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1-Numerical Methods for ODEs

1.1 Some Analytical Results: Existence, Uniqueness, Stability

Ordinary differential equations are often used for mathematically model problems in many
branches of sciences, engineering and economy. Such equations are frequently complemented by
the state of the dependent variables at some initial time arising, naturally, the so called initial
value problems- IVP.

The general formulation of an IVP for a system of ODEs is

u/(t) = F(tau(t))’t > 1o, u(tO) = Uuo, (111)
with F: IR x IR™ — IR™ and ug € IR™.

Existence and Uniqueness Results:

We start by establishing some classical results that enable us to conclude the existence and
uniqueness of a solution of the IVP (1.1.1).
For the scalar case we have:

Theorem 1.1.1 [Picard’s Theorem] Suppose that F' is a continuous function in R = {(t,u) €
R?:tg <t <T,|u—up| <8} Suppose also that F has the Lipschitz constant L with respect to
the second argument in R. Finally, letting

M = max |F|,
R

suppose that M (T — tg) < 0. Then, there exists a unique continuously differentiable function u
defined on the interval [to, T] which satisfies (1.1.1).

The essence of the proof of the Picard’s Theorem is to consider the sequence (u,) defined by

uo(t) = ug, up(t) = up(t) + t F(s,up—1(s))dsn € IN, t € [to, T].

As u, € C[ty, T], showing that (u,) converges uniformly on [tg,T] to u defined by

u(t) = ug + /t F(s,u(s))ds,t € [to, T,

to
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we conclude that w is continuously differentiable and is solution of (1.1.1).

The idea of the proof will be crucial for the construction of numerical methods for the IVP
(1.1.1).

The Picard’s Theorem has a natural extension to systems of ODEs. For this extension the

2)1/2.

)

modulus |.| is naturally replaced by the Euclidian norm ||.||2 defined on R™ by ||z[]2 = ( Z x
i=1

Theorem 1.1.2 [Picard’s Theorem] Suppose that F' is a continuous function in R = {(t,v) €
R™ :tg <t < T, ||v—upll2 < 6}. Suppose also that F has the Lipschitz constant L with respect
to the second argument in R

|F'(t,w) — F(t,v)]2 < L|Ju —v||2, (t,w), (t,v) € R. (1.1.2)

Finally, letting

M = max ||F(t,v)|l2,
(t,w)ER

suppose that M(T — to) < d. Then, there exists a unique continuously differentiable function u
defined on the closed interval [to, T] which satisfies (1.1.1).

The proof of this results follows the proof of the Theorem 1.1.1 being the sequence (uy,)
defined analogously. Both proofs can be seen, for example, in the classical book [2].

F F;
If the Jabonian matrix of F, 6—(75,1}) = [6 *(t,v)] satisfies
ov 0v;
OF
H%(QU)HQ <L, (tv) €R, (1.1.3)

then F' satisfies the Lipschitz condition (1.1.2). In (1.1.3), the norm [|.||2 is the matrix norm
subordinated to the Euclidian vector norm defined.
Let us now consider the linear systems

u'(t) = Au(t) + g(t), t > to, u(ty) = uo. (1.1.4)

The unique solution of the IVP (1.1.4) admits the representation

t
u(t) = et Ay, +/ =5 4g(s)ds, t > to. (1.1.5)
to

In the representation (1.1.5) the exponential of the matrix (¢ — ¢9) A represents the sum

i (t —to)"A™

|
= n!
We remark that the last exponential is defined considering a matrix norm. Since the individual
t—to)"||A||™
terms in the power series are bounded by ﬁ, it follows that the power series converges
n!

and [0 < elt—to)lIAll

Stability Results:
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A crucial concept on the analysis of the behaviour of the solution of (1.1.1) is the concept
of stability regarding to perturbations of the initial condition. Such concept means that if two
solutions of the same problem starts close enough, then they stay close enough in some interval.

A solution u of the IVP (1.1.1) is said to be stable on the interval [to, T] if, for every ¢ > 0,
there exists 7 > 0 such that for all vg satisfying ||ug — vg|| < 7, the solution of the IVP

v'(t) = F(t,v(t)), t > to, v(ty) = vo,
is defined on [tg,T] and satisfies
ut) = v(®)] < e, ¢ € [to,T].

If u is stable on [tg,00) (i.e. w is stable on [tg,T] for all T' > ty with 1 independent of T'),
then u is said to be stable in the sense of Lyapunov. Moreover, if

lim [[u(t) - v(t)]| = 0

t—o00

then u is called asymptotically stable.

The concept of stability depends on the norm used. In the definition of stability, ||.|| repre-
sents any norm in IR™.

On the assumptions of Picard’s Theorem, the solution of (1.1.1) is stable. In fact, we have
the following result:

Theorem 1.1.3 Under the assumptions of the Theorem 1.1.2, the solution u of (1.1.1) is stable
m [to, T].

Proof: As we have
t

u(t) = ug +/t F(s,u(s))ds,v(t) = v +/t F(s,v(s))ds,

then
) = o®)ll < a0 = wolla+ L | [u(s) = (9l st € 0, T, (1.1.6)

From the inequality (1.1.6) we get

d s/ _ t _
(e [ luls) = v(s)l2ds) < e luo — vollz,
to

which is equivalent to

di [ 1

pr (e L Nu(s) — v(s)||2 ds + —e Ftug — v0||2) <0. (1.1.7)
¢ o L
K 1
The inequality (1.1.7) shows that e 2% [ ||u(s) —v(s)|2ds + Ze_LtHuo —vpl2 is a non-
to
increasing function on [tg, T']. Consequently,
t

L [ u(s) — v(s)ll2 ds < fluo — volla () — 1), (118)

to
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Taking into account in (1.1.6) the upper bound (1.1.8) we deduce
lu(t) = v(®)]l2 < lJuo — voll2e™ =) ¢ € [to, T,

which conclude the proof.
=
Let us consider now the linear system (1.1.4). If u and v are solutions of the previous system
with initial conditions wug, vy, respectively, then we obtain

lu(t) = v(@)Il < [l lug — vol.

As we have

le4 < eIl >0, (1.1.9)
we conclude
Ju(t) —v()|| < @My — vy (1.1.10)
Generally, the last inequality does not give useful information because the inequality (1.1.9)
gives a large over-estimation. In fact, for example, for the scalar case with A = —A, A >> 1, we
have |[et4]| = e << etlAl = er* and

lu(t) — v(t)] = e M0y — gl
It is desirable to have the estimate
et < Ket, u> 0, (1.1.11)
with constant K > 0 and w € IR. In this case we obtain the stability estimate
u(t) — v(t)]] < Ke®t0%|lug — vo]|. (1.1.12)

If w < 0 we conclude the asymptotic stability of the solution of the IVP (1.1.4).
The natural question that we should answer is the following: In what conditions holds
(1.1.12)? If A is diagonalizable, A = M DM ! and then

A _
le# A1 < [[M [Pl M | = cond (M)
where cond(M) denotes the condition number of M. Immediately we obtain

e 4] < cond(M) max |6t = cond(M) max |etRe())|

i=1,..., m i=1,....m

provided that
[/ < max |,
i

=1,...,

Then, holds (1.1.12) with

w = max Re(\;).
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Nevertheless, an estimate to cond(M) should be obtained. In particular, if A is a normal matrix
(i.e. AA* = A*A where A* = AT), then A has a complete set of orthogonal eigenvectors.
Consequently, A = M DM ™!, where M is a unitary matrix, and we conclude that

le# |2 < max e,
1= n

=1,...,

We introduce in what follows a more general convenient concept to obtain bounds for [|e*4].

The Logarithmic Norm of Matrices:

Let Ain IR™ x IR™ or in C™ x C™. The logarithmic norm of A is defined by

. [T+ TA -1
= lim ———M——,

Al = . 1.1.1
pla] = 1 TETALZL o (1113)
Lemma 1 The limit in (1.1.13) exists for all matriz norm ||.|| and for all matrices A provided
that the matriz norm ||.|| satisfies || I|| = 1.

Proof: Let 6 € (0,1). We have

I +67A] -1 < O+ 1A+ 1 -=0)|I| -1 - I +7Al -1
ot - or - T ’

for # € (0,1). From the last inequality we conclude that the ratio appearing in (1.1.13) is

monotonically non-decreasing function on 7. As

—1A4] < I +7A -1
- T

< || Al

holds, we conclude that it has finite limit.

Some properties of the logarithmic norm of matrices are presented in the next result.
Proposition 1 For A, B in R™ x IR™ or in C™ x C™ we have the following:

1. p[yA] = yulA], v > 0,

2. p[sI +~vA] = s+ yu[A],s € R,y > 0;

3. plA+ B] < plA] + u[Bl;

:R

The logarithmic norm is a continuous function, i.e.

|u[A] = u[B]| < [|A = Bl;

5. For the matriz norm induced by inner product < .,. > holds the following

H[A] :maxRe<Av,v >

e aNY 2, 1.1.14
o ST (1.1.14)
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6. If A IR™ x IR™, then

(a) T
p2lA] = )‘max(—i_T

A+ AT A+ AT
where )\mam(—'—T) denotes the largest eigenvalue of +2 ;
(b) mlA] = max (ajj +y |aij|) ;
i#]
(¢) poolA] = max (ais + > las| )
J#i

), (1.1.15)

Proof: We have
L+7rA -1 v+ 7Av| — []v]
- max

T v#£0 7||v]]
o+ TAv) — o)
vA0 Tll[([J[v + T Av|| + [Jv]])
27Re < Av,v > +72||A|?||v||?
— max
w0 Tll[([lv + TAv[| + [Jv]])
TRe < Av,v > +Z || A||2||v]|?
= max
v£0 7o + Z vl ([lv + TAv]| — [Jv]])

and then we conclude (1.1.14).
From Property 5, we easily obtain

AT A+ AT
< Av,v >=< 0,0 >< Apag( 5 w2
. . : A+ AT . :
If v is the eigenvector corresponding to )\maz(T), then the last inequality holds as
equality.
1 1 1 1
As u[4] = max (!; + ajj;| + Z ]aijo - and when 7 — 07 we have \; +aj;| = —taj

i#]
we conclude 6b.
The proof of 6¢ is similar to the proof of 6b.

The importance of the logarithmic norm lies in the following result.
Theorem 1.1.4 Let A€ C™ x C™ and w € R. We have
HIA] < w = [|e™] < e, ¥y > 0.
Proof: Suppose that u[A] < w. We start by noting that
A =T+7A40(2).
and then

enTA = enA = hm([ + TA)n’ (1116)

T—0
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for n and 7 such that nT = n. Otherwise, as u[A] < w, we have
1T+ 7A|| < 14 wr + O(72). (1.1.17)

As a consequence
I(I+7A)" < (1+wr+0(F%)" — ™, (1.1.18)

for n and 7 as before. From (1.1.16) and (1.1.18) we get ||e"| < e*".
On the other hand, suppose that [|e"| < ¢“" for all § > 0. Since I + 74 = ™ + O(7?) it
follows the inequality (1.1.17) from which we obtain pu[A] < w.
[

Using the last characterization result, we can establish asymptotic stability of the solution
of (1.1.4)

e with respect to norm ||.||s for real matrices such that < Av,v >< 0;

e with respect to norm ||.||o if A has negative diagonal entries and A is row-wise diagonally

dominant;

e with respect to norm ||.||1 if A has negative diagonal entries and A is column-wise diagonally

dominant.

The Stability of Nonlinear IVP

We intent to study the stability of the solution (1.1.1). Let u and w be two solutions with
initial conditions ug and wq, respectively. From the Mean Value Theorem for vectorial functions
for Z(t) = u(t) — w(t) holds the following representation

, Lar
20 = [ Ge(toutt) + (1= pu()daz(1) = MOZ() (1.1.19)
e 126+ )l - 12|
d . Zt+7n)| = |Z(t
Lzl = tim I
120+ 2+ 1) - 2] - 1200
0 T (1.1.20)
1z + iz - 120
7—0 T
iy MO
If
U[M@1)] < w,t > to, (1.1.21)
then we get

L26) < w2
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As from the last inequality we obtain
1Z(@)]| < et~ Z(t0)])

we conclude the stability of u on [tg, 7] for some T.
In what conditions the inequality (1.1.21) holds?

OF
Theorem 1.1.5 If the Jacobian of F, JF = D0 satisfies
v

u[%—f(t,au +(1-0)v)] <w,Voe|0,1],

then .
u[/ a—F(t,Uu +(1—-o0)v)do] <w.
0 ov

1
oF
Proof: Let M(t) be defined by M(t) = / %(t, ou+ (1 —o0)v)do. Then
0

oF
1 M) < 1 —(t .
M max TGO

Consequently

I oF ¢, 1
UM(D)] < Tim max T T ou (GO
7—0 5 p

oF
< max (G (1. 6)

< w.

In order to justify the second inequality we point out that, with

I +7A| -1
- 7
-

u(r)[A] = >0,

for any matrix A, we have

p(r)[BAL + (1 = B)A2] < Bu(r)[Ar] + (1 = B)u(7)[A2], B € [0,1].

(1.1.22)

(1.1.23)

Hence, p(7) is convex and, due to this fact, p is continuous in A.This implies that p is also

convex and thus continuous in A being the limit of a convergent sequence of convex functions.

Furthermore, the sequence is monotone. We conclude that the convergence of p(7)[A] to u[A]

is uniform on a bounded close matrix set which implies the second inequality.

Finally we establish the stability result for the solution of (1.1.1).

OF
Theorem 1.1.6 If the Jacobian of F, —, satisfies (1.1.22), then the solution u of (1.1.1) is

ov
stable on [ty,T).
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1.2 Discretizations for ODEs

The 6-Method

We introduce below a family of numerical methods, firstly for the scalar case - the 6 —methods.

We define in [ty,T] the grid {t,,n = 0,...,N} with ¢,41 = t, + At, with the step size

T—1
At =" We seck a numerical approximation w, to the solution of (1.1.1). Integrating

(1.1.1) between to consecutive mesh points ¢, and ¢,4+1 we deduce
tnt1
U(tnt1) = ultn) + / F(s,u(s))ds,n=0,...,N — 1. (1.2.1)
tn

Considering the one-parameter family of integration rules of the form

[ ats) s = ae((1 = 0t + 09(0,1) (1.22)

with the parameter 6 in [0, 1], and applying (1.2.2) with g(s) = F(s,u(s)) we find the following
one-parameter family of methods : given ug, we define

Up+1 = Up + At((l —0)F (tn,upn) + 0F(tn+1,un+1)),n =0,...,N—1, (1.2.3)

parameterised by 6 € [0,1]. When 6 = 0 we obtain the explicit Euler’s method, being the implicit

Euler’s method defined when 6 = 1. The trapezium rule method is obtained for 8 = 3

Example 1 Let consider the IVP

u'(t) = —50(u — cos(t)),t € (0,1], u(0) = 0. (1.2.4)

In Figure 1 we plot the numerical solutions obtained with the 0-methods for 6 = 0,1,0.5.

The numerical solution obtained with the explicit Fuler’s method presents some oscillations

1
near to t =0 for At > u We point out that the solution of the IVP (1.2.4) is given by

502 _50t sin(t)
t) = —5—— t) — ——,t e |0,1].
|
Example 2 The explicit Euler’s method applied to the IVP (1.1.1) with m = 2 is given by
Ul g1 = Ut + ALEF (En, Ut n, U2 n)
(1.2.5)

U2 1 = Uz m + AtE(tn, Ui m, U2 pn), n=0,...,N

with w10 = uy(to), ug,0 = uz(ty). We consider

Fy(tus(£), us(t)) = dus (£) + %uz(t)

and
Fo(t, ug (1), ua(t)) = —%uz(t).
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A t=1/400 A t=1/100

0.4 4 0.4 4
0.3 1 0.3 1
0.2 1 0.2 1
0.1 1 0.1 1
0 . . . . 0 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
At=1/50 At=1/44
1.4 T
—_—0=0
---g=1

0.3 4
0.2 q
0.2 q
0.1 q
0 . . . . 0 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
At=1/34 At=1/28
18 T
—_—0=0
161 ---0=1 |

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 1: Numerical results obtained with the explicit Euler, implicit Euler and trapezium rule
methods for the IVP (1.2.4).
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Figure 2: Numerical approximations for uq

methods

obtained with the explicit Euler

and implicit Euler
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Figure 3: Numerical approximations for us obtained with the explicit Euler and implicit Euler
methods
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In the numerical experiments we took ui(0) = 1,u3(0) = 0.5 and d = 1. The numerical results
plotted in Figures 2 and 9 were obtained for several values of € and At.

We point out that for e — 0 the explicit Euler’s methods requires a very small step size.

The Runge-Kutta Methods:

Another class of methods often used on the numerical computations is the Runge-Kutta
methods. On the evaluation of the numerical approximation at time level t,11, upy1, the
methods of this class only use the numerical approximation at time level ¢,,.

We consider in what follows the class of s-stage Runge-Kutta methods defined by

S
Upt1 = Up + Al Z ek, (1.2.6)
r=1
with .
kr = Flty + a; At + At Y byiki),r =2,..., 8. (1.2.7)
i=1

A convention for (1.2.6)-(1.2.7) frequently used is

S
ar =Y by (1.2.8)
j=1
This formula is natural since it implies that the Runge-Kutta method gives the same approxi-
mation values for the non-autonomous system w'(t) = F(w,t) as for the augmented system
w’ F(w,t)
t’ 1

The coefficients of the R-stage Runge-Kutta methods can be condensed in the Butcher table:

ar | bir b2 bz ... bis—1  bis
az | bar bag baz ... bas—1  bas
a3 | b31 b3z b3z ... b3r_1 b3r
ag bsl bsQ bsB cee bssfl bss
C1 C2 C3 e Cs—1 Cg

The method (1.2.6) is called explicit if b;; = 0 for j > 4,4,j = 1,..., s, since then the internal
approximations k; can be computed one after another from an explicit relation. Otherwise the
method is called implicit due to the fact that k;,4 = 1,...,s, must be obtained from a system
of linear or nonlinear equations.

The explicit s-stage Runge-Kutta methods can be represented by the following Butcher-table
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az | ba
az | bz1 b3

as bsl bs2 653 cee bss—l

‘ C1 C9 C3 e Cs—1 Cs

The computational cost increases when we consider an implicit method. Let us consider the
application of a #-method. If F' is linear in the second argument then, in each time step, we
need to solve a linear system Awu,y; = b. This system can be solved using a direct method like
Gaussian elimination with pivoting strategies or a stationary iterative method

o™ = Bo™ e
Those methods define a sequence (v") which should converge to u,11 and we can consider

e Jacobi method :
B=DYL+U),c=D",

where D, —L and —U represent the diagonal, strictly lower triangular and strictly upper
triangular parts of A, respectively;

o Gauss-Seidel method :
B=(D-L)'U,c=(D- L)'

e successive overrelaxation method (SOR) :
-1
B=(D- wL)’l(wU+ 1 —w)D), c= w(D —wL) b, w € [0,1].

(See the convergence of the previous iterative methods).

Another class of methods can be used, the so called non-stationary methods like step descendent
methods.

However, if F' is nonlinear in the second argument then we need to solve in each time level a
non linear system G(u,+1) = 0. The most popular method to solve this problem is the Newton’s
method which defines a sequence (v™) as follows

for the scalar case. In the vectorial case we have
" =™ 4 O™
where C™ is the solution of the linear system
JGO™C™ = —-G(v™).

If we consider an implicit Runge-Kutta method and F' is linear in the second argument then
in the computation of the parameters k.,r = 1,...,s, a linear system with s x m equations
should be solved. Otherwise if F' is nonlinear in the second argument the computation of the
mentioned parameters requires the computation of the solution of a nonlinear system with s x m

equations.
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1.3 The one-step methods
1.3.1 Consistency

The methods considered before belong to the class of one-step methods. Such methods are
characterized by the use of w, on the computation of u,41. The family of one-step methods
admits the representation

Upt1 = Up + AtP(ty, Un, Upt1, AL),n =0,..., N — 1,uy = u(to). (1.3.1)
For the particular case of the explicit methods we have the representation
Upg1 = Up + AtP(ty, upn, At),n =0,...,N — 1,ug = u(ty). (1.3.2)

In (1.3.1) and (1.3.2), u, € R™ and ¢ : [to, T]xIR*™x[0, Atg] — IR™, ¢ : [to, T]xIR™x (0, Aty] —
IR™, respectively, for some Aty.
Let us replace in (1.3.1) u, by u(t,). We define the truncation error T;, by

u(tni1) — u(tn)
At

The one-step method (1.3.1) is said consistent with the equation u/(t) = F(t,u(t)), if

T, = — Bty ultn), ultnsr), At). (1.3.3)

lim T,=0, nAt<T —ty.

At—0,n—00

As we have

. _ . / .
Aim T, = lHmw'(tn) + O(AL) = d(tn, ultn), ultn) + O(AL), At),

we conclude that the one-step method (1.3.1) is consistent if and only if

F(t,u) = ¢(t, u, u,0),

provided that ¢ is a continuous function. Furthermore, if the order of the truncation error is p,
which means that
T, < CAP,n=0,...,N—1, (1.3.4)

where C' is At independent, and p is the largest positive integer satisfying the last inequality,
then the one-stem method (1.3.1) is said with consistency order p.

Example 3 The truncation error of the explicit Euler’s method is given by
1 " I
T, = EAtu (),t € [tn, tnt1]-
For truncation error the implicit method holds
1 (g% *
T, = —iAtu (t*),t" € [tn, tns1]-

The consistency order of the Euler’s method is equal to one provided that u has bounded second

derivative.
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Example 4 The consistency order of the trapezium rule method is equal to two. In fact, we

have
7, = 24 (1) + 0(ar) - SR ull (1) = 0(AP).

Example 5 The explicit Euler’s method applied to the IVP (1.1.1) with m = 2 is given by

UL g1 = Ut + ALF1(tn, Ui pn, U2p)
(1.3.5)

U n+1 = U2n T AtF2(tn7 Ul,n, u2,n)7 n=20,...,N

with w10 = uy(to), ug,0 = uz(to). Such method has the following truncation error
At ui (1)
Tn — 7
uj ()

with t,t* € [tn,tnt1]. For the implicit version of the method (1.3.5) we have an analogous

truncation error.

Example 6 The explicit two-stage R-K method is second-order consistent provided that

1
c1+c2 =1, asca = barco = 3

1
o =1——

Then ay — 621,02 = 2%
az

20,

1
For as = 3’ we obtain the modified Euler’s method

At At
Upt1 = Up + ALF(t, + — 0 Un + TF(t”’ Up)) (1.3.6)
The improved Euler’s method is obtained for as =1,
At
Unp+1 = Un + 7 (F(tn, Un) + F(thrla Up + AtF(tna un))) . (137)

Example 7 The explicit tree-stage R-K method is third-order consistent provided that
c1+ext+e3=1,

C2a9 + Cc3a3 =

(1.3.8)
czag + c;;a% =

c3aobzg =

D= Wl N

The system (1.3.8) defines a two-parameter family of 3-stage R-K methods. Notables exam-
ples of this family are



Computational Mathematics J.A.Ferreira 18

1. the Heun method 1
Up+1 = Up + ZAt(kl + 3k‘3)

kl = F(tn, ’U,n)
1 1 (1.3.9)
2 2
with the Butcher-table
1)1
1B
3 I 3 .
-~ 0 =2
‘ 4 4
2. the standard third-order R-K method
1
Up+1 = Up + éAt(kl + 4ko + k?3)
kl = F(tn, ’U,n)
1 ) (1.3.10)
ks = F(thrl, u, — Atk + 2At]€2),
with the Butcher-table
1] 1
2| 2
1]1-1 2
‘ T4 1
6 ¢ 6
1.3.2 Convergence
Let e, = u(ty) —un,n =0,..., N, be the global error of the approximation u,,. The one-step

method is said to be convergent if
en — 0, At = 0,n — 0o, nAt < T — t.

If
llen|| < CAt?

with C time independent and At € (0, At], where At is an upper bound for the time stepsize,
being ¢ the largest positive number with the above property, then the one-step method is said
with order q.
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For the one-step method (1.3.2), the truncation error 7,, and the global error e,, are related

by the following equality
ent1 = en + AL(P(tn, u(tn), At) — ¢(tn, un, At)) + AtT,,n=0,...,N — 1. (1.3.11)
Then, if ¢ has a Lipschitz constant L with respect to the second argument, we deduce that
llent1ll < (1+ AtL)|len]| + At T)|,n =0,...,N —1, (1.3.12)

with [|IT]] = max ||
7=0,..,.N—1

14+ AtL)™
leall < (1+ ALY g + 7 2L (1313)
We proved the following convergence result:
Theorem 1.3.1 Let u,,n =0,..., N, be the numerical approximation to the solution of (1.1.1)

defined by the explicit method (1.53.2). Let us suppose that ¢ is continuous and satisfies a
Lipschitz condition with respect to its second argument in R(R is defined in Picard’s theorem)
with Lipschitz constant L. If ||u, — ug|| < d,n =1 ..., N, then

nAtL 1

e
leall < & eoll + 7] =1, N, (1.3.14)

where | T = max ||Tj].
=0,...,N—1
As a corollary of the Theorem 1.3.1, we immediately conclude that, under the assumption
of the Theorem 1.3.1, if the one-step method (1.3.2) is consistent, then it is also convergent.
Furthermore, if the order of the truncation error is p, then the order or the global error is at
least also p.

nAtL o ||. This last quantity is

The quality of the estimate (1.3.14) strongly depends on e
related with the propagation in time of ||eg||. If the initial error is very small, the previous
quantity should remains bounded and also small.

The proved result can be extended to the one-step method (1.3.1). In fact, if we assume that

”¢(tn7un7un+17At) - ¢(tn,ﬁn,ﬂn+1,At)” < L(Hun - anH + Hun—i—l - an—l—lH)v

then we obtain for the error the estimate
1+ AtL At

T, 1.3.15
lenill € 7oA en| + e Tl (13.15)
provided that 1 — AtL > 0.
The inequality (1.3.15) implies
2(n+1)At ( InAt—L >
< 1— At L 1-AtgL _ 3.
lensll < e leoll + , max 1Tl 5 w1, (1.3.16)

for At € (0, Atp] with 1 — LAty > 0. From (1.3.16) the convergence estimate

1T/ ona
lensall < max [ Til5- (e

ARL 1), (1.3.17)
0<i<N-1

is deduced.
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1.3.3 Stability

In the analysis of numerical methods for IVP the term stability, like in the context of the
theory of IVP, is a sort of collective noun for properties about the perturbation sensitivity
during the evolution in time. In the widest sense of the word, stability should mean that the
difference between any two solutions defined by (1.3.1) for the same step size remains bounded in
same suitable defined way. A stronger concept is contractivity which means that the mentioned
difference will not increase in time. Stability in the aforementioned sense allows an increase in
this difference but not beyond any bound. Clearly that contractivity implies stability.

The one-step method (1.3.1) is called C-stable if real numbers C' and Aty exist such that

tnr1 — Tngr]| < (1 + ALO)|[un — dinl, VAL € (0, Ato] (1.3.18)

where w1 and @, are defined by (1.3.1).

In (1.3.18) the constant C' is At independent. The increase on the initial perturbations
|uo — fig|| remains bonded by e(T=%)C||ug — 7g||. The magnitude of the bound depends on C.

In the particular case that the upper bound (1.3.18) holds with a positive constant C, < 1
replacing 1 + AtC then the method (1.3.1) is called contractive. If C. < 1, then we have the so
called strictly contractive.

In the definition of the previous stability properties, the step size is restricted by Atg. If
there isn’t any restriction to the step size then we say that the method (1.3.1) is unconditionally
C-stable or unconditionally contractive.

Another very important concept in the context on numerical methods for IVP is the absolute
stability. This concept is introduced considering the test equation

u'(t) = Mu(t), X € C, u(to) = up. (1.3.19)

Even though this equation is very simple, it is used as a model to predict the stability behaviour
of numerical methods for general nonlinear systems.
Let us consider (1.3.1) applied to (1.3.19). We get

Unt1 = R(2)up, z = At (1.3.20)

where R : C — C is a polynomial or rational function. R is called stability function of the
method (1.3.1). If R is such that |R(z)| < 1, then we say that the method is absolutely stable at
z. Of course that, if the method is absolutely stable at z, then |u, 1| < |u,| for any pair (At, A)
such that AtA = z.

The set S = {z € C: |R(z)| < 1} is called the region of absolute stability. If S C C_ = {z €
C : Rez < 0}, then we have unconditional absolute stability of the method when applied to the
test equation (1.3.19), which means that we have absolute stability without any condition on
the step size At. In this case the method is said to be A-stable.

Example 8 The stability function of the 0-method is given by

1. =0
R(z) =1+ z
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Consequently, the stability region are

1. 0 = 0: the circle with center (—1,0) and radius 1,

2. 0 =1: the complement of the open circle with center (0,1) and radius 1;

1
3. 0= 3 the semi-plan Rez < 0.

1.3.4 The 6-Method
Stability Analysis

Let us consider #-method applied to the linear IVP
u'(t) = Au(t) + g(t),t > 0,u(ty) = up. (1.3.21)
The application of the #-method to the last problem enable us to obtain
Uni1 = R(AtA)u, + (I — ALA) "I Atg, 1o, (1.3.22)
with
R(AtA) = (I — 0AtA) NI+ (1 — 0)AtA),
and
In+o = (1 - H)Q(tn) + Hg(thrl)'
If we consider two numerical approximations defined by the #-method with different initial
conditions ug and g, we get for wy+1 = Upy1 — Un+1 the following equation
Wny1 = R(OA) M. (1.3.23)

Hence, the power R(0A)"T! determines the growth of the initial error wy. We note that

(I —0AtA)™ = i(@AtA)j
j=0

provided that OA| A]| is sufficiently small. Then
R(AtA) = I + AtA + O(At?),
and thus
|IR(AtA)|| < (1 + CAt), (1.3.24)

for At||Al| small enough and C' depending on ||A|. From (1.3.23) and (1.3.24) we conclude the
C-stability of the #-method.

As || A|| can be very large, the estimate (1.3.24) is then useless. Better bounds can be deduced
by invoking the stability region.
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Theorem 1.3.2 Suppose that ||.|| is an absolutely vector norm and A = M DM~ where cond(M) <
k and D is a diagonal matriz, D = diag(\;). If AtA; € S, for all j, then

|IR(AtA)"|| < k, Vn. (1.3.25)
Proof: From the fact A = M DM ™! it can be easily seen that
R(AtA) = MR(AtD)M ™!

and, therefore,
R(AtA) = MR(AtD)M ™.
As R(AtA) = Diag(R(At)A;) we conclude the proof using the fact that the vector norm is
absolute.
=

Theorem 1.3.2 enable us to establish C' stability. In fact, if k£ < 1+ AtC for some constant
C, then the #-method is C-sable.

Considering normal matrices in the last result we obtain the corollary below mentioned.

Corollary 1 Suppose that A is a normal matriz. If AtA; € S, for all j, then
[R(AtA)[|2 < 1.
|

For a large number of applications, Theorem 1.3.2 gives a sufficient condition for stability.
However, for non diagonalizable matrices or diagonalizable matrices such that cond(M) is large
the mentioned result does not allow to conclude stability. In what follows we establish a result
based on the logarithmic norms, which can be very helpful.

Theorem 1.3.3 Suppose that the vectorial norm is induced by an inner product < .,. > . If

Re < Av,v >< wlv|?, Vv e C™, (1.3.26)
then
|IR(AtA)|| < sup |R(z)|] < max (|R(Atw)|, |R(oo)|) (1.3.27)
Rez<Atw
provided that
1 —wlAt > 0. (1.3.28)

Proof: Let Z = AtA and consider w; = R(Z)wy which can be rewritten as

w =T +1-0)2)I-0Z2) wg=u+(1-602)u

with u = (I — 02Z) wg. We also have wy = u — 0 Zu. Let v = U

Tl It is easy to show that
U

Jwi|?  1+2(1—60)Re < Zv,v > +(1 — 9)2||Zv\|2.

— 1.3.29
||wol|? 1—20Re < Zv,v > +62||Zv||? ( )

'A norm ||.|| in IR™ is said absolute norm if for any two vectors u, such that |u;| = |v;|, ||u]| = ||v||. In this case
the norm of a diagonal matrix is the maximum of the absolute value of the diagonal components.
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The quotient (1.3.29) admits the representation

= |R(€)]?, £ = Re < Zv,v > +i\/|| Zv||2 — Re < Zv,v >2. (1.3.30)

Since Re{ = Re < Zv,v >< Atw it follows that ||R(Z)|| is bounded by sup{|R(z)| : Rez < Atw}.
Using the Theorem of Maximum Modulus?, we obtain

IR(Z)] < maz{|R(Atw), [1 — %I}-

provided that 1 — Atfw > 0.
[ |
The condition (1.3.26) is equivalent to u[A] < w. As a consequence, using the upper bound
for the logarithmic norm, we establish an upper bound to ||R(AtA)||. Fixing Atg, such that

max (|R(Atw)], |1 - %y) <1, At € (0, At]
we conclude that the -method is contractive. Furthermore, if
max (|R(Atw)], |1 — %y) <14 CAL At € (0, Atg]
we conclude the C-stability of the #-method.
Corollary 2 If u[A] <0 and 6 > % then
IR(ALA)] < 1.

Proof: We only point out that we have |R(AtA)| < |1 — %] <1.
1 [ ]
Immediately, if 0 > g0 we conclude that the 0-method is unconditionally contractive. For

1
f < = we need to impose a restriction on the step size At in order to get stability.
Theorem 1.3.3 is valid just for norms induced by inner products. For a general norm we have
the following characterization valid for implicit Euler’s method only.

Theorem 1.3.4 Let A in C™ x C™ and w € R. Then,

1
Al <wi I —AtA) ) < ———
plA) < w if and only i (I~ A4 < 1

provided that 1 — wAt > 0.

2Theorem of the Maximum Modulus: Let ¢ be a non-constant complex function which is analytic on a set
D C C and continuous on D. Then
max [¢(2)] = max |¢(2)],

where 0D denotes the boundary of D.
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Proof: Suppose that u[A] < w. As we have

considering wy = (I — AtA) lwg, wo = (I — AtA)wy, and then, taking B = AtA — I, we obtain
[woll = —p[AtA = I][jwy ]| > (1 — Atw)[Jwy .
Thus, if 1 — Atw > 0, we deduce that I — AtA is nonsingular and
(I — AtA)7Y < (1 — Atw) ™

On the other hand, assuming that the latter inequality holds for At small enough, then using
o

the series expansion (I — AtA)™! = Z(AtA)j which holds if At||A| < 1, it follows that
j=0

1
< - —1 2y 2y
|1+ AtAll < (I = AtA) | + O(A) <€ =+ O(AF)

Consequently, we obtain p[A] < w.
m
Theorem 1.3.4 stands that, if u[A] < w and Aty is such that 1 — Atgw > 0, then we obain

w

— At —
1— Atow )Hun U,

[Unt1 — tna]l < (1 +

which means that the implicit Euler’s method is C-stable.

For nonlinear problems we have the following extension:

Theorem 1.3.5 Let ||.|| be a given norm. Suppose that

oF
M[%(tnﬂ,f)] <w.

Then for any two numerical approxzimations for the solution of (1.1.1) defined by the implicit
Euler’s method we have

- 1 -
[unt1 = Unya]l < m”un — | (1.3.31)

provided that 1 — wAt > 0.

Proof: By the Mean Value Theorem, we have, for w,4+1 = upt1 — Unt1,

1
(I - At/ %(tmrl, OUpt1 + (1 — 0)Upy1) da) Wpt1 = Wy (1.3.32)
0

1
Let M (t,+1) denotes / ?(tnﬂ, Otnt1 + (1 — 0)lpy1) do.
0 (%
As

w
Hl ﬂ\l > —p[—1 + AtM (tn41)),
n
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and, by Proposition 1 and Theorem 1.1.5, we get
=1+ AtM (tps1) < =14+ Ap[M(tp41)] < —1 4 Atw.
So, we deduce

Mwnll g~ At
[[wn

which allow us to conclude (1.3.31).
Convergence
The Linear Case

Let us start by considering the § method applied to (1.3.21). Let T;, be the truncation error.
Then for the error e, holds the representation

ent1 = en + At(1 — 0)Ae,, + 0AtAe, 1 + ALT,.

