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Introduction

Elliptic curves belong to the most fundamental objects in mathematics and
connect many different research areas such as number theory, algebraic geometry
and complex analysis. Their definition and basic properties can be stated in an
elementary way: Roughly speaking, an elliptic curve is the set of solutions to a
cubic equation in two variables over a field. Thus elliptic curves are very concrete
and provide a good starting point to enter algebraic geometry. At the same time
their arithmetic properties are closely related to the theory of modular forms and
have seen spectacular applications in number theory like Andrew Wiles’ proof of
Fermat’s last theorem. They are the object of long-standing open conjectures such
as the one by Birch and Swinnerton-Dyer. Even in applied mathematics, elliptic
curves over finite fields are nowadays used in cryptography.

The following notes accompany my lectures in the winter term 2019/20. The
lectures will give a gentle introduction to the theory of elliptic curves with only
mininum prerequisites. We start with elliptic curves over C, which are quotients of
the complex plane by a lattice arising from arclength integrals for an ellipse. As
such they are objects of complex analysis: Compact Riemann surfaces. What makes
their theory so rich is that at the same time they have an algebraic description as
plane curves cut out by cubic polynomials. Passing to algebraic geometry, we can
consider elliptic curves over arbitrary fields. These are the simplest examples of
abelian varieties: Projective varieties with an algebraic group structure. Finally,
we will give a glimpse of the arithmetic of elliptic curves, looking in particular at the
group of points on elliptic curves over number fields. These notes will be updated
on an irregular basis and are incomplete even on the few topics that we can cover
in the lecture. For further reading there are many excellent textbooks such as the
following:

• Cassels, J.W.S., Lectures on Elliptic Curves,
LMS Student Series, Cambridge University Press (1992).

• Husemöller, D., Elliptic Curves,
Graduate Texts in Math., Springer (1987).

• Silverman, J.H., The Arithmetic Theory of Elliptic Curves,
Graduate Texts in Math., Springer (1986).

• —, Advanced Topics in the Arithmetic Theory of Elliptic Curves,
Graduate Texts in Math., Springer (1994).





CHAPTER I

Analytic theory of elliptic curves

1. Motivation: Elliptic integrals

The notion of elliptic curves emerged historically from the discussion of certain
integrals that appear for instance in computing the arclength of an ellipse. These
integrals are best understood in the complex setting. Recall that for any open
subset U ⊆ C, the path integral of a continuous function f : U → C along a
piecewise smooth path γ : [0, 1]→ U is defined by∫

γ

f(z)dz =

∫ 1

0

f(γ(t)) γ̇(t) dt,

where γ̇(t) = d
dtRe(γ(t)) + i ddt Im(γ(t)). The most basic example is

Example 1.1. Take U = C∗ and put γ(t) = exp(2πit), then γ̇(t) = 2πiγ(t) and
hence ∫

γ

zndz =

∫ 1

0

2πi · e2πi(n+1)tdt =

{
0 if n 6= −1,

2πi if n = −1.

Comparing with the corresponding integral over a constant path, one sees that in
general the value of the integral depends on the chosen path and not just on its
endpoints. However, the path integral of holomorphic functions is unchanged under
continuous deformations of the path in the following sense:

Definition 1.2. A homotopy between two continuous paths γ0, γ1 : [0, 1] → U
is a continuous map

H : [0, 1]× [0, 1] → U with H(s, t) =

{
γ0(t) if s = 0 or t = 0,

γ1(t) if s = 1 or t = 1.

If there exists such a homotopy, we write γ0 ∼ γ1 and say that the two paths γ0, γ1

are homotopic:
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The deformation invariance of line integrals over holomorphic functions can now be
made precise as follows:

Theorem 1.3 (Cauchy). If two smooth paths γ0, γ1 : [0, 1]→ U are homotopic,
then ∫

γ0

f(z)dz =

∫
γ1

f(z)dz for all holomorphic f : U → C.

Let us recall a few more notations from topology. The notion of homotopy ∼ is
an equivalence relation on continuous paths in U with given starting and end point,
and we denote by

π1(U, p, q) = {γ : [0, 1]→ U | γ(0) = p and γ(1) = q}/ ∼

the set of homotopy classes of paths from p to q. The composition of paths defines
a product

π1(U, p, q)× π1(q, r)→ π1(U, r), (γ1, γ2) 7→ γ1 · γ2

where

(γ1 · γ2)(t) =

{
γ1(2t) for t ∈ [0, 1/2],

γ2(2t− 1) for t ∈ [1/2, 1],

and this product is associative. Similarly, reversing the direction of paths gives an
inversion map

π1(U, p, q)→ π1(U, q, p), γ 7→ γ−1 = (t 7→ γ(1− t)).

For p = q this makes the set of homotopy classes of closed loops at p ∈ U a group,
the fundamental group

π1(U, p) = π1(U, p, p).

We say U is simply connected if this fundamental group is trivial. In this case
any two continuous paths with the same starting point and the same end point are
homotopic, hence the value of the path integral of a holomorphic function f : U → C
over γ : [0, 1] → U only depends on p = γ(0) and q = γ(1) but not on the path
itself. We can then put ∫ q

p

f(z)dz =

∫
γ

f(z)dz

for any γ ∈ π1(U, p, q). In the non-simply connected case we have:

Corollary 1.4. For any holomorphic function f : U → C and p ∈ C, the path
integral defines a group homomorphism

π1(U, p)→ (C,+), γ 7→
∫
γ

f(z)dz.

Proof. One can show that any continuous path is homotopic to a smooth one, so
the result follows from Cauchy’s theorem and from the additivity of path integrals
with respect to the composition of paths. �

The image of the above homomorphism is an additive subgroup Λf ⊂ C, and
for p, q ∈ U the value (∫ q

p

f(z)dz mod Λf

)
∈ C/Λf

is well-defined modulo this subgroup.
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Example 1.5. On any simply connected open U ⊆ C∗ = C \ {0} with 1 ∈ U we
define a branch of the logarithm by

log z =

∫ z

1

1

x
dx.

If U is not taken to be simply connected, the complex logarithm will in general
not be well-defined globally. But on all of U = C∗ the logarithm is well-defined
modulo the subgroup Λf = 2πiZ ⊂ C as indicated in the following diagram where
exp : C→ C∗ denotes the universal cover and q : C→ C/Λf is the quotient map:

C

exp

��

q

""
C∗

∃ log
// C/Λf

As an exercise you may check that the multiplicativity of the exponential function
translates to the fact that for all γ1, γ2, γ3 : [0, 1]→ C∗ with γ1(t)γ2(t)γ3(t) = 1 for
all t, one has ∫

γ1

dz

z
+

∫
γ2

dz

z
+

∫
γ3

dz

z
= 0

This is a blueprint for what we will see below for elliptic integrals.

Note that once we have the complex logarithm, we can find a closed expression
for the integral over any rational function: Any f(x) ∈ C(x) has a decomposition
into partial fractions

f(z) =

n∑
i=1

ci · (z − ai)ni with ai, ci ∈ C, ni ∈ Z.

and for z0, z1 ∈ C \ {ai} we have∫ z1

z0

(z − ai)ni dz = Fi(z1)− Fi(z0), Fi(z) =

{
(z−ai)ni+1

ni+1 if ni 6= −1,

log(z − ai) if ni = −1,

where log denotes any branch of the complex logarithm on a large enough simply
connected open U ⊆ C. The above expresses the integral as a function of z0, z1

in terms of elementary functions, i.e. functions obtained by combining complex
polynomials, exponentials and logarithms. For more complicated integrands such
an expression usually does not exist, but this is no bad news: It means that there
are many more interesting functions out there than the elementary ones!

Exercise 1.6. Let a, b be positive real numbers with a ≤ b. Show that for the
ellipse

E = {(a cos(ϕ), b sin(ϕ)) ∈ R2 | ϕ ∈ R}
and any ϕ0, ϕ1 ∈ [0, π], the arclength ` of the segment ϕ0 ≤ ϕ ≤ ϕ1 has the form

` =
1

2

∫ x1

x0

1− cx√
x(1− x)(1− cx)

dx with xi = xi(ϕi) ∈ R and c = 1− a2

b2 .

Such integrals usually cannot be expressed via elementary functions and have a
special name:
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Definition 1.7. An elliptic integral is a function which can be expressed in the
form

F (v) =

∫ v

u

R
(
x,
√
f(x)

)
dx for some constant u,

where

• R is a rational function in two variables, and
• f is a polynomial of degree 3 or 4 with no repeated roots.

If the above definition is read over the complex numbers, the integral will again
depend on the chosen path of integration, which we always assume to avoid any
poles of the integrand. In contrast to the previous examples the integrand is now
a “multivalued” function as there is no distinguished sign choice for the complex
square root. Hence rather than integrating along a path in the complex plane, we
should integrate along a path in the zero set

E0 = {(x, y) ∈ C2 | y2 = f(x)}

where y keeps track of the chosen square root. In the language of algebraic geometry
this is the affine part of an elliptic curve. The set E0 ∩ R2 of its real points will
look like this:

However, the topological and analytic properties of the set of complex points of E0

will become more tangible in the framework of Riemann surfaces.

2. The topology of elliptic curves

Let us for simplicity assume f(x) = x(x− 1)(x− λ) for some λ ∈ C \ {0, 1}; we
will see later that up to projective coordinate transformations this is no restriction
of generality. On any simply connected open subset of C \ {0, 1, λ} we can pick a
branch of the logarithm and define

√
f(x) = exp

(
log f(x)

2

)
.

However, if we try to analytically continue this function along a small closed loop
around any of the punctures 0, 1, λ, the logarithm will change by 2πi and hence the
square root will be replaced by its negative:
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exp

(
2πi+ log f(x)

2

)
= − exp

(
log f(x)

2

)
.

If we perform a loop around two punctures then the two signs will cancel. So if we
fix a real half-line [λ,∞) ⊂ C \ {0, 1} emanating from λ in any direction, then for

S = [0, 1] ∪ [λ,∞)

there is a holomorphic function

ρ : U = C \ S → C with ρ(x)2 = f(x).

What about integrals along paths that cross the slits? We have seen above that
whenever we analytically continue across one of the slits the square root is replaced
by its negative. To treat both square roots equally, consider the disjoint union of
two copies of the slit plane with the holomorphic function

√
f : U tU → C which is

+ρ(x) on the first and −ρ(x) on the second copy. Let us glue the two copies along
their respective boundaries by inserting two copies of S as shown in the following
picture:

It follows from the above discussion that the resulting topological space X0 carries
a continuous function which on the open subset U tU ⊂ X0 restricts to the above
function

√
f . As a topological space X0 is easier to visualize if we turn the second

copy of the slit plane upside down before gluing the two copies, as shown on the
right half of the above picture.

But X0 is not just a topological space, we want to do complex analysis on it
and compute path integrals. In order to do so, note that the projection U tU → U
extends to a continuous map p : X0 → C. This is a branched double cover with
branch locus {0, 1, λ} in the following sense:

Definition 2.1. By a branched cover of an open subset S ⊆ C we mean a
continuous map p : X → S of topological manifolds such that every point s ∈ S has
a small open neighborhood s ∈ Us ⊆ S with the following property: There exists a
biholomorphic map

ϕ : Us
∼−→ D = {z ∈ C | |z| < 1} with ϕ(s) = 0



12 I. ANALYTIC THEORY OF ELLIPTIC CURVES

that lifts to a homeomorphism

ϕ̃ : p−1(Us)
∼−→

⊔
x∈Is

Dx

onto a disjoint union of copies of the unit disk Dx = {z ∈ C | |z| < 1} indexed by
the set Is = p−1(s) such that

X

p

��

p−1(Us)
∼
ϕ̃
//

p

��

⊔
x∈Is Dx

txpx
��

S Us
∼
ϕ

// D

commutes, where the labelling is chosen such that ϕ̃(x) = 0 ∈ Dx for each x ∈ Is
and we assume

px : Dx −→ D, z 7→ zex

for some natural number ex ∈ N. We call ex the ramification index of p at x. Note
that these ramification indices depend only on the map p but not on the specific
choice of ϕ or its lift ϕ̃. It is also clear from the above definition that any branched
cover restricts to a covering map in the sense of topology on the complement of the
branch locus

Br(p) = {s ∈ S | ∃x ∈ p−1(s) with ex > 1} ⊂ S

and that the latter is a discrete closed subset of S.

Let us now come back to the branched cover p : X0 → C obtained by glueing two
copies of the slit complex plane as explained above. Comparing with the projection
map from the affine elliptic curve E0 = {(x, y) ∈ C2 | y2 = f(x)} we have:

Corollary 2.2. There is a homeomorphism E0
∼−→ X0 commuting with the

projection to the complex plane:

E0
∼ //

(x,y)7→x !!

X0

p

��
C

Proof. It follows from the holomorphic version of the implicit function theorem
that the map p : E0 → C, (x, y) 7→ x is also a branched cover, and as such it is
determined uniquely by its restriction to the complement of any finite number of
points of the target. But over W = C \ {0, 1, λ} the topological covers E0 → W
and X0 →W are isomorphic because their monodromy coincides. �

It is often preferable to work with compact spaces. For instance, the complex
plane can be compactified to a sphere by adding one point, as one may see by
stereographic projection:
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We denote this compactification by

P1 = C ∪ {∞}

and call it the Riemann sphere. Note that the complement P1 \ {0} = C∗ ∪ {∞}
is also a copy of the complex plane. The Riemann sphere is obtained by glueing
the two copies — which are also referred to as affine charts — along their overlap
via the glueing map ϕ : C∗ → C∗, z 7→ 1/z. By a branched cover of the Riemann
sphere we mean a continuous map

p : X −→ S = P1(C)

of topological manifolds which restricts over each of the two affine charts to a
branched cover in the sense of definition 2.1. We will generalize this notion in the
context of Riemann surfaces soon, but let us first finish our topological discussion
of elliptic curves:

Lemma 2.3. The branched double cover p : X0 → C from above extends uniquely
to a branched cover

X = X0 ∪ {pt} → P1

with branch locus {0, 1, λ,∞}, and we have a homeomorphism X ' S1 × S1.

Proof. Let D ⊂ P1 be a small disk around ∞. Then D∗ = D \ {∞} is a pointed
disk, and by the classification of branched covers of the pointed disk there exists
a branched cover X∞ → D extending the cover p−1(D∗) → D∗. We then get a
branched cover

X = X0 ∪p−1(D∗) X∞ → P1

by glueing. In order to show that this cover is branched at infinity, we only need
to note that p−1(D∗)→ D∗ has nontrivial monodromy. Finally, it follows from the
construction of X0 by glueing two copies of a slit complex plane that the compact-
ification X is obtained by glueing two copies of a slit Riemann sphere as indicated
in the following picture:
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This easily implies that as a topological space X ' S1 × S1 is a torus. �

3. Elliptic curves as complex tori

So far we have only been talking about topology, but all of the above spaces
inherit from the complex plane a natural structure of Riemann surface:

Definition 3.1. A Riemann surface is a one-dimensional connected complex
manifold, i.e. a connected Hausdorff topological space S = ∪i∈IUi with an atlas of
homeomorphisms ϕi : Ui

∼−→ Vi ⊆ C whose transition functions ϕij = ϕj ◦ϕ−1
i are

biholomorphic on the overlap of any two charts:

Example 3.2. (a) The Riemann sphere P1(C) is a Riemann surface with two
charts: As we have seen above, it is obtained by glueing to copies of the complex
plane along the open subset C∗ ⊂ C via the gluing function z 7→ 1/z.

(b) Any quotient S = C/Λ by a discrete subgroup Λ ⊂ C is a Riemann surface
in a natural way. Notice that the discreteness is required because otherwise the
quotient would not be Hausdorff. There are three possibilities: If Λ = {0} we



3. ELLIPTIC CURVES AS COMPLEX TORI 15

simply have S = C. If Λ = Zλ for some λ ∈ C \ {0}, the exponential map gives an
isomorphism

S = C/Zλ ∼−→ C∗

z 7→ exp(2πiz/λ).

The only remaining case is that Λ ⊂ C is a lattice, by which we mean an additive
subgroup Λ = Zλ1 ⊕ Zλ2 generated by two R-linearly independent λ1, λ2 ∈ C. In
this case the topological space S = C/Λ is homeomorphic to a torus, obtained by
identifying the opposite sides of a fundamental parallelogram as shown below. We
can construct an atlas by taking any nonempty open subset V ⊆ C which is small
enough so that V ∩ (V + λ) = ∅ for all λ ∈ Λ \ {0}, and consider the coordinate
charts

Va = V + a for a ∈ C.
The projection p : C → S restricts to homeomorphisms pa : Va

∼−→ Ua ⊆ S on
these charts and the transition maps between any two of the charts are given by
translations

Va ⊇ p−1
a (Ua ∩ Ub)

id+λab // p−1
b (Ua ∩ Ub) ⊆ Vb

where λab is constant:

Definition 3.3. If S is a Riemann surface, then by a holomorphic function on
an open U ⊆ S we mean a function f : U → C which restricts to a holomorphic
function on each coordinate chart in the sense that for each such chart ϕi : Ui

∼−→ Vi
from Ui ⊆ S to Vi ⊆ C,

f ◦ ϕ−1 : ϕ−1(U ∩ Ui) −→ C

is a holomorphic function. If X is another Riemann surface, a map p : X → S is
called a morphism of Riemann surfaces or a holomorphic map if for each coordinate
chart Ui ⊂ S the restriction p−1(Ui) −→ Ui is holomorphic.

Example 3.4. (a) Giving a meromorphic function on an open subset X ⊆ C is
the same thing as giving a morphism f : X → P1(C) to the Riemann sphere, where
we declare f(x) =∞ iff f has a pole at the point x ∈ X.

(b) For any lattice Λ ⊂ C the quotient map C → C/Λ is holomorphic. Indeed
the universal cover of any Riemann surface has a unique structure of a Riemann
surface making the covering map holomorphic. This extends to branched covers:

By a branched cover of a Riemann surface S we mean a topological space X
together with a map f : X → S that restricts to a branched cover in the sense of
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the previous section over each chart of an atlas for the Riemann surface S:

X

f

��

f−1(Ui)⊇

��

Xi

branched
cover

��
S Ui⊇

ϕi

∼ // Vi ⊆ C

Exercise 3.5. Show that:

(1) If p : X → S is a branched cover as above, the topological space X inherits
a unique structure of a Riemann surface making p holomorphic.

(2) If Σ ⊂ S is a discrete subset, any topological covering map p0 : X0 → S\Σ
extends uniquely to a branched cover p : X → S.

(3) Now let S = P1(C) and Σ = f−1(0)∪{∞} for some f ∈ C[x]\{0}. Check
that

p0 : X0 = {(x, y) ∈ C2 | y2 = f(x) 6= 0} → S \ Σ

is a double cover, and describe its extension p : X → S over each s ∈ Σ.

(4) If f(x) has no multiple roots and 0 ∈ Σ, show that there is a g(u) ∈ C[u]
with

p−1(S \ {0}) ' {(u, v) ∈ C2 | v2 = g(u)}.

For deg(f) ∈ {3, 4} the Riemann surfaces constructed above are the elliptic
curves from the previous section. The main goal of this section is to shows that
every elliptic curve over the complex numbers is isomorphic as a Riemann surface to
a complex torus. The isomorphism will be obtained via certain path integrals. As
in real analysis on smooth manifolds, the correct objects to integrate on a Riemann
surface are not functions but differential forms:

Definition 3.6. A holomorphic differential form on an open subset V ⊆ C
is a formal symbol ω = f(z) dz where f : V → C is a holomorphic function
and z denotes the standard coordinate on the complex plane. If ϕ : W → V is
a holomorphic map from another open subset of the complex plane, we define the
pullback ϕ∗(ω) = f(ϕ(z)) d

dz (ϕ(z)) dz. Note that the definition is made so that by
substitution ∫

γ

ϕ∗(ω) =

∫
ϕ◦γ

ω for all paths γ : [0, 1]→W.

If S is a Riemann surface with an atlas as above, then by a holomorphic differential
form on S we mean a family ω = (ωi)i∈I of holomorphic differential forms ωi on Vi
such that on the overlap of charts

ωi = ϕ∗ij(ωj).

