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Chapter I

Why Differential Topology?

General topology arose by abstracting from the “usual spaces” of euclidean or noneuclidean geometry
and defining more general notions of ‘spaces’. One such generalization is that of a metric space.
Abstracting further one is led to the very general concept of a topological space, which is just specific
enough to talk about notions like neighborhoods, convergence and continuity. However, in order to
prove non-trivial results one is immediately forced to define and impose additional properties that
a topological space may or may not possess: the Hausdorff property, regularity, normality, first and
second countability, compactness, local compactness, σ-compactness, paracompactness, metrizability,
etc. (The book [29] considers 61 such attributes without being at all exhaustive.) This is not to
say that there is anything wrong with general topology, but it is clear that one needs to consider
more restrictive classes of spaces than those listed above in order for the intuition provided by more
traditional notions of geometry to be of any use.

For this reason, general topology also introduces spaces that are made up in a specific way of
components of a regular and well understood shape, like simplicial complexes and, more generally, CW-
complexes. In particular the latter occupy a central position in homotopy theory and by implication
in all of algebraic topology.

Another important notion considered in general topology is that of the dimension of a space as
studied in dimension theory, one of the oldest branches of topology. In the case of a space X that is
composed of simpler components Xi, one typically has dimX = supi dimXi. It is natural to ask for
spaces which have a homogeneous notion of dimension, i.e. which all points have neighborhoods of the
same dimension. This desirable property is captured in a precise way by the notion of a topological
manifold, which will be given in our first definition.

However, for many purposes like those of analysis, topological manifolds are still not nice or regular
enough. There is a special class of manifolds, the smooth ones, which with all justification can be called
the nicest spaces considered in topology. (For example, real or complex algebraic varieties without
singularities are smooth manifolds.) Smooth manifolds form the subject of differential topology, a
branch of topology with a very distinct, at times very geometric and intuitive, flavor.

The importance of smooth manifolds is (at least) fourfold. To begin with, smooth manifolds
are an extremely important (and beautiful) subject in themselves. Secondly, many interesting and
important structures arise by equipping a smooth manifold with some additional structure, leading
to Lie groups, riemannian, symplectic, Kähler or Poisson manifolds, etc.) Differential topology is as
basic and fundamental for these fields as general topology is, e.g., for functional analysis and algebraic
topology. Thirdly, even though many spaces encountered in practice are not smooth manifolds, the
theory of the latter is a very natural point of departure towards generalizations. E. g., there is a
topological approach to real and complex algebraic varieties with singularities, and there are the
theories of manifolds with corners and of orbifolds (quotient spaces of smooth manifolds by non-
free group actions), etc. A thorough understanding of the theory of smooth manifolds is necessary
prerequisite for the study of these subjects. Finally, a solid study of the algebraic topology of manifolds
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6 CHAPTER I. WHY DIFFERENTIAL TOPOLOGY?

is very useful to obtain an intuition for the more abstract and difficult algebraic topology of general
spaces. (This is the philosophy behind the masterly book [4] on which we lean in Chapter 3 of these
notes.)

We conclude with a very brief overview over the organization of these notes. In Chapter II we
give an introduction to some of the basic concepts and results of differential topology. For the time
being, suffice it to say that the most important concept of differential topology is that of transversality
(or general position), which will pervade Sections IV.1-V.4. The three most important technical tools

are the rank theorem, partitions of unity and Sard’s theorem. In Chapter VII we define and study
the cohomology theory of de Rham, which is the easiest way to approach the algebraic topology of
manifolds. We will try to emphasize the connections with Chapter II as much as possible, based on
notions like the degree, the Euler characteristic and vector bundles. Chapter IX is an introduction
to a more advanced branch of differential topology: Morse theory. Its main idea is to study the
(differential) topology of a manifold using the smooth functions living on it and their critical points.
On the one hand, Morse theory is extremely important in the classification programme of manifolds.
On the other hand, the flow associated with any Morse function can be used to define homology theory
of manifolds in a very beautiful and natural way. We will also show that the dual Morse co-homology
with R-coefficients is naturally isomorphic to de Rham cohomology. In the final chapter we will briefly
highlight the perspective on our subject matter afforded by the combinatorial approach of singular
(co)homology theory and by analysis on manifolds, to wit Hodge theory.



Chapter II

Basics of Differentiable Manifolds

II.1 Topological and smooth manifolds

II.1.1 Topological manifolds

In these notes we will prove no results that belong to general (=set theoretic topology). The facts that
we need (and many more) are contained in the first chapter (62 pages) of [6]. (This book also contains
a good its introduction to differential topology.) For an equally beautiful and even more concise (40
pages) summary of general topology see Chapter 1 of [24].

We recall some definitions. ‘Space’ will always mean topological space. We recall some definitions.

II.1.1 Definition A space M is locally euclidean if every p ∈ M has an open neighborhood U for
which there exists a homeomorphism φ : U → V to some open V ⊂ Rn, where V has the subspace
topology.

II.1.2 1. Note that the open subsets U ⊂ M,V ⊂ Rn and the homeomorphisms φ are not part of
the structure. The requirement is only that for every p ∈M one can find U, V, φ as stated.

2. Let U ⊂ Rn, V ⊂ Rm be non-empty open sets admitting a homeomorphism φ : U → V . Then
the ‘invariance of domain’ theorem from algebraic topology, cf. [6, Section IV.19], implies m = n.
Thus the dimension n of a neighborhood of some point is well defined, and is easily seen to be locally
constant. Thus every connected component of M has a well defined dimension. We will soon restrict
ourselves to spaces where the dimension is the same for all connected components.

3. It is immediate that a locally euclidean space X inherits all local properties from Rn. Thus (a)
X is locally path connected, and therefore connected components and path components coincide. (b)
X is locally simply connected, implying that every connected component of X has a universal covering
space. (c) X is locally compact, i.e. every p ∈ X has a compact neighborhood K. We quickly prove
this. Let Ũ 3 p be open and small enough so that there exists a homeomorphism φ : Ũ → V with
V ⊂ Rn open. Clearly V contains some open sphere B(φ(p), ε), ε > 0. Now K = φ−1(B(φ(p), ε/2))
and U = φ−1(B(φ(p), ε/3)) do the job. (d) M is first countable, i.e. every p ∈ M has a countable
neighborhood base.

II.1.3 Recall that a space X is Hausdorff if for every p, q ∈ X, x 6= y there are open sets U 3 p, V 3 q
such that U ∩V = ∅. One might think that a locally euclidean space is automatically Hausdorff. That
this is not true is exemplified by the space X that is constructed as follows. Let Y be the disjoint
union of two copies of R, realized as Y = R× 0 ∪ R× 1. Now define an equivalence relation ∼ on Y
by declaring (x, 0) ∼ (x, 1) ⇔ x 6= 0. (Of course we also have (x, i) ∼ (x, i).) Let X = Y/ ∼ with the
quotient topology (V ⊂ Y is open iff f−1(V ) is open) and let π : Y → X be the quotient map. Write
p = π(0, 0), q = π(0, 1), and let U 3 p, V 3 q be open neighborhoods. Then there exists (exercise!)
ε > 0 such that 0 < |x| < ε implies π(x, 0) = π(x, 1) ∈ U ∩ V . Thus X is non-Hausdorff.

7



8 CHAPTER II. BASICS OF DIFFERENTIABLE MANIFOLDS

II.1.4 Recall that a space X with topology τ is second countable if there exists a countable family
F ⊂ τ of open sets such that every U ∈ τ is a union of sets in F . One can construct spaces that are
Hausdorff and locally Rn but not second countable, e.g., the ‘long line’ which is locally 1-dimensional.
The assumption of second countability mainly serves to deduce paracompactness, cf. Section II.10,
which is needed for the construction of ‘partitions of unity’. As we will see many times, the latter in
turn is crucial for the passage from certain local to global constructions. For this reason we will not
consider spaces that are more general than in the following definition.

II.1.5 Definition A topological manifold of dimension n ∈ N (or n-manifold) is a second count-
able Hausdorff space M such that every p ∈ M has an open neighborhood U such that there is a
homeomorphism φ : U → V , where V is an open subset of Rn.

For later use we recall the following fact from general topology:

II.1.6 Proposition Let X be a second countable space. Then every open cover (Ui)i∈I (i.e. the
Ui ⊂ X are open and ∪i∈IUi = X) admits a countable subcover, i.e. there is a countable subset I0 ⊂ I
such that ∪i∈I0Ui = X.

Proof. Let (Vj , j ∈ J) be a countable basis for the topology, and recall that every open U ⊂ X is the
union of all the Vj contained in U . Define Ji = {j ∈ J | Vj ⊂ Ui} and J0 = ∪i∈IJi, and for every
j ∈ J0 pick a s(j) ∈ I such that Vj ⊂ Us(j). Clearly J0 ⊂ J and I0 := s(J0) are countable and we have

X =
⋃

i∈I

Ui =
⋃

i∈I

⋃

j∈Ji

Vj =
⋃

j∈∪i∈IJi

Vj =
⋃

j∈J0

Vj ⊂
⋃

j∈J0

Us(j) =
⋃

i∈I0

Ui.

The converse inclusion being obvious, this proves that I0 does the job. �

II.1.2 Differentiable manifolds and their maps

There is a highly developed theory of topological manifolds with many non-trivial results. For most
of the applications in other areas of mathematics, however, one needs more structure, in particular in
order to do analysis on M . This leads to the following notion.

II.1.7 Definition Let M be a n-dimensional topological manifold. A chart (U, φ) consists of an
open set U ⊂ M and a continuous map φ : U → Rn such that φ(U) is open and φ : U → φ(U) is a
homeomorphism. For 0 ≤ r ≤ ∞, a Cr-atlas on a n-dimensional topological manifold consists of a
family of charts (Ui, φi) such that the Ui cover M and such that the map

φj ◦ φ−1
i : Rn ⊃ φi(Ui ∩ Uj)→ φj(Ui ∩ Uj) ⊂ Rn

is r times continuously differentiable whenever Ui ∩ Uj 6= ∅. A chart (U, φ) is compatible with a
Cr-atlas A = {(Ui, φi)} iff A∪ (U, φ) is a Cr-atlas. Two Cr-atlasses A,A′ are compatible if the union
A∪A′ is a Cr-atlas. A maximal Cr-atlas is a Cr-atlas that cannot be enlarged by adding compatible
charts.

II.1.8 Lemma Every Cr-atlas A on a topological manifold M is contained in a unique maximal atlas,
consisting of all charts that are compatible with A. Two C r-atlasses A and A′ are equivalent iff they
are contained in the same maximal atlas.

Proof. Obvious. �



II.1. TOPOLOGICAL AND SMOOTH MANIFOLDS 9

II.1.9 Definition A Cr-differential structure on a topological manifold M is given by specifying a
maximal Cr-atlas on M or, equivalently, by giving an equivalence class of (not necessarily) maximal
atlasses [A]. A Cr-manifold is a pair (M, [A]) consisting of a topological manifold and a C r-differential
structure on it.

II.1.10 Remark The notion of a differential manifold is not nearly as abstract as it may seem. In
practice one does not work with maximal atlasses but rather with a single representant A of an
equivalence class [A]. One adds or removes compatible charts as is convenient. Whenever we speak
of charts on a differential manifolds we mean charts that are compatible with a given differential
structure! 2

A morphism in the category of topological manifolds just is a continuous map. (Thus the topo-
logical manifolds form a full subcategory of the category of topological spaces and continuous maps.)
For differentiable manifolds we need restrictions on the admissible maps:

II.1.11 Definition Let M,N be Cr-manifolds, 0 ≤ r ≤ ∞, with atlasses (Ui, φi) and (Vj , ψj). Let
n ≤ r. A map f : M → N is Cn if the composite

ψj ◦ f ◦ φ−1
i : Rm ⊃ φi(Ui ∩ f−1(Vj))→ ψj(Vj) ⊂ Rn

is Cn whenever f(Ui) ∩ Vj is non-empty. The set of smooth maps from M to N is denoted by
C∞(M,N). For C∞(M,R) we just write C∞(M).

II.1.12 Remark 1. Note that this is well defined since the transition maps φ−1
i′ ◦φi and ψ−1

j′ ◦ψj are
Cr and r ≥ n. Thus composing with them does not lead out of the class of Cn-functions.

2. Manifolds and maps that are C∞ are called smooth.

3. Now that we are able to say what a C r (smooth) map from M to Rn is we see that a chart
(U, φ) of a Cr (smooth) manifold is just a Cr (smooth) diffeomorphism from U to an open subset of
Rn.

4. It is clear that a differential C0-manifold is essentially the same as a topological manifold. It
suffices to observe that given two charts (U, φ), (U ′, φ′), the map φ′ ◦ φ−1 : φ(U ∩ U ′) → φ′(U ∩ U ′)
is automatically C0. Thus any two C0-atlasses on M are compatible and there is exactly one C 0-
structure on M . Similarly, any continuous map between C 0-manifolds is C0 in the sense of Definition
II.1.11 2

II.1.13 Definition A Cn-diffeomorphism is a Cn-map f : M → N that has a Cn inverse. We write
Diff(M) for the set of C∞ diffeomorphisms M →M . Clearly, this is a group with idM as unit.

II.1.14 Lemma Let M,N be Cr (smooth) manifolds. Then the product space M ×N has a canonical
Cr (smooth) structure such that the projections π1 : M ×N →M , π2 : M ×N → N are Cr (smooth).
M ×N is called the product manifold.

Proof. Let {(Ui, φi)i∈I}, {(Vj , ψj)j∈J} be atlasses for M,N , respectively. Then {(Ui × Vj)(i,j)∈I×J} is
an open cover of M ×N and the coordinate maps φi×ψj : Ui×Vj → Rm+n define an atlas. The easy
verifications of compatibility and of smoothness of π1, π2 are omitted. �

From the next section on we will exclusively consider smooth, i.e. C∞-manifolds. Yet
we think it would be inexcusable not to comment briefly on the extremely interesting relations between
the categories of C0, Cr(r ∈ N) and C∞-manifolds. If desired, the rest of this section can be ignored.
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II.1.3 Remarks

The following result, proven e.g. in [13, Chapter 2], shows that there is no real reason to consider
Cr-manifolds with 1 ≤ r <∞:

II.1.15 Theorem Let M be a Cr-manifold, where r ≥ 1. There exists a C∞-manifold M̃ and a
Cr-diffeomorphism φ : M → M̃ . If M̃ ′ is another C∞-manifold that is Cr-diffeomorphic to M then
there is a C∞-diffeomorphism M̃ → M̃ ′.

Thus every Cr-manifold (r ≥ 1) can be smoothed in an essentially unique way. (An equivalent of
way of putting this is: Every maximal C r atlas contains a C∞ atlas.) Yet for some applications it
may still be necessary to consider C r-maps (r <∞) between C∞-manifolds.

II.1.16 Remark It is very important to note that the above theorem is false for r = 0. We list some
results that are relevant in this context. (Each of them is deeper than anything studied in these notes.)

1. There are topological (i.e. C0-)manifolds that do not admit any smooth structure, cf. [42, 38].

2. There are topological manifolds that admit more than one differential structure. For example,
Milnor discovered that the (topological) sphere S7 admits inequivalent differential structures,
and together with Kervaire he showed that there are 28, cf. [43]. Brieskorn [37] has given a
relatively concrete representation of these manifolds: Consider the subset Xk ⊂ C5 defined by
the equations

|z1|2 + |z2|2 + |z3|2 + |z4|2 + |z5|2 = 1,

z2
1 + z2

2 + z2
3 + z3

4 + z6k−1
5 = 0.

The first equation is real and its solution set clearly is S9, whereas the second equation has
two real components. Brieskorn has shown that Xk, k = 1, . . . , 28 is a (topological) 7-manifold
homeomorphic to S7 and that the differential structures induced from C5 ∼= R10 correspond
to the 28 possibilities classified in [43]. The proof requires non-trivial techniques both from
algebraic topology and algebraic geometry.

3. In four dimensions, Donaldson [38] has shown that R4 (as topological manifold) admits smooth
structures that are inequivalent to the usual ones. Smooth 4-spheres are still not completely
understood.

4. None of the above can happen in dimensions 1,2,3: In these dimensions every topological manifold
admits a unique smooth structure (and a unique piecewise linear structure or triangulation).
Thus the homeomorphism classes of topological 1-manifolds are in bijective correspondence with
the diffeomorphism classes of smooth 1-manifolds which we will classify in Theorem II.12.1. 2-
manifolds have been classified, see e.g. [31, Chapter 2] in the topological and [13, Chapter 9]
in the smooth category. The classification of 3-manifolds is still incomplete, but very recently
(2002) there has been spectacular progress due to Perelman.

5. There is an interesting connection between differential topology and real algebraic geometry:
Every compact connected C∞-manifold is diffeomorphic to a connected component of a non-
singular real algebraic variety. Cf. [45] and later work.

6. Complex manifolds are defined as real ones with two changes: 1. The charts take values in Cn. 2.
The transition functions φ−1

j ◦φi are assumed complex differentiable (i.e. real differentiable with
C-linear derivative maps), equivalently holomorphic. Thus a complex manifold is in particular
a smooth real manifold of even (real) dimension, but only very few even dimensional manifolds
admit a complex structure. For the basics of complex manifolds see [33] and for the close
connections with complex algebraic geometry see [30, 11].



II.1. TOPOLOGICAL AND SMOOTH MANIFOLDS 11

7. Finally, we mention that smooth manifolds can be considered over fields other than R or C.
For any complete normed field K (like Qp) we can consider complete normed K-vector spaces
and differentiable maps between such. Then a manifold over K is defined as before, with charts
taking values in Kn.

2

II.1.4 Quotient manifolds

So far our only examples of smooth manifolds are obvious examples Rn, Sn and direct products of
manifolds. Quotient spaces of manifolds by equivalence relations often fail to be manifolds. (They
needn’t even be Hausdorff.) But there is a very useful special case:

II.1.17 Definition An action of a (discrete) group G on a topological space X is a group homomor-
phism γ : G→ Homeo(X), g 7→ γg, where Homeo(X) is the group of homeomorphisms of X. (When
there is no risk of confusion between different actions we often write gx instead of γg(x).) The action
is called totally discontinuous if every p ∈ X has an open neighborhood U such that U ∩ γg(U) = ∅
for all g 6= e. If X is a smooth manifold M we replace Homeo(X) by the group Diff(M) of smooth
diffeomorphisms.

II.1.18 Definition A map f : X → Y of topological spaces is a covering map if every y ∈ Y has an
open neighborhood such that

f−1(V ) =
⋃

i∈I

Ui,

where the Ui, i ∈ I are pairwise disjoint open sets and the restrictions fi : Ui → V, i ∈ I are
homeomorphisms. (Equivalently, f−1(V ) is homeomorphic to V ×I, where I has the discrete topology.)

II.1.19 Exercise The cardinality of the index set I may depend on y. Show that it is constant on
the connected components of Y . 2

II.1.20 Definition If a group G acts on a space X we write X/G for the quotient space X/ ∼, where
x ∼ y iff there is g ∈ G such that y = gx. (Thus X/G is the orbit space of the action.)

II.1.21 Lemma Let X be a topological space and G a (discrete) group acting on X by homeomor-
phisms. Then the quotient map f : X → X/G is continuous and open. If the action of G is totally
discontinuous then f is a covering map. If in addition G is finite and X is Hausdorff then X/G is
Hausdorff.

Proof. f is continuous by definition of the quotient topology. For U ⊂ X define Û = ∪g∈G gU . Now,

for any U ⊂ X we have f−1(f(U)) = Û . If U is open then Û is open, implying that f is an open map.

Let y ∈ X/G and pick x ∈ X such that f(x) = y. Assuming the action of G to be totally
discontinuous, there exists an open neighborhood U ⊂ X of x such that gU ∩hU = ∅ whenever g 6= h.
By the above, V = f(U) is an open neighborhood of y and

f−1(V ) = Û =
⋃

g∈G

gU.

Here the right hand side is a disjoint union of open sets. Since no two elements of U are in the
same G-orbit, the restricted map fg : gU → V is injective. Surjectivity and continuity are trivial and
openness has been proven above. Thus fg : gU → V is a homeomorphism for every g ∈ G, and f is a
covering map.
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Assume now that X is Hausdorff, G is finite and acts discontinuously. Consider x, y ∈ X/G, x 6= y.
Let a, b ∈ X such that f(a) = x, f(b) = y. Since x 6= y, we have ga 6= b for all g ∈ G. Since X is
Hausdorff we thus have open neighborhoods Ug 3 ga and Vg 3 b such that Ug ∩ Vg = ∅ for all g ∈ G.
Then U = ∩gg

−1Ug and V = ∩gVg are open (here we need finiteness of G) neighborhoods of a, b,
respectively, and satisfy hU ∩ V ⊂ Uh ∩ Vh = ∅ for all h ∈ G. Thus f(U) and f(V ) are disjoint open
neighborhoods of x and y, respectively. This proves that X/G is Hausdorff. �

II.1.22 Remark The conclusion that X/G is Hausdorff also holds for infinite G if one assumes that
X is locally compact Hausdorff and that the action of G is totally discontinuous and proper, i.e. for
compact K,L ⊂ X the set {g ∈ G | gK ∩ L 6= ∅} is finite. 2

II.1.23 Proposition Let γ be a totally discontinuous action of a finite group G on a manifold M .
Then the quotient map f : M → M/G is a covering map and M/G has a natural smooth structure
w.r.t. which f is smooth.

Proof. By the lemma, M is Hausdorff and f is open. Second countability clearly is inherited from M .
Let A be a maximal atlas of M . We define an atlas AG as given by

AG = {(f(U), φ ◦ f−1)},

where we consider those charts (U, φ) of A such that f(U) ⊂M/G satisfies the condition in Definition
II.1.18 and U is one of the components of f−1(f(U)). Then f−1 denotes the inverse of the homeo-
morphism f : U → f(U). Since f : M →M/G is a covering map, these sets f(U) clearly cover M/G.
Overlapping charts of M/G are now of the form (f(U),Φ = φ ◦ f−1), (f(V ),Ψ = ψ ◦ f−1) ∈ AG with
(U, φ), (V, ψ) ∈ A and f(U) ∩ f(V ) 6= ∅. Then W = f(U) ∩ f(V ) is open and f−1(W ) = ∪i∈IWi, and
there are unique j, k ∈ I such that Wj ⊂ U and Wk ⊂ V . On the domain Ψ(f(U) ∩ f(V )) we have

Ψ ◦ Φ−1 = φ ◦ f−1
k ◦ f ◦ ψ−1,

where f−1
k is the inverse of f : Wk → W . By the above, the action of G permutes the W ′

is transitively,
thus there exists g ∈ G such that f−1

k ◦f = γg. Since γg is a (smooth) diffeomorphism, φ◦γg ◦ψ−1 is a
smooth map between open sets in Rn. Thus the charts (f(U), φ ◦ f−1), (f(V ), ψ ◦ f−1) are compatible
and AG is an atlas. That f is smooth w.r.t. A,AG is obvious. �

II.1.24 Definition For n ∈ N, the real projective space RP n is the quotient space (Rn+1−{0})/ ∼,
where x, y ∈ Rn+1 − {0} are equivalent iff there is λ ∈ R∗ such that y = λx.

II.1.25 Exercise Show that Sn can be considered as the quotient space (Rn+1 − {0})/ ∼, where
x, y ∈ Rn+1 − {0} are equivalent iff there is λ > 0 such that y = λx. Conclude that RP n ∼= Sn/±.
Equivalently, RP n ∼= Sn/Z2, where the non-trivial element of Z2 = {e, g} acts by gx = −x. Show
that the proposition can be applied to conclude that RP n is a manifold. 2

II.2 The tangent space

II.2.1 The tangent space according to the geometer and the physicist

If a smooth n-manifold M is given as a submanifold of some euclidean space RN (the precise meaning
of submanifolds will be defined later) one can imagine, at every point p ∈ M , a plane tangent to
M . This tangent plane can be considered as n-dimensional vector space. (Translating it such that p
arrives at 0 ∈ RN we obtain a sub-vector space of RN .) The aim of this section is to give an intrinsic
definition of the tangent space at a point p, independent of any embedding of M into euclidean space.
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In fact, we will consider three different but equivalent definitions, following [7]. All three definitions,
which we denote TG

p M,TP
p M,TA

p M until we have proven their equivalence, appear very frequently in
the literature and their comparison is quite instructive.

II.2.1 Definition Let p ∈ M . A chart (U, φ) such that p ∈ U and φ(p) = 0 will be called a chart
around p.

II.2.2 Definition (of the geometer) A germ of a function at p is a pair (V, h) where V ⊂ M is
an open set containing p and h : V → R is a smooth map. A germ of a curve through p is a pair (U, c)
where U ⊂ R is an open set containing 0 and c : U → M is a smooth map satisfying c(0) = p. We
define a pairing between germs of curves and germs of functions by

〈(U, c), (V, h)〉 =
d

dt
h(c(t))

|t=0
.

(This is well defined since c(U) ∩ V contains some neighborhood of p.) We define an equivalence
relation on the germs of curves through p by

(U, c) ' (U ′, c′) ⇔ 〈(U, c), (V, h)〉 = 〈(U ′, c′), (V, h)〉 for all germs (V, h) of functions at p.

Now we define TG
p M = {germs of curves through p}/ ∼. Such equivalence classes will be denoted [c],

dropping the inessential neighborhood U .

In order to elucidate the structure of TG
p M , consider a chart Φ = (U, φ) around p. In view of

h ◦ c = (h ◦ φ−1) ◦ (φ ◦ c) (valid in a neighborhood of 0) we have

〈c, h〉 =
d

dt
h(c(t))

|t=0
=

n∑

i=1

∂(h ◦ φ−1(x1, . . . , xn))

∂xi x1=···=xn=0

d(φi(c(t)))

dt |t=0
. (II.1)

Two germs c, c′ of curves through p therefore define the same element of T G
p M iff d(φi(c(t)))/dt|t=0 =

d(φi(c
′(t)))/dt|t=0 for i = 1, . . . , n. Thus the map TG

p M → Rn given by [c] 7→ (d(φi(c(t)))/dt|t=0)
is injective. On the other hand, for every v ∈ Rn there is a germ of a curve through p defined by
c(t) = φ−1(tv) on some neighborhood of 0 ∈ R. Obviously, d(φi(c(t)))/dt|t=0 = vi, and therefore

the map TG
p M → Rn is surjective, thus a bijection. This bijection can be used to transfer the linear

structure of Rn to TG
p M , and in particular it shows that dimR T

G
p M = n. It remains to show that the

linear structure is independent of the chart Φ we used. Let Φ′ = (U ′, φ′) be another chart around p.
Then we have φ′i ◦ c = φ′i ◦ φ−1 ◦ φ ◦ c and thus

d(φ′j(c(t)))

dt |t=0
=

n∑

i=1

∂(φ′j ◦ φ−1(x1, . . . , xn))

∂xi x1=···=xn=0

d(φi(c(t)))

dt |t=0

This computation motivates the definition:

II.2.3 Definition (of the physicist) LetM be a manifold of dimension n and let p ∈M . Consider
pairs (Φ, v), where Φ = (U, φ) is a chart around p and v ∈ Rn. Two such pairs (Φ, v), (Φ′, v′) are
declared equivalent if

v′j =

n∑

i=1

vi

∂(φ′j ◦ φ−1(x1, . . . , xn))

∂xi

∣∣∣∣∣
x1=...=xn=0

, j = 1, . . . , n.

The set of equivalence classes [Φ, v] is called the tangent space T P
p M of M at p. We define a vector

space structure on T P
p M by a[Φ, v] + b[Φ, v′] = [Φ, av + bv′] for a, b ∈ R. (This definition makes sense

since by definition of ∼ given two charts Φ,Φ′ around p and v ∈ Rn there exists a unique v′ ∈ Rn such
that [Φ, v] ∼ [Φ′, v′].)
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The isomorphism αM
p : TG

p M → TP
p M is now given by [c] 7→ [Φ, v], where Φ = (U, φ) is any

chart around p and v = (d(φi(c(t)))/dt|t=0). From now on we identify TG
p M and TP

p M and omit the
superscript.

II.2.4 Remark Given a chart (U, φ) around p, a basis of TpM is given by the symbols ∂/∂x1, . . . , ∂/∂xn.
This is to be interpreted in the sense of

〈
n∑

i=1

αi
∂

∂xi
, h

〉
=

n∑

i=1

αi
∂(h ◦ φ−1(x1, . . . , xn))

∂xi
, α1, . . . , αn ∈ R.