It follows that

eni1 = R(AtA)e, + (I — Ath)A)LALT,. (1.3.33)
Supposing that
IR(AtA)"|| < k,nAt < T —tg, (1.3.34)
from (1.3.33) we obtain
n—1
llen]l < Elleoll + kAL D (I — 0ALA) ||| T5 . (1.3.35)
j=0

Using the definition of R, we have
(I — AthA)™ = OR(ALA) + (1 — O)I

3 and then (I — AtfA)~! is bounded if we can bound R(AtA). As we are assuming that (1.3.34)
holds, we deduce that exists (I — At§A)~! and its norm is bounded by some constant C. Con-
sequently, from (1.3.35), we establish

lenll < Klleoll + EC(T = to)[|I Tl (1.3.36)

where ||T'|| represents the maximum of the truncation error. For § = 1/2, ||T|| < C'At? and
|T|| < C'At in the other cases. Thus, using the fact eg = 0, we obtain

lenll < C*AtF, nAL < T — ty, (1.3.37)

where C* stands for the product of constants that arise above.

s OR(AtA) =0T+ 0(I — OALA) TALA
=01 — (I — OALtA) "N (I — OALA) + (I — OALA) ™!
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The estimate (1.3.37) establishes the convergence of the §-method when applied to the IVP
(1.3.21). On the proof of this convergence, the stability inequality (1.3.34) has an important
role. Obviously, if ||[R(AtA)|| < k, then k := k™. So, in k >> 1 then k is very large and then
the estimate (1.3.37) does not give helpful information. If k& = 1 4+ AtC for some C, we have

C-stability, and then in (1.3.37) k = e“(T~%) which is bounded.

The Nonlinear Case

We consider in what follows the application of §-method to the IVP (1.1.1). Let T;, be the

truncation error and e, the global error. For these two errors we have
en+1 =en+ (1 — H)At(F(tn,u(tn)) — F(tn,un))
+OAL(F(tns1, u(tnt1)) — Ftng1, ung1)) + AT,

and, using the Mean Value Theorem, we obtain

1
en+1 =e€n+ (1 — H)At/o g—f(tn,au(tn) + (1 = o)uy) do(u(ty,) — uy)

LoF
+9At/ %(tn+1, O'U(tn+1) + (1 — O')Un+1) dU(U(tn+1) — Un+1) + AtTn
0

Considering the notation

Mi(t,) = /01 O (1 0u(ta) + (1 — o)) do
we get for the error e, 1, e, the following equality
(I — OAtM (tp1))ent1 = (I + (1 — O)AtM (t,,))en + AtT,,
which can be rewritten in the following form
bni1 = (I + (1= O)AtM(t,))(I — OAtM (t,)) "1 é, + ALT,,

where
ént1 = (I — OAtM (tpi1))ent1,€n = (I — OALM (ty,))en,.

If we assume that
Wl —— v Vi,V
ov ’ Y

1
then, for vectorial norms induced by inner products and for 6 > 57 we have
[R(AEM (tn))]| <1,

which implies
1entall < llenll + At Ty

(1.3.38)

(1.3.39)

(1.3.40)



Computational Mathematics J.A.Ferreira 27

From (1.3.40) we get

ensall < ol + 3" AT < o]l + nAtT, (1.3.41)
j=0
where ||T'|| is defined as before.
Taking into account that (I —OAtM (t,))~t = OR(AtM (t,))+(1—0)I and |[R(AtM (t,))]| <
1, we deduce that
(I — AtOM (t,)) | < 1.

This upper bound implies that
lensall = (T = AOM () ensal < lonsall,
and then, from (1.3.41), the following estimate
lensall < I — BAEM ((to))eo | + nAH|T]| (1.3.42)

can be established. Finally, another upper bound can be obtained if we take the estimate
|M(to)]| < L, where L represents the Lipschitz constant

lensall < (1+ LA)||eo| + nAt|T. (1.3.43)

1.4 Stiff systems

The problems called stiff are diverse and it is rather cumbersome to give a rigorous mathe-
matic definition of stiffness. Consequently, in the literature, there are various definitions. Hairer
and Wanner, in their book [14], wrote that While the intuitive meaning of stiff is clear for all
specialists, much controversy is going on about its correct mathematical definition. They agree
that the most pragmatical opinion is also historically the first one: stiff equations are equations
where certain implicit methods perform better, usually tremendously better, than the explicit
ones. This idea of stiff equation is based on the use of numerical methods.

We will introduce in what follows the concept of stiff equations, trying not to use the per-
formance of some numerical methods. The essence of stiffness is given by Dekker and Verwer in
their book [4]: The essence of stiffness is that the solution to be computed is slowly varying but
that perturbations exist which are rapidly damped.

Let us consider some illustrative examples of stiffness.

Example 9 Let F be a slowly varying smooth function and X be a parameter such that X << 0.
Let u be the solution of the IVP

u'(t) = Mu(t) + F'(t) — AF(t), t > 0,u(0) = ug. (1.4.1)
The solution of the IVP (1.4.1) is given by
u(t) = F(t) + eM(ug — F(0)).

As A << 0, after a very short time distance, the behaviour of the term e(ug — F(0)) does

not influence the behaviour of u. Nevertheless, for short time distance, u is determined by the
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mentioned term. Such term is called transient term, stiff component of u or strongly varying
component of u. The term F(t) is called nontransient, smooth component or slowly varying
component of u.

Let us now consider the integration of (1.4.1) over the time interval [t,,t,+1] of length At

u(tnir) = e (u(tn) = F(tn)) + Ftat)-

This expression show that if there is an perturbation of the smooth component, such perturbation
1s rapidly damped.

Let us consider now the Fxplicit and the Implicit Euler’s methods
Unt1 = (1 + AAL) (un, — F(tn)) + F(t,) + AtF'(t,),

Uny1 = (1= AA) (u, — F(tn)) + (1 = MA) TN F (tn) + AtF (tny1) — MALF (tn41)).

If we take uy, as a perturbation of F(t,), then, in the Explicit method, the perturbation w,—F (t,)
is damped if At € (0, —)\), which implies a severe restriction on the time step size. Otherwise,

the tmplicit method simulates the behaviour of the continuous model for all At.

Regarding the approzimation of F(t,4+1) by the corresponding terms of both methods, for the
explicit method the term F(t,)+ AtF(ty,) is acceptable approximation for F(,41) with At larger
than the imposed by the stability behaviour. This situation is typical when explicit method is
applied to a stiff problem. Of course that for the implicit method we have (1 — ANAt) ™ (F(t,) +
AtF’(tn_H) — )\AtF(tn_H)) — F(tn-i-l) — 0.

In Figures 4 and 5 we plot the numerical solutions obtained with the explicit and implicit
Euler methods. The implicit method performs tremendously better than the explicit one. When
A decreases drastically then the restriction for the time stepsize is in fact very severe as we can
see in Figure 10

|

Example 10 Let us consider again the IVP defined in Example 2. The solution of such problem

s given by B
edt edt —e € t
u(t) = 1 +de ug-
0 efe_lt

The second component e 't of the solution dies after a short period. This component, the
transient one, determines the solution only for small times. After the transient time, the solution
is determined by the smooth component e®. This problem is considered also stiff. We point out
that the problem is considered stiff only on the nontransient phase.

We consider now the Explicit and the Implicit Euler’s methods defined by

1+ Atd  Ate !

Un+1 = Un,
0 1— Ate?
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At=1/10

t

At=1/46

2.8 | —&— Explicit solution 1
Implicit solution
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241 —

221 q
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161 1

14F 1

t

At=1/48
2.8

261 q

—&— Explicit solution
2.4r Implicit solution

2.2f q

181 q

161 q

141 B

Figure 4: Numerical approximations obtained with the explicit Euler and implicit Euler methods
for F(t) = e’ and A = —100.
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At=1/10

4.5 q

4r — - 1
—&— Explicit solution

350 Implicit solution 4

25F q

05F q

t

At=1/494

261

241 B

221 q

18f q

161 1

14F 1

t

At=1/496
2.8

241 - - b
——=— Explicit solution

Implicit solution
2.2 B

181 q

161 q

141 B

12f q

Figure 5: Numerical approximations obtained with the explicit Euler and implicit Euler methods
for F(t) = e’ and A = —1000.



Computational Mathematics J.A.Ferreira 31

1 Ate!
1—Atd (1—-Atd)(1+ Ae!
Un4+1 = Unp,-
0 1
1+ Ate!
On the transient phase both methods perform satisfactorily because they are computing an

Atel

t
approximation to e~ using 1 — Ate™ ! and 1 — T AL After this phase, the transient com-
€

ponent died and the behaviour of the solution is determined by e™. Obviously, in this phase, the

explicit method becomes inefficient .

We next discuss the concept of stifness for the general linear problem
u'(t) = Au(t) +r(t),t > 0,u(ty) = uo, (1.4.2)

where A € IR™ x IR™ and r denotes a source smooth term. The obvious way to define stiffness
for the linear system is by using the nature of the eigenvalues A;,i = 1,...,m. The linear IVP
(1.4.2) is stiff if

1.
N @ Re); << 0, (1.4.3)

2.
3\ ¢ |A\ilis small when compared with the modulus (1.4.4)

of the eigenvalues satisfying the first requirement, o

3.
/H)\z‘ : ReX; >> 0, (1.4.5)

4.
A\ : ImX; >> 0 unless Re\; << 0. (1.4.6)

Of course that if (1.4.2) is stiff according to the last definition then it is also stiff in the sense
introduced before.

The previous concept of stiffness allows now the introduction the stiffness for the nonlinear
IVP (1.1.1). If the eigenvalues of the Jacobian of F, JF at u(t) for t = ¢, satisfies (1.4.3)-(1.4.6),
then we say that (1.1.1) is stiff at #. Let us suppose that we perturb u(#) to (f). As, for t > t,
w(t) = u(t) — u(t) satisfies

1
where M (t) :/ JE(t,ot(t) + (1 — ou(t))) do, then, if u varies slowly for ¢t > ¢, and w(t)
0
contains rapidly damped components solutions, or, even the hole solution w(t) is rapidly damped,
we say that the IVP (1.1.1) is stiff for ¢ > ¢.
It should be stressed that there is not a satisfactory mathematical definition of stiffness
for a nonlinear problem. Nevertheless the stiff problems from practice are well recognized. In
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fact, any physical problem modelled by the IVP (1.1.1) with physical components with greatly
differing time constant leads to a stiff problem. The physical components with the smallest time
constants show a very rapid change and make the problem stiff. The slowly varying solution of
a stiff problem is determined by the latter components.

It is well assumed that a property of the stiff problems is the presence of a large Lipschitz
constant. Hence, the error estimates for the one-step methods established in Section 1.4 are not
helpful for this kind of problems. Error estimates obtained using the logarithmic norms can be

more convenient for stiff problems.

1.5 The Runge-Kutta Methods

The class of s stage Runge-Kutta methods was introduced in Section 1.3. We present in
what follows some results on the Runge-Kutta methods

ar | bin b1z bz ... bis—1 bis
az | bar  baa bagz ... bas_1 bas
az | bz b3z b3z ... b3s_1 b3
as bsl bs2 653 cee bss—l bss

C1 (&) C3 ce Cs—1 Cg

1.5.1 The Order Conditions

As introduced before, the s-stage R-K methods is consistent if the truncation error T,
defined by

AT, = u(tns1) — ulty) — At Z ciki
=1

with i
k; = F(tn + Ata,, u(tn) + At Z bz‘jk‘j),
j=1
satisfies
IT.|| = O(At), Vn : At < T —tg.
If

AT, = lfu(tnsr) —ultn) — Aty cikil = O(ALH),
i=1

then the s-stage R-K method is consistent with order equal to p.
As we have

AP (1, + o AL)

p
1
AtT,, = m§1 —m!At u™(t,) + TE]

R 1 (1.5.1)
_ . = Agmp(m) 2 AP
At;CZ(T;m!At K (0) + A, (JZAt)),

with o, 0; € [0,1], the conditions for the consistency order can be established for explicit Runge-
Kutta methods.
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Example 11 Let us consider the explicit 4-stage R-K method. Using (1.5.1) it is a tedious task

to compute the conditions for the coefficients of the method such that the consistency order is 4.
i—1

Considering that a; = Z bij such conditions can be reduced to
j=1
citet+ceste=1

c2a3 + c3az + cqaq =
2 2 2
Coay + c3a3 + cqay =

Cgag’ + 030,% + C4ai =

= W= N =

1 (1.5.2)
czagbsaag + cqaq(bsgag + byzaz) = 3
c3bza + cabaz = c2(1 — a2)
C4b43 = 63(1 — ag)

C4(1 — a4) =0

(see [14], pg 133-136). Examples of fourth consistency order are given in the following Butcher
tables

11]1 1] 1

2 |2 3| 3

101 211

2 2 3

110 0 1 171 -1 1
1 2 2 1 1 3 3 1
6 6 6 6 8 &8 8 8

We presented until explicit R-K methods with p stages and p consistency order for p < 4. Is
it possible to construct an explicit s stage R-K method with s consistency order? The answer
to this question was given by several authors independently. For instance, Butcher proved the
following result which can be seen in [14] (pg-173).

Theorem 1.5.1 For p > 5 no explicit R-K method exists of order p with s = p stages.
|

As far as the existence of implicit R-K methods is concerned, we remark that we should
compute, at each iteration, the solution of nonlinear system

s
k; = F(tn + a; At, u, + Athijkj), 1=1,...,s.
j=1
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The computation of the consistency order was made by assuming that k; is differentiable with
respect to the time step size. A sufficient condition guarantying the legitimation to compute k;
and £}(0) is given in what follows.

Theorem 1.5.2 Let F' be continuous in the first argument and Lipschitz with constant L with

respect to the second argument. If

1
At < ’ 1.5.3
Lmaxi=1,..s ;1 |bijl ( )

then there exists a unique solution defined by the implicit s-stage Runge-Kutta method. Moreover,
if F' is p times continuously differentiable, then k;,i = 1,...,s, are in CP with respect to the

time step size.

Proof: Let IF : IR*"* — IR be defined by

]F(K) = (IFZ(K)) = (Fl(tn + Atai,un + Ati bz‘jk}j))
j=1

with K = (ki,...,ks).
In IR*™ we consider the norm
K| = max |[[k;]|.
i=1,...,s

As IF satisfies de Lipschitz condition, we have
S
() — F(K) | < At max - fby|[ K1 — Kol < [ K1 — Ko,
ARG J:l

and, using (1.5.3), we conclude that IF is a contraction with respect to the last norm.
The differentiability of k; is a consequence of the Implicit Function Theorem for

K —TF(K) =0.

=
We point out that the application of the last result implies the use of a very small step size
for large Lipschitz constants. Nevertheless, we apply this result in the last context.

Example 12 The implicit 2-stage R-K method with the coefficients satisfying

c1+ep=1

1
ciaql + c2as = 5

(1.5.4)

1
2 2
c1ay + coay = 3

1
c1(br1a1 + bigag) + ca(borar + bagas) = 6

has consistency order equal to 3. An example of a third order consistency R-K method is given
in the following Butcher table
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g Y 0
3++V3
l—v|1-2y « N = 6\/_'
1 1
2 2

Butcher established a sufficient condition for the consistency order of a general s-stage R-K
method ([4]).

Theorem 1.5.3 If

1
Zciaszl =—m=1,...,p, (1.5.5)
X m
=1
S m
byal =i =1 sm=1,...q (1.5.6)
j=1 "
and .
3 cial = %(1 —aM) =1, sm=1,.. L (1.5.7)
=1

withp < q+ £+ 1,p < 2q + 2, then the consistency order order of the method is equal to p.
|

Let us look to the previous conditions. The R-K methods are constructed, replacing in the
Picard’s sequence,

tnt1 1
w(tpt1) = ul(ty) + / F(t,u(t))dt = u(t,) + At/ F(ty, + o At,u(t, + cAt)) do,
tn 0

the term F'(t,, + o At,u(t, + cAt)) do by an approximation defined by

s

Z CiF(tn + Atag, u(tn) + Atz bijkj)’

i—1 j=1

with k; defined above. This approximation is a particular case of the approximation rule

| a(@)dr =3 cgtan)

If this integration rule is exact for polynomials with degree less or equal to p — 1, we have

S

1
/O‘mldU:E Cia;n*l
0

=1

and then the equality (1.5.6) holds.
Let us consider now the integral

/ Z F(t, + Ato,u(t, + Ato)) do
0
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approximated by

S

> bijky.
j=1

This approximation is defined using the integration rule

/ai g(o)do ~ Z bijg(a;).
0 ot

If the last approximation is of order p, i.e, the integration rule is exact for polynomials of degree
less or equal to p — 1 we have (1.5.6).

Example 13 An example of an implicit R-K method with 3-stages with order 6 is the so called
Kuntzmann-Butcher method given by the following Butcher table

1 15 5 2 V15 5 V15
2710 36 9 15 36 30
1 5 /15 2 5 V15
2 36 " 21 9 36 24
1 V15| 5 V15 2 V15 5
2" 0 3% " 30 915 36
5 4
18 9 18

Finally, we point out that, as the R-K methods are one-step methods and the upper bounds
for the global error were established using the truncation error, at leat for IVP with a Lipschitz
function F, we conclude that if the consistency order is p, then the convergence order is at least
.

1.5.2 Stability

The stability function of the general s-stage Runge-Kutta method is defined when such
method is applied to the test equation (1.3.19). In this case we get

Up+1 = Up + At[ci]t[k‘i], (158)

where

k; = Ay, + At)\[sz]z[k‘z] (1.5.9)

Then
(I — 2[bij])[ki] = Ny,

where z = At and1 denotes the vector with all components equal to 1. The last equality implies
[ki] = (I — 2[bi]) ™~ Dy,

and then
Unt1 = Uy + AtA[c] (T — 2[bi;]) My,



Computational Mathematics J.A.Ferreira 37

which is equivalent to
Unt1 = R(2)uy,

with the stability function R(z) given by
R(z) = 1+ 2[c]'(I — z[by]) 1L (1.5.10)

We determine, in what follows, a new representation for the stability function of the s-stage
Runge-Kutta method (1.5.10).

Applying the s-stage Runge-Kutta method to the test equation (1.3.19), we get (1.5.8) and
(1.5.9). The numerical approximation wu,1 can be computed using the linear system

1-— 21)11 —Zblg e —ZblS 0 k‘l )\’U,n
—Zb21 1-— Zb22 e _Zb2s 0 k?z )\un
0 = (1.5.11)
—zbsl —zbgy ... 1—2zbss O ks AUy,
—Atey —Atey ... —Ates 1 Up1 Up |
By Cramer’s rule we get
1-— Zb11 —2612 N —ZblS )\’U,n i
—Zb21 1-— Zb22 e _Zb2s )\un
det
—zbsl —zbgy ... 1 —2zbgs Au,
—Atc —Ate ... —Atc U
Uyl = —— ! 2 > n - (1.5.12)
1— Zb11 —2612 N —Zbls 0
—Zb21 1-— Zb22 e —Zbgs 0
det e e e e 0|,
—zbsl —zbso ... 1—12zbgs O
—Ateg —Atey ... —Ates 1
which admits the representation
[ 1— 21)11 —Zblg . —Zbls Unp,
—Zb21 1— Zb22 e —Zbgs Un
det ..
—zbsl —zbgy ... 1 —2zbgs uy
—zC —zCy ... —2Cs  Up
_ L 1.5.13
tnl det(I — z[bi;]) (15.13)
From (1.5.13), we deduce
1—2zby1+2c10 —2zbia+2zc0 ... —zbis+zcs 0
—zboy +2c1 1 —2z2byg+2zco ... —zbys+zc3 O
det ... ... ... ... 0
—zbs1 + 21 —2bgg +zcp ... 1 —2zbgys+zc3 0
—zcy —2Cy ... —Z2Cg 1
= det(I — 2[bi]) o
We conclude that the stability function R(z) defined by (1.5.10) is also given by
det(I — z[b;;] + Alc;]t
R(z) = = U= 2yl + Alef) (1.5.14)

det(I — =[b;))
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Figure 6: Boundaries of the stability regions of the Euler’s method and modified Euler’s method.

The last expression for the stability function of the s-stage Runge-Kutta method has, for the
explicit case, an immediate consequence. In fact, if the Runge-Kutta method is explicit, then its
stability function is a z polynomial of degree less or equal to s. Otherwise, the stability function
is rational function with the degree of both numerator and denominator less or equal to s.

The stability region of the s-Runge-Kutta method is given by S = {z € C: |R(z)| < 1} with
R given by (1.5.14).

Example 14 The modified FEuler’s method has the stability function
52
R(z)=14z+ 5

and the stability region S = {z € C : |2+ 2z + 22| < 2}. In Figure 6 we plot the boundaries of
the stability regions of the explicit Euler’s and the modified Euler’s methods.

|
Example 15 The stability function of the explicit 3-stage Runge-Kutta method is given by
3
R(z) =1+z Z ¢ + 22(03(b31 + b32) + Cgag) + Z3b21b3263.
i=1
If the method has third consistency order, then, using the order conditions, we obtain
1 1
R(z)=1+4z+ 5,22 + 62:3.
|

Example 16 The implicit methods
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respectively, the implicit midpoint and the implicit trapezoidal methods, share the stability func-

tion 14z
+_

R(z) = 1_2.

2

As the stability region is C_, we conclude that both methods are A-stables.

Example 17 The implicit method

gl ¥ 0
1—v|1—-2y ~
‘ 1 1

2 2

3++3

with third consistency order for v = — has the stability function

L+ (1=2y)z+ (5 — 2y ++2)2?

Rlz) = (1—79z2)?

1
For v > 1 the R-K method is A-stable.

The stability region can be used to compute bounds to the time step size. In fact, considering

the stability region S and its intersection with the straight line Imz = 0, (R;, Rs), which is

usually called interval of absolute stability, we have absolutely stability if and only if AAt €
(R;, Rs). Using the interval (R;, Rs), we know how the magnitude of the time step size should

be in order to guarantee stability. For example, we have

e (R;,Rs) = (—2,0) for the 2-stage R-K methods,
e (R;,Rs) = (—2.51,0) for the 3-stage R-K methods,
e (R;,Rs) = (—2.78,0) for the 3-stage R-K methods.

The stability function can be related to the consistency order.

the test equation, we may obtain
u(tpy1) = eulty), z = AAt.
Otherwise, if we apply a R-K method to the test equation, then

Upt1 = R(2)up.

In fact, for the solution of

(1.5.15)

Replacing in the last identity the approximated solution by the continuous one, we get

A

u(tni1) = R(2)u(tn) + Tn,

(1.5.16)

where T}, depends on the truncation error. From (1.5.15) and (1.5.16), we conclude the following

result:
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Theorem 1.5.4 If the R-K method is of consistency order p then

¢ = R(z) + O(zP+1),

|
As a corollary we deduce:
Corollary 3 If the explicit R-K method has order p, then
22 2P 1
R(z) = 1—|—z+3—|—---+g—|—0(zp+ ).
Proof: From Theorem 1.5.4, R(z) is an approximation of e with order p + 1.
=

Our aim now is to establish sufficient conditions for the stability the Runge-Kutta methods:
contractivity or C-stability, for linear system of ODEs. We follow the analysis of #-method
stability. Let R(z) be the rational function

_Potpizt--+ps2’

R(z) = .
qo + q1s + -+ qs2®

For a m x m Z matrix we define R(Z) by
R(Z) = (pol + p1Z + -+ psZ°) (ol + 1 Z + -+ + s Z°) . (1.5.17)
Applying the s-stage Runge-Kutta method to
u'(t) = Au(t), u(to) = ug
where A is a m X m matrix, we obtain
Unt1 = R(AtA)u,,

where R(z) denotes de stability function of the R-K method. In fact, as in the scalar case, we
have

Upt1 = Up + [ci]' [kiliz1,. s
where [k;]i=1,. s is a s column vector with the ¢ component equal to the m column vector k;,

[Ci]t[kji]i:17...7s denotes Zcik‘i, where [ki]izl,...,s is defined by
=1

[kiliz1,...s = (I — AtAlby;])~" Allu,,

being A[b;;] a s x s block matrix with entries Ab;;, and[Au,, a s column vector with components
Auy,. According to the introduced notations we obtain

R(AtA) = I + AtAlc;] (I — AtAlb;;]) ',
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where [ci]T represents a block vector whose entries are ¢;I, i = 1,...,s, and I denotes now the

column block vector with s blocks being each block the m identity matrix. We remark that the

last representation can be obtained formally from (1.5.10) with the convenient modifications.
Of course that, for w, = u, — 4,, where u,, 4, are defined by the initial conditions ug, g,

respectively, we obtain
w41l < [[RALA)]™ ] [lwo . (1.5.18)

The stability behaviour of the Runge-Kutta method, when applied to the linear problem, de-
pends on the behaviour of ||R(AtA)||™ when n increases.

Let us suppose that R(z) is defined by (1.5.17) and A is a diagonalizable matrix, A =
MDM~! with D = diag()\;). Then

|R(AtA)|| < cond(M)|diag(R(AtN:))]. (1.5.19)
If AX; € S, then |R(AtA;)| < 1, and consequently
IR(AtA)|| < cond(M). (1.5.20)
We proved the next result:

Theorem 1.5.5 Let us suppose that A is diagonalizable, A = MDM~! with D = diag(\;). If

AtA; € S, then holds (1.5.20).
|

For normal matrices we conclude contractivity.
In what follows we extend the previous result to more general matrices but just for methods
with a bounded stability function R(z) for Rez < 0. We assume that

Re < u, Au >< 0, Yu € C™, (1.5.21)

where < .,. > denotes the Euclidian inner product. This condition enable us to conclude that,
for the continuous problem u = Au, holds the following

d
EHU(t)HQ = 2Re < u(t),u'(t) >= 2Re < u(t), Au(t) >< 0
and then [|u(t)|> < [Juol|.

Theorem 1.5.6 (see [14], pg 168-169) If R(z) is bounded for Rez <0 and A satisfies (1.5.21)
then

IR(A)|| < sup |R(z)]. (1.5.22)
Rez<0

An immediate consequence of the previous result is that

|R(AtA)|| < sup |R(z)].
Rez<0

Obviously, if the R-K method is A-stable then the R-K method is contractive with respect to
the Euclidian norm.
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Example 18 Let us consider again the class of implicit methods defined in Example 17. Those
methods have the stability function

14+ (1—2y)z+ (3 — 2y 4+12)2?

)= (1 =72)?

1
For ~v > = these methods are A-stables. Then, for linear problems satisfying < Au,u >< 0, we
immediately conclude contractivity.

|
The condition (1.5.21) can be replaced by
Re < u, Au >< wl|u||?, Yu € C™. (1.5.23)
In fact, (1.5.23 ) implies
Re < u, (A —wlu ><0.
Consequently, taking in Theorem 1.5.6 A replaced by A = A —wI and R(z) replaced by R(z) =
R(z + w), we have
IR(A)|| = |RA)| < sup |R(z+w)|| < sup |R(=)|-
Rez<0 Rez<w
From (1.5.23) we deduce
Re < u, AtA >< Atw||u||®,u € C™,
which implies
IR(AtA)|| < sup |R(2)|. (1.5.24)

Rez<Atw

Let us consider a R-K method with a stability function R. Applying this method to a linear
problem such that (1.5.23) holds, then, using (1.5.24), we easily get an estimate for |R(AtA)]|.

We point out that the stability analysis for nonlinear case will not be considered here but
can be seen for example in [4] and in [14].

1.6 Linear Multistep Methods
1.6.1 Some Examples

The Runge-Kutta methods studied in the last section are a natural improvement of the
Euler’s method in terms of accuracy. However, to increase the accuracy implies an increasing
on the computational effort, which is measured in function of the evaluation of F' at each step.
The high computational cost of the Runge-Kutta methods can be avoided using more than two
time level at each step. More precisely, let us consider the Picard’s sequence defined using the
interval [t,—1,tn+1]

bt
u(tni1) = u(tn—1) —|—/ F(t,u(t))dt. (1.6.1)

tn—1
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If we replace the integral term by the Simpson’s rule, we obtain the numerical method

At
Upt1 = Up + ?(F(tn,l,un,l) +4F (ty,un) + F(tn+1,un+1)),n =1,...,.N -1 (1.6.2)

As un41 depends on uy,—1, Uy, this method does not belong to the class of the one-step methods
and it is called 2-step method. The computation of a numerical approximation to the solution
of the IVP, using the method (1.6.2), needs an approximation to u; which should be computed
with another method.

Our aim, in the following sections, is to study the class of methods that includes the method
(1.6.2).

A numerical method such that u,41 depends on up41—g,...,u, is called g-step method. In
this section we study linear multistep methods defined by

q q
Zajunﬂ- = AtZﬁanH, n=20,...,N—gq, (1.6.3)
j=0 J=0

with Fj = F(tp4j,unt;) and NAt = T — t5. The method is identified by the coefficients
a;,B5,j =0,...,q. If g # 0 and B, = 0 then the method is explicit. Otherwise, the method is
implicit.

The computational advantage of a linear ¢g-step method over a one s-stage R-K method can
be observed for explicit and implicit methods. For the first methods only one F' evaluation is
needed while the R-K method needs s F' evaluations. When implicit methods are used only one
nonlinear system has to be solved. However, the initial values u1,...,u,—1 needed the method
g-step method (1.6.3) should be computed with a one-step R-K method.

Some classes of linear multistep methods are: the Adams methods and the Backward Dif-
ferentiating Formulae (BDF). We present now these classes of methods.

1. The Adams methods: This class of methods is obtained takin in (1.6.3)

oag=-=0ag2=0,a4-1=-1,0,=1

The Adams method is characterized by the expression

q

Untg = Untg-1 + ALY BiFny.
7=0

If 3, = 0, then the method is explicit, else is implicit. The explicit Adams methods are

usually called Adams-Bashforth methods while the implicit ones are called Adams-Moulton
methods.

2. Backward Differentiating Formulae (BDF): The methods belonging to this class are char-

acterized by
Bg=1B4-1="=F=0
which means that they are defined by

q
Z QjUntj = AtFn—f—q-
J=0
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1.6.2 Consistency

We define the truncation error of the ¢-step method (1.6.3) by

q

q
AtToig1 =Y ojultng) — At > Fltnyj tltngg). (1.6.4)
j=0 =0

Analogously to the one-step methods, the quantity AtT,, 1 is the residual generated at t,11
when the exact solution is considered in the numerical scheme. If

| Thtg—1]] = 0,At = 0,n — 0o, nAt < T — ty,

then the method (1.6.3) is consistent with the equation u'(t) = F(t,u(t)). If |Thtq-1] <
Const.AtP, then the method is said to have consistency order equal to p.

We establish in what follows the conditions that imply the consistence of the ¢-step method
(1.6.3) and the required conditions for a prescribed consistency order.

For the truncation error holds the representation

AtTyy g1 = Coulty) + AtCyu/(t,) + At2Cou” (tn) + .. ., (1.6.5)
with
I 1 I .q . i—1
§=0 3=0

provided that the solution u is smooth enough. Then the method (1.6.3) has p consistency order

provided that
q

q
a;=0, Y ajii=iY Bij"li=1,...,p. (1.6.7)
j=0 j=0

M=

=0
Example 19 The 2-step method

Upt2 = Up + 208F11,n=0,... , N — 2,
has 2 consistency order. [ |

Example 20 The Adams-Bashforth methods are consistent with u'(t) = F(t,u(t)) and they are
characterized by
ag=1la41=-1,a;=06,=0,j=0,...,q—2.

The coefficients 8,7 =0,...,q — 1, should be computed such that the order is optimal.
The 2-step method with 2 consistency order is defined by

At
un+2—un+1:7(—Fn+3Fn+1),nZO,...,N—Q,

while the 3-step method with consistency order equal to 3 is defined by

At
Unts = Unt2 = T5 (5F, — 16Fp41 + 23F,12),n=0,...,N — 3.
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Example 21 The q-step Adams-Moulton methods are characterized by
oag=1la41=-1,0;=0,7=0,...,9—2.

The coefficients $j,7 = 0,...,q, should be computed in such way that the method has q + 1
consistency order.
The 2-step method

At
Up+2 — Uptl = E(_Fn‘f’SFn-i—l —|—5Fn+2), n=0,...,N — 2,

has consistency order equal to 3 while the 3-step method defined by

Upig — Unio = %(Fn —5Fp41 +19F, 9 + 9F,43),n =0,...,N — 3,
has consistency order equal to 4. [ |
Example 22 The BDF methods are characterized by

By =1,6=0,j=0,...,q—1,

and the coefficients aj,j = 0,...,q should be chosen such that the order is optimal. The 2 step
method

3 1
§Un+2 — 2un+1 + §Un = AtFn+2, n = 0, N ,N -2
is of order 2.
[ ]
1.6.3 Stability
The use of the method (1.6.3) requires the computation of the initial values wuy,...,uq—1

because only ug is given. Such values are computed using, for example, an one-step method. As
those values contain numerical errors, it is very important to now how these error affects further
approximations u,,n > ¢. The stability behaviour of the multistep method will be considered
with respect to small perturbations in the starting values.

Let u,, and @, be defined by the g-step method (1.6.3) with the initial values u;,7 = 0,...,¢—1
and 4;,7 =0,...,q — 1. The g-step method (1.6.3) is said zero-stable if

lun — Upl] <C max ||u; — @l (1.6.8)
1=0,...,q—1

=U,...,

We will show that the zero-stability of a multistep method can be deduced using the test
equation v’ = 0. The designation zero-stability is due to the use of F' = 0.
The two polynomials

q q
p(&) =D ;e a(&) =Y B¢
j=0 7=0

are associated with the g-step method (1.6.3) and they are called first and second characteristic
polynomials.
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The g-step method (1.6.3) satisfies the rout condition if the roots &; of p(§) = 0 satisfy
1&i] <1, Vi, |&] <1 if & is notsimple. (1.6.9)

In the following result we establish, for g-step method (1.6.3), the equivalence between the
root condition and the zero stability of the method. This equivalence leads to the definition of
zero-stability using the root condition.

Theorem 1.6.1 The q-step method (1.6.3) is zero-stable for any IVP u'(t) = F(t,u(t)),t >
to, u(to) = ug, where F satisfies the Lipschitz condition with respect to the second argument if

and only if it satisfies the root condition.

Proof: Let us suppose that the root condition is violated. We prove in what follows that the
g-step method (1.6.3) is not zero-stable.
Consider the g-step method (1.6.3) applied to the IVP with F' =0

q
> ajung; =0. (1.6.10)
=0

Let & and & be solutions of p(¢) = 0 with multiplicity 1 and my, respectively. Consequently,
£ and £, n€P, ..., n™ N, are solutions of (1.6.10).* Then, any combination of the last
solution still be a solution of (1.6.10). Lets us consider that the solution of (1.6.10) admits the

representation
my—1

Up, = Z%'f@n +Z€? Z Yo in?,
; ¢ j

where the coefficients are determined by the initial conditions. We can assume that the solution
of (1.6.10) is given by
un =Y _pi(n)&}, (1.6.11)
i

where &; is a zero of p(§) = 0 and p; is a polynomial of degree one less than the multiplicity of
&.°
If |&| > 1, then there are starting values for which the corresponding solution grows like

|&|™. If |&| = 1 and its multiplicity is m;, then there are solutions growing like ni 1.

“If & is such that p(&) = 0 then
q
D g =€ p(&) = 0.
j=0

Otherwise let & be a zero of the first characteristic polynomial with multiplicity m.. Then
g .
S ai(n+ et =& (no(ée) + 0/ (€0)) = 0.
j=0
Using the same procedure it can be shown that

q
Sajn+ )T =0k=2,...,m— 1.
Jj=0

SLet us consider the case that the first characteristic polynomial has the roots &;,i = 1,...,q simple. Then
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Let us consider the initial values ug, ..., uq—1, which induces the unbounded solution wu,, and
ug = 0,...,u4—1 = 0, which induces the null solution @,,. Then for u, — @, does not hold the
inequality (1.6.8).