We then define the integral of such a differential form along a path γ : [0, 1] → S
by ∫

γ

ω =

n∑
ν=1

∫
ϕiν ◦γ

ωi

for any decomposition γ ∼ γ1 · · · γn into paths γν : [0, 1] → Uiν ⊆ S in the charts;
the compatibility condition on overlaps ensures that the outcome does not depend
on the chosen decomposition. Cauchy’s theorem easily implies
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Corollary 3.7. Let S be a Riemann surface and ω a holomorphic differential
form on it. If two smooth paths γ0, γ1 : [0, 1] → S are homotopic, then their path
integrals coincide: ∫

γ0

ω =

∫
γ1

ω.

Hence for any p ∈ S the path integral over the differential form ω gives a group
homomorphism

π1(S, p)→ (C,+), γ 7→
∫
γ

ω.

Proof. Let H : [0, 1]× [0, 1]→ S be a homotopy with γi = H{i}×[0,1] for i = 0, 1;
the paths

µi = H|[0,1]×{i}

for i = 0, 1 are constant, so any path integral over them vanishes and the claim is
equivalent to∫

γ

ω = 0 for the closed loop γ = γ0 · µ0 · γ−1
1 · µ−1

1 .

Now γ is contractible using the homotopy H, so if the image of H is contained in
a single coordinate chart, then we are done by Cauchy’s theorem in the complex
plane. In general, take a subdivision

[0, 1]× [0, 1] =

N⋃
i,j=1

Qij with Qij = [ i−1
N , iN ]× [ j−1

N , jN ].

For N � 0 a compactness argument shows that each H(Qij) ⊂ S will lie inside
some coordinate chart Uij ⊆ S. This reduces us to the case of a single coordinate
chart, indeed the path integral is the sum∫

γ

ω =

N∑
i,j=0

∫
γij

ω for the oriented boundaries γij = H|∂Qij : [0, 1]→ S

because the inner contributions from adjacent squares cancel. �

The image of the above homomorphism π1(S, s) → C is a subgroup Λω ⊂ C,
and for p, q ∈ S, (∫ q

p

ω mod Λω

)
∈ C/Λω

is well-defined modulo this subgroup. Let us now apply the above to the elliptic
curve

X = {(x, y) ∈ C2 | y2 = f(x)} ∪ {∞}

where f(x) = x(x − 1)(x − λ) with λ 6= 0, 1. In order to show that as a compact
Riemann surface it is isomorphic to a complex torus, we will consider path integrals
over the following holomorphic differential form:

Exercise 3.8. Consider the branched double cover p : X → P1(C). Show that
the differential form

ω = p∗
( dx√

f(x)

)
on X \ p−1({0, 1, λ,∞}) extends to a holomorphic differential form on all of X.
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By abuse of notation we also write ω = dx/
√
f(x) for simplicity. Thus we can

consider ∫
γ

dx√
f(x)

for any path γ : [0, 1]→ X.

To take a more systematic look at integrals of the above form, recall from the
previous section that as a topological space X ' S1 × S1 is homeomorphic to a
torus. Its fundamental group

π1(X, p) ' π1(S1, pt)× π1(S1, pt) ' Zγ1 × Zγ2

is therefore free abelian of rank two, generated by two loops γ1, γ2 ∈ π1(X, p). We
fix these loops and denote by

λi =

∫
γi

ω ∈ C

their path integrals, which are also called the fundamental periods of the elliptic
curve. By definition

Λω = Zλ1 + Zλ2 ⊆ C
and the key step towards showing that elliptic curves are complex tori is that this
is a lattice. For the proof we need to recall the notion of harmonic functions:

Exercise 3.9. A smooth function g : U → R on an open subset U ⊆ C is
called harmonic if ( ∂2

∂x2
+

∂2

∂y2

)
(g) = 0

where R2 ∼−→ C, (x, y) 7→ z = x+ iy denote the standard real coordinates.

(a) Show that a function is harmonic iff locally it can be written as the real
part of a holomorphic function, and deduce that there is a well-defined notion of
harmonic function on Riemann surfaces by looking at charts.

(b) Show that every harmonic function on a simply connected Riemann surface
can be written globally as the real part of a unique holomorphic function. Can you
find a counterexample in the not simply-connected case?

(c) Formulate and prove a mean value property for harmonic functions. Deduce
that any harmonic function on a compact Riemann surface is constant.

We can now show that the subgroup Λω ⊂ C is indeed a lattice:

Theorem 3.10. The fundamental periods λ1, λ2 are R-linearly independent.

Proof. Suppose that λ1, λ2 are R-linearly dependent, wlog λ2 = a · λ1 for some
real number a ∈ R. Then for any complex number c ∈ C∗ with Re(c · λ1) = 0 we
also have Re(c ·λ2) = 0. But then Re(c ·

∫
γ
ω) = 0 for any closed loop γ ∈ π1(X,x0),

so the function
g̃ : X̃ −→ R, x 7→ Re(c ·

∫ x
x0
ω)

descends from the universal cover p : X̃ → X to a well-defined function on X as
indicated below:

X̃
g̃ //

p
��

R

X

∃!g

??

But g̃ is the real part of a holomorphic function, hence harmonic. Since p : X̃ → X
is a covering map, it follows that g is harmonic as well. But we have seen above
that any harmonic function on a compact Riemann surface is constant, so g must
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be constant. It follows that g̃ is constant as well, which means that the holomorphic
function

f : X̃ −→ C, x 7→
∫ x

x0

ω

has constant real part. Then by the Cauchy-Riemann equations f must itself be
constant, which is absurd because ω is not identically zero. �

Corollary 3.11. The period map
∫
ω : X → C/Λω is an isomorphism of

Riemann surfaces. In particular, for the universal cover we have a commutative
diagram

C

∃q
��

p

""
X ∫

ω
// C/Λω

Proof. The period map is easily seen to be holomorphic, and its derivative is
the differential form

d(
∫
ω) = ω

which vanishes nowhere. Using the implicit function theorem and the compactness
of X it follows that

∫
ω : X → C/Λω is a topological covering map (exercise), in

other words

X ' C/Γ for some subgroup Γ ⊆ Λ.

Passing to the universal cover we then get the claimed commutative diagram, except
that we do not know yet that the period map is an isomorphism. But unravelling
the definition of the map q : C → X, one sees that for any path γ : [0, 1] → X
starting at x0 we have ∫

γ

ω = γ̃(1)

where γ̃ : [0, 1] → C denotes the unique lift with γ̃(0) = 0 and q ◦ γ̃ = γ. If γ
runs through all elements of π1(X) = Γ, then γ̃(1) runs through Γ while

∫
γ
ω runs

through Λω by definition of the period lattice. Hence Γ = Λω and we are done. �

4. Complex tori as elliptic curves

In the last section we have seen that any elliptic curve over the complex numbers
is isomorphic as a Riemann surface to a complex torus. We now want to show that
every complex torus arises like this. For this we fix a lattice Λ = Zλ1 ⊕ Zλ2 ⊂ C
where λ1, λ2 are any two complex numbers that are linearly independent over the
reals, and consider the abstract Riemann surface X = C/Λ. The idea is to find
a branched double cover p : X → P1 by looking at meromorphic functions on the
complex plane that are periodic with respect to the lattice.

Before doing so, let us review some basic notions from complex analysis. For a
meromorphic function f on an open subset U ⊆ C, its order at a point a ∈ U is
defined by

orda(f) = max
{
n ∈ Z | ∃ lim

z→a
(z − a)−nf(z) ∈ C

}
∈ Z ∪ {+∞},

i.e.

orda(f) =


∞ if f is identically zero around a,

vanishing order of f if f has a zero at a,

− order of pole of f if f has a pole at a.
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The residue of f at a is defined as the coefficient Resa(f) = c−1 in a Laurent
expansion

f(z) =
∑

n�−∞
cn(z − a)n

on a small disc centered at a. By direct inspection it can also be computed as the
path integral

Resa(f) =
1

2πi

∮
|z−a|=ε

f(z)dz

over a small clockwise loop around a. In fact the residue theorem says that
for U ⊆ C simply connected, any holomorphic function f : U \ {a1, . . . , an} → C
satisfies

1

2πi

∫
γ

f(z)dz =

n∑
i=1

wai(γ) · Resai(f)

for all piecewise smooth closed loops γ : [0, 1]→ U \ {a1, . . . , an}. Here we denote
by wai(γ) ∈ Z the winding number of the given loop around the point ai, which
can be defined by

wai(γ) =
ϕi(1)− ϕi(0)

2π
∈ Z

where ϕi : [0, 1] → R, t 7→ arg(γ(t) − ai) is any continuous choice of the argument
function. As special case of the residue theorem, the winding number formula
says that

wa(γ) =
1

2πi

∫
γ

dz

z − a

for any closed loop γ : [0, 1] → U \ {a}. We will apply the above results for the
study of poles and zeroes of elliptic functions:

Definition 4.1. An elliptic function with respect to the lattice Λ ⊂ C is a
meromorphic function f on the complex plane with f(z + λ) ≡ f(z) for all λ ∈ Λ,
or equivalently a morphism

f : C/Λ −→ P1(C).

Note that any non-constant elliptic function must have poles, since any holomorphic
function on a compact Riemann surface is constant. We will soon give a complete
description of all elliptic functions for any given lattice. Let Λ = Zλ1 ⊕ Zλ2 and
denote by

P =
{
z0 + a1λ1 + a2λ2 | a1, a2 ∈ [0, 1]

}
the fundamental parallelogram shifted by some fixed complex number z0 ∈ C as in
the following picture:
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For a given elliptic function we can always choose z0 such that the boundary ∂P
contains neither zeroes or poles of the function, since these form a discrete subset
of the complex plane. The residue theorem then implies:

Theorem 4.2. Let f be an elliptic function.

(1) If f has no poles on the boundary ∂P of the fundamental parallelogram,
then ∑

a∈P\∂P

Resa(f) = 0.

(2) If f is not constant and has neither poles nor zeroes on ∂P , then

(i)
∑

a∈P\∂P

orda(f) = 0,

(ii)
∑

a∈P\∂P

a · orda(f) ∈ Λ.

(3) Non-constant elliptic functions f : C/Λ→ P1(C) take any value c ∈ P1(C)
the same number of times when counted with multiplicities.

Proof. (1) Since we assumed that f has no poles on ∂P , the residue theorem
says that ∑

a∈P\∂P

Resa(f) =
1

2πi

∫
∂P

f(z)dz.

But for the integral on the right hand side the contributions from opposite signs of
the fundamental parallelogram cancel, because f(z) = f(z + λ1) = f(z + λ2) and
the sides are oriented opposite to each other.

(2) With f also the quotient f ′/f is an elliptic function. Its poles are precisely
the zeroes and poles of the original elliptic function, and by assumption none of
these lies on the boundary ∂P . Applying part (1) to the elliptic function f ′/f and
using that

orda(f) = Resa(f ′/f),

we obtain that ∑
a∈P\∂P

orda(f) =
∑

a∈P\∂P

Resa(f ′/f) = 0

as claimed in (i). For claim (ii) note that

f ′(z)

f(z)
=
∑
a

orda(f)

z − a
+ g(z)

where g : U → C is holomorphic. Multiplying by the function z = (z − a) + a we
get that

z · f
′(z)

f(z)
=
∑
a

a · orda(f)

z − a
+ h(z)

where h(z) = g(z) +
∑
a a · orda(f) is again holomorphic. So the residue theorem

gives
1

2πi

∫
∂P

z · f
′(z)

f(z)
dz =

∑
a∈P\∂P

a · orda(f).

We want to show that the integral on the left lies inside the lattice Λ. For this we
write ∫

∂P

= A1 −A2 where Aµ =

∫ z0+λµ

z0

−
∫ z0+λν+λµ

z0+λν
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with ν = µ ± 1 ∈ {0, 1}, where the two integrals on the right are taken over the
straight line segments which are part of our chosen boundary of the fundamental
parallelogram. Then

Aµ =

∫ λµ

0

[
(z0 + ζ) · f

′(z0 + ζ)

f(z0 + ζ)
− (z0 + λν + ζ) · f

′(z0 + λν + ζ)

f(z0 + λj + ζ)

]
dζ

= −λν
∫ λµ

0

f ′(z0 + ζ)

f(z0 + ζ)
dζ by periodicity of f ′/f

= −λν
∫
γµ

dz

z
by the substitution rule

= −λν · 2πi · w0(γµ) by the winding number formula

for the closed loop

γµ : [0, 1] → C \ {0}, t 7→ f(z0 + tλµ).

Since winding numbers are integers, we obtain 1
2πi · Aµ ∈ Zλµ for µ = 1, 2. This

gives
1

2πi

∫
∂P

zf ′(z)/f(z)dz =
1

2πi
(A1 −A2) ∈ Zλ1 ⊕ Zλ2

and we are done.

(3) For c ∈ C, put g(z) = f(z) − c. Then the number of times with which the
value c is taken by f can be computed as∑

a,g(a)=0

orda(g(z)) = −
∑

a,g(a)=∞

orda(g(z)) = −
∑

a,f(a)=∞

orda(f(z))

by part (2)(i) and so we are done. �

So far we haven’t seen any non-constant elliptic function, but the above tells us
that the simplest configuration of poles for such a function would be to have either
two simple poles at opposite lattice points with opposite residues, or a double pole
with no residue at a half-lattice point. Let’s try to construct an example with the
latter property. A naive candidate would be the infinite series z 7→

∑
λ∈Λ

1
(z−λ)2

but there are convergence issues: For instance, take Λ = Z ⊕ Zi. Subtracting the
pole 1/z2 we are left with ∑

(m,n)∈Z2
(m,n)6=(0,0)

1

(z −m− in)2

but this series is not absolutely convergent in any neighborhood of z = 0:

Lemma 4.3. Let Λ ⊂ C be a lattice and s ∈ R. Then we have the following
convergence criterion: ∑

λ∈Λ\{0}

|λ|−s < ∞ ⇐⇒ s > 2.

Proof. We first deal with the case Λ = Z⊕ Zi. Here the series converges iff the
integral ∫

x2+y2≥1

dxdy

(x2 + y2)s/2
=

∫ 2π

0

∫ ∞
1

rdrdϕ

rs
= 2π

∫ ∞
1

dr

rs−1

is finite, which happens iff s > 2. Now consider an arbitrary lattice Λ = Zλ1⊕Zλ2

with λ1, λ2 ∈ C. We will be reduced to the previous case if we can show that there
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exist strictly positive real numbers c1, c2 > 0 depending only on λ1, λ2 ∈ C such
that

c1 · (n2
1 + n2

2) ≤ |n1λ1 + n2λ2|2 ≤ c2 · (n2
1 + n2

2) for all n1, n2 ∈ Z.

So we only need to show that the function

f : R2 \ {(0, 0)} −→ R, (x1, x2) 7→ |x1λ1 + x2λ2|2

x2
1 + x2

2

is bounded above and below by some strictly positive number. By homogenuity it
suffices to bound the function on the unit circle. There it takes a global maximum
and a global minimum by compactness. The minimum is strictly positive since f
is so at every point, indeed λ1, λ2 are linearly independent over R. �

We can now make our previous naive approach work by subtracting a constant
error term from each summand in the divergent series:

Lemma 4.4. Let Λ ⊂ C be a lattice. Then the series
∑
λ∈Λ\{0}

[
1

(z−λ)2 −
1
λ2

]
converges uniformly on any compact subset of C \ Λ.

Proof. When z stays in a compact subset of the complex plane, then for |λ| → ∞
we have ∣∣∣ 1

(z − λ)2
− 1

λ2

∣∣∣ =
|z||z − 2λ|
|λ|2|z − λ|2

∼ c

|λ|3
and so lemma 4.3 gives uniform convergence on any compact subset of C \ Λ. �

Definition 4.5. We define the Weierstrass function of the lattice Λ ⊂ C to be
the meromorphic function

℘(z) = ℘Λ(z) = 1/z2 +
∑

λ∈Λ\{0}

[ 1

(z − λ)2
− 1

λ2

]
.

Its basic properties are given by the following

Lemma 4.6. The Weierstrass function is an elliptic function with poles precisely
in the lattice points, where the pole order is two and the residues are zero. It is
an even function in the sense that ℘(−z) = ℘(z). Its derivative is the odd elliptic
function

℘′(z) = −2
∑
λ∈Λ

1

(z − λ)3

which again has poles precisely in the lattice points, with pole order three and residue
zero. Moreover

℘′(z) = 0 ⇐⇒ z ∈ 1
2Λ \ Λ,

and all these half-lattice points are simple zeroes of the derivative ℘′(z).

Proof. Since we already know locally uniform convergence of the series on C\Λ,
the main point is to show that the Weierstrass function is elliptic. Note that its
derivative ℘′ is a sum over translates by lattice points, hence obviously periodic
with respect to the lattice. Writing Λ = Zλ1⊕Zλ2, we obtain that for both i = 1, 2
the function

z 7→ ℘(z)− ℘(z + λi)

has derivative zero and must hence be equal to a constant ci. Plugging in z = λi/2
we obtain

ci = ℘(λi/2)− ℘(−λi/2) = 0

since ℘ is obviously an even function. This shows that the Weierstrass function is
elliptic. The claim about the poles, their order and residues can be read off from the
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defining series. Finally, the derivative of the Weierstrass function is clearly odd, so
we have ℘′(z) = −℘′(λ−z) for all λ ∈ Λ. Taking z = λ/2 with λ ∈ {λ1, λ2, λ1 +λ2}
we get

℘′
(λ1

2

)
= ℘′

(λ2

2

)
= ℘′

(λ1 + λ2

2

)
= 0,

so we have found three distinct zeroes of the derivative. But we already know that
the function ℘′ only has a single pole modulo Λ, with pole order three. Since a
non-constant elliptic function takes every value the same number of times, it follows
that ℘′ has precisely three zeroes when counted with multiplicities. Therefore we
have found all the zeroes and the multiplicities are one. �

Recall from complex analysis that the sum, difference or product of meromorphic
functions ois again a meromorphic function, and similarly for the quotient of a
meromorphic function by a meromorphic function which is not identically zero on
any connected component of its domain. For a compact Riemann surface X the
field

C(X) = {meromorphic functions f : X → P1(C)}
is called its function field. We can now describe all elliptic functions as follows:

Theorem 4.7. Let X = C/Λ and ℘(z) = ℘Λ(z) as above.

(1) Any even elliptic function F ∈ C(X) with poles at most in Λ can be written
uniquely as

F (z) = f(℘(z))

where f(x) ∈ C[x] is a polynomial of degree deg(f) = deg(g)/2.

(2) More generally, every even elliptic function F (z) ∈ C(X) can be written
uniquely as

F (z) = h(℘(z)) for a rational function h(x) =
f(x)

g(x)
∈ C(x).

(3) For any elliptic function F (z) ∈ C(X) there are unique hi(x) ∈ C(x) such
that

F (z) = h1(℘(z)) + h2(℘(z)) · ℘′(z).

Proof. (1) We may assume that F is not constant and hence has a pole at z = 0,
since by assumption it is periodic with respect to the lattice and has poles at most
in the lattice points. Since F is an even function, it follows that it Laurent series
has the form

F (z) =
∑
i≥−d

c2i · z2i with c−2d 6= 0 for d = deg(F )/2 ≥ 1.

So the difference F̃ (z) = ϕ(z)− c−2d · ℘(z)d is an even elliptic function with poles

at most in the lattice, and we are done by induction since deg(F̃ ) < deg(F ).

(2) Suppose that a ∈ C \ Λ is a non-lattice point but a pole of the even elliptic
function F (z) ∈ C(X). Since the only poles of the Weierstrass function are the
lattice points, it follows in particular that ℘(a) 6= ∞. Hence for N � 0 the even
elliptic function

F1(z) = (℘(z)− ℘(a))N · F (z) has F−1
1 (∞) ⊆ F−1(∞) \ (a+ Λ).