2

II.2.2 The tangent space according to the algebraist

Being manifestly independent of coordinate charts, the ‘geometer’s’ definition is conceptually more
satisfactory than the ‘physicist’s’, but we needed the latter to identify the vector space structure on
TpM . We now show how this can actually be done in an intrinsic albeit less intuitive way. The
considerations of this subsection will not be used later.

II.2.5 Definition (of the algebraist) Let (V1, h1), (V2, h2) be germs of functions at p ∈ M .
Defining

a(V1, h1) + b(V2, h2) = (V1 ∩ V2, ah1 + bh2),

(V1, h1) · (V2, h2) = (V1 ∩ V2, h1h2),

we turn the set of germs of functions at p into an R-algebra ApM . A derivation of ApM is a map
∂ : ApM → R that is R-linear (i.e. ∂(ax + by) = a∂x + b∂y for x, y ∈ ApM and a, b ∈ R) such that
∂(xy) = y(p)∂x + x(p)∂y for all x, y ∈ ApM . We denote the set of derivations of ApM by D(ApM)
and turn it into an R-vector space by (a∂ + b∂ ′)(x) = a∂x + b∂ ′x for a, b ∈ R, ∂, ∂ ′ ∈ D(ApM) and
x ∈ ApM . (Clearly, D(ApM) is a subspace of (ApM)∗.)

II.2.6 Remark Note that the notion of derivation used in differential topology differs from the usual
one in algebra and functional analysis. (By a derivation of a, not necessarily commutative, k-algebra
A one usually means a k-linear map ∂ : A→ A such that ∂(xy) = x∂(y) + ∂(x)y.) 2

In our definition of the geometer’s tangent space T G
p M in terms of equivalence classes of germs of

curves through p we have considered a pairing 〈c, h〉 between germs of curves and germs of functions.
In view of (II.1), and writing h1 instead of (V1, h1) etc., it is clear that

〈c, ah1 + bh2〉 = a〈c, h1〉+ b〈c, h2〉,

〈c, h1h2〉 = h1(p)〈c, h2〉+ h2(p)〈c, h1〉,
thus 〈c, ·〉 : h 7→ 〈c, h〉 is a derivation on ApM . In this we way get an injective map TpM → D(ApM).
The following lemmas will show that this map is an isomorphism, allowing to consider D(ApM) as an
alternative definition of the tangent space. The latter might be denoted T A

p M , the algebraist’s version
of the tangent space.

II.2.7 Lemma Let A0
pM ⊂ ApM be the ideal of (germs of) functions vanishing at p. Then (A0

p)
2 ≡

{∑i aibi, ai, bj ∈ A0
pM} (finite sums of products of two elements of A0

pM) is an ideal in A0
pM . Then

(a) ∂ ∈ D(ApM) ⊂ (A0
pM)∗ vanishes on (A0

pM)2, thus defines an element of (A0
pM/(A0

pM)2)∗.
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(b) Let ϕ ∈ (A0
pM/(A0

pM)2)∗. Then the map h 7→ ϕ([h − h(p)1]) is in D(ApM), and the maps
between D(ApM) and (A0

pM/(A0
pM)2)∗ thus obtained are mutually inverse.

Proof. Ad (a) If h, h′ ∈ A0
pM and ∂ ∈ D(ApM) then ∂(hh′) = h(p)∂h′ + h′(p)∂h = 0. Thus

(A0
pM)2 ⊂ ker ∂ and therefore ∂ ∈ (A0

pM/(A0
pM)2)∗. Ad (b), given ϕ ∈ (A0

pM/(A0
pM)2)∗ we define

∂h = ϕ([h−h(p)1]) for any germ h ∈ ApM . Here 1 is the constant function and [· · · ] means the coset
in A0

pM/(A0
pM)2. Clearly ∂ is R-linear and it remains to show the derivation property. We have

hh′ − h(p)h′(p)1 = h(p)(h′ − h′(p)1) + h′(p)(h − h(p)1) + (h− h(p)1)(h′ − h′(p)1)

in A0
pM . Since (h− h(p)1)(h′ − h′(p)1) ∈ (A0

pM)2 we have

[hh′ − h(p)h′(p)1] = [h(p)(h′ − h′(p)1) + h′(p)(h− h(p)1)]

in A0
pM/(A0

pM)2. Applying ϕ and using R-linearity we have

∂(hh′) = ϕ([hh′ − h(p)h′(p)1]) = h(p)ϕ([h′ − h′(p)1]) + h′(p)ϕ([h − h(p)1]) = h(p)∂h′ + h′(p)∂h,

thus ∂ : h 7→ ϕ([h − h(p)1]) is a derivation on ApM . �

II.2.8 Exercise Complete the proof by showing that the above maps between (A0
pM/(A0

pM)2)∗ and
D(ApM) are mutually inverse. 2

We cite the following lemma from analysis without proof.

II.2.9 Lemma Let h : U → R be a C2-function on a convex open set U ⊂ Rn. Then

h(q) = h(p) +
∑

i

(qi − pi)
∂h

∂xi |x=p
+

∑

i,j

(qi − pi)(qj − pj)

∫ 1

0
(1− t) ∂2h

∂xi∂xj |x=p+t(q−p)

dt (II.2)

for all p, q ∈ U . If h is smooth then the term with the integral is smooth as a function of p.

II.2.10 Lemma With the above notation, TpM ∼= (A0
pM/(A0

pM)2)∗.

Proof. Let (U, φ) be a chart around p ∈ M and (V, h) ∈ A0
pM be a germ vanishing at p. Applying

Lemma II.2.10 to h ◦ φ−1 and observing that φ(p) = 0 we obtain

h(q) =
∑

i

φi(q)
∂(h ◦ φ−1(x))

∂xi |x=0
+

∑

i,j

φi(q)φj(q)

∫ 1

0
(1− t)∂

2(h ◦ φ−1(x))

∂xi∂xj |x=tφ(q)

dt

in some neighborhood of p. Since φi(·) ∈ A0
pM for all i and the integral is smooth, the last summand

is in (A0
p)

2, thus

h(q) ≡
∑

i

φi(q)
∂(h ◦ φ−1(x))

∂xi |x=0
(mod(A0

p)
2 ).

This means that the algebra A0
pM/(A0

pM)2 is spanned by the (classes of the) coordinate functions
[φi(·)], i = 1, . . . , n. (Thus dimR(A0

pM/(A0
pM)2) ≤ dimM .) Let ∂1, . . . , ∂n be the basis of TpM

associated with the chart (U, φ) as in Remark II.2.4. Then

〈∂i, φj〉 =
∂φj(φ

−1(x1, . . . , xn))

∂xi
=
∂xj

∂xi
= δi,j . (II.3)

This proves that the [φi(·)] ∈ A0
pM/(A0

pM)2 are linearly independent. (Let
∑

i ci[φi(·)] = 0. Then ci =
〈∂i,

∑
j cj [φj(·)]〉 = 0 for all i.) Furthermore, in view of (II.3), TpM is the dual space of A0

pM/(A0
pM)2,

concluding the proof. �

Putting the two lemmas together we obtain
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II.2.11 Proposition The map TpM → D(ApM) given by [c] 7→ 〈c, ·〉 is an isomorphism of vector
spaces.

II.2.12 Remark 1. One can show that for non-smooth C r manifolds, the quotients A0
pM/(A0

pM)2

typically are infinite dimensional, thus the isomorphism with TpM breaks down.

2. In algebraic geometry, one defines ApM (A0
pM) as the algebra of germs of ‘regular functions’

defined near p (and vanishing at p). The analogue of Lemma II.2.7 holds, thus one can define the
tangent space TpM to be either D(ApM) or (A0

pM/(A0
pM)2)∗. The above considerations show that in

the case of a smooth algebraic variety over R this definition is consistent with our earlier (geometrical
and ‘physical’) ones.

3. The dual vector space T ∗
pM := (TpM)∗, called the cotangent space, will play an important rôle

in the theory of differential forms, cf. Chapter VII. 2

We summarize: The geometer’s definition is probably the most intuitive one, but it does not give
the linear structure. Furthermore, it is the least suited for manifolds with boundary (cf. Section
II.6). The algebraist’s approach is somewhat unintuitive but conceptually the nicest, and it is the
way the tangent space is defined in algebraic geometry. It has the disadvantage of breaking down for
non-smooth Cr-manifolds. The ‘physicist’ approach is the least elegant but it works in all situations,
including non-smooth manifolds and manifolds with boundary.

II.3 The differential of a smooth map

The ‘first derivative’ or ‘differential’ of a smooth map f : M → N should be a collection of linear
maps Tpf : TpM → Tf(p)N of the tangent spaces for all p ∈ M . (Instead of Tpf one often writes f∗,
but we will try to stick to Tpf .) According to the chosen definition of the tangent spaces there are
different but equivalent definitions of Tpf .

II.3.1 Definition (Geometer) Let f : M → N be smooth manifolds. Define T G
p f : TG

p M →
TG

f(p)N by

TG
p f : [c] 7→ [f ◦ c].

II.3.2 Exercise Show that this is well defined. 2

II.3.3 Definition (Physicist) Let f : M → N be smooth manifolds of dimensions m,n. Let
Φ = (U, φ) and Ψ = (V, ψ) be charts around p and f(p), respectively. For [Φ, v] ∈ T P

p M we define

TP
p f([Φ, v]) = [Ψ, v′] where v′ ∈ Rn is given by

v′j =

m∑

i=1

vi
∂(ψj ◦ f ◦ φ−1(x1, . . . , xm))

∂xi |x=0
, j = 1, . . . , n.

In Section II.2 we have found isomorphisms αM
p : TG

p M → TP
p M between the two different defi-

nitions of the tangent space of M at p. Now that we also have induced maps T G
p f : TG

p M → TG
f(p)N

and TP
p f : TP

p M → TP
f(p)N , their compatibility becomes an issue. The precise answer is given by the

following

II.3.4 Exercise Consider the map αM
p : TG

p M → TP
p M given by [c] 7→ [Φ, v], where Φ = (U, φ) is a

chart around p and v = (d(φi(c(t)))/dtt=0), as discussed in the previous section. Show that αp is a
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natural transformation, i.e. the diagram

TG
p M

TG
f M- TG

f(p)N

TP
p M

αM
p

?

TP
f M

- TG
f(p)N

αN
f(p)

?

commutes for every smooth map f : M → N and every p ∈M . 2

II.3.5 Lemma Let f : M → N, g : N → P be smooth maps. Then the differentials Tpf, Tf(p)g, Tp(g ◦
f) satisfy the ‘chain rule’ Tp(g ◦ f) = Tf(p)g ◦ Tpf as linear maps TpM → Tg◦f(p)P .

Proof. Obvious, e.g., in the geometer’s definition of the differential. �

II.3.6 Exercise Let f : M → N be a diffeomorphism. Then Tpf : TpM → Tf(p)N is a linear
isomorphism for every p ∈M . 2

A very important rôle in differential topology is played by the inverse function theorem:

II.3.7 Theorem (Inverse function theorem) Let U ⊂ Rn be open and f : U → Rn a Cr-
function where r ∈ {1, 2, . . . ,∞}. If p ∈ U and Tpf : Rn → Rn is invertible (equivalently, the matrix
(∂fi/∂xj)x=p is invertible) then there is an open V ⊂ U such that f : V → f(V ) is a bijection with
Cr inverse function.

For a proof see, e.g., [25] (where it is proven only for r = 1) or [6, Section II.1] (all r ∈ N ∪ {∞}).
One can give ‘elementary’ proofs using only classical differential and integral calculus and induction
on the dimension n, but it has become standard to apply the Banach fixpoint theorem. The latter
proof has the advantage of working also in infinite dimensions.

II.3.8 Corollary Let f : M → N be smooth and Tpf : TpM → Tf(p)N invertible for some p ∈ M .
Then there exists an open neighborhood U 3 p such that f(U) is open and f : U → f(U) is a
diffeomorphism.

Proof. Let (U ′, φ), (V, ψ) be charts around p and f(p). Apply the inverse function theorem to ψ◦f ◦φ−1

and conclude the claim for some U ⊂ U ′. �

We recall that a differentiable homeomorphism f : M → N need not have a differentiable inverse,
e.g. x 7→ x3. The preceding corollary allows to exclude this nuissance at least locally (and Exercise
II.3.6 shows that invertibility of Tpf is also necessary). Note that a map need not be globally invertible
even iff Tpf is invertible everywhere: Consider f : C→ C, x 7→ ex. We will later return to the problem
of proving that a map f is globally a diffeomorphism.

II.4 The Tangent Bundle and Vector Fields

In this section we introduce a formal construction whose importance will become clear later. Let M
be a manifold of dimension m and consider the disjoint union

TM =
∐

p∈M

TpM,

which is called the tangent bundle of M . Its elements are denoted (p, v), where p ∈M and v ∈ TpM .
There is a canonical surjection π : TM →M, (p, v) 7→ p
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II.4.1 Proposition The tangent bundle TM admits the structure of a manifold of dimension 2m
such that the following holds: For every p ∈ M there is a neighborhood U and a diffeomorphism
ψ : π−1(U)→ U × Rm such that the diagram

π−1(U)
ψ- U × Rm

@
@

@
@

@
π

R
U

p1

?

commutes and such that for each p ∈ M the map π−1(p) = TpM → {x} × Rm is an isomorphism of
vector spaces.

Proof. Let (Ui, φi)i∈I be an atlas of M . We define an atlas (Vi, ψi)i∈I of TM by

Vi = π−1(Ui) =
∐

p∈Ui

TpM,

the coordinate maps ψi : Vi → R2m being given by

ψi(p, v) = (φi(p), Tpφi(v)).

(We use the canonical isomorphism TxRn ∼= Rn.) For overlapping charts and (x, u) ∈ ψi(Vi) we have

ψj ◦ ψ−1
i (x, u) = (φj ◦ φ−1

i (x), Tpφj ◦ (Tpφi)
−1(u)) = (φj ◦ φ−1

i (x), Dxu),

where Dx = Tx(φj ◦ φ−1
i ) = (∂(φj ◦ φ−1(x1, . . . , xn))/∂xi). Since the matrix Dx depends smoothly on

x, ψj ◦ ψ−1
i is a smooth map, and thus (Vi, ψi)i∈I defines a manifold structure on TM . The rest is

now obvious: For p ∈ M , let U be the domain Ui of a chart containing p. Then the coordinate map
ψi : Vi = π−1(Ui)→ U × Rm is the diffeomorphism whose existence is claimed in the proposition. �

The differentials Tpf for p ∈M combine to a map between the tangent bundles:

II.4.2 Proposition Let f : M → N be a smooth map. Define a map Tf : TM → TN by
TM((p, v)) = (f(p), Tpf(v)). Then Tf is smooth and the diagram

TpM ⊂
ι - TM

π - M

Tf(p)N

Tpf

?
⊂

ι
- TN

Tf

?

π
- N

f

?

commutes, where ι : TpM → TM is given by v 7→ (p, v).

Proof. That Tf is a smooth map is immediate by definition of the tangent bundle. Commutativity of
the diagram is trivial. �

II.4.3 Definition A vector field on M is a section of the tangent bundle TM , to wit a smooth map
v : M → TM such that π ◦ v = idM . Thus, to every p ∈ M we assign a tangent vector v(p) ∈ TpM ,
and this is done in a smooth way. The set of all vector fields on M is denoted by Γ(TM).
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II.4.4 Remark A vector field on an open set Ω ⊂ Rn (considered as a manifold with one chart (Ω, id))
is just a smooth map v : Ω → Rn. But this shouldn’t lead one to forget that v(p) is an element of
TpM and behaves accordingly under smooth maps and changes of charts. 2

II.4.5 Exercise As noted before, a chart (U, φ) around p gives rise to bases {∂/∂xi, i = 1, . . . , n} of
TpM for all p ∈ U , thus the (restriction to U of the) vector field can be written as

v(p) =

n∑

i=1

vi(p) ∂/∂xi.

Then smoothness of v : M → TM is just smoothness of the R-valued functions v1, . . . , vn w.r.t. any
chart (U, φ). 2

II.4.6 Exercise (a) In the definition of the tangent space TpM , the pairing 〈c, h〉 between (germs of)
curves through p and functions at p was crucial. Given a map (not assumed continuous) v : M → TM
satisfying π ◦ v = idM and a function f ∈ C∞(M) we obtain a function 〈v, f〉 : M → R, p 7→ 〈v(p), f〉.
Show that v : M → TM is smooth iff 〈v, f〉 ∈ C∞(M) for every f ∈ C∞(M).

(b) If this is the case then f 7→ 〈v, f〉 is a derivation (in the usual sense) of the algebra C∞(M),
i.e. a linear map ∂C∞(M)→ C∞(M) satisfying ∂(fg) = f∂(g) + g∂(f). 2

II.4.7 Remark The tangent bundle of a manifold plays a fundamental rôle in the Lagrangian for-
mulation of classical mechanics, see [2]. In the latter, the set of possible positions of the N particles
under consideration (the configuration space) constitutes a smooth manifold M . Then the state space
of the system is just TM , consisting of the positions of the N particles and their velocities. Now the
dynamics of the system is determined by a smooth function L : TM → R, the Lagrangian function.
Provided that L satisfies a certain technical condition, the Lagrangian equations define a vector field
v : TM → TTM , and the flow obtained by integrating the latter (see the next section) describes the
time development R× TM → TM of the system. 2

II.5 Vector fields, Flows and Diffeomorphism Groups

In this section we consider the relation between vector fields on a manifold and flows, to be defined
soon. To begin with, let I ⊂ R be connected and consider a smooth curve c : I →M . For every t ∈ I,
the latter has a velocity Ttc(1) ∈ Tc(t)M , where we have used the canonical identification TtR ∼= R.
If c is injective, this defines a unique element of TpM for every p ∈ c(I). However, c(I) only is a
one-dimensional subset of M (at this point we don’t make this precise). One way to obtain a vector
field defined on all of M is the following:

II.5.1 Lemma LetM be a (smooth) manifold and Λ : R×M →M a smooth map such that Λ(0, p) = p
for all p ∈M . Then R→M, t 7→ Λ(t, p) is a curve through p and the map vΛ : M → TM defined by

vΛ : p 7→ [Λ(t, p)] ∈ T (G)
p M

is a smooth vector field.

Proof. Consider the case M = Rn. Then v(p) ∈ TpRn ∼= Rn is given by

v(p) =
∂Λ

∂t
(0, p).

Since Λ is smooth, v(p) clearly is smooth, too. In the general case, let (U, φ) be a chart around p.
Then Λ̃ := φ ◦ Λ ◦ (id × φ−1) maps a neighborhood of 0 × φ(p) ∈ R × Rn to φ(U) ⊂ Rn. Then the
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preceding argument implies that ṽ = ∂Λ̃/∂tt=0 is smooth. Since φ and id× φ are diffeomorphisms, Λ
is smooth. �

Note that there are many maps Λ : R×M →M giving rise to the same vector field v since only the
behavior in a neighborhood of {0}×M matters. We will now show that every vector field arises from
a map Λ as above. We cite the following results from the theory of first order ordinary differential
equations:

II.5.2 Theorem Let Ω ⊂ Rn be open and v : Ω→ Rn smooth. For every x ∈ Ω there exists an open
interval Ix ⊂ R containing 0 and a smooth map Λx : Ix → Ω such that

1. Λx(0) = x.

2. dΛx(t)
dt = v(Λx(t)).

3. Ix cannot be enlarged without losing 1-2, and every solution of 1-2 is obtained from Λx by
restriction to a subinterval of Ix.

4. The set A = ∪x∈ΩIx × {x} ⊂ R× Ω is open and the map Λ : A → Ω given by (t, x) 7→ Λx(t) is
smooth.

5. We have Λ(t,Λ(s, x)) = Λ(t+ s, x) whenever both sides are defined.

II.5.3 Remark Statements 1-2 mean that there is a smooth solution t 7→ x(t) to the initial value
problem x′(t) = v(x(t)), x(0) = x0. Statement 4 means that the solution depends smoothly on the
initial value x0. Statement 5 is a straightforward consequence of the fact the the differential equation
in statement 2 is autonomous, to wit the right hand side does not depend on t other than through
x(t).

For a proof see, e.g., [34]. It is interesting to note that the standard proof of Theorem II.5.2 uses
the Banach fixpoint theorem. The latter thus is essential for both of the analytical results that are
central in differential topology (Theorems II.3.7 and II.5.2). 2

For M = R this solves our problem: We have

∂Λ

∂t
(0, x) = v(Λx(0)) = v(x),

thus the vector field v arises from Λ as in Lemma II.5.1. For general manifold the claim reduces to
M = Rn by using charts. First a definition:

II.5.4 Definition A local flow on M consists of an open neighborhood A of {0} ×M ⊂ R×M and
a smooth map Λ : A→M satisfying

1. Λ(0, p) = p ∀p ∈M .

2. Λ(t,Λ(s, p)) = Λ(t+ s, p) whenever both sides are defined.

II.5.5 Theorem Let M be a manifold and v ∈ Γ(TM). Then there exists a local flow Λ on M such
that vΛ = v.

Proof. Let p ∈M and (U, φ) a chart around p. Then Ω = φ(U) ⊂ Rn is open and

ṽ(x) = Tφ−1(x)φ(v(φ−1(x))) : Ω→ TxRn ∼= Rn

is a smooth vector field on Ω. By Theorem II.5.2 there exist Ã ⊂ R× Ω and a local flow Λ̃ : Ã→ Rn

such that (∂Λ/∂t)(0, x) = ṽ(x). Denoting A = (id× φ−1)(Ã) we defining Λ : A→M by

Λ(t, p) = φ−1(Λ̃(t, φ(p))).
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Since our charts cover M we can define Λ : A → M for some open neighborhood A of {0} ×M . (In
the intersection of the domains of two charts we obtain consistent results. Why?) Comparing our
construction of Λ with the definition of vΛ in Lemma II.5.1 it is clear that vΛ = v. �

II.5.6 Definition A (global) flow on a manifold M is a local flow Λ defined on all of R×M .

II.5.7 Remark 1. Let Λ : R ×M → M be a global flow. Then, for every t ∈ R, Λt : p 7→ Λ(t, p)
has the smooth inverse Λ−t, thus is a diffeomorphisms of M . The map R→ Diff M, t 7→ Λt satisfies
Λ0 = idM and Λs+t = Λs ◦ Λt, and therefore is called a one-parameter group of diffeomorphisms of
M . Note that R → Diff M is an action of R on M in the sense of Definition II.1.17, but it is totally
discontinuous only if it is trivial (Λ(t, ·) = idM ∀t)!

2. The above considerations have a natural interpretation in terms of dynamical systems. Consid-
ering the points of M as states of a physical system and assuming that there are no time dependent
external forces, there should be a map Λt : M → M describing the time development of the system.
(In terms of the above, Λt = Λ(t, ·).) Property 2 in Definition II.5.4 then just means that waiting s
seconds and then t seconds has the same effect as waiting s+ t seconds.

2. Unfortunately, not every vector field integrates to a global flow. Consider e.g. the vector fields
v(x) = 1 on M = (0, 1) ⊂ R or v(x) = x2 on M = R. They integrate to Λ(t, x) = x + t and
Λ(t, x) = x/(1 − tx), respectively, both of which run out of M in finite time. However, we have the
following result. 2

II.5.8 Proposition If the support S = {p ∈M | v(p) 6= 0} of v ∈ Γ(TM) is compact (thus in par-
ticular if M is compact) then there exists a global flow Λ : R×M →M such that vΛ = v.

Proof. Suppose first that M is compact. By the above, the local flow Λ is defined on an open
neighborhood A ⊂ R ×M of {0} ×M . Thus for every p ∈ M there exists an open Up ⊂ M and an
εp > 0 such that (−εp, εp) × Up ⊂ A. By compactness there exists a finite subset F ⊂ M such that
∪p∈FUp = M . Let ε = minp∈F εp. Then ε > 0 and (−ε, ε) ×M ⊂ A. But now we can define Λt(·) for
t ∈ (−2ε, 2ε) by Λt = Λt/2 ◦Λt/2. It is easy to see that this gives rise to a local flow on (−2ε, 2ε)×M
with velocity v. Since A was maximal, we conclude (−2ε, ε)×M ⊂ A. Iterating this argument we see
that A = R×M .

Now consider non-compact M with compactly supported v. We can find an open N ⊂ M with
compact closure such that S ⊂ N . N is a manifold of the same dimension as N and it is compact in
the relative topology since M is locally compact, cf. e.g. [6]. Thus the above considerations give rise
to a global flow Λ̃ on N such that veΛ = v � N . We extend Λ to all of M by setting Λ(t, p) = p ∀p ∈
M −N, t ∈ R. This is a smooth map R×M →M since Λ(t, p) = p also holds on the open set N −S,
and it is a flow since Λ leaves S stable. �

II.6 Manifolds with boundary

For many purposes, like the formulation of Stokes’ theorem, manifolds as defined above are not
sufficiently general, but a very harmless generalization turns out to be sufficient for most applications.
We write Rn

+ = {(x1, . . . , xn) ∈ Rn | x1 ≥ 0} and ∂Rn
+ = {(x1, . . . , xn) ∈ Rn | x1 = 0}.

II.6.1 Definition A (smooth) manifold of dimension n ∈ N with boundary is a second countable
Hausdorff space M such that every p ∈ M has an open neighborhood U such that there is a home-
omorphism φ : U → V , where V is an open subset of Rn or Rn

+, and such that the transition maps
φ′ ◦ φ−1 : φ(U ∩ U ′)→ φ′(U ∩ U ′) between any two charts (U, φ), (U ′, φ′) are smooth.

II.6.2 Lemma Let p ∈M . If there is an Rn
+-valued chart (U, φ) around p such that φ(p) ∈ ∂Rn

+ then
φ(p) ∈ ∂Rn

+ holds in any chart around p.
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Proof. Let (U ′, φ′) be another chart around p and assume that φ(p) is an interior point of Rn
+. Applying

the inverse function theorem to the smooth and invertible map φ′ ◦ φ−1 we see that also φ′(p) is an
interior point of Rn

+. �

Thus a point p ∈ M is mapped to ∂Rn
+ by all charts or by no chart. (The same result holds for

topological manifolds, but to prove this one needs to invoke the ‘invariance of the domain’ already
alluded to.)

II.6.3 Definition The boundary of M is

∂M = {p ∈M | φ(p) ∈ ∂Rn
+ for some Rn

+-valued chart (U, φ) around p}.

If f : M → N , we write ∂f = f � ∂M : ∂M → N .

II.6.4 Remark Since Rn is diffeomorphic to an open ball in Rn, one could also require all charts to
take values in Rn

+. However, the flexibility gained by allowing charts taking values in Rn is convenient
since now a manifold in the sense of Definition II.1.9 manifestly also is a manifold with boundary with
∂M = ∅. 2

II.6.5 Lemma The boundary ∂M of an n-manifold M is a (n− 1)-manifold without boundary, thus
∂∂M = ∅.