Let us prove that the root condition is sufficient for the g-step method (1.6.3) to be zero-
stable. Let u,, and u,, be the sequences defined by the previous methods for the initial conditions
ui, 1 =0,...,g—1,4;,4 =0,...,qg— 1, respectively, and let w, be the difference between the two
defined solutions. We have®

the set of fundamental solutions {£',n =0,1,...},i=1,...,¢q, is such that

q
Un = Z Y55 -
j=1

We introduce the new set {gbgn), n=0,...,},4=0,...,9g — 1 such that

¢ = 61,4, =0,...,q— 1.

q
As <Z>£") = Z’yi,jﬁf,i =0,...,9—1,, we deduce for the coefficient ~; ;,7 =1,...,q, the system
j=1

q
Z’Yi,jfﬁ =0i0,0=0,...,g—1,

j=1

which is equivalent to
Ryi=-e;,i=0,...,9—1,

with R = (&), v = (74,1, .-, Vi,q and e; denotes the unitary vector of IR?.
Consequently we obtain for wu, the representation

q—1
Uy = Z ’LLji[J](n).
i=0

The procedure presented can be followed when some of the roots of the first characteristic polynomial have
multiplicity greater than two.
5We established that for the homogeneous equation

q
Z QjUntj =0
§=0
holds the following
q—1
Uy = Z uﬂ/)](.n).
j=0

The solution of the non homogeneous equation
q
E QjUntj = Pn+tq
=0

is established using the solution of the corresponding homogeneous equation and a particular solution of the
corresponding non homogeneous one. In this case it can be show that

q—1 n
wn = Y ugy” + Y g in=0,1,...

j=0 Jj=q

where wéi_)l = for all < 0 and ¢; =0 for j < q.
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q
> ajwnij =tnign=0,...,N —q, (1.6.12)
j=0

where
q
Q;Z)nJrq = At Z /Bj (F(tn+j) unJrj) - F(tn+j) anJrj)) :
=0

The solution of the difference equation (1.6.12) is given by

q—1 n
w =D wi + 3w g =g, (1.6.13)
J=0 J=q
where {¢§n), j=0,...,q—1} is the set of fundamental solutions of the homogeneous difference

equation associated to (1.6.12). It can be shown that the fundamental solutions are uniformly
bounded if and only if the root condition is satisfied (see [9], Theorem 6.3.2). As a consequence,

el | < M, itV <

Considering the last upper bounds in (1.6.13) we get

n
lwall < M (allewslmas + 3 51) 0 =g, . N =4, (1.6.14)
J=q
where
max gl = o s

As F satisfies the Lipschitz condition, we obtain, for 1,14, the upper bound

q
[¥ns+qll < ALLIBjllmas Y llwnssll
j=0

which implies
q
[thell < ALL|Bjlmaz Z [[we—g+;l; (1.6.15)
5=0
with

|Bjlmaz = max 1351
7=0

=U,...,

Taking in (1.6.14) the estimate (1.6.25) we conclude

no 4
||U}n|| < M<q‘|wj||maz + A75L|18J'|mﬂtz ZZ Hwﬁ—qﬁ-jH) n=4q,... ’N —4q. (1616)
l=q j=0

From inequality (1.6.16) we also have

n—1

(1~ AEMLIB; e lnl] < Ml s + AL LB maza S ) (1.6.17)

m=0
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Assuming that
1 — AtML|Bj|maz > 0, (1.6.18)

we should obtain an upper bound for the sequence

n—1
cn <go+k ch
7=0
with
¢n = [lwnll, go = max{- _A@]'\}"ﬂgjﬁm lJwo |}
and

_ AthL’/Bj’maw
1 — AtML|Bj|maz

If cg < go the its easy to show that
cn < go(1+ k)" < goe"™

Applying the last estimate we get

At]bqu\,ﬁ] Imaz
M= AL, Imas

H H Mqu]HmaﬂU
nll =17 AtM L|B;|maz

The last estimate enable us to conclude the proof because implies

. MgqL|Bjlmaz
Maq|w;||max (T*tO)FAtOML\aj\maz

Wy || <
H n” - 1—At0ML|,8j|max

for At € (0, Atg] with Aty satisfying (1.6.18).

Example 23 The Adams methods are zero-stables because p(&) = &2 — €.
|

We introduce in what follows a new concept of stability induced by the behaviour of the
multistep method when applied to the scalar test equation considered on the context of A-
stability of the one-step methods.

Let us define another polynomial associated to the g-step method (1.6.3): the characteristic

polynomial
q
m(&) = p(&) — At (&) =) (a; — AtB;)¢, (1.6.19)
7=0
where p(§) and o(§) are the first and the second characteristic polynomials associated to the

multistep method (1.6.3).
When we apply the g-step method (1.6.3) to the scalar test equation we obtain

q
> (o — 2B unty =0, z = AAL, (1.6.20)
7=0
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Figure 7: Stability regions of the Adams-Bashford methods with 2 and 3 steps respectively.

We associate to the last recursion the polynomial

m(§) = p(§) — z0(§).

We say that the ¢g-step method (1.6.3) satisfies the root condition at z if {;(z),i = 0,...,¢—1,
satisfy the condition (1.6.9).

Let &;,7 € I; be the set of simple roots of the polynomial 7,(§) and &;,i € I2, be the set
of roots of 7,(&) with multiplicity m;,7 € Io. Taking into account that the solution of (1.6.20)
takes the form

mj;—1
un = > k()" + > (Y wm')&i(2)"
jeh jel  i=0

the root condition arises as a natural requirement for the boundness of the sequence u,,.
We define the stability region of the g-step method (1.6.3), S C C by

S = {z € C: m,satisfies the root condition atz}.

If the stability region of ¢g-method contains C_, then the method is said to be A-stable.
Let dS be the boundary of the stability region S. Let £(z) be a root of the polynomial 7, (§).

Then
Gl
o(§)
The root condition is satisfied if |£| < 1 (£ is a simple or has multiplicity greater than two) and
|¢] <1 (is a simple root). Then S is obtained when & = ¢* with 6 € [0, 2x].

Example 24 The stability region of the Adams-Bashford methods

At
Un+2 — Un+1 = 7(_Fn+3Fn+1)v n:()v"'vN_27
At
Unts = Unt2 = To (5F, — 16F 1 + 23F,42),n=0,...,N — 3,
are plotted in Figure?
The 3-Adams-Bashford method presents a smaller stability region but a higher order (3).
Example 25 The stability region of the Adams-Moulton methods

At
Up+2 — Upt1 = E(_Fn‘f’SFn-i—l —|—5Fn+2), n=0,...,N — 2,
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Figure 8: Stability regions of the Adams-Moulton methods with 2 and 3 steps respectively.

At
Up 43 — Upt2 = ﬂ(Fn —5F,41 4+ 19F, 49 + 9F,43),n =0,...,N — 3,

are plotted in Figure 8
The 3-Adams-Moulton method presents a smaller stability region but a higher order (3).

It is possible to characterize the stability of the g-step method following the analysis of the
one-step methods. In fact, this can be done because the equation (1.6.20) can be rewritten in
an one-step form. We note that (1.6.20) is equivalent to

q—1
_ aj — 2P,
Uptq = — Un+j,
=0 Qg — Z'B(]

which admits the following one-step form representation

Uni1 = R(2)Uy (1.6.21)
with Uy, = (g1, .., uy)" and
[ r1(2) ra(2) ... reo1(2) rg(2) ]
Ry 1 0o ... 0 0 ri(z) = g — 2Py
B ag— 2P
| o 0 1 0 ]

The matrix R(z) is called companion matrix of the multistep method and we have
Up = R(2)"Uy

being Up the vectors of the initial approximations. Finally we get z € S if and only if R(z) is
power bounded.

As final remark of this section we point out that similar results established in the one-step
methods context can be also established when we apply the multistep methods to linear ODEs.

1.6.4 Convergence

The convergence of the multistep method (1.6.3) is defined considering the global error
en = u(ty) — u,. We say that the method (1.6.3) is convergent if

llenll = 0, At — 0,n — oo, nAt < T — tg
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provided that
llejl| = 0asAt —=0,7=0,...,q—1.

As for one-step methods, if ||e,|| = O(AtP), then we say that the multistep method has p
convergence order or is of order p.
The global error is solution of the difference equation

Z%enﬂ = AtZﬁ]( tntgs U(tnag)) — F(tn+j,un+j)) + AtThiq-1, (1.6.22)

with the initial values
eo =0,e; =u(t;) —u;,j=1,...,¢—1,

where the values u;,j7 = 1,...,q — 1, were obtained using another method like an one-step
method.

It is clear that the convergence of the multistep method depends on the behaviour of the
initial values u;,7 =1,...,q¢ — 1.

Theorem 1.6.2 Let us suppose that F satisfies the Lipschitz condition with respect to the second
argument. A consistent multistep method is convergent if and only if it satisfies the root condition
and the initial data tends to zero as the time step size goes to zero. Moreover, if the consistency

order is p equal to the order of the initial errors then the multistep method is of order p.

Proof: Suppose that the multistep method is consistent and convergent. By contradiction it
can be shown that the method satisfies the root condition. In this proof, the IVP with F' = 0 and
u(0) = 0 should be considered and the fact w,, — 0 for all set of initial values u;,i =0,...,q—1,
converging to zero should be used.

Let us suppose now that the method satisfies the root condition and it is consistent. As the
error e, is solution of (1.6.22), following the proof of Theorem 1.6.1, we get

Q
H

en =Y et +Zap””ql¢j,n:q,... (1.6.23)

<.
Il
=)

where

q
Ynyqg = At ZIBJ (F(thrja u(thrj)) - F(thrj’ un+j)) + AtT g1
=0

Hence, e,, satisfies

n
lenll < M (allesllman + D I51) sn =g, N ~ g (1.6.24)
J=q

As F'is a Lipschitz function with respect to the second argument, the upper bound for v,

q
[¥n+qll < ALL|Bjlmaz Z lentjll + (T —to) max T3l
=0
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can be established. The last estimate implies
q
[tbell < ALLIBjlmaz Y ler—qiill + (T — to) max || T3]]. (1.6.25)
§=0
Following the proof of Theorem 1.6.1, it can be shown that for e, holds the estimate

Jeall < Cmax{_max_ e;l, max_ |71}

where C'is a positive constant, time independent, and At € (0, Aty with At satisfying (1.6.18).
m
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2-Numerical Methods for PDEs

2.1 Some Analytical Results
2.1.1 Some Mathematical Models

1. The transport equation

Let us consider a tube with gas. Our aim is to establish a mathematical model which allow
us to characterize the density and the speed of the gas particles at each point of the tube
at each time. We introduce the reference system defining the x-axis as the line passing
by the center of the tube. The origin is some point in this line. The final objective of the
problem is to define the density p(z,y, z,t) and the speed v(z,y, z,t). In order to simplify
the model we assume some realistic assumption on the physical model. We suppose that
each transversal section has unitary area and, in each point of each transversal section,
the gas has the same properties. Then, we have

p(x,y,z,t) = p(x,0,0,t) := p(z,t), v(z,y, 2,t) = v(z,0,0,t) := v(z,1).

We establish now a mathematical law for p(z,t) and for v(x,t). Let M(t) be the gas mass
in the circular sector defined by z1 < xo at time ¢,

)

M(t):/ p(x,t)dz.

1

We assume that the wall tube is impermeable and the gas evolution only depends on the
transport phenomenon. In this case the flux at « point and at time ¢, J(z,t), is given by

J(x,t) = v(z,t)p(z,t).

Considering the gas mass in the tube sector and the flux at x; and z2 we can establish

the mass variation at time ¢. In fact, we have

T2 ap

M® = 5

(z,t)dz,

xr1

and o
M'(t) = J(x1,t) — Ja(x, t) = — %(p(m,t)v(m,t))dm,

1
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which implies

2
/901 %(m,t)dw + %(pv)(x,t) dx =0, (2.1.1)

provided that the density p and the speed v are smooth enough. From (2.1.1) we obtain
the following PDEs

% + %(pv) =0,zeR,t >0, (2.1.2)
usually called mass conservation equation. This equation is complemented by the two
equations

0 0 9
o) + 5 (o0 +p) = 0, (2.1.3)
%—f + %(v(E +p)) =0, (2.1.4)

where p denotes the pressure and E represents the energy.

If we defined
P
u= 1| pv |,
E

then (2.1.2), (2.1.3), (2.1.4) are rewritten in the equivalent form

ou 0
where
pv 2U2
fw=| p?tp | =] Hip
v(E + p) usz(uz + p) /w1

In the particular case f(u) = cu, the established equation is known as transport equation.

If the speed v is known, then we only should compute the density p. In this case, if the
initial particle distribution is known, which is translated specifying p(x,0), the problem is
defined by

P P
Ll — 0 2 eRt>0,

ot O (2.1.6)
p(CC,O) = pO(:C)’ z € R.

The problem (2.1.6), known as Initial Value Problem (IVP) or Cauchy problem, has the
following solution
p(x,t) = po(x —vt),x € R,t >0,

and the behaviour of p is completely determined by the initial condition pg. For each time
t, p(z,t) is obtained from py moving its graph from the left to the right if v > 0 and from
the right to the left if v < 0.

2. Diffusion equation Let us consider a finite tube, with length ¢, containing a solvent and
a solute. Our aim is to compute the concentration of the solute in each point of the tube
and at each time t. We introduce a reference system as in the previous model. However
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we will now consider the origin coinciding with a tube end. Let ¢(x,y, z,t) be the solute
concentration at the point (z,y, z) at time ¢. If we assume that each transversal section
has unitary area and in all points of each section we have equal concentration, then

c(z,y,2,t) = c(x,0,0,1) := c(z,1).

In order to establish a PDESs for the concentration, we suppose that the wall of the tube is
impermeable and their ends are isolated. Let x1,z9 € (0,¢), z1 < x2, and M(t) the total
mass in the tube sector defined by 1, z2,

M(t) = /z z o(a,t) dx.

Then the instantaneously time mass variation is given by

2 Jc
M'(t) = 5 —(x,t) du.

1

Otherwise, M’(t) can be computed considering the particles flux at the ends of the tube
sector assuming that the flux J(z,t) is defined by the Fick’s law

J(xz,t) = =DVc(z,t), (2.1.7)

where D is the diffusion coefficient related to the capacity of the solute particles to cross
the solvent. The particles flux is a consequence of the molecular shocks being the particles

movement from regions of high concentration to regions of low concentration.

Considering the Fick’s law for the flux we have

M’(t):J(xl,t)—J(xg,t) = D(—%(ml,t)—i—%(xg,t))

x2
= D
/ 61‘2

T2 x2
@daz D /

xr1

Then

which implies
Oc 0%c

for x € (0,¢),t > 0.

We assumed that the tube ends are isolated, which means that there is not any flux at
x=0and at x =/,

o =Lwn=0i>0 (2.19)

These two conditions are known as Neumann boundary conditions. Of course that we can
assume that the initial solute concentration distribution is known by given

c(x,0) = co(z),z € (0,£). (2.1.10)
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We obtained the following initial boundary value problem

Oc 0%c
o~ Poar

de D, (2.1.11)
= (0,8) = 5o (6 = 0.t >0,

x € (0,4),t >0,

c(x,0) = co(z),z € (0,4).

If we assume that the solute is a fluid with movement, then the flux has Fickian and
transport contributions. In this case J(z,t) is given by

Ja,1) = DO 1) + vel, 1),

and for the concentration we obtain the following IBVP

( Oc 0% Oc
E = DW _'U%, T € (0,6),1& > 07

9o =9, (2.1.12)
S (0.4) = - (6,6) = 0, >0,

c(x,0) = co(z),z € (0,0).

If the solute and the solvent react, then on the definition of the instantaneously time mass

l
variation using the particles flux, we should consider another term: / r(c(x,t),x,t) dr,
0

and the IBVP (2.1.12) is replaced by

2
% = % —v% +7r(c), z €(0,0),t >0,

Oc Oc
9on=2 =01 (2.1.13)
ax(o’ ) ax( b ) 0’ > 0’

c(x,0) = co(z),z € (0,£).

The Neumann boundary conditions can be replaced if we prescribe the solute concentration
at the tube ends defining the Dirihlet boundary conditions

c(0,t) = ce(t), e(l,t) = c(t),t > 0.

We remark that the Fick’s law for the particles solute flux is formally equivalent to the
Fourier law for the heat flux. Using this fact, the diffusion equation is also used to describe
heat conduction phenomena being known as heat equation.

Let us consider two bodies with different constant temperatures in contact at initial time.
The initial temperature distribution is a discontinuous function. Nevertheless, after the
initial time, intuitively, the temperature distribution is very smooth. Independently of the
smoothness of the initial condition, it seems that the solution of this kind of problems
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are very smooth. In fact, it can be shown that the solution after the initial time is C*°
provided that the initial condition is only bounded.

The high dimension problem correspondent to (2.1.13) can be written in the following

form 5
_C:Lc’ e, t>0,
ot
Byc=g,x € 09, t>0, (2.1.14)

c(x,0) =co(z),z € Q,
where 2 is an open subset of IR" with boundary 0. In (2.1.14), L is an operator (linear or
nonlinear), only presenting partial derivatives with respect to the z-components, defined
between two function spaces. The boundary condition is defined by B, which can be one
of the following types:

e Dirichlet: Bjc = c;

0
e Neumann: Bjc = a—c, where 7 denotes the exterior unitary normal to 2,
Ui
0
e Robin: B,c= oz—c + Bu.
an

3. The wave equation: Let us consider a string with length ¢ with fixed ends. Suppose
that at an initial time the string has some position and after that time it starts to move.
Our aim is to describe the string movement.We assume that the motion takes place at a
plan where a reference system Oxy with the origin at one end of the string was introduced.
If (z,u(z,t)) is the position of a point of the string at time ¢, in what follows we establish
a PDEs for u. In order to do that we should make some assumptions on the string motion:

e the points only present vertical displacement,
e on the string the tension force acts with the tangential direction,

e the gravitational force is not considered.

By p we denote the density of the string which is assumed time independent.

Let PQ be an arc of the string with length As defined by = and = + Az, where Ax is
infinitesimal quantity. Let o and /8 be the angles of the tension vectors T'(P) and T'(Q)
with —eq; and ey, respectively. As the string only has vertical movement, the horizontal
components of the tension vectors acting on the arc P(@) should be canceled, which means
that

cos(B)IT(Q)l = cos(a)|T(P)]| = |IT]. (2.1.15)

Consequently, on the arc PQ the force
F = (sen(B)IT(@Q)I| - sen(@) I T(P)l)es (2.1.16)

acts. By the second Newton’s law, the force acting on the arc P can be computed using
the mass of the arc and its acceleration. We have

M= [ p(s)ds,
PQ
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and assuming smoothness on p we get
M = p(&(x))As,

with {(z) € (xz,z 4+ Az). As we can assume that As ~ Az, and the acceleration of the arc
2

can be given by a—tg(n(:c),t) with n(z) € (z,z + Az), we deduce
2u
sen(B)IT(Q)|| = sen(a)|T(P)|| = P(&(@)Awg?(n(w)at)- (2.1.17)
From (2.1.15) and (2.1.17), we get
7))Ax 0%u
t9(9)  to() = PEDAL T ). 1), (.11
which is equivalent to
u u z)) 0%u
Aix (%(;ﬂ + A t) — %(m,t)) _ p(’fé ) g?(n(x),t). (2.1.19)

Takin in (2.1.19) Az — 0, we conclude for u the following PDEs

2 2
CZ% - %(:ﬂ,t), z € (0,0),t >0, (2.1.20)

T
with ¢ = —.
p(z)

The equation (2.1.20) is known as wave equation and it is complemented with boundary
and initial conditions: as the ends of the string are fixed on the z-axis we have

u(0,t) = u(l,t) =0,t >0,
the position of the string is known for the initial time ¢t = 0
u(z,0) = ¢(x),x € 0,7,

and the initial velocity is also known

ou
E(SE,O) =(x),z € 0,4

Finally, for the displacement u we get the following IBVP

Pu O
028—;528—;(;6,75), z € (0,0),t>0,

u(0,t) =u(l,t) =0, t>0, (2.1.21)
u(z,0) = ¢(x), x€]0,/,

ou
E(m,@) =y(z), z€]l0,/].
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The high dimension of the IBVP (2.1.21) admits the representation

0%u
W:Lu, er,t>0,
Byu=g,x € 00,t >0,
ou
ot

u(z,0) = ¢(x),x € Q,

(2.1.22)
(z,0) =Y(x), x € Q,

where €2 is an open subset of IR"™ with boundary 092. In (2.1.23), L represents an operator
between two function spaces only defined by the partial derivatives with respect to the
x-components and B,, defines the boundary conditions.

4. Stationary equations Let us consider the diffusion IBVP (2.1.14) or the wave IBVP
(2.1.21) when the solution is time independent. In this case we get the BVP

Lu=f in Q,
(2.1.23)
Byu =g on 09,

where L, as before, presents only partial derivatives with respect z-components.

2.1.2 Some Solutions

The models presented in the last section are well-known examples of the use of PDEs on the
mathematical modeling of physical problems. The second order PDEs are the most common
on the applications and they are divided in three groups, depending on the behaviour of their

coefficients.
The PDEs o o e 5 5
U U U U U
A—+B D—+4+FEF—+Fu= 2.1.24
922 " Ponogt T O TP TP THu=G- (2.1.24)
is called

1. elliptic if B2 —4AC < 0,
2. parabolic if B?> — 4AC = 0,
3. hyperbolic if B2 — 4AC > 0.

Then the linear diffusion equation is of parabolic type while the linear wave equation is hyper-
bolic. The Poisson equation
Au = f
is elliptic.
The given classification can be extended to PDEs in higher dimensions. The equation

> 88 ”a Zb - +aou =g, (2.1.25)

i,j=1
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with a;; = aj; is said parabolic if at least one of the eigenvalues of the matrix [a;;] is zero. If all
eigenvalues have the same signal, then the equation (2.1.25) is elliptic. On the other hand the
previous equation is hyperbolic if one eigenvalue has signal different from the others. Otherwise,
it is said ultra-hyperbolic. Of course that if the coefficients are z-dependent, then the given
classification depends on the point considered.

In what follows we present some results about the solutions of the problems presented before.

1. The diffusion equation: We start by considering the following IVP

2
Ou_pt L eR 1> 0,
o Ox (2.1.26)

u(z,0) = ¢(z), x € R.

Theorem 2.1.1 If ¢ is continuous and bounded in IR, then

/}R Sz —y,t)(y) dy (2.1.27)
is in C*°(IR x (0, +00)),
ou Pu
E :DW m IR,X (0,—‘1‘00)
and
lim u(z,t) = ¢(z), z € R,
t—0t
where S : IR x (0,+00) — R,
1 2

S(x,t) = e~ (z,1) € IR x (0, +00),

2v/ Dt

is the Green’s function.

The maximum principle is one of the main properties of the solution of the diffusion
equation which is established in the following result:

2
Theorem 2.1.2 Ifu is continuous in [x1, 2] X [t1,t2] and % = D% in (z1,22) X (t1,ta],
then
max «= max u
[z1,22] X [t1,t2] £1UlaUl3
with

€1 = {(xl,t), t e [tl,tg]},
€2 = {(.%'Q,t), t e [tl,tg]},
l3 = {(m,tl) T E [xl,xg]}.
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The solution of the IBVP

ou 0%
—=D— t
y 2 z>0,t>0,

u(z,0) = ¢(z), > 0, (2.1.28)

w(0,¢) =0, t > 0.

is determined extending the initial condition ¢ to an odd function qg and computing the
solution of the IBVP - o
—=D—,z€R,t>0,
ot Ox? (2.1.29)
a(x,0) = ¢(z), x € RR.
We get, for z > 0, > 0,

1 +oo (-2 (o+y)?
’U,(.%',t) = ﬁ((L‘,t) = 27 TMA <64Dyt —e th >¢(y) dy

If the homogeneous Neumann boundary condition is considered at « = 0, an even extension

of the initial condition should be taken. Following the procedure considered in the Dirichlet

case, we obtain

(z—y)?  (24y)?

1 Feo
u(x,t) = ——— e Dkt 4+ e Dkt dy, x> 0,t> 0.
wo=sm= [ ( ) o)

The method of separation of variables allow us to compute the solution of the diffusion

problem

—=D— z2€(0,0),t>0,

u(z,0) = ¢(z), z € (0,0), (2.1.30)
ou ou
a_x(ovt) = a_x(

and the following result can be proved:

0,t) =0, t>0,

Theorem 2.1.3 If ¢ is continuous in [0,€], ¢' € L*[0,¥], then the Fourier’s series

+oo
u(z,t) = % + Z ane*D(%)thos(%x),
n=1

with , ,
2 2
ag = —/ o(x)dx, ap, = —/ gb(:c)cos(ﬂx) dzx,
¢ Jo ¢ Jo 1
is such that
(a) u is continuous in [0,¢] x [0, +00),

(b) there exists 8_u in [0,4] x (0,+00) and it is continuous in the previous domain,
x
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() 24— DT in (0.0) x (0, +00)
ot T oY 0
ou ou
(e) u(z,0) = ¢(x) in [0, 7).
[ ]

If the Neumann boundary conditions are replaced by the Dirichlet boundary condition, a

similar result can be established.

The wave equation: A class of wave problems have solutions with an explicit form

depending explicitly on the data. For the following IVP

(( Pu ,0%u

u(z,0) = ¢(x),x

holds the following result:

oz~ o2 "
ou
E(%O) = (),

Theorem 2.1.4 If $ € C*(IR) and ¢ € C(IR), then

u(z,t) =

Satct)+olw—ct) 1
2 2c

is solution of (2.1.31).
If ¢ and v have compact support, then (2.1.82) is the unique solution of the IVP (2.1.4).

/erct
r—ct

eR,t >0,
reR. (2.1.31)
€,

P(s)ds, x € R,t >0, (2.1.32)

If we consider (2.1.31) with IR replaced by IRy, that is, if we consider the IBVP

Pu_ oo
ot?

—C@, x €

ou

ot

w(0,1) = h(t), t > 0.

(x,0) =9(z), z €

u(z,0) = ¢(x), x € [0,400),

then, under compatibility conditions on the data, we have

u(x,t)

N | —

N | —

(p(z + ct) + ¢p(x — ct)) + %

(p(x+ct) — d(—x + ct)) + %

1 /a:—i—ct
r—ct

[
(0, +00),t > 0,
(2.1.33)
[0, +00),
P(s)ds
(x,t): x —ct >0, (2.1.34)

T+ct _
| v+ n-2)
—z+ct c

(z,t): x—ct <0
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If the spatial domain is bounded, the IBVP (2.1.21)

has boundary conditions on both

boundary points. In this case the solution of such problem can be computed using the

method of separation of variables. For Dirichlet boundary conditions we have the following

result.

Theorem 2.1.5 Let ¢, : [0,£] — IR be such that

(a) ¢,¢',¢" 1, are continuous in [0, 4],
(b) ¢"' " are piecewise continuous in [0, /],
(c) (0) = ¢(¢) = ¢"(0) = ¢"(£) = 0,

(d) $(0) = (£) = 0.

Then .
Z (Ancos(ﬂt) + anen(ﬂt)> sen(ﬂx), (2.1.35)
o ¢ L L
with
au=2 [o@psen(Tayda, Bu= 2 [ pwpsenTayde nen, (130
=7 z)sen(—-a) dz, el z)sen(—-x) dz, n , 1.

defines a function u such that

(a) w is continuous in [0,¢] x [0, +00)
(b) % is continuous in [0,¢] x [0,+00) ,
(c) u € C%((0,£) x (0,00))"

(d)

Pu 0%

a2 = 922
u(0,t) = u(l,t) =
u(x,0) = ¢(x)
and %

0,

In all the results presented before for the wave equation, the smoothness of the data have

a crucial role on the construction of the solutions.

"If Q is an open set in IR™ and k£ € IN, by C™(Q) we denote the set of all continuous functions such that

alely
«
oxit ... 0z

is continuous in Q. We used the notations o = (o, . ..

yan) and |af = > as. By C3(Q) we

represent the set of all functions in C*(€) whose support is a bounded set of Q. By C§°(Q) we represent the set
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3. The Laplace equation Let {2 be an open subset of IR with a smooth boundary 92. We
characterize in what follows the solution of the problem

Au= f in Q,
(2.1.37)
Byu =g on 09,

where B, defines the Dirichlet or the Neumann boundary conditions. On this characteri-
zation the Green’s identities

(a)

/vAudac— Z/ g;@ g; g—zds (2.1.38)
) ou ov
/QvAud:c:/QuAv+/ <va—n—ua—n) ds, (2.1.39)
(c) .
/QAudx: a0 (2.1.40)

where u,v € C%(Q),® have an important role.
0
It can be shown that for B, = id or B,, = e
n

in C?(Q2). In the Neumann case, we should assume the compatibility condition between f

| rae= /a gds. (2.1.41)

In the last case, if u; and uy are two solutions, then uq = ug + C, for some constant C.

the BVP (2.1.37) has at most one solution

and ¢

Theorem 2.1.6 If u € C%(Q), then, for & € ), holds the representation

ou oK
= /QK(x,f)Aud:c - /aQ ( (z, 5)8—77 - ua—n(:c 5)) ds, (2.1.42)
where .
r n
@ "7
K(z,&) = (2.1.43)
ilog(r), n =2,

n

r = ||z —&|| and w, denotes the area of the unitary ball of R™.

8If Q2 is a bounded set of IR™, by C™(Q) we denote the set of all functions u G_C’m(Q) such that D® can be
extended from  to a continuous function on 2, for all a such that |a| < m. C™(Q2) can be equipped with the

norm
llloma = D sup |D%u(z)].

lo|<m *
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Corollary 4 If u € C?(), then, for £ € Q,

u(€) = /Q Gla,€)Audz — /8 ) (G(x,g)g—:; - u%(x,f)) ds, (2.1.44)

where G(z,€) = K(z,&) +w(z), » € Q, & € Q,x # & and w € C*(Q) is a harmonic

function in €.

=
Remark 1 If the Green function G is such that G =0 on 0L2, then
oG
u(§) = | Gz, Audxr + u——ds. (2.1.45)
Q oo On
The solution of the boundary problem
Au= finQ, u= gondfl,
satisfies
oG
ul§) = | G(z,&)f(x)dr + g——ds. (2.1.46)
Q a0 On
. . oG _
If the Green function G is such that = 0, then, for the solution of the boundary value
n
problem
Au = finQ, % = g ondf},
an
holds the following representation
ue) = | G | g6le.6)ds (2.1.47)

The fundamental question on the construction of the solution of the Poisson equation,
with the mentioned boundary conditions, is the computation of the Green’s function with

the specified requirements.

As the next result holds for harmonic functions, we can establish an explicit form for the
solution of the Laplace equation with Dirichlet boundary condition defined on a ball of

radius p.

Theorem 2.1.7 If u € C*(B,(£)) and u is harmonic in B,(£), then

1
wnpnfl

u(§) = /Sp(g) u(z) ds. (2.1.48)
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We can consider for the Green’s function definition the following extension

G(x,8) = K(x,8) + w(z,£),

where w € C?, A,w = 0,2 € Q, x # € € Q. Using this definition, it can be constructed a
Green’s function G, null at S, (0). Consequently, the next result can be proved.

Theorem 2.1.8 If u € C?(B,(0)), u is harmonic in B,(0), then, for £ € B,(0),

u(§) = H(z,&)u(z)ds, (2.1.49)
Sq(0)

where the Poisson kernel is given by

1 oa® |7

awy [lo—¢|"

H(z, ) = z € 8,(0), £ € By(0).

Analogously to the solution of the diffusion equation, for harmonic functions hold the

maximum principle:

Theorem 2.1.9 Let Q2 be a connected open bounded set of R™. If u € C%(Q) N C(Q) and
u 18 harmonic in , then

maxu(r) = max ulx
maxu(z) = maxu(z)

An short overview on some results for some well known equations: diffusion equation, wave
equation and Poisson’s equation, was given. The expressions of the solutions of the previous
problems with homogeneous equations and homogeneous boundary conditions were presented.
Nevertheless, we can also construct the solutions of some non homogeneous equations and for
non homogeneous boundary conditions. It should be stressed that only for a very small number
of cases the obtained expressions are mathematically manipulated. The existence of the solution
and the study of its regularity properties, for more general BVPs and IBVP, can be seen for
instance in [3], [5], [19], [32], [33], [36].

2.2 Finite Difference Methods for Elliptic Equations
2.2.1 Introduction: the One-Dimensional BVP

In what follows we introduce the finite difference methods (FDMs) for elliptic equations
considering an one-dimensional BVP. We point out that FDMs were considered before for IVP
where the new approximation at the new time level is obtained using the approximations at the
previous points. For BVP the finite difference equation should be consider for all grid points
leading to a linear or nonlinear system of equations where the unknowns are the approximations
at the grid points.
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Let us consider the BVP
—u"(x) = f(x), z € (a,b), u(a) = ug, u(b) = up. (2.2.1)

We fixe the step size h > 0 and in [a,b] we introduce the spatial grid I, = {z;,i = 0,...,n}
with x; —x;_1 =h,i=1,...,n, xo = a and z,, = b.

Let V3, (I1,) and V3, (1) be vector spaces of grid functions defined in Ij, and in I} = I, —{z;,1 =
0,n}, respectively. We represent by D_,, D,, D. and D, the finite difference operators

up () — up(2i-1)

D_,up(z;) = - i=1,...,n,
Dyun(a;) = “h(x”l)h_ @) o a1
D.up(z;) = uh(miﬂ);huh(xi_l),i =1,....,n—1,
Doup(x;) = un(ip1) = 2UI;L(;CZ) i uh(mi*l),i =1,....,n—1,

defined for uy € Vi, (I).
We remark that if u € C?(a,b), then

h
D_xu(xz) = ul(xl) - 5’“”’(52)751 6 (x2—17x7/)71/ = 17 A 7n7

h
Dyu(z;) = u'(2;) + 5“"(&)7& € (r4,2i41),i=0,...,n— L

If u € C3(a,b), then
2

h .
Deu(a;) = u'(z;) + E(u”’(@-) +u" (), &vmi € (@ic1,Ti1),i=1,...,n — 1,

2

Dou(s) = u'(2:) + o (u® (&) + P (1), & € (i win) =1, =1 (222)

Consider in the equation (2.2.1), z = z; € (a,b). As (2.2.2) holds, we obtain

h3
—Dau(z;) — ﬁ(“@) (&) +uM(m) = fla),i=1,...,n—1,
that allow us to define the following system

—Doup(x;) = f(xi),i=1,...,n—1, up(xo) = g, up(zy) = up, (2.2.3)

where up(z;) represents the numerical approximation for w(z;). If we replace f(z;) by its ap-

proximation fp,(z;), then we get
—Daup(x;) = fr(xi),i=1,...,n— 1, up(z0) = g, up(xn) = uyp. (2.2.4)

This last approach is usually followed when f(z;) is computationally difficult to evaluate.
In order to simplify our analysis we rewrite (2.2.3) ( (2.2.4)) in the condensed form

Lyup = fn,
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where Lpuyp and fj, denote the grid functions

B up(x2) — 2up(x1)

h2 b b 1= 1’
Lypup(z;) = — Doup(x;) ,i=2,...,n—1,
2 _ _
_ 2un(@n 1)};%(% 2 i—n-,

and
- Uy w
fn= (fh(iCl) + ﬁ’ fh(SCQ), ... ’fh(xnfl) + ﬁ)
The error presented in the grid function uy, defined by (2.2.4) is studied now. In order to do

that, we consider the general BVP
Lu = fin(a,b),u(a) = ug,u(b) = uy, (2.2.5)

where L is a second order linear or nonlinear differential operator. The solution of the BVP
(2.2.6) is approximated by the solution of the finite difference problem

Lhuh = f~h7 (226)

where u, € V(I ;L) and Ly represents a finite difference operator. The global error and the
truncation error associated with the method (2.2.6) are defined as in the context of the IVPs.
The global error e, is defined by

en(zi) = u(z;) —up(x),i=1,...,n—1, ep(xg) = ep(zy,) = 0.

Nevertheless, the global error ej(x;),i = 1,...,n — 1, can be rewritten in the following from
en, = Rpu — up, where Ry, : C%(a,b) N Cla,b] — V,(I}) represents the restriction operator.
Analogously, as the truncation error has n — 1 components, such error admits the representation
Tn = Lp(Rpu) — ]:Zh(Lu), where Ry, is a restriction operator analogous to Rj,. The convergence
and the consistency of the method (2.2.6) is defined considering the convergence to zero of the
previous errors. In this case, such convergence should be considered with respect to a norm ||.||
defined in V},(I}). The global and the truncation errors are related by

Lheh = Th-

In fact
Lyep, = Lp(Ryu) — Lyup, = Lp(Ryu) — fr, = Lp(Rpu) — Ry Lu = Ty,

The consistency and convergence orders are defined as in the IVP context.

The concept of stability has here a different meaning. Such concept is introduced considering
perturbations in the second member of (2.2.6) and analysing the behaviour of the difference
between the solution and its perturbation. Let F}, : V3, (I},) — Vj,(I}) be a general finite difference
operator(linear or nonlinear). If || Fj,(up) — Fp(vp)||n — 0, then |lup —vp||n — 0, we say that Fj,
is stable.

The convergence of the method (2.2.6) can be deduced, at least for the linear case, from its
stability and its consistency. In fact, by consistency we have ||T}|| — 0,h — 0, which implies
that ||Lpep|/n — 0,h — 0. From the stability of L; we get ||es||r — 0.

For the linear case, a sufficient condition for stability can be easily established:
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Theorem 2.2.1 If the finite difference operator Ly, : Vi, (I}) — Vi(I}) is injective and there
exists a positive constant C, h-independent, such that ||L}:1||h < C, for h < hg, then Ly is
stable, for h < hyg.

|

Under the assumptions of the Theorem 2.2.1, from the consistency we conclude the con-
vergence of the method and we also deduce that the convergence order is at least equal to the
consistency order.

The convergence properties of the FDMs are established with respect to specified norms.

The most common norms are: ||| and ||.||2being the last one defined by
- 1/2
lunlle = | D hun(ey)® |, un € Va(I}).
j=1

For linear case the stability can be deduced analysing the properties of its associated matrix.
In the considered example, we immediately conclude the existence of L;l because the matrix is
diagonally dominant and it is strictly dominant in the first and in the last rows. The operator Ly,

4 h
has the eigenvalues A\, = ﬁsenQ(mTﬂ), m=1,...,n— 1, and the correspondent eigenvectors
1
fim(z) = sen(mmz), m=1,...,n — 1. We also have ||L; | < 3 (this result can be proved by

using the results presented in the next section). An estimate for the error induced by the method
(2.2.3) with respect to the infinity norm is immediately established provided that C*[a, b].

