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0 Revision
Lecture 1:

10/01/11Let D ⊆ R be a domain (e.g. interval or all of R).

Definition 0.1. Let f : D → R.

(a) f is continuous at a ∈ D if

∀ε > 0 ∃δ > 0 ∀x ∈ D, |x− a| < δ : |f(x)− f(a)| < ε .

(b) f is continuous if f is continuous at all a ∈ D.

(c) f(x) tends to the limit L ∈ R as x tends to a ∈ D, lim
x→a

f(x) = L, if

∀ε > 0 ∃δ > 0 ∀x ∈ D, 0 < |x− a| < δ : |f(x)− L| < ε .

Remark. We use the short-hand notation lim
x→a

f(x) = f(a) to indicate that both

(a) lim
x→a

f(x) = L exists and (b) f(a) = L.

Theorem 0.2. Let f : D → R. f is continuous at a ∈ D if and only if lim
x→a

f(x) =

f(a).

Proof. Let f : D → R.

“⇒” Let f be continuous at a ∈ D. Then

∀ε > 0 ∃δ > 0 ∀x ∈ D, |x− a| < δ : |f(x)− f(a)| < ε .

If we set L = f(a), then it follows that we can write

∀ε > 0 ∃δ > 0 ∀x ∈ D, 0 < |x− a| < δ : |f(x)− L| < ε .

But this implies lim
x→a

f(x) = L, so lim
x→a

f(x) = f(a) as needed.

“⇐” Let lim
x→a

f(x) = f(a). Then

∀ε > 0 ∃δ > 0 ∀x ∈ D, 0 < |x− a| < δ : |f(x)− f(a)| < ε .

Additionally, for x = a, we have |f(a)− f(x)| = 0 < ε, so that

∀ε > 0 ∃δ > 0 ∀x ∈ D, |x− a| < δ : |f(x)− f(a)| < ε .

This implies that f is continuous at a ∈ D.
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Remark. If f is continuous, we are allowed to “exchange” lim and f , i.e.

lim
x→a

f(x) = f
(

lim
x→a

x
)

.

In other words, it does not matter whether we evaluate the function first and then

take the limit or whether we first take the limit and then evaluate the function.

Theorem 0.3. If f : D → R is continuous at a ∈ D and b = f(a) 6= 0 then

f(x) 6= 0 nearby, i.e.

∃δ > 0 ∀x ∈ D, |x− a| < δ : f(x) 6= 0 .

Proof. f is continuous at a, and b = f(a), so that

∀ε > 0 ∃δ > 0 ∀x ∈ D, 0 < |x− a| < δ : |f(x)− b| < ε .

Now pick ε = |b| so that |f(x)− b| < |b|. Then

|b| > |f(x)− b| ≥ ||f(x)| − |b|| ≥ |b| − |f(x)|

or, equivalently, |f(x)| > 0.

Therefore, by choosing ε as we did, we have shown

∃δ > 0 ∀x ∈ D, |x− a| < δ : f(x) 6= 0 .

Reminder. Use the triangle inequality |x + y| ≤ |x|+ |y| (∆) to show

|x− y| ≥ ||x| − |y|| .

Proof. We need to show both (a) |x− y| ≥ |x| − |y| and (b) |x− y| ≥ |y| − |x|.

(a) is equivalent to |x| ≤ |x− y|+ |y|, and

|x| = |(x− y) + y| ≤ |x− y|+ |y| by (∆).

(b) is equivalent to |y| ≤ |x− y|+ |x|, and

|y| = |(y − x) + x| ≤ |y − x|+ |x| by (∆).
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1 Differentiation
Lecture 2:

13/01/11Let D ⊆ R be a domain without isolated points (to allow limits at all points of D).

Definition 1.1. Let f : D → R.

(a) f is differentiable at a ∈ D if the limit

f ′(a) = lim
x→a

f(x)− f(a)

x− a

exists. f ′(a) is the derivative of f at a.

(b) f is differentiable if f is differentiable at all a ∈ D. The function f ′ : D → R

given by x 7→ f ′(x) is the derivative of f .

Remark. Geometric interpretation: the difference quotient

f(b)− f(a)

b− a

is the slope of the secant line through the points (a, f(a)) and (b, f(b)), and the limit

f ′(a) is the slope of the tangent line at (a, f(a)) of the graph of f .
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Examples.

1) f : R → R, x 7→ x2 is differentiable at every a ∈ R:

We have
f(x)− f(a)

x− a
=

x2 − a2

x− a
= x + a

and

lim
x→a

f(x)− f(a)

x− a
= lim

x→a
(x + a) = 2a .

The derivative is f ′ : R → R, x 7→ 2x.

2) f : R → R, x 7→ |x| is not differentiable at a = 0:

We have

f(x)− f(0)

x− 0
=
|x|
x

=

−1 x < 0

1 x > 0

and lim
x→0

f(x)− f(0)

x− 0
does not exist.

If a 6= 0 then, by Theorem 0.3, x and a have the same sign when x is close to

a, so that for a > 0

lim
x→a

f(x)− f(a)

x− a
= lim

x→a

x− a

x− a
= 1 ,

and for a < 0

lim
x→a

f(x)− f(a)

x− a
= lim

x→a

−x + a

x− a
= −1 ,

so that

f ′(x) =


1 x > 0

undefined x = 0

−1 x < 0 .

3) f : R → R, x 7→


x2 sin

1

x
x 6= 0

0 x = 0

is differentiable at a = 0:

This is unclear from the graph of f , as f “wobbles” near zero.
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Plotting the derivative doesn’t help much, either:

We have
f(x)− f(0)

x− 0
= x sin

1

x

and noting that

∣∣∣∣sin 1

x

∣∣∣∣ ≤ 1, we have

∣∣∣∣limx→0
x sin

1

x

∣∣∣∣ = lim
x→0

∣∣∣∣x sin
1

x

∣∣∣∣ ≤ lim
x→0

|x| = 0

and therefore f ′(0) = lim
x→0

x sin
1

x
= 0.
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Lecture 3:

14/01/11Lemma 1.2. f : D → R is differentiable at a if and only if there exist s, t ∈ R and

r : D → R such that

(1) f(x) = s + t(x− a) + r(x)(x− a) for all x ∈ D, and

(2) lim
x→a

r(x) = 0.

Remark. These properties say that f(x) can be approximated by a linear function

y = s + t(x− a) for x close to a.

Proof. “⇒” Let f be differentiable at a. We define r : D → R by

r(x) =


f(x)− f(a)

x− a
− f ′(a) x 6= a

0 x = a

.

For x 6= a it follows that

f(x) = f(a) + f ′(a)(x− a) + r(x)(x− a) .

For x = a, this identity holds as well, as it reduces to f(a) = f(a). Therefore

(1) holds with s = f(a) and t = f ′(a). To show (2) we compute

lim
x→a

r(x) = f ′(a)− f ′(a) = 0 .

“⇐” Inserting x = a into (1) gives f(a) = s, so that (1) gives

f(x) = f(a) + t(x− a) + r(x)(x− a) ,

and therefore
f(x)− f(a)

x− a
= t + r(x) .

Now (2) implies that the limit

lim
x→a

f(x)− f(a)

x− a
= t + lim

x→a
r(x) = t

exists.
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Remark. If f(x) = s+t(x−a)+r(x)(x−a) with lim
x→a

r(x) = 0, then f is differentiable

at a with s = f(a) and t = f ′(a). The equation of the tangent at a of the graph of

f is therefore

y = f(a) + f ′(a)(x− a) .

Theorem 1.3. If f : D → R is differentiable at a ∈ D then f is continuous at a.

Proof. By Lemma 1.2,

f(x) = s + t(x− a) + r(x)(x− a)

with lim
x→a

r(x) = 0. Therefore lim
x→a

f(x) = s = f(a).

Remark. f : R → R, x 7→ |x| is continuous at 0 but not differentiable. The

converse of Theorem 1.3 is therefore not true.

Theorem 1.4. Let f, g : D → R be differentiable at a ∈ D and let c ∈ R. Then

f + g, cf , fg, and f/g (if g(a) 6= 0) are differentiable at a. We have

(a) (f + g)′ = f ′ + g′,

(b) (cf)′ = cf ′,

(c) (fg)′ = f ′g + fg′ (product rule), and

(d) (f/g)′ = (f ′g − fg′)/g2 (quotient rule).

Proof. (a) This is easy.

(b) This is a special case of (c) with the constant function g(x) = c.

(c) Write

f(x)g(x)− f(a)g(a)

x− a
=

f(x)− f(a)

x− a
g(x) + f(a)

g(x)− g(a)

x− a
.

As f and g are differentiable at a and g is continuous at a by Theorem 1.3,

(fg)′(a) = f ′(a)g(a) + f(a)g′(a) .
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(d) By Theorem 1.3, g is continuous at a. g(a) 6= 0, therefore g(x) 6= 0 nearby, i.e.

∃δ > 0 ∀x ∈ D, |x− a| < δ : g(x) 6= 0 .

Therefore f(x)/g(x) is defined near a, and

f(x)

g(x)
− f(a)

g(a)

x− a
=

1

g(x)g(a)

(
f(x)− f(a)

x− a
g(x)− f(a)

g(x)− g(a)

x− a

)
.

The limit as x → a exists on the right-hand-side, and therefore(
f

g

)′
(a) =

1

g(a)2
(f ′(a)g(a)− f(a)g′(a)) .

Example. Show that (
1

f

)′
= − f ′

f 2
:

(a) Use the quotient rule with constant function 1 in numerator:(
1

f

)′
=

0 · f − 1 · f ′

f 2
= − f ′

f 2
.

(b) Use the product rule with g = 1/f , so that fg = 1, and differentiate this:

0 = (fg)′ = f ′g + fg′ and therefore g′ = −f ′g

f
= − f ′

f 2
.

Remark. All the derivatives from Calculus we shall assume as known. This is not

cheating, as we can prove every single one in principle. Lecture 4:

17/01/11
Theorem 1.5 (Chain Rule). let f : D → R be differentiable at a ∈ D, and let

g : f(D) → R be differentiable at b = f(a). Then g ◦ f : D → R is differentiable at

a and

(g ◦ f)′(a) = g′(f(a))f ′(a) .

Remark. To get an idea for the formula, let us write

g ◦ f(x)− g ◦ f(a)

x− a
=

g ◦ f(x)− g ◦ f(a)

f(x)− f(a)
· f(x)− f(a)

x− a
.

It looks like we can easily take the limit of x → a on the right-hand side. However,

the problem is that f(x) − f(a) might be zero for x 6= a, and we need to be more

careful because of this.
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Proof. By Lemma 1.2 we have

(1) f(x) = f(a) + f ′(a)(x− a) + r(x)(x− a), and

(2) g(y) = g(b) + g′(b)(y − b) + s(y)(y − b)

with lim
x→a

r(x) = 0 and lim
y→b

s(y) = 0. Define s(b) = 0 so that s is continuous at b.

Let y = f(x) to get

g ◦ f(x)− g(b) = (g′(b) + s(f(x))) (f(x)− b)

= (g′(b) + s(f(x))) (f ′(a) + r(x)) (x− a)

=g′(b)f ′(a)(x− a) + t(x)(x− a) ,

where t(x) = s(f(x))f ′(a) + g′(b)r(x) + s(f(x))r(x). Then

lim
x→a

t(x) = lim
x→a

(s(f(x))f ′(a) + g′(b)r(x) + s(f(x))r(x))

= lim
x→a

s(f(x))f ′(a) + g′(b) lim
x→a

r(x) + lim
x→a

s(f(x)) lim
x→a

r(x) .

Now lim
x→a

r(x) = 0, and also lim
x→a

s(f(x)) = 0 (for the latter we crucially need that s

is continuous at b), so that

lim
x→a

t(x) = 0 .

Thus g ◦ f is differentiable at a with (g ◦ f)′(a) = g′(b)f ′(a) = g′(f(a))f ′(a).
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2 The Mean Value Theorem

Theorem 2.1. If a function f : [a, b] → R has a maximum (or minimum) at

c ∈ (a, b) and is differentiable at c, then f ′(c) = 0.

Proof. If f has a minumum at c then −f has a maximum at c, so it suffices to

consider the case of f having a maximum at c. By assumption f is differentiable at

c, so

d = f ′(c) = lim
x→c

f(x)− f(c)

x− c

exists. Restricting to the one-sided limits, we have furthermore

d = lim
x→c+

f(x)− f(c)

x− c
≤ 0

and

d = lim
x→c−

f(x)− f(c)

x− c
≥ 0 .

Therefore d = 0.

Theorem 2.2 (Rolle). Let f : [a, b] → R be continuous on [a, b] and differentiable

on (a, b). If f(a) = f(b) = 0 then there exists a c ∈ (a, b) such that f ′(c) = 0.
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Proof. We consider three cases:

(1) f(x) = 0 for all x ∈ (a, b). Then f ′(x) = 0 for all x ∈ (a, b).