Proof. For every p ∈ ∂M there is a chart (U, φ) of M around p such that φ(U ∩ ∂M) is an open
neighborhood of 0 in 0 × Rn−1. Forgetting the first coordinate, (U ∩ ∂M,φ � U ∩ ∂M) is a chart of
∂M mapping an open neighborhood of p to an open subset of Rn−1. One verifies that the atlas of
M gives rise to an atlas of ∂M . Clearly ∂M has no boundary, since we have Rn−1 in the preceding
sentence, not Rn−1

+ . �

II.6.6 Exercise If M is a manifold with boundary then M − ∂M is a manifold without boundary
(or empty boundary), called the interior of M . 2

II.6.7 Exercise Show that M = ∂M implies M = ∅. 2

II.6.8 We now must reconsider the notions of tangent space and differential for manifolds with
boundary. The important point is that we want TpM to be a vector space, not a half space, even if
p ∈ ∂M . The ‘physicist’s’ and the ‘algebraist’s’ definition of the tangent space are clearly applicable
also in the presence of a boundary and give a vector space TpM for all p ∈ M . The ‘geometer’s’
definition is more problematic since a (germ of a) curve may run into the boundary. (One may try
to make this definition work restricting oneself to germs of the form [0, ε) → M , but this becomes
somewhat tedious.) Now it is clear that also the differentials Tpf : TpM → Tf(p)N and TF : TM →
TN can be defined as for boundaryless manifolds

The following is obvious but quite important:

II.6.9 Proposition Let M be a manifold with boundary ∂M 6= ∅. For every p ∈ ∂M there is a
canonical linear inclusion map Tp∂M ↪→ TpM given by [c] 7→ [c]. (Here the left [c] is an equivalence
class of curves in ∂M through p and the right [c] is the same curve considered as curve in M .) Let
Φ = (U, φ) be a chart around p ∈ ∂M . Then the ‘physicist pictures’ of the tangent spaces are related
via

TP
p ∂M

∼= {[(Φ, v)] ∈ T P
p M | v1 = 0}.
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II.6.10 Exercise Let M,N be n-manifolds, possibly with boundary, with atlasses (Ui, φi), (Vj , ψj),
respectively. Then the disjoint union M + N = M

∐
N with the atlas {(Ui, φi)}

∐{(Vj , ψj)} is an
n-manifold and ∂(M +N) = ∂M + ∂N . 2

II.6.11 Exercise Let M,N are manifolds, where ∂N = ∅, with atlasses (Ui, φi), (Vj , ψj), respectively.
Then M × N with the atlas (Ui × Vj, φi × ψj) is a manifold of dimension dimM + dimN , and
∂(M ×N) = ∂M ×N . 2

II.6.12 Remark If ∂M 6= ∅ 6= ∂N then M ×N is not a manifold! If p ∈ ∂M, q ∈ ∂N then p× q has
a neighborhood in M ×N that is homeomorphic to an open neighborhood of 0 ∈ Rm+n−2×R+×R+

but not to any open subset of Rm+n−1×R+. However, M×N is a manifold with corners, i.e. a second
countable Hausdorff space where every point p has a neighborhood that is homeomorphic to an open
subset of (R+)n.) The latter are a straightforward generalization of manifolds with boundary, but we
will not consider them any further in this course. 2

From now on ‘manifold’ will mean ‘manifold with boundary’. Of course, the boundary

may be empty. If this is required to be the case we will say ‘manifold without boundary’.
Note that in the literature very often compact manifolds without boundary are called closed. Less
frequently, an open manifold is meant to be a manifold without boundary such that all connected
components are non-compact. We don’t use either of these terms.

II.7 Locally compact spaces

We begin by recalling a few facts concerning compact spaces that should be known from general
topology.

II.7.1 Definition A normal space is a Hausdorff space such that for any two disjoint closed sets
C1, C2 there are disjoint open sets Ui ⊃ C1, i = 1, 2.

The importance of the normality property derives from the following

II.7.2 Lemma (Urysohn) A Hausdorff space X is normal iff for any two disjoint closed sets C1, C2

there is a continuous function f : X → [0, 1] such that f � C1 ≡ 0 and f � C2 ≡ 1.

Proof. As to ⇐, let C1, C2, f as stated. Then U1 = f−1([0, 1/3)) and U2 = f−1((2/3, 1]) are disjoint
open sets containing C1, C2, respectively. For the ⇒ direction see any book on general topology. �

II.7.3 Proposition Every compact Hausdorff space is normal.

Proof. See any book on general topology. �

II.7.4 Definition A space X is locally compact if for every x ∈ X there are an open U and a compact
K such that x ∈ U ⊂ K.

Unfortunately, not every locally compact Hausdorff space is normal, cf. [29]. Before we return to
this question we consider some basic properties of locally compact spaces.

II.7.5 Lemma If X is such that every neighborhood of a point contains a compact neighborhood of
that point then X is locally compact. If X is Hausdorff the converse is also true.
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Proof. The implication ⇒ is trivial. As to the ⇐ direction, let p ∈ V be given with V open. By local
compactness there are p ∈ U ⊂ K with U open and K compact (thus closed since X is Hausdorff).
Then U ∩ V 3 p is open and U ∩ V ⊂ K is compact, thus normal by Proposition II.7.3. Thus there
exist

***********************

�

II.7.6 Remark Occasionally one sees locally compact spaces defined as spaces where every neighbor-
hood of a point contains a compact neighborhood. This is objectionable since in the non-Hausdorff
case it is a stronger assumption. More importantly, it clashes with the terminology according to which
a space X is ‘locally P’, where P is any property that a topological may or may not have, if every
point has a neighborhood V (not necessarily open) that is P. Besides P=‘compact’, other examples
for P are ‘path connected’, ‘euclidean’ (homeomorphic to Rn), etc. 2

II.7.7 Lemma Let X be locally compact and K ⊂ X compact. Then there is an open U ⊃ K such
that U is compact.

Proof. By local compactness there exists a cover (Vj) of X by open sets with compact closures. Since
K ⊂ X is compact it is covered by finitely many of the Vj. The union of the latter is an open set with
compact closure. �

II.7.8 Exercise Every open and every closed subset of a locally compact Hausdorff space is locally
compact Hausdorff in the relative topology. 2

II.7.9 Definition Let X be a topological space with topology T . We write X+ = X
∐{∞} and

identify X with the obvious subset of X+. We define a topology T + on X+ by declaring U ⊂ X+

to be open if it doesn’t contain ∞ and is open in X or it does contain ∞ and X+ − U is closed and
compact in X.

II.7.10 Exercise Prove the following claims:

1. (X+, T +) is a topological space.

2. X is an open subset of X+ and the subspace topology on X obtained from X+ coincides with
T . Thus the inclusion map X ↪→ X+ is a homeomorphism of X onto its image.

3. X+ is compact.

4. If X is compact then X is closed in X+, thus X+ = X
∐{∞} as topological spaces.

5. If X is non-compact then X = X+, thus X is dense in X+.

6. X+ is Hausdorff iff X is locally compact Hausdorff.

2

II.7.11 Remark Given a space X, a space Y ⊃ X is called a compactification of X if (1) the subspace
topology on X ⊂ Y coincides with the given one on X, (2) Y is compact and (3) X is dense in Y . Thus
X+ is a compactification of X provided X is non-compact. It is called the one-point (or Alexandroff)
compactification. There are many other compactifications, working under different assumptions on
X. 2
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II.7.12 Remark The last part of Exercise II.7.10 already shows the usefulness of locally compact
(Hausdorff) spaces. We mention four further reasons:

1. Abstract measure theory on locally compact spaces: On locally compact spaces there exists a
nice generalization of Lebesgue’s measure and integration theory for Rn. Cf. [26].

2. Gelfand duality: For a loc. cp. space X define

C0(X) = {f ∈ C(X,C) | ∀ε > 0 ∃K ⊂ X compact such that |f(x)| < ε ∀x ∈ X −K}.

(Equivalently, C0(X) = {f+ � X | f+ ∈ C(X+), f+(∞) = 0}.) Then C0(X) is a complex
algebra, complete w.r.t. the sup-norm and therefore a commutative C ∗-algebra. Now, every
commutative C∗-algebra is isomorphic to C0(X) for a locally compact Hausdorff space that is
unique up to homeomorphism. Cf. e.g. [24, Section 4.3].

3. The Haar measure on locally compact groups: On every locally compact group there exists a
unique (up to normalization) left invariant measure in the setting of 1. [23, Section 1.2].

4. Pontrjagin duality for locally compact abelian groups: Let G be a loc. cp. abelian group and
write Ĝ for the group of continuous homomorphisms G → {z ∈ C | |z| = 1}, with a suitable
topology. It is not difficult to show that Ĝ is a loc. cp. abelian group. Using all of 1-3 above

one proves Pontrjagin duality:
̂̂
G ∼= G. [23, Chapter 3].

2

We now examine the separation properties of locally compact Hausdorff spaces.

II.7.13 Proposition Let X be locally compact Hausdorff. Let K ⊂ U ⊂ X with K compact
and U open. Then there exists a continuous function f : X → [0, 1] such that f � K ≡ 1 and
suppf ≡ {x ∈ X | f(x) 6= 0} is compact and contained in U .

Proof. By Exercise II.7.10, the one-point compactification X+ is compact Hausdorff and thus normal
by Proposition II.7.3. By Lemma II.7.7 there exists an open V ⊃ K with V closed. Applying Urysohn’s
lemma to the closed sets K (since X is Hausdorff) and X+− (U ∩V ) we obtain a continuous function
f : X+ → [0, 1] such that f � K ≡ 1 and {x ∈ X | f(x) > 0} ⊂ U ∩ V . Since U ∩ V is compact, we
are done. �

II.7.14 Remark Let X be locally compact Hausdorff and let K ⊂ X be compact and C ⊂ X closed
such that K ∩C = ∅. Then Proposition II.7.13 applies to K ⊂ U = X −C, thus there is a continuous
function f : X → [0, 1] such that f � C ≡ 1 and f � C ≡ 0. Thus a continuous function separating
disjoint closed sets exists (as is the case in normal spaces) if at least one of the sets is compact.

Given any closed set C ⊂ X and an x ∈ X − C, K = {x} is compact and we obtain a continuous
function separating x and C. Such a space is called completely regular. In turn, it follows that X is
regular in the sense that a closed set C ⊂ X and x 6∈ C are contained in disjoint open sets. 2

If we insist on normality, we need stronger assumptions on X. The following property is sufficient:

II.7.15 Definition A space X is σ-compact if it is the union of a countable family Cn of compact
subsets.

II.7.16 Proposition A locally compact σ-compact Hausdorff space is normal.

Proof. See [24, Proposition 1.7.8]. For the class of second countable locally compact Hausdorff spaces
this will follow from the following lemma and the results in the next subsection. �
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II.7.17 Lemma A second countable locally compact space X is σ-compact.

Proof. By local compactness, there exists a cover (Ui, i ∈ I) of X by open sets with compact closures.
By Proposition II.1.6, there is a countable subcover I0 ⊂ I. Now (Ui, i ∈ I0) is a countable family of
compact sets covering X. �

II.7.18 Remark Actually, every second countable locally compact Hausdorff space is metrizable and
thus has all properties of metric spaces, like normality and paracompactness (see below). 2

II.8 Proper maps

It is natural to ask whether a continuous map between locally compact spaces can be extended
continuously to the one-point compactifications. For this we need the following

II.8.1 Definition A function f : X → Y (not necessarily continuous) between topological spaces is
proper iff f−1(K) ⊂ X is compact for every compact K ⊂ Y .

II.8.2 Exercise Let f : X → Y be a continuous map between locally compact Hausdorff spaces.
Extend f to f+ : X+ → Y + by setting f+(∞) =∞. Show that f+ is continuous iff f is proper. 2

II.8.3 Exercise Prove the following claims.

1. If f : A→ B and g : B → C are proper then g ◦ f : A→ C is proper.

2. If A is Hausdorff, B is compact and f : A→ B is proper then f is continuous.

2

II.8.4 Proposition Let B,C be Hausdorff spaces. If f : A→ B and g : A→ C are continuous and
f is proper then h = (f, g) : A→ B × C is proper.

Proof. Let X ⊂ B × C be compact. If p1 : B × C → B is the projection onto B, then p1(X) ⊂ B
is compact, thus f−1(p1(X)) is compact. Since B,C are Hausdorff, B × C is Hausdorff, thus the
compact subset X is closed. Since f, g, thus h, are continuous, h−1(X) is a closed and thus compact
since h−1(X) ⊂ f−1(p1(X)), which is clear by X ⊂ p1(X) × C. �

II.8.5 Exercise Let G be a toplogical group and X a topological space. An action of G on X is
continuous if the map G ×X → X, (g, x) 7→ gx is continuous. An action is called proper if the map
G×X → X ×X, (g, x) 7→ (gx, x) is proper. Show that if G is discrete, this condition is equivalent to
the one given in Remark II.1.22. 2

The following result will play an important rôle in the proof of the embedding theorem.

II.8.6 Lemma Let f : X → Y be an injective map of locally compact Hausdorff spaces. Then the
following are equivalent:

(i) f(X) is closed and f : X → f(X) is a homeomorphism w.r.t. the subset topology.

(ii) f is closed, i.e. f(C) is closed for every closed C ⊂ X.

(iii) f is proper.
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Proof. (ii)⇒(i): Since f is injective, (i) holds iff f−1 : f(X) → X is continuous, which is the case if
f(Z) is open in f(X) for every open Z ⊂ X. Let Z ⊂ X be open. By (ii), f(X − Z) is closed in Y ,
thus closed in f(X). Since f is injective, we have f(Z) = f(X) − f(X − Z), thus f(Z) is open in
f(X).

(i)⇒(iii): Let K ⊂ Y be compact. Then K ∩ f(X) is compact in f(X), thus f−1(K) = f−1(K ∩
f(X)) is compact in X by (i).

(iii)⇒(ii): Since f is proper, it extends to a continuous map f̂ : X̂ → Ŷ of the 1-point compactifi-
cations such that f̂(∞) =∞. Let C ⊂ X be closed. Then C ∪ {∞} ⊂ X̂ is closed and thus compact.
Thus f(C∪{∞}) ⊂ Ŷ is compact, thus closed (since Ŷ is Hausdorff). Thus Ŷ −f(C∪{∞}) = Y −f(C)
is open in Ŷ and thus in Y , thus f(C) ⊂ Y is closed. �

II.9 Paracompact spaces

II.9.1 Definition A cover (Ui)i∈I of a space X is locally finite if every p ∈ X has a neighborhood
U such that the set {i ∈ I | U ∩ Ui 6= ∅} is finite. A refinement of a cover (Ui)i∈I is a cover (Vj)j∈J

such that every Vj is contained in some Ui. A space X is called paracompact if every cover admits a
locally finite refinement.

II.9.2 Remark Some authors include Hausdorffness in the definition. Anyway, we’ll only consider
paracompact spaces that are also Hausdorff. 2

Paracompact spaces are nicely behaved:

II.9.3 Proposition A paracompact Hausdorff space is normal.

Proof. We beginn by showing that a paracompact space X is regular, cf. Remark II.7.14. Thus
suppose such x,C are given. For each point y ∈ C there are disjoint open sets Uy 3 x and Vy 3 y.
Now {X − C} ∪ {Vy, y ∈ C} is an open cover of X. By paracompactness there is a locally finite
refinement (Wi, i ∈ I). Let U = ∪{Wi | Wi ⊂ Vy for some y ∈ C} and note that this contains C.
By local finiteness of the cover (Wi) we have U = ∪{Wi | Wi ⊂ Vy for some y ∈ C}. Now, x is not
contained in any of the Wi, thus x 6∈ U . Therefore we have disjoint open sets U ⊃ C and X − U 3 x,
as required.

To prove normality, let C,D be disjoint closed sets and repeat the argument, replacing x by D. �

II.9.4 Definition A shrinking of a cover (Ui)i∈I is a cover (Vi)i∈I (same index set!!) such that
Vi ⊂ Ui for all i ∈ I.

II.9.5 Lemma Every locally finite cover (Ui)i∈I of a paracompact Hausdorff space admits a shrinking.

Proof. Let (Ui)i∈I be a locally finite open cover of X. For every x ∈ X chose a Ui containing x and
call it Ux. By regularity, cf. Proposition II.9.3, there are disjoint open sets Yx 3 x and Zx ⊃ X − Ux.
Thus Yx ⊂ X−Zx and therefore Yx ⊂ X − Zx = X−Zx ⊂ Ux. Clearly (Yx)x∈X is an open cover, and
by paracompactness we can choose a locally finite refinement (Wj)j∈J . Let Vi = ∪{Wj | Wj ⊂ Ui}.
Clearly, (Vi)i∈I is again an open cover. As above, local finiteness of (Wj) implies Vi = ∪{Wj | Wj ⊂
Ui} ⊂ Ui, thus (Vi) is a shrinking of (Ui). �

II.9.6 Definition Let X be a topological space. A family (λi : X → [0, 1])i∈I of continuous functions
is a partition of unity if (a) it is locally finite, i.e. every x ∈ X has a neighborhood on which all but
finitely many of the fi are identically zero and (b) for every x ∈ X we have

∑

i∈I

λi(x) = 1.
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(The sum makes sense by (a).) Clearly (Vi = {x ∈ X | fi(x) > 0})i∈I is an open cover, and we say
that (fi)i∈I is subordinate to a given cover (Uj) if (Vi) is a shrinking of (Ui).

II.9.7 Proposition A Hausdorff space is paracompact iff every open cover admits a subordinate
partition of unity.

Proof. As to ⇐, let (Ui) be an open cover and (λi) a subordinate partition of unity. Then (Vi = {x ∈
X | λi(x) > 0})i∈I is a locally finite open cover subordinate to (Ui).

As to⇒, let X be paracompact and (Ui) an open cover. Let (Vj)j∈J be a locally finite refinement of
(Ui) and (Wj)j∈J a shrinking of (Vj). Since X is normal, Urysohn’s lemma provides us with functions
fj : X → [0, 1], j ∈ J such that fj � Wj ≡ 1 and fj � X −Uj ≡ 0. Thus the family (fj) is locally finite
and f =

∑
j fj vanishes nowhere. Now λj = fj/f is a partition of unity subordinate to (Vj) and thus

to (Ui). �

In view of these results we need criteria telling providing us with paracompact spaces. The first
one shows that paracompactness is independent of local compactness since, e.g., infinite dimensional
Banach spaces are not locally compact.

II.9.8 Theorem Every metric space is paracompact.

Proof. The original proof by Stone was quite complicated, but now there are simple one-page proofs.
See M. E. Rudin, Proc. AMS 20 (1969) and D. Ornstein, Proc. AMS 21 (1969). �

Together with the fact that every second countable locally compact Hausdorff space is metrizable
this implies paracompactness of these spaces. However, we give a more direct proof.

II.9.9 Theorem A locally compact Hausdorff space X is paracompact iff every connected component
of X is σ-compact.

Proof. For the ⇒-direction, which we don’t need here, see [6]. As to ⇐, it is clear that a topological
direct sum of paracompact spaces is paracompact. It is thus sufficient to prove that a locally compact
σ-compact Hausdorff space is paracompact.

By σ-compactness we have compact sets (Cn)n∈N covering X. Using Lemma II.7.7 we can choose,
for every n ∈ N, an open set En having compact closure and containing En−1 ∪ Cn (with E0 = ∅).
Clearly ∪nEn = X. Now An = En − En−1 defines a sequence of compact sets such that

⋃
nAn = X

and Ai ∩ Aj = ∅ whenever |i − j| > 1. Now we choose another sequence (Bn) of compact sets such
that An ⊂ Bint

n and Bi ∩Bj = ∅ whenever |i− j| > 1. For this purpose it is enough that each olEn is
compact and thus normal.

After these preparations, let (Ui)i∈I be an arbitrary open cover of X. By compactness, each An is
covered by finitely many Ui

′s, thus

An ⊂
sn⋃

r=1

Ui(n,r).

Then the family
{ Vn,r = Ui(n,r) ∩Bint

n | n ∈ N, r = 1, . . . , sn }
is an open cover refining (Ui)i∈I . Every x ∈ X has a neighborhood U contained in some B int

m and
therefore meets at most in the finite family {Vn,r | |n−m| ≤ 1, r = 1, . . . , sn}. Thus the new cover is
locally finite. �

For our purposes in the sequel, the following is the upshot of this section:

II.9.10 Corollary Every second countable locally compact Hausdorff space, in particular every
topological manifold, is paracompact and normal.

Proof. Lemma II.7.17 gives σ-compactness. Now apply Theorem II.9.9 and Proposition II.9.3. �
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II.10 Smooth partitions of unity

By definition, manifolds are spaces obtained by gluing together open neighborhoods in Rn. Many
proofs require in a certain sense to undo this operation. This is done using partitions of unity. We
have already seen that manifolds are paracompact and therefore admit continuous partitions of unity.
For the purposes of differential topology this is not good enough since we need the functions λj to be
smooth. We therefore give a proof.

II.10.1 Lemma Let K ⊂ U ⊂M with K compact and U open. Then there exists a smooth function
g : M → [0,∞) such that g(x) > 0 for all x ∈ K and supp g ⊂ U .

Proof. Let F : R→ R be given by F (x) = e−1/(x−1)2e−1/(x+1)2 for |x| < 1 and by F (x) = 0 otherwise.
Then F is a smooth and satisfies F (x) > 0 iff x ∈ (−1, 1). Now let p ∈ U ⊂M with U open. Take a
chart (Ũ , φ) around p and ε > 0 such that φ(U ∩ Ũ) ⊂ Rn contains the cube

{(x1, . . . , xn) | |xi| ≤ ε for all i}.

Then the function q 7→ F (φ1(q)/ε) · . . . ·F (φn(q)/ε) extends to a smooth function gp : M → [0, 1] such
that g(p) > 0 and supp gp ⊂ U .

To prove the lemma, take such a function gp for every p ∈ K. The sets {x ∈ M | gp(x) > 0} are
open and cover K. Thus a finite number of them covers K. The sum g of the corresponding functions
gp has the desired properties. �

II.10.2 Theorem Let M be a manifold and (Ui) an open cover. Then there exists a smooth partition
of unity (λj)j∈J subordinate to (Ui).

Proof. By paracompactness there exist a locally finite refinement (Vj)j∈J of (Ui) and, by Lemma
II.9.5, a shrinking (Wj)j∈J of (Vj)j∈J . We may also assume that each Vj is contained in the domain of
a coordinate chart and that each Wj is compact. Using Lemma II.10.1 we construct, for every j ∈ J , a
smooth function gj : M → [0,∞) such that gj(x) > 0 if x ∈Wj and supp gj ⊂ Vj . By local finiteness,
g(p) =

∑
i gi(x) exists as a smooth function that vanishes nowhere (since ∪jWj = M). Now λi = gi/g

has all desired properties. �

As a first application we consider the extension problem of smooth functions defined on an open
neighborhood of a compact subset of a manifold. (We need the open neighborhood U of K since there
is no way to define smoothness of a function defined on an arbitrary closed subset K ⊂M .)

II.10.3 Proposition Let M be a manifold and consider C ⊂ U ⊂ M , where C is closed and U is
open. Then for any smooth function f : U → R there exists a smooth function f : M → R that
coincides with f on C.

Proof. {U,M −C} is an open cover of M which is trivially locally finite. Thus there is a subordinate
open cover, to wit smooth functions λU , λM−C : M → R such that λU + λM−C ≡ 1 and suppλU ⊂
U, suppλM−C ⊂M −C. Defining f(p) to be λU (p)f(p) for p ∈ U and zero otherwise, f is smooth. If
p ∈ C then p 6∈M − C, thus λM−C(p) = 0, therefore λU (p) = 1 and f(p) = f(p). �

II.11 Basics of Riemannian Manifolds

II.11.1 Definition A riemannian metric on a manifold M is a family {〈·, ·〉p, p ∈M} of symmetric
positive definite bilinear forms on the tangent spaces TpM such that the map p 7→ 〈v(p), v(p)〉p is
smooth for any (smooth) vector field v. A manifold together with a (chosen) riemannian metric is a
riemannian manifold.
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II.11.2 Remark One application of riemannian metrics is the assignment of a length to a smooth
curve segment in M . If f : [a, b] → M is smooth we use the identification TtR ≡ R to define
v(t) ∈ Tf(t)M by v(t) = (Ttf)(1). Then

L(f) =

∫ b

a
dt

√
〈v(t), v(t)〉f(t)

defines the length of f . For M = Rn this is easily seen to reduce to the usual definition. As mentioned
before, every manifold is metrizable. In fact, a connected riemannian manifold has a canonical metric
inducing the given topology:

d(p, q) = inf{L(f) | f a smooth curve connecting p and q}.

(Showing that this is a metric requires some work, the most difficult part being d(p, q) > 0 if p 6= q.)
Then the interesting question arises whether the metric space (M,d) is complete. More on this later.
2

II.11.3 Remark Let 〈·, ·〉 and 〈·, ·〉∼ be riemannian metrics on M . Then

〈·, ·〉t = t〈·, ·〉 + (1− t)〈·, ·〉∼, t ∈ [0, 1]

is a continuous family metrices such that 〈·, ·〉1 = 〈·, ·〉 and 〈·, ·〉0 = 〈·, ·〉∼. Thus the space of all
metrices (with a suitable topology) is connected, and in a sense all metrices are equivalent. Indeed,
for many purposes it is sufficient to know that M admits some riemannian metric. Proving this will
be our first application of partitions of unity. 2

II.11.4 Lemma Every manifold admits a riemannian metric.

Proof. Let {Ui, i ∈ I} be a locally finite open cover and {λi, i ∈ I} a subordinate partition of unity.
For each i ∈ I, let 〈·, ·〉i be a positive definite symmetric quadratic form on Rn and for X,Y ∈ TpM
we define

〈X,Y 〉p =
∑

i∈I

λi(p) 〈Tpφi(X), Tpφi(Y )〉i.

Here the i-th summand is understood to be zero if p 6∈ Ui. This is well defined by local finiteness of
the partition. Symmetry and positivity are obvious. If X 6= 0 then 〈Tpφi(X), Tpφi(X)〉i > 0 whenever
p ∈ Ui, implying positive definiteness. Given vector fields X,Y , smoothness of p 7→ 〈X(p), Y (p)〉p is
easily seen using local coordinates. �

II.12 Classification of smooth 1-manifolds

We first remark that manifolds are locally path connected, thus the path components are closed and
open connected components. Thus a manifold is topologically a direct sum of its path components
and it is sufficient to classify (path) connected manifolds.

In this section we will give a complete classification of smooth connected 1-manifolds. While the
statement of the latter may seem obvious, giving a proper proof is not entirely trivial. Corollary II.12.3
will turn out to be useful later on. Our approach is inspired by [19, Appendix]. (There, however, only
manifolds embedded in some Rm are considered.)

II.12.1 Theorem Let M be a connected smooth 1-manifold. Then M is diffeomorphic to one of the
following: [0, 1], [0,∞),R, S1 .
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II.12.2 Remark Of the 1-manifolds in the theorem, the compact ones are S1 and [0, 1], the bound-
aryless ones are S1 and R. 2

II.12.3 Corollary Let M be a compact smooth 1-manifold. Then ∂M consists of an even (finite)
number of points.

Proof. Since M is compact, the number of connected components is finite. The claim follows since a
connected compact 1-manifold is either S1 (no boundary) or [0, 1] (two boundary points). �

In the sequel we will call a connected non empty subset of R an interval. It should be clear that
every interval is diffeomorphic to one of the first three alternatives in Theorem II.12.1.

II.12.4 Definition Let M be a smooth Riemannian 1-manifold and I an interval. A map f : I →
M is a parametrization if f maps I diffeomorphically onto an open subset of M . It is called a
parametrization by arc length if the ‘velocity’ v(x) = Txf(1) ∈ Tf(p)M has length one for all x ∈ I,
i.e. 〈v(x), v(x)〉f(x) = 1 ∀x ∈ I.

II.12.5 Exercise M must have boundary points whenever I has. Hint: f(I) ⊂M is open. 2

II.12.6 Lemma Any given local parametrization f : I →M can be transformed into a parametrization
by arc length by a transformation of variables.

Proof. As usual, v(x) = Txf(1). Pick a point x0 ∈ I. Then the map

β : I → R, x 7→
∫ x

x0

dt
√
〈v(t), v(t)〉f(t)

is smooth and satisfies β ′(x) > 0 for all x ∈ I. Thus it has a smooth inverse β−1 : β(I) → I. Then
f̃ = f ◦ β−1, β(I)→M is a parametrization by arc length. (Verify!) �

II.12.7 Proposition If f : I →M and g : J →M are parametrizations by arc length then f(I)∩g(J)
has at most two components. If it has one component then f can be extended to a parametrization
of f(I) ∪ g(J) by arc length. If it has two components then M is diffeomorphic to S 1.

Proof. Clearly g−1 ◦ f maps the open subset f−1(g(J)) ⊂ I diffeomorphically onto the open subset
g−1(f(I)) ⊂ J , and the derivative of this map is ±1 everywhere. The subset Γ = {(s, t) | f(s) = g(t)}
of I×J consists of line segments of slope ±1. Since Γ is closed and g−1 ◦f is locally a diffeomorphism,
these line segments cannot end in the interior of I×J , but must extend to the boundary. Since g ◦f −1

is injective and single valued, there can be at most one of these segments ending on each of the four
edges of the rectangle I × J . It follows that Γ has at most two components. If there are two, they
must have the same slope ±1.

If Γ is connected then g−1 ◦ f extends to a linear map ` : R→ R. Now f and g ◦ ` fit together and
define a map I ∩ `−1(J)→ f(I) ∪ g(J).

