
F (tn + �Δt, u(tn + �Δt)) d�,

the term F (tn + �Δt, u(tn + �Δt)) d� by an approximation defined by

s
∑

i=1

ciF (tn +Δtai, u(tn) + Δt

s
∑

j=1

bijkj),

with ki defined above. This approximation is a particular case of the approximation rule

∫ 1

0
g(�) d� ≃

s
∑

i=1

cig(ai).

If this integration rule is exact for polynomials with degree less or equal to p− 1, we have

∫ 1

0
�m−1d� =

s
∑

i=1

cia
m−1
i

and then the equality (1.5.6) holds.

Let us consider now the integral
∫ ai

0
F (tn +Δt�, u(tn +Δt�)) d�
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approximated by
s

∑

j=1

bijkj .

This approximation is defined using the integration rule

∫ ai

0
g(�) d� ≃

s
∑

j=1

bijg(aj).

If the last approximation is of order p, i.e, the integration rule is exact for polynomials of degree

less or equal to p− 1 we have (1.5.6).

Example 13 An example of an implicit R-K method with 3-stages with order 6 is the so called

Kuntzmann-Butcher method given by the following Butcher table

1

2
−

√
15

10

5

36

2

9
−

√
15

15

5

36
−

√
15

30

1

2

5

36
+

√
15

24

2

9

5

36
−

√
15

24

1

2
+

√
15

10

5

36
+

√
15

30

2

9
+

√
15

15

5

36

5

18

4

9

5

18

Finally, we point out that, as the R-K methods are one-step methods and the upper bounds

for the global error were established using the truncation error, at leat for IVP with a Lipschitz

function F , we conclude that if the consistency order is p, then the convergence order is at least

p.

1.5.2 Stability

The stability function of the general s-stage Runge-Kutta method is defined when such

method is applied to the test equation (1.3.19). In this case we get

un+1 = un +Δt[ci]
t[ki], (1.5.8)

where

ki = �un +Δt�[bij ]i[ki]. (1.5.9)

Then

(I − z[bij ])[ki] = �I1un,

where z = Δt� and I1 denotes the vector with all components equal to 1. The last equality implies

[ki] = (I − z[bij ])
−1I1�un,

and then

un+1 = un +Δt�[ci]
t(I − z[bij ])

−1I1un,
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which is equivalent to

un+1 = R(z)un

with the stability function R(z) given by

R(z) = 1 + z[ci]
t(I − z[bij ])

−1I1. (1.5.10)

We determine, in what follows, a new representation for the stability function of the s-stage

Runge-Kutta method (1.5.10).

Applying the s-stage Runge-Kutta method to the test equation (1.3.19), we get (1.5.8) and

(1.5.9). The numerical approximation un+1 can be computed using the linear system
⎡

⎢

⎢

⎢

⎢

⎣

1− zb11 −zb12 . . . −zb1s 0
−zb21 1− zb22 . . . −zb2s 0
. . . . . . . . . . . . 0

−zbs1 −zbs2 . . . 1− zbss 0
−Δtc1 −Δtc2 . . . −Δtcs 1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

k1
k2
. . .
ks
un+1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

�un
�un
. . .
�un
un

⎤

⎥

⎥

⎥

⎥

⎦

. (1.5.11)

By Cramer’s rule we get

un+1 =

det

⎡

⎢

⎢

⎢

⎢

⎣

1− zb11 −zb12 . . . −zb1s �un
−zb21 1− zb22 . . . −zb2s �un
. . . . . . . . . . . . . . .

−zbs1 −zbs2 . . . 1− zbss �un
−Δtc1 −Δtc2 . . . −Δtcs un

⎤

⎥

⎥

⎥

⎥

⎦

det

⎡

⎢

⎢

⎢

⎢

⎣

1− zb11 −zb12 . . . −zb1s 0
−zb21 1− zb22 . . . −zb2s 0
. . . . . . . . . . . . 0

−zbs1 −zbs2 . . . 1− zbss 0
−Δtc1 −Δtc2 . . . −Δtcs 1

⎤

⎥

⎥

⎥

⎥

⎦

,

(1.5.12)

which admits the representation

un+1 =

det

⎡

⎢

⎢

⎢

⎢

⎣

1− zb11 −zb12 . . . −zb1s un
−zb21 1− zb22 . . . −zb2s un
. . . . . . . . . . . . . . .

−zbs1 −zbs2 . . . 1− zbss un
−zc1 −zc2 . . . −zcs un

⎤

⎥

⎥

⎥

⎥

⎦

det(I − z[bij ])
(1.5.13)

From (1.5.13), we deduce

un+1 =

det

⎡

⎢

⎢

⎢

⎢

⎣

1− zb11 + zc1 −zb12 + zc2 . . . −zb1s + zc3 0
−zb21 + zc1 1− zb22 + zc2 . . . −zb2s + zc3 0

. . . . . . . . . . . . 0
−zbs1 + zc1 −zbs2 + zc2 . . . 1− zbss + zc3 0

−zc1 −zc2 . . . −zcs 1

⎤

⎥

⎥

⎥

⎥

⎦

det(I − z[bij ])
un.

We conclude that the stability function R(z) defined by (1.5.10) is also given by

R(z) =
det(I − z[bij ] + zI1[ci]

t)

det(I − z[bij ])
. (1.5.14)
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Figure 6: Boundaries of the stability regions of the Euler’s method and modified Euler’s method.

The last expression for the stability function of the s-stage Runge-Kutta method has, for the

explicit case, an immediate consequence. In fact, if the Runge-Kutta method is explicit, then its

stability function is a z polynomial of degree less or equal to s. Otherwise, the stability function

is rational function with the degree of both numerator and denominator less or equal to s.

The stability region of the s-Runge-Kutta method is given by S = {z ∈ C : ∣R(z)∣ ≤ 1} with

R given by (1.5.14).

Example 14 The modified Euler’s method has the stability function

R(z) = 1 + z +
z2

2

and the stability region S = {z ∈ C : ∣2 + 2z + z2∣ ≤ 2}. In Figure 6 we plot the boundaries of

the stability regions of the explicit Euler’s and the modified Euler’s methods.

Example 15 The stability function of the explicit 3-stage Runge-Kutta method is given by

R(z) = 1 + z

3
∑

i=1

ci + z2(c3(b31 + b32) + c2a2) + z3b21b32c3.

If the method has third consistency order, then, using the order conditions, we obtain

R(z) = 1 + z +
1

2
z2 +

1

6
z3.

Example 16 The implicit methods

1

2

1

2

1

0 0 0

1
1

2

1

2

1

2

1

2
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respectively, the implicit midpoint and the implicit trapezoidal methods, share the stability func-

tion

R(z) =
1 + z

2

1− z
2

.

As the stability region is C−, we conclude that both methods are A-stables.

Example 17 The implicit method


 
 0
1− 
 1− 2
 


1

2

1

2

with third consistency order for 
 =
3±

√
3

6
, has the stability function

R(z) =
1 + (1− 2
)z + (12 − 2
 + 
2)z2

(1− 
z)2
.

For 
 ≥ 1

4
the R-K method is A-stable.

The stability region can be used to compute bounds to the time step size. In fact, considering

the stability region S and its intersection with the straight line Imz = 0, (Ri, Rs), which is

usually called interval of absolute stability, we have absolutely stability if and only if �Δt ∈
(Ri, Rs). Using the interval (Ri, Rs), we know how the magnitude of the time step size should

be in order to guarantee stability. For example, we have

∙ (Ri, Rs) = (−2, 0) for the 2-stage R-K methods,

∙ (Ri, Rs) = (−2.51, 0) for the 3-stage R-K methods,

∙ (Ri, Rs) = (−2.78, 0) for the 3-stage R-K methods.

The stability function can be related to the consistency order. In fact, for the solution of

the test equation, we may obtain

u(tn+1) = ezu(tn), z = �Δt. (1.5.15)

Otherwise, if we apply a R-K method to the test equation, then

un+1 = R(z)un.

Replacing in the last identity the approximated solution by the continuous one, we get

u(tn+1) = R(z)u(tn) + T̂n, (1.5.16)

where T̂n depends on the truncation error. From (1.5.15) and (1.5.16), we conclude the following

result:
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Theorem 1.5.4 If the R-K method is of consistency order p then

ez = R(z) +O(z(p+1).

As a corollary we deduce:

Corollary 3 If the explicit R-K method has order p, then

R(z) = 1 + z +
z2

2
+ ⋅ ⋅ ⋅+ zp

p!
+O(zp+1).

Proof: From Theorem 1.5.4, R(z) is an approximation of ez with order p+ 1.

Our aim now is to establish sufficient conditions for the stability the Runge-Kutta methods:

contractivity or C-stability, for linear system of ODEs. We follow the analysis of �-method

stability. Let R(z) be the rational function

R(z) =
p0 + p1z + ⋅ ⋅ ⋅+ psz

s

q0 + q1s+ ⋅ ⋅ ⋅+ qszs
.

For a m×m Z matrix we define R(Z) by

R(Z) = (p0I + p1Z + ⋅ ⋅ ⋅ + psZ
s)(q0I + q1Z + ⋅ ⋅ ⋅+ qsZ

s)−1. (1.5.17)

Applying the s-stage Runge-Kutta method to

u′(t) = Au(t), u(t0) = u0

where A is a m×m matrix, we obtain

un+1 = R(ΔtA)un,

where R(z) denotes de stability function of the R-K method. In fact, as in the scalar case, we

have

un+1 = un + [ci]
t[ki]i=1,...,s,

where [ki]i=1,...,s is a s column vector with the i component equal to the m column vector ki,

[ci]
t[ki]i=1,...,s denotes

s
∑

i=1

ciki, where [ki]i=1,...,s is defined by

[ki]i=1,...,s = (I −ΔtA[bij ])
−1AI1un,

being A[bij ] a s×s block matrix with entries Abij, and I1Aun a s column vector with components

Aun. According to the introduced notations we obtain

R(ΔtA) = I +ΔtA[ci]
t(I −ΔtA[bij ])

−1I1,
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where [ci]
T represents a block vector whose entries are ciI, i = 1, . . . , s, and I1 denotes now the

column block vector with s blocks being each block the m identity matrix. We remark that the

last representation can be obtained formally from (1.5.10) with the convenient modifications.

Of course that, for wn = un − ũn, where un, ũn are defined by the initial conditions u0, ũ0,

respectively, we obtain

∥wn+1∥ ≤ ∥R(ΔtA)∥n+1∥∥w0∥. (1.5.18)

The stability behaviour of the Runge-Kutta method, when applied to the linear problem, de-

pends on the behaviour of ∥R(ΔtA)∥n when n increases.

Let us suppose that R(z) is defined by (1.5.17) and A is a diagonalizable matrix, A =

MDM−1 with D = diag(�i). Then

∥R(ΔtA)∥ ≤ cond(M)∥diag(R(Δt�i))∥. (1.5.19)

If Δ�i ∈ S, then ∣R(Δt�i)∣ ≤ 1, and consequently

∥R(ΔtA)∥ ≤ cond(M). (1.5.20)

We proved the next result:

Theorem 1.5.5 Let us suppose that A is diagonalizable, A = MDM−1 with D = diag(�i). If

Δt�i ∈ S, then holds (1.5.20).

For normal matrices we conclude contractivity.

In what follows we extend the previous result to more general matrices but just for methods

with a bounded stability function R(z) for Rez ≤ 0. We assume that

Re < u,Au >≤ 0, ∀u ∈ Cm, (1.5.21)

where < ., . > denotes the Euclidian inner product. This condition enable us to conclude that,

for the continuous problem u′ = Au, holds the following

d

dt
∥u(t)∥2 = 2Re < u(t), u′(t) >= 2Re < u(t), Au(t) >≤ 0

and then ∥u(t)∥2 ≤ ∥u0∥.

Theorem 1.5.6 (see [14], pg 168-169) If R(z) is bounded for Rez ≤ 0 and A satisfies (1.5.21)

then

∥R(A)∥ ≤ sup
Rez≤0

∣R(z)∣. (1.5.22)

An immediate consequence of the previous result is that

∥R(ΔtA)∥ ≤ sup
Rez≤0

∣R(z)∣.

Obviously, if the R-K method is A-stable then the R-K method is contractive with respect to

the Euclidian norm.
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Example 18 Let us consider again the class of implicit methods defined in Example 17. Those

methods have the stability function

R(z) =
1 + (1− 2
)z + (12 − 2
 + 
2)z2

(1− 
z)2
.

For 
 ≥ 1

4
, these methods are A-stables. Then, for linear problems satisfying < Au, u >≤ 0, we

immediately conclude contractivity.

The condition (1.5.21) can be replaced by

Re < u,Au >≤ !∥u∥2, ∀u ∈ Cm. (1.5.23)

In fact, (1.5.23 ) implies

Re < u, (A − !I)u >≤ 0.

Consequently, taking in Theorem 1.5.6 A replaced by Ã = A−!I and R(z) replaced by R̃(z) =

R(z + !), we have

∥R(A)∥ = ∥R̃(Ã)∥ ≤ sup
Rez≤0

∣R(z + !)∥ ≤ sup
Rez≤!

∣R(z)∣.

From (1.5.23) we deduce

Re < u,ΔtA >≤ Δt!∥u∥2, u ∈ Cm,

which implies

∥R(ΔtA)∥ ≤ sup
Rez≤Δt!

∣R(z)∣. (1.5.24)

Let us consider a R-K method with a stability function R. Applying this method to a linear

problem such that (1.5.23) holds, then, using (1.5.24), we easily get an estimate for ∥R(ΔtA)∥.
We point out that the stability analysis for nonlinear case will not be considered here but

can be seen for example in [4] and in [14].

1.6 Linear Multistep Methods

1.6.1 Some Examples

The Runge-Kutta methods studied in the last section are a natural improvement of the

Euler’s method in terms of accuracy. However, to increase the accuracy implies an increasing

on the computational effort, which is measured in function of the evaluation of F at each step.

The high computational cost of the Runge-Kutta methods can be avoided using more than two

time level at each step. More precisely, let us consider the Picard’s sequence defined using the

interval [tn−1, tn+1]

u(tn+1) = u(tn−1) +

∫ tn+1

tn−1

F (t, u(t)) dt. (1.6.1)
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If we replace the integral term by the Simpson’s rule, we obtain the numerical method

un+1 = un +
Δt

3

(

F (tn−1, un−1) + 4F (tn, un) + F (tn+1, un+1)
)

, n = 1, . . . , N − 1. (1.6.2)

As un+1 depends on un−1, un, this method does not belong to the class of the one-step methods

and it is called 2-step method. The computation of a numerical approximation to the solution

of the IVP, using the method (1.6.2), needs an approximation to u1 which should be computed

with another method.

Our aim, in the following sections, is to study the class of methods that includes the method

(1.6.2).

A numerical method such that un+1 depends on un+1−q, . . . , un is called q-step method. In

this section we study linear multistep methods defined by

q
∑

j=0

�jun+j = Δt

q
∑

j=0

�jFn+j, n = 0, . . . , N − q, (1.6.3)

with Fn+j = F (tn+j , un+j) and NΔt = T − t0. The method is identified by the coefficients

�j , �j , j = 0, . . . , q. If �q ∕= 0 and �q = 0 then the method is explicit. Otherwise, the method is

implicit.

The computational advantage of a linear q-step method over a one s-stage R-K method can

be observed for explicit and implicit methods. For the first methods only one F evaluation is

needed while the R-K method needs s F evaluations. When implicit methods are used only one

nonlinear system has to be solved. However, the initial values u1, . . . , uq−1 needed the method

q-step method (1.6.3) should be computed with a one-step R-K method.

Some classes of linear multistep methods are: the Adams methods and the Backward Dif-

ferentiating Formulae (BDF). We present now these classes of methods.

1. The Adams methods: This class of methods is obtained takin in (1.6.3)

�0 = ⋅ ⋅ ⋅ = �q−2 = 0, �q−1 = −1, �q = 1.

The Adams method is characterized by the expression

un+q = un+q−1 +Δt

q
∑

j=0

�jFn+j.

If �q = 0, then the method is explicit, else is implicit. The explicit Adams methods are

usually called Adams-Bashforth methods while the implicit ones are called Adams-Moulton

methods.

2. Backward Differentiating Formulae (BDF): The methods belonging to this class are char-

acterized by

�q = 1, �q−1 = ⋅ ⋅ ⋅ = �0 = 0

which means that they are defined by

q
∑

j=0

�jun+j = ΔtFn+q.
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1.6.2 Consistency

We define the truncation error of the q-step method (1.6.3) by

ΔtTn+q−1 =

q
∑

j=0

�ju(tn+j)−Δt

q
∑

j=0

F (tn+j, u(tn+j). (1.6.4)

Analogously to the one-step methods, the quantity ΔtTn+1 is the residual generated at tn+1

when the exact solution is considered in the numerical scheme. If

∥Tn+q−1∥ → 0,Δt→ 0, n → ∞, nΔt ≤ T − t0,

then the method (1.6.3) is consistent with the equation u′(t) = F (t, u(t)). If ∥Tn+q−1∥ ≤
Const.Δtp, then the method is said to have consistency order equal to p.

We establish in what follows the conditions that imply the consistence of the q-step method

(1.6.3) and the required conditions for a prescribed consistency order.

For the truncation error holds the representation

ΔtTn+q−1 = C0u(tn) + ΔtC1u
′(tn) + Δt2C2u

′′(tn) + . . . , (1.6.5)

with

C0 =

q
∑

j=0

�j , Ci =
1

i!

q
∑

j=0

(

�jj
i − i�jj

i−1
)

(1.6.6)

provided that the solution u is smooth enough. Then the method (1.6.3) has p consistency order

provided that
q

∑

j=0

�j = 0,

q
∑

j=0

�jj
i = i

q
∑

j=0

�jj
i−1, i = 1, . . . , p. (1.6.7)

Example 19 The 2-step method

un+2 = un + 2ΔtFn+1, n = 0, . . . , N − 2,

has 2 consistency order.

Example 20 The Adams-Bashforth methods are consistent with u′(t) = F (t, u(t)) and they are

characterized by

�q = 1, �q−1 = −1, �j = �q = 0, j = 0, . . . , q − 2.

The coefficients �j , j = 0, . . . , q − 1, should be computed such that the order is optimal.

The 2-step method with 2 consistency order is defined by

un+2 − un+1 =
Δt

2

(

− Fn + 3Fn+1

)

, n = 0, . . . , N − 2,

while the 3-step method with consistency order equal to 3 is defined by

un+3 − un+2 =
Δt

12

(

5Fn − 16Fn+1 + 23Fn+2

)

, n = 0, . . . , N − 3.
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Example 21 The q-step Adams-Moulton methods are characterized by

�q = 1, �q−1 = −1, �j = 0, j = 0, . . . , q − 2.

The coefficients �j , j = 0, . . . , q, should be computed in such way that the method has q + 1

consistency order.

The 2-step method

un+2 − un+1 =
Δt

12

(

− Fn + 8Fn+1 + 5Fn+2

)

, n = 0, . . . , N − 2,

has consistency order equal to 3 while the 3-step method defined by

un+3 − un+2 =
Δt

24

(

Fn − 5Fn+1 + 19Fn+2 + 9Fn+3

)

, n = 0, . . . , N − 3,

has consistency order equal to 4.

Example 22 The BDF methods are characterized by

�q = 1, �j = 0, j = 0, . . . , q − 1,

and the coefficients �j, j = 0, . . . , q should be chosen such that the order is optimal. The 2 step

method
3

2
un+2 − 2un+1 +

1

2
un = ΔtFn+2, n = 0, . . . , N − 2

is of order 2.

1.6.3 Stability

The use of the method (1.6.3) requires the computation of the initial values u1, . . . , uq−1

because only u0 is given. Such values are computed using, for example, an one-step method. As

those values contain numerical errors, it is very important to now how these error affects further

approximations un, n ≥ q. The stability behaviour of the multistep method will be considered

with respect to small perturbations in the starting values.

Let un and ũn be defined by the q-step method (1.6.3) with the initial values ui, i = 0, . . . , q−1

and ũi, i = 0, . . . , q − 1. The q-step method (1.6.3) is said zero-stable if

∥un − ũn∥ ≤ C max
i=0,...,q−1

∥ui − ũi∥. (1.6.8)

We will show that the zero-stability of a multistep method can be deduced using the test

equation u′ = 0. The designation zero-stability is due to the use of F = 0.

The two polynomials

�(�) =

q
∑

j=0

�j�
j , �(�) =

q
∑

j=0

�j�
j

are associated with the q-step method (1.6.3) and they are called first and second characteristic

polynomials.
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The q-step method (1.6.3) satisfies the rout condition if the roots �i of �(�) = 0 satisfy

∣�i∣ ≤ 1, ∀i, ∣�i∣ < 1 if �i is not simple. (1.6.9)

In the following result we establish, for q-step method (1.6.3), the equivalence between the

root condition and the zero stability of the method. This equivalence leads to the definition of

zero-stability using the root condition.

Theorem 1.6.1 The q-step method (1.6.3) is zero-stable for any IVP u′(t) = F (t, u(t)), t >

t0, u(t0) = u0, where F satisfies the Lipschitz condition with respect to the second argument if

and only if it satisfies the root condition.

Proof: Let us suppose that the root condition is violated. We prove in what follows that the

q-step method (1.6.3) is not zero-stable.

Consider the q-step method (1.6.3) applied to the IVP with F = 0

q
∑

j=0

�jun+j = 0. (1.6.10)

Let �i and �ℓ be solutions of �(�) = 0 with multiplicity 1 and mℓ, respectively. Consequently,

�ni and �nℓ , n�
n
ℓ , . . . , n

mℓ−1�nℓ , are solutions of (1.6.10).4 Then, any combination of the last

solution still be a solution of (1.6.10). Lets us consider that the solution of (1.6.10) admits the

representation

un =
∑

i


i�
n
i +

∑

ℓ

�nℓ

mℓ−1
∑

j


ℓ,jn
j,

where the coefficients are determined by the initial conditions. We can assume that the solution

of (1.6.10) is given by

un =
∑

i

pi(n)�
n
i , (1.6.11)

where �i is a zero of �(�) = 0 and ps is a polynomial of degree one less than the multiplicity of

�i.
5

If ∣�i∣ > 1, then there are starting values for which the corresponding solution grows like

∣�i∣n. If ∣�i∣ = 1 and its multiplicity is mi, then there are solutions growing like nmi−1.

4If �i is such that �(�i) = 0 then
q

∑

j=0

�j�
n+j
i = �ni �(�i) = 0.

Otherwise let �ℓ be a zero of the first characteristic polynomial with multiplicity mℓ. Then

q
∑

j=0

�j(n+ j)�n+j
ℓ = �nℓ

(

n�(�ℓ) + �′(�ℓ)
)

= 0.

Using the same procedure it can be shown that

q
∑

j=0

�j(n+ j)k�n+j
ℓ = 0, k = 2, . . . ,mℓ − 1.

5Let us consider the case that the first characteristic polynomial has the roots �i, i = 1, . . . , q simple. Then
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Let us consider the initial values u0, . . . , uq−1, which induces the unbounded solution un and

u0 = 0, . . . , uq−1 = 0, which induces the null solution ũn. Then for un − ũn does not hold the

inequality (1.6.8).

Let us prove that the root condition is sufficient for the q-step method (1.6.3) to be zero-

stable. Let un and ũn be the sequences defined by the previous methods for the initial conditions

ui, i = 0, . . . , q− 1, ũi, i = 0, . . . , q− 1, respectively, and let wn be the difference between the two

defined solutions. We have6

the set of fundamental solutions {�ni , n = 0, 1, . . . }, i = 1, . . . , q, is such that

un =

q
∑

j=1


j�
n
j .

We introduce the new set {�
(n)
i , n = 0, . . . , }, i = 0, . . . , q − 1 such that

�
(j)
i = �ij , i, j = 0, . . . , q − 1.

As �
(n)
i =

q
∑

j=1


i,j�
n
j , i = 0, . . . , q − 1,, we deduce for the coefficient 
i,j , j = 1, . . . , q, the system

q
∑

j=1


i,j�
ℓ
j = �i,ℓ, ℓ = 0, . . . , q − 1,

which is equivalent to
R
i = ei, i = 0, . . . , q − 1,

with R = (�ℓj), 
i = (
i,1, . . . , 
i,q and ej denotes the unitary vector of IRq.
Consequently we obtain for un the representation

un =

q−1
∑

i=0

uj 
(n)
j .

The procedure presented can be followed when some of the roots of the first characteristic polynomial have
multiplicity greater than two.

6We established that for the homogeneous equation

q
∑

j=0

�jun+j = 0

holds the following

un =

q−1
∑

j=0

uj 
(n)
j .

The solution of the non homogeneous equation

q
∑

j=0

�jun+j = �n+q

is established using the solution of the corresponding homogeneous equation and a particular solution of the
corresponding non homogeneous one. In this case it can be show that

un =

q−1
∑

j=0

uj 
(n)
j +

n
∑

j=q

�j 
n−j+q−1
q−1 , n = 0, 1, . . .

where  
(i)
q−1 = for all i < 0 and �j = 0 for j < q.
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q
∑

j=0

�jwn+j =  n+q, n = 0, . . . , N − q, (1.6.12)

where

 n+q = Δt

q
∑

j=0

�j
(

F (tn+j , un+j)− F (tn+j, ũn+j)
)

.

The solution of the difference equation (1.6.12) is given by

wn =

q−1
∑

j=0

wj 
(n)
j +

n
∑

j=q

 
(n−j+q−1)
q−1 �j n = q, . . . , (1.6.13)

where { (n)
j , j = 0, . . . , q − 1} is the set of fundamental solutions of the homogeneous difference

equation associated to (1.6.12). It can be shown that the fundamental solutions are uniformly

bounded if and only if the root condition is satisfied (see [9], Theorem 6.3.2). As a consequence,

∥ (n)
j ∥ ≤M, ∥ (n−j+q−1)

q−1 ∥ ≤M.

Considering the last upper bounds in (1.6.13) we get

∥wn∥ ≤M
(

q∥wj∥max +

n
∑

j=q

∥ j∥
)

, n = q, . . . , N − q, (1.6.14)

where

max
j=0,...,q−1

∥wj∥ = ∥wj∥max.

As F satisfies the Lipschitz condition, we obtain, for  n+q, the upper bound

∥ n+q∥ ≤ ΔtL∥�j∥max

q
∑

j=0

∥wn+j∥,

which implies

∥ ℓ∥ ≤ ΔtL∣�j∣max

q
∑

j=0

∥wℓ−q+j∥, (1.6.15)

with

∣�j ∣max = max
j=0,...,q

∣�j ∣.

Taking in (1.6.14) the estimate (1.6.25) we conclude

∥wn∥ ≤M
(

q∥wj∥max +ΔtL∣�j ∣max

n
∑

ℓ=q

q
∑

j=0

∥wℓ−q+j∥
)

, n = q, . . . , N − q. (1.6.16)

From inequality (1.6.16) we also have

(

1−ΔtML∣�j ∣max

)

∥wn∥ ≤Mq∥wj∥max +ΔtML∣�j ∣maxq

n−1
∑

m=0

∥wm∥
)

(1.6.17)
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Assuming that

1−ΔtML∣�j∣max > 0, (1.6.18)

we should obtain an upper bound for the sequence

cn ≤ g0 + k

n−1
∑

j=0

cj

with

cn = ∥wn∥, g0 = max{ Mq∥wj∥max

1−ΔtML∣�j ∣max
, ∥w0∥}

and

k =
ΔtMqL∣�j∣max

1−ΔtML∣�j∣max
.

If c0 ≤ g0 the its easy to show that

cn ≤ g0(1 + k)n ≤ g0e
nk.

Applying the last estimate we get

∥wn∥ ≤ Mq∥wj∥max

1−ΔtML∣�j∣max
e
n

ΔtMqL∣�j ∣max

1−ΔtML∣�j ∣max .

The last estimate enable us to conclude the proof because implies

∥wn∥ ≤ Mq∥wj∥max

1−Δt0ML∣�j ∣max
e
(T−t0)

MqL∣�j ∣max

1−Δt0ML∣�j ∣max

for Δt ∈ (0,Δt0] with Δt0 satisfying (1.6.18).

Example 23 The Adams methods are zero-stables because �(�) = �2 − �.

We introduce in what follows a new concept of stability induced by the behaviour of the

multistep method when applied to the scalar test equation considered on the context of A-

stability of the one-step methods.

Let us define another polynomial associated to the q-step method (1.6.3): the characteristic

polynomial

�(�) = �(�)−Δt�(�) =

q
∑

j=0

(�j −Δt�j)�
j , (1.6.19)

where �(�) and �(�) are the first and the second characteristic polynomials associated to the

multistep method (1.6.3).

When we apply the q-step method (1.6.3) to the scalar test equation we obtain

q
∑

j=0

(�j − z�j)un+j = 0, z = �Δt. (1.6.20)
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Figure 7: Stability regions of the Adams-Bashford methods with 2 and 3 steps respectively.

We associate to the last recursion the polynomial

�z(�) = �(�)− z�(�).

We say that the q-step method (1.6.3) satisfies the root condition at z if �i(z), i = 0, . . . , q−1,

satisfy the condition (1.6.9).

Let �i, i ∈ I1 be the set of simple roots of the polynomial �z(�) and �i, i ∈ I2, be the set

of roots of �z(�) with multiplicity mi, i ∈ I2. Taking into account that the solution of (1.6.20)

takes the form

un =
∑

j∈I1


i�i(z)
n +

∑

j∈I2

(

mj−1
∑

i=0


ijn
i
)

�j(z)
n,

the root condition arises as a natural requirement for the boundness of the sequence un.

We define the stability region of the q-step method (1.6.3), S ⊂ C by

S = {z ∈ C : �z satisfies the root condition at z}.

If the stability region of q-method contains C−, then the method is said to be A-stable.

Let �S be the boundary of the stability region S. Let �(x) be a root of the polynomial �z(�).

Then

z =
�(�)

�(�)
.

The root condition is satisfied if ∣�∣ < 1 (� is a simple or has multiplicity greater than two) and

∣�∣ ≤ 1 ( is a simple root). Then �S is obtained when � = ei� with � ∈ [0, 2�].

Example 24 The stability region of the Adams-Bashford methods

un+2 − un+1 =
Δt

2

(

− Fn + 3Fn+1

)

, n = 0, . . . , N − 2,

un+3 − un+2 =
Δt

12

(

5Fn − 16Fn+1 + 23Fn+2

)

, n = 0, . . . , N − 3,

are plotted in Figure7

The 3-Adams-Bashford method presents a smaller stability region but a higher order (3).

Example 25 The stability region of the Adams-Moulton methods

un+2 − un+1 =
Δt

12

(

− Fn + 8Fn+1 + 5Fn+2

)

, n = 0, . . . , N − 2,
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Figure 8: Stability regions of the Adams-Moulton methods with 2 and 3 steps respectively.

un+3 − un+2 =
Δt

24

(

Fn − 5Fn+1 + 19Fn+2 + 9Fn+3

)

, n = 0, . . . , N − 3,

are plotted in Figure 8

The 3-Adams-Moulton method presents a smaller stability region but a higher order (3).

It is possible to characterize the stability of the q-step method following the analysis of the

one-step methods. In fact, this can be done because the equation (1.6.20) can be rewritten in

an one-step form. We note that (1.6.20) is equivalent to

un+q = −
q−1
∑

j=0

�j − z�j
�q − z�q

un+j,

which admits the following one-step form representation

Un+1 = R(z)Un (1.6.21)

with Un = (un+q−1, . . . , un)
t and

R(z) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

r1(z) r2(z) . . . rq−1(z) rq(z)

1 0 . . . 0 0

. . . . . . . . . . . .

o 0 . . . 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, ri(z) = −�q−i − z�q−i

�q − z�q
.

The matrix R(z) is called companion matrix of the multistep method and we have

Un = R(z)nU0

being U0 the vectors of the initial approximations. Finally we get z ∈ S if and only if R(z) is

power bounded.

As final remark of this section we point out that similar results established in the one-step

methods context can be also established when we apply the multistep methods to linear ODEs.

1.6.4 Convergence

The convergence of the multistep method (1.6.3) is defined considering the global error

en = u(tn)− un. We say that the method (1.6.3) is convergent if

∥en∥ → 0,Δt → 0, n → ∞, nΔt ≤ T − t0
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provided that

∥ej∥ → 0 asΔt→ 0, j = 0, . . . , q − 1.

As for one-step methods, if ∥en∥ = O(Δtp), then we say that the multistep method has p

convergence order or is of order p.

The global error is solution of the difference equation

q
∑

j=0

�jen+j = Δt

q
∑

j=0

�j

(

F (tn+j, u(tn+j))− F (tn+j , un+j)
)

+ΔtTn+q−1, (1.6.22)

with the initial values

e0 = 0, ej = u(tj)− uj, j = 1, . . . , q − 1,

where the values uj, j = 1, . . . , q − 1, were obtained using another method like an one-step

method.

It is clear that the convergence of the multistep method depends on the behaviour of the

initial values uj , j = 1, . . . , q − 1.

Theorem 1.6.2 Let us suppose that F satisfies the Lipschitz condition with respect to the second

argument. A consistent multistep method is convergent if and only if it satisfies the root condition

and the initial data tends to zero as the time step size goes to zero. Moreover, if the consistency

order is p equal to the order of the initial errors then the multistep method is of order p.

Proof: Suppose that the multistep method is consistent and convergent. By contradiction it

can be shown that the method satisfies the root condition. In this proof, the IVP with F = 0 and

u(0) = 0 should be considered and the fact un → 0 for all set of initial values ui, i = 0, . . . , q−1,

converging to zero should be used.

Let us suppose now that the method satisfies the root condition and it is consistent. As the

error en is solution of (1.6.22), following the proof of Theorem 1.6.1, we get

en =

q−1
∑

j=0

ej 
(n)
j +

n
∑

j=q

 
(n−j+q−1)
q−1  j , n = q, . . . (1.6.23)

where

 n+q = Δt

q
∑

j=0

�j
(

F (tn+j , u(tn+j))− F (tn+j , un+j)
)

+ΔtTn+q−1.

Hence, en satisfies

∥en∥ ≤M
(

q∥ej∥max +
n
∑

j=q

∥ j∥
)

, n = q, . . . , N − q, (1.6.24)

As F is a Lipschitz function with respect to the second argument, the upper bound for  n+q

∥ n+q∥ ≤ ΔtL∣�j ∣max

q
∑

j=0

∥en+j∥+ (T − t0)max
i

∥Ti∥
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can be established. The last estimate implies

∥ ℓ∥ ≤ ΔtL∣�j∣max

q
∑

j=0

∥eℓ−q+j∥+ (T − t0)max
i

∥Ti∥. (1.6.25)

Following the proof of Theorem 1.6.1, it can be shown that for en holds the estimate

∥en∥ ≤ Cmax{ max
j=0,...,q−1

∥ej∥, max
j=q,...,N

∥Tj∥}

where C is a positive constant, time independent, and Δt ∈ (0,Δt0] with Δt0 satisfying (1.6.18).
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2-Numerical Methods for PDEs

2.1 Some Analytical Results

2.1.1 Some Mathematical Models

1. The transport equation

Let us consider a tube with gas. Our aim is to establish a mathematical model which allow

us to characterize the density and the speed of the gas particles at each point of the tube

at each time. We introduce the reference system defining the x-axis as the line passing

by the center of the tube. The origin is some point in this line. The final objective of the

problem is to define the density �(x, y, z, t) and the speed v(x, y, z, t). In order to simplify

the model we assume some realistic assumption on the physical model. We suppose that

each transversal section has unitary area and, in each point of each transversal section,

the gas has the same properties. Then, we have

�(x, y, z, t) = �(x, 0, 0, t) := �(x, t), v(x, y, z, t) = v(x, 0, 0, t) := v(x, t).

We establish now a mathematical law for �(x, t) and for v(x, t). Let M(t) be the gas mass

in the circular sector defined by x1 < x2 at time t,

M(t) =

∫ x2

x1

�(x, t)dx.

We assume that the wall tube is impermeable and the gas evolution only depends on the

transport phenomenon. In this case the flux at x point and at time t, J(x, t), is given by

J(x, t) = v(x, t)�(x, t).

Considering the gas mass in the tube sector and the flux at x1 and x2 we can establish

the mass variation at time t. In fact, we have

M ′(t) =

∫ x2

x1

∂�

∂t
(x, t)dx,

and

M ′(t) = J(x1, t)− J2(x, t) = −
∫ x2

x1

∂

∂x
(�(x, t)v(x, t))dx,
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which implies
∫ x2

x1

∂�

∂t
(x, t)dx +

∂

∂x
(�v)(x, t) dx = 0, (2.1.1)

provided that the density � and the speed v are smooth enough. From (2.1.1) we obtain

the following PDEs
∂�

∂t
+

∂

∂x
(�v) = 0, x ∈ IR, t > 0, (2.1.2)

usually called mass conservation equation. This equation is complemented by the two

equations
∂

∂t
(�v) +

∂

∂x
(�v2 + p) = 0, (2.1.3)

∂E

∂t
+

∂

∂x
(v(E + p)) = 0, (2.1.4)

where p denotes the pressure and E represents the energy.

If we defined

u =

⎡

⎣

�
�v
E

⎤

⎦ ,

then (2.1.2), (2.1.3), (2.1.4) are rewritten in the equivalent form

∂u

∂t
+

∂

∂x
f(u) = 0, (2.1.5)

where

f(u) =

⎡

⎣

�v
�v2 + p
v(E + p)

⎤

⎦ =

⎡

⎢

⎣

u2
u2
2

u1
+ p

u2(u3 + p)/u1

⎤

⎥

⎦
.

In the particular case f(u) = cu, the established equation is known as transport equation.