If in (2.2.1), we replace the Dirichlet boundary conditions by Neumann boundary conditions
we can consider two approaches:

e If the finite difference equation is considered for : = 1,...,n — 1, then we should discretize
the boundary conditions using the forward and backward finite difference operators;

e If the finite difference equation is considered for ¢ = 0, ..., n, then the boundary conditions
are discretized using the centered finite difference operator and, in order to do that, we
need to introduce two fictitious points x_y = a — h, x,4+1 = b+ h. Consequently, the space
V(I}) is replaced by V (I5) and the norms used in the convergence analysis should include
in their definition the boundary points.

Let us give now some details when nonlinear BVP
F(u) = f in(a,b), u(a) = ug, u(b) = uy,
are considered. Let us discretize the previous problem by
Fyup, = fa,
where fh = Ry f. Then for the truncation error
Ty, = Fy(Rpu) — RpF(u)

holds the representation
Ty = Fp(Rpu) — Frup,.
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Obviously, if F}, is stable and consistent, then ||ep||, — 0. In order to get an estimate for ||ep||s,
we observe that
Ty = Fp(Rpu) — Frup = Fj(Rpu + Oep)e,.

Consequently, if
[F7(Ryu + Be) ™l < C,

we obtain
llenlln < CThlln-

The previous FDMs were introduced for uniform grids. Nevertheless, if the solution of the
BVP has high gradients zones, the computation of an accurate solution requires the use of a huge
number of points increasing the computational cost. In order to avoid the high computational
cost we should use non dense nonuniform grids where the grid points are concentrated only in
those zones. In this case, the finite difference operators, previously introduced for uniform grids,
are defined by

un(i) — up(zi-1)

D_’U, Ti) = 9 :17' 7n7
x h( z) hz
Dy (o) = @) Zun(@) ooy
hit1
up(Tip1) —up(@iz1) .
Doup(x;) = ,i=1,...,n—1,
cun(:) hi + hitq
Dyup () = hiup(ziv1) — (hi + hig1)up(z;) + hz’+1uh($z’—1)7i e,

hihiya(hi + hit1)/2
where h; = z; —z;_1,i=1,...,n.

The convergence analysis of the FDMs defined on nonuniform grids follows the steps used
on uniform case. Consistency and stability of the method should imply convergence. As far
as consistency is concerned, the order of the truncation error decreases when nonuniform grids
are used. Consequently, the convergence order for nonuniform grids is apparently lower than
the correspondent convergence order for uniform grids. This convergence order can be deduced
from the estimate for the global error established using the truncation error. However, numerical
experiments shown that this convergence order is in fact apparent. Numerically was observed
that for nonuniform grids the order of the global error is greater than the order of the truncation
error. Since the 80s several authors shown analytically this property refining stability inequal-
ities or deducing a second order expression for the global error. This phenomenon was called
supraconvergence and was studied for instance in [7], [8], [10], [15], [22], [25], [38].

The properties of the finite difference operators, or equivalently the properties of the associ-
ated matrices, have an important role in the convergence study. In the next section we present

an overview on several results of matrix analysis.

2.2.2 Some Matrix Results

Let A = [ai;] and B = [by], i = 1,...,m,j = 1,...,m, be square matrices. If a;; > b;;, we
write A > B. Analogously we define the inequalities <, <,> .
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The matrix A = [a;;] is called an M-matrix if
Az > O,V’i, 5 < 0, 7 7&],

A is nonsingular and A= > 0.

We associate to A = [a;;] a graph defined in what follows. Let us consider the indexes
i,j € {1,...,n}. The index 7 is said directly connected with the index j if a;; # 0. We say
that the index i is connected with j if there exists a connection (chain of direct connections)
ap = i,0q, ...,0 = j such that a,,_,q, # 0. The graph of A is defined by the set {1,...,n}
with the direct connections.

A square matrix A is said to be irreducible if every i € {1,...,n} is connected with every
je{l,...,n}. Ais said irreducibly diagonally dominant if A is irreducible and A is diagonally
dominant

|aii| 2 Z |CLZ‘J'|, = 1, Lo,y
J#
being the last inequality strictly satisfied for some 4.
The Gershgorin theorem can be used analyse if a matrix is nonsingular.

Theorem 2.2.2 If A = [a;;] is a real square matriz of order n and X is an eigenvalue of A,
then

AE U Eri (CL”)
1€{1,...,n}
If A is irreducible, then

A € Uieqr,..ny Bri(aii) UNigqr,. ny Sry(@ii),

where i = 3., |aij|.

9

9

Proof: Let z be an eigenvector associated with the eigenvalue A and ¢ such that |z;| = ||z|/c. Immediately we
have
lais — A < Z|%’|@ <75
i il
If A irreducible and A € Ujeqs,...,
prove that X\ € Nicq1,... 0} Sr; (@ii).
Let us suppose that a;; # 0, that is, ¢ is connected with j, and |z;| = 1. We start by proving that

1} Br; (aii), then we should

.....

|)\—aii| =7r, — |.T]| = 1,|)\—ajj| =T (2.2.7)
holds. As |\ — aii| = 73, we deduce
> aiellzel = lael,
e£i £
and |aie||ze] = |aie| because |z¢| < ||z||cc. Then |z¢|] = 1 and |A — aw| < r¢. Finally using the fact
A€ Ujeqa,....ny Br; (az5), we get [\ — age| = r¢, that is, we conclude the proof of (2.2.7).
If z is an eigenvector, we can assume that there exists ¢ such that ||z|ec = |2i] = 1 and |A — aii| < 7;. Then
X € Uieqa,....n} Sr; (ai) and thus [\ —ai| = ri. As A is irreducible, for j € {1,...,n}, there exists a index sequence
a1, . ..o such that aa, o, 7 0 and
[Tap| =1, [A = Gapay| = Tay-

As a particular case, we have A € Sy (a;j). As j is arbitrary, we conclude that A\ € Njcq1,... ny Sr; (as5)-
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We split A = [a;;] into
A=D-B

where D is the diagonal part of A and B = D — A is the off-diagonal part of A
bii = 0,bij = —ai;.
Let C be defined by C = D~!'B. We characterize in what follows the spectral radius of C.

Theorem 2.2.3 If A is strictly diagonally dominant or irreducibly diagonally dominant, then
p(C) < 1. (2.2.8)

Proof: Let A be an eigenvalue of C'. By the Gershgorin Theorem, A\ € Uizl,m,ng,«i(O), with
= Z % If A is strictly diagonally dominant, then r; < 1. Otherwise, if A is irreducibly
— |ag;
JF#i
diagonally dominant, then A € Uj=1,_ By, (0) UNj=1,. nSr,(0). As for some i € {1,...,n}, we
get r; < 1, and then
rj =1 V4, or 3j € {1,...,n} :r; £

Let us only consider the second case. We have S,,(0) NS, (0) = 0 and thus A € Uj=1,... » B, (0),
that is, p(C) < 1.

=
Using the previous result we establish a necessary and sufficient condition for M-matrices.

Theorem 2.2.4 The matriz A = [a;;] such that a; > 0,a;5 < 0, is a M-matriz if and only if
p(C) < 1.

Proof:

o If p(C) <1, then S = ZCj = (I — €)%, Furthermore
=0

I=S(I-C)=SI—-D'B)=SDY(D—-B)=SD'4,

which allow us to conclude that A is nonsingular. As C™ > 0, we deduce that S > 0.
Using the fact D! > 0, we conclude that A~! > 0.

e Let us suppose now that A is a M-matrix. We prove in what follows that p(C) < 1.

Let A be an eigenvalue of C' and x the correspondent eigenvector. Let |z| be the vector
whose components are the absolute value of the components of z. We have

Ala| = A2] = |D~'Ba| < D' Blal,

and consequently |[A\|D|z| < Blz|. As A~! > 0, from the last inequality we get |\| A~ D|z| <
A~!B|x| which enable us to conclude the following

—IAA™'D|z| > —A~'BJa|.



Computational Mathematics J.A.Ferreira 74

Using the last inequality, an estimate for |z| is obtained as follows

lz] = A7lAlz]
— AD- Bl
= A7'D|z| - A7'B|z|
< A7'D(a] - al).

Finally, if |A\| > 1 then |z| = 0 which conclude the proof.

The next result is a corollary of Theorem 2.2.4.

Corollary 5 Let A be a matriz such that a; > 0,a;; < 0,4 # j. If A is strictly diagonally

dominant or irreducibly diagonally dominant, then A is a M-matrizx.

On the construction of global error estimates for the solution obtained using a FDM defined
by a matrix A, the estimates for ||[A~!|| have an important role. If A is a M-matrices, we can

obtain such estimates without the evaluation of its inverse.
Theorem 2.2.5 If A is a M-matriz and w is such that Aw >T, then |A7 oo < [|w]|co-

Proof: For z € IR™ we have
2] < ool < [J2]loo Aw.
As A=1 > 0 obtain
A7 z] < |z ]|sew,

which implies
1A~ 2 loo < l|2]loolw]loo-

Finally, as
1A 2]oo < oo llwlloc,

we conclude
A oo < flwlloc-
]

An upper bound for ||A||z can be obtained by using the spectral radius of A*A. We remak
that

Az
HAH2 _ sup H H2
0£zcR™ [|]2

(:Ct At A:C)l /2
sup ———
ozeerr |72
If A is nonsingular, then A'A is a symmetric positive definite matrix (z!A'Ax > 0,z # 0).
Such properties enable us to deduce that the eigenvalues of A*A are positive.!? As A'A is a

10
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diagonalizable matrix, we have
1423 = (Q'2)'Q"A'AQ(Q"x) = y' Diag[\ily.
where @) is a orthogonal matrix. Thus

1A2(|3 =D~ AiyP < p(A'A)||=]3

which implies
14]l2 < p(A"A)Y2.

Otherwise, we also have

A= sup 1Al WA

> > p(A'A),
o£cern ||2]3 [[ull3

where u denotes an arbitrary eigenvector of A?A correspondent to the eigenvalue \.

Combining the two estimates for ||A||2, we conclude the following identity
14]l2 = p(A"4)1/2.

We proved the following the result.

75

Theorem 2.2.8 If A is a square matriz, then |Al|s = p(AtA)Y/2. Otherwise, if A is symmetric,

then || Alla = p(A).

As a consequence of this result we have:

1

1All2 = Amaz, A7 2 =

)
)\min

provided that A is symmetric positive definite matrix.

It is easy to show that a symmetric matrix is positive definite if and only if all eigenvalues

are positive. A criterion to test if a symmetric matrix is positive definite can be established

using the Gershgorin Theorem.

Theorem 2.2.6 If A is a real symmetric positive definite matriz, then the eigenvalues of A are positive.

Proof: For A\ and z, respectively, the eigenvalue and the correspondent eigenvector of A, we have

0< z'Az = \z'z = A > 0.

Theorem 2.2.7 If A is a real symmetric positive definite matriz, then A is nonsingular and A" is positive

definite.

Proof: As A is a real symmetric positive definite matrix, then A = Q' Diag[\:]Q and A™' = Q' Diag[1/\]Q,

where @ is an orthogonal matrix.

If A > 0 is an eigenvalue of A, then A™! is an eigenvalue of A~*. Consequently, A~! has positive eigenvalues.

For y € R"™, y # 0, we have

y A"y = (Q"y)" Diag[1/Ni)(Q'y) = Z /\%y? > 0.
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Theorem 2.2.9 If A is a real symmetric matriz with a;; > 0, strictly diagonally dominant or

irreducibly diagonally dominant, then A is positive definite.
Proof: If A is strictly diagonally dominant and A its eigenvalue, then A > 0 because
A € Uizt n By, (as).
If A is irreducibly diagonally dominant, then

A € Ujm1,. . nBr,(aii) UNi=1,..nSr, (aii)-

-----

As for some i, r; < a;;, we get
0 & Nj=1,..nSr;(aj5),

and then \ > 0.
]

2.2.3 The Poisson Equation: the Five-Point Formula - Qualitative and Quantita-
tive Analysis

Let © be the two-dimensional rectangle Q = (0,a) x (0,b) with boundary 092. We introduce
in what follows a finite difference discretization of the Poisson equation with Dirichlet boundary

conditions
—Au = finQ,
(2.2.9)
u = g ondf).

On Q we define the grid
Qp = {(zi,y;),i=0,...,n,j=0,...,m,z0 =yo = 0,25, = @, Ym = b}

where
H=(h,k),z; —xi—1 = h,y; —yj—1=k.

By 09 we denote the set of grid points on the boundary 0f2, that is,
oy :ﬁHﬂaQ,QH ZQHOQ.

By Wy (Qp), Wy(Qg) and Wg(0Qy) we represent the grid spaces defined, respectively, in
ﬁH, QH and aQH
By Ap we denote the finite difference operator

Ag : Wg(Qp) = Wi (Qn),

defined by
Aug (zi,y5) = Dagun (i, y;5) + Dayun (i, y5), (i,y;) € Qm,

for ug € Wy (QH) and where Dy ;, Dj , are the second order centered finite difference operators
in x and y directions, respectively. Usually, this operator is called five-point formula for the
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Laplace operator. For the particular case h = k, we associate with the finite difference operator
Ay, the following matrix

If we consider grid functions fi € Wy (Qy) and gy € Wy (0Qp), approximations to f and
g, respectively, an approximation uy, for the solution of the BVP (2.2.9), uy € Wy (Qy), can be
computed using the FDM
—Apug = fg inQp,

(2.2.10)
UHg = gy on 8QH
The FDM can be rewritten in matrix form
Lyug = fr (2.2.11)

For example, if we take h = k and a = b, and we introduce in the grid points an enumeration:
from the bottom to the top and from the left to the right, then

T -1 0 ... 0 O

1|\ -1 7 -1 ... 0 0
=g L (22.12)

o o o0 ... =I T

where I denotes the n — 1 identity matrix and T is defined by

4 -1 0 0 O
T_ -1 4 -1 0 O
0 0 0 -1 4

In (2.2.11) fir is given by

fr(@,91) + 72 (9 (21, 90) + gu (20, y1),
fu(zisy1) + % H(Ti,y0),1=2,...,n—2,
fu(@n—1,91) + 2z ( i (Tn— 1,?/0)+9H($n,y1) )
) fr(@1,y5) + g (@0, y5),
fn= fH(xZ,yj) = 2,...,n—2, (2.2.13)
Ja (20 1ayj) %g (wn,yj), J=2,...,n—2
fr(z1,yn—1) + L2( 1 (21, Yn) + 91 (20, Yn—1),
Ju(Zisyn—1) + ( H(Ti,Yn), i =2,...,n — 2,
JH(Tn—1,Yn— 1) ( H(Tn—1,Yn) + 91 (Tn, Yn-1))-

The existence and the uniqueness of the solution of (2.2.10) is consequence of the properties
of Ly presented in the following result.

Theorem 2.2.10 If Ly is defined by (2.2.12), then

1. Ly is a M-matriz,
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2. Ly is positive definite,
3. ILulloo < &, IL7 oo < 3,
— 2
4. | Lull2 € Seos?(ZL), || Litll2 < Lcosec?(ZL).

Proof:

1. We observe that the diagonal entries of Ly are positive and the off-diagonal entries are
negative. As Ly is irreducibly diagonally dominant, we conclude that Ly is a M -matrix;

2. Ly is a symmetric irreducibly diagonally dominant which implies that the eigenvalues of

Ly are positive. Consequently, Ly is positive definite.

3. |Lallos < 5% is trivial. Let us consider the wy € Wg(Qy) defined by wg (z,y) = (1 —
z), (z,y) € Qp. This grid function satisfies Lywy (z,y) > Then ||L;' oo < [willco = %
because Ly is a M-matrix.

4. As the eigenvalues of Ly and the corresponding eigenvectors are defined by

4 ih iTh
Nij = 73 <sen2(£) + sen2(£)> ,

pij(x,y) = sen(imz)sen(jry) , (v,y) € L,

fori,j =1,...,n — 1, we conclude the proof.

Qualitative properties: the mean value theorem, the maximum principle

We study now some qualitative properties of the solution of the discrete Poisson equation
(2.2.10) for h = k. We establish a discrete version of the Mean Value Theorem - Theorem 2.1.7
- for harmonic functions and a discrete version of the Maximum Principle - Theorem 2.1.9.

Let us consider f = 0 in Q. If uy € Wy (Qpy) is solution of the finite difference problem
(2.2.10) with fg = 0 we say that upy is discretely harmonic.

The next result is consequence of the definition of Ag. For P € Qp we denote by V(P) the

following grid set
V(P) ={P =+ hey, P £ hey}.

Theorem 2.2.11 Ifuy € WH(QH) 1s discretely harmonic and P € Qg then

wn(P)=7 3 un(Q)

QeEV(P)

For discretely harmonic functions we have the following discrete maximum principle.

Theorem 2.2.12 If uy € Wy (Qp) is discretely harmonic, then

maxuyg = maxuyg, Mminuyg =minug.
Qp 19524 Qp 0Qp
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Proof: If uy is a constant function then the result holds. Let uj be a discretely harmonic
function in Qp which has its maximum value at P € Qp. As

up (P) satisfies
ug(P) = un(Q), Q € Vu(P).

Following this procedure we can prove that ug is constant in Q7. This conclusion contradicts
the assumption on ug.

[ |

An upper bound to the norm of a discretely harmonic function can be obtained as a conse-

quence of the discrete maximum principle.
Corollary 6 If uy € Wy (Qpg) is discretely harmonic in Qg and ug = gy on 00y, then

[wrlloo < g oo

We study now the stability of the FDM (2.2.12). Let ug?,i = 1,2, be grid functions in
Wy (Qy), defined by (2.2.12) for different boundary conditions
~Apu) = fu em Qp,

ug_? = gg) em 0Qp.
Then ug) — ug) is discretely harmonic and, by the discrete maximum principle, we have

1y = 2loe < 1195 = 952 o-

Furthermore, as LI_{l >0, if
gy’ > g7 on 99,

we obtain
ul) =0 >0 in Q.

We proved the next corollary:
Corollary 7 Let ug),i = 1,2, be grid function in Wy (Qg), defined by
—AHug_iI) = fg in Qg
ug_i[) = gg) on 0Qy .

If gg) > gg) on 02, then
lufy = w57 e < 9tz = 957 Il

and ug) > ug) >0 in Q.
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An upper bound for ||ug| s, where ug is the solution of the discrete Poisson equation, is
now obtained using || fz|lco and ||gx||oo-

Theorem 2.2.13 If uy in 5y (Qy) is solution of (2.2.10), then

1
lutilloo < Sl flloo + llgrlloo- (2.2.14)
Proof: The grid function fg, defined by (2.2.10), admits the representation fu=fu+gu
for a convenient gy,.

We introduce now two grid functions: ug) € Wy(Qy) is solution of the discrete Poisson

2)

equation with fy as a second member and with homogeneous boundary conditions, wuy’ is
solution of the discrete Laplace equation with gy as a Dirichlet boundary condition. We have

1 1
i lloo < 5l fotloo-

Otherwise, by Corollary 6, we also have

2
1S )0 < 119 loo-

Asuyg = ug) + ug), from the two last estimates, we conclude the proof of the estimate(2.2.14).

=
Quantitative properties

The behaviour of the finite difference solutions when the step size sequence converges to zero
is now studied. The concepts of consistency, convergence and stability were introduced before
for FDMs in one-dimensional context. We formalize now the same definitions for FDMs for two-
dimensional problems. The correspondent definitions can be easily given for high dimensions.

Let A be a sequence of vectors H = (h, k) such that h € A,k € A9, and A; converges to
zero, ¢ = 1,2. As for one-dimensional problem, the finite difference problem can be seen as a
boundary finite difference problem on Qy or on Qy and we denote this set by Q%.

Let uy be a grid function in Wy (Qp) defined by

Apug = fg in Q

(2.2.15)
Brup = gy on 0Qy,
which approximates the solution u € U of the elliptic BVP
Au = f in §,
(2.2.16)
Bu = g on 01,

where B denotes the boundary operator and By its discretization.
By Ry we represent the restriction operator Ry : U — W (Qp), where U is a vector space
containing the solution u. Let ||.||z be a norm in Wy (Qp).
If
|Ravw —upllg — 0,H — 0,

then the FDM (2.2.15) is said convergent.
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As fg = RHf, for the error ey = Rgu — ug we have
Ap(Rpu—uy) = Ap(Rpu)— fu
= Ap(Ryu) — Ruf
= Ag(Rpgu) — Ry Au.
As far as the error e on the boundary points is concerned we establish
Bu(Ryu—up) = Bu(Rgu)—gn
= Bpu(Ruu) — Ry ang
= By(Rpu) — Ry aaBu,

where Ry pq denotes the restriction operator for functions defined on 9€2.
The grid function Ty € Wy (Qy) given by

Ty = Ag(Rpu) — Ry Au
in Q7 and
TH = BH(RHU) — RHanBu
on 0y, is called truncation error of the FDM (2.2.15). If |Tx|lg — 0, then this method is
said consistent with (2.2.16). Furthermore, if || T || g = O(Hhqz), then the FDM (2.2.15) is said
with consistency order equal to p.

If
|Brvnllooy — 0, | Agve|lg — 0

then
lvallg — 0,

the FDM (2.2.15) is said stable.
A sufficient condition for the convergence of a FDM can be easily proved using consistency
and stability.

Theorem 2.2.14 If the FDM (2.2.15) is stable and consistent, then it is convergent.
|

We analyse in what follows the convergence properties of the five-point formula (2.2.10) with
It is easy to show

2 /o4 4 4 4
—AHRHu(P):—Au(P)—h <8u 0tu 0*u o0*u

5 @(Pl) + @(Pz) + 6—y4(P3) + 6—y4(P4)> ;

where P; € (xp — h,zp+h) X (yp — h,yp + h),i = 1,2,3, 4.



Computational Mathematics J.A.Ferreira 82

If u € C4(Q), then
h2
ITrlloo < —llullos:
Using Theorem 2.2.10, we obtain

h2
lugr — Rpul|oo < EHuHm. (2.2.17)

The error estimate (2.2.17) was established assuming that v € C*(Q). The last smoothness
requirement can be avoided. In fact, for P = (x;,y;) we have

0%u 1 [T+ §hy
—Dyu(P) = _@(P) - W/z @(Svyj)(xi-i-l _ 8)3 ds
1 Ti-1 5y,
- W/ 51 (5 9)) (@1 — 8)° ds
where
O 3 1 [*+ 3By dBu 2
gz [, w9l = g | (Gl — () e — o ds
h2
< Dlulloss @y
11
1 Tio1 84u 3 h2
67/ g1 (&) @i-1 = 9)*ds < llullas ).

Consequently

2
|TH oo < EHUIICSJ@,
and therefore
h2
lurr = Brulleo < olltllcong)-

2.2.4 FDMs of High Order

The FDM for the Poisson equation with Dirichlet boundary conditions studied in the last
section has second convergence order. In what follows we define a new DFM for the same
problem with higher convergence order.

We start by considering the one-dimensional problem. Let Dy be defined by

k

Dpup(z) = Z cjup(x + jh).
j=—k

If we replace uy, by a function u smooth enough, we obtain

2k
1
_ m, (m 2k+1 _ m
Dpu(z) = goamh ul )(x)—i—O(h )y Qm = — E cig™.

1 ek1(Q) is the set of all functions u in C*(Q) whose derivatives D®u are Lipschits continuous for |a| < k.
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Thus, if
1 .
ﬁ’aj =0,7=0,1,3...,2k,
we get a finite difference approximation for the second derivative. For kK = 1 we obtain the

a9 =

centered finite difference operator Ds. For k = 2 we obtain the finite difference operator

1 (@ — 28) + un( + 20))

Drun(@) = 1552

(2.2.18)

x —h)+up(xz+h)) —

4 5)

This finite difference operator is fourth order consistent. We remark that for the grid function
uy, defined on €y, Dpuy, is only defined for = such that o — 2h, z 4+ 2h € Q,.

Let us consider now the two-dimensional case with H = (h, h). Applying the operator Dj, in
both directions x and y, we easily get a finite difference discretization of the Laplace operator
—A which can be represented by the matrix

1
1 —16
a2 —-16 60 -16 1
—16
1

This FDM is fourth order consistent but presents some difficulties near to the boundary points.
For example, if we use the previous formula at (h,h) € Qp, we need up(—h, h), u(h, —h) outside
of Qp. This difficulty can be avoided if the five-point formula is used at the points near to the
boundary. Nevertheless, this approach leads to a decrease of the consistency order.

In order to overcome the weakness of the last approach we construct FDM of the following

type
k

Dpug(z,y) = Z cijup (x4 ih,y + jh).
ij=—k

Replacing uz by a smooth function w we obtain

Dpu(z Z o z,y)h" ™Ma
ule.y) o dxndy™ o
with 1
Apm — Z Cijm’injm,
ij
and H = (h,h).

For k = 1, a nine-point formula is deduced. If we compute the nine coefficients c;;,4,j =
—1,0,1, such that Dyu(z,y) = —Au(z,y)+O(hP), the finite difference formula — Ay represented
by the matrix

1 -1 -4 -1

— | =4 20 -4
2 )

6h -1 -4 -1
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is obtained with p = 2. This nine-point formula and the five-point formula have the same
consistency order being the first one computationally inefficient. Nevertheless, the nine-point
formula can be used to define a FDM with higher consistency order defining conveniently fg.
In fact, let us consider

—AHUH = fg inQgy.

We have

~Ayuley) = —du- A - g5 (G Higaas + oA

h2 5 _h_4 84 84 84
12 360

) Au+ O(h°), (2.2.19)

provided that u € C%(Q). In (2.2.19), A? represents the biharmonic operator

0*u 0t 0t
Au=AA\u=~—+2———— + —.
“ U ot + 0x20y2 + oy*
Let fi be defined by

fuwy) =15 (f—hy)+ fa+hy)

As we have )

Fitar.9) = f(e.) + T3 AF () + O(RY),

provided f € C*(€), we deduce that
Ty = —Agu— fu = O(h*),

provided that u € C%(Q).
It can be shown that the last finite difference approximation is fourth order convergent to the
solution of the Poisson equation with Dirichlet boundary condition provided that u € C%(Q).

2.2.5 FDMs for the Poisson Equation with Neumann Boundary Conditions

We consider the Poisson equation defined on € = (0,1) x (0, 1) with the Neumann boundary
condition
ou
8_17 =g on 0.
This condition is meaning less for the boundary points V' = {(0,0), (1,0),(0,1),(1,1)}, and we

define the discretization of the normal derivative, at points in Qg — V. by

up(P) — ug (P — hn)
h

Byu(P) = Py —V.

Let ﬁ;l be given by Qp — V and let ug in WH(Q;{) be such that
—Apgug = fu in Qp,

(2.2.20)
Byug = g, on 0Qy — V.



Computational Mathematics J.A.Ferreira 85

The FD problem (2.2.20) can be rewritten in the equivalent form
LHUH = fH em QH, (2.2.21)

where Ly is the (n — 1)? square matrix

mn -I 0 ... 0 0
=g DD 222
0O 0 0 -1 T
where
2 -1 0 0 O 3 -1 0 0 0
T, = -1 3 -1 0 0 7= -1 4 -1 0 0 ’
0 0 0 -1 2 0 0 0 -1 3
and

fr(z,p1) + (gH(xlayO) + gm(x0,91)),
Ja(zi,y1) + th(xz,yo) 1=2,...,n—2,

Sr(@n—1,91) + 7 (g1 (zn— 1,?/0)+9H(90m?/1))
fH

fn= fr(iy), i=2,...,n—2, (2.2.23)
Ja(Tn-1,y;) + th(acn,yj), i=2,....,n—2,

fr (@1, yn—1) + + (9 (@1, yn) + 91 (20, Yn—1)),
fH Liy Yn— 1) th(.%'i,yn_l),’i:2,...,n—2,
. fH(xnflaynfl) + %(QH(xnflayn) + gH(xnaynfl))-

(
(
(
(551,?/]) th(wo,?/])
(
(
(
(

As in the continuous case, in general the problem (2.2.21) is not solvable. In fact, while Ly is
irreducible, it is not irreducibly diagonally dominant. Moreover, as Lyl = 0, where I represents
here the (n — 1)? vector with unitary components, Ly is singular. Otherwise, if we eliminate in
this matrix a row and the correspondent column, then Ly is irreducibly diagonally dominant.
This fact leads to

car(Ly) = (n —1)> =1 and N'(Ly) = L{T}.
Problem (2.2.21) has a solution ug in Wy (Qy) if and only if fi € C(Ly) if and only if fy is
orthogonal to N (L), that is
0=< fH,]I >= Z fH

PeQy

Using the definition of fH, the last equality is equivalent to

WY fu(P)=—h Y gu(P). (2.2.24)

PeQy PeoQy;

Furthermore, if uy, vy are solutions of (2.2.21), then uy — vy € N(Lg), or equivalently
ug —vg = dL

We proved the following existence result:



Computational Mathematics J.A.Ferreira 86

Theorem 2.2.15 The finite difference problem (2.2.20) has a solution in Wy (Qg) if and only
if the compatibility condition (2.2.24) holds. Any two solution of (2.2.20) can only differ by a

constant.
||

Let us suppose now that the compatibility condition (2.2.24) holds and let @ be a fixed grid
point in . Then there exists a unique solution of the finite difference problem (2.2.20) such
that ug(Q) = 0. This solution can be computed using (2.2.21) where the row and the column
associated with the grid point ) were deleted.

Another approach to solve (2.2.21) can considered replacing this problem by

Lty = [, (2.2.25)
where -
- Ly 1 _ U . fH
LH_|:]It 0:|auH_|:)\:|’fH_|:0_ )
and o can be prescribed arbitrarily.
AsT and the columns of Ly are linearly independent, we get rank([Lyl]) +1 = (n — 1)2.
Furthermore, as (I, 0) and the rows of [Ly1] are linearly independent, we conclude rank(Ly) =
(n — 1)2 + 1, which means that (2.2.25) has a unique solution ug. If Ty is such that A\ = 0,

then the compatibility condition (2.2.24) holds. Thus, uy is solution of (2.2.21) with ¢ =Tug.
Otherwise, if A #£ 0, then uy is solution of the modified problem

LHuH = fH — AL
The last problem is associated with the FDM

—Apuy = fg — Xin Qp,
(2.2.26)
Byupg = gu on 0Qj;.

The truncation error induced by (2.2.26) satisfies the following relations

—Ap(Ryu —ugy) = —RyAu+ A — AgRyu =TS + A,

ou
By(Riu = i) = ByRiu = g = ByRiru = Roay = T

where
1 2
1T oo < CH ull oo @y I3 lloo < Chllullra -

We establish now an estimate for A. We start by noting that
I\ = —Lyuy + fu.

As <I, Lyug >= 0, we get

I fy
AT T
- | Z P Y an(p)
PEQy PeoQy,
= m h? Z fu(P)+h Z g1 (P)

PeQy Pedqy,
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We also have
T+ y+
[ rwds=r ) + 1,
m—% y
where
L] < W) £ s -

Then we obtain

| raedy =12 3 5(P)+Io

PeQy
with
ol < Ch”f”co,l(ﬁ)-

Analogously, it can be shown that

/and.s:h > 9(P)+ I,

Peaq,

where

[{oal < Chllgllcor a0)-

As the compatibility condition in the continuous context

/fdxdy—l—/ gds =0
Q a0

holds, we get the desired estimate for A

A< Ch(IIflcon @y + lgllcor on)-

Let Ey be defined by Ey = Rgu — ug. This error satisfies

ERIESE

)

T + (T

(2

)

where ¢(TI(1,2 )) is a certain function of TI({2

that
Ly ©1][Eg-d]
| C0! Y -

If we take o = 0, or equivalently

T + (1)
I'Ey — di

1
—TI'FE
ﬂt]I H,

% 3[%7)-

which is induced by the FDM

we obtain
TP + (1)
0

)

~Ap(Ryu —ug — d) = T in Qy,

By(Ryu —ug) = TP on 0Qy — V.

87

(2.2.27)

and o is an arbitrary constant. It is easy to establish
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Using the stability of the FDM (see [12], Section 4.7.4) we obtain

lurr — Ripu — dlfj oo < C (h||u\|0171(5) 1l o gy + |/\|) . (2.2.28)

We study in what follows another discretization of the Poisson equation with Neumann
boundary conditions with a symmetric discretization of the boundary conditions. In order to
define the boundary discretization we introduce the fictitious points:

(x—layj) = (_h7yj)7 ($n+17yj) = (1 + hvy])7.7 = 07 sy,

(ziyy—1) = (zi,—h), (x5, Ynt+1) = (x5, 1+ h), i =0,...,n.

The previous auxiliary points enable us to use the five-point formula in Q.
We consider the FDM

BnuH = Jdg on GQH,
where Pan Pon
Byug (P) = ”)Q‘hUH( —M) p e oay,
At any point in V we should consider two normals with respect to the normals of both sides of
o0

The FDM (2.2.29) induces the linear system

Lyuy = fu, (2.2.30)
where
T -2 0 ... 0 0
1 -1 T -1 ... 0 0
Ly = 72 , (2.2.31)
0 0 0 -2 T
4 -2 0 0 0
T -1 4 -1 0 0
0 0 0 -2 4
and )
fr(z0,90) + 391 (0, %0),
fH(xZayO) th(xiayO))iZQ)”’)n_la
fr(@n,y0) + 298 (@0, y0),
_ fr(zo0,y5) + th(UCo’yj)
fn= Tr(ziy,), i=1,. -1, (2.2.32)
fH(ﬂCn,?/]) th(‘TTLay])) jzl,...,’l’l—l,
fr (@0, yn) + 2910, Yn),
fH(xlvyn) th(xi7yn)7i:17"'7n_17
Ja(Tn, yn) + th(-Tmyn)'
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The nonsymmetric structure of Ly requires the use of a linear transformation Dg such that
Dy Ly is a symmetric matrix. Let Dy be defined by

D 0 0 ... 0 O 1 0 0 0 0
Dy—| 0 D1 0 ..o0 0 5 0O : 0 0 0
0 0 0 .. 0 D 0 0 0 0 1
and
10 0 ... 0 0
p,—| 0 1 0 0 0
e %

Using the transformation Dp, the FDM (2.2.30) can be rewritten in the equivalent form

DyLpuy = Dy fu,

where N
n T, 0 0 0
- 1 I T I
B e DLy — = T, T T 0 0 7
h2
0 0 0 T, T
with )
1 -1 0 0 0
1 1
7o | 2 2 -1 0 0 ’
0 0 0 -3 1
2 -1 0 0 0
s | -1 4 1 0 0
0 0 0 -1 2 |
and ~ _
1 0
2
Ty — 0 -1
1
o 0 0 ... 0 -—=
L 2 |

We observe that Ly is singular because Lyll = 0. From Ly a irreducibly diagonally dominant
matrix can be defined eliminating a row and the correspondent column. As car(Ly) = (n+1)%—1
and N (Ly) = L(I), we deduce that there exists a unique solution of the FDM (2.2.29) if and
only if
I'Dy fr = 0.
Moreover, any two solutions of the boundary value problem (2.2.29) may differ by a constant.
The solution u; can be computed solving the linear system

BRSS!
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If we obtain A = 0 for ¢ =T'uy, then uy is solution of the initial finite difference discretization.
Otherwise, uy is solution of a perturbed problem similar to the perturbed problem (2.2.26).
Following the construction of the estimates (2.2.27), (2.2.28), estimates for A and for the error
ug — rgu — dl can be established.

2.2.6 Convergence Analysis with Respect to Discrete Sobolev Norms

It was shown that the five-point formula enable us to obtain a second order approximation
ug for the solution u of the Poisson equation with Dirichlet boundary conditions, that is

|Rru — up||o < Ch2.

We intent to define a new norm which can be seen as a discretization of a continuous one and
such that ug is also a second order approximation with respect to this new norm.