If Γ has two components, both with slope +1 say, we have Γ = (a, α)(b, β) ∪ (c, γ)(d, δ):

�
�

��γ

δ

α

β

a b c d

Translating the interval J = (γ, β) if necessary, we may assume that γ = c and δ = d so that

a < b ≤ c < d ≤ α < β :
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Identifying S1 with the unit circle in C and setting θ = 2πt/(α− a) we define

h : S1 →M, eiθ 7→
{
f(t) if a < t < d,
g(t) if c < t < β.

By definition, h is injective. The image h(S1) is open and compact, thus closed in M . Since M is
connected h is surjective. �

Proof of the Theorem. We use Lemma II.11.4 to equip M with a riemannian metric. Let p ∈M and
(U, φ) a chart around p. Using Lemma II.12.6 we obtain an arc-length parametrization of U by an
open interval (a, b). If U = M we are done. If not, at least one of the points a, b is not a boundary
point of M . Assume this point is a and choose a chart (V, ψ) around a. Clearly V 6⊂ U . Again, we
can replace ψ by an arc-length parametrization of V . We have U ∩V 6= ∅, thus by Proposition II.12.7
U ∩ V has one or two components. If it has one, Proposition II.12.7 provides us with an arc-length
parametrization of U ∪V , and continuing like this we obtain an arc-length parametrization of a certain
maximal subset N of M . If N = M we are done. Assume N 6= M . Then for every p ∈ M −N and
every open neighborhood V of p, the intersection V ∩N has two components. In that case, chosing an
arc-length parametrization of such a neighborhood V , Proposition II.12.7 provides a diffeomorphism
between M and S1. �

II.12.8 Remark 1. Theorem II.12.1 implies that all connected smooth 1-manifolds of the same type
([0, 1], [0,∞), R, S1) are diffeomorphic. Thus each of the latter carries a unique smooth structure.

2. By similar methods as used in the proof of Lemma II.12.6 one can show that every connected
topological 1-manifold M is homeomorphic to one of the four above types. This homomorphism can
be used to define a smooth structure on M , which is unique by 1.

3. The classification of smooth 1-manifolds can also be obtained using some elementary Morse
theory see [12, Appendix 2]. For a Morse theory approach to the classification of smooth compact
2-manifolds see [13, Chapter 9]. Topological surfaces (i.e. 2-dimensional C 0-manifolds) can also be
classified using elementary topological considerations, cf. [31]. However, proving that topological
manifolds of dimensions 2 and 3 admit a unique smooth structure is more involved. 2



Chapter III

Local structure of smooth maps

III.1 The rank theorem

In Exercise II.3.6 we have seen that Tpf is an isomorphism for all p when f is a diffeomorphism. For
general maps this will not be the case, certainly not if M,N have different dimensions. Thus it is
natural to consider the rank of the linear map Tpf as p ∈M varies.

III.1.1 Proposition Consider f : M → N and let p ∈M . If rank(Tpf : TpM → Tf(p)N) = r, there
exists an open U 3 p such that rank(Tqf : TqM → Tf(q)N) ≥ r for all q ∈ U .

Proof. Let (U, φ), (V, ψ) be charts around p, f(p), respectively. W.r.t. these charts the differential Tpf
is described by the n × m-matrix A = (∂(ψj ◦ f ◦ φ−1(x1, . . . , xm))/∂xi). That the rank of A is r
means that A has an invertible r × r submatrix but no invertible submatrix of size (r + 1)× (r + 1).
Invertibility is equivalent of non-vanishing of the determinant. Now, the determinant of the submatrix
under question is a continuous function of p and therefore does not vanish in a sufficiently small
neighborhood of p. In such a neighborhood the rank of Tpf cannot be smaller than r, as claimed. �

III.1.2 Remark 1. This result can be restated by saying that the map p 7→ rankTpf is lower
semicontinuous. (A function f is lower semicontinuous if limq→p f(q) ≥ f(p).)

2. Note that the rank of Tqf may be bigger than that of Tpf arbitrarily close to p: Consider
f : R→ R : p 7→ p2 at p = 0. 2

The following proof is taken from [7].

III.1.3 Theorem Let M,N be manifolds without boundary. Consider f : M → N and assume that
rankTpf is constant on some neighborhood U of p ∈ M . Then there are charts (V, φ) and (W,ψ)

around p and f(p), respectively, such that f(V ) ⊂ W and f̃ = ψ ◦ f ◦ φ−1 : φ(V ) → ψ(W ) has the
form f̃ : (x1, . . . , xm) 7→ (x1, . . . , xr, 0, . . . , 0).

Proof. We may right away restrict to maps f : U → Rn where U ⊂ Rm is a neighborhood of zero and
f(0) = 0. Now there exists a (r × r)-submatrix of Tpf that is invertible at p = 0. Suitably renaming
the coordinates of Rm and Rn we may assume that the matrix (∂fi/∂xj)1≤i,j≤r is invertible at x = 0.
Let h : U → Rm be given by (x1, . . . , xm) 7→ (f1(x), . . . , fr(x), xr+1, . . . , xm). The Jacobi matrix of h

33
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has the form

∂fi

∂xj

I0

r n− r

m− r

r

T0h =

Now we have det T0h = det(∂fi/∂xj)1≤i,j≤r 6= 0, thus by the inverse function theorem there is a local
inverse h−1 : V ′ → U ′ bijectively mapping some open neighborhood V ′ of 0 to some U ′ ⊂ U , and the
diagrams

Rm ⊃ U ′ h- V ′ ⊂ Rm

@
@

@
@

@
f

R
Rn

f ◦ h−1

?

(x1, . . . , xm) - (f1(x), . . . , fr(x), xr+1, . . . , xm)
R

@
@

@
@

@
f

R
(f1(x), . . . , fn(x))

?

commute. Thus the map g = f◦h−1 : V ′ → Rn has the form (z1, . . . , zm) 7→ (z1, . . . , zr, gr+1(z), . . . , gn(z))
and therefore the Jacobi determinant

I 0

? A(z) m− r

r

r n− r

T0g =

where A(z) = (∂gi/∂zj). Since rank f = rank g = rankT0g = r in a neighborhood of zero, we must
have A(z) = 0 in this neighborhood. Thus

∂gi

∂zj
= 0, r + 1 ≤ i ≤ n, r + 1 ≤ j ≤ m. (III.1)

Let now

k : (y1, . . . , yn) 7→ (y1, . . . , yr, yr+1 − gr+1(y1, . . . , yr, 0, . . . , 0), . . . , yn − gn(y1, . . . , yr, 0, . . . , 0)).

The Jacobi matrix (∂ki/∂yj) of k is

I 0

? I n− r

r

r n− r

T0k =
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thus k is invertible in some neighborhood of zero, and k ◦ f ◦ h−1 = k ◦ g is represented by the
composition

(z1, . . . , zm)
g7→ (z1, . . . , zr, gr+1(z), . . . , gn(z))

k7→ (z1, . . . , zr, gr+1(z)− gr+1(z1, . . . , zr, 0, . . . , 0), . . . , gn(z)− gn(z1, . . . , zr, 0, . . . , 0)).

For (z1, . . . , zm) in a sufficiently small neighborhood of 0 and r + 1 ≤ i ≤ n we have gi(z1, . . . , zn) −
gi(z1, . . . , zr, 0, . . . , 0) = 0 because of (III.1), thus k ◦ g = k ◦ f ◦ h−1 is represented by

(z1, . . . , zm) 7→ (z1, . . . , zr, 0, . . . , 0),

as claimed. In the above argument we didn’t care precisely about the open neighborhoods of zero on
which our maps were defined, but is clear that we can replace V by a smaller open neighborhood V ′

of zero such that f(V ′) ⊂W . Then f̃ = ψ ◦ f ◦ φ−1 is defined on all of φ(V ). �

In order to apply the theorem one must show that the rank of Tpf is constant in a neighborhood of p,
to wit one must exclude the possibility mentioned in Remark III.1.2.2. Without further information,
this is difficult (but see Theorem III.2.9 for a situation where it can be done). If, however, the
rank of Tpf at p is maximal, i.e. rankTpf = min(dimM,dimN), it cannot increase, thus Theorem
III.1.3 applies. This motivates a detailed study of the two cases rankTpf = dimN ≤ dimM and
rankTpf = dimM ≤ dimN . (In fact, most books prove the rank theorem only for these special cases,
giving two different arguments. This seems somewhat unsatisfactory.)

III.1.4 Definition A map f : M → N is an immersion (or immersive) at p if the linear map
Tpf : TpM → Tf(p)N is injective. It is called a submersion (or submersive) at p if Tpf : TpM → Tf(p)N
is surjective. A map is an immersion (submersion) if it is immersive (submersive) for all p ∈M .

III.1.5 Remark Clearly, f : M → N is an immersion iff rankTpf = dimM ≤ dimN for all p ∈ M .
Similarly, f is a submersion iff rankTpf = dimN ≤ dimM for all p ∈M . 2

The special significance of immersions and submersions will become clear in Sections III.3 and
IV.1, respectively. Here we only note that an immersion need not be injective: consider the map from
S1 to the ‘figure 8’ in R2.

III.2 Submanifolds

We begin by considering manifolds without boundary.

III.2.1 Definition Let M be a manifold of dimension m without boundary and let n ≤ m. A subset
N ⊂M is a submanifold of dimension n if for every p ∈ N there is a chart (U, φ) of M around p such
that φ(U∩N) = φ(U)∩Rn, where Rn is identified with the subset {(x1, . . . , xn, 0, . . . , 0) | (x1, . . . , xn) ∈
Rn} of Rm.

III.2.2 Proposition If N ⊂M is a submanifold of a manifold M then N is a manifold in a canonical
way. With respect to this differential structure, the inclusion map N ↪→ M is a smooth injective
immersion.

Proof. Let p ∈ N and (U, φ) as in Definition III.2.1. Then (U ∩ N, φ̃), where φ̃ : U ∩ N → Rn is
given by p 7→ (φ1(p), . . . , φn(p)) is a chart around p for N . That the charts obtained in this way are
mutually compatible and thus define a differentiable structure for N is obvious. The same holds for
the last statement. �
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III.2.3 Exercise Prove that if N ⊂ M is a submanifold (and thus itself a manifold) and P ⊂ N is
a submanifold then P is a submanifold of M . 2

III.2.4 Exercise Prove the following claims:

1. N ⊂M is a zero dimensional submanifold iff it is a discrete subset of M (i.e. N is discrete w.r.t.
the subset topology).

2. N ⊂ M is an m-dimensional submanifold iff N is an open subset of M (with the induced
differentiable structure).

2

III.2.5 Exercise For m < n the following are submanifolds: Rm ⊂ Rn, Sm ⊂ Sn, O(m) ⊂ O(n),
U(m) ⊂ U(n). Find further examples. 2

III.2.6 Remark Note that a submanifold N ⊂M need not be an open or closed subset: {(x, 0) | x ∈
R} ⊂ R2 is a closed submanifold, (0, 1) ⊂ R is an open submanifold, and {(x, 0) | x ∈ (0, 1)} ⊂ R2 is
neither open nor closed. 2

III.2.7 Exercise If N ⊂M is a submanifold then the inclusion ι : N →M is an injective immersion
and Tpι(TpN) ⊂ TpM is a subspace of dimension dimN for every p ∈ N . We will usually identify
TpN with its image in TpM : TpN ⊂ TpM . 2

*********** define submanifolds of manifolds with boundary ************
If N ⊂ M is a submanifold and N and M both have a boundary, the relation between the

boundaries can be quite complicated. We give some examples:

∂M = ∂N = ∅ Rn ⊂ Rm, Sn ⊂ Sm, O(n) ⊂ O(m), n < m.
∂M = ∅, ∂N 6= ∅ Rn

+ ⊂ Rm, n ≤ m; Dn ⊂ Rn.
∂M 6= ∅, ∂N = ∅ Rm

+ ⊂ Rn
+, m < n, where (x1, . . . , xm) 7→ (0, . . . , 0, x1, . . . , xm).

∂M 6= ∅, ∂N 6= ∅ Dn ⊂ Rn
+. Rm

+ ⊂ Rn
+, m < n, where (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0).

III.2.8 Definition A submanifold N of a manifold M with boundary is neat if ∂N = N ∩ ∂M .

Of the above examples of submanifolds, those in the first row are trivially neat since ∂M = ∂N = ∅,
whereas no submanifold of the second type can be neat. Dn ⊂ Rn

+ (where the disc sits in the interior
of Rn

+) is not neat.
The following result provides a (rather special) way to construct submanifolds of a given manifold

M . More widely applicable methods will be studied later.

III.2.9 Theorem Let M be connected without boundary and let f : M →M be a smooth map such
that f ◦ f = f . Then f(M) is a closed submanifold of M .

Proof. The image f(M) equals the fixpoint set {p ∈M | f(p) = p}, thus it is closed. It is easy to see
that f(M) is connected. Now it is sufficient to consider the map f in a neighborhood of a point p. By
the chain rule, f ◦ f = f implies Tf(q)f ◦ Tqf = Tqf for all q ∈ M , in particular Tpf ◦ Tpf = Tpf for
every p ∈ f(M). Thus

im Tpf = {v ∈ TpM | Tpf(v) = v} = ker(idTpM − Tpf)

for all p ∈ f(M). This implies dimM = rankTpf + rank(idTpM − Tpf), and both ranks can only
increase in a neighborhood of p, we conclude that rankTpf is locally constant on f(M), thus constant
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since f(M) is connected. Let r = rankTpf for some p ∈ f(M) be this constant. Then there is an open
neighborhood U of f(M) such that rankTqf ≥ r for all q ∈ U . Now rankTqf = rank(Tf(q)f ◦ Tqf) ≤
rankTf(q)f = r, thus rankTqf is constant on U . Therefore the Rank Theorem III.1.3 applies. Let
p ∈ f(M), thus f(p) = p. By the rank theorem there are charts (U, φ) and (V, ψ) around p = f(p)
such that ψ ◦ f ◦ φ−1 : (x1, . . . , xn) 7→ (x1, . . . , xr, 0, . . . , 0) and φ(f(U)) = φ(U) ∩ Rr, thus f(M) is a
submanifold. �

III.3 Embeddings

Given a smooth map f : M → N it is a natural question whether f(M) ⊂ N is a submanifold. In this
generality, however, the question is too difficult. We therefore limit ourselves to the more restricted
question: When is f(M) ⊂ N a submanifold such that f : M → f(M) is a diffeomorphism? Clearly,
f must be injective and immersive (by Exercise II.3.6). This is, however, not sufficient. Consider a
map f : R→ R2 whose image looks like

�

�
�
�

?
p−∞

+∞

f can easily be made injective and immersive, but f(R) ⊂ R2 is not a submanifold near the point p.
(With a view to Lemma II.8.6 we note that limx→∞ f(x) = p is finite and that the image of the closed
set [x,+∞) is not closed if x > f−1(p).)

III.3.1 Proposition Let f : M → N be a smooth map of manifolds. Then the following are
equivalent:

(i) f(M) ⊂ N is a closed submanifold and f : M → f(M) is a diffeomorphism.

(ii) f(M) ⊂ N is closed, f is an immersion and f : M → f(M) is a homeomorphism.

(iii) f is a proper injective immersion.

Proof. (i)⇒(ii). The diffeomorphism f : M → f(M) is a fortiori a homeomorphism. By Exercise
II.3.6, Tpf : TpM → Tf(p)(f(M)) is invertible, thus the composition TpM → Tf(p)(f(M)) ↪→ Tf(p)N
is injective.

(ii)⇒(i). Since f is an immersion we have rank(Tpf) = m at all p ∈ M , cf. Remark III.1.5. Thus
the Rank Theorem III.1.3 applies and, for every p ∈ M , provides charts (U, φ), (V, ψ) around p and
q = f(p) ∈ N , respectively, such that f(U) ⊂ V and f̃ : ψ ◦ f ◦ φ−1 : φ(U) → ψ(V ) is given by
x 7→ (x, 0n−m), where 0n−m denotes the zero of Rn−m. Here φ(U) ⊂ Rm and ψ(V ) ⊂ Rn are open
neighborhoods of zero. Since m ≤ n we can find open neighborhoods A ⊂ Rm and B ⊂ Rn−m,
both containing 0, such that A × B ⊂ ψ(V ). Then U ′ = φ−1(A ∩ φ(U)) ⊂ M is open and we have
φ(U ′) × B ⊂ ψ(V ). Finally, defining V ′ = ψ−1(φ(U ′) × B) we have a map f̃ from φ(U ′) ⊂ Rm to
ψ(V ′) = φ(U ′)×B ⊂ Rn.

Since f : M → f(M) is a homeomorphism, f(U ′) is open in f(M), thus there is an open W ⊂ N
such that f(U ′) = W ∩ f(M), thus U ′ = f−1(W ). Now, (V ′ ∩ W,ψ � V ′ ∩ W ) clearly is a chart
around q ∈ N . In view of ψ(V ′) = φ(U ′) × B ⊂ Rn, a point y ∈ V ′ ∩W satisfies ψ(y) ⊂ Rm (i.e.
ψi(y) = 0 for all i > m) iff there is x ∈ U ′ such that ψ(y) = (φ(x), 0n−m). This is equivalent to
ψ(f(M) ∩ V ′ ∩W ) = ψ(V ′ ∩W ) ∩ Rm. Hence f(M) ⊂ N is a submanifold and f : M → f(M) is
locally smoothly invertible, thus a diffeomorphism.

(ii)⇔(iii). This follows from Lemma II.8.6. �
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III.3.2 Definition When the equivalent conditions of Proposition III.3.1 are satisfied, the map f :
M → N is called an embedding and f(M) ⊂ N an embedded submanifold.

III.3.3 Corollary Let M be compact and f : M → N an injective immersion. Then f(M) ⊂ N is
a submanifold and f : M → f(M) is a diffeomorphism.

Proof. Let Z ⊂ N be compact, thus closed. By continuity, f−1(Z) ⊂ M is closed, thus compact by
compactness of M . Thus f is proper. �

In Section III.5 we will show that every n-manifold admits an embedding into R2n+1. The proof
requires some further preparations which will be the subject of the next section.

III.4 Measure zero in manifolds: The easy case of Sard’s theorem

In this section we will develop some rudiments of measure theory in manifolds where we will only need
the notion of measure zero.

III.4.1 Definition By a cube of edge λ in Rn we mean a product D =
∏n

i=1[ai, bi] of n intervals in
R with |ai − bi| = λ for all i. We write |D| = λn. Now, a set C ⊂ Rn has measure zero if for every
ε > 0 there exists a sequence of cubes {Di ⊂ Rn}i∈N such that

C ⊂
∞⋃

i=1

Di and

∞∑

i=1

|Di| < ε.

III.4.2 Remark 1. It is important to understand that measure zero is a relative notion. The interval
I = [0, 1] ⊂ R has non-zero measure, but I × 0 ⊂ R2 has measure zero!

2. We would arrive at the same notion of measure zero if we replace closed by open cubes. Since
the ratio of the volumes of a cube and the circumscribed ball depends only on n, U ⊂ Rn has measure
zero iff it can be covered by countably many balls of arbitrarily small total volume. Similarly, one
could use rectangles, etc. 2

III.4.3 Exercise If U ⊂ Rn has measure zero then any V ⊂ U has measure zero. If m < n then
Rm ∼= Rm × 0 ⊂ Rn has measure zero. 2

III.4.4 Lemma Let (Ci ⊂ Rn)i∈N be a sequence of sets of measure zero. Then
⋃

iCi has measure
zero.

Proof. Let ε > 0. Since Ci has measure zero we can pick a sequence {Dj
i , j ∈ N} of cubes such that

Ci ⊂
⋃

j D
j
i and

∑
j |D

j
i | < 2−iε. Then {Dj

i , i, j ∈ N} is a countable cover of
⋃

iCi and we have
∑

i,j |D
j
i | < ε

∑
i 2−i = ε. �

III.4.5 Lemma Let U ⊂ Rm be open and f : U → Rm differentiable (C1). If C ⊂ U has measure
zero then f(C) ⊂ Rm has measure zero.

Proof. Let ‖ · ‖ be the euclidean norm on Rm. Every p ∈ U belongs to an open ball B ⊂ U such that
‖Tqf‖ is uniformly bounded on B, say by κ > 0. Then

‖f(x)− f(y)‖ ≤ κ‖x− y‖

for all x, y ∈ B. Thus, if C ⊂ B is an m-cube of edge λ then f(C) is contained in an m-cube of
edge less than

√
mκλ. It follows that f(C) has measure zero if C has measure zero. Writing U as a

countable union of such C, the claim follows by Lemma III.4.4. �

The preceding lemma shows that the following definition has a coordinate independent sense:
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III.4.6 Definition A subset C of a manifold M has measure zero iff φ(U ∩ C) has measure zero in
Rn for every chart (U, φ) in the maximal atlas of M .

III.4.7 Exercise 1. Use Lemma III.4.5 to show that C ⊂ M has measure zero iff φ(U ∩ C) ⊂ Rm

has measure zero for every chart (U, φ) in some atlas compatible with the differential structure of M .

2. If C ⊂M has measure zero then M − C is dense in M . 2

III.4.8 Lemma Let U ⊂ Rm be open and f : U → Rn differentiable, where n > m. Then f(U) ⊂ Rn

has measure zero.

Proof. Define f̂ : U × Rn−m → Rn by f̂(x, y) = f(x). Since U × {0} ⊂ Rn has measure zero, Lemma
III.4.5 implies that f(U) = f̂(U × {0}) ⊂ Rn has measure zero. �

Now we can state the easy case of Sard’s theorem:

III.4.9 Proposition Let f : M → N a smooth map of manifolds, where dimM < dimN . Then
f(M) has measure zero in N .

Proof. Let (Ui, φi), (Vj , ψj) be countable atlasses for M and N , respectively. Then

ψj(f(M) ∩ Vj) =
⋃

i

ψj(f(Ui) ∩ Vj) =
⋃

i

(ψj ◦ f ◦ φ−1
i )

(
φi(Ui ∩ f−1(Vj))

)
.

Now, ψj ◦ f ◦φ−1
i is a smooth map from an open subset of Rm to Rn, thus the measure of its image is

zero by Corollary III.4.8. Thus ψj(f(M) ∩ Vj) has measure zero by Lemma III.4.4, and this is what
is required by Definition III.4.6. �

The general version of Sard’s theorem will be given in Section IV.2. We give a first application of
Proposition III.4.9.

III.4.10 Definition Two smooth maps f, g : M → N are smoothly homotopic if there is a smooth
map h : M × [0, 1]→ N such that h0 = f and h1 = g, where we write ht = h(·, t).

III.4.11 Theorem If M is a manifold of dimension m < n then any smooth map f : M → Sn is
smoothly homotopic to a constant map.

Proof. By Proposition III.4.9, f(M) ⊂ Sn has measure zero, thus there is a point q ∈ Sn not in the
image of f . Therefore f maps into the X = Sn − {q}, which is smoothly homeomorphic to Rn, and
therefore contractible (to wit, there is a smooth map r : X × [0, 1] → X such that r(x, 0) = x for all
x ∈ X and x 7→ r(x, 1) is a constant map). Composing f with such a contraction gives the desired
homotopy. �

For later purposes we prove that smooth homotopies behave similarly to continuous homotopies.

III.4.12 Lemma Smooth homotopy is an equivalence relation. (The set of smooth homotopy classes
of smooth maps X → Y will be denoted by [X,Y ]s.)

Proof. Symmetry and reflexivity are obvious, but transitivity requires proof. Let ϕ : [0, 1] → [0, 1]
be a smooth function such that ϕ(t) = 0 for t < 1/3 and ϕ(t) = 1 for t > 2/3. (For example, let
ϕ(t) = λ(t−1/3)/(λ(t−1/3)+λ(2/3− t)) where λ(t) = 0 for t ≤ 0 and λ(t) = e−1/t for t > 0.) If now
h is a smooth homotopy between f and g, define h′(x, t) = h(x, ϕ(t)). Then h′ is a smooth homotopy
between f and g that is constant as a function of t for t < 1/3 and t > 2/3. The usual (double speed)
composite of two such modified homotopies is a smooth homotopy. �
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III.5 Whitney’s embedding theorem

III.5.1 Lemma Let M be a compact manifold (with or without boundary). Then there exists an
embedding Ψ : M → Rn for some n ∈ N.

Proof. As usual let m = dimM . Let {(Ui, φi)} be an atlas. By compactness finitely many of the Ui

suffice to cover M , thus we may assume the atlas to be finite with i = 1, . . . , k, and by Lemma II.9.5
we can also find sets Vi still covering M such that Vi ⊂ Ui. Furthermore, Proposition II.10.3 provides
smooth functions λi : M → R which are 1 on Vi and have support in Ui. Defining ψi : M → Rm

to be λi(p)φi(p) for p ∈ Ui and zero otherwise, ψi is smooth. Now define Ψ : M → (Rm)k × Rk

by Ψ = (ψ1, . . . , ψk, λ1, . . . , λk). We claim that Ψ is injective: If Ψ(p) = Ψ(q) then λi(p) = λi(q)
for all i. Now, p ∈ Vj for some j, thus λj(p) = 1. Since also λj(q) = 1, we have q ∈ Uj , and
φj(p) = λj(p)φj(p) = ψj(p) = ψj(q) = λj(q)φj(q) = φj(q) implies p = q since φi : Uj → Rn is
injective. Next we show that Ψ is an immersion, i.e. Ψ∗ = TpΨ is injective for all p ∈ M . Again,
p ∈ Vj for some j and thus λj = 1 on a neighborhood of p. Now ψj = φj, and ψj∗ = φj∗ is injective
since φj is a chart.

Thus Ψ : M → Rk(m+1) is an injective immersion. Since M is compact, Corollary III.3.3 applies
and Ψ is an embedding. �

III.5.2 Proposition Let M be a compact manifold of dimension m. Then there exists an embedding
Ψ : M → R2m+1.

Proof. We know already that there exists an embedding Ψ : M → Rn for some n. The proposition
thus follows by induction if we can show that n can be reduced by one provided n > 2m+ 1. For any
non-zero a ∈ Rn we let πa be the orthogonal projection onto the orthogonal complement a⊥ ∼= Rn−1.
(Thus πa(x) = x − a(a, x)/(a, a), where (·, ·) is some scalar product on Rn.) We write Ψa = πa ◦ Ψ
and claim that there exists a 6= 0 such that Ψa is an embedding.

To prove this we define h : M ×M × R → Rn by h(p, q, t) = t(Ψ(p) − Ψ(q)) and g : TM → Rn

by g(p, v) = TpΨ(v). In view of dimM ×M × R = 2m + 1, dimTM = 2m and our assumption
n > 2m + 1, the (easy case of) Sard’s theorem, cf. Proposition III.4.9, implies that imh ∪ im g has
measure zero, thus there exists a point a ∈ Rn − imh − im g. Note that a 6= 0 since 0 belongs to
both images. Now assume Ψa(p) = Ψa(q), which is equivalent to Ψ(p) − Ψ(q) = λa. By assumption
Ψ is an embedding, thus injective. Assuming p 6= q we therefore have λ 6= 0 and we can write
a = λ−1(Ψ(p)−Ψ(q)) = h(p, q, λ−1). This is in contradiction with our choice of a 6∈ imh, thus Ψa is
injective.

Next, suppose TpΨa(v) = 0 for some v ∈ TpM . By definition of Ψa this is equivalent to TpΨ(v) =
λa. Again, assuming v 6= 0 we have TpΨ(v) 6= 0 since Ψ is an immersion. Thus λ 6= 0 and a =
λ−1TpΨ(v) = Tp(λ

−1v) in contradiction with a 6∈ im g. Thus Ψa is an immersion. By Corollary
III.3.3, Ψa is an embedding. �

III.5.3 Remark 1. We have actually proven a bit more than stated: On the one hand, it is clear from
the proof that every compact n-manifold admits an immersion into R2n. On the other hand, if a not
necessarily compact manifold is already given as a submanifold of some Rn, the preceding arguments
provide an immersion into R2n and an injective immersion into R2n+1. In the non-compact case there
are two problems: in Lemma III.5.1 we cannot always find a finite atlas, and in Proposition III.5.2,
an injective immersion need not be an embedding. Nevertheless, we will prove that Theorem III.5.4
generalizes to non-compact manifolds. In fact, every n-manifold, whether compact or not, admits an
embedding into R2n, but this is more difficult to prove (Whitney 1944).

2. If one asks for the lowest n such that every m-manifold admits an immersion, not necessarily
injective, into Rn the answer is n = 2m − α(m), where α(m) is the number of non-zero digits in the
binary representation of m. The proof (1985) is very difficult. 2
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III.5.4 Theorem (Whitney) Every manifold of dimension m admits an embedding into R2m+1.