(2) f(x) > 0 for some x ∈ (a, b). Then f is maximal at some c ∈ [a, b] and

f(c) ≥ f(x) > 0. As f(a) = f(b) = 0, c must be different from a or b, so f is

maximal at some c ∈ (a, b). By Theorem 2.1 it follows that f ′(c) = 0.

(2) f(x) < 0 for some x ∈ (a, b). Then f is minimal at some c ∈ [a, b] and

f(c) ≤ f(x) < 0. As f(a) = f(b) = 0, c must be different from a or b, so f is

minimal at some c ∈ (a, b). By Theorem 2.1 it follows that f ′(c) = 0.

Lecture 5:

20/01/11
Theorem 2.3 (Mean Value Theorem). Let f : [a, b] → R be continuous on [a, b]

and differentiable on (a, b). Then there exists a c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. The equation of the straight line through the points (a, f(a)) and (b, f(b)) is

y = f(a) +
f(b)− f(a)

b− a
(x− a) .
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Taking the difference between y = f(x) and this equation, we define the auxiliary

function

h(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a) .

By construction, h is continuous on [a, b] and differentiable on (a, b). Moreover

h(a) = 0 and h(b) = 0 ,

so that Rolle’s Theorem applies: there exists a c ∈ (a, b) such that h′(c) = 0. Now

h′(x) = f ′(x)− f(b)− f(a)

b− a

so that h′(c) = 0 implies f ′(c) =
f(b)− f(a)

b− a
as claimed.

Remark. Geometric interpretation: there exists a tangent to the graph of f which

is parallel to the secant line through (a, f(a)) and (b, f(b)).

We continue with some applications of the Mean Value Theorem.

Theorem 2.4. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b).

(a) If f ′(x) > 0 for all x ∈ (a, b), then f is strictly increasing on [a, b], i.e. x1 < x2

implies f(x1) < f(x2).

(b) If f ′(x) < 0 for all x ∈ (a, b), then f is strictly decreasing on [a, b], i.e. x1 < x2

implies f(x1) > f(x2).

Proof. (a) Let x1, x2 ∈ [a, b] with x1 < x2. Applying the Mean Value Theorem to

f on [x1, x2], we have that there exists a c ∈ (x1, x2) with

f(x2)− f(x1)

x2 − x1

= f ′(c) > 0 .

Therefore f(x2)− f(x1) > 0.

(b) Replace f by −f and repeat.
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Example. Find intervals on which f : R → R, x 7→ x3

3
− x is strictly increasing or

strictly decreasing.

As f ′(x) = x2 − 1, f ′(x) < 0 on (−1, 1) and f ′(x) > 0 on (−∞,−1) ∪ (1,∞).

Therefore f is strictly decreasing on [−1, 1] and strictly increasing on (−∞,−1] and

[1,∞).

Theorem 2.5. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b).

If f ′(x) = 0 for all x ∈ (a, b), then f is constant on [a, b], i.e. f(x) = f(a) for all

x ∈ [a, b].

Proof. Let x ∈ (a, b] and apply the Mean Value Theorem to f on [a, x]: there exists

a c ∈ (a, x) such that
f(x)− f(a)

x− a
= f ′(c) = 0. Therefore f(x) = f(a).

Lecture 6:

21/01/11
We conclude this section with presenting an Intermediate Value Theorem for

differentiable functions. First recall the Intermediate Value Theorem for continuous

functions.

Theorem (Intermediate Value Theorem). Let f : [a, b] → R be continuous and

f(a) < s < f(b). Then there exists a c ∈ (a, b) such that f(c) = s.

The following theorem looks very similar.
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Theorem 2.6. Let f : [a, b] → R be differentiable and f ′(a) < s < f ′(b). Then

there exists a c ∈ (a, b) such that f ′(c) = s.

Remark. This shows that the derivative of differentiable functions satisfies the

intermediate value property. Note that the derivative doesn’t have to be continuous,

so this is different from the Intermediate Value Theorem for continuous functions.

Proof. Consider the case s = 0 first. We need to show that there exists a c ∈ (a, b)

such that f ′(c) = 0:

As f is differentiable on [a, b], f is continuous on [a, b] and therefore attains its

minimum on [a, b]. f ′(a) < 0 implies that there exists an a′ > a with (f(a′) −

f(a))/(a′ − a) < 0, thus there exists an a′ > a with f(a′) < f(a). Similarly, as

f ′(b) > 0, there exists a b′ < b with f(b′) < f(b). Therefore the minimum is not

attained at the endpoints a or b, but at some point in (a, b). As f is differentiable

at c ∈ (a, b), f ′(c) = 0 by Theorem 2.1. This concludes the proof for s = 0.

Now consider the general case of s 6= 0. We can reduce this to the case s = 0

by considering the function g(x) = f(x) − sx. g is differentiable on [a, b] and

g′(x) = f ′(x)− s implies g′(a) = f ′(a)− s < 0 and g′(b) = f ′(b)− s > 0. Therefore,

g′(c) = 0 for some c ∈ (a, b). This implies f ′(c) = s.
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3 The Exponential Function

Definition 3.1. A differentiable function f : R → R with (a) f ′(x) = f(x) for all

x ∈ R, and (b) f(0) = 1 is called exponential function.

Remark. We will show later that f(x) =
∞∑

n=0

xn

n!
satisfies this definition. For now,

we shall assume existence of such a function.

In items (A) to (J) we shall collect properties of an exponential function.

(A) f(x)f(−x) = 1.

Proof. Differentiate h(x) = f(x)f(−x):

h′(x) = f ′(x)f(−x) + f(x)f ′(−x)(−1) = 0 ,

and by Theorem 2.5, h is constant and h(0) = f(0)f(0) = 1, so h(x) = 1.
Lecture 7:

24/01/11
(B) f(x) 6= 0 for all x ∈ R.

Proof. If f(x) = 0 for some x ∈ R then 0 = f(x)f(−x) = 1, a contradiction.

(C) Let g : R → R be differentiable and g′ = g. Then there exists a c ∈ R such

that g = cf .

Proof. Consider h(x) = g(x)/f(x). By (B), h is defined on R and differentiable with

h′(x) =
g′(x)f(x)− g(x)f ′(x)

f(x)2
= 0 .

Therefore h is constant, h(x) = c, and g(x) = cf(x).

(D) Definition 3.1 determines f uniquely.

Proof. Assume g satisfies Definition 3.1. Then (C) implies g = cf . As g(0) = 1 =

f(0), we have c = 1, so g = f .

Now that we have shown uniqueness, we will write f(x) = exp(x) for the function

f defined by Definition 3.1.
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Theorem 3.2. For all a, b ∈ R, exp(a + b) = exp(a) exp(b).

Proof. Consider g(x) = exp(a+x). Then g′(x) = exp(a+x) = g(x), so exp(a+x) =

c exp(x) by (C). Letting x = 0, we find exp(a) = c, so that exp(a + b) = c exp(b) =

exp(a) exp(b).

Corollary. For a ∈ R and n ∈ N, exp(na) = (exp(a))n.

Proof. We use mathematical induction in n: For n = 1, we have

exp(1a) = exp(a) = (exp(a))1 .

Next, assuming that we have shown that exp(na) = (exp(a))n for some n ∈ N, we

deduce that

exp((n + 1)a) = exp(na) exp(a) = (exp(a))n exp(a) = (exp(a))n+1 .

(E) exp(x) > 0 for all x ∈ R.

Proof. The function exp is differentiable, therefore continuous. By (B), exp(x) 6= 0

for all x ∈ R, and exp(0) = 1 > 0. Assume now that (E) is false, i.e. there exists

an x ∈ R for which exp(x) < 0. By the Intermediate Value Theorem it follows that

there exists a c ∈ R such that exp(c) = 0, a contradiction.

(F) exp is strictly increasing.

Proof. exp′(x) = exp(x) > 0, and the claim follows from Theorem 2.4.

Theorem 3.3. For all x ∈ R, exp(x) > x.

Proof. x < 0: exp(x) > 0 > x.

x = 0: exp(x) = 1 > 0.

x > 0: By the Mean Value Theorem applied to [0, x], there exists a c ∈ (0, x) such

that
exp(x)− exp(0)

x− 0
= exp(c) .

Moreover, exp(c) > exp(0) = 1 by (F). Therefore exp(x) − 1 = x exp(c) > x, and

thus exp(x) > x + 1 > x.
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Lecture 8:

27/01/11
(G) exp(R) = R+ (= {x ∈ R : x > 0}).

Proof. (E) implies that exp(R) ⊆ R+. We need to show that also R+ ⊆ exp(R), i.e.

∀c > 0 ∃x ∈ R, exp(x) = c .

Case 1: c ≥ 1.

We have exp(0) = 1 ≤ c < exp(c). By the Intermediate Value Theorem applied to

[0, c], there exists an x ∈ (0, c) such that exp(x) = c.

Case 2: 0 < c < 1.

Now 1/c > 1 and as in Case 1 we can deduce that there exists an x ∈ (0, 1/c) such

that exp(x) = 1/c. As exp(x) exp(−x) = 1, we have exp(−x) = c.

(H) exp(1) = e, where e = lim
n→∞

(
1 +

1

n

)n

.

Proof. Recall the Bernoulli inequality: (1 + x)n ≥ 1 + nx for all x ≥ −1 and for all

n ∈ N0.

1) Show that lim
n→∞

(
1 +

1

n

)n

exists:

(a) an =

(
1 +

1

n

)n

is increasing:

Using (
1− 1

n2

)(
1 +

1

n− 1

)
=

n2 − 1

n

n

n− 1
= 1 +

1

n
,

it follows that

an =

(
1 +

1

n

)n

=

(
1− 1

n2

)n(
1 +

1

n− 1

)n

≥
(

1− 1

n

)(
1 +

1

n− 1

)(
1 +

1

n− 1

)n−1

=

(
1 +

1

n− 1

)n−1

= an−1 ,

where we have used the estimate

(
1− 1

n2

)n

≥ 1− 1

n
which follows from

the Bernoulli inequality.
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(b) bn =

(
1 +

1

n

)n+1

is decreasing:

From the Bernoulli inequality it follows that(
1 +

1

n2 − 1

)n

≥ 1 +
n

n2 − 1
≥ 1 +

1

n
.

Therefore

bn =

(
1 +

1

n

)n(
1 +

1

n

)
≤
(

1 +
1

n

)n(
1− 1

n2 − 1

)n

=

(
1 +

1

n− 1

)n

= bn−1 .

(c) Each bm is an upper bound for the sequence (an) and each am is a lower

bound for the sequence (bn). Therefore the limits lim
n→∞

an and lim
n→∞

bn

exist. We find

lim
n→∞

bn = lim
n→∞

(
an

(
1 +

1

n

))
= lim

n→∞
an .

2) Show that

an =

(
1 +

1

n

)n

≤ exp(1) ≤
(

1 +
1

n

)n+1

= bn :

The Mean Value Theorem for exp on [0, 1/n] implies that there exists a c ∈

(0, 1/n) such that
exp(1/n)− exp(0)

1/n− 0
= exp(c)

so that exp(1/n) = 1 + exp(c)/n. As 1 ≤ exp(c) ≤ exp(1/n), we deduce that

1 +
1

n
≤ exp

(
1

n

)
≤ 1 +

1

n
exp

(
1

n

)
.

This implies firstly that(
1 +

1

n

)n

≤
(

exp

(
1

n

))n

= exp(1) .

Secondly, (1 − 1/n) exp(1/n) ≤ 1, so that exp(1/n) ≤ n/(n − 1) for n ≥ 2.

Shifting n by one, we deduce that exp(1/(n + 1)) ≤ (n + 1)/n = 1 + 1/n, so

that (
1 +

1

n

)n+1

≥
(

exp

(
1

n + 1

))n+1

= exp(1) .
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Lecture 9:

28/01/11
Corollary. exp(n) = en for n ∈ Z.

Proof. n ∈ N: exp(n) = (exp(1))n = en.

n = 0: exp(0) = 1 = e0.

−n ∈ N: exp(−n) = (exp(n))−1 = e−n.

We also have (exp(n/m))m = exp(n) = en, so that exp(n/m) = en/m. Sum-

marising we have proved the following result.

Theorem 3.4. (1) exp is strictly increasing,

(2) exp(R) = R+, and

(3) exp(x) = ex for all x ∈ Q.
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4 Inverse Functions

Definition 4.1. Let f : D → R, and let E = f(D) be the image of f . Then f is

invertible if there exists g : E → R such that

g ◦ f(x) = x for all x ∈ D and f ◦ g(x) = x for all x ∈ E.

g is an inverse of f .

Properties of the inverse:

1) The inverse is uniquely defined.

Proof. Let E = f(D) and g1, g2 : E → R be inverses of f . Let y ∈ E . There exists

an x ∈ D with y = f(x) and

g1(y) = g1 ◦ f(x) = x = g2 ◦ f(x) = g2(y) ,

so g1 = g2.

As the inverse is uniquely defined, we can write g = f−1.