The grid function ey = Ryu — uy is defined on Qp and it is null on 9Qg. Let Wy (Qp) be
the set of grids functions defined Qp and null on Q. In this space we introduce the norm

lw ||} = lwa|? + Z h(D_,wy (P))* + Z h(D_,wg (P))?. (2.2.33)
Q1 Qm ¢

In (2.2.33), the notations
Qg =Qn — {(z0,y;) € 00u}, Ve = Qg — {(2i,90) € 0w}

and
lwe|* = 2> wy(P)? (2.2.34)
Qn

were used. We point out that the norm (2.2.34) is induced by the inner product

(wH,vH) = h2ZwH(P)UH(P),wH,wH S W()(QH)
Qn

i
wH(:CZ') ?/]) = Z hD*:EwH(‘TEa y_]))
=0

we have

> Pwn(P)? < C Y hA(D_ywr(P))?,
Qpy Qp

where C is a positive H-independent constant. From the last inequality we deduce that

lwel? < C (Y R(D_pwu(P)? + > KD ywu(P)?* |, Y € Wo(Qm).  (2.2.35)

Q1 Qm ¢
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For wy € Wo(Qg), —Agwy, can be identified with a linear functional in the dual of
Wo (). 12
This remark gives sense to the next result:

Theorem 2.2.17 There exists a positive constant C, H-independent, such that
|| — AHwHHfl > CHwHHh Ywyg € Wo(ﬁ]—]) (2.2.36)

Proof: To prove (2.2.36) we note that

|- Auwgly = sup 2wl
ozomewo@y)  lIvalh
_ qp  [CAwmvk)l
0#£v €Wo(Qpr) llvm 1
. |20, W’ D—ewn (P)D_gvu(P) + Xq,, , h*D_ywu(P)D_yvy(P)|
0#£v €EWo (Qr) lve 1
- |20y, WP (D—gwn (P))* + g, , P(D-ywn(P))?|
B w1
> Cllwgl-
[ |

From Theorem 2.2.17, —Ap is injective. Taking in (2.2.36), wpy replaced ey, we obtain
1 Twll -1 = Cllerl

As we have

T T
HTHH—l = sup M = sup M

< CP?||ullca )
0Avg EWo(Q) [or s 0£v €Wo(Qr) lvrlla ©

we conclude that
lerlli < CR?|lull ca g

provided that u € C*(0Q).
It can be also shown that
lerllr < CR?[[ull s ),

provided that u € C31(Q).

12T.et V be a Hilbert space. By V' we denote its dual, that is the space of all bounded linear mappings of V
onto IR. V' is a Banach space with respect to the dual norm

l(u
[ p—_—— Oy
wev,uzo ||ullv

The identification between a Hilbert space and its dual is based on the Riesz representation theorem.

Theorem 2.2.16 Let V be a Hilbert space and £ € V'. Then there exists a unique uy, € V such that

((u) = (w,ue)v,Vu € V, [l -1 = Jlucllv.
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2.3 Tools of Functional Analysis

Space of Integrable Functions We introduce the a class of spaces that consists of (Lebesgue)-

integrable functions. Let p be a real number, p > 1, and let 2 be a open subset of IR". By
LP(Q),p > 1, we denote the set of all functions such that

/Q\u(x)yp de < .

Any two functions which are equal almost everywhere on {2 are identified with each other. In
LP(Q)) we consider the norm

1/p
1wl o) = (/Q lu ()P dx) .

The particular case p = 2 has an important role in the sequel. In this case, the norm ||.[|12(q) is

induced by the inner product
(u,v) = / u(z)v(z) dx.
Q

By L*(£2) we represent the set of all functions u defined on € such that |u| has finite essential
supremum over € (there exists M > 0 such that v < M in 2 all most everywhere ( in Q — Q*
where meas(2*) = 0) and the smallest M is called essential supremum of u and it is denoted
by ess.supu). In L>°(Q) we consider the norm

[ul| Lo (@) = ess.sup|ul.

For p € [1,00], the space LP()) is a Banach space!® For p = 2, L2(Q) is a Hilbert space.
Sobolev spaces Let € be a open subset of IR" and u € C™(Q). If v € C§°, then

/ D%uvdz = (—1) / uD%vdx,
Q Q
for |a| < m.

Consider Q2 = IR and u(z) = (1 — |z|)+. This function satisfies

/ uw(x)'(z)dx = —/ w(x)v(z)dx, Vv € C°(IR),
R R

where
0, z < —1,
1, z € (—-1,0),
wiz) =13 _ 1,z € (0,1),
0, z > 1.

The function w can not be seen as the usual derivative of u, but can be interpreted as a ”weak”
derivative of the given function. This example motivate the introduction of the concept of weak

derivative.

13A normed linear space B is called a Banach space if all Cauchy sequences in B converge in B.
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Let  be an open set of IR and u be locally integrable on €2 (u is integrable on every bounded
w subset of 2 with @ C ). If there exists a function w,, locally integrable on € such that

/wavd:c:(—l)|a/uD°‘vdx,
Q Q

for all v € C§°(Q), || < m, then we say that w, is the weak derivative of the function u of
order |af.
If u, locally integrable on €2, has two weak derivatives of order |a|, wq, w},, then

/Q(wa —wi)vdr =0V € C§°(),

and consequently w, = w},.
The base for the definition of the Sobolev spaces is the concept of the weak derivative. Let
m be non negative integer and p € [1,00]. The Sobolev space of order m is given by

W™P(Q) = {u e LP(Q): D € LP(Q), |a] < m},
equipped with the norm
fullmaey = (3 1D%ul )
|a|<m

if p € [1,00) and

lullwmes) = Y 1D%ull1o0(0)

la|<m
for p = oo.
The previous norms can be given by:
e for p € [1,00)
- 1/p
ullwesey = (3 [0lfysney) -
j=0
with
ulwaney = (3 10%ul )"
|a|=j
® D =00
m
HUHWW‘X’(Q) = Z !u\’éw,oo(ny
j=0
with

ulwice@) = Y D%l L)
lo=7

The particular case p = 2 is very useful in a huge number of applications. In this case,
Wm’Q(Q) is a Hilbert space with respect to the inner product

(u, V) pym2(q) = Z (D%u, D),

laj<m
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and this space is denoted by H™(12). It can be shown that C*°(2) N H™(12) is dense in H™(£2).
For the particular choice m = 1, we introduce the subset of all u € H'(2) which are the
limit of a sequence in C§°(f2), that is, the closure of C§°(£2). We denote this space by HA(€2). If
the boundary 9 is smooth ( for instance if Q is a polygonal domain of IR? or a polyhedron in
R?)
HY}(Q) = {uec H(Q) : u=00n0Q}.
14 We remark that H}((2) is a Hilbert space with the same norm and inner product as H*(Q).
The Poincaré-Friedrichs inequality

" ou 1/2
Iz < CO (3 I o)

holds for u € H}(S2), provided that 2 is bounded. The proof can be considered for u € C§°(Q)
and the result holds for u € H}(€2) because C§°(€2) is dense in Hg(Q).

2.4 Weak Solutions for Elliptic Problems
2.4.1 Variational Problems for Elliptic BVP

Let © be a bounded open set of IR", and we consider the second order differential equation

9
Au = — ]E ax (aij(z )+ E bi( 856@ (x)u = f(x), x € Q, (2.4.1)
where

GZJGC( )bl,chC( )

We assume that

n

> ay()&g >cZg = (1,...,&) ER", z € Q. (2.4.2)
ij=1
which is usually referred to as uniform ellipticity. The condition (2.4.2) implies that [a;;()] has
positive eigenvalues and then (2.4.1) is an elliptic equation.

Let us consider the boundary value problem (2.4.1) with homogeneous Dirichlet boundary
conditions. In many applications where non smooth data are presented, there isn’t a classical
solution of this boundary value problem, that is a function u in C?(Q2) N C(Q) satisfying the
PDEs (2.4.1) and w = 0 on 092.

In order to overcome the limitation of the classical theory and to be able to deal with PDEs
with non smooth data, we generalise the notion of solution by weakening the differentiability
requirements and introducing the variational problems induced by the PDEs.

Let u be the classical solution of the introduced boundary value problem. From (2.4.1), for
v € C}(£2), we obtain

Z (aij gu 88;;) + Z(bi%,v) + (cu,v) = (f,v). (2.4.3)
— i

ij=1 i=

14 This characterization holds for a domain Q with boundary C*.
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In order to this equality makes sense we do not need to assume that v € C%(Q). It is sufficient

0
6_11, € L?(Q),i=1,...,n. As u =0 on 99, it is natural to seek
5

u in HE(Q). Furthermore, as C3(Q) C H}(Q) the equality (2.4.3) has sense for v € HE ().
Therefore, we replace the computation of u in C%(Q) N C(Q) such that u = 0 on O by the
following problem:

to suppose that u € L?(f2) and

findu € H}(Q) such that a(u, v) = £(v), Vv € H3 (), (2.4.4)
where
a(w,v) = Z”:(a”a_w w +Zn:(b-a—w ) + (cw,v), w,v € HY(Q) (2.4.5)
) - e 1) 61'1" 61'] & Zaxia ) ) ) 0 9 B
and
((v) = (f,v), v e HY(Q). (2.4.6)

The smoothness requirements on a;;, b;, ¢ presented before can be weakened considering that
these coefficients belong to L>(£2).

The solution of the problem (2.4.4) is called weak solution of the equation (2.4.1) com-
plemented with homogeneous Dirichlet boundary conditions. It is clear that if w is a classical
solution of (2.4.4) such that u = 0 on 942, then u is also weak solution. Nevertheless, if u € H} ()
is weak solution of this problem, then w is classical solution of the same problem if u is smooth
enough. In fact, if u € C%(Q) and u = 0 on 952, then

(Au — f,v) =0, Yv € C5°(Q).

Consequently, Au = f almost everywhere in €.

In order to study the existence of the solution of the problem (2.4.4), usually called variational
problem because it is related with the computation of the solution of a minimization problem, we
introduce in what follows some concepts and results associated with general variational problems.

2.4.2 General Variational Problems

Let V be a Hilbert space with the inner product (.,.) and let a(.,.) : V' xV — IR be a bilinear
form,that is, a(.,.) is linear in each argument. Let ¢ be in V.
We consider in what follows the general variational problem:

find u € Vsuch that a(u,v) = £(v), Vv € V. (2.4.7)

The existence and uniqueness of the solution of the variational problem (2.4.7) are guaranteed
imposing some requirements on the bilinear form a(.,.).

If there exists a positive constant C such that
la(u,v)] < Cllullvivllv,
then a(.,.) is said bounded (or continuous). If
a(u,u) > Cellull?, Yu,v €V,

for some positive constant, then we say that a(.,.) is V— elliptic.
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Lemma 2 (Lax-Milgram Lemma) Ifa(.,.) is a continuous V -elliptic bilinear form, then the
problem (2.4.7) has a unique solution u in 'V and the operator P : V' —V defined by

Pl=u,tecV
18 continuous.

Proof: Attending that ¢ € V', by the Riesz Representation Theorem, there exists P{ € V
such that
(Pl,v)y = L(v)Yv e V.

Let u be fixed in V. The linear functional a(u,.) : V — IR belongs to V’. By the Riesz Repre-
sentation Theorem, there exists Au in V' such that

(Au,v) = a(u,v), Vv € V. (2.4.8)

Let A:V — V be defined by (2.4.8). This operator is linear and satisfies

|a(u, v)|

[ Aully = sup

< Cllullv.
veV,u#£0 vl

Then A is continuous.
Using the two operators P and .A, the variational problem (2.4.7) can be rewritten in the

equivalent for:

findu € V suchthat Au = P/. (2.4.9)
We prove that A is bijective.
e A is injective:
As a(.,.) is V-elliptic, we have
Colloll? < a(v, v) = (Av,v) < [Avlly [lollv, Yo €V,
and then
Cellv|lv < || Av|lv Vv € V. (2.4.10)
This inequality implies the injectivity of A.
o A satisfies AV =V :
We prove that A(V) = {Av,v € V'} is closed in V and A(V)* = {0}.

Let w be in A(V) and let (Av,) be a sequence, in R(A), that converges to w. As
[Av, = Avllv 2 [lon — vinllv,

(vn) is a Cauchy sequence in V. So exists v in V such that v,, — v because V is an Hilbert

space. Furthermore, by continuity,
Av,, — Av.

Finally, as Av, — w we conclude that w = Av € R(A).

Let vg be in A(V)*. As
Cellvollv < (Avg,v9) =0

we get vg = 0 and consequently A(V)+ = {0}.
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As problem (2.4.9) is equivalent to the variational problem (2.4.7), we conclude that there
exists a unique solution u of the last problem. Moreover, from (2.4.10) we obtain

- 1
A wlly < o |wllv, w eV,
e

— C C 1

[
The variational problem (2.4.7) is associated with a minimization problem when symmetric
variational forms are considered. The bilinear form a(.,.) is said symmetric if a(u,v) = a(v,u)
for u,v € V.
Let £ be fixed in V' and let J : V — IR be defined by

J(v) =a(v,v) — 2l(v), v e V.

The solution of the variational problem (2.4.7) is related with the solution of the minimization
problem
find u € Vsuch that J(u) = mi‘l;l J(v). (2.4.11)
ve
Theorem 2.4.1 Let a(.,.) be V-elliptic and symmetric. If £ € V' then the solution, then the

solution of the variational problem (2.4.7) is the unique solution of the minimization problem

(2.4.11).

Proof: Let u be the solution of the variational problem (2.4.7) and let v be in V. Then, for

z =u — v, we have

J(v) = J(z +u) J(u) + a(z,z) + 2(a(u, z) — £(2))
J(u) +a(z, 2)

> J(u) + Cellzllv = J(u) + Cellu — vy

Consequently, J(v) > J(u) for v # u.
=
The concept of V-ellipticity seems to indicate that elliptic boundary value problems cor-
respond V-elliptic bilinear forms. In general elliptic boundary value problems are associated
with V-coercive bilinear forms. The definition of V-coercivity requires another space U such
that V- C U C V'. By the Riesz Representation Theorem the last inclusions has sense. The
Hilbert space U is such that V = U and the identity operator i : V — U is continuous, that
is ||v]lo < C|lv]]y,v € V. In this context, we say that a bilinear form a(.,.) : V. xV — IR is

V-coercive if

a(v,v) > Cellv[}; — CellvlEr, v € V. (2.4.12)

where C, > 0.
The existence and uniqueness of the solution of a variational problem with a V-coercive
bilinear form is established by using the Riesz-Schauder theory.
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2.4.3 Again Variational Problems for Elliptic Equations

Dirichlet homogeneous boundary conditions: We return to the variational problem

(2.4.4) where the bilinear form a(.,.) : H}(Q) x H}(2) — R is defined by (2.4.5). Under the
regularity assumptions a;j, b;, c € L>(§2), we have

ow 8v
|a(w,v) <C Z/ |8:C ax —I—Z/ |—v|dm+/ |wv|d:c

< 27”LCHwHH5 yollag o)

(2.4.13)

for w,v € H}(Q), where we used the notation

¢ = max{max ma a;;(2)], max max [by (2)], max [e(2)]}.
] xeQ T€ z€Q

Consequently, a(.,.) is continuous on H{(Q) x HJ ().
The H{(Q)-ellipticity of a(.,.) can be deduced from the uniform ellipticity of the operator
A. In fact, from the condition (2.4.2) we easily obtain

a(u, w) >CZ/|—|2dx+Z/ an )dm+/cu2dx
i Q
ob;
dw—i—/ﬂ(c——zaxl) u? dz.

If we suppose that the coefficient functions ¢ and b; satisfy

- >0,z€Q, (2.4.14)

then

and, by the Poincaré-Friedrichs inequality, we conclude that a(.,.) is H{()-elliptic.
As for linear functional ¢ holds the following

L) = (f,0) < I fle@llollzz) < IFl2@ vl @), v € Ho(2)
the Lax-Milgram Lemma allow us to conclude the next result:
Theorem 2.4.2 If the coefficient functions are such that
a;j, bi,c € L)

and the conditions (2.4.2), (2.4.14) hold, then the variational problem (2.4.4) has a unique weak
solution in H}(Q). Moreover

1
lull g o) = & I llz20)- (2.4.15)
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Proof: We only prove that the estimate (2.4.15) holds. As

Cellull g < alu.w) = (f,u) < 1 Fll2@llullmy o,
we conclude the proof.

[ |
Theorem 2.4.2 can be established under weaker smoothness assumptions on b;,7 = 1,...,n,

than those consider before. In fact, if we only require that b; € L>°(£2), then we can prove that
a(.,.) is Hi(Q)-elliptic. We have

0012
a(v,v) = Clolgq) = i:ffllf?anbz‘HLoo(Q) vl mi@)llvllize @) + (cv,v).

m

1
2 2
jmax [[bif| L@y vly o) vllz@) < €lolay) + 17 max l1bille @ llvlzz @)

we obtain

1
- 62)‘”‘?{3(9) - @HUH%Q(Q) Z:Hllaxn HbiH%OO(Q) + (cv,v).

200 i=1,...,n
If

=1,...,n
then

2
a(v,v) > 5|U|Hé(g)

and, by the Poincaré-Friedrichs inequality, we conclude that a(.,.) is H{(Q)-elliptic.

An immediate corollary of the Theorem 2.4.2 is the stability of the solution of the variational
problem (2.4.4) with respect to perturbations of f. In fact, let u;,i = 1,2, be solutions in H{ ()

of the variational problem (2.4.4) for f; € L?*(Q),i = 1,2, respectively. As f = f; — fa is in
L?(€2), then, by Theorem 2.4.2, we have

1
lur = w2llmg @) < & 71 = h2llr2o)-

Thus, if [|f1 — hellz2(q) is small, [[u1r — uz]| 1 ) remains small.
Non homogeneous boundary conditions:

Let us consider the PDEs (2.4.1) with the non homogeneous Dirichlet boundary condition

u =g ondd. (2.4.16)
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From the PDEs (2.4.1), with v € C§°(€2), we obtain the variational problem (2.4.4). However,
its solution does not satisfy the prescribed boundary condition. This fact leads to the definition
of the variational problem

findu € H'(Q) such that u = gon dQand a(u,v) = £(v), Vv € H} (). (2.4.17)

It can be shown that if u € H'(f) is solution of the variational problem (2.4.17), and u is
smooth enough, then u satisfies (2.4.1) and u = g on the boundary 9f.

In order to compute a solution of the variational problem (2.4.17) we start by fixing ug €
H'(Q) such that uglpg = g. Let w be in H}(Q) and given by w = u — ug. This function is
solution of the variational problem (2.4.4) with

((v) = (f,v) — a(ug,v),v € HL(R). (2.4.18)
As

)] < (1f |20 + 2nC ol 3 @) 10l 3 (@ v € Ho (),

the problem (2.4.4) with ¢ given by (2.4.18) has a unique solution in H}(f2), provided that the
coefficient functions satisfy
Qij, b;,c e LOO(Q)

and the conditions (2.4.2), (2.4.14) hold. Finally, taking
U =w + ug,
a solution of the variational problem (2.4.17) is obtained.
Poisson’s equation with Neumann boundary conditions:

We introduce now a variational problem associated with the BVP

—Au+agu = f inQ,

(2.4.19)

g—z:gonQ.

From Poisson equation with v € C*(2) N H(Q), we get

Z/ u O dac—i—/aouvdx:/fqﬁdxdy—i—/ @vds.
— Jo Ox; Ox; Q Q o0 On

Let a(.,.) : HY(Q) x HY(Q) — IR be defined by

n
ov 0
a(v,w) = Z/Q 6; a;ui dz +/Qa0vw daxv,w € HY(Q).
=1
We introduce the variational problem:

findu € H'(Q)such that a(u,v) = £(v),v € H(Q), (2.4.20)
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where ¢ : H'(Q) — R is given by

E(v):/fvdxdy—i—/ guds, v € HY(Q).
Q o0

A solution of problem (2.4.20) is called weak solution of the boundary value problem (2.4.19).
If the weak solution u is smooth enough, then

a(u,v) = £1(v), Yv € C5°(Q), (2.4.21)
with
(1(v) = (f,v),v € H}(Q).
From (2.4.21), we obtain

(—Au+ apu — f,v) =0,Yv € C;°(Q).

Thus the PDEs of (2.4.19) holds in L?(Q).
As
—Au+ agu = f

holds in L?(Q), we get
ou
(3_77 — 9,v)12(90) =0, Vv € H'(Q).
ou N
Consequently, 5, —9in L4 (09Q).
n

If we assume that ag is positive, bounded and ag > a1 > 0 in Q, then a(.,.) is H!(Q)-elliptic.
For ¢ we get
()] < HfHL2(Q)HUHL2(Q) + HgHL2(8Q)Hv’89”L2(8§2)

< C(||fllp2 + CHQHLQ(aﬂ))HUHHl(Q)v (S Hl(Q%

which leads to £ € H*(Q)’, provided that f € L*(Q) and g € L?(99Q).
Under the previous assumptions, there exists a unique solution of the variational problem
(2.4.20), in H!(Q), such that

lull ) < (IFlz2) + Cllgllzon)) -
The Stokes Equations

Let © be an open bounded domain. For f = (f1,..., fn) € (L2())"!5 let u = (uq,...,uy)
and p be defined in €2 and such that

0
_:u'Au’i—’——p:fZ’an’Z‘_lv , 1,
a.%'i
Vau=0,inQ, (2.4.22)

up=00n 00, i=1,...,n,

15(L%(Q))™ represents the space of vector functions v = (v1,...,v) : @ — IR with v; € L*(Q),i = 1,...,n.
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where p denotes a positive constant. In fluid mechanics the Stokes equations (2.4.22) describe

the flow of an incompressible medium with viscosity p and exterior force f. In (2.4.22), u

represents the velocity field (u; is the velocity of the medium in z; direction) and p the pressure.

The homogeneous Dirichlet boundary condition means that the flow vanishes at the boundary.
Let v be in (C§°())". From the first equation of (2.4.22)1¢ we obtain

- 6’11,Z 8% - 6’[)1‘ - .
I / dr — /p dr = /fl-vid:c,z:l,...,n.

Then for v such that V.v = 0 we get

" 8114@ 81)@' "
= U, L =1,...,n. 2.4.2
i Z /anj oz, dx ;/szvz de,i=1,...,n ( 3)

1,j=1

This fact induces the introduction of the following space
V ={ve (H}Q)" : V.u=0}.

17V is closed in (H}(2))™ and it is a Hilbert space with respect to the inner product defined in
(Hp ()"
Let a(.,.) : V x V — IR be the bilinear form

" auz avi
1 QO axj 8:6]'

a(w,v) = p dr, w,v € V.

Z7]

Using the Poincaré-Friedrichs inequality, a(.,.) is V-elliptic. As f € (L?(2))",

n
((v) = Z/ fvidz,v eV,
i=1 7%
belongs to V'. The Lax-Milgram Lemma allow us to conclude that there exists a unique solution
of the variational problem:
findu € V : a(u,v) =L(v), v e V. (2.4.24)

As (C§°(£2))™ is not contained in V, it is not possible to give a direct interpretation of the
last variational problem. In order to avoid this difficulty, we define a new variational problem
equivalent to the last one using the next result.

$The inner product in (L*(Q2))™ is defined by

n

(w, v) 2@y = D (w0 vi) pagey, w,v € (L*(Q)".

=1

"By (H$ ()™ we represents the space of vector functions v = (v1,...,v,) : @ — R with v; € H3(Q),i =
1,...,n. In this space we consider the inner product

n

(U},U)(H&(Q))n = Z(wi7vi)H&(Q)7w7v € (H(%(Q))n7

i=1

n

and the norm induced by this inner product. The space (H(Q))
product (., ')(Hé(ﬂ))"'

is a Hilbert space with respect to the inner
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Theorem 2.4.3 Let Q be a convex bounded open set with boundary 02 smooth enough (09
piecewise C') and let £ be in [(HY(Q))"). Then € in null on V if and only if there exists
¢ € L*(2) such that

i(v) = / oV.vdx Yo € (HY(Q))™. (2.4.25)
Q
Two any function ¢1, ¢s differ by a constant.

If / is defined by (2.4.25) with ¢ € L2(Q2), then £ € [(H}(Q))") and ¢ is null on V.
The crucial point in the proof of the Theorem 2.4.3 is the existence of a function ¢, in L2(12),
such that (2.4.25) holds provide that ¢ is null on V. If ¢; and ¢y satisfy (2.4.25), then

Yo € (HE(Q))" /Q(¢1 — ¢2)Vdr = — Z/Qvai (1 — ¢p2)dx = 0.
i=1 ¢

Thus

e @) Y [ vgpton- o=,

which leads to 5

61‘1‘
Finally, from the last equality we deduce ¢1 — ¢o = const. in Q).

(g1 — ) =0,i=1,...,n.

In order to use the Theorem 2.4.3, we define
0(v) = au,v) — L(v),v € (HI(Q), (2.4.26)

where u is the solution of the variational problem (2.4.24). We have £ € [(H}(€2))") and /(v) = 0,
for v € V. Then, by the Theorem 2.4.3, there exists a function p € L?() such that

/va dzx = a(u,v) —L(v), v € (Hol(Q))”7

that is

a(u,v) — vx:n v;dx, v ! " 4.
() = [ pud Z:/Qf de, v € (HY(%) (2.4.27)

We proved that there exists a unique v € V and p € L?(2) such that (2.4.27) holds. Finally, if
(u,p) € (HE(Q))" x L*(Q) is solution of the variational problem (2.4.27), then u is solution of
the variational problem (2.4.24).

2.5 The Ritz-Galerkin Method
2.5.1 The Finite Element Method

Let Vi be a subspace of V' with dimension Ng. The variational problem (2.4.7) defined in
V, can be considered in Vg,

findug € Vi such that a(ug,vy) = l(vy), Yog € V. (2.5.1)
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As Vi C V, then Vi equipped with the norm ||.||y still is a Banach space. Moreover, af(.,.) on
Vi x Vi has exactly the same properties that it has when defined on V x V. As £ € V' then
¢ € V};, and so the variational problem (2.5.1) is well defined.

In certain sense, the solution of the finite dimensional variational problem (2.5.1) is an
approximation for the solution of the problem (2.4.7) being the error defined by ey = u — upy.
The solution of this new variational problem is called Ritz-Galerkin solution and the designed

method is called Ritz-Galerkin method. N
H

Let {¢j,7 = 1,...,Nu} be a basis of Vg. Then ug = Zajqu € Vg is the Ritz-Galerkin
j=1
solution of (2.5.1) if and only if

Ny,
Z ¢j7¢l —€(¢Z)Z—1 NH7

if and only if the coefficients o, j = 1,..., Ny, satisfy

Aa =F, A=la(¢;, 6], = [0y), F = [f(60)] (255.2)

The matrix A, usually called stiffness matrix, is symmetric if and only if a(.,.) is symmetric.
The existence and uniqueness of the Ritz-Galerkin solution are characterized in the following
result:

Theorem 2.5.1 Let {¢j,j =1,...,Nu} be a basis of V. There exists a unique Ritz-Galerkin
solution of the variational problem (2.5.1) if and only if the linear system (2.5.2) has a unique
solution.

If a(.,.) is V-elliptic, then [a(¢;, ¢;)] is nonsingular

Proof: Let us suppose that [a(¢;, ¢;)] is singular. Then there exists [a;] # 0, such that

[a(¢5, di)][au] = O,

which implies

CL(Z Oéj¢j, Z az¢z) =0
J %

As a(.,.) is V-elliptic, we deduce that Z a;j¢; = 0, and consequently a; = 0 for all j.
J

Example 26 Let us consider the one dimensional problem

Lu(x) = =(p(2)v'(2))" + q(@)u(z) = f,z € (a,b),u(a) = u(b) =0,

with p € C'(a,b),q € C(a,b).
The variational problem is defined by

b
a(u,v) = / (pu/v' 4 quv) dz,u,v € Hy(a,b), (2.5.3)
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and ,
() = [ fods e (@), (2.5.4)
where f € L*(a,b).
Let {x;,i =0,...,n} be a nonuniform grid in [a,b], where xo = a,xp = b and x; — x;—1 = h;.

Let Vi be the space of piecewise linear functions. The finite dimensional variational problem is:
find ug € Vi such that a(ug,vg) = L(vy) for allvyg € Vi. In order to deduce the linear system
which defines the Ritz-Galerkin solution, we fize in Vi the basis {¢;,i =1,...,n — 1},

r — Tij—1
TZ T € [xi_1,24],
pi(x) = Tl x € (x4, Tip1], i=1,...,n—1
hit1
0 x e [a,sz;l) @] (fEiJrl, b],

It is clear that Vg = C{gf)z,i =1,...,n—1} and Vg C H}(a,b). The coefficients of the Ritz-

Galerkin solution wg (x Z a;¢i(x), z € [a,b], satisfy

b
Afo] = | / F(@)u(x) dal,

Ti 1 x—x;)? Tit1 1 T — Tit1)?
wi= [ (s a0 E L) da ot [T (o + o) E )
Ti—1 hz hz z; h‘erl hz+1

Ai—1i = /:_1 (p(x)(_h%?) —q() o xlé;(lﬂ — :Ci)) de,

. /:m (p(x)( h21 )~ (@) (x —a; })l(;c xi+1)) d.

i i+1 i+1

with

Example 27 Let us consider the Poisson equation in the unitary square Q = (0,1) x (0,1)
with homogeneous Dirichlet boundary conditions. The weak formulation of this BVP is given by
(2.4.7) with V = H}(Q),

a(u,v) /Vqudx L(v /fvdw

Let Vi be the finite dimensional space of V' spanned by the functions
¢1(x1,2) = sin(mzy) sin(mxe) , p2(x1, x2) = sin(3mz;) sin(mwxs),

¢3(x1,x2) = sin(mzy) sin(37xe) , ¢a(x1,x2) = sin(3nxy) sin(3rzs).

The matriz of the linear system for the coefficients of the Ritz-Galerkin solution is a diagonal

matrix where
2 52 o2
ai] = 5,022 =433 = —(—,044 = —(—.
2’ 2’ 2
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As for f=1, A A A
Uo1) = T2’ U(2) = U(d3) = er((éﬁl) = 9n2’
we get

(¢2(z1,22) + P3(21,72))

8
ug (z1,22) = F(ﬂclaiﬂz) +15?

+8;37¢4(x1,x2), (21,2) € [0,1] x [0, 1].

If the basis of the finite dimensional space is not fixed according to the previous examples,
the matrix of the Ritz-Galerkin solution is in general full, that is, a;; = a(¢;,¢;) # 0 for
almost every ¢ and j. Therefore, the computational cost of the Ritz-Galerkin solution increases
drastically when the dimension of Vi increases. This behaviour can be avoided if the choice of
the basis follows the basic principle followed in the choice of the basis of the previous examples:
the support of ¢; has a nonempty intersection with the support of ¢; just for few j. Such property
induces a sparse structure in the matrix of the Ritz-Galerkin solution. For instance, in Example
26, the basis {¢;} was defined considering the sets [a;, b;], i = 0,...,n, such that

[av b] = U?:O[a’iv bl]7 (a"i7 bZ) N (a'j7 bj) = Q)’Z 7& .j7
and, for each ¢, the set of all j such that

supp(¢;) N supp(d;) # 0

is very "small”.

The domain 2 is partitioned into small pieces, the so called finite elements, and the basis
functions are defined in such a way that their supports are composed by a collection of finite
elements. In this case, the Ritz-Galerkin method is usually called Finite Element method.

The weak formulations of the second order elliptic equations requires that V = H&(Q) or
V = H'(Q). For a polygonal domain of IR?, we introduce the finite dimensional subspace Vi of
V fixing its basis with the previous requirements.

Let © be an open polygonal domain of IR?. The partition of Q, {Q;,i = 1,..., P}, is called
an admissible partition if the following conditions are fulfilled:

Py) Q;,i=1,..., P, are open sets,

P) nNQ;=0,i#j,

Py) Uiy =9,

Ps) Qn ﬁj is either empty or a common side or a common edge.

The pieces Q;,71=1,..., P, are the finite elements.

1. Linear elements for  C IR?

Let us consider a triangulation 7z of  with the triangles 77, ...,7T;. This triangulation
is admissible if {7T};,7 = 1,...,t} satisfies the conditions Py, P; , P> and P3. The edges of
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the triangles of T define the nodes of the partition. These nodes can be interior nodes or
boundary nodes. Let Ny the number of interior nodes. We use the notation

Vi = {vg € C°(Q) : v, = 0 on 0L,
vp(z1, yz2) = ap + ar1x1 + agxe, (rv1,22) €T, T € Th}.

We point out that if vy € Vy, then, in T' € Ty, vy is uniquely determined by the values
vH(:c(l)),vH(:c(Q)) and vH(:c(3)), where () i = 1,2, 3, are the edges of T. Moreover, vy is
continuous in €2, and the partial derivatives of vy are constant on each triangle presenting,
eventually, jumps on the common sides of the triangles. Thus Vg C H&.

Let 249 i =1,..., Ny, be the interior nodes of the triangulation Tg. Let ¢; be associated
with the vertex z(® such that

$i(x) =1, ¢;(2V)) =0, j # 1,

For instance, if T has vertices z() = (acg ),xg)) zU) = (xgj),xgj)) and z(™) = (acgm),xém)),

then
oy o =N =) =N )
1,2 @O Dy m) G @ G m) )y 2 :
(551 Ty )(552 Ly ) (552 ) )(561 Iy )

and ¢; = 0 on all triangles that do not have z(V as a vertex.
The functions ¢;,7 = 1,..., Ny, have the properties:

(a) {¢i,i=1,...,Ng} is a basis of Vj.

(b) supp(¢) = U{T € Ty : Thas ) as avertex }.

(c) If the corners 29 and 21) are connected by a side, then Q; N Q; = 0.

As a consequence of the definition of Ty and of {¢;,i = 1,..., Ny}, the stiffness matrix
[a(¢i, ;)] is sparse. In each row i, the entries of the matrix, eventually, not null are in the
j columns where j is such that z(¥ and 2(¥) are connected by a side. For instance, for the
bilinear form (2.4.5) with b; = 0,7 = 1,...,n, we have

a’(¢ia¢j) = Z/Qa gfl §¢Jd +/a0¢i¢jdaz

= Z Z/ gj; 6¢j dx + / aoqﬁigbj dx

TETh Lk
_ > Z/ giﬁ; 8¢3d +/ aoid; daz)

where T},,m € I, is the set of all triangles with z(9) as a vertex.

The integration / dxy dxo seems a difficulty of the computation of the finite element
Tm

solution. However, for each m, we can express / dx1 dxo as an integral over the reference

m
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triangle A defined by the points (0,0), (0,1) and (1,0). In order to show that, let us suppose
that T is an arbitrary triangle of Tz with the vertices: 21, 2® | 2®). Let Ur be the
transformation

AT, UEn) =2D+¢@® —20) 4 n@® —2M), (6,1) € A (2.5.5)

If ¢ is defined on T, then

(z,y) = ¢(¥(&,n) = d(&,n).

The partial derivatives of ¢ are now given in function of the partial derivatives of ¢ with
respect to £ and 1. We have

06 _ 06 9¢ 06 I

83:1 N 8_58561 8_778:61

0
For 99 holds an analogous representation. Thus we get

8902
Verasd = J(UVe 0,
where
08 9
-1y _ 61‘1 61‘2
T =100 o
8:61 8:62

Moreover, we can compute ¢; using the basis functions on the reference triangle A. In
fact, we have

1= 00 (T71) inT, doo(m) =1 —&—n, (§n) €A,
¢2 = (?1,0 (\Ijil) in T7 ?1,0(57”) =1, (5777) S A7
¢3 = ¢0,1 (\11_1) in T) ¢0,1(£577) = 55 (5)77) € Aa

and
Vs @i = IO Ve n6i- (2.5.6)

For instance let us consider
a(u,v) = (Vu, Vo), u,v € H3(Q).

On the evaluation of a(¢;, ¢;) we do not need to know explicitly ¢; and ¢; as functions on
the triangles of Ty. In fact, we have

a(¢ia¢j) = /§2v11,12¢ivx1,x2¢jdxld$2

= 3 [ Vet Varmydoda,
T

TeT
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where

/ va}1,$2 ¢ivz1,z2 ¢jd$1d$2
T

= vx1,z2¢i(qj(£7 n))vm,m(bj(\p(fv n))\J(lﬁ)\ dﬁdn

Te

= /T J(UN Ve 005 (€,m) T (¥ Ve 15(€,m)] ()| dEdn.
3

>N

In contrast to the finite difference methods, finite element discretization offers us the
possibility to use, locally, triangles of different sizes.

2. Bilinear elements for Q C IR?

Let 2 be a rectangle or an union of rectangles. Let Ry be the set {Ri,..., Ry, } of
rectangles of Q). If the conditions P;, ¢ = 0, 1, 2, 3, hold with 2; = R;, then Ry is admissible
partition of £2. We point out that this partition can be induced by the two grids {z1,} and

{25}
If homogeneous Dirichlet boundary conditions are considered in the differential problem,
then we introduce the following space of bilinear functions

o= {vh € C'Q) : vy = 0ondN
vh(:cl,:cg) = (CLO + alxl)(bo + blzCz), (ml,xg) €ER,Re Rh} .

Let vy be a function in V. In R € Ry, vy is univocally determined by the values

VE (214, 225), VE(Z1i41,T25), VA (T, T2 j+1) and vy (21,41, T2,j+1),
v (21, 02) = v (21,0, T2,5) Pi j (21, 22) + vH(T14, T2,5+1)Pi 1 (21, 72)
+ g (21,i41,22,5) i1, (21, x2) + vE (2141, T2 j41) Pit1,j+1 (21, 22),
where
q)p:Q(x17x2) = ¢q(x1)¢q(x2)ap = 271 + 17 q = .]7.7 + 17
and ¢p(z1), ¢q(x2) are the "hat” functions for z1, and x5 4, respectively.