Proof. Since M is locally compact we can find an cover (Ui, i ∈ I) of M by open sets with compact
closures. Since M is paracompact this cover admits a locally finite refinement (Vj , j ∈ J). Obviously
also the Vj have compact closures. By Proposition II.1.6, we can replace J by a countable subset J0.
We index this cover by N and call it (Vj , j ∈ N). Let (λj) be a partition of unity subordinate to (Vj).
We index (Vj), (λj) by the natural numbers and define η(x) =

∑
i∈N

iλi(x). By local finiteness, this

is a smooth map, and it is proper since η−1([1, N ]) ⊂ ⋃N
i=1 Vi. Now let Ui = η−1

(
(i− 2

3 , i+
2
3)

)
and

Ci = η−1
(
[i− 3

4 , i+
3
4 ]

)
. Then Ui is open, Ci is compact and Ui ⊂ C0

i . Furthermore, all the Ci with
even indeces are mutually disjoint and the same holds for the odd indexes. The above methods gives
us smooth maps Ψi : M → R2m+1 that are embeddings on Ui and map the complement of Ci to 0.
(Note: While every open subset U of a manifold is a manifold, this does not need to be true for U :
The closure of an open square in R2 has corners. However, Lemma III.5.1 and Proposition III.5.2 still
apply to U as is clear from their proofs.) Composing with a diffeomorphism of R2m+1 to an open ball
in R2m+1 we may assume that the images of all Ψi are contained in the same bounded subset. Now
define Ψe =

∑
i Ψ2i, Ψo =

∑
i Ψ2i−1 and Ψ = (Ψe,Ψo, η) : M → R2m+1 ×R2m+1 ×R. If Ψ(x) = Ψ(y)

then η(x) = η(y), thus x, y are in the same Ui. If i is odd (even) then Ψo (Ψe) is an embedding on
Ui, implying x = y. Thus Ψ is an injective immersion. Since η is proper, Ψ is proper and thus an
embedding. By construction, Ψ(M) ⊂ K × R with K ⊂ R2(2m+1) compact. As remarked before, the
cut down argument of Proposition III.5.2 works also for non-compact M and provides a projection
π : R2(2m+1)+1 → R2m+1 onto a hyperplane such that Ψ′ = π ◦Ψ is an injective immersion. π can be
chosen such that its kernel does not contain the last coordinate axis. Then Ψ ′ is still proper, thus an
embedding by Proposition III.3.1 and Lemma II.8.6. �

III.5.5 Remark The theorem says that every manifold (smooth, finite dimensional) is a submanifold
of some Rn. This might be compared with the result that every finite group and every compact Lie
group is a matrix group, i.e. a subgroup of GL(N,C) for some N . Thus one could in principle dispense
with the abstract notion of a manifold in the sense of Definition II.1.9 and consider only embedded
manifolds. (This is in fact the approach of [19, 12].) There are however good reasons for not doing
so: On the one hand the abstract perspective keeps the focus on the relevant intrinsic properties, the
manifold or group structure and not the embedding. More importantly, many constructions produce
only the abstract manifold or group structure, but no embedding. E.g., the automorphism group
of some structure, even when finite or compact Lie, does not usually come with an embedding into
GL(N,C), and similarly the Riemann surface constructed from a germ of a holomorphic function is an
abstract manifold without given embedding into RN . Thus the supposedly more concrete embedded
approach would make life much more difficult. 2

III.5.6 Remark Every embedding Φ : M → Rd of a manifold gives rise to a riemannian metric on
M : Let (·, ·) be the scalar product a× b 7→∑

i aibi on Rd and define

〈X,Y 〉p = (TpΦ(X(p)), TpΦ(Y (p))).

(The easy verification that this is a metric is left to the reader.) Together with Theorem III.5.4 this
provides an alternative proof of Lemma II.11.4. It is natural to ask whether all riemannian metrics
arise in this way, or equivalently whether every (smooth) riemannian manifold can be embedded
isometrically into Rd. This was indeed proven by Nash, first for C1-manifolds and then in the smooth
case [46]. 2

III.5.7 Remark If M is an manifold M with boundary the preceding arguments still give an embed-
ding Ψ into some Rm. Let us show that one can fine an embedding Ψ′ : M → Rm+1 such that Ψ(M)
is a neat submanifold, i.e. ∂Ψ(M) = Ψ(M) ∩ ∂Rm+1

+ . Let α : U → ∂M × [0, 1) be a collar of ∂M and
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write α1 : U → [0, 1) for the second component. Let β : [0, 1] → [0, 1] be a smooth function satisfying
β−1(0) = {0}, β � [1− ε, 1] = 1 for some ε > 0, and β ′(0) > 0. Now define φ : M → [0, 1] to be β ◦ α1

on U and the constant function 1 on M − U . This function is smooth and satisfies φ−1(0) = ∂M .
Clearly Ψ′ = (φ,Ψ) : M → Rm+1

+ is an injective immersion, and by Proposition II.8.4 it is proper,

thus an embedding. Since α1, thus φ vanishes precisely on ∂M we have Ψ′−1(∂Rm+1) = ∂M . Since
α1 = 0 on ∂M but Tpα1 6= 0, also φ has non-zero derivative on ∂M , thus the embedding is neat. 2

III.5.8 Remark It is no exaggeration to say that the four most important technical tools in differential
topology are (i) partitions of unity, (ii) the rank theorem, (iii) Sard’s theorem and (iv) flows arising
from suitable vector fields. There is no non-trivial proof that does not use at least one of these
tools. This is nicely illustrated by the neat embedding theorem for manifolds with boundary, which
relies on the rank theorem via Proposition III.3.1, on partitions of unity via Lemma III.5.1, on Sard’s
theorem via Proposition III.5.2 and on flows via Theorem ??. However, the most important concept

of differential topology is probably that of transversality or general position. In the next chapter we
will consider the simplest version in the guise of the theory of regular values. The general theory will
be discussed later. 2

III.6 Digression: The tangent groupoid

In the proof of Proposition III.5.2 we considered maps from h : M ×M ×R→ Rn and h : TM → Rn

associated with an embedding Φ : M → Rn. In this section we show that there is a manifold TM ,
called the ‘tangent groupoid’, of dimension 2m + 1 constructed from M × M × R and TM . The
significance of TM derives from its applications in quantization theory which we cannot go into. We
just give its definition as another example of a canonically constructed manifold.

Let I ⊂ R be connected and containing zero. Then as a set, TIM is defined as the disjoint union

TIM = M ×M × (I − {0})
∐

TM.



Chapter IV

Transversality Theory I: The degree
and its applications

IV.1 Inverse images of smooth maps

Consider a map f : M → N and a subset L ⊂ N . In this section we ask which subsets of M can
appear as inverse image f−1(L) and when this is a submanifold. Our first result shows any closed
subset A ⊂M appears as zero set of a smooth R-valued function.

IV.1.1 Proposition (Whitney) Let M be a manifold and A ⊂ M a closed subset. Then there
exists a smooth function f : M → R such that A = f−1(0).

IV.1.2 Lemma Let A ⊂ U ⊂ Rn with A closed and U open. Then there exists a smooth function
ψ : U → R such that A = f−1(0).

Proof. Since the open balls are a basis for the topology of Rn we can write the open set U − A as
a countable unit of open balls (Bi = B(qi, Ri), i ∈ N). We choose smooth functions ψi : U → [0,∞)
such that

(a) ψi(x) > 0 iff x ∈ Bi.

(b) ψi and all its derivatives up to order i are uniformly bounded by 2−i.

(To satisfy condition (a) let ψi(p) = F (|p − qi|/Ri), where F : R → R is as in Lemma II.10.1. Since
ψi and all derivatives are bounded, Condition (b) can be enforced by multiplying ψi by a sufficiently

small positive number.) We now write ψ =
∑

i ψi. In view of ‖ψ(n)
i ‖∞ ≤ 2−i ∀n ≤ i we have
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thus the sum converges uniformly on all of U . Thus ψ is a smooth function. In view of (a), ψ(x) > 0
iff x ∈ Bi for some i, thus ψ(x) > 0 iff x 6∈ A. �

Proof of the proposition. Let (Ui, φ) be a locally finite atlas and (λi)i∈I subordinate partition of
unity with suppλi ⊂ Ui. Then A ∩ suppλi is a closed subset of Ui and using the homeomorphism
φi : Ui → φ(Ui) and the lemma, we find a smooth function ηi : Ui → [0,∞) such that ηi(p) = 0 iff
p ∈ A ∩ suppλi. We extend ηi by declaring it to be zero on M − Ui and define η =

∑
i λiηi. (This is

well defined since the partition is locally finite.) If x ∈ A then ηi(x) = 0 for all i, thus η(x) = 0. If
x 6∈ A then λi(x) > 0 for some i, and x 6∈ A ∩ suppλi. Thus ηi > 0 and η(x) ≥ λi(x)ηi(x) > 0. �

43
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The above proposition is not very useful in practice, precisely because it is so general. Its main
significance lies in showing that in order for A = f−1(L) to be a submanifold we need to impose
requirements on the function f and the subset L ⊂ N . We begin with the special case where L = {q}.

IV.1.3 Definition Given f : M → N , a point p ∈ M is called regular if Tpf : TpM → Tf(p)N is
surjective, i.e., f is submersive at p, and critical otherwise. A point q ∈ N is called a regular value iff
every p ∈ f−1(q) is a regular point. Otherwise it is a critical value.

IV.1.4 Lemma Let f : M → N be a smooth map of manifolds without boundary and let q ∈ N
a regular value. If f−1(q) is non-empty then W = f−1(q) ⊂ M is a submanifold of dimension
dimM − dimN . For p ∈W we have TpW = {v ∈ TpM | Tpf(v) = 0}.

Proof. If f(p) = q then rankTpf = dimN = n in a neighborhood of p, thus by the rank Theorem
III.1.3 there are charts (U, φ), (V, ψ) around p and q, respectively, such that f(U) = V and ψ◦f ◦φ−1 is
of the form (x1, . . . , xn, xn+1, . . . , xm) 7→ (x1, . . . , xn). Since ψ(q) = 0 ∈ Rn, we have φ(f−1(q) ∩ U) =
φ(U)∩Rm−n, where Rm−n sits in Rm as 0Rn×Rm−n. This is precisely the definition of a submanifold.
The above local description of W ⊂M also implies the claim on TpW . �

IV.1.5 Remark If dimM < dimN then every p ∈ M is critical, thus the set of critical values
coincides with the image f(M) ⊂ N . Therefore Lemma IV.1.4 is empty if dimM < dimN . 2

IV.1.6 Exercise Show that p is a regular point of f : M → R iff there exists a chart (U, φ) around
p such that the partial derivatives ∂(f ◦φ−1(x1, . . . , xm))/∂xi, i = 1, . . . ,m do not all vanish at x = 0.
2

IV.1.7 Example Let M = Rn and f : M → R given by (x1, . . . , xn) 7→ x2
1 + · · ·+ x2

n. We claim that
every a 6= 0 is a regular value: If a < 0 then f−1(a) = ∅. If a > 0 then f(x) = a implies that some x1

is non-zero. Then ∂f/∂xi = 2xi 6= 0, thus x is a regular point. We have thus shown that the sphere
f−1(a) is a submanifold of Rn.

IV.1.8 Exercise Let Mn(R) ∼= Rn2

denote the set of real n× n matrices. Show that the orthogonal
group O(n) = {A ∈Mn(R) | AAT = 1} consisting of orthogonal matrices is a submanifold of dimension
n(n− 1)/2. 2

We now generalize Lemma IV.1.4 to the situation where M has a boundary.

IV.1.9 Lemma Let M be a manifold without boundary and let f : M → R be a smooth function
with zero as regular value. Then the subset S = {x ∈ M | f(x) ≥ 0} is a manifold with boundary
∂S = {x ∈M | f(x) = 0}.

Proof. The set where f > 0 is open in M and therefore a submanifold of the same dimension as M .
Suppose f(x) = 0. Since f is regular at x, by the rank Theorem III.1.3 it is locally equivalent to the
canonical submersion (x1, . . . , xm) 7→ x1. But for the latter, the lemma is obvious. �

IV.1.10 Proposition Let f : M → N be smooth with ∂N = ∅ and let q ∈ N a regular value
for f and ∂f = f � ∂M . If f−1(q) is non-empty then f−1(q) ⊂ M is a neat submanifold (i.e.
∂(f−1(q)) = f−1(q) ∩ ∂M) of dimension dimM − dimN .
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Proof. Let m,n be the dimensions of M,N , respectively. M − ∂M and ∂M are manifolds without
boundary and by the regularity assumptions on q, Lemma IV.1.4 implies that f−1(q)∩ (M −∂M) and
f−1(q)∩∂M are submanifolds (without boundary) of dimensions m−n and m−n−1, respectively, and
we must show that their union is a manifold with boundary. Since this is a local property it suffices
to consider the case where M = Rm

+ . Let p ∈ ∂Rm
+ ∩ f−1(q) and let U ⊂ Rm be an open neighborhood

of p. One can find a smooth map g : U → N coinciding with f on U ∩ Rm
+ . Replacing U by a

smaller neighborhood if necessary, we may assume that g has no critical points. Thus g−1(q) ⊂ Rm

is a smooth manifold of dimension m − n. Now, the tangent space at p of g−1(q) is the kernel of
the map Tpg = Tpf : TpRm

+ → TqN , and the hypothesis that q is a regular value of ∂f = f � ∂Rm
+

implies that this kernel cannot completely be contained in 0×Rm−1. Therefore zero is a regular value
of the coordinate projection π : g−1(q) → R, (x1, . . . , xm) → x1, and Lemma IV.1.9 implies that
g−1(q) ∩ Rm

+ is a manifold with boundary π−1
1 (0). Since the latter two sets coincide with f−1(q) ∩ U

and f−1(q) ∩ U ∩ ∂Rm
+ , respectively, we are done. �

In some applications, like Example IV.1.7 and Exercise IV.1.8, one needs to show that a specific
value q ∈ N is regular. In many other applications, some of which will be considered soon, it is
sufficient to show that a regular value of f : M → N exists. That regular values always exist (and in
fact are dense) is the content of Sard’s theorem which we will now prove in its general form.

IV.2 Sard’s theorem: The general case

Sard’s theorem, is one of the cornerstones of differential topology – most of the subsequent develop-
ments will rely on it. As in most other treatments, our proof essentially is the one of [19].

IV.2.1 Theorem The set of critical values of a smooth map f : M → N has measure zero in N .

IV.2.2 Remark 1. Thus the regular values are dense in N .
2. The theorem is blatantly wrong if one replaces ‘critical values’ by ‘critical points’ ! E.g., if

f : M → N is a constant map then all p ∈ M are critical, thus the critical points have non-zero
measure.

3. If dimM < dimN it follows from Remark IV.1.5 that the theorem reduces to Proposition
III.4.9. 2

The proof will use Fubini’s lemma, to be proven first. We denote by Rn−1
t the subset Rn−1×t ⊂ Rn.

IV.2.3 Lemma An open cover of the interval [0, 1] contains a finite subcover by intervals Ij , j =

1, . . . , k such that
∑k

j=1 |Ij | ≤ 2.

Proof. By compactness a finite subcover Ij , j = 1, . . . , k exists, and we may assume that it minimal,
i.e. none of the Ij may be omitted. Then every point p of [0, 1] is contained in at most two of the
Ij : Assume p ∈ I1 ∩ I2 ∩ I3 and let s = min(I1 ∪ I2 ∪ I3), t = max(I1 ∪ I2 ∪ I3). Now one of the
intervals, say I1, contains [s, p] and another one, say I2, contains [p, t]. But now I1 ∪ I2 = [s, t] and
I3 is superfluous, contradicting the minimality of the covering. Thus the Ij cover [0, 1] at most twice
and the claim follows. �

IV.2.4 Proposition (Fubini’s lemma) Let C be a a countable union of compact subsets of Rn such
that Ct = C ∩ Rn−1

t has measure zero in Rn−1
t
∼= Rn−1 for each t ∈ R. Then C has measure zero.

Proof. We give the proof assuming that C is compact, leaving the generalization as an exercise.
Then there exists an interval [a, b] ⊂ R such that C ⊂ [a, b]n. Let ε > 0. By assumption, Ct =
C ∩ Rn

t , considered as a subset of [a, b]n−1 has measure zero, thus can be covered by open cubes
W i

t ⊂ [a, b]n−1, i ∈ N, such that
∑

i |W i
t | ≤ ε. Let Wt = ∪iW

i
t ⊂ [a, b]n−1. For any fixed t ∈ R,
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the map dt : Rn → R, x 7→ |xn − t| is continuous and vanishes precisely on Rn−1
t . Since Wt is open,

([a, b]n−1 −Wt)× [a, b] is closed, thus C − (Wt × [a, b]) is compact, and dt assumes a minimum α > 0
on this set. This implies

{x ∈ C | |xn − t| < α} ⊂ Wt × It with It = (t− α, t+ α). (IV.1)

The intervals It constructed in this way cover [0, 1], thus by Lemma IV.2.3 there is a finite subcover
I1, . . . , Ik of volume ≤ 2. Here Ii = Iti for some ti ∈ [0, 1]. In view of (IV.1), the boxes

{W i
tj × Ij | i ∈ N, j = 1, . . . , k}

cover C and have total volume < 2ε, whence the claim. �

IV.2.5 Exercise Conclude the proof by considering the case where C is a countable union of com-
pact sets. (This family includes open sets and closed sets and is stable w.r.t. countable unions and
intersections as well as under continuous images.) 2

Proof of Sard’s theorem. In view of Lemma III.4.5 and the fact that every manifold admits a countable
atlas, it suffices to prove that f(U) has measure zero for a smooth map f : U → Rn when U ⊂ Rm

is open. In this situation, let D ⊂ U be the set of critical points and let Di denote the set of
p ∈ U at which all partial derivatives of f of order ≤ i vanish. The Di form a descending sequence
D0 ⊃ D1 ⊃ D2 ⊃ . . . of closed sets. We will prove

(a) f(D −D1) has measure zero.

(b) f(Di −Di+1) has measure zero for all i.

(c) f(Dk) has measure zero for sufficiently large k.

The claim then follows by Lemma III.4.4.
We begin with the proof of (c) which is similar to that of Lemma III.4.5. Let W ⊂ U be a cube

of edge a, and let k > m/n − 1. We will show that f(W ∩Dk) has measure zero, which is sufficient
since U is a countable union of cubes. For x ∈ Dk ∩W and x+ h ∈W , Taylor’s formula gives

|f(x+ h)− f(x)| ≤ c|h|k+1,

where c depends only on f and W . We decompose W into a union of rm cubes of edge a/r. If W1 is
one of these small cubes containing x ∈ Dk, every point in W1 is of the form x+h where |h| ≤ √ma/r.
Thus by the above estimate, f(W1) is contained in a cube of edge

2 · c ·
(√

m · a
r

)k+1

=
b

rk+1
,

where the constant b depends only on f and W but not on r. The union of these cubes has total
volume s ≤ rm · bn/rn(k+1), and this expression tends to zero as r →∞, provided n(k+1) > m. Thus
the volume sum can be made arbitrarily small by choosing a sufficiently fine subdivision of W .

We now turn to the proof of (a). Note first that if n = 1 then D = D1 (recall Exercise IV.1.6),
thus the claim is trivially true. We may thus assume that n ≥ 2. Claim (a) will now be proven by
induction over m. To begin the induction note that for m = 1, n ≥ 2, f(U) has measure zero by the
easy case of Sard’s theorem proven earlier, cf. Proposition III.4.9. We now assume that (a) holds for
every f : Rm−1 ⊃ U → Rn and it for maps f : Rm ⊃ U → Rn. Around each x ∈ D −D1 we will find
an open set V such that f(V ∩D) has measure zero. Since D−D1 is covered by countably many such
neighborhoods, this proves that f(D −D1) has measure zero. If x ∈ D −D1 then there is a partial
derivative that does not vanish, say ∂f1/∂x1 6= 0. Then the map h : (x1, . . . , xm) 7→ (f1(x), x2, . . . , xm)
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has non-singular Jacobian at x, thus by the inverse function theorem it maps a neighborhood V of x
diffeomorphically onto an open set V ′. The transformed map g = f ◦ h−1 : V ′ → Rn has the form

g : (z1, . . . , zm) 7→ (z1, g2(z), . . . , gn(z))

around h(x). This clearly maps the hyperplane {z | z1 = t} into the hyperplane {y | y1 = t}. Note
that the set D′ of critical points of g is precisely h(V ∩D). Denoting by

gt : (t× Rm−1) ∩ V ′ → t× Rn−1

the restriction of g, a point in (t×Rm−1)∩ V ′ is critical for g iff it is critical for gt since the Jacobian
is given by

1 0

? Dgt

Dg =

which is non-singular iff Dgt is non-singular. By the induction assumption, the set of critical values
of gt has measure zero in t × Rm−1, thus the set of critical values of g has measure zero intersection
with each hyperplane {y | y1 = t}. Since g(D′) is a countable union of compact sets, Fubini’s lemma
applies and we conclude that g(D′) = f(V ∩D) has measure zero.

The proof of (b) is similar, in that it also works by induction over m. For every x ∈ Dk −Dk+1

there is a (k+1)-th derivative that does not vanish at x. We may assume ∂k+1fr/∂x1∂xν1
· · · ∂xνk

6= 0.
Let w : U → R be the function w = ∂kfr/∂xν1

· · · ∂xνk
. Then w(x) = 0, ∂w/∂x1(x) 6= 0, and as

above the map h : x 7→ (w(x), x2, . . . , xn) is a diffeomorphism h : V → V ′ for some neighborhood V of
x, and h(Dk ∩ V ) ⊂ 0× Rn−1 ⊂ Rn. Considering again the transformed map g = f ◦ h−1 : V ′ → Rm

and its restriction g0 : (0 × Rm−1) ∩ V ′ → Rn, the set of critical values of g0 has measure zero by
induction assumption. But each point of of h(Dk ∩V ) is critical for g0 since all partial derivatives of g
at that point, thus also of g0, of order ≤ k vanish. Thus also f(Dk ∩ V ) = g ◦ h(Dk ∩ V ) has measure
zero. Since Dk −Dk+1 is covered by a countable union of such sets, it follows that f(Dk −Dk+1) has
measure zero. �

IV.3 Retractions onto boundaries and Brouwer’s fixpoint theorem

In this section we combine Proposition IV.1.10 with the general form of Sard’s theorem to prove (the
smooth version of) a classical result of algebraic topology.

IV.3.1 Proposition If M is a compact manifold with boundary, there is no (smooth) retraction
f : M → ∂M . (A retraction is a map f : M → ∂M such that f � ∂M = id∂M .)

Proof. [Hirsch] Suppose a smooth retraction f exists. By Sard’s theorem there is a regular value
q ∈ ∂M for f . Obviously, q is also a regular value for the identity map ∂f = id∂M . Thus Proposition
IV.1.10 applies and f−1(q) is a submanifold of M such that ∂(f−1(q)) = f−1(q) ∩ ∂M = {q}. (The
last equality follows from f � ∂M = id.) The codimension of f−1(q) is equal to dim ∂M = dimM − 1,
thus dim f−1(q) = 1. Furthermore, f−1(q) ⊂ M is closed, thus compact and by Corollary II.12.3 it
must have an even number of (distinct) boundary points. This is a contradiction. �

We can now prove the smooth version of Brouwer’s fixpoint theorem. By Dn we denote the closed
unit ball in Rn.
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IV.3.2 Theorem (Brouwer) Any smooth map f : Dn → Dn has a fixpoint.

Proof. Suppose f : Dn → Dn has no fixpoint, thus f(x) 6= x for all x ∈ Dn. Consider the ray (=half
line) through x starting at f(x). Let g(x) be its unique intersection with the boundary ∂Dn = Sn−1.
Clearly, g : Dn → ∂Dn is a retraction, thus the theorem follows from Proposition IV.3.1 provided we
can show g to be smooth. Since x, f(x), g(x) lie on a line, we have g(x) − f(x) = t(x − f(x)) where
t ≥ 1. On the other hand, |g(x)|2 = 1. Combining these equations we get |tx+ (1− t)f(x)|2 = 1 or

t2|x− f(x)|2 + 2tf(x) · (x− f(x)) + |f(x)|2 − 1 = 0.

The standard formula for the solutions of a quadratic equation shows that the unique positive root t,
and therefore g(x) = tx+ (1− t)f(x), of this equation depends smoothly on x. �

IV.3.3 Remark In Section V.4 we will prove the continuous version of Brouwer’s fixpoint theorem
by reducing it to the above result. 2

IV.4 The mod 2 degree

If M and N are manifolds of the same dimension and q ∈ N is a regular value then f−1(q) ⊂M is zero
dimensional, thus discrete by Exercise III.2.4. If M is compact, f−1(q) is finite. We are interested in
the cardinality of this set.

IV.4.1 Lemma Let M,N be manifolds of the same dimension with M compact and f : M → N
a smooth map. Let R ⊂ N be the set of regular values of f . Then R is open and the function
R 3 q 7→ #f−1(q) is locally constant. (I.e. every q ∈ R has a neighborhood V ⊂ N such that
#f−1(p) = #f−1(q) for all p ∈ V .)

Proof. That R is open was proven in Proposition III.1.1. Now let p1, . . . , pk be the points of f−1(q). By
Corollary II.3.8 we can find pairwise disjoint open neighborhoods U1, . . . , Uk of these points that are
mapped diffeomorphically to open neighborhoods V1, . . . , Vk in N . Since M is compact, f : M → N
is a closed map, thus f(M − U1 · · · − Uk) is closed. Therefore

V = V1 ∩ V2 ∩ · · · ∩ Vk − f(M − U1 · · · − Uk)

is open. Now, every p ∈ V has one preimage in each of the Ui and no others, implying #f−1(q) � V ≡ k.
�

IV.4.2 Lemma Let M,N be manifolds of the same dimension with M compact without boundary. If
f, g : M → N are smoothly homotopic and q is a regular value for f and g then

#f−1(q) ≡ #g−1(q) (mod 2).

Proof. Let h : M × [0, 1] → N be a smooth homotopy. Assume first that q is a regular value for h.
Then by Proposition IV.1.10, and using Exercise II.6.11, we have

∂(h−1(q)) = h−1(q) ∩ ∂(M × [0, 1])

= h−1(q) ∩ (M × 0 ∪M × 1)

= f−1(q)× 0 ∪ g−1(q)× 1,

thus #∂(h−1(q)) = #f−1(q) + #g−1(q). Since h−1(q) is a compact 1-manifold, its boundary has an
even number of points by Corollary II.12.3, whence #f−1(q) ≡ g−1(q) (mod 2).



IV.4. THE MOD 2 DEGREE 49

Now suppose that q is not a regular value of h. By Lemma IV.4.1 there is a neighborhood V ⊂ N
of q consisting of regular values for f such that #f−1(q′) = #f−1(q) for all q′ ∈ V . Similarly, there is
a neighborhood V ′ ⊂ N of q consisting of regular values for g such that #g−1(q′) = #g−1(q) for all
q′ ∈ V . By Sard’s theorem, V ∩ V ′ contains a regular value q′ for h. Now

#f−1(q) = #f−1(q′) ≡ #g−1(q′) = #g−1(q) (mod 2)

gives the desired equality. �

IV.4.3 Definition Let M be a manifold and h : M × [0, 1] → M a smooth map. Then h is a
diffeotopy if ht = h(·, t) : M →M is a diffeomorphism for every t ∈ [0, 1].

IV.4.4 Proposition Let M be connected. Then for all p, q ∈M there is a diffeotopy h : M× [0, 1]→
M such that h0 = idM and h1(p) = q. (In particular, the diffeomorphism group of M acts transitively.)
h1 can be chosen to act identically outside a compact set.

Proof. We call two points p, q isotopic if the statement is true for them. This clearly defines an
equivalence relation. Now the result follows from connectedness of M provided we can show that the
equivalence classes are open. It suffices to show for every p ∈M that all points in a neighborhood Ũ
are isotopic to p. This neighborhood can be chosen small enough to be contained in the domain of a
coordinate chart (U, φ). Thus everything follows if we prove the following claim: Let q be contained in
the open unit ball B in Rn. Then there exists a diffeotopy h : Rn× [0, 1]→ Rn leaving the complement
of B pointwise stable and such that h1(0) = q. There are various ways of doing this; we will follow
[19].