If the speed v is known, then we only should compute the density �. In this case, if the

initial particle distribution is known, which is translated specifying �(x, 0), the problem is

defined by
⎧



⎨



⎩

∂�

∂t
+ v

∂�

∂x
= 0, x ∈ IR, t > 0,

�(x, 0) = �0(x), x ∈ IR.

(2.1.6)

The problem (2.1.6), known as Initial Value Problem (IVP) or Cauchy problem, has the

following solution

�(x, t) = �0(x− vt), x ∈ IR, t ≥ 0,

and the behaviour of � is completely determined by the initial condition �0. For each time

t, �(x, t) is obtained from �0 moving its graph from the left to the right if v > 0 and from

the right to the left if v < 0.

2. Diffusion equation Let us consider a finite tube, with length ℓ, containing a solvent and

a solute. Our aim is to compute the concentration of the solute in each point of the tube

and at each time t. We introduce a reference system as in the previous model. However
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we will now consider the origin coinciding with a tube end. Let c(x, y, z, t) be the solute

concentration at the point (x, y, z) at time t. If we assume that each transversal section

has unitary area and in all points of each section we have equal concentration, then

c(x, y, z, t) = c(x, 0, 0, t) := c(x, t).

In order to establish a PDEs for the concentration, we suppose that the wall of the tube is

impermeable and their ends are isolated. Let x1, x2 ∈ (0, ℓ), x1 < x2, and M(t) the total

mass in the tube sector defined by x1, x2,

M(t) =

∫ x2

x1

c(x, t) dx.

Then the instantaneously time mass variation is given by

M ′(t) =

∫ x2

x1

∂c

∂t
(x, t) dx.

Otherwise, M ′(t) can be computed considering the particles flux at the ends of the tube

sector assuming that the flux J(x, t) is defined by the Fick’s law

J(x, t) = −D∇c(x, t), (2.1.7)

where D is the diffusion coefficient related to the capacity of the solute particles to cross

the solvent. The particles flux is a consequence of the molecular shocks being the particles

movement from regions of high concentration to regions of low concentration.

Considering the Fick’s law for the flux we have

M ′(t) = J(x1, t)− J(x2, t) = D(− ∂c

∂x
(x1, t) +

∂c

∂x
(x2, t))

= D

∫ x2

x1

∂2c

∂x2
dx.

Then
∫ x2

x1

∂c

∂t
dx = D

∫ x2

x1

∂2c

∂x2
dx,

which implies
∂c

∂t
= D

∂2c

∂x2
, (2.1.8)

for x ∈ (0, ℓ), t > 0.

We assumed that the tube ends are isolated, which means that there is not any flux at

x = 0 and at x = ℓ,
∂c

∂x
(0, t) =

∂c

∂x
(ℓ, t) = 0, t > 0. (2.1.9)

These two conditions are known as Neumann boundary conditions. Of course that we can

assume that the initial solute concentration distribution is known by given

c(x, 0) = c0(x), x ∈ (0, ℓ). (2.1.10)
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We obtained the following initial boundary value problem

⎧













⎨













⎩

∂c

∂t
= D

∂2c

∂x2
, x ∈ (0, ℓ), t > 0,

∂c

∂x
(0, t) =

∂c

∂x
(ℓ, t) = 0, t > 0,

c(x, 0) = c0(x), x ∈ (0, ℓ).

(2.1.11)

If we assume that the solute is a fluid with movement, then the flux has Fickian and

transport contributions. In this case J(x, t) is given by

J(x, t) = −D ∂c

∂x
(x, t) + vc(x, t),

and for the concentration we obtain the following IBVP

⎧













⎨













⎩

∂c

∂t
= D

∂2c

∂x2
− v

∂c

∂x
, x ∈ (0, ℓ), t > 0,

∂c

∂x
(0, t) =

∂c

∂x
(ℓ, t) = 0, t > 0,

c(x, 0) = c0(x), x ∈ (0, ℓ).

(2.1.12)

If the solute and the solvent react, then on the definition of the instantaneously time mass

variation using the particles flux, we should consider another term:

∫ ℓ

0
r(c(x, t), x, t) dx,

and the IBVP (2.1.12) is replaced by

⎧













⎨













⎩

∂c

∂t
= D

∂2c

∂x2
− v

∂c

∂x
+ r(c), x ∈ (0, ℓ), t > 0,

∂c

∂x
(0, t) =

∂c

∂x
(ℓ, t) = 0, t > 0,

c(x, 0) = c0(x), x ∈ (0, ℓ).

(2.1.13)

The Neumann boundary conditions can be replaced if we prescribe the solute concentration

at the tube ends defining the Dirihlet boundary conditions

c(0, t) = ce(t), c(ℓ, t) = cℓ(t), t > 0.

We remark that the Fick’s law for the particles solute flux is formally equivalent to the

Fourier law for the heat flux. Using this fact, the diffusion equation is also used to describe

heat conduction phenomena being known as heat equation.

Let us consider two bodies with different constant temperatures in contact at initial time.

The initial temperature distribution is a discontinuous function. Nevertheless, after the

initial time, intuitively, the temperature distribution is very smooth. Independently of the

smoothness of the initial condition, it seems that the solution of this kind of problems
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are very smooth. In fact, it can be shown that the solution after the initial time is C∞

provided that the initial condition is only bounded.

The high dimension problem correspondent to (2.1.13) can be written in the following

form
⎧











⎨











⎩

∂c

∂t
= Lc, x ∈ Ω, t > 0,

B�c = g, x ∈ ∂Ω, t > 0,

c(x, 0) = c0(x), x ∈ Ω,

(2.1.14)

where Ω is an open subset of IRn with boundary ∂Ω. In (2.1.14), L is an operator (linear or

nonlinear), only presenting partial derivatives with respect to the x-components, defined

between two function spaces. The boundary condition is defined by B� which can be one

of the following types:

∙ Dirichlet: B�c = c;

∙ Neumann: B�c =
∂c

∂�
, where � denotes the exterior unitary normal to Ω,

∙ Robin: B�c = �
∂c

∂�
+ �u.

3. The wave equation: Let us consider a string with length ℓ with fixed ends. Suppose

that at an initial time the string has some position and after that time it starts to move.

Our aim is to describe the string movement.We assume that the motion takes place at a

plan where a reference system 0xy with the origin at one end of the string was introduced.

If (x, u(x, t)) is the position of a point of the string at time t, in what follows we establish

a PDEs for u. In order to do that we should make some assumptions on the string motion:

∙ the points only present vertical displacement,

∙ on the string the tension force acts with the tangential direction,

∙ the gravitational force is not considered.

By � we denote the density of the string which is assumed time independent.

Let PQ be an arc of the string with length Δs defined by x and x + Δx, where Δx is

infinitesimal quantity. Let � and � be the angles of the tension vectors T (P ) and T (Q)

with −e1 and e1, respectively. As the string only has vertical movement, the horizontal

components of the tension vectors acting on the arc PQ should be canceled, which means

that

cos(�)∥T (Q)∥ = cos(�)∥T (P )∥ = ∥T∥. (2.1.15)

Consequently, on the arc PQ the force

F = (sen(�)∥T (Q)∥ − sen(�)∥T (P )∥)e2 (2.1.16)

acts. By the second Newton’s law, the force acting on the arc PQ can be computed using

the mass of the arc and its acceleration. We have

M =

∫

PQ
�(s) ds,
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and assuming smoothness on � we get

M = �(�(x))Δs,

with �(x) ∈ (x, x+Δx). As we can assume that Δs ≃ Δx, and the acceleration of the arc

can be given by
∂2u

∂t2
(�(x), t) with �(x) ∈ (x, x+Δx), we deduce

sen(�)∥T (Q)∥ − sen(�)∥T (P )∥ = �(�(x))Δx
∂2u

∂t2
(�(x), t). (2.1.17)

From (2.1.15) and (2.1.17), we get

tg(�) − tg(�) =
�(�(x))Δx

T

∂2u

∂t2
(�(x), t), (2.1.18)

which is equivalent to

1

Δx

(

∂u

∂x
(x+Δx, t)− ∂u

∂x
(x, t)

)

=
�(�(x))

T

∂2u

∂t2
(�(x), t). (2.1.19)

Takin in (2.1.19) Δx→ 0, we conclude for u the following PDEs

c2
∂2u

∂x2
=
∂2u

∂t2
(x, t), x ∈ (0, ℓ), t > 0, (2.1.20)

with c2 =
T

�(x)
.

The equation (2.1.20) is known as wave equation and it is complemented with boundary

and initial conditions: as the ends of the string are fixed on the x-axis we have

u(0, t) = u(ℓ, t) = 0, t ≥ 0,

the position of the string is known for the initial time t = 0

u(x, 0) = �(x), x ∈ [0, ℓ],

and the initial velocity is also known

∂u

∂t
(x, 0) =  (x), x ∈ [0, ℓ].

Finally, for the displacement u we get the following IBVP

⎧





















⎨





















⎩

c2
∂2u

∂x2
=
∂2u

∂t2
(x, t), x ∈ (0, ℓ), t > 0,

u(0, t) = u(ℓ, t) = 0, t ≥ 0,

u(x, 0) = �(x), x ∈ [0, ℓ],

∂u

∂t
(x, 0) =  (x), x ∈ [0, ℓ].

(2.1.21)
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The high dimension of the IBVP (2.1.21) admits the representation

⎧





















⎨





















⎩

∂2u

∂t2
= Lu, x ∈ Ω, t > 0,

B�u = g, x ∈ ∂Ω, t > 0,

∂u

∂t
(x, 0) =  (x), x ∈ Ω,

u(x, 0) = �(x), x ∈ Ω,

(2.1.22)

where Ω is an open subset of IRn with boundary ∂Ω. In (2.1.23), L represents an operator

between two function spaces only defined by the partial derivatives with respect to the

x-components and B� defines the boundary conditions.

4. Stationary equations Let us consider the diffusion IBVP (2.1.14) or the wave IBVP

(2.1.21) when the solution is time independent. In this case we get the BVP

⎧

⎨

⎩

Lu = f in Ω,

B�u = g on ∂Ω,
(2.1.23)

where L, as before, presents only partial derivatives with respect x-components.

2.1.2 Some Solutions

The models presented in the last section are well-known examples of the use of PDEs on the

mathematical modeling of physical problems. The second order PDEs are the most common

on the applications and they are divided in three groups, depending on the behaviour of their

coefficients.

The PDEs

A
∂2u

∂x2
+B

∂2u

∂x∂yt
+C

∂2u

∂t2
+D

∂u

∂x
+ E

∂u

∂t
+ Fu = G . (2.1.24)

is called

1. elliptic if B2 − 4AC < 0,

2. parabolic if B2 − 4AC = 0,

3. hyperbolic if B2 − 4AC > 0.

Then the linear diffusion equation is of parabolic type while the linear wave equation is hyper-

bolic. The Poisson equation

Δu = f

is elliptic.

The given classification can be extended to PDEs in higher dimensions. The equation

n
∑

i,j=1

∂

∂xi
(aij

∂u

∂xi
) +

n
∑

i=1

bi
∂u

∂xi
+ a0u = g, (2.1.25)
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with aij = aji is said parabolic if at least one of the eigenvalues of the matrix [aij ] is zero. If all

eigenvalues have the same signal, then the equation (2.1.25) is elliptic. On the other hand the

previous equation is hyperbolic if one eigenvalue has signal different from the others. Otherwise,

it is said ultra-hyperbolic. Of course that if the coefficients are x-dependent, then the given

classification depends on the point considered.

In what follows we present some results about the solutions of the problems presented before.

1. The diffusion equation: We start by considering the following IVP

⎧



⎨



⎩

∂u

∂t
= D

∂2u

∂x2
x ∈ IR, t > 0,

u(x, 0) = �(x), x ∈ IR.

(2.1.26)

Theorem 2.1.1 If � is continuous and bounded in IR, then

∫

IR
S(x− y, t)�(y) dy (2.1.27)

is in C∞(IR× (0,+∞)),

∂u

∂t
= D

∂2u

∂x2
in IR× (0,+∞)

and

lim
t→0+

u(x, t) = �(x), x ∈ IR,

where S : IR× (0,+∞) → IR,

S(x, t) =
1

2
√
D�t

e−
x2

4Dt , (x, t) ∈ IR× (0,+∞),

is the Green’s function.

The maximum principle is one of the main properties of the solution of the diffusion

equation which is established in the following result:

Theorem 2.1.2 If u is continuous in [x1, x2]×[t1, t2] and
∂u

∂t
= D

∂2u

∂x2
in (x1, x2)×(t1, t2],

then

max
[x1,x2]×[t1,t2]

u = max
ℓ1∪ℓ2∪ℓ3

u

with
ℓ1 = {(x1, t), t ∈ [t1, t2]},
ℓ2 = {(x2, t), t ∈ [t1, t2]},
ℓ3 = {(x, t1) : x ∈ [x1, x2]}.
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The solution of the IBVP
⎧











⎨











⎩

∂u

∂t
= D

∂2u

∂x2
, x > 0, t > 0,

u(x, 0) = �(x), x > 0,

u(0, t) = 0, t > 0.

(2.1.28)

is determined extending the initial condition � to an odd function �̃ and computing the

solution of the IBVP
⎧



⎨



⎩

∂ũ

∂t
= D

∂2ũ

∂x2
, x ∈ IR, t > 0,

ũ(x, 0) = �̃(x), x ∈ IR.

(2.1.29)

We get, for x ≥ 0, t > 0,

u(x, t) = ũ(x, t) =
1

2
√
D�t

∫ +∞

0

(

e−
(x−y)2

4Dt − e−
(x+y)2

4Dt

)

�(y) dy.

If the homogeneous Neumann boundary condition is considered at x = 0, an even extension

of the initial condition should be taken. Following the procedure considered in the Dirichlet

case, we obtain

u(x, t) =
1

2
√
D�t

∫ +∞

0

(

e−
(x−y)2

Dkt + e−
(x+y)2

Dkt

)

�(y) dy, x ≥ 0, t > 0.

The method of separation of variables allow us to compute the solution of the diffusion

problem
⎧













⎨













⎩

∂u

∂t
= D

∂2u

∂x2
x ∈ (0, ℓ), t > 0,

u(x, 0) = �(x), x ∈ (0, ℓ),

∂u

∂x
(0, t) =

∂u

∂x
(ℓ, t) = 0, t > 0,

(2.1.30)

and the following result can be proved:

Theorem 2.1.3 If � is continuous in [0, ℓ], �′ ∈ L2[0, ℓ], then the Fourier’s series

u(x, t) =
a0
2

+
+∞
∑

n=1

ane
−D(n�

ℓ
)2tcos(

n�

ℓ
x),

with

a0 =
2

ℓ

∫ ℓ

0
�(x) dx , an =

2

ℓ

∫ ℓ

0
�(x)cos(

n�

ℓ
x) dx,

is such that

(a) u is continuous in [0, ℓ]× [0,+∞),

(b) there exists
∂u

∂x
in [0, ℓ]× (0,+∞) and it is continuous in the previous domain,
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(c)
∂u

∂t
= D

∂2u

∂x2
in (0, ℓ) × (0,+∞)

(d)
∂u

∂x
(0, t) =

∂u

∂u
(ℓ, t) = 0, t > 0,

(e) u(x, 0) = �(x) in [0, ℓ].

If the Neumann boundary conditions are replaced by the Dirichlet boundary condition, a

similar result can be established.

2. The wave equation: A class of wave problems have solutions with an explicit form

depending explicitly on the data. For the following IVP
⎧













⎨













⎩

∂2u

∂t2
= c2

∂2u

∂x2
, x ∈ IR, t > 0,

∂u

∂t
(x, 0) =  (x), x ∈ IR,

u(x, 0) = �(x), x ∈ IR,

(2.1.31)

holds the following result:

Theorem 2.1.4 If � ∈ C2(IR) and  ∈ C1(IR), then

u(x, t) =
�(x+ ct) + �(x− ct)

2
+

1

2c

∫ x+ct

x−ct
 (s) ds, x ∈ IR, t ≥ 0, (2.1.32)

is solution of (2.1.31).

If � and  have compact support, then (2.1.32) is the unique solution of the IVP (2.1.4).

If we consider (2.1.31) with IR replaced by IR+, that is, if we consider the IBVP
⎧





















⎨





















⎩

∂2u

∂t2
= c2

∂2u

∂x2
, x ∈ (0,+∞), t > 0,

u(x, 0) = �(x), x ∈ [0,+∞),

∂u

∂t
(x, 0) =  (x), x ∈ [0,+∞),

u(0, t) = ℎ(t), t ≥ 0.

(2.1.33)

then, under compatibility conditions on the data, we have

u(x, t) =

⎧

























⎨

























⎩

1

2
(�(x+ ct) + �(x− ct)) +

1

2c

∫ x+ct

x−ct
 (s) ds

(x, t) : x− ct ≥ 0,

1

2
(�(x+ ct)− �(−x+ ct)) +

1

2c

∫ x+ct

−x+ct
 (s) ds + ℎ(−x− ct

c
)

(x, t) : x− ct < 0 .

(2.1.34)
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If the spatial domain is bounded, the IBVP (2.1.21) has boundary conditions on both

boundary points. In this case the solution of such problem can be computed using the

method of separation of variables. For Dirichlet boundary conditions we have the following

result.

Theorem 2.1.5 Let �, : [0, ℓ] → IR be such that

(a) �, �′, �′′,  ,  ′ are continuous in [0, ℓ],

(b) �′′′,  ′′ are piecewise continuous in [0, ℓ],

(c) �(0) = �(ℓ) = �′′(0) = �′′(ℓ) = 0,

(d)  (0) =  (ℓ) = 0.

Then
+∞
∑

n=1

(

Ancos(
cn�

ℓ
t) +Bnsen(

cn�

ℓ
t)
)

sen(
n�

ℓ
x), (2.1.35)

with

An =
2

ℓ

∫ ℓ

0
�(x)sen(

n�

ℓ
x) dx, Bn =

2

cn�

∫ ℓ

0
 (x)sen(

n�

ℓ
x) dx, n ∈ IN, (2.1.36)

defines a function u such that

(a) u is continuous in [0, ℓ]× [0,+∞)

(b)
∂u

∂t
is continuous in [0, ℓ]× [0,+∞) ,

(c) u ∈ C2((0, ℓ) × (0,∞))7

(d)
∂2u

∂t2
= c2

∂2u

∂x2
,

u(0, t) = u(ℓ, t) = 0,

u(x, 0) = �(x)

and
∂u

∂t
(x, 0) =  (x).

In all the results presented before for the wave equation, the smoothness of the data have

a crucial role on the construction of the solutions.

7If Ω is an open set in IRn and k ∈ IN, by Cm(Ω) we denote the set of all continuous functions such that

∂∣�∣u

∂x�1

1 . . . ∂x�n
n

is continuous in Ω. We used the notations � = (�1, . . . , �n) and ∣�∣ =
∑n

i=1 �i. By Cm
0 (Ω) we

represent the set of all functions in Ck(Ω) whose support is a bounded set of Ω. By C∞
0 (Ω) we represent the set

∩m≥0C
m
0 (Ω).
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3. The Laplace equation Let Ω be an open subset of IRn with a smooth boundary ∂Ω. We

characterize in what follows the solution of the problem

⎧

⎨

⎩

Δu = f in Ω,

B�u = g on ∂Ω,
(2.1.37)

where B� defines the Dirichlet or the Neumann boundary conditions. On this characteri-

zation the Green’s identities

(a)
∫

Ω
vΔu dx = −

n
∑

i=1

∫

Ω

∂v

∂xi

∂u

∂xi
+

∫

∂Ω
v
∂u

∂�
ds, (2.1.38)

(b)
∫

Ω
vΔu dx =

∫

Ω
uΔv +

∫

∂Ω

(

v
∂u

∂�
− u

∂v

∂�

)

ds, (2.1.39)

(c)
∫

Ω
Δu dx =

∫

∂Ω

∂u

∂�
ds, (2.1.40)

where u, v ∈ C2(Ω),8 have an important role.

It can be shown that for B� = id or B� =
∂

∂�
, the BVP (2.1.37) has at most one solution

in C2(Ω). In the Neumann case, we should assume the compatibility condition between f

and g
∫

Ω
f dx =

∫

∂Ω
g ds. (2.1.41)

In the last case, if u1 and u2 are two solutions, then u1 = u2 + C, for some constant C.

Theorem 2.1.6 If u ∈ C2(Ω), then, for � ∈ Ω, holds the representation

u(�) =

∫

Ω
K(x, �)Δu dx−

∫

∂Ω

(

K(x, �)
∂u

∂�
− u

∂K

∂�
(x, �)

)

ds, (2.1.42)

where

K(x, �) =

⎧







⎨







⎩

r2−n

(2− n)!n
, n > 2,

1

!n
log(r), n = 2,

(2.1.43)

r = ∥x− �∥ and !n denotes the area of the unitary ball of IRn.

8If Ω is a bounded set of IRn, by Cm(Ω) we denote the set of all functions u ∈ Cm(Ω) such that D� can be
extended from Ω to a continuous function on Ω, for all � such that ∣�∣ ≤ m. Cm(Ω) can be equipped with the
norm

∥u∥Cm(Ω) =
∑

∣�∣≤m

sup
x∈Ω

∣D�u(x)∣.
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Corollary 4 If u ∈ C2(Ω), then, for � ∈ Ω,

u(�) =

∫

Ω
G(x, �)Δu dx −

∫

∂Ω

(

G(x, �)
∂u

∂�
− u

∂G

∂�
(x, �)

)

ds, (2.1.44)

where G(x, �) = K(x, �) + w(x), x ∈ Ω, � ∈ Ω, x ∕= �, and w ∈ C2(Ω) is a harmonic

function in Ω.

Remark 1 If the Green function G is such that G = 0 on ∂Ω, then

u(�) =

∫

Ω
G(x, �)Δu dx +

∫

∂Ω
u
∂G

∂�
ds. (2.1.45)

The solution of the boundary problem

Δu = f inΩ, u = g on ∂Ω,

satisfies

u(�) =

∫

Ω
G(x, �)f(x) dx +

∫

∂Ω
g
∂G

∂�
ds. (2.1.46)

If the Green function G is such that
∂G

∂�
= 0, then, for the solution of the boundary value

problem

Δu = f inΩ,
∂u

∂�
= g on ∂Ω,

holds the following representation

u(�) =

∫

Ω
G(x, �)f(x) dx −

∫

∂Ω
gG(x, �) ds. (2.1.47)

The fundamental question on the construction of the solution of the Poisson equation,

with the mentioned boundary conditions, is the computation of the Green’s function with

the specified requirements.

As the next result holds for harmonic functions, we can establish an explicit form for the

solution of the Laplace equation with Dirichlet boundary condition defined on a ball of

radius �.

Theorem 2.1.7 If u ∈ C2(B�(�)) and u is harmonic in B�(�), then

u(�) =
1

!n�n−1

∫

S�(�)
u(x) ds. (2.1.48)
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We can consider for the Green’s function definition the following extension

G(x, �) = K(x, �) + w(x, �),

where w ∈ C2, Δxw = 0, x ∈ Ω, x ∕= � ∈ Ω. Using this definition, it can be constructed a

Green’s function G, null at Sa(0). Consequently, the next result can be proved.

Theorem 2.1.8 If u ∈ C2(Ba(0)), u is harmonic in Ba(0), then, for � ∈ Ba(0),

u(�) =

∫

Sa(0)
H(x, �)u(x) ds, (2.1.49)

where the Poisson kernel is given by

H(x, �) =
1

a!n

a2 − ∥�∥2
∥x− �∥n , x ∈ Sa(0), � ∈ Ba(0).

Analogously to the solution of the diffusion equation, for harmonic functions hold the

maximum principle:

Theorem 2.1.9 Let Ω be a connected open bounded set of IRn. If u ∈ C2(Ω) ∩ C(Ω) and

u is harmonic in Ω, then

max
x∈Ω

u(x) = max
x∈∂Ω

u(x)

An short overview on some results for some well known equations: diffusion equation, wave

equation and Poisson’s equation, was given. The expressions of the solutions of the previous

problems with homogeneous equations and homogeneous boundary conditions were presented.

Nevertheless, we can also construct the solutions of some non homogeneous equations and for

non homogeneous boundary conditions. It should be stressed that only for a very small number

of cases the obtained expressions are mathematically manipulated. The existence of the solution

and the study of its regularity properties, for more general BVPs and IBVP, can be seen for

instance in [3], [5], [19], [32], [33], [36].

2.2 Finite Difference Methods for Elliptic Equations

2.2.1 Introduction: the One-Dimensional BVP

In what follows we introduce the finite difference methods (FDMs) for elliptic equations

considering an one-dimensional BVP. We point out that FDMs were considered before for IVP

where the new approximation at the new time level is obtained using the approximations at the

previous points. For BVP the finite difference equation should be consider for all grid points

leading to a linear or nonlinear system of equations where the unknowns are the approximations

at the grid points.
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Let us consider the BVP

−u′′(x) = f(x), x ∈ (a, b), u(a) = ua, u(b) = ub. (2.2.1)

We fixe the step size ℎ > 0 and in [a, b] we introduce the spatial grid Iℎ = {xi, i = 0, . . . , n}
with xi − xi−1 = ℎ, i = 1, . . . , n, x0 = a and xn = b.

Let Vℎ(Iℎ) and Vℎ(I
′
ℎ) be vector spaces of grid functions defined in Iℎ and in I ′ℎ = Iℎ−{xi, i =

0, n}, respectively. We represent by D−x, Dx, Dc and D2 the finite difference operators

D−xuℎ(xi) =
uℎ(xi)− uℎ(xi−1)

ℎ
, i = 1, . . . , n,

Dxuℎ(xi) =
uℎ(xi+1)− uℎ(xi)

ℎ
, i = 0, . . . , n− 1,

Dcuℎ(xi) =
uℎ(xi+1)− uℎ(xi−1)

2ℎ
, i = 1, . . . , n− 1,

D2uℎ(xi) =
uℎ(xi+1)− 2uℎ(xi) + uℎ(xi−1)

ℎ2
, i = 1, . . . , n− 1,

defined for uℎ ∈ Vℎ(Iℎ).

We remark that if u ∈ C2(a, b), then

D−xu(xi) = u′(xi)−
ℎ

2
u′′(�i), �i ∈ (xi−1, xi), i = 1, . . . , n,

Dxu(xi) = u′(xi) +
ℎ

2
u′′(�i), �i ∈ (xi, xi+1), i = 0, . . . , n− 1.

If u ∈ C3(a, b), then

Dcu(xi) = u′(xi) +
ℎ2

12
(u′′′(�i) + u′′′(�i)), �i, �i ∈ (xi−1, xi+1), i = 1, . . . , n− 1,

D2u(xi) = u′′(xi) +
ℎ2

24
(u(4)(�i) + u(4)(�i)), �i, �i ∈ (xi−1, xi+1), i = 1, . . . , n− 1. (2.2.2)

Consider in the equation (2.2.1), x = xi ∈ (a, b). As (2.2.2) holds, we obtain

−D2u(xi)−
ℎ3

24
(u(4)(�i) + u(4)(�i)) = f(xi), i = 1, . . . , n− 1,

that allow us to define the following system

−D2uℎ(xi) = f(xi), i = 1, . . . , n− 1, uℎ(x0) = ua, uℎ(xn) = ub, (2.2.3)

where uℎ(xi) represents the numerical approximation for u(xi). If we replace f(xi) by its ap-

proximation fℎ(xi), then we get

−D2uℎ(xi) = fℎ(xi), i = 1, . . . , n− 1, uℎ(x0) = ua, uℎ(xn) = ub. (2.2.4)

This last approach is usually followed when f(xi) is computationally difficult to evaluate.

In order to simplify our analysis we rewrite (2.2.3) ( (2.2.4)) in the condensed form

Lℎuℎ = f̃ℎ,
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where Lℎuℎ and fℎ denote the grid functions

Lℎuℎ(xi) =

⎧













⎨













⎩

−uℎ(x2)− 2uℎ(x1)

ℎ2
, , i = 1,

−D2uℎ(xi) , i = 2, . . . , n− 1,

−2uℎ(xn−1) + uℎ(xn−2)

ℎ2
, , i = n− 1,

and

f̃ℎ = (fℎ(x1) +
ua
ℎ2
, fℎ(x2), . . . , fℎ(xn−1) +

ub
ℎ2

).

The error presented in the grid function uℎ defined by (2.2.4) is studied now. In order to do

that, we consider the general BVP

Lu = f in (a, b), u(a) = ua, u(b) = ub, (2.2.5)

where L is a second order linear or nonlinear differential operator. The solution of the BVP

(2.2.6) is approximated by the solution of the finite difference problem

Lℎuℎ = f̃ℎ, (2.2.6)

where uℎ ∈ Vℎ(I
′
ℎ) and Lℎ represents a finite difference operator. The global error and the

truncation error associated with the method (2.2.6) are defined as in the context of the IVPs.

The global error eℎ is defined by

eℎ(xi) = u(xi)− uℎ(xi), i = 1, . . . , n− 1, eℎ(x0) = eℎ(xn) = 0.

Nevertheless, the global error eℎ(xi), i = 1, . . . , n − 1, can be rewritten in the following from

eℎ = Rℎu − uℎ, where Rℎ : C2(a, b) ∩ C[a, b] → Vℎ(I
′
ℎ) represents the restriction operator.

Analogously, as the truncation error has n−1 components, such error admits the representation

Tℎ = Lℎ(Rℎu) − R̃ℎ(Lu), where R̃ℎ is a restriction operator analogous to Rℎ. The convergence

and the consistency of the method (2.2.6) is defined considering the convergence to zero of the

previous errors. In this case, such convergence should be considered with respect to a norm ∥.∥ℎ
defined in Vℎ(I

′
ℎ). The global and the truncation errors are related by

Lℎeℎ = Tℎ.

In fact

Lℎeℎ = Lℎ(Rℎu)− Lℎuℎ = Lℎ(Rℎu)− fℎ = Lℎ(Rℎu)− R̃ℎLu = Tℎ.

The consistency and convergence orders are defined as in the IVP context.

The concept of stability has here a different meaning. Such concept is introduced considering

perturbations in the second member of (2.2.6) and analysing the behaviour of the difference

between the solution and its perturbation. Let Fℎ : Vℎ(I
′
ℎ) → Vℎ(I

′
ℎ) be a general finite difference

operator(linear or nonlinear). If ∥Fℎ(uℎ)− Fℎ(vℎ)∥ℎ → 0, then ∥uℎ − vℎ∥ℎ → 0, we say that Fℎ

is stable.

The convergence of the method (2.2.6) can be deduced, at least for the linear case, from its

stability and its consistency. In fact, by consistency we have ∥Tℎ∥ℎ → 0, ℎ → 0, which implies

that ∥Lℎeℎ∥ℎ → 0, ℎ→ 0. From the stability of Lℎ we get ∥eℎ∥ℎ → 0.

For the linear case, a sufficient condition for stability can be easily established:
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Theorem 2.2.1 If the finite difference operator Lℎ : Vℎ(I
′
ℎ) → Vℎ(I

′
ℎ) is injective and there

exists a positive constant C, ℎ-independent, such that ∥L−1
ℎ ∥ℎ ≤ C , for ℎ ≤ ℎ0, then Lℎ is

stable, for ℎ ≤ ℎ0.

Under the assumptions of the Theorem 2.2.1, from the consistency we conclude the con-

vergence of the method and we also deduce that the convergence order is at least equal to the

consistency order.

The convergence properties of the FDMs are established with respect to specified norms.

The most common norms are: ∥.∥∞ and ∥.∥2being the last one defined by

∥uℎ∥2 =

⎛

⎝

n−1
∑

j=1

ℎuℎ(xj)
2

⎞

⎠

1/2

, uℎ ∈ Vℎ(I
′
ℎ).

For linear case the stability can be deduced analysing the properties of its associated matrix.

In the considered example, we immediately conclude the existence of L−1
ℎ because the matrix is

diagonally dominant and it is strictly dominant in the first and in the last rows. The operator Lℎ

has the eigenvalues �m =
4

ℎ2
sen2(

m�ℎ

2
), m = 1, . . . , n− 1, and the correspondent eigenvectors

�m(x) = sen(m�x), m = 1, . . . , n− 1. We also have ∥L−1
ℎ ∥∞ ≤ 1

8
(this result can be proved by

using the results presented in the next section). An estimate for the error induced by the method

(2.2.3) with respect to the infinity norm is immediately established provided that C4[a, b].

If in (2.2.1), we replace the Dirichlet boundary conditions by Neumann boundary conditions

we can consider two approaches:

∙ If the finite difference equation is considered for i = 1, . . . , n− 1, then we should discretize

the boundary conditions using the forward and backward finite difference operators;

∙ If the finite difference equation is considered for i = 0, . . . , n, then the boundary conditions

are discretized using the centered finite difference operator and, in order to do that, we

need to introduce two fictitious points x−1 = a− ℎ, xn+1 = b+ ℎ. Consequently, the space

V (I ′ℎ) is replaced by V (Iℎ) and the norms used in the convergence analysis should include

in their definition the boundary points.

Let us give now some details when nonlinear BVP

F (u) = f in (a, b), u(a) = ua, u(b) = ub,

are considered. Let us discretize the previous problem by

Fℎuℎ = f̃ℎ,

wheref̃ℎ = R̃ℎf. Then for the truncation error

Tℎ = Fℎ(Rℎu)− R̃ℎF (u)

holds the representation

Tℎ = Fℎ(Rℎu)− Fℎuℎ.
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Obviously, if Fℎ is stable and consistent, then ∥eℎ∥ℎ → 0. In order to get an estimate for ∥eℎ∥ℎ,
we observe that

Tℎ = Fℎ(Rℎu)− Fℎuℎ = F ′
ℎ(Rℎu+ �eℎ)eℎ.

Consequently, if

∥F ′
ℎ(Rℎu+ �eℎ)

−1∥ℎ ≤ C,

we obtain

∥eℎ∥ℎ ≤ C∥Tℎ∥ℎ.

The previous FDMs were introduced for uniform grids. Nevertheless, if the solution of the

BVP has high gradients zones, the computation of an accurate solution requires the use of a huge

number of points increasing the computational cost. In order to avoid the high computational

cost we should use non dense nonuniform grids where the grid points are concentrated only in

those zones. In this case, the finite difference operators, previously introduced for uniform grids,

are defined by

D−xuℎ(xi) =
uℎ(xi)− uℎ(xi−1)

ℎi
, i = 1, . . . , n,

Dxuℎ(xi) =
uℎ(xi+1)− uℎ(xi)

ℎi+1
, i = 0, . . . , n− 1,

Dcuℎ(xi) =
uℎ(xi+1)− uℎ(xi−1)

ℎi + ℎi+1
, i = 1, . . . , n− 1,

D2uℎ(xi) =
ℎiuℎ(xi+1)− (ℎi + ℎi+1)uℎ(xi) + ℎi+1uℎ(xi−1)

ℎiℎi+1(ℎi + ℎi+1)/2
, i = 1, . . . , n− 1,

where ℎi = xi − xi−1, i = 1, . . . , n.

The convergence analysis of the FDMs defined on nonuniform grids follows the steps used

on uniform case. Consistency and stability of the method should imply convergence. As far

as consistency is concerned, the order of the truncation error decreases when nonuniform grids

are used. Consequently, the convergence order for nonuniform grids is apparently lower than

the correspondent convergence order for uniform grids. This convergence order can be deduced

from the estimate for the global error established using the truncation error. However, numerical

experiments shown that this convergence order is in fact apparent. Numerically was observed

that for nonuniform grids the order of the global error is greater than the order of the truncation

error. Since the 80s several authors shown analytically this property refining stability inequal-

ities or deducing a second order expression for the global error. This phenomenon was called

supraconvergence and was studied for instance in [7], [8], [10], [15], [22], [25], [38].

The properties of the finite difference operators, or equivalently the properties of the associ-

ated matrices, have an important role in the convergence study. In the next section we present

an overview on several results of matrix analysis.

2.2.2 Some Matrix Results

Let A = [aij ] and B = [bij ], i = 1, . . . ,m, j = 1, . . . ,m, be square matrices. If aij ≥ bij, we

write A ≥ B. Analogously we define the inequalities ≤, <,> .
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The matrix A = [aij ] is called an M -matrix if

aii > 0,∀i, aij ≤ 0, i ∕= j,

A is nonsingular and A−1 ≥ 0.

We associate to A = [aij ] a graph defined in what follows. Let us consider the indexes

i, j ∈ {1, . . . , n}. The index i is said directly connected with the index j if aij ∕= 0. We say

that the index i is connected with j if there exists a connection (chain of direct connections)

�0 = i, �1, . . . , �k = j such that a�ℓ−1�ℓ
∕= 0. The graph of A is defined by the set {1, . . . , n}

with the direct connections.

A square matrix A is said to be irreducible if every i ∈ {1, . . . , n} is connected with every

j ∈ {1, . . . , n}. A is said irreducibly diagonally dominant if A is irreducible and A is diagonally

dominant

∣aii∣ ≥
∑

j ∕=i

∣aij ∣, i = 1, . . . , n,

being the last inequality strictly satisfied for some i.

The Gershgorin theorem can be used analyse if a matrix is nonsingular.

Theorem 2.2.2 If A = [aij] is a real square matrix of order n and � is an eigenvalue of A,

then

� ∈
∪

i∈{1,...,n}

Bri(aii).

If A is irreducible, then

� ∈ ∪i∈{1,...,n}Bri(aii) ∪ ∩i∈{1,...,n}Sri(aii),

where ri =
∑

j ∕=i ∣aij∣.
9

9

Proof: Let x be an eigenvector associated with the eigenvalue � and i such that ∣xi∣ = ∥x∥∞. Immediately we
have

∣aii − �∣ ≤
∑

j ∕=i

∣aij ∣
∣xj ∣

∣xi∣
≤ rj .

If A irreducible and � ∈ ∪i∈{1,...,n}Bri(aii), the proof is concluded. If � ∕∈ ∪i∈{1,...,n}Bri(aii), then we should
prove that � ∈ ∩i∈{1,...,n}Sri(aii).