We summarize the properties of Viy.
(a) Vg C HE(Q)
(b

(c
(d

{®i;, (i,4): (x14,22;)is an interior node} is a basis of Vy,

supp(®; ;) = QN [wi—1, zit1] X [Yj-1, Yj+1),

)
)
)
) If (x14,22,;) and (x14,22,) are vertices of the same rectangle, then supp(®;;) N
supp(®y ) # 0. Else supp(®; ;) N supp(Py,) = 0.

A rectangular partition of a domain € requires that 2 is a rectangle or an union of
rectangles. If € is a polygonal domain such that at least one side is not parallel to the
axis, then the rectangles should be replaced by parallelograms.

A collection Pp of parallelogram II; is an admissible partition of €2 if the conditions F;,
1=0,1,2,3, hold with Q; = II;. We suppose that Py has Ng interior nodes.
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We extended now the concept of bilinear function defined on a rectangle to a parallelogram.
Let 2, 232 20) and 2® be the vertices of the parallelogram IT and let ¥ be defined as

follows
U:[0,1] x[0,1] — II

We have ¥(0,0) =z, ¥(1,0) = 2z, w(0,1) = 2®, ¥(1,1) = 2O,
We define a bilinear function ¢ in II by

P(x1,22) = ¢(¥ (21, 72)),
where
o(&,m) = (a+ BE)(y + on).

Let ¢,i = 1,...,4, be the bilinear functions in II such that ¢;(z®) =1 and ¢;(z()) =0
for j # i. Then
= oo (¥7") inIL, do0(&,m) = (1= €)(1 - n),
¢10 (¥~1) inl, <751,0
1 (e
A (T

for (&,m) € [0,1] x [0,1].

We introduce now the space of the bilinear functions based on the partition Py, :

Vi = {UH € Co(ﬁ) : vg = 0on N
vy is bilinear inIl, II € Pp}.

gram.

2.5.2 Error Estimates

Let u be the solution of the variational problem (2.4.7) and let ug its Ritz-Galerkin approx-
imation given by problem (2.5.1). We study now the discretization error ey = u — ug.

Theorem 2.5.2 [Céa’s Theorem] Let V be a Hilbert space and let £ be in V'. Let u be the so-
lution of the variational problem (2.4.7) and ug be the Ritz-Galerkin solution defined by (2.5.1).
If a(.,.) is continuous and V -elliptic, then

C.
lu —ug|ly <1+ = C. dist(u, Vy,), (2.5.7)

where dist(u, V) = Uirgl"f/ |l — vp|lv-
h h
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Proof: For wy € Vg we have

lu—unllv < llu—wnlv + lwg —vallv. (2.5.8)
As
a(u,vg) = (vg),vyg € Vi, a(ug,vyg) = (vy),vg € Vi,
we get
a(u—ug,vg) =0,vyg € V.
Thus

a(wg —ug,vyg) = alwg —u,vg) + alu —ug,vy) = alwg — u,vp).
1

Let vy be defined by vy = ﬁ
WH — UH||V

(wg —ug). As a(.,.) is continuous, we deduce

a(wg —u,vg) < Cellwg — ul|g.

Otherwise, we also have

WH — Uy 1

alwg — um, a(wg —ug,wyg —up) > Cellwyg —upl|,

lwr —upllv” wr —unl
because a(.,.) is V-elliptic. This last inequality enable us to get the upper bound

C
lwr = wrllv < Zllu = wrllv. (2.5.9)
e

Finally, from (2.5.8) and (2.5.9), we obtain (2.5.7).
[

Error estimates for piecewise linear finite element solution: one dimensional case
We apply Céa’s Theorem to establish an upper bound for the error of the Ritz-Galerkin
solution defined in Example 26. We have

dist(u, Vi) < [lu = urll g (ap):

where u; represents the piecewise linear interpolator of u. If u € C?(a,b), then

h2
max  (z — @) (w1 — 2) [0 loo = —Z= [0 |oos @ € s, wia].

a:E[xi,a:H_l} 8

DN | =

u(e) = ur(z)| <

The last estimate does not allow us to establish an estimate for dist(u,V}). In order to get an
estimate for [lu — us|| g1 (4,5 we study [[(u — ur)'|£2(a,p)- We have

b
M=) 22y = / (u—ur)(z) da

n—1

— 2/7 (u—ug) () dx (2.5.10)

j 0

N — it / (& dz,
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where x = z; + &hjq1, and v(§) = (u —ur)(xj + Ehjtq).
We prove now that

1 1
| veras< [ viopae (2.5.11)
0 0

holds. In order to prove this inequality, we point out that v(z) = u(z) —us(z),z € [a,b], satisfies

y
Vo) = [ v (2.5.12)
"
where 7 € (a,b) is such that v'(n) = 0. The representation (2.5.12) leads to

' ()| < |y — > ( /0 1v”<y>2dy>; ,

which allow us to conclude (2.5.10).
Combining (2.5.10) and (2.5.11) we get

1 1
l(u—ur)|32 = —/ V(€)% de
= 1 Jo
- 2 A " 2
= Zth/ (u—wup)"(x)*dz
j=1 s
< Bl

where h = max; h;.

From the Poincaré-Friedrichs inequality we conclude that

h
lw = wrll gy @y < S llu"llz,
and then, applying Céa’s Theorem, we obtain the error estimate
lu—umll gy apy < Pllu”l Lz, (2.5.13)

provided that u € H?(a,b).
We proved the following convergence result:

Theorem 2.5.3 Let up be the piecewise linear finite element solution defined by (2.5.3) and
(2.5.4), where 0 < apg < p < ay, q > 0. Then the error u — uy, satisfies (2.5.13) provided that
u € H?(a,b) N Hi(a,b).

For the particular case p =1,¢ = 0, it can be shown that
lw — up| 2 < Ch2|u”|| 2. (2.5.14)
In fact, let w be the solution of the auxiliary problem

—w” = u —upin (0,1), w(0) = w(1) =0.
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We have )
||u—uH||L2 = (u—up,u—up)

= (u—up,—w")
1
= / (u —up)'w' dz
0
= CL(U — Uh, w)

= a(u—up,w—v),Yv eV,

IN

lv = unl g @ llw = 0l g 0,p) V0 € Vi

Thus

o = oll

b
lu — wnll g2 < |lu— unlh “Y vy € Vi,

[[w”[| 2

If we consider v = wy, as the piecewise linear finite element solution we have
lw = whhll g (apy < hllw”| L2
RN HY (a,b) = L%

which implies

[ = unllg> < hllu = unl g3 o)

We finally conclude (2.5.41) using the estimate

lu = unl g (@) < Chllu"| 2

Error estimates for piecewise linear finite element solution: two dimensional case
Let us consider the Poisson equation defined on the unitary square Q = (0,1) x (0,1) with
homogeneous Dirichlet boundary condition. We recall that the weak formulation of this problem
is
findu € H}(Q) : a(u,v) = £(v), Vv € H} (),

2.5.15
a(w,v) = /QVw.Vv dz, w,v € HY(Q), L(v) = /va de,v € HH(Q). ( )

In order to construct the finite element approximation we define the finite element solution, we
triangulate the the domain €2 considering the rectangular grid {(z14,22;), 4,7 =0,..., N} with
1‘170 =T2,0 = 0, 1‘171\7 = T2, N = 1, 1‘171' — 1‘271'_1 = 1‘27]' — .%'Q,j_l = h(see Figure 9).
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Kz n
X1,i,X2,j
(Xin.x2i01) (X1,i,X2j+1)
2
3 1
N (X1i+1,X24)
Hap ! i
Han >
g Ko Kin
(X1,i, X2y (X141, X 2j1)

Figure 9: Triangulation induced by a rectangular grid.

For each (x1,,x2,;) in £ we associate a basis function ¢;; defined by

( T1— X1 T2 — Xy
1-— = — = (z1,22) €1,
h )
X9 — XI9. 4
1-— u, (wl,xg) € 2,
h
X1 — T14
1-— g, (wl,xg) € 3,
h
ii\L1,T == X1 — T14 X9 — X9 4
¢Z]( 1 2) 1+ 1 1,4 2 2,]7 (1’1,%‘2) 64,
h h
X9 — XI9. 4
1+ %, (fL‘1,fL‘2) < 5,
X1 — T14
- %7 (fL’l,Z’Q) € 67
0 otherwise,

(see Figure 9).
For Vi = L{¢ij,i,7 =1,..., N — 1} we defined the Ritz-Galerkin solution

findug € Vi : a(ug,vy) = (vy), Yoy € Vi,

(2.5.16)
a(wg,vg) = / Vwg. Nvg dz, wig,vg € Vi, {( / fogdr,vg € V.

According to Céa’s Lemma
lu = vl gy < llu = urll g q), (2.5.17)

where u; denotes the continuous piecewise linear interpolant of the function u on the set Q given
by

N—
1(x1,22) Z u(x1,4, v2,5)ij (w1, 22), (21,22) € Q.
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We estimate in what follows

0 0
lu — u[|12r{3(g) = |el|§{é Z </ (&Z) dx +/T <8—Z)2d$> . (2.5.18)

Let us suppose that
T={(z1,22) 215 <21 < T1441,%2 < T2 < Tojp1+ 21, — 1}

and we define the transformation from the reference triangle A = {({,7) : 0 < ¢ <1,0<n <
1—¢}on T by
T :CCLZ‘—I—fh, Tg = X2 +77h, 0< f,?’] <1.

Thus
86] 2 2
(52) o= [ 15 +0(0,0) ded
Lorl=€ 9q L aa
do|* dnd
/0 [ g - ), g ot dnee
1 1— ot
— (o, dodnd
-/ /0 / )~ G o) dodnis
b i
+// / — % 5.0)) dof2dnde
] (Gelom = 5e(0.0)) oy
1 1— 562A Ui 62A
= (0, d@da—i—// (o, p)dodp|>déd
1— 13 62A
<2 / / / / (0,m)|*d0 dodnd§
o Jo ‘352 F
1 pl-¢ 824, 2
+2/ / // (o, p)|*dpdodndé
o Jo ’8 no§ )
1 1 8 i 0 .
<2 dfd +2/ / o, dod
| [ G ks (oo
_ 1,541 2,541 8 u 9 9 T1,i+1 2,541 9 9
_2/ / 5 d:c+2/ / 8x28x1|(h)h da.
Therefore 5 o2
61 5 T1,i+1 /$2]+1 U
— d < 2h ——1°)dx. 2.5.1
Similarly
861 9 Z1,i4+1 x2y+1 8% 5
— ) dx <2h — % )dx. 2.5.20
/T(axz / / 8902 ’89018:62‘ > (L‘ ( )
Substituting (2.5.19) and (2.5.20) into (2.5.18) we obtain
0%u 0%u Pu  ,0%u
2 < 9p2 07U 9 2 2072\ oo 5
fu =gy o) < 20 /Q(ax%' e (2.521)

We proved the next result:
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Theorem 2.5.4 Let u be the weak solution of the Poisson equation with homogeneous Dirichlet
boundary condition defined by (2.5.15) and let ug be the piecewise linear finite element solution

defined by (2.5.16). Suppose that u € H*(Q) N H(Q), then
u = wrl ) < V2hlul g2 (). (2.5.22)
[

Since u € H(Q) and uy € HE(Q2), by the Poincaré-Friedrichs inequality we have

1
o wrlaggy < §lu = sl (2.5.23)
which implies
)
||u—u1\|§{é(g) < ZHu_uIH?{(}(Q)' (2.5.24)
Taking into account the estimates (2.5.21), (2.5.24) and (2.5.17), we conclude the proof of the

next result:

Corollary 8 Let u be the weak solution of the Poisson equation with homogeneous Dirichlet
boundary condition defined by (2.5.15) and let ug be the piecewise linear finite element solution
defined by (2.5.16). If u € H*(Q) N H}(Q), then

5
= wrrll gy < \/;mumz(m. (2.5.25)
|
The error estimate (2.5.25) indicates that the error in L? norm between u and its piecewise
linear finite element solution is of the size O(h). As in one dimensional case, we prove in what

follows that in fact we have
lu —ur || 2(q) < 2h%|ulg2(q)- (2.5.26)

It is obvious that if w € H%(Q) N H(Q2), then

6 w 0%w 0*w 0w
2 _ 2 2

As w = 0 on 010, we have

9w 0? . 0w / |
o 073 Oxg q 011012 83018302 83018:62
and then

0w 0w 0w
Awll2 _ 29 2 2
Bultsg = [ (1531 + 25 at + 157

= ’wﬁ#(ﬂ)'

Given g € L*(Q2) let w, € H}(£2) be the weak solution of the boundary value problem

—Awy = g in €, (2.5.27)
wy = 0 on 0f2.
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Then wy € H3(Q) N HY(Q) and

’wg’HQ(Q) = HAngLQ(Q) = H9HL2(Q)-

Let g be in L?(Q) and let uy be the piecewise linear finite element solution introduced before.
As consequence of the Cauchy-Schwarz inequality we have

(u—um,g) <llgllp2@lle —urllLz)-

Therefore

v —unl2) = sup (u—um,g) (2.5.28)

geL2(Q) H9HL2(Q)

If we consider g fixed in L?(f2), then the weak solution w, of the differential problem (2.5.27),

is defined by
a(wg,v) = £4(v), Vv € HL (),

) (2.5.29)
a(wg,v) = /Qng.Vv dz, ly(v) = /ng dz, v € Hy(Q)

belongs to H&(Q) Let wy i be the piecewise linear finite element approximation defined by
a(wg.m,ve) = ly(vh), You € Vy. (2.5.30)
For the error wy — wy  holds the following
lwy — wg,H|g1(0) < V2h|wg| g2,

and therefore
|wg — wg,H\Hg(Q) < ﬂhfg\m(n)- (2.5.31)

As Wg. H € Vi, then
a(u —up,wgm) =0,

and we get
(U—UH,Q) :(Q,U—UH)

=Lly(u—up)

= a(wg,u — ug)

(2.5.32)
= a(u —up,wy)
= a(u — up, wy — Wy, m)
<lu-— UH|H3(Q)|wg - wg,H|H3(Q)-
Considering the estimates (2.5.22), (2.5.31), we deduce
(v —um,g) < 2h%|ul () 91l 220 (2.5.33)

Substituting (2.5.33) into the right-hand side of (2.5.28) we obtain the desired estimate
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The proof presented above is called Aubin-Nitsche duality arguments.

The piecewise linear finite element solution based on the triangulation illustrated in Figure
9 was studied. We prove in what follows that the same estimates hold for a general polygonal

domain with a more general triangulation.

Theorem 2.5.5 Let T = {(&,n) : £,n > 0,6 +n < 1}. If u € H*(T), then
ullfzery <C | D w@)?+ Y (1ID%l[72p) | » (2.5.35)
zeV(T) =2
where V(T') denotes the set of vertices of T.
Proof:

e Let us consider the bilinear form a(.,.) : H?(2) x H?(Q2) — IR defined by

a(u,v) = Z u(z)v(x) + Z (D%u, D*v) r2(7).

zeV(T) |ar|=2

As the identity operator iq : H*(T) — CY(T) is continuous, then a(.,.) is continuous.
In fact, using the continuity of the identity operator we have |w(z)| < Cllwl|g2(ry for
w = u, v, which implies

la(u, v)] < (14 3C) Jullz2@) 0]l 52 (-
The bilinear form af(.,.) is coercive, that is
a(uu) > Oy ullyary — Collulagry u € HA(D), (2.5.36)

where C7 denotes a positive constant.

In order to prove (2.5.36) we start by point out that

a(u,u) 2 Y D ulGaery = llulifpe iy = lullf -
|a|=2

Asig: HX(T) — HY(T) is compact'®, for ¢ > 0 there exists v such that '

laliFp oy < ellullfregry +Alullze)-

Then, for € fixed such that € < 1, we obtain (2.5.36) with C; =1 —e.

8 Every bounded sequence in H?() has a subsequence converging in H'(Q)

9Theorem: Let U C V C W be Banach spaces such that the operators iy : U — V iq : V — W are continuous
being the first one compact. Then, for € > 0, there exists Cc > 0 such that ||ul|v < €||lulluv + Ce|lu||w. (Lemma
6.5.18, [12]).
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o Let A: HXT) — H?*(T) be defined by Aw = a(w,.),w € H*(T). As a(.,.) satisfies
(2.5.36) and it is continuous, then A has inverse or A = 0 is eigenvalue of A4.2°
Let us suppose that A = 0 is an eigenvalue of A and let 0 # e € H?(T') be an eigenfunction.
As a(e,e) = 0 then Z e(x)> =0 and Z HDO‘eH%Q(T) = 0. From the last equality, e is
zeV(T) |a|=2
linear in 7" which leads to e = 0 on T', because e(x) = 0 for x € V(T).

As XA = 0 is not an eigenvalue of A, we conclude that A has inverse and then af(.,.) is
H?(2)-elliptic.?!

]
The previous theorem is extended in the following result for the triangle 7}, = hT.
Theorem 2.5.6 If u € H?(T},), then, for || < 2,
IDPulFag,y < C |22 S u(@)® + 042003 D% Fa i | (2.5.37)

zeV(Th) |o]=2

holds.

Proof: Let u be in H?(T},) and let us consider the transformation ¢ : T — T}, defined by
(w1, 22) = ¥(&,n) = (h&, hn) and by v(&,n) we represent u(hé, hn). We have v € H?(T) and

IDulZeg,y = |DPul? da
Th

= ldet(J )| [ 1DF uP ded
T b
= h2/h—2|ﬁyp%\2d§dn
T

W2 DP ol
From Theorem 2.5.5 we get
IDPulfary <O D0 w(@)?+ Y IDlIZa | »
zeV(T) |a|=2
and the proof of (2.5.37) is concluded because
ID*l[Z2 7y = P IDullZa .

for |a| = 2. [
The generalization of the last result for an arbitrary triangle is the aim of the next theorem.

20Theorem: Let V and U be Hilbert spaces such that id : V — U is continuous and compact. Let a(.,.) be a
continuous bilinear form such that

a(u,u) > Cillully; = Callullv,u €V,

and let A be the operator A : V — V' such that Aw = a(w,.), w € V. Then A = 0 is eigenvalue of A or
A~ € £L(V',V).(Theorem 6.5.15, [12]).

2Let A : V — V' be defined by Aw = a(w, ), w € V. If a(.,.) is continuous, symmetric, nonnegative and
A=t e £(V',V), then a(.,) is V-elliptic (Lemma6.5.2, Exercise 6.5.6 c) [12]).
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Theorem 2.5.7 Let T be a triangle with the side lengths less or equal to hpyg: and with the
interior angles greater or equal to ag > 0. For v € H*(T), and |B] < 2,

HDﬁuHLQ(T < Clan) | W2 2000 37 u(@)? + b S~ |Dul 2, : (2.5.38)
zeV(T) lor|=2

holds.

Proof: Let (M, 2® and 2 be the vertices of the triangle 7. We consider the triangle
Th,... defined as in Theorem 2.5.6 and the transformation ¢ : Ty, . — T given by

Y(E,n) = M 4 hi(x@) — 1‘(1)) + L(x@’) — x(l)).

max max

For uw € H%(T), the function v(&,7) = u(b~'(€,n)) belongs to H*(T},,,..). We also have

1Dl ) = ldet(J y/’ IDEu(y (&, n) 2 ded,
hma$
where 2 0y 0y @ 0y @0
— X €T — X €T — X €T — X
]det( ( ))’_‘( 1 )( 2 2 })lz ( 1 1 )( 2 2 )‘

max

As |det(J(¥))| €| ,k(ap)] we get

1
k(o

~—

107l gy < Crlan) 3 1D 0liEaqs,,,, -
18"1=18l

Finally, applying Theorem 2.5.6 we obtain

! _ 47
||D§ﬁ,nv‘|%2(Thmaz) < c h?nags‘ﬁl § v(x)2 + hma%:‘ﬁl § HD?J]UH%Q(T;LMM)
€V (Thpmaw) |ar|=2

We conclude the proof of (2.5.38) using the inequality

> 1D Ga, ) < Calan) Y [IDull7,

|af=2 |af=2

Theorem 2.5.7 has a central role on the establishment of an upper bound for dist(u, V},).

Theorem 2.5.8 Let Ty be an admissible triangulation of the polygonal domain Q2. We suppose
that the side lengths of all triangles of Ty is less or equal to hyq, and the interior angles of all
triangles of Ty are great or equal to ag. Let Vi be defined by

Vi = {vyg € C’O(ﬁ) cvglaa =0, v (x1,22) = a + bry + cxa, (x1,22) € T, T € Ty}
(or
Vi = {vyg € Co(ﬁ) cvpg (T, 22) = a+ bxy + cxo, (x1,22) €T, T € Ty}
), then

vlrelf Hu_UHHHS(Q < C(Oé()) maz‘u’HQ(Q

for allu € H*(Q) NV, with V = H}(Q) (or V = HY(Q)).
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Proof: Let u be in H?(2) and let u; be the interpolater defined by
xEV(TH)
where ¢, is a basis function such that ¢,(z) = 1 and ¢,(z) = 0, # z. The error function
er = u — uy belongs to H?(£)) and satisfies
dist(u, Vi) < |len || s q)-

Theorem 2.5.7 enable us to conclude that

D€l < Cloo) 32 | Ml 3 en@+hndd 32 D™l |
T€TH zeV(T) o] =2

for |8] < s. As ey = 0 at the vertices of each triangle, we finally obtain

1D en 720y < Clao)hipad®™ >~ > IDuF2(ry < Clao)hias™ulipzq)-
TeTH |a|=2

The last theorem implies
1. fors=0
Ju = urllr20) < C(a0)hias ulr2(),
2. fors=1
Ju —url|g1() < Clao) hmaz|ul a2
The following convergence result is established combining the Theorem 2.5.8 with Céa’s

Theorem.

Theorem 2.5.9 Let Ty be an admissible triangulation of the polygonal domain Q2. We suppose
that the side length of all triangles of Ty is less or equal to hpe, and the interior angles of all
triangles of Ty are great or equal to ag. Let Vi be defined by

Vi = {vg € C%Q) : vylon = 0, vy(z1,2) = a+ bxy + cx, (x1,22) € T,T € Ty}

(or
Vi = {vyg € Co(ﬁ) cvg(x1,m2) = a+ bry + cxg, (x1,20) € T, T € Ty}

Ifa(.,.): V. xV = R is a V-elliptic continuous bilinear form (V = HY(Q) or V.= H}(Q))
and £ € V', then there exist a unique weak solution u in V, a unique finite element solution uy
mn Vi, such that

a(u,v) =4(v),Yv € V,
a(ug,vy) = l(vy),Yog € V.
Moreover, if u € V N H%(Q), then
= wn s @y < C(a0)hmarlul ey, (2.5.39)

where V = HY(Q) (orV = HL(Q)).
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The convergence order with respect to the L? norm can be improved? The answer is positive
and its is based on the Aubin-Nitsche duality arguments. Let us suppose that a(.,.) is symmetric
and let w be the solution of the variational problem

a(w,v) = (u—ug,v),Yv € V. (2.5.40)
As
Ju— UHH%?(Q) = a(w,u — up)

holds, we get
Hu—uHH%Q(Q) =a(w —wy,u —ug), (2.5.41)

where wy is the piecewise linear finite element approximation for the weak solution w. In fact,
we have (2.5.41) because
0=a(u—ug,vng) = a(vg,u —umg),
holds for vy € Viz. Then, the estimate (2.5.41), is obtained taking vy = wy.
From (2.5.41) we can deduce the estimate

e = il F2(e) < Cellw = wirllis ol = wirllin o

where C, is the continuity constant of a(.,.). From the last inequality, using Theorem 2.5.9, we

get
lw — w |

Q
LC (@) hmac Ul 520

[u—unllr2@) < Ce
Ju— uHHL2(Q)

(2.5.42)
0| g2 (0)

<C.h? — 0
lu — UH||L2(Q)

mazx ‘u’HQ(Q)

If we suppose that, for each f € L?(f2), the variational problem has a solution u in H?(2) NV
such that |u|g2 < [|fllz2(q), we have

[w|g20) < Cllu —unlL2@)-

From (2.5.42) we obtain the second convergence order for the piecewise linear finite element

solution

v —uml2@) < C(O‘)h%wtz‘u’HQ(Q)'

The finite element problem is solved considering a fixed partition of the domain 2. However
we should know that the decreasing of the diameter of the finite elements implies an decreasing
on the error of the finite element solution. For the piecewise linear finite element solution,
the estimates established until now depend on the smaller interior angle of the triangles of the
admissible triangulation 7z. In order to avoid such dependence, the triangulations should be
carefully constructed.

Let hr be the longest side of T' € Ty, then

himaz = max{hp,T € Ty}
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is the longest side length which occurs in Ty for H € A. By pr we denote the radius of the
inscribed circle in T € Tg. The ratio hp/pr tends to infinity exactly when the smallest interior

angle tends to zero. If
hr

max —
TeTu pPT

is bounded for a family of triangulations then we call the family quasi-uniform. Otherwise, if
the family satisfies the stronger requirement

hmax

—————— < Const,
miNTe7y PT

then the family is said uniform.

For quasi-uniform triangulations we can improve the quality of the estimates for the piecewise
linear finite element solution obtained before. For instance, if we consider Theorem 2.5.9 for a
family of quasi-uniform triangulations, then there exists a positive constant such that

[lu— UHHHl(Q) < Chmam’u‘H%Q)
Moreover, by the Aubin-Nitsche duality arguments, we also have
lu — up||2i) < CR?|ulg (o)

2.5.3 A Neumann Problem

ou
Let us consider now the Poisson problem with the Neumann boundary condition 5, —gon
U

99, where  is the unitary square of IR2. The weak solution of this problem is defined by

findu € H'(Q) : a(u,v) = £(v), Yo € H(Q),

(2.5.43)
a(w,v) = /VwVvdx L(v /fvdx—i—/ guds,w,v € HY(Q).
o0

The bilinear form a(.,.) is not H'(Q)-elliptic. In order to define a variational problem with a
unique solution, we consider the Friedrichs inequality

H’U—UHH1 <C]v]H1(Q) veHl(Q)

for v = | q) / x)dx. If V is defined by

V={veH(Q): / vdr = 0}.
Q
Then, the bilinear form af(.,.) is V-elliptic. In fact,
a(v,v) = |v|g) = Cellvllg (), v € V-

Consequently, the variational problem

findu € V : a(u,v) =L(v), Vv €V, (2.5.44)
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has a unique solution.
Let Ty be an admissible triangulation for €2. Let Vi be the space of piecewise linear functions

induced by Tz. In this space we consider the subset of functions such that | vgdzr = 0, that is
Q

Vi ={vg € Co(ﬁ) cvg(x,y) = a+ by + cxa, (v1,22) € T,T € ’TH,/ vy dx = 0}.
Q

Let up be the finite element approximation for the solution of the Poisson equation with Neu-
mann boundary condition. This solution is unique and the error u — uy satisfies (2.5.39).

2.5.4 Superapproximation in Mesh-Dependent Norms

In this section we establish that the error of the piecewise linear finite element solution is an
O(h?

2 o) When a certain mesh-dependent norm is consider.

Let ug be the piecewise linear finite element solution defined by (2.5.15) when the triangula-
tion T plotted in Figure 9 is considered. The triangulation can be seen induced by the uniform
partition in both axis with step size h. As ug admits the representation

N—
a(xy,x2) Z 1(T14,22,5)¢ij (21, 72)

the node values u; j = up (21, x2;) are computed solving the linear system

AHUZ] f2j7 7.7_1 N_l’
(2.5.45)
u;j=0,i=0Vi=NVj=0Vj=N,
where

1

fi= e
J |supp(ij;)| supp(¢ij)

The linear system (2.5.45) is analogous to the one considered in section 2.2.6. Nevertheless,
here the second member is f” while, in the system considered before, the second member was

f(x14,22,5).
As for the truncation error
I TH |- < CR?,

holds, provided that u € C*(Q), we conclude that
lu = unlly < CH?|lullca g
that is,
IRy — Ryl < CRlulln g,

where ||.||; is defined by (2.2.33). We proved that with respect to this discrete version of the
H'(2)-norm, the piecewise liner finite element solution is second order convergent.
Finally we point out that similar results can be obtained if nonuniform meshes are considered.
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2.6 The Ritz-Galerkin Method for Time-Dependent PDEs
2.6.1 The RG Solution

In what follows we introduce the Ritz-Galerkin approximation for the solution of the problem

ou  O*u

o = ooz T4 nla.b) x (0.7],

u(z,0) = ug(z),z € (a,b), (2.6.1)

u(a,t) = u(b,t) =0,t € (0,7],

where the reaction term f can be x and ¢t dependent. In order to do that we define the weak
formulation of the IBVP (2.6.1) and we approximate this problem by a new variational problem
on a finite dimensional space with respect to the space variable. An ordinary differential system
is deduced whose solution is called Ritz-Galerkin solution.

The Weak Solution

Let us consider v € C§°(a,b). From the PDEs of the IBVP (2.6.1) we get

bau b
—vdx:—/ 8—v'dm+/ fodz,Yv € C5°(a,b).
a € a

We introduce the problem

findu € L*(0,T, H} (a,b)) : % € L*(0,T, L*(a,b)),u(z,0) = ug(z), z € (a,b),
(B2 )+ afult), ) = (/,v), Yo € HY(0,a), (262

b
a(w,v) = / w'v' da,w,v € H}(a,b).

By L?(0,T, H}(a,b)) we denote the space of functions v(z,t) such that, for each ¢t € (0,7),
b

v(.,t) € Hi(a,b), that is v(t) € H}(a,b), and / Hv(s)”%l(a p) ds < oo.

The solution of the variational IVP (2.6.2) is called weak solution of the IBVP (2.6.1). It is
clear that if u is a classical solution of the BVP (2.6.1), then u is also a weak solution. Otherwise,
if u is a weak solution and it is smooth enough, then, from (2.6.2), we get

au 82u [e%)
(5 ~ 752 — J+v) = 0,Yv € C§°(a.b).
Consequently,
ou  0%u
o o 170
ou  0%u

in L?(a,b). If 5 9.2 is continuous, the last equality holds in (a, b).
x

Let us consider, in the variational equation, v = u(t). Then we get

%%MW+MMWU@F#ﬁMm-
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As
u b u
Goutt) = g, [(Go2 o> o

and
(f,u(®) < 1 fllz2llu(®)llze < - ngHm + € |ull7,

we establish the differential inequality

d 4
GO + (e = 20 < 511 (26,3

which can be rewritten in the equivalent form

d ( 22 1 [t —2¢2)
ﬁ@wmﬂ“” -ﬁﬂe““ 111172 ds

4 52 1 L4 52
Consequently, Hu(t)Hize((b—a)2 20 _ ﬁ/ NCEEE )S||f||%2 ds decreases in time. Due to
€

this fact we deduce the following upper bound

t

—(—4 92yt 1 4 o2y (ey
Hu(t)”%2 <e ((b—a,)Q ) ||UOH%2+@ i 6((b—a)2 €*)(s—1)

1 £1175 ds, t > 0. (2.6.4)

If, in (2.6.4), we fix € such that ﬁ —2¢% > 0, we conclude the proof of the following result:

Theorem 2.6.1 The variational problem (2.6.2) has at most one solution which satisfies (2.6.4).
[

The estimate (2.6.4) can be modified in order to get some information for the behaviour of

the Ha—z(t)H 2. In fact, from the variational problem we obtain

au 1 1
S lulozs + 5 [ 154N ds < 311 + HuO I (26.5)
which leads to

SRl +2 [ 15EG ) <ol +2 [ 1G5 e ds 171 (269

From last inequality we get

dt( (@)l +2/ 15 ()22 ds) —/Ote—sufyy; ds) <0. (2.6.7)

From (2.6.7) we easily conclude the following result:

Theorem 2.6.2 There exists at most one solution of the variational problem (2.6.2) such that

t au t s
meﬂﬂéhﬁﬂ@®SMW@+AW’W%%JGMH (2.6.8)
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Comparing the estimates (2.6.4), (2.6.8), from the second one we conclude that

Eou, o
| 155 s

is bounded in bounded time intervals while, from the first one, we only obtain information on
the behaviour of

()17
If we have not reaction term, then ||u(t)| 2 — 0,t — oo. This asymptotic behaviour is deduced
from (2.6.4) provided that €* <

(b—a)*
Theorem 2.6.2 enable us to conclude the stability of the weak solution of the initial boundary

value problem (2.6.1) with respect to perturbations of the initial condition. In fact, if v and u
are weak solutions of the IBVP (2.6.1), then w = u — @ is a weak solution of this IBVP with
f =0 and with the initial condition uy — @g. Then

t ow .
o) +2 | 152N ds = uo ozt € .71, (2.69)
holds. Consequently
lw()[172 < lluo — ol 72, t € [0, T,
and

t ow _
| 15 ds < o= ol € 0.7

Considering the estimate (2.6.4) we also have

_ 2
w(t)|| g2 < e e |lug — dio]| 2 — 0,¢ — 00

The RG Solution

Let Vi be a subspace of H}(a,b) with dimVy = Np. Let ug be defined in [a,b] x [0, 7],
such that, for each t € [0,T], ug(.,t) € Vg, and

ougy

(S vm) + alun(t),0n) = (fron), You € Vi, (2.6.10)

and

up (0) = wo,H, (2.6.11)

where ug g € Vi is an approximation for ug. The solution of the variational problem (2.6.10),
(2.6.11) is called the Ritz-Galerkin approximation for the solution of the IBVP (2.6.1).

As in the Ritz-Galerkin method, the RG solution is computed considering in Vi a basis. Let
{¢i,i =1,...,Ng} be such basis. Then

Np,
ug(x,t) = Zaj(t)¢j(x),x € [a,b],t >0,
j=1
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where the coefficients satisfy

Za ¢Z)¢] +Zaz ¢Za¢]) (f’¢j)’j:1)"')Nha

which can be rewritten in equivalent form

(63, )] () + [a(i, ¢5)]ax(t) = F, t € (0,77, (2.6.12)

where a(t) = (a;(t)) and F; = (f, ¢;). The initial condition for the ordinary differential system
(2.6.12) is obtained from the initial condition

uo, i (z Zaj x),z € [a,b].

For the particular case of the finite element method, the linear system to be solved for
the computation of the components of the RG solution is characterized by sparse matrices.
Moreover, the solution of the ordinary differential system is the vector of the finite element
solution in the nodes of the partition. In fact, let {z;,z0 = a,2n,—1 = b,2j41 — 2; = h;} be a
partition of [a,b] and let {¢;} be a basis of Vi such that ¢;(z;) = d;;. Then

Np,
t) => un(w;,t)¢;(z),x € [a,b],t >0,
j=1

where the coefficients up(x;,t),5 =1,..., Ny, are defined by the linear system (2.6.12).
Let eg(t) = u(t) — ug(t) be the error of the RG solution ug(t),t € [0,T]. This error is
solution of the variational problem

8eH

{ (o) + alen (t), vm) = 0, Vo € Vi, (26.13)
er(0) = up — uo H-

In what follows we establish an estimate for the solution of the initial value problem (2.6.13)

with respect to the norm ||.||z2. In order to do that, we introduce the auxiliary function @z (t)
defined by

a(ap(t),vm) = _(%,UH) + (f,vm), Yo € V. (2.6.14)
We split the error e (t)
en(t) = p(t) +0(t), (2.6.15)

where
p(t) = u(t) —un(t), O(t) = ar(t) — un ().

An estimate for ey (t) is obtained estimating separately 6(t) and p(t).
As the error p(t) can be estimated from the results for the time independent Ritz-Galerkim
solution, an estimate for the error e (t) is obtained estimating 6(¢). In the estimation procedure

o1
arises a—tH which is solution of the variational equation
ot H 82u 8f

Q(W,UH) = _(W’UH) + (E’UH)’ Yog € Vg. (2.6.16)
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Its existence depends on the regularity of the weak solution u, more precisely, on the existence

2
0
of the derivatives 2—2 € L*(a,b), g—{ € L*(a,b). Under these assumptions, % satisfies
06 ou _
(5 vm) +al0(t),ve) = (fom) = (50 vn) — ali@n(t), o).
ot ot
Considering that @ is solution of (2.6.14), we obtain
00 ou  Oupy
(00 o) - alb(1), o) = (o = 2L
which is equivalent to
06 0
(G vm) + a0, vrr) = =5, vn), v € Vi (2.6.17)

0 0
As estimate for 2 can be established noting that ﬂ satisfies (2.6.16) and it is the Ritz-
Galerkin solution which approximates the solution of t e variational problem

ou 0%u of
a(avv) - _(va) + ( 8t

Let us consider, in (2.6.17), vy = 6(t). As

v), Yo € Hj(a,b). (2.6.18)

0210012 = (5706,

we obtain

100100012 + (00, 06) = (52 0(0)).

