
 
 

Fourier Analysis  
 

for Beginners 
 
 

 

Indiana University School of Optometry Coursenotes for V791: 
Quantitative Methods for Vision Research 

(Sixth edition) 

 

 

© L.N. Thibos (1989, 1993, 2000, 2003, 2012, 2014) 

 
 
 



 

 

 



Table of Contents 
Preface.............................................................................................................................v 

Chapter 1: Mathematical Preliminaries .....................................................................1 
1.A  Introduction ...............................................................................................1 
1.B  Review of some useful concepts of geometry and algebra. ................3 

Scalar arithmetic....................................................................................3 
Vector arithmetic...................................................................................4 
Vector multiplication............................................................................6 
Vector length..........................................................................................8 
Summary. ...............................................................................................9 

1.C  Review of phasors and complex numbers.............................................9 
Phasor length, the magnitude of complex numbers, and 
Euler's formula. .....................................................................................10 
Multiplying complex numbers ...........................................................12 
Statistics of complex numbers.............................................................13 

1.D  Terminology summary. ...........................................................................13 

Chapter 2:  Sinusoids, Phasors,  and Matrices ..........................................................15 
2.A  Phasor representation of sinusoidal waveforms. .................................15 
2.B  Matrix algebra. ...........................................................................................16 

Rotation matrices. .................................................................................18 
Basis vectors...........................................................................................20 
Orthogonal decomposition..................................................................20 

Chapter 3:  Fourier Analysis of Discrete Functions .................................................23 
3.A  Introduction. ..............................................................................................23 
3.B   A Function Sampled at 1 point. ..............................................................24 
3.C   A Function Sampled at 2 points. ............................................................25 
3.D   Fourier Analysis is a Linear Transformation. ......................................26 
3.E   Fourier Analysis is a Change in Basis Vectors. ....................................27 
3.F   A Function Sampled at 3 points..............................................................29 
3.G   A Function Sampled at D points............................................................32 
3.H   Tidying Up................................................................................................34 
3.I   Parseval's Theorem....................................................................................36 
3.J   A Statistical Connection............................................................................39 
3.K   Image Contrast and Compound Gratings............................................41 
3.L   Fourier Descriptors of the Shape of a Closed Curve ...........................43 

Chapter 4:  The Frequency Domain............................................................................47 
4.A  Spectral Analysis.......................................................................................47 
4.B  Physical Units.............................................................................................48 
4.C  Cartesian vs. Polar Form. .........................................................................50 
4.D  Complex Form of Spectral Analysis.......................................................51 
4.E  Complex Fourier Coefficients. .................................................................53 
4.F  Relationship between Complex and Trigonometric Fourier 
Coefficients.........................................................................................................55 
4.G  Discrete Fourier Transforms in Two or More Dimensions.................58 



4.H  Matlab's Implementation of the DFT ....................................................59 
4.I  Parseval's Theorem, Revisited .................................................................60 

Chapter 5:  Continuous Functions..............................................................................61 
5.A  Introduction. ..............................................................................................58 
5.B  Inner products and orthogonality...........................................................63 
5.C  Symmetry. ..................................................................................................65 
5.D  Complex-valued functions. .....................................................................67 

Chapter 6:  Fourier Analysis of Continuous Functions...........................................69 
6.A  Introduction. ..............................................................................................69 
6.B  The Fourier Model.....................................................................................69 
6.C  Practicalities of Obtaining the Fourier Coefficients. ............................71 
6.D  Theorems....................................................................................................73 

1. Linearity .............................................................................................73 
2. Shift theorem......................................................................................73 
3. Scaling theorem.................................................................................75 
4. Differentiation theorem....................................................................76 
5. Integration theorem ..........................................................................77 

6.E  Non-sinusoidal basis functions ...............................................................79 

Chapter 7:  Sampling Theory.......................................................................................81 
7.A  Introduction. ..............................................................................................81 
7.B  The Sampling Theorem.............................................................................81 
7.C  Aliasing.......................................................................................................83 
7.D  Parseval's Theorem. ..................................................................................84 
7.E  Truncation Errors. .....................................................................................85 
7.F  Truncated Fourier Series & Regression Theory. ...................................86 

Chapter 8:  Statistical Description of Fourier Coefficients ......................................89 
8.A  Introduction. ..............................................................................................89 
8.B  Statistical Assumptions.............................................................................90 
8.C  Mean and Variance of Fourier Coefficients for Noisy Signals. ..........92 
8.D  Distribution of Fourier Coefficients for Noisy Signals. .......................94 
8.E  Distribution of Fourier Coefficients for Random Signals. ...................97 
8.F  Signal Averaging. ......................................................................................98 

Chapter 9:  Hypothesis Testing for Fourier Coefficients.........................................101 
9.A  Introduction. ..............................................................................................101 
9.B  Regression analysis. ..................................................................................101 
9.C  Band-limited signals. ................................................................................104 
9.D  Confidence intervals.................................................................................105 
9.E  Multivariate statistical analysis of Fourier coefficients........................107 

Chapter 10:  Directional Data Analysis......................................................................109 
10.A  Introduction. ............................................................................................109 
10.B  Determination of mean direction and concentration. ........................109 
10.C  Hypothesis testing. .................................................................................110 
10.D  Grouped data...........................................................................................110 



10.D  The Fourier connection. .........................................................................112 
10.E  Higher harmonics. ...................................................................................113 

Chapter 11:  The Fourier Transform...........................................................................115 
11.A  Introduction. ............................................................................................115 
11.B  The Inverse Cosine and Sine Transforms.............................................115 
11.C  The Forward Cosine and Sine Transforms..........................................117 
11.D  Discrete Spectra vs. Spectral Density ...................................................118 
11.E  Complex Form of the Fourier Transform.............................................120 
11.F  Fourier's Theorem....................................................................................121 
11.G  Relationship between Complex & Trigonometric Transforms. .......121 

Chapter 12:  Properties of The Fourier Transform ...................................................123 
12.A  Introduction. ............................................................................................123 
12.B  Theorems ..................................................................................................123 

Linearity .................................................................................................123 
Scaling.....................................................................................................123 
Time/Space Shift...................................................................................124 
Frequency Shift......................................................................................124 
Modulation.............................................................................................124 
Differentiation .......................................................................................125 
Integration..............................................................................................125 
Transform of a transform.....................................................................125 
Central ordinate ....................................................................................126 
Equivalent width...................................................................................126 
Convolution ...........................................................................................127 
Derivative of a convolution .................................................................127 
Cross-correlation ...................................................................................128 
Auto-correlation ....................................................................................128 
Parseval/Rayleigh ................................................................................128 

12.C  The convolution operation.....................................................................129 
12.D  Delta functions ........................................................................................132 
12.E  Complex conjugate relations..................................................................135 
12.F  Symmetry relations..................................................................................135 
12.H  Convolution examples in probability theory and optics ..................136 
12.H  Variations on the convolution theorem...............................................137 

Chapter 13:  Signal Analysis........................................................................................139 
13.A  Introduction. ............................................................................................139 
13.B  Windowing...............................................................................................139 
13.C  Sampling with an array of windows....................................................141 
13.D  Aliasing.....................................................................................................143 
13.E  Reconstruction and interpolation..........................................................146 
13.F. Non-point sampling ................................................................................146 
13.G. The coverage factor rule.........................................................................150 

Chapter 14:  Fourier Optics..........................................................................................155 
14.A  Introduction. ............................................................................................155 
14.B  Physical optics and image formation....................................................155 



14.C  The Fourier optics domain.....................................................................159 
14.D  Linear systems description of image formation .................................162 

Bibliography ..................................................................................................................167 
Fourier Series and Transforms........................................................................167 
Statistics of Fourier Coefficients .....................................................................167 
Directional Data Analysis ................................................................................167 
Random Signals and Noise..............................................................................168 
Probability Theory & Stochastic Processes....................................................168 
Signal Detection Theory...................................................................................168 
Applications.......................................................................................................168 

 
Appendices 

Fourier Series 
 Rayleigh Z-statistic 
 Fourier Transform Pairs 
 Fourier Theorems 
  
 



V791 Coursenotes: Quantitative Methods for Vision Research Page v 
 

 
 
 
 
 
 
 
 
 
 
 
 
Natural philosophy is written in this grand book the universe, which 
stands continually open to our gaze.  But the book cannot be understood 
unless one first learns to comprehend the language and to read the 
alphabet in which it is composed.  It is written in the language of 
mathematics, and its characters are triangles, circles, and other geometric 
figures, without which it is humanly impossible to understand a single 
word of it;  without these, one wanders about in a dark labyrinth. 

 
    Galileo Galilei, the father of experimental science 
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Preface 
Fourier analysis is ubiquitous.  In countless areas of science, engineering, and 

mathematics one finds Fourier analysis routinely used to solve real, important 
problems.  Vision science is no exception: today's graduate student must 
understand Fourier analysis in order to pursue almost any research topic.  This 
situation has not always been a source of concern.  The roots of vision science are 
in "physiological optics", a term coined by Helmholtz which suggests a field 
populated more by physicists than by biologists.  Indeed, vision science has 
traditionally attracted students from physics (especially optics) and engineering 
who were steeped in Fourier analysis as undergraduates.  However, these days a 
vision scientist is just as likely to arrive from a more biological background with 
no more familiarity with Fourier analysis than with, say, French.  Indeed, many 
of these advanced students are no more conversant with the language of 
mathematics than they are with other foreign languages, which isn't surprising 
given the recent demise of foreign language and mathematics requirements at all 
but the most conservative universities.  Consequently, a Fourier analysis course 
taught in a mathematics, physics, or engineering undergraduate department 
would be much too difficult for many vision science graduate students simply 
because of their lack of fluency in the languages of linear algebra, calculus, 
analytic geometry, and the algebra of complex numbers.  It is for these students 
that the present course was developed. 

To communicate with the biologically-oriented vision scientist requires a 
different approach from that typically used to teach Fourier analysis to physics 
or engineering students.  The traditional sequence is to start with an integral 
equation involving complex exponentials that defines the Fourier transform of a 
continuous, complex-valued function defined over all time or space.  Given this 
elegant, comprehensive treatment, the real-world problem of describing the 
frequency content of a sampled waveform obtained in a laboratory experiment is 
then treated as a trivial, special case of the more general theory.  Here we do just 
the opposite.  Catering to the concrete needs of the pragmatic laboratory 
scientist, we start with the analysis of real-valued, discrete data sampled for a 
finite period of time.  This allows us to use the much friendlier linear algebra, 
rather than the intimidating calculus, as a vehicle for learning.  It also allows us 
to use simple spreadsheet computer programs (e.g. Excel), or preferably a more 
scientific platform like Matlab, to solve real-world problems at a very early stage 
of the course.  With this early success under our belts, we can muster the resolve 
necessary to tackle the more abstract cases of an infinitely long observation time, 
complex-valued data, and the analysis of continuous functions.  Along the way 
we review vectors, matrices, and the algebra of complex numbers in preparation 
for transitioning to the standard Fast Fourier Transform (FFT) algorithm built 
into Matlab.  We also introduce such fundamental concepts as orthogonality, 
basis functions, convolution, sampling, aliasing, and the statistical reliability of 
Fourier coefficients computed from real-world data.  Ultimately, we aim for 
students to master not just the tools necessary to solve practical problems and to 
understand the meaning of the answers, but also to be aware of the limitations of 
these tools and potential pitfalls if the tools are misapplied. 
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1.A  Introduction 

To develop an intuitive understanding of abstract concepts it is often useful 
to have the same idea expressed from different viewpoints.  Fourier analysis may 
be viewed from two distinctly different vantage points, one geometrical and the 
other analytical.  Geometry has an immediate appeal to visual science students, 
perhaps for the same reasons that it appealed to the ancient Greek geometers.  
The graphical nature of lines, shapes, and curves makes geometry the most 
visual branch of mathematics, as well as the most tangible.  On the other hand, 
geometrical intuition quickly leads to a condition which one student colorfully 
described as "mental constipation".  For example, the idea of plotting a point 
given it's Cartesian (x,y) coordinates is simple enough to grasp, and can be 
generalized without too much protest to 3-dimensional space, but many students 
have great difficulty transcending the limits of the physical world in order to 
imagine plotting a point in 4-, 5-, or N-dimensional space.  A similar difficulty 
must have been present in the minds of the ancient Greeks when contemplating 
the "method of exhaustion" solution to the area of a circle.  The idea was to 
inscribe a regular polygon inside the circle and let the number of sides grow 
from 3 (a triangle) to 4 (a square) and so on without limit as suggested in the 
figure below.  

   

These ancients understood how to figure the area of the polygon, but they 
were never convinced that the area of the polygon would ever exactly match that 
of the circle, regardless of how large N grew.  Another example is Zeno’s 
dichotomy paradox: for an arrow to hit its target it must first traverse half the 
distance, then half the remaining distance, etc. Since there are an infinite number 
of half-distances to traverse, the arrow can never reach its target. This conceptual 
hurdle was so high that 2,000 years would pass before the great minds of the 
17th century invented the concept of limits that is fundamental to the Calculus 
(Boyer, 1949) and to a convergence proof for the infinites series 1/2 + 1/4 + 1/8 +... = 
1. My teaching experience suggests there are still a great many ancient Greeks in 
our midst, and they usually show their colors first in Fourier analysis when 
attempting to make the transition from discrete to continuous functions. 

N=3 N=4 N=6
Fig. 1.0   Method of Exhaustion
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When geometrical intuition fails, analytical reasoning may come to the 
rescue.  If the location of a point in 3-dimensional space is just a list of three 
numbers (x,y,z), then to locate a point in 4-dimensional space we only need to 
extend the list (w,x,y,z) by starting a bit earlier in the alphabet!  Similarly, we 
may get around some conceptual difficulties by replacing geometrical objects 
and manipulations with analytical equations and computations.  For these 
reasons, the early chapters of these coursenotes will carry a dual presentation of 
ideas, one geometrical and the other analytical.  It is hoped that the redundancy 
of this approach will help the student achieve a depth of understanding beyond 
that obtained by either method alone.   

The modern student may pose the question,  "Why should I spend my time 
learning to do Fourier analysis when I can buy a program for my personal 
computer that will do it for me at the press of a key?"  Indeed, this seems to be 
the prevailing attitude, for the instruction manual of one popular analysis 
program remarks that "Fourier analysis is one of those things that everybody 
does, but nobody understands."  Such an attitude may be tolerated in some 
fields, but not in science.  It is a cardinal rule that the experimentalist must 
understand the principles of operation of any tool used to collect, process, and 
analyze data.  Accordingly, the main goal of this course is to provide students 
with an understanding of Fourier analysis - what it is, what it does, and why it is 
useful.  As with any tool, one gains an understanding most readily by practicing 
its use and for this reason homework problems form an integral part of the 
course.  On the other hand, this is not a course in computer programming and 
therefore we will not consider in any detail the elegant fast Fourier transform 
(FFT) algorithm which makes modern computer programs so efficient.  

There is another, more general reason for studying Fourier analysis.  Richard 
Hamming (1983) reminds us that "The purpose of computing is insight, not 
numbers!".  When insight is obscured by a direct assault upon a problem, often a 
change in viewpoint will yield success.  Fourier analysis is one example of a 
general strategy for changing viewpoints based on the idea of transformation.  The 
idea is to recast the problem in a different domain, in a new context, so that fresh 
insight might be gained.  The Fourier transform converts the problem from the 
time or spatial domain to the frequency domain.  This turns out to have great 
practical benefit since many physical problems are easier to understand, and 
results are easier to compute, in the frequency domain.  This is a major attraction 
of Fourier analysis for engineering:  problems are converted to the frequency 
domain, computations performed, and the answers are transformed back into the 
original domain of space or time for interpretation in the context of the original 
problem.  Another example, familiar to the previous generation of students, was 
the taking logarithms to make multiplication or division easier. Thus, by 
studying Fourier analysis the student is introduced to a very general strategy 
used in many branches of science for gaining insight through transformational 
computation. 
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Lastly, we study Fourier analysis because it is the natural tool for describing 
physical phenomena which are periodic in nature.  Examples include the annual 
cycle of the solar seasons, the monthly cycle of lunar events, daily cycles of 
circadean rhythms, and other periodic events on time scales of hours, minutes, or 
seconds such as the swinging pendulum, vibrating strings, or electrical 
oscillators.  The surprising fact is that a tool for describing periodic events can 
also be used to describe non-periodic events.  This notion was a source of great 
debate in Fourier's time, but today is accepted as the main reason for the 
ubiquitous applicability of Fourier's analysis in modern science. 

1.B  Review of some useful concepts of geometry and algebra. 

Scalar arithmetic.   

One of the earliest mathematical ideas invented by man is the notion of 
magnitude.  Determining magnitude by counting is evidently a very old concept 
as it is evident in records from ancient Babylon and Egypt.  The idea of whole 
numbers, or integers, is inherent in counting and the ratio of integers was also 
used to represent simple fractions such as 1/2, 3/4, etc.  Greek mathematicians 
associated magnitude with the lengths of lines or the area of surfaces and so 
developed methods of computation which went a step beyond mere counting.  
For example, addition or subtraction of magnitudes could be achieved by the use 
of a compass and straightedge as shown in Fig. 1.1.   

 

If the length of line segment A represents one quantity to be added, and the 
length of line segment B represents the second quantity, then the sum A+B is 
determined mechanically by abutting the two line segments end-to-end.  The 
algebraic equivalent would be to define the length of some suitable line segment 
as a "unit length".  Then, with the aid of a compass, one counts the integer 
number of these unit lengths needed to mark off the entire length of segments A 
and B.  The total count is thus the length of the combined segment A+B.  This 
method for addition of scalar magnitudes is our first example of equivalent 
geometric and algebraic methods of solution to a problem.   

Subtraction of scalar quantities an also be viewed graphically by aligning the 
left edges of A and B.  The difference A-B is the remainder when B is removed 
from A.  In this geometrical construction, the difference B-A makes no sense 

Fig. 1.1   Addition and subtraction of Scalar Magnitudes

A
B

A+B

Geometric Algebraic

A = 3 units in length
B = 2 units in length
A+B = 5 units in length
A-B = 1 unit in length

A
B

A-B
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because B is not long enough to encompass A.  Handling this situation is what 
prompted Arabic mathematicians to define the concept of negative numbers, 
which they called “false” or “fictitious” to acknowledge that counting real objects 
never produces negative numbers. On the other hand, negative numbers become 
very real concepts in accounting when you spend more than you earn! 

Consider now the related problem of determining the ratio of two 
magnitudes.  The obvious method would seem to be to use the "unit length" 
measuring stick to find the lengths of the two magnitudes and quote the ratio of 
these integer values as the answer to the problem.  This presupposes, however, 
that a suitable unit of measure can always be found.  One imagines that it must 
have been a crushing blow to the Greek mathematicians when they discovered 
that this requirement cannot always be met. One glaring example emerges when 
attempting to determine the ratio of lengths for the edge (A) and diagonal (B) of 
a square as shown in Fig. 1.2.  Line B is longer than A, but shorter than 2A. 
Another example is Pythagoras’ Golden Ratio:  (a+b)/a = a/b = φ = (1+√5)/2.  
The Greeks dealt with this awkward situation 
by describing the lengths A and B as 
"incommensurate".  They might just as well 
have used the words "irrational", "illogical", 
"false", or "fictitious" to express the 
philosophically unsettling realization that some 
proportions are not exact ratios of integers.   

 
Nowadays we are comfortable with the notion of "irrational" numbers as 

legitimate quantities that cannot be expressed as the ratio of two integers.  
Prominent examples are √2, π, and e.  Nevertheless, there lurks in the pages 
ahead similar conceptual stumbling blocks, such as "negative frequency" and 
"imaginary numbers", which, although seemingly illogical and irrational at first, 
will hopefully become a trusted part of the student's toolbox through familiarity 
of use. 

Vector arithmetic.   

Some physical quantities have two or more attributes that need to be 
quantified.  Common examples are velocity, which is speed in a particular 
direction, and force, which has both magnitude and direction.  Such quantities 
are easily visualized geometrically (Fig. 1.3) as directed line segments called 
vectors.   To create an algebraic representation of vector quantities, we can simply 
list the two scalar magnitude which comprise the vector, i.e. (speed, direction).  
This is the polar form of vector notation.  An alternative representation is 
suggested by our physical experience that if one travels at the rate of 3m/s in a 
northerly direction and at the same time 4m/s in an easterly direction, then the 
net result is a velocity of 5m/s in a northeasterly direction.  Thus, the vector may 
be specified by a list of the scalar values in two orthogonal directions.  This 

Fig. 1.2  Ratio of Lengths

A

B
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Cartesian form is named after the great French mathematician René Descartes and 
is often described as a decomposition of the original vector into two mutually 
orthogonal components. 

 

Consider now the problem of defining what is meant by the addition or 
subtraction of two vector quantities.  Our physical and geometrical intuition 
suggests that the notion of addition is inherent in the Cartesian method of 
representing vectors.  That is, it makes sense to think of the northeasterly velocity 
vector V as the sum of the easterly velocity vector X and the northerly velocity 
vector Y.  How would this notion of summation work in the case of two arbitrary 
velocity vectors A and B, which are not necessarily orthogonal?  A simple 
method emerges if we first decompose each of these vectors into their orthogonal 
components, as shown in Fig. 1.4.  Since an easterly velocity has zero component 
in the northerly direction, we may find the combined velocity in the easterly 
direction simply by adding together the X-components of the two vectors.  
Similarly, the two Y-components may be added together to determine the total 
velocity in the northerly direction.  Thus we can build upon our intuitive notion 
of adding scalar magnitudes illustrated in Fig. 1.1 to make an intuitively 
satisfying definition of vector addition which is useful for summing such 
physical quantities as velocity, force, and, as we shall see shortly, sinusoidal 
waveforms. Vector differences can produce negative values, which are 
represented geometrically by vectors pointing in the leftward or downward 
directions. 

 

Fig. 1.3   Description of Vector  Quantities

X =
component #1

Y = 
comp. #2

Geometric Algebraic

Polar Form: (R,   )
   R = magnitude
       = direction
Cartesian Form: (X,Y)
   X =  component #1
   Y =  component #2

!

!

!
R

 

Fig. 1.4   A Definition of Vector  Summation, C=A+B

A

A

Geometric Algebraic

x

y

x

y

B

B

A
B

C
CX = AX + BX
CY = AY + BY

Cx

Cy
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Generalizing the algebraic expressions for 3-dimensional vector summation 
and differencing simply requires an analogous equation for CZ.  Although 
drawing 3-dimensional geometrical diagrams on paper is a challenge, drawing 
higher dimensional vectors is impossible.  On the other hand, extending the 
algebraic method to include a 3rd, 4th, or Nth dimension is as easy as adding 
another equation to the list and defining some new variables.  Thus, although the 
geometrical method is more intuitive, for solving practical problems the 
algebraic method is often the method of choice. 

In summary, we have found that by decomposing vector quantities into 
orthogonal components simple rules emerge for combining vectors linearly (i.e. 
addition or subtraction) to produce sensible answers when applied to physical 
problems.  In Fourier analysis we follow precisely the same strategy to show how 
arbitrary curves may be decomposed into a sum of orthogonal functions, the 
trigonometric sines and cosines.  By representing curves this way, simple rules 
will emerge for combining curves and for calculating the outcome of physical 
events.     

Vector multiplication 

In elementary school, children learn that multiplication of scalars may be 
conceived as repeated addition.  However, the multiplication of vectors is a 
richer topic with a variety of interpretations.  The most useful definition for 
Fourier analysis reflects the degree to which two vectors point in the same 
direction.  In particular, we seek a definition for which the product is zero when 
two vectors are orthogonal.  (It might have been thought that the zero product 
condition would be reserved for vectors pointing in opposite directions, but this 
is not an interesting case because opposite vectors are collinear and so reduce to 
scalar quantities.  In scalar multiplication the only way to achieve a zero product 
is if one of the quantities being multiplied is zero.)  This suggests we try the rule: 

 A•B = (length of A) x (length of B's projection onto A) [1.1] 

Notice that because this rule calls for the product of two scalar quantities derived 
from the original vectors, the result will be a scalar quantity.  

To see how this rule works, consider the simple case when the vector A 
points in the same direction as the X-axis and θ is the angle between the two 
vectors as illustrated in Fig. 1.5.  Next, decompose the vector B into two 
orthogonal components (BX, BY) in the X- and Y-directions, respectively.  Since 
the X-component of B is also in the direction of vector A, the length of this X-
component is what is meant by the phrase "the length of B's projection onto A".  
We can then derive an analytical formula for computing this length by recalling 
from trigonometry that BX = |B|cos(θ), where the notation |B| stands for the 
length of vector B.  Notice that the inner product is zero when θ=90°, as required, 
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and may be negative depending on angle (θ) which is measured counter-
clockwise from the horizontal (X) axis. 

 

Although it was convenient to assume that vector A points in the X-direction, 
the geometry of Fig. 1.5 would still apply even in the general situation shown in 
Fig. 1.6.  It would be useful, however, to be able to calculate the inner product of 
two vectors without having to first compute the lengths of the vectors and the 
cosine of the angle between them.  This may be achieved by making use of the 
trigonometric identity proved in homework problem set #1: 

 cos(θ ) = cos(β − α ) = cos(α) cos(β ) + sin(α )sin(β)  [1.2] 

 

If we substitute the following relations into eqn. [1.2] 

 

AX = A cos(α )
AY = A sin(α )
BX = B cos(β)
BY = B sin(β)

 [1.3] 

then the result is 

 cos(θ) = AXBX + AYBY
A ⋅ B

 [1.4] 

Fig. 1.5   Definition of  Inner Product of Vectors, A•B

Geometric Algebraic

xB |A|

|B|

X

Y

!
A • B = AX " BX

= A " B "cos(! )

BX = B "cos(! )

Fig. 1.6   Definition of  Inner Product of Vectors, A•B

Geometric Algebraic

A

B

X

Y

!
"

#

! = #$"

A • B = A % B %cos(! )

|B|cos(  ) = projection  of B on A!

Inner (dot) Product

A x

B

Bx

y
Ay
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which implies that 

 A ⋅ B cos(θ) = AXBX + AYBY  [1.5] 

but the left side of this equation is just our definition of the inner product of 
vectors A and B (see Fig. 1.5).  Consequently, we arrive at the final formula for 2-
dimenisonal vectors: 

 A • B = AXBX + AY BY  [1.6] 

In words, to calculate the inner product of two vectors, one simply multiplies the 
lengths of the orthogonal components separately for each dimension of the 
vectors and add the resulting products.  The formula is easily extended to 
accommodate N-dimensional vectors and can be written very compactly by 
using the summation symbol Σ and by using numerical subscripts instead of 
letters for the various orthogonal components:  

 

  

A • B = A1B1 + A2B2 + A3B3++ANBN

A • B = AkBk
k=1

N

∑  [1.7] 

Vector length  

To illustrate the usefulness of the inner (“dot”) product, consider the problem of 
determining the length of a vector.  Because the component vectors are 
orthogonal, the Pythagorean theorem and the geometry of right triangles applies 
(Fig. 1.7).  To develop a corresponding analytical solution, try forming the inner 
product of the vector with itself.  Applying equation [1.6] yields the same answer 
provided by the Pythagorean theorem.  That is, the inner product of a vector 
with itself equals the square of the vector's length.  Furthermore, this method of 
calculating vector length is easily generalized to N-dimensional vectors by 
employing equation [1.7]. 

 

 

Fig. 1.7   Use of  Inner Product to Calculate Vector Length

Geometric Algebraic

xA

|A|

X

Y
A •A = AX ! AX + AY ! AY
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Summary.   

We have found simple algebraic formulas for both the addition and 
multiplication of vectors that are consistent with our geometrical intuition.  This 
was possible because we chose to represent vectors by their orthogonal 
components and then did our algebra on these simpler quantities.  Using the 
same idea in Fourier analysis we will represent curves with orthogonal functions. 

1.C  Review of phasors and complex numbers. 

Having seen some of the benefits of expressing geometrical relations 
algebraically, we might go a step further and attempt to develop the algebraic 
aspects of the geometrical notion of orthogonality.  The key idea to be retained is 
that orthogonal vectors are separate and independent of each other, which 
enables orthogonal components to be added or multiplied separately.  To capture 
this idea of independence we might try assigning different units to magnitudes 
in the different dimensions.  For instance, distances along the X-axis might be 
assigned units of "apples" and distances along the Y-axis could be called 
"oranges" (Fig 1.8).  Since one cannot expect to add apples and oranges, this 
scheme would force the same sort of independence and separateness on the 
algebra as occurs naturally in the geometry of orthogonal vectors.  For example, 
let the X- and Y-components of vector P have lengths Papple and Poranges, 
respectively, and let the X- and Y-components of vector Q have lengths Qapple 
and Qoranges, respectively.  Then the sum S=P+Q would be unambiguously 
interpreted to mean that the X- and Y-components of vector S have lengths Papple 
+ Qapple and Poranges, + Qoranges, respectively.   

 

A simpler way to preserve algebraic independence of vector components 
without having to write two similar equations every time is simply to multiply 
all the Y-axis values by some (unspecified for now) quantity called "i".  Now we 
can write P = PX + i.PY without fear of misinterpretation since the ordinary rules 
of algebra prevent the summing of the two dissimilar terms on the right side of 
the equation.  Similarly, if Q = QX + i.QY then we can use ordinary algebra to 

Fig. 1.8   Fanciful Phasor  Summation,  S = P+Q
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determine the sum S=P+Q = PX + QX + i.PY + i.QY = (PX + QX ) + i.(PY + QY) 
without fear of mixing apples with oranges.  In the engineering discipline, 2-
dimensional vectors written this way are often called "phasors". 

Phasor length, the magnitude of complex numbers, and Euler’s formula   

The algebraic trick of tacking an "i" on to all of the values along the Y-axis 
suggests a way to compute the length of phasors algebraically that is consistent 
with the Pythagorean theorem of Fig. 1.7. In the process we will also discover the 
value of “i”.  Consider the phasor illustrated in Fig. 1.9 that has unit length and is 
inclined with angle θ measured counter-clockwise from the horizontal. The 
length of the x-component is cos(θ) and the length of the y-component is sin(θ), 
so application of the Pythagorean theorem proves the well known trigonometric 
identity cos2(θ ) + sin2(θ) = 1.  How might we compute this same answer when 
the y-coordinate is multiplied by “i”?  As a first attempt, we might try 
multiplying the phasor Q = cos(θ) + i.sin(θ) by itself and see what happens: 

 cos(θ ) + i sin(θ)( )2 = cos2 (θ ) + 2i cos(θ )sin(θ) + i2 sin2 (θ)  [1.8] 

Evidently this is not the way to proceed since the answer is supposed to be 1.  
Notice, however, that we would get the right answer (which is to say, an answer 
which is consistent with the geometrical approach) if we multiply the phasor 
number not by itself, but by its conjugate, where the phasor’s conjugate is formed 
by changing the sign of its y-component.  In other words, if Q = QX + i.QY, then 

the conjugate Q* of Q is Q* = QX - i.QY.  Then the product QQ* is  

 QQ* = cos(θ) + i sin(θ)( ) ⋅ cos(θ) − i sin(θ)( ) = cos2 (θ) − i2 sin2 (θ)  [1.9] 

If we assume the value of i 2 is -1, then QQ*=1 as required to be consistent with 
geometry and the Pythagorean theorem.  With that justification, we define i 2 = -1 
and we define the magnitude of Q to be Q = QQ*  which is interpreted 
geometrically as the length of the phasor Q.     

 

At this point we are in much the same situation the Greeks were in when they 
invented "irrational" numbers to deal with incommensurate lengths, and that the 

Fig. 1.9   The Unit  Phasor 
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Arabs were in when they invented negative "fictitious" numbers to handle 
subtracting a large number from a small number.  Since the square of any real 
number is positive, the definition i 2 = -1 is seemingly impossible, so the quantity 
“i” must surely be "imaginary"!  In short, we have invented an entirely new kind 
of quantity and with it the notion of complex numbers, which is the name given 
to the algebraic correlate to our geometric phasors.  Complex numbers are thus the 
sum of ordinary "real" quantities and these new "imaginary" quantities created 
by multiplying real numbers by the quantity i= √-1.  We may now drop our little 
charade and admit that apples are real, oranges are imaginary, and complex fruit 
salad needs both!  

The skeptical student may be wary of the seemingly arbitrary nature of the 
two definitions imposed above, justified pragmatically by the fact that they lead 
to the desired answer.  However, this type of justification is not unusual in 
mathematics, which is, after all, an invention, not a physical science subject to the 
laws of nature.  The only constraint placed on mathematical inventiveness is that 
definitions and operations be internally consistent, which is our justification for 
the definitions needed to make complex numbers useful in Fourier analysis.  

Recognizing connections between different mathematical ideas is a creative 
act of the mathematician’s mind. Imagine the intellectual epiphany experienced 
by the celebrated Swiss mathematician Leonhard Euler when he recognized 
complex exponentials as the link between the Pythagorean theorem of geometry 
and the algebra of complex numbers. This link is established by Euler’s definition 
of the complex exponential function, 

 
eiθ = cos(θ) + i sin(θ)
ei(−θ ) = cos(−θ) + i sin(−θ) = cos(θ) − i sin(θ)

 [1.10] 

According to the ordinary rules of algebra, if i and e are variables representing 
numbers then it is always true that  

 eiθ ⋅ e− iθ = e0 = 1  [1.11] 

The link between Euler’s formula and the Pythagorean theorem is easily 
demonstrated by starting with [1.11] and making algebraic substitutions using 
[1.9], [1.10], and the definition i 2 = -1 as follows: 

 

eiθ ⋅ e− iθ = 1
cos(θ) + i sin(θ)( ) ⋅ cos(−θ) + i sin(−θ)( ) = 1

cos2 (θ) − i2 sin2 (θ) = 1
cos2 (θ) + sin2 (θ) = 1

 [1.12] 

Euler’s method for combining the trigonometric functions into a complex-
exponential function is widely used in Fourier analysis because it provides an 



Chapter 1: Mathematical Preliminaries Page 12 
 

efficient way to represent the sine and cosine components of a waveform by a 
single function. In so doing, however, both positive and negative frequencies are 
required which may be confusing for beginners.  In this book we proceed more 
slowly by first gaining familiarity with Fourier analysis using ordinary 
trigonometric functions, for which frequencies are always positive, before 
adopting the complex exponential functions.  

Multiplying complex numbers 

Interpreting the squared length of a phasor as the square of a complex 
number suggests a way to solve the more general problem of multiplying two 
different phasors as illustrated in Fig. 1.10.  Inspired by Euler’s formula for 
representing phasors as exponentials of complex numbers, we write phasor P as 

 

P = PX + iPY

= P cos(θ ) + iP sin(θ)
= P cos(θ ) + isin(θ)( )
= P eiθ

 [1.13] 

Writing a similar expression for phasor Q, and applying the ordinary rules of 
algebra, leads to the conclusion that the product of two phasors is a new phasor 
with magnitude equal to the product of the two magnitudes and an angle equal 
to the sum of the two angles. 

 P ⋅Q = P eiθ ⋅ Q eiϕ = P ⋅ Q ei(θ+ϕ )  [1.14]  

 

This definition of phasor product is conceptually simple because the phasors are 
written in Euler’s polar form with a magnitude and direction.  However, for 
computational purposes this definition may be re-written in Cartesian form as 

Fig. 1.10   Definition of  Phasor Product, P•Q
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P = a + ib; Q = c + id
PQ = ac + iad + ibc + i2bd = ac − bd( ) + i ad + bc( )  [1.15]  

Statistics of complex numbers.   

The rule for adding complex numbers developed above allows us to define 
the mean of N complex numbers as the sum divided by N.  The real part of the 
result is the mean of the real parts of the numbers, and the imaginary part of the 
result is the mean of the imaginary parts of the numbers.  The first step in 
computing variance is to subtract the mean from each number, which is 
accomplished by subtracting the real part of the mean from the real part of each 
number, and the imaginary part of the mean from the imaginary part of each 
number.  The second step is to sum the squared magnitudes of the numbers and 
divide the result by N.  (Statisticians distinguish between the variance of the 
population and the variance of a sample drawn from the population.  The former 
uses N in the denominator, whereas the latter uses N-1).  Standard deviation is 
just the square-root of variance. 

 

1.D  Terminology summary 

Vectors are depicted geometrically as a directed line segment having a certain 
length and direction. When the vector is projected onto orthogonal coordinate 
axes, the result is an ordered list of values. Order matters! [a,b,c] is not the same 
as [a,c,b].  Vectors of length 1 are called scalars.  A collection of vectors, all of the 
same dimensionality, may be grouped by row or by column into matrices. 

Phasors are a special case of 2-dimensional vectors for which the x-axis is real 
and the y-axis is imaginary. The algebraic representation of phasors as the sum 
of a real and imaginary number is called a complex number. The geometrical 
space used to depict a phasor graphically is called the complex plane.    

Fig. 1.11   Statistics of complex numbers
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2.A  Phasor representation of sinusoidal waveforms. 

A sinusoidal waveform has two attributes, magnitude and phase, and thus 
sinusoids are natural candidates for representation by phasors.  Why might such 
a representation be useful?  One reason is that it simplifies the description since a 
complete spatial or temporal waveform is reduced to just a single point 
represented by the tip of a phasor's arrow.  Moreover, changes in the waveform 
that develop over time or space are reproduced by the trajectory of the arrow’s 
tip in the complex plane as phase angle φ increases in proportion to time.   

 

The second reason is that it helps us to visualize how an arbitrary sinusoid 
may be decomposed into the sum of a pure sine and pure cosine waveform.  To 
perform the decomposition using trigonometry is a tedious business, as 
demonstrated by exercise 1.4.  However, if the sinusoid is represented by a 
phasor, then the same method used in Chapter 1 for decomposing vectors into 
orthogonal components may be used for decomposing the given sinusoid into its 
orthogonal sine and cosine components.  This method is illustrated in Fig. 2.2.   

 

Fig. 2.2  Phasor  Decomposition  of Sinusoids
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The phasor C can be represented algebraically in either of two forms.  In the 
polar form, C is the product of the amplitude C of the modulation with a 
complex exponential eiφ that represents the phase of the waveform.  Letting 
phase vary linearly with time recreates the waveform shape. In the Cartesian 
form, C is the sum of a "real" quantity (the amplitude of the cosine component)  
and an "imaginary" quantity (the amplitude of the sine component).  The 
advantage of these representations is that the ordinary rules of algebra for 
adding and multiplying may be used to add and scale sinusoids without 
resorting to tedious trigonometry.  For example, if the temporal waveform v(t) is 
represented by the phasor P and w(t) is represented by Q, then the sum v(t)+w(t) 
will correspond to the phasor S=P+Q in Fig. 1.8.  Similarly, if the waveform v(t) 
passes through a filter which scales the amplitude and shifts the phase in a 
manner described by complex number Q, then the output of the filter will 
correspond to the phasor S=P.Q as shown in Fig. 1.9. 

2.B  Matrix algebra. 