Let us suppose that aij ∕= 0, that is, i is connected with j, and ∣xi∣ = 1. We start by proving that

∣�− aii∣ = ri =⇒ ∣xj ∣ = 1, ∣�− ajj ∣ = rj (2.2.7)

holds. As ∣�− aii∣ = ri, we deduce
∑

ℓ ∕=i

∣aiℓ∣∣xℓ∣ =
∑

ℓ ∕=i

∣aiℓ∣,

and ∣aiℓ∣∣xℓ∣ = ∣aiℓ∣ because ∣xℓ∣ ≤ ∥x∥∞. Then ∣xℓ∣ = 1 and ∣� − aℓℓ∣ ≤ rℓ. Finally using the fact
� ∕∈ ∪j∈{1,...,n}Brj (ajj), we get ∣� − aℓℓ∣ = rℓ, that is, we conclude the proof of (2.2.7).

If x is an eigenvector, we can assume that there exists i such that ∥x∥∞ = ∣xi∣ = 1 and ∣� − aii∣ ≤ ri. Then
� ∈ ∪i∈{1,...,n}Sri(aii) and thus ∣�−aii∣ = ri. As A is irreducible, for j ∈ {1, . . . , n}, there exists a index sequence
�1, . . . �k such that a�ℓ−1�ℓ

∕= 0 and
∣x�ℓ

∣ = 1, ∣� − a�ℓ�ℓ
∣ = r�ℓ

.

As a particular case, we have � ∈ Srj (ajj). As j is arbitrary, we conclude that � ∈ ∩j∈{1,...,n}Srj (ajj).
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We split A = [aij] into

A = D −B

where D is the diagonal part of A and B = D −A is the off-diagonal part of A

bii = 0, bij = −aij.

Let C be defined by C = D−1B. We characterize in what follows the spectral radius of C.

Theorem 2.2.3 If A is strictly diagonally dominant or irreducibly diagonally dominant, then

�(C) < 1. (2.2.8)

Proof: Let � be an eigenvalue of C. By the Gershgorin Theorem, � ∈ ∪i=1,...,nBri(0), with

ri =
∑

j ∕=i

∣aij ∣
∣aii∣

. If A is strictly diagonally dominant, then ri < 1. Otherwise, if A is irreducibly

diagonally dominant, then � ∈ ∪i=1,...,nBri(0) ∪ ∩i=1,...,nSri(0). As for some i ∈ {1, . . . , n}, we
get ri < 1, and then

rj = ri, ∀j, or ∃j ∈ {1, . . . , n} : rj ∕= ri.

Let us only consider the second case. We have Sri(0) ∩ Srj (0) = ∅ and thus � ∈ ∪i=1,...,nBri(0),

that is, �(C) < 1.

Using the previous result we establish a necessary and sufficient condition for M -matrices.

Theorem 2.2.4 The matrix A = [aij ] such that aii > 0, aij ≤ 0, is a M -matrix if and only if

�(C) < 1.

Proof:

∙ If �(C) < 1, then S =
∑

j=0

Cj = (I − C)−1. Furthermore

I = S(I −C) = S(I −D−1B) = SD−1(D −B) = SD−1A,

which allow us to conclude that A is nonsingular. As Cm ≥ 0, we deduce that S ≥ 0.

Using the fact D−1 ≥ 0, we conclude that A−1 ≥ 0.

∙ Let us suppose now that A is a M -matrix. We prove in what follows that �(C) < 1.

Let � be an eigenvalue of C and x the correspondent eigenvector. Let ∣x∣ be the vector

whose components are the absolute value of the components of x. We have

∣�∣∣x∣ = ∣�x∣ = ∣D−1Bx∣ ≤ D−1B∣x∣,

and consequently ∣�∣D∣x∣ ≤ B∣x∣. AsA−1 ≥ 0, from the last inequality we get ∣�∣A−1D∣x∣ ≤
A−1B∣x∣ which enable us to conclude the following

−∣�∣A−1D∣x∣ ≥ −A−1B∣x∣.
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Using the last inequality, an estimate for ∣x∣ is obtained as follows

∣x∣ = A−1A∣x∣

= A−1(D −B)∣x∣

= A−1D∣x∣ −A−1B∣x∣

≤ A−1D(∣x∣ − ∣�∣∣x∣).

Finally, if ∣�∣ ≥ 1 then ∣x∣ = 0 which conclude the proof.

The next result is a corollary of Theorem 2.2.4.

Corollary 5 Let A be a matrix such that aii > 0, aij ≤ 0, i ∕= j. If A is strictly diagonally

dominant or irreducibly diagonally dominant, then A is a M -matrix.

On the construction of global error estimates for the solution obtained using a FDM defined

by a matrix A, the estimates for ∥A−1∥ have an important role. If A is a M -matrices, we can

obtain such estimates without the evaluation of its inverse.

Theorem 2.2.5 If A is a M -matrix and w is such that Aw ≥ I1, then ∥A−1∥∞ ≤ ∥w∥∞.

Proof: For x ∈ IRn we have

∣x∣ ≤ ∥x∥∞I1 ≤ ∥x∥∞Aw.

As A−1 ≥ 0 obtain

A−1∣x∣ ≤ ∥x∥∞w,
which implies

∥A−1∣x∣∥∞ ≤ ∥x∥∞∥w∥∞.
Finally, as

∥A−1x∥∞ ≤ ∥x∥∞∥w∥∞,
we conclude

∥A−1∥∞ ≤ ∥w∥∞.

An upper bound for ∥A∥2 can be obtained by using the spectral radius of AtA. We remak

that

∥A∥2 = sup
0∕=x∈IRn

∥Ax∥2
∥x∥2

= sup
0∕=x∈IRn

(xtAtAx)1/2

∥x∥2
.

If A is nonsingular, then AtA is a symmetric positive definite matrix (xtAtAx > 0, x ∕= 0).

Such properties enable us to deduce that the eigenvalues of AtA are positive.10 As AtA is a

10
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diagonalizable matrix, we have

∥Ax∥22 = (Qtx)tQtAtAQ(Qtx) = ytDiag[�i]y,

where Q is a orthogonal matrix. Thus

∥Ax∥22 =
∑

i

�iy
2
i ≤ �(AtA)∥x∥22

which implies

∥A∥2 ≤ �(AtA)1/2.

Otherwise, we also have

∥A∥22 = sup
0∕=x∈IRn

∥Ax∥22
∥x∥22

≥ utAtAu

∥u∥22
≥ �(AtA),

where u denotes an arbitrary eigenvector of AtA correspondent to the eigenvalue �.

Combining the two estimates for ∥A∥2, we conclude the following identity

∥A∥2 = �(AtA)1/2.

We proved the following the result.

Theorem 2.2.8 If A is a square matrix, then ∥A∥2 = �(AtA)1/2. Otherwise, if A is symmetric,

then ∥A∥2 = �(A).

As a consequence of this result we have:

∥A∥2 = �max, ∥A−1∥2 =
1

�min
,

provided that A is symmetric positive definite matrix.

It is easy to show that a symmetric matrix is positive definite if and only if all eigenvalues

are positive. A criterion to test if a symmetric matrix is positive definite can be established

using the Gershgorin Theorem.

Theorem 2.2.6 If A is a real symmetric positive definite matrix, then the eigenvalues of A are positive.

Proof: For � and x, respectively, the eigenvalue and the correspondent eigenvector of A, we have

0 < xtAx = �xtx =⇒ � > 0.

Theorem 2.2.7 If A is a real symmetric positive definite matrix, then A is nonsingular and A−1 is positive

definite.

Proof: As A is a real symmetric positive definite matrix, then A = QtDiag[�i]Q and A−1 = QtDiag[1/�i]Q,
where Q is an orthogonal matrix.

If � > 0 is an eigenvalue of A, then �−1 is an eigenvalue of A−1. Consequently, A−1 has positive eigenvalues.
For y ∈ IRn, y ∕= 0, we have

ytA−1y = (Qty)tDiag[1/�i](Q
ty) =

∑

i

1

�i

y2i > 0.
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Theorem 2.2.9 If A is a real symmetric matrix with aii > 0, strictly diagonally dominant or

irreducibly diagonally dominant, then A is positive definite.

Proof: If A is strictly diagonally dominant and � its eigenvalue, then � > 0 because

� ∈ ∪i=1,...,nBri(aii).

If A is irreducibly diagonally dominant, then

� ∈ ∪i=1,...,nBri(aii) ∪ ∩i=1,...,nSri(aii).

As for some i, ri < aii, we get

0 ∕∈ ∩j=1,...,nSrj(ajj),

and then � > 0.

2.2.3 The Poisson Equation: the Five-Point Formula - Qualitative and Quantita-
tive Analysis

Let Ω be the two-dimensional rectangle Ω = (0, a)× (0, b) with boundary ∂Ω. We introduce

in what follows a finite difference discretization of the Poisson equation with Dirichlet boundary

conditions
⎧

⎨

⎩

−Δu = f in Ω,

u = g on ∂Ω.
(2.2.9)

On Ω we define the grid

ΩH = {(xi, yj), i = 0, . . . , n, j = 0, . . . ,m, x0 = y0 = 0, xn = a, ym = b}

where

H = (ℎ, k), xi − xi−1 = ℎ, yj − yj−1 = k.

By ∂ΩH we denote the set of grid points on the boundary ∂Ω, that is,

∂ΩH = ΩH ∩ ∂Ω,ΩH = ΩH ∩ Ω.

By WH(ΩH), WH(ΩH) and WH(∂ΩH) we represent the grid spaces defined, respectively, in

ΩH , ΩH and ∂ΩH .

By ΔH we denote the finite difference operator

ΔH :WH(Ωℎ) →WH(ΩH),

defined by

ΔuH(xi, yj) = D2,xuH(xi, yj) +D2,yuH(xi, yj), (xi, yj) ∈ ΩH ,

for uH ∈WH(ΩH) and where D2,x,D2,y are the second order centered finite difference operators

in x and y directions, respectively. Usually, this operator is called five-point formula for the
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Laplace operator. For the particular case ℎ = k, we associate with the finite difference operator

Δℎ the following matrix

1

ℎ2

⎡

⎣

1
1 −4 1

1

⎤

⎦ .

If we consider grid functions fH ∈ WH(ΩH) and gH ∈ WH(∂ΩH), approximations to f and

g, respectively, an approximation uℎ for the solution of the BVP (2.2.9), uH ∈WH(Ωℎ), can be

computed using the FDM
⎧

⎨

⎩

−ΔHuH = fH in ΩH ,

uH = gH on ∂ΩH .
(2.2.10)

The FDM can be rewritten in matrix form

LℎuH = f̃H (2.2.11)

For example, if we take ℎ = k and a = b, and we introduce in the grid points an enumeration:

from the bottom to the top and from the left to the right, then

LH :=
1

ℎ2

⎡

⎢

⎢

⎣

T −I 0 . . . 0 0
−I T −I . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −I T

⎤

⎥

⎥

⎦

(2.2.12)

where I denotes the n− 1 identity matrix and T is defined by

T =

⎡

⎢

⎢

⎣

4 −1 0 . . . 0 0
−1 4 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 4

⎤

⎥

⎥

⎦

.

In (2.2.11) f̃H is given by

f̃ℎ =

⎧































⎨































⎩

⎧



⎨



⎩

fH(x1, y1) +
1
ℎ2 (gH(x1, y0) + gH(x0, y1),

fH(xi, y1) +
1
ℎ2 gH(xi, y0), i = 2, . . . , n− 2,

fH(xn−1, y1) +
1
ℎ2 (gH(xn−1, y0) + gH(xn, y1), )

⎧



⎨



⎩

fH(x1, yj) +
1
ℎ2 gH(x0, yj),

fH(xi, yj), i = 2, . . . , n − 2,

fH(xn−1, yj) +
1
ℎ2 gH(xn, yj), j = 2, . . . , n− 2,

⎧



⎨



⎩

fH(x1, yn−1) +
1
ℎ2 (gH(x1, yn) + gH(x0, yn−1),

fH(xi, yn−1) +
1
ℎ2 (gH(xi, yn), i = 2, . . . , n− 2,

fH(xn−1, yn−1) +
1
ℎ2 (gH(xn−1, yn) + gH(xn, yn−1)).

(2.2.13)

The existence and the uniqueness of the solution of (2.2.10) is consequence of the properties

of LH presented in the following result.

Theorem 2.2.10 If LH is defined by (2.2.12), then

1. LH is a M -matrix,



Computational Mathematics J.A.Ferreira 78

2. LH is positive definite,

3. ∥LH∥∞ ≤ 8
ℎ2 , ∥L−1

H ∥∞ ≤ 1
8 ,

4. ∥LH∥2 ≤ 8
ℎ2 cos

2(�ℎ2 ), ∥L−1
H ∥2 ≤ ℎ2

8 cosec
2(�ℎ2 ).

Proof:

1. We observe that the diagonal entries of LH are positive and the off-diagonal entries are

negative. As LH is irreducibly diagonally dominant, we conclude that LH is a M -matrix;

2. LH is a symmetric irreducibly diagonally dominant which implies that the eigenvalues of

LH are positive. Consequently, LH is positive definite.

3. ∥LH∥∞ ≤ 8
ℎ2 is trivial. Let us consider the wH ∈ WH(ΩH) defined by wH(x, y) = x

2 (1 −
x), (x, y) ∈ ΩH . This grid function satisfies LHwH(x, y) ≥ I1. Then ∥L−1

H ∥∞ ≤ ∥wH∥∞ = 1
8

because LH is a M -matrix.

4. As the eigenvalues of LH and the corresponding eigenvectors are defined by

�ij =
4

ℎ2

(

sen2(
i�ℎ

2
) + sen2(

j�ℎ

2
)

)

,

�ij(x, y) = sen(i�x)sen(j�y) , (x, y) ∈ ΩH ,

for i, j = 1, . . . , n− 1, we conclude the proof.

Qualitative properties: the mean value theorem, the maximum principle

We study now some qualitative properties of the solution of the discrete Poisson equation

(2.2.10) for ℎ = k. We establish a discrete version of the Mean Value Theorem - Theorem 2.1.7

- for harmonic functions and a discrete version of the Maximum Principle - Theorem 2.1.9.

Let us consider f = 0 in Ω. If uH ∈ WH(ΩH) is solution of the finite difference problem

(2.2.10) with fH = 0 we say that uH is discretely harmonic.

The next result is consequence of the definition of ΔH . For P ∈ ΩH we denote by V(P ) the
following grid set

V(P ) = {P ± ℎe1, P ± ℎe2}.

Theorem 2.2.11 If uH ∈WH(ΩH) is discretely harmonic and P ∈ ΩH , then

uH(P ) =
1

4

∑

Q∈V(P )

uH(Q).

For discretely harmonic functions we have the following discrete maximum principle.

Theorem 2.2.12 If uH ∈WH(ΩH) is discretely harmonic, then

max
ΩH

uH = max
∂ΩH

uH , min
ΩH

uH = min
∂ΩH

uH .
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Proof: If uH is a constant function then the result holds. Let uH be a discretely harmonic

function in ΩH which has its maximum value at P ∈ ΩH . As

uH(P ) =
1

4

∑

Q∈VH(P )

uH(Q),

uℎ(P ) satisfies

uH(P ) = uH(Q), Q ∈ VH(P ).

Following this procedure we can prove that uH is constant in ΩH . This conclusion contradicts

the assumption on uH .

An upper bound to the norm of a discretely harmonic function can be obtained as a conse-

quence of the discrete maximum principle.

Corollary 6 If uH ∈WH(ΩH) is discretely harmonic in ΩH and uH = gH on ∂ΩH , then

∥uH∥∞ ≤ ∥gH∥∞.

We study now the stability of the FDM (2.2.12). Let u
(i)
H , i = 1, 2, be grid functions in

WH(ΩH), defined by (2.2.12) for different boundary conditions

⎧

⎨

⎩

−ΔHu
(i)
H = fH em ΩH ,

u
(i)
H = g

(i)
H em ∂ΩH .

Then u
(1)
H − u

(2)
H is discretely harmonic and, by the discrete maximum principle, we have

∥u(1)H − u
(2)
H ∥∞ ≤ ∥g(1)H − g

(2)
H ∥∞.

Furthermore, as L−1
H ≥ 0, if

g
(1)
H ≥ g

(2)
H on ∂ΩH ,

we obtain

u
(1)
H − u

(2)
H ≥ 0 in ΩH .

We proved the next corollary:

Corollary 7 Let u
(i)
H , i = 1, 2, be grid function in WH(ΩH), defined by

⎧

⎨

⎩

−ΔHu
(i)
H = fH in ΩH

u
(i)
H = g

(i)
H on ∂ΩH .

If g
(1)
H ≥ g

(2)
H on ∂Ω, then

∥u(1)H − u
(2)
H ∥∞ ≤ ∥g(1)H − g

(2)
H ∥∞,

and u
(1)
H ≥ u

(2)
H ≥ 0 in ΩH .
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An upper bound for ∥uH∥∞, where uH is the solution of the discrete Poisson equation, is

now obtained using ∥fH∥∞ and ∥gH∥∞.

Theorem 2.2.13 If uH in H(ΩH) is solution of (2.2.10), then

∥uH∥∞ ≤ 1

8
∥f∥∞ + ∥gH∥∞. (2.2.14)

Proof: The grid function f̃H , defined by (2.2.10), admits the representation f̃H = fH + g̃H
for a convenient g̃ℎ.

We introduce now two grid functions: u
(1)
H ∈ WH(ΩH) is solution of the discrete Poisson

equation with fH as a second member and with homogeneous boundary conditions, u
(2)
H is

solution of the discrete Laplace equation with gH as a Dirichlet boundary condition. We have

∥u(1)H ∥∞ ≤ 1

8
∥fH∥∞.

Otherwise, by Corollary 6, we also have

∥u(2)H ∥∞ ≤ ∥gH∥∞.

As uH = u
(1)
H + u

(2)
H , from the two last estimates, we conclude the proof of the estimate(2.2.14).

Quantitative properties

The behaviour of the finite difference solutions when the step size sequence converges to zero

is now studied. The concepts of consistency, convergence and stability were introduced before

for FDMs in one-dimensional context. We formalize now the same definitions for FDMs for two-

dimensional problems. The correspondent definitions can be easily given for high dimensions.

Let Λ be a sequence of vectors H = (ℎ, k) such that ℎ ∈ Λ1, k ∈ Λ2, and Λi converges to

zero, i = 1, 2. As for one-dimensional problem, the finite difference problem can be seen as a

boundary finite difference problem on ΩH or on ΩH and we denote this set by Ω∗
H .

Let uH be a grid function in WH(ΩH) defined by

⎧

⎨

⎩

AHuH = fH in Ω∗
H

BHuH = gH on ∂ΩH ,
(2.2.15)

which approximates the solution u ∈ U of the elliptic BVP
⎧

⎨

⎩

Au = f in Ω,

Bu = g on ∂Ω,
(2.2.16)

where B denotes the boundary operator and BH its discretization.

By RH we represent the restriction operator RH : U →WH(ΩH), where U is a vector space

containing the solution u. Let ∥.∥H be a norm in WH(ΩH).

If

∥RHu− uH∥H → 0,H → 0,

then the FDM (2.2.15) is said convergent.
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As fH = R̃Hf , for the error eH = RHu− uH we have

AH(RHu− uH) = AH(RHu)− fH

= AH(RHu)− R̃Hf

= AH(RHu)− R̃HAu.

As far as the error eH on the boundary points is concerned we establish

BH(RHu− uH) = BH(RHu)− gH

= BH(RHu)−RH,∂Ωg

= BH(RHu)−RH,∂ΩBu,

where RH,∂Ω denotes the restriction operator for functions defined on ∂Ω.

The grid function TH ∈WH(ΩH) given by

TH = AH(RHu)− R̃HAu

in Ω∗
H and

TH = BH(RHu)−RH,∂ΩBu

on ∂ΩH , is called truncation error of the FDM (2.2.15). If ∥TH∥H → 0, then this method is

said consistent with (2.2.16). Furthermore, if ∥TH∥H = O(Hp
max), then the FDM (2.2.15) is said

with consistency order equal to p.

If

∥BHvℎ∥∂ΩH
→ 0, ∥AHvH∥H → 0

then

∥vH∥H → 0,

the FDM (2.2.15) is said stable.

A sufficient condition for the convergence of a FDM can be easily proved using consistency

and stability.

Theorem 2.2.14 If the FDM (2.2.15) is stable and consistent, then it is convergent.

We analyse in what follows the convergence properties of the five-point formula (2.2.10) with

fH(P ) = f(P ), P ∈ ΩH , gH(P ) = g(P ), P ∈ ∂ΩH .

It is easy to show

−ΔHRHu(P ) = −Δu(P )− ℎ2

24

(

∂4u

∂x4
(P1) +

∂4u

∂x4
(P2) +

∂4u

∂y4
(P3) +

∂4u

∂y4
(P4)

)

,

where Pi ∈ (xP − ℎ, xP + ℎ)× (yP − ℎ, yP + ℎ), i = 1, 2, 3, 4.
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If u ∈ C4(Ω), then

∥TH∥∞ ≤ ℎ2

6
∥u∥C4 .

Using Theorem 2.2.10, we obtain

∥uH −RHu∥∞ ≤ ℎ2

48
∥u∥C4 . (2.2.17)

The error estimate (2.2.17) was established assuming that u ∈ C4(Ω). The last smoothness

requirement can be avoided. In fact, for P = (xi, yj) we have

−D2,xu(P ) = −∂
2u

∂x2
(P )− 1

6ℎ2

∫ xi+1

xi

∂4u

∂x4
(s, yj)(xi+1 − s)3 ds

− 1

6ℎ2

∫ xi−1

xi

∂4u

∂x4
(s, yj)(xi−1 − s)3 ds

where

1

6ℎ2

∫ xi+1

xi

∂4u

∂x4
(s, yj)(xi+1 − s)3 ds =

1

2ℎ2

∫ xi+1

xi

(
∂3u

∂x3
(xi, yj)−

∂3u

∂x3
(s, yj))(xi+1 − s)2 ds

≤ ℎ2

24
∥u∥C3,1(Ω),

11

1

6ℎ2

∫ xi−1

xi

∂4u

∂x4
(s, yj)(xi−1 − s)3 ds ≤ ℎ2

24
∥u∥C3,1(Ω).

Consequently

∥TH∥∞ ≤ ℎ2

6
∥u∥C3,1(Ω),

and therefore

∥uH −RHu∥∞ ≤ ℎ2

48
∥u∥C3,1(Ω).

2.2.4 FDMs of High Order

The FDM for the Poisson equation with Dirichlet boundary conditions studied in the last

section has second convergence order. In what follows we define a new DFM for the same

problem with higher convergence order.

We start by considering the one-dimensional problem. Let Dℎ be defined by

Dℎuℎ(x) =

k
∑

j=−k

cjuℎ(x+ jℎ).

If we replace uℎ by a function u smooth enough, we obtain

Dℎu(x) =
2k
∑

m=0

amℎ
mu(m)(x) +O(ℎ2k+1), am =

1

m!

k
∑

j=−k

cjj
m.

11Ck,1(Ω) is the set of all functions u in Ck(Ω) whose derivatives D�u are Lipschits continuous for ∣�∣ ≤ k.
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Thus, if

a2 =
1

ℎ2
, aj = 0, j = 0, 1, 3 . . . , 2k,

we get a finite difference approximation for the second derivative. For k = 1 we obtain the

centered finite difference operator D2. For k = 2 we obtain the finite difference operator

Dℎuℎ(x) =
−1

12ℎ2
(uℎ(x− 2ℎ) + uℎ(x+ 2ℎ))

+
4

3ℎ2
(uℎ(x− ℎ) + uℎ(x+ ℎ))− 5

2ℎ2
uℎ(x).

(2.2.18)

This finite difference operator is fourth order consistent. We remark that for the grid function

uℎ defined on Ωℎ, Dℎuℎ is only defined for x such that x− 2ℎ, x + 2ℎ ∈ Ωℎ.

Let us consider now the two-dimensional case with H = (ℎ, ℎ). Applying the operator Dℎ in

both directions x and y, we easily get a finite difference discretization of the Laplace operator

−Δ which can be represented by the matrix

1

12ℎ2

⎡

⎢

⎢

⎢

⎢

⎣

1
−16

1 −16 60 −16 1
−16
1

⎤

⎥

⎥

⎥

⎥

⎦

.

This FDM is fourth order consistent but presents some difficulties near to the boundary points.

For example, if we use the previous formula at (ℎ, ℎ) ∈ ΩH , we need uℎ(−ℎ, ℎ), u(ℎ,−ℎ) outside
of ΩH . This difficulty can be avoided if the five-point formula is used at the points near to the

boundary. Nevertheless, this approach leads to a decrease of the consistency order.

In order to overcome the weakness of the last approach we construct FDM of the following

type

DHuH(x, y) =

k
∑

i,j=−k

cijuH(x+ iℎ, y + jℎ).

Replacing uH by a smooth function u we obtain

DHu(x, y) =
∑

n,m=0

∂n+mu

∂xn∂ym
(x, y)ℎn+manm

with

anm =
∑

ij

cij
1

n!m!
injm,

and H = (ℎ, ℎ).

For k = 1, a nine-point formula is deduced. If we compute the nine coefficients cij , i, j =

−1, 0, 1, such thatDHu(x, y) = −Δu(x, y)+O(ℎp), the finite difference formula−Δ̃H represented

by the matrix

1

6ℎ2

⎡

⎣

−1 −4 −1
−4 20 −4
−1 −4 −1

⎤

⎦ ,
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is obtained with p = 2. This nine-point formula and the five-point formula have the same

consistency order being the first one computationally inefficient. Nevertheless, the nine-point

formula can be used to define a FDM with higher consistency order defining conveniently fH .

In fact, let us consider

−Δ̃HuH = fH in ΩH .

We have

−Δ̃Hu(x, y) = −Δu− ℎ2

12
Δ2u− ℎ4

360

(

∂4

∂x4
+ 4

∂4

∂x2∂y2
+

∂4

∂y4

)

Δu+O(ℎ6), (2.2.19)

provided that u ∈ C6(Ω). In (2.2.19), Δ2 represents the biharmonic operator

Δ2u = ΔΔu =
∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
.

Let fH be defined by

fH(x, y) =
1

12

(

f(x− ℎ, y) + f(x+ ℎ, y)

+f(x, y − ℎ) + f(x, y + ℎ) + 8f(x, y)
)

.

As we have

f̃H(x, y) = f(x, y) +
ℎ2

12
Δf(x, y) +O(ℎ4),

provided f ∈ C4(Ω), we deduce that

TH = −Δ̃Hu− fH = O(ℎ4),

provided that u ∈ C6(Ω).

It can be shown that the last finite difference approximation is fourth order convergent to the

solution of the Poisson equation with Dirichlet boundary condition provided that u ∈ C6(Ω).

2.2.5 FDMs for the Poisson Equation with Neumann Boundary Conditions

We consider the Poisson equation defined on Ω = (0, 1)× (0, 1) with the Neumann boundary

condition
∂u

∂�
= g on ∂Ω.

This condition is meaning less for the boundary points V = {(0, 0), (1, 0), (0, 1), (1, 1)}, and we

define the discretization of the normal derivative, at points in ΩH − V, by

B�uH(P ) =
uH(P )− uH(P − ℎ�)

ℎ
, P ∈ ∂ΩH − V.

Let Ω
∗
H be given by ΩH − V and let uH in WH(Ω

∗
H) be such that

⎧

⎨

⎩

−ΔHuH = fH in ΩH ,

B�uH = gH , on ∂ΩH − V.
(2.2.20)
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The FD problem (2.2.20) can be rewritten in the equivalent form

LHuH = f̃H em ΩH , (2.2.21)

where LH is the (n− 1)2 square matrix

LH =
1

ℎ2

⎡

⎢

⎢

⎣

T1 −I 0 . . . 0 0
−I T −I . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −I T1

⎤

⎥

⎥

⎦

, (2.2.22)

where

T1 =

⎡

⎢

⎢

⎣

2 −1 0 . . . 0 0
−1 3 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2

⎤

⎥

⎥

⎦

, T =

⎡

⎢

⎢

⎣

3 −1 0 . . . 0 0
−1 4 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 3

⎤

⎥

⎥

⎦

,

and

f̃ℎ =

⎧































⎨































⎩

⎧



⎨



⎩

fH(x1, y1) +
1
ℎ(gH(x1, y0) + gH(x0, y1)),

fH(xi, y1) +
1
ℎgH(xi, y0), i = 2, . . . , n − 2,

fH(xn−1, y1) +
1
ℎ(gH(xn−1, y0) + gH(xn, y1)),

⎧



⎨



⎩

fH(x1, yj) +
1
ℎgH(x0, yj)

fH(xi, yj), i = 2, . . . , n− 2,

fH(xn−1, yj) +
1
ℎgH(xn, yj), j = 2, . . . , n− 2,

⎧



⎨



⎩

fH(x1, yn−1) +
1
ℎ(gH(x1, yn) + gH(x0, yn−1)),

fH(xi, yn−1) +
1
ℎgH(xi, yn−1), i = 2, . . . , n− 2,

fH(xn−1, yn−1) +
1
ℎ(gH(xn−1, yn) + gH(xn, yn−1)).

(2.2.23)

As in the continuous case, in general the problem (2.2.21) is not solvable. In fact, while LH is

irreducible, it is not irreducibly diagonally dominant. Moreover, as LHI1 = 0, where I1 represents

here the (n− 1)2 vector with unitary components, LH is singular. Otherwise, if we eliminate in

this matrix a row and the correspondent column, then LH is irreducibly diagonally dominant.

This fact leads to

car(LH) = (n − 1)2 − 1 and N (LH) = ℒ{I1}.
Problem (2.2.21) has a solution uH in WH(Ω

∗
H) if and only if f̃H ∈ C(LH) if and only if f̃H is

orthogonal to N (LH), that is

0 =< f̃H , I1 >=
∑

P∈ΩH

f̃H .

Using the definition of f̃H , the last equality is equivalent to

ℎ2
∑

P∈ΩH

fH(P ) = −ℎ
∑

P∈∂Ω∗
H

gH(P ). (2.2.24)

Furthermore, if uH , vH are solutions of (2.2.21), then uH − vH ∈ N (LH), or equivalently

uH − vH = cI1.

We proved the following existence result:
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Theorem 2.2.15 The finite difference problem (2.2.20) has a solution in WH(ΩH) if and only

if the compatibility condition (2.2.24) holds. Any two solution of (2.2.20) can only differ by a

constant.

Let us suppose now that the compatibility condition (2.2.24) holds and let Q be a fixed grid

point in ΩH . Then there exists a unique solution of the finite difference problem (2.2.20) such

that uH(Q) = 0. This solution can be computed using (2.2.21) where the row and the column

associated with the grid point Q were deleted.

Another approach to solve (2.2.21) can considered replacing this problem by

LHuH = f̃H , (2.2.25)

where

LH =

[

LH I1
I1t 0

]

, ūH =

[

uH
�

]

, f̃H =

[

f̃H
�

]

,

and � can be prescribed arbitrarily.

As I1 and the columns of LH are linearly independent, we get rank([LH I1]) + 1 = (n − 1)2.

Furthermore, as (I1t, 0) and the rows of [LH I1] are linearly independent, we conclude rank(LH) =

(n − 1)2 + 1, which means that (2.2.25) has a unique solution uH . If uH is such that � = 0,

then the compatibility condition (2.2.24) holds. Thus, uH is solution of (2.2.21) with � = I1uH .

Otherwise, if � ∕= 0, then uH is solution of the modified problem

LHuH = f̃H − �I1.

The last problem is associated with the FDM
⎧

⎨

⎩

−ΔHuH = fH − � in ΩH ,

B�uH = gH on ∂Ω∗
H .

(2.2.26)

The truncation error induced by (2.2.26) satisfies the following relations

−ΔH(RHu− uH) = −R̃HΔu+ �−ΔHRHu = T
(1)
H + �,

B�(RHu− uH) = B�RHu− gH = B�RHu−RH,∂Ω
∂u

∂�
= T

(2)
H ,

where

∥T (1)
H ∥∞ ≤ Cℎ2∥u∥C3,1(Ω), ∥T

(2)
H ∥∞ ≤ Cℎ∥u∥C1,1(Ω).

We establish now an estimate for �. We start by noting that

I1� = −LHuH + f̃H .

As < I1, LHuH >= 0, we get

� =
I1tf̃H

I1tI1

=
1

(n− 1)2

⎛

⎝

∑

P∈ΩH

fH(P ) +
1

ℎ

∑

P∈∂Ω∗
H

gH(P )

⎞

⎠

=
1

ℎ2(n− 1)2

⎛

⎝ℎ2
∑

P∈ΩH

fH(P ) + ℎ
∑

P∈∂Ω∗
H

gH(P )

⎞

⎠.
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We also have
∫ x+ℎ

2

x−ℎ
2

∫ y+ℎ
2

y−ℎ
2

f dy dx = ℎ2f(x, y) + IH ,

where

∣IH ∣ ≤ Cℎ3∥f∥C0,1(Ω).

Then we obtain ∫

Ω
f dx dy = ℎ2

∑

P∈ΩH

f(P ) + IΩ,

with

∣IΩ∣ ≤ Cℎ∥f∥C0,1(Ω).

Analogously, it can be shown that
∫

∂Ω
g ds = ℎ

∑

P∈∂Ω′
H

g(P ) + I∂Ω,

where

∣I∂Ω∣ ≤ Cℎ∥g∥C0,1(∂Ω).

As the compatibility condition in the continuous context
∫

Ω
f dxdy +

∫

∂Ω
g ds = 0

holds, we get the desired estimate for �

∣�∣ ≤ Cℎ
(

∥f∥C0,1(Ω) + ∥g∥C0,1(∂Ω)

)

. (2.2.27)

Let EH be defined by EH = RHu− uH . This error satisfies

[

LH I1
I1t 0

] [

EH

−�

]

=

[

T
(1)
H +  (T

(2)
H )

�

]

,

where  (T
(2)
H ) is a certain function of T

(2)
H and � is an arbitrary constant. It is easy to establish

that
[

LH I1

I1T 0

] [

EH − cI1
−�

]

=

[

T
(1)
H +  (T

(2)
H )

I1tEH − cI1tI1

]

.

If we take � = 0, or equivalently

c =
1

I1tI1
I1tEH ,

we obtain
[

LH I1
I1t 0

] [

EH − cI1
0

]

=

[

T
(1)
H +  (T

(2)
H )

0

]

,

which is induced by the FDM

⎧

⎨

⎩

−ΔH(RHu− uH − cI1) = T
(1)
H inΩH ,

B�(RHu− uH) = T
(2)
H on ∂ΩH − V.
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Using the stability of the FDM (see [12], Section 4.7.4) we obtain

∥uH −RHu− cI1∥∞ ≤ C
(

ℎ∥u∥C1,1(Ω) + ℎ2∥u∥C3,1(Ω) + ∣�∣
)

. (2.2.28)

We study in what follows another discretization of the Poisson equation with Neumann

boundary conditions with a symmetric discretization of the boundary conditions. In order to

define the boundary discretization we introduce the fictitious points:

(x−1, yj) = (−ℎ, yj), (xn+1, yj) = (1 + ℎ, yj), j = 0, . . . , n,

(xi, y−1) = (xi,−ℎ), (xi, yn+1) = (xi, 1 + ℎ), i = 0, . . . , n.

The previous auxiliary points enable us to use the five-point formula in ΩH .

We consider the FDM
{

−ΔHuH = fH in ΩH ,
B�uH = gH on ∂ΩH ,

(2.2.29)

where

B�uH(P ) =
uH(P + ℎ�)− uH(P − ℎ�)

2ℎ
, P ∈ ∂ΩH .

At any point in V we should consider two normals with respect to the normals of both sides of

∂Ω.

The FDM (2.2.29) induces the linear system

LHuH = f̃H , (2.2.30)

where

LH =
1

ℎ2

⎡

⎢

⎢

⎣

T −2I 0 . . . 0 0
−I T −I . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −2I T

⎤

⎥

⎥

⎦

, (2.2.31)

T =

⎡

⎢

⎢

⎣

4 −2 0 . . . 0 0
−1 4 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −2 4

⎤

⎥

⎥

⎦

and

f̃ℎ =

⎧































⎨































⎩

⎧



⎨



⎩

fH(x0, y0) +
4
ℎgH(x0, y0),

fH(xi, y0) +
2
ℎgH(xi, y0), i = 2, . . . , n− 1,

fH(xn, y0) +
4
ℎgH(xn, y0),

⎧



⎨



⎩

fH(x0, yj) +
2
ℎgH(x0, yj),

fH(xi, yj), i = 1, . . . , n− 1,

fH(xn, yj) +
2
ℎgH(xn, yj), j = 1, . . . , n− 1,

⎧



⎨



⎩

fH(x0, yn) +
4
ℎgH(x0, yn),

fH(xi, yn) +
2
ℎgH(xi, yn), i = 1, . . . , n − 1,

fH(xn, yn) +
4
ℎgH(xn, yn).

(2.2.32)
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The nonsymmetric structure of LH requires the use of a linear transformation DH such that

DHLH is a symmetric matrix. Let DH be defined by

DH =

⎡

⎢

⎢

⎣

D 0 0 . . . 0 0
0 D1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 D

⎤

⎥

⎥

⎦

, D =

⎡

⎢

⎢

⎣

1
4 0 0 . . . 0 0
0 1

2 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1

4

⎤

⎥

⎥

⎦

and

D1 =

⎡

⎢

⎢

⎣

1
2 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1

2

⎤

⎥

⎥

⎦

.