2) If f is invertible, then f−1 is invertible as well, and (f−1)−1 = f .

3) The graphs of f and f−1 are mirror images with respect to the straight line

y = x.

Proof. Graph(f) = {(x, f(x)) : x ∈ D} and Graph(f−1) = {(y, f−1(y)) : y ∈ E} =

{(f(x), f−1 ◦ f(x)) : x ∈ D} = {(f(x), x) : x ∈ D} is its mirror image.
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Example.

f :R+
0 → R f(x) =x2 f(R+

0 ) =R+
0

f−1 :R+
0 → R f−1(x) =

√
x f−1(R+

0 ) =R+
0

Lecture 10:

31/01/11
Theorem 4.2. f : D → R is invertible if and only if it is injective (one-to-one).

Proof. “⇒” Let f be invertible and f(x1) = f(x2). Then x1 = f−1 ◦ f(x1) =

f−1 ◦ f(x2) = x2.

“⇐” Let f be injective and let E = f(D). Then for each y ∈ E there is a unique

x ∈ D such that y = f(x). Define g : E → R via g(y) = x. Then

g ◦ f(x) = g(y) = x ∀x ∈ D and

f ◦ g(y) = f(x) = y ∀y ∈ E .
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Corollary. If f : D → R is strictly increasing (or decreasing) then f is invertible.

Proof.

x1 < x2 ⇒ f(x1) < f(x2)

x1 > x2 ⇒ f(x1) > f(x1)

 implies x1 6= x2 ⇒ f(x1) 6= f(x2).

Example. exp : R → R is strictly increasing, therefore invertible.

exp(R) = R+ exp−1 = log : R+ → R .

Let I be an interval (a, b ∈ I, a ≤ c ≤ b ⇒ c ∈ I). If f : I → R is continuous

then f(I) is an interval (by the Intermediate Value Theorem).

Theorem 4.3. Let f : [a, b] → R be continuous and injective. Then f attains its

minimum and maximum at a or b.

Proof. Without loss of generality, let f(a) ≤ f(b). f is continuous, therefore f

attains its maximum at c ∈ [a, b].
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If c < b then f(a) ≤ f(b) ≤ f(c) and by the Intermediate Value Theorem

there exists a d ∈ [a, c] such that f(d) = f(b). Now d ≤ c < b implies d 6= b,

a contradiction to injectivity. Thus c = b and f is maximal at b. An analogous

argument shows that f is minimal at a.

Theorem 4.4. Let I be an interval and f : I → R be continuous and injective.

Then f is strictly increasing or decreasing.

Proof. (1) Consider I = [a, b] and assume without loss of generality that f(a) < f(b).

Let x, y ∈ I with x < y. Then, by Theorem 4.3, f attains its maximum in b and

therefore f(x) ≤ f(b). Restricted to the interval [x, b], the minimum of f is attained

at x, and thus f(x) ≤ f(y). As f is injective, in fact f(x) < f(y).

(2) Consider now an arbitrary interval I. f is continuous and injective when re-

stricted to any closed and bounded interval [a, b] ⊆ I, therefore by (1) it is strictly

increasing or decreasing on [a, b].

Now pick u, v ∈ I with u < v and assume without loss of generality that f(u) <

f(v). Let x, y ∈ I with x < y, and choose a closed interval [a, b] ⊆ I containing

x, y, u, v. f is strictly increasing or decreasing on [a, b], so f(x) < f(y).
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Examples.

1) f : (0, 2) → R, f(x) =

x x ∈ (0, 1]

3− x x ∈ (1, 2)

.

f is injective, but not strictly increasing or decreasing (it is not continuous).

2) f : (0, 1) ∪ (1, 2) → R, f(x) =

x x ∈ (0, 1)

3− x x ∈ (1, 2)

.

f is injective, continuous, but not strictly increasing or decreasing ((0, 1)∪(1, 2)

is not an interval).
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Lecture 11:

03/02/11
Theorem 4.5. Let I be an interval and f : I → R be continuous and injective.

Then f−1 : f(I) → R is continuous.

Proof. Theorem 4.4 inplies that f is strictly increasing or decreasing. Consider the

case of strictly increasing f . Let a ∈ I. Then b = f(a) ∈ f(I), and we need to show

that f−1 is continuous at b:

Fix ε > 0. If y = f(x) ∈ f(I) satisfies f(a− ε) < y < f(a + ε) then a− ε < x <

a + ε.

Choose now

δ := min{f(a + ε)− b, b− f(a− ε)} .

Then |y − b| < δ implies |x− a| < ε, so f−1 is continuous at b.
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Theorem 4.6. Let I be an interval and f : I → R be continuous and injective. Let

f be differentiable at a ∈ I and b = f(a).

(a) If f ′(a) = 0 then f−1 is not differentiable at b.

(b) If f ′(a) 6= 0 then f−1 is differentiable at b and

(f−1)′(b) =
1

f ′(a)
=

1

f ′(f−1(b))
.

Proof. (a) Let f ′(a) = 0 and assume f−1 is differentiable at b = f(a). Then

differentiating x = f−1(f(x)) gives a contradiction:

1 = (f−1)′(f(a))f ′(a) = 0 .

(b) Let f ′(a) 6= 0. Define the difference quotient

A(y) =
f−1(y)− f−1(b)

y − b
for y 6= b .

We need to show that (f−1)′(b) = lim
y→b

A(y) exists. Define now

B(x) =


f(x)− f(a)

x− a
x 6= a ,

f ′(a) x = a .

Note that lim
x→a

B(x) = f ′(a) = B(a), so B is continuous at a, and therefore

continuous on I.

f−1 is continuous on f(I), and so B ◦ f−1 is also continuous on f(I). We

compute

B ◦ f−1(y) =


y − b

f−1(y)− f−1(b)
y 6= b .

f ′(a) y = b .

Therefore B ◦ f−1(y) = 1/A(y) for y 6= b and

lim
y→b

1

A(y)
= B ◦ f−1(b) = f ′(a) ,

so (f−1)′(b) exists and equals 1/f ′(a).

27



Examples.

1) Consider f : R → R, x 7→ x3. f is differentiable, and f ′(x) = 3x2. Moreover,

f(R) = R (and f is continuous by Theorem 1.3).

f ′ > 0 on (−∞, 0) and on (0,∞), so by Theorem 2.4 f is strictly increasing

on both (−∞, 0] and [0,∞), hence on all of R.

By the corollary to Theorem 4.2, f is invertible. (The inverse f−1 : R → R it

is given by x 7→ x1/3).

From Theorem 4.5 it follows that f−1 is continuous.

From Theorem 4.6 it follows that f−1 is not differentiable at x = 0, and

differentiable for all x 6= 0 with derivative

(f−1)′(x) =
1

f ′(f−1(x))
=

1

3(x1/3)2
=

1

3x2/3
.

2) Consider f : R → R, x 7→ exp(x). f(R) = R+, f is differentiable, and

f ′(x) = exp(x) > 0.

Therefore f−1 : R+ → R, x 7→ log(x) is differentiable, and

(f−1)′(x) =
1

exp(log(x))
=

1

x
.

Lecture 12:

04/02/11
General powers, exponentials, and logarithms

For a ∈ R and b ∈ R+, we define

ba = exp(a log(b)) .

We have xa = exp(a log(x)) for a ∈ R and x ∈ R+, and differentiating using the

chain rule gives

(xa)′ = exp(a log(x))
a

x
= axa−1 .

We have bx = exp(x log(b)) for b ∈ R+ and x ∈ R, and differentiating using the

chain rule gives

(bx)′ = exp(x log(b)) log(b) = log(b)bx .
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For a ∈ R+ and b ∈ R+ \ {1} we define

logb(a) =
log(a)

log(b)
.

Considering the function logb : R+ → R, x 7→ log x

log b
, we find that for x ∈ R+

blogb(x) = exp

(
log(b)

log(x)

log(b)

)
= exp(log(x)) = x

and that for x ∈ R

logb(b
x) =

1

log(b)
log(exp(log(b)x)) =

1

log(b)
log(b)x = x ,

so that logb is the inverse of the function x 7→ bx.

Example.

The function f : R+ → R, x 7→ xx is differentiable, and

f ′(x) = (xx)′ = (exp(x log(x)))′ = exp(x log x)
(
log(x) +

x

x

)
= (1 + log x)xx .
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5 Higher Order Derivatives

Theorem 5.1 (Second Mean Value Theorem). Let f, g : [a, b] → R be continuous

on [a, b] and differentiable on (a, b). Then there exists a c ∈ (a, b) such that

g′(c)(f(b)− f(a)) = f ′(c)(g(b)− g(a)) .

Proof. Consider the auxiliary function h : [a, b] → R given by

h(x) = f(x)(g(b)− g(a))− g(x)(f(b)− f(a)) .

h is continuous on [a, b] and differentiable on (a, b). By the Mean Value Theorem

there exists a c ∈ (a, b) such that

h′(c) =
h(b)− h(a)

b− a
,

and inserting the definition of h, we find

f ′(c)(g(b)− g(a))− g′(c)(f(b)− f(a))

=
1

b− a

(
f(b)(g(b)−g(a))−g(b)(f(b)−f(a))−f(a)(g(b)−g(a))+g(a)(f(b)−f(a))

)
= 0 .

Remark. For g(x) = x, this reduces to the Mean Value Theorem.

If the derivative of a function f : D → R is again differentiable, we can consider

the second derivative f ′′ = (f ′)′. We generalise this to higher order derivatives.

Definition 5.2. Let f : D → R be n times differentiable at a ∈ D for some n ∈ N0.

We call f (n) the n-th derivative of f . It is given by

f (0)(a) = f(a) and fk+1(a) = (f (k))′(a) for 0 ≤ k < n.

We say a function is n times continuously differentiable at a ∈ D if f (n) is continuous

at a.

Remark. Conventionally, n-th derivatives are denoted by repeating dashes, i.e.

f = f (0) , f ′ = f (1) , f ′′ = f (2) , f ′′′ = f (3) , f ′′′′ = f (4) ,

but this becomes cumbersome for large n.

30



Example. For n ∈ N, let f : R → R, x 7→ |x|xn. Lecture 13:

07/02/11(a) If n ≥ 1 then f ′(x) = (n + 1)|x|xn−1:

Consider three cases:

x > 0: f(x) = xn+1, f ′(x) = (n + 1)xn

x < 0: f(x) = −xn+1, f ′(x) = −(n + 1)xn

x = 0: f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0
|x|xn−1 = 0

(b) For 0 ≤ k < n, f (k)(x) =

(
k−1∏
i=0

(n + 1− i)

)
|x|xn−k:

Use mathematical induction in k:

k = 0:

f (0)(x) =

(
−1∏
i=0

(n + 1− i)

)
|x|xn = |x|xn .

k → k + 1: For k < n,

f (k+1)(x) = (f (k))′(x) =

(
k−1∏
i=0

(n + 1− i)

)
(|x|xn−k)′

=

(
k−1∏
i=0

(n + 1− i)

)
(n + 1− k)|x|xn−k−1

=

(
k∏

i=0

(n + 1− i)

)
|x|xn−k

So f is precisely n times differentiable.

Theorem 5.3 (Taylor’s Theorem). Let f : [a, x] → R be n times continuously differ-

entiable (i.e. f (n) exists and is continuous) on [a, x] and (n + 1) times differentiable

on (a, x). Then there exists a c ∈ (a, x) such that

f(x) = f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+. . .+

f (n)(a)

n!
(x−a)n+

f (n+1)(c)

(n + 1)!
(x−a)n+1 .

Remark. A similar statement holds for x < a (replace [a, x] by [x, a] and (a, x) by

(x, a)).

Proof. Let

F (t) =f(t) +
f ′(t)

1!
(x− t) +

f ′′(t)

2!
(x− t)2 + . . . +

f (n)(t)

n!
(x− t)n

=
n∑

k=0

f (k)(t)

k!
(x− t)k .
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Then F is continuous on [a, x] and differentiable on (a, x), and

F ′(t) =
n∑

k=0

f (k+1)(t)

k!
(x− t)k −

n∑
k=1

f (k)(t)

(k − 1)!
(x− t)k−1

=
f (n+1)(t)

n!
(x− t)n .

Applying Theorem 5.1 to F (t) and g(t) = (x− t)n+1 on [a, x] shows that there exists

a c ∈ (a, x) such that F ′(c)(g(x)− g(a)) = g′(c)(F (x)−F (a)). As F (x) = f(x) and

g(x) = 0, we find that

f (n+1)(c)

n!
(x− c)n

(
0− (x− a)n+1

)
= −(n + 1)(x− c)n (f(x)− F (a)) ,

so that

f(x) = F (a) +
f (n+1)(c)

(n + 1)!
(x− a)n+1 .