Let φ : Rn → R be a smooth function satisfying φ(x) > 0 if |x| < 1 and φ(x) = 0 if |x| ≥ 1. (E.g.,
let φ(x) = λ(1 − |x|2), where λ(t) = e−1/t for t > 0 and λ(t) = 0 otherwise.) Let c ∈ Rn be a unit
vector and x ∈ Rn. Since φ has compact support, the system

dyi

dt
= ciφ(x1, . . . , xn), i = 1, . . . , n

of differential equations has a unique solution yx(t), defined for all t ∈ R, and satisfying the initial
condition y(0) = x. We write αt(x) = yx(t). It is clear that αt(x) is defined for all t ∈ R, x ∈ Rn

and smooth in both variables. Furthermore, α0(x) = x and αs ◦ αt(x) = αs+t(x). Thus t 7→ αt(·) is a
one-parameter group of diffeomorphisms that acts trivially on the complement of B. If q ∈ B, q 6= 0,
the choice c = q/|q| clearly implies that αt(0) = q for some t > 0. Now x × t 7→ αt(x) is the desired
diffeotopy. �

IV.4.5 Exercise Combine Proposition IV.4.4 with an inductive argument to show that one can find
a compactly localized diffeotopy sending any finite set {x1, . . . , xr} to any other set {y1, . . . , yr}. 2

IV.4.6 Remark Proposition IV.4.4 and Exercise IV.4.5 are special cases of a much more general
result, proven e.g. in [7, §9]: If h : N × [0, 1] → M is an isotopy, i.e. a smooth map such that
ht : N → M is an embedding for all t ∈ [0, 1], then there exists a diffeotopy v : M × [0, 1] → M such
that vt ◦h0 = ht. (One says, the isotopy has been embedded into a diffeotopy.) The proof uses similar
ideas, namely the diffeomorphism group associated to a flow generated by a suitable vector field. For
more on the latter concepts see Section II.5. 2

IV.4.7 Proposition Let M,N be manifolds of the same dimension with M compact and N con-
nected. Then #f−1(p) ≡ #f−1(q) (mod 2) for all regular values p, q ∈ N . This common value
deg2 f ∈ {0, 1} depends only on the smooth homotopy class of f .
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Proof. Choose a diffeotopy h as in IV.4.4, thus h1 is a diffeomorphism such that h1(p) = q. Thus q
is a regular value of h1 ◦ f . Since h1 is smoothly homotopic to the identity h0, Lemma IV.4.2 implies
#f−1(q) ≡ #(h1 ◦ f)−1(q) = #(f−1 ◦ h−1

1 (q)) = #f−1(p). Denote this element of Z2 by deg2 f . If g
is smoothly homotopic to f , by Sard’s theorem there is a regular value p for f and g. Then

deg2 f = #f−1(p) ≡ #g−1(p) = deg2 g (mod 2),

as claimed. �

IV.4.8 Exercise Let f : M → N be smooth, where M be compact and N connected of the same
dimension. If deg2 f 6= 0 then f is surjective. 2

IV.4.9 Exercise Let M,N be manifolds, where M is compact, N is connected without boundary
and dimM = dimN + 1. Show that deg2 ∂f = 0. Hint: Show that there is a regular value q for f
and ∂f . Then use (∂f)−1(q) = f−1(q) ∩ ∂M = ∂(f−1(q)). 2

IV.5 Applications of the mod 2 degree (Unfinished!)

The mod 2 degree of a map is a rather weak invariant since it can assume only two values. There are,
however, various situations where this is no drawback at all due to an intrinsic Z2 structure of the
problem. We will consider two of them.

IV.5.1 The Borsuk-Ulam theorem

IV.5.1 Lemma The following statements are equivalent:

(i) If f : Sn → Sn satisfies f(−x) = −f(x) then deg2 f = 1.

(ii) If f : Sn → Sm satisfies f(−x) = −f(x) then n ≤ m.

(iii) Let f : Sn → Rn be a smooth map. Then there exists x ∈ Sn such that f(x) = f(−x).

Proof. (i)⇒(ii). Assume f : Sn → Sm satisfies f(−x) = −f(x) and m < n. Composing f with an
inclusion Sm ↪→ Sn we get a map that satisfies f(−x) = −f(x) and deg2 f = 0 (by Exercise IV.4.8),
contradicting (i).

(ii)⇒(i). Assume f : Sn → Sn satisfies f(−x) = −f(x) and deg2 f = 0. Then we construct a map
g : Sn → Sn−1 satisfying f(−x) = −f(x). This is in contradiction with (ii). ************************

(ii)⇒(iii). If (iii) does not hold then φ(x) = (f(x)−f(−x))/|f(x)−f(−x)| defines a map Sn → Sn−1

satisfying φ(−x) = −φ(x) contradicting (ii).
(iii)⇒(ii). Assume f : Sn → Sm satisfies f(−x) = −f(x) and m < n. Then composing with the

inclusion Sm ↪→ Rm+1 ↪→ Rn we obtain a map Sn → Rn satisfying f(−x) = −f(x) 6= 0, contradicting
(iii). �

IV.5.2 Theorem (Borsuk-Ulam) The equivalent statements of Lemma IV.5.1 are true.

Proof. To be written. For the time being, see [12, Chapter 2, §6]. �

IV.5.3 Corollary At any given time there are two antipodal places on earth having exactly the
same weather (in the sense of having the same temperature and air pressure).

Proof. Follows from (iii) above. �
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IV.5.2 The Jordan-Brouwer theorem

The classical Jordan curve theorem says that a closed connected curve C in R2 divides R2 − C into
two connected components. In algebraic topology one proves the generalization according to which
every subset X ⊂ Rn homeomorphic to Sn−1 divides Rn−X into two connected components, exactly
one of which is bounded, cf. e.g. [6, p. 234]. Using the mod 2 degree, we prove a smooth version which
is more general in that X need not be homeomorphic to Sn−1. Consider e.g. X ⊂ R3, where X is a
compact connected surface of genus g.

IV.5.4 Theorem (Jordan-Brouwer) Let X ⊂ Rn be a compact connected hypersurface, i.e. a
submanifold of dimension n− 1. Then

1. The complement of X consists of two connected components, the “outside” D0 and the “inside”
D1. Furthermore, D1 is a compact manifold with boundary ∂D1 = X.

2. Let z ∈ Rn−X. Then z ∈ D1 iff any ray r emanating from z and transversal to X intersects X
in an odd number of points.

Proof. To be written. For the time being, see [12, Chapter 2, §5]. �

IV.6 Oriented manifolds

In order to define a Z-valued homotopy invariant of smooth maps (between manifolds of the same
dimension) we need the notion of an orientation of a manifold. The latter concept is important in
many other contexts as well.

IV.6.1 Definition Let B = {x1, . . . , xn}, B′ = {x′1, . . . , x′n} be bases of Rn. We consider them as
equivalent if the matrix M defined by Mxi = x′i for all i has determinant > 0. An equivalence class
of bases on Rn is called an orientation.

It is clear that Rn, n ≥ 1 has precisely two orientations, called ±1, and we choose the basis
(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1) to represent +1. By decree, the zero dimensional vector space
also admits orientations ±1.

IV.6.2 Definition An orientation of the m-manifold M consists of a choice of an orientation of
TpM for every p ∈ M . If m > 0 we require that, for every chart (U, φ), the invertible linear map
Tpφ : TpM → Tφ(p)R

m maps the orientation of TpM to the same orientation of Rm for all p ∈ U . A
manifold is orientable if it admits an orientation. An oriented manifold is a manifold together with a
choice of an orientation. If M is an oriented manifold then −M denotes the same manifold with the
opposite orientation.

Not every manifold is orientable. A counterexample is provided by the well known Möbius strip.

IV.6.3 Exercise A manifold M is orientable if there exists an atlas A compatible with the given
differentiable structure such that

det

(
∂φ′i ◦ φ−1(x1, . . . , xn)

∂xj

)
> 0

for any (U, φ), (U ′, φ′) ∈ A0 and x ∈ φ(U ∩ U ′). 2
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An orientation for M defines an orientation for the boundary ∂M as follows. Assume dimM > 1.
For x ∈ ∂M choose a basis (v1, . . . , vm) of TxM that is (1) positively oriented, i.e. represents the given
orientation of M , (2) the vi, i > 1, are tangent to ∂M , i.e. in the image of Txι, where ι : ∂M → M
is the inclusion, and (3) v1 points outside of M . Now the orientation of ∂M at x is declared to be
defined by (v2, . . . , vm). If dimM = 1, the orientation of ∂M at x ∈ ∂M declared to be +1 or −1 if
the given orientation of M at x points outward or inward, respectively. With this definition and the
standard orientation on [0, 1] we have ∂[0, 1] = {(0,−), (1,+)}.

If M,N are oriented manifolds an orientation of the product M × N arises canonically from
the isomorphism T(x,y)(M × N) = TxM ⊕ TyN . To wit, if (e1, . . . , em), (f1, . . . , fn) are positively
oriented bases of TxM,TyN , respectively, we define the basis {(e1, 0), . . . , (em, 0), (0, f1), . . . (0, fn)}
of TxM ⊕ TyN to be positively oriented. In particular, let M be a manifold without boundary and
I = [0, 1]. Then ∂(M × I) = (−M)× 0 ∪M × 1.

IV.6.4 Exercise The obvious diffeomorphism σ : M ×N → N ×M is orientation reversing iff both
M and N have odd dimension. 2

IV.6.5 Exercise Let M be a manifolds where ∂N = ∅. Then

∂(M ×N) = ∂M ×N, ∂(N ×M) = (−1)dim NN × ∂M.

2

IV.7 The Brouwer degree

Now we turn to the discussion of the degree of a smooth map between oriented manifolds of the same
dimension.

IV.7.1 Definition Let M,N be oriented manifolds of the same dimension, where M is compact. For
a smooth map f : M → N and a regular value q ∈ N we define deg(f, q) ∈ Z by

deg(f, q) =
∑

p∈f−1(q)

signTpf,

where signTpf = 1 if the image of the orientation of TpM under Tpf : TpM → Tf(p)N coincides with
the orientation of Tf(p)N , and −1 otherwise. Depending on signTpf we call p a point of positive or
negative type.

IV.7.2 Exercise By Lemma IV.4.1, the set R ⊂ N of regular values of f is open. Show that the
map R 7→ Z, q 7→ deg(f, g) is locally constant. 2

IV.7.3 Lemma Let M,N be oriented manifolds, where M is compact, N is connected without bound-
ary and dimM = dimN + 1. Then deg(∂f, q) = 0 for every regular value q of ∂f = f � ∂M .

Proof. Assume first that q is a regular value for f and ∂f . Then f−1(q) is a compact 1-dimensional
submanifold of M , thus by Section II.12 it consists of finitely many circles and closed arcs. By
Proposition IV.1.10, the endpoints of these arcs are on ∂M , and f−1(q) ∩ ∂M consists precisely
of these endpoints. Let A ⊂ f−1(q) be one of these arcs and ∂A = {a, b}. We will show that
sign Ta∂f + sign Tb∂f = 0. Since deg(∂f) is the sum over signTa∂f for all endpoints of the said arcs,
this implies deg(∂f) = 0, as claimed.

The orientations for M,N determine an orientation for A as follows: Given p ∈ A, let (v1, . . . , vm)
be a positively oriented basis for TpM such that v1 is tangent to A. If Tpf carries (v2, . . . , vm) into
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a positively oriented basis for TqN then we declare the orientation of A to be given by v1, otherwise
by −v1. Let v1(p) be the positively oriented unit vector tangent to A at p. Clearly v1(p) a smooth
function and v1(p) points inward at one boundary point and outward at the other. This implies
sign Ta∂f = −signTb∂f , as claimed.

Now assume that q is a regular value only of ∂f . By Exercise IV.7.2, q 7→ deg(∂f, q) is locally
constant, thus there exists an open neighborhood U ⊂ R of q such that deg(∂f, q ′) = deg(∂f, q) for
all q′ ∈ U . By Sard’s theorem, U contains a regular value q ′ of f and ∂f . Then the above implies
deg(∂f, q′) = 0 and thus deg(∂f, q) = 0. �

IV.7.4 Lemma Let M,N be oriented manifolds of the same dimension with M compact without
boundary. If f, g : M → N are smoothly homotopic and q is a regular value for f and g then

deg(f, q) = deg(g, q).

Proof. By assumption we have a smooth map h : M × [0, 1] → N such that h0 = f, h1 = g. Now
∂(M × [0, 1]) = (−M)× 0∪M × 1. Thus the degree of h � ∂(M × [0, 1]) is equal to deg g− deg f , and
this must vanish by Lemma IV.7.3. �

IV.7.5 Proposition Let f : M → N be a smooth map of oriented manifolds of the same dimension
with M compact and N connected. Then deg(f, p) = deg(f, q) for all regular values p, q. This common
value deg f depends only on the smooth homotopy class of f .

Proof. The proof now proceeds exactly as the one of Proposition IV.4.7. We only need to remark that
the diffeomorphism h1, being diffeotopic to the identity, is orientation preserving. Thus orientations
are preserved throughout the argument. �

IV.7.6 Remark Clearly, −1 ≡ 1 (mod 2). Thus if f : M → N satisfies the assumptions of Proposition
IV.7.5 then we have deg f ≡ deg2 f (mod 2). 2

IV.7.7 Exercise Show that the map f : S1 → S1, eiφ 7→ eimφ, where m ∈ Z, has degree m. 2

IV.7.8 Exercise Show that two smooth maps f, g : S1 → S1 are (smoothly) homotopic iff they have
the same degree. Hint: Consider the lifts f̂ , ĝ : S1 → R known from covering space theory. 2

IV.8 Applications of the degree

IV.8.1 The fundamental theorem of algebra

We begin by showing that the degree can be used for a proof of the fundamental theorem of algebra.
Let P : C → C be a polynomial of degree m > 0 that is monic (i.e. am = 1). The family Pt(z) =
tP (z) + (1− t)zm = zm + tam−1z

m−1 + · · ·+ ta0, where t ∈ [0, 1], defines a smooth homotopy between
z 7→ zm and P . In view of

Pt(z)

zm
= 1 + t

(
am−1

1

z
+ am−2

1

z2
+ · · ·+ a0

1

zm

)

and the fact that the expression in the bracket goes to zero as |z| → ∞, we see that for sufficiently
large R, none of the Pt has a zero of absolute value ≥ R. Writing D = {z ∈ C | |z| ≤ R}, we get a
family of maps

φt : S1 → S1 : z 7→ Pt(Rz)

|Pt(Rz)|
.

By Exercise IV.7.7, φ0(z) = (z/|z|)m : S1 → S1 has degree m. By homotopy invariance of the degree,
deg φ1 = deg(P/|P |) = m. If now P has no zeros in the interior of D, then φ1 = P/|P | extends to D,
thus has degree zero by Lemma IV.7.3. This is a contradiction.
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IV.8.2 Vector fields on spheres

IV.8.1 Exercise The map Sn → Sn, (x1, . . . , xn+1) 7→ (−x1, x2, . . . , xn+1) has degree −1. Thus
Sn → Sn, x 7→ −x has degree (−1)n+1. Show that for even n there is no smooth homotopy between
the identity of Sn and the reflection x 7→ −x. 2

The preceding facts can be profitably applied to the classical subject of vector fields on spheres.
We consider the embedded manifold Sn = {x ∈ Rn+1 | |x|2 = 1}. Then we may identify TxS

n = {y ∈
Rn+1 | x · y = 0}, thus a vector field on Sn just is a smooth map v : Sn → Rn+1 such that x · v(x) = 0
for all x. If n is odd, a nowhere vanishing vector field on Sn is given by the formula

v(x1, . . . , x2k) = (x2,−x1, x4,−x3, . . . , x2k,−x2k−1).

IV.8.2 Exercise Show that the sphere Sn does not admit a nowhere vanishing vector field iff n is
even. Hints: 1. Show that a nowhere vanishing vector field v gives rise to a smooth map v ′ : Sn → Sn.
2. Consider the map h : Sn × R→ Rn+1 defined by

h(x, θ) = cos θ x+ sin θ v′(x).

Show that h maps into Sn. 3. Consider the homotopy h : Sn× [0, π]→ Sn and use Exercise IV.8.1. 2

IV.8.3 The Hopf theorem on maps into spheres

In Theorem III.4.11 we have seen that all smooth maps f : M → Sn are homotopic if dimM < n.
Elucidating the case dimM = n for compact M will be our third application of the degree.

IV.8.3 Lemma Let M be a compact oriented connected n-manifold. For every d ∈ Z there exists a
smooth map f : M → Sn of degree d.

Proof. A constant map has degree zero. For d ∈ N let (Ui, φi), i = 1, . . . , d be charts of disjoint
support where each φi : Ui → Rn is orientation preserving and surjective. Let s : Rn → Sn be a
smooth orientation preserving map that maps all x with |x| ≥ 1 to a point s0 and the open unit ball
diffeomorphically to Sn − {s0}. (E.g., let s(x) = h−1(x/λ(|x|2)), where h : Sn − {s0} → Rn is the
stereographic projection from s0, and λ is a smooth monotone decreasing function with λ(t) > 0 for
t < 1 and λ(t) = 0 for t ≥ 1.) Now define f : M → Sn by

f(p) =

{
s ◦ φi(p) p ∈ Ui

s0 p ∈M −⋃
Ui

Then f is smooth. Now, every q ∈ Sn − {s0} is a regular value and has exacly d inverse images. By
construction, Tpf is orientation preserving for all p ∈ f−1(q), thus f has degree d. In order to obtain
degree −d, choose all φi be orientation reversing. �

IV.8.4 Proposition Let M be a connected oriented compact manifold of dimension n + 1 with
∂M 6= ∅. Let f : ∂M → Sn be a smooth map. Then f extends to a smooth map M → Sn iff
deg f = 0.

Proof. The ⇒ direction has been shown in Lemma IV.7.3. The proof of the ‘if’ direction requires
some tools that have not been introduced yet. The first half of the argument will be given in the next
subsection, while the remaining part is postponed until Section VI.2. �

IV.8.5 Theorem (Hopf) Let M be a connected oriented compact n-manifold without boundary.
Let f, g : M → Sn be smooth maps. Then f and g are smoothly homotopic iff deg f = deg g. For
every d ∈ Z there is a map of degree d. (Thus [M,Sn]s ∼= Z.)
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Proof. The argument for the first statement is the same as in Lemma IV.7.4: The pair f, g is the same
as a map (−M) × 0 ∪M × 1 → N of degree deg g − deg f , and a lift of this map to M × [0, 1] is the
same as a smooth homotopy between f and g. Now the first claim follows from Proposition IV.8.4
and the second from Lemma IV.8.3. �

IV.8.6 Remark There are versions of the preceding results where ‘oriented’ is replaced by ‘unori-
entable’. Just replace the degree by the mod 2 degree in the conclusions of Proposition IV.8.4 and
Theorem IV.8.5. (Thus there are exactly two homotopy classes of smooth maps M → Sn.) When
∂M 6= ∅, all maps M → Sn are homotopic, whether M is orientable or not. See [13, Chapter 5] for
proofs. 2

IV.8.7 Corollary The degree establishes a bijective correspondence between Z and the smooth
homotopy classes of smooth maps Sn → Sn.

In Section V.4 we will use smooth approximation of continuous maps to prove πn(Sn) ∼= Z.

IV.8.4 Winding numbers

The notion of winding number is just a simple, but useful, reinterpretation of the degree of a map.
The rationale of its name should be evident from the case n = 1 of the following

IV.8.8 Definition Let M be a compact oriented n-manifold and f : M → Rn+1 − {z} a smooth
map. Then the winding number W (f, z) is defined as W (f, z) = deg f̃ , where

f̃ : M → Sn, x 7→ f(x)− z
|f(x)− z| .

IV.8.9 Lemma Let U ⊂ Rk be open and f : U → Rk smooth. Let x be a regular point with f(x) = z.
If B is a sufficiently small closed ball centered at x and ∂f = f � ∂B then W (∂f, z) = 1 if f preserves
the orientation at x and −1 otherwise.

Proof. By Corollary II.3.8, f restricts to a diffeomorphism between sufficiently small neighborhoods
U 3 x and V 3 z. We may assume x = z = 0. If we choose U connected it is easy to see that Tpf is
either orientation preserving for all p ∈ U or orientation reversing for all p. Let B ⊂ U be a closed ball.
Then ∂f : ∂B → f(∂B) is a diffeomorphism with the same orientation behavior as f . Furthermore,
∂f/|∂f | is homotopic to ∂f , thus also ∂f/|∂f | : ∂B → Sk−1 has the same orientation behavior as f .
Therefore W (f, 0) = deg(∂f/|∂f |) = ±1 according to whether f is orientation preserving at x or not.
�

IV.8.10 Lemma Let B ⊂ Rk be a closed ball and f : B → Rk smooth. Let ∂f = f � ∂B. If z is a
regular value of f without preimages on ∂B then W (∂f, z) = deg(f, z), where the right hand side is
as defined in Section IV.7.

Proof. Let Bi ⊂ B be sufficiently small disjoint closed balls around the preimages {xi} of z, and let
C = ∪iBi. It is clear that deg(f � C, z) = deg(f, z), and by Lemma IV.8.9 the left hand side equals∑

iW (∂Bi, z) = W (∂C, z). Now, the map x 7→ f(x)−z
|f(x)−z is well defined on B−∪iBi, thus its restriction

to the boundary ∂(B−∪iBi) has degree zero by Lemma IV.7.4. Therefore, W (∂B, z) = W (∪iBi, z) =
deg(f, z), and we are done. �

IV.8.11 Exercise If B ⊂ Rk is a closed ball and f : Rk − IntB → Y is smooth then f extends to a
smooth map Rk → Y iff the restriction ∂f : ∂B → Y is homotopic to a constant map. 2
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IV.8.12 Proposition For all k ≥ 1 we have:

1. Any smooth map f : Sk → Sk of degree zero is homotopic to a constant map.

2. Any smooth map f : Sk → Rk+1 − {0} with W (f, 0) = 0 is homotopic to a constant map.

Proof. 1⇒2: If f : Sk → Rk+1 − {0} satisfies W (f, 0) = 0 then f̃ : Sk → Sk, x 7→ f(x)/|f(x)| has
degree zero, thus is homotopic to a constant map by statement 1. Now statement 2 follows from the
fact that f and f̃ = f/|f | are homotopic.

Now we prove statement 1 by induction. For k = 1 this follows from Exercise IV.7.8. Thus assume
claim 1 (and thus 2) has been proven for k < l and consider f : S l → Sl with deg f = 0. Let a, b be
distinct regular values of f . Pick an open set U ⊂ S l such that (i) f−1(a) ⊂ U , (ii) b 6∈ f(U) and
(iii) there exists a diffeomorphism α : Rl → U . (To see that such U exists, pick an open U ′ ⊂ Sl

diffeomorphic to Rl and apply Exercise IV.4.5 to find a diffeomorphism γ of S l that maps all points
of f−1(a) into U ′ and all points of f−1(b) to Sl − U ′.) Let β : Sl − {b} → Rl be a diffeomorphism
that maps a to 0. Then g = β ◦ f ◦ α : Rl → Rl makes sense and has 0 as a regular value with finite
pre-image. Thus deg(g, 0) is well defined and equal to zero, the latter following easily from deg f = 0.
We claim that there exists a smooth map g̃ : Rl → Rl − {0} coinciding with g outside a compact set.
To see this let B be a ball containing g−1(0) in its interior. By Lemma IV.8.10, the winding number
W (∂g, 0) is zero. Thus statement 2, as already proven for k = l− 1, implies that ∂g : S l−1 → Rl−{0}
is homotopic to a constant map. Now Exercise IV.8.11 implies that we can extend g � Rl − B to
g̃ : Rl → Rl − {0}. Clearly g̃ is homotopic to g by a homotopy that is constant outside the compact
set B. It follows that f is homotopic to a map f̃ : Sl → Sl − {b}. Since Sl − {b} is diffeomorphic to
Rl, thus contractible, it follows that f is homotopic to a constant map. �

IV.8.13 Remark If X is any topological space, the set [Sn, X] of (continuous) homotopy classes of
continuous maps Sn → X (preserving base points) has a group structure, abelian if n ≥ 2, see any
book on homotopy theory or [4]. Restricting to smooth maps, one can show that the assignment
[Sn, Sn]s 3 [f ] 7→ deg f gives rise to an isomorphism of abelian groups. 2

IV.9 Transversality

So far, we have considered inverse images f−1(q) of smooth maps f : M → N . We will now generalize
Proposition IV.1.10 to inverse images f−1(L), where L ⊂ N is a submanifold. This requires the notion
of transversality due to Thom. First some linear algebra.

Let V1, V2 be linear subspaces of a vector space V . We write V1 + V2 = V if every x ∈ V can be
written – not necessarily uniquely – as x = x1 + x2 where x1 ∈ V1, x2 ∈ V2.

IV.9.1 Exercise Let V1, V2 be linear subspaces of a vector space V . The following are equivalent:

1. V1 + V2 = V .

2. The composite map V1 ↪→ V → V/V2 is surjective.

3. dimV1 + dimV2 = dim(V1 ∩ V2) + dimV .

2

IV.9.2 Definition Let f : M → N be smooth and L ⊂ N a submanifold. We say that f is
transversal to L and write f t L iff for every p ∈ f−1(L) we have Tpf(TpM) + Tf(p)L = Tf(p)N .
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IV.9.3 Exercise If f : M → N ⊃ L satisfies f t L and dimM +dimL < dimN then f(M)∩L = ∅.
2

IV.9.4 Exercise If f : M → N is submersive then f t L for every submanifold L ⊂ N . 2

IV.9.5 Theorem Consider f : M → N where L ⊂M is a submanifold, all manifolds being boundary-
less. If f t L and f−1(L) is non-empty then W = f−1(L) ⊂M is a submanifold whose codimension is
equal to that of L in N (thus dimM−dim f−1(L) = dimN−dimL). We have TpW = (Tpf)−1(Tf(p)L)
for all p ∈W .

Proof. As in Lemma IV.1.4 it suffices to prove the claim locally. Thus let p ∈ f−1(L) and (U, φ) a
chart around p. Let (V, ψ) be a chart around f(p) such that ψ(V ) = X × Y and ψ(V ∩ L) = X × 0,
where X,Y are open neighborhoods of 0 in R` and Rn−`, respectively. If we suitably shrink U , the
composite f̃ = ψ ◦ f ◦ φ−1 maps Ũ = φ(U) into X × Y .

By Exercise IV.9.1, f t L is equivalent to surjectivity of TpM → Tf(p)N/Tf(p)L for all p ∈ f−1(L).

In terms of f̃ this is equivalent to the composite map

g̃ : Ũ
f̃→ X × Y π→ Y

having 0 as regular value. Since f̃−1(X × 0) = g̃−1(0), the first claim follows from Lemma IV.1.4.
By Lemma IV.1.4, TpW = {v ∈ TpM | Tpg̃φ(v) = 0}. Thus TpW = {v ∈ TpM | Tpf̃φ(v) ∈

T(0,0)(X × 0)}. Now, T(0,0)(X × 0) = Tpψ(TpL), and the formula for TpW follows. �

IV.9.6 Remark In view of Definition IV.9.2, any map f whose image does not meet L is transversal
to L. Therefore the condition that f−1(L) be non-empty cannot be dropped (unless we want to
consider the empty set as a manifold of any dimension). 2

Combining the methods in the proofs of Propositions IV.1.10 and Theorem IV.9.5 one can prove

IV.9.7 Theorem Consider f : M → N where L ⊂ N is a submanifold and ∂L = ∂N = ∅. If
f t L, ∂f t L and f−1(L) is non-empty then f−1(L) ⊂ M is a neat submanifold (i.e. ∂(f−1(L)) =
f−1(L) ∩ ∂M) whose codimension is equal to that of L in N .

IV.9.8 Exercise Prove the theorem. (Hint: See [12, p. 60-62].) 2

The theory of regular values that we have studied in detail is a special case of transversality:

IV.9.9 Exercise If L = {q} then f t L iff q is a regular value. 2

Another important special case of transversality and Theorem IV.9.7 is the following:

IV.9.10 Definition Let A,B be submanifolds of M . We write A t B if ι t B, where ι : A→ M is
the inclusion map. Thus A t B iff TpA+ TpB = TpM for all p ∈ A ∩B. (This is symmetric in A,B.)