Using the transformation DH , the FDM (2.2.30) can be rewritten in the equivalent form

DHLHuH = DH f̃H ,

where

L̃H := DHLH =
1

ℎ2

⎡

⎢

⎢

⎣

T̂1 T̂2 0 . . . 0 0

T̂2 T̂ T̂2 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . T̂2 T̂1

⎤

⎥

⎥

⎦

,

with

T̂1 =

⎡

⎢

⎢

⎣

1 −1
2 0 . . . 0 0

−1
2 2 −1

2 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −1

2 1

⎤

⎥

⎥

⎦

,

T̂ =

⎡

⎢

⎢

⎣

2 −1 0 . . . 0 0
−1 4 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2

⎤

⎥

⎥

⎦

and

T̂2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1

2
0 0 . . . 0 0

0 −1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 −1

2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

We observe that L̃H is singular because L̃H I1 = 0. From L̃H a irreducibly diagonally dominant

matrix can be defined eliminating a row and the correspondent column. As car(L̃H) = (n+1)2−1

and N (L̃H) = ℒ(I1), we deduce that there exists a unique solution of the FDM (2.2.29) if and

only if

I1tDH f̃H = 0.

Moreover, any two solutions of the boundary value problem (2.2.29) may differ by a constant.

The solution uℎ can be computed solving the linear system
[

L̃H I1

I1t 0

]

[

uH
�

]

=

[

DH f̃H
�

]

.
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If we obtain � = 0 for � = I1tuH , then uH is solution of the initial finite difference discretization.

Otherwise, uH is solution of a perturbed problem similar to the perturbed problem (2.2.26).

Following the construction of the estimates (2.2.27), (2.2.28), estimates for � and for the error

uH − rHu− cI1 can be established.

2.2.6 Convergence Analysis with Respect to Discrete Sobolev Norms

It was shown that the five-point formula enable us to obtain a second order approximation

uH for the solution u of the Poisson equation with Dirichlet boundary conditions, that is

∥RHu− uH∥∞ ≤ Cℎ2.

We intent to define a new norm which can be seen as a discretization of a continuous one and

such that uH is also a second order approximation with respect to this new norm.

The grid function eH = RHu− uH is defined on ΩH and it is null on ∂ΩH . Let W0(ΩH) be

the set of grids functions defined ΩH and null on ∂ΩH . In this space we introduce the norm

∥wH∥21 = ∥wH∥2 +
∑

ΩH,l

ℎ(D−xwH(P ))2 +
∑

ΩH,t

ℎ(D−ywH(P ))2. (2.2.33)

In (2.2.33), the notations

ΩH,l = ΩH − {(x0, yj) ∈ ∂ΩH},ΩH,t = ΩH − {(xi, y0) ∈ ∂ΩH}

and

∥wH∥2 = ℎ2
∑

ΩH

wH(P )2 (2.2.34)

were used. We point out that the norm (2.2.34) is induced by the inner product

(wH , vH) = ℎ2
∑

ΩH

wH(P )vH(P ), wH , wH ∈W0(ΩH).

As

wH(xi, yj) =

i
∑

ℓ=0

ℎD−xwH(xℓ, yj),

we have
∑

ΩH

ℎ2wH(P )2 ≤ C
∑

ΩH,l

ℎ2(D−xwH(P ))2,

where C is a positive H-independent constant. From the last inequality we deduce that

∥wH∥2 ≤ C

⎛

⎝

∑

ΩH,l

ℎ2(D−xwH(P ))2 +
∑

ΩH,t

ℎ2(D−ywH(P ))2

⎞

⎠ , ∀wH ∈W0(ΩH). (2.2.35)
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For wH ∈ W0(ΩH), −ΔHwℎ can be identified with a linear functional in the dual of

W0(ΩH).12

This remark gives sense to the next result:

Theorem 2.2.17 There exists a positive constant C, H-independent, such that

∥ −ΔHwH∥−1 ≥ C∥wH∥1, ∀wH ∈W0(ΩH). (2.2.36)

Proof: To prove (2.2.36) we note that

∥ −ΔwH∥−1 = sup
0∕=vH∈W0(ΩH)

∣ −ΔwH(vH)∣
∥vH∥1

= sup
0∕=vH∈W0(ΩH )

∣(−ΔwH , vH)∣
∥vH∥1

= sup
0∕=vH∈W0(ΩH )

∣∑ΩH,l
ℎ2D−xwH(P )D−xvH(P ) +

∑

ΩH,t
ℎ2D−ywH(P )D−yvH(P )∣

∥vH∥1

≥
∣∑ΩH,l

ℎ2(D−xwH(P ))2 +
∑

ΩH,t
ℎ2(D−ywH(P ))2∣

∥wH∥1

≥ C∥wH∥1.

From Theorem 2.2.17, −ΔH is injective. Taking in (2.2.36), wH replaced eH , we obtain

∥TH∥−1 ≥ C∥eH∥1.

As we have

∥TH∥−1 = sup
0∕=vH∈W0(ΩH )

∣TH(vH)∣
∥vH∥1

= sup
0∕=vH∈W0(ΩH )

∣(TH , vH)∣
∥vH∥1

≤ Cℎ2∥u∥C4(Ω),

we conclude that

∥eH∥1 ≤ Cℎ2∥u∥C4(Ω)

provided that u ∈ C4(Ω).

It can be also shown that

∥eH∥1 ≤ Cℎ2∥u∥C3,1(Ω),

provided that u ∈ C3,1(Ω).

12Let V be a Hilbert space. By V ′ we denote its dual, that is the space of all bounded linear mappings of V
onto IR. V ′ is a Banach space with respect to the dual norm

∥ℓ∥−1 = sup
u∈V,u ∕=0

∣ℓ(u)∣

∥u∥V
.

The identification between a Hilbert space and its dual is based on the Riesz representation theorem.

Theorem 2.2.16 Let V be a Hilbert space and ℓ ∈ V ′. Then there exists a unique uℓ ∈ V such that

ℓ(u) = (u, uℓ)V ,∀u ∈ V, ∥ℓ∥−1 = ∥uℓ∥V .
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2.3 Tools of Functional Analysis

Space of Integrable FunctionsWe introduce the a class of spaces that consists of (Lebesgue)-

integrable functions. Let p be a real number, p ≥ 1, and let Ω be a open subset of IRn. By

Lp(Ω), p ≥ 1, we denote the set of all functions such that

∫

Ω
∣u(x)∣p dx <∞.

Any two functions which are equal almost everywhere on Ω are identified with each other. In

Lp(Ω) we consider the norm

∥u∥Lp(Ω) =
(

∫

Ω
∣u(x)∣p dx

)1/p
.

The particular case p = 2 has an important role in the sequel. In this case, the norm ∥.∥L2(Ω) is

induced by the inner product

(u, v) =

∫

Ω
u(x)v(x) dx.

By L∞(Ω) we represent the set of all functions u defined on Ω such that ∣u∣ has finite essential
supremum over Ω (there exists M > 0 such that u ≤ M in Ω all most everywhere ( in Ω − Ω∗

where meas(Ω∗) = 0) and the smallest M is called essential supremum of u and it is denoted

by ess.supu). In L∞(Ω) we consider the norm

∥u∥L∞(Ω) = ess.sup∣u∣.

For p ∈ [1,∞], the space Lp(Ω) is a Banach space13 For p = 2, L2(Ω) is a Hilbert space.

Sobolev spaces Let Ω be a open subset of IRn and u ∈ Cm(Ω). If v ∈ C∞
0 , then

∫

Ω
D�uvdx = (−1)∣�∣

∫

Ω
uD�vdx,

for ∣�∣ ≤ m.

Consider Ω = IR and u(x) = (1− ∣x∣)+. This function satisfies

∫

IR
u(x)v′(x)dx = −

∫

IR
w(x)v(x)dx,∀v ∈ C∞

0 (IR),

where

w(x) =

⎧







⎨







⎩

0, x < −1,

1, x ∈ (−1, 0),

− 1, x ∈ (0, 1),

0, x > 1.

The function w can not be seen as the usual derivative of u, but can be interpreted as a ”weak”

derivative of the given function. This example motivate the introduction of the concept of weak

derivative.

13A normed linear space B is called a Banach space if all Cauchy sequences in B converge in B.
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Let Ω be an open set of IRn and u be locally integrable on Ω (u is integrable on every bounded

! subset of Ω with ! ⊂ Ω). If there exists a function w�, locally integrable on Ω such that
∫

Ω
w�vdx = (−1)∣�∣

∫

Ω
uD�vdx,

for all v ∈ C∞
0 (Ω), ∣�∣ ≤ m, then we say that w� is the weak derivative of the function u of

order ∣�∣.
If u, locally integrable on Ω, has two weak derivatives of order ∣�∣, w�, w

∗
�, then

∫

Ω
(w� − w∗

�)v dx = 0∀v ∈ C∞
0 (Ω),

and consequently w� = w∗
�.

The base for the definition of the Sobolev spaces is the concept of the weak derivative. Let

m be non negative integer and p ∈ [1,∞]. The Sobolev space of order m is given by

Wm,p(Ω) = {u ∈ Lp(Ω) : D� ∈ Lp(Ω), ∣�∣ ≤ m},

equipped with the norm

∥u∥Wm,p(Ω) =
(

∑

∣�∣≤m

∥D�u∥pLp(Ω)

)1/p
,

if p ∈ [1,∞) and

∥u∥Wm,∞(Ω) =
∑

∣�∣≤m

∥D�u∥L∞(Ω),

for p = ∞.

The previous norms can be given by:

∙ for p ∈ [1,∞)

∥u∥Wm,p(Ω) =
(

m
∑

j=0

∣u∣p
W j,p(Ω)

)1/p
,

with

∣u∣W j,p(Ω) =
(

∑

∣�∣=j

∥D�u∥pLp(Ω)

)1/p
,

∙ p = ∞

∥u∥Wm,∞(Ω) =
m
∑

j=0

∣u∣p
W j,∞(Ω)

,

with

∣u∣W j,∞(Ω) =
∑

∣�∣=j

∥D�u∥L∞(Ω).

The particular case p = 2 is very useful in a huge number of applications. In this case,

W
m,2(Ω) is a Hilbert space with respect to the inner product

(u, v)Wm,2(Ω) =
∑

∣�∣≤m

(D�u,D�v),
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and this space is denoted by Hm(Ω). It can be shown that C∞(Ω)∩Hm(Ω) is dense in Hm(Ω).

For the particular choice m = 1, we introduce the subset of all u ∈ H1(Ω) which are the

limit of a sequence in C∞
0 (Ω), that is, the closure of C∞

0 (Ω). We denote this space by H1
0 (Ω). If

the boundary ∂Ω is smooth ( for instance if Ω is a polygonal domain of IR2 or a polyhedron in

IR3 )

H1
0 (Ω) = {u ∈ H1(Ω) : u = 0on ∂Ω}.

14 We remark that H1
0 (Ω) is a Hilbert space with the same norm and inner product as H1(Ω).

The Poincaré-Friedrichs inequality

∥u∥L2(Ω) ≤ C(Ω)
(

n
∑

i=1

∥ ∂u
∂xi

∥2L2(Ω)

)1/2

holds for u ∈ H1
0 (Ω), provided that Ω is bounded. The proof can be considered for u ∈ C∞

0 (Ω)

and the result holds for u ∈ H1
0 (Ω) because C

∞
0 (Ω) is dense in H1

0 (Ω).

2.4 Weak Solutions for Elliptic Problems

2.4.1 Variational Problems for Elliptic BVP

Let Ω be a bounded open set of IRn, and we consider the second order differential equation

Au = −
n
∑

i,j=1

∂

∂xj

(

aij(x)
∂u

∂xi

)

+
n
∑

i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x), x ∈ Ω, (2.4.1)

where

aij ∈ C1(Ω), bi, c, f ∈ C(Ω).

We assume that

n
∑

i,j=1

aij(x)�i�j ≥ C̃

n
∑

i=1

�2i , � = (�1, . . . , �n) ∈ IRn, x ∈ Ω. (2.4.2)

which is usually referred to as uniform ellipticity. The condition (2.4.2) implies that [aij(x)] has

positive eigenvalues and then (2.4.1) is an elliptic equation.

Let us consider the boundary value problem (2.4.1) with homogeneous Dirichlet boundary

conditions. In many applications where non smooth data are presented, there isn’t a classical

solution of this boundary value problem, that is a function u in C2(Ω) ∩ C(Ω) satisfying the

PDEs (2.4.1) and u = 0 on ∂Ω.

In order to overcome the limitation of the classical theory and to be able to deal with PDEs

with non smooth data, we generalise the notion of solution by weakening the differentiability

requirements and introducing the variational problems induced by the PDEs.

Let u be the classical solution of the introduced boundary value problem. From (2.4.1), for

v ∈ C1
0 (Ω), we obtain

n
∑

i,j=1

(aij
∂u

∂xi
,
∂v

∂xj
) +

n
∑

i=1

(bi
∂u

∂xi
, v) + (cu, v) = (f, v). (2.4.3)

14This characterization holds for a domain Ω with boundary C1.
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In order to this equality makes sense we do not need to assume that u ∈ C2(Ω). It is sufficient

to suppose that u ∈ L2(Ω) and
∂u

∂xi
∈ L2(Ω), i = 1, . . . , n. As u = 0 on ∂Ω, it is natural to seek

u in H1
0 (Ω). Furthermore, as C1

0 (Ω) ⊂ H1
0 (Ω) the equality (2.4.3) has sense for v ∈ H1

0 (Ω).

Therefore, we replace the computation of u in C2(Ω) ∩ C(Ω) such that u = 0 on ∂Ω by the

following problem:

findu ∈ H1
0 (Ω) such that a(u, v) = ℓ(v), ∀v ∈ H1

0 (Ω), (2.4.4)

where

a(w, v) =
n
∑

i,j=1

(aij
∂w

∂xi
,
∂w

∂xj
) +

n
∑

i=1

(bi
∂w

∂xi
, v) + (cw, v), w, v ∈ H1

0 (Ω), (2.4.5)

and

ℓ(v) = (f, v), v ∈ H1
0 (Ω). (2.4.6)

The smoothness requirements on aij , bi, c presented before can be weakened considering that

these coefficients belong to L∞(Ω).

The solution of the problem (2.4.4) is called weak solution of the equation (2.4.1) com-

plemented with homogeneous Dirichlet boundary conditions. It is clear that if u is a classical

solution of (2.4.4) such that u = 0 on ∂Ω, then u is also weak solution. Nevertheless, if u ∈ H1
0 (Ω)

is weak solution of this problem, then u is classical solution of the same problem if u is smooth

enough. In fact, if u ∈ C2(Ω) and u = 0 on ∂Ω, then

(Au− f, v) = 0, ∀v ∈ C∞
0 (Ω).

Consequently, Au = f almost everywhere in Ω.

In order to study the existence of the solution of the problem (2.4.4), usually called variational

problem because it is related with the computation of the solution of a minimization problem, we

introduce in what follows some concepts and results associated with general variational problems.

2.4.2 General Variational Problems

Let V be a Hilbert space with the inner product (., .) and let a(., .) : V ×V → IR be a bilinear

form,that is, a(., .) is linear in each argument. Let ℓ be in V ′.

We consider in what follows the general variational problem:

find u ∈ V such that a(u, v) = ℓ(v), ∀v ∈ V. (2.4.7)

The existence and uniqueness of the solution of the variational problem (2.4.7) are guaranteed

imposing some requirements on the bilinear form a(., .).

If there exists a positive constant C such that

∣a(u, v)∣ ≤ C∥u∥V ∥v∥V ,

then a(., .) is said bounded (or continuous). If

a(u, u) ≥ Ce∥u∥2V , ∀u, v ∈ V,

for some positive constant, then we say that a(., .) is V− elliptic.
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Lemma 2 (Lax-Milgram Lemma) If a(., .) is a continuous V -elliptic bilinear form, then the

problem (2.4.7) has a unique solution u in V and the operator P : V ′ → V defined by

Pℓ = u, ℓ ∈ V ′

is continuous.

Proof: Attending that ℓ ∈ V ′, by the Riesz Representation Theorem, there exists Pℓ ∈ V

such that

(Pℓ, v)V = ℓ(v)∀v ∈ V.

Let u be fixed in V. The linear functional a(u, .) : V → IR belongs to V ′. By the Riesz Repre-

sentation Theorem, there exists Au in V such that

(Au, v) = a(u, v), ∀v ∈ V. (2.4.8)

Let A : V → V be defined by (2.4.8). This operator is linear and satisfies

∥Au∥V = sup
v∈V,v ∕=0

∣a(u, v)∣
∥v∥V

≤ C∥u∥V .

Then A is continuous.

Using the two operators P and A, the variational problem (2.4.7) can be rewritten in the

equivalent for:

findu ∈ V such thatAu = Pℓ. (2.4.9)

We prove that A is bijective.

∙ A is injective:

As a(., .) is V -elliptic, we have

Ce∥v∥2V ≤ a(v, v) = (Av, v) ≤ ∥Av∥V ∥v∥V , ∀v ∈ V,

and then

Ce∥v∥V ≤ ∥Av∥V ∀v ∈ V. (2.4.10)

This inequality implies the injectivity of A.

∙ A satisfies AV = V :

We prove that A(V ) = {Av, v ∈ V } is closed in V and A(V )⊥ = {0}.
Let w be in A(V ) and let (Avn) be a sequence, in ℛ(A), that converges to w. As

∥Avn −Avm∥V ≥ ∥vn − vm∥V ,

(vn) is a Cauchy sequence in V. So exists v in V such that vn → v because V is an Hilbert

space. Furthermore, by continuity,

Avn → Av.

Finally, as Avn → w we conclude that w = Av ∈ ℛ(A).

Let v0 be in A(V )⊥. As

Ce∥v0∥V ≤ (Av0, v0) = 0

we get v0 = 0 and consequently A(V )⊥ = {0}.
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As problem (2.4.9) is equivalent to the variational problem (2.4.7), we conclude that there

exists a unique solution u of the last problem. Moreover, from (2.4.10) we obtain

∥A−1w∥V ≤ 1

Ce
∥w∥V , w ∈ V,

that is A−1 is continuous and

∥u∥V = ∥A−1Pℓ∥V ≤ 1

Ce
∥Pℓ∥V =

1

Ce
∥ℓ∥−1.

The variational problem (2.4.7) is associated with a minimization problem when symmetric

variational forms are considered. The bilinear form a(., .) is said symmetric if a(u, v) = a(v, u)

for u, v ∈ V.

Let ℓ be fixed in V ′ and let J : V → IR be defined by

J(v) = a(v, v) − 2ℓ(v), v ∈ V.

The solution of the variational problem (2.4.7) is related with the solution of the minimization

problem

find u ∈ V such that J(u) = min
v∈V

J(v). (2.4.11)

Theorem 2.4.1 Let a(., .) be V -elliptic and symmetric. If ℓ ∈ V ′ then the solution, then the

solution of the variational problem (2.4.7) is the unique solution of the minimization problem

(2.4.11).

Proof: Let u be the solution of the variational problem (2.4.7) and let v be in V . Then, for

z = u− v, we have

J(v) = J(z + u) = J(u) + a(z, z) + 2(a(u, z) − ℓ(z))

= J(u) + a(z, z)

≥ J(u) + Ce∥z∥V = J(u) + Ce∥u− v∥V .

Consequently, J(v) ≥ J(u) for v ∕= u.

The concept of V -ellipticity seems to indicate that elliptic boundary value problems cor-

respond V -elliptic bilinear forms. In general elliptic boundary value problems are associated

with V -coercive bilinear forms. The definition of V -coercivity requires another space U such

that V ⊂ U ⊂ V ′. By the Riesz Representation Theorem the last inclusions has sense. The

Hilbert space U is such that V = U and the identity operator i : V → U is continuous, that

is ∥v∥U ≤ C∥v∥V , v ∈ V. In this context, we say that a bilinear form a(., .) : V × V → IR is

V -coercive if

a(v, v) ≥ Ce∥v∥2V − Cc∥v∥2U , v ∈ V, (2.4.12)

where Ce > 0.

The existence and uniqueness of the solution of a variational problem with a V -coercive

bilinear form is established by using the Riesz-Schauder theory.
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2.4.3 Again Variational Problems for Elliptic Equations

Dirichlet homogeneous boundary conditions: We return to the variational problem

(2.4.4) where the bilinear form a(., .) : H1
0 (Ω) × H1

0 (Ω) → IR is defined by (2.4.5). Under the

regularity assumptions aij , bi, c ∈ L∞(Ω), we have

∣a(w, v)∣ ≤ Ĉ
(

∑

ij

∫

Ω
∣ ∂w
∂xi

∂v

∂xj
∣dx+

∑

i

∫

Ω
∣ ∂w
∂xi

v∣dx+

∫

Ω
∣wv∣dx

)

≤ 2nĈ∥w∥H1
0 (Ω)∥v∥H1

0 (Ω)

(2.4.13)

for w, v ∈ H1
0 (Ω), where we used the notation

Ĉ = max{max
ij

max
x∈Ω

∣aij(x)∣,max
i

max
x∈Ω

∣bi(x)∣,max
x∈Ω

∣c(x)∣}.

Consequently, a(., .) is continuous on H1
0 (Ω)×H1

0 (Ω).

The H1
0 (Ω)-ellipticity of a(., .) can be deduced from the uniform ellipticity of the operator

A. In fact, from the condition (2.4.2) we easily obtain

a(u, u) ≥ C̃

n
∑

i=1

∫

Ω
∣ ∂u
∂xi

∣2 dx+

b
∑

i=1

∫

Ω
bi(x)

1

2

∂

∂xi
(u2) dx+

∫

Ω
cu2 dx

= C̃
n
∑

i=1

∫

Ω
∣ ∂u
∂xi

∣2 dx+

∫

Ω

(

c− 1

2

n
∑

i=1

∂bi
∂xi

)

u2 dx.

If we suppose that the coefficient functions c and bi satisfy

c− 1

2

n
∑

i=1

∂bi
∂xi

≥ 0, x ∈ Ω, (2.4.14)

then

a(u, u) ≥ C̃
n
∑

i=1

∫

Ω
∣ ∂u
∂xi

∣2,

and, by the Poincaré-Friedrichs inequality, we conclude that a(., .) is H1
0 (Ω)-elliptic.

As for linear functional ℓ holds the following

ℓ(v) = (f, v) ≤ ∥f∥L2(Ω)∥v∥L2(Ω) ≤ ∥f∥L2(Ω)∥v∥H1
0 (Ω), v ∈ H1

0 (Ω)

the Lax-Milgram Lemma allow us to conclude the next result:

Theorem 2.4.2 If the coefficient functions are such that

aij, bi, c ∈ L∞(Ω)

and the conditions (2.4.2), (2.4.14) hold, then the variational problem (2.4.4) has a unique weak

solution in H1
0 (Ω). Moreover

∥u∥H1
0 (Ω) ≤

1

Ce
∥f∥L2(Ω). (2.4.15)
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Proof: We only prove that the estimate (2.4.15) holds. As

Ce∥u∥2H1
0 (Ω) ≤ a(u, u) = (f, u) ≤ ∥f∥L2(Ω)∥u∥H1

0 (Ω),

we conclude the proof.

Theorem 2.4.2 can be established under weaker smoothness assumptions on bi, i = 1, . . . , n,

than those consider before. In fact, if we only require that bi ∈ L∞(Ω), then we can prove that

a(., .) is H1
0 (Ω)-elliptic. We have

a(v, v) ≥ C̃∣v∣2H1
0 (Ω) − max

i=1,...,n
∥bi∥L∞(Ω)

∣

∣

∣
v∣H1

0 (Ω)∥v∥L2(Ω) + (cv, v).

As

max
i=1,...,n

∥bi∥L∞(Ω)∣v∣H1
0 (Ω)∥v∥L2(Ω) ≤ �2∣v∣H1

0 (Ω) +
1

4�2
max

i=1,...,n
∥bi∥L∞(Ω)∥v∥2L2(Ω),

we obtain

a(v, v) ≥ C̃

2
∣v∣2H1

0 (Ω) +
(C̃

2
− �2

)

∣v∣2H1
0 (Ω) −

1

4�2
∥v∥2L2(Ω) max

i=1,...,n
∥bi∥2L∞(Ω) + (cv, v).

Taking �2 =
C̃

2
we get

a(v, v) ≥ C̃

2
∣v∣2H1

0 (Ω) +

∫

Ω

(

c− 1

2C̃
max

i=1,...,n
∥bi∥2L∞(Ω)

)

v(x)2 dx.

If

c− 1

2C̃
max

i=1,...,n
∥bi∥2L∞(Ω) ≥ 0,

then

a(v, v) ≥ C̃

2
∣v∣2H1

0 (Ω)

and, by the Poincaré-Friedrichs inequality, we conclude that a(., .) is H1
0 (Ω)-elliptic.

An immediate corollary of the Theorem 2.4.2 is the stability of the solution of the variational

problem (2.4.4) with respect to perturbations of f . In fact, let ui, i = 1, 2, be solutions in H1
0 (Ω)

of the variational problem (2.4.4) for fi ∈ L2(Ω), i = 1, 2, respectively. As f = f1 − f2 is in

L2(Ω), then, by Theorem 2.4.2, we have

∥u1 − u2∥H1
0 (Ω) ≤

1

Ce
∥f1 − ℎ2∥L2(Ω).

Thus, if ∥f1 − ℎ2∥L2(Ω) is small, ∥u1 − u2∥H1
0 (Ω) remains small.

Non homogeneous boundary conditions:

Let us consider the PDEs (2.4.1) with the non homogeneous Dirichlet boundary condition

u = g on ∂Ω. (2.4.16)
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From the PDEs (2.4.1), with v ∈ C∞
0 (Ω), we obtain the variational problem (2.4.4). However,

its solution does not satisfy the prescribed boundary condition. This fact leads to the definition

of the variational problem

findu ∈ H1(Ω) such that u = g on ∂Ωand a(u, v) = ℓ(v), ∀v ∈ H1
0 (Ω). (2.4.17)

It can be shown that if u ∈ H1(Ω) is solution of the variational problem (2.4.17), and u is

smooth enough, then u satisfies (2.4.1) and u = g on the boundary ∂Ω.

In order to compute a solution of the variational problem (2.4.17) we start by fixing u0 ∈
H1(Ω) such that u0∣∂Ω = g. Let w be in H1

0 (Ω) and given by w = u − u0. This function is

solution of the variational problem (2.4.4) with

ℓ(v) = (f, v)− a(u0, v), v ∈ H1
0 (Ω). (2.4.18)

As

∣ℓ(v)∣ ≤ (∥f∥L2(Ω) + 2nĈ∥u0∥H1
0 (Ω))∥v∥H1

0 (Ω), v ∈ H1
0 (Ω),

the problem (2.4.4) with ℓ given by (2.4.18) has a unique solution in H1
0 (Ω), provided that the

coefficient functions satisfy

aij, bi, c ∈ L∞(Ω)

and the conditions (2.4.2), (2.4.14) hold. Finally, taking

u = w + u0,

a solution of the variational problem (2.4.17) is obtained.

Poisson’s equation with Neumann boundary conditions:

We introduce now a variational problem associated with the BVP

⎧

⎨

⎩

−Δu+ a0u = f in Ω,

∂u
∂� = g onΩ.

(2.4.19)

From Poisson equation with v ∈ C∞(Ω) ∩H1(Ω), we get

n
∑

i=1

∫

Ω

∂u

∂xi

∂v

∂xi
dx+

∫

Ω
a0uv dx =

∫

Ω
f� dx dy +

∫

∂Ω

∂u

∂�
vds.

Let a(., .) : H1(Ω)×H1(Ω) → IR be defined by

a(v,w) =
n
∑

i=1

∫

Ω

∂v

∂xi

∂w

∂xi
dx+

∫

Ω
a0vw dxv,w ∈ H1(Ω).

We introduce the variational problem:

findu ∈ H1(Ω) such that a(u, v) = ℓ(v), v ∈ H1(Ω), (2.4.20)
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where ℓ : H1(Ω) → IR is given by

ℓ(v) =

∫

Ω
fv dx dy +

∫

∂Ω
gv ds, v ∈ H1(Ω).

A solution of problem (2.4.20) is called weak solution of the boundary value problem (2.4.19).

If the weak solution u is smooth enough, then

a(u, v) = ℓ1(v), ∀v ∈ C∞
0 (Ω), (2.4.21)

with

ℓ1(v) = (f, v), v ∈ H1
0 (Ω).

From (2.4.21), we obtain

(−Δu+ a0u− f, v) = 0,∀v ∈ C∞
0 (Ω).

Thus the PDEs of (2.4.19) holds in L2(Ω).

As

−Δu+ a0u = f

holds in L2(Ω), we get

(
∂u

∂�
− g, v)L2(∂Ω) = 0, ∀v ∈ H1(Ω).

Consequently,
∂u

∂�
= g in L2(∂Ω).

If we assume that a0 is positive, bounded and a0 ≥ �1 > 0 in Ω, then a(., .) is H1(Ω)-elliptic.

For ℓ we get
∣ℓ(v)∣ ≤ ∥f∥L2(Ω)∥v∥L2(Ω) + ∥g∥L2(∂Ω)∥v∣∂Ω∥L2(∂Ω)

≤ C(∥f∥L2 + C∥g∥L2(∂Ω))∥v∥H1(Ω), v ∈ H1(Ω),

which leads to ℓ ∈ H1(Ω)′, provided that f ∈ L2(Ω) and g ∈ L2(∂Ω).

Under the previous assumptions, there exists a unique solution of the variational problem

(2.4.20), in H1(Ω), such that

∥u∥H1(Ω) ≤
(

∥f∥L2(Ω) + C∥g∥L2(∂Ω)

)

.

The Stokes Equations

Let Ω be an open bounded domain. For f = (f1, . . . , fn) ∈ (L2(Ω))n15 let u = (u1, . . . , un)

and p be defined in Ω and such that

⎧











⎨











⎩

−�Δui +
∂p

∂xi
= fi , in Ω, i = 1, . . . , n,

∇.u = 0 , in Ω,

ui = 0 on ∂Ω, i = 1, . . . , n,

(2.4.22)

15(L2(Ω))n represents the space of vector functions v = (v1, . . . , vn) : Ω → IR with vi ∈ L2(Ω), i = 1, . . . , n.
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where � denotes a positive constant. In fluid mechanics the Stokes equations (2.4.22) describe

the flow of an incompressible medium with viscosity � and exterior force f . In (2.4.22), u

represents the velocity field (ui is the velocity of the medium in xi direction) and p the pressure.

The homogeneous Dirichlet boundary condition means that the flow vanishes at the boundary.

Let v be in (C∞
0 (Ω))n. From the first equation of (2.4.22)16 we obtain

�
n
∑

i,j=1

∫

Ω

∂ui
∂xj

∂vi
∂xj

dx−
n
∑

i=1

∫

Ω
p
∂vi
∂xj

dx =
n
∑

i=1

∫

Ω
fivi dx, i = 1, . . . , n.

Then for v such that ∇.v = 0 we get

�

n
∑

i,j=1

∫

Ω

∂ui
∂xj

∂vi
∂xj

dx =

n
∑

i=1

∫

Ω
fivi dx, i = 1, . . . , n. (2.4.23)

This fact induces the introduction of the following space

V = {v ∈ (H1
0 (Ω))

n : ∇.v = 0}.
17 V is closed in (H1

0 (Ω))
n and it is a Hilbert space with respect to the inner product defined in

(H1
0 (Ω))

n.

Let a(., .) : V × V → IR be the bilinear form

a(w, v) = �
n
∑

i,j=1

∫

Ω

∂ui
∂xj

∂vi
∂xj

dx, w, v ∈ V.

Using the Poincaré-Friedrichs inequality, a(., .) is V -elliptic. As f ∈ (L2(Ω))n,

ℓ(v) =

n
∑

i=1

∫

Ω
fivi dx, v ∈ V,

belongs to V ′. The Lax-Milgram Lemma allow us to conclude that there exists a unique solution

of the variational problem:

findu ∈ V : a(u, v) = ℓ(v), v ∈ V. (2.4.24)

As (C∞
0 (Ω))n is not contained in V, it is not possible to give a direct interpretation of the

last variational problem. In order to avoid this difficulty, we define a new variational problem

equivalent to the last one using the next result.

16The inner product in (L2(Ω))n is defined by

(w, v)(L2(Ω))n =

n
∑

i=1

(wi, vi)L2(Ω), w, v ∈ (L2(Ω))n.

17By (H1
0 (Ω))

n we represents the space of vector functions v = (v1, . . . , vn) : Ω → IR with vi ∈ H1
0 (Ω), i =

1, . . . , n. In this space we consider the inner product

(w, v)(H1

0
(Ω))n =

n
∑

i=1

(wi, vi)H1

0
(Ω), w, v ∈ (H1

0 (Ω))
n,

and the norm induced by this inner product. The space (H1
0 (Ω))

n is a Hilbert space with respect to the inner
product (., .)(H1

0
(Ω))n .
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Theorem 2.4.3 Let Ω be a convex bounded open set with boundary ∂Ω smooth enough (∂Ω

piecewise C1) and let ℓ̂ be in [(H1
0 (Ω))

n]′. Then ℓ̂ in null on V if and only if there exists

� ∈ L2(Ω) such that

ℓ̂(v) =

∫

Ω
�∇.v dx∀v ∈ (H1

0 (Ω))
n. (2.4.25)

Two any function �1, �2 differ by a constant.

If ℓ̂ is defined by (2.4.25) with � ∈ L2(Ω), then ℓ̂ ∈ [(H1
0 (Ω))

n]′ and ℓ̂ is null on V.

The crucial point in the proof of the Theorem 2.4.3 is the existence of a function �, in L2(Ω),

such that (2.4.25) holds provide that ℓ̂ is null on V. If �1 and �2 satisfy (2.4.25), then

∀v ∈ (H1
0 (Ω))

n

∫

Ω
(�1 − �2)∇.v dx = −

n
∑

i=1

∫

Ω
v
∂

∂xi
(�1 − �2) dx = 0.

Thus

∀v ∈ (C∞
0 (Ω))n

n
∑

i=1

∫

Ω
v
∂

∂xi
(�1 − �2) dx = 0,

which leads to
∂

∂xi
(�1 − �2) = 0, i = 1, . . . , n.

Finally, from the last equality we deduce �1 − �2 = const. in Ω.

In order to use the Theorem 2.4.3, we define

ℓ̂(v) = a(u, v) − ℓ(v), v ∈ (H1
0 (Ω))

n, (2.4.26)

where u is the solution of the variational problem (2.4.24). We have ℓ̂ ∈ [(H1
0 (Ω))

n]′ and ℓ̂(v) = 0,

for v ∈ V. Then, by the Theorem 2.4.3, there exists a function p ∈ L2(Ω) such that

∫

Ω
pv dx = a(u, v) − ℓ(v), v ∈ (H1

0 (Ω))
n,

that is

a(u, v) −
∫

Ω
pv dx =

n
∑

i=1

∫

Ω
fvi dx, v ∈ (H1

0 (Ω))
n. (2.4.27)

We proved that there exists a unique u ∈ V and p ∈ L2(Ω) such that (2.4.27) holds. Finally, if

(u, p) ∈ (H1
0 (Ω))

n × L2(Ω) is solution of the variational problem (2.4.27), then u is solution of

the variational problem (2.4.24).

2.5 The Ritz-Galerkin Method

2.5.1 The Finite Element Method

Let VH be a subspace of V with dimension NH . The variational problem (2.4.7) defined in

V, can be considered in VH ,

finduH ∈ VH such that a(uH , vH) = ℓ(vH), ∀vH ∈ VH . (2.5.1)
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As VH ⊂ V , then VH equipped with the norm ∥.∥V still is a Banach space. Moreover, a(., .) on

VH × VH has exactly the same properties that it has when defined on V × V . As ℓ ∈ V ′ then

ℓ ∈ V ′
H , and so the variational problem (2.5.1) is well defined.

In certain sense, the solution of the finite dimensional variational problem (2.5.1) is an

approximation for the solution of the problem (2.4.7) being the error defined by eH = u− uH .

The solution of this new variational problem is called Ritz-Galerkin solution and the designed

method is called Ritz-Galerkin method.

Let {�j , j = 1, . . . , NH} be a basis of VH . Then uH =

NH
∑

j=1

�j�j ∈ VH is the Ritz-Galerkin

solution of (2.5.1) if and only if

Nℎ
∑

j=1

a(�j , �i)�j = ℓ(�i) i = 1, . . . , NH ,

if and only if the coefficients �j, j = 1, . . . , NH , satisfy

A� = F, A = [a(�j , �i)], � = [�j], F = [f(�i)]. (2.5.2)

The matrix A, usually called stiffness matrix, is symmetric if and only if a(., .) is symmetric.

The existence and uniqueness of the Ritz-Galerkin solution are characterized in the following

result:

Theorem 2.5.1 Let {�j , j = 1, . . . , NH} be a basis of VH . There exists a unique Ritz-Galerkin

solution of the variational problem (2.5.1) if and only if the linear system (2.5.2) has a unique

solution.

If a(., .) is V -elliptic, then [a(�i, �j)] is nonsingular

Proof: Let us suppose that [a(�j , �i)] is singular. Then there exists [�i] ∕= 0, such that

[a(�j , �i)][�i] = 0,

which implies

a(
∑

j

�j�j ,
∑

i

�i�i) = 0.

As a(., .) is V -elliptic, we deduce that
∑

j

�j�j = 0, and consequently �j = 0 for all j.

Example 26 Let us consider the one dimensional problem

Lu(x) = −(p(x)u′(x))′ + q(x)u(x) = f, x ∈ (a, b), u(a) = u(b) = 0,

with p ∈ C1(a, b), q ∈ C(a, b).

The variational problem is defined by

a(u, v) =

∫ b

a
(pu′v′ + quv) dx, u, v ∈ H1

0 (a, b), (2.5.3)
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and

ℓ(v) =

∫ b

a
fv dx ∈ (H1

0 (a, b))
′, (2.5.4)

where f ∈ L2(a, b).