If this function has still a pole which is not a lattice point, we can repeat the
argument until we have a1, . . . , an ∈ C \ Λ, N1, . . . , Nn ∈ N such that the even
elliptic function

Fn(z) = F (z) ·
n∏
i=1

(℘(z)− ℘(ai))
Ni
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has poles at most in lattice points. Then by part (1) we know Fn(z) = f(℘(z)) for
some f(x) ∈ C[x]. Dividing by

g(x) =

n∏
i=1

(x− ℘(ai))
Ni ∈ C[x]

we obtain the desired representation of F (z) as a rational function in ℘(z).

(3) This follows from (2) by writing f as the sum of an even and an odd elliptic
function

f(z) =
f(z) + f(−z)

2
+
f(z)− f(−z)

2
and using that any odd elliptic function is an even elliptic function times ℘′(z). �

Corollary 4.8. We have (℘′(z))2 = f(℘(z)) for the cubic polynomial f(x)
given by

f(x) = 4(x− e1)(x− e2)(x− e3) where


e1 = ℘(λ1

2 ),

e2 = ℘(λ2

2 ),

e3 = ℘(λ1+λ2

2 ).

Hence X = C/Λ is isomorphic to the compact Riemann surface associated to the
elliptic curve

E = {(x, y) ∈ C2 | y2 = f(x)} ∪ {∞}.

Proof. Since (℘′(z))2 is an even elliptic function with poles only in the lattice
points, the first part of theorem 4.7 shows that there exists a cubic f(x) ∈ C[x]
with (℘′(z))2 = f(℘(z)). To verify the given explicit form of this cubic, note that
the elliptic function

h(z) = (℘′(z))2 − 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

can have poles at most in the lattice points z ∈ Λ. Its pole order there can be read
off from the Laurent expansion around the origin. By inserting ℘(z) = z−2 + · · ·
and ℘′(z) = −2z−3 + · · · we find that the poles of order six of the two summands
cancel and so

ord0(h) ≥ −4

since h is an even function. As it has no poles outside the lattice it follows that h
is either constant or takes any value at most four times with multiplicities. On the
other hand

h(λ1

2 ) = h(λ2

2 ) = h(λ1+λ2

2 ) = 0

and the order of vanishing at each of these three zeroes is even because h is an even
elliptic function. Therefore the total multiplicity of the value zero is at least six
and so h must be identically zero as required. For the final statement, we have a
well-defined holomorphic map

ϕ0 : X0 = X \ {0} −→ E0 = {(x, y) ∈ C2 | y2 = f(x)}, z 7→ (℘(z), ℘′(z))

where 0 ∈ X denotes the image of Λ ⊂ C under the map C � X = C/Λ. The
composite of this morphism of Riemann surfaces with the projection (x, y) 7→ x
extends to the morphism

℘ : X � P1(C).

Since the Weierstrass function takes every value precisely twice and pr2 : E0 → C
is a branched double cover, it follows that the morphism ϕ0 is bijective and hence
an isomorphism of branched double covers. By the unique extension properties of
branched covers it follows that it extends to an isomorphism ϕ : X

∼−→ E. �
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Note that the argument by which we computed the cubic polynomial f(x) is
basically the algorithm that we used in the proof of theorem 4.7. We can make it
more explicit by keeping track of further terms in the Laurent expansions. Recall
that

℘(z) = z−2 + g(z) with g(z) =
∑

λ∈Λ\{0}

[ 1

(z − λ)2
− 1

λ2

]
.

By induction

g(n)(z) = (−1)n(n+ 1)!
∑

λ∈Λ\{0}

1

(z − λ)n+2

for all n ∈ N. Hence the nonvanishing Taylor coefficients of the even function g(z)
are

g(2n)(0)

(2n)!
= (2n+ 1)G2n+2 with G2n+2 =

∑
λ∈Λ\{0}

1

λ2n+2
.

The series on the right are called Eisenstein series and play an important role in
the theory of modular forms. From the above we get

℘(z) =
1

z2
+
∑
n≥1

(2n+ 1)G2n+2z
2n

Corollary 4.9. The polynomial f(x) ∈ C[x] from the previous corollary has
the form

f(x) = 4x3 − g2x− g3 where

{
g2 = 60G4,

g3 = 140G6.

Proof. Consider the above Taylor expansion and its derivative. Take the cube
of the first and the square of the second:

℘(z) = z−2 + 3G4z
2 + 5G6z

4 + · · ·
℘′(z) = −2z−3 + 6G4z + 20G6z

3 + · · ·
(℘(z))3 = z−6 + 9G4z

−2 + 15G6 + · · ·
(℘′(z))2 = 4z−6 − 24G4z

−2 − 80G6 + · · ·

It follows that (℘′(z))2 − 4(℘(z))3 + 60G4℘(z) = −140G6 + · · · . The left hand side
is an elliptic function, but it has no poles since the right hand side doesn’t. Thus
it must be constant, equal to −140G6. Now use the uniqueness in theorem 4.7. �

5. Geometric form of the group law

We have seen in corollary 3.11 that elliptic curves over the complex numbers are
complex tori, and conversely for any complex torus X = C/Λ corollary 4.8 gives
the isomorphism

ϕ : X
∼−→ E = {(x, y) ∈ C2 | y2 = f(x)} ∪ {∞}, z 7→ (℘(z), ℘′(z))

onto an elliptic curve. Now any complex torus X has a natural group structure as
a quotient of the additive group of complex numbers (C,+). On the corresponding
elliptic curve E this group structure has the following geometric interpretation:
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Theorem 5.1. In the above setting, let u, v, w ∈ X = C/Λ be pairwise distinct,
then the following are equivalent:

(1) We have u+ v + w = 0 on the complex torus X.

(2) The three points ϕ(u), ϕ(v), ϕ(w) ∈ E are collinear as shown below.

Proof. Let u, v, w ∈ X be pairwise distinct points with u + v + w = 0. By
symmetry we may assume that u, v 6= 0. Now recall from the residue theorem 4.2
that for every non-constant elliptic function without poles or zeroes on the boundary
of a chosen fundamental parallelogram, the sum of its zeroes and poles inside this
parallelogram lies in Λ when counted with multiplicities. We apply this to the
function

f(z) = det

1 ℘(z) ℘′(z)
1 ℘(u) ℘′(u)
1 ℘(v) ℘′(v)


Expanding the determinant we see that this is an elliptic function of order three
with zeroes at z = u and at z = v. Since it can have poles at most in the lattice
points, it follows that that its unique third zero must be z = w unless w = 0.

Let us see what this means geometrically. If u, v, w 6= 0 are all different from
the origin 0 ∈ X, then ℘ and ℘′ take a finite value at these points and f(w) = 0
means that the vectors

 1
℘(u)
℘′(u)

 ,

 1
℘(v)
℘′(v)

 ,

 1
℘(w)
℘′(w)

 ∈ C3

are linearly dependent, i.e. they lie inside a common plane. Intersecting with the
affine plane of all vectors whose first coordinate is one, we see that this happens iff
the three points

ϕ(u), ϕ(v), ϕ(u+ v) ∈ C2

are collinear, i.e. they lie on a common affine line as in the following picture:
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The remaining case where w = 0 and u = −v can be understood as a limiting case
of the previous one. The lines through the point at infinity∞ ∈ E should be taken
to be the lines parallel to the y-axis in the complex plane, each intersects the affine
part E0 ⊂ C2 in precisely two points

(x,±y) = (℘(u),±℘(u))

which is in accordance with the fact that ℘(u) = ℘(−u) while ℘′(u) = −℘′(−u). �

Of course the assumption that u, v, w are pairwise distinct was only made for
simplicity, the statement holds more generally: If two of the points come together,
the line through them should be understood as a tangent line at that point. Note
also that the neutral element for the group E is the point at infinity. The lines
through infinity are parallels to the y-axis, so the negative of a point (x, y) on the
affine part of the elliptic curve is the point (x,−y). Thus to compute the sum of
two points p, q ∈ E we take the line ` through these points and put E∩` = {p, q, r},
then we obtain the sum p+ q by reflecting r along the x-axis:
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The group law on elliptic curves was known already to Euler as a relation for
elliptic integrals, in the form that there exists an algebraic function w = w(u, v)
such that ∫ ∞

u

dx√
f(x)

+

∫ ∞
v

dx√
f(x)

+

∫ ∞
w

dx√
f(x)

= 0.

More precisely:

Corollary 5.2. Let γ1, γ2, γ3 : [0, 1]→ E be traced by a family of lines `(t) in
the sense that

E0 ∩ `(t) = {γ1(t), γ2(t), γ3(t)}

for all t ∈ [0, 1], then ∫
γ1

dx

y
+

∫
γ2

dx

y
+

∫
γ3

dx

y
= 0.

At this point it may be convenient to recall the analogy between the complex
logarithm and elliptic integrals:

C̃∗

p=exp

��

C

��
C∗

log=
∫ dz
z

// C/2πiZ

X̃

p

��

C

��
X ∫ dx√

f(x)

// C/Λ

The above corollary is the precise counterpart of the additivity of the logarithm
that we have seen in example 1.5, and both really express the fact that the universal
covering map is a group homomorphism.

6. Abel’s theorem

The essential point for the above was that by the residue theorem 4.2 the poles
and zeroes of an elliptic function sum up to a lattice point when counted with
multiplicities. With a bit more work we can show that this condition is not only
necessary but also sufficient for the existence of an elliptic function with given poles
and zeroes. To formulate the result we introduce the following notion:

Definition 6.1. By a divisor on the compact Riemann surface X = C/Λ we
mean a finite formal sum

D =
∑
p∈X

np [p]

where np ∈ Z are almost all zero. In what follows we denote by Div(X) the group
of all such divisors. We say that D is a principal divisor if there is a meromorphic
function f ∈ C(X) \ {0} such that np = ordp(f) for all p ∈ X, in which case we
write

D = div(f).

Since div(fg) = div(f) + div(g), the map sending a meromorphic function to its
principal divisor is a group homomorphism div : C(X)× → Div(X). So principal
divisors form a subgroup PDiv(X) ⊂ Div(X). We will see that this subgroup can
be characterized easily using the group structure on the complex torus:
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We know from the residue theorem 4.2 that any elliptic function has the same
number of zeroes and poles on X when counted with multiplicities. So any principal
divisor has the form

n∑
i=1

[ai]−
n∑
i=1

[bi] with ai, bi ∈ C,

where we allow repetitions to account for multiplicities. Moreover we have seen as
an application of the residue theorem that any such principal divisor satisfies the
further condition

n∑
i=1

(ai − bi) ∈ Λ.

It turns out that this necessary condition is also sufficient:

Theorem 6.2 (Abel). For any complex numbers ai, bi with
∑n
i=1(ai − bi) ∈ Λ

there exists an elliptic function f ∈ C(X) whose divisor of poles and zeroes is given
by

div(f) =
n∑
i=1

[ai]−
n∑
i=1

[bi].

Proof. Since principal divisors form a subgroup, it suffices show that any divisor
of the form

[a] + [b]− [c]− [0] with a+ b− c ∈ Λ

is principal. In fact we only care about the points on the complex torus X = C/Λ,
so we can even assume that a + b = c. Fixing a point c ∈ C, we want to show
that for any a, b ∈ C with a+ b = c there exists an elliptic function f ∈ C(X) with
divisor

div(f) = [a] + [b]− [c]− [0].

Recall that by theorem 4.7 any elliptic function is a rational function in ℘(z), ℘′(z),
so in principle we know where we to look for our functions. Let us first get rid of
the case c ∈ Λ. In this case we want elliptic functions with poles only in the lattice
points, where the pole order should be two. We may assume that b = −a 6= 0 and
then

f(z) = ℘(z)− ℘(a) has div(f) = [a] + [−a]− 2 · [0]

since the Weierstrass function is an even elliptic function of degree two with poles
only in the lattice points. So in what follows we will assume c /∈ Λ. We want elliptic
functions with poles only in the two points [0] and [c], where the pole order should
be one since these two points are distinct. One example of such an elliptic function
is

f0(z) =
℘′(z)− ℘′(−c)
℘(z)− ℘(−c)

because clearly the set of its poles modulo the lattice is contained in {±c, 0} and
we have

ordz0(℘(z)−℘(−c)) =


−2,

+1,

+1,

+2,

ordz0(℘′(z)−℘′(−c)) =


−3 if z0 = 0,

0 if z0 = +c /∈ 1
2Λ,

+1 if z0 = −c /∈ 1
2Λ,

+1 if z0 = ±c ∈ 1
2Λ,

which implies

div(f0) = [a0] + [b0]− [c]− [0] for some a0, b0 ∈ C, a0 + b0 = c.
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To pass from this example to the general case we use interpolation: For λ ∈ C we
consider the function

fλ(z) = λ+ (1− λ)f0(z) ∈ C(X).

If λ 6= 1, then this is an elliptic function with poles only in the two points [0], [c],
and these poles are simple. Thus

div(fλ) = [aλ] + [bλ]− [c]− [0] for some aλ, bλ ∈ C, aλ + bλ = c.

Notice that modulo the lattice the two points [aλ], [bλ] ∈ X = C/Λ are determined
uniquely up to permutation. The unordered pair of the two points is a well-defined
element of the set

S = S(c) =
{

(p, q) ∈ X2
∣∣∣ p = [a], q = [b], a+ b = c

}/
(p, q) ∼ (q, p).

This gives a continuous map

ϕ : P1(C) −→ S

λ 7→ f−1
λ (0) =

{
[aλ], [bλ]

}
where the set bracket on the right refers to a multiset in case that [aλ] = [bλ]; this is
clear on P1(C) \ {1,∞}, and at λ = 1 and λ =∞ one checks that the map extends
continuously with

lim
λ→1

ϕ(λ) = f−1
0 (∞),

lim
λ→∞

ϕ(λ) = f−1
0 (1).

For the proof of the theorem we have to show that this map ϕ : P1(C) → S is
surjective. Note that ϕ(P1(C)) ⊆ S is a closed subset, being compact as the image
of a compact set under a continuous map. So we will be done if we can show that
the image ϕ(P1(C)) ⊆ S contains an open dense subset of S. For this it will clearly
be enough to show that the image contains an open dense subset of U = S \ ∆,
where

∆ = {(p, p) ∈ X2 | p = [a], 2a = c } ⊂ S

denotes the diagonal. For this note that the preimage ϕ−1(U) ⊆ P1(C) is nonempty
since ϕ(1) ∈ U by our assumption that [c] 6= [0]. It will therefore be enough to
show that the restriction

ϕ−1(U) −→ U = S \∆

is an open map. For this note that for any point (p, q) ∈ U we can find a coordinate
neighborhood p ∈ V ⊂ X which is small enough to have [a] 6= [c− a] for all [a] ∈ V
and then

V ↪→ U, [a] 7→ {[a], [c− a]}
will be a coordinate chart on the set of unordered pairs of distinct points on X
with sum [c]. If W ⊂ U denotes the image of this coordinate chart, it will suffice
to show that the restriction

ϕ−1(W ) −→ W ' V

is an open map. But locally the representation of zeroes of holomorphic functions
by a path integral shows that near any given point λ0 ∈ ϕ−1(W ) this map is given
by

λ 7→ aλ =

∮
|z−aλ0 |=ε

z · f ′λ(z)

fλ(z)
dz

for ε > 0 small enough. The integral on the right depends holomorphically on λ
and so the claim follows from the fact that holomorphic maps are open. �
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Abel’s theorem can be reformulated conveniently as follows. The first of the two
necessary conditions says that the principal divisors are contained in the kernel of
the homomorphism

deg : Div(X) � Z, D =
∑
p∈X

np [p] 7→ deg(D) =
∑
p∈X

np

sending a divisor to the sum of its multiplicities. We denote by Div(X)0 = ker(deg)
this kernel and by

Pic0(X) ⊂ Pic(X) = Div(X)/PDiv(X)

its image in the Picard group of divisors modulo principal divisors as indicated in
the diagram

0

��

0

��
PDiv(X)

��

PDiv(X)

��
0 // Div0(X) //

��

Div(X) //

��

Z // 0

0 // Pic0(X) //

��

Pic(X) //

��

Z // 0

0 0

where both rows and columns are exact. Abel’s theorem then says:

Corollary 6.3. For X = C/Λ, we have an isomorphism Pic0(X)
∼−→ X.

Proof. Since Div(X) is the free abelian group on the points of X, we may define
a homomorphism by

ϕ : Div(X) −→ X,
∑
p

np [p] 7→
[∑
p

np · p
]
.

This homomorphism remains surjective when restricted to the subgroup Div0(X)
since [a] = ϕ([a] − [0]) for any a ∈ C. Now Abel’s theorem says that the kernel of
the surjective group homomorphism ϕ : Div0(X)� X is precisely PDiv(X). �

7. The j-invariant

In this section we want to classify all complex tori up to isomorphism. We begin
with the following

Lemma 7.1. Let Λ,Λ′ ⊂ C be lattices. Then any morphism f : C/Λ′ → C/Λ is
induced by an affine-linear map

f̃ : C −→ C, z 7→ αz + γ for some α, γ ∈ C with αΛ′ ⊆ Λ.

In particular,

C/Λ′ ' C/Λ ⇐⇒ ∃α ∈ C∗ with Λ′ = αΛ.
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Proof. Pick any γ ∈ C with f(0) = [γ] ∈ C/Λ. Since the complex plane is simply
connected, the unique lifting property for the covering map C→ C/Λ gives a unique

continuous map f̃ with f̃(0) = γ such that the following diagram commutes:

C
∃!f̃ //

��

C

��
C/Λ′

f // C/Λ

Since f is morphism of Riemann surfaces, the function f̃ : C → C is holomorphic
everywhere by our definition of the Riemann surface structure on complex tori. By
the unique lifting property we also know that the function z 7→ f̃(z + λ) − f̃(z)
is constant for any λ ∈ Λ′. So for the derivative of our lifted map we obtain the
periodicity

f̃ ′(z + λ) = f̃ ′(z) for all λ ∈ Λ′,

hence f̃ ′ is a bounded holomorphic function on the complex plane and therefore
constant by Liouville’s theorem. Hence the result follows. �

Motivated by the above, we say that two lattices Λ,Λ′ ⊂ C are equivalent and
write Λ ∼ Λ′ if there exists α ∈ C∗ with Λ′ = αΛ. This clearly defines an equivalence
relation on the set of all lattices, and any equivalence class contains a lattice of the
form

Λτ = Z⊕ Zτ with τ ∈ H = {z ∈ C | Im(z) > 0},
since we may rescale it to have the first basis vector to be one and then change the
sign of the second basis vector to have positive imaginary part. Two lattices of this
form may still be equivalent but we can say precisely when this happens:

Lemma 7.2. (a) The upper half plane H is endowed with a natural action of the
group

Γ = Sl2(Z) =
{(

a b
c d

)
∈ Sl2(R)

∣∣∣ a, b, c, d ∈ Z
}

via biholomorphic automorphisms

M · τ =
aτ + b

cτ + d
for M =

(
a b
c d

)
∈ Γ and τ ∈ H.

(b) For τ, τ ′ ∈ H we have the equivalence Λτ ∼ Λτ ′ iff τ = M · τ ′ for some M ∈ Γ.

Proof. (a) That Γ ⊂ Sl2(R) is a subgroup follows from Cramer’s formula, which
here reads

M−1 =
1

det(M)

(
d −b
−c a

)
for M =

(
a b
c d

)
∈ Sl2(R).

For τ ∈ H and det(M) = 1 we get

Im(M · τ) = Im

(
aτ + b

cτ + d

)
=

Im
(
(aτ + b)(cτ + d)

)
|cτ + d|2

= (ad− bc) · Im(τ)

|cτ + d|2

=
Im(τ)

|cτ + d|2
> 0,

hence M · τ ∈ H. One easily checks that this gives a group action Γ→ Aut(H).
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(b) By definition Λτ ′ ∼ Λτ iff there exists α ∈ C∗ with Λτ ′ = α · Λτ . Now one
computes

Λτ ′ ⊆ α · Λτ =⇒ Z⊕ Zτ ′ ⊆ α(Z⊕ Zτ)

=⇒ ∃a, b, c, d ∈ Z :

{
τ ′ = α(aτ + b)

1 = α(cτ + d)

=⇒ ∃a, b, c, d ∈ Z : τ ′ =
τ ′

1
=

aτ + b

cτ + d
.

Moreover, if equality holds on the left hand side, then by symmetry it follows that
the integer matrix

M =

(
a b
c d

)
∈ Mat2×2(Z) ∩Gl2(R)

is invertible. The determinant of any invertible matrix with integer entries is ±1,
and in our case

Im(Mτ) = det(M) · Im(τ)

|cτ + d|2
> 0

implies that det(M) > 0 as required. �

Thus the isomorphism classes of complex tori are in bijection with points of the
quotient H/Γ by the action of the modular group Γ = Sl2(Z). Note that this action
factors over

PSl2(Z) = Sl2(Z)/〈±1〉,
so we need to consider matrices only up to a sign. The quotient H/Γ inherits from
the upper half plane a unique structure of a Riemann surface such that the quotient
map H→ H/Γ is holomorphic, and we will discuss it in two steps:

(1) Describe H/Γ as a topological space by a glueing of boundary points for
a suitable closed fundamental domain F ⊂ H.

(2) Describe H/Γ as a Riemann surface by finding Γ-invariant holomorphic
functions on the upper half plane.

Let us begin with the first step:

Proposition 7.3. Put F = {τ ∈ H | |τ | ≥ 1, |Re(τ)| ≤ 1/2
}
⊂ H.

(1) Any point of H can be moved to a point of F by an iterated application
of the matrices

S =
(

0 −1
1 0

)
, T = ( 1 1

0 1 ) ∈ Γ = Sl2(Z)

as shown in the figure below. In fact Γ is generated by these matrices.

(2) For M ∈ Γ\{±E} the intersection F ∩MF is nonempty precisely in the
following cases:

M F ∩MF
±T {τ ∈ H | |τ | ≥ 1,Re(τ) = +1/2}
±T−1 {τ ∈ H | |τ | ≥ 1,Re(τ) = −1/2}
±S {τ ∈ H | |τ | = 1,Re(τ) ≤ 1/2}
±A1 {τ = exp(2πi/3)}
±A2 {τ = exp(2πi/6)}

where

Aν =
(

0 −1
1 −εν

)
,
(
εν −1
1 0

)
,
(
εν 0
1 εν

)
for the sign εν = (−1)ν .
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Proof. (1a) Let z ∈ H. We have seen at the beginning of the proof of lemma 7.2
that

Im(Mz) =
Im(z)

|cz + d|2
for M =

(
a b
c d

)
∈ Γ

and for fixed z ∈ H this goes to zero when at least one of the entries of (c, d) ∈ Z2

goes to infinity. Hence for any subset Γ′ ⊂ Γ it follows that

sup
M∈Γ′

Im(Mz) < ∞.

Taking Γ′ = 〈S, T 〉, we can therefore assume after an iterated application of S, T
that

Im(z) ≥ Im(Mz) for all M ∈ 〈S, T 〉.
This maximality condition is unchanged if we replace z by T±1(z) = z ± 1, so we
can assume |Re(z)| ≤ 1/2 which is already one of the two inequalities defining our
fundamental domain. For the remaining inequality, the maximality condition in
particular says Im(z) ≥ Im(Sz) = Im(z)/|z|2 and hence |z| ≥ 1. Then z ∈ F .

(1b) Let us now show that Γ = 〈S, T 〉 is generated by the two matrices S, T
from above. Given M ∈ Γ we pick any point z ∈MF . By part (1a) there exists a
matrix N ∈ 〈S, T 〉 such that N−1z ∈ F . Then

F ∩N−1MF 6= ∅
and so part (2), which we will verify by an independent computation below, says
that

±M ∈ {NT,NT−1, NS,NA1, NA2}.
It then only remains to note that all the matrices on the right are in 〈S, T 〉.

(2) If z ∈ F then we have |cz+d| ≥ 1 for all (c, d) ∈ Z2 \ {(0, 0)}. Suppose that
also

M · z ∈ F for some matrix M =

(
a b
c d

)
∈ Γ = Sl2(Z),

then similarly

1

|cz + d|
=

∣∣∣∣ad− bccz + d

∣∣∣∣ =

∣∣∣∣−c · az + b

cz + d
+ a · cz + d

cz + d

∣∣∣∣ =
∣∣−c ·Mz + a

∣∣ ≥ 1

where in the last step we have applied the previous argument to Mz and the integer
vector (−c, a) 6= (0, 0). In this case, writing x = Re(z) and y = Im(z) we obtain
that

(cx+ d)2 + c2y2 = |cz + d|2 = 1.
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But y ≥
√

3/2 for z ∈ F and so we get c, d ∈ {0,±1}. The same argument applied
to the inverse

M−1 =

(
d −b
−c a

)
shows that a, c ∈ {0,±1}. For c = 0 we must have a = d and hence M = ±T b for
some b ∈ Z, and then the condition F ∩MF 6= ∅ forces b ∈ {0,±1}. So it only
remains to discuss the case c 6= 0. Replacing the matrix M by its negative we can
assume c = 1. So

M =

(
a b
1 d

)
∈ Γ with a, d ∈ {0,±1} and b = ad− 1.

The case a = d = 0 leads to M = S, while ad ∈ {0,+1} leads to M ∈ {A0, A1}. We
leave it to the reader to verify that in the remaining case ad = −1 the corresponding
matrix M satisfies F ∩MF = ∅ and hence does not enter our list. �

Let us now discuss H/Γ as a Riemann surface. We want to find holomorphic
functions on it, or equivalently holomorphic functions f : H→ C that are invariant
under the action of the modular group. Since we have seen that the quotient H/Γ
parametrizes elliptic curves, a natural guess for coordinate functions on it are the
coefficients of the equation defining the elliptic curve Eτ ' C/Λτ when τ ∈ H
varies: The Eisenstein series

Gk(τ) =
∑

(m,n)∈Z2
(m,n)6=(0,0)

1

(mτ + n)k

are locally uniformly convergent as a function of τ ∈ H for k ≥ 3, so we should look
at the functions

g2(τ) = 60G4(τ),

g3(τ) = 140G6(τ).

The above approach is a bit too naive since different cubic equations may give
rise to isomorphic elliptic curves, and indeed the Eisenstein series are not invariant
under the modular group. However, they transform in a very specific way:

Proposition 7.4. Let k ≥ 3. Then for any τ ∈ H and M =
(
a b
c d

)
∈ Sl2(Z) we

have

Gk(Mτ) = (cτ + d)kGk(τ).

Moreover we have

lim
Im(τ)→∞

Gk(τ) = 2ζ(k) =

∞∑
n=1

2

nk
for k ≥ 4 even.

Proof. This is a straightforward computation. For the first claim, for m,n ∈ Z
one verifies

m ·Mτ + n =
1

cτ + d
· (m′τ + n′) where

(
m′

n′

)
= M t ·

(
m
n

)
Here M t = ( a cb d ) ∈ Sl2(Z), and M t : Z2 ∼−→ Z2 is an isomorphism. For the
second claim it suffices by periodicity to discuss the limit for τ in the vertical strip
defined by the condition |Re(τ)| ≤ 1/2. One can show that the Eisenstein converges
uniformly on

{τ ∈ H | |Re(τ)| ≤ 1/2, Im(τ) ≥ 1},
so we may interchange the limit and the summation, and in the resulting series the
only surviving terms for Im(τ)→∞ are those where m = 0. �
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In particular, applying the above to the matrix M = T from proposition 7.3 we
get the periodicity

Gk(τ + 1) = Gk(τ)

for all τ ∈ H, thus we can regard the Eisenstein series as holomorphic functions on
the Riemann surface H/Z ⊂ C/Z which is obtained from the upper half plane by
identifying points which differ by an integer. The exponential function induces an
isomorphism

exp(2πi(−)) : H/Z ∼−→ D∗ = {q ∈ C | 0 < |q| < 1}

from this Riemann surface onto the punctured open unit disk. We are interested
in functions that behave nicely when Im(τ)→∞, so we put D = {q ∈ C | |q| < 1}
and make the

Definition 7.5. A meromorphic modular form of weight k is a meromorphic
function f : H −→ P1(C) such that

• f(Mτ) = (cτ + d)kf(τ) for all
(
a b
c d

)
∈ Sl2(Z), and

• f ◦ exp−1 : D∗ −→ P1(C) extends to a meromorphic function on D.

A (holomorphic) modular form is a modular form which is holomorphic on H and
for which the above meromorphic extension has no pole at the origin 0 ∈ D.

Note that since −E ∈ Sl2(Z), there are no meromorphic modular forms of odd
weight other than the zero function. On the other hand, by proposition 7.4 the
Eisenstein series Gk is a modular form of weight k for k ≥ 4. From a given set of
modular forms we may construct many new ones:

• If f, g are modular forms of weight k, then so is af + bg for all a, b ∈ C.

• If f, g are modular forms of weights k, l respectively, then

– the product fg is a modular form of weight k + l,

– the quotien f/g is a meromorphic modular form of weight k − l.

Note that in the last case we can lower the weight, but usually the resulting modular
form will be meromorphic, with poles in the points where g vanishes. To get a
holomorphic function f : H/Γ → C we would like to construct a meromorphic
modular form of weight zero which has a pole at most in τ = i∞, i.e. in q = 0. We
can do so as follows:

Proposition 7.6. The function ∆(τ) = g2(τ)3 − 27g3(τ)2 is a holomorphic
modular form of weight 12 which has no zeroes on the upper half plane. Hence the
quotient

J(τ) = g2(τ)3/∆(τ)

is a meromorphic modular form of weight zero whose only pole is at τ = +∞.

Proof. Recall from corollary 4.8 that the elliptic curve parametrized by τ ∈ H
has the form

Eτ = {(x, y) ∈ C2 | y2 = f(x)} ∪ {∞}
where

f(x) = 4(x− e1)(x− e2)(x− e3) with


e1 = ℘( 1

2 ),

e2 = ℘( τ2 ),

e3 = ℘( 1+τ
2 ).

Here ℘ denotes the Weierstrass function for the lattice Λτ = Z⊕Zτ . The argument
that we used in the proof of that corollary also shows that the three zeroes e1, e2, e3
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of the cubic f(x) are pairwise distinct: Indeed, if ei = ej for some i 6= j, then the
function

z 7→ ℘(z)− ei = ℘(z)− ej
is an even elliptic function of degree two with a double zero at two different points
of C/Λτ contradicting theorem 4.2. Thus all three roots of the polynomial f(x) are
distinct, which can be expressed by saying that the discriminant of this polynomial
does not vanish:

∆f := (e1 − e2)2(e1 − e3)2(e2 − e3)2 6= 0.

Now recall from algebra that this discriminant is a symmetric function in e1, e2, e3

and as such it can be written in terms of the elementary symmetric functions, which
are essentially the coefficients of f(x) ∈ C[x]. Explicitly, in our case corollary 4.9
says that

f(x) = 4(x− e1)(x− e2)(x− e3) = 4x3 − g2x− g3

so the elementary symmetric functions are

e1 + e2 + e3 = 0

e1e2 + e1e3 + e2e3 = −g2/4

e1e2e3 = g3/4

and one therefore computes

∆f = (e1 − e2)2(e1 − e3)2(e2 − e3)2 = · · · = ∆(τ).

Thus the notion of discriminants in algebra naturally leads to the consideration of
the function

∆(τ) = g2(τ)3 − 27g3(τ)2

and shows that this function is nonzero for all τ ∈ H. By the remarks preceding
this proof it is also a holomorphic modular form of weight six and hence J(τ) is a
meromorphic modular form of weight zero. �

Remark 7.7. From an arithmetic point of view it is better to replace J(τ) by
the function

j(τ) = 123 · J(τ) =
1728 g2(τ)3

∆(τ)
,

since the Laurent expansion

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + · · ·

in q = exp(2πiτ) can then be shown to have only integers as coefficients.

Let us now come back to the discussion of the Riemann surface H/Γ that
parametrizes isomorphism classes of complex tori. Recall from the description of the
identifications on the boundary of the fundamental domain in proposition 7.3 that
for R > 1 the only identifications between points τ with Im(τ) > R are translations
by integers, so

U = {[τ ] ∈ C/Z | Im(τ) > R} ↪→ H/Γ

embeds as an open subset in the quotient. On this open subset we consider the
isomorphism

exp(2πi(−)) : U
∼−→ D \ {0} where D = {z ∈ C | |z| < exp(−2πR)}
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Glueing in the entire disk D along this isomorphism we obtain a compact Riemann
surface

H/Γ ∪ {i∞} = lim
→

 D

U

77

''
X


where i∞ denotes the point corresponding to the origin 0 ∈ D. We can now
complete our classification of complex tori as follows:

Theorem 7.8. We have limτ→i∞∆(τ) = 0, limτ→i∞ j(τ) =∞, and the map j
extends to an isomorphism

j : H/Γ ∪ {i∞} ∼−→ P1(C).

Proof. The vanishing of the discriminant at τ = i∞ follows by inserting from
proposition 7.4

g2(i∞) = 120 ζ(4) = 4
3 π

4

g3(i∞) = 280 ζ(6) = 8
27 π

6

which gives

lim
τ→i∞

∆(τ) =
(
g2(i∞)

)3 − 27
(
g3(i∞)

)2
=
[
( 4

3 )3 − 27 · ( 8
27 )2

]
π12 = 0.

Since g2(i∞) 6= 0, it then also follows that limτ→i∞ j(τ) = ∞. Thus we obtain a
morphism

j : H/Γ ∪ {i∞} −→ P1(C)

which is clearly not constant. The image of this morphism is an open subset of the
target because holomorphic maps are open, and it is also closed because it is the
image of a compact space under a continuous map. Thus j is surjective.

To show that j is an isomorphism we only need to show that it is injective. We
already know that the only pole of j is at τ = i∞. Moreover this is a simple pole
because the discriminant ∆(τ) has a simple zero at τ = i∞, as one may deduce
from the residue theorem in the form given in theorem 8.2 below. It remains to
show that for any c ∈ C the function j takes the value c only once, or equivalently
that the function τ 7→ j(τ)− c has a unique zero. Since the latter function is still a
meromorphic modular form of weight zero with a unique pole at τ = i∞ and pole
order one, this last statement will again follow from theorem 8.2. �

8. Appendix: The valence formula

Let us now take a closer look on meromorphic modular forms. Like for elliptic
functions, the main point will be to understand their poles and zeroes inside the
fundamental domain. A meromorphic modular form of weight zero can be viewed
as a meromorphic function on the compact Riemann surface X = H/Γ∪{i∞}, and
we can guess how to count its zeroes and poles properly:

Exercise 8.1. Show that each τ ∈ H has an open neighborhood τ ∈ U ⊆ H
such that for all M ∈ PSl2(Z),

U ∩MU =

{
U if Mτ = τ ,

∅ if Mτ 6= τ .

Deduce that locally on this neighborhood the quotient map q : H → H/Γ is given
by

q : U � U/Stab(τ) where Stab(τ) = {M ∈ PSl2(Z) |Mτ = τ}
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and that for any meromorphic function f : X → P1(C) the order of vanishing or
pole at x = [τ ] ∈ X is

ordx(f) =
ordτ (f)

eτ
where eτ = |Stab(τ)| =


3 if x = [e

πi
3 ],

2 if x = [ i ],

1 else.

Similarly, recall that every meromorphic function f : X → P1(C) has a Laurent
expansion

f(τ) =
∑
n�0

cn(f)qn with cn(f) ∈ C, q = exp(2πiτ)

for Im(τ)� 0 big enough, and then we have ordi∞(f) = min{n ∈ Z | cn(f) 6= 0}.

Rather than using the above observations, we will take them as the definition of
the order of vanishing for a meromorphic modular form f : H→ P1(C) of arbitrary
weight k ∈ Z. Note that for k 6= 0 such a modular form cannot be regarded as
a function on the compact Riemann surface H/Γ ∪ {∞} since it is not invariant
under the modular group. Nevertheless its order of vanishing or poles at τ ∈ H
only depends on the image x = [τ ] ∈ H/Γ since cτ + d 6= 0,∞ for all nonzero
vectors (c, d) ∈ Z2 \ {(0, 0)}, and it admits a Laurent series expansion around i∞
because it has the periodicity property f(τ + 1) = f(τ) for all τ ∈ H. Motivated
by the above discussion, we therefore define the order of vanishing or zeroes of a
meromorphic modular form f : H → P1(C) at a point x ∈ H/Γ ∪ {i∞} by the
formula

ordx(f) =

{
ordτ (f)/eτ if x = [τ ] with τ ∈ H,
min{n | cn 6= 0} if x = i∞.

With these notations we have the following valence formula:

Theorem 8.2. If f : H → P1(C) is a meromorphic modular form of weight k
which is not identically zero, then ordx(f) = 0 for almost all x ∈ X = H/Γ∪{i∞},
and we have ∑

x∈X
ordx(f) =

k

12
.

Proof. Let F ⊂ H be the fundamental domain from proposition 7.3. Since f
is a meromorphic function around the point i∞, it can at most have finitely many
poles and zeroes in the image of the vertical half-strip {τ ∈ F | Im(τ) > c} for
fixed c� 0. Since {τ ∈ F | Im(τ) ≤ c} is a compact set, we hence see that f can
have at most finitely many zeroes and poles in the domain F ⊂ H.

For the proof of the claimed formula, let us first assume f has no poles or zeroes
on the boundary ∂F except perhaps at the three fixed points ρ = exp(πi/3), ρ+ 1
and i. Consider the path

γ :
(
A→ B → B′ → C → C ′ → D → D′ → E → A

)
as shown below:
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Around each of the three fixed points we have drawn a circle segment of very small
radius ε > 0, while Im(A), Im(E) = N � 0 are supposed to be big. By the residue
theorem then ∑

τ∈F\∂F

ordτ (f) =
1

2πi

∫
γ

f ′(z)

f(z)
dz.

We now compute the integral on the right hand side step by step.

Step 1. The contributions from the straight line segments AB and D′E cancel
because f(z + 1) = f(z) and the two segments have opposite orientations.

Step 2. Now take the line EA. Near z = i∞ write f(z) and g(z) = f ′(z)/f(z)
as Fourier series

f(z) =
∑
n≥n0

cn(f) · e2πinz

g(z) =
∑
n�0

cn(g) · e2πinz

where n0 = ordi∞(f). From the identity f ′(z) = f(z)g(z) we then get the Fourier
coefficients

cn(g) =


0 for n < n0,

2πin0 for n = n0,

· · · for n > n0.

It follows that

1

2πi

∫ A

E

g(z)dz = 2πiordi∞(f) +
∑
n>0

cn(g) ·
∫ A

E

e2πinzdz

= 2πiordi∞(f)

whenN � 0 is chosen big enough so that the Fourier series converges on Im(z) > N .

Step 3. Next we discuss the circle segments around the points with a nontrivial
stabilizer in the modular group. Write the logarithmic derivative g(z) = f ′(z)/f(z)
locally near z = ρ as

g(z) = ordρ(f) · (z − ρ)−1 + h(z)
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where h(z) is holomorphic. Pick any branch log of the complex logarithm, then we
obtain

lim
ε→0

1

2πi

∫ B′

B

g(z)dz = ordρ(f) · lim
ε→0

1

2πi

∫ B′

B

dz

z − ρ

= ordρ(f) · lim
ε→0

log(B′ − ρ)− log(B − ρ)

2π
= −ordρ(f)

6

and similarly

lim
ε→0

1

2πi

∫ C′

C

g(z)dz = −ordi(f)

2

lim
ε→0

1

2πi

∫ D′

D

g(z)dz = −ordρ+1(f)

6
= −ordρ(f)

6

Step 4. It remains to discuss the two circle segments B′C and C ′D which are
related by the transformation

S : H → H, z 7→ −1/z.

Modularity gives

f(Sz) = zkf(z)

=⇒ f ′(Sz) = zkf ′(z) + kzk−1f(z)

=⇒ g(Sz) = z2g(z) + kz

If α : [0, 1] → C denotes any parametrization of the circle segment B′C, then we
get ∫ C

B′
g(z)dz =

∫ 1

0

g(α(t))α′(t)dt,∫ D

C′
g(z)dz = −

∫ 1

0

g(Sα(t))(Sα)′(t)dt

= −
∫ 1

0

g(α(t))α′(t)− k
∫ 1

0

α′(t)

α(t)
dt

and so

lim
ε→0

1

2πi

∫
B′C∪C′D

g(z)dz = − lim
ε→0

k

2πi

∫ 1

0

α′(t)

α(t)
t

= − lim
ε→0

k

2πi
·
[
logC − logB′

]
= − k

2πi
·
[
log(i)− log(ρ)

]
=

k

12
.

Step 5. In conclusion, taking the sum of all above contributions we obtain as
claimed that∑

z∈F\∂F

ordz(f) =

∫
γ

g(z)dz =
k

12
− ordρ(f)

3
− ordi(f)

2
− ordi(f),

provided that there are no other poles or zeroes of f on the boundary ∂F . If there
are such poles or zeroes, one should modify the fundamental domain by pairs of
corresponding small half-circles avoiding these zeroes and poles. We leave it to the
reader to draw a picture and adapt the argument in steps 1 and 4 to this case. �
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Corollary 8.3. Any non-constant holomorphic modular form has weight k ≥ 4
and has at least one zero in H ∪ {i∞}. Moreover,

• G4(τ) has a simple zero at τ = exp(πi/3) and no other zeroes modulo Γ.

• G6(τ) has a simple zero at τ = i and no other zeroes modulo Γ.

• ∆(τ) has a simple zero at τ = i∞ and no other zeroes modulo Γ.

Proof. Let f be a non-constant holomorphic modular form of weight k. If f
had no zeroes on H ∪ {i∞}, theorem 8.2 would imply k = 0. This would mean
that f descends to a non-constant holomorphic function on the compact Riemann
surface X = H/Γ ∪ {i∞} which is impossible by the maximum principle. So f
must have strictly positive order of vanishing in at least one point of X. But by
definition

ordx(f) ∈ 1
ex
· N0 for all x ∈ X, ex =


3 if x = [exp(πi/3)],

2 if x = [i],

1 otherwise.

Hence it follows that k ≥ 4 by theorem 8.2. The remaining statement similarly
follows from

G4(exp(πi/3)) = G6(i) = ∆(i∞) = 0,

which is left as an exercise to the reader. �





CHAPTER II

Geometry of elliptic curves

1. Affine and projective varieties

In algebraic geometry we study solutions to systems of polynomial equations
in several variables over commutative rings. For instance, if f ∈ k[x1, . . . , xn] is a
polynomial of degree d > 0 over a field k, we consider the vanishing locus

V (f)(k) =
{
a = (a1, . . . , an) ∈ kn | f(a) = 0

}
.

Intuitively we regard this vanishing locus as a hypersurface of dimension n − 1 in
the n-dimensional affine space. For n = 2 we get curves in the affine plane, like in
the following pictures which show points with coordinates in k = R:

x2
1 + x2

2 − 1 = 0 x1x2 − 1 = 0 x2
2 − x1(x2

1 − 1) = 0

However, in general we should also consider solutions with coordinates in extension
fields K ⊇ k. For instance, the polynomial f(x1, x2) = x2

1 +x2
2 +1 has V (f)(R) = ∅

but in this example V (f)(C) is the union of two complex lines. Back to the general
case, we consider for any field extension K/k the affine n-space An(K) = Kn and
put

V (f)(K) =
{
a = (a1, . . . , an) ∈ Kn | f(a) = 0

}
⊂ An(K).

We have natural inclusions

V (f)(k) //

⋂
V (f)(K)

⋂
An(k) // An(K)

and V (f)(K) = V (f)(L) ∩ A2(K) for towers of field extensions k ⊂ K ⊂ L.

Definition 1.1. By the affine hypersurface cut out by f ∈ k[x1, . . . , xn] we
mean the collection of subsets

V (f)(K) ⊂ An(K)

where K runs over all extension fields of k. We also briefly write V (f) ⊂ An and
say that this is an affine hypersurface of degree d = deg(f). There are some special
cases:

• For d = 1, 2, 3, . . . we call V (f) ⊂ An a hyperplane, quadric, cubic, etc.

• For n = 2 we call V (f) = Cf ⊂ A2 an affine plane curve (a line if d = 1).
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It follows from Hilbert’s Nullstellensatz that the hypersurface V (f) ⊂ An is
determined uniquely by the subset V (f)(k) ⊂ An(k) of points in the affine space
over the algebraic closure k ⊇ k. Indeed, given two polynomials f, g ∈ k[x1, . . . , xn]
with no multiple factors over the algebraic closure of the base field, one can show
that

V (f)(k) = V (g)(k) inside An(k) ⇐⇒ g = cf for some c ∈ k \ {0},
so the above definition includes a lot more data than needed. But this is what makes
the story interesting from an arithmetic viewpoint: For instance, Fermat’s last
theorem says that the set of rational points V (f)(Q) on the hypersurface V (f) ⊂ A3

cut out by
f(x1, x2, x3) = xe1 + xe2 + xe3 for e ≥ 3

only contains the obvious solutions where one of the three coordinates is zero. The
interplay between geometric features over k and arithmetic features over k is one
of the driving forces behind arithmetic geometry. To understand the arithmetic of
elliptic curves we should first discuss their basic geometric properties, for which we
now recall a few more notions from algebraic geometry.

Often it is not satisfactory to work in affine space. For instance, we all know
that any two distinct lines in the affine plane intersect in a point — except if they
are parallel:

The above real picture suggests that any two parallel lines should meet in a point
which is at “infinite distance”, so it seems reasonable to “compactify” the affine
plane by adding a point at infinity for each direction of lines. We can do this as
follows. The construction works for affine n-space for any n ∈ N. Consider the
embedding

An(K) ↪→ An+1(K), (a1, . . . , an) 7→ (1, a1, . . . , an).

On An+1(K) \ {0} we look at the equivalence relation ∼ given by the collinearity
of points,

(a0, . . . , an) ∼ (b0, . . . , bn) ⇐⇒ ∃ c ∈ K∗ : ai = cbi for all i ∈ {0, . . . , n}.
We define the points of the projective n-space over K to be the set of equivalence
classes

Pn(K) =
(
An+1(K) \ {0}

)
/ ∼

and denote by
[a0 : · · · : an] = K∗ · (a0, . . . , an) ∈ Pn(K)

the equivalence class of a point (a0, . . . , an) ∈ An+1(K) \ {0}. We have a natural
embedding

An(K) ↪→ Pn(K), (a1, . . . , an) 7→ [1 : a1 : · · · : an]

as shown in the picture below in the case n = 2, where we denote the coordinates
by [w : x : y] = [x0 : x1 : x2] for simplicity. Note that the projective plane contains
for each direction of affine lines in the affine plane w = 1 an extra point: The affine
line

{(x, y) | ax+ by = c} ⊂ A2(K)
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with a, b, c ∈ k corresponds to the “point at infinity” [−b : a : 0] ∈ P2(k). The
picture shows the case (a, b, c) = (1, 1, 1):

A similar description holds in higher dimensions. If we replace affine space by
projective space, the notion of an affine hypersurface is replaced by

Definition 1.2. Let f ∈ k[x0, . . . , xn] be homogenous of degree d > 0. We
define the projective hypersurface cut out by the polynomial f to be the collection
of subsets

V (f)(K) =
{
a = [a0 : · · · : an] ∈ Pn(K) | f(a) = 0

}
⊂ Pn(K)

where K runs over all extension fields of k. We also briefly write V (f) ⊂ Pn and
say that this is a projective hypersurface of degree d. Like in the affine case there
are special cases:

• For d = 1, 2, 3, . . . we call V (f) ⊂ Pn a hyperplane, quadric, cubic etc.

• For n = 2 we call V (f) = Cf ⊂ P2 a plane curve (a line if d = 1).

This “compactifies” our previous notion of affine hypersurfaces:

Remark 1.3. To pass between projective and affine hypersurfaces, recall the
bijection

An(K)
∼−→ Pn(K) \ V (x0)(K), (a1, . . . , an) 7→ [1 : a1 : · · · : an].

In fact

Pn =

n⋃
i=0

Ui is covered by the affine charts Ui = Pn \ V (xi) ' An

generalizing the description of the Riemann sphere in example I.3.2. Now for any
projective hypersurface V (f) ⊂ Pn cut out by a homogenous f ∈ k[x0, . . . , xn], we
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get the affine hypersurface

V (f) ∩ U0
∼ //⋂ V (f [)⋂

U0
∼ // An

cut out by

f [(x1, . . . , xn) = f(1, x1, . . . , xn) ∈ k[x1, . . . , xn].

We call f [ the dehomogenization of the polynomial f . A similar description holds in
the other affine charts. Conversely, given an affine hypersurface V (g) ⊂ An cut out
by a polynomial g ∈ k[x1, . . . , xn] of degree d = deg(g), we obtain the projective
hypersurface

V (g]) ⊂ Pn where g](x0, . . . , xn) = xd0 · g(x1

x0
, . . . , xnx0

) ∈ k[x0, . . . , xn].

We call g] the homogenization of g. These constructions are mutually inverse in
the sense that

(g])[ = g,

(f [)] = x−m0 · f for m = deg(f)− deg(f [) ≥ 0.

We get a bijection{
hypersurfaces in An

} ∼−→
{

hypersurfaces in Pn not containing V (x0)
}

V (f) 7→ V (f ])

Thinking of projective space as a compactification of affine space, we will also refer
to V (x0) = Pn \ U0 as the hyperplane at infinity (the line at infinity if n = 2).

Remark 1.4. It is often convenient to change coordinates on the ambient affine
or projective spaces. Starting from the action of Gln+1(k) on An+1(k)\{0}, we get
an action of

PGln+1(k) = Gln+1(k)/k∗

on Pn(k). One easily checks that this action is faithful and transitive. We refer
to the bijective self-maps of projective space given by the elements of PGln+1(k)
as projective linear transformations. On the standard affine charts from above they
correspond to fractional linear transformations.

For the rest of this section we specialize to the case n = 2, where an affine or
projective hypersurface is also called an (affine or projective) plane curve. In this
case we write

[w : x : y] = [x0 : x1 : x2].

The correspondence between affine and projective lines other than the line at infinity
then reads

V (ax+ by + c) ⊂ A2 ←→ V (ax+ by + cw) ⊂ P2

where (a, b, c) ranges over all triples with (a, b) 6= (0, 0). Note that any pair of
projective lines meets in a unique point, which lies on the line at infinity V (w)
iff the two lines are parallel. This basic observation will be generalized to an
intersection theory for plane curves of higher degree in corollary 3.5.
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2. Smoothness and tangent lines

We want to define algebraically the notion of smoothness and the tangent to a
plane curve at a given point. After a projective linear coordinate transformation we
can assume that the point lies in the affine standard chart A2 ⊂ P2. We therefore
consider affine curves C = Cf ⊂ A2 where f ∈ k[x, y]. Since we really want
to discuss geometric properties of the curve, we usually assume the polynomial f
has no multiple factors over the algebraic closure of the base field, but this is not
essential and most of what follows holds more generally.

Definition 2.1. The multiplicity of the curve Cf ⊂ A2 at p = (x0, y0) ∈ A2(k)
is defined by

mp(Cf ) = min{ d ∈ N0 | fd 6≡ 0 }
where

f(x, y) =
∑
d≥0

fd(x, y) with fd(x, y) =

d∑
ν=0

cd,ν · (x− x0)ν(y − y0)d−ν

denotes the expansion in homogenous terms around p. Notice that p ∈ Cf (k)
iff mp(Cf ) > 0. We say that

• p is a smooth point of Cf if mp(Cf ) = 1,

• p is a singular point of Cf if mp(Cf ) > 1.

We say that Cf ⊂ A2 is a smooth curve if all points p ∈ Cf (k) are smooth. We say
that a projective curve is smooth if it is so on each affine chart.

Example 2.2. The following table lists the multiplicities at p = (0, 0) ∈ A2(k)
for some affine curves:

f(x, y) mp(Cf )

y − x2 1

y2 − x2 2

y2 − x2(x− 1) 2

y2 − x3 2

The following picture illustrates the situation for k = R:

y = x2 y2 = x2 y2 = x2(x− 1) y2 = x3

The first example is a smooth point. For char(k) 6= 2, the second and third are
both examples of a node, also known as an ordinary double point: A singularity p
where the Hessian matrix (

∂2

∂x2 f
∂
∂x

∂
∂yf

∂
∂y

∂
∂xf

∂2

∂y2 f

)
(p)

has maximal rank. The last example is a type of a singularity known as a cusp.
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Definition 2.3. Let p = (x0, y0) ∈ Cf (k) and m = mp(Cf ) > 0. Using the
local expansion

f(x, y) =
∑
d≥m

fd(x, y) with fd(x, y) =

d∑
α=0

cd,ν · (x− x0)ν(y − y0)d−ν

we define the tangent cone to the curve Cf at the point p as the vanishing locus of
the lowest degree terms

TpCf = Cfm ⊂ A2

Writing

fm(x, y) =

m∏
ν=1

`ν(x, y) with homogenous linear forms `ν ∈ k[x, y].

we see that

TpCf =

m⋃
ν=1

C`ν

is a union of affine lines through the given point. In the special case of a smooth
point this tangent cone is reduced to a single line and is called the tangent line
to Cf at p. We also call the projective closure PTpCf = Cfm ⊂ P2 the projective
tangent cone resp. line to the curve at the given point p.

Example 2.4. For f(x, y) = y2 − x2(x + 1), the tangent cone to Cf at the
node p = (0, 0) is

TpCf = Cx+y ∪ Cx−y ⊂ A2

which is a union of two distinct lines if char(k) 6= 2. On the other hand q = (−1, 0)
is a smooth point with

TqCf = Cx+1 ⊂ A2

as shown below:

Exercise 2.5. Let f ∈ k[w, x, y] be a homogenous polynomial. Show that the
projective tangent line to the corresponding curve at a smooth point p ∈ Cf (k) is
the orthocomplement of the gradient:

PTpCf =
{
p ∈ P2(k) | ∂f∂w (p) + ∂f

∂x (p) + ∂f
∂y (p) = 0

}
Formulate the analogous description in the affine setup.
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There are different kinds of tangents. For instance, let f(x, y) = y − x3 and
denote by C = Cf ⊂ A2 the corresponding affine curve. Then the lines parametrized
by

`1 : t 7→ (x1(t), y1(t)) = (t+ 1, 3t+ 1),

`2 : t 7→ (x2(t), y2(t)) = (t, 0)

are both tangent to the curve at the point parametrized by t = 0 as shown below:

Being tangent means that the function t 7→ f(xi(t), yi(t)) should vanish to order
at least two at t = 0. Now we see that the second line is a better tangent than the
first one:

• f(x1(t), y1(t)) = −t2(t+ 3) has a double zero at t = 0,

• f(x2(t), y2(t)) = −t3 has a triple zero at t = 0.

This leads to the following definition, formulated in projective coordinates:

Definition 2.6. Let Cf ⊂ P2 for a homogenous polynomial f ∈ k[w, x, y],
which as usual we assume to have no multiple factors over the algebraic closure of
the base field. Let p = [w0 : x0 : y0] ∈ `(k) for a line ` 6⊂ Cf . Parametrize part of
the line by

ϕ : A1 −→ P2, t 7→ [(w0 + tw1) : (x0 + tx1) : (y0 + ty1)]

where q = [w1 : x1 : y1] ∈ `(k) \ {p} denotes any other point on the line. Then the
vanishing order

ip(`, Cf ) = ordt=0(ϕ(t))

is called the order of contact or the order of tangency of the line ` and the curve Cf
at the point p. Note that ip(`, Cf ) > 0 iff p ∈ (` ∩ Cf )(k). The order of contact is
related to the multiplicity of the curve as follows:

Remark 2.7. If k is infinite, then the multiplicity of Cf ⊂ P2 at p ∈ P2(k) is
given by

mp(Cf ) = min
{
ip(`, Cf ) | ` ⊂ P2 is a line over k with p ∈ `(k)

}
.

Proof. By a projective linear coordinate transformation over the field k we may
assume p = [1 : 0 : 0]. For any given line ` ⊂ P2 over k we may also assume that it
contains a point

q = [0 : x1 : y1] ∈ `(k)

with x1, y1 ∈ k. Then part of the line is parametrized by t 7→ ϕ(t) = [1 : tx1 : ty2],
and writing

f [(x, y) = f(1, x, y) =
∑
d≥m

fd(x, y)
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with each fd(x, y) ∈ k[x, y] homogenous of degree d and with m = mp(Cf ), we
obtain that

f(ϕ(t)) = f [(tx1, ty1) =
∑
d≥m

fm(x1, y1) · tm.

Hence

mp(Cf ) ≤ ip(`, Cf ).

To see that equality holds for some line ` ⊂ P2 over k, note that by our definition
of the multiplicity of a curve at a point, the polynomial fm ∈ k[x, y] is not the zero
polynomial. Since k is an infinite field, we can find a point (x1, y1) ∈ A2(k)\{(0, 0)}
where fm(x1, y1) 6= 0, and then the line passing through the origin and through
this point will do the job. �

In what follows we are mostly interested in the case where p ∈ Cf (k) is a smooth
point. A line ` ⊂ P2 with ip(`, Cf ) = 1 is said to be transversal to the curve Cp at
the point p. Passing to higher order of contact, the tangent line to the curve at p
is the unique line ` ⊂ P2 with ip(`, Cf ) ≥ 2. Points where the tangent has higher
order of contact than expected deserve a special name:

Definition 2.8. A point p ∈ Cf (k) is called a flex point of the curve Cf ⊂ P2

or simply a flex if

• it is a smooth point of Cf , and

• the tangent line ` = PTpCf has ip(`, Cf ) ≥ 3.

It is easy to check that curves of degree at most two have no flex points. As a
harder exercise, you may try to verify that over an algebraically closed field k = k
any smooth plane curve of degree d ≥ 3 has a flex point.

3. Intersection theory for plane curves

In the last section we have discussed intersections of curves with a line, let us now
take a look at intersections between curves of arbitrary degrees. For our purpose
it will be enough to consider the case where the two curves to be intersected do
not have any curve in common, which algebraically means that the two defining
equations should not have any common factor. Recall that for f, g ∈ k[x, y], having
no common factor over k is the same as having no common factor over the algebraic
closure k. To take care of points at infinity, we consider as in remark 1.3 the
homogenization

f ](w, x, y) = wdeg(f) · f(x/w, y/w),

g](w, x, y) = wdeg(g) · g(x/w, y/w).

We say that the two affine plane curves Cf , Cg ⊂ A2 intersect at infinity if the
corresponding projective curves over the algebraic closure of the base field have a
common point at infinity, i.e.

Cf](k) ∩ Cg](k) ∩ Cw(k) 6= ∅.

This is easy to read off: Let f∗, g∗ ∈ k[x, y] be the sum of the terms in f, g of
highest degree, i.e.

f∗(x, y) = f ](0, x, y),

g∗(x, y) = g](0, x, y).

Then Cf , Cg ⊂ A2 intersect at infinity iff f∗, g∗ ∈ k[x, y] have a common factor.
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Proposition 3.1. If f, g ∈ k[x, y] are polynomials of degree m,n ≥ 0 without
common factors, then

|(Cf ∩ Cg)(k)| ≤ dimk k[x, y]/(f, g) ≤ mn.

Moreover, in the second inequality “=” holds unless Cf and Cg intersect at infinity.

Proof. Put R = k[x, y]. Since the claims are invariant under passing to the
algebraic closure of the base field, we may assume k = k.

Step 1. To show that d = |(Cf ∩ Cg)(k)| ≤ dimk R/(f, g), we use a partition of
unity argument similar to the one in the Chinese remainder theorem. We label the
points in (Cf ∩ Cg)(k) as pi = (xi, yi) for 1 ≤ i ≤ d, without repetitions, and we
put

hi(x, y) =
∏
xj 6=xi

(x− xj) ·
∏
yj 6=yi

(y − yj) ∈ R.

Then

hi(pj)

{
= 0 for j 6= i,

6= 0 for j = i.

Hence if we have
d∑
i=1

cihi ∈ (f, g) for certain ci ∈ k,

then evaluating at pi we get ci = 0 for all i. So the images of h1, . . . , hd in R/(f, g)
are linearly independent over k and therefore d ≤ dimk R/(f, g).

Step 2. Next we show that dimk R/(f, g) ≤ mn. For this we consider for d ∈ N0

the subspace

Rd =
{ ∑
i+j≤d

cijx
iyj | cij ∈ k

}
of polynomials of total degree at most d. It suffices to show dimk Rd/(f, g) ≤ mn
for all d. We have a diagram

Rd−m ×Rd−n
αd //⋂ Rd

πd //⋂ Rd/(f, g) //⋂ 0

R×R
α= (f,g) // R

π // R/(f, g) // 0

where π denotes the quotient map, α(u, v) = uf + vg, and the top row arises by
restriction of the bottom row to the respective subspaces. Note that πd is surjective
and im(αd) ⊂ ker(πd) by exactness of the bottom row. In general the top row will
not not be exact, but we can easily compute ker(αd): If (u, v) ∈ ker(αd), then by
definition uf = −vg, and since R is a unique factorization domain where f and g
have no common factor, it follows that g divides u and f divides v. Therefore we
obtain

ker(αd) =
{

(wg,−wf) | w ∈ Rd−m−n
}
' Rd−m−n.

Then

dimk R/(f, g) = dimk im(πd)

≤ dimk Rd − dimk im(αd)

= dimk Rd −
(
dimk Rd−m + dimk Rd−n − dimk ker(αd)

)
= dimk Rd − dimk Rd−m − dimk Rd−n + dimk Rd−m−n

=
(
d+2

2

)
−
(
d−m+2

2

)
−
(
d−n+2

2

)
+
(
d−m−n

2

)
= mn,
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where the last step is a computation with binomial coefficients left to the reader as
an exercise. Note that the inequality comes from the inclusion im(αd) ⊆ ker(αd)
and equality holds iff im(αd) = ker(πd).

Step 3. It remains to show that if Cf and Cg do not intersect at infinity, then
the inclusion im(αd) ⊆ ker(πd) is an equality. Since ker(πd) ⊂ ker(π) = im(α) by
the exactness of the bottom row of the diagram from the previous step, we can
write any h ∈ ker(πd) as

h = uf + vg for certain u, v ∈ R.

If deg(u) > d − m, then the terms of highest degree in the above identity must
cancel, so we get

u∗f∗ + v∗g∗ = 0.

But Cf and Cg do not intersect at infinity, so f∗ and g∗ have no common factor,
and it follows that

u∗ = wg∗

v∗ = −wf∗

for some w ∈ R. Then

h = (u− wg)f + (v + wf)g where

{
deg(u− wg) < deg(u),

deg(v + wf) < deg(v),

and by induction we reduce to (u, v) ∈ Rd−m ×Rd−n so that h ∈ im(αd). �

We now want to count the points in (Cf ∩ Cg)(k) with the right multiplicities
so that also the first inequality in the above proposition becomes an equality. The
idea is to split up dimk k[x, y]/(f, g) into local contributions:

Definition 3.2. (a) The local ring of the affine plane at p = (x0, y0) ∈ A2(k)
is defined by

OA2,p =
{
u
v ∈ k[x, y]

∣∣u, v ∈ k[x, y], v(p) 6= 0
}
,

i.e. it is the localization of k[x, y] at the maximal ideal (x− x0, y − y0). We denote
by

mp =
{
u
v ∈ k[x, y]

∣∣u(p) = 0 6= v(p)
}
E OA2,p

the unique maximal ideal of this local ring. Its residue field is OA2,p/mp = k.

(b) If f, g ∈ k[x, y] have no common factor, then for p ∈ A2(k) we define the
multiplicity

ip(f, g) = dimk OA2,p/(f, g)p for the ideal (f, g)p E OA2,p.

If f, g have no multiple factors over the algebraic closure of the base field, then
up to multiplication by a nonzero constant they are determined uniquely by the
curves Cf , Cg. In this case we will also use the notation ip(Cf , Cg) = ip(f, g) and
call this number the intersection multiplicity of the curves at the given point.

Example 3.3. (a) For p ∈ A2(k), we have ip(f, g) > 0 iff p ∈ (Cf ∩Cg)(k). We
say that

• Cf and Cg meet transversely at p if ip(f, g) = 1.

• Cf and Cg are tangent at p if ip(f, g) > 1.
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If Cf ⊂ P2 is a line, the definitions easily imply that ip(Cf , Cg) coincides with the
order of tangency that we defined in the previous section. For instance, at p = (0, 0)
the curves cut out by f(x, y) = y and g(x, y) = y − xn have the intersection
multiplicity

ip(f, g) = n

which is a different way of saying that p is a flex of the curve Cg for n > 1.

(b) For f(x, y) = y and g(x, y) = y2−x(x2−1), the Chinese remainder theorem
implies

k[x, y]/(f, g) ' k[x]/(x(x2 − 1))

' k[x]/(x)⊕ k[x]/(x− 1)⊕ k[x]/(x+ 1)

and ip(f, g) = 1 at each of the three points p = (0, 0), (1, 0), (−1, 0) ∈ (Cf ∩Cg)(k).

The above example indicates how to split up the global intersection number into
local contributions in general:

Theorem 3.4. For f, g ∈ k[x, y] without common factors, we have a natural
isomorphism

ϕ : k[x, y]/(f, g)
∼−→

∏
p

OA2,p/(f, g)p.

of k[x, y]-algebras, where the product on the right ranges over all p ∈ (Cf ∩Cg)(k).

Proof. We may assume k = k. The map in question is the product of the
localization maps

ϕp : k[x, y]/(f, g) � OA2,p/(f, g)p.

One easily sees that each of these localization maps is surjective. To see that their
product ϕ is also surjective, we use a partition of unity argument like in the Chinese
remainder theorem: Pick for each point p ∈ (Cf ∩Cg)(k) a polynomial hp ∈ k[x, y]
with

hp(q) =

{
1 for q = p,

0 for q ∈ (Cf ∩ Cg)(k) \ {p}.

Let N ∈ N with N > dimk OA2,q/(f, g)q for all q ∈ (Cf ∩ Cg)(k) \ {p}. Looking at
terms of smallest degrees in the expansion of polynomials around these points, one
deduces

hNp ∈ (f, g)q for all q ∈ (Cf ∩ Cg)(k) \ {p}.

On the other hand, by the surjectivity of the localization map ϕp we may find a
polynomial F ∈ k[x, y] such that ϕp(F ) = 1/hNp ∈ OA2,p/(f, g)p, and it then follows
that

ϕ(F ) = (0, . . . , 0, 1, 0, . . . , 0) ∈
∏
p

OA2,q/(f, g)q

is the standard basis vector in component of the product labelled by p.

So far we have not used that the base field is algebraically closed. However, this
assumption is required for the injectivity of ϕ, which we will deduce from Hilbert’s
Nullstellensatz: Given b ∈ ker(ϕ), we need to show that b ∈ (f, g). For this we
consider the ideal

a = {a ∈ k[x, y] | ab ∈ (f, g)} E k[x, y].

If a 6= (1) is not the unit ideal, then Hilbert’s Nullstellensatz over k = k says that
there exists a point p ∈ A2(k) with

a(p) = 0 for all a ∈ a.
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In particular f(p) = g(p) = 0 and so p ∈ (Cf ∩Cg)(k). Our assumption b ∈ ker(ϕ)
implies that

ϕp(b) = 0 ∈ OA2,p/(f, g)p.

By definition of the localization map ϕp we then find polynomials a, u, v ∈ k[x, y]
with a(p) 6= 0 and

b =
uf + vg

a
in OA2,p.

But then ab ∈ (f, g)Ek[x, y] and so a ∈ a which gives the contradiction h(p) = 0. �

Geometrically this means the following. Recall that with our naive set-theoretic
notion of a plane curve one has Cf = Cf2 for any homogenous f ∈ k[w, x, y]. By
the degree d = deg(C) of a plane curve C ⊂ P2 we mean the smallest degree of
a homogenous polynomial f [w, x, y] such that we have C = Cf . Similarly, we say
that two plane curves have no common component if they can be cut out by two
polynomials without common factors. We then have

Corollary 3.5 (Bézout’s theorem). If C1, C2 ⊂ P2 are curves with no common
component, then ∑

p∈(C1∩C2)(k)

ip(C1, C2) = deg(C1) deg(C2).

Proof. Without loss of generality k = k. Applying a projective linear coordinate
transformation we may furthermore assume that C1 and C2 do not intersect at
infinity. Then the claim follows from proposition 3.1 and theorem 3.4. �

Recall that to pass back from projective to affine curves, we have associated in
remark 1.3 to any homogenous polynomial f(w, x, y) ∈ k[w, x, y] the inhomogenous
polynomial

f [(x, y) = f(1, x, y) ∈ k[x, y].

The degree of the latter may be smaller than the one of the former, but we have:

Corollary 3.6. Let f, h ∈ k[w, x, y] be homogenous. If the curves Cf , Ch ⊂ P2

have no common component and do not intersect at infinity, then the following are
equivalent for g ∈ k[w, x, y] homogenous:

(1) g[ ∈ (f [, h[)p E OP2,p for all p ∈ (Cf ∩ Ch)(k).

(2) There exist homogenous a, b ∈ k[w, x, y] such that

g = af + bh and

{
deg(a) = deg(g)− deg(f),

deg(b) = deg(g)− deg(h).

Proof. Condition (2) obviously implies (1). For the converse, if (1) holds, then
the isomorphism

k[x, y]/(f [, h[)
∼−→

∏
p

OA2,p/(f
[, h[)p

from theorem 3.4 implies that g[ ∈ (f [, h[) E k[x, y]. Homogenizing again we find
that

wrg(w, x, y) ∈ (f, h) E k[w, x, y] for some r ∈ N0.

Expanding polynomials in terms of the variable w and using that Cf and Ch do
not intersect at infinity, one then reduces to the case where r = 0. �

Corollary 3.7. Let f, g, h ∈ k[w, x, y] be homogenous polynomials with no
common factor, and assume all points of the intersection (Cf ∩Ch)(k) are smooth
on Cf . If Cf ·(Cg−Ch) ≥ 0, then there is a curve C ⊂ P2 of degree deg(g)−deg(h)
such that

Cf · (Cg − Ch) = Cf · C.
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Proof. Up to a projective linear change of coordinates we may assume that the
curves Cf , Ch ⊂ P2 do not intersect at infinity. Then one may check as an exercise

that if p ∈ (Cf ∩ Ch)(k) is a smooth point on the curve Cf and ip(f, g) ≥ ip(f, h),
then

g[ ∈ (f [, h[)p E OA2,p.

Then corollary 3.6 says that there exist homogenous polynomials a, b ∈ k[w, x, y]
such that

g = af + bh and

{
deg(a) = deg(g)− deg(f),

deg(b) = deg(g)− deg(h).

Then

Cf · Ch = Cf · Caf+bh

= Cf · Cbh
= Cf · Cb + Ch

and hence C = Cb does the job. �

Example 3.8. Smoothness is essential for the above. The curve Cf ⊂ P2 cut
out by the cubic

f(w, x, y) = y2w − x3

has a cusp at p = [1 : 0 : 0]. If we denote by q = [0 : 0 : 1] the point at infinity, one
computes

Cf · Cg = 4[p] + 2[q] for g(w, x, y) = x2

Cf · Ch = 3[p] for h(w, x, y) = y

and hence

Cf · (Cg − Ch) = [p] + 2[q] ≥ 0.

Here deg(g)− deg(h) = 1, but the only line passing through p, q is C = Cx and we
have

Cf · C = 2[p] + [q] 6= Cf · (Cg − Ch).

Thus corollary 3.7 may fail in the presence of singular points. In the next section
we will apply it in the following setup:

Corollary 3.9. Let E ⊂ P2 be a smooth cubic and C1, C2 ⊂ P2 two other
cubics, not necessarily smooth. If

E · C1 = [p1] + · · ·+ [p8] + [p]

E · C2 = [p1] + · · ·+ [p8] + [q]

for some p1, . . . , p8, p, q ∈ E(k) (not necessarily distinct), then p = q.

Proof. Working over the algebraic closure k, pick a line ` ⊂ P2 through p not
tangent to E. Then

E · ` = [p] + [r] + [s]

with p, r, s ∈ E(k) pairwise distinct. So

E · (` ∪ C2) = [p] + [r] + [s] + [p1] + · · ·+ [p8] + [q]

= [q] + [r] + [s] + E · C1

and by corollary 3.7 there exists a line `′ with E · `′ = [q] + [r] + [s]. Since both
lines ` and `′ pass through the two distinct points r 6= s, we must have `′ = ` and
therefore

[q] + [r] + [s] = E · `′ = E · ` = [p] + [r] + [s],

which implies p = q as claimed. �
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4. The group law on elliptic curves

The intersection theory developed above will allow to extend the group law from
theorem I.5.1 to elliptic curves over arbitrary fields k. We begin with

Definition 4.1. An elliptic curve over a field k is a pair (E, o) where E ⊂ P2

is a smooth cubic over k and o ∈ E(k) is a chosen point.

The basic example is motivated by the differential equation of the Weierstrass
function over the complex numbers:

Lemma 4.2. For any cubic polynomial g(x) ∈ k[x] without multiple roots in k
we have the elliptic curve (E, o), where

• E = Cf ⊂ P2 is the cubic defined by f(1, x, y) = y2 − g(x),

• o = [0 : 0 : 1] ∈ E(k) is the point at infinity, which is a flex point.

Proof. The main point is to check the smoothness of E. On the chart A2 ⊂ P2

with coordinates (x, y) = [1 : x : y], this follows from the fact that the system of
equations

f(1, x0, y0) = ∂
∂xf(1, x0, y0) = ∂

∂yf(1, x0, y0) = 0

has no solution (x0, y0) ∈ A2(k) since otherwise we would have g(x0) = g′(x0) = 0
contradicting our assumption that the polynomial g(x) has no double root in the
algebraic closure of the base field. It remains to check that the cubic E ⊂ P2 has no
singular point at infinity, i.e. of the form [0 : x0 : y0]. In homogenous coordinates E
is the zero locus of

f(w, x, y) = y2w − w3g(x/w)

= y2w − ax3 − bwx2 − cw2x− dw3

for some a ∈ k∗ and b, c, d ∈ k, hence putting w = 0 one sees that the only point
at infinity is

0 = [0 : 0 : 1] ∈ E(k).

This is the origin in the chart with affine coordinates (w, x) = [w : x : 1] where E
is given by

f(w, x, 1) = w − ax3 − bwx2 − cw2x− dw3 = 0,

and it is a smooth point because ∂
∂wf(0, 0, 1) 6= 0. To check that o is a flex point,

note that the tangent line to E at this point is parametrized in the above chart by

t 7→ (w(t), x(t)) = (0, t),

and f(w(t), x(t), 1) = −ax3 has a triple zero at t = 0 as required. �

In the above example the point o ∈ E(k) is a flex. In the general definition of an
elliptic curve we did not assume this, but we will see in section 6 that any elliptic
curve can be transformed in the above form by changing the embedding E ⊂ P2

suitably. But let us first discuss the group structure on elliptic curves, which does
not require the normal form from the above lemma.

Remark 4.3. Let E ⊂ P2 be a smooth cubic and ` ⊂ P2 a line over k. Then
precisely one of the following cases occurs:

(1) (` ∩ E)(k) = {p1, p2, p3}, with ` meeting E transversely at p1, p2, p3.

(2) (` ∩ E)(k) = {p1, p2}, with ` transverse to E at p1 but tangent at p2.

(3) (` ∩ E)(k) = {p1} consists of a single point, which is a flex point to E.
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Counting with multiplicities, we always have ` ·E = [p1] + [p2] + [p3] where p3 = p2

in the second and p3 = p2 = p1 in the third case. Note that if two of the three
points are defined over a given field K ⊇ k then so is the third. We thus obtain a
map · : E(K) × E(K) → E(K) by imposing pi · pj = pk for {i, j, k} = {1, 2, 3} in
each of the above three situations.

Theorem 4.4. Let (E, o) be an elliptic curve over k. Then for any field K/k
the composition law

+ : E(K)× E(K) −→ E(K), p+ q = o · (p · q)
makes E(K) into an abelian group whose neutral element is the point o ∈ E(K).

Proof. It is obvious from the definitions that + is commutative and o + p = p
for all p ∈ E(K). Furthermore, if we define the inverse by −p = p · (o · o), then one
has

p+ (−p) = p+ p · (o · o) = o · (p · (p · (o · o)) = o · (o · o) = o

by unravelling the definitions. So it only remains to check associativity, for which
we must show

p · (q + r) = (p+ q) · r
for all p, q, r ∈ E(K). For this we consider the the following picture which involves
three cubics:

• the smooth cubic E which is drawn in black,
• the union C1 = 〈q, r〉 ∪ 〈p, q + r〉 ∪ 〈o, p · q〉 of the three solid red lines,
• the union C2 = 〈p, q〉 ∪ 〈p+ q, r〉 ∪ 〈o, q · r〉 of the three dashed blue lines.

By construction we have

E · C1 = [o] + [p] + [q] + [r] + [p · q] + [q · r] + [p+ q] + [p+ r] + [p · (q + r)],

E · C2 = [o] + [p] + [q] + [r] + [p · q] + [q · r] + [p+ q] + [p+ r] + [(p+ q) · r].
These two intersections agree in eight of the nine points. Hence by corollary 3.9
the ninth point also agrees, so p · (q + r) = (p+ q) · r as required. �
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5. Abel’s theorem and Riemann-Roch

Over k = C the theory of elliptic functions has given for any lattice Λ ⊂ C an
isomorphism

C/Λ ∼−→ E ⊂ P2

z mod Λ 7→ [w : x : y] = [1 : ℘(z) : ℘′(z)].

Moreover, we have seen that any meromorphic function on the complex torus C/Λ
is a rational function in the Weierstrass function and its derivative, which in terms
of the above isomorphism become

℘(z) = x/w,

℘′(z) = y/w.

On the right hand side we have functions on E ⊂ P2 which arise as the restriction of
rational homogenous function of degree zero in the variables x, y, z. This explains
what should be the right algebraic replacement for the notion of “meromorphic
functions” on curves over an arbitrary field k:

Definition 5.1. Consider a plane curve C = Cf ⊂ P2 cut out by an irreducible
homogenous polynomial f ∈ k[w, x, y]. After a projective linear coordinate change
we may assume that the curve intersects the standard affine chart. Let f [ ∈ k[x, y]
be the dehomogenization as in remark 1.3, then k[x, y]/(f [) is an integral domain
whose quotient field

k(C) = Quot
(
k[x, y]/(f [)

)
is called the function field of the curve. Its elements are called rational functions on
the curve. It is a simple exercise to check that in terms of homogenous polynomials
the function field can be written as the residue field k(C) = OP2,C/(f) of the local
ring

OP2,C =
{
g/h ∈ k(w, x, y) | g, h ∈ k[w, x, y] homogenous,deg(g) = deg(h), f - h

}
,

and we write

(g/h)|C = (g/h mod (f)) ∈ k(C)

for the rational function which is the residue class of an element g/h ∈ OA2,C .

Definition 5.2. Let C ⊂ P2 be a smooth curve. If F = (g/h)|C ∈ k(C)∗ is a
rational function other than the zero function, we define its order of zeroes or poles
at p ∈ C(k) by

ordp(F ) = ip(f, g)− ip(f, h).

One easily checks that this is independent of the chosen representative g/h. The
first step in the proof of corollary 3.7 shows that the following three properties are
equivalent:

• We have ordp(F ) > 0.

• For any g, h with F = (g/h)|C we have g[ ∈ (f [, h[)p E OA2,p.

• There exist g̃, h̃ with F = (g̃/h̃)|C such that moreover h̃(p) 6= 0.

If these properties hold, we say that F is defined at p and put F (p) = g̃(p)/h̃(p) ∈ k.

The above notion of the order of vanishing or poles of rational functions is an
algebraic version of the analogous notion for meromorphic functions:



5. ABEL’S THEOREM AND RIEMANN-ROCH 61

Example 5.3. (a) Over the complex numbers we have seen in theorem I.4.2
that the sum of all pole and zero orders of a meromorphic function vanishes. In the
present algebraic setting the analogue is provided by Bézout’s theorem 3.4 which
gives ∑

p∈Cf (k)

ordp((g/h)|Cf ) = deg(f) · (deg(g)− deg(h)) = 0.

(b) Let f(1, x, y) = y2 − ϕ(x) for a cubic polynomial ϕ(x) = x3 + ax+ b ∈ k[x]
without multiple roots. Then the definitions imply that for the point p = [0, 0, 1]
one has

ip(f, x) = 1 since k[w, x]/(f(w, x, 1), x) ' k,
ip(f, y) = 0 since y 6= 0 near the point p ∈ Cf (k),

ip(f, w) = 3 since k[w, x]/(f(w, x, 1), w) ' k[x]/(x3).

Hence

ordp
(
(x/w)|Cf

)
= −2 and ordp

(
(y/w)|Cf

)
= −3

as expected from the pole orders of the Weierstrass function and its derivative.

Definition 5.4. A divisor on a smooth plane curve C ⊂ P2 is a finite formal
sum

D =
∑

p∈C(k)

np · [p]

of points over the algebraic closure with coefficients np = np(D) ∈ Z. Let Div(C)
denote the abelian group of divisors. The degree of a divisor is its image under the
homomorphism

deg : Div(C) −→ Z, D 7→
∑
p

np(D).

Put Div0(C) = ker(deg). Sending a rational function to its divisor of zeroes gives
a homomorphism

div : k(C)∗ −→ Div0(C), F 7→
∑
p

ordp(F ) · [p]

with image is the subgroup of principal divisors denoted by PDiv(C). We denote
the quotient by

Pic0(C) =
Div0(C)

PDiv(C)

and to keep track of the base field we write

Div0(C)(k) = {D ∈ Div0(C) | np(D) = 0 ∀p ∈ C(k) \ C(k)},
PDiv(C)(k) = PDiv(C) ∩Div0(C)(k),

Pic0(C)(k) = Div0(C)(k)/PDiv0(C)(k).

We say that two divisors D1, D2 are linearly equivalent over k and write D1 ∼ D2

if their difference is a principal divisor in PDiv(C)(k).
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Theorem 5.5 (Abel). Let (E, o) be an elliptic curve over k. Then we have a
natural isomorphism of groups

E(k)
∼−→ Pic0(E)(k), p 7→ [p]− [o].

Proof. (a) Surjectivity. By induction on the number of points that enter with
nonzero multiplicity in a given divisor, it suffices to show that for all p, q ∈ E(k)
there exists r ∈ E(k) with [p] + [q] ∼ [r]− [o]. For this denote by

• ` the line through p and q (tangent to E if p = q),

• p · q ∈ E(k) the third point of intersection in ` ∩ E,

• m the line through o and p · q,
• r = o · (p · q) the third point in m ∩ E.

Let g, h ∈ k[w, x, y] be homogenous linear forms defining the lines ` respectively m,
then the rational function F = g/h ∈ k(E)∗ has zeroes and poles precisely at the
points of intersection of the above two lines with the given elliptic curve and hence
we get

div(F ) = [p] + [q] + [p · q]− [p]− [p · q]− [r] = [p] + [q]− [r]− [o].

(b) Injectivity. Given p, q ∈ E(k) with [p]− [o] ∼ [q]− [o], there exists F ∈ k(E)∗

with divisor

div(F ) = [p]− [q].

Then F = g/h for homogenous polynomials g, h ∈ k[w, x, y] of the same degree d
such that

E · Cg = [p] + [p1] + · · ·+ [p3d−1]

E · Ch = [q] + [p1] + · · ·+ [p3d−1]

for certain p1, . . . , p3d−1 ∈ E(k). Let L ∈ k[w, x, y] be a homogenous linear form
over k with

E · CL = [o] + [p] + [o · p],

then (ChL −Cg) ·E = [o] + [q] + [o · p] ≥ 0, so corollary 3.7 gives a line ` ⊂ P2 such
that

` · E = [o] + [q] + [o · p].

By definition of the point o · p ∈ E(k) it follows that q = p as required.

(c) Additivity. It is clear from the proof of surjectivity that the above bijection
sends the group law from theorem 4.4 to the addition of divisors in Pic0(E)(k);
note that here we have only used the definition of the group law, hence this gives
an independent argument that + is indeed associative and commutative. �

Often we are not interested in the precise zeroes and poles but only want to
bound them from below. For this we make the following

Definition 5.6. For D ∈ Div(E)(k) the space of rational functions with poles
bounded by D is

L (D) =
{
F ∈ k(E)∗ | div(F ) ≥ −D

}
Since Abel’s theorem allows to decide when two divisors are linearly equivalent, the
following gives complete control on rational functions with given divisors:
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Theorem 5.7 (Riemann-Roch for elliptic curves). Let D ∈ Div(E)(k).

(1) We have L (D) = ∅ if deg(D) < 0 or if deg(D) = 0 but D 6∼ 0.

(2) Otherwise we have

dimk L (D) =

{
1 if D ∼ 0,

d if d = deg(D) > 0.

Proof. If L (D) 6= ∅, pick any F ∈ L (D). Then div(F ) ≥ −D. Since principal
divisors have degree zero, it follows in particular that deg(D) ≥ 0 and equality
can only hold if D = div(F ), in which case D ∼ 0. In this last case we have an
isomorphism

L (D)
∼−→ L (0), G 7→ F ·G

where L (0) = k because the only rational functions without zeroes or poles are
the constant functions (exercise). Let us next discuss the case deg(D) = 1. Here
Abel’s theorem gives a rational function F ∈ k(E) whose divisor has the form
div(F ) = D − [p], where p ∈ E(k) is the sum of the points in D counted with
multiplicities. Then

L (D)
∼−→ L ([p]), G 7→ F ·G

and L ([p]) = k since any rational function with at most a simple pole must be
constant, for instance by the injectivity in Abel’s theorem. The cases deg(D) ≥ 2
can now be treated by induction on the degree: Pick p 6= q ∈ E(k). Without loss
of generality we may assume D 6∼ [p] + [q] (exercise). By induction on the degree
there exists

G ∈ L (D − [q]) \L (D − [p]− [q]) ⊂ L (D).

Then the map

ϕ : L (D) � k, F 7→ (F/G)(p)

is surjective because it is k-linear and satisfies ϕ(G) = 1. The kernel of this map ϕ
is

ker(ϕ) = {F ∈ L (D) | ordp(F ) > ordp(G) = np(D)} = L (D − [p]),

hence dimk L (D) = 1 + dimk L (D − [p]) and we are done by induction. �

6. Weierstrass normal forms

When talking about curves, we have so far only looked at coordinate changes
induced by projective linear transformations of the ambient projective plane, see
remark 1.4. For more flexibility we should allow more general morphisms:

Definition 6.1. Consider the plane curve Cf ⊂ P2 cut out by an irreducible
homogenous polynomial f ∈ k[w, x, y]. Given rational functions ϕ0, ϕ1, ϕ2 ∈ k(C1),
not all three zero, with

g(ϕ0, ϕ1, ϕ2) = 0

for some other irreducible homogenous polynomial g ∈ k[r, s, t], we obtain a family
of maps

Cf (K) \ Σ(K) −→ Cg(K), p 7→
[
ϕ0(p) : ϕ1(p) : ϕ2(p)

]
where K/k ranges over all extensions of the base field and where Σ(K) ⊂ Cf (K)
is the finite subset of points at which some ϕi has a pole or at which all three of
them vanish. Up to modifications of these finite subsets, the family of maps only
depends on the point ϕ = [ϕ0 : ϕ1 : ϕ2] ∈ P2(k(Cf )). We call ϕ a rational map and
write

ϕ = [ϕ0 : ϕ1 : ϕ2] : Cf 99K Cg
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to indicate that we think of this as a map between subsets of the respective two
curves. There is an obvious notion of composition of rational maps; we say that a
rational map ϕ is birational if has an inverse ϕ−1 for this notion of composition.

Exercise 6.2. Show that any non-constant rational map ϕ : Cf 99K Cg induces
an embedding

ϕ∗ : k(Cg) ↪→ k(Cf ), F 7→ F (ϕ0, ϕ1, ϕ2),

of function fields, and that this embedding is an isomorphism iff ϕ is birational.

In the definition of rational maps there was a considerable ambiguity. We say
that a rational map ϕ : Cf 99K Cg is defined at p ∈ Cf (K) if it can be written in
the form

ϕ = [ψ0 : ψ1 : ψ2]

where the ψi are rational functions defined at p in the sense of 5.2 and ψi(p) 6= 0
for at least one index i ∈ {0, 1, 2}. We say that the rational map ϕ is a morphism if
it is defined at every point p ∈ Cf (K), for all K/k. Finally, the rational map ϕ is
called an isomorphism if it is birational and both ϕ and ϕ−1 are morphisms. The
following is an analog of Riemann’s removable singularities theorem:

Lemma 6.3. If Cf ⊂ P2 is smooth, then any rational map ϕ : Cf 99K Cg is a
morphism. Hence any birational map between smooth curves is an isomorphism.

Proof. Suppose that the curve Cf ⊂ P2 is smooth. Given p ∈ Cf (K) for some
extension field K/k, pick i0 ∈ {0, 1, 2} such that the rational function ϕi0 6≡ 0 is not
the zero function but the order of vanishing ordp(ϕi0) is smallest possible. Then
we have ϕ = [ψ0 : ψ1 : ψ2] where ψi = ϕi/ϕi0 . Since ordp(ψi) ≥ 0 and ψi0 ≡ 1, it
follows that the rational map ϕ is defined at p. �

The smoothness is essential for the above: For f(w, x, y) = wy2−x3 ∈ k[w, x, y]
the map

ϕ : Cf 99K P1, [1 : x : y] 7→ [x : y]

is birational, but it cannot be extended to a morphism. Coming back to smooth
curves, the above notion of isomorphism is much more flexible than projective linear
transformations. For smooth cubics it allows to pass to the following normal form1

where any given point can be made into a flex point:

Theorem 6.4. Let (E, o) be an elliptic curve with marked point o ∈ E(k).

(1) There exists an isomorphism ϕ : E
∼−→ Cf ⊂ P2 onto a smooth plane

cubic cut out in affine coordinates by an equation in the long Weierstrass
form

f(1, x, y) = y2 + a1xy + a3y − (x3 + a2x
2 + a4x+ a6)

with ai ∈ k such that the point o ∈ E(k) is sent to ϕ(o) = [0 : 0 : 1].

(2) If char(k) 6= 2, 3, then we can moreover assume a1 = a2 = a3 = 0 so that
the equation of the elliptic curve is transformed into the short Weierstrass
form

y2 = x3 − a4x− a6.

1 The labelling of the coefficients is chosen in such a way that if we attach the weight i to
the coefficient ai and let x, y have weights 2, 3 respectively, then each summand in the equation
will be homogenous of total weight six.
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Proof. (1) Iteratively using the Riemann-Roch theorem 5.7, we get X,Y ∈ k(E)
such that

L (1[o]) = 〈1〉,
L (2[o]) = 〈1, X〉,
L (3[o]) = 〈1, X, Y 〉,
L (4[o]) = 〈1, X, Y,X2〉,
L (5[o]) = 〈1, X, Y,X2, XY 〉,

as a vector space over k, with ordo(X) = −2 and ordo(Y ) = −3. At the next step
we find

1, X, Y,X2, XY,X3, Y 2 ∈ L (6[o])

but the right hand side has dimension six, so there is a nontrivial linear relation
between the seven elements on the left. In this relation the coefficients of y2 and x3

cannot both vanish, indeed L (5[o]) has dimension five. To normalize these two
nonvanishing coefficients, we pick any rational function Z ∈ k(E)∗ with ordo(Z) = 1
and rescale X,Y so that

(XZ2)(o) = +1,

(Y Z3)(o) = −1.

Taking Z6 times our previous relation and evaluationg at the point o ∈ E(k), we
see that the coefficients of y2 and x3 are negative to each other. Without loss of
generality we may take them to be ±1. Then our relation reads f(X,Y ) = 0 for a
polynomial

f(x, y) = y2 + a1xy + a3y − (x3 + a2x
2 + a4x+ a6) ∈ k[x, y],

so we get a rational map

ϕ = [1 : X : Y ] : E 99K Cf ⊂ P2

and by lemma 6.3 this will be an isomorphism if we can show that the curve C = Cf
is smooth and that ϕ is birational.

One easily sees that f(x, y) ∈ k[x, y] is irreducible, so we can talk about the
function field of C and the birationality of ϕ follows from proposition 6.5 below. It
remains to discuss smoothness. By direct inspection [0 : 0 : 1] ∈ C(k) is a smooth
point. Any other point in C(k) has the form

p = [1 : x0 : y0] ∈ C(k)

with x0, y0 ∈ k. Since we defined the notion of smoothness by passing to the
algebraic closure of the base field, we may assume from the start that x0, y0 ∈ k
and then after a translation (x, y) 7→ (x− x0, y − y0) that x0 = y0 = 0. Note that
the polynomial f(x, y) will change under this translation, but the new polynomial
will still have long Weierstrass form. Now if [1 : 0 : 0] ∈ C(k) is a singular point
of C, then the constant term and the linear terms in the polynomial f(x, y) must
vanish so that

f(x, y) = y2 + a1xy − (x3 − a2x
2).

Then C = Cf is a nodal or cuspidal cubic, and from exercise 6.2 one easily sees
that

ψ : C 99K P1 with ψi =


1, for i = 0,

(x/w)|C for i = 1,

(y/w)|C for i = 2,
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is birational. Then ψ ◦ ϕ : E 99K P1 is a birational map between smooth curves,
hence an isomorphism by lemma 6.3. But this is impossible since isomorphisms of
smooth curves preserve the pole order of rational functions (exercise) and on P1

there exist rational functions with only a single simple pole. This contradiction
shows that the curve C = Cf must be smooth.

(2) Consider a cubic equation y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 in long

Weierstrass form. If the base field has odd characteristic, then completing the
square via the substitution y 7→ y − 1

2 (a1x + a3) we can make a1 = a3 = 0. If we
also assume that the characteristic of the base field is not three, then completing
the cube via a further substitution x 7→ x− 1

3a2 we can make a2 = 0. �

In the above proof we have used the following description for the function field
of elliptic curves, which is the analog of theorem I.4.7:

Proposition 6.5. Let (E, o) be an elliptic curve. Let X,Y ∈ k(E) be rational
functions with no poles except at the point o ∈ E(k) where their pole orders are
given by ordo(X) = −2 and ordo(Y ) = −3. Then any rational function F ∈ k(E)
can be written as

F = h1(X) + h2(X) · Y with h1, h2 ∈ k(x).

If F has poles at most in the point o, then we can in fact take h1, h2 ∈ k[x].

Proof. We first deal with the case that F ∈ k(E) has no poles except possibly
at o ∈ E(k). If F has no poles at all, then it is a constant and we are done. So we
may assume that the pole order satisfies −ordo(F ) ≥ 2. Take m ∈ N0, n ∈ {0, 1}
with

ordo(F ) = −2m− 3n = ordo(X
mY n),

then for a suitable constant c ∈ k∗ the rational function G = F − c · XmY n will
have ordo(G) > ordo(F ) and we are done by induction on the pole order.

To deal with the general case, if orda(F ) < 0 for some a ∈ E(k) \ {o}, then the
function

F1 = (X −X(a))N · F
for N � 0 has the set of poles bounded by F−1

1 (∞) ⊆ F−1(∞) \ {a}. Inductively

we find points a1, . . . , an ∈ E(k) \ {0} and natural numbers N1, . . . , Nn ∈ N such
that the rational function

Fn = F ·
N∏
i=1

(X −X(ai))
Ni ∈ k(E)

has poles only in the point o, which reduces us to the case considered above. �

7. The j-invariant

In the last section we have seen that every elliptic curve is isomorphic to an
elliptic curve in Weierstrass normal form, with the flex at infinity as its marked
point. Here by an isomorphism of elliptic curves we mean an isomorphism of cubic
curves sending the marked points to each other. To classify elliptic curves up to
isomorphism, it remains to see to what extent the Weierstrass form in theorem 6.4
is unique. The only ambiguity comes from projective linear transformations:

Lemma 7.1. Let E,E′ ⊂ P2 be elliptic curves defined by two equations in long
Weierstrass form, with the point at infinity o = [0 : 0 : 1] as the marked point. Then
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any isomorphism ϕ : (E, o)
∼−→ (E′, o) is given in affine charts by a coordinate

change

x 7→ λ2 x+ a

y 7→ λ3 y + b · λ2 x+ c with λ ∈ k∗ and a, b, c ∈ k.

Proof. Let X,Y ∈ k(E) and X ′, Y ′ ∈ k(E′) be the rational functions on the
elliptic curves obtained as the restriction of the rational functions x/w, y/w on the
ambient projective plane. We have already remarked earlier that isomorphisms
between smooth curves preserve the order of poles and zeroes of rational functions,
hence

ϕ∗(X ′) ∈ L (2[o]) = 〈1, X〉,
ϕ∗(Y ′) ∈ L (3[o]) = 〈1, X, Y 〉.

So we have

ϕ∗(X ′) = αX + a,

ϕ∗(Y ′) = βX + γY + c,

with α, β, γ, a, c ∈ k. Taking the Weierstrass equation satisfied by (X,Y ) and the
pullback of the Weierstrass equation satisfied by (X ′, Y ′), we get in the function
field k(E) two equations

Y 2 −X3 − · · · = 0,

γ2 Y 2 − α3X3 − · · · = 0,

where · · · are terms of pole order less than six. These equations imply γ2 = α3 and
hence

γ = γ3/γ2 = γ3/α3 = λ3

α = α3/α2 = γ2/α2 = λ2

for λ = γ/α. Now the result follows with b = λ−2 · β. �

Of course for any given pair of elliptic curves only very few values of (λ, a, b, c)
actually occur in the above lemma. Let us be more specific in the case of short
Weierstrass equations:

Corollary 7.2. Let E = Cf and E′ = Cg be defined by short Weierstrass
polynomials

f(1, x, y) = y2 − (x3 − a4x− a6),

g(1, x, y) = y2 − (x3 − b4x− b6),

and put o = [0 : 0 : 1]. If char(k) 6= 2, 3, then any isomorphism ϕ : (E, o)
∼−→ (E′, o)

has the form

(x, y) 7→ (λ2x, λ3y) for some λ ∈ k∗ with

{
a4 = λ4 b4,

a6 = λ6 b6.

Proof. With notations as in the previous lemma the isomorphism ϕ must be a
linear map with coefficients (λ, a, b, c). Since ϕ(E) ⊂ C ′ = Cg, it follows that the
cubic

h(x, y) = g(1, λ2x+ a, λ3y + b · λ2x+ c ) ∈ k[x, y]

restricts to zero on the affine part of the smooth cubic curve E = Cf , which can
happen only if

h(x, y) = γ · f(1, x, y) for some γ ∈ k \ {0}.
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Since the right hand side is in short Weierstrass form, it follows that h(x, y) does
not involve any of the monomials xy, y, x2 and for char(k) 6= 2, 3 we get by direct
inspection that a = b = c = 0. But then γ = λ6 and the claim follows. �

In what follows we will assume for simplicity that char(k) 6= 2, 3. We have seen
in theorem 6.4 that then any elliptic curve is isomorphic to one cut out by a short
Weierstrass equation

f(1, x, y) = y2 − (x3 + a4x+ a6) = 0

with a4, a6 ∈ k. Note that after the substitution y 7→ 2y this Weierstrass equation
becomes

y2 = 4x3 − g2x− g3 where

{
g2 = −4a4,

g3 = −4a6.

So in analogy with the complex case, we define the discriminant and the j-invariant
for char(k) 6= 2, 3 by

∆(f) = g3
2 − 27g2

3

j(f) = 123 g3
2/∆(f)

where for the latter we use

Lemma 7.3. We have ∆(f) 6= 0 iff the cubic Cf ⊂ P2 is smooth.

Proof. This follows from lemma 4.2, because the discriminant vanishes iff the
polynomial 4x3 − g2x− g3 has a double root in k. �

We can now classify elliptic curves up to isomorphism over any algebraically
closed field in the same way as we did over the complex numbers:

Theorem 7.4. (a) If the base field k = k is algebraically closed, the j-invariant
induces a bijection

j :
{

isomorphism classes of elliptic curves (E, o) over k
} ∼−→ A1(k).

(b) For char(k) 6= 2, 3 the automorphism groups of elliptic curves over k are given
by

Autk(E, o) '


Z/4Z for j(E) = 0,

Z/6Z for j(E) = 123,

Z/2Z otherwise.

Proof. We give the proof only for char(k) 6= 2, 3, although statement (a) holds
more generally. We first show that if f, h ∈ k[w, x, y] are homogenous cubics in
short Weierstrass form such that the corresponding elliptic curves (Cf , o), (Cg, o)

are isomorphic over k, then
j(f) = j(g).

Indeed, by definition the j-invariant does not change under extensions of the base
fields and so we may assume that the two elliptic curves are already isomorphic
over k. Since char(k) 6= 2, 3, corollary 7.2 then says that there exists λ ∈ k∗ such
that

g2(f) = λ4 g2(g) and g3(f) = λ6 g3(g),

so the two cubics have the same j-invariant. Thus for an elliptic curve (E, o) we
can put

j(E) := j(f) for any short Weierstrass cubic f with E ' Cf .

So far we have attached to any elliptic curve a j-invariant which depends only on
the isomorphism class of the curve over the algebraic closure k. We next claim
that conversely the isomorphism class of (E, o) over k is determined uniquely by
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the value j = j(E). We may assume that the elliptic curve is cut out by a cubic
equation in the short Weierstrass form y2 = x3 + a4x + a6. The idea is to look
for λ ∈ k such that

E
∼−→ Cf , (x, y) 7→ (λ2x, λ3y)

where f ∈ k[w, x, y] is a short Weierstrass cubic depending only on j:

Case 1. For j 6= 0, 123 we have a4a6 6= 0. Taking λ ∈ k∗ with λ4a6 = λ6a4 we
arrive at

f(x, y) = y2 − (x3 − cx− c)
for some c ∈ k. One easily checks

j = j(f) = 123 · 4c

4c− 27
⇐⇒ 4c =

27j

j − 123

so f(x, y) only depends on j. Moreover, corollary 7.2 shows Autk(Cf , o) = {±1}.

Case 2. For j = 123 we have a6 = 0 and a4 6= 0. Taking λ ∈ k∗ with λ4 = a4

we arrive at
f(x, y) = y2 − (x3 + x),

and in this case corollary 7.2 shows Autk(Cf , o) = {λ ∈ k | λ4 = 1} ' Z/4Z.

Case 3. For j = 0 we have a4 = 0 and a6 6= 0. Taking λ ∈ k∗ with λ6 = a6 we
arrive at

f(x, y) = y2 − (x3 + 1)

and in this case corollary 7.2 shows Autk(Cf , o) = {λ ∈ k | λ6 = 1} ' Z/6Z. �

Remark 7.5. Even if two elliptic curves E,E′ ⊂ P2 are both defined by short
Weierstrass equations over the base field k and have j(E) = j(E′), they are not
necessarily isomorphic over k. However, the same argument like in the above proof
shows that they will become isomorphic over any field extension K ⊃ k containing
a solution λ ∈ K∗ of the equations λ4 = b4/a4 and λ6 = b6/a6.

Remark 7.6. For char(k) = 2, 3 the above definitions do not work, but there
is a more general definition that works in all cases. To motivate it, consider a long
Weierstrass equation

f(1, x, y) = y2 + a1xy + a3y − (x3 + a2x
2 + a4x+ a6) = 0.

If char(k) 6= 2, then completing the square by the substitution ỹ = 1
2 (y− a1x− a3)

we get

ỹ2 = 4x3 + b2x
2 + 2b4x+ b6 where


b2 = a2

1 + 4a2,

b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6.

Let α1, α2, α3 ∈ k denote the roots of the cubic polynomial 4x3 + b2x
2 + 2b4x+ b6,

then for the discriminant of this cubic polynomial one can check with some patience
that

∆(f) := 16 ·
∏
i<j

(αi − αj)2 ∈ Z[a1, . . . , a6]

is an integer polynomial in the coefficients a1, . . . , a6 of the original Weierstrass
equation. This polynomial makes sense regardless of the base field and gives a
general definition of the discriminant; similarly one can define the j-invariant. For
char(k) 6= 2, 3 this agrees with our previous definition, and part (a) of theorem 7.4
holds in general, though part (b) and corollary 7.2 have to be modified, see the
books by Husemöller or Silverman.





CHAPTER III

Arithmetic of elliptic curves

1. Rational points on elliptic curves

The theory from the preceding chapter was mostly about geometric properties
that depend only on the algebraic closure of the base field. In this chapter we will
discuss some more arithmetic results about the group of rational points on elliptic
curves over number fields. Let E be an elliptic curve over a subfield k ⊂ Q. By the
first chapter

E(C) ' C/Λ
is a complex torus, the quotient of the complex plane by a lattice Λ ⊂ C. Over the
reals we have

Lemma 1.1. Let E be the elliptic curve cut out by y2 = g(x) where g(x) ∈ R[x]
is a real cubic, then

E(R) =

{
S1 if g(x) has only one real root,

S1 × Z/2Z if g(x) has three real roots.

Proof. We have an embedding as a closed submanifold E(R) ⊂ P2(R). Since the
projective plane is a compact real manifold of dimension two, it follows that E(R)
is a compact one-dimensional real Lie group. Now it is well known that the unit
circle S1 is the only connected compact abelian Lie group. Furthermore, as a real
manifold the set E(R) has at most two connected components:

It is connected if g(x) has a single root, otherwise it has two components. �

If the elliptic curve E ⊂ P2 is defined by an equation over k = Q, then we may
ask about the structure of the set E(Q) of its rational points. This is a more subtle
problem:

Example 1.2. Let E ⊂ P2 be the elliptic curve defined by y2 = x3− 432. Then
we have

p = (12, 36) ∈ E(Q),

and a direct computation shows that this is a point of order three on the elliptic
curve. To see whether there are any other points in E(Q), note that the coordinate
transform

(x, y) 7→ (u, v) =
(

6
x + y

6 ,
6
x −

y
6

)
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gives an isomorphism between the elliptic curve E and the Fermat cubic cut out
by u3 + v3 = 1. So

E(Q) = {o,±p} ' Z/3Z,
but knowing this is equivalent to Fermat’s last theorem for the exponent p = 3!

Once we have guessed one nontrivial point on an elliptic curve, we obtain other
points by taking its multiples: For instance, let E ⊂ P2 be the elliptic curve defined
by y2 = x3−43x+166. Trying some small integer values we find p = (3, 8) ∈ E(Q),
and a direct computation shows

2p = (−1,−2),

3p = (3,−6),

4p = (3,+6) = −3p,

Here p is a torsion point of order seven. In general, the torsion points on any elliptic
curve over Q can be computed by first applying a coordinate change to put it into
Weierstrass form with integer coefficients, and then using the following

Theorem 1.3 (Lutz-Nagell). Let E be the elliptic curve cut out by a Weierstrass
equation

y2 = x3 + ax+ b

with integer coefficients a, b ∈ Z. Then any rational torsion point (x0, y0) ∈ E(Q)
satisfies

(1) x0, y0 ∈ Z, and

(2) y2
0 divides ∆ = 4a2 + 27b2.

In fact the main content of the theorem is the statement that any rational torsion
point has the integrality property (1), we will show this in section 2 by considering
the reduction of the elliptic curve modulo a prime. The divisibility property (2) is
then an easy consequence:

Lemma 1.4. Let E be an elliptic curve cut out by a Weierstrass equation with
integer coefficients as in theorem 1.3. Let p = (x0, y0) ∈ E(Q) be a rational point
such that both p and 2p have integer coordinates. Then we must have y2

0 | ∆.

Proof. We may clearly assume y0 6= 0. Writing the Weierstrass equation for E
as y2 = g(x) with g(x) ∈ Z[x], we have

TpE = {(x, y) | y = αx+ β} where α =
g′(x0)

2y0
, β = y0 − αx0.

As we have seen in the exercises, the point 2p = (x1, x2) can then be computed byTODO
the formula

x1 = α2 − 2x0.

By assumption x1 ∈ Z, hence we obtain that α ∈ Z and therefore y0 | g′(x0). On
the other hand we also know that y0 | y2

0 = g(x0). Now it is a general fact that
the discriminant of a polynomial can be written as a linear combination of the
polynomial and its derivative, with the coefficients themselves polynomials. In our
case we have

∆ = −27(x3 + ax− b)g(x) + (3x2 + 4a)g′(x)2

in Z[x]. Inserting x = x1 we obtain y2
1 | ∆ as required. �
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Remark 1.5. (a) It is not true that any multiple of an integer point on an elliptic
curve has integer coordinates: On the elliptic curve E cut out by y2 = x3 − x + 1
the point p = (0, 1) ∈ E(Q) has 2p = (1/4, 7/8). In such cases the Lutz-Nagell
theorem shows that we have found a point of infinite order in E(Q).

(b) By the Lutz-Nagell theorem, to find the torsion subgroup E(Q)tors ⊂ E(Q)
we only need to check for which divisors y0 | ∆ the cubic g(x)− y2

0 has an integer
root. Note that the discriminant depends on the Weierstrass equation, and to ease
computations we should choose coordinates which make it minimal. For instance,
if E is defined by y2 = x3 − 1, then ∆ = 27 and the Lutz-Nagell theorem implies
that any rational torsion point must have the form (x0, y0) with y0 ∈ {0,±1,±3},
and we get

E(Q)tors = {o, (0,±1), (−1, 0), (2,±3)} ' Z/6Z.

(c) The Lutz-Nagell theorem already implies that the torsion group E(Q)tors is
finite. In fact a much stronger assertion holds: A deep theorem of Mazur1 says the
only options are

E(Q)tors '

{
Z/nZ with 1 ≤ n ≤ 10 or n = 12,

Z/2Z⊕ Z/2nZ with 1 ≤ n ≤ 4.

Conversely, each of these occurs for infinitely many elliptic curves over Q.

Let us now pass from the torsion subgroup to the entire group E(Q). In contrast
with the former, the latter is in general not easy to compute. However, it turns out
that all points in E(Q) can be obtained from some finite set of points by means of
the geometric group law. The result holds more generally over any number field:

Theorem 1.6 (Mordell-Weil). If E is an elliptic curve over a number field K,
then the group of its rational points is a finitely generated abelian group.

In other words, we have an isomorphism E(K) ' E(K)tors × Zr for a unique
integer r = rE/K ∈ N0 which is called the rank of the elliptic curve. This rank is
one of the most mysterious invariants of elliptic curves:

Even for elliptic curves defined by Weierstrass equations y2 = x3 + ax + b
with a, b ∈ Q, there is no known effective algorithm to determine the rank or even
the question whether E(Q) is finite or not from a, b. It is still unknown whether
there exist elliptic curves of arbitrarily high rank, though this is believed to be the
case. Finally, the conjecture of Birch and Swinnerton-Dyer gives a deep connection
to analytic number theory: It predicts in particular that the rank is the order of
vanishing

rE/Q = ords=1LE/Q(s)

of a certain analytic function obtained as the analytic continuation of an Euler
product LE/Q(s) =

∏
p Lp(s), where p runs over all primes and the local factors

depend only on the number of points of the reduction E of the elliptic curve over Fp
in the sense of section 2 below. If E is cut out by y2 = g(x) with g(x) ∈ Z[x], it
implies

rE/Q > 0 ⇐⇒ lim
n→∞

∏
p≤n

Np
p = ∞

for the number of points Np = #E(Fp) = 1 + #
{

(x, y) ∈ A2(Fp) | y2 = g(x)
}

.

1Barry Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978) 129–162.
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We will prove the Mordell-Weil theorem in sections 4 and 5. The idea is to
construct a suitable measure for the size of rational points, for which we use the
following notion:

Definition 1.7. A norm on an abelian group G is a function | · | : G → R≥0

such that

(1) |mp| = |m||p| for all p ∈ G and m ∈ Z,

(2) |p+ q| ≤ |p|+ |q| for all p, q ∈ G,

(3) for each c ∈ R the set Gc = {p ∈ G | |p| ≤ c} is finite.

Any finitely generated abelian group G can be endowed with a norm by taking an
isomorphism G/Gtors ' Zr and composing it with the standard Euclidean norm
on the target. Conversely the existence of a norm on an abelian group forces its
torsion subgroup to be finite but does not imply finite generation, e.g. take an
infinite orthogonal sum G =

⊕
n∈N Z where the n-th summand is endowed with n

times the standard Euclidean norm. However:

Lemma 1.8. An abelian group G is finitely generated iff

(1) it admits a norm, and

(2) G/mG is finite for some integer m > 1.

Proof. If n = #G/mG is finite, write G =
⊎n
i=1(ri + mG) where the ri ∈ G

form a set of representatives for the cosets in the group. If the group comes with a
norm | · |, consider the finite subset

Gc ⊇ {r1, . . . , rn} for c = max
i
|ri|+ 1.

We claim that this finite subset generates the entire group. Indeed, let g ∈ G\Gc be
any element in the complement. Since the gi form a full set of coset representatives,
we have g − ri1 = mg1 ∈ mG for some i1 ∈ {1, . . . , n}, g1 ∈ G. But

|ri1 | < c by definition of c

< |g| by assumption on g

≤ (m− 1)|g| since m > 1.

and hence

|g1| =
|mg1|
m

=
|g − ri1 |
m

≤ |g|+ |ri1 |
m

<
|g|+ (m− 1)|g|

m
= |g|.

Inductively we find

g = ri1 +mg1 with |g1| < |g|,
g1 = ri2 +mg2 with |g2| < |g1|,

...

gν−1 = riν +mgν with |gν | < |gν−1|,

until at some point we arrive at the situation where |gν | ≤ c. But then gν ∈ Gc
and writing

g = ri1 +mri2 +m2ri3 + · · ·+mν−1riν +mνgν

we obtain a representation of the given element as a sum of elements of Gc. �

The procedure in the above proof is called the method of infinite descent and
goes back to Fermat. Note that the argument is constructive, one we know a system
of representatives for the cosets in G/mG.
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So the proof of the Mordell-Weil theorem for an elliptic curve E over a number
field K naturally falls into two steps:

• In section 4 we show E(K)/mE(K) is finite, using group cohomology.

• In section 5 we construct a norm on E(K), using the notion of heights.

The argument for the first step also gives explicit upper bounds for #E(K)/mE(K)
which sometimes suffice to determine the rank, but there is still no known effective
algorithm that works in general: Often the best one can do is to give lower bounds
for the rank by constructing many linearly independent rational points. The current
record is an elliptic curve of rank rE/Q ≥ 28 that was found by Elkies in 2016.

2. Reduction modulo primes and torsion points

Reduction of rational points modulo prime numbers is a very powerful technique
in arithmetic geometry. We here only explain the most basic version. Let R be
a unique factorization domain and k its quotient field, e.g. R = Z, k = Q. For a
prime element p ∈ R we denote by νp(a) ∈ N0 the multiplicity with which it enters
in the prime factorization of a given element a ∈ R \ {0}. This extends uniquely to
a homomorphism νp : k∗ → Z which is called the p-adic valuation of the field k, a
discrete valuation whose residue field we denote by Fp = R/pR. Formally we also
put vp(0) =∞. For n ∈ N we define the reduction map

Pn(k) −→ Pn(Fp),
x = [x0 : · · · : xn] 7→ x = [y0 : · · · : yn]

where yi = p−νxi for ν = min{νp(xi) | 0 ≤ i ≤ n}, yi = yi mod p ∈ Fp. For elliptic
curves we proceed similarly, but some care is needed with our choice of Weierstrass
equations:

Definition 2.1. A Weierstrass equation for an elliptic curve E over k is integral
if it has the form

g(x, y) = y2 + a1xy + a3y − (x3 + a2x
2 + a4x+ a6) = 0 with ai ∈ R.

It is called minimal if moreover its discriminant ∆ ∈ R has the smallest possible
valuation νp(∆) ∈ N0 among all integral Weierstrass equations for the given elliptic

curve. We then take the reduction of the elliptic curve to be the curve E over Fp
cut out by the reduction g(x, y) ∈ Fp[x, y]. Thus we obtain a reduction map on
rational points by restricting the reduction map for the projective plane:

E(k) //

⋂
E(Fp)⋂

P2(k) // P2(Fp)

To see that these notions are well-defined one has to work a bit:

Lemma 2.2. Any elliptic curve E over k has a minimal Weierstrass equation,
and any two such equations are related to each other by a coordinate change of the
form (x, y) 7→ (λ2x+a, λ3y+ b ·λ2x+ c) with νp(a), νp(b), νp(c) ≥ 0 and νp(λ) = 0.

Proof. We know from lemma II.7.1 that any two Weierstrass equations are
related by a coordinate change of the above form with a, b, c, λ ∈ k, λ 6= 0. The
transformation formula for the coefficients and discriminant under such a change
shows that if both equations are minimal, then νp(λ) = 0 and νp(a), νp(b), νp(c) ≥ 0.
For details of the computation see [Silverman, prop. VII.1.3]. �
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We say that an elliptic curve E over k has good reduction at a prime p if its
reduction E is smooth, which happens iff p - ∆. In this case the reduction is again
an elliptic curve and

ρ : E(k) −→ E(Fp)
is a group homomorphism because the reduction map for the projective plane sends
lines to lines. We put

E1(k) = ker(ρ)

=
{

[w : x : y] ∈ E(k)
∣∣w, x, y ∈ R, p | w, p | x, p - y }

=
{

[w : x : y] ∈ E(k)
∣∣ y 6= 0, νp(x/y) ≥ 1, νp(w/y) ≥ 1

}
and more generally

En(k) =
{

[w : x : y] ∈ E1(k) = ker(ρ) | νp(x/y) ≥ n}

for n ∈ N. This gives a decreasing filtration

E(k) ⊇ E1(k) ⊇ E2(k) ⊇ · · ·

which is called the p-adic filtration. We have

Remark 2.3.
⋂
n∈NE

n(k) = {0}.

Proof. If [w : x : y] ∈ En(k) for all n ∈ N, then ...

Remark 2.4. Let [1 : x : y] ∈ E(k). If νp(x) < 0, then there exists n ∈ N such
that

νp(x) = −2n and νp(y) = −3n.

Proof. A look at the integral Weierstrass equation shows that if νp(x) < 0, then
necessarily νp(y

2) = νp(x
3). �

Proposition 2.5. The En(k) ⊂ E(k) are subgroups for all n ∈ N. Furthermore,
the map

t : En(k) → pnR, [w : x : y] 7→ x/y

induces an embedding

En(k)/En+i(k) ↪→ pnR/pn+iR ' R/piR for any i ∈ {1, 2, . . . , 4n}.

Proof. Both claims will follow if we can show for all p1, p2 ∈ En(k) that

t(p1 + p2) ≡ t(p1) + t(p2) mod p5nR.

For this we look at the group law in a neighborhood of the origin o = [0 : 0 : 1] ∈check p = 2
E(k), like in the study of Lie groups and Lie algebras. Note that since we assumed
2 - p, we can assume that our chosen minimal Weierstrass equation for E has the
short form

y2 = x3 + ax+ b

with a, b ∈ R. Then in the affine coordinates (s, t) = (1/y, x/y) around the point
o, the elliptic curve is cut out by

(?) s = t3 + ats2 + bs3

as one sees by putting (x, y) = (t/s, 1/s) in the previous Weierstrass equation. In
these coordinates, the line through two points p1 = (s1, t1), p2 = (s2, t2) ∈ E(k)
can be written in the form

` = {(s, t) ∈ A2(k) | s = αt+ β} with α =

{
s2−s1
t2−t1 if t2 6= t1,

· · · otherwise,
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and some β ∈ k. To describe the group law, let (s, t) ∈ (E ∩ `)(k) be the third
point of intersection of the line with the elliptic curve. Inserting the equation for
the line in ? we get

αt+ β = t3 + at · (αt+ β)2 + b(αt+ β)3

In this equation,

• the coefficient of t3 is = 1 + aα2 + α3b,
• the coefficient of t2 is = 2aαβ + 3bα2β

3. An intermezzo on group cohomology

4. The weak Mordell-Weil theorem

5. Heights and the Mordell-Weil theorem
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