IV.9.11 Corollary Let A,B be submanifolds of M satisfying A t B and ∂M = ∂B = ∅. If
A ∩ B ⊂ M is non-empty it is a submanifold of codimension codimA + codimB (i.e. dimension
dimA+ dimB − dimM) and ∂(A ∩B) = ∂A ∩B.

IV.9.12 Exercise Let A,B ⊂ M be transversal submanifolds. Show that Tp(A ∩ B) = TpA ∩ TpB
whenever p ∈ A ∩B. 2
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IV.9.13 Exercise Which of the following linear spaces intersect transversally?

1. The xy plane and the z axis in R3.

2. The xy plane and the plane spanned by {(3, 2, 0), (0, 4,−1)} in R3.

3. The plane spanned by {(1, 0, 0), (2, 1, 0)} and the y axis in R3.

4. Rk × 0Rl and 0Rk × Rl in Rn (depending on k, l, n).

5. Rk × 0Rl and Rl × 0Rk in Rn (depending on k, l, n).

6. V × 0 and the diagonal in V × V .

7. The skew symmetric (At = −A) and symmetric (At = A) matrices in Mn(R).

2

IV.9.14 Exercise Show that the ellipses x2 + 2y2 = 3 and 3x2 + y2 = 4 intersect transversally and
that the ellipses 2x2 + y2 = 2 and (x− 1)2 + 3y3 = 4 don’t. Hint: Draw! 2

The crucial ingredient for the definition of the degree and its mod 2 version was Sard’s theorem
to the effect that regular values always exist. In order to apply Theorem IV.9.7 to situations where
we do not a priori have a map f : M → N and a submanifold L ⊂ N satisfying f t L and ∂f t L,
we need a higher dimensional generalization of Sard’s theorem. This is provided by the transversality
theorem, one version of which is the following:

IV.9.15 Theorem Let f : M → N be smooth, L ⊂ N a submanifold such that ∂L = ∂N = ∅. Then
there exists a smooth map g : M → N smoothly homotopic to f such that g t L and ∂g t L. The
map g can be chosen arbitrarily close to f in the C 0-topology.

Before we can prove such results in Section VI.2, some preparation is needed. Again, the concepts
introduced along the way (vector bundles, normal bundles, tubular neighborhoods) are important in
many other contexts, like the smooth approximations of continuous maps to be discussed in Section
V.4.



Chapter V

More General Theory

V.1 Vector bundles

V.1.1 Vector bundles and their maps

Vector bundles are a natural generalization of the tangent bundle considered earlier. They play
a central rôle in all branches of differential geometry (and also in K-theory, which is a branch of
algebraic topology). While we will work only with vector bundles over manifolds, we give the general
definition.

V.1.1 Definition A (real) vector bundle over a space B is a space E together with a continuous
map π : E → B such that π−1(p) is a vector space (over R) for every p ∈ B. Furthermore, every
p ∈ B admits a neighborhood U and a homeomorphism ψ : π−1(U)→ U × Rn such that

π−1(U)
ψ- U × Rn

@
@

@
@

@
π

R
U

p1

?

commutes and such that ψ : π−1(p)→ {p}×Rn is an isomorphism of vector spaces for every p ∈ U . A
vector bundle π : E → B is smooth if B and E are manifolds, π is smooth and the homeomorphisms
ψ are diffeomorphisms.

V.1.2 Remark 1. It is obvious that p 7→ dimπ−1(p) is a locally constant function. If dimπ−1(p) = n
for all p ∈ B we say that the vector bundle has rank n.

2. If π : E → B is a continuous vector bundle and M a (smooth) manifold, one can equip E with
a manifold structure such that π becomes a smooth map. 2

V.1.3 Definition Let π : E → B and π′ : E′ → B′ be vector bundles and f : B → B ′. Then
g : E → E′ is a map of vector bundles over f if

E
g - E′

B

π

?

f
- B′

π′

?

59
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commutes and gp : π−1(p)→ π−1(f(p)) is linear for every p ∈ B. In the case of manifolds we require
g to be smooth.

V.1.4 Remark A vector bundle π : E → B should be understood as a family of vector spaces
Vp = π−1(p) ∼= Rn, one for each p ∈ B, where the total space E =

∐
p∈M Vp has a topology (or

manifold structure) that locally looks like a direct product U × Rn. (This property is called local
triviality.) In particular, π : M ×Rn →M, (x, v) 7→ x is a vector bundle. A vector bundle π : E → B
is called (globally) trivial if there exists an isomorphism (over idB) φ : E → B×Rn of vector bundles.
One can show that every vector bundle over a paracompact contractible space is trivial! (Cf. [13,
Corollary 2.5] or [3].) 2

V.1.5 Example Clearly the tangent bundle π : TM → M of M defined in Section II.4 is a vector
bundle over M . For every f : M → N , the map Tf : TM → TN is a map of vector bundles over f .

V.1.6 Definition A section of a vector bundle π : E → B is a smooth map s : B → E such that
π ◦ s = idB . The set of sections of E is denoted by Γ(E).

V.1.2 Some constructions with vector bundles

V.1.7 Definition If π : E → B is a vector bundle and A ⊂ B then π : π−1(A) → A is a vector
bundle, called the restriction E � A.

V.1.8 Lemma Let f : M → N be a map (smooth in the case of manifolds) and p : E → N a vector
bundle over N . Then f ∗E = {(p, e) ∈ M × E | f(p) = π(e)} and f ∗π : (p, e) 7→ p define a vector
bundle f ∗π : f∗E →M , the pullback of π : E → B along f . The diagram

f∗E
f̂ - E

M

f∗π

?

f
- N.

π

?

commutes, thus f̂ : f∗E → E, (p, e) 7→ e is a map of vector bundles over f .

Proof. For p ∈ M we have (f ∗π)−1(p) = {(p, e) ∈ p × E | π(e) = f(p)} ∼= π−1(f(p)), which is
a vector space. If p ∈ M and the open neighborhood U ⊂ N of f(p) and the local trivialization
ψ : π−1(U)→ U × Rn are as in Definition V.1.1, then f−1(U) ⊂M is open and

(f∗π)−1(f−1(U)) = {(p, e) ∈M ×E | f(p) = π(e) ∈ U}.

Thus we can define a map ψ′ : (f∗π)−1(f−1(U))→ f−1(U)× Rn by

(f∗π)−1(f−1(U)) - U × Rn - f−1(U)× Rn

(p, e) - ψ(e) - (p, π2(ψ(e))).

,

where π2 : U ×Rn → Rn is the projection on the second factor. This map has a continuous inverse

(p, π2(ψ(e)))
f × id- (f(p), π2(ψ(e))) ≡≡≡≡ ψ(e)

p× ψ−1
- (p, e).
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Thus ψ′ is a homeomorphism and f ∗E is locally trivial. The consideration of smooth structures in
the manifold case is left as an exercise.

The last claim is simply the fact that f(p) = π(e), which by definition holds for every (p, e) ∈ f ∗E.
�

V.1.9 Exercise Let π : E → B be a vector bundle and A ⊂ B with inclusion map ι : A ↪→ B. Then
the pullback bundle ι∗π : ι∗E → A is isomorphic to the restriction E � A = (π : π−1(A)→ B). 2

V.1.10 Proposition Let π : E → N be a vector bundle and f : M → N a map. The pullback
f∗π : f∗E →M is universal in the following sense. If π ′ : E′ →M is a vector bundle and g : E ′ → E
a map of vector bundles over f then there is a unique vector bundle map g ′ : E′ → f∗E over idM such
that g = f̂ ◦ g′, thus the diagram

E′

..............

g′

R

HHHHHHHHHHH

g

j

A
A
A
A
A
A
A
A
A
A
A
A

π′

U

f∗E
f̂ - E

M

f∗π

?

f
- N.

π

?

commutes.

Proof. For e ∈ E ′ define g′(e) = (π′(e), g(e)) ∈M × E. It is a trivial matter to verify that the above
diagram commutes. The choice of π′(e) and g(e) in the two entries of g′ is forced by commutativity
of the lower and upper triangle, respectively. �

If V, V ′ are finite dimensional vector spaces, we obtain new vector spaces V⊕V ′, V⊗V ′, Hom(V, V ′),
etc. This generalizes to vector bundles as follows:

V.1.11 Proposition Let π : E → B and π′ : E′ → B vector bundles over the base space B. Then
there exist vector bundles

π1 : E ⊕E′ → B, π2 : E ⊗E′ → B, π3 : Hom(E,E ′)→ B,

over B such that

π−1
1 (p) ∼= π−1(p)⊕ π′−1(p), π−1

2 (p) ∼= π−1(p)⊗ π′−1(p), π−1
3 (p) ∼= Hom(π−1(p), π′−1(p)).

Proof. We define E ⊕ E ′ = {(e, e′) | π(e) = π′(e′)} and π1(e, e
′) = π(e). Clearly π−1

1 (p) is a vector
space. Let p ∈ B and U,U ′ neighborhoods of p over which E,E ′, respectively, trivialize. Then U ∩U ′

is a neighborhood of p for which one easily writes down the isomorphism ψ required by Definition
V.1.1.

Next we define

E ⊗E′ =
∐

p∈B

π−1(p)⊗ π′−1
(p),

Hom(E,E′) =
∐

p∈B

Hom(π−1(p), π′
−1

(p)).
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The definition of π2, π3 and the linear structures on the fibers are obvious. It remains to identify the
right manifold structure and to prove local triviality. We consider only E⊗E ′, the case of Hom(E,E ′)
being completely analogous. Let {Ui, ψi} and {U ′

i , ψ
′
i} be bundle atlasses for E,E ′, respectively. Then

{Ui ∩ U ′
j, ψi ⊗ ψ′

j} is a bundle atlas for E ⊗ E ′, proving that E ⊗ E ′ is a vector bundle. If B is a
manifold it is easy to see that E ⊗E ′ is a manifold. �

V.1.12 Remark 1.In fact, every functorial construction with vector spaces generalizes to vector bun-
dles, cf. [3] for the precise formulation and proof.

2. Every vector bundle π : E →M over a ‘nice’ base space, e.g. a manifold, admits a complement,
i.e. a vector bundle π′ : E′ →M such that the vector bundle E⊕E ′ is trivial. This fact is fundamental
for K-theory, see e.g. [3]. 2

V.1.3 Metrics and orientations

V.1.13 Definition A (riemannian) metric on a smooth vector bundle π : E → M is a family
{〈·, ·〉x, x ∈ M} of symmetric positive definite bilinear forms on Ex = π−1(x), such that the map
x 7→ 〈s(x), t(x)〉x is smooth for all sections s, t ∈ Γ(E).

V.1.14 Proposition Every vector bundle admits a riemannian metric.

Proof. Let r be the rank of E and et (Ui, φi), i ∈ I be a bundle atlas for E, i.e. the Ui are an open
cover of B such that

φi : π−1(Ui)→ Ui ×Rr.

We may assume the cover to be locally finite and choose a subordinate partition of unity {λi, i ∈ I}.
For each i ∈ I, let 〈·, ·〉i be a positive definite symmetric quadratic form on Rn and for X,Y ∈ Γ(TM)
we define

〈X,Y 〉p =
∑

i∈I

λi(p) 〈p2 ◦ φi(X(p)), p2 ◦ φi(Y (p))〉i.

Here the i-th summand is understood to be zero if p 6∈ Ui. This is well defined by local finiteness of
the partition and smooth. Symmetry and positive definiteness are obvious, and positive definiteness
follows from 〈X,X〉p > 0 which is evident for X(p) 6= 0. �

V.1.15 Definition An orientation on a vector bundle π : E → B is a choice of an orientation for
each vector space π−1(p), p ∈ B such that the orientation is locally constant in every bundle chart.

Clearly, an orientation for the tangent bundle of a manifold M is the same as an orientation of M
in the sense of Definition IV.6.2. The orientation of a direct sum E ⊕E ′ of oriented vector bundles is
defined as the product orientation on T (M ×M ′).

V.2 Normal bundles

Besides the tangent bundles TM , another important class of a vector bundles is provided by the
normal bundles NM . As opposed to the former, the latter are not intrinsically defined but depend on
an embedding of M into some euclidean space Rn.

V.2.1 Definition Let M ⊂ Rn be a submanifold and write

NpM = TpM
⊥ = {v ∈ TpRn ≡ Rn | 〈v, w〉 = 0 ∀w ∈ TpM}.

(Here 〈·, ·〉 is the standard inner product on Rn.) Then the normal bundle NM is

NM = {(p, v), p ∈M, v ∈ NpM}
with the obvious projection π : NM →M .
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V.2.2 Proposition NM admits the structure of a (smooth) manifold of dimension n such that
π : NM →M is a submersion and a smooth vector bundle of rank n− dimM .

Proof. It is clear that each π−1(p) is a vector space of dimension n −m, where m = dimM . Since
M ⊂ Rn is a submanifold, for every p ∈ M we can find a chart (Ũ , φ) around p ∈ Rn such that,
writing U = Ũ ∩M , we have φ(U) = φ(Ũ) ∩ Rm. Thus if λ : Rn → Rk is the projection onto the last
k = n −m coordinates and ψ = λ ◦ φ, we have U = ψ−1(0). Clearly, ψ is a submersion. We have
NU = NM ∩ (U × Rn), thus NU is open in NM , the latter topologized as a subspace of M × Rn.
For each p ∈ M , the map Tpψ : Rn → Rk is surjective and its kernel is TpM . Thus its transpose
(Tpψ)t : Rk → Rn is injective and its image is NpM . Therefore the map ψ′ : U × Rk → NU defined
by ψ′(p, v) = (p, (Tpψ)tv) is a bijection and an embedding of U × Rk into M × Rn, thus (U × Rk, ψ′)
is a chart. Since such maps exist for all p ∈ M , NM is a manifold. (Verification of compatibility of
these charts is left as an exercise.) Since π ◦ ψ ′ : U × Rk → U is just the standard submersion, π
is a submersion. That π : NM → M is a vector bundle is now clear, the local trivializations being
provided by the inverses of the maps ψ ′ considered in the proof. �

V.2.3 Exercise Show that the map M → NM given by p 7→ (p, 0) is an embedding. (Thus M can
be considered as submanifold of NM .) 2

The above considerations can be generalized to more general submanifolds M ⊂ P , where P is
supposed to be equipped with a riemannian metric. (By Remark III.5.6 all metrics arise via pullback
from embeddings into some Rn.)

V.2.4 Definition Let P be a riemannian manifold with metric g and let M ⊂ P be a submanifold.
Then the normal bundle N(M,P ) is

N(M,P ) = {(p, v), p ∈M, v ∈ Np(M,P )},

where

Np(M,P ) = {v ∈ TpP | 〈v, w〉p = 0 ∀w ∈ TpM}

with the obvious projection π : N(M,P )→M .

V.2.5 Proposition For any riemannian metric on P , N(M,P ) is a manifold of dimension dimP and
a vector bundle of rank dimP − dimM over M . The projection onto M is a submersion.

Proof. This can be proven with the intrinsic methods of riemannian geometry, cf. e.g. [17, p. 133]. In
order to avoid this, but appealing to Nash’s difficult embedding theorem instead, we may assume P to
be isometrically embedded into some Rn. Then the proof proceeds essentially as that of Proposition
V.2.2. �

V.2.6 Remark The normal bundle N(M,P ) seems to depend on the choice of a riemannian metric
on P . Alternatively, one can consider the algebraic normal bundle

Na(M,P ) = {(p, v), p ∈M, v ∈ TpP/TpM},

which can be shown to be a manifold diffeomorphic to N(M,P ). (More precisely, one has an iso-
morphism of vector bundles over idM .) This implies that, up to diffeomorphism, N(M,P ) does not
depend on the metric on P . In practice, the more geometric definition of N(M,P ) is more useful. 2
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If M and P are both oriented we define an orientation on N(M,P ) by the direct sum

N(M,P ) ⊕ TM = TP � M.

(I.e., we choose the orientation of N(M,P ) such that the direct sum orientation on N(M,P ) ⊕ TM
coincides with the given orientation on TP � M .)

V.2.7 Lemma Let M1,M2 ⊂ P be transversal submanifolds, i.e. M1 t M2. Then

Np(M1 ∩M2, P ) = Np(M1, P )⊕Np(M2, P ) ∀p ∈M1 ∩M2.

Thus the normal bundle of the submanifold M1 ∩M2 is given by

N(M1 ∩M2, P ) ∼= (N(M1, P ) � M1 ∩M2) ⊕ (N(M2, P ) � M1 ∩M2).

Proof. By transversality, M1∩M2 is a manifold, and by Exercise IV.9.12, Tp(M1∩M2) = TpM1∩TpM2.
Now, let Wi ⊂ TpP be subspaces such that TpMi

∼= Wi ⊕ (TpM1 ∩ TpM2) for i = 1, 2. By the
transversality assumption TpM1 + TpM2 = TpP we have TpP ∼= W1 ⊕W2 ⊕ (TpM1 ∩ TpM2). Thus
NpM1 = TpP ∩ TpM

⊥
1 = W2 and (1↔ 2) and therefore

Np(M1 ∩M2, P ) = TpP ∩ Tp(M1 ∩M2)
⊥ = W1 ⊕W2 = NpM2 ⊕NpM1.

This proves the first claim, and the second is just a reformulation. �

The preceding lemma is a special case of the following:

V.2.8 Exercise Consider f : A→M ⊃ B where f t B, and let W = f−1(B). If W 6= ∅ then

Np(W,A) ∼= (Tpf)−1(Nf(p)(B,M))

for all p ∈W . 2

V.2.9 Exercise Let ∆ = {(x, x) | x ∈ M} ⊂ M ×M be the diagonal. Show that the map TM →
N(∆,M ×M) defined by (x, v) 7→ ((x, x), (v,−v)) is a diffeomorphism. 2

V.3 Tubular neighborhoods

V.3.1 Definition Let M ⊂ Rn be a submanifold and ε : M → (0,∞) a smooth map. Then we define

M ε = {p ∈ Rn | ∃q ∈M s.th. |p− q| < ε(q)}.

V.3.2 Theorem Let M ⊂ Rn be a submanifold. Define θ : NM → Rn by θ(p, v) = p + v. Then
there exists a smooth map ε : M → (0,∞) such that θ restricts to a diffeomorphism between the
neighborhood N εM = {(p, v), p ∈ M,v ∈ NpM, |v| < ε(p)} of M = {(p, 0), p ∈ M} in NM and the
neighborhood M ε of M in Rn. The latter is called a tubular neighborhood of M .

Proof. Consider the map h : NM → Rn given by (p, v) 7→ p+v. Through every (p, 0) ∈M×{0} ⊂ NM
there pass the submanifolds M ×{0} and {p}×NpM . The derivative T(p,0)h maps the tangent spaces
of these two submanifolds to TpM ⊂ Rn and NpM ⊂ Rn, respectively. The latter sum up to Rn, thus
p × {0} is a regular point of h. Since NM and Rn have the same dimension, h is a diffeomorphism
of some neighborhood of M × {0} in NM onto a neighborhood M̃ of M in Rn. If M is compact, the
latter neighborhood contains M ε for some ε > 0. If M is non-compact then choose an open cover of
M by sets Ui ⊂M and vi > 0 such that U εi

i ⊂ M̃ . If {λi} is a partition of unity subordinate to {Ui}
then ε(p) =

∑
i εiλi(p) does the job. �

The theorem permits the following extension which clarifies its geometric meaning:
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V.3.3 Proposition Let M ⊂ Rn be compact and let θ and ε be as in Theorem V.3.2. Then for every
p ∈M ε there is a unique closest point σ(p) ∈M . σ is a submersion and the inverse of θ : N εM →M ε

is given by θ−1 : p 7→ (σ(p), p− σ(p)).

Proof. Let p ∈ M ε and consider the map λp : M → R+, q 7→ |p− q|2 = (p− q, p− q)Rn . Since M is
compact, λp is bounded and assumes its infimum. Thus there exists q ∈ M such that λp(q) ≤ λp(q

′)
for all q′ ∈M . Now the derivative Tqλp = 2(p− q, ·) : TqM → R vanishes, thus p− q ∈ TqM

⊥ = NqM .
Thus p = q + v = h(q, v) with (q, v) ∈ NM . If q ′ ∈ M is another point for which |p − q| = |p − q ′|
then again p = q′ + v′ = h(q′, v′) with (q′, v′) ∈ NM . By Theorem V.3.2, h : N εM → M ε is a
diffeomorphism, thus in particular a bijection, implying (q, v) = (q ′, v′). Therefore there is a unique
point σ(p) ∈M closest to p ∈M ε.

If π : NM →M is the canonical projection and h−1 : M ε → N εM is the inverse of the diffeomor-
phism h, it is clear from the preceding reasoning that σ = π ◦ h−1 : M ε →M . As a composition of a
diffeomorphism and a submersion, σ is a submersion. �

As with normal bundles, the above considerations generalize to arbitrary embeddings M ⊂ P :

V.3.4 Definition Let P be a riemannian manifold and M ⊂ P a submanifold. A tubular neigh-
borhood of M is an open neighborhood U of P together with a diffeomorphism φ : N(M,P ) → U
restricting to the identity map on the zero section (where we identify the latter with M).

V.3.5 Theorem Let P be a riemannian manifold and M ⊂ P a submanifold. Then M has a tubular
neighborhood U in P .

Proof. Again, there is an proof intrinsic to riemannian geometry and avoiding embeddings into eu-
clidean space, cf. e.g. [17, Exercise 8-5]. On the other hand, one can give a more elementary proof
assuming an embedding P ⊂ Rn, cf. [6, Theorem II.11.14]. �

One can show that all tubular neighborhoods for M ⊂ P are diffeotopic:

V.3.6 Theorem Let P be a riemannian manifold and M ⊂ P a submanifold. Let U1, U2 be tubular
neighborhoods of M in P . Then there exists an diffeotopy φ : P × I → P such that φ0 = id,
φ1(U1) = U2 and φt(p) = p for all p ∈M,y ∈ I.

For a proof see [13, Theorem IV.5.3] or [7, Satz 12.13]. We will not use this result.

As an application of tubular neighborhoods we obtain the following result on the topological
triviality of Euclidean space:

V.3.7 Lemma Let M be a compact manifold with boundary and let f : ∂M → Rn be any smooth
map. Then f extends to a smooth map M → Rn.

Proof. By the embedding theorem, we may consider M as a submanifold of some Rk. Let U be a
tubular neighborhood of ∂M in Rk with projection σ : U → ∂M . Then f ◦ σ : U → Rn extends f to
U . Let ρ : U → R be a smooth function that equals one on ∂M and vanishes outside some compact
subset of U . Now we extend f to all of Rk, thus in particular to M , by setting it to be equal to ρ · f
on U and 0 elsewhere. �

V.3.8 Exercise Use Exercise V.2.9 and the tubular neighborhood theorem to show that there is a
diffeomorphism between a neighborhood of M0 (the zero section) in TM and a neighborhood of ∆ in
M ×M , extending the usual diffeomorphism M0 → ∆, (x, 0) 7→ (x, x). 2
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V.4 Smooth approximation

The main motivation for the introduction of normal bundles and tubular neighborhoods was the
proof of the transversality theorem. As another application of these tools we will now show that the
smooth methods of differential topology can be used to prove results about continuous maps between
manifolds.

V.4.1 Theorem Let f : M → N be a continuous map of manifolds without boundary. Let f � U be
smooth where C ⊂ U ⊂ M with C closed and U open. Then there exists a smooth map g : M → N
such that g � C = f � C. The map g can be chosen homotopic to f and arbitrarily close to f in the
C0-topology.

Proof. We first consider the case where N = Rn. There exists a locally finite open cover {Ui, i ∈ I} of
M subordinate to the open cover {U,M −C}, which we may assume indexed by Z such that Ui ⊂ U
if i < 0 and Ui ⊂M −C if i ≥ 0. Given a smooth function ε : M → (0,∞), the cover {Ui} and vectors
fi ∈ Rn, i ≥ 0 can be chosen such that |f(p) − fi| < ε(p) for all p ∈ Ui, i ≥ 0. Let {λi, i ∈ Z} be a
partition of unity with suppλi ⊂ Ui. Consider

g(p) = f(p)
∑

i<0

λi(p) +
∑

i≥0

fiλi(p).

g is smooth since λi(p) vanishes for i < 0 and p ∈ M − C, and g � C = f � C since for p ∈ C we
have λi(p) = 0 ∀i ≥ 0, implying

∑
i<0 λi(p) = 1. The indicated choice of the fi guarantees that can

be chosen in any C0-neighborhood of f . Being Rn-valued functions, f and g are clearly homotopic.
In the general case, choose an embedding Ψ : N → Rn and a tubular neighborhood Ψ(N)ε ⊃ Ψ(N)

with projection σ. Let G = {(x,Ψ ◦ f(x)), x ∈ M} be the graph of Ψ ◦ f in M × Rn, let W be a
neighborhood of G and

Q = {(x, y) ∈M × T | (x, σ(y)) ∈W}.
Choosing a smooth map g : M → Rn whose graph lies in Q, σ ◦ g is a smooth map with values in
Ψ(M), thus Ψ−1 ◦ σ ◦ g : M → N is smooth, coincides with f on C and is homotopic and arbitrarily
close to f . �

V.4.2 Corollary Let M,N be smooth manifolds. There are bijections between (i) the (continuous)
homotopy classes of continuous maps M → N , (ii) continuous homotopy classes of smooth maps and
(iii) smooth homotopy classes of smooth maps.

Proof. By Theorem V.4.1, every continuous map f : M → N is (continuously) homotopic to a
smooth map f̃ : M → N . This proves the bijection (i)↔(ii). Let f, g : M → N be smooth and let
h : M × [0, 1] → N be a continuous homotopy. We may assume that ht : M → N is independent of
t on [0, ε) and (1 − ε, 1]. Thus h � U with U = M × ([0, ε) ∪ (1 − ε, 1]) is smooth and the smoothing
theorem gives a smooth homotopy between f and g, proving the bijection (ii)↔(iii). �

We immediately have the following ‘continuous’ corollaries of our earlier ‘smooth’ results in The-
orem III.4.11 and Corollary IV.8.7:

V.4.3 Corollary If dimM < n then every continuous map f : M → Sn is homotopic to a constant
map. In particular, πm(Sn) = 0 if 0 ≤ m < n.

V.4.4 Corollary Let M be a connected oriented compact n-manifold without boundary. Then the
degree establishes a bijective correspondence between the set [M,Sn] of homotopy classes of continuous
maps M → Sn and Z. In particular, πn(Sn) ∼= Z for all n ≥ 1.

The smooth version of Theorem IV.3.2 requires only slightly more work.
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V.4.5 Corollary Any continuous map f : Dn → Dn has a fixpoint.

Proof. Suppose the continuous map f : Dn → Dn has no fixpoint. By the same argument as in
Theorem IV.3.2 we deduce the existence of a (continuous) retraction r : Dn → ∂Dn = Sn−1. It is easy
to change r into a continuous map r′ which is a retraction of D onto a neighborhood U of ∂Dn. Thus
r′ is the identity and therefore smooth on U , and applying smooth approximation to r ′ we obtain a
smooth retraction r′′ : Dn → ∂Dn, which cannot exist by Proposition IV.3.1. �

V.4.6 Remark We have seen that methods from differential topology, combined with smooth ap-
proximations, can be used to compute the homotopy groups πm(Sn), m ≤ n of spheres. There is a
theory, due to Pontryagin and Thom, which establishes a bijection between certain homotopy groups,
like πm(Sn), m ≥ n, and ‘cobordism classes’ of certain manifolds. (The result that πn(Sn) = Z can
be obtained as a very special case of this formalism, cf. [19, §7].) Originally, this theory was intended
for the computation of πm(Sn) where m > n, and in fact this has been done for m − n ≤ 3. Un-
fortunately, the difficulties soon become insurmountable. There are, however, other, more algebraic
ways of computing πm(Sn), and Pontryagin-Thom theory can be used the other way round to prove
otherwise inaccessible results about smooth manifolds! We refer to [19] for a lucid introduction to the
relatively easy theory of ‘framed cobordism’ and to [13] for ‘oriented’ and ‘unoriented’ cobordism. 2
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Chapter VI

Transversality II: Intersection Theory

VI.1 Parametric transversality

VI.1.1 Proposition Let F : M×S → N be a smooth map and L ⊂ N a submanifold, where S,N,L
are boundaryless. For s ∈ S we write Fs = F (·, s) : M → N . If F t L and ∂F t L then Fs t L and
∂Fs t L for all s ∈ S but a set of measure zero.