Let {xi, i = 0, . . . , n} be a nonuniform grid in [a, b], where x0 = a, xb = b and xi−xi−1 = ℎi.

Let VH be the space of piecewise linear functions. The finite dimensional variational problem is:

find uH ∈ VH such that a(uH , vH) = ℓ(vH) for all vH ∈ VH . In order to deduce the linear system

which defines the Ritz-Galerkin solution, we fixe in VH the basis {�i, i = 1, . . . , n − 1},

�i(x) =

⎧













⎨













⎩

x− xi−1

ℎi
x ∈ [xi−1, xi],

−x− xi+1

ℎi+1
x ∈ (xi, xi+1],

0 x ∈ [a, xi−1) ∪ (xi+1, b],

i = 1, . . . , n − 1.

It is clear that VH = ℒ{�i, i = 1, . . . , n − 1} and VH ⊂ H1
0 (a, b). The coefficients of the Ritz-

Galerkin solution uH(x) =

n−1
∑

i=1

�i�i(x), x ∈ [a, b], satisfy

A[�i] = [

∫ b

a
f(x)�i(x) dx],

with

aii =

∫ xi

xi−1

(

p(x)
1

ℎ2i
+ q(x)

(x− xi)
2

ℎ2i

)

dx+

∫ xi+1

xi

(

p(x)
1

ℎ2i+1

+ q(x)
(x− xi+1)

2

ℎ2i+1

)

dx,

ai−1i =

∫ xi

xi−1

(

p(x)(− 1

ℎ2i
)− q(x)

(x− xi−1)(x− xi)

ℎ2i

)

dx,

aii+1 =

∫ xi+1

xi

(

p(x)(− 1

ℎ2i+1

)− q(x)
(x− xi)(x− xi+1)

ℎ2i+1

)

dx.

Example 27 Let us consider the Poisson equation in the unitary square Ω = (0, 1) × (0, 1)

with homogeneous Dirichlet boundary conditions. The weak formulation of this BVP is given by

(2.4.7) with V = H1
0 (Ω),

a(u, v) =

∫

Ω
∇u.∇v dx, ℓ(v) =

∫

Ω
fv dx .

Let VH be the finite dimensional space of V spanned by the functions

�1(x1, x2) = sin(�x1) sin(�x2) , �2(x1, x2) = sin(3�x1) sin(�x2),

�3(x1, x2) = sin(�x1) sin(3�x2) , �4(x1, x2) = sin(3�x1) sin(3�x2).

The matrix of the linear system for the coefficients of the Ritz-Galerkin solution is a diagonal

matrix where

a11 =
�2

2
, a22 = a33 =

5�2

2
, a44 =

9�2

2
.
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As for f = 1,

ℓ(�1) =
4

�2
, ℓ(�2) = ℓ(�3) =

4

3�2
, ℓ(�4) =

4

9�2
,

we get

uH(x1, x2) =
8

�4
(x1, x2) +

8

15�4
(�2(x1, x2) + �3(x1, x2))

+
8

81�4
�4(x1, x2), (x1, x2) ∈ [0, 1] × [0, 1].

If the basis of the finite dimensional space is not fixed according to the previous examples,

the matrix of the Ritz-Galerkin solution is in general full, that is, aij = a(�i, �j) ∕= 0 for

almost every i and j. Therefore, the computational cost of the Ritz-Galerkin solution increases

drastically when the dimension of VH increases. This behaviour can be avoided if the choice of

the basis follows the basic principle followed in the choice of the basis of the previous examples:

the support of �i has a nonempty intersection with the support of �j just for few j. Such property

induces a sparse structure in the matrix of the Ritz-Galerkin solution. For instance, in Example

26, the basis {�i} was defined considering the sets [ai, bi], i = 0, . . . , n, such that

[a, b] = ∪n
i=0[ai, bi], (ai, bi) ∩ (aj , bj) = ∅, i ∕= j,

and, for each i, the set of all j such that

supp(�i) ∩ supp(�j) ∕= ∅

is very ”small”.

The domain Ω is partitioned into small pieces, the so called finite elements, and the basis

functions are defined in such a way that their supports are composed by a collection of finite

elements. In this case, the Ritz-Galerkin method is usually called Finite Element method.

The weak formulations of the second order elliptic equations requires that V = H1
0 (Ω) or

V = H1(Ω). For a polygonal domain of IR2, we introduce the finite dimensional subspace VH of

V fixing its basis with the previous requirements.

Let Ω be an open polygonal domain of IR2. The partition of Ω, {Ωi, i = 1, . . . , P}, is called
an admissible partition if the following conditions are fulfilled:

P0) Ωi, i = 1, . . . , P, are open sets,

P1) Ωi ∩ Ωj = ∅, i ∕= j,

P2) ∪iΩi = Ω,

P3) Ωi ∩ Ωj is either empty or a common side or a common edge.

The pieces Ωi, i = 1, . . . , P, are the finite elements.

1. Linear elements for Ω ⊂ IR2

Let us consider a triangulation TH of Ω with the triangles T1, . . . , Tt. This triangulation

is admissible if {Ti, i = 1, . . . , t} satisfies the conditions P0, P1 , P2 and P3. The edges of
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the triangles of TH define the nodes of the partition. These nodes can be interior nodes or

boundary nodes. Let NH the number of interior nodes. We use the notation

VH :=
{

vH ∈ C0(Ω) : vℎ = 0 on ∂Ω,

vℎ(x1, yx2) = a0 + a1x1 + a2x2, (x1, x2) ∈ T, T ∈ TH} .

We point out that if vH ∈ VH , then, in T ∈ TH , vH is uniquely determined by the values

vH(x(1)), vH(x(2)) and vH(x(3)), where x(i), i = 1, 2, 3, are the edges of T. Moreover, vH is

continuous in Ω, and the partial derivatives of vH are constant on each triangle presenting,

eventually, jumps on the common sides of the triangles. Thus VH ⊂ H1
0 .

Let x(i), i = 1, . . . , NH , be the interior nodes of the triangulation TH . Let �i be associated
with the vertex x(i) such that

�i(x
(i)) = 1, �i(x

(j)) = 0, j ∕= i.

For instance, if T has vertices x(i) = (x
(i)
1 , x

(i)
2 ), x(j) = (x

(j)
1 , x

(j)
2 ) and x(m) = (x

(m)
1 , x

(m)
2 ),

then

�i(x1, x2) =
(x1 − x

(ij)
1 )(x

(m)
2 − x

(j)
2 )− (x2 − x

(j)
2 )(x

(m)
1 − x

(j)
1 )

(x
(i)
1 − x

(j)
1 )(x

(m)
2 − x

(j)
2 )− (x

(i)
2 − x

(j)
2 )(x

(m)
1 − x

(j)
1 )

, (x1, x2) ∈ T,

and �i = 0 on all triangles that do not have x(i) as a vertex.

The functions �i, i = 1, . . . , NH , have the properties:

(a) {�i, i = 1, . . . , NH} is a basis of VH .

(b) supp(�i) = ∪{T ∈ TH : T has x(i) as a vertex }.
(c) If the corners x(i) and x(j) are connected by a side, then Ωi ∩ Ωj = ∅.

As a consequence of the definition of TH and of {�i, i = 1, . . . , NH}, the stiffness matrix

[a(�i, �j)] is sparse. In each row i, the entries of the matrix, eventually, not null are in the

j columns where j is such that x(i) and x(ij) are connected by a side. For instance, for the

bilinear form (2.4.5) with bi = 0, i = 1, . . . , n, we have

a(�i, �j) =
∑

ℓ,k

∫

Ω
aℓk

∂�i
∂xℓ

∂�j
∂xk

dx+

∫

Ω
a0�i�j dx

=
∑

T∈Tℎ

∑

ℓ,k

∫

T
aℓk

∂�i
∂xℓ

∂�j
∂xk

dx+

∫

T
a0�i�j dx

=
∑

m∈I

(

∑

ℓ,k

∫

Tm

aℓk
∂�i
∂xℓ

∂�j
∂xk

dx+

∫

Tm

a0�i�j dx
)

,

where Tm,m ∈ I, is the set of all triangles with x(i) as a vertex.

The integration

∫

Tm

dx1 dx2 seems a difficulty of the computation of the finite element

solution. However, for each m, we can express

∫

Tm

dx1 dx2 as an integral over the reference
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triangle Δ defined by the points (0, 0), (0, 1) and (1, 0). In order to show that, let us suppose

that T is an arbitrary triangle of TH with the vertices: x(1), x(2) , x(3). Let ΨT be the

transformation

Ψ : Δ → T, Ψ(�, �) = x(1) + �(x(2) − x(1)) + �(x(3) − x(1)), (�, �) ∈ Δ. (2.5.5)

If � is defined on T , then

�(x, y) = �(Ψ(�, �) = �̂(�, �).

The partial derivatives of � are now given in function of the partial derivatives of �̂ with

respect to � and �. We have

∂�

∂x1
=
∂�̂

∂�

∂�

∂x1
+
∂�̂

∂�

∂�

∂x1
.

For
∂�

∂x2
holds an analogous representation. Thus we get

∇x1,x2� = J(Ψ−1)t∇�,��̂,

where

J(Ψ−1) =

⎡

⎢

⎣

∂�

∂x1

∂�

∂x2
∂�

∂x1

∂�

∂x2

⎤

⎥

⎦
.

Moreover, we can compute �i using the basis functions on the reference triangle Δ. In

fact, we have

�1 = �̂0,0
(

Ψ−1
)

inT, �̂0,0(�, �) = 1− � − �, (�, �) ∈ Δ,

�2 = �̂1,0
(

Ψ−1
)

inT, �̂1,0(�, �) = �, (�, �) ∈ Δ,

�3 = �̂0,1
(

Ψ−1
)

inT, �̂0,1(�, �) = �, (�, �) ∈ Δ,

and

∇x1,x2�i = J(Ψ−1)∇�,��̂i. (2.5.6)

For instance let us consider

a(u, v) = (∇u,∇v), u, v ∈ H1
0 (Ω).

On the evaluation of a(�i, �j) we do not need to know explicitly �i and �j as functions on

the triangles of TH . In fact, we have

a(�i, �j) =

∫

Ω
∇x1,x2�i∇x1,x2�jdx1dx2

=
∑

T∈Tℎ

∫

T
∇x1,x2�i∇x1,x2�jdx1dx2,
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where
∫

T
∇x1,x2�i∇x1,x2�jdx1dx2

=

∫

T�,�

∇x1,x2�i(Ψ(�, �))∇x1,x2�j(Ψ(�, �))∣J( )∣ d�d�

=

∫

T�,�

J(Ψ−1)t∇�,��̂i(�, �))J(Ψ
−1)t∇�,��̂j(�, �)∣J( )∣ d�d�.

In contrast to the finite difference methods, finite element discretization offers us the

possibility to use, locally, triangles of different sizes.

2. Bilinear elements for Ω ⊂ IR2

Let Ω be a rectangle or an union of rectangles. Let ℛH be the set {R1, . . . , RNH
} of

rectangles of Ω. If the conditions Pi, i = 0, 1, 2, 3, hold with Ωi = Ri, thenℛH is admissible

partition of Ω.We point out that this partition can be induced by the two grids {x1,i} and

{x2,j}.
If homogeneous Dirichlet boundary conditions are considered in the differential problem,

then we introduce the following space of bilinear functions

VH :=
{

vℎ ∈ C0(Ω) : vℎ = 0on ∂Ω

vℎ(x1, x2) = (a0 + a1x1)(b0 + b1x2), (x1, x2) ∈ R, R ∈ ℛℎ} .

Let vH be a function in VH . In R ∈ ℛH , vH is univocally determined by the values

vH(x1,i, x2,j), vH(x1,i+1, x2,j), vH(xi, x2,j+1) and vH(x1,i+1, x2,j+1),

vH(x1, x2) = vH(x1,i, x2,j)Φi,j(x1, x2) + vH(x1,i, x2,j+1)Φi,j+1(x1, x2)

+ vH(x1,i+1, x2,j)Φi+1,j(x1, x2) + vH(x1,i+1, x2,j+1)Φi+1,j+1(x1, x2),

where

Φp,q(x1, x2) = �q(x1)�q(x2), p = i, i+ 1, q = j, j + 1,

and �p(x1), �q(x2) are the ”hat” functions for x1,p and x2,q, respectively.

We summarize the properties of VH .

(a) VH ⊂ H1
0 (Ω)

(b) {Φi,j , (i, j) : (x1,i, x2,j) is an interior node} is a basis of VH ,

(c) supp(Φi,j) = Ω ∩ [xi−1, xi+1]× [yj−1, yj+1],

(d) If (x1,i, x2,j) and (x1,ℓ, x2,p) are vertices of the same rectangle, then supp(Φi,j) ∩
supp(Φℓ,p) ∕= ∅. Else supp(Φi,j) ∩ supp(Φℓ,p) = ∅.

A rectangular partition of a domain Ω requires that Ω is a rectangle or an union of

rectangles. If Ω is a polygonal domain such that at least one side is not parallel to the

axis, then the rectangles should be replaced by parallelograms.

A collection PH of parallelogram Πi is an admissible partition of Ω if the conditions Pi,

i = 0, 1, 2, 3, hold with Ωi = Πi. We suppose that PH has NH interior nodes.
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We extended now the concept of bilinear function defined on a rectangle to a parallelogram.

Let x(1), x(2), x(3) and x(4) be the vertices of the parallelogram Π and let Ψ be defined as

follows
Ψ : [0, 1] × [0, 1] −→ Π

(�, �) → x(1) + �(x(2) − x(1)) + �(x(4) − x(1)).

We have Ψ(0, 0) = x(1), Ψ(1, 0) = x(2),Ψ(0, 1) = x(4),Ψ(1, 1) = x(3).

We define a bilinear function � in Π by

�(x1, x2) = �̂(Ψ−1(x1, x2)),

where

�̂(�, �) = (�+ ��)(
 + ��).

Let �i, i = 1, . . . , 4, be the bilinear functions in Π such that �i(x
(i)) = 1 and �i(x

(j)) = 0

for j ∕= i. Then
�1 = �̂0,0

(

Ψ−1
)

inΠ, �̂0,0(�, �) = (1− �)(1− �),

�2 = �̂1,0
(

Ψ−1
)

inΠ, �̂1,0(�, �) = �(1− �),

�3 = �̂1,1
(

Ψ−1
)

inΠ, �̂1,1(�, �) = ��,

�4 = �̂0,1
(

Ψ−1
)

inΠ, �̂0,1(�, �) = (1− �)�,

for (�, �) ∈ [0, 1] × [0, 1].

We introduce now the space of the bilinear functions based on the partition Pℎ :

VH :=
{

vH ∈ C0(Ω) : vH = 0on ∂Ω

vH is bilinear inΠ, Π ∈ Pℎ} .

Then

(a) VH ⊂ H1
0 (Ω),

(b) {�i, i = 1, . . . , NH}, is a basis of VH ,

(c) supp(�i) is the union of all parallelograms that have x(i) as a vertex,

(d) supp(�i)∩ supp(�j) ∕= ∅ if and only if x(i) and x(j) are vertices of the same parallelo-

gram.

2.5.2 Error Estimates

Let u be the solution of the variational problem (2.4.7) and let uH its Ritz-Galerkin approx-

imation given by problem (2.5.1). We study now the discretization error eH = u− uH .

Theorem 2.5.2 [Céa’s Theorem] Let V be a Hilbert space and let ℓ be in V ′. Let u be the so-

lution of the variational problem (2.4.7) and uH be the Ritz-Galerkin solution defined by (2.5.1).

If a(., .) is continuous and V -elliptic, then

∥u− uH∥V ≤ (1 +
Cc

Ce
)dist(u, Vℎ), (2.5.7)

where dist(u, Vℎ) = inf
vℎ∈Vℎ

∥u− vℎ∥V .
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Proof: For wH ∈ VH we have

∥u− uH∥V ≤ ∥u− wH∥V + ∥wH − vH∥V . (2.5.8)

As

a(u, vH) = ℓ(vH), vH ∈ VH , a(uH , vH) = ℓ(vH), vH ∈ VH ,

we get

a(u− uH , vH) = 0, vH ∈ VH .

Thus

a(wH − uH , vH) = a(wH − u, vH) + a(u− uH , vH) = a(wH − u, vH).

Let vH be defined by vH =
1

∥wH − uH∥V
(wH − uH). As a(., .) is continuous, we deduce

a(wH − u, vH) ≤ Cc∥wH − u∥H .

Otherwise, we also have

a(wH − uH ,
wH − uH

∥wH − uH∥V
) =

1

∥wH − uH∥a(wH − uH , wH − uH) ≥ Ce∥wH − uH∥,

because a(., .) is V -elliptic. This last inequality enable us to get the upper bound

∥wH − uH∥V ≤ Cc

Ce
∥u− wH∥V . (2.5.9)

Finally, from (2.5.8) and (2.5.9), we obtain (2.5.7).

Error estimates for piecewise linear finite element solution: one dimensional case

We apply Céa’s Theorem to establish an upper bound for the error of the Ritz-Galerkin

solution defined in Example 26. We have

dist(u, Vℎ) ≤ ∥u− uI∥H1
0 (a,b)

,

where uI represents the piecewise linear interpolator of u. If u ∈ C2(a, b), then

∣u(x)− uI(x)∣ ≤
1

2
max

x∈[xi,xi+1]
(x− xi)(xi+1 − x)∥u′′∥∞ =

ℎ2i+1

8
∥u′′∥∞, x ∈ [xi, xi+1].

The last estimate does not allow us to establish an estimate for dist(u, Vℎ). In order to get an

estimate for ∥u− uI∥H1
0 (a,b)

we study ∥(u− uI)
′∥L2(a,b). We have

∥(u− uI)
′∥2L2(a,b) =

∫ b

a
(u− uI)

′(x) dx

=

n−1
∑

j=0

∫ xj+1

xj

(u− uI)
′(x)2 dx

=

n−1
∑

j=0

1

ℎj+1

∫ 1

0
v′(�)2 d�,

(2.5.10)
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where x = xj + �ℎj+1, and v(�) = (u− uI)(xj + �ℎj+1).

We prove now that
∫ 1

0
v′(�)2 d� ≤

∫ 1

0
v′′(�)2 d�, (2.5.11)

holds. In order to prove this inequality, we point out that v(x) = u(x)−uI (x), x ∈ [a, b], satisfies

v′(y) =

∫ y

�
v′′(
) d
, (2.5.12)

where � ∈ (a, b) is such that v′(�) = 0. The representation (2.5.12) leads to

∣v′(y)∣ ≤ ∣y − �∣ 12
(∫ 1

0
v′′(y)2 dy

)

1
2

,

which allow us to conclude (2.5.10).

Combining (2.5.10) and (2.5.11) we get

∥(u− uI)
′∥2L2 =

n−1
∑

j=1

1

ℎj+1

∫ 1

0
v′′(�)2 d�

=

n−1
∑

j=1

ℎ2j+1

∫ xj+1

xj

(u− uI)
′′(x)2 dx

≤ ℎ2

2 ∥u′′∥2L2 ,

where ℎ = maxi ℎi.

From the Poincaré-Friedrichs inequality we conclude that

∥u− uI∥H1
0 (a,b)

≤ ℎ

2
∥u′′∥L2 ,

and then, applying Céa’s Theorem, we obtain the error estimate

∥u− uH∥H1
0 (a,b)

≤ ℎ∥u′′∥L2 , (2.5.13)

provided that u ∈ H2(a, b).

We proved the following convergence result:

Theorem 2.5.3 Let uℎ be the piecewise linear finite element solution defined by (2.5.3) and

(2.5.4), where 0 < �0 ≤ p ≤ �1, q ≥ 0. Then the error u − uℎ satisfies (2.5.13) provided that

u ∈ H2(a, b) ∩H1
0 (a, b).

For the particular case p = 1, q = 0, it can be shown that

∥u− uℎ∥L2 ≤ Cℎ2∥u′′∥L2 . (2.5.14)

In fact, let w be the solution of the auxiliary problem

−w′′ = u− uℎ in (0, 1), w(0) = w(1) = 0.
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We have
∥u− uH∥2L2 = (u− uℎ, u− uℎ)

= (u− uℎ,−w′′)

=

∫ 1

0
(u− uℎ)

′w′ dx

= a(u− uℎ, w)

= a(u− uℎ, w − v) ,∀v ∈ Vℎ

≤ ∥u− uℎ∥H1
0 (a,b)

∥w − v∥H1
0 (a,b)

,∀v ∈ Vℎ.

Thus

∥u− uℎ∥L2 ≤ ∥u− uℎ∥1
∥w − v∥H1

0 (a,b)

∥w′′∥L2

∀v ∈ Vℎ.

If we consider v = wℎ as the piecewise linear finite element solution we have

∥w − wℎℎ∥H1
0 (a,b)

≤ ℎ∥w′′∥L2 ,

which implies

∥u− uℎ∥L2 ≤ ℎ∥u− uℎ∥H1
0 (a,b)

.

We finally conclude (2.5.41) using the estimate

∥u− uℎ∥H1
0 (a,b)

≤ Cℎ∥u′′∥L2 .

Error estimates for piecewise linear finite element solution: two dimensional case

Let us consider the Poisson equation defined on the unitary square Ω = (0, 1) × (0, 1) with

homogeneous Dirichlet boundary condition. We recall that the weak formulation of this problem

is
findu ∈ H1

0 (Ω) : a(u, v) = ℓ(v), ∀v ∈ H1
0 (Ω),

a(w, v) =

∫

Ω
∇w.∇v dx, w, v ∈ H1

0 (Ω), ℓ(v) =

∫

Ω
fv dx, v ∈ H1

0 (Ω).
(2.5.15)

In order to construct the finite element approximation we define the finite element solution, we

triangulate the the domain Ω considering the rectangular grid {(x1,i, x2,j), i, j = 0, . . . , N} with

x1,0 = x2,0 = 0, x1,N = x2,N = 1, x1,i − x2,i−1 = x2,j − x2,j−1 = ℎ(see Figure 9).
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Figure 9: Triangulation induced by a rectangular grid.

For each (x1,i, x2,j) in Ω we associate a basis function �ij defined by

�ij(x1, x2) =

⎧











































⎨











































⎩

1− x1 − x1,i
ℎ

− x2 − x2,j
ℎ

, (x1, x2) ∈ 1,

1− x2 − x2,j
ℎ

, (x1, x2) ∈ 2,

1− x1 − x1,i
ℎ

, (x1, x2) ∈ 3,

1 +
x1 − x1,i

ℎ
+
x2 − x2,j

ℎ
, (x1, x2) ∈ 4,

1 +
x2 − x2,j

ℎ
, (x1, x2) ∈ 5,

1− x1 − x1,i
ℎ

, (x1, x2) ∈ 6,

0 otherwise,

(see Figure 9).

For VH = ℒ{�ij , i, j = 1, . . . , N − 1} we defined the Ritz-Galerkin solution

finduH ∈ VH : a(uH , vH) = ℓ(vH), ∀vH ∈ VH ,

a(wH , vH) =

∫

Ω
∇wH .∇vH dx, wH , vH ∈ VH , ℓ(v) =

∫

Ω
fvH dx, vH ∈ VH .

(2.5.16)

According to Céa’s Lemma

∥u− uH∥H1
0 (Ω) ≤ ∥u− uI∥H1

0 (Ω), (2.5.17)

where uI denotes the continuous piecewise linear interpolant of the function u on the set Ω given

by

uI(x1, x2) =

N−1
∑

i,j=1

u(x1,i, x2,j)�ij(x1, x2), (x1, x2) ∈ Ω.
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We estimate in what follows

∣u− uI ∣2H1
0 (Ω) = ∣eI ∣2H1

0 (Ω) =
∑

T

(∫

T

( ∂eI
∂x1

)2
dx+

∫

T

(∂eI
∂x2

)2
dx

)

. (2.5.18)

Let us suppose that

T = {(x1, x2) : x1,i ≤ x1 ≤ x1,i+1, x2,j ≤ x2 ≤ x2,j+1 + x1,i − x1}

and we define the transformation from the reference triangle Δ = {(�, �) : 0 ≤ � ≤ 1, 0 ≤ � ≤
1− �} on T by

x1 = x1,i + �ℎ, x2 = x2,j + �ℎ, 0 ≤ �, � ≤ 1.

Thus
∫

T

( ∂eI
∂x1

)2
dx =

∫

Δ
∣∂û
∂�

− û(1, 0) + û(0, 0)∣2 d�d�

=

∫ 1

0

∫ 1−�

0
∣∂û
∂�

−
∫ 1

0

∂û

∂�
d�∣2 d�d�

=

∫ 1

0

∫ 1−�

0
∣
∫ 1

0

(∂û

∂�
(�, �) − ∂û

∂�
(�, �)

)

d�d�d�

+

∫ 1

0

∫ 1−�

0

∫ 1

0

(∂û

∂�
(�, �)− ∂û

∂�
(�, 0)

)

d�∣2d�d�

=

∫ 1

0

∫ 1−�

0
∣
∫ 1

0

∫ �

�

∂2û

∂�2
(�, �)d� d� +

∫ 1

0

∫ �

0

∂2û

∂�∂�
(�, �)d�d�∣2d�d�

≤ 2

∫ 1

0

∫ 1−�

0

∫ 1

0

∫ �

�
∣∂

2û

∂�2
(�, �)∣2d� d�d�d�

+2

∫ 1

0

∫ 1−�

0

∫ 1

0

∫ �

0
∣ ∂

2û

∂�∂�
(�, �)∣2d�d�d�d�

≤ 2

∫ 1

0

∫ 1

0
∣∂

2û

∂�2
(�, �)∣2d�d� + 2

∫ 1

0

∫ 1

0
∣ ∂

2û

∂�∂�
(�, �)∣2d�d�

= 2

∫ x1,i+1

x1,i

∫ x2,j+1

x2,j

∣∂
2u

∂x21
∣2(ℎ2)2ℎ−2dx+ 2

∫ x1,i+1

x1,i

∫ x2,j+1

x2,j

∣ ∂2u

∂x2∂x1
∣2(ℎ2)2ℎ−2dx.

Therefore
∫

T

( ∂eI
∂x1

)2
dx ≤ 2ℎ2

∫ x1,i+1

x1,i

∫ x2,j+1

x2,j

(

∣∂
2u

∂x21
∣2 + ∣ ∂2u

∂x2∂x1
∣2
)

dx. (2.5.19)

Similarly
∫

T

( ∂eI
∂x2

)2
dx ≤ 2ℎ2

∫ x1,i+1

x1,i

∫ x2,j+1

x2,j

(

∣∂
2u

∂x22
∣2 + ∣ ∂2u

∂x1∂x2
∣2
)

dx. (2.5.20)

Substituting (2.5.19) and (2.5.20) into (2.5.18) we obtain

∣u− uI ∣2H1
0 (Ω) ≤ 2ℎ2

∫

Ω

(

∣∂
2u

∂x21
∣2 + ∣ ∂2u

∂x2∂x1
∣2 + ∣ ∂2u

∂x1∂x2
∣2 ∂

2u

∂x22
∣2
)

dx. (2.5.21)

We proved the next result:
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Theorem 2.5.4 Let u be the weak solution of the Poisson equation with homogeneous Dirichlet

boundary condition defined by (2.5.15) and let uH be the piecewise linear finite element solution

defined by (2.5.16). Suppose that u ∈ H2(Ω) ∩H1
0 (Ω), then

∣u− uH ∣H1
0 (Ω) ≤

√
2ℎ∣u∣H2(Ω). (2.5.22)

Since u ∈ H1
0 (Ω) and uI ∈ H1

0 (Ω), by the Poincaré-Friedrichs inequality we have

∥u− uI∥2L2(Ω) ≤
1

4
∥u− uI∥2H1

0 (Ω), (2.5.23)

which implies

∥u− uI∥2H1
0 (Ω) ≤

5

4
∥u− uI∥2H1

0 (Ω). (2.5.24)

Taking into account the estimates (2.5.21), (2.5.24) and (2.5.17), we conclude the proof of the

next result:

Corollary 8 Let u be the weak solution of the Poisson equation with homogeneous Dirichlet

boundary condition defined by (2.5.15) and let uH be the piecewise linear finite element solution

defined by (2.5.16). If u ∈ H2(Ω) ∩H1
0 (Ω), then

∥u− uH∥H1
0 (Ω) ≤

√

5

2
ℎ∣u∣H2(Ω). (2.5.25)

The error estimate (2.5.25) indicates that the error in L2 norm between u and its piecewise

linear finite element solution is of the size O(ℎ). As in one dimensional case, we prove in what

follows that in fact we have

∥u− uH∥L2(Ω) ≤ 2ℎ2∣u∣H2(Ω). (2.5.26)

It is obvious that if w ∈ H2(Ω) ∩H1
0 (Ω), then

∥Δw∥2L2(Ω) =

∫

Ω
(
∂2w

∂x21
)2dx+ 2

∫

Ω
(
∂2w

∂x21

∂2w

∂x2
)2dx+

∫

Ω
(
∂2w

∂x22
)2dx.

As w = 0 on ∂Ω, we have

∫

Ω
(
∂2w

∂x21

∂2w

∂x2

2

)2dx =

∫

Ω

∂2w

∂x1∂x2

∂2w

∂x1∂x2
=

∫

Ω
∣ ∂2w

∂x1∂x2
∣2 dx,

and then

∥Δw∥2L2(Ω) =

∫

Ω

(

∣∂
2w

∂x21
∣2 + 2∣ ∂2w

∂x1∂x2
∣2 + ∣∂

2w

∂x22
∣2

= ∣w∣2H2(Ω).

Given g ∈ L2(Ω) let wg ∈ H1
0 (Ω) be the weak solution of the boundary value problem

⎧

⎨

⎩

−Δwg = g in Ω,

wg = 0 on ∂Ω .
(2.5.27)
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Then wH ∈ H2(Ω) ∩H1
0 (Ω) and

∣wg∣H2(Ω) = ∥Δwg∥L2(Ω) = ∥g∥L2(Ω).

Let g be in L2(Ω) and let uH be the piecewise linear finite element solution introduced before.

As consequence of the Cauchy-Schwarz inequality we have

(u− uH , g) ≤ ∥g∥L2(Ω)∥u− uH∥L2(Ω).

Therefore

∥u− uH∥L2(Ω) = sup
g∈L2(Ω)

(u− uH , g)

∥g∥L2(Ω)
. (2.5.28)

If we consider g fixed in L2(Ω), then the weak solution wg of the differential problem (2.5.27),

is defined by
a(wg, v) = ℓg(v), ∀v ∈ H1

0 (Ω),

a(wg, v) =

∫

Ω
∇wg.∇v dx, ℓg(v) =

∫

Ω
gv dx, v ∈ H1

0 (Ω)
(2.5.29)

belongs to H1
0 (Ω). Let wg,H be the piecewise linear finite element approximation defined by

a(wg,H , vH) = ℓg(vH), ∀vH ∈ VH . (2.5.30)

For the error wg − wg,H holds the following

∣wg − wg,H ∣H1
0 (Ω) ≤

√
2ℎ∣wg∣H2(Ω),

and therefore

∣wg − wg,H ∣H1
0 (Ω) ≤

√
2ℎ∣g∣H2(Ω). (2.5.31)

As wg,H ∈ VH , then

a(u− uH , wg,H) = 0,

and we get
(u− uH , g) = (g, u − uH)

= ℓg(u− uH)

= a(wg, u− uH)

= a(u− uH , wg)

= a(u− uH , wg − wg,H)

≤ ∣u− uH ∣H1
0 (Ω)∣wg − wg,H ∣H1

0 (Ω).

(2.5.32)

Considering the estimates (2.5.22), (2.5.31), we deduce

(u− uH , g) ≤ 2ℎ2∣u∣H2(Ω)∥g∥L2(Ω). (2.5.33)

Substituting (2.5.33) into the right-hand side of (2.5.28) we obtain the desired estimate

∥u− uH∥L2(Ω) ≤ 2ℎ2∣u∣H2(Ω). (2.5.34)
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The proof presented above is called Aubin-Nitsche duality arguments.

The piecewise linear finite element solution based on the triangulation illustrated in Figure

9 was studied. We prove in what follows that the same estimates hold for a general polygonal

domain with a more general triangulation.

Theorem 2.5.5 Let T = {(�, �) : �, � ≥ 0, � + � ≤ 1}. If u ∈ H2(T ), then

∥u∥2H2(T ) ≤ C

⎛

⎝

∑

x∈V (T )

u(x)2 +
∑

∣�∣=2

∥D�u∥2L2(T )

⎞

⎠ , (2.5.35)

where V (T ) denotes the set of vertices of T.

Proof:

∙ Let us consider the bilinear form a(., .) : H2(Ω)×H2(Ω) → IR defined by

a(u, v) =
∑

x∈V (T )

u(x)v(x) +
∑

∣�∣=2

(D�u,D�v)L2(T ).

As the identity operator id : H2(T ) → C0(T ) is continuous, then a(., .) is continuous.

In fact, using the continuity of the identity operator we have ∣w(x)∣ ≤ C∥w∥H2(T ) for

w = u, v, which implies

∣a(u, v)∣ ≤ (1 + 3C)∥u∥H2(Ω)∥v∥H2(Ω).

The bilinear form a(., .) is coercive, that is

a(u, u) ≥ C1∥u∥2H2(T ) − C2∥u∥2L2(T ), u ∈ H2(T ), (2.5.36)

where C1 denotes a positive constant.

In order to prove (2.5.36) we start by point out that

a(u, u) ≥
∑

∣�∣=2

∥D�u∥2L2(T ) = ∥u∥2H2(T ) − ∥u∥2H1(T ).

As id : H2(T ) → H1(T ) is compact18, for � > 0 there exists 
 such that 19

∥u∥2H1(T ) ≤ �∥u∥2H2(T ) + 
∥u∥2L2(T ).

Then, for � fixed such that � < 1, we obtain (2.5.36) with C1 = 1− �.

18Every bounded sequence in H2(Ω) has a subsequence converging in H1(Ω)
19Theorem: Let U ⊂ V ⊂W be Banach spaces such that the operators id : U → V id : V →W are continuous

being the first one compact. Then, for � > 0, there exists C� > 0 such that ∥u∥V ≤ �∥u∥U + C�∥u∥W . (Lemma
6.5.18, [12]).
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∙ Let A : H2(T ) → H2(T )′ be defined by Aw = a(w, .), w ∈ H2(T ). As a(., .) satisfies

(2.5.36) and it is continuous, then A has inverse or � = 0 is eigenvalue of A.20

Let us suppose that � = 0 is an eigenvalue of A and let 0 ∕= e ∈ H2(T ) be an eigenfunction.

As a(e, e) = 0 then
∑

x∈V (T )

e(x)2 = 0 and
∑

∣�∣=2

∥D�e∥2L2(T ) = 0. From the last equality, e is

linear in T which leads to e = 0 on T , because e(x) = 0 for x ∈ V (T ).

As � = 0 is not an eigenvalue of A, we conclude that A has inverse and then a(., .) is

H2(Ω)-elliptic.21

The previous theorem is extended in the following result for the triangle Tℎ = ℎT.

Theorem 2.5.6 If u ∈ H2(Tℎ), then, for ∣�∣ ≤ 2,

∥D�u∥2L2(Tℎ)
≤ C

⎛

⎝ℎ2−2∣�∣
∑

x∈V (Tℎ)

u(x)2 + ℎ4−2∣�∣
∑

∣�∣=2

∥D�u∥2L2(T )

⎞

⎠ , (2.5.37)

holds.

Proof: Let u be in H2(Tℎ) and let us consider the transformation  : T → Tℎ defined by

(x1, x2) =  (�, �) = (ℎ�, ℎ�) and by v(�, �) we represent u(ℎ�, ℎ�). We have v ∈ H2(T ) and

∥D�u∥2L2(Tℎ)
=

∫

Tℎ

∣D�u∣2 dx

= ∣det(J( ))∣
∫

T
∣D�

�,�u∣2 d�d�

= ℎ2
∫

T
ℎ−2∣�∣∣D�v∣2 d�d�

= ℎ2−2∣�∣∥D�v∥2L2(T ).

From Theorem 2.5.5 we get

∥D�v∥2L2(T ) ≤ C

⎛

⎝

∑

x∈V (T )

v(x)2 +
∑

∣�∣=2

∥D�v∥2L2(T )

⎞

⎠ ,

and the proof of (2.5.37) is concluded because

∥D�v∥2L2(T ) = ℎ2∥D�u∥2L2(Tℎ)
,

for ∣�∣ = 2.

The generalization of the last result for an arbitrary triangle is the aim of the next theorem.

20Theorem: Let V and U be Hilbert spaces such that id : V → U is continuous and compact. Let a(., .) be a
continuous bilinear form such that

a(u, u) ≥ C1∥u∥
2
V − C2∥u∥U , u ∈ V,

and let A be the operator A : V → V ′ such that Aw = a(w, .), w ∈ V. Then � = 0 is eigenvalue of A or
A−1 ∈ ℒ(V ′, V ).(Theorem 6.5.15, [12]).

21Let A : V → V ′ be defined by Aw = a(w, .), w ∈ V. If a(., .) is continuous, symmetric, nonnegative and
A−1 ∈ ℒ(V ′, V ), then a(., ) is V-elliptic (Lemma6.5.2, Exercise 6.5.6 c) [12]).
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Theorem 2.5.7 Let T̃ be a triangle with the side lengths less or equal to ℎmax and with the

interior angles greater or equal to �0 > 0. For u ∈ H2(T̃ ), and ∣�∣ ≤ 2,

∥D�u∥2
L2(T̃ )

≤ C(�0)

⎛

⎝ℎ2−2∣�∣
max

∑

x∈V (T̃ )

u(x)2 + ℎ4−2∣�∣
max

∑

∣�∣=2

∥D�u∥2
L2(T̃ )

⎞

⎠ , (2.5.38)

holds.