As shown in Chapter 1, the inner product of two vectors reflects the degree to 
which two vectors point in the same direction.  For this reason the inner product 
is useful for determining the component of one vector in the direction of the 
other vector.  A compact formula for computing the inner product was found in 
exercise 1.1 to be 

 d = (ai
1

N

∑ bi)  = sum (a.*b) = dot (a,b) [2.1] 

[Note: text in Courier font indicates a MATLAB command].  
An alternative notation for the inner product commonly used in matrix algebra 
yields the same answer (but with notational difference a.*b versus a*b’):   

 d = a1 a2 a3[ ] ⋅
b1
b2
b3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 = a*b' (if a, b are row vectors) [2.2] 

  = a’*b (if a, b are column vectors) 

Initially, eqns. [2.1], [2.2] were developed for vectors with real-valued elements.  
To generalize the concept of an inner product to handle the case of complex-
valued elements, one of the vectors must be converted first to its complex 
conjugate.  This is necessary to get the right answers, just as we found in Chapter 
1 when discussing the length of a phasor, or magnitude of a complex number.  
Standard textbooks of linear algebra (e.g. Applied Linear Algebra by Ben Nobel) 
and MATLAB computing language adopt the convention of conjugating the first 
of the two vectors (i.e. changing the sign of the imaginary component of column 
vectors).  Thus, for complex-valued column vectors, eqn. 2.2 generalizes to 
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 d = a1
* a2

* a3
*[ ] ⋅

b1
b2
b3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 = sum(conj(a).*b) =dot(a,b) =a’*b [2.3] 

Because eqn, [2.2] for real vectors is just a special case of [2.3] for complex-valued 
vectors, many textbooks use the more general, complex notation for developing 
theory.  In Matlab, the same notation applies to both cases. However, order is 
important for complex-valued vectors since dot(a,b) = (dot(b,a))*.  To keep the 
algebraic notation as simple as possible, we will continue to assume the elements 
of vectors and matrices are real-valued until later chapters. 

One advantage of matrix notation is that it is easily expanded to allow for the 
multiplication of vectors with matrices to compute a series of inner products.  For 
example, the matrix equation 

 
p1
p2
p3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

=
a1 a2 a3
b1 b2 b3
c1 c2 c3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⋅
d1
d2
d3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 [2.4] 

is interpreted to mean:  "perform the inner product of (row) vector a with 
(column) vector d and store the result as the first component of the vector p.  
Next, perform the inner product of (row) vector b with (column) vector d and 
store the result as the second component of the vector p.  Finally, perform the 
inner product of (row) vector c with (column) vector d and store the result as the 
third component of the vector p."  In other words, one may evaluate the product 
of a matrix and a vector by breaking the matrix down into row vectors and 
performing an inner product of the given vector with each row in turn.  In short, 
matrix multiplication is nothing more than repeated inner products that convert 
one vector into another. 

The form of equation [2.4] suggests a very general scheme for transforming 
an "input" vector d into an "output" vector p.  That is, we may say that if p=[M].d 
then matrix M has transformed vector vector d into vector p.  Often the elements 
of M are thought of as "weighting factors" which are applied to the vector d to 
produce p.  For example, the first component of output vector p is equal to a 
weighted sum of the components of the input vector 

 p1 = a1d1 + a2d2 + a3d3 . [2.5] 

Since the weighted components of the input vector are added together to 
produce the output vector, matrix multiplication is referred to as a linear 
transformation which explains why matrix algebra is also called linear algebra. 
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Matrix algebra is widely used for describing linear physical systems that can 
be conceived as transforming an input signal into an output signal.  For example, 
the electrical signal from a microphone is digitized and recorded on a compact 
disk as a sequence of vectors, with each vector representing the strength of the 
signal at one instant in time.  Subsequent amplification and filtering of these 
vectors to alter the pitch or loudness is done by multiplying each of these input 
vectors by the appropriate matrix to produce a sequence of output vectors which 
then drive loudspeakers to produce sound.  Examples from vision science would 
include the processing of light images by the optical system of the eye, linear 
models of retinal and cortical processing of neural images within the visual 
pathways, and kinematic control of eye rotations. 

Rotation matrices.   

In general, the result of matrix multiplication is a change in both the length and 
direction of a vector.  However, for some matrices the length of the vector 
remains constant and only the direction changes.  This special class of matrices 
that rotate vectors without changing the vector’s length are called rotation 
matrices.  Fig. 2.3 illustrates the geometry of a rotation.   

 

If the original vector has coordinates (x,y) then the coordinates (u,v) of the vector 
after rotation by angle δ are given by the equations 

 
u = R cos(α + δ )
v = Rsin(α + δ)

. [2.6] 

Applying the trigonometrical identities  

 
cos(α + δ ) = cosα cosδ − sinα sinδ
sin(α + δ ) = cosα sinδ + sinα cosδ

. [2.7] 

which were the subject of exercise 1.2, to get 

Fig. 2.3  Rotation  Matrices   
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u = R cosα cosδ − R sinα sinδ
v = Rcosα sinδ + Rsinα cosδ

. [2.8] 

but since R*cosα = x, and R*sinα = y, we have 

 
u = x cosδ − ysin δ
v = x sinδ + ycosδ

. [2.9] 

which are written in matrix notation as  

 
u
v
⎡ 

⎣ 
⎢ 
⎢ 
⎤ 

⎦ 
⎥ 
⎥ 

=
cosδ − sinδ
sinδ cosδ

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
⋅
x
y
⎡ 

⎣ 
⎢ 
⎢ 
⎤ 

⎦ 
⎥ 
⎥ . [2.10] 

Based on this example of a 2-dimensional rotation matrix, we may draw 
certain conclusions that are true regardless of the dimensionality of the matrix.  
Notice that if each row of the rotation matrix in [2.10] is treated as a vector, then 
the inner product of each row with every other row is zero.  The same holds for 
columns of the matrix.  In other words, the rows and columns of a rotation 
matrix are mutually orthogonal.  Such a matrix is referred to as an orthogonal 
matrix.  Furthermore, note that the length of each row vector or column vector of 
a rotation matrix is unity.  Such a matrix is referred to as a normal matrix.  
Rotation matrices have both of these properties are so are called ortho-normal 
matrices.  A little thought will convince the student that the orthogonality 
property is responsible for the rotation of the input vector and the normality 
property is responsible for the preservation of scale.   

Given these results, it should be expected that a similar equation will rotate 
the output vector p back to the original input vector d.  In other words, the 
rotation transformation is invertible.  Accordingly, if  

 p =M.d  [2.11] 

then multiplying both sides of the equation by the inverse matrix M-1  yields 

 M-1p =M-1M.d . [2.12] 

Since any matrix times it's inverse equals the identity matrix I (1 on the positive 
diagonal elements and zero elsewhere), the result is 

 M-1p =Id  [2.13] 

and since multiplication of a vector by the identity matrix leaves the vector 
unchanged, the result is 

 M-1p =d. [2.14] 

Although it is a difficult business in general to find the inverse of a matrix, it 
turns out to be very easy for rotation matrices.  The inverse of an orthogonal 
matrix is just the transpose of the matrix, which is determined by interchanging 
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rows and columns (i.e. flip the matrix about it's positive diagonal).  The 
complementary equation to [2.10] is therefore 

 
x
y
⎡ 

⎣ 
⎢ 
⎢ 
⎤ 

⎦ 
⎥ 
⎥ 

=
cosδ sinδ
−sin δ cosδ

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
⋅
u
v
⎡ 

⎣ 
⎢ 
⎢ 
⎤ 

⎦ 
⎥ 
⎥ . [2.15] 

Basis vectors.   

To prepare for Fourier analysis, it is useful to review the following ideas and 
terminology from linear algebra.  If u and v are non-zero vectors pointing in 
different directions, then they are linearly independent.  A potential trap must be 
avoided at this point in the usage of the phrase "different direction".  In common 
English usage, North and South are considered opposite directions.  However, in 
the present mathematical usage of the word direction, which rests upon the inner 
product rule, it is better to think of the orthogonal directions North and East as 
being opposite whereas North and South are the same direction but opposite 
signs.  With this in mind, a more precise expression of the idea of linear 
independence is to require the cosine of the angle between the two vectors be 
different from ±1, which is the same as saying |u•v|≠ |u|.|v|.   Given two 
linearly independent vectors u and v, any vector c in the plane of u and v can be 
found by the linear combination c=Au + Bv.  For this reason, linearly 
independent (but not necessarily orthogonal) vectors u and v are said to form a 
basis for the 2-dimensional space of the plane in which they reside.  Since any 
pair of linearly independent vectors will span their own space, there are an 
infinite number of vector pairs that form a basis for the space.  If a particular pair 
of basis vectors happen to be orthogonal (i.e. u•v=0) then they provide an 
orthogonal basis for the space.  For example, the conventional X-Y axes of a 
Cartesian reference frame form an orthogonal basis for 2-dimensional space.  
Orthogonal basis vectors are usually more convenient than non-orthogonal 
vectors to use as a coordinate reference frame because each vector has zero 
component in the direction of the other. 

The foregoing statements may be generalized for higher dimensional spaces 
as follows.  N-dimensional space will be spanned by any set of N linearly 
independent vectors, which means that every vector in the set must point in a 
different direction.  If all N vectors are mutually orthogonal, then they form an 
orthogonal basis for the space.  As shown in the next chapter, Fourier analysis 
may be conceived as a change in basis from the ordinary Cartesian coordinates to 
an orthogonal set of vectors based on the trigonometric functions sine and cosine.  

Change in basis vectors and orthogonal decompositions   

Given a vector specified by its coordinates in one frame of reference, we may 
wish to specify the same vector in an alternative reference frame.  This is the 
same problem as changing the basis vectors for the space containing the given 
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vector.  If the new basis vectors are mutually orthogonal, then the process could 
also be described as a decomposition of the given vector into orthogonal 
components. (Fourier analysis, for example, is an orthogonal decomposition of a 
vector of measurements into a reference frame representing the Fourier 
coefficients. Geometrically this decomposition corresponds to a change in basis 
vectors by rotation and re-scaling.)  An algebraic description of changing basis 
vectors emerges by thinking geometrically and recalling that the projection of 
one vector onto another is computed via the inner product.  For example, the 
component of vector V in the x-direction is computed by forming the inner 
product of V with the unit basis vector x=[1,0].  Similarly, the component of 
vector V in the y-direction is computed by forming the inner product of V with 
the unit basis vector y=[0,1].  These operations correspond to multiplication of 
the original vector V by the identity matrix as indicated in Fig. 2.4. 

In general, if the (x,y) coordinates of orthogonal basis vectors x', y' are x' = 
[a,b] and y' = [c,d] then the coordinates of V in the (x',y') coordinate frame are 
computed by projecting V=(Vx,Vy) onto the (x', y') axes as follows:  

Vx’ = component of V in x' direction = [a,b]•[Vx,Vy]′   (project V onto x’) 
Vy’ = component of V in y' direction = [c,d]•[Vx,Vy]′    (project V onto y’) 

This pair of equations can be written compactly in matrix notation as 

 
V ′x

V ′y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= a b

c d
⎡

⎣
⎢

⎤

⎦
⎥ ⋅

Vx
Vy

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 [2.16] 

and noting the inner product [a,b] •[ c,d] ′  = 0 because axes x', y' are orthogonal. 

In summary, a change of basis can be implemented by multiplying the 
original vector by a transformation matrix, the rows of which represent the new 
unit basis vectors.  In Fourier analysis, the new basis vectors are obtained by 
sampling the trigonometrical sine and cosine functions. The resulting 
transformation matrix converts a data vector into a vector of Fourier coefficients. 
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3.A  Introduction. 
In his historical introduction to the classic text Theory of Fourier's Series and 

Integrals, Carslaw (1921) recounts the controversy raging in the middle of the 
eighteenth century over the question of whether an arbitrary function can be 
represented as the sum of a series of weighted sinusoids.  Many of Europe's most 
prominent mathematicians participated in the debate, including Euler, 
D'Alembert, Bernoulli, Lagrange, Dirichlet, and Poisson.  At that time, it was 
recognized that periodic functions, like the vibration of a string, could be 
represented by a trigonometrical series.  However, it was not at all clear that a 
non-periodic function could be so represented, especially if it required an 
unlimited number of sines and cosines that might not necessarily converge to a 
stable sum.  Fourier, who is credited with resolving this issue, was interested in 
the theory of heat.  A pivotal problem central to the mathematical issue and its 
practical application was to understand the temperature profile of the earth at 
various depths beneath the surface.  A typical profile Y=f(X)  might look like the 
heavy curve illustrated in Fig. 3.1 

 

Although the temperature profile in this example is defined only from the 
earth's surface (X=0) to a depth X=L, suppose we replicate the given curve many 
times and connect the segments end-to-end as shown by the light curves in the 
figure.  The result would be a periodic function of period L that can be made to 
stretch as far as we like in both the positive-X and negative-X directions.  This 
artificial periodicity is intended to raise our expectations of success in 
representing such a function by a sum of sinusoids, which also exist over the 
entire length of the X-axis.  Obviously the sum of sinusoids will fit the original 
function over the interval (0-L) if it fits the periodic function over the entire X-
axis.  The figure also makes it clear that the period of each sinusoidal component 
must be some multiple of L because otherwise some intervals will be different 
from others, which is incompatible with the idea of periodicity.  The name given 
to the harmonically related series of sinusoids required to reproduce the function 
Y=f(X) exactly is the Fourier series. 

Fig. 3.1  Temperature Profile of Earth's Surface

0 L X=depth beneath surface

Y=Temperature

Y=f(X)
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Before tackling the difficult problem of finding the Fourier series for a 
continuous function defined over  a finite interval, we will begin with the easier 
problem of determining the Fourier series when the given function consists of a 
discrete series of Y-values evenly spaced along the X-axis.  This problem is not 
only easier but also of more practical interest to the experimentalist who needs to 
analyze a series of discrete measurements of some physical variable, or perhaps 
uses a computer to sample a continuous process at regular intervals. 

3.B   A Function Sampled at 1 point. 

Consider the extreme case where a function Y(X) is known for only one value 
of X.  For example, in the study of heat illustrated in Fig. 3.1, suppose we have a 
raw data set consisting of a single measurement Y0 taken at the position X=0.  To 
experience the flavor of more challenging cases to come, imagine modeling this 
single measurement by the function 

 Y = f (X ) = m  [3.1] 

where m is an unknown parameter for which we need to determine a numerical 
value.  The obvious choice is to let m=Y0. The problem is illustrated graphically 
in Fig. 3.2 and the solution is the heavy, horizontal line passing through the 
datum point.  This horizontal line is the Fourier series for this case of D=1 
samples and the parameter m is called a Fourier coefficient.  Although this is a 
rather trivial example of Fourier analysis, it illustrates the first step in a more 
general process.   

If we engage in the process of replicating the data set in order to produce a 
periodic function, the same Fourier series passes through all of the replicated 
data points as expected.  Notice, however, that the fitted line is an exceedingly 
poor representation of the underlying continuous curve.  The reason, of course, is 
that we were provided with only a single measurement; to achieve a better fit to 
the underlying function we need more samples. 

 

Fig. 3.2  Fourier Analysis of 1-Sample Data Set

0 L X=depth beneath surface

Y=Temperature
Y = f (X ) = m

Y0
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3.C   A Function Sampled at 2 points. 

Suppose next that measurements Y0 and Y1 are taken at two depths, X=0 and 
X=L/2, respectively, as illustrated in Fig. 3.3.  These values of X correspond to 
the beginnings of two sub-intervals obtained by dividing the total interval L into 
D=2 parts of equal length.  Now that we have a second measurement available, 
we are able to add a second term to our model.  Thus we seek to fit the data with 
the Fourier series 

 Y = f (X) = m + a ⋅ cos(2πX / L) . [3.2] 

To determine the unknown Fourier coefficients m and a, we evaluate equation 
[3.2] at the two X-values for which we have measurements.  The result is the pair 
of equations 

 
  

Y0 = m + a ⋅ cos(0) = m + a …@X = 0
Y1 =m + a ⋅ cos(π ) = m − a …@X = L / 2  [3.3] 

The solution to this pair of equations is  

 
m =

Y0 + Y1
2

a = Y0 − Y1
2

 [3.4] 

Therefore, we conclude that the model 

 Y =
Y0 + Y1
2

+
Y0 − Y1
2

⋅ cos(2πX / L)  [3.5] 

will pass through the original two data points exactly, as shown in Fig. 3.3.    

 

Notice that the cosine term in this model undergoes one complete cycle in the 
interval (0-L).  In other words, the frequency of the cosine term is the same as the 

Fig. 3.3  Fourier Analysis of  2-Sample Data Set

0 L X=depth beneath surface

Y=Temperature

L/2

Y = f (X) = m + a ! cos(2"X / L)
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frequency of the periodic waveform of the underlying function.  For this reason, 
this cosine is said be the fundamental harmonic term in the Fourier series.  This 
new model of a constant plus a cosine function is clearly a better match to the 
underlying function than was the previous model, which had only the constant 
term.  On the other hand, it is important to remember that although the 
mathematical model exists over the entire X-axis, it only applies to the physical 
problem over the interval of observation (0-L) and within that interval the model 
strictly applies only to the two points actually measured.  Outside the interval 
the model is absurd since there is every reason to expect that the physical profile 
is not periodic.  Even within the interval the model may not make sense for X-
values in between the actual data points.  To judge the usefulness of the model as 
an interpolation function we must appeal to our understanding of the physical 
system under study.  In a later section we will expand this example to include 
D=3 samples, but before we do that we need to look more deeply into the process 
of Fourier analysis which we have just introduced. 

3.D   Fourier Analysis is a Linear Transformation. 
As the preceding example has demonstrated, Fourier analysis of discrete 

functions yields a model that consists of a weighted sum of sinusoids plus a 
constant.  These weights, or Fourier coefficients, are unknown parameters of the 
model that must be determined from the data.  The computational method used 
to produce the values of the coefficients in the above example was to solve two 
linear equations in two unknowns.  This suggests that we write equations [3.3] in 
matrix form as follows 

 
Y0
Y1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ =

1 cos 0
1 cos π

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ ⋅

m
a

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥  [3.6] 

When written this way, Fourier analysis looks like the kind of linear 
transformation described in Chapter 2.  That is, if we think of our two sample 
points Y0 and Y1 as the components of a 2-dimensional data vector v, then v is 
evidently a transformation of some other vector f which is comprised of the 
Fourier coefficients m and a.  In matrix notation, the claim is that v=M.f.  The 
inverse transformation, f=M-1v, indicates that the vector of Fourier coefficients f 
is a linear transformation of the given data vector v.  To show this, first we find 
the inverse of matrix M and then use the result to write  

 
m
a

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=
1
2

1 1
cos 0 cosπ
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
⋅
Y0
Y1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥  [3.7] 

which of course is equivalent to equations [3.4].  (The common factor 1/2 has 
been extracted from each element of  M-1 in this equation.)  In the language of 
Fourier analysis, equation [3.7] describes the Discrete Fourier Transform (DFT) of 
data vector v into the vector of Fourier coefficients f.  Conversely, equation [3.6] 
describes the Inverse DFT of f to reproduce the data vector v. 
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3.E   Fourier Analysis is a Change in Basis Vectors. 

Another way of viewing Fourier analysis suggests itself if we rewrite 
equation [3.6] as a vector sum 

 

v = Y0 ,Y1( ) = m + acos0, m + acosπ( )
= m, m( ) + a cos0, cosπ( )
= mC0 + aC1

 [3.8] 

where C0 is the constant function cos(0*2πx/L) evaluated at the given sample 
points and C1 is the fundamental harmonic function cos(1*2πx/L) evaluated at 
the given sample points, 

 
C0 = 1,1( )
C1 = cos0, cos π( ) = 1,−1( )

 [3.9] 

In words, these equations say that data vector v is the weighted sum of two other 
vectors C0 and C1.   Notice that vectors C0 and C1 are orthogonal and so they 
could serve as alternative basis vectors for the 2-dimensional space used to 
represent v.  This interpretation is illustrated in Fig. 3.4.  The advantage of 
viewing the problem this way is that it provides a geometrical interpretation of 
the calculation of the unknown parameters m and a.  These parameters represent 
the components of v in the directions of basis vectors C0 and C1.  From Chapter 2 
we know that these components are found by projecting v onto the basis vectors 
and the lengths of these projections may be computed by the inner product.  
Accordingly, we can compute m by evaluating the inner product v•C0  as follows 

 

v •C0 = mC0 + aC1( ) •C0

= mC0 •C0 + aC0 •C1

= mC0
2

 [3.10] 

 

Fig. 3.4  Fourier Analysis as Change in Basis Vectors    

Geometric Algebraic

First sample

Y1

Second 
sample

Y0

V
C0

C1

v = Y0,Y1( ) = mC0 + aC1

C0 = 1,1( )
C1 = cos0, cos !( ) = 1,"1( )

where



Chapter 3:  Fourier Analysis of Discrete Functions Page 28 
 

Notice that the second term in [3.10] drops out because of orthogonality.  
Rearranging terms, we get 

 

m = v •C0

C0
2

= Y0 + Y1
2

 [3.11] 

Similarly, we can compute a by evaluating the inner product v•C1  as follows 

 

v •C1 = C1 mC0 + aC1( )
= mC1 •C0 + aC1 •C1
= aC1

2

 [3.12] 

Again one term drops out because of orthogonality.  Rearranging terms, we get 

 

a = v •C1
C1

2

= Y0 − Y1
2

 [3.13] 

The repeated formation of an inner product of the data vector v with vectors C0 
and C1 suggests the (somewhat unconventional) matrix notation  

 
m
a
⎡ 
⎣ 
⎢ 

⎤ 
⎦ 
⎥ =

1
2
C0 →
C1 →

⎡ 
⎣ 
⎢ 

⎤ 
⎦ 
⎥ ⋅

Y0
Y1
⎡ 
⎣ 
⎢ 

⎤ 
⎦ 
⎥   [3.14] 

which is the same as equation [3.7].  In this equation, C→   indicates a row vector 
containing samples of the cosine waveform. 

The conclusion to be drawn from this discussion is that if we represent a 
series of two samples of a function as a data vector v, then we can perform 
Fourier analysis on the sampled function by creating two orthogonal vectors C0 
and C1 and projecting the data vector onto these new basis vectors.  The lengths 
of these projections may be interpreted as the amount of C0 or C1 present in the 
data vector.  Since C0 is just the sampled constant function and C1 is the sampled 
cosine function, these projections tell us how much constant and how much 
cosine is present in the data.  That is what Fourier analysis is all about!  In the next 
section we will expand this line of reasoning to deal with the case of D=3 
samples and then generalize the result for an arbitrary number of samples. 

 



Chapter 3:  Fourier Analysis of Discrete Functions Page 29 
 

3.F   A Function Sampled at 3 points. 

Let us return now to the problem of measuring the temperature function of 
Fig. 3.2.  We have seen that if we sample the temperature at two points, then a 
Fourier series with two terms fits the two measurements exactly.  To generalize 
this observation, we might expect three samples will be fit exactly by a 3-term 
Fourier series, that four samples will be fit by a 4-term series, and so on.  The 
obvious question of "how many terms are enough?" will be dealt with in later 
chapters.  For the moment, we can say two things.  First, to fit a continuous 
function perfectly with a Fourier model will require an infinite number of terms.  
Second, we might imagine that if enough points are sampled, i.e. if samples are 
sufficiently close together, then errors made by interpolating between points 
with a Fourier model will become insignificant.  To sharpen this imprecise 
statement further we will need to define criteria for what is meant by "enough 
points" and when a model’s errors are "insignificant".  Then, to judge whether a 
particular model satisfies these criteria we must ultimately depend on our 
understanding of the physics of the problem.  But before we can tackle these 
important issues we need to develop general formulas for Fourier series that are 
valid for any number of sample points.  We will be in a position to do this after 
we consider one more specific example, that of D=3.  

In order to obtain a better model of the underlying function in Fig. 3.2, 
suppose that measurements Y0, Y1, and Y2 are taken at three depths, X=0, X=L/3, 
and X=2L/3, respectively, as illustrated in Fig. 3.5.  These values of X correspond 
to the beginnings of three sub-intervals obtained by dividing the total interval L 
into D=3 parts of equal length.   

 

Now that we have a third measurement available, we are able to add a third term 
to our trigonometrical model.  Thus we seek to fit the data with the Fourier series 

 Y = f (X) = m + a ⋅ cos(2πX / L) + b ⋅sin(2πX / L) . [3.15] 

0 L X=depth beneath surface

Y=Temperature

Fig. 3.5  Fourier Analysis of 3-Sample Data Set

L/3 2L/3

Y = f (X) = m + a ! cos(2"X / L) + b !sin(2"X / L)
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To determine the three unknown Fourier coefficients m, a and b, we evaluate 
equation [3.15] at the three X-values for which we have measurements.  The 
result is the system of 3 linear equations 

 

  

Y0 = m + a ⋅ cos(0) + b ⋅sin(0) …@X = 0
Y1 = m + a ⋅ cos(2π / 3) + b ⋅sin(2π / 3) …@X = L / 3
Y2 = m + a ⋅ cos(4π / 3) + b ⋅ sin(4π / 3) …@X = 2L / 3

 [3.16] 

To solve this system of linear equations we first write them in the matrix form 
v=M.f as follows 

 
Y0
Y1
Y2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

=
1 cos0 sin 0
1 cos2π / 3 sin2π / 3
1 cos4π / 3 sin4π / 3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⋅
m
a
b

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 [3.17] 

When written this way, the columns of matrix M are immediately recognized as 
the column vectors C0, C1, and S1 that are the sampled trigonometric functions 
which form the basis of our Fourier model.  This suggests the more compact 
notation (using arrows to indicate column vectors in the matrix) 

 v =
C0 C1 S1
↓ ↓ ↓

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
f  [3.18] 

from which it follows that vector v is the weighted sum of the basis vectors 

 v = mC0 + aC1 + bS1. [3.19] 

In other words, if we imagine forming a 3-dimensional data vector from the 3 
given Y-values, then this vector exists in a 3-dimensional space which is also 
spanned by an alternative set of basis vectors: the sampled trigonometric 
functions.  The amount of each basis vector is computed by applying eqn. 3.18, 
which is known as the inverse discrete Fourier transform (IDFT). 
 

 

Fig. 3.6  Vector Representation of 
Discrete Function of 3 Points 

•Vector coordinates (X,Y,Z) of V are 
the 3 values of the discrete function. 

•Vector V may also be expressed as a 
weighted combination of orthogonal 
basis vectors C0, C1, and S1.  These 
weights are the coefficients of a 
Fourier series model of the function. 

•Tick marks show unit distances along 
axes. 
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Thus our data vector may be conceived as the weighted sum of these basis 
vectors and the corresponding weights are the unknown Fourier coefficients we 
desire.  This geometrical perspective on the problem suggests that to determine 
the Fourier coefficients we should project the data vector onto each basis vector 
in turn by forming the inner product.  For example, projecting v onto C0 gives 

 

v •C0 = (mC0 + aC1 + bS1) •C0

= mC0 •C0 + aC1 •C0 + bS1 •C0

= mC0 •C0

= mC0
2

. [3.20] 

Note that all but one term vanishes because of orthogonality.  From exercise 
3.3 we know that the squared length of C0 is D, the dimensionality of the 
problem (D=3 in this example).  Thus the first Fourier coefficient is 

 m =
v •C0

D
. [3.21] 

By a similar line of reasoning we obtain the other two Fourier coefficients 

 
a = v •C1

D / 2

b = v • S1
D / 2

. [3.22] 

These last two equations may be combined to give the matrix form (using arrows 
to denote row vectors in the matrix) 

 
m
a
b

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=
C0 / D→
2C1 / D→
2S1 / D→

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

Y0
Y1
Y2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 [3.23] 

which can be simplified by extracting the common factor 2/D to give the 
forward discrete Fourier transform (DFT) 

 f =
2
D

C0 / 2→
C1 →
S1→

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
v  [3.24] 

In summary, equations [3.16] through [3.19] are different ways of expressing 
the inverse DFT for the case of D=3.  As such, they tell us how to "reconstruct" 
the measured data points from the Fourier coefficients.  But we needed to solve 
the opposite problem:  given the measured values, determine the unknown 
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Fourier coefficients.  In other words, we sought the forward DFT, f=M-1v, which 
means we had to find the inverse of matrix M.  Our method of solution took 
advantage of the orthogonality of the trigonometrical basis vectors by repeatedly 
forming the inner product of the data vector with each of the trigonometrical 
basis vectors.  When each inner product is divided by the length of the 
corresponding basis function, the result is interpreted geometrically as the length 
of the projection of v onto the basis vectors.  These lengths equal the Fourier 
coefficients in the model. 

3.G   A Function Sampled at D points. 

The preceding examples of D=1, 2, and 3 point the way towards a general 
method for determining the Fourier coefficients for a trigonometrical model 
suitable for an arbitrary number of points.  In section 3.A we reasoned that the 
periods of all of the trigonometric elements in the model must be some integer 
fraction of the observation interval.  That is, the period must equal L/k where k is 
an integer which we will call the harmonic number.  Thus, the model we seek will 
be a Fourier series of the form 

 Y = f (X) = m + ak ⋅ cos(2πkX / L) + bk ⋅sin(2πkX / L)
k=1

N

∑  [3.25] 

which is perhaps easier to grasp if we simplify the notation a bit by making a 
change of variables  

 
  
Y = f (X) = m + ak ⋅ coskθ + bk ⋅sin kθ

k=1

N

∑ , …θ = 2πX / L  [3.26] 

where D = 2N when D is even, and D=2N+1 when D is odd.  As before, we 
assume the X-interval from 0 to L is subdivided into D equal parts and the Y-
values occur at the beginnings of each of these sub-intervals so that θ j = 2πj / D .  
If the interval runs from S to S+L, then the values of θ are θ j = 2π (S + jL / D) / L . 

For D data points there are D unknown Fourier coefficients to be determined.  
If equation [3.26] is evaluated at every X-value for which we have measurements, 
then the result is a system of D linear equations which, when written in matrix 
form, are 

 

 

Y0
Y1
Y2
Y3

YD

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

C0 C1 S1 … CN SN
↓ ↓ ↓ ↓ ↓

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

•

m
a1
b1

aN
bN

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 [3.27] 
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which is compactly written as an inner product of f with a matrix of column 
vectors 

 
  
v =

C0 C1 S1  CN SN
↓ ↓ ↓ ↓ ↓

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

• f  [3.28] 

Equations [3.27] and [3.28] shows the inverse discrete Fourier transform (IDFT) 
when D is odd.  When D is even, the last column (SN) in the matrix and the last 
Fourier coefficient (bN) are omitted. 

To obtain the forward DFT, we conceive of our D data points as a vector in D-
dimensional space that may be expressed as the weighted sum of trigonometrical 
basis vectors.  The corresponding weights are the unknown Fourier coefficients 
obtained by projecting the data vector onto each of the basis vectors in turn by 
forming the inner product.  For example, projecting v onto Ck gives 

 

  

v •Ck = (mC0 + a1C1 + b1S1 + a2C2 + b2S2+…+aNCN + bNSN ) •Ck

= akCk •Ck

= ak Ck
2

= akD / 2

 [3.29] 

Note that all but one term in the expanded inner product vanishes because of 
orthogonality.  Recall from exercise 3.3 that the squared length of Ck equals D/2, 
so the k-th cosine Fourier coefficient is given by the simple formula 

 

  

ak =
2
D
v •Ck

=
2
D
⋅ Y j coskθ j
j= 0

D−1

∑ …θ j = 2πXj / L
 [3.30] 

A corresponding formula holds for the k-th sine coefficient 

 

  

bk =
2
D
v •Sk

=
2
D
⋅ Y j sin kθ j
j= 0

D−1

∑ … θ j = 2πX j / L
. [3.31] 

These last two equations thus define every Fourier coefficient except for two 
special cases that do not include the factor 2.  The reason this factor is missing is 
because the squared length of the corresponding basis vector is D rather than 
D/2.  One special case is the first Fourier coefficient, m, which is the mean value 
and the other special case is the last Fourier coefficient, CN, when D is even.   
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Notice that these results demonstrate that any particular Fourier coefficient 
may be calculated without regard to the other Fourier coefficients.  This is a 
simplifying consequence of the orthogonality of the sampled sinusoids.  One practical 
implication of this result is that it is not necessary to calculate all of the Fourier 
coefficients of the model if only some are of interest.  On the other hand, if all of 
the Fourier coefficients are to be computed, then it is convenient to calculate 
them all at once by the matrix multiplication as follows 

 

  

m
a1
b1

aN
bN

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

C0 / D →
2C1 / D →
2S1 / D →


2CN / D →
2SN / D →

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

•

Y0
Y1
Y2
Y3


Y2 N +1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 [3.32] 

which can be simplified by extracting the common factor 2/D to give 

 

  

f =
2
D

C0 / 2 →
C1 →
S1 →

CN →
SN →

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

•v  [3.33] 

3.H   Tidying Up. 

Although valid, the general equations just developed have a couple of 
aesthetically unpleasant features that obscure an important geometrical 
interpretation of Fourier analysis.  First, there is the need for a special formula for 
calculating the mean coefficient m.   Equation [3.30] generates an answer which is 
exactly twice the mean if we set k=0.  That is, a0 = 2m.  This suggests that we 
make a change of variables in our model so that we won't need to regard the 
constant term as a special case.  With this change of variable, the model becomes 

 
 
Y = y(X) = a0

2
+ ak ⋅ coskθ + bk ⋅ sin kθ

k=1

N

∑ , …θ = 2πX / L  [3.34] 

which is the form of the Fourier series generally quoted in text books. 

Next, there is the unsightly factor 2 in the top element of the matrix in 
equation [3.33].  This anomaly results from the fact that all of the trigonometric 
basis vectors have squared length D/2 except for C0, which has squared length 
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D.  This suggests that we multiply C0 in equation [3.27] by √2/√2 and then factor 
out the √2 in the numerator and put it into the a0 term in the vector of Fourier 
coefficients as shown below in equation [3.35] 

 

 

Y0
Y1
Y2
Y3

Y2N

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

C0

2
C1 S1 … CN SN

↓ ↓ ↓ ↓ ↓

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

•

a0 / 2
a1
b1

aN
bN

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 [3.35] 

Since every column vector in the trigonometrical matrices now has length 
√(D/2), let us extract this common factor so that each column will have unit 
length.  To keep the equations from looking messy, we first define the following 
unit basis vectors  

 

c0 =
C0 / 2
D / 2

= C0

D

ck =
Ck

D / 2

sk =
Sk
D / 2

 [3.36] 

so that equation [3.35] now becomes 

 

 

Y0
Y1
Y2
Y3

Y2N

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= D / 2 ⋅

c0 c1 s1 … cN sN
↓ ↓ ↓ ↓ ↓

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

•

a0 / 2
a1
b1

aN
bN

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 [3.37] 

which is written in our compact notation as 

 
  
v = D / 2 ⋅

c0 c1 s1  cN sN
↓ ↓ ↓ ↓ ↓

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

• f
      (inverse DFT)

 [3.38] 
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taking care to remember that the first element of f, the vector of Fourier 
coefficients, is different by the factor √2 from earlier usage. Also note that if D is 
even then the last Fourier coefficient in [3.37] is aN /√2. 

A major advantage of expressing the inverse DFT in the form of equation 
[3.38] is that the matrix of trigonometric vectors is orthonormal, which means 
that the inverse matrix is just the transpose.  Therefore, we can immediately 
write the forward DFT by inspection: 

 

  

f = 2 / D ⋅

c0 →
c1 →
s1 →

cN →
sN →

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

• v
                 (forward DFT)

 [3.39] 

The symmetrical pair of equations, [3.38] and [3.39] would be easily programmed 
on a computer. 

A second advantage of this form of the DFT equations is that it reveals the 
essential simplicity of the underlying geometry of Fourier analysis.  Since the 
matrix of trigonometric vectors is orthonormal, it is recognized as a rotation 
matrix.  In other words, the data vector v is transformed into a Fourier vector f 
by a rotation and change of scale (represented by the constant multiplier √(2/D) 
in equation 3.39).  Naturally the length of the data vector should be the same 
regardless of which frame of reference it is calculated in.  This geometrical notion 
is formulated below as Parseval's Theorem, which can be also interpreted 
physically as a statement of conservation of energy. 

3.I   Parseval's Theorem. 

Having defined two sets of orthonormal basis vectors for the D-dimensional 
space in which the data vector v is represented, it is instructive to compute the 
length of v with respect to these two coordinate reference frames for comparison.  
We have learned previously that the inner product of v with itself yields the 
squared length of the vector.  We must be careful in such a calculation, however, 
because we have seen that the two reference frames differ in scale.  One way to 
make sure that these scale factors are accounted for is to represent the data vector 
as a weighted sum of unit vectors pointing in the cardinal directions of the 
coordinate reference frame.  In other words, let  

   v = Y1u1 + Y2u2 + + YDuD  [3.40] 



Chapter 3:  Fourier Analysis of Discrete Functions Page 37 
 

where the unit basis vector uk with respect to the first reference frame has 
coordinate 0 for every dimension except the k-th dimension, for which the 
coordinate is 1.  For example,  

 

  

u1 = (1, 0, 0, 0,, 0)
u2 = (0,1,0,0,,0)
uD = (0,0,0,0,,1)

 [3.41] 

Now forming the inner product of v with itself is easily evaluated because many 
terms vanish due to the orthogonality of the basis vectors, and the remaining 
terms contain the factor u•u, which is unity because the basis vectors are unit 
length.  Thus we have, 

 

  

v 2 = v • v = (Y1u1 + Y2u 2 ++ YDuD) ⋅(Y1u1 + Y2u2 + +YDuD)
= (Y1u1 + Y2u 2 ++ YDuD) ⋅Y1u1 +
(Y1u1 + Y2u2 + + YDuD) ⋅Y2u2 +
(Y1u1 + Y2u2 + + YDuD) ⋅Y3u3 +


(Y1u1 + Y2u2 + + YDuD) ⋅YDuD

= Y1
2u1 • u1 + Y2

2u2 •u 2 ++ YD
2uD • uD

= Yk2
k=1

D

∑

 [3.42] 

which is simply the Pythagorean theorem for D-dimensional space.  Notice that 
equation [3.42] simplifies so dramatically because each line in the expanded form 
reduces to a single term due to the orthogonality of the unit basis vectors ui.  

By a similar line of reasoning, we find that  

 

f = a0
2
u1 + a1u2 + b1u3 + a2u4 + b2u5 +…

f 2 = f if = f i a0
2
u1 + f ia1u2 + f ib1u3 + f ia2u4 + f ib2u5 +…

=
a0
2

⎛
⎝⎜

⎞
⎠⎟
2

+ a1( )2 + b1( )2 + a2( )2 + b2( )2 +…

=
a0
2

2
+ ak

2 + bk
2

k=1

N

∑⎡

⎣
⎢

⎤

⎦
⎥

 [3.43]  
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Now if we repeat the above process when v is represented in the alternative 
coordinate reference frame defined by the sampled trigonometric functions 
according to eqn. [3.38], the result is 

 

  

v 2 = v • v

= D / 2( a0
2
c0 + a1c1 + b1s1 ++ aNc N + bNsN ) ⋅

D / 2( a0
2
c0 + a1c1 + b1s1 + + aNcN + bNsN )

= D
2
( a0
2
c0 + a1c1 + b1s1 ++ aNc N + bNsN ) ⋅

a0
2
c0 +⎡ 

⎣ ⎢ 

( a0
2
c0 + a1c1 + b1s1 ++ aNc N + bNsN ) ⋅ a1c1 +

( a0
2
c0 + a1c1 + b1s1 ++ aNc N + bNsN ) ⋅b1s1 +



( a0
2
c0 + a1c1 + b1s1 ++ aNc N + bNsN ) ⋅ aNc N +

( a0
2
c0 + a1c1 + b1s1 ++ aNc N + bNsN ) ⋅bNsN

⎤ 
⎦ ⎥ 

= D
2

a0
2

2
c0 •c0 + a12c1 •c1 + b12s1 • s1 + + aN2cN •c N + bN2 sN • sN

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

=
D
2

a02

2
+ ak2

k=1

N

∑ + bk2
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

 [3.44] 

Combining the results of eqns. [3.43] and [3.44] we obtain the following identity,  

 v 2 = Yk
2

k=1

D

∑ =
D
2

a0
2

2
+ ak

2

k=1

N

∑ + bk
2⎡

⎣
⎢

⎤

⎦
⎥ =

D
2
f 2  [3.45] 

which is known as Parseval's Theorem.  In words, Parseval's theorem states that 
the length of the data vector may be computed either in the space/time domain 
(the first coordinate reference frame) or in the Fourier domain (the second 
coordinate reference frame).  The significance of the theorem is that it provides a 
link between the two domains which is based on the squared length of the data 
vector.  In future chapters we will see how the squared length of the vector may 
be interpreted in many physical situations as the amount of energy in a signal 
and the squared Fourier coefficients are equivalent to the amount of energy in 
the terms of the Fourier series model.  In this sense, Parseval's theorem is an 
energy-conservation theorem since it says that a signal contains the same amount 
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of energy regardless of whether that energy is computed in the space/time 
domain or in the Fourier/frequency domain. 

 

3.J   A Statistical Connection 

Another interpretation of Parseval's theorem is in connection with statistics.  
If we rearrange eqn. [3.45] by moving the constant term (m=a0/2) to the left side 
we get 

 
1
D

Yk
2

k =1

D

∑ −m2 =
1
2

ak
2

k=1

N

∑ + bk
2  [3.46] 

Now the left side of this equation is recognized as the variance of the Y-values in 
the discrete function being modeled whereas the right side of the equation is one-
half of the sum of the squared amplitudes of the trigonometric Fourier 
coefficients.  Again, since the squared amplitudes of the Fourier coefficients are 
associated with the energy in the model, this equation says that the variance of a 
set of data points may also be thought of as a measure of the amount of energy in 
the signal. 

Other aspects of statistics also take on a geometrical perspective once data are 
conceived as vectors in D-dimensional space.  For example, the correlation 
between a set of X-values and corresponding Y-values is defined by Pearson's 
correlation coefficient  

 r =
(xj − x )(yj − y )

j=1

D

∑

(xj − x )2
j=1

D

∑ (yj − y )2
j=1

D

∑
 [3.47] 

If we conceive of the set of X-values as a vector x, then we can "normalize" x by 
subtracting off the mean X-value from each component of x to produce a new 
vector x'   as follows 

 

  

x = (x1, x2 ,, xD)
x = x (1,1,,1)
x'= x − x 

 [3.48] 

If we do the same for the Y-values to produce the normalized vector y', then the 
numerator of eqn. [3.47] is recognized as the inner product of x' and y'.  In a 
similar flash of insight we notice that the denominator of this equation is the 
product of the lengths of these two vectors.  In short, we see that 
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r = ′ x • ′ y 

′ x ⋅ ′ y 
= cosθ

 [3.49] 

In other words, the correlation between two variables in a sample of (X,Y) data 
values is equal to the angle between the two corresponding normalized data 
vectors in D-dimensional space. In this geometrical interpretation, correlation is a 
measure of the degree to which two data vectors point in the same direction in 
D-dimensional space. If the vectors are orthogonal, the data are uncorrelated. 

 

Figure 3.7  Graphical depiction of statistical correlation between 
two datasets, x and y.  The case of D = 2 measurements is 
illustrated.  The two measurements (x1, x2) are plotted as a data 
vector in the upper left panel, and the two measurements (y1, y2) 
are plotted in the upper right panel.  An auxiliary pair of axes (x’1, 
x’2)  and (y’1, y’2) are centered on the sample means to show the 
data vectors x’ = x-xmean and y’ = y - ymean.  When the two sets of 
auxiliary axes are superimposed, as shown in the lower panel, the 
cosine of the angle θ between the two data vectors equals Pearson’s 
correlation coefficient, r. 

A similar line of reasoning shows that the slope of the best-fitting linear 
regression of y upon x equals 

 

slope = r ⋅ ′ y 
′ x 

=
′ x • ′ y 
′ x 2

 [3.50] 

x1
x1 y1

y2x2

x´1

x´2

x2

x´

x´

y1

y´1

y´2

y2

y´

x´1 , y´1

x´2 , y´2 y´
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3.K  Image Contrast and Compound Gratings  

Some physical quantities, such as light intensity, are always positive. In such 
cases, sinusoidal variation is always accompanied by an additive constant that 
prevents the quantity from becoming negative. In optics, the relative amount of 
sinusoidal variation of light about the mean is called “contrast” and a sinusoidal 
spatial pattern of luminance L is called a grating. A universally accepted 
definition of contrast for a sinusoidal grating is the Michaelson formula 

C =
Lmax − Lmin
Lmax + Lmin  

[3.51] 

for which the various parameters needed to compute the contrast are obtained 
simply by inspection of the grating.  To see the connection with Fourier analysis, 
this Michaelson formula may be rewritten as 

C =
Lmax − Lmin( ) / 2
Lmax + Lmin( ) / 2

=
amplitude
mean

=
m
L0  

[3.52] 

Therefore, in Fourier terms, contrast is just the ratio of amplitude m to mean 
luminance L0.   

A general method for computing the contrast of a discrete optical image is 
based on the standard deviation of the luminance values of all the pixels in a 
display.  Applying this definition of contrast to the case of a sinusoidal grating  

 L(x) = L0 + m ⋅ cos(2π fx −φ)  [3.53]  

we invoke Parseval's theorem 

 
1
D

Lj
2

j=1

D

∑ = L0
2 +

m2

2
 [3.54]  

The quantity on the left is the mean of the squared pixel intensities, also known 
as the second moment of the luminance distribution. Rearranging eqn. [3.54] we 
find that 

 

 

2
L0

1
D

Lj
2

j=1

D

∑ − L0
2 =

m
L0

2 ipixel standard deviation / mean luminance = Michaelson contrast

 [3.55] 
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Recalling that the variance of a distribution equals the second moment - square 
of first moment, by taking the square root of both sides of equation [3.54] and 
dividing each side by mean luminance we recover the Michaelson contrast.  
Therefore, we conclude that the contrast of a sinusoidal grating can be computed as the 
standard deviation of the pixel luminance values, normalized by the mean luminance.   

If n gratings of different harmonic frequencies are superimposed to produce a 
compound grating, the resulting luminance distribution L(x) of the sum is 

 

L(x) = Lk + mk ⋅ cos(2π fk x −φk )
k=1

n

∑

= Lk
k=1

n

∑ + mk ⋅ cos(2π fk x −φk )
k=1

n

∑

= Lmean + mk ⋅ cos(2π fk x −φk )
k=1

n

∑

 [3.56]  

The Michaelson contrast Ck of the kth component equals mk / Lk, so its amplitude 
is mk = Ck * Lk. The mean luminance is equal to the sum of the mean luminances 
of the component gratings, but how should we define the contrast of this 
compound grating?  Again we look for some measure based on the standard 
deviation of the luminance values of all the pixels in the image and appeal to 
Parseval's theorem,  

 Lj
2

j=1

D

∑ = D Lmean
2 +

1
2

mk
2

k=1

N

∑⎡
⎣⎢

⎤
⎦⎥

 [3.57]  

Rearranging eqn. [3.57] we get 

 
1
D

Lj
2

j=1

D

∑
⎛

⎝⎜
⎞

⎠⎟
− Lmean

2 =
1
2

mk
2

k=1

n

∑  [3.58] 

The left hand side is the variance of the pixel luminance values of the compound 
grating and the right side is half the sum of squared amplitudes of the 
component gratings.  

If we substitute into equation [3.58] the definition of contrast of the k-th 
harmonic, mk = Ck * Lk,  then the result can be expressed in terms of the vector of 
contrasts Ck and mean luminances Lk of the component gratings that comprise 
the compound grating L(x),  

 Var L(x)( ) = 1
2

mk
2

k=1

n

∑ =
1
2

CkLk( )2
k=1

n

∑  [3.59]  
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This result shows that, like random variables, when two gratings are added 
together to get a compound grating, pixel variance of the compound grating 
equals the sum of pixel variances of the component gratings. Taking square roots 
of both sides of equation [3.59] and dividing by the mean luminance gives (in 
Matlab notation) a simple formula for contrast of the compound grating 
expressed either in terms of the normalized standard deviation of pixel values, or 
as the norm of the vector of component amplitudes, 

 Contrast =
2 Stdev L(x)( )

Lmean
=
norm(C.* L)
sum(L)

 [3.60] 

Although the problem was simplified by performing a 1-dimensional analysis 
above, the conclusions are valid also for 2-dimensional gratings of any 
orientation. Matlab program “test_contrast.m” provides a graphical 
demonstration for a plaid made from gratings of different orientations and 
spatial frequencies.  

3.L  Fourier Descriptors of the Shape of a Closed Curve  

The silhouette of a plane figure forms a closed curve that defines the boundary 
between the figure and the background. Fourier analysis can be used to provide 
a compact description of the curve’s shape and a procedure for interpolating a 
smooth boundary from sample points on the curve. This method is described 
briefly in the book "The Image Processing Handbook" by John C. Russ (IEEE 
press) and "Fourier Descriptors for Plane Closed Curves", by Charles T. Zahn 
and Ralph Z. Roskies, IEEE Transactions on Computers, Vol 21, No 3, March 
1972 p. 269-281.  

The key idea of the Fourier descriptor approach to shape description is to treat 
the object’s boundary as a curve in the complex plane.  Each point on the curve is 
specified by a complex number, or phasor, for which the real part is plotted 
along the x-axis and the imaginary part is plotted along the y-axis.  Implicit in 
this approach is that the complex number z=x+iy is a function of some 
parametric parameter, such as time. Thus the real part x(t) and the imaginary 
part y(t) are both functions of t and the boundary curve is a picture of how these 
two functions co-vary.  

To take a simple example, if x(t)=a*cos(t) and y(t)=a*sin(t) then z=cos(t)+i*sin(t) 
describes a circle of radius a in the complex plane.  If the radius is different in the 
real and imaginary dimensions the curve becomes an ellipse described by the 
equations  

 x(t)=a*cos(t), y(t)=b*sin(t), and z(t)= a*cos(t)+i*b*sin(t).  (3.61) 

where a and b are the lengths of the semi-axes.  
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Clearly these equations are periodic, so it is common to see them written in a 
more generic Fourier form as  

 x(θ)=a*cos(θ), y(θ)=b*sin(θ), and z(θ)= a*cos(θ)+i*b*sin(θ);  (3.62) 

where θ = 2πt/L, and L is the period (i.e. the time required to trace the path once) 
and 0 < θ < 2π.  Figure 3.8 illustrates how functions x and y generates curve z.  
 

 
Figure 3.8. Parametric generation of an ellipse in the complex 
plane.  Continuous line shows the full curve; a subset of 6 equally 
spaced points are shown by symbols. Arrows show how a given 
point on the ellipse is related to the underlying sinusoids.  

It is tempting at this point to jump to the conclusion that parametric angle θ is 
also the phase angle φ of the phasor z, as would be returned by the Matlab 
expression φ = angle(z).  However, this is not true.  The relationship between 
angles θ and φ is shown in Fig. 3.9 to be tan(φ)/tan(θ) = b/a.  

The practical consequence of these observations is that knowledge of the ellipse’s 
major and minor axes is necessary to infer angle θ from angle φ.  We need to 
make this inference because Fourier analysis of the discrete curve z(θ) assumes 
we know the sample points θ. Furthermore, to use Matlab’s standard FFT 
function we need the sample angles to be uniformly spaced over the period 0 – 
2π.  Thus a key issue in implementing a Fourier description of the ellipse, or 
presumably any other curve, is to devise a way to infer a vector of equally spaced 
sample angles θ along the border of the object.  
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Figure 3.9. Relationship between parametric angle θ and phasor 
angle φ.  Outer circle has radius a, inner circle has radius b, and 
ellipse has major radius a and minor radius b.  A point z on the 
ellipse has the real component x=a*cos(θ) and imaginary 
component y=b*sin(θ). However, its phase angle φis given by tan(φ) 
=y/x = (b/a)*tan(θ).  

In Russ’s book the claim is made that equally spaced sample points means that 
the distance between sample points in the complex plane are equal. This is 
equivalent to saying the polygon formed by the sample points is equilateral. 
However, this is inconsistent with the construction shown in Fig. 1, for which the 
distance between sample points is not uniform.  The points are more closely 
spaced near the ends of the major axis than they are near the ends of the minor 
axis.  Neither is the polygon equi-angular since, again, the parametric angles are 
more closely spaced near the ends of the major axis than they are near the ends 
of the minor axis.  

Given the above observations, it appears that the first step in processing an 
arbitrary figure has to be the fitting of an ellipse so that the semiaxes a,b can be 
estimated.  At the same time, we also need to estimate the angular tilt of the 
major axis since for the general ellipse the parametric equation for the ellipse is: 
 
 z(θ)= a*cos(θ+2α)+i*b*sin(θ)      (3.63) 

where α is the angle of the major axis to the horizontal. Given a fitted ellipse we 
can compute a vector of non-uniformly spaced phasor angles φ from a vector of 
equally-spaced parametric angles θ. This φ-vector is then used to resample the 
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border onto a relatively small set of points that represent the smooth curve as a 
polygon z that satisfies the sampling requirements for Fourier analysis.  

The Fourier spectrum of z(θ) in eqn. (3.63) is computed in Matlab as 
FFT(z)/length(z). The zero-frequency coefficient c0 gives the coordinates of the 
centroid of the figure.  Together the coefficient c+1 for the positive fundamental 
frequency, and the coefficient c-1 for the negative fundamental frequency, encode 
the major axis (a), the minor axis (b), and the tilt angle (α) in a pair of complex 
numbers. The parameters of the ellipse can be recovered from these complex-
valued, fundamental Fourier coefficients with the equations 
 
 a = |c+1| + |c-1|,  b= |c+1| - |c-1|, α = (angle(c+1) + angle(c-1))/2 (3.64) 

In summary, the length of the major axis of the fitted ellipse = sum of 
magnitudes of fundamental Fourier coefficients; the length of the minor axis of 
the fitted ellipse = difference of magnitudes of fundamental Fourier coefficients;  
the tilt of the fitted ellipse is the mean of the phase angles of the two coefficients. 
Coefficients for the higher harmonics modulate the ellipse to form the shape of 
the polygon and, by interpolation, the shape of the sampled curve.  

One use of Fourier descriptors is to quantify the extent to which a figure is 
neither circular nor elliptical. A purely circular figure will be described by a 
single Fourier coefficient at the positive fundamental frequency. A purely 
elliptical figure requires two Fourier coefficients, corresponding to the positive 
and negative fundamental frequencies. There are many ways to describe the 
extent to which an elliptical figure departs from circular. An index of ellipticity 
inspired by Fourier descriptors is 

 Ellipticity  = 
c+1
2 − c+1

2

c+1
2 + c+1

2
= ab

a2 + b2( ) / 2
     (3.65)  

This equation can be interpreted geometrically as the ratio of two ways to 
estimate the mean radius of the ellipse. The numerator is the geometric mean of 
the major and minor axes and is equal to √(area/π). It thus represents the radius 
of a circle with the same area as the ellipse. The denominator is the RMS of the 
major and minor axes and it is equal to the radius of the ellipse along the 
diagonal of a circumscribed rectangle. For a circle, a=b and ellipticity=1.  

Any non-elliptical shape is characterized by the presence of non-zero Fourier 
descriptors at the higher harmonics. One way to quantify departure from 
ellipticity is inspired by Parseval’s theorem, which states that the total energy in 
a signal is given by the sum of the squared Fourier coefficients.  Thus the sum of 
squared coefficients in the higher harmonics, divided by the sum of squared 
coefficients at the fundamental frequency, is a size-invariant and tilt-invariant 
metric of the degree to which the figure is not elliptical.  
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4.A  Spectral Analysis. 

The previous chapter showed how to perform Fourier analysis of discrete 
data.  In order to derive formulas for the various Fourier coefficients of a 
trigonometric, Fourier series model, we employed a "vectorization" process in 
which the values of the discrete function to be modeled were treated as 
coordinates of a D-dimensional vector.  A specific example (from exercise 4.1) of 
this vectorization process is illustrated for the case of D=3 in the transition from 
Fig. 4.1A to 4.1B.  Claude Shannon, the founder of information theory, described 
this process as taking a complicated object (a waveform) defined in a simple 
space (a 2-dimensional plane) and converting it into a simple object (a point) in 
an exceedingly complicated, N-dimensional space.  In Chapter 3 we learned that 
this space is also spanned by the set of trigonometric vectors formed by sampling 
the harmonic series of sine and cosine waves.  These new basis vectors are 
mutually orthogonal and they form a new coordinate reference frame, as shown 
in Fig. 4.1C, which is rotated with respect to the original reference frame used to 
plot the data vector in Fig. 4.1B.  Fourier analysis was then recognized as the act 
of projecting the data vector onto the trigonometrical basis vectors to produce the 
Fourier coefficients of the model.  This entire process is thus an example of 
formulating a problem from a different viewpoint in order to gain insight into 
the nature of the problem and to simplify the computation of the solution.   

To display and interpret the results of Fourier analysis, the D-dimensional 
vector of Fourier coefficients is usually "de-vectorized" in order to be displayed 
as a new discrete function, as illustrated in the transition from Fig. 4.1C to 4.1D.  
Notice that the pair of graphs in Fig. 4.1D have a common X-axis, which is the 
harmonic number, and the Y-axes show the magnitudes of the cosine (including 
the constant term) and the sine Fourier coefficients.  Since the harmonic number is 
directly proportional to the frequency of oscillation of the various trigonometric 
functions in the model, Fig. 4.1D is evidently a graphical display of the amount 
of each frequency component present in the model.  By analogy with the effect of 
a glass prism on light, such a graph is called the frequency spectrum of the 
original, discrete data function.   

Although the computational process of Fourier analysis follows the sequence 
of stages illustrated by Fig. 4A→B→C→D, the intermediate stages (B,C) are not 
necessary for appreciating the relationship between the space/time domain (Fig. 
4A) and the frequency domain (Fig. 4D).  The forward discrete Fourier transform 
(DFT) converts a discrete function y(t) into the frequency/spectral domain 
(4A→4D), and the inverse DFT converts the spectrum back into the time/space 
domain (4D→4A).  The two domains are complementary ways of looking at the 
same data and, accordingly, no new information is gained by Fourier analysis, 
only a new perspective. 
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4.B  Physical Units. 

If the interval over which the discrete function y(x) is defined has length L, 
and if this interval is subdivided into D equal intervals, then the horizontal 
separation Δx between points in the space/time domain is  

 Δx = L
D

 "= resolution in the space/time domain" [4.1] 

The inverse of the distance between samples is called the sampling frequency or 
sampling rate R, and so R=D/L.  Furthermore, the first (or fundamental) 
harmonic component of the corresponding Fourier series corresponds to the 
frequency 1/L.  For example, if L=2 meters then the fundamental component 
(k=1) corresponds to the frequency 1/2 cycles per meter.  The second harmonic 
(k=2) would then be 2/2 cycles per meter, the third harmonic would be 3/2 
cycles per meter, and the k-th harmonic would have frequency fk = k / L  cycles 
per meter.  Thus the horizontal separation Δf between points in the frequency 
domain is  

S1

Fig. 4.1  The Two Domains
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 Δf = 1 / L  "= resolution in the frequency domain". [4.2] 

Since the total number of Fourier coefficients is equal to D, the number of data 
points, and since these coefficients occur in pairs (sine and cosine), the number of 
discrete harmonics required is N=D/2 (when D is even) or N=(D-1)/2 (when D is 
odd).  Thus the highest harmonic has frequency fk = NΔf = N / L .  Since the 
spectrum extends over the frequency interval 0 to N/L, the value W=N/L is 
called the bandwidth of the function y(x),   

 W = N / L  "= spectral bandwidth" [4.3] 

These results may be combined (for the case of D even) to produce two 
additional, useful formulas: 

 R =
D
L
=
2N
L

= 2W  "sampling rate = 2 x bandwidth" [4.4] 

 D = 2WL  "# of data points = 2 x bandwidth x interval length" [4.5] 

Physical units of frequency are usually preferred over harmonic number 
when specifying a Fourier series model for experimental data.  Recall that the 
general Fourier series was given earlier as 

 
 
Y = y(X) = a0

2
+ ak ⋅ coskθ + bk ⋅ sin kθ

k=1

N

∑ , …θ = 2πX / L  [3.34] 

If we use the physical frequency fk =k/L for the kth harmonic, the model becomes 

 Y = y(x) = a0
2

+ ak ⋅cos2πfk x + bk ⋅ sin2πfkx
k=1

N

∑  [4.6] 

Given the above definitions, we have the necessary vocabulary to frame such 
questions as: "What happens if we take more samples at the same rate?"  This 
scenario is depicted in Fig. 4.2. Equation [4.4] says that since the rate R is fixed in 
this scenario, the bandwidth W of the spectrum will also be fixed.  Since W is  

 

Fig. 4.2   Effect of Changing Observation Length
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fixed, eqn. [4.5] indicates that the only way to increase the number of data points 
would be to lengthen the observation interval L.  This means, according to eqn. 
[4.2], that the separation between points in the frequency domain, 1/L, must 
decrease.  In other words, the effect of increasing the number of samples at a fixed 
sampling rate is to increase the frequency resolution of the measured spectrum without 
changing its bandwidth.    

Conversely, we should ask: "what happens if we sample the same interval at 
a faster rate?" as shown in Fig. 4.3.  From the above suite of equations we may 
answer that the effect of increasing the sampling rate for a fixed duration is to increase 
the bandwidth of the measured spectrum without changing its frequency resolution.  

 

4.C  Cartesian vs. Polar Form. 

In Chapter 2 we observed that the sum of a cosine wave and a sine wave of 
the same frequency is equal to a phase-shifted cosine wave of the same 
frequency.  That is, if a function is written in Cartesian form as 
v(t) = A cos(t) + Bsin(t )  then it may also be written in polar form as 
v(t) = C cos(t − φ) .  Applying this result to the current situation, we may write 
eqn. [4.6] in polar form as 

 Y = y(x) = a0
2

+ mk ⋅ cos(2πfk x −φk )
k=1

N

∑  [4.7] 

where 

 
  

mk = ak2 + bk2 …(magnitude)

φk = tan−1(bk / ak) …( phase)
 [4.8] 

In this polar form of the Fourier series, the spectrum is shown graphically by 
separately plotting the magnitudes m of the various frequency components and 
the phases φ of these components.  An example is shown in Fig. 4.4  In electrical 
engineering, such a graph is often called a Bode plot.  Notice that magnitudes are 
always positive and phases are constrained to the interval (0-2π). 

Fig. 4.3   Effect of Changing Sampling Rate
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4.D  Complex Form of Spectral Analysis. 

The form of the Fourier series in eqn. [4.6] invites the use of complex numbers 
to represent the frequency spectrum because the trigonometric terms come in 
pairs, with each harmonic appearing as the weighted sum of a cosine and a sine 
wave.  In Chapter 2 we learned how such combinations can usefully be described 
as phasors drawn in the complex plane.  Algebraically, these phasors are 
equivalent to complex numbers, where the "real" part of the number is the 
weight of the cosine and the "imaginary" part of the number is the weight of the 
sine function.  To pursue this approach, we use the Euler relationships proved in 
exercise 2.3 

 
cos(θ) = e

iθ + e−iθ

2

sin(θ ) = e
iθ − e− iθ

2i
=
i(e−iθ − eiθ )

2

 [4.9] 

to re-write the Fourier series for a discrete function over the interval (0-2π) as 

 

 

y(x) = a0 / 2 + a1 cos x + b1 sin x + a2 cos2x + b2 sin2x +

=
a0
2
+
a1e

ix

2
+
a1e

− ix

2
+
ib1e

− ix

2
−
ib1e

ix

2
+
a2e

i2x

2
+
a2e

− i2x

2
+
ib2e

− i2x

2
−
ib2e

i2x

2
+

[4.10] 

If we collect terms with a common exponential factor this equation becomes 

 
 
y(x) = a0

2
+
a1 − ib1
2

eix + a1 + ib1
2

e− ix + a2 − ib2
2

ei2x + a2 + ib2
2

e− i2x + [4.11] 

Let us now define the generic complex Fourier coefficient ck as 

Fig. 4.4   Two Forms of Frequency Spectra
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ck =
ak − ibk
2

c− k =
ak + ibk
2

c0 =
a0
2

 [4.12] 

then the Fourier series of eqn. [4.7] becomes 

 

  

y(x) = c0 + c1e
ix + c−1e

−ix + c2e
i2 x + c−2e

−i 2x +

= ckeikx
k= −N

N

∑
 [4.13] 

For the more general case where the function y(x) is defined over an interval of 
length L the model is written 

 y(x) = cke
ik2π x /L

k=−N

N

∑  [4.14] 

This extremely compact form of the Fourier series is very popular among 
textbook writers on the subject.  Notice that the substitution of complex 
exponentials for the trigonometric functions introduces the need for negative 
harmonics.  The reason for this is evident in Euler's equations [4.9]: even a simple 
cosine function is the sum of two complex exponentials, one with a positive 
angle and the other with a negative angle.  A graphical representation of 
complex-valued Fourier spectrum of a cosine waveform, in both Cartesian and 
polar form, is shown in Fig. 4.5.   

 

The meaning of negative frequencies is easiest to understand in terms of 
counter-rotating phasors (see exercise 2.3) with real components pointing in the 

Fig. 4.5   Complex-valued Fourier Spectrum of a Cosine Waveform

Cartesian                                                Polar

0

k
-1 1

0

k

k
-1 1

Mag[c   ]k

Phase[c   ]k

Re[c   ]k

Im[c   ]k



Chapter 4:  The Frequency Domain Page 53 
 

same direction (and therefore reinforcing) but with imaginary components 
pointing in opposite directions (and therefore canceling).  The rate of rotation of 
these phasor pairs is the frequency of the cosine function. As the two phasors 
counter-rotate, the length of their sum sweeps out a cosine waveform.   

A potential source of confusion is that the frequency axis used to display a 
real-valued Fourier spectrum (Fig. 4.4) has a different meaning from the 
frequency axis used to display a complex-valued spectrum  (Fig. 4.5).  The former 
refers to the frequency of the trigonometric basis functions, whereas the latter 
refers to the frequency of the complex exponentials.  If an author fails to state 
explicitly which type of basis function was used to compute the Fourier spectrum 
then it is left to the reader to decide from context.  This is easy to do if the 
frequency axis includes negative values because only the complex exponentials 
use negative frequencies; trigonometrical frequencies are always positive by 
convention.  Potential confusion arises, however, if only the positive half of a 
complex-valued spectrum is displayed.  This is not uncommon when spectra are 
shown in polar form because the magnitude spectrum is always even symmetric 
about the y-axis for real-valued data and therefore the negative half of the 
spectrum is redundant and often suppressed by authors or publishers. 

4.E  Complex Fourier Coefficients. 

Having re-written the Fourier series model in terms of complex exponentials 
with complex coefficients, it should be possible to repeat the line of analysis used 
in chapter 3 for the trigonometric model, thereby verifying that the formulas in 
eqn. [4.12] will yield the numerical values of these complex-valued Fourier 
coefficients.  It will be sufficient here to examine the case for D=3 and then 
generalize the result for any D.  Accordingly, we adopt the same approach as in 
section 3.F and evaluate the Fourier series [4.13] at every X-value for which we 
have a sample available.   

 

  

Y0 = c0 + c1 ⋅ei 0 + c−1 ⋅ei (−0) …@X = 0

Y1 = c0 + c1 ⋅e
i 2π / 3 + c−1 ⋅e

i(−2π / 3) …@X = L / 3
Y2 = c0 + c1 ⋅ei 4π / 3 + c−1 ⋅ei(−4π / 3) …@X = 2L / 3

 [4.15] 

To solve this system of equations we first write them in the matrix form v=Q.h as 
follows 

 
Y0
Y1
Y2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=
1 ei 0 e− i0

1 ei2π / 3 e−i 2π / 3

1 ei 4π / 3 e−i 4π / 3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⋅
c0
c1
c−1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 [4.16] 

When written this way, the columns of matrix Q may be considered column 
vectors Q0, Q1, and Q-1 which are created by sampling the exponential functions 
which form the basis of our Fourier model.  Representing the complex Fourier 
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coefficients by h, we can use the same compact notation invented earlier for the 
sampled trigonometric vectors to write (using arrows to indicate column vectors)  

 v =
Q0 Q1 Q−1

↓ ↓ ↓

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
h  [4.17] 

which means that vector v is the weighted sum of the basis vectors 

 v = c0Q0 + c1Q1 + c−1Q−1. [4.18] 

For the general case of D samples taken over the interval 2π, this inverse DFT 
relationship v=Q.h is 

 

  

v = c0Q0 + c1Q1 + c−1Q−1 + c2Q2 + c−2Q−2 +

= ckQk
k= −N

+N

∑  (IDFT)     [4.19] 

where the general basis vector is given by 

  Qk = (e
0 , eikθ1 , eikθ2 , eikθ3 ,, eikθN ), whereθ j = 2πXj / L . [4.20] 

Notice that this description of the complex-valued basis vector applies also when 
k is negative since the sign of k is included in the exponents of the exponentials. 

This development shows that if we follow the same line of reasoning used in 
Chapter 3 when the basis functions were the sampled trigonometric functions, 
then an analogous situation is achieved for basis functions made from sampled 
complex exponentials.  This development was possible because the laws of 
matrix algebra apply equally well when the elements of matrices and vectors are 
complex numbers or only real numbers.  Thus, from an algebraic perspective, 
equation [4.18] makes sense even if it is difficult to visualize these new, complex-
valued basis functions geometrically. 

To determine the Fourier coefficients of this model we need the forward DFT 
relation h=Q-1.v .  The method we used earlier to find the inverse matrix was to 
project the data vector v onto each of the basis vectors in turn by forming an 
inner product.  This worked because the basis vectors were orthogonal.  It is left 
as an exercise to verify that the set of basis vectors Q are mutually orthogonal 
and that all have the same length, equal to √D.  These observations suggests re-
ordering and scaling the terms in eqn. [4.17] to get the inverse DFT formula 

 v = D
Q−1

D
Q0

D
Q+1

D
↓ ↓ ↓

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
h  [4.21] 

Solving equation [4.21] for f by premultiplying both sides by the inverse matrix 
(obtained by transposing and conjugating the transformation matrix) yields the 
direct DFT formula 
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 h = 1
D

Q−1
∗ / D →

Q0 / D →

Q+1
∗ / D →

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

v  [4.22] 

The asterisk denotes the complex conjugate of a vector, which is found by taking 
the conjugate of each separate component.  These last two equations are the 
analogs of [3.38] and [3.39] for trigonometrical basis functions. An explicit 
formula for the complex-valued Fourier coefficients analagous to eqns. [3.30, 
3.31] is 

 

 

ck =
1
D
v •Qk

=
1
D
⋅ Yj exp(ikθ j )
j=0

D−1

∑ …θ j = 2πXj / L
 (DFT)      [4.23] 

The student may be wondering at this point why the topic of Fourier analysis, 
which is complicated enough already, has been complicated further by the 
introduction of complex-valued basis functions and complex-valued Fourier 
coefficients.  The primary motivation is that the DFT eqn. [4.22] applies equally 
well whether the measurements in the data vector are complex-valued or real-
valued.  In other words, by allowing complex-valued data the scope of Fourier 
analysis is expanded greatly by admitting those physical variables having two 
attributes rather than just one.  For example, force, velocity, momentum, 
electromagnetic waves, and a myriad other physical parameters which are 
inherently 2-dimensional (i.e. magnitude and direction) may be analyzed using 
exactly the same procedures used to analyze "real" functions which are 
inherently 1-dimensional (e.g. voltage, light intensity, mass, etc.).  Since the entire 
topic of Fourier analysis can be developed just as easily for complex valued 
functions, with real-valued functions seen as a special case covered by the 
general results, this is the approach favored by most textbook authors and 
computer programmers. 

4.F  Relationship between Complex and Trigonometric Fourier 
Coefficients. 

Given the penchant of many authors to use the complex form of Fourier 
analysis, and the desire of beginners to stay a little closer to the "reality" of 
trigonometric basis functions, it becomes important to be able to comfortably 
relate the two approaches.  To do this, we begin by expanding the basis vectors 
Q in trigonometrical terms.  For example, for the case of D=3 

 

Q1 = (e0,ei 2π / 3,ei 4π / 3 )
= 1,cos(2π / 3) + isin( 2π / 3),cos(4π / 3) + i sin(4π / 3)( )
= 1,cos(2π / 3),cos(4π / 3)( ) + i 0,sin(2π / 3),sin(4π / 3)( )
= C1 + iS1

 [4.24] 
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That is, the new basis vector Q is the sum of the sampled cosine vector C and i 
times the sampled sine vector S.  Said another way, the real part of Q is equal to 
C and the imaginary part of Q is equal to S.  In effect, we have generalized the 
ideas of Chapter 2 (in which complex numbers were treated as phasors in order 
to explore their geometrical properties) so that a complex vector is seen as the 
sum of a real vector and an imaginary vector.  Notice also that the basis vector 
for the negative frequency is 

 

Q−1 = (e
−0 ,e−i 2π / 3,e−i 4π / 3)

= 1, cos(2π / 3) − i sin(2π / 3),cos(4π / 3) − i sin(4π / 3)( )
= C1 − iS1
= Q1

∗

 [4.25] 

In other words, the basis vectors for plus and minus frequencies are complex 
conjugates of each other.   

Substituting these expressions into eqn. [4.22] will yield the vector of complex 
Fourier coefficients in terms of the trigonometric coefficients 

 

h = 1
D

Q−1
∗ →

Q0
∗ →

Q1
∗ →

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
v

=
1
D

C1 + iS1 →
C0 →
C1 − iS1 →

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
v

=
1
D

C1 →
C0 →
C1 →

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
v + i

D

S1 →
0→
−S1 →

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
v

 [4.26] 

The various inner products implied by these matrix multiplications are known 
from eqns. [3.21] and [3.22].  Therefore, making use of this information we have 

 h = 1
2

a1
a0
a1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+
i
2

b1
0
−b1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 [4.27] 

Generalizing this result to include any trigonometric Fourier coefficients, the 
complex coefficients are 

 
c−k = (ak + ibk ) / 2
c0 = m
ck = (ak − ibk ) / 2

 [4.28] 
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This result matches the original definition of the Fourier coefficients in eqn. 
[4.12], which is a useful check that the preceding development is correct.  Notice 
that ck and c-k are complex conjugates of each other.  This means that the 
spectrum of a real-valued discrete function has a special kind of symmetry 
known as Hermitian or conjugate symmetry defined by the following relationships 

 
Re ck[ ] = Re c−k[ ] (even symmetry)

Im ck[ ] = − Im c− k[ ] (odd symmetry)
 [4.29] 

Given the complex coefficients, the trigonometric coefficients are 

 
m = a0 / 2 = c0
ak = ck + c−k
bk = i(ck − c−k )

 [4.30] 

which agrees with the orginal definitions given in eqn. [4.12]. 

The trigonometrical and complex Fourier coefficients are described above in 
Cartesian form, but they may also be expressed in polar form (i.e., magnitude, 
phase).  According to eqn. [4.28] the magnitude of the complex coefficients are 

 

c0 = m = a0 / 2

ck = c−k =
ak
2 + bk

2

2

⇒ ck
2 = c−k

2 =
ak
2 + bk

2

4

⇒ ck
2 + c−k

2 =
ak
2 + bk

2

2

 [4.31] 

Note that the constant term is the same in both models but, comparing this result 
with eqn. [4.8], we see that the other complex coefficients have magnitudes 
which are exactly half the polar magnitudes of the trigonometric coefficients.  
That is, 

 
c0 = m = a0 / 2

ck = c− k = mk / 2
 [4.32] 

One way to think of this result is that the amplitude of the cosine function is split 
in half when it gets represented by a pair of complex exponentials.  Half the 
amplitude is represented in the positive-frequency part of the spectrum and the 
other half shows up in the negative-frequency part of the spectrum.  As for 
phase, both types of Fourier coefficient have a phase angle given by  

 φk = tan
−1(bk / ak)  [4.33] 
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A hypothetical example comparing the trigonometric and complex Fourier 
spectra are shown in Fig. 4.6 in both the Cartesian (rectangular) form and polar 
forms.  Notice the Hermitian symmetry in the lower left panel.  A similar kind of 
symmetry is present also in the lower right panel, since the magnitude portion of 
the spectrum has even symmetry and the phase spectrum has odd symmetry. 

 

4.G  Discrete Fourier Transforms in Two or More Dimensions. 

Generalizing the 1-dimensional Fourier series given in eqn. [4.14] to the 2-
dimensional world of functions sampled over an L x L square yields 

 
g(x, y) = cj ,ke

i2π ( jx+ ky)/L

j=−M

M

∑
k=−N

N

∑

= cj ,ke
i2π jx /L

j=−M

M

∑⎡
⎣
⎢

⎤

⎦
⎥

k=−N

N

∑ ⋅ ei2π ky /L
 [4.34] 

Fig. 4.6   Comparison of Frequency Spectra
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Notice the the expression inside the brackets is a 1-dimensional Fourier series, 
for which the coefficients ci,k are found by a series of 1-dimensional DFTs 
computed on the rows of the data matrix.  The result is a 2-dimensional matrix of 
Fourier coefficients that now becomes the "data" to be subjected to a series of 
DFTs computed on the columns.  Thus a 2-dimensional DFT boils down to a 
series of two 1-dimensional DFTs, the first of which is computed for the original 
data and the second computed on the results of the first.  This approach can 
easily be generalized to 3-dimensional volumetric data and so on to N-
dimensions. 

4.H  Matlab's Implementation of the DFT 

According to the Matlab documentation, FFT(x) returns the discrete Fourier 
transform (DFT) of vector x.  For length D input vector x, the DFT is a length N 
vector f, with elements 

 f (k) = x(n)exp −i2π (k −1)(n −1) / D( ), 1 <= k <= D
n=1

D

∑  [4.35] 

Note that the use of (n-1) in this formula implies that MATLAB is assuming that 
the sample times begin at 0 and the interval length is 2pi.  This means the user is 
responsible for keeping track of phase shifts and physical frequencies  associated 
with the actual sample times.  (We will deal with phase shifts in Chapter 6).  An 
alternative method used in the homework exercises uses the true sample times to 
compute the sampled basis functions. Also note that the definition of eqn. 4.35 
does not include the normalizing contstant 1/D needed to make the 
transformational matrix orthonormal.  Furthermore, according to the 
documentation, the relationship between the DFT and the Fourier coefficients a 
and b in the Fourier series  

 x(n) = a0 +
1
L

a(k)cos 2πkt(n)( ) + b(k)sin 2πkt(n)( )
k=1

D / 2

∑  [4.36] 

is 

 
a0 = 2 * f (1) / D
ak = 2 * real f (k +1)[ ] / D
bk = 2 * imag f (k + 1)[ ] / D

 [4.37] 

where x is a vector of length D containing the discrete values of a continuous 
signal sampled at times t with spacing Δt = L/D.  The difference between eqn. 
[4.36] and our [3.34] indicates a different convention for defining the Fourier 
series.  We chose to include the number of sample points D in the transformation 
matrix in order to achieve an orthornormal matrix, and consequently the factor D 
is included in our Fourier coefficients.  Matlab, however, excludes D from the 
transformation matrix and therefore this factor must be included explicitly in the 
Fourier series of eqn. [4.36].  These differences have implications for variance 
bookkeeping using Parseval's theorem. 
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Notice also that the ordering of Fourier coefficients returned by FFT to  
corresponds to harmonic numbers 0 to D-1 rather than -D/2 to D/2.  There are 
two issues to resolve here.  First, it appears that Matlab is using harmonic 
numbers that are all positive, rather than half positive and half negative.  In fact, 
the periodic nature of the sampled basis functions causes the positive harmonic 
numbers (counter-clockwise rotation) greater than D/2 to be equivalent to 
negative harmonic numbers (clockwise rotation).  This fact is shown graphically 
in Fig. 4.7.  Second, Matlab reports the Fourier coefficients for the postiive half of 
the frequency axis first, followed by the negative half.  To reverse this order, 
Matlab provides a function FFTSHIFT(FFT(x)) which exchanges the two halves 
of the Fourier vector.  This puts zero frequency in the middle of the Fourier 
vector, which is convenient for plotting the spectrum.  However, it is imporant to 
return the Fourier vector to the standard format with IFFTSHIFT before 
performing the inverse DFT using Matlab function IFFT. 

 

4.I  Parseval's Theorem, Revisited 

Parseval's theorem was stated in Chapter 3 as 

 v 2 = Yk
2

k=1

D

∑ =
D
2

a0
2

2
+ ak

2

k=1

N

∑ + bk
2⎡

⎣
⎢

⎤

⎦
⎥ =

D
2
f 2  [3.45] 

Replacing the trigonometrical coefficients in [3.45] with the complex-valued 
Fourier coefficients given in eqn. [4.30] the result is 

 

f 2

2
=
1
D

Yk
2

k=1

D

∑ =
1
2

(ck + c−k )
2 + i(ck − c−k )( )2

k=0

N

∑

=
1
2

ck
2 + 2ckc−k + c−k

2 − ck
2 − 2ckc−k + c−k

2( )
k=0

N

∑

=
1
2

4ckc−k
k=0

N

∑ = 2 ck
2

k=0

N

∑ = ck
2

k=−N

N

∑ = h 2

 [4.38] 

In Matlab, this result would be written v*v'/D = h*h', where v is the data vector 
and h is the vector of Fourier coefficients obtained for complex exponential basis 
functions. 

Fig. 4.7   Complex basis functions (D=5)
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Chapter 5:  Continuous Functions 
 

5.A  Introduction. 

In previous chapters we have considered Fourier series models only for 
discrete functions defined over a finite interval L.  Such functions are common 
currency in experimental science since usually the continuous variables under 
study are quantified by sampling at discrete intervals.  We found that if such a 
functions are defined for D sample points, then a Fourier series model with D 
Fourier coefficients will fit the data exactly.  Consequently, the frequency spectra 
of such functions are also discrete and they exist over a finite bandwidth 
W=D/2L.  In short, discrete functions on a finite interval have discrete spectra with 
finite bandwidth,  and D data points produce D Fourier coefficients.  This is Case 1 in 
Fig. 5.1. 

We noted in Chapter 4 that if we increase the number of samples by 
lengthening the observation interval without changing the sampling rate, the 
result is an increase in the frequency resolution of the spectrum over the same 
bandwidth.  The longer we take samples, the finer the frequency resolution of the 
spectrum.  Pressing this argument further, we can imagine that if the observation 
interval grows infinitely long, then the resolution of the spectrum grows 
infinitesimally small and, in the limit, the spectrum becomes a continuous 
function.  Thus a discrete function over an infinite interval has a continuous spectrum 
with finite bandwidth.   This is Case 2 in Fig. 5.1. 

Conversely, we noted that if we increase the sampling rate over a fixed, finite 
interval, then the bandwidth of the spectrum increases without changing the 
resolution of the spectrum.  If the sampling rate grows infinitely high, then the 
resolution in the space/time domain grows infinitesimally small and, in the 
limit, the function becomes continuous.  At the same time the bandwidth grows 
infinitely large.  Thus, a continuous function over a finite interval has a discrete 
spectrum with an infinite bandwidth.   This is Case 3 in Fig. 5.1. 

Finally, if the space/time function is both continuous and defined over an 
infinite interval, then the spectrum is both continuous and defined over an 
infinite bandwidth.  This is Case 4 in Fig. 5.1 and this is the province of the 
Fourier Transform proper.  The student may appreciate that Case 4 is very 
general and it can be made to encompass the other three cases merely by 
throwing out points in the space or frequency domains to yield discrete functions 
as required.  It is this generality which makes the Fourier Transform the primary 
focus in many engineering texts.  We, on the other hand, will take a more 
pedestrian approach and march resolutely ahead, one step at a time. 
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Fig. 5.1  Schematic view of the 4 cases of Fourier analysis.  Only the 
magnitude portion of spectrum is illustrated.  In cases 2 and 3, 
continuous functions are depicted as the limiting case when resolution 
approaches zero.  

Fig. 5.1   Four Cases of Fourier Analysis
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5.B  Inner products and orthogonality. 

The primary tool for calculating Fourier coefficients for discrete functions is 
the inner product.  This suggests that it would be worthwhile trying to extend 
the notion of an inner product to include continuous functions.  Consider the 
scenario in Case 3, for example, where the sampling rate grows large without 
bound, resulting in an infinitesimally small resolution Δx in the space/time 
domain.  If we treat the sequence of samples as a vector, then the dimensionality 
of the vector will grow infinitely large as the discrete function approaches a 
continuous state.  The inner product of two such vectors would be 

 u • v = ujvj
j=1

D

∑  [5.1] 

which is likely to grow without bound as D grows infinitely large.  In order to 
keep the sum finite, consider normalizing the sum by multiplying by Δx=L/D.  
That way, as D grows larger, Δx compensates by growing smaller thus keeping 
the inner product stable.  This insight suggests that we may extend our notion of 
inner product of discrete functions to include continuous functions defined over 
the finite interval (a,b) by defining the inner product operation as 

 u(x) •v(x) = ujvjΔx
j=1

D

∑ lim Δx→0⎯ → ⎯ ⎯ ⎯ u(x)v (x)dx
a

b

∫  [5.2] 

In words, this equation says that the inner product of two continuous functions equals 
the area under the curve (between the limits of a and b) formed by the product of the two 
functions.  Similarly, we may extend our notion of orthogonality by declaring that 
if the inner product of two continuous functions is zero according to eqn. [5.2] 
then the functions are orthogonal over the interval specified. 

In the study of discrete functions we found that the harmonic set of sampled 
trigonometric functions Ck and Sk were a convenient basis for a Fourier series 
model because they are mutually orthogonal.  This suggests that we investigate 
the possible orthogonality of the continuous trigonometric functions.  For 
example, consider cos(x) and sin(x) over an interval covering one period: 

 

cos(x) • sin(x) = cos(x)sin(x)dx
−π

π

∫
= 1

2 sin(2x)dx
−π

π

∫
= 0        [5.3] 

The easiest way to see why the integral is zero is by appeal to the symmetry of 
the sine function, which causes the area under the function for one full period to 
be zero.  Note that since the two given functions are orthogonal over one period, 
they will be orthogonal over any integer number of periods.   
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To do another example, consider the inner product of cos(x) and cos(2x): 

 

cos(x) • cos(2x) = cos(x)cos(2x)dx
−π

π

∫
= cos(x)(2cos2 x −1)dx

−π

π

∫
= cos(x)(2cos2 x)dx

−π

π

∫ − cos(x)dx
− π

π

∫
= 2cos3 x dx

−π

π

∫
= 1

4 cos3x dx
−π

π

∫ − 1
4 3cos x dx

−π

π

∫
= 0

 [5.4] 

The last step was based on the fact that since both of these integrals have odd 
symmetry, the area under each curve separately is zero and so the total area is 
zero. 

Based on the successful outcome of these examples, we will assert without 
proof that the harmonic family of continuous sines and cosines are orthogonal over any 
interval of length equal to the period of the fundamental harmonic. 

The inner product of a vector with itself yields the squared length of the 
vector according to the Pythagorean theorem for D-dimensional space.  In the 
case of the sampled trigonometric functions, the squared length equals the 
dimensionality parameter D.  To see the corresponding result for the case of 
continuous functions, consider the inner product of cos(x) with itself: 

 

cos(x) • cos(x) = cos2 (x)dx
− π

π

∫
= 1

2 1+ cos(2x) dx
− π

π

∫
= 1

2 1 dx
− π

π

∫ + 1
2 cos(2x) dx

−π

π

∫
= π

 [5.5] 

In a similar fashion it can be shown that the inner product of any harmonic 
cos(kx) with itself over the interval (-π, π) has area π. 

The analogous result for a cosine function with period L is 

 

cos(2πx / L) • cos(2πx / L) = cos2(2πx / L)dx
−L /2

L / 2

∫
=

L
2π

cos2 (y)dy
−π

π

∫
= L / 2

 [5.6] 
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where simplification was achieved by a substitution of variables y=2πx/L, for 
which dy/dx = 2π/L.  Thus in general 

 

cos(2πjx / L)• cos(2πkx /L) = 0 if j ≠ k
= L / 2 if j = k

sin(2πjx / L) • sin(2πkx /L) = 0 if j ≠ k
= L / 2 if j = k

cos(2πjx / L) • sin(2πkx /L) = 0 all j, k

 [5.7] 

The inner product of a continuous function with itself has an important 
interpretation in many physical situations.  For example, Ohm's law of electrical 
circuits states that the power dissipated by a resister equals the squared voltage 
divided by resistance.  If v(t) describes the time course of voltage across a 1 ohm 
resistor, then the time-course of power consumption is v2(t) and the total amount 
of energy consumed over the interval from 0 to T seconds is 

 energy = v2 (t) dt = v(t) • v(t)
0

T

∫  [5.8] 

The average power consumption over the interval is given by dividing the total 
energy consumed by the length of the interval 

 energy
T

= mean power = 1
T v2(t) dt

0

T

∫  [5.9] 

For example, the average power consumption by a 1 Ohm resistor for a voltage 
waveform v(t) = A cos(x) equals A2/2. 

Similarly, if v(t) is the instantaneous velocity of an object with unit mass then the 
integral in eqn. [5.8] equals the total amount of kinetic energy stored by the 
object.  By analogy, even in contexts quite removed from similar physical 
situations, the inner product of a function with itself is often described as being 
equal to the amount of energy in the function. 

5.C  Symmetry. 

The computation of Fourier coefficients for discrete functions involved 
forming the inner product of the data vector with the sampled trigonometric 
functions, so the student should not be too surprised when we find that the inner 
product also appears when computing Fourier coefficients for continuous 
functions.  Since the inner product of continuous functions requires the 
evaluation of an integral, any shortcuts that ease this burden will be most useful.  
One such shortcut is based on symmetry and for this reason we make a short 
digression here on some general aspects of symmetrical functions. 

Two types of symmetry are possible for ordinary, real-valued functions of 1 
variable.  If y(x)=y(-x) then the function y(x) is said to have even symmetry, 
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whereas if y(x)=-y(-x) then the function y(x) is said to have odd symmetry.  The 
student may be surprised to learn that any particular y(x) can always be 
represented as the sum of some even function and an odd function.  To 
demonstrate this fact, let E(x) be an even function and O(x) be an odd function 
defined by the equations 

 
E(x) = 1

2 y(x) + y(−x)( )
O(x) = 1

2 y(x) − y(−x)( )
 [5.10] 

 

Fig. 5.2  Example of expressing an asymmetric function y(x) as a sum 
of an even function and an odd function.  The function y(-x) may be 
constructed by substituting -q for x and plotting y(q).  For every value 
of q, solve for x=-q which yields y(x) and also y(q). 

To verify that E(x) is even we replace the variable x by -x everywhere and 
observe that this substitution has no effect.  In other words, E(x)=E(-x).  To verify 
that O(x) is odd we replace the variable x by -x everywhere and observe that this 
substitution introduces a change in sign.  In other words, O(x)=O(-x).  Finally, we 
combine this pair of equations and observe that E(x)+O(x)=y(x).   

The significance of the foregoing result is that often an integral involving y(x) 
can be simplified by representing y(x) as the sum of an even and an odd function 
and then using symmetry arguments to evaluate the result.  The symmetry 
arguments being referred to are the following. 

 
E(x)

−a

a

∫ dx = 2 E(x )
0

a

∫ dx

O(x)
−a

a

∫ dx = 0
 [5.11] 

 

y(x)

x

y(x) - y(-x)

x

y(x) + y(-x)

x

y(-x) = y(q)

q = -x
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5.D  Complex-valued functions. 

A third kind of symmetry emerges when considering complex valued 
functions of 1 variable (e.g. y(x)=2x + i 5x)).  If some function y(x) is complex-
valued, then it may be represented as the sum of a purely real function yR(x) and 
a purely imaginary function yI(x).  If the function y(x) has even symmetry, then 

 
y(x) = y(− x)

yR (x) + iyI(x) = yR(−x) + iyI (−x)
 [5.12] 

Equating the real and imaginary parts of this equation separately we see that  

 
yR (x) = yR(−x)
yI (x) = yI (−x)

 [5.13] 

In other words, if y(x) is even then both the real and imaginary parts of y(x) are even.  
A similar exercise will demonstrate to the student that if y(x) is odd, then both the 
real and imaginary components of y(x) are odd. 

A different kind of symmetry mentioned previously is when the real part of 
y(x) is even but the imaginary part of y(x) is odd.  In this case, 

 

yR(x) = yR(−x)
yI(x) = −yI (−x)

yR (x) + iyI(x) = yR(−x) − iyI (−x)

y(x) = y∗(−x)

 [5.14] 

Generalizing the notion of complex conjugate developed earlier for complex 
numbers, we could say that the function y(x) has conjugate symmetry, or Hermitian 
symmetry.  

Conjugate symmetry plays a large part in Fourier analysis of continuous 
functions.  For example, the basis functions of the form eix = cos x + isin x   are 
Hermitian.  Furthermore, in Chapter 4 it was observed that the complex Fourier 
coefficients for real-valued data vectors have conjugate symmetry: ck = c−k

∗ .  
When the spectrum becomes continuous, as in cases 2 and 4 in Fig. 5.1, then the 
spectrum is a complex-valued function.  In the next chapter we will show that 
such a spectrum possesses conjugate symmetry.  Some symmetry relations listed 
in Bracewell's textbook The Fourier Transform and Its Applications (p.14) are given 
in Table 12.2 in Chapter 12. 
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Chapter 6:  Fourier Analysis of Continuous Functions  

6.A  Introduction. 

In the introduction to Chapter 3 we posed the question of whether or not an 
arbitrary function defined over a finite interval of time or space can be 
represented as the sum of a series of weighted sinusoids.  We delayed answering 
that question temporarily while we dealt with the easier question of whether a 
sampled function can be represented by a weighted sum of sampled sinusoids.  We 
found that indeed it was possible to fit a set of D data points exactly by a Fourier 
series model with D coefficients.  In the process, we developed simple formulas 
that allowed us to calculate these unknown Fourier coefficients for any vector of 
data values.  Then, in Chapter 5 we returned to the original problem and argued 
by extension of these results that a continuous function defined over a finite 
interval will have a discrete spectrum with an infinite bandwidth.  This is Case 3 
illustrated in Fig. 5.1.  The task now is to formulate an appropriate model for this 
case and then determine formulas for calculating the unknown Fourier 
coefficients. 

6.B  The Fourier Model. 
Given an arbitrary, real-valued function y(x), we wish to represent this 

function exactly over a finite interval by a Fourier series with an infinite number 
of terms.  Accordingly, the model we seek is just eqn. [3.34] extended to have an 
infinite number of harmonics.  To simplify the notation initially, let us assume 
that y(x) is defined over the interval (-π,π) so the Fourier series is 

 y(x) = a0 / 2 + ak ⋅ coskx + bk ⋅ sin kx
k=1

∞

∑   ,        all x in the range (-π,π)       [6.1] 

The method used previously to determine the unknown Fourier coefficients 
was to evaluate the inner product of the given discrete function with the basis 
functions of the model.  In the discrete case, the basis functions were the sampled 
trigonometric functions.  Now, in the continuous case, the basis functions are the 
continuous trigonometric functions.  Accordingly, we need to form the inner 
product of eqn. [6.1] with each harmonic function in turn.  For example, to find 
the kth harmonic coefficient ak, we form the inner product with the basis function 
and examine each term in the sum, 

 

  

cos kx • f (x) = coskx • a0 / 2
+ coskx • a1 cos x + coskx • b1 sin x
+ coskx • a2 cos2x + coskx •b2 sin 2x
+
+ coskx • ak coskx + coskx • bk sinkx
+

= ak(cos kx •cos kx)
= akπ

 [6.2] 
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Notice that the infinite series on the right side of eqn. [6.2] collapses to a single 
term because of orthogonality.  The inner product cos kx •cos kx  equals L/2=π 
according to eqn. [5.7].  Therefore, we may conclude from eqn. [6.2] that the 
coefficient ak, is given by the formula 

 
ak = 1

π coskx • f (x)

= 1
π y(x)coskx

−π

π

∫ dx
 [6.3] 

Notice that this formula works also for the constant term a0 since if k=0, then eqn. 
[6.3] yields twice the mean value.  When this result is inserted into the model of 
eqn. [6.1], the constant term is just the mean value of the function y(x) as 
required.  A similar line of reasoning leads to an analogous formula for the sine 
coefficient bk 

 bk = 1
π y(x)sin kx

−π

π

∫ dx  [6.4] 

To obtain the more general formulas which apply when the function y(x) is 
defined over any finite interval of length L, we replace x by 2πx/L to get 

 

y(x) = a0 / 2 + ak ⋅ cos2πkx / L + bk ⋅ sin2πkx / L
k=1

∞

∑ ,

where

ak = 2
L y(x)cosk2π x / L

L0

L0 +L∫ dx

bk = 2
L y(x)sin k2π x / L

L0

L0 +L∫ dx

 [6.5] 

This last result is the form of Fourier series commonly seen in textbooks because 
it is general enough to allow analysis of one full period with arbitrary starting 
point.   

The trigonometric model of eqn. [6.1] is useful only for real-valued functions.  
However, we may extend the model to include complex-valued functions just as 
we did earlier for discrete functions (see eqn. [4.14]).  To do so the Fourier series 
model is written in terms of complex coefficients as  

 y(x) = cke
ik2π x /L

k=−∞

∞

∑  [6.6] 

where we take our inspiration for the definition of the complex coefficients from 
eqn. [4.12] and eqn. [6.5]: 
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ck =
ak − ibk
2

for k > 0

ck =
ak + ibk
2

for k < 0

ck = 1
L y(x)cosk2π x / L

L0

L0 +L∫ dx − i 1L y(x)sin k2π x / L
L0

L0 +L∫ dx

= 1
L y(x)e− ik2π x /L

L0

L0 +L∫ dx

 [6.7] 

In this model the continuous complex exponential are the orthogonal basis 
functions for representing any complex-valued function.  Since real-valued 
functions are just a special case of complex-valued functions, the model of eqn. 
[6.6] subsumes the model of eqn. [6.1] and so is often preferred in textbooks. 

6.C  Practicalities of Obtaining the Fourier Coefficients.   

The preceding section has demonstrated that there is little conceptual 
difference between the Fourier analysis of discrete and continuous functions over 
a finite interval.  From a practical standpoint, however, there is a large difference 
in the mechanics of calculating the Fourier coefficients of the model.  Anyone 
who can do arithmetic can compute the inner products required in the Fourier 
analysis of discrete functions.  However, to do Fourier analysis of continuous 
functions requires an ability to do calculus.  If evaluating an integral is deemed a 
last resort, then several alternative strategies are worth exploring. 

• Look it up in a reference book.  Spectra of many common waveforms have 
been determined and answers are in handbooks of mathematical functions 
(e.g. see Bracewell's pictorial dictionary of Fourier transform pairs )  

• Use symmetry arguments to assert that certain coefficients are zero. 

• Break the given function down into a sum of of more elementary functions 
for which the Fourier series is known.  Because of linearity, the spectrum of a 
sum of functions is equal to the sum of their spectra. 

• Approximate the given function by sampling it D times and numerically 
calculate the corresponding finite Fourier series. 

• Use theorems to derive new Fourier series from old ones without doing a lot 
of extra work. 

• Use the brute force method and do the calculus.  An efficient strategy is to 
leave the harmonic number k as a variable so that a formula is produced 
which determines all of the Fourier coefficients at once. 
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An example worked below uses a combination of the symmetry method and 
the brute force method.  The problem is to find the Fourier series model which 
fits the continuous function shown in Fig. 6.1.  Although the function is only 
defined over the interval (-π,π), the Fourier series will also fit the periodic 
function obtained by replicating y(x) to make a "square wave".  We begin by 
evaluating eqn. [6.5] for the given function and observing that the integrand has 
odd symmetry, therefore all of the cosine coefficients equal zero, 

 ak = 1
π y(x) cos kx

−π

π

∫ dx = 1
π O(x)E(x)

−π

π

∫ dx = 0  [6.8] 

To obtain the sine coefficients we evalute eqn. [6.4] and note that since the 
integrand is even, the integral simplifies to 

 

bk = 1
π y(x) sinkx

−π

π

∫ dx = 2
π y(x) sinkx

0

π

∫ dx

= 2
π sinkx

0

π

∫ dx = 2
π
(−coskx)

k 0

π

=
2
πk
(1 − coskπ )

 (k is an integer)           [6.9] 

Evaluating the first few harmonics we see that  

 

b1 =
2
π
(1− cosπ ) = 4

π

b2 =
2
2π
(1 − cos2π ) = 0

b3 =
2
π3
(1 − cos3π ) = 4

3π

 [6.10] 

which suggests a generic formula for all the coefficients: 

Fig. 6.1  Fourier Analysis of Square Wave
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bk =

4
kπ

for k = odd

bk = 0 for k = even
 [6.11] 

Substituting these coefficients back into the model of eqn. [6.1] we get 

 

  

y(x) = 4
π
(sin x + 1

3 sin3x + 1
5 sin5x +)

=
4
π

sin kx
kk =odd

∑
 [6.12] 

Thus we have the Fourier series model for a square wave in "sine phase".   A 
similar formula may be determined for the square wave in "cosine phase".  

6.D  Theorems 

1. Linearity 

A common way of describing Fourier analysis is that it is a linear operation.  There 
are two general properties of any linear operation which have to do with scaling 
and adding.  In the present context, these properties are: 

1a. if f(x) has the Fourier coefficients ak and bk, then scaling f(x) by a constant s 
to produce the new function g(x)=s.f(x) will also scale the Fourier 
coefficients by s. That is, the coefficients for g(x) will be s.ak, s.bk.  This 
theorem is easily verified by substituting the new function into the 
coefficient generating functions in eqn. [6.5]. 

1b. if f(x) has the Fourier coefficients ak and bk, and if g(x) has the Fourier 
coefficients αk and βk, then the function f(x)+g(x) will have Fourier  
coefficients ak+ αk and bk +βk.  This theorem follows from the fact that the 
integrals in eqn. [6.5] are themselves linear operations, so if the integrand is 
the sum of two functions, the integral can be broken into the sum of two 
integrals, each of which corresponds to the fourier coefficients of the 
component functions f or g.  

2. Shift theorem 

If the origin of the time or space reference frame shifts by an amount x´, then 
the effect is to induce a phase shift in the spectrum of a function.  This result is 
easy to demonstrate algebraically if the original function f(x) is given by the 
Fourier series in polar form as 

 y(x) = a0 / 2 + mk ⋅ cos(kx −φk )
k=1

∞

∑  [6.13] 
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Next we obtain g(x) from y(x) by shifting the origin by the amount x´. This is 
achieved mathematically by substituting the quantity x-x´ for x to yield  

 g(x) = y(x − ′x ) = a0 / 2 + mk ⋅ cos(kx − k ′x −φk )
k=1

∞

∑  [6.14] 

In words, this equation says that to evaluate g(x) we subtract the amount x´ from 
x and submit the result to the function y.  The result is that the magnitudes of the 
Fourier coefficients are unaffected but the phase of each harmonic term is 
increased by the amount kx´.  An example is shown in Fig. 6.2 in which a 
function y(x) has two harmonic components.  Notice that a lateral shift of amount 
x = π/2 shifts the phase of the fundamental by 1/4 cycle, whereas the effect on 
the second harmonic is a phase shift of 1/2 cycle.   

 

The above result is also easily proven algebraically when the spectrum of f(x) 
is represented by the complex Fourier series 

 y(x) = cke
ikx

k=−∞

∞

∑  [6.15] 

Let g(x) = y(x-x´) be the shifted version of y(x) and substitute x-x´ for x in eqn. 
[6.15] to get the spectrum of g(x) 

 
g(x) = ckeik (x− ′ x )

k = −∞

∞

∑

= (cke− ik ′ x )eikx

k = −∞

∞

∑
 [6.16] 
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The new Fourier coefficient is thus seen to be the old coefficient times eikx´.  But 
we know from Chapter 2 that multiplication by the unit phasor e-iθ has the effect 
of rotating the given phasor by the angle θ, which is to say the phase is shifted by 
amount θ.  Notice that the amount of phase shift is directly proportional to the 
harmonic number k and to the amount of displacement x´. 

Although more cumbersome algebraically, the Cartesian form of this theorem 
may provide some insight to the student.  If f(x) is given by the Fourier series  

 y(x) = a0 / 2 + ak ⋅ coskx + bk ⋅ sin kx
k=1

∞

∑  [6.17] 

and g(x) is obtained from f(x) by shifting the origin by x´ to give  

 g(x) = a0 / 2 + ak ⋅ cosk( x − ′ x ) + bk ⋅ sink(x − ′ x )
k =1

∞

∑  [6.18] 

In order to re-write this last equation as a standard Fourier series and thus reveal 
the new Fourier coefficients,  

 g(x) = a0 / 2 + ′ a k ⋅ coskx + ′ b k ⋅sin kx
k =1

∞

∑  [6.19] 

we apply the trigonometrical identities of eqn. [2.6] 

 
cos(α + δ ) = cosα cosδ − sinα sinδ
sin(α + δ ) = cosα sinδ + sinα cosδ

. [2.6] 

To see how the result is going to turn out, consider the k-th harmonic term  

 
ak ⋅ cosk(x − ′x ) + bk ⋅ sin k(x − ′x )
= ak ⋅ (coskx cosk ′x + sin kx sin k ′x ) + bk ⋅ (sin kx cosk ′x − coskx sin k ′x )
= (ak cosk ′x − bk sin k ′x )coskx + (bk cosk ′x + ak sin k ′x )sin kx

 [6.20] 

Thus the new Fourier coefficients are 

 
′ a k = ak cos k ′ x − bk sin k ′ x 
′ b k = bk cosk ′ x + ak sin k ′ x 

 [6.21] 

which are recognized as rotated versions of the phasors (ak,bk).  In agreement 
with the solution obtained in polar form above, the amount of rotation is kx. 

3. Scaling theorem 

If the scale of the time or space reference frame changes by the factor s , then 
the effect is to inversely scale the frequency axis of the spectrum of the function.  
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This result is easy to demonstrate algebraically if f(x) is given by the Fourier 
series 

 y(x) = a0 / 2 + ak ⋅ cos2πkx / L + bk ⋅ sin2πkx
k=1

∞

∑ / L  [6.22] 

We now create the new function g(x) from y(x) by scaling the x-axis by factor s.  It 
follows that we need only to substitute the quantity sx for x to yield  

 g(x) = y(sx) = a0 / 2 + ak ⋅ cos2πksx / L + bk ⋅ sin2πksx
k=1

∞

∑ / L  [6.23] 

In words, this equation says that to evaluate g(x) we multiply independent 
variable x by the constant s and submit the result to the function y.  This result 
shows that the new frequency of each harmonic is now s times the old frequency.  
Another way of saying the same thing is that the spectrum has been stretched by 
the factor 1/s.  A graphical example for the case s=2 is shown in Fig. 6.3 . 

 
This result may be easier to grasp if the frequency spectrum is conceived in 

terms of harmonic number rather than physical frequency.  Since harmonic 
number does not depend upon the length L of the interval, the harmonic 
spectrum will be exactly the same before and after scaling the x-axis.  However, 
to convert harmonic numbers to physical frequency requires knowledge of the 
fundamental period.  If the observation period is compressed by the scaling 
factor s, then the fundamental frequency is correspondingly larger and thus the 
frequency spectrum will be expanded by the factor s. 

4. Differentiation theorem 

If y(x) is given by the Fourier series 

 y(x) = a0 / 2 + ak ⋅ coskx + bk ⋅ sin kx
k=1

∞

∑  [6.24] 

Fig. 6.3   X-scaling Stretches the Frequency Spectrum
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and a new function g(x) is created by differentiating y(x) with respect to x, then 
the model for g(x) is 

 g(x) = dy
dx

= kbk ⋅ cos(kx) − kak ⋅ sin(kx)
k=1

∞

∑  [6.25] 

This shows that the new ak equals k times the old bk and that the new bk equals -k 
times the old ak .  The reason the coefficients are scaled by the harmonic number 
is that the rate of change of higher harmonics is greater so the derivative must be 
greater.  For example, the function y(x) in Fig. 6.1 has the Fourier coefficients 
b1=2, b2=-1.  According to this theorem, the derivative of y(x) should have the 
Fourier coefficients a1=2, a2=-2.  This is verified by differentiating y(x) directly to 
get 2 cosx − 2cos2x . 

The above result may be interpreted as a rotation and scaling of the spectrum 
in the complex plane.  To see this, let f(x) be represented by the Fourier series  

 y(x) = cke
ikx

k=−∞

∞

∑  [6.26] 

and a new function g(x) is created by differentiating y(x) with respect to x, then 
the model for g(x) is 

 

g(x) = dy(x)
dx

=
d
dx

cke
ikx

k=−∞

∞

∑⎛⎝⎜
⎞
⎠⎟

= ikcke
ikx

k=−∞

∞

∑

 [6.27] 

In words, the effect of differentiating a function is to rotate each phasor ck by 90° 
(the factor i) and to scale all of the Fourier coefficients by the harmonic number k. 
 

5. Integration theorem 

If y(x) is given by the Fourier series 

 y(x) = a0 / 2 + ak ⋅ coskx + bk ⋅ sin kx
k=1

∞

∑  [6.28] 

and a new function g(x) is created by integrating y(x) with respect to x, then the 
model for g(x) is 
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g(x) = y(u)
−π

x

∫ du

=
a0
2
+ ak ⋅ cosku + bk ⋅ sin ku

k=1

∞

∑⎛
⎝⎜

⎞
⎠⎟−π

x

∫ du

=
a0
2−π

x

∫ du + ak ⋅ cosku−π

x

∫ du( )
k=1

∞

∑ + bk ⋅ sin ku−π

x

∫ du( )
k=1

∞

∑

 [6.29] 

The last step in eqn. [6.29] is possible since the integral of a sum of terms is equal 
to the sum of each separate integral.  Evaluating these integrals we get 

 

g(x) =
a0u
2 − π

x

+
ak
k
sinku

−π

x⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k=1

∞

∑ +
−bk
k
cosku

− π

x⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k=1

∞

∑

=
a0π
2

+
a0x
2

+
ak
k
sinkx − sin(−kπ )( )

k=1

∞

∑ +
−bk
k

coskx − cos(−kπ )( )
k=1

∞

∑

= C +
a0x
2

+
ak
k
sin kx( )

k =1

∞

∑ +
−bk
k
cos kx( )

k=1

∞

∑

 [6.30] 

The variable C in eqn. [6.30] is a constant of integration which absorbs the cos(kπ) 
terms and the a0 term.  Notice that if the mean of the original function y(x) is not 
zero, then a linear term shows up after integration.  Thus, the result is not 
necessarily a proper Fourier series unless a0=0.  This result shows that the new ak 
equals -1/k times the old bk and that the new bk equals 1/k times the old ak .  The 
reason the coefficients are scaled inversely by the harmonic number is that the 
area under a sinusoid grows smaller as the frequency grows larger, hence the 
integral is less. 

In a manner similar to that shown above in section 4 above, eqn. [6.30] may be 
interpreted as a rotation of the spectrum in the complex plane.  Thus, the effect of 
integrating a function is to rotate each phasor ck by -90° and to scale all of the 
Fourier coefficients by 1/k, the inverse of the harmonic number. 

An example of the use of the integration theorem is shown in Fig. 6.4 in which 
the square wave of Fig. 6.1 is integrated to produce a triangle wave.  By 
inspection we see that the mean value of g(x) is -π/2.  To get the other Fourier 
coefficients we apply the theorem to the Fourier series of f(x) found above in eqn. 
[6.12] 

 
ak = 0

bk =
4
πk

 k odd
 [6.11] 

Since the old a-coefficients are zero, the new b-coefficients are zero.  The new a-
coefficients are equal to  -1/k times the old b-coefficients.  Therefore, we conclude 
that the new function g(x) has the Fourier coefficients 
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a0 = −π
2

ak = −
4

πk 2  k odd

bk = 0

 [6.31] 

in which case the Fourier series for g(x) is 

 

  

g(x) = −π
2
− 4
π
(cos x + 1

9 cos3x + 1
25 cos5x +)

= −
π
2
−
4
π

coskx
k2k= odd

∑
 [6.32] 

 

6.E  Non-sinusoidal basis functions 

One of the remarkable features of the harmonic series of trigonometrical 
functions sin(kθ) and cos(kθ) is that they are mutually orthogonal over the 
interval [0, 2π] for integer values of k, not only as continuous functions of x, but 
also when evenly sampled at an integer D number of points.  This orthogonality 
is an essential feature of these basis functions that allows the development of 
simple equations for computing Fourier coefficients needed to develop Fourier 
series models of discrete data and continuous functions.   

Although other families of continuous, mutually-orthogonal functions exist, 
not all have this convenient property of remaining orthogonal when sampled.  
One example from optics is the family of Zernike circle polynomials defined over 
a circular domain of unit-radius in the (x,y) plane. These orthogonal polynomials 
are expressed most simply in polar coordinates (ρ,θ) as  

 Zn
m = Nn

mRn
m (ρ)M (mθ)  [6.33] 

where N is a normalizing constant, R is an nth order polynomial in ρ, and M is the 
trigonometric function cos(mθ) if m ≥ 0 or sin(-mθ) if m < 0. When sampled, 
these functions lose their orthogonality and consequently other methods must be 
used, such as least-squares fitting, to compute Zernike coefficients. 

Fig. 6.4  Integration of Square Wave
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Chapter 7:  Sampling Theory 

7.A  Introduction. 

In Chapter 6 we found that there is little conceptual difference between the 
Fourier analysis of discrete and continuous functions over a finite interval.  Both 
types of functions have discrete spectra, the only difference being that discrete 
functions have a finite number of harmonic components (Case 1 in Fig. 5.1), 
whereas a continuous function, in principle, has an infinite number of harmonics 
(Case 3 in Fig. 5.1).  However, a curious result emerges from the homework set 
#6.  In one problem (6.1), it is found that the spectrum of a continuous function 
and the sampled version of that function are significantly different, whereas in 
another problem (6.2) the two spectra are exactly the same over the range of 
harmonics for which a comparison is possible.  This indicates that under certain 
circumstances a function is completely determined by a finite number of samples.  In this 
chapter we explore the conditions for which this result obtains. 

7.B  The Sampling Theorem. 

In general, a continuous function defined over a finite interval can be 
represented by a Fourier series with an infinite number of terms as shown in 
Chapter 6 

 f (x) = a0 / 2 + ak ⋅ coskx + bk ⋅sin kx
k=1

∞

∑  [6.1] 

However, it may happen that for some functions the Fourier coefficients are all 
zero for all frequencies greater than some value W.  For such spectra, we may 
think of W as the bandwidth of the spectrum.  Notice a subtle difference between 
previous usage and this use of the term bandwidth.  When discussing discrete 
functions, which have finite spectra, we used the term bandwidth to mean the 
highest frequency defined in the spectrum.  In that case, W = D/2L.  That 
definition  implies that all continuous functions have infinite bandwidth because 
D = ∞.  An alternative definition allows continuous functions to have finite 
bandwidth if the magnitudes of all Fourier coefficients are zero beyond some 
limiting frequency W.  This is a much more useful definition for practical 
purposes and so that is how the term bandwidth is normally used. 

Consider now the consequences of a continuous function having finite 
bandwidth.  An example is shown in Fig. 7.1 in which the frequency spectrum is 
non-zero only for the constant term and the first three harmonics.  Now imagine 
trying to "reconstruct" the space/time function from this spectrum.  We have two 
options in this regard.  First, we could pretend that all frequencies higher than W 
don't exist, in which case the IDFT operation will produce a discrete function 
shown by the solid points in the left side of Fig. 7.1  On the other hand, we could 
use the entire frequency spectrum which is defined for an infinite number of 
harmonics and in this case the Fourier series will produce the continuous 
function shown in the figure.  Now we assert that the continuous reconstructed 
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function must pass through the discrete points shown.  This is true because 
although the higher harmonics have been admitted, they make no contribution 
since all of the coefficients are zero.  Therefore, it doesn't matter in the 
reconstruction whether harmonics greater than W are included or not.  The only 
difference is that when an infinite number of coefficients are defined, and given 
the value zero, then the original function can be evaluated legitimately at every x-
value instead of just the x-values which correspond to multiples of Δx=1/2W. 

 

We can put the preceding argument on a quantitative footing by letting f(xj) 
be the discrete function defined by  

 f (xj ) = a0 / 2 + ak ⋅ coskx j + bk ⋅sin kx j
k=1

D / 2

∑  (xj=jΔx,  j=integer) [7.1] 

and by letting g(x) be the continuous function defined by 

 g(x) = a0 / 2 + ak ⋅ coskx + bk ⋅sin kx
k =1

D / 2

∑ + 0 ⋅cos kx + 0 ⋅ sinkx
k=1+D / 2

∞

∑  (all x) [7.2] 

Since the right hand sides of eqns. [7.1] and [7.2] are equal, it follows that 
f(x)=g(x) for the sample points xj.  For all other x-values, g(x) interpolates f(x). 

The preceding discussion has shown that the continuous function g(x) is a 
reasonable interpolation of the discrete function f(x).  The skeptical student may 
still be unconvinced that it is the correct interpolation.  To be convinced, suppose 
we start with the continuous function g(x) which we know in advance is band 
limited to W.  Given this information, we then sample g(x) to produce the 
discrete function f(x).  The above arguments have demonstrated that provided 
we sample at a rate R=2W, then the spectrum of f(x) will be identical to the 
spectrum of g(x) for all frequencies less than W.  Therefore, the spectrum of g(x) 
can be derived from the computed spectrum of f(x) by adding an infinite number 
of higher harmonics, all with amplitude zero.  This strategy of padding a 
spectrum with zeros is widely used as a numerical method for improving the 
spatial resolution of a reconstructed function with IDFT . Since this synthesized 
spectrum will reconstruct g(x) exactly, we conclude that:  

Fig. 7.1   Bandlimited Frequency Spectrum
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All of the information necessary to reconstruct a band limited function exactly 
over a finite interval is contained in a finite number of samples.  The reconstruction 
will be without error provided (1) the sampling rate R exceeds 2W, where W is the 
bandwidth of the given function, and (2) the sampling process is without error.   

This is the famous sampling theorem of Whittaker (1935), who developed the 
theorem in the context of interpolation theory, and Shannon (1949) who 
developed the theorem in the context of information theory.  It is an historical 
oversight that Bergmann (1858) discovered this idea in the context of neural 
sampling of the retinal image, which was later popularized by Helmholtz (1867) 
in his much quoted rule that visual resolution requires at least one relatively 
unstimulated neuron between two relatively unstimulated neurons (i.e. at least 2 
neural samples per cycle of a visual pattern).  This rule was then rediscovered by 
Nyquist, a communications engineer at Bell Telephone Laboratory in the 1930's. 

7.C  Aliasing.   

If the required condition of the sampling theorem that R>2W is not met, then 
errors will occur in the reconstruction.  When such errors arise due to 
undersampling, aliasing is said to occur.  The word aliasing is used in this context 
because a high-frequency component is mistaken for, or masquerades as, a low-
frequency component when the sampling rate is too low.  An example is shown 
in Fig. 7.2 for a case of D=4 samples over the interval.  Thus the highest 
frequency which would be adequately sampled according to the sampling 
theorem is ΔfD/2 which in this example is 2Δf.  This critical frequency is called the 
Nyquist frequency and is denoted fN in the Figure.  Since the solid curve has a 
frequency below the critical frequency, it satisfies the sampling theorem 
requirement and can be faithfully reconstructed from the frequency spectrum. 

 

However, the dashed curve has a frequency higher than the Nyquist 
frequency and thus is undersampled.  The spectrum for the undersampled 
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dashed curve will be the same as the spectrum for the solid curve since the two 
functions are equal at the sample points.  Thus, the dashed curve will appear to 
have a spectrum shown by the open circle marked "alias".  Although we are not 
yet in a position to prove the claim, it turns out that the spectrum of an 
undersampled function can be predicted from the true spectrum by reflecting the 
true spectrum about the critical Nyquist frequency.  For this reason, the Nyquist 
frequency is sometimes called the "folding frequency". We return to this issue in 
Chapter 13. 

7.D  Parseval's Theorem.   

In Chapter 3 we introduced Parseval's Theorem for discrete functions.  It was 
promised that in future chapters we would see how to interpret Parseval's 
theorem as a kind of energy-conservation theorem which says that a signal 
contains a given amount of energy regardless of whether that energy is 
computed in the space/time domain or in the Fourier/frequency domain.  We 
are now in a position to take up that challenge. 

In Chapter 5 we noted that the inner product of a continuous function with 
itself has an important interpretation in many physical situations as the total 
amount of energy in a signal 

 energy = v2 (t) dt = v(t)• v(t)∫   = length2 of data function [5.7] 

If we substitute for v(t) the corresponding Fourier series, and choose a 
convenient interval of observation (0, 2π) to simplify notation, we obtain the 
infinite series 

 

 

E = a0 / 2 + ak ⋅ coskt + bk ⋅ sin kt
k=1

∞

∑⎛
⎝⎜

⎞
⎠⎟0

2π

∫
2

dt

= a0 / 2 a0 / 2 + ak ⋅ coskt + bk ⋅ sin kt
k=1

∞

∑⎛
⎝⎜

⎞
⎠⎟0

2π

∫ dt

+ a1 ⋅ cos t a0 / 2 + ak ⋅ coskt + bk ⋅ sin kt
k=1

∞

∑⎛
⎝⎜

⎞
⎠⎟0

2π

∫ dt

+ b1 ⋅ sin t a0 / 2 + ak ⋅ coskt + bk ⋅ sin kt
k=1

∞

∑⎛
⎝⎜

⎞
⎠⎟0

2π

∫ dt

+

 [7.3] 

Linearity implies that an integral of a sum is a sum of integrals. Because of 
orthogonality, this infinite series of integrals, each of which has an infinite 
number of terms in the integrand, telescopes down to a manageable result.   
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E = (a0 / 2)0

2π

∫
2
dt

+ (a1 ⋅ cos t)
2

0

2π

∫ dt

+ (b1 ⋅ sin t0

2π

∫ )2 dt

+

 [7.4] 

We found earlier (eqn. [5.5]) that the integral of sin2kx  or cos2kx  over the interval  
(0, 2π) is equal to π.  Therefore, eqn. [7.4] simplifies to  

 E =
πa02

2
+π ak

2 + bk
2( )

k=1

∞

∑  [7.5] 

Combining eqns. [5.7] and [7.5] we get Parseval's theorem for continuous 
functions. 

 

energy = v2(t) dt =
0

2π

∫
πa02

2
+ π ak

2 + bk
2( )

k=1

∞

∑

power = energy
time

= 1
2π

v2(t) dt
0

2π

∫

=
a0
2

⎛ 
⎝ 

⎞ 
⎠ 

2

+
1
2

ak
2 + bk

2( )
k=1

∞

∑ =
a0
2

⎛ 
⎝ 

⎞ 
⎠ 

2

+
mk
2

2k=1

∞

∑

=
1
2

a0
2

⎛ 
⎝ 

⎞ 
⎠ 

2

+ ak
2 + bk

2( )
k =1

∞

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 
⎫ 
⎬ 
⎪ 

⎭ ⎪ 

= 1
2
length2 of Fourier vector{ }

 [7.6] 

Thus Parseval's theorem is telling us that total power equals the square of the 
mean plus one half of the sum of the squared amplitudes of the sinusoidal 
Fourier components, which is the same as half the squared length of the vector of 
Fourier coefficients.  But half the squared amplitude of any given Fourier 
component is just the power in that component.  Thus the total power is the sum 
of the powers in each Fourier component.  Frequently the mean (DC) term is not 
of interest because information is being carried solely by the variation of a signal 
about the mean (e.g. spatial or temporal contrast of a visual stimulus). In this 
case we would say that the signal power equals half the sum of the squared 
amplitudes of the Fourier components, which is also the variance of the signal 
when the signal mean is zero. Although theory requires the Fourier vector be of 
infinite length, any physical signal is always band-limited so the power is finite. 

7.E  Truncation Errors.   

One practical use of Parseval's theorem is to assess the impact of truncating 
an infinite Fourier series.  Although an infinite number of Fourier coefficients are 
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required in theory to reconstruct a continuous function, we may prefer to include 
only a finite number of terms.  According to Parseval's theorem, truncating the 
series removes some of the energy from the signal.  This suggests that one way of 
assessing the impact of truncation is to calculate the fraction of the total amount 
of energy deleted by truncation.  If the amount of energy being thrown away is a 
negligible fraction of the total, then one may argue that truncation of the series 
will have negligible effect on the ability of the Fourier series model to represent 
the original function. 

7.F  Truncated Fourier Series & Regression Theory.   

To pursue a slightly different line of reasoning, suppose we are given a 
function f(x) defined over the interval (-π, π).  We know that f(x) is exactly equal 
to the infinite Fourier series 

 f (x) = a0 / 2 + ak ⋅ coskx + bk ⋅sin kx
k=1

∞

∑  [7.7] 

However, we wish to approximate f(x) by a finite Fourier series band limited to 
the M-th harmonic.  That is, we seek to approximate f(x) by the truncated Fourier 
series g(x)  

 g(x) = α 0 / 2 + αk ⋅cos kx + βk ⋅sin kx
k=1

M

∑  [7.8] 

In the statistical theory of regression, the "goodness of fit" of an approximation is 
often measured by the "mean squared error".  By this metric, the error introduced 
by the above approximation can be quantified by the mean squared error ε 
defined as 

 
ε =

1
2π

f (x) − g(x)( )
− π

π

∫
2

dx

=
1
2π

f 2(x)
− π

π

∫ dx − 1
π

f (x)
−π

π

∫ g(x) dx + 1
2π

g2 (x)
−π

π

∫ dx
 [7.9] 

By Parseval's theorem, we interpret the first integral in [7.9] as the power in the 
data function and the third integral is the power in the Fourier series model.  The 
middle term is the inner product of the model with the given function. 

The goal now is to discover what values of the Fourier coefficients αk, βk will 
minimize ε.  To see how the answer is going to turn out, consider the simplest 
case of M=1.  That is, we wish to approximate f(x) by the function g(x)=α0/2.    In 
this case, the error is  
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ε =

1
2π

f 2(x)
− π

π

∫ dx − α 0

2π
f (x)

−π

π

∫ dx + α0
2

4

= power in f (x) − α 0a0
2

+
α 0
2

4

 [7.10] 

Adopting the standard approach to minimization problems of this kind, to 
minimize the error we must differentiate this quadratic eqn. [7.9] with respect to 
α0  , set the result to zero, and solve for α0.  This yields 

 
dε
dα0

= −
a0
2

+
α 0

2
= 0

∴α0 = a0

 [7.11] 

In words, this result shows that if we approximate f(x) by the function 
g(x)=constant, the constant which gives the best fit is just the first Fourier 
coefficient of f(x).  In other words, the truncated Fourier series is also the "least 
squares estimate" of the function f(x). 

Before accepting the above conclusion as being generally true, let us consider 
approximating f(x) by a 3-term Fourier series 

 g(x) = α 0 / 2 +α1 ⋅ cos x + β1 ⋅sin x  [7.12] 

Again we investigate the mean squared error 

 

ε = power in f (x)

−
1
π

f (x)
−π

π

∫ (α0 / 2 +α1 ⋅ cosx + β1 ⋅ sin x) dx

+ power in g(x)

 [7.13] 

The middle term generates three inner products between the given signal and 
each of the three components of the model.  But these inner products are 
recognized as the definition of Fourier coefficients.  Thus the error reduces to 

 

ε = power in f (x)

−
α0

2π
f (x)

−π

π

∫ dx − α1

π
f (x)

−π

π

∫ cos x dx − β1
π

f (x)
−π

π

∫ sin x dx

+
α0
2

4
+
α1
2

2
+
β1
2

2

= constant − α0a0
2

−α1a1 − β1b1 +
α0
2

4
+
α1
2

2
+
β1
2

2

 [7.14] 

Now we minimize this error first with respect to α0,  
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∂ε
∂α0

= −
a0
2

+
α 0

2
= 0

α0 = a0

 [7.15] 

then with respect to α1,  

 
∂ε
∂α1

= −a1 + α1 = 0

∴α1 = a1
 [7.16] 

and then with respect to β1. 

 
∂ε
∂β1

= −b1 + β1 = 0

∴β1 = b1
 [7.17] 

Again we find that the truncated Fourier series is also the model which 
minimizes the mean squared error.  Given these specific examples, we assert 
without further proof that the truncated Fourier series of a function is always the 
least-squares Fourier model for that function.  The same holds true for a partial 
Fourier series (i.e. a series that is missing some terms) since the proof is 
essentially term-by-term. 

Note that the inclusion of fundamental harmonics did not alter the value of 
the best constant determined in the first example.  This result is due to the 
orthogonality of the basis functions in the Fourier series.  Thus it is true in 
general that the best Fourier coefficient calculated for the k-th harmonic is 
independent of the calculation of any other coefficient.  Other choices of fitting 
(i.e. basis) functions that are not mutually orthogonal, for example a polynomial 
or a Taylor series, do not have this nice property.  Thus, when one models data 
with a polynomial or a Taylor series, the coefficients obtained depend upon the 
number of terms included in the series.  This difficulty does not arise with a 
Fourier series model because the basis functions are orthogonal. 

Our observation that a truncated Fourier series is also a least-squares Fourier 
model suggests a way to deal with two common situations for which sampled 
data are unequally spaced. First, data samples may be missing from an empirical 
record and second, the samples may have been obtained at irregular intervals.  In 
both cases, a least-squares fit of basis functions (trigonometrical or complex 
exponential) to the data may be used to recover Fourier coefficients of interest. 
Least-squares algorithms are not as robust as the DFT, and operate one basis 
function at a time, but nevertheless are a commonly used method in such 
circumstances. 



 

Chapter 8:  Statistical Description of Fourier Coefficients 

8.A  Introduction. 

The previous chapter brought together the Fourier analysis of discrete and 
continuous functions by supposing that a discrete function was obtained by 
sampling the continuous function at regular intervals.  Implicit in that exercise 
was the notion that the data vector v could be represented by a sequence of 
samples of the function f(x) as 

  [8.1] 

However, in real-world applications of Fourier analysis, it is unlikely that the 
samples will match the underlying function of interest exactly.  In this case it is 
common to refer to the function being studied as a signal and the contaminating 
influence is called noise.  An example is shown in Fig. 8.1 in which the function 
defined in homework exercise 7.2 is contaminated with random noise uniformly 
distributed between the limits (-0.5, +0.5). 

 

Many factors may act to introduce errors in the sample values.  For instance, 
if the function to be sampled passes through an electrode, amplifier, filter, or 
transmission cable, it is inevitable that some degree of contamination will result.  
Even the act of sampling to a finite level of accuracy (e.g. with an 8-bit analog-to-
digital converter) introduces errors that may be treated as noise.  When 
measurement noise is taken into consideration, a more realistic model of the data 
vector v is 

  [8.2] 

  

v = v1, v2,v3 ,!,vN( )
= f (x1), f (x2 ), f (x3 ),!, f (xN )( )

Signal !

Noise

Data

  v = f (x1 ) + n1, f (x2 ) + n2 , f (x3) + n3,! f (xN ) + nN( )
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where each of the nj represents a different sample of noise added to the signal 
f(x).  The central question of this chapter is: What happens to the Fourier coefficients 
associated with f(x) when the signal is contaminated with noise? 
8.B  Statistical Assumptions. 

In order to examine the effect of noise on Fourier coefficients, we must know 
something about the statistical nature of the noise process.  Of all the different 
types of noise that occur in nature, the simplest and most tractable from a 
mathematical point of view has the following two properties: 

1.  The noise is additive.  In other words, as indicated in eqn. [8.2], the sample 
value is equal to the linear sum of the signal being sampled plus the noise. 

2.  Each sample of noise nj is drawn independently from a noise process (or 
population) of mean zero and variance σ2. 

For the purposes of this introductory course, we will assume that these two 
conditions are met.    

One of the implications of these two assumptions is that the noise is 
independent of the signal. Two random events A & B are independent if 
occurrence of one has no influence on the probability of occurrence of the other. 
Using conditional probability notation, independence means P(B|A)=P(B).  In 
the present context, independence implies the noise does not get larger or 
smaller just because the signal gets larger or smaller.  Another implication is that 
each sample of noise is drawn from a population that has the same statistical 
properties as all of the other noise samples.  That is, in the jargon of statisticians, 
the noise value nj is called a random variable and the collection of these random 
variables is said to be independent and identically distributed.  This is in contrast to a 
case where, say, the noise is larger at the end of an experiment than it was at the 
beginning, which would violate the assumption of identically distributed noise. 
Conversely, dependence is evident if the value of noise at time t2 depends on the 
noise at some previous time t1.  

Since each sample point vj in the data vector is assumed to be the sum of a 
deterministic signal f(xj) and a sample nj of random noise, this means that vj must 
also be treated as a random variable.  Furthermore, since the noise has zero mean 
and the noise is additive, that implies the mean (or theoretical “expected value”) 
of vj is equal to f(xj).  Since the signal is assumed to be noise-free, the variance of 
vj is equal to the variance σ 2 of the noise.  We write these conclusions 
mathematically as  

 vj = f (x j ) + nj  (sample = signal + noise) 
 v j = f (x j )  (sample mean = signal) 
 Var(vj ) = σ 2  (sample variance = noise variance) [8.3] 
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The technical terms uncorrelation, independence, and orthogonality describe a 
hierarchy of disconnectedness between two random variables. Random variables 
A and B are uncorrelated if the expected value of their product equals the 
product of their individual expectations, E(AB) = E(A) E(B).  The two variables 
are orthogonal if the expected value of their product is zero, E(AB)=0. The two 
variables are independent if their joint probability equals the product of their 
individual probabilities, P(A,B)=P(A)P(B). Being uncorrelated is a much weaker 
condition than independence because it depends only on mean behavior whereas 
independence depends on all possible values of A and B.  If two random 
variables are independent then they are uncorrelated and, conversely, if two 
variables are correlated they must be dependent. Thus it is possible for two 
statistically dependent variables to be uncorrelated.  Jointly Gaussian random 
variables are an important exception to this rue, for in this special case 
uncorrelated is equivalent to independence.   

Another way to envision the difference between correlation and 
orthogonality is to consider a realization of the random variables. If a random 
variable A is sampled D times, the resulting vector of sample values (i.e. a 
realization) can be represented geometrically by a point in D-dimensional space. 
Similarly, D samples of random variable B are also represented by a point in D-
dimensional space. If A and B are orthogonal variables, then the vector from the 
origin to A should be (on average) perpendicular to the vector from the origin to 
B, which means the inner product of the two realizations equals zero, which is 
another way of saying E(AB)=0.  Envisioning correlation is similar, but the 
vectors are first centered relative to their own means. This is achieved by 
subtracting the mean of the elements in vector A from each element of A to 
produce a “centered” data vector. Vector B is centered in the same way and then 
both vectors are drawn in D-dimensional space. If the two centered vectors are 
perpendicular, the underlying variables A and B are uncorrelated.  Since 
centering can change the angle between the two vectors, the raw data vectors can 
be perpendicular but when centered they have some oblique angle.  In that case 
the variables A and B are orthogonal but correlated.  Conversely, the raw data 
vectors can be oblique to each other but when centered they become 
perpendicular, in which case A and B are not orthogonal but are uncorrelated. A 
third case is when the raw vectors are perpendicular and remain perpendicular 
when centered, in which case A and B are both orthogonal and uncorrelated. 

Although the noise values at time j are assumed to be statistically 
independent of the noise at time k, the corresponding data values will not be 
independent because the additive signal will introduce correlation between 
samples.  For example, if a signal is strong at time t, then it is likely to remain 
strong at a slightly later time. Thus the sum of signal + noise at the earlier time 
will predict better than chance the sum of signal + noise at the later time. A 
practical example is predicting tomorrow’s weather by saying it will be the same 
as today.  Of course variations will occur, but it is much more likely that weather 
on July 2 will be like the weather on July 1 than the weather on December 1. 
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8.C  Mean and Variance of Fourier Coefficients for Noisy Signals. 

Recall from eqns. [3.30] and [3.31] that the Fourier coefficients obtained for a 
data vector v are given for trigonometrical basis functions by  

 
 
ak =

2
D
⋅ vj coskθ j
j=0

D−1

∑ …θ j = 2π x j / L  [3.30] 

 
 
bk =

2
D
⋅ vj sin kθ j
j=0

D−1

∑ …θ j = 2π x j / L  [3.31] 

and for complex exponential basis functions by  

 
 
ck =

1
D
⋅ vj exp(ikθ j )
j=0

D−1

∑ …θ j = 2π x j / L  [4.23] 

Now according to eqn. [8.3] each data vector is the sum of signal vector plus a 
noise vector.  This means that the coefficients evaluated by eqns. [3.30, 3.31] may 
be considered as estimates of the true Fourier coefficients of the signal alone.  To 
see this, we substitute the first equation in  [8.3] into [3.30] to get  

 

ˆ a k =
2
D
⋅ f (xj ) + nj( )coskθ j

j= 0

D−1

∑

=
2
D
⋅ f (xj )coskθ j

j= 0

D−1

∑ +
2
D
⋅ nj coskθ j

j= 0

D−1

∑
= ak + εk

 [8.4] 

where the variable â (pronounced a-hat) is the calculated Fourier coefficient.  
This result reveals that âk is an estimate of the true coefficient ak and is in error by 
the amount εk, the Fourier coefficient for the vector of noise samples.  A similar 
result applies to the sine coefficients. The corresponding result for the complex 
coefficients is 

 

ˆ c k =
1
D
⋅ f (xj ) + nj( )exp(ikθ j )

j=0

D−1

∑

=
1
D
⋅ f (xj )exp(ikθ j)

j=0

D−1

∑ +
1
D
⋅ nj exp( ikθ j )

j=0

D−1

∑
= ck + εk

 [8.5] 

The preceding development shows that estimated Fourier coefficients 
determined for noisy data are also random variables, so we would like to know 
the mean (i.e. expected value) and variance of these coefficients. Since each 
estimated Fourier coefficient is the sum of a constant (ak) and a random variable 
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(εk), variability in â is due entirely to the random error term εk. From the theory 
of probability we know that if Y is a random variable of mean µ and variance σ2, 
and if s is some scalar constant, then the new random variable Z=sY has mean sµ 
and variance s2σ2.  This implies that the general term nj (2/D) cos(kθj)  in eqn. 
[8.4] is a random variable with mean 0 and variance [σ (2/D) cos(kθj)]2 .  Another 
result from probability theory is that if Y and Z are independent, identically 
distributed random variables of means µ, ν and variances σ2, τ2 respectively, then 
the new random variable W=Y+Z has mean µ+ν and variance σ2 + τ2 .   In short, 
when random variables add their means add and their variances add.  Applying 
this result to the second summation in eqn. [8.4] we see that εk is the sum of D 
random variables, each of which has mean 0 and variance (4σ2/D2)cos2kθ.  
Consequently, the mean of εk = 0 and variance of εk is given by  

 

Var(εk ) = (4σ 2 / D2 )(coskθ j )
2

j=0

D−1

∑ =
4σ 2

D2 cos2 kθ j
j=0

D−1

∑

=
4σ 2

D2 ⋅
D
2
=
2σ 2

D
for k ≠ 0

=
4σ 2

D2 ⋅D =
4σ 2

D
for k = 0

 [8.6] 

The simplification of eqn. [8.6] is based on the fact that the squared length of the 
sampled cosine function is equal to D/2, except when k=0, in which case it equals 
D (see exercise 3.3).  The emergence of k=0 as a special case is rather awkward 
mathematically.  It could be avoided by rescaling the a0 coefficient by √2 for the 
purpose of computing variance as was done in connection with Parseval's 
theorem (see eqn. [7.6]).   

For the complex Fourier coefficients, the general term (1 / D)exp(ikθ j )nj  is a 

random variable with mean 0 and variance (1 / D) exp(ikθ j )( )2σ 2 .  The sum of D 
such random variables, gives the following formula for noise variance 

 
Var(ε k) =

σ 2

D2 exp(ikθ j )( )2
j=0

D−1

∑

=
σ 2

D2 ⋅D =
σ 2

D

 [8.6a] 

One advantage of the complex Fourier coefficients is that the contant term is not 
a special case.   

Given these results, we can now provide values for the first two statistical 
moments of the estimated Fourier coefficients.  From eqn. [8.4] we know that the 
random variable âk is the sum of the deterministic coefficient ak and the random 
variable εk with zero mean and variance given by eqn. [8.6].  Consequently,  
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Mean( ˆ a k ) = ak

Var( ˆ a k ) = 2σ 2

D
for k ≠ 0

=
4σ 2

D
for k = 0

 [8.7] 

and similar equations hold for estimates of the sine coefficients.  The 
corresponding equation for complex Fourier coefficients is 

 
Mean( ˆ c k) = ck

Var( ˆ c k) =
σ 2

D
 [8.7a] 

Notice that since the variance of a0 is 4σ2/D then the variance of a0 /2 , which is to 
say the variance of the mean, equals σ2/D and so the standard deviation of the 
mean is σ/√D.  (This result is more obvious for c0.) This is a familiar result from 
elementary statistics.  In statistics the standard deviation of the mean of D data 
values is usually called the standard error of the mean and is equal to σ/√D, where 
σ is the standard deviation of the population from which the data are drawn.  

In summary, under the assumption of additive, independent noise, the 
variances of all the trigonometric Fourier coefficient estimates (except a0 ) are 
equal to the noise variance times 2/D.  The variances of all the complex Fourier 
coefficient estimates are equal to the noise variance times 1/D.  This suggests one 
way to reduce the variance of the estimate is to increase D, the number of sample 
points.  A figure of merit called the signal-to-noise ratio (SNR) is often used to 
quantify the reliability of a signal.  The SNR of a particular Fourier coefficient 
could be taken as the ratio of the mean (for example, ck) to the standard deviation 
σ/√D.  By this definition, the SNR=ck√D/σ  of an estimated Fourier coefficient 
increases as √D and decreases in proportion to σ, the amount of noise. 

8.D  Probability Distribution of Fourier Coefficients for Noisy Signals. 

The mean and variance are useful summary statistics of a random variable, 
but a more complete characterization is in terms of a probability distribution.  
Given a deterministic signal, the probability distribution of the Fourier 
coefficients calculated for D samples of a noisy waveform depend upon the 
probability distribution of the added noise.  As is typically the case in the 
elementary analysis of noisy signals, we will assume from now on that the noise 
has the Gaussian (or normal) probability density, N(µ,σ2), of mean µ and variance 
σ2.  Under this assumption, the probability P that the noise signal at any instant 
lies somewhere in the range (a,b) is given by the area under the Gaussian 
probability density function between these limits 
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 P =
1

σ 2πa

b

∫ exp(−(x − µ)2

2σ 2 ) dx  [8.8] 

Several justifications for the Gaussian assumption may be offered.  First, 
many physical noise sources are well modeled by this particular probability 
function.  This is not surprising because the central limit theorem of probability 
theory states that the sum of a large number of independent variables tends to 
Gaussian regardless of the probability distributions of the individual variables.  
Another reason is expediency: this assumption makes the current problem 
tractable.  One result of probability theory is that the Gaussian distribution is 
closed under addition, which means that the weighted sum of any number of 
Gaussian random variables remains Gaussian.  Since the random variable εk is 
the weighted sum of noise variables, if the noise is Gaussian then so are the 
estimates of the Fourier coefficients.  In short, additive Gaussian noise produces 
Gaussian Fourier coefficients. 

The Gaussian distribution has only two parameters, the mean and variance, 
which are known from the more general results of section 8.C above.  Thus, we 
can summarize the preceding results by stating that the estimates of the Fourier 
coefficients are distributed as normal (i.e. Gaussian) random variables with the 
following means and variances (read "~N(a,b)" as "has a Normal distribution 
with mean a and variance b"): 

 

ˆ a k ~ N(ak,2σ
2 / D)

ˆ b k ~ N(bk,2σ
2 / D)

ˆ c k ~ N(ck ,σ 2 / D)
 [8.9] 

Another random variable of interest is the power in the k-th harmonic.  It was 
shown in eqn. [7.6] that signal power is one-half the square of the (polar) 
amplitude.  Therefore, the estimated signal power pk in the k-th harmonic is 

 p̂k = m̂k
2 / 2 = âk

2 + b̂k
2( ) / 2 = ĉk2 + ĉ−k2  [8.10] 

From probability theory we know that if X is a standardized Gaussian random 
variable with zero mean and unit variance, i.e. if X~N(0,1), then the variable 
Z=X2 is distributed as a chi-squared variable with 1 degree of freedom.  That is, 
Z ~ χ2

1.  This result is useful in the present context if we standardize our 
estimates of the Fourier coefficients in eqn. [8.9] by subtracting off the mean and 
dividing by the standard deviation.  This means that the squared, standardized 
Fourier coefficients are distributed as χ2 

 
 

âk − ak
2σ 2 / D

⎛
⎝⎜

⎞
⎠⎟

2

 χ1
2 and ĉk − ck

σ 2 / D

⎛
⎝⎜

⎞
⎠⎟

2

 χ1
2  [8.11] 
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A similar statement holds for the bk and c-k coefficients.  Now, from probability 
theory we also know that if random variables X and Y are both distributed as 
chi-squared with 1 degree of freedom, then the variable Z=X+Y is distributed as 
chi-squared with 2 degrees of freedom.  This implies that 

 
 

âk − ak( )2 + b̂k − bk( )2
2σ 2 / D

 χ2
2 and

ĉk − ck( )2 + ĉ−k − c−k( )2
σ 2 / D

 χ2
2  [8.12] 

An important practical application of this last result is testing for the presence 
of signals at particular harmonic frequencies.  In this case, a null-hypothesis that 
might be advanced is that the Fourier coefficients of the k-th harmonic are zero.  
Under this hypothesis, eqn. [8.12] simplifies to  

 
 

âk( )2 + b̂k( )2
2σ 2 / D

 χ2
2 and

ĉk( )2 + ĉ−k( )2
σ 2 / D

 χ2
2  [8.13] 

Combining this result with the definition of the signal power in eqn. [8.10] we 
see that  

 
 

p̂k
σ 2 / D

=
Power in kth harmonic
Average noise power

 χ2
2   = relative power of kth harmonic [8.14] 

To interpret this last result, note that the denominator of the left side of eqn. 
[8.14] is the total power of the noise source divided by the number of Fourier 
coefficients determined.  This interpretation comes from our understanding of 
Parseval's theorem given in eqn. [3.45] and the fact that σ2 is the expected value 
of the sample variance s2 obtained for any particular data vector comprised of D 
points sampled from the noise source.  Thus, according to this interpretation, the 
denominator of [8.14] is the expected amount of noise power per coefficient, 
which is to say, the average power in the noise power spectrum.  The ratio at the 
left is therefore the measured amount of power in the k-th harmonic, normalized 
by the average noise power.  If we call this unitless quantity the relative power of 
the k-th harmonic, then eqn. [8.14] means that relative power in the kth harmonic is 
distributed as χ2 under the null hypothesis that there is zero signal power at the k-th 
harmonic. 

In the next chapter we will make use of the result in eqn. [8.14] to construct a 
statistical test of the null hypothesis.  In the meantime, it is worth recalling that 
the mean of a χ2 variable is equal to the number of degrees of freedom of the 
variable, and the variance is equal to twice the mean.  Since signal power pk is a 
scaled χ2 variable under the null hypothesis, we know immediately that the 
standard deviation of pk (i.e. the square-root of the variance) is equal to the mean 
(eqn 8.15), which implies SNR=1 in this case.  Usually such a low SNR is 
unacceptable, which calls for methods to improve the SNR described below. 
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 [8.15] 

Figure 8.2:  The Chi-squared family of probability density functions 

 

8.E  Distribution of Fourier Coefficients for Random Signals. 

Sometimes the source of the signal under investigation has no deterministic 
component at all, but is itself a random process.  One example is the electro-
encephalogram, the tiny voltage recorded by an electrode placed on the skull.  
Other examples are the normal fluctuation of the pupil diameter ("hippus") and 
fluctuations in the eye’s optical power under constant viewing conditions.  Such 
signals are called stochastic because they don't easily fit into the model of eqn. 
[8.2] as the sum of a deterministic component plus a random noise component, 
unless we simply drop the signal term altogether.   

Fourier analysis of stochastic (i.e. random) signals is usually done in polar 
form because the random nature of the signal diminishes the importance of 
phase, leaving just the magnitude portion of the spectrum of interest.  
Furthermore, instead of plotting mk, the magnitude of the Fourier coefficients, it 
is more common to plot pk = mk

2 / 2 , which is the power of the harmonic 
component.  Accordingly, a graph of the power of each Fourier component as a 
function of frequency is called a power spectrum.   The power spectrum of a 
random process which satisfies the assumption that each sample is independent 
of, and has the identical distribution as, every other sample will be flat.  This is 
because, as shown in eqn. [8.14] for the case of zero signal, the power at each 
harmonic is the same.  A noise source with a flat power spectrum is called 
"white" noise, by analogy with the visible spectrum of light.  A corollary to this 
result is that if the noise source is filtered in a way which produces a non-flat 
spectrum, that is to say, a "colored" spectrum, then noise samples will no longer 
be independent and identically distributed.  In effect, the filtering introduces 
correlation between the samples so that they are no longer statistically 
independent. 
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At the end of section 8.D the observation was made that, in the absence of a 
deterministic signal, the standard deviation of pk is equal to the mean, which 
implies SNR=1.  The meaning of "signal" in this context is the estimated value of 
pk , the power of the k-th harmonic component of the random signal.  Typically 
such a low value of SNR is unacceptable and so means for improving the 
reliability are sought.  One method is to repeat the process of sampling the 
waveform and computing the power spectrum.  If M spectra are added together, 
the power at each harmonic will be the sum of M random variables, each of 
which is distributed as χ2 with 2 degrees of freedom.  Thus, the total power will 
be distributed as χ2 with 2M degrees of freedom, for which the mean is 2M and 
the standard deviation is 2√M.  Average power is the total power divided by M,   

 
 
pk 

1
M

χ2
2

M
∑ 

1
M

χ2M
2  [8.16] 

for which the mean, variance and SNR are 

  [8.17] 

We conclude, therefore, that the reliability of an estimated power spectrum for 
stochastic signals created by averaging M individual spectra increases in 
proportion to √M.   

An equivalent technique is to average M sample vectors and then compute 
the power spectrum of the mean data vector.  Since each component of the data 
vector increases in reliability in proportion to √M (because the standard error of 
the mean is inversely proportional to √M), so does the computed power 
spectrum. 

8.F  Signal Averaging. 

A common method for studying system behavior is to force the system with a 
periodic stimulus and then measure the response.  Any real system will 
invariably have a noisy response that makes each period of the response, or 
epoch, slightly different from every other epoch.  Conceptually, there are two 
ways to approach Fourier analysis of such response waveforms.  The first is to 
treat n epochs as one continuous response over an interval of length nL.  The 
other way is to analyze each epoch separately.  If the response waveform is 
sampled D times in each epoch, then both methods will produce nD Fourier 
coefficients.  The difference is that in the first method the coefficients correspond 
to nD/2 different harmonics whereas in the second method they correspond to n 
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repetitions of the same D/2 harmonics.  In many circumstances, most of the 
harmonics included in the first method are of no interest.  Therefore, the second 
method provides an opportunity to estimate the statistical reliability of the 
coefficients measured.  This is done in a straightforward manner called spectral 
averaging.  Given n measures of coefficient ak, the mean of ak and the variance of 
ak can be calculated independently of all of the other coefficients.  It should be 
noted that the mean of ak determined by spectral averaging will exactly equal the 
value of the coefficient for the corresponding frequency in the first method.  This 
is because the value of the coefficient is found by forming the inner product of 
the sample values with the sampled sinusoid of interest.  The inner product sums 
across sample points so it doesn't matter if the sums are done all at once (method 
1) or on an epoch-by-epoch basis (method 2).  Exercise 8.1 is a practical example 
that verifies this point. 

Although it is easy to calculate the mean and variance of Fourier coefficients 
by the spectral averaging method, specifying the probability distributions of the 
Fourier coefficients is more awkward.  Equation [8.10] says that the standardized 
coefficient is distributed as χ2 with 1 degree of freedom.  This implies that the 
non-standardized distribution is a scaled, non-central χ2 distribution.  
Unfortunately the sum of n such random variables is not as easy to deal with.  
There is some comfort in the central limit theorem of probability theory which 
states that, regardless of the distribution of ak, the distribution of the mean of ak 
will become approximately Gaussian if n is large.   

Another common way of analyzing multiple epochs is to average the data 
across epochs to produce a mean waveform which is then subjected to Fourier 
analysis.  This method is called signal averaging.  Exercise 8.1 demonstrates that 
the Fourier coefficients obtained this way are identical to the mean coefficients 
obtained by spectral averaging.  This result is a consequence of Fourier analysis 
being a linear operation.  It does not matter whether one averages the data first 
followed spectral analysis, or the other way around, spectral analysis followed 
by averaging. 
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Chapter 9:  Hypothesis Testing for Fourier Coefficients 

9.A  Introduction. 

In Chapter 8 we looked at Fourier coefficients from a new viewpoint.  
Although a Fourier series consisting of D terms will fit a discrete data function 
exactly at D sample points, this series may still not represent a physical system 
correctly because of measurement errors in the original data values.  Thus, from 
a statistical point of view, the computed Fourier coefficients are merely estimates 
of the true values that would have been obtained had there been no 
contamination by noise factors.  Because of the presence of noise, these computed 
coefficients will rarely equal zero when coefficients of the underlying signal is 
zero.  For example, a square wave in sine phase has only odd harmonic 
components but when noise is added to the square wave the computed 
coefficients will not necessarily be zero for the even harmonics.  Since the 
ultimate purpose of Fourier analysis is typically to create a reasonable model of 
the system under study, it becomes important to develop strategies for deciding 
whether a particular harmonic term is to be omitted from the model on the 
grounds that noise alone could account for the particular value computed for the 
coefficient .  In other words, we seek methods for testing the null hypothesis that  
a particular Fourier coefficient is equal to zero.   

The problem dealt with in this chapter is similar to that encountered in 
Chapter 7.  There we were investigating the consequences of omitting certain 
terms from an exact Fourier series model of a deterministic function.  We found 
that although deleting terms introduces error into the model, the amount of error 
introduced cannot be made any smaller by adjusting the coefficients of the 
remaining terms in the Fourier series.  In other words, the truncated Fourier-
series model minimizes the mean squared error.  Now we have a slightly 
different problem wherein the error in the model is caused not by deleting terms 
but by the inclusion of additive, Gaussian noise that contaminates the data. 

A more general problem is to use repeated measures of a vector of Fourier 
coefficients to determine whether the mean vector is different from a given 
vector.  The given vector might be zero, in which case the question is essentially 
this:  is there any signal at all in the data, or is there only noise?  A strategy for 
dealing with this problem is discussed in section 9E. 

9.B  Regression analysis. 

In the statistical theory of regression, a common method for approaching the 
"goodness of fit" of a model is to investigate the statistic S defined by the ratio 

 S =
variance of data accounted for by model

residual variance
 [9.1] 

The basic idea here is that the reason a recorded waveform has variance (i.e., is 
not just a constant) is because of two factors:  some underlying, deterministic 
function and random error.  In linear regression, for example, the underlying 
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deterministic function is assumed to be a straight line, which has two free 
parameters: slope and intercept.  Such a model predicts a certain amount of 
variance in the data (the numerator in [9.1]) but some residual variance is not 
accounted for by the model (the denominator of [9.1]).  If S is large, the 
implication is that the model is acceptable because it does a good job of 
accounting for the variance in the data.  In the context of Fourier analysis, the 
words we introduced in Chapter 8 for these two factors which introduce variance 
were: signal and noise.  Thus, the statistic S is very much like the SNR defined 
earlier since the numerator is a measure of the strength of the underlying signal 
and the denominator depends upon the amount of noise present.   

The use of a summary statistic such as S to test an hypothesis about the 
adequacy of a model is called a "parametric test" in statistics.  In order to develop 
useful tests of this kind, one needs to know the probability distribution of S.  
Perhaps the most widely known distribution of this kind is Snedecor's F-
distribution (named in honor of Sir R.A. Fisher) that applies when the numerator 
of eqn. [9.1] is a χ2 variable with a degrees of freedom, divided by a, and the 
denominator is a χ2 variable with b degrees of freedom, divided by b.  That is,  

 χa
2 / a

χb
2 / b

~ Fa,b  [9.2] 

Given the results of Chapter 8 in which it was shown that harmonic power is 
distributed as χ2  when Gaussian noise alone is present, it should not be 
surprising to find that an F-test can sometimes be used to test the goodness of fit 
of a Fourier series model.  Hartley (1949) was first to develop such a test and his 
method is described below. 

We know from the version of Parseval's theorem given in eqn. [3.45] that the 
variance of D sample points is equal to the sum of the powers of the 
corresponding harmonic components. 

 Var(Y ) = 1
D

Yk
2

k=1

D

∑ − m2 =
1
2

ak
2

k=1

D /2

∑ + bk
2 = ck

2

k≠0
∑ = pk

k=1

D /2

∑  [3.45] 

Therefore, if the Fourier model under consideration included all D harmonic 
components, then it would account for all of the variance of the data, there 
would be zero residual variance, and the model would fit the data exactly.  On 
the other hand, if only some of the harmonics are included in the model, then the 
harmonics omitted would account for the residual variance.  In this case, we can 
create a statistic like S to decide if the model is still adequate.   

To see how this would work, suppose that we include only the k-th harmonic 
in the Fourier model.  In other words, assume all of the other harmonics are 
noise.  According to eqn. [3.45] above, the variance accounted for by this model 
would be pk.  We found earlier in eqn. [8.14] that if we normalize pk by dividing 
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by the expected amount of power under the null hypothesis that only noise is 
present, then the "relative power" is distributed as χ2 with 2 degrees of freedom.   

 pk
σ 2 / D

~ χ2
2  [9.3] 

Clearly this quantity would serve well as the numerator of an F-statistic.  To get 
the necessary denominator, recall that there would be D-3 residual harmonics in 
this case.  The total amount of relative power in these residuals is the sum of 
R=(D-3)/2 random variables, each of which is χ2 with 2 degrees of freedom, 
which is therefore distributed as χ2 with 2R = D-3 degrees of freedom 

 
pj

σ 2 / Dj=1

R

∑ ~ χ2 R
2  [9.4] 

Now to formulate Hartley's statistic, we divide each of these variables by their 
respective number of degrees of freedom and form their ratio 

 H =

pk
2σ 2 / D

1
2R

pj
σ 2 / Dj=1

R

∑
=

relative power in k-th harmonic/DoF
average rel. power in residuals/DoF

~ F2,2R  [9.5] 

Fortunately, the unknown quantity σ appears in both the numerator and 
denominator and therefore cancels out to leave 

 H =
pk

1
R

pj
j≠ k
∑

~ F2,2R  [9.6] 

Thus, Hartley's test of the null hypothesis that the signal power in the k-th 
harmonic is zero is would be to reject the null hypothesis if H > critical value of 
F2,2R for significance level α. To administer this test for a chosen significance level 
(typically 5% or 1%), look up the critical value of F in tables of the F-distribution.  
If the computed test statistic is larger than the tabulated critical value, reject the 
null hypothesis that the signal power in this harmonic is zero.  The significance 
level is interpreted as the probability of falsely rejecting the null hypothesis. 

An example of a signal with additive Gaussian noise is shown in Fig. 9.1A 
and its magnitude spectrum is shown in Fig. 9.1B.  The data vector and vector of 
complex Fourier coefficients for this dataset (D=11) are given in Table 9.1.  The 
total variance in the data is 1.49, computed either from the Fourier coefficients 
(excluding the constant term, c0) or directly from the data values.  The variance 
in the harmonic with greatest power, which is the fundamental in this example, 
is 0.57 and so Hartley's statistic has the value H=0.57/[(1.49-0.57)/4]=2.48, which 
is not significant compared to the tabulated F-statistic (4.46) at the α=0.05 level, 
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with 2 and 8 degrees of freedom.  Thus we accept the null hypothesis that even 
the largest harmonic power is not significantly different from zero.  Had we 
rejected the null hypothesis, we would repeat the process for the next largest 
harmonic component, and so on until the null hypothesis can no longer be 
rejected.  At that point, the model includes all statistically significant harmonics. 

 
Table 9.1  Example data for Fig. 9.1 

Data values Fourier coefficients 
    0.7712    0.4456 + 0.0961i 
   -2.1036    0.4158 - 0.0679i 
    1.1951    0.0969 - 0.0971i 
    1.8159   -0.2377 - 0.0036i 
    0.7476   -0.4580 + 0.2711i 
    1.1402    0.2459           
    0.4931   -0.4580 - 0.2711i 
    0.5502   -0.2377 + 0.0036i 
    0.2417    0.0969 + 0.0971i 
    0.0489    0.4158 + 0.0679i 
   -2.1952    0.4456 - 0.0961i 

 
 

Figure 9.1  Example waveform (A) and its magnitude spectrum (B). 

  

9.C  Band-limited signals. 

Another application for Hartley's test arises when the signal is band-limited 
to W and deliberately oversampled.  In this case, the exact Fourier series is  

 f (x) = a0 / 2 + ak ⋅ coskx + bk ⋅sin kx
k=1

W

∑ + ak ⋅ coskx + bk ⋅sin kx
k=W +1

N

∑  [6.1] 

and the model would be obtained by truncating the series at the W-th harmonic.  
The higher harmonics are omitted on the grounds that since the signal is band-
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limited, power in the higher harmonics represent noise.  Thus the number of 
residual harmonics is R=(D/2)-W and Hartley's statistic is 

 H =

1
2W

pj
σ 2 / Dj=1

W

∑
1

2R
pj

σ 2 / Dj=W +1

N

∑
=

relative power in model/DoF
average rel. power in residuals/DoF

~ F2W ,2R  [9.7] 

It is worth remembering that Parseval's theorem provides an indirect method for 
computing the residual power without actually computing the Fourier 
coefficients for all of the higher harmonics created by oversampling. 

9.D  Confidence intervals. 

One of the most important results of elementary statistics is the specification 
of confidence bounds for the sample mean of a population.  If we review the 
logic of that result it will be a useful starting point for obtaining the confidence 
intervals for Fourier coefficients.  Suppose that x  is the mean of N samples and 
we want to be able to assert with 95% confidence (i.e. less than 5% chance of 
being wrong) that the true population mean µ falls in the range 

 x − A≤ µ ≤ x + A  [9.8] 
The question is, what is the value of A?  An approximate answer to this question 
is 2 times the standard error of the mean.  To see why this is true, recall that the 
standardized sample mean t , also known as Student's t-statistic,  

 t = x − µ
s / N

 [9.9] 

has the t-distribution with N-1 degrees of freedom.  In this equation, s is the 
sample standard deviation and s / N = s(x )  is the standard error of the mean.  
Student's t-distribution is really a family of distribution functions parameterized 
by the number of degrees of freedom.  A typical example might look like that in 
Fig. 9.1.  On the left is the probability density function and on the right is 1 minus 
the cumulative probability distribution, i.e. it is the area under the density 
function beyond some criterion c, as a function of c.   

 

Fig. 9.1   Student's t-distribution
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The exact value of c required to bring P(c) down to 5% depends on D, but for 
large samples c is approximately 2.  This means that the probability that t is 
greater than about 2 is only 5%.  Now according to eqn. [9.9], this means 

 Prob x − µ
s(x )

> 2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 5%  [9.10] 

The inequality in this expression can be restated in a form similar to that of eqn. 
[9.8] as an expression for the probability that the true mean µ lies within ± 2 SEM 
of the estimated mean, 

 Prob x − 2s(x ) < µ < x + 2s(x )( ) = 95%  [9.11] 

In other words, the 95% confidence bounds for µ are x ± 2s(x ) . 

Following the same line of reasoning, we know from eqn. [9.6] that Hartley's 
ratio of harmonic power to the residual power has the F-distribution under the 
null hypothesis.  Even if the null hypothesis that pk=0 is false, the difference 
between the estimated coefficients and actual coefficients are due to Gaussian 
noise. Therefore the analogous equation to [9.5] is obtained by reverting back to 
the form of the numerator in Hartley’s statistic given in eqn. [8.11], namely,  

 H =
( ˆ a k − ak )2 + ( ˆ b k − bk)2

1
R

pj
j=1

R

∑
~ F2,2R  [9.12] 

The analogous equation to [9.10] is therefore 

 Prob ( ˆ a k − ak )2 + ( ˆ b k − bk )2

1
R

pj
j =1

R

∑
> F2,2 R

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

= 5%  [9.13] 

This inequality defining the confidence bound has a simple geometrical 
interpretation shown in Fig. 9.2.  If we draw a circle centered on the point ( ˆ a k , ˆ b k )  
and with radius ρ given by 

 ρ2 =
F2,2 R
R

pj
j=1

R

∑  [9.14] 

then with 95% confidence we can assert that the true value of the Fourier 
coefficients (ak ,bk )  correspond to a point somewhere within this circle.  If this 
circle contains the origin, then the power in this k-th harmonic term is not 
significantly different from zero. 
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To summarize, the analysis described above is aimed at determining which 
harmonics should be included in a Fourier series model.  We then used 
information about variability in the Fourier coefficients at those harmonic 
frequencies that do not contain a meaningful signal to create confidence limits for 
those harmonic frequencies that do contain a meaningful signal.  In many 
experiments the frequencies of interest are known a priori because a physical 
system is being forced by some signal of known spectrum and therefore a 
response is expected at the same frequencies as the stimulus, or its harmonics in 
the case of non-linear systems.  In cases where the frequency of interest is not 
known in advance, an efficient strategy is to rank the coefficients by their 
magnitude and then analyze each in turn, starting with the largest. 

9.E  Mulitvariate statistical analysis of Fourier coefficients. 

In this section we examine the related problem of using repeated measures of 
a vector of Fourier coefficients to determine whether the mean Fourier vector x  
is equal to a given vector µ specified in advance.  For example, we may wish to 
know if any of the harmonic components are statistically significant, in which 
case we would be asking if x = µ = 0 .  A similar question is to ask whether the 
mean Fourier vector x  determined for one population is the same as the mean 
Fourier vector y  determined for some other population.  These are common 
problems in the field of multivariate statistics and a variety of strategies for 
obtaining answers are described in standard textbooks (e.g. Anderson, 
Krzanowski).  The simplest, most straightforward approach is based on 
Hotelling's (1931) generalization of Student's t-statistic.  To make this 
generalization, the quantities x  and µ in eqn. [9.8] are conceived as vectors rather 
than scalars.  Hotelling's generalization of Student's t-statistic in eqn. [9.9] is the 
T2 statistic, 

 T 2 = N(x − µ ′ ) S−1(x − µ)  [9.15] 

where N is the number of Fourier vectors used to compute the mean vector x  
and S is the sample covariance matrix for which each row is an observation and 
each column is a variable.  This is eqn. 5.2 of Anderson (1984).  As for Student's t-
statistic, it is assumed that each component of the vector x is a Gaussian random 
variable.  Furthermore, it is assumed that each component is statistically 
independent of every other component, in which case the vector x is said to be a 

Fig. 9.2   Confidence bounds for Fourier coefficients
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multivariate Gaussian random process.  Given these assumptions, Hotelling's T2 
statistic is directly proportional to an F-statistic. 

To test the hypothesis that the mean vector is equal to a given vector, x = µ , 
we first compute T2 according to eqn. [9.15].  Next, we compute an F-statistic as 

 Fdf1, df 2 =
T 2

N −1
df 2
df1

 (see Matlab program T2OneMean.m}    [9.16] 

where the lesser degree of freedom df1 = D is the length of the Fourier vector x 
and the greater degree of freedom is df 2 = N −D .  For this test to be valid the 
number of Fourier vectors N must exceed the number of samples D used to 
compute each vector. If the value of this F-statistic is greater than the tabulated 
critical value of the F-distribution for the given degrees of freedom and specified 
significance level α, then we may reject the hypothesis that x = µ .  Specifying the 
confidence region for the mean vector is harder.  Geometrically we can interpret 
the mean vector x as a point in D-dimensional space.  Thus the confidence region 
is a closed ellipsoid in this hyperspace, centered on the mean.  An equation 
defining this ellipsoid is provided by Anderson (eqn. 11, p. 165).  We can assert 
with confidence 1-α that the true mean lies somewhere inside this ellipsoid.  If 
attention is focused on a single harmonic frequency, then the confidence region 
reduces to an ellipse in the 2-dimensional space of Fig. 9.2.  We have assumed 
that variability in the measured Fourier coefficients is due to additive, Gaussian 
noise that is independent of the signal being measured, so the Fourier coefficients 
will be uncorrelated Gaussian random variables.  Consequently, the confidence 
ellipse will reduce to a circular region.  An alternative method for computing the 
radius of this circular confidence region has been described by Victor and Mast 
(1991) in terms of their novel statistic Tcirc

2 . 

To test the hypothesis that the mean vector x  computed from a sample size 
N1 is equal to a different vector y  computed from a sample size N2, we first 
compute the T2  statistic  

 T 2 =
N1N2

N1 + N2

(x − y ′ ) S−1(x − y )  (see Matlab program T2TwoMeans)  [9.17] 

Next we compute an F-statistic as 

 Fdf1, df 2 =
T 2

N1 + N2 − 2
df 2
df1

 [9.18] 

where the lesser degree of freedom df1 = D is the common length of the two 
Fourier vectors and the greater degree of freedom is df 2 = N1 + N2 −D −1.  If the 
value of this statistic is greater than the tabulated F-distribution for the given 
degrees of freedom and chosen significance level α, then we may reject the 
hypothesis that the two mean vectors of Fourier coefficients are equal.   



Chapter 10:  Directional Data Analysis 

10.A  Introduction. 

In previous chapters we conceived of a data vector as being an ordered list of 
numbers.  We have seen that the methods of Fourier analysis apply equally well 
regardless of whether these numbers are real-valued (i.e. scalars) or complex-
valued (i.e. 2-D vectors).  In this chapter we devote special attention to a class of 
data which falls somewhere in between the real-valued and the complex-valued.  
These are 2-D vectors for which the magnitude portion of the vector has no 
meaning or interest.  In other words, we wish to examine data for which only the 
direction is important.  Some examples are the perceived direction of motion of a 
visual object, the preferred directions of retinal ganglion cells, and the axis of 
electric dipole generators of the visually-evoked cortical potential.   

A separate branch of statistics has evolved to deal with directional data in 
such diverse fields of biology, geology, and physiology.  The primary difference 
between directional data and other univariate data is that directional data are 
plotted on a circle rather than the real line.  Consequently, directional data are 
periodic and therefore the formulas devised for calculating simple measures of 
central tendency and dispersion of data bear a striking resemblance to the 
formulas of Fourier analysis.  This resemblance permits a Fourier interpretation 
of directional data analysis that reveals the close relationship between these two 
different methods of data analysis. 

10.B  Mean direction and concentration about the mean. 

Consider the problem of finding the mean of the two compass readings: 5° 
and 355°.  Since both of these directions are very close to the northerly direction, 
the mean should also be northerly.  However, the arithmetic average of the two 
values is 180°, which is due south.  Furthermore, the standard deviation of these 
two numbers is 175°, which is much larger than is reasonable for two directions 
which are nearly the same.  Clearly a different method of computing the mean 
and spread of directional data is required if we are to obtain reasonable results.  
The method devised by Batschelet (1972) and by Mardia (1972) is illustrated in 
Fig. 10.1 below.  The idea is to treat individual directions as the angle made by a 
unit vector with the horizontal, which may be treated as a unit phasor in the 
complex plane.  Now suppose that these data Ui are summed according to the 
ordinary rules of vector addition (or summation of complex numbers) and the 
resultant divided by the number of data points according to the equation 

 B =
1
n

Ui
i=1

n

∑  [10.1] 

where Ui is the i-th unit vector, n is the number of vectors summed, and B is the 
normalized resultant of the vector sum.  In the particular example shown, B is a 
vector of length 0.996 in the horizontal direction.  Thus the direction of B is the 
obvious choice for defining the mean direction while the length of B provides a 
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reasonable measure of the degree to which all of the data vectors point in the 
same direction.  If the initial hypothesis is that directions are randomly 
distributed around the circle, then vector B becomes a useful measure of the 
degree to which the data are biased in a particular direction.  For this reason B 
has been dubbed the "bias vector" (Thibos & Levick, 1985).  Note that the length 
of B would be zero if the two vectors pointed in opposite directions, and is unity 
if the two vectors point in the same direction.  In general, regardless of the 
number of directions averaged, the length of the bias vector B provides a 
measure of the concentration of the data about the mean on the convenient scale 
of 0.0 (random directions) to 1.0 (all directions the same). 

 

10.C  Hypothesis testing. 

A statistical test of the null hypothesis that B=0 has been devised by 
Greenwood & Durand (1955) and is called the Rayleigh test.  The Raleigh statistic 
z is  

 z = nB2  [10.2] 

where n is the number of directions in the sample and |B| is the length of the 
bias vector.  If the value of z exceeds the critical value tabulated in Table 2 of 
Greenwood & Durand (1955), then the null hypothesis is rejected in favor of the 
alternative hypothesis that the directions are not randomly distributed. 

10.D  Grouped data. 

Suppose that the circle is subdivided into D sectors of equal size for the 
purpose of grouping data into bins as shown in Fig. 10.2.  If a unit vector in the 
central direction of the i-th bin is designated Ui, and if ni data fall into this bin, 
then that group of data can be represented by the group vector 

 Vi = niUi  [10.3] 

By this convention, the total number of data points n is equal to the sum of the 
lengths of the group vectors 

Fig. 10.1  Directional Data Analysis   
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 n = Vi
i=1

D

∑  [10.4] 

The bias vector is then computed as the average of the group vectors 

 
B =

1
n

Vi
i=1

D

∑

=
Vi∑
Vi∑

 [10.5] 

The data illustrated in Fig. 10.2 are tabulated in Table 10.1, which documents the 
calculation of the bias vector B = (1/3, -1/3).  From this result we conclude that 
the mean direction of these data is along the -45 deg. axis separating the U1 
group from the U4 group.  The length of B = √2 / 3 = 0.47 and Rayleigh's statistic 
is z = 6*(√2 / 3)^2 = 6*2/9 = 1.333.  This value is less than the tabulated critical 
value of 2.86 (5% level), so the null hypothesis that the data are uniformly 
distributed around the circle cannot be rejected. 

 

Table 10.1 

i ni Ui nUi 

1 2 (1, 0) (2, 0) 

2 1 (0, 1) (0, 1) 

3 0 (-1, 0) (0, 0) 

4 3 (0, -1) (0, -3) 

Sum 6  (2, -2) 

Fig. 10.2  Grouped Data Analysis   
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10.D  The Fourier connection. 

In order to compute the bias vector B by eqn. [10.5] it is first necessary to 
convert each group vector from polar to rectangular form and then sum these 
orthogonal components separately.  Therefore, the x-component and y-
component of the bias vector are given by 

 
Bx =

1
n

Vj cosθ j
j=1

D

∑

By =
1
n

Vj sinθ j
j=1

D

∑
 [10.6] 

where D is the number of group vectors.  These expressions are also known as 
the first trigonometrical moments of |Vj| and they bear a striking resemblance to 
the computation of the Fourier coefficients for a discrete data function obtained 
by replotting the data of Fig. 10.2 as a frequency-of-occurrence histogram as 
shown in Fig. 10.3. 

 

To see the relationship between the bias vector and the Fourier coefficients a1 and 
b1 more clearly, we re-arrange eqn. [10.6] as follows 

 

Bx =
1
n

Vj cosθ j
j=1

D

∑

=
D
2n

2
D

Vj cosθ j
j=1

D

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=
D
2n

a1

 [10.7] 

and by the same argument 

 By =
D
2n
b1  [10.8] 

Fig. 10.3  Histogram of Grouped Data   
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To simplify these results, we note that 2n/D = a0 and so   

 
Bx =

a1
a0

By =
b1
a0

 [10.9] 

from which we conclude 

 

B = Bx2 + By2

=
1
a0

a1
2 + b1

2

=
m1
a0

 [10.9] 

Interpreting this result in polar form, we see that the amount of bias in the 
grouped directional data is equal to one-half the modulation of the fundamental 
Fourier component of the histogram model 

 B =
m1
a0

=
1
2
magnitude
mean

=
modulation

2
 [10.10] 

Furthermore, the mean direction is equal to the phase of the fundamental 
component 

 arg(B) = tan −1 (b1 /a1 ) = phase  [10.11] 

In summary, we have found that the bias vector, also known as the first 
trigonometrical moment, has length equal to one-half the modulation of the 
fundamental Fourier component of a model fit to the frequency histogram.  By 
the same line of reasoning it may be shown that the k-th trigonometrical moment  

 
Mx =

1
n

Vj coskθ j
j=1

D

∑

My =
1
n

Vj sinkθ j
j=1

D

∑
 [10.12] 

is also equal to one-half the modulation in the k-th harmonic.   

10.E  Higher harmonics. 
The previous discussion presupposes that directions span the range from 0-

360 degrees.  However, the utility of the methods could be expanded if other 
ranges are considered.  For example, the orientation of a line is limited to the 
range 0-180 degrees since orientation 190° is identical to orientation 10°.  This 
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situation can be considered a periodicity of data along the circle.  In the case of 
the orientation measure, the periodicity is a second harmonic, so k=2.  Some 
other measure may repeat three times along the unit circle, in which case k=3, 
and so on.  To deal with these higher harmonics in the analysis of directional 
data, the usual method is to compute the k-th trigonometircal moments by 
multiplying all angles by the expected harmonic number, k, as indicated by eqn. 
[10.12].  We then proceed with the standard form of analysis described above to 
obtain the mean angle = arg(M).  This calculated mean angle must then be 
divided by k  before interpreting the result as a mean direction. 

An example of a second harmonic distribution is shown in Figure 10.4 where 
the quantity being analyzed might be the axis of an eye’s astigmatism or the 
angle made with the vertical of a ship’s mast during a storm. By convention, axes 
are bound between 0 and 180 degrees and this example shows a concentration 
near 0 = 180 degrees.  

Figure 10.4:  distribution of 200 values of axis data 

 
To compute the bias vector B we first double all of the axis values as shown in 
Figure 10.5 and then apply equation [10.1]. The result expressed as a complex 
number is 0.93 + 0.03i, for which mean direction of the double-axis plot = 1° and 
concentration = 0.93. The mean axis is therefore 1/2 degree, which is intuitively 
satisfying. 

Figure 10.5:  distribution of 200 values of double-axis data 

 



Chapter 11:  The Fourier Transform 

11.A  Introduction. 

The methods of Fourier analysis described in previous chapters have as their 
domain three classes of functions:  discrete data vectors with finite number of 
values, discrete vectors with infinite number of values, and continuous functions 
which are confined to a finite interval.  These are cases 1, 2, and 3, respectively, 
illustrated in Fig. 5.1.  The fourth case admits continuous functions defined over 
an infinite interval.  This is the province of the Fourier Transform. 

The student may be wondering why it is important to be able to do Fourier 
analysis on functions defined over an infinite extent when any "real world" 
function can only be observed over a finite distance, or for a finite length of time.  
Several reasons can be offered.  First, case 4 is so general that it encompasses the 
other 3 cases.  Consequently, the Fourier transform provides a unified approach 
to a variety of problems, many of which are just special cases of a more general 
formulation.  Second, physical systems are often modeled by continuous 
functions with infinite extent.  For example, the optical image of a point source of 
light may be described theoretically by a Gaussian function of the form exp(-x2), 
which exists for all x.  Another example is the rate of flow of water out of a tap at 
the bottom of a bucket of water, which can be modeled as exp(-kt).  Fresh insight 
into the behavior of such systems may be gained by spectral analysis, providing 
we have the capability to deal with functions defined over all time or space.  
Third, by removing the restriction in case 3 that continuous functions exist over 
only a finite interval, the methods of Fourier analysis have developed into a very 
powerful analytical tool which has proved useful throughout many branches of 
science and mathematics. 

11.B  The Inverse Cosine and Sine Transforms. 

Our approach to the Fourier transform (case 4) will be by generalizing our 
earlier results for the analysis of continuous functions over a finite interval (case 
3).  In Chapter 6 we found that an arbitrary, real-valued function y(x), can be 
represented exactly by a Fourier series with an infinite number of terms.  If y(x) is 
defined over the interval (-L/2, L/2) then the Fourier model is 

 y(x) = a0 / 2 + ak ⋅cos2πkx / L + bk ⋅ sin2πkx / L
k=1

∞

∑  [11.1] 

As defined in eqn. [4.2], the fundamental frequency of this model is Δf = 1/ L  and 
all of the higher harmonic frequencies fk are integer multiples of this fundamental 
frequency.  That is, fk = k / L = kΔf .  Now we are faced with the prospect of 
letting L→ ∞  which implies that Δf → 0  and consequently the concept of harmonic 
frequency will cease to be useful.   

In order to rescue the situation, we need to disassociate the concepts of 
physical frequency and harmonic number.  To do this, we first change notation 
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so that we may treat the Fourier coefficients as functions of the frequency 
variable fk that takes on discrete values that are multiples of Δf.  Thus eqn. [11.1] 
becomes 

 y(x) = a(0) / 2 + a( fk ) ⋅ cos2πxfk + b( fk ) ⋅sin2πxfk
k=1

∞

∑  [11.2] 

Next, to get around the difficulty of a vanishingly small Δf we multiply every 
term on the right hand side of the equation by the quantity Δf/Δf.  This yields 

 y(x) =
a(0)
2Δf

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ Δf +

a( fk )
Δf

⋅ cos2πxfk
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

k=1

∞

∑ Δf +
b( fk )
Δf

⋅sin 2πxfk
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

k=1

∞

∑ Δf  [11.3] 

This equation says that to evaluate the function y(x) at any particular x-value, we 
need to add up an infinite number of terms, one of which is a constant and the 
others are weighted trigonometric values.  One of these trigonometric values that 
contributes to the sum is highlighted in Fig. 11.1.   

 

In the right hand figure, the ordinate is the amplitude of the Fourier coefficient 
divided by the frequency resolution of the spectrum.  Thus, it would be 
appropriate to consider this form of the Fourier spectrum as an amplitude density 
graph.  This is a critical change in viewpoint because now it is the area of the 
cross-hatched rectangle (rather than the ordinate value) which represents the 
amplitude ak of this particular trigonometric component of the model. 

From this new viewpoint the two summations in eqn. [11.3] represent areas 
under discrete curves.  This is most easily seen by considering the example of 
x=0, in which case cos(2πfx)=1 and so the middle term in eqn. [11.3] represents 
the combined area of all the rectangles in the spectrum in Fig. 11.1.  This 
interpretation remains true for other values of x as well, the only difference being 
that the heights of the rectangles are modulated by cos(2πfx) before computing 
their areas.  Consequently, it is apparent that, in the limit as Δf → 0 , the 
summation terms in eqn. [11.3] become integrals representing the areas under 

Fig. 11.1  Elemental Contribution to y(x) 
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smooth curves.  That is, we implicitly define two new functions, C(f) and S(f)  
based on the following equations 

 
lim
Δ f→ 0

a( fk )
Δf

⋅cos2πxfk
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

k=1

∞

∑ Δf = C( f )
0

∞

∫ cos2πxf df

lim
Δ f→ 0

b( fk )
Δf

⋅ cos2πxfk
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

k=1

∞

∑ Δf = S( f )
0

∞

∫ sin2πxf df
 [11.4] 

In summary, the functions C(f) and S(f) represent the limiting case of amplitude 
density functions (for the cosine and sine portions of the Fourier spectrum, 
respectively) when Δf  approaches zero.  Given these definitions, we may 
conclude that in the limit as Δf → 0  eqn. [11.3] becomes  

 y(x) = C( f )
0

∞

∫ cos2πxf df + S( f )
0

∞

∫ sin 2πxf df  [11.5] 

This result is the inverse Fourier transform equation in trigonometrical form.  It 
defines how to reconstruct the continuous function y(x) from the two spectral 
density functions C(f) and S(f).  Methods for determining these spectral density 
functions for a given function y(x) are given next. 

11.C  The Forward Cosine and Sine Transforms. 

In order to specify the forward Fourier transform, we examine more closely 
the behavior of the Fourier coefficients ak and bk in the limit.  To do this, recall the 
definition of ak given by eqn. [6.5]  

 ak =
2
L

y(x) cos 2πkx / L
−L / 2

L / 2

∫ dx  [11.6] 

which holds for all values of k, including k=0.  Substituting Δf = 1/ L  and 
fk = k / L   we have 

 ak
Δf

= 2 y(x)cos2πxfk−L / 2

L / 2

∫ dx  [11.7] 

As L→ ∞  the discrete harmonic frequencies 1/L, 2/L , etc. become a continuum 
and the ratio ak/Δf  becomes a continuous function of frequency called C(f).  
Similarly, the ratio bk /Δf  becomes a continuous function of frequency called S(f).  
That is, in the limit, 

 
C( f ) = 2 y(x) cos2πxf

−∞

∞

∫ dx

S( f ) = 2 y(x)sin2πxf
−∞

∞

∫ dx
 [11.8] 

The functions C(f) and S(f) are known as the cosine Fourier transform of y(x) and 
the sine Fourier transform of y(x), respectively.  Notice that both equations are 
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valid for the specific case of f=0, which accounts for the lack of an explicit 
constant term in eqn. [11.5]. 

11.D  Discret spectra vs. spectral density 

To help appreciate the transition from Fourier series to the Fourier transform, 
consider the function defined in Fig. 11.2.  This pulse is defined over an interval 
of length equal to one second.  The Fourier series for a pulse may be found in a 
reference book or is easily computed by hand to be 

 
  
v(t) =

1
2

+
2
π
cos(2πt) − 1

3
cos(3 ⋅ 2πt) +

1
5
cos(5 ⋅2πt) −⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  [11.9] 

 

Now if the observation interval is doubled without changing the duration of the 
pulse as illustrated in Fig. 11.3, we have the new Fourier series 

 
  
v(t) =

1
4

+
2
π
0.707cos(πt) +

1
2
cos(2πt ) +

0.707
3

cos(3πt)⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  [11.10] 

 

Notice that, as expected, there are twice as many harmonics in the same physical 
bandwidth in Fig. 11.3 and the amplitudes of corresponding components are half 

Fig. 11.2  Spectrum of pulse in short window
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as large in Fig. 11.3 as compared to Fig. 11.2.  Thus, if we were to increase the 
observation interval even more, the Fourier coefficients would continue to 
decline and would become vanishingly small as the observation interval grew 
arbitrarily large.  To rescue the concept of a spectrum, we should plot instead the 
spectral density function a(f)/Δf.  By dividing by Δf we effectively compensate for 
the lengthening interval and thus the spectral density function remains the same 
regardless of the length of the observation interval. 

 
Now let us compute the formal Fourier transform of a pulse of unit height 

and width w defined over an infinite interval as illustrated in Fig. 11.4.  Applying 
eqn. [11.8] we have 

 

C( f ) = 2 y(x) cos2πxf
−∞

∞

∫ dx

= 2 0 ⋅cos 2πxf
−∞

−w / 2

∫ dx + 2 1 ⋅ cos2πxf
−w / 2

w / 2

∫ dx + 2 0 ⋅cos2πxf
w / 2

∞

∫ dx

= 4 cos2πxf
0

w / 2

∫ dx

= 4sin2πxf
2πf x=0

x=w / 2

= 2 sin(πfw)
πf

 [11.11] 

This form of result occurs frequently in Fourier analysis, which has lead to the 
definition of the special function sinc(x) = sin(πx)/πx.  Thus the final result is  
 C( f ) = 2wsinc(wf )  [11.12] 
for which w=0.5 in the present example.   

The normalized Fourier series a(f)/Δf of a pulse seen in a 2 sec. window is 
compared in Fig. 11.4 with the cosine Fourier transform of the same pulse seen in 
an infinite window.  Note that the continuous Fourier transform interpolates the 
discrete spectrum.  This is an example of the notion that the Fourier transform is 
a more general tool that encompasses the Fourier series as a special case. 

Fig. 11.4  Spectrum of pulse in infinite window
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11.E  Complex Form of the Fourier Transform. 

Although the preceding development is useful for achieving an intuitive 
understanding of the transition from Fourier series to the Fourier transform, the 
resulting equations are mainly of historical interest since modern authors 
invariably choose to represent the Fourier transform in complex form.  Starting 
with the basic formulation of the complex Fourier series given in eqn. [6.6] 

 y(x) = cke
ik2πx / L

k= −∞

∞

∑  [6.6] 

we would follow the same approach taken above.  Introducing the necessary 
change of variables and multiplication by Δf/Δf, in the limit as Δf → 0  this 
equation becomes the inverse Fourier transform  

 y(x) = Y ( f )
−∞

∞

∫ ei2πxf df  [11.13] 

where Y(f) is the complex frequency spectrum of y(x).   

To obtain the forward transform, we begin with the definition of the complex 
Fourier coefficients for finite continuous functions 

 
ck =

ak − ibk
2

=
1
L

y(x)e− ik2πx / L
−L / 2

L / 2

∫ dx
 [6.7] 

As L→ ∞  the discrete harmonic frequencies 1/L, 2/L , etc. become a continuum 
and the ratio ck/Δf  becomes a continuous function of frequency called Y(f). Thus, 
the forward Fourier transform is defined by the equation  

 Y ( f ) = y(x)
−∞

∞

∫ e−i 2πxf dx  [11.14] 

By observing the striking similarity between equations 11.13 and [11.14] the 
student may begin to appreciate one reason for the popularity of the complex 
form of the Fourier transform operations.  The only difference between the 
forward and reverse transforms is the sign of the exponent in the complex 
exponential.  This exponential term is called the kernel of the integrand and thus 
we observe that the kernels of the forward and reverse transforms are complex 
conjugates of each other.  Another advantage of the complex form over the 
trigonometric form is that there is only one integral to specify and solve rather 
than two. Lastly, and most importantly, the complex form of the transform 
applies even when function y(x) is complex-valued. 
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11.F  Fourier's Theorem. 

Fourier's theorem is simply a restatement of the preceding results: 

if Y ( f ) = y(x)
−∞

∞

∫ e−i 2πxf df  [11.14] 

then y(x) = Y ( f )
−∞

∞

∫ ei2πxf df  [11.13] 

Some authors prefer to substitute [11.14] into [11.13] to produce the mathematical 
equivalent of saying “the inverse Fourier transform undoes the forward Fourier 
transform”,  

 y(x) = y(x)
−∞

∞

∫ e− i2π xf df⎡
⎣⎢

⎤
⎦⎥−∞

∞

∫ ei2π xf df  [11.15] 

Fourier’s theorem thus provides a framework for casting functions into the 
frequency domain and then retrieving them analytically.  Applying integral 
calculus, numerical approximations are replaced by exact, algebraic solutions. 

11.G  Relationship between Complex & Trigonometric Transforms. 

If we substitute trigonometric forms for the kernel in eqn. [11.15] using 
Euler's theorem eiθ = cosθ + isinθ  we obtain for a real-valued function y(x) 

 

Y ( f ) = y(x)
−∞

∞

∫ e−i 2πxf df

= y( x)
−∞

∞

∫ cos(2πxf ) − i sin(2πxf )[ ] df

= y(x)
−∞

∞

∫ cos(2πxf ) df − i y(x)
−∞

∞

∫ sin(2πxf ) df

 [11.16] 

These integrals are recognized from eqn. [11.8] as the sine and cosine Fourier 
transforms.  Thus we conclude that 

 
Y ( f ) = C( f ) − iS( f )

2
  for f > 0

=
C( f ) + iS( f )

2
for f < 0

 [11.17] 

which is the analogous result to that for Fourier coefficients described in eqn. 
[6.7].  This result also shows that the Fourier transform Y(f) of a real-valued 
function y(x) has Hermitian (conjugate) symmetry.  
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Chapter 12:  Properties of The Fourier Transform 

12.A  Introduction. 

The power of the Fourier transform derives principally from the many 
theorems describing the properties of the transformation operation that provide 
insight into the nature of physical systems.  Most of these theorems have been 
derived within the context of communications engineering to answer questions 
framed like "if a time signal is manipulated in such-and-such a way, what 
happens to its Fourier spectrum?"  As a result, a way of thinking about the 
transformation operation has developed in which a Fourier transform pair 
y(t)↔ Y ( f ) is like the two sides of a coin, with the original time or space signal 
on one side and its frequency spectrum on the other.  The two sides of a Fourier 
transform pair are complementary views of the same signal and so it makes 
sense that if some operation is performed on one half of the pair, then some 
equivalent operation is necessarily performed on the other half.   

Many of the concepts underlying the theorems and properties described 
below were introduced in Chapter 6 in the context of Fourier series.  For the most 
part, these theorems can be extended into the domain of the Fourier transform 
simply by examining the limit as the length of the observation interval for the 
signal grows without bound.  Consequently, it will be sufficient here simply to 
list the results.  Rigorous proofs of these theorems may be found in standard 
textbooks (e.g. Bracewell, 1978;  Gaskill, 1978). 
 
12.B  Theorems  

Linearity 

Scaling a function scales it's transform pair.  Adding two functions corresponds 
to adding the two frequency spectra.   

If h(x)↔ H( f ) then ah(x)↔ aH( f )  [12.1] 

If 
h(x)↔ H( f )
g(x)↔G( f )  then h(x) + g(x)↔ H ( f ) +G( f )  [12.2] 

Scaling  

Multiplication of the scale of the time/space reference frame changes by the 
factor s  inversely scales the frequency axis of the spectrum of the function.  For 
example, stretching a temporal pulse makes the Fourier spectrum narrower and 
also taller because the area under the pulse increases. 

If h(x)↔ H( f ) then h(x / s)↔ s H( f ⋅ s)  [12.3] 

  and sh(x ⋅ s)↔ H( f / s)  [12.4] 
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A simple, but useful, implication of this theorem is that if h(x)↔ H( f )  then 
h(−x)↔ H(− f ) .  In words, flipping the time function about the origin 
corresponds to flipping its spectrum about the origin. 

Notice that this theorem differs from the corresponding theorem for discrete 
spectra (Fig. 6.3) in that the ordinate scales inversely with the abscissa.  This is 
because the Fourier transform produces a spectral density function rather than a 
spectral amplitude function, and therefore is sensitive to the scale of the frequency 
axis.  

Time/Space Shift  

Displacement in time or space induces a phase shift proportional to frequency 
and to the amount of displacement.  This occurs because a given displacement 
represents more cycles of phase shift for a high-frequency signal than for a low-
frequency signal. 

If h(x)↔ H( f ) then h(x − x0 )↔ e−i2πfx 0H ( f )  [12.5] 

Frequency Shift  

Displacement in frequency multiplies the time/space function by a unit phasor 
with angle proportional to time/space and to the amount of displacement. Note 
that if h(x) is real-valued, it will become complex-valued after frequency shifting. 

If h(x)↔ H( f ) then h(x)ei2πxf0 ↔ H( f − f0 )  [12.6] 

Modulation  

Multiplication of a time/space function by a cosine wave splits the frequency 
spectrum of the function.  Half of the spectrum shifts left and half shifts right.  
This is simply a variant of the shift theorem which makes use of Euler's 
relationship cos(x) = (eix + e−ix ) / 2 

if h(x)↔ H( f ) then 
h(x)ei2πxf0 ↔ H( f − f0 )

h(x)e −i 2πxf0 ↔ H( f + f0 )
  

and therefore by the linearity theorem it follows that 

 h(x)cos(2πxf0 )↔
H( f − f0 ) + H( f + f0 )

2
   

 h(x)sin(2πxf0 )↔
H( f − f0) + H( f + f0 )

2i
 [12.7] 

The modulation theorem is the basis of transmission of amplitude-modulated 
radio broadcasts.  When a low frequency audio signal is multiplied by a radio-
frequency carrier wave, the spectrum of the audio message is shifted to the radio 
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portion of the electromagnetic spectrum for transmission by an antenna.  
Similarly, a method for recovery of the audio signal called super-heterodyne 
demodulation involves multiplying the received signal by a sinusoid with the 
same frequency as the carrier, thereby demodulating the audio component. 

Differentiation  

Differentiation of a function induces a 90° phase shift in the spectrum and scales 
the magnitude of the spectrum in proportion to frequency.  Repeated 
differentiation leads to the general result: 

If h(x)↔ H( f ) then dn h(x)
dxn

↔ (i2πf )nH ( f )  [12.8] 

This theorem explains why differentiation of a signal has the reputation for being 
a noisy operation.  Even if the signal is band-limited, noise will introduce high 
frequency signals which are greatly amplified by differentiation. 

Integration  

Integration of a function induces a -90° phase shift in the spectrum and scales the 
magnitude of the spectrum inversely with frequency. 

If h(x)↔ H( f ) then h(u)
−∞

x

∫ du↔ H ( f ) /(i2πf ) + constant  [12.9] 

From this theorem we see that integration is analagous to a  low-pass filter which 
blurs the signal. 

Transform of a transform  

We normally think of using the inverse Fourier transform to move from the 
frequency spectrum back to the time/space function.  However, if instead the 
spectrum is subjected to the forward Fourier transform, the result is a time/space 
function which has been flipped about the y-axis.  This gives some appreciation 
for why the kernels of the two transforms are complex conjugates of each other: 
the change in sign in the reverse transform flips the function about the y-axis a 
second time so that the result matches the original function.  

If   h(t)
F⎯ → ⎯ H( f )  then   H( f )

F⎯ → ⎯ h(−t)  [12.10] 

One practical implication of this theorem is a 2-for-1 bonus:  every transform pair 
brings with it a second transform pair at no extra cost. 

If h(t)↔ H( f )  then H(t)↔ h(− f )  [12.11] 

For example, rect( t)↔ sinc( f )  implies sinc(t)↔ rect(− f ) .   
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This theorem highlights the fact that the Fourier transform operation is 
fundamentally a mathematical relation that can be completely divorced from the 
physical notions of time and frequency.  It is simply a method for transforming a 
function of one variable into a function of another variable.  So, for example, in 
probability theory the Fourier transform is used to convert a probability density 
function into a moment-generating function, neither of which bear the slightest 
resemblance to the time or frequency domains. 

Central ordinate 

By analogy with the mean Fourier coefficient a0, the central ordinate value H(0) 
(analog of a0 in discrete spectra) represents the total area under the function h(x). 

If h(x)↔ H( f ) then H(0) = h(u)
−∞

∞

∫ e−i 0du = h(u)
−∞

∞

∫ du   

For the inverse transform,  

h(0) = H(u)
−∞

∞

∫ ei 0du

= H(u)
−∞

∞

∫ du

= Re H(u)[ ]
−∞

∞

∫ du + i Im H(u)[ ]
−∞

∞

∫ du

[12.12] 

Note that for a real-valued function h(t) the imaginary portion of the spectrum 
will have odd symmetry, so the area under the real part of the spectrum is all 
that needs to  be computed to find h(0). 

For example, in optics the line-spread function (LSF) and the optical transfer 
function (OTF) are Fourier transform pairs.  Therefore, according to the central-
ordinate theorem, the central point of the LSF is equal to the area under the OTF.  
In two dimensions, the transform relationship refers to the point-spread function 
(PSF) and the OTF.  In such 2D cases, the integral must be taken over an area, in 
which case the result is interpreted as the volume under the 2D surface. This is 
the basis for computing Strehl’s ratio in the frequency domain. 

Equivalent width 

A corollary of the central ordinate theorem is 

If 
h(u)

−∞

∞

∫ du = H(0)

h(0) = H (u)
−∞

∞

∫ du
 then 

h(u)
−∞

∞

∫ du

h(0)
=

H (0)
H (u)

−∞

∞

∫ du
 [12.13] 

The ratio on the left side of this last expression is called the "equivalent width" of 
the given function h because it represents the width of a rectangle with the same 
central ordinate and the same area as h.   Likewise, the ratio on the right is the 
inverse of the equivalent width of H.  Thus we conclude that the equivalent 
width of a function in one domain is the inverse of the equivalent width in the 
other domain as illustrated in Fig. 12.1.  For example, as a pulse in the time 



Chapter 12:  Properties of The Fourier Transform Page 127 
 

 

domain gets shorter, its frequency spectrum gets longer.  This theorem quantifies 
that relationship for one particular measure of width. 

 

Convolution 

The convolution operation (denoted by an asterisk) is a way of combining two 
functions to produce a new function.  By definition,  

 p = h ∗ g   means  p(x) = g(u)h(x − u)
−∞

∞

∫ du  [12.14] 

Convolution will be described in detail in section 12C.  Here it is sufficient to 
state the convolution theorem: 

If 
h(x)↔ H( f )
g(x)↔G( f )  then 

h(x) ∗ g(x)↔ H ( f ) ⋅G( f )
h(x) ⋅ g(x)↔ H( f ) ∗G( f )  [12.15] 

In words, this theorem says that if two functions are multiplied in one domain, 
then their Fourier transforms are convolved in the other domain.  Unlike the 
cross-correlation operation described next, convolution obeys the commutiative, 
associative, and distributive laws of algebra.  That is, 

 commutative law h ∗ g = g ∗ h  
 associative law f ∗ g ∗ h( ) = f ∗ g( ) ∗h  [12.16] 
 distributive law f ∗ g + h( ) = f ∗ g + f ∗ h  

Derivative of a convolution 

Combining the derivative theorem with the convolution theorm leads to the 
conclusion  

If h(x) = f (x) ∗ g(x)  then dh
dx

=
df
dx

∗ g = f ∗ dg
dx

 [12.17] 

In words, this theorem states that the derivative of a convolution is equal to the 
convolution of either of the functions with the derivative of the other. 

 

Fig. 12.1  Equivalent Width Theorem
Space/time Domain Frequency Domain

w
w
1
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Cross-correlation 

The cross-correlation operation (denoted by a pentagram) is a way of combining 
two functions to produce a new function that is similar to convolution.  By 
definition,  

 q = h g   means q(x) = g(u − x)h(u )
−∞

∞

∫ du  [12.18] 

The cross-correlation theorem is 

If 
h(x)↔ H( f )
g(x)↔G( f )  then 

 

h(x)g(x)↔ H ( f ) ⋅G(− f )
h(−x) ⋅ g(x)↔ H ( f )G( f )
h(x) ⋅ g(x)↔ H (− f )G( f )

 [12.19] 

Combining eqns. [12.14] and [12.16] indicates the spectrum of the product of two 
functions can be computed two ways,  h ⋅ g↔ H( f ) ∗G( f )  and 
 h ⋅ g↔ H (− f )G( f ) .  Since the spectrum of a function is unique, the implication 
is that  
  H ( f )∗G( f ) = H (− f )G( f )  [12.20] 

which shows the relationship between correlation and convolution. 

Auto-correlation 

The auto-correlation theorem is the special case of the cross-correlation theorem 
when the two functions h and g are the same function.  In this case, we use the 
Hermitian symmetry of the Fourier transform to show that: 

If h(x)↔ H( f ) then  h(x)h(x)↔ H ( f ) ⋅H ∗( f )  [12.21] 

The quantity   h★h  is known as the autocorrelation function of h and the quantity 
HH* is called the power spectral density function of h.  This theorem says that the 
autocorrelation function and the power spectral density function comprise a 
Fourier transform pair. 

Parseval/Rayleigh 

Parseval's energy conservation theorem developed in the context of Fourier 
series is often called Rayleigh's theorem in the context of Fourier transforms.   

If h(x)↔ H( f ) then h(x)2
−∞

∞

∫ dx = H ( f ) 2
−∞

∞

∫ df  [12.22] 

which is the analog of eqn. [7.6] developed for discrete spectra.  The left hand 
integral is interpreted as the total amount of energy in the signal as computed in 
the time domain, whereas the right hand integral is the total amount of energy 
computed in the frequency domain.  The modulus symbols (|~|) serve as a 
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reminder that the integrands are in general complex valued, in which case it is 
the magnitude of these complex quantities that is being integrated.  

A more general formulation of Parseval's theorem is as follows: 

If 
h(x)↔ H( f )
g(x)↔G( f )  then h(x)g∗(x)

−∞

∞

∫ dx = H ( f )G∗( f )
−∞

∞

∫ df  [12.23] 

In many physical interpretations, the product of functions h and g correspond to 
instantaneous or local power (e.g., current times voltage, or force times velocity) 
and so the theorem says that the total power can be obtained either by 
integrating over the space/time domain or over the frequency domain. 

12.C  The convolution operation 

Convolution is a mathematical operation describing many physical processes 
for which the response or output of a system is the result of superposition of 
many individual responses.  Consider, for example, the response of a "low-pass" 
electronic filter to a unit pulse of voltage as illustrated in Fig. 12.2.  Such a 
response is called the "impulse" response of the filter.  Low-pass filters have the 
characteristic of "memory" for the input signal so that, although the input exists 
only briefly, the output continues for a much longer period of time.  
Consequently, if several impulses arrive at the filter at different times, then a 
series of output waveforms will be generated by the filter.  If the shape of these 
output waveforms is exactly the same, regardless of when the input impuses 
arrived, and are scaled in amplitude in proportion to the strength of the input 
pulse, then the filter is said to be time invariant.  Now suppose that the input 
pulses arrive in rapid succession such that the the output waveforms will begin 
to overlap.  If the actual output waveform is the linear sum of all of the 
individual impulse responses, then the filter is said to be a linear filter.   

 

Fig. 12.3 illustrates a specific example of the superpostion of three responses 
to three input pulses which arrive at times t=0, t=1, and t=2.  The amplitudes of 
these three input pulses are 4, 5, and 6 units, respectively.  If we wish to calculate 
the response at some specific time t0, then there are three ways to go about the 
computation.  The most direct way is to draw the three impulse response 
waveforms appropriately scaled vertically and displaced along the time axis and 
then add up the ordinate values at time t0.  That is, 
 r(t0 ) = 4 ⋅ h(t0 − 0) + 5 ⋅ h(t0 − 1) + 6 ⋅ h(t0 − 2)  [12.24] 

Fig. 12.2  Impulse Response of Linear Filter
Input pulse Impulse Response

Linear 
Filter

Time

h(t)
a b

c
1 2 3
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The other two methods for getting the same answer correspond to the idea of 
convolution.  In Fig. 12.4 the unit impulse response is drawn without 
displacement along the x-axis.  In the same figure we also draw the input pulses, 
but notice that they are drawn in reverse sequence.  We then shift the input train 
of impulses along the x-axis by the amount t0, which in this example is 3 units, 
and overlay the result on top of the impulse response.  Now the arithmetic is as 
follows:  using the x-location of each impulse in turn, locate the corresponding 
point on the unit impulse response function, and scale the ordinate value of h(t) 
by the height of the impulse.  Repeat for each impuse in the input sequence and 
add the results.  The result will be exactly the same as given above in eqn. [12.24]. 

 

An equivalent method for computing the strength of the response at the 
particular instant in time, t=3, is illustrated in Fig. 12.5.  This time it is the 
impulse response reversed in time.  For clarity we give this reversed function a 
different name, h´, and let the dummy variable u stand for the reversed time axis.  
This new function h´(u) is then translated to the right by 3 units of time and 
overlaid upon the input function plotted without reversal.   

 

Fig. 12.3  Superposition of Impulse Responses
Input pulses Response

Linear 
Filter

Time

54
6

0

h(t-0)
h(t-1) h(t-2)

h(t)

4c
5b
6ar(t=3)=6a+5b+4c

1 2 0 1 2 Time

Fig. 12.4  Convolution Method #1 
Reversed Input pulses
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Fig. 12.5  Convolution Method #2 
Reversed impulse 
response

u
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h'(u)=h(-t)
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The arithmetic for evaluating the response in Fig. 12.5 is the same as in Fig. 
12.4:  multiply each ordinate value of the impulse response function by the 
amplitude of the corresponding impulse and add the results.  In fact, this is 
nothing more than an inner product.  To see this, we write the sequence of input 
pulses as a stimulus vector s=(s0,s1,s2) = (4,5,6) and the strength of the impulse 
response at the same points in time could be written as the vector h=(h0, h1, h2)= 
(a,b,c).  The operation of reversing the impulse response to plot it along the u-
axis would change the impulse response vector to h´=(h2, h1, h0)=(c,b,a).  
Accordingly, the method described above for computing the response at time t0 
is  

 
r(t0 ) = sk ⋅ ′ h k

k= 1

3

∑
= s • ′ h 

 [12.25] 

Although this result was illustrated by the particular example of t0 = 3, the same 
method obviously applies for any point in time and so the subscript notation 
may be dropped at this point without loss of meaning. 

If we now generalize the above ideas so that the input signal is a continuous 
function s(t), then the inner product of vectors in eqn. [12.25] becomes the inner 
product between continuous functions.   

 

r(t) = s(u) ′ h (u − t)
−∞

∞

∫ du

= s(u)h(t −u)
−∞

∞

∫ du

= s(t)∗ h(t )

 [12.26] 

Notice that the abscissa variable in Fig. 12.5 becomes a dummy variable of 
integration u in eqn. 12.26 and so we recognize the result as the convolution of 
the stimulus and impulse response.  Therefore, we conclude that convolution 
yields the superposition of responses to a collection of point stimuli.  This is a major 
result because any stimulus can be considered a collection of point stimuli. 

If the development of this result had centered on Fig. 12.4 instead of Fig. 12.5, 
the last equation would have been: 

 

r(t) = h(u) ′ s (u − t0 )−∞

∞

∫ du

= h(u)s(t −u)
−∞

∞

∫ du

= h(t) ∗ s(t)

 [12.27] 

Since we observed that the same result is achieved regardless of whether it is the 
stimulus or the impulse response that is reversed and shifted, this demonstrates 
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that the order of the functions is immaterial for convolution.  That is, s*h = h*s. 
which is the commutative law stated earlier.  

In summary, for a linear, time (or shift) invariant system, the response to an 
arbitrary input is equal to the convolution of the input with the impulse response 
of the system.  This result is the foundation of engineering analysis of linear systems.  
Because the impulse response of a linear system can be used to predict the 
response to any input, it is a complete description of the system's characteristics.  
An equivalent description is the Fourier transform of the impulse response, 
which is called the transfer function of the system.  According to the convolution 
theorem, the prescribed convolution of input with impulse response is 
equivalent to multiplication of the input spectrum with the transfer function of 
the system.  Since multiplication is an easier operation to perform than is 
convolution, much analysis may be done in the frequency domain and only the 
final result transformed back into the time/space domain for interpretation. 

12.D  Delta functions  

Although the transition from Fourier series to the Fourier transform is a 
major advance, it is also a retreat since not all functions are eligible for Fourier 
analysis.  In particular, the sinusoidal functions which were the very basis of 
Fourier series are excluded by the preceding development of the Fourier 
transform operation.  This is because one condition for the existence of the 
Fourier transform for any particular function is that the function be "absolutely 
integrable", that is, the integral of the absolute value over the range -∞ to +∞ 
must be finite, and a true sinusoid lasting for all time does not satisfy this 
requirement.  The same is true for constant signals.  On the other hand, any 
physical signal that an experimentalist encounters will have started at some 
definite time and will inevitably finish at some time.  Thus, empirical signals will 
always have Fourier transforms, but our mathematical models of these signals may 
not.  Since the function sin(x) is a very important element of mathematical 
models, we must show some ingenuity and find a way to bring them into the 
domain of Fourier analysis.  That is the purpose of delta functions. 

Recall that the transition from Fourier series to transforms was accompanied 
by a change in viewpoint:  the spectrum is now a display of amplitude density.  
As a result, the emphasis shifted from the ordinate values of a spectrum to the 
area under the spectrum within some bandwidth.  This is why a pure sinusoid 
has a perfectly good Fourier series representation, but fails to make the transition 
to a Fourier transform:  we would need to divide by the bandwidth of the signal, 
which is zero for a pure sinusoid.  On the other hand, if the important quantity of 
interest is the area under the transform curve, which corresponds to the total 
amplitude in the signal, then a useful work-around exists.  The idea is to invent a 
function that looks like a narrow pulse (so the bandwidth is small) which is zero 
almost everywhere but which has unit area.  Obviously as the width approaches 
zero, the height of this pulse will have to become infinitely large to maintain its 
area.  However, we should not let this little conundrum worry us since the only 
time we will be using this new function is inside an integral, in which case only 
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the area of the pulse is relevant.  This new function is called a unit delta function 
and it is defined by the two conditions: 

 
δ(t) = 0 for t ≠ 0

δ(t)
−∞

∞

∫ du = 1
 [12.28] 

To indicate a pulse at any other time, a, we write δ(t-a). 

An important consequence of this definition is that integral of an arbitrary 
function times a delta function equals one point on the original function.  This is 
called the sifting property of delta functions and occurs because the delta function 
is zero everywhere except when the argument is zero.  That is,  

g(u)δ (u − a)
−∞

∞

∫ du = g(u)δ (u − a)
−∞

a−ε

∫ du + g(a) δ (u − a)
a−ε

a+ε

∫ du + g(u)δ (u − a)
a+

∞

∫ du

= 0 + g(a) + 0 = g(a)
[12.29] 

where ε is a small number.  Applying this result to the convolution integral we 
see that convolution of any function with a delta function located at x=a 
reproduces the function at x=a 

 
g( t)∗δ (t − a) = g(u)δ(t − a − u)

−∞

∞

∫ du

= g(t − a) δ(t − a − u)
−

+

∫ du = g(t − a)
 [12.30] 

Consider now the Fourier transform of a delta function.  By the sifting 
property of the delta function, if y(x) = δ(x) then  

 
Y ( f ) = δ(x)

−∞

∞

∫ e− i2πxf dx

= e−i 2π 0 f = 1
 [12.31] 

 

In other words, a delta function at the origin has a flat Fourier spectrum, which 
means that all frequencies are present to an equal degree.  Likewise, the inverse 

Fig. 12.6  Fourier Transform of Delta Function
Space/time Domain Frequency Domain

0 0

0 0

1

1



Chapter 12:  Properties of The Fourier Transform Page 134 
 

 

Fourier transform of a unit delta function at the origin in the frequency domain is 
a constant (d.c.) value.  These results are shown pictorially in Fig. 12.6 with the 
delta function represented by a spike or arrow along with a number indicating 
the area under the spike. Thus we see that the Fourier transform of a constant is a 
delta function at the origin, 1↔δ(0) . Applying the modulation theorem to this 
result we find the spectrum of a cosine or sine wave is a pair of delta functions, 

 cos(2πf0x)↔
δ ( f − f0 ) + δ( f + f0 )

2
,    sin(2πf0x)↔

δ( f − f0 ) −δ ( f + f0 )
2i

 [12.32] 

and, conversely, the spectrum of a pair of delta functions is a cosine or sine wave,  

 δ(x − x0 ) +δ(x + x0 )
2

↔ cos(2πfx0 ) ,   
δ(x + x0 ) −δ(x − x0 )

2i
↔ sin(2πfx0 ) [12.33] 

Combining the convolution theorem of [12.15] with the Fourier transform pairs 
in [12.33] allows us to conclude that the convolution of a cosine wave with any 
other function in the time/space domain corresponds to multiplying the 
spectrum of the given function with a pair of delta functions representing the 
cosine. This product is itself a pair of delta functions in the frequency domain. A 
important, practical application of this result is that passage of a cosine wave 
through a linear filter always results in a cosine wave.  Although the filter can 
change the amplitude and/or phase of the cosine, the output still has a 
sinusoidal shape.  This property of sinusoids, called “preservation of form”, 
greatly simplifies the task of characterizing a filter’s effect and is the main reason 
sinusoidal functions are the natural choice for characterizing the input/output 
relationship of linear filters as transfer functions of gain and phase. 

 
 

!"#$%&
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12.E  Complex conjugate relations  

If the complex conjugate is taken of a function, its spectrum is reflected about the 
origin.  This statement and related results are summarized in Table 12.1. 

Table 12.1  Complex conjugate relations of the Fourier transform 

y(x) Y(f) 

h* (x)  H* (− f )  

h* (−x)  H* ( f )  

h(−x)  H(− f )  

2Re h(x){ }  H( f ) + H* (− f )  

2 Im h(x){ }  H( f ) − H* (− f )  

h(x) + h*(−x)  2Re H( f ){ } 

h(x) − h*(−x)  2 Im H( f ){ }  

12.F  Symmetry relations  

We saw in Ch. 5 that any function y(x) can be written as the sum of even and odd 
components, y(x) = E(x) +O(x) , with E(x) and O(x) in general being complex-
valued.  Applying this fact to the definition of the Fourier transform yields 

 
Y ( f ) = y(x)

−∞

∞

∫ cos(2πxf ) df − i y(x)
−∞

∞

∫ sin(2πxf ) df

= E(x)
−∞

∞

∫ cos(2πxf ) df − i O(x)
−∞

∞

∫ sin(2πxf ) df
 [12.34] 

from which we may deduce the symmetry relations of Table 12.2 between the 
function y(x) in the space/time domain and its Fourier spectrum, Y(f).  A 
graphical illustration of these relations may be found in Ch. 2 of Bracewell (1978).  
Symmetry relations are a richer topic for functions of two-dimensional functions 
because the symmetry might exist about the x-axis, or the y-axis, or both. 

One practical example of using symmetry relationships is calculating the central 
ordinate y(0) of a real-valued function y(x) from its Fourier spectrum Y(f).  
According to Table 12.2, in the general case of asymmetric y(x), the spectrum Y(f) 
is complex-valued with Hermitian symmetry (real part is even, imaginary part is 
odd). Since the area under an odd function is zero, the central ordinate y(0) 
reduces to the area under the real part of Y(f).  The two-dimensional version of 
this theorem is the basis for computing the Strehl ratio measure of optical image 
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quality for the point-spread function computed using frequency-domain 
information available from the optical transfer function. 
 

Table 12.2  Symmetry relations of the Fourier transform 

y(x) Y(f) 

real and even real and even 

real and odd imaginary and odd 

imaginary and even imaginary and even 

imaginary and odd real and odd 

complex and even complex and even 

complex and odd complex and odd 

real and asymmetrical complex and Hermitian 

imaginary and asymmetrical complex and antihermitian 

real even, imaginary odd real 

real odd, imaginary even imaginary 

even even 

odd odd 
 

12.G  Convolution examples in probability theory and optics  

A well known theorem of probability theory states that if X and Y are 
independent random variables with associated probability density functions pX 
and pY, then a new random variable Z equal to the sum of X and Y has a 
probability density function equal to the convolution of the constituent densities.  
That is, pZ = pX  pY.  This convolution can be carried out in the frequency 
domain by multiplying the Fourier transforms of the constituent density 
functions (called “characteristic functions”) and then performing the inverse 
transform of the product.  Moreover, the variance of Z is the sum of the variances 
of X and Y. Thus a simple rule emerges from this example:  convolution of two 
probability density functions causes their variances to add.  

In optics, the image of a localized object is equal to the convolution of the 
object’s radiance distribution in 2-dimensional space with the optical system’s 
point-spread function (PSF). The PSF is the image of a point source and thus is 
the impulse response of the imaging system. The variance of the intensity 
distribution that defines the object is a measure of the object’s size.  Similarly, the 
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variance of the PSF is a measure of its size.  Thus the size of the image is the sum 
of the size of the object and the size of the PSF.  In this way, optical imaging can 
be conceived as a blurring operation that causes the size of the image to exceed 
the size of the object by an amount equal to the size of the PSF.  This 
interpretation of convolution for 1-dimensional functions is mentioned by 
Bracewell (1978) and extended to two-dimensions by Nam et al. (2011) using 
radial variance as the natural extension to two-dimensions of the concept of size. 
Radial variance V of an intensity distribution I(x,y) is defined as the second 
moment about the centroid (xC,yC) in the radial direction, and computed in 
Cartesian coordinates as 

 V (I ) = x − xC( )2 + y − yC( )2⎡
⎣

⎤
⎦

−∞

∞

∫
−∞

∞

∫ I(x, y)dxdy   [12.35] 

 

12.H  Variations on the convolution theorem  

The basic convolution theorem h ∗ g↔ H ⋅G  of eqn. [12.15] and correlation 
theorem  hg↔ H ⋅G(−)  of eqn. [12.19] take on different forms when we allow 
for complex conjugation and sign reversal of the variables.  See Table 12.3 for a 
summary. The short-hand notation h(-) means h(-x) (i.e. the function has been 
flipped left-right about the origin) and h* is the complex conjugate of h. 
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Table 12.3  Convolution and correlation relations of the Fourier transform 

y(x) Y(f) 

h ∗ g  H ⋅G  

h ∗ g(−)  H ⋅G(−)  

h(−)∗ g(−)  H(−) ⋅G(−)  

h ∗ g* (−)  H ⋅G*  

h ∗ g*  H ⋅G* (−)  

h(−)∗ g*(−)  H(−) ⋅G*  

h(−)∗ g*  H(−) ⋅G*(−)  

h* (−) ∗ g* (−)  H* ⋅G*  

h* (−) ∗ g*  H* ⋅G*(−)  

h* ∗ g*  H* (−) ⋅G* (−)  

h ∗ h  H2  

h(−)∗ h(−)  [H (−)]2  

h* (−) ∗ h*(−)  [H *]2  

h* ∗ h*  [H *(−)]2  

 hh  H ⋅H(−)  

 h(−)h(−)  H ⋅H(−)  

 h * (−)h * (−)  H* ⋅ H* (−)  

 h *h *  H* ⋅ H* (−)  
 



Chapter 13:  Signal Analysis 

13.A  Introduction. 

The analysis of signals often involves the addition, multiplication, or 
convolution of two or more waveforms.  Since each of these operations has its 
counterpart in the frequency domain, deeper insight into the results of signal 
analysis can usually be obtained by viewing the problem from both the 
space/time domain and the frequency domain.  The several theorems listed in 
the previous chapter, especially the convolution theorem, were derived within 
the context of communications engineering to answer questions framed like "if a 
time signal is manipulated in such-and-such a way, what happens to its Fourier 
transform?"  In this chapter we demonstrate the utility of this general approach 
by examining the common operations of windowing and sampling. 

13.B  Windowing  

Windowing is the process of multiplying a signal by another function with 
value zero everywhere except for some finite interval of time or space.  This 
operation is illustrated in Fig. 13.1 where the arbitrary signal function s(x), which 
is defined for all x, is multiplied by a rectangular windowing function w(x) which 
is zero everywhere except over the interval -a to a.   

 

Fig. 13.1  Windowing Convolves Spectra
Time/space domain Frequency domain
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Forming the product g(x)=s(x)w(x) is analogous to looking at the signal through a 
"window" that reveals just a small segment of the original waveform.  Notice that 
since each of the functions in Fig. 13.1 is defined over all time, each may be 
subjected to the Fourier transform operation to produce a corresponding 
spectrum as shown.  Any window that has a Fourier transform can be analyzed 
by the general method given below. 

According to the convolution theorem, the Fourier transform of the product 
s(x)w(x) is equal to the convolution () of the spectrum S(f) of the original 
function and the spectrum W(f) of the window.  That is, 

 G( f ) = S( f ) ∗W( f )  [13.1] 

Recall that, in general, the spectral functions S(f) and W(f) will be complex-
valued.  If we represent each of these functions explicitly as the sum of a real and 
an imaginary component and then apply the distributive property of 
convolution, we find that the solution involves four separate convolutions 

 

G( f ) = Re S( f )[ ] + i Im S( f )[ ]{ }∗ Re W( f )[ ] + iIm W( f )[ ]{ }
= Re S( f )[ ]∗Re W( f )[ ]− Im S( f )[ ]∗ Im W( f )[ ]
+i Re S( f )[ ]∗ Im W( f )[ ] + Im S( f )[ ]∗Re W( f )[ ]{ }

 [13.2] 

If the window is symmetric about the origin, as is the case in Fig. 13.1, then the 
imaginary component of W(f) is zero (by symmetry arguments) and so eqn. [13.2] 
reduces to 

 G( f ) = Re S( f )[ ]∗Re W( f )[ ]+ i Im S( f )[ ]∗Re W( f )[ ]{ }  [13.3] 

If convolution is conceived as a smearing, or blurring operation, then this result 
says that the effect of windowing is to blur the spectrum of the original signal by 
an amount that varies inversely with the width of the window. 

An important example of the foregoing result is that of a sinusoidal signal, 
s(x) = cos(2πf0x) , viewed through a rectangular window of width w which, 
according to eqns. [11.12] and [11.16], has the Fourier transform w sinc(wf ).  In 
this case, 

 cos(2πf0x)↔
δ( f − f0 ) + δ( f + f0 )

2
 (signal) [13.4] 

 rect(x /w)↔ wsinc(wf )  (window) [13.5] 

 cos(2πf0x)rect(x / w)↔
δ( f − f0 ) +δ( f + f0 )

2
∗wsinc(wf )  (product) [13.6] 

In these equations the special function rect(x) is defined as 
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rect(x) = 1, −0.5 ≤ x ≤ 0.5

= 0, otherwise  [13.7] 

Applying the distributive property of convolution, plus the sifting property of 
the delta-function, the spectrum of the product simplifies to  

 cos(2πf0x)rect(x / w)↔
wsincw( f − f0 ) + w sincw ( f + f0 )

2
 [13.8] 

In words, the effect of the windowing a sinusoid is to change the spectrum from 
a pure delta-function with zero bandwidth to a sinc function sin(πx)/πx with 
bandwidth that varies inversely with the width of the window.  A specific 
example is illustrated in Fig. 13.2 in which a 2 Hz sinusoid is viewed through a 
window of duration 2 seconds. Gabor functions are another example of 
windowing a sinusoid, but with Gaussian profile rather than rectangular. 

 

13.C  Sampling with an array of windows 

Point-sampling of a continuous waveform can be viewed as multiplying the 
waveform by a sequence of unit delta-functions located at the x-values for which 
sample points are desired.  If the sample points are equally spaced, then the 
individual delta functions look like the teeth of a comb.  Accordingly, it is useful 
to define the continuous function comb(x) to mean the sum of unit delta-
functions separated by unit distance with value zero between samples.  That is, 

 comb(x) = δ (x − n)
n =−∞

∞

∑  [13.9] 

Since comb(x) is a periodic function with unit period, it is not surprising that the 
Fourier transform of comb(x) is comb(f).  Consequently, the operation of 
sampling in the space/time domain corresponds to convolution of the spectrum 

Fig. 13.2  Windowing a Sinusoid
Time/space domain
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of the signal with the comb(f) function.  This convolution replicates the original 
spectrum around every delta function in the frequency domain as illustrated in 
Fig. 13.3 (imaginary component of result is not shown).  We can state this result 
quantitatively as follows.  If d is the distance between samplers, then  

 s(x)↔ S( f )  (signal) [13.10] 
 comb(x / d)↔ d comb( fd) (sampler) [13.11] 

 s(x)comb(x / d)↔ S( f )∗ d comb( fd)  (product) [13.12] 

Figure 13.3 shows the critical case of sampling rate R equal to twice the signal’s 
bandwidth W. 

 

Another way to arrive at this result is to start with the Fourier series of a train 
of narrow pulses (Fig. 11.2).  Generalizing eqn. [11.9] to the case of a pulse of 
width W, height 1/W, and unit area over the unit interval L=1 yields a Fourier 
series with coefficient values bk = 0 and ak = sin(πkW)/πkW = sinc(kW). In the 
limit, as the pulse width W approaches zero, all harmonic coefficients will have 
the same amplitude ak = sinc(0) = 1.  Thus, the Fourier series for comb(x) will be 

 comb(x) = 1+ 2 cos(2πkx)
k=0

∞

∑ = (ei2π kx − e− i2π kx )
k=−∞

∞

∑  [13.13] 
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Since multiplication of the signal by comb(x) can be done one harmonic at a time, 
application of the modulation theorem says that multiplication by the k-th 
harmonic will halve the amplitude of the signal spectrum and shift it to the right 
(positive frequency direction) and to the left (negative frequency direction) by an 
amount equal to the frequency of the k-th harmonic.  The result of this operation 
for all of the harmonics is the replication of the signal spectrum at every 
harmonic of the sampling frequency. 

It is important to understand that multiple copies of the frequency 
spectrum S(f) exist because the sampled function s(x) is a continuous function 
with value zero for all points between sample points.  This is very different from 
the situation in Chapters 3 & 4 where the signal was unknown between sample 
points.  In that case the data were discrete, not continuous, and therefore the 
Fourier spectrum was also discrete, with a finite number of harmonics.  Classical 
engineering applications of sampling theory usually treat the sampled signal as a 
continuous analog signal that is filtered, amplified, and transmitted by analog 
devices.  However, if the samples represent the output of an analog-to-digital 
conversion, then the value of the signal between samples is indeterminate, not 
zero, and the spectrum of the sampled data is finite with only one copy of the 
signal spectrum, not infinite with multiple copies. 

13.D  Aliasing  

As is evident in Fig. 13.3, if the bandwidth w of the signal being sampled is 
large compared to the distance between delta functions in the frequency 
spectrum, then the replicated copies will overlap.  This is the phenomenon of 
aliasing encountered previously in Chapter 7.  To avoid aliasing requires that 
w < R / 2 , which means that the bandwidth of the signal must be less than half the 
sampling frequency.  The critical value R/2 is called the Nyquist frequency, which 
is a property of the sampling process, not the signal being sampled.  From a 
graphical perspective, Shannon's sampling theorem says that as long as the 
replicated spectra do not overlap then it is possible to recover the original 
spectrum without error.  A simple method for retrieving the original signal from 
sampled values is described in section 13.E. 

Aliasing of two-dimensional space caused by under-sampling with a lattice of 
sampling elements has additional degrees of freedom related to the geometry of 
the array (e.g. square or triangular lattices, and possibly rotated).  An example of 
aliasing produced by a triangular lattice of sample points (with zero-values 
between samples) is shown in Fig. 13.4. These Fourier spectra were computed as 
the convolution of the spectrum of a sinusoidal grating pattern (a pair of delta 
functions) with the spectrum of the sampling array (the inverse lattice). If the 
sampling lattice is triangular with spacing S between samples, then the inverse 
lattice is triangular with spacing constant 2/(S√3), but transposed and rotated 
with respect to the sampling lattice. Example spectra are shown for three 
sampling configurations. Row A depicts the case of sampling a vertical or 
horizontal grating of spatial frequency slightly higher than the nominal Nyquist 
frequency of the sampling array. The spectrum of the continuous sinusoidal 
grating is represented in the left panel by the pair of circles (vertical grating) and 
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the pair of crosses (horizontal grating), plus another delta function at the origin 
representing the mean luminance of the grating. The center panel shows the 
central portion of the spectrum of a sampling lattice in the 0° orientation, which 
puts the spectral lattice in the 30° orientation. The circle centered on the origin is 
a two-dimensional extension of the concept of a Nyquist limit. We call this circle 
a Nyquist ring because the radius of the ring indicates the highest spatial 
frequency of the continuous input that can be faithfully represented by the 
sampled output. Strictly, the Nyquist ring for a triangular lattice is a hexagon 
defined by a nearest-neighbor rule: all points inside the hexagon are closer to the 
origin than to any other lattice node. Here we make the simplifying assumption 
that the Nyquist ring is circular with radius equal to the nominal Nyquist 
frequency (0.54/S for a triangular lattice).  

The right hand panel of Fig. 13.4 shows the result of convolving the left and 
middle panels to compute the spatial frequency spectrum of the sampled 
stimulus. Convolution creates multiple copies of the source spectrum, one copy 
centered on each point in the array spectrum. To use this panel as a graphical 
method for predicting the alias patterns produced by undersampling, we 
concentrate our attention on the interior of the Nyquist ring since this is the do- 
main of spatial frequencies that satisfy the sampling theorem. When the source 
grating exceeds the Nyquist frequency of the array, the spectrum of the sampled 
stimulus will fall outside the Nyquist ring. However, other copies of the source 
spectrum centered on nearby lattice points may fall inside the Nyquist ring, thus 
masquerading as low-frequency gratings below the Nyquist limit. This process 
by which high-frequency components masquerade as low-frequency components 
when under-sampled, sometimes called leaking or folding of the spectrum, is the 
essence of aliasing. The stimulus spectrum depicted in row B is for the same 
grating frequency as in row A, but rotated 15°. The spectrum depicted in row C 
is also for a rotated grating, but a spatial frequency twice the Nyquist frequency. 

As noted in Section 13.C, the portion of the spectrum outside the Nyquist ring 
exists because the sampled grating was assumed to be continuous, with value 
zero between sampled points. This would be an appropriate model, for example, 
of a grating masked by an overlaid array of pinhole apertures since the intensity 
between pinholes would be zero. However, this would be an inappropriate 
model for the discrete neural image produced when a continuous grating imaged 
on the retina is sampled by an array of photoreceptors. Although the visual 
world is spatially continuous, even when masked by an array of pinhole 
apertures, the neural images carried by discrete arrays of visual neurons are 
spatially discrete. In more general terms, the difference between the spatially 
continuous domains of analog sampling and the spatially discrete domain of 
digital sampling has important consequences for describing their respective 
frequency spectra because continuous functions have infinite bandwidth, 
whereas discrete functions have finite bandwidth. 

In summary, the frequency spectrum of a discrete, digitally-sampled image 
would contain only those spatial frequencies inside the Nyquist ring.  There is no 
need for subsequent processing to remove high spatial frequency components 
beyond the Nyquist limit because they do not exist in the sampled image. For 
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example, there is no need to postulate a physiological mechanism that imposes a 
‘‘window of visibility” in the post-receptoral visual system to remove high-
frequency portions of the spectrum beyond the photoreceptor Nyquist limit 
because those frequencies do not exist in the neural image produced by the 
photoreceptors.2 Nevertheless, as noted below in Section 13.E, it is often a useful 
artifice to assume the sampled image is continuous for the purpose of visualizing 
how aliasing arises as a result of neural under-sampling. Such computations are 
valid because, although the high frequencies do not exist in the discrete sampled 
image, the low frequencies inside the Nyquist ring (including aliases) are exactly 
the same for a discrete sampler as they are for a continuous sampler that assigns 
zero weight to all points between samples. 

 
Figure 13.4.  Graphical depiction of the calculation of Fourier spectra of sampled 
gratings (right column) as the convolution of the spectrum of continuous gratings (left 
column) with the spectrum of a triangular lattice of sample points (middle column). 
Gratings in rows A and B have frequency slightly greater than the Nyquist frequency 
of the sampling array. Grating in row C has frequency twice the Nyquist frequency. 
Sampling arrays in B and C are rotated 15 degrees relative to the array in A. 
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13.E  Reconstruction by interpolation 

In order to recover the original signal from the sampled signal, it is only 
necessary to send the sampled signal through a low-pass filter (assuming the 
replicated spectra do not overlap).  As indicated in Chapter 12, the output signal 
will then be equal to the convolution of the sampled signal and the impulse 
response of the filter.  Equivalently, the spectrum of the output will be the 
product of the input spectrum and the transfer function of the filter.  An ideal 
low-pass filter has a rectangular transfer function, rect(f/w), where w is the 
bandwidth of the filter.  The impulse response of such a filter is wsinc(wx), which 
means that the original signal can be recovered by convolving the sampled signal 
with the sinc(wx) function, as shown graphically in Fig. 13.5.  For this reason, the 
sinc(x) function is often called the interpolating function. A public-domain 
program interpsinc.m implements this interpolation method in Matlab.  

 

13.F. Non-point sampling  

The situation often arises in which signals are sampled not at a single point, 
but over some finite interval or aperture.  Depending upon the circumstances, 
there are two different ways in which the sampling operation can be formulated.  
In the first of these (Fig. 13.6) sampling is a multiplication of the input with a 
continuous sampling function for which the delta functions of Fig. 13.3 are 
replaced by pulses of non-zero width.  The output in this case is a continuous 
function described in the frequency domain by the Fourier transform.  The 
second case, described further on, results in a discrete output appropriately 
described by a discrete Fourier series rather than a Fourier transform. 

!
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To determine the spectrum of the sampled signal in Fig. 13.5 when all of the 
sampling elements are of the same size, we describe the array of samplers as an 
array of delta functions convolved with a weighting function that accounts for 
the extent of the sampling element.  For example, if the sampling element 
weights the input equally throughout the sampling duration, then a one-
dimensional description of the sampling function q(x) would be 

 q(x) = rect(x / r) ∗comb(x / d)  [13.14] 

In this expression, the parameter r is the (positive) radius of the sampling 
aperture and the parameter d is the (positive) distance between samplers.   

 

Using the same approach as in section 13C above, we can formulate this 
sampling problem as follows. 

 s(x)↔ S( f )  (signal) [13.15] 
 rect(x / r) ∗ comb(x /d)↔ rsinc( fr) ⋅ d comb( fd) (sampler) [13.16] 
 s(x) ⋅ rect(x / r) ∗ comb(x /d)( ) ↔ S( f ) ∗ rsinc( fr) ⋅d comb( fd)( )   (prod.) [13.17] 
According to eqn. [13.16], the impact of non-zero width of the sampler is to 
modulate the comb(f) spectrum with a sinc(f) function as illustrated in Fig. 13.6. 
As a result, the high-frequency copies of the signal spectrum are attenuated. 

The second scenario to be considered is when discrete sampling elements 
(sensors) integrate the input over some finite area we might call the receptive field.  
For example, the retinal image is sampled by photoreceptors that integrate light 

!
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over an entrance aperture which has a diameter significantly greater than zero.  
If these sampling elements are tightly packed, then the center-to-center spacing 
of the sampling array is equal to the diameter of individual sampling elements.  
Physical constraints may prevent individual sensors from actually overlapping, 
but sometimes these physical constraints do not apply.  For example, the cone 
photoreceptors do not overlap on the retina but their receptive fields do overlap 
when projected into object space by the eye's optical system.  A specific example 
is illustrated in Fig. 13.7 for a physical object stimulating overlapping receptive 
fields to produce a discrete neural image of cone responses or optic nerve 
responses.  A similar situation arises in astronomy where an array of receiving 
antennas with overlapping coverage of the sky is used to sample radio or light 
waves arriving at the earth's surface. 

 
Figure 13.7.  Physiological example of overlapping array of samplers. Discrete 
neural images arise from sampling the retinal image i(x). Spatial integration within the 
retina provides opportunity for overlapping neural receptive fields of inter-neurons 
and output neurons of the optic nerve (A). Overlap occurs even for receptive fields of 
photoreceptor sensors when projected into object space (B). 

The simplest case to analyze is when individual sensors respond linearly to a 
weighted combination of the stimulus falling across its receptive field.  In this 
case the response r of an individual sensor to the input signal i(x) would be 
found by integrating the product of the input with the weighting function w(x)  
over the receptive field of the sensor.  That is, 

 r = i(x) ⋅w(x) dx
receptive field
∫  [13.18] 

If every sensor in the array has the same characteristics, then we may apply the 
shift theorem to determine the weighting function wj(x) for the jth element in the 
array which has a receptive zone centered at position xj   
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 wj = w(x − x j)  [13.19] 

The corresponding response rj  is found by combining [13.18] and [13.19] to give  

 rj = i(x) ⋅w(x − x j ) dx
receptive field
∫  [13.20] 

The result embodied in eqn. [13.20] can be viewed from a more familiar 
vantage point by temporarily ignoring the fact that the sampled image is discrete 
as shown in Fig. 13.8A.  That is, consider substituting for xj the continuous 
spatial variable u.  Then equation [13.20] may be re-written as  

 r(u) = i(x) ⋅w(x − u) dx
receptive field
∫  [13.21] 

which is recognized as a cross correlation integral.  In other words, the discrete 
function we seek is interpolated by the cross-correlation of the input with the 
receptive weighting function of the sensor.  We may therefore retrieve the 
discrete function by evaluating the cross-correlation result at those specific 
locations xj which are represented in the array of samplers.  Using standard 
pentagram (★) notation for cross correlation, this result is written 

 
  
rj = w(x)★i(x)( ) x= x j  [13.22] 

Replacing the awkward cross correlation operation with convolution (✳) yields 

 rj = w(−x)∗ i(x)( ) x= x j
 [13.23] 

In summary, the discretely sampled image is found by first convolving the 
input with the spatial or temporal weighting function of the sensor’s receptive 
field and then sampling the result at the locations occupied by the array of 
sensors.  To see how this works, consider the problem of finding the sampled 
output for a point source input.  If we represent this input i(x) by an impulse 
delta (δ) function, then the sifting property of the impulse function yields 

 
rj = w(−x)∗ δ(x)( ) x= x j
= w(−xj )

 [13.24] 

In words, this equation says that the sampled output of a homogeneous array of 
linear sensors in response to a point stimulus is equal to their common receptive 
weighting function, reflected about the origin, and evaluated at those positions 
occupied by the array.  This output might be called the discrete point-spread 
function (PSF) of the sampling array (Fig. 13.8B).  This discrete PSF is reflected 
about the origin because a neuron on the right side responds according to the 
weighting function’s left side. 
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A physiological application of eqn. [13.24] is illustrated in Fig. 13.8.  The 
discrete neural image is seen to be the result of three sequential stages of 
processing.  First the object o(x) is optically filtered (by convolution with p(x), the 
optical p.s.f.) to produce an optical retinal image.  Next this retinal image is 
neurally filtered (by convolution with the neural p.s.f. n(x)=w(-x)) to form a 
hypothetical, continuous neural image.  Finally, the continuous neural image is 
point-sampled by the array of output neurons (ganglion cells) to produce a 
discrete neural image ready for transmission up the optic nerve to the brain.  
Notice the change of viewpoint embodied in eqn. [13.23].  Initially the output 
stage of the retina is portrayed as an array of finite, overlapping receptive fields 
that simultaneously sample and filter the retinal image.  Now this dual function 
is split into two distinct stages:  neural filtering by the receptive field followed by 
sampling with an array of point samplers.  Thus we see that neural filtering by 
non-point samplers is equivalent to more traditional forms of filtering, such as 
that provided by optical blurring.1 

A   B 
Figure 13.8.  Equivalence of overlapping finite sampling with point sampling of a 
filtered image. Objects are filtered optically to produce a continuous retinal image that 
is filtered again by the neural receptive field to produce a hypothetical, continuous 
neural image sampled at discrete points (A). For a point source, the resulting neural 
image is a discrete array of responses called the discrete point-spread function of the 
sampling array (B). 

13.G. The coverage factor rule 

Since finite samplers include an element of low-pass filtering, they may 
become an effective anti-aliasing filter if the receptive field is relatively wide 
compared to the spacing of the array.  We can develop this idea quantitatively 
without detailed knowledge of the shape of the receptive field weighting 
function by employing Bracewell's equivalent bandwidth theorem. This theorem, 
which is based on the central ordinate theorem, states that the product of 

Fig. 13.6.  Neural image for a point 
source of light.
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equivalent width and equivalent bandwidth of a filter is unity.  By definition, the 
equivalent width of a function is the width of the rectangle whose height is equal 
to the central ordinate and whose area is the same as that of the function.  In the 
present context, the equivalent width of the sensor is the equivalent diameter dE  
of the receptive field (Fig. 13.9A).  The equivalent width of this filter in the 
frequency domain is the width of the ideal, low-pass filter with the same height 
and area as the Fourier transform of the receptive field (Fig. 13.9B).  The 
equivalent cutoff frequency fc (a.k.a. “bandwidth”) would be half the equivalent 
width (which runs from -fc to +fc) and therefore (by the equivalent bandwidth 
theorem)  fc = 1/2dE.  To avoid aliasing, the cutoff frequency fc of the filter must 
be less than the Nyquist frequency (0.5/S) as set by the characteristic spacing S of 
the array. Thus aliasing is avoided when dE > 2S, that is, when the equivalent 
radius of the receptive field exceeds the spacing between fields (Fig. 13.10).  

 
Figure 13.9.  (Left panel) Example 1-dimensional receptive field weighting function 
w(x)=sinc(x/d), d=0.5 and the equivalent rectangular profile with equal area and 
height as w(x).  (Right panel) Fourier transform of the receptive field weighting 
function is W(f) = rectangle with width 1/d, and bandwidth 1/2d. 

 
Figure 13.10.  Array of receptive field weighting functions from Fig. 13.9 with spacing 
equal to the equivalent radius of the receptive field.  This is the minimum spacing 
needed to avoid aliasing in the discrete array of responses.  
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A similar line of reasoning applies also for two-dimensional receptive fields.  
In Fig. 13.11A the visual field is tessellated by an array of square tiles, with each 
tile containing the circular receptive field of a visual neuron.  Assuming radial 
symmetry of the fields, the generalization of Bracewell's theorem to two 
dimensions states that the product of equivalent width and equivalent 
bandwidth is 4/π and so (by the above criterion) the cutoff frequency for 
individual neurons will be 4/(πdE ).  The Nyquist frequency of the array will vary 
slightly with grating orientation, but 0.5/S remains a useful lower bound.  Thus 
the anti-aliasing requirement is that dE  > 8S/π.  In other words, aliasing will be 
avoided if the equivalent radius of the receptive field exceeds 4/π times the 
spacing between fields.  To within the level of approximation assumed by this 
analysis, 4/π is the same as unity and so the one-dimensional and the two-
dimensional requirements for avoiding aliasing are essentially the same.  Thus, 
we conclude from these arguments that effective anti-alias filtering requires that 
the radius of receptive fields be greater than the spacing between fields (i.e., R > 
S).  The critical case (R = S) is depicted in Fig. 13.10B, along with that grating 
stimulus which is simultaneously at the Nyquist frequency for the array and at 
the cutoff frequency of the neuro-optical filter. 

 

A  B 
Figure 13.11.  Coverage of teh visual field by a square array of circular receptive 
fields. (A) visual field is subdivided into nearest-neighbor regions.  S = spacing 
between fields, R = radius of each field. (B) Critical case where cutoff spatial 
frequency for individual receptive fields just matches the Nyquist frequency of the 
arrays.  Theta = period of the grating at the Nyquist frequency of the array.  

Neurophysiologists are well aware of the importance of aliasing for the 
fidelity of the visual system and so have devised a simple measure called the 
"coverage factor" to assess whether a given retinal architecture will permit 
aliasing.  Conceptually, the coverage factor of an array measures how much 
overlap is present.  For a one-dimensional array, coverage equals the ratio of 
width to spacing of the fields.  The utility of this measure here is that it 
encapsulates in a single parameter the importance of the ratio of size to spacing 
as a determinant of aliasing.  Stated in these terms, the above result says that 
coverage must be greater than unity to avoid aliasing.  In other words, the 
receptive zones must overlap.   
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For a two-dimensional array the coverage must be even greater to prevent 
aliasing.  To calculate coverage we tessellate the visual field into nearest-
neighbor regions (also called Voronoi or Dirichlet regions) as illustrated for a 
square array in Fig. 13.11A and then define  

 Coverage = Area of receptive field
Area of tile

=
πR2

S2
  [13.25] 

For a hexagonal array the area of a tile is 0.5S2/√3 and thus coverage is 
2π(R/S)2/√3.)  The utility of this measure of overlap is that it encapsulates into a 
single parameter the importance of the ratio of receptive field size to receptive 
field spacing as a determinant of aliasing.  For the critical case shown in Fig. 
13.11B, R=S and therefore the coverage factor equals π (for square array) or 
2π/√3 (for hexagonal array).  In other words, if the coverage is less than about 3 
we can expect aliasing to result.  Physiological evidence suggests that coverage 
may have to be as high as 4.5 to 6 in order to avoid aliasing completely since 
retinal ganglion cells in cat and monkey continue to respond above noise levels 
to gratings with spatial frequency 1.5 to 2 times greater than that estimated from 
their equivalent diameter.1  Such responses to very high frequencies may 
represent a kind of "spurious resolution" in which the phase of the response 
reverses, as is to be expected when the receptive field profile has sharp corners or 
multiple sensitivity peaks. 

--------- 

1Thibos, L. N. & Bradley, A. (1995). Modeling off-axis vision - II:  the effect of 
spatial filtering and sampling by retinal neurons. In Peli, E. (Ed.), Vision Models 
for Target Detection and Recognition (pp. 338-379). Singapore: World Scientific 
Press. 

2Evans, D. W., Wang, Y., Haggerty, K. M. and Thibos, L. N. (2010). Effect of 
sampling array irregularity and window size on the discrimination of sampled 
gratings. Vision Res 50, 20-30. 
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Chapter 14:  Fourier Optics 

14.A  Introduction 

Fourier analysis plays an important role in optics, the science of light and 
images. Following the successful application of Fourier analysis in 
communication theory and practice in the early part of the 20th century, optical 
scientists and engineers began a similar approach to the study of optical systems 
in the 1950’s. In this new approach Fourier analysis plays several important roles.  
According to the physical optics theory of image formation, the Fourier 
transform provides a mathematical distribution of light in the system’s entrance 
pupil due to a point source of light in the object plane. In the same way, the 
Fourier transform also links the distribution of light in the exit pupil to the 
distribution of light in the image plane, the so-called, point spread function (PSF). 
Fourier analysis is also central to the communications theory approach in which 
optical imaging systems are conceived as linear filters that convert inputs (the 
object) to outputs (the image) according to the mathematical operation of 
convolution between the object and the system’s impulse response (the PSF).  
Digital computer programs that simulate this convolution operation typically 
employ the fast Fourier transform (FFT) algorithm to compute the image of an 
object. The Fourier transform is also used to convert the PSF into a spatial 
frequency domain description of the filter’s action called the optical transfer 
function (OTF).  To understand why Fourier analysis plays so many key roles in 
this modern approach to optical systems it is necessary to review briefly the 
physical theory of image formation. 

14.B  Physical optics and image formation 

The elementary account of image formation illustrated in Fig. 14.1 is based on 
the geometrical optics notion that light travels in straight lines called rays. All of 
the rays emitted by a point source of light that are captured by a physical lens of 
finite size become refracted (i.e. their direction of propagation changes). The 
intensity of the light is determined by ray density, so the convergence of rays in a 
region of high density is the geometrical conception of image formation. By this 
account, the only effect of introducing an aperture before the lens is to limit the 
spatial distribution of rays that enter the lens. At the margin of the aperture, the 
transmitted rays define a sharp boundary between light and shadow as 
suggested by the dashed lines. In fact, as Newton (1670) first observed in the 17th 
century, light does penetrate the shadow. To take account of this fact of nature 
we need to replace geometrical optics with a more complete description of light 
propagation and image formation. 

According to the physical optics theory, light propagates in the form of waves 
that are perpendicular to rays of geometrical optics. A wavefront is defined as 
the locus of points for which light has oscillated the same number of times after 
emission from the point source. With each oscillation the light propagates one 
wavelength of distance, so an equivalent definition of wavefront is the locus of 
points that are the same optical distance from the point source. Thus a single 
point source of light emanates spherical wavefronts. Unlike rays, which are 
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physically discrete, wavefronts are spatially continuous surfaces that may 
become distorted as the light propagates. For example, after the wavefront 
passes through an aperture its direction of propagation changes slightly near the 
edge of the aperture, causing light to “leak” into the shadow region predicted by 
straight-line propagation of rays. This change in propagation direction and 
wavefront shape caused by blocking part of the wavefront by an aperture is 
called diffraction. Since diffraction by an aperture distorts the wavefront, the 
image produced by a lens is also distorted even if the lens is optically perfect. 
The underlying reason for this diffractive imperfection in the image is that the 
wavefront emerging from the lens is only a portion of the spherical wavefront 
needed to form a perfect point image. The logical argument is simply stated: if a 
single point source produces a complete, expanding spherical wavefront, then by 
reversing the arrow of time we must conclude that a complete, collapsing 
spherical wavefront is required to produce a single point image. Since the 
aperture transmits only part of the wavefront, the image cannot be a single point. 

 
Figure 14.1.  Diffraction by an aperture causes light to propagate into the geometrical 
shadow indicted by the dashed curves. The result is a distortion of the wavefront that 
prevents the formation of a perfect point image, even for a perfect lens. 

 
Figure 14.2.  Huygenʼs theory of wavefront propagation. 

A framework for thinking quantitatively about the diffraction of propagating 
waves is illustrated in Fig. 14.2. To understand how an expanding or collapsing 
wave propagates, Huygens (1678) suggested that if every point on the wavefront 
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were the center of a new, secondary disturbance which emanates spherical 
wavelets in the direction of propagation, then the wavefront at any later instant 
would be the envelope of these secondary wavelets. Fresnel (1818) advanced 
Huygens' intuitive notions by incorporating Young's (1801) discovery of the 
phenomenon of interference to propose a quantitative theory now known as the 
Huygens-Fresnel principle of light propagation. By this principle, Huygens's 
secondary wavelets are directed (i.e., the amplitude is strongest in a direction 
perpendicular to the primary wavefront) and they mutually interfere to re-create 
the advancing wavefront. Consequently, when a wavefront encounters an 
opaque aperture, the points on the wavefront near the obstruction are no longer 
counter-balanced by the missing Huygen wavelets, and so light is able to 
propagate behind the aperture without interference. Subsequently, Kirchoff 
(1882) demonstrated that critical assumptions made by Fresnel (including the 
nonisotropic nature of Huygens's wavelets) were valid consequences of the wave 
nature of light. Sommerfeld (1894) later rescued Kirchoff's theory from mutually 
inconsistent assumptions regarding boundary values of light at the aperture. In 
so doing Sommerfeld placed the scalar theory of diffraction in its modern form 
by establishing that the phenomenon of diffraction can be accurately accounted 
for by linearly adding the amplitudes of the infinity of Huygens's wavelets 
located within the aperture itself. Mathematically this accounting takes the form 
of a superposition integral called the Rayleigh-Sommerfeld diffraction formula 
(Goodman (1968), equation 3-26, p.45). For a fuller account of the history of the 
wave theory of light, see Goodman, 1968, p.32 or Born & Wolf, 1970,p. xxi-xxviii. 

 
Figure 14.3. Geometry for computing the contribution of Huygens's wavelet at point 
S to the amplitude of light at point R. 

To express the diffraction formula requires a mathematical description of 
Huygens's wavelets and a way of summing them up at an observation point R 
beyond the aperture as shown in Fig. 14.3. Although a rigorous theory would 
describe light as a vector field with electric and magnetic components that are 
coupled according to Maxwell's equations, it is sufficient to use a much simpler 
theory that treats light as a scalar phenomenon, the strength of which varies 
sinusoidally in time. Thus, for a monochromatic wave, the field strength may be 
written as 

 u(R,t) =U(R)cos[2πνt +φ(R)] 	
  [14.1]	
  

where U(R) and φ(R) are the amplitude and phase, respectively, of the wave at 
position R, while ν is the optical temporal frequency. For mathematical reasons it 
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is more convenient to express the trigonometric function as the real part of a 
complex exponential (see Fig. 2.2) by writing eqn. [14.1] as 

 u(R,t) = Re[U(R)exp(−i2πνt)]  [14.2]	
  

where i = √-1 and U(R) is a complex valued function of position only, 

 U(R) = U(R)exp[−iφ(R)] 	
  [14.3]	
  

Temporal oscillation of the field is not essential to the diffraction problem, 
and for this reason we concentrate on the phasor U(R) as a mathematical 
description of a wavefront. Accordingly, we seek such a phasor description of 
Huygens's wavelets. The required function for an arbitrary point S on a 
wavefront of unit amplitude is 

 H(S,R) = 1
iλ
exp(ikr)

r
cos(θ)  	
  [14.4]	
  	
  

where 
 H = complex amplitude of light at R due to Huygen wavelet at S  
 r = radial distance from source point S to observation point R  
 k = 2π/λ , wave number, converts r to phase shift in radians  
 λ = wavelength of light 
 θ = angle between line RS and the normal to wavefront at S 

Each of the three factors on the right-hand side of eqn. [14.4] relates to an 
essential feature of Huygens's wavelets. The middle factor is the standard 
expression for a spherical wavefront due to a point source. The numerator of this 
factor accounts for the phase shift that results when the wavelet propagates from 
S to R, and the denominator accounts for the loss of amplitude needed to keep 
the total energy constant as the wavefront expands. This spherical wavelet is 
modified by the first factor, which says that the amplitude of the secondary 
source is smaller by the factor 1/λ compared to the primary wave, and the phase 
of the secondary source leads the phase of the primary wave by 90°. The third 
factor in eqn. [14.4] is the obliquity factor, which states that the amplitude of the 
secondary wavelet varies as the cosine of the angle θ between the normal to the 
wavefront at S and the direction of the observation point R relative to S.  

Equation [14.4] describes the secondary wavelet produced by a primary 
wavefront of unit amplitude. Applying the actual wavefront amplitude U(S) as a 
weighting factor, the wavelet at point S is the product U(S)H(S,R). The total field 
at point R is then found by linearly superimposing the fields due to all of the 
secondary wavelets inside the aperture A. The result is a superposition integral 
over the aperture 

 U(R) = U(S)H(S,R) dA
Aperture
∫∫ U(R)  [14.5]	
  	
  

which is known as the Rayleigh-Sommerfeld diffraction integral. (Goodman, 
1968, p 45, equation 3-28)  
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14.C  The Fourier optics domain 

Under certain restricted circumstances, the superposition integral of eqn. 
[14.5] reduces to a convolution integral. This immediately suggests an 
application of the convolution theorem of Fourier analysis (Bracewell, 1969), 
which transforms the given quantities U and H into a corresponding pair of new 
quantities, which provides a complementary view of diffraction and optical 
image formation. This is the domain of Fourier optics.  

To begin, erect a coordinate reference frame centered on the aperture shown 
in Fig. 14.3, with the x,y plane coinciding with the plane of the aperture. The 
observation point at R has the coordinates (x, y, z) and an arbitrary point in the 
aperture plane has the coordinates (x′, y′, 0). The initial simplifying assumptions 
are that the source is far from the aperture so the wavefront is nearly planar and 
the observation point R is also far from the aperture and close to the z-axis, in 
which case the obliquity factor cos(θ) in eqn. [14.4] is approximately 1. Under 
these assumptions the distance r in the denominator of eqn. [14.4] may be 
replaced by z. However, this is not a valid substitution in the numerator because 
any errors in this approximation are multiplied by a large number k. To deal with 
this problem we need to investigate in more detail how r depends on the 
coordinates of S and R. By the Pythagorean theorem,  

 r = ( ′x − x)2 + ( ′y − y)2 + z2  	
  [14.6]	
  	
  

which may be approximated, using the first two terms of a binomial expansion, 
as 

 r ≅ z + ( ′x − x)2 + ( ′y − y)2

2z
  	
  [14.7]	
  	
  

Applying these approximations to eqn. [14.4] yields the following approximate 
formula for Huygens's wavelets 

 H( ′x , ′y , x, y, z) = 1
iλz

exp ik z + ( ′x − x)2 + ( ′y − y)2

2z
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

  [14.8]	
  	
  

The important point to note about this formula is that although H is a function of 
the (x,y) coordinates of the observation point and the (x′,y′) coordinates of the 
source point, that dependence is only upon the difference between coordinates, 
not on their absolute values. Consequently, the absolute location of the Huygen 
wavelet in the pupil plane is not important. This is the special circumstance 
needed to interpret the Rayleigh-Sommerfeld superposition integral of eqn. [14.5] 
as a convolution integral. The underlying simplifying assumptions are known as 
the Fresnel (near field) approximations.  

To simplify the convolution integral even further, we expand eqn. [14.7] and 
group the individual terms in a physically meaningful way.  
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 r ≅ z + ′x 2 + ′y 2

2z
+
x2 + y2

2z
−
x ′x − y ′y

z
  [14.9]	
  	
  

If we assume that the aperture is small compared not only to z, the observation 
distance, but small even when compared to z/k, then the second term in eqn. 
[14.9] may be omitted. This assumption is known as the Fraunhofer (far field) 
approximation, and it is evidently a severe one given that k is a very large 
number on the order of 107 m-1 for visible light. For example, for an aperture 
radius of 1mm, the observation distance z must be on the order of 5m or more. In 
this case, the maximum difference in optical path length from the aperture to the 
distant observation point R is approximately 0.1 micron (which is about 1/6 
wavelengths of visible light) and represents about 1 radian of relative phase shift 
in temporal oscillation of the light. Under these restricted conditions the 
Rayleigh-Sommerfeld diffraction integral simplifies to 

 U(x, y) = C U( ′x , ′y )exp −
ik
z
x ′x + y ′y( )⎧

⎨
⎩

⎫
⎬
⎭
d ′x d ′y

Aperture
∫∫ U(R)  [14.10]	
  	
  

where C is the complex constant  

 C =
1
iλz

exp ik z + x2 + y2

2z
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

 	
  [14.11]	
  	
  

To put this result in a more convenient form we normalize the (x,y) 
coordinates by introducing a substitution of variables xˆ = x / λz and yˆ = y / λz . 
We also introduce a pupil function P(x′,y′) which has value 1 inside the aperture 
and 0 outside. Using this pupil function as a multiplication factor in the 
integrand allows us to define the integral over the whole plane of the aperture, in 
which case eqn. [14.10] becomes 

 
 
U(x, y) = C P( ′x , ′y )U( ′x , ′y )

−∞

∞

∫
−∞

∞

∫ exp −2πi x ′x + y ′y( )⎡
⎣

⎤
⎦d ′x d ′y U(R)  	
  [14.12]	
  	
  

If this last integral doesn't look familiar, think of x′, y′ as spatial frequency 
variables in the plane of the pupil and think of  x

, y  as spatial variables in the 
image plane. Now, except for the scaling constant C in front, the Fraunhofer 
diffraction pattern is recognized as a two-dimensional inverse Fourier transform of the 
incident wavefront U as truncated by the pupil function P. This seemingly miraculous 
result yields yet another astonishing observation when the incident wavefront is 
a uniform plane wave. In this case the field amplitude U(x´,y´) is constant over 
the aperture, and thus the diffraction pattern  U(x

, y)and the aperture P(x´,y´) are 
related by the Fourier transform. A compact notation for this Fourier transform 
operation uses an arrow to indicate the direction of the forward Fourier 
transform 

 
 
U(x, y) = FT

FT −1
⎯ →⎯⎯← ⎯⎯⎯ P( ′x , ′y )  	
  [14.13]	
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In words, eqn, [14.13] says that the amplitude U of the light distribution in a distant 
plane due to diffraction of a monochromatic plane wave by an aperture is proportional to 
the inverse Fourier transform of the aperture's pupil function P. Conversely, the 
aperture's pupil function P is proportional to the forward Fourier transform of the far-
field light distribution U. 

Equation [14.12] has had a major impact on optical science and engineering, 
including visual optics, in the latter half of the 20th century because it brings to 
bear the powerful theory of linear systems and its chief computational tool, the 
Fourier transform (Goodman, 1968; Bracewell, 1969; Gaskill, 1978; Williams & 
Becklund, 1989). Although cast in the language of diffraction patterns, eqn. 
[14.12] is readily applied to imaging systems by generalizing the concept of a 
pupil function to include the focusing properties of lenses.  By thinking of the 
pupil function as a two-dimensional filter which attenuates amplitude and 
introduces phase shifts at each point of the emerging wavefront, a complex-valued 
pupil function P(x′,y′) may be constructed as the product of two factors 

 P(x′,y′) = D(x′,y′) exp(ikW(x′,y′))  [14.14]	
  	
  

where D(x′, y′) is an attenuating factor, and W(x′, y′) is a phase factor called the 
wave aberration function, which is directly attributable to focusing aberrations of 
the system. This maneuver of generalizing the pupil function captures the effect 
of the optical system without violating the arguments that led to the 
development of eqn. [14.13]. Thus, the complex-valued amplitude spread 
function A(x,y) in the image plane of an aberrated optical system, including 
diffraction and interference effects, for a distant point source of light equals the 
inverse Fourier transform of the pupil function of the system,  

 A(x, y) FT

FT −1
⎯ →⎯⎯← ⎯⎯⎯ P( ′x , ′y )  	
  [14.15]	
  	
  

A graphical depiction of this important relationship is shown in Fig. 14.4 a,c.  

Physical detectors of light, including the rods and cones in the eye, are not 
able to respond fast enough to follow the rapid temporal oscillations of light 
amplitude. Instead, physical detectors respond to the intensity of the light, which 
is a real-valued quantity defined as the time average of the squared modulus of 
the complex amplitude. Consequently the intensity PSF is given by 

 I(x, y) = A(x, y) 2 = A(x, y)A*(x, y)   [14.16]	
  	
  

where A* denotes the complex conjugate of A. A graphical depiction of this 
important relationship is shown in Fig. 14.4 c,d.  

Taken together, eqns. [14.15] and [14.16] say the intensity PSF, which is a 
fundamental description of the imaging capabilities of the eye's optical system, is 
the squared modulus of the inverse Fourier transform of the eye's pupil function. 
The next section shows that the pupil function may also be used to derive 
another fundamental descriptor of the eye's imaging system, the optical transfer 
function. As will be shown, both of these descriptors can be used to compute the 
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retinal image of an arbitrary object in a straight-forward manner using the 
Fourier transform.  

 
Figure 14.4  Schematic depiction of Fourier relationships between fundamental 
quantities associated with an optical imaging system. Actual functions are surfaces 
over a 2-D spatial domain.  (a,b,c) are complex valued functions, (d) is real-valued. 

14.D Linear Systems Description of Image Formation 

One of the major paradigm shifts in 20th century optics has been the treatment 
of imaging systems, including the eye, as a linear system characterized in the 
spatial domain by the PSF. (For an historical account, see Williams & Becklund, 
1989). It doesn't matter whether the image is well focused or blurred, diffraction-
limited or aberrated. The key assumption is simply that the PSF is invariant to 
lateral (i.e., orthogonal to the optical axis) translations of the point source. In the 
theory of linear systems, this property is called space-invariance, but in optics it is 
called isoplanatism. The special significance of the linear systems approach to the 
eye is that it allows us to easily compute the actual retinal image (which is 
normally inaccessible to an outside observer) from knowledge of the PSF and the 
spatial distribution of intensities in the object.  

Although the eye's PSF varies significantly across the visual field, it is not 
unreasonable to assume spatial invariance over small patches of the retinal 
image. Within such a patch the image is conceived as the superposition of a 
myriad PSFs, one for each point in the object and scaled in intensity according to 
the intensity of the corresponding point in the object. For ordinary objects there 
is no fixed relationship between the phases of light waves emitted from different 
points on the object. Such light sources are called spatially incoherent, and for such 
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sources the intensities of elementary PSFs in the retinal image are real-valued 
quantities that add linearly. Thus the retinal image may be represented by a 
superposition integral that is equivalent, under the assumption of spatial 
invariance, to a convolution integral. Using ❊ to denote the convolution 
operation, we can summarize the imaging process by a simple mathematical 
relationship 
 spatial image = spatial object ❇ PSF  [14.17]	
  	
  

An example of the application of eqn. [14.17] to compute the retinal image 
expected for an eye with a 4 mm pupil suffering from 1 diopter of defocus is 
shown in Fig. 14.5. For computational purposes, the upper-case letter in this 
example was assumed to subtend 1/3 degree of visual angle, which would be the 
case for a 3.3 mm letter viewed from 57 cm, for ordinary newprint viewed from 
40 cm, or for letters on the 20/80 line of an optometrist's eye chart. Additional 
examples of computed retinal images of this sized text viewed by an eye with a 3 
mm pupil and various amounts and combinations of optical aberration are 
shown in the lower row of Fig. 14.6. To make these calculations, van Meeteren's 
power series expansion of the wave aberration function in dioptric terms was 
used (van Meeteren, 1974). These results demonstrate that the effect of optical 
aberrations can be to blur, smear, or double the retinal image depending on the 
types of aberration present and their magnitudes.  

 
Figure 14.5  Example computation of the retinal image (right) as the convolution of 
an object (left) with the eyeʼs point-spread function (middle, enlarged to show details).  

In the general theory of Fourier analysis of linear systems, any input function 
(e.g. an optical object), output function (e.g., an optical image), or performance 
function (e.g., an optical PSF) has a counterpart in the frequency domain. In 
optics, these correspond respectively to the frequency spectrum of the object, the 
frequency spectrum of the image, and the optical transfer function (OTF). By 
definition the OTF is a complex- valued function of spatial frequency, the 
magnitude of which is equal to the ratio of image contrast to object contrast, and 
the phase of which is equal to the spatial phase difference between image and 
object. These two components of the OTF are called the modulation transfer 
function (MTF) and phase transfer function (PTF), respectively.  
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Figure 14.6  Examples of blurring of an individual letter with the same angular size 
as in Fig. 14.5. Letter height = 1/3 degree of visual angle, pupil diameter = 3mm, D= 
diopters of defocus, DC = diopters of astigmatism, DSA = diopters of spherical 
aberration.  

The link between corresponding pairs of spatial and frequency functions is 
forged by the Fourier transform. For example, the intensity PSF and the OTF are 
a Fourier transform pair, 

 I(x, y) FT

FT −1
⎯ →⎯⎯← ⎯⎯⎯ T ( ′x , ′y )  	
  [14.18]	
  	
  

A graphical depiction of this important relationship is shown in Fig. 14.4 b,d. 
The physical basis of eqn. [14.18] derives from the fact that in the frequency 
domain the elemental object is not a point of light but a sinusoidal grating 
pattern. In this way of thinking, a visual target is defined not by the arrangement 
of many points of light but by the superposition of many gratings, each of a 
different spatial frequency, contrast, and orientation. Given that a single point of 
light has a flat Fourier spectrum of infinite extent, forming the image of a point 
object is equivalent to simultaneously forming the image of an infinite number of 
gratings, each of a different frequency and orientation but the same contrast and 
phase. Forming the ratio of image spectrum to object spectrum is trivial in this 
case, since the object spectrum is constant. Therefore, the variation in image 
contrast and spatial phase of each component grating, expressed as a function of 
spatial frequency, would be a valid description of the system OTF. Thus the PSF, 
which expresses how the optical system spreads light about in the image plane, 
contains latent information about how the system attenuates the contrast and 
shifts the phase of component gratings. According to eqn. [14.18], this latent 
information may be recovered by application of the Fourier transform.  
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A frequency interpretation of the input-output relationship of eqn. [14.17] 
requires an important result of Fourier theory known as the convolution 
theorem. This theorem states that the convolution of two functions in one 
domain is equivalent to multiplication of the corresponding functions in the 
other domain (see Chapter 12.B). Applying this theorem to eqn. [14.17] 
summarizes the imaging process in the frequency domain as a multiplication of 
the complex-valued object spectrum and complex-valued OTF,  
 image spectrum = object spectrum · OTF 	
  [14.19]	
  	
  

Given the above results, two important conclusions may be drawn. The first 
is a Fourier transform relationship between the PSF and the pupil function. As a 
preliminary step, evaluate the squared modulus of the amplitude spread 
function in both domains by using the convolution theorem and the complex 
conjugate theorem (Bracewell, 1969) in conjunction with eqn. [14.15] 

 

 

A(x, y) FT

FT −1
⎯ →⎯⎯← ⎯⎯⎯ P( ′x , ′y )

A*(x, y) FT

FT −1
⎯ →⎯⎯← ⎯⎯⎯ P(− ′x ,− ′y )

A(x, y)A*(x, y) FT

FT −1
⎯ →⎯⎯← ⎯⎯⎯ P( ′x , ′y )P(− ′x ,− ′y )

 	
  [14.20]	
  	
  

It is customary to translate this convolution relationship into an auto-correlation 
relationship, denoted by the pentagram (★) symbol (Bracewell, 1969, p. 112, 122), 
using the rule 

   P(x′, y′)P*( − x′, − y′) = P(x′, y′)P(x′, y′)  	
  [14.21]	
  	
  

Combining eqns. [14.16], [14.20], and [14,21] gives 

 
 
I(x, y) FT

FT −1
⎯ →⎯⎯← ⎯⎯⎯ P( ′x , ′y )P( ′x , ′y )   [14.22]	
  	
  

In words, eqn. [14.22] says that the intensity PSF is the inverse Fourier transform 
of the auto-correlation of the pupil function.  

The second conclusion we may draw from the preceding development 
completes the matrix of relationships diagrammed in Fig. 14.4. Because the OTF 
(eqn. 14.18) and the autocorrelation of the pupil function (eqn. 14.22) are both 
Fourier transforms of the PSF, they must be equal to each other 

 

 

I(x, y) FT

FT −1
⎯ →⎯⎯← ⎯⎯⎯ T( ′x , ′y )

I(x, y) FT

FT −1
⎯ →⎯⎯← ⎯⎯⎯ P( ′x , ′y )P( ′x , ′y )

∴T( ′x , ′y ) = P( ′x , ′y )P( ′x , ′y )

  [14.23]	
  	
  

A graphical depiction of this important relationship is shown in Fig. 14.4 a,b. 
This last result puts the pupil function at the very heart of the frequency analysis 
of imaging systems, just as for the spatial analysis of imaging systems. It also 
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lends itself to an extremely important geometrical interpretation since the 
autocorrelation of the pupil function is equivalent to the area of overlap of the 
pupil function with a displaced copy of itself.  

On a practical note, to use the preceding results requires careful attention to 
the scale of the (x′,y′) coordinate reference frame in the pupil plane (see 
Goodman, 1968, p. 117). The simplest way to deal with this scaling issue is to 
normalize the pupil coordinates by the pupil radius when formulating the 
analytical expression for the pupil function. Then, after all computations are 
completed, the frequency scale may be converted into physical units by 
appealing to the fact that the cutoff spatial frequency fc set by diffraction is  

 fc  =  d / λ   cyc/radian (subtended at the pupil center) 	
  [14.24]	
  	
  

where d is pupil diameter and λ is wavelength. By convention, the magnitude of 
the OTF is always unity at zero spatial frequency, which is achieved by 
normalizing the magnitude of the pupil function by pupil area. For example, in 
an aberration-free system, the pupil function has value 1 inside the pupil and 0 
outside. For a system with a circular pupil, such as the eye, the OTF by eqn. 
[14.23] is simply the area of overlap of two circles as a function of their overlap, 
normalized by the area of the circle. By symmetry, the result varies only with the 
radial spatial frequency fr = fx

2 + fy
2 (Goodman, 1968; equation 6-31)  

  
 
T( f ) = 2

π
cos−1 f − f 1− f 2⎡
⎣

⎤
⎦, … f = fr / fc  	
  [14.25]	
  	
  

In summary, the pupil function (Fig. 14.4a), the PSF (Fig. 14.4d), and the OTF 
(Fig. 14.4b) are interrelated characterizations of the incoherent imaging 
characteristics of an optical system such as the eye. Of these, the pupil function is 
the most fundamental since it may be used to derive the other two. However, the 
reverse is not true in general because the lack of reversibility of the 
autocorrelation operation and the squared-modulus operation indicated in Fig. 
14.4 prevents the calculation of a unique pupil function from either the PSF or 
the OTF. It should also be kept in mind that the theory reviewed above does not 
take into account the effects of scattered light, and therefore is necessarily 
incomplete.  
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