Proof. By F t L and Theorem IV.9.5, F−1(L) ⊂ M × S is a submanifold. Consider the projection
M × S → S. We claim, for any s ∈ S, that Fs t L iff s is a regular value of π : F−1(L) → S, and
∂Fs t L iff s is a regular value of ∂π : ∂F−1(L) → S. This clearly implies the proposition since by
Sard’s theorem the union of the sets of critical values of π : F −1(L) → S and of ∂π : ∂F−1(L) → S,
respectively, has measure zero. It remains to prove the claim, which is a purely algebraic matter.

By the assumption F t L we have

T(a,s)F [T(a,s)(M × S)] + TF (a,s)L = TF (a,s)N ∀(a, s) ∈ F−1(L).

In view of T(a,s)(M × S) ∼= TaM ⊕ TsS this is equivalent to

TsF
a(TsS) + TaFs(TaM) + TF (a,s)L = TF (a,s)N ∀(a, s) ∈ F−1(L), (VI.1)

where Fs = F (·, s) as before, and F a = F (a, ·). On the other hand, Fs t L means

TaFs(TaM) + TF (a,s)L = TF (a,s)N ∀a ∈ F−1
s (L). (VI.2)

Given (VI.1), the stronger condition (VI.2) follows for a certain s ∈ S iff we have

TsF
a(TsS) ⊂ TaFs(TaM) + TF (a,s)L ∀a ∈ F−1

s (L). (VI.3)

If u ∈ TaM, v ∈ TsS we have T(a,s)F (u ⊕ v) = TaFs(u) + TsF
a(v). Thus (VI.3) holds iff for every

a ∈ F−1
s (L) and v ∈ TsS there exists u ∈ TaM such that T(a,s)F (u ⊕ v) ∈ TF (a,s)L. On the other

hand, for the projection π : F−1(L)→ S we have T(a,s)π(u⊕ v) = v. Thus s ∈ S is a regular value of
π iff for every a ∈ F−1

s (L) and v ∈ TsS there exists u ∈ TaM such that u ⊕ v ∈ T(a,s)(F
−1(L)). By

Theorem IV.9.5, a vector u⊕ v ∈ T(a,s)(M × S) is in T(a,s)(F
−1(L)) iff TF (a,s)F (u⊕ v) ∈ L, thus the

two conditions are equivalent, proving the claim.

The argument for ∂Fs : M → N and ∂π : F−1(L)→ S is exactly the same as (and in fact a special
case of) the preceding one. �

VI.1.2 Corollary Let f : M → Rn be a smooth map and L ⊂ Rn a submanifold. For s ∈ Rn write
fs : x 7→ f(x) + s. Then fs t L for all s ∈ B1(0) but a set of measure zero.
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Proof. Let S be the open unit ball around 0 ∈ Rn and define F (x, s) = f(x) + s. It is clear that
s 7→ F (x, s) is a submersion for any fixed x. A fortiori, F : M ×S → Rn is a submersion, thus F t L.
By Proposition VI.1.1, fs t L for almost all s ∈ S. �

The functions f and fs = f+s are obviously homotopic. We have thus proven Theorem IV.9.15 in
the case where N = Rn. For an arbitrary target manifold N we can choose an embedding Φ : N → Rn

for suitable n. Corollary VI.1.2 then implies that there is a map g : M → Rn arbitrarily close to Φf
such that g t Φ(L). The image g(M) lies in some neighborhood U of Φ(N) ⊂ Rn, and all we need is
a projection π of U onto Φ(N) such that πg t L. This requires some preparation, which will be the
subject of the next subsections.

VI.2 Transversality theorems

Using tubular neighborhoods it is now easy to prove our first general transversality theorem.

VI.2.1 Proposition Let f : M → N be a smooth map, L ⊂ N a submanifold, where ∂N = ∂L = ∅.
Then there exists a smooth map g : M → N such that g ' f and g t L, ∂g t L.

Proof. Let Ψ : N → Rn be an embedding and let S be the unit ball in Rn. Let ε : N → R+ and
σ : Ψ(N)ε → N as in Theorem V.3.2. We define

F : M × S → N, F (x, s) = Ψ−1σ[Ψf(x) + ε(f(x))s].

Since σ : Ψ(N)ε → Ψ(N) restricts to the identity map on Ψ(N), we have F (x, 0) = f(x). Obviously,
s 7→ ψ ◦ f(x) + ε(f(x))s : M → Ψ(M)ε is a submersion for every x ∈ M . Therefore s 7→ F (x, s) is
a composition of two submersions, thus a submersion. It clearly follows that F : M × S → N is a
submersion. Thus F t L for any submanifold L ⊂ N , and Theorem VI.1.1 implies that Fs t L and
∂Fs t L for almost all s ∈ S. Let g = Fs for such an s ∈ S. Finally, M × I → N, (x, t) 7→ F (x, ts) is
a homotopy between f = F0 and g = Fs. �

For the purposes of intersection theory we need a version where g can be taken to coincide with f
on a subset on which it is already transversal.

VI.2.2 Theorem Let f : M → N be a smooth map, L ⊂ N a submanifold, where ∂N = ∂L = ∅.
Let C ⊂ N be closed, and assume that (f � C) t L and (∂f � C ∩ ∂M) t L. Then there exists a
smooth map g : M → N such that g ' f , g t L, ∂g t L and g coincides with f on a neighborhood
of C.

Proof. We claim that there is an open set U with C ⊂ U ⊂ M such that (f � U) t L. On the one
hand, if p ∈ C − f−1(L) then, since L is closed, X = C − f−1(L) is an open neighborhood of p such
that (f � X) t L holds trivially. If, on the other hand, p ∈ f−1(L), pick an open neighborhood W of
f(p) and a submersion φ : W → Rk such that f t L at a point q ∈ f−1(L∩W ) iff φ◦f is regular at q.
By assumption φ ◦ f is regular at p, thus it is regular in a neighborhood of p. This proves the claim.

Now let C ′ be any closed set contained in U and containing C in its interior, and let {λi} be a
partition of unity subordinate to the open cover {U,M − C ′}. Defining γ to be the sum of those λi

that vanish outside of M − C ′ we obtain a function γ : M → [0, 1] that is one outside U and zero on
some neighborhood of C.

Defining τ = γ2 we have Tpτ = 2γ(p)Tpγ : TpM → R, thus Tpγ = 0 whenever γ(p) = 0. Let
F : M × S → N be the map considered in the proof of Proposition VI.2.1 and define G : M × S → N
by G(x, s) = F (x, τ(x)s). We claim G t L. To see this, let (x, s) ∈ G−1(L) and suppose, to begin
with, τ(x) 6= 0. Then the map S →M, r 7→ G(x, r) is a composition of the diffeomorphism r 7→ τ(x)r
and the submersion r 7→ F (x, r), thus it is a submersion. Thus (x, s) is a regular point of G and,
a fortiori, G t L at (x, s). It remains to consider the case τ(x) = 0. We write G = F ◦ H, where
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H : M × S →M × S is given by (x, s) 7→ (x, τ(x)s). Then, for (v, w) ∈ TxM × TsS = TxM × Rn, we
have

T(x,s)G(v, w) = (TH(x,s)F ◦ T(x,s)H)(v, w) = T(x,τ(x)s)F ((v, τ(x)w + Txτ(v)s)) = T(x,0)F (v, 0),

where we have used τ(x) = 0 and Txτ(v) = 0. Since F (x, 0) = f(x), we have

T(x,s)G(v, w) = Txf(v),

thus T(x,s)G and Txf have the same images. Furthermore, τ(x) = 0 implies x ∈ U , thus f t L at x
and therefore G t L at (x, s), as claimed.

Similarly on shows ∂G t L. By Proposition VI.1.1 we can find s ∈ S such that Fs t L and
∂Fs t L. Then g = Fs is homotopic to f and if p belongs to the neighborhood of C on which τ(p) = 0
then g(x) = G(x, s) = F (x, 0) = f(x), as desired. �

VI.2.3 Corollary Let L ⊂ N be a submanifold where ∂N = ∂L = ∅. If f : M → N is such that
∂F : ∂M → N is transversal to L then there exists g : M → N such that g t L, g ' f and ∂g = ∂f .

VI.2.4 Remark In our proof of the transversality Theorem VI.2.2 and its preliminaries we followed
the approach of [12], which has the virtues of being elementary and of exhibiting very clearly the
use of Sard’s theorem via Proposition VI.1.1. There are more elegant proofs that use either ‘jet-
transversality’, cf. [13, 9], or some more vector bundle theory (the fact that every vector bundle on a
manifold admits an ‘inverse’), cf. [7, 6]. 2

Now we are in a position to finish the proof of Hopf’s theorem on maps into spheres:

Proof of Proposition IV.8.4. We are given a map f : ∂M → Sn ⊂ Rn+1. By Lemma V.3.7, f may be
extended to a smooth map F : M → Rn+1. Since f has its image in Sn, 0 ∈ Rn+1 is trivially a regular
value, thus f t {0}. By the transversality extension Theorem VI.2.2 we can pick F such that F t {0}.
Thus 0 is a regular value of F and F−1(0) ⊂ M is a finite set. Let U ⊂ M − ∂M be an open set for
which there exists a diffeomorphism γ : Rn+1 → U . By Exercise IV.4.5 we may suppose that F−1(0)
is contained in U . Let B ⊂ Rn+1 be an open ball such that F−1(0) ⊂ γ(B). Then F/|F | extends to
M −γ(B). Since F � ∂M = f has degree zero by assumption, it follows that F � ∂γ(B)→ Rn+1−{0}
has winding number zero. Thus, by part II of Proposition IV.8.12, the restriction F : ∂γ(B)→ Rn+1

is homotopic to a non-zero constant map, in other words we can change F on γ(B) such that it avoids
the value zero. Let F ′ be this function. Then the desired extension of f : ∂M → Sn to f̂ : M → Sn

is given by f̂ = F ′/|F ′|. �

VI.3 Mod-2 Intersection theory

In this section all manifolds are without boundary.
The theories of the degree and the mod 2 degree were concerned with maps f : M → N between

manifolds of the same dimension. Intersection theory, of which again there is an unoriented (mod 2)
and an oriented version, is a generalization to the situation where one has a map f : M → N and
a submanifold L ⊂ N subject to the condition dimM + dimL = dimN . (This contains the case
where L = {q} and dimM = dimN .) The condition that q be a regular value is replaced by the
requirement f t L, so that Theorem IV.9.5 implies that f−1(L) is a discrete subset of M . We begin
our considerations with the unoriented mod 2 intersection theory which contains the formalism of the
mod 2 degree as a spectial case. (In fact the latter seems to be the only interesting application of
mod 2 intersection theory! If we still consider the mod 2 theory in some detail, it is because it is
considerably easier to set up than the oriented theory.)
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VI.3.1 Definition Consider f : M → N ⊃ L where M is compact, dimM + dimL = dimN and
f t L. Then we define the mod 2 intersection number I2(f, L) ∈ {0, 1} by

I2(f, L) ≡ #f−1(L) (mod 2).

VI.3.2 Proposition Let f, g : M → N be smoothly homotopic and both transversal to L. Assuming
the conditions of Definition VI.3.1 we have I2(f, L) = I2(g, L).

Proof. Let F : M × I → N be a homotopy. By the assumption f t L, g t L we have ∂F t L. By
Theorem VI.2.2 there is G : M × I → N such that G t L, G ' F and ∂G = ∂F . Now G−1(L) is a
neat one-dimensional submanifold of M × I, thus

∂(G−1(L)) = G−1(L) ∩ (M × {0, 1}) = f−1(L)× 0 ∪ g−1(L)× 1.

By Corollary II.12.3, ∂(G−1(L)) has an even number of points, thus #f−1(L) ≡ #g−1(L) (mod 2).
�

For an arbitrary map f : M → N we pick a homotopic map f̃ : M → N such that f̃ t L and
define I2(f, L) = I2(f̃ , L). The preceding proposition implies that this is well defined, i.e. independent
of the choice of f̃ , and it is clear that if f ' g then I2(f, L) = I2(g, L).

An important special case is that of transverse submanifolds.

VI.3.3 Definition Let M be compact and let A,B ⊂ M be transverse submanifolds, i.e. A t B,
such that dimA+ dimB = dimM . Then we define

I2(A,B) = I2(ι, B),

where ι : A ↪→M is the canonical embedding map. If we want to emphasize the ambient manifold M
we write I2(A,B;M).

By its definition, together with Proposition VI.4.2, I2(A,B) is stable w.r.t. deformations of A. In
order to show that I2(A,B) is stable also under perturbations of B and to understand the relation
between I2(A,B) and I2(B,A) we generalize our approach somewhat:

VI.3.4 Definition Let f : A→M, g : B →M be smooth maps between compact manifolds without
boundary. We say f t g if Tpf(TpA) + Tqg(TqB) = TrM whenever f(p) = g(q) = r.

Assuming f t g we would like to define I2(f, g) by

I2(f, g) ≡ #{(p, q) ∈ A×B | f(p) = g(q)} (mod 2).

The problem is that it is not evident that the set {. . .} is finite.

VI.3.5 Lemma Let U, V be subspaces of the vector space W . Then W = U ⊕V (i.e. U +V = W and
U ∩ V = {0}) iff (U × V )⊕∆ = W ×W , where ∆ = {x× x, x ∈W}.

Proof. Clearly U ∩ V = {0} is equivalent to (U × V )∩∆ = {0}. Under these equivalent assumptions,
U ⊕V = W and (U ×V )⊕∆ = W ×W are equivalent to dimU+dimV = dimW and dimU ·dimV +
dimW = 2dimW , respectively, which in turn are equivalent. �

VI.3.6 Proposition In the situation A
f→ B

g← B with M compact, f t g iff (f × g) t ∆, where ∆
now is the diagonal in M ×M . Under these (equivalent) conditions

I2(f, g) = I2(f × g,∆).
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Proof. The first claim is an immediate consequence of the lemma, taking U = Tpf(TpA), V =
Tqg(TqB), W = TrM for f(p) = g(q) = r. Assume these equivalent transversality conditions are
satisfied. Now the set {(p, q) ∈ A × B | f(p) = g(q)} is just (f × g)−1(∆), and this is finite by
(f × g) t ∆. �

VI.3.7 Proposition If f ′ ' f, g′ ' g then I2(f
′, g′) = I2(f, g).

Proof. If ft, gt are homotopies from f to f ′ and from g to g′, respectively, then ft × gt is a homotopy
from f × g to f ′ × g′. �

VI.3.8 Corollary Let A,B,M be compact and dimA+dimB = dimM . If B ⊂M is a submanifold
and ι the inclusion map then I2(f,B) = I2(f, ι) for any f : A→M .

Proof. If f t B then this is trivial. Otherwise find f ′ ' f such that f t B. Then we have
I2(f,B) = I2(f

′, B) = I2(f
′, ι) = I2(f, ι). �

Thus perturbing the embedding ι by a homotopy does not change the mod 2 intersection number,
which is the desired stability w.r.t. B. In particular, it turns out that the theory of the mod 2 degree
is a special case of intersection theory:

VI.3.9 Corollary Let M be compact and N connected with dimM = dimN . Then I2(f, {q}) is
independent of q and coincides with deg2 f .

Proof. Since N is connected the inclusion maps i, i′ of q, q′ ∈ N into N are homotopic. Thus
I2(f, {q}) = I2(f, i) = I2(f, i

′) = I2(f, {q′}). Picking q to be a regular value of f it is clear that
I2(f, {q}) = #f−1(q) (mod 2) = deg f . �

VI.3.10 Corollary Under the same assumptions as above, I2(A,B) = I2(B,A).

Proof. If A t B this is obvious since then I2(A,B) = I2(B,A) = #(A ∩ B) (mod 2). In the general
case it follows from I2(A,B) = I2(f, g) where f : A→M, g : B →M satisfy f t g and are homotopic
to the inclusion maps. But it is clear that I2(f, g) = I2(g, f). �

VI.4 Oriented intersection theory

We now turn to the more interesting case, where the manifolds M,N,L come with orientations. Some
preliminary considerations are in order. In connection with the condition dimM + dimL = dimN on
the dimensions, the transversality condition Tpf(TpM) + Tf(p)L = Tf(p)N becomes

Tpf(TpM)⊕ Tf(p)L = Tf(p)N ∀p ∈M. (VI.4)

(This follows from the equivalence 1 ⇔ 3 in Exercise IV.9.1.) Furthermore, Tpf : TpM → Tf(p)N is
an isomorphism, thus it defines an orientation for its image. For p ∈ f−1(L) we define signTpf = 1
if (VI.4) holds as an equation of oriented vector spaces, i.e. the given orientation of Tf(p)N coincides
with the direct sum orientation of Tpf(TpM)⊕ Tf(p)L, and sign Tpf = −1 otherwise. (Recall that the
direct sum of oriented vector spaces is not commutative in general!)

VI.4.1 Definition Consider f : M → N ⊃ L where all manifolds are oriented, M is compact,
dimM + dimL = dimN and f t L. Then we define the oriented intersection number I(f, L) ∈ Z by

I(f, L) =
∑

p∈f−1(L)

signTpf.
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VI.4.2 Proposition Let M,N,L be as in Definition VI.4.1 and let f, g : M → N be homotopic
maps satisfying f t L, g t L. Then I(f, L) = I(g, L).

Proof. Similar to the proof of Lemma IV.7.4, but the details are quite tedious. See [12, Section II.3].
�

Again, if f : M → N is any smooth map, not necessarily transversal to L, Theorem IV.9.15 allows
us to find g ' f such that g t L. Then Proposition VI.4.2 implies that the definition I(f, L) := I(g, L)
makes sense. As in the unoriented case, given two submanifolds A,B of a compact oriented manifold
M we define I(A,B) = I(ι, B), where ι : A ↪→M is the canonical embedding.

If f : M → N satisfies f t {q}, equivalently q is a regular value of f , we find

I(f, {q}) =
∑

p∈f−1(q)

signTpf = deg f.

By the definitions of I(f, {q}) and deg f it follows that this equality holds for all q ∈ N .

If we have maps A
f→ M

g← B with M compact satisfying f t g we define I(f, g) as the sum
over the pairs (p, q) ∈ A × B, f(p) = g(q) = r of numbers ±1, depending on whether the (given)
orientation on TrM coincides with the direct sum orientation on TrM induced from the orientations
on TpA, TqB by the isomorphism Tpf(TpA)⊕ Tqg(TqB) ∼= TrM .

VI.4.3 Proposition In the situation A
f→M

g← B with M compact, f t g iff (f × g) t ∆, where ∆
is the diagonal in M ×M . Under these (equivalent) conditions

I(f, g) = (−1)dim BI(f × g,∆).

As a consequence, I(f, g) is homotopy invariant w.r.t. f and g, and I(A,B) is stable under small
perturbations of A,B.

Proof. The first half has been proven in the preceding subsection. The statement on the orientations
is left as an exercise. (For the solution see [12, p. 113].) �

We conclude our general study of intersection theory by examining the behavior of the intersection
number under exchange of A and B.

VI.4.4 Lemma Let A,B,M be compact with dimA+ dimB = dimM . Then

I(f, g) = (−1)dim A·dimBI(g, f)

for any f : A→M and g : B →M .

Proof. Follows from V ⊕ U = (−1)dim U ·dimV (U ⊕ V ). �

VI.4.5 Corollary I(A,B) = (−1)dim A·dimBI(B,A).

VI.5 The Euler number and vector fields

VI.5.1 Euler numbers and Lefshetz numbers

Still, all manifolds are assumed boundaryless. For a manifold M let ∆ = {x×x, x ∈M} ⊂M×M be
the diagonal. Clearly, this is an m-dimensional submanifold of the 2m-dimensional manifold M ×M .

VI.5.1 Definition Let M be compact connected oriented (and boundaryless). Then the Euler num-
ber of M is defined by

χ(M) = I(∆,∆;M ×M).
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VI.5.2 Corollary Let M be compact connected oriented and odd dimensional. Then χ(M) = 0.

Proof. Follows from Corollary VI.4.5 since dim∆ = dimM is odd, thus I(∆,∆) = −I(∆,∆). �

VI.5.3 Lemma Let M,N be compact connected oriented. Then χ(N ×M) = χ(N)χ(M).

Proof. As a consequence of Tp×q(M × N) = TpM ⊕ TqN one has f1 × f2 t B1 × B2 for fi : Ai →
Mi ⊃ Bi, i = 1, 2 satisfying fi t Bi. Similarly, (f1 × f2)

−1(B1 × B2) = f−1
1 (B1) × f−1

2 (B2) implies
I(f1× f2, B1×B2) = I(f1, B1)I(f2, B2). The claim follows by observing that also orientations behave
as expected. �

The Euler number of a manifold is a fundamental invariant. Later on, it will be interpreted in
terms of de Rham cohomology and CW-decompositions. For the time being, our only efficient way
of computing the Euler number will be via its relation to vector fields with finitely many zeros. The
following will be used later.

VI.5.4 Lemma Let M be as in Definition VI.5.1. Then

χ(M) = I(M0,M0;TM),

where M0 is the zero section of TM .

Proof. Let ι : M → TM be the inclusion map of the zero section. The transversality theorem allows us
to choose ι′ : M → TM such that ι′ t M0 and such that ι′(M) is contained in any given neighborhood
of M0. Now the claim follows from Exercise V.3.8. �

VI.5.5 Remark A generalization of the Euler number is provided by the Lefshetz number. As before,
let M be a compact oriented manifold without boundary and let f : M →M be a smooth map. Then
the Lefshetz number of f is defined as the intersection number L(f) = I(G(f),∆;M ×M), where
G(f) = {(x, f(x)), x ∈ M} is the graph of f . Clearly, χ(M) = G(idM ), and one shows that L(f)
depends only on the smooth homotopy class of f . The relevance of the Lefshetz number derives from
the Lefshetz fixpoint theorem: If L(f) 6= 0 then f has a fixpoint. (The proof is trivial: If f has no
fixpoint then G(f) ∩∆ = ∅, thus I(G(f),∆;M ×M) = 0.) When G(f) t ∆ one has a nice explicit
formula for L(f) in terms of the behavior of f near its fixpoints, see [12, Section III.4]. 2

VI.5.2 Euler numbers and vector fields (Unfinished!!!)

VI.5.6 Definition Let v : M → TM, v′ : N → TN be vector fields and f : M → N a smooth map.
We say that v′ corresponds to v under f if

M
f - N

TM

v

?

Tf
- TN

v′

?

commutes.

If f is a diffeomorphism, f and Tf are invertible, thus we can use the formulae

v′ = Tf ◦ v ◦ f−1,

v = (Tf)−1 ◦ v′ ◦ f

to transport vector fields from M to N or conversely.
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VI.5.7 Definition Let v ∈ Γ(TM) be a vector field on M and let p ∈ M be an isolated zero of v.
Let (U, φ) be a chart around p. Then the map r : U → Rn defined by

Rn ⊃ φ(U)
φ−1

- U
v - TU

Tφ- Tφ(U) ≡≡≡ φ(U)× Rn p2 - Rn

has zero as a regular value. Then we define indpv = #r−1(0). Equivalently, let ε > 0 be such that
0 is the only zero of r in the ball B(ve, 0) ⊂ Rn. Then indpv is equal to the degree of the map
Sn−1 → Sn−1 defined by

x 7→ r(εx)

‖r(εx)‖ .

VI.5.8 Exercise Prove that indps is well defined. (One must show that the choice of another chart
(U ′, φ′) and of ε′ > 0 gives a map α′

p that is homotopic to αp and thus has the same degree.) 2

VI.5.9 Theorem (Poincaré-Hopf) Let M be a compact connected oriented manifold without
boundary and let s ∈ Γ(TM) be a smooth vector field with finitely many zeros. Then

χ(M) =
∑

p∈s−1(0)

indps.

Proof. Let v : M → TM be a vector field, to wit a section of the tangent bundle. We write
v(x) = (x, vx), where vx ∈ TxM . In view of π ◦ v = idM it is clear that v is an injective immersion. If
S ⊂ TM then v−1(S) = π(S), implying that v : M → TM is a proper map. Thus v is an embedding
of M into TM . For λ ∈ [0, 1] we denote by vλ : M → TM the vector field x 7→ (x, λvx). The family
(vλ) is a homotopy between v and the zero section x 7→ (x, 0), thus

I(v,M0) = I(M0,M0;TM) = I(∆,∆;M ×M) = χ(M),

where the second equality is Lemma VI.5.4. Now, v(M) ∩M0 = {(x, 0) | v(x) = 0}, and we have
v t M0 iff

***********
�

VI.5.10 Corollary χ(Sn) = 0 for odd n.

Proof. As seen in Section IV.8, the odd dimensional spheres admit vector fields that vanish nowhere.
In view of Theorem VI.5.9 the conclusion is immediate. �

VI.5.11 Proposition If n is even then χ(Sn) = 2.

Proof. We will later give an elegant proof using Morse theory. Therefore, here we limit ouselves to a
sketch proof. It is clear that on any sphere Sn (whether n is even or odd) one can find a vector field
X as follows: The only zeros are at the North and South poles, the former being a source and the
latter a sink of the associated flow. The direction of the flow is along the great circles from the North
to the South pole. Let’s look at this flow locally, in a neighborhood of a source or sink. Then, w.r.t.
suitable coordinates, a source looks like the vector field x → x from a neighborhood U of 0 to Rn,
whereas a sink is given by x→ −x. The corresponding maps from Sn−1 to Sn−1 are the identity map
and the map x → −x, respectively. The former has degree one, the latter degree (−1)n by Exercise
IV.8.1. Thus

χ(Sn) =
∑

p∈X−1(0)

indpX = 1 + (−1)n,

from which the claim and a new proof of the preceding corollary follow. �

We conclude this chapter with a result that uses almost everything developed so far:
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VI.5.12 Theorem A compact connected oriented manifold M without boundary admits a nowhere
vanishing vector field iff χ(M) = 0.

Proof. The ‘only if’ part is immediate by Theorem VI.5.9. Thus assume χ(M) = 0. We begin
by constructing a vector field on M with finitely many zeros, all non-degenerate. To this purpose
choose an embedding M ⊂ Rn and consider the map ρ : M × Rn → TM which maps (x, v) to the
image of v ∈ Rn under the orthogonal projection to TxM ⊂ TxRn ≡ Rn. It is easy to see that ρ is
a submersion, thus transversal to the zero section M0 ⊂ TM . We can therefore apply Proposition
VI.1.1 on parametric transversality to conclude that there exists v ∈ Rn such that the vector field
ρv : x 7→ ρ(x, v) is transversal to M0, in particular it has finitely many zeros.

Now pick an open set U ⊂M for which a diffeomorphism φ : U → Rm exists. By Exercise IV.4.5
there exists a diffeomorphism α : M → M mapping the zeros of ρv into U . Now the vector field
ρ′ = Tα ◦ ρv ◦ α−1 has all its zeros in U , and ρ′′ = Tφ ◦ ρ′ ◦ φ−1 is the pullback of ρ′ � U to Rn, which
we now consider as a map f : Rn → Rn. Theorem VI.5.9 implies that the sum over the indices of the
zeros of ρ′ is zero, and diffeomorphism invariance of the index together with the fact that all zeros of
ρ′ lie in U implies that also the sum over the indices of the zeros of ρ′′ is zero. Now, the vector fields
ρ, ρ′, ρ′′ are non-degenerate, thus transversal to the zero section, implying that f : Rn → Rn has zero as
regular value. Furthermore, deg f equals the sum over the indices of the zeros, thus deg f = 0. Picking
a ball B ⊂ Rn containing all zeros of f in its interior, the considerations of Subsection IV.8.4 imply
that there exists a map f ′ : Rm → Rm − {0} coinciding with f on the complement of B. Considering
f ′ again as a vector field on Rn and replacing ρ′ � U by the pullpack to U of the latter, we obtain a
vector field on M without zeros. �

VI.5.13 Remark The results of this section can be generalized without difficulty to the situation
where TM is replaced by any oriented vector bundle of rank dimM over M . Also boundaries can be
taken into account. See [13, Chapter 5]. 2
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[38] S. K. Donaldson: An application of gauge theory to four dimensional topology. J. Diff. Geom.
17, 279-315 (1983).

[39] M. Guest: Morse theory in the 1990s. In: M. R. Bridson & S. M. Salamon (eds.): Invitations to

geometry and topology, pp. 146–207. Oxford University Press, 2002. (math.DG/0104155).
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