Proof: Let x(1), x(2) and x(3) be the vertices of the triangle T̃ . We consider the triangle

Tℎmax defined as in Theorem 2.5.6 and the transformation  : Tℎmax → T̃ given by

 (�, �) = x(1) +
�

ℎmax
(x(2) − x(1)) +

�

ℎmax
(x(3) − x(1)).

For u ∈ H2(T̃ ), the function v(�, �) = u( −1(�, �)) belongs to H2(Tℎmax). We also have

∥D�u∥2
L2(T̃ )

= ∣det(J( ))∣
∫

Tℎmax

∣D�
xu( 

−1(�, �)∣2 d�d�,

where

∣det(J( ))∣ = ∣(x
(2)
1 − x

(1)
1 )(x

(3)
2 − x

(1)
2 )− (x

(3)
1 − x

(1)
1 )(x

(2)
2 − x

(1)
2 )

ℎ2max

∣.

As ∣det(J( ))∣ ∈ [
1

k(�)
, k(�0)] we get

∥D�u∥2
L2(T̃ )

≤ C1(�0)
∑

∣�′∣=∣�∣

∥D�′

�,�v∥2L2(Tℎmax )
.

Finally, applying Theorem 2.5.6 we obtain

∥D�′

�,�v∥2L2(Tℎmax )
≤ C

⎛

⎝ℎ2−2∣�∣
max

∑

x∈V (Tℎmax )

v(x)2 + ℎ4−2∣�∣
max

∑

∣�∣=2

∥D�
�,�v∥2L2(Tℎmax )

⎞

⎠ .

We conclude the proof of (2.5.38) using the inequality
∑

∣�∣=2

∥D�v∥2L2(Tℎmax )
≤ C2(�0)

∑

∣�∣=2

∥D�u∥2
L2(T̃ )

.

Theorem 2.5.7 has a central role on the establishment of an upper bound for dist(u, Vℎ).

Theorem 2.5.8 Let TH be an admissible triangulation of the polygonal domain Ω. We suppose

that the side lengths of all triangles of TH is less or equal to ℎmax and the interior angles of all

triangles of TH are great or equal to �0. Let VH be defined by

VH = {vH ∈ C0(Ω) : vH ∣∂Ω = 0, vH(x1, x2) = a+ bx1 + cx2, (x1, x2) ∈ T, T ∈ TH}

(or

VH = {vH ∈ C0(Ω) : vH(x1, x2) = a+ bx1 + cx2, (x1, x2) ∈ T, T ∈ TH}
), then

inf
vH∈VH

∥u− vH∥Hs(Ω) ≤ C(�0)ℎ
2−s
max∣u∣H2(Ω)

for all u ∈ H2(Ω) ∩ V, with V = H1
0 (Ω) (or V = H1(Ω)).
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Proof: Let u be in H2(Ω) and let uI be the interpolater defined by

uI =
∑

x∈V (TH )

u(x)�x

where �x is a basis function such that �x(x) = 1 and �x(x̄) = 0, x̄ ∕= x. The error function

eH = u− uI belongs to H2(Ω) and satisfies

dist(u, VH) ≤ ∥eH∥Hs(Ω).

Theorem 2.5.7 enable us to conclude that

∥D�eH∥2L2(Ω) ≤ C(�0)
∑

T∈TH

⎛

⎝ℎ2−2∣�∣
max

∑

x∈V (T )

eH(x)2 + ℎ4−2∣�∣
max

∑

∣�∣=2

∥D�u∥2L2(T )

⎞

⎠ ,

for ∣�∣ ≤ s. As eH = 0 at the vertices of each triangle, we finally obtain

∥D�eH∥2L2(Ω) ≤ C(�0)ℎ
4−2∣�∣
max

∑

T∈TH

∑

∣�∣=2

∥D�u∥2L2(T ) ≤ C(�0)ℎ
4−2∣�∣
max ∣u∣2H2(Ω).

The last theorem implies

1. for s = 0

∥u− uI∥L2(Ω) ≤ C(�0)ℎ
2
max∣u∣H2(Ω),

2. for s = 1

∥u− uI∥H1(Ω) ≤ C(�0)ℎmax∣u∣H2(Ω).

The following convergence result is established combining the Theorem 2.5.8 with Céa’s

Theorem.

Theorem 2.5.9 Let TH be an admissible triangulation of the polygonal domain Ω. We suppose

that the side length of all triangles of TH is less or equal to ℎmax and the interior angles of all

triangles of TH are great or equal to �0. Let VH be defined by

VH = {vH ∈ C0(Ω) : vH ∣∂Ω = 0, vH(x1, x2) = a+ bx1 + cx2, (x1, x2) ∈ T, T ∈ TH}

(or

VH = {vH ∈ C0(Ω) : vH(x1, x2) = a+ bx1 + cx2, (x1, x2) ∈ T, T ∈ TH}
).

If a(., .) : V × V → IR is a V -elliptic continuous bilinear form (V = H1(Ω) or V = H1
0 (Ω))

and ℓ ∈ V ′, then there exist a unique weak solution u in V , a unique finite element solution uH
in VH , such that

a(u, v) = ℓ(v),∀v ∈ V,

a(uH , vH) = ℓ(vH),∀vH ∈ VH .

Moreover, if u ∈ V ∩H2(Ω), then

∥u− uH∥H1(Ω) ≤ C(�0)ℎmax∣u∣H2(Ω), (2.5.39)

where V = H1(Ω) (orV = H1
0 (Ω)).
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The convergence order with respect to the L2 norm can be improved? The answer is positive

and its is based on the Aubin-Nitsche duality arguments. Let us suppose that a(., .) is symmetric

and let w be the solution of the variational problem

a(w, v) = (u− uH , v),∀v ∈ V. (2.5.40)

As

∥u− uH∥2L2(Ω) = a(w, u− uH)

holds, we get

∥u− uH∥2L2(Ω) = a(w −wH , u− uH), (2.5.41)

where wH is the piecewise linear finite element approximation for the weak solution w. In fact,

we have (2.5.41) because

0 = a(u− uH , vH) = a(vH , u− uH),

holds for vH ∈ VH . Then, the estimate (2.5.41), is obtained taking vH = wH .

From (2.5.41) we can deduce the estimate

∥u− uH∥2L2(Ω) ≤ Cc∥w − wH∥H1(Ω)∥u− uH∥H1(Ω),

where Cc is the continuity constant of a(., .). From the last inequality, using Theorem 2.5.9, we

get

∥u− uH∥L2(Ω) ≤ Cc

∥w − wH∥H1(Ω)

∥u− uH∥L2(Ω)
C(�)ℎmax∣u∣H2(Ω)

≤ Ccℎ
2
max

∣w∣H2(Ω)

∥u− uH∥L2(Ω)
∣u∣H2(Ω).

(2.5.42)

If we suppose that, for each f ∈ L2(Ω), the variational problem has a solution u in H2(Ω) ∩ V
such that ∣u∣H2 ≤ ∥f∥L2(Ω), we have

∣w∣H2(Ω) ≤ C∥u− uH∥L2(Ω).

From (2.5.42) we obtain the second convergence order for the piecewise linear finite element

solution

∥u− uH∥L2(Ω) ≤ C(�)ℎ2max∣u∣H2(Ω).

The finite element problem is solved considering a fixed partition of the domain Ω. However

we should know that the decreasing of the diameter of the finite elements implies an decreasing

on the error of the finite element solution. For the piecewise linear finite element solution,

the estimates established until now depend on the smaller interior angle of the triangles of the

admissible triangulation TH . In order to avoid such dependence, the triangulations should be

carefully constructed.

Let ℎT be the longest side of T ∈ TH , then

ℎmax = max{ℎT , T ∈ TH}
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is the longest side length which occurs in TH for H ∈ Λ. By �T we denote the radius of the

inscribed circle in T ∈ TH . The ratio ℎT /�T tends to infinity exactly when the smallest interior

angle tends to zero. If

max
T∈TH

ℎT
�T

is bounded for a family of triangulations then we call the family quasi-uniform. Otherwise, if

the family satisfies the stronger requirement

ℎmax

minT∈TH �T
≤ Const,

then the family is said uniform.

For quasi-uniform triangulations we can improve the quality of the estimates for the piecewise

linear finite element solution obtained before. For instance, if we consider Theorem 2.5.9 for a

family of quasi-uniform triangulations, then there exists a positive constant such that

∥u− uH∥H1(Ω) ≤ Cℎmax∣u∣H2(Ω).

Moreover, by the Aubin-Nitsche duality arguments, we also have

∥u− uH∥L2(Ω) ≤ Cℎ2∣u∣H1(Ω).

2.5.3 A Neumann Problem

Let us consider now the Poisson problem with the Neumann boundary condition
∂u

∂�
= g on

∂Ω, where Ω is the unitary square of IR2. The weak solution of this problem is defined by

findu ∈ H1(Ω) : a(u, v) = ℓ(v), ∀v ∈ H1(Ω),

a(w, v) =

∫

Ω
∇w.∇v dx, ℓ(v) =

∫

Ω
fvdx+

∫

∂Ω
gv ds,w, v ∈ H1(Ω).

(2.5.43)

The bilinear form a(., .) is not H1(Ω)-elliptic. In order to define a variational problem with a

unique solution, we consider the Friedrichs inequality

∥v − v̄∥H1(Ω) ≤ C∣v∣H1(Ω), v ∈ H1(Ω),

for v̄ =
1

∣Ω∣

∫

Ω
v(x) dx. If V is defined by

V = {v ∈ H1(Ω) :

∫

Ω
v dx = 0}.

Then, the bilinear form a(., .) is V -elliptic. In fact,

a(v, v) = ∣v∣H1(Ω) ≥ Ce∥v∥H1(Ω), v ∈ V.

Consequently, the variational problem

findu ∈ V : a(u, v) = ℓ(v), ∀v ∈ V, (2.5.44)
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has a unique solution.

Let TH be an admissible triangulation for Ω. Let VH be the space of piecewise linear functions

induced by TH . In this space we consider the subset of functions such that

∫

Ω
vHdx = 0, that is

VH = {vH ∈ C0(Ω) : vH(x, y) = a+ bx1 + cx2, (x1, x2) ∈ T, T ∈ TH ,
∫

Ω
vH dx = 0}.

Let uH be the finite element approximation for the solution of the Poisson equation with Neu-

mann boundary condition. This solution is unique and the error u− uH satisfies (2.5.39).

2.5.4 Superapproximation in Mesh-Dependent Norms

In this section we establish that the error of the piecewise linear finite element solution is an

O(ℎ2max) when a certain mesh-dependent norm is consider.

Let uH be the piecewise linear finite element solution defined by (2.5.15) when the triangula-

tion TH plotted in Figure 9 is considered. The triangulation can be seen induced by the uniform

partition in both axis with step size ℎ. As uH admits the representation

uH(x1, x2) =
N−1
∑

i,j=1

uH(x1,i, x2,j)�ij(x1, x2)

the node values ui,j = uH(x1,i, x2,j) are computed solving the linear system

⎧

⎨

⎩

−ΔHui,j = f̂i,j, i, j = 1, . . . , N − 1,

ui,j = 0, i = 0 ∨ i = N ∨ j = 0 ∨ j = N,
(2.5.45)

where

f̂i,j =
1

∣supp(�ij)∣

∫

supp(�ij)
f�ij dx.

The linear system (2.5.45) is analogous to the one considered in section 2.2.6. Nevertheless,

here the second member is f̂i,j while, in the system considered before, the second member was

f(x1,i, x2,j).

As for the truncation error

∥TH∥−1 ≤ Cℎ2,

holds, provided that u ∈ C4(Ω), we conclude that

∥u− uH∥1 ≤ Cℎ2∥u∥C4(Ω)

that is,

∥RHu−RHuH∥1 ≤ Cℎ2∥u∥C4(Ω),

where ∥.∥1 is defined by (2.2.33). We proved that with respect to this discrete version of the

H1(Ω)-norm, the piecewise liner finite element solution is second order convergent.

Finally we point out that similar results can be obtained if nonuniform meshes are considered.
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2.6 The Ritz-Galerkin Method for Time-Dependent PDEs

2.6.1 The RG Solution

In what follows we introduce the Ritz-Galerkin approximation for the solution of the problem

⎧











⎨











⎩

∂u

∂t
=
∂2u

∂x2
+ f in(a, b) × (0, T ],

u(x, 0) = u0(x), x ∈ (a, b),

u(a, t) = u(b, t) = 0, t ∈ (0, T ],

(2.6.1)

where the reaction term f can be x and t dependent. In order to do that we define the weak

formulation of the IBVP (2.6.1) and we approximate this problem by a new variational problem

on a finite dimensional space with respect to the space variable. An ordinary differential system

is deduced whose solution is called Ritz-Galerkin solution.

The Weak Solution

Let us consider v ∈ C∞
0 (a, b). From the PDEs of the IBVP (2.6.1) we get

∫ b

a

∂u

∂t
v dx = −

∫ b

a

∂u

∂x
v′ dx+

∫ b

a
fv dx,∀v ∈ C∞

0 (a, b).

We introduce the problem

findu ∈ L2(0, T,H1
0 (a, b)) :

∂u

∂t
∈ L2(0, T, L2(a, b)), u(x, 0) = u0(x), x ∈ (a, b),

(
∂u

∂t
, v) + a(u(t), v) = (f, v), ∀v ∈ H1

0 (0, a),

a(w, v) =

∫ b

a
w′v′ dx,w, v ∈ H1

0 (a, b).

(2.6.2)

By L2(0, T,H1
0 (a, b)) we denote the space of functions v(x, t) such that, for each t ∈ (0, T ),

v(., t) ∈ H1
0 (a, b), that is v(t) ∈ H1

0 (a, b), and

∫ b

a
∥v(s)∥2H1(a,b) ds <∞.

The solution of the variational IVP (2.6.2) is called weak solution of the IBVP (2.6.1). It is

clear that if u is a classical solution of the BVP (2.6.1), then u is also a weak solution. Otherwise,

if u is a weak solution and it is smooth enough, then, from (2.6.2), we get

(
∂u

∂t
− ∂2u

∂x2
− f, v) = 0,∀v ∈ C∞

0 (a, b).

Consequently,
∂u

∂t
− ∂2u

∂x2
− f = 0

in L2(a, b). If
∂u

∂t
− ∂2u

∂x2
is continuous, the last equality holds in (a, b).

Let us consider, in the variational equation, v = u(t). Then we get

(
∂u

∂t
, u(t)) + a(u(t), u(t)) = (f, u(t)).
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As

(
∂u

∂t
, u(t)) =

1

2

d

dt
∥u(t)∥2L2 ,

∫ b

a
(
∂u

∂x
)2 dx ≥ 2

(b− a)2
∥u(t)∥2L2

and

(f, u(t)) ≤ ∥f∥L2∥u(t)∥L2 ≤ 1

4�2
∥f∥2L2 + �2∥u∥2L2 ,

we establish the differential inequality

d

dt
∥u(t)∥2L2 + (

4

(b− a)2
− 2�2)∥u(t)∥2L2 ≤ 1

2�2
∥f∥L2 , (2.6.3)

which can be rewritten in the equivalent form

d

dt

(

∥u(t)∥2L2e
( 4
(b−a)2

−2�2)t − 1

2�2

∫ t

0
e
( 4
(b−a)2

−2�2)s∥f∥2L2 ds

)

≤ 0.

Consequently, ∥u(t)∥2L2e
( 4
(b−a)2

−2�2)t − 1

2�2

∫ t

0
e
( 4
(b−a)2

−2�2)s∥f∥2L2 ds decreases in time. Due to

this fact we deduce the following upper bound

∥u(t)∥2L2 ≤ e
−( 4

(b−a)2
−2�2)t∥u0∥2L2 +

1

2�2

∫ t

0
e
( 4
(b−a)2

−2�2)(s−t)∥f∥2L2 ds, t ≥ 0. (2.6.4)

If, in (2.6.4), we fix � such that 4
(b−a)2

−2�2 > 0, we conclude the proof of the following result:

Theorem 2.6.1 The variational problem (2.6.2) has at most one solution which satisfies (2.6.4).

The estimate (2.6.4) can be modified in order to get some information for the behaviour of

the ∥∂u
∂x

(t)∥L2 . In fact, from the variational problem we obtain

1

2

d

dt
∥u(t)∥2L2 +

d

dt

∫ t

0
∥∂u
∂x

(s)∥2L2 ds ≤ 1

2
∥f∥2L2 +

1

2
∥u(t)∥2L2 , (2.6.5)

which leads to

d

dt

(

∥u(t)∥2L2 + 2

∫ t

0
∥∂u
∂x

(s)∥2L2 ds
)

≤ ∥u(t)∥2L2 + 2

∫ t

0
∥∂u
∂x

(s)∥2L2 ds+ ∥f∥2L2 . (2.6.6)

From last inequality we get

d

dt

(

e−t
(

∥u(t)∥2L2 + 2

∫ t

0
∥∂u
∂x

(s)∥2L2 ds
)

−
∫ t

0
e−s∥f∥2L2 ds

)

≤ 0. (2.6.7)

From (2.6.7) we easily conclude the following result:

Theorem 2.6.2 There exists at most one solution of the variational problem (2.6.2) such that

∥u(t)∥2L2 + 2

∫ t

0
∥∂u
∂x

(s)∥2L2 ds ≤ et∥u0∥2L2 +

∫ t

0
e(t−s)∥f∥2L2 ds, t ∈ [0, T ]. (2.6.8)
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Comparing the estimates (2.6.4), (2.6.8), from the second one we conclude that

∫ t

0
∥∂u
∂x

(s)∥2L2 ds

is bounded in bounded time intervals while, from the first one, we only obtain information on

the behaviour of

∥u(t)∥2L2 .

If we have not reaction term, then ∥u(t)∥L2 → 0, t → ∞. This asymptotic behaviour is deduced

from (2.6.4) provided that �2 <
2

(b− a)2
.

Theorem 2.6.2 enable us to conclude the stability of the weak solution of the initial boundary

value problem (2.6.1) with respect to perturbations of the initial condition. In fact, if u and ũ

are weak solutions of the IBVP (2.6.1), then w = u − ũ is a weak solution of this IBVP with

f = 0 and with the initial condition u0 − ũ0. Then

∥w(t)∥2L2 + 2

∫ t

0
∥∂w
∂x

(s)∥2L2 ds = ∥u0 − ũ0∥2L2 , t ∈ [0, T ], (2.6.9)

holds. Consequently

∥w(t)∥2L2 ≤ ∥u0 − ũ0∥2L2 , t ∈ [0, T ],

and
∫ t

0
∥∂w
∂x

(s)∥2L2 ds ≤ ∥u0 − ũ0∥2L2 , t ∈ [0, T ].

Considering the estimate (2.6.4) we also have

∥w(t)∥L2 ≤ e
− 2

(b−a)2
t∥u0 − ũ0∥L2 → 0, t → ∞.

The RG Solution

Let VH be a subspace of H1
0 (a, b) with dimVH = NH . Let uH be defined in [a, b] × [0, T ],

such that, for each t ∈ [0, T ], uH(., t) ∈ VH , and

(
∂uH
∂t

, vH) + a(uH(t), vH ) = (f, vH), ∀vH ∈ VH , (2.6.10)

and

uH(0) = u0,H , (2.6.11)

where u0,H ∈ VH is an approximation for u0. The solution of the variational problem (2.6.10),

(2.6.11) is called the Ritz-Galerkin approximation for the solution of the IBVP (2.6.1).

As in the Ritz-Galerkin method, the RG solution is computed considering in VH a basis. Let

{�i, i = 1, . . . , NH} be such basis. Then

uH(x, t) =

Nℎ
∑

j=1

�j(t)�j(x), x ∈ [a, b], t ≥ 0,
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where the coefficients satisfy

Nℎ
∑

i=1

�′
i(t)(�i, �j) +

Nℎ
∑

i=1

�i(t)a(�i, �j) = (f, �j), j = 1, . . . , Nℎ,

which can be rewritten in equivalent form

[(�i, �j)]�
′(t) + [a(�i, �j)]�(t) = F, t ∈ (0, T ], (2.6.12)

where �(t) = (�i(t)) and Fi = (f, �i). The initial condition for the ordinary differential system

(2.6.12) is obtained from the initial condition

u0,H(x) =

NH
∑

j=1

�j(0)�j(x), x ∈ [a, b].

For the particular case of the finite element method, the linear system to be solved for

the computation of the components of the RG solution is characterized by sparse matrices.

Moreover, the solution of the ordinary differential system is the vector of the finite element

solution in the nodes of the partition. In fact, let {xj , x0 = a, xNH−1 = b, xj+1 − xj = ℎj} be a

partition of [a, b] and let {�j} be a basis of VH such that �j(xi) = �ij . Then

uH(x, t) =

Nℎ
∑

j=1

uH(xj, t)�j(x), x ∈ [a, b], t ≥ 0,

where the coefficients uH(xj , t), j = 1, . . . , NH , are defined by the linear system (2.6.12).

Let eH(t) = u(t) − uH(t) be the error of the RG solution uH(t), t ∈ [0, T ]. This error is

solution of the variational problem
{

(
∂eH
∂t

, vH) + a(eH(t), vH ) = 0, ∀vH ∈ VH ,

eH(0) = u0 − u0,H .
(2.6.13)

In what follows we establish an estimate for the solution of the initial value problem (2.6.13)

with respect to the norm ∥.∥L2 . In order to do that, we introduce the auxiliary function ũH(t)

defined by

a(ũH(t), vH) = −(
∂u

∂t
, vH) + (f, vH), ∀vH ∈ VH . (2.6.14)

We split the error eH(t)

eH(t) = �(t) + �(t), (2.6.15)

where

�(t) = u(t)− ũH(t), �(t) = ũH(t)− uH(t).

An estimate for eH(t) is obtained estimating separately �(t) and �(t).

As the error �(t) can be estimated from the results for the time independent Ritz-Galerkim

solution, an estimate for the error eH(t) is obtained estimating �(t). In the estimation procedure

arises
∂ũH
∂t

which is solution of the variational equation

a(
∂ũH
∂t

, vH) = −(
∂2u

∂t2
, vH) + (

∂f

∂t
, vH), ∀vH ∈ VH . (2.6.16)
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Its existence depends on the regularity of the weak solution u, more precisely, on the existence

of the derivatives
∂2u

∂t2
∈ L2(a, b),

∂f

∂t
∈ L2(a, b). Under these assumptions,

∂�

∂t
satisfies

(
∂�

∂t
, vH) + a(�(t), vH) = (f, vH)− (

∂ũH
∂t

, vH)− a(ũH(t), vH).

Considering that ũH is solution of (2.6.14), we obtain

(
∂�

∂t
, vH) + a(�(t), vH) = (

∂u

∂t
− ∂ũH

∂t
, vH)

which is equivalent to

(
∂�

∂t
, vH) + a(�(t), vH) = −(

∂�

∂t
, vH), vH ∈ VH . (2.6.17)

As estimate for
∂�

∂t
can be established noting that

∂ũH
∂t

satisfies (2.6.16) and it is the Ritz-

Galerkin solution which approximates the solution of the variational problem

a(
∂u

∂t
, v) = −(

∂2u

∂t2
, v) + (

∂f

∂t
, v), ∀v ∈ H1

0 (a, b). (2.6.18)

Let us consider, in (2.6.17), vH = �(t). As

∥�(t)∥L2
d

dt
∥�(t)∥L2 = (

∂�

∂t
, �(t)),

we obtain

∥�(t)∥L2

d

dt
∥�(t)∥L2 + a(�(t), �(t)) = −(

∂�

∂t
, �(t)).

By the Poincaré-Friedrichs inequality we deduce the following differential inequality

d

dt
∥�(t)∥L2 +

2

(b− a)2
∥�(t)∥L2 ≤ ∥∂�

∂t
∥L2 . (2.6.19)

which is equivalent to

d

dt

(

e
2

(b−a)2
t∥�(t)∥L2 −

∫ t

0
e

2
(b−a)2

s∥∂�
∂t

∥L2 ds

)

≤ 0. (2.6.20)

The next inequality

∥�(t)∥L2 ≤ e
− 2

(b−a)2
t
(∫ t

0
e

2
(b−a)2

s∥∂�
∂t

∥L2 ds+ ∥�(0)∥L2

)

(2.6.21)

is easily deduced from (2.6.20) because e
2

(b−a)2
t∥�(t)∥L2 −

∫ t

0
e

2
(b−a)2

s∥∂�
∂t

∥L2 ds is not increasing

function.

Taking into account, in the error decomposition (2.6.15), the estimate (2.6.21), we finally

obtain

∥u(t)− uH(t)∥L2 ≤ ∥�(t)∥L2 + e
− 2

(b−a)2
t
(
∫ t

0
e

2
(b−a)2

s∥∂�
∂t

∥L2 ds+ ∥�(0)∥L2

)

. (2.6.22)

We proved the next result:



Computational Mathematics J.A.Ferreira 130

Theorem 2.6.3 Let u(t) be the weak solution of the IBVP (2.6.1) defined by (2.6.2) and

let uH(t) be its Ritz-Galerkin approximation defined by (2.6.10), (2.6.11). If
∂2u

∂t2
∈ L2(a, b),

∂f

∂t
∈ L2(a, b), then for eH(t), t ∈ [0, T ], holds (2.6.22), where �(t) = ũH(t) − uH(t), �(t) =

u− ũH(t) and ũH(t) is defined by (2.6.14).

We remak that �(0) = ũH(0)− u0,H , where ũH(0) satisfies

a(ũH(0), vH) = −(
∂u

∂t
(0), vH ) + (f(0), vH), ∀vH ∈ VH .

If we consider u0,H = ũH(0) then �(0) = 0. Otherwise this quantity should be estimated.

Let us particularize now the previous result for the piecewise linear finite element method.

In this case, using the Aubin-Nitsche duality arguments, it can be shown that

∥�(t)∥L2 ≤ Cℎ2∣u(t)∣H2(a,b), (2.6.23)

provided that u(t) ∈ H2(a, b). Analogously, if
∂2u

∂t2
(t) ∈ L2(a, b) and

∂u

∂t
(t) ∈ H2(a, b) then

∥∂�
∂t

∥L2 ≤ Cℎ2∣∂u
∂t

∣H2(a,b). (2.6.24)

Considering the estimates (2.6.23), (2.6.24) in Theorem 2.6.3 we conclude for the picewise linear

RG solution uH(t) the following estimate

∥u(t)− uH(t)∥L2 ≤ Cℎ2
(

∣u(t)∣H2(a,b) +

∫ t

0
∣∂u
∂t

∣H2(a,b) ds
)

, t ∈ [0, T ].

A General Parabolic Problem

Let Ω be a bounded open set of IRn with boundary ∂Ω and let T > 0. We introduce in what

follows the weak solution and the Ritz-Galerkin solution for the following IBVP

⎧















⎨















⎩

∂u

∂t
=

n
∑

i,j=1

∂

∂xj
(aij

∂u

∂xi
)−

n
∑

i=1

bi
∂u

∂xi
− cu+ f em Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],

(2.6.25)

where aij = aji. We suppose that the coefficient functions are bounded in Ω × [0, T ] and c, b

satisfy

c− 1

2

n
∑

i=1

∂bi
∂xi

≥ 0, ∀x ∈ Ω,∀t ≥ 0. (2.6.26)

We also assume that there exists a positive constant �0 such that

�t[aij]� ≥ �0∥�∥2, ∀� ∈ IRn,∀x ∈ Ω,∀t ≥ 0. (2.6.27)
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The Weak Solution

By L2(0, T,H1
0 (Ω)) we denote the space of functions v defined in [0, T ] × Ω such that, for

t ∈ (0, T ], v(t) ∈ H1
0 (Ω) and

∫ T

0
∥v(s)∥2H1(Ω) ds <∞. Let � ∈ C∞

0 (Ω). From the PDEs of the

IBVP we easily obtain

(
∂u

∂t
, �) +

n
∑

ij=1

∫

Ω
aij

∂u

∂xi

∂�

∂xj
dx+

n
∑

i=1

∫

Ω
bi
∂u

∂xi
�dx+

∫

Ω
cu� dx =

∫

Ω
f�dx.

Then

(
∂u

∂t
, v) + a(u(t), v) = (f, v) ∀v ∈ H1

0 (Ω), ∀t > 0, u(0) = u0, (2.6.28)

where

a(., .) : H1
0 (Ω)×H1

0 (Ω) → IR

a(w, v) =

n
∑

i,j=1

∫

Ω
aij

∂w

∂xj

∂v

∂xi
dx+

n
∑

i=1

∫

Ω
bi
∂w

∂xi
v dx+

∫

Ω
cwv dx , w, v ∈ H1

0 (Ω).
(2.6.29)

The weak solution of the IBVP (2.6.25) is the function u ∈ L2(0, T,H1
0 (Ω)) such that

∂u

∂t
∈ L2(0, T, L2(Ω))

and u satisfies (2.6.28). It is easy to show that if u is solution of the IVBP (2.6.28), then u is

weak solution of this problem. Otherwise, if u is a weak solution of the IBVP (2.6.28) and it is

smooth enough, then u is also solution of the IBVP (2.6.28).

We study in what follows the behabiour of the weak solution. Let us consider, in (2.6.28),

v = u(t). Taking into account the assumptions (2.6.27) and (2.6.26) for the coefficient functions

we have

a(u(t), u(t)) ≥ �0

∫

Ω
∇u(t)2 dx+

n
∑

i=1

∫

Ω
bi
∂u

∂xi
u(t) + cu2 dx

= �0∥∇u(t)∥2L2 +

∫

Ω
(c− 1

2

n
∑

i=1

∂bi
∂xi

)u2 dx

≥ �0∥∇u(t)∥2L2 .

Considering now the Poincaré - Friedrichs inequality we deduce

a(u(t), u(t)) ≥ C∥u(t)∥2L2 . (2.6.30)

Combining (2.6.28), for v = u(t), with (2.6.30) the following inequality

1

2

d

dt
∥u∥2L2 + (C − �2)∥u(t)∥2L2 ≤ 1

4�2
∥f∥2L2 , (2.6.31)

can be established for an arbitrary nonzero constant �.

Integrating the differential inequality (2.6.31) we finally obtain

∥u(t)∥2L2 ≤ e−2(C−�2)t∥u(0)∥2L2 +

∫ t

0
e2(C−�2)(s−t) 1

2�2
∥f∥2L2 ds. (2.6.32)

Theorem 2.6.4 Under the assumptions (2.6.27), (2.6.26), if the variational problem (2.6.28)

has a solution u ∈ L2(0, T,H1
0 (Ω))such that

∂u

∂t
∈ L2(Ω), then u is unique. Moreover, such

solution satisfies (2.6.32) and it is stable with respect to perturbations of the initial condition.
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The estimate (2.6.32) gives information on the behaviour of u. Nevertheless, we can establish

a new estimate which allow us to get some information on the gradient of u. It is easy to prove

that
d

dt

(

∥u(t)∥2L2 + 2�0

∫ t

0
∥∇u(s)∥2L2 ds) ≤ ∥f∥2L2 + ∥u(t)∥2L2 .

Then we also have

d

dt

(

∥u(t)∥2L2 + 2�0

∫ t

0
∥∇u(s)∥2L2 ds

)

≤ ∥u(t)∥2L2 + 2�0

∫ t

0
∥∇u(s)∥2L2 ds+ ∥f∥2L2 ,

which implies

∥u(t)∥2L2 + 2�0

∫ t

0
∥∇u(s)∥2L2 ds ≤ et∥u0∥2L2 +

∫ t

0
e(t−s)∥f∥2L2 ds. (2.6.33)

The RG Solution

Let us consider (2.6.28) with H1
0 (Ω) replaced by VH ⊂ H1

0 (Ω) with dimVH < ∞. The RG

solution uH is such that, for each t ∈ [0, T ], uH(t) ∈ VH and

⎧



⎨



⎩

(
∂uH
∂t

, vH) + a(uH(t), vH) = (f, vH), ∀vH ∈ VH , ∀t > 0,

uH(0) = u0,H ,

(2.6.34)

where u0,H ∈ VH is an approximation for u0.

We remark that the qualitative properties of the weak solution can be considered for the RG

solution. For instance, it is easy to prove the following

∥uH(t)∥L2 ≤ e−Ct∥uH(0)∥L2 +

∫ t

0
eC(s−t)∥f∥L2 ds, t ≥ 0.

Similarly, we also have

∥uH(t)∥2L2 + 2�0

∫ t

0
∥∇uH(s)∥2L2 ds ≤ et∥uH(0)∥2L2 +

∫ t

0
e(t−s)∥f∥2L2 ds. (2.6.35)

The RG solution is easily computed if we fix in VH a basis. In fact, if {�i, i = 1, . . . , Nℎ} is

a basis of VH , then for the coefficients �i(t), i = 1, . . . , Nℎ, such that

uH(x, t) =
∑

i

�i(t)�i(x),

we obtain the ordinary differential system

[(�i, �j)]�
′(t) + [a(�i, �j)]�(t) = F, t ∈ (0, T ]. (2.6.36)

Let eH(t) = u(t) − uH(t) be the error for the RG approximation. The study of this error

follows the procedures used for the one-dimensional introductory example.

Let ũH(t) ∈ VH be defined by

a(ũH(t), vℎ) = (f, vH)− (
∂u

∂t
, vH), vH ∈ VH . (2.6.37)
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Under the assumptions for the coefficient functions, a(., .) is continuous, H1
0 (Ω)-elliptic and the

functional

ℓ(vH) = (f, vH)− (
∂u

∂t
, vH), vH ∈ VH ,

is continuous. Then, by the Lax-Milgram Lemma, we conclude the existence of ũH(t) ∈ VH .

Furthermore, if
∂f

∂t
,
∂2u

∂t2
∈ L2(Ω), then there also exists the solution of the new problem

a(
∂ũH
∂t

(t), vH) = (
∂f

∂t
, vH)− (

∂u2

∂t2
, vH), vH ∈ VH . (2.6.38)

As the error eH can be decomposed as the sum between �(t) = u(t) − ũℎ(t) and �(t) =

ũH(t) − uH(t), an estimate for eH is obtained estimating �(t) and �(t). As ũℎ(t) is the Ritz-

Galerkin approximation for the solution of the variational problem

a(w, v) = −(
∂u

∂t
, v) + (f, v), v ∈ H1

0 (Ω),

then the estimates for �(t) are obtained by using this fact. For the term �(t) it can be shown

the following inequality

∥�(t)∥L2 ≤ e−Ct∥�(0)∥L2 +

∫ t

0
eC(s−t)∥∂�

∂t
∥L2 ds, (2.6.39)

because
∂�

∂t
∈ L2(Ω) and

(
∂�

∂t
, �(t)) + a(�(t), �(t)) = −(

∂�

∂t
, �(t)).

Considering now the decomposition of the error eH , we obtain

∥uH(t)− u(t)∥L2 ≤ ∥�(t)∥L2 + e−Ct∥�(0)∥L2 +

∫ t

0
eC(s−t)∥∂�

∂t
∥L2 ds. (2.6.40)

In what concerns the term ∥�(0)∥L2 we remark that using the definition of �(t), we have �(0) =

ũH(0)−u0,H . If we choose, as in the introductory example, satisfying u0,H = ũH(0) where ũH(0)

that is

a(u0,H , vH) = −(
∂u

∂t
(0), vH ) + (f(0), vH ), ∀vH ∈ VH , (2.6.41)

then

∥�(0)∥L2 = 0. (2.6.42)

We proved the following:

Theorem 2.6.5 Let u(t) be the weak solution of the IBVP (2.6.25) defined by (2.6.34) and let

uH(t) be its Ritz-Galerkin approximation defined by (2.6.34). If
∂2u

∂t2
∈ L2(a, b),

∂f

∂t
∈ L2(a, b),

then for eH(t), t ∈ [0, T ], holds (2.6.40), provided that the coefficient function aij , bi and c satisfy

(2.6.27), (2.6.26).
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Let Ω be a polygonal domain of IR2 and let TH be an admissible triangulation of Ω. Let VH
be the space of piecewise linear functions, induced by TH , which are null on the boundary. Let

us suppose that the side lengths of the triangles in TH are less or equal to ℎ and the interior

angles of the triangles in TH are greater or equal to �0 > 0. For the particular case of the heat

equation, by the Aubin-Nitsche duality arguments was shown that

∥�(t)∥L2 ≤ Cℎ2∣u(t)∣H2 , (2.6.43)

provided that u(t) ∈ H2(Ω) ∩H1
0 (Ω), and

∥∂�
∂t

∥L2 ≤ Cℎ2∣∂u
∂t

∣H2 (2.6.44)

provided that
∂u

∂t
∈ H2(Ω) ∩H1

0 (Ω). Considering, in (2.6.40), the estimates (2.6.43) and (2.6.44),

we conclude the following upper bound

∥uℎ(t)− u(t)∥L2 ≤ Cℎ2
(

∣u(t)∣H2 +

∫ t

0
∣∂u
∂t

∣H2 ds
)

In the following result we summarize the previous considerations:

Theorem 2.6.6 Let us suppose that Ω is a bounded open polygonal set of IR2 and the coefficient

functions of the IBVP (2.6.25), with n = 2, satisfy (2.6.27) and (2.6.26). For each t ∈ (0, T ],

let u(t) be solution of the variational problem

(
∂u

∂t
, v) + a(u(t), v) = (f, v), v ∈ H1

0 (0, a),

where a(w, v) = (∇w,∇v), w, v ∈ H1
0 (Ω). Let TH be an admissible triangulation for Ω such that

the side lengths are less or equal to ℎ and the interior angles are greater or equal to �0 > 0. Let

VH ⊂ H1
0 (Ω) be defined by

VH :=
{

vH ∈ C0(Ω) : vH = 0 on ∂Ω,

vH(x1, yx2) = a0 + a1x1 + a2x2, (x1, x2) ∈ T, T ∈ TH} .

and let uH(t) be the piecewise linear finite element solution in VH defined by

(
∂uH
∂t

, vH) + a(uH(t), vH) = (f, vH), vH ∈ VH ,

uH(0) = u0,H ∈ Vℎ,

where u0,H is fixed according (2.6.42).