By the Poincaré-Friedrichs inequality we deduce the following differential inequality

d 2 dp
— |6t —||0(t <||==1lze. 2.6.1
GOl + =002z < 57 s (2.6.19)
which is equivalent to
d 2 ¢ t —2 s ap
— [ et-a)2 — (b—a)?”|| = <0. 2.6.2
i (T 1000 - [ w521 L aas) <0 (2.6:20)
The next inequality
__2 t s
16(t)] 12 < e T-a7" (/ e H HL2 ds +16(0 )Hm) (2.6.21)
0

_2 t _2 .9
is easily deduced from (2.6.20) because e(b—a>2tH«9(t)HL2 - / e(b—a)QsHa—fHLg ds is not increasing
0
function.

Taking into account, in the error decomposition (2.6.15), the estimate (2.6.21), we finally
obtain

2 t_2 .9
lu(t) = wp ()2 < |lp®)|| 2 + e (b_a)zt</0 e-a)? Ha_I:HLQ ds+H0(0)HL2>- (2.6.22)

We proved the next result:
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Theorem 2.6.3 Let u(t) be the weak solution of the IBVP (2.6.1) defined by (2.6.2) and

6
let ug(t) be its Ritz-Galerkin approzimation defined by (2.6.10), (2.6.11). If — € L*(a,b),
% € L*(a,b), then for eg(t),t € [0,T], holds (2.6.22), where 0(t) = g (t) — uH(t),p(t) =

u—ug(t) and ug(t) is defined by (2.6.14).

We remak that 0(0) = @ (0) — uo i, where @y (0) satisfies

ou

(E(O)WH) + (f(0),vm), Vo € Vg.

a(&H(O),vH) = —

If we consider ug g = @y (0) then #(0) = 0. Otherwise this quantity should be estimated.
Let us particularize now the previous result for the piecewise linear finite element method.
In this case, using the Aubin-Nitsche duality arguments, it can be shown that

o)l 22 < CR*[u(t)] 120 ) (2.6.23)
provided that u(t) € H*(a,b). Analogously, if W( ) € L*(a,b) and E(t) € H*(a,b) then
ap ou
151l < ChQIEIHz(a,b). (2.6.24)

Considering the estimates (2.6.23), (2.6.24) in Theorem 2.6.3 we conclude for the picewise linear
RG solution ug(t) the following estimate

6) — Ol < CH (Ol + [ 1t o d5). £ € 0.7}

A General Parabolic Problem

Let Q be a bounded open set of IR™ with boundary 9f2 and let T > 0. We introduce in what
follows the weak solution and the Ritz-Galerkin solution for the following IBVP

= ou
Zax ”6352 Zb - —cu+ fem Qx (0,77,

u(x,0) = ug(z),x € Q, (26.25)

u(z,t) =0,z € 09, t € (0,7,

where a;; = aj;. We suppose that the coefficient functions are bounded in Q x [0,7] and ¢,b
satisfy

>0,V Q vt > 0. 2.6.26
2.16@ ve ( )

1=

We also assume that there exists a positive constant ag such that

'aiz)€ > apll€]|?, V€ € R™,Va € Q,Vt > 0. (2.6.27)
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The Weak Solution
By L?(0,T, H}(2)) we denote the space of functions v defined in [0,7] x € such that, for
T

€ (0,7], v(t) € H(Q) and / lv(s )HHl ds < 0o. Let ¢ € C§°(Q2). From the PDEs of the
0
IBVP we easily obtain

ou - ou 0¢
(E,¢)+i;/ Uﬁxl@x]d +Z/ 5 ¢dx+/cu¢dx_/f¢dx

Then

<%?”+”W®ﬂ0=ﬁw>Wefﬁme>0mmw:%, (2.6.28)
where
a(.,.) : Hy(Q) x Hy(2) — R
_ow Ov ~ [, Ow . (2.6.29)
a(w,v) ]Zl/ a”(‘?xj o dm—l—izl/ﬂbzaxi /chvd:c, w,v € Hy(Q).

The weak solution of the IBVP (2.6.25) is the function u € L?(0, T, H}(£2)) such that % € L*(0,T, L*(Q))
and u satisfies (2.6.28). It is easy to show that if u is solution of the IVBP (2.6.28), then u is
weak solution of this problem. Otherwise, if u is a weak solution of the IBVP (2.6.28) and it is
smooth enough, then wu is also solution of the IBVP (2.6.28).
We study in what follows the behabiour of the weak solution. Let us consider, in (2.6.28),
v = u(t). Taking into account the assumptions (2.6.27) and (2.6.26) for the coefficient functions
we have

a(u(t),u(t)) > ozo/QVu(t)2 dm+2/big;u(t)+cu2d:c

= VUl + [ (e 53 G
O

Considering now the Poincaré - Friedrichs inequality we deduce

Y

a(u(t),u(t)) > C|lu(t)|3.. (2.6.30)
Combining (2.6.28), for v = u(t), with (2.6.30) the following inequality
1d 1
Sl + (€ = ) < 15112, (2631)

can be established for an arbitrary nonzero constant e.
Integrating the differential inequality (2.6.31) we finally obtain

— —e? ¢ e)(s— 1
Ju(t)[2: <&@ me;+£ O |34 ds. (2.6.32)

Theorem 2.6.4 Under the assumptions (2.6.27), (2.6.26), if the variational problem (2.6.28)
0
has a solution uw € L?(0,T, H}(Q))such that 6_7: € L*(), then u is unique. Moreover, such

solution satisfies (2.6.32) and it is stable with respect to perturbations of the initial condition.
|
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The estimate (2.6.32) gives information on the behaviour of u. Nevertheless, we can establish
a new estimate which allow us to get some information on the gradient of u. It is easy to prove
that

d t
G (@) + 200 [ [19u(s)12 d9) < 1112 + ) .

Then we also have

d t t
(1O + 200 [ V()i ds) < [l + 200 [ V(o) ds + 113

which implies
t ¢
) + 200 [ [Vu(e)ads < ol + [ I fRads @2039)

The RG Solution

Let us consider (2.6.28) with H{(€2) replaced by Vi C H}(Q) with dimVy < oo. The RG
solution ug is such that, for each ¢ € [0, T], ug(t) € Vg and
8uH

(a—)UH) +CL(UH(t),UH) = (f’UH)’ VUH € VHa vt > 0,
t (2.6.34)

up (0) = uo,H,

where up g € Vg is an approximation for ug.
We remark that the qualitative properties of the weak solution can be considered for the RG

solution. For instance, it is easy to prove the following

t
lurr ()]l 2 < e lum (0)] 2 +/ 0 fll 2 ds, t > 0.
0

Similarly, we also have

t t
lur (I3 + 200 / IVus(s)3a ds < e lurr(0)][32 + / ) 122 ds. (2.6.35)
0 0

The RG solution is easily computed if we fix in Vi a basis. In fact, if {¢;,i =1,..., N} is
a basis of Vi, then for the coefficients «;(t),i = 1,..., Ny, such that

wp(w,t) =Y ai(t)di(x),
i
we obtain the ordinary differential system

[(¢i, 95)] (t) + [a(ei, ¢j)]a(t) = F, t € (0,T). (2.6.36)

Let ey (t) = u(t) — um(t) be the error for the RG approximation. The study of this error
follows the procedures used for the one-dimensional introductory example.
Let g (t) € Vi be defined by

ou

i (t), ) = (foom) — (5

2 o), vi € Vi (2.6.37)
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Under the assumptions for the coefficient functions, a(.,.) is continuous, H{(Q2)-elliptic and the
functional

tom) = (f,om) — (50,

is continuous. Then, by the Lax-Milgram Lemma, we conclude the existence of uy(t) € V.

vi),vg € Vi,

2
Furthermore, if 6f 88152 € L*(Q2), then there also exists the solution of the new problem
Oty _of ou?
G(W(t)aUH) = (E,UH) - (W,UH),UH € Vy. (2.6.38)

As the error ey can be decomposed as the sum between p(t) = u(t) — ay(t) and 0(t) =
g (t) —ug(t), an estimate for ey is obtained estimating 6(¢) and p(t). As up(t) is the Ritz-
Galerkin approximation for the solution of the variational problem

ou
a(w,0) = ~(50,0) + (f,0),0 € HY(®)
then the estimates for p(t) are obtained by using this fact. For the term 6(¢) it can be shown
the following inequality

B ;)
108) 2 < e CH|0(0)]| 2 +/ A tHa—me ds, (2.6.39)

0
because % € L*(Q) and

2. 00) + a(0(0) 000)) = ~(22.0(1)).

Considering now the decomposition of the error ef;, we obtain

lurs (8) = ()l 2 < llp(®) ]2 + e~ N10(0) | 2 +/ it H HL2 ds. (2.6.40)

In what concerns the term [|#(0)| ;2 we remark that using the definition of 6(t), we have 0(0) =
U (0) —up . If we choose, as in the introductory example, satisfying uo g = @ (0) where iy (0)

that is
ou

(E(O)’UH) + (f(0),vm), Yo € Va, (2.6.41)

a(uo,H,vH) = —

then
10(0)]|z2 = 0. (2.6.42)

We proved the following:

Theorem 2.6.5 Let u(t) be the weak solution of the IBVP (2.6. 25) defined by (2.6.34) and let

up(t) be its Ritz-Galerkin approzimation defined by (2.6.34). If e L*(a,b), g—{ € L*(a,b),

then for eg(t),t € [0,T], holds (2.6.40), provided that the coeﬁficzent functzon a;j, b and ¢ satisfy
(2.6.27), (2.6.26).
[
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Let Q be a polygonal domain of IR? and let 7z be an admissible triangulation of Q. Let Vi
be the space of piecewise linear functions, induced by Tz, which are null on the boundary. Let
us suppose that the side lengths of the triangles in 7z are less or equal to h and the interior
angles of the triangles in 7y are greater or equal to By > 0. For the particular case of the heat
equation, by the Aubin-Nitsche duality arguments was shown that

lo)llzz < CH2Ju(t)] 2. (2.6.43)

provided that u(t) € H*(2) N H (), and

dp

ou
I5¢llz2 < CP% [l (2.6.44)

0
provided that X e H?(Q) N H}(Q). Considering, in (2.6.40), the estimates (2.6.43) and (2.6.44),
we conclude the following upper bound

t ou
o) = wlt)> < OF (fu(Ole + [ 15710 5)
In the following result we summarize the previous considerations:

Theorem 2.6.6 Let us suppose that Q) is a bounded open polygonal set of R? and the coefficient
functions of the IBVP (2.6.25), with n = 2, satisfy (2.6.27) and (2.6.26). For each t € (0,77,

let u(t) be solution of the variational problem

(G2 )+ alu(t),v) = (), v € H(0,0)

where a(w,v) = (Vw, Vv),w,v € H}(Q). Let Ty be an admissible triangulation for @ such that
the side lengths are less or equal to h and the interior angles are greater or equal to By > 0. Let

Vi C HY () be defined by
Vi = {UH € Co(ﬁ) cvg =0 on 09,
v (r1,yx2) = ap + a121 + agxa, (x1,22) € T, T € Ty} .
and let ug (t) be the piecewise linear finite element solution in Vi defined by

6’U,H

(W,UH) +a(ug(t),vm) = (f,vg), vag € Vi,

uH(O) = Uo,H S Vh,
where ug g is fized according (2.6.42).
0%u

ou
If — € H*(Q) N HMQ), — € L*(Q

¢ ou
) = wn(€)]2 < O (julpsoy + [ 157 iy ds). ¢ < 0.7)
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2.6.2 The Time-discrete RG Solution

Let us consider a time integration method for the ordinary differential system (2.6.36) defined
in the mesh {t,,,to = 0,tps = T, ty, — tmy—1 = At}. For instance, if we consider the implicit Euler
method, we obtain

a™ — amfl

[(¢i,¢j)]T + la(¢i, @)™ =F, m=1,....

which is equivalent to consider the previous time integration method for the RG solution. In
fact, from the last equality we have

Ny

Ny m+l _ m
i AP g ) (F i1 N
S (60 + Y alal' s 6 = (604 = L. N,
j:l j:1
which is equivalent to
um_umfl
(%,UH) + a(uP,vg) + (f,vn), Yog € Vg,m=1,..., M, (2.6.45)

where
wy (@) =) oldi(x),
i=1

is an approximation for the RG solution uy(z,t;).

Let e} = u(ty) — u}; be the error of the time-discrete RG solution u%;. This error should
converge to zero when the time stepsize converges to zero. Let us consider n = 2 and let ug(t)
be the piecewise linear finite element solution. Let us suppose that Vi is induced by a family
of triangulations Tz, H € A, where the maximum of the side lengths of all triangles in each
triangulation Ty converges to zero when H € A. The convergence

lim u(ty) — uly =0, 2.6.46
pdim ) = il (26.46)
should be verified.

Our aim in what follows is to establish the conditions which allow us to conclude (2.6.46).

We start by remarking that
) =l 2 < lultim) = () 22 + s (bon) — w3l 12, (2.6.47)

holds. As in the previous section, an estimate for |[u(t,,) — um (tm)| 12 can be easily established.
We study now ||é%}|| 2 where €}} := up(t,,) — ulfj. This error satisfies the following

em ém—l
(HTtH,vH) +a(éf,ve) = (T, vm),Yog € Vg,m=1,..., M. (2.6.48)
where At 52
t 0“ug
= 7w(t*),t* € (tm-1,tm)-

Taking, in (2.6.48), vy = €%}, we obtain

€32, + Ata(e, &) = (&5, emY) + AUTE, ép).



Computational Mathematics J.A.Ferreira 136

Thus
€717 + Ata(eFr, e) < lefill r2llef; e + ALITH || 2 l1€% | 2
As

a(éf, éf) > ao||VeR||7. > ClleR 7.,

we also have
132 (1 + CAY) < €3I + AT g2y m = 1,..... (2.6.49)

Inequality (2.6.49) implies that

m
R 1 |
IeBllze < A0 D gagmai I Thllze m =1, (2.6.50)
j=1
which induces the upper bound
il = l<1 - ;> max ||T% | p2.m =1 (2.6.51)
HIL? =~ 1+ CAt)Y™/ j=i,.om mllL2s yeens 6.

If we assume that ug(t) has bounded second order time derivative, then, from (2.6.51), we get

lim ||&7]|,2 = 0. (2.6.52)

m—-+00

From the last convergence we finally conclude

: . m _
N hg}ll 0 00X llu(tm) — w2 =0, (2.6.53)
provided that

lim [[u(ty) — wi (tm)|| 2 = 0,Vm.
h—0

82
The smoothness assumption for the RG solution ug(t), namely that % is bounded, had

a central role in the proof of the convergence (2.6.53). In what follows we prove the same
convergence result avoiding the smoothness assumption previous considered. The procedure
that we use is an adaptation of the procedure used in the last section when |[u(t) — wg ()| 12
was estimated.

Let @%; be defined by (2.6.37) with t =t,,. As

u(tm) — up = u(tm) — afy +uy — uyy = pg + 07, (2.6.54)

an estimate for e7; is obtained estimating separately p%; and 7. The term pj* is the error of the
Ritz-Galerkin solution %@ which approximates the weak solution u(t,,) € Hg(Q). As this error
was previously estimated, we only need to estimate 07;. For this last term it is easy to show that

~m 9 m
(D103, 0%) + al63}, 037) = (Dt — = (tw). 03) (2.6.55)

holds, where D_; denotes the backward finite difference operator. Manipulating the expressions

in (2.6.55), we deduce

_ m  Ou
1051122 (1 + CAL) < (|07 |22 + At Dy o7 tm)llzz, (2.6.56)
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which implies

1 0 = 1
—_ A ,
j:

m ou >
108" |2 < |57 () = Dosiif 2. (26.57)

As
ou 1 [Y 0%
Dsulty) = 5t~ 57 | GOt
-1

tj
that is

ou ti 0%
ID-ults) = Grleles < [ 15 (6)lzeds,
ti—1

from (2.6.54) and (2.6.57), we obtain

m m 1
|ufy — utm)llzz < [l + WHH%HH
“ 1
+Atzl (1 T CAt)m,jJrl Hth/OH(tj)HL2 (2.6.58)
J:

At m 1 b 0% p
' ; (1+ CAfym—i+1 /tj1 15z ()lz2ds.

Particularizing the previous estimate for n = 2 and for the space of piecewise linear functions
defined induced by a quasi-uniform admissible triangulation 7Tz;, we establish
; ou i 0%
ID—tpll 2 < CR*|D_yu(t;)| g2 < ChQ(’a(t)\m +/ |52 (8)]a2 d8)7
tj—1

when the heat equation is considered. Then

m 2 1 0
[uf — ultm)ll Lz < Ch7lu(tm)|g2(q) + WHHHHLQ
(D [
TOAR ) (14 CAt)m—i+1 (' gt Dluz + e 5z ()l ds) (2.6.59)

=t

S 1 i 9%u
At | Pu,
+ ;u+mwmﬂélwwwm&

which depends on the regularity of v and on the accuracy of the approximated initial condition
uo,pr- If we consider ug g = ﬂ(}{ then 0% = 0 then (2.6.59) takes the form

[u = w(tm)llr2 < CR*|ultm)|m2 (@)
“ 1 ou L 0%u
2 —_— _—
+OMI Y ey (15 O + /t 1G9 ds)

=t

U 1 i 9%
+At; (1 + CAt)m—jJrl / ||ﬁ(5)”L2d5-

tj—1




Computational Mathematics J.A.Ferreira 138

2.7 FDM for Time-Dependent PDES
2.7.1 The Method of Lines

The method of lines defines a new approach to solve PDEs where the spatial discretization
defined by finite difference operators is combined with a time integration method. In the first step
of MOL approach, an ODE is obtained. This ODE is numerically integrated using a specialized
time integration method studied before, and a fully discrete numerical approximation for the
solution of the PDEs is computed.

This approach offers a grand advantage: it allow the use highly valuable methods in the
field of numerical ODEs, some of which were presented in the first chapter. These methods can
be of practical use for solving time-dependent PDEs. Another attractive practical point is that
there exist nowadays many well developed ODES methods and for these methods sophisticated
software is freely available.

For some time dependent PDEs, if we apply a standard ODE method to the ODE problem
obtained in the first step of the MOL approach, some information of the underlying PDEs
problem might be neglected. Namely, for advection problems where the so called characteristics
can be combined with a space-time integration to obtain a more efficient numerical method.

Let us consider a time dependent PDEs defined on a space domain ). By Qg we denote,
as before, a spatial grid depending on a parameter H. Discretizing the spatial derivatives using
finite difference operators, we obtain a semi-discrete system (the spatial variable is discrete and

the time variable is continuous)

uy(t) = Fu(t,ug(t), t € (0,7,
(2.7.1)
up(0) = uo,H,

where up (t) = (ug ;(t)) € IR™, is called semi-discrete approximation for  and m is proportional
to the number of grid points in space. The discretization of the boundary conditions are supposed
to be contained in Fp. According to MOL approach, a fully discrete approximation u} =
u(x;, ty,), for the time levels ¢, = nAt,n = 1,..., is now obtained by applying some suitable

ODE method. As a standard example, we consider the §-method (1.2.3) studied in chapter 1

wi™ =+ AL((1 = 0)Fr (b, wly) + 0Fp (b1, 03 )

where u¥, = (ul;,),p = n,n + 1, denotes the vector containing the fully discrete numerical

solution at time level ¢ = ¢,,.

The properties of the semi-discrete solution wug(t) - solution of the initial value problem
(2.7.1)- have a central role on the properties fully discrete approximation. Due to this fact,
we study in what follows some spatial discretizations for the advection equation and for the
diffusion equation.
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2.7.2 The Spatial Discretization:Some Qualitative Properties
The scalar advection-diffusion equation with periodic boundary conditions

Ou 8u 0%u
(2.7.2)
u(z +1,t) = u(x,t), z € R, t € [0,T],

u(@,0) = uo(a), = € IR,

where a € IR, D > 0, is an important test model for numerical schemes. It is sufficient to
consider u on the spatial interval [0, 1].
In Q = [0,1] we introduce the grid Qy = {z; = ;.1 + h,i = 1,... ,m,29 = 0,2, = 1.

On this space grid, the approximation ug (x;,t) for u(x;,t) is founded replacing, in (2.7.2), the
2

0
spatial derivatives 92’ 922 by difference operators. We obtain a ODE for ug(z;,t)
x’ Ox

xz’ Z apupg :C’H—ka

which can be rewritten in the vectorial form

why (t) = Agug(t), (2.7.3)

where A is the square matrix of order m

ag aq a9 . . Qo —1

Gm—1 ao ap a2 . am—2

Ag = | am—2 am-1 ayg @ R
aj a9 as . Qm—1 ag

For example, if we discretize the first and second order spatial derivatives with the finite differ-
ence operators D. and Ds, respectively, we obtain

2D D a a D
aoz_ﬁva’l:ﬁ_ﬁva’2:07"'7am—2:07am—1 h+ﬁ

The matrix Ap is called circulant matrix. We point out that circulant matrices arise in the
discretization of periodic PDEs with constant coefficients.

We study now the stability properties of the semi-discrete approximation ug(t). In the
stability analysis we use the Fourier modes

dp(x) = 2™ | e 7.

The set {¢r, k € Z} is a orthonormal "basis” of L?(0,1) and if v € L?(0,1), then

v="Y_(v,68) bk,

keZ,

where (.,.) is the usual inner product in L?(0,1).
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By L?(Qy — {0}) we represent the space of grid functions defined on Qg — {0}, where the
discrete L? inner product

(vm,wa)p=h > vu()wn (@)
x€Q—{0}

is considered. By |.[|;2q, - {op) We denote the norm induced by the previous inner product.
Let Ry¢y, be discrete Fourier mode, that is, the restriction of the Fourier mode ¢ to the grid
Qy — {0}.

The set {Ryér,k = 1,...,m} is a orthonormal basis of L?(Qy — {0}). In fact, this space
can be identified with C" and

m m 1, L=k
(RH¢k,RH¢€)H —h Z 6271'1(@7]’»‘):)3 _ hZGQWZ(ka)]h _ th] _
j=1

Qy—{0} Jj=1 0, L #Fk

where p = e2milt=F)h

As {Ry¢p,k = 1,...,m} is a orthonormal basis of L?(Qy — {0}), if vy € L?*(Qg — {0}),
then

m

v = Z(UH, Ruoe)nRude.
=1

Moreover, a discrete version of the Parseval identity holds

HUHHi2(ﬁH_{0}) = (v, vH)n = Z (v, Rude) |-
¢

A special property of the circulant matrix A is that every discrete Fourier model Ry ¢y is
an eigenvector associated with the eigenvalue

m
)\k — § :anQﬂ-Zkzj.
Jj=1

It is easy to show that the solution of (2.7.3) admits the representation

up(t) = Z(UH(O),RH%)HG’\”RH%-
k=1

Usually we deal with circulant matrices where all A\ have a non-positive real part. In this case,

we have .
||uH(t)H%2(ﬁH7{O}) Z |(UH(O),RH¢k)H€>\kt|2
k=1
< ) l(un(0), Rudr)ul?
k=1
2
- H’U’H(O)H]}(ﬁHf{O})
Consequently,

tA |12
||6 ||L2(§H—{O}) S 1) t 2 Oa
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which shows that (2.7.3) is stable with respect to the norm ||.|| .2 (q,, —(o1)-

We rewrite the previous considerations in terms of matrices as we done in the first chapter.
Let Qg be the following matrix Qg = \/E[RKgbl Ry¢s ... Ryon] and let D be the diagonal
matrix with entries A\g. As Qg is an unitary matrix and A = @ HDQ;, we obtain

tA||2 _ tD H—1)12 _
lle HLQ(ﬁHf{O}) = ||Vue QH HLQ(ﬁHf{O}) = k:HiaX le

—ym

>\kt|.

We detail some of the previous conclusions for some particular cases of (2.7.2).
The Advection Equation:

Let us take, in (2.7.2), D = 0. We consider the forward finite difference operator D_, when
a >0 and D, when a < 0, obtaining the upwind schemes

a .
u}{(xjvt) = E(UH(xj—lat) - UH(x],t)),] = 17 oo 7m7uH(x07t) = U'H(xmvt)’ (274)
a .
u/];I(xj7t) = E(U’H(xjvt) - U’H(xj-i-l’t))v.] = 17 v ,m,UH(xm+1,t) = ’U;H(fIfl,t), (275)
respectively.

The upwind scheme (2.7.4) can be rewritten in the equivalent form (2.7.3) with

-1 0 0 . 0 0 1
1 -10 . 0 0 O

. .. .. 01 =1 0
o o . 00 1 -1
If we use the finite difference operator D, then we obtain

a .
uy(zj,t) = %(uH(xj_l,t) —ug(zj1,t), 5 =1,... . m,ug(Tms1,t) = ug(z1,t),  (2.7.6)

which induces the ODE equation u/, (t) = Agug(t) with

O -1 0 . 00 1

1 0O -1 . 00

. . . .1 0 -1
-1 0 . .01 o0
When the solution of the initial value problem is considered in (2.7.3) and Taylor’s expansion is
used, we get for the forward finite difference discretization

ou ou
E(x“t) + a’%(x’ut) - TH(xht)v
with Ty (x;,t) = O(h), while in the second case we get exactly the same expression with

Ty (z;,t) = O(h?). The term Ty is called spatial truncation error. Due to the behaviour of
the spatial truncation error, the scheme (2.7.3) obtained with D, and D = 0 is called first order
upwind scheme while the scheme obtained with D, is called second order central scheme.
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1.2 T
- uH,c(O'l)

Figure 10: (a > 0) Numerical solutions obtained with the upwind scheme (up ) and with the
central scheme (ug.c).

It can be observed by experimental results that the first order upwind scheme is not accurate
while the second order central scheme induces numerical oscillations (see Figure 10 for u(x,0) =

100 'p = 1/50). We will justify in what follows the previous qualitative behaviour. In

(sem(mx))
order to do that we use the so called modified equation.
For the upwind scheme it can be shown that Ty (x;,t) = 2a,h8 +O(h?). Such fact indicates
that the solution obtained by this scheme is closer to the solution of the modified equation
ou  odu 1 0%
s = — Zah—. 2.7.
ot +a8x 2" 9x2 2.7.7)

This explains the diffusive behaviour of the first order upwind scheme: although we are comput-
ing a solution to the advection equation, we are actually generating a solution that is close to
an advection-diffusion equation with diffusion coefficient —ah. The advection-diffusion equation

(2.7.7) is called modified equation for the first order upwind scheme

As for the second order central scheme Ty (z;,t) = —=ah?=— + O(h?), then

is the modified equation of this scheme. Thus, the solution given by this scheme is a fourth
order approximation for the solution of its modified equation. In order to justify the behaviour
of the numerical solution defined by the second order central scheme, we look to the behaviour
of the solution of the initial value problem (2.7.8) with the initial condition @(z,0) = ™%  As
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such solution is given by

ﬁ((L‘ t) _ e27rkix+akt _ e2m’k(zfa(17%7r2k2h2))
all Fourier modes move with different speeds. Consequently, the fine-tuning is lost and the
oscillations will occur.

The stability of the semi-discrete approximation depends on the eigenvalues of Ap. It is easy
to show that the matrices of the upwind and central schemes have the following eigenvalues

A = %(cos(?wkh) — 1) — i%sin(Qﬂkh),k =1,...,m,

when a > 0, and
p —i%sen(%rkh),k: —1,....m,

respectively. If a < 0, then
—a a .
A = T(cos(%rkh) -1)+ zﬁsm(%'k:h), k=1,...,m.

As the eigenvalues \; have real non-positive real part (a > 0), then e satisfies [|et4# || < 1.
Hence both schemes are stable. As the eigenvalues for the second order central scheme have null
real part then |ug(t)|| = [Jug(0)]. If we consider the upwind scheme (2.7.4) with a < 0, then
the eigenvalues would be in the right half-plan of the complex plan with real part as large as
_ﬁ’ and thus this scheme became unstable when h — 0. The eigenvalues of the second order
central scheme are in the imaginary axis.

The semi-discrete system u;(t) = Agup(t) has the solution ug(t) = e !¢y if the initial
condition is ug (0) = ¢, where Ay, is the eigenvalue of A corresponding to ¢. Component-wise
this reads .

,ap = ———ImM\.

t) _ e)\kte27rikwj _ Re)\kte27rik(a:j—ak)
27k

uH(xj,

The correspondent exact solution is given by
’U,(.%'j,t) _ e27rz‘k(a:—at)'
The first order upwind scheme has eigenvalues A, such that ReA;p < 0. This fact implies that
lug(z,t)] = [T — 0,1 — oo.
As the ReA, = 0 for the second order central scheme, in this case we have
lup(zj,t)| = 1.

The factor e’ determines the amount of numerical damping or dissipation for the k
Fourier mode. If Re\r < 0 for all & # m, then efleMt 5 0, — o0, and, consequently, the
scheme is said dissipative. Otherwise, if ReA;, = 0, then the scheme is said non-dissipative.
Obviously, the second order central scheme is non-dissipative whereas the first order upwind
scheme is dissipative. The velocity aj of the kth Fourier mode is called the numerical phase
velocity. When the phase velocity differs from a this will leads to a phase error. If they are
different from each other we have dispersion. Dispersion may give rise to oscillations.
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The first order upwind and the second order central scheme have the same velocity ai # a.
So the upwind scheme is also dispersive, but oscillations will not show up in actual calculations
because the damping factor efiert suppresses all these Fourier modes.

It is obvious that both schemes (2.7.4) and the central scheme (2.7.6) have drawbacks,
the first being too dissipative and the second one too dispersive. Increasing the order of the
discretization we can obtain semi-discrete schemes where the dispersion and the dissipation is

diminished.
The Diffusion Equation:
Considering, in (2.7.2) with a = 0, D > 0, the finite difference operator Dy we obtain
/ D .
uy(wj,t) = o5 (ur(@j-1,t) = 2up (v, t) +un(rj41,1)),5 = 1,...,m,

h? (2.7.9)

up (z0,t) = up (Tm, t), ug (Tm41,t) = up (21, 1),

which is equivalent to u/y(t) = Agum(t) with

-2 1 0 0 0 1
1 -2 1 0 0 O
D
Apg = 72 .. .. . 0 0
0o 0 .1 -2 1

1 0 0.0 1 =2

As for the advection discretizations we can look for the modified equation of the scheme

(2.7.9). As
0%u h2 0%
Dyu(zj,t) = @(%’J) t 554

the modified equation of the scheme (2.7.9) is given by

(2,8) + O(h*),

ot D@ Dh? 9*a

— = . 2.7.1
9t "9z T 12 02t (2.7.10)

Then the scheme (2.7.9) defines a fourth order approximation for the solution of the modified
equation (2.7.10). Nevertheless, this equation is unstable. In fact, if we compute the solution of

eQﬂzkm

the modified equation with initial condition @(z,0) = , we obtain

—4Dm2K2(1- LR2k2)t 2rika (2.7.11)

u(x,t) =e

1
which grows for h2k? > =. This instability is an artefact in the sense that the diffusion equation
admits solutions composed of Fourier modes

o(z,t) = p2mikz ,— Dkt

One could include another term into the modified equation, for example, leading to

ot Da%z DhZo*a  Dh* 0%

T _pZ = 2.7.12
ot 0x2 + 12 Ozt + 360 Oz6 ( )
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The scheme (2.7.9) defines a six order approximation for the solution of the stable new modified
equation (2.7.12). In this case (2.7.11) is replaced by

iz, t) = ADTR? (1 2 (122202 ) )y ok

The eigenvalues of Ay are real and negative
4D
h2’

showing the stability of the discretization. As when h — 0 maxy |\x| — oo, the semi-discrete

2D 4D
A = ﬁ(cos(%rkh) -1) = —ﬁsen(ﬂkhy €[~

0,k=1,...,m,

problem (2.7.9) is usually stiff.
The the semi-discrete solution with initial condition wg(0) = ¢y is given by

UH(CC], t) — e}\ktGQﬂ'ikm]"

while the correspondent solution of the diffusion problem admits the representation

—ADR212 I
(xj,t) — o —4Dm k t627rzk;a:].

As h — 0, \p, — —4D7n?k?, we get

_ 2,2
6)\kt e 4D7°k t’

which means that, for h small enough, uy and u have the same behaviour. However, as for fixed
h, most of the \; are not closed to their continuous counterpart. Nevertheless, this discrepancy
does not implies a wrong behaviour of the semi-discrete solution.

Higher-Order Schemes

The schemes studied for the advection equation and for the diffusion equation suffer some
pathologies. However, increasing the order of the the finite difference schemes the adverse effects
can be diminished.

Advection Equation: A general finite difference scheme for the periodic advection problem
can be rewritten as .

uy(z,t) = % Z Yeur (Tjqn,t),5 =1,...,m, (2.7.13)
k=—r
where ug(z;,t) = upg(xiym,t) to impose the periodicity condition. Replacing, in (2.7.13), ug
by the solution of the advection equation and by using Taylor’s expansion, we obtain

6
xj7 E ’Yk-u x]+k7

ou ou 1 0?
=—ag- xj, Z’Yk u(xj,t +kh8 (xj,t)+§k2h2az;( )+ .)

2

a 5 1\ 0°u
= Z'yhu xj,t) (l—l—Zk’yk) (xj,1) §h<zk:k ’yk)@(xj,t)—i—...
If we assume that

D=0, > kuw=-1,> Eyu=0..> k=0, (2.7.14)
k k

k k



Computational Mathematics J.A.Ferreira 146

then the residual error is of order g. The conditions (2.7.13), usually called order conditions,
leads to the coefficients v_, ,...,7vs. The linear system for such coefficients is characterized by a
Vandermonde type matrix which leads to v_, ,...,vs for ¢ < r+s. If ¢ = r + s then the scheme
is unique which satisfies the following result due to Iserls and Strang (1983)([17])

Theorem 2.7.1 Ifa > 0 and ¢ = 7 + s with s < r < s+ 2, then the scheme (2.7.13) is L*
stable. Otherwise (2.7.13) is unstable.

A similar result can be established for a < 0 with r = s, s + 1, s + 2.( see [18]).
For a > 0 and » = 2,s = 1, we obtain the third order upwind advection scheme

a, 1 1 1
up (2),1) = 5 (= gun(@j-2,1) + up(zj-1,t) = gun (@, t) = gun(@je, ).

For a < 0 we have
a1l

1
h(guH(% 1,t) + 3

For r = s = 2 we get the fourth order central advection scheme

_uH(xj-i-?’ t))

ug(rj,t) —ug(zj1,t) + G

uy(xj,t) =

a, 1 2 1
i (w),t) = T (=ggun(@j—a,t) + gun(zj-1,1) = Sum (e (1) + Hun (@j2,1).

Diffusion Equation:A general finite difference scheme for the periodic diffusion problem
can be rewritten as

D :
(2, t) = w2 Z Yeur (Tjyk,t), 5 =1,...,m, (2.7.15)
k=—r

where ug(z;,t) = ug(itm,t) to impose the periodicity condition. We assume that » = s and
Y—k = 7k, that is the symmetry in space. Replacing, in (2.7.15), ugy by the solution of the
diffusion equation and by using Taylor’s expansion we obtain

ou D
5 @it) =53 > k(g t)
!

0u D ou 5, 20%U
:Dw(xj,t)—ﬁg'yk(u(:cj,t)ﬂ-kh%(:c], )+ k h o 2( )+ )

0?
= _% ;fyhu(xj,t)—i—D(l— %gk%k)a Z(x], - —h2(2k4fyk> 7 (@, t) + ..

D=0, > =2 > ky=0..> k=0, (2.7.16)

then the residual error is of order g. The order conditions (2.7.16) can be satisfied for ¢ < 2s.

For instance, for s = 2 we obtain the fourth central upwind discretization
D 1
uy(wj,t) = 2 ( 12

—UH($j+2,t))-

4
sug(w),t) + gUH(ijrlat) 12

4
uH(xj,g,t) + guH(acj,l,t) — 5
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2.7.3 Convergence of the Spatial Discretization

The study of the numerical methods for ODEs was based on the concepts of stability and
consistency. For elliptic equations the same concepts were used to establish the convergence. The
main ingredients in the study of the convergence properties of the semi-discrete approximation
will be, as in the previous section for the advection equations and diffusion equations with
periodic boundary conditions, the concepts of stability and consistency.

Let A be a sequence of positive vectors converging to zero. If € is a subset of IR™ then A
is a sequence of positive vectors of IR"™ when uniform meshes are used. Thus, for H € A, the
semi-discrete solution ug(t) is solution of (2.7.1). As before, the discretization of the boundary
conditions are supposed included in Fp.