Remark. We call

Tn,a(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k

the n-th degree Taylor polynomial of f at a and

Rn =
f (n+1)(c)

(n + 1)!
(x− a)n+1

the Lagrange form of the remainder term. The equation

f(x) = Tn,a(x) + Rn

is also called Taylor’s formula, and

∞∑
k=0

f (k)(a)

k!
(x− a)k

is called the Taylor series of f at a.
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Examples. Lecture 14:

10/02/11
1) Estimate e = exp(1) using Taylor’s formula:

For f(x) = exp(x), we have f (k)(x) = exp(x), and thus

Tn,0(x) =
n∑

k=0

exp(0)

k!
(x− 0)k =

n∑
k=0

xk

k!

and

Rn =
exp(c)

(n + 1)!
xn+1 .

Taylor’s Theorem applied to f = exp on [0, 1] says that there exists a c ∈ (0, 1)

such that

e = exp(1) =
n∑

k=0

1

k!
+

exp(c)

(n + 1)!
.

Using that exp(c) < exp(1) < (1 + 1/1)2 = 4, we find

n∑
k=0

1

k!
< e <

n+1∑
k=0

1

k!
+

3

(n + 1)!
.

Evaluating this chain of inequalities for n = 10 gives the bounds

2.718281826 < e < 2.718281901 .

Moreover, as ∣∣∣∣∣e−
n∑

k=0

1

k!

∣∣∣∣∣ < 4

(n + 1)!
,

we find

e =
∞∑

k=0

1

k!
.

2) Show that exp(x) =
∞∑

k=0

xk

k!
for all x ∈ R:

Taylor’s Theorem applied to f = exp on [0, x] for x > 0, or on [x, 0] for x < 0,

says that there exists a c with |c| < |x| such that

|exp(x)− Tn,0(x)| = |Rn| =
∣∣∣∣ exp(c)

(n + 1)!
xn+1

∣∣∣∣ .

Now lim
n→∞

xn

n!
= 0, so that Rn → 0 as n →∞.
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3) Show that log(x) =
∞∑

k=1

(−1)k−1

k
(x− 1)k for 1 < x ≤ 2:

For f(x) = log(x), we have f ′(x) = 1/x, f ′′(x) = −1/x2, f ′′′ = 2/x3, . . .. From

this we conjecture that for k ≥ 1

f (k)(x) =
(−1)k(k − 1)!

xk
.

holds and prove this via mathematical induction (this is a standard argument

which we omit here). We choose a = 1 and get

Tn,1(x) =
n∑

k=0

f (k)(1)

k!
(x− 1)k =

n∑
k=1

(−1)k−1

k
(x− 1)k

and

Rn =
f (n+1)(c)

(n + 1)!
(x− 1)n+1 =

(−1)n

n + 1

(
x− 1

c

)n+1

.

Taylor’s Theorem applied to f = log on [1, x] for 1 < x ≤ 2 says that there

exists a c with c ∈ (1, x) ⊆ (1, 2) such that

|log(x)− Tn,1(x)| = |Rn| ≤
1

n + 1

∣∣∣∣x− 1

c

∣∣∣∣n+1

.

Now 0 < x−1 ≤ 1 and 1 < c < x ≤ 2, so that

∣∣∣∣x− 1

c

∣∣∣∣ < 1. Therefore Rn → 0

as n →∞.

(It can be shown that this result holds not only for 1 < x ≤ 2 but for 0 < x < 2,

or, equivalently, for |x− 1| < 1.)

We return now to our discussion of the exponential function.

(I) exp(x) =
∞∑

n=0

xn

n!
.

Proof. From Example 2) above.

(J) lim
x→∞

xn exp(−x) = 0 for all n ∈ N0.

Proof. From (I) it follows that exp(x) >
xn+1

(n + 1)!
for x > 0 and n ∈ N0. Therefore

0 < xn exp(−x) <
(n + 1)!

x
,
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and, taking the limit of x →∞,

0 ≤ lim
x→∞

xn exp(−x) ≤ lim
x→∞

(n + 1)!

x
= 0 .

Lecture 15:

11/02/11
Theorem 5.4. Let f : R → R be given by

f(x) =

exp(−1/x) x > 0 ,

0 x ≤ 0 .

Then

f (k)(x) =

Pk(1/x) exp(−1/x) x > 0 ,

0 x ≤ 0 ,

where Pk is a polynomial of degree at most 2k.

Corollary. The n-th degree Taylor polynomial of f at zero is Tn,0(x) = 0.

Remark. While the Taylor polynomial can be a good approximation to a function,

it need not be. In this case all Taylor polynomials are zero, so f(x) = Rn and the

remainder does not get small.

When looking for the cause of this, one finds that close to zero the derivatives

of f become arbitrarily large. From the Lagrange form of the remainder we know

that for each n ∈ N there exists a cn ∈ (0, x) such that

exp(−1/x) = Rn−1 =
f (n)(cn)

n!
xn .

This implies that for x fixed,

f (n)(cn) =
n!

xn
exp(−1/x) →∞ as n →∞.

In other words, no matter how close x is to zero, there exists a sequence (cn) with

cn ∈ (0, x) such that lim
n→∞

f (n)(cn) = ∞.
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Proof (Theorem 5.4). We use mathematical induction in k. In the case k = 0 we

only need to choose P0(1/x) = 1. For the inductive step from k to k + 1, we need

to compute the derivative of

f (k)(x) =

Pk(1/x) exp(−1/x) x > 0 ,

0 x ≤ 0 .

For x < 0 we find f (k+1)(x) = 0, and for x > 0 we compute

f (k+1)(x) =P ′
k(1/x)(−1/x2) exp(−1/x) + Pk(1/x) exp(−1/x)(1/x2)

=(1/x2) (Pk(1/x)− P ′
k(1/x)) exp(−1/x)

=Pk+1(1/x) exp(−1/x) ,

where Pk+1(t) = t2(Pk(t) − P ′
k(t)) is a polynomial of degree at most 2k + 2. For

x = 0 we compute the left and right limits of the difference quotient separately. We

have lim
x→0−

f (k)(x)− f (k)(0)

x− 0
= 0 and find

lim
x→0+

f (k)(x)− f (k)(0)

x− 0
= lim

x→0−
(1/x)Pk(1/x) exp(−1/x)

= lim
t→∞

tPk(t) exp(−t) = 0

by (J). This concludes the inductive step.

Theorem 5.5 (L’Hospital’s Rule). Let f, g : D → R be differentiable for |x−a| < ε

and let g′(x) 6= 0 for 0 < |x − a| < ε. If lim
x→a

f(x) = lim
x→a

g(x) = 0 and if lim
x→a

f ′(x)

g′(x)

exists, then lim
x→a

f(x)

g(x)
exists and

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Proof. We first show that g(x) 6= 0 for 0 < |x− a| < ε. By assumption g(a) = 0. If

g(b) = 0 for some b with 0 < |x − b| < ε, then we apply Rolle’s Theorem to g and

find that there exists a c between a and b such that g′(c) = 0, but this contradicts

the assumption that g′(x) 6= 0 for 0 < |x− a| < ε.
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Next, by the Second Mean Value Theorem applied to f and g, there exists a c

between a and x such that

g′(c)(f(x)− f(a)) = f ′(c)(g(x)− g(a)) .

By assumption f(a) = g(a) = 0, and as g(x) 6= 0 as well as g′(c) 6= 0, we can write

f(x)

g(x)
=

f ′(c)

g′(c)
.

Finally, when x → a then necessarily c → a, so that

lim
x→a

f(x)

g(x)
= lim

c→a

f ′(c)

g′(c)
.

Lecture 16:

14/02/11Examples.

1) Apply l’Hospital’s rule:

lim
x→0

√
1 + 2x−

√
1 + x

x
= lim

x→0

1/
√

1 + 2x− 1/2
√

1 + x

1
= 1− 1

2
=

1

2
.

2) Apply l’Hospital’s rule twice:

lim
x→0

exp(x)− 1− x

x2
= lim

x→0

exp(x)− 1

2x
= lim

x→0

exp(x)

2
=

1

2
.

The rule also holds if f(x), g(x) →∞:

3)

lim
x→0

x log(|x|) = lim
x→0

log(|x|)
1/x

= lim
x→0

1/x

−1/x2
= 0 .

4)

lim
x→0

|x|x = lim
x→0

exp(x log(|x|)) = exp(lim
x→0

x log(|x|)) = exp(0) = 1 .
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6 Definition of the Riemann Integral

Let I = [a, b] for a < b be an interval. Given

a = x0 < x1 < x2 < . . . < xn−1 < xn = b ,

we call

P = {x0, x1, x2, . . . , xn−1, xn}

a partition of I. We denote the set of all partitions of I by P .

We denote Ii = [xi−1, xi] and ∆xi = xi − xi−1 for i = 1, 2, . . . , n. A partition is

called equidistant, if all Ii have equal length ∆xi.

P2 is called a refinement of P1 if P1 ⊆ P2. Two partitions P1 and P2 have a common

refinement, for example P = P1 ∪P2 is such a refinement. The notion of refinement

defines a partial order on P .

σ(P ) = max{∆xi : i = 1, 2, . . . , n} is called the mesh of P . P1 ⊆ P2 implies

σ(P1) ≥ σ(P2), i.e. a refinement has a smaller mesh.

Examples.

1) P =

{
a, a +

b− a

n
, a + 2

b− a

n
, . . . , a + n

b− a

n
= b

}
is an equidistant parti-

tion of [a, b] with σ(P ) =
b− a

n
.

2) P2 =

{
0,

1

2n
,

2

2n
, . . . ,

2n

2n

}
is a refinement of P1 =

{
0,

1

n
,
2

n
, . . . ,

n

n

}
. σ(P2) =

1

2n
< σ(P1) =

1

n
. Note that P3 =

{
0,

1

n + 1
,

2

n + 1
, . . . ,

n + 1

n + 1

}
is not a

refinement of P1.

Definition 6.1. Let f : [a, b] → R be bounded and P = {x0, x1, . . . , xn} be a

partition of [a, b]. We define the upper sum of f with respect to P

U(f, P ) =
n∑

i=1

Mi∆xi

and the lower sum of f with respect to P

L(f, P ) =
n∑

i=1

mi∆xi ,

where Mi = sup{f(x) : x ∈ Ii} and mi = inf{f(x) : x ∈ Ii}.
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Remark: Geometrically, if f is positive then the area A between the x-axis and

the graph of f(x) from a to b should satisfy

L(f, P ) ≤ A ≤ U(f, P ) .
Lecture 17:

17/02/11Example.

Given f : [−2, 1] → R, x 7→ x2 − x, consider the partition P = {−2,−1, 1}.

Then I1 = [−2,−1] and I2 = [−1, 1]. We find (and make sure you understand why!)

M1 = 6 , m1 = 2 ,

M2 = 2 , m2 = −1/4 ,

and this together with ∆x1 = 1 and ∆x2 = 2 implies

U(f, P ) = 6 · 1 + 2 · 2 = 10 ,

L(f, P ) = 2 · 1 + (−1/4) · 2 = 3/2 .

Theorem 6.2. Let f : [a, b] → R be bounded. If P2 is a refinement of the partition

P1 then

(1) U(f, P2) ≤ U(f, P1), and

(2) L(f, P2) ≥ L(f, P1).
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Proof. Let P1 = {x0, x1, . . . , xn} and P2 = P1 ∪ {y}. If xi−1 < y < xi then

M ′ = sup{f(x) : x ∈ [xi−1, y]} ≤ Mi and

M ′′ = sup{f(x) : x ∈ [y, xi]} ≤ Mi .

Therefore Mi∆xi = Mi(y−xi−1)+Mi(xi− y) ≥ M ′(y−xi−1)+M ′′(xi− y), so that

U(f, P1) =
n∑

j=1
j 6=i

Mj∆xj + Mi∆xi

≥
n∑

j=1
j 6=i

Mj∆xj + M ′(y − xi−1) + M ′′(xi − y)

=U(f, P2) .

Now let P2 be an arbitrary refinement of P1. Then P2 is obtained from P1 by adding

a finite number of points yj, creating a chain of partitions

P1 = Q0 ⊆ Q1 ⊆ . . . ⊆ Qr = P2

and

U(f, Q0) ≥ U(f, Q1) ≥ . . . ≥ U(f, Qr) .

A similar argument leads to L(f, P2) ≥ L(f, P1).

Corollary. Let P1, P2 be partitions of [a, b]. Then

L(f, P1) ≤ U(f, P2) .

Proof. Let P = P1 ∪ P2 be a common refinement of P1 and P2. Then

L(f, P1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P2) .

Corollary. {U(f, P ) : P ∈ P} is bounded below and {L(f, P ) : P ∈ P} is bounded

above.
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Definition 6.3. Let f : [a, b] → R be bounded. We call∫ ∗b

a

f(x) dx = inf{U(f, P ) : P ∈ P}

the upper integral of f and∫ b

∗a
f(x) dx = sup{L(f, P ) : P ∈ P}

the lower integral of f .

Remark. Clearly, ∫ ∗b

a

f(x) dx ≥
∫ b

∗a
f(x) dx .