If
∂u

∂t
∈ H2(Ω) ∩H1

0 (Ω),
∂2u

∂t2
∈ L2(Ω), then

∥u(t) − uH(t)∥L2 ≤ Cℎ2
(

∣u∣H2(Ω) +

∫ t

0
∣∂u
∂t

∣H2(Ω) ds
)

, t ∈ [0, T ].
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2.6.2 The Time-discrete RG Solution

Let us consider a time integration method for the ordinary differential system (2.6.36) defined

in the mesh {tm, t0 = 0, tM = T, tm− tm−1 = Δt}. For instance, if we consider the implicit Euler

method, we obtain

[(�i, �j)]
�m − �m−1

Δt
+ [a(�i, �j)]�

m = F, m = 1, . . . .

which is equivalent to consider the previous time integration method for the RG solution. In

fact, from the last equality we have

NH
∑

j=1

(
�m+1
j − �m

j

Δt
�j , �i) +

NH
∑

j=1

a(�m
j �j , �i) = (f, �i), i = 1, . . . , NH ,

which is equivalent to

(
umH − um−1

H

Δt
, vH) + a(umH , vH) + (f, vℎ), ∀vH ∈ VH ,m = 1, . . . ,M, (2.6.45)

where

ujH(x) =

NH
∑

i=1

�j
i�i(x),

is an approximation for the RG solution uH(x, tj).

Let emH = u(tm) − umH be the error of the time-discrete RG solution umH . This error should

converge to zero when the time stepsize converges to zero. Let us consider n = 2 and let uH(t)

be the piecewise linear finite element solution. Let us suppose that VH is induced by a family

of triangulations TH ,H ∈ Λ, where the maximum of the side lengths of all triangles in each

triangulation TH converges to zero when H ∈ Λ. The convergence

lim
Δt→0,ℎ→0

∥u(tm)− umH∥L2 = 0, (2.6.46)

should be verified.

Our aim in what follows is to establish the conditions which allow us to conclude (2.6.46).

We start by remarking that

∥u(tm)− umH∥L2 ≤ ∥u(tm)− uH(tm)∥L2 + ∥uH(tm)− umH∥L2 , (2.6.47)

holds. As in the previous section, an estimate for ∥u(tm)−uH(tm)∥L2 can be easily established.

We study now ∥êmH∥L2 where êmH := uH(tm)− umH . This error satisfies the following

(
êmH − êm−1

H

Δt
, vH) + a(êmH , vH) = (Tm

H , vH),∀vH ∈ VH ,m = 1, . . . ,M. (2.6.48)

where

Tm
H =

Δt

2

∂2uH
∂t2

(t∗), t∗ ∈ (tm−1, tm).

Taking, in (2.6.48), vH = êmH , we obtain

∥êmH∥2L2 +Δta(êmH , ê
m
ℎ ) = (êmH , ê

m−1
H ) + Δt(Tm

H , ê
m
H).
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Thus

∥êmH∥2L2 +Δta(êmH , ê
m
H) ≤ ∥êmH∥L2∥êm−1

H ∥L2 +Δt∥Tm
H ∥L2∥êmH∥L2 .

As

a(êmH , ê
m
H) ≥ �0∥∇êmH∥2L2 ≥ C∥êmH∥2L2 ,

we also have

∥êmH∥L2(1 + CΔt) ≤ ∥êm−1
H ∥L2 +Δt∥Tm

H ∥L2 ,m = 1, . . . . (2.6.49)

Inequality (2.6.49) implies that

∥êmH∥L2 ≤ Δt

m
∑

j=1

1

(1 +CΔt)m+1−j
∥T j

H∥L2 ,m = 1, . . . , (2.6.50)

which induces the upper bound

∥êmH∥L2 ≤ 1

C

(

1− 1

(1 + CΔt)m

)

max
j=1,...,m

∥T j
H∥L2 ,m = 1, . . . , (2.6.51)

If we assume that uH(t) has bounded second order time derivative, then, from (2.6.51), we get

lim
m→+∞

∥êmH∥L2 = 0. (2.6.52)

From the last convergence we finally conclude

lim
Δt→0,ℎ→0

max
m=1,...,M

∥u(tm)− umH∥L2 = 0, (2.6.53)

provided that

lim
ℎ→0

∥u(tm)− uH(tm)∥L2 = 0,∀m.

The smoothness assumption for the RG solution uH(t), namely that
∂2uH
∂t2

is bounded, had

a central role in the proof of the convergence (2.6.53). In what follows we prove the same

convergence result avoiding the smoothness assumption previous considered. The procedure

that we use is an adaptation of the procedure used in the last section when ∥u(t) − uH(t)∥L2

was estimated.

Let ũmH be defined by (2.6.37) with t = tm. As

u(tm)− umH = u(tm)− ũmH + ũmH − umH := �mH + �mH , (2.6.54)

an estimate for emH is obtained estimating separately �mH and �mH . The term �mℎ is the error of the

Ritz-Galerkin solution ũmH which approximates the weak solution u(tm) ∈ H1
0 (Ω). As this error

was previously estimated, we only need to estimate �mH . For this last term it is easy to show that

(D−t�
m
H , �

m
H ) + a(�mH , �

m
H ) = (D−tũ

m
H − ∂u

∂t
(tm), �mH ) (2.6.55)

holds, where D−t denotes the backward finite difference operator. Manipulating the expressions

in (2.6.55), we deduce

∥�mH∥L2(1 + CΔt) ≤ ∥�m−1
H ∥L2 +Δt∥D−tũ

m
H − ∂u

∂t
(tm)∥L2 , (2.6.56)
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which implies

∥�mℎ ∥L2 ≤ 1

(1 +CΔt)m
∥�0H∥L2 +Δt

m
∑

j=1

1

(1 + CΔt)m−j+1
∥∂u
∂t

(tj)−D−tũ
j
ℎ∥L2 . (2.6.57)

As

D−tu(tj) =
∂u

∂t
(tj)−

1

Δt

∫ tj

tj−1

∂2u

∂t2
(s)(s− tj−1)ds,

that is

∥D−tu(tj)−
∂u

∂t
(tj)∥L2 ≤

∫ tj

tj−1

∥∂
2u

∂t2
(s)∥L2ds,

from (2.6.54) and (2.6.57), we obtain

∥umH − u(tm)∥L2 ≤ ∥�mH∥L2 +
1

(1 + CΔt)m
∥�0H∥L2

+Δt

m
∑

j=1

1

(1 + CΔt)m−j+1
∥D−t�H(tj)∥L2

+Δt

m
∑

j=1

1

(1 + CΔt)m−j+1

∫ tj

tj−1

∥∂
2u

∂t2
(s)∥L2ds.

(2.6.58)

Particularizing the previous estimate for n = 2 and for the space of piecewise linear functions

defined induced by a quasi-uniform admissible triangulation TH , we establish

∥D−t�
j
H∥L2 ≤ Cℎ2∣D−tu(tj)∣H2 ≤ Cℎ2

(

∣∂u
∂t

(t)∣H2 +

∫ tj

tj−1

∣∂
2u

∂t2
(s)∣H2 ds

)

,

when the heat equation is considered. Then

∥umH − u(tm)∥L2 ≤ Cℎ2∣u(tm)∣H2(Ω) +
1

(1 + CΔt)m
∥�0H∥L2

+CΔtℎ2
m
∑

j=1

1

(1 + CΔt)m−j+1

(

∣∂u
∂t

(t)∣H2 +

∫ tj

tj−1

∣∂
2u

∂t2
(s)∣H2 ds

)

+Δt

m
∑

j=1

1

(1 + CΔt)m−j+1

∫ tj

tj−1

∥∂
2u

∂t2
(s)∥L2ds,

(2.6.59)

which depends on the regularity of u and on the accuracy of the approximated initial condition

u0,H . If we consider u0,H = ũ0H then �0H = 0 then (2.6.59) takes the form

∥umH − u(tm)∥L2 ≤ Cℎ2∣u(tm)∣H2(Ω)

+CΔtℎ2
m
∑

j=1

1

(1 + CΔt)m−j+1

(

∣∂u
∂t

(t)∣H2 +

∫ tj

tj−1

∣∂
2u

∂t2
(s)∣H2 ds

)

+Δt
m
∑

j=1

1

(1 + CΔt)m−j+1

∫ tj

tj−1

∥∂
2u

∂t2
(s)∥L2ds.
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2.7 FDM for Time-Dependent PDES

2.7.1 The Method of Lines

The method of lines defines a new approach to solve PDEs where the spatial discretization

defined by finite difference operators is combined with a time integration method. In the first step

of MOL approach, an ODE is obtained. This ODE is numerically integrated using a specialized

time integration method studied before, and a fully discrete numerical approximation for the

solution of the PDEs is computed.

This approach offers a grand advantage: it allow the use highly valuable methods in the

field of numerical ODEs, some of which were presented in the first chapter. These methods can

be of practical use for solving time-dependent PDEs. Another attractive practical point is that

there exist nowadays many well developed ODES methods and for these methods sophisticated

software is freely available.

For some time dependent PDEs, if we apply a standard ODE method to the ODE problem

obtained in the first step of the MOL approach, some information of the underlying PDEs

problem might be neglected. Namely, for advection problems where the so called characteristics

can be combined with a space-time integration to obtain a more efficient numerical method.

Let us consider a time dependent PDEs defined on a space domain Ω. By ΩH we denote,

as before, a spatial grid depending on a parameter H. Discretizing the spatial derivatives using

finite difference operators, we obtain a semi-discrete system (the spatial variable is discrete and

the time variable is continuous)

⎧

⎨

⎩

u′H(t) = FH(t, uH(t)), t ∈ (0, T ],

uH(0) = u0,H ,
(2.7.1)

where uH(t) = (uH,j(t)) ∈ IRm, is called semi-discrete approximation for u andm is proportional

to the number of grid points in space. The discretization of the boundary conditions are supposed

to be contained in FH . According to MOL approach, a fully discrete approximation unj ≃
u(xi, tn), for the time levels tn = nΔt, n = 1, . . . , is now obtained by applying some suitable

ODE method. As a standard example, we consider the �-method (1.2.3) studied in chapter 1

un+1
H = unH +Δt

(

(1 − �)FH(tn, u
n
H) + �FH(tn+1, u

n+1
H )

)

,

where upH = (upH,i), p = n, n + 1, denotes the vector containing the fully discrete numerical

solution at time level t = tp.

The properties of the semi-discrete solution uH(t) - solution of the initial value problem

(2.7.1)- have a central role on the properties fully discrete approximation. Due to this fact,

we study in what follows some spatial discretizations for the advection equation and for the

diffusion equation.
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2.7.2 The Spatial Discretization:Some Qualitative Properties

The scalar advection-diffusion equation with periodic boundary conditions

⎧







⎨







⎩

∂u

∂t
+ a

∂u

∂x
= D

∂2u

∂x2
, x ∈ IR, t ∈ (0, T ],

u(x± 1, t) = u(x, t), x ∈ IR, t ∈ [0, T ],
u(x, 0) = u0(x), x ∈ IR,

(2.7.2)

where a ∈ IR,D ≥ 0, is an important test model for numerical schemes. It is sufficient to

consider u on the spatial interval [0, 1].

In Ω = [0, 1] we introduce the grid ΩH = {xi = xi−1 + ℎ, i = 1, . . . ,m, x0 = 0, xm = 1.

On this space grid, the approximation uH(xi, t) for u(xj , t) is founded replacing, in (2.7.2), the

spatial derivatives
∂

∂x
,
∂2

∂x2
by difference operators. We obtain a ODE for uH(xi, t)

u′H(xi, t) =
∑

k

akuH(xi+k, t),

which can be rewritten in the vectorial form

u′H(t) = AHuH(t), (2.7.3)

where A is the square matrix of order m

AH =

⎡

⎢

⎢

⎢

⎢

⎣

a0 a1 a2 . . am−1

am−1 a0 a1 a2 . am−2

am−2 am−1 a0 a1 . am−3

. . . . . .
a1 a2 a3 . am−1 a0

⎤

⎥

⎥

⎥

⎥

⎦

.

For example, if we discretize the first and second order spatial derivatives with the finite differ-

ence operators Dc and D2, respectively, we obtain

a0 = −2D

ℎ2
, a1 =

D

ℎ2
− a

2ℎ
, a2 = 0, . . . , am−2 = 0, am−1 =

a

2ℎ
+
D

ℎ2
.

The matrix AH is called circulant matrix. We point out that circulant matrices arise in the

discretization of periodic PDEs with constant coefficients.

We study now the stability properties of the semi-discrete approximation uH(t). In the

stability analysis we use the Fourier modes

�k(x) = e2�ikx, k ∈ ZZ.

The set {�k, k ∈ ZZ} is a orthonormal ”basis” of L2(0, 1) and if v ∈ L2(0, 1), then

v =
∑

k∈ZZ

(v, �k)�k,

where (., .) is the usual inner product in L2(0, 1).
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By L2(ΩH − {0}) we represent the space of grid functions defined on ΩH − {0}, where the

discrete L2 inner product

(vH , wH)H = ℎ
∑

x∈ΩH−{0}

vH(x)wH(x)

is considered. By ∥.∥L2(ΩH−{0}) we denote the norm induced by the previous inner product.

Let RH�k be discrete Fourier mode, that is, the restriction of the Fourier mode �k to the grid

ΩH − {0}.
The set {RH�k, k = 1, . . . ,m} is a orthonormal basis of L2(ΩH − {0}). In fact, this space

can be identified with Cm and

(RH�k, RH�ℓ)H = ℎ
∑

ΩH−{0}

e2�i(ℓ−k)x = ℎ

m
∑

j=1

e2�i(ℓ−k)jℎ = ℎ

m
∑

j=1

�j =

⎧

⎨

⎩

1, ℓ = k

0, ℓ ∕= k

where � = e2�i(ℓ−k)ℎ.

As {RH�k, k = 1, . . . ,m} is a orthonormal basis of L2(ΩH − {0}), if vH ∈ L2(ΩH − {0}),
then

vH =

m
∑

ℓ=1

(vH , RH�ℓ)HRH�ℓ.

Moreover, a discrete version of the Parseval identity holds

∥vH∥2
L2(ΩH−{0})

= (vH , vH)H =
∑

ℓ

∣(vH , RH�ℓ)∣2.

A special property of the circulant matrix AH is that every discrete Fourier model RH�k is

an eigenvector associated with the eigenvalue

�k =
m
∑

j=1

aje
2�ikxj .

It is easy to show that the solution of (2.7.3) admits the representation

uH(t) =

m
∑

k=1

(uH(0), RH�k)He
�ktRH�k.

Usually we deal with circulant matrices where all �k have a non-positive real part. In this case,

we have

∥uH(t)∥2
L2(ΩH−{0})

=
m
∑

k=1

∣(uH(0), RH�k)He
�kt∣2

≤
m
∑

k=1

∣(uH(0), RH�k)H ∣2

= ∥uH(0)∥2
L2(ΩH−{0})

.

Consequently,

∥etA∥2
L2(ΩH−{0})

≤ 1, t ≥ 0,
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which shows that (2.7.3) is stable with respect to the norm ∥.∥L2(ΩH−{0}).

We rewrite the previous considerations in terms of matrices as we done in the first chapter.

Let QH be the following matrix QH =
√
ℎ[RK�1RH�2 . . . RH�m] and let D be the diagonal

matrix with entries �k. As QH is an unitary matrix and A = QHDQ
−1
H , we obtain

∥etA∥2
L2(ΩH−{0})

= ∥VHetDQ−1
H ∥2

L2(ΩH−{0})
= max

k=1,...,m
∣e�kt∣.

We detail some of the previous conclusions for some particular cases of (2.7.2).

The Advection Equation:

Let us take, in (2.7.2), D = 0. We consider the forward finite difference operator D−x when

a > 0 and Dx when a < 0, obtaining the upwind schemes

u′H(xj, t) =
a

ℎ
(uH(xj−1, t)− uH(xj , t)), j = 1, . . . ,m, uH(x0, t) = uH(xm, t), (2.7.4)

u′H(xj , t) =
a

ℎ
(uH(xj , t)− uH(xj+1, t)), j = 1, . . . ,m, uH(xm+1, t) = uH(x1, t), (2.7.5)

respectively.

The upwind scheme (2.7.4) can be rewritten in the equivalent form (2.7.3) with

AH =
a

ℎ

⎡

⎢

⎢

⎢

⎢

⎣

−1 0 0 . 0 0 1
1 −1 0 . 0 0 0
. . . . . . .
. . . 0 1 −1 0
0 0 . 0 0 1 −1

⎤

⎥

⎥

⎥

⎥

⎦

.

If we use the finite difference operator Dc then we obtain

u′H(xj, t) =
a

2ℎ
(uH(xj−1, t)− uH(xj+1, t)), j = 1, . . . ,m, uH(xm+1, t) = uH(x1, t), (2.7.6)

which induces the ODE equation u′H(t) = AHuH(t) with

AH =
a

2ℎ

⎡

⎢

⎢

⎢

⎢

⎣

0 −1 0 . 0 0 1
1 0 −1 . 0 0 0
. . . . . . .
. . . . 1 0 −1
−1 0 . . 0 1 0

⎤

⎥

⎥

⎥

⎥

⎦

.

When the solution of the initial value problem is considered in (2.7.3) and Taylor’s expansion is

used, we get for the forward finite difference discretization

∂u

∂t
(xi, t) + a

∂u

∂x
(xi, t) = TH(xi, t),

with TH(xi, t) = O(ℎ), while in the second case we get exactly the same expression with

TH(xi, t) = O(ℎ2). The term TH is called spatial truncation error. Due to the behaviour of

the spatial truncation error, the scheme (2.7.3) obtained with Dx and D = 0 is called first order

upwind scheme while the scheme obtained with Dc is called second order central scheme.
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Figure 10: (a > 0) Numerical solutions obtained with the upwind scheme (uH,up) and with the
central scheme (uH,c).

It can be observed by experimental results that the first order upwind scheme is not accurate

while the second order central scheme induces numerical oscillations (see Figure 10 for u(x, 0) =

(sem(�x))100, ℎ = 1/50). We will justify in what follows the previous qualitative behaviour. In

order to do that we use the so called modified equation.

For the upwind scheme it can be shown that TH(xi, t) =
1
2aℎ

∂2u
∂x2 +O(ℎ2). Such fact indicates

that the solution obtained by this scheme is closer to the solution of the modified equation

∂ũ

∂t
+ a

∂ũ

∂x
=

1

2
aℎ
∂2ũ

∂x2
. (2.7.7)

This explains the diffusive behaviour of the first order upwind scheme: although we are comput-

ing a solution to the advection equation, we are actually generating a solution that is close to

an advection-diffusion equation with diffusion coefficient
1

2
aℎ. The advection-diffusion equation

(2.7.7) is called modified equation for the first order upwind scheme.

As for the second order central scheme TH(xi, t) = −1

6
aℎ2

∂3ũ

∂x3
+O(ℎ4), then

∂ũ

∂t
+ a

∂ũ

∂x
= −1

6
aℎ2

∂3ũ

∂x3
, (2.7.8)

is the modified equation of this scheme. Thus, the solution given by this scheme is a fourth

order approximation for the solution of its modified equation. In order to justify the behaviour

of the numerical solution defined by the second order central scheme, we look to the behaviour

of the solution of the initial value problem (2.7.8) with the initial condition ũ(x, 0) = e2�ikx. As
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such solution is given by

ũ(x, t) = e2�kix+akt = e2�ik(x−a(1− 2
3
�2k2ℎ2)),

all Fourier modes move with different speeds. Consequently, the fine-tuning is lost and the

oscillations will occur.

The stability of the semi-discrete approximation depends on the eigenvalues of AH . It is easy

to show that the matrices of the upwind and central schemes have the following eigenvalues

�k =
a

ℎ

(

cos(2�kℎ) − 1
)

− i
a

ℎ
sin(2�kℎ), k = 1, . . . ,m,

when a > 0, and

�k = −ia
ℎ
sen(2�kℎ), k = 1, . . . ,m,

respectively. If a < 0, then

�k =
−a
ℎ

(

cos(2�kℎ) − 1
)

+ i
a

ℎ
sin(2�kℎ), k = 1, . . . ,m.

As the eigenvalues �k have real non-positive real part (a > 0), then etAH satisfies ∥etAH∥ ≤ 1.

Hence both schemes are stable. As the eigenvalues for the second order central scheme have null

real part then ∥uH(t)∥ = ∥uH(0)∥. If we consider the upwind scheme (2.7.4) with a < 0, then

the eigenvalues would be in the right half-plan of the complex plan with real part as large as

−a
ℎ
, and thus this scheme became unstable when ℎ → 0. The eigenvalues of the second order

central scheme are in the imaginary axis.

The semi-discrete system u′H(t) = AHuH(t) has the solution uH(t) = e�kt�k if the initial

condition is uH(0) = �k, where �k is the eigenvalue of AH corresponding to �k. Component-wise

this reads

uH(xj , t) = e�kte2�ikxj = eRe�kte2�ik(xj−ak), ak = − 1

2�k
Im�k.

The correspondent exact solution is given by

u(xj , t) = e2�ik(x−at).

The first order upwind scheme has eigenvalues �k such that Re�k < 0. This fact implies that

∣uH(xj , t)∣ = ∣eRe�kt∣ → 0, t → ∞.

As the Re�k = 0 for the second order central scheme, in this case we have

∣uH(xj , t)∣ = 1.

The factor eRe�kt determines the amount of numerical damping or dissipation for the k

Fourier mode. If Re�k < 0 for all k ∕= m, then eRe�kt → 0, t → ∞, and, consequently, the

scheme is said dissipative. Otherwise, if Re�k = 0, then the scheme is said non-dissipative.

Obviously, the second order central scheme is non-dissipative whereas the first order upwind

scheme is dissipative. The velocity ak of the kth Fourier mode is called the numerical phase

velocity.When the phase velocity differs from a this will leads to a phase error. If they are

different from each other we have dispersion. Dispersion may give rise to oscillations.
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The first order upwind and the second order central scheme have the same velocity ak ∕= a.

So the upwind scheme is also dispersive, but oscillations will not show up in actual calculations

because the damping factor eRe�kt suppresses all these Fourier modes.

It is obvious that both schemes (2.7.4) and the central scheme (2.7.6) have drawbacks,

the first being too dissipative and the second one too dispersive. Increasing the order of the

discretization we can obtain semi-discrete schemes where the dispersion and the dissipation is

diminished.

The Diffusion Equation:

Considering, in (2.7.2) with a = 0,D > 0, the finite difference operator D2 we obtain

⎧



⎨



⎩

u′H(xj , t) =
D

ℎ2
(

uH(xj−1, t)− 2uH(xj , t) + uH(xj+1, t)
)

, j = 1, . . . ,m,

uH(x0, t) = uH(xm, t), uH (xm+1, t) = uH(x1, t),

(2.7.9)

which is equivalent to u′H(t) = AHuH(t) with

AH =
D

ℎ2

⎡

⎢

⎢

⎢

⎢

⎣

−2 1 0 . 0 0 1
1 −2 1 . 0 0 0
. . . . . 0 0
0 0 0 . 1 −2 1
1 0 0 . 0 1 −2

⎤

⎥

⎥

⎥

⎥

⎦

.

As for the advection discretizations we can look for the modified equation of the scheme

(2.7.9). As

D2u(xj , t) =
∂2u

∂x2
(xj , t) +

ℎ2

12

∂4u

∂x4
(xj , t) +O(ℎ4),

the modified equation of the scheme (2.7.9) is given by

∂ũ

∂t
= D

∂2ũ

∂x2
+
Dℎ2

12

∂4ũ

∂x4
. (2.7.10)

Then the scheme (2.7.9) defines a fourth order approximation for the solution of the modified

equation (2.7.10). Nevertheless, this equation is unstable. In fact, if we compute the solution of

the modified equation with initial condition ũ(x, 0) = e2�ikx, we obtain

ũ(x, t) = e−4D�2k2(1− 1
3
ℎ2k2)te2�ikx, (2.7.11)

which grows for ℎ2k2 >
1

3
. This instability is an artefact in the sense that the diffusion equation

admits solutions composed of Fourier modes

�k(x, t) = e2�ikxe−Dk2t.

One could include another term into the modified equation, for example, leading to

∂ũ

∂t
= D

∂2ũ

∂x2
+
Dℎ2

12

∂4ũ

∂x4
+
Dℎ4

360

∂6ũ

∂x6
. (2.7.12)
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The scheme (2.7.9) defines a six order approximation for the solution of the stable new modified

equation (2.7.12). In this case (2.7.11) is replaced by

ũ(x, t) = e4D�2k2
(

−1+ℎ2�2k2

12

(

1− 4�2ℎ2

30

))

te2�ikx.

The eigenvalues of AH are real and negative

�k =
2D

ℎ2
(cos(2�kℎ) − 1) = −4D

ℎ2
sen(�kℎ)2 ∈ [−4D

ℎ2
, 0], k = 1, . . . ,m,

showing the stability of the discretization. As when ℎ → 0 maxk ∣�k∣ → ∞, the semi-discrete

problem (2.7.9) is usually stiff.

The the semi-discrete solution with initial condition uH(0) = �k is given by

uH(xj, t) = e�kte2�ikxj ,

while the correspondent solution of the diffusion problem admits the representation

u(xj , t) = e−4D�2k2te2�ikxj .

As ℎ→ 0, �k → −4D�2k2, we get

e�kt → e−4D�2k2t,

which means that, for ℎ small enough, uH and u have the same behaviour. However, as for fixed

ℎ, most of the �k are not closed to their continuous counterpart. Nevertheless, this discrepancy

does not implies a wrong behaviour of the semi-discrete solution.

Higher-Order Schemes

The schemes studied for the advection equation and for the diffusion equation suffer some

pathologies. However, increasing the order of the the finite difference schemes the adverse effects

can be diminished.

Advection Equation: A general finite difference scheme for the periodic advection problem

can be rewritten as

u′H(xj , t) =
a

ℎ

s
∑

k=−r


kuH(xj+k, t), j = 1, . . . ,m, (2.7.13)

where uH(xi, t) = uH(xi+m, t) to impose the periodicity condition. Replacing, in (2.7.13), uH

by the solution of the advection equation and by using Taylor’s expansion, we obtain

∂u

∂t
(xj , t)−

a

ℎ

∑

k


ku(xj+k, t)

= −a∂u
∂x

(xj , t)−
a

ℎ

∑

k


k
(

u(xj , t) + kℎ
∂u

∂x
(xj , t) +

1

2
k2ℎ2

∂2u

∂x2
(xj , t) + . . .

)

= −a
ℎ

∑

k


ℎu(xj , t)− a
(

1 +
∑

k

k
k

)∂u

∂x
(xj , t)−

a

2
ℎ
(

∑

k

k2
k

)∂2u

∂x2
(xj , t) + . . .

If we assume that
∑

k


k = 0,
∑

k

k
k = −1,
∑

k

k2
k = 0 . . .
∑

k

kq
k = 0, (2.7.14)
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then the residual error is of order q. The conditions (2.7.13), usually called order conditions,

leads to the coefficients 
−r , . . . , 
s. The linear system for such coefficients is characterized by a

Vandermonde type matrix which leads to 
−r , . . . , 
s for q ≤ r+ s. If q = r+ s then the scheme

is unique which satisfies the following result due to Iserls and Strang (1983)([17])

Theorem 2.7.1 If a > 0 and q = r + s with s ≤ r ≤ s + 2, then the scheme (2.7.13) is L2

stable. Otherwise (2.7.13) is unstable.

A similar result can be established for a < 0 with r = s, s+ 1, s + 2.( see [18]).

For a > 0 and r = 2, s = 1, we obtain the third order upwind advection scheme

u′H(xj , t) =
a

ℎ
(−1

6
uH(xj−2, t) + uH(xj−1, t)−

1

2
uH(xj , t)−

1

3
uH(xj+1, t)).

For a < 0 we have

u′H(xj , t) =
a

ℎ
(
1

3
uH(xj−1, t) +

1

2
uH(xj , t)− uH(xj+1, t) +

1

6
uH(xj+2, t)).

For r = s = 2 we get the fourth order central advection scheme

u′H(xj , t) =
a

ℎ
(− 1

12
uH(xj−2, t) +

2

3
uH(xj−1, t)−

2

3
uH(xj+1(t)) +

1

12
uH(xj+2, t)).

Diffusion Equation:A general finite difference scheme for the periodic diffusion problem

can be rewritten as

u′H(xj , t) =
D

ℎ2

s
∑

k=−r


kuH(xj+k, t), j = 1, . . . ,m, (2.7.15)

where uH(xi, t) = uH(xi+m, t) to impose the periodicity condition. We assume that r = s and


−k = 
k, that is the symmetry in space. Replacing, in (2.7.15), uH by the solution of the

diffusion equation and by using Taylor’s expansion we obtain

∂u

∂t
(xj , t)−

D

ℎ2

∑

k


ku(xj+k, t)

= D
∂2u

∂x2
(xj , t)−

D

ℎ2

∑

k


k
(

u(xj , t) + kℎ
∂u

∂x
(xj , t) +

1

2
k2ℎ2

∂2u

∂x2
(xj , t) + . . .

)

= −D

ℎ2

∑

k


ℎu(xj , t) +D
(

1− 1

2

∑

k

k2
k

)∂2u

∂x2
(xj , t)−

D

4!
ℎ2

(

∑

k

k4
k

)∂4u

∂x4
(xj , t) + . . .

If we assume

∑

k


k = 0,
∑

k

k2
k = 2,
∑

k

k4
k = 0 . . .
∑

k

kq
k = 0, (2.7.16)

then the residual error is of order q. The order conditions (2.7.16) can be satisfied for q ≤ 2s.

For instance, for s = 2 we obtain the fourth central upwind discretization

u′H(xj , t) =
D

ℎ2

(

− 1

12
uH(xj−2, t) +

4

3
uH(xj−1, t)−

5

2
uH(xj , t) +

4

3
uH(xj+1, t)−

1

12
uH(xj+2, t)

)

.
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2.7.3 Convergence of the Spatial Discretization

The study of the numerical methods for ODEs was based on the concepts of stability and

consistency. For elliptic equations the same concepts were used to establish the convergence. The

main ingredients in the study of the convergence properties of the semi-discrete approximation

will be, as in the previous section for the advection equations and diffusion equations with

periodic boundary conditions, the concepts of stability and consistency.

Let Λ be a sequence of positive vectors converging to zero. If Ω is a subset of IRn then Λ

is a sequence of positive vectors of IRn when uniform meshes are used. Thus, for H ∈ Λ, the

semi-discrete solution uH(t) is solution of (2.7.1). As before, the discretization of the boundary

conditions are supposed included in FH .

The spatial discretization error eH(t) is defined by

eH(t) = RHu(t)− uH(t).

Let TH(t) be the spatial truncation error

TH(t) = u′(t)− FH(t, RHu(t)),

which is the residual obtained substituting the solution of the PDE into the difference scheme.

A bound for ∥TH(t)∥ is obtained by Taylor expansion provided that the solution u is smooth

enough. The concept of consistency is introduced as before analyzing the behaviour of the

truncation error. If

∥TH(t)∥ = O(Hq
max) for t ∈ [0, T ], (2.7.17)

then the semi-discrertization is called consistent of order q. In (2.7.17)

Hmax = max{ℎi,H = (ℎ1, . . . , ℎn) ∈ Λ}.

The spatial discretization is said convergent with order p if

∥eH(t)∥ = O(Hp
max) for [0, T ]. (2.7.18)

The stability concept has in the context of the semi-discretizations a convenient adaptation.

As we are dealing with the solution of an ordinary initial value problem, the semi-discretization

(2.7.1) is said stable if its solution uH(t) is stable in the sense of ordinary differential problems but

for Hmax → 0. More precisely, if uH(t) and ũH(t) are solutions of (2.7.1) with initial conditions

uH(0) and ũH(0) such that

lim
Hmax→0

∥uH(0)− ũH(0)∥ = 0,

then

lim
Hmax→0

∥uH(t)− ũH(t)∥ = 0 for [0, T ].

Of course that when (2.7.1) is linear, that is

FH(t, uH(t)) = AHuH(t) + gH(t), (2.7.19)
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where gH(t) represents a discretization of a source term or arises from the discretrization of the

boundary conditions, a sufficient condition is

∥etAH∥ ≤ Ke!t, t ∈ [0, T ], (2.7.20)

where K and ! are H independent. Under this sufficient condition is easy to establish an upper

bound for the error ∥eH(t)∥ at leat for the linear case. In fact, from the definitions of TH(t) and

eH(t), we have

e′H(t) = AHeH(t) + TH(t),

and thus

eH(t) = etAHeH(0) +

∫ t

0
e(t−s)AHTH(s) ds.

Consequently,

∥eH(t)∥ ≤ ∥etAH∥∥eH(0)∥ +
∫ t

0
∥e(t−s)AH ∥∥TH(s)∥ ds. (2.7.21)

Applying the sufficient condition (2.7.20) in (2.7.21) the upper bound

∥eH(t)∥ ≤ Ke!t∥eH(0)∥ + K

!
(e!t − 1) max

s∈[0,t]
∥TH(s)∥, (2.7.22)

is easily established. This error estimate leads to the following convergence result:

Theorem 2.7.2 Consider the semi-discrete system (2.7.1) with FH given by (2.7.19). Suppose

that the condition (2.7.20) holds and ∥TH∥ ≤ CHq
max for t ∈ [0, T ], ∥eH(0)∥ ≤ C0H

q
max, with

C,C0 H-independent. Then

∥eH(t)∥ ≤ C0Ke
!tHq

max +
CK

!
(e!t − 1)Hq

max, t ∈ [0, T ], (2.7.23)

provided that ! ∕= 0, and

∥eH(t)∥ ≤ C0KH
q
max + CKtHq

max, t ∈ [0, T ], (2.7.24)

when ! = 0.

Example 28 The first order upwind scheme (2.7.4) is convergent with order 1 for

∂u

∂t
+ a

∂u

∂x
= 0

and it is convergent with order 2 for

∂ũ

∂t
+ a

∂ũ

∂x
=

1

2
aℎ
∂2ũ

∂x2
.

The second order central scheme (2.7.9) is convergent with order 2 for

∂u

∂t
= D

∂2u

∂x2

and it is convergent with order 6 for

∂ũ

∂t
= D

∂2ũ

∂x2
+
Dℎ2

12

∂4ũ

∂x4
+
Dℎ4

360

∂6ũ

∂x6
.
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2.7.4 Semi-Discretization in Conservative Form

Advection Equation: Let us consider the advection-diffusion equation (2.7.2) with D = 0

in the equivalent form
∂u

∂t
+

∂

∂x
(a(x)u(x)) = 0, (2.7.25)

with periodic conditions u(x± 1, t) = u(x, t). The velocity a(x) is assumed to be also 1-periodic

and differentiable. We say that the equation (2.7.25) is in the conservative form in the sense

that leads to

M ′(t) =
d

dt

∫ 1

0
u(x, t) dx

=

∫ 1

0

∂u

∂t
(x, t) dx

= −a(1)u(1, t) + a(0)u(0, t)

= 0,

that is the mass

M(t) = const, t ∈ [0, T ]. (2.7.26)

In [0, 1] we introduce the uniform mesh {xj} with step size ℎ and we define the auxiliary

points xj±1/2 = xj ±
ℎ

2
. Further we consider the cell Ij = [xj−1/2, xj+1/2] and the cell average

ū(xj , t) =
1

ℎ

∫

Ij

u(x, t) dx.

Then

ℎ
d

dt
ū(xj , t) = a(xj− 1

2
)u(xj− 1

2
, t)− a(xj+ 1

2
)u(xj+ 1

2
, t). (2.7.27)

This equation tell us that the rate of change of mass over Ij is equal to the difference in-going

and out-going fluxes over the cell boundaries.

It is natural to define a semi-discretization that mimics (2.7.27). We consider the semi-

discrete approximation defined by

u′H(xj , t) =
1

ℎ

(

a(xj− 1
2
)uH(xj− 1

2
, t)− a(xj+ 1

2
)uH(xj+ 1

2
, t)

)

, j = 1, . . . ,m, (2.7.28)

where uH(xj± 1
2
, t) are approximate values at the cell boundaries that should be defined in terms

of neighbouring points uH(xi, t) at the grid points. We remark that (2.7.28) mimics (2.7.26). In

fact,

d

dt
ℎ

m
∑

j=1

uH(xj, t) =
m
∑

j=1

a(xj− 1
2
)uH(xj− 1

2
, t)− a(xj+ 1

2
)uH(xj+ 1

2
, t)

= a(x 1
2
)uH(x 1

2
, t)− a(xm+ 1

2
)uH(xm+ 1

2
, t)

= 0,

because by periodicity we have a(x 1
2
)uH(x 1

2
, t) = a(xm+ 1

2
)uH(xm+ 1

2
, t).
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In what follows we consider a > 0 and uH(xj+1/2, t) = uH(xj, t) and uH(xj−1/2, t) =

uH(xj−1, t), that is the upwing difference scheme in flux form

u′H(xj , t) =
1

ℎ

(

a(xj− 1
2
)uH(xj−1, t)− a(xj+ 1

2
)uH(xj , t)

)

, j = 1, . . . ,m (2.7.29)

with uH(xm, t) = uH(x0, t).

It is easy to establish the consistency of (2.7.29). In what concerns the stability, we rewrite

(2.7.29) in equivalent form u′H(t) = AHuH(t), where

AH =
1

ℎ

⎡

⎢

⎢

⎣

−a(x3/2) 0 0 . 0 a(x1/2)

a(x3/2) −a(x5/2) 0 . 0 0

. . . . . .
0 0 . . a(xm−1/2) −a(x1/2)

⎤

⎥

⎥

⎦

.

As �1[AH ] = 0 and

�∞[AH ] = max
i

1

ℎ

(

− a(xi+1/2) + a(xi−1/2)
)

≤ !,

where ! is an upper bound to a′, we conclude that

∥etAH∥1 ≤ 1, ∥etAH∥∞ ≤ e!t, t ≥ 0.

Otherwise, as we also have the Hölder inequality for matrices

∥etAH∥2 ≤
√

∥etAH∥1∥etAH∥∞,

we deduce

∥etAH∥2 ≤ e
!
2
t, t ≥ 0.

Taking into consideration the established stability inequalities, we conclude the stability of the

semi-discrete scheme (2.7.29) with respect to the norms ∥.∥p for p = 1, 2,∞. Hence the scheme

is convergent with respect to the norm ∥.∥p for p = 1, 2,∞.

The convergence order can be improved if we replace (2.7.29) by the new upwind scheme

u′H(xj , t) =
1

ℎ

(

a(xj− 1
2
)
uH(xj−1, t) + uH(xj , t)

2

−a(xj+ 1
2
)
uH(xj , t) + uH(xj+1, t)

2

)

, j = 1, . . . ,m,

(2.7.30)

with uH(xm, t) = uH(x0, t) and uH(xm+1, t) = uH(x1, t).

Writing the semi-discrete scheme (2.7.30) as u′H(t) = AHuH(t) it can be shown that

(AHv, v)2 ≤ 1

2
!∥v∥22, v ∈ IRm.

Consequently,

∥etAH∥2 ≤ e
!
2
t, t ≥ 0

holds establishing the stability and the second order convergence with respect to the L2-norm

on finite intervals [0, T ].
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Diffusion Equation: Let us consider now the diffusion equation with a variable diffusion

coefficient, a source term and Dirichlet boundary conditions

⎧











⎨











⎩

∂u

∂t
=

∂

∂x

(

D(x)
∂u

∂x

)

+ s(x, t), t > 0, x ∈ (0, 1),

u(0, t) = b0(t), u(1, t) = b1(t), t > 0,

u(x, 0) = u0(x), x ∈ (0, 1),

(2.7.31)

where D(x) ≥ D0 > 0. Discretizing the second order derivative using the conservative central

scheme we obtain

u′H(xj , t) =
1

ℎ2

(

D(xj+1/2)(uH(xj+1, t)− uH(xj , t))

−D(xj−1/2)(uH(xj , t)− uH(xj−1, t))
)

+ s(xj, t),

for j = 1, . . . ,m− 1, where

uH(x0, t) = b0(t), uH(xm, t) = b1(t), t > 0,

uH(xi, 0) = u0(xi), i = 1, . . . ,m− 1.

This finite difference scheme is equivalent to the ODE

u′H(t) = AHuH(t) + gH(t),

where

AH =
1

ℎ2

⎡

⎢

⎢

⎣

a1 c1 0 . . 0 0
c1 a2 c2 . . 0 0
. . . . . . .
0 0 0 0 . cm−2 am−1

⎤

⎥

⎥

⎦

,

gH(t) =

⎡

⎢

⎢

⎣

s1
s2
.

sm−1

⎤

⎥

⎥

⎦

+
1

ℎ2

⎡

⎢

⎢

⎣

b0(t)c0
0
.

b1(t)cm−1

⎤

⎥

⎥

⎦

,

and

aj = −1

2
(D(xj+1/2) +D(xj−1/2)), cj = D(xj+1/2), sj = s(xj , t).

Assuming smoothness of D(x) and s(x), it is easy to prove second order consistency. Further-

more, as

�1[AH ] ≤ 0, �∞[AH ] ≤ 0,

we have

∥etAH∥p ≤ 1, t ≥ 0, p = 1,∞,

which implies

∥etAH∥2 ≤ 1, t ≥ 0.
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The previous estimate can be refined if we use energy method. For the discrete L2 norm induced

by the inner product (., .)H defined before but here for grid functions null on the boundary points,

we have

1

2

d

dt
∥uH(t)∥2L2 = (AHuH , uH)H

=
1

ℎ

m−1
∑

j=1

D(xj+1/2)uH(xj , t)(uH(xj+1, t)− uH(xj , t))

−1

ℎ

m−2
∑

j=0

D(xj+1/2)uH(xj+1, t)(uH(xj , t)− uH(xj−1, t))

= −ℎ
m
∑

j=1

D(xj−1/2)
(

D−xuH(xj, t)
)2

≤ −D0ℎ
m
∑

j=1

(

D−xuH(xj, t)
)2
.

As

∥uH(t)∥2L2 ≤
m
∑

j=1

(

D−xuH(xj , t)
)2
,

we conclude

∥uH(t)∥L2 ≤ e−D0t∥u0∥L2 .

Some Remarks: For advection-diffusion equations with variable coefficients or advection-

diffusion-reaction equations with a nonlinear reaction term, the consistency it is easily verified.

Nevertheless, in what concerns the stability, even for the method (2.7.28) with

uH(xj+ 1
2
, t) =

⎧





⎨





⎩

1

6

(

− uH(xj−1, t) + 5uH(xj , t) + 2uH(xj+1, t)
)

, if a(xj+1/2) > 0

1

6

(

2uH(xj, t) + 5uH(xj+1, t)− uH(xj+2, t)
)

, if a(xj+1/2) < 0,

for advection equation, simple estimates are not available.

Singularly perturbed problems - problems with the diffusion coefficient very small when

compared with the advection coefficient - are usually characterized by a boundary layer. If a

uniform mesh is used to solve such problems, then a very huge number of grid points should

be considered. Such approach is computationally inefficient. A remedy that can avoid the

inefficiency of the uniform meshes is to use nonuniform meshes well adapted to the layer . Such

remedy increases the difficulties on the stability analysis (see [31]).

2.7.5 Refined Global Estimates

In the previous section we studied the spatial discretizations of a diffusion equation with

Dirichlet boundary conditions. The presence of boundary can complicate the numerical treat-

ment. As in the stationary case, if we consider Neumann boundary conditions, the discretizations

is made with a different discretization. As we saw this has an adverse effect on the global ac-

curacy. However this effect is often not as large as expected in the sense that global order of

convergence p can be greater than the order of consistency q.
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Let us consider the linear semi-discrete system

u′H(t) = AHuH(t) + gH(t),

where the discretization of the boundary conditions and (or) of the source term are included

in the semi-discrete source term gH . Let us suppose that the spatial discretization is stable, for

instance ∥etAH∥ ≤ Ke!t holds, and the the spatial truncation error TH(t) with order q admits

the representation

TH(t) = AHT
(1)
H (t) + T

(2)
H (t), (2.7.32)

where

∥T (1)
H (t)∥ ≤ Cℎr, ∥T (1)′

H (t)∥ ≤ Cℎr, ∥T (2)
H (t)∥ ≤ Cℎr. (2.7.33)

Considering in the error equation

e′H(t) = AHeH(t) + TH(t),

the representation (2.7.32) we get

e′H(t) = AH

(

eH(t) + T
(1)
H (t)

)

+ T
(2)
H (t),

thus

e′H(t) + T
(1)′

H (t) = AH(eH(t) + T
(1)
H (t)) + T

(2)
H (t) + T

(1)′

H (t). (2.7.34)

As in the proof of Theorem 2.7.2, (2.7.34) leads to

∥eH(t) + T
(1)
H (t)∥ ≤ Ke!t∥eH(0) + T

(1)
H (0)∥

+
K

!

(

e!t − 1
)

max
s∈[0,t]

∥T (2)
H (s) + T

(1)′

H (s)∥, t ≥ 0.
(2.7.35)

Furthermore, if we consider in (2.7.35) the assumption (2.7.33) we establish

∥eH(t)∥ ≤ Cℎr +Ke!t∥eH(0)∥ + 2Cℎr
K

!

(

e!t − 1
)

, t ≥ 0. (2.7.36)

We proved the next refined result:

Theorem 2.7.3 Consider the linear system u′H(t) = AHuH(t)+gH(t) and assume that ∥etAH∥ ≤
Ke!t, t ≥ 0. Suppose that the truncation error TH(t) satisfies (2.7.32) and (2.7.33) and suppose

that ∥eH(0)∥ ≤ Cℎr. Then

∥eH(t)∥ ≤ Cℎr
(

1 +Ke!t + 2
K

!

(

e!t − 1
)

)

, t ≥ 0. (2.7.37)

We apply the last result to the diffusion model
⎧













⎨













⎩

∂u

∂t
= D

∂2u

∂x2
, x ∈ (0, 1), t > 0,

u(0, t) = b0(t),
∂u

∂x
(1, t) = 0, t > 0,

u(x, 0) = u0(x), x ∈ (0, 1).

(2.7.38)
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We consider in [0, 1] a uniform mesh xj = jℎ, j = 0, . . . ,m, x0 = 0, xm = 1 and the auxiliary

point xm+1 = xm + ℎ for the discretization of the Neumann boundary condition. Discretizing

the second order derivative using the conservative central scheme we obtain

u′H(xj , t) =
D

ℎ2

(

uH(xj+1, t)− 2uH(xj, t) + uH(xj−1, t)
)

,

for j = 1, . . . ,m, where

uH(x0, t) = b0(t), uH (xm+1, t) = �uH(xm, t) + (1− �)uH(xm−1, t), � ∈ {0, 1}.

When � = 0, we discretize
∂u

∂x
(1, t) with the finite difference operator Dc and for � = 1 the

discretization of such term is made by the finite difference operator Dx.

The above finite difference scheme is equivalent to the ODE system

u′H(t) = AHuH(t) + gH(t),

where

AH =
D

ℎ2

⎡

⎢

⎢

⎣

−2 1 0 . . 0 0
1 −2 1 . . 0 0
. . . . . . .
0 0 0 0 . 2− � � − 2

⎤

⎥

⎥

⎦

, gH(t) =
1

ℎ2

⎡

⎢

⎢

⎣

b0(t)
0
.
0

⎤

⎥

⎥

⎦

.

As

�1[AH ] ≤ 0, �∞[AH ] ≤ 0,

we have

∥etAH∥p ≤ 1, t ≥ 0, p = 1,∞,

which implies

∥etAH∥2 ≤ 1, t ≥ 0.

For � = 0 the truncation error has order 2 while it is inconsistent for � = 1. Nevertheless, we

show in what follows that in the last case the scheme is convergent. In order to do that we

compute the decomposition of the truncation error

TH(t) = AHT
(1)
H (t) + T

(2)
H (t).

Let T
(2)
H be such that T

(2)
H (xi, t) = O(ℎ2), i = 1, . . . ,m − 1, T

(2)
H (xm, t) = O(ℎ), and let T

(1)
H be

the solution of the difference equation

AHT
(1)
H (t) = �H(t), (2.7.39)

where �H(xi, t) = 0, i = 1, . . . ,m − 1, and �H(xm, t) = −�
2

∂2u

∂x2
(xm, t). If we fix T

(1)
H (xm, t) = 0,

then T
(1)
H (xj , t) is given by

T
(1)
H (xj , t) = j

−ℎ2�
2(2− �)

∂2u

∂x2
(xj , t), j = 1, . . . ,m− 1.

It follows that ∥T (1)
H (t)∥ = O(ℎ) and by Theorem 2.7.3, we conclude the convergence with respect

to the norms: ∥.∥p, p = 1, 2,∞.
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2.7.6 Fully Discrete FDM: MOL Approach, Direct Discretizations

MOL Approach: So far we have studied the spatial discretizations of some time dependent

PDES, that is the ODEs obtained discretizing the spatial derivatives of the PDEs defined by

finite difference operators. In the proof of the stability and convergence results the stability

analysis for ordinary differential problems had a central role. The aim of this section is to study

some fully discrete schemes which can be obtained by the MOL approach, that is, integrating

numerically the semi-discrete problem with a numerical method for ODEs. It should be emphasis

that the method of lines is not a method in the numerical sense but an approach to construct

numerical methods for time dependent problems.

Let us consider the ODE (2.7.1) numerically integrated in time, for example, with the �-

method

un+1
H = unH +Δt

(

(1− �)FH(tn, u
n
H) + �FH(tn+1, u

n+1
H )

)

, n = 0, . . . ,

where u0H ≃ uH(0). Then unH(x) defines an approximation for u(x, tn) for x in the spatial grid

ΩH .

The error of the numerical approximation unH is given by enH(x) = u(x, tn)− unH(x), x ∈ ΩH .

As

∥enH∥ ≤ ∥RHu(tn)− uH(tn)∥+ ∥uH(tn)− unH∥,

an estimate for ∥enH∥ is obtained estimating the two errors

∥RHu(tn)− uH(tn)∥, ∥uH(tn)− unH∥.

The first one was studied in the previous sections and the second one was studied in the first

chapter. For instance, if the semi-discretization is of order p1 and the time integration method

is of order p2, then

∥enH∥ ≤ C1ℎ
p1 +C2Δt

p2 . (2.7.40)

As the ordinary differential problem is in fact a family of ordinary differential problems depending

on the space step size, in the convergence estimate

∥uH(tn)− unH∥ ≤ C2Δt
p2

for the time integration error, we should have C2 and p2 independent on the space step size,

that is, the previous convergence estimate should be uniform with respect to the space step size.

Stability and consistency of the ODE method should thus be verified for all time step size. This

sentence implies an eventually restriction on the space and time step sizes.

Direct Discretization: Even a scheme can be seen as a combination between the spatial

discretizatian followed by the time integration, it can be advantageous to consider space and

time errors simultaneously.

We consider in what follows FDMs for time dependent problems which admit the represen-

tation

B0u
n+1
H = B1u

n
H +G(tn, tn+1), n = 0, . . . , (2.7.41)



Computational Mathematics J.A.Ferreira 156

where the matrices B0, B1 ∈ IRm2
, and G(tn, tm+1) ∈ IRm depends on the space and time step

sizes. Their dimensions depend on the number of points on the spatial domain Ω. Of course

that if the scheme is explicit, then B0 = I.

Example 29 If we apply the �-method to the semi-discrete problem u′H(t) = AHuH(t) + gH(t)

we obtain the two-level scheme

un+1
H = unH +Δt

(

(1− �)(AHu
n
H + g(tn)) + �AHu

n+1
H

)

+Δt
(

(1− �)gH(tn) + �gH(tn+1)
)

,

which admits the representation (2.7.41) with

B0 = I −Δt�AH , B1 = I +Δt(1− �)AH

and

G(tn, tn+1) = Δt((1− �)gH(tn) + �gH(tn+1)).

Example 30 Courant-Isaacson-Rees Scheme Discretizing the advection equation

⎧



⎨



⎩

∂u

∂t
+ a

∂u

∂x
= 0,

u(x± 1, t) = u(x, t),

with a > 0, by the upwind scheme and the explicit Euler’s method we obtain the fully discrete

scheme
⎧



⎨



⎩

un+1
H (xj) = unH(xj) +

aΔt

ℎ
(unH(xj−1)− unH(xj)), j = 1, . . . ,m,

unH(x0) = unH(xm), n = 0, . . .

(2.7.42)

This scheme, known as Courant-Isaacson-Rees scheme, can be rewritten in the matrix form

(2.7.41) with

B0 = I,B1 = I +ΔtAH

where AH is the upwind matrix introduced before.

The convergence analysis of the Courant-Isaacson-Rees scheme can be performed by using

the MOL approach. In this case we have (2.7.40) with p1 = p2 = 1 but under appropriate

restrictions for the space and time step sizes. Nevertheless, the convergence analysis can be

considered directly. Replacing, in (2.7.42), unH(xj) by the true solution u(xj , tn), we obtain

u(xj , tn+1) = u(xj , tn) +
aΔt

ℎ
(u(xj−1, tn)− u(xj , tn)) + ΔtT n

H(xj),

where the truncation error is given by

T n
H(xj) = −1

2
aℎ(1− aΔt

ℎ
)
∂2u

∂x2
(xj , tn) +O(ℎ2) +O(Δt2).
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For the error enH we have

en+1
H = B1e

n
H +ΔtT n

H .

If we assume that
aΔt

ℎ
≤ 1, (2.7.43)

then ∥B1∥p ≤ 1 for p = 1, 2,∞. Under this assumption we obtain

∥en+1
H ∥ ≤ ∥enH∥+Δt∥T n

H∥,

which implies

∥enH∥ ≤ tn
1

2
aℎ(1 − aΔt

ℎ
)max

x,t
∥∂

2u

∂x2
∥+O(ℎ2) +O(Δt2),

provided that e0H = 0.

The stability condition (2.7.43) is usually called Courant-Friedrichs-Levy condition (CFL).

An explicit scheme for the advection equation can be rewritten as

un+1
H (xj) =

s
∑

k=−r


ku
n
H(xj+k)

with the coefficients 
k depending on � =
aΔt

ℎ
. Then unH(xj) depends on the initial condition on

the grid points xi, i = j − nr, . . . , j + ns. If we consider ℎ,Δt → 0 with ratio constant � then

xj−nr → x−(r/�)at and xj+ns → x+(s/�)at, and thus the numerical approximations for u(x, t)

are determined by the initial data in the interval

[x− r

�
at, x+

s

�
at].

This interval is called domain of dependence.

Example 31 Lax-Wendrof Scheme As we mention before, there are fully discrete numerical

methods for time dependent problems which can not be obtained from the MOL approach. An

example is the so called Lax-Wendrof scheme

un+1
H (xj) = unH(xj) +

aΔt

2ℎ
(unH(xj−1)− unH(xj+1))

+
1

2

(aΔt

ℎ

)2(
unH(xj−1)− 2unH(xj) + unH(xj+1)

)

.

(2.7.44)

This scheme can be obtained replacing, in the Taylor expansion

u(xj , tn+1) = u(xj , tn) + Δt
∂u

∂t
(xj , tn) +

1

2
Δt2

∂2u

∂t2
(xj , tn) +O(Δt3),

∂u

∂t
by −a∂u

∂x
and

∂2u

∂t2
by a2

∂2u

∂x2
and considering the central formulas in the last derivatives.

The Lax-Wendrof scheme has the truncation error

T n
H(xi) =

1

6
aℎ2

(

1−
(aΔt

ℎ

)2
)∂3u

∂x3
(xj , tn) +O(Δt3).
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2.7.7 Stability, Consistency and Convergence

The convergence analysis of the Courant-Isaacson-Rees scheme in Example 30 uses the con-

cepts of stability and convergence. In what follows we formalize the previous analysis for the

two-level scheme (2.7.41).

The truncation error for (2.7.41) at time level tn, T
n
H is defined by

B0RHu(tn+1) = B1RHu(tn) +G(tn, tn+1) + ΔtT n
H . (2.7.45)

For the error enH = RHu(tn)− unH is solution of the following problem

B0e
n+1
H = B1e

n
H +ΔtT n

H , (2.7.46)

which can be rewritten in the equivalent form

en+1
H = B−1

0 B1e
n
H + �nH , (2.7.47)

B = B−1
0 B1, �

n
H = ΔtB−1

0 T n
H .

Let Λ be a sequence of space step sizes. If Ω ⊂ IRn, then Λ is a sequence of n vectors such that

Hmax = maxi ℎi → 0, with H = (ℎ1, . . . , ℎn).

The concept of stability, that is the sensitivity of the solution defined by (2.7.41) to per-

turbations of the initial condition, has here a natural formalization: the two-time level scheme

(2.7.41) is stable if for any initial conditions u0H , ũ
0
H such that

lim
Hmax,Δt→0

∥u0H − ũ0H∥ = 0,

the correspondent numerical solutions unH , ũ
n
H satisfy

lim
Hmax,Δt→0

∥unH − ũnH∥ = 0,∀n : nΔt ≤ T,

where [0, T ] denotes the time interval.

A sufficient condition for stability is now immediate.

Theorem 2.7.4 If

∥Bn∥ ≤ K,nΔt ≤ T, (2.7.48)

where K is independent of Δt and H, then the two-level scheme (2.7.41) is stable.

The condition (2.7.48) in general holds when some restriction is imposed on H and on Δt.

Usually the concept of stability is replaced by its sufficient condition (2.7.48).

Using the sufficient condition (2.7.41), it is easy to prove the convergence of (2.7.41), that is

lim
Hmax,Δt→0

∥enH∥ = 0,∀n : nΔt ≤ T, (2.7.49)

provided that the finite difference scheme is consistent. In fact, from the error equation (2.7.47)

we have

∥enH∥ ≤ ∥Bn∥∥RHu0 − u0H∥+ ∥Bn∥∥B−1
0 ∥tnmax

j
∥T j

H∥.
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Consequently, under the consistency of (2.7.41), we conclude that ∥enH∥ → 0 as Hmax,Δt → 0.

Implicitly we supposed in the convergence proof that ∥B−1
0 ∥ ≤ C, where C is H and Δt

independent. This is a natural condition which means that the finite difference scheme (2.7.41)

is well defined.

We have shown that the two-level scheme is convergent provided that is stable and consistent.

The Lax Theorem establishes that for a consistent finite difference scheme stability is also a

necessary condition. This result can be seen in [30].

2.7.8 Stability for MOL

The stability analysis of the finite difference scheme defined by the MOL approach is based

on the stability analysis of the numerical methods for ODEs. Let us consider any one step

method for the liner semi-discrete system

u′H(t) = AHuH(t) + gH(t).

The stability of the fully discrete solution unH is studied analyzing the behaviour of the discrete

scheme

wn+1
H = R(ΔtAH)wn

H , (2.7.50)

where R is the stability function. The stability restrictions on Δt in terms of the space step size

is obtained from the stability region and from the properties of AH .

We consider now the �-method studied in chapter 1 whose stability function is given by

R(z) =
1 + (1− �)z

1− �z
,

for � ∈ [0, 1]. In this case we established results for the behaviour of ∥R(ΔtAH)n∥.
1. Theorem 1.3.2: Let us suppose that AH = MDM−1 where cond(M) ≤ k and D =

diag(�j). If Δt�j ∈ S, for all j, then

∥R(ΔtAH)n∥ ≤ k, ∀n.

In this result S denotes the stability region and we should consider n such that nΔt ≤ T.

2. Corollary 1: Suppose that AH is a normal matrix. If Δt�j ∈ S, for all j, then

∥R(ΔtAH)∥2 ≤ 1.

3. Theorem 1.3.3: Suppose that the vectorial norm is induced by an inner product < ., . > .

If

Re < AHv, v >≤ !∥v∥2, ∀v ∈ Cm,

then

∥R(ΔtAH)∥ ≤ max
(

∣R(Δt!)∣, ∣R(∞)∣
)

,

provided that 1− !�Δt > 0.
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4. Corollary 2: If �[AH ] ≤ 0 and � ≥ 1

2
, then

∥R(ΔtA)∥ ≤ 1.

This corollary establishes the unconditional stability of the �-method for � ∈ [
1

2
, 1] when

�[AH ] ≤ 0.

Let us suppose that AH is a normal matrix. In this case

∥R(ΔtAH)n∥2 = max
j=1,...,m

∣R(Δt�j)n∣,

where �j , j = 1, . . . ,m, are the eigenvalues of AH . If we consider the step sizes such that Δt�j ∈ S
then

∥R(ΔtAH)n∥2 ≤ 1.

A sufficient condition for stability is

∣R(Δt�j)∣ ≤ 1 + k′Δt

where k′ is independent on the step sizes. In this case

∥R(ΔtAH)n∥2 ≤ ek
′nΔt ≤ ek

′T .

We remark that, for � ∈ [0,
1

2
), the stability region of the �-method is given by

S = {z ∈ C : ∣z + �∣ ≤ �},

with

� =
1

1− 2�
.

Example 32 Let us consider the Courant-Isaacson-Rees scheme considered in Example 30 for

the advection equation with a > 0. As �[AH ] ≤ 0, the �-method is unconditionally stable for

� ∈ [
1

2
, 1]. We conclude stability of the Courant-Isaacson-Rees scheme without any restriction

on the CFL number when � ∈ [
1

2
, 1]. As the eigenvalues of AH are given by

�k =
a

ℎ

(

cos(2�kℎ) − 1
)

− i
a

ℎ
sin(2�kℎ), k = 1, . . . ,m,

for � ∈ [0,
1

2
), we have stability provided the CFL number satisfies

aΔt

ℎ
∈ (0,

1

1− 2�
]. (2.7.51)
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Example 33 The central scheme for the advection equation is unconditionally stable for � ∈ [
1

2
, 1].

As the eigenvalues of AH are in the imaginary axis

�k = −ia
ℎ
sen(2�kℎ), k = 1, . . . ,m,

and as S has no intersection with this axis, the fully discrete scheme obtained integrating nu-

merically the central scheme with the �-method is unstable for � ∈ [0,
1

2
).

Example 34 The fully discrete scheme for the diffusion equation defined by (2.7.9) and by the

�-method, is unconditionally stable for � ∈ [
1

2
, 1]. As the eigenvalues of AH

�k =
2D

ℎ2
(cos(2�kℎ) − 1) = −4D

ℎ2
sen(�kℎ)2 ∈ [−4D

ℎ2
, 0], k = 1, . . . ,m,

then the fully discrete scheme is stable for � ∈ [0,
1

2
), provided that

DΔt

ℎ2
∈ (0,

1

2− 4�
].

Example 35 The explicit Euler’s method is unstable for the central advection discretization.

This behaviour is avoided if some diffusion is added, that is if we consider

∂u

∂t
+ a

∂u

∂x
= D

∂2u

∂x2

with the boundary conditions u(x± 1, t = u(x, t). In fact, the fully discrete scheme

un+1
H (xj) = (� +

1

2
�)unH(xj−1) + (1− 2�)unH(xj) + (�− 1

2
�)unH(xj+1), j = 1, . . . ,m, (2.7.52)

with unH(x0) = unH(xm), unH(xm+1) = unH(x1), xj = jℎ, ℎ =
1

m
and � =

DΔt

ℎ2
, � =

aΔt

ℎ
, is such

that the eigenvalues �j of the matrix AH admit the representation

Δt�j = 2�(cos(2�jℎ) − 1)− i�sen(2�jℎ), j = 1, . . . ,m.

Then

�2 ≤ 2� ≤ 1

is a necessary and sufficient condition for stability.

Let us suppose now that AH is a non-normal diagonalizable matrix

A =MDM−1, D = diag(�j).

Then

∥R(ΔtAH)n∥ ≤ cond(M)max
j

∣R(Δt�j)n∣.

If the condition number does not grow as ℎ→ 0 and takes a moderate size, then the eigenvalue

criterion followed for the normal matrices can still be applied in the stability study. Nevertheless,

for non-normal matrices the eigenvalue criterion can leads to wrong conclusions.
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Example 36 The Courant-Isaacson-Rees scheme for a = 1 and with u(0, t) = 0 leads to the

matrix

AH =
1

ℎ

⎡

⎢

⎢

⎣

−1 0 . . 0
1 −1 . . 0
. . . . .
0 . . 1 −1

⎤

⎥

⎥

⎦

,

which as only the eigenvalue � = −1

ℎ
. Then Δt� ∈ S if and only if

Δt

ℎ
≤ 2. This conclusion

contrast with the previous one for the advection equation with periodic boundary conditions
Δt

ℎ
≤ 1 indicating that for 1 <

Δt

ℎ
≤ 2 we get wrong results.

2.7.9 Von Neumann Stability Analysis

The von Neumann analysis is based on Fourier discrete modes and it is applied only to

problems without boundary conditions and constant coefficients. In practice, however, this type

of analysis is also used when these conditions are not verified leading to a reliable step criteria.

The von Neumann analysis can be used in multiple dimensions, for systems of PDEs and with

all kind of time integrations formulas.

We exemplify the von Neumann analysis on the finite difference scheme

un+1
H (xj) = unH(xj) +

DΔt

ℎ2
(

unH(xj−1)− 2unH(xj) + unH(xj+1)
)

, j = 1, . . . ,m

with umH(x0) = unH(xm), umH(x1) = unH(xm+1).

Considering the space L2(0, 1) and the Fourier modes as introduced before, we have for each

time level, the numerical approximation given by

unH =

m
∑

k=1

�k(tn)RH�k

where �k denotes the Fourier mode. Assuming that �k(tn) = �kr
n
k we have

rn+1
k e2�ikxj = rnke

2�ikxj +
DΔt

ℎ2
(

rnke
2�ikxj−1 − 2rnk e

2�ikxj + rnke
2�ikxj−1)

)

.

Consequently

rk = 1 +
DΔt

ℎ2
(

e−2�ikℎ − 2 + e2�ikℎ
)

= 1− 4Dr

ℎ2
sen2(�ℎk). (2.7.53)

Supposing that u0H =

m
∑

k=1

�kRH�k we get unH =

m
∑

k=1

�kr
n
kRH�k and by the Parseval identity

∥unH∥22 =
m
∑

k=1

∣�k∣2∣rk∣2n ≤
m
∑

k=1

∣�k∣2 = ∥u0H∥22,

provided that

∣rk∣ ≤ 1, (2.7.54)

that is the amplification factor is less or equal to one. Applying this condition with r defined

by (2.7.53) we obtain
DΔt

ℎ2
≤ 1

2
.
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We consider now the homogeneous version of the two-level scheme (2.7.41). Considering

unH =

m
∑

k=1

�kr
n
kRH�k with u0H =

m
∑

k=1

�kRH�k, the amplification factor rk is the eigenvalue of B

associated with the eigenvector RH�k. Then with respect to the discrete L2-norm we have

∥B∥2 = max
k=1,...,m

∣rk∣.

The stability condition ∥Bn∥2 ≤ k for n such that nΔt ≤ T, holds provided that the step sizes

Δt and ℎ are such that

∣rk∣ ≤ 1 +O(Δt). (2.7.55)

This conditions is called von Neumann condition and it is often replaced by the strict von

Neumann condition (2.7.54). However the strict condition is some time restrictive. For instance

if we consider the diffusion equation with a source

∂u

∂t
= D

∂2u

∂x2
+ cu,

with c > 0,D > 0, the source term leads to an exponential growth of the solution. The numerical

solution should mimic this growth and hence we cannot require the amplification factor to be

bounded by one in modulus.
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3-Computational Projects

1. Consider IVP defined by the reaction of Robertson

⎧









⎨









⎩

u′1(t) = −0.04u1 + 104u2u3

u′2 = 0.04u1 − 104u2u3 − 3× 107u22

u′3 = 3× 107u22,

(1.0.1)

for t ∈ (0, 40], with the initial condition

⎧









⎨









⎩

u1(0) = 1

u2(0) = 0

u3(0) = 0 .

(1.0.2)

Integrate the IVP (1.0.1), (1.0.2) by using the following methods

(a) Explicit Euler’s method,

(b) Implicit Euler’s method,

(c) The Gauss method defined by the following Butcher table

1

2
−

√
3

6

1

4

1

4
−

√
3

6

1

2
+

√
3

6

1

4
+

√
3

6

1

4

1

2

1

2
.

Compare the previous methods taking into account the accuracy and the stability.
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2. Consider IVP defined by the reaction of Robertson

⎧









⎨









⎩

u′1(t) = −0.04u1 + 104u2u3

u′2 = 0.04u1 − 104u2u3 − 3× 107u22

u′3 = 3× 107u22,

(1.0.3)

for t ∈ (0, 40], with the initial condition

⎧









⎨









⎩

u1(0) = 1

u2(0) = 0

u3(0) = 0 .

(1.0.4)

Integrate the IVP (1.0.3), (1.0.4) by using the following methods

(a) Explicit Euler’s method,

(b) Implicit Euler’s method,

(c) The Radau method defined by the following Butcher table

1

3

5

12
− 1

12

1
3

4

1

4

3

4

1

4
.

Compare the previous methods taking into account the accuracy and the stability.
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3. Consider IVP defined by the reaction of Robertson

⎧









⎨









⎩

u′1(t) = −0.04u1 + 104u2u3

u′2 = 0.04u1 − 104u2u3 − 3× 107u22

u′3 = 3× 107u22,

(1.0.5)

for t ∈ (0, 40], with the initial condition

⎧









⎨









⎩

u1(0) = 1

u2(0) = 0

u3(0) = 0 .

(1.0.6)

Integrate the IVP (1.0.5), (1.0.6) by using the following methods

(a) Explicit Euler’s method,

(b) Implicit Euler’s method,

(c) The Radau method defined by the following Butcher table

0
1

4
−1

4

2

3

1

4

5

12

1

4

3

4
.

Compare the previous methods taking into account the accuracy and the stability.
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4. Consider IVP defined by the reaction of Belusov-Zhabotinskii

⎧









⎨









⎩

u′1(t) = 77.27(u2 + u1(1− 8.375 × 10−6u1 − u2))

u′2 =
1

77.27
(u3 − u2(1 + u1))

u′3 = 0.161(u1 − u3),

(1.0.7)

for t ∈ (0, 50], with the initial condition

⎧









⎨









⎩

u1(0) = 1

u2(0) = 2

u3(0) = 3 .

(1.0.8)

Integrate the IVP (1.0.7), (1.0.8) by using the following methods

(a) Explicit Euler’s method,

(b) Implicit Euler’s method

(c) The Gauss method defined by the following Butcher table

1

2
−

√
3

6

1

4

1

4
−

√
3

6

1

2
+

√
3

6

1

4
+

√
3

6

1

4

1

2

1

2
.

Compare the previous methods taking into account the accuracy and the stability.
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5. Consider IVP defined by the reaction of Belusov-Zhabotinskii

⎧









⎨









⎩

u′1(t) = 77.27(u2 + u1(1− 8.375 × 10−6u1 − u2))

u′2 =
1

77.27
(u3 − u2(1 + u1))

u′3 = 0.161(u1 − u3),

(1.0.9)

for t ∈ (0, 50], with the initial condition

⎧









⎨









⎩

u1(0) = 1

u2(0) = 2

u3(0) = 3 .

(1.0.10)

Integrate the IVP (1.0.9), (1.0.10) by using the following methods

(a) Explicit Euler’s method,

(b) Implicit Euler’s method,

(c) The Radau method defined by the following Butcher table

1

3

5

12
− 1

12

1
3

4

1

4

3

4

1

4
.

Compare the previous methods taking into account the accuracy and the stability.
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6. Consider IVP defined by the reaction of Belusov-Zhabotinskii

⎧









⎨









⎩

u′1(t) = 77.27(u2 + u1(1− 8.375 × 10−6u1 − u2))

u′2 =
1

77.27
(u3 − u2(1 + u1))

u′3 = 0.161(u1 − u3),

(1.0.11)

for t ∈ (0, 50], with the initial condition

⎧









⎨









⎩

u1(0) = 1

u2(0) = 2

u3(0) = 3 .

(1.0.12)

Integrate the IVP (1.0.11), (1.0.12) by using the following methods

(a) Explicit Euler’s method,

(b) Implicit Euler’s method

(c) The Radau method defined by the following Butcher table

0
1

4
−1

4

2

3

1

4

5

12

1

4

3

4
.

Compare the previous methods taking into account the accuracy and the stability.
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7. Consider the chemical reaction problem

⎧

















⎨

















⎩

u′1(t) = −Au1 −Bu1u2

u′2 = Au1 −MCu2u3

u′3 = Au1 −Bu1u3 −MCu2u3 + Cu4

u′4 = Bu1u3 − Cu4,

(1.0.13)

where A = 7.89 × 10−10, B = 1.1 × 107, C = 1.13 × 103 and M = 106, for t ∈ (0, 1000],

with the initial condition
⎧

















⎨

















⎩

u1(0) = 1.76 × 10−3

u2(0) = 0

u3(0) = 0

u4(0) = 0 .

(1.0.14)

Integrate the IVP (1.0.13), (1.0.14) by using the following methods

(a) Explicit Euler’s method,

(b) Implicit Euler’s method

(c) The Radau method defined by the following Butcher table

0
1

4
−1

4

2

3

1

4

5

12

1

4

3

4
.

Compare the previous methods taking into account the accuracy and the stability.
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8. Consider the chemical reaction problem

⎧

















⎨

















⎩

u′1(t) = −Au1 −Bu1u2

u′2 = Au1 −MCu2u3

u′3 = Au1 −Bu1u3 −MCu2u3 + Cu4

u′4 = Bu1u3 − Cu4,

(1.0.15)

where A = 7.89 × 10−10, B = 1.1 × 107, C = 1.13 × 103 and M = 106, for t ∈ (0, 1000],

with the initial condition
⎧

















⎨

















⎩

u1(0) = 1.76 × 10−3

u2(0) = 0

u3(0) = 0

u4(0) = 0 .

(1.0.16)

Integrate the IVP (1.0.15), (1.0.16) by using the following methods

(a) Explicit Euler’s method,

(b) Implicit Euler’s method

(c) The Lobato method defined by the following Butcher table

0 0 0 0

1

2

5

24

1

3
− 1

24

1
1

6

2

3

1

6

1

6

2

3

1

6

Compare the previous methods taking into account the accuracy and the stability.
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9. Consider the chemical reaction problem

⎧

















⎨

















⎩

u′1(t) = −Au1 −Bu1u2

u′2 = Au1 −MCu2u3

u′3 = Au1 −Bu1u3 −MCu2u3 + Cu4

u′4 = Bu1u3 − Cu4

(1.0.17)

where A = 7.89 × 10−10, B = 1.1 × 107, C = 1.13 × 103 and M = 106, for t ∈ (0, 1000],

with the initial condition
⎧

















⎨

















⎩

u1(0) = 1.76 × 10−3

u2(0) = 0

u3(0) = 0

u4(0) = 0 .

(1.0.18)

Integrate the IVP (1.0.17), (1.0.18) by using the following methods

(a) Explicit Euler’s method,

(b) Implicit Euler’s method

(c) The Gauss method defined by the following Butcher table

1

2
−

√
3

6

1

4

1

4
−

√
3

6

1

2
+

√
3

6

1

4
+

√
3

6

1

4

1

2

1

2
.

Compare the previous methods taking into account the accuracy and the stability.
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