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Preface

For many years, the author taught a one-year course called “Mathe-
matical Methods”. It was intended for beginning graduate students in the
physical sciences and engineering, as well as for mathematics students with
an interest in applications. The aim was to provide mathematical tools used
in applications, and a certain theoretical background that would make other
parts of mathematical analysis accessible to the student of physical science.
The course was taken by a large number of students at the University of
Wisconsin (Madison), the University of California San Diego (La Jolla), and
finally, the University of Amsterdam. At one time the author planned to
turn his elaborate lecture notes into a multi-volume book, but only one vol-
ume appeared [68]. The material in the present book represents a selection
from the lecture notes, with emphasis on Fourier theory. Starting with the
classical theory for well-behaved functions, and passing through L! and L?
theory, it culminates in distributional theory, with applications to bounday
value problems.

At the International Congress of Mathematicians (Cambridge, Mass) in
1950, many people became interested in the Generalized Functions or “Dis-
tributions” of field medallist Laurent Schwartz; cf. [110]. Right after the
congress, Michael Golomb, Merrill Shanks and the author organized a year-
long seminar at Purdue University to study Schwartz’s work. The seminar
led the author to a more concrete approach to distributions [66], which he
included in applied mathematics courses at the University of Wisconsin.
(The innovation was recognized by a Reynolds award in 1956.)

It took the mathematical community a while to agree that distributions
were useful. This happened only when the theory led to major new develop-
ments; see the five books on generalized functions by Gelfand and coauthors
[37], and especially the four volumes by Hérmander [52] on partial differ-
ential equations.

iii



iv PREFACE

A detailed description of the now classical material in the present text-
book may be found in the introductions to the various chapters. The survey
in Chapter 1 mentions work of Euler and Daniel Bernoulli, which preceded
the elaborate work of Fourier related to the heat equation. Dirichlet’s rig-
orous convergence theory for Fourier series of “good” functions is covered
in Chapter 2. The possible divergence in the case of continuous functions
is treated, as well as the remarkable Gibbs phenomenon. Chapter 3 shows
how such problems were overcome around 1900 by the use of summability
methods, notably by Fejér. Soon thereafter, the notion of square integrable
functions in the sense of Lebesgue would lead to an elegant treatment of
Fourier series as orthogonal series. However, even summability methods
and L? theory were not general enough to satisfy the needs of applications.
Many of these needs were finally met by Schwartz’s distributional theory
(Chapter 4). The classical restrictions on many operations, such as differ-
entiation and termwise integration or differentiation of infinite series, could
be removed.

After some general results on metric and normed spaces, including a
construction of completion, Chapter 5 discusses inner product spaces and
Hilbert spaces. It thus provides the theoretical setting for a good treatment
of general orthogonal series and orthogonal bases (Chapter 6). Chapter 7
is devoted to important classical orthogonal systems such as the Legendre
polynomials and the Hermite functions. Most of these orthogonal systems
arise also as systems of eigenfunctions of Sturm-Liouville eigenvalue prob-
lems for differential operators, as shown in Chapter 8. That chapter ends
with results on Laplace’s equation (Dirichlet problem) and spherical har-
monics. Chapter 9 treats Fourier transformation for well-behaved integrable
functions on R. Among the well-behaved functions the Hermite functions
stand out; here they appear as eigenfunctions of the linear harmonic oscil-
lator in quantum mechanics.

At this stage the student should be well-prepared for a general theory
of Fourier integrals. The basic questions are to represent larger or unruly
functions by trigonometric integrals, and to make Fourier inversion widely
possible. A convenient class to work with are the so-called tempered dis-
tributions, which include all functions of at most polynomial growth, as
well as their (generalized) derivatives of arbitrary order. A good start-
ing point to prove unlimited inversion is the observation that the Fourier
transform operator F commutes with the Hermite operator H = 22 — D?,
where D stands for differentiation, d/dz. It follows that the two operators
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have the same eigenfunctions. Now the normalized eigenfunctions of H are
the Hermite functions h,, which form an orthonormal basis of L?. Tem-
pered distributions also have a unique representation »_ ¢,h,; see Chapter
10. The (normalized) Fourier operator F transforms the series ) ¢, h,, into
> (—i)"c,hy,, while the reflected Fourier operator Fr multiplies the expan-
sion coefficients by . Thus F is inverted by Fg; cf. Chapter 11. For L?
this approach goes back to Wiener [124]. [The author has used Hermite se-
ries to extend Fourier theory to a much larger class of generalized functions
than tempered distributions; see [67], and cf. Zhang [126].]

Chapter 12 first deals with one-sided integral transforms such as the
Laplace transform, which are important for initial value problems. Next
come multiple Fourier transforms. The most important application is to so-
called fundamental solutions of certain partial differential equations. In the
case of the wave equation one thus obtains the response to a sharply time-
limited signal at time zero at the origin. As a striking result one finds that
communication governed by that equation works poorly in even dimensions,
and works really well only in R3!

The short final Chapter 13 sketches the theory of general Schwartz dis-
tributions and two-sided Laplace transforms.

Acknowledgements. Thanks are due to University of Amsterdam colleague
Jan van de Craats, who converted my sketches into the nice figures in the
text. I also thank former and present colleagues who have encouraged me to
write the present “Mathematical Methods” book. Last but not least, I thank
the many students who have contributed to the exposition by their questions
and comments; it was a pleasure to work with them! Both categories come
together in Jan Wiegerinck, who also became a good friend, and director of
the Korteweg—de Vries Institute for Mathematics, a nice place to work.

Amsterdam, Spring, 2011 Jaap Korevaar
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CHAPTER 1

Introduction and survey

Trigonometric series began to play a role in mathematics through the
work of the Swiss mathematicians Leonhard Euler (1707-1783, St. Peters-
burg, Berlin; [29]) and Daniel Bernoulli (17001782, Basel; [6]). Systematic
applications of trigonometric series and integrals to problems of mathemat-
ical physics were made by Joseph Fourier (1768-1830, Paris, ” Théorie ana-
lytique de la chaleur”, 1822; [33]). A first rigorous convergence theory for
Fourier series was developed by Johann P.G.L. Dirichlet (1805-1859, Ger-
many; [25]). It applied to “good” periodic functions, for example, piece-
wise monotonic functions. Later, it was discovered that there are rapidly
oscillating continuous functions whose Fourier series do not converge in the
ordinary sense. However, Lipét Fejér (1880-1959, Budapest; [30]) could
show that there is a summability method that reproduces every continuous
function from its Fourier series (1904). A little later, with the introduction
of the Lebesgue integral, there arose a beautiful theory of Fourier series as
orthogonal series. Even this theory was not general enough to satisfy the
needs of applications. Around 1945, Laurent Schwartz (1915-2002, France;
[109]) introduced a powerful theory of Fourier series and integrals based on
his so-called distributions or generalized functions.

There are many books on Fourier analysis, see the Internet; a few are
mentioned at the end of the chapter.

1.1. Power series and trigonometric series

Trigonometric series arise when we consider a power series or Laurent
series Y ¢, 2" on a circle x = re', —w <t <.

ExaMPLE 1.1.1. In Complex Analysis one encounters the principal value
(p.v.) of the logarithm of a complex number w # 0:
p.v. logw o log |w| 4+ ip.v. argw,

where the principal value of the argument is > —7 and < +x. This formula
defines an analytic function outside the (closed) negative real axis with

1



2 1. INTRODUCTION AND SURVEY

derivative 1/w. For w = 1+ z with |z| < 1 one may represent the principal
value by an integral along the segment from 0 to z, and hence by a power
series:

leOg(1+Z):/ :/(1—S+S2_33+...)d8
o 1l+s 0
1 1 1
22—522+§z3—124+--~.

Setting z = re' and letting r " 1, one formally [that is, without regard to
convergence| obtains

p.v. log(1 +¢e") =log |1 + €| +ip.v. arg (1 + ")

1 1
1.1.1 =1 2 —t  —
( ) og 0052 '—1—22
) 1 .. 1 .. 1 ,.
:elt—5622t+§€31t—1641t+"', ]t\<7r

Assuming that the series in (1.1.1) is convergent, and then separating real
and imaginary parts, one finds that

1 1 1
:cost—50052t+—c053t—10084t+-~- )

1
1.1.2 log |2 —t
( ) og’ cos 5 3

Are these manipulations permitted? A continuity theorem of Niels H.
Abel (Norway, 1802-1829; [1]) will be helpful.

THEOREM 1.1.2. Let f(z) = D> " c,2" for |z] < R and suppose that
the power series converges at the point zy on the circle C'(0, R) = {|z| = R}.
Then the sum of the series at the point zy can be obtained as a radial limit:

o0

Z Cn2y = 11}% f(rz).

n=0

With this theorem the question of the validity of (1.1.1) is reduced to
the question whether the series

(1.1.4) f: (_172;_1 e

is convergent. Since we do not have absolute convergence, this is a delicate
matter. Here one can use partial summation:
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LEMMA 1.1.3. (i) For complex numbers a,, b,, n € N and the partial
sums Ap = a; + as + - - - + a, [with Ag = 0] one has

k k—1
> by = Aulby — b)) + Axb — Ajb; (k> j).
n=j+1 n=j

(i) If |An| < M < oo for all n and b, \, 0 (monotonicity!), then the
infinite series Y | ayb, is convergent, and

Z anbn = Z An(bn - bn+1) - Ajbj'
n=j5+1 n=j

Application to the series in (1.1.1). Take a,, = (=1)""*e™, b, = L. Then

. . . 1 = (_eit)n
An _ it L2t . -1 n—1_int _ it :
e —e . (=1)" e T )
so that
2 1

1+ et | cos 3|

(1.1.5) |AL| <
Thus by Lemma 1.1.3, the series (1.1.4) converges for |[t| < m. The sum of
the series in (1.1.1) can now be obtained from Abel’s theorem:

o _ [e.e] _

} : (_1)n ! 6mt — lim (_1)n ! rneint
n r/1 n

n=1 n=1

= }’1}2 p.v. log (1 + reit) = p.v. log (1 - eit) .t <

Exercises 1.1.1. Verify Lemma 1.1.3.
1.1.2. Use Lemma 1.1.3 to prove Theorerm 1.1.2.
Hint. One may take R = 1 and 2y = 1; by changing ¢y one may also
suppose that "¢, = 0.
1.1.3. Use formula (1.1.1) to calculate the sum 1 — 1 4+3 — 3 +---.
1.1.4. Compute the sums of the series

oo

(e} .
cosnx sin nx
E and E ,
n n

1 1

first for 0 < z < 27, and next for general x € R. Sketch the graphs of the
sum functions.
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1.1.5. What do you think of Euler’s formulas
D e =0 for 0<x<2m 1—2+22—23+-.-=§?

1.2. New series by integration or differentiation
ExaMPLE 1.2.1. Formal termwise integration of the series for %t in for-

mula (1.1.3) gives

1 1 1 1
(1.2.1) —COSt—i—?COSQt ?cos3t+ﬁcos4t— = Zt2+C.

Would this be correct for |t| < w7 Perhaps even for |t| < 7?7 If so, we can
evaluate C' and also

1 1 1
(1.2.2) S=14 = +¥+E+
simply by setting ¢t =0 and ¢ = 7:
1 1 1
T mEtE
1 1 1 1,
(1.2.3) S:1+§+§+E+”.:Zﬂ- +C.
Indeed, addition would give
2 2 2 2 1 1 1
C+S==+—=+= 1 =5
8=t gttt 2(+22+32+ ) 55,
so that S = —2C, and hence by (1.2.3),
1 1
(1.2.4) C=——7? S==7° (afamous result of Euler!).

12 6

But is this allowed? The simplest theorem that justifies termwise inte-
gration involves uniform convergence.

THEOREM 1.2.2. Suppose that the series > 1" gn(t), with continuous
functions g, (t), is uniformly convergent on the finite closed interval a <
t < b. Then the sum f(t) of the series is continuous on [a,b], and for
¢, t € la,bl,

i/ctgn(S)dSZ/Zgn ds—/f
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Application to Example 1.2.1. We will show that the complex series in
(1.1.1) is uniformly convergent for |¢| < b < 7; the same will then be true for
the series in (1.1.2), (1.1.3) which are obtained by taking real and imaginary
parts.
Accordingly, set
n—1_int 1
gu(t) = (=1)" ™ —=a, by, a1 +---+a, =A,.
n

Denoting the k-th partial sum Zlf gn(t) by Sk(t), partial summation as in
Lemma 1.1.3 with 7 < k gives

k k—1
S(t) = Si(t) = > abn =Y An(by — bui1) + Apby — Ajb;.
n=j+1 n=j

Using inequality (1.1.5) we thus obtain the estimate

k-1
[Sk(t) = S; (0] < Y 1An 1bn = bua| + [ Akl (el + 1451 185]
n=j

k—1
1 1 1 1 1 1 2
< — - — +-+-r < — -
= | cos 5t {Z (n n+1) k ]}_ | cos 3t| j

n=j

It follows that Si(t) — S;(t) — 0 as j, k — oo, uniformly for |t} < b < 7.
Hence by a criterion of Augustin-Louis Cauchy (France, 1789-1857; [12]),
the series > 7° g,(¢) in (1.1.1) is uniformly convergent for |¢| < b.

The same is true for the series in (1.1.3) which is > 7" Im g, (t). Inte-
grating from 0 to b we now obtain from Theorem 1.2.2 that

1, 1 1 1 1
Zb = (—cosb+1)+ (ﬁcos%—?) + (§00536—§) + e

Replacing b by ¢t we obtain (1.2.1) for 0 < ¢t < m; by symmetry it will
be true for |t| < m. Formula (1.2.1) will also hold for |t| = 7, since both
sides of (1.2.1) will represent continuous functions on [—m, 7] (by uniform
convergence of the series!).

ExXAMPLE 1.2.3. Formal termwise differentiation of the series in (1.1.3)
would give

1
(1.2.5) 5:cost—coth+c083t—cos4t+-~- :



6 1. INTRODUCTION AND SURVEY

Is this a correct result? Is the new series uniformly convergent? No, it is not
even convergent, since the terms do not tend to zero (take ¢ = 0 for exam-
ple)! Can one attach a meaning to (1.2.5)7 Formulas of this type occur in
the work of Euler, but Abel [a hundred years later] had no use for divergent
series. The contemporary view is that (1.2.5) makes sense with appropri-
ate interpretation. One could apply a suitable summability method, or one
may consider convergence in the generalized sense of distribution theory;
see Chapters 3 and 4.

Exercises 1.2.1. Prove that the series

(S .
Z S1n nx
n

n=1

is uniformly convergent for 6 <z < 27 —¢§ (where 0 < 0 < m). Is the series
uniformly convergent for —6 <z <97
1.2.2. Use partial summation to show that the partial sums

Z sin nx

n=1

remain bounded on —§ < x < § (< m), hence on R. Is this also true for the
corresponding cosine series?
1.2.3. Compute the sums of the series

[ee] o0 o0
Z COSNx Z sin nx Z COSnNx
p— n4 ‘

n=1 n=1

1.2.4. What formulas do you obtain by termwise differentiation of the
results obtained in Exercise 1.1.47
1.2.5. Other manipulations. Use the result

=, sinnz T
Z —7T2 for 0 <z <27

n=1

to sum the series

. sin 2nz sin(2k — 1)z
d 0,7).
; om0 Z =1 o (07
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Next verify the following representation for the signum function

1 forx >0 o .
e 4 2k —1
sgnyc’d:f —1 forz <0 p =— E sm(Qk—l)x
0 forz=0 = -

on (—m, ). Derive that on the same interval

1.2.6. Compute the sum of the series

1 1
cosx — gcos?)ac—l— gcos5x—--- on (—m,m).

1.3. Vibrating string and sine series. A controversy

The one-dimensional wave equation. We consider a tightly stretched
homogeneous string, whose equilibrium position is the interval [0, L] of the
X-axis, and whose ends are kept fixed. Idealizing, one supposes that the
string only carries out transverse vibrations in the “vertical” (X, U)-plane (a
reasonable approximation when the displacements are small). The point of
the string with coordinates (z,0) in the equilibrium position has transverse
displacement v = u(z,t) at time ¢. At time ¢, the generic point P of the
string has coordinates (z,u) = (z,u(x,t)).

It is also supposed that the tension 7" = T'(x,u) in the string is large
and that the string is perfectly flexible. Then the force exerted by the part
of the string to the left of the point P upon the part to the right of P will
be tangential to the string. The horizontal component of that force will
thus be T cos a, the vertical component T sin «r, where « is the angle of the
string with the horizontal at P (see Figure 1.1). We suppose furthermore
that there are no external forces: no gravity, no damping, etc.

Let us now focus our attention on the part of the string “above” the in-
terval (z, z+Ax) of the X-axis. Since there are no horizontal displacements,
the net horizontal force on our part must be zero:

(T + AT) cos(ae + Aa) — T'cosa =0, hence T cosa = const = T,
say. The net vertical force will be
(T + AT)sin(a + Aa) — T'sina = Ty tan(a + Aa) — T tan a.

This force will give rise to “vertical” motion by Newton’s second law: force
= mass X acceleration, applied at the center of mass (z/,u’). Since the
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T+ AT

P=(xu o+ Aa

(@] X X+ AX X

FiGURE 1.1

mass of our part is the same as in the equilibrium position, where it equals
density x length = pyAx, say, we obtain

82
Totan(a + Aa) — Ty tana = py Az - 8—;;(1”,15).
Now tana = da/0z; dividing both sides by Az and letting Az — 0, we
obtain the one-dimensional wave equation:
Pu  Du
az2 ~ P o
where ¢ = /Ty/po. Observe that ¢ has the dimension of a velocity. This is
confirmed by dimensional analysis: {(mi/t2)/(m/1)}2 = /t.
In the physical situation, the requirement that the ends of the string be
kept fixed imposes the boundary conditions

(1.3.2) w(0,8) =0, wu(L,t)=0, Vt.

1
(131) T() O Ugy = o) Ut O<ax < L, t e R,
C

PROBLEM 1.3.1. Initial value problem for the string with fixed ends. Let
us consider the initial value problem for our string in the situation where
the string is released at time t = 0 from an arbitrary starting position:

(1.3.3) u(z,0) = f(z), 0<azx<IL;

cf. Figure 1.2. Here we must of course ask that f be continuous and that
f(0) = f(L) =0. For t = 0, each point of the string has velocity zero:

(1.3.4) %(1’,0) =0, 0<z<L.

The question is if Problem 1.3.1, given by (1.3.1)—(1.3.4), always has a
solution, and if it is unique.
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FIGURE 1.2

Having seen vibrating strings, one would probably say that the simplest
initial position is given by a sinusoid:

u(z,0) = sin %x

For this initial position there is a standing wave solution of our problem,
that is, a product solution

u(z,t) = v(x) - w(t).

s

Taking v(z) = u(x,0) = sin §

ments for w(t):

x, our conditions lead to the following require-

w” = —Qw, w(0) =1, w'(0)=0.

Thus w(t) = cos Fct and
. T
u(z,t) = sin TS ct.
This formula describes the so-called fundamental mode of vibration of the
string, which produces the “fundamental tone”. The period of this vibration

(the time it takes for Zct to increase by 27) is 2£. Thus the “fundamental
frequency” (the number of vibrations per second) equals

C 1 TO

By change of scale we may assume that the length L of the string is
equal to w. Making this simplifying assumption from here on, we have
u(z,0) = sinz and the fundamental mode becomes

u(zx,t) = sin x cos ct;

cf. Figure 1.3. Analogously, the initial position u(x,t) = sin 2z of the string
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FIGURE 1.3

leads to the standing wave solution u(z,t) = sin 2x cos 2ct. More generally,
the initial position u(z,0) = sinnz leads to the standing wave solution

(1.3.5) u(z,t) = sinnx cosnct, n € N.

The frequency in this mode of vibration is precisely n times the fundamental
frequency — what we hear is the n-th harmonic overtone.

Exercises 1.3.1. Show that the vibrating string problem (1.3.1), (1.3.2),
(1.3.4) with L = 7 has no standing wave solutions u(z,t) = v(z)w(t) other
than (1.3.5), apart from constant multiples.
Hint. “Separating variables”, the differential equation (1.3.1) requires
that " "
1 t
V() = (t) = )\, a constant.
v(z) 2 w(t)
Thus v(z) has to be an “eigenfunction” for the problem
V=X, O0<axz<m, 00)=uv(r)=0; cf (1.3.2).

Returning to the initial value problem 1.3.1 with general f(x) (but L =
), we observe that the conditions (1.3.1), (1.3.2), (1.3.4) are linear. Thus
superpositions of solutions to that part of the problem are also solutions.
More precisely, any finite linear combination

k
ug(x,t) = Z by, sin nx cos nct
n=1
of solutions (1.3.5) is also a solution of (1.3.1), (1.3.2), (1.3.4). This com-
bination will solve the whole problem — including (1.3.3) — if the initial
position of the string has the special form f(z) = Zﬁzl b, sinnz. Boldly
going to infinite sums, it seems plausible that the expression

(1.3.6) u(x,t) = Z by, sin nx cos nct

n=1
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will solve the Initial value Problem 1.3.1, provided the initial position of the
string can be represented in the form

oo

(1.3.7) f(z) = Z bysinnz, 0<zx<m.

A controversy. Around 1750, the problem of the vibrating string with
fixed end points, Problem 1.3.1, was considered by Jean le Rond d’Alembert
(Paris, 1717-1783; [3]), Euler and Daniel Bernoulli. The latter claimed that
every mode of vibration can be represented in the form (1.3.6), that is, every
mode can be obtained by superposing (multiples of) the fundamental mode
and higher harmonics. The implication would be that every geometrically
given initial shape f(x) of the string can be represented by a sine series
(1.3.7). Euler found it difficult to accept this. He did not believe that every
geometrically given initial shape f(x) on (0,7) could be equal to (what to
him looked like) an analytic expression Y | b,sinnz. Euler’s authority
was such that Bernoulli’s proposition was rejected. Several years later,
Fourier made Bernoulli’s ideas more plausible. He gave many examples of
functions with representations (1.3.7) and related “Fourier series”, but a
satisfactory proof of the representations under fairly general conditions on
f had to wait for Dirichlet (around 1830).

1.4. Heat conduction and cosine series

Heat or thermal energy is transferred from warmer to cooler parts of
a solid by conduction. One speaks of heat flow, in analogy to fluid flow
or diffusion. Denoting the temperature at the point P and the time ¢t by
u = u(P,t), the basic postulate of heat condution is that the heat flow vector
¢ at P is proportional to —grad u:

§= —Agradu= —\ <a“ Ou a“) .

ox’ dy’ 0z

Here A is called the thermal conductivity (at P and ¢). Thus the heat
flow across a small surface element AS at P over a small time interval
[t,t + At], and to the side indicated by the normal N, is approximately
equal to —A(Qu/ON)ASAt; cf. Figure 1.4

Here we will consider the heat flow in a thin homogeneous rod, occupying
the segment [0, L] of the X-axis. We suppose that there are no heat sources
in the rod and that heat flows only in the X-direction (there is no heat
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|gl At—

FIGURE 1.4

flow across the lateral surface of the rod). [One would have similar one-
dimensional heat flow in an infinite slab, bounded by the parallel planes
{r = 0} and { = L} in space.] We now concentrate on the element
[z, x + Az] of the rod; cf. Figure 1.5. The quantity of heat entering this
element across the left-hand face, over the small time interval [t,¢ + At],
will be approximately —A(Ou/0z)(x,t)ASAt, where AS denotes the area
of the cross section of the rod. Similarly, the heat leaving the element
across the right-hand face will be —A(Ju/0x)(x + Ax,t)ASAt. Thus the
net amount of heat flowing into the element over the time interval [t, £+ At]
is approximately

AQ = \ %(:Hm,t)—@

(z,t)| ASAL.
T x

The heat flowing into our element will increase the temperature, say by
Awu. This temperature increase Awu will require a number of calories AQ)’
proportional to Au and to the volume ASAx of the element, hence

AQ' ~ cAuASAx,

where c is the specific heat of the material.
Equating AQ’ to AQ and dividing by ASAzAt, one finds the approxi-
mate equation

—(x + Az, t) — %(w,t)

Passing to the limit as Az — 0 and At — 0, we obtain the one-dimensional
heat or diffusion equation:

ou d%u

O<z<L, teR,
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0 X X+ AX L X

FIGURE 1.5

where 3 = A/¢ > 0. For the homogeneous rod it is reasonable to treat (3 as
a constant.

We could now prescribe the temperature at the ends of the rod and
study corresponding heat flow(s). The simplest case would involve constant
temperatures u(0,¢) and u(L,t) at the ends. Subtracting a suitable linear
function of x from wu(z,t), we might as well require that «(0,¢) = 0 and
u(L,t) = 0 for all t. Then we would have the same boundary conditions
as in (1.3.2), and this would again lead to sine functions and sine series.
A different situation arises when one keeps the ends of the rod insulated.
There will then be no heat flow across the ends. The resulting boundary
conditions are

Ju ou

1.4.2 - — YD) = '

PROBLEM 1.4.1. Rod with insulated ends. Let us consider the problem
where the temperature along the rod is prescribed at time ¢ = 0:

(1.4.3) u(z,0) = f(z), 0<z<L.

In view of (1.4.2) we will now require that f’(0) = f'(L) = 0. The question
is if Problem 1.4.1, given by (1.4.1)—(1.4.3), always has a solution, and if it
is unique.

Just as in Section 1.3, we may and will take L = 7. Time-independent
solutions u(x,t) = v(z) of (1.4.2) must then satisfy the conditions v'(0) =
v'(m) = 0. This suggests cosine functions for v(z) instead of sines:

v(x) =1, cosx, cos2x, -+, cosnx, - - .

Corresponding stationary mode solutions, or product solutions, u(x,t) =
v(x)w(t) = (cosnz)w(t) of (1.4.1) must satisfy the condition

(cosnz)w'(t) = B (—n? cosnx)w(t).
This leads to the following solutions of problem (1.4.1), (1.4.2) with L = 7:
(1.4.4) w(z,t) = (cosnz)e P neNy=NU{0}.

Indeed, w has to satisfy the conditions w’ = —n?pBw, w(0) = 1.



14 1. INTRODUCTION AND SURVEY

Superpositions of solutions (1.4.4) also satisfy (1.4.1), (1.4.2) (with L =

7). We immediately take an infinite sum

[e.e]
(1.4.5) u(z,t) = Z an(cos nx)e " P,

n=0
and ask if with such a sum, we can satisfy the general initial condition
(1.4.3). In other words, can every (reasonable) function f(x) on [0, 7] be
represented by a cosine series,

(1.4.6) f(z) = u(x,0) = Z apcosnr, 0<x<m?
n=0

Exercises 1.4.1. Show that the heat flow problem (1.4.1), (1.4.2) with
L = = has no stationary mode solutions wu(z,t) = v(x)w(t) other than
(1.4.4), apart from constant multiples. [Which eigenvalue problem for v is
involved?]

1.5. Fourier series

If a function f on R is for every = equal to the sum of a sine series (1.3.7),
then f is odd: f(—z) = —f(z), and periodic with period 27: f(x + 27) =
f(z). Similarly, if a function f on R is for every x equal to the sum of
a cosine series (1.4.6), then f is even: f(—z) = f(z), and periodic with
period 27. Suppose now that every (reasonable) function f on (0,7) can
be represented both by a sine series and by a cosine series. Then every
odd 27-periodic function on R can be represented (on all of R) by a sine
series, every even 2m-periodic function by a cosine series. It will then follow
that every (reasonable) 2m-periodic function on R can be represented by a
trigonometric series

(1.5.1) f(z) =ao+ Z (ay, cosnx + by, sinnz).

n=1
Indeed, every function f on R is equal to the sum of its even part and its
odd part, and if f has period 27, so do those parts:

f() = L)+ F=a)} + 3 {F(@) — F(-2)}.

Conversely, if every 2m-periodic function f on R has a representation
(1.5.1), then every function f on (0,7) can be represented by a sine series
[as well as by a cosine series]. Indeed, any given f on (0,7) can be extended
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to an odd function of period 27, and for the extended function f, (1.5.1)
would imply

flr) = — (=) = S{F@) ~ (~)}

1 (o0}
=5 {ao + Z (@, cosnx + by, sin nx)

n=1

o
—ag — Z (@, cosnx — by, sin na:)}

n=1
o0
= E b, sin nz.
n=1

[To obtain a cosine series, one would extend f to an even function of period
27|

It is often useful to consider a function f of period 27 as a function on
the unit circle C'(0,1) in the complex plane:

C0,1)={z€C:z=¢€", —m<t<T}

Using independent variable ¢ instead of x, the 27-periodic function f may
be represented in the form

(1.5.2) f(t) =g(e"), teR,

where ¢(z) is defined on the unit circumference. For readers with a basic
knowledge of Complex Analysis we can now discuss a (rather strong) con-
dition on f(t) = g(e") which ensures that there is a representation (1.5.1)
[with ¢ instead of z]. Note that is customary to replace the constant term
ap in (1.5.1) by %ao in order to obtain uniform formulas for the coefficients
Qp,.-

THEOREM 1.5.1. Let f(t) = g(e") be a function on R with period 27 such
that g(z) has an analytic extension from the unit circle C(0,1) = {|z| = 1}
to some annulus A(0;r, R) = {r < |z| < R} withr <1 < R. Then

o0

‘ 1 > .
(1.5.3) f(t) = Z cpe™ = 500 + Z (a,, cosnt + by, sinnt),

n=—o00 n=1
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where
1 (7 .
Cp = _/ f(t)e_mtdt, vn € Z,
2m J_,
1 i
(1.5.4) a, = — f(t)cosntdt, n=0,1,2,---,
™ —T
1 [7 )
b, = — f(t)sinntdt, n=1,2,---
T

—T

PROOF. An analytic function g(z) on the annulus A(0;r, R) can be rep-
resented by the Laurent series

e}

g(z) = Z 2", r<|z| <R,
where
1 —n—1 1 " it ,—int
Cp = — g(z)z dz = — g(e®)e ™dt, VneZ.
27TZ C(O,1)+ 27T —r

This result from Complex Analysis implies the first representation for f(t) =
g(e") in (1.5.3) with ¢, as in (1.5.4). Here the series for f(¢) will be ab-
solutely convergent. In fact, the coefficients ¢, will satisfy an inequality of
the form |c,| < Me ™" with § > 0; cf. Exercise 1.5.6.

In order to obtain the second representation in (1.5.3) one combines the
terms in the first series corresponding to n (> 0) and its negative. Thus

Cneint 4 cinefint
1 /ﬂ f( ) 7insd int+ 1 /ﬂ f( ) insd —int
= — s)e s-e — s)e™ds - e
2 ) . 2 ) .
1 s
(1.5.5) = — / f(s)-2cosn(s—t)ds
2 J_,
L[ L (" : :
= — f(s)cosnsds - cosnt + — f(s)sinnsds - sinnt
T J T J
= a, cosnt + b, sinnt,

with a,, b, as in (1.5.4). Finally taking n = 0, one finds that

. 1 (7 1
(1.5.6) coe =cy= —/ f(s)ds = =ay.
2 J_, 2
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DEFINITION 1.5.2. Let f on R be 27-periodic and integrable over a
period. Then the numbers a,, b, computed with the aid of (1.5.4) are
called the Fourier coefficients of f, and the second series in (1.5.3), formed
with these coefficients, is called the Fourier series for f. We write

1 = :
(1.5.7) f(t) ~ 500 + ; (ay cosnt + b, sinnt),

with the symbol ~, to emphasize that the series on the right is the Fourier
series of f(t), but that nothing is implied about convergence. The numbers
¢, determined by (1.5.4) are called the complex Fourier coefficients of f
and the first series in (1.5.3), formed with these coefficients, is called the
complex Fourier series for f.

QUESTION 1.5.3. The basic problem is: under what conditions, and in
what sense, will the Fourier series of f converge to f 7 We would of course
want conditions weaker than the analyticity condition in Theorem 1.5.1.

For clarity, the Fourier coefficients of f will often be written as a,[f],
bu[f], cn[f]- The partial sums of the Fourier series for f will be denoted by
sk[f]; the sum si[f] will also be equal to the symmetric partial sum of the
complex Fourier series:

sk[f](t) o %ao[f] + Z (an[f] cosnt + b,[f] sinnt)
(1.5.8) = Z cnlfle™:

n=—=k

cf. (1.5.5), (1.5.6). Instead of variable ¢ one may of course use = or any
other letter. In ch 2 we will derive an integral formula for s;[f]. From that
formula we will among others obtain a convergence theorem for the case of
piecewise smooth functions.

DEFINITION 1.5.4. For any integrable function f on (—m, 7) or on (0, 27),
the Fourier series is defined as the Fourier series for the 2m-periodic exten-
sion. For integrable f on (0,7), the Fourier cosine series and the Fourier
sine Sertes,

1 o0 [o.¢]
5(10 + E ancosnxr and E b,, sin nx,
n=1 n=1
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are defined as the Fourier series for the even extension of f with period 27,
and the odd extension, respectively.

Exercises 1.5.1. Prove that the Fourier series for an even 2m-periodic
function is a cosine series, and that the Fourier series for an odd 27-periodic
function is a sine series.

1.5.2. Let f be integrable on (0, 7). Prove that for the Fourier cosine
and sine series of f,

2 [T 2 [T
a, = —/ f(t)cosntdt, b, = —/ f(t) sinnt dt.
T Jo T Jo

1.5.3. Determine the Fourier cosine and sine series for f(z) = 1 on (0, 7).

1.5.4. Same question for f(z) =z on (0, 7).

1.5.5. Do you see a connection between the series in Exercises 1.5.3,
1.5.4 and certain trigonometric series which we encountered earlier?

1.5.6. Let f(t) = g(e™), where g(z) is analytic on the annulus given by
e™® < |z] < €% and in absolute value bounded by M. Use Cauchy’s theorem
[14] and suitable circles of integration to show that |c,[f]| < Me=9"! for all
n.

1.5.7. Let U(z,y) denote a stationary temperature distribution in a
planar domain D. In polar coordinates, the temperature becomes a function
of rand 0, U(rcosf,rsinf) = u(r, ), say. It will satisfy Laplace’s equation,
named after the French mathematician-astronomer Pierre-Simon Laplace
(1749-1827; [73]):

aef O?U 02U  0*u  10u 1 0%

AU = Ox? + oy2  Or2 + r or +r28«92

In the case of D = B(0, 1), the unit disc, the geometry implies a periodicity

condition, u(r, 8 + 2m) = u(r,d). Also, u(r,#) must remain finite as r \, 0.

Show that in polar coordinates, Laplace’s equation on B(0, 1) has product

solutions u(r, 0) of the form v, (r)cosnf, n € Ny, and v, (r)sinnd, n € N.

Determine v, (r) if v,(1) = 1. What are the most general product solutions
u(r,0) = v(r)w(f) of Laplace’s equation on the disc B(0,1)?

1.5.8. (Continuation) We wish to solve the so-called Dirichlet problem
for Laplace’s equation on the unit disc:

AU =0 on B(0,1), U=F on C(0,1).

=0.

[Stationary temperature distribution in the disc corresponding to prescribed
boundary temperatures.] Assuming that the boundary function F'; written
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as f(#), can be represented by a Fourier series, one asks for a solution u(r, )
in the form of an infinite series.

1.6. Fourier series as orthogonal series

A function f will be called square-integrable on (a,b) if f is integrable
over every finite subinterval, and |f|? is integrable over the whole interval
(a,b); cf. Section 5.5. If f and g are square-integrable on (a, b) the product
fg will have a finite integral over (a,b). Square-integrable functions f and
g are called orthogonal on (a,b), and we write f L g, if

(1.6.1) /ab fg= /abf(x)@dx = 0.

One may introduce a related abstract inner product by the formula

b b
(1.6.2) (u,v) = / uv = / u(z)v(z)de.
DEFINITION 1.6.1. A family ¢1, ¢, ¢3, - - - of square-integrable functions

on (a, b) is called an orthogonal system on (a, b) if the functions are pairwise
orthogonal and none of them is (equivalent to) the zero function:

b b
/%@ZO, k # n; /|¢nl2>0, v n.

Other index sets than N will occur, and if (a, b) is finite, we may also
speak of an orthogonal system on |a, b].

ExAMPLES 1.6.2. Each of the systems

1
—, cosx, cos2x, -+, cCOSNT, - -,
2

sinzx, sin 2z, --- , sinnx, - - -,

is orthogonal on (0, 7) [and also on (—m, m)]. Each of the systems

, cosx, sinx, cos2zx, sin2zx, ---, cosnx, sinnzx, - - -,

= N

T —ix 2ix —2ix inx —inx
, €, ¢€ , €6, € y Tt € y € sy T
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is orthogonal on (—m, 7) [and also on every other interval of length 27]. We
will verify the orthogonality of the first and the last system:

s 1 ™
/ cosnx cos kx dr = 5 / {cos(n + k)x + cos(n — k)z} dx
0 0
1 [sin(n +k)x  sin(n — k)x} "

_ _ k k> 0):
21 ik n—k |, 0 for k#mn (n, k=0);

T ) ei(nfk)x ™
/ e ke gy — [7} =0 for k#n.
— Z(TL - k) -

If {¢,}, n € Nis an orthogonal system, a series >~ | ¢,¢, with constant
coefficients ¢, will be called an orthogonal series [the terms in the series
are pairwise orthogonal]. Fourier cosine series and Fourier sine series are
orthogonal series on (0, 7). Complex Fourier series are orthogonal series on
(—m, ), and so are real Fourier series.

If an orthogonal series converges in an appropriate sense, the coefficients
can be expressed in terms of the sum function in a simple way:

LEMMA 1.6.3. Let {¢,}, n € N be an orthogonal system of piecewise
continuous functions on the bounded closed interval [a,b]. Suppose that a
certain series Yy | Ca¢n converges uniformly on [a,b] to a piecewise con-
tinuous function f:

(1.6.3) i Cntn(z) = f(x), uniformly on |a,b.
n=1
Then
b o—
(164) Cp = fz fd)n )
. |onl?

PROOF. Since the function ¢, will be bounded on [a, b], it follows from
the hypothesis that the series

Z cn¢n$k converges uniformly to f@k on [a,b].

n=1

Thus we may integrate term by term to obtain

/abfakzicn/abd)n@:ck/abW-
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In the final step we have used the orthogonality of the system {¢,}. The
result gives (1.6.4) [with k instead of n]. O

The lemma shows that for given {¢,} and f, there is at most one or-
thogonal representation (1.6.3) [with uniform convergence].

DEFINITION 1.6.4. For a given orthogonal system {¢,,} and given square-
integrable f on (a,b), the numbers ¢,, computed with the aid of (1.6.4) are
called the expansion coefficients of f with respect to the system {¢,}. The
corresponding series Y >, ¢,¢, is called the (orthogonal) expansion of f
with respect to the system {¢, }. To emphasize that there is no implication
of convergence we write

(1.6.5) f~ Z Cobn  Or also f(z) ~ i Cnn(

n=1

QUESTIONS 1.6.5. The basic problems are: under what conditions, and
in what sense, do orthogonal expansions converge, and if they converge, will
they converge to the given function f? We would aim for conditions weaker
than the one in Lemma 1.6.3.

These questions are best treated in the context of inner product spaces,
preferably complete inner product spaces or so-called Hilbert spaces; cf.
Chapters 5, 7. (Such spaces are named after the German mathematician
David Hilbert, 1862-1943; [48].) The square-integrable functions on (a,b)
with the inner product given by (1.6.2) form an inner product space. It
is best to use integrability in the sense of Lebesgue here (see Section 2.1),
because then the square-integrable functions on (a, b) form a Hilbert space,
the space L?(a,b).

Fourier series can be considered as orthogonal expansions. Thus the
complex Fourier series of a square-integrable function f on (—m, 7) is the
same as its expansion with respect to the orthogonal system {e™}, n =
0,+1,+2,---:

| &t 1 / F(@)e-inedy f f(z _md:ﬂ'
f ‘emx‘de

Besides sines, cosines and complex exponentials, there are many orthogonal
systems of practical importance. We mention orthogonal systems of poly-

nomials and more general orthogonal systems of eigenfunctions; cf. Chapter
7.
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Exercises 1.6.1. Show that the Fourier cosine series %ao + 22021 a, COSNT
of a square-integrable function f on (0,7) is also its orthogonal expansion
with respect to the system %, cosx, cos 2z, --- on (0,7); cf. Exercise 1.5.2.

1.6.2. State and prove the corresponding result for the Fourier sine
series.

1.6.3. Write down the expansion of the function f(z) = 1 on (—m, )
with respect to the orthogonal system sinz, sin2z, --- on (—m, 7). Does
the expansion converge? Does it converge to f(x)?

1.6.4. Same questions for the expansion of the function f(z) = 1+ x
on (—m,m) with respect to the orthogonal system %, cosx, cos2x, -+ on
(—m,m).

1.6.5. Determine the expansion of the function f(z) = e** on (0,27)
with respect to the orthogonal system {e"*}, n € Z on (0, 27).

1.7. Fourier integrals

Many boundary value problems for (partial) differential equations in-
volve infinite media and for such problems one needs an analog to Fourier
series for infinite intervals. We will indicate how Fourier series go over into
Fourier integrals as the basic interval expands to the whole line R.

For a locally integrable function f on R with period 2L instead of 27 one
obtains the Fourier series by a simple change of scale. Indeed, f (%t) will
now have period 27 as a function of ¢. Hence it has the following Fourier
series:

f(%t) ~ Z ca(L)e™ on (—m,m), where

n=—oo

cn(L) = %/_ f (%t) et

Changing scale, one obtains the Fourier series for f(z) on (=L, L):

f(.T) ~ Z Cn(L)ein(ﬂ-/L)x on (—L’ L)’ where
Lo
(1.7.1) cn(L) = _/ f(x)efln(ﬂ/L)xdx'
oL ),

Suppose now that f(z) is defined on R, not periodic but relatively small
as r — Fo00, and so well-behaved that for every L > 0, the restriction of
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f to (=L, L) is equal to the sum of its Fourier series for that interval. For
large x we will now use the approximation

1 oo —in(n/L)x
cn(L) & ﬁ/ f(x)e /D gy

[If f(z) vanishes outside some finite interval (—b,b), the approximation will
be exact if we take L > b.] At this point it is convenient to introduce the
so-called Fourier transform of f on R:

(1.7.2) 9(€) = f(©) = (FNe) / f(x)e€dr, €eR.
In terms of g, .
cn(L) =~ 579 <nz) .

Hence for large L and —L < = < L, the postulated equality for our f(x) in
(1.7.1) will give the approximate formula

1 ™ 1 ™ T
~ _ in(n/L)x _  ~ _ in(n/L)z "
(1.7.3) f(x)~ 5T E g(nL>e =5 E g(nL)e 7

n=—oo n=—oo

For fixed x, the final sum may be considered as an infinite Riemann sum

oo

. T s
(1.7.4) nz_:oo G(6) A, with & =n—, A& =+,
and
G(§) = G(&,2) = g(§)e'™", —o0 <& < 0.
For suitably well-behaved functions G(§), sums (1.7.4) will approach the
integral [*° G(£)d¢ as L — oo. It is therefore plausible that for fixed
x € R, the limit may be taken in (1.7.3) as L — oo to obtain the following

integral representation for f(x) in terms of g:

175) fw) =5 [ olemde= o [ ggees

2m —o0 —0o0

Observe that the final integral resembles the Fourier transform g(z) of
g(&). The latter would have x instead of —z, or —z instead of x. Thus the
integral in (1.7.5) equals §(—=x); it is the reflection of the Fourier transform
of g, or the so-called reflected Fourier transform, (Frg)(x). Hence we arrive
at the important formula for Fourier inversion:

1 1

(1.7.6) If g=f=Ff then f=_—3r=-—Frg.
2T 2T
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Precise conditions for the validity of the inversion theorem will be obtained
in Chapters 9 and 10.

It may be of interest to observe that the factor 1/(27) in formula (1.7.6)
is related to the famous “Cauchy factor” 1/(27i) of Complex Analysis:

EXAMPLE 1.7.1. Let f(z) = e~%*l where a > 0. We compute the Fourier
transform:

00 oo 0
9(§) :/ el gy :/ e_(“”g)g”dx—l—/ ele= )2 gy
S 0 —o0

1 1 2a
(1.7.7) a+i§+a—i§ &2 +a?

In this case one can verify the inversion formula (1.7.6) with the aid of
Complex Analysis. Indeed, introducing a complex variable ( = £ + in, one
may write

Y N 2ia .
(1.7.8) o /Oog(ﬁ)e d¢ = }%Ergo 5 /[R’R] T a e"edc.
Now choose R > a. For # > 0 we attach to the real segment [—R, R]
the semicircle Cg, given by ¢ = Re®, 0 < t < 7. This semicircle lies in
the upper half-plane {Im ¢ > 0}, where |e’®| = ¢7*7 < 1. For the closed
path Wgr = [-R, R] + Cg, the Cauchy integral formula [13] (or the residue
theorem) gives

1 1 2ia

2ri Juy, C—ia ¢ +ia© ¢

+a

(1.7.9) = {Value of e at the point ¢ = m} =e .

Since

1 2ia » aR
(478
QWi/cRC2+@26$dC‘S 2_a2—>0 as R — oo,

(1.7.9) implies that the limit on the right-hand side of (1.7.8) has the value
e
1 o¢]

o [ 9@t de = = (x 2 0).
2m J_

For x < 0 one may augment the segment [—R, R] by a semicircle in the
lower half-plane {Im ¢ < 0} to obtain the answer e = e~l.
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For the applications, the most useful property of Fourier transformation
is the fact that differentiation goes over into (“maps to”) multiplication by
a simple function:

(1.7.10) f'() = Df(x) = ig f(€).
Repeated application of the rule gives
p(D)f(x) == pli€) f(€)

for any polynomial p(t) with constant coefficients. Thus Fourier transforma-
tion changes an ordinary linear differential equation p(D)u = f with con-
stant coefficients into the algebraic equation p(i§)u = f . Applying Fourier
transformation to one or more of the variables, linear partial differential
equations with constant coefficients go over into differential equations with
fewer independent variables. Applications to boundary value problems will
be discussed in Chapters 9-12.

Exercises 1.7.1. Show that the Fourier transform of
1
f(z) = o is equal to ge_“m (a > 0).

1.7.2. Prove that the Fourier transform of an even function is even, that
of an odd function, odd.
1.7.3. Compute the Fourier transform g(§) of the function

o) = { 1 for |z| <a,

0 for |z| > a.

Next use the improper integral

/ sin 6 dé = msgnt
R £

[for sgn see Exercise 1.2.5] to show that, also in the present case,

L / JeEde = f(x)

1.7.4. Let f be a good” function: smooth, and small at £oo. Use
integration by parts to prove that (Ff')(&) = i&(F f)(£).

1.7.5. Prove the “dual” rule: If f is small at 00 and Ff = g, then
Flaf(@))(€) =1ig'(§)-

1.7.6. Use the rules above to compute the Fourier transform of f(z) =
e~ where a > 0. Hint: One has f'(z) = —2az f(z).
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Books. There are many books on Fourier analysis; see the Internet for
standard texts. The author mentions only some of the authors here; their
books are listed in chronological order. See the bibliography for full titles.

1931 Wolff [125] Fourier series (in German), very short introduction

1933 Wiener [124] and 1934 Paley and Wiener [88], original work on Fourier
integrals

1937 Titchmarsh [120], basic book on Fourier integrals

1944 Hardy and Rogosinski [45], Fourier series, short, scholarly

1950/1966 Schwartz [110], his basic work on distributions

1960 Lighthill [81], short, Fourier asymptotics

1971 Stein and Weiss [114], Fourier analysis on Euclidean spaces

1972 Dym and McKean [28], Fourier integrals and applications

1983 Hormander [52], vol 1, his treatise on distributions for partial differ-
ential equations

1989 Korner [70], refreshingly different

1992 Folland [32], balance of theory and applications

2002 Zygmund [129] (predecessor 1935), two-volume standard work on
Fourier series

2010 Duistermaat and Kolk [27], advanced text



CHAPTER 2

Pointwise convergence of Fourier series

For smooth periodic functions [functions of class C!, that is, continu-
ously differentiable functions], the Fourier series is pointwise convergent to
the function, even uniformly convergent. The smoother the function, the
faster the Fourier series will converge. Pointwise convergence holds also for
piecewise smooth functions, provided such functions are suitably normal-
ized at points of discontinuity. However, for arbitrary continuous functions
the Fourier series need not converge in the ordinary sense.

2.1. Integrable functions. Riemann—Lebesgue lemma

Let [a,b] be a bounded closed interval. A function f on [a,b] or (a,b)
will be called piecewise continuous if there is a finite partioning a = ay <
a; <---<a, ="bof [a,b] as follows. On each (nonempty) open subinterval
(ax_1,a) the function f is continuous, and has finite right-hand and left-
hand limits f(ag_1+) and f(ar—). The value f(ay) may be different from
limits f(ax—) and/or f(ax+); this is in particular the case if a; = ap_1.

One similarly defines a piecewise constant or step function s; it will
be constant on intervals (ag_1,ax). It is clear what the integral of such a
function on [a, b] will be; values s(ay,) different from limits s(ay—) or s(ax+)
will have no effect.

A real function f on [a,b] will be Riemann integrable (after Bernhard
Riemann, Germany, 1826-1866; [98]) if there are sequences of step functions

{sn} and {s],} such that
sp(z) < f(z) < sl (x), Vn and Vz € [a,b], and

/ab(s; — ) = /ab{s;(x) —s(@)hdr — 0 as n— oo,

The Riemann integral fabf = fab f(z)dx will then be the common limit of
the integrals of s, and s/; cf. [99]. For complex-valued functions one would
separately consider the real and imaginary part.

27
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In this book the statement: “f is integrable over (a,b)” (or [a,b]) shall
mean that f is integrable in the sense of Lebesgue (after Henri Lebesgue,
France, 1875-1941; [76]); notation: f € L(a,b). For a Riemann integrable
function on a finite interval the Lebesgue integral has the same value as the
Riemann integral. However, the class of Lebesgue integrable functions is
larger than the class of (properly) Riemann integrable functions, and that
has certain advantages, for example, when it comes to termwise integration
of infinite series; cf. Section 5.4. If a function has an improper Riemann
integral on (a, b) that is absolutely convergent, it also has Lebesgue integral
equal to the Riemann integral.

For an integrable function f on (a,b) and any € > 0, there is a step
function s = s. on [a, b] such that

(2.1.1) / F(2) — s(x)|dz < <.

[This holds also for unbounded intervals (a,b), but then one will require
that s be equal to zero outside a finite subinterval.|

*For a definition of Lebesgue integrability one may start with the notion
of a negligible set or set of measure zero. A set E C R has (Lebesgue)
measure zero if for every € > 0, it can be covered by a countable family of
intervals of total length < e. If a property holds everywhere on (a, b) outside
a set of measure zero, one says that it holds almost everywhere, notation
a.e., on (a,b). A real or complex function f on (a,b) will be Lebesgue
integrable if there is a sequence of step functions {s,} that converges to f
a.e. on (a,b), and is such that

b
/ |Sm — Sn| — 0 as m, n — oo.
a

The Lebesgue integral of f over (a,b) is then defined as

b b
/ f = lim Sn;
a n—oo a

cf. [68]. Using this approach, a subset E of R may be called (Lebesgue)
measurable if its characteristic function hg is integrable; the (Lebesgue)
measure m(FE) is then given by the integral of hg. [By definition, hg has
the value 1 on F and 0 outside E.] A function f may be called (Lebesgue)
measurable if it is a pointwise limit a.e. of step functions.

*For a treatment of integration based on measure theory, which is es-
sential in Mathematical Statistics, see for example [77].
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We can now show that the Fourier coefficients a,, = a,[f], b, = b,[f]
and ¢, = ¢,[f] of a periodic integrable function f [Section 1.5] tend to zero
as [n| — oo. Likewise, the Fourier transform ¢(&) of an integrable function
f on R [Section 1.7] will tend to zero as |£| — oo.

LEMMA 2.1.1. (Riemann-Lebesgue) Let f be integrable over (a,b) and
let X be a positive real parameter. Then as A — oo,

b b
/ f(z)cos \x dx — 0, / f(z)sin \x dz — 0,
ab | a
/ f(z)e* dx — 0.

PROOF FOR fab f(x)e*dz. The integral will exist because the product
of an integrable function and a bounded continuous function is integrable
[see Integration Theory].

(i) We first consider the case where f is the characteristic function h,
of a finite subinterval J of (a,b) with end-points « and 3. Clearly

B
/ ei)\xdx
(0%
as A — oo.

(ii) Suppose now that f is a piecewise constant function s on (a, b) [which
is different from zero only on a finite subinterval]. The function s can be
represented as a finite linear combination of characteristic functions:

M8 _ pida
i\

— 0

= <

b 4 9
/a hJ(x)e“\xda: = 3

(2.1.2) s(x) = Z Yehy, (x), Ji € (a,b) finite.

[Here some of the intervals J, might reduce to a point.] Thus

b P P
. . 2
AT IAT
s(z)edx x| < — — 0
/ (z) ;;1 %/Jk <3 k§1 V|

a

(2.1.3)

as A — 00.
(iii) For arbitrary integrable f and given € > 0, one first approximates f
by a pieceweise constant function s such that inequality (2.1.1) is satisfied.
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Representmg s in the form (2.1.2), it now follows from (2.1.3) that

/{f — s(x M’“"dx—i—/ab()mdx

2
< / |f(x) — s(x)|dz + 3 |7k\ < 2¢ provided X > ).
@ k=1

de.ﬁlf

O

How rapidly do Fourier coefficients or Fourier transforms tend to zero?
That will depend on the degree of smoothness of f. Let CP denote the class
of p times continuously differentiable functions.

LEMMA 2.1.2. For some p > 1 let f be of class C5_, that is, f has period
27 and is of class C? on R (not just on [—m,7|!). Then

Cn[f/] = incn[f]v Ty Cn[f(p)] = (in)pcn[f]a

so that

sup | /]
|nf?

lenl f]] <

and nPc,[f] — 0 as |n| — oo.

PRrROOF. Integration by parts shows that

Cn[f/] = % B f/(x)efinfdx = % [f(x)efmx}:rﬂ
(2.1.4) +in % /_7; F(@)e ™ dz = incy[f].

Indeed, the integrated term drops out by the periodicity of f. For p > 2 one
will use repeated integration by parts. The inequality for ¢,[f] now follows
from a straightforward estimate of the integral for ¢,[f®)]. The final result
follows from Lemma 2.1.1 applied to f®). O

REMARKS 2.1.3. The first result in Lemma 2.1.2 may be expressed by
saying that for f € C;_, the complex Fourier series for f’ may be obtained
from that of f by termwise differentiation:

(2.1.5) f(z) ~ cheim —  f(z) ~ Zincn[f]eim.

[Recall that the symbol ~ is to be read as “has the Fourier series”.] The
implication (2.1.5) is independent of questions of convergence. Similarly,
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for the “real” Fourier series of f € Cl

f(z) ~ %ao[f] + Z (an[f] cosnx + by,[f] sinnx)
(2.1.6) — f'(x) ~ Y (nb,[f] cosnz — na,[f]sinnz).

The computation (2.1.4) is valid whenever f is in Cy, and can be written
as an indefinite integral of its derivative, which we suppose to be integrable:

(2.1.7) fla) = f(0) + /0 O

Representation (2.1.7) will in particular hold if f is continuous and piecewise
smooth.

For Fourier analysis, an important class of functions is given by the
so-called functions of bounded variation, or finite total variation:

DEFINITION 2.1.4. The total variation V' = Vy[a, b] of a function f on a
(finite) closed interval [a, b] is defined as

V= sup b{’f(l’l—f(xo)\+‘f($2—f($1)‘+‘”

(2.1.8) + 1 (wp = fep-)l}

where the supremum is taken over all finite partitionings of [a, b].

Simple examples of functions of bounded variation are given by bounded
monotonic functions, and by “indefinite integrals” (2.1.7) of integrable func-
tions on a finite interval. Total variation is additive: if a < ¢ < b then
Vila,b] = Via, c] + Vilc,b]. One may deduce that ¢(x) = Vy[a, z] is con-
tinuous wherever f(x) is. A real function f of bounded variation can be
represented as the difference of two increasing (nondecreasing) functions on
la, b], whose total variations add up to that of f:

1 1
f=50+H=506-1).

In particular a function f of bounded variation has a finite right-hand and
left-hand limit at every point ¢ € [a,b), and ¢ € (a,b], respectively. For
finite [a, b] such a function will be Riemann integrable.

Exercises. 2.1.1. Prove the implication (2.1.6) for piecewise smooth f €
Cor-
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2.1.2. Let f be in C3_or at least, f € Cs_ with f’ piecewise smooth.
Prove that the Fourier coefficients of f are O(1/n?), and deduce that the
Fourier series for f is uniformly convergent.

2.1.3. Verify the following Fourier series for functions on (—m, 7:

= (-1 s 1 o S (="
T~ E ~———sinny, z°~ =T E ~CcosnZ.
2 - 3 +4 o
n=1 n=1

Explain why the Fourier coefficients for f(z) = z? tend to zero faster than
those for g(x) = x. [Both functions are infinitely differentiable on (—m,x]!

2.1.4. Compute (or estimate) the total variation Vi[—m, n| for (i) a
monotonic function; (ii) an indefinite integral; (iii) the functions cosnzx,
sin nx, €% (iii) an arbitrary C' function f.

2.1.5. For f of bounded variation on [a, b] set ¢(x) = Vy[a, z]. Assuming
f real, show that ¢ + f and ¢ — f are nondecreasing.

2.1.6. Show that the set of discontinuities of a function of bounded
variation is countable.

2.1.7. Let f be of finite total variation V' on [a,b] and let g be of class

C'la,b]. Prove that

tlbfd

Hint. It will be sufficient to prove the result for piecewise constant functions
f.

2.1.8. Let f be a 2m-periodic function of finite total variation V' on
[—7, w]. Prove that

< Vsup [g| +[f(b)g(b) — f(a)g(a)l

v

1 4 » 1
(2.1.9) lenlf]] = g/ f(x)e_”mdx‘ < YA

Obtain corresponding inequalities for the Fourier coefficients a,[f] and b,[f].
Are the inequalities sharp?

2.2. Partial sum formula. Dirichlet kernel

Let f be an integrable function on (—m, 7); we extend f to a 2m-periodic
function on R. As in Section 1.5 the Fourier coefficients for f are denoted
by a, = a,[f] etc., and the k-th partial sum of the Fourier series is called
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sk or sg[f]:

k

se[fl(x) = %&o[f] + Z (an[f] cosnx + by,[f] sin nx)

n=1
k

=3 alfe

n=—~k

We will express si(x) as an integral by substituting the defining integrals
for the complex Fourier coefficients c,, this time using variable of integration
u in order to keep t in reserve for x — u:

sk(z) = Z 1 flu)e ™ duy - ™

(2.2.1) :/Hﬂf(a:—t)% Y et

- n=—k

The “kernel” by which f(z—t) is multiplied is called the Dirichlet kernel.
It will be expressed in closed form below, and is illustrated in Figure 2.1.
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LEMMA 2.2.1. For k=0,1,2,--- and allt € R,

[N
-

27 sin = t

k
of 1 sin(k + 3)t
(2.2.2) == §_ TR

[Here the right-hand side is defined by its limit value at the points t = 2v.|

The proof follows from the sum formula for geometric series:

k . . . . ekt q
§ emt — e—zkt(l + ezt 4ot €2kzt) — e—zkt -
et —1
n=—~k
1N 1y, . e
elkt3)it _e=(kt3)it 24gin(k + 1)t
ezt — g 3it 2i sin 5t

LEMMA 2.2.2. The kernel Dy is even and has period 27, and
/ Di(t)dt =1, VEk e N,.

The proof follows from the definition of Dj; note that ffﬂ e™dt = 0 for
all n # 0.

THEOREM 2.2.3. (Dirichlet) Let f be 2m-periodic and integrable over a
period. Then the partial sums of the Fourier series for f are equal to the
following integrals involvmg the kernel Dy:

slfl@) = [ flo—ODut)dt = /fx+t>Dk<>d

7ﬂfx+t )+ flz—1)
2

(2.2.3) Dy(t)dt, Vk € N,.

PROOF. For fixed z the function g(t) = g(t,x) = f(z — t)Dy(t) is in-
tegrable and has period 27. Thus the integral of g over every interval of
length 27 has the same value. Formulas (2.2.1) and (2.2.2) now show that

sk(z) = /%JHT f(z —t)Dg(t)dt = /_7T f(z —t)Dy(t)dt

—T
™

(2.2.4) =— /_F f(z 4+ v)Dg(—v)dv = f(z 4 v)Dg(v)dv

—T

because Dy, is even. The final formula in (2.2.3) follows by averaging. [
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Exercises. 2.2.1. Let f(z) = "™ with m € N. Determine s;[f](x) for
k=0,1,2,---: (i) directly from the Fourier series; (ii) by formula (2.2.3).
2.2.2. Same questions for g(z) = cos maz.

2.2.3. Compute
™ sin(k + Dx
0 sin 5@
and determine the limit as £ — oo.
2.2.4. (A function f bounded by 1 with some large partial sums.) Define

1
f(z) = sin (p+ 5) z|, —m<z<m (peN).
Prove that there is a constant C' (independent of p) such that

1 1
sp[f](0) > =logp — C, |sx[f](0)] < C' whenever |k —p|> 22
T

Hint. Using the inequality

one can show that
™ sin?(p + 1)t ™1 —cos(2p+ 1)t
mp(o):/ Molt>/ cosp Uty ¢,
0 0

sin %t t

2.3. Theorems on pointwise convergence

Let f be an integrable 27-periodic function. For given x one obtains a
useful integral for the difference sk[ fl(z)—f ( ) by using the second integral

(2.2.3) for si(z) and writing f )as [T f(z)Dy(t)dt
se(z) = f(z) = {f(ﬂj +1) — f(z)} Dy (t)dt
T flx+t)— f(x) . 1
(2.3.1) Y 1t sin (k + 5) tdt.

Keeping x fixed, it is natural to introduce the auxiliary function

(2.32) o(t) = o(t, v) = f(x;;ri)ln_l{(x)

If ¢(t) would be integrable over (—m,7), formula (2.3.1) and the Riemann—
Lebesgue Lemma 2.1.1 would immediately show that sg(z) — f(z) — 0 or

,  t#2vum.
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si(z) — f(x) as k — oo. In other words, the Fourier series for f at the
point = would then converge to the value f(x).

The difficulty is that ¢(¢) has a singularity at the point ¢ = 0. The
question is whether the difference f(x+1¢)— f(x) is small enough for ¢ close
to 0 to make ¢(t) integrable. A simple sufficient condition would be the
following;:

f € Cor and f is differentiable at the point .

Indeed, in that case one can make ¢(t) continuous on [—7, 7] by defining
$(0) = lim 0(1) = () .

We will see that for the integrability of ¢(t), a “Holder—Lipschitz condi-
tion” (after Otto Holder, Germany, 1859-1937; [51] and Rudolf Lipschitz,
Germany, 1832-1903; [83]) on f will suffice.

DEFINITION 2.3.1. One says that f satisfies a Holder—Lipschitz condi-
tion at the point x if there exist positive constants M, o and 9 such that

(2.3.3) |[f(x+1t)— f(x)] < Mt|* for —6<t<o.

THEOREM 2.3.2. Let f be 2m-periodic and integrable over a period.
Then each of the following conditions is sufficient for the convergence of
the Fourier series for f at the point x to the value f(x):

(i) f is differentiable at the point x;

(i) f is continuous at x and has a finite right-hand and left-hand deriv-
ative at x:

flz+1t) - flz) flz+1) - f(z)

. o ! . _ / .
lim ; = [i (), 15% n = fL();

(iii) f satisfies a Holder—Lipschitz condition at the point x.
Cf. Figure 2.2.
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PROOF. Since (i) and (ii) imply (iii) with oo = 1, it is sufficient to deal
with the latter case. Let € > 0 be given. Observe that |sin 5¢| > [t]/7 for
|t| < 7, and take 6 < 7. Then inequality (2.3.3) shows that for all k,

sin(k + 3)t
t) dt
'/ USRI RPAC) o meny vy 27 sin 2 st ’
3 |t‘a
(2.3.4) g/ ———dt < —M/ t|*tdt = —
_s 2msin 5t 2 _

We may decrease § until the final bound is < e. Keeping 0 fixed from here
on, we note that ¢(¢) in (2.3.2) is integrable over [—m, —0] and [J, 7]: it is
the quotient of an integrable function and a continuous function that stays
away from zero. Thus by the Riemann—Lebesgue Lemma 2.1.1,

s ([ [ e )]

for all £ larger than some ky. Combination of (2.3.1), (2.3.4) and (2.3.5)
shows that |si(z) — f(x)| < 2 for all k > k. O
)

EXAMPLES 2.3.3. The Fourier series for the 27-periodic function f(z
equal to x on (—m, 7| (Exercise 2.1.3) will converge to f(x) at each point
x € (—m,m) [but not at x = 7. See condition (i) of the Theorem.

The Fourier series for the 2m-periodic function f(z) equal to z* on
(—m, w| (Exercise 2.1.3) will converge to f(x) for all z. At x = £, condition
(ii) of the Theorem is satisfied.

The Fourier series for the 2r-periodic function f(z) equal to 0 on (—m,0)
and to v/ on [0, 7] will converge to f(z) on (—m,7): at = 0, condition
(iii) of the Theorem is satisfied.

We can also deal with functions that have simple discontinuities.

THEOREM 2.3.4. Let f be an integrable 2m-periodic function. Suppose
that f has a right-hand limit f(x+) and a left-hand limit f(x—) at the point
x, and in addition suppose that there are positive constants M, o and § such
that

(2.3.6)  |f(z+1) = flzH)| < M[t]* and |f(z —t) = f(z=)] < M[t["

for 0 <t <. Then the Fourier series for f converges at the point x to the
average of the right-hand and the left-hand limit, 1{f(z+) + f(z—)}.

Cf. Figure 2.3.



38 2. POINTWISE CONVERGENCE OF FOURIER SERIES

A

X

FIGURE 2.3

PROOF. By the final integral for s;[f](x) in (2.2.3),

dey_fcpﬂ#qﬂx—)
2
:/W{ﬂx+”+f@—w fla+) + f(z—)

. - . }DMMt

—T

For our fixed x we now define a 27-periodic function g such that

J = Lt pe =) flat) + fa—)

2 2
Then

, 0< |t <m, g(0) =

r+) + J(z—
slflte) - IO g 0) - g00),
and the function g will satisfy condition (iii) of Theorem 2.3.2 at the point

t = 0. Hence si[g](0) — ¢(0) as k — oo, which implies the desired result.
0

ExAMPLE 2.3.5. By inspection, the Fourier series for the 27-periodic
function f(x) equal to = on (—m, ] (Exercise 2.1.3) converges to 0 at the
point 7. This is precisely the average of f(m+) = f(—7+) = —7 and

flr=) = f(m) =m.

Exercises. 2.3.1. Let f(z) = 0for -7 <2 < 0,=1for 0 <z < 7.
Determine the Fourier series for f. Where on R does it converge? Give
a precise description of the sum function on R. Which theorems have you
used?

2.3.2. Same questions about the complex Fourier series for f(x) = e
on [0, 27).

axr

2.4. Uniform convergence

In some cases one can establish uniform convergence of a Fourier series
by studying the coefficients. Thus by Cauchy’s criterion [Section 1.2], the
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convergence of one of the series

D (anl A+ 1Bl or > elf]]

n=1 n=—00
implies uniform convergence of the Fourier series for f. Indeed, for k& > 7,

k
[selF1(2) = 55012 < Y (lanlfIl+ 1balF1])-
n=j5+1

Partial summation is another useful tool. For example, the Fourier series
> oo 1 +sinna for the 2m-periodic function f(x), equal to (7w —x) on [0, 27),
is uniformly convergent on [§, 2m — 0] for every ¢ € (0, 7); cf. Section 1.2. We
will see that such results on locally uniform convergence can be obtained
directly from properties of the function f with the aid of the partial sum
formula. We begin with a refinement of the Riemann-Lebesgue Lemma
that involves uniform convergence.

LEMMA 2.4.1. Let f be 2m-periodic and integrable over a period. Then

for any continuous function g on (0,2m) and 6 € (0,),

2mr—6
(2.4.1) Ip(x, ) = / flx+t)g(t)sin\tdt — 0 as A — oo,
5

uniformly in x.
In the application below we will take g(t) = 1/(2 sin 5t).

PROOF OF THE LEMMA. As in the case of Lemma 2.1.1, the proof may
be reduced to the case where f is (the periodic extension of) the character-
istic function A of an interval.

(i) To given € > 0 we choose a piecewise constant function s on (—m, )
such that [" [f(t) — s(t)|dt < e. Extending s to a 2m-periodic function, we
may conclude that

2m
/ |f(x+1t) —s(x+t)|dt<e, VreR.
0

It now follows that for all x and A,

T—0
/2 {flx+1t)—s(z+1t)}g(t)sin At dt| <e sup |g(t)].
5 [6,27— 6]

(ii) On (—m,m), s is a finite linear combination » ;_, Yxhyj,, where the
intervals Jj, are nonoverlapping subintervals of (—m, 7). In order to prove
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that I (z, \) — 0 uniformly in x as A — oo, it is sufficient to consider the
case where s = hy on (—m, ), so that on R, our function s is equal to the
periodic extension hy of hy.

(iii) For J = (o, 8) € (—m.m), hy(z + t) is the characteristic function
of the t-interval & —z < t < § — 2. Thus hy(x +t) is the characteristic
function of the union of the t-intervals o« —z +v-2n <t < f—x + v - 27,
v € Z. This union will intersect (J,27 — §) in one or perhaps two intervals

(a(z), f(x)). Thus

B(=)

2m—0
I;, (%, ) :/5 hy(x +1t)g(t)sin A\t dt = /( | g(t) sin At dt,

plus perhaps another integral like it. Since g is continuous on [d, 27 — ¢]
we may approximate it by a piecewise constant function there, etc. The
argument of the proof for Lemma 2.1.1 now readily shows that I, (z,A) — 0
uniformly in x as A — oo. 0

We still need an interval analog to the Holder—Lipschitz condition.

DEFINITION 2.4.2. A function f on [a, b] is said to be Hélder continuous
if there are positive constants M and « such that

(2.4.2) |f(2) = f(2")] < M|2" — 2", V!, 2" €la,b].

THEOREM 2.4.3. Let f be 2mw-periodic, integrable over a period, and
Hélder continuous on |a,b]. Then the Fourier series for f converges to f
uniformly on every interval [a +r,b —r] with 0 < r < 3(b —a). [Thus if
b — a > 27, the Fourier series will by periodicity converge uniformly on R.]

PROOF. Restricting = to [a+r,b—r] and taking 0 < 6 < r, we split the
integral for si(x) — f(x) as follows:

Sk<x>—f<x>:/2”f(“” f()sin(lﬁ—%)tdt

2msin 1t

/ /%5 L(z, k) + Iy(x, k),

say. Here by the Hélder continuity of f on [a,b],

)
M o o
(k)] < / 1 g = ue
s 2l
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To given £ > 0, we now decrease ¢ until Md®/a < . Keeping § fixed from
here on and setting B = sup |f(x)| on [a, b], we estimate I5:

27—§
t 1
/ 7f(x_+1) sin (k+—)tdt’
s 27 sin 5t 2
2w—§ 1 1
———sin | k+ = | tdt
+’f(x)/5 27 sin 1t Sm( +2) ’
1 1
S‘If(l‘,k+§)'+3 Il($,k+§)',

where I is as in (2.4.1) with g(¢) = 1/(27 sin ¢) and I refers to f = 1. By
Lemma 2.4.1 we can choose kg such that |If(z, k+31)| < e and |I;(z, k+3)| <
e for all £ > kg and all x. Thus in conclusion,

[ a(, k)| <

|sk(z) — f(z)| < (24 B)e, Vk>ky and Yz € [a+71,b—r].
0J

ExAMPLES 2.4.4. The functions in Examples 2.3.3 are Holder continu-
ous on (—m, 7], hence their Fourier series will converge uniformly on [—7 +
r,m—r| for 0 < r < w. The series for f(z) = z* on (—7, 7] will converge
uniformly on R.

2.5. Divergence of certain Fourier series

Dirichlet proved around 1830 that the Fourier series of every bounded
monotonic [or piecewise monotonic| function on (—m, 7] is everywhere con-
vergent. The same will be true for linear combinations of bounded mono-
tonic functions. It then came as a surprise to the mathematical world when
Paul du Bois-Reymond (Germany, 1831-1889; [8]) showed that there ex-
ist oscillating continuous functions whose Fourier series diverge at certain
points. The basic reason is that

/ |Dy(t)|dt — 0o as k — oc.

Now for special continuous functions f with sup | f| < 1, there is a resonance
between f and certain D,’s, and this results in large corresponding values

of s,[f].
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ExaMPLE 2.5.1. A simple building block for a “bad function” f is given
by

1
(2.5.1) fp(z) = sin (p + 5) lz], —m<x<m.
As was indicated in Exercise 2.2.4 there is an absolute constant C' such that
1 [™sin’(p + LHt 1
(2.5.2) 5,[£,](0) = _/ S 3y g
T Jo sin 5t ™

while for |q — p| > %p,

dt| < C.

(25.3) s, lf)(0)] = | / "sin(p + )t sin(g + 5)t

1
™ sin §t

Let us now consider functions f of the form

[e.o]

o ! T ™
(2:5.4) /(@) Z](] @ <

where {p;} is a rapidly increasing sequence of positive integers such that
lpr — pjl > %pj whenever k # j. For this it suffices to take p;1; > 2p; for
all j.

By uniform convergence, functions f as in (2.5.4) are continuous and
clearly sup | f| < 1. Also by uniform convergence, and using (2.5.2), (2.5.3),

o
Spk E

j=1

] Spk fpy]( )

1
(2'5'5) Z m Spk[fpk](o) - Z ](] + 1 ‘ Spy fpg ‘

1 1 log pg
> — (=1 -C) - C= —-C.
k(k+ 1) ( o8P ) ;j(jJrl) h(k+ 1)

Conclusion. Suppose we take p; = 27* for all 7 € N. Then

log 2
o8 k—C —00 as k— oo.

(2.5.6) sp [f1(0) =

In this case, the Fourier series for the continuous function f fails to converge
at the point 0.

2
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Combining functions f with different “critical points” and different se-
quences {p;}, one can construct continuous functions whose Fourier series
diverge on arbitrary finite sets of points. It is much more difficult to prove, as
Andrey Kolmogorov (Russia, 1903-1987; [65]) did close to 1930, that there
exist integrable functions whose Fourier series diverge everywhere. For a
long time, it was an open question whether such divergence can occur in
the case of continuous functions. Finally, in 1966, Lennart Carleson (Swe-
den, born 1928; [11]), proved that for a continuous function, the Fourier
series converges to the function almost everywhere, that is, the exceptional
set must have measure zero.

After du Bois-Reymond, one gradually realized that ordinary pointwise
convergence is not the most suitable concept of convergence in Fourier anal-
ysis. In Chapter 3 we will see that certain summability methods are effective
for all continuous functions. Even more important is the concept of conver-
gence in the mean of order two. In Chapter 6 it will be shown that

/_7T | f(z) — sk[f](x)fdx —0 as k—

for all continous, and in fact, for all square-integrable functions f. Finally,
for integrable functions and for so-called distributions or generalized func-
tions, one may use weak or distributional convergence to sum the Fourier
series (Chapter 4).

Exercises. 2.5.1. Prove successively that

1 1 1
/ — T e 1, sin k+_ tdt -0 as k’—>OQ7
o \7t 2mwsingt 2

(k)7 ™ sin(k + 1)t 1
/ smxdw:/ (72)dt_>§ as k’ﬁoc%
0 0

T 7t
co— A -
1
(2.5.7) / ST dr ® lim / ST dr = =;
0 e A—oo 0 e 2

and that there is an absolute constant C' such that for all k£ and x,

/(: Dk(t)dt' <.

2.5.2. Compute
1

lim e
A—o00 0 x

» Sin Az

Z.
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2.5.3. Let f(z) = |z| for —m < 2 < 7. Describe the sum function of the
Fourier series on R and prove that the Fourier series is uniformly convergent.

2.5.4. Same questions for f(z) = (72 — 2%)2, —7 <z < 7.

2.5.5. Develop each of the following functions on (0, ) into a Fourier sine
series as well as a Fourier cosine series. Which of the two series converges
faster? Explain by using properties of the functions and their appropriate
extensions. Describe the sum functions on R. Indicate intervals of uniform
and non-uniform convergence:

(1) f(x)=1; (17) f(z)=1 on (0,¢), =0 on (c,m);
(1ii) f(x) = x; () f(z) =sinaz.

2.5.6. (Principle of localization) Let f and g be 2m-periodic and inte-
grable over a period. Suppose that f(z) = g(x) on (a,b). Prove that the
Fourier series for f and g are either both convergent at ¢ € (a,b) (to the
same sum), or both divergent. Finally prove that the Fourier series for f is
uniformly convergent on [a + 7,b — r] C (a,b) whenever the series for g is.

2.5.7. Let f be in Ci_ and set sup|f’(z)] = M. Prove that |sz(x) —
f(2)] < 8M/VE for all k.

Hint. Choose a good § to treat the integral f_éé.

2.5.8. Let f be 2m-periodic and of finite total variation over a period.
Prove that the Fourier series for f converges to {f(z+)+ f(z—)} at every
point x.

Hint. If f is continuous at the point z one has Viz,z+t] — 0 as ¢t \, 0.

2.5.9. Show that the Fourier series for a continuous 27-periodic function,
which is of bounded variation on [—, 7], is uniformly convergent.

2.5.10. Prove that for k — oo,

™ ) (k-f—%)w : 4
/IQWWN—/ “mwmwjmw.
o T Jo U T

Here the symbol ~ stands for “asymptotically equal”. Two functions are
called asymptotically equal if their quotient has limit 1.

2.6. The Gibbs phenomenon

Here we will discuss a remarkable example of non-uniform convergence
that was first analyzed by Henry Wilbraham (England) around 1850, and
later studied by the physicist J. Willard Gibbs (USA, 1839-1903; [38]). We
begin by discussing the integral sine function (Figure 2.4):
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M
1 _»1
ZT[ rnl
-31 -21 -t
(e} T 21 3n 41 5n X
-im
FIGURE 2.4
sint
(2.6.1) i M/‘——ﬁ z€R

It is clear that the integral sine is odd. Calculus shows that it has relative
maxima

M; ~1.85 > My > --- at the points =, 3w, ---

and relative minima
my ~ 1.41 <my < --- at the points 27, 47, ---

Moreover as k — 00,

™ sin(k + 1)t
Mn&{(k+%)w}:hm/1§g—illﬁ

™ sin( k:—i— 1
lim 1 d t=—m;
2sin t 2

cf. Exercise 2.5.1. From this it readily follows that

T—00

(2.6.2) lim Si(k7) = %7‘(‘, lim Si(z) = %7?.

Gibbs phenomenon, cf. [39]. Let f be a bounded piecewise monotonic
function on (—m, ) whose periodic extension has a jump discontinuity at
the point zo: f(xo+) # f(xo—). Then the Fourier series for f cannot
converge uniformly in a neighborhood of zo [why not?]. The non-uniformity
is of an interesting type. For x close to zg, the graph of the partial sums
s[f] exhibits oscillations around the graph of f which approach the vertical
through =y as k — oo, but whose amplitudes approach nonzero limits.
Normalizing f so that xy becomes 0 and the jump at 0 becomes equal to 7,
the differences si[f](z) — f(z) will behave near 0 in about the same way as
the difference Si(z) — L7 sgn x, except that the horizontal scale is shortened

2
by a factor of about 1/k.
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FIGURE 2.5

We will analyze the phenomenon for the function

1 o0 .
(2.6.3) f(z) = gsgnx 5% = Z smnmr:’ |z <

n=1

cf. Figure 2.5. By the preceding analysis

k . 1
1 “ (1 Tsin(k + 5)t
2x+8k(3€) /0 <2+,§:1 Cosn) /0 QSin%t
v sin(k + 3)t _ 1
:/ fdt%—rk(x):& k—l—é z oy + (),

0

where 7 (z) — 0 uniformly for |z| < 7 as k — oco. It follows that

so(@) — f(z) = Si { (k + %) x} _ %ngnx T

In particular for k — oo,

1

™ s 1
2.6.4 — | = 1 —— a7 =M, — =702
(2.6.4) Sk(k:—l—%) f(k+%)—>81(7r) 27r 1 27r 0.28,

2

2T 2T . 1 1
(2.6.5) sy (ﬁ) — f (k i l) — Si(27) — ST =My = o A —0.16.

2

Cf. Figure 2.6. At the first maximum point the “overshoot” is about 18%.
This happens at the jump discontinuities of any reasonable function.
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FIGURE 2.6

Exercises. 2.6.1. Let f be a piecewise smooth function on (—m, 7| with a
jump at the point 0. Show that for large k, the apparent jump of the partial
sum sg[f] around 0 is about 18% larger than that of f.






CHAPTER 3

Summability of Fourier series

Important summability methods for (possibly divergent) infinite series
are Cesaro’s method of arithmetic means (named after Ernesto Cesaro, Italy,
1859-1906; [16]), and the power series method that is related to Abel’s Con-
tinuity Theorem 1.1.2. The power series method is usually called the “Abel
method”, although Abel himself rejected the use of divergent series. We
will see that the Fourier series for a continuous 27w-periodic function is uni-
formly summable to the function by Cesaro’s method. As an application we
derive Weierstrass’s theorems (after Karl Weierstrass, Germany, 1815-1897;
[123]) on the uniform approximation of continuous functions by trigonomet-
ric and ordinary polynomials. The Fourier series for a continuous function
is also summable by the Abel method. As an application we give a careful
treatment of the Dirichlet problem for Laplace’s equation on a disc.

3.1. Cesaro and Abel summability

Good summability methods assign a reasonable generalized sum to many
divergent (= nonconvergent) series, while summing every convergent series
to its usual sum. The methods in this section will both assign the generalized
sum % to the divergent series

(3.1.1) I—14+1—141—1+4---,

*This famous (or should we say: infamous?) series has long fascinated
nonmathematicians. At one time it was facetiously used to illustrate the
story of Creation. One would write

l1-1+41-14+41-14+--=1-14+1-14+1-14---,
and then insert parentheses as follows:
1-D+1-1)+(1=1)+---
=1+ (-1+D+(-1+)+(-14+)+---.

The conclusion would be:
0=1,

49
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hence it would be possible to “create” something out of nothing!

Notation. In this chapter we write infinite series of real or complex num-
bers in the form

e}
(3.1.2) up +up +uy+---, or equivalently, Z Up,.-

n=0

The partial sums will be denoted by s:

k
(3.1.3) Sk=tpFtur+tug =Y ty, k=012
n=0
We also introduce the arithmetic means or (C,1) means [Cesaro means of
order one| oy, of the first k partial sums:

So+ 81+ -+ Skp—1
k
ug + (ug +uy) + -4 (uo + -+ -+ up—1)
k

1 n 1
:u0+(1—E)u1+---+(1—%)un+---+guk_1,

k=1,2---.

By definition a series (3.1.2) is convergent, and has sum s, if lim s;, exists
and is equal to s. Observe that if lim s, = s, then also lim o, = s. Indeed,
if |s — s,| <eforalln >p>1and sup, |s— s,| = M, then for k > p,

O =

(3.1.4) =

oy — s
C|(so—=8)F A (sp-1—5)  (sp—5)+ -+ (sp—1 — 5)
= +
k k
<Py o fran k> PM
k k 15

On the other hand, it may happen that o, has a limit while s; does not.

EXAMPLE 3.1.1. For the series (3.1.1) we have

so=1,8=0,8=1,53=0,8=1,---; lims; does not exist,
1 1 2 1 3 I 1

or=1,00==,03==,04==,05=—,--+; limop = —.

1 , U2 27 3 37 4 27 5 57 ) k 2

Indeed, o, = % if k is even, o}, = % + i if k£ is odd.
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DEFINITION 3.1.2. The series Y, u, is C-summable or (C,1)-sum-
mable [Cesaro summable of order one, or summable by the method of arith-
metic means| if lim oy, exists. If limo, = o one calls o the C-sum [Cesaro
sum| of the series.

Cesaro actually introduced a family of summability methods (C, k); cf.
[17].

By the preceding every convergent series, with sum s, is C-summable,
1

with C-sum o equal to s. The divergent series (3.1.1) has C-sum 3.

Suppose now that for the series (3.1.2), the corresponding power series

>0 5 upr™ converges (at least) for |r| < 1. Then by absolute convergence,

(L7472 4+ ) (ug +urr +ugr? +--+) = 8¢ + 517 + 5977 4 - - -

as long as |r| < 1. The Abel means of the partial sums s; are given by

A tfiurn230+31r+827“2+"'
e L+r+r24--

(3.1.5) =(1-r) Z spr’, 0<r<1.
n=0

If ims, = s as k — oo, then also lim A, = s as r /' 1. Indeed, assuming
Sk — s, the numbers u,, = s,, — s,_1 form a bounded sequence, hence the
series > >~ o u,r"™ will converge at least for |r| < 1. Furthermore

AT—3:(1—T)Z(3n—s)r":(1—r) <Z+Z> (S, — s)r"

n=0 n<p n>p
will be small when p is large and r is close to 1.

EXAMPLES 3.1.3. For the divergent series (3.1.1) we have

1 1

:1—1—7"_)5 as r /1.

Ar=1—r+r"—r+...

That lim A, = lim oy, for the series (3.1.1) is no coincidence. Indeed, if for
any series Y u, one has o, — o, then also A, — o; see below. The converse
of this is not true, as may be derived from the example of the series

(3.1.6) 1—2+43—4+45—--.
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This series is not C'-summable, but it is “Abel summable”:

d
Ay =1-2r+3r =4 +... = d—(—1+7“—7“2+r3—r4+-~-)
T
d —1 1 1
= — = - 1.
dr 1+ (1—1—7“)2_)4 as ./
DEFINITION 3.1.4. The series Y 7 u, is A-summable [Abel summa-
ble, or summable by the method of power series| if the Abel means A, =
Yoo o Upr™ exist for 0 < r < 1 and approach a limit asr /" 1. If lim A, = «

as r /1 one calls « the A-sum [Abel sum] of the series.

By the preceding every convergent series, with sum s, is A-summable,
with A-sum « equal to s. Every C-summable series, with C-sum o, will be
A-summable, with A-sum « equal to o (cf. Exercise 3.1.4). However, not
all A-summable series are C-summable. The A-method of summability is
“stronger” than the C-method.

For some applications it is useful to consider inverse theorems for summa-
bility methods, so-called Tauberian theorems; cf. [2]. The prototype was the
following theorem of Alfred Tauber (Austria, 1866-1942; [118]):

THEOREM 3.1.5. Let the series Y -, uy, be Abel summable and suppose
that nu,, — 0 as n — oco. Then ZZOZO Uy 1S convergent.
Cf. Exercise 3.1.7.

Exercises. 3.1.1. Supposing that s, — oo, prove that also o, — o0.
Deduce that a C-summable series of nonnegative terms must be convergent.
3.1.2. Show that the series (3.1.6) is not C-summable.
3.1.3. Express s,, in terms of numbers o, and deduce that the terms wu,,
of a C-summable series must satisfy the condition w,/n — 0.
3.1.4. Setting
So+s1+---+S,= 87(;1) [: (n + 1)0n+1],

show that

A.=(1-r) i spr™ = (1 —1)? i sCDpm,

n=0 n=0
Ar—o=1=r)_ (n+1)(0n1 — o)™
n=0

Deduce that if 0, — 0 as k — oo, then also A, — o asr 7 1.
3.1.5. Determine the A-sum of the series 12 — 22 + 3% — 42 + ...
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3.1.6. Determine the A-means and the A-sums for the series
1
§+cosx+cos2x+--- , sinz+sin2x+--- (0<az<2m).

3.1.7. Prove Tauber’s Theorem 3.1.5.
Hint. Setting Y >, w,r™ = f(r) one has

oo

sp— f(r)= Z up (1 —1") — Z U™

n=1 n=k+1
3.1.8. (Discrete Taylor formula) Taking w, real, show that for h € N,

_ _ 1
s,(€+1]3 = gl(g Yy sy + éh(h + 1ug,
where ug is a number such that

min - u, <uy < max  up.
k+1<n<k+h k+1<n<k+h

3.1.9. (Tauberian theorem of Godfrey H. Hardy (England, 1877-1947;
[44]). Suppose that Y >, u, is C-summable and that |u,| < B/n for all
n > 1. Prove that ZZOZO Uy, is convergent.

Hint. Decreasing the original uy by o, one may assume that o = 0, so
that |o| < ¢ for all k > ko. Then [s5 V| < e(n + 1) for all n > ny. Now
estimate |sg| from Exercise 3.1.8 by choosing h appropriately.

[This simple approach to Hardy’s theorem is due to Hendrik D. Kloos-
terman (Netherlands, 1900-1968; [64]). Soon after Hardy obtained his re-
sult, John E. Littlewood (England, 1885-1977; [84]) proved a correspond-
ing (more difficult) Tauberian theorem for Abel summability. Subsequently,
Hardy and Littlewood jointly obtained a very large number of Tauberian
theorems; cf. Korevaar’s book [69].]

3.2. Cesaro means. Fejér kernel

Let f be an integrable function on (—m,7); as usual we extend f to
a 2m-periodic function. The partial sum si[f] of the Fourier series for f
is given by Dirichlet’s integrals (Theorem 2.2.3). For the arithmetic mean
ok [f] of the first k partial sums we thus obtain the formula

) = 2 @

1’) = O
:/_ﬂ flo+ )Do(t)"‘"l';‘ Dy 1 (t)

™

O'k(

(3.2.1) dt.



54 3. SUMMABILITY OF FOURIER SERIES

-t

FIGURE 3.1

The “kernel” by which f(z £ t) is multiplied is called the Fejér kernel. It
may be expressed in closed form and is illustrated in Figure 3.1.

LEMMA 3.2.1. Fork=1,2,--- and all t € R,

o Do(t) + -+ Dpa(t) 11 n
Fk(t)d: ? = {§+Z <1_E) cosnt}

n=1

N

— sin(n + )t sin® £kt

3.2.2 = = .
( ) 2msin =t 27k sin? %t

Nl

1
2

I
o

n

[At the points ¢ = 2vm the last two fractions are defined by their limit
values. |

PROOF. By its definition (cf. Lemma 2.2.1), the Dirichlet kernel D, (t)
is equal to the nth order partial sum of the trigonometric series

1 /1
— (—+cost+c082t—|—--~).
T\ 2

Hence Fy(t) is the kth Cesaro mean for this series; cf. formula (3.1.4). In
view of Lemma 2.2.1, it only remains to derive the final identity in (3.2.2).
For this we have to evaluate the sum SF"! sin(n + $)t. Writing sin(n + 1)t

as the imaginary part of e(”+%)it, we first work out the corresponding sum
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of exponentials:

1, 3, 1y 1
@ilt + @ilt 4+ .+ e(kfi)lt = e2°

ek‘it -1 ' 1— 6kit

? .
1, 1; .
ezt — g3 2sin %t

Thus, taking imaginary parts,

13 , 1 1 —coskt sin® 3kt
sm§t+sm§t+-~-+sm k—§ t= =

The final identity in (3.2.2) follows upon division by 27k sin %t. 0J

S P B
251n§t s1n§t

The Fejér kernel behaves much better than the Dirichlet kernel. By the
preceding it has the following nice properties:

LEMMA 3.2.2. F} is nonnegative, even and periodic with period 2w. As
k — oo, Fy(t) tends to 0 uniformly on the intervals [0, 7] and [—m, 4] for
any § € (0,7), while

(3.2.3) / F(t)dt =1, VEkeN.

Formulas (3.2.1) and (3.2.2) readily give
THEOREM 3.2.3. Let f be 2mw-periodic and integrable over a period. Then

u(x) = oy [f](x) = 2D 2a®)

k-1
1 n .
(3.24) = 500 + ngl <1 - E) (a, cosnx + by, sinnx)

_ [ f(a:it)Fk(t)dt:/W f(x+t)"gf(x_t) Fu(t)dt, Yk

Exercises. 3.2.1. Let f be real, 2w-periodic, integrable over a period and
bounded: m < f(x) < M, Vz. Prove that m < oi[f](x) < M, Vz, k. De-
duce that the averages o[ f](z) cannot exhibit a “divergence phenomenon”
as in Exercise 2.2.4, nor a “Gibbs phenomenon” as in Section 2.6.

3.2.2. Determine the C-means and the C-sum for the series

1
5+cos:v+cos2x+--~: (1) for 0 < & < 2m, (ii) for x = 0.

3.2.3. Same questions for the series sinx + sin2z + - - -.
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Hint. Show that the nth order partial sum is equal to

cos 3 — cos(n + 3)

2sin %x
3.3. Cesaro summability: Fejér’s theorems

We assume throughout that f is an integrable function on (—, 7] which
has been made periodic with period 27.

THEOREM 3.3.1. (Pointwise summability) Suppose that f satisfies one
of the following conditions:

(i) f is continuous at the point x;

(ii) f has a finite right-hand limit f(x+) and a finite left-hand limit
f(x=) at x, but these two are different.

Then the Fourier series for f is C-summable at the point x to the value
f(x), and to the value {f(z+) + f(x—)}, respectively.

PRrROOF. Case (i). By Theorem 3.2.3 and Lemma 3.2.2,

331 alfiw) - f@) = [ {fl+0 - [}

For given x and € > 0 we choose ¢ € (0, 7) such that

(3.3.2) |f(x+1t)— f(x)] <e for —d0 <t<o.
Then for all k&,
4 4
(3.3.3) ’/_6{]‘“(95 ) — f@)Fb)dt| < 5/_5 Fu(t)dt <

by (3.2.3). On the other hand

(/_:jL/;) {fz+1t) - f(ﬂf)}Fk(t)dt'

(3.3.4) < max Fi(t) (/_6+/5) e+ 1) — f(o)|dt

- o<ftgT

1 s
< sy (Ve 2a1s1).

Combining the above relations one finds that |oy(z) — f(z)| < 2 for all
k Z ]{30 (ZE, 6)

The proof in case (ii) is similar, but this time one would use the final
integral in (3.2.4). O
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We now come to the most important theorem of Fejér:

THEOREM 3.3.2. (Uniform summability) (i) For f € Cor, the Cesaro
means o|f] converge to f uniformly on [—m, | (hence on R).
(ii) If f is continous on (a,b), then oy[f] — f uniformly on every closed

subinterval [, B8] of (a,b).

PROOF. We only consider case (i). Let ¢ > 0. Since our continuous
periodic function f will be uniformly continuous, we can choose § € (0,7)
such that (3.3.2) and hence (3.3.3) hold for all  and k. Setting supg |f| =
M, the final member of (3.3.4) will be bounded by 2M/(ksin® $0) for all .

Conclusion:
1
lok(x) — f(x)] < 2¢ forall x € R when k> 2M/ (5 sin? 5(5) :

O

THEOREM 3.3.3. (Summability in the mean of order one) For any inte-
grable function f on (—m, ),

[ 1@ - @l 0 as k- o

—T

*PROOF. Here we need the theorem of Guido Fubini (Italy, 1879-1943;
[34]) which allows inversion of the order of integration in an absolutely
convergent repeated integral [see Integration Theory]. By (3.3.1), making
f periodic,

Aﬁg/ﬂwﬁmw—ﬂwwx

-
/ﬂ—
—T

(3.3.5) < / {/ Flz+1)) —f(x)\Fk(t)dt} iz

—T —T

= [ [ e - i} R
Setting

(33.6) o) = [ 17+ - ra)de

dx

{Fe o+ 1)~ T} Eelt)e
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the final member of (3.3.5) is equal to ox[g](0); cf. (3.2.4). Now g is a
continuous function (of period 27), as one readily verifies by approximating
f with piecewise constant functions s [cf. Section 2.1, 2.4]. Thus by Theorem
3.3.1,

Ay < ox[g](0) = g(0) =0 as k — oo.
0

Exercises. 3.3.1. Let f be (periodic and) continuous at the point z and
suppose that the Fourier series for f converges at x. Prove that the sum is
equal to f(x).

3.3.2. Prove that two integrable functions on (—m,7) with the same
Fourier series are equal at all points where they are continuous.

3.3.3. Let f be continuous on [—m, 7| with f(7m) # f(—n). Compute
lim oy [f](7).

3.3.4. Let f be continuous on [—m, 7] and such that all trigonometric
moments of f are equal to zero:

/f(a:)cosnxdx:/ f(z)sinnxdr =0, VneN,.

Prove that f = 0.

3.3.5. Let f € Cyr have b,[f] = 0 for all n € N. Prove that f is even.

3.3.6. What can you say about f € C[0,n] if foﬁ f(z)cosnxdx = 0
for all n > 07 What if foﬂ f(z)cosnxdr = 0 for all n > 17 What if
Jy f(z)cosnzdr =0 foralln > 57

3.3.7. Let f be a bounded piecewise monotonic function on [—m,].
Prove that the Fourier series for f is C'-summable everywhere. Now use
Exercises 2.1.8 and 3.1.9 to deduce that the Fourier series for f is everywhere
convergent. Describe its sum function.

3.3.8. Prove part (ii) of Theorem 3.3.2.

3.3.9. Prove that the function g in (3.3.6) is continuous at the point
t=0.

3.3.10. Let f be integrable over (—m, ) and such that [ f(x)e""*dx =
0 for all n € Z. Prove that ffﬂ |f(x)|dz = 0, so that f(x) = 0 almost
everywhere on (—m, ). [Cf. Integration Theory for the final step.]

3.4. Weierstrass theorem on polynomial approximation

Theorem 3.3.2 immediately implies
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THEOREM 3.4.1. Let f be continuous on [—m,w| and such that f(m) =
f(=m). Then to every e > 0 there is a trigonometric polynomial (finite

trigonometric sum) S(z) = ag + Y. _, (ay cosnx + [, sinnz) such that
|f(z) = S(x)| <e for —m<zx<m.

Indeed, f can be extended to a continuous function of period 27 (which
we also call f), and the arithmetic means o4 [f] = £(so[f] + - - + sp—1[f]) of
the partial sums of the Fourier series for f converge to f uniformly on R.

As an application we will prove Weierstrass’s theorem on uniform ap-
proximation by ordinary polynomials:

THEOREM 3.4.2. Let f be continuous on the bounded closed interval
la,b]. Then to every e > 0 there is a polynomial p(x) such that

|f(x) —p(x)| <e for a<z<hb.

PROOF. We may assume without loss of generality that [a,b] is the
interval [—1, 1]. Indeed, one can always carry out an initial transformation
z=21(a+0b)+1(b—a)X, sothat f(x) becomes a continous function F/(X)
on [—1,1]. If one has approximated the latter by a polynomial P(X) on
[—1,1], an approximating polynomial p(z) for f(z) on [a,b] is obtained by

setting
2r —a—>b
plx) =P (T) '

Now starting with a continuous function f on [—1, 1], we set
x=cost, f(z)= f(cost)=g(t), teR.

Then g will be of class Co and even, so that the Fourier series for ¢ contains
only cosine terms. By Theorem 3.4.1,

Fleost) = g(t) = lim arlg)(1)

(3.4.1) = ]}1_{20 {% aolg] + i: <1 - %) an[g] cos nt} :

uniformly on R. [Of course, if ¢ is sufficiently nice, also sglg](t) — g(¢)
uniform;y on R.]
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We finally express cosnt as a polynomial in cost, the Chebyshev poly-
nomial T, (cost) (after Pafnuty Chebyshev, Russia, 1821-1894; [18]):

T, (cost) = cosnt = Ree"™ = Re (cost + isint)"

~ Re 2; (?) (cos™ 7 ) (isin t)’

= cos™t — (Z) (cos" 2 ¢)(1 — cos?t)
+ (Z) (cos" 4 1)(1 — cos? )2 — - -- .

Conclusion:

1 < n
(34.2) fla) = lim {5 aolg] + ; <1 - E) an[g] Tn(ﬁ)} :
uniformly on [—1,1]. O

REMARK 3.4.3. Observe that the coefficient A,,  of the polynomial 7}, in
this approximation tends to the limit A,, = a,[g] as k — oo. In contrast the
coefficient by, ;, of 2™ in the approximating polynomial p(z) = pi(z) behind
the limit sign in (3.4.2) may vary a great deal as k — oc.

For later use we restate the definition of the Chebyshev polynomial 7;,:

DEFINITION 3.4.4.

def i( M\ n—2j 217
T, (x) % cosnt = —1y () (1 - a2
(x) = cosn o Z (—1) (2])35 (1 —2a%)
0<j<n/2
Exercises. 3.4.1. Let f(z) = |z|. Determine a sequence of polynomials

which converges to f uniformly on [—1,1].
3.4.2. Let f be integrable over the finite interval (a,b). Prove that for
every € > (0 there is a polynomial p such that

/ (@) - pla)ldz < e.

3.4.3. Let f be continuous on the finite closed interval [a,b] and such
that all power moments of f are equal to zero:

b
/ f(z)z"dx =0, VneN.
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Prove that f = 0.
3.4.4. Prove that the Chebyshev polynomials Ty, Ty, 15, --- form an
orthogonal system on (—1, 1) relative to the weight function 1/v/1 — z?%:

! dx
T, ()T (r)——— =0 whenever k # n.

3.4.5. Show that the coefficient of 2" in T,,(z) is equal to

1+ (Z) + (Z’) +---=%{1+ (?) n (Z) +...}:2n—1.
Hint. Expand (1 & 1),

3.5. Abel summability. Poisson kernel

Let f be 2m-periodic and integrable over a period. Anticipating work
with polar coordinates we write the Fourier series for f with variable 6:

f(0) ~ %ao[f] + Z (an[f] cosnb + by f] sinnd).

The Abel means of the partial sums are given by

(3.5.1) A[](60) = %ao[f] + (aulf] cosnd + by [f] sinnd)r™,

n=1

where 0 < r < 1; cf. (3.1.5). We will express these means as integrals.
Replacing the Fourier coefficients by their defining integrals, in which we
use variable of integration s, one obtains

(35.2)  A[f](6) = % % /_ﬂ F(s)ds + 3 %/j £(s) cosn(s — 0) ds - 1.

Here we may invert the order of summation and integration since f(s) is
integrable and the series » - cosn(s — 6) - r™ converges uniformly in s.
Thus

A, [f](0) :/7r f(s)% {%—FZ r”cosn(s—@)}ds

(3.5.3) = fO+1t)— {—+Zr”cosnt}dt, 0<r<l.
- m |2 vt

The kernel by which f(6 + ¢) is multiplied is called the Poisson kernel,
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FIGURE 3.2

after the French mathematical physicist Siméon Denis Poisson (1781-1840;
[93]); cf. [94] and see Figure 3.2. It may be expressed in closed form:

LEMMA 3.5.1. For0<r <1 and allt € R,

el (1 & 1 1— 72
(3.5.4) Pt < - (5 + ; r" cosnt) = T

T 2r 1 —2rcost+ 1?2
PROOF. Writing cosnt = Ree™ one has

o0 o0 it
1+2% 1" cosnt = Re <1+227‘”emt> — Re <1+2 re )
n=1

n=1

14+ ret 1 —re 1—r?

e . _ = )
1—reit 1 —re-it 1 —2rcost-+r?

The Poisson kernel has nice properties similar to those of the Fejér ker-
nel:

LEMMA 3.5.2. P, is nonnegative, even and periodic with period 2w. As
r /1, P.(t) tends to 0 uniformly on the intervals [0, 7] and [—m, —0| for
any given § € (0,7), while

(3.5.5) /7r P.(t)dt =1, ¥rel0,1).

—T
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Indeed, 1 — 2rcost + 12 = (1 — r)? + 4rsin? %t, so that

1—172

4r sin? %5

0< P (t) < for 6 <t<m.

Also, for f = 1, the Fourier series reduces to the constant 1, so that ffﬁ P, =
A, [1] = 1; see (3.5.3).

DEFINITION 3.5.3. For integrable f on (—m, ), the integral

(356) PO [ R0 - 9)f(s)ds
is called the Poisson integral for f.
By the preceding one has

PROPOSITION 3.5.4. For periodic integrable f, the Abel mean A,[f] for
the Fourier series is equal to the Poisson integral:

ALNO) = [ 6:£0P0d = PLAr6)
FPurthermore

A[£1(6) — (8) = / (FO£0) — FO}E(Bd, 0<r <L

The methods of Section 3.3 may now be used to obtain the analogs of
Theorems 3.3.1-3.3.3 for Abel summability. We only state some important
aspects:

THEOREM 3.5.5. (i) For f € Cor, the Abel means A,[f] of the partial
sums of the Fourier series converge to f uniformly on [—m, 7] asr / 1.

(ii) For 2m-periodic f, piecewise continuous on [—m,m|, the Abel means
A, [f] remain bounded as r /' 1, and they converge to f uniformly on every
closed subinterval [, 5] of an interval (a,b) where [ is continuous.

Exercises. 3.5.1. Justify the step from (3.5.2) to (3.5.3) by showing that
the conditions “f integrable” and “g;, — ¢ uniformly on (a,b)” imply that
b b

I fo— [ f9.

3.5.2. Use the Poisson integral for A,[f] to prove part (i) of Theorem
3.5.5.

3.5.3. Let f(0) = sgnb, |0] < m [cf. Exercise 1.2.5]. Determine A,[f]
first as a series, then as an integral. Verify that —1 < A,[f] < 1 and show
that A,[f] — 1 uniformly on [0,7 —d] asr /' 1 (provided 0 < § < 7/2).
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3.6. Laplace equation: circular domains, Dirichlet problem

We will deal with (real) harmonic functions: solutions of Laplace’s equa-
tion. A harmonic function u on a domain D in R™ is smooth (in fact, of
class C*) and it cannot attain a maximum or minimum in D unless it is
constant. As a consequence, if limsup u(z) < M on all sequences of points
in D that approach the boundary 0D, then u(z) < M throughout D. Tt fol-
lows that harmonic functions on a bounded domain are uniquely determined
by their boundary values whenever the latter form a continuous function on
OD. [If the boundary function is only piecewise continuous one may impose
a boundedness condition to ensure uniqueness.|

Here we consider circular domains D in the plane: annuli [ring-shaped
domains| and discs, or the exterior of a disc. On such domains one will use
polar coordinates r, 6§ with the origin at the center of the domain. Laplace’s
equation then takes the form

1 1
(3.6.1) A% gy -ty = iy + —y + gy = 0.

Solutions on the annulus
A0, p,R)={(r,0) : p<r <R, 0 R}

have period 27 as functions of 6, hence, being smooth, they can be repre-
sented by Fourier series with coefficients depending on 7:

(3.6.2) u(r,0) = % Ao(r) + Z {A,(r) cosnf + B, (r) sinnb}.

Here the coefficients A, (r) = = [ u(r, ) cosnd df and B, (r) will be smooth
functions of r. Also, for fixed r, the coefficients and their derivatives will
form sequences that are O(n~?) for every p; cf. Lemma 2.1.2. We may then
form Au by termwise differentiation of the series in (3.6.2). [In problems of
mathematical physics one should always try to carry out operations term

by term, justification can wait till later!] Thus Laplace’s equation becomes

Bu(r,0) = 5 {45(0)+ 7 440}

3 { [0+ a0 = 2 )] cosns

n=1

n2

4 {BZ(T) + % Bl - Bn(r)} sin n9} —0.
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Since Awu will be continuous, all coefficients in this Fourier series must be
equal to zero. It follows that the functions A, (r) and B,(r) must satisfy
the ordinary differential equation

d*v(r) N 1dv(r) n?

o i ﬁv(r):(), p<r<R.

Recall that “equidimensional equations” such as (3.6.3) have solutions
of the form v(r) = r*. Substitution gives

(3.6.3)

{a(a—1)+a—n*}r*?=0, hence a= +n.
For n = 0 equation (3.6.3) has the additional solution logr. Thus we find
Ap(r) = apr™ + a,r™",  Bu(r) = b, + byr~" for n €N,
(3.6.4) Ao(r) = ap + aglogr,

where a,,, a,, b,, b, are constants.

Dirichlet problem for the disc B(0, 1). The unit disc corresponds to an
annulus with inner radius p = 0, but the origin has to be included in the
domain. Therefore we have to reject the solutions =™ and logr of equation
(3.6.3): they would lead to solutions of Laplace’s equation that become
unbounded at the origin. Thus our candidate solution (3.6.2) for Laplace’s
equation in the disc takes the form
1 [ee]
(3.6.5) u(r,0) = 5@+ Z(an cosnf + b, sinnd)r", 0<r <1,

n=1

with constants a,, b, that make the series converge.
In the Dirichlet problem one prescribes the boundary function:

u(l,e) :f(9)> ‘9‘ <,

with a given function f. Ignoring questions of convergence on the boundary;,
we are thus led to expand f(6) = u(1,0) in a Fourier series:

1 - :

f(0) ~ 5 a0 + ;(&n cosnb + b, sinnf), 6| < m;
cf. Figure 3.3. It is therefore natural to use the Fourier coefficients of f:
a, = a,[f] and b, = b,[f], in our trial solution (3.6.5).

QUESTION 3.6.1. Does the function u(r, ) = us(r, ) formed with these
coefficients indeed have the correct boundary values?
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FIGURE 3.3

THEOREM 3.6.2. For f € Cy, the series (or Abel means)

ug(r,0) = %ao[f] + Z(an[f] cosnf + b, [f]sin nd)r"

(3.6.6) = A:[1(0)

n=1

and the corresponding Poisson integral

PLf](r,0) / " B0 — 1) /()

—T

(3.6.7) —i/7r Lo Ft)dt
o C2n ) 1 —2rcos( —t) +r2

both represent the (unique) solution of Laplace’s equation in the disc B(0,1)
with boundary values f(0). That is, for every 6y € R,

3.6.8 lim  wug(r,0) = f(6)).
(3.68) Lol u(r6) = f(8)

Observe that we require more than just radial approach from inside B
to the boundary 0B.

PROOF. Every term in the series (3.6.6) satisfies Laplace’s equation.
Now the coefficients a,[f] and b,[f] form bounded sequences. It follows
that the operator A may be applied to us(r,0) term by term. Indeed, the
differentiated series will be uniformly convergent for 0 < r < ry < 1 and
6 € R. Hence also Auy(r,60) = 0.
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For (3.6.8) we use the fact that ug(r,0) is equal to the Abel mean
A, [f](0). By Theorem 3.5.5, A,.[f](0) = P[f](r,0) converges to f(#) uni-
formly in 6 as r /1. Thus for given € > 0 there exists 6 > 0 such that

lup(r,0) — f(0)] <e for 1—9<r<1 andall 6,
|f(0) — f(6)| <e for |6 — 6y <.
As a result
lup(r,0) — f(6p)| <2e for 1—-56<r<1, |0—6)| <o
O

REMARK 3.6.3. Theorem 3.6.2 can be extended to the case of (bounded)
piecewise continuous boundary functions f. At a point 6y where f is discon-
tinuous, (3.6.8) may then be replaced by the condition that wus(r,#) must
remain bounded as (r,6) — (1,6y). Without such a condition there would
be no uniqueness of the solution; cf. Exercise 3.6.6.

Exercises. 3.6.1. Prove directly that the Poisson integral P[f](r,6) of a
real integrable function satisfies Laplace’s equation in the unit disc, either
by differentiating under the integral sign, or by showing that P[f] is the
real part of an analytic function.

3.6.2. Use an infinite series to solve the Dirichlet problem for Laplace’s
equation in the disc B(0, R) with boundary function f(R,#). Then trans-
form the series into the Poisson integral for the disc B(0, R):

e R? -2
Prlf1(r.6) = o /,r R? —2Rr cos(g —t) + 12 f(R, t)dt.

3.6.3. Solve the Neumann problem for Laplace’s equation in B = B(0, 1):

@
or

[Here one has to require that [" ¢()df = 0.] Consider in particular the
case where ¢g(6) = sgn#, |0] < 7.

3.6.4. Use an infinite series to solve the Dirichlet problem for Laplace’s
equation on the exterior of the disc B(0, p), with boundary function f(p, ).
Here one requires that u remain bounded at infinity. Finally transform the
series into a Poisson-type integral.

3.6.5. Determine the solution of Laplace’s equation in the general an-
nulus A(0, p, R) with boundary function 1 on C'(0, R) and 0 on C(0, p).

Au=0 on B, (1,0) =g(6), |0 <.
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3.6.6. The Poisson kernel P,(6) represents a solution of Laplace’s equa-
tion in the unit disc with boundary values 0 for » =1, 0 < |#| < 7. Verify
this, and investigate what happens when (r, ) tends to the point (1,0).

3.6.7. Use an infinite series to solve the following boundary value prob-
lem for the semidisc D = {(r,0) : 0 <r<1,0<0 <7}

Au=0 in D, u(l,0)=1 for 0 <0 <,
u(r,0) =u(r,m) =0 for 0 <r<1.

Can you prove that your candidate solution has the correct boundary val-
ues?
3.6.8. Similarly for the sector D = {(r,0): 0 <r < R, 0 <0 < a}:

Au=0 on D, u(R,0)=1 for 0 <0< a,
u(r,0) =u(r,a) =0 for 0 <r < R.
Show that for fixed (r,6) and large R,

4 ™/
u(r,0) ~ — (%) sin — 6.

™ (%



CHAPTER 4

Periodic distributions and Fourier series

Although an integrable function on (—m, ) is essentially determined by
its Fourier series, there is no simple convergence theory that applies to the
Fourier series of every (Lebesgue) integrable function. Is it possible to do
something about that? More important, for applications to boundary value
problems one would like to have a theory in which there is no limitation on
termwise differentiation of Fourier series; cf. Sections 1.3, 1.4 and 3.6. The
difficulties can be overcome by the introduction of “convergence relative to
test functions”, and the extension of the class of integrable functions to
the class of generalized functions or distributions in the sense of Laurent
Schwartz; cf. [110], [111]). It will turn out that every periodic distribution
can be considered as a generalized derivative, of some finite order, of a
periodic integrable function.

4.1. The space L!. Test functions

Integrable functions f; and fy on (—m, ) that differ only on a set of
measure zero have the same Fourier series:

clfi] = % : fi(z)e ™ dx = c,[fs] = %/ fo(z)e ™ dx, Vn.

—inx —inT

Indeed, since fi(z)e will be equal to fo(z)e almost everywhere [often
abbreviated a.e.], that is, outside a set of measure zero, the two products
will have the same integral. Conversely, integrable functions f; and f, with
the same Fourier series will differ only on a set of measure zero; cf. Exercise

3.3.10. We will give another proof here.

THEOREM 4.1.1. Let f be integrable on (—m,m) and c,[f] = 0 for all
n € Z. Then f(x) = 0 almost everywhere, and in particular f(x) = 0 at
every point x where the indefinite integral

(4.1.1) F(z) ¥ e+ /xf(t)dt
69
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is differentiable and has derivative F'(z) equal to f(x).

PROOF. By Lebesgue’s theory of integration (cf. [77], [76]), the in-
definite integral F'(z) is differentiable outside a set of measure zero and
F'(z) = f(z) outside a (possibly larger) set of measure zero. With indefi-
nite integrals one can carry out integration by parts:

2re,|[f] = f(z)e ™ dy = / e " dF (z)
(4.1.2) = [F(a:)e_im] i m/ F(x)e "™ dz.
Here the integrated term will vanish since e="™ = "™ and

F(r) — F(—r) = / " F@)dt = 2melf] = 0.

Thus 27c,[f] = in - 2mc,[F], and hence in our case ¢,[F] = 0 for all n # 0.
Subtracting from F' its average C' = ¢o[F] on [—m, 7|, one will obtain a
continuous (and a.e. differentiable) function with Fourier series 0:

n|F—Cl=c¢,[F] =0, Vn#0, c|[F —C|=cy[F]—C=0.

Conclusion: F'—C = limoi[F' — C]| = 0, so that F' = ('; cf. Theorem 3.3.1.
Hence by Lebesgue’s theory, f(x) = F'(z) = 0 almost everywhere. O

REMARK 4.1.2. The linear space of integrable functions f on (a,b) is
made into a normed vector space, called L(a,b) or L'(a,b), by setting

b
(4.1.3) 17 = 111l = / 1 (2)|dz.

This is the L' norm or “L! length” of f. One now identifies functions which
differ only on a set of measure 0. Note that ||fi — fa|| = 0 if and only if
fi(z) = fo(x) a.e. Also, as is usual for a length,

IAFIF =TT and [+ gl < [1FIF+ gl

Convergence fy — f in L'(a,b) means f; |f = ful = 0.

Speaking precisely, the elements of L'(a,b) are not functions: they are
equivalence classes of integrable functions on (a, b). For any given integrable
function f, the class of all functions that are a.e. equal to it is sometimes
denoted by [f]. The norm of the element or class [f] is defined as || f|| and
given by (4.1.3) for any element of the class. To every element of L!(—, )
there is exactly one Fourier series. Different elements of L'(—m,7) have
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different Fourier series. We usually speak carelessly of the functions of
L'(—m, ) instead of the elements.

DEFINITION 4.1.3. We say that integrable functions f; converge to the

integrable function f on (a,b) relative to the test class (class of test func-
tions) A if

/abfk¢—>/abf¢ as k— o0, VoeA.

In order to make it easy for f; to converge to f we severely limit the test
class A, but it must be large enough to make limits relative to A unique.
For Fourier theory, we will use as test functions the infinitely differentiable
functions ¢ of period 27: the test class will be C52.

EXAMPLE 4.1.4. By the Riemann-Lebesgue Lemma 2.1.1, the sequence
{ei**} k =0,1,2,--- tends to 0 on (—m,7) relative to the test class C°.
More surprisingly, a sequence such as {k!%¢**} k =0,1,2, - also tends
to 0 relative to this test class. Indeed, one has

T i ikx
/ k1006 (1) = k,lOO/ é(x)d e'k
-7 -7 v
L ATy K[ ke (100)
= [ e == / 0 )

The result tends to 0 as k — oo since the function ¢(**? is continuous.

PROPOSITION 4.1.5. In L'(—m,7), limits relative to the test class CS2
are unique.

PROOF. Suppose that for integrable functions fi, f, g on (—m,7) one

has
/ifk¢—>/7;f¢ and also /ifk¢—>/:g¢

for all ¢ € C32. Then [* f¢ = [T g¢ for all ¢. Thus, using the test
functions e~ one finds in particular that c¢,[f] = ¢,[g] for all n. Hence by
Theorem 4.1.1, f = g almost everywhere, so that [f] = [¢] in L!(—7, 7). O

Using the fact that for functions ¢ € C3, the Fourier series is uniformly
convergent to ¢, we will show that for integrable functions f on (—m,7),
the Fourier series converges to f relative to the test class C32.
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LEMMA 4.1.6. For integrable functions f and g on (—m,m),

/_ZSk[fb:?ﬂ 3™ culflerls] = / Fsulgl

n=—k

Indeed,
k

/ﬂ sk[flg = /7r Z cnlfle™g(x)dr = Z cnlf] - 2me_ylg], ete.

- n=—*k n=—=k

THEOREM 4.1.7. For f € L'(—m,7) and any ¢ € C52,

s ™

(4.1.4) lim [ silflo= | fo=2m 3 clflenlo)

k—o0
n=-—o00

Indeed, one has

/ slflo= [ fsldl— [ 1o as koo

—T
since

g/ 1 masx |6 = sulol] - 0

—T

] JRE

by Theorem 2.4.3. The infinite series in (4.1.4) will be absolutely convergent;
cf. Lemma 2.1.2 applied to ¢ instead of f.

DEFINITION 4.1.8. The support of a continuous function [or element of
L', or generalized function] f on J is the smallest closed subset £ C J
outside of which f is equal to zero [or equal to the zero element|. Notation:

supp f.

It is important to know that for any given finite closed interval [«, ],
there are C* functions on R with support [a, (3].

ExAMPLES 4.1.9. The function

e~/* for x>0,
¢(x)—{0 for x <0
is in C*°(R) and has support [0, c0).
For a < 3 the product ¢(x — o) (6 — x) is in C*(R) and has support
[, B].
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FIGURE 4.1

For any number § > 0, the function

ffé 6_1/(62_t2)dt/ ffa e V@)t for —§ < x < 6,
O5(z) = ¢ 0 for x < =4,
forx >4

1
belongs to C*°(R); cf. Figure 4.1. Observe that 05(z) + 05(—z) = 1.
For 0 < 6 < (3 — ) the function

w(z) =0s5(r —a—19)05(8 —x —0)

is in C*°(R). It has support [a, 3] and is equal to 1 on [a + 26, 3 — 26]; cf.
Figure 4.2.

Exercises. 4.1.1. Let f; and f be integrable functions of period 27. Prove
the following implications:

fr — f uniformly on [—m, 7]

= fy — f in L'(-mm)

= fr — [ relative to the test class Co,
= fr — f relative to the test class Cj;.

4.1.2. (Continuation). Show that in each case, ¢,[fx] — c,[f] as k — oo
for every n.

4.1.3. Let f, f, g be integrable on (—m,7) and suppose that f, — f
relative to the test class C32, while f; — ¢ uniformly on (a,b) C (—m, ), or
in the sense of L!(a,b). Prove that f = g a.e. on (a, ).

Hint. Consider sequences { frw} where w has support [a, b].

4.1.4. For indefinite integrals F' on [—m, 7], the Fourier series converges
to F everywhere on (—m, ) (why?). Use this fact to show that for integrable
functions f on (—m, ), the series Y7 | 1b,[f] is convergent.
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FIGURE 4.2

4.1.5. Prove that the series

converges for all  and that the sum function g(x) is continuous on (0, 27).
Show that the series cannot be the Fourier series of an integrable function
on (—m,m) or (0,2m).

4.1.6. Prove that the function ¢ (x) under Examples 4.1.9 is of class
C*(R). Derive that the other functions are also of class C*°(R).

4.1.7. Prove that an integrable function f on I' is equal to a test function
if and only if for every p € N, one has ¢,[f] = O(|n|™?) as |n| — oo.

4.1.8. Construct an example to show that the Fourier series of a periodic
L' function need not converge to f in the sense of L!.

Hint. For every k € N there is a function fj with |fx(z)| = 1 such that
|sk[f&]]l is close to || Dg||. Now form a suitable series f =} a;f,,.

4.2. Periodic distributions: distributions on the unit circle

Functions on R of period 27 may be considered as functions on the unit
circle (unit circumference) I' = {z € C : |z| = 1}. Here we will not take
z = € as our independent varaibale, but rather the (signed) arc length x
from the point z = 1 to z = €*. Where one-to-one correspondence between
the points of I' and the values of z is important we may take —m < x < 7 or
0 < x < 2m. However, we sometimes speak of arcs on I' of length > 27, for
example, the arc given by —27 < x < 27. Integration over I relative to arc
length shall be the same as integration over the interval (—m, 7| or (—m, 7).
Differentiation with respect to arc length corresponds to differentiation on
R. The p times continuously differentiable functions on I' correspond to the
class C§_. By definition the test class C>(I") on the unit circle corresponds to
the test class Cs2 on R. Convergence of integrable functions f — f relative
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to the test class C*°(I") is the same as convergence on (—m, ) relative to
the test class Coo:

léﬁ¢=/iﬁ@W@M%ﬁzf¢ Vo e (D)

In the definition of convergence, integrable functions enter only through
their action on test functions. The integrable function f appears in the
form of the linear functional Ty : C*°(I") = C given by

(4.2.1) Tﬂ@=<7%¢>=éj¢ Vo e (D).

Observe that the correspondence between f and the functional 7% is one to
one if we identify functions that are equal almost everywhere, that is, (4.2.1)
establishes a one-to-one correspondence between the elements f € L'(T)
and the associated functionals T7.

We will now introduce more general linear functionals on our test class,
and call these generalized functions. However, we will not allow all linear
functionals — in order to get a good structure theory of generalized functions,
we will impose a continuity condition. To this end we introduce a suitable
concept of convergence for test functions. In order to make it easy for
functionals to be continuous, we have to make it difficult for test functions
to converge.

DEFINITION 4.2.1. The test space D(I') consists of the C* functions ¢
on I' (henceforth called test functions), furnished with the following concept
of convergence: ¢; — ¢ in D(I') if and only if

¢; — ¢ uniformly on T', ¢; — ¢’ uniformly on T, ---,
gf)g-p) — ¢® uniformly on T, --- .

Observe that convergence ¢; — ¢ in D(I") implies convergence ¢} — ¢’
in D(I'), etc.

PROPOSITION 4.2.2. For a test function ¢ on I', the Fourier series con-
verges to ¢ in the strong sense of D(T'):

sj[¢] — ¢ uniformly on T, si[¢] — ¢" uniformly on T', -
sg-p) (0] — ¢@ wuniformly on T, --- .
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PROOF. One has

P = (1) 3 b = 3 e

n=—j n=—j

= 3l = 6

n=—j

cf. Lemma 2.1.2. Furthermore, since ¢® is of class C*°(I") or C5°, the partial
sum s;[¢®)] converges to ¢® uniformly on T O

DEFINITION 4.2.3. A distribution (or generalized function) 7" on the unit
circle I' is a continuous linear functional on the test space D(I'). Such a
distribution can also be considered as a distribution on R of period 27.

In order to make the definition more clear, we introduce different sym-
bols for our continuous linear functionals. Besides T', we will use 7'(-) or
T(¢), and also < T, ¢ >. If there is no danger of confusion, one sometimes
writes T'(z) in order to indicate the underlying independent variable x on
I'. However, a distribution need not have a value at the point x.

By the definition, a distribution 7" on I" is a map D(I') = C which is
linear:

ST, M1+ Ao >= M <T,01 > +Aa <T, 02 >
for all \; € C and all ¢; € D(I'"), and continuous:
<T,p; >—<T,¢> whenever ¢, — ¢ in D(I).
As linear functionals, distributions can be added and multiplied by scalars:
<MD+ XD, 0>=M <Ti,0 >+ <T5,0>, Vo.

EXAMPLE 4.2.4. Every integrable function f on I' defines a distribution
Ty on I' by formula (4.2.1). Indeed, [.f¢; — [.[f¢ already if ¢; — ¢
uniformly on I'. In the terminology of Chapter 5 we could say that f defines
a continuous linear functional relative to the convergence in the space C(I).

Since the correspondence f < T} is one to one for f € LY(T') and
preserves linear combinations, we may identify Ty with f and also write
< f,¢ > instead of < T}, ¢ >. Thus (periodic) integrable functions (more
precisely, equivalence classes of integrable functions) become special cases
of (periodic) distributions. Distributions on I" form a generalization of inte-
grable functions. Some important distributions correspond to special non-
integrable functions; cf. Example 4.2.6 below.
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ExXAMPLES 4.2.5. The delta distribution on the circle, notation Jr, is
defined by the formula

(4.2.2) <dr,¢ >=¢(0), V¢eDI).

In physics, a distribution that assigns the value ¢(0) to test functions ¢ is
usually called a Dirac delta function, after the British physicist Paul Dirac
(1902-1984; [22]). It is given symbolically by the formula

/ " Sn(2)d(x)dx = B(0);

cf. [24]. However, dr cannot be identified with an integrable function as
we will see below. [Incidentally, one may consider dr also as a 2m-periodic
distribution on R; in that case we use the notation 5 ]

*The distribution dr actually defines a continuous linear functional rela-
tive to the less demanding convergence in C(I'): if ¢; — ¢ uniformly on T,
then < dr, ¢; > — < dr, ¢ >. By a representation theorem of Frigyes Riesz
(Hungary, 1880-1956; [100]), cf. [101]), a continuous linear functional on
C(T") can be identified with a (real or complex) Borel measure. (Such mea-
sures are named after Emile Borel, France, 1871-1956; [9]; cf. [10].) Thus
the delta distribution is an example of a measure.

For any nonnegative integer p, the formula

<T,¢>=¢"(0), V¢eDI)

defines a distribution on I'. Indeed, if ¢; — ¢ in D(I'), then ¢§-p)(0) —
47(0).

ExXAMPLE 4.2.6. We recall the definition of a principal value integral.
Let a < ¢ < b and suppose that a function f is integrable over (a,c — ¢)
and over (c+ ¢,b) for all small € > 0, but not necessarily over (a,b) itself.
Then f has a principal value integral over (a,b) [relative to the point ¢| if
the following limit exists:

(4.2.3) lim f(z)dz.
eN0 (a,b)\(c—e,c+e)
It is important that the omitted interval be symmetric with respect to c.

The principal value p.v. f; f(z)dz is defined by the value of the limit in
(4.2.3).
Suppose now that f(z) has the form (1/z)¢(x), where ¢ is of class C! on a

finite interval [a, b] with @ < 0 < b. Then the principal value p.v. fab f(z)dz



78 4. PERIODIC DISTRIBUTIONS AND FOURIER SERIES

[relative to 0] exists and may be obtained through integration by parts.
Indeed, writing (1/z)dx = dlog |x| one finds

(/ /) dx_[¢(x)log]a:\]a5+[mx)log‘xqi
_(l%+ZU@%MWth

The second member has a finite limit as € \ 0 since (log|z|) ¢'(x) is inte-
grable over (a,b) and {¢(¢) — ¢(—¢)}loge — 0. Thus

b
pv/° oz <ﬂ%b—wwbmw—/kb@wwuwm

The principal value distribution on I' corresponding to the nonintegrable
function 1/z is defined by

(e 2 00)) @ [ L otwie

Here integration by parts will show that

1
(e go0)) == [ 1og 2 gyt voe D)
The continuity of the functional follows from the uniform convergence of ¢/
to ¢ when ¢; — ¢ in D(I').

DEFINITION 4.2.7. (Simple operations) The translate T.(z) = T'(x — ¢),
the reflection Tgr(x) = T(—x) and the product Tg of T with a test function
g are defined as if < T, ¢ > is an integral, just like < T}, ¢ >=< f,¢ >=

fr fo:
<T(x—c),o(x) > = /T(x —c)p(x)dx

_ /F T(@)o(x + )z = < T(x), 6(x + ¢) >
<T(=0).6(a) > = [ T(=opola)ds

= /FT(x)qs(—x)dx =<T(z),¢(—x) >,

<Tg,¢> :<gT,¢>:/Tg¢:<T,g¢>.
r
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96(m-x) eé(x-m)

FIGURE 4.3

Here the integral signs have been used symbolically. For given T', prod-
ucts T'g may often be defined for less regular functions g than test functions;
cf. the Exercises and Section 4.7.

An important notion is the concept of local equality.

DEFINITION 4.2.8. One says that 7' = 0 on the open set Q) C I if
< T,¢p >=0 for all test functions ¢ with support in €.

By the preceding the distribution dr is even: dp(—x) = dr(x). Further-
more

(4.2.4) or(z)=0 on 0 <z <27 (and on — 27 <z <0).

Indeed, < dr, ¢ >= ¢(0) = 0 whenever supp ¢ C (0,27). The distribution
dr has the single point {0} as its “support” on I'. It follows that ér cannot
be equal to an integrable function f on I': if f has support 0 then < f, ¢ >
= fr fo =0 for all ¢. [The distribution or measure dr corresponds to the
“mass distribution” that consists of a single point mass 1 at the point 0.]

We will need the following property: If 7= 0 on 2; and on (), then
T = 0 on the union €2; U €25. Since open sets on [' are unions of disjoint
open intervals, it is sufficient to show that “T" = 0 on (a,b)” and “T" = 0
on (¢,d)”, with a < ¢ < b < d, implies “T' =0 on (a,d)”. In order to prove
the latter, we decompose a given test function ¢ with support in (a,d) as
¢1 + ¢2, with supp ¢ C (a,b) and supp ¢o C (¢,d). Such a decomposition
may be obtained by setting

P1(x) = Os(m — 2)p(x),  da(z) = Os(x — m)o(x),
where m = 2(b+c¢), § = 1(b — ¢) and 6; is as in Examples 4.1.9; cf. Figure
4.3. It now follows that

<T,p>=<T,p1 >+ <T,po>=0
whenever 7'= 0 on (a, b) and (c, d).
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By the preceding, there is a maximal open subset 2 C I' on which a
given distribution 7" is equal to zero. [2 may of course be empty.] The
complement of (2 in I' is called the support of T'.

Exercises. 4.2.1. Prove that a trigonometric series > >- _ ¢,e™ repre-
sents a C* function ¢ on I' if (and only if) for every p € N, there is a
constant B, such that |c,| < B,/|n[? for all n # 0.

4.2.2. Compute < dp,e " > for each n. Use the result to verify that
there can be no integrable function f such that ér = f on I'.

4.2.3. Show that the formula

T(¢) = app(0) + a1/ (0) + - - + and™(0), V¢ € D(T)

defines a distribution 7" on I'. Determine supp 7.

4.2.4. Let f be an integrable function on I'. Prove that f = 0 on
(a,b) C T"in the sense of distributions if and only if f(x) = 0 a.e. on (a,b).

4.2.5. Prove that the functionals T'(z — ¢), T(—x) and T'g in Definition
4.2.7 are continuous on D(I').

4.2.6. For T € D(I') and g € C*(a,b) one may define a product T'g on
every interval («, 3) with [«, 5] C (a,b) and f—a < 27 in the following way.
Extending the restriction of g to [«, 5] to a test function h on I' with support
in a subinterval [o — g, 5 + €] of (a,b) of length < 27, one sets Tg = Th on
(e, B). Show that this definition is independent of the extension h.

4.2.7. Prove that drg = g(0)or for every test function g. Also show that
x-or(x) =0on (—m,m).

4.2.8. Prove that pvj (1/z) = 1/x on (—m,0) and on (0, 7). Also show
that = - pvp (1/2) =1 on (—m, 7).

4.2.9. Show that

Grlo) s} v § 20 pro g} on (-mm)

Thus distributional multiplication is not associative in general.

4.2.10. Verify that for T' € Dr, the definition of the translate T'(z — c)
under Definition 4.2.7 implies that indeed T'(z+27) = T'(x), as it reasonably
should.

4.3. Distributional convergence
For the time being we deal only with distributions on I'.

DEFINITION 4.3.1. One says that distributions 7} (which may be equal
to integrable functions) converge to a distribution 7" on I' if T, — T relative
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to the test class D(I'):
<Tpyp>—<T,¢p> as k— oo, Vo € D).

With this definition of convergence the distributions on I' form the space
D'(T"), the so-called dual space of D(T).

We use a corresponding definition for “directed families” T). Here A
runs over a real or complex index set A, and tends to a limit A\, which may
be infinity. Similarly for convergence T}, — T on (a,b) C T'. Distributional
limits are unique: if T, — T and also T, — T, then T = T. For integrable
functions f; and f on I', distributional convergence f;, — f is the same as
the earlier convergence relative to the test class C*>(I).

EXAMPLES 4.3.2. A sequence or more general directed family of inte-
grable functions which converges to the delta distribution on I' is called a
delta sequence or delta family on I'. Concrete examples are provided by

(i) the Dirichlet kernels Dy, k =0,1,2,--- [Section 2.2],

(ii) the Fejér kernels Fy, k =1,2,--- [Section 3.2],
(iii) the family given by the Poisson kernel P,, 0 <r /1 [Section 3.5],
(iv) any family g.(z) = (1/¢)g(z/e), 1 2 € \, 0,

generated by an integrable function g with support in [—1, 1]
1

and such that / g(x)dr = 1.

-1

It is easy to verify that Dy — ér on I'. Indeed,
(431)  <Dpoé>= / D(t)o(t)dt = s4[6](0) — 6(0) = < bp, 6 >

for all ¢ € D(T") since the Fourier series for ¢ converges to ¢. The proofs
in the other cases are not difficult either. Delta families occur in many
problems of approximation.

We next consider somewhat different examples.

EXAMPLE 4.3.3. Suppose that the trigonometric series > > d,e™"

converges to a distribution 7" on I', that is, s = Zﬁsz d,e™ — T as
k — oo. Then in particular

(4.3.2) <T,e”™ >=1lim < s, "™ >= lim/ sp(z)e ™ dx = 27d,,.
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This formula will motivate the definition of distributional Fourier series.

ExXAMPLE 4.3.4. We will show that for every distribution 7" on I', there
is a distribution S such that

(433) }Z{% T(x+ h})i —T(x)

= S(z).
S is called the (distributional) derivative of T'. In Section 4.5 we will intro-

duce the derivative in a somewhat different manner.

*Existence of the limit in (4.3.3). We show first that for every test
function ¢,

(TEED T )Y (1(p, =1 o))

h h
(4.3.4) —<T(x),—¢'(x) > as h—0.

Indeed [replacing —h by h], the difference

oz + h})Z —¢(x) o () = % /0 {¢/(x +t) — ¢/ (z)}dt

(4.3.5) - /0 (6/(z + o) — & ()b

will converge to zero uniformly in x as h — 0, because the periodic function
¢' is uniformly continuous. The pth order derivative of the difference in
(4.3.5) also converges uniformly to zero:

¢(p) (x+h) — ¢(p) (7)
h

:/?¢wa+m»—wHW@wveo
0

— ¢(p+1)(a;)

uniformly in x. Thus the test functions given by (4.3.5) converge to 0 in
the sense of D(I') as h — 0. Going back to —h, we find that

Oz —h) —o(x)
h

Since T' is continuous on D(I") relation (4.3.4) follows.
We now define a linear functional S on D(I") by

(4.3.6) <SS dp>=<T,—¢ >=—<T,¢ >.

—¢'(x) in D(T).
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The functional S is continuous: if ¢; — ¢ in D(I'), then ¢ — ¢ in D(I'),
hence < T, ¢, >— < T,¢’ >. Thus S is a distribution on I'. Combining
(4.3.4) and (4.3.6) we obtain

<T(‘” + h})L - T(x),¢(x)> < Sb> Ve

This proves relation (4.3.3).

Exercises. 4.3.1. Prove that all directed families in Examples 4.3.2 are
delta families.
4.3.2. Let {g.} be as in Examples 4.3.2. Prove that for ¢ \ 0,

/ " )l — D)t — f(a)

uniformly on T' for every function f € C(T).

4.3.3. Use Definition 4.3.1 to show that the series Y - n'% cosnz
converges in D'(T").

4.4. Fourier series
Example 4.3.3 motivates the following

DEFINITION 4.4.1. The (complex) Fourier series for the distribution 7'
on I' is the series

0o ' . 1
T~ Y clT]e™ with ¢,[T] = 5o <T.e ™ > Vnel
m

n=—oo

One can of course also introduce the “real” Fourier series. The partial
sums of the real series and the symmetric partial sums Zli i of the complex
series are denoted by s;[T.

ExXAMPLE 4.4.2. The Fourier series for the delta distribution on I' and
its partial sums are

1 & 1«
2— Z (5 + ; COs nx) s
1 &
(4.4.1) =5 Z Dy ( (Dirichlet kernel).

The Fourier series for dr converges to dr. Indeed, s[dr| = Dy — dr by
(4.3.1).
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PROPOSITION 4.4.3. For T € D'(I') and ¢ € D(I),
k

<T,¢> =27 kILm cn[Tle_n[d)]
n=—k
(4.4.2) = Y clTle-ald].

ProoFr. By Proposition 4.2.2 the Fourier series for ¢ converges to ¢ in
D(T"). Hence by the continuity of T,

k
<T,¢>=lm< T, s¢] >=1lm Y  c,[¢] <T,e™ >

n=—k

k
= lim 27 Z Cnl@le—n|T], etc.

n=—~k

O

One may derive from Section 4.6 below that the series in (4.4.2) is ab-
solutely convergent.

THEOREM 4.4.4. For every distribution T on I the Fourier series con-
verges to T

Proor. [Cf. Lemma 4.1.6 and Theorem 4.1.7] By Proposition 4.4.3,

k k x

<l o> =3 alll<e™¢>=3 [T] / ¢ () d

n=—%k n=—k -

COROLLARY 4.4.5. A distribution T on T is determined by its Fourier
series: if ¢,[T] =0 for alln, then T = 0.

Exercises. 4.4.1. Suppose that T, — T in D'(I") as k — oo. Prove that
cn[Ty] — [T for every n.

4.4.2. Express the Fourier series for T'(x — ¢) and T'(—x) in terms of the
Fourier series for T'(z).
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4.4.3. Prove that a distribution 7" on I' is equal to a test function if and
only if for every p € N, one has ¢,[T] = O(|n|P) as |n| — cc.
4.4.4. Compute the distributional sums of the series

cosx + cos2x + cos3x + -+, cosT — cos2x + cos3T — - -,

cosx + cos3x + cosdr + - - - .

4.4.5. Tt is more difficult to determine the distributional sum 7'(z) of
the series
sinw + sin2x +sin3x + - - - .

Denoting the partial sum of order k by s, prove that for all ¢ € D(T'),

<T,p> =lim < s;,¢ >= /W% (cot %x) {6(z) — ¢(—2x)}dx
0

= l{% (/ +/:) % (cot %x) o(z)dz

(4.4.3) = p.v. /7r % (cot %x) o(z)d;

—T

cf. Exercise 3.2.3. The final expression defines the distribution pv % cot %x
More in Exercise 4.5.12.

4.5. Derivatives of distributions

Let F be a function in C3 = C!(T), or more generally, a function in
C(I") that can be written as an indefinite integral (4.1.1). Then for every
test function ¢ on I', integration by parts gives

<pﬂ¢>:/iﬁ¢zpwtw—/iFd:-<R¢>.

We extend this formula to distributions:

DEFINITION 4.5.1. Let T be any distribution on I'. Then the distri-
butional derivative DT of T is the distribution on I' obtained by formal
integration by parts:

<DT,p>% - <T,¢> V¢eDI).

This formula indeed defines S = DT as a continuous linear functional
on D(I'), hence as a distribution; cf. the lines following (4.3.6).

Whereas the derivative F” of a C! function F is defined at every point,
the derivative DT of a distribution 7" need not have a value at any point;
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it does not represent pointwise rate of change. Nevertheless distributional
differentiation has a local character in the following sense:

if Ty =T, on (a,b) € I', then DTy = DT3 on (a, b);
(4.5.1) if T'= F on (a,b), where F is a C' function on I'

or just on (a,b), then DT = F’ on (a,b); in particular:

if T'= C' (a constant) on (a,b), then DT =0 on (a,b).
Indeed, if < T} — T, ¢ >= 0 for all test functions ¢ with support in (a,b),
then < D(Ty — Tz),¢ >= — < Ty — Ty, ¢’ >= 0 for all such functions ¢,
since ¢ also is a test function with support in (a, b).

The final part of (4.5.1) has a converse which is fundamental for the
distributional theory of differential equations:

if DT=0onT [or on (a,b) € I'], then T'= C,
(4.5.2) a constant function, on I' [or on (a, b), respectively].
The first part is a nice application of Fourier series. Indeed,

21y [DT) =< DT, e ™ > = — < T, (e”"™) >
(4.5.3) =in < T,e "™ >=2minc,[T),

hence if DT = 0 on I, then inc,[T] = ¢,[DT] = 0 for all n, so that ¢, [T] = 0
for all n # 0. Thus

T= Z cn[T)e™ = ¢o[T] on T.

For the “local part” of (4.5.2), see Exercises 4.5.6, 4.5.7.

All distributions 7" on I' will have derivatives of every order. In par-
ticular, integrable functions f acquire (distributional) derivatives of every
order. Of course the derivative D f is not a function unless f is equal to an
indefinite integral.

PROPERTY 4.5.2. (Product Rule) For T € D'(T") and g € D(I'),
(4.5.4) D(Tg)=DT-g+Tg on T.

Indeed, for any test function ¢, by Definition 4.2.7,
<D(Tg),p>=—<Tg,¢' >=—<T,g¢ >
=—<T,(90) —gdp>=<DT, 90>+ <T,¢g'¢ >
=<DT-g,0>+ <Tq,¢>.
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EXAMPLES 4.5.3. Let U be the unit step function, here restricted to the
interval (—m, 7):

Uz) =1,(z) & { (1) EE E(IZTT,)?)?

we usually set U(0) = 0, but the value at 0 is irrelevant for our integrals.
The 27-periodic function UP®" defined by U (cf. Figure 4.4) also has jumps
at +m, etc, but we only wish to study DUP* = DU on (—n, 7). Hence let
¢ be any test function with support on [a,b] C (—m, 7) where a < 0 < b.
Then

< DUP" ¢p > = — < UP", ¢ >= / Urere = / ¢

—¢(b) + ¢(0) = ¢(0) =< dr, ¢ > .
Thus

(4.5.5) DU = DU =ér on (—m,7).

Observe that the distributional derivative is equal to the ordinary derivative
- zero - on (—m,0) and on (0,7), as it should be; cf. (4.5.1). The delta
distribution in the answer reflects the jump 1 of U at the origin.

Since zU () is an indefinite integral of U on (—m, ), one has D(zU) = U
there. Application of (4.5.4) thus shows that xdr = DU = 0 on (—m,7);
cf. Exercise 4.2.7.

By Example 4.2.6 one has < pvp (1/2),¢ >= — < log(|z|/7), ¢’ > for
all test functions ¢, hence

2]

1
pvp — = Dlog— = Dlog|x| on (—m,x).
x s

THEOREM 4.5.4. (Continuity of distributional differentiation) Suppose
that T, — T on T' Jor on (a,b) C T'|. Then DT, — DT on I' [or on
(a,b) C T, respectively].
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FIGURE 4.5

Indeed, the derivative of a test function [with support in (a, b)] is also a
test function [with support in (a, b)|, hence

<DT,¢p>=—<Tp,¢>— —<T, ¢ >=<DT,p > .

COROLLARY 4.5.5. (Termwise differentiation) Fvery distributionally con-
vergent series on I' [or on (a,b) C I'| may be differentiated term by term:

if T = i U,, then DT = i DU,,.
n=0 n=0

In particular Fourier series of distributions may be differentiated term
by term:

0o k
if T'= Z Cpe™ (: klim ) ,

o
then DT = Z inc,e™.

n=—oo

[We knew already that ¢,[DT] = inc,[T]; see (4.5.3).]

COROLLARY 4.5.6. Let Y " gn be a uniformly or L' convergent series
of integrable functions on I' with sum f. Then

Zngn:Dpf on I', VpeN.

n=0

EXAMPLE 4.5.7. Let f be the 2m-periodic function given by
T—x

f(z) = 5 on (0,2m), or f(x):—g—l—gsgnx on (—m,7);

cf. Figure 4.5. The Fourier series of this integrable functionis >~ % sin n.x.
It converges to f in L', hence distributionally; cf. Exercises 1.2.1, 1.2.2 or
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Section 2.6. Thus it may be differentiated term by term to give

i": cosnx = D f(x).
n=1

On (0,27) the function f is of class C', hence Df = f' = —. At 0 our
f has a jump equal to m; on (—m, ), the difference f — 7U is equal to the
C' function —%a: — %’/T when properly defined at 0. Thus D(f — nU) =
Df — wép = —5 on (—m, ). Conclusion:

°° 1
Z cosnr = Df(x) = ~3 +mér on T,
n=1

in accordance with the known Fourier series for dr in Example 4.4.2.

We could also have started with the Fourier series for ér. From it,
we could have computed the sum of the series >~ | %sin nx; cf. Exercise
4.5.12.

Exercises. 4.5.1. Let f be an integrable function on I'. Show that the
distributional derivative DPf may be represented by the formula

< Do = (—1>p/rf¢><p>, Vo € D(T).

Verify that this formula gives DP f as a continuous linear functional on D(T").

4.5.2. Let T be a distribution on I' such that "= F on (a,b) C I', where
F is a CP function on (a,b). Starting with p = 1, prove that DPT = F®) on
(a,b).

4.5.3. Compute DP(z9U) on (—m,m), (i) if p < ¢, (ii) if p > q.

4.5.4. Compute >>° _ nPe™ on I for all p € N.

4.5.5. Show that a distribution 7" on I has a distributional antiderivative
on I if and only if ¢[T] = 0.

4.5.6. Let ¢ be any test function on I' with support in (a,b) C I', and
let w be a fixed test function with support in (a,b) and wa = 1. Prove
that ¢ — cw will be the derivative ¢’ of a test function ¢ [with support in
(a,b)] if and only if ¢ = [L¢p =<1, >.

4.5.7. (Continuation) Let T" be a distribution on I' such that DT = 0
on (a,b) C I'. Prove that T'= C on (a,b).

Hint. Take ¢ and w as above and form < 7T, ¢ — cw >.

4.5.8. Discuss the distributional differential equation (D — a)u = 0, (i)
on I'; (ii) on (—m, ).

Hint. (D — a)u = e**D(e"*u) on (—7, 7).
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4.5.9. Let f be an integrable function on (—m, 7). Show that all dis-
tributional solutions u [in D'(I")] of the following differential equations are
equal to ordinary functions on (—m,7):

(i) (D—a)u=f on (—m,m); (ii) (D—a)u=Df on (—m, ).

4.5.10. Consider an electric circuit containing a resistance R and an
inductance L in series with a generator that supplies a voltage V () (Figure
4.6). Here the current /(t) will satisfy the differential equation

dI
L— +RI = V(t).
s (t)

Determine the current over a time interval —b < ¢ < b when V() is a unit
voltage impulse at ¢ = 0, while I(¢) = 0 for ¢ < 0.

Hint. Taking b = 7, a unit voltage impulse at £ = 0 may be represented
by V(t) = ér(t).

4.5.11. Let f be 2m-periodic, continuous on [—m, 7] except for a jump
at the point ¢ € (—m, ) and such that the restriction of f to [—m,¢) could
be extended to a C' function on the closure of this interval, and similarly
for the restriction of f to (¢, w]. Prove that

Df(z) = f'(x) + {f(c+) = f(c=)}or(z —¢) on T
[Conclusion: the distributional derivative contains more information than
the ordinary derivative!]

4.5.12. In Exercise 4.4.5 it was found that Y7 | sinnz = pv 3(cot 1)
on I'. Prove that for all ¢ € D(I'),

<pv % cot %CE, ¢(:B)> p. /_7r % (COt %x) ¢(z)dx

s

_ / " log | sin(z/2)| - ¢ (x)da.

—T
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Put into words what this means. Finally compute »_>° | < cosnz on I.

4.5.13. Let UP®" be the 2m-periodic extension of the unit step function
U on (—m, 7). Compute the real Fourier series for UP® and express DUP®
on I' [not just on (—m, )| in terms of delta distributions.

4.5.14. Let f be an integrable function on (—m, ). Prove that the series,
obtained by differentiation of the Fourier series for f, is the Fourier series
for D fP°" where fP is the 2m-periodic extension of f.

4.6. Structure of periodic distributions

We begin with a characterization of the class of distributionally conver-
gent trigonometric series.

PROPOSITION 4.6.1. A trigonometric series

(4.6.1) i dpe™

n=—oo

converges in D'('), that is, limg_ Z’fk d,e™ exists as a distribution, if
and only if there are constants B and 3 such that

(4.6.2) d,| < Bln|®, ¥n #0.
PROOF. (i) Suppose that the numbers d,, satisfy the inequalities (4.6.2)

and let s be the smallest nonnegative integer greater than 4 1. Then the
inequalities

d, B
)| S T (where s — (3> 1)
show that the series 4
: n einzr
%ﬁ% (in)s

is [absolutely and]| uniformly convergent on I'. The sum function f = f(x)
of that series is continuous, and by differentiation [as in Corollary 4.5.6] we
find that the series (4.6.1) converges to the distribution

(4.6.3) T=dy+D°f onI.

(il) Suppose now that the series (4.6.1) converges to a distribution 7" on
I', that is, for &k — oo,

k
<Z dnei”x,¢> —<T,6> V¢eD().

n=—~k
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Thus the series
(4'6'4) Z dncfn[¢]

must converge for every test function ¢; cf. Proposition 4.4.3. We will use
this fact to obtain an indirect proof for the validity of inequalities of the
form (4.6.2).

Suppose to the contrary that the sequence

(4.6.5) {n7d,}, n==+1,4£2 -

is unbounded for every positive integer j. Then, starting with j = 1,
there must be an integer n; of (smallest) absolute value |nj| > 1 such
that |n;'d,,| > 1. Taking j = 2, there must be an integer ny of (smallest)
absolute value |ny| > |n;| such that |n;2d,,| > 1. In general, there exists an
integer n; of (smallest) absolute value |n;| > |n;_;| such that \n;jdn].| > 1.
Clearly |n;| > j for all j € N. Now define

s .
¢($> — Z n]f]efznjx'
j=1

Since \nJ_J | <779 <572 for every j > 2, the series for ¢ is (absolutely and)
uniformly convergent, hence ¢ is well-defined and continuous. The function
¢ will actually be of class C52. Indeed, for every positive integer p, the p
times differentiated series

00
Z (_i)pnl;*jefinjx
j=1

is also (absolutely and) uniformly convergent, since |n§_j| < jPI < 7% as

soon as j > p+ 2.

However, for our special test function ¢, the series in (4.6.4) will be
divergent. Indeed, c¢_,[¢] = n;j for n =n; and c_,[¢| = 0 when n does not
have the form n; for some k. Hence

[ng|

Z dann[Qﬂ = Z dnjn;ja

n=—|n| J=1

and the latter sums are the partial sums of an infinite series, all of whose
terms have absolute value greater than one.
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This contradiction proves that there must be a positive integer j for
which the sequence (4.6.5) is bounded. O

THEOREM 4.6.2. (Structure of the distributions on I') Let T' be an ar-
bitrary distribution on I'. Then there exist a continuous function f on I,
a nonnegative integer s and a constant dy (= co|[T]) such that T has the
representation T = dy + D*f given in (4.6.3).

PRrROOF. The Fourier series for T' converges to T in D’'(I"); see Theorem
4.4.4. Hence by Proposition 4.6.1, there are constants B and 3 such that
the Fourier coefficients ¢,[T] = d,, satisfy the inequalities (4.6.2). The first
part of the proof of Proposition 4.6.1 now shows that 7" has a representation
(4.6.3). O

Order of a distribution. The smallest nonnegative integer s for which
T has a representation (4.6.3) with a continuous or integrable function f
on [' may be called the order of T relative to the continuous or integrable
functions on I.

*However, Laurent Schwartz used a somewhat different definition; cf.
[110]. Observe that the representation (4.6.3) implies that | < T',¢ > | can
be bounded in terms of sup |¢| and sup |¢®)|. The Schwartz order of T is
the smallest nonnegative integer m such that | < T, ¢ > | can be bounded
in terms of sup |¢| and sup |¢™|. Thus Jr is a distribution of order zero.

*By Theorem 3.3.2, every continuous function on I' is a uniform limit of
trigonometric polynomials. Anticipating the terminology of normed spaces
[see Chapter 5], we may conclude that every function ¢ € C(I") is a limit
of test functions under the distance derived from the norm ||¢|| = sup |¢|.
It follows that a distribution 7" of order zero can be extended by continuity
to a continuous linear functional on C(I'). Hence by Riesz’s representation
theorem, every distribution of order zero can be identified with a measure;
cf. Examples 4.2.5.

The following refinement of Proposition 4.6.1 provides a characterization
of distributional convergence Ty, — T
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THEOREM 4.6.3. The following three statements about distributions T},
k=1,2,--- and T on I' are equivalent:

(1) Ty — T in D'(T), that is, < Ty, >—<T,¢ >, Vo € D(T);
(1) cn[Ty] — cn|T] as k — 00, Vn € Z,
and there are constants B and 3 such that
lea[Th]] < Bn|?, ¥n#0, Vk €N;
(7ii) There are continuous functions fr and f on T,

a nonnegative integer s and constants dyy and dg such that
Ty =dw + D°fy, T =dy+Df,

while fr — f uniformly on I' and dyy — d.

Instead of sequences {7} one may consider more general directed fam-
ilies {Th}. Convergence T}, — T according to () is sometimes called weak
convergence, while convergence according to (i) or (4i7) may be called strong
convergence. For distributions, weak and strong convergence are equivalent.

The difficult part in the proof of Theorem 4.6.3 is the implication (i) =
(7). It may be derived from

PROPOSITION 4.6.4. Let ag‘), n=12--, X €A be a family of se-
quences with the following property. For every sequence b = {b,} such that
b, = O(n=P) for every p, the associated sums

a(\) =o(\b) =) aMb,
n=1

are well-defined and form a bounded set E = E(b) as \ runs over A. Then
there are constants A and o such that

(4.6.6) M, % sup laM| < An®, V¥n eN.
AeA
A proof will be sketched in Exercise 4.6.13. The proposition also implies

the completeness of the space D'(T"), cf. Exercise 4.6.11:

THEOREM 4.6.5. Let {T}} be a Cauchy sequence in D'(I'), that is to say,
<T; =Ty, ¢ >— 0 as j, k — oo for every test function ¢ on I'. Then the
sequence {1y} converges to a distribution T on T .

REMARK 4.6.6. In Section 5.2 we will discuss a general construction of
completion of metric spaces. A similar construction can be used to com-
plete the space L(T") of the integrable functions on I" under the concept of
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convergence relative to test functions. This provides another way to arrive
at the distribution space D'(I'); cf. [68].

Exercises. 4.6.1. Prove that a series %ao + 22021 (an cosnx + b, sinnx)
is the (real) Fourier series of a distribution 7" on I' if and only if there are
constants B and 3 such that |a,| + |b,| < Bn” for all n € N.

4.6.2. Prove that the series 27>~ ¢ [T)c_p[¢] for < T,¢ > in
Proposition 4.4.3 is absolutely convergent.

4.6.3. (Antiderivative) Prove that a distribution 7" on I' has an anti-
derivative in D'(T") if and only if ¢o[7] = 0. What can you say about the
order of the antiderivative(s)?

4.6.4. Suppose 1" = dy+ D?f on I' with f integrable. Prove that there

are constants By and By (depending on T') such that
| <T,¢>]| < Bysup|¢| + Bysup 6], V¢ e D).

4.6.5. Represent or in the form (4.6.3), (i) with s = 1 and f inte-
grable; (ii) with s = 2 and f continuous. Show that Jr is a distribution of
(Schwartz) order zero and that D™dr has order m.

4.6.6. (Characterization of distributions with point support) Let T be
a distribution on I" whose support is the point 0. Prove that on (—m,7),
T = D?F for some continuous function F' and s > 1. Using the fact that
D*F must vanish on (—m,0) and on (0, 7), what can you say about F' on
those intervals?

Derive that on (—m, ), one can write T' = D*(PU), where P is a poly-
nomial of degree < s and U is the unit step function. Finally show that on
(—m,m) [and in fact, on I'], T' can be represented in the form

apor + a1 Doy + - - - + a,, D™or, with a,, # 0,

where m is the Schwartz order of 7.

4.6.7. A distribution T is called positive if T'(¢)) > 0 for all test functions
1 > 0. Prove that a positive distribution on I' has Schwartz order zero.
[Hence it can be identified with a measure.]

Hint: if ¢ is an arbitrary real test function and sup|¢| = ~, then the
functions v - 1 + ¢ are nonnegative test functions.

4.6.8. Show that distributions of Schwartz order m can be extended to
continuous linear functionals on the space D™ (I"), obtained from C™(I") by
imposing the norm ||¢|| = sup |¢| + sup [¢™)].

[Convergence ¢; — ¢ in D™(I') is equivalent to uniform convergence

Gj — b, O — ¢ B — gm) ]
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4.6.9. Let T be a distribution on I'. Prove the existence of, and compute,
limy, o {T'(z + h) — T'(x)}/h with the aid of Fourier series.

4.6.10. Prove that statement (ii) in Theorem 4.6.3 implies statement
(ili), and that (iii) implies (i).

4.6.11. Use Proposition 4.6.4 to prove the implication (i)=-(ii) in Theo-
rem 4.6.3 and also to prove Theorem 4.6.5.

Hint. If ¢,[¢] = 0 for all n > 0 one has

o(k) =0k ¢) =< Ti,¢ >=21 > cu[Tile_n[g]-
n=1

4.6.12. Suppose that the sequence {a,}, n = 1,2, -- has the following
property: the series Y - | a,b, converges for every sequence {b, } such that
b, = O(n~P) for every p. Show that there must be constants § and ng such
that |a,| < n? for all n > ny.

*4.6.13. Fill in the details in the following sketch of a proof for Proposi-
tion 4.6.4. For every A € A there will be constants 3(\) and v(\) such that
|a£{\)| < nPW for all n > v()\). Supposing now that (4.6.6) fails for all pairs
(A, «), there exist, for each pair (A4;, ), an arbitrarily large integer n; and
a parameter value A; such that

aﬁﬁ")

(4.6.7)

aj
> Ajnj .

Setting b,, = n;aj and b,, = 0 for n different from all ny, one may inductively
determine A;, o; /" o0, n; /" oo and A; € A as follows. Start with
A; = ag = 1 and select n; and A; in accordance with (4.6.7). For j > 2
choose A; such that the final inequality in (4.6.8) below is satisfied, and take
a; = max{a;_1+1, B(A\;—1)+2}. Finally choose n; > max{n;_1+1,v(\;_1)}
and A; such that (4.6.7) holds. As a result one has

o (A, 0) =D al™bn
n=1
> [ = 3 [ - 3 [a
k<j k>3
(4.6.8) > Aj _ Z Mnkn;ak . Z nPAi)—ak
k<j k>j

> A=Y Myn ™ = k>4, Vji>2,

k<j k>j
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which contradicts the boundedness of the family {o (), b)} for our b.

4.7. Product and convolution of distributions

The unlimited differentiability of distributions has a price: within the
class D(I'), multiplication is not generally possible. This is not too sur-
prising since distributions are generalizations of integrable functions. The
product of two integrable functions need not be integrable, and there is no
general method to associate a distribution with a nonintegrable function.
Where multiplication of distributions s defined, it need not be associative;
cf. Exercise 4.2.9.

The product of a given distribution 7" and a test function g is always
defined; see Definition 4.2.7. What other products T'g can be formed de-
pends on the order of T": the higher its order, the smoother ¢ must be. This
becomes plausible through formal multiplication of the Fourier series:

Ty(x) = Z cx[T]e™ Z algle™ = Z { Z Ck[T]Cl[g]} e,

k l n k+l=n

hence one would like to be able to define

oo

(4'7'1) Cn[Tg]: Z Ck[T]Cn—k[g]‘

k=—o00

ExAMPLE 4.7.1. Using Example 4.4.2 for ¢, [(5p], formula (4.7.1) gives
cnlorg] = Z crlor]en—klg 27r Z Cn—k|g (0) = g(0)cn[dr].

This implies that
érg = g(0)dr,

at least for all C* functions g.

Actually, a distribution of (Schwartz) order m can be multiplied by any
C™ function g; cf. Exercise 4.7.2.

The sequence {c,[Tg]} given by (4.7.1) is called the convolution of the
sequences {c,[T]} and {¢,[g]}; convolution of sequences is not always pos-
sible. However, the dual operation, where one multiplies corresponding
Fourier coefficients, always leads to another disttribution.
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DEFINITION 4.7.2. The convolution S T of distributions S and T on I
is the distribution given by

(4.7.2) SxT=TxS=21 Y  cn[S]ea[T]em.

n=—oo

The convolution S * T is well-defined: if ¢,[S] = O(|n|*) and ¢,[T] =
O(|n|?) as |n| — oo, then ¢,[S*T] = O(|n|**?), hence the series for ST is
distributionally convergent; see Proposition 4.6.1. The factor 27 in (4.7.2)
is necessary to obtain the standard convolution in the case of functions; cf.
(4.7.3) below.

PROPERTIES 4.7.3. The distribution dr is the unit element relative to
convolution in D'(T):

orxT =27 Z cn[Or)ca[T)e™ = Z cn[T)e™ =1T.
For the derivative of a convolution one has
D(S*T)=2rY_inc,[S|e,[T]e"" = DS+ T = S DT.
LEMMA 4.7.4. If g is a test function, T % g is also a test function, and

(T'xg)(x) =<T(y),9(r —y) >
Indeed, by (4.7.2), for n # 0,
cn[T * g] = O(|n|?|n|™)  (for some 3 and all p € N)
=0O(|n|%) for all ¢ € N.

Hence T x g is equal to a C* function; cf. Exercise 4.2.1. Furthermore, by
the continuity of T,

(T * g)( Z <T(y),e ™ > c,[gle™

< ch ”””y>—<T() glx—y) >.

When T is equal to an integrable function f we find

(f*9)(@) =< f(W).g /f
(4.7.3) Z/Ff(:r—y 9(y)dy

This formula will make sense for any two integrable functions f and g.
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PROPOSITION 4.7.5. For integrable functions f and g on I', the convo-
lution integral (4.7.3) exists for almost all x € T". It defines an integrable
function h on T", and

Jir= 1o s

in accordance with (4.7.2).

*PROOF. By Fubini’s theorem [of Integration Theory] for positive func-
tions, one has the following equalities for repeated integrals involving abso-
lute values:

/de/F!f(y)g(x—y)}dxZ/F}f(y)}dy/F}g(:v—y)!dx
= [ 1y [ lat)e=

The finiteness of the product on the right implies that the double integral of
f(y)g(x —y) over I' x T" exists. Still by Fubini, it follows that the repeated

integral
[t [ gt~

exists, in the sense that the inner integral exists for almost all x, and that
it thereby defines an integrable function h(z). Furthermore, the order of
integration in the final integral may be inverted:

/Fh(x)dwz/Fdx/rf(y)g(x—y)dyz/Ff(y)dy/rg(x—y)dx
ZAf(y)dylg(Z)dz

The second formula in the Proposition may be proved in the same way. [J

We return now to the general case S * T of Definition 4.7.2 and compute
the action of S T on a test function ¢, using Proposition 4.4.3:

<§xT6> = @02 Y clSleTle-lo] = (2 3 ealSlen Trle-[o
= QWch[S]c,n[TR xp) =< S, Tr*¢ > .

Indeed, by Lemma 4.7.4, Tk * ¢ is a test function.
Exercises. 4.7.1. Solve the distributional equation (¢ —1)T =0 on I
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4.7.2. Let T be a distribution on I' of order m, considered as a contin-
uous linear functional on the space D™(I") [that is, C"(I") supplied with an
appropriate concept of convergence; cf. Exercise 4.6.8.] Show that the rule

<Tg,¢>=<T,g9¢> VoeCm()

defines T'g as another distribution of order m.

4.7.3. Compute drg for all continuous functions g, and D4y - g for all C*
functions g.

4.7.4. Show that for integrable functions f and C' functions g on T,

Df-g=D(fg)—fg"

4.7.5. Write S * T in the standard form dy + D?®f with integrable f if
S =ag+ DPg and T = by + D?h, where g and h are integrable functions on
I' with average zero.

4.7.6. Prove that distributional convergence Sy — S and T}, — T implies
that Sk*TkHS*T

4.7.7. Show that for delta families {f\}, A — Ao on I' [cf. Examples
4.3.2], one has

Hho*xT —=orxT =T, VT eD().

4.7.8. Prove the partial sum formula s;[T] = Dy x T, where Dy, is the
Dirichlet kernel. Use it to show [once again| that sx[T] — T, VT € D'(I").

4.7.9. Let f be a distribution on I' and ¢,, = ¢,[f]. Describe the distri-
butions which have the following Fourier coefficients:

(i) ney; (i) eo/n, (n#0); (iii) c_p; (i) Gy (V) &5 (Vi) |eal®
4.7.10. Let f be continuous or piecewise continuous on [—m, 7], ¢, =
cnlf]- Prove that the series Y |c,|?e™* is Cesaro summable and derive that

>~ |en|? converges. Express the sum in terms of an integral. [In this exercise,
square integrability of f would suffice.]



CHAPTER 5

Metric, normed and inner product spaces

In approximation problems, the degree of approximation is usually mea-
sured with the aid of a metric or distance concept. Many kinds of conver-
gence of functions, such as uniform convergence and convergence in the
mean, correspond to metrics on linear spaces of functions. In an arbitrary
metric space the geometry may be so strange that it is of little help in solv-
ing problems. The situation is better in normed linear spaces, where every
element or vector has a norm or length, and where the distance d(u,v) is
the length of uw — v. The geometry is particularly nice — essentially Eu-
clidean — in scalar product spaces, where for the vectors there are not only
lengths, but also angles. Particularly useful for applications is the concept
of orthogonality.

5.1. Metrics

Let X be an arbitrary set of elements which we call points.

DEFINITION 5.1.1. A function d(u,v) defined for all points u, v in X is
called a distance function or metric if

FIGURE 5.1
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d(u,v) =0 if and only of u = v;

d(v,u) = d(u,v), Yu,v € X;

d(u,w) < d(u,v) +d(v,w), Yu,v,w € X
(triangle inequality; cf. Figure 5.1).

A set X with a distance function d is called a metric space, sometimes
denoted by (X,d). In X = (X, d) one defines convergence as follows:

up — u or limug =u <= d(u,ur) — 0 as k — oc.

If a sequence {uy} converges to u, every subsequence also converges to
u. A sequence in a metric space has at most one limit. It follows from the
triangle inequality that

|d(u,v) —d(u',v")| < d(u,u') + d(v,v");

cf. Figure 5.2. Thus the distance function d(u,v) is continuous on X x X.
A subspace Y of a metric space X is simply a subset, equipped with the
metric provided by X.

ExXAMPLES 5.1.2. Let R™ as usual be the real linear space of the vectors
x = (x1, -+ ,,): ordered n-tuples of real numbers. Addition and multipli-
cation by scalars A (here real numbers) are carried out componentwise.

The metric space E", Fuclidean (coordinate) space, is obtained from R"
by imposing the Euclidean distance ds:

[N

da(,y) = {(a:l — )+ 4 (2, — yn)2} '
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[Here one takes the nonnegative square root.] Thus one may write E" =
(R™, dy). Many other distance functions are possible on R", for example,

dl(xay) - ‘xl _yl‘ + ‘In - yn‘a
doo(xay) = max{‘xl - 3/1’> e a‘xn - yn‘}a

d(z,y) = min{dy(z,y),1}.
Analogous definitions may be used on C", the complex linear space of the
ordered n-tuples z = (z1,- -, z,) of complex numbers, with the complex
numbers as scalars. The distance function ds:

1
do(z,w) = {21 —wi [P + -+ + |2, — w,[*} 2
now leads to unitary space U" = (C", dy).

There are corresponding distance functions on linear spaces whose ele-
ments are infinite sequences of real or complex numbers; cf. Examples 5.3.5.
We first discuss the corresponding metrics on linear spaces of functions.

EXAMPLES 5.1.3. Let [a, b] be a finite closed interval, C[a, b] the (com-
plex) linear space of the continuous functions on [a, b]. Here the sum f + g
and the scalar multiple A f are defined in the usual way. If we only consider
real-valued functions and real scalars, we will write C[a, b].

Uniform convergence f;, — f on [a,b] can be derived from the metric

do(f,9) = sup |f(z) — g(x)].

The metric space (Cla,b],ds) will be denoted by Cfa,b]. Other standard
distance functions on Cla, b] are

b
a(f,g) = / (@) - ga)lde,

a0 = ([ ) g<x>|2dx)% .

In Section 5.6, the triangle inequality for ds will be derived from the general
‘Cauchy—Schwarz inequality’.

Analogous definitions may be used on C(K), the (complex) linear space
of the continuous functions on an arbitrary bounded closed set K in E™.

EXAMPLE 5.1.4. In formulating concepts and theorems, it is useful to
keep in mind the somewhat pathological discrete metric. For any set X it
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is defined as follows:
du,v) =1, Yu,v e X withu#v; duu)=0, Vue X.

5.2. Metric spaces: general results

In a metric space X one introduces the (open) ball B(a, ) as the subset
{u € X :d(a,u) < r}. For a subset E C X one may next define interior
points zo (E contains a ball B(xg,p) of X) and the interior E°. A point
¢ € X is called a limit point of (or for) £ if every ball B(e,r) in X contains
infinitely many points of E. The closure E = clos E consists of E together
with its limit points. A point b € X is called a boundary point of (or for)
E if every ball B(b,r) in X contains a point of £ and a point not in F.
The boundary OF is given by E \ E°. The boundary of B(a,r) will be the
sphere S(a,r). A set E C X may be open (E = E°), closed (E = E), or
neither.

E C X is called dense in X if E = X; in this case, every point of X is
the limit of a sequence of elements of F.

The subspace E2, of E? consisting of the points with rational coordi-
nates, is dense in E2. The set of all trigonometric polynomials is dense in
C(T"). The set of all polynomials in z, restricted to the finite closed interval
la, b], is dense in the space Cla, b]; cf. Section 3.4.

A metric space with a countable dense subset is called separable.

E C X is called bounded if E is contained in a ball B(a,r) C X.

In E", every bounded infinite set has a limit point, every bounded infinite
sequence, a convergent subsequence. However, most metric spaces do not
have these properties. Just think of R? with the discrete metric, of E2,,,
or of (R?,d) as in Examples 5.1.2. Other examples are C[0, 1], cf. Exercise
5.2.6, and the sequence {e™} in (C(T'),ds).

E C X is called compact if every infinite sequence in E has a convergent
subsequence with limit in E, or equivalently, if every covering of E' by open
subsets contains a finite subcovering. Compact sets are bounded and closed;
in [E”, the converse in also true.

Let T be a map from a metric space X to a metric space Y. One says
that T is continuous at u € X if for every sequence {ux} in X with limit u,
one has Tup, — Tw in Y. The map T is called continuous on £ C X if it is
continuous at every point of E. In the special case where d(Tu, Tv) = d(u,v)
for all u, v € X, the map is called an isometry. The spaces X and Y =TX
are then called isometric. The complex plane (relative to ordinary distance)
is isometric with E2.
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FIGURE 5.3

THEOREM 5.2.1. Let X and Y be metric spaces, EE C X compact, T :
E — Y continuous. Then the image T'E C 'Y 1is also compact. In particular,
a continuous real valued function on a (nonempty) compact set E C X is
bounded, and assumes a maximum and a minimum value on E.

PROOF. For compact E and continuous 7', any sequence {7T'uj} with
{ux} C E will have a convergent subsequence with limit in 7. Indeed, let
{uy,, } be any subsequence of {ux} with a limit v € E. Then Tu,, — Tu.
As to the second part, any (nonempty) bounded closed subset of E!, the real
numbers under ordinary distance, has a largest and a smallest element. [

APPLICATION 5.2.2. For u in X and a nonempty compact subset E of
X, the distance

(5.2.1) d(u, E) & inf d(u,v)

vEE

is attained for some element vy in E: d(u, E) = d(u, vg).

Cf. Figure 5.3. One may say that there is an element vy in £ that
provides an optimal approximation to w.

Completeness. We will now discuss the important concept of com-
pleteness. Let X = (X,d) be a metric space. A sequence {z;} in X is
called a Cauchy sequence or fundamental sequence if

(5.2.2) d(zj,xx) — 0 as j, k — oo.

Every convergent sequence is a Cauchy sequence, but in many metric spaces
X there are Cauchy sequences which do not converge to a point of X. Such
spaces are called incomplete.

DEFINITION 5.2.3. A metric space X is called complete if all Cauchy
sequences in X converge to a point of X.
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Every Cauchy sequence is bounded: if d(x;, z)) < € for all j, k > p, then
x € B(xy,¢) for all k > p. Similarly, a Cauchy sequence for which there is
a limit point ¢ € X must converge to c¢. Thus a metric space in which every
bounded sequence has a limit point is complete.

EXAMPLES 5.2.4. The Euclidean plane E? and the complex plane (C, dy)

are complete. The subspace E2,, of E? is incomplete: the Cauchy sequence

x1=(1,1.4), 2o = (1,1.41), - -+, . = (1, 7%), -+,

where 7}, is the largest decimal number 1.d; - --d;, with 77 < 2, does not
converge to a rational point. The metric spaces (R",dy) = E", (R™,d;) and
(R™,d,) [Examples 5.1.2] are complete. Indeed, every Cauchy sequence
in these spaces is componentwise convergent, and hence convergent, to an
element of the space.

The space C|a,b] is complete. Indeed, let {fx} be an arbitrary Cauchy
sequence in C'a, b]. Then for every point xq € [a, b], the sequence of complex
numbers { fx(zo)} is a Cauchy sequence, and hence convergent. Let f be
the pointwise limit function of the sequence {f;}, that is, f(z) = lim f(x)
for every x € [a,b]. For given € > 0, we now take p so large that

doo (£ fr) = Iax |fi(x) = fe(z)| <&, Vi, k=>p.

Letting j — oo, this inequality implies that for all = € [a, b],
|f(x) = fu(z)] <&, Yk =>p.

Since € > 0 was arbitrary, the conclusion is that d.(f, fx) — 0 as k — oo:
the sequence { fx} converges uniformly to f. It follows that f is continuous,
hence f € Cla, b].

EXAMPLE 5.2.5. The space X = (C|a,b],d;), with d; as in Examples

5.1.3, is tncomplete. For a proof we take a = —1, b = 1, and define
0 foraz<O,
fr(z) =< kx for 0 <z <1/k,
1 foraz>1/k.

The sequence {fx} is a Cauchy sequence in X: for j, k > p,

di(fj, fr) :/_

cf. Figure 5.4. The sequence { f} converges at every point z; the pointwise
limit function U(z) is equal to 0 for z < 0 and equal to 1 for = > 0. Also,

1

1/p
oy s/o = fil < 1/p:

1
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FIGURE 5.4

f_ll |U — fx] — 0 as k — oo. However, there can be no continuous function
f such that di(f, fr) — 0 as k — oo.
Indeed, suppose that there would be such an f. Then

/Df—ﬂ=/]f—ﬁ+ﬁ—w

1 1
< [r-si+ [ 15-01=0 as k-
—1 -1

Hence the (constant) left-hand side would be equal to 0. But then the
nonnegative function |f(x) — U(x)| would have to be zero at every point
where it is continuous, that is, for all z # 0. Thus one would have f(z) =0
for x < 0, and f(x) = 1 for x > 0. But this would contradict the postulated
continuity of f.

Every incomplete metric space can be completed by a standard abstract
construction (see below).

DEFINITION 5.2.6. A metric space X = (X, d) is called a completion of
the metric space X = (X, d) if X is complete, and X is [or can be considered
as] a dense subspace of X. That is, X lies dense in X and d = d on X.

Completions X ofa given space X are unique up to isometry. In practice
one can often indicate a concrete completion of a given space X.

Thus the space E2, has as its completion the Euclidean plane E?. The
space X = (C[a,b],d;) has as its completion the space L(a,b) = L'(a,b) of
the Lebesgue integrable functions on (a, b), where d;(f, g) = f; lf— gl [Tt
is understood that in L!(a,b) one identifies functions that agree outside a
set of measure zero; cf. Remark 4.1.2.] The completeness of L'(a, ) follows

from the Riesz—Fischer theorem of Integration Theory, which was named
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uk.' Vk.

vk

FIGURE 5.5

after F. Riesz (Section 4.2) and the Austrian mathematician Ernst Fischer
(1875-1954; [31]). One form of the theorem says that for any sequence { fx}

of integrable functions such that f; |f; — fx] — 0, there is an integrable

function f such that fab |f — fx| — 0; cf. [102], [68]. Furthermore, to given
f € L'Y(a,b) and any number ¢ > 0, there is a step function s such that
021( f,s) < e. From this one may derive that there is a continuous function
g on [a,b] such that dy(f,g) < 2e.

The general construction of completion. An abstract completion
X = (X,d) of a given (incomplete) metric space X = (X,d) can be ob-
tained as follows. Every nonconvergent Cauchy sequence {ux} in X iden-
tifies a “missing point”, a “hole”, in X. Think of E2,, where the “holes”
are given by points that have at least one irrational coordinate. For com-
pletion of X, every hole has to be filled by a sort of “generalized limit” of
the Cauchy sequence that defines it. Of course, different Cauchy sequences
that “belong to the same hole” must be assigned the same generalized limit.
Mathematically, a “hole” may be described as an equivalence class of (non-
convergent) Cauchy sequences. We will say that Cauchy sequences {uy}
and {a} are equivalent, notation {uy} ~ {a}, if d(ug, @) — 0 as k — oo.

We now define a new metric space X = (X,d) as follows. The ele-
ments U, V, --- of X are equivalence classes of (nonconvergent or conver-
gent) Cauchy sequences in X, cf. Figure 5.5, and

A

(5.2.3) d(U, V) = limd(ug, vg) if {ux} € U, {vx} € V.
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It is easy to verify that the function d(U, V) is well-defined and that (X, d)
is a metric space.

Every element u € X is represented in X by the special equivalence
class u* of the Cauchy sequences in X that converge to u. An example of
such a sequence is the “constant sequence” {u, u, u, ---}. Clearly

d(u*,v*) = lim {d(u, v), d(u,v), - -- } = d(u, v).

The special elements u*, v*, --- form a subspace of X isometric with X.
Identifying u* with u, v* w1th v, etc, X becomes a subspace of X. Itis easy
to see that X is dense in X. Indeed, if U € X and {uy} is one of its Cauchy

sequences, then u;, = uj, converges to U in X. For if d(uj,ui) < € for all
J, k > p, then by (5.2.3)

d(U, up) = lim {d(u1, uy,), d(uz,uy), -~}
= lim d(uj,u)) <e, Vk>p.
j—00
Finally, X will be complete. If {Uy} is a Cauchy sequence in X, then
for each k we can choose an element u;, € X such that d(Uy, ui) < 1/k. By
the triangle inequality, the sequence {u;} will be a Cauchy sequence in X.

Its generqlized limit U, located in X , will also be the limit of the sequence
{U k;} in X.

REMARK 5.2.7. The space X contains two kinds of elements: equiva-
lence classes of nonconvergent Cauchy sequences, and equivalence classes of
convergent Cauchy sequences. The book Mathematical Methods vol. 1 [68]
speaks figuratively of “spiders with a hole” and “spiders with a heart”; cf.
Figure 5.5.

Exercises. 5.2.1. For an arbitrary subset E of a metric space X and for
u € X, the distance d(u, E) is defined as in (5.2.1). Prove that

|d(u, E) — d(v, E)| < d(u,v), VYu,veX.

Thus the distance d(u, F) is continuous on X.
5.2.2. Let RN be the linear space of all infinite sequences z = (z1, T2, - - - )
of real numbers. Prove that the formula
d*(xz,y) = Z on min {|z, — yn|, 1}

n=1
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defines a metric on RY. Show that convergence #*) — z in (RV,d*) is
exactly the same as “componentwise convergence”: LN x, for each
n € N.

5.2.3. Show that convergence ¢ — ¢ in the test space D(I") [Definition
4.2.1] may be derived from a metric.

5.2.4. Prove that the piecewise constant functions (step functions) form
a dense subspace of C|a, b].

5.2.5. Show that the spaces C[a,b] and L'(a,b) are separable.

5.2.6. Prove that the bounded sequence fi(x) = 2% k = 1,2,--- in
C'0, 1] does not have a uniformly convergent subsequence on [0, 1].

5.2.7. Show that a closed subspace Y of a complete metric space X is
complete.

5.3. Norms on linear spaces

In this section, V' denotes a linear space or vector space. In analysis, the
scalars are (almost) always the real or the complex numbers. Accordingly,
we speak of real or complex linear spaces. We begin by reviewing some
terminology concerning linear spaces.

A (linear) subspace W of V' is a subset which is also a linear space under
the given addition and multiplication by scalars in V. Examples in the case
of V' = Cla, b]: the subspace P of the polynomials in z (restricted to [a, b]),
the subspace P, of the polynomials of degree < n.

For a subset A of V, the (linear) span S(A) is the subspace “spanned”
or “generated” by A. It consists of all finite linear combinations Aju; +
-+« 4+ A\guy of elements u; in A. Thus in Cla, b], the subspace P is the span
of the subset {1, z, 2%, ---}. A subset A C V is called linearly independent
if a finite linear combination Ajuy + --- + Aguy of elements of A is equal
to zero only when \; = --- = A\, = 0. The set {1, z, 2, -- -} is linearly
independent in Cla, b].

A subset A of V is called a basis (or algebraic basis) for V if every
element u in V' can be represented in exactly one way as a finite linear
combination cju; + - - - + cpuy of elements u; € A. A basis is the same as a
linearly independent spanning set for V. All algebraic bases of V' have the
same number of elements, or more precisely, the same “cardinal number”.
[In other words, one can set up a one-to-one correspondence between the
elements of any two algebraic bases.| This cardinal number [which could,
for example, be “countably infinite”] is called the (algebraic) dimension of
V.
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u+v

FIGURE 5.6

For subspaces W; and W5 of V one can form the (vector) sum Wi + Wy,
that is, the subspace of all vectors w = w; +wq with w; € W,;. f WiNW, =
{0}, the zero element, the representation w = w; + wy is unique. In this
case one speaks of the direct sum of W7 and W5, notation Wy & Wy, If
V =W, ® W5 one calls Wy and Wy complementary subspaces of V. In this
case one can define a codimension: codim W; = dim W5. If dim V' is finite,
codim W; = dim V' — dim Wj;.

DEFINITION 5.3.1. A function || - || on V is called a length or norm if

(1) 0 < |ul| < o0, YueV;
(ii) Jul| = 0 if and only if u = 0;
(ili) ||[Aul| = |A] |||, Yu €V, Vscalars A;
() [Ju+ ol < Jull + lvll, Vu,veV
(triangle inequality; cf. Figure 5.6).

From the norm one may derive a distance function d by setting
(5.3.1) d(w,v) & Jlu—vl|;
cf. Figure 5.7. As usual, the metric d implies a notion of convergence:
(5.3.2) up — w if and only if d(u,ug) = [|Ju — ugl| — 0.

DEFINITION 5.3.2. A normed linear space V' = (V,| - ||) is a linear
space V' with a norm function | - || and the associated distance (5.3.1) and
convergence (5.3.2).
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FIGURE 5.7

The norm function is continuous: if u, — wu, then ||ugx|| — |jul|. By
definition, a subspace W of a normed linear space V is a linear subspace,
equipped with the norm provided by V.

ExAMPLES 5.3.3. On R and C, the absolute value is a norm. On R"

and C", with elements denoted by x = (z1,- -+ ,x,), one has the norms
|%]|o = max |z, |5 (C" ] - |loo) is also called 1°°(n);

|zl = |z1] + -+ |zal;  (C™ ] - |l1) is also called I*(n);
|zl = (Ja > 4+ -+ + |xn|2)l/2; (C™, || - l2) is also called I*(n).

The corresponding distances are d.,, d; and dy as in Examples 5.1.2. On
R™, the third norm is the Euclidean norm or length; we also denote the
normed space (R",dy) by E™. Similarly [*(n) and unitary space U™ are
identified. Convergence under all these norms is the same as componentwise
convergence.

EXAMPLES 5.3.4. On Cla, b] (where [a,b] denotes a bounded closed in-
terval), the formula
539 Il = swp |f)] = s, 7o)

a<x<b

defines a norm, usually referred to as the supremum norm. The correspond-
ing distance is

doo(f,9) = max |f(x) — g(7)|.

a<x<b

The corresponding convergence is uniform convergence; cf. Examples 5.1.3.
From now on we will use the notation Cf[a,b] for the normed linear space
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(Cla,b], || - ||so)- If we restrict ourselves to real functions and scalars we may
write Cela, b].
Another important norm on Cla, b| is

(5.3.4) rum:/mem.

This formula makes sense for all (Lebesgue) integrable functions f on (a, b),
even if the interval (a,b) is unbounded. It defines a norm on the space
L' (a,b), provided we identify functions that differ only on a set of (Lebesgue)
measure zero. The corresponding distance is the L!-distance,

di(f,g9) = / |f(z) — g(z)|dx.

From now on we will use the notation L!(a, b) for the normed linear space of
the integrable functions on (a,b) with the norm (5.3.4) [identifying almost
equal functions]. For bounded intervals (a,b), L'-convergence is the same
as “convergence in the mean” on (a,b). Indeed, f, — f in L'(a,b) if and
only if

b
i [ 1@ - fi@)lds — 0,

the mean or average deviation |f(z) — fx(x)| must tend to zero. Note that
convergence in C|a, b] means that the maximum deviation tends to zero.

The distance dy(f,g) on Cla,b] (Examples 5.1.3) may be derived from
the norm

(5:3.5) rvmz{lﬂﬂm&myﬂ;

see Section 5.6 for a proof of the triangle inequality.

The definitions in Examples 5.3.3 cannot be extended to all infinite
sequences x = (x1, Ty, - --) of complex numbers. One has to impose appro-
priate restrictions:

EXAMPLES 5.3.5. For the bounded infinite sequences © = (z1,x2,- - ),
the definition

|%]|c = sup |z,| gives the space [*° = [*°(N);
neN
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for the infinite sequences x = (x1, 29, ---) such that the series Y >° | |x,|
converges, the definition

||| = Z |z,| gives the space I' = I*(N);

n=1

for the infinite sequences = = (1,22, --) such that the series Y > |z, |?
converges, the definition

-~ 1/2
|z||2 = {Z \%\2} gives the space [ = [*(N).
n=1

For a proof of the triangle inequality in the case of “little el two”, see Section
5.6.

Exercises. 5.3.1. Prove that the set of powers {1,z,2% ---} (restricted
to the interval [0,1]) is linearly independent in the space C[0,1]. Can
you also prove that every set of pairwise different exponential functions
{eM® e*2® ...} is linearly independent in C[0, 1] ?

5.3.2. In V = C[-1,1], let W; and W5 be the linear subspaces of the
odd, and the even, continuous functions, respectively. Prove that V' can be
written as the direct sum W; @ Ws.

5.3.3. Let V be a linear space with a norm function || - ||. Verify that
the formula d(u,v) = ||u — v|| defines a metric on V. Show that ||u — v| >
|lu|| = [|v||, and deduce that the norm function is continuous.

5.3.4. Use the ordinary coordinate plane to draw pictures of the “unit
sphere” S(0,1) [set of vectors of length 1] in each of the (real) spaces I22(2),
I1.(2), and I2,(2) = E2.

5.3.5. Prove that the unit ball B(0, 1) [set of vectors of length < 1] in
a normed linear space is always conver. [Given ug, u; € B(0,1), show that
uy = (1 = Nug + Auy is in B(0,1) for every A € (0,1).]

5.3.6. Verify that | f|lo and ||f]|; as in (5.3.3), (5.3.4) are norms on
Cla,b]. Prove an inequality between these norms. Deduce that uniform
convergence (on a bounded interval) implies L!-convergence.

5.3.7. Consider the sequence of functions fi(x) = k%", k = 1,2,---,
in C[0, 1]. For which real numbers a will the sequence converge to the zero
function under the norms (i) || - ||oo; (ii) || - ||1; (iid) || - [|2 7
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5.3.8. Which of the following formulas define a norm on C!|a, b]:
(@) Il = max |f(z)]; (i7) | f]| = max [f(x)] +max |f'(z)];

<x<b .
(ii1) |f]| = max | f(z) + f'(z); () [If]| = [f(a)] +/ () |dz.

5.3.9. Consider the infinite sequences = = (1,9, --) of complex num-
bers for which the series Y ° | |z,| converges. Verify that they form a linear
space V, and that the formula |z||; = > 7, |z,| defines a norm on V.

5.3.10. Construct a sequence {fi} of piecewise constant functions on
[0, 1] which converges to zero in the mean | fol | fx — 0] — 0], but which fails
to converge to zero at every point of [0, 1] [for every x € [0, 1], fx(z) /4 0].

5.3.11. For x € C" and any p > 1 one may define

1/
|zl = {|z]” + - + |2a P}

Prove the following relation which explains the notation ||z|| for the supre-
mum norm:
lim ||zf|, = max |z, = |[z]|e.

p—00 1<v<n

5.4. Normed linear spaces: general results

In this section, V' will denote a real or complex normed linear space. We
begin by considering
Finite dimensional V. Setting dim V' = n, we choose a basis

(5.4.1) B ={uy, ug, -+, uy}

for V', so that every element of u € V' has a unique representation

(5.4.2) u=cluy + -+, with ¢; = ¢j(u).

We will compare the norm of u with the norm of ¢ = (¢y,- -+ ,¢,) = c(u) as

an element of E™ (if V' is a real space) or U" (if V' is a complex space).

LEMMA 5.4.1. There are positive constants mp and Mpg (depending on
V') such that

ma{lal 4+ + e} < leruy + -+ + cotinlv

(5.4.3) < MB{|01\2 +oee 4 \cn\Q}l/Q, Ve= (e, ).
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PRrROOF. It is enough to consider the real case, the complex case being
similar. If ¢ = 0 the inequalities (5.4.3) are satisfied no matter what con-
stants mp and Mp we use. Supposing ¢ # 0, we may take |[c[|s = 1 [by
homogeneity, one may in (5.4.3) replace ¢ by Ac|]. Thus we may assume that
¢ € S(0,1), the unit sphere in E". Introducing the function

fle) = llerus + -+ + coun|ly, ¢ € S(0,1) C E™,

we have to show that f has a positive lower bound mpg and a finite upper
bound Mp. For this we need two facts:

(i) fis continuous. Indeed, if ¢ — cin E", then¢d, — ¢, forv =1,--- ' n.
Hence cjuy+- -+ u, — crui+- - -+ cpu, in V (by the triangle inequality),
and thus f(¢’) — f(c) by the continuity of the norm function.

(i) S(0,1) is compact: it is a bounded closed set in E".

Conclusion: f assumes a minimum value mg and a maximum value Mp
on S(0,1); cf. Theorem 5.2.1. Since 0 < f(c) < oo for every ¢ € S(0,1), we
have 0 < mp < Mp < o0. O

THEOREM 5.4.2. Let V be a finite dimensional (real or complex) normed
linear space. Then

(1) Every bounded sequence in'V has a convergent subsequence;
(11) Every bounded closed set E C V is compact;

(1ii) V is complete.

PROOF. We set dim V' = n and choose a basis {uy,- -+, u,}.

(i) Let u® = cgk)uljt- . -—i—cflk)un, k=1,2,---, beabounded sequence in
V. Then by Lemma 5.4.1, the sequence {c®} in E" is bounded, hence the
coefficient sequences {c\}, -+, {c!F} are bounded. Taking a suitable sub-
sequence {k,} of the sequence of positive integers {k}, we obtain convergent
coefficient (sub)sequences. Denoting the limits by ¢y, - - -, ¢,, respectively,
we conclude that for k = k, — oo,

u® = cgk)ul + o+ C,(lk)un — U= ClUy + - F Cplly.
(ii) This is clear from the definition of compactness.
(iii) Every Cauchy sequence is bounded; cf. Section 5.2. Thus by part (i),
every Cauchy sequence {u(k)} in V has a convergent subsequence. Calling

its limit u, the whole Cauchy sequence {u*)} will converge to u; cf. Section
5.2. O
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FIGURE 5.8

APPLICATION 5.4.3. Existence of optimal approximations. Let
V' be an arbitrary (real or complex) normed linear space, W a finite-
dimensional subspace. Let u be an arbitrary given element of V. Then
among the elements of W there is an element wy which provides an optimal
approximation to u:

d(u, wg) = d(u, W) © inf d(u, w).
weWw

PROOF. In looking for an optimal approximation to u, we may restrict
ourselves to vectors w in the closed ball E = B(0,2||u||) in W (Figure 5.8).
Indeed, if ||w| > 2||u||, then 0 € W is a better approximation to u than w
would be:

d(u, w) = lw —ull = lwl| = [Jull > |lull = d(u,0).

Now by Theorem 5.4.2, the closed ball E in W is compact, hence by
Application 5.2.2, there is an element wy € E which provides an optimal
approximation to u. O

Let us consider the special case V = C|[a, b] and W = P,,, the subspace
of the polynomials in  of degree < n (restricted to the interval [a,b]). Here
we obtain the following

COROLLARY 5.4.4. For every function f € Cla,b| and every n, there is
a polynomial py of degree < n which provides an optimal approximation to

f from the class Py:
1 = polloe = min I ~ ol

Banach spaces. A complete normed linear space is called a Banach space,
after the Polish mathematician Stefan Banach (1892-1945; [5]). Examples



118 5. METRIC, NORMED AND INNER PRODUCT SPACES

are: the finite dimensional (real or complex) normed linear spaces [Theo-
rem 5.4.2]; the space C[a,b] [cf. Examples 5.3.4, 5.2.4]; the space L!(a,b)
[Examples 5.3.4 and Section 5.2]; the spaces [*° and [! [cf. Exercise 5.4.9].

In a finite dimensional normed linear space, the unit sphere S(0, 1) is
compact, but in an infinite dimensional normed linear space, it never is. For
example, in C[0, 1], the sequence of unit vectors fi(z) = 2%, k = 1,2, -,
fails to have a convergent subsequence; cf. Exercise 5.2.6. In [, the se-
quence of unit vectors

(5.4.4) e =(1,0,0,0,---), e =(0,1,0,0,---), e3 =(0,0,1,0,---),- -~

fails to have a convergent subsequence. Indeed, |le; — ex||cc = 1 whenever
j # k. For the general case, cf. Exercise 5.4.10.

In a Banach space, every “norm convergent’ series converges to an ele-
ment of the space:

THEOREM 5.4.5. Let V' be a complete normed linear space, uy + us+ - - -
an infinite series in V' such that

(5.4.5) Z |unl| converges.
n=1

Then the series y .~ wu, converges to an element s in V.

PROOF. Writing u; + - - - + uy = sy, it will follow from (5.4.5) that {sx}
is a Cauchy sequence in V. Indeed, taking £ > j as we may,

sk = s5ll = llugn + - - gl < flugall + - -+ fJuxll-

For any given € > 0, there will be an index ky such that the final sum is
< € whenever j, k > k.
Since V' is complete, the Cauchy sequence {s;} has a limit s in V. O

EXAMPLES 5.4.6. (i) V = R and V = C, with the absolute value of
a number as norm. Every absolutely convergent series of real or complex
numbers is convergent.

(ii) V' = Cla, b]. Every infinite series >~ g,, consisting of continuous
functions on the finite closed interval [a, b], and such that the series

oo

[o.¢]
Z gnlloc = Inax, |gn(x)|  converges,
n=1 n=1

is uniformly convergent on [a,b]. This is essentially Weierstrass’s test for
uniform convergence which says the following. If there are numbers M,
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such that

lgn(z)| < M,, on [a,b], while Z M, converges,

n=1

then the series >~ | g,(z) converges uniformly on [a, b].
(iii) V = L'(a,b). Every series > " | g, of Lebesgue integrable functions
on (a,b), such that the series

[ 00 b
(5.4.6) > lgalli =Y [ lgu(o)lds converes
n=1 n=1v%

will be convergent on (a,b) in L'-sense. That is, the partial sums f; =
g1+ -+ + gr will converge to an integrable function f on (a,b) in the sense

that [7|f — fs] — 0. It will follow that

/ableim/abfkzlim{/abgl+~-~+/abgk}.

In other words,
b b 0O 00 b
/f=/ Zgn=Z/ -
a a p=1 n=1 7@

In Integration Theory it is shown that under condition (5.4.6), the series
> o | gn is pointwise convergent on (a,b) outside a set of measure zero
(which may be empty). Denoting the pointwise sum function by f, one also
has f, — f in L'-sense, so that the series for f may be integrated term
by term. The result is sometimes called Levi’s theorem, after Beppo Levi
(Italy, 1875-1961; [80]).

Normed space bases. Let V' be an infinite dimensional normed linear
space. A sequence {u,} in V is called a normed space basis or Schauder
basis for V| after the Polish mathematician Juliusz Schauder (1899-1943;
[105]), if every element u in V' has a unique representation as the sum of
a series » >° | ¢,u,. For example, the sequence of unit vectors (5.4.4) is a
normed space basis for ['. The standard (separable) normed linear spaces
all possess a Schauder basis; cf. [106].

Exercises. 5.4.1. Let {uy,---,u,} be a basis for the normed linear space

V. Prove that elements u®) = cgk)ul 4+ cglk)un converge to u = cyuq +

-+ -4cpuy, in Voif and only if they converge componentwise, that is, AL Cy

for every v.
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5.4.2. Prove that every finite dimensional subspace W of a normed linear
space V is closed.

5.4.3. Determine the constant (real) functions which optimally approx-
imate f(x) = 22 on [0, 1] relative to the norms || - || and || - ||1.

5.4.4. Same question for the unit step function U(z) on [—1, 1]. Are the
optimally approximating functions unique in each case?

5.4.5. Prove that for each n there is a constant K = K, such that

max |p(z)| < K / Ip(a)|dz

0<z<1

for all polynomials p of degree < n.

5.4.6. Let e, e, e3, -+ denote the unit vectors (5.4.4) in !, [ or I*.
Determine d(e;, ex) in each of these spaces.

5.4.7. Verify that the unit vectors e, eq, e3,--- form a normed space
basis for I'. [They do not form such a basis for (*.]

5.4.8. Show that [! is separable. [[* is not.]

5.4.9. Prove that [! is complete.

Hint. A Cauchy sequence z* =
ponentwise convergent, a:gk) — Yn, say, Vn. It will also be bounded,
Jz®| = 2% 2P| < M, ¥n. Deduce that YN |y.| < M, VN, so
that .... Finally show that |y — 2®| — 0.

5.4.10. Let V be an infinite dimensional normed linear space. Construct

a sequence of unit vectors ey, eg, - -+ in V such that

d{egi1,S(e1,--,ep) =1, k=1,2,---.

(@ 2% ) in ' will be com-

Hint. Choose any u in V outside W = S(ey,---,e,) and consider an
optimal approximation uy for u in Wy. Compute d(u — ug, Wy), etc.
5.4.11. For complex rectangular matrices A = [a;;] we define

AL = 1Al = 3 ol
]
Prove that ||AB|| < ||A]| - || B]| whenever the product AB makes sense.
5.4.12. Let > A, = > [ag)] be a series of k x n matrices such that
> ||AL|| converges. Prove that the series > A, is elementwise convergent,
that is, the series ) ozg-') converges for each 1, j.
5.4.13. Let A be an nxn matrix such that || A|| < 1. Prove that the series

Yooy AY is elementwise convergent to a matrix C, and that C' = (I, —A)~".
Here AO = ]n = [(5”]
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5.4.14. Let A be any n x n matrix. Prove that the series Y~ A”/v!is
elementwise convergent. [The matrix sum of the series is called e.]

5.5. Inner products on linear spaces
This time we begin with examples.

ExXAMPLE 5.5.1. The FEuclidean space E™. The ordinary scalar product

(inner product, dot product) (x,y) or z -y of the vectors z, y in R™ is given
by

This inner product is symmetric, and linear in each “factor”. Observe that
(x,z) > 0, Yz, and that (x,z) = 0 if and only if z = 0. The Euclidean
length of z can be expressed in terms of the inner product by the formula

(5.5.2) |z|| = (z,2)"? (nonnegative square root).

When both vectors x and y are # 0, the angle 8 from z to y is given by

cosf = (z,9) :
]yl
In particular, = is perpendicular or orthogonal to y if cos 6 = 0:
(5.5.3) x Ly if and only if (z,y) = 0.

Adopting the convention that the zero vector is orthogonal to every vector,
(5.5.3) holds in full generality.

Relation (5.5.2) is often expressed as follows: the norm function of E"
can be derived from an inner product. From here on, we will consider E" as
the space R™ furnished with the inner product (5.5.1), and the associated
concepts of norm, distance, convergence, angle and orthogonality.

Observe that one could also have started with the notions of length and
angle. As in the case of R? and R3, one could then define the scalar product
(z,y) as ||z]| ||y[| cos 6.

EXAMPLE 5.5.2. The unitary space U". On C", formula (5.5.1) does
not define a good inner product: the associated lengths (x,z)"/? would not
always be nonnegative real numbers. One therefore uses the definition

(5.5.4) (T,y) = 2171 + -+ + Tl

[Actually, one could just as well define (z,y) = T1y1 + - - - + Ty Yn, as is com-
mon in physics.] Now (z,z) is real and > 0 for all x € C", and (x,z) = 0
only if z = 0. One next defines ||z|| by (5.5.2) and “o L y” by (5.5.3).
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The result is the unitary space U™ with an “inner product” that gives the
standard norm. Observe that the present inner product is “conjugate sym-
metric”: (y,z) = (x,y). Our inner product is linear in the first factor,
conjugate linear in the second.

From here on, we will consider U" as the space C" furnished with the
inner product (5.5.4) and the associated concepts.

In mathematical analysis, the limit case n — oo is important:

EXAMPLE 5.5.3. The space 1> = [*(N): “little el two”. The elements of
[? are the infinite sequences x = (xy, T, - -+ ) of complex numbers such that
the series > 7| |#,|* converges. They form a linear space on which one can
form the “inner product”

(5.5.5) (€, 9) = Y TuTy-

The series will be absolutely convergent since 2|z,7,| < |x,|> + |y.|*>. Via

(5.5.2) this inner product gives the [? norm |z|| = {307, |z, }1/2 Ex-
amples 5.3.5]. From here on, we will consider [* as a space with the inner
product (5.5.5).

EXAMPLE 5.5.4. The space L*(J): “big el two”. Let J C R be any
finite or infinite interval. We consider the linear space £2(.J) of the “square-
integrable functions” f on J. That is, f itself is supposed to be Lebesgue
integrable over every finite subinterval of J, while |f|*> must be integrable
over all of J. For example, f(x) = (1+ 22)~"/2 belongs to L2(R). On L%(J)
it makes sense to define

(5.5.6) (f,9) = / F()g(w)da

The integral exists because 2| fg| < |f|*+|g|®. Observe that (f, f) = [, |f|?
is real and > 0 for all f € £2(J). Since we want (f, f) = 0 only if f =0, we
must identify functions that are equal on J outside a set of measure zero.
Now the definition

1/2
(5.5.7) LAl = 11Fle = (f, ) = {/J \f(:v)\w}

will give a true norm, the so-called L? norm, cf. (5.3.5). Orthogonality is
lagain| defined as follows:

(5.5.8) f Ly ifandonlyif (f, g)=0.
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The resulting space, consisting of the square-integrable functions on J
with the usual identification of almost equal functions, and with the inner
product (5.5.6), as well as the associated norm etc, is called L?(.J). Conver-
gence in this space is so-called mean square convergence: when J is finite,
fr — f is the same as saying that

1

If J is a finite closed interval [a,b] and we restrict ourselves to the con-
tinuous functions on [a, b], we speak of the space L*C[a, b]: the continuous
functions on [a, b] equipped with the L? norm.

It is shown in Integration Theory that the space L*(J) is complete
(Riesz—Fischer theorem; cf. [102]). The step functions (piecewise constant
functions) on J with bounded support lie dense in L?(.J). For finite (a, b),
L*(a,b) is also the completion of L*Cla, b].

We are now ready to give an abstract definition of inner products:

DEFINITION 5.5.5. Let V be a real or complex linear space. A function
(u,v) on V xV is called an inner product function if the following conditions
are satisfied:

(i) The values (u,v) are scalars (hence real numbers if V' is real, real
or complex numbers if V' is complex);

(i) (v,u) = (u,v) for all u, v € V (conjugate symmetry);

(iii) The function (u,v) is linear in the first “factor”, and hence, by (ii),
conjugate linear in the second factor:

(/\1U1 + )\QUQ, U) = /\1 (Ul, U) + /\Q(Ug, U),
(u, M\v1 + Aava) = Ay (u, v1) + Xo(u, v3),
for all scalars Ay, Ay and all elements uq, ug, v, u, vy, v9 of V;

(iv) (u,w), which is real because of (ii), is nonnegative for all u € V' and
(u,u) =0 if and only if u = 0.

Supposing now that V is a linear space with an inner product function
(+,-), one defines on V:
lull = (u, w)"?, d(u,v) = |lu —v|| = (u —v,u —v)"?,
(5.5.10) ur, — w if and only if d*(u,ux) = (u — up, u — ug) — 0,
u L v if and only if (u,v) = 0.
The function | - || will then have the properties of a norm (see Section 5.6
for the triangle inequality), and hence d will be a metric.
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DEFINITION 5.5.6. An inner product space V. = {V,(-,-)} is a linear
space V' with an inner product function (-,-), and the associated norm,
distance, convergence and orthogonality (5.5.10).

From here on we suppose that V' is an inner product space. By a subspace
W of V we then mean a linear subspace furnished with the inner product of
V. If E is a subset of V', one says that u in V' is orthogonal to E, notation
u L FE, if u is orthogonal to all elements of E. The set of all elements
of V that are orthogonal to F is called the orthogonal complement of E,
notation E+, (“E perp”). The orthogonal complement will be a closed
linear subspace of V.

The definition below was proposed by John von Neumann (Hungary—
USA, 1903-1957; [87]) in honor of David Hilbert; cf. the end of Section
1.6.

DEFINITION 5.5.7. A complete inner product space is called a Hilbert
space; cf. [49].

For us the most important Hilbert spaces are L?(J) where J is an inter-
val, L*(F) where E is a more general subset of a space R" (unit circle, unit
disc, etc.), and the related spaces where the inner product involves a weight
function. Other examples are the “model space” {? and, of course, E" and
U". Every inner product space can be completed to a Hilbert space.

Exercises. 5.5.1. Show that the formula (z,y) = zy defines an inner
product on R. What is the corresponding inner product on C?

5.5.2. Verify that formula (5.5.4) defines an inner product on C" with
the properties required in Definition 5.5.5.

5.5.3. Every inner product function on R? must be of the form

(x,y) = (z1€1 + T2€2, Y11 + Y2€2)
= ax1y + b(x1Y2 + Toy1) + cToyo.

Under what conditions on a, b, ¢ is this an inner product function?

5.5.4. (Continuation) What sort of curve is the “unit sphere” S(0,1)
in the general inner product space {R? (-,-)}, relative to Cartesian coordi-
nates?

5.5.5. Characterize the matrices A = [o;] for which the formula (z,y) =
ZZ]':1 a;;x;y; defines an inner product function on R".

5.5.6. What can you say about an element u in an inner product space
V' that is orthogonal to all elements of V' 7
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u+v \Y

FIGURE 5.9

5.5.7. Let (u,v) be an inner product function on V. Verify that the
function (u,u)'/? satisfies conditions (i)-(iii) for a norm in Definition 5.3.1.

5.5.8. Verify that the formula (f,g) = f:f(a:)g(x)dx defines an inner
product on Cyla, b] in the sense of Definition 5.5.5.

5.5.9. Under what conditions on the weight function w will the formula
(f,g9) = fab f(z)g(z)w(z)dzr define an inner product on Cla, b ?

5.5.10. Let D be a bounded connected open set in E2. Verify that the
formula (u,v) = [, (usvy + uyv,)dzdy defines an inner product on CL (D),
provided one identifies functions that differ only by a constant.

5.5.11. Verify that formula (5.5.5) defines an inner product on the lin-
ear space of the complex sequences x = (1, 2,--) such that Y - |z,[?
converges.

5.5.12. Prove that [? is complete. [Cf. Exercise 5.4.9.]

5.6. Inner product spaces: general results

In this section, V' denotes an inner product space. A basic result is the
“Pythagorean theorem”, cf. Figure 5.9.

THEOREM 5.6.1. (“Pythagoras”) If u L v in V', then
(5.6.1) lu+ol|* = JJul® + o]
PRrROOF. By Definition 5.5.5,
(u+v,u+v)=(u,u)+ (u,v)
(5.6.2) = (u,u) + (u,v)

+
=
£
+
=
=

+
=
=

+
=
.

If (u,v) = 0, the result equals (u.u) + (v.v). O
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COROLLARY 5.6.2. For pairwise orthogonal vectors uy,us, -« , U, in-
duction will show that

lun + w4 gl = a1+ fual* + - 4 ]|

A series Y 7° u, in V whose terms are pairwise orthogonal is called an
orthogonal series. For such series we have the important

THEOREM 5.6.3. Let Y. u, be an orthogonal series in V. Then

(i) The partial sums sy, = Z]f u, form a Cauchy sequence in V if and
only if the numerical series " ||u,||* converges;
(ii) If V is a Hilbert space, the orthogonal series Y )" u, converges in

V if and only if the numerical series Y |Jun||* converges;
(i) If >0 up =w in V, then Y77 |lua|]* = [Jul]?.

PROOF. We write S ||u,||> = 0. Then by Pythagoras for k > 7,
It = 851 = g+ - el
= gl -+ el = o~ o,

Thus {sx} is a Cauchy sequence in V' if and only if {04} is a Cauchy se-
quence of real numbers, or equivalently, a convergent sequence of reals. This
observation proves (i) and it implies (ii). Part (iii) follows from the fact that
or = ||sk||* — ||ul|* when s, — w in V. Here we have anticipated the result
that the function ||u|| = (u,u)"/? is continuous on V. This will follow from
the triangle inequality which will be proved below (Applications 5.6.6). O

Another important consequence of Theorem 5.6.1 is the general Cauchy-
Schwarz inequality, named after Cauchy (Section 1.2) and Hermann Schwarz
(Germany, 1843-1921; [112]); cf. [15].

THEOREM 5.6.4. (Cauchy—Schwarz) For all vectors u, v in the inner
product space V' one has

(5.6.3) |(u, 0)| <l [ol]-

Proor. We may assume u # 0, v # 0. As motivation for the proof
we start with the case of E". There (u,v) = |jul| ||v]| cos@ (Figure 5.10), so
that the desired inequality is obvious. However, the proof for E” may also
be based on another geometric interpretation of (u,v), one that has general
validity. Let Av be the component of u in the direction of v. More precisely,
let Av be the orthogonal projection of u onto the 1-dimensional subspace
formed by the scalar multiples of v. By definition, Av is the orthogonal
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0 J
0] AV \%

FIGURE 5.10
projection of w if u — Av L v. Thus (u — Av,v) = 0 or (u,v) = A(v,v), so
that
(5.6.4) |(w, 0)] = [A[ ol lv]] = l|Av]| o]

In E™ it is clear that ||Av|| < [|v||. In the general case we appeal to Pythago-
ras:

X0l + flu = Mo l|* = [lul?,
hence ||Av|| < ||u||, so that (5.6.3) follows from (5.6.4). O

REMARK 5.6.5. If v # 0, the equal sign holds in “Cauchy—Schwarz” if
and only if u is a scalar multiple of v.

APPLICATIONS 5.6.6. (i) The triangle inequality for the norm in V. By
(5.6.2) and Cauchy—Schwarz,

Ju+v||* = (u,u) + 2Re (u,v) + (v,v)
< llll® + 2lful vl + lol* = (lull + lv])*.

(ii) The continuity of (u,v) in the first factor (or the second, or in both
factors jointly):

|(w,0) = (', 0)] = [(u = v, v)| < lu = [} [Jv]], ete.

(iii) The classical Cauchy inequality for a sum of products. Taking V =
U™, one has

= [(z9)] < ll=[ Iyl

CENCEN

n
S o
1
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u

FIGURE 5.11

(iv) The classical Schwarz inequality for the integral of a product. For
frginV=L(J),

/J F()g(z)d

=[£I <171 gl

- ([1rrar) " ([ latorpas) "

Optimal approximation and orthogonal projection. From here on
let W be a subspace of V', and u an arbitrary element of V.

LEMMA 5.6.7. There is at most one element wg € V' such that u—wqg L
W.

Indeed, if there is such an element wy, then for any other element w € W
we have u — wy L w — wyp, hence by Pythagoras,

(5.6.5) lu —w]|* = [lw = wol* + [lw — wo|* > [Ju — wol[*.
Thus u — w cannot be L W, for otherwise one would also have ||u —wgl]* >
|u —wl]*! Cf. Figure 5.11.

DEFINITION 5.6.8. If there is an element wy € W such that u—wy L W,
then wy is called the (orthogonal) projection of uw on W, notation wy = Pu =
PWu.

Inequality (5.6.5) implies the following result on approximation: if the
orthogonal projection wy = Pyu exists, it is the (unique) element of W at
minimal distance from u. There is also a converse result:
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THEOREM 5.6.9. Let W be a subspace of the inner product space V' and
let w be an arbitrary element of V. Then the following statements about an
element wy tn W are equivalent:

(i) wq is the orthogonal projection of u on W;

(i1) wy is an (the) element of W that optimally approzimates u relative

to the metric of V.

PROOF. In view of the preceding we need only prove that (ii) implies
(). Accordingly, let wg be as in (ii):

d(u,wp) < d(u,w), YweW.

We have to show that u — wy is orthogonal to W.
Let us consider w = wy + €z, where z € W is arbitrary and € > 0. Then

lu —wol|* < [lu—w|* = [[u—wy — ez
= |ju — w0H2 —2e Re(u — wy, 2) + €2HZH2.

Hence
2Re(u — wy, 2) < ¢z

Letting € go to zero, it follows that

(5.6.6) Re(u —wp,2) <0, VzeW.
Applying (5.6.6) also to —z € W instead of z, one finds that
(5.6.7) Re(u —wp,2) =0, VzeW.

If V' is a real space, (5.6.7) shows that u —wy L W. In the complex case
one may apply (5.6.6) also to iz € W. Thus one finds that Im(u—wy, z) = 0,
vV z € W. The conclusion is that (v —wp, z) = 0 for all z € W, as had to be
proved. O

If W is a finite dimensional subspace of V', we know that there always is
an optimal approximation wy € W to a given u € V; see Application 5.4.3.
Hence for finite dimensional W, the orthogonal projection Py u exists for
every u € V. It will be seen in Chapter 6 that this orthogonal projection is
easy to compute if we know an orthogonal basis for W.

Exercises. In these exercises V' always denotes an inner product space.
5.6.1. Let u be the sum of a convergent series > ;" u, in V. Prove that
(u,v) =37 (un,v), Yo € V.
5.6.2. Let E be a subset of V. Prove that the orthogonal complement
E* is a closed linear subspace of V.
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FIGURE 5.12

5.6.3. Let W be the subspace of the even functions in V = L2C,.
Determine the orthogonal complement W+=.

5.6.4. Express the inner product function of V' in terms of norms, (a) in
the case where V' is a real space, (b) in the complex case. [Cf. (5.6.2).]

5.6.5. Prove that the inner product function (u,v) is continuous on
VxV. R

5.6.6. For incomplete V', let V' denote the completion as in Section 5.2.
Prove that the inner product function of V' can be extended to an inner
product function on V' by setting (U, U") = lim (uy, 1}, ), where {u;} and {u}}
are arbitrary Cauchy sequences in V' that belong to U, and U’, respectively.
Thus V becomes a (complete) inner product space which contains V' as a
dense subspace.

5.6.7. Deduce the Cauchy—Schwarz inequality for (u,v) in a real space
V from the inequality

0< (At v, M+ v) = Nlull® + 2A(u,v) + v]]?, VAR
5.6.8. (Parallelogram identity) Prove that for any two vectors u, v € V|
lu+ ol + Jlu = ol* = 2[[u]l* + 2]|v]|*.

In words: for a parallelogram in an inner product space, the sum of the
squares of the lengths of the diagonals is equal to the sum of the squares of
the lengths of the four sides; cf. Figure 5.12.

[One can actually prove the following. If the identity holds for all ele-
ments u, v of a normed linear space V', the norm of V' can be derived from
an inner product function as in (5.5.10). (This is the Jordan-von Neu-
mann theorem, after Pascual Jordan, Germany, 1902-1980, [59] and von
Neumann. Cf. [60]).]
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5.6.9. Prove that the norm function of C[0,1] cannot be derived from
an inner product function.

5.6.10. Prove that the unit sphere S(0,1) in V cannot contain a straight
line segment. For this reason, the closed unit ball B(0,1) in V is called

‘rotund’, or strictly convez. [It is sufficient to show that for ||u|| = ||v]| =1
and u # v, always |[(u+v)/2| < 1]
5.6.11. Show that the norms || - ||, and || - ||; on R? cannot be derived

from inner product functions. [Cf. Exercise 5.3.4.]

5.6.12. Describe the pairs u, v € V for which the triangle inequality
becomes an equality.

5.6.13. In Exercises 5.4.11-5.4.13 on matrices one may obtain related

1/2
results by using the 2-norm [|A] = ||All. = (Z” \aij|2) instead of the
1-norm. Verify the essential inequality
IAB| < (| Al Bl

for the 2-norm.






CHAPTER 6

Orthogonal expansions and Fourier series

In inner product spaces V, there are orthogonal systems of elements,
which under appropriate conditions form orthogonal bases. In terms of an
orthogonal system {v,}, every element u € V has an orthogonal expansion,
which may or may not converge to u. For a nice theory of orthogonal
expansions it is best to work with complete inner product spaces: Hilbert
spaces. The general theory applies in particular to Fourier series in the space
of square-integrable functions L?(—m, 7). We will characterize orthogonal
bases and use them to classify inner product spaces. Every Hilbert space
turns out to be like a space [?(A) for an appropriate index set A; cf. Exercise
6.6.7.

In the present chapter V' denotes an inner product space, unless there is
an explicit statement to the contrary.

6.1. Orthogonal systems and expansions

Prototypes of such systems and expansions are the trigonometric or-
thogonal system

1
(6.1.1) —, cosz, sinz, cos2x, sin2x, --- in L*(—m,7),
2

and the Fourier expansion of f € L?(—x, ).

DEFINITION 6.1.1. An orthogonal system in V' is a subset {v,}, where
A runs over an index set A, of nonzero elements or vectors such that

vy Lo, forall A\, pe€ A with \# pu.
If the vectors vy are unit vectors, we speak of an orthonormal system.

In most applications the index set A is countably infinite. In theory
involving that case, we usually take A = N, the sequence of the positive
integers.

133
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EXAMPLES 6.1.2. The system {sinnz}, n € N, is orthogonal in L?(0, )
and also in L*(—m, ). Likewise the system %, cos x, cos2x, ---. The com-
plex exponentials €* n € Z, form an orthogonal system in L?(—m, ), or
in L? on the unit circle I' when we use arc length as underlying variable.
The vectors e; = (1,0,0,---), ea = (0,1,0,---), e3 = (0,0,1,---), - -+ form
an orthogonal system in [* = [*(N); ¢f. Example 5.5.3.

Let {v,}, n = 1,2,--- be a (finite or infinite) countable orthogonal
system in V. A formal series > c,v, is called an orthogonal series: the

terms are pairwise orthogonal. We will denote the partial sum Zﬁzl CnUp
by Sk-

PROPOSITION 6.1.3. Suppose that Zﬁ:l CoUn = u, orthat Y7 | ¢ v, =
u, that is, s — w in V. Then

(u, vy)
(Vn, Un)7

Proor. Take £ > n. Then

k
(S, vp) = (Z cjvj,vn) = Z ci(vj,vn) = cp(Un, Uy).

Jj=1

(6.1.2) Cn =

n=1,2--

This equality completes the proof if s = u. In the case Y | c v, = u,
the continuity of inner products [Applications 5.6.6] shows that

(u,v,) = klim (ks Un) = Cn(Un, Up).
|

COROLLARY 6.1.4. Orthogonal systems are linearly independent. Or-
thogonal representations in terms of a given orthogonal system {v,} are
unique: if u ="y c,v, = Y, dyv,, then d,, = c¢,, Vn.

DEFINITION 6.1.5. The (orthogonal) ezpansion of u in V' with respect
to the (countable) orthogonal system {v,} is the formal orthogonal series

(6.1.3) U~ ch[u]vn, where ¢, [u] = ((;:f;z)), =1,2,---
The notation u ~ --- means that u has the expansion ---; there is no

implication of convergence. One uses a corresponding definition in the case
of an arbitrary orthogonal system {vy}, A € A.
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ExXAMPLES 6.1.6. We have seen in Section 1.6 that Fourier series of
functions f in L?(—m, ) can be considered as orthogonal expansions, pro-
vided we do not combine the terms a,[f]cosnz and b,[f]sinnz. The ex-
pansion of a function f € L?(0,7) with respect to the orthogonal system
sinz, sin 2z, sin 3z, - -+ is the Fourier sine series Y~ b,[f]sinnz, where
b,[f] is given by the expression (2/7) [ f(x) sin nx dz.

Basic questions. Under what conditions will an orthogonal expansion
> cnlu]v, of u converge in V7 Under what conditions will it converge to
u?

It is easy to indicate a necessary condition, but for that we need some
terminology. For any subset A of V, the (linear) span or hull S(A) was de-
fined as the linear subspace of V', consisting of all finite linear combinations
of elements of A [Section 5.3]. The closure W = S(A) in V is also a linear
subspace of V.

DEFINITION 6.1.7. The subspace W = S(A) of V is called the closed
(linear) span of A, or the closed subspace of V generated by A. If S(A) =V,
that is, if every element of V' can be approximated arbitrarily well by finite
linear combinations of elements of A, then A is called a spanning set for V.

A spanning orthogonal set A is also called a complete orthogonal set.

If an orthogonal series > ¢,v, converges in V, the sum must belong to
the closed span S(vy,vs,---). Thus for the convergence of the expansion
S eplulv, to u it is necessary that u belong to S(vy, vy, --+). We will see
below that this necessary condition is also sufficient.

Exercises. 6.1.1. Prove that the functions sin(nmz/a), n € N, form an
orthogonal system in L?(0,a), and that the functions e*™"* n € Z, form an
orthogonal system in L?(0,1).

6.1.2. Suppose that
1 k
Sk(g;) = 5@0 + E (an cos nx + by, sin nx) - f(l’)

n=1

in L?(—m, ) as k — oo. Prove that

1 (" 1 ["
ap = — / f(z)cosnzdx, b, = —/ f(z) sinnxdzx.
T ) . -

6.1.3. Let {v,} be an orthogonal system in V' and suppose that u =
> cpvn. Let v € V be such that v — u L v, for all n. Determine the
expansion »  d,v, of v.
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6.1.4. (Orthogonal expansions need not converge to the defining ele-
ment) Determine the sum of the expansion of the constant function 1 with
respect to the orthogonal system {sinnz}, n € N, in L?(—7, 7).

6.1.5. Show that the closed span S(A) of a subset A C V is a linear
subspace of V.

6.1.6. The notion “closed span S(A)” of a subset A C V makes sense
in any normed vector space V. Determine W = S(A) if V = Cla,b] and
A=1,xz 2°

6.1.7. Determine the closed span of the sequence ey, es, €3, -+ in (2.

6.1.8. (A space containing an uncountable orthogonal system) Let V'

be the inner product space consisting of all finite sums of the form f (x) =
S exe™ )\ € R, with

Show that (f,g) is indeed an inner product function, and that the functions
va(z) = e X\ € R, form a (spanning) orthogonal system in V.

6.2. Best approximation property. Convergence theorem
We begin with a lemma on the computation of orthogonal projections.

LEMMA 6.2.1. Let W be a finite dimensional subspace of V' with orthog-
onal basis [basis of pairwise orthogonal vectors| vy, -, vg, and let u be any
element of V. Then the orthogonal projection of u onto W is given by

k
(6.2.1) wo = Pyu = Z CnUy  With ¢, =

n=1

(u, v,)
(O ’

n=1--- k.

PRrooF. The existence of the orthogonal projection wq follows from The-
orem 5.6.9 and Application 5.4.3, but it can also be proved independently.
Indeed, the elements w € W have the form Z’f YnVn. The condition that
u — w be orthogonal to W = S(vy,---,vg) is equivalent to the condition
that u — w be orthogonal to all v,, hence

0= (u—w,v,) = (u,v,) — (w,vy,)
k
- (U,’l}n) o Z VJ'(UJVUTL) = (U,’Un) - ")/n(Un,Un), n=1--- k.

j=1
These equations have the (unique) solution v, = (u,v,)/(vp, Vp) = Cp, 1 =
1, k. 0
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THEOREM 6.2.2. Let Y c,lulv, be the expansion of u in V with respect
to the (countable) orthogonal system {v,} in V. Then the partial sum

k

Sk = Sglu] = Z Cnlulvy,

n=1
s equal to the orthogonal projection wy = Pwu of u onto the span W =
S(vi, -+ ,vg). Thus the partial sum s, = sg[u] is the element of W which
best approximates u relative to the metric of V:
|lu—w| > ||Ju—skl]| forall weW,

with equality only for w = wy = s.

Proor. The first part follows from Definition 6.1.5 and Lemma 6.2.1,
while the second part follows from Theorem 5.6.9; cf. Figure 5.11. OJ

APPLICATION 6.2.3. For functions f € L*(—m, ) one has the following

result. Among all trigonometric polynomials w(x) = ag 4+ S5 (v, cosnx +
B, sinnzx) of order k, the partial sum

se[fl(x) = %ao[f] + Z (an[f] cosna + by[ f] sinnz)

of the Fourier series for f provides the best approximation to f in L?*(—m, 7):

/_:}f—wfz/_:!f—sk[fw,

with equality only for w = si[f].

EXAMPLE 6.2.4. Let f(z) = z on (—m, ). Then among all trigonometric
polynomials of order k, the partial sum

k n—1
se[f](z) = 22 % sin nx

of the Fourier series provides the best approximation to f relative to the
metric of L*(—m, 7). [Cf. also Exercise 2.1.3.]

THEOREM 6.2.5. Let A = {vy,v9,---} be a countable orthogonal system
V', and let u be any element of V. Then
(i) If (and only if) u belongs to the closed span W = S(A) in V, the
expansion Y cylulv, converges to u in V;
(ii) If (and only if) A spans the space V, that is, S(A) =V, the expan-

sion Y cp[ulv, converges to u for every w in V.
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Proor. We give a proof for infinite systems A, but the proof is easily
adjusted to the case of finite A.
(i) Take u in S(A). Then for every € > 0, there is a finite linear com-

bination u. = Zig d,(g)v, of elements of A such that ||u — u.|| < e.
Now consider any integer k > k(e), so that u. belongs to W = W), =
S(vy, -+ ,v;). By the best-approximation property [Theorem 6.2.2], the
partial sum s, = S _, ¢, [u]v, of the expansion of u is at least as close to
u as u.. Thus
[ = sl < flu—uel| <e.

Since this holds for every € and for all k > k(e), we conclude that sy — u
inV as k — oo.

(ii) Supposing S(A) =V, every u in V belongs to S(A), hence by part
(i), every u in V' is equal to the sum of its expansion ) ¢, [u]v,. O

In case (ii) every u in V has a unique representation u = ) ¢,v,. We
then call A an orthogonal basis for V. [Cf. Section 6.5 below.]
In order to apply the theorem to Fourier series, we need the following

PROPOSITION 6.2.6. The trigonometric functions
1
(6.2.2) —, cosx, sinx, cos 2z, sin2x, - - -

form a complete or spanning orthogonal system in L*(—m, 7). The same is
(of course) true for the exponential functions €™, n € Z.

PROOF. We have to show that every function f € L*(—m,m) can be
approximated arbitrarily well by trigonometric polynomials. Let f and ¢ >
0 be given. By Integration Theory, the step functions [piecewise constant
functions] s lie dense in L?(—m, 7); cf. Example 5.5.4. Hence there is a step
function s such that dy(f,s) = ||f — s|l2 < €. To such a function s we
can find a continuous function g on [—m, 7], with g(—m) = g(7), such that
da(s,g) < €. [At points where s is discontinuous, one can cut off corners.]
Next, by Weierstrass’s Theorem 3.4.1, there is a trigonometric polynomial
T such that |g(z) — T'(x)| < e throughout [—m, 7], so that

1

do(g,T) = (/ﬂ |g—T|2)2 < V2re.

—T

The triangle inequality finally shows that
d2(f7 T) S dZ(fa 8) + d?(sag) + d2(97T) < (2 + v 27-()8‘
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APPLICATION 6.2.7. For every function f in L?(—m,7), the Fourier se-
ries converges to f in the sense of L?:

/7r }f—sk[f]‘2—>0 as k — oo.

The proof follows from Theorem 6.2.5 and Proposition 6.2.6. Indeed, the
Fourier series for f € L*(—m, ) is its orthogonal expansion with respect to
the complete orthogonal system (6.2.2) [provided we do not combine the
terms a,|[f] cosnx and b,[f]sin nz in the series).

Exercises. 6.2.1. Compute the sine polynomial Zﬁzl 0, sin nx of order k
which best approximates f(z) =1 in L?*(0, ).

6.2.2. What can one say about f € L*(—m,7) if [ f(2)sinnxzdz = 0,
VneN?

6.2.3. Prove that the sine polynomials Y 3, sin nx lie dense in L*(0, 7),
and likewise the cosine polynomials o + ) -, o, cosnx.

6.2.4. For f € L*(0,7) one can form both a Fourier sine series and a
Fourier cosine series. Prove that both series converge to f in L*(0, 7).

6.2.5. Describe the closed subspaces of L*(—m, ) generated by the or-
thogonal systems

Ay = {sinz, sin2z, sin3z, ---}, and Ay = {1, cosz, cos2z, ---},

respectively.

6.3. Parseval formulas. Convergence of expansions

Combining Theorem 6.2.2 and the Pythagorean Theorem 5.6.1, we will
obtain the following important results:

THEOREM 6.3.1. Let A = {vy,v9,---} be a countable orthogonal system
in'V, and let > cpv, = > cylulv, be the expansion of u in V' with respect
to A. Then

(i) The numerical series > |cq|?||va||? is convergent and has sum <
|u||* (Bessel’s inequality);
(ii) If (and only if) 3. cyv, = uw in 'V, one has Y [cal?||vall* = |Jul]?
(Parseval formula);
(i11) If u = "> cpv, in' V' and v has expansion Y d,v,, then

(u,v) = Z Cady|lvn||*  (extended Parseval formula).
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u

FIGURE 6.1

REMARK 6.3.2. The above results are named after the German astron-
omer-mathematician Friedrich W. Bessel (1784-1846; [7]) and the French
mathematician Marc-Antoine Parseval (1755-1836; [89]); cf. [90].

ProOOF OoF THEOREM 6.3.1. Let k& be any positive integer not exceed-
ing the number of elements in A. Then the partial sum s, = Zﬁzl CnUn
of the expansion of u is equal to the orthogonal projection of u onto the
subspace W = S(vy,---,v;) of V [Theorem 6.2.2]. Hence in particular
u — s L s,. Thus Pythagoras gives the relations

k k
Z lenvall® = Z CnUn
n=1 1

(6.3.1) = [lull® = flu = sell* < flul*

2
= [lsell”

cf. Figure 6.1.

(i) In the case of an infinite system A, inequality (6.3.1) shows that the
partial sums o = >.*_, of the numerical series 35° [|c,vn||? are bounded
by ||u||*. Hence that infinite series of nonnegative terms is convergent, and
has sum < [Jul|*.

(ii) By (6.3.1), |lu — s> = |Jul|> = 32F |lcaval/?. Hence for an infinite
system A, the limit relation

k
chvn:skﬁu in V, or |[u—si||* —0 as k— oo,
1
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implies (and is implied by) the limit relation

k
7= leatnl® — Jull.
1

In particular, if > ¢,v, = u, then the expansion coefficients ¢, will satisfy
Parseval’s formula.
(iii) If v has expansion Y | d,v,, then d,, = (v, v,)/(vn, v,). Thus

k k
(55:0) = Y cnlvn,0) = Y calv
1 1

If A is infinite and s, — wu in V, the continuity of inner products now shows
that

k

E n(Uns Un).

1

o0

(u,v) = hm (sg, v Z o (U, V).

1

O

We will apply Theorem 6.3.1 to the special case of the trigonometric
system (6.2.2) and the related system {¢*} n € Z, in L*(—m, 7). The
closed spans of these systems are equal to L?*(—m, ). Thus we obtain the
following

COROLLARIES 6.3.3. (i) For any f in L*(—m, ), the Fourier coefficients
an = an[f], bp = bu[f] and ¢, = c,[f] satisfy the Parseval formulas

2 e’} [e’¢) T
|“Z‘ 2 + ; (lan)? + |ba)*) 7 = Z.O e |? 27 = /_W | f () [*da;

(ii) For f, g € L*(—m,m) one has the extended Parseval formula

(f,g9) = /f dx—QWch flenlg

EXAMPLES 6.3.4. The Fourier series
2>
1

for f(x) =z on (—m,m) [cf. Example 1.1.1] gives

sin nx

o0

4 T, 2 =1 7?
Zﬁﬂ_/xd‘ngﬂ’ or XI:EZF

1 -7
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Similarly, the Fourier series
L, (L)
§ ™44 21: n2

for f(z) = 2? on (—7, ) [cf. Example 1.2.1] gives

cosnx

As another nice application we mention the famous Isoperimetric The-
orem. It says that among all simple closed curves I' of given length L, a
circle encloses the largest area A. In general,

(6.3.2) 4 A < L* (isoperimetric inequality);
see Exercise 6.3.11 and cf. [57].

Orthogonal expansions are orthogonal series to which we can apply the
general Theorem 5.6.3. Thus Theorem 6.3.1 also has the following

COROLLARIES 6.3.5. Let A = {vy,v9,---} be a countably infinite or-

thogonal system in V. Then:
(i) For any u in V', the partial sums s, = Zlf Cnlu]v, of the expansion

of u form a Cauchy sequence in V';

(11) If V' is a Hilbert space, all orthogonal expansions in 'V are conver-
gent;

(iii) In a Hilbert space V', the expansion of u with respect to A con-
verges to the orthogonal projection of u onto the closed subspace W = S(A)
generated by A;

(iv) In a Hilbert space V, a formal series Y 1 Ynvn is the expansion
of an element of V if (and only if) the numerical series > 7 |Vnl?®||vnl?
converges.

PROOF. Setting c¢,[ulv, = u,, Bessel’s inequality implies the conver-
gence of the series Y 17 |lu,||?. Assertions (i) and (ii) now follow from The-
orem 5.6.3. From here on, let V' be a Hilbert space.

(iii) The sum w = Y 7° ¢,[u]v, = lims, now exists in V' and it must
belong to W = S(A). We will show that u —w L W | so that w = Pyu.
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Fix n and take £ > n. Then by the continuity of inner products,
k
(w,v,) = lim(sg, v,) = kh_}rgo z; cilul (v, vp)
]:
= cplu)(Vn, vn) = (u, v,).

Hence w — u L v,, Vn. It follows that w —u L A, so that w —u L S(A),
and finally, w — u L S(A).

(iv) If 3777 |7nl?[|vnl|? converges, then the series > " ,v, will converge
to an element w in V' by Theorem 5.6.3. The series » " v,v, will be the
expansion of w [Proposition 6.1.3]. O

Exercises. 6.3.1. Write down Parseval’s formula for a function f in
L?(0,27) and the complete orthogonal system {e™*} n € Z. Apply the
formula to the function f(x) = e**, 0 < x < 27, with real a.

6.3.2. Write down the Parseval formulas for the cosine series and the
sine series of a function f in L*(0, 7r)

6.3.3. Let f be in C'[0, 7], f(0) = f(27) = 0. Prove that

I /W

For which functions f is there equality here?
6.3.4. Let f be in L*(—m, 7). Prove that

s = [ N =sif == 3 (P + blAP).
n=k+1
Also compute d3(f, 0x), where oy, = oi[f] = (so + s1+ -+ + sx_1)/k. Does
it surprise you that da(f, o) > da(f, sk) ?
6.3.5. Compute the sum of the series Y ° =
6.3.6. Nobody has been able to express the sum of the series Y ;° 1/n®
for ((3) in closed form. Express the sum Y77, 1/(2p —1)* = (7/8)¢(3) as
an integral with the aid of the cosine series
¢] 2 [ee)
Z cosnnx and % +Z co(sQ(Qp 112)x;
n=1 p=1 P — )
cf. Exercises 1.1.4, 1.2.5.
6.3.7. Let f(z) = 0 on (—m,0), f(z) = = on (0 7). Determine the
expansion of f with respect to the orthogonal system ,COS X, COS 21, - - - in
L*(—m, ). Calculate the sum of the expansion. [Cf. Corollames 6.3.5. ]




144 6. ORTHOGONAL EXPANSIONS AND FOURIER SERIES

6.3.8. For which real values of a will the series > | (sin nz)/n® converge
in L*(0,7)?

6.3.9. Let {v,}, n € Z, be an arbitrary sequence of complex numbers
such that the series > >° _ |y,|? converges. Prove that there is a function
f € L*(—m,m) with complex Fourier series Y~ ~,e".

6.3.10. Prove that the convergence and the sum of an orthogonal ex-
pansion in V' are independent of the order of the terms.

6.3.11. Prove the isoperimetric inequality (6.3.2): 4rA < L? for piece-
wise smooth simple closed curves I'. Determine all curves I' for which there
is equality.

Hint. Using arc length as parameter, I' may be given by a formula
z=x+1iy =g(s), 0 <s < L, with |¢’(s)| = 1. One then has

1 =t 1 )
A=3 (2dy —ydz) = 5 Im (g, 9).

=0

Without loss of generality one may take L = 27 (so that g has period
27). Also, the center of mass of I' may be taken at the origin (so that

0% g(s)ds = 0).

6.4. Orthogonalization

Since orthogonal representations are so convenient, it is useful to know
that for every sequence {uy, usg, - - - } of elements of V', there is an orthogonal
sequence {vy,vq,- - -} of linear combinations of elements u; with the same
span.

CONSTRUCTION 6.4.1. (Gram—Schmidt orthogonalization) We start with

an arbitrary (finite or infinite) sequence {uy, us, - - -} of elements of V. Now
define

U1 = U1;
vy = “part of uy orthogonal to v,”
= uy — orthogonal projection of uy onto S(v;)

= Uz — )\2,11)1,
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FIGURE 6.2

where the condition vy L vy gives A\y1 = (ug2,v1)/(v1,v1) (but if v; = 0 we
take Ao = 0). In general, one defines

v = “part of ug orthogonal to vy, -+, vr_1”
(6.4.1) = uy, — orthogonal projection of uy onto S(vy, -, vk_1)
= Uk — )\k,1v1 — )\k,kflkala

where the condition v, L v; gives

My = %) S R (but iy — 0 we take A — 0).
(05, v5)
Cf. Figure 6.2. The construction is named after Jorgen P. Gram (Den-
mark, 1850-1916; [40]) and Erhard Schmidt (Germany, 1876-1959; [108]);

cf. [41].

THEOREM 6.4.2. Let {vy,vq,---} be the sequence of vectors in V' ob-
tained by orthogonalization of the sequence {uy,ug,---}. Then:

(i) Every vector vy, can be expressed as a linear combination of uy, - - - , ug
in which uy has coefficient 1. Conversely, every vector uy, can be expressed
as a linear combination of vy, , v.

(11) For every n, S(vy, -+ ,v,) = S(u1, -+ ,uy,). Also, S(vy,vq,--+) =
S(uy,ug,--+). It follows that S(vy, vy, -+) = S(ui,us,---); the sequence
{v1, v, -} generates the same closed subspace of V' as the original sequence
{uy,us, - .

(7ii) The vectors vy,vs,- - are pairwise orthogonal. If (and only if) the
vectors uy, us, -+ are linearly independent, the vectors v, are all # 0 (so
that they form an orthogonal system according to Definition 6.1.1).
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(iv) If the linear combinations of the vectors uy,uq,--- lie dense in V
and the vectors wuy,us,--- are linearly independent, the vectors vy, vq, - - -
form a spanning orthogonal set in V', hence an orthogonal basis.

PROOF. (i) Applying induction to (6.4.1), one readily shows that vj, can
be expressed as a linear combination of uy, - - - , uy in which uy has coefficient
1. For the other direction one may use (6.4.1) as it stands.

(ii) By (i), vx € S(uy,---,ux) and ur € S(vy,---,vg), hence every
linear combination of vy,---,v, can be written as a linear combination of
Uy, , Uy, and vice versa. The other assertions (ii) follow.

(iii) By (6.4.1), v, L all predecessors v;, so that the vectors vy, vq, - -
are pairwise orthogonal. We also have the following equivalent assertions:

Uy, -, Uy, are linearly independent < dim S(uy, - ,u,) =n
< dim S(vy, -+ ,v,) =n < vy, , v, are linearly independent

< none of the pairwise orthogonal vectors vy, - - - , v, is equal to 0.

Thus if (and only if) the vectors uy,us,--- are linearly independent, all
vectors v, are # (.

(iv) Assume S(uj,ug,---) = V. Then by (ii) also S(vy, vy, -+) = V.
The deletion of zero vectors in the sequence {v, } does not change the closed
span, hence the nonzero vectors v, form a spanning orthogonal set in V. [

EXAMPLE 6.4.3. (Legendre polynomials) [after Adrien-Marie Legendre
(France, 1752-1833; [78]), who contributed to both pure and applied math-
ematics.] Orthogonalization of the sequence of powers {1,z,z% 23 ---} in
L?*(—1,1) gives the following sequence of polynomials:

po(z) =1, pi(z) =z — Aol =,
pg(l‘) = ZE2 — /\2701 - /\2711' = ZE2 - ]_/3,
pg(l‘) = ZE3 - /\3701 - /\3711' - /\32([[’2 - 1/3) = ZE3 - (3/5)1‘, etc.

The polynomials p,(z), n € Ny, form an orthogonal system; the degree of
pn(x) is exactly n. It can be shown that p, (1) # 0 for all n; see Section 7.1
below. Division of p,(z) by p,(1) gives the Legendre polynomial P,:

(6.4.2) Po(z) &

so that P,(1) =1, Vn.
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One will find
1
PO('I) = 17 Pl(x) =T, PQ('I) -5 (31‘2 - 1)7

—_
[\

1
(6.4.3) Py(z) = 5 (52 — 3x), Py(x) = =(352* — 302° + 3), etc.

oo

It is useful to know that

1
1
(6.4.4) | P2 :/ P(z)dr = -
~1 n+ )

This and other results will be derived in Chapter 7.

APPLICATION 6.4.4. For any given k > 0, the Legendre polynomials
Py, Py, - -+, B, form an orthogonal basis for the subspace W = S(1,z, - -+ , 2¥)
of L*(—1,1), which consists of the polynomials in z of degree < k [restricted
to the interval (—1,1)]. For functions f € L*(—1,1) one can form the Le-
gendre series: the expansion >~ ¢,[f]P, with respect to the system { P, }.
The orthogonal projection of f onto W is equal to

sklf] = Z ol f] P,  where c¢,[f] = (g;%j) =(n+1/2) 9 fP,.

n=0

This is the polynomial of degree < k which best approzimates f on (—1,1)
in the sense of “least squares”; one has

/_lllf—sk[f]fs/_ll}f—zﬂf

for all polynomials P of degree < k, with equality only for P = si[f]; cf.
Theorem 6.2.2.

Exercises. 6.4.1. Orthogonalize the sequence of vectors u; = (1,1,1),
uy = (2,1,0), ug = (1,0,0) in E3. Will orthogonalization of the sequence
us, Ug, U1 give the same result?

6.4.2. Orthogonalize the sequence {1, z,x?} in L?(0,1), and standardize
to norm 1 through multiplication by suitable positive constants.

[Answer: {1, V12(z — $), V180(z® —z + 1)}. |

6.4.3. Compute py(x) in Example 6.4.3 and verify the formula for P,(z)
in (6.4.3).

6.4.4. Let f(x) = |z|, —1 < & < 1. Determine the polynomial P of
degree < 2 which best approximates f in L?(—1,1). Also compute || f — P||*.
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6.4.5. (Continuation) Next determine the linear combination 7" of 1,
cos mx, sin mx which best approximates f in L?*(—1,1). Which of the two,
P and T, provides a better approximation?

6.4.6. Show that the polynomials in z lie dense in L?(—1, 1), and deduce
that the Legendre polynomials P,, n € Ny, form a spanning orthogonal set,
or orthogonal basis, for L*(—1,1).

6.4.7. Let {uy,us,---} be a sequence of vectors in V, {vy,vq, -} the
sequence obtained by orthogonalization. Show that ||v,| < ||u,], ¥V n.

6.4.8. The Gram matrix of vectors uq,--- ,u, in V' is defined by
G(ul, NN ,un) = [(um UJ)] ij=1,mn
(U1,U1) (U1,U2) ce. (ubun)
_ (UQ,Ul) (UQ,UQ) o (u%un)
(un,U1) (un7u2) e (unaun)

Prove that the determinant, det GG, is invariant under orthogonalization:
det G(uy, -+ ,u,) = det G(vg, -+ ,v,) = |Joi)* -+« [Jn ||

6.4.9. Show that wy,--- ,u, are linearly independent in V' if and only if
det G(uq, -+ ,uy,) # 0.
6.4.10. Let A = [a;;] be an n x n complex matrix. Verify that

AR = [(us,u5)],

where uq, - -+, u, denote the row vectors of A, considered as elements of U".
Deduce Hadamard’s inequality

| det Af < fu ]} - [unl]-

Interpret the inequality geometrically when A is a real matrix.

[Jacques Salomon Hadamard (France, 1865-1963; [42]) is perhaps best
known for the proof of the prime number theorem in 1896. The theorem was
proved independently - in the same year - by the Belgian mathematician
Charles-Jean de la Vallée Poussin (1866-1962, [121]). The prime number
theorem says that 7(z), the number of primes < x, behaves like x/log x for
large z. More precisely, cf. [96],

m(x)

1 .
z—00 a:/logx—> as & — oo
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6.5. Orthogonal bases

A spanning orthogonal sequence {vy,vy,---} in V is also called an or-
thogonal basis, because every element v in V' will have a unique represen-
tation u = cjv1 + covg + - - - ; cf. Theorem 6.2.5. Here the coefficients ¢,, are
the expansion coefficients of u: ¢, = ¢,[u] = (u,v,)/(v,, v,). The order of
the terms in the expansion is not important.

For general orthogonal systems we formulate

DEFINITION 6.5.1. An orthogonal system {vy}, A € A, in V is called an
orthogonal basis for V if every element v in V' has a unique representation
as the sum of a finite or convergent infinite series of terms c)vy.

In every representation of u as a finite or infinite sum ) c\vy, the coeffi-
cient ¢, must be equal to (u,vy)/(vy, vy), hence the representation is unique
(up to the order of the terms). It is the expansion of u with respect to the
system {v,}, and it never has more than a countable number of nonzero
terms; see Lemma 6.5.3 below.

It is natural to ask which inner product spaces have a countable or-
thogonal basis. Suppose that the space V' has such an orthogonal basis
{vn,}. Then V must be separable, that is, V must contain a countable set
of elements wuq, us, - -+ which lies dense in V. Indeed, the finite linear com-
binations ) ¢,v, must be dense in V', and these can be approximated by
finite combinations > v,v, with “rational” coefficients 7,, that is, Rec,
and Im ¢, rational. The latter combinations form a countable set. There is
also a converse result:

THEOREM 6.5.2. Every separable inner product space V' has a countable
orthogonal basis.

Indeed, a dense sequence of elements uy, uo, - -+ is a fortiori a spanning
sequence. Orthogonalization will produce a spanning sequence of pairwise
orthogonal vectors vy, vy, - -+ [Theorem 6.4.2]. Omitting all zero vectors v,
from that sequence, one obtains a countable orthogonal basis.

LEMMA 6.5.3. Let {vy}, A € A, be an orthogonal system in V. Then for
every element u in V', at most countably many of the expansion coefficients
ealu] = (u,vy)/ (v, v)) are different from zero.

PRrROOF. For any finite subset Ay of A, Bessel’s inequality shows that

(6.5.1) > lealwd]lloall” < full

AEAQ
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cf. Theorem 6.3.1. It follows that the number of A’s for which |cx[u]|||v,ll
is > 1 is at most equal to ||u||*. Similarly, the number of \’s for which
|ealu]|[Jva]l is less than 1 but greater than or equal to % is bounded by
4||ul|®>. The number of X's for which £ > |cx[u]|||lval] > § is bounded by
9||u||?, etc. Thus the nonzero terms cy[u]vy in the expansion of u can be
arranged in a sequence according to decreasing norm — they form a countable

set. ]

The proof of Theorem 6.2.5 may be adapted to the case of general or-
thogonal systems to give

THEOREM 6.5.4. An orthogonal system {vy} in V is an orthogonal basis
if and only if the finite linear combinations of the vectors vy lie dense in V.

For Hilbert spaces, there is the following useful characterization of or-
thogonal bases:

THEOREM 6.5.5. In a complete inner product space V', an orthogonal
system {vy\} is an orthogonal basis if and only if it is a maximal orthogonal
system.

Such maximality means that there is no vector y in V' that is orthogonal
to all vectors vy, except the vector y = 0.

PROOF OF THE THEOREM. (i) Let {v,} be an orthogonal basis of V
and suppose that y € V is orthogonal to every vy. Then (y,v,) = 0 for all
A € A, hence y has the expansion 0. Since y must be equal to the sum of
its expansion, y = 0.

(ii) Let {v)} be a maximal orthogonal system in V' and let u be an ar-
bitrary element of V. Considering only the nonzero terms, we form the ex-
pansion of u, Y- ¢y, vx,. By Bessel’s inequality, the series Y- |ex, [u] ’2||v,\n %
must converge, and hence, V' being complete, the series > ¢y, vy, converges
to an element w € V' [Corollaries 6.3.5].

The difference y = u — w will be orthogonal to every vector vy. This
is clear if X is of the form A, but it is also true if A\ is different from all
An. The maximality of the orthogonal system {v,} now shows that y = 0,
hence u = w = Y ¢y, v,,. Since u was arbitrary, it follows that {v,} is an
orthogonal basis of V. 0

*The characterization in Theorem 6.5.5 may be used to show that every
Hilbert space V', no matter how large, has an orthogonal basis. The proof
requires a form of the axiom of choice, such as Zorn’s Lemma (after Max
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Zorn, Germany—-USA, 1906-1993; [127]); cf. [128], or see the book [119].
By that Lemma, V' will contain a maximal orthogonal system. One can
also show that all orthogonal bases of a given Hilbert space have the same
cardinal number. This cardinal number is sometimes called the orthogonal
dimension of the space. In the subsequent theory, we will restrict outselves
to separable spaces V.

Exercises. 6.5.1. Prove that the vectors ey, es,e3,--- of Example 6.1.2
form an orthonormal basis for [? = [*(N).

6.5.2. Which of the following systems are orthogonal bases of the given
spaces? Explain your answers.

{sinx,sin2z,sin3z,---} in L*(0,7);
{cosx,cos 2z, cos 3x,---} in L*(0,7);
{e™ neZ} in L*(—m,m);

{Py, P\, Py, Ps,---} in L*(—1,1).

6.5.3. Let {¢o, @1, P2, 3, b4, P5, - - - } be an orthogonal basis for L?(—a, a)
such that ¢g, ¢o, @y, - - - are even functions, while ¢4, ¢3, ¢5, - - - are odd func-
tions. Prove that the system {¢q, ¢, @4, -} is an orthogonal basis for
L*(0,a), and likewise the system {¢y, ¢3, ¢5,- - }.

6.5.4. Same questions as in Exercise 6.5.2 for the systems

{sin(rz/a),sin(27z/a),sin(3rz/a),---} in L*(0,a);
{Py, Py, Py,---} in L*(0,1);

{cos z,sin 2z, cos 3x,sindx, - -+ } in L*(—7/2,7/2);
{sinz, cos 2z, sin 3z, cosdx,- -~} in L*(—7/2,7/2);
{sinz,sin3z,sin5x,---} in L*(0,7/2);

{cosx,cos3x,cosbx, -+ } in L*(0,7/2).

6.5.5. Let L*(a, b; w), where w(x) is an almost everywhere positive (mea-
surable) function on (a,b), denote the Hilbert space of the functions f(x)

such that f(z)/w(x) belongs to L*(a,b), with the inner product

(f.g) = / F(@)g@w(x)da
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Show that the following systems are orthogonal bases of the given spaces:

{To(z), T1(x), Tr(x), - -} in Lz( -1 1 \/%ﬂ

{Py(cos ), Pi(cosf), Py(cosh),---} in L*(0,7;sinf).

) [Exercise 3.4.4];

6.5.6. Let V be a Hilbert space, W a (separable) closed subspace. Prove
that every element u € V' has an orthogonal projection Py u. How can one
compute Pyu?

6.5.7. Let V be an inner product space, A an orthogonal basis for V.
Prove that A is also an orthogonal basis for the completion VofV.

6.5.8. Let W be the subspace of L?(0,7) consisting of all finite lin-
ear combinations of the functions z,sin2x,sin3z,---. Prove that A =
{sin 2z, sin 3z, - - - } is a maximal orthogonal system in W, but not an or-
thogonal basis.

6.5.9. Prove Theorem 6.5.4, and give an example of an inner product
space V with an uncountable orthogonal basis.

6.5.10. Let A be an orthogonal system in V| and let E be a subset of
V' whose linear span S(F) lies dense in V. Suppose that the expansion of
every element u € E with respect to A converges to u in V. Prove that A
is an orthogonal basis for V.

6.5.11. Let {¢1, do, @3, - - } be an orthonormal system in L*(0, 1).

(i) Let 0 < a < 1. Determine the expansion of the step function s, such
that s,(z) =1 on [0,a], sq(x) =0 on (a, 1].

(ii) Deduce that
/ On(x)dx
0

(iii) Prove that one has equality in (6.5.2) for every a € [0, 1] if and only
if {¢1, o, @3, -} is an orthonormal basis for L?(0,1).

6.5.12. Let the functions f,(z), n € N, form an orthogonal basis for
L*(a,b), and let the functions gx(y), k¥ € N, form an orthogonal basis for

2
< a.

(6.5.2) i

L*(c,d). Prove that the products f,(x)gx(y), n, k = 1,2,---, form an
orthogonal basis for L? on the domain (a <z < b, c <y < d).
Deduce that the functions e!®*+*%) n k = 0,41,42,---, form an or-

thogonal basis for L? on the rectangle (—7 < z <7, —7 <y < 7).
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6.6. Structure of inner product spaces

We will first show that all orthogonal bases of a separable inner product
space have the same number of elements, or more accurately, the same
cardinal number. In the following it is convenient, and no loss of generality,
to restrict ourselves to orthonormal bases and systems.

LEMMA 6.6.1. Let {v\}, A € A, be an orthonormal system in the sepa-
rable inner product space V.. Then the system {vy} is countable.

PROOF. Observe that |[uy —v,]|? = 2 whenever A # p, so that the open
balls B(vy,v2), A € A, are pairwise disjoint. Now let {uy,ug,---} be a
sequence which lies dense in the separable space V. For given A € A, the
ball B(vy,+/2) will contain certain elements w,; the one with the lowest
index will be called w,,. Doing this for each A, we obtain a one-to-one
correspondence between the elements of the system {v,} and a subset of the
positive integers. Conclusion: the system {v,} is either finite, or countably
infinite. 0

THEOREM 6.6.2. Let V' be a separable inner product space different from
just a zero vector. Then all orthonormal bases of V' have the same cardinal
number, which is either a positive integer or countably infinite.

ProOOF. By Lemma 6.6.1 every orthonormal basis of V' is countable.
Let A = {vy,vq,--} be such a basis. Then there are two possibilities:

(i) A is finite, A = {wvy,---,v,}, say. In this case A is an ordinary
algebraic basis for V, since every element of V' has a unique representation
Z?Zl c;v5. Thus by Linear Algebra, every linearly independent set in V' has
at most n elements. In particular all orthonormal bases of V' are finite, and
hence ordinary algebraic bases. Since the latter all have the same number
of elements, so do all orthonormal bases.

(ii) A is infinite, A = {v,}, n € N. In this case the (algebraic) dimension
of V' must be infinite; cf. part (i). Hence all orthonormal bases of V' must
be infinite, and by Lemma 6.6.1 they must be countably infinite. O

We will now classify the separable real and complex inner product spaces.
To that end we need a suitable concept of isomorphism.

DEFINITION 6.6.3. Two inner product spaces V and V' are called iso-
morphic, notation V' = V' if there is a one to one map T of V onto V'
which commutes with addition and multiplication by scalars:

T(up +ug) = Tuy + Tug, TAu= ATu, VA,
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and which preserves inner products:
(Tuh TU2)V' = (U1>U2)v-

The first condition says that 7' is linear, and the final condition may
be expressed by saying that 7" must be an isometry. Indeed, if T" preserves
inner products, it will automatically preserve norms and distances, and vice
versa.

THEOREM 6.6.4. Let V' be a separable inner product space # {0}. Then
one of the following three cases must pertain:
(i) dim' V' is equal to a positive integer n. In this case V' is isomorphic
to E™ (it it is a real space), or to U™ (if it is complex);
(i) dimV = oo and V is complete. In this case V is isomorphic to
I = I?(N) (if it is a complex space), or to [, (if it is real);
(i11) dim V' = oo and V is incomplete. In that case V is isomorphic to
a dense subspace of I* or I2,.

PrROOF. We will discuss the case where V' is a (separable) infinite di-
mensional complex Hilbert space. In this case every orthonormal basis of
V' has the form {v,}, n € N. Fixing such a basis, the elements v € V are
precisely the sums > °° | ¢,v,, with ¢, € C, 77| |e,|* < oo; cf. Corollaries
6.3.5. We now define a map T of V to [ by setting

(6.6.1) TZ CnUn = {1, 00,3, } = Z CrCn-
n=1 n=1

Here {e,}, n € N, is the standard orthonormal basis of [* = [*(N); cf.
Exercise 6.5.1. By the definition of /? [Example 5.5.3], the map 7' is one to
one and onto, it commutes with addition and multiplication by scalars, and
it preserves inner products:

(X ewvn D dewn) =D cudalal?
— chan = (Z Cnn, deek)v/'

Cf. the extended Parseval formula in Theorem 6.3.1.

If V' is an incomplete (complex) separable inner product space, dim V'
must be infinite; cf. Theorem 6.4.2. Thus V' has an orthonormal basis {v, },
n € N. This time the linear map 7" with the rule (6.6.1) will establish an
isomorphism of V with a dense but incomplete subspace of [2. O
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Exercises. 6.6.1. Prove part (i) of Theorem 6.6.4.

6.6.2. Explicitly describe an isomorphism between [%(Z) and [*(N). [Cf.
Example 5.5.3.]

6.6.3. Let V and V' be isomorphic inner product spaces. Prove that any
completions V and V' are also isomorphic. In particular any two comple-
tions of a given inner product space V' are isomorphic.

6.6.4. Let V and V' be isomorphic and let V' be complete. Prove that
V' is also complete.

6.6.5. Let {v)} be an orthonormal basis of V' and let T be an isomor-
phism of V' onto V’. Prove that {Tw,} is an orthonormal basis of V".

6.6.6. Describe the completion V of the “large” inner product space V'
in Exercise 6.1.8.

6.6.7. How would you define the Hilbert space I2(A), where A is an
arbitrary index set? Prove that every complex Hilbert space V' is isomorphic
to some space [?(A).






CHAPTER 7

Classical orthogonal systems and series

Both in pure and applied mathematics, one meets a large variety of
orthogonal systems besides the trigonometric functions. Boundary value
problems for differential equations are an important source. In fact, there
are large classes of eigenvalue problems for differential equations, whose
standardized eigenfunctions form orthogonal bases. Thus the “Legendre
eigenvalue problem” of mathematical physics leads to the Legendre polyno-
mials; cf. [79] and Section 8.3. In this and the next chapter we will study
these and other orthogonal polynomials from different points of view.

7.1. Legendre polynomials: Properties related to orthogonality

In Example 6.4.3, the Legendre polynomials P, (z) were obtained by
orthogonalization of the sequence of powers {1,z,z%---} in L*(—1,1), and
subsequent standardization of the resulting pairwise orthogonal polynomials
po(z), p1(z), po(z), - - - through multiplication by suitable constants:

1
7.1.1) P,(x) = ——=pu(z), n=0,1,2---
( ( o) (
[Here it was assumed that p,(1) # 0; a proof will be given below.] Thus
P,(x) is a polynomial in z of precise degree n, so that every polynomial in
of degree < n can be expressed as a linear combination of Py(x), Py(z),- -,
P,(x). Tt is convenient to formulate the following

DEFINITION 7.1.1. The Legendre polynomial P,(x) is the unique poly-
nomial of degree n in x, which is orthogonal to 1,z,--- , 2" ! in L*(—1,1),
and for which P,(1) = 1.

The existence and uniqueness of P, can be proved by linear algebra, cf.
Exercises 7.1.1, 7.1.2, but the following construction does more: it gives an
explicit representation. Let P,(z) be any polynomial of precise degree n
which is orthogonal to 1,z,- -+, 2" ! (there surely is such a polynomial; cf.

157
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Exercise 7.1.1):

1
(Pn(z), %) :/ P,(x)2°de =0, s=0,1,---,n—1.

1

We now introduce auxiliary polynomials

Por(z) = / Po(t)dt, Poolz) — / Por(t)dt, -,
-1 -1

Pn,k(x) = / Pn,kfl(t)dta I Pn,n(x) = / Pn,nfl(t)du

-1 -1

so that P, (z) has precise degree n + k. For n > 1,

1
P,i(1) :/ P,-1=(P,(z),2°) =0, P,i(-1)=0.
—1
Hence, integrating by parts,
1

(s + 1)(Pn,1(x),xs) :/ Py (z)dzt!

-1

Next, for n > 2,

1
Poa(1) = / Poy1=0, PLy(1) = Pus(1) =0,

1
P7/z,2(_1) = Pn,2(—1) =0,

(s + 1) (P, o(x),2%) = —(Py(x),2) =0, s=0,1,--+,n— 3.
Thus, inductively, for n > k,
Poi(1) = Py(1) == PV (1) =0,
Poi(=1) = P i(-1) =+ = PV (=1) =0,

(Pog(x),2°) =0, s=0,1,--- ,n—Fk—1.
For k = n we run out of orthogonality relations, but find

Pou(1) =P ,(1) == Pi0(1) =0,

Pon(=1) =Py, (-1)=--- = B V(-1) =0.
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It now follows from Taylor’s formula for P, ,(x) around the point x = 1

that
Pan(@) = Pun(1) + PL,(1)(x = 1)+ + PI(1) %

+---+P£?:>(1)%,
(z—1)"

n!

(x —1)*
(2n)!

Thus the polynomial P, ,(x) of degree 2n is divisible by (z — 1)". It is
likewise divisible by (z + 1), hence by (2* — 1)". Conclusion:

= PM(1)

n,n

+o B ()

d
Pon(7) = ap(a®* = 1), P,(r) =a,D"(2* —1)", D= e
x
where «, is a constant. We finally compute P,(1) by Leibniz’s formula for
the n-th derivative of a product:
Pu(1) = an| D™{(z = 1)"( + 1)"}

r=1

—a, zn: (Z) [D”_k(:ﬂ —1)"DF(x + 1)”}

k=0

z=1

The terms on the right are all equal to zero except for the term with £ = 0:

P(1) = ay <g) nl 2",

Thus we can impose the condition P, (1) =1 and it gives «,, = 1/(2"n!):

THEOREM 7.1.2. (Rodrigues’ formula for the Legendre polynomials).
One has

1 n(,..2 n
P,(x) = —Q"n!D (x®—1)
1.3 (20— 1) 1-3--(2n—3)
7.1.2 = n_ n
(7.1.2) nl v > m_2p

Notice that P, is an even function when n is even, and an odd function
when n is odd.

Formulas for orthogonal polynomials such as the one above are named
after the French banker and mathematician Olinde Rodrigues (1795-1851;
[103]); cf. [104].
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FIGURE 7.1

Formula (7.1.2) will provide information on the general appearance of
the graph of P,(z). When n > 1, the even polynomial (z* — 1)" has zeros
of multiplicity n at z = 1 and = —1. Thus the derivative D(z* — 1)"
(which is an odd polynomial) has zeros of multiplicity n — 1 at = £1, and
by Rolle’s theorem, it has at least one zero between —1 and +1. In view of
the degree 2n — 1 of the derivative, there can be only one such zero, and it
must be simple; it lies at the origin, of course. When n > 2 one finds that
the (even) polynomial D?(x? —1)™ of degree 2n — 2 has zeros of multiplicity
n — 2 at +1, and exactly two simple zeros between —1 and +1. For n > k,
the polynomial D*(22 — 1)" of degree 2n — k has zeros of multiplicity n — k
at +1, and exactly k simple zeros between —1 and +1. Taking £ = n, we
obtain

PROPOSITION 7.1.3. All n zeros of the Legendre polynomial P,(x) are
real and simple, and they lie between —1 and +1.

The derivative P! (z) will have exactly n — 1 simple zeros; they separate
the zeros of P,(z). Thus the graph of P,(x) on R has precisely n—1 relative
extrema. They occur at points between —1 and +1 which alternate with
the zeros. Beyond the last minimum point the graph is rising and free of
inflection points. On the closed interval [—1, 1] there will be n + 1 relative
extrema, including the end points; cf. Figure 7.1.

It will follow from Exercise 7.1.11 that the successive relative maximum
values of |P,(z)| on [0, 1] form an increasing sequence.

Since the polynomials in x lie dense in C[—1, 1] while the continuous
functions lie dense in L?*(—1,1) [cf. Example 5.5.4], every function f(z)
in L?(—1,1) can be approximated arbitrarily well in L? sense by linear
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combinations of Legendre polynomials. Thus the Legendre polynomials
form an orthogonal basis for L?(—1,1); cf. Theorem 6.5.4. With a little
work their norms may be obtained from Rodrigues’ formula:

1 1 1
HPnH?:/ PP, = —/ PP =...= (—1)"/ P, P
—1 — —

1 1

= (—1)”/_ an(z+1)"(z — 1)" - an(2n)! dx

1

(7.1.3) = (—1)”_1ai(2n)!/ Chaia (e — 1" e =---

-1 n+]_

) Lo+ 1
:ozn(Zn)!/1 (n+1)._.(2n)n(n—1)~--1dx—-~-—n+%.

THEOREM 7.1.4. (Basis property) Every function f in L*(—1,1) is equal
to the sum of its Legendre expansion or Legendre series,

=3 alflb alfi=mry2) [ /P,

n=1
Here the convergence is L? convergence: fil }f — Sk [f]’2 — 0 as k — oo.

Orthogonal systems such as { P, } satisfy a three-term recurrence relation
by which P, 1 may be expressed in terms of P, and P, ;. Indeed, observing
that the leading coefficient in P,y is equal to (2n + 1)/(n + 1) times the
leading coefficient in P, [see Theorem 7.1.2], one finds that

(n+1)Pq(x) — (2n+ D)zP,(x) = Qn_1(x),

a polynomial of degree < n — 1. Here the left-hand side is orthogonal
to 1,z,--+,2" % in L*(—1,1), hence Q,_1(x) = B,_1P,_1(x), a constant
multiple of P,_i(x). The constant (3, 1 may be evaluated by setting z = 1:
ﬁnfl = —n.

PROPOSITION 7.1.5. (Recurrence relation) One has Py(x) =1, Py(z) =
x, and

(n+1)Poi(x) — 2n+ 1)zP,(z) + nP,—1(x) =0 (n>1).

A differential equation for P,(z) may be obtained in a similar manner.
Let R,(z) be the polynomial {(1 — z?)P/(x)}’ of degree n. Integration by
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parts shows that R, (z) L 1,z,--- 2" ' in L?(—1,1):

/_1 Ry (z)2*dr = —s/l (1 —2*)P! (z)z* da

1 -1

1
= s/ Pu(x){(s =12 % = (s +1)a}dxr =0, 0<s<n-—1
-1
It follows that R,(z) = v,P,(z). Comparison of the leading coefficients
shows that 7, = —n(n + 1). Conclusion:

ProrosiTION 7.1.6. (Differential equation) The Legendre polynomial
y = P,(x) satisfies the differential equation

{1 =2y} +nn+1)y=0.

There are other ways to obtain the Legendre differential equation; cf.
Examples 8.3.1 below.
Another important consequence of the orthogonality is Gauss’s “quad-

rature formula” (after Carl Friedrich Gauss, Germany, 1777-1855; [35]).
This is a formula for numerical integration; see Exercise 7.1.6 and cf. [36].

Exercises. 7.1.1. Let W) denote the subspace S(1,z, - - - ,x"“’) of dimension
k+1in L?(—1,1). Prove that the vectors in W, that are orthogonal to W,,_;
form a 1-dimensional subspace. Deduce that the orthogonality condition
P, 1. W,_; determines P, up to a constant multiple.

7.1.2. Let P, be any real polynomial of precise degree n such that
f_ll P,Q = 0 for all real polynomials () of degree < n — 1. Deduce directly
that P, must change sign at least n times (hence precisely n times) between
—1 and +1. In particular such a polynomial cannot vanish at an end point
+1.

7.1.3. Prove that the polynomials D"{(z — a)"(z — b)"}, n € Ny, form
an orthogonal system, and in fact, an orhogonal basis, in L?(a, b).

7.1.4. Use the recurrence relation, Proposition 7.1.5, to compute Ps, P3
and Py from Py(z) =1, Pi(z) = x.

7.1.5. Use the differential equations for P, and Py to verify that (P,, Py) =
0 whenever k # n.

7.1.6. (Gauss quadrature) Let 21 < z9 < -+ < X = Tpp < -+ < Ty,
denote the consecutive zeros of P,. Prove that there are constants \; = A, ;
such that

(7.1.4) /_1 f(z)dz = Z i f ()
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for all polynomials f(z) of degree < 2n — 1.

[The coefficients \; are determined by the condition that (7.1.4) must
be correct for f(z) = 1,z,---,2"!, hence for all polynomials f of degree
< n—1. Furthermore, any f of degree < 2n—1 can be written as P,Q) + R,
with deg @ < n, deg R < n. Conclusion?]

7.1.7. (Continuation) (a) compute the numbers z; and \; for n = 2 and
n=3.

(b) Prove that the constants A\; = A, ; are all positive. [Choose f clev-
erly!]

7.1.8. Suppose g € C[—1,1] has all its power moments equal to zero:
f_ll g(x)z"dr = 0, Yn € Ny. Prove that g(x) = 0. Can you prove a
corresponding result for f € L*(—1,1)? For f € L'(—1,1)?

7.1.9. Obtain the Legendre series for f(x) = |z| on [—1, 1]. Prove that
the series converges uniformly on [—1, 1]. Does the series converge pointwise
to |z|?

[Observe that for even n, ¢,[f] = (2n+ 1)P,2(0) = - - -]

7.1.10. Use Rodrigues’ formula to show that

13 2n—2k—1) . o
Po(x) = Z (=1) Qkk;!((n—Zk:)! )x ’

1
0<k<3n

Pan(0) = (—1)m2-2" (QWT) SN
PQ'mH(O) = (2m + 1) P3,,(0).

7.1.11. Use the differential equation in Proposition 7.1.6 to show that
the function

1

v(z) = va(z) = P3(z) + nln 1)

(1—a%) P ()
is strictly increasing on [0, 1]. Deduce that the relative maxima of |P,(x)|
on [0, 1] form an increasing sequence, and that

IPy(z)] < Py(1) =1 on [—1,1].

7.1.12. (Continuation) Show that fol vy = 2 fol P*=1/(n+1/2),

n

2 1
v, (0) ~ g Un(2) < (n+ (1 —x)

on [0,1).



164 7. CLASSICAL ORTHOGONAL SYSTEMS AND SERIES
7.1.13. Show that P, — P/ _, is orthogonal to 1,z,--+, 2" % on (—1,1),
and deduce that P! — P,ﬁL 5 = (2n —1)P,_;. Next prove that
P.=0C2n—-1)P, 1+ @2n—5)P, 3+ 2n—9P, 5+,

and deduce that |P.(z)| < P/(1) =n(n+1)/2 on [-1,1].
7.1.14. Compute f_ll " Py(x)dx for 0 < s < n, and deduce that z™ is
equal to

nn—1)---(2k +2)
Z (2n —2k+1)2n—2k—1)---(2k+3) (2n =k + 1) Proi(z).

0<k<

7.2. Other orthogonal systems of polynomials

All classical systems of orthogonal polynomials can be obtained by or-
thogonalization of the sequence of powers

(7.2.1) {1,z,2% -},

and standardization of the resulting polynomials through multiplication by
suitable constants. On the interval (—1, 1) different weight functions lead to
different orthogonal systems. Thus orthogonalization of the sequence (7.2.1)
relative to the weight function w(z) = (1 — 22)~2 leads to the Chebyshev
polynomials

(7.2.2) Tn(x) def cosnb , n=0,1,2,---;

cos =z

cf. Section 3.4 and Exercise 7.2.1 below. Similarly, orthogonalization of the
sequence (7.2.1) relative to the weight function w(z) = (1—22)*2 on (—1,1)
leads to the so-called Chebyshev polynomials of the second kind:

def sin(n +1)0

(7.2.3) Un(z) & . n=0,1,2,---

cos =z

sin 0
More generally, the weight functions
(1—2%" a>-1, and (1—-2)*(1+2)" a>-1,8> -1

n (—1,1) lead to the wultraspherical, and the Jacobi polynomials, respec-
tively. [Carl G.T. Jacobi, German mathematician, 1809-1851; [58].]

SPHERICAL POLYNOMIALS and ASSOCIATED LEGENDRE FUNCTIONS. We
will consider the important weight function (1 — 2?)*, k € Ny, on (—1,1),
which leads to the so-called spherical polynomials. For & = 0 these are
simply the Legendre polynomials P,, n > 0. For £k = 1 one will obtain
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(scalar multiples of) their derivatives P, n > 1. Indeed, by the differential
equation for P, [Proposition 7.1.6],

/ PP (1~ ) = (1-P@PE]

1

_ /_1 (1 - ) P(2)) Py(x)da

=n(n+ 1)/_ P,(x)Ps(x)de =0, Vs#n.

1
Repeated differentiation of the differential equation for P, shows that
the k" derivatives z = P (x) satisfy the differential equation

(7.2.4) {1 =2V = (n— k) (n + k + 1)(1 — 2?)*2.

It now follows inductively that the polynomials Pék) form an orthogonal
system in L*(—1,1; (1 — 2%)*). Indeed, we know this for k = 0 (and k = 1).
Assuming the result for order k, we will see that (7.2.4) gives it for order

k+1. Abbreviating P"™ (z) to P{"™ in the following integrals and omitting
dx, one has

1 1
/ P pll+) (] g 2)k+L - [(1 — g?)k+1 pl+1) p(k)

-1

1
1

_/ {(1—1’2)k+lprgk+l)}/Ps(k)
-1

1
=n—k)(n+k+ 1)/ PR PE (] — 22k =0, Vs#n.
—1

Multiplying the “spherical polynomials” P () by the square root of
the weight function, hence by (1 — xQ)%k, we obtain an orthogonal system
in L?(—1,1). In fact, one can say more:

THEOREM 7.2.1. For every k € Ny, the functions

Pi(@)E (1= PP (), n=kk+1,-,

called associated Legendre functions of order k, form an orthogonal basis
of L*(—=1,1). One has

1
IFH = [ [Pt e =
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PROOF. The functions P¥ n > k, will form a mazimal orthogonal sys-
tem in L?(—1,1). Indeed, suppose that for g € L?(—1,1),

1
/ (1-— xQ)%ngk)(x)g(x)dx =0, Vn>k.

1

Then all power moments of the L? function (1 — 22)2¥g(z) on (—1,1) will
sk

[\
~—

be equal to zero, since P,gk) has precise degree n — k. Thus (1 — x
has Legendre series 0, hence g(z) = 0 almost everywhere, so that g = 0 in
L*(—1,1); cf. Theorem 7.1.4.

Furthermore, by (7.2.4) with k — 1,k —2,--- |0 instead of k,

1 1 1
/ ‘Pk‘Q _ / (1— $2)kp7gk) . Pék) _ _/ {(1 _ x2)k;P(k)}’P(k;—1)
-1 -1 -

1

:{”—(k—l)}(nJrk)/_l{Pf—l}Z:...

—[{n= (b=} on [+ K)ok 1)] [ P2

-1

O

First substituting z = (1 — 22)~2%y in (7.2.4), and in a second step,
setting x = cos ), one obtains the associated Legendre equation of order k,
and the polar associated Legendre equation of order k, respectively:

PROPOSITION 7.2.2. The associated Legendre function

y = Pra) = (1-2%)*P®(x), keN,
satisfies the differential equation
{1 -2y} + K

_ny:n(n—i-l)ya —-l<z<l,
and the related function

1

w = P¥(cosf) = (sin0)*P™(cos 0)

satisfies the differential equation

1 d /.  dw k?
—Sin(?@<s1n«9@>+mw—n(n+l)w, 0<0<m.
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LAGUERRE POLYNOMIALS (after Edmond Laguerre, France, 1834-1886;
[71]); cf. [72]). On unbounded intervals, weight functions are indispensable,
since over such intervals, the powers 2" fail to be integrable. The simplest
weight function for the interval (0,00) is e™*. Orthogonalization of the
sequence (7.2.1) in L?(0, 00;e™"), and subsequent standardization through
multiplication by suitable constants, lead to the Laguerre polynomials.

DEFINITION 7.2.3. The Laguerre polynomial L, (x) is the unique polyno-
mial of degree n in x which is orthogonal to 1,z,--- , 2" ! in L?(0, 00; %),
and for which L, (0) = 1.

The existence and uniqueness of L, can be proved by linear algebra or
by the following explicit construction. Let L, be any polynomial of precise
degree n such that

(L, 2%) = / Ly(x)x®e *de =0, s=0,1,---,n—1.
0
One may now introduce auxiliary functions L, x(x) by setting
(7.2.5)  Lyg(z)e ™™ = / Logpa(t)e tdt, k=1,---,n; Lyo= Ly.
0

Induction on k will show that L, ;(x) is a polynomial of precise degree n
such that

(Lpg,2°) =0 for s=0,1,---,n—Fk—1, and
(7.2.6) Lop(z) = O(z") as 2\, 0.

Indeed, assume that (7.2.5) holds for some k£ < n. Then for n > 1, (re-
peated) integration by parts will give

Ly 1) = p(z)e™™ + C/ e”'dt,
0

where degp = n and c is a constant. However, since (L, 1) = 0, (7.2.5)
with k41 instead of k shows that L,, j41(x)e™® — 0 as x — o0, hence ¢ = 0,
so that L, py1(x) = p(x). Furthermore, for s < n — k — 2, application of
(7.2.5) with k£ + 1 instead of k and (7.2. 6) show that

(s + 1)(Lnjgs1, 2 / {Lnk+1 )efx}diﬂsﬂ

= —/ L p(x)e "z* dx = 0.

0
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That Ly, j11(z) = O(z*1) at 0 follows immediately from (7.2.6) and (7.2.5).
Conclusion for k = n: L, ,(x) is a polynomial of precise degree n that
is divisible by 2", hence L, () = a,2™. It follows that

Ly(x)e ™ = Dn{ann(a:)e_g”} = a, D" (x”e_g”).

Setting x = 0 one finds that L,(0) = «a,n!. Thus we can impose the
condition L, (0) =1 and it gives o, = 1/nl.

THEOREM 7.2.4. (Rodrigues type formula for the Laguerre polynomials):

"L (n\ (—z)k
(7.2.7)  Ly(z) = ie“”"D”(ycne’I) = Z ( ) (==) n=0,1,2---.

n! k ko
}=0

PROPERTIES 7.2.5. All n zeros of the Laguerre polynomial L, (z) are
positive real and simple. The norm of L,, is equal to 1:

L]l = /O [2(z)e *dx = 1.

One has Lo(xz) = 1, Ly(z) = —z + 1 and the recurrence relation
(n+1)Lypt1(z) + (x — 2n — 1)Ly (z) + nly—1(z) = 0.
Furthermore y = L, () satisfies the differential equation
2y’ + (1 —2)y +ny = 0.
The Laguerre polynomials L, (z), n € Ny, form an orthonormal basis for
L?(0,00;e7"). Equivalently, the Laguerre functions
Ln(x)e’%x, n € Ny,

form an orthonormal basis for L*(0,00). A standard proof is based on the
theory of Laplace transforms [Chapter 11]; cf. Exercise 7.2.11.

Exercises. 7.2.1. Orthogonalize the sequence of powers {1,z,z%---} in
L? (—1, 1;(1— x2)_%> to obtain polynomials ¢,(z), n € Ny. Show that
tn(1) # 0, and that division of ¢, (z) by ¢,(1) gives the Chebyshev polyno-
mial T, ().

Hint. The trigonometric polynomials ¢, (cos ) of order n, n € Ny, form

an orthogonal system in L?(0, 7). Hence t,(cos ) is a linear combination of
1/2,cos6,--- ,cosnb. Etc.
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7.2.2. Orthogonalize the sequence {1, z,z* -} in L? <—1, 1;(1— a:2)+%>

to obtain polynomials u,(x), n € Ny. Show that u,(1) # 0, and that mul-

tiplication of u,(z) by a suitable constant gives the Chebyshev polynomial
of the second kind U, (x).

7.2.3. Derive the differential equation (7.2.4) for z = P{¥ ().

7.2.4. Derive the differential equations for the associated Legendre func-
tions in Proposition 7.2.2.

7.2.5. Prove that the functions P*(cos®), n > k, form an orthogonal
basis of L%(0,7;sinf) for every k € N.

7.2.6. The polynomial P, x(x) of degree n+ k [Section 7.1] is divisible by
(1—2)* and orthogonal to 1, x,- -+, 2" *~1in L?(—1,1). Prove that P, x(z)
must be a scalar multiple of (1 — xQ)kPTgC) ().

7.2.7. Prove that the n zeros of L, (x) are positive real and distinct.

7.2.8. Prove that

(Ln, L) = /0°° L, (z)L,(z)e *de = —(Lyq, L) = -
= (=1)" (L, L) = 1.

7.2.9. Derive the recurrence relation for the Laguerre polynomials after
showing that (n+1)L,11 + (x —2n — 1)L, is a polynomial of degree < n—1
that is orthogonal to 1,z,--- , 2" % in L*(0, c0;e™%).

7.2.10. Derive the differential equation for y = L,(x) after showing
that (D — 1){zL! (x)} is a polynomial of degree n that is orthogonal to
Lz, -, 2" 1 in L?(0, 00;e77).

7.2.11. Use the following facts about Laplace transforms [which will be
proved later] to show that the Laguerre functions Ly (z)e 2%, n € Ny, form
an orthogonal basis of L*(0, 0o):

(i) For g in L'(0,00) or L?*(0,00), the Laplace transform

(Lo)(s) = / " @) rde

is analytic in the right half-plane {Res > 0};
(ii) The nth derivative of (Lg)(s) is given by

(Lg) ™M (s) = /Ow(—x)"g(x)e“dx, Res > 0;

(iii) If Lg =0, then g = 0.
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Hint. If g(z) € L2(0,00) is orthogonal to L,(z)e 2%, ¥n, then g(z) L
a"e~2% in L(0,00), Vn. What can you conclude about (£g)(s) then?

7.2.12. The so-called generalized Laguerre polynomials L (), n € N,
are obtained by orthogonalization of the sequence of powers {1, z, 2%, - -} in
L?(0,00; 2% %), @ > —1, and standardization so as to make L& (0) equal
to (”:a) Prove that

o a, —x 1 n(, nta, —zx - n+ao (_x)k
L (z)z% :mD (2" e ):Z(n—k) T

k=0

7.2.13. Show that the generalized Laguerre polynomials y = L,(la) (x)
satisfy the differential equation zy” 4+ (o + 1 — x)y’ + ny = 0.

7.3. Hermite polynomials and Hermite functions

We finally consider the doubly infinite interval (—oo,00). In this case
the simplest weight function is e**. Orthogonalization of the sequence
$2

{1,z,2% -+ }in L? <—oo, o0 e~ ), and subsequent standardization through

multiplication by suitable constants, lead to the Hermite polynomials (named
after Charles Hermite, France, 1822-1901; [46]); cf. [47]).

DEFINITION 7.3.1. The Hermite polynomial H,(z) is the unique poly-

nomial of degree n in x which is orthogonal to the powers 1,z,---,2" ! in

L? <—oo, 00; e_”“"?) and has leading coefficient 2".
The definition leads to the following simple formula:

THEOREM 7.3.2. (Rodrigues type formula for the Hermite polynomials):

(131)  Hu(z) = (—1)"e”’Dre " = 2" ( ) ey )

In particular
Ho(z) =1, Hi(x) =2z, Hy(x)=4z®>—2, Hs(z)=8x"— 12z,

REMARK 7.3.3. In Mathematical Statistics it is customary to use a
slightly different weight function, namely, e~2%". The corresponding (mod-
ified) Hermite polynomials H,(z) have properties very similar to those of
the polynomials H,(x); see Exercise 7.3.11.



7.3. HERMITE POLYNOMIALS AND HERMITE FUNCTIONS 171

For the proof of Theorem 7.3.2 one introduces auxiliary functions H,, ()
by setting

Hyp(2)e™ = / Hopr(De2dt, k=1, n, Hyox)= Hy(x).

One then proves by induction on k that H, x(x) is a polynomial of precise
degree n — k such that

(7.3.2) (Hpp,2°) = / Hn,k(a:)xse_‘v2dx =0, s=0,1,---,n—k—1.

For k = n the conclusion will be that H, ,(z) is a constant «,,, so that

2

Hy(z)e™ = a, D",
the value (—1)" for a,, corresponds to leading coefficient 2" in H,(x).
PROPERTIES 7.3.4. All n zeros of the Hermite polynomial H,(z) are
real and simple. The norm of H, is equal to 22"(n!)271:

|H, |2 = / H2(w)e e = 2 nl nh.

One has the (differential) recurrence relations
DH, = H' = 2nH,_,, Hy4 = (20 — D)H,,

(7.3.3) Hyi(x) —22H, () + 2nH,_1(x) = 0.
The polynomial H, (x) satisfies the differential equation
(7.3.4) y" — 2zy’ + 2ny = 0.

More important than the Hermite polynomials are the Hermite func-
tions:

DEFINITION 7.3.5. The normalized Hermite functions are given by

(7.3.5) hy(z) o ann(x)e_%gCQ, n €Ny, pp=22" (n!)_% iy

The Hermite functions form a very important orthonormal basis of
L*(R). A standard proof is based on a moment theorem; see Chapter 9
and cf. Exercise 7.3.10. We observe here that the substitution H,(z) =

(1/pn)e2™ hy(x) in (7.3.3) gives the following fundamental relations:

(7.3.6) (z + D)hn = L2 2nh, 1 = V2 s,
n—1
(7.3.7) (. — D) = L2 it = V20 + 2.

pn-i—l
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Applying the second relation with n 4+ 1 replaced by n,n — 1,---,1, we
obtain

hn h/n— hn_
S —(z—-D)"L = (z-DP? 2 =...
Pn Pn—1 Pn—2
h 12
=(z—D)" = = (z— D)"e 2"
Po

Since D(zh,) = h,, + xDh,, it also follows from (7.3.6), (7.3.7) that
(2 — D*)h,, = {(z — D)(z + D) + 1}h,
= (x — D)WV2nh,_ 1+ h, = (2n+ 1)h,.
We have thus proved

PROPOSITION 7.3.6. The normalized Hermite function h,, can be repre-
sented by the formula

(7.3.8) hn(x) = pn(z — D)"e_%‘”?, n € No,

where p, = 2-an (n!)’% 7=, The function y = hn(x) satisfies the differen-
tial equation

(7.3.9) (22 — D*)y = (2n + 1)y.

Exercises. 7.3.1. Derive the Rodrigues type formula for H,(z) in Theorem
7.3.2.
Hint. For k£ < n, integration by parts shows that

T

Hopni@e™ = [ Hu(e "d=pae ™ v [ evar
where p(x) is a polynomial of precise degree n — k — 1 and ¢ is a constant.
Now use (7.3.2) for the given k to show that ¢ = 0, and then prove that
(Hmkﬂ(x),xs) =0fors=0,1,--- ,n—k—2.
7.3.2. Show that the n zeros of H,(z) are real and distinct.
7.3.3. Prove that

(Ho, Hy) = (—=1)" (Hpny H)

o¢]
(—1)"an2"n!/ e dr = 2"nl 2.

e}

7.3.4. Prove the relations (7.3.3).
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Hint. Show that H), is a polynomial of degree n — 1 which is orthogonal
to 1,z,---,2" 2 in L*(R;e *"), and that (2¢ — D)H,, is a polynomial of

degree n + 1 which is orthogonal to 1,x, -, x".

7.3.5. Derive the differential equation (7.3.4) for y = H,(z).

7.3.6. Deduce the relations (7.3.6), (7.3.7) from (7.3.3).

7.3.7. How many relative maxima and minima does H,(x) have on R ?
How many does h,(z) have? Determine the largest value of x for which
hn(x) has an inflection point. Deduce that the last extremum of h,(z)

occurs at a point z < +/2n + 1.
7.3.8. Use the differential equation for h,, to prove that the function

1 h/ (:L‘)2

v(x) = vp(2) = hy(2)” + nrl_a2

is strictly increasing on the interval [0, /2n + 1]. Deduce that the successive
relative maxima of |h,(z)| on [0, 00) form an increasing sequence. Make a
rough sketch of the graph for y = h,(z) on [0, 00).

7.3.9. The even polynomials Hy, Hy, Hy, - - - form an orthogonal system
in L?(0, 00;e=*"). Deduce that Hy,(1/) is a scalar multiple of the (gener-
alized) Laguerre polynomial ng_%)(x). Likewise, show that Ha,1(\/7)/\/x

is a scalar multiple of L;%)(x). [Cf. Exercise 7.2.12.]

7.3.10. Prove that the even Hermite functions hs,(x), n € Ny, form an
orthogonal basis for L*(0, 00). [Cf. Exercise 7.2.11.]

7.3.11. (Modified Hermite polynomials H,(x) of Mathematical Statistics)
One may obtain the polynomials H,(z) by orthogonalization of the sequence

. _1.2 . . .
of powers {1,z,2% ---} in L? (R; e 2" ) — no standardization is necessary.

Show that

2

H,(x) = (—1)”e%$2D"6_%‘” :
e = [ Auape = et

f‘]n+1(I) — x]:[n(x) + n]:[n_l(x) =0, f-]o(x) =1, ﬁl(x) =z,
= 2% — 1, Hs(z) =2 -3z, Hy(z)=2"—62%+3;
DH, x) = nf[n,l(x), (x — D)ﬁ[n(a:) = f[nﬂ(a:);

H!(z) — xH! (z) + nH,(x) = 0.
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7.4. Integral representations and generating functions

The Legendre polynomials P,(z). Cauchy’s formula for the n*® derivative of
an analytic function f(s) [see Complex Analysis| has the form

(7.4.1) D”f(x):%/(j%ds

Here C' may be any positively oriented contour (piecewise smooth Jordan
curve) around the point z. Of course, C' must be such that f is analytic in
the domain € enclosed by C and continuous on the closure €.

Thinking of Rodrigues’ formula for P, (z) [Theorem 7.1.2], we substitute
f(s) = (s> —1)"/(2"n!) into (7.4.1) to obtain

PROPOSITION 7.4.1. (Schlifli’s integral) (after the Swiss mathematician
Ludwig Schlafli, 1814-1895; [107].) One has

1 s —1)"
P,(x) = 2—7”/0 2’“‘((3——:15))"Hd8'
It is natural to take for C' a circle with center at the point z. Setting
s:x+pei¢, —n<¢<m,
where p is a nonzero constant (which need not be real!), one obtains
m (2 2 2i i¢\"
Po(x) = % / — 1272&1&11)35 PN peiids

1 ™ 2_1 —ip 2 i\ M
_ 1 $+(m Je ' + ple
2 J_, 2p

do.

The formula becomes simpler when one takes p?> = 22 — 1, a choice which

is legitimate whenever x # £1. The resulting integrand is even in ¢. One
1

thus obtains, for either choice of the square root p = (z* — 1)2,

PROPOSITION 7.4.2. (Laplace’s integral) One has
/ {a:—l— z?—1 %cosqb} do.

By inspection the formula is valid also for x = 41, hence it holds for all
real and complex x. Taking in particular —1 < z < 1, the absolute value of
the integrand {z +i(1 — 22)2 cos ¢}" is equal to

{#* + (1 — 2%) cos® ¢}%n ={1—(1—2%)sin? qﬁ}%n <1
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COROLLARY 7.4.3. For —1 <z <1 one has |P,(z)| < 1.

Careful analysis shows that | P,(z)| is also bounded by
2

mn(l — z?)

on (—1,1); see Szeg6 [117] Theorem 7.3.3, and cf. (8.2.5) below.
We will now derive a generating function for the Legendre polynomials

P,(x).
DEFINITION 7.4.4. Let {u,}, n € Ny, be a sequence of numbers or func-

tions. A generating function for the sequence {u,} is an analytic function
g(w) with a development of the type >~ u,w™ or > 2, u,w"/nl.

Using Laplace’s integral for P,(cosf), 8 € R, and taking |w| < 1, we
find

g(w) o Z P,(cos@)w"
n=0
oo 1 - N 1 o 00
:Z—/ (cos@—l—zsm@cosd))”dqb-w”:—/ Z---dqb
o T Jo TJo 75
1 [" 1
4.2 == do.
(742) 7T/0 1 — (cos @ + isin 6 cos p)w ¢

Here the inversion of the order of summation and integration is justified by
uniform convergence relative to ¢. The final integral is readily evaluated:

LEMMA 7.4.5. For |a| > |b| one has

[N

1 / T do 1 1 b\~
== = =-pv|l-— .
T Jo a+bcosp  aZ—02 a a?
Proor. This is a simple exercise in Complex Function Theory. Setting
e'? = z, one obtains an integral along the positively oriented unit circle

C(0,1) [center 0, radius 1]:

1 /“ d 1 / 1 dz
] = — _ = — 1 -
2 J_p a+bcosg 27 Jopay a+ 3b(z+1/2) iz

! d= (b+#0).

1 2
T omi b /mn 22+ 2(a/b)z + 1
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We write the denominator as (z — 21)(z — 23), where z; and z, are the roots
inside and outside the unit circle, respectively:

a1 = —(a/b) + (a/b)(1 = */a®)?, 2 = —(a/b) — (a/b)(1 — b /a?)?.
Then the residue theorem gives
2 1 1

X (residue of integrand at z;) = - = -
bzi—2z  a(l —02/a?)2

I =

SN

Returning to (7.4.2), we obtain
1

{(1 —wcosh)? — (iwsin )2}
(7.4.3) = 1 _ = (1 _ wew)_%(l . we—i@)_%‘
(1 —2wcosf +w?)2

g(w) =

[N

The result will certainly be valid for small |w|, say |w| < 3. By analytic
continuation, it is valid throughout the unit disc B(0, 1), provided one takes
the analytic branch of the square root (1 — 2w cos + wQ)% which is equal
to 1 for w = 0. In applications, w is usually real: w = r € (—1,1) or
w=r € [0,1). In those cases our square root is real and positive.

We thus obtain

PROPOSITION 7.4.6. (Generating function) for the Legendre polynomi-
als) One has
1

(1_2TCOS0—|—7"2)% Z Pn(COSG)’]"n7 HGR, 0§/]~< 1.

n=1

Many properties of the Legendre polynomials may be derived directly
from the generating function; cf. Exercises 7.4.2-7.4.7 and Examples 8.3.1.

The Laguerre polynomials. The Rodrigues formula [Theorem 7.2.4] and the
Cauchy formula (7.4.1) immediately give the integral representation

(7.4.4) Lo(z) = — /C (Snids

2mi s — )t

where C' may be any positively oriented contour around the point x. For
a crude bound on |L,(z)| when = # 0 we take for C' a circle of radius 2|z|
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about the point x:
1 |2z|"el®!

Lo(z)] < — 52—

Since |s/(s — x)| < 2 on the circle C, (7.4.4) now shows that for |w| < 1/2
lappealing to uniform convergence],

om|x| = 2"el”l,

oo 1 oo —
L, d

; (@ " 2mi /Cg (s—a:) s—z
1 1 r—S 1 1 r—Ss

= — — C ds= — ‘ —ds
2mi Jo 1 — 2= s—x l—w2mi Jo s — 1=

1 —zTw
(7.4.5) =1— exp(l_w).

In the final step we have used the residue theorem:7. the point s = z/(1—w)
lies inside C'. The generating function in the last member is analytic for
w # 1, hence its power series expansion in the first member must be valid
for all |w| < 1 and every z.

The Hermite polynomials. The Rodrigues type formula [Theorem 7.3.2] and
Cauchy’s formula (7.4.1) give the integral

2 2 2

Hn —1)» Te—s 1 2xw—w
(7.4.6) @) _ ) / ‘ ds = — / I
n! 2t Jo, (s —ax)ntt 270 Je, wntl

where C, stands for a positively oriented contour about the point a. The
final member represents the coefficient of w™ in the power series for e2#w—v”.
Thus we immediately obtain the following generating function:

(7.4.7) Z H,( lrw—w

2

This formula is valid for all w and x.
Exercises. 7.4.1. Use Laplace’s integral with z = cosé to show that

d d d
—P < — < nZ
'd& n(cos@)’ <n, 7 {sm@da (cos@)} <n
7.4.2. Show that
= 1-3---(2k—1
P,(cosf) = Z VeV cos(n — 2k)0, v, = 5 1. ( on )

k=0
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o

Hint. Expand the factors of the generating function, (1 — 7¢¥)~2 and
(1—re )2
7.4.3. Deduce from Exercise 7.4.2 that

|P,(cosf))| < P,(1) =1, |P.(cosO)| < P.(1)=n(n+1)/2.
7.4.4. Show that for real or complex x and all sufficiently small |r|,
7.4.8 P,(x
( ) (1 —2ar +12)2 g

7.4.5. Using (7.4.8) as a definition for P,(z), show that P,(z) is a
polynomial in x of precise degree n such that P, (1) = 1. Determine Py(z),
Pi(z) and Py(x) directly from (7.4.8).

7.4.6. Use (7.4.8) and differentiation with respect to r to show that

(1= 20r +19) 3 nPoa)™ = (=) 3 Pala)i” =

Then use this result to derive the recurrence relation for the Legendre poly-
nomials [Proposition 7.1.5].
7.4.7. Use a direct computation(!) to show that for 0 <r, s <1,

/1 dx 1 1 1+ \/_
= og :
1 (1= 2zr+72)3(1 — 2zs+ s2)z /TS 1—/rs
Deduce from this that the coefficients P, (z) in the expansion (7.4.8) satisfy
the orthogonality relations

/1 P (2)Pu(a)d = {0 1 for k 7_é n,

1 T for £ =n.

7.4.8. (Another generating function for the Legendre polynomials) Use
Laplace’s integral to show that

S w" 1 /M .
Z Pn(COS Q) — — 6wcos@ - / ezwsm@cos ¢d¢
n=0 n. T Jo

= e Jy(wsin ),

where Jy(z) denotes the Bessel function of order zero. [For the final step,
cf. Chapter 12.]

7.4.9. Compute a generating function for the Chebyshev polynomials
T, (z).
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7.4.10. Show that for 0 <r < 1,
Z Prgk)(a:)r”_k =1-3---(2k—=1)(1 — 22r + 7‘2)_]“_%.
n>k

7.4.11. Verify the step from the first to the second integral in formula
(7.4.6).
7.4.12. Use Exercise 7.2.11 to show that

f L = (1) e (722,

1—w







CHAPTER 8

Eigenvalue problems related to differential equations

In this chapter we will encounter some of the same orthogonal systems
as in Chapter 7, but now differential equations of mathematical physics will
play the leading role. The first two sections review the theory of second-
order linear differential equations. Following that, we study Sturm-Liouville
problems: eigenvalue problems for differential operators. As one applica-
tion we obtain solutions of Laplace’s equation in R® — so-called harmonic
functions. This study leads to spherical harmonics and Laplace series; cf.
also Kellogg [61].

8.1. Second order equations. Homogeneous case

We will review some facts that are proved in the Theory of Ordinary
Differential Equations; cf. [21], [54]. In order to apply the results below
one has to put the (linear) differential equation into the standard form

(8.1.1) '+ filx)y + fo(z)y =g(z), a<z<b.

It is assumed throughout that fi, fo and ¢ are continuous on (a,b), or
at least locally integrable, that is, integrable over every bounded closed
subinterval. By a solution of equation (8.1.1) is meant an indefinite integral
y = ¢(x) of order two [that is, an indefinite integral of an indefinite integral]
which satisfies the differential equation almost everywhere on (a, b). In the
case of continuous fi, fo and g, the solutions will then be of class C?, and
they will satisfy the equation everywhere on (a,b).

PROPOSITION 8.1.1. For arbitrary xo in (a,b) and arbitrary constants
co and ¢y, equation (8.1.1) has a unique solution on (a,b) that satisfies the
“initial conditions”

(8.1.2) y(zo) = co, Z//(xo) = (1.

If f1, fo and g are continuous or integrable from the point a on we may
also take xy = a, that is, there is then a unique solution y = ¢(z) on (a,b)
such that ¢(a) = ¢ [or ¢(a+) = ¢o] and ¢ (a) = ¢ [or ¢ (a+) = 1.

181
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The solutions of the homogeneous equation: (8.1.1) with ¢ = 0, will
form a two-dimensional linear space. Linearly independent solutions ¢; and
¢ of the homogeneous equation cannot vanish at the same point. [Why
not?|

*In the usual proof of Proposition 8.1.1, the initial value problem is
converted to a system of Volterra integral equations (after Vito Volterra,
Italy, 1860-1940; [122]) that may be solved by iteration. Setting y = 1,
y' = yo, equation (8.1.1) goes over into the system of differential equations

Vi =Y, Ys=—foth — frya+g.

Integrating from zy to « and using (8.1.2), the initial value problem takes
the equivalent form

yl(l') = C + /93 yg(t)dt,
wle) = x| (R () — i(E)elt) + g(0)}dt.

Beginning with a first approximation for y; and y, under the integral signs,
for example y; 1(t) = ¢1, Y2.1(t) = 2, one determines a second approxima-
tion yy2(x), yo2(x) from the equations above, etc. One can show that the
successive approximations will converge to a solution of the system.

For the standard second-order differential equations of mathematical
physics there is a practical alternative, the power series method. We will
first discuss the homogeneous equation

(8.1.3) y' + fulx)y + folx)y =0,

now with analytic coefficients f; and fs.

PROPOSITION 8.1.2. If fi and fy are analytic on (a,b) [hence on a com-
plex neighborhood of every point zy in (a,b)], all solutions of (8.1.3) are
analytic on (a,b), and conversely. If fi and fy are analytic on the disc
B(zo, 1), the solution of the initial value problem (8.1.3), (8.1.2) on the in-
terval zg —r < x < xg+ 71 or on xg < x < T+ 1 18 given by a convergent
power series of the form

(0.]
o(z) = Z Cn(x — )™,
n=0
Here the coefficients co, c3,cy4, - -+ can be determined recursively from cq and

Cy.
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ExAMPLE 8.1.3. The initial value problem
Y’ +y=0, —b<z<b y0)=cy y(0)=ci,

has the solution ¢(z) =Y ° ¢,2", where by termwise differentiation,

[e.o] oo

0= Z n(n —1)c,a" 2 + Z e’ = Z {n(n — e, + cn,g}x”’Q.
0 2

2

By the uniqueness of power-series representations, one must have
n(n—1)c, +c2=0, Vn>2.
It will follow that
(2k) cor = (—1)*co,  (2k + 1) copyr = (—1)Fey.

It often happens that one or both end points of (a, b) are singular points
for the differential equation (8.1.3). In the case of a this means that at
least one of the functions f; and f; fails to be integrable from a on. Simple
examples are

1
(8.1.4) v'+=y +y=0 on (0,00)
T

(Bessel’s equation of order zero);

2z
(8.1.5) y" — T Y +

A
1_$2y:0 on (—1,1)
(general Legendre equation).
In practice, a singular end point is frequently a so-called regular singular
point:

DEFINITION 8.1.4. The (singular) point a is called a regular singular
point for the equation (8.1.3) on (a,b) if

and  fye) = 20

r—a (x —a)?’

fi(z) =

where A(z) = ag + a;(x —a) + -+ and B(z) = by + by(z — a) + -+ are
analytic in a neighborhood of a. A similar definition holds for the end point
b.

PROPOSITION 8.1.5. Let a be a regular singular point for equation (8.1.3)
on (a,b), with A(x) and B(x) in Definition 8.1.4 analytic in the disc B(a,T).
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Then the equation has one or two solutions on a < x < a + r [or for
0 < |z —al| <r| of the form
o0
o(x) = Z colz —a)’™  with ¢y = 1.
n=0

Here the number p must satisfy the so-called indicial equation
(8.1.6) p(p—1) 4+ app + by = 0.

For at least one root p (of mazimal real part), there is a solution ¢(x) as
indicated; the coefficients ci,ca,-+- may be determined recursively. [There
is of course a corresponding result for the end point b.]

ExAMPLES 8.1.6. The simplest example is given by the so-called equidi-

mensional equation
y”+@y’+b—2y:0.
x x
Here z” is a solution if and only if p satisfies the indicial equation. In the
case of Bessel’s equation (8.1.4), the indicial equation is p? = 0, and its only
root is p = 0. Setting y = >~ ¢,a" with ¢y = 1, one obtains the condition
[ee]

Z n(n — e,z 2 + i ne, "2 + i Cnox 2 = 0.
1 2

2

Hence ¢; = 0 and n?c, + ¢,_o = 0 for n > 2. The solution is the Bessel
function of order zero,

dof 22 24 26

PO =15 o~
In the case of the Legendre equation (8.1.5), both —1 and +1 are regular
singular points with indicial equation p? = 0.

How do we find a “second solution” of equation (8.1.3) if the method
of Proposition 8.1.5 gives only one? We could of course expand about a
different point. However, if we are interested in the behavior of the second
solution near the singular point a, it is preferable to use

PROPOSITION 8.1.7. Let ¢1(x) be any solution of the homogeneous equa-
tion (8.1.3) on (a,b) different from the zero solution. Then the general so-
lution has the form ¢ = C1¢1 4+ Capo, where

(8.1.7) bo(z) = 1 () % exp {— /t fl(s)ds} dt.
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Here xy and xo may be chosen arbitrarily in (a,b).
This result is obtained by substituting y = z¢; in equation (8.1.3).

EXAMPLE 8.1.8. In the case of Legendre’s equation (8.1.5) with A =
n(n+ 1) one may take ¢, (z) = P,(z); cf. Proposition 7.1.6. Setting z; = 0,
one obtains

t t —9g
/ fi(s)ds = / 5 ds =log(1 — %),
- o L —s

S| 1
6o(2) = Po() / P T

Taking xo very close to 1 and z even closer, the approximation P, (t) ~ 1
on [z, x] shows that ¢o(x) becomes infinite like —(1/2)log(l1—z) asz " 1.
Thus the only solutions of (8.1.5) with A = n(n + 1) that remain bounded
as x /' 1 are the scalar multiples of ¢1(x) = P,(z).

Exercises. 8.1.1. Compute the even and odd power series solutions ¢(x) =
d(x, N) =3 cpa™ of the general Legendre equation (8.1.5). Show that the
radii of convergence are equal to one, unless the series break off. For which
values of A will this happen?

8.1.2. Let ¢; # 0 be a special solution of equation (8.1.3). Set y = z¢
to obtain the general solution (8.1.7).

8.1.3. Compute the coefficients in the power series solution ¢;(z) =
d1(z,A) = >0 ea(l — x)™ of the general Legendre equation (8.1.5) for
which ¢y = 1. Show that the power series has radius of convergence two
unless it breaks off.

8.1.4. (Continuation) How does the “second solution” of (8.1.5) behave
near x =17

8.1.5. Consider the differential equation

2 2
y//+—y/+(1__2)y20'
x x

Show that the equation has a power series solution ¢y(x) = > ° ¢,z" # 0
which converges for all x. Express the general solution ¢ in terms of ¢;.
Determine the behavior near x = 0 of a solution ¢, which is not a scalar
multiple of ¢;.
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8.1.6. Carefully discuss the behavior of the solutions of the differential
equation

" 1 / 1
y — -y + 1+ y=20
x
near the point z = 0.

8.1.7. Discuss the solutions of Bessel’s equation of order v (> 0):
2

1
y”+—y/+(1—y—)y—0 0 <z <oo0.
x

The solution which behaves like ¥ /{2"T'(v+ 1)} near x = 0 is called J,(z).
For the complete power series, see Definition 11.7.3 below.

8.1.8. Let fi, fo and g be analytic for || < r. Prove that the initial
value problem (8.1.1), (8 1.2) with zy = 0 has a unique formal power series
solution ¢(z) =Y o ¢z

[A power series is called a formal solution if termwise differentiation and
substitution into the equation make the coefficients of all powers ™ on the
left equal to those on the right.]

8.2. Non-homogeneous equation. Asymptotics

We now return to equation (8.1.1), assuming that we know two linearly
independent solutions of the corresponding homogeneous equation.

PROPOSITION 8.2.1. Let ¢1 and ¢o be linearly independent solutions of
the homogeneous equation (8.1.3) on (a,b). Then the general solution of the
non-homogeneous equation (8.1.1) has the form

012) = Cutn(a) + Caonto) + [ LI o,

where
o(a) = n(a)ohte) — en(a)6l ) = (o) exp { - [ A(s)is

Here xy and xy may be chosen arbitrarily in (a,b). The integral repre-
sents the special solution ¢o(x) that satisfies the initial conditions y(zo) =

y'(zo) = 0.

The standard derivation of this result uses the method of “variation of
constants”. That is, one tries to solve the nonhomogeneous equation by
setting y = z1¢1(x) + 2z202(x), where z; and 2, are unknown functions. The
problem is simplified by imposing the additional condition zj¢; + 25¢e = 0.
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APPLICATION 8.2.2. In the case of the “model equation”
(8.2.1) y' +v*y =g(r) on (a,b), v a positive constant,

one may take ¢(z) = cosv(x — xy), ¢2(z) = (1/v)sinv(x — xg), for which
one has w(z) = 1. The general solution may then be written as

sinv(z — o)

¢(z) = ¢(x0) cosv(x — m9) + ¢'(70)
N /g” sinv(z —t) o(t)dt.

o 14

v

This result is very important for the asymptotic study of oscillatory func-
tions that satisfy certain differential equations, such as Legendre polynomi-
als, Hermite functions, Bessel functions, etc. The aim is to obtain a good
approximation for large values of a parameter or variable. It is then neces-
sary to put the appropriate differential equation (8.1.3) into the form (8.2.1).
This requires a transformation which remowves the first-derivative term. As-
suming that f; can be written as an indefinite integral, the removal will be
achieved by setting y = f - z with an appropriate function f, cf. Exercise
8.2.1:

LEMMA 8.2.3. The substitution

Yy = exp {—% /w fl(s)ds} -z

transforms the differential equation (8.1.3) into the equation
(8.2.2) '+ Fy(x)z =0, where Fy = fo— (1/4)f} — (1/2)f,.

One would now hope that Fy(z) can be put into the form v? — g;(z)
with a relatively small function g; (z), so that the product g;(x)z(z) may be
treated as a perturbation term g(x) on the right-hand side of the equation.
As an illustration of the procedure we will obtain an asymptotic formula for
the Legendre polynomials P, as n — 0o; see (8.2.5) below.

APPLICATION 8.2.4. Setting x = cosf in the differential equation for
P,(x), one obtains the so-called polar Legendre equation for w = P,(cos#):

(8.2.3) w” 4+ (cot )w' +n(n+ 1w =0, 0<6<m;

cf. Proposition 7.2.2. For the removal of the first-derivative term one may
set w= f -y with f() =exp { — (1/2) f:ﬂ cot sds} = (sin 6)~2. It is thus
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found that y = (sin6)2 P, (cos 0) satisfies the differential equation

y' + {n(n +1)— i cot? 0 — % (cot 9)/}3/

"4 an( +1)+1+ ! 0
= n(n -+ ——=y=0.
Y 4 4sin%6 4

Treating —(1/4)(sin#) 2y = —(1/4)(sin0)~%2P,(cos#) as a perturbation
g(0), we find that y = ( 0)2 P, (cosf) satsfies the following equation of
the desired type:

(8.24) o'+ (n+1/2)% = —(1/4)(sinf)"*2P,(cosh), 0<6 <.

Thus, taking n even so that P,(0) # 0, P/(0) = 0, and using 0y = 7/2 as
base point, Application 8.2.2 will give the representation

(sin6)2 P, (cos 6) = P,(0) cos(n + 1/2)(0 — 7/2)

0
+ ! : / 1(sin )32 sin{(n + 1/2)(x — t)} Py (cost)dt.
n -+ 3 Jr/2 4

We now limit ourselves to a fixed interval 6§ < 0 < 7 — § with § > 0.
Observing that P,(0) = O(n~2) while |P,(cosf)| < 1, one first obtains
a uniform estimate (sin)2 P,(cosf) = O(n~2). Introducing this estimate
into the integral and observing that P,(0) = (—1)"/2(7n/2)"2 4+ O(n=3/2),
one may conclude that

(8.2.5) P,(cos) = V2 (mnsinf) % cos { (n + 1/2)8 — w/4} + O(n~/?),
uniformly for 6 < 6 < 7w — . The final result is also true for odd n.

Exercises. 8.2.1. Let ¢; and ¢ be linearly independent solutions of the
homogeneous equation (8.1.3). Determine functions z; and 2z, such that the
combination y = z1¢1(x) + 22¢2(x) satisfies the non-homogeneous equation
(8.1.1). Cf. Proposition 8.2.1.

8.2.2. Starting with equation (8.1.3), determine f(z) such that the
substitution y = f(z)z leads to a differential equation for z of the form
2"+ Fy(z)z = 0.

8.2.3. (Continuation) Now complete the proof of Lemma 8.2.3.

8.2.4. Let Z,(x) be any solution on (0, 00) of Bessel’s equation of order
v (> 0). Show that ¢(z) = 227, (z) satisfies a differential equation of the
form p

" o
z —l—Z—ﬁZ, weR.
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Compute p and determine the general solution of Bessel’s equation of order
v=1/2.
8.2.5. Let ¢(x) be any real solution on (0, c0) of the differential equation
in Exercise 8.2.4.
(i) Prove that ¢(z) satisfies an integral equation of the form

o(r) = Asin(z — a) + / t% o(t) sin(z — t) dt.
zo
(ii) Deduce that ¢(z) remains bounded as z — +o00.

Hint. Taking xy > 2|u| and A > 0, one will have |¢(z)| < 24 on (x¢, 00).
Indeed, the supposition that there would be a [smallest] value z; > xy with
|p(z1)| = 2A would lead to a contradiction.

(iii) Show that for 2 — oo,

6(x) = Bsin(z — ) — / h B oty sin(ar — 1) dr
(8.2.6) = Bsin(xz — 8) + O(1/xz).

(iv) Deduce that the real Bessel functions Z,(z) for v > 0 behave like

BM%—O(%) as T — +00.
x2 x2

*8.2.6. Prove that the formal power series obtained in Exercise 8.1.8
converges for |x| < r, so that it represents an actual solution there.

Hint. Because of Propositions 8.2.1, 8.1.7 and Lemma 8.2.3, it will be
sufficient to consider the case g = f; = 0. Setting fo(z) = >, bya™ one
will have |b,| < AK™ for any constant K > 1/r. Prove inductively that
len] < CK™.

*8.2.7. For a proof of Proposition 8.1.5 it is sufficient to discuss the
case a = 0, A(z) = 0; cf. Lemma 8.2.3. Accordingly, consider the equation
y" + {B(z)/2*}y = 0, where B(z) is analytic for |z| < r. Show that for a
formal solution of the form
(8.2.7) o(z) = Z Cpr”™ with ¢ =1,

0

the number p must satisfy the indicial equation p(p—1)+by = 0. One of the
roots pi, pa, say pi, must have real part > 1/2. Prove that the differential
equation does have a formal solution (8.2.7) with p = p;. Show moreover
that for ps # 0,—1/2,—1,---, there is also a formal solution (8.2.7) with
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p = p2. It may be proved as in Exercise 8.2.6 that the formal series solutions
converge for 0 < |z| < r, hence they represent actual solutions there.

8.3. Sturm-Liouville problems

This is the name given to two-point boundary value problems for second
order differential equations of a certain form. Prototype is the eigenvalue
problem which occurs in the case of the vibrating string [cf. Exercise 1.3.1]:

ExAMPLE 8.3.1. Determine the values A (“eigenvalues”) for which the
two-point boundary value problem

(8.3.1) —y" =Xy, O<z<m y(0)=0, y(r)=0,

has nonzero solutions y = y(z) (“eigenfunctions”).

The reason for choosing the present form, with minus y” on the left, is
that in this way the eigenvalues will be positive. Indeed, for complex A # 0,
the solutions of the differential equation are

Y= Cle*/__’\$ + C’ge_‘/__’\”“~ = AcosVAz + BsinVz.

Only the multiples of sin v/ Az satisfy the first boundary condition. The
second boundary condition now requires that sinvAn be equal to zero.
Since sin z = 0 if and only if z = nx, the eigenvalues A\ of our problem must
satisfy the condition VA =n, or A\ =n2 with £n € N. Here +n give the
same eigenvalue n?. The value A = 0 does not work in eigenvalue problem
(8.3.1): a solution y = A + Bz of the differential equation —y” = 0 cannot
be an eigenfunction. Thus the characteristic pairs are

A=n? y=Bsinnz, n=12--- (B#0).

When one speaks of eigenvalues, there must be a linear operator L
around. In the present example it will be the operator with rule Ly =
—y"”, whose domain D consists of the C? functions y(z) on [0, 7] for which
y(0) = y(7) = 0. This is a so-called positive operatorin L*(0, ), cf. Exercise
8.3.1:

(Ly,y)z—/ y”?z/ vy >0, VyeD.
0 0

In general we will consider differential equations which, through multi-
plication by a suitable function, can be [and have been] put into the standard
form

(8.3.2) —{p(x)y} +q(x)y = Aw(z)y, a<x<b.
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Here p, ¢ and w are to be real-valued, with w positive almost everywhere,
and usually p as well. The functions 1/p, ¢ and w must be locally integrable
on (a,b). A solution of the differential equation is an indefinite integral ¢
on (a,b), for which p¢’ is also an indefinite integral, and which is such that
the differential equation is satisfied almost everywhere.

REGULAR STURM—LIOUVILLE PROBLEMS. For the time being we assume
that 1/p, ¢ and w are integrable over the whole interval (a,b). Then the
solutions ¢ of the differential equation will be indefinite integrals on the
closed interval [a,b] and the same will be true for p¢’. The differential
equation (8.3.2) will now have a unique solution for every pair of initial
conditions y(a) = ¢y, (py')(a) = ¢, and likewise for conditions y(b) = dy,
(py')(b) = d;. Imposing boundary conditions of the form

(8.3.3) co(py’)(a) —cry(a) =0, do(py")(b) — dyy(b) =0,

(with ¢;, d; real, and at least one ¢; # 0, at least one d; # 0) we speak of
a regular Sturm—Liouville problem. [References to Sturm and Liouville are
given at the end of this section.]

THEOREM 8.3.2. The eigenvalues of a reqular Sturm—Liouville problem
(8.3.2), (8.3.3) are real, and it is sufficient to consider real eigenfunctions.
[The other eigenfunctions are just scalar multiples of the real ones.| Figen-
functions ¢1 and ¢o belonging to different eigenvalues A1 and Xy are orthog-
onal to each other on (a,b) with respect to the weight function w:

/ab P19ow = 0.

PROOF. Let (A1, ¢1) and (g, ¢2) be arbitrary characteristic pairs (eigen-
pairs) of our problem. Then

—(pg}) +qp; = \jwo; a.e. on (a,b), ¢; #O0.

Multiplying the relation for ¢; by ¢s, the relation for ¢, by ¢; and sub-
tracting, we find

(M = A)wor¢a = —(pg)) b2 + (pds) ¢1 = {—pP 12 + pdrd1}.
Integration over (a,b) [or over [a, ] C (a,b) and passage to the limit as

a\, a, f / b] thus gives

b
(8.3.4) (M —)\2)/ Pr1pow = p%ﬁ(g) p%é((?)

z=b

r=a
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Now ¢; and ¢, both satisfy the boundary conditions (8.3.3). Hence for
x = a the rows of the determinant in (8.3.4) are proportional, and likewise
for = b. It follows that the right-hand side of (8.3.4) is equal to zero, so
that

b
(8.3.5) / ¢10ow =0  whenever \; # \;.

Conclusions. Suppose for a moment that (A, ¢1) is a characteristic pair
(eigenpair) with nonreal A;. Then (A\y, ¢2) = (A1, ¢,) is a characteristic pair
with Ay # A;. Hence by (8.3.5), fab $16,w = 0, so that ¢, = 0 [since w > 0
a.e.]. This contradiction proves that all eigenvalues must be real.

Taking A real, all coefficients in the differential equation (8.3.2) are real,
hence the special solution ¢ for which ¢g(a) = ¢o, (pgf)(a) = ¢; will be real.
All solutions ¢ of (8.3.2) that satisfy the first condition (8.3.3) are scalar
multiples of ¢g. In particular every eigenfunction of our problem is a scalar
multiple of a real eigenfunction ¢ [and the eigenvalues have multiplicity
one]. Restricting ourselves to real eigenfunctions, formula (8.3.5) expresses
the orthogonality of eigenfunctions belonging to different eigenvalues. [

DEFINITION 8.3.3. The Sturm-—Liouville operator L corresponding to
our regular Sturm-Liouville problem has the rule

Ly = %{ — (py") +ay}-

The domain D consists of all indefinite integrals y = y(z) on [a, b] for which
py’ is also an indefinite integral, while y and py’ satisfy the boundary condi-
tions (8.3.3). Restricting the domain to Dy = {u € D : Lu € L*(a,b;w)},
we obtain a so-called symmetric operator L in L*(a,b;w):

(Lu,v) = /ab{ — (pu') + qu}v
= —[pu/ﬁ]z + /abpu/ﬁ/ + /ab quv
u(@) - lz) $_b +/abu{ — (p?')' + qv}

pu'(z) pv'(z)|,_,
= (u, Lv), Yu, v € Dy.

(8.3.6) —

SINGULAR STURM—LIOUVILLE PROBLEMS. If not all three functions 1/p,
q, w are integrable from a on, the end point a is said to be singular for
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the differential equation (8.3.2). In general, there will then be no solution
of (8.3.2) that satisfies the initial conditions y(a) = ¢, (py')(a) = ¢;. In
practice a is usually a regular singular point and then a standard boundary
condition will be

(8.3.7) y(x) must have a finite limit as z \ a.

Together with the differential equation this condition will often imply that
(py')(z) — 0 as = \, a. Corresponding remarks apply to b if it is a regular
singular point.

Theorem 8.3.2 has an extension to many singular Sturm-Liouville prob-
lems. In fact, the basic formula (8.3.4) often remains valid, provided we
interpret f; as the limit of | f as a \, a and 3 / b, and similarly for the
right-hand side of (8.3.4).

EXAMPLE 8.3.4. We consider the general Legendre equation (8.1.5) on

(—1,1). Comparing
2z

1 — a2
one finds that the standard form (8.3.2) will be obtained through multipli-
cation by —p, where p’'/p = —2x/(1 — x?). Taking logp = log(1 — z?) so
that p = 1 — z?, we obtain the standard form
(8.3.8) {1 =2y} =Xy on (—1,1).

Since both end points are singular, one imposes the boundary conditions

"

y with — (py") = —py" =0y,

(8.3.9) y(x) must approach finite limits as © — £1.

These conditions arise naturally in problems of Potential Theory; see Section
8.4.

The theory of Section 8.1 involving the indicial equation shows that
equation (8.3.8) or (8.1.5) has a solution of the form

$(x) = ¢z, ) =D ca(l—2)", cn=rcq(N), with o= 1.
n=0

This solution will be analytic at least for |z —1| < 2. The “second solution”
around the point x = 1 will have a logarithmic singularity there, hence the
boundary condition at x = 1 is satisfied only by the scalar multiples of
¢. Around the point x = —1 the situation is similar; in fact, the “good
solution” there is just ¢(—z, \). For A to be an eigenvalue, ¢(x, \) must be
a scalar multiple of ¢(—xz, A); if it is, ¢(x, A) will be an eigenfunction.
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Formula (8.3.4) will be applicable to eigenfunctions ¢ and then the right-
hand side will be zero, since (1 — 2%)¢'(z) — 0 as z — +1. Thus the eigen-
values must be real, and eigenfunctions belonging to different eigenvalues
are pairwise orthogonal in L?(—1,1).

What else can we say about the characteristic pairs? Replacing 1 — x
by t, the differential equation becomes

& d
12— v on - 1y =0

dt? dt
Setting y = ¢(x, \) = > ¢,t" one readly obtains the recurrence relation
n(n+1)— A
Cn‘i'lzmcn’ n:0,1,27-..; CO:]_

Hence the power series for ¢(x, \) has radius of convergence R = lim ¢, /¢, 11
= 2, unless it breaks off, in which case it reduces to a polynomial. If X is an
eigenvalue, ¢(x,\) = co(—x, \) must have an analytic extension across the
point —1 and, in fact, across all points of the circle |z — 1| = 2. [Indeed,
—1 is the only singular point of the differential equation on that circle.] In
this case the series for ¢(x, \) must have radius of convergence R > 2, and
thus the power series must break off. This happens precisely if for some n,
Cni1 = 0 or A = n(n+1). Then ¢(z, ) reduces to a polynomial p,(x) of
exact degree n. We thus obtain the characteristic pairs

A=n(n+1), ¢()=0¢x, ) =p,(z), n=0,1,2---.

Since the polynomials p, form an orthogonal system in L?(—1,1), while
pn(1) = 1, they are precisely the Legendre polynomials P, !

BASIS PROPERTY OF EIGENFUNCTIONS. Taking for granted that the eigen-
values of our Sturm-Liouville problems all have multiplicity one, we may
take one eigenfunction ¢,, to every eigenvalue \,, to obtain a so-called com-
plete system of eigenfunctions {¢,}. For a regular Sturm—Liouville problem
such a system will be an orthogonal basis of the space L?(a,b;w), and the
same is true for the most common singular Sturm-Liouville problems. One
proves this by considering the inverse 7' = L~! of the Sturm-Liouville op-
erator L (assuming for simplicity that 0 is not an eigenvalue, so that L is
one to one). The operator T has the same eigenfunctions as L and it is an
integral operator in L?(a, b; w) with square-integrable symmetric kernel. By
the theory of Hilbert and Schmidt for such integral operators, the eigenfunc-
tions of T' (for different eigenvalues) form an orthogonal basis of L?(a, b; w).
[See Functional Analysis.]
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History. Sturm-Liouville problems were named after the French mathe-
maticians Charles-Frangois Sturm (1803-1855; [115]) and Joseph Liouville
(1809-1882; [82]); cf. [116]. Hilbert—Schmidt integral operators were named
after Hilbert and Schmidt, whose names we have met before.

Exercises. 8.3.1. Let L be a positive linear operator in an inner product
space V', that is, the domain D and the range R of L belong to V, and
(Lv,v) > 0 for all v € D. Prove that any eigenvalue A of L must be real
and > 0.

8.3.2. Prove that any eigenvalue of a symmetric linear operator L in
an inner product space V must be real, and that eigenvectors belonging to
different eigenvalues must be orthogonal to each other.

8.3.3. Consider a regular Sturm-Liouville problem (8.3.2), (8.3.3) with
p>0,¢g>0and w> 0 ae. on (ab), and with coc; > 0 and dod; < 0.
Prove that the eigenvalues A must be > j3.

8.3.4. Consider the (zero order) Bessel eigenvalue problem

1
yV'+—y+Ay=0, 0<z<1; y(x)finite at z = 0, y(1) = 0.
x

(i) Show that the solutions of the differential equation that satisfy the
boundary condition at 0 have the form y = C'Jy <\/X a:)

(ii) Prove that all eigenvalues A are real and > 0, and that eigenfuntions
belonging to different eigenvalues are orthogonal to each other on (0, 1)
relative to the weight function w(z) = - - -

(iii) Characterize the eigenvalues and show that they form an infinite
sequence A, — oo. [Cf. Exercise 8.2.5, part (iv).]

8.3.5. Consider the associated Legendre eigenvalue problem of integral
order k > 0:

2
_ 1_ 2 N’

{( x)y} +1—$2
y(x) finite at = = +1.

y=y, —-1l<z<l;

(i) Show that the eigenfunctions must have the form (1 — z)2¥g(z) at

2 =1 and (14 z)2*h(z) at & = —1, where g and h are analytic at z = 1,
and x = —1, respectively.

(i) Substitute y = (1 — 22)2*z and determine the differential equation
for z.
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(iii) Show that the z-equation has a solution of the form
z=¢(x) = ¢z, A) =Y cy(1—2)" with ¢ =1.
0
Obtain a recurrence relation for the coefficients ¢, = ¢,(\), and show that
the series for ¢ has radius of convergence 2 unless it breaks off.
(iv) Show that the characteristic pairs of the associated Legendre prob-
lem have the form

A=m+k)n+k+1), y=cl—2>Fp,(z), n=0,1,2,--,

where p,(x) is a polynomial of precise degree n.
(v) What orthogonality property do the eigenfunctions have? Relate
the polynomials p,,_x, n > k, to certain known polynomials.
8.3.6. Consider the Hermite eigenvalue problem

Y —2xy + Ay =0, —oco<z<o0; |y(x)] < e” at +oo.

Show that, in general, the differential equation has even and odd power
series solutions that grow roughly like e as & — Foo. Prove that substan-
tially smaller solutions exist only if A = 2n, n € Ny. What sort of functions
are the eigenfunctions? What orthogonality property do they have? Relate
the eigenfunctions to known functions.

8.3.7. The linear harmonic oscillator of quantum mechanics leads to the
following eigenvalue problem (cf. [43]):

—y" + 2%y = By, —oo <z < 00; / ly(x)|*dx finite.
— 0o

[Roughly speaking, |y(x)|>dz represents the probability to find the “oscil-
lating particle” in the interval (z — dz/2,2 + dx/2). The eigenvalues E
correspond to the possible energy levels.|

One expects solutions of the differential equation that behave roughly
like e¥2%” at 400, so that it is reasonable to substitute y = e~3"2. Next
use the preceding Exercise to deduce that the eigenvalues are £ = 2n + 1,
n € Ng. What are the corresponding eigenfunctions?

A more natural treatment of the linear harmonic oscillator will be given
in Section 9.7.

8.4. Laplace equation in R?; polar coordinates

We will explore some connections between Potential Theory in R?, Le-
gendre polynomials, and associated Legendre functions. A typical problem
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X3

FIGURE 8.1

would be the Dirichlet problem for Laplace’s equation in the open unit ball
B = B(0,1). Here one looks for a solution of Laplace’s equation in B,
in other words, a harmonic function, with prescribed boundary function f
on the unit sphere S = S(0,1). An important role is played by spheri-
cal harmonics: a spherical harmonic of order n is the restriction to S of a
homogeneous harmonic polynomial of degree n in x1, x5, x3; cf. Section 8.5.

The Laplace operator Az occurs in the differential equations for many
physical phenomena; cf. [75]. Here we need its form in polar coordinates
r, 0, ¢. The latter are given by the relations

r1 =rsinflcos¢, xo=rsinfsing, x3=rcosd,

with r = [jz|]| = 2] > 0,0 < 0 < 7 and —7 < ¢ < 7; cf. Figure 8.1.
Laplace’s equation now becomes
o? o? o?
Agu = u u u

2 2 2
Ory  Or;  Oxj

L9 (Lo 1 9 (. o L_Ju_,
540 =55 (P50 g o (05 )+ i 08 = O

cf. Exercises 8.4.1, 8.4.2. In the simpler applications we will have func-
tions u with azial symmetry, around the Xjs-axis, say. Such functions u are
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€

FIGURE 8.2

independent of the angle ¢. In this case Laplace’s equation becomes

0 ou 1 0 ou
2 — 2 _ 1 _— =
(8.4.2) reAsu = — (7‘ _(97“> + 00 90 (8111«9 ) 0.

ExXAMPLES 8.4.1. The important solution with spherical symmetry about
the origin, that is, a solution v = u(r) depending only on r = |z|, isu = 1/r;
cf. Exercise 8.4.3. This is a solution of Laplace’s equation in R*\ {0}. Since
the Laplacian Az is translation invariant, u(x) = 1/|z — a| is harmonic in
R3\ {a}. In particular u = u(r,0) = 1/|z — e3| [where e3 = (0,0,1)] is
harmonic in the unit ball B(0,1). Now

1 1

|z —es| (1 —2rcosf +1r2)2

(Figure 8.2) is the generating function of the Legendre polynomials P, (cos 0)
[Proposition 7.4.6]. It follows that the sum of the series

u(r,0) = Z P,(cosO)r"
n=0

satisfies Laplace’s equation in B. Here we may apply the operator r2As;
term by term:
7‘2A3u(r, 0)
o0

1
sin 6

d [ . d .
{n(n + 1)P,(cos ) + pTi {sm& pTi P, (cos «9)}] r" =0.

n=0
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[The differentiated series will be uniformly convergent for 0 < r < ry < 1;
cf. the estimates in Exercise 7.4.1.] By the uniqueness theorem for power
series representations, it follows that the coefficient of " must be equal to
zero for every n € Ny:

1 d d
(8.4.3) ~ng 0 {sin@ 20 Pn(cosé’)} =n(n+1)P,(cosl), 0<6<m.
Here we have obtained another derivation of the differential equation for
the Legendre polynomials in polar form! [Cf. Proposition 7.2.2.] The cor-
responding Sturm-Liouville problem or Legendre eigenvalue problem will

be

1 d (.  dw
_siHQ@(SIHQ_)_)\w’ 0<60<m, where

(8.4.4) w(#) must approach finite limits as  \, 0 and 6 /" 7.

Observe that the boundary conditions are imposed by the geometry: for
6 = 0 and for # = 7, the point (r,0) lies on the axis, and there w(6)r"
must be continuous. Taking x = cos@ € [—1,1] as independent variable
and setting w(f) = y(z), the present Sturm-Liouville problem goes over
into the one discussed in Example 8.3.4.

PROPOSITION 8.4.2. Fvery harmonic function in B with axial symmetry
(around the X3-axis) may be represented by an absolutely convergent series

o0

(8.4.5) u(r,0) = Z CnPr(cos 0)r’.

n=0

PROOF. Since the functions P,(cos ), n € Ny, form an orthogonal basis
of Ly(0,7;sinf), cf. Exercise 7.2.5, every function in that space can be
represented by a series Y, d,P,(cosf). In particular, for fixed r € (0, 1),
a harmonic function u(r,6) in B has the L? convergent representation

NE

u(r,8) = Un (1) Py(cos ), with

Il
o

n

(8.4.6) on(r) = (n+1/2) /0 " () Po(cos t) sin £ dt.

Since v is a C'*° function of r, so is v,,, and we may compute the r-derivative
of r’dv,/dr by differentiation under the integral sign. Using equation
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(8.4.2), it now follows from repeated integration by parts and equation
(8.4.3) that v, (r) must satisfy the equidimensional equation
20 o e — 0
r°—— +2r— —n(n v=0.
dr? dr

The basic solutions are 7 and "1, Since our function v, (r) must have a

finite limit as r \, 0, we conclude that v, (r) = ¢,r", where ¢, is a constant.

The convergence of the series (8.4.5) for r =7 € (0,1) in L?*(0, ;sin )
implies absolute and uniform convergence for 0 < r < ry < r;. Indeed, by
Bessel’s inequality or the Parseval relation, |c,|?|| P, [|*r?" < |lu(ry, 0)||?, so

that |c,| < A(r)y/(n+1/2)r " O

REMARKS 8.4.3. If u(r,#) has a continuous boundary function f(6) on
S, it is plausible that the coefficients ¢, must be the Legendre coefficients
of fin L?*(0,7;sinf). For a proof that the series in Proposition 8.4.2 with
these coefficients ¢, actually solves the Dirichlet problem, it is best to use
the Poisson integral for the unit ball; cf. Section 8.5.

The function P,(cos®)r™ is harmonic in R™. It may be expressed as a
homogeneous polynomial in xy, zo, x3 of degree n. Indeed, for 0 < k < n/2,

- _ k o
" cos™ 0 = r?*(rcos )" = (af 4 23 + 23) 2.
Thus P,(cos ) is a special spherical harmonic of order n.

We now turn to a description of arbitrary harmonic functions u(r,0, ¢)
in B. Since the geometry requires periodicity in the variable ¢ with period
21, we can expand

u(r, 0, ¢) = Z ug(r, 0)e’*®, where
keZ

(8.4.7) wp(r, 0) % / u(r, 0, )e o,

We observe that for harmonic u, every term in the series must be harmonic.
One may base a proof on termwise application of the operator r?As: the
resulting Fourier series must have sum zero. An equivalent procedure is to
apply the part of 72A3 that involves derivatives with respect to r and 6 to
the integral for ug. After using equation (8.4.1) under the integral sign, one
would apply two integrations by parts. Both methods lead to the equation

A O (20w 1 0 _
(8.48) or (r or ) TS0 90 (Sme a0 ) S0
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0<r<1,0<6<m.

Just like equation (8.4.2), this equation will have product solutions uy(r, )
= v(r)w(#). Indeed, substituting such a product and separating variables,
(8.4.8) leads to the requirement that

Ld [, ,dv\ 1 1 d /(. o dw k?

v dr ( %) W {‘sme ] (Sm @) * —sm2ew}
for all (r,0). Here the left-hand side would be independent of 6, while
the right-hand side would be independent of r. Thus for equality the two
members must be independent of both r and 6, hence they must be equal to
the same constant, which we call A. For w(#) we thus obtain the following
Sturm—Liouville problem, the associated Legendre problem of order |k| in
polar form:

1 d dw\ k2
_ — [ sing — =w, 0<6
S0 do (Sm d@) Tt T Pl

(8.4.9) w(f) must have finite limits as 6 \, 0 and 0 " 7.

In fact, for continuity of ux(r,0)e™*® = v(r)w(f)e*? on the axis, we must
have w(f) — 0 as 0 \, 0 or /' 7 when k # 0.

Taking © = cosf € [—1,1] as independent variable and setting w(6) =
y(x), (8.4.9) becomes the Sturm-Liouville problem of Exercise 8.3.5. By
the method described there and by Theorem 7.2.1, the characteristic pairs
of (8.4.9) are found to be

A=n(n+1), w=-cP*(cosf) = c(sin§)* PI*)(cos 9),

n = |k|,|k| +1,---. A matching function v(r) will be ™ [the differential
equation for v will be the same as in the proof of Proposition 8.4.2]. We
have thus found infinitely many product solutions

ug(r,0) = v(r)w(d) = cr" Pl (cos 6), n=|k|,|k|+1,---

of equation (8.4.8) that may be used in formula (8.4.7). More generally, one
could use superpositions of such product solutions,

(8.4.10) ug(r,0) = Z cnuPFl (cos 0)r™.
nz|kl|

ProposITION 8.4.4. If w is a harmonic function in B of the form
ug(r,0)e*®, the factor ug(r,0) may be represented by a series (8.4.10) that
converges in L*(0,m;sin6), and converges absolutely.
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The proof is similar to the proof of Proposition 8.4.2 [which is the special
case k = 0]. One has to observe that u(r, ) must be in L*(0,7;sin ) and

that the functions R'zk‘(cos ), n > k, form an orthogonal basis of that space;
cf. Theorem 7.2.1. For the absolute convergence one may use the inequalities

e 1277 < Jug(r O) (< 1) and

(8.4.11) sup [P < v/(n + 1/2) | P

cf. Exercise 8.5.6 below.

THEOREM 8.4.5. FEvery harmonic function u in the unit ball B may be
represented by absolutely convergent series

u(r,0,¢) = Z ug(r, 0)e™? = Z Z ek P (cos )r™ 3 eh?
(8.4.12) = Z i Pl (cos 0) et orm

n€N, [k|<n

= i { Z cnkPnk|(c059)eik¢} r’

n=0 —n<k<n

PRrROOF. Ignoring questions of convergence, the expansions are obtained
by combining (8.4.7) and (8.4.10). Let us now look at the double series in
(8.4.12), the series on the middle line. For r; € (0, 1), repeated application
of Bessel’s inequality shows that

|Cnre| HP,LH(COSQ)H2 rit < / |ug (71, 0)|? sin 6 df
0

1 ™ ™ .
§§ i {/ ]u(r1,9,¢)|2d¢}sm9d9.

—T

Thus, using the second part of (8.4.11),

ewi Pl cost)e | < VB0 (L) L vz b

It follows that the double series in (8.4.12) is absolutely and uniformly
convergent for 0 < r < rg < r;. The absolute convergence justifies the
various rearrangements in (8.4.12). O

In order to solve the Dirichlet problem for Laplace’s equation in the ball
B, one would try to make u(1,6, ¢) equal to a prescribed function f(6,®)
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on S = 0B. Thus one would like to represent f(6,¢) by a double series of
the form ) cnkPTLkl(cos 0)ei*?; see Section 8.5.

Exercises. 8.4.1. Setting x = r cos ¢, y = rsin ¢, show that

——cosgf)g——sm¢3 g—sin g+cos¢g
r or r 0p Oy or r 0¢p

Deduce that
Pu Pu  Pu 10u 1 d%u
Ox? + oy?  Or? * r Or * r2 9¢2?’

8.4.2. Setting 1 = scos¢, ro = ssin¢ while keeping x3 = z3, and
subsequently setting x3 = rcosf, s = rsinf, show that
Pu Pu u Pu 10u 1 0%u  u
ox? + o3 + Or3  0s? + s s + 52 D¢? + 0z
Pu  20u 1 0*u cotf du 1 0%

"o T ror T T T2 90 T 2sinZd 000

8.4.3. Obtain the general solution of Laplace’s equation Asu = 0 which
is spherically symmetric about the origin [so that v depends only on r = |z|].

8.4.4. Show that the solutions of Laplace’s equation in the unit ball
with axial symmetry relative to the Xjz-axis are uniquely determined by
their values on the interval 0 < x5 < 1 of that axis.

8.4.5. Ignoring Proposition 7.4.6, use Exercise 8.4.4 to obtain a series
representation for the axially symmetric harmonic function 1/|z — e3| in the
unit ball.

8.4.6. Determine all product solutions u(r,0) = v(r)w(f) of Laplace’s
equation on R\ {0}. Single out the solutions that vanish at infinity.

8.4.7. Obtain a formula for the general axially symmetric solution of
Laplace’s equation in the exterior of the unit sphere that vanishes at infinity.

8.4.8. Given that u(r, 8, ¢) is a solution of Laplace’s equation Agu = 0
in some domain € C R3, prove that

o(r,0,¢) < %u (%,Q,Qb)

is a solution of Laplace’s equation Azv = 0 in the domain §2', obtained by
inwversion of ) with respect to the unit sphere.

[Inversion of the point (7,8, ¢) gives the point (1/7,6, ¢); v is called the
Kelvin transform of u. [Named after the British mathematical physicist
Lord Kelvin (William Thomson), 1824-1907; [62]; cf. [63].]

Ayu =

A3u =
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8.5. Spherical harmonics and Laplace series

We introduce the notation
(8.5.1) Wor(0, ¢) = P¥l(cos 0)e™*® = (sin 6) ¥ PIFD (cos 0) e,

n € Ny, —n < k < n. One sometimes uses the corresponding real functions,
Uy = ReWp, 0 < k< n,and V,, = ImW,;, 1 < k < n. Functions
W, and W, with j # k are orthogonal to each other in L?(—7 < ¢ < ),
while functions W,,; and W, with m # n are orthogonal to each other in
L*(0 < 0 < m;sind); cf. Theorem 7.2.1. One readily derives

PROPOSITION 8.5.1. The functions W, form an orthogonal system in
L? on the unit sphere S:

L*(S)=L*(0<0<m—7<¢<m;sinb),

with inner product given by

(f.9) = /S F(6)3@ do(€) = /0 W / " 7(0,6)500.6) sin 0 do do.

Here ¢ = (&1,&,&3) stands for a unit vector, or a point of §; & =
sin 0 cos ¢, & = sinfsin ¢, &3 = cosf. The area element do (&) of S has the
form sin 6 df d¢. Finally

f(6,6) = f(sinf cos ¢, sin fsin ¢, cos ),
and similarly for (6, $). In practice we will carelessly write f(0,¢) for
f(0, ).

PROOF OF THE PROPOSITION. By Fubini’s theorem,

/ / Plil(cos §)e"% Pl (cos B)e =% sin § df gy
0 —T

- / Pl (cos 0) P ¥ (cos ) sin@d@/ =R g
0

Taking (m,j) # (n, k), the answer will be zero if j # k and also if j = k,
since in the latter case, necessarily m # n. ([l

Observe that for fixed r, the double series in formula (8.4.12) is just the
expansion of u(r, 6, ¢) with respect to the orthogonal system {W,}.
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PROPOSITION 8.5.2. The products

w=r"W(6,¢) = r" P (cos §)e*?
(8.5.2) = 1" (sin )M P (cos 0) (=) k| < m,
can be written as homogeneous harmonic polynomials in x1, xs, 3 of precise
degree n.

Indeed, by Section 8.4, every product (8.5.2) satisfies Laplace’s equation

Asu = 05 cf. equation (8.4.8) and Proposition 7.2.2. Observe now that
P (cos ) with |k| < n is a polynomial in cosf of degree n — |k|. Next
expanding (eii‘z’)‘k' = (cos ¢ £ isin @)l one finds that r"W,;(0, ¢) can be

represented as a sum of terms
r™(sin 0)"“‘ (cos «9)”_‘k|_21(cos gb)'k‘_m(sin o)™

— 7I¥=m (5in )M =™ (cos @) FI=™ . 1™ (sin 6)™ (sin ¢)™

7\k|721( )n7|k\72l L2

x r" cos 0 T

I !
= glFlmmgm Ik = (2 + 23 + 23)
with |k|+2] < n and m < |k|. Thus r"W,.x(0, ¢) is equal to a homogeneous

harmonic polynomial of degree n. It follows that W, (6, ¢) is a spherical
harmonic of order n:

DEFINITION 8.5.3. A spherical harmonic Y, = Y,(0,¢) of order n is
the restriction to the unit sphere of a homogeneous harmonic polynomial of
degree n in zy, x9, x3. Cf. [113].

Examples of such harmonic polynomials are:
degree 0: 1; degree 1: w1, w9, T3;
degree 2 [L’% — .f%, T1T9, [L’g — $§, T1X3, ToX3.

The relation Y,, «» r™Y,, establishes a one to one correspondence between
spherical harmonics of order n and homogeneous harmonic polynomials of
degree n.

PrROPOSITION 8.5.4. The linear space 'H, of the spherical harmonics
of order n is rotation invariant and has dimension 2n + 1. The functions
W (0,0), —n < k < n, form an orthogonal basis of H,. One has

kD 2
HWnkH%ﬂ(s) = /5 \Wnk(fwda(f) = EZ—E ;kBl n_r_rl'
: 2
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ProOF. The Laplacian Aj is rotation invariant [cf. Exercise 8.5.1], and
so is the class of homogeneous polynomials of degree n. It follows that the
linear space IC,, of the homogeneous harmonic polynomials of degree n is
rotation invariant, hence so is H,.

We will determine dim H,, from dim K,,. Let

U(x17x27 $3) - Z Qjk x{xgngjfk (Wlth j7 k Z 0)
J+k<n

be an element of IC,, that is,

0=A3U = Z {j(j — Dapad 2akad 77 4 k(k = V)agpadah =22y 7F
Jj+k<n

+n—j—k)n—j—k— 1)ajkx{x§x§_j_k_2}

= > A{G+20 + Dajran+ (k+2)(k + Dajpio
Jtk<n—2

+(n—j—k)n—j—k— 1)ajk}x{x§xg_2_j_k.

In the final polynomial all coefficients must be equal to zero. Hence every
coefficient ovj;, with j+k < mn—2 can be expressed linearly in terms of a;42
and «; ;4+o. Continuing, we conclude that every o with j + %k <n — 2 can
be expressed as a linear combination of coefficients oy, with p + ¢ equal to
n or n — 1. The latter are the coefficients of products which either contain

no factor x3, or just one. These products are
n _n—1 n—1 n, n—1 n—2 n—2 n—1 .
Ty, Ty Xg, -, 1Ty ,Ty; Ty X3,Tp T2X3, " ,T1Ty T3,Ty I3,

there are 2n — 1 of them.

The 2n-+1 coefficients ay,, in U with p+¢ > n—2 can actually be selected
arbitrarily. Indeed, when they are given, one can determine exactly one set
of coefficients o, with j+k < n—2 such that all coefficients in A3U become
equal to zero; cf. Figure 8.3. If follows that dim IC,, = 2n + 1 and hence also
dimH, = 2n + 1.

The 2n + 1 pairwise orthogonal elements W, —n < k < n of 'H,, must
form an orthogonal basis. Finally, by Theorem 7.2.1,

HWnkH%Q(s):/O/ | P (cos 0)e™?|” sin 6 d6 d

_(n+ R 1
(n— [k n+ 3

.
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O

THEOREM 8.5.5. The spherical harmonics Wy, n € Ny, —n < k < n,
form an orthogonal basis of L*(S). Every function f € L*(S) has a unique
representation as an L? convergent so-called Laplace series,

FO= YA =D > cuxWuld.0),

n=0 —n<k<n

£ = (sinf cos ¢,sinfsin ¢, cosb). Here Y, (&) = > e, CatWai(0, @) rep-
resents the orthogonal projection of f onto the subspace 'H,, of the spherical
harmonics of order n. One has the rotation invariant direct sum decompo-
sition

L2(S)ZHo@H1@H2@"'@Hn@'~- .

Proor. By Proposition 8.5.1, the functions W, are pairwise orthogo-
nal. We will show that they form a mazimal orthogonal system in L?(S),
hence, an orthogonal basis. To that end, suppose that g € L*(S) is orthog-
onal to all functions W,,;. Then by Fubini’s theorem,

(8.5.3) / ' { / ' (0, ¢)e‘ik¢d¢}Pnk|(cos 0) sinf df = 0

—T
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for all kK € Z and all n > |k|. Also by Fubini’s theorem, the finiteness of the
integral

/ / 19(6,6)*sin 00 do = [lg|2(s)
0 —T
g

implies that G(0) = [7_[g(0, ¢)|*d¢ exists (and is finite) for all §’s outside
a set F of measure zero, and that G(0) € L'(0,m;sinf). It follows that
g(0,¢) isin L? as a function of ¢ on (—m, ) for # € (0, 7)\ E. Furthermore,
by Cauchy—Schwarz, every function

al) = 5= [ 906,00 a0
m —Tr

will be in L?(0, 7;sin@). Thus by (8.5.3) and the orthogonal basis property
of the functions Py¥'(cos@), n > |k| [Theorem 7.2.1], gx(d) = 0 for all
0 € (0,7) outside some set FEj of measure zero. We now take 6 € (0,7)
outside the union E* of E and the sets Ej, k € Z, which is still a set of
measure zero. Then all Fourier coefficients gx(6) of g(6, ¢) are equal to zero,
hence by Parseval’s formula, G(0) = ["_|g(0, ¢)]*d¢ =0, V0 € (0,7) \ E*.
Integration with respect to # now shows that

lgl220s) = / G(0) sinfdd = 0.

Hence g = 0 in L*(S), so that the functions W, indeed form an orthogonal
basis of L*(S).

Every function f € L?(S) thus has a unique L? convergent represen-
tation an CnkWik; here the numbers ¢, are simply the expansion coef-
ficients of f with respect to the orthogonal basis {W,;}. Combining the
spherical harmonics of order n: ¢, xWy,i(6,¢), —n < k < n, into a single
term Y, [f], we obtain another orthogonal series with L? sum f, the Laplace

series Y o Y[ f]:

It is clear that f can have only one decomposition ) ° Y, into spherical
harmonics of different order: Y,, must be the orthogonal projection of f onto
the subspace H,,. Thus L?(S) is the direct sum of the subspaces H,. [

2 n
:Z Z |lenk?[[Woi]|> — 0 as p — oo.

n>p k=—-n

There is an important integral representation for Y,,[f]:
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PROPOSITION 8.5.6. The orthogonal projection of f onto H, may be
writlen as

(8.5.4) Yo £ Pu(€-Q)do(C), €€ 8.

PROOF. Because the subspace ‘H,, is rotation invariant, the orthogonal
projection Y,[f] is independent of the choice of a rectangular coordinate
system in R3 (= E?). In order to evaluate Y,[f](£), we temporarily choose
our coordinate system such that & = eg, in other words, & corresponds to
6 = 0. Observe now that all spherical harmonics W, (0, ¢) with k& # 0
vanish at the point § = 0, while W,,4(0, ¢) = P, (1) = 1. Hence

) W)
Ya[£1(6) = Zk euetVur(0:0) = e = p RS
. (cos ) sin 6 df de.

We finally put the 1ntegral 1nto a form independent of the coordinate system.
To this end we replace the running point (6, ¢) in the integrand by ( =
(sin @ cos ¢, sin fsin ¢, cos ) on S and f(8,$) by f(¢). Observing that 6 is
the angle between the vectors £ = e3 and (, so that cosf = £ - (, one obtains
formula (8.5.4). O

For the applications it is important to consider Abel summability of
Laplace series.

PROPOSITION 8.5.7. For integrable f on the unit sphere S, the Abel
mean of the Laplace series,

def

A Lf1(6) =

NE

Yolflr", 0<r<1,

I
o

n

where Y, [f] is given by (8.5.4), is equal to the Poisson integral of f for the
unit ball B, cf. [94]:

def 1—7“2
0% [ 10 e O

PROOF. Substituting the integral for Y,,[f] into the definition of A,.[f](&)
and inverting the order of summation and integration, one obtains

/f 3 e ) dolC).
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The series in the integrand is readily summed with the aid of the generating
function for the Legendre polynomials: for 0 < r < 1,

Z (n+1/2)P,(cosO)r" =r

0

N[=

0 — 1
— > P mra
o 0 . (cos O)r

[N

r

1—172

0 1
Or (1—2rcosf+r2)2 2 (1—2rcosf+r?)

(S

(8.5.5) =

o
O

COROLLARY 8.5.8. For continuous f on S, the Laplace series is uni-
formly Abel summable to f. The solution of the Dirichlet problem for
Laplace’s equation in the unit ball, with boundary function f, is given by
the Abel mean A,[f](€) of the Laplace series, or equivalently, by the Pos-
sion integral P[f](r§).

The proof is similar to the proof of the corresponding result for Fourier
series and the Dirichlet problem in the unit disc; cf. Section 3.6.

Exercises. 8.5.1. Prove that the Laplacian Aj is invariant under rotations
about the origin: if # = Py with an orthogonal matrix P, then )=, 9*/(97)

is equal to >, 9%/(dy}).
8.5.2. Prove that the spherical harmonics Y = Y,,(6,¢) of order n are
solutions of the boundary value problem

1 0 (. 0Y 1 0%Y

" Sin6 96 (Sm@%) " %6 00
O<f<m —m<op<m,

Y (0, ¢) and (0Y/00)(0, ¢) remain bounded as

0\, 0 and 0 /T,

for fixed 6, Y (0, ¢) can be extended to a C! function

of ¢ of period 27.

=n(n+1)Y,

8.5.3. Use Exercise 8.5.2 to show that spherical harmonics Y, and Y, of
different order are orthogonal to each other in L%(S).

8.5.4. Let p(x) be any polynomial in z1, 9, 23 of degree < n. Prove that
on the unit sphere S, p(x) is equal to a harmonic polynomial of degree < n.

Hint. One may use the Laplace series for p(&), or prove directly that
p(z) is congruent to a harmonic polynomial of degree < n, modulo the
polynomial (z§ + 23 + 23 — 1).
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8.5.5. Show that every spherical harmonic Y,, of order n satsfies the
integral equation
n+1

V() = "5t [ VOPe-Qao(c). g8
8.5.6. Use Exercise 8.5.5 to prove the inequalities

2

_|._
sup Y2 (6)] < 4/ =2 [[Yall (s
¢es
sup | PM(z)] < "+1/2 HPWHLQ( 1,1)
$E[—1,1]

8.5.7. Compute the coefficients ¢, in the Laplace series for f [Theorem
8.5.5] to show that

n

Y. [f1(0,¢) = Z cntWak (0, 0)

k=—n
can be evaluated as

8.5.8. Compare formula (8.5.4) and Exercise 8.5.7 to derive the so-called
Addition Theorem for spherical harmonics:

COS = n 7(71 — ‘k‘)' I COSs |k‘ COS (Z))

Here 7 is the angle between the vectors { = (sin 6 cos ¢, sin @ sin ¢, cos #) and

¢ = (sin 6 cos ¢, sin 0 sin @, cos 9)
[For n = 1 one obtains an old formula of spherical trigonometry:

cosy =& - ¢ = cosfcosf + sin Osin 6 cos(¢p — ¢) ]
8.5.9. Prove Corollary 8.5.8.






CHAPTER 9

Fourier transformation of well-behaved functions

An introduction to the theory of Fourier integrals was given in Section
1.7. There it was made plausible that under reasonable conditions, one has
a Fourier inversion theorem as follows:

“If ¢ is the Fourier transform of f, then
1
(9.0.1) f is equal to Dy times the reflected Fourier transform of ¢”.
T

In this and the next chapters we will obtain precise conditions for Fourier
inversion.
Another important fact about Fourier transformation is the following:

“Under Fourier transformation, differentiation goes over into

(9.0.2) multiplication by i times the (new) independent variable”.
This property makes Fourier transformation very useful for solving certain
ordinary and partial differential equations.

9.1. Fourier transformation on L'(R)

Let f be integrable over R in the sense of Lebesgue, so that |f] is also
integrable over R. A sufficient condition would be that the improper Rie-
mann integrals of f and |f| over R exist. The product f(z)e ®® with £ € R
will also be integrable over R since e %* is continuous and bounded.

DEFINITIONS 9.1.1. For f in £!}(R) [that is, for integrable f on R], the
Fourier transform g = F f = [ is the function on R given by

9(&) = (&) = Fl&) / f(o)e—dz, £ER.

Equivalently, using independent variable x for the transform,

(Ff)(x) = /R FBe-dt, zER.

213
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The reflected Fourier transform h = Frf = f is simply the reflection
gr(€) = g(—&) of the Fourier transform:

WE) = (Faf)(€) = F(©) / F(@)ede = g(~€) = gr(€), € ER.

Using independent variable x for the reflected transform, one has

(Faf)(z) = / " f(edt = (F ) ()

= /_OO f(=s)e ™ds = (Ffr)(x), x€R.

The reflected Fourier transform of f is also the Fourier transform of the
reflection fr(z) = f(—x).

REMARKS 9.1.2. We use e~%? [with a minus sign in the exponent] in

~

the definition of f(&); cf. the formula for Fourier coefficients. Some authors
interchange the definitions of F f and Frf, but this has little effect on the
theory. One sometimes puts a factor 1/4/27 in front of the integrals for the
Fourier transform and the reflected Fourier transform. Such normalization
would give a more symmetric form to the Inversion theorem; cf. Section 9.2.

Integrable functions that differ only on a set of measure zero will have
the same Fourier transform. Thus Fourier transformation on £*(R) may be
considered as a transformation on the normed space L'(R); cf. Examples
5.3.4.

EXAMPLES 9.1.3. The computations in Example 1.7.1 give the following
Fourier pairs (where a > 0):

f(x) f(€) f(x)
o—alal 2a 2a
&2+ a? 22+ a?
1 2a
-~ —alg] —alz|
21 12 + a? ¢ €
—ar >0 1 1
efa:cU(x) — € ) € : :
0, x <0 a—+ i€ a+1ix

ExAaMPLE 9.1.4. We will use Complex Analysis to obtain the useful pair

f@)=e " f©) = Vr/a)e ¥/ (a>0).
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¥ L
-A @) A R
FIiGURE 9.1

In particular for a = 1/2:

flz) =e 2", flz) = V2me

Thus the function e=2%” is an ergenfunction of Fourier transformation. If

one would define the Fourier transform with the normalizing factor 1/+/27,

the function e~2*" would be invariant under Fourier transformation.
Derivation. For f(z) = e " one has

f(©) Z/e““26Zf’““dx:/@a{w+i€/(2a)}2652/(4a)dx
R R
(9.1.1) 26—52/(411)/6—az2dz7 where L:R+Z’§/(2a);
L

cf. Figure 9.1. (We are thinking of the case £ > 0.) Now by Cauchy’s
theorem, the integral of the analytic function f(z) = e~** along the closed
rectangular path with vertices +A, A + i€/(2a) is equal to zero. Also,
the integrals along the vertical sides of the rectangle will tend to zero as

A — oo:
+A+i€/(2a) ,
/ e ¥ dz
+4

2
—az
€

-§/(2a)

_ max e—a(g;Q_yQ) . f/(QCL) _ e—aA2+§2/(4a) . f/(QCL) =0

< max
side

0<y<¢/(2a)
as A — oo. Hence by (9.1.1),
S Avig/) A
F(&)ef/) = lim e dz = lim e " dz
A=oo J_Avie/(2a) A=ooJ 4

= / e dy = 2/ e_ta_%(l/Q) trdt = a_%F(l/Z) =\/7/a.
0 0
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PROPERTIES 9.1.5. If f is even [or odd, respectively], so is g = f:

_ /_ T @) dn = / T (ehe (=)
-/ T (et = +g(6).

The Fourier transform g of f € L'(R) is bounded on R:

o(c] </}f Zéﬂdw—/m— T

It is also continuous. Indeed, since for real a, b,

b .
/ etdt
:/f(x)(e—zﬁa:_e—zfo:c)dx:/ +/ e

R —A |z|>A

/ ’ §2/ |f(x)|dz < e for some A = A(e) and all &,
|z|>A lz|>A

A " A
< max |e %% — g0 .
[l [
S\f—folA/\f|<€ for 1€ — &l < 8.
R

Furthermore, by the Riemann Lebesgue Lemma 2.1.1 [which holds for un-
bounded intervals (a, b) as well as bounded intervals],

e

leib_ ia| _

< min{2, |b—al},

one has

/ f(z)e ®%der — 0 as & — Foo.

However, the Fourier transform g need not be in L'(R), as shown by the
final Example 9.1.3:

1
dr = | ————=
/R /]R va? + z?
Thus if ¢ = Ff, one cannot expect that the inversion formula in (9.0.1):
[ ={1/(2n)}Fryg, is valid without suitable interpretation; cf. Section 9.2.

dr = +00.

a—+1ix

The most important property of Fourier transformation is the way it
acts on derivatives:
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PROPOSITION 9.1.6. Let f be continuous and piecewise smooth, or at

any rate, let f be equal to an indefinite integral on R. Suppose also that
both f and its derivative ' are in L'(R). Then

9.1.2) (FI)E) = i€(F)E), VEER,

PRrOOF. We first remark that f(z) tends to a finite limit as x — +oo:

/f )dt — f(0 / f'(H)dt as z — oo.

Calling the limit f(oo), we observe that f(oo) must be zero. Indeed, if
f(oo) = ¢ # 0, we would have |f(x)| > |c|/2 for all z larger than some
number A, and then f could not be in L*(R): [ | f(z)|dz would be infinite.
Similarly f(z) — f(—o0) =0 as © — —oo. Integration by parts now gives

oo A
:/ f'(x)e ™ dx = lim

A—o0

:f}g%o {[f 72590 / f zfxdx}
Z%/ffWRi&mﬁwﬂfﬂ@)

O

COROLLARY 9.1.7. Suppose that f is an indefinite integral on R of order
n > 1, that is, [ is an indefinite integral, f’ is an indefinite integral, - - -,
f=Y s an indefinite integral. Suppose also that f, f',---, f*= D, ) qre
in LY(R). Then

(ﬁN)@)(foﬂ@)ﬁwongm

(FHE)| < W on R for 0<k<n, A=|f®

Fp(D)f](€) = pli€)(Ff)(€), D =d/dz,

for every polynomial p(x) of degree < n.

I

Exercises. 9.1.1. Show that f(z) = e~ lsgna = e~*lz/|2| (with a > 0)
has Fourier transform f(£) = —2i¢ /(€% + a2),

(i) by direct computation; (ii) by application of Proposition 9.1.6 to the
indefinite integral fo(z) = e=**! on R.
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9.1.2. Show that the step function

1 for|z| <a
0 for |z| > a,

oo(z) =U(x +a)U(a —z) = {
with a > 0, has Fourier transform
7a(£) =2

9.1.3. Show that the “triangle function”

Aa(x):{l_‘ﬂ/a for |z] < a (a > 0)

0 for |x| > a

has Fourier transform ) /
~ sin” a& /2
Ay (§) = ——.

9.1.4. Let fr — fin L*(R), that is, [ |f — fi] — 0. Prove that fk — f
uniformly on R.
9.1.5. Let f be an integrable function on R which vanishes for |z| > a.

~ ~

Prove that f(§) can be extended to an entire function f(¢) = f(§ + in),
that is, a flinction analytic for all complex (. What can you say about the
growth of f(() as ¢ — oo in different directions?

9.2. Fourier inversion

We have seen that the Fourier transform g = f of an L' function f
need not be in L!. In fact, Fourier transforms g(£) may go to zero very
very slowly; cf. Exercises 9.2.6, 9.2.7. However, if f is locally well-behaved,
the reflected Fourier transform Frg will exist as a Cauchy principal value
integral [here, a principal value at co]. More precisely,

A

(9.2.1) pv. /R s©csac ™ Jim [ gl

will exist, and the limit will be equal to 27 f(x).

ExampLE 9.2.1. For f(z) = 1 on (—a,a), = 0 for |x| > a, one has

g(&) = f(f) = 2(sina&)/¢&; cf. Exercise 9.1.2. For Fourier inversion we first
observe that for A € R,

A _: A .
(9.2.2) im [ S e Z 9 im / Sm;f df = 7sgn \:
0

A—o0 _A A—o0
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see Exercises 2.5.1 and (for sgn) 1.2.5. Now for our function g,

A A . A .
/ g(6)eimde = / 2 % eivE e — / 2 Smgag cos € dE
_ —A —A

A
_ /A {sin(a + )¢ N sin(a — x)§ }dﬁ.
A § £
Hence by (9.2.2),
A
jim g(€)e™d¢ = msgn (a + x) + 7sgn (a — 1)
S0 ) 4

21 for |z| < a,
=¢m forx = +a,
0 for|z| > a.

The result is equal to 27 f(x) for x # +a.

THEOREM 9.2.2. (First pointwise inversion theorem) Let f be in L'(R)
and differentiable at the point x, or at least, satisfy a Holder—Lipschitz con-
dition at the point x. That is, there should be constants M, o and 6 > 0
such that

|[f(x+1t)— f(x)] < Mt|* for —d<t<é.

Then

fa) = v [ Fie) mﬁd»s——hm/ Fleyede.

2m A—oo

If in addition f is in L*(R), then

flz) = fm ffR>< )

in the ordinary sense.

We will see in Theorem 9.2.5 below that continuity of f at the point x
is sufficient for the inversion if f is in L'(R).
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PROOF. Inverting order of integration, one finds that

/ " Fleyeeds = / ’ { / f(u)e—if"du} et

(9.2.3) /f du/ eio=wE g — /f ZSIHAx_u)du

r—Uu

2 sin At
/fxit) S AL Gy = / dt+/ - dt.
t 5 It]>6

[The change in order of integration is justified by Fubini’s theorem. Indeed,
the first repeated integral is absolutely convergent:

/_i {/R }f(u)eifu}du} |77 |de = 2A/Ryf(u)\du,

which is finite. ]
Now let € > 0 be given. By the Holder-Lipschitz condition,

0 2sin At
[ e+t sy 2
(9.2.4) and this is < €, VA, if we take ¢ small enough.

< 4M&*/a, VA,

Keeping ¢ fixed from here on, we also have

3 . SA .
/ f(x)QSHlAtdt:2f(x)/ vadv—>27rf(x)
s t

_s4 U

as A — oo; cf. (9.2.2). Hence

<e for A> A;.

J sin
(9.2.5) ‘/6f(x) 2 tAt dt — 2m f(2)

We finally remark that f(x 4+ t)/t is integrable over § < |t| < oo since
|1/t| < 1/6 there. Thus by the Riemann-Lebesgue Lemma,

2 sin At

(9.2.6) dt

<e for A> A,.

' flx+1)
[t]|>d
Combining (9.2.3)-(9.2.6), we find that

A
' A(é’)ei”“fdf —2nf(x)] <3¢ for A > max{A;, As}.
—A
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Conclusion:

A A~
lim / f(€)e'™d¢  exists and = 27 f ().
—A

A—o0
OJ
ExaMPLE 9.2.3. Applying Fourier inversion to the Fourier pair
1 —|z|/2 for |z| <2 ~ sin 5
A = A 2
2(2) {0 biss MO =27
cf. Exercise 9.1.3, we obtain the formula
1 sin?¢
— [ 27— edE = Ay(z).
27T R 52 € 6 Q(x)
In particular, for x = 0:
.2
(9.2.7) / T de =
R &

REMARK 9.2.4. For f in L'(R) and continuous at the point z one has
a result analogous to the Cesaro summability of a Fourier series:

(9.2.8) f(z) = lim 2i / ! (1 - |£A|) Fle)eae.

—A

[One could say that, although the integral for (F R]?) () need not converge,
it is “Cesaro summable” to the value 27 f(z).] For the proof one would put
the right-hand side into the form

sin At/2
li + ;
Al—rgo/f Do 2 A2 /4 at;

cf. Exercise 9.1.3. The positive kernel here has integral one; cf. Example
9.2.3.

As a corollary one obtains

THEOREM 9.2.5. (Second pointwise inversion theorem) For an L' func-
tion f on R which is continuous at the point x, and whose Fourier transform
is also in L'(R), one has

1

[@) = 5= (Faf) (@)
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Exercises. 9.2.1. Let f be in L}(R). Prove that Ff = 0 implies f = 0,

(i) if f satisfies a Holder-Lipschitz condition at every point z;

(ii) if f is just continuous.

Carefully state the theorems which you have used.

9.2.2. Let f be an indefinite integral of order two on R such that f, f’
and f” are in L*(R). Prove that g = Ff is in L'(R) and that f = 5= Fgg.

9.2.3. Prove Remark 9.2.4, on the Cesaro summability of [, Fl&)eede
to 27 f(x), when f € L*(R) is continuous at the point z.

9.2.4. Prove Theorem 9.2.5.

9.2.5. Apply Fourier inversion to the Fourier pair of Exercise 9.1.3.
Deduce that for A € R, A,(§ — ) is the Fourier transform of

1, sin®ax/2
—_ 6 _—
27 ax? /4
9.2.6. Let A, be the triangle function of Exercise 9.1.3 and suppose that

£, >0,p, >0and A\, € R, n=1,2,---, while > €, < co. Verify that
the function

9(5) = Z 5nApn(§ - )‘n)

is the Fourier transform of an L' function f. Next show that ff‘A g(&)d¢
may be almost of the same order of magnitude as A for a sequence of A’s
tending to oo.

Hint. One has ff‘Ag(g)df > S €,pn, where the summation extends
over those integers n for which —A < A\, — p,, Ay + o < A.

9.2.7. (i) Functions f in L'(R) need not tend to zero as x — oo. Give
an example. R

(ii) Fourier transforms f(£) of L' functions f may tend to zero quite
slowly as & — oo. Indeed, prove that for any positive decreasing function
(&) with limit zero as £ — oo, there exist a sequence )\, — oo and an L!

~

function f such that f(A\,) >e(\,), n=1,2,---.

9.3. Operations on functions and Fourier transformation

In the following it is assumed as a minimum that the function f is
integrable over R; the letters g and h are used for the Fourier transform,
and the reflected Fourier transform, respectively:

g(f):/Rf(x)eiéxdx, h(§):gR(§):/Rf(x)eifxdx.
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Original Fourier trf Reflected trf Remark
(i) fOw) ﬁ g<§) B h(g) A real, # 0
(ii) flz+X) eg(&) e Mh(€) A\ real
(iii) e f(z) g(E—=N) h(€+ M) A real
(iv) Df(x) i€g(€) —i€h(€) D =d/dz
(v) z f(z) iDg(§) —iDh(¢) D =d/d¢
(vi) p(D)f(x) p(i€)g(&) p(—i)h(€) p(z) =
(vii)  p(z)f(z) p(iD)g(€) p(=iD)h(€) >0 arr”
(viii)  (fi* f2)(z) 91(£)92(¢) hi(§)ha(€) Section 9.4

(x)  A@hE) 5 @)€) 5 (hxh)E  Section 94

2

For suitably matched locally integrable functions f; on R one defines the
convolution by the formula

031)  (fi*f)a /fla:— Vfaly dy—/fl Valz — 9)

For integrable f; on R and bounded f5, the convolution is defined for all
r € R. If both f; are in L'(R), the convolution integral will exist almost
everywhere, and f; x fo will be integrable over R; see Section 9.4.
Discussion of rules (i)—(vii) below. Rules (i)—(iii) follow immediately from
the defining integrals. For example, if A < 0,

/ T fOw)e ey — / T F e gt

1 [ , 1 (¢
- He &Nt g = — >
5| e 59(5)
while for any A € R,

/OO flz 4+ Ne ™ dy = /OO FO)e N gt = g ().
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Sufficient conditions for the validity of rules (iv) and (vi) have been
stated in Proposition 9.1.6 and Corollary 9.1.7.

Rule (v) will be valid under the natural condition that both f and zf
are in L'(R). Indeed, by (iii),

w032 [ {5 - o} e - LEERZI00 rapae

Now observe that

6i)\$ -1 T ;
B —x:/o (e’\t—l)dt'
|z
(9.3.3) < min{2, |\t|}dt < min{2|z|, |\|2?/2}.
0

Denoting the integrand in (9.3.2) by Fi(z), we will show that [, Fy — 0
as A — 0. To that end split [, F) as ff‘A + f|x|>A. For given ¢ > 0
> A 2|z f(x)|dx < €, so that by (9.3.3),

f‘be F,\’ < e, VA, £ Keeping A fixed, one next takes 6 > 0 so small that
IA/2] ffoQ\f(a:)\dx < e for |\ < 6, so that )fi‘ F)\’ < e for M| < 4 and all
& Then | [, Fa| < 2¢ for |A| < § and all £&. Conclusion from (9.3.2):

b 9E=2) = g(€)

A—0 A

one first chooses A so large that f|x

=ig'(§) exists and = Flzf(x](&).

Apparently, ¢’(£) may here be obtained by differentiation under the inte-
gral sign. Repeated application of rule (v) gives rule (vii) when the functions
fyxf, .-+, x"f are all in L*(R).

ExXAMPLE 9.3.1. One may compute F [e“”’g] (with a > 0) by observing

that y = e 9" satisfies the differential equation Dy = —2azy, so that by
Fourier transformation, i§ y(§) = —2aiDy(£); see rules (iv) and (v). Inte-
grating the equation (1/y)Dy = —£/(2a) one obtains log (&) — logy(0) =
—£2/(4a), so that §(&) = 5(0)e /(9. Here §(0) = [p e 9 dx = \/7/a; cf.
Example 9.1.4.

EXAMPLE 9.3.2. (Hermite functions) By Proposition 7.3.6,

2

ha(x) = poHo(z)e 3™ = py(z — D)"e 3™
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The Fourier transform of e~2% is \/(27) e~2¢". Thus
(Fh)(€) = F |prlx — D)e 3] O =D - 07 [e-%ﬂ (©)
= —ip1(§— D)/ (2m)e 2t —i/ (2m) hq (€
In general,
(Fha)(©) = F |pale = D)"e ¥ | (&) = puliD — i€)"F || ()
= (=1)"pal€ = D"/ (2m) 72 = (=)"/(2m) hu(€).
Using z as independent variable, we may write

(9.3.4) (Fha)( )"/ (27) B

the Hermite functions are ezgenfunctwns of Fourier transformation.

Exercises. 9.3.1. Given that F [ —5® } (&) = ce~2¢*, deduce the value of ¢

from the Fourier inversion theorem. Use the answer to compute F [e“m?}

by rule (i).
9.3.2. Given that Fle *U(z)](¢) = 1/(1 + i£), compute

Fle®U(—x)], Fle *U(x)], Flre *U(x)], Fle *“U(x — b)]

by using appropriate rules.

9.3.3. Prove that the operators F and (2? — D?) commute when applied
to “good” functions. Deduce without identifying them that all “smooth and
small” eigenfunctions for the operator (z2 — D?) must also be eigenfunctions
for F.

9.4. Products and convolutions
We begin with the important

PROPOSITION 9.4.1. For f and ¢ in L*(R) one has

(9.4.1) / Ffo= / ;7o / Fuf 6= / f Fnb

This proposition will later become the basis for an operational definition
of extended Fourier transformation. It says that

“F f does to ¢ whatever f does to F¢ 7,

and similarly for Fp.
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PrROOF. The formulas are direct applications of Fubini’s theorem. In-
verting order of integration, one finds that

[En@seie= [ { [ s e
N éf (2)de /R H(€)e"¢de = /R £(2)(Fé)(x)da.

The second step is justified by the absolute convergence of one of the re-
peated integrals:

d Eldg = is finite.
Jir@as [ o) as = [ 171 [ 1ol is fimive
O

Rule (ix) in the table of Section 9.3 may be obtained by the same
method. In the derivation below, the convolution will show up in a nat-
ural manner.

PROPOSITION 9.4.2. Let fi and gy be arbitrary functions in L'(R) and
set g1 = F f1, fo = (1/27)FRrgs [so that formally, go = F f5]. Then

(9.4.2) /Rfl(l')fg(x)e_i§$dl’ = % /Rgl(ﬁ —t)go(t)dt = % (g1 % g2)(&).

PrOOF. Inverting order of integration, we obtain
1 . ,
Al = [ 10 {5 [ mvearf i
R T JR

=5 [ [ n@e e = [ wonie- o
0

The “dual result”, rule (viii) in the table of Section 9.3, is more directly
relevant for the applications:

PROPOSITION 9.4.3. Suppose that fi and fy belong to L'(R). Then the
convolution

(% fo) () = /R £1(0) fal — y)dy

exists for almost all x € R. Giving it arbitrary values for the exceptional x,
the resulting function fi * fo belongs to LY(R), and

(9-4'3) f[fl * fz](f) = (ffl)(f)(Fﬁ)(f) = 91(5)92(6)-
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PROOF. We apply Fubini’s theorem to F(z,y) = fi(y)f2(z — y) on the
“rectangle” R x R. Since the repeated integral

[av [1F@piz = [ 11wy [ 1o =l
= [ 1ty [ 1ol

is finite, Fubini’s theorem says that F(z,y) is integrable over R? and that

|:/]R? F(x,y)dxdy :} /dy/F(x,y)dx:/dx/F(%y)dy

More precisely, G(z) = [, F(z,y)dy — in our case, [, fi(y)fo(x —y)dy — will
exist for almost all z, the function G (= fi % f2) will be in L!'(R), and

/G dm{ /fl*fg} /dx/ (2, 9)d
:/Rdy/RF(x,y)dxzAfl(y)dyéfz(x—y)dxz/Rfl/sz-

For any ¢ € R, the final argument will also give (9.4.3), that is, rule

(viii):
[ e s = [ { [ ftwsate - y)dy} ey

/ {/ fiy)e ™ - fola —y)eié(xy)dy}dﬂf

- / £ (y)e vy / folr — 9)e €@ d(x — y) = g1(€)ga(€).
]

EXAMPLE 9.4.4. Let f be in L'(R) and ¢ > 0. Problem: Determine the
function u(z) that has Fourier transform @(¢) = f(&)e %"
Solution. By rule (viii), u(z) will be the convolution of f(x) and the

inverse Fourier transform h(z) of e %" Now since e ¢ is even, we obtain
from Example 9.1.4 or 9.3.1 that

h(z) = %}"R ] (@) = %]—" [ (@) =

1

e/ (4t)
2Vt
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Conclusion:

1 1 )
() s /) _ / eV g
) = 1) 5 5= I = [ a0y

— % [Rf (:1: — 2\/Zw) e dw.

Exercises. 9.4.1. Let o0y(z) = 1 on (—1,1), = 0 for |x| > 1. Determine
(o1 % o1)(x):
(i) by direct computation,

(i) with the aid of Fourier transformation and Exercises 9.1.2, 9.1.3.

9.4.2. Which functions have Fourier transforms (sin® £) /&3, (sin* &) /€47
Compute the integrals of these Fourier transforms over R.

9.4.3. Let f(x) = |z|72 for 0 < 2 < 1, = 0 for all other z € R. Prove
that the convolution (f * f)(x) does not exist at the point z = 0.

9.4.4. Let p(z) be a polynomial in z of degree n. Use Fourier transforma-
tion to determine a (formal) solution of the differential equation p(D)u = f
when f is in L'(R).

9.4.5. Use Fourier transformation to obtain a solution of the differential
equation v’ —u = f when f is in L'(R). Why are there difficulties in the
case of the equation u” +u = f? And in the case of u' = f 7

9.4.6. Determine a solution of the integral equation

u(a:)+4/Reru(y)dy: f(z) on R for fe L'(R).

9.4.7. Determine the convolution

1 2 1 2

—22/(4s) —z°/(4t)
e * ——e s, t>0).

AV 2Vt ( )

9.4.8. Let f be in L'(R) and y > 0. Determine the function u(z) with

A~

Fourier transform u(¢) = f(&)e vkl

9.5. Applications in mathematics

We will apply the preceding theory to some mathematical questions; cf.
Exercises 3.3.4 and 3.4.3.

THEOREM 9.5.1. Fourier transformation on L*(R) is one to one: if
Ffi = Ffy for integrable functions f; on R, then fi(z) = fa(x) almost
everywhere, and hence fi = fy in the sense of the normed space L*(R).
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FIGURE 9.2

PROOF. Setting f; — fo = f, let f be in L}(R) and g = f: 0. We now
introduce a trapezoidal function 7(x) as follows; cf. Figure 9.2. For a < b
and 6 > 0,

1 fora<z<b
T(x):T(iﬂ?@;b,(S)d:ef 0 forr<a—dandx>b+0
linear fora—0<z<agand b<z <b+.

Since 7 is the difference of two triangle functions, the Fourier transform 7

is in L'(R). Hence by Theorem 9.2.2 on pointwise Fourier inversion, 7 =

(1/2m) (FrT) can be written as the Fourier transform @ of an L' function
w. [Just take w = (1/27)7x.] Thus by Proposition 9.4.1,

b+o
fT—/fT—/fw—/fw—O
It follows that

[ 1= s [ [T

fr
As 0 N\, 0, the right-hand member will tend to zero: indefinite integrals
[ |f] are continuous. Thus fab f = 0. This holds for all intervals (a, b). In

particular then
F(a:)d:ef/ Ft)dt =0, Va.
0

Since by Integration Theory f(z) = F'(z) almost everywhere [cf. the proof
of Theorem 4.1.1], the conclusion is that f(z) =0 a.e. O

b
fr
a

fr+
)

THEOREM 9.5.2. (Moment theorem) Let f(z)e’®l be integrable over R
for some number b > 0, and suppose that all power moments of f are equal
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n
ib
(e :
0 \_“
-ib
FiGURE 9.3
to zero:
(9.5.1) /f(x)x”dx:(), n=0,1,2,---.
R

Then f(x) = 0 almost everywhere on R.

PROOF. Let g(&) = [, f(z)e “*dx be the Fourier transform of f. By
the hypothesis " f(z) is in L'(R) for every n € Ny. Hence by the proof of
rule (v) in Section 9.3, ¢(&) is infinitely differentiable and

(n) — (_\" n fifxd )
9(E) = (=i [ ")
Thus by (9.5.1),

(9.5.2) g™(0)=0, n=0,1,2,---.

If we would know that ¢ is analytic in a complex neighborhood €2 of the
real axis, it would now follow that ¢ = 0 in a neighborhood of the origin
and hence on 2. [Uniqueness Theorem for analytic functions; see Complex
Analysis.] In particular g = F f would vanish on R and hence f(z) =0 a.e.
[Theorem 9.5.1]. O

The desired analyticity will follow from

PROPOSITION 9.5.3. Suppose that f(x)e®®! with b > 0 is integrable over
R. Then the Fourier transform g(§) of f has an analytic extension g(¢) =
g(&+1n) to the strip {|n| = |Im (| < b} [see Figure 9.3].

PRrROOF. By the hypothesis the “complex Fourier transform”

ﬂOZAﬂ@W%MZAﬂ@We@m
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is well-defined for || < b. We expand the integrand according to powers of
¢ — Co:

f(@)e " = f(z)e 0re ¢~ C0)
(9.5.3) — Z F(z)emion (—iz)" (¢ — CO)n'

n!
-0

For (o = & + ing with |no| < b and | — (o| < b — |nol, this series may be
integrated term by term to obtain

(9.5.4) 90) = [ f@)e =Y eulc— G
R n=0
where
(9.5.5) Cn = i' (—iz)" f(x)e “"dr, n=0,1,2,---.
n! Jr

The justification is by norm convergence of the series (9.5.3) in L'(R), cf.
Examples 5.4.6:

N
>
< {i e W} o = [ 1@ eneroi g

g/]f(x)|ebxda: [a finite constant], ¥V N.
R

N

:A{Z

0

F(z)e o (_m)nfj — )",

Since (p was arbitrary in the strip {|Im (| < b}, it follows from (9.5.4) that
g(¢) is analytic in that strip. One may also observe that by (9.5.5),
o) = [ (i) fla)e e
R
0

Returning to the Moment Theorem 9.5.2, we remark that the growth
condition “f(z)eb®l in L'(R) for some number b > 07 cannot be relaxed
very much; cf. Exercise 9.5.2. Theorem 9.5.2 has an important corollary:

THEOREM 9.5.4. The normalized Hermite functions
ho(@) = puHa(z)e 2, n=0,1,2,--
[Definition 7.3.5] form an orthonormal basis of L*(R).
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ProoF. We will show that {h,} is a maximal orthogonal system. To
that end, suppose that g € L?(R) is orthogonal to all functions h,,. Since
H,(x) is a polynomial of precise degree n, it will follow that g is orthogonal

to all products gne~ 37"
/g(x)e—%ﬂCQx”dx =0, VneN,.
R

Now as the product of two L? functions, the function

g(x)eiéﬁ ‘ eb|x| _ g(a:) ) 67%x26b|x|

is integrable over R for every constant b [use Cauchy—Schwarz]. Hence by
Theorem 9.5.2, g(z)e™2%" = 0 a.c., so that g = 0 in the sense of L2(R). [

Exercises. 9.5.1. Let Y ° ¢,hy, = Yo ¢u[f]hn be the Hermite expansion
of fin L*(R). Prove that

(i) 51 = S8 cohn — f in LA(R) as k — oo;

(i) >0 leal® = Jo IfI%
(iii) The series Yo" ¢ Fhn =D o (—1)"\/(27) ¢, h,, converges to a function
g in L*(R). [This g will be the “generalized Fourier transform” of f as

defined in Section 10.2 below].
9.5.2. For 0 < py /" 00, >.7° 1/p < 00, define

f@) =TT 0 = iw/m) ™

(i) Taking pj, = k2, show that |f(z)| ~ e~*VI*l (with ¢ > 0) as |z| — oo.
Hint. If n(t) is the number of p, <t [here n(t) ~ v/t], one has

t
> 22 n(t)
! =— | S5 d
g /()] /0 24+t
(ii) Show that f(z) = f(x + iy) is analytic for y > —p; = —1, and that
|f(z +1dy)| < [f(x)] for y > 0.

(iii) Prove that g(&) = f(f ) is of class C* on R and use Cauchy’s theorem
to show that g(§) = 0 for £ < 0.

(iv) Show that [, 2" f(z)dz =0,n=0,1,2,---.

(v) Prove corresponding results for the case where py = k'*° with § > 0.



9.6. THE TEST SPACE S AND FOURIER TRANSFORMATION 233

9.6. The test space S and Fourier transformation

In order to extend Fourier transformation to a large class of functions
and generalized functions, one needs suitable test functions; cf. Chapter 4.
In the years 1945-1950, Laurent Schwartz introduced the test space S of
“rapidly decreasing functions with rapidly decreasing derivatives”; cf. [110].
It consists of the C* functions ¢ on R with the following property: ¢(x)
and its derivatives ¢'(z), ¢"(z), --- tend to zero faster than every negative
power of x as x — +o00. Equivalently one has

DEFINITION 9.6.1. S consists of the C* functions ¢ on R for which each
of the so-called seminorms

(9.6.1) M, (®) o sup ’:quﬁ(‘” (x)
z€eR

) paq:O>1a2>"'

is finite.

Important members of S are the functions e=**" (a > 0) and the Hermite
functions hy,(z) = ppH,(z)e 2" [Definition 7.3.5].

PROPOSITION 9.6.2. (Fourier inversion on S) Let ¢ be in S. Then b=
F¢ is also in S, and

1 ~ 1 ~
¢=5_FrO=7F o 0n
Thus in operator sense,
FrF = FFr =2m X identity on S.

PROOF. (i) For ¢ in S the functions ¢, x¢, 2?¢, --- are in L'(R); see
(9.6.1) with ¢ = 0. Hence by rule (v) in Section 9.3 and its proof, ¢ is dif-
ferentiable, iD¢ = Flz¢)] is differentiable, (iD)*¢ = F[z?¢] is differentiable,
etc. Thus ¢ will be of class C* on R.

The C* functions x9¢, D(z%¢), - - , DP(x9¢), - - - will also be in L'(R);
cf. (9.6.1). Hence the C* functions

(i) (iD)"¢ = F[D*(299)]
are bounded on R. Thus by (9.6.1) the function ¢ isin S.

(ii) By Inversion Theorem 9.2.2 one has

1~ 1 1~ 1
¢:2_fR¢:_fRF¢a and ¢ = — For = -— FFgro.
T 21 21 2T
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For later use we define a strong notion of convergence in § with the aid
of the seminorms (9.6.1):

DEFINITION 9.6.3. One says that ¢; — ¢ in S if My, (¢ — ¢;) — 0 as
j — oo for every p and ¢. In other words,

22¢? (x) — 27¢D(z) uniformly on R, Vp, ¢ € Ny

We will see in Section 10.3 that for ¢ in S, the Hermite series converges
to ¢ in this strong sense.

PROPOSITION 9.6.4. Fourier transformation defines a one to one con-
tinuous linear map of S onto itself.

PRrROOF. That Fourier transformation F restricted to S is both injective
[that is, one to one| and surjective [that is, onto] follows from Proposition

9.6.2. Indeed, if g/f)\: 0 then ¢ = (1/27r).7-'R$: 0. Moreover, every ¢ in S is

the image of an element in S: ¢ = F(1/27)¢r.
Suppose now that ¢; — ¢ in S. Then for fixed p, ¢ € Ny,

(z* + 1)DP{z%(¢ — ¢;)(z)} — 0 uniformly on R.
Hence for given £ > 0,
D {a(6 — 65)(@)}] <
It follows that for j > jo.
M6 = 65) = sup [(i€)" (D)6 — 6,)(6)|

6 —_
< Rx2+1dx—7r5.

Exercises. 9.6.1. Derive the Parseval formula for Fourier transformation

on S:

5
2 +1

on R for j > jo = jo(e).

[ D716 - @) e o

= sup
13

O

~ 2
[ o] de=2r [1o@pas, voes
R R
9.6.2. Prove that on S,
F? =21 x reflection, F* = 4n? x identity.

What are the possible eigenvalues of F on S? Do all possibilities occur?
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9.6.3. Prove that differentiation and multiplication by x are continuous
linear operations on S: if ¢; — ¢ in S, then D¢; — D¢ and 2¢; — z¢ in
S.

9.7. Application: the linear harmonic oscillator

The linear harmonic oscillator in quantum mechanics leads to the fol-
lowing eigenvalue problem:
(9.7.1) Hy = (2* — D)y = Ny, y € L*(R);
cf. the article [97]. The condition y € L*(R) is a boundary condition at
+o00. Tt comes from the fact that |y|? is a probability density: f; ly(z)|?dx
represents the probability to find the oscillating particle on the interval
(a,b) when the energy is equal to X\. The values of A for which the problem
has a nonzero solution y represent the possible energy levels of the particle
in quantum mechanics. Thus one expects the eigenvalues to be real and
positive.

We begin by making it plausible that the eigenfunctions belong to the
class §. The solution of the differential equation

(9.7.2) y" = (2* = Ny

will be of class C*°. Indeed, if a solution y is locally integrable, so is y”, hence
y will be an indefinite integral of order two, etc. [In fact, by Proposition
8.1.2 the solutions will be analytic on R.]
How do the solutions behave at 400 ? Multiplying equation (9.7.2) by
2y, one finds
2y'y" = (* = \)2yy/,
hence by integration one expects

@Y = [ = Na20 = (2 - Vi)

as x — 00. This gives
1
Y A2 A
—(r)~xzx|l-—= | =~=* —
y(ﬂs) x( xg) TF o

and hence

NI

1 1
(9.7.3) logy ~ 15 2 F 3 Mogz, y =~ efa® ¥,
More precisely, one expects the differential equation to have a ‘large’ solu-

tion, one that behaves like e3®’p 2N ag ¥ — 400, and a ‘small’ solution that
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behaves like e~2%° 23> at +oo. (The above argument can be made rigorous;
cf. Korevaar [67].)

A similar reasoning applies to —oo. What we need is a solution that
becomes small at both ends. Such a solution can be expected only for
special values of A, the eigenvalues of problem (9.7.1). Finally observe that
a C* solution that behaves like

e 223 at =+ oo
would be in §. Thus our eigenvalue problem may be restated in the form
(9.7.4) Hy= (2> —-D*)y=X\y on R, y€S.

Without prior knowledge of Hermite functions, this eigenvalue problem
may be solved by the so-called factorization method. Observe that on S,

Hy ={(x — D)(x+ D)+ 1}y = {(x + D)(x — D) — 1}y.
Thus the operator ‘H may be “factored” as follows:
H=(x—-D)x+D)+1=(zx+D)(x—D)—-1,

where 1 now stands for the identity operator. Using the inner product of
L*(R), integration by parts shows that on S,

([x + DIf,9) = (zf,9) + (Df,g) = (f,xg) — (f, Dg) = (f, [z — Dlg),
([x — DIf,g) = (f, [z + D]g).

Suppose now that 7, ¢ is a characteristic pair of problem (9.7.4). Then

([z + Do, [z + DIp) = (¢, [z — D][z + D]¢) = (¢,[H — 1]¢)
([z = Dl¢, [z — D]¢) = (7 + 1)(¢, ¢).

It follows that all possible eigenvalues v of H must be real and > 1. More-
over, if 1 is an eigenvalue, the corresponding eigenfunctions ¢ must satisfy
the equation (z + D)y =0, or ¢/ = —xy.

Conclusion: 1 is indeed an eigenvalue, with corresponding eigenfunctions

Be= (B #0).
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Continuing with an arbitrary characteristic pair v, ¢, one finds that
H(z+D)p={(x+ D)(x—D)— 1}z + D)¢
= (x+ D){(x — D)(x + D) — 1}¢
=@+ D)(H—2)¢=(y—2)(x+ D)o,
H(z — D)o = (v +2)(x — D)o.

If v > 1 then (x + D)¢ # 0 and hence the pair v — 2, (x + D)¢ is also a
characteristic pair. In that case v > 3, and either v = 3 and (z+ D)?¢ = 0,
ory >3 and (z + D)?¢ # 0, in which case - --. Continuing, one finds that
v must have the form 2n + 1 for some n € Ny and then (x + D)""¢ = 0.

Another conclusion is that v+ 2, (x — D)¢ is a characteristic pair when-
ever 7, ¢ is one. Thus the characteristic pairs of problem (9.7.4) are the
pairs

(9.7.5) 2n+1, Bu(z— D)"e 2 with n € Ny and 8, # 0.

With all this information it is not difficult to verify that eigenfunctions
belonging to different eigenvalues are orthogonal to each other. From this
one may derive that (z — D)"e~2%" must be equal to H,(z)e 2", where
H,(x) is the Hermite polynomial of degree n introduced in Definition 7.3.1.

REMARK 9.7.1. The factorization method, also called ladder method,
goes back to Dirac [23]. It was extended to a variety of classical eigen-
value problems by the physicists Leopold Infeld (Poland—Canada, 1898—
1968; [55]) and Tom E. Hull (Canada, 1922-1996; [53]); see [56].

Exercises. 9.7.1. Let ¢ be an eigenfunction of problem (9.7.4) belonging
to the eigenvalue 2k + 1. Show that (x + D)**'¢ = 0. Next taking n > k,
show that ¢ = (z — D)"e 2" is orthogonal to ¢. Use this fact to derive
that ¢ must be equal to H,(z)e~ %",

9.7.2. First show for n = 0 and then for n € N that

H,(z)e™™ = (27;)”%_% / e P re 2y,
R

9.8. More applications in mathematical physics

We continue with a few applications to boundary value problems for
partial differential equations. Fourier transformation is a very powerful tool
for problems involving (practically) infinite media. It is standard procedure
to begin by applying the rules without worrying about questions of existence
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or convergence. One thus tries to arrive at a plausible answer. In the end,
the answer should of course be verified.

EXAMPLE 9.8.1. (Heat equation) What can one say about the temper-
ature distribution u(z) = u(z,t) at time ¢ > 0 in an “infinite medium” [for
example, a very thick wall]? We assume that there is heat transport only
in the X-direction, and that the initial temperature distribution is known.
The problem is to solve the one-dimensional heat equation

Uge = U, —00 < x <00, t>0,

subject to the initial condition u(z,0) = f(z), —o00 < x < 0.
Introducing the Fourier transform of u relative to z,

(981) o&.0) = Flule)(©) = [ ulwte s,
R
where ¢ is treated as a parameter, we obtain

T [uza(z, ))(E) = (i6)*0(&, 1), Flue(w, 1)](€) = ve(&, 1),

Frlu(z,0)](§) = v(£,0) = f(§), £€R, t>0.
The transformation rules for the partial derivatives correspond to differenti-
ation under an integral sign, and this is permitted if u(z, t) is a nice enough
function.
Thus by Fourier transformation, our problem takes the simpler form

~

w(€, 1) = —E20(E, 1), v(€,0)= f(€), R, t>0.

We now have an ordinary differential equation for v as a function of ¢ in
which & occurs as a parameter! The solution of the new initial value problem
is

0(&,1) = v(&,0)e " = f(§)e <.
We know already which function u(z) = wu(z,t) has the final product as
its Fourier transform: by Example 9.4.4, for ¢ > 0,

1 2
—(z=y)*/(4t) 4
e
o/t /Rf(y) Y

(9.8.2) = % /Rf (x - 2\/1?10) e dw.

Verification. Assuming f locally integrable and bounded on R, the func-
tion u in (9.8.2) will satisfy the heat equation for ¢ > 0 [use the first integral].

u(z,t) =
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Also, for bounded continuous f, u(x,t) — f(z) as t \, 0, uniformly on ev-
ery bounded interval —A < x < A [use the second integral]. It will follow
that

u(z,t) — f(zo) as (x,t) — (20,0), thatis, x — zo, t \, 0.

EXAMPLE 9.8.2. (Wave equation) What can one say about the displace-
ments u(z) = u(z,t) at time ¢ in an “infinite vibrating medium”, assuming
that the displacements are only in the “vertical” direction? We assume for
simplicity that the displacements at time ¢ = 0 are known, and that the
velocities at that instant are equal to zero. The problem then is to solve
the one-dimensional wave equation

1
Uy = — Upy, —00 < T <00, t>0 (or —oo<t<o00),
c

subject to the “initial conditions” u(x,0) = f(z), us(x,0) =0, —00 < = <
0.

Introducing the Fourier transform v of u relative to = as in (9.8.1), our
problem takes the simpler form

Utt(§7t) + 0252U(§,t) = 0,

o(€,0) = F(€), u(£,0)=0, —00 << o0, t>0.

The solution of the new problem is

~

o(E,1) = (&, 0) cos et = 4 FlEO) + 5 Fle)e ™

By rule (ii) in the table of Section 9.3 the corresponding function w is

N —

(9.8.3) u(z,t) = % flx+ct)+ % f(z —ct).

Physically speaking, the candidate solution (9.8.3) makes sense for ar-
bitrary (continuous) f, both for ¢ > 0 and for ¢ < 0. The displacement
function u(x) at time t appears as the superposition of two disturbances,
two “waves”; the first moves to the left with velocity ¢, the second to the
right with velocity c. [The displacement % f(z —ct) remains equal to 5 f(zo)
if v —ct =z or x = xy + ct.] For t = 0 the two waves jointly produce the
given displacements u(x,0) = f(x) and (formally) the velocities u;(z,0) = 0.
However, mathematically speaking there is some question whether the phys-
ically acceptable function (9.8.3) satisfies the wave equation in more than
just a formal way.
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For the above and other reasons it is desirable to develop a more general
theory of derivatives, convergence and Fourier transformation which can
justify the various formal operations. The theory of tempered distributions
will provide an appropriate framework; see Chapter 10.

Exercises. 9.8.1. (Wave equation) Use Fourier transformation to treat the
initial value problem

1
Ugy = —3 Ut —o<r<oo, t>0,
c

u(z,0) = f(z), w(z,0)=g(x), —o00o<x<00.

Draw pictures of the solution at time ¢, (i) if f(z) = Ai(z), g(x) = 0, and
(ii) if f(z) = 0, g(z) = o1(x), where Ay and oy are as in Exercises 9.1.3,
9.1.2.
9.8.2. Let u(z,t) be the function given by (9.8.2) with bounded contin-
uous f. Prove that u(x,t) — f(x) uniformly for —A <z < A ast \ 0.
9.8.3. (Dirichlet problem for upper half-plane) Use Fourier transforma-
tion to treat the boundary value problem

Au=ty +uy, =0 on H={(r,y) €eR*: —c0 < 2 < 00, y > 0},
u(z,0) = f(z), —oco <z < 00.

(i) Determine the general form of v(&,y) = F*u(z,y)|(£), (&,y) €

H. It is reasonable to require boundedness of the “potential” v on H, or
to require finiteness of the “energy” [, (ui + uz) dxdy, in which case the
integral [, (€*|v]? 4 |vy|?) dédy must also be finite; cf. Section 10.2 below.

(ii) Determine v(€,y) under the additional condition that v must re-
main bounded as y — oo. [Consider £ > 0 and £ < 0 separately.]

(iii) Show that the corresponding function w is given by the Poisson
integral for the upper half-plane,

def i Y

1 1
= — — d > 0.

(iv) Verify that u(x,y) in (iii) satisfies Laplace’s equation whenever f
is bounded on R and locally integrable.
(v) Taking f bounded and continuous, prove that u(x,y) — f(zo) as

z — o, Y \, 0.
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(vi) Determine u(x,y) explicitly if f(x) =1 for a <z < b, f(x) =0 for
x < a and for x > b.






CHAPTER 10

Generalized functions of slow growth: tempered
distributions

It is useful to extend the theory of Fourier integrals beyond the class of
well-behaved functions that are integrable over the whole line. Also, in order
to facilitate the use of Fourier theory in applications, the rules in Section
9.3 should be widely applicable. It would in particular be desirable that
differentiation should be always possible. Following Laurent Schwartz [110],
we show that such ends can be achieved. The theory uses an operational
definition of Fourier transformation as suggested by Proposition 9.4.1: the
action of the transform F f on “test functions” ¢ shall be the same as the
action of f on the transform F¢. We will employ Schwartz’s test-function
space S described in Section 9.6.

If one limits oneself to L' functions on R and their transforms, or to
L? functions, the operational definition succeeds within the class of locally
integrable functions. However, for a really general theory one has to admit
a larger class of objects, the so-called tempered distributions. These are de-
fined as continuous linear functionals on the test space S. More concretely,
tempered distributions turn out to be locally integrable functions of at most
polynomial growth, together with their generalized derivatives of any order.
The class S’ of tempered distributions is closed under multiplication by x
and differentiation. It will also be closed under Fourier transformation; see
Chapter 11.

In our development of Fourier theory, the Hermite functions h,, [Defini-
tion 7.3.5] will play a special role; cf. Korevaar [67]. For the case of L?, the
use of Hermite functions goes back to Wiener [124].

10.1. Initial Fourier theory for the class P

Functions of (at most) polynomial growth on R frequently occur in ap-
plications. We begin with a limited Fourier theory for such functions; the
general theory will come later.

243
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DEFINITION 10.1.1. We say that a locally integrable function f on R is
of class P if there is an integer ¢ > 0 such that

f(z)
(x +1)9
Equality in P shall mean equality almost everywhere on R.

(10.1.1) isin L'(R).

Functions in P are uniquely determined by their action on test functions:

PROPOSITION 10.1.2. Let f in P be such that fR fo =0 for all functions
¢ inS. Then f =0.

Proor. It will be enough to use the Hermite functions ¢ = h,, of Section
7.3. Indeed, suppose that f has Hermite expansion 0:

(10.1.2) cplf] déf/fhn = pn/f(a;)Hn(x)e—%ﬂEQda; =0, n=0,1,2---.
R R
Then
/ f(w)x"e’%ﬁdx =0, VneN,.
R

Thus one may apply Moment Theorem 9.5.2 to conclude that f = 0. [The
function f in that theorem should then be taken equal to the present f
times e~27" ] O

We now define a generalized Fourier transform for certain functions in
P in accordance with Proposition 9.4.1.

DEFINITION 10.1.3. A function g in P is called the Fourier transform
F [ = [ of the function f in P if

/Rgaﬁz/Rffcb, Voes.

Similarly for the reflected Fourier transform h = Frf: [, hé = [, [Fro,
V6.

It Ff = g exists in P, it is unique, and Frf = gg:

/ﬂﬁw:/&md):/ﬂfm
(10.1.3) =/Rff-¢R=/Rg¢R:/RgR¢, Vo

As a consequence of the definition we have general validity of Fourier inver-
sion:
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THEOREM 10.1.4. Suppose f in P has Fourier transform g in P. Then
g has a reflected Fourier transform in P, and f = (1/2m)Frg.
Indeed, h = Frg = FrF f should be a function in P such that

/has:/fRff-¢=/ff-fR¢:/f~FFR¢> VoeS.

R R R R

However, by the Inversion Theorem 9.6.2 for S, the last integral is equal to
Je f 27, so that h =2nf or f = (1/2m)h = (1/27) Fryg.

Convergence relative to test functions is defined as one would expect,
cf. Definition 4.1.3:

DEFINITION 10.1.5. Functions f) in P converge to f in P relative to
the test class S as A — Ag, and [in accordance with later notation| we write

S'limfy=/f as A — Ay,

[ 50— [ 1o voes.
R R
THEOREM 10.1.6. Suppose [ in P has Fourier transform g in P. Then

if

A
96 = (FNEO =8 Jim [ flaje e,
and conversely,
f0) = = (Fag)o) = =8 1 [ gl
(2 =5 (FrY x)—% Jim _Ag(f)e €.

Indeed, introducing the truncated function

) flx) forfz[< A
fale) = {0 for |z] > A

[not to be confused with the reflection fr(x) = f(—=x)], we have

/ f@e e = (FL)©).

Hence by Proposition 9.4.1 for L' functions,

4ffA-¢=AfA-f¢=/if-f¢

(10.1.4) —>/Rf-]-"¢:/R}"f~¢:/Rg¢, Voeds.
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The convergence follows from the integrability of f - F¢ over R when f is
in P.

The proof in the other direction is similar.

As a corollary we obtain

THEOREM 10.1.7. (Extended inversion theorem for L') In the extended
theory, Fourier inversion is valid for every function f in L'(R). More
precisely, setting F f = g, one will have

1 1, A i
f(z) = o= (Frg)(z) = gé" lim g(&)e™4de.

27r A—o00 _A

In particular, if g is also in L'(R), then

f(&) = 5= (Frg)(w) = o / 9(6)de ae. on R.

We need comment only on the last part: if g is in L!'(R), the integrals
ffA g(&)e*¢d¢ will converge uniformly to (Frg)(x) as A — oo. The uniform
limit will agree with the &’ limit in the sense of P, hence a.e.

Exercises. 10.1.1. Given f € P and ¢ € S, prove the existence of

[ro= [ L iyotaas

(x+1i)e

10.1.2. Prove that L? functions f on R and Fourier transforms g = J/C\of
L! functions f belong to P.

10.1.3. Prove that locally integrable functions f) converge to f relative
to S as A — )\ if one of the following conditions is satisfied:

(i) fx— fin L}(R),

(i) fx — f in L*(R),

(iii) fy — f uniformly on every bounded interval and |fy\(z)| < Q(z), a
polynomial, ¥V x, A.

10.1.4. Let p and ¢ be in Ny. Prove that

Nzle™ 0 as A\ — oo
relative to the test class S.
10.2. Fourier transformation in L*(R)

Functions f in L*(R) are in P [Exercise 10.1.2]. We will prove

PROPOSITION 10.2.1. For any f in L? = L*(R), the generalized Fourier
transform f exists and belongs to L>.
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Proor. We will use Hermite series, recalling that the normalized Her-
mite functions h, form an orthonormal basis of L? [Theorem 9.5.4]. Thus
every function f in L? is equal to the sum of its Hermite expansion Y ¢, h,,
where ¢, = ¢,[f] = fR fhyn. Also, a series Y d,h, will converge to an el-
ement ¢ in L? if and only if the series Y |d,|* converges [see Corollaries
6.3.5].

Suppose now that f € L? has a Fourier transform fin the class P. Then
by Definition 10.1.3,

(10.2.1) /f¢ /fcb, VoeS,

where [ stands for [, (also below). Taking ¢ = hy,, we find that

cf. formula (9.3.4). Thus by Parseval’s formula for the Hermite coefficients

cn|f], cf. Theorem 6.3.1,
AP =2x [ 157

312
(10.2.2) 3 e [f] -
It follows that there is a function g in L? (and hence in P) with Hermite

series > ¢, [ﬂ B
(10.2.3) g ¥N" e, [f] he = V2r(=i)"ul flh.

We will show that this function g is indeed the Fourier transform fof
f in the sense of (10.2.1). To that end we apply the extended Parseval
formula [Theorem 6.3.1]:

/ggb—]}LIEO/Z cnlg)hn qb—hmz cnlglen[o
=" calgleal] = > Var (=i)ealfleald]

0

> alflen [d] = [ 15 voes,
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~

hence g = f. ([l
Observe also that by (10.2.3),

J182 =3 |en [A] =22 3 lealiP =27 [ 151

We thus obtain the Parseval formula for Fourier transformation:

(10.2.4) /R’J?'Q:/RW:QW/RWQ’

COROLLARY 10.2.2. Fourier transformation defines a one to one con-
tinuous linear map of L? onto itself.

Indeed, if f € L? and g = Ff, then f = (1/27)Frg = (1/27)Fgr
[Theorem 10.1.4]. The continuity follows from (10.2.4): if f — fy — 0 in L?
then f — fy — 0 in L2.

Fourier transformation on L? is almost an isometry. In fact, under our

transformation F, all norms and distances are multiplied by /2. If one
would redefine Fourier transformation as F* = (1/v2m)F

A e

then the transformation would preserve all norms and distances in L2.

We finally remark that for f in L?, the limits in Theorem 10.1.6 will
exist in the much stronger sense of L2. The following result was proved by
the Swiss mathematician Michel Plancherel (1885-1967; [91]), cf. [92]:

THEOREM 10.2.3. (Plancherel’s theorem) Let f be in L*(R) and let
falx) = f(x) for |x| < A, fa(x) = 0 for |x| > A. Then one may de-
fine a (the) Fourier transform of f by the formula

A

9(&) = (FNH(E) = lim (Ffa)(€) = lim y fla)e " dz,

where the limit is taken in the sense of L*(R). Conversely,
1 A

o (Fro)w) =5 Jm [ g(e)ede

2 T A—oo J_4

fx) =

also in the sense of L?. The functions f and g satisfy the Parseval formula
(10.2.4).
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PROOF. Let f be in L? and let ¢ be its Fourier transform fin the sense

of Proposition 10.2.1; similarly g* A J/C\A We know already that f and g
satisfy the Parseval formula (10.2.4), and so will f — f4 and g — g*. Thus

i Jla=aP= [1r-n= ([ "+ [")ise

The right-hand side will tend to zero as A — oo since | f|? is integrable over
R.
The proof that Frg = lim Frg4 is similar. O

ExAMPLES 10.2.4. The function f(z) = (1/2)oy(z) has Fourier trans-
form g(&) = (sin€)/¢; see Exercise 9.1.2. Hence by the Parseval formula,
1

de — 2%/R(1/4)0f(x)dx _ 27r/ (1/4)dz —

-1

sin 5
e
For f(z) = 1/(x + i) one may use the Residue Theorem to show that
A

(10.2.5) lim :
A—oo _A X +Z

for all £ # 0. Indeed, let Cy with A > 1 denote the semi-circle z = Ae®,
0 <6 <« [with center 0 and radius A] in the upper half-plane if £ < 0, and
the semi-circle z = Ae®, 0 > 6 > —r in the lower half-plane if € > 0. Then

A .

1 » f
(/ +/) e %y = 0 . %§<0’
A Jo,) 2+ —2mie~¢ if £ > 0;

cf. Example 1.7.1. Careful estimates show that as A — oo,

e r
(10.2.6) pal6) < / e 5y
Ca

e dy = —2mie U (€)

Z+1

tends to zero pointwise for £ € R\ 0, as well as boundedly. Hence by
Lebesgue’s Theorem on Dominated Convergence, p(§) — 0 relative to test
functions. Conclusion: the limit in (10.2.5) exists relative to test functions,
and it has the value given there.

We verify the Parseval formula for the present Fourier pair:

/ |2mie U (€)|"de = 4n / e %d¢ = 272,
R 0

2
1
27r/ dx:27r/ 5 dx = 27°.
R R L +].

T+
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Exercises. 10.2.1. Taking «, B real, > 0, compute the Fourier transforms

of
1 1 T 1

r—i3 x+if 22+ 062 x—a—if
10.2.2. Use the Parseval formula to compute

sint ¢
I

10.2.3. Prove the L? convergence in the second formula of Plancherel’s
theorem.

10.2.4. One can show that p4(¢) in (10.2.6) is the L? Fourier transform
of the function f}(z) = f(x) — fa(x) that is equal to 1/(z + i) for |z| > A
and equal to 0 for |z| < A. Deduce that

/R lpa(&)|?d¢ = 4 {(7/2) — arctan A},

a quantity that tends to 0 as A — o0.
10.2.5. Let f be in L*(R). Prove Plancherel’s formulas

c%/f .

/ f zsw f(x) 6_1&7._1 dx

5 |z[>1 —ir

for almost all £ € R, and similarly for f(z) in terms of f(f ).
Hint. Compute fo Fa(t)dt and let A — oc.

10.3. Hermite series for test functions

In our study of tempered distributions, Hermite series play a role anal-
ogous to Fourier series in the case of periodic distributions (distributions
on the unit circle), cf. Chapter 4. As preparation for the general theory we
will characterize the functions ¢ in S [Section 9.6] by their Hermite series.

Recall that the normalized Hermite functions have the form

hn(z) = ann(x)e_%‘”2 = pn(x — D)”e_%‘”?, n € No,

where p, = 272" (n!)~2 74 [Section 7.3]. They satisfy the relations
(z + D)hy = V21 hy_1, (. — D)hy =20+ 2hp i,
Hh,, = (2° — D*)h,, = (2n + 1)h,,.
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By combination one finds that
(10.3.1) Thy =/ (n)2) hy_1 +/(n+1)/2 hpys,
(10.3.2) Dhy, =~/ (n/2) hpy_1 — \/(n+1)/2hpyq.

LEMMA 10.3.1. There are absolute constants o and C' [for example,
a =1 and C = 6] such that

(10.3.3) |hn(2)] < Cn®, VzeR, VneN.

PROOF. Since |h,(z)| is even we may take > 0. If n is odd, h,(0) =0
while for even n, using (10.3.1) with x = 0 and n — 1 instead of n,

170 (0)] < [o(0)] = 777 < L.

Integration of (10.3.2) [with n = k& > 1] from 0 to z, application of Cauchy—
Schwarz and the relation [;°h? = 1/2 now give

[ ()] < [hi(0)] + /(R/2) /Ox s |+ v/ (K + 1)/2/; |41

3Vk for 0 <z <1,
3Vkx for x> 1.

Combination with (10.3.1) for > 1 gives (10.3.3) with a = 1. O

<1+ (1/2VEVz + (12VE+ 1z < {

[Remark. Using more sophisticated tools one can prove an inequality
(10.3.3) with @ = 0, and even a = —1/12; see [117], formula (8.19.10).]

COROLLARY 10.3.2. There are absolute constants Cpq such that
(10.3.4) |27 Dh,,(2)| < Cpgn3P* 394, Yz e R, ¥neN.
[Use (10.3.1)-(10.3.3) with a = 1]

THEOREM 10.3.3. (Characterization of S by Hermite series) Let ¢ be
a continuous L? function on R. Then ¢ is in S if and only if for every
nonnegative integer r, there is a constant B, = B,.(¢) such that the Hermite
coefficients c,[p] = [ dhy, satisfy the inequalities

B,
n

PROOF. (i) Let ¢ be in S. Then H"¢ = (22— D?)"¢ is also in S [Section
9.6], and hence in L?. It follows that > o° ‘cn[H’”d)HQ < 00, and thus

lea[H'0]| < C = C\(¢), VneN,.
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Now for any ¢ € S,

/Hw-hn:/(xQ—DQ)w-hn:/w-th:(2n+1)/whn.

Hence
cn[H 9] = (2n +1)"ea[9],
which by the boundedness of the sequence {|c,[H"¢]|} implies (10.3.5).

(ii) Let ¢ be an L? function such that (10.3.5) holds for every r. Because
of (10.3.4) with p = 0, the series

> nldlhn, Y cald]Dhn, > ca[d] Dy,

then converge uniformly on R. By the uniform convergence of Y ¢,[é]h,
on every interval and its L? convergence to ¢, the sum >_ ¢,[d]h, is con-
tinuous and a.e. equal to ¢. If necessary, we modify ¢ on a set of mea-
sure zero to make it equal to Y ¢,[¢]h, everywhere. It now follows from
the uniform convergence of Y ¢,[¢]Dh,, that ¢ is of class C'(R) and that
D¢ = > ¢,[¢]Dh,. Continuing in this way, one finds that ¢ is of class
C?(R) and that D¢ =Y ¢,[¢]D?h, for every r, hence

2P Dip = Z Cnl@)2? Dh,.

Relations (10.3.4) and (10.3.5) with » > (p/2) + (¢/2) + 2 now show that
2P D¢ is bounded on R for every choice of p and ¢, so that ¢ isin §. [

COROLLARY 10.3.4. For every function ¢ in S, the Hermite series
> cnl@)hn converges to ¢ in the sense of S [Definition 9.6.3].

Indeed, (10.3.4) and (10.3.5) with » > (p/2) + (¢/2) + 2 imply that for
all z € R,

2" D (¢ — s1.]¢])| = ‘Z cn[p)2? D,

n®/2)+(a/2)+1

SBGCqZ T—}O as k — oo.
n>k

Thus 2P D4sg[¢p] — P D¢ uniformly on R. Since this holds for all p, ¢ € Ny
we conclude that si[¢] — ¢ in S.

Exercises. 10.3.1. (A challenge!) It would be nice to have a simple proof
for the uniform boundedness of the family {h,} on R. Try to determine a
constant C' such that |h,(z)] < C, Vx, n.
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Hint. Next to the relations (10.3.1), (10.3.2), the Exercises 7.3.7, 7.3.8
and 9.7.2 may be useful.

10.4. Tempered distributions

We are now ready to introduce distributions of slow or polynomial
growth on R — so-called tempered distributions. As before, let S be the
test space of “rapidly decreasing functions with rapidly decreasing deriva-
tives”, with the associated notion of convergence [Section 9.6].

DEFINITION 10.4.1. (Laurent Schwartz, about 1950; cf. Schwartz [110],
Hoérmander [52]) A tempered distribution 7" on R is a continuous linear
functional on the test space §. Thus in particular

<T,¢;j >—=<T,p> whenever ¢; — ¢ in S.

ExAaMPLES 10.4.2. (i) Every function f of at most polynomial growth
on R [Definition 10.1.1] defines a tempered distribution 7 by the formula

<Tpo>=[ 1o, voes.

Indeed, if ¢ > 0 is so large that (10.1.1) holds and ¢; — ¢ in S, then

f(z)
(x +1)4

| < Ty, 0> — <Tf,¢j>}§/

<[] L2

(x4 1)9
The correspondence f « T} is one to one for f € P [see Proposition 10.1.2].
We identify Ty with f, and usuallly write < 7%, ¢ > simply as < f, ¢ >.

(i) Certain functions that are locally integrable, apart from simple sin-
gularities, also have representatives in the class of tempered distributions.
Thus the function f(x) = 1/x leads to the principal value distribution pv 1/x
through the formula

<pvl,qb >dﬁfpv/ o(x da:d—efhm lqb(x)dx

eN0 |z|>e x

~tig { [ootoglel] "+ [+] 7= [ toglel-oyic

- / loglz] - ¢(e)dx, Ve S;
R

(@ + ) {é(x) = ¢;(2)}|dw

da-sup (@ +3)'40(@) - 6,(x)}] =0 as j— .
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cf. Example 4.2.6. Other examples may be found in Exercises 11.2.10 and
11.2.11.
(iii) The delta distribution, §, on R is defined by the formula
< 0,0 >=¢(0), VoeS.

The translate “6(x — a)” is denoted by d,: < 04, ¢ >= ¢(a).

(iv) With the delta distribution dr on the unit circle I" we may associate
the periodic delta distribution 65 on R with period 27. It is given by the
formula

(B, ¢) = > 6(2mn),  VoES.

n=—oo

Other periods also occur, for example, (67, ¢) = 3> ¢(n). We will

[e.o]

verify the continuity of the functional 65.". Let ¢; — ¢ in S. Then
(2% + 1)|p(z) — ¢;(x)] < e for j > jo(e) and all x € R.

Hence

’<55§r7¢> - <5§;r7 ]>’ < Z ’¢(27T77,) - ¢](2ﬂ-n)‘

5 7 142 —— | =(13/12 .
) 6;,; 4mn? +1 =€ < * 21: 47T2n2> (13/12)e, ¥j > Jo

Every distribution on the unit circle may be interpreted as a tempered
distribution of period 27; cf. Exercises 10.6.1, 10.6.2.

DEFINITION 10.4.3. (Simple operations) Linear combinations A7 +
ATy, translates T,.(x) = T'(z — ¢), the reflection Tgr(x) = T'(—x), and prod-
ucts wT' = Tw of T and C* functions w are defined in the obvious manner;
cf. Section 4.2. For the definition < Tw, ¢ >= < T, w¢ > one has to require

that w and its derivatives w’, w”, - -+ are bounded by polynomials.
Important is the notion of equality Ty = T on an open set 2 C R:
(10.4.1) T=T1—T,=0 on Q if <T,¢>=0

for all test functions ¢ with support in €2; cf. Definition 4.2.8. The support
of T' is the smallest closed set outside of which T is equal to zero.

ExAaMPLES 10.4.4. The distribution § is even: §(—xz) = §(z); the dis-
tribution pv 1/z is odd. One has §(z) = 0 on (0,00) and on (—o00,0): the
support of ¢ is the origin. It follows that § cannot be equal to a function in
P; cf. Section 4.2. Other properties are - 0(z) =0 and x - pv1/x = 1.
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DEFINITION 10.4.5. (Convergence of tempered distributions; the space
S’) We say that tempered distributions T} converge [or converge weakly| to
the tempered distribution 7" on R for A — )\ if

<Ty¢o>—<T,¢p> as X\— A, VopeS.

With this notion of convergence the tempered distributions on R form the
space &', the space dual to S.

EXAMPLES 10.4.6. (i) Let fy, with A — Ao, and f be functions of the
class P such that f\(z) — f(x) for almost all . Suppose, moreover, that
there is a fixed polynomial Q(x) such that |fi(z)| < Q(z), Vx, A. Or more
generally, suppose that there is an integer ¢ > 0 such that

fr(x) . f(x)

(10.4.2) CE TR T in L'(R).
Then f\ — fin S
() d F@) = D@ g de
[ 1@ = ot < [ (DD @ 1 i)

[Under the first condition one may also use Lebesgue’s Dominated Conver-
gence Theorem to prove that [ fap — [ f¢.]

(i) In applications one encounters all sorts of delta families {f\} on R,
that is, families of functions in P that converge to the delta distribution in
S'. Specific examples are

sin Ax sin’ 1 Az
— - 6(z) and WQ%@Q — §(x) as A — oo,
€_$2/(4t) y

e — d(x) as t\,0, W—uﬂx) as y \, 0.
For proofs that [ fi¢ — ¢(0) in these cases for all functions ¢ in S, cf. the
proof of Theorem 9.2.2, Remark 9.2.4, Example 9.8.1 and Exercise 9.8.3.
(iii) The operations of translation, reflection, multiplication by e* or
by w(z) as in Definition 10.4.3 are continuous on §’. For example, if T, — T
then e}, — e*T.
(iv) The infinite series > > d(z — 2wn) converges in S’ to o5y (z).
(v) If a Hermite series Y ¢,h, converges to T"in &', then

k
<T.hy >= lim <; cjhj,hn> =c,, Vn.
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DEFINITION 10.4.7. For a tempered distribution 7" one defines the Her-
mite series as

T~ calTlhn,  with ,[T] =< T, hy > .
n=0

PRrROPOSITION 10.4.8. The Hermite series of a tempered distribution T
converges to T in S'.

PROOF. For ¢ in S one has s;[¢] = Zlg Cnldlhn — ¢ in S [see Corollary
10.3.4]. Hence for a continuous linear functional 7" on S,

k
<T,¢> =lim < T, s[¢] >=lim Y ¢,[¢] < T, h, >
0

(10.4.3) =1lim > e[Tlealg] = calTleald].

Thus for every ¢ in S,

k k
<siT)d>=) ) <hnd>=Y cu[Tlenld] > < T,¢>.
0 0

O

It will follow from Section 10.6 that the series in the final member of
(10.4.3) is absolutely convergent.

ExXAMPLE 10.4.9. One has

o
1~ Z anh,, where a, = / h,,.
0 R

Integrating formula (10.3.2) with n—1 instead of n, one finds that y/n/2 [, by
is equal to \/(n —1)/2 [ hy—2, so that

0 if n is odd,
n—1

1
e () g

Exercises. 10.4.1. Prove that for C* functions w as in Definition 10.4.3,
one has w(x)d,(r) = w(a)dq(x).
10.4.2. Prove that

N

if n = 2k.
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0 (w30) = [ 1 {0) ~ ol-a)ds. oS

1 1
(ii) pv = = — on (0,00) and on (—o0,0);
r _x

1
(ili) z-pv—=1on R.
x

1
10.4.3. Let g.(z) = p for |z| < 3¢, ge(x) = 0 for |z| > 3e. Compute

lim.\ o g- in &'
10.4.4. Verify the convergence results in Examples 10.4.6.
10.4.5. Let g be an integrable function on R with ng = 1 and let f

be a bounded uniformly continuous function on R. For 0 < ¢ <1 one sets
1 T

ge(z)=-g (—) Prove that for € \ 0,
e” \e

() g.—8inS
@ (xN@) = [ 0wite-vdy= [ f- gty
R R
— “(dx f)(x)” = f(z), uniformly on R
10.4.6. Prove that 6 =Y " b,h, with

— 0 if n is odd,
by = hn(0) = —y/ —— b9 = 3 .
© no (—1)k<2k) okr=i if n = 2k.

k

10.4.7. Solve the equation z7'(x) =0 in §'.

10.4.8. Determine all solutions of the equation 27'(z) = 1.

10.4.9. Show that the Hermite series > o~ a,h, for f = 1 converges to 1
at the origin.

10.4.10. Prove that S lies dense in &’. That is, every tempered distri-
bution 7" is S'-limit of test functions ¢y.

10.5. Derivatives of tempered distributions

Suppose first that T is equal to a function f on R which is bounded
by a polynomial and can be written as an indefinite integral: f(¢) = ¢ +
f f'(v)dv. Then integration by parts gives

<flo>= /f¢ [£6]> /f¢>——<f,¢>>
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For an arbitrary tempered distribution 7" one defines the distributional de-
rivative DT by a corresponding formal integration by parts, as in the case
of periodic distributions; cf. Section 4.5.

DEFINITION 10.5.1. For a tempered distribution 7', the derivative DT
is the tempered distribution given by the formula

(10.5.1) <DT,p>% —<T,¢/> VeS8,

ExaMPLES 10.5.2. One may consider § as the derivative of the unit step
function

1 for x>0,
0 forx<O.

(10.5.2) Ulz) = 1,(z) € {
Indeed, since U € P, one has

<DU¢>% _ U ¢ >——/U¢’
R

/d) »(0)=<6,¢>, VopeS8s.

Example 10.4.2 (ii) shows thatindexderivativelof log |z

1
Dlog|z| = pv —.
T

For any function f in P, whether differentiable or not, the class &’ contains
distributional derivatives Df, D?f, --- of every order.

For T in & and C* functions w as in Definition 10.4.3, one has the
Product Rule
D(Tw)=DT -w+T '
The distributional derivative DT determines T up to a constant:

PROPOSITION 10.5.3. Let DT =0 on (a,b) C R. ThenT = C on (a,b),
a constant function.

PROOF. For the case (a,b) = R one can give a quick proof with the aid
of Hermite series. Indeed, by Definition 10.5.1 and formula (10.3.2),

< DT, h,>=—-<T,h, >

= —<T,/(n/2)hy—1 —~/(n+1)/2hps1 >
=V (n+1)/2cun[T] = /(n/2) coa[T].
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This holds for all n > 0 if we set ¢_1[T] = 0. Now suppose DT = 0 on R.
Then < DT, h,, >= 0, Vn, hence

el = /=L e i), Yn> 1
n

This is the same recurrence relation as is satisfied by the Hermite coefficients
a, of the constant function 1; see Example 10.4.9. Thus

cnlT/enll] = co[T)/co[l] forn=2,4,---,
T =cu[l] =0 forn=1,3,---.

It follows that

= colT] & co[T]
T = 202 cn|T)hy = ol 20: cn[1])hy = o] 1=0C,

For the case (a,b) # R, cf. Exercises 4.5.6, 4.5.7. O

THEOREM 10.5.4. Differentiation is a continuous linear operation on S':
if Ty — T inS" as A — Ao, then DT\ — DT in S'. In particular convergent
series in 8" may be differentiated term by term.

Indeed, if < T\,9 >— < T,1 > for all test functions v, then
<DTly,¢>= —<T\,¢/ >— —<T,¢/ >=< DT, ¢ >
for all ¢ in S.

COROLLARY 10.5.5. (Test for convergence in 8") The following condi-
tion is sufficient for convergence T\ — T in &’ as A — Ag: There exist
functions f), and f in P and a pair of nonnegative integers s and ¢ such
that

fi(z) f(z)
10.5.3 T, =D’ T = D?
(10:5:3) =D L v T
uniformly on R or in L}(R) as A — \¢; cf. Example 10.4.6 (i). [Uniform
convergence in (10.5.3) implies L' convergence when ¢ is replaced by g+ 2.]

It will follow from Theorem 10.6.3 below that the above it strong con-
vergence Ty — T is also necessary for (weak) convergence T\ — T in &'.
Exercises. 10.5.1. Verify that the functional DT on S defined by formula
(10.5.1) is linear and continuous.

10.5.2. Let g be an indefinite integral on R with ¢’ in P. Prove that |g|
is bounded by a polynomial, and that Dg = ¢’ on R.
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10.5.3. Compute D|x| and D?|z|.
10.5.4. Prove that for f € P and ¢ € S,

<Df.6>= (-1 /R Fo,

10.5.5. Verify the Product Rule in Examples 10.5.2.
10.5.6. One defines the ‘principal value functions’

p.v. log(x £10) as li\r_% p.v. log(z £ ie),

and the distributions

1 1
li in S'.
zLi0 C Noztie
Prove that in distributional sense,
1 1
X0 D p.v. log(x +£i0) = pv - F mid(x).

10.5.7. Treat the eigenvalue problem (2? — D*)T = AT in §'.

10.6. Structure of tempered distributions
We begin with an auxiliary result for Hermite series.

PROPOSITION 10.6.1. A Hermite series Y~ d,h,, convergesin S’ [hence,

converges to a tempered distribution] if and only if there are constants B
and 3 such that

(10.6.1) |d,| < Bn®, n=1,2---.

ProOOF. The proof is similar to that of Proposition 4.6.1 for Fourier
series of periodic distributions, but here we use the operator H = 2% — D?
instead of D. Note that H is continuous on &'.

(i) Supposing that (10.6.1) is satisfied, let ¢ be a nonnegative integer
greater than 4 1/2. Then

'an B2 B2

Gnt1)i| Sppems e ML

where § = 2¢g—1—24 > 0. Thus the series Y ° |d,,/(2n+1)?]? is convergent,
and hence the Hermite series

0 dn
Ty
zo: (2n+1)4
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will converge to a function g in L*(R). Tt follows that > d,h, = Hlg in &',

(ii) Suppose now that Y ;° d,h, = T in &'. Then the series > ° d,,c,[¢]
converges to < T, ¢ > for every function ¢ in S; cf. (10.4.3). It now follows
as in the proof of Proposition 4.6.1 that the coefficients d,, must satisfy a
set of inequalities (10.6.1); see also Theorem 10.3.3 on Hermite series of test
functions. 0J

THEOREM 10.6.2. (Structure theorem) The following three assertions
are equivalent:
(1) T is in S';
(i) There exist g in L*(R) and q in Ny such that T = Hg;
(i1i) There exist f in P and s in Ny such that T = D*f.

PrOOF. It will be enough to prove (i) = (ii) = (ili). Hence let T'
be in &' Then T' = > d,h, in & where d,, = ¢,[T] =< T,h, > [see
Proposition 10.4.8]. Thus by Proposition 10.6.1 the coefficients d,, satisfy a
set of inequalities (10.6.1), and by part (i) of the proof for that proposition,
T can be represented in the form HYg with g € L?.

One may next prove inductively that H%g can be written as D* f, with
f € P, for any ¢ € Ny. Indeed, it is correct for ¢ = 0 since L?> C P. Suppose
now that the result has been proved for a certain ¢ > 0. Then

HIg = (2* — D*)D*f = 2*°D* f — D***f  with f € P.

In order to write 22D?f as a derivative of order 2¢ + 2 of a function in P

one may use two steps as follows. Observe that xD? f; with f; € P is equal

to

DP(zf1) — pDP~' fy = D fo = D" f3,
where
T x
fg = Z’fl —p/ f1 and f3 = / f2 are in P.
0 0
OJ
Refinement of the above method as in Section 4.6 gives the following

THEOREM 10.6.3. (Characterization of convergence in §’) The following
four statements about tempered distributions Ty and T, where A\ — \g, are
equivalent:

(i) Tx — T (weakly) in S';
(i1) co[T)] = cu|T) as A — Ao for each n € Ny and there are constants
B and (8 such that

lea[Th]] < BnP, n=1,2,---, VX close to Ao;
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(iii) There are L? functions gy and g, and a nonnegative integer q, such
that for all X close to Ao,

Ty =Higy, T =Hig, gr—g in L*(R) as X — A;

(iv) There are functions fy and f in P, and nonnegative integers s and
q, such that (10.5.3) holds for all X close to \g.

One may say that (ii), (iii) and (iv) all describe “strong convergence” of
T)\ to T

Theorem 10.6.3 may be used to show that the space &’ is complete; cf.
Theorem 4.6.5.

REMARK 10.6.4. The space of tempered distributions may, in fact, be
obtained by completion of the space of integrable functions on R under the
concept of convergence relative to test functions of class S; cf. [68].

Exercises. 10.6.1. Let T be a distribution on the unit circle I'. Prove that
there is a 2m-periodic distribution 7P on R as follows. The restriction of
TP to any open interval (a, b) of length < 27 is equal to the restriction of T
to the subarc 7 of I" which corresponds to (a,b) modulo 2. Here ‘equality’
is of course defined with the aid of test functions ¢ whose support belongs
to (a,b) or 7.

Hint. Use the representation of Theorem 4.6.2.

10.6.2. Let TP be a tempered distribution of period 27w. Prove that
there exist a periodic integrable function fy of period 27, a nonnegative
integer s and a constant ¢ such that TP = ¢+ D?fy. Deduce that to every
distribution TP there is a distribution 7" on the unit circle I' such that T’
and TP are related as in Exercise 10.6.1.
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Fourier transformation of tempered distributions

The class P of Section 10.1 is too small for a good theory of Fourier
transformation. For example, the function f(x) = 1 cannot have a Fourier
transform within P. If it did, the prescription of Definition 10.1.3 would

require that
<]—"1¢>—/}"1¢ /1]—"d) /qﬁ )€

(11.0.2) =2mp(0) =< 2718, >, Vo eS.

However, the distribution 276 is not in P! We have to extend P to the class

S’ of so-called tempered distributions in order to get a symmetric theory.
Cf. books such as [110], [111], [27].

11.1. Fourier transformation in &’

The following definition extends Definition 10.1.3 for P and says that
always, “The effect of FT' on ¢ must be the same as the effect of T on F¢”.

DEFINITION 11.1.1. Let T be in &'. Then FT = T and FrT =T are
the tempered distributions given by

<FT,o>=<T,Fp> < FrT,0>=<T,Frp>, VopeES.

These formulas define FT and FrT as continuous linear functionals on
S, because F and Fr are continuous linear operators & — S. Observe also
that

FrT = (FT)g = FTg,
since
<FRT, ¢ >=<T,Frop>=<T,For >
=< FT,¢p >=<(FT)g, ¢ >,
and similarly for the second equality.

263
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THEOREM 11.1.2. (Inversion and continuity) Fourier transformation de-
fines a one to one continuous linear map of S’ onto itself. In S’,

1 1
-1+ -1 _ *
F = o Fr, Fg o F.
PRrROOF. (i) Let T be in &’. We will prove that
1 1
— FrFT = —FFrT =T.
27 2
Indeed, the inversion theorem for S [Proposition 9.6.2 shows that

<FrFT, 0 >=<FT,Frp>=<T,FFrop>=2m <T¢ >,

and similarly with FFpg instead of FrF. In particular F will be injective
[FT = 0 implies 7" = 0] and surjective [I' = F(1/2m)FgT].
(i) Suppose Ty — T in &’ as A — Ag. Then FT) — FT:

<FI\,p>=<T\,Fop>—<T,Fo>=<FT,0>, VopeS§.

ExAMPLES 11.1.3. The computation in (11.0.2) and inversion give
Fl=Frl =216, Fré=Fo=1.
The second formula is in agreement with formal calculation:
(Fo)(&) = “/5(x)ei5xdx” = ¢ "
as well as with Definition 11.1.1:

< F86>= <5,$> - 5(0):/R¢(x)dx:< 16> .

=1,

=0

One could also use Hermite series [cf. Exercise 10.4.6 and Example 10.4.9]:

(11.1.1) FY  eahn =Y cnFhy=>_ V2r(=i)"c,hn.

PROPOSITION 11.1.4. In &', rules (i)—-(vii) of the Table in Section 9.3
are valid without any restrictions.

Proofs may be derived from the corresponding rules for § and Definition
11.1.1. However, it is more elegant to argue by continuity: the various oper-
ations, including F, are continuous on &’, and every tempered distribution
is a limit of test functions. [Think of the Hermite series for T
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ExampLES 11.1.5. (i) For p € Ny,
(F2P)(€) = (D)P(F1)(§) = 2mi" D5 (E).
(ii) Let T'(xz) = pv (1/z), so that T (x) = 1. Thus by Fourier transfor-
mation,

iDT(€) = 216(¢), and hence T(€) = —2milU(€) + C.

Here U is the unit step function [Examples 4.5.3]. Since T is odd, so is T ,
hence C' = mi. Thus the signum function of Exercise 1.2.5 will show up:

f(f) = —misgné.

Exercises. 11.1.1. Derive the rule DT = «£FT for tempered distribu-
tions 1" by computation of < FDT, ¢ >.

11.1.2. Use Fourier transformation to determine all tempered solutions
T of the equation 27" = 0. Also discuss the equation 22T = 0.

11.1.3. Successively compute the Fourier transforms of

, ) sin Ax
e cosAr, sin Az,

(A € R).

11.1.4. Verify relation (11.1.1) on termwise Fourier transformation of
Hermite series and use it to compute F9.
11.1.5. Compute the Fourier transforms of

1 1
x+i0"  x—1i0’
11.1.6. Compute the Fourier transforms of pv 1/(z—a) and pv 1/(z*—a?)
fora € R, a # 0.
11.1.7. Use Fourier transformation to determine all tempered solutions

I = I(t) of the differential equation LDI + RI = §(t) on R. [Cf. Exercise
4.5.10]

U=1,, Ur=1_, sgnz.

11.2. Some applications

As a nice application of Fourier transformation we will obtain Poisson’s
summation formula. By way of preparation we prove

LEMMA 11.2.1. In 8" one has

oo
E et = 2mob .

n=—oo
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PROOF. Leaving out the constant term and integrating twice, one ob-
tains a uniformly convergent series, hence the given series converges to a
distribution 7" in &’. One integration of T'— 1 gives the familiar series

N o .
emnr sin nx
E — = E 2 .
mn n
n=1

n#0

The sum of this series is equal to 7 — z on (0, 27); cf. formula (1.1.3). By
periodicity, the sum function on R will have a jump 27 at each point 27k.
Thus, by differentiation,

T—1= Y 2nd(z—2mk) — 1 =2md5 — 1.
k=—o00
The final term —1 is the classical derivative of m — . O

THEOREM 11.2.2. (Poisson’s sum formula) For every test function ¢ in
S and its Fourier transform ¢,

o0 [ee)

(11.2.1) > o)=Y é(n).

n—=——oo n=—oo

PROOF. The left-hand side of (11.2.1) is equal to

1 =
<55§r’]_—¢> - <F557?r7¢> - <F [% Z 62n$] 7¢>

=S <%f[ - 1],¢> =Y <ole—n), o) >= 3 6(n).
O

EXAMPLE 11.2.3. We apply (11.2.1) to ¢(z) = e~ with a > 0. In this
case ¢(€) = \/(/a) e €/ 5o that one obtains the identity

00 ’/TOO
Can2 2.2
E e — _E:ewn/a'
a
—00 —00

Poisson’s formula actually holds for a class of well-behaved functions
considerably larger than S; cf. [95].
Fourier transforms can often be computed by using continuity.
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THEOREM 11.2.4. (Evaluation theorem) Let f be in P and let f4 be the
truncated function equal to f for |x| < A and equal to 0 for |x| > A. Also,
let € > 0. Then

A
=5 Jim fa(€) =8’ lim fx)e " dx
S0 ey
=S ll{% /Rf(x)eg|x|ei5xdx.

Indeed, by Definition 10.4.5,
f(x) =8 lim fa(z) = S’ lim f(x)e =],
and Fourier transformation is continuous on S'.

EXAMPLE 11.2.5. For a > —1, the function f(z) = |z|* is in P and

(F|x‘a)(§) =& lim / |x‘a€_5‘$‘€—i§$dl_
e\0 R
— 0.8t [ 4 cos e da
e\0 0

For the evaluation of the limit we will use the Laplace transform
(11.2.2) / % dr =T(a+1)p.v.s* ! Res>0.
0

A proof of (11.2.2) may be obtained from Cauchy’s theorem and the
integral for the Gamma function. Set s = pe? with p > 0 and |0| < 7/2, so
that p.v. s = log p + i6. Writing pe?’x = z one then has

0

) oo » ooe
— — ? ; p— p— p—
/ x%e sxdmz/ %P T dr = (pe'?) 1/ 2% *dz
0 0 0

= (peie)al/ t*etdt =T(a+1)p.v.s > L
0

Returning to our Fourier transform, we may take £ > 0 to obtain
(Flz]*) (&) =2T(a+ 1) S li{r(l) Rep.v. (e +i€) **

= 2T'(a + 1)¢ " 'Re e~ (*TD@/2)1,

For the final step we impose the condition a < 0, so that £~ is integrable
from 0 on. Since the complete answer for £ € R must be even, we conclude
that

(11.2.3)  (Fla|*) (€) = =2 (a + 1) sin(an/2) - €], —1<a<O.
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The special case « = —1/2 reveals another eigenfunction of Fourier
transformation in S’

Exercises. 11.2.1. Use the relations

1=1lim1ly = lime " = lim e~

in &’ for the computation of F1.
11.2.2. Use the relation pv1/z = lim z/(2? + £2) for the computation

of Flpv1/z].
11.2.3. For small § > 0 one will expect that

=, sin%nd sin? &
Z 262 0~ Ré_—Qdf:’/T.

n=—oo

(i) Prove that the approximation is exact for 0 < § < 7.

(ii) Determine the sum of the series for other values of 4.

11.2.4. Does one get the right answer if one applies Poisson’s sum for-
mula to ¢(z) = e~ ?

11.2.5. Compute FoP" = F[> > _ 6(x—an)] for a > 0. What

happens if a = V277

11.2.6. Compute F [\x|*%} and F [|x\*%sgnx].

11.2.7. Determine all eigenvalues of F as an operator on &’. Characterize
the ‘eigendistributions’ by their Hermite series.

*11.2.8. The Bessel function Jy(x) is even and tends to zero as © — oo;
cf. Examples 8.1.3, 8.1.6 and Exercise 8.1.10. Use the power series for Jy(x)
to derive that its Fourier transform is given by

g(g) = Sl lim b Jo(l‘)e_ex (e_ifl" + elf$>dx
eN\0 0
=8 ?{% [p.v. {1+ (e+ if)Q}_% +pv. {1+ (e - 7;5)2}—%}
CJea-¢)7 for ¢l <1,
10 for €] > 1.

Hint. One may start with ¢ > 1 for termwise integration; cf. Exercise
12.1.4.
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*11.2.9. Show that the Fourier transform g(&) of f(z) = Jo(x)sgnz is
(for £ > 0) given by

o0

g(§) =&’ lim Jo(x)e =" (e—isx _ eifx)dx
eN\0 0
_ )0 for 0 < ¢ <1,
) 202 —1)"r fore > 1
11.2.10. For Rea > —1 one has the following formula in P:
1
(11.2.4) . — U/

(a+1)(a+2)

For Rea < —1 (but a # —1,-2,---), tempered distributions |z|* may
be defined recursively by formula (11.2.4). Prove that the resulting fam-
ily of distributions {|x|*} depends analytically on a for a # —1,-2,---.
More precisely, the function fy(a) = (|z|* ¢(x)) is analytic for every test
function ¢. Deduce that the family of Fourier transforms {F|z|*} also de-
pends analytically on a. Can one conclude that the formula for Flz|%
obtained in Example 11.2.5 for —1 < a < 0, is valid for all complex a with
a#0,41,42, .7

11.2.11. A similar story applies to the functions or distributions |z|*sgn x.
Show that

= Jal*!

1
|z|%sgnz = —— Dl|z|*t" and z|z|* sgn .
a

+1
Deduce that for a & Z,

Fllz|*sgn ] (€) = —2il'(a + 1) cos(am/2) - |£]7* 'sgn .

11.3. Convolution

Convolution is important for many applications, but it can be defined
only under certain restrictions. For tempered distributions 7" and test func-
tions ¢ one sets

(11.3.1)  (T*¢)(z) < / T(y)p(x —y)dy” =< T(y), p(x —y) > .

R

The result will be a C* function w of the type described in Definition 10.4.3.
[Write T' = D* f to verify this.] If T has compact support, T * ¢ is again a
test function. Example:

(11.3.2) §x¢=¢.
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In the case of L' functions f and g, with ¢ of compact support, Fubini’s
theorem gives

<fxg.0> =/{/f(y)g(a:—y)dy} é(z)dx
- /f(y)dy/gR(y—x)qs(g;)dx < flgpkb >

One may use an analog of this formula to define a convolution for special S
and T"

DEFINITION 11.3.1. For S and T in 8’ with S of compact support, one
sets

(11.3.3) <S*xT,p>=<Tx*S,0>=<T,Spx¢p>.

Using (11.3.3) one finds in particular that < § T, ¢ >=<T,0 * ¢ > is
equal to < T, ¢ > for all ¢, hence

(11.3.4) dxT=Tx6=T, VTeS§.

In words, ¢ plays the role of a unit under convolution in S’.
PROPOSITION 11.3.2. In the cases described by (11.3.1) and (11.3.3),

(11.3.5) F(Tx¢)=T¢, F(ST)=S8T.

For T of compact support, one can show that the Fourier transform T
is a polynomially bounded C* function, as are the derivatives of T

Exercises. 11.3.1. Verify that § acts as unit element relative to convolution
in §’. More precisely, prove formulas (11.3.2) and (11.3.4).

11.3.2. Let f be an integrable function on R with compact support.
Prove that

(i) (&) can be extended to an entire function (a function that is analytic

everywhere) f(¢) = F(& + in):

(ii) f(€) and its derivatives are polynomially bounded on R.

11.3.3. Let f and g be integrable functions on R such that f x g = 0.
Given that f has compact support and that g is not the zero function, what
can you conclude about f7

11.3.4. Let f be any integrable function on R — compactly supported or
not — such that [, f = 0. Prove that f 1 =0.

11.3.5. Prove the formulas (11.3.5):

(i) for the case T x ¢ with T'= f € P, so that T x ¢ = S lim (f4 * ¢);
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(ii) for the case T x ¢ with T'= D*f, f € P, so that T x ¢ = D*(f  ¢);
(iii) for the case S * T with S of compact support.

In the following exercises d(x) appears as a convenient idealization of
either a large displacement around the point x = 0 of a system at time
t = 0, or of a unit impulse transmitted to the system at the origin at time
t = 0, or of a high temperature peak in the immediate vicinity of the origin
at time t = 0.

If one has a solution corresponding to boundary ‘function’ §(z), one can
obtain a solution with boundary function f(x) with the aid of convolution.

11.3.6. Solve the boundary value problem

1
Ugy = — Uy, —00 < T < 00, t > 0;
c

u(z,0) = d(x), uz,0) =0, —oo <z < o00.
At which points x will one observe a displacement at time ¢? What can

you conclude about the speed of propagation?
11.3.7. Same questions for the problem

1
Ugy = — Uy, —00 < T < 00, t > 0;
c

u(z,0) =0, u(z,0)=0d(x), —oo<x<00.
11.3.8. Same questions for the heat flow (or diffusion) problem
Uge = U, —00 < x <00, t>0;
u(z,0) =6(x), —o0o<z < o0.

Here ‘displacement’ should be understood as change in temperature or con-
centration.

11.4. Multiple Fourier integrals

Readers who have to get used to notations with many indices may wish
to start with concrete Example 11.5.2 below.

In the following x denotes a point or vector in R™: & = (1, x9, -+, x,),
and similarly £ = (&,&s, -+ ,&,), with standard inner product

§-v =& + x4+ -+ .
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For functions f in L'(R") one naturally defines the Fourier transform and
the reflected Fourier transform by the formulas

-~

(11.4.1) 9(&) = f(&) = (FNE) = Rnf(x)e_ig"”dfc,
(11.4.2) hE) = (Frf)(§) = (Ff)r(§) = - fl@)e dz

for all £ in R™. By Fubini’s theorem, the multiple integral for g(£) may be
written as a repeated integral:

9(&) = | floy, g, ap)e e 22Ty dy - - da,y
R”l

(11.4.3) :/e_i&“dxl/e_i&”dx2~-/f(xba?z,“' ,wn)e_ifn‘””dﬂcn.
R R R

Symbolically,
(11.4.4) g=F"f=FnFr.. Fonf

where F* represents 1-dimensional Fourier transformation relative to z;.
In the special case f(z) = fi(z1)fa(xa) - fu(z,) with f; in L'(R), it

immediately follows that f(f) = ]?1(61)]?2(&) . ~]?n(§n), where ]?] is the 1-

dimensional Fourier transform of f;. Thus by Example 9.1.4, taking a > 0,

F |:€—a\a:\2:| —F |:e—a$§ . e—aa:%i|

_ (TN ertaar s _ (TN i)
(11.4.5) e € ¢ '
a a

Fourier inversion on R". For well-behaved functions f one may invert
formula (11.4.4) step by step, that is, relative to one variable at a time:

1

1
T2, Fonf — & T3, L. Fonf — £2 €1
F Frf=g-Fr9, F Fonf oy FeFag, ’
1 1

This procedure works in particular for functions of class S in R", that is,
the C* functions ¢ on R™ for which all seminorms

Mag(#) = sup [a*D?| = sup |a5* - 23" DI - Dlg

r€eR”™
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are finite. Here o and 3 are multi-indices > 0: a = (ay, - - - , a,) with non-
negative integers «;, and similarly for 3. The expression z* is the standard
abbreviation for the monomial z{* - -- 22", while

ox ... oz
Convergence ¢y — ¢ in S as A — Ag shall mean that M,z3(¢ — ¢») — 0 for
all multi-indices o and (8 > 0.
For the space S one readily verifies the assertions
F.Djd) = ijd), ijd) = Z.Djd),
1
11.4.7 if v =F¢ th = —— Frv,

(ILAT) i 6 = Fo then ¢ = (50 Frd

F defines a 1 — 1 continuous linear map of S onto itself.

D¢ = DDl = 6.

The space S’ of the tempered distributions on R™ consists of the contin-
uous linear functionals 7" on S, with the associated (weak) convergence:

T\—T in §if <T\,¢0>—<T, 0>, VpeS8.

An important subclass P of &’ is given by the locally integrable functions
f on R™ of at most polynomial growth. More precisely, f is in P if

f(z)
(1 +0)0 - (2, + 1)
for some ¢ = (g1, ,qn) € N.

the quotient is in L'(R™)

For tempered distributions 7', the product T by a monomialea, the
derivative DPT of order 8 = (81, - ,f3,), the Fourier transform T = FT
and the reflected transform FzT are defined as continuous linear functionals
on S by the formulas

<xT,¢p>=<T,2% >,
(11.4.8) < DT, ¢ > = (—=1) TP < T D¢ >,
<FT. o> =<T,Fop> <FrT,¢0>=<T,Fro>.
In this way the operators 2%, D? F and Fg inherit the nice properties
which they have on S; cf. (11.4.7).
For suitably matched functions or distributions S and 7' there is a con-
volution S+ T, and F(S «T) = FS - FT. This holds in particular if S and

T are L' functions on R™. It also holds for § and arbitrary T in &', where
the delta distribution § is given by the usual formula, < §,¢ > = ¢(0), V ¢.



274 11. FOURIER TRANSFORMATION OF TEMPERED DISTRIBUTIONS

We finally observe that for f in P,

J&=EFNO =8 lm [ fla)e“de

o Jlz|<A

(11.4.9) =S lim (z)e e~y
6\0 Rn
Exercises. 11.4.1. Prove that for functions ¢ in S(R"), F(0¢/0x;) =
1&§;FT. Deduce that for tempered distributions 7" on R", FD;T = i{;FT.
11.4.2. Show that the “n-variable Hermite functions”

(@) % By (21)hay (22) - - ha, (20), o € N

form an orthonormal basis for L?(R™). How do these functions behave under
n-dimensional Fourier transformation?

11.4.3. Sketch Fourier theory for L?(R™).

11.4.4. Prove that for the delta distribution on R", one has Fé = 1
independently of n.

11.4.5. Show that for the n-dimensional Laplacian A = A,, = D?+- - -+
D? and T in &,

FIAT|(E) = —p*FT, where p* = f% NI 5121

11.4.6. Let f(z) = F(r) be a function in P on R? which depends only
on |x| = r. Show that

sin pr

A
/ F(r)e”f'“dx = 47r/ F(r)r dr, where p= ||
|z|<A 0 P

~

Deduce that the Fourier transform f(¢£) depends only on p.

Hint. Fixing £ # 0, one may introduce a system of 3-dimensional polar
coordinates with polar axis along the vector £. Setting z; = rsiné cos ¢,
xo = rsinfsin ¢, x3 = rcosd, the vector £ becomes (0,0, p) and dz becomes
r?sin 0 drdfde.

11.5. Fundamental solutions of partial differential equations

Fourier transformation is especially useful for the determination of so-
called fundamental solutions for partial differential operators p(D), where
p(z) is a polynomial in xy, -+, z,.

DEFINITION 11.5.1. A fundamental or elementary solution for the dif-
ferential operator p(D) is a function or distribution E such that p(D)E = 4.
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If there is a tempered fundamental solution E for p(D), then by Fourier
transformation, p(i§)E = § = 1, so that

(11.5.1) E(€) ! !

Thus one will try to determine E(z) from (11.5.1). In terms of a fundamen-
tal solution, a solution of the non-homogeneous equation p(D)u = f will
(for suitable f) be given by

(11.5.2) u(@) = (E % f)(x) = / E(x — )/ (y)dy.

n

Indeed, if u is a solution, then by (formal) Fourier transformation, p(i§)u =
f, hence u = Ef. Finally apply Fourier inversion.

ExAMPLE 11.5.2. We will discuss the Dirichlet problem for the upper
half-space H in R3. Using the notation (x,y, z) for points in R? instead of
x = (x1, T2, x3), the boundary value problem takes the form

AU = Uy + Uy +u,, =0 in H=1{(z,y,2) eR*: 2z >0},
u(z,y,0) = f(z,y), (z,y) € R* wu(z,y,z) bounded on H.
The boundedness condition on u is a condition as z — o0; it would be more
or less implied by a condition of finite energy, [, (u2 + ufj +u?) < oco.
It makes sense to apply 2-dimensional Fourier transformation relative to

(x,y), or repeated 1-dimensional Fourier transformation, first with respect
to x and then with respect to y. Accordingly we set

v(§n,2) = Fu :/ u(x,y, 2)e” M) dydy

RQ

(11.5.3) = / e_inydy/ u(r,y, 2)e” “ dr = FYFu [ = F*Fu].
R R

Integration by parts with respect to  shows that u, is transformed into #{v,
and similarly u, goes over into inv, hence ., +u,, will become —(&*+n?)v;
it is convenient to introduce the notation (£* + 172)% = p > 0. Assuming
that v, is [also] obtained by differentiation under the integral sign, so that
u,, goes over into v,,, we obtain the new boundary value problem

_p2v+vzz:07 (fanaz)eHa
v(€,n,0)=F"f=g(&n), say.
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In the new differential equation, £ and 7 occur only as parameters. The
general solution will be

v(&, 1, 2) = a(&,n)e’” + b(&,n)e .

Here a(§,n) and b(£,n) are not uniquely determined by the boundary con-
dition a + b = g, but since we look for a bounded solution v on H, it is
reasonable to demand that v not become exponentially large as z — oo.
Thus we have to take a = 0, so that

(11.5.4) (&, 2) = g(€&me ™, p=(&+n?)e.

We finally have to invert our 2-dimensional Fourier transform (11.5.3).
Doing this in two steps, one finds

o1 1 1
Flu= g Fhv, u=g Frg Fiv

1 1 .
_ En, i(x&+yn)
_47T2]:RU_47TQ /RQU(f,n,z)e:C M dEdn.

Now our v in (11.5.4) is a product. Successively applying F}} and .7-"15%, the
function u will become a two-fold convolution, a convolution relative to
(x,y). Defining

1

L et —p
(11.5.5) 4—7T2J’ER”[e 7| = yw=

f‘fﬂ? [67’02} = P('Ta Y, Z)?
one expects the final answer

(11.5.6) w(z,y,2)=f«P= [ f(s,t)P(x—s,y—t, z)dsdt, z>0.
R2

Exercises. 11.5.1. Show that a tempered fundamental solution £ for the
operator —A must have Fourier transform

1
B(e) = . where p=I]|.

11.5.2. Show that the operator —A = —Aj in R?® has fundamental

solution
1 1
E(r) = —

T dmr 4rr|z|

Hint. One may use Exercise 11.4.6 with r and p interchanged.
11.5.3. Obtain a solution of Poisson’s equation —Au = f in R3 if f is
an integrable function with compact support.
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11.5.4. Given a pair of tempered distributions S = DPf, T'= D%g on R,
with f and g in P, one may define a tempered distribution S(x)T'(y) on R?
as DYDif(x)g(y). Show that the delta distribution d(z,y) = d2(z,y) on R?
is equal to the product d;(z)d;(y), where ¢; is the delta distribution on R.

11.5.5. Obtain a fundamental solution E(z,t) for the 1-dimensional heat
or diffusion operator —D? + Dj:

(i) By means of 1-dimensional Fourier transformation applied to the
equation

(ii) by means of 2-dimensional Fourier transformation.

11.5.6. Use n-dimensional Fourier transformation to obtain a funda-
mental solution E(z,t) for the n-dimensional heat operator —A, + D; =
—(D{+---+ D) + Dy.

11.5.7. Setting |z| = r, show that on R?

2e
m — 27T5(.f17) as & \ 0.
Next verify that
1 1
E(z)=1lim — 1 2 =—1
() = lim - log(r” + &) = o logr
is a fundamental solution for the Laplacian A on R2.
11.5.8. Setting z = z + 1y in C ~ R?, verify that
1
E = —
(z,y) = —
is a fundamental solution for the Cauchy-Riemann operator

o _1(0 10
0z 2 \0x idy)’

Hint. One may use the fact that

L_ (9, 10),
2z \dr 10y 08T

11.6. Functions on R? with circular symmetry

Equation (11.5.5) left us with the problem to evaluate the (reflected)
Fourier transform of e*”, where z > 0 is a parameter. This is a special
case of the following problem: Compute the Fourier transform of a function
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g(&,m) = G(p) with circular or rotational symmetry. We will treat this
problem for general functions G(p) on R?.
For the computation of the Fourier integral

G(p)eii(x@ryn) dédn

RQ

we introduce polar coordinates, setting & = pcos ¢, n = psin ¢, so that dédn
becomes pdpdg; we also set x = rcosf, y = rsinf. Thus

FEG(p)) () = FE(G(p)) (2, y) = / Glp)E gy

:/ G(p)pdp/ eirpCos(9¢)d¢:/ G(p)pdp/ eirpcoszj)dd)'
0 -7 0 -7

The answer depends only on r, not on #: the transform also has circular
symmetry!
The inner integral may be calculated by termwise integration of a series:

_/ iteosoy — 1 / Z/ ztcoS¢

Z 2k —12k—3 31 (it)*

2k 2k—2 42 (2k)

tQk

k=0

8

(—1)F e G = Jo(1).

bl
Il
o

Here we have recognized an old friend from Examples 8.1.6, the Bessel func-
tion Jy(t) of order zero. [For I, = foﬁ cos? ¢ d¢ one may use the recurrence
relation I, = —{(p — 1)/p}I,—2, which is obtained through integration by
parts.|

The answer for our repeated integral above is thus given by

THEOREM 11.6.1. For functions G(p), where p = (£* + 772)%, one has

(116.1)  FEC())(xy) = 2n / T G)pdrpdp, T = (1 ),
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We return now to our special case in (11.5.5). Using (11.6.1), one finds

1 I B
Pl 2) = 3 Pl ) = 5 [ e onlrndn
0
1 o0
= ~G/Mt 7o () dt.
2mr? /0 ‘ o(t)

To evaluate the integral we make use of the Laplace transform of the Bessel
function Jy(t),

(11.6.2) L[Jo)(s) = / Jo(t)e™'dt = pv. (s> +1)72, Res > 0;
0

cf. Exercise 11.2.8. Differentiation with respect to s next gives

o s
tho(t)e 'dt = ——.
/0 olt) (s2+1)2
Substituting s = z/r and r = (22 + 32)2, one finally obtains

1 z
27 (22 + y? 4 22)
The solution of the Dirichlet problem for the upper half-space H in
Example 11.5.2 can now be obtained from formula (11.5.6):

(11.6.3) P(z,y,2)

3
2

1 z
w(x,y,z) = s, 1) — dsdt
( Yy ) ]RQf( )277' {(,Z‘—S)2+(y_t)2+22}%
1 z
11.6.4 = r—s,y—1t)— dsdt.
( ) R2 A y=1) 2T (52 412 + 22)%

Verification. Formula (11.6.4) expresses u(z,y, z) as the Poisson integral
of f for the upper half-space H in R3. Taking f locally integrable and
bounded, the first integral may be used to verify that u satisfies Laplace’s
equation for z > 0. For bounded continuous f, the second integral will show
that u(z,y,2) — f(zo,y0) as (z,y,2) — (zo, Yo, 0) from H.

Exercises. 11.6.1. Verify the final statement above.

11.7. General Fourier problem with spherical symmetry

Let @ be a 1 — 1 linear transformation of R"; we also write () for the
representing n x n [invertible real] matrix. If Qx = y then z = Q 'y, and

Ex=¢-Q ly=(Q "¢ - y=RE-y,
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where we have written R for the transpose of the matrix Q~!. The Jacobi
determinant of the transformation x = Q 'y is det Q! = det R. For f in
LY(R™), the composition fo @ is also in L', and by the transformation rule
for integrals,

F(fo@Q)§) = . f(Qr)e™**dx
(11.7.1) =/, f(y)e Y| det R|dy = | det R| (Ff)(RE).

This rule will hold for tempered distributions as well. Indeed, such distribu-
tions T are limits of well-behaved functions, and for consistency with the
case of integrals, one has to define

(11.7.2) (T(Qx), é(2)) = (T(y),6(Q"y)| det RI).

For tempered distributions rule (11.7.1) then follows from the definition of
FT; see (11.4.8).

Suppose now that the function f in L' is spherically symmetric, that is,
f(z) depends only on the length |z| = r. An equivalent statement is that
f(Pz) = f(z) for all orthogonal transformations P. [Recall the definition
P~! = P 50 that det P = +1 and R = P.] Then (11.7.1) shows that

(11.7.3) (FHIE) = F(f o P)(&) = (FfFE),

so that F f also has spherical symmetry. For distributions 7" one will define
spherical symmetry by the condition T'(Px) = T(z), so that the conclusion
is the same:

PROPOSITION 11.7.1. For a spherically symmetric distribution T', the
Fourier transform FT is also spherically symmetric.

Before we prove an evaluation theorem, we need some auxiliary results.

PROPOSITION 11.7.2. For spherically symmetric functions h(x) = H(r)
in R* of at most polynomial growth [h of class P], one has

A
(11.7.4) /||<Ah(a:)da::0k/0 H(r)r*dr.

Here oy, denotes the area of the unit sphere Sy = {|z| = 1} in R*,

(11.7.5) oy, = 272 )T(k/2) [note that I'(1/2) = x'/?].
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The proof is a straightforward application of Fubini’s theorem. In the
case of spherically symmetric h(x), the volume element dz in R* may be
replaced by do(S,)-dr, where do(.S,) denotes the area element of the sphere
S, = S(0,7) in R*. By similarity, do(S,) = 7*71do(S;). Finally, the total
area oy, = o(S;) in R¥ is equal to 27%/2/T'(k/2); cf. Exercise 11.7.2.

DEFINITION 11.7.3. The Bessel functions J,(t) (v > —1) are given by
the power series

def ( 1)k v+2k
11.7. u(t) = t .
(11.7.6) Ju(t) ;0: WAL (v + k + 1)

The cases v = £1/2 are special:
9\ /2 9\ 1/2
(11.7.7) J_1y9(t) = (%) cost, Jija(t) = (E) sint.

PROPOSITION 11.7.4. For J,(t) one has the following integral represen-
tations when v > —1/2:

_ (t/Q)V " it cos s 2v
J,(t) = NODRCESYD) /0 e*iteostsin? ) dp
(

_ t/Q)V ! 2\v—1/2 +its
T T(A/2T(w + 1/2) /_1(1_3) Fettds.

Also, there are constants (3, such that for t — oo,

J,(t) = (%) v cos(t — B3,) + Ot ).

The second integral formula may be derived with the aid of Laplace
transformation; cf. Exercise 12.4.14. One may verify the formulas by using
Euler’s Beta function,

def

1
B(p,q) = / a:p_l(l — x)q_ldac (p, ¢ > 0)
0
/2 T(p)T
(11.7.8) = 2/ cos19 sin?-1 9 g — L@
0 I'(p+q)

For the asymptotic result, cf. Exercise 8.2.5.
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THEOREM 11.7.5. Let f(z) = F(r) (with r = |z|) be a spherically sym-
metric function of class P on R"™. Then

9(&) = F(&) = fr(€) = Glp)

A
=38 lim (27?)”/2p1"/2/ F(r)r T ay-1(pr)dr

A—o0 0
= 8 im 22 [T TR i, = I

~

ProoOF. We will derive the first formula for f(£). By (11.4.9) it will
suffice to compute the transform of the truncated function fj,

~

Fa() = /| |<AF(T)ei5'Idx.

By (11.7.3) f4(€) depends only on |¢| = p, hence (thinking of n > 2),

~

fA(fbé-Q’ T >€n) = fA(p>0a e 70) - / AF(T)e_ip$1dx-

We now split © = (21,29, ,x,) as (x1,2'), where 2’ = (xq9,--- ,x,), and
apply Fubini’s theorem to the last integral to obtain

fA(g) = / e_ip“dxl/ F <\/x% + \x’P) dz’.
lz1]<A |z'| </ A2—232

In the final inner integral x; is constant, hence there the integrand de-
pends only on |2/| = /. To that integral we apply Proposition 11.7.2, with x
replaced by @/, r by 1/, Aby A’ = /A2 — a2 and H(r') = F(\/2? + (1")?),
k =mn —1. One thus finds

. 4 A
fA(g) = / ‘ Aeilpxldxl . Jnl/o F ( [L’% + (7"/)2) (r/)n72dr/‘

This repeated integral may also be written as a double integral over the semi-
disc in the (xq,7’) plane given by x? + (r')> < A% r’ > 0. For the evaluation
of that double integral we introduce polar coordinates x; = rcosf, r' =
rsinf, 0 <r< A, 0<6<m:

~

A ™
fa§) = Unl/ / e~ PreosO R (r) (r sin )" 2r dr db.
o Jo
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Here the integration with respect to 6 can be carried out with the aid of
Proposition 11.7.4. Taking v = (n/2) —1 (with n > 2) and ¢t = pr, one finds

/O 6—iprcos€(sin 9)”_2d9 = F<1<i;§§§a/;13/2} J("/Q)*l(pr)'

As a result,

~

Fa(€) = 0, 271D(1/2)0{(n — 1)/2}p* /2
A
X/o F(r)r"? Jay2)—1(pr)dr.

Using formula (11.7.5) for 0,1, this gives the desired result for n > 2. For
n = 1 the result may be obtained by a simple direct computation. 0

Exercises. 11.7.1. Let ¢ denote the delta distribution on R". Prove that

(i) 0(z) is spherically symmetric;

(i) d(A\x) = (1/A") §(x), A >0.

Hint. The expression < T'(Azx), ¢(z) > is of course defined as if it is an
ordinary integral [ T'(Az)¢(z)dx over R™.

11.7.2. Prove by induction that the volume of the ball By(0,r) in RF
is equal to 7*/2r%/T{(k/2) + 1}. Deduce that the area of the sphere S, =
Sk(0,7) in R is equal to 27%/2r kil/F(k/Q)

Hint. Setting z = (x1, z9, - - - (x1,2"), one has

vol By (0,7) = / dx —/ / z
|z|<r |z1|<r |$’|<r’* r2—$

:/ vol By_1(0,7") dy.

11.7.3. (i) Verify the formulas for Jy;/5(t) in (11.7.7).
(ii) Prove the ‘recurrence relation’

1d,_,
P {777 (2)} = " (2).

(iii) Compute J5/5(1).

11.7.4. Give direct proofs for the cases n = 1 and n = 2 of Theorem
11.7.5.

11.7.5. (i) Show that the function f(z) = r® with r = |z| on R™ belongs
to the class P if and only if Reaw > —n.
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(ii) Prove that for —n < a < —(n + 1)/2, and even for —n < «a <
(11.7.9) Fre = Conp™ ", p=I[¢.
(ili) Show with the aid of a well-chosen test function that
I{(a+n)/2)
[(=a/2)
11.7.6. (i) Show that the function r* on R"™ depends analytically on «
for Rea > —n in the sense that hy(a) =< r® ¢ > is an analytic function

of a for every test function ¢.
(i) Use the relation

Coz,n _ 2a+nﬂ_n/2

1

o a+2

C(a+2)(a+1)
to define r® recursively as a tempered distribution on R™ which depends
analytically on « throughout the domain C \ {-n,—n —2,—n —4,---}.

[The points —2, —4, - - - require special attention.]

(iii) Prove that Fr® also depends analytically on «, and use this fact
to extend formula (11.7.9) to all values of &« # —n,—n —2,—n —4,--- and
£0,2,4,--.

11.7.7. Determine Fr(1/p*) in R", p = |£|, when n > 3. Use the answer
to obtain the fundamental solution E(x) for (minus) the Laplace operator
in R™ that tends to zero as r = |z| — oco. Put the answer into the final form

1 1 o
E(z) = (n— 2)o, 12 (0, = area of Sy in R™).




CHAPTER 12

Other integral transforms

There are so-called half-line integral transformations (related to Fourier
transformation) that can be applied to a large class of functions defined
on Rt = (0,00). The most important of these is Laplace transformation,
which is especially useful for the treatment of initial value problems. It maps
functions on R onto analytic functions in a right half-plane, to which one
can apply methods of Complex Analysis.

In the following, applications of integral transforms to ordinary and par-
tial differential equations will play an important role. In the n-dimensional
case, the most interesting application of our integral transforms involves the
wave equation. We will see in Section 12.6 that communication governed by
that equation works poorly in even dimensions, and works really well only
in R3!

We will also discuss Fourier cosine and sine transforms, and in the next
chapter, two-sided Laplace transformation.

12.1. Laplace transforms

Functions f on R = (0,00) that are integrable over finite intervals
(0, A) and of at most exponential growth towards infinity have a Laplace
transform [also called one-sided Laplace transform]

(12.1.1) g(s) = (Lf)(s) déf/ooof(t)estdt, s =0 +ir.

EXAMPLES 12.1.1. For f(t) = e, a € C and Re s > Rea,

(Lf)(s) = /0 we“teStdt:{e(GS)t] _
t=0

a—s s—a

Indeed, for Re (s —a) = 6 > 0 one has |el® | = ¢7°,

285
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From this one may derive that

Chintel(s) = £ |5, = )] 9

1 11 b
2 \s—ib s+ib) 2+

If b is real this holds for all s € C with Res > 0.

The (one-sided) Laplace transform is a continuous analog of a power

series in z = e °,

(12.1.2) i a, 2" = i ape ",
0 0

The typical domain of convergence for such a series is a circular disc in the
complex z-plane:
{lz| =|e™*| =e" < R}.
In terms of s, the domain of convergence becomes a right half-plane, given
by
o0 =Res > —logR.

[If R = +o00, the half-plane becomes the whole plane.] In this domain, the
sum of the series (12.1.2) is analytic.

Similarly, the (one-sided) Laplace transform g(s) = (L£f)(s) will be an-
alytic in its half-plane of convergence.

THEOREM 12.1.2. Suppose that the Laplace integral (12.1.1) converges
las a Lebesgue integral, hence converges absolutely| at the point s = a =
a + 8. Then it converges for every s € C with 0 = Res > «. The
function g(s) = (Lf)(s) is continuous and bounded on the closed half-plane
{o > a}, and it tends to zero as 0 = Res — +o0.The transform g(s) is
differentiable in the complex sense — hence analytic — throughout the open
half-plane {o > a}. There one has

(12.1.3) g(s)=— /000 tf(t)e *"dt.

PROOF. (i) The integral (12.1.1) will converge for all s in the closed
half-plane {o = Re s > a}. Indeed, for such s, the integrand is the product
of an integrable and a bounded continuous function,

(12.1.4) f(t)e_St _ f(t)e—at . e(a—s)t7 ’f(t)e_St} _ ’f(t)e_at’ e(a—a)t'
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A direct estimate shows that fOA f(t)estdt is continuous in s on C. As

A oo,
(/ 0 .ﬂwt_ﬁ/ Fe

uniformly in s for Res > «. Hence g(s) is continuous there. The bound-
edness of g(s) for o > a follows 1mmed1ately from (12.1.4). That g(s) — 0
as 0 — oo may be derived by dominated convergence, or directly from the

inequality
_stdt‘ / ’f _at}dt

/ | f(t)e|dt - el 5>

)

The right-hand side can be made small by fixing a small 6 > 0 and then
taking o large.

(ii)) We will prove that the complex derivative ¢'(s) exists throughout
the open half-plane {¢ > a}. Fix s € C with 0 = Res > a. For t > 0 and
complex h # 0, one has

RS e
<Ihlg @+@H¢@§+m)

L, ||t e’ At
Hence for fixed 6 <o —a and |h| <o —a—0d,sothat 6+ |h| —0 < —a =

—Rea,
‘g(s + h}i B g(s) + /Ooo tf(t)e—stdt‘

o] —ht __
/ (6 ! +t) f(t)estdt'
0 h
1 > [ —o 1 > —a
S A T PO 2

The final expression tends to zero as h — 0. Conclusion: g is differentiable
at s in the complex sense, with derivative ¢'(s) as in (12.1.3). By Complex
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Analysis, g then is analytic: it has local representations by convergent power
series. It is attractive to prove this directly; cf. Exercise 12.1.3. 0

EXAMPLE 12.1.3. Let Rea > —1, f(t) = t* = pv.t%, t > 0. The
product t%e~* is in L'(R™) for all complex s with Res > 0. For real s > 0,

o o a d
g(s) = / te tdt = / (E) e
0 0 S S
(12.1.5) =T(a+1)s*'=T(a+1)pv.s %L

By Theorem 12.1.2, the left-hand side has an analytic extension g = Lf
to the right half-plane {¢ = Res > 0}. The same is true for the final
member, so that we have two analytic functions for Res > 0 that agree
on the positive real axis. Hence by the Uniqueness Theorem for analytic
functions, the final member gives the Laplace transform of ¢* for all s with
o> 0.

For the applications, the most important property of Laplace transfor-
mation involves its action on derivatives:

PROPOSITION 12.1.4. Let f be equal to an indefinite integral on [0, c0)
and suppose that f'(t)e~ is in LY(R™) for some constant a. Then

(12.1.6) (L) (s) =s(Lf)(s)— f(0) for Res > max{Rea,0}.

PROOF. Setting o = max{Rea,0}, the product f'(v)e~*" will be in

L}(R*). Thus
t t
! d — O ! 7&1). Ol'l)d ,
+/Of(v)v f()+/0f(v)6 e dv

If()] < [£(0)] + e /000 If' (v)|e”*dv < Cpe™, VteRT.

Taking Res = 0 > «, integration by parts now gives the desired result:

/ f(t)e*tdt = [ *Stto / f(t)(—s)e*dt
0)+s /O f(t)e *dt.

Indeed, one has |f(t)e™*| < Chel® ) so that the last integral converges.
The final bound also shows that the integrated term reduces to —f(0). O
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COROLLARY 12.1.5. For f as in Proposition 12.1.4,
(12.1.7) lim s(Lf)(s) ezists and = f(0).

s§——+00

Indeed, (Lf")(s) — 0 as 0 = Res — oo: apply Theorem 12.1.2 to f’.

Exercises. 12.1.1. Compute L[cos bt]:

(i) directly;

(ii) from the formula cosbt = (d/dt)(sin bt)/b.

12.1.2. Compute L[e™ cosbt] and L[e™ sin bt].

12.1.3. Let f(t)e=* (with @ € R) be in L'(R"). Choosing any sy =
oo + i19 with o9 > a, prove by termwise integration of a suitable expansion
that for |s — so| < 09 — «, and even for |s — 59| < 0p —

— /oo f(t)e *tdt = io: cn(s — s0)",
0 0

1 [e%S)
Cn:—‘
n!

where
(=t)"f(t)e *'dt, n=0,1,2,--.

12.1.4. Use the power series for Jy(t) and termwise integration to show
that for Res = o > 1,

(LJo)(s) = pv. (s> +1)2.
Extend the result to all s with real part ¢ > 0.

12.2. Rules for Laplace transforms

We consider functions f of at most exponential growth on R™ in the sense

that f(t)e " is in L*(R™) for some real constant . Taking s = o + iT, we
set (Lf)(s) = g(s) for o > a.
Discussion of the Table below. Rules (i)—(iii) follow immediately from the
Definition of the Laplace transform and rule (v) follows from Theorem
12.1.2. A sufficient condition for rule (iv) was given in Proposition 12.1.4.
For the half-line convolution in rule (vi) we have the following

PROPOSITION 12.2.1. (i) Let the functions f;(t) be locally integrable on
R* [integrable over finite subintervals|. Then the half-line convolution

(12.2.1) / filt =) fo(v)dv

exists almost everywhere and is locally integrable on R,
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Original f(t) Laplace trf g(s) Remark
(i) FOM) %g(%) A>0,0> )
i) fE—NUE—=N) e g(s) A>0
(iii) e Mf(t) g(s—N) ANeC,o>a+Re)
(iv) Df(t) = f'(t) sg(s) — f(0) Prop 12.1.4
(v) tf(t) —Dg(s) = —¢'(s) Thm 12.1.2
(vi) (f1 f2)(2) 91()ga(s) (frx f2)(t) = fy -+

(ii) Suppose now that f;(t)e=*" with real oj is in L'(RT), j = 1,2. Then
the function (fi * f2)(t)e™*" will be integrable over RY for Res =0 > a =
max{aq, as}, and

L(fixfo)=Lf1-Lfs for o> a.
PRrROOF. (i) Extending f; and f> to R by setting f; = 0 on R™, we have
fi(t —v)fa(v) =0 for v <0 and for v > ¢,

hence the ordinary convolution [, fi(t — v) fo(v)dv reduces to 0 for t < 0
and to the half-line convolution (12.2.1) for ¢ > 0.

In order to prove a.e. existence and integrability of the half-line convo-
lution on 0 <t < A, we temporarily redefine f;, f5 as equal to 0 for t > A.
The modified f; and f, will be in L}(R) and hence the result for 0 <t < A
follows from Proposition 9.4.3 for ordinary convolution.

(ii) Keeping f; = fo = 0 for ¢ < 0, the hypothesis implies integrability
of f;(t)e*" over R when Res > «, j = 1,2. For such s, the function

(fix f2)(t)e ™ = /Rfl (t —v)e st . fa(v)e **dv

= fi{t)e " * fo(t)e ™
will be integrable over R by Proposition 9.4.3. By the same proposition,
the integral of the left-hand side over R will be equal to the product of the
integrals of fi(t)e™*" and fo(t)e "' O

ExaMPLE 12.2.2. The Laplace transform of the Bessel function Jy can
be obtained from the characterization of Jy(t) as the solution of the initial
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value problem
ty" +y' +ty=0, y(0)=1, y(0)=0

that was discussed in Examples 8.1.3 and 8.1.6. The power series for Jy(t)
readily shows that |Jo(t)| < e’ for ¢ > 0. Using the initial conditions, rules
(iv) and (v) in the Table give

Ly =sLy—y(0)=sLy—1, Ly" =sLy —y'(0)=s"Ly—s,
Llty] = —(Ly), Llty"] = —(Ly") = —s*(Ly) —2sLy + 1.

Thus, transforming our differential equation and taking Res = o > 1,
simple calculations will give

(s +1)(Ly) +sLy =0, sothat Ly =c(s®+1) 2.
Choosing the principal value of the fractional power, we must have
sLy=s-cs M1+ 1/32)_% —y(0)=1 as s — +oo;
see Corollary 12.1.5. Hence ¢ = 1 and
(12.2.2) (LJo)(s) = pv. (s +1)72.

Our proof gives this for ¢ > 1, but by the boundedness of Jy(¢) and analytic
continuation, the result will hold for all s with real part ¢ > 0. Cf. also
Exercise 12.1.4.

Exercises. 12.2.1. Starting with the formula £1 = 1/s, use the rules in
the Table to compute L[e™] and L[t"e™].
12.2.2. Compute L[cos bt] from the initial value problem

y' +b*y =0, y0)=1, 3/(0)=0.

Next use the Table to compute L[e cos bt].
12.2.3. Give a direct proof of rule (vi) for the Laplace transform of a
half-line convolution by inverting order of integration.

12.3. Inversion of the Laplace transformation

Here we will use the close connection between Laplace transformation
and Fourier transformation. It will then be convenient to think of f as
a function on R which vanishes on the negative real axis; as a reminder
we sometimes write f(¢)U(t), where U(t) is the unit step function, 1. (%)
[Examples 10.5.2].
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THEOREM 12.3.1. For functions f of at most exponential growth on R,
more precisely, f(t)e=*" in LY(R™) for some real constant o, one has

(12.3.1) 9(s) = (Lf)(s) = (Lf) (o +ir) = F [f()e™U(1)] ()
for o > a, 7 € R. Conversely one has the so-called complex inversion
formula,

o+iA
: ts
(12.3.2) fU) = /}1_{20 57 /U_iA g(s)eds, o> a.

The limit in (12.3.2) will exist pointwise at the points ¢ where f(¢)U(t) is
differentiable or satisfies a Hélder—Lipschitz condition. If g(s) is integrable
over the vertical line {Res = o}, the limit is equal to an ordinary integral
from o — 100 to 0 + i00. The limit relation will always hold in the sense
of general distributions; see below. The corresponding limit relation for
f(t)e ?'U(t) holds in the sense of tempered distributions.

COROLLARY 12.3.2. Laplace transformation is one to one on the class
of functions [ of at most exponential growth: if Lf = 0, then f =0 in the
sense that f(t) = 0 almost everywhere on RY. In particular, f(t) must then
vanish at every point of continuity.

PROOF OF THEOREM 12.3.1. For (12.3.1) one need only observe that
for o > a,

glo+1ir) = /000 ft)e e mdt = /Rf(t)e_”tU(t) it gt

Applying Fourier inversion to this formula, cf. Theorems 9.2.2 and 10.1.7,
one finds that for o > «,

1 1 A ,
(12.3.3) f(t)e 'U(t) = — Frlg(o +it](t) = =— lim g(o+it)e" dr.
2 2T A—oco —_A
Here the limit is an ordinary limit at points ¢ where the left-hand side is
well-behaved; the limit relation always holds in the sense of S'.
Multiplying both sides of (12.3.3) by €°* and replacing 7 by ¢ + i = s
as variable of integration, one obtains the complex inversion formula
1 A .
fOU() = =— lim g(o + i)t dr

1 o+iA
(12.3.4) = lim —/ g(s)e*ds.
o—1A
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-< a+iA

\

B O a
a-iA

FIGURE 12.1

Here the limit relation holds in the sense of general distributions, that is,
it holds relative to the test class of C* functions v with compact support.
[For such functions 1, the products e“*¢) will be in S.] Cf. Chapter 13. O

EXAMPLE 12.3.3. Let g(s) = 1/(s* + 1), Res > 0. Then

FOUD = (C9)0 =5 [ qetds (@)

" omi P |

For t > 0 we move the vertical line of integration ¢ = const far to the left,
because |e'*| will become small there; cf. Figure 12.1. The Residue Theorem
now gives

1
ft) = Z <residues of 1 e at s = j:z')

1 Bico 4
s2+1

(12.3.5) eds  (3<0).

2—m B—ioco
Indeed, the integrals along horizontal segments s = 0 £iA, a > o > [ will
go to zero when A — oo. Letting § go to —oo, the final integral tends to
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Vo ta+iA

FIGURE 12.2

zero. [Being constant for 5 < 0, it is actually equal to zero.] Thus

1

=5 (e —e ™) =sint (t>0).
i

()
EXAMPLE 12.3.4. Let g(s) = p.v. (s2+1)"2, Res > 0. We know from
Example 12.2.2 that g = L[JoU]. Thus for o > 0,

a+iA L
Jo(O)U(t) = (L7'g)(t) = lim — /'A (s +1)"2 e"ds.

Since the function (s* + 1)~2 is multi-valued, one has to be careful about
moving paths of integration. Introducing a cut in the s-plane along the
segment I' = [—i,4], one can define an analytic branch g,(s) = (s2 + 1)z
outside the cut; we consider the branch that behaves like 1/s at infinity.
That branch can be considered as an analytic continuation of our principal
value ¢(s) on the half-plane Res > 0. It has continuous extensions to the
two edges of the cut, except for the points s = +1.

Keeping t > 0, we may successively deform our path of integration as
indicated in Figure 12.2, finally contracting the path onto the edges of the
cut I'. Since g;(s) is positive on RT and real on T, it will by continuity be
positive on the right-hand edge I'* of the cut. On the left-hand edge I'_
of the cut, ¢;(s) will have the opposite values. Thus, setting s = iv on the
cut, we find that g;(s) = (1 —v2)"2 on I'" and ¢;(s) = —(1 —v?)"2 on I'".
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As a result,
w0 =g [ ek [ e
0 = 5 gi\s)e as + — gi(s)e~as
211 ) ser+ T Ji;ser—
2 [! » 2 [ 1
12.3.6 = — 1 — v} 2e™dy = —/ ——— costvdv.
( ) o 71( ) ) N

This representation will be valid also for ¢t < 0 [since Jy is even] and for
t=0.

Observe that by (12.3.6), |Jo(t)| < Jo(0) = 1 for t € R, while by the
Riemann-Lebesgue lemma, Jy(t) — 0 as t — oo.

12.4. Other methods of inversion

In practice, it may be more convenient to use other methods of inversion
than Theorem 12.3.1. We mention several.

(i) Use of tables of Laplace transforms. The given function g(s) may
occur in a table, or if it does not occur itself, the rules in Section 12.2 may
help out. For example, the question may be to determine f = fU = L™ 1g
when \

e
g(s) = s+l (Res > 0).
The list of transforms will surely contain the pair

p=1, gs)=- (Res>0)

Applying the rules, one will obtain

1 —t —t s 1 —(t-1)
P Ll =LleU®)], ¢ Lle Ut —1)]
(il) Decomposition into partial fractions. Suppose
P(s)
g(s) = Res > «a),
G =g (Res>a)

where P and () are polynomials. We may assume that deg P < deg @ [so
that g(s) — 0 as Res — oo]. Factoring Q(s) = C(s —a)™(s —b)™--- with
distinct a, b, - - -, one has

A A Ap—i
9(s) (s—a)m+ (s —a)m-t T s—a
B e

0 +...+ 1+.
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Here A}, is the coefficient of (s — a)¥ in the power series for (s — a)™g(s)
around the point a:

1

A = HDk{(S — a)mg(s)} o k=0,1,---,m—1,
etc. One finally uses the standard formula
1 Pl
12.4.1 = “Ut)| .
2 e [l

Thus for example,
4 —1 —1 -1 1
P12 =02 s—i (stiP s+i
= L[(—te" —ie" —te " +ie”")U(t)]
= L[(—2tcost + 2sint)U(t)] (Res > 0).

(iii) Termuwise inverse transformation when g¢(s) is analytic at infinity
at is, g(1/s analytic at s = 0]. Suppose tha
that i 1 lytic at 0]. S that

g(s)zz I for (Res > a > 0.

Sn+1
n=0

FOU0 = (79)0 = Y wt ! [5] 0= 3 a vt

Verification. The series for g will be (absolutely) convergent for |s| > «,
hence |a,| < C.(a+ ¢)" for every ¢ > 0. Thus

—st

= {(Oé + €)t}n —ot (ate—o)t
ol S CE XO: T e = 056 .

Hence for Res > a+¢, the series > o~ a,(t"/n!)e™* may be integrated term
by term over RT. The result will be the original formula for g(s).
For example, for Res > 1,
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Hence

£t {p.v. (s + 1)_%}
1¢2 1-3¢% 1-3-5¢
D I T A T N
{ 221 TP T 38 6 }U(t)
t2 t4 t6
::%—55+§E—?E@+~~%ﬂﬂ:%@U@;
cf. Examples 8.1.6.

(iv) Inverse transformation applied to a product. Suppose g = g19o
where g; = Lf; = L[f;U]. Then

fU=L""g =L q192) = LU * oU = (f1 % f2)U,
the half-line convolution. For example: Solve the initial value problem
y'+y=f(t), t>0; y(0)=y'(0)=0.
Setting f = 0 for ¢ < 0 and assuming that f is at most of exponential

growth on R*, one will have y = 0 for ¢ < 0 and by the rules in Section

12.2,
1

s2+1

s’Ly+ Ly = Lf = L[fU], sothat Ly=Lf -
provided Re s is sufficiently large. It follows that
t
y(t) = f(t) = sint = / f(v)sin(t —v)dv for t > 0.
0

The solution makes sense for any locally integrable function f on RT.

Y

Exercises. 12.4.1. Compute the inverse Laplace transforms of
1 1 1 S
2 s2—1 s 241
(i) with the aid of the complex inversion formula;
(ii) with the aid of partial fractions.
12.4.2. Use Laplace transformation to solve the initial value problems

y'+y=0, 0<t<oo; y(0)=0, y(0)=1;
y' —a*y=0, 0<t<oo; y0)=1, 3/(0)=0.

12.4.3. Same question for the initial value problem given by the system

(Res > a) :

by — 2 =52=0, dy+2 +2=4, 0<t<o0;
y(0) = 1, =(0) =2
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FIGURE 12.3

[Answer: y = e 'sin2t + 1,z = 2e " cos 2t.]
12.4.4. Determine £ [g(s)/s] if g=Lf (Res > a > 0).
12.4.5. Use Laplace transformation to solve the convolution equation

¢
y(t) =e '+ 2/ y(v) cos(t — v) dv, t > 0.
0
12.4.6. Prove that
t
/ Jo(v)Jo(t — v)dv = sint, t>0.
0

12.4.7. Solve Abel’s integral equation
t
/ ) (E—0)dv = f(8), t>0 (—1<3<0).
0

Hint. Solve first for [ y(v)dv.

12.4.8. Let g(s) be an analytic function in a half-plane Res > a such
that |g(s)| < B/|s|'*%, e > 0, for Res > o/ = max{a,0}. Prove that g is
the Laplace transform of a continuous function f(¢) on [0, c0) with f(0) = 0.

12.4.9. Let g(s) be an analytic function in a half-plane Res > a such

that B
)g(s) — S‘ < FES (e > 0) for Res > o' > max{«, 0}.

Prove that g is the Laplace transform of a continuous function f(¢) on [0, c0)
with f(0) = c.

12.4.10. Determine £~ 'g when g(s) = (1/y/5)e™*¥® (Res > 0), where
/s denotes the principal value of s3 and z is a positive parameter. Use the
answer (1/v/7t) e=*/UDU(t) to compute L1 [e72V7].

Hint. Make a cut in the s-plane along R™; cf. Figure 12.3. When ¢ > 0,
the path of integration for £71g(¢) may be moved to the edges of the cut.
Now set s = w? and finally set w = iv.
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12.4.11. (Heat conduction in semi-infinite medium) Solve the boundary
value problem

Uge = U, >0, t>0; u(x,0)=0, x>0; u(z,t) bounded,;
u(0,t) = f(t), t > 0.

Hint. Introduce the Laplace transform

v(z,s) = L u(x,t)](s) = / u(x,t)e *dt.
0
12.4.12. Solve the boundary value problem

1
Uzz = — Unty x>0,t>0; u(z,0)=muyz,0)=0, z>0;

u(0,t) = f(t) (t >0), where supp f = [0,1]
[for example, f(t) =sinwt for 0 < ¢ <1, f(¢t) =0 for all other ¢];
lu(z,t)] < M for all z, t.

Over which time interval does one receive a signal at the point xy 7 [For
which values of t is u(zo,t) # 07]

In a variation on the Laplace method for ordinary [or partial] differential
equations, one sets y(t) [or u(z,t)] equal to [, g(s)e*ds, where I is a path
in the complex s-plane, with end-points a and b, say, that is to be chosen
later.

12.4.13. Apply this form of the Laplace method to Bessel’s equation of
order zero.

Hint. The differential equation leads to the following condition on g¢:

/(32 + 1)g(s)dge™ + / sg(s)eds =0, Vte R" or R.
r

r
Integration by parts transforms the condition to

/F [—{(s* + 1)g(s)} + sg(s)] e"*ds = 0, Vt,

provided the integrated term [(s® + 1) g(s)et“”]z is equal to zero.
12.4.14. Apply the same method to Bessel’s equation of order v [Exercise
8.1.5], after it has been reduced to the form
t2"+2u+1)2 +t2=0

by the substitution y(t) = t”z(t). [The solution of the z-equation for which
2(0) =1/{2"T'(v + 1)} is J,(t)/t"; cf. Proposition 11.7.4.]
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12.5. Fourier cosine and sine transformation

For problems involving a half-line it is sometimes convenient to use in-
tegral analogs of cosine and sine series instead of Laplace transformation.

DEFINITION 12.5.1. For integrable functions on R™ = (0, c0), the (Fou-
rier) cosine transform g = C'f and the (Fourier) sine transform h = Sf are
given by the formulas

9(6) = (C(E) / f(z)coséxdr, £E€R or £CR,

h(€) = (Sf)(6) L / f(zx)sinéxdr, £€R or £ €R.
0
As a function on R, ¢ is even and A is odd.

Cosine and sine transform are closely related to Fourier transforms. In-
deed, let f. be the even, f, the odd extension of f to R. Then

g=Cf = %/Rfe(x)cosgxdx

1 ) 1 1
(12.5.1) = - / fo(x)e “"dx = ~F f. = = Frf.,
2 e 2 2

h=Sf= %/Rfo(a:)sinfxdx

(12.5.2) =2 / fo(x)e e = S F f, = = Fnf,.
2 Jr 2 2

Hence by Fourier inversion, and appropriate interpretation of the formulas,
cf. Theorems 9.2.2 and 10.1.7,

1 1 2
fe=2—fR29=—fg=—09,

T T T

1 2 ‘ 2
fo=—Fpih="LFh="25h

2 7 s ™

Restriction to R™ thus gives

THEOREM 12.5.2. (Inversion theorem):

ifg=CF thenf:gC'g, ifh=2Sf thenf:gSh.
T

™
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These formulas have to be interpreted in the proper way. For example,
if fisin L*(R") and differentiable at the point z > 0, then

2 2 (4
=—(C = lim — de.
fla) = = (Co)a) = Jim = [ gt cosa g
For arbitrary even or odd tempered distributions (on R) one may define
the cosine and sine transform in terms of the Fourier transform as indicated
in (12.5.1), (12.5.2). For locally integrable functions f on (0, c0) of at most
polynomial growth one thus has

A
(12.5.3) cnNE =8 jim f(x)cos€xdr, £ €R, ete.
—oo Jy

ExaMPLES 12.5.3. Earlier examples of Fourier transforms readily give
most of the following cosine and sine transforms (where a > 0):

f(z) Cf(§) SF(&)
67a|x| a f _
£ +a? €2 + a?
efax2 l \/EG_EQ/M@)
2V a
1 forx<a sin a& 1 —cosa&
0 forz>a § §
1 (&) pv %
1 for € < 1 0 for € <1
Jo(z) 1—¢2 b for £ > 1

0 for € > 1 VE -1

For the transforms of the Bessel function Jy(z), see Exercises 11.2.8,
11.2.9. As an alternative one may start with the Laplace transform of
Jo(t)U(t); cf. Example 12.2.2.

Rules for cosine and sine transformation. The following rules hold under
appropriate conditions, and then the proofs are straightforward; A denotes
a positive constant.
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@) - S1(6) = h(©
0 ) (§) (%)

(i) Df fo —£Cf

(i) xf —DCF
(iv) D*f  =&Cf-[f'(0+) —&Sf+ f(0)§
(v) 2%f -D2Cf —-D2Sf

Rule (ii) holds in the classical sense whenever f is an indefinite integral
on RT with f and f" in L'(R™T). It holds in extended sense if f is equal to
an indefinite integral on R* with f’ of at most polynomial growth [so that
f is polynomially bounded]; cf. formula (12.5.3).

Observe that only transforms of even order derivatives are expressed in
terms of the same transform.

Exercises. 12.5.1. Compute C [e“”’Q] and S [we““ﬂ, paying special at-

tention to the case a = 1/2.

12.5.2. Prove the rules for SDf, Sxf and SD?f under appropriate
conditions on f.

12.5.3. Show that for f in L*(R"),

[iere= [ 1sm=gx [ 11

12.5.4. Prove that C? = S? = (7/2) - identity on L?*(R*). What are the
eigenvalues of C' and S 7 Indicate corresponding eigenfunctions.

12.5.5. Determine the transform S |23 | after observing that it must

have the form c£ ~2 with ¢ > 0. Similarly for C' [:U*%].

12.5.6. Determine S [z7!], where 27! is interpreted as the odd distribu-
tion pv (1/z). Also determine C|(sin Az)/x] where A > 0.

12.5.7. Obtain the solution of the following boundary value problem in
the form of a sine transform:

Ugy + Uy =0, 0< <1, y>0;

u(0,y) =0, u(l,y)=f(y), y>0;
u(z,0) =0, 0<z<1; u(x,y) bounded.
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12.5.8. (Heat conduction in semi-infinite medium; cf. Exercise 12.4.11)
Use sine transformation to solve the boundary value problem
Upe = U, x>0, t>0;
u(z,0) =0, x>0; wu(z,t) bounded;
u(0,t) = f(t), t>0.

[The solution may be written in the final form

1 t
u(z,t) = NG / Flt — T3/ g7
0

2 0 $2 2
= — t——— e " duw.
v /a:/(2\/f) / ( 4w2) e dw. |

What happens to the temperature u(x,t) as t — oo in the special case
u(0,t) = f(t) =17
12.5.9. How would one solve the following boundary value problem:
Ugg T Uy =0, O0< <1, y>0;
u(0,y) = u(l,y) =0, y >0
u(z,0) = f(z), 0<z<1; wu(z,y) bounded.

Determine the solution explicitly in the special case u(x,0) = f(z) = 1.
Show that u(z,y) tends to zero exponentially as y — oo.

12.6. The wave equation in R"”

The emphasis will be on the cases n = 1,2, 3, and for those it is not
really necessary to use the general Inversion Theorem 11.7.5 for spherically
symmetric functions. However, the case of arbitrary n is interesting because
it brings out the difference between odd and even dimensions. We therefore
begin by determining the fundamental solution £ = E(x,t) for the wave
operator in arbitrary R”. It satisfies the equation

def T 1
OE=0,E% <—An +3 Df) E(z,t) = §(x,t)
(12.6.1) = 6,(2)01(t) on R" x R.

[The wave operator [J, pronounced ‘box’, is also called the d’Alembertian
(after d’Alembert); cf. [4].] The physical question is as follows. For dis-
placements or disturbances governed by the wave equation, one wishes to
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determine the displacement F(z,t) at the point x and time ¢, due to an
“impulsive force” or “thrust” 1 at the point x = 0 and time ¢ = 0. R

Carrying out Fourier transformation relative to x: F*E(z,t) = E(&,t),
one obtains the equation

(12.6.2) (50t ) B6 =000, p=1Ic)

It is reasonable to look for a solution which vanishes for ¢ < 0. [When
t < 0, “nothing has happened yet”.] Problem (12.6.2) may then be solved by
Laplace transformation, provided one thinks of d;(¢) as a limit of functions
on RT. Let us take

o1
01 (t) = l{% g X(0,¢) (t)>

where y; denotes the characteristic function of the interval J. Thus

“q 1 — e
(£61)(t) = lim / Zestdt =lim — =1,
0 € £s
One now finds £'E = ¢2/(s2 + ¢2p?), so that
=~ sin cpt
(12.6.3) Bety=c U, p=Il.

Note that the answer for E is independent of the dimension!
We finally apply Fourier inversion, making use of Theorem 11.7.5 with
the roles of  and ¢ interchanged. The result is

THEOREM 12.6.1. The wave operator in R™ has the following fundamen-
tal solution which vanishes fort < 0:

[

sin ctp
P

E(z,t) = (21) "¢ F, [

(12.6.4)

A—o0

A
= (27)"2cU(t) S’ lim 7"1”/2/ (sin ctp) p™ B T j2)-1 (rp)dp,
0

where p = |£| and r = |z|.

We will look closely at the cases n = 1,2, 3.
The case n = 1. Here we may replace p by & because the resulting function
is even in &:
sin cté

3

Et) =c U(t).
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FIGURE 12.4

Inversion will give, cf. Exercise 9.1.2,

E(o.t) = 0 fort<|z|/e,
" ) e/2 fort > x|/

Thus E(x,t) is constant, equal to ¢/2, throughout the “forward light cone”
{|z| < ct, t > 0} with vertex at the point (0,0); cf. Figure 12.4. At a
given point x # 0, a disturbance arrives at time ¢t = |x|/c; the displacement
remains constant forever after. A succession of impulsive forces at the origin
leads to a superposition of displacements at the point x.

What will be observed at the point = > 0 if the signal at the origin
is a vibration or “tone” of short duration with circular frequency w? For
example, we might consider the signal

(12.6.5) @(x,t) = 0(x)(sinwt) X0, (t) = “0(x) /Og(sian)(Sl(t —T)dr”.

The equation Ju = ®(z,t), with the condition u = 0 for ¢ < 0, will [for
n = 1] have the solution

u(z,t) = /Os(sin wr)E(x,t —T)dt

0 fort < z/c,
_ Ot*x/c(c/Q) sinwT dr for (z/c) <t < (z/c) +e,
1—
(c/2) ﬂ, a constant, fort > (z/c) +e.

w
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Here the answer on the time-interval (z/c) <t < (x/c) + € works out to

1 —cosw(t—x/c)

(¢/2) :

w

One will be able to recognize the frequency w in this ‘middle’ time-interval,
provided its length ¢ is a good deal larger than the period 27/w of the
vibration.

The case n = 2. We now find, either from Theorems 12.6.1 and 11.7.5, or
by referring to Theorem 11.6.1, that

A

1
E(z,t) = o cU(t) S f}gn (sinctp)Jo(rp)dp
> Jo
_ 1 At —
=5 cU(t) S ll\rf(l) i e “P(sin ctp)Jo(rp)dp.

Thus we need the sine transform of Jy. It may be looked up under Examples
12.5.3, or one may use the second formula above in conjunction with the
Laplace transform of Jy,. The result is

0 for t <r/c,
E(z,t)=4¢ 1 c

- —(02t2 e fort > r/ec.

The support of E(x,t) is again the (closed) solid forward light cone; cf.
Figure 12.5. At a fixed point = different from the origin, a disturbance
arrives at time ¢ = r/c. Afterwards, the displacement tends to zero, but
this happens rather slowly. A time-limited signal emanating from the origin
is not received as such at the point z.

The case n = 3. FKither from Theorem 12.6.1 together with the form of
J,(t) for v = 1/2 [formula (11.7.7)], or by using Exercise 11.4.6 with = and
¢ interchanged, one obtains

Ut I
E(z,t) = 027;) S jgr;o ;/0 (sinctp)sinrp dp
_ cU(t) S lim 1 {sinA(ct —r) sinA(ct+7r)
472 A=oco T ct—r ct+r
cU(t

— ) {61(ct —r) — d1(ct +1)};

A7y
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T

FIGURE 12.5

cf. Examples 10.4.6 (ii). Now for ¢t > 0 one has d;(ct + ) = 0. Also using
the fact that d,(A\y) = (1/A)01(y) for A > 0, we obtain the simple answer

(12.6.6) Bl t) = —— 4, (t - g)

4rr

This time the support of E(z,t) is just the boundary of the forward light
cone, the set {(z,t) e R®* x R: r =ct, t > 0}. At a given point x different
from the origin, a sharply time-limited signal is received at the instant
t = r/c. This signal has precisely the same shape as the original one at the
origin at time ¢ = 0! A time-limited signal of the form (12.6.5), emanating
from the origin, will be received at the point x as

) 1
u(z,t) = “/O (sinwr)E(x,t —1)dr” = pym sinw(t —r/c),

(r/c) <t < (r/c)+e. Observe that the signal is received without distortion!
There is only attenuation because of the distance: the amplitude at the
point x is inversely proportional to the distance r from the origin.

REMARKS 12.6.2. In dimensions n > 4, the disturbance E(x,t) =
E,(x,t) also reaches the point x at time t = r/c. When n = 4,6,---,
the resulting displacement F/(z,t) tends to zero relatively slowly as ¢t — oo.
When n = 5,7, -, the displacement E(x,t) is sharply limited in time, but
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there is a great deal of distortion from the original. Indeed, the fundamental
solution will now contain derivatives of d;(t —r/c)!
One has the symbolic relation

(12.6.7) Epio(z,t) = ——— — E,(x,1);
cf. Exercise 12.6.3. Here E(z,t) is considered as a function E(r,t) of r = |z|.

Exercises. 12.6.1. Compute

S 1{13) e “P(sinctp)Jo(rp)dp
€ 0

=Im&’ lim/ e~ EP Iy (rp)dp.
0

12.6.2. Compute

1 o0
S’ lim — ~eP(sin ctp) si dp.
lim = i e “P(sinctp) sinrpdp
12.6.3. Use the recurrence relation
1 d
- —l/JV — —V—IJV
~ @) =~ ()

of Exercise 11.7.3 to verify the important recursion formula (12.6.7) for the
fundamental solution of the wave equation in different dimensions.



CHAPTER 13

General distributions and Laplace transforms

Tempered distributions on R™ correspond to functions of at most poly-
nomial growth. However, in practice one also encounters functions of much
more rapid growth at infinity. In order to embed such functions in a sys-
tem of distributions, it is necessary to restrict the test functions ¢ to C*>
functions which vanish outside some bounded set K = Kj.

For a subclass of the corresponding general distributions one can intro-
duce two-sided Laplace transformation.

13.1. General distributions on R and R"
We begin by defining suitable test functions.

DEFINITIONS 13.1.1. The test class C§° on R" consists of the C* func-
tions ¢ that have compact support.

This class is made into the Schwartz space D of test functions by the
following definition of convergence for sequences. One says that

(i) the supports of the functions ¢; and ¢ belong to a fixed compact set K,
and

(i)

aa1+---+an aa1+---+an
o a0 D=
Ox" - - Oxon Oxt - - Oxon
uniformly on K (and hence uniformly on R™) for every multi-index a =
(o, -+, ap) > 0.
There is a corresponding definition of convergence T\ — T for distribu-
tions T depending on a real parameter A tending to .

D%, =

ExaMPLES 13.1.2. An important test function on R" is

1 1
—exp| ———— | forz e R" with |z| < 1,
c 1—|z]?

0 for |z| > 1,

309

(13.1.1)  6(z) ¥
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1
c:/ exp(—ﬁ)dy.
B(0,1) 1 -yl

Cf. Examples 4.1.9 for the one-dimensional case [with different notations].
A very useful family of related test functions is given by

(13.1.2) .(x) = gine(

where

T
—), reR" £>0.
3

For these functions
[ owite= [ sy =1, suppo.r) = B0.2)

For arbitrary compact sets K € R™ there are test functions w. that are
equal to 1 on K and equal to 0 outside K., the 2e-neighborhood of K. One
may obtain such a function by setting

ora) = {0+ 030) = [ v bla =)y
(13.1.3) :/ 0.(x — y)dy.

DEFINITIONS 13.1.3. A distribution T on R™ is a continuous linear func-
tional on the test space D: whenever ¢, — ¢ in D, it is required that the
numbers < T, ¢, > tend to < T, ¢ >.

The class of distributions is made into the distribution space D’ by the
following definition of (weak) convergence when A\ — Ag:

(13.1.4) n—T if <T\,0>—<T,0>, VoeD.

One could also define the space D’ by completion of the space of locally
integrable functions, provided with the definition of convergence relative to
test functions corresponding to (13.1.4); cf. [68].

Every locally integrable function f on R™ defines a distribution 7'y by
the formula

<Tf, ¢ >= fo, VoeD.
Rn

These special distributions are in 1 — 1 correspondence with the defining
functions f:

Ty =0 if and only if f =0,
provided we identify functions that are equal almost everywhere. One iden-
tifies Ty with f and writes < T}, ¢ > =< f, ¢ >.
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The delta distribution on R™ has its usual definition < 6,¢ >= ¢(0),
V¢ € D. The tempered distributions on R™ are distributions in the present
sense; cf. Exercise 13.1.2.

One says that 177 = T5 on an open set Q C R" if < T}, >=<T5,¢ >
for all test functions ¢ with support in €2. The support of T is defined
as usual; cf. Definition 10.4.3. All distributions 7" may be multiplied by
arbitrary C*> functions w:

<wlp>=<Tw,¢ > < T wp>, VoéeD.

DEFINITION 13.1.4. (Derivatives) For a distribution 7" on R™, the (par-
tial) derivative DyT = OT/0zy, is the distribution on R™ given by

<l%ﬂ¢:»:—<T,@é>, Vo eD.
3xk

In the case n = 1 one simply writes DT'. In R™ one uses the notation

8011 +-Fan

DT =Dyt DT = st ... Hpan
1 n

where « stands for the multi-index (aq, -+, a;,) > 0. Thus
< D°T, ¢ > = (—1)@++on < T Do > .

Since the order of differentiation is immaterial for test functions, the same
is true for distributional derivatives D®. Furthermore, one readily proves

PROPOSITION 13.1.5. Distributional differentiation is continuous: if dis-
tributions Ty converge to T in D', then D*Ty converges to DT in D'.

ExaMPLES 13.1.6. For n = 1 one has 6 = DU, where U = 1, is the unit
step function. If ¢ is an indefinite integral on R then Dg = ¢; cf. Section
10.5. If a function f on R is equal to an indefinite integral both on (—o0, 0)
and on (0,00), while f” is integrable over all finite intervals (—A,0) and
(0, A), then

Df = f" + so,

where s is the jump f(0+) — f(0—). [Indeed, f — sU will be equal to an
indefinite integral g on R.]
The Laplacian AT of a distribution 7" on R"™ is given by the formula

<AT, o >=<T,A¢p >, V¢eD.



312 13. GENERAL DISTRIBUTIONS AND LAPLACE TRANSFORMS

EXAMPLE 13.1.7. (Distributional Laplacian of u(x) = 1/r = 1/|z| in
R?) The function u(z) = 1/r is locally integrable on R?® and it satisfies
Laplace’s equation in the classical sense on R3\ {0}, but Au does not
vanish throughout R3!

Since 1/r = lim{1/(r +¢)} in D" as € \, 0, one will have A(1/r) =
lim A{1/(r+¢)}. However, it is easier to compute A(1/r) from the relation

1
— =limu(z) with u.(z) = (r® +€)_%-
r

From the form of the Laplacian in polar coordinates one finds
. 1 8 2 8u5 B 1 d 3, 9 _3
Aue(a:)—ﬁa(r 87“) Cr2dr { i+ e) }
5
= —3¢ (7“2 + 5) 2
Thus for a test function ¢, taking R so large that supp ¢ belongs to the ball
B(0, R),

< Aug, p > :/

B(0,R)

Au(z)p(x)dx = / Au(z)p(0)dx

B(0,R)
(13.1.5) —3éémm@ﬂ@—¢mn@?+@%dx

We first compute the integral of Au.(z) itself:

B1d
Auga:dx:/ — — =3t 4e)”
/B(O,R) @) 0 TQd?”{ ( )

:_%@ﬂﬁ+@3ﬁ:_m+0@.

For the test function ¢ one has ¢(z) — ¢(0) = O(r). With this inequality,
the final term in (13.1.5) can be estimated as O(¢). Combining results, one
finds that

<A1,¢> = li{r(l) < Aug, ¢ >= —4np(0) = < —47d, ¢ >
T €

for all ¢. Hence

W

} Aqrdr

1 1
(13.1.6) A-=A—=—4xf(z) in R’
r | ]
We end with a fundamental result on the structure of general distribu-
tions.



13.2. TWO-SIDED LAPLACE TRANSFORMATION 313

THEOREM 13.1.8. When restricted to a bounded open set €2, a distri-
bution T on R™ is equal to a distributional derivative D of some order
a = (ay, - ,ay) of a locally integrable function.

We sketch a proof for n = 1. Let w be a test function on R which is
equal to 1 on (—A, A). Then the distribution wT" has compact support, and
hence may be considered as a tempered distribution. Indeed, the formula

<wl Yy >=<T,wp >, eS8,

defines wT as a continuous linear functional on §. Thus by the Structure
Theorem 10.6.2 for tempered distributions, one has wT' = D*f = D* f4 with
fa € P. It follows that

T=wl=D°fy on (—AA).
Globally a distribution on R™ need not be a derivative of a locally inte-
grable function; cf. Exercise 13.1.6.

Exercises. 13.1.1. Verify that formula (13.1.3) defines a test function w.
on R™ which is equal to 1 on K and equal to 0 outside Ko..

13.1.2. Show that convergence ¢, — ¢ in D implies convergence ¢, — ¢
in S [Section 10.4]. Deduce that every tempered distribution on R™ is equal
to a distribution in D'(R™).

13.1.3. Prove that distributional differentiation is continuous.

13.1.4. Use the approach of Example 13.1.7 to derive that in R™ (with
n # 2)

1

‘x|n—2

13.1.5. Show that in R?, one has §(x) = 6(z1, x9) = D1 Do{U(x1)U(x2)}.
13.1.6. Verify that the series

§(z)+Dé(x — 1)+ -+ D*(x — k) + - --

converges to a distribution 7" on R. Prove also that 7" cannot be represented
in the form D™F on R, with m > 0 and F' locally integrable.

= —(n—2)o,6(x), where o, = area of S; in R".

13.2. Two-sided Laplace transformation

Here we restrict ourselves to the case of one independent variable. For
suitable functions f on R one may define

(13.21)  g(s) = (LF)(s) = (Lo f)(s) /R fB)edt, s =0 +ir.
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S-plane

FIGURE 13.1

The two-sided transform is a continuous analog of a Laurent series

Z a,z" = Z ae” .
The typical domain of convergence for such a series is an annulus
p<lzl=|e*|=e <R
In terms of s this becomes a vertical strip [Figure 13.1]:
—logR=a<0=Res<b= —logp.
The sum of the series is analytic throughout the strip.

PrRoPOSITION 13.2.1. Let f be a function on R such that the product
f(t)e" is integrable over R for a < o < b. [An equivalent condition would
be that f(t)e ?'U(t) is in L'(RT) for all 0 > a, while f(t)e 'U(—t) is
in L'(R™) for all 0 < b.] Then the (two-sided) Laplace transform g(s) =
(Lf)(s) exists for all complex s in the strip {a < o0 = Res < b}. The

transform is an analytic function which is bounded on every ‘interior strip’
a <o < [that is, a < o < 8 < b], and one has

(13.2.2) g(s) = — /[R LF(b)edt.
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The proof follows readily from Theorem 12.1.2 since
(13.2.3)

g(s) = (/OOOJF/;)f(t)e—“dt:/ow f(t)e—stdiwr/ooo f(=t)edt.

The first integral on the right represents a bounded analytic function on
every right half-plane Res > a > a, and the final integral, a bounded
analytic function on every left half-plane Res < g < b.

The two-sided Laplace transform is closely related to a Fourier trans-
form:

(13.2.4) glo+1it) = /Rf(t)e”temdt = F[f(t)e "] (7).

DEFINITION 13.2.2. (Extended Laplace transformation) Let T be a dis-
tribution on R such that the product T'(t)e™* is a tempered distribution
on R for a < 0 = Res < b. Then the (two-sided) Laplace transform Lf is
given by
(13.2.5) g(s) = (LT)(s) = (LT)(o +i7) & F[T(t)e ""](r), a <o <b.

Thinking of an integral, one sometimes writes symbolically
(13.2.6) g(s) = (LT)(s) =< T(t),e " > .

For distributions 7' as in Definition 13.2.2, it is indeed possible to extend
the class of test functions in such a way that it includes the functions e=*!
for a < Res < b.

ProproSITION 13.2.3. Under the conditions of Definition 13.2.2, the
Laplace transform g(s) = (LT)(s) is analytic in the strip a < o = Res < b.
On ‘interior strips’, the transform is bounded by (the absolute value of) a
polynomial in s. One has the complex inversion formula

o+iA
(13.2.7) T(t) = lim —/ g(s)e*ds, Vo € (a,b).
o—1A
Here the limit is in the sense of general distributions.

For a proof of the first two parts one would like to go back to one-
sided transforms, but a decomposition as in (13.2.3) is not always possible.
Indeed, the product T'(t)U(t) need not be well-defined. However, in terms
of a C* function w(t) that is equal to 0 for ¢ < —1 and equal to 1 for ¢ > +1,
one may write

9(s) = LWT)(s) + L{(1 = w)T}(s)-
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Original f(f)  Laplace trf g(s) Remark
(i) FO) % o(3)  AeR\(0} o/re (0h)
(ii) fE+X) e*g(s) AeR

(i) A g(s — A AEC, 0 —ReAe (a,b)
(iv) Df(t) sg(s)

(v) tf(t) —9'(s)

M) (fix )0 61(5)g2(5) validity limited

This decomposition essentially gives g(s) as the sum of two one-sided Laplace
transforms. The proof of the first two parts of the theorem may now be
completed with the aid of Exercise 13.2.6.

Fourier inversion of (13.2.5) as in Chapter 11 [see Theorems 11.1.2 and
11.2.4] finally shows that for a < o < b,

T = & Feloto i) = Jim o [ glo+imea
e =— o+ir = lim — o+ ir)e"dr.
o~ R I A—oo 21 J_ Ag

Here the limit is to be taken in the sense of tempered distributions. Multi-
plication by e gives (13.2.7) in the sense of general distributions on R.

EXAMPLES 13.2.4. By (13.2.5) or (13.2.6), £6 = 1. The function

1
g(s) = oEE Res >0
is the Laplace transform of (sin¢)U(¢); cf. Examples 12.1.1 and 12.3.3. How-
ever, the function

g(S):m, Res <0

is the Laplace transform of —(sint¢)U(—t)!

Rules for the (two-sided) Laplace transformation; see the table. Here it has
been assumed that f is a function or distribution on R such that f(¢)e "
is an integrable function on R for a < o < b, or at least a tempered distri-
bution.
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Discussion. For well-behaved functions, rules (i)-(v) follow directly from
the transformation rules for integrals. For distributions, the formal equation
(13.2.6) is very suggestive. For example,

LDT =< DT, e >= —<T,Die " >=5<T,e % >=5sLT.

For genuine proofs one may appeal to (13.2.5) and the rules for Fourier
transformation.

For the convolution rule (vi) we start with a classical case. Suppose that
f1 and fy are locally integrable functions on R with support on the half-
line {¢ > ¢}, and such that the products f;(t)e " are integrable over R for
o = Res > a. Then by Fubini’s theorem, the product (f; * f2)(t)e 7" will
also be integrable over R for o > a; cf. Proposition 12.2.1. Furthermore,

£ 1)6) = [ { [ Ao = oo fea
_ / fiv)evdv / folt = v)e Dt = Lf,(5)LF(5).

provided o > a.

The rule is also valid for distributions f; on R with support on the
half-line {¢ > ¢}, and such that the products f;(t)e " are tempered for
o> a.

Exercises. 13.2.1. Prove that Laplace transformation according to Defini-
tion 13.2.2 is one to one.

13.2.2. Compute L[U(t)] and L[-U(—t)], and compare the answers.
Explain why the result does not contradict the previous exercise.

13.2.3. Verify the results stated in Examples 13.2.4.

13.2.4. Prove rules (iv) and (v) in the table of Laplace transforms.

13.2.5. Deduce rule (iv) in the table of Section 12.2 for the one-sided
Laplace transform of a derivative from rule (iv) in the new table.

Hint. Assuming that f(¢) can be written as an indefinite integral ¢ +

fot f'(v)dv on R, one has
D{f(t)U(t)} = f{(t)U(t) + f(0)d(t) (cf. Examples 13.1.6).

13.2.6. Let T be a distribution on R with support in [¢, +00] such that
T(t)e " is tempered. Prove:

(i) There exist a function F' € P with support in [¢, 00] and an integer
m > 0 such that T = e D™F.
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Hint. Part (iii) of Structure Theorem 10.6.2 gives a representation of
the form Te~* = D™f. In the present case, D™ f = 0 on (—o0, ¢), hence
on that interval, f is equal to a polynomial P of degree < m.

(i) (LT')(s) is analytic for Re s > «, and on every half-plane {Re s > o'}
with o > «, |[LT'(s)| is bounded by the absolute value of a polynomial in s.

Hint. By part (i) LT'(s) = (s — a)"G(s — «), where G = LF.

13.2.7. Discuss the Mellin transformation [named after the Finnish
mathematician Hjalmar Mellin (1854-1933; [85]), cf. [86]]:

(13.2.8) def/ f@)z* e,

under the hypothesis that f(x)z7~! is a function that is integrable over
(0,00) for every o € (a,b). Formulate a complex inversion formula.



Bibliography

Abel, N.H., Internet, http://en.wikipedia.org/wiki/Niels_Henrik_Abel
Abelian and Tauberian theorems, Internet, http://en.wikipedia.org/wiki/
Abelian_and_tauberian_theorems

d’Alembert, J.L.R., Internet, http://nl.wikipedia.org/wiki/Jean_Le_Rond_
d27Alembert

d’Alembert operator, Internet, en.wikipedia.org/wiki/D’ Alembert_operator
Banach, S., Internet, en.wikipedia.org/wiki/Stefan_Banach

Bernoulli, D., Internet, http://en.wikipedia.org/wiki/Daniel_Bernoulli
Bessel, F., Internet, http://en.wikipedia.org/wiki/Friedrich_Bessel

du Bois-Reymond, P.D.G., Internet, http://en.wikipedia.org/wiki/Paul_
David_Gustav_du_Bois—-Reymond

Borel, E., Internet, http://en.wikipedia.org/wiki/C389mile_Borel

Borel measure, Internet, http://en.wikipedia.org/wiki/Borel_measure
Carleson, L., Internet, http://en.wikipedia.org/wiki/Lennart_Carleson
Cauchy, A.-L., Internet, en.wikipedia.org/wiki/Augustin-Louis_Cauchy
Cauchy integral formula, Internet, en.wikipedia.org/wiki/Cauchy’s_
integral_formula

Cauchy integral theorem, Internet, en.wikipedia.org/wiki/Cauchy’s_
integral_theorem

Cauchy—Schwarz inequality, Internet, en.wikipedia.org/wiki/CauchySchwarz_
inequality

Cesaro, E., Internet, en.wikipedia.org/wiki/Ernesto_Cesro

Cesaro  summability, Internet, http://planetmath.org/encyclopedia/
CesaroSummability.html

Chebyshev, P., Internet, en.wikipedia.org/wiki/Pafnuty_Chebyshev
Chebyshev polynomials, Internet, http://en.wikipedia.org/wiki/Chebyshev_
polynomials

Churchill, R.V. and Brown, J.W., Fourier series and boundary value problems.
Fourth edition. McGraw-Hill, New York, 1987.

Differential equations, Internet, en.wikipedia.org/wiki/Ordinary_
differential_equation

Dirac, P., Internet, http://en.wikipedia.org/wiki/Paul_Dirac

Dirac, P.A.M., The principles of quantum mechanics. Oxford, at the Clarendon
Press, 1930. Third ed. 1947.

319



ot
=~

BIBLIOGRAPHY

Dirac delta function, Internet, http://en.wikipedia.org/wiki/Dirac_delta_
function

Dirichlet, J.P.G.L., Internet, http://en.wikipedia.org/wiki/Johann_Peter_
Gustav_Lejeune_Dirichlet

Dirichlet kernel, Internet, http://en.wikipedia.org/wiki/Dirichlet_kernel
Duistermaat, J.J. and Kolk, J.A.C., Distributions. Theory and Applications.
Birkh&user (Springer), New York etc, 2010.

Dym, H. and McKean, H.P., Fourier series and integrals. Academic Press, New
York, 1972.

Euler, L., Internet, http://en.wikipedia.org/wiki/Leonhard_Euler

Fejér, L., Internet, http://en.wikipedia.org/wiki/LipC3B3t_FejC3A9r
Fischer, E.S., Internet, en.wikipedia.org/wiki/Ernst_Sigismund_Fischer
Folland, G.B., Fourier analysis and its applications. Wadsworth & Brooks/Cole,
Pacific Grove, CA, 1992.

Fourier, J., Internet, http://nl.wikipedia.org/wiki/Joseph_Fourier

Fubini, G., Internet, en.wikipedia.org/wiki/Guido_Fubini

Gauss, C.F., Internet, http://nl.wikipedia.org/wiki/Carl_Friedrich_Gauss
Gauss quadrature, Internet, http://en.wikipedia.org/wiki/Gaussian_
quadrature

Gelfand, I.M. and coauthors, Generalized functions, vol 1-5. (Translated from the
Russian) Acad.Press, New York, 1964-1966.

Gibbs, J.W., Internet, en.wikipedia.org/wiki/Josiah_Willard_Gibbs

Gibbs  phenomenon, Internet, http://en.wikipedia.org/wiki/Gibbs_
phenomenon

Gram, J.P., Internet, http://en.wikipedia.org/wiki/Jrgen_Pedersen_Gram
Gram-Schmidt process, Internet, http://en.wikipedia.org/wiki/
Gram-Schmidt_process

Hadamard, J., Internet, http://en.wikipedia.org/wiki/Jacques_Hadamard
Harmonic oscillator, Internet, en.wikipedia.org/wiki/Quantum_harmonic_
oscillator

Hardy, G.H., Internwet, en.wikipedia.org/wiki/G._H._Hardy

Hardy, G.H. and Rogosinski, W.W., Fourier series. Cambridge Tracts no. 38, Cam-
bridge Univ. Press, 1944. (Second ed. 1950.)

Hermite, C., Internet, http://en.wikipedia.org/wiki/Charles_Hermite
Hermite polynomials, http://en.wikipedia.org/wiki/Hermite_polynomials
Hilbert, D., Internet, en.wikipedia.org/wiki/David_Hilbert

Hilbert space, Internet, en.wikipedia.org/wiki/Hilbert_space
Hilbert—Schmidt  operator, Internet, http://en.wikipedia.org/wiki/
Hilbert--Schmidt_operator

Holder, O., Internet, en.wikipedia.org/wiki/Otto_Hlder

Hormander, L., The analysis of linear partial differential operators, vol I-IV [I:
Distribution theory and Fourier analysis.] Springer, Berlin, 1983-85.

Hull, T.E., Internet, www.linkedin.com/pub/tom-hull/10/A68/355

Ince, E.L., Ordinary Differential Equations. Dover Publications, 1958.

] Infeld, L., Internet, en.wikipedia.org/wiki/Leopold_Infeld



BIBLIOGRAPHY 321

Infeld, L. and Hull, T.E., The factorization method. Rev. Modern Physics 23
(1951), 21-68.

Isoperimetric inequality, Internet, http://en.wikipedia.org/wiki/
Isoperimetric_inequality

Jacobi, C.G.J., Internet, en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
Jordan, P., Internet, http://en.wikipedia.org/wiki/Pascual_Jordan

Jordan, P. and von Neumann, J., On inner products in metric spaces. Ann. of
Math. 36 (1935), 719-723.

Kellogg, O.D., Foundations of potential theory. Grundl. math. Wiss. vol 31,
Springer, Berlin, 1967. (Reprint of 1929 edition; also reprinted by Dover Publi-
cations, 1953.)

Kelvin, 1st Baron — William Thomson, Internet, en.wikipedia.org/wiki/
William_Thomson, _1st_Baron_Kelvin

Kelvin transform, Internet, en.wikipedia.org/wiki/Kelvin_transform
Kloosterman, H.D., Internet, en.wikipedia.org/wiki/Hendrik_Kloosterman
Kolmogorov, A., Internet, http://en.wikipedia.org/wiki/Andrey_Kolmogorov
Korevaar, J., Distributions defined by fundamental sequences, I-V. Indag. Math.
17 (1955), 369-389, 483-503, 663—674.

Korevaar, J., Pansions (formal Hermite expansions) and the theory of Fourier
transforms. Trans. Amer. Math. Soc. 91 (1959), 53-101.

Korevaar, J., Mathematical methods, vol 1, Linear algebra, normed spaces, distri-
butions, integration. Academic Press, New York, 1968. (Reprinted by Dover Publ.,
Mineola, N.Y., 2008.)

Korevaar, J., Tauberian theory. A century of developments. Grundl. Math. Wiss.,
Springer, 2004.

Korner, T.W., Fourier analysis. Second edition. Cambridge Univ. Press, 1989.
Laguerre, E., Internet, http://en.wikipedia.org/wiki/Edmond_Laguerre
Laguerre polynomials, Internet, http://en.wikipedia.org/wiki/Laguerre_
polynomials

Laplace, P.-S., Internet, http://en.wikipedia.org/wiki/Pierre-Simon_
Laplace

Laplace’s equation, Internet, http://en.wikipedia.org/wiki/Laplace27s_
equation

Laplace operator, Internet, http://en.wikipedia.org/wiki/Laplace_operator
Lebesgue, H., Internet, \http://en.wikipedia.org/wiki/Henri_Lebesgue
Lebesgue integration, Internet, http://en.wikipedia.org/wiki/Lebesgue_
integration

Legendre, A.-M., Internet, http://en.wikipedia.org/wiki/Adrien-Marie_
Legendre

Legendre polynomials, Internet, http://en.wikipedia.org/wiki/Legendre_
polynomials

Levi, B., Internet, http://en.wikipedia.org/wiki/Beppo_Levi

Lighthill, M.J., Introduction to Fourier analysis and generalised functions. Cam-
bridge Univ. Press, 1960.

Liouville, J., Internet, http://en.wikipedia.org/wiki/Joseph_Liouville



ot

~N

BIBLIOGRAPHY

Lipschitz, R.O.S., Internet, http://en.wikipedia.org/wiki/Rudolf _Lipschitz
Littlewood, J.E., Internet, en.wikipedia.org/wiki/John_Edensor_Littlewood
Mellin, H., Internet, http://en.wikipedia.org/wiki/Hjalmar_Mellin

Mellin transform, Internet, en.wikipedia.org/wiki/Mellin_transform
Neumann, J. von, Internet, en.wikipedia.org/wiki/John_von_Neumann

Paley, R.E.A.C. and Wiener, N., Fourier transforms in the complex dpmain. Amer.
Math. Soc. Publ. vol 19. Amer. Math. Soc. Providence, RI, 1934.

Parseval, M.-A., Internet, http://en.wikipedia.org/wiki/Marc-Antoine_
Parseval

Parseval’s theorem, Internet, http://en.wikipedia.org/wiki/Parseval’s_
theorem

Plancherel, M., Internet, http://en.wikipedia.org/wiki/Michel_Plancherel
Plancherel’s theorem, Internet, http://en.wikipedia.org/wiki/Plancherel_
theorem

Poisson, S.D., Internet, http://en.wikipedia.org/wiki/SimC3A9on_Denis_
Poisson

Poisson kernel, Internet, http://en.wikipedia.org/wiki/Poisson_kernel
Poisson’s sum formula, Internet, en.wikipedia.org/wiki/Poisson_summation_
formula

Prime number theorem, Internet, http//:en.wikipedia.org/wiki/Prime_
number_theorem

Quantum harmonic oscillator, Internet, http://en.wikipedia.org/wiki/
Quantum_harmonic_oscillator.

Riemann, B., Internet, en.wikipedia.org/wiki/Bernhard_Riemann

Riemann integral, Internet, http://en.wikipedia.org/wiki/Riemann_integral
Riesz, F., Internet, http://encyclopedia.thefreedictionary.com/Frederic+
Riesz

Riesz representation theorem, Internet, http://en.wikipedia.org/wiki/Riesz_
representation_theorem

Riesz-Fischer theorem, Internet, en.wikipedia.org/wiki/RieszFischer_
theorem

Rodrigues, B.O., Internet, http://en.wikipedia.org/wiki/0linde_Rodrigues
Rodrigues’ formula, Internet, http://en.wikipedia.org/wiki/Rodrigues_
formula

Schauder, J.P., Internet, en.wikipedia.org/wiki/Juliusz_Schauder

Schauder basis, Internet, en.wikipedia.org/wiki/Schauder_basis

Schlafli. L., Internet, htpp://en.wikipedia.org/wiki/Ludwig_Schlfli
Schmidt, E., Internet, http://en.wikipedia.org/wiki/Erhard_Schmidt
Schwartz, L., Internet, http://en.wikipedia.org/wiki/Laurent_Schwartz
Schwartz, L., Théorie des distributions, I, IT. Hermann, Paris, 1950. New expanded
edition in one volume, 1966.

Schwartz, L., Mathematics for the physical sciences. Hermann, Paris; Addison-
Wesley, Reading, Mass., 1966.

Schwarz, K.H.A., Internet, en.wikipedia.org/wiki/Hermann_Schwarz
Spherical harmonics, Internet, en.wikipedia.org/wiki/Spherical_harmonics



[120]
[121]
[122]

[123]
[124]

BIBLIOGRAPHY 323

Stein, E.M. and Weiss, G., Introduction to Fourier analysis on Euclidean spaces.
Princeton Univ. Press, 1971.

Sturm, J.C.F., Internet, http://en.wikipedia.org/wiki/Jacques_Charles_
Francois_Sturm

Sturm-Liouville theory, Internet, http://en.wikipedia.org/wiki/
Sturm--Liouville_theory

Szeg6, G., Orthogonal polynomials, Colloquium Publications vol. 23 (fourth ed).
American Mathematical Society, Providence, R.I., 1975.

Tauber, A., Internet, en.wikipedia.org/wiki/Alfred_Tauber

Taylor, A., Introduction to functional analysis. Wiley, New York, second edition
1980.

Titchmarsh, E.C., Introduction to the theory of Fourier integrals. Oxford Univ.
press, 1937. Third ed., Chelsea Publ. Co, New York, 1986.

de la Vallée Poussin, C.-J., Internet, http://nl.wikipedia.org/wiki/
Charles-Jean_de_La_Vallee_Poussin

Volterra, V., Internet, en.wikipedia.org/wiki/Vito_Volterra

Weierstrass, K., Internet, en.wikipedia.org/wiki/Karl_Weierstrass

Wiener, N., The Fourier integral and certain of its applications. Cambridge Univ.
Press, Cambridge, 1933. (Reprinted 1988.)

Wolff, J., Fouriersche Reihen. Noordhoff, Groningen, 1931.

Zhang, Gong-zhing, Theory of distributions of S type and pansions. Chinese Math.-
Acta 4 (1963), 211-221. (Translated from the Chinese.)

Zorn, M.A.| Internet, http://en.wikipedia.org/wiki/Max_August_Zorn
Zorn’s Lemma, Internet, http://en.wikipedia.org/wiki/Zorn’ s_lemma
Zygmund, A., Trigonometric series, vol III. Third ed. Cambridge Univ. Press,
2002.






Cla,b], 103, 112
D®, 309

E+, 124
L(a,b) = L'(a,b), 70, 107, 113
L2(J), 122
L?(S9), 204
L?(a,b), 21
L?Cla,b], 123
T, 76, 253
T(¢), <T,¢ >, 76
Wy @ Wo, 111
Y, [f], 209

0, 303
Cla, b], 103
Cc>(T), 74
e, 71

cr, 30
Cs°(R™), 309
D, 309

D', 310
D'(I), 81
D(I), 75

H,, 205
L(a,b), 28

P, 244

S, 233, 272
S’, 255, 273
et 121

I, 113

I*(n), 112
12,113, 122
12(n), 112
1>, 113

Index

325

1°°(n), 112

E", 103, 112, 121
R™, 102

U", 103, 112, 121

a.e., almost everywhere, 28
Abel, 2, 6, 49

continuity theorem, 2

integral equation, 298

means, 51, 61

sum, H2
Abel summability, 52
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addition theorem for spherical
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area of sphere in R*, 280

associated Legendre functions, 164

asymptotics, 187
Bessel functions, 189
Legendre polynomials, 188
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in R¥, volume, 283
Banach, Banach space, 117
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Bernoulli, Daniel, 1, 11
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Fourier transform, 268
integral formulas, 278, 281, 294
Laplace transform, 289, 290
recurrence relation, 283
Bessel, Bessel inequality, 139
best approximation, 136, 147
Beta function, 281
Bois-Reymond, du, 41
Borel, Borel measure, 77
bounded variation, 31

Carleson, 43
Cauchy, 5

criterion, 5

formula, 174

inequality, 127

integral formula, 24

sequence, 94, 105

theorem, 18, 215
Cauchy—Schwarz inequality, 126
Cesaro, 49

means, 50

sum, 51
characteristic function, 28
Chebyshev, 60

polynomial, 60, 164
codimension, 111
communication governed by wave

equation, 285

complementary subspaces, 111
complete orthogonal set, 135
completeness

of D'(T), 94

of &, 262

of metric space, 105
completion

of metric space, 107

relative to weak convergence, 94, 262
continuity

of distributional differentiation, 311
continuous linear functional, 76
controversies, 6, 11
convergence

distributional, 80, 93, 259, 261

in L', 70

in L?, 139
in metric space, 102
in norm, 118
of expansions, 139
relative to test class, 71
strong, 259, 262
weak, 255
convex, 114
strictly convex, 131
convolution
in L'(R), 226
of distributions, 98, 269
of integrable functions, 99, 223
on half-line, 289
cosine, sine transformation, 300
inversion, 300
rules, 301

d’Alembertian, [, 303
delta distribution, 77, 254
as measure, 77
as unit element, 98, 270
Fourier series of, 83
Fourier transform of, 264
in R™, 273
periodic, 254
delta sequence, family, 81
derivative
D>, 311
distributional, 85, 258
of product, 86, 258
of unit step function, 87, 258
differential equation
analytic case, 182
associated Legendre, 166
asymptotics of solution, 187
Bessel, 183
Bessel order v, 186
equidimensional, 65, 184
general Legendre, 183
Hermite functions, 172
Hermite polynomials, 171
homogeneous, 182
indicial equation, 184
Laguerre, 168



Laplace method, 299
Legendre, 162
non-homogeneous, 186
polar Legendre, 187
power series method, 182
regular singular point, 183
removal first derivative, 187
second solution, 184
separating variables, 10, 201
singular point, 183
solution, 181
standard form, 181
diffusion equation, 12
dimension, 110
orthogonal dimension, 151
Dirac, 77, 237
delta function, 77, 254
direct sum, 111
decomposition of L?(S), 207
Dirichlet, 1, 11, 41
kernel, 32
Dirichlet problem, 197
for half-plane, 240
for half-space, 275, 279
for unit ball, 210
for unit disc, 65
discrete metric, 103
distance function, 101
distribution
delta, 77, 254
derivative, 82, 85, 258, 311
Fourier series, 83
general, on R", 310
on I', or periodic —, 76
order, 93
positive, 95
reflection, 78, 254
structure, 93, 261, 312
support, 80, 254
tempered, 253, 273
translate, 78, 254
with point support, 95
distributions
convergence, 80, 93, 255, 261
convolution, 98, 269

INDEX

327

local equality, 79, 254
obtained by completion, 94, 262
product, 78, 97, 254
space D', 310
space D/(T"), 81
space S’, 255
dual space, 81, 255

eigenvalue problem
factorization method, 236
harmonic oscillator, 235
Hermite, 196
Legendre, 199
Sturm—Liouville, 191
vibrating string, 10, 190

Fuclidean space, 102

Euler, 1, 4, 6, 11

Fejér, 1
kernel, 53
theorems, 56
Fischer, 108
Fourier, 1, 11
Fourier coefficients, 17
Fourier integrals, 22
Fourier series, 11, 14
as orthogonal series, 19
complex series, 17
cosine series, 17
divergence, 41
partial sum formula, 33
sine series, 17
Fourier transformation, 23
case of circular symmetry, 277
case of spherical symmetry, 279
continuity, 234, 264, 266, 274, 282
eigendistributions, 268
eigenfunctions, 215, 225, 268
in S, 233, 273
in &', 263, 273
in L2 = L?(R), 246
inversion, 23, 213, 219, 221, 245, 246,
264
of Bessel function, 268
of convolution, 270
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of delta distribution, 264 Hermite, 170
of derivative, 213, 216 Hermite functions, 171
of Hermite functions, 225 basis property, 231
on P, 244 differential equation, 172
on L'(R), 213 Fourier transform, 225
on LY(R"), 272 in R™, 274
operational definition, 225, 243 recurrence relations, 171
Parseval formula, 234, 248 Hermite polynomials, 170
Plancherel formulas, 248, 250 differential equation, 171
reflected transform, 214 generating function, 177
rules, 222, 273 modified (in Statistics), 173
Fubini, 57 recurrence relations, 171
theorem, 99, 220, 227 Rodrigues formula, 170
function Hermite series
integrable, 28 for function in S, 251
of class P, 244 for tempered distribution, 256
of class S, 233 Hilbert, 21, 194
piecewise continuous, 27 Hilbert space, 21, 124
smooth, 27 orthogonal expansion, 142
step function, 27
with circular symmetry, 277 indicial equation, 184
with spherical symmetry, 280 inner product function, 123
fundamental solution inner product space, 124
for differential operator, 274 structure, 154
for heat operator, 277 integral
for Laplace operator, 276, 277, 284 indefinite, 31, 69
for wave operator in R"™, 303 principal value, 77
principal value at co, 218
Gauss, Gauss quadrature, 162 Riemann integral, 27
generating function, 175 integral sine function, 44
see under Legendre and other inversion
polynomials, 176 in sphere, 203
Gibbs, Gibbs phenomenon, 44 of cosine, sine transformation, 300
Gram, 145 of Fourier transformation, 23, 213,
Gram matrix, 148 219, 221, 233, 264
of Laplace transformation, 291, 295
Hélder, 36 order of integration, 57, 99, 227
Holder continuity, 40 isometry, 104
Holder-Lipschitz condition, 36, 219 isomorphic spaces, 153
Hadamard, Hadamard inequality, 148 isoperimetric theorem, 142
Hardy, 53
harmonic function, 64, 197 Jacobi, Jacobi polynomials, 164
series representation, 65, 202 Jordan—von Neumann theorem, 130

harmonic oscillator, 196, 235
heat equation, 12, 238, 271, 299, 303 Kelvin, Kelvin transform, 203



Kloosterman, 53
Kolmogorov, 43
Korevaar, 53, 243

Laguerre, 167
Laguerre polynomials, 167
differential equation, 168
generating function, 177
integral formula, 176
Rodrigues formula, 168
Laplace, 18
Laplace equation
axial symmetry, 197
in R?, 18, 64
in R3, 197
polar coordinates, 197
spherical symmetry, 198
Laplace method for differential
equations, 299
Laplace operator, 203
fundamental solution, 276, 312
Laplace series, 207
Abel summability, 209
Laplace transform, 169, 285
analyticity, 286
derivative, 286
domain of convergence, 286
inversion, 291, 295, 315
of Bessel function, 289, 290
of derivative, 288
of half-line convolution, 289
rules, 289
two-sided, 314
Laurent series, 16
Lebesgue, Lebesgue integral, 28
Legendre, 146
Legendre polynomials, 146, 157
asymptotics, 188
basis property, 147, 161
differential equation, 162
generating function, 176, 178
graph, 160
Laplace’s integral, 174
recurrence relation, 161
Rodrigues formula, 159
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Schlafli’s integral, 174
Levi, Levi theorem, 119
linearly independent, 110
Liouville, 195
Lipschitz, 36
Littlewood, 53
localization principle, 44

map
continuous, 104
isometry, 104
mean square convergence, 123
measure
Borel measure, 77
Lebesgue measure, 28
measure zero, 28
Mellin, Mellin transform, 318
metric, 101
metric space, 102
completion, 107
separable, 104
moment theorem, 58, 60, 229

Neumann problem, 67
Neumann, von, 124, 130
norm
L' norm, 113
L? norm, 122
supremum norm, 112
normed linear space, 111
finite dimensional, 115

operator
positive, 190
Sturm—Liouville, 192
symmetric, 192
optimal approximation, 105, 117, 128
order of integration, 57, 99
orthogonal
basis, 136, 138, 149
complement, 124
expansion, 134
expansion in Hilbert space, 142
projection, 136
series, 134



330

orthogonal polynomials
Chebyshev, 164
Hermite, 170
Jacobi, 164
Laguerre, 167
Legendre, 146, 157
spherical, 164
orthogonal projection, 128
onto H,, 209
orthogonal series, 20, 126
orthogonal system, 19, 133
expansion coefficients, 21
maximal, 150
orthonormal, 133
orthogonality, 121, 122, 124
orthogonalization, 144

parallelogram identity, 130
Parseval, 140
Parseval formula, 139
for Fourier series, 141
for Fourier transform, 234, 248
partial summation, 2
Plancherel, Plancherel formulas, 248,
250
Poisson, 61
equation, 276
kernel, 61
sum formula, 266
Poisson integral, 63
for a disc, 66, 67
for half-plane, 240
for half-space, 279
for unit ball, 209
polynomial approximation: Weierstrass
theorem, 58
prime number theorem, 148
principal value
distribution, 78, 253
integral, 77, 218
of logarithm, 1
Pythagorean theorem, 125

Riemann, Riemann integral, 27
Riemann-Lebesgue Lemma, 29

Riesz, Riesz representation, 77
Riesz—Fischer theorem, 107, 123
Rodrigues, 159

Rodrigues formula, 159, 168, 170

scalar or inner product, 121
Schauder, Schauder basis, 119
Schmidt, 145, 194
Schwartz, 1, 69, 233
Schwarz, 126
inequality, 128
separable space, 104, 149
signum function, 7
singular point for differential equation,
183
span, 110
closed span, 135
spanning set, 135
sphere S(a,r), 104
in R*, area, 280
spherical harmonics, 197, 205
addition theorem, 211
boundary value problem, 210
spherical polynomials, 164
step function, 27
strong convergence, 259
Sturm, 195
Sturm-Liouville operator, 192
Sturm—Liouville problem, 190
associated Legendre problem, 195,
201
characteristic pairs, eigenpairs, 191
Legendre problem, 193
regular problem, 191
singular problem, 192
standard form, 190
subset
closed, 104
closure, 104
dense, 104
distance to, 105
limit point, 104
linearly independent, 110
open, 104
subspace



INDEX 331

linear, 110 Zorn, Zorn’s Lemma, 150
of inner product space, 124
of metric space, 102
of normed space, 112
summability
Abel, 52
Cesaro, 51, 221
Fejér’s theorems, 56
support, 72, 80
supremum norm, 112

Tauber, 52
Tauberian theorems, 52
tempered distribution, 253
Hermite series, 256
termwise
differentiation, 30, 88, 259
integration, 4, 20, 28, 119
test functions, 71
D(T), 75
space D, 309
space S, 233
triangle function, 218
triangle inequality, 102, 111, 127

unit step function
derivative, 87, 258
on R, 258
on the circle, 87
unitary space, 103

Vallée Poussin, de la, 148

vibrating string
fundamental mode, 9
overtone, 10

Volterra, 182

volume of ball in R*, 283

wave equation, 7, 239, 271, 299
communication, 285, 307
fundamental solution, 303
in R™, 303

Weierstrass, 49
approximation theorem, 58
test for uniform convergence, 118

Wiener, 243