The spatial discretization error eg(t) is defined by

eH(t) = RHu(t) — uH(t)
Let Ty (t) be the spatial truncation error
Ty (t) = u'(t) — Fg(t, Rgu(t)),

which is the residual obtained substituting the solution of the PDE into the difference scheme.
A bound for | Ty (t)|| is obtained by Taylor expansion provided that the solution u is smooth
enough. The concept of consistency is introduced as before analyzing the behaviour of the
truncation error. If

[T ()|l = O(Hy

max

) for ¢ € [0, T, (2.7.17)

then the semi-discrertization is called consistent of order ¢. In (2.7.17)
Hppor = max{h;, H = (h1,...,h,) € A}.
The spatial discretization is said convergent with order p if

ler ()| = O(HP,,,) for [0,T). (2.7.18)

max

The stability concept has in the context of the semi-discretizations a convenient adaptation.
As we are dealing with the solution of an ordinary initial value problem, the semi-discretization
(2.7.1) is said stable if its solution u g (t) is stable in the sense of ordinary differential problems but
for Hypae — 0. More precisely, if ug(t) and ag(t) are solutions of (2.7.1) with initial conditions
ug(0) and g (0) such that
lim[lupr(0) — i (0) = 0,

Hmaz—0

then
lim |ug(t) —ag(t)|| =0 for [0,T].

Himaz—0

Of course that when (2.7.1) is linear, that is

FH(t,uH(t)) = AH’U,H(t) + gH(t), (2.7.19)
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where g (t) represents a discretization of a source term or arises from the discretrization of the
boundary conditions, a sufficient condition is

et || < Ke¥t, t € [0,T], (2.7.20)

where K and w are H independent. Under this sufficient condition is easy to establish an upper
bound for the error ||eg(¢)|| at leat for the linear case. In fact, from the definitions of Ty (t) and
er(t), we have

ey (t) = Apen(t) + Tu(t),

and thus .
ep(t) = et e (0) + / e(tfs)AHTH(s) ds.
0
Consequently,
t
lerr ()] < I [[llex (0)] +/O eI Ty (5) | s (2.7.21)
Applying the sufficient condition (2.7.20) in (2.7.21) the upper bound
K
ler ()]l < Ke*llen (0)]] + (e = 1) max 1 Tw ()], (2.7.22)

is easily established. This error estimate leads to the following convergence result:

Theorem 2.7.2 Consider the semi-discrete system (2.7.1) with Fy given by (2.7.19). Suppose
that the condition (2.7.20) holds and ||Ty|| < CHae for t € [0,T)], |leg(0)]| < CoHpaz, with
C,Cy H-independent. Then

CK

leg ()| < CoKe“'HY,, + 5 (et —1)HL,  te[0,T], (2.7.23)
provided that w # 0, and
llez (V)| < CoKHY,,+CKtHL ., te€][0,T], (2.7.24)
when w = 0.
|

Example 28 The first order upwind scheme (2.7.4) is convergent with order 1 for

ou L+ ou 0
T
ot ox
and it is convergent with order 2 for
ou N on 1 9%
ot “or 2" oa?
The second order central scheme (2.7.9) is convergent with order 2 for
ou _ o
ot Ox?
and it is convergent with order 6 for
g _ 0% DKo% DA
ot T ox? 12 9zt 360 026
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2.7.4 Semi-Discretization in Conservative Form

Advection Equation: Let us consider the advection-diffusion equation (2.7.2) with D =0

in the equivalent form

ou 0

o T o (a@)u(@) =0, (2.7.25)
with periodic conditions u(x £ 1,¢) = u(z,t). The velocity a(x) is assumed to be also 1-periodic
and differentiable. We say that the equation (2.7.25) is in the conservative form in the sense

that leads to .

M'(t) = % ; u(z,t)dx
Lou

= ; E(x,t)dw

= —a(Du(1,t) + a(0)u(0,1)

= 0’

that is the mass
M(t) = const, t € [0,T]. (2.7.26)

In [0,1] we introduce the uniform mesh {z;} with step size h and we define the auxiliary

h
points z;41/9 = j & 3 Further we consider the cell I; = [x;_1 /2,7 j41/2] and the cell average

1
u(xj,t) = —/ u(z,t) dx.
h Ji,
Then

d _
hau(:cj, t) = a(xjfé)u(:cjfé,t) - a(ijr%)u(ijr%,t). (2.7.27)

This equation tell us that the rate of change of mass over I; is equal to the difference in-going
and out-going fluxes over the cell boundaries.

It is natural to define a semi-discretization that mimics (2.7.27). We consider the semi-
discrete approximation defined by

uy(zj,t) = E(a(xj* )uH(xjfé,t) - a(achr%)uH(ijr%,t)) J=1,....m, (2.7.28)

1
2

where up (x s t) are approximate values at the cell boundaries that should be defined in terms
2

of neighbouring points ug (z;,t) at the grid points. We remark that (2.7.28) mimics (2.7.26). In

fact,

d m m
%hZIUH(xj’t) = ZG(SC]-,%)UH(CC]-,%J)—a(ijr%)UH(ﬂCjJr%,t)
j:

= a(x%)uH(x%,t) — a(xm+%)uH(xm+%,t)

because by periodicity we have a(x%)uH(x%,t) = a(xm+%)uH(xm+%,t).
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In what follows we consider a > 0 and up(zj41/2,t) = un(x),t) and upg(zj_y1/2,t) =
ug(rj—1,t), that is the upwing difference scheme in flux form

1 .
uy(z,t) = E(a(xj_%)uH(xj_l,t) - a(acj+%)uH(xj,t)> Jj=1....m (2.7.29)

with wg (Xm, t) = ug(xo,t).
It is easy to establish the consistency of (2.7.29). In what concerns the stability, we rewrite
(2.7.29) in equivalent form 'y (t) = Agup(t), where

—a($3/2) 0 0o . 0 CL(CCl/z)
AH _ % a(x3/2) —CL(IE5/2) 0o . 0 0
0 0 - a(xmfl/Z) —a(xl/Q)

As p1[Ag] =0 and

1
ool Al = max E( — a(@iq1y2) + alzi1)) < w,
where w is an upper bound to a’, we conclude that
le 4l <1, [l oo < € 8 >0,

Otherwise, as we also have the Holder inequality for matrices

le 4 2 < \/Het“‘HHlllemHlloo,

we deduce
e || < e2t,t > 0.

Taking into consideration the established stability inequalities, we conclude the stability of the
semi-discrete scheme (2.7.29) with respect to the norms ||.||, for p = 1,2, 00. Hence the scheme
is convergent with respect to the norm ||.||, for p = 1,2, cc.

The convergence order can be improved if we replace (2.7.29) by the new upwind scheme

1 oy »
oy~ Hatey o)
o ¥ (2.7.30)
UH(xj,t) +UH($j+1,t) .
—a(z;,1) 5 > J=1,...,m,

with ug (xm,t) = ug(xo,t) and ug(zmy1,t) = ug(r1,t).
Writing the semi-discrete scheme (2.7.30) as u/;(t) = Agum(t) it can be shown that

1
(Agv,v)y < §w||v||%, v e IR™.

Consequently,
le o < €2, ¢ >0

holds establishing the stability and the second order convergence with respect to the L?-norm
on finite intervals [0, 7).
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Diffusion Equation: Let us consider now the diffusion equation with a variable diffusion
coeflicient, a source term and Dirichlet boundary conditions

ou 0 ou
o= %(D(:c)%) +s(x,1), t> 0,z € (0,1),

w(0,t) = bo(t), u(l,t) = by(t),t >0, (2.7.31)
u(:C,O) = UO('T)’ T € (0’ 1)’

where D(xz) > Dy > 0. Discretizing the second order derivative using the conservative central

scheme we obtain
g3, 0) = o (Dl )t 341, 1) — (1)
=Dl o) (,t) = i (5-1,1)) ) + s(2;,1),
for j=1,...,m — 1, where
up (zo,t) = bo(t), up (xm,t) = b1(t),t >0,
up (i, 0) = uo(z;),i=1,...,m— 1.

This finite difference scheme is equivalent to the ODE

upy (t) = Agun(t) + gu(t),

where
ay C 0 PR 0 0
1 ci a2 ¢co . . 0 0
Adm=p T T
0 0 0 0 . cm—2 Gm-1
81 bo(t)co
S9 1 0
gn®)=1 " | *tm| .|
Sm—1 b1 (t)Cm_l
and 1
aj = —§(D(90j+1/2) + D(7;_1/9)), ¢j = D(zj11/2), 85 = s(x4,1).
Assuming smoothness of D(z) and s(x), it is easy to prove second order consistency. Further-
more, as
:U’l[AH] <0, IU’OO[AH] <0,
we have

e ||, < 1, > 0,p = 1,00,

which implies
et || < 1,t > 0.
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The previous estimate can be refined if we use energy method. For the discrete L? norm induced
by the inner product (.,.) g defined before but here for grid functions null on the boundary points,

we have
1d
thH H( )H%2 = (AHUH,UH)H
1 m—1
= 5 2 D(@jiapp)um () t)(un (j41,1) — un(z;, 1)
7j=1
1 m—2
=5 2 Djpp)un (@, ) (un (2, 1) — un(2j-1,1)
=0
m 2
- —hzD(xj_m)(p,xu,{(x],t))
j=1
2
S _DOhZ< —zUH x]7t))
As

m

2
s (8)]72 < Z( eun(wi,t))

we conclude
lug (8|2 < e P |lug| 2.

Some Remarks: For advection-diffusion equations with variable coefficients or advection-
diffusion-reaction equations with a nonlinear reaction term, the consistency it is easily verified.
Nevertheless, in what concerns the stability, even for the method (2.7.28) with

( — uH(xj_l,t) + 5UH(1‘j,t) + 2uH(xj+1,t)), ifa(xjH/Q) >0

| =

UH ( ]+1,t)

| =

5 (QUH(:cj,t) +bup(xjqi1,t) — uH(ijrg,t)), ifa(xj+1/2) <0,

for advection equation, simple estimates are not available.

Singularly perturbed problems - problems with the diffusion coefficient very small when
compared with the advection coefficient - are usually characterized by a boundary layer. If a
uniform mesh is used to solve such problems, then a very huge number of grid points should
be considered. Such approach is computationally inefficient. A remedy that can avoid the
inefficiency of the uniform meshes is to use nonuniform meshes well adapted to the layer . Such
remedy increases the difficulties on the stability analysis (see [31]).

2.7.5 Refined Global Estimates

In the previous section we studied the spatial discretizations of a diffusion equation with
Dirichlet boundary conditions. The presence of boundary can complicate the numerical treat-
ment. Asin the stationary case, if we consider Neumann boundary conditions, the discretizations
is made with a different discretization. As we saw this has an adverse effect on the global ac-
curacy. However this effect is often not as large as expected in the sense that global order of
convergence p can be greater than the order of consistency gq.
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Let us consider the linear semi-discrete system
upy (t) = Anun(t) + gu(t),

where the discretization of the boundary conditions and (or) of the source term are included
in the semi-discrete source term gg. Let us suppose that the spatial discretization is stable, for
instance [|e!4# || < Ke*! holds, and the the spatial truncation error T (t) with order ¢ admits
the representation

Ty(t) = ApT () + TP (1), (2.7.32)
where
1T @) < Chr | T ()] < Chr | TP ()] < Ch' (2.7.33)

Considering in the error equation
eu(t) = Anen(t) + Tu(t),
the representation (2.7.32) we get
¢ (t) = An(en() + T (1)) + TP ),

thus
er(t) + T (1) = Ap(en(t) + TP ) + T () + T (1), (2.7.34)

As in the proof of Theorem 2.7.2, (2.7.34) leads to

e (t) + T ()] < Ke|ler(0) + T (0)]]

K ) y (2.7.35)
Ny R | T3 () +T > 0.
o (@ 1) max 1T (s) + Ty ()¢ 2
Furthermore, if we consider in (2.7.35) the assumption (2.7.33) we establish
K
len ()] < Ch™ + Ke“!|le (0)|| + 2Ch"— (e! —1),¢ > 0. (2.7.36)
w

We proved the next refined result:

Theorem 2.7.3 Consider the linear system u'y (t) = Agup (t)+gm(t) and assume that ||e'A# || <
Ke*t t > 0. Suppose that the truncation error Ty (t) satisfies (2.7.32) and (2.7.33) and suppose

that |leg (0)|| < Ch™. Then

T wt K wt
ler (£)]] < Ch (1 + et 4+ 20 (et — 1)),t > 0. (2.7.37)
w
[
We apply the last result to the diffusion model

ou o%u
o~ Pa

u(0,t) = bo(t), %(Lt) =0,t >0, (2.7.38)

xz € (0,1),t >0,

u(z,0) = up(z), € (0,1).
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We consider in [0, 1] a uniform mesh z; = jh,j =0,...,m,z9 = 0,2, = 1 and the auxiliary
point Tpy4+1 = Ty + h for the discretization of the Neumann boundary condition. Discretizing
the second order derivative using the conservative central scheme we obtain

D
UE(xpf)==Eg(UH($j+ht)-QUH(iwt)*-UH($f4aﬂ),
for j =1,...,m, where
ug(xo,t) = bo(t), ug (Tmi1,t) = Oug(zm,t) + (1 — Oug(zm—_1,t), 0 € {0,1}.

0
When 6 = 0, we discretize —u(l,t) with the finite difference operator D. and for 6§ = 1 the

discretization of such term is made by the finite difference operator D,.
The above finite difference scheme is equivalent to the ODE system

uy (t) = Agun(t) + gu(t),

where
-2 1 0 . . 0 0 bo(t)
e 1 I PR VICES 3
0 0 00 . 2—-0 60-2 0
As
mlAn] <0, poo[An] <0,
we have

e, < 1,t>0,p =1, 00,

which implies
et < 1,t > 0.

For 6 = 0 the truncation error has order 2 while it is inconsistent for # = 1. Nevertheless, we
show in what follows that in the last case the scheme is convergent. In order to do that we
compute the decomposition of the truncation error
Tu(t) = AuTy (1) + Ty (1),
Let T'? be such that T2 (w;,t) = O(h?),i =1 m— 1,7 (Xm,t) = O(h), and let T be
H H (2] - 2 T Ey ey 'y~ H mos - ) H
the solution of the difference equation

AT (6) = €n(t), (2.7.39)
. «982u (1)
where g (x,t) = 0,i=1,...,m — 1, and {g(zm,t) = —§ﬁ(xm,t). If we fix Ty’ (xm,t) = 0,
x

then TI({l)(:cj,t) is given by

—h%0 0%*u

T(l) )= ——o—=(x; b =1,... — 1.
H (xjvt) .72(2_0)8.%,2('7;]775)7] ) » 1

It follows that HTI({1 ) (t)|| = O(h) and by Theorem 2.7.3, we conclude the convergence with respect
to the norms: ||.|/,,p = 1,2, cc.
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2.7.6 Fully Discrete FDM: MOL Approach, Direct Discretizations

MOL Approach: So far we have studied the spatial discretizations of some time dependent
PDES, that is the ODEs obtained discretizing the spatial derivatives of the PDEs defined by
finite difference operators. In the proof of the stability and convergence results the stability
analysis for ordinary differential problems had a central role. The aim of this section is to study
some fully discrete schemes which can be obtained by the MOL approach, that is, integrating
numerically the semi-discrete problem with a numerical method for ODEs. It should be emphasis
that the method of lines is not a method in the numerical sense but an approach to construct
numerical methods for time dependent problems.

Let us consider the ODE (2.7.1) numerically integrated in time, for example, with the 6-
method

ut = + At((l — O)Fyy (tn, ) + OFpr (s, ugﬂ)) n=0,...,

O ~ uy(0). Then u? (x) defines an approximation for u(z,t,) for z in the spatial grid

where u
Qy.

The error of the numerical approximation u% is given by €7 (z) = u(z,t,) — u?(z),x € Qp.
As

lefrll < IRau(tn) — wa(tn)ll + llug (En) — will,

an estimate for ||e};|| is obtained estimating the two errors

[Reu(tn) = ur(tn)l, llwn(tn) = upll

The first one was studied in the previous sections and the second one was studied in the first
chapter. For instance, if the semi-discretization is of order p; and the time integration method

is of order ps, then
lef | < CrhP + C2 At (2.7.40)

As the ordinary differential problem is in fact a family of ordinary differential problems depending
on the space step size, in the convergence estimate

lug (tn) — up|] < CoAtP?

for the time integration error, we should have Cs and po independent on the space step size,
that is, the previous convergence estimate should be uniform with respect to the space step size.
Stability and consistency of the ODE method should thus be verified for all time step size. This
sentence implies an eventually restriction on the space and time step sizes.

Direct Discretization: Even a scheme can be seen as a combination between the spatial
discretizatian followed by the time integration, it can be advantageous to consider space and
time errors simultaneously.

We consider in what follows FDMs for time dependent problems which admit the represen-
tation

Boultt = Biuly + G(tn, tni1),n=0,..., (2.7.41)
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where the matrices By, B1 € ]RmQ, and G(tn,tm+1) € R™ depends on the space and time step
sizes. Their dimensions depend on the number of points on the spatial domain Q. Of course
that if the scheme is explicit, then By = I.

Example 29 If we apply the 6-method to the semi-discrete problem u'y(t) = Agup(t) + gu(t)
we obtain the two-level scheme

iy =y + A1 0)(Amuy + a(t) + 0y

+ A4 ((1 = 0)ga (ta) + 091 (tas1) ).
which admits the representation (2.7.41) with
By=1—-At0Ay, By =1+ At(l — Q)AH

and
G(tn’ tn+1) = At((l - H)QH(tn) + HQH(thrl))'

Example 30 Courant-Isaacson-Rees Scheme Discretizing the advection equation

%—i-a%—O
ot or

u(z £1,t) = u(x,t),

with a > 0, by the upwind scheme and the explicit Fuler’s method we obtain the fully discrete
scheme

i ) = ) + (g ) — ), G = L, -

u}y(zo) = u}y(zp),n=0,...

This scheme, known as Courant-Isaacson-Rees scheme, can be rewritten in the matriz form
(2.7.41) with
By=1,B1 =1+ AtAyg

where Ap is the upwind matrixz introduced before.

The convergence analysis of the Courant-Isaacson-Rees scheme can be performed by using
the MOL approach. In this case we have (2.7.40) with p1 = py = 1 but under appropriate
restrictions for the space and time step sizes. Nevertheless, the convergence analysis can be
considered directly. Replacing, in (2.7.42), u(x;) by the true solution u(x;,t,), we obtain

alt
u(:cj, tn+1) = u(xja tn) + T(u(xjfla tn) - u(xj’ tn)) + AtTIT-}(‘TJ')’
where the truncation error is given by
1 At 0
Thi(a;) = —5ah(l - “T)%(xj,tn) +0(h?) + O(A1?),
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For the error e, we have
1
eyt = Biely + AtTy.

If we assume that

A
“Tt <1, (2.7.43)

then ||Bill, <1 for p=1,2,00. Under this assumption we obtain
lez ™I < Nlef || + At g,

which implies

alt d%u
lewll < tn= ah(l — T)max H8 5 H + O(hQ) + O(AtQ)

provided that e% = 0.
The stability condition (2.7.43) is usually called Courant-Friedrichs-Levy condition (CFL).
An explicit scheme for the advection equation can be rewritten as

n+1
Z Vg (Tj4k)
k=—r

alt
with the coefficients i, depending on v = —. Then u};(x;) depends on the initial condition on
the grid points x;,i = j — nr,...,j + ns. If we consider h, At — 0 with ratio constant v then
Tjpr = x—(r/v)at and xjns — x+(s/v)at, and thus the numerical approxzimations for u(z,t)
are determined by the initial data in the interval

T s
[x — —at,x + —at].
v v

This interval is called domain of dependence.

Example 31 Lax-Wendrof Scheme As we mention before, there are fully discrete numerical
methods for time dependent problems which can not be obtained from the MOL approach. An
example is the so called Lax- Wendrof scheme

n n aAt
ul  (ag) = ufp(xg) + —— 5% (ufr(zj—1) — ufr(zj41))
(2.7.44)
1 /aAt\N2, n n
5 (T) (ufp(zj-1) = 2ufy(x) + upr(2j41))-
This scheme can be obtained replacing, in the Taylor expansion
ou 0%u
u(xjv tn-‘rl) = U(IL'j, tn) + Ata(%’], ) + AtQ 12 (xjv tn) + O(At?’)’
2 2
% by a% and 8— by a 8—2; and considering the central formulas in the last derivatives.
The Lax- Wendrof scheme fas the truncation error
n 1 alt. 2\ u
Th(x) = cah®(1 - (57) )a (@), 1) + O(AE).
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2.7.7 Stability, Consistency and Convergence

The convergence analysis of the Courant-Isaacson-Rees scheme in Example 30 uses the con-
cepts of stability and convergence. In what follows we formalize the previous analysis for the
two-level scheme (2.7.41).

The truncation error for (2.7.41) at time level ¢, T7; is defined by

BoRpu(tn+1) = BiRpu(ty) + G(tn, tny1) + AtTy. (2.7.45)
For the error €}, = Ryu(t,) — ul; is solution of the following problem
Boeltt = Brely + AtTh, (2.7.46)
which can be rewritten in the equivalent form
et = By Biely + o, (2.7.47)
B = By'By, &% = AtBy ' Tj.

Let A be a sequence of space step sizes. If 2 C IR", then A is a sequence of n vectors such that
Hmax = max; hz — O, with H = (hl, ey hn)

The concept of stability, that is the sensitivity of the solution defined by (2.7.41) to per-
turbations of the initial condition, has here a natural formalization: the two-time level scheme
(2.7.41) is stable if for any initial conditions u%, 4% such that

li & —a%y| =0
Hm;ngoHuH gl =0,

the correspondent numerical solutions u%;, u%; satisfy

lim ufy —uyl| =0,Vn:nAt <T
Hmaz,AtHOH H HH ’ = 4>
where [0, 7] denotes the time interval.
A sufficient condition for stability is now immediate.

Theorem 2.7.4 If
|IB"|| < K,nAt <T, (2.7.48)

where K is independent of At and H, then the two-level scheme (2.7.41) is stable.
|

The condition (2.7.48) in general holds when some restriction is imposed on H and on At.
Usually the concept of stability is replaced by its sufficient condition (2.7.48).

Using the sufficient condition (2.7.41), it is easy to prove the convergence of (2.7.41), that is

li Yl =0,Vn:nAt<T 2.7.49

o lim e = 0.V nAL < T, (27.49)

provided that the finite difference scheme is consistent. In fact, from the error equation (2.7.47)

we have
el < [IB™ |1 Rauo — uly|| + | B™ || By [Itn max 1T-
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Consequently, under the consistency of (2.7.41), we conclude that [[e';|| = 0 as Hpqq, At — 0.
Implicitly we supposed in the convergence proof that ||B; Yl < €, where C is H and At
independent. This is a natural condition which means that the finite difference scheme (2.7.41)
is well defined.
We have shown that the two-level scheme is convergent provided that is stable and consistent.
The Lax Theorem establishes that for a consistent finite difference scheme stability is also a
necessary condition. This result can be seen in [30].

2.7.8 Stability for MOL

The stability analysis of the finite difference scheme defined by the MOL approach is based
on the stability analysis of the numerical methods for ODEs. Let us consider any one step
method for the liner semi-discrete system

uy(t) = Agun(t) + gu(t).

The stability of the fully discrete solution u’; is studied analyzing the behaviour of the discrete
scheme

wit™ = R(AtAp)wly, (2.7.50)

where R is the stability function. The stability restrictions on At in terms of the space step size
is obtained from the stability region and from the properties of Ag.
We consider now the #-method studied in chapter 1 whose stability function is given by

for # € [0, 1]. In this case we established results for the behaviour of |R(AtAx)"|.

1. Theorem 1.3.2: Let us suppose that Ay = MDM~! where cond(M) < k and D =
diag(;). If AtA; € S, for all j, then

|R(AtAm)"|| < k, Vn.
=
In this result S denotes the stability region and we should consider n such that nAt < T.
2. Corollary 1: Suppose that Ay is a normal matrix. If AtA; € S, for all j, then
[R(AtAH)]]2 < 1.

3. Theorem 1.3.3: Suppose that the vectorial norm is induced by an inner product < .,. > .
If

Re < Agv,v >< w|v|?, Vv € C™,

then
[R(AtAy)| < max (|R(Atw)|, |R(c0)]),

provided that 1 — wfAt > 0.
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1
4. Corollary 2: If u[Ay] <0 and 6 > 3 then

IR(AtA)|| < 1.

1
This corollary establishes the unconditional stability of the §-method for 6 € [5, 1] when
plAm] <0.

Let us suppose that Ay is a normal matrix. In this case

IR(ALAR)" 2 = max [R(ALA;)"),

ooy

where \;,j = 1,...,m, are the eigenvalues of Ay . If we consider the step sizes such that At)\; € S
then
[R(AtAR)"||l2 < 1.

A sufficient condition for stability is
|R(AtN)| <1+ K At
where £’ is independent on the step sizes. In this case
[R(AtAf)" |2 < At < M7
We remark that, for 6 € [0, %), the stability region of the 8-method is given by
S={z€C:|z+a| <a},

with

Example 32 Let us consider the Courant-Isaacson-Rees scheme considered in Example 30 for

the advection equation with a > 0. As u[Ag] < 0, the O-method is unconditionally stable for

0 c [5,1]. We conclude stability of the Courant-Isaacson-Rees scheme without any restriction

1
on the CFL number when 6 € [5, 1]. As the eigenvalues of Ap are given by
a .a .
AL = E(cos(?wkh) — 1) — zﬁsm(%rkh), k=1,...,m,

1
for 6 € [0, 5), we have stability provided the CFL number satisfies

alt 1

€ (0.5 (2.7.51)
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1
Example 33 The central scheme for the advection equation is unconditionally stable for 6 € [5, 1].
As the eigenvalues of A are in the imaginary axis

p —i%sen(%rkh),k: —1,....m,

and as S8 has no intersection with this axis, the fully discrete scheme obtained integrating nu-

1
merically the central scheme with the 6-method is unstable for 0 € [0, 5)

Example 34 The fully discrete scheme for the diffusion equation defined by (2.7.9) and by the
1
0-method, is unconditionally stable for 6 € [5, 1]. As the eigenvalues of Ap

4D

2D 4D
M = == (cos(2mkh) — 1) = ——sen(mkh)? € [_ﬁ’

2 2 0,k=1,...,m,

1
then the fully discrete scheme is stable for 6 € [0, 5), provided that

DAt 1
€055l

Example 35 The explicit Euler’s method is unstable for the central advection discretization.
This behaviour is avoided if some diffusion is added, that is if we consider

@ + @ — D@
ot Yo~ Toa?
with the boundary conditions u(x £+ 1,t = u(x,t). In fact, the fully discrete scheme

' (g) = (et (i) + (1= 2u)ufy(25) + (= gV)uf(zjn),0 = 1, ,m, (27.52)
DAt At
with u} (o) = wy(@m), W (Tme1) = uy(21), x5 = jh,h = - and p = V= aT, is such

that the eigenvalues \; of the matriz Ay admit the representation
AtA; =2u(cos(2mjh) — 1) —ivsen(2mjh),j =1,...,m.

Then
v <2u<1

18 a necessary and sufficient condition for stability.
Let us suppose now that Ay is a non-normal diagonalizable matrix
A= MDM™, D = diag()\;).

Then
|R(AtAR)"|| < cond(M) max |R(AtA;)"|.
j

If the condition number does not grow as h — 0 and takes a moderate size, then the eigenvalue
criterion followed for the normal matrices can still be applied in the stability study. Nevertheless,

for non-normal matrices the eigenvalue criterion can leads to wrong conclusions.
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Example 36 The Courant-Isaacson-Rees scheme for a = 1 and with u(0,t) = 0 leads to the

matrizc

1 .o
Am=g o |
0 .. 1 =1
) . 1 , LAt , .
which as only the eigenvalue A = ——. Then AtA € S if and only if 5 < 2. This conclusion
contrast with the previous one for the advection equation with periodic boundary conditions

At At
o < 1 indicating that for 1 < e < 2 we get wrong results.

2.7.9 Von Neumann Stability Analysis

The von Neumann analysis is based on Fourier discrete modes and it is applied only to
problems without boundary conditions and constant coefficients. In practice, however, this type
of analysis is also used when these conditions are not verified leading to a reliable step criteria.
The von Neumann analysis can be used in multiple dimensions, for systems of PDEs and with
all kind of time integrations formulas.

We exemplify the von Neumann analysis on the finite difference scheme

DAt
B2
with wf(20) = ufy(2m)s wfh (1) = Wy (@omi1)-
Considering the space L?(0,1) and the Fourier modes as introduced before, we have for each

wi ™ (xy) = ufp(z;) + (ufy(wj1) — 20y (z5) + uf(zj41)), G =1,...,m

time level, the numerical approximation given by

m

up =Y og(ty) Rady
=1

where ¢, denotes the Fourier mode. Assuming that ay(t,) = agr; we have

ik T DYAN; ik e i
TIZLJrleZﬂ'zk;a:] — ,rge%rzkzj 4+ = (T262wzk$]_1 _ 27‘]?627”kx'7 4+ TZGZWka]—l)).
Consequently

DAt

hZ

4Dr

(e—2m'k;h —24 e27rikh) —1_ ?36712(7'(}1]{). (2.7.53)

r, =1+

m m
Supposing that u%, = Z ap Ry dr we get ulfy = Z agry Rp¢r and by the Parseval identity
k=1 k=1

m m
13 =D lawlPlral® <Y el = [ufyl13,
k=1 k=1

provided that
i <1, (2.7.54)

that is the amplification factor is less or equal to one. Applying this condition with r defined

by (2.7.53) we obtain
DAt <

1
h? 2
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We consider now the homogeneous version of the two-level scheme (2.7.41). Considering

m m

up = Z ary R ¢, with u%, = Z ag Ry ¢, the amplification factor ry is the eigenvalue of B
k=1 k=1

associated with the eigenvector Rp¢y. Then with respect to the discrete L?-norm we have

1Bl = max_ry|.
The stability condition ||B"||2 < k for n such that nAt¢ < T, holds provided that the step sizes
At and h are such that

el <14 O(AD). (2.7.55)

This conditions is called von Neumann condition and it is often replaced by the strict von
Neumann condition (2.7.54). However the strict condition is some time restrictive. For instance
if we consider the diffusion equation with a source

ou 0%u

— = D— + cu,

ot Ox? +
with ¢ > 0, D > 0, the source term leads to an exponential growth of the solution. The numerical
solution should mimic this growth and hence we cannot require the amplification factor to be
bounded by one in modulus.
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3-Computational Projects

1. Consider IVP defined by the reaction of Robertson

u) (t) = —0.04u; + 10 uus
uhy = 0.04u; — 10 ugus — 3 x 107u3
uy =3 x 1073,

for t € (0,40], with the initial condition

(75} (0) =1
U3(0) =0

Integrate the IVP (1.0.1), (1.0.2) by using the following methods

(a) Explicit Euler’s method,
(b) Implicit Euler’s method,
(¢) The Gauss method defined by the following Butcher table

1 V3 1 1 V3
2 6 4 4 6
1 V3|1 V3 1
2" e late 1
1 1
2 2

164

(1.0.1)

(1.0.2)

Compare the previous methods taking into account the accuracy and the stability.
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2. Consider IVP defined by the reaction of Robertson

uf (t) = —0.04u; + 10 upus
uh = 0.04u; — 10 usuz — 3 x 107u3
why =3 x 107u3,

for t € (0,40], with the initial condition

ul (0) =1
UQ(O) =0
U3(0) =0

Integrate the IVP (1.0.3), (1.0.4) by using the following methods

(a) Explicit Euler’s method,
(b) Implicit Euler’s method,
(c) The Radau method defined by the following Butcher table

115 1

3] 12 12
3 1

1] 2 Z
4 4
3 1
4 4

165

(1.0.3)

(1.0.4)

Compare the previous methods taking into account the accuracy and the stability.
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3. Consider IVP defined by the reaction of Robertson
u (t) = —0.0du; + 10%ugus
uh = 0.04u; — 10 usuz — 3 x 107u3
why =3 x 107u3,

for t € (0,40], with the initial condition

ul (0) =1
UQ(O) =0
U3(0) =0

Integrate the IVP (1.0.5), (1.0.6) by using the following methods

(a) Explicit Euler’s method,
(b) Implicit Euler’s method,
(c) The Radau method defined by the following Butcher table

1 1
11 71
211 5
HEE
1 3
PR

Compare the previous methods taking into account the accuracy and the stability.

166

(1.0.5)

(1.0.6)
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4. Consider IVP defined by the reaction of Belusov-Zhabotinskii

uh(t) = 77.27(ug + uy (1 — 8.375 x 10 5u; — uy))

, 1
Y2 = 7797

(uz — uz(1 4 u1))

ufy = 0.161(u; — ug),

for t € (0,50], with the initial condition

(75} (0) =1
UQ(O) =2
U3(0) =3

Integrate the IVP (1.0.7), (1.0.8) by using the following methods

(a) Explicit Euler’s method,
(b) Implicit Euler’s method
(c) The Gauss method defined by the following Butcher table

1 V3 1 1 V3
2 6 4 4 6
1 V3|1 V3 1
2 e late g
1 1
2 2

167

(1.0.7)

(1.0.8)

Compare the previous methods taking into account the accuracy and the stability.
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5. Consider IVP defined by the reaction of Belusov-Zhabotinskii

uh(t) = 77.27(ug + uy (1 — 8.375 x 10 5u; — uy))

1
- TT.27

/
Uo

(uz — uz(1 4 u1))

ufy = 0.161(u; — ug),

for t € (0,50], with the initial condition

(75} (0) =1
UQ(O) =2
U3(0) =3

Integrate the IVP (1.0.9), (1.0.10) by using the following methods

(a) Explicit Euler’s method,
(b) Implicit Euler’s method,
(c) The Radau method defined by the following Butcher table

175 1
3112 12
NI
4 4
3 1
4 4

168

(1.0.9)

(1.0.10)

Compare the previous methods taking into account the accuracy and the stability.
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6. Consider IVP defined by the reaction of Belusov-Zhabotinskii
uh(t) = 77.27(ug + uy (1 — 8.375 x 10 5u; — uy))

1
- TT.27

/

Uy (us — uz(1 +u1))

ufy = 0.161(u; — ug),

for t € (0,50], with the initial condition

(75} (0) =1
UQ(O) =2
U3(0) =3

Integrate the IVP (1.0.11), (1.0.12) by using the following methods

(a) Explicit Euler’s method,

(b) Implicit Euler’s method
(c) The Radau method defined by the following Butcher table

1 1
Ol1 71
211 5
HEE
1 3
11

169

(1.0.11)

(1.0.12)

Compare the previous methods taking into account the accuracy and the stability.
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7. Consider the chemical reaction problem

( uy(t) = —Auy — Bujug

uh = Aug — M Cugus
(1.0.13)

ufy = Auy — Bujug — MCugug + Cuy

u)y = Bujus — Cug,

where A = 7.89 x 10719, B = 1.1 x 107,C = 1.13 x 10% and M = 106, for ¢ € (0, 1000],

with the initial condition

([ u1(0) = 1.76 x 1073
00 (1.0.14)
us =
. U4(0) =0

Integrate the IVP (1.0.13), (1.0.14) by using the following methods

(a) Explicit Euler’s method,
(b) Implicit Euler’s method
(c) The Radau method defined by the following Butcher table

1 1
11 1
211 5
HEE
1 3
11

Compare the previous methods taking into account the accuracy and the stability.
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8. Consider the chemical reaction problem

;

uy(t) = —Auy — Bujug

uh = Aug — M Cugus
(1.0.15)
ufy = Auy — Bujug — MCugug + Cuy

u)y = Bujus — Cug,

where A = 7.89 x 10719, B = 1.1 x 107,C = 1.13 x 10% and M = 106, for ¢ € (0, 1000],
with the initial condition

([ u1(0) = 1.76 x 1073
00 (1.0.16)
us =
. U4(0) =0

Integrate the IVP (1.0.15), (1.0.16) by using the following methods

(a) Explicit Euler’s method,
(b) Implicit Euler’s method
(c) The Lobato method defined by the following Butcher table

010 O 0
115 1 1
2124 3 24
1 2 1
1] =2 =2 Z
63 6
1 2 1
6 3 6

Compare the previous methods taking into account the accuracy and the stability.
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9. Consider the chemical reaction problem

;

uy(t) = —Auy — Bujug

uh = Aug — M Cugus
(1.0.17)

ufy = Auy — Bujug — MCugug + Cuy

uﬁl = Bujuz — Cuy

where A = 7.89 x 10719 B = 1.1 x 107,C = 1.13 x 10% and M = 106, for ¢ € (0, 1000],

with the initial condition

([ u1(0) = 1.76 x 1073
00 (1.0.18)
us =
. U4(0) =0

Integrate the IVP (1.0.17), (1.0.18) by using the following methods

(a) Explicit Euler’s method,
(b) Implicit Euler’s method
(c) The Gauss method defined by the following Butcher table

1 V3 1 1 V3
2 6 4 4 6
1 V3|1 V3 1
2" e a6 1
1 1
2 2

Compare the previous methods taking into account the accuracy and the stability.
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