Definition 6.4. A bounded function f : [a, b] → R is Riemann integrable if the

upper and lower integral of f agree. The quantity∫ b

a

f(x) dx =

∫ ∗b

a

f(x) dx =

∫ b

∗a
f(x) dx

is called the Riemann integral of f over [a, b].
Lecture 18:

18/02/11Theorem 6.5. Let f : [a, b] → R be bounded. f is Riemann integrable if and only

if

∀ε > 0∃P ∈ P : U(f, P )− L(f, P ) < ε .

Proof. “⇒” Let f be Riemann integrable and

A = sup{L(f, P ) : P ∈ P} = inf{U(f, P ) : P ∈ P} .

Then for a given ε > 0 there exist P1, P2 ∈ P such that

A− ε

2
< L(f, P1) and U(f, P2) < A +

ε

2
.

For P = P1 ∪ P2 we have

U(f, P )− L(f, P ) ≤ U(f, P2)− L(f, P1) < A +
ε

2
−
(
A− ε

2

)
= ε .
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“⇐” If for any ε > 0 there is a P ∈ P such that

U(f, P )− L(f, P ) < ε

then ∫ ∗b

a

f(x) dx−
∫ b

∗a
f(x) dx ≤ U(f, P )− L(f, P ) < ε .

As ε > 0 can be arbitrarily small,∫ ∗b

a

f(x) dx =

∫ b

∗a
f(x) dx ,

so f is Riemann integrable.

Examples.

1) Let f : [a, b] → R, x 7→ c be the constant function.

For P = {x0, x1, . . . , xn} we find mi = Mi = c and thus

U(f, P ) =
n∑

i=1

Mi∆xi = c
n∑

i=1

∆xi = c(b− a)

and

L(f, P ) =
n∑

i=1

mi∆xi = c
n∑

i=1

∆xi = c(b− a) .

Therefore f is Riemann integrable with∫ b

a

f(x) dx = c(b− a) .

2) Let f : [a, b] → R, x 7→

1 x ∈ Q ,

0 x /∈ Q .

For P = {x0, x1, . . . , xn} we find mi = 0 and Mi = 1 and thus

U(f, P ) =
n∑

i=1

Mi∆xi =
n∑

i=1

∆xi = (b− a)

and

L(f, P ) =
n∑

i=1

mi∆xi = 0 .

Therefore f is not Riemann integrable.
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3) Let f : [0, 2] → R, x 7→

0 x ∈ [0, 1) ,

1 x ∈ [1, 2] .

Choose 0 < x1 < 1 < x2 < 2 with x2 − x1 < ε and P = {0, x1, x2, 2}. Then

M1 = m1 = 0 , M2 = 1 , m2 = 0 , M3 = m3 = 1 ,

and thus

U(f, P ) = 0 · (x1 − 0) + 1 · (x2 − x1) + 1 · (2− x2)

and

L(f, P ) = 0 · (x1 − 0) + 0 · (x2 − x1) + 1 · (2− x2) ,

so that

U(f, P )− L(f, P ) = x2 − x1 < ε .

Therefore f is Riemann integrable with∫ 2

0

f(x) dx = 1 .
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Theorem 6.6. Every increasing or decreasing function f : [a, b] → R is Riemann

integrable.

Proof. Assume without loss of generality that f is increasing. Then f(a) ≤ f(x) ≤

f(b) for x ∈ [a, b], so f is bounded.

Let ε > 0. Choose a partition P with a mesh

σ(P ) ≤ ε

f(b)− f(a) + 1
.

As f is increasing, Mi = f(xi) and mi = f(xi−1), so that

U(f, P )− L(f, P ) =
n∑

i=1

(Mi −mi)∆xi =
n∑

i=1

(f(xi)− f(xi−1))∆xi

≤
n∑

i=1

(f(xi)− f(xi−1))σ(P ) = (f(b)− f(a)σ(P )

≤(f(b)− f(a))
ε

1 + f(b)− f(a)
< ε .

By Theorem 6.5, f is Riemann integrable.
Lecture 19:

28/02/11Definition 6.7. A function f : D → R is uniformly continuous if

∀ε > 0 ∃δ > 0 ∀c ∈ D ∀x ∈ D, |x− c| < δ : |f(x)− f(c)| < ε .

Remark. This means that δ is chosen independently of c. The statement that a

function f : D → R is merely continuous is equivalent to

∀c ∈ D ∀ε > 0 ∃δ > 0 ∀x ∈ D, |x− c| < δ : |f(x)− f(c)| < ε .

Note how the statement “∀c ∈ D” has moved places. Clearly a uniformly continuous

function is continuous, but a continuous function need not be uniformly continuous.

Example.

f : R → R, x 7→ x2 is continuous, but not uniformly continuous:

To show this, assume that f is uniformly continuous. Then for ε = 1, say, there

exists a δ > 0 such that |x − c| < δ ⇒ |x2 − c2| < ε = 1 for all x, c ∈ R. As δ is

independent of c, this should be true for all c, for example if c = 1/δ. But then, for

x = c + δ/2, we find |x− c| = δ/2 < δ and

|x2 − c2| = |(c + δ/2)2 − c2| = |cδ + δ2/4| = 1 + δ2/4 > 1
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which is a contradiction.

This example works because the domain is not closed and bounded. Continuous

functions on closed and bounded domains are in fact uniformly continuous. We shall

see below that this is an important ingredient in proving Riemann integrability of

continuous functions.

Theorem 6.8. Let f : [a, b] → R be continuous. Then f is uniformly continuous.

Proof. Suppose f is continuous on [a, b] but not uniformly continuous. Then

∃ε > 0 ∀δ > 0 ∃c ∈ D ∃x ∈ D, |x− c| < δ : |f(x)− f(c)| ≥ ε .

So there exists ε > 0 such that for δ = 1/n there exist cn, xn ∈ D with

|xn − cn| < δ but |f(xn)− f(cn)| ≥ ε .

Now (and this is the key step!) using Bolzano-Weierstraß, (cn) contains a convergent

subsequence. Therefore there exist (nr)r∈N such that

(a) lim
r→∞

cnr = d for some d ∈ [a, b],

(b) lim
r→∞

xnr = d (as |xnr − d| ≤ |xnr − cnr |+ |cnr − d|), and

(c) lim
r→∞

f(cnr) = f(d) and lim
r→∞

f(xnr) = f(d).

But by assumption for all n, |f(xn)− f(cn)| ≥ ε, which is a contradiction.

Theorem 6.9. Every continuous function f : [a, b] → R is Riemann integrable.
Lecture 20:

03/03/11Proof. By Theorem 6.8, f is uniformly continuous on [a, b], so that

∀ε > 0 ∃δ > 0 ∀c, c′ ∈ [a, b], |c− c′| < δ : |f(c)− f(c′)| < ε

b− a
.

Now choose a partition P with σ(P ) < δ. Then on each interval Ii, f assumes its

minimum mi at some ci and its maximum Mi at some c′i, so that mi = f(ci) and

Mi = f(c′i). As |ci − c′i| ≤ σ(P ) < δ,

Mi −mi = |f(c′i)− f(ci| <
ε

b− a
.
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Therefore

U(f, P )− L(f, P ) =
n∑

i=0

(Mi −mi)∆xi <
ε

b− a

n∑
i=1

∆xi = ε .

By Theorem 6.5, f is Riemann integrable.

Examples.

1) f : [a, b] → R, f(x) = x:

f is increasing, therefore Riemann integrable. To compute the Riemann inte-

gral, choose

Pn = {a, a + ∆, a + 2∆, . . . , a + n∆ = b}

where ∆ =
b− a

n
. The mesh of the partition is given by σ(Pn) = ∆ =

b− a

n
.

We find

mi = a + (i− 1)∆ , and Mi = a + i∆ .

Therefore

L(f, Pn) =
n∑

i=1

(a + (i− 1)∆)∆

=an∆ +
n(n− 1)

2
∆2

=a(b− a) +
1

2
(b− a)2

(
1− 1

n

)
.

Therefore∫ b

∗a
f(x) dx = lim

n→∞
L(f, Pn) = a(b− a) +

1

2
(b− a)2 =

b2

2
− a2

2
.

As we already know that f is Riemann integrable, we now conclude that∫ b

a

f(x) dx =

∫ b

∗a
f(x) dx =

b2

2
− a2

2
.

If we didn’t know that f was Riemann integrable, a computation of the upper

sums shows that

U(f, Pn) =a(b− a) +
1

2
(b− a)2

(
1 +

1

n

)
.
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Just as we should, we find that U(f, Pn)−L(f, Pn) = (b−a)2 1

n
→ 0 as n →∞,

and that ∫ ∗b

a

f(x) dx =
b2

2
− a2

2
=

∫ b

∗a
f(x) dx .

2) f : [1, a] → R, f(x) = 1/x:

f is decreasing, therefore Riemann integrable. To compute the Riemann inte-

gral, choose

Pn = {1 = q0, q1, q2, . . . , qn = a}

where q = n
√

a. We find

∆xi = qi − qi−1 = (q − 1)qi−1 ,

so that the mesh of the partition is given by σ(Pn) = (q − 1)qn−1. We find

mi =
1

qi
, and Mi =

1

qi−1
.

Therefore

L(f, Pn) =
n∑

i=1

1

qi
(q − 1)qi−1

=
n∑

i=1

1

q
(q − 1) = n

(
1− 1

q

)
= n

(
1− 1

n
√

a

)
.

Therefore ∫ a

∗1
f(x) dx = lim

n→∞
L(f, Pn) = lim

n→∞
n
(
1− a−1/n

)
= lim

n→∞
n

(
1− exp

(
− 1

n
log(a)

))
= lim

t→0

1− exp(−t log(a))

t

= lim
t→0

log(a) exp(−t log(a))

1
= log(a) .

As we already know that f is Riemann integrable, we now conclude that∫ a

1

f(x) dx =

∫ a

∗1
f(x) dx = log(a) .
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If we didn’t know that f was Riemann integrable, a computation of the upper

sums shows that

U(f, Pn) =n(q − 1) .

Just as we should, we find that U(f, Pn) − L(f, Pn) = n(q − 1)2/q → 0 as

n →∞, and that ∫ ∗a

1

f(x) dx = log(a) =

∫ a

∗1
f(x) dx .
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7 Properties of the Riemann Integral
Lecture 21:

04/03/11Theorem 7.1. Let f : [a, b] → R be Riemann integrable. If [c, d] ⊆ [a, b] then f is

Riemann integrable on [c, d].

Proof. Let ε > 0. Then there exists a partition P of [a, b] such that U(f, P ) −

L(f, P ) < ε. If we let

P ′ = P ∪ {c, d} = {x0, x1, . . . , xk = c, xk+1, . . . , xk+r = d, xk+r+1, . . . , xn}

then

U(f, P ′)− L(f, P ′) ≤ U(f, P )− L(f, P ) < ε

. Now let

P ′′ = {xk, xk+1, . . . , xk+r} .

This is a partition of [c, d] with

U(f, P ′′)− L(f, P ′′) =
k+r∑

i=k+1

(Mi −mi)∆xi

≤
n∑

i=1

(Mi −mi)∆xi

=U(f, P ′)− L(f, P ′) < ε .

Thus f is Riemann integrable on [c, d].

Theorem 7.2. Let f : [a, b] → R be Riemann integrable on [a, c] and [c, b] where

a < c < b. Then f is Riemann integrable on [a, b] and∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx .

Proof. Let ε > 0 and let P1 and P2 be partitions of [a, c] and [c, b], respectively, with

U(f, P1)− L(f, P1) <
ε

2
andU(f, P2)− L(f, P2) <

ε

2
.

Then P = P1 ∪ P2 is a partition of [a, b] with

U(f, P )− L(f, P ) = U(f, P1) + U(f, P2)− L(f, P1)− L(f, P2) < ε
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and hence f is Riemann integrable on [a, b]. Moreover, as

L(f, P1) ≤
∫ c

a

f(x) dx ≤ U(f, P1) and L(f, P2) ≤
∫ b

c

f(x) dx ≤ U(f, P2)

we have

L(f, P ) ≤
∫ c

a

f(x) dx +

∫ b

c

f(x) dx ≤ U(f, P ) .

Clearly we also have

L(f, P ) ≤
∫ b

a

f(x) dx ≤ U(f, P ) ,

and taking differences leads to

L(f, P )− U(f, P ) ≤
∫ c

a

f(x) dx +

∫ b

c

f(x) dx−
∫ b

a

f(x) dx ≤ U(f, P )− L(f, P )

or, equivalently,∣∣∣∣∫ c

a

f(x) dx +

∫ b

c

f(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ ≤ U(f, P )− L(f, P ) .

Therefore. we have shown that for all ε > 0∣∣∣∣∫ c

a

f(x) dx +

∫ b

c

f(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ < ε

so that ∫ c

a

f(x) dx +

∫ b

c

f(x) dx =

∫ b

a

f(x) dx .

Remark. Because of Theorem 7.2 it makes sense to define for a > b∫ b

a

f(x) dx = −
∫ a

b

f(x) dx .

Then, if f is Riemann integrable on a closed and bounded interval I, and a, b, c ∈ I,

we have ∫ c

a

f(x) dx +

∫ b

c

f(x) dx =

∫ b

a

f(x) dx .
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Theorem 7.3. Let f, g : [a, b] → R be bounded and P be a partition of [a, b]. Then

(a) U(f + g, P ) ≤ U(f, P ) + U(g, P ), and

(b) L(f + g, P ) ≥ L(f, P ) + L(g, P ).

Proof. For a subinterval Ii of the partition P , we write Mi(h) = sup{h(x) : x ∈ Ii}

and mi(h) = inf{h(x) : x ∈ Ii}.

(a) On a subinterval Ii of the partition P we have

Mi(f + g) = sup{f(x) + g(x) : x ∈ Ii}

≤ sup{f(x) : x ∈ Ii}+ sup{g(x) : x ∈ Ii} = Mi(f) + Mi(g) .

Thus

U(f + g, P ) =
n∑

i=1

Mi(f + g)∆xi

≤
n∑

i=1

Mi(f)∆xi +
n∑

i=1

Mi(g)∆xi = U(f, P ) + U(g, P ) .

(b) Similarly,

L(f + g, P ) =
n∑

i=1

mi(f + g)∆xi

≥
n∑

i=1

mi(f)∆xi +
n∑

i=1

mi(g)∆xi = L(f, P ) + L(g, P ) .

Lecture 22:

07/03/11
Theorem 7.4. Let f, g : [a, b] → R be Riemann integrable and c ∈ R. Then f + g

and cf are Riemann integrable, and∫ b

a

f(x) + g(x) dx =

∫ b

a

f(x) dx +

∫ b

a

g(x) dx and∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx .
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Proof. (a) Let ε > 0. Then there exist partitions P1 and P2 of [a, b] such that

U(f, P1)− L(f, P1) <
ε

2
and U(g, P2)− L(g, P2) <

ε

2
.

Let P = P1 ∪ P2. Then

U(f, P )− L(f, P ) ≤U(f, P1)− L(f, P1) <
ε

2
and

U(g, P )− L(g, P ) ≤U(g, P2)− L(g, P2) <
ε

2
.

By Theorem 7.3 it follows that

U(f + g, P )− L(f + g, P ) ≤ U(f, P ) + U(g, P )− L(f, P )− L(g, P ) < ε ,

so f + g is Riemann integrable on [a, b].

We proceed now as in the proof of Theorem 7.2. As

L(f, P ) ≤
∫ b

a

f(x) dx ≤ U(f, P ) and L(g, P ) ≤
∫ b

a

g(x) dx ≤ U(g, P )

we have

L(f, P ) + L(g, P ) ≤
∫ b

a

f(x) dx +

∫ b

a

g(x) dx ≤ U(f, P ) + U(g, P ) .

Clearly we also have

L(f, P ) + L(g, P ) ≤ L(f + g, P ) ≤
∫ b

a

f(x) + g(x) dx

≤ U(f + g, P ) ≤ U(f, P ) + U(g, P ) ,

and taking differences leads to∣∣∣∣∫ b

a

f(x) dx +

∫ b

a

g(x) dx−
∫ b

a

f(x) + g(x) dx

∣∣∣∣
≤ U(f, P ) + U(g, P )− L(f, P )− L(g, P ) .

Therefore we have shown that for all ε > 0∣∣∣∣∫ b

a

f(x) + g(x) dx−
∫ b

a

f(x) dx−
∫ b

a

g(x) dx

∣∣∣∣ < ε ,

so that ∫ b

a

f(x) + g(x) dx =

∫ b

a

f(x) dx +

∫ b

a

g(x) dx .
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(b) This is an exercise. The key step is to show that

U(cf, P )− L(cf, P ) ≤ |c|(U(f, P )− L(f, P )) .

Theorem 7.5. Let f : [a, b] → R be Riemann integrable. If g : [a, b] → R differs

from f at finitely many points then g is also Riemann integrable, and∫ b

a

g(x) dx =

∫ b

a

f(x) dx .

Proof. For c ∈ [a, b], define

χc(x) =

1 x = c ,

0 x 6= c .

If g differs from f at {c1, c2, . . . , cn}, then

g(x) = f(x) +
n∑

i=1

(g(ci)− f(ci))χci
(x) ,

and it suffices to show that χc(x) is Riemann integrable with
∫ b

a
χc(x) dx = 0. We

shall show this by choosing suitable partitions.

If a < c < b, choose P = {a, x1, x2, b} with a < x1 < x2 < b and x2 − x1 < ε. It

follows that

0 = L(χc, P ) < U(χc, P ) < ε .

If c = a, choose P = {a, x1, b} with a < x1 < b and x1 − a < ε. It follows that

0 = L(χa, P ) < U(χa, P ) < ε .

If c = b, choose P = {a, x1, b} with a < x1 < b and b− x1 < ε. It follows that

0 = L(χb, P ) < U(χb, P ) < ε .

Thus, for all ε > 0 there exists a partition P with U(χc, P )−L(χc, P ) < ε. Therefore

χc is Riemann integrable. As L(χc, P ) = 0 for any partition P ,∫ b

a

χc(x) dx = 0 .
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Lecture 23:

10/03/11
Theorem 7.6. Let f, g : [a, b] → R be Riemann integrable. If f(x) ≤ g(x) for all

x ∈ [a, b] then ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx .

Proof. As g(x)− f(x) ≥ 0, we find

0 ≤ L(g − f, P ) ≤
∫ b

a

g(x)− f(x) dx =

∫ b

a

g(x) dx−
∫ b

a

f(x) dx .

Theorem 7.7. If f : [a, b] → R is Riemann integrable, then |f | is Riemann inte-

grable, and ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx .

Proof. For a partition P of [a, b], we define

Mi = sup{f(x) : x ∈ Ii} , M∗
i = sup{|f(x)| : x ∈ Ii} ,

mi = inf{f(x) : x ∈ Ii} , m∗
i = inf{|f(x)| : x ∈ Ii} .

Starting with

||f(x)| − |f(y)|| ≤ |f(x)− f(y)|

we can show (exercise problem) that

M∗
i −m∗

i ≤ Mi −mi .

Therefore

U(|f |, P )− L(|f |, P ) =
n∑

i=1

(M∗
i −m∗

i )∆xi

≤
n∑

i=1

(Mi −mi)∆xi = U(f, P )− L(f, P ) .

As f is Riemann integrable, it follows that |f | is Riemann integrable. Furthermore,

−|f(x)| ≤ f(x) ≤ |f(x)|
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implies by Theorem 7.6 that

−
∫ b

a

|f(x)|dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

|f(x)|dx .

Theorem 7.8. If f : [a, b] → R is Riemann integrable then f 2 is Riemann integrable.

Proof. As f is bounded on [a, b], there exists an M ∈ R such that |f(x)| ≤ M for

all x ∈ [a, b]. Given a partition P of [a, b], we have

Mi(f
2) = (Mi(|f |))2 and mi(f

2) = (mi(|f |))2 .

Therefore

Mi(f
2)−mi(f

2) = (Mi(|f |)+mi(|f |))(Mi(|f |)−mi(|f |)) ≤ 2M(Mi(|f |)−mi(|f |)) .

Thus

U(f 2, P )− L(f 2, P ) ≤ 2M(U(|f |, P )− L(|f |, P )) ,

and hence f 2 is Riemann integrable.

Remark. The above proof shows also that∫ b

a

f 2(x) dx ≤ 2M

∫ b

a

|f(x)|dx .

Theorem 7.9. If f, g : [a, b] → R are Riemann integrable then fg is Riemann

integrable.

Proof. We write

f(x)g(x) =
1

4

(
(f(x) + g(x))2 − (f(x)− g(x))2

)
.

Now f + g and f − g are Riemann integrable by Theorem 7.4, and thus (f + g)2 and

(f − g)2 are Riemann integrable by Theorem 7.8. By Theorem 7.4 it follows that

fg =
1

4
((f + g)2 − (f − g)2) is Riemann integrable.
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8 The Fundamental Theorem of Calculus
Lecture 24:

11/03/11Definition 8.1. Let I be an interval and let f : I → R. A differentiable function

F : I → R is called an antiderivative of f if F ′(x) = f(x) for all x ∈ I.

Theorem 8.2. If F and G are antiderivatives of f , then G = F +c for some c ∈ R.

Also, F + c is an antiderivative of f for all c ∈ R.

Proof. (G−F )′ = G′−F ′ = f−f = 0, so G−F is constant. Also (F +c)′ = F ′ = f

for all c ∈ R.

Theorem 8.3 (The Fundamental Theorem of Calculus). Let f : [a, b] → R be

Riemann-integrable. If F is an antiderivative of f then∫ b

a

f(x) dx = F (b)− F (a) .

Proof. Let P be a partition of [a, b]. Applying the Mean Value Theorem to F on Ii,

there exists a ci ∈ (xi−1, xi) such that

F (xi)− F (xi−1) = F ′(ci)(xi − xi−1) = f(ci)∆xi .

As

mi = inf{f(x) : x ∈ Ii} ≤ f(ci) ≤ sup{f(x) : x ∈ Ii} = Mi ,

it follows that

L(f, P ) ≤
n∑

i=1

(F (xi)− F (xi−1)) ≤ U(f, P ) .

Therefore ∫ b

∗a
f(x) dx ≤ F (b)− F (a) ≤

∫ ∗b

a

f(x) dx ,

and as f is Riemann integrable, it follows that∫ b

a

f(x) dx = F (b)− F (a) .

Example. An antiderivative of f(x) = 1/x is F (x) = log(x), as F ′(x) = f(x). We

use this to compute∫ a

1

dx

x
= log(x)|a1 = log(a)− log(1) = log(a) .

For further examples, see Calculus I.
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Theorem 8.4. Let f : [a, b] → R be Riemann integrable and define F : [a, b] → R

by

F (t) =

∫ t

a

f(x) dx .

Then

(a) F is continuous on [a, b].

(b) If f is continuous at c ∈ [a, b] then F is differentiable at c and F ′(c) = f(c).

Proof. (a) f is Riemann integrable, hence bounded, i.e. there exists an M ∈ R

such that |f(x)| ≤ M for all x ∈ [a, b].

Given t, t0 ∈ [a, b], we have

|F (t)− F (t0)| =
∣∣∣∣∫ t

a

f(x) dx−
∫ t0

a

f(x) dx

∣∣∣∣ =

∣∣∣∣∫ t

t0

f(x) dx

∣∣∣∣ ≤ M |t− t0| .

If |t− t0| < δ =
ε

M
then |F (t)− F (t0)| < ε, implying continuity of F .

(b) Let f be continuous at c, i.e. ∀ε > 0 ∃δ > 0 ∀x ∈ [a, b], |x − c| < δ :

|f(x)− f(c)| < ε. Hence, if 0 < |t− c| < δ then∣∣∣∣F (t)− F (c)

t− c
− f(c)

∣∣∣∣ =

∣∣∣∣∣
∫ t

c
f(x) dx−

∫ t

c
f(c) dx

t− c

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ t

c
|f(x)− f(c)|dx

t− c

∣∣∣∣∣ < ε .

Thus F ′(c) = lim
t→c

F (t)− F (c)

t− c
exists and F ′(c) = f(c).

Lecture 25:

14/03/11Example. Let f : [−1, 1] → R be given by

f(x) =

0 x ∈ [−1, 0] ,

1 x ∈ (0, 1] .

Then

F (t) =

∫ t

−1

f(x) dx =

0 t ∈ [−1, 0] ,

t t ∈ (0, 1] .

The function F is continuous on [−1, 1] and differentiable on [−1, 0)∪ (0, 1], but not

differentiable at t = 0.
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Corollary. Every continuous function f : [a, b] → R has an antiderivative.

Proof. By Theorem 8.4, F (t) =
∫ t

a
f(t) dt is an antiderivative of f .

Definition 8.5. If F is an antiderivative of f , we define∫
f(x) dx = F (x) + c ,

the indefinite integral of f .

Theorem 8.6. If f and g have antiderivatives on I, then so do f + g and cf for

c ∈ R. Moreover,∫
f(x) + g(x) dx =

∫
f(x) dx +

∫
g(x) dx and

∫
cf(x) dx = c

∫
f(x) dx .

Proof. F ′ = f and G′ = g imply (F + G)′ = F ′ + G′ = f + g. Therefore∫
f(x) + g(x) dx = F (x) + G(x) =

∫
f(x) dx +

∫
g(x) dx .

Similarly, (cF )′ = cF ′, so that∫
cf(x) dx = cF (x) = c

∫
f(x) dx .

Theorem 8.7. Let f, g : I → R be differentiable. If fg′ has an antiderivative, then

so does f ′g, and ∫
f ′(x)g(x) dx = f(x)g(x)−

∫
f(x)g′(x) dx; .

Proof. Let H be the antiderivative of h = fg′, i.e. H ′ = h = fg′. Then (fg)′ =

f ′g + fg′ implies that

f ′g = (fg)′ − fg′ = (fg)′ −H ′ = (fg −H)′ .

Therefore fg −H is an antiderivative of f ′g, and∫
f ′(x)g(x) dx = f(x)g(x)−H(x) = f(x)g(x)−

∫
f(x)g′(x) dx .
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Theorem 8.8. Let g : I → R be differentiable and let F be an antiderivative of

f : g(I) → R. Then F ◦ g is an antiderivative of (f ◦ g)g′, i.e.

F (g(x)) =

∫
f(g(x))g′(x) dx .

Proof. We verify that (F ◦ g)′(x) = F ′(g(x))g′(x) = f(g(x))g′(x).

Corollary. Let g : [a, b] → R be continuously differentiable and let f : g([a, b]) → R

be continuous. Then ∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(u)du .

Proof. f and (f ◦g)g′ are both continuous on [a, b], hence Riemann integrable. As f

is continuous, it has an antiderivative, F . By Theorem 8.8, F ◦g is an antiderivative

of (f ◦ g)g′, and ∫
f(g(x))g′(x) = F (g(x)) .

By the Fundamental Theorem of Calculus,∫ b

a

f(g(x))g′(x) dx = F (g(b))− F (g(a)) =

∫ g(b)

g(a)

f(u) du .
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9 Sequences and Series of Functions

Let D ⊆ R be a domain. Unless stated otherwise, in this section all functions map

D → R.

Recall that a sequence (an) of real numbers converges to a limit a if

∀ε > 0 ∃n0 ∈ N ∀n ≥ n0 : |an − a| < ε .

Similarly, for a sequence of functions (fn) we can discuss convergence of this sequence

to a limiting function. This leads to the consideration of the convergence of the

sequence (an) where an = fn(x) for x ∈ D. Keeping the point x fixed, this leads

to the notion of pointwise convergence, while allowing x to vary within the domain

D leads to the notion of uniform convergence. The next definition makes this idea

more precise.

Definition 9.1. Let (fn) be a sequence of functions.

(1) fn converges pointwise to a function f if

∀x ∈ D ∀ε > 0 ∃n0 ∈ N ∀n ≥ n0 : |fn(x)− f(x)| < ε .

(2) fn converges uniformly to a function f if

∀ε > 0 ∃n0 ∈ N ∀n ≥ n0 ∀x ∈ D : |fn(x)− f(x)| < ε .

Lecture 26:

17/03/11Remark. In (1) n0 depends on x and ε, whereas in (2) n0 depends on ε, but not

on x. In both cases, we can write

f(x) = lim
n→∞

fn(x) .

Note that the limit notation does not indicate whether the convergence is uniform

or pointwise.

Clearly uniform convergence implies pointwise convergence, but the converse is

not true.
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Examples.

(1) fn : [0, 1] → R, x 7→ xn.

We find

lim
n→∞

fn(x) = lim
n→∞

xn =

0 0 ≤ x < 1 ,

1 x = 1 .

Thus fn converges pointwise to the discontinuous function

f : [0, 1] → R , x 7→

0 0 ≤ x < 1 ,

1 x = 1 .

This convergence is not uniform: we need to show

∃ε > 0 ∀n0 ∈ N ∃n ≥ n0 ∃x ∈ [0, 1] : |fn(x)− f(x)| ≥ ε .

Take ε = 1/2 and consider x = 2−1/n:

|fn(2−1/n)− f(2−1/n)| = |(2−1/n)n − 0| = 1

2
≥ ε .
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(2) fn : [0, 1/2] → R, x 7→ xn.

For 0 ≤ x ≤ 1/2 we find lim
n→∞

fn(x) = lim
n→∞

xn = 0. Thus fn converges to

f : [0, 1/2] → R , x 7→ 0 .

This convergence is uniform:

The difference between fn(x) and f(x) is largest at x = 1/2. Therefore, if we

pick an integer n0 such that n0 > − log(ε)/ log(2) to ensure (1/2)n0 < ε, then

for all n ≥ n0,

|fn(x)− f(x)| = |xn − 0| ≤ (1/2)n ≤ (1/2)n0 < ε .
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(3) fn : [0, 2] → R,

x 7→


nx 0 ≤ x ≤ 1/n ,

2− nx 1/n < x ≤ 2/n ,

0 2/n < x ≤ 2 .

fn(0) = 0, and if 0 < x ≤ 2 then fn(x) = 0 if n ≥ 2/x, so that

lim
n→∞

fn(x) = 0 for all 0 ≤ x ≤ 2.

Thus fn converges to

f : [0, 2] → R , x 7→ 0 .

This convergence is not uniform: take ε = 1 and consider x = 1/n:

|fn(1/n)− f(1/n)| = |1− 0| = 1 ≥ ε .
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Lecture 27:

18/03/11
Remark. The following figures indicate the idea of an “ε-tube” around the limiting

function f .

In the case of uniform convergence, given ε > 0, the graph of y = fn(x) must lie

entirely within the ε-tube of f for all sufficiently large n.

When the limiting function f is discontinuous, the ε-tube is “broken”.

If f is a limit of continuous fn, no fn can lie entirely within the ε-tube of f if ε is

sufficiently small.
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Theorem 9.2. Let fn : D → R converge uniformly to f : D → R. If fn are

continuous at a ∈ D then f is continuous at a.

Proof. We need to show

∀ε > 0 ∃δ > 0 ∀x ∈ D, |x− a| < δ : |f(x)− f(a)| < ε .

By assumption we have

(a) ∀ε′ > 0 ∃n0 ∈ N ∀n ≥ n0 ∀x ∈ D : |f(x)− fn(x)| < ε′, and

(b) ∀ε′′ > 0 ∃δ > 0 ∀x ∈ D, |x− a| < δ : |fn(x)− fn(a)| < ε′′.

We start estimating the distance between f(x) and f(a) by splitting |f(x) − f(a)|

into three parts:

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)| .

First, given ε > 0, we choose ε′ = ε/3. By (a) there is an n0 such that for all n ≥ n0

and for all x ∈ D:

|f(x)− fn(x)| < ε/3

(so that clearly also |f(a)− fn(a)| < ε/3). Next, fix an n > n0 and choose ε′′ = ε/3.

By (b) there exists a δ > 0 such that for all x ∈ D,

|x− a| < δ : |fn(x)− fn(a)| < ε/3 .

Thus, given ε > 0 we have shown that there is a δ > 0 such that

|f(x)− f(a)| < ε

3
+

ε

3
+

ε

3
= ε

for |x− a| < δ.

Remark. This theorem implies that under the assumption of uniform convergence

of the functions we can exchange limits as follows:

lim
x→a

lim
n→∞

fn(x)︸ ︷︷ ︸
f(x)

= lim
n→∞

lim
x→a

fn(x)︸ ︷︷ ︸
fn(a)

.

If the convergence of fn to f is not uniform, this is generally not correct. For example

lim
x→1−

lim
n→∞

xn = 0 but lim
n→∞

lim
x→1−

xn = 1 (see example (1) above).

An immediate consequence of Theorem 9.2 is the next theorem.
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Theorem 9.3. If a sequence of continuous functions converges uniformly, then the

limiting function is continuous.

Remark. If the limiting function of a sequence of continuous functions is discon-

tinuous, the convergence cannot be uniform.

Examples (continued).

(1) fn are continuous, the limiting function is not continuous. Therefore the con-

vergence of fn to f cannot be uniform.

(2) fn are continuous, and the convergence is uniform. Therefore the limiting

function is continuous.

(3) fn are continuous, the limiting function is continuous. However, this does not

imply uniform convergence.

Theorem 9.4. Let fn : [a, b] → R be Riemann integrable. If fn converges uniformly

to f : [a, b] → R then f is Riemann integrable and∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx .

Remark. This theorem implies that under the assumption of uniform convergence

of the functions we can exchange limits as follows:∫ b

a

lim
n→∞

fn(x) dx = lim
n→∞

∫ b

a

fn(x) dx .

Lecture 28:

21/03/11Proof. Let ε > 0. We want to show that there exists a partition P such that

U(f, P )− L(f, P ) < ε. We shall do this in three steps.

(a) We know that fn converges uniformly to f :

∃n ∈ N ∀x ∈ [a, b] : |f(x)− fn(x)| < ε

3(b− a)
.

(b) Once n is chosen, we use Riemann integrability for fn:

∃P : U(fn, P )− L(fn, P ) <
ε

3
.
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(c) Now we constrain upper and lower sums U(f, P ) and L(f, P ): fn is bounded,

and (a) implies that f − fn is bounded, so that

Mi = sup{f(x) : x ∈ Ii} ≤ sup{fn(x) : x ∈ Ii}+ sup{f(x)− fn(x) : x ∈ Ii}

≤M
(n)
i +

ε

3(b− a)
, and

mi = inf{f(x) : x ∈ Ii} ≥ inf{fn(x) : x ∈ Ii}+ inf{f(x)− fn(x) : x ∈ Ii}

≥m
(n)
i − ε

3(b− a)
.

Therefore

U(f, P )− U(fn, P ) ≤
n∑

i=1

(Mi −M
(n)
i )∆xi ≤

ε

3(b− a)

n∑
i=1

∆xi =
ε

3
, and

L(f, P )− L(fn, P ) ≥
n∑

i=1

(mi −m
(n)
i )∆xi ≥ − ε

3(b− a)

n∑
i=1

∆xi = −ε

3
.

Thus

U(f, P )− L(f, P ) =

(U(f, P )− U(fn, P )) + (U(fn, P )− L(fn, P )) + (L(fn, P )− L(f, P ))

≤ ε

3
+

ε

3
+

ε

3
= ε .

Therefore f is Riemann integrable.

Moreover∣∣∣∣∫ b

a

f(x) dx−
∫ b

a

fn(x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

f(x)− fn(x) dx

∣∣∣∣
≤
∫ b

a

|f(x)− fn(x)| dx ≤ (b− a) sup{|f(x)− fn(x)| : x ∈ [a, b]} <
ε

3
,

so

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx .
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Example.

(4) Consider

fn : [0, 2] → R , x 7→


n2x 0 ≤ x ≤ 1/n ,

2n− n2x 1/n < x ≤ 2/n ,

0 2/n < x ≤ 2 .

As in Example (3), as n →∞, fn(x) → f(x) = 0 pointwise, but not uniformly.

We compute∫ 2

0

fn(x) dx =

∫ 1/n

0

n2x dx +

∫ 2/n

1/n

(2n− n2x) dx = 1

which is not equal to ∫ 2

0

f(x) dx = 0 .
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Theorem 9.5. Let fn : [a, b] → R be continuously differentiable. If fn converges

pointwise to f : [a, b] → R and f ′n converges uniformly to g : [a, b] → R, then f is

differentiable and f ′ = g.

Remark.

This theorem implies that under the assumption of uniform convergence of the

derivative of the functions we can exchange limits as follows:(
lim

n→∞
fn

)′
= lim

n→∞
(f ′n) .

Lecture 29:

24/03/11Proof. Consider gn = f ′n. By assumption, gn converges uniformly to g on [a, b].

Hence, by Theorem 9.3, g is continuous.

Moreover, gn is Riemann integrable on [a, b]. Restricting to the interval [a, x]

for a < x ≤ b, we apply Theorem 9.4 to g on [a, x]. It follows that g is Riemann

integrable on [a, x] and that∫ x

a

g(t) dt = lim
n→∞

∫ x

a

gn(t) dt .

Now fn(x) = fn(a) +
∫ x

a
gn(t) dt is an antiderivative of gn = f ′n, and as fn

converges pointwise to f , we compute

f(x) = lim
n→∞

fn(x) = lim
n→∞

(
fn(a) +

∫ x

a

gn(t) dt

)
= lim

n→∞
fn(a) + lim

n→∞

∫ x

a

gn(t) dt = f(a) +

∫ x

a

g(t) dt .

As g is continuous, by Theorem 8.4 f is differentiable. This implies that f is an

antiderivative of g and, hence, that f ′ = g.

Remarks.

(1) We only need convergence of fn to f at one point x0. Moreover, it follows

that fn converges uniformly to f .
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Proof. By the Mean Value Theorem, (fn−f)(x) = (fn−f)(x0)+(x−x0)(f
′
n−

f ′)(cn) for some cn ∈ (a, b). Hence

|fn(x)− f(x)| ≤ |fn(x0)− f(x0)|+ (b− a)|f ′n(cn)− f ′(cn)| .

The first term tends to zero because fn(x0) converges to f(x0), and the second

term tends to zero because f ′n converges to f ′ uniformly.

(2) It suffices for fn to be differentiable, i.e. f ′n need not be continous (without

proof).

(3) Even if fn is differentiable and fn → f uniformly, the limiting function need

not be differentiable.

Definition 9.6. (a)
∞∑

n=1

fn(x) converges pointwise if

sk(x) =
k∑

n=1

fn(x)

converges pointwise as k →∞.

(b)
∞∑

n=1

fn(x) converges uniformly if

sk(x) =
k∑

n=1

fn(x)

converges uniformly as k →∞.

Example.
∞∑

n=1

1

(2 + x2)n
converges uniformly: we compute

sk(x) =
k∑

n=1

1

(2 + x2)n
=

1

2 + x2
·
1− 1

(2 + x2)k

1− 1

2 + x2

=
1

1 + x2

(
1− 1

(2 + x2)k

)
.

As
1

2 + x2
≤ 1

2
for all x ∈ R,

1

(2 + x2)k
→ 0 as k → ∞, which implies (pointwise)

convergence
∞∑

n=1

1

(2 + x2)n
=

1

1 + x2
.
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We estimate ∣∣∣∣ 1

1 + x2
− sk(x)

∣∣∣∣ =
1

1 + x2
· 1

(2 + x2)k
≤ 1

2k
.

The bound 1/2k tends to zero as k → ∞ independently of x, so convergence is

uniform. Lecture 30:

25/03/11
Theorem 9.7 (Weierstraß M-Test). Let

∞∑
n=1

an be convergent. If |fn(x)| ≤ an for

all x ∈ D then
∞∑

n=1

fn(x) converges uniformly on D.

Proof. We estimate∣∣∣∣∣
∞∑

n=1

fn(x)−
k∑

n=1

fn(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=k+1

fn(x)

∣∣∣∣∣ ≤
∞∑

n=k+1

|fn(x)| ≤
∞∑

n=k+1

an .

As
∞∑

n=1

an converges, the bound
∞∑

n=k+1

an → 0 as k →∞ independently of x ∈ D.

Example (continued). For fn(x) =
1

(2 + x2)n
we estimate

|fn(x)| ≤ 1

2n
= an ,

and as
∞∑

n=1

an =
∞∑

n=1

1

2n
= 1 converges, by the Weierstraß M-Test

∞∑
n=1

fn(x) converges

uniformly for x ∈ R.

Theorem 9.8. (a) Let fn be continuous. If
∞∑

n=1

fn is uniformly convergent then

f =
∞∑

n=1

fn is continuous.

(b) Let fn be continuously differentiable. If
∞∑

n=1

fn is convergent and
∞∑

n=1

f ′n is

uniformly convergent then f =
∞∑

n=1

fn is differentiable and f ′ =
∞∑

n=1

f ′n.

(c) Let fn be Riemann integrable on [a, b]. If
∞∑

n=1

fn is uniformly convergent then

f =
∞∑

n=1

fn is Riemann integrable and
b∫

a

f(x) dx =
∞∑

n=1

∫ b

a
fn(x) dx.

Proof. This is an immediate consequence of Theorems 9.3, 9.4, and 9.5.
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10 Power Series

Definition 10.1.
∞∑

n=0

anx
n with an ∈ R is called a power series.

Its radius of convergence r is given by

r = sup

{
|x| :

∞∑
n=0

anx
n converges

}
.

(a finite r may not exist if
∞∑

n=0

anx
n converges for all x ∈ R.)

Theorem 10.2. (a) If
∞∑

n=0

anx
n converges for x = c, then

∞∑
n=0

anx
n converges ab-

solutely for all x ∈ R with |x| < |c|.

(b) If
∞∑

n=0

anx
n diverges for x = c, then

∞∑
n=0

anx
n diverges for all x ∈ R with

|x| > |c|.

Proof. (a) Convergence of
∞∑

n=0

anc
n implies that lim

n→∞
anc

n = 0. Thus for |x| < |c|

there exists a n0 ∈ N such that

|anx
n| = |anc

n| ·
∣∣∣x
c

∣∣∣n ≤ ∣∣∣x
c

∣∣∣n for n ≥ n0.

Therefore
∞∑

n=n0

|anx
n| is majorised by

∞∑
n=n0

∣∣∣x
c

∣∣∣n, which converges absolutely.

(b) If
∞∑

n=0

anx
n converged for some x with |x| > |c|, then by (a)

∞∑
n=0

any
n would

converge for all y with |y| < |x|, in particular for y = c, which is a contradic-

tion.

Corollary.
∞∑

n=0

anx
n converges absolutely for all x ∈ R with |x| < r and diverges for

all x ∈ R with |x| > r, where r is the radius of convergence of
∞∑

n=0

anx
n.

Remark. Convergence for x = ±r must be considered separately.
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Theorem 10.3. Let r > 0 be the radius of convergence of
∞∑

n=0

anx
n and let 0 < ρ < r.

Then
∞∑

n=0

anx
n converges uniformly on D = {x ∈ R : |x| ≤ ρ}.

Proof. As ρ < r,
∞∑

n=0

anx
n converges absolutely. As |anx

n| ≤ |anρ
n| for x ∈ D, the

Weierstraß M-Test implies uniform convergence of
∞∑

n=0

anx
n on D.

Lecture 31:

28/03/11Theorem 10.4. Let r > 0 be the radius of convergence of f(x) =
∞∑

n=0

anx
n. Then

for all x ∈ R such that |x| < r,∫ x

0

f(t) dt =
∞∑

n=0

an
xn+1

n + 1
.

Proof. Choose ρ ∈ R such that 0 < ρ < r. Then
∞∑

n=0

anx
n converges uniformly on

D = {x ∈ R : |x| ≤ ρ}. As fn(x) = anx
n is Riemann integrable, Theorem 9.8(c)

implies that f(x) =
∞∑

n=0

anx
n is Riemann integrable on D and that

∫ x

0

f(t) dt =
∞∑

n=0

∫ x

0

ant
n dt =

∞∑
n=0

an
xn+1

n + 1
.

Theorem 10.5. Let r > 0 be the radius of convergence of f(x) =
∞∑

n=0

anx
n. Then

for all x ∈ R such that |x| < r,

f ′(x) =
∞∑

n=1

nanx
n−1 .

Proof. Choose ρ ∈ R such that 0 < ρ < r. Then
∞∑

n=0

anx
n converges uniformly

on D = {x ∈ R : |x| ≤ ρ}. To apply Theorem 9.8(b), we need to show that
∞∑

n=0

nanx
n also converges uniformly on D. Once this is established, it follows that f

is differentiable on D and that f ′(x) =
∞∑

n=0

nanx
n−1.

Now pick ρ′ such that ρ < ρ′ < r. Then
∞∑

n=0

anρ
′n converges absolutely, and

|nanx
n| ≤ |nanρ

n| = |anρ
′n|
∣∣∣∣n( ρ

ρ′

)n∣∣∣∣︸ ︷︷ ︸
≤1 for n≥n0

≤ |anρ
′n|
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implies by the Weierstraß M-Test uniform convergence of
∞∑

n=0

nanx
n for |x| ≤ ρ, as

needed.

Corollary. f(x) =
∞∑

n=0

anx
n is for |x| < r infinitely often differentiable, and f (k)(x) =

∞∑
n=k

n(n− 1) . . . (n− k + 1)anx
n−k.

Remark. We find f (k)(0) = k!ak, so that f(x) =
∞∑

n=0

f (n)(0)

n!
xn, the Taylor series of

f about zero.

Examples.

(1) For |x| < 1 we have

1

1 + x
= 1− x + x2 − x3 + . . . =

∞∑
n=0

(−1)nxn ,

and integration gives by Theorem 10.4

log(1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . . =

∞∑
n=0

(−1)n xn+1

n + 1

for |x| < 1 (we had only proved this earlier for 0 ≤ x < 1).

Note that for x = 1 the first sum diverges (1− 1 + 1− 1 + . . .) but the second

sum converges (1 − 1/2 + 1/3 − 1/4 + . . .), whereas for x = −1 both sums

diverge. Lecture 32:

31/03/11
(2) For |x| < 1 we have

1

1− x2
=

∞∑
n=0

x2n .

As
1

1− x2
=

1

2

(
1

1− x
+

1

1 + x

)
, we have for |x| < 1

1

2
log

1 + x

1− x
=

∫ x

0

dx

1− x2
=

∞∑
n=0

x2n+1

2n + 1
.

Thus, for example, x = 1/2 gives

log 3 = 2

(
1

2
+

1

3 · 23
+

1

5 · 25
+ . . .

)
.
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(3) exp(−x2) =
∞∑

n=0

(−1)nx2n

n!
for all x ∈ R, so that

∫ x

0

exp(−t2) dt =
∞∑

n=0

(−1)nx2n+1

n!(2n + 1)
for all x ∈ R.

(4)
1

1 + x2
=

∞∑
n=0

(−1)nx2n for |x| < 1, so that

arctan x =

∫ x

0

dt

1 + t2
=

∞∑
n=0

(−1)nx2n+1

2n + 1
for |x| < 1.

We shall now connect power series to Taylor series. We note that

f(x) =
∞∑

n=0

an(x− a)n

converges for |x− a| < r, where r > 0 is the radius of convergence of
∞∑

n=0

anx
n. We

identify f (k)(a) = k!ak, so that

f(x) =
∞∑

n=0

f (n)(a)

n!
(x− a)n ,

which is just the Taylor series of f about a.

Theorem 10.6 (Taylor’s Theorem with Integral Form of the Remainder). Let

f : [a, x] → R be n times continuously differentiable on [a, x] and (n + 1) times

differentiable on (a, x). Then

f(x) = Tn,a(x) +

∫ x

a

f (n+1)(t)

n!
(x− t)n dt .

Proof. As in the proof of Taylor’s Theorem (Theorem 5.3), we write

F (t) = Tn,t(x) =
n∑

k=0

f (k)(t)

k!
(x− t)k

and compute

F ′(t) =
f (n+1)(t)

n!
(x− t)n .

Therefore by the Fundamental Theorem of Calculus

F (x)− F (a) =

∫ x

a

F ′(t) dt =

∫ x

a

f (n+1)(t)

n!
(x− t)n dt ,
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and with F (x) = Tn,x(x) = f(x) and F (a) = Tn,a(x) we have

f(x) = Tn,a(x) +

∫ x

a

f (n+1)(t)

n!
(x− t)n dt .

Remark. An analogous result holds if [a, x] is replaced by [x, a] for x < a.

Theorem 10.7. For α ∈ R we have

(1 + x)α =
∞∑

k=0

(
α

k

)
xk for |x| < 1,

where

(
α

k

)
=

α(α− 1) . . . (α− k + 1)

k!
.

Proof. We need only consider x 6= 0. We apply Theorem 10.6 to f(x) = (1 + x)α.

From

f (k)(x) = α(α− 1) . . . (α− k + 1)(1 + x)α−k

we see that f (k)(0) = α(α− 1) . . . (α− k + 1). Therefore

(1 + x)α =
n∑

k=0

(
α

k

)
xk +

∫ x

0

α(α− 1) . . . (α− n)

n!
(1 + t)α−n−1(x− t)n dt .

We need to estimate the remainder term∫ x

0

α(α− 1) . . . (α− n)

n!
(1 + t)α−n−1(x− t)n dt

= α

(
α− 1

n

)∫ x

0

(1 + t)α−1

(
x− t

1 + t

)n

dt

If x > 0 we have 0 ≤ t ≤ x < 1, so that

0 ≤ x− t

1 + t
= x− t

1 + x

1 + t
≤ x .

Similarly, if x < 0 we have 0 ≥ t ≥ x > −1, so that

0 ≥ x− t

1 + t
= x− t

1 + x

1 + t
≥ x .

Taken together, we conclude that inside the integral we can estimate∣∣∣∣x− t

1 + t

∣∣∣∣ ≤ |x| .
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Moreover, for |x| < 1, M = max{|1+t|α−1 : |t| ≤ |x|} is finite. Putting this together,

we arrive at∣∣∣∣α(α− 1

n

)∫ x

0

(1 + t)α−1

(
x− t

1 + t

)n

dt

∣∣∣∣ ≤ M

∣∣∣∣α(α− 1

n

)∣∣∣∣ |x|n .

Applying the quotient test, we find that

M

∣∣∣∣α(α− 1

n + 1

)∣∣∣∣ |x|n+1

M

∣∣∣∣α(α− 1

n

)∣∣∣∣ |x|n =

∣∣∣∣1− α

n + 1

∣∣∣∣ |x| → |x| < 1 as n →∞,

and thus M

∣∣∣∣α(α− 1

n

)∣∣∣∣ |x|n → 0 as n →∞. This proves that

∫ x

0

α(α− 1) . . . (α− n)

n!
(1 + t)α−n−1(x− t)n dt → 0

as n →∞, as required.

Examples. For |x| < 1,

1√
1 + x

=
∞∑

k=0

(
−1/2

k

)
xk ,

so that (also for |x| < 1)

1√
1− x2

=
∞∑

k=0

(
−1/2

k

)
(−1)kx2k .

Term-by-term intergration gives

arcsin(x) =

∫ x

0

dt√
1− t2

=
∞∑

k=0

(
−1/2

k

)
(−1)k

2k + 1
x2k+1

= x +
1

2

x3

3
+

1 · 3
2 · 4

x5

5
+

1 · 3 · 5
2 · 4 · 6

x7

7
+ . . . .
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