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Preface

For many years, the author taught a one-year course called “Mathe-
matical Methods”. It was intended for beginning graduate students in the
physical sciences and engineering, as well as for mathematics students with
an interest in applications. The aim was to provide mathematical tools used
in applications, and a certain theoretical background that would make other
parts of mathematical analysis accessible to the student of physical science.
The course was taken by a large number of students at the University of
Wisconsin (Madison), the University of California San Diego (La Jolla), and
finally, the University of Amsterdam. At one time the author planned to
turn his elaborate lecture notes into a multi-volume book, but only one vol-
ume appeared [68]. The material in the present book represents a selection
from the lecture notes, with emphasis on Fourier theory. Starting with the
classical theory for well-behaved functions, and passing through L1 and L2

theory, it culminates in distributional theory, with applications to bounday
value problems.

At the International Congress of Mathematicians (Cambridge, Mass) in
1950, many people became interested in the Generalized Functions or “Dis-
tributions” of field medallist Laurent Schwartz; cf. [110]. Right after the
congress, Michael Golomb, Merrill Shanks and the author organized a year-
long seminar at Purdue University to study Schwartz’s work. The seminar
led the author to a more concrete approach to distributions [66], which he
included in applied mathematics courses at the University of Wisconsin.
(The innovation was recognized by a Reynolds award in 1956.)

It took the mathematical community a while to agree that distributions
were useful. This happened only when the theory led to major new develop-
ments; see the five books on generalized functions by Gelfand and coauthors
[37], and especially the four volumes by Hörmander [52] on partial differ-
ential equations.
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iv PREFACE

A detailed description of the now classical material in the present text-
book may be found in the introductions to the various chapters. The survey
in Chapter 1 mentions work of Euler and Daniel Bernoulli, which preceded
the elaborate work of Fourier related to the heat equation. Dirichlet’s rig-
orous convergence theory for Fourier series of “good” functions is covered
in Chapter 2. The possible divergence in the case of continuous functions
is treated, as well as the remarkable Gibbs phenomenon. Chapter 3 shows
how such problems were overcome around 1900 by the use of summability
methods, notably by Fejér. Soon thereafter, the notion of square integrable
functions in the sense of Lebesgue would lead to an elegant treatment of
Fourier series as orthogonal series. However, even summability methods
and L2 theory were not general enough to satisfy the needs of applications.
Many of these needs were finally met by Schwartz’s distributional theory
(Chapter 4). The classical restrictions on many operations, such as differ-
entiation and termwise integration or differentiation of infinite series, could
be removed.

After some general results on metric and normed spaces, including a
construction of completion, Chapter 5 discusses inner product spaces and
Hilbert spaces. It thus provides the theoretical setting for a good treatment
of general orthogonal series and orthogonal bases (Chapter 6). Chapter 7
is devoted to important classical orthogonal systems such as the Legendre
polynomials and the Hermite functions. Most of these orthogonal systems
arise also as systems of eigenfunctions of Sturm–Liouville eigenvalue prob-
lems for differential operators, as shown in Chapter 8. That chapter ends
with results on Laplace’s equation (Dirichlet problem) and spherical har-
monics. Chapter 9 treats Fourier transformation for well-behaved integrable
functions on R. Among the well-behaved functions the Hermite functions
stand out; here they appear as eigenfunctions of the linear harmonic oscil-
lator in quantum mechanics.

At this stage the student should be well-prepared for a general theory
of Fourier integrals. The basic questions are to represent larger or unruly
functions by trigonometric integrals, and to make Fourier inversion widely
possible. A convenient class to work with are the so-called tempered dis-
tributions, which include all functions of at most polynomial growth, as
well as their (generalized) derivatives of arbitrary order. A good start-
ing point to prove unlimited inversion is the observation that the Fourier
transform operator F commutes with the Hermite operator H = x2 −D2,
where D stands for differentiation, d/dx. It follows that the two operators
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have the same eigenfunctions. Now the normalized eigenfunctions of H are
the Hermite functions hn, which form an orthonormal basis of L2. Tem-
pered distributions also have a unique representation

∑
cnhn; see Chapter

10. The (normalized) Fourier operator F transforms the series
∑
cnhn into∑

(−i)ncnhn, while the reflected Fourier operator FR multiplies the expan-
sion coefficients by in. Thus F is inverted by FR; cf. Chapter 11. For L2

this approach goes back to Wiener [124]. [The author has used Hermite se-
ries to extend Fourier theory to a much larger class of generalized functions
than tempered distributions; see [67], and cf. Zhang [126].]

Chapter 12 first deals with one-sided integral transforms such as the
Laplace transform, which are important for initial value problems. Next
come multiple Fourier transforms. The most important application is to so-
called fundamental solutions of certain partial differential equations. In the
case of the wave equation one thus obtains the response to a sharply time-
limited signal at time zero at the origin. As a striking result one finds that
communication governed by that equation works poorly in even dimensions,
and works really well only in R3 !

The short final Chapter 13 sketches the theory of general Schwartz dis-
tributions and two-sided Laplace transforms.

Acknowledgements. Thanks are due to University of Amsterdam colleague
Jan van de Craats, who converted my sketches into the nice figures in the
text. I also thank former and present colleagues who have encouraged me to
write the present “Mathematical Methods” book. Last but not least, I thank
the many students who have contributed to the exposition by their questions
and comments; it was a pleasure to work with them! Both categories come
together in Jan Wiegerinck, who also became a good friend, and director of
the Korteweg–de Vries Institute for Mathematics, a nice place to work.

Amsterdam, Spring, 2011 Jaap Korevaar
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CHAPTER 1

Introduction and survey

Trigonometric series began to play a role in mathematics through the
work of the Swiss mathematicians Leonhard Euler (1707–1783, St. Peters-
burg, Berlin; [29]) and Daniel Bernoulli (1700–1782, Basel; [6]). Systematic
applications of trigonometric series and integrals to problems of mathemat-
ical physics were made by Joseph Fourier (1768–1830, Paris, ”Théorie ana-
lytique de la chaleur”, 1822; [33]). A first rigorous convergence theory for
Fourier series was developed by Johann P.G.L. Dirichlet (1805–1859, Ger-
many; [25]). It applied to “good” periodic functions, for example, piece-
wise monotonic functions. Later, it was discovered that there are rapidly
oscillating continuous functions whose Fourier series do not converge in the
ordinary sense. However, Lipót Fejér (1880–1959, Budapest; [30]) could
show that there is a summability method that reproduces every continuous
function from its Fourier series (1904). A little later, with the introduction
of the Lebesgue integral, there arose a beautiful theory of Fourier series as
orthogonal series. Even this theory was not general enough to satisfy the
needs of applications. Around 1945, Laurent Schwartz (1915–2002, France;
[109]) introduced a powerful theory of Fourier series and integrals based on
his so-called distributions or generalized functions.

There are many books on Fourier analysis, see the Internet; a few are
mentioned at the end of the chapter.

1.1. Power series and trigonometric series

Trigonometric series arise when we consider a power series or Laurent
series

∑
cnz

n on a circle x = reit, −π < t ≤ π.

Example 1.1.1. In Complex Analysis one encounters the principal value
(p.v.) of the logarithm of a complex number w 6= 0:

p.v. logw
def
= log |w| + i p.v. argw,

where the principal value of the argument is > −π and ≤ +π. This formula
defines an analytic function outside the (closed) negative real axis with

1



2 1. INTRODUCTION AND SURVEY

derivative 1/w. For w = 1 + z with |z| < 1 one may represent the principal
value by an integral along the segment from 0 to z, and hence by a power
series:

p.v. log(1 + z) =

∫ z

0

ds

1 + s
=

∫ z

0

(1 − s+ s2 − s3 + · · · ) ds

= z − 1

2
z2 +

1

3
z3 − 1

4
z4 + · · · .

Setting z = reit and letting r ր 1, one formally [that is, without regard to
convergence] obtains

p.v. log(1 + eit) = log
∣∣1 + eit

∣∣ + i p.v. arg
(
1 + eit

)

= log

∣∣∣∣2 cos
1

2
t

∣∣∣∣ + i
1

2
t(1.1.1)

= eit − 1

2
e2it +

1

3
e3it − 1

4
e4it + · · · , |t| < π.

Assuming that the series in (1.1.1) is convergent, and then separating real
and imaginary parts, one finds that

log

∣∣∣∣2 cos
1

2
t

∣∣∣∣ = cos t− 1

2
cos 2t+

1

3
cos 3t− 1

4
cos 4t+ · · · ,(1.1.2)

1

2
t = sin t− 1

2
sin 2t+

1

3
sin 3t− 1

4
sin 4t+ · · · , |t| < π.(1.1.3)

Are these manipulations permitted? A continuity theorem of Niels H.
Abel (Norway, 1802–1829; [1]) will be helpful.

Theorem 1.1.2. Let f(z) =
∑∞

n=0 cnz
n for |z| < R and suppose that

the power series converges at the point z0 on the circle C(0, R) = {|z| = R}.
Then the sum of the series at the point z0 can be obtained as a radial limit:

∞∑

n=0

cnz
n
0 = lim

rր1
f(rz0).

With this theorem the question of the validity of (1.1.1) is reduced to
the question whether the series

(1.1.4)

∞∑

n=1

(−1)n−1

n
eint

is convergent. Since we do not have absolute convergence, this is a delicate
matter. Here one can use partial summation:
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Lemma 1.1.3. (i) For complex numbers an, bn, n ∈ N and the partial
sums An = a1 + a2 + · · ·+ an [with A0 = 0] one has

k∑

n=j+1

anbn =
k−1∑

n=j

An(bn − bn+1) + Akbk − Ajbj (k > j).

(ii) If |An| ≤ M < ∞ for all n and bn ց 0 (monotonicity!), then the
infinite series

∑∞
n=1 anbn is convergent, and

∞∑

n=j+1

anbn =

∞∑

n=j

An(bn − bn+1) − Ajbj .

Application to the series in (1.1.1). Take an = (−1)n−1eint, bn = 1
n
. Then

An = eit − e2it + · · ·+ (−1)n−1eint = eit 1 − (−eit)n

1 − (−eit)
,

so that

(1.1.5) |An| ≤
2

|1 + eit| =
1

| cos 1
2
t| .

Thus by Lemma 1.1.3, the series (1.1.4) converges for |t| < π. The sum of
the series in (1.1.1) can now be obtained from Abel’s theorem:

∞∑

n=1

(−1)n−1

n
eint = lim

rր1

∞∑

n=1

(−1)n−1

n
rneint

= lim
rր1

p.v. log
(
1 + reit

)
= p.v. log

(
1 + eit

)
, |t| < π.

Exercises 1.1.1. Verify Lemma 1.1.3.
1.1.2. Use Lemma 1.1.3 to prove Theorerm 1.1.2.
Hint. One may take R = 1 and z0 = 1; by changing c0 one may also

suppose that
∑∞

0 cn = 0.
1.1.3. Use formula (1.1.1) to calculate the sum 1 − 1

2
+ 1

3
− 1

4
+ · · · .

1.1.4. Compute the sums of the series

∞∑

1

cosnx

n
and

∞∑

1

sinnx

n
,

first for 0 < x < 2π, and next for general x ∈ R. Sketch the graphs of the
sum functions.
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1.1.5. What do you think of Euler’s formulas
∞∑

n=−∞
einx = 0 for 0 < x < 2π; 1 − 2 + 22 − 23 + · · · =

1

3
?

1.2. New series by integration or differentiation

Example 1.2.1. Formal termwise integration of the series for 1
2
t in for-

mula (1.1.3) gives

(1.2.1) − cos t+
1

22
cos 2t− 1

32
cos 3t+

1

42
cos 4t− · · · =

1

4
t2 + C.

Would this be correct for |t| < π ? Perhaps even for |t| ≤ π ? If so, we can
evaluate C and also

(1.2.2) S = 1 +
1

22
+

1

32
+

1

42
+ · · · ,

simply by setting t = 0 and t = π:

C = −1 +
1

22
− 1

32
+

1

42
− · · · ,

S = 1 +
1

22
+

1

32
+

1

42
+ · · · =

1

4
π2 + C.(1.2.3)

Indeed, addition would give

C + S =
2

22
+

2

42
+

2

62
+ · · · =

2

22

(
1 +

1

22
+

1

32
+ · · ·

)
=

1

2
S,

so that S = −2C, and hence by (1.2.3),

(1.2.4) C = − 1

12
π2, S =

1

6
π2 (a famous result of Euler !).

But is this allowed? The simplest theorem that justifies termwise inte-
gration involves uniform convergence.

Theorem 1.2.2. Suppose that the series
∑∞

1 gn(t), with continuous
functions gn(t), is uniformly convergent on the finite closed interval a ≤
t ≤ b. Then the sum f(t) of the series is continuous on [a, b], and for
c, t ∈ [a, b],

∞∑

1

∫ t

c

gn(s)ds =

∫ t

c

∞∑

1

gn(s) ds =

∫ t

c

f(s)ds.
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Application to Example 1.2.1. We will show that the complex series in
(1.1.1) is uniformly convergent for |t| ≤ b < π; the same will then be true for
the series in (1.1.2), (1.1.3) which are obtained by taking real and imaginary
parts.

Accordingly, set

gn(t) = (−1)n−1eint · 1

n
= an · bn, a1 + · · ·+ an = An.

Denoting the k-th partial sum
∑k

1 gn(t) by Sk(t), partial summation as in
Lemma 1.1.3 with j < k gives

Sk(t) − Sj(t) =

k∑

n=j+1

anbn =

k−1∑

n=j

An(bn − bn+1) + Akbk −Ajbj .

Using inequality (1.1.5) we thus obtain the estimate

|Sk(t) − Sj(t)| ≤
k−1∑

n=j

|An| |bn − bn+1| + |Ak| |bk| + |Aj| |bj|

≤ 1

| cos 1
2
t|

{
k−1∑

n=j

(
1

n
− 1

n + 1

)
+

1

k
+

1

j

}
≤ 1

| cos 1
2
t|

2

j
.

It follows that Sk(t) − Sj(t) → 0 as j, k → ∞, uniformly for |t| ≤ b < π.
Hence by a criterion of Augustin-Louis Cauchy (France, 1789–1857; [12]),
the series

∑∞
1 gn(t) in (1.1.1) is uniformly convergent for |t| ≤ b.

The same is true for the series in (1.1.3) which is
∑∞

1 Im gn(t). Inte-
grating from 0 to b we now obtain from Theorem 1.2.2 that

1

4
b2 = (− cos b+ 1) +

(
1

22
cos 2b− 1

22

)
+

(
1

32
cos 3b− 1

32

)
+ · · · .

Replacing b by t we obtain (1.2.1) for 0 ≤ t < π; by symmetry it will
be true for |t| < π. Formula (1.2.1) will also hold for |t| = π, since both
sides of (1.2.1) will represent continuous functions on [−π, π] (by uniform
convergence of the series !).

Example 1.2.3. Formal termwise differentiation of the series in (1.1.3)
would give

(1.2.5)
1

2
= cos t− cos 2t+ cos 3t− cos 4t+ · · · .
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Is this a correct result? Is the new series uniformly convergent? No, it is not
even convergent, since the terms do not tend to zero (take t = 0 for exam-
ple)! Can one attach a meaning to (1.2.5)? Formulas of this type occur in
the work of Euler, but Abel [a hundred years later] had no use for divergent
series. The contemporary view is that (1.2.5) makes sense with appropri-
ate interpretation. One could apply a suitable summability method, or one
may consider convergence in the generalized sense of distribution theory;
see Chapters 3 and 4.

Exercises 1.2.1. Prove that the series

∞∑

n=1

sin nx

n

is uniformly convergent for δ ≤ x ≤ 2π− δ (where 0 < δ < π). Is the series
uniformly convergent for −δ ≤ x ≤ δ ?

1.2.2. Use partial summation to show that the partial sums

Sk(x) =

k∑

n=1

sinnx

n

remain bounded on −δ ≤ x ≤ δ (< π), hence on R. Is this also true for the
corresponding cosine series?

1.2.3. Compute the sums of the series

∞∑

n=1

cosnx

n2
,

∞∑

n=1

sinnx

n3
,

∞∑

n=1

cosnx

n4
.

1.2.4. What formulas do you obtain by termwise differentiation of the
results obtained in Exercise 1.1.4 ?

1.2.5. Other manipulations. Use the result

∞∑

n=1

sinnx

n
=
π − x

2
for 0 < x < 2π

to sum the series

∞∑

n=1

sin 2nx

2n
and

∞∑

k=1

sin(2k − 1)x

2k − 1
on (0, π).
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Next verify the following representation for the signum function

sgn x
def
=






1 for x > 0
−1 for x < 0
0 for x = 0




 =
4

π

∞∑

k=1

sin(2k − 1)x

2k − 1

on (−π, π). Derive that on the same interval

|x| =
π

2
− 4

π

∞∑

k=1

cos(2k − 1)x

(2k − 1)2
.

1.2.6. Compute the sum of the series

cosx− 1

3
cos 3x+

1

5
cos 5x− · · · on (−π, π).

1.3. Vibrating string and sine series. A controversy

The one-dimensional wave equation. We consider a tightly stretched
homogeneous string, whose equilibrium position is the interval [0, L] of the
X-axis, and whose ends are kept fixed. Idealizing, one supposes that the
string only carries out transverse vibrations in the “vertical” (X,U)-plane (a
reasonable approximation when the displacements are small). The point of
the string with coordinates (x, 0) in the equilibrium position has transverse
displacement u = u(x, t) at time t. At time t, the generic point P of the
string has coordinates (x, u) = (x, u(x, t)).

It is also supposed that the tension T = T (x, u) in the string is large
and that the string is perfectly flexible. Then the force exerted by the part
of the string to the left of the point P upon the part to the right of P will
be tangential to the string. The horizontal component of that force will
thus be T cosα, the vertical component T sinα, where α is the angle of the
string with the horizontal at P (see Figure 1.1). We suppose furthermore
that there are no external forces: no gravity, no damping, etc.

Let us now focus our attention on the part of the string “above” the in-
terval (x, x+∆x) of theX-axis. Since there are no horizontal displacements,
the net horizontal force on our part must be zero:

(T + ∆T ) cos(α+ ∆α) − T cosα = 0, hence T cosα = const = T0,

say. The net vertical force will be

(T + ∆T ) sin(α + ∆α) − T sinα = T0 tan(α + ∆α) − T0 tanα.

This force will give rise to “vertical” motion by Newton’s second law: force
= mass × acceleration, applied at the center of mass (x′, u′). Since the
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O

U

Xx x + ∆x

T + ∆T

-T

-T cos α
α

α + ∆αP = (x,u)
(x’,u’)

Figure 1.1

mass of our part is the same as in the equilibrium position, where it equals
density × length = ρ0∆x, say, we obtain

T0 tan(α + ∆α) − T0 tanα = ρ0∆x ·
∂2u

∂t2
(x′, t).

Now tanα = ∂α/∂x; dividing both sides by ∆x and letting ∆x → 0, we
obtain the one-dimensional wave equation:

(1.3.1) T0
∂2u

∂x2
= ρ0

∂2u

∂t2
or uxx =

1

c2
utt, 0 < x < L, t ∈ R,

where c =
√
T0/ρ0. Observe that c has the dimension of a velocity. This is

confirmed by dimensional analysis: {(ml/t2)/(m/l)} 1

2 = l/t.
In the physical situation, the requirement that the ends of the string be

kept fixed imposes the boundary conditions

(1.3.2) u(0, t) = 0, u(L, t) = 0, ∀ t.
Problem 1.3.1. Initial value problem for the string with fixed ends. Let

us consider the initial value problem for our string in the situation where
the string is released at time t = 0 from an arbitrary starting position:

(1.3.3) u(x, 0) = f(x), 0 ≤ x ≤ L;

cf. Figure 1.2. Here we must of course ask that f be continuous and that
f(0) = f(L) = 0. For t = 0, each point of the string has velocity zero:

(1.3.4)
∂u

∂t
(x, 0) = 0, 0 ≤ x ≤ L.

The question is if Problem 1.3.1, given by (1.3.1)–(1.3.4), always has a
solution, and if it is unique.
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0 L

f

Figure 1.2

Having seen vibrating strings, one would probably say that the simplest
initial position is given by a sinusoid:

u(x, 0) = sin
π

L
x.

For this initial position there is a standing wave solution of our problem,
that is, a product solution

u(x, t) = v(x) · w(t).

Taking v(x) = u(x, 0) = sin π
L
x, our conditions lead to the following require-

ments for w(t):

w′′ = −π
2c2

L2
w, w(0) = 1, w′(0) = 0.

Thus w(t) = cos π
L
ct and

u(x, t) = sin
π

L
x cos

π

L
ct.

This formula describes the so-called fundamental mode of vibration of the
string, which produces the “fundamental tone”. The period of this vibration
(the time it takes for π

L
ct to increase by 2π) is 2L

c
. Thus the “fundamental

frequency” (the number of vibrations per second) equals

c

2L
=

1

2L

√
T0

ρ0

.

By change of scale we may assume that the length L of the string is
equal to π. Making this simplifying assumption from here on, we have
u(x, 0) = sin x and the fundamental mode becomes

u(x, t) = sin x cos ct;

cf. Figure 1.3. Analogously, the initial position u(x, t) = sin 2x of the string
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0 π

Figure 1.3

leads to the standing wave solution u(x, t) = sin 2x cos 2ct. More generally,
the initial position u(x, 0) = sinnx leads to the standing wave solution

(1.3.5) u(x, t) = sinnx cosnct, n ∈ N.

The frequency in this mode of vibration is precisely n times the fundamental
frequency – what we hear is the n-th harmonic overtone.

Exercises 1.3.1. Show that the vibrating string problem (1.3.1), (1.3.2),
(1.3.4) with L = π has no standing wave solutions u(x, t) = v(x)w(t) other
than (1.3.5), apart from constant multiples.

Hint. “Separating variables”, the differential equation (1.3.1) requires
that

v′′(x)

v(x)
=

1

c2
w′′(t)

w(t)
= λ, a constant.

Thus v(x) has to be an “eigenfunction” for the problem

v′′ = λv, 0 < x < π, v(0) = v(π) = 0; cf. (1.3.2).

Returning to the initial value problem 1.3.1 with general f(x) (but L =
π), we observe that the conditions (1.3.1), (1.3.2), (1.3.4) are linear. Thus
superpositions of solutions to that part of the problem are also solutions.
More precisely, any finite linear combination

uk(x, t) =
k∑

n=1

bn sin nx cosnct

of solutions (1.3.5) is also a solution of (1.3.1), (1.3.2), (1.3.4). This com-
bination will solve the whole problem – including (1.3.3) – if the initial

position of the string has the special form f(x) =
∑k

n=1 bn sin nx. Boldly
going to infinite sums, it seems plausible that the expression

(1.3.6) u(x, t) =

∞∑

n=1

bn sinnx cos nct
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will solve the Initial value Problem 1.3.1, provided the initial position of the
string can be represented in the form

(1.3.7) f(x) =
∞∑

n=1

bn sinnx, 0 ≤ x ≤ π.

A controversy. Around 1750, the problem of the vibrating string with
fixed end points, Problem 1.3.1, was considered by Jean le Rond d’Alembert
(Paris, 1717–1783; [3]), Euler and Daniel Bernoulli. The latter claimed that
every mode of vibration can be represented in the form (1.3.6), that is, every
mode can be obtained by superposing (multiples of) the fundamental mode
and higher harmonics. The implication would be that every geometrically
given initial shape f(x) of the string can be represented by a sine series
(1.3.7). Euler found it difficult to accept this. He did not believe that every
geometrically given initial shape f(x) on (0, π) could be equal to (what to
him looked like) an analytic expression

∑∞
n=1 bn sinnx. Euler’s authority

was such that Bernoulli’s proposition was rejected. Several years later,
Fourier made Bernoulli’s ideas more plausible. He gave many examples of
functions with representations (1.3.7) and related “Fourier series”, but a
satisfactory proof of the representations under fairly general conditions on
f had to wait for Dirichlet (around 1830).

1.4. Heat conduction and cosine series

Heat or thermal energy is transferred from warmer to cooler parts of
a solid by conduction. One speaks of heat flow, in analogy to fluid flow
or diffusion. Denoting the temperature at the point P and the time t by
u = u(P, t), the basic postulate of heat condution is that the heat flow vector
~q at P is proportional to −grad u:

~q = −λ grad u = −λ
(
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)
.

Here λ is called the thermal conductivity (at P and t). Thus the heat
flow across a small surface element ∆S at P over a small time interval
[t, t + ∆t], and to the side indicated by the normal ~N , is approximately
equal to −λ(∂u/∂N)∆S∆t; cf. Figure 1.4

Here we will consider the heat flow in a thin homogeneous rod, occupying
the segment [0, L] of the X-axis. We suppose that there are no heat sources
in the rod and that heat flows only in the X-direction (there is no heat
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P

∆S

q
N

|q| ∆t
vol. |qN| ∆t

Figure 1.4

flow across the lateral surface of the rod). [One would have similar one-
dimensional heat flow in an infinite slab, bounded by the parallel planes
{x = 0} and {x = L} in space.] We now concentrate on the element
[x, x + ∆x] of the rod; cf. Figure 1.5. The quantity of heat entering this
element across the left-hand face, over the small time interval [t, t + ∆t],
will be approximately −λ(∂u/∂x)(x, t)∆S∆t, where ∆S denotes the area
of the cross section of the rod. Similarly, the heat leaving the element
across the right-hand face will be −λ(∂u/∂x)(x + ∆x, t)∆S∆t. Thus the
net amount of heat flowing into the element over the time interval [t, t+∆t]
is approximately

∆Q = λ

[
∂u

∂x
(x+ ∆x, t) − ∂u

∂x
(x, t)

]
∆S∆t.

The heat flowing into our element will increase the temperature, say by
∆u. This temperature increase ∆u will require a number of calories ∆Q′

proportional to ∆u and to the volume ∆S∆x of the element, hence

∆Q′ ≈ c∆u∆S∆x,

where c is the specific heat of the material.
Equating ∆Q′ to ∆Q and dividing by ∆S∆x∆t, one finds the approxi-

mate equation

c
∆u

∆t
= λ

∂u

∂x
(x+ ∆x, t) − ∂u

∂x
(x, t)

∆x
.

Passing to the limit as ∆x→ 0 and ∆t→ 0, we obtain the one-dimensional
heat or diffusion equation:

(1.4.1)
∂u

∂t
= β

∂2u

∂x2
, 0 < x < L, t ∈ R,
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0 XLx x + ∆x

Figure 1.5

where β = λ/c > 0. For the homogeneous rod it is reasonable to treat β as
a constant.

We could now prescribe the temperature at the ends of the rod and
study corresponding heat flow(s). The simplest case would involve constant
temperatures u(0, t) and u(L, t) at the ends. Subtracting a suitable linear
function of x from u(x, t), we might as well require that u(0, t) = 0 and
u(L, t) = 0 for all t. Then we would have the same boundary conditions
as in (1.3.2), and this would again lead to sine functions and sine series.
A different situation arises when one keeps the ends of the rod insulated.
There will then be no heat flow across the ends. The resulting boundary
conditions are

(1.4.2)
∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0, ∀ t.

Problem 1.4.1. Rod with insulated ends. Let us consider the problem
where the temperature along the rod is prescribed at time t = 0:

(1.4.3) u(x, 0) = f(x), 0 ≤ x ≤ L.

In view of (1.4.2) we will now require that f ′(0) = f ′(L) = 0. The question
is if Problem 1.4.1, given by (1.4.1)–(1.4.3), always has a solution, and if it
is unique.

Just as in Section 1.3, we may and will take L = π. Time-independent
solutions u(x, t) = v(x) of (1.4.2) must then satisfy the conditions v′(0) =
v′(π) = 0. This suggests cosine functions for v(x) instead of sines:

v(x) = 1, cosx, cos 2x, · · · , cos nx, · · · .
Corresponding stationary mode solutions, or product solutions, u(x, t) =
v(x)w(t) = (cosnx)w(t) of (1.4.1) must satisfy the condition

(cos nx)w′(t) = β (−n2 cosnx)w(t).

This leads to the following solutions of problem (1.4.1), (1.4.2) with L = π:

(1.4.4) u(x, t) = (cosnx)e−n2βt, n ∈ N0 = N ∪ {0}.
Indeed, w has to satisfy the conditions w′ = −n2βw, w(0) = 1.
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Superpositions of solutions (1.4.4) also satisfy (1.4.1), (1.4.2) (with L =
π). We immediately take an infinite sum

(1.4.5) u(x, t) =

∞∑

n=0

an(cosnx)e−n2βt,

and ask if with such a sum, we can satisfy the general initial condition
(1.4.3). In other words, can every (reasonable) function f(x) on [0, π] be
represented by a cosine series,

(1.4.6) f(x) = u(x, 0) =
∞∑

n=0

an cosnx, 0 ≤ x ≤ π ?

Exercises 1.4.1. Show that the heat flow problem (1.4.1), (1.4.2) with
L = π has no stationary mode solutions u(x, t) = v(x)w(t) other than
(1.4.4), apart from constant multiples. [Which eigenvalue problem for v is
involved?]

1.5. Fourier series

If a function f on R is for every x equal to the sum of a sine series (1.3.7),
then f is odd: f(−x) = −f(x), and periodic with period 2π: f(x + 2π) =
f(x). Similarly, if a function f on R is for every x equal to the sum of
a cosine series (1.4.6), then f is even: f(−x) = f(x), and periodic with
period 2π. Suppose now that every (reasonable) function f on (0, π) can
be represented both by a sine series and by a cosine series. Then every
odd 2π-periodic function on R can be represented (on all of R) by a sine
series, every even 2π-periodic function by a cosine series. It will then follow
that every (reasonable) 2π-periodic function on R can be represented by a
trigonometric series

(1.5.1) f(x) = a0 +

∞∑

n=1

(an cosnx+ bn sinnx).

Indeed, every function f on R is equal to the sum of its even part and its
odd part, and if f has period 2π, so do those parts:

f(x) =
1

2
{f(x) + f(−x)} +

1

2
{f(x) − f(−x)}.

Conversely, if every 2π-periodic function f on R has a representation
(1.5.1), then every function f on (0, π) can be represented by a sine series
[as well as by a cosine series]. Indeed, any given f on (0, π) can be extended



1.5. FOURIER SERIES 15

to an odd function of period 2π, and for the extended function f , (1.5.1)
would imply

f(x) = −f(−x) =
1

2
{f(x) − f(−x)}

=
1

2

{
a0 +

∞∑

n=1

(an cos nx+ bn sin nx)

−a0 −
∞∑

n=1

(an cos nx− bn sinnx)

}

=
∞∑

n=1

bn sinnx.

[To obtain a cosine series, one would extend f to an even function of period
2π.]

It is often useful to consider a function f of period 2π as a function on
the unit circle C(0, 1) in the complex plane:

C(0, 1) = {z ∈ C : z = eit, −π < t ≤ π}.

Using independent variable t instead of x, the 2π-periodic function f may
be represented in the form

(1.5.2) f(t) = g(eit), t ∈ R,

where g(z) is defined on the unit circumference. For readers with a basic
knowledge of Complex Analysis we can now discuss a (rather strong) con-
dition on f(t) = g(eit) which ensures that there is a representation (1.5.1)
[with t instead of x]. Note that is customary to replace the constant term
a0 in (1.5.1) by 1

2
a0 in order to obtain uniform formulas for the coefficients

an.

Theorem 1.5.1. Let f(t) = g(eit) be a function on R with period 2π such
that g(z) has an analytic extension from the unit circle C(0, 1) = {|z| = 1}
to some annulus A(0; r, R) = {r < |z| < R} with r < 1 < R. Then

(1.5.3) f(t) =

∞∑

n=−∞
cne

int =
1

2
a0 +

∞∑

n=1

(an cosnt + bn sinnt),
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where

cn =
1

2π

∫ π

−π

f(t)e−intdt, ∀n ∈ Z,

an =
1

π

∫ π

−π

f(t) cosnt dt, n = 0, 1, 2, · · · ,(1.5.4)

bn =
1

π

∫ π

−π

f(t) sinnt dt, n = 1, 2, · · · .

Proof. An analytic function g(z) on the annulus A(0; r, R) can be rep-
resented by the Laurent series

g(z) =

∞∑

n=−∞
cnz

n, r < |z| < R,

where

cn =
1

2πi

∫

C(0,1)+
g(z)z−n−1dz =

1

2π

∫ π

−π

g(eit)e−intdt, ∀n ∈ Z.

This result from Complex Analysis implies the first representation for f(t) =
g(eit) in (1.5.3) with cn as in (1.5.4). Here the series for f(t) will be ab-
solutely convergent. In fact, the coefficients cn will satisfy an inequality of
the form |cn| ≤Me−δ|n| with δ > 0; cf. Exercise 1.5.6.

In order to obtain the second representation in (1.5.3) one combines the
terms in the first series corresponding to n (> 0) and its negative. Thus

cne
int + c−ne

−int

=
1

2π

∫ π

−π

f(s)e−insds · eint +
1

2π

∫ π

−π

f(s)einsds · e−int

=
1

2π

∫ π

−π

f(s) · 2 cosn(s− t) ds(1.5.5)

=
1

π

∫ π

−π

f(s) cosns ds · cosnt +
1

π

∫ π

−π

f(s) sinns ds · sin nt

= an cosnt + bn sinnt,

with an, bn as in (1.5.4). Finally taking n = 0, one finds that

(1.5.6) c0 e
i0t = c0 =

1

2π

∫ π

−π

f(s)ds =
1

2
a0.

�
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Definition 1.5.2. Let f on R be 2π-periodic and integrable over a
period. Then the numbers an, bn computed with the aid of (1.5.4) are
called the Fourier coefficients of f , and the second series in (1.5.3), formed
with these coefficients, is called the Fourier series for f . We write

(1.5.7) f(t) ∼ 1

2
a0 +

∞∑

n=1

(an cosnt + bn sinnt),

with the symbol ∼, to emphasize that the series on the right is the Fourier
series of f(t), but that nothing is implied about convergence. The numbers
cn determined by (1.5.4) are called the complex Fourier coefficients of f
and the first series in (1.5.3), formed with these coefficients, is called the
complex Fourier series for f .

Question 1.5.3. The basic problem is: under what conditions, and in
what sense, will the Fourier series of f converge to f ? We would of course
want conditions weaker than the analyticity condition in Theorem 1.5.1.

For clarity, the Fourier coefficients of f will often be written as an[f ],
bn[f ], cn[f ]. The partial sums of the Fourier series for f will be denoted by
sk[f ]; the sum sk[f ] will also be equal to the symmetric partial sum of the
complex Fourier series:

sk[f ](t)
def
=

1

2
a0[f ] +

k∑

n=1

(an[f ] cosnt + bn[f ] sinnt)

=
k∑

n=−k

cn[f ]eint;(1.5.8)

cf. (1.5.5), (1.5.6). Instead of variable t one may of course use x or any
other letter. In ch 2 we will derive an integral formula for sk[f ]. From that
formula we will among others obtain a convergence theorem for the case of
piecewise smooth functions.

Definition 1.5.4. For any integrable function f on (−π, π) or on (0, 2π),
the Fourier series is defined as the Fourier series for the 2π-periodic exten-
sion. For integrable f on (0, π), the Fourier cosine series and the Fourier
sine series,

1

2
a0 +

∞∑

n=1

an cosnx and

∞∑

n=1

bn sinnx,
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are defined as the Fourier series for the even extension of f with period 2π,
and the odd extension, respectively.

Exercises 1.5.1. Prove that the Fourier series for an even 2π-periodic
function is a cosine series, and that the Fourier series for an odd 2π-periodic
function is a sine series.

1.5.2. Let f be integrable on (0, π). Prove that for the Fourier cosine
and sine series of f ,

an =
2

π

∫ π

0

f(t) cosnt dt, bn =
2

π

∫ π

0

f(t) sinnt dt.

1.5.3. Determine the Fourier cosine and sine series for f(x) = 1 on (0, π).
1.5.4. Same question for f(x) = x on (0, π).
1.5.5. Do you see a connection between the series in Exercises 1.5.3,

1.5.4 and certain trigonometric series which we encountered earlier?
1.5.6. Let f(t) = g(eit), where g(z) is analytic on the annulus given by

e−δ ≤ |z| ≤ eδ and in absolute value bounded by M . Use Cauchy’s theorem
[14] and suitable circles of integration to show that |cn[f ]| ≤Me−δ|n| for all
n.

1.5.7. Let U(x, y) denote a stationary temperature distribution in a
planar domainD. In polar coordinates, the temperature becomes a function
of r and θ, U(r cos θ, r sin θ) = u(r, θ), say. It will satisfy Laplace’s equation,
named after the French mathematician-astronomer Pierre-Simon Laplace
(1749–1827; [73]):

∆U
def
=
∂2U

∂x2
+
∂2U

∂y2
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0.

In the case of D = B(0, 1), the unit disc, the geometry implies a periodicity
condition, u(r, θ + 2π) = u(r, θ). Also, u(r, θ) must remain finite as r ց 0.
Show that in polar coordinates, Laplace’s equation on B(0, 1) has product
solutions u(r, θ) of the form vn(r) cosnθ, n ∈ N0, and vn(r) sinnθ, n ∈ N.
Determine vn(r) if vn(1) = 1. What are the most general product solutions
u(r, θ) = v(r)w(θ) of Laplace’s equation on the disc B(0, 1) ?

1.5.8. (Continuation) We wish to solve the so-called Dirichlet problem
for Laplace’s equation on the unit disc:

∆U = 0 on B(0, 1), U = F on C(0, 1).

[Stationary temperature distribution in the disc corresponding to prescribed
boundary temperatures.] Assuming that the boundary function F , written
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as f(θ), can be represented by a Fourier series, one asks for a solution u(r, θ)
in the form of an infinite series.

1.6. Fourier series as orthogonal series

A function f will be called square-integrable on (a, b) if f is integrable
over every finite subinterval, and |f |2 is integrable over the whole interval
(a, b); cf. Section 5.5. If f and g are square-integrable on (a, b) the product
fg will have a finite integral over (a, b). Square-integrable functions f and
g are called orthogonal on (a, b), and we write f ⊥ g, if

(1.6.1)

∫ b

a

fg =

∫ b

a

f(x)g(x)dx = 0.

One may introduce a related abstract inner product by the formula

(1.6.2) (u, v) =

∫ b

a

uv =

∫ b

a

u(x)v(x)dx.

Definition 1.6.1. A family φ1, φ2, φ3, · · · of square-integrable functions
on (a, b) is called an orthogonal system on (a, b) if the functions are pairwise
orthogonal and none of them is (equivalent to) the zero function:

∫ b

a

φnφk = 0, k 6= n;

∫ b

a

|φn|2 > 0, ∀n.

Other index sets than N will occur, and if (a, b) is finite, we may also
speak of an orthogonal system on [a, b].

Examples 1.6.2. Each of the systems

1

2
, cos x, cos 2x, · · · , cosnx, · · · ,

sin x, sin 2x, · · · , sinnx, · · · ,

is orthogonal on (0, π) [and also on (−π, π)]. Each of the systems

1

2
, cosx, sin x, cos 2x, sin 2x, · · · , cosnx, sin nx, · · · ,

1, eix, e−ix, e2ix, e−2ix, · · · , einx, e−inx, · · ·
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is orthogonal on (−π, π) [and also on every other interval of length 2π]. We
will verify the orthogonality of the first and the last system:

∫ π

0

cosnx cos kx dx =
1

2

∫ π

0

{cos(n+ k)x+ cos(n− k)x} dx

=
1

2

[
sin(n+ k)x

n + k
+

sin(n− k)x

n− k

]π

0

= 0 for k 6= n (n, k ≥ 0);

∫ π

−π

einxe−ikxdx =

[
ei(n−k)x

i(n− k)

]π

−π

= 0 for k 6= n.

If {φn}, n ∈ N is an orthogonal system, a series
∑∞

n=1 cnφn with constant
coefficients cn will be called an orthogonal series [the terms in the series
are pairwise orthogonal]. Fourier cosine series and Fourier sine series are
orthogonal series on (0, π). Complex Fourier series are orthogonal series on
(−π, π), and so are real Fourier series.

If an orthogonal series converges in an appropriate sense, the coefficients
can be expressed in terms of the sum function in a simple way:

Lemma 1.6.3. Let {φn}, n ∈ N be an orthogonal system of piecewise
continuous functions on the bounded closed interval [a, b]. Suppose that a
certain series

∑∞
n=1 cnφn converges uniformly on [a, b] to a piecewise con-

tinuous function f :

(1.6.3)

∞∑

n=1

cnφn(x) = f(x), uniformly on [a, b].

Then

(1.6.4) cn =

∫ b

a
fφn∫ b

a
|φn|2

, ∀n.

Proof. Since the function φk will be bounded on [a, b], it follows from
the hypothesis that the series

∞∑

n=1

cnφnφk converges uniformly to fφk on [a, b].

Thus we may integrate term by term to obtain
∫ b

a

fφk =

∞∑

n=1

cn

∫ b

a

φnφk = ck

∫ b

a

|φk|2.
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In the final step we have used the orthogonality of the system {φn}. The
result gives (1.6.4) [with k instead of n]. �

The lemma shows that for given {φn} and f , there is at most one or-
thogonal representation (1.6.3) [with uniform convergence].

Definition 1.6.4. For a given orthogonal system {φn} and given square-
integrable f on (a, b), the numbers cn computed with the aid of (1.6.4) are
called the expansion coefficients of f with respect to the system {φn}. The
corresponding series

∑∞
n=1 cnφn is called the (orthogonal) expansion of f

with respect to the system {φn}. To emphasize that there is no implication
of convergence we write

(1.6.5) f ∼
∞∑

n=1

cnφn or also f(x) ∼
∞∑

n=1

cnφn(x).

Questions 1.6.5. The basic problems are: under what conditions, and
in what sense, do orthogonal expansions converge, and if they converge, will
they converge to the given function f ? We would aim for conditions weaker
than the one in Lemma 1.6.3.

These questions are best treated in the context of inner product spaces,
preferably complete inner product spaces or so-called Hilbert spaces; cf.
Chapters 5, 7. (Such spaces are named after the German mathematician
David Hilbert, 1862–1943; [48].) The square-integrable functions on (a, b)
with the inner product given by (1.6.2) form an inner product space. It
is best to use integrability in the sense of Lebesgue here (see Section 2.1),
because then the square-integrable functions on (a, b) form a Hilbert space,
the space L2(a, b).

Fourier series can be considered as orthogonal expansions. Thus the
complex Fourier series of a square-integrable function f on (−π, π) is the
same as its expansion with respect to the orthogonal system {einx}, n =
0,±1,±2, · · · :

cn[f ]
def
=

1

2π

∫ π

−π

f(x)e−inxdx =

∫ π

−π
f(x)e−inxdx

∫ π

−π
|einx|2dx .

Besides sines, cosines and complex exponentials, there are many orthogonal
systems of practical importance. We mention orthogonal systems of poly-
nomials and more general orthogonal systems of eigenfunctions; cf. Chapter
7.
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Exercises 1.6.1. Show that the Fourier cosine series 1
2
a0 +

∑∞
n=1 an cosnx

of a square-integrable function f on (0, π) is also its orthogonal expansion
with respect to the system 1

2
, cosx, cos 2x, · · · on (0, π); cf. Exercise 1.5.2.

1.6.2. State and prove the corresponding result for the Fourier sine
series.

1.6.3. Write down the expansion of the function f(x) = 1 on (−π, π)
with respect to the orthogonal system sinx, sin 2x, · · · on (−π, π). Does
the expansion converge? Does it converge to f(x) ?

1.6.4. Same questions for the expansion of the function f(x) = 1 + x
on (−π, π) with respect to the orthogonal system 1

2
, cosx, cos 2x, · · · on

(−π, π).
1.6.5. Determine the expansion of the function f(x) = eαx on (0, 2π)

with respect to the orthogonal system {einx}, n ∈ Z on (0, 2π).

1.7. Fourier integrals

Many boundary value problems for (partial) differential equations in-
volve infinite media and for such problems one needs an analog to Fourier
series for infinite intervals. We will indicate how Fourier series go over into
Fourier integrals as the basic interval expands to the whole line R.

For a locally integrable function f on R with period 2L instead of 2π one
obtains the Fourier series by a simple change of scale. Indeed, f

(
L
π
t
)

will
now have period 2π as a function of t. Hence it has the following Fourier
series:

f

(
L

π
t

)
∼

∞∑

n=−∞
cn(L)eint on (−π, π), where

cn(L) =
1

2π

∫ π

−π

f

(
L

π
t

)
e−intdt.

Changing scale, one obtains the Fourier series for f(x) on (−L,L):

f(x) ∼
∞∑

n=−∞
cn(L)ein(π/L)x on (−L,L), where

cn(L) =
1

2L

∫ L

−L

f(x)e−in(π/L)xdx.(1.7.1)

Suppose now that f(x) is defined on R, not periodic but relatively small
as x → ±∞, and so well-behaved that for every L > 0, the restriction of
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f to (−L,L) is equal to the sum of its Fourier series for that interval. For
large x we will now use the approximation

cn(L) ≈ 1

2L

∫ ∞

−∞
f(x)e−in(π/L)xdx.

[If f(x) vanishes outside some finite interval (−b, b), the approximation will
be exact if we take L ≥ b.] At this point it is convenient to introduce the
so-called Fourier transform of f on R:

(1.7.2) g(ξ) = f̂(ξ) = (Ff)(ξ)
def
=

∫ ∞

−∞
f(x)e−iξxdx, ξ ∈ R.

In terms of g,

cn(L) ≈ 1

2L
g
(
n
π

L

)
.

Hence for large L and −L < x < L, the postulated equality for our f(x) in
(1.7.1) will give the approximate formula

(1.7.3) f(x) ≈ 1

2L

∞∑

n=−∞
g
(
n
π

L

)
ein(π/L)x =

1

2π

∞∑

n=−∞
g
(
n
π

L

)
ein(π/L)x π

L
.

For fixed x, the final sum may be considered as an infinite Riemann sum

(1.7.4)
∞∑

n=−∞
G(ξn)∆ξn, with ξn = n

π

L
, ∆ξn =

π

L
,

and
G(ξ) = G(ξ, x) = g(ξ)eiξx, −∞ < ξ <∞.

For suitably well-behaved functions G(ξ), sums (1.7.4) will approach the
integral

∫∞
−∞G(ξ)dξ as L → ∞. It is therefore plausible that for fixed

x ∈ R, the limit may be taken in (1.7.3) as L→ ∞ to obtain the following
integral representation for f(x) in terms of g:

(1.7.5) f(x) =
1

2π

∫ ∞

−∞
G(ξ, x)dξ =

1

2π

∫ ∞

−∞
g(ξ)eiξxdξ.

Observe that the final integral resembles the Fourier transform ĝ(x) of
g(ξ). The latter would have x instead of −x, or −x instead of x. Thus the
integral in (1.7.5) equals ĝ(−x); it is the reflection of the Fourier transform
of g, or the so-called reflected Fourier transform, (FRg)(x). Hence we arrive
at the important formula for Fourier inversion:

(1.7.6) If g = f̂ = Ff, then f =
1

2π
ĝR =

1

2π
FRg.
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Precise conditions for the validity of the inversion theorem will be obtained
in Chapters 9 and 10.

It may be of interest to observe that the factor 1/(2π) in formula (1.7.6)
is related to the famous “Cauchy factor” 1/(2πi) of Complex Analysis:

Example 1.7.1. Let f(x) = e−a|x| where a > 0. We compute the Fourier
transform:

g(ξ) =

∫ ∞

−∞
e−a|x|e−iξxdx =

∫ ∞

0

e−(a+iξ)xdx+

∫ 0

−∞
e(a−iξ)xdx

=
1

a + iξ
+

1

a− iξ
=

2a

ξ2 + a2
.(1.7.7)

In this case one can verify the inversion formula (1.7.6) with the aid of
Complex Analysis. Indeed, introducing a complex variable ζ = ξ + iη, one
may write

(1.7.8)
1

2π

∫ ∞

−∞
g(ξ)eixξdξ = lim

R→∞

1

2πi

∫

[−R,R]

2ia

ζ2 + a2
eixζdζ.

Now choose R > a. For x ≥ 0 we attach to the real segment [−R,R]
the semicircle CR, given by ζ = Reit, 0 ≤ t ≤ π. This semicircle lies in
the upper half-plane {Im ζ ≥ 0}, where |eixζ | = e−xη ≤ 1. For the closed
path WR = [−R,R] + CR, the Cauchy integral formula [13] (or the residue
theorem) gives

1

2πi

∫

WR

1

ζ − ia

2ia

ζ + ia
eixζdζ

=

{
value of

2ia

ζ + ia
eixζ at the point ζ = ia

}
= e−ax.(1.7.9)

Since ∣∣∣∣
1

2πi

∫

CR

2ia

ζ2 + a2
eixζdζ

∣∣∣∣ ≤
aR

R2 − a2
→ 0 as R→ ∞,

(1.7.9) implies that the limit on the right-hand side of (1.7.8) has the value
e−ax:

1

2π

∫ ∞

−∞
g(ξ)eixξdξ = e−ax = e−a|x| (x ≥ 0).

For x < 0 one may augment the segment [−R,R] by a semicircle in the
lower half-plane {Im ζ < 0} to obtain the answer eax = e−a|x|.
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For the applications, the most useful property of Fourier transformation
is the fact that differentiation goes over into (“maps to”) multiplication by
a simple function:

(1.7.10) f ′(x) = Df(x)
F7−→ iξf̂(ξ).

Repeated application of the rule gives

p(D)f(x)
F7−→ p(iξ)f̂(ξ)

for any polynomial p(t) with constant coefficients. Thus Fourier transforma-
tion changes an ordinary linear differential equation p(D)u = f with con-

stant coefficients into the algebraic equation p(iξ)û = f̂ . Applying Fourier
transformation to one or more of the variables, linear partial differential
equations with constant coefficients go over into differential equations with
fewer independent variables. Applications to boundary value problems will
be discussed in Chapters 9–12.

Exercises 1.7.1. Show that the Fourier transform of

f(x) =
1

x2 + a2
is equal to

π

a
e−a|ξ| (a > 0).

1.7.2. Prove that the Fourier transform of an even function is even, that
of an odd function, odd.

1.7.3. Compute the Fourier transform g(ξ) of the function

f(x) =

{
1 for |x| ≤ a,
0 for |x| > a.

Next use the improper integral
∫

R

sin tξ

ξ
dξ = π sgn t

[for sgn see Exercise 1.2.5] to show that, also in the present case,

1

2π

∫

R

g(ξ)eixξdξ = f(x).

1.7.4. Let f be a “good” function: smooth, and small at ±∞. Use
integration by parts to prove that (Ff ′)(ξ) = iξ(Ff)(ξ).

1.7.5. Prove the “dual” rule: If f is small at ±∞ and Ff = g, then
F [xf(x)](ξ) = ig′(ξ).

1.7.6. Use the rules above to compute the Fourier transform of f(x) =

e−ax2

where a > 0. Hint: One has f ′(x) = −2axf(x).
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Books. There are many books on Fourier analysis; see the Internet for
standard texts. The author mentions only some of the authors here; their
books are listed in chronological order. See the bibliography for full titles.

1931 Wolff [125] Fourier series (in German), very short introduction
1933 Wiener [124] and 1934 Paley and Wiener [88], original work on Fourier
integrals
1937 Titchmarsh [120], basic book on Fourier integrals
1944 Hardy and Rogosinski [45], Fourier series, short, scholarly
1950/1966 Schwartz [110], his basic work on distributions
1960 Lighthill [81], short, Fourier asymptotics
1971 Stein and Weiss [114], Fourier analysis on Euclidean spaces
1972 Dym and McKean [28], Fourier integrals and applications
1983 Hörmander [52], vol 1, his treatise on distributions for partial differ-
ential equations
1989 Körner [70], refreshingly different
1992 Folland [32], balance of theory and applications
2002 Zygmund [129] (predecessor 1935), two-volume standard work on
Fourier series
2010 Duistermaat and Kolk [27], advanced text



CHAPTER 2

Pointwise convergence of Fourier series

For smooth periodic functions [functions of class C1, that is, continu-
ously differentiable functions], the Fourier series is pointwise convergent to
the function, even uniformly convergent. The smoother the function, the
faster the Fourier series will converge. Pointwise convergence holds also for
piecewise smooth functions, provided such functions are suitably normal-
ized at points of discontinuity. However, for arbitrary continuous functions
the Fourier series need not converge in the ordinary sense.

2.1. Integrable functions. Riemann–Lebesgue lemma

Let [a, b] be a bounded closed interval. A function f on [a, b] or (a, b)
will be called piecewise continuous if there is a finite partioning a = a0 ≤
a1 ≤ · · · ≤ ap = b of [a, b] as follows. On each (nonempty) open subinterval
(ak−1, ak) the function f is continuous, and has finite right-hand and left-
hand limits f(ak−1+) and f(ak−). The value f(ak) may be different from
limits f(ak−) and/or f(ak+); this is in particular the case if ak = ak−1.

One similarly defines a piecewise constant or step function s; it will
be constant on intervals (ak−1, ak). It is clear what the integral of such a
function on [a, b] will be; values s(ak) different from limits s(ak−) or s(ak+)
will have no effect.

A real function f on [a, b] will be Riemann integrable (after Bernhard
Riemann, Germany, 1826–1866; [98]) if there are sequences of step functions
{sn} and {s′n} such that

sn(x) ≤ f(x) ≤ s′n(x), ∀n and ∀x ∈ [a, b], and
∫ b

a

(s′n − sn) =

∫ b

a

{s′n(x) − sn(x)}dx→ 0 as n→ ∞.

The Riemann integral
∫ b

a
f =

∫ b

a
f(x)dx will then be the common limit of

the integrals of sn and s′n; cf. [99]. For complex-valued functions one would
separately consider the real and imaginary part.

27
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In this book the statement: “f is integrable over (a, b)” (or [a, b]) shall
mean that f is integrable in the sense of Lebesgue (after Henri Lebesgue,
France, 1875–1941; [76]); notation: f ∈ L(a, b). For a Riemann integrable
function on a finite interval the Lebesgue integral has the same value as the
Riemann integral. However, the class of Lebesgue integrable functions is
larger than the class of (properly) Riemann integrable functions, and that
has certain advantages, for example, when it comes to termwise integration
of infinite series; cf. Section 5.4. If a function has an improper Riemann
integral on (a, b) that is absolutely convergent, it also has Lebesgue integral
equal to the Riemann integral.

For an integrable function f on (a, b) and any ε > 0, there is a step
function s = sε on [a, b] such that

(2.1.1)

∫ b

a

|f(x) − s(x)|dx < ε.

[This holds also for unbounded intervals (a, b), but then one will require
that s be equal to zero outside a finite subinterval.]

∗For a definition of Lebesgue integrability one may start with the notion
of a negligible set or set of measure zero. A set E ⊂ R has (Lebesgue)
measure zero if for every ε > 0, it can be covered by a countable family of
intervals of total length < ε. If a property holds everywhere on (a, b) outside
a set of measure zero, one says that it holds almost everywhere, notation
a.e., on (a, b). A real or complex function f on (a, b) will be Lebesgue
integrable if there is a sequence of step functions {sn} that converges to f
a.e. on (a, b), and is such that

∫ b

a

|sm − sn| → 0 as m, n→ ∞.

The Lebesgue integral of f over (a, b) is then defined as
∫ b

a

f = lim
n→∞

∫ b

a

sn;

cf. [68]. Using this approach, a subset E of R may be called (Lebesgue)
measurable if its characteristic function hE is integrable; the (Lebesgue)
measure m(E) is then given by the integral of hE. [By definition, hE has
the value 1 on E and 0 outside E.] A function f may be called (Lebesgue)
measurable if it is a pointwise limit a.e. of step functions.

∗For a treatment of integration based on measure theory, which is es-
sential in Mathematical Statistics, see for example [77].
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We can now show that the Fourier coefficients an = an[f ], bn = bn[f ]
and cn = cn[f ] of a periodic integrable function f [Section 1.5] tend to zero
as |n| → ∞. Likewise, the Fourier transform g(ξ) of an integrable function
f on R [Section 1.7] will tend to zero as |ξ| → ∞.

Lemma 2.1.1. (Riemann–Lebesgue) Let f be integrable over (a, b) and
let λ be a positive real parameter. Then as λ→ ∞,

∫ b

a

f(x) cosλx dx→ 0,

∫ b

a

f(x) sinλx dx→ 0,

∫ b

a

f(x)e±iλx dx→ 0.

Proof for
∫ b

a
f(x)eiλxdx. The integral will exist because the product

of an integrable function and a bounded continuous function is integrable
[see Integration Theory].

(i) We first consider the case where f is the characteristic function hJ

of a finite subinterval J of (a, b) with end-points α and β. Clearly

∣∣∣∣

∫ b

a

hJ(x)eiλxdx

∣∣∣∣ =

∣∣∣∣

∫ β

α

eiλxdx

∣∣∣∣ =

∣∣∣∣
eiλβ − eiλα

iλ

∣∣∣∣ ≤
2

λ
→ 0

as λ→ ∞.
(ii) Suppose now that f is a piecewise constant function s on (a, b) [which

is different from zero only on a finite subinterval]. The function s can be
represented as a finite linear combination of characteristic functions:

(2.1.2) s(x) =

p∑

k=1

γkhJk
(x), Jk ∈ (a, b) finite.

[Here some of the intervals Jk might reduce to a point.] Thus

(2.1.3)

∣∣∣∣

∫ b

a

s(x)eiλxdx

∣∣∣∣ =

∣∣∣∣∣

p∑

k=1

γk

∫

Jk

eiλxdx

∣∣∣∣∣ ≤
2

λ

p∑

k=1

|γk| → 0

as λ→ ∞.
(iii) For arbitrary integrable f and given ε > 0, one first approximates f

by a pieceweise constant function s such that inequality (2.1.1) is satisfied.



30 2. POINTWISE CONVERGENCE OF FOURIER SERIES

Representing s in the form (2.1.2), it now follows from (2.1.3) that
∣∣∣∣

∫ b

a

f(x)eiλxdx

∣∣∣∣ =

∣∣∣∣

∫ b

a

{f(x) − s(x)}eiλxdx+

∫ b

a

s(x)eiλxdx

∣∣∣∣

≤
∫ b

a

|f(x) − s(x)|dx+
2

λ

p∑

k=1

|γk| < 2ε provided λ > λ0.

�

How rapidly do Fourier coefficients or Fourier transforms tend to zero?
That will depend on the degree of smoothness of f . Let Cp denote the class
of p times continuously differentiable functions.

Lemma 2.1.2. For some p ≥ 1 let f be of class Cp
2π, that is, f has period

2π and is of class Cp on R (not just on [−π, π] !). Then

cn[f ′] = incn[f ], · · · , cn[f (p)] = (in)pcn[f ],

so that

|cn[f ]| ≤ sup |f (p)|
|n|p and npcn[f ] → 0 as |n| → ∞.

Proof. Integration by parts shows that

cn[f ′] =
1

2π

∫ π

−π

f ′(x)e−inxdx =
1

2π

[
f(x)e−inx

]π
−π

+ in
1

2π

∫ π

−π

f(x)e−inxdx = incn[f ].(2.1.4)

Indeed, the integrated term drops out by the periodicity of f . For p ≥ 2 one
will use repeated integration by parts. The inequality for cn[f ] now follows
from a straightforward estimate of the integral for cn[f

(p)]. The final result
follows from Lemma 2.1.1 applied to f (p). �

Remarks 2.1.3. The first result in Lemma 2.1.2 may be expressed by
saying that for f ∈ C1

2π, the complex Fourier series for f ′ may be obtained
from that of f by termwise differentiation:

(2.1.5) f(x) ∼
∑

cne
inx =⇒ f ′(x) ∼

∑
incn[f ]einx.

[Recall that the symbol ∼ is to be read as “has the Fourier series”.] The
implication (2.1.5) is independent of questions of convergence. Similarly,
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for the “real” Fourier series of f ∈ C1
2π,

f(x) ∼ 1

2
a0[f ] +

∞∑

n=1

(an[f ] cosnx+ bn[f ] sinnx)

=⇒ f ′(x) ∼
∞∑

n=1

(nbn[f ] cosnx− nan[f ] sinnx).(2.1.6)

The computation (2.1.4) is valid whenever f is in C2π and can be written
as an indefinite integral of its derivative, which we suppose to be integrable:

(2.1.7) f(x) = f(0) +

∫ x

0

f ′(t)dt.

Representation (2.1.7) will in particular hold if f is continuous and piecewise
smooth.

For Fourier analysis, an important class of functions is given by the
so-called functions of bounded variation, or finite total variation:

Definition 2.1.4. The total variation V = Vf [a, b] of a function f on a
(finite) closed interval [a, b] is defined as

V = sup
a=x0<x1<···<xp=b

{|f(x1 − f(x0)| + |f(x2 − f(x1)| + · · ·

+ |f(xp − f(xp−1)|},(2.1.8)

where the supremum is taken over all finite partitionings of [a, b].

Simple examples of functions of bounded variation are given by bounded
monotonic functions, and by “indefinite integrals” (2.1.7) of integrable func-
tions on a finite interval. Total variation is additive: if a < c < b then
Vf [a, b] = Vf [a, c] + Vf [c, b]. One may deduce that φ(x) = Vf [a, x] is con-
tinuous wherever f(x) is. A real function f of bounded variation can be
represented as the difference of two increasing (nondecreasing) functions on
[a, b], whose total variations add up to that of f :

f =
1

2
(φ+ f) − 1

2
(φ− f).

In particular a function f of bounded variation has a finite right-hand and
left-hand limit at every point c ∈ [a, b), and c ∈ (a, b], respectively. For
finite [a, b] such a function will be Riemann integrable.

Exercises. 2.1.1. Prove the implication (2.1.6) for piecewise smooth f ∈
C2π.
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2.1.2. Let f be in C2
2π or at least, f ∈ C1

2π with f ′ piecewise smooth.
Prove that the Fourier coefficients of f are O(1/n2), and deduce that the
Fourier series for f is uniformly convergent.

2.1.3. Verify the following Fourier series for functions on (−π, π]:

x ∼ 2
∞∑

n=1

(−1)n−1

n
sinnx, x2 ∼ 1

3
π2 + 4

∞∑

n=1

(−1)n

n2
cos nx.

Explain why the Fourier coefficients for f(x) = x2 tend to zero faster than
those for g(x) = x. [Both functions are infinitely differentiable on (−π, π] !

2.1.4. Compute (or estimate) the total variation Vf [−π, π] for (i) a
monotonic function; (ii) an indefinite integral; (iii) the functions cos nx,
sin nx, einx; (iii) an arbitrary C1 function f .

2.1.5. For f of bounded variation on [a, b] set φ(x) = Vf [a, x]. Assuming
f real, show that φ+ f and φ− f are nondecreasing.

2.1.6. Show that the set of discontinuities of a function of bounded
variation is countable.

2.1.7. Let f be of finite total variation V on [a, b] and let g be of class
C1[a, b]. Prove that

∣∣∣∣
∫ b

a

fg′
∣∣∣∣ ≤ V sup |g| + |f(b)g(b) − f(a)g(a)|.

Hint. It will be sufficient to prove the result for piecewise constant functions
f .

2.1.8. Let f be a 2π-periodic function of finite total variation V on
[−π, π]. Prove that

(2.1.9) |cn[f ]| =

∣∣∣∣
1

2π

∫ π

−π

f(x)e−inxdx

∣∣∣∣ ≤
1

2π

V

|n| , ∀n 6= 0.

Obtain corresponding inequalities for the Fourier coefficients an[f ] and bn[f ].
Are the inequalities sharp?

2.2. Partial sum formula. Dirichlet kernel

Let f be an integrable function on (−π, π); we extend f to a 2π-periodic
function on R. As in Section 1.5 the Fourier coefficients for f are denoted
by an = an[f ] etc., and the k-th partial sum of the Fourier series is called
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0 π−π

k + 12
π

Dk

Figure 2.1

sk or sk[f ]:

sk[f ](x) =
1

2
a0[f ] +

k∑

n=1

(an[f ] cosnx+ bn[f ] sinnx)

=
k∑

n=−k

cn[f ] einx.

We will express sk(x) as an integral by substituting the defining integrals
for the complex Fourier coefficients cn, this time using variable of integration
u in order to keep t in reserve for x− u:

sk(x) =

k∑

n=−k

1

2π

∫ π

−π

f(u)e−inudu · einx

=

∫ π

−π

f(u)
1

2π

k∑

n=−k

ein(x−u) du

=

∫ x+π

x−π

f(x− t)
1

2π

k∑

n=−k

eint dt.(2.2.1)

The “kernel” by which f(x−t) is multiplied is called the Dirichlet kernel.
It will be expressed in closed form below, and is illustrated in Figure 2.1.
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Lemma 2.2.1. For k = 0, 1, 2, · · · and all t ∈ R,

(2.2.2) Dk(t)
def
=

1

2π

k∑

n=−k

eint =
sin(k + 1

2
)t

2π sin 1
2
t
.

[Here the right-hand side is defined by its limit value at the points t = 2νπ.]

The proof follows from the sum formula for geometric series:

k∑

n=−k

eint = e−ikt(1 + eit + · · · + e2kit) = e−ikt e
(2k+1)it − 1

eit − 1

=
e(k+ 1

2
)it − e−(k+ 1

2
)it

e
1

2
it − e−

1

2
it

=
2i sin(k + 1

2
)t

2i sin 1
2
t

.

Lemma 2.2.2. The kernel Dk is even and has period 2π, and
∫ π

−π

Dk(t)dt = 1, ∀ k ∈ N0.

The proof follows from the definition of Dk; note that
∫ π

−π
eintdt = 0 for

all n 6= 0.

Theorem 2.2.3. (Dirichlet) Let f be 2π-periodic and integrable over a
period. Then the partial sums of the Fourier series for f are equal to the
following integrals involving the kernel Dk:

sk[f ](x) =

∫ π

−π

f(x− t)Dk(t)dt =

∫ π

−π

f(x+ t)Dk(t)dt

=

∫ π

−π

f(x+ t) + f(x− t)

2
Dk(t)dt, ∀ k ∈ N0.(2.2.3)

Proof. For fixed x the function g(t) = g(t, x) = f(x − t)Dk(t) is in-
tegrable and has period 2π. Thus the integral of g over every interval of
length 2π has the same value. Formulas (2.2.1) and (2.2.2) now show that

sk(x) =

∫ x+π

x−π

f(x− t)Dk(t)dt =

∫ π

−π

f(x− t)Dk(t)dt

= −
∫ −π

π

f(x+ v)Dk(−v)dv =

∫ π

−π

f(x+ v)Dk(v)dv(2.2.4)

because Dk is even. The final formula in (2.2.3) follows by averaging. �
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Exercises. 2.2.1. Let f(x) = eimx with m ∈ N. Determine sk[f ](x) for
k = 0, 1, 2, · · · : (i) directly from the Fourier series; (ii) by formula (2.2.3).

2.2.2. Same questions for g(x) = cosmx.
2.2.3. Compute ∫ π

0

x
sin(k + 1

2
)x

sin 1
2
x

dx,

and determine the limit as k → ∞.
2.2.4. (A function f bounded by 1 with some large partial sums.) Define

f(x) = sin

(
p+

1

2

)
|x|, −π ≤ x ≤ π (p ∈ N).

Prove that there is a constant C (independent of p) such that

sp[f ](0) >
1

π
log p− C, |sk[f ](0)| ≤ C whenever |k − p| ≥ 1

2
p.

Hint. Using the inequality
∣∣∣∣

1

sin 1
2
t
− 1

1
2
t

∣∣∣∣ ≤ C1 on [−π, π],

one can show that

πsp(0) =

∫ π

0

sin2(p+ 1
2
)t

sin 1
2
t

dt >

∫ π

0

1 − cos(2p+ 1)t

t
dt− C2.

2.3. Theorems on pointwise convergence

Let f be an integrable 2π-periodic function. For given x one obtains a
useful integral for the difference sk[f ](x)−f(x) by using the second integral
(2.2.3) for sk(x) and writing f(x) as

∫ π

−π
f(x)Dk(t)dt:

sk(x) − f(x) =

∫ π

−π

{f(x+ t) − f(x)}Dk(t)dt

=

∫ π

−π

f(x+ t) − f(x)

2π sin 1
2
t

sin

(
k +

1

2

)
t dt.(2.3.1)

Keeping x fixed, it is natural to introduce the auxiliary function

(2.3.2) φ(t) = φ(t, x)
def
=
f(x+ t) − f(x)

2π sin 1
2
t

, t 6= 2νπ.

If φ(t) would be integrable over (−π, π), formula (2.3.1) and the Riemann–
Lebesgue Lemma 2.1.1 would immediately show that sk(x) − f(x) → 0 or
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x

(i)

x

(ii)

x

(iii)

Figure 2.2

sk(x) → f(x) as k → ∞. In other words, the Fourier series for f at the
point x would then converge to the value f(x).

The difficulty is that φ(t) has a singularity at the point t = 0. The
question is whether the difference f(x+ t)−f(x) is small enough for t close
to 0 to make φ(t) integrable. A simple sufficient condition would be the
following:

f ∈ C2π and f is differentiable at the point x.

Indeed, in that case one can make φ(t) continuous on [−π, π] by defining

φ(0) = lim
t→0

φ(t) = f ′(x)/π.

We will see that for the integrability of φ(t), a “Hölder–Lipschitz condi-
tion” (after Otto Hölder, Germany, 1859–1937; [51] and Rudolf Lipschitz,
Germany, 1832–1903; [83]) on f will suffice.

Definition 2.3.1. One says that f satisfies a Hölder–Lipschitz condi-
tion at the point x if there exist positive constants M , α and δ such that

(2.3.3) |f(x+ t) − f(x)| ≤M |t|α for − δ < t < δ.

Theorem 2.3.2. Let f be 2π-periodic and integrable over a period.
Then each of the following conditions is sufficient for the convergence of
the Fourier series for f at the point x to the value f(x):

(i) f is differentiable at the point x;
(ii) f is continuous at x and has a finite right-hand and left-hand deriv-

ative at x:

lim
tց0

f(x+ t) − f(x)

t
= f ′

+(x), lim
tր0

f(x+ t) − f(x)

t
= f ′

−(x);

(iii) f satisfies a Hölder–Lipschitz condition at the point x.

Cf. Figure 2.2.
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Proof. Since (i) and (ii) imply (iii) with α = 1, it is sufficient to deal
with the latter case. Let ε > 0 be given. Observe that | sin 1

2
t| ≥ |t|/π for

|t| ≤ π, and take δ ≤ π. Then inequality (2.3.3) shows that for all k,
∣∣∣∣

∫ δ

−δ

{f(x+ t) − f(x)}sin(k + 1
2
)t

2π sin 1
2
t
dt

∣∣∣∣

≤
∫ δ

−δ

M |t|α
2π sin 1

2
t
dt ≤ 1

2
M

∫ δ

−δ

|t|α−1dt =
M

α
δα.(2.3.4)

We may decrease δ until the final bound is ≤ ε. Keeping δ fixed from here
on, we note that φ(t) in (2.3.2) is integrable over [−π,−δ] and [δ, π]: it is
the quotient of an integrable function and a continuous function that stays
away from zero. Thus by the Riemann–Lebesgue Lemma 2.1.1,

(2.3.5)

∣∣∣∣

(∫ −δ

−π

+

∫ π

δ

)
φ(t) sin

(
k +

1

2

)
t dt

∣∣∣∣ < ε

for all k larger than some k0. Combination of (2.3.1), (2.3.4) and (2.3.5)
shows that |sk(x) − f(x)| < 2ε for all k > k0. �

Examples 2.3.3. The Fourier series for the 2π-periodic function f(x)
equal to x on (−π, π] (Exercise 2.1.3) will converge to f(x) at each point
x ∈ (−π, π) [but not at x = π]. See condition (i) of the Theorem.

The Fourier series for the 2π-periodic function f(x) equal to x2 on
(−π, π] (Exercise 2.1.3) will converge to f(x) for all x. At x = ±π, condition
(ii) of the Theorem is satisfied.

The Fourier series for the 2π-periodic function f(x) equal to 0 on (−π, 0)
and to

√
x on [0, π] will converge to f(x) on (−π, π): at x = 0, condition

(iii) of the Theorem is satisfied.

We can also deal with functions that have simple discontinuities.

Theorem 2.3.4. Let f be an integrable 2π-periodic function. Suppose
that f has a right-hand limit f(x+) and a left-hand limit f(x−) at the point
x, and in addition suppose that there are positive constants M , α and δ such
that

(2.3.6) |f(x+ t) − f(x+)| ≤M |t|α and |f(x− t) − f(x−)| ≤ M |t|α

for 0 < t < δ. Then the Fourier series for f converges at the point x to the
average of the right-hand and the left-hand limit, 1

2
{f(x+) + f(x−)}.

Cf. Figure 2.3.
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x

Figure 2.3

Proof. By the final integral for sk[f ](x) in (2.2.3),

sk(x) −
f(x+) + f(x−)

2

=

∫ π

−π

{
f(x+ t) + f(x− t)

2
− f(x+) + f(x−)

2

}
Dk(t)dt.

For our fixed x we now define a 2π-periodic function g such that

g(t) =
f(x+ t) + f(x− t)

2
, 0 < |t| ≤ π, g(0) =

f(x+) + f(x−)

2
.

Then

sk[f ](x) − f(x+) + f(x−)

2
= sk[g](0) − g(0),

and the function g will satisfy condition (iii) of Theorem 2.3.2 at the point
t = 0. Hence sk[g](0) → g(0) as k → ∞, which implies the desired result.

�

Example 2.3.5. By inspection, the Fourier series for the 2π-periodic
function f(x) equal to x on (−π, π] (Exercise 2.1.3) converges to 0 at the
point π. This is precisely the average of f(π+) = f(−π+) = −π and
f(π−) = f(π) = π.

Exercises. 2.3.1. Let f(x) = 0 for −π < x < 0, = 1 for 0 ≤ x ≤ π.
Determine the Fourier series for f . Where on R does it converge? Give
a precise description of the sum function on R. Which theorems have you
used?

2.3.2. Same questions about the complex Fourier series for f(x) = eαx

on [0, 2π).

2.4. Uniform convergence

In some cases one can establish uniform convergence of a Fourier series
by studying the coefficients. Thus by Cauchy’s criterion [Section 1.2], the
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convergence of one of the series
∞∑

n=1

(|an[f ]| + |bn[f ]|) or
∞∑

n=−∞
| cn[f ]|

implies uniform convergence of the Fourier series for f . Indeed, for k > j,

∣∣sk[f ](x) − sj[f ](x)
∣∣ ≤

k∑

n=j+1

(|an[f ]| + |bn[f ]|).

Partial summation is another useful tool. For example, the Fourier series∑∞
n=1

1
n

sin nx for the 2π-periodic function f(x), equal to 1
2
(π−x) on [0, 2π),

is uniformly convergent on [δ, 2π−δ] for every δ ∈ (0, π); cf. Section 1.2. We
will see that such results on locally uniform convergence can be obtained
directly from properties of the function f with the aid of the partial sum
formula. We begin with a refinement of the Riemann–Lebesgue Lemma
that involves uniform convergence.

Lemma 2.4.1. Let f be 2π-periodic and integrable over a period. Then
for any continuous function g on (0, 2π) and δ ∈ (0, π),

(2.4.1) If(x, λ) =

∫ 2π−δ

δ

f(x+ t)g(t) sinλt dt→ 0 as λ→ ∞,

uniformly in x.

In the application below we will take g(t) = 1/(2π sin 1
2
t).

Proof of the lemma. As in the case of Lemma 2.1.1, the proof may
be reduced to the case where f is (the periodic extension of) the character-
istic function hJ of an interval.

(i) To given ε > 0 we choose a piecewise constant function s on (−π, π)
such that

∫ π

−π
|f(t)− s(t)|dt < ε. Extending s to a 2π-periodic function, we

may conclude that
∫ 2π

0

|f(x+ t) − s(x+ t)|dt < ε, ∀x ∈ R.

It now follows that for all x and λ,
∣∣∣∣
∫ 2π−δ

δ

{f(x+ t) − s(x+ t)}g(t) sinλt dt

∣∣∣∣ ≤ ε sup
[δ,2π−δ]

|g(t)|.

(ii) On (−π, π), s is a finite linear combination
∑p

k=1 γkhJk
, where the

intervals Jk are nonoverlapping subintervals of (−π, π). In order to prove
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that Is(x, λ) → 0 uniformly in x as λ → ∞, it is sufficient to consider the
case where s = hJ on (−π, π), so that on R, our function s is equal to the

periodic extension h̃J of hJ .
(iii) For J = (α, β) ∈ (−π.π), hJ(x + t) is the characteristic function

of the t-interval α − x < t < β − x. Thus h̃J(x + t) is the characteristic
function of the union of the t-intervals α− x+ ν · 2π < t < β − x+ ν · 2π,
ν ∈ Z. This union will intersect (δ, 2π − δ) in one or perhaps two intervals
(α(x), β(x)). Thus

Ih̃J
(x, λ) =

∫ 2π−δ

δ

h̃J(x+ t)g(t) sinλt dt =

∫ β(x)

α(x)

g(t) sinλt dt,

plus perhaps another integral like it. Since g is continuous on [δ, 2π − δ]
we may approximate it by a piecewise constant function there, etc. The
argument of the proof for Lemma 2.1.1 now readily shows that Ih̃J

(x, λ) → 0
uniformly in x as λ→ ∞. �

We still need an interval analog to the Hölder–Lipschitz condition.

Definition 2.4.2. A function f on [a, b] is said to be Hölder continuous
if there are positive constants M and α such that

(2.4.2) |f(x′) − f(x′′)| ≤M |x′ − x′′|α, ∀x′, x′′ ∈ [a, b].

Theorem 2.4.3. Let f be 2π-periodic, integrable over a period, and
Hölder continuous on [a, b]. Then the Fourier series for f converges to f
uniformly on every interval [a + r, b − r] with 0 < r < 1

2
(b − a). [Thus if

b− a > 2π, the Fourier series will by periodicity converge uniformly on R.]

Proof. Restricting x to [a+ r, b− r] and taking 0 < δ ≤ r, we split the
integral for sk(x) − f(x) as follows:

sk(x) − f(x) =

∫ 2π−δ

−δ

f(x+ t) − f(x)

2π sin 1
2
t

sin

(
k +

1

2

)
t dt

=

∫ δ

−δ

+

∫ 2π−δ

δ

= I1(x, k) + I2(x, k),

say. Here by the Hölder continuity of f on [a, b],

|I1(x, k)| ≤
∫ δ

−δ

M |t|α
2|t| dt = M

δα

α
.
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To given ε > 0, we now decrease δ until Mδα/α < ε. Keeping δ fixed from
here on and setting B = sup |f(x)| on [a, b], we estimate I2:

|I2(x, k)| ≤
∣∣∣∣

∫ 2π−δ

δ

f(x+ t)

2π sin 1
2
t

sin

(
k +

1

2

)
t dt

∣∣∣∣

+

∣∣∣∣f(x)

∫ 2π−δ

δ

1

2π sin 1
2
t

sin

(
k +

1

2

)
t dt

∣∣∣∣

≤
∣∣∣∣If
(
x, k +

1

2

)∣∣∣∣ +B

∣∣∣∣I1
(
x, k +

1

2

)∣∣∣∣ ,

where If is as in (2.4.1) with g(t) = 1/(2π sin 1
2
t) and I1 refers to f ≡ 1. By

Lemma 2.4.1 we can choose k0 such that |If(x, k+ 1
2
)| < ε and |I1(x, k+ 1

2
)| <

ε for all k > k0 and all x. Thus in conclusion,

|sk(x) − f(x)| < (2 +B)ε, ∀ k > k0 and ∀x ∈ [a+ r, b− r].

�

Examples 2.4.4. The functions in Examples 2.3.3 are Hölder continu-
ous on (−π, π], hence their Fourier series will converge uniformly on [−π +
r, π − r] for 0 < r < π. The series for f(x) = x2 on (−π, π] will converge
uniformly on R.

2.5. Divergence of certain Fourier series

Dirichlet proved around 1830 that the Fourier series of every bounded
monotonic [or piecewise monotonic] function on (−π, π] is everywhere con-
vergent. The same will be true for linear combinations of bounded mono-
tonic functions. It then came as a surprise to the mathematical world when
Paul du Bois-Reymond (Germany, 1831–1889; [8]) showed that there ex-
ist oscillating continuous functions whose Fourier series diverge at certain
points. The basic reason is that

∫ π

−π

|Dk(t)|dt→ ∞ as k → ∞.

Now for special continuous functions f with sup |f | ≤ 1, there is a resonance
between f and certain Dp’s, and this results in large corresponding values
of sp[f ].
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Example 2.5.1. A simple building block for a “bad function” f is given
by

(2.5.1) fp(x) = sin

(
p+

1

2

)
|x|, −π ≤ x ≤ π.

As was indicated in Exercise 2.2.4 there is an absolute constant C such that

(2.5.2) sp[fp](0) =
1

π

∫ π

0

sin2(p+ 1
2
)t

sin 1
2
t

dt >
1

π
log p− C,

while for |q − p| ≥ 1
2
p,

(2.5.3)
∣∣sq[fp](0)

∣∣ =
∣∣∣∣
1

π

∫ π

0

sin(p+ 1
2
)t sin(q + 1

2
)t

sin 1
2
t

dt

∣∣∣∣ ≤ C.

Let us now consider functions f of the form

(2.5.4) f(x)
def
=

∞∑

j=1

1

j(j + 1)
fpj

(x), |x| ≤ π,

where {pj} is a rapidly increasing sequence of positive integers such that
|pk − pj | ≥ 1

2
pj whenever k 6= j. For this it suffices to take pj+1 ≥ 2pj for

all j.
By uniform convergence, functions f as in (2.5.4) are continuous and

clearly sup |f | ≤ 1. Also by uniform convergence, and using (2.5.2), (2.5.3),

spk
[f ](0) =

∞∑

j=1

1

j(j + 1)
spk

[fpj
](0)

≥ 1

k(k + 1)
spk

[fpk
](0) −

∑

j 6=k

1

j(j + 1)

∣∣spk
[fpj

](0)
∣∣(2.5.5)

≥ 1

k(k + 1)

(
1

π
log pk − C

)
−
∑

j 6=k

1

j(j + 1)
C =

log pk

πk(k + 1)
− C.

Conclusion. Suppose we take pj = 2j3

for all j ∈ N. Then

(2.5.6) spk
[f ](0) ≥ log 2

2π
k − C → ∞ as k → ∞.

In this case, the Fourier series for the continuous function f fails to converge
at the point 0.
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Combining functions f with different “critical points” and different se-
quences {pj}, one can construct continuous functions whose Fourier series
diverge on arbitrary finite sets of points. It is much more difficult to prove, as
Andrey Kolmogorov (Russia, 1903–1987; [65]) did close to 1930, that there
exist integrable functions whose Fourier series diverge everywhere. For a
long time, it was an open question whether such divergence can occur in
the case of continuous functions. Finally, in 1966, Lennart Carleson (Swe-
den, born 1928; [11]), proved that for a continuous function, the Fourier
series converges to the function almost everywhere, that is, the exceptional
set must have measure zero.

After du Bois-Reymond, one gradually realized that ordinary pointwise
convergence is not the most suitable concept of convergence in Fourier anal-
ysis. In Chapter 3 we will see that certain summability methods are effective
for all continuous functions. Even more important is the concept of conver-
gence in the mean of order two. In Chapter 6 it will be shown that

∫ π

−π

∣∣f(x) − sk[f ](x)
∣∣2dx→ 0 as k → ∞

for all continous, and in fact, for all square-integrable functions f . Finally,
for integrable functions and for so-called distributions or generalized func-
tions, one may use weak or distributional convergence to sum the Fourier
series (Chapter 4).

Exercises. 2.5.1. Prove successively that
∫ π

0

(
1

πt
− 1

2π sin 1
2
t

)
sin

(
k +

1

2

)
t dt→ 0 as k → ∞;

∫ (k+ 1

2
)π

0

sin x

πx
dx =

∫ π

0

sin(k + 1
2
)t

πt
dt→ 1

2
as k → ∞;

∫ ∞−

0

sin x

x
dx

def
= lim

A→∞

∫ A

0

sin x

x
dx =

1

2
π;(2.5.7)

and that there is an absolute constant C such that for all k and x,
∣∣∣∣

∫ x

0

Dk(t)dt

∣∣∣∣ ≤ C.

2.5.2. Compute

lim
A→∞

∫ 1

0

ex sinAx

x
dx.
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2.5.3. Let f(x) = |x| for −π ≤ x ≤ π. Describe the sum function of the
Fourier series on R and prove that the Fourier series is uniformly convergent.

2.5.4. Same questions for f(x) = (π2 − x2)
1

2 , −π ≤ x ≤ π.
2.5.5. Develop each of the following functions on (0, π) into a Fourier sine

series as well as a Fourier cosine series. Which of the two series converges
faster? Explain by using properties of the functions and their appropriate
extensions. Describe the sum functions on R. Indicate intervals of uniform
and non-uniform convergence:

(i) f(x) = 1; (ii) f(x) = 1 on (0, c), = 0 on (c, π);

(iii) f(x) = x; (iv) f(x) = sinαx.

2.5.6. (Principle of localization) Let f and g be 2π-periodic and inte-
grable over a period. Suppose that f(x) = g(x) on (a, b). Prove that the
Fourier series for f and g are either both convergent at c ∈ (a, b) (to the
same sum), or both divergent. Finally prove that the Fourier series for f is
uniformly convergent on [a + r, b− r] ⊂ (a, b) whenever the series for g is.

2.5.7. Let f be in C1
2π and set sup |f ′(x)| = M . Prove that |sk(x) −

f(x)| ≤ 8M/
√
k for all k.

Hint. Choose a good δ to treat the integral
∫ δ

−δ
.

2.5.8. Let f be 2π-periodic and of finite total variation over a period.
Prove that the Fourier series for f converges to 1

2
{f(x+)+ f(x−)} at every

point x.
Hint. If f is continuous at the point x one has Vf [x, x+ t] → 0 as tց 0.
2.5.9. Show that the Fourier series for a continuous 2π-periodic function,

which is of bounded variation on [−π, π], is uniformly convergent.
2.5.10. Prove that for k → ∞,

∫ π

−π

|Dk(t)|dt ∼
2

π

∫ (k+ 1

2
)π

0

| sin u|
u

du ∼ 4

π2
log k.

Here the symbol ∼ stands for “asymptotically equal”. Two functions are
called asymptotically equal if their quotient has limit 1.

2.6. The Gibbs phenomenon

Here we will discuss a remarkable example of non-uniform convergence
that was first analyzed by Henry Wilbraham (England) around 1850, and
later studied by the physicist J. Willard Gibbs (USA, 1839–1903; [38]). We
begin by discussing the integral sine function (Figure 2.4):
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O Xπ 2π 3π 4π 5π
-π-2π-3π

1
2− π1
2− π

- 1
2− π

M1

m1

Figure 2.4

(2.6.1) Si(x)
def
=

∫ x

0

sin t

t
dt, x ∈ R.

It is clear that the integral sine is odd. Calculus shows that it has relative
maxima

M1 ≈ 1.85 > M2 > · · · at the points π, 3π, · · ·
and relative minima

m1 ≈ 1.41 < m2 < · · · at the points 2π, 4π, · · · .
Moreover as k → ∞,

lim Si

{(
k +

1

2

)
π

}
= lim

∫ π

0

sin(k + 1
2
)t

t
dt

= lim

∫ π

0

sin(k + 1
2
)t

2 sin 1
2
t

dt =
1

2
π;

cf. Exercise 2.5.1. From this it readily follows that

(2.6.2) lim Si(kπ) =
1

2
π, lim

x→∞
Si(x) =

1

2
π.

Gibbs phenomenon, cf. [39]. Let f be a bounded piecewise monotonic
function on (−π, π) whose periodic extension has a jump discontinuity at
the point x0: f(x0+) 6= f(x0−). Then the Fourier series for f cannot
converge uniformly in a neighborhood of x0 [why not?]. The non-uniformity
is of an interesting type. For x close to x0, the graph of the partial sums
sk[f ] exhibits oscillations around the graph of f which approach the vertical
through x0 as k → ∞, but whose amplitudes approach nonzero limits.
Normalizing f so that x0 becomes 0 and the jump at 0 becomes equal to π,
the differences sk[f ](x)− f(x) will behave near 0 in about the same way as
the difference Si(x)− 1

2
π sgn x, except that the horizontal scale is shortened

by a factor of about 1/k.
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O Xπ

1
2− π

M1

m1

Figure 2.5

We will analyze the phenomenon for the function

(2.6.3) f(x) =
π

2
sgn x− 1

2
x =

∞∑

n=1

sinnx

n
, |x| ≤ π;

cf. Figure 2.5. By the preceding analysis

1

2
x+ sk(x) =

∫ x

0

(
1

2
+

k∑

n=1

cosnt

)
dt =

∫ x

0

sin(k + 1
2
)t

2 sin 1
2
t

dt

=

∫ x

0

sin(k + 1
2
)t

t
dt+ rk(x) = Si

{(
k +

1

2

)
x

}
+ rk(x),

where rk(x) → 0 uniformly for |x| ≤ π as k → ∞. It follows that

sk(x) − f(x) = Si

{(
k +

1

2

)
x

}
− 1

2
π sgn x+ rk(x).

In particular for k → ∞,

sk

(
π

k + 1
2

)
− f

(
π

k + 1
2

)
→ Si(π) − 1

2
π = M1 −

1

2
π ≈ 0.28,(2.6.4)

sk

(
2π

k + 1
2

)
− f

(
2π

k + 1
2

)
→ Si(2π) − 1

2
π = m1 −

1

2
π ≈ −0.16.(2.6.5)

Cf. Figure 2.6. At the first maximum point the “overshoot” is about 18%.
This happens at the jump discontinuities of any reasonable function.
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O Xπ

1
2− π
M1

Figure 2.6

Exercises. 2.6.1. Let f be a piecewise smooth function on (−π, π] with a
jump at the point 0. Show that for large k, the apparent jump of the partial
sum sk[f ] around 0 is about 18% larger than that of f .





CHAPTER 3

Summability of Fourier series

Important summability methods for (possibly divergent) infinite series
are Cesàro’s method of arithmetic means (named after Ernesto Cesàro, Italy,
1859–1906; [16]), and the power series method that is related to Abel’s Con-
tinuity Theorem 1.1.2. The power series method is usually called the “Abel
method”, although Abel himself rejected the use of divergent series. We
will see that the Fourier series for a continuous 2π-periodic function is uni-
formly summable to the function by Cesàro’s method. As an application we
derive Weierstrass’s theorems (after Karl Weierstrass, Germany, 1815–1897;
[123]) on the uniform approximation of continuous functions by trigonomet-
ric and ordinary polynomials. The Fourier series for a continuous function
is also summable by the Abel method. As an application we give a careful
treatment of the Dirichlet problem for Laplace’s equation on a disc.

3.1. Cesàro and Abel summability

Good summability methods assign a reasonable generalized sum to many
divergent (= nonconvergent) series, while summing every convergent series
to its usual sum. The methods in this section will both assign the generalized
sum 1

2
to the divergent series

(3.1.1) 1 − 1 + 1 − 1 + 1 − 1 + · · · .
∗This famous (or should we say: infamous?) series has long fascinated

nonmathematicians. At one time it was facetiously used to illustrate the
story of Creation. One would write

1 − 1 + 1 − 1 + 1 − 1 + · · · = 1 − 1 + 1 − 1 + 1 − 1 + · · · ,
and then insert parentheses as follows:

(1 − 1) + (1 − 1) + (1 − 1) + · · ·
= 1 + (−1 + 1) + (−1 + 1) + (−1 + ·) + · · · .

The conclusion would be:
0 = 1,

49
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hence it would be possible to “create” something out of nothing!

Notation. In this chapter we write infinite series of real or complex num-
bers in the form

(3.1.2) u0 + u1 + u2 + · · · , or equivalently,

∞∑

n=0

un.

The partial sums will be denoted by sk:

(3.1.3) sk = u0 + u1 + · · · + uk =
k∑

n=0

un, k = 0, 1, 2, · · · .

We also introduce the arithmetic means or (C, 1) means [Cesàro means of
order one] σk of the first k partial sums:

σk =
s0 + s1 + · · ·+ sk−1

k

=
u0 + (u0 + u1) + · · ·+ (u0 + · · · + uk−1)

k
(3.1.4)

= u0 +

(
1 − 1

k

)
u1 + · · · +

(
1 − n

k

)
un + · · ·+ 1

k
uk−1,

k = 1, 2, · · · .
By definition a series (3.1.2) is convergent, and has sum s, if lim sk exists

and is equal to s. Observe that if lim sk = s, then also limσk = s. Indeed,
if |s− sn| < ε for all n ≥ p ≥ 1 and supn |s− sn| = M , then for k > p,

|σk − s|

=

∣∣∣∣
(s0 − s) + · · ·+ (sp−1 − s)

k
+

(sp − s) + · · · + (sk−1 − s)

k

∣∣∣∣

≤ p

k
M +

k − p

k
ε < 2ε for all k ≥ pM

ε
.

On the other hand, it may happen that σk has a limit while sk does not.

Example 3.1.1. For the series (3.1.1) we have

s0 = 1, s1 = 0, s2 = 1, s3 = 0, s4 = 1, · · · ; lim sk does not exist,

σ1 = 1, σ2 =
1

2
, σ3 =

2

3
, σ4 =

1

2
, σ5 =

3

5
, · · · ; lim σk =

1

2
.

Indeed, σk = 1
2

if k is even, σk = 1
2

+ 1
2k

if k is odd.
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Definition 3.1.2. The series
∑∞

n=0 un is C-summable or (C, 1)-sum-
mable [Cesàro summable of order one, or summable by the method of arith-
metic means] if lim σk exists. If lim σk = σ one calls σ the C-sum [Cesàro
sum] of the series.

Cesàro actually introduced a family of summability methods (C, k); cf.
[17].

By the preceding every convergent series, with sum s, is C-summable,
with C-sum σ equal to s. The divergent series (3.1.1) has C-sum 1

2
.

Suppose now that for the series (3.1.2), the corresponding power series∑∞
n=0 unr

n converges (at least) for |r| < 1. Then by absolute convergence,

(1 + r + r2 + · · · )(u0 + u1r + u2r
2 + · · · ) = s0 + s1r + s2r

2 + · · ·

as long as |r| < 1. The Abel means of the partial sums sk are given by

Ar
def
=

∞∑

n=0

unr
n =

s0 + s1r + s2r
2 + · · ·

1 + r + r2 + · · ·

= (1 − r)
∞∑

n=0

snr
n, 0 ≤ r < 1.(3.1.5)

If lim sk = s as k → ∞, then also limAr = s as r ր 1. Indeed, assuming
sk → s, the numbers un = sn − sn−1 form a bounded sequence, hence the
series

∑∞
n=0 unr

n will converge at least for |r| < 1. Furthermore

Ar − s = (1 − r)

∞∑

n=0

(sn − s)rn = (1 − r)

(
∑

n<p

+
∑

n≥p

)

(sn − s)rn

will be small when p is large and r is close to 1.

Examples 3.1.3. For the divergent series (3.1.1) we have

Ar = 1 − r + r2 − r3 + · · · =
1

1 + r
→ 1

2
as r ր 1.

That limAr = lim σk for the series (3.1.1) is no coincidence. Indeed, if for
any series

∑
un one has σk → σ, then also Ar → σ; see below. The converse

of this is not true, as may be derived from the example of the series

(3.1.6) 1 − 2 + 3 − 4 + 5 − · · · .
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This series is not C-summable, but it is “Abel summable”:

Ar = 1 − 2r + 3r2 − 4r3 + · · · =
d

dr
(−1 + r − r2 + r3 − r4 + · · · )

=
d

dr

−1

1 + r
=

1

(1 + r)2
→ 1

4
as r ր 1.

Definition 3.1.4. The series
∑∞

n=0 un is A-summable [Abel summa-
ble, or summable by the method of power series] if the Abel means Ar =∑∞

n=0 unr
n exist for 0 ≤ r < 1 and approach a limit as r ր 1. If limAr = α

as r ր 1 one calls α the A-sum [Abel sum] of the series.

By the preceding every convergent series, with sum s, is A-summable,
with A-sum α equal to s. Every C-summable series, with C-sum σ, will be
A-summable, with A-sum α equal to σ (cf. Exercise 3.1.4). However, not
all A-summable series are C-summable. The A-method of summability is
“stronger” than the C-method.

For some applications it is useful to consider inverse theorems for summa-
bility methods, so-called Tauberian theorems; cf. [2]. The prototype was the
following theorem of Alfred Tauber (Austria, 1866–1942; [118]):

Theorem 3.1.5. Let the series
∑∞

n=0 un be Abel summable and suppose
that nun → 0 as n→ ∞. Then

∑∞
n=0 un is convergent.

Cf. Exercise 3.1.7.

Exercises. 3.1.1. Supposing that sk → ∞, prove that also σk → ∞.
Deduce that a C-summable series of nonnegative terms must be convergent.

3.1.2. Show that the series (3.1.6) is not C-summable.
3.1.3. Express sn in terms of numbers σk and deduce that the terms un

of a C-summable series must satisfy the condition un/n→ 0.
3.1.4. Setting

s0 + s1 + · · ·+ sn = s(−1)
n [= (n + 1)σn+1],

show that

Ar = (1 − r)
∞∑

n=0

snr
n = (1 − r)2

∞∑

n=0

s(−1)
n rn,

Ar − σ = (1 − r)2
∞∑

n=0

(n+ 1)(σn+1 − σ)rn.

Deduce that if σk → σ as k → ∞, then also Ar → σ as r ր 1.
3.1.5. Determine the A-sum of the series 12 − 22 + 32 − 42 + · · · .
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3.1.6. Determine the A-means and the A-sums for the series
1

2
+ cosx+ cos 2x+ · · · , sin x+ sin 2x+ · · · (0 < x < 2π).

3.1.7. Prove Tauber’s Theorem 3.1.5.
Hint. Setting

∑∞
n=0 unr

n = f(r) one has

sk − f(r) =

k∑

n=1

un(1 − rn) −
∞∑

n=k+1

unr
n.

3.1.8. (Discrete Taylor formula) Taking un real, show that for h ∈ N,

s
(−1)
k+h = s

(−1)
k + hsk +

1

2
h(h+ 1)u∗ξ,

where u∗ξ is a number such that

min
k+1≤n≤k+h

un ≤ u∗ξ ≤ max
k+1≤n≤k+h

un.

3.1.9. (Tauberian theorem of Godfrey H. Hardy (England, 1877–1947;
[44]). Suppose that

∑∞
n=0 un is C-summable and that |un| ≤ B/n for all

n ≥ 1. Prove that
∑∞

n=0 un is convergent.
Hint. Decreasing the original u0 by σ, one may assume that σ = 0, so

that |σk| < ε for all k ≥ k0. Then
∣∣s(−1)

n

∣∣ < ε(n + 1) for all n ≥ n0. Now
estimate |sk| from Exercise 3.1.8 by choosing h appropriately.

[This simple approach to Hardy’s theorem is due to Hendrik D. Kloos-
terman (Netherlands, 1900–1968; [64]). Soon after Hardy obtained his re-
sult, John E. Littlewood (England, 1885–1977; [84]) proved a correspond-
ing (more difficult) Tauberian theorem for Abel summability. Subsequently,
Hardy and Littlewood jointly obtained a very large number of Tauberian
theorems; cf. Korevaar’s book [69].]

3.2. Cesàro means. Fejér kernel

Let f be an integrable function on (−π, π); as usual we extend f to
a 2π-periodic function. The partial sum sk[f ] of the Fourier series for f
is given by Dirichlet’s integrals (Theorem 2.2.3). For the arithmetic mean
σk[f ] of the first k partial sums we thus obtain the formula

σk(x) = σk[f ](x) =
s0(x) + · · ·+ sk−1(x)

k

=

∫ π

−π

f(x± t)
D0(t) + · · · +Dk−1(t)

k
dt.(3.2.1)
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0 π−π

k
2π

Fk

Figure 3.1

The “kernel” by which f(x ± t) is multiplied is called the Fejér kernel. It
may be expressed in closed form and is illustrated in Figure 3.1.

Lemma 3.2.1. For k = 1, 2, · · · and all t ∈ R,

Fk(t)
def
=
D0(t) + · · ·+Dk−1(t)

k
=

1

π

{
1

2
+

k∑

n=1

(
1 − n

k

)
cosnt

}

=
1

k

k−1∑

n=0

sin(n+ 1
2
)t

2π sin 1
2
t

=
sin2 1

2
kt

2πk sin2 1
2
t
.(3.2.2)

[At the points t = 2νπ the last two fractions are defined by their limit
values.]

Proof. By its definition (cf. Lemma 2.2.1), the Dirichlet kernel Dn(t)
is equal to the nth order partial sum of the trigonometric series

1

π

(
1

2
+ cos t+ cos 2t+ · · ·

)
.

Hence Fk(t) is the kth Cesàro mean for this series; cf. formula (3.1.4). In
view of Lemma 2.2.1, it only remains to derive the final identity in (3.2.2).

For this we have to evaluate the sum
∑k−1

n=0 sin(n+ 1
2
)t. Writing sin(n+ 1

2
)t

as the imaginary part of e(n+ 1

2
)it, we first work out the corresponding sum
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of exponentials:

e
1

2
it + e

3

2
it + · · ·+ e(k−

1

2
)it = e

1

2
it e

kit − 1

eit − 1

=
ekit − 1

e
1

2
it − e−

1

2
it

= i
1 − ekit

2 sin 1
2
t
.

Thus, taking imaginary parts,

sin
1

2
t+ sin

3

2
t+ · · ·+ sin

(
k − 1

2

)
t =

1 − cos kt

2 sin 1
2
t

=
sin2 1

2
kt

sin 1
2
t
.

The final identity in (3.2.2) follows upon division by 2πk sin 1
2
t. �

The Fejér kernel behaves much better than the Dirichlet kernel. By the
preceding it has the following nice properties:

Lemma 3.2.2. Fk is nonnegative, even and periodic with period 2π. As
k → ∞, Fk(t) tends to 0 uniformly on the intervals [δ, π] and [−π,−δ] for
any δ ∈ (0, π), while

(3.2.3)

∫ π

−π

Fk(t)dt = 1, ∀ k ∈ N.

Formulas (3.2.1) and (3.2.2) readily give

Theorem 3.2.3. Let f be 2π-periodic and integrable over a period. Then

σk(x) = σk[f ](x) =
s0(x) + · · ·+ sk−1(x)

k

=
1

2
a0 +

k−1∑

n=1

(
1 − n

k

)
(an cosnx+ bn sinnx)(3.2.4)

=

∫ π

−π

f(x± t)Fk(t)dt =

∫ π

−π

f(x+ t) + f(x− t)

2
Fk(t)dt, ∀ k.

Exercises. 3.2.1. Let f be real, 2π-periodic, integrable over a period and
bounded: m ≤ f(x) ≤ M, ∀x. Prove that m ≤ σk[f ](x) ≤ M, ∀x, k. De-
duce that the averages σk[f ](x) cannot exhibit a “divergence phenomenon”
as in Exercise 2.2.4, nor a “Gibbs phenomenon” as in Section 2.6.

3.2.2. Determine the C-means and the C-sum for the series
1

2
+ cosx+ cos 2x+ · · · : (i) for 0 < x < 2π, (ii) for x = 0.

3.2.3. Same questions for the series sin x+ sin 2x+ · · · .
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Hint. Show that the nth order partial sum is equal to

cos 1
2
x− cos(n+ 1

2
)x

2 sin 1
2
x

.

3.3. Cesàro summability: Fejér’s theorems

We assume throughout that f is an integrable function on (−π, π] which
has been made periodic with period 2π.

Theorem 3.3.1. (Pointwise summability) Suppose that f satisfies one
of the following conditions:

(i) f is continuous at the point x;
(ii) f has a finite right-hand limit f(x+) and a finite left-hand limit

f(x−) at x, but these two are different.
Then the Fourier series for f is C-summable at the point x to the value

f(x), and to the value 1
2
{f(x+) + f(x−)}, respectively.

Proof. Case (i). By Theorem 3.2.3 and Lemma 3.2.2,

(3.3.1) σk[f ](x) − f(x) =

∫ π

−π

{f(x+ t) − f(x)}Fk(t)dt.

For given x and ε > 0 we choose δ ∈ (0, π) such that

(3.3.2) |f(x+ t) − f(x)| < ε for − δ < t < δ.

Then for all k,

(3.3.3)

∣∣∣∣
∫ δ

−δ

{f(x+ t) − f(x)}Fk(t)dt

∣∣∣∣ < ε

∫ δ

−δ

Fk(t)dt < ε

by (3.2.3). On the other hand
∣∣∣∣

(∫ −δ

−π

+

∫ π

δ

)
{f(x+ t) − f(x)}Fk(t)dt

∣∣∣∣

≤ max
δ≤|t|≤π

Fk(t)

(∫ −δ

−π

+

∫ π

δ

)
|f(x+ t) − f(x)|dt(3.3.4)

≤ 1

2πk sin2 1
2
δ

(∫ π

−π

|f(u)|du+ 2π|f(x)|
)
.

Combining the above relations one finds that |σk(x) − f(x)| < 2ε for all
k ≥ k0(x, δ).

The proof in case (ii) is similar, but this time one would use the final
integral in (3.2.4). �
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We now come to the most important theorem of Fejér:

Theorem 3.3.2. (Uniform summability) (i) For f ∈ C2π, the Cesàro
means σk[f ] converge to f uniformly on [−π, π] (hence on R).

(ii) If f is continous on (a, b), then σk[f ] → f uniformly on every closed
subinterval [α, β] of (a, b).

Proof. We only consider case (i). Let ε > 0. Since our continuous
periodic function f will be uniformly continuous, we can choose δ ∈ (0, π)
such that (3.3.2) and hence (3.3.3) hold for all x and k. Setting supR |f | =
M , the final member of (3.3.4) will be bounded by 2M/(k sin2 1

2
δ) for all x.

Conclusion:

|σk(x) − f(x)| < 2ε for all x ∈ R when k ≥ 2M

/(
ε sin2 1

2
δ

)
.

�

Theorem 3.3.3. (Summability in the mean of order one) For any inte-
grable function f on (−π, π),

∫ π

−π

∣∣σk[f ](x) − f(x)
∣∣dx→ 0 as k → ∞.

∗Proof. Here we need the theorem of Guido Fubini (Italy, 1879–1943;
[34]) which allows inversion of the order of integration in an absolutely
convergent repeated integral [see Integration Theory]. By (3.3.1), making
f periodic,

∆k
def
=

∫ π

−π

∣∣σk[f ](x) − f(x)
∣∣dx

=

∫ π

−π

∣∣∣∣

∫ π

−π

{f(x+ t)) − f(x)}Fk(t)dt

∣∣∣∣ dx

≤
∫ π

−π

{∫ π

−π

|f(x+ t)) − f(x)|Fk(t)dt

}
dx(3.3.5)

=

∫ π

−π

{∫ π

−π

|f(x+ t)) − f(x)|dx
}
Fk(t)dt.

Setting

(3.3.6) g(t) =

∫ π

−π

∣∣f(x+ t) − f(x)
∣∣dx,
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the final member of (3.3.5) is equal to σk[g](0); cf. (3.2.4). Now g is a
continuous function (of period 2π), as one readily verifies by approximating
f with piecewise constant functions s [cf. Section 2.1, 2.4]. Thus by Theorem
3.3.1,

∆k ≤ σk[g](0) → g(0) = 0 as k → ∞.

�

Exercises. 3.3.1. Let f be (periodic and) continuous at the point x and
suppose that the Fourier series for f converges at x. Prove that the sum is
equal to f(x).

3.3.2. Prove that two integrable functions on (−π, π) with the same
Fourier series are equal at all points where they are continuous.

3.3.3. Let f be continuous on [−π, π] with f(π) 6= f(−π). Compute
lim σk[f ](π).

3.3.4. Let f be continuous on [−π, π] and such that all trigonometric
moments of f are equal to zero:

∫ π

−π

f(x) cosnx dx =

∫ π

−π

f(x) sinnx dx = 0, ∀n ∈ N0.

Prove that f ≡ 0.
3.3.5. Let f ∈ C2π have bn[f ] = 0 for all n ∈ N. Prove that f is even.
3.3.6. What can you say about f ∈ C[0, π] if

∫ π

0
f(x) cosnx dx = 0

for all n ≥ 0 ? What if
∫ π

0
f(x) cosnx dx = 0 for all n ≥ 1 ? What if∫ π

0
f(x) cosnx dx = 0 for all n ≥ 5 ?
3.3.7. Let f be a bounded piecewise monotonic function on [−π, π].

Prove that the Fourier series for f is C-summable everywhere. Now use
Exercises 2.1.8 and 3.1.9 to deduce that the Fourier series for f is everywhere
convergent. Describe its sum function.

3.3.8. Prove part (ii) of Theorem 3.3.2.
3.3.9. Prove that the function g in (3.3.6) is continuous at the point

t = 0.
3.3.10. Let f be integrable over (−π, π) and such that

∫ π

−π
f(x)e−inxdx =

0 for all n ∈ Z. Prove that
∫ π

−π
|f(x)|dx = 0, so that f(x) = 0 almost

everywhere on (−π, π). [Cf. Integration Theory for the final step.]

3.4. Weierstrass theorem on polynomial approximation

Theorem 3.3.2 immediately implies
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Theorem 3.4.1. Let f be continuous on [−π, π] and such that f(π) =
f(−π). Then to every ε > 0 there is a trigonometric polynomial (finite

trigonometric sum) S(x) = α0 +
∑k

n=1 (αn cosnx+ βn sin nx) such that

|f(x) − S(x)| < ε for − π ≤ x ≤ π.

Indeed, f can be extended to a continuous function of period 2π (which
we also call f), and the arithmetic means σk[f ] = 1

k
(s0[f ] + · · ·+ sk−1[f ]) of

the partial sums of the Fourier series for f converge to f uniformly on R.
As an application we will prove Weierstrass’s theorem on uniform ap-

proximation by ordinary polynomials:

Theorem 3.4.2. Let f be continuous on the bounded closed interval
[a, b]. Then to every ε > 0 there is a polynomial p(x) such that

|f(x) − p(x)| < ε for a ≤ x ≤ b.

Proof. We may assume without loss of generality that [a, b] is the
interval [−1, 1]. Indeed, one can always carry out an initial transformation
x = 1

2
(a+ b) + 1

2
(b− a)X, so that f(x) becomes a continous function F (X)

on [−1, 1]. If one has approximated the latter by a polynomial P (X) on
[−1, 1], an approximating polynomial p(x) for f(x) on [a, b] is obtained by
setting

p(x) = P

(
2x− a− b

b− a

)
.

Now starting with a continuous function f on [−1, 1], we set

x = cos t, f(x) = f(cos t) = g(t), t ∈ R.

Then g will be of class C2π and even, so that the Fourier series for g contains
only cosine terms. By Theorem 3.4.1,

f(cos t) = g(t) = lim
k→∞

σk[g](t)

= lim
k→∞

{
1

2
a0[g] +

k−1∑

n=1

(
1 − n

k

)
an[g] cosnt

}
,(3.4.1)

uniformly on R. [Of course, if g is sufficiently nice, also sk[g](t) → g(t)
uniform;y on R.]
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We finally express cosnt as a polynomial in cos t, the Chebyshev poly-
nomial Tn(cos t) (after Pafnuty Chebyshev, Russia, 1821–1894; [18]):

Tn(cos t) = cosnt = Re eint = Re (cos t+ i sin t)n

= Re

n∑

j=0

(
n

j

)
(cosn−j t)(i sin t)j

= cosn t−
(
n

2

)
(cosn−2 t)(1 − cos2 t)

+

(
n

4

)
(cosn−4 t)(1 − cos2 t)2 − · · · .

Conclusion:

(3.4.2) f(x) = lim
k→∞

{
1

2
a0[g] +

k−1∑

n=1

(
1 − n

k

)
an[g]Tn(x)

}

,

uniformly on [−1, 1]. �

Remark 3.4.3. Observe that the coefficient An,k of the polynomial Tn in
this approximation tends to the limit An = an[g] as k → ∞. In contrast the
coefficient bn,k of xn in the approximating polynomial p(x) = pk(x) behind
the limit sign in (3.4.2) may vary a great deal as k → ∞.

For later use we restate the definition of the Chebyshev polynomial Tn:

Definition 3.4.4.

Tn(x)
def
= cosnt

∣∣∣
cos t=x

=
∑

0≤j≤n/2

(−1)j

(
n

2j

)
xn−2j(1 − x2)j.

Exercises. 3.4.1. Let f(x) = |x|. Determine a sequence of polynomials
which converges to f uniformly on [−1, 1].

3.4.2. Let f be integrable over the finite interval (a, b). Prove that for
every ε > 0 there is a polynomial p such that

∫ b

a

|f(x) − p(x)|dx < ε.

3.4.3. Let f be continuous on the finite closed interval [a, b] and such
that all power moments of f are equal to zero:

∫ b

a

f(x)xndx = 0, ∀n ∈ N0.
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Prove that f ≡ 0.
3.4.4. Prove that the Chebyshev polynomials T0, T1, T2, · · · form an

orthogonal system on (−1, 1) relative to the weight function 1/
√

1 − x2:
∫ 1

−1

Tn(x)Tk(x)
dx√

1 − x2
= 0 whenever k 6= n.

3.4.5. Show that the coefficient of xn in Tn(x) is equal to

1 +

(
n

2

)
+

(
n

4

)
+ · · · =

1

2

{
1 +

(
n

1

)
+

(
n

2

)
+ · · ·

}
= 2n−1.

Hint. Expand (1 ± 1)n.

3.5. Abel summability. Poisson kernel

Let f be 2π-periodic and integrable over a period. Anticipating work
with polar coordinates we write the Fourier series for f with variable θ:

f(θ) ∼ 1

2
a0[f ] +

∞∑

n=1

(an[f ] cosnθ + bn[f ] sinnθ).

The Abel means of the partial sums are given by

(3.5.1) Ar[f ](θ) =
1

2
a0[f ] +

∞∑

n=1

(an[f ] cosnθ + bn[f ] sinnθ)rn,

where 0 ≤ r < 1; cf. (3.1.5). We will express these means as integrals.
Replacing the Fourier coefficients by their defining integrals, in which we
use variable of integration s, one obtains

(3.5.2) Ar[f ](θ) =
1

2

1

π

∫ π

−π

f(s)ds+
∞∑

n=1

1

π

∫ π

−π

f(s) cosn(s− θ) ds · rn.

Here we may invert the order of summation and integration since f(s) is
integrable and the series

∑∞
n=1 cosn(s − θ) · rn converges uniformly in s.

Thus

Ar[f ](θ) =

∫ π

−π

f(s)
1

π

{
1

2
+

∞∑

n=1

rn cosn(s− θ)

}
ds

=

∫ π

−π

f(θ + t)
1

π

{
1

2
+

∞∑

n=1

rn cosnt

}
dt, 0 ≤ r < 1.(3.5.3)

The kernel by which f(θ + t) is multiplied is called the Poisson kernel,
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0 π−π

1
2π

1 + r
1 − r

Pr
1
2π

1 − r
1 + r

Figure 3.2

after the French mathematical physicist Siméon Denis Poisson (1781–1840;
[93]); cf. [94] and see Figure 3.2. It may be expressed in closed form:

Lemma 3.5.1. For 0 ≤ r < 1 and all t ∈ R,

(3.5.4) Pr(t)
def
=

1

π

(
1

2
+

∞∑

n=1

rn cos nt

)

=
1

2π

1 − r2

1 − 2r cos t+ r2
.

Proof. Writing cosnt = Re enit one has

1 + 2
∞∑

n=1

rn cosnt = Re

(
1 + 2

∞∑

n=1

rnenit

)
= Re

(
1 + 2

reit

1 − reit

)

= Re
1 + reit

1 − reit

1 − re−it

1 − re−it
=

1 − r2

1 − 2r cos t+ r2
.

�

The Poisson kernel has nice properties similar to those of the Fejér ker-
nel:

Lemma 3.5.2. Pr is nonnegative, even and periodic with period 2π. As
r ր 1, Pr(t) tends to 0 uniformly on the intervals [δ, π] and [−π,−δ] for
any given δ ∈ (0, π), while

(3.5.5)

∫ π

−π

Pr(t)dt = 1, ∀ r ∈ [0, 1).
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Indeed, 1 − 2r cos t+ r2 = (1 − r)2 + 4r sin2 1
2
t, so that

0 < Pr(t) ≤
1 − r2

4r sin2 1
2
δ

for δ ≤ t ≤ π.

Also, for f ≡ 1, the Fourier series reduces to the constant 1, so that
∫ π

−π
Pr =

Ar[1] ≡ 1; see (3.5.3).

Definition 3.5.3. For integrable f on (−π, π), the integral

(3.5.6) P [f ](r, θ)
def
=

∫ π

−π

Pr(θ − s)f(s)ds

is called the Poisson integral for f .

By the preceding one has

Proposition 3.5.4. For periodic integrable f , the Abel mean Ar[f ] for
the Fourier series is equal to the Poisson integral:

Ar[f ](θ) =

∫ π

−π

f(θ ± t)Pr(t)dt = P [f ](r, θ).

Furthermore

Ar[f ](θ) − f(θ) =

∫ π

−π

{f(θ ± t) − f(θ)}Pr(t)dt, 0 ≤ r < 1.

The methods of Section 3.3 may now be used to obtain the analogs of
Theorems 3.3.1–3.3.3 for Abel summability. We only state some important
aspects:

Theorem 3.5.5. (i) For f ∈ C2π, the Abel means Ar[f ] of the partial
sums of the Fourier series converge to f uniformly on [−π, π] as r ր 1.

(ii) For 2π-periodic f , piecewise continuous on [−π, π], the Abel means
Ar[f ] remain bounded as r ր 1, and they converge to f uniformly on every
closed subinterval [α, β] of an interval (a, b) where f is continuous.

Exercises. 3.5.1. Justify the step from (3.5.2) to (3.5.3) by showing that
the conditions “f integrable” and “gk → g uniformly on (a, b)” imply that∫ b

a
fgk →

∫ b

a
fg.

3.5.2. Use the Poisson integral for Ar[f ] to prove part (i) of Theorem
3.5.5.

3.5.3. Let f(θ) = sgn θ, |θ| < π [cf. Exercise 1.2.5]. Determine Ar[f ]
first as a series, then as an integral. Verify that −1 ≤ Ar[f ] ≤ 1 and show
that Ar[f ] → 1 uniformly on [δ, π − δ] as r ր 1 (provided 0 < δ < π/2).
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3.6. Laplace equation: circular domains, Dirichlet problem

We will deal with (real) harmonic functions: solutions of Laplace’s equa-
tion. A harmonic function u on a domain D in Rm is smooth (in fact, of
class C∞) and it cannot attain a maximum or minimum in D unless it is
constant. As a consequence, if lim sup u(x) ≤ M on all sequences of points
in D that approach the boundary ∂D, then u(x) ≤ M throughout D. It fol-
lows that harmonic functions on a bounded domain are uniquely determined
by their boundary values whenever the latter form a continuous function on
∂D. [If the boundary function is only piecewise continuous one may impose
a boundedness condition to ensure uniqueness.]

Here we consider circular domains D in the plane: annuli [ring-shaped
domains] and discs, or the exterior of a disc. On such domains one will use
polar coordinates r, θ with the origin at the center of the domain. Laplace’s
equation then takes the form

(3.6.1) ∆u
def
= uxx + uyy ≡ urr +

1

r
ur +

1

r2
uθθ = 0.

Solutions on the annulus

A(0, ρ, R) = {(r, θ) : ρ < r < R, θ ∈ R}
have period 2π as functions of θ, hence, being smooth, they can be repre-
sented by Fourier series with coefficients depending on r:

(3.6.2) u(r, θ) =
1

2
A0(r) +

∞∑

n=1

{An(r) cosnθ +Bn(r) sinnθ}.

Here the coefficients An(r) = 1
π

∫ π

−π
u(r, θ) cosnθ dθ andBn(r) will be smooth

functions of r. Also, for fixed r, the coefficients and their derivatives will
form sequences that are O(n−p) for every p; cf. Lemma 2.1.2. We may then
form ∆u by termwise differentiation of the series in (3.6.2). [In problems of
mathematical physics one should always try to carry out operations term
by term, justification can wait till later!] Thus Laplace’s equation becomes

∆u(r, θ) =
1

2

{
A′′

0(r) +
1

r
A′

0(r)

}

+
∞∑

n=1

{[
A′′

n(r) +
1

r
A′

n(r) − n2

r2
An(r)

]
cosnθ

+

[
B′′

n(r) +
1

r
B′

n(r) − n2

r2
Bn(r)

]
sin nθ

}
= 0.
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Since ∆u will be continuous, all coefficients in this Fourier series must be
equal to zero. It follows that the functions An(r) and Bn(r) must satisfy
the ordinary differential equation

(3.6.3)
d2v(r)

dr2
+

1

r

dv(r)

dr
− n2

r2
v(r) = 0, ρ < r < R.

Recall that “equidimensional equations” such as (3.6.3) have solutions
of the form v(r) = rα. Substitution gives

{α(α− 1) + α− n2}rα−2 = 0, hence α = ±n.
For n = 0 equation (3.6.3) has the additional solution log r. Thus we find

An(r) = anr
n + ãnr

−n, Bn(r) = bnr
n + b̃nr

−n for n ∈ N,

A0(r) = a0 + ã0 log r,(3.6.4)

where an, ãn, bn, b̃n are constants.

Dirichlet problem for the disc B(0, 1). The unit disc corresponds to an
annulus with inner radius ρ = 0, but the origin has to be included in the
domain. Therefore we have to reject the solutions r−n and log r of equation
(3.6.3): they would lead to solutions of Laplace’s equation that become
unbounded at the origin. Thus our candidate solution (3.6.2) for Laplace’s
equation in the disc takes the form

(3.6.5) u(r, θ) =
1

2
a0 +

∞∑

n=1

(an cos nθ + bn sin nθ)rn, 0 ≤ r < 1,

with constants an, bn that make the series converge.
In the Dirichlet problem one prescribes the boundary function:

u(1, θ) = f(θ), |θ| ≤ π,

with a given function f . Ignoring questions of convergence on the boundary,
we are thus led to expand f(θ) = u(1, θ) in a Fourier series:

f(θ) ∼ 1

2
a0 +

∞∑

n=1

(an cosnθ + bn sin nθ), |θ| ≤ π;

cf. Figure 3.3. It is therefore natural to use the Fourier coefficients of f :
an = an[f ] and bn = bn[f ], in our trial solution (3.6.5).

Question 3.6.1. Does the function u(r, θ) = uf(r, θ) formed with these
coefficients indeed have the correct boundary values?
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O

∆u = 0

u = f

(1, 0)

Figure 3.3

Theorem 3.6.2. For f ∈ C2π the series (or Abel means)

uf(r, θ) =
1

2
a0[f ] +

∞∑

n=1

(an[f ] cosnθ + bn[f ] sinnθ)rn

= Ar[f ](θ)(3.6.6)

and the corresponding Poisson integral

P [f ](r, θ)
def
=

∫ π

−π

Pr(θ − t)f(t)dt

=
1

2π

∫ π

−π

1 − r2

1 − 2r cos(θ − t) + r2
f(t)dt(3.6.7)

both represent the (unique) solution of Laplace’s equation in the disc B(0, 1)
with boundary values f(θ). That is, for every θ0 ∈ R,

(3.6.8) lim
(r,θ)→(1,θ0)

uf(r, θ) = f(θ0).

Observe that we require more than just radial approach from inside B
to the boundary ∂B.

Proof. Every term in the series (3.6.6) satisfies Laplace’s equation.
Now the coefficients an[f ] and bn[f ] form bounded sequences. It follows
that the operator ∆ may be applied to uf(r, θ) term by term. Indeed, the
differentiated series will be uniformly convergent for 0 ≤ r ≤ r0 < 1 and
θ ∈ R. Hence also ∆uf (r, θ) = 0.
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For (3.6.8) we use the fact that uf(r, θ) is equal to the Abel mean
Ar[f ](θ). By Theorem 3.5.5, Ar[f ](θ) = P [f ](r, θ) converges to f(θ) uni-
formly in θ as r ր 1. Thus for given ε > 0 there exists δ > 0 such that

|uf(r, θ) − f(θ)| < ε for 1 − δ < r < 1 and all θ,

|f(θ) − f(θ0)| < ε for |θ − θ0| < δ.

As a result

|uf(r, θ) − f(θ0)| < 2ε for 1 − δ < r < 1, |θ − θ0| < δ.

�

Remark 3.6.3. Theorem 3.6.2 can be extended to the case of (bounded)
piecewise continuous boundary functions f . At a point θ0 where f is discon-
tinuous, (3.6.8) may then be replaced by the condition that uf(r, θ) must
remain bounded as (r, θ) → (1, θ0). Without such a condition there would
be no uniqueness of the solution; cf. Exercise 3.6.6.

Exercises. 3.6.1. Prove directly that the Poisson integral P [f ](r, θ) of a
real integrable function satisfies Laplace’s equation in the unit disc, either
by differentiating under the integral sign, or by showing that P [f ] is the
real part of an analytic function.

3.6.2. Use an infinite series to solve the Dirichlet problem for Laplace’s
equation in the disc B(0, R) with boundary function f(R, θ). Then trans-
form the series into the Poisson integral for the disc B(0, R):

PR[f ](r, θ) =
1

2π

∫ π

−π

R2 − r2

R2 − 2Rr cos(θ − t) + r2
f(R, t)dt.

3.6.3. Solve the Neumann problem for Laplace’s equation in B = B(0, 1):

∆u = 0 on B,
∂u

∂r
(1, θ) = g(θ), |θ| ≤ π.

[Here one has to require that
∫ π

−π
g(θ)dθ = 0.] Consider in particular the

case where g(θ) = sgn θ, |θ| < π.
3.6.4. Use an infinite series to solve the Dirichlet problem for Laplace’s

equation on the exterior of the disc B(0, ρ), with boundary function f(ρ, θ).
Here one requires that u remain bounded at infinity. Finally transform the
series into a Poisson-type integral.

3.6.5. Determine the solution of Laplace’s equation in the general an-
nulus A(0, ρ, R) with boundary function 1 on C(0, R) and 0 on C(0, ρ).
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3.6.6. The Poisson kernel Pr(θ) represents a solution of Laplace’s equa-
tion in the unit disc with boundary values 0 for r = 1, 0 < |θ| ≤ π. Verify
this, and investigate what happens when (r, θ) tends to the point (1, 0).

3.6.7. Use an infinite series to solve the following boundary value prob-
lem for the semidisc D = {(r, θ) : 0 < r < 1, 0 < θ < π}:

∆u = 0 in D, u(1, θ) = 1 for 0 < θ < π,

u(r, 0) = u(r, π) = 0 for 0 < r < 1.

Can you prove that your candidate solution has the correct boundary val-
ues?

3.6.8. Similarly for the sector D = {(r, θ) : 0 < r < R, 0 < θ < α}:
∆u = 0 on D, u(R, θ) = 1 for 0 < θ < α,

u(r, 0) = u(r, α) = 0 for 0 < r < R.

Show that for fixed (r, θ) and large R,

u(r, θ) ≈ 4

π

( r
R

)π/α

sin
π

α
θ.



CHAPTER 4

Periodic distributions and Fourier series

Although an integrable function on (−π, π) is essentially determined by
its Fourier series, there is no simple convergence theory that applies to the
Fourier series of every (Lebesgue) integrable function. Is it possible to do
something about that? More important, for applications to boundary value
problems one would like to have a theory in which there is no limitation on
termwise differentiation of Fourier series; cf. Sections 1.3, 1.4 and 3.6. The
difficulties can be overcome by the introduction of “convergence relative to
test functions”, and the extension of the class of integrable functions to
the class of generalized functions or distributions in the sense of Laurent
Schwartz; cf. [110], [111]). It will turn out that every periodic distribution
can be considered as a generalized derivative, of some finite order, of a
periodic integrable function.

4.1. The space L1. Test functions

Integrable functions f1 and f2 on (−π, π) that differ only on a set of
measure zero have the same Fourier series:

cn[f1] =
1

2π

∫ π

−π

f1(x)e
−inxdx = cn[f2] =

1

2π

∫ π

−π

f2(x)e
−inxdx, ∀n.

Indeed, since f1(x)e
−inx will be equal to f2(x)e

−inx almost everywhere [often
abbreviated a.e.], that is, outside a set of measure zero, the two products
will have the same integral. Conversely, integrable functions f1 and f2 with
the same Fourier series will differ only on a set of measure zero; cf. Exercise
3.3.10. We will give another proof here.

Theorem 4.1.1. Let f be integrable on (−π, π) and cn[f ] = 0 for all
n ∈ Z. Then f(x) = 0 almost everywhere, and in particular f(x) = 0 at
every point x where the indefinite integral

(4.1.1) F (x)
def
= c+

∫ x

0

f(t)dt

69
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is differentiable and has derivative F ′(x) equal to f(x).

Proof. By Lebesgue’s theory of integration (cf. [77], [76]), the in-
definite integral F (x) is differentiable outside a set of measure zero and
F ′(x) = f(x) outside a (possibly larger) set of measure zero. With indefi-
nite integrals one can carry out integration by parts:

2πcn[f ] =

∫ π

−π

f(x)e−inxdx =

∫ π

−π

e−inxdF (x)

=
[
F (x)e−inx

]π
−π

+ in

∫ π

−π

F (x)e−inxdx.(4.1.2)

Here the integrated term will vanish since e−inπ = einπ and

F (π) − F (−π) =

∫ π

−π

f(t)dt = 2πc0[f ] = 0.

Thus 2πcn[f ] = in · 2πcn[F ], and hence in our case cn[F ] = 0 for all n 6= 0.
Subtracting from F its average C = c0[F ] on [−π, π], one will obtain a
continuous (and a.e. differentiable) function with Fourier series 0:

cn[F − C] = cn[F ] = 0, ∀ n 6= 0, c0[F − C] = c0[F ] − C = 0.

Conclusion: F −C = lim σk[F −C] = 0, so that F ≡ C; cf. Theorem 3.3.1.
Hence by Lebesgue’s theory, f(x) = F ′(x) = 0 almost everywhere. �

Remark 4.1.2. The linear space of integrable functions f on (a, b) is
made into a normed vector space, called L(a, b) or L1(a, b), by setting

(4.1.3) ‖f‖ = ‖f‖1 =

∫ b

a

|f(x)|dx.

This is the L1 norm or “L1 length” of f . One now identifies functions which
differ only on a set of measure 0. Note that ‖f1 − f2‖ = 0 if and only if
f1(x) = f2(x) a.e. Also, as is usual for a length,

‖λf‖ = |λ| ‖f‖ and ‖f + g‖ ≤ ‖f‖ + ‖g‖.
Convergence fk → f in L1(a, b) means

∫ b

a
|f − fk| → 0.

Speaking precisely, the elements of L1(a, b) are not functions: they are
equivalence classes of integrable functions on (a, b). For any given integrable
function f , the class of all functions that are a.e. equal to it is sometimes
denoted by [f ]. The norm of the element or class [f ] is defined as ‖f‖ and
given by (4.1.3) for any element of the class. To every element of L1(−π, π)
there is exactly one Fourier series. Different elements of L1(−π, π) have
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different Fourier series. We usually speak carelessly of the functions of
L1(−π, π) instead of the elements.

Definition 4.1.3. We say that integrable functions fk converge to the
integrable function f on (a, b) relative to the test class (class of test func-
tions) A if

∫ b

a

fkφ→
∫ b

a

fφ as k → ∞, ∀φ ∈ A.

In order to make it easy for fk to converge to f we severely limit the test
class A, but it must be large enough to make limits relative to A unique.
For Fourier theory, we will use as test functions the infinitely differentiable
functions φ of period 2π: the test class will be C∞

2π.

Example 4.1.4. By the Riemann–Lebesgue Lemma 2.1.1, the sequence
{eikx}, k = 0, 1, 2, · · · tends to 0 on (−π, π) relative to the test class C∞

2π.
More surprisingly, a sequence such as {k100eikx}, k = 0, 1, 2, · · · also tends
to 0 relative to this test class. Indeed, one has

∫ π

−π

k100eikxφ(x)dx = k100

∫ π

−π

φ(x)d
eikx

ik

= −k
100

ik

∫ π

−π

eikxφ′(x)dx = · · · =
k100

(ik)100

∫ π

−π

eikxφ(100)(x)dx.

The result tends to 0 as k → ∞ since the function φ(100) is continuous.

Proposition 4.1.5. In L1(−π, π), limits relative to the test class C∞
2π

are unique.

Proof. Suppose that for integrable functions fk, f, g on (−π, π) one
has ∫ π

−π

fkφ→
∫ π

−π

fφ and also

∫ π

−π

fkφ→
∫ π

−π

gφ

for all φ ∈ C∞
2π. Then

∫ π

−π
fφ =

∫ π

−π
gφ for all φ. Thus, using the test

functions e−inx, one finds in particular that cn[f ] = cn[g] for all n. Hence by
Theorem 4.1.1, f = g almost everywhere, so that [f ] = [g] in L1(−π, π). �

Using the fact that for functions φ ∈ C∞
2π, the Fourier series is uniformly

convergent to φ, we will show that for integrable functions f on (−π, π),
the Fourier series converges to f relative to the test class C∞

2π.
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Lemma 4.1.6. For integrable functions f and g on (−π, π),

∫ π

−π

sk[f ]g = 2π

k∑

n=−k

cn[f ]c−n[g] =

∫ π

−π

fsk[g].

Indeed,

∫ π

−π

sk[f ]g =

∫ π

−π

k∑

n=−k

cn[f ]einxg(x)dx =

k∑

n=−k

cn[f ] · 2πc−n[g], etc.

Theorem 4.1.7. For f ∈ L1(−π, π) and any φ ∈ C∞
2π,

(4.1.4) lim
k→∞

∫ π

−π

sk[f ]φ =

∫ π

−π

fφ = 2π
∞∑

n=−∞
cn[f ]c−n[φ].

Indeed, one has
∫ π

−π

sk[f ]φ =

∫ π

−π

fsk[φ] →
∫ π

−π

fφ as k → ∞,

since ∣∣∣∣
∫ π

−π

f(φ− sk[φ])

∣∣∣∣ ≤
∫ π

−π

|f | · max
[−π,π]

|φ− sk[φ]| → 0

by Theorem 2.4.3. The infinite series in (4.1.4) will be absolutely convergent;
cf. Lemma 2.1.2 applied to φ instead of f .

Definition 4.1.8. The support of a continuous function [or element of
L1, or generalized function] f on J is the smallest closed subset E ⊂ J
outside of which f is equal to zero [or equal to the zero element]. Notation:
supp f .

It is important to know that for any given finite closed interval [α, β],
there are C∞ functions on R with support [α, β].

Examples 4.1.9. The function

ψ(x) =

{
e−1/x for x > 0,
0 for x ≤ 0

is in C∞(R) and has support [0,∞).
For α < β the product ψ(x− α)ψ(β − x) is in C∞(R) and has support

[α, β].
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0

1

δ− δ

θ
δ

Figure 4.1

For any number δ > 0, the function

θδ(x) =






∫ x

−δ
e−1/(δ2−t2)dt

/ ∫ δ

−δ
e−1/(δ2−t2)dt for −δ ≤ x ≤ δ,

0 for x ≤ −δ,
1 for x ≥ δ

belongs to C∞(R); cf. Figure 4.1. Observe that θδ(x) + θδ(−x) ≡ 1.
For 0 < δ < 1

4
(β − α) the function

ω(x) = θδ(x− α− δ) θδ(β − x− δ)

is in C∞(R). It has support [α, β] and is equal to 1 on [α + 2δ, β − 2δ]; cf.
Figure 4.2.

Exercises. 4.1.1. Let fk and f be integrable functions of period 2π. Prove
the following implications:

fk → f uniformly on [−π, π]

⇒ fk → f in L1(−π, π)

⇒ fk → f relative to the test class C2π

⇒ fk → f relative to the test class C∞
2π.

4.1.2. (Continuation). Show that in each case, cn[fk] → cn[f ] as k → ∞
for every n.

4.1.3. Let fk, f, g be integrable on (−π, π) and suppose that fk → f
relative to the test class C∞

2π, while fk → g uniformly on (a, b) ⊂ (−π, π), or
in the sense of L1(a, b). Prove that f = g a.e. on (a, b).

Hint. Consider sequences {fkω} where ω has support [a, b].
4.1.4. For indefinite integrals F on [−π, π], the Fourier series converges

to F everywhere on (−π, π) (why?). Use this fact to show that for integrable
functions f on (−π, π), the series

∑∞
n=1

1
n
bn[f ] is convergent.
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1

α α + 2δ β − 2δ β

ω

Figure 4.2

4.1.5. Prove that the series
∞∑

n=2

1

log n
sin nx

converges for all x and that the sum function g(x) is continuous on (0, 2π).
Show that the series cannot be the Fourier series of an integrable function
on (−π, π) or (0, 2π).

4.1.6. Prove that the function ψ(x) under Examples 4.1.9 is of class
C∞(R). Derive that the other functions are also of class C∞(R).

4.1.7. Prove that an integrable function f on Γ is equal to a test function
if and only if for every p ∈ N, one has cn[f ] = O(|n|−p) as |n| → ∞.

4.1.8. Construct an example to show that the Fourier series of a periodic
L1 function need not converge to f in the sense of L1.

Hint. For every k ∈ N there is a function fk with |fk(x)| ≡ 1 such that
‖sk[fk]‖ is close to ‖Dk‖. Now form a suitable series f =

∑
ajfpj

.

4.2. Periodic distributions: distributions on the unit circle

Functions on R of period 2π may be considered as functions on the unit
circle (unit circumference) Γ = {z ∈ C : |z| = 1}. Here we will not take
z = eix as our independent varaibale, but rather the (signed) arc length x
from the point z = 1 to z = eix. Where one-to-one correspondence between
the points of Γ and the values of x is important we may take −π < x ≤ π or
0 ≤ x < 2π. However, we sometimes speak of arcs on Γ of length > 2π, for
example, the arc given by −2π < x < 2π. Integration over Γ relative to arc
length shall be the same as integration over the interval (−π, π] or (−π, π).
Differentiation with respect to arc length corresponds to differentiation on
R. The p times continuously differentiable functions on Γ correspond to the
class Cp

2π. By definition the test class C∞(Γ) on the unit circle corresponds to
the test class C∞

2π on R. Convergence of integrable functions fk → f relative
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to the test class C∞(Γ) is the same as convergence on (−π, π) relative to
the test class C∞

2π:
∫

Γ

fkφ =

∫ π

−π

fk(x)φ(x)dx→
∫

Γ

fφ, ∀φ ∈ C∞(Γ).

In the definition of convergence, integrable functions enter only through
their action on test functions. The integrable function f appears in the
form of the linear functional Tf : C∞(Γ) ⇒ C given by

(4.2.1) Tf (φ) =< Tf , φ >=

∫

Γ

fφ, ∀φ ∈ C∞(Γ).

Observe that the correspondence between f and the functional Tf is one to
one if we identify functions that are equal almost everywhere, that is, (4.2.1)
establishes a one-to-one correspondence between the elements f ∈ L1(Γ)
and the associated functionals Tf .

We will now introduce more general linear functionals on our test class,
and call these generalized functions. However, we will not allow all linear
functionals – in order to get a good structure theory of generalized functions,
we will impose a continuity condition. To this end we introduce a suitable
concept of convergence for test functions. In order to make it easy for
functionals to be continuous, we have to make it difficult for test functions
to converge.

Definition 4.2.1. The test space D(Γ) consists of the C∞ functions φ
on Γ (henceforth called test functions), furnished with the following concept
of convergence: φj → φ in D(Γ) if and only if

φj → φ uniformly on Γ, φ′
j → φ′ uniformly on Γ, · · · ,

φ
(p)
j → φ(p) uniformly on Γ, · · · .

Observe that convergence φj → φ in D(Γ) implies convergence φ′
j → φ′

in D(Γ), etc.

Proposition 4.2.2. For a test function φ on Γ, the Fourier series con-
verges to φ in the strong sense of D(Γ):

sj [φ] → φ uniformly on Γ, s′j [φ] → φ′ uniformly on Γ, · · · ,
s
(p)
j [φ] → φ(p) uniformly on Γ, · · · .
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Proof. One has

s
(p)
j [φ](x) =

(
d

dx

)p j∑

n=−j

cn[φ]einx =

j∑

n=−j

(in)pcn[φ]einx

=

j∑

n=−j

cn[φ(p)]einx = sj[φ
(p)](x);

cf. Lemma 2.1.2. Furthermore, since φ(p) is of class C∞(Γ) or C∞
2π, the partial

sum sj[φ
(p)] converges to φ(p) uniformly on Γ. �

Definition 4.2.3. A distribution (or generalized function) T on the unit
circle Γ is a continuous linear functional on the test space D(Γ). Such a
distribution can also be considered as a distribution on R of period 2π.

In order to make the definition more clear, we introduce different sym-
bols for our continuous linear functionals. Besides T , we will use T (·) or
T (φ), and also < T, φ >. If there is no danger of confusion, one sometimes
writes T (x) in order to indicate the underlying independent variable x on
Γ. However, a distribution need not have a value at the point x.

By the definition, a distribution T on Γ is a map D(Γ) ⇒ C which is
linear:

< T, λ1φ1 + λ2φ2 >= λ1 < T, φ1 > +λ2 < T, φ2 >

for all λj ∈ C and all φj ∈ D(Γ), and continuous:

< T, φj >→< T, φ > whenever φj → φ in D(Γ).

As linear functionals, distributions can be added and multiplied by scalars:

< λ1T1 + λ2T2, φ >= λ1 < T1, φ > +λ2 < T2, φ >, ∀φ.
Example 4.2.4. Every integrable function f on Γ defines a distribution

Tf on Γ by formula (4.2.1). Indeed,
∫
Γ
fφj →

∫
Γ
fφ already if φj → φ

uniformly on Γ. In the terminology of Chapter 5 we could say that f defines
a continuous linear functional relative to the convergence in the space C(Γ).

Since the correspondence f ⇔ Tf is one to one for f ∈ L1(Γ) and
preserves linear combinations, we may identify Tf with f and also write
< f, φ > instead of < Tf , φ >. Thus (periodic) integrable functions (more
precisely, equivalence classes of integrable functions) become special cases
of (periodic) distributions. Distributions on Γ form a generalization of inte-
grable functions. Some important distributions correspond to special non-
integrable functions; cf. Example 4.2.6 below.
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Examples 4.2.5. The delta distribution on the circle, notation δΓ, is
defined by the formula

(4.2.2) < δΓ, φ >= φ(0), ∀φ ∈ D(Γ).

In physics, a distribution that assigns the value φ(0) to test functions φ is
usually called a Dirac delta function, after the British physicist Paul Dirac
(1902–1984; [22]). It is given symbolically by the formula

∫ π

−π

δΓ(x)φ(x)dx = φ(0);

cf. [24]. However, δΓ cannot be identified with an integrable function as
we will see below. [Incidentally, one may consider δΓ also as a 2π-periodic
distribution on R; in that case we use the notation δper

2π .]
∗The distribution δΓ actually defines a continuous linear functional rela-

tive to the less demanding convergence in C(Γ): if φj → φ uniformly on Γ,
then < δΓ, φj >→< δΓ, φ >. By a representation theorem of Frigyes Riesz
(Hungary, 1880–1956; [100]), cf. [101]), a continuous linear functional on
C(Γ) can be identified with a (real or complex) Borel measure. (Such mea-

sures are named after Émile Borel, France, 1871–1956; [9]; cf. [10].) Thus
the delta distribution is an example of a measure.

For any nonnegative integer p, the formula

< T, φ >= φ(p)(0), ∀φ ∈ D(Γ)

defines a distribution on Γ. Indeed, if φj → φ in D(Γ), then φ
(p)
j (0) →

φ(p)(0).

Example 4.2.6. We recall the definition of a principal value integral.
Let a < c < b and suppose that a function f is integrable over (a, c − ε)
and over (c + ε, b) for all small ε > 0, but not necessarily over (a, b) itself.
Then f has a principal value integral over (a, b) [relative to the point c] if
the following limit exists:

(4.2.3) lim
εց0

∫

(a,b)\(c−ε,c+ε)

f(x)dx.

It is important that the omitted interval be symmetric with respect to c.

The principal value p.v.
∫ b

a
f(x)dx is defined by the value of the limit in

(4.2.3).
Suppose now that f(x) has the form (1/x)φ(x), where φ is of class C1 on a

finite interval [a, b] with a < 0 < b. Then the principal value p.v.
∫ b

a
f(x)dx
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[relative to 0] exists and may be obtained through integration by parts.
Indeed, writing (1/x)dx = d log |x| one finds

(∫ −ε

a

+

∫ b

ε

)
1

x
φ(x)dx =

[
φ(x) log |x|

]−ε

a
+
[
φ(x) log |x|

]b
ε

−
(∫ −ε

a

+

∫ b

ε

)
(log |x|)φ′(x)dx.

The second member has a finite limit as ε ց 0 since (log |x|)φ′(x) is inte-
grable over (a, b) and {φ(ε) − φ(−ε)} log ε→ 0. Thus

p.v.

∫ b

a

1

x
φ(x)dx = φ(b) log b− φ(a) log |a| −

∫ b

a

(log |x|)φ′(x)dx.

The principal value distribution on Γ corresponding to the nonintegrable
function 1/x is defined by

〈
pvΓ

1

x
, φ(x)

〉
def
= p.v.

∫ π

−π

1

x
φ(x)dx.

Here integration by parts will show that
〈

pvΓ

1

x
, φ(x)

〉
= −

∫ π

−π

log
|x|
π
φ′(x)dx, ∀φ ∈ D(Γ).

The continuity of the functional follows from the uniform convergence of φ′
j

to φ′ when φj → φ in D(Γ).

Definition 4.2.7. (Simple operations) The translate Tc(x) = T (x− c),
the reflection TR(x) = T (−x) and the product Tg of T with a test function
g are defined as if < T, φ > is an integral, just like < Tf , φ >=< f, φ >=∫
Γ
fφ:

< T (x− c), φ(x) > =

∫

Γ

T (x− c)φ(x)dx

=

∫

Γ

T (x)φ(x+ c)dx =< T (x), φ(x+ c) >,

< T (−x), φ(x) > =

∫

Γ

T (−x)φ(x)dx

=

∫

Γ

T (x)φ(−x)dx =< T (x), φ(−x) >,

< Tg, φ > =< gT, φ >=

∫

Γ

Tgφ =< T, gφ > .
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m m+δm−δa c b d

θδ (m - x) θδ (x - m)

Figure 4.3

Here the integral signs have been used symbolically. For given T , prod-
ucts Tg may often be defined for less regular functions g than test functions;
cf. the Exercises and Section 4.7.

An important notion is the concept of local equality.

Definition 4.2.8. One says that T = 0 on the open set Ω ⊂ Γ if
< T, φ >= 0 for all test functions φ with support in Ω.

By the preceding the distribution δΓ is even: δΓ(−x) = δΓ(x). Further-
more

(4.2.4) δΓ(x) = 0 on 0 < x < 2π (and on − 2π < x < 0).

Indeed, < δΓ, φ >= φ(0) = 0 whenever suppφ ⊂ (0, 2π). The distribution
δΓ has the single point {0} as its “support” on Γ. It follows that δΓ cannot
be equal to an integrable function f on Γ: if f has support 0 then < f, φ >
=
∫
Γ
fφ = 0 for all φ. [The distribution or measure δΓ corresponds to the

“mass distribution” that consists of a single point mass 1 at the point 0.]
We will need the following property: If T = 0 on Ω1 and on Ω2, then

T = 0 on the union Ω1 ∪ Ω2. Since open sets on Γ are unions of disjoint
open intervals, it is sufficient to show that “T = 0 on (a, b)” and “T = 0
on (c, d)”, with a < c < b < d, implies “T = 0 on (a, d)”. In order to prove
the latter, we decompose a given test function φ with support in (a, d) as
φ1 + φ2, with suppφ1 ⊂ (a, b) and supp φ2 ⊂ (c, d). Such a decomposition
may be obtained by setting

φ1(x) = θδ(m− x)φ(x), φ2(x) = θδ(x−m)φ(x),

where m = 1
2
(b+ c), δ = 1

2
(b− c) and θδ is as in Examples 4.1.9; cf. Figure

4.3. It now follows that

< T, φ >=< T, φ1 > + < T, φ2 >= 0

whenever T = 0 on (a, b) and (c, d).
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By the preceding, there is a maximal open subset Ω ⊂ Γ on which a
given distribution T is equal to zero. [Ω may of course be empty.] The
complement of Ω in Γ is called the support of T .

Exercises. 4.2.1. Prove that a trigonometric series
∑∞

n=−∞ cne
inx repre-

sents a C∞ function φ on Γ if (and only if) for every p ∈ N, there is a
constant Bp such that |cn| ≤ Bp/|n|p for all n 6= 0.

4.2.2. Compute < δΓ, e
−inx > for each n. Use the result to verify that

there can be no integrable function f such that δΓ = f on Γ.
4.2.3. Show that the formula

T (φ) = a0φ(0) + a1φ
′(0) + · · ·+ amφ

(m)(0), ∀φ ∈ D(Γ)

defines a distribution T on Γ. Determine supp T .
4.2.4. Let f be an integrable function on Γ. Prove that f = 0 on

(a, b) ⊂ Γ in the sense of distributions if and only if f(x) = 0 a.e. on (a, b).
4.2.5. Prove that the functionals T (x− c), T (−x) and Tg in Definition

4.2.7 are continuous on D(Γ).
4.2.6. For T ∈ D(Γ) and g ∈ C∞(a, b) one may define a product Tg on

every interval (α, β) with [α, β] ⊂ (a, b) and β−α < 2π in the following way.
Extending the restriction of g to [α, β] to a test function h on Γ with support
in a subinterval [α− ε, β + ε] of (a, b) of length < 2π, one sets Tg = Th on
(α, β). Show that this definition is independent of the extension h.

4.2.7. Prove that δΓg = g(0)δΓ for every test function g. Also show that
x · δΓ(x) = 0 on (−π, π).

4.2.8. Prove that pvΓ (1/x) = 1/x on (−π, 0) and on (0, π). Also show
that x · pvΓ (1/x) = 1 on (−π, π).

4.2.9. Show that

{δΓ(x) x} pvΓ

1

x
6= δΓ(x)

{
x · pvΓ

1

x

}
on (−π, π).

Thus distributional multiplication is not associative in general.
4.2.10. Verify that for T ∈ DΓ, the definition of the translate T (x − c)

under Definition 4.2.7 implies that indeed T (x+2π) = T (x), as it reasonably
should.

4.3. Distributional convergence

For the time being we deal only with distributions on Γ.

Definition 4.3.1. One says that distributions Tk (which may be equal
to integrable functions) converge to a distribution T on Γ if Tk → T relative
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to the test class D(Γ):

< Tk, φ >→< T, φ > as k → ∞, ∀φ ∈ D(Γ).

With this definition of convergence the distributions on Γ form the space
D′(Γ), the so-called dual space of D(Γ).

We use a corresponding definition for “directed families” Tλ. Here λ
runs over a real or complex index set Λ, and tends to a limit λ0, which may
be infinity. Similarly for convergence Tk → T on (a, b) ⊂ Γ. Distributional
limits are unique: if Tk → T and also Tk → T̃ , then T̃ = T . For integrable
functions fk and f on Γ, distributional convergence fk → f is the same as
the earlier convergence relative to the test class C∞(Γ).

Examples 4.3.2. A sequence or more general directed family of inte-
grable functions which converges to the delta distribution on Γ is called a
delta sequence or delta family on Γ. Concrete examples are provided by

(i) the Dirichlet kernels Dk, k = 0, 1, 2, · · · [Section 2.2],

(ii) the Fejér kernels Fk, k = 1, 2, · · · [Section 3.2],

(iii) the family given by the Poisson kernel Pr, 0 ≤ r ր 1 [Section 3.5],

(iv) any family gε(x) = (1/ε)g(x/ε), 1 ≥ εց 0,

generated by an integrable function g with support in [−1, 1]

and such that

∫ 1

−1

g(x)dx = 1.

It is easy to verify that Dk → δΓ on Γ. Indeed,

(4.3.1) < Dk, φ >=

∫ π

−π

Dk(t)φ(t)dt = sk[φ](0) → φ(0) =< δΓ, φ >

for all φ ∈ D(Γ) since the Fourier series for φ converges to φ. The proofs
in the other cases are not difficult either. Delta families occur in many
problems of approximation.

We next consider somewhat different examples.

Example 4.3.3. Suppose that the trigonometric series
∑∞

n=−∞ dne
inx

converges to a distribution T on Γ, that is, sk =
∑k

n=−k dne
inx → T as

k → ∞. Then in particular

(4.3.2) < T, e−inx >= lim < sk, e
−inx >= lim

∫ π

−π

sk(x)e
−inxdx = 2πdn.
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This formula will motivate the definition of distributional Fourier series.

Example 4.3.4. We will show that for every distribution T on Γ, there
is a distribution S such that

(4.3.3) lim
h→0

T (x+ h) − T (x)

h
= S(x).

S is called the (distributional) derivative of T . In Section 4.5 we will intro-
duce the derivative in a somewhat different manner.

∗Existence of the limit in (4.3.3). We show first that for every test
function φ,

〈
T (x+ h) − T (x)

h
, φ(x)

〉
=

〈
T (x),

φ(x− h) − φ(x)

h

〉

→< T (x),−φ′(x) > as h→ 0.(4.3.4)

Indeed [replacing −h by h], the difference

φ(x+ h) − φ(x)

h
− φ′(x) =

1

h

∫ h

0

{φ′(x+ t) − φ′(x)}dt

=

∫ 1

0

{φ′(x+ hv) − φ′(x)}dv(4.3.5)

will converge to zero uniformly in x as h→ 0, because the periodic function
φ′ is uniformly continuous. The pth order derivative of the difference in
(4.3.5) also converges uniformly to zero:

φ(p)(x+ h) − φ(p)(x)

h
− φ(p+1)(x)

=

∫ 1

0

{φ(p+1)(x+ hv) − φ(p+1)(x)}dv → 0

uniformly in x. Thus the test functions given by (4.3.5) converge to 0 in
the sense of D(Γ) as h→ 0. Going back to −h, we find that

φ(x− h) − φ(x)

h
→ −φ′(x) in D(Γ).

Since T is continuous on D(Γ) relation (4.3.4) follows.
We now define a linear functional S on D(Γ) by

(4.3.6) < S, φ >=< T,−φ′ >= − < T, φ′ > .
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The functional S is continuous: if φj → φ in D(Γ), then φ′
j → φ′ in D(Γ),

hence < T, φ′
j >→< T, φ′ >. Thus S is a distribution on Γ. Combining

(4.3.4) and (4.3.6) we obtain
〈
T (x+ h) − T (x)

h
, φ(x)

〉
→< S, φ >, ∀φ.

This proves relation (4.3.3).

Exercises. 4.3.1. Prove that all directed families in Examples 4.3.2 are
delta families.

4.3.2. Let {gε} be as in Examples 4.3.2. Prove that for εց 0,
∫ π

−π

gε(t)f(x− t)dt→ f(x)

uniformly on Γ for every function f ∈ C(Γ).
4.3.3. Use Definition 4.3.1 to show that the series

∑∞
n=1 n

100 cosnx
converges in D′(Γ).

4.4. Fourier series

Example 4.3.3 motivates the following

Definition 4.4.1. The (complex) Fourier series for the distribution T
on Γ is the series

T ∼
∞∑

n=−∞
cn[T ]einx with cn[T ]

def
=

1

2π
< T, e−inx >, ∀n ∈ Z.

One can of course also introduce the “real” Fourier series. The partial
sums of the real series and the symmetric partial sums

∑k
−k of the complex

series are denoted by sk[T ].

Example 4.4.2. The Fourier series for the delta distribution on Γ and
its partial sums are

δΓ ∼ 1

2π

∞∑

n=−∞
einx =

1

π

(
1

2
+

∞∑

n=1

cos nx

)

,

sk[δΓ] =
1

2π

k∑

n=−k

einx = Dk(x) (Dirichlet kernel).(4.4.1)

The Fourier series for δΓ converges to δΓ. Indeed, sk[δΓ] = Dk → δΓ by
(4.3.1).
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Proposition 4.4.3. For T ∈ D′(Γ) and φ ∈ D(Γ),

< T, φ > = 2π lim
k→∞

k∑

n=−k

cn[T ]c−n[φ]

=
∞∑

n=−∞
cn[T ]c−n[φ].(4.4.2)

Proof. By Proposition 4.2.2 the Fourier series for φ converges to φ in
D(Γ). Hence by the continuity of T ,

< T, φ > = lim < T, sk[φ] >= lim

k∑

n=−k

cn[φ] < T, einx >

= lim 2π
k∑

n=−k

cn[φ]c−n[T ], etc.

�

One may derive from Section 4.6 below that the series in (4.4.2) is ab-
solutely convergent.

Theorem 4.4.4. For every distribution T on Γ the Fourier series con-
verges to T .

Proof. [Cf. Lemma 4.1.6 and Theorem 4.1.7] By Proposition 4.4.3,

< sk[T ], φ > =
k∑

n=−k

cn[T ] < einx, φ >=
k∑

n=−k

cn[T ]

∫ π

−π

einxφ(x)dx

= 2π

k∑

n=−k

cn[T ]c−n[φ] →< T, φ >, ∀φ ∈ D(Γ).

�

Corollary 4.4.5. A distribution T on Γ is determined by its Fourier
series: if cn[T ] = 0 for all n, then T = 0.

Exercises. 4.4.1. Suppose that Tk → T in D′(Γ) as k → ∞. Prove that
cn[Tk] → cn[T ] for every n.

4.4.2. Express the Fourier series for T (x− c) and T (−x) in terms of the
Fourier series for T (x).
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4.4.3. Prove that a distribution T on Γ is equal to a test function if and
only if for every p ∈ N, one has cn[T ] = O(|n|−p) as |n| → ∞.

4.4.4. Compute the distributional sums of the series

cosx+ cos 2x+ cos 3x+ · · · , cosx− cos 2x+ cos 3x− · · · ,
cosx+ cos 3x+ cos 5x+ · · · .

4.4.5. It is more difficult to determine the distributional sum T (x) of
the series

sin x+ sin 2x+ sin 3x+ · · · .
Denoting the partial sum of order k by sk, prove that for all φ ∈ D(Γ),

< T, φ > = lim < sk, φ >=

∫ π

0

1

2

(
cot

1

2
x

)
{φ(x) − φ(−x)}dx

= lim
εց0

(∫ −ε

−π

+

∫ π

ε

)
1

2

(
cot

1

2
x

)
φ(x)dx

= p.v.

∫ π

−π

1

2

(
cot

1

2
x

)
φ(x)dx;(4.4.3)

cf. Exercise 3.2.3. The final expression defines the distribution pv 1
2
cot 1

2
x.

More in Exercise 4.5.12.

4.5. Derivatives of distributions

Let F be a function in C1
2π = C1(Γ), or more generally, a function in

C(Γ) that can be written as an indefinite integral (4.1.1). Then for every
test function φ on Γ, integration by parts gives

< F ′, φ >=

∫ π

−π

F ′φ =
[
Fφ
]π
−π

−
∫ π

−π

Fφ′ = − < F, φ′ > .

We extend this formula to distributions:

Definition 4.5.1. Let T be any distribution on Γ. Then the distri-
butional derivative DT of T is the distribution on Γ obtained by formal
integration by parts:

< DT, φ >
def
= − < T, φ′ >, ∀φ ∈ D(Γ).

This formula indeed defines S = DT as a continuous linear functional
on D(Γ), hence as a distribution; cf. the lines following (4.3.6).

Whereas the derivative F ′ of a C1 function F is defined at every point,
the derivative DT of a distribution T need not have a value at any point;
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it does not represent pointwise rate of change. Nevertheless distributional
differentiation has a local character in the following sense:

if T1 = T2 on (a, b) ∈ Γ, then DT1 = DT2 on (a, b);

if T = F on (a, b), where F is a C1 function on Γ(4.5.1)

or just on (a, b), then DT = F ′ on (a, b); in particular:

if T = C (a constant) on (a, b), then DT = 0 on (a, b).

Indeed, if < T1 − T2, φ >= 0 for all test functions φ with support in (a, b),
then < D(T1 − T2), φ >= − < T1 − T2, φ

′ >= 0 for all such functions φ,
since φ′ also is a test function with support in (a, b).

The final part of (4.5.1) has a converse which is fundamental for the
distributional theory of differential equations:

if DT = 0 on Γ [or on (a, b) ∈ Γ], then T = C,

a constant function, on Γ [or on (a, b), respectively].(4.5.2)

The first part is a nice application of Fourier series. Indeed,

2πcn[DT ] =< DT, e−inx >= − < T, (e−inx)′ >

= in < T, e−inx >= 2πincn[T ],(4.5.3)

hence if DT = 0 on Γ, then incn[T ] = cn[DT ] = 0 for all n, so that cn[T ] = 0
for all n 6= 0. Thus

T =

∞∑

n=−∞
cn[T ]einx = c0[T ] on Γ.

For the “local part” of (4.5.2), see Exercises 4.5.6, 4.5.7.
All distributions T on Γ will have derivatives of every order. In par-

ticular, integrable functions f acquire (distributional) derivatives of every
order. Of course the derivative Df is not a function unless f is equal to an
indefinite integral.

Property 4.5.2. (Product Rule) For T ∈ D′(Γ) and g ∈ D(Γ),

(4.5.4) D(Tg) = DT · g + Tg′ on Γ.

Indeed, for any test function φ, by Definition 4.2.7,

< D(Tg), φ >= − < Tg, φ′ >= − < T, gφ′ >

= − < T, (gφ)′ − g′φ >=< DT, gφ > + < T, g′φ >

=< DT · g, φ > + < Tg′, φ > .
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0

1

π− π

U

Figure 4.4

Examples 4.5.3. Let U be the unit step function, here restricted to the
interval (−π, π):

U(x) = 1+(x)
def
=

{
0 on (−π, 0),
1 on (0, π);

we usually set U(0) = 0, but the value at 0 is irrelevant for our integrals.
The 2π-periodic function Uper defined by U (cf. Figure 4.4) also has jumps
at ±π, etc, but we only wish to study DUper = DU on (−π, π). Hence let
φ be any test function with support on [a, b] ⊂ (−π, π) where a < 0 < b.
Then

< DUper, φ > = − < Uper, φ′ >= −
∫ b

a

Uperφ′ = −
∫ b

0

φ′

= −φ(b) + φ(0) = φ(0) =< δΓ, φ > .

Thus

(4.5.5) DU = DUper = δΓ on (−π, π).

Observe that the distributional derivative is equal to the ordinary derivative
- zero - on (−π, 0) and on (0, π), as it should be; cf. (4.5.1). The delta
distribution in the answer reflects the jump 1 of U at the origin.

Since xU(x) is an indefinite integral of U on (−π, π), one hasD(xU) = U
there. Application of (4.5.4) thus shows that xδΓ = xDU = 0 on (−π, π);
cf. Exercise 4.2.7.

By Example 4.2.6 one has < pvΓ (1/x), φ >= − < log(|x|/π), φ′ > for
all test functions φ, hence

pvΓ

1

x
= D log

|x|
π

= D log |x| on (−π, π).

Theorem 4.5.4. (Continuity of distributional differentiation) Suppose
that Tk → T on Γ [or on (a, b) ⊂ Γ]. Then DTk → DT on Γ [or on
(a, b) ⊂ Γ, respectively].
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0 π− π 2 π

Figure 4.5

Indeed, the derivative of a test function [with support in (a, b)] is also a
test function [with support in (a, b)], hence

< DTk, φ >= − < Tk, φ
′ >→ − < T, φ >=< DT, φ > .

Corollary 4.5.5. (Termwise differentiation) Every distributionally con-
vergent series on Γ [or on (a, b) ⊂ Γ] may be differentiated term by term:

if T =

∞∑

n=0

Un, then DT =

∞∑

n=0

DUn.

In particular Fourier series of distributions may be differentiated term
by term:

if T =
∞∑

n=−∞
cne

inx

(
= lim

k→∞

k∑

n=−k

)
,

then DT =

∞∑

n=−∞
incne

inx.

[We knew already that cn[DT ] = incn[T ]; see (4.5.3).]

Corollary 4.5.6. Let
∑∞

n=0 gn be a uniformly or L1 convergent series
of integrable functions on Γ with sum f . Then

∞∑

n=0

Dpgn = Dpf on Γ, ∀ p ∈ N.

Example 4.5.7. Let f be the 2π-periodic function given by

f(x) =
π − x

2
on (0, 2π), or f(x) = −x

2
+
π

2
sgn x on (−π, π);

cf. Figure 4.5. The Fourier series of this integrable function is
∑∞

n=1
1
n

sin nx.
It converges to f in L1, hence distributionally; cf. Exercises 1.2.1, 1.2.2 or
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Section 2.6. Thus it may be differentiated term by term to give
∞∑

n=1

cosnx = Df(x).

On (0, 2π) the function f is of class C1, hence Df = f ′ = −1
2
. At 0 our

f has a jump equal to π; on (−π, π), the difference f − πU is equal to the
C1 function −1

2
x − 1

2
π when properly defined at 0. Thus D(f − πU) =

Df − πδΓ = −1
2

on (−π, π). Conclusion:
∞∑

n=1

cosnx = Df(x) = −1

2
+ πδΓ on Γ,

in accordance with the known Fourier series for δΓ in Example 4.4.2.
We could also have started with the Fourier series for δΓ. From it,

we could have computed the sum of the series
∑∞

n=1
1
n

sin nx; cf. Exercise
4.5.12.

Exercises. 4.5.1. Let f be an integrable function on Γ. Show that the
distributional derivative Dpf may be represented by the formula

< Dpf, φ >= (−1)p

∫

Γ

fφ(p), ∀φ ∈ D(Γ).

Verify that this formula gives Dpf as a continuous linear functional on D(Γ).
4.5.2. Let T be a distribution on Γ such that T = F on (a, b) ⊂ Γ, where

F is a Cp function on (a, b). Starting with p = 1, prove that DpT = F (p) on
(a, b).

4.5.3. Compute Dp(xqU) on (−π, π), (i) if p ≤ q, (ii) if p > q.
4.5.4. Compute

∑∞
n=−∞ npeinx on Γ for all p ∈ N.

4.5.5. Show that a distribution T on Γ has a distributional antiderivative
on Γ if and only if c0[T ] = 0.

4.5.6. Let φ be any test function on Γ with support in (a, b) ⊂ Γ, and
let ω be a fixed test function with support in (a, b) and

∫
Γ
ω = 1. Prove

that φ − cω will be the derivative ψ′ of a test function ψ [with support in
(a, b)] if and only if c =

∫
Γ
φ =< 1, φ >.

4.5.7. (Continuation) Let T be a distribution on Γ such that DT = 0
on (a, b) ⊂ Γ. Prove that T = C on (a, b).

Hint. Take φ and ω as above and form < T, φ− cω >.
4.5.8. Discuss the distributional differential equation (D − a)u = 0, (i)

on Γ; (ii) on (−π, π).
Hint. (D − a)u = eaxD(e−axu) on (−π, π).
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L

R

I(t)V(t)

Figure 4.6

4.5.9. Let f be an integrable function on (−π, π). Show that all dis-
tributional solutions u [in D′(Γ)] of the following differential equations are
equal to ordinary functions on (−π, π):

(i) (D − a)u = f on (−π, π); (ii) (D − a)u = Df on (−π, π).

4.5.10. Consider an electric circuit containing a resistance R and an
inductance L in series with a generator that supplies a voltage V (t) (Figure
4.6). Here the current I(t) will satisfy the differential equation

L
dI

dt
+RI = V (t).

Determine the current over a time interval −b < t < b when V (t) is a unit
voltage impulse at t = 0, while I(t) = 0 for t < 0.

Hint. Taking b = π, a unit voltage impulse at t = 0 may be represented
by V (t) = δΓ(t).

4.5.11. Let f be 2π-periodic, continuous on [−π, π] except for a jump
at the point c ∈ (−π, π) and such that the restriction of f to [−π, c) could
be extended to a C1 function on the closure of this interval, and similarly
for the restriction of f to (c, π]. Prove that

Df(x) = f ′(x) + {f(c+) − f(c−)}δΓ(x− c) on Γ.

[Conclusion: the distributional derivative contains more information than
the ordinary derivative!]

4.5.12. In Exercise 4.4.5 it was found that
∑∞

n=1 sin nx = pv 1
2
(cot 1

2
x)

on Γ. Prove that for all φ ∈ D(Γ),
〈

pv
1

2
cot

1

2
x, φ(x)

〉
def
= p.v.

∫ π

−π

1

2

(
cot

1

2
x

)
φ(x)dx

= −
∫ π

−π

log | sin(x/2)| · φ′(x)dx.



4.6. STRUCTURE OF PERIODIC DISTRIBUTIONS 91

Put into words what this means. Finally compute
∑∞

n=1
1
n

cosnx on Γ.
4.5.13. Let Uper be the 2π-periodic extension of the unit step function

U on (−π, π). Compute the real Fourier series for Uper and express DUper

on Γ [not just on (−π, π)] in terms of delta distributions.
4.5.14. Let f be an integrable function on (−π, π). Prove that the series,

obtained by differentiation of the Fourier series for f , is the Fourier series
for Dfper, where fper is the 2π-periodic extension of f .

4.6. Structure of periodic distributions

We begin with a characterization of the class of distributionally conver-
gent trigonometric series.

Proposition 4.6.1. A trigonometric series

(4.6.1)

∞∑

n=−∞
dne

inx

converges in D′(Γ), that is, limk→∞
∑k

−k dne
inx exists as a distribution, if

and only if there are constants B and β such that

(4.6.2) |dn| ≤ B|n|β, ∀n 6= 0.

Proof. (i) Suppose that the numbers dn satisfy the inequalities (4.6.2)
and let s be the smallest nonnegative integer greater than β + 1. Then the
inequalities ∣∣∣∣

dn

(in)s

∣∣∣∣ ≤
B

|n|s−β
(where s− β > 1)

show that the series ∑

n 6=0

dn

(in)s
einx

is [absolutely and] uniformly convergent on Γ. The sum function f = f(x)
of that series is continuous, and by differentiation [as in Corollary 4.5.6] we
find that the series (4.6.1) converges to the distribution

(4.6.3) T = d0 +Dsf on Γ.

(ii) Suppose now that the series (4.6.1) converges to a distribution T on
Γ, that is, for k → ∞,

〈
k∑

n=−k

dne
inx, φ

〉
→< T, φ >, ∀φ ∈ D(Γ).
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Thus the series

(4.6.4)
∞∑

n=−∞
dnc−n[φ]

must converge for every test function φ; cf. Proposition 4.4.3. We will use
this fact to obtain an indirect proof for the validity of inequalities of the
form (4.6.2).

Suppose to the contrary that the sequence

(4.6.5) {n−jdn}, n = ±1,±2, · · ·
is unbounded for every positive integer j. Then, starting with j = 1,
there must be an integer n1 of (smallest) absolute value |n1| ≥ 1 such
that |n−1

1 dn1
| > 1. Taking j = 2, there must be an integer n2 of (smallest)

absolute value |n2| > |n1| such that |n−2
2 dn2

| > 1. In general, there exists an

integer nj of (smallest) absolute value |nj | > |nj−1| such that |n−j
j dnj

| > 1.
Clearly |nj | ≥ j for all j ∈ N. Now define

φ(x) =
∞∑

j=1

n−j
j e−injx.

Since |n−j
j | ≤ j−j ≤ j−2 for every j ≥ 2, the series for φ is (absolutely and)

uniformly convergent, hence φ is well-defined and continuous. The function
φ will actually be of class C∞

2π. Indeed, for every positive integer p, the p
times differentiated series

∞∑

j=1

(−i)pnp−j
j e−injx

is also (absolutely and) uniformly convergent, since |np−j
j | ≤ jp−j ≤ j−2 as

soon as j ≥ p + 2.
However, for our special test function φ, the series in (4.6.4) will be

divergent. Indeed, c−n[φ] = n−j
j for n = nj and c−n[φ] = 0 when n does not

have the form nk for some k. Hence

|nk|∑

n=−|nk|
dnc−n[φ] =

k∑

j=1

dnj
n−j

j ,

and the latter sums are the partial sums of an infinite series, all of whose
terms have absolute value greater than one.



4.6. STRUCTURE OF PERIODIC DISTRIBUTIONS 93

This contradiction proves that there must be a positive integer j for
which the sequence (4.6.5) is bounded. �

Theorem 4.6.2. (Structure of the distributions on Γ) Let T be an ar-
bitrary distribution on Γ. Then there exist a continuous function f on Γ,
a nonnegative integer s and a constant d0 (= c0[T ]) such that T has the
representation T = d0 +Dsf given in (4.6.3).

Proof. The Fourier series for T converges to T in D′(Γ); see Theorem
4.4.4. Hence by Proposition 4.6.1, there are constants B and β such that
the Fourier coefficients cn[T ] = dn satisfy the inequalities (4.6.2). The first
part of the proof of Proposition 4.6.1 now shows that T has a representation
(4.6.3). �

Order of a distribution. The smallest nonnegative integer s for which
T has a representation (4.6.3) with a continuous or integrable function f
on Γ may be called the order of T relative to the continuous or integrable
functions on Γ.

∗However, Laurent Schwartz used a somewhat different definition; cf.
[110]. Observe that the representation (4.6.3) implies that | < T, φ > | can
be bounded in terms of sup |φ| and sup |φ(s)|. The Schwartz order of T is
the smallest nonnegative integer m such that | < T, φ > | can be bounded
in terms of sup |φ| and sup |φ(m)|. Thus δΓ is a distribution of order zero.

∗By Theorem 3.3.2, every continuous function on Γ is a uniform limit of
trigonometric polynomials. Anticipating the terminology of normed spaces
[see Chapter 5], we may conclude that every function φ ∈ C(Γ) is a limit
of test functions under the distance derived from the norm ‖φ‖ = sup |φ|.
It follows that a distribution T of order zero can be extended by continuity
to a continuous linear functional on C(Γ). Hence by Riesz’s representation
theorem, every distribution of order zero can be identified with a measure;
cf. Examples 4.2.5.

The following refinement of Proposition 4.6.1 provides a characterization
of distributional convergence Tk → T .
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Theorem 4.6.3. The following three statements about distributions Tk,
k = 1, 2, · · · and T on Γ are equivalent:

(i) Tk → T in D′(Γ), that is, < Tk, φ >→< T, φ >, ∀φ ∈ D(Γ);

(ii) cn[Tk] → cn[T ] as k → ∞, ∀n ∈ Z,

and there are constants B and β such that

|cn[Tk]| ≤ B|n|β, ∀n 6= 0, ∀ k ∈ N;

(iii) There are continuous functions fk and f on Γ,

a nonnegative integer s and constants dk0 and d0 such that

Tk = dk0 +Dsfk, T = d0 +Dsf,

while fk → f uniformly on Γ and dk0 → d0.

Instead of sequences {Tk} one may consider more general directed fam-
ilies {Tλ}. Convergence Tk → T according to (i) is sometimes called weak
convergence, while convergence according to (ii) or (iii) may be called strong
convergence. For distributions, weak and strong convergence are equivalent.

The difficult part in the proof of Theorem 4.6.3 is the implication (i) ⇒
(ii). It may be derived from

Proposition 4.6.4. Let a
(λ)
n , n = 1, 2, · · · , λ ∈ Λ be a family of se-

quences with the following property. For every sequence b = {bn} such that
bn = O(n−p) for every p, the associated sums

σ(λ) = σ(λ, b) =

∞∑

n=1

a(λ)
n bn

are well-defined and form a bounded set E = E(b) as λ runs over Λ. Then
there are constants A and α such that

(4.6.6) Mn
def
= sup

λ∈Λ
|a(λ)

n | ≤ Anα, ∀n ∈ N.

A proof will be sketched in Exercise 4.6.13. The proposition also implies
the completeness of the space D′(Γ), cf. Exercise 4.6.11:

Theorem 4.6.5. Let {Tk} be a Cauchy sequence in D′(Γ), that is to say,
< Tj − Tk, φ >→ 0 as j, k → ∞ for every test function φ on Γ. Then the
sequence {Tk} converges to a distribution T on Γ.

Remark 4.6.6. In Section 5.2 we will discuss a general construction of
completion of metric spaces. A similar construction can be used to com-
plete the space L(Γ) of the integrable functions on Γ under the concept of
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convergence relative to test functions. This provides another way to arrive
at the distribution space D′(Γ); cf. [68].

Exercises. 4.6.1. Prove that a series 1
2
a0 +

∑∞
n=1 (an cos nx + bn sin nx)

is the (real) Fourier series of a distribution T on Γ if and only if there are
constants B and β such that |an| + |bn| ≤ Bnβ for all n ∈ N.

4.6.2. Prove that the series 2π
∑∞

n=−∞ cn[T ]c−n[φ] for < T, φ > in
Proposition 4.4.3 is absolutely convergent.

4.6.3. (Antiderivative) Prove that a distribution T on Γ has an anti-
derivative in D′(Γ) if and only if c0[T ] = 0. What can you say about the
order of the antiderivative(s)?

4.6.4. Suppose T = d0 +Dsf on Γ with f integrable. Prove that there
are constants B0 and Bs (depending on T ) such that

| < T, φ > | ≤ B0 sup |φ| +Bs sup |φ(s)|, ∀φ ∈ D(Γ).

4.6.5. Represent δΓ in the form (4.6.3), (i) with s = 1 and f inte-
grable; (ii) with s = 2 and f continuous. Show that δΓ is a distribution of
(Schwartz) order zero and that DmδΓ has order m.

4.6.6. (Characterization of distributions with point support) Let T be
a distribution on Γ whose support is the point 0. Prove that on (−π, π),
T = DsF for some continuous function F and s ≥ 1. Using the fact that
DsF must vanish on (−π, 0) and on (0, π), what can you say about F on
those intervals?

Derive that on (−π, π), one can write T = Ds(PU), where P is a poly-
nomial of degree < s and U is the unit step function. Finally show that on
(−π, π) [and in fact, on Γ], T can be represented in the form

a0δΓ + a1DδΓ + · · ·+ amD
mδΓ, with am 6= 0,

where m is the Schwartz order of T .
4.6.7. A distribution T is called positive if T (ψ) ≥ 0 for all test functions

ψ ≥ 0. Prove that a positive distribution on Γ has Schwartz order zero.
[Hence it can be identified with a measure.]

Hint: if φ is an arbitrary real test function and sup |φ| = γ, then the
functions γ · 1 ± φ are nonnegative test functions.

4.6.8. Show that distributions of Schwartz order m can be extended to
continuous linear functionals on the space Dm(Γ), obtained from Cm(Γ) by
imposing the norm ‖φ‖ = sup |φ| + sup |φ(m)|.

[Convergence φj → φ in Dm(Γ) is equivalent to uniform convergence

φj → φ, φ′
j → φ′, · · · , φ(m)

j → φ(m).]
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4.6.9. Let T be a distribution on Γ. Prove the existence of, and compute,
limh→0 {T (x+ h) − T (x)}/h with the aid of Fourier series.

4.6.10. Prove that statement (ii) in Theorem 4.6.3 implies statement
(iii), and that (iii) implies (i).

4.6.11. Use Proposition 4.6.4 to prove the implication (i)⇒(ii) in Theo-
rem 4.6.3 and also to prove Theorem 4.6.5.

Hint. If cn[φ] = 0 for all n ≥ 0 one has

σ(k) = σ(k, φ) =< Tk, φ >= 2π
∞∑

n=1

cn[Tk]c−n[φ].

4.6.12. Suppose that the sequence {an}, n = 1, 2, · · · has the following
property: the series

∑∞
n=1 anbn converges for every sequence {bn} such that

bn = O(n−p) for every p. Show that there must be constants β and n0 such
that |an| ≤ nβ for all n ≥ n0.

∗4.6.13. Fill in the details in the following sketch of a proof for Proposi-
tion 4.6.4. For every λ ∈ Λ there will be constants β(λ) and ν(λ) such that

|a(λ)
n | ≤ nβ(λ) for all n ≥ ν(λ). Supposing now that (4.6.6) fails for all pairs

(A, α), there exist, for each pair (Aj , αj), an arbitrarily large integer nj and
a parameter value λj such that

(4.6.7)
∣∣∣a(λj)

nj

∣∣∣ > Ajn
αj

j .

Setting bnj
= n

−αj

j and bn = 0 for n different from all nk, one may inductively
determine Aj, αj ր ∞, nj ր ∞ and λj ∈ Λ as follows. Start with
A1 = α1 = 1 and select n1 and λ1 in accordance with (4.6.7). For j ≥ 2,
choose Aj such that the final inequality in (4.6.8) below is satisfied, and take
αj = max{αj−1+1, β(λj−1)+2}. Finally choose nj ≥ max{nj−1+1, ν(λj−1)}
and λj such that (4.6.7) holds. As a result one has

|σ(λj, b)| =

∣∣∣∣∣

∞∑

n=1

a(λj )
n bn

∣∣∣∣∣

≥
∣∣∣a(λj)

nj
bnj

∣∣∣−
∑

k<j

∣∣∣a(λj )
nk

bnk

∣∣∣−
∑

k>j

∣∣∣a(λj)
nk

bnk

∣∣∣

> Aj −
∑

k<j

Mnk
n−αk

k −
∑

k>j

nβ(λj)−αk(4.6.8)

> Aj −
∑

k<j

Mnk
n−αk

k −
∑

k>j

k−2 > j, ∀ j ≥ 2,
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which contradicts the boundedness of the family {σ(λ, b)} for our b.

4.7. Product and convolution of distributions

The unlimited differentiability of distributions has a price: within the
class D(Γ), multiplication is not generally possible. This is not too sur-
prising since distributions are generalizations of integrable functions. The
product of two integrable functions need not be integrable, and there is no
general method to associate a distribution with a nonintegrable function.
Where multiplication of distributions is defined, it need not be associative;
cf. Exercise 4.2.9.

The product of a given distribution T and a test function g is always
defined; see Definition 4.2.7. What other products Tg can be formed de-
pends on the order of T : the higher its order, the smoother g must be. This
becomes plausible through formal multiplication of the Fourier series:

Tg(x) =
∑

k

ck[T ]eikx
∑

l

cl[g]e
ilx =

∑

n

{
∑

k+l=n

ck[T ]cl[g]

}

einx,

hence one would like to be able to define

(4.7.1) cn[Tg] =
∞∑

k=−∞
ck[T ]cn−k[g].

Example 4.7.1. Using Example 4.4.2 for ck[δΓ], formula (4.7.1) gives

cn[δΓg] =
∑

k

ck[δΓ]cn−k[g] =
1

2π

∑

k

cn−k[g] =
1

2π
g(0) = g(0)cn[δΓ].

This implies that

δΓg = g(0)δΓ,

at least for all C1 functions g.

Actually, a distribution of (Schwartz) order m can be multiplied by any
Cm function g; cf. Exercise 4.7.2.

The sequence {cn[Tg]} given by (4.7.1) is called the convolution of the
sequences {cn[T ]} and {cn[g]}; convolution of sequences is not always pos-
sible. However, the dual operation, where one multiplies corresponding
Fourier coefficients, always leads to another disttribution.
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Definition 4.7.2. The convolution S ∗T of distributions S and T on Γ
is the distribution given by

(4.7.2) S ∗ T = T ∗ S = 2π
∞∑

n=−∞
cn[S]cn[T ]einx.

The convolution S ∗ T is well-defined: if cn[S] = O(|n|α) and cn[T ] =
O(|n|β) as |n| → ∞, then cn[S ∗T ] = O(|n|α+β), hence the series for S ∗T is
distributionally convergent; see Proposition 4.6.1. The factor 2π in (4.7.2)
is necessary to obtain the standard convolution in the case of functions; cf.
(4.7.3) below.

Properties 4.7.3. The distribution δΓ is the unit element relative to
convolution in D′(Γ):

δΓ ∗ T = 2π
∑

cn[δΓ]cn[T ]einx =
∑

cn[T ]einx = T.

For the derivative of a convolution one has

D(S ∗ T ) = 2π
∑

incn[S]cn[T ]einx = DS ∗ T = S ∗DT.

Lemma 4.7.4. If g is a test function, T ∗ g is also a test function, and

(T ∗ g)(x) =< T (y), g(x− y) > .

Indeed, by (4.7.2), for n 6= 0,

cn[T ∗ g] = O(|n|β|n|−p) (for some β and all p ∈ N)

= O(|n|−q) for all q ∈ N.

Hence T ∗ g is equal to a C∞ function; cf. Exercise 4.2.1. Furthermore, by
the continuity of T ,

(T ∗ g)(x) =
∑

< T (y), e−iny > cn[g]einx

=
〈
T (y),

∑
cn[g]ein(x−y)

〉
=< T (y), g(x− y) > .

When T is equal to an integrable function f we find

(f ∗ g)(x) =< f(y), g(x− y) >=

∫

Γ

f(y)g(x− y)dy

=

∫

Γ

f(x− y)g(y)dy.(4.7.3)

This formula will make sense for any two integrable functions f and g.
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Proposition 4.7.5. For integrable functions f and g on Γ, the convo-
lution integral (4.7.3) exists for almost all x ∈ Γ. It defines an integrable
function h on Γ, and

∫

Γ

h =

∫

Γ

f

∫

Γ

g,

∫

Γ

h(x)e−inxdx =

∫

Γ

f(y)e−inydy

∫

Γ

g(z)e−inzdz,

in accordance with (4.7.2).

∗Proof. By Fubini’s theorem [of Integration Theory] for positive func-
tions, one has the following equalities for repeated integrals involving abso-
lute values:∫

Γ

dy

∫

Γ

∣∣f(y)g(x− y)
∣∣dx =

∫

Γ

∣∣f(y)
∣∣dy
∫

Γ

∣∣g(x− y)
∣∣dx

=

∫

Γ

∣∣f(y)
∣∣dy
∫

Γ

∣∣g(z)
∣∣dz.

The finiteness of the product on the right implies that the double integral of
f(y)g(x− y) over Γ× Γ exists. Still by Fubini, it follows that the repeated
integral ∫

Γ

dx

∫

Γ

f(y)g(x− y)dy

exists, in the sense that the inner integral exists for almost all x, and that
it thereby defines an integrable function h(x). Furthermore, the order of
integration in the final integral may be inverted:

∫

Γ

h(x)dx =

∫

Γ

dx

∫

Γ

f(y)g(x− y)dy =

∫

Γ

f(y)dy

∫

Γ

g(x− y)dx

=

∫

Γ

f(y)dy

∫

Γ

g(z)dz.

The second formula in the Proposition may be proved in the same way. �

We return now to the general case S ∗T of Definition 4.7.2 and compute
the action of S ∗ T on a test function φ, using Proposition 4.4.3:

< S ∗ T, φ > = (2π)2
∑

cn[S]cn[T ]c−n[φ] = (2π)2
∑

cn[S]c−n[TR]c−n[φ]

= 2π
∑

cn[S]c−n[TR ∗ φ] =< S, TR ∗ φ > .

Indeed, by Lemma 4.7.4, TR ∗ φ is a test function.

Exercises. 4.7.1. Solve the distributional equation (eix − 1)T = 0 on Γ.
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4.7.2. Let T be a distribution on Γ of order m, considered as a contin-
uous linear functional on the space Dm(Γ) [that is, Cm(Γ) supplied with an
appropriate concept of convergence; cf. Exercise 4.6.8.] Show that the rule

< Tg, φ >=< T, gφ >, ∀φ ∈ Cm(Γ)

defines Tg as another distribution of order m.
4.7.3. Compute δΓg for all continuous functions g, and DδΓ · g for all C1

functions g.
4.7.4. Show that for integrable functions f and C1 functions g on Γ,

Df · g = D(fg) − fg′.

4.7.5. Write S ∗ T in the standard form d0 + Dsf with integrable f if
S = a0 +Dpg and T = b0 +Dqh, where g and h are integrable functions on
Γ with average zero.

4.7.6. Prove that distributional convergence Sk → S and Tk → T implies
that Sk ∗ Tk → S ∗ T .

4.7.7. Show that for delta families {fλ}, λ → λ0 on Γ [cf. Examples
4.3.2], one has

fλ ∗ T → δΓ ∗ T = T, ∀T ∈ D′(Γ).

4.7.8. Prove the partial sum formula sk[T ] = Dk ∗ T , where Dk is the
Dirichlet kernel. Use it to show [once again] that sk[T ] → T , ∀T ∈ D′(Γ).

4.7.9. Let f be a distribution on Γ and cn = cn[f ]. Describe the distri-
butions which have the following Fourier coefficients:

(i) ncn; (ii) cn/n, (n 6= 0); (iii) c−n; (iv) cn; (v) c2n; (vi) |cn|2.
4.7.10. Let f be continuous or piecewise continuous on [−π, π], cn =

cn[f ]. Prove that the series
∑ |cn|2einx is Cesàro summable and derive that∑

|cn|2 converges. Express the sum in terms of an integral. [In this exercise,
square integrability of f would suffice.]



CHAPTER 5

Metric, normed and inner product spaces

In approximation problems, the degree of approximation is usually mea-
sured with the aid of a metric or distance concept. Many kinds of conver-
gence of functions, such as uniform convergence and convergence in the
mean, correspond to metrics on linear spaces of functions. In an arbitrary
metric space the geometry may be so strange that it is of little help in solv-
ing problems. The situation is better in normed linear spaces, where every
element or vector has a norm or length, and where the distance d(u, v) is
the length of u − v. The geometry is particularly nice – essentially Eu-
clidean – in scalar product spaces, where for the vectors there are not only
lengths, but also angles. Particularly useful for applications is the concept
of orthogonality.

5.1. Metrics

Let X be an arbitrary set of elements which we call points.

Definition 5.1.1. A function d(u, v) defined for all points u, v in X is
called a distance function or metric if

u

v

w

Figure 5.1
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u′

v′
u

v

Figure 5.2

(i) 0 ≤ d(u, v) <∞, ∀u, v ∈ X;

(ii) d(u, v) = 0 if and only of u = v;

(iii) d(v, u) = d(u, v), ∀u, v ∈ X;

(iv) d(u, w) ≤ d(u, v) + d(v, w), ∀u, v, w ∈ X

(triangle inequality; cf. Figure 5.1).

A set X with a distance function d is called a metric space, sometimes
denoted by (X, d). In X = (X, d) one defines convergence as follows:

uk → u or limuk = u ⇐⇒ d(u, uk) → 0 as k → ∞.

If a sequence {uk} converges to u, every subsequence also converges to
u. A sequence in a metric space has at most one limit. It follows from the
triangle inequality that

|d(u, v)− d(u′, v′)| ≤ d(u, u′) + d(v, v′);

cf. Figure 5.2. Thus the distance function d(u, v) is continuous on X ×X.
A subspace Y of a metric space X is simply a subset, equipped with the

metric provided by X.

Examples 5.1.2. Let Rn as usual be the real linear space of the vectors
x = (x1, · · · , xn): ordered n-tuples of real numbers. Addition and multipli-
cation by scalars λ (here real numbers) are carried out componentwise.

The metric space En, Euclidean (coordinate) space, is obtained from Rn

by imposing the Euclidean distance d2:

d2(x, y) =
{
(x1 − y1)

2 + · · · + (xn − yn)
2
} 1

2 .



5.1. METRICS 103

[Here one takes the nonnegative square root.] Thus one may write En =
(Rn, d2). Many other distance functions are possible on Rn, for example,

d1(x, y) = |x1 − y1| + · · · + |xn − yn|,
d∞(x, y) = max{|x1 − y1|, · · · , |xn − yn|},
d̃(x, y) = min{d2(x, y), 1}.

Analogous definitions may be used on Cn, the complex linear space of the
ordered n-tuples z = (z1, · · · , zn) of complex numbers, with the complex
numbers as scalars. The distance function d2:

d2(z, w) =
{
|z1 − w1|2 + · · ·+ |zn − wn|2

} 1

2

now leads to unitary space Un = (Cn, d2).

There are corresponding distance functions on linear spaces whose ele-
ments are infinite sequences of real or complex numbers; cf. Examples 5.3.5.
We first discuss the corresponding metrics on linear spaces of functions.

Examples 5.1.3. Let [a, b] be a finite closed interval, C[a, b] the (com-
plex) linear space of the continuous functions on [a, b]. Here the sum f + g
and the scalar multiple λf are defined in the usual way. If we only consider
real-valued functions and real scalars, we will write Cre[a, b].

Uniform convergence fk → f on [a, b] can be derived from the metric

d∞(f, g) = sup
a≤x≤b

|f(x) − g(x)|.

The metric space (C[a, b], d∞) will be denoted by C[a, b]. Other standard
distance functions on C[a, b] are

d1(f, g) =

∫ b

a

|f(x) − g(x)|dx,

d2(f, g) =

(∫ b

a

|f(x) − g(x)|2dx
) 1

2

.

In Section 5.6, the triangle inequality for d2 will be derived from the general
‘Cauchy–Schwarz inequality’.

Analogous definitions may be used on C(K), the (complex) linear space
of the continuous functions on an arbitrary bounded closed set K in En.

Example 5.1.4. In formulating concepts and theorems, it is useful to
keep in mind the somewhat pathological discrete metric. For any set X it
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is defined as follows:

d(u, v) = 1, ∀u, v ∈ X with u 6= v; d(u.u) = 0, ∀u ∈ X.

5.2. Metric spaces: general results

In a metric space X one introduces the (open) ball B(a, r) as the subset
{u ∈ X : d(a, u) < r}. For a subset E ⊂ X one may next define interior
points x0 (E contains a ball B(x0, ρ) of X) and the interior E0. A point
c ∈ X is called a limit point of (or for) E if every ball B(c, r) in X contains
infinitely many points of E. The closure E = closE consists of E together
with its limit points. A point b ∈ X is called a boundary point of (or for)
E if every ball B(b, r) in X contains a point of E and a point not in E.
The boundary ∂E is given by E \ E0. The boundary of B(a, r) will be the
sphere S(a, r). A set E ⊂ X may be open (E = E0), closed (E = E), or
neither.

E ⊂ X is called dense in X if E = X; in this case, every point of X is
the limit of a sequence of elements of E.

The subspace E2
rat of E2, consisting of the points with rational coordi-

nates, is dense in E2. The set of all trigonometric polynomials is dense in
C(Γ). The set of all polynomials in x, restricted to the finite closed interval
[a, b], is dense in the space C[a, b]; cf. Section 3.4.

A metric space with a countable dense subset is called separable.
E ⊂ X is called bounded if E is contained in a ball B(a, r) ⊂ X.
In E

n, every bounded infinite set has a limit point, every bounded infinite
sequence, a convergent subsequence. However, most metric spaces do not
have these properties. Just think of R2 with the discrete metric, of E2

rat,

or of (R2, d̃) as in Examples 5.1.2. Other examples are C[0, 1], cf. Exercise
5.2.6, and the sequence {eint} in (C(Γ), d2).

E ⊂ X is called compact if every infinite sequence in E has a convergent
subsequence with limit in E, or equivalently, if every covering of E by open
subsets contains a finite subcovering. Compact sets are bounded and closed;
in En, the converse in also true.

Let T be a map from a metric space X to a metric space Y . One says
that T is continuous at u ∈ X if for every sequence {uk} in X with limit u,
one has Tuk → Tu in Y . The map T is called continuous on E ⊂ X if it is
continuous at every point ofE. In the special case where d(Tu, Tv) = d(u, v)
for all u, v ∈ X, the map is called an isometry. The spaces X and Y = TX
are then called isometric. The complex plane (relative to ordinary distance)
is isometric with E2.
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u

E

v

v0

Figure 5.3

Theorem 5.2.1. Let X and Y be metric spaces, E ⊂ X compact, T :
E 7→ Y continuous. Then the image TE ⊂ Y is also compact. In particular,
a continuous real valued function on a (nonempty) compact set E ⊂ X is
bounded, and assumes a maximum and a minimum value on E.

Proof. For compact E and continuous T , any sequence {Tuk} with
{uk} ⊂ E will have a convergent subsequence with limit in TE. Indeed, let
{unk

} be any subsequence of {uk} with a limit u ∈ E. Then Tunk
→ Tu.

As to the second part, any (nonempty) bounded closed subset of E1, the real
numbers under ordinary distance, has a largest and a smallest element. �

Application 5.2.2. For u in X and a nonempty compact subset E of
X, the distance

(5.2.1) d(u,E)
def
= inf

v∈E
d(u, v)

is attained for some element v0 in E: d(u,E) = d(u, v0).

Cf. Figure 5.3. One may say that there is an element v0 in E that
provides an optimal approximation to u.

Completeness. We will now discuss the important concept of com-
pleteness. Let X = (X, d) be a metric space. A sequence {xk} in X is
called a Cauchy sequence or fundamental sequence if

(5.2.2) d(xj, xk) → 0 as j, k → ∞.

Every convergent sequence is a Cauchy sequence, but in many metric spaces
X there are Cauchy sequences which do not converge to a point of X. Such
spaces are called incomplete.

Definition 5.2.3. A metric space X is called complete if all Cauchy
sequences in X converge to a point of X.
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Every Cauchy sequence is bounded: if d(xj , xk) < ε for all j, k ≥ p, then
xk ∈ B(xp, ε) for all k ≥ p. Similarly, a Cauchy sequence for which there is
a limit point c ∈ X must converge to c. Thus a metric space in which every
bounded sequence has a limit point is complete.

Examples 5.2.4. The Euclidean plane E2 and the complex plane (C, d2)
are complete. The subspace E2

rat of E2 is incomplete: the Cauchy sequence

x1 = (1, 1.4), x2 = (1, 1.41), · · · , xk = (1, rk), · · · ,
where rk is the largest decimal number 1.d1 · · · dk with r2

k < 2, does not
converge to a rational point. The metric spaces (Rn, d2) = En, (Rn, d1) and
(Rn, d∞) [Examples 5.1.2] are complete. Indeed, every Cauchy sequence
in these spaces is componentwise convergent, and hence convergent, to an
element of the space.

The space C[a, b] is complete. Indeed, let {fk} be an arbitrary Cauchy
sequence in C[a, b]. Then for every point x0 ∈ [a, b], the sequence of complex
numbers {fk(x0)} is a Cauchy sequence, and hence convergent. Let f be
the pointwise limit function of the sequence {fk}, that is, f(x) = lim fk(x)
for every x ∈ [a, b]. For given ε > 0, we now take p so large that

d∞(fj , fk) = max
a≤x≤b

|fj(x) − fk(x)| < ε, ∀ j, k ≥ p.

Letting j → ∞, this inequality implies that for all x ∈ [a, b],

|f(x) − fk(x)| ≤ ε, ∀ k ≥ p.

Since ε > 0 was arbitrary, the conclusion is that d∞(f, fk) → 0 as k → ∞:
the sequence {fk} converges uniformly to f . It follows that f is continuous,
hence f ∈ C[a, b].

Example 5.2.5. The space X = (C[a, b], d1), with d1 as in Examples
5.1.3, is incomplete. For a proof we take a = −1, b = 1, and define

fk(x) =






0 for x ≤ 0,
kx for 0 ≤ x ≤ 1/k,
1 for x ≥ 1/k.

The sequence {fk} is a Cauchy sequence in X: for j, k ≥ p,

d1(fj , fk) =

∫ 1

−1

|fj − fk| ≤
∫ 1/p

0

|fj − fk| ≤ 1/p;

cf. Figure 5.4. The sequence {fk} converges at every point x; the pointwise
limit function U(x) is equal to 0 for x ≤ 0 and equal to 1 for x > 0. Also,
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∫ 1

−1
|U − fk| → 0 as k → ∞. However, there can be no continuous function

f such that d1(f, fk) → 0 as k → ∞.
Indeed, suppose that there would be such an f . Then

∫ 1

−1

|f − U | =

∫ 1

−1

|f − fk + fk − U |

≤
∫ 1

−1

|f − fk| +
∫ 1

−1

|fk − U | → 0 as k → ∞.

Hence the (constant) left-hand side would be equal to 0. But then the
nonnegative function |f(x) − U(x)| would have to be zero at every point
where it is continuous, that is, for all x 6= 0. Thus one would have f(x) = 0
for x < 0, and f(x) = 1 for x > 0. But this would contradict the postulated
continuity of f .

Every incomplete metric space can be completed by a standard abstract
construction (see below).

Definition 5.2.6. A metric space X̂ = (X̂, d̂) is called a completion of

the metric space X = (X, d) if X̂ is complete, and X is [or can be considered

as] a dense subspace of X̂. That is, X lies dense in X̂ and d̂ = d on X.

Completions X̂ of a given space X are unique up to isometry. In practice
one can often indicate a concrete completion of a given space X.

Thus the space E2
rat has as its completion the Euclidean plane E2. The

space X = (C[a, b], d1) has as its completion the space L(a, b) = L1(a, b) of

the Lebesgue integrable functions on (a, b), where d̂1(f, g) =
∫ b

a
|f − g|. [It

is understood that in L1(a, b) one identifies functions that agree outside a
set of measure zero; cf. Remark 4.1.2.] The completeness of L1(a, b) follows
from the Riesz–Fischer theorem of Integration Theory, which was named
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after F. Riesz (Section 4.2) and the Austrian mathematician Ernst Fischer
(1875–1954; [31]). One form of the theorem says that for any sequence {fk}
of integrable functions such that

∫ b

a
|fj − fk| → 0, there is an integrable

function f such that
∫ b

a
|f − fk| → 0; cf. [102], [68]. Furthermore, to given

f ∈ L1(a, b) and any number ε > 0, there is a step function s such that

d̂1(f, s) < ε. From this one may derive that there is a continuous function

g on [a, b] such that d̂1(f, g) < 2ε.

The general construction of completion. An abstract completion
X̂ = (X̂, d̂) of a given (incomplete) metric space X = (X, d) can be ob-
tained as follows. Every nonconvergent Cauchy sequence {uk} in X iden-
tifies a “missing point”, a “hole”, in X. Think of E2

rat, where the “holes”
are given by points that have at least one irrational coordinate. For com-
pletion of X, every hole has to be filled by a sort of “generalized limit” of
the Cauchy sequence that defines it. Of course, different Cauchy sequences
that “belong to the same hole” must be assigned the same generalized limit.
Mathematically, a “hole” may be described as an equivalence class of (non-
convergent) Cauchy sequences. We will say that Cauchy sequences {uk}
and {ũk} are equivalent, notation {uk} ∼ {ũk}, if d(uk, ũk) → 0 as k → ∞.

We now define a new metric space X̂ = (X̂, d̂) as follows. The ele-

ments U, V, · · · of X̂ are equivalence classes of (nonconvergent or conver-
gent) Cauchy sequences in X, cf. Figure 5.5, and

(5.2.3) d̂(U, V ) = lim d(uk, vk) if {uk} ∈ U, {vk} ∈ V.
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It is easy to verify that the function d̂(U, V ) is well-defined and that (X̂, d̂)
is a metric space.

Every element u ∈ X is represented in X̂ by the special equivalence
class u∗ of the Cauchy sequences in X that converge to u. An example of
such a sequence is the “constant sequence” {u, u, u, · · · }. Clearly

d̂(u∗, v∗) = lim {d(u, v), d(u, v), · · · } = d(u, v).

The special elements u∗, v∗, · · · form a subspace of X̂ isometric with X.
Identifying u∗ with u, v∗ with v, etc, X becomes a subspace of X̂. It is easy
to see that X is dense in X̂. Indeed, if U ∈ X̂ and {uk} is one of its Cauchy

sequences, then uk = u∗k converges to U in X̂. For if d(uj, uk) < ε for all
j, k ≥ p, then by (5.2.3)

d̂(U, u∗k) = lim {d(u1, uk), d(u2, uk), · · · }
= lim

j→∞
d(uj, uk)) ≤ ε, ∀ k ≥ p.

Finally, X̂ will be complete. If {Uk} is a Cauchy sequence in X̂, then

for each k we can choose an element uk ∈ X such that d̂(Uk, uk) < 1/k. By
the triangle inequality, the sequence {uk} will be a Cauchy sequence in X.

Its generalized limit U , located in X̂, will also be the limit of the sequence
{Uk} in X̂.

Remark 5.2.7. The space X̂ contains two kinds of elements: equiva-
lence classes of nonconvergent Cauchy sequences, and equivalence classes of
convergent Cauchy sequences. The book Mathematical Methods vol. 1 [68]
speaks figuratively of “spiders with a hole” and “spiders with a heart”; cf.
Figure 5.5.

Exercises. 5.2.1. For an arbitrary subset E of a metric space X and for
u ∈ X, the distance d(u,E) is defined as in (5.2.1). Prove that

|d(u,E) − d(v, E)| ≤ d(u, v), ∀u, v ∈ X.

Thus the distance d(u,E) is continuous on X.
5.2.2. Let R

N be the linear space of all infinite sequences x = (x1, x2, · · · )
of real numbers. Prove that the formula

d∗(x, y) =

∞∑

n=1

1

2n
min {|xn − yn|, 1}
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defines a metric on RN. Show that convergence x(k) → x in (RN, d∗) is

exactly the same as “componentwise convergence”: x
(k)
n → xn for each

n ∈ N.
5.2.3. Show that convergence φk → φ in the test space D(Γ) [Definition

4.2.1] may be derived from a metric.
5.2.4. Prove that the piecewise constant functions (step functions) form

a dense subspace of C[a, b].
5.2.5. Show that the spaces C[a, b] and L1(a, b) are separable.
5.2.6. Prove that the bounded sequence fk(x) = xk, k = 1, 2, · · · in

C[0, 1] does not have a uniformly convergent subsequence on [0, 1].
5.2.7. Show that a closed subspace Y of a complete metric space X is

complete.

5.3. Norms on linear spaces

In this section, V denotes a linear space or vector space. In analysis, the
scalars are (almost) always the real or the complex numbers. Accordingly,
we speak of real or complex linear spaces. We begin by reviewing some
terminology concerning linear spaces.

A (linear) subspace W of V is a subset which is also a linear space under
the given addition and multiplication by scalars in V . Examples in the case
of V = C[a, b]: the subspace P of the polynomials in x (restricted to [a, b]),
the subspace Pn of the polynomials of degree ≤ n.

For a subset A of V , the (linear) span S(A) is the subspace “spanned”
or “generated” by A. It consists of all finite linear combinations λ1u1 +
· · · + λkuk of elements uj in A. Thus in C[a, b], the subspace P is the span
of the subset {1, x, x2, · · · }. A subset A ⊂ V is called linearly independent
if a finite linear combination λ1u1 + · · · + λkuk of elements of A is equal
to zero only when λ1 = · · · = λk = 0. The set {1, x, x2, · · · } is linearly
independent in C[a, b].

A subset A of V is called a basis (or algebraic basis) for V if every
element u in V can be represented in exactly one way as a finite linear
combination c1u1 + · · ·+ ckuk of elements uj ∈ A. A basis is the same as a
linearly independent spanning set for V . All algebraic bases of V have the
same number of elements, or more precisely, the same “cardinal number”.
[In other words, one can set up a one-to-one correspondence between the
elements of any two algebraic bases.] This cardinal number [which could,
for example, be “countably infinite”] is called the (algebraic) dimension of
V .
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For subspaces W1 and W2 of V one can form the (vector) sum W1 +W2,
that is, the subspace of all vectors w = w1 +w2 with wj ∈Wj . If W1∩W2 =
{0}, the zero element, the representation w = w1 + w2 is unique. In this
case one speaks of the direct sum of W1 and W2, notation W1 ⊕ W2. If
V = W1 ⊕W2 one calls W1 and W2 complementary subspaces of V . In this
case one can define a codimension: codimW1 = dimW2. If dimV is finite,
codimW1 = dimV − dimW1.

Definition 5.3.1. A function ‖ · ‖ on V is called a length or norm if

(i) 0 ≤ ‖u‖ <∞, ∀u ∈ V ;

(ii) ‖u‖ = 0 if and only if u = 0;

(iii) ‖λu‖ = |λ| ‖u‖, ∀u ∈ V, ∀ scalarsλ;

(iv) ‖u+ v‖ ≤ ‖u‖ + ‖v‖, ∀u, v ∈ V

(triangle inequality; cf. Figure 5.6).

From the norm one may derive a distance function d by setting

(5.3.1) d(u, v)
def
= ‖u− v‖;

cf. Figure 5.7. As usual, the metric d implies a notion of convergence:

(5.3.2) uk → u if and only if d(u, uk) = ‖u− uk‖ → 0.

Definition 5.3.2. A normed linear space V = (V, ‖ · ‖) is a linear
space V with a norm function ‖ · ‖ and the associated distance (5.3.1) and
convergence (5.3.2).
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The norm function is continuous: if uk → u, then ‖uk‖ → ‖u‖. By
definition, a subspace W of a normed linear space V is a linear subspace,
equipped with the norm provided by V .

Examples 5.3.3. On R and C, the absolute value is a norm. On Rn

and Cn, with elements denoted by x = (x1, · · · , xn), one has the norms

‖x‖∞ = max
1≤ν≤n

|xν |; (Cn, ‖ · ‖∞) is also called l∞(n);

‖x‖1 = |x1| + · · ·+ |xn|; (Cn, ‖ · ‖1) is also called l1(n);

‖x‖2 = (|x1|2 + · · · + |xn|2)1/2; (Cn, ‖ · ‖2) is also called l2(n).

The corresponding distances are d∞, d1 and d2 as in Examples 5.1.2. On
Rn, the third norm is the Euclidean norm or length; we also denote the
normed space (Rn, d2) by En. Similarly l2(n) and unitary space Un are
identified. Convergence under all these norms is the same as componentwise
convergence.

Examples 5.3.4. On C[a, b] (where [a, b] denotes a bounded closed in-
terval), the formula

(5.3.3) ‖f‖∞ = sup
a≤x≤b

|f(x)| = max
a≤x≤b

|f(x)|

defines a norm, usually referred to as the supremum norm. The correspond-
ing distance is

d∞(f, g) = max
a≤x≤b

|f(x) − g(x)|.

The corresponding convergence is uniform convergence; cf. Examples 5.1.3.
From now on we will use the notation C[a, b] for the normed linear space
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(C[a, b], ‖ · ‖∞). If we restrict ourselves to real functions and scalars we may
write Cre[a, b].

Another important norm on C[a, b] is

(5.3.4) ‖f‖1 =

∫ b

a

|f(x)|dx.

This formula makes sense for all (Lebesgue) integrable functions f on (a, b),
even if the interval (a, b) is unbounded. It defines a norm on the space
L1(a, b), provided we identify functions that differ only on a set of (Lebesgue)
measure zero. The corresponding distance is the L1-distance,

d1(f, g) =

∫ b

a

|f(x) − g(x)|dx.

From now on we will use the notation L1(a, b) for the normed linear space of
the integrable functions on (a, b) with the norm (5.3.4) [identifying almost
equal functions]. For bounded intervals (a, b), L1-convergence is the same
as “convergence in the mean” on (a, b). Indeed, fk → f in L1(a, b) if and
only if

1

b− a

∫ b

a

|f(x) − fk(x)|dx→ 0;

the mean or average deviation |f(x) − fk(x)| must tend to zero. Note that
convergence in C[a, b] means that the maximum deviation tends to zero.

The distance d2(f, g) on C[a, b] (Examples 5.1.3) may be derived from
the norm

(5.3.5) ‖f‖2 =

{∫ b

a

|f(x)|2dx
}1/2

;

see Section 5.6 for a proof of the triangle inequality.

The definitions in Examples 5.3.3 cannot be extended to all infinite
sequences x = (x1, x2, · · · ) of complex numbers. One has to impose appro-
priate restrictions:

Examples 5.3.5. For the bounded infinite sequences x = (x1, x2, · · · ),
the definition

‖x‖∞ = sup
n∈N

|xn| gives the space l∞ = l∞(N);
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for the infinite sequences x = (x1, x2, · · · ) such that the series
∑∞

n=1 |xn|
converges, the definition

‖x‖1 =
∞∑

n=1

|xn| gives the space l1 = l1(N);

for the infinite sequences x = (x1, x2, · · · ) such that the series
∑∞

n=1 |xn|2
converges, the definition

‖x‖2 =

{ ∞∑

n=1

|xn|2
}1/2

gives the space l2 = l2(N).

For a proof of the triangle inequality in the case of “little el two”, see Section
5.6.

Exercises. 5.3.1. Prove that the set of powers {1, x, x2, · · · } (restricted
to the interval [0, 1]) is linearly independent in the space C[0, 1]. Can
you also prove that every set of pairwise different exponential functions
{eλ1x, eλ2x, · · · } is linearly independent in C[0, 1] ?

5.3.2. In V = C[−1, 1], let W1 and W2 be the linear subspaces of the
odd, and the even, continuous functions, respectively. Prove that V can be
written as the direct sum W1 ⊕W2.

5.3.3. Let V be a linear space with a norm function ‖ · ‖. Verify that
the formula d(u, v) = ‖u− v‖ defines a metric on V . Show that ‖u− v‖ ≥
‖u‖ − ‖v‖, and deduce that the norm function is continuous.

5.3.4. Use the ordinary coordinate plane to draw pictures of the “unit
sphere” S(0, 1) [set of vectors of length 1] in each of the (real) spaces l∞re (2),
l1re(2), and l2re(2) = E2.

5.3.5. Prove that the unit ball B(0, 1) [set of vectors of length < 1] in
a normed linear space is always convex. [Given u0, u1 ∈ B(0, 1), show that
uλ = (1 − λ)u0 + λu1 is in B(0, 1) for every λ ∈ (0, 1).]

5.3.6. Verify that ‖f‖∞ and ‖f‖1 as in (5.3.3), (5.3.4) are norms on
C[a, b]. Prove an inequality between these norms. Deduce that uniform
convergence (on a bounded interval) implies L1-convergence.

5.3.7. Consider the sequence of functions fk(x) = kαxk, k = 1, 2, · · · ,
in C[0, 1]. For which real numbers α will the sequence converge to the zero
function under the norms (i) ‖ · ‖∞; (ii) ‖ · ‖1; (iii) ‖ · ‖2 ?
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5.3.8. Which of the following formulas define a norm on C1[a, b]:

(i) ‖f‖ = max
a≤x≤b

|f(x)|; (ii) ‖f‖ = max |f(x)| + max |f ′(x)|;

(iii) ‖f‖ = max |f(x) + f ′(x)|; (iv) ‖f‖ = |f(a)| +
∫ b

a

|f ′(x)|dx.

5.3.9. Consider the infinite sequences x = (x1, x2, · · · ) of complex num-
bers for which the series

∑∞
n=1 |xn| converges. Verify that they form a linear

space V , and that the formula ‖x‖1 =
∑∞

n=1 |xn| defines a norm on V .
5.3.10. Construct a sequence {fk} of piecewise constant functions on

[0, 1] which converges to zero in the mean [
∫ 1

0
|fk − 0| → 0], but which fails

to converge to zero at every point of [0, 1] [for every x ∈ [0, 1], fk(x) 6→ 0].
5.3.11. For x ∈ Cn and any p ≥ 1 one may define

‖x‖p =
{
|x1|p + · · · + |xn|p

}1/p
.

Prove the following relation which explains the notation ‖x‖∞ for the supre-
mum norm:

lim
p→∞

‖x‖p = max
1≤ν≤n

|xν | = ‖x‖∞.

5.4. Normed linear spaces: general results

In this section, V will denote a real or complex normed linear space. We
begin by considering
Finite dimensional V . Setting dimV = n, we choose a basis

(5.4.1) B = {u1, u2, · · · , un}
for V , so that every element of u ∈ V has a unique representation

(5.4.2) u = c1u1 + · · · + cnun, with cj = cj(u).

We will compare the norm of u with the norm of c = (c1, · · · , cn) = c(u) as
an element of E

n (if V is a real space) or U
n (if V is a complex space).

Lemma 5.4.1. There are positive constants mB and MB (depending on
V ) such that

mB

{
|c1|2 + · · · + |cn|2

}1/2 ≤ ‖c1u1 + · · ·+ cnun‖V

≤MB

{
|c1|2 + · · · + |cn|2

}1/2
, ∀ c = (c1, · · · , cn).(5.4.3)
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Proof. It is enough to consider the real case, the complex case being
similar. If c = 0 the inequalities (5.4.3) are satisfied no matter what con-
stants mB and MB we use. Supposing c 6= 0, we may take ‖c‖2 = 1 [by
homogeneity, one may in (5.4.3) replace c by λc]. Thus we may assume that
c ∈ S(0, 1), the unit sphere in E

n. Introducing the function

f(c) = ‖c1u1 + · · ·+ cnun‖V , c ∈ S(0, 1) ⊂ E
n,

we have to show that f has a positive lower bound mB and a finite upper
bound MB. For this we need two facts:

(i) f is continuous. Indeed, if c′ → c in E
n, then c′ν → cν for ν = 1, · · · , n.

Hence c′1u1+ · · ·+c′nun → c1u1+ · · ·+cnun in V (by the triangle inequality),
and thus f(c′) → f(c) by the continuity of the norm function.

(ii) S(0, 1) is compact: it is a bounded closed set in En.
Conclusion: f assumes a minimum value mB and a maximum value MB

on S(0, 1); cf. Theorem 5.2.1. Since 0 < f(c) <∞ for every c ∈ S(0, 1), we
have 0 < mB ≤MB <∞. �

Theorem 5.4.2. Let V be a finite dimensional (real or complex) normed
linear space. Then

(i) Every bounded sequence in V has a convergent subsequence;

(ii) Every bounded closed set E ⊂ V is compact;

(iii) V is complete.

Proof. We set dimV = n and choose a basis {u1, · · · , un}.
(i) Let u(k) = c

(k)
1 u1+· · ·+c(k)

n un, k = 1, 2, · · · , be a bounded sequence in
V . Then by Lemma 5.4.1, the sequence {c(k)} in E

n is bounded, hence the

coefficient sequences {c(k)
1 }, · · · , {c(k)

n } are bounded. Taking a suitable sub-
sequence {kp} of the sequence of positive integers {k}, we obtain convergent
coefficient (sub)sequences. Denoting the limits by c1, · · · , cn, respectively,
we conclude that for k = kp → ∞,

u(k) = c
(k)
1 u1 + · · ·+ c(k)

n un → u = c1u1 + · · · + cnun.

(ii) This is clear from the definition of compactness.
(iii) Every Cauchy sequence is bounded; cf. Section 5.2. Thus by part (i),

every Cauchy sequence {u(k)} in V has a convergent subsequence. Calling
its limit u, the whole Cauchy sequence {u(k)} will converge to u; cf. Section
5.2. �
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Application 5.4.3. Existence of optimal approximations. Let
V be an arbitrary (real or complex) normed linear space, W a finite-
dimensional subspace. Let u be an arbitrary given element of V . Then
among the elements of W there is an element w0 which provides an optimal
approximation to u:

d(u, w0) = d(u,W )
def
= inf

w∈W
d(u, w).

Proof. In looking for an optimal approximation to u, we may restrict
ourselves to vectors w in the closed ball E = B(0, 2‖u‖) in W (Figure 5.8).
Indeed, if ‖w‖ > 2‖u‖, then 0 ∈ W is a better approximation to u than w
would be:

d(u, w) = ‖w − u‖ ≥ ‖w‖ − ‖u‖ > ‖u‖ = d(u, 0).

Now by Theorem 5.4.2, the closed ball E in W is compact, hence by
Application 5.2.2, there is an element w0 ∈ E which provides an optimal
approximation to u. �

Let us consider the special case V = C[a, b] and W = Pn, the subspace
of the polynomials in x of degree ≤ n (restricted to the interval [a, b]). Here
we obtain the following

Corollary 5.4.4. For every function f ∈ C[a, b] and every n, there is
a polynomial p0 of degree ≤ n which provides an optimal approximation to
f from the class Pn:

‖f − p0‖∞ = min
p∈Pn

‖f − p‖.

Banach spaces. A complete normed linear space is called a Banach space,
after the Polish mathematician Stefan Banach (1892–1945; [5]). Examples
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are: the finite dimensional (real or complex) normed linear spaces [Theo-
rem 5.4.2]; the space C[a, b] [cf. Examples 5.3.4, 5.2.4]; the space L1(a, b)
[Examples 5.3.4 and Section 5.2]; the spaces l∞ and l1 [cf. Exercise 5.4.9].

In a finite dimensional normed linear space, the unit sphere S(0, 1) is
compact, but in an infinite dimensional normed linear space, it never is. For
example, in C[0, 1], the sequence of unit vectors fk(x) = xk, k = 1, 2, · · · ,
fails to have a convergent subsequence; cf. Exercise 5.2.6. In l∞, the se-
quence of unit vectors

(5.4.4) e1 = (1, 0, 0, 0, · · · ), e2 = (0, 1, 0, 0, · · · ), e3 = (0, 0, 1, 0, · · · ), · · ·
fails to have a convergent subsequence. Indeed, ‖ej − ek‖∞ = 1 whenever
j 6= k. For the general case, cf. Exercise 5.4.10.

In a Banach space, every “norm convergent’ series converges to an ele-
ment of the space:

Theorem 5.4.5. Let V be a complete normed linear space, u1 +u2 + · · ·
an infinite series in V such that

(5.4.5)

∞∑

n=1

‖un‖ converges.

Then the series
∑∞

n=1 un converges to an element s in V .

Proof. Writing u1 + · · ·+ uk = sk, it will follow from (5.4.5) that {sk}
is a Cauchy sequence in V . Indeed, taking k > j as we may,

‖sk − sj‖ = ‖uj+1 + · · ·+ uk‖ ≤ ‖uj+1‖ + · · ·+ ‖uk‖.
For any given ε > 0, there will be an index k0 such that the final sum is
< ε whenever j, k > k0.

Since V is complete, the Cauchy sequence {sk} has a limit s in V . �

Examples 5.4.6. (i) V = R and V = C, with the absolute value of
a number as norm. Every absolutely convergent series of real or complex
numbers is convergent.

(ii) V = C[a, b]. Every infinite series
∑∞

n=1 gn, consisting of continuous
functions on the finite closed interval [a, b], and such that the series

∞∑

n=1

‖gn‖∞ =

∞∑

n=1

max
a≤x≤b

|gn(x)| converges,

is uniformly convergent on [a, b]. This is essentially Weierstrass’s test for
uniform convergence which says the following. If there are numbers Mn



5.4. NORMED LINEAR SPACES: GENERAL RESULTS 119

such that

|gn(x)| ≤ Mn on [a, b], while

∞∑

n=1

Mn converges,

then the series
∑∞

n=1 gn(x) converges uniformly on [a, b].
(iii) V = L1(a, b). Every series

∑∞
n=1 gn of Lebesgue integrable functions

on (a, b), such that the series

(5.4.6)
∞∑

n=1

‖gn‖1 =
∞∑

n=1

∫ b

a

|gn(x)|dx converges,

will be convergent on (a, b) in L1-sense. That is, the partial sums fk =
g1 + · · ·+ gk will converge to an integrable function f on (a, b) in the sense

that
∫ b

a
|f − fk| → 0. It will follow that

∫ b

a

f = lim

∫ b

a

fk = lim

{∫ b

a

g1 + · · ·+
∫ b

a

gk

}
.

In other words, ∫ b

a

f =

∫ b

a

∞∑

n=1

gn =

∞∑

n=1

∫ b

a

gn.

In Integration Theory it is shown that under condition (5.4.6), the series∑∞
n=1 gn is pointwise convergent on (a, b) outside a set of measure zero

(which may be empty). Denoting the pointwise sum function by f , one also
has fk → f in L1-sense, so that the series for f may be integrated term
by term. The result is sometimes called Levi’s theorem, after Beppo Levi
(Italy, 1875–1961; [80]).

Normed space bases. Let V be an infinite dimensional normed linear
space. A sequence {un} in V is called a normed space basis or Schauder
basis for V , after the Polish mathematician Juliusz Schauder (1899–1943;
[105]), if every element u in V has a unique representation as the sum of
a series

∑∞
n=1 cnun. For example, the sequence of unit vectors (5.4.4) is a

normed space basis for l1. The standard (separable) normed linear spaces
all possess a Schauder basis; cf. [106].

Exercises. 5.4.1. Let {u1, · · · , un} be a basis for the normed linear space

V . Prove that elements u(k) = c
(k)
1 u1 + · · · + c

(k)
n un converge to u = c1u1 +

· · ·+cnun in V if and only if they converge componentwise, that is, c
(k)
ν → cν

for every ν.
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5.4.2. Prove that every finite dimensional subspace W of a normed linear
space V is closed.

5.4.3. Determine the constant (real) functions which optimally approx-
imate f(x) = x2 on [0, 1] relative to the norms ‖ · ‖∞ and ‖ · ‖1.

5.4.4. Same question for the unit step function U(x) on [−1, 1]. Are the
optimally approximating functions unique in each case?

5.4.5. Prove that for each n there is a constant K = Kn such that

max
0≤x≤1

|p(x)| ≤ K

∫ 1

0

|p(x)|dx

for all polynomials p of degree ≤ n.
5.4.6. Let e1, e2, e3, · · · denote the unit vectors (5.4.4) in l1, l2 or l∞.

Determine d(ej, ek) in each of these spaces.
5.4.7. Verify that the unit vectors e1, e2, e3, · · · form a normed space

basis for l1. [They do not form such a basis for l∞.]
5.4.8. Show that l1 is separable. [l∞ is not.]
5.4.9. Prove that l1 is complete.

Hint. A Cauchy sequence x(k) = (x
(k)
1 , x

(k)
2 , · · · ) in l1 will be com-

ponentwise convergent, x
(k)
n → yn, say, ∀n. It will also be bounded,

‖x(k)‖ =
∑∞

n=1 |x(k)
n | ≤ M , ∀n. Deduce that

∑N
n=1 |yn| ≤ M , ∀N , so

that . . .. Finally show that ‖y − x(k)‖ → 0.
5.4.10. Let V be an infinite dimensional normed linear space. Construct

a sequence of unit vectors e1, e2, · · · in V such that

d{ek+1, S(e1, · · · , ek)} = 1, k = 1, 2, · · · .
Hint. Choose any u in V outside Wk = S(e1, · · · , ek) and consider an
optimal approximation uk for u in Wk. Compute d(u− uk,Wk), etc.

5.4.11. For complex rectangular matrices A = [αij ] we define

‖A‖ = ‖A‖1 =
∑

i,j

|αij|.

Prove that ‖AB‖ ≤ ‖A‖ · ‖B‖ whenever the product AB makes sense.

5.4.12. Let
∑
Aν =

∑
[α

(ν)
ij ] be a series of k × n matrices such that∑

‖Aν‖ converges. Prove that the series
∑
Aν is elementwise convergent,

that is, the series
∑

ν α
(ν)
ij converges for each i, j.

5.4.13. Let A be an n×nmatrix such that ‖A‖ < 1. Prove that the series∑∞
ν=0 A

ν is elementwise convergent to a matrix C, and that C = (In−A)−1.
Here A0 = In = [δij ].
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5.4.14. Let A be any n× n matrix. Prove that the series
∑∞

ν=0 A
ν/ν! is

elementwise convergent. [The matrix sum of the series is called eA.]

5.5. Inner products on linear spaces

This time we begin with examples.

Example 5.5.1. The Euclidean space En. The ordinary scalar product
(inner product, dot product) (x, y) or x · y of the vectors x, y in Rn is given
by

(5.5.1) (x, y) = x1y1 + · · · + xnyn.

This inner product is symmetric, and linear in each “factor”. Observe that
(x, x) ≥ 0, ∀x, and that (x, x) = 0 if and only if x = 0. The Euclidean
length of x can be expressed in terms of the inner product by the formula

(5.5.2) ‖x‖ = (x, x)1/2 (nonnegative square root).

When both vectors x and y are 6= 0, the angle θ from x to y is given by

cos θ =
(x, y)

‖x‖ ‖y‖ .

In particular, x is perpendicular or orthogonal to y if cos θ = 0:

(5.5.3) x ⊥ y if and only if (x, y) = 0.

Adopting the convention that the zero vector is orthogonal to every vector,
(5.5.3) holds in full generality.

Relation (5.5.2) is often expressed as follows: the norm function of E
n

can be derived from an inner product. From here on, we will consider En as
the space Rn furnished with the inner product (5.5.1), and the associated
concepts of norm, distance, convergence, angle and orthogonality.

Observe that one could also have started with the notions of length and
angle. As in the case of R2 and R3, one could then define the scalar product
(x, y) as ‖x‖ ‖y‖ cos θ.

Example 5.5.2. The unitary space Un. On Cn, formula (5.5.1) does
not define a good inner product: the associated lengths (x, x)1/2 would not
always be nonnegative real numbers. One therefore uses the definition

(5.5.4) (x, y) = x1y1 + · · · + xnyn.

[Actually, one could just as well define (x, y) = x1y1 + · · ·+xnyn, as is com-
mon in physics.] Now (x, x) is real and ≥ 0 for all x ∈ Cn, and (x, x) = 0
only if x = 0. One next defines ‖x‖ by (5.5.2) and “x ⊥ y” by (5.5.3).
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The result is the unitary space Un with an “inner product” that gives the
standard norm. Observe that the present inner product is “conjugate sym-
metric”: (y, x) = (x, y). Our inner product is linear in the first factor,
conjugate linear in the second.

From here on, we will consider Un as the space Cn furnished with the
inner product (5.5.4) and the associated concepts.

In mathematical analysis, the limit case n→ ∞ is important:

Example 5.5.3. The space l2 = l2(N): “little el two”. The elements of
l2 are the infinite sequences x = (x1, x2, · · · ) of complex numbers such that
the series

∑∞
n=1 |xn|2 converges. They form a linear space on which one can

form the “inner product”

(5.5.5) (x, y) =

∞∑

n=1

xnyn.

The series will be absolutely convergent since 2|xnyn| ≤ |xn|2 + |yn|2. Via

(5.5.2) this inner product gives the l2 norm ‖x‖ =
{∑∞

n=1 |xn|2
}1/2

[Ex-
amples 5.3.5]. From here on, we will consider l2 as a space with the inner
product (5.5.5).

Example 5.5.4. The space L2(J): “big el two”. Let J ⊂ R be any
finite or infinite interval. We consider the linear space L2(J) of the “square-
integrable functions” f on J . That is, f itself is supposed to be Lebesgue
integrable over every finite subinterval of J , while |f |2 must be integrable
over all of J . For example, f(x) = (1+x2)−1/2 belongs to L2(R). On L2(J)
it makes sense to define

(5.5.6) (f, g) =

∫

J

f(x)g(x)dx.

The integral exists because 2|fg| ≤ |f |2 + |g|2. Observe that (f, f) =
∫

J
|f |2

is real and ≥ 0 for all f ∈ L2(J). Since we want (f, f) = 0 only if f = 0, we
must identify functions that are equal on J outside a set of measure zero.
Now the definition

(5.5.7) ‖f‖ = ‖f‖2 = (f, f)1/2 =

{∫

J

|f(x)|2dx
}1/2

will give a true norm, the so-called L2 norm, cf. (5.3.5). Orthogonality is
[again] defined as follows:

(5.5.8) f ⊥ y if and only if (f, g) = 0.
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The resulting space, consisting of the square-integrable functions on J
with the usual identification of almost equal functions, and with the inner
product (5.5.6), as well as the associated norm etc, is called L2(J). Conver-
gence in this space is so-called mean square convergence: when J is finite,
fk → f is the same as saying that

(5.5.9)
1

length J

∫

J

|f(x) − fk(x)|2dx→ 0.

If J is a finite closed interval [a, b] and we restrict ourselves to the con-
tinuous functions on [a, b], we speak of the space L2C[a, b]: the continuous
functions on [a, b] equipped with the L2 norm.

It is shown in Integration Theory that the space L2(J) is complete
(Riesz–Fischer theorem; cf. [102]). The step functions (piecewise constant
functions) on J with bounded support lie dense in L2(J). For finite (a, b),
L2(a, b) is also the completion of L2C[a, b].

We are now ready to give an abstract definition of inner products:

Definition 5.5.5. Let V be a real or complex linear space. A function
(u, v) on V ×V is called an inner product function if the following conditions
are satisfied:

(i) The values (u, v) are scalars (hence real numbers if V is real, real
or complex numbers if V is complex);

(ii) (v, u) = (u, v) for all u, v ∈ V (conjugate symmetry);
(iii) The function (u, v) is linear in the first “factor”, and hence, by (ii),

conjugate linear in the second factor:

(λ1u1 + λ2u2, v) = λ1(u1, v) + λ2(u2, v),

(u, λ1v1 + λ2v2) = λ1(u, v1) + λ2(u, v2),

for all scalars λ1, λ2 and all elements u1, u2, v, u, v1, v2 of V;
(iv) (u, u), which is real because of (ii), is nonnegative for all u ∈ V and

(u, u) = 0 if and only if u = 0.

Supposing now that V is a linear space with an inner product function
(·, ·), one defines on V :

(5.5.10)






‖u‖ = (u, u)1/2, d(u, v) = ‖u− v‖ = (u− v, u− v)1/2,
uk → u if and only if d2(u, uk) = (u− uk, u− uk) → 0,
u ⊥ v if and only if (u, v) = 0.

The function ‖ · ‖ will then have the properties of a norm (see Section 5.6
for the triangle inequality), and hence d will be a metric.
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Definition 5.5.6. An inner product space V = {V, (·, ·)} is a linear
space V with an inner product function (·, ·), and the associated norm,
distance, convergence and orthogonality (5.5.10).

From here on we suppose that V is an inner product space. By a subspace
W of V we then mean a linear subspace furnished with the inner product of
V . If E is a subset of V , one says that u in V is orthogonal to E, notation
u ⊥ E, if u is orthogonal to all elements of E. The set of all elements
of V that are orthogonal to E is called the orthogonal complement of E,
notation E⊥, (“E perp”). The orthogonal complement will be a closed
linear subspace of V .

The definition below was proposed by John von Neumann (Hungary–
USA, 1903–1957; [87]) in honor of David Hilbert; cf. the end of Section
1.6.

Definition 5.5.7. A complete inner product space is called a Hilbert
space; cf. [49].

For us the most important Hilbert spaces are L2(J) where J is an inter-
val, L2(E) where E is a more general subset of a space Rn (unit circle, unit
disc, etc.), and the related spaces where the inner product involves a weight
function. Other examples are the “model space” l2 and, of course, En and
Un. Every inner product space can be completed to a Hilbert space.

Exercises. 5.5.1. Show that the formula (x, y) = xy defines an inner
product on R. What is the corresponding inner product on C ?

5.5.2. Verify that formula (5.5.4) defines an inner product on Cn with
the properties required in Definition 5.5.5.

5.5.3. Every inner product function on R2 must be of the form

(x, y) = (x1e1 + x2e2, y1e1 + y2e2)

= ax1y1 + b(x1y2 + x2y1) + cx2y2.

Under what conditions on a, b, c is this an inner product function?
5.5.4. (Continuation) What sort of curve is the “unit sphere” S(0, 1)

in the general inner product space {R2, (·, ·)}, relative to Cartesian coordi-
nates?

5.5.5. Characterize the matrices A = [αij ] for which the formula (x, y) =∑n
i,j=1 αijxiyj defines an inner product function on Rn.
5.5.6. What can you say about an element u in an inner product space

V that is orthogonal to all elements of V ?
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Figure 5.9

5.5.7. Let (u, v) be an inner product function on V . Verify that the
function (u, u)1/2 satisfies conditions (i)-(iii) for a norm in Definition 5.3.1.

5.5.8. Verify that the formula (f, g) =
∫ b

a
f(x)g(x)dx defines an inner

product on Cre[a, b] in the sense of Definition 5.5.5.
5.5.9. Under what conditions on the weight function w will the formula

(f, g) =
∫ b

a
f(x)g(x)w(x)dx define an inner product on C[a, b] ?

5.5.10. Let D be a bounded connected open set in E
2. Verify that the

formula (u, v) =
∫

D
(uxvx + uyvy)dxdy defines an inner product on C1

re(D),
provided one identifies functions that differ only by a constant.

5.5.11. Verify that formula (5.5.5) defines an inner product on the lin-
ear space of the complex sequences x = (x1, x2, · · · ) such that

∑∞
n=1 |xn|2

converges.
5.5.12. Prove that l2 is complete. [Cf. Exercise 5.4.9.]

5.6. Inner product spaces: general results

In this section, V denotes an inner product space. A basic result is the
“Pythagorean theorem”, cf. Figure 5.9.

Theorem 5.6.1. (“Pythagoras”) If u ⊥ v in V , then

(5.6.1) ‖u+ v‖2 = ‖u‖2 + ‖v‖2.

Proof. By Definition 5.5.5,

(u+ v, u+ v) = (u, u) + (u, v) + (v, u) + (v, v)

= (u, u) + (u, v) + (u, v) + (v, v).(5.6.2)

If (u, v) = 0, the result equals (u.u) + (v.v). �
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Corollary 5.6.2. For pairwise orthogonal vectors u1, u2, · · · , uk, in-
duction will show that

‖u1 + u2 + · · ·+ uk‖2 = ‖u1‖2 + ‖u2‖2 + · · · + ‖uk‖2.

A series
∑∞

1 un in V whose terms are pairwise orthogonal is called an
orthogonal series. For such series we have the important

Theorem 5.6.3. Let
∑∞

1 un be an orthogonal series in V . Then

(i) The partial sums sk =
∑k

1 un form a Cauchy sequence in V if and
only if the numerical series

∑∞
1 ‖un‖2 converges;

(ii) If V is a Hilbert space, the orthogonal series
∑∞

1 un converges in
V if and only if the numerical series

∑∞
1 ‖un‖2 converges;

(iii) If
∑∞

1 un = u in V , then
∑∞

1 ‖un‖2 = ‖u‖2.

Proof. We write
∑k

1 ‖un‖2 = σk. Then by Pythagoras for k > j,

‖sk − sj‖2 = ‖uj+1 + · · ·+ uk‖2

= ‖uj+1‖2 + · · · + ‖uk‖2 = σk − σj .

Thus {sk} is a Cauchy sequence in V if and only if {σk} is a Cauchy se-
quence of real numbers, or equivalently, a convergent sequence of reals. This
observation proves (i) and it implies (ii). Part (iii) follows from the fact that
σk = ‖sk‖2 → ‖u‖2 when sk → u in V . Here we have anticipated the result
that the function ‖u‖ = (u, u)1/2 is continuous on V . This will follow from
the triangle inequality which will be proved below (Applications 5.6.6). �

Another important consequence of Theorem 5.6.1 is the general Cauchy–
Schwarz inequality, named after Cauchy (Section 1.2) and Hermann Schwarz
(Germany, 1843–1921; [112]); cf. [15].

Theorem 5.6.4. (Cauchy–Schwarz) For all vectors u, v in the inner
product space V one has

(5.6.3) |(u, v)| ≤ ‖u‖ ‖v‖.
Proof. We may assume u 6= 0, v 6= 0. As motivation for the proof

we start with the case of En. There (u, v) = ‖u‖ ‖v‖ cos θ (Figure 5.10), so
that the desired inequality is obvious. However, the proof for En may also
be based on another geometric interpretation of (u, v), one that has general
validity. Let λv be the component of u in the direction of v. More precisely,
let λv be the orthogonal projection of u onto the 1-dimensional subspace
formed by the scalar multiples of v. By definition, λv is the orthogonal
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O λv

u - λvu
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θ

Figure 5.10

projection of u if u − λv ⊥ v. Thus (u − λv, v) = 0 or (u, v) = λ(v, v), so
that

(5.6.4) |(u, v)| = |λ| ‖v‖ ‖v‖ = ‖λv‖ ‖v‖.
In En it is clear that ‖λv‖ ≤ ‖v‖. In the general case we appeal to Pythago-
ras:

‖λv‖2 + ‖u− λv‖2 = ‖u‖2,

hence ‖λv‖ ≤ ‖u‖, so that (5.6.3) follows from (5.6.4). �

Remark 5.6.5. If v 6= 0, the equal sign holds in “Cauchy–Schwarz” if
and only if u is a scalar multiple of v.

Applications 5.6.6. (i) The triangle inequality for the norm in V . By
(5.6.2) and Cauchy–Schwarz,

‖u+ v‖2 = (u, u) + 2Re (u, v) + (v, v)

≤ ‖u‖2 + 2‖u‖ ‖v‖+ ‖v‖2 = (‖u‖ + ‖v‖)2.

(ii) The continuity of (u, v) in the first factor (or the second, or in both
factors jointly):

|(u, v) − (u′, v)| = |(u− u′, v)| ≤ ‖u− u′‖ ‖v‖, etc.

(iii) The classical Cauchy inequality for a sum of products. Taking V =
Un, one has

∣∣∣∣∣

n∑

1

xkyk

∣∣∣∣∣ = |(x, y)| ≤ ‖x‖ ‖y‖

=

(
n∑

1

|xk|2
)1/2( n∑

1

|yk|2
)1/2

.
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Figure 5.11

(iv) The classical Schwarz inequality for the integral of a product. For
f, g in V = L2(J),

∣∣∣∣
∫

J

f(x)g(x)dx

∣∣∣∣ = |(f, g)| ≤ ‖f‖ ‖g‖

=

(∫

J

|f(x)|2dx
)1/2(∫

J

|g(x)|2dx
)1/2

.

Optimal approximation and orthogonal projection. From here on
let W be a subspace of V , and u an arbitrary element of V .

Lemma 5.6.7. There is at most one element w0 ∈ V such that u−w0 ⊥
W .

Indeed, if there is such an element w0, then for any other element w ∈W
we have u− w0 ⊥ w − w0, hence by Pythagoras,

(5.6.5) ‖u− w‖2 = ‖u− w0‖2 + ‖w − w0‖2 > ‖u− w0‖2.

Thus u−w cannot be ⊥W , for otherwise one would also have ‖u−w0‖2 >
‖u− w‖2 ! Cf. Figure 5.11.

Definition 5.6.8. If there is an element w0 ∈W such that u−w0 ⊥W ,
then w0 is called the (orthogonal) projection of u on W , notation w0 = Pu =
PWu.

Inequality (5.6.5) implies the following result on approximation: if the
orthogonal projection w0 = PWu exists, it is the (unique) element of W at
minimal distance from u. There is also a converse result:
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Theorem 5.6.9. Let W be a subspace of the inner product space V and
let u be an arbitrary element of V . Then the following statements about an
element w0 in W are equivalent:

(i) w0 is the orthogonal projection of u on W ;
(ii) w0 is an (the) element of W that optimally approximates u relative

to the metric of V .

Proof. In view of the preceding we need only prove that (ii) implies
(i). Accordingly, let w0 be as in (ii):

d(u, w0) ≤ d(u, w), ∀w ∈W.

We have to show that u− w0 is orthogonal to W .
Let us consider w = w0 + εz, where z ∈W is arbitrary and ε > 0. Then

‖u− w0‖2 ≤ ‖u− w‖2 = ‖u− w0 − εz‖2

= ‖u− w0‖2 − 2εRe(u− w0, z) + ε2‖z‖2.

Hence

2Re(u− w0, z) ≤ ε‖z‖2.

Letting ε go to zero, it follows that

(5.6.6) Re(u− w0, z) ≤ 0, ∀ z ∈W.

Applying (5.6.6) also to −z ∈W instead of z, one finds that

(5.6.7) Re(u− w0, z) = 0, ∀ z ∈ W.

If V is a real space, (5.6.7) shows that u−w0 ⊥W . In the complex case
one may apply (5.6.6) also to iz ∈W . Thus one finds that Im(u−w0, z) = 0,
∀ z ∈W . The conclusion is that (u−w0, z) = 0 for all z ∈W , as had to be
proved. �

If W is a finite dimensional subspace of V , we know that there always is
an optimal approximation w0 ∈W to a given u ∈ V ; see Application 5.4.3.
Hence for finite dimensional W , the orthogonal projection PWu exists for
every u ∈ V . It will be seen in Chapter 6 that this orthogonal projection is
easy to compute if we know an orthogonal basis for W .

Exercises. In these exercises V always denotes an inner product space.
5.6.1. Let u be the sum of a convergent series

∑∞
1 un in V . Prove that

(u, v) =
∑∞

1 (un, v), ∀ v ∈ V .
5.6.2. Let E be a subset of V . Prove that the orthogonal complement

E⊥ is a closed linear subspace of V .
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5.6.3. Let W be the subspace of the even functions in V = L2C2π.
Determine the orthogonal complement W⊥.

5.6.4. Express the inner product function of V in terms of norms, (a) in
the case where V is a real space, (b) in the complex case. [Cf. (5.6.2).]

5.6.5. Prove that the inner product function (u, v) is continuous on
V × V .

5.6.6. For incomplete V , let V̂ denote the completion as in Section 5.2.
Prove that the inner product function of V can be extended to an inner
product function on V̂ by setting (U,U ′) = lim (uk, u

′
k), where {uk} and {u′k}

are arbitrary Cauchy sequences in V that belong to U , and U ′, respectively.
Thus V̂ becomes a (complete) inner product space which contains V as a
dense subspace.

5.6.7. Deduce the Cauchy–Schwarz inequality for (u, v) in a real space
V from the inequality

0 ≤ (λu+ v, λu+ v) = λ2‖u‖2 + 2λ(u, v) + ‖v‖2, ∀λ ∈ R.

5.6.8. (Parallelogram identity) Prove that for any two vectors u, v ∈ V ,

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2.

In words: for a parallelogram in an inner product space, the sum of the
squares of the lengths of the diagonals is equal to the sum of the squares of
the lengths of the four sides; cf. Figure 5.12.

[One can actually prove the following. If the identity holds for all ele-
ments u, v of a normed linear space V , the norm of V can be derived from
an inner product function as in (5.5.10). (This is the Jordan–von Neu-
mann theorem, after Pascual Jordan, Germany, 1902–1980, [59] and von
Neumann. Cf. [60]).]
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5.6.9. Prove that the norm function of C[0, 1] cannot be derived from
an inner product function.

5.6.10. Prove that the unit sphere S(0, 1) in V cannot contain a straight
line segment. For this reason, the closed unit ball B(0, 1) in V is called
‘rotund’, or strictly convex. [It is sufficient to show that for ‖u‖ = ‖v‖ = 1
and u 6= v, always ‖(u+ v)/2‖ < 1.]

5.6.11. Show that the norms ‖ · ‖∞ and ‖ · ‖1 on R2 cannot be derived
from inner product functions. [Cf. Exercise 5.3.4.]

5.6.12. Describe the pairs u, v ∈ V for which the triangle inequality
becomes an equality.

5.6.13. In Exercises 5.4.11–5.4.13 on matrices one may obtain related

results by using the 2-norm ‖A‖ = ‖A‖2 =
(∑

i,j |αij |2
)1/2

instead of the

1-norm. Verify the essential inequality

‖AB‖ ≤ ‖A‖ ‖B‖
for the 2-norm.





CHAPTER 6

Orthogonal expansions and Fourier series

In inner product spaces V , there are orthogonal systems of elements,
which under appropriate conditions form orthogonal bases. In terms of an
orthogonal system {vn}, every element u ∈ V has an orthogonal expansion,
which may or may not converge to u. For a nice theory of orthogonal
expansions it is best to work with complete inner product spaces: Hilbert
spaces. The general theory applies in particular to Fourier series in the space
of square-integrable functions L2(−π, π). We will characterize orthogonal
bases and use them to classify inner product spaces. Every Hilbert space
turns out to be like a space l2(Λ) for an appropriate index set Λ; cf. Exercise
6.6.7.

In the present chapter V denotes an inner product space, unless there is
an explicit statement to the contrary.

6.1. Orthogonal systems and expansions

Prototypes of such systems and expansions are the trigonometric or-
thogonal system

(6.1.1)
1

2
, cosx, sin x, cos 2x, sin 2x, · · · in L2(−π, π),

and the Fourier expansion of f ∈ L2(−π, π).

Definition 6.1.1. An orthogonal system in V is a subset {vλ}, where
λ runs over an index set Λ, of nonzero elements or vectors such that

vλ ⊥ vµ for all λ, µ ∈ Λ with λ 6= µ.

If the vectors vλ are unit vectors, we speak of an orthonormal system.

In most applications the index set Λ is countably infinite. In theory
involving that case, we usually take Λ = N, the sequence of the positive
integers.

133
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Examples 6.1.2. The system {sinnx}, n ∈ N, is orthogonal in L2(0, π)
and also in L2(−π, π). Likewise the system 1

2
, cos x, cos 2x, · · · . The com-

plex exponentials einx, n ∈ Z, form an orthogonal system in L2(−π, π), or
in L2 on the unit circle Γ when we use arc length as underlying variable.
The vectors e1 = (1, 0, 0, · · · ), e2 = (0, 1, 0, · · · ), e3 = (0, 0, 1, · · · ), · · · form
an orthogonal system in l2 = l2(N); cf. Example 5.5.3.

Let {vn}, n = 1, 2, · · · be a (finite or infinite) countable orthogonal
system in V . A formal series

∑
cnvn is called an orthogonal series: the

terms are pairwise orthogonal. We will denote the partial sum
∑k

n=1 cnvn

by sk.

Proposition 6.1.3. Suppose that
∑k

n=1 cnvn = u, or that
∑∞

n=1 cnvn =
u, that is, sk → u in V . Then

(6.1.2) cn =
(u, vn)

(vn, vn)
, n = 1, 2, · · · .

Proof. Take k ≥ n. Then

(sk, vn) =

(
k∑

j=1

cjvj , vn

)
=

k∑

j=1

cj(vj , vn) = cn(vn, vn).

This equality completes the proof if sk = u. In the case
∑∞

n=1 cnvn = u,
the continuity of inner products [Applications 5.6.6] shows that

(u, vn) = lim
k→∞

(sk, vn) = cn(vn, vn).

�

Corollary 6.1.4. Orthogonal systems are linearly independent. Or-
thogonal representations in terms of a given orthogonal system {vn} are
unique: if u =

∑
cnvn =

∑
dnvn, then dn = cn, ∀n.

Definition 6.1.5. The (orthogonal) expansion of u in V with respect
to the (countable) orthogonal system {vn} is the formal orthogonal series

(6.1.3) u ∼
∑

cn[u]vn, where cn[u] =
(u, vn)

(vn, vn)
, n = 1, 2, · · · .

The notation u ∼ · · · means that u has the expansion · · · ; there is no
implication of convergence. One uses a corresponding definition in the case
of an arbitrary orthogonal system {vλ}, λ ∈ Λ.



6.1. ORTHOGONAL SYSTEMS AND EXPANSIONS 135

Examples 6.1.6. We have seen in Section 1.6 that Fourier series of
functions f in L2(−π, π) can be considered as orthogonal expansions, pro-
vided we do not combine the terms an[f ] cosnx and bn[f ] sinnx. The ex-
pansion of a function f ∈ L2(0, π) with respect to the orthogonal system
sin x, sin 2x, sin 3x, · · · is the Fourier sine series

∑∞
n=1 bn[f ] sinnx, where

bn[f ] is given by the expression (2/π)
∫ π

0
f(x) sinnx dx.

Basic questions. Under what conditions will an orthogonal expansion∑
cn[u]vn of u converge in V ? Under what conditions will it converge to

u ?
It is easy to indicate a necessary condition, but for that we need some

terminology. For any subset A of V , the (linear) span or hull S(A) was de-
fined as the linear subspace of V , consisting of all finite linear combinations
of elements of A [Section 5.3]. The closure W = S(A) in V is also a linear
subspace of V .

Definition 6.1.7. The subspace W = S(A) of V is called the closed
(linear) span of A, or the closed subspace of V generated by A. If S(A) = V ,
that is, if every element of V can be approximated arbitrarily well by finite
linear combinations of elements of A, then A is called a spanning set for V .

A spanning orthogonal set A is also called a complete orthogonal set.

If an orthogonal series
∑
cnvn converges in V , the sum must belong to

the closed span S(v1, v2, · · · ). Thus for the convergence of the expansion∑
cn[u]vn to u it is necessary that u belong to S(v1, v2, · · · ). We will see

below that this necessary condition is also sufficient.

Exercises. 6.1.1. Prove that the functions sin(nπx/a), n ∈ N, form an
orthogonal system in L2(0, a), and that the functions e2πinx, n ∈ Z, form an
orthogonal system in L2(0, 1).

6.1.2. Suppose that

sk(x) =
1

2
a0 +

k∑

n=1

(an cos nx+ bn sin nx) → f(x)

in L2(−π, π) as k → ∞. Prove that

an =
1

π

∫ π

−π

f(x) cosnxdx, bn =
1

π

∫ π

−π

f(x) sinnxdx.

6.1.3. Let {vn} be an orthogonal system in V and suppose that u =∑
cnvn. Let v ∈ V be such that v − u ⊥ vn for all n. Determine the

expansion
∑
dnvn of v.
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6.1.4. (Orthogonal expansions need not converge to the defining ele-
ment) Determine the sum of the expansion of the constant function 1 with
respect to the orthogonal system {sinnx}, n ∈ N, in L2(−π, π).

6.1.5. Show that the closed span S(A) of a subset A ⊂ V is a linear
subspace of V .

6.1.6. The notion “closed span S(A)” of a subset A ⊂ V makes sense
in any normed vector space V . Determine W = S(A) if V = C[a, b] and
A = 1, x, x2, · · · .

6.1.7. Determine the closed span of the sequence e1, e2, e3, · · · in l2.
6.1.8. (A space containing an uncountable orthogonal system) Let V

be the inner product space consisting of all finite sums of the form f(x) =∑
cλe

iλx, λ ∈ R, with

(f, g) = lim
a→∞

1

2a

∫ a

−a

f(x)g(x)dx.

Show that (f, g) is indeed an inner product function, and that the functions
vλ(x) = eiλx, λ ∈ R, form a (spanning) orthogonal system in V .

6.2. Best approximation property. Convergence theorem

We begin with a lemma on the computation of orthogonal projections.

Lemma 6.2.1. Let W be a finite dimensional subspace of V with orthog-
onal basis [basis of pairwise orthogonal vectors] v1, · · · , vk, and let u be any
element of V . Then the orthogonal projection of u onto W is given by

(6.2.1) w0 = PWu =
k∑

n=1

cnvn with cn =
(u, vn)

(vn, vn)
, n = 1, · · · , k.

Proof. The existence of the orthogonal projection w0 follows from The-
orem 5.6.9 and Application 5.4.3, but it can also be proved independently.
Indeed, the elements w ∈ W have the form

∑k
1 γnvn. The condition that

u − w be orthogonal to W = S(v1, · · · , vk) is equivalent to the condition
that u− w be orthogonal to all vn, hence

0 = (u− w, vn) = (u, vn) − (w, vn)

= (u, vn) −
k∑

j=1

γj(vj , vn) = (u, vn) − γn(vn, vn), n = 1, · · · , k.

These equations have the (unique) solution γn = (u, vn)/(vn, vn) = cn, n =
1, · · · , k. �
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Theorem 6.2.2. Let
∑
cn[u]vn be the expansion of u in V with respect

to the (countable) orthogonal system {vn} in V . Then the partial sum

sk = sk[u] =
k∑

n=1

cn[u]vn

is equal to the orthogonal projection w0 = PWu of u onto the span W =
S(v1, · · · , vk). Thus the partial sum sk = sk[u] is the element of W which
best approximates u relative to the metric of V :

‖u− w‖ ≥ ‖u− sk‖ for all w ∈W,

with equality only for w = w0 = sk.

Proof. The first part follows from Definition 6.1.5 and Lemma 6.2.1,
while the second part follows from Theorem 5.6.9; cf. Figure 5.11. �

Application 6.2.3. For functions f ∈ L2(−π, π) one has the following

result. Among all trigonometric polynomials w(x) = α0 +
∑k

1 (αn cosnx +
βn sinnx) of order k, the partial sum

sk[f ](x) =
1

2
a0[f ] +

k∑

n=1

(
an[f ] cosnx+ bn[f ] sinnx

)

of the Fourier series for f provides the best approximation to f in L2(−π, π):
∫ π

−π

∣∣f − w
∣∣2 ≥

∫ π

−π

∣∣f − sk[f ]
∣∣2,

with equality only for w = sk[f ].

Example 6.2.4. Let f(x) = x on (−π, π). Then among all trigonometric
polynomials of order k, the partial sum

sk[f ](x) = 2
k∑

n=1

(−1)n−1

n
sin nx

of the Fourier series provides the best approximation to f relative to the
metric of L2(−π, π). [Cf. also Exercise 2.1.3.]

Theorem 6.2.5. Let A = {v1, v2, · · · } be a countable orthogonal system
in V , and let u be any element of V . Then

(i) If (and only if) u belongs to the closed span W = S(A) in V , the
expansion

∑
cn[u]vn converges to u in V ;

(ii) If (and only if) A spans the space V , that is, S(A) = V , the expan-
sion

∑
cn[u]vn converges to u for every u in V .
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Proof. We give a proof for infinite systems A, but the proof is easily
adjusted to the case of finite A.

(i) Take u in S(A). Then for every ε > 0, there is a finite linear com-

bination uε =
∑k(ε)

n=1 dn(ε)vn of elements of A such that ‖u − uε‖ < ε.
Now consider any integer k ≥ k(ε), so that uε belongs to W = Wk =
S(v1, · · · , vk). By the best-approximation property [Theorem 6.2.2], the

partial sum sk =
∑k

n=1 cn[u]vn of the expansion of u is at least as close to
u as uε. Thus

‖u− sk‖ ≤ ‖u− uε‖ < ε.

Since this holds for every ε and for all k ≥ k(ε), we conclude that sk → u
in V as k → ∞.

(ii) Supposing S(A) = V , every u in V belongs to S(A), hence by part
(i), every u in V is equal to the sum of its expansion

∑
cn[u]vn. �

In case (ii) every u in V has a unique representation u =
∑
cnvn. We

then call A an orthogonal basis for V . [Cf. Section 6.5 below.]
In order to apply the theorem to Fourier series, we need the following

Proposition 6.2.6. The trigonometric functions

(6.2.2)
1

2
, cos x, sin x, cos 2x, sin 2x, · · ·

form a complete or spanning orthogonal system in L2(−π, π). The same is
(of course) true for the exponential functions einx, n ∈ Z.

Proof. We have to show that every function f ∈ L2(−π, π) can be
approximated arbitrarily well by trigonometric polynomials. Let f and ε >
0 be given. By Integration Theory, the step functions [piecewise constant
functions] s lie dense in L2(−π, π); cf. Example 5.5.4. Hence there is a step
function s such that d2(f, s) = ‖f − s‖2 < ε. To such a function s we
can find a continuous function g on [−π, π], with g(−π) = g(π), such that
d2(s, g) < ε. [At points where s is discontinuous, one can cut off corners.]
Next, by Weierstrass’s Theorem 3.4.1, there is a trigonometric polynomial
T such that |g(x) − T (x)| < ε throughout [−π, π], so that

d2(g, T ) =

(∫ π

−π

|g − T |2
) 1

2

<
√

2πε.

The triangle inequality finally shows that

d2(f, T ) ≤ d2(f, s) + d2(s, g) + d2(g, T ) <
(
2 +

√
2π
)
ε.

�
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Application 6.2.7. For every function f in L2(−π, π), the Fourier se-
ries converges to f in the sense of L2:

∫ π

−π

∣∣f − sk[f ]
∣∣2 → 0 as k → ∞.

The proof follows from Theorem 6.2.5 and Proposition 6.2.6. Indeed, the
Fourier series for f ∈ L2(−π, π) is its orthogonal expansion with respect to
the complete orthogonal system (6.2.2) [provided we do not combine the
terms an[f ] cosnx and bn[f ] sinnx in the series].

Exercises. 6.2.1. Compute the sine polynomial
∑k

n=1 βn sin nx of order k
which best approximates f(x) = 1 in L2(0, π).

6.2.2. What can one say about f ∈ L2(−π, π) if
∫ π

0
f(x) sinnxdx = 0,

∀n ∈ N ?
6.2.3. Prove that the sine polynomials

∑
βn sinnx lie dense in L2(0, π),

and likewise the cosine polynomials α0 +
∑

n≥1 αn cos nx.

6.2.4. For f ∈ L2(0, π) one can form both a Fourier sine series and a
Fourier cosine series. Prove that both series converge to f in L2(0, π).

6.2.5. Describe the closed subspaces of L2(−π, π) generated by the or-
thogonal systems

A1 = {sin x, sin 2x, sin 3x, · · · }, and A2 = {1, cosx, cos 2x, · · · },

respectively.

6.3. Parseval formulas. Convergence of expansions

Combining Theorem 6.2.2 and the Pythagorean Theorem 5.6.1, we will
obtain the following important results:

Theorem 6.3.1. Let A = {v1, v2, · · · } be a countable orthogonal system
in V , and let

∑
cnvn =

∑
cn[u]vn be the expansion of u in V with respect

to A. Then
(i) The numerical series

∑
|cn|2‖vn‖2 is convergent and has sum ≤

‖u‖2 (Bessel’s inequality);
(ii) If (and only if)

∑
cnvn = u in V , one has

∑
|cn|2‖vn‖2 = ‖u‖2

(Parseval formula);
(iii) If u =

∑
cnvn in V and v has expansion

∑
dnvn, then

(u, v) =
∑

cndn‖vn‖2 (extended Parseval formula).
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O

u

sk

V

W

u - sk

Figure 6.1

Remark 6.3.2. The above results are named after the German astron-
omer-mathematician Friedrich W. Bessel (1784-1846; [7]) and the French
mathematician Marc-Antoine Parseval (1755-1836; [89]); cf. [90].

Proof of Theorem 6.3.1. Let k be any positive integer not exceed-
ing the number of elements in A. Then the partial sum sk =

∑k
n=1 cnvn

of the expansion of u is equal to the orthogonal projection of u onto the
subspace W = S(v1, · · · , vk) of V [Theorem 6.2.2]. Hence in particular
u− sk ⊥ sk. Thus Pythagoras gives the relations

k∑

n=1

‖cnvn‖2 =

∥∥∥∥∥

k∑

1

cnvn

∥∥∥∥∥

2

= ‖sk‖2

= ‖u‖2 − ‖u− sk‖2 ≤ ‖u‖2;(6.3.1)

cf. Figure 6.1.
(i) In the case of an infinite system A, inequality (6.3.1) shows that the

partial sums σk =
∑k

n=1 of the numerical series
∑∞

1 ‖cnvn‖2 are bounded
by ‖u‖2. Hence that infinite series of nonnegative terms is convergent, and
has sum ≤ ‖u‖2.

(ii) By (6.3.1), ‖u − sk‖2 = ‖u‖2 −
∑k

1 ‖cnvn‖2. Hence for an infinite
system A, the limit relation

k∑

1

cnvn = sk → u in V, or ‖u− sk‖2 → 0 as k → ∞,
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implies (and is implied by) the limit relation

σk =
k∑

1

‖cnvn‖2 → ‖u‖2.

In particular, if
∑
cnvn = u, then the expansion coefficients cn will satisfy

Parseval’s formula.
(iii) If v has expansion

∑
dnvn, then dn = (v, vn)/(vn, vn). Thus

(sk, v) =

k∑

1

cn(vn, v) =

k∑

1

cn(v, vn) =

k∑

1

cndn(vn, vn).

If A is infinite and sk → u in V , the continuity of inner products now shows
that

(u, v) = lim
k→∞

(sk, v) =
∞∑

1

cndn(vn, vn).

�

We will apply Theorem 6.3.1 to the special case of the trigonometric
system (6.2.2) and the related system {einx}, n ∈ Z, in L2(−π, π). The
closed spans of these systems are equal to L2(−π, π). Thus we obtain the
following

Corollaries 6.3.3. (i) For any f in L2(−π, π), the Fourier coefficients
an = an[f ], bn = bn[f ] and cn = cn[f ] satisfy the Parseval formulas

|a0|2
4

2π +
∞∑

1

(
|an|2 + |bn|2

)
π =

∞∑

−∞
|cn|2 2π =

∫ π

−π

|f(x)|2dx;

(ii) For f, g ∈ L2(−π, π) one has the extended Parseval formula

(f, g) =

∫ π

−π

f(x)g(x)dx = 2π

∞∑

−∞
cn[f ]cn[g].

Examples 6.3.4. The Fourier series

2
∞∑

1

(−1)n−1

n
sin nx

for f(x) = x on (−π, π) [cf. Example 1.1.1] gives
∞∑

1

4

n2
π =

∫ π

−π

x2dx =
2

3
π3, or

∞∑

1

1

n2
=
π2

6
.
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Similarly, the Fourier series

1

3
π2 + 4

∞∑

1

(−1)n

n2
cosnx

for f(x) = x2 on (−π, π) [cf. Example 1.2.1] gives

π4

9
2π +

∞∑

1

16

n4
π =

∫ π

−π

x4dx =
2

5
π5, or

∞∑

1

1

n4
=
π4

90
.

As another nice application we mention the famous Isoperimetric The-
orem. It says that among all simple closed curves Γ of given length L, a
circle encloses the largest area A. In general,

(6.3.2) 4πA ≤ L2 (isoperimetric inequality);

see Exercise 6.3.11 and cf. [57].

Orthogonal expansions are orthogonal series to which we can apply the
general Theorem 5.6.3. Thus Theorem 6.3.1 also has the following

Corollaries 6.3.5. Let A = {v1, v2, · · · } be a countably infinite or-
thogonal system in V . Then:

(i) For any u in V , the partial sums sk =
∑k

1 cn[u]vn of the expansion
of u form a Cauchy sequence in V ;

(ii) If V is a Hilbert space, all orthogonal expansions in V are conver-
gent;

(iii) In a Hilbert space V , the expansion of u with respect to A con-
verges to the orthogonal projection of u onto the closed subspace W = S(A)
generated by A;

(iv) In a Hilbert space V , a formal series
∑∞

1 γnvn is the expansion
of an element of V if (and only if) the numerical series

∑∞
1 |γn|2‖vn‖2

converges.

Proof. Setting cn[u]vn = un, Bessel’s inequality implies the conver-
gence of the series

∑∞
1 ‖un‖2. Assertions (i) and (ii) now follow from The-

orem 5.6.3. From here on, let V be a Hilbert space.
(iii) The sum w =

∑∞
1 cn[u]vn = lim sk now exists in V and it must

belong to W = S(A). We will show that u − w ⊥ W , so that w = PWu.
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Fix n and take k ≥ n. Then by the continuity of inner products,

(w, vn) = lim(sk, vn) = lim
k→∞

k∑

j=1

cj [u](vj, vn)

= cn[u](vn, vn) = (u, vn).

Hence w − u ⊥ vn, ∀n. It follows that w − u ⊥ A, so that w − u ⊥ S(A),
and finally, w − u ⊥ S(A).

(iv) If
∑∞

1 |γn|2‖vn‖2 converges, then the series
∑∞

1 γnvn will converge
to an element w in V by Theorem 5.6.3. The series

∑∞
1 γnvn will be the

expansion of w [Proposition 6.1.3]. �

Exercises. 6.3.1. Write down Parseval’s formula for a function f in
L2(0, 2π) and the complete orthogonal system {einx}, n ∈ Z. Apply the
formula to the function f(x) = eαx, 0 < x < 2π, with real α.

6.3.2. Write down the Parseval formulas for the cosine series and the
sine series of a function f in L2(0, π).

6.3.3. Let f be in C1[0, π], f(0) = f(2π) = 0. Prove that
∫ π

0

|f |2 ≤
∫ π

0

|f ′|2.

For which functions f is there equality here?
6.3.4. Let f be in L2(−π, π). Prove that

d2
2(f, sk) =

∫ π

−π

∣∣f − sk[f ]
∣∣2 = π

∞∑

n=k+1

(∣∣an[f ]
∣∣2 +

∣∣bn[f ]
∣∣2
)
.

Also compute d2
2(f, σk), where σk = σk[f ] = (s0 + s1 + · · · + sk−1)/k. Does

it surprise you that d2(f, σk) ≥ d2(f, sk) ?
6.3.5. Compute the sum of the series

∑∞
n=1

1
n6 .

6.3.6. Nobody has been able to express the sum of the series
∑∞

1 1/n3

for ζ(3) in closed form. Express the sum
∑∞

p=1 1/(2p− 1)3 = (7/8)ζ(3) as
an integral with the aid of the cosine series

∞∑

n=1

cosnx

n
and − π2

8
+

∞∑

p=1

cos(2p− 1)x

(2p− 1)2
;

cf. Exercises 1.1.4, 1.2.5.
6.3.7. Let f(x) = 0 on (−π, 0), f(x) = x on (0, π). Determine the

expansion of f with respect to the orthogonal system 1
2
, cosx, cos 2x, · · · in

L2(−π, π). Calculate the sum of the expansion. [Cf. Corollaries 6.3.5.]
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6.3.8. For which real values of α will the series
∑∞

1 (sinnx)/nα converge
in L2(0, π) ?

6.3.9. Let {γn}, n ∈ Z, be an arbitrary sequence of complex numbers
such that the series

∑∞
n=−∞ |γn|2 converges. Prove that there is a function

f ∈ L2(−π, π) with complex Fourier series
∑∞

−∞ γne
inx.

6.3.10. Prove that the convergence and the sum of an orthogonal ex-
pansion in V are independent of the order of the terms.

6.3.11. Prove the isoperimetric inequality (6.3.2): 4πA ≤ L2 for piece-
wise smooth simple closed curves Γ. Determine all curves Γ for which there
is equality.

Hint. Using arc length as parameter, Γ may be given by a formula
z = x+ iy = g(s), 0 ≤ s ≤ L, with |g′(s)| ≡ 1. One then has

A =
1

2

∫ s=L

s=0

(xdy − ydx) =
1

2
Im (g′, g).

Without loss of generality one may take L = 2π (so that g has period
2π). Also, the center of mass of Γ may be taken at the origin (so that∫ 2π

0
g(s)ds = 0).

6.4. Orthogonalization

Since orthogonal representations are so convenient, it is useful to know
that for every sequence {u1, u2, · · · } of elements of V , there is an orthogonal
sequence {v1, v2, · · · } of linear combinations of elements uj with the same
span.

Construction 6.4.1. (Gram–Schmidt orthogonalization) We start with
an arbitrary (finite or infinite) sequence {u1, u2, · · · } of elements of V . Now
define

v1 = u1;

v2 = “part of u2 orthogonal to v1”

= u2 − orthogonal projection of u2 onto S(v1)

= u2 − λ2,1v1,
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O

u2

v2

v1 = u1

λ21v1

O

v3

v1

v2

u3

λ31v1 + λ32v2

Figure 6.2

where the condition v2 ⊥ v1 gives λ2,1 = (u2, v1)/(v1, v1) (but if v1 = 0 we
take λ2,1 = 0). In general, one defines

vk = “part of uk orthogonal to v1, · · · , vk−1”

= uk − orthogonal projection of uk onto S(v1, · · · , vk−1)(6.4.1)

= uk − λk,1v1 − · · · − λk,k−1vk−1,

where the condition vk ⊥ vj gives

λk,j =
(uk, vj)

(vj , vj)
, j = 1, · · · , k − 1 (but if vj = 0 we take λk,j = 0).

Cf. Figure 6.2. The construction is named after Jørgen P. Gram (Den-
mark, 1850–1916; [40]) and Erhard Schmidt (Germany, 1876–1959; [108]);
cf. [41].

Theorem 6.4.2. Let {v1, v2, · · · } be the sequence of vectors in V ob-
tained by orthogonalization of the sequence {u1, u2, · · · }. Then:

(i) Every vector vk can be expressed as a linear combination of u1, · · · , uk

in which uk has coefficient 1. Conversely, every vector uk can be expressed
as a linear combination of v1, · · · , vk.

(ii) For every n, S(v1, · · · , vn) = S(u1, · · · , un). Also, S(v1, v2, · · · ) =
S(u1, u2, · · · ). It follows that S(v1, v2, · · · ) = S(u1, u2, · · · ); the sequence
{v1, v2, · · · } generates the same closed subspace of V as the original sequence
{u1, u2, · · · }.

(iii) The vectors v1, v2, · · · are pairwise orthogonal. If (and only if) the
vectors u1, u2, · · · are linearly independent, the vectors vn are all 6= 0 (so
that they form an orthogonal system according to Definition 6.1.1).
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(iv) If the linear combinations of the vectors u1, u2, · · · lie dense in V
and the vectors u1, u2, · · · are linearly independent, the vectors v1, v2, · · ·
form a spanning orthogonal set in V , hence an orthogonal basis.

Proof. (i) Applying induction to (6.4.1), one readily shows that vk can
be expressed as a linear combination of u1, · · · , uk in which uk has coefficient
1. For the other direction one may use (6.4.1) as it stands.

(ii) By (i), vk ∈ S(u1, · · · , uk) and uk ∈ S(v1, · · · , vk), hence every
linear combination of v1, · · · , vn can be written as a linear combination of
u1, · · · , un, and vice versa. The other assertions (ii) follow.

(iii) By (6.4.1), vk ⊥ all predecessors vj , so that the vectors v1, v2, · · ·
are pairwise orthogonal. We also have the following equivalent assertions:

u1, · · · , un are linearly independent ⇔ dimS(u1, · · · , un) = n

⇔ dimS(v1, · · · , vn) = n ⇔ v1, · · · , vn are linearly independent

⇔ none of the pairwise orthogonal vectors v1, · · · , vn is equal to 0.

Thus if (and only if) the vectors u1, u2, · · · are linearly independent, all
vectors vn are 6= 0.

(iv) Assume S(u1, u2, · · · ) = V . Then by (ii) also S(v1, v2, · · · ) = V .
The deletion of zero vectors in the sequence {vn} does not change the closed
span, hence the nonzero vectors vn form a spanning orthogonal set in V . �

Example 6.4.3. (Legendre polynomials) [after Adrien-Marie Legendre
(France, 1752–1833; [78]), who contributed to both pure and applied math-
ematics.] Orthogonalization of the sequence of powers {1, x, x2, x3, · · · } in
L2(−1, 1) gives the following sequence of polynomials:

p0(x) = 1, p1(x) = x− λ1,01 = x,

p2(x) = x2 − λ2,01 − λ2,1x = x2 − 1/3,

p3(x) = x3 − λ3,01 − λ3,1x− λ3,2(x
2 − 1/3) = x3 − (3/5)x, etc.

The polynomials pn(x), n ∈ N0, form an orthogonal system; the degree of
pn(x) is exactly n. It can be shown that pn(1) 6= 0 for all n; see Section 7.1
below. Division of pn(x) by pn(1) gives the Legendre polynomial Pn:

(6.4.2) Pn(x)
def
=
pn(x)

pn(1)
, so that Pn(1) = 1, ∀n.
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One will find

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x), P4(x) =

1

8
(35x4 − 30x3 + 3), etc.(6.4.3)

It is useful to know that

(6.4.4) ‖Pn‖2 =

∫ 1

−1

P 2
n(x)dx =

1

n+ 1
2

.

This and other results will be derived in Chapter 7.

Application 6.4.4. For any given k ≥ 0, the Legendre polynomials
P0, P1, · · · , Pk form an orthogonal basis for the subspaceW = S(1, x, · · · , xk)
of L2(−1, 1), which consists of the polynomials in x of degree ≤ k [restricted
to the interval (−1, 1)]. For functions f ∈ L2(−1, 1) one can form the Le-
gendre series: the expansion

∑∞
n=0 cn[f ]Pn with respect to the system {Pn}.

The orthogonal projection of f onto W is equal to

sk[f ] =
k∑

n=0

cn[f ]Pn, where cn[f ] =
(f, Pn)

(Pn, Pn)
= (n+ 1/2)

∫ 1

−1

fPn.

This is the polynomial of degree ≤ k which best approximates f on (−1, 1)
in the sense of “least squares”; one has

∫ 1

−1

∣∣f − sk[f ]
∣∣2 ≤

∫ 1

−1

∣∣f − P
∣∣2

for all polynomials P of degree ≤ k, with equality only for P = sk[f ]; cf.
Theorem 6.2.2.

Exercises. 6.4.1. Orthogonalize the sequence of vectors u1 = (1, 1, 1),
u2 = (2, 1, 0), u3 = (1, 0, 0) in E3. Will orthogonalization of the sequence
u3, u2, u1 give the same result?

6.4.2. Orthogonalize the sequence {1, x, x2} in L2(0, 1), and standardize
to norm 1 through multiplication by suitable positive constants.[

Answer:
{
1,

√
12(x− 1

2
),
√

180(x2 − x+ 1
6
)
}
.
]

6.4.3. Compute p4(x) in Example 6.4.3 and verify the formula for P4(x)
in (6.4.3).

6.4.4. Let f(x) = |x|, −1 ≤ x ≤ 1. Determine the polynomial P of
degree ≤ 2 which best approximates f in L2(−1, 1). Also compute ‖f−P‖2.
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6.4.5. (Continuation) Next determine the linear combination T of 1,
cos πx, sin πx which best approximates f in L2(−1, 1). Which of the two,
P and T , provides a better approximation?

6.4.6. Show that the polynomials in x lie dense in L2(−1, 1), and deduce
that the Legendre polynomials Pn, n ∈ N0, form a spanning orthogonal set,
or orthogonal basis, for L2(−1, 1).

6.4.7. Let {u1, u2, · · · } be a sequence of vectors in V , {v1, v2, · · · } the
sequence obtained by orthogonalization. Show that ‖vn‖ ≤ ‖un‖, ∀n.

6.4.8. The Gram matrix of vectors u1, · · · , un in V is defined by

G(u1, · · · , un) =
[
(ui, uj)

]
i,j=1,··· ,n

=





(u1, u1) (u1, u2) . . . (u1, un)
(u2, u1) (u2, u2) . . . (u2, un)
. . . . . . . . . . . .

(un, u1) (un, u2) . . . (un, un)



 .

Prove that the determinant, detG, is invariant under orthogonalization:

detG(u1, · · · , un) = detG(v1, · · · , vn) = ‖v1‖2 · · · ‖vn‖2.

6.4.9. Show that u1, · · · , un are linearly independent in V if and only if
detG(u1, · · · , un) 6= 0.

6.4.10. Let A = [αij] be an n× n complex matrix. Verify that

AA
T

=
[
(ui, uj)

]
,

where u1, · · · , un denote the row vectors of A, considered as elements of Un.
Deduce Hadamard’s inequality

| detA| ≤ ‖u1‖ · · · ‖un‖.

Interpret the inequality geometrically when A is a real matrix.
[Jacques Salomon Hadamard (France, 1865–1963; [42]) is perhaps best

known for the proof of the prime number theorem in 1896. The theorem was
proved independently - in the same year - by the Belgian mathematician
Charles-Jean de la Vallée Poussin (1866–1962, [121]). The prime number
theorem says that π(x), the number of primes ≤ x, behaves like x/ log x for
large x. More precisely, cf. [96],

lim
x→∞

π(x)

x/ log x
→ 1 as x→ ∞.]
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6.5. Orthogonal bases

A spanning orthogonal sequence {v1, v2, · · · } in V is also called an or-
thogonal basis, because every element u in V will have a unique represen-
tation u = c1v1 + c2v2 + · · · ; cf. Theorem 6.2.5. Here the coefficients cn are
the expansion coefficients of u: cn = cn[u] = (u, vn)/(vn, vn). The order of
the terms in the expansion is not important.

For general orthogonal systems we formulate

Definition 6.5.1. An orthogonal system {vλ}, λ ∈ Λ, in V is called an
orthogonal basis for V if every element u in V has a unique representation
as the sum of a finite or convergent infinite series of terms cλvλ.

In every representation of u as a finite or infinite sum
∑
cλvλ, the coeffi-

cient cλ must be equal to (u, vλ)/(vλ, vλ), hence the representation is unique
(up to the order of the terms). It is the expansion of u with respect to the
system {vλ}, and it never has more than a countable number of nonzero
terms; see Lemma 6.5.3 below.

It is natural to ask which inner product spaces have a countable or-
thogonal basis. Suppose that the space V has such an orthogonal basis
{vn}. Then V must be separable, that is, V must contain a countable set
of elements u1, u2, · · · which lies dense in V . Indeed, the finite linear com-
binations

∑
cnvn must be dense in V , and these can be approximated by

finite combinations
∑
γnvn with “rational” coefficients γn, that is, Re cn

and Im cn rational. The latter combinations form a countable set. There is
also a converse result:

Theorem 6.5.2. Every separable inner product space V has a countable
orthogonal basis.

Indeed, a dense sequence of elements u1, u2, · · · is a fortiori a spanning
sequence. Orthogonalization will produce a spanning sequence of pairwise
orthogonal vectors v1, v2, · · · [Theorem 6.4.2]. Omitting all zero vectors vn

from that sequence, one obtains a countable orthogonal basis.

Lemma 6.5.3. Let {vλ}, λ ∈ Λ, be an orthogonal system in V . Then for
every element u in V , at most countably many of the expansion coefficients
cλ[u] = (u, vλ)/(vλ, vλ) are different from zero.

Proof. For any finite subset Λ0 of Λ, Bessel’s inequality shows that

(6.5.1)
∑

λ∈Λ0

∣∣cλ[u]
∣∣2‖vλ‖2 ≤ ‖u‖2;
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cf. Theorem 6.3.1. It follows that the number of λ’s for which
∣∣cλ[u]

∣∣‖vλ‖
is ≥ 1 is at most equal to ‖u‖2. Similarly, the number of λ’s for which∣∣cλ[u]

∣∣‖vλ‖ is less than 1 but greater than or equal to 1
2

is bounded by

4‖u‖2. The number of λ’s for which 1
2
>
∣∣cλ[u]

∣∣‖vλ‖ ≥ 1
3

is bounded by
9‖u‖2, etc. Thus the nonzero terms cλ[u]vλ in the expansion of u can be
arranged in a sequence according to decreasing norm – they form a countable
set. �

The proof of Theorem 6.2.5 may be adapted to the case of general or-
thogonal systems to give

Theorem 6.5.4. An orthogonal system {vλ} in V is an orthogonal basis
if and only if the finite linear combinations of the vectors vλ lie dense in V .

For Hilbert spaces, there is the following useful characterization of or-
thogonal bases:

Theorem 6.5.5. In a complete inner product space V , an orthogonal
system {vλ} is an orthogonal basis if and only if it is a maximal orthogonal
system.

Such maximality means that there is no vector y in V that is orthogonal
to all vectors vλ, except the vector y = 0.

Proof of the theorem. (i) Let {vλ} be an orthogonal basis of V
and suppose that y ∈ V is orthogonal to every vλ. Then (y, vλ) = 0 for all
λ ∈ Λ, hence y has the expansion 0. Since y must be equal to the sum of
its expansion, y = 0.

(ii) Let {vλ} be a maximal orthogonal system in V and let u be an ar-
bitrary element of V . Considering only the nonzero terms, we form the ex-

pansion of u,
∑
cλn

vλn
. By Bessel’s inequality, the series

∑∣∣cλn
[u]
∣∣2‖vλn

‖2

must converge, and hence, V being complete, the series
∑
cλn

vλn
converges

to an element w ∈ V [Corollaries 6.3.5].
The difference y = u − w will be orthogonal to every vector vλ. This

is clear if λ is of the form λn, but it is also true if λ is different from all
λn. The maximality of the orthogonal system {vλ} now shows that y = 0,
hence u = w =

∑
cλn

vλn
. Since u was arbitrary, it follows that {vλ} is an

orthogonal basis of V . �

∗The characterization in Theorem 6.5.5 may be used to show that every
Hilbert space V , no matter how large, has an orthogonal basis. The proof
requires a form of the axiom of choice, such as Zorn’s Lemma (after Max



6.5. ORTHOGONAL BASES 151

Zorn, Germany–USA, 1906–1993; [127]); cf. [128], or see the book [119].
By that Lemma, V will contain a maximal orthogonal system. One can
also show that all orthogonal bases of a given Hilbert space have the same
cardinal number. This cardinal number is sometimes called the orthogonal
dimension of the space. In the subsequent theory, we will restrict outselves
to separable spaces V .

Exercises. 6.5.1. Prove that the vectors e1, e2, e3, · · · of Example 6.1.2
form an orthonormal basis for l2 = l2(N).

6.5.2. Which of the following systems are orthogonal bases of the given
spaces? Explain your answers.

{sin x, sin 2x, sin 3x, · · · } in L2(0, π);

{cosx, cos 2x, cos 3x, · · · } in L2(0, π);

{einx, n ∈ Z} in L2(−π, π);

{P0, P1, P2, P3, · · · } in L2(−1, 1).

6.5.3. Let {φ0, φ1, φ2, φ3, φ4, φ5, · · · } be an orthogonal basis for L2(−a, a)
such that φ0, φ2, φ4, · · · are even functions, while φ1, φ3, φ5, · · · are odd func-
tions. Prove that the system {φ0, φ2, φ4, · · · } is an orthogonal basis for
L2(0, a), and likewise the system {φ1, φ3, φ5, · · · }.

6.5.4. Same questions as in Exercise 6.5.2 for the systems

{sin(πx/a), sin(2πx/a), sin(3πx/a), · · · } in L2(0, a);

{P0, P2, P4, · · · } in L2(0, 1);

{cosx, sin 2x, cos 3x, sin 4x, · · · } in L2(−π/2, π/2);

{sin x, cos 2x, sin 3x, cos 4x, · · · } in L2(−π/2, π/2);

{sin x, sin 3x, sin 5x, · · · } in L2(0, π/2);

{cosx, cos 3x, cos 5x, · · · } in L2(0, π/2).

6.5.5. Let L2(a, b;w), where w(x) is an almost everywhere positive (mea-
surable) function on (a, b), denote the Hilbert space of the functions f(x)

such that f(x)
√
w(x) belongs to L2(a, b), with the inner product

(f, g) =

∫ b

a

f(x)g(x)w(x)dx.
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Show that the following systems are orthogonal bases of the given spaces:

{T0(x), T1(x), T2(x), · · · } in L2

(
− 1, 1;

1√
1 − x2

)
[Exercise 3.4.4];

{P0(cos θ), P1(cos θ), P2(cos θ), · · · } in L2(0, π; sin θ).

6.5.6. Let V be a Hilbert space, W a (separable) closed subspace. Prove
that every element u ∈ V has an orthogonal projection PWu. How can one
compute PWu ?

6.5.7. Let V be an inner product space, A an orthogonal basis for V .
Prove that A is also an orthogonal basis for the completion V̂ of V .

6.5.8. Let W be the subspace of L2(0, π) consisting of all finite lin-
ear combinations of the functions x, sin 2x, sin 3x, · · · . Prove that A =
{sin 2x, sin 3x, · · · } is a maximal orthogonal system in W , but not an or-
thogonal basis.

6.5.9. Prove Theorem 6.5.4, and give an example of an inner product
space V with an uncountable orthogonal basis.

6.5.10. Let A be an orthogonal system in V , and let E be a subset of
V whose linear span S(E) lies dense in V . Suppose that the expansion of
every element u ∈ E with respect to A converges to u in V . Prove that A
is an orthogonal basis for V .

6.5.11. Let {φ1, φ2, φ3, · · · } be an orthonormal system in L2(0, 1).
(i) Let 0 ≤ a ≤ 1. Determine the expansion of the step function sa such

that sa(x) = 1 on [0, a], sa(x) = 0 on (a, 1].
(ii) Deduce that

(6.5.2)

∞∑

n=1

∣∣∣∣

∫ a

0

φn(x)dx

∣∣∣∣
2

≤ a.

(iii) Prove that one has equality in (6.5.2) for every a ∈ [0, 1] if and only
if {φ1, φ2, φ3, · · · } is an orthonormal basis for L2(0, 1).

6.5.12. Let the functions fn(x), n ∈ N, form an orthogonal basis for
L2(a, b), and let the functions gk(y), k ∈ N, form an orthogonal basis for
L2(c, d). Prove that the products fn(x)gk(y), n, k = 1, 2, · · · , form an
orthogonal basis for L2 on the domain (a < x < b, c < y < d).

Deduce that the functions ei(nx+ky), n, k = 0,±1,±2, · · · , form an or-
thogonal basis for L2 on the rectangle (−π < x < π, −π < y < π).
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6.6. Structure of inner product spaces

We will first show that all orthogonal bases of a separable inner product
space have the same number of elements, or more accurately, the same
cardinal number. In the following it is convenient, and no loss of generality,
to restrict ourselves to orthonormal bases and systems.

Lemma 6.6.1. Let {vλ}, λ ∈ Λ, be an orthonormal system in the sepa-
rable inner product space V . Then the system {vλ} is countable.

Proof. Observe that ‖vλ − vµ‖2 = 2 whenever λ 6= µ, so that the open

balls B(vλ,
√

2), λ ∈ Λ, are pairwise disjoint. Now let {u1, u2, · · · } be a
sequence which lies dense in the separable space V . For given λ ∈ Λ, the
ball B(vλ,

√
2) will contain certain elements un; the one with the lowest

index will be called unλ
. Doing this for each λ, we obtain a one-to-one

correspondence between the elements of the system {vλ} and a subset of the
positive integers. Conclusion: the system {vλ} is either finite, or countably
infinite. �

Theorem 6.6.2. Let V be a separable inner product space different from
just a zero vector. Then all orthonormal bases of V have the same cardinal
number, which is either a positive integer or countably infinite.

Proof. By Lemma 6.6.1 every orthonormal basis of V is countable.
Let A = {v1, v2, · · · } be such a basis. Then there are two possibilities:

(i) A is finite, A = {v1, · · · , vn}, say. In this case A is an ordinary
algebraic basis for V , since every element of V has a unique representation∑n

j=1 cjvj . Thus by Linear Algebra, every linearly independent set in V has
at most n elements. In particular all orthonormal bases of V are finite, and
hence ordinary algebraic bases. Since the latter all have the same number
of elements, so do all orthonormal bases.

(ii) A is infinite, A = {vn}, n ∈ N. In this case the (algebraic) dimension
of V must be infinite; cf. part (i). Hence all orthonormal bases of V must
be infinite, and by Lemma 6.6.1 they must be countably infinite. �

We will now classify the separable real and complex inner product spaces.
To that end we need a suitable concept of isomorphism.

Definition 6.6.3. Two inner product spaces V and V ′ are called iso-
morphic, notation V ∼= V ′, if there is a one to one map T of V onto V ′

which commutes with addition and multiplication by scalars:

T (u1 + u2) = Tu1 + Tu2, Tλu = λTu, ∀λ,
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and which preserves inner products:

(Tu1, Tu2)V ′ = (u1, u2)V .

The first condition says that T is linear, and the final condition may
be expressed by saying that T must be an isometry. Indeed, if T preserves
inner products, it will automatically preserve norms and distances, and vice
versa.

Theorem 6.6.4. Let V be a separable inner product space 6= {0}. Then
one of the following three cases must pertain:

(i) dim V is equal to a positive integer n. In this case V is isomorphic
to En (it it is a real space), or to Un (if it is complex);

(ii) dimV = ∞ and V is complete. In this case V is isomorphic to
l2 = l2(N) (if it is a complex space), or to l2re (if it is real);

(iii) dimV = ∞ and V is incomplete. In that case V is isomorphic to
a dense subspace of l2 or l2re.

Proof. We will discuss the case where V is a (separable) infinite di-
mensional complex Hilbert space. In this case every orthonormal basis of
V has the form {vn}, n ∈ N. Fixing such a basis, the elements u ∈ V are
precisely the sums

∑∞
n=1 cnvn, with cn ∈ C,

∑∞
n=1 |cn|2 <∞; cf. Corollaries

6.3.5. We now define a map T of V to l2 by setting

(6.6.1) T

∞∑

n=1

cnvn = {c1, c2, c3, · · · } =

∞∑

n=1

cnen.

Here {en}, n ∈ N, is the standard orthonormal basis of l2 = l2(N); cf.
Exercise 6.5.1. By the definition of l2 [Example 5.5.3], the map T is one to
one and onto, it commutes with addition and multiplication by scalars, and
it preserves inner products:

(∑
cnvn,

∑
dkvk

)

V
=
∑

cndn‖vn‖2

=
∑

cndn =
(∑

cnen,
∑

dkek

)

V ′

.

Cf. the extended Parseval formula in Theorem 6.3.1.
If V is an incomplete (complex) separable inner product space, dimV

must be infinite; cf. Theorem 6.4.2. Thus V has an orthonormal basis {vn},
n ∈ N. This time the linear map T with the rule (6.6.1) will establish an
isomorphism of V with a dense but incomplete subspace of l2. �
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Exercises. 6.6.1. Prove part (i) of Theorem 6.6.4.
6.6.2. Explicitly describe an isomorphism between l2(Z) and l2(N). [Cf.

Example 5.5.3.]
6.6.3. Let V and V ′ be isomorphic inner product spaces. Prove that any

completions V̂ and V̂ ′ are also isomorphic. In particular any two comple-
tions of a given inner product space V are isomorphic.

6.6.4. Let V and V ′ be isomorphic and let V be complete. Prove that
V ′ is also complete.

6.6.5. Let {vλ} be an orthonormal basis of V and let T be an isomor-
phism of V onto V ′. Prove that {Tvλ} is an orthonormal basis of V ′.

6.6.6. Describe the completion V̂ of the “large” inner product space V
in Exercise 6.1.8.

6.6.7. How would you define the Hilbert space l2(Λ), where Λ is an
arbitrary index set? Prove that every complex Hilbert space V is isomorphic
to some space l2(Λ).





CHAPTER 7

Classical orthogonal systems and series

Both in pure and applied mathematics, one meets a large variety of
orthogonal systems besides the trigonometric functions. Boundary value
problems for differential equations are an important source. In fact, there
are large classes of eigenvalue problems for differential equations, whose
standardized eigenfunctions form orthogonal bases. Thus the “Legendre
eigenvalue problem” of mathematical physics leads to the Legendre polyno-
mials; cf. [79] and Section 8.3. In this and the next chapter we will study
these and other orthogonal polynomials from different points of view.

7.1. Legendre polynomials: Properties related to orthogonality

In Example 6.4.3, the Legendre polynomials Pn(x) were obtained by
orthogonalization of the sequence of powers {1, x, x2 · · · } in L2(−1, 1), and
subsequent standardization of the resulting pairwise orthogonal polynomials
p0(x), p1(x), p2(x), · · · through multiplication by suitable constants:

(7.1.1) Pn(x) =
1

pn(1)
pn(x), n = 0, 1, 2, · · · .

[Here it was assumed that pn(1) 6= 0; a proof will be given below.] Thus
Pn(x) is a polynomial in x of precise degree n, so that every polynomial in x
of degree ≤ n can be expressed as a linear combination of P0(x), P1(x), · · · ,
Pn(x). It is convenient to formulate the following

Definition 7.1.1. The Legendre polynomial Pn(x) is the unique poly-
nomial of degree n in x, which is orthogonal to 1, x, · · · , xn−1 in L2(−1, 1),
and for which Pn(1) = 1.

The existence and uniqueness of Pn can be proved by linear algebra, cf.
Exercises 7.1.1, 7.1.2, but the following construction does more: it gives an
explicit representation. Let Pn(x) be any polynomial of precise degree n
which is orthogonal to 1, x, · · · , xn−1 (there surely is such a polynomial; cf.

157
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Exercise 7.1.1):

(Pn(x), xs) =

∫ 1

−1

Pn(x)xsdx = 0, s = 0, 1, · · · , n− 1.

We now introduce auxiliary polynomials

Pn,1(x) =

∫ x

−1

Pn(t)dt, Pn,2(x) =

∫ x

−1

Pn,1(t)dt, · · · ,

Pn,k(x) =

∫ x

−1

Pn,k−1(t)dt, · · · , Pn,n(x) =

∫ x

−1

Pn,n−1(t)dt,

so that Pn,k(x) has precise degree n+ k. For n ≥ 1,

Pn,1(1) =

∫ 1

−1

Pn · 1 =
(
Pn(x), x0

)
= 0, Pn,1(−1) = 0.

Hence, integrating by parts,

(s + 1)
(
Pn,1(x), x

s
)

=

∫ 1

−1

Pn,1(x)dx
s+1

=
[
Pn,1(x)x

s+1
]1
−1

−
∫ 1

−1

Pn(x)x
s+1dx = 0, s = 0, 1, · · · , n− 2.

Next, for n ≥ 2,

Pn,2(1) =

∫ 1

−1

Pn,1 · 1 = 0, P ′
n,2(1) = Pn,1(1) = 0,

P ′
n,2(−1) = Pn,2(−1) = 0,

(s+ 1)(Pn,2(x), x
s) = −(Pn,1(x), x

s+1) = 0, s = 0, 1, · · · , n− 3.

Thus, inductively, for n ≥ k,

Pn,k(1) = P ′
n,k(1) = · · · = P

(k−1)
n,k (1) = 0,

Pn,k(−1) = P ′
n,k(−1) = · · · = P

(k−1)
n,k (−1) = 0,

(Pn,k(x), x
s) = 0, s = 0, 1, · · · , n− k − 1.

For k = n we run out of orthogonality relations, but find

Pn,n(1) = P ′
n,n(1) = · · · = P (n−1)

n,n (1) = 0,

Pn,n(−1) = P ′
n,n(−1) = · · · = P (n−1)

n,n (−1) = 0.
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It now follows from Taylor’s formula for Pn,n(x) around the point x = 1
that

Pn,n(x) = Pn,n(1) + P ′
n,n(1)(x− 1) + · · ·+ P (n−1)

n,n (1)
(x− 1)n−1

(n− 1)!

+ · · · + P (2n)
n,n (1)

(x− 1)2n

(2n)!
,

= P (n)
n,n(1)

(x− 1)n

n!
+ · · ·+ P (2n)

n,n (1)
(x− 1)2n

(2n)!
.

Thus the polynomial Pn,n(x) of degree 2n is divisible by (x − 1)n. It is
likewise divisible by (x+ 1)n, hence by (x2 − 1)n. Conclusion:

Pn,n(x) = αn(x2 − 1)n, Pn(x) = αnD
n(x2 − 1)n, D =

d

dx
,

where αn is a constant. We finally compute Pn(1) by Leibniz’s formula for
the n-th derivative of a product:

Pn(1) = αn

[
Dn{(x− 1)n(x+ 1)n}

]

x=1

= αn

n∑

k=0

(
n

k

)[
Dn−k(x− 1)nDk(x+ 1)n

]

x=1
.

The terms on the right are all equal to zero except for the term with k = 0:

Pn(1) = αn

(
n

0

)
n! 2n.

Thus we can impose the condition Pn(1) = 1 and it gives αn = 1/(2nn!):

Theorem 7.1.2. (Rodrigues’ formula for the Legendre polynomials).
One has

Pn(x) =
1

2nn!
Dn(x2 − 1)n

=
1 · 3 · · · (2n− 1)

n!
xn − 1 · 3 · · · (2n− 3)

2 · (n− 2)!
xn−2 + · · · .(7.1.2)

Notice that Pn is an even function when n is even, and an odd function
when n is odd.

Formulas for orthogonal polynomials such as the one above are named
after the French banker and mathematician Olinde Rodrigues (1795–1851;
[103]); cf. [104].
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0-1 1

11

Figure 7.1

Formula (7.1.2) will provide information on the general appearance of
the graph of Pn(x). When n ≥ 1, the even polynomial (x2 − 1)n has zeros
of multiplicity n at x = 1 and x = −1. Thus the derivative D(x2 − 1)n

(which is an odd polynomial) has zeros of multiplicity n−1 at x = ±1, and
by Rolle’s theorem, it has at least one zero between −1 and +1. In view of
the degree 2n− 1 of the derivative, there can be only one such zero, and it
must be simple; it lies at the origin, of course. When n ≥ 2 one finds that
the (even) polynomial D2(x2 −1)n of degree 2n−2 has zeros of multiplicity
n− 2 at ±1, and exactly two simple zeros between −1 and +1. For n ≥ k,
the polynomial Dk(x2 − 1)n of degree 2n− k has zeros of multiplicity n− k
at ±1, and exactly k simple zeros between −1 and +1. Taking k = n, we
obtain

Proposition 7.1.3. All n zeros of the Legendre polynomial Pn(x) are
real and simple, and they lie between −1 and +1.

The derivative P ′
n(x) will have exactly n− 1 simple zeros; they separate

the zeros of Pn(x). Thus the graph of Pn(x) on R has precisely n−1 relative
extrema. They occur at points between −1 and +1 which alternate with
the zeros. Beyond the last minimum point the graph is rising and free of
inflection points. On the closed interval [−1, 1] there will be n + 1 relative
extrema, including the end points; cf. Figure 7.1.

It will follow from Exercise 7.1.11 that the successive relative maximum
values of |Pn(x)| on [0, 1] form an increasing sequence.

Since the polynomials in x lie dense in C[−1, 1] while the continuous
functions lie dense in L2(−1, 1) [cf. Example 5.5.4], every function f(x)
in L2(−1, 1) can be approximated arbitrarily well in L2 sense by linear
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combinations of Legendre polynomials. Thus the Legendre polynomials
form an orthogonal basis for L2(−1, 1); cf. Theorem 6.5.4. With a little
work their norms may be obtained from Rodrigues’ formula:

‖Pn‖2 =

∫ 1

−1

PnPn = −
∫ 1

−1

Pn,1P
′
n = · · · = (−1)n

∫ 1

−1

Pn,nP
(n)
n

= (−1)n

∫ 1

−1

αn(x+ 1)n(x− 1)n · αn(2n)! dx

= (−1)n−1α2
n(2n)!

∫ 1

−1

(x+ 1)n+1

n+ 1
· n(x− 1)n−1dx = · · ·(7.1.3)

= α2
n(2n)!

∫ 1

−1

(x+ 1)2n

(n+ 1) · · · (2n)
n(n− 1) · · ·1 dx = · · · =

1

n+ 1
2

.

Theorem 7.1.4. (Basis property) Every function f in L2(−1, 1) is equal
to the sum of its Legendre expansion or Legendre series,

f =

∞∑

n=1

cn[f ]Pn, cn[f ] = (n+ 1/2)

∫ 1

−1

fPn.

Here the convergence is L2 convergence:
∫ 1

−1

∣∣f − sk[f ]
∣∣2 → 0 as k → ∞.

Orthogonal systems such as {Pn} satisfy a three-term recurrence relation
by which Pn+1 may be expressed in terms of Pn and Pn−1. Indeed, observing
that the leading coefficient in Pn+1 is equal to (2n + 1)/(n + 1) times the
leading coefficient in Pn [see Theorem 7.1.2], one finds that

(n+ 1)Pn+1(x) − (2n+ 1)xPn(x) = Qn−1(x),

a polynomial of degree ≤ n − 1. Here the left-hand side is orthogonal
to 1, x, · · · , xn−2 in L2(−1, 1), hence Qn−1(x) = βn−1Pn−1(x), a constant
multiple of Pn−1(x). The constant βn−1 may be evaluated by setting x = 1:
βn−1 = −n.

Proposition 7.1.5. (Recurrence relation) One has P0(x) = 1, P1(x) =
x, and

(n+ 1)Pn+1(x) − (2n+ 1)xPn(x) + nPn−1(x) = 0 (n ≥ 1).

A differential equation for Pn(x) may be obtained in a similar manner.
Let Rn(x) be the polynomial {(1 − x2)P ′

n(x)}′ of degree n. Integration by
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parts shows that Rn(x) ⊥ 1, x, · · · , xn−1 in L2(−1, 1):
∫ 1

−1

Rn(x)xsdx = −s
∫ 1

−1

(1 − x2)P ′
n(x)xs−1dx

= s

∫ 1

−1

Pn(x){(s− 1)xs−2 − (s + 1)xs}dx = 0, 0 ≤ s ≤ n− 1.

It follows that Rn(x) = γnPn(x). Comparison of the leading coefficients
shows that γn = −n(n + 1). Conclusion:

Proposition 7.1.6. (Differential equation) The Legendre polynomial
y = Pn(x) satisfies the differential equation

{(1 − x2)y′}′ + n(n+ 1)y = 0.

There are other ways to obtain the Legendre differential equation; cf.
Examples 8.3.1 below.

Another important consequence of the orthogonality is Gauss’s “quad-
rature formula” (after Carl Friedrich Gauss, Germany, 1777–1855; [35]).
This is a formula for numerical integration; see Exercise 7.1.6 and cf. [36].

Exercises. 7.1.1. Let Wk denote the subspace S(1, x, · · · , xk) of dimension
k+1 in L2(−1, 1). Prove that the vectors in Wn that are orthogonal toWn−1

form a 1-dimensional subspace. Deduce that the orthogonality condition
Pn ⊥Wn−1 determines Pn up to a constant multiple.

7.1.2. Let Pn be any real polynomial of precise degree n such that∫ 1

−1
PnQ = 0 for all real polynomials Q of degree ≤ n− 1. Deduce directly

that Pn must change sign at least n times (hence precisely n times) between
−1 and +1. In particular such a polynomial cannot vanish at an end point
±1.

7.1.3. Prove that the polynomials Dn{(x − a)n(x − b)n}, n ∈ N0, form
an orthogonal system, and in fact, an orhogonal basis, in L2(a, b).

7.1.4. Use the recurrence relation, Proposition 7.1.5, to compute P2, P3

and P4 from P0(x) = 1, P1(x) = x.
7.1.5. Use the differential equations for Pn and Pk to verify that (Pn, Pk) =

0 whenever k 6= n.
7.1.6. (Gauss quadrature) Let x1 < x2 < · · · < xk = xn,k < · · · < xn

denote the consecutive zeros of Pn. Prove that there are constants λj = λn,j

such that

(7.1.4)

∫ 1

−1

f(x)dx =
n∑

j=1

λjf(xj)
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for all polynomials f(x) of degree ≤ 2n− 1.
[The coefficients λj are determined by the condition that (7.1.4) must

be correct for f(x) = 1, x, · · · , xn−1, hence for all polynomials f of degree
≤ n−1. Furthermore, any f of degree ≤ 2n−1 can be written as PnQ+R,
with degQ < n, degR < n. Conclusion?]

7.1.7. (Continuation) (a) compute the numbers xj and λj for n = 2 and
n = 3.

(b) Prove that the constants λj = λn,j are all positive. [Choose f clev-
erly!]

7.1.8. Suppose g ∈ C[−1, 1] has all its power moments equal to zero:∫ 1

−1
g(x)xndx = 0, ∀n ∈ N0. Prove that g(x) ≡ 0. Can you prove a

corresponding result for f ∈ L2(−1, 1) ? For f ∈ L1(−1, 1) ?
7.1.9. Obtain the Legendre series for f(x) = |x| on [−1, 1]. Prove that

the series converges uniformly on [−1, 1]. Does the series converge pointwise
to |x| ?

[Observe that for even n, cn[f ] = (2n+ 1)Pn,2(0) = · · · .]
7.1.10. Use Rodrigues’ formula to show that

Pn(x) =
∑

0≤k≤ 1

2
n

(−1)k 1 · 3 · · · (2n− 2k − 1)

2k k!(n− 2k)!
xn−2k,

P2m(0) = (−1)m2−2m

(
2m

m

)
∼ (−1)m/

√
πm,

P ′
2m+1(0) = (2m+ 1)P2m(0).

7.1.11. Use the differential equation in Proposition 7.1.6 to show that
the function

v(x) = vn(x) = P 2
n(x) +

1

n(n+ 1)
(1 − x2)P ′

n(x)2

is strictly increasing on [0, 1]. Deduce that the relative maxima of |Pn(x)|
on [0, 1] form an increasing sequence, and that

|Pn(x)| ≤ Pn(1) = 1 on [−1, 1].

7.1.12. (Continuation) Show that
∫ 1

0
vn = 2

∫ 1

0
P 2

n = 1/(n+ 1/2),

vn(0) ∼ 2

πn
, vn(x) ≤ 1

(n+ 1
2
)(1 − x)

on [0, 1).
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7.1.13. Show that P ′
n − P ′

n−2 is orthogonal to 1, x, · · · , xn−2 on (−1, 1),
and deduce that P ′

n − P ′
n−2 = (2n− 1)Pn−1. Next prove that

P ′
n = (2n− 1)Pn−1 + (2n− 5)Pn−3 + (2n− 9)Pn−5 + · · · ,

and deduce that |P ′
n(x)| ≤ P ′

n(1) = n(n+ 1)/2 on [−1, 1].

7.1.14. Compute
∫ 1

−1
xnPs(x)dx for 0 ≤ s ≤ n, and deduce that xn is

equal to
∑

0≤k≤ 1

2
n

n(n− 1) · · · (2k + 2)

(2n− 2k + 1)(2n− 2k − 1) · · · (2k + 3)
(2n− 4k + 1)Pn−2k(x).

7.2. Other orthogonal systems of polynomials

All classical systems of orthogonal polynomials can be obtained by or-
thogonalization of the sequence of powers

(7.2.1) {1, x, x2, · · · },
and standardization of the resulting polynomials through multiplication by
suitable constants. On the interval (−1, 1) different weight functions lead to
different orthogonal systems. Thus orthogonalization of the sequence (7.2.1)

relative to the weight function w(x) = (1 − x2)−
1

2 leads to the Chebyshev
polynomials

(7.2.2) Tn(x)
def
= cos nθ

∣∣∣
cos θ=x

, n = 0, 1, 2, · · · ;

cf. Section 3.4 and Exercise 7.2.1 below. Similarly, orthogonalization of the
sequence (7.2.1) relative to the weight function w(x) = (1−x2)+ 1

2 on (−1, 1)
leads to the so-called Chebyshev polynomials of the second kind:

(7.2.3) Un(x)
def
=

sin(n+ 1)θ

sin θ

∣∣∣∣
cos θ=x

, n = 0, 1, 2, · · · .

More generally, the weight functions

(1 − x2)α, α > −1, and (1 − x)α(1 + x)β, α > −1, β > −1

on (−1, 1) lead to the ultraspherical, and the Jacobi polynomials, respec-
tively. [Carl G.T. Jacobi, German mathematician, 1809–1851; [58].]

Spherical polynomials and associated Legendre functions. We
will consider the important weight function (1 − x2)k, k ∈ N0, on (−1, 1),
which leads to the so-called spherical polynomials. For k = 0 these are
simply the Legendre polynomials Pn, n ≥ 0. For k = 1 one will obtain
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(scalar multiples of) their derivatives P ′
n, n ≥ 1. Indeed, by the differential

equation for Pn [Proposition 7.1.6],
∫ 1

−1

P ′
n(x)P ′

s(x)(1 − x2)dx =
[
(1 − x2)P ′

n(x)Ps(x)
]1
−1

−
∫ 1

−1

{
(1 − x2)P ′

n(x)
}′
Ps(x)dx

= n(n + 1)

∫ 1

−1

Pn(x)Ps(x)dx = 0, ∀ s 6= n.

Repeated differentiation of the differential equation for Pn shows that

the kth derivatives z = P
(k)
n (x) satisfy the differential equation

(7.2.4) −
{
(1 − x2)k+1z′

}′
= (n− k)(n+ k + 1)(1 − x2)kz.

It now follows inductively that the polynomials P
(k)
n form an orthogonal

system in L2(−1, 1; (1− x2)k). Indeed, we know this for k = 0 (and k = 1).
Assuming the result for order k, we will see that (7.2.4) gives it for order

k+1. Abbreviating P
(m)
n (x) to P

(m)
n in the following integrals and omitting

dx, one has
∫ 1

−1

P (k+1)
n P (k+1)

s (1 − x2)k+1 =
[
(1 − x2)k+1P (k+1)

n P (k)
s

]1
−1

−
∫ 1

−1

{
(1 − x2)k+1P (k+1)

n

}′
P (k)

s

= (n− k)(n+ k + 1)

∫ 1

−1

P (k)
n P (k)

s (1 − x2)k = 0, ∀ s 6= n.

Multiplying the “spherical polynomials” P
(k)
n (x) by the square root of

the weight function, hence by (1 − x2)
1

2
k, we obtain an orthogonal system

in L2(−1, 1). In fact, one can say more:

Theorem 7.2.1. For every k ∈ N0, the functions

P k
n (x)

def
= (1 − x2)

1

2
kP (k)

n (x), n = k, k + 1, · · · ,
called associated Legendre functions of order k, form an orthogonal basis
of L2(−1, 1). One has

‖P k
n‖2 =

∫ 1

−1

∣∣P k
n (x)

∣∣2dx =
(n + k)!

(n− k)!

1

n+ 1
2

.
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Proof. The functions P k
n , n ≥ k, will form a maximal orthogonal sys-

tem in L2(−1, 1). Indeed, suppose that for g ∈ L2(−1, 1),
∫ 1

−1

(1 − x2)
1

2
kP (k)

n (x)g(x)dx = 0, ∀n ≥ k.

Then all power moments of the L2 function (1 − x2)
1

2
kg(x) on (−1, 1) will

be equal to zero, since P
(k)
n has precise degree n − k. Thus (1 − x2)

1

2
kg(x)

has Legendre series 0, hence g(x) = 0 almost everywhere, so that g = 0 in
L2(−1, 1); cf. Theorem 7.1.4.

Furthermore, by (7.2.4) with k − 1, k − 2, · · · , 0 instead of k,
∫ 1

−1

∣∣P k
n

∣∣2 =

∫ 1

−1

(1 − x2)kP (k)
n · P (k)

n = −
∫ 1

−1

{
(1 − x2)kP (k)

n

}′
P (k−1)

n

= {n− (k − 1)}(n+ k)

∫ 1

−1

{
P k−1

n

}2
= · · ·

= [{n− (k − 1)} · · ·n] · [(n + k) · · · (n+ 1)]

∫ 1

−1

P 2
n .

�

First substituting z = (1 − x2)−
1

2
ky in (7.2.4), and in a second step,

setting x = cos θ, one obtains the associated Legendre equation of order k,
and the polar associated Legendre equation of order k, respectively:

Proposition 7.2.2. The associated Legendre function

y = P k
n (x) = (1 − x2)

1

2
kP (k)

n (x), k ∈ N0,

satisfies the differential equation

−
{
(1 − x2)y′

}′
+

k2

1 − x2
y = n(n+ 1)y, −1 < x < 1,

and the related function

w = P k
n (cos θ) = (sin θ)kP (k)

n (cos θ)

satisfies the differential equation

− 1

sin θ

d

dθ

(
sin θ

dw

dθ

)
+

k2

sin2 θ
w = n(n+ 1)w, 0 < θ < π.
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Laguerre polynomials (after Edmond Laguerre, France, 1834–1886;
[71]); cf. [72]). On unbounded intervals, weight functions are indispensable,
since over such intervals, the powers xn fail to be integrable. The simplest
weight function for the interval (0,∞) is e−x. Orthogonalization of the
sequence (7.2.1) in L2(0,∞; e−x), and subsequent standardization through
multiplication by suitable constants, lead to the Laguerre polynomials.

Definition 7.2.3. The Laguerre polynomial Ln(x) is the unique polyno-
mial of degree n in x which is orthogonal to 1, x, · · · , xn−1 in L2(0,∞; e−x),
and for which Ln(0) = 1.

The existence and uniqueness of Ln can be proved by linear algebra or
by the following explicit construction. Let Ln be any polynomial of precise
degree n such that

(Ln, x
s) =

∫ ∞

0

Ln(x)xse−xdx = 0, s = 0, 1, · · · , n− 1.

One may now introduce auxiliary functions Ln,k(x) by setting

(7.2.5) Ln,k(x)e
−x =

∫ x

0

Ln,k−1(t)e
−tdt, k = 1, · · · , n; Ln,0 = Ln.

Induction on k will show that Ln,k(x) is a polynomial of precise degree n
such that

(Ln,k, x
s) = 0 for s = 0, 1, · · · , n− k − 1, and

Ln,k(x) = O(xk) as xց 0.(7.2.6)

Indeed, assume that (7.2.5) holds for some k < n. Then for n ≥ 1, (re-
peated) integration by parts will give

Ln,k+1(x)e
−x = p(x)e−x + c

∫ x

0

e−tdt,

where deg p = n and c is a constant. However, since (Ln,k, 1) = 0, (7.2.5)
with k+1 instead of k shows that Ln,k+1(x)e

−x → 0 as x → ∞, hence c = 0,
so that Ln,k+1(x) = p(x). Furthermore, for s ≤ n − k − 2, application of
(7.2.5) with k + 1 instead of k and (7.2.6) show that

(s+ 1)(Ln,k+1, x
s) =

∫ ∞

0

{
Ln,k+1(x)e

−x
}
dxs+1

= −
∫ ∞

0

Ln,k(x)e
−xxs+1dx = 0.
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That Ln,k+1(x) = O(xk+1) at 0 follows immediately from (7.2.6) and (7.2.5).
Conclusion for k = n: Ln,n(x) is a polynomial of precise degree n that

is divisible by xn, hence Ln,n(x) = αnx
n. It follows that

Ln(x)e−x = Dn

{
Ln,n(x)e−x

}
= αnD

n
(
xne−x

)
.

Setting x = 0 one finds that Ln(0) = αn n!. Thus we can impose the
condition Ln(0) = 1 and it gives αn = 1/n!.

Theorem 7.2.4. (Rodrigues type formula for the Laguerre polynomials):

(7.2.7) Ln(x) =
1

n!
exDn

(
xne−x

)
=

n∑

k=0

(
n

k

)
(−x)k

k!
, n = 0, 1, 2, · · · .

Properties 7.2.5. All n zeros of the Laguerre polynomial Ln(x) are
positive real and simple. The norm of Ln is equal to 1:

‖Ln‖2 =

∫ ∞

0

L2
n(x)e−xdx = 1.

One has L0(x) = 1, L1(x) = −x+ 1 and the recurrence relation

(n+ 1)Ln+1(x) + (x− 2n− 1)Ln(x) + nLn−1(x) = 0.

Furthermore y = Ln(x) satisfies the differential equation

xy′′ + (1 − x)y′ + ny = 0.

The Laguerre polynomials Ln(x), n ∈ N0, form an orthonormal basis for
L2(0,∞; e−x). Equivalently, the Laguerre functions

Ln(x)e−
1

2
x, n ∈ N0,

form an orthonormal basis for L2(0,∞). A standard proof is based on the
theory of Laplace transforms [Chapter 11]; cf. Exercise 7.2.11.

Exercises. 7.2.1. Orthogonalize the sequence of powers {1, x, x2 · · · } in

L2
(
−1, 1; (1 − x2)−

1

2

)
to obtain polynomials tn(x), n ∈ N0. Show that

tn(1) 6= 0, and that division of tn(x) by tn(1) gives the Chebyshev polyno-
mial Tn(x).

Hint. The trigonometric polynomials tn(cos θ) of order n, n ∈ N0, form
an orthogonal system in L2(0, π). Hence tn(cos θ) is a linear combination of
1/2, cos θ, · · · , cosnθ. Etc.
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7.2.2. Orthogonalize the sequence {1, x, x2 · · · } in L2
(
−1, 1; (1 − x2)+ 1

2

)

to obtain polynomials un(x), n ∈ N0. Show that un(1) 6= 0, and that mul-
tiplication of un(x) by a suitable constant gives the Chebyshev polynomial
of the second kind Un(x).

7.2.3. Derive the differential equation (7.2.4) for z = P
(k)
n (x).

7.2.4. Derive the differential equations for the associated Legendre func-
tions in Proposition 7.2.2.

7.2.5. Prove that the functions P k
n (cos θ), n ≥ k, form an orthogonal

basis of L2(0, π; sin θ) for every k ∈ N0.
7.2.6. The polynomial Pn,k(x) of degree n+k [Section 7.1] is divisible by

(1−x)k and orthogonal to 1, x, · · · , xn−k−1 in L2(−1, 1). Prove that Pn,k(x)

must be a scalar multiple of (1 − x2)kP
(k)
n (x).

7.2.7. Prove that the n zeros of Ln(x) are positive real and distinct.
7.2.8. Prove that

(Ln, Ln) =

∫ ∞

0

Ln(x)Ln(x)e−xdx = −(Ln,1, L
′
n) = · · ·

= (−1)n(Ln,n, L
(n)
n ) = 1.

7.2.9. Derive the recurrence relation for the Laguerre polynomials after
showing that (n+1)Ln+1 +(x−2n−1)Ln is a polynomial of degree ≤ n−1
that is orthogonal to 1, x, · · · , xn−2 in L2(0,∞; e−x).

7.2.10. Derive the differential equation for y = Ln(x) after showing
that (D − 1){xL′

n(x)} is a polynomial of degree n that is orthogonal to
1, x, · · · , xn−1 in L2(0,∞; e−x).

7.2.11. Use the following facts about Laplace transforms [which will be

proved later] to show that the Laguerre functions Ln(x)e−
1

2
x, n ∈ N0, form

an orthogonal basis of L2(0,∞):
(i) For g in L1(0,∞) or L2(0,∞), the Laplace transform

(Lg)(s) =

∫ ∞

0

g(x)e−sxdx

is analytic in the right half-plane {Re s > 0};
(ii) The nth derivative of (Lg)(s) is given by

(Lg)(n)(s) =

∫ ∞

0

(−x)ng(x)e−sxdx, Re s > 0;

(iii) If Lg = 0, then g = 0.
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Hint. If g(x) ∈ L2(0,∞) is orthogonal to Ln(x)e−
1

2
x, ∀n, then g(x) ⊥

xne−
1

2
x in L2(0,∞), ∀n. What can you conclude about (Lg)(s) then?

7.2.12. The so-called generalized Laguerre polynomials L
(α)
n (x), n ∈ N0,

are obtained by orthogonalization of the sequence of powers {1, x, x2, · · · } in

L2(0,∞; xαe−x), α > −1, and standardization so as to make L
(α)
n (0) equal

to
(

n+α
n

)
. Prove that

L(α)
n (x)xαe−x =

1

n!
Dn
(
xn+αe−x

)
=

n∑

k=0

(
n + α

n− k

)
(−x)k

k!
.

7.2.13. Show that the generalized Laguerre polynomials y = L
(α)
n (x)

satisfy the differential equation xy′′ + (α + 1 − x)y′ + ny = 0.

7.3. Hermite polynomials and Hermite functions

We finally consider the doubly infinite interval (−∞,∞). In this case

the simplest weight function is e−x2

. Orthogonalization of the sequence

{1, x, x2, · · · } in L2
(
−∞,∞; e−x2

)
, and subsequent standardization through

multiplication by suitable constants, lead to the Hermite polynomials (named
after Charles Hermite, France, 1822–1901; [46]); cf. [47]).

Definition 7.3.1. The Hermite polynomial Hn(x) is the unique poly-
nomial of degree n in x which is orthogonal to the powers 1, x, · · · , xn−1 in

L2
(
−∞,∞; e−x2

)
and has leading coefficient 2n.

The definition leads to the following simple formula:

Theorem 7.3.2. (Rodrigues type formula for the Hermite polynomials):

(7.3.1) Hn(x) = (−1)nex2

Dne−x2

= 2n

(
xn − n(n− 1)

22
xn−2 + · · ·

)
.

In particular

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x.

Remark 7.3.3. In Mathematical Statistics it is customary to use a
slightly different weight function, namely, e−

1

2
x2

. The corresponding (mod-

ified) Hermite polynomials H̃n(x) have properties very similar to those of
the polynomials Hn(x); see Exercise 7.3.11.
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For the proof of Theorem 7.3.2 one introduces auxiliary functionsHn,k(x)
by setting

Hn,k(x)e
−x2

=

∫ x

−∞
Hn,k−1(t)e

−t2dt, k = 1, · · · , n, Hn,0(x) = Hn(x).

One then proves by induction on k that Hn,k(x) is a polynomial of precise
degree n− k such that

(7.3.2) (Hn,k, x
s) =

∫ ∞

−∞
Hn,k(x)x

se−x2

dx = 0, s = 0, 1, · · · , n− k − 1.

For k = n the conclusion will be that Hn,n(x) is a constant αn, so that

Hn(x)e−x2

= αnD
ne−x2

;

the value (−1)n for αn corresponds to leading coefficient 2n in Hn(x).

Properties 7.3.4. All n zeros of the Hermite polynomial Hn(x) are

real and simple. The norm of Hn is equal to 2
1

2
n(n!)

1

2π
1

4 :

‖Hn‖2 =

∫ ∞

−∞
H2

n(x)e−x2

dx = 2n n! π
1

2 .

One has the (differential) recurrence relations

DHn = H ′
n = 2nHn−1, Hn+1 = (2x−D)Hn,

Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0.(7.3.3)

The polynomial Hn(x) satisfies the differential equation

(7.3.4) y′′ − 2xy′ + 2ny = 0.

More important than the Hermite polynomials are the Hermite func-
tions:

Definition 7.3.5. The normalized Hermite functions are given by

(7.3.5) hn(x)
def
= ρnHn(x)e−

1

2
x2

, n ∈ N0, ρn = 2−
1

2
n (n!)−

1

2 π− 1

4 .

The Hermite functions form a very important orthonormal basis of
L2(R). A standard proof is based on a moment theorem; see Chapter 9
and cf. Exercise 7.3.10. We observe here that the substitution Hn(x) =

(1/ρn)e
1

2
x2

hn(x) in (7.3.3) gives the following fundamental relations:

(x+D)hn =
ρn

ρn−1
2nhn−1 =

√
2nhn−1,(7.3.6)

(x−D)hn =
ρn

ρn+1
hn+1 =

√
2n+ 2hn+1.(7.3.7)
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Applying the second relation with n + 1 replaced by n, n − 1, · · · , 1, we
obtain

hn

ρn

= (x−D)
hn−1

ρn−1

= (x−D)2 hn−2

ρn−2

= · · ·

= (x−D)n h0

ρ0

= (x−D)ne−
1

2
x2

.

Since D(xhn) = hn + xDhn, it also follows from (7.3.6), (7.3.7) that

(x2 −D2)hn = {(x−D)(x+D) + 1}hn

= (x−D)
√

2nhn−1 + hn = (2n+ 1)hn.

We have thus proved

Proposition 7.3.6. The normalized Hermite function hn can be repre-
sented by the formula

(7.3.8) hn(x) = ρn(x−D)ne−
1

2
x2

, n ∈ N0,

where ρn = 2−
1

2
n (n!)−

1

2 π− 1

4 . The function y = hn(x) satisfies the differen-
tial equation

(7.3.9) (x2 −D2)y = (2n+ 1)y.

Exercises. 7.3.1. Derive the Rodrigues type formula for Hn(x) in Theorem
7.3.2.

Hint. For k < n, integration by parts shows that

Hn,k+1(x)e
−x2

=

∫ x

−∞
Hn,k(t)e

−t2dt = p(x)e−x2

+ c

∫ x

−∞
e−t2dt,

where p(x) is a polynomial of precise degree n− k − 1 and c is a constant.
Now use (7.3.2) for the given k to show that c = 0, and then prove that(
Hn,k+1(x), x

s
)

= 0 for s = 0, 1, · · · , n− k − 2.
7.3.2. Show that the n zeros of Hn(x) are real and distinct.
7.3.3. Prove that

(Hn, Hn) = (−1)n
(
Hn,n, H

(n)
n

)

= (−1)nαn2nn!

∫ ∞

−∞
e−x2

dx = 2nn! π
1

2 .

7.3.4. Prove the relations (7.3.3).
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Hint. Show that H ′
n is a polynomial of degree n− 1 which is orthogonal

to 1, x, · · · , xn−2 in L2(R; e−x2

), and that (2x − D)Hn is a polynomial of
degree n+ 1 which is orthogonal to 1, x, · · · , xn.

7.3.5. Derive the differential equation (7.3.4) for y = Hn(x).
7.3.6. Deduce the relations (7.3.6), (7.3.7) from (7.3.3).
7.3.7. How many relative maxima and minima does Hn(x) have on R ?

How many does hn(x) have? Determine the largest value of x for which
hn(x) has an inflection point. Deduce that the last extremum of hn(x)
occurs at a point x <

√
2n+ 1.

7.3.8. Use the differential equation for hn to prove that the function

v(x) = vn(x) = hn(x)2 +
1

2n+ 1 − x2
h′n(x)2

is strictly increasing on the interval [0,
√

2n+ 1]. Deduce that the successive
relative maxima of |hn(x)| on [0,∞) form an increasing sequence. Make a
rough sketch of the graph for y = hn(x) on [0,∞).

7.3.9. The even polynomials H0, H2, H4, · · · form an orthogonal system
in L2(0,∞; e−x2

). Deduce that H2n(
√
x) is a scalar multiple of the (gener-

alized) Laguerre polynomial L
(− 1

2
)

n (x). Likewise, show that H2n+1(
√
x)/

√
x

is a scalar multiple of L
( 1

2
)

n (x). [Cf. Exercise 7.2.12.]
7.3.10. Prove that the even Hermite functions h2n(x), n ∈ N0, form an

orthogonal basis for L2(0,∞). [Cf. Exercise 7.2.11.]
7.3.11. (Modified Hermite polynomials H̃n(x) of Mathematical Statistics)

One may obtain the polynomials H̃n(x) by orthogonalization of the sequence

of powers {1, x, x2, · · · } in L2
(
R; e−

1

2
x2
)

– no standardization is necessary.

Show that

H̃n(x) = (−1)ne
1

2
x2

Dne−
1

2
x2

;

‖H̃n‖2 =

∫ ∞

−∞
H̃n(x)2e−

1

2
x2

dx = n! (2π)
1

2 ;

H̃n+1(x) − xH̃n(x) + nH̃n−1(x) = 0, H̃0(x) = 1, H̃1(x) = x,

H̃2(x) = x2 − 1, H̃3(x) = x3 − 3x, H̃4(x) = x4 − 6x2 + 3;

DH̃n(x) = nH̃n−1(x), (x−D)H̃n(x) = H̃n+1(x);

H̃ ′′
n(x) − xH̃ ′

n(x) + nH̃n(x) = 0.
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7.4. Integral representations and generating functions

The Legendre polynomials Pn(x). Cauchy’s formula for the nth derivative of
an analytic function f(s) [see Complex Analysis] has the form

(7.4.1) Dnf(x) =
n!

2πi

∫

C

f(s)

(s− x)n+1
ds.

Here C may be any positively oriented contour (piecewise smooth Jordan
curve) around the point x. Of course, C must be such that f is analytic in
the domain Ω enclosed by C and continuous on the closure Ω.

Thinking of Rodrigues’ formula for Pn(x) [Theorem 7.1.2], we substitute
f(s) = (s2 − 1)n/(2nn!) into (7.4.1) to obtain

Proposition 7.4.1. (Schläfli’s integral) (after the Swiss mathematician
Ludwig Schläfli, 1814-1895; [107].) One has

Pn(x) =
1

2πi

∫

C

(s2 − 1)n

2n(s− x)n+1
ds.

It is natural to take for C a circle with center at the point x. Setting

s = x+ ρeiφ, −π ≤ φ ≤ π,

where ρ is a nonzero constant (which need not be real!), one obtains

Pn(x) =
1

2πi

∫ π

−π

(
x2 − 1 + ρ2e2iφ + 2xρeiφ

)n

2nρn+1e(n+1)iφ
ρeiφi dφ

=
1

2π

∫ π

−π

{
x+

(x2 − 1)e−iφ + ρ2eiφ

2ρ

}n

dφ.

The formula becomes simpler when one takes ρ2 = x2 − 1, a choice which
is legitimate whenever x 6= ±1. The resulting integrand is even in φ. One
thus obtains, for either choice of the square root ρ = (x2 − 1)

1

2 ,

Proposition 7.4.2. (Laplace’s integral) One has

Pn(x) =
1

π

∫ π

0

{
x+ (x2 − 1)

1

2 cosφ
}n
dφ.

By inspection the formula is valid also for x = ±1, hence it holds for all
real and complex x. Taking in particular −1 ≤ x ≤ 1, the absolute value of
the integrand

{
x± i(1 − x2)

1

2 cosφ
}n

is equal to

{
x2 + (1 − x2) cos2 φ

} 1

2
n

=
{
1 − (1 − x2) sin2 φ

} 1

2
n ≤ 1.
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Corollary 7.4.3. For −1 ≤ x ≤ 1 one has |Pn(x)| ≤ 1.

Careful analysis shows that |Pn(x)| is also bounded by
√

2

πn(1 − x2)

on (−1, 1); see Szegő [117] Theorem 7.3.3, and cf. (8.2.5) below.
We will now derive a generating function for the Legendre polynomials

Pn(x).

Definition 7.4.4. Let {un}, n ∈ N0, be a sequence of numbers or func-
tions. A generating function for the sequence {un} is an analytic function
g(w) with a development of the type

∑∞
n=0 unw

n or
∑∞

n=0 unw
n/n!.

Using Laplace’s integral for Pn(cos θ), θ ∈ R, and taking |w| < 1, we
find

g(w)
def
=

∞∑

n=0

Pn(cos θ)wn

=

∞∑

0

1

π

∫ π

0

(cos θ + i sin θ cos φ)ndφ · wn =
1

π

∫ π

0

∞∑

0

· · · dφ

=
1

π

∫ π

0

1

1 − (cos θ + i sin θ cosφ)w
dφ.(7.4.2)

Here the inversion of the order of summation and integration is justified by
uniform convergence relative to φ. The final integral is readily evaluated:

Lemma 7.4.5. For |a| > |b| one has

I =
1

π

∫ π

0

dφ

a + b cosφ
=

1√
a2 − b2

=
1

a
p.v

(
1 − b2

a2

)− 1

2

.

Proof. This is a simple exercise in Complex Function Theory. Setting
eiφ = z, one obtains an integral along the positively oriented unit circle
C(0, 1) [center 0, radius 1]:

I =
1

2π

∫ π

−π

dφ

a + b cosφ
=

1

2π

∫

C(0,1)

1

a + 1
2
b(z + 1/z)

dz

iz

=
1

2πi

2

b

∫

C(0,1)

1

z2 + 2(a/b)z + 1
dz (b 6= 0).
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We write the denominator as (z− z1)(z− z2), where z1 and z2 are the roots
inside and outside the unit circle, respectively:

z1 = −(a/b) + (a/b)(1 − b2/a2)
1

2 , z2 = −(a/b) − (a/b)(1 − b2/a2)
1

2 .

Then the residue theorem gives

I =
2

b
× (residue of integrand at z1) =

2

b

1

z1 − z2
=

1

a(1 − b2/a2)
1

2

.

�

Returning to (7.4.2), we obtain

g(w) =
1

{
(1 − w cos θ)2 − (iw sin θ)2

} 1

2

=
1

(1 − 2w cos θ + w2)
1

2

= (1 − weiθ)−
1

2 (1 − we−iθ)−
1

2 .(7.4.3)

The result will certainly be valid for small |w|, say |w| < 1
2
. By analytic

continuation, it is valid throughout the unit disc B(0, 1), provided one takes

the analytic branch of the square root (1 − 2w cos θ + w2)
1

2 which is equal
to 1 for w = 0. In applications, w is usually real: w = r ∈ (−1, 1) or
w = r ∈ [0, 1). In those cases our square root is real and positive.

We thus obtain

Proposition 7.4.6. (Generating function) for the Legendre polynomi-
als) One has

1

(1 − 2r cos θ + r2)
1

2

=
∞∑

n=1

Pn(cos θ)rn, θ ∈ R, 0 ≤ r < 1.

Many properties of the Legendre polynomials may be derived directly
from the generating function; cf. Exercises 7.4.2–7.4.7 and Examples 8.3.1.

The Laguerre polynomials. The Rodrigues formula [Theorem 7.2.4] and the
Cauchy formula (7.4.1) immediately give the integral representation

(7.4.4) Ln(x) =
1

2πi

∫

C

snex−s

(s− x)n+1
ds,

where C may be any positively oriented contour around the point x. For
a crude bound on |Ln(x)| when x 6= 0 we take for C a circle of radius 2|x|
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about the point x:

|Ln(x)| ≤ 1

2π

|2x|ne|x|
|x|n+1

2π|x| = 2ne|x|.

Since |s/(s− x)| ≤ 2 on the circle C, (7.4.4) now shows that for |w| < 1/2
[appealing to uniform convergence],

∞∑

n=0

Ln(x)wn =
1

2πi

∫

C

∞∑

n=0

(
ws

s− x

)n
ex−s

s− x
ds

=
1

2πi

∫

C

1

1 − ws
s−x

ex−s

s− x
ds =

1

1 − w

1

2πi

∫

C

ex−s

s− x
1−w

ds

=
1

1 − w
exp

( −xw
1 − w

)
.(7.4.5)

In the final step we have used the residue theorem:7. the point s = x/(1−w)
lies inside C. The generating function in the last member is analytic for
w 6= 1, hence its power series expansion in the first member must be valid
for all |w| < 1 and every x.

The Hermite polynomials. The Rodrigues type formula [Theorem 7.3.2] and
Cauchy’s formula (7.4.1) give the integral

(7.4.6)
Hn(x)

n!
=

(−1)n

2πi

∫

Cx

ex2−s2

(s− x)n+1
ds =

1

2πi

∫

C0

e2xw−w2

wn+1
dw,

where Ca stands for a positively oriented contour about the point a. The
final member represents the coefficient of wn in the power series for e2xw−w2

.
Thus we immediately obtain the following generating function:

(7.4.7)

∞∑

n=0

Hn(x)
wn

n!
= e2xw−w2

.

This formula is valid for all w and x.

Exercises. 7.4.1. Use Laplace’s integral with x = cos θ to show that
∣∣∣∣
d

dθ
Pn(cos θ)

∣∣∣∣ ≤ n,

∣∣∣∣
d

dθ

{
sin θ

d

dθ
Pn(cos θ)

}∣∣∣∣ ≤ n2.

7.4.2. Show that

Pn(cos θ) =

n∑

k=0

γkγn−k cos(n− 2k)θ, γk =
1 · 3 · · · (2k − 1)

2 · 4 · · · (2k) .
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Hint. Expand the factors of the generating function, (1 − reiθ)−
1

2 and

(1 − re−iθ)−
1

2 .
7.4.3. Deduce from Exercise 7.4.2 that

|Pn(cos θ))| ≤ Pn(1) = 1, |P ′
n(cos θ)| ≤ P ′

n(1) = n(n+ 1)/2.

7.4.4. Show that for real or complex x and all sufficiently small |r|,

(7.4.8)
1

(1 − 2xr + r2)
1

2

=

∞∑

n=0

Pn(x)rn.

7.4.5. Using (7.4.8) as a definition for Pn(x), show that Pn(x) is a
polynomial in x of precise degree n such that Pn(1) = 1. Determine P0(x),
P1(x) and P2(x) directly from (7.4.8).

7.4.6. Use (7.4.8) and differentiation with respect to r to show that

(1 − 2xr + r2)

∞∑

1

nPn(x)rn−1 − (x− r)

∞∑

0

Pn(x)rn = 0.

Then use this result to derive the recurrence relation for the Legendre poly-
nomials [Proposition 7.1.5].

7.4.7. Use a direct computation(!) to show that for 0 < r, s < 1,
∫ 1

−1

dx

(1 − 2xr + r2)
1

2 (1 − 2xs+ s2)
1

2

=
1√
rs

log
1 +

√
rs

1 −√
rs
.

Deduce from this that the coefficients Pn(x) in the expansion (7.4.8) satisfy
the orthogonality relations

∫ 1

−1

Pn(x)Pk(x)dx =

{
0 for k 6= n,

1
n+ 1

2

for k = n.

7.4.8. (Another generating function for the Legendre polynomials) Use
Laplace’s integral to show that

∞∑

n=0

Pn(cos θ)
wn

n!
= ew cos θ 1

π

∫ π

0

eiw sin θ cos φdφ

= ew cos θJ0(w sin θ),

where J0(z) denotes the Bessel function of order zero. [For the final step,
cf. Chapter 12.]

7.4.9. Compute a generating function for the Chebyshev polynomials
Tn(x).
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7.4.10. Show that for 0 ≤ r < 1,
∑

n≥k

P (k)
n (x)rn−k = 1 · 3 · · · (2k − 1)(1 − 2xr + r2)−k− 1

2 .

7.4.11. Verify the step from the first to the second integral in formula
(7.4.6).

7.4.12. Use Exercise 7.2.11 to show that
∞∑

n=0

L(α)
n (x)wn = (1 − w)−α−1 exp

( −xw
1 − w

)
.





CHAPTER 8

Eigenvalue problems related to differential equations

In this chapter we will encounter some of the same orthogonal systems
as in Chapter 7, but now differential equations of mathematical physics will
play the leading role. The first two sections review the theory of second-
order linear differential equations. Following that, we study Sturm–Liouville
problems: eigenvalue problems for differential operators. As one applica-
tion we obtain solutions of Laplace’s equation in R3 – so-called harmonic
functions. This study leads to spherical harmonics and Laplace series; cf.
also Kellogg [61].

8.1. Second order equations. Homogeneous case

We will review some facts that are proved in the Theory of Ordinary
Differential Equations; cf. [21], [54]. In order to apply the results below
one has to put the (linear) differential equation into the standard form

(8.1.1) y′′ + f1(x)y
′ + f2(x)y = g(x), a < x < b.

It is assumed throughout that f1, f2 and g are continuous on (a, b), or
at least locally integrable, that is, integrable over every bounded closed
subinterval. By a solution of equation (8.1.1) is meant an indefinite integral
y = φ(x) of order two [that is, an indefinite integral of an indefinite integral]
which satisfies the differential equation almost everywhere on (a, b). In the
case of continuous f1, f2 and g, the solutions will then be of class C2, and
they will satisfy the equation everywhere on (a, b).

Proposition 8.1.1. For arbitrary x0 in (a, b) and arbitrary constants
c0 and c1, equation (8.1.1) has a unique solution on (a, b) that satisfies the
“initial conditions”

(8.1.2) y(x0) = c0, y′(x0) = c1.

If f1, f2 and g are continuous or integrable from the point a on we may
also take x0 = a, that is, there is then a unique solution y = φ(x) on (a, b)
such that φ(a) = c0 [or φ(a+) = c0] and φ′(a) = c1 [or φ′(a+) = c1].

181
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The solutions of the homogeneous equation: (8.1.1) with g = 0, will
form a two-dimensional linear space. Linearly independent solutions φ1 and
φ2 of the homogeneous equation cannot vanish at the same point. [Why
not?]

∗In the usual proof of Proposition 8.1.1, the initial value problem is
converted to a system of Volterra integral equations (after Vito Volterra,
Italy, 1860–1940; [122]) that may be solved by iteration. Setting y = y1,
y′ = y2, equation (8.1.1) goes over into the system of differential equations

y′1 = y2, y′2 = −f2y1 − f1y2 + g.

Integrating from x0 to x and using (8.1.2), the initial value problem takes
the equivalent form

y1(x) = c1 +

∫ x

x0

y2(t)dt,

y2(x) = c2 +

∫ x

x0

{−f2(t)y1(t) − f1(t)y2(t) + g(t)}dt.

Beginning with a first approximation for y1 and y2 under the integral signs,
for example y1,1(t) ≡ c1, y2,1(t) ≡ c2, one determines a second approxima-
tion y1,2(x), y2,2(x) from the equations above, etc. One can show that the
successive approximations will converge to a solution of the system.

For the standard second-order differential equations of mathematical
physics there is a practical alternative, the power series method. We will
first discuss the homogeneous equation

(8.1.3) y′′ + f1(x)y
′ + f2(x)y = 0,

now with analytic coefficients f1 and f2.

Proposition 8.1.2. If f1 and f2 are analytic on (a, b) [hence on a com-
plex neighborhood of every point x0 in (a, b)], all solutions of (8.1.3) are
analytic on (a, b), and conversely. If f1 and f2 are analytic on the disc
B(x0, r), the solution of the initial value problem (8.1.3), (8.1.2) on the in-
terval x0 − r < x < x0 + r or on x0 ≤ x < x0 + r is given by a convergent
power series of the form

φ(x) =

∞∑

n=0

cn(x− x0)
n.

Here the coefficients c2, c3, c4, · · · can be determined recursively from c0 and
c1.
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Example 8.1.3. The initial value problem

y′′ + y = 0, −b < x < b; y(0) = c0, y′(0) = c1,

has the solution φ(x) =
∑∞

0 cnx
n, where by termwise differentiation,

0 =

∞∑

2

n(n− 1)cnx
n−2 +

∞∑

0

cnx
n =

∞∑

2

{
n(n− 1)cn + cn−2

}
xn−2.

By the uniqueness of power-series representations, one must have

n(n− 1)cn + cn−2 = 0, ∀n ≥ 2.

It will follow that

(2k)! c2k = (−1)kc0, (2k + 1)! c2k+1 = (−1)kc1.

It often happens that one or both end points of (a, b) are singular points
for the differential equation (8.1.3). In the case of a this means that at
least one of the functions f1 and f2 fails to be integrable from a on. Simple
examples are

(8.1.4) y′′ +
1

x
y′ + y = 0 on (0,∞)

(Bessel’s equation of order zero);

(8.1.5) y′′ − 2x

1 − x2
y′ +

λ

1 − x2
y = 0 on (−1, 1)

(general Legendre equation).
In practice, a singular end point is frequently a so-called regular singular

point:

Definition 8.1.4. The (singular) point a is called a regular singular
point for the equation (8.1.3) on (a, b) if

f1(x) =
A(x)

x− a
and f2(x) =

B(x)

(x− a)2
,

where A(x) = a0 + a1(x − a) + · · · and B(x) = b0 + b1(x − a) + · · · are
analytic in a neighborhood of a. A similar definition holds for the end point
b.

Proposition 8.1.5. Let a be a regular singular point for equation (8.1.3)
on (a, b), with A(x) and B(x) in Definition 8.1.4 analytic in the disc B(a, r).
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Then the equation has one or two solutions on a < x < a + r [or for
0 < |x− a| < r] of the form

φ(x) =

∞∑

n=0

cn(x− a)ρ+n with c0 = 1.

Here the number ρ must satisfy the so-called indicial equation

(8.1.6) ρ(ρ− 1) + a0ρ+ b0 = 0.

For at least one root ρ (of maximal real part), there is a solution φ(x) as
indicated; the coefficients c1, c2, · · · may be determined recursively. [There
is of course a corresponding result for the end point b.]

Examples 8.1.6. The simplest example is given by the so-called equidi-
mensional equation

y′′ +
a0

x
y′ +

b0
x2
y = 0.

Here xρ is a solution if and only if ρ satisfies the indicial equation. In the
case of Bessel’s equation (8.1.4), the indicial equation is ρ2 = 0, and its only
root is ρ = 0. Setting y =

∑∞
0 cnx

n with c0 = 1, one obtains the condition
∞∑

2

n(n− 1)cnx
n−2 +

∞∑

1

ncnx
n−2 +

∞∑

2

cn−2x
n−2 = 0.

Hence c1 = 0 and n2cn + cn−2 = 0 for n ≥ 2. The solution is the Bessel
function of order zero,

J0(x)
def
= 1 − x2

22
+

x4

2242
− x6

224262
+ · · · .

In the case of the Legendre equation (8.1.5), both −1 and +1 are regular
singular points with indicial equation ρ2 = 0.

How do we find a “second solution” of equation (8.1.3) if the method
of Proposition 8.1.5 gives only one? We could of course expand about a
different point. However, if we are interested in the behavior of the second
solution near the singular point a, it is preferable to use

Proposition 8.1.7. Let φ1(x) be any solution of the homogeneous equa-
tion (8.1.3) on (a, b) different from the zero solution. Then the general so-
lution has the form φ = C1φ1 + C2φ2, where

(8.1.7) φ2(x) = φ1(x)

∫ x

x2

1

φ2
1(t)

exp

{
−
∫ t

x1

f1(s)ds

}
dt.
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Here x1 and x2 may be chosen arbitrarily in (a, b).

This result is obtained by substituting y = zφ1 in equation (8.1.3).

Example 8.1.8. In the case of Legendre’s equation (8.1.5) with λ =
n(n+1) one may take φ1(x) = Pn(x); cf. Proposition 7.1.6. Setting x1 = 0,
one obtains

∫ t

x1

f1(s)ds =

∫ t

0

−2s

1 − s2
ds = log(1 − t2),

φ2(x) = Pn(x)

∫ x

x2

1

P 2
n(t)

1

1 − t2
dt.

Taking x2 very close to 1 and x even closer, the approximation Pn(t) ≈ 1
on [x2, x] shows that φ2(x) becomes infinite like −(1/2) log(1−x) as xր 1.
Thus the only solutions of (8.1.5) with λ = n(n + 1) that remain bounded
as xր 1 are the scalar multiples of φ1(x) = Pn(x).

Exercises. 8.1.1. Compute the even and odd power series solutions φ(x) =
φ(x, λ) =

∑∞
0 cnx

n of the general Legendre equation (8.1.5). Show that the
radii of convergence are equal to one, unless the series break off. For which
values of λ will this happen?

8.1.2. Let φ1 6≡ 0 be a special solution of equation (8.1.3). Set y = zφ1

to obtain the general solution (8.1.7).
8.1.3. Compute the coefficients in the power series solution φ1(x) =

φ1(x, λ) =
∑∞

0 cn(1 − x)n of the general Legendre equation (8.1.5) for
which c0 = 1. Show that the power series has radius of convergence two
unless it breaks off.

8.1.4. (Continuation) How does the “second solution” of (8.1.5) behave
near x = 1 ?

8.1.5. Consider the differential equation

y′′ +
2

x
y′ +

(
1 − 2

x2

)
y = 0.

Show that the equation has a power series solution φ1(x) =
∑∞

0 cnx
n 6≡ 0

which converges for all x. Express the general solution φ in terms of φ1.
Determine the behavior near x = 0 of a solution φ2 which is not a scalar
multiple of φ1.
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8.1.6. Carefully discuss the behavior of the solutions of the differential
equation

y′′ − 1

x
y′ +

(
1 +

1

x2

)
y = 0

near the point x = 0.
8.1.7. Discuss the solutions of Bessel’s equation of order ν (≥ 0):

y′′ +
1

x
y′ +

(
1 − ν2

x2

)
y = 0, 0 < x <∞.

The solution which behaves like xν/{2νΓ(ν+1)} near x = 0 is called Jν(x).
For the complete power series, see Definition 11.7.3 below.

8.1.8. Let f1, f2 and g be analytic for |x| < r. Prove that the initial
value problem (8.1.1), (8.1.2) with x0 = 0 has a unique formal power series
solution φ(x) =

∑∞
0 cnx

n.
[A power series is called a formal solution if termwise differentiation and

substitution into the equation make the coefficients of all powers xn on the
left equal to those on the right.]

8.2. Non-homogeneous equation. Asymptotics

We now return to equation (8.1.1), assuming that we know two linearly
independent solutions of the corresponding homogeneous equation.

Proposition 8.2.1. Let φ1 and φ2 be linearly independent solutions of
the homogeneous equation (8.1.3) on (a, b). Then the general solution of the
non-homogeneous equation (8.1.1) has the form

φ(x) = C1φ1(x) + C2φ2(x) +

∫ x

x0

φ1(t)φ2(x) − φ2(t)φ1(x)

ω(t)
g(t)dt,

where

ω(x) = φ1(x)φ
′
2(x) − φ2(x)φ

′
1(x) = ω(x1) exp

{
−
∫ x

x1

f1(s)ds

}
.

Here x0 and x1 may be chosen arbitrarily in (a, b). The integral repre-
sents the special solution φ0(x) that satisfies the initial conditions y(x0) =
y′(x0) = 0.

The standard derivation of this result uses the method of “variation of
constants”. That is, one tries to solve the nonhomogeneous equation by
setting y = z1φ1(x) + z2φ2(x), where z1 and z2 are unknown functions. The
problem is simplified by imposing the additional condition z′1φ1 + z′2φ2 = 0.
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Application 8.2.2. In the case of the “model equation”

(8.2.1) y′′ + ν2y = g(x) on (a, b), ν a positive constant,

one may take φ1(x) = cos ν(x − x0), φ2(x) = (1/ν) sin ν(x − x0), for which
one has ω(x) ≡ 1. The general solution may then be written as

φ(x) = φ(x0) cos ν(x− x0) + φ′(x0)
sin ν(x− x0)

ν

+

∫ x

x0

sin ν(x− t)

ν
g(t)dt.

This result is very important for the asymptotic study of oscillatory func-
tions that satisfy certain differential equations, such as Legendre polynomi-
als, Hermite functions, Bessel functions, etc. The aim is to obtain a good
approximation for large values of a parameter or variable. It is then neces-
sary to put the appropriate differential equation (8.1.3) into the form (8.2.1).
This requires a transformation which removes the first-derivative term. As-
suming that f1 can be written as an indefinite integral, the removal will be
achieved by setting y = f · z with an appropriate function f , cf. Exercise
8.2.1:

Lemma 8.2.3. The substitution

y = exp

{
−1

2

∫ x

x1

f1(s)ds

}
· z

transforms the differential equation (8.1.3) into the equation

(8.2.2) z′′ + F2(x)z = 0, where F2 = f2 − (1/4)f 2
1 − (1/2)f ′

1.

One would now hope that F2(x) can be put into the form ν2 − g1(x)
with a relatively small function g1(x), so that the product g1(x)z(x) may be
treated as a perturbation term g(x) on the right-hand side of the equation.
As an illustration of the procedure we will obtain an asymptotic formula for
the Legendre polynomials Pn as n→ ∞; see (8.2.5) below.

Application 8.2.4. Setting x = cos θ in the differential equation for
Pn(x), one obtains the so-called polar Legendre equation for w = Pn(cos θ):

(8.2.3) w′′ + (cot θ)w′ + n(n+ 1)w = 0, 0 < θ < π;

cf. Proposition 7.2.2. For the removal of the first-derivative term one may

set w = f · y with f(θ) = exp
{
− (1/2)

∫ θ

π/2
cot s ds

}
= (sin θ)−

1

2 . It is thus
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found that y = (sin θ)
1

2Pn(cos θ) satisfies the differential equation

y′′ +

{
n(n + 1) − 1

4
cot2 θ − 1

2
(cot θ)′

}
y

= y′′ +

{
n(n + 1) +

1

4
+

1

4 sin2 θ

}
y = 0.

Treating −(1/4)(sin θ)−2y = −(1/4)(sin θ)−3/2Pn(cos θ) as a perturbation

g(θ), we find that y = (sin θ)
1

2Pn(cos θ) satsfies the following equation of
the desired type:

(8.2.4) y′′ + (n + 1/2)2y = −(1/4)(sin θ)−3/2Pn(cos θ), 0 < θ < π.

Thus, taking n even so that Pn(0) 6= 0, P ′
n(0) = 0, and using θ0 = π/2 as

base point, Application 8.2.2 will give the representation

(sin θ)
1

2Pn(cos θ) = Pn(0) cos(n+ 1/2)(θ − π/2)

+
1

n + 1
2

∫ θ

π/2

1

4
(sin t)−3/2 sin{(n+ 1/2)(x− t)}Pn(cos t)dt.

We now limit ourselves to a fixed interval δ ≤ θ ≤ π − δ with δ > 0.
Observing that Pn(0) = O(n− 1

2 ) while |Pn(cos θ)| ≤ 1, one first obtains

a uniform estimate (sin θ)
1

2Pn(cos θ) = O(n− 1

2 ). Introducing this estimate

into the integral and observing that Pn(0) = (−1)n/2(πn/2)−
1

2 + O(n−3/2),
one may conclude that

(8.2.5) Pn(cos θ) =
√

2 (πn sin θ)−
1

2 cos
{
(n+ 1/2)θ − π/4

}
+ O(n−3/2),

uniformly for δ ≤ θ ≤ π − δ. The final result is also true for odd n.

Exercises. 8.2.1. Let φ1 and φ2 be linearly independent solutions of the
homogeneous equation (8.1.3). Determine functions z1 and z2 such that the
combination y = z1φ1(x) + z2φ2(x) satisfies the non-homogeneous equation
(8.1.1). Cf. Proposition 8.2.1.

8.2.2. Starting with equation (8.1.3), determine f(x) such that the
substitution y = f(x)z leads to a differential equation for z of the form
z′′ + F2(x)z = 0.

8.2.3. (Continuation) Now complete the proof of Lemma 8.2.3.
8.2.4. Let Zν(x) be any solution on (0,∞) of Bessel’s equation of order

ν (≥ 0). Show that φ(x) = x
1

2Zν(x) satisfies a differential equation of the
form

z′′ + z =
µ

x2
z, µ ∈ R.
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Compute µ and determine the general solution of Bessel’s equation of order
ν = 1/2.

8.2.5. Let φ(x) be any real solution on (0,∞) of the differential equation
in Exercise 8.2.4.

(i) Prove that φ(x) satisfies an integral equation of the form

φ(x) = A sin(x− α) +

∫ x

x0

µ

t2
φ(t) sin(x− t) dt.

(ii) Deduce that φ(x) remains bounded as x→ +∞.
Hint. Taking x0 ≥ 2|µ| and A > 0, one will have |φ(x)| ≤ 2A on (x0,∞).

Indeed, the supposition that there would be a [smallest] value x1 > x0 with
|φ(x1)| = 2A would lead to a contradiction.

(iii) Show that for x→ ∞,

φ(x) = B sin(x− β) −
∫ ∞

x

µ

t2
φ(t) sin(x− t) dt

= B sin(x− β) + O(1/x).(8.2.6)

(iv) Deduce that the real Bessel functions Zν(x) for ν ≥ 0 behave like

B
sin(x− β)

x
1

2

+ O
(

1

x
3

2

)
as x→ +∞.

∗8.2.6. Prove that the formal power series obtained in Exercise 8.1.8
converges for |x| < r, so that it represents an actual solution there.

Hint. Because of Propositions 8.2.1, 8.1.7 and Lemma 8.2.3, it will be
sufficient to consider the case g = f1 = 0. Setting f2(x) =

∑∞
0 bnx

n one
will have |bn| ≤ AKn for any constant K > 1/r. Prove inductively that
|cn| ≤ CKn.

∗8.2.7. For a proof of Proposition 8.1.5 it is sufficient to discuss the
case a = 0, A(x) = 0; cf. Lemma 8.2.3. Accordingly, consider the equation
y′′ + {B(x)/x2}y = 0, where B(x) is analytic for |x| < r. Show that for a
formal solution of the form

(8.2.7) φ(x) =
∞∑

0

cnx
ρ+n with c0 = 1,

the number ρ must satisfy the indicial equation ρ(ρ−1)+b0 = 0. One of the
roots ρ1, ρ2, say ρ1, must have real part ≥ 1/2. Prove that the differential
equation does have a formal solution (8.2.7) with ρ = ρ1. Show moreover
that for ρ2 6= 0,−1/2,−1, · · · , there is also a formal solution (8.2.7) with
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ρ = ρ2. It may be proved as in Exercise 8.2.6 that the formal series solutions
converge for 0 < |x| < r, hence they represent actual solutions there.

8.3. Sturm–Liouville problems

This is the name given to two-point boundary value problems for second
order differential equations of a certain form. Prototype is the eigenvalue
problem which occurs in the case of the vibrating string [cf. Exercise 1.3.1]:

Example 8.3.1. Determine the values λ (“eigenvalues”) for which the
two-point boundary value problem

(8.3.1) −y′′ = λy, 0 < x < π; y(0) = 0, y(π) = 0,

has nonzero solutions y = y(x) (“eigenfunctions”).
The reason for choosing the present form, with minus y′′ on the left, is

that in this way the eigenvalues will be positive. Indeed, for complex λ 6= 0,
the solutions of the differential equation are

y = C1e
√
−λ x + C2e

−
√
−λ x = A cos

√
λ x+B sin

√
λ x.

Only the multiples of sin
√
λx satisfy the first boundary condition. The

second boundary condition now requires that sin
√
λπ be equal to zero.

Since sin z = 0 if and only if z = nπ, the eigenvalues λ of our problem must
satisfy the condition

√
λ = n, or λ = n2, with ±n ∈ N. Here ±n give the

same eigenvalue n2. The value λ = 0 does not work in eigenvalue problem
(8.3.1): a solution y = A + Bx of the differential equation −y′′ = 0 cannot
be an eigenfunction. Thus the characteristic pairs are

λ = n2, y = B sin nx, n = 1, 2, · · · (B 6= 0).

When one speaks of eigenvalues, there must be a linear operator L
around. In the present example it will be the operator with rule Ly =
−y′′, whose domain D consists of the C2 functions y(x) on [0, π] for which
y(0) = y(π) = 0. This is a so-called positive operator in L2(0, π), cf. Exercise
8.3.1:

(Ly, y) = −
∫ π

0

y′′ y =

∫ π

0

y′ y′ ≥ 0, ∀ y ∈ D.

In general we will consider differential equations which, through multi-
plication by a suitable function, can be [and have been] put into the standard
form

(8.3.2) −{p(x)y′}′ + q(x)y = λw(x)y, a < x < b.
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Here p, q and w are to be real-valued, with w positive almost everywhere,
and usually p as well. The functions 1/p, q and w must be locally integrable
on (a, b). A solution of the differential equation is an indefinite integral φ
on (a, b), for which pφ′ is also an indefinite integral, and which is such that
the differential equation is satisfied almost everywhere.

Regular Sturm–Liouville problems. For the time being we assume
that 1/p, q and w are integrable over the whole interval (a, b). Then the
solutions φ of the differential equation will be indefinite integrals on the
closed interval [a, b] and the same will be true for pφ′. The differential
equation (8.3.2) will now have a unique solution for every pair of initial
conditions y(a) = c0, (py′)(a) = c1, and likewise for conditions y(b) = d0,
(py′)(b) = d1. Imposing boundary conditions of the form

(8.3.3) c0(py
′)(a) − c1y(a) = 0, d0(py

′)(b) − d1y(b) = 0,

(with cj , dj real, and at least one cj 6= 0, at least one dj 6= 0) we speak of
a regular Sturm–Liouville problem. [References to Sturm and Liouville are
given at the end of this section.]

Theorem 8.3.2. The eigenvalues of a regular Sturm–Liouville problem
(8.3.2), (8.3.3) are real, and it is sufficient to consider real eigenfunctions.
[The other eigenfunctions are just scalar multiples of the real ones.] Eigen-
functions φ1 and φ2 belonging to different eigenvalues λ1 and λ2 are orthog-
onal to each other on (a, b) with respect to the weight function w:

∫ b

a

φ1φ2w = 0.

Proof. Let (λ1, φ1) and (λ2, φ2) be arbitrary characteristic pairs (eigen-
pairs) of our problem. Then

−(pφ′
j)

′ + qφj = λjwφj a.e. on (a, b), φj 6≡ 0.

Multiplying the relation for φ1 by φ2, the relation for φ2 by φ1 and sub-
tracting, we find

(λ1 − λ2)wφ1φ2 = −(pφ′
1)

′φ2 + (pφ′
2)

′φ1 = {−pφ′
1φ2 + pφ′

2φ1}′.
Integration over (a, b) [or over [α, β] ⊂ (a, b) and passage to the limit as
α ց a, β ր b] thus gives

(8.3.4) (λ1 − λ2)

∫ b

a

φ1φ2w =

∣∣∣∣
φ1(x) φ2(x)
pφ′

1(x) pφ′
2(x)

∣∣∣∣
x=b

x=a

.
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Now φ1 and φ2 both satisfy the boundary conditions (8.3.3). Hence for
x = a the rows of the determinant in (8.3.4) are proportional, and likewise
for x = b. It follows that the right-hand side of (8.3.4) is equal to zero, so
that

(8.3.5)

∫ b

a

φ1φ2w = 0 whenever λ1 6= λ2.

Conclusions. Suppose for a moment that (λ1, φ1) is a characteristic pair
(eigenpair) with nonreal λ1. Then (λ2, φ2) = (λ1, φ1) is a characteristic pair

with λ2 6= λ1. Hence by (8.3.5),
∫ b

a
φ1φ1w = 0, so that φ1 ≡ 0 [since w > 0

a.e.]. This contradiction proves that all eigenvalues must be real.
Taking λ real, all coefficients in the differential equation (8.3.2) are real,

hence the special solution φ0 for which φ0(a) = c0, (pφ′
0)(a) = c1 will be real.

All solutions φ of (8.3.2) that satisfy the first condition (8.3.3) are scalar
multiples of φ0. In particular every eigenfunction of our problem is a scalar
multiple of a real eigenfunction φ0 [and the eigenvalues have multiplicity
one]. Restricting ourselves to real eigenfunctions, formula (8.3.5) expresses
the orthogonality of eigenfunctions belonging to different eigenvalues. �

Definition 8.3.3. The Sturm–Liouville operator L corresponding to
our regular Sturm–Liouville problem has the rule

Ly =
1

w

{
− (py′)′ + qy

}
.

The domain D consists of all indefinite integrals y = y(x) on [a, b] for which
py′ is also an indefinite integral, while y and py′ satisfy the boundary condi-
tions (8.3.3). Restricting the domain to D0 =

{
u ∈ D : Lu ∈ L2(a, b;w)

}
,

we obtain a so-called symmetric operator L in L2(a, b;w):

(Lu, v) =

∫ b

a

{
− (pu′)′ + qu

}
v

= −
[
pu′v

]b
a
+

∫ b

a

pu′v′ +

∫ b

a

quv

=

∣∣∣∣
u(x) v(x)
pu′(x) pv′(x)

∣∣∣∣
x=b

x=a

+

∫ b

a

u
{
− (pv′)′ + qv

}
(8.3.6)

= (u, Lv), ∀u, v ∈ D0.

Singular Sturm–Liouville problems. If not all three functions 1/p,
q, w are integrable from a on, the end point a is said to be singular for
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the differential equation (8.3.2). In general, there will then be no solution
of (8.3.2) that satisfies the initial conditions y(a) = c0, (py′)(a) = c1. In
practice a is usually a regular singular point and then a standard boundary
condition will be

(8.3.7) y(x) must have a finite limit as xց a.

Together with the differential equation this condition will often imply that
(py′)(x) → 0 as x ց a. Corresponding remarks apply to b if it is a regular
singular point.

Theorem 8.3.2 has an extension to many singular Sturm–Liouville prob-
lems. In fact, the basic formula (8.3.4) often remains valid, provided we

interpret
∫ b

a
as the limit of

∫ β

α
as α ց a and β ր b, and similarly for the

right-hand side of (8.3.4).

Example 8.3.4. We consider the general Legendre equation (8.1.5) on
(−1, 1). Comparing

y′′ − 2x

1 − x2
y′ with − (py′)′ = −py′′ − p′y′,

one finds that the standard form (8.3.2) will be obtained through multipli-
cation by −p, where p′/p = −2x/(1 − x2). Taking log p = log(1 − x2) so
that p = 1 − x2, we obtain the standard form

(8.3.8) −{(1 − x2)y′}′ = λy on (−1, 1).

Since both end points are singular, one imposes the boundary conditions

(8.3.9) y(x) must approach finite limits as x→ ±1.

These conditions arise naturally in problems of Potential Theory; see Section
8.4.

The theory of Section 8.1 involving the indicial equation shows that
equation (8.3.8) or (8.1.5) has a solution of the form

φ(x) = φ(x, λ) =

∞∑

n=0

cn(1 − x)n, cn = cn(λ), with c0 = 1.

This solution will be analytic at least for |x−1| < 2. The “second solution”
around the point x = 1 will have a logarithmic singularity there, hence the
boundary condition at x = 1 is satisfied only by the scalar multiples of
φ. Around the point x = −1 the situation is similar; in fact, the “good
solution” there is just φ(−x, λ). For λ to be an eigenvalue, φ(x, λ) must be
a scalar multiple of φ(−x, λ); if it is, φ(x, λ) will be an eigenfunction.
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Formula (8.3.4) will be applicable to eigenfunctions φ and then the right-
hand side will be zero, since (1− x2)φ′(x) → 0 as x→ ±1. Thus the eigen-
values must be real, and eigenfunctions belonging to different eigenvalues
are pairwise orthogonal in L2(−1, 1).

What else can we say about the characteristic pairs? Replacing 1 − x
by t, the differential equation becomes

t(2 − t)
d2y

dt2
+ 2(1 − t)

dy

dt
+ λy = 0.

Setting y = φ(x, λ) =
∑∞

0 cnt
n one readly obtains the recurrence relation

cn+1 =
n(n+ 1) − λ

2(n+ 1)2
cn, n = 0, 1, 2, · · · ; c0 = 1.

Hence the power series for φ(x, λ) has radius of convergence R = lim cn/cn+1

= 2, unless it breaks off, in which case it reduces to a polynomial. If λ is an
eigenvalue, φ(x, λ) = cφ(−x, λ) must have an analytic extension across the
point −1 and, in fact, across all points of the circle |x − 1| = 2. [Indeed,
−1 is the only singular point of the differential equation on that circle.] In
this case the series for φ(x, λ) must have radius of convergence R > 2, and
thus the power series must break off. This happens precisely if for some n,
cn+1 = 0 or λ = n(n + 1). Then φ(x, λ) reduces to a polynomial pn(x) of
exact degree n. We thus obtain the characteristic pairs

λ = n(n + 1), φ(x) = φ(x, λ) = pn(x), n = 0, 1, 2, · · · .
Since the polynomials pn form an orthogonal system in L2(−1, 1), while
pn(1) = 1, they are precisely the Legendre polynomials Pn !

Basis property of eigenfunctions. Taking for granted that the eigen-
values of our Sturm–Liouville problems all have multiplicity one, we may
take one eigenfunction φn to every eigenvalue λn to obtain a so-called com-
plete system of eigenfunctions {φn}. For a regular Sturm–Liouville problem
such a system will be an orthogonal basis of the space L2(a, b;w), and the
same is true for the most common singular Sturm–Liouville problems. One
proves this by considering the inverse T = L−1 of the Sturm–Liouville op-
erator L (assuming for simplicity that 0 is not an eigenvalue, so that L is
one to one). The operator T has the same eigenfunctions as L and it is an
integral operator in L2(a, b;w) with square-integrable symmetric kernel. By
the theory of Hilbert and Schmidt for such integral operators, the eigenfunc-
tions of T (for different eigenvalues) form an orthogonal basis of L2(a, b;w).
[See Functional Analysis.]
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History. Sturm–Liouville problems were named after the French mathe-
maticians Charles-François Sturm (1803–1855; [115]) and Joseph Liouville
(1809–1882; [82]); cf. [116]. Hilbert–Schmidt integral operators were named
after Hilbert and Schmidt, whose names we have met before.

Exercises. 8.3.1. Let L be a positive linear operator in an inner product
space V , that is, the domain D and the range R of L belong to V , and
(Lv, v) ≥ 0 for all v ∈ D. Prove that any eigenvalue λ of L must be real
and ≥ 0.

8.3.2. Prove that any eigenvalue of a symmetric linear operator L in
an inner product space V must be real, and that eigenvectors belonging to
different eigenvalues must be orthogonal to each other.

8.3.3. Consider a regular Sturm–Liouville problem (8.3.2), (8.3.3) with
p > 0, q ≥ β and w > 0 a.e. on (a, b), and with c0c1 ≥ 0 and d0d1 ≤ 0.
Prove that the eigenvalues λ must be ≥ β.

8.3.4. Consider the (zero order) Bessel eigenvalue problem

y′′ +
1

x
y + λy = 0, 0 < x < 1; y(x) finite at x = 0, y(1) = 0.

(i) Show that the solutions of the differential equation that satisfy the

boundary condition at 0 have the form y = CJ0

(√
λ x
)
.

(ii) Prove that all eigenvalues λ are real and > 0, and that eigenfuntions
belonging to different eigenvalues are orthogonal to each other on (0, 1)
relative to the weight function w(x) = · · · .

(iii) Characterize the eigenvalues and show that they form an infinite
sequence λn → ∞. [Cf. Exercise 8.2.5, part (iv).]

8.3.5. Consider the associated Legendre eigenvalue problem of integral
order k ≥ 0:

−
{
(1 − x2)y′

}′
+

k2

1 − x2
y = λy, −1 < x < 1;

y(x) finite at x = ±1.

(i) Show that the eigenfunctions must have the form (1 − x)
1

2
kg(x) at

x = 1 and (1 + x)
1

2
kh(x) at x = −1, where g and h are analytic at x = 1,

and x = −1, respectively.
(ii) Substitute y = (1 − x2)

1

2
kz and determine the differential equation

for z.
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(iii) Show that the z-equation has a solution of the form

z = φ(x) = φ(x, λ) =

∞∑

0

cn(1 − x)n with c0 = 1.

Obtain a recurrence relation for the coefficients cn = cn(λ), and show that
the series for φ has radius of convergence 2 unless it breaks off.

(iv) Show that the characteristic pairs of the associated Legendre prob-
lem have the form

λ = (n + k)(n+ k + 1), y = c(1 − x2)
1

2
kpn(x), n = 0, 1, 2, · · · ,

where pn(x) is a polynomial of precise degree n.
(v) What orthogonality property do the eigenfunctions have? Relate

the polynomials pn−k, n ≥ k, to certain known polynomials.
8.3.6. Consider the Hermite eigenvalue problem

y′′ − 2xy′ + λy = 0, −∞ < x <∞; |y(x)| ≪ ex2

at ±∞.

Show that, in general, the differential equation has even and odd power
series solutions that grow roughly like ex2

as x→ ±∞. Prove that substan-
tially smaller solutions exist only if λ = 2n, n ∈ N0. What sort of functions
are the eigenfunctions? What orthogonality property do they have? Relate
the eigenfunctions to known functions.

8.3.7. The linear harmonic oscillator of quantum mechanics leads to the
following eigenvalue problem (cf. [43]):

−y′′ + x2y = Ey, −∞ < x <∞;

∫ ∞

−∞
|y(x)|2dx finite.

[Roughly speaking, |y(x)|2dx represents the probability to find the “oscil-
lating particle” in the interval (x − dx/2, x + dx/2). The eigenvalues E
correspond to the possible energy levels.]

One expects solutions of the differential equation that behave roughly
like e±

1

2
x2

at ±∞, so that it is reasonable to substitute y = e−
1

2
x2

z. Next
use the preceding Exercise to deduce that the eigenvalues are E = 2n + 1,
n ∈ N0. What are the corresponding eigenfunctions?

A more natural treatment of the linear harmonic oscillator will be given
in Section 9.7.

8.4. Laplace equation in R
3; polar coordinates

We will explore some connections between Potential Theory in R3, Le-
gendre polynomials, and associated Legendre functions. A typical problem
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X1

X2

X3

O

r
x

ϕ

θ

Figure 8.1

would be the Dirichlet problem for Laplace’s equation in the open unit ball
B = B(0, 1). Here one looks for a solution of Laplace’s equation in B,
in other words, a harmonic function, with prescribed boundary function f
on the unit sphere S = S(0, 1). An important role is played by spheri-
cal harmonics: a spherical harmonic of order n is the restriction to S of a
homogeneous harmonic polynomial of degree n in x1, x2, x3; cf. Section 8.5.

The Laplace operator ∆3 occurs in the differential equations for many
physical phenomena; cf. [75]. Here we need its form in polar coordinates
r, θ, φ. The latter are given by the relations

x1 = r sin θ cos φ, x2 = r sin θ sinφ, x3 = r cos θ,

with r = ‖x‖ = |x| ≥ 0, 0 ≤ θ ≤ π and −π < φ ≤ π; cf. Figure 8.1.
Laplace’s equation now becomes

∆3u ≡ ∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

≡ 1

r2

∂

∂r

(
r2 ∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2
= 0;(8.4.1)

cf. Exercises 8.4.1, 8.4.2. In the simpler applications we will have func-
tions u with axial symmetry, around the X3-axis, say. Such functions u are
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O

1

r

x

e3

x - e3

θ

Figure 8.2

independent of the angle φ. In this case Laplace’s equation becomes

(8.4.2) r2∆3u ≡ ∂

∂r

(
r2 ∂u

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
= 0.

Examples 8.4.1. The important solution with spherical symmetry about
the origin, that is, a solution u = u(r) depending only on r = |x|, is u = 1/r;
cf. Exercise 8.4.3. This is a solution of Laplace’s equation in R

3 \{0}. Since
the Laplacian ∆3 is translation invariant, u(x) = 1/|x − a| is harmonic in
R3 \ {a}. In particular u = u(r, θ) = 1/|x − e3| [where e3 = (0, 0, 1)] is
harmonic in the unit ball B(0, 1). Now

1

|x− e3|
=

1

(1 − 2r cos θ + r2)
1

2

(Figure 8.2) is the generating function of the Legendre polynomials Pn(cos θ)
[Proposition 7.4.6]. It follows that the sum of the series

u(r, θ) =
∞∑

n=0

Pn(cos θ)rn

satisfies Laplace’s equation in B. Here we may apply the operator r2∆3

term by term:

r2∆3u(r, θ)

=

∞∑

n=0

[
n(n + 1)Pn(cos θ) +

1

sin θ

d

dθ

{
sin θ

d

dθ
Pn(cos θ)

}]
rn = 0.
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[The differentiated series will be uniformly convergent for 0 ≤ r ≤ r0 < 1;
cf. the estimates in Exercise 7.4.1.] By the uniqueness theorem for power
series representations, it follows that the coefficient of rn must be equal to
zero for every n ∈ N0:

(8.4.3) − 1

sin θ

d

dθ

{
sin θ

d

dθ
Pn(cos θ)

}
= n(n + 1)Pn(cos θ), 0 < θ < π.

Here we have obtained another derivation of the differential equation for
the Legendre polynomials in polar form! [Cf. Proposition 7.2.2.] The cor-
responding Sturm–Liouville problem or Legendre eigenvalue problem will
be

− 1

sin θ

d

dθ

(
sin θ

dw

dθ

)
= λw, 0 < θ < π, where

w(θ) must approach finite limits as θ ց 0 and θ ր π.(8.4.4)

Observe that the boundary conditions are imposed by the geometry: for
θ = 0 and for θ = π, the point (r, θ) lies on the axis, and there w(θ)rn

must be continuous. Taking x = cos θ ∈ [−1, 1] as independent variable
and setting w(θ) = y(x), the present Sturm–Liouville problem goes over
into the one discussed in Example 8.3.4.

Proposition 8.4.2. Every harmonic function in B with axial symmetry
(around the X3-axis) may be represented by an absolutely convergent series

(8.4.5) u(r, θ) =
∞∑

n=0

cnPn(cos θ)rn.

Proof. Since the functions Pn(cos θ), n ∈ N0, form an orthogonal basis
of L2(0, π; sin θ), cf. Exercise 7.2.5, every function in that space can be
represented by a series

∑∞
0 dnPn(cos θ). In particular, for fixed r ∈ (0, 1),

a harmonic function u(r, θ) in B has the L2 convergent representation

u(r, θ) =

∞∑

n=0

vn(r)Pn(cos θ), with

vn(r) = (n+ 1/2)

∫ π

0

u(r, t)Pn(cos t) sin t dt.(8.4.6)

Since u is a C∞ function of r, so is vn, and we may compute the r-derivative
of r2dvn/dr by differentiation under the integral sign. Using equation
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(8.4.2), it now follows from repeated integration by parts and equation
(8.4.3) that vn(r) must satisfy the equidimensional equation

r2 d
2v

dr2
+ 2r

dv

dr
− n(n+ 1)v = 0.

The basic solutions are rn and r−n−1. Since our function vn(r) must have a
finite limit as r ց 0, we conclude that vn(r) = cnr

n, where cn is a constant.
The convergence of the series (8.4.5) for r = r1 ∈ (0, 1) in L2(0, π; sin θ)

implies absolute and uniform convergence for 0 ≤ r ≤ r0 < r1. Indeed, by
Bessel’s inequality or the Parseval relation, |cn|2‖Pn‖2r2n

1 ≤ ‖u(r1, θ)‖2, so

that |cn| ≤ A(r1)
√

(n+ 1/2) r−n
1 . �

Remarks 8.4.3. If u(r, θ) has a continuous boundary function f(θ) on
S, it is plausible that the coefficients cn must be the Legendre coefficients
of f in L2(0, π; sin θ). For a proof that the series in Proposition 8.4.2 with
these coefficients cn actually solves the Dirichlet problem, it is best to use
the Poisson integral for the unit ball; cf. Section 8.5.

The function Pn(cos θ)rn is harmonic in Rn. It may be expressed as a
homogeneous polynomial in x1, x2, x3 of degree n. Indeed, for 0 ≤ k ≤ n/2,

rn cosn−2k θ = r2k(r cos θ)n−2k =
(
x2

1 + x2
2 + x2

3

)k
xn−2k

3 .

Thus Pn(cos θ) is a special spherical harmonic of order n.

We now turn to a description of arbitrary harmonic functions u(r, θ, φ)
in B. Since the geometry requires periodicity in the variable φ with period
2π, we can expand

u(r, θ, φ) =
∑

k∈Z

uk(r, θ)e
ikφ, where

uk(r, θ) =
1

2π

∫ π

−π

u(r, θ, φ)e−ikφdφ.(8.4.7)

We observe that for harmonic u, every term in the series must be harmonic.
One may base a proof on termwise application of the operator r2∆3: the
resulting Fourier series must have sum zero. An equivalent procedure is to
apply the part of r2∆3 that involves derivatives with respect to r and θ to
the integral for uk. After using equation (8.4.1) under the integral sign, one
would apply two integrations by parts. Both methods lead to the equation

(8.4.8)
∂

∂r

(
r2 ∂uk

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂uk

∂θ

)
=

k2

sin2 θ
uk,
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0 < r < 1, 0 < θ < π.
Just like equation (8.4.2), this equation will have product solutions uk(r, θ)

= v(r)w(θ). Indeed, substituting such a product and separating variables,
(8.4.8) leads to the requirement that

1

v

d

dr

(
r2 dv

dr

)
=

1

w

{
− 1

sin θ

d

dθ

(
sin θ

dw

dθ

)
+

k2

sin2 θ
w

}

for all (r, θ). Here the left-hand side would be independent of θ, while
the right-hand side would be independent of r. Thus for equality the two
members must be independent of both r and θ, hence they must be equal to
the same constant, which we call λ. For w(θ) we thus obtain the following
Sturm–Liouville problem, the associated Legendre problem of order |k| in
polar form:

− 1

sin θ

d

dθ

(
sin θ

dw

dθ

)
+

k2

sin2 θ
w = λw, 0 < θ < π,

w(θ) must have finite limits as θ ց 0 and θ ր π.(8.4.9)

In fact, for continuity of uk(r, θ)e
ikφ = v(r)w(θ)eikφ on the axis, we must

have w(θ) → 0 as θ ց 0 or θ ր π when k 6= 0.
Taking x = cos θ ∈ [−1, 1] as independent variable and setting w(θ) =

y(x), (8.4.9) becomes the Sturm–Liouville problem of Exercise 8.3.5. By
the method described there and by Theorem 7.2.1, the characteristic pairs
of (8.4.9) are found to be

λ = n(n+ 1), w = cP |k|
n (cos θ) = c(sin θ)|k|P (|k|)

n (cos θ),

n = |k|, |k| + 1, · · · . A matching function v(r) will be rn [the differential
equation for v will be the same as in the proof of Proposition 8.4.2]. We
have thus found infinitely many product solutions

uk(r, θ) = v(r)w(θ) = crnP |k|
n (cos θ), n = |k|, |k| + 1, · · ·

of equation (8.4.8) that may be used in formula (8.4.7). More generally, one
could use superpositions of such product solutions,

(8.4.10) uk(r, θ) =
∑

n≥|k|
cnkP

|k|
n (cos θ)rn.

Proposition 8.4.4. If u is a harmonic function in B of the form
uk(r, θ)e

ikφ, the factor uk(r, θ) may be represented by a series (8.4.10) that
converges in L2(0, π; sin θ), and converges absolutely.
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The proof is similar to the proof of Proposition 8.4.2 [which is the special
case k = 0]. One has to observe that uk(r, θ) must be in L2(0, π; sin θ) and

that the functions P
|k|
n (cos θ), n ≥ k, form an orthogonal basis of that space;

cf. Theorem 7.2.1. For the absolute convergence one may use the inequalities

|cnk| ‖P |k|
n ‖ rn

1 ≤ ‖uk(r1, θ)‖ (r1 < 1) and

sup |P |k|
n | ≤

√
(n + 1/2) ‖P |k|

n ‖;(8.4.11)

cf. Exercise 8.5.6 below.

Theorem 8.4.5. Every harmonic function u in the unit ball B may be
represented by absolutely convergent series

u(r, θ, φ) =
∑

k∈Z

uk(r, θ)e
ikφ =

∑

k∈Z





∑

n≥|k|
cnkP

|k|
n (cos θ)rn




 eikφ

=
∑

n∈N0, |k|≤n

cnkP
|k|
n (cos θ)eikφrn(8.4.12)

=

∞∑

n=0

{
∑

−n≤k≤n

cnkP
|k|
n (cos θ)eikφ

}
rn.

Proof. Ignoring questions of convergence, the expansions are obtained
by combining (8.4.7) and (8.4.10). Let us now look at the double series in
(8.4.12), the series on the middle line. For r1 ∈ (0, 1), repeated application
of Bessel’s inequality shows that

|cnk|2
∥∥P |k|

n (cos θ)
∥∥2

r2n
1 ≤

∫ π

0

|uk(r1, θ)|2 sin θ dθ

≤ 1

2π

∫ π

0

{∫ π

−π

|u(r1, θ, φ)|2dφ
}

sin θ dθ.

Thus, using the second part of (8.4.11),

∣∣cnkP
|k|
n (cos θ)eikφrn

∣∣ ≤
√

(n+ 1/2)C(r1)

(
r

r1

)n

, ∀ k, ∀n ≥ |k|.

It follows that the double series in (8.4.12) is absolutely and uniformly
convergent for 0 ≤ r ≤ r0 < r1. The absolute convergence justifies the
various rearrangements in (8.4.12). �

In order to solve the Dirichlet problem for Laplace’s equation in the ball
B, one would try to make u(1, θ, φ) equal to a prescribed function f(θ, φ)
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on S = ∂B. Thus one would like to represent f(θ, φ) by a double series of

the form
∑
cnkP

|k|
n (cos θ)eikφ; see Section 8.5.

Exercises. 8.4.1. Setting x = r cosφ, y = r sin φ, show that

∂

∂x
= cosφ

∂

∂r
− sin φ

r

∂

∂φ
,

∂

∂y
= sin φ

∂

∂r
+

cos φ

r

∂

∂φ
.

Deduce that

∆2u ≡ ∂2u

∂x2
+
∂2u

∂y2
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂φ2
.

8.4.2. Setting x1 = s cosφ, x2 = s sinφ while keeping x3 = x3, and
subsequently setting x3 = r cos θ, s = r sin θ, show that

∆3u ≡ ∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

=
∂2u

∂s2
+

1

s

∂u

∂s
+

1

s2

∂2u

∂φ2
+
∂2u

∂x2
3

=
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

∂2u

∂θ2
+

cot θ

r2

∂u

∂θ
+

1

r2 sin2 θ

∂2u

∂φ2
.

8.4.3. Obtain the general solution of Laplace’s equation ∆3u = 0 which
is spherically symmetric about the origin [so that u depends only on r = |x|].

8.4.4. Show that the solutions of Laplace’s equation in the unit ball
with axial symmetry relative to the X3-axis are uniquely determined by
their values on the interval 0 < x3 < 1 of that axis.

8.4.5. Ignoring Proposition 7.4.6, use Exercise 8.4.4 to obtain a series
representation for the axially symmetric harmonic function 1/|x−e3| in the
unit ball.

8.4.6. Determine all product solutions u(r, θ) = v(r)w(θ) of Laplace’s
equation on R3 \ {0}. Single out the solutions that vanish at infinity.

8.4.7. Obtain a formula for the general axially symmetric solution of
Laplace’s equation in the exterior of the unit sphere that vanishes at infinity.

8.4.8. Given that u(r, θ, φ) is a solution of Laplace’s equation ∆3u = 0
in some domain Ω ⊂ R3, prove that

v(r, θ, φ)
def
=

1

r
u

(
1

r
, θ, φ

)

is a solution of Laplace’s equation ∆3v = 0 in the domain Ω′, obtained by
inversion of Ω with respect to the unit sphere.

[Inversion of the point (r, θ, φ) gives the point (1/r, θ, φ); v is called the
Kelvin transform of u. [Named after the British mathematical physicist
Lord Kelvin (William Thomson), 1824–1907; [62]; cf. [63].]
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8.5. Spherical harmonics and Laplace series

We introduce the notation

(8.5.1) Wnk(θ, φ) = P |k|
n (cos θ)eikφ = (sin θ)|k|P (|k|)

n (cos θ)eikφ,

n ∈ N0, −n ≤ k ≤ n. One sometimes uses the corresponding real functions,
Unk = ReWnk, 0 ≤ k ≤ n, and Vnk = ImWnk, 1 ≤ k ≤ n. Functions
Wmj and Wnk with j 6= k are orthogonal to each other in L2(−π < φ < π),
while functions Wmj and Wnk with m 6= n are orthogonal to each other in
L2(0 < θ < π; sin θ); cf. Theorem 7.2.1. One readily derives

Proposition 8.5.1. The functions Wnk form an orthogonal system in
L2 on the unit sphere S:

L2(S) = L2(0 < θ < π,−π < φ < π; sin θ),

with inner product given by

(f, g) =

∫

S

f(ξ)g(ξ)dσ(ξ) =

∫ π

0

∫ π

−π

f̃(θ, φ) g̃(θ, φ) sin θ dθ dφ.

Here ξ = (ξ1, ξ2, ξ3) stands for a unit vector, or a point of S; ξ1 =
sin θ cosφ, ξ2 = sin θ sin φ, ξ3 = cos θ. The area element dσ(ξ) of S has the
form sin θ dθ dφ. Finally

f̃(θ, φ) = f(sin θ cosφ, sin θ sin φ, cos θ),

and similarly for g̃(θ, φ). In practice we will carelessly write f(θ, φ) for

f̃(θ, φ).

Proof of the proposition. By Fubini’s theorem,
∫ π

0

∫ π

−π

P |j|
m (cos θ)eijφP |k|

n (cos θ)e−ikφ sin θ dθ dφ

=

∫ π

0

P |j|
m (cos θ)P |k|

n (cos θ) sin θ dθ

∫ π

−π

ei(j−k)φdφ.

Taking (m, j) 6= (n, k), the answer will be zero if j 6= k and also if j = k,
since in the latter case, necessarily m 6= n. �

Observe that for fixed r, the double series in formula (8.4.12) is just the
expansion of u(r, θ, φ) with respect to the orthogonal system {Wnk}.
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Proposition 8.5.2. The products

u = rnWnk(θ, φ) = rnP |k|
n (cos θ)eikφ

= rn(sin θ)|k|P (|k|)
n (cos θ)

(
e±iφ

)|k|
, |k| ≤ n,(8.5.2)

can be written as homogeneous harmonic polynomials in x1, x2, x3 of precise
degree n.

Indeed, by Section 8.4, every product (8.5.2) satisfies Laplace’s equation
∆3u = 0; cf. equation (8.4.8) and Proposition 7.2.2. Observe now that

P
(|k|)
n (cos θ) with |k| ≤ n is a polynomial in cos θ of degree n − |k|. Next

expanding
(
e±iφ

)|k|
= (cosφ ± i sinφ)|k|, one finds that rnWnk(θ, φ) can be

represented as a sum of terms

rn(sin θ)|k|(cos θ)n−|k|−2l(cosφ)|k|−m(sinφ)m

= r|k|−m(sin θ)|k|−m(cosφ)|k|−m · rm(sin θ)m(sinφ)m

× rn−|k|−2l(cos θ)n−|k|−2l · r2l

= x
|k|−m
1 xm

2 x
n−|k|−2l
3

(
x2

1 + x2
2 + x2

3

)l
,

with |k|+2l ≤ n and m ≤ |k|. Thus rnWnk(θ, φ) is equal to a homogeneous
harmonic polynomial of degree n. It follows that Wnk(θ, φ) is a spherical
harmonic of order n:

Definition 8.5.3. A spherical harmonic Yn = Yn(θ, φ) of order n is
the restriction to the unit sphere of a homogeneous harmonic polynomial of
degree n in x1, x2, x3. Cf. [113].

Examples of such harmonic polynomials are:

degree 0 : 1; degree 1 : x1, x2, x3;

degree 2 : x2
1 − x2

2, x1x2, x
2
2 − x2

3, x1x3, x2x3.

The relation Yn ↔ rnYn establishes a one to one correspondence between
spherical harmonics of order n and homogeneous harmonic polynomials of
degree n.

Proposition 8.5.4. The linear space Hn of the spherical harmonics
of order n is rotation invariant and has dimension 2n + 1. The functions
Wnk(θ, φ), −n ≤ k ≤ n, form an orthogonal basis of Hn. One has

‖Wnk‖2
L2(s) =

∫

S

|Wnk(ξ)|2dσ(ξ) =
(n+ |k|)!
(n− |k|)!

2π

n+ 1
2

.
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Proof. The Laplacian ∆3 is rotation invariant [cf. Exercise 8.5.1], and
so is the class of homogeneous polynomials of degree n. It follows that the
linear space Kn of the homogeneous harmonic polynomials of degree n is
rotation invariant, hence so is Hn.

We will determine dimHn from dimKn. Let

U(x1, x2, x3) =
∑

j+k≤n

αjk x
j
1x

k
2x

n−j−k
3 (with j, k ≥ 0)

be an element of Kn, that is,

0 = ∆3U =
∑

j+k≤n

{
j(j − 1)αjkx

j−2
1 xk

2x
n−j−k
3 + k(k − 1)αjkx

j
1x

k−2
2 xn−j−k

3

+(n− j − k)(n− j − k − 1)αjkx
j
1x

k
2x

n−j−k−2
3

}

=
∑

j+k≤n−2

{(j + 2)(j + 1)αj+2,k + (k + 2)(k + 1)αj,k+2

+(n− j − k)(n− j − k − 1)αjk} xj
1x

k
2x

n−2−j−k
3 .

In the final polynomial all coefficients must be equal to zero. Hence every
coefficient αjk with j+k ≤ n−2 can be expressed linearly in terms of αj+2,k

and αj,k+2. Continuing, we conclude that every αjk with j + k ≤ n− 2 can
be expressed as a linear combination of coefficients αpq with p+ q equal to
n or n− 1. The latter are the coefficients of products which either contain
no factor x3, or just one. These products are

xn
1 , x

n−1
1 x2, · · · , x1x

n−1
2 , xn

2 ; xn−1
1 x3, x

n−2
1 x2x3, · · · , x1x

n−2
2 x3, x

n−1
2 x3;

there are 2n− 1 of them.
The 2n+1 coefficients αpq in U with p+q ≥ n−2 can actually be selected

arbitrarily. Indeed, when they are given, one can determine exactly one set
of coefficients αjk with j+k ≤ n−2 such that all coefficients in ∆3U become
equal to zero; cf. Figure 8.3. If follows that dimKn = 2n+1 and hence also
dimHn = 2n+ 1.

The 2n+ 1 pairwise orthogonal elements Wnk, −n ≤ k ≤ n of Hn must
form an orthogonal basis. Finally, by Theorem 7.2.1,

‖Wnk‖2
L2(s) =

∫ π

0

∫ π

−π

∣∣P |k|
n (cos θ)eikφ

∣∣2 sin θ dθ dφ

=
(n+ |k|)!
(n− |k|)!

1

n+ 1
2

2π.



8.5. SPHERICAL HARMONICS AND LAPLACE SERIES 207

O j
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nn-3 n-2 n-1

j + k = n

j + k = n - 3

Figure 8.3

�

Theorem 8.5.5. The spherical harmonics Wnk, n ∈ N0, −n ≤ k ≤ n,
form an orthogonal basis of L2(S). Every function f ∈ L2(S) has a unique
representation as an L2 convergent so-called Laplace series,

f(ξ) =
∞∑

n=0

Yn[f ](ξ) =
∞∑

n=0

∑

−n≤k≤n

cnkWnk(θ, φ),

ξ = (sin θ cosφ, sin θ sinφ, cos θ). Here Yn(ξ) =
∑

−n≤k≤n cnkWnk(θ, φ) rep-
resents the orthogonal projection of f onto the subspace Hn of the spherical
harmonics of order n. One has the rotation invariant direct sum decompo-
sition

L2(S) = H0 ⊕H1 ⊕H2 ⊕ · · · ⊕ Hn ⊕ · · · .
Proof. By Proposition 8.5.1, the functions Wnk are pairwise orthogo-

nal. We will show that they form a maximal orthogonal system in L2(S),
hence, an orthogonal basis. To that end, suppose that g ∈ L2(S) is orthog-
onal to all functions Wnk. Then by Fubini’s theorem,

(8.5.3)

∫ π

0

{∫ π

−π

g(θ, φ)e−ikφdφ

}
P |k|

n (cos θ) sin θ dθ = 0
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for all k ∈ Z and all n ≥ |k|. Also by Fubini’s theorem, the finiteness of the
integral ∫ π

0

∫ π

−π

|g(θ, φ)|2 sin θ dθ dφ = ‖g‖2
L2(S)

implies that G(θ) =
∫ π

−π
|g(θ, φ)|2dφ exists (and is finite) for all θ’s outside

a set E of measure zero, and that G(θ) ∈ L1(0, π; sin θ). It follows that
g(θ, φ) is in L2 as a function of φ on (−π, π) for θ ∈ (0, π)\E. Furthermore,
by Cauchy–Schwarz, every function

gk(θ) =
1

2π

∫ π

−π

g(θ, φ)e−ikφdφ

will be in L2(0, π; sin θ). Thus by (8.5.3) and the orthogonal basis property

of the functions P
|k|
n (cos θ), n ≥ |k| [Theorem 7.2.1], gk(θ) = 0 for all

θ ∈ (0, π) outside some set Ek of measure zero. We now take θ ∈ (0, π)
outside the union E∗ of E and the sets Ek, k ∈ Z, which is still a set of
measure zero. Then all Fourier coefficients gk(θ) of g(θ, φ) are equal to zero,
hence by Parseval’s formula, G(θ) =

∫ π

−π
|g(θ, φ)|2dφ = 0, ∀ θ ∈ (0, π) \ E∗.

Integration with respect to θ now shows that

‖g‖2
L2(S) =

∫ π

0

G(θ) sin θ dθ = 0.

Hence g = 0 in L2(S), so that the functions Wnk indeed form an orthogonal
basis of L2(S).

Every function f ∈ L2(S) thus has a unique L2 convergent represen-
tation

∑
n,k cnkWnk; here the numbers cnk are simply the expansion coef-

ficients of f with respect to the orthogonal basis {Wnk}. Combining the
spherical harmonics of order n: cnkWnk(θ, φ), −n ≤ k ≤ n, into a single
term Yn[f ], we obtain another orthogonal series with L2 sum f , the Laplace
series

∑∞
0 Yn[f ]:
∥∥∥∥∥f −

p∑

n=0

Yn[f ]

∥∥∥∥∥

2

=
∑

n>p

n∑

k=−n

|cnk|2‖Wnk‖2 → 0 as p→ ∞.

It is clear that f can have only one decomposition
∑∞

0 Yn into spherical
harmonics of different order: Yn must be the orthogonal projection of f onto
the subspace Hn. Thus L2(S) is the direct sum of the subspaces Hn. �

There is an important integral representation for Yn[f ]:
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Proposition 8.5.6. The orthogonal projection of f onto Hn may be
written as

(8.5.4) Yn[f ](ξ) =
n + 1

2

2π

∫

S

f(ζ)Pn(ξ · ζ)dσ(ζ), ξ ∈ S.

Proof. Because the subspace Hn is rotation invariant, the orthogonal
projection Yn[f ] is independent of the choice of a rectangular coordinate
system in R3 (= E3). In order to evaluate Yn[f ](ξ), we temporarily choose
our coordinate system such that ξ = e3, in other words, ξ corresponds to
θ = 0. Observe now that all spherical harmonics Wnk(θ, φ) with k 6= 0
vanish at the point θ = 0, while Wn0(θ, φ) ≡ Pn(1) = 1. Hence

Yn[f ](ξ) =
∑

−n≤k≤n

cnkWnk(0, φ) = cn0 =
(f,Wn0)

(Wn0,Wn0)

=
n+ 1

2

2π

∫ π

0

∫ π

−π

f̃(θ, φ)Pn(cos θ) sin θ dθ dφ.

We finally put the integral into a form independent of the coordinate system.
To this end we replace the running point (θ, φ) in the integrand by ζ =

(sin θ cosφ, sin θ sin φ, cos θ) on S and f̃(θ, φ) by f(ζ). Observing that θ is
the angle between the vectors ξ = e3 and ζ , so that cos θ = ξ ·ζ , one obtains
formula (8.5.4). �

For the applications it is important to consider Abel summability of
Laplace series.

Proposition 8.5.7. For integrable f on the unit sphere S, the Abel
mean of the Laplace series,

Ar[f ](ξ)
def
=

∞∑

n=0

Yn[f ]rn, 0 ≤ r < 1,

where Yn[f ] is given by (8.5.4), is equal to the Poisson integral of f for the
unit ball B, cf. [94]:

P [f ](rξ)
def
=

∫

S

f(ζ)
1 − r2

4π(1 − 2rξ · ζ + r2)
3

2

dσ(ζ).

Proof. Substituting the integral for Yn[f ] into the definition of Ar[f ](ξ)
and inverting the order of summation and integration, one obtains

Ar[f ](ξ) =

∫

S

f(ζ)

∞∑

n=0

n + 1
2

2π
Pn(ξ · ζ) rn dσ(ζ).
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The series in the integrand is readily summed with the aid of the generating
function for the Legendre polynomials: for 0 ≤ r < 1,

∞∑

0

(n + 1/2)Pn(cos θ)rn = r
1

2

∂

∂r

∞∑

0

Pn(cos θ)rn+ 1

2

= r
1

2

∂

∂r

r
1

2

(1 − 2r cos θ + r2)
1

2

=
1

2

1 − r2

(1 − 2r cos θ + r2)
3

2

.(8.5.5)

�

Corollary 8.5.8. For continuous f on S, the Laplace series is uni-
formly Abel summable to f . The solution of the Dirichlet problem for
Laplace’s equation in the unit ball, with boundary function f , is given by
the Abel mean Ar[f ](ξ) of the Laplace series, or equivalently, by the Pos-
sion integral P [f ](rξ).

The proof is similar to the proof of the corresponding result for Fourier
series and the Dirichlet problem in the unit disc; cf. Section 3.6.

Exercises. 8.5.1. Prove that the Laplacian ∆3 is invariant under rotations
about the origin: if x = Py with an orthogonal matrix P , then

∑
j ∂

2/(∂x2
j )

is equal to
∑

k ∂
2/(∂y2

k).
8.5.2. Prove that the spherical harmonics Y = Yn(θ, φ) of order n are

solutions of the boundary value problem

− 1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
− 1

sin2 θ

∂2Y

∂φ2
= n(n+ 1)Y,

0 < θ < π, −π < φ < π,

Y (θ, φ) and (∂Y/∂θ)(θ, φ) remain bounded as

θ ց 0 and θ ր π,

for fixed θ, Y (θ, φ) can be extended to a C1 function

of φ of period 2π.

8.5.3. Use Exercise 8.5.2 to show that spherical harmonics Yn and Yp of
different order are orthogonal to each other in L2(S).

8.5.4. Let p(x) be any polynomial in x1, x2, x3 of degree ≤ n. Prove that
on the unit sphere S, p(x) is equal to a harmonic polynomial of degree ≤ n.

Hint. One may use the Laplace series for p(ξ), or prove directly that
p(x) is congruent to a harmonic polynomial of degree ≤ n, modulo the
polynomial (x2

1 + x2
2 + x2

3 − 1).
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8.5.5. Show that every spherical harmonic Yn of order n satsfies the
integral equation

Yn(ξ) =
n + 1

2

2π

∫

S

Yn(ζ)Pn(ξ · ζ)dσ(ζ), ξ ∈ S.

8.5.6. Use Exercise 8.5.5 to prove the inequalities

sup
ξ∈S

|Yn(ξ)| ≤

√
n+ 1

2

2π
‖Yn‖L2(s),

sup
x∈[−1,1]

∣∣P |k|
n (x)

∣∣ ≤
√

(n+ 1/2)
∥∥P |k|

n

∥∥
L2(−1,1)

.

8.5.7. Compute the coefficients cnk in the Laplace series for f [Theorem
8.5.5] to show that

Yn[f ](θ, φ) =

n∑

k=−n

cnkWnk(θ, φ)

can be evaluated as

n+ 1
2

2π

∫ π

0

∫ π

−π

f(θ̃, φ̃)

n∑

k=−n

(n− |k|)!
(n+ |k|)!P

|k|
n (cos θ)P |k|

n (cos θ̃)eik(φ−φ̃) sin θ̃ dθ̃ dφ̃.

8.5.8. Compare formula (8.5.4) and Exercise 8.5.7 to derive the so-called
Addition Theorem for spherical harmonics:

Pn(cos γ) =
n∑

k=−n

(n− |k|)!
(n+ |k|)!P

|k|
n (cos θ)P |k|

n (cos θ̃)eik(φ−φ̃).

Here γ is the angle between the vectors ξ = (sin θ cosφ, sin θ sinφ, cos θ) and

ζ = (sin θ̃ cos φ̃, sin θ̃ sin φ̃, cos θ̃).
[For n = 1 one obtains an old formula of spherical trigonometry:

cos γ = ξ · ζ = cos θ cos θ̃ + sin θ sin θ̃ cos(φ− φ̃).]

8.5.9. Prove Corollary 8.5.8.





CHAPTER 9

Fourier transformation of well-behaved functions

An introduction to the theory of Fourier integrals was given in Section
1.7. There it was made plausible that under reasonable conditions, one has
a Fourier inversion theorem as follows:

“If g is the Fourier transform of f , then

f is equal to
1

2π
times the reflected Fourier transform of g”.(9.0.1)

In this and the next chapters we will obtain precise conditions for Fourier
inversion.

Another important fact about Fourier transformation is the following:

“Under Fourier transformation, differentiation goes over into

multiplication by i times the (new) independent variable”.(9.0.2)

This property makes Fourier transformation very useful for solving certain
ordinary and partial differential equations.

9.1. Fourier transformation on L1(R)

Let f be integrable over R in the sense of Lebesgue, so that |f | is also
integrable over R. A sufficient condition would be that the improper Rie-
mann integrals of f and |f | over R exist. The product f(x)e−iξx with ξ ∈ R

will also be integrable over R since e−iξx is continuous and bounded.

Definitions 9.1.1. For f in L1(R) [that is, for integrable f on R], the

Fourier transform g = Ff = f̂ is the function on R given by

g(ξ) = (Ff)(ξ) = f̂(ξ)
def
=

∫

R

f(x)e−iξxdx, ξ ∈ R.

Equivalently, using independent variable x for the transform,

(Ff)(x) =

∫

R

f(t)e−ixtdt, x ∈ R.

213
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The reflected Fourier transform h = FRf = f̌ is simply the reflection
gR(ξ) = g(−ξ) of the Fourier transform:

h(ξ) = (FRf)(ξ) = f̌(ξ)
def
=

∫

R

f(x)eiξxdx = g(−ξ) = gR(ξ), ξ ∈ R.

Using independent variable x for the reflected transform, one has

(FRf)(x) =

∫ ∞

−∞
f(t)eixtdt = (Ff)(−x)

=

∫ ∞

−∞
f(−s)e−ixsds = (FfR)(x), x ∈ R.

The reflected Fourier transform of f is also the Fourier transform of the
reflection fR(x) = f(−x).

Remarks 9.1.2. We use e−iξx [with a minus sign in the exponent] in

the definition of f̂(ξ); cf. the formula for Fourier coefficients. Some authors
interchange the definitions of Ff and FRf , but this has little effect on the
theory. One sometimes puts a factor 1/

√
2π in front of the integrals for the

Fourier transform and the reflected Fourier transform. Such normalization
would give a more symmetric form to the Inversion theorem; cf. Section 9.2.

Integrable functions that differ only on a set of measure zero will have
the same Fourier transform. Thus Fourier transformation on L1(R) may be
considered as a transformation on the normed space L1(R); cf. Examples
5.3.4.

Examples 9.1.3. The computations in Example 1.7.1 give the following
Fourier pairs (where a > 0):

f(x) f̂(ξ) f̂(x)

e−a|x| 2a

ξ2 + a2

2a

x2 + a2

1

2π

2a

x2 + a2
e−a|ξ| e−a|x|

e−axU(x) =

{
e−ax, x > 0

0, x < 0

1

a + iξ

1

a + ix

Example 9.1.4. We will use Complex Analysis to obtain the useful pair

f(x) = e−ax2

, f̂(ξ) =
√

(π/a) e−ξ2/(4a) (a > 0).
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Figure 9.1

In particular for a = 1/2:

f(x) = e−
1

2
x2

, f̂(x) =
√

2π e−
1

2
x2

.

Thus the function e−
1

2
x2

is an eigenfunction of Fourier transformation. If
one would define the Fourier transform with the normalizing factor 1/

√
2π,

the function e−
1

2
x2

would be invariant under Fourier transformation.
Derivation. For f(x) = e−ax2

one has

f̂(ξ) =

∫

R

e−ax2

e−iξxdx =

∫

R

e−a{x+iξ/(2a)}2

e−ξ2/(4a)dx

= e−ξ2/(4a)

∫

L

e−az2

dz, where L = R + iξ/(2a);(9.1.1)

cf. Figure 9.1. (We are thinking of the case ξ > 0.) Now by Cauchy’s

theorem, the integral of the analytic function f(z) = e−az2

along the closed
rectangular path with vertices ±A, ±A + iξ/(2a) is equal to zero. Also,
the integrals along the vertical sides of the rectangle will tend to zero as
A→ ∞:

∣∣∣∣∣

∫ ±A+iξ/(2a)

±A

e−az2

dz

∣∣∣∣∣ ≤ max
side

∣∣∣e−az2
∣∣∣ · ξ/(2a)

= max
0≤y≤ξ/(2a)

e−a(x2−y2) · ξ/(2a) = e−aA2+ξ2/(4a) · ξ/(2a) → 0

as A→ ∞. Hence by (9.1.1),

f̂(ξ)eξ2/(4a) = lim
A→∞

∫ A+iξ/(2a)

−A+iξ/(2a)

e−az2

dz = lim
A→∞

∫ A

−A

e−az2

dz

= 2

∫ ∞

0

e−ax2

dx = 2

∫ ∞

0

e−ta−
1

2 (1/2) t−
1

2 dt = a−
1

2 Γ(1/2) =
√
π/a.
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Properties 9.1.5. If f is even [or odd, respectively], so is g = f̂ :

g(−ξ) =

∫ ∞

−∞
f(x)eiξxdx =

∫ −∞

∞
f(−t)e−iξtd(−t)

=

∫ ∞

−∞
±f(t)e−iξtdt = ±g(ξ).

The Fourier transform g of f ∈ L1(R) is bounded on R:

|g(ξ| ≤
∫

R

∣∣f(x)e−iξx
∣∣dx =

∫

R

|f | = ‖f‖1.

It is also continuous. Indeed, since for real a, b,

∣∣eib − eia
∣∣ =

∣∣∣∣
∫ b

a

eitdt

∣∣∣∣ ≤ min{2, |b− a|},

one has

g(ξ) − g(ξ0) =

∫

R

f(x)
(
e−iξx − e−iξ0x

)
dx =

∫ A

−A

· · · +

∫

|x|>A

· · · ,
∣∣∣∣

∫

|x|>A

· · ·
∣∣∣∣ ≤ 2

∫

|x|>A

|f(x)|dx < ε for some A = A(ε) and all ξ,

∣∣∣∣
∫ A

−A

· · ·
∣∣∣∣ ≤ max

|x|≤A

∣∣e−iξx − e−iξ0x
∣∣ ·
∫ A

−A

|f |

≤ |ξ − ξ0|A
∫

R

|f | < ε for |ξ − ξ0| < δ.

Furthermore, by the Riemann–Lebesgue Lemma 2.1.1 [which holds for un-
bounded intervals (a, b) as well as bounded intervals],

g(ξ) =

∫ ∞

−∞
f(x)e−iξxdx→ 0 as ξ → ±∞.

However, the Fourier transform g need not be in L1(R), as shown by the
final Example 9.1.3:

∫

R

∣∣∣∣
1

a + ix

∣∣∣∣ dx =

∫

R

1√
a2 + x2

dx = +∞.

Thus if g = Ff , one cannot expect that the inversion formula in (9.0.1):
f = {1/(2π)}FRg, is valid without suitable interpretation; cf. Section 9.2.

The most important property of Fourier transformation is the way it
acts on derivatives:
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Proposition 9.1.6. Let f be continuous and piecewise smooth, or at
any rate, let f be equal to an indefinite integral on R. Suppose also that
both f and its derivative f ′ are in L1(R). Then

(9.1.2) (Ff ′)(ξ) = iξ(Ff)(ξ), ∀ ξ ∈ R.

Proof. We first remark that f(x) tends to a finite limit as x → +∞:

f(x) = f(0) +

∫ x

0

f ′(t)dt→ f(0) +

∫ ∞

0

f ′(t)dt as x→ ∞.

Calling the limit f(∞), we observe that f(∞) must be zero. Indeed, if
f(∞) = c 6= 0, we would have |f(x)| > |c|/2 for all x larger than some
number A, and then f could not be in L1(R):

∫∞
A

|f(x)|dx would be infinite.
Similarly f(x) → f(−∞) = 0 as x→ −∞. Integration by parts now gives

(Ff ′)(ξ) =

∫ ∞

−∞
f ′(x)e−iξxdx = lim

A→∞

∫ A

−A

· · ·

= lim
A→∞

{[
f(x)e−iξx

]A
−A

−
∫ A

−A

f(x)(−iξ)e−iξxdx

}

= iξ

∫ ∞

−∞
f(x)e−iξxdx = iξ(Ff)(ξ).

�

Corollary 9.1.7. Suppose that f is an indefinite integral on R of order
n ≥ 1, that is, f is an indefinite integral, f ′ is an indefinite integral, · · · ,
f (n−1) is an indefinite integral. Suppose also that f, f ′, · · · , f (n−1), f (n) are
in L1(R). Then

(
Ff (k)

)
(ξ) = (iξ)k(Ff)(ξ) for 0 ≤ k ≤ n,

∣∣(Ff)(ξ)
∣∣ ≤ Ak

|ξ|k on R for 0 ≤ k ≤ n, Ak =
∥∥f (k)

∥∥
1
,

F
[
p(D)f

]
(ξ) = p(iξ)(Ff)(ξ), D = d/dx,

for every polynomial p(x) of degree ≤ n.

Exercises. 9.1.1. Show that f(x) = e−a|x|sgn x = e−a|x|x/|x| (with a > 0)

has Fourier transform f̂(ξ) = −2iξ/(ξ2 + a2),
(i) by direct computation; (ii) by application of Proposition 9.1.6 to the

indefinite integral f0(x) = e−a|x| on R.
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9.1.2. Show that the step function

σa(x) = U(x+ a)U(a− x) =

{
1 for |x| < a

0 for |x| > a,

with a > 0, has Fourier transform

σ̂a(ξ) = 2
sin aξ

ξ
.

9.1.3. Show that the “triangle function”

∆a(x) =

{
1 − |x|/a for |x| < a

0 for |x| ≥ a
(a > 0)

has Fourier transform

∆̂a(ξ) =
sin2 aξ/2

aξ2/4
.

9.1.4. Let fk → f in L1(R), that is,
∫

R
|f − fk| → 0. Prove that f̂k → f̂

uniformly on R.
9.1.5. Let f be an integrable function on R which vanishes for |x| > a.

Prove that f̂(ξ) can be extended to an entire function f̂(ζ) = f(ξ + iη),
that is, a function analytic for all complex ζ . What can you say about the

growth of f̂(ζ) as ζ → ∞ in different directions?

9.2. Fourier inversion

We have seen that the Fourier transform g = f̂ of an L1 function f
need not be in L1. In fact, Fourier transforms g(ξ) may go to zero very
very slowly; cf. Exercises 9.2.6, 9.2.7. However, if f is locally well-behaved,
the reflected Fourier transform FRg will exist as a Cauchy principal value
integral [here, a principal value at ∞]. More precisely,

(9.2.1) p.v.

∫

R

g(ξ)eixξdξ
def
= lim

A→∞

∫ A

−A

g(ξ)eixξdξ

will exist, and the limit will be equal to 2πf(x).

Example 9.2.1. For f(x) = 1 on (−a, a), = 0 for |x| > a, one has

g(ξ) = f̂(ξ) = 2(sin aξ)/ξ; cf. Exercise 9.1.2. For Fourier inversion we first
observe that for λ ∈ R,

(9.2.2) lim
A→∞

∫ A

−A

sinλξ

ξ
dξ = 2 · lim

A→∞

∫ A

0

sin λξ

ξ
dξ = π sgnλ;
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see Exercises 2.5.1 and (for sgn) 1.2.5. Now for our function g,

∫ A

−A

g(ξ)eixξdξ =

∫ A

−A

2
sin aξ

ξ
eixξdξ =

∫ A

−A

2
sin aξ

ξ
cosxξ dξ

=

∫ A

−A

{
sin(a+ x)ξ

ξ
+

sin(a− x)ξ

ξ

}
dξ.

Hence by (9.2.2),

lim
A→∞

∫ A

−A

g(ξ)eixξdξ = π sgn (a+ x) + π sgn (a− x)

=






2π for |x| < a,

π for x = ±a,
0 for |x| > a.

The result is equal to 2πf(x) for x 6= ±a.

Theorem 9.2.2. (First pointwise inversion theorem) Let f be in L1(R)
and differentiable at the point x, or at least, satisfy a Hölder–Lipschitz con-
dition at the point x. That is, there should be constants M, α and δ > 0
such that

|f(x+ t) − f(x)| ≤M |t|α for − δ < t < δ.

Then

f(x) =
1

2π
p.v.

∫

R

f̂(ξ)eixξdξ =
1

2π
lim

A→∞

∫ A

−A

f̂(ξ)eixξdξ.

If in addition f̂ is in L1(R), then

f(x) =
1

2π

(
FRf̂

)
(x) =

1

2π

(
F f̂R

)
(x)

in the ordinary sense.

We will see in Theorem 9.2.5 below that continuity of f at the point x

is sufficient for the inversion if f̂ is in L1(R).
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Proof. Inverting order of integration, one finds that
∫ A

−A

f̂(ξ)eixξdξ =

∫ A

−A

{∫

R

f(u)e−iξudu

}
eixξdξ

=

∫

R

f(u)du

∫ A

−A

ei(x−u)ξdξ =

∫

R

f(u)
2 sinA(x− u)

x− u
du(9.2.3)

=

∫

R

f(x± t)
2 sinAt

t
dt =

∫ δ

−δ

· · · dt+

∫

|t|>δ

· · · dt.

[The change in order of integration is justified by Fubini’s theorem. Indeed,
the first repeated integral is absolutely convergent:

∫ A

−A

{∫

R

∣∣f(u)e−iξu
∣∣du
} ∣∣eixξ

∣∣dξ = 2A

∫

R

|f(u)|du,

which is finite.]
Now let ε > 0 be given. By the Hölder–Lipschitz condition,

∣∣∣∣

∫ δ

−δ

{f(x+ t) − f(x)} 2 sinAt

t
dt

∣∣∣∣ ≤ 4Mδα/α, ∀A,

and this is < ε, ∀A, if we take δ small enough.(9.2.4)

Keeping δ fixed from here on, we also have
∫ δ

−δ

f(x)
2 sinAt

t
dt = 2f(x)

∫ δA

−δA

sin v

v
dv → 2πf(x)

as A→ ∞; cf. (9.2.2). Hence

(9.2.5)

∣∣∣∣
∫ δ

−δ

f(x)
2 sinAt

t
dt− 2πf(x)

∣∣∣∣ < ε for A > A1.

We finally remark that f(x + t)/t is integrable over δ < |t| < ∞ since
|1/t| < 1/δ there. Thus by the Riemann–Lebesgue Lemma,

(9.2.6)

∣∣∣∣

∫

|t|>δ

f(x+ t)
2 sinAt

t
dt

∣∣∣∣ < ε for A > A2.

Combining (9.2.3)–(9.2.6), we find that
∣∣∣∣
∫ A

−A

f̂(ξ)eixξdξ − 2πf(x)

∣∣∣∣ < 3ε for A > max{A1, A2}.
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Conclusion:

lim
A→∞

∫ A

−A

f̂(ξ)eixξdξ exists and = 2πf(x).

�

Example 9.2.3. Applying Fourier inversion to the Fourier pair

∆2(x) =

{
1 − |x|/2 for |x| < 2

0 for |x| ≥ 2
, ∆̂2(ξ) = 2

sin2 ξ

ξ2
,

cf. Exercise 9.1.3, we obtain the formula

1

2π

∫

R

2
sin2 ξ

ξ2
eixξdξ = ∆2(x).

In particular, for x = 0:

(9.2.7)

∫

R

sin2 ξ

ξ2
dξ = π.

Remark 9.2.4. For f in L1(R) and continuous at the point x one has
a result analogous to the Cesàro summability of a Fourier series:

(9.2.8) f(x) = lim
A→∞

1

2π

∫ A

−A

(
1 − |ξ|

A

)
f̂(ξ)eixξdξ.

[One could say that, although the integral for (FRf̂)(x) need not converge,
it is “Cesàro summable” to the value 2πf(x).] For the proof one would put
the right-hand side into the form

lim
A→∞

∫

R

f(x± t)
sin2 At/2

2πAt2/4
dt;

cf. Exercise 9.1.3. The positive kernel here has integral one; cf. Example
9.2.3.

As a corollary one obtains

Theorem 9.2.5. (Second pointwise inversion theorem) For an L1 func-
tion f on R which is continuous at the point x, and whose Fourier transform
is also in L1(R), one has

f(x) =
1

2π

(
FRf̂

)
(x).



222 9. FOURIER TRANSFORMS OF GOOD FUNCTIONS

Exercises. 9.2.1. Let f be in L1(R). Prove that Ff ≡ 0 implies f ≡ 0,
(i) if f satisfies a Hölder–Lipschitz condition at every point x;
(ii) if f is just continuous.
Carefully state the theorems which you have used.
9.2.2. Let f be an indefinite integral of order two on R such that f , f ′

and f ′′ are in L1(R). Prove that g = Ff is in L1(R) and that f = 1
2π

FRg.

9.2.3. Prove Remark 9.2.4, on the Cesàro summability of
∫

R
f̂(ξ)eixξdξ

to 2πf(x), when f ∈ L1(R) is continuous at the point x.
9.2.4. Prove Theorem 9.2.5.
9.2.5. Apply Fourier inversion to the Fourier pair of Exercise 9.1.3.

Deduce that for λ ∈ R, ∆a(ξ − λ) is the Fourier transform of

1

2π
eiλx sin2 ax/2

ax2/4
.

9.2.6. Let ∆a be the triangle function of Exercise 9.1.3 and suppose that
εn > 0, ρn > 0 and λn ∈ R, n = 1, 2, · · · , while

∑∞
1 εn < ∞. Verify that

the function

g(ξ) =

∞∑

1

εn∆ρn
(ξ − λn)

is the Fourier transform of an L1 function f . Next show that
∫ A

−A
g(ξ)dξ

may be almost of the same order of magnitude as A for a sequence of A’s
tending to ∞.

Hint. One has
∫ A

−A
g(ξ)dξ ≥

∑′ εnρn, where the summation extends
over those integers n for which −A ≤ λn − ρn, λn + ρn ≤ A.

9.2.7. (i) Functions f in L1(R) need not tend to zero as x → ∞. Give
an example.

(ii) Fourier transforms f̂(ξ) of L1 functions f may tend to zero quite
slowly as ξ → ∞. Indeed, prove that for any positive decreasing function
ε(ξ) with limit zero as ξ → ∞, there exist a sequence λn → ∞ and an L1

function f such that f̂(λn) ≥ ε(λn), n = 1, 2, · · · .

9.3. Operations on functions and Fourier transformation

In the following it is assumed as a minimum that the function f is
integrable over R; the letters g and h are used for the Fourier transform,
and the reflected Fourier transform, respectively:

g(ξ) =

∫

R

f(x)e−iξxdx, h(ξ) = gR(ξ) =

∫

R

f(x)eiξxdx.
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Original Fourier trf Reflected trf Remark

(i) f(λx)
1

|λ| g
( ξ
λ

) 1

|λ| h
( ξ
λ

)
λ real, 6= 0

(ii) f(x+ λ) eiλξg(ξ) e−iλξh(ξ) λ real

(iii) eiλxf(x) g(ξ − λ) h(ξ + λ) λ real

(iv) Df(x) iξg(ξ) −iξh(ξ) D = d/dx

(v) xf(x) iDg(ξ) −iDh(ξ) D = d/dξ

(vi) p(D)f(x) p(iξ)g(ξ) p(−iξ)h(ξ) p(x) =

(vii) p(x)f(x) p(iD)g(ξ) p(−iD)h(ξ)
∑n

0 akx
k

(viii) (f1 ∗ f2)(x) g1(ξ)g2(ξ) h1(ξ)h2(ξ) Section 9.4

(ix) f1(x)f2(x)
1

2π
(g1 ∗ g2)(ξ)

1

2π
(h1 ∗ h2)(ξ) Section 9.4

For suitably matched locally integrable functions fj on R one defines the
convolution by the formula

(9.3.1) (f1 ∗ f2)(x) =

∫

R

f1(x− y)f2(y)dy =

∫

R

f1(y)f2(x− y)dy.

For integrable f1 on R and bounded f2, the convolution is defined for all
x ∈ R. If both fj are in L1(R), the convolution integral will exist almost
everywhere, and f1 ∗ f2 will be integrable over R; see Section 9.4.
Discussion of rules (i)–(vii) below. Rules (i)–(iii) follow immediately from
the defining integrals. For example, if λ < 0,

∫ ∞

−∞
f(λx)e−iξxdx =

∫ −∞

∞
f(t)e−iξt/λ dt/λ

= −1

λ

∫ ∞

−∞
f(t)e−i(ξ/λ)tdt =

1

|λ| g
(
ξ

λ

)
,

while for any λ ∈ R,
∫ ∞

−∞
f(x+ λ)e−iξxdx =

∫ ∞

−∞
f(t)e−iξ(t−λ)dt = eiλξg(ξ).
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Sufficient conditions for the validity of rules (iv) and (vi) have been
stated in Proposition 9.1.6 and Corollary 9.1.7.

Rule (v) will be valid under the natural condition that both f and xf
are in L1(R). Indeed, by (iii),

(9.3.2)

∫

R

{
eiλx − 1

iλ
− x

}
f(x)e−iξxdx =

g(ξ − λ) − g(ξ)

iλ
− F [xf(x)](ξ).

Now observe that
∣∣∣∣
eiλx − 1

iλ
− x

∣∣∣∣ =

∣∣∣∣

∫ x

0

(
eiλt − 1

)
dt

∣∣∣∣

≤
∫ |x|

0

min{2, |λt|}dt ≤ min{2|x|, |λ|x2/2}.(9.3.3)

Denoting the integrand in (9.3.2) by Fλ(x), we will show that
∫

R
Fλ → 0

as λ → 0. To that end split
∫

R
Fλ as

∫ A

−A
+
∫
|x|>A

. For given ε > 0

one first chooses A so large that
∫
|x|>A

2|xf(x)|dx < ε, so that by (9.3.3),∣∣∣
∫
|x|>A

Fλ

∣∣∣ < ε, ∀λ, ξ. Keeping A fixed, one next takes δ > 0 so small that

|λ/2|
∫ A

−A
x2|f(x)|dx < ε for |λ| < δ, so that

∣∣∣
∫ A

−A
Fλ

∣∣∣ < ε for |λ| < δ and all

ξ. Then
∣∣∫

R
Fλ

∣∣ < 2ε for |λ| < δ and all ξ. Conclusion from (9.3.2):

lim
λ→0

g(ξ − λ) − g(ξ)

iλ
= ig′(ξ) exists and = F [xf(x](ξ).

Apparently, g′(ξ) may here be obtained by differentiation under the inte-
gral sign. Repeated application of rule (v) gives rule (vii) when the functions
f, xf, · · · , xnf are all in L1(R).

Example 9.3.1. One may compute F
[
e−ax2

]
(with a > 0) by observing

that y = e−ax2

satisfies the differential equation Dy = −2axy, so that by
Fourier transformation, iξ ŷ(ξ) = −2aiDŷ(ξ); see rules (iv) and (v). Inte-
grating the equation (1/ŷ)Dŷ = −ξ/(2a) one obtains log ŷ(ξ) − log ŷ(0) =

−ξ2/(4a), so that ŷ(ξ) = ŷ(0)e−ξ2/(4a). Here ŷ(0) =
∫

R
e−ax2

dx =
√
π/a; cf.

Example 9.1.4.

Example 9.3.2. (Hermite functions) By Proposition 7.3.6,

hn(x) = ρnHn(x)e−
1

2
x2

= ρn(x−D)ne−
1

2
x2

.
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The Fourier transform of e−
1

2
x2

is
√

(2π) e−
1

2
ξ2

. Thus

(Fh1)(ξ) = F
[
ρ1(x−D)e−

1

2
x2
]
(ξ) = ρ1(iD − iξ)F

[
e−

1

2
x2
]
(ξ)

= −iρ1(ξ −D)
√

(2π) e−
1

2
ξ2

= −i
√

(2π)h1(ξ).

In general,

(Fhn)(ξ) = F
[
ρn(x−D)ne−

1

2
x2
]
(ξ) = ρn(iD − iξ)nF

[
e−

1

2
x2
]
(ξ)

= (−i)nρn(ξ −D)n
√

(2π) e−
1

2
ξ2

= (−i)n
√

(2π)hn(ξ).

Using x as independent variable, we may write

(9.3.4) (Fhn)(x) = (−i)n
√

(2π) hn(x) :

the Hermite functions are eigenfunctions of Fourier transformation.

Exercises. 9.3.1. Given that F
[
e−

1

2
x2
]
(ξ) = ce−

1

2
ξ2

, deduce the value of c

from the Fourier inversion theorem. Use the answer to compute F
[
e−ax2

]

by rule (i).
9.3.2. Given that F [e−xU(x)](ξ) = 1/(1 + iξ), compute

F [exU(−x)], F [e−axU(x)], F [xe−axU(x)], F [e−axU(x− b)]

by using appropriate rules.
9.3.3. Prove that the operators F and (x2 −D2) commute when applied

to “good” functions. Deduce without identifying them that all “smooth and
small” eigenfunctions for the operator (x2−D2) must also be eigenfunctions
for F .

9.4. Products and convolutions

We begin with the important

Proposition 9.4.1. For f and φ in L1(R) one has

(9.4.1)

∫

R

Ff · φ =

∫

R

f · Fφ,
∫

R

FRf · φ =

∫

R

f · FRφ.

This proposition will later become the basis for an operational definition
of extended Fourier transformation. It says that

“Ff does to φ whatever f does to Fφ ”,

and similarly for FR.
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Proof. The formulas are direct applications of Fubini’s theorem. In-
verting order of integration, one finds that

∫

R

(Ff)(ξ)φ(ξ)dξ =

∫

R

{∫

R

f(x)e−iξxdx

}
φ(ξ)dξ

=

∫

R

f(x)dx

∫

R

φ(ξ)e−ixξdξ =

∫

R

f(x)(Fφ)(x)dx.

The second step is justified by the absolute convergence of one of the re-
peated integrals:

∫

R

|f(x)|dx
∫

R

|φ(ξ)e−ixξ|dξ =

∫

R

|f |
∫

R

|φ| is finite.

�

Rule (ix) in the table of Section 9.3 may be obtained by the same
method. In the derivation below, the convolution will show up in a nat-
ural manner.

Proposition 9.4.2. Let f1 and g2 be arbitrary functions in L1(R) and
set g1 = Ff1, f2 = (1/2π)FRg2 [so that formally, g2 = Ff2]. Then

(9.4.2)

∫

R

f1(x)f2(x)e
−iξxdx =

1

2π

∫

R

g1(ξ − t)g2(t)dt =
1

2π
(g1 ∗ g2)(ξ).

Proof. Inverting order of integration, we obtain

F [f1f2](ξ) =

∫

R

f1(x)

{
1

2π

∫

R

g2(t)e
ixtdt

}
e−iξxdx

=
1

2π

∫

R

g2(t)dt

∫

R

f1(x)e
−i(ξ−t)xdx =

1

2π

∫

R

g2(t)g1(ξ − t)dt.

�

The “dual result”, rule (viii) in the table of Section 9.3, is more directly
relevant for the applications:

Proposition 9.4.3. Suppose that f1 and f2 belong to L1(R). Then the
convolution

(f1 ∗ f2)(x) =

∫

R

f1(y)f2(x− y)dy

exists for almost all x ∈ R. Giving it arbitrary values for the exceptional x,
the resulting function f1 ∗ f2 belongs to L1(R), and

(9.4.3) F [f1 ∗ f2](ξ) = (Ff1)(ξ)(Ff2)(ξ) = g1(ξ)g2(ξ).
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Proof. We apply Fubini’s theorem to F (x, y) = f1(y)f2(x− y) on the
“rectangle” R × R. Since the repeated integral

∫

R

dy

∫

R

|F (x, y)|dx =

∫

R

|f1(y)|dy
∫

R

|f2(x− y)|dx

=

∫

R

|f1(y)|dy
∫

R

|f2(t)|dt

is finite, Fubini’s theorem says that F (x, y) is integrable over R2 and that
[∫

R2

F (x, y)dxdy =

] ∫

R

dy

∫

R

F (x, y)dx =

∫

R

dx

∫

R

F (x, y)dy.

More precisely, G(x) =
∫

R
F (x, y)dy – in our case,

∫
R
f1(y)f2(x−y)dy – will

exist for almost all x, the function G (= f1 ∗ f2) will be in L1(R), and
∫

R

G(x)dx

[
=

∫

R

f1 ∗ f2

]
=

∫

R

dx

∫

R

F (x, y)dy

=

∫

R

dy

∫

R

F (x, y)dx =

∫

R

f1(y)dy

∫

R

f2(x− y)dx =

∫

R

f1

∫

R

f2.

For any ξ ∈ R, the final argument will also give (9.4.3), that is, rule
(viii):

∫

R

(f1 ∗ f2)(x)e
−iξxdx =

∫

R

{∫

R

f1(y)f2(x− y)dy

}
e−iξxdx

=

∫

R

{∫

R

f1(y)e
−iξy · f2(x− y)e−iξ(x−y)dy

}
dx

=

∫

R

f1(y)e
−iξydy

∫

R

f2(x− y)e−iξ(x−y)d(x− y) = g1(ξ)g2(ξ).

�

Example 9.4.4. Let f be in L1(R) and t > 0. Problem: Determine the

function u(x) that has Fourier transform û(ξ) = f̂(ξ)e−tξ2

.
Solution. By rule (viii), u(x) will be the convolution of f(x) and the

inverse Fourier transform h(x) of e−tξ2

. Now since e−tξ2

is even, we obtain
from Example 9.1.4 or 9.3.1 that

h(x) =
1

2π
FR

[
e−tξ2

]
(x) =

1

2π
F
[
e−tξ2

]
(x) =

1

2
√
πt
e−x2/(4t).
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Conclusion:

u(x) = f(x) ∗ 1

2
√
πt
e−x2/(4t) =

1

2
√
πt

∫

R

f(x− y)e−y2/(4t)dy

=
1√
π

∫

R

f
(
x− 2

√
t w
)
e−w2

dw.

Exercises. 9.4.1. Let σ1(x) = 1 on (−1, 1), = 0 for |x| > 1. Determine
(σ1 ∗ σ1)(x):

(i) by direct computation,
(ii) with the aid of Fourier transformation and Exercises 9.1.2, 9.1.3.
9.4.2. Which functions have Fourier transforms (sin3 ξ)/ξ3, (sin4 ξ)/ξ4 ?

Compute the integrals of these Fourier transforms over R.
9.4.3. Let f(x) = |x|− 1

2 for 0 < x ≤ 1, = 0 for all other x ∈ R. Prove
that the convolution (f ∗ f)(x) does not exist at the point x = 0.

9.4.4. Let p(x) be a polynomial in x of degree n. Use Fourier transforma-
tion to determine a (formal) solution of the differential equation p(D)u = f
when f is in L1(R).

9.4.5. Use Fourier transformation to obtain a solution of the differential
equation u′′ − u = f when f is in L1(R). Why are there difficulties in the
case of the equation u′′ + u = f ? And in the case of u′ = f ?

9.4.6. Determine a solution of the integral equation

u(x) + 4

∫

R

e−|x−y|u(y)dy = f(x) on R for f ∈ L1(R).

9.4.7. Determine the convolution

1

2
√
πs

e−x2/(4s) ∗ 1

2
√
πt
e−x2/(4t) (s, t > 0).

9.4.8. Let f be in L1(R) and y > 0. Determine the function u(x) with

Fourier transform û(ξ) = f̂(ξ)e−y|ξ|.

9.5. Applications in mathematics

We will apply the preceding theory to some mathematical questions; cf.
Exercises 3.3.4 and 3.4.3.

Theorem 9.5.1. Fourier transformation on L1(R) is one to one: if
Ff1 = Ff2 for integrable functions fj on R, then f1(x) = f2(x) almost
everywhere, and hence f1 = f2 in the sense of the normed space L1(R).



9.5. APPLICATIONS IN MATHEMATICS 229

1

a - δ a b b + δ

τ

Figure 9.2

Proof. Setting f1 − f2 = f , let f be in L1(R) and g = f̂ = 0. We now
introduce a trapezoidal function τ(x) as follows; cf. Figure 9.2. For a < b
and δ > 0,

τ(x) = τ(x; a, b, δ)
def
=






1 for a ≤ x ≤ b

0 for x ≤ a− δ and x ≥ b+ δ

linear for a− δ ≤ x ≤ a and b ≤ x ≤ b+ δ.

Since τ is the difference of two triangle functions, the Fourier transform τ̂
is in L1(R). Hence by Theorem 9.2.2 on pointwise Fourier inversion, τ =
(1/2π) (FRτ̂ ) can be written as the Fourier transform ω̂ of an L1 function
ω. [Just take ω = (1/2π)τR.] Thus by Proposition 9.4.1,

∫ b+δ

a−δ

fτ =

∫

R

fτ =

∫

R

fω̂ =

∫

R

f̂ω = 0.

It follows that
∣∣∣∣
∫ b

a

f

∣∣∣∣ =

∣∣∣∣
∫ b

a

fτ

∣∣∣∣ =

∣∣∣∣
∫ a

a−δ

fτ +

∫ b+δ

b

fτ

∣∣∣∣ ≤
∫ a

a−δ

|f | +
∫ b+δ

b

|f |.

As δ ց 0, the right-hand member will tend to zero: indefinite integrals∫ x

x0
|f | are continuous. Thus

∫ b

a
f = 0. This holds for all intervals (a, b). In

particular then

F (x)
def
=

∫ x

0

f(t)dt = 0, ∀x.

Since by Integration Theory f(x) = F ′(x) almost everywhere [cf. the proof
of Theorem 4.1.1], the conclusion is that f(x) = 0 a.e. �

Theorem 9.5.2. (Moment theorem) Let f(x)eb|x| be integrable over R

for some number b > 0, and suppose that all power moments of f are equal
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O
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i b
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Figure 9.3

to zero:

(9.5.1)

∫

R

f(x)xndx = 0, n = 0, 1, 2, · · · .

Then f(x) = 0 almost everywhere on R.

Proof. Let g(ξ) =
∫

R
f(x)e−iξxdx be the Fourier transform of f . By

the hypothesis xnf(x) is in L1(R) for every n ∈ N0. Hence by the proof of
rule (v) in Section 9.3, g(ξ) is infinitely differentiable and

g(n)(ξ) = (−i)n

∫

R

xnf(x)e−iξxdx.

Thus by (9.5.1),

(9.5.2) g(n)(0) = 0, n = 0, 1, 2, · · · .
If we would know that g is analytic in a complex neighborhood Ω of the
real axis, it would now follow that g = 0 in a neighborhood of the origin
and hence on Ω. [Uniqueness Theorem for analytic functions; see Complex
Analysis.] In particular g = Ff would vanish on R and hence f(x) = 0 a.e.
[Theorem 9.5.1]. �

The desired analyticity will follow from

Proposition 9.5.3. Suppose that f(x)eb|x| with b > 0 is integrable over
R. Then the Fourier transform g(ξ) of f has an analytic extension g(ζ) =
g(ξ + iη) to the strip {|η| = |Im ζ | < b} [see Figure 9.3].

Proof. By the hypothesis the “complex Fourier transform”

g(ζ) =

∫

R

f(x)e−iζxdx =

∫

R

f(x)eηxe−iξxdx
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is well-defined for |η| ≤ b. We expand the integrand according to powers of
ζ − ζ0:

f(x)e−iζx = f(x)e−iζ0xe−i(ζ−ζ0)x

=

∞∑

n=0

f(x)e−iζ0x (−ix)n(ζ − ζ0)
n

n!
.(9.5.3)

For ζ0 = ξ0 + iη0 with |η0| < b and |ζ − ζ0| < b − |η0|, this series may be
integrated term by term to obtain

(9.5.4) g(ζ) =

∫

R

f(x)e−iζxdx =

∞∑

n=0

cn(ζ − ζ0)
n,

where

(9.5.5) cn =
1

n!

∫

R

(−ix)nf(x)e−iζ0xdx, n = 0, 1, 2, · · · .

The justification is by norm convergence of the series (9.5.3) in L1(R), cf.
Examples 5.4.6:

N∑

n=0

∫

R

∣∣∣∣f(x)e−iζ0x (−ix)n(ζ − ζ0)
n

n!

∣∣∣∣dx =

∫

R

{
N∑

0

∣∣∣∣ · · ·
∣∣∣∣

}
dx

≤
∫

R

{ ∞∑

0

|f(x)|eη0x |x|n|ζ − ζ0|n
n!

}

dx =

∫

R

|f(x)|eη0x+|ζ−ζ0||x| dx

≤
∫

R

|f(x)|eb|x|dx [a finite constant], ∀N.

Since ζ0 was arbitrary in the strip {|Im ζ | < b}, it follows from (9.5.4) that
g(ζ) is analytic in that strip. One may also observe that by (9.5.5),

g(n)(ζ0) =

∫

R

(−ix)nf(x)e−iζ0xdx.

�

Returning to the Moment Theorem 9.5.2, we remark that the growth
condition “f(x)eb|x| in L1(R) for some number b > 0” cannot be relaxed
very much; cf. Exercise 9.5.2. Theorem 9.5.2 has an important corollary:

Theorem 9.5.4. The normalized Hermite functions

hn(x) = ρnHn(x)e−
1

2
x2

, n = 0, 1, 2, · · ·
[Definition 7.3.5] form an orthonormal basis of L2(R).
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Proof. We will show that {hn} is a maximal orthogonal system. To
that end, suppose that g ∈ L2(R) is orthogonal to all functions hn. Since
Hn(x) is a polynomial of precise degree n, it will follow that g is orthogonal

to all products xne−
1

2
x2

:
∫

R

g(x)e−
1

2
x2

xndx = 0, ∀n ∈ N0.

Now as the product of two L2 functions, the function

g(x)e−
1

2
x2 · eb|x| = g(x) · e− 1

2
x2

eb|x|

is integrable over R for every constant b [use Cauchy–Schwarz]. Hence by

Theorem 9.5.2, g(x)e−
1

2
x2

= 0 a.e., so that g = 0 in the sense of L2(R). �

Exercises. 9.5.1. Let
∑∞

0 cnhn =
∑∞

0 cn[f ]hn be the Hermite expansion
of f in L2(R). Prove that

(i) sk =
∑k

0 cnhn → f in L2(R) as k → ∞;

(ii)
∑∞

0 |cn|2 =
∫

R
|f |2;

(iii) The series
∑∞

0 cnFhn =
∑∞

0 (−i)n
√

(2π) cnhn converges to a function
g in L2(R). [This g will be the “generalized Fourier transform” of f as
defined in Section 10.2 below].

9.5.2. For 0 < pk ր ∞,
∑∞

1 1/pk <∞, define

f(x) =

∞∏

k=1

(1 − ix/pk)
−1.

(i) Taking pk = k2, show that |f(x)| ≈ e−c
√

|x| (with c > 0) as |x| → ∞.
Hint. If n(t) is the number of pk ≤ t [here n(t) ≈

√
t], one has

log |f(x)| = −
∫ ∞

0

x2

x2 + t2
n(t)

t
dt.

(ii) Show that f(z) = f(x + iy) is analytic for y > −p1 = −1, and that
|f(x+ iy)| ≤ |f(x)| for y ≥ 0.

(iii) Prove that g(ξ) = f̂(ξ) is of class C∞ on R and use Cauchy’s theorem
to show that g(ξ) = 0 for ξ < 0.

(iv) Show that
∫

R
xnf(x)dx = 0, n = 0, 1, 2, · · · .

(v) Prove corresponding results for the case where pk = k1+δ with δ > 0.
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9.6. The test space S and Fourier transformation

In order to extend Fourier transformation to a large class of functions
and generalized functions, one needs suitable test functions; cf. Chapter 4.
In the years 1945–1950, Laurent Schwartz introduced the test space S of
“rapidly decreasing functions with rapidly decreasing derivatives”; cf. [110].
It consists of the C∞ functions φ on R with the following property: φ(x)
and its derivatives φ′(x), φ′′(x), · · · tend to zero faster than every negative
power of x as x→ ±∞. Equivalently one has

Definition 9.6.1. S consists of the C∞ functions φ on R for which each
of the so-called seminorms

(9.6.1) Mpq(φ)
def
= sup

x∈R

∣∣xpφ(q)(x)
∣∣, p, q = 0, 1, 2, · · ·

is finite.

Important members of S are the functions e−ax2

(a > 0) and the Hermite

functions hn(x) = ρnHn(x)e−
1

2
x2

[Definition 7.3.5].

Proposition 9.6.2. (Fourier inversion on S) Let φ be in S. Then φ̂ =
Fφ is also in S, and

φ =
1

2π
FRφ̂ = F 1

2π
φ̂R.

Thus in operator sense,

FRF = FFR = 2π × identity on S.
Proof. (i) For φ in S the functions φ, xφ, x2φ, · · · are in L1(R); see

(9.6.1) with q = 0. Hence by rule (v) in Section 9.3 and its proof, φ̂ is dif-

ferentiable, iDφ̂ = F [xφ] is differentiable, (iD)2φ̂ = F [x2φ] is differentiable,

etc. Thus φ̂ will be of class C∞ on R.
The C∞ functions xqφ, D(xqφ), · · · , Dp(xqφ), · · · will also be in L1(R);

cf. (9.6.1). Hence the C∞ functions

(iξ)p(iD)qφ̂ = F [Dp(xqφ)]

are bounded on R. Thus by (9.6.1) the function φ̂ is in S.
(ii) By Inversion Theorem 9.2.2 one has

φ =
1

2π
FRφ̂ =

1

2π
FRFφ, and φ =

1

2π
F φ̂R =

1

2π
FFRφ.

�
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For later use we define a strong notion of convergence in S with the aid
of the seminorms (9.6.1):

Definition 9.6.3. One says that φj → φ in S if Mpq(φ − φj) → 0 as
j → ∞ for every p and q. In other words,

xpφ
(q)
j (x) → xpφ(q)(x) uniformly on R, ∀ p, q ∈ N0.

We will see in Section 10.3 that for φ in S, the Hermite series converges
to φ in this strong sense.

Proposition 9.6.4. Fourier transformation defines a one to one con-
tinuous linear map of S onto itself.

Proof. That Fourier transformation F restricted to S is both injective
[that is, one to one] and surjective [that is, onto] follows from Proposition

9.6.2. Indeed, if φ̂ = 0 then φ = (1/2π)FRφ̂ = 0. Moreover, every φ in S is

the image of an element in S: φ = F(1/2π)φ̂R.
Suppose now that φj → φ in S. Then for fixed p, q ∈ N0,

(x2 + 1)Dp
{
xq(φ− φj)(x)

}
→ 0 uniformly on R.

Hence for given ε > 0,
∣∣Dp
{
xq(φ− φj)(x)

}∣∣ < ε

x2 + 1
on R for j > j0 = j0(ε).

It follows that for j > j0,

Mpq(φ̂− φ̂j) = sup
ξ

∣∣∣(iξ)p(iD)q(φ̂− φ̂j)(ξ)
∣∣∣

= sup
ξ

∣∣∣∣

∫

R

Dp {xq(φ− φj)(x)} · e−iξxdx

∣∣∣∣ <
∫

R

ε

x2 + 1
dx = πε.

�

Exercises. 9.6.1. Derive the Parseval formula for Fourier transformation
on S: ∫

R

∣∣∣φ̂(ξ)
∣∣∣
2

dξ = 2π

∫

R

|φ(x)|2dx, ∀φ ∈ S.

9.6.2. Prove that on S,

F2 = 2π × reflection, F4 = 4π2 × identity.

What are the possible eigenvalues of F on S ? Do all possibilities occur?
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9.6.3. Prove that differentiation and multiplication by x are continuous
linear operations on S: if φj → φ in S, then Dφj → Dφ and xφj → xφ in
S.

9.7. Application: the linear harmonic oscillator

The linear harmonic oscillator in quantum mechanics leads to the fol-
lowing eigenvalue problem:

(9.7.1) Hy ≡ (x2 −D2)y = λy, y ∈ L2(R);

cf. the article [97]. The condition y ∈ L2(R) is a boundary condition at

±∞. It comes from the fact that |y|2 is a probability density:
∫ b

a
|y(x)|2dx

represents the probability to find the oscillating particle on the interval
(a, b) when the energy is equal to λ. The values of λ for which the problem
has a nonzero solution y represent the possible energy levels of the particle
in quantum mechanics. Thus one expects the eigenvalues to be real and
positive.

We begin by making it plausible that the eigenfunctions belong to the
class S. The solution of the differential equation

(9.7.2) y′′ = (x2 − λ)y

will be of class C∞. Indeed, if a solution y is locally integrable, so is y′′, hence
y will be an indefinite integral of order two, etc. [In fact, by Proposition
8.1.2 the solutions will be analytic on R.]

How do the solutions behave at +∞ ? Multiplying equation (9.7.2) by
2y′, one finds

2y′y′′ = (x2 − λ)2yy′,

hence by integration one expects

{
y′(x)

}2
=

∫ x

(t2 − λ)dy2(t) ≈ (x2 − λ)y2(x)

as x→ ∞. This gives

y′

y
(x) ≈ ±x

(
1 − λ

x2

) 1

2

≈ ±x∓ λ

2x
,

and hence

(9.7.3) log y ≈ ±1

2
x2 ∓ 1

2
λ log x, y ≈ e±

1

2
x2

x∓
1

2
λ.

More precisely, one expects the differential equation to have a ‘large’ solu-
tion, one that behaves like e

1

2
x2

x−
1

2
λ as x→ +∞, and a ‘small’ solution that
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behaves like e−
1

2
x2

x
1

2
λ at +∞. (The above argument can be made rigorous;

cf. Korevaar [67].)
A similar reasoning applies to −∞. What we need is a solution that

becomes small at both ends. Such a solution can be expected only for
special values of λ, the eigenvalues of problem (9.7.1). Finally observe that
a C∞ solution that behaves like

e−
1

2
x2

x
1

2
λ at ±∞

would be in S. Thus our eigenvalue problem may be restated in the form

(9.7.4) Hy ≡ (x2 −D2)y = λy on R, y ∈ S.

Without prior knowledge of Hermite functions, this eigenvalue problem
may be solved by the so-called factorization method. Observe that on S,

Hy = {(x−D)(x+D) + 1}y = {(x+D)(x−D) − 1}y.

Thus the operator H may be “factored” as follows:

H = (x−D)(x+D) + 1 = (x+D)(x−D) − 1,

where 1 now stands for the identity operator. Using the inner product of
L2(R), integration by parts shows that on S,

([x+D]f, g) = (xf, g) + (Df, g) = (f, xg) − (f,Dg) = (f, [x−D]g),

([x−D]f, g) = (f, [x+D]g).

Suppose now that γ, φ is a characteristic pair of problem (9.7.4). Then

([x+D]φ, [x+D]φ) = (φ, [x−D][x+D]φ) = (φ, [H− 1]φ)

= (γ − 1)(φ, φ),

([x−D]φ, [x−D]φ) = (γ + 1)(φ, φ).

It follows that all possible eigenvalues γ of H must be real and ≥ 1. More-
over, if 1 is an eigenvalue, the corresponding eigenfunctions φ must satisfy
the equation (x+D)y = 0, or y′ = −xy.

Conclusion: 1 is indeed an eigenvalue, with corresponding eigenfunctions
βe−

1

2
x2

(β 6= 0).
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Continuing with an arbitrary characteristic pair γ, φ, one finds that

H(x+D)φ = {(x+D)(x−D) − 1}(x+D)φ

= (x+D){(x−D)(x+D) − 1}φ
= (x+D)(H− 2)φ = (γ − 2)(x+D)φ,

H(x−D)φ = (γ + 2)(x−D)φ.

If γ > 1 then (x + D)φ 6= 0 and hence the pair γ − 2, (x + D)φ is also a
characteristic pair. In that case γ ≥ 3, and either γ = 3 and (x+D)2φ = 0,
or γ > 3 and (x+D)2φ 6= 0, in which case · · · . Continuing, one finds that
γ must have the form 2n+ 1 for some n ∈ N0 and then (x+D)n+1φ = 0.

Another conclusion is that γ+2, (x−D)φ is a characteristic pair when-
ever γ, φ is one. Thus the characteristic pairs of problem (9.7.4) are the
pairs

(9.7.5) 2n+ 1, βn(x−D)ne−
1

2
x2

with n ∈ N0 and βn 6= 0.

With all this information it is not difficult to verify that eigenfunctions
belonging to different eigenvalues are orthogonal to each other. From this
one may derive that (x − D)ne−

1

2
x2

must be equal to Hn(x)e−
1

2
x2

, where
Hn(x) is the Hermite polynomial of degree n introduced in Definition 7.3.1.

Remark 9.7.1. The factorization method, also called ladder method,
goes back to Dirac [23]. It was extended to a variety of classical eigen-
value problems by the physicists Leopold Infeld (Poland–Canada, 1898–
1968; [55]) and Tom E. Hull (Canada, 1922–1996; [53]); see [56].

Exercises. 9.7.1. Let φ be an eigenfunction of problem (9.7.4) belonging
to the eigenvalue 2k + 1. Show that (x+ D)k+1φ = 0. Next taking n > k,

show that ψ = (x − D)ne−
1

2
x2

is orthogonal to φ. Use this fact to derive

that ψ must be equal to Hn(x)e−
1

2
x2

.
9.7.2. First show for n = 0 and then for n ∈ N that

Hn(x)e−x2

= (2i)nπ− 1

2

∫

R

e−t2tne−2ixtdt.

9.8. More applications in mathematical physics

We continue with a few applications to boundary value problems for
partial differential equations. Fourier transformation is a very powerful tool
for problems involving (practically) infinite media. It is standard procedure
to begin by applying the rules without worrying about questions of existence
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or convergence. One thus tries to arrive at a plausible answer. In the end,
the answer should of course be verified.

Example 9.8.1. (Heat equation) What can one say about the temper-
ature distribution u(x) = u(x, t) at time t > 0 in an “infinite medium” [for
example, a very thick wall]? We assume that there is heat transport only
in the X-direction, and that the initial temperature distribution is known.
The problem is to solve the one-dimensional heat equation

uxx = ut, −∞ < x <∞, t > 0,

subject to the initial condition u(x, 0) = f(x), −∞ < x <∞.
Introducing the Fourier transform of u relative to x,

(9.8.1) v(ξ, t) = Fx[u(x, t)](ξ) =

∫

R

u(x, t)e−iξxdx,

where t is treated as a parameter, we obtain

Fx[uxx(x, t)](ξ) = (iξ)2v(ξ, t), Fx[ut(x, t)](ξ) = vt(ξ, t),

Fx[u(x, 0)](ξ) = v(ξ, 0) = f̂(ξ), ξ ∈ R, t > 0.

The transformation rules for the partial derivatives correspond to differenti-
ation under an integral sign, and this is permitted if u(x, t) is a nice enough
function.

Thus by Fourier transformation, our problem takes the simpler form

vt(ξ, t) = −ξ2v(ξ, t), v(ξ, 0) = f̂(ξ), ξ ∈ R, t > 0.

We now have an ordinary differential equation for v as a function of t in
which ξ occurs as a parameter! The solution of the new initial value problem
is

v(ξ, t) = v(ξ, 0)e−ξ2t = f̂(ξ)e−ξ2t.

We know already which function u(x) = u(x, t) has the final product as
its Fourier transform: by Example 9.4.4, for t > 0,

u(x, t) =
1

2
√
πt

∫

R

f(y)e−(x−y)2/(4t)dy

=
1√
π

∫

R

f
(
x− 2

√
t w
)
e−w2

dw.(9.8.2)

Verification. Assuming f locally integrable and bounded on R, the func-
tion u in (9.8.2) will satisfy the heat equation for t > 0 [use the first integral].
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Also, for bounded continuous f , u(x, t) → f(x) as t ց 0, uniformly on ev-
ery bounded interval −A ≤ x ≤ A [use the second integral]. It will follow
that

u(x, t) → f(x0) as (x, t) → (x0, 0), that is, x→ x0, tց 0.

Example 9.8.2. (Wave equation) What can one say about the displace-
ments u(x) = u(x, t) at time t in an “infinite vibrating medium”, assuming
that the displacements are only in the “vertical” direction? We assume for
simplicity that the displacements at time t = 0 are known, and that the
velocities at that instant are equal to zero. The problem then is to solve
the one-dimensional wave equation

uxx =
1

c2
utt, −∞ < x <∞, t > 0 (or −∞ < t <∞),

subject to the “initial conditions” u(x, 0) = f(x), ut(x, 0) = 0, −∞ < x <
∞.

Introducing the Fourier transform v of u relative to x as in (9.8.1), our
problem takes the simpler form

vtt(ξ, t) + c2ξ2v(ξ, t) = 0,

v(ξ, 0) = f̂(ξ), vt(ξ, 0) = 0, −∞ < ξ <∞, t > 0.

The solution of the new problem is

v(ξ, t) = v(ξ, 0) cos c ξt =
1

2
f̂(ξ)eicξt +

1

2
f̂(ξ)e−icξt.

By rule (ii) in the table of Section 9.3 the corresponding function u is

(9.8.3) u(x, t) =
1

2
f(x+ ct) +

1

2
f(x− ct).

Physically speaking, the candidate solution (9.8.3) makes sense for ar-
bitrary (continuous) f , both for t > 0 and for t < 0. The displacement
function u(x) at time t appears as the superposition of two disturbances,
two “waves”; the first moves to the left with velocity c, the second to the
right with velocity c. [The displacement 1

2
f(x−ct) remains equal to 1

2
f(x0)

if x− ct = x0 or x = x0 + ct.] For t = 0 the two waves jointly produce the
given displacements u(x, 0) = f(x) and (formally) the velocities ut(x, 0) = 0.
However, mathematically speaking there is some question whether the phys-
ically acceptable function (9.8.3) satisfies the wave equation in more than
just a formal way.
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For the above and other reasons it is desirable to develop a more general
theory of derivatives, convergence and Fourier transformation which can
justify the various formal operations. The theory of tempered distributions
will provide an appropriate framework; see Chapter 10.

Exercises. 9.8.1. (Wave equation) Use Fourier transformation to treat the
initial value problem

uxx =
1

c2
utt, −∞ < x <∞, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), −∞ < x <∞.

Draw pictures of the solution at time t, (i) if f(x) = ∆1(x), g(x) = 0, and
(ii) if f(x) = 0, g(x) = σ1(x), where ∆1 and σ1 are as in Exercises 9.1.3,
9.1.2.

9.8.2. Let u(x, t) be the function given by (9.8.2) with bounded contin-
uous f . Prove that u(x, t) → f(x) uniformly for −A ≤ x ≤ A as tց 0.

9.8.3. (Dirichlet problem for upper half-plane) Use Fourier transforma-
tion to treat the boundary value problem

∆u ≡ uxx + uyy = 0 on H = {(x, y) ∈ R
2 : −∞ < x <∞, y > 0},

u(x, 0) = f(x), −∞ < x <∞.

(i) Determine the general form of v(ξ, y) = Fx[u(x, y)](ξ), (ξ, y) ∈
H . It is reasonable to require boundedness of the “potential” u on H , or
to require finiteness of the “energy”

∫
H

(
u2

x + u2
y

)
dxdy, in which case the

integral
∫

H
(ξ2|v|2 + |vy|2) dξdy must also be finite; cf. Section 10.2 below.

(ii) Determine v(ξ, y) under the additional condition that v must re-
main bounded as y → ∞. [Consider ξ > 0 and ξ < 0 separately.]

(iii) Show that the corresponding function u is given by the Poisson
integral for the upper half-plane,

u(x, y)
def
=

∫

R

f(t)
1

π

y

(x− t)2 + y2
dt

=

∫

R

f(x− yw)
1

π

1

1 + w2
dw, y > 0.

(iv) Verify that u(x, y) in (iii) satisfies Laplace’s equation whenever f
is bounded on R and locally integrable.

(v) Taking f bounded and continuous, prove that u(x, y) → f(x0) as
x → x0, y ց 0.
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(vi) Determine u(x, y) explicitly if f(x) = 1 for a < x < b, f(x) = 0 for
x < a and for x > b.





CHAPTER 10

Generalized functions of slow growth: tempered

distributions

It is useful to extend the theory of Fourier integrals beyond the class of
well-behaved functions that are integrable over the whole line. Also, in order
to facilitate the use of Fourier theory in applications, the rules in Section
9.3 should be widely applicable. It would in particular be desirable that
differentiation should be always possible. Following Laurent Schwartz [110],
we show that such ends can be achieved. The theory uses an operational
definition of Fourier transformation as suggested by Proposition 9.4.1: the
action of the transform Ff on “test functions” φ shall be the same as the
action of f on the transform Fφ. We will employ Schwartz’s test-function
space S described in Section 9.6.

If one limits oneself to L1 functions on R and their transforms, or to
L2 functions, the operational definition succeeds within the class of locally
integrable functions. However, for a really general theory one has to admit
a larger class of objects, the so-called tempered distributions. These are de-
fined as continuous linear functionals on the test space S. More concretely,
tempered distributions turn out to be locally integrable functions of at most
polynomial growth, together with their generalized derivatives of any order.
The class S ′ of tempered distributions is closed under multiplication by x
and differentiation. It will also be closed under Fourier transformation; see
Chapter 11.

In our development of Fourier theory, the Hermite functions hn [Defini-
tion 7.3.5] will play a special role; cf. Korevaar [67]. For the case of L2, the
use of Hermite functions goes back to Wiener [124].

10.1. Initial Fourier theory for the class P
Functions of (at most) polynomial growth on R frequently occur in ap-

plications. We begin with a limited Fourier theory for such functions; the
general theory will come later.

243
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Definition 10.1.1. We say that a locally integrable function f on R is
of class P if there is an integer q ≥ 0 such that

(10.1.1)
f(x)

(x+ i)q
is in L1(R).

Equality in P shall mean equality almost everywhere on R.

Functions in P are uniquely determined by their action on test functions:

Proposition 10.1.2. Let f in P be such that
∫

R
fφ = 0 for all functions

φ in S. Then f = 0.

Proof. It will be enough to use the Hermite functions φ = hn of Section
7.3. Indeed, suppose that f has Hermite expansion 0:

(10.1.2) cn[f ]
def
=

∫

R

fhn = ρn

∫

R

f(x)Hn(x)e−
1

2
x2

dx = 0, n = 0, 1, 2, · · · .

Then ∫

R

f(x)xne−
1

2
x2

dx = 0, ∀n ∈ N0.

Thus one may apply Moment Theorem 9.5.2 to conclude that f = 0. [The
function f in that theorem should then be taken equal to the present f
times e−

1

2
x2

.] �

We now define a generalized Fourier transform for certain functions in
P in accordance with Proposition 9.4.1.

Definition 10.1.3. A function g in P is called the Fourier transform

Ff = f̂ of the function f in P if
∫

R

gφ =

∫

R

fFφ, ∀φ ∈ S.

Similarly for the reflected Fourier transform h = FRf :
∫

R
hφ =

∫
R
fFRφ,

∀φ.

If Ff = g exists in P, it is unique, and FRf = gR:
∫

R

FRf · φ =

∫

R

fFRφ =

∫

R

fFφR

=

∫

R

Ff · φR =

∫

R

gφR =

∫

R

gRφ, ∀φ.(10.1.3)

As a consequence of the definition we have general validity of Fourier inver-
sion:
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Theorem 10.1.4. Suppose f in P has Fourier transform g in P. Then
g has a reflected Fourier transform in P, and f = (1/2π)FRg.

Indeed, h = FRg = FRFf should be a function in P such that∫

R

hφ =

∫

R

FRFf · φ =

∫

R

Ff · FRφ =

∫

R

f · FFRφ, ∀φ ∈ S.

However, by the Inversion Theorem 9.6.2 for S, the last integral is equal to∫
R
f · 2πφ, so that h = 2πf or f = (1/2π)h = (1/2π)FRg.

Convergence relative to test functions is defined as one would expect,
cf. Definition 4.1.3:

Definition 10.1.5. Functions fλ in P converge to f in P relative to
the test class S as λ→ λ0, and [in accordance with later notation] we write

S ′ lim fλ = f as λ→ λ0,

if ∫

R

fλφ→
∫

R

fφ, ∀φ ∈ S.

Theorem 10.1.6. Suppose f in P has Fourier transform g in P. Then

g(ξ) = (Ff)(ξ) = S ′ lim
A→∞

∫ A

−A

f(x)e−iξxdx,

and conversely,

f(x) =
1

2π
(FRg)(x) =

1

2π
· S ′ lim

A→∞

∫ A

−A

g(ξ)eixξdξ.

Indeed, introducing the truncated function

fA(x) =

{
f(x) for |x| < A

0 for |x| > A

[not to be confused with the reflection fR(x) = f(−x)], we have
∫ A

−A

f(x)e−iξxdx = (FfA)(ξ).

Hence by Proposition 9.4.1 for L1 functions,
∫

R

FfA · φ =

∫

R

fA · Fφ =

∫ A

−A

f · Fφ

→
∫

R

f · Fφ =

∫

R

Ff · φ =

∫

R

gφ, ∀φ ∈ S.(10.1.4)
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The convergence follows from the integrability of f · Fφ over R when f is
in P.

The proof in the other direction is similar.
As a corollary we obtain

Theorem 10.1.7. (Extended inversion theorem for L1) In the extended
theory, Fourier inversion is valid for every function f in L1(R). More
precisely, setting Ff = g, one will have

f(x) =
1

2π
(FRg)(x) =

1

2π
S ′ lim

A→∞

∫ A

−A

g(ξ)eixξdξ.

In particular, if g is also in L1(R), then

f(x) =
1

2π
(FRg)(x) =

1

2π

∫

R

g(ξ)eixξdξ a.e. on R.

We need comment only on the last part: if g is in L1(R), the integrals∫ A

−A
g(ξ)eixξdξ will converge uniformly to (FRg)(x) as A→ ∞. The uniform

limit will agree with the S ′ limit in the sense of P, hence a.e.

Exercises. 10.1.1. Given f ∈ P and φ ∈ S, prove the existence of
∫

R

fφ =

∫

R

f(x)

(x+ i)q
(x+ i)qφ(x)dx.

10.1.2. Prove that L2 functions f on R and Fourier transforms g = f̂ of
L1 functions f belong to P.

10.1.3. Prove that locally integrable functions fλ converge to f relative
to S as λ→ λ0 if one of the following conditions is satisfied:

(i) fλ → f in L1(R),
(ii) fλ → f in L2(R),
(iii) fλ → f uniformly on every bounded interval and |fλ(x)| ≤ Q(x), a

polynomial, ∀x, λ.
10.1.4. Let p and q be in N0. Prove that

λpxqeiλx → 0 as λ→ ∞
relative to the test class S.

10.2. Fourier transformation in L2(R)

Functions f in L2(R) are in P [Exercise 10.1.2]. We will prove

Proposition 10.2.1. For any f in L2 = L2(R), the generalized Fourier

transform f̂ exists and belongs to L2.
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Proof. We will use Hermite series, recalling that the normalized Her-
mite functions hn form an orthonormal basis of L2 [Theorem 9.5.4]. Thus
every function f in L2 is equal to the sum of its Hermite expansion

∑
cnhn,

where cn = cn[f ] =
∫

R
fhn. Also, a series

∑
dnhn will converge to an el-

ement g in L2 if and only if the series
∑ |dn|2 converges [see Corollaries

6.3.5].

Suppose now that f ∈ L2 has a Fourier transform f̂ in the class P. Then
by Definition 10.1.3,

(10.2.1)

∫
f̂φ =

∫
fφ̂, ∀φ ∈ S,

where
∫

stands for
∫

R
(also below). Taking φ = hn, we find that

cn

[
f̂
]

def
=

∫
f̂hn =

∫
fĥn

=
√

2π(−i)n

∫
fhn =

√
2π(−i)ncn[f ];

cf. formula (9.3.4). Thus by Parseval’s formula for the Hermite coefficients
cn[f ], cf. Theorem 6.3.1,

(10.2.2)
∑ ∣∣∣cn

[
f̂
]∣∣∣

2

= 2π
∑

|cn[f ]|2 = 2π

∫
|f |2.

It follows that there is a function g in L2 (and hence in P) with Hermite

series
∑

cn

[
f̂
]
hn:

(10.2.3) g
def
=
∑

cn

[
f̂
]
hn =

∑ √
2π(−i)ncn[f ]hn.

We will show that this function g is indeed the Fourier transform f̂ of
f in the sense of (10.2.1). To that end we apply the extended Parseval
formula [Theorem 6.3.1]:

∫
gφ = lim

k→∞

∫ k∑

n=0

cn[g]hn · φ = lim

k∑

0

cn[g]cn[φ]

=

∞∑

0

cn[g]cn[φ] =
∑ √

2π (−i)ncn[f ]cn[φ]

=
∑

cn[f ]cn

[
φ̂
]

=

∫
fφ̂, ∀φ ∈ S,
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hence g = f̂ . �

Observe also that by (10.2.3),
∫

|g|2 =
∑ ∣∣∣cn

[
f̂
]∣∣∣

2

= 2π
∑

|cn[f ]|2 = 2π

∫
|f |2.

We thus obtain the Parseval formula for Fourier transformation:

(10.2.4)

∫

R

∣∣∣f̂
∣∣∣
2

=

∫

R

|g|2 = 2π

∫

R

|f |2.

Corollary 10.2.2. Fourier transformation defines a one to one con-
tinuous linear map of L2 onto itself.

Indeed, if f ∈ L2 and g = Ff , then f = (1/2π)FRg = (1/2π)FgR

[Theorem 10.1.4]. The continuity follows from (10.2.4): if f −fλ → 0 in L2,

then f̂ − f̂λ → 0 in L2.
Fourier transformation on L2 is almost an isometry. In fact, under our

transformation F , all norms and distances are multiplied by
√

2π. If one
would redefine Fourier transformation as F∗ = (1/

√
2π)F :

(F∗f)(ξ) = S ′ lim
A→∞

1√
2π

∫ A

−A

f(x)e−iξxdx,

then the transformation would preserve all norms and distances in L2.
We finally remark that for f in L2, the limits in Theorem 10.1.6 will

exist in the much stronger sense of L2. The following result was proved by
the Swiss mathematician Michel Plancherel (1885–1967; [91]), cf. [92]:

Theorem 10.2.3. (Plancherel’s theorem) Let f be in L2(R) and let
fA(x) = f(x) for |x| < A, fA(x) = 0 for |x| > A. Then one may de-
fine a (the) Fourier transform of f by the formula

g(ξ) = (Ff)(ξ) = lim
A→∞

(FfA)(ξ) = lim
A→∞

∫ A

−A

f(x)e−iξxdx,

where the limit is taken in the sense of L2(R). Conversely,

f(x) =
1

2π
(FRg)(x) =

1

2π
lim

A→∞

∫ A

−A

g(ξ)eixξdξ,

also in the sense of L2. The functions f and g satisfy the Parseval formula
(10.2.4).
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Proof. Let f be in L2 and let g be its Fourier transform f̂ in the sense

of Proposition 10.2.1; similarly gA def
= f̂A. We know already that f and g

satisfy the Parseval formula (10.2.4), and so will f − fA and g − gA. Thus

1

2π

∫ ∣∣g − gA
∣∣2 =

∫
|f − fA|2 =

(∫ −A

−∞
+

∫ ∞

A

)
|f |2.

The right-hand side will tend to zero as A→ ∞ since |f |2 is integrable over
R.

The proof that FRg = limFRgA is similar. �

Examples 10.2.4. The function f(x) = (1/2)σ1(x) has Fourier trans-
form g(ξ) = (sin ξ)/ξ; see Exercise 9.1.2. Hence by the Parseval formula,

∫

R

sin2 ξ

ξ2
dξ = 2π

∫

R

(1/4)σ2
1(x)dx = 2π

∫ 1

−1

(1/4)dx = π.

For f(x) = 1/(x+ i) one may use the Residue Theorem to show that

(10.2.5) lim
A→∞

∫ A

−A

1

x+ i
e−iξxdx = −2πie−ξU(ξ)

for all ξ 6= 0. Indeed, let CA with A > 1 denote the semi-circle z = Aeiθ,
0 ≤ θ ≤ π [with center 0 and radius A] in the upper half-plane if ξ < 0, and
the semi-circle z = Aeiθ, 0 ≥ θ ≥ −π in the lower half-plane if ξ > 0. Then

(∫ A

−A

+

∫

CA

)
1

z + i
e−iξzdz =

{
0 if ξ < 0,

−2πi e−ξ if ξ > 0;

cf. Example 1.7.1. Careful estimates show that as A→ ∞,

(10.2.6) ρA(ξ)
def
=

∫

CA

1

z + i
e−iξzdz

tends to zero pointwise for ξ ∈ R \ 0, as well as boundedly. Hence by
Lebesgue’s Theorem on Dominated Convergence, ρA(ξ) → 0 relative to test
functions. Conclusion: the limit in (10.2.5) exists relative to test functions,
and it has the value given there.

We verify the Parseval formula for the present Fourier pair:
∫

R

∣∣2πie−ξU(ξ)
∣∣2dξ = 4π2

∫ ∞

0

e−2ξdξ = 2π2,

2π

∫

R

∣∣∣∣
1

x+ i

∣∣∣∣
2

dx = 2π

∫

R

1

x2 + 1
dx = 2π2.
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Exercises. 10.2.1. Taking α, β real, β > 0, compute the Fourier transforms
of

1

x− iβ
,

1

x+ iβ
,

x

x2 + β2
,

1

x− α− iβ
.

10.2.2. Use the Parseval formula to compute
∫

R

sin4 ξ

ξ4
dξ.

10.2.3. Prove the L2 convergence in the second formula of Plancherel’s
theorem.

10.2.4. One can show that ρA(ξ) in (10.2.6) is the L2 Fourier transform
of the function f ∗

A(x) = f(x) − fA(x) that is equal to 1/(x+ i) for |x| > A
and equal to 0 for |x| < A. Deduce that

∫

R

|ρA(ξ)|2dξ = 4π{(π/2) − arctanA},

a quantity that tends to 0 as A→ ∞.
10.2.5. Let f be in L2(R). Prove Plancherel’s formulas

f̂(ξ) =
d

dξ

∫

R

f(x)
e−iξx − 1

−ix dx

=

∫ 1

−1

f(x)e−iξx +
d

dξ

∫

|x|>1

f(x)
e−iξx − 1

−ix dx

for almost all ξ ∈ R, and similarly for f(x) in terms of f̂(ξ).

Hint. Compute
∫ ξ

0
f̂A(t)dt and let A→ ∞.

10.3. Hermite series for test functions

In our study of tempered distributions, Hermite series play a role anal-
ogous to Fourier series in the case of periodic distributions (distributions
on the unit circle), cf. Chapter 4. As preparation for the general theory we
will characterize the functions φ in S [Section 9.6] by their Hermite series.

Recall that the normalized Hermite functions have the form

hn(x) = ρnHn(x)e−
1

2
x2

= ρn(x−D)ne−
1

2
x2

, n ∈ N0,

where ρn = 2−
1

2
n (n!)−

1

2 π− 1

4 [Section 7.3]. They satisfy the relations

(x+D)hn =
√

2nhn−1, (x−D)hn =
√

2n+ 2hn+1,

Hhn ≡ (x2 −D2)hn = (2n+ 1)hn.
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By combination one finds that

xhn =
√

(n/2)hn−1 +
√

(n+ 1)/2hn+1,(10.3.1)

Dhn =
√

(n/2)hn−1 −
√

(n + 1)/2hn+1.(10.3.2)

Lemma 10.3.1. There are absolute constants α and C [for example,
α = 1 and C = 6] such that

(10.3.3) |hn(x)| ≤ Cnα, ∀x ∈ R, ∀n ∈ N.

Proof. Since |hn(x)| is even we may take x ≥ 0. If n is odd, hn(0) = 0
while for even n, using (10.3.1) with x = 0 and n− 1 instead of n,

|hn(0)| ≤ |h0(0)| = π− 1

4 < 1.

Integration of (10.3.2) [with n = k ≥ 1] from 0 to x, application of Cauchy–
Schwarz and the relation

∫∞
0
h2

j = 1/2 now give

|hk(x)| ≤ |hk(0)| +
√

(k/2)

∫ x

0

|hk−1| +
√

(k + 1)/2

∫ x

0

|hk+1|

< 1 + (1/2)
√
k
√
x+ (1/2)

√
k + 1

√
x <

{
3
√
k for 0 ≤ x ≤ 1,

3
√
kx for x > 1.

Combination with (10.3.1) for x > 1 gives (10.3.3) with α = 1. �

[Remark. Using more sophisticated tools one can prove an inequality
(10.3.3) with α = 0, and even α = −1/12; see [117], formula (8.19.10).]

Corollary 10.3.2. There are absolute constants Cpq such that

(10.3.4)
∣∣xpDqhn(x)| ≤ Cpqn

1

2
p+ 1

2
q+1, ∀x ∈ R, ∀n ∈ N.

[Use (10.3.1)–(10.3.3) with α = 1.]

Theorem 10.3.3. (Characterization of S by Hermite series) Let φ be
a continuous L2 function on R. Then φ is in S if and only if for every
nonnegative integer r, there is a constant Br = Br(φ) such that the Hermite
coefficients cn[φ] =

∫
φhn satisfy the inequalities

(10.3.5) |cn[φ]| ≤ Br

nr
, ∀n ∈ N0.

Proof. (i) Let φ be in S. Then Hrφ = (x2−D2)rφ is also in S [Section

9.6], and hence in L2. It follows that
∑∞

0

∣∣cn[Hrφ]
∣∣2 <∞, and thus

∣∣cn[Hrφ]
∣∣ ≤ C = Cr(φ), ∀n ∈ N0.
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Now for any ψ ∈ S,
∫

Hψ · hn =

∫
(x2 −D2)ψ · hn =

∫
ψ · Hhn = (2n+ 1)

∫
ψhn.

Hence

cn[Hrφ] = (2n+ 1)rcn[φ],

which by the boundedness of the sequence {|cn[Hrφ]|} implies (10.3.5).
(ii) Let φ be an L2 function such that (10.3.5) holds for every r. Because

of (10.3.4) with p = 0, the series
∑

cn[φ]hn,
∑

cn[φ]Dhn,
∑

cn[φ]D2hn, · · ·

then converge uniformly on R. By the uniform convergence of
∑

cn[φ]hn

on every interval and its L2 convergence to φ, the sum
∑

cn[φ]hn is con-
tinuous and a.e. equal to φ. If necessary, we modify φ on a set of mea-
sure zero to make it equal to

∑
cn[φ]hn everywhere. It now follows from

the uniform convergence of
∑

cn[φ]Dhn that φ is of class C1(R) and that
Dφ =

∑
cn[φ]Dhn. Continuing in this way, one finds that φ is of class

Cq(R) and that Dqφ =
∑

cn[φ]Dqhn for every r, hence

xpDqφ =
∑

cn[φ]xpDqhn.

Relations (10.3.4) and (10.3.5) with r > (p/2) + (q/2) + 2 now show that
xpDqφ is bounded on R for every choice of p and q, so that φ is in S. �

Corollary 10.3.4. For every function φ in S, the Hermite series∑
cn[φ]hn converges to φ in the sense of S [Definition 9.6.3].

Indeed, (10.3.4) and (10.3.5) with r > (p/2) + (q/2) + 2 imply that for
all x ∈ R,

∣∣xpDq(φ− sk[φ])
∣∣ =

∣∣∣
∑

n>k

cn[φ]xpDqhn

∣∣∣

≤ BrCpq

∑

n>k

n(p/2)+(q/2)+1

nr
→ 0 as k → ∞.

Thus xpDqsk[φ] → xpDqφ uniformly on R. Since this holds for all p, q ∈ N0

we conclude that sk[φ] → φ in S.

Exercises. 10.3.1. (A challenge!) It would be nice to have a simple proof
for the uniform boundedness of the family {hn} on R. Try to determine a
constant C such that |hn(x)| ≤ C, ∀x, n.



10.4. TEMPERED DISTRIBUTIONS 253

Hint. Next to the relations (10.3.1), (10.3.2), the Exercises 7.3.7, 7.3.8
and 9.7.2 may be useful.

10.4. Tempered distributions

We are now ready to introduce distributions of slow or polynomial
growth on R – so-called tempered distributions. As before, let S be the
test space of “rapidly decreasing functions with rapidly decreasing deriva-
tives”, with the associated notion of convergence [Section 9.6].

Definition 10.4.1. (Laurent Schwartz, about 1950; cf. Schwartz [110],
Hörmander [52]) A tempered distribution T on R is a continuous linear
functional on the test space S. Thus in particular

< T, φj >→< T, φ > whenever φj → φ in S.
Examples 10.4.2. (i) Every function f of at most polynomial growth

on R [Definition 10.1.1] defines a tempered distribution Tf by the formula

< Tf , φ >=

∫

R

fφ, ∀φ ∈ S.

Indeed, if q ≥ 0 is so large that (10.1.1) holds and φj → φ in S, then

∣∣ < Tf , φ > − < Tf , φj >
∣∣ ≤

∫

R

∣∣∣∣
f(x)

(x+ i)q

∣∣∣∣ ·
∣∣(x+ i)q{φ(x) − φj(x)}

∣∣dx

≤
∫

R

∣∣∣∣
f(x)

(x+ i)q

∣∣∣∣dx · sup
x∈R

∣∣(x+ i)q{φ(x) − φj(x)}
∣∣→ 0 as j → ∞.

The correspondence f ↔ Tf is one to one for f ∈ P [see Proposition 10.1.2].
We identify Tf with f , and usuallly write < Tf , φ > simply as < f, φ >.

(ii) Certain functions that are locally integrable, apart from simple sin-
gularities, also have representatives in the class of tempered distributions.
Thus the function f(x) = 1/x leads to the principal value distribution pv 1/x
through the formula

〈
pv

1

x
, φ(x)

〉
def
= p.v.

∫

R

1

x
φ(x)dx

def
= lim

εց0

∫

|x|>ε

1

x
φ(x)dx

= lim
εց0

{[
φ(x) log |x|

]−ε

−∞
+
[
· · ·
]∞

ε
−
∫

|x|>ε

log |x| · φ′(x)dx

}

= −
∫

R

log |x| · φ′(x)dx, ∀φ ∈ S;
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cf. Example 4.2.6. Other examples may be found in Exercises 11.2.10 and
11.2.11.

(iii) The delta distribution, δ, on R is defined by the formula

< δ, φ >= φ(0), ∀φ ∈ S.
The translate “δ(x− a)” is denoted by δa: < δa, φ >= φ(a).

(iv) With the delta distribution δΓ on the unit circle Γ we may associate
the periodic delta distribution δper

2π on R with period 2π. It is given by the
formula

〈
δper
2π , φ

〉
=

∞∑

n=−∞
φ(2πn), ∀φ ∈ S.

Other periods also occur, for example,
〈
δper
1 , φ

〉
=
∑∞

−∞ φ(n). We will
verify the continuity of the functional δper

2π . Let φj → φ in S. Then

(x2 + 1)|φ(x) − φj(x)| < ε for j > j0(ε) and all x ∈ R.

Hence

∣∣〈δper
2π , φ

〉
−
〈
δper
2π , φj

〉∣∣ ≤
∞∑

−∞
|φ(2πn) − φj(2πn)|

< ε
∞∑

−∞

1

4π2n2 + 1
< ε

(
1 + 2

∞∑

1

1

4π2n2

)
= (13/12)ε, ∀ j > j0.

Every distribution on the unit circle may be interpreted as a tempered
distribution of period 2π; cf. Exercises 10.6.1, 10.6.2.

Definition 10.4.3. (Simple operations) Linear combinations λ1T1 +
λ2T2, translates Tc(x) = T (x− c), the reflection TR(x) = T (−x), and prod-
ucts ωT = Tω of T and C∞ functions ω are defined in the obvious manner;
cf. Section 4.2. For the definition < Tω, φ >=< T, ωφ > one has to require
that ω and its derivatives ω′, ω′′, · · · are bounded by polynomials.

Important is the notion of equality T1 = T2 on an open set Ω ⊂ R:

(10.4.1) T = T1 − T2 = 0 on Ω if < T, φ >= 0

for all test functions φ with support in Ω; cf. Definition 4.2.8. The support
of T is the smallest closed set outside of which T is equal to zero.

Examples 10.4.4. The distribution δ is even: δ(−x) = δ(x); the dis-
tribution pv 1/x is odd. One has δ(x) = 0 on (0,∞) and on (−∞, 0): the
support of δ is the origin. It follows that δ cannot be equal to a function in
P; cf. Section 4.2. Other properties are x · δ(x) = 0 and x · pv 1/x = 1.
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Definition 10.4.5. (Convergence of tempered distributions; the space
S ′) We say that tempered distributions Tλ converge [or converge weakly] to
the tempered distribution T on R for λ→ λ0 if

< Tλ, φ >→< T, φ > as λ→ λ0, ∀φ ∈ S.
With this notion of convergence the tempered distributions on R form the
space S ′, the space dual to S.

Examples 10.4.6. (i) Let fλ, with λ → λ0, and f be functions of the
class P such that fλ(x) → f(x) for almost all x. Suppose, moreover, that
there is a fixed polynomial Q(x) such that |fλ(x)| ≤ Q(x), ∀x, λ. Or more
generally, suppose that there is an integer q ≥ 0 such that

(10.4.2)
fλ(x)

(x+ i)q
→ f(x)

(x+ i)q
in L1(R).

Then fλ → f in S ′:
∣∣∣∣
∫

R

{f(x) − fλ(x)}φ(x)dx

∣∣∣∣ ≤
∫

R

∣∣∣∣
f(x) − fλ(x)

(x+ i)q

∣∣∣∣ |(x+ i)qφ(x)|dx.

[Under the first condition one may also use Lebesgue’s Dominated Conver-
gence Theorem to prove that

∫
fλφ→

∫
fφ.]

(ii) In applications one encounters all sorts of delta families {fλ} on R,
that is, families of functions in P that converge to the delta distribution in
S ′. Specific examples are

sinAx

πx
→ δ(x) and

sin2 1
2
Ax

2πA(1
2
x)2

→ δ(x) as A→ ∞,

e−x2/(4t)

2
√
πt

→ δ(x) as tց 0,
y

π(x2 + y2)
→ δ(x) as y ց 0.

For proofs that
∫
fλφ→ φ(0) in these cases for all functions φ in S, cf. the

proof of Theorem 9.2.2, Remark 9.2.4, Example 9.8.1 and Exercise 9.8.3.
(iii) The operations of translation, reflection, multiplication by eiλx or

by ω(x) as in Definition 10.4.3 are continuous on S ′. For example, if Tk → T
then eiλxTk → eiλxT .

(iv) The infinite series
∑∞

∞ δ(x− 2πn) converges in S ′ to δper
2π (x).

(v) If a Hermite series
∑

cnhn converges to T in S ′, then

< T, hn >= lim
k→∞

〈
k∑

1

cjhj , hn

〉

= cn, ∀n.
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Definition 10.4.7. For a tempered distribution T one defines the Her-
mite series as

T ∼
∞∑

n=0

cn[T ]hn, with cn[T ] =< T, hn > .

Proposition 10.4.8. The Hermite series of a tempered distribution T
converges to T in S ′.

Proof. For φ in S one has sk[φ] =
∑k

0 cn[φ]hn → φ in S [see Corollary
10.3.4]. Hence for a continuous linear functional T on S,

< T, φ > = lim < T, sk[φ] >= lim

k∑

0

cn[φ] < T, hn >

= lim
k∑

0

cn[T ]cn[φ] =
∞∑

0

cn[T ]cn[φ].(10.4.3)

Thus for every φ in S,

< sk[T ], φ >=

k∑

0

cn[T ] < hn, φ >=

k∑

0

cn[T ]cn[φ] →< T, φ > .

�

It will follow from Section 10.6 that the series in the final member of
(10.4.3) is absolutely convergent.

Example 10.4.9. One has

1 ∼
∞∑

0

anhn, where an =

∫

R

hn.

Integrating formula (10.3.2) with n−1 instead of n, one finds that
√
n/2

∫
R
hn

is equal to
√

(n− 1)/2
∫

R
hn−2, so that

an =

√
n− 1

n
an−2 = · · · =






0 if n is odd,
(

2k

k

) 1

2

2
1

2
−kπ

1

4 if n = 2k.

Exercises. 10.4.1. Prove that for C∞ functions ω as in Definition 10.4.3,
one has ω(x)δa(x) = ω(a)δa(x).

10.4.2. Prove that
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(i)

〈
pv

1

x
, φ(x)

〉
=

∫ ∞

0

1

x
{φ(x) − φ(−x)}dx, ∀φ ∈ S;

(ii) pv
1

x
=

1

x
on (0,∞) and on (−∞, 0);

(iii) x · pv
1

x
= 1 on R.

10.4.3. Let gε(x) =
1

ε
for |x| < 1

2
ε, gε(x) = 0 for |x| > 1

2
ε. Compute

limεց0 gε in S ′.
10.4.4. Verify the convergence results in Examples 10.4.6.
10.4.5. Let g be an integrable function on R with

∫
R
g = 1 and let f

be a bounded uniformly continuous function on R. For 0 < ε ≤ 1 one sets

gε(x) =
1

ε
g
(x
ε

)
. Prove that for εց 0,

(i) gε → δ in S ′;

(ii) (gε ∗ f)(x) =

∫

R

gε(y)f(x− y)dy =

∫

R

f(x− εy)g(y)dy

→ “(δ ∗ f)(x)” = f(x), uniformly on R.

10.4.6. Prove that δ =
∑∞

0 bnhn with

bn = hn(0) = −
√
n− 1

n
bn−2 =






0 if n is odd,

(−1)k

(
2k

k

) 1

2

2−kπ− 1

4 if n = 2k.

10.4.7. Solve the equation xT (x) = 0 in S ′.
10.4.8. Determine all solutions of the equation xT (x) = 1.
10.4.9. Show that the Hermite series

∑∞
0 anhn for f = 1 converges to 1

at the origin.
10.4.10. Prove that S lies dense in S ′. That is, every tempered distri-

bution T is S ′-limit of test functions φk.

10.5. Derivatives of tempered distributions

Suppose first that T is equal to a function f on R which is bounded
by a polynomial and can be written as an indefinite integral: f(t) = c +∫ t

a
f ′(v)dv. Then integration by parts gives

< f ′, φ >=

∫

R

f ′φ =
[
fφ
]∞
−∞ −

∫

R

fφ′ = − < f, φ′ > .
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For an arbitrary tempered distribution T one defines the distributional de-
rivative DT by a corresponding formal integration by parts, as in the case
of periodic distributions; cf. Section 4.5.

Definition 10.5.1. For a tempered distribution T , the derivative DT
is the tempered distribution given by the formula

(10.5.1) < DT, φ >
def
= − < T, φ′ >, ∀φ ∈ S.

Examples 10.5.2. One may consider δ as the derivative of the unit step
function

(10.5.2) U(x) = 1+(x)
def
=

{
1 for x > 0,

0 for x < 0.

Indeed, since U ∈ P, one has

< DU, φ >
def
= − < U, φ′ >= −

∫

R

Uφ′

= −
∫ ∞

0

φ′ = φ(0) =< δ, φ >, ∀φ ∈ S.

Example 10.4.2 (ii) shows thatindexderivative!of log |x|

D log |x| = pv
1

x
.

For any function f in P, whether differentiable or not, the class S ′ contains
distributional derivatives Df , D2f, · · · of every order.

For T in S ′ and C∞ functions ω as in Definition 10.4.3, one has the
Product Rule

D(Tω) = DT · ω + T · ω′.

The distributional derivative DT determines T up to a constant:

Proposition 10.5.3. Let DT = 0 on (a, b) ⊂ R. Then T = C on (a, b),
a constant function.

Proof. For the case (a, b) = R one can give a quick proof with the aid
of Hermite series. Indeed, by Definition 10.5.1 and formula (10.3.2),

< DT, hn > = − < T, h′n >

= − < T,
√

(n/2)hn−1 −
√

(n+ 1)/2hn+1 >

=
√

(n + 1)/2 cn+1[T ] −
√

(n/2) cn−1[T ].
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This holds for all n ≥ 0 if we set c−1[T ] = 0. Now suppose DT = 0 on R.
Then < DT, hn >= 0, ∀n, hence

cn[T ] =

√
n− 1

n
cn−2[T ], ∀n ≥ 1.

This is the same recurrence relation as is satisfied by the Hermite coefficients
an of the constant function 1; see Example 10.4.9. Thus

cn[T ]/cn[1] = c0[T ]/c0[1] for n = 2, 4, · · · ,
cn[T ] = cn[1] = 0 for n = 1, 3, · · · .

It follows that

T =

∞∑

0

cn[T ]hn =
c0[T ]

c0[1]

∞∑

0

cn[1]hn =
c0[T ]

c0[1]
· 1 = C.

For the case (a, b) 6= R, cf. Exercises 4.5.6, 4.5.7. �

Theorem 10.5.4. Differentiation is a continuous linear operation on S ′:
if Tλ → T in S ′ as λ→ λ0, then DTλ → DT in S ′. In particular convergent
series in S ′ may be differentiated term by term.

Indeed, if < Tλ, ψ >→< T, ψ > for all test functions ψ, then

< DTλ, φ >= − < Tλ, φ
′ >→ − < T, φ′ >=< DT, φ >

for all φ in S.

Corollary 10.5.5. (Test for convergence in S ′) The following condi-
tion is sufficient for convergence Tλ → T in S ′ as λ → λ0: There exist
functions fλ and f in P and a pair of nonnegative integers s and q such
that

(10.5.3) Tλ = Dsfλ, T = Dsf,
fλ(x)

(x+ i)q
→ f(x)

(x+ i)q

uniformly on R or in L1(R) as λ → λ0; cf. Example 10.4.6 (i). [Uniform
convergence in (10.5.3) implies L1 convergence when q is replaced by q+2.]

It will follow from Theorem 10.6.3 below that the above it strong con-
vergence Tλ → T is also necessary for (weak) convergence Tλ → T in S ′.

Exercises. 10.5.1. Verify that the functional DT on S defined by formula
(10.5.1) is linear and continuous.

10.5.2. Let g be an indefinite integral on R with g′ in P. Prove that |g|
is bounded by a polynomial, and that Dg = g′ on R.
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10.5.3. Compute D|x| and D2|x|.
10.5.4. Prove that for f ∈ P and φ ∈ S,

< Dsf, φ >= (−1)s

∫

R

fφ(s).

10.5.5. Verify the Product Rule in Examples 10.5.2.
10.5.6. One defines the ‘principal value functions’

p.v. log(x± i0) as lim
εց0

p.v. log(x± iε),

and the distributions
1

x± i0
as lim

εց0

1

x± iε
in S ′.

Prove that in distributional sense,

1

x± i0
= D p.v. log(x± i0) = pv

1

x
∓ πiδ(x).

10.5.7. Treat the eigenvalue problem (x2 −D2)T = λT in S ′.

10.6. Structure of tempered distributions

We begin with an auxiliary result for Hermite series.

Proposition 10.6.1. A Hermite series
∑∞

0 dnhn converges in S ′ [hence,
converges to a tempered distribution] if and only if there are constants B
and β such that

(10.6.1) |dn| ≤ Bnβ , n = 1, 2, · · · .
Proof. The proof is similar to that of Proposition 4.6.1 for Fourier

series of periodic distributions, but here we use the operator H = x2 −D2

instead of D. Note that H is continuous on S ′.
(i) Supposing that (10.6.1) is satisfied, let q be a nonnegative integer

greater than β + 1/2. Then
∣∣∣∣

dn

(2n+ 1)q

∣∣∣∣
2

≤ B2

n2q−2β
=

B2

n1+δ
, n = 1, 2, · · · ,

where δ = 2q−1−2β > 0. Thus the series
∑∞

0 |dn/(2n+1)q|2 is convergent,
and hence the Hermite series

∞∑

0

dn

(2n+ 1)q
hn
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will converge to a function g in L2(R). It follows that
∑

dnhn = Hqg in S ′.
(ii) Suppose now that

∑∞
0 dnhn = T in S ′. Then the series

∑∞
0 dncn[φ]

converges to < T, φ > for every function φ in S; cf. (10.4.3). It now follows
as in the proof of Proposition 4.6.1 that the coefficients dn must satisfy a
set of inequalities (10.6.1); see also Theorem 10.3.3 on Hermite series of test
functions. �

Theorem 10.6.2. (Structure theorem) The following three assertions
are equivalent:

(i) T is in S ′;
(ii) There exist g in L2(R) and q in N0 such that T = Hqg;
(iii) There exist f in P and s in N0 such that T = Dsf .

Proof. It will be enough to prove (i) ⇒ (ii) ⇒ (iii). Hence let T
be in S ′. Then T =

∑
dnhn in S ′ where dn = cn[T ] =< T, hn > [see

Proposition 10.4.8]. Thus by Proposition 10.6.1 the coefficients dn satisfy a
set of inequalities (10.6.1), and by part (i) of the proof for that proposition,
T can be represented in the form Hqg with g ∈ L2.

One may next prove inductively that Hqg can be written as D2qf , with
f ∈ P, for any q ∈ N0. Indeed, it is correct for q = 0 since L2 ⊂ P. Suppose
now that the result has been proved for a certain q ≥ 0. Then

Hq+1g = (x2 −D2)D2qf = x2D2qf −D2q+2f, with f ∈ P.
In order to write x2D2qf as a derivative of order 2q + 2 of a function in P
one may use two steps as follows. Observe that xDpf1 with f1 ∈ P is equal
to

Dp(xf1) − pDp−1f1 = Dpf2 = Dp+1f3,

where

f2 = xf1 − p

∫ x

0

f1 and f3 =

∫ x

0

f2 are in P.
�

Refinement of the above method as in Section 4.6 gives the following

Theorem 10.6.3. (Characterization of convergence in S ′) The following
four statements about tempered distributions Tλ and T , where λ → λ0, are
equivalent:

(i) Tλ → T (weakly) in S ′;
(ii) cn[Tλ] → cn[T ] as λ → λ0 for each n ∈ N0 and there are constants

B and β such that

|cn[Tλ]| ≤ Bnβ , n = 1, 2, · · · , ∀λ close to λ0;
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(iii) There are L2 functions gλ and g, and a nonnegative integer q, such
that for all λ close to λ0,

Tλ = Hqgλ, T = Hqg, gλ → g in L2(R) as λ→ λ0;

(iv) There are functions fλ and f in P, and nonnegative integers s and
q, such that (10.5.3) holds for all λ close to λ0.

One may say that (ii), (iii) and (iv) all describe “strong convergence” of
Tλ to T .

Theorem 10.6.3 may be used to show that the space S ′ is complete; cf.
Theorem 4.6.5.

Remark 10.6.4. The space of tempered distributions may, in fact, be
obtained by completion of the space of integrable functions on R under the
concept of convergence relative to test functions of class S; cf. [68].

Exercises. 10.6.1. Let T be a distribution on the unit circle Γ. Prove that
there is a 2π-periodic distribution T per on R as follows. The restriction of
T per to any open interval (a, b) of length ≤ 2π is equal to the restriction of T
to the subarc γ of Γ which corresponds to (a, b) modulo 2π. Here ‘equality’
is of course defined with the aid of test functions φ whose support belongs
to (a, b) or γ.

Hint. Use the representation of Theorem 4.6.2.
10.6.2. Let T per be a tempered distribution of period 2π. Prove that

there exist a periodic integrable function f0 of period 2π, a nonnegative
integer s and a constant c such that T per = c+Dsf0. Deduce that to every
distribution T per there is a distribution T on the unit circle Γ such that T
and T per are related as in Exercise 10.6.1.
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Fourier transformation of tempered distributions

The class P of Section 10.1 is too small for a good theory of Fourier
transformation. For example, the function f(x) = 1 cannot have a Fourier
transform within P. If it did, the prescription of Definition 10.1.3 would
require that

< F1, φ > =

∫

R

F1 · φ =

∫

R

1 · Fφ =

∫

R

φ̂(ξ)dξ

= 2πφ(0) =< 2πδ, φ >, ∀φ ∈ S.(11.0.2)

However, the distribution 2πδ is not in P ! We have to extend P to the class
S ′ of so-called tempered distributions in order to get a symmetric theory.
Cf. books such as [110], [111], [27].

11.1. Fourier transformation in S ′

The following definition extends Definition 10.1.3 for P and says that
always, “The effect of FT on φ must be the same as the effect of T on Fφ ”.

Definition 11.1.1. Let T be in S ′. Then FT = T̂ and FRT = Ť are
the tempered distributions given by

< FT, φ >=< T,Fφ >, < FRT, φ >=< T,FRφ >, ∀φ ∈ S.

These formulas define FT and FRT as continuous linear functionals on
S, because F and FR are continuous linear operators S 7→ S. Observe also
that

FRT = (FT )R = FTR,

since

< FRT, φ > =< T,FRφ >=< T,FφR >

=< FT, φR >=< (FT )R, φ >,

and similarly for the second equality.

263
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Theorem 11.1.2. (Inversion and continuity) Fourier transformation de-
fines a one to one continuous linear map of S ′ onto itself. In S ′,

F−1 =
1

2π
FR, F−1

R =
1

2π
F .

Proof. (i) Let T be in S ′. We will prove that

1

2π
FRFT =

1

2π
FFRT = T.

Indeed, the inversion theorem for S [Proposition 9.6.2 shows that

< FRFT, φ >=< FT,FRφ >=< T,FFRφ >= 2π < Tφ >,

and similarly with FFR instead of FRF . In particular F will be injective
[FT = 0 implies T = 0] and surjective [T = F(1/2π)FRT ].

(ii) Suppose Tλ → T in S ′ as λ→ λ0. Then FTλ → FT :

< FTλ, φ >=< Tλ,Fφ >→< T,Fφ >=< FT, φ >, ∀φ ∈ S.
�

Examples 11.1.3. The computation in (11.0.2) and inversion give

F1 = FR1 = 2πδ, FRδ = Fδ = 1.

The second formula is in agreement with formal calculation:

(Fδ)(ξ) = “

∫
δ(x)e−iξxdx” = e−iξx

∣∣∣
x=0

= 1,

as well as with Definition 11.1.1:

< Fδ, φ >=
〈
δ, φ̂
〉

= φ̂(0) =

∫

R

φ(x)dx =< 1, φ > .

One could also use Hermite series [cf. Exercise 10.4.6 and Example 10.4.9]:

(11.1.1) F
∑

cnhn =
∑

cnFhn =
∑ √

2π (−i)ncnhn.

Proposition 11.1.4. In S ′, rules (i)–(vii) of the Table in Section 9.3
are valid without any restrictions.

Proofs may be derived from the corresponding rules for S and Definition
11.1.1. However, it is more elegant to argue by continuity: the various oper-
ations, including F , are continuous on S ′, and every tempered distribution
is a limit of test functions. [Think of the Hermite series for T .]
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Examples 11.1.5. (i) For p ∈ N0,

(Fxp)(ξ) = (iD)p(F1)(ξ) = 2πipDpδ(ξ).

(ii) Let T (x) = pv (1/x), so that xT (x) = 1. Thus by Fourier transfor-
mation,

iDT̂ (ξ) = 2πδ(ξ), and hence T̂ (ξ) = −2πiU(ξ) + C.

Here U is the unit step function [Examples 4.5.3]. Since T is odd, so is T̂ ,
hence C = πi. Thus the signum function of Exercise 1.2.5 will show up:

T̂ (ξ) = −πi sgn ξ.

Exercises. 11.1.1. Derive the rule FDT = iξFT for tempered distribu-
tions T by computation of < FDT, φ >.

11.1.2. Use Fourier transformation to determine all tempered solutions
T of the equation xT = 0. Also discuss the equation x2T = 0.

11.1.3. Successively compute the Fourier transforms of

eiλx, cos λx, sin λx,
sin λx

x
(λ ∈ R).

11.1.4. Verify relation (11.1.1) on termwise Fourier transformation of
Hermite series and use it to compute Fδ.

11.1.5. Compute the Fourier transforms of

1

x+ i0
,

1

x− i0
, U = 1+, UR = 1−, sgn x.

11.1.6. Compute the Fourier transforms of pv 1/(x−a) and pv 1/(x2−a2)
for a ∈ R, a 6= 0.

11.1.7. Use Fourier transformation to determine all tempered solutions
I = I(t) of the differential equation LDI + RI = δ(t) on R. [Cf. Exercise
4.5.10.]

11.2. Some applications

As a nice application of Fourier transformation we will obtain Poisson’s
summation formula. By way of preparation we prove

Lemma 11.2.1. In S ′ one has
∞∑

n=−∞
einx = 2πδper

2π .



266 11. FOURIER TRANSFORMATION OF TEMPERED DISTRIBUTIONS

Proof. Leaving out the constant term and integrating twice, one ob-
tains a uniformly convergent series, hence the given series converges to a
distribution T in S ′. One integration of T − 1 gives the familiar series

∑

n 6=0

einx

in
=

∞∑

n=1

2
sinnx

n
.

The sum of this series is equal to π − x on (0, 2π); cf. formula (1.1.3). By
periodicity, the sum function on R will have a jump 2π at each point 2πk.
Thus, by differentiation,

T − 1 =
∞∑

k=−∞
2πδ(x− 2πk) − 1 = 2πδper

2π − 1.

The final term −1 is the classical derivative of π − x. �

Theorem 11.2.2. (Poisson’s sum formula) For every test function φ in

S and its Fourier transform φ̂,

(11.2.1)
∞∑

n=−∞
φ̂(2πn) =

∞∑

n=−∞
φ(n).

Proof. The left-hand side of (11.2.1) is equal to

〈δper
2π ,Fφ〉 = 〈Fδper

2π , φ〉 =

〈
F
[

1

2π

∞∑

−∞
einx

]
, φ

〉

=
∞∑

−∞

〈
1

2π
F [einx · 1], φ

〉
=

∞∑

−∞
< δ(ξ − n), φ(ξ) >=

∞∑

−∞
φ(n).

�

Example 11.2.3. We apply (11.2.1) to φ(x) = e−ax2

with a > 0. In this

case φ̂(ξ) =
√

(π/a) e−ξ2/(4a), so that one obtains the identity

∞∑

−∞
e−an2

=

√
π

a

∞∑

−∞
e−π2n2/a.

Poisson’s formula actually holds for a class of well-behaved functions
considerably larger than S; cf. [95].

Fourier transforms can often be computed by using continuity.
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Theorem 11.2.4. (Evaluation theorem) Let f be in P and let fA be the
truncated function equal to f for |x| < A and equal to 0 for |x| > A. Also,
let ε > 0. Then

f̂(ξ) = S ′ lim
A→∞

f̂A(ξ) = S ′ lim
A→∞

∫ A

−A

f(x)e−iξxdx

= S ′ lim
εց0

∫

R

f(x)e−ε|x|e−iξxdx.

Indeed, by Definition 10.4.5,

f(x) = S ′ lim fA(x) = S ′ lim f(x)e−ε|x|,

and Fourier transformation is continuous on S ′.

Example 11.2.5. For α > −1, the function f(x) = |x|α is in P and

(F|x|α)(ξ) = S ′ lim
εց0

∫

R

|x|αe−ε|x|e−iξxdx

= 2 · S ′ lim
εց0

∫ ∞

0

xαe−εx cos ξx dx.

For the evaluation of the limit we will use the Laplace transform

(11.2.2)

∫ ∞

0

xαe−sxdx = Γ(α + 1) p.v. s−α−1, Re s > 0.

A proof of (11.2.2) may be obtained from Cauchy’s theorem and the
integral for the Gamma function. Set s = ρeiθ with ρ > 0 and |θ| < π/2, so
that p.v. s = log ρ+ iθ. Writing ρeiθx = z one then has

∫ ∞

0

xαe−sxdx =

∫ ∞

0

xαe−ρeiθxdx = (ρeiθ)−α−1

∫ ∞eiθ

0

zαe−zdz

= (ρeiθ)−α−1

∫ ∞

0

tαe−tdt = Γ(α + 1)p.v. s−α−1.

Returning to our Fourier transform, we may take ξ > 0 to obtain

(F|x|α) (ξ) = 2Γ(α + 1)S ′ lim
εց0

Re p.v. (ε+ iξ)−α−1

= 2Γ(α + 1)ξ−α−1Re e−(α+1)(π/2)i.

For the final step we impose the condition α < 0, so that ξ−α−1 is integrable
from 0 on. Since the complete answer for ξ ∈ R must be even, we conclude
that

(11.2.3) (F|x|α) (ξ) = −2Γ(α + 1) sin(απ/2) · |ξ|−α−1, −1 < α < 0.
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The special case α = −1/2 reveals another eigenfunction of Fourier
transformation in S ′.

Exercises. 11.2.1. Use the relations

1 = lim 1A = lim e−ε|x| = lim e−εx2

in S ′ for the computation of F1.
11.2.2. Use the relation pv 1/x = lim x/(x2 + ε2) for the computation

of F [pv 1/x].
11.2.3. For small δ > 0 one will expect that

∞∑

n=−∞

sin2 nδ

n2δ2
δ ≈

∫

R

sin2 ξ

ξ2
dξ = π.

(i) Prove that the approximation is exact for 0 < δ < π.
(ii) Determine the sum of the series for other values of δ.
11.2.4. Does one get the right answer if one applies Poisson’s sum for-

mula to φ(x) = e−a|x| ?
11.2.5. Compute Fδper

a = F
[∑∞

n=−∞ δ(x− an)
]

for a > 0. What

happens if a =
√

2π ?

11.2.6. Compute F
[
|x|− 1

2

]
and F

[
|x|− 1

2 sgn x
]
.

11.2.7. Determine all eigenvalues of F as an operator on S ′. Characterize
the ‘eigendistributions’ by their Hermite series.

∗11.2.8. The Bessel function J0(x) is even and tends to zero as x→ ∞;
cf. Examples 8.1.3, 8.1.6 and Exercise 8.1.10. Use the power series for J0(x)
to derive that its Fourier transform is given by

g(ξ) = S ′ lim
εց0

∫ ∞

0

J0(x)e
−εx
(
e−iξx + eiξx

)
dx

= S ′ lim
εց0

[
p.v.

{
1 + (ε+ iξ)2

}− 1

2 + p.v.
{
1 + (ε− iξ)2

}− 1

2

]

=

{
2(1 − ξ2)−

1

2 for |ξ| < 1,

0 for |ξ| > 1.

Hint. One may start with ε > 1 for termwise integration; cf. Exercise
12.1.4.
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∗11.2.9. Show that the Fourier transform g(ξ) of f(x) = J0(x) sgn x is
(for ξ > 0) given by

g(ξ) = S ′ lim
εց0

∫ ∞

0

J0(x)e
−εx
(
e−iξx − eiξx

)
dx

=

{
0 for 0 < ξ < 1,

−2i(ξ2 − 1)−
1

2 for ξ > 1.

11.2.10. For Re a > −1 one has the following formula in P:

(11.2.4) |x|a =
1

(a+ 1)(a+ 2)
D2|x|a+2.

For Re a ≤ −1 (but a 6= −1,−2, · · · ), tempered distributions |x|a may
be defined recursively by formula (11.2.4). Prove that the resulting fam-
ily of distributions {|x|a} depends analytically on a for a 6= −1,−2, · · · .
More precisely, the function fφ(a) = 〈|x|a, φ(x)〉 is analytic for every test
function φ. Deduce that the family of Fourier transforms {F|x|a} also de-
pends analytically on a. Can one conclude that the formula for F|x|a,
obtained in Example 11.2.5 for −1 < a < 0, is valid for all complex a with
a 6= 0,±1,±2, · · · ?

11.2.11. A similar story applies to the functions or distributions |x|asgn x.
Show that

|x|asgn x =
1

a+ 1
D|x|a+1 and x|x|a = |x|a+1sgn x.

Deduce that for a 6∈ Z,

F
[
|x|asgn x

]
(ξ) = −2iΓ(a + 1) cos(aπ/2) · |ξ|−a−1sgn ξ.

11.3. Convolution

Convolution is important for many applications, but it can be defined
only under certain restrictions. For tempered distributions T and test func-
tions φ one sets

(11.3.1) (T ∗ φ)(x)
def
= “

∫

R

T (y)φ(x− y)dy” =< T (y), φ(x− y) > .

The result will be a C∞ function ω of the type described in Definition 10.4.3.
[Write T = Dsf to verify this.] If T has compact support, T ∗ φ is again a
test function. Example:

(11.3.2) δ ∗ φ = φ.



270 11. FOURIER TRANSFORMATION OF TEMPERED DISTRIBUTIONS

In the case of L1 functions f and g, with g of compact support, Fubini’s
theorem gives

< f ∗ g, φ > =

∫ {∫
f(y)g(x− y)dy

}
φ(x)dx

=

∫
f(y)dy

∫
gR(y − x)φ(x)dx =< f, gR ∗ φ > .

One may use an analog of this formula to define a convolution for special S
and T :

Definition 11.3.1. For S and T in S ′ with S of compact support, one
sets

(11.3.3) < S ∗ T, φ >=< T ∗ S, φ >=< T, SR ∗ φ > .

Using (11.3.3) one finds in particular that < δ ∗ T, φ >=< T, δ ∗ φ > is
equal to < T, φ > for all φ, hence

(11.3.4) δ ∗ T = T ∗ δ = T, ∀T ∈ S ′.

In words, δ plays the role of a unit under convolution in S ′.

Proposition 11.3.2. In the cases described by (11.3.1) and (11.3.3),

(11.3.5) F(T ∗ φ) = T̂ φ̂, F(S ∗ T ) = ŜT̂ .

For T of compact support, one can show that the Fourier transform T̂

is a polynomially bounded C∞ function, as are the derivatives of T̂ .

Exercises. 11.3.1. Verify that δ acts as unit element relative to convolution
in S ′. More precisely, prove formulas (11.3.2) and (11.3.4).

11.3.2. Let f be an integrable function on R with compact support.
Prove that

(i) f̂(ξ) can be extended to an entire function (a function that is analytic

everywhere) f̂(ζ) = f̂(ξ + iη);

(ii) f̂(ξ) and its derivatives are polynomially bounded on R.
11.3.3. Let f and g be integrable functions on R such that f ∗ g = 0.

Given that f has compact support and that g is not the zero function, what
can you conclude about f ?

11.3.4. Let f be any integrable function on R – compactly supported or
not – such that

∫
R
f = 0. Prove that f ∗ 1 = 0.

11.3.5. Prove the formulas (11.3.5):
(i) for the case T ∗ φ with T = f ∈ P, so that T ∗ φ = S ′ lim (fA ∗ φ);
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(ii) for the case T ∗ φ with T = Dsf , f ∈ P, so that T ∗ φ = Ds(f ∗ φ);
(iii) for the case S ∗ T with S of compact support.

In the following exercises δ(x) appears as a convenient idealization of
either a large displacement around the point x = 0 of a system at time
t = 0, or of a unit impulse transmitted to the system at the origin at time
t = 0, or of a high temperature peak in the immediate vicinity of the origin
at time t = 0.

If one has a solution corresponding to boundary ‘function’ δ(x), one can
obtain a solution with boundary function f(x) with the aid of convolution.

11.3.6. Solve the boundary value problem

uxx =
1

c2
utt, −∞ < x <∞, t > 0;

u(x, 0) = δ(x), ut(x, 0) = 0, −∞ < x <∞.

At which points x will one observe a displacement at time t ? What can
you conclude about the speed of propagation?

11.3.7. Same questions for the problem

uxx =
1

c2
utt, −∞ < x <∞, t > 0;

u(x, 0) = 0, ut(x, 0) = δ(x), −∞ < x <∞.

11.3.8. Same questions for the heat flow (or diffusion) problem

uxx = ut, −∞ < x <∞, t > 0;

u(x, 0) = δ(x), −∞ < x <∞.

Here ‘displacement’ should be understood as change in temperature or con-
centration.

11.4. Multiple Fourier integrals

Readers who have to get used to notations with many indices may wish
to start with concrete Example 11.5.2 below.

In the following x denotes a point or vector in Rn: x = (x1, x2, · · · , xn),
and similarly ξ = (ξ1, ξ2, · · · , ξn), with standard inner product

ξ · x = ξ1x1 + ξ2x2 + · · · + ξnxn.
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For functions f in L1(Rn) one naturally defines the Fourier transform and
the reflected Fourier transform by the formulas

g(ξ) = f̂(ξ) = (Ff)(ξ) =

∫

Rn

f(x)e−iξ·xdx,(11.4.1)

h(ξ) = (FRf)(ξ) = (Ff)R(ξ) =

∫

Rn

f(x)eiξ·xdx(11.4.2)

for all ξ in Rn. By Fubini’s theorem, the multiple integral for g(ξ) may be
written as a repeated integral:

g(ξ) =

∫

Rn

f(x1, x2, · · · , xn)e−iξ1x1e−iξ2x2 · · · e−iξnxndx1dx2 · · · dxn

=

∫

R

e−iξ1x1dx1

∫

R

e−iξ2x2dx2 · · ·
∫

R

f(x1, x2, · · · , xn)e−iξnxndxn.(11.4.3)

Symbolically,

(11.4.4) g = Fxf = Fx1Fx2 · · · Fxnf,

where Fxj represents 1-dimensional Fourier transformation relative to xj .
In the special case f(x) = f1(x1)f2(x2) · · ·fn(xn) with fj in L1(R), it

immediately follows that f̂(ξ) = f̂1(ξ1)f̂2(ξ2) · · · f̂n(ξn), where f̂j is the 1-
dimensional Fourier transform of f1. Thus by Example 9.1.4, taking a > 0,

F
[
e−a|x|2

]
= F

[
e−ax2

1 · · · e−ax2
n

]

=
(π
a

)n/2

e−ξ2
1/(4a) · · · e−ξ2

n/(4a) =
(π
a

)n/2

e−|ξ|2/(4a).(11.4.5)

Fourier inversion on Rn. For well-behaved functions f one may invert
formula (11.4.4) step by step, that is, relative to one variable at a time:

Fx2 · · · Fxnf =
1

2π
F ξ1

R g, Fx3 · · ·Fxnf =
1

(2π)2
F ξ2

R F ξ1
R g, · · · ,

f =
1

(2π)n
F ξn

R · · · F ξ2
R F ξ1

R g =
1

(2π)n
F ξ

Rg.(11.4.6)

This procedure works in particular for functions of class S in Rn, that is,
the C∞ functions φ on Rn for which all seminorms

Mαβ(φ) = sup
x∈Rn

∣∣xαDβφ
∣∣ = sup

x

∣∣∣xα1

1 · · ·xαn

n Dβ1

1 · · ·Dβn

n φ
∣∣∣
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are finite. Here α and β are multi-indices ≥ 0: α = (α1, · · · , αn) with non-
negative integers αj , and similarly for β. The expression xα is the standard
abbreviation for the monomial xα1

1 · · ·xαn
n , while

Dβφ = Dβ1

1 · · ·Dβn

n φ =
∂β1+···+βn

∂xβ1

1 · · ·∂xβn
n

φ.

Convergence φλ → φ in S as λ→ λ0 shall mean that Mαβ(φ− φλ) → 0 for
all multi-indices α and β ≥ 0.

For the space S one readily verifies the assertions

FDjφ = iξjφ̂, Fxjφ = iDjφ̂,

if ψ = Fφ then φ =
1

(2π)n
FRψ,(11.4.7)

F defines a 1 − 1 continuous linear map of S onto itself.

The space S ′ of the tempered distributions on Rn consists of the contin-
uous linear functionals T on S, with the associated (weak) convergence:

Tλ → T in S ′ if < Tλ, φ >→< T, φ >, ∀φ ∈ S.
An important subclass P of S ′ is given by the locally integrable functions
f on Rn of at most polynomial growth. More precisely, f is in P if

the quotient
f(x)

(x1 + i)q1 · · · (xn + i)qn
is in L1(Rn)

for some q = (q1, · · · , qn) ∈ Nn
0 .

For tempered distributions T , the product xαT by a monomial xα, the

derivative DβT of order β = (β1, · · · , βn), the Fourier transform T̂ = FT
and the reflected transform FRT are defined as continuous linear functionals
on S by the formulas

< xαT, φ > =< T, xαφ >,

< DβT, φ > = (−1)β1+···+βn < T,Dβφ >,(11.4.8)

< FT, φ > =< T,Fφ >, < FRT, φ >=< T,FRφ > .

In this way the operators xα·, Dβ, F and FR inherit the nice properties
which they have on S; cf. (11.4.7).

For suitably matched functions or distributions S and T there is a con-
volution S ∗ T , and F(S ∗ T ) = FS · FT . This holds in particular if S and
T are L1 functions on Rn. It also holds for δ and arbitrary T in S ′, where
the delta distribution δ is given by the usual formula, < δ, φ >= φ(0), ∀φ.
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We finally observe that for f in P,

f̂(ξ) = (Ff)(ξ) = S ′ lim
A→∞

∫

|x|<A

f(x)e−iξ·xdx

= S ′ lim
εց0

∫

Rn

f(x)e−ε|x|e−iξ·xdx.(11.4.9)

Exercises. 11.4.1. Prove that for functions φ in S(Rn), F(∂φ/∂xj) =
iξjFT . Deduce that for tempered distributions T on Rn, FDjT = iξjFT .

11.4.2. Show that the “n-variable Hermite functions”

hα(x)
def
= hα1

(x1)hα2
(x2) · · ·hαn

(xn), α ∈ N0

form an orthonormal basis for L2(Rn). How do these functions behave under
n-dimensional Fourier transformation?

11.4.3. Sketch Fourier theory for L2(Rn).
11.4.4. Prove that for the delta distribution on Rn, one has Fδ = 1

independently of n.
11.4.5. Show that for the n-dimensional Laplacian ∆ = ∆n = D2

1 + · · ·+
D2

n and T in S ′,

F [∆T ](ξ) = −ρ2FT, where ρ2 = ξ2
1 + · · · + ξ2

n.

11.4.6. Let f(x) = F (r) be a function in P on R3 which depends only
on |x| = r. Show that

∫

|x|<A

F (r)e−iξ·xdx = 4π

∫ A

0

F (r) r
sin ρr

ρ
dr, where ρ = |ξ|.

Deduce that the Fourier transform f̂(ξ) depends only on ρ.
Hint. Fixing ξ 6= 0, one may introduce a system of 3-dimensional polar

coordinates with polar axis along the vector ξ. Setting x1 = r sin θ cos φ,
x2 = r sin θ sinφ, x3 = r cos θ, the vector ξ becomes (0, 0, ρ) and dx becomes
r2 sin θ drdθdφ.

11.5. Fundamental solutions of partial differential equations

Fourier transformation is especially useful for the determination of so-
called fundamental solutions for partial differential operators p(D), where
p(x) is a polynomial in x1, · · · , xn.

Definition 11.5.1. A fundamental or elementary solution for the dif-
ferential operator p(D) is a function or distribution E such that p(D)E = δ.



11.5. FUNDAMENTAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS275

If there is a tempered fundamental solution E for p(D), then by Fourier

transformation, p(iξ)Ê = δ̂ = 1, so that

(11.5.1) Ê(ξ) =
1

p(iξ)
=

1

p(iξ1, · · · , iξn)
.

Thus one will try to determine E(x) from (11.5.1). In terms of a fundamen-
tal solution, a solution of the non-homogeneous equation p(D)u = f will
(for suitable f) be given by

(11.5.2) u(x) = (E ∗ f)(x) =

∫

Rn

E(x− y)f(y)dy.

Indeed, if u is a solution, then by (formal) Fourier transformation, p(iξ)û =

f̂ , hence û = Êf̂ . Finally apply Fourier inversion.

Example 11.5.2. We will discuss the Dirichlet problem for the upper
half-space H in R3. Using the notation (x, y, z) for points in R3 instead of
x = (x1, x2, x3), the boundary value problem takes the form

∆u = uxx + uyy + uzz = 0 in H = {(x, y, z) ∈ R
3 : z > 0},

u(x, y, 0) = f(x, y), (x, y) ∈ R
2; u(x, y, z) bounded on H.

The boundedness condition on u is a condition as z → ∞; it would be more
or less implied by a condition of finite energy,

∫
R3(u

2
x + u2

y + u2
z) <∞.

It makes sense to apply 2-dimensional Fourier transformation relative to
(x, y), or repeated 1-dimensional Fourier transformation, first with respect
to x and then with respect to y. Accordingly we set

v(ξ, η, z) = Fx,yu =

∫

R2

u(x, y, z)e−i(ξx+ηy)dxdy

=

∫

R

e−iηydy

∫

R

u(x, y, z)e−iξxdx = FyFxu
[

= FxFyu
]
.(11.5.3)

Integration by parts with respect to x shows that ux is transformed into iξv,
and similarly uy goes over into iηv, hence uxx +uyy will become −(ξ2 +η2)v;

it is convenient to introduce the notation (ξ2 + η2)
1

2 = ρ ≥ 0. Assuming
that vzz is [also] obtained by differentiation under the integral sign, so that
uzz goes over into vzz, we obtain the new boundary value problem

− ρ2v + vzz = 0, (ξ, η, z) ∈ H,

v(ξ, η, 0) = Fx,yf = g(ξ, η), say.
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In the new differential equation, ξ and η occur only as parameters. The
general solution will be

v(ξ, η, z) = a(ξ, η)eρz + b(ξ, η)e−ρz.

Here a(ξ, η) and b(ξ, η) are not uniquely determined by the boundary con-
dition a + b = g, but since we look for a bounded solution u on H , it is
reasonable to demand that v not become exponentially large as z → ∞.
Thus we have to take a = 0, so that

(11.5.4) v(ξ, η, z) = g(ξ, η)e−ρz, ρ = (ξ2 + η2)
1

2 .

We finally have to invert our 2-dimensional Fourier transform (11.5.3).
Doing this in two steps, one finds

Fxu =
1

2π
Fη

Rv, u =
1

2π
F ξ

R

1

2π
Fη

R v

=
1

4π2
F ξ,η

R v =
1

4π2

∫

R2

v(ξ, η, z)ei(xξ+yη)dξdη.

Now our v in (11.5.4) is a product. Successively applying Fη
R and F ξ

R, the
function u will become a two-fold convolution, a convolution relative to
(x, y). Defining

(11.5.5)
1

4π2
F ξ,η

R

[
e−ρz

]
=

1

4π2
F ξ,η

[
e−ρz

]
= P (x, y, z),

one expects the final answer

(11.5.6) u(x, y, z) = f ∗ P =

∫

R2

f(s, t)P (x− s, y − t, z)dsdt, z > 0.

Exercises. 11.5.1. Show that a tempered fundamental solution E for the
operator −∆ must have Fourier transform

Ê(ξ) =
1

ρ2
, where ρ = |ξ|.

11.5.2. Show that the operator −∆ = −∆3 in R3 has fundamental
solution

E(x) =
1

4πr
=

1

4π|x| .

Hint. One may use Exercise 11.4.6 with r and ρ interchanged.
11.5.3. Obtain a solution of Poisson’s equation −∆u = f in R3 if f is

an integrable function with compact support.
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11.5.4. Given a pair of tempered distributions S = Dpf , T = Dqg on R,
with f and g in P, one may define a tempered distribution S(x)T (y) on R2

as Dp
1D

q
2f(x)g(y). Show that the delta distribution δ(x, y) = δ2(x, y) on R2

is equal to the product δ1(x)δ1(y), where δ1 is the delta distribution on R.
11.5.5. Obtain a fundamental solution E(x, t) for the 1-dimensional heat

or diffusion operator −D2
x +Dt:

(i) By means of 1-dimensional Fourier transformation applied to the
equation

−Exx + Et = δ2(x, t) = δ1(x)δ1(t);

(ii) by means of 2-dimensional Fourier transformation.
11.5.6. Use n-dimensional Fourier transformation to obtain a funda-

mental solution E(x, t) for the n-dimensional heat operator −∆n + Dt =
−(D2

1 + · · · +D2
n) +Dt.

11.5.7. Setting |x| = r, show that on R2,

2ε

(r2 + ε)2
→ 2πδ(x) as εց 0.

Next verify that

E(x) = lim
εց0

1

4π
log(r2 + ε) =

1

2π
log r

is a fundamental solution for the Laplacian ∆ on R2.
11.5.8. Setting z = x+ iy in C ≈ R2, verify that

E(x, y) =
1

πz

is a fundamental solution for the Cauchy–Riemann operator

∂

∂z
=

1

2

(
∂

∂x
− 1

i

∂

∂y

)
.

Hint. One may use the fact that

1

z
=

(
∂

∂x
+

1

i

∂

∂y

)
log r.

11.6. Functions on R2 with circular symmetry

Equation (11.5.5) left us with the problem to evaluate the (reflected)
Fourier transform of e−zρ, where z > 0 is a parameter. This is a special
case of the following problem: Compute the Fourier transform of a function
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g(ξ, η) = G(ρ) with circular or rotational symmetry. We will treat this
problem for general functions G(ρ) on R2.

For the computation of the Fourier integral

∫

R2

G(ρ)e±i(xξ+yη)dξdη

we introduce polar coordinates, setting ξ = ρ cosφ, η = ρ sinφ, so that dξdη
becomes ρdρdφ; we also set x = r cos θ, y = r sin θ. Thus

F ξ,η[G(ρ)](x, y) = F ξ,η
R [G(ρ)](x, y) =

∫

R2

G(ρ)ei(xξ+yη)dξdη

=

∫ ∞

0

G(ρ)ρdρ

∫ π

−π

eirρ cos(θ−φ)dφ =

∫ ∞

0

G(ρ)ρdρ

∫ π

−π

eirρ cos φdφ.

The answer depends only on r, not on θ: the transform also has circular
symmetry!

The inner integral may be calculated by termwise integration of a series:

1

2π

∫ π

−π

eit cos φdφ =
1

π

∫ π

0

=
1

π

∞∑

p=0

∫ π

0

(it cos φ)p

p!
dφ

=

∞∑

k=0

2k − 1

2k

2k − 3

2k − 2
· · · 3

4

1

2

(it)2k

(2k)!

=

∞∑

k=0

(−1)k t2k

2242 · · · (2k)2
= J0(t).

Here we have recognized an old friend from Examples 8.1.6, the Bessel func-
tion J0(t) of order zero. [For Ip =

∫ π

0
cosp φ dφ one may use the recurrence

relation Ip = −{(p − 1)/p}Ip−2, which is obtained through integration by
parts.]

The answer for our repeated integral above is thus given by

Theorem 11.6.1. For functions G(ρ), where ρ = (ξ2 + η2)
1

2 , one has

(11.6.1) F ξ,η[G(ρ)](x, y) = 2π

∫ ∞

0

G(ρ)ρJ0(rρ)dρ, r = (x2 + y2)
1

2 .
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We return now to our special case in (11.5.5). Using (11.6.1), one finds

P (x, y, z) =
1

4π2
F ξ,η[e−zρ] =

1

2π

∫ ∞

0

e−zρρJ0(rρ)dρ

=
1

2πr2

∫ ∞

0

e−(z/r)ttJ0(t)dt.

To evaluate the integral we make use of the Laplace transform of the Bessel
function J0(t),

(11.6.2) L[J0](s) =

∫ ∞

0

J0(t)e
−stdt = p.v. (s2 + 1)−

1

2 , Re s > 0;

cf. Exercise 11.2.8. Differentiation with respect to s next gives
∫ ∞

0

tJ0(t)e
−stdt =

s

(s2 + 1)
3

2

.

Substituting s = z/r and r = (x2 + y2)
1

2 , one finally obtains

(11.6.3) P (x, y, z) =
1

2π

z

(x2 + y2 + z2)
3

2

.

The solution of the Dirichlet problem for the upper half-space H in
Example 11.5.2 can now be obtained from formula (11.5.6):

u(x, y, z) =

∫

R2

f(s, t)
1

2π

z

{(x− s)2 + (y − t)2 + z2} 3

2

dsdt

=

∫

R2

f(x− s, y − t)
1

2π

z

(s2 + t2 + z2)
3

2

dsdt.(11.6.4)

Verification. Formula (11.6.4) expresses u(x, y, z) as the Poisson integral
of f for the upper half-space H in R3. Taking f locally integrable and
bounded, the first integral may be used to verify that u satisfies Laplace’s
equation for z > 0. For bounded continuous f , the second integral will show
that u(x, y, z) → f(x0, y0) as (x, y, z) → (x0, y0, 0) from H .

Exercises. 11.6.1. Verify the final statement above.

11.7. General Fourier problem with spherical symmetry

Let Q be a 1 − 1 linear transformation of Rn; we also write Q for the
representing n× n [invertible real] matrix. If Qx = y then x = Q−1y, and

ξ · x = ξ ·Q−1y = (Q−1)trξ · y = Rξ · y,
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where we have written R for the transpose of the matrix Q−1. The Jacobi
determinant of the transformation x = Q−1y is detQ−1 = detR. For f in
L1(Rn), the composition f ◦Q is also in L1, and by the transformation rule
for integrals,

F(f ◦Q)(ξ) =

∫

Rn

f(Qx)e−iξ·xdx

=

∫

Rn

f(y)e−iRξ·y| detR|dy = | detR| (Ff)(Rξ).(11.7.1)

This rule will hold for tempered distributions as well. Indeed, such distribu-
tions T are limits of well-behaved functions, and for consistency with the
case of integrals, one has to define

(11.7.2) 〈T (Qx), φ(x)〉 =
〈
T (y), φ(Q−1y)| detR|

〉
.

For tempered distributions rule (11.7.1) then follows from the definition of
FT ; see (11.4.8).

Suppose now that the function f in L1 is spherically symmetric, that is,
f(x) depends only on the length |x| = r. An equivalent statement is that
f(Px) ≡ f(x) for all orthogonal transformations P . [Recall the definition
P−1 = P tr, so that detP = ±1 and R = P .] Then (11.7.1) shows that

(11.7.3) (Ff)(ξ) = F(f ◦ P )(ξ) = (Ff)(Pξ),

so that Ff also has spherical symmetry. For distributions T one will define
spherical symmetry by the condition T (Px) = T (x), so that the conclusion
is the same:

Proposition 11.7.1. For a spherically symmetric distribution T , the
Fourier transform FT is also spherically symmetric.

Before we prove an evaluation theorem, we need some auxiliary results.

Proposition 11.7.2. For spherically symmetric functions h(x) = H(r)
in R

k of at most polynomial growth [h of class P], one has

(11.7.4)

∫

|x|<A

h(x)dx = σk

∫ A

0

H(r)rk−1dr.

Here σk denotes the area of the unit sphere S1 = {|x| = 1} in Rk,

(11.7.5) σk = 2πk/2/Γ(k/2)
[
note that Γ(1/2) = π1/2

]
.
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The proof is a straightforward application of Fubini’s theorem. In the
case of spherically symmetric h(x), the volume element dx in Rk may be
replaced by dσ(Sr) ·dr, where dσ(Sr) denotes the area element of the sphere
Sr = S(0, r) in Rk. By similarity, dσ(Sr) = rk−1dσ(S1). Finally, the total
area σk = σ(S1) in R

k is equal to 2πk/2/Γ(k/2); cf. Exercise 11.7.2.

Definition 11.7.3. The Bessel functions Jν(t) (ν > −1) are given by
the power series

(11.7.6) Jν(t)
def
=

∞∑

k=0

(−1)k

2ν+2kk! Γ(ν + k + 1)
tν+2k.

The cases ν = ±1/2 are special:

(11.7.7) J−1/2(t) =

(
2

πt

)1/2

cos t, J1/2(t) =

(
2

πt

)1/2

sin t.

Proposition 11.7.4. For Jν(t) one has the following integral represen-
tations when ν > −1/2:

Jν(t) =
(t/2)ν

Γ(1/2)Γ(ν + 1/2)

∫ π

0

e±it cos θ sin2ν θ dθ

=
(t/2)ν

Γ(1/2)Γ(ν + 1/2)

∫ 1

−1

(1 − s2)ν−1/2e±itsds.

Also, there are constants βν such that for t→ ∞,

Jν(t) =

(
2

πt

)1/2

cos(t− βν) + O(t−3/2).

The second integral formula may be derived with the aid of Laplace
transformation; cf. Exercise 12.4.14. One may verify the formulas by using
Euler’s Beta function,

B(p, q)
def
=

∫ 1

0

xp−1(1 − x)q−1dx (p, q > 0)

= 2

∫ π/2

0

cos2p−1 θ sin2q−1 θ dθ =
Γ(p)Γ(q)

Γ(p + q)
.(11.7.8)

For the asymptotic result, cf. Exercise 8.2.5.
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Theorem 11.7.5. Let f(x) = F (r) (with r = |x|) be a spherically sym-
metric function of class P on Rn. Then

g(ξ) = f̂(ξ) = f̂R(ξ) = G(ρ)

= S ′ lim
A→∞

(2π)n/2ρ1−n/2

∫ A

0

F (r)rn/2J(n/2)−1(ρr)dr

= S ′ lim
εց0

(2π)n/2ρ1−n/2

∫ ∞

0

e−εrF (r)rn/2J(n/2)−1(ρr)dr, ρ = |ξ|.

Proof. We will derive the first formula for f̂(ξ). By (11.4.9) it will
suffice to compute the transform of the truncated function fA,

f̂A(ξ) =

∫

|x|<A

F (r)e−iξ·xdx.

By (11.7.3) f̂A(ξ) depends only on |ξ| = ρ, hence (thinking of n ≥ 2),

f̂A(ξ1, ξ2, · · · , ξn) = f̂A(ρ, 0, · · · , 0) =

∫

|x|<A

F (r)e−iρx1dx.

We now split x = (x1, x2, · · · , xn) as (x1, x
′), where x′ = (x2, · · · , xn), and

apply Fubini’s theorem to the last integral to obtain

f̂A(ξ) =

∫

|x1|<A

e−iρx1dx1

∫

|x′|<
√

A2−x2
1

F

(√
x2

1 + |x′|2
)
dx′.

In the final inner integral x1 is constant, hence there the integrand de-
pends only on |x′| = r′. To that integral we apply Proposition 11.7.2, with x

replaced by x′, r by r′, A by A′ =
√
A2 − x2

1, and H(r′) = F
(√

x2
1 + (r′)2

)
,

k = n− 1. One thus finds

f̂A(ξ) =

∫

|x1|<A

e−iρx1dx1 · σn−1

∫ A′

0

F

(√
x2

1 + (r′)2

)
(r′)n−2dr′.

This repeated integral may also be written as a double integral over the semi-
disc in the (x1, r

′) plane given by x2
1 +(r′)2 < A2, r′ > 0. For the evaluation

of that double integral we introduce polar coordinates x1 = r cos θ, r′ =
r sin θ, 0 < r < A, 0 < θ < π:

f̂A(ξ) = σn−1

∫ A

0

∫ π

0

e−iρr cos θF (r)(r sin θ)n−2r dr dθ.
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Here the integration with respect to θ can be carried out with the aid of
Proposition 11.7.4. Taking ν = (n/2)−1 (with n ≥ 2) and t = ρr, one finds

∫ π

0

e−iρr cos θ(sin θ)n−2dθ =
Γ(1/2)Γ{(n− 1)/2}

(ρr/2)(n/2)−1
J(n/2)−1(ρr).

As a result,

f̂A(ξ) = σn−12
(n/2)−1Γ(1/2)Γ{(n− 1)/2}ρ1−n/2

×
∫ A

0

F (r)rn/2 J(n/2)−1(ρr)dr.

Using formula (11.7.5) for σn−1, this gives the desired result for n ≥ 2. For
n = 1 the result may be obtained by a simple direct computation. �

Exercises. 11.7.1. Let δ denote the delta distribution on Rn. Prove that
(i) δ(x) is spherically symmetric;
(ii) δ(λx) = (1/λn) δ(x), λ > 0.
Hint. The expression < T (λx), φ(x) > is of course defined as if it is an

ordinary integral
∫
T (λx)φ(x)dx over Rn.

11.7.2. Prove by induction that the volume of the ball Bk(0, r) in Rk

is equal to πk/2rk/Γ{(k/2) + 1}. Deduce that the area of the sphere Sr =
Sk(0, r) in Rk is equal to 2πk/2rk−1/Γ(k/2).

Hint. Setting x = (x1, x2, · · · , xk) = (x1, x
′), one has

volBk(0, r) =

∫

|x|<r

dx =

∫

|x1|<r

dx1

∫

|x′|<r′=
√

r2−x2
1

dx′

=

∫ r

−r

volBk−1(0, r
′) dx1.

11.7.3. (i) Verify the formulas for J±1/2(t) in (11.7.7).
(ii) Prove the ‘recurrence relation’

1

z

d

dz

{
z−νJν(z)

}
= −z−ν−1Jν+1(z).

(iii) Compute J3/2(t).
11.7.4. Give direct proofs for the cases n = 1 and n = 2 of Theorem

11.7.5.
11.7.5. (i) Show that the function f(x) = rα with r = |x| on Rn belongs

to the class P if and only if Reα > −n.
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(ii) Prove that for −n < α < −(n + 1)/2, and even for −n < α <
−(n− 1)/2,

(11.7.9) Frα = Cα,nρ
−α−n, ρ = |ξ|.

(iii) Show with the aid of a well-chosen test function that

Cα,n = 2α+nπn/2 Γ{(α+ n)/2}
Γ(−α/2)

.

11.7.6. (i) Show that the function rα on Rn depends analytically on α
for Reα > −n in the sense that hφ(α) =< rα, φ > is an analytic function
of α for every test function φ.

(ii) Use the relation

rα =
1

(α+ 2)(α + 1)
∆ rα+2

to define rα recursively as a tempered distribution on Rn which depends
analytically on α throughout the domain C \ {−n,−n − 2,−n − 4, · · · }.
[The points −2,−4, · · · require special attention.]

(iii) Prove that Frα also depends analytically on α, and use this fact
to extend formula (11.7.9) to all values of α 6= −n,−n− 2,−n− 4, · · · and
6= 0, 2, 4, · · · .

11.7.7. Determine FR(1/ρ2) in Rn, ρ = |ξ|, when n ≥ 3. Use the answer
to obtain the fundamental solution E(x) for (minus) the Laplace operator
in Rn that tends to zero as r = |x| → ∞. Put the answer into the final form

E(x) =
1

(n− 2)σn

1

rn−2
(σn = area of S1 in Rn).



CHAPTER 12

Other integral transforms

There are so-called half-line integral transformations (related to Fourier
transformation) that can be applied to a large class of functions defined
on R

+ = (0,∞). The most important of these is Laplace transformation,
which is especially useful for the treatment of initial value problems. It maps
functions on R+ onto analytic functions in a right half-plane, to which one
can apply methods of Complex Analysis.

In the following, applications of integral transforms to ordinary and par-
tial differential equations will play an important role. In the n-dimensional
case, the most interesting application of our integral transforms involves the
wave equation. We will see in Section 12.6 that communication governed by
that equation works poorly in even dimensions, and works really well only
in R3 !

We will also discuss Fourier cosine and sine transforms, and in the next
chapter, two-sided Laplace transformation.

12.1. Laplace transforms

Functions f on R+ = (0,∞) that are integrable over finite intervals
(0, A) and of at most exponential growth towards infinity have a Laplace
transform [also called one-sided Laplace transform]

(12.1.1) g(s) = (Lf)(s)
def
=

∫ ∞

0

f(t)e−stdt, s = σ + iτ.

Examples 12.1.1. For f(t) = eat, a ∈ C and Re s > Re a,

(Lf)(s) =

∫ ∞

0

eate−stdt =

[
e(a−s)t

a− s

]∞

t=0

=
1

s− a
.

Indeed, for Re (s− a) = δ > 0 one has
∣∣e(a−s)t

∣∣ = e−δt.

285
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From this one may derive that

L[sin bt](s) = L
[

1

2i
(eibt − e−ibt)

]
(s)

=
1

2i

(
1

s− ib
− 1

s+ ib

)
=

b

s2 + b2
.

If b is real this holds for all s ∈ C with Re s > 0.

The (one-sided) Laplace transform is a continuous analog of a power
series in z = e−s,

(12.1.2)

∞∑

0

anz
n =

∞∑

0

ane
−ns.

The typical domain of convergence for such a series is a circular disc in the
complex z-plane: {

|z| =
∣∣e−s

∣∣ = e−σ < R
}
.

In terms of s, the domain of convergence becomes a right half-plane, given
by

σ = Re s > − logR.

[If R = +∞, the half-plane becomes the whole plane.] In this domain, the
sum of the series (12.1.2) is analytic.

Similarly, the (one-sided) Laplace transform g(s) = (Lf)(s) will be an-
alytic in its half-plane of convergence.

Theorem 12.1.2. Suppose that the Laplace integral (12.1.1) converges
[as a Lebesgue integral, hence converges absolutely] at the point s = a =
α + iβ. Then it converges for every s ∈ C with σ = Re s ≥ α. The
function g(s) = (Lf)(s) is continuous and bounded on the closed half-plane
{σ ≥ α}, and it tends to zero as σ = Re s → +∞.The transform g(s) is
differentiable in the complex sense – hence analytic – throughout the open
half-plane {σ > α}. There one has

(12.1.3) g′(s) = −
∫ ∞

0

tf(t)e−stdt.

Proof. (i) The integral (12.1.1) will converge for all s in the closed
half-plane {σ = Re s ≥ α}. Indeed, for such s, the integrand is the product
of an integrable and a bounded continuous function,

(12.1.4) f(t)e−st = f(t)e−at · e(a−s)t,
∣∣f(t)e−st

∣∣ =
∣∣f(t)e−at

∣∣ e(α−σ)t.
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A direct estimate shows that
∫ A

0
f(t)e−stdt is continuous in s on C. As

A→ ∞,
∫ A

0

f(t)e−stdt→
∫ ∞

0

f(t)e−st

uniformly in s for Re s ≥ α. Hence g(s) is continuous there. The bound-
edness of g(s) for σ ≥ α follows immediately from (12.1.4). That g(s) → 0
as σ → ∞ may be derived by dominated convergence, or directly from the
inequality

|g(s)| =

∣∣∣∣
∫ ∞

0

f(t)e−stdt

∣∣∣∣ ≤
∫ δ

0

∣∣f(t)e−at
∣∣dt

+

∫ ∞

δ

∣∣f(t)e−at
∣∣dt · e(α−σ)δ , σ ≥ α.

The right-hand side can be made small by fixing a small δ > 0 and then
taking σ large.

(ii) We will prove that the complex derivative g′(s) exists throughout
the open half-plane {σ > α}. Fix s ∈ C with σ = Re s > α. For t ≥ 0 and
complex h 6= 0, one has

∣∣∣∣
e−ht − 1

h
+ t

∣∣∣∣ =

∣∣∣∣
1

h

{
(−ht)2

2!
+

(−ht)3

3!
+

(−ht)4

4!
+ · · ·

}∣∣∣∣

≤ |h| 1

2
t2
(

1 +
|h|t
3

+
(|h|t)2

3 · 4 + · · ·
)

≤ |h| 1

2
t2 e|h|t ≤ |h| e

δt

δ2
e|h|t, ∀ δ > 0.

Hence for fixed δ < σ − α and |h| ≤ σ − α− δ, so that δ + |h| − σ ≤ −α =
−Re a,

∣∣∣∣
g(s+ h) − g(s)

h
+

∫ ∞

0

tf(t)e−stdt

∣∣∣∣

=

∣∣∣∣
∫ ∞

0

(
e−ht − 1

h
+ t

)
f(t)e−stdt

∣∣∣∣

≤ |h| 1

δ2

∫ ∞

0

|f(t)|e(δ+|h|−σ)tdt ≤ |h| 1

δ2

∫ ∞

0

∣∣f(t)e−at
∣∣dt.

The final expression tends to zero as h→ 0. Conclusion: g is differentiable
at s in the complex sense, with derivative g′(s) as in (12.1.3). By Complex
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Analysis, g then is analytic: it has local representations by convergent power
series. It is attractive to prove this directly; cf. Exercise 12.1.3. �

Example 12.1.3. Let Re a > −1, f(t) = ta = p.v. ta, t > 0. The
product tae−st is in L1(R+) for all complex s with Re s > 0. For real s > 0,

g(s) =

∫ ∞

0

tae−stdt =

∫ ∞

0

(v
s

)a

e−v dv

s

= Γ(a+ 1)s−a−1 = Γ(a + 1) p.v. s−a−1.(12.1.5)

By Theorem 12.1.2, the left-hand side has an analytic extension g = Lf
to the right half-plane {σ = Re s > 0}. The same is true for the final
member, so that we have two analytic functions for Re s > 0 that agree
on the positive real axis. Hence by the Uniqueness Theorem for analytic
functions, the final member gives the Laplace transform of ta for all s with
σ > 0.

For the applications, the most important property of Laplace transfor-
mation involves its action on derivatives:

Proposition 12.1.4. Let f be equal to an indefinite integral on [0,∞)
and suppose that f ′(t)e−at is in L1(R+) for some constant a. Then

(12.1.6) (Lf ′) (s) = s(Lf)(s) − f(0) for Re s > max{Re a, 0}.

Proof. Setting α = max{Re a, 0}, the product f ′(v)e−αv will be in
L1(R+). Thus

f(t) = f(0) +

∫ t

0

f ′(v)dv = f(0) +

∫ t

0

f ′(v)e−αv · eαvdv,

|f(t)| ≤ |f(0)| + eαt

∫ ∞

0

|f ′(v)|e−αvdv ≤ Cαe
αt, ∀ t ∈ R

+.

Taking Re s = σ > α, integration by parts now gives the desired result:
∫ ∞

0

f ′(t)e−stdt =
[
f(t)e−st

]∞
t=0

−
∫ ∞

0

f(t)(−s)e−stdt

= −f(0) + s

∫ ∞

0

f(t)e−stdt.

Indeed, one has |f(t)e−st| ≤ Cαe
(α−σ)t, so that the last integral converges.

The final bound also shows that the integrated term reduces to −f(0). �
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Corollary 12.1.5. For f as in Proposition 12.1.4,

(12.1.7) lim
s→+∞

s(Lf)(s) exists and = f(0).

Indeed, (Lf ′)(s) → 0 as σ = Re s→ ∞: apply Theorem 12.1.2 to f ′.

Exercises. 12.1.1. Compute L[cos bt]:
(i) directly;
(ii) from the formula cos bt = (d/dt)(sin bt)/b.
12.1.2. Compute L[eat cos bt] and L[eat sin bt].
12.1.3. Let f(t)e−αt (with α ∈ R) be in L1(R+). Choosing any s0 =

σ0 + iτ0 with σ0 > α, prove by termwise integration of a suitable expansion
that for |s− s0| < σ0 − α, and even for |s− s0| ≤ σ0 − α,

g(s) =

∫ ∞

0

f(t)e−stdt =

∞∑

0

cn(s− s0)
n,

where

cn =
1

n!

∫ ∞

0

(−t)nf(t)e−s0tdt, n = 0, 1, 2, · · · .

12.1.4. Use the power series for J0(t) and termwise integration to show
that for Re s = σ > 1,

(LJ0)(s) = p.v. (s2 + 1)−
1

2 .

Extend the result to all s with real part σ > 0.

12.2. Rules for Laplace transforms

We consider functions f of at most exponential growth on R+ in the sense
that f(t)e−αt is in L1(R+) for some real constant α. Taking s = σ + iτ , we
set (Lf)(s) = g(s) for σ ≥ α.
Discussion of the Table below. Rules (i)–(iii) follow immediately from the
Definition of the Laplace transform and rule (v) follows from Theorem
12.1.2. A sufficient condition for rule (iv) was given in Proposition 12.1.4.
For the half-line convolution in rule (vi) we have the following

Proposition 12.2.1. (i) Let the functions fj(t) be locally integrable on
R+ [integrable over finite subintervals]. Then the half-line convolution

(12.2.1) (f1 ∗ f2)(t) =

∫ t

0

f1(t− v)f2(v)dv

exists almost everywhere and is locally integrable on R+.
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Original f(t) Laplace trf g(s) Remark

(i) f(λt)
1

λ
g
( s
λ

)
λ > 0, σ ≥ λα

(ii) f(t− λ)U(t− λ) e−λsg(s) λ ≥ 0

(iii) eλtf(t) g(s− λ) λ ∈ C, σ ≥ α + Reλ

(iv) Df(t) = f ′(t) sg(s) − f(0) Prop 12.1.4

(v) tf(t) −Dg(s) = −g′(s) Thm 12.1.2

(vi) (f1 ∗ f2)(t) g1(s)g2(s) (f1 ∗ f2)(t) =
∫ t

0
· · ·

(ii) Suppose now that fj(t)e
−αjt with real αj is in L1(R+), j = 1, 2. Then

the function (f1 ∗ f2)(t)e
−st will be integrable over R

+ for Re s = σ ≥ α =
max{α1, α2}, and

L(f1 ∗ f2) = Lf1 · Lf2 for σ ≥ α.

Proof. (i) Extending f1 and f2 to R by setting fj = 0 on R−, we have

f1(t− v)f2(v) = 0 for v < 0 and for v > t,

hence the ordinary convolution
∫

R
f1(t − v)f2(v)dv reduces to 0 for t < 0

and to the half-line convolution (12.2.1) for t ≥ 0.
In order to prove a.e. existence and integrability of the half-line convo-

lution on 0 ≤ t ≤ A, we temporarily redefine f1, f2 as equal to 0 for t > A.
The modified f1 and f2 will be in L1(R) and hence the result for 0 ≤ t ≤ A
follows from Proposition 9.4.3 for ordinary convolution.

(ii) Keeping f1 = f2 = 0 for t < 0, the hypothesis implies integrability
of fj(t)e

−st over R when Re s ≥ α, j = 1, 2. For such s, the function

(f1 ∗ f2)(t)e
−st =

∫

R

f1(t− v)e−s(t−v) · f2(v)e
−svdv

= f1(t)e
−st ∗ f2(t)e

−st

will be integrable over R by Proposition 9.4.3. By the same proposition,
the integral of the left-hand side over R will be equal to the product of the
integrals of f1(t)e

−st and f2(t)e
−st. �

Example 12.2.2. The Laplace transform of the Bessel function J0 can
be obtained from the characterization of J0(t) as the solution of the initial
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value problem

ty′′ + y′ + ty = 0, y(0) = 1, y′(0) = 0

that was discussed in Examples 8.1.3 and 8.1.6. The power series for J0(t)
readily shows that |J0(t)| ≤ et for t ≥ 0. Using the initial conditions, rules
(iv) and (v) in the Table give

Ly′ = sLy − y(0) = sLy − 1, Ly′′ = sLy′ − y′(0) = s2Ly − s,

L[ty] = −(Ly)′, L[ty′′] = −(Ly′′)′ = −s2(Ly)′ − 2sLy + 1.

Thus, transforming our differential equation and taking Re s = σ > 1,
simple calculations will give

(s2 + 1)(Ly)′ + sLy = 0, so that Ly = c(s2 + 1)−
1

2 .

Choosing the principal value of the fractional power, we must have

sLy = s · cs−1(1 + 1/s2)−
1

2 → y(0) = 1 as s→ +∞;

see Corollary 12.1.5. Hence c = 1 and

(12.2.2) (LJ0)(s) = p.v. (s2 + 1)−
1

2 .

Our proof gives this for σ > 1, but by the boundedness of J0(t) and analytic
continuation, the result will hold for all s with real part σ > 0. Cf. also
Exercise 12.1.4.

Exercises. 12.2.1. Starting with the formula L1 = 1/s, use the rules in
the Table to compute L[eat] and L[tneat].

12.2.2. Compute L[cos bt] from the initial value problem

y′′ + b2y = 0, y(0) = 1, y′(0) = 0.

Next use the Table to compute L[eat cos bt].
12.2.3. Give a direct proof of rule (vi) for the Laplace transform of a

half-line convolution by inverting order of integration.

12.3. Inversion of the Laplace transformation

Here we will use the close connection between Laplace transformation
and Fourier transformation. It will then be convenient to think of f as
a function on R which vanishes on the negative real axis; as a reminder
we sometimes write f(t)U(t), where U(t) is the unit step function, 1+(t)
[Examples 10.5.2].
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Theorem 12.3.1. For functions f of at most exponential growth on R+,
more precisely, f(t)e−αt in L1(R+) for some real constant α, one has

(12.3.1) g(s) = (Lf)(s) = (Lf)(σ + iτ) = F
[
f(t)e−σtU(t)

]
(τ)

for σ ≥ α, τ ∈ R. Conversely one has the so-called complex inversion
formula,

(12.3.2) f(t)U(t) = lim
A→∞

1

2πi

∫ σ+iA

σ−iA

g(s)etsds, σ ≥ α.

The limit in (12.3.2) will exist pointwise at the points t where f(t)U(t) is
differentiable or satisfies a Hölder–Lipschitz condition. If g(s) is integrable
over the vertical line {Re s = σ}, the limit is equal to an ordinary integral
from σ − i∞ to σ + i∞. The limit relation will always hold in the sense
of general distributions; see below. The corresponding limit relation for
f(t)e−σtU(t) holds in the sense of tempered distributions.

Corollary 12.3.2. Laplace transformation is one to one on the class
of functions f of at most exponential growth: if Lf = 0, then f = 0 in the
sense that f(t) = 0 almost everywhere on R+. In particular, f(t) must then
vanish at every point of continuity.

Proof of Theorem 12.3.1. For (12.3.1) one need only observe that
for σ ≥ α,

g(σ + iτ) =

∫ ∞

0

f(t)e−σte−iτtdt =

∫

R

f(t)e−σtU(t) · e−iτtdt.

Applying Fourier inversion to this formula, cf. Theorems 9.2.2 and 10.1.7,
one finds that for σ ≥ α,

(12.3.3) f(t)e−σtU(t) =
1

2π
FR[g(σ+ iτ ](t) =

1

2π
lim

A→∞

∫ A

−A

g(σ+ iτ)eitτdτ.

Here the limit is an ordinary limit at points t where the left-hand side is
well-behaved; the limit relation always holds in the sense of S ′.

Multiplying both sides of (12.3.3) by eσt and replacing τ by σ + iτ = s
as variable of integration, one obtains the complex inversion formula

f(t)U(t) =
1

2π
lim

A→∞

∫ A

−A

g(σ + iτ)et(σ+iτ)dτ

= lim
A→∞

1

2πi

∫ σ+iA

σ−iA

g(s)etsds.(12.3.4)
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O αβ

α + iA

α - iA

Figure 12.1

Here the limit relation holds in the sense of general distributions, that is,
it holds relative to the test class of C∞ functions ψ with compact support.
[For such functions ψ, the products eσtψ will be in S.] Cf. Chapter 13. �

Example 12.3.3. Let g(s) = 1/(s2 + 1), Re s > 0. Then

f(t)U(t) =
(
L−1g

)
(t) =

1

2πi

∫ α+i∞

α−i∞

1

s2 + 1
etsds (α > 0).

For t > 0 we move the vertical line of integration σ = const far to the left,
because |ets| will become small there; cf. Figure 12.1. The Residue Theorem
now gives

f(t) =
∑(

residues of
1

s2 + 1
ets at s = ±i

)

+
1

2πi

∫ β+i∞

β−i∞

1

s2 + 1
etsds (β < 0).(12.3.5)

Indeed, the integrals along horizontal segments s = σ ± iA, α ≥ σ ≥ β will
go to zero when A → ∞. Letting β go to −∞, the final integral tends to
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i

-i

α

α + iA

α - iA

Γ
i

-i

i

-i

i

-i

Γ+

Γ-

Figure 12.2

zero. [Being constant for β < 0, it is actually equal to zero.] Thus

f(t) =
1

2i
(eit − e−it) = sin t (t > 0).

Example 12.3.4. Let g(s) = p.v. (s2 + 1)−
1

2 , Re s > 0. We know from
Example 12.2.2 that g = L[J0U ]. Thus for α > 0,

J0(t)U(t) =
(
L−1g

)
(t) = lim

A→∞

1

2πi

∫ α+iA

α−iA

(s2 + 1)−
1

2 etsds.

Since the function (s2 + 1)−
1

2 is multi-valued, one has to be careful about
moving paths of integration. Introducing a cut in the s-plane along the
segment Γ = [−i, i], one can define an analytic branch g1(s) = (s2 + 1)−

1

2

outside the cut; we consider the branch that behaves like 1/s at infinity.
That branch can be considered as an analytic continuation of our principal
value g(s) on the half-plane Re s > 0. It has continuous extensions to the
two edges of the cut, except for the points s = ±1.

Keeping t > 0, we may successively deform our path of integration as
indicated in Figure 12.2, finally contracting the path onto the edges of the
cut Γ. Since g1(s) is positive on R+ and real on Γ, it will by continuity be
positive on the right-hand edge Γ+ of the cut. On the left-hand edge Γ−
of the cut, g1(s) will have the opposite values. Thus, setting s = iv on the

cut, we find that g1(s) = (1− v2)−
1

2 on Γ+ and g1(s) = −(1− v2)−
1

2 on Γ−.
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As a result,

J0(t) =
1

2πi

∫ i

−i; s∈Γ+

g1(s)e
tsds+

1

2πi

∫ −i

i; s∈Γ−

g1(s)e
tsds

=
2

2π

∫ 1

−1

(1 − v2)−
1

2 eitvdv =
2

π

∫ 1

0

1√
1 − v2

cos tv dv.(12.3.6)

This representation will be valid also for t < 0 [since J0 is even] and for
t = 0.

Observe that by (12.3.6), |J0(t)| ≤ J0(0) = 1 for t ∈ R, while by the
Riemann–Lebesgue lemma, J0(t) → 0 as t→ ∞.

12.4. Other methods of inversion

In practice, it may be more convenient to use other methods of inversion
than Theorem 12.3.1. We mention several.

(i) Use of tables of Laplace transforms. The given function g(s) may
occur in a table, or if it does not occur itself, the rules in Section 12.2 may
help out. For example, the question may be to determine f = fU = L−1g
when

g(s) =
e−s

s+ 1
(Re s > 0).

The list of transforms will surely contain the pair

f0(t) = 1, g0(s) =
1

s
(Re s > 0).

Applying the rules, one will obtain

1

s+ 1
= L

[
e−t
]

= L
[
e−tU(t)

]
, es 1

s+ 1
= L

[
e−(t−1)U(t− 1)

]
.

(ii) Decomposition into partial fractions. Suppose

g(s) =
P (s)

Q(s)
(Re s > α),

where P and Q are polynomials. We may assume that degP < degQ [so
that g(s) → 0 as Re s → ∞]. Factoring Q(s) = C(s− a)m(s− b)n · · · with
distinct a, b, · · · , one has

g(s) =
A0

(s− a)m
+

A1

(s− a)m−1
+ · · ·+ Am−1

s− a

+
B0

(s− b)n
+ · · ·+ Bn−1

s− b
+ · · · .
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Here Ak is the coefficient of (s − a)k in the power series for (s − a)mg(s)
around the point a:

Ak =
1

k!
Dk
{
(s− a)mg(s)

}∣∣∣
s=a

, k = 0, 1, · · · , m− 1,

etc. One finally uses the standard formula

(12.4.1)
1

(s− a)p
= L

[
tp−1

(p− 1)!
eatU(t)

]
.

Thus for example,

4

(s2 + 1)2
=

−1

(s− i)2
+

−i
s− i

+
−1

(s+ i)2
+

i

s+ i

= L
[
(−teit − ieit − te−it + ie−it)U(t)

]

= L
[
(−2t cos t+ 2 sin t)U(t)

]
(Re s > 0).

(iii) Termwise inverse transformation when g(s) is analytic at infinity
[that is, g(1/s analytic at s = 0]. Suppose that

g(s) =

∞∑

n=0

an

sn+1
for (Re s > α ≥ 0.

Then

f(t)U(t) =
(
L−1g

)
(t) =

∞∑

0

anL−1

[
1

sn+1

]
(t) =

∞∑

0

an
tn

n!
U(t).

Verification. The series for g will be (absolutely) convergent for |s| > α,
hence |an| ≤ Cε(α + ε)n for every ε > 0. Thus

∞∑

0

∣∣∣∣an
tn

n!
e−st

∣∣∣∣ ≤ Cε

∞∑

0

{(α + ε)t}n

n!
e−σt = Cεe

(α+ε−σ)t.

Hence for Re s > α+ε, the series
∑∞

0 an(tn/n!)e−st may be integrated term
by term over R

+. The result will be the original formula for g(s).
For example, for Re s > 1,

p.v. (s2 + 1)−
1

2 =
1

s
p.v.

(
1 +

1

s2

)− 1

2

=
1

s

{
1 − 1

2

1

s2
+

(−1
2
)(−3

2
)

2!

1

s4
+

(−1
2
)(−3

2
)(−5

2
)

3!

1

s6
+ · · ·

}
.
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Hence

L−1
{

p.v. (s2 + 1)−
1

2

}

=

{
1 − 1

2

t2

2!
+

1 · 3
2! 22

t4

4!
− 1 · 3 · 5

3! 23

t6

6!
+ · · ·

}
U(t)

=

{
1 − t2

22
+

t4

2242
− t6

224262
+ · · ·

}
U(t) = J0(t)U(t);

cf. Examples 8.1.6.
(iv) Inverse transformation applied to a product. Suppose g = g1g2

where gj = Lfj = L[fjU ]. Then

fU = L−1g = L−1(g1g2) = f1U ∗ f2U = (f1 ∗ f2)U,

the half-line convolution. For example: Solve the initial value problem

y′′ + y = f(t), t > 0; y(0) = y′(0) = 0.

Setting f = 0 for t < 0 and assuming that f is at most of exponential
growth on R+, one will have y = 0 for t < 0 and by the rules in Section
12.2,

s2Ly + Ly = Lf = L[fU ], so that Ly = Lf · 1

s2 + 1
,

provided Re s is sufficiently large. It follows that

y(t) = f(t) ∗ sin t =

∫ t

0

f(v) sin(t− v) dv for t ≥ 0.

The solution makes sense for any locally integrable function f on R+.

Exercises. 12.4.1. Compute the inverse Laplace transforms of

1

s2
,

1

s2 − 1
,

1

s
,

s

s2 + 1
(Re s > α) :

(i) with the aid of the complex inversion formula;
(ii) with the aid of partial fractions.
12.4.2. Use Laplace transformation to solve the initial value problems

y′′ + y = 0, 0 < t <∞; y(0) = 0, y′(0) = 1;

y′′ − a2y = 0, 0 < t <∞; y(0) = 1, y′(0) = 0.

12.4.3. Same question for the initial value problem given by the system

4y′ − z′ − 5z = 0, 4y + z′ + z = 4, 0 < t <∞;

y(0) = 1, z(0) = 2.
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Figure 12.3

[Answer: y = e−t sin 2t + 1, z = 2e−t cos 2t.]
12.4.4. Determine L−1[g(s)/s] if g = Lf (Re s > α ≥ 0).
12.4.5. Use Laplace transformation to solve the convolution equation

y(t) = e−t + 2

∫ t

0

y(v) cos(t− v) dv, t ≥ 0.

12.4.6. Prove that∫ t

0

J0(v)J0(t− v)dv = sin t, t ≥ 0.

12.4.7. Solve Abel’s integral equation
∫ t

0

y(v)(t− v)βdv = f(t), t ≥ 0 (−1 < β < 0).

Hint. Solve first for
∫ t

0
y(v)dv.

12.4.8. Let g(s) be an analytic function in a half-plane Re s > α such
that |g(s)| ≤ B/|s|1+ε, ε > 0, for Re s > α′ = max{α, 0}. Prove that g is
the Laplace transform of a continuous function f(t) on [0,∞) with f(0) = 0.

12.4.9. Let g(s) be an analytic function in a half-plane Re s > α such
that ∣∣∣g(s) − c

s

∣∣∣ ≤ B

|s|1+ε
(ε > 0) for Re s > α′ ≥ max{α, 0}.

Prove that g is the Laplace transform of a continuous function f(t) on [0,∞)
with f(0) = c.

12.4.10. Determine L−1g when g(s) = (1/
√
s)e−x

√
s (Re s > 0), where√

s denotes the principal value of s
1

2 and x is a positive parameter. Use the
answer

(
1/
√
πt
)
e−x2/(4t)U(t) to compute L−1

[
e−x

√
s
]
.

Hint. Make a cut in the s-plane along R
−; cf. Figure 12.3. When t > 0,

the path of integration for L−1g(t) may be moved to the edges of the cut.
Now set s = w2 and finally set w = iv.
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12.4.11. (Heat conduction in semi-infinite medium) Solve the boundary
value problem

uxx = ut, x > 0, t > 0; u(x, 0) = 0, x > 0; u(x, t) bounded;

u(0, t) = f(t), t > 0.

Hint. Introduce the Laplace transform

v(x, s) = Lt[u(x, t)](s) =

∫ ∞

0

u(x, t)e−stdt.

12.4.12. Solve the boundary value problem

uxx =
1

c2
utt, x > 0, t > 0; u(x, 0) = ut(x, 0) = 0, x > 0;

u(0, t) = f(t) (t > 0), where supp f = [0, 1]

[for example, f(t) = sinωt for 0 ≤ t ≤ 1, f(t) = 0 for all other t];

|u(x, t)| ≤ M for all x, t.

Over which time interval does one receive a signal at the point x0 ? [For
which values of t is u(x0, t) 6= 0 ?]

In a variation on the Laplace method for ordinary [or partial] differential
equations, one sets y(t) [or u(x, t)] equal to

∫
Γ
g(s)etsds, where Γ is a path

in the complex s-plane, with end-points a and b, say, that is to be chosen
later.

12.4.13. Apply this form of the Laplace method to Bessel’s equation of
order zero.

Hint. The differential equation leads to the following condition on g:
∫

Γ

(s2 + 1)g(s)dse
ts +

∫

Γ

sg(s)etsds = 0, ∀ t ∈ R
+ or R.

Integration by parts transforms the condition to
∫

Γ

[
−{(s2 + 1)g(s)}′ + sg(s)

]
etsds = 0, ∀ t,

provided the integrated term [(s2 + 1) g(s)ets]
b
a is equal to zero.

12.4.14. Apply the same method to Bessel’s equation of order ν [Exercise
8.1.5], after it has been reduced to the form

tz′′ + (2ν + 1)z′ + tz = 0

by the substitution y(t) = tνz(t). [The solution of the z-equation for which
z(0) = 1/{2νΓ(ν + 1)} is Jν(t)/t

ν ; cf. Proposition 11.7.4.]
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12.5. Fourier cosine and sine transformation

For problems involving a half-line it is sometimes convenient to use in-
tegral analogs of cosine and sine series instead of Laplace transformation.

Definition 12.5.1. For integrable functions on R+ = (0,∞), the (Fou-
rier) cosine transform g = Cf and the (Fourier) sine transform h = Sf are
given by the formulas

g(ξ) = (Cf)(ξ)
def
=

∫ ∞

0

f(x) cos ξx dx, ξ ∈ R
+ or ξ ∈ R,

h(ξ) = (Sf)(ξ)
def
=

∫ ∞

0

f(x) sin ξx dx, ξ ∈ R
+ or ξ ∈ R.

As a function on R, g is even and h is odd.
Cosine and sine transform are closely related to Fourier transforms. In-

deed, let fe be the even, fo the odd extension of f to R. Then

g = Cf =
1

2

∫

R

fe(x) cos ξx dx

=
1

2

∫

R

fe(x)e
−iξxdx =

1

2
Ffe =

1

2
FRfe,(12.5.1)

h = Sf =
1

2

∫

R

fo(x) sin ξx dx

=
i

2

∫

R

fo(x)e
−iξxdx =

i

2
Ffo =

−i
2
FRfo.(12.5.2)

Hence by Fourier inversion, and appropriate interpretation of the formulas,
cf. Theorems 9.2.2 and 10.1.7,

fe =
1

2π
FR 2g =

1

π
Fg =

2

π
Cg,

fo =
1

2π
FR

2

i
h =

i

π
Fh =

2

π
Sh.

Restriction to R
+ thus gives

Theorem 12.5.2. (Inversion theorem):

if g = CF then f =
2

π
Cg, if h = Sf then f =

2

π
Sh.
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These formulas have to be interpreted in the proper way. For example,
if f is in L1(R+) and differentiable at the point x > 0, then

f(x) =
2

π
(Cg)(x) = lim

A→∞

2

π

∫ A

0

g(ξ) cosxξ dξ.

For arbitrary even or odd tempered distributions (on R) one may define
the cosine and sine transform in terms of the Fourier transform as indicated
in (12.5.1), (12.5.2). For locally integrable functions f on (0,∞) of at most
polynomial growth one thus has

(12.5.3) (Cf)(ξ) = S ′ lim
A→∞

∫ A

0

f(x) cos ξx dx, ξ ∈ R, etc.

Examples 12.5.3. Earlier examples of Fourier transforms readily give
most of the following cosine and sine transforms (where a > 0):

f(x) Cf(ξ) Sf(ξ)

e−a|x| a

ξ2 + a2

ξ

ξ2 + a2

e−ax2 1

2

√
π

a
e−ξ2/(4a)

{
1 for x < a

0 for x > a

sin aξ

ξ

1 − cos aξ

ξ

1 πδ(ξ) pv
1

ξ

J0(x)






1√
1 − ξ2

for ξ < 1

0 for ξ > 1






0 for ξ < 1
1√
ξ2 − 1

for ξ > 1

For the transforms of the Bessel function J0(x), see Exercises 11.2.8,
11.2.9. As an alternative one may start with the Laplace transform of
J0(t)U(t); cf. Example 12.2.2.

Rules for cosine and sine transformation. The following rules hold under
appropriate conditions, and then the proofs are straightforward; λ denotes
a positive constant.
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f(x) Cf(ξ) = g(ξ) Sf(ξ) = h(ξ)

(i) f(λx)
1

λ
g

(
ξ

λ

)
1

λ
h

(
ξ

λ

)

(ii) Df ξSf − f(0) −ξCf

(iii) xf DSf −DCf

(iv) D2f −ξ2Cf − f ′(0+) −ξ2Sf + f(0)ξ

(v) x2f −D2Cf −D2Sf

Rule (ii) holds in the classical sense whenever f is an indefinite integral
on R+ with f and f ′ in L1(R+). It holds in extended sense if f is equal to
an indefinite integral on R+ with f ′ of at most polynomial growth [so that
f is polynomially bounded]; cf. formula (12.5.3).

Observe that only transforms of even order derivatives are expressed in
terms of the same transform.

Exercises. 12.5.1. Compute C
[
e−ax2

]
and S

[
xe−ax2

]
, paying special at-

tention to the case a = 1/2.
12.5.2. Prove the rules for SDf , Sxf and SD2f under appropriate

conditions on f .
12.5.3. Show that for f in L2(R+),

∫

R+

|Cf |2 =

∫

R+

|Sf |2 =
1

2
π

∫

R+

|f |2.

12.5.4. Prove that C2 = S2 = (π/2) · identity on L2(R+). What are the
eigenvalues of C and S ? Indicate corresponding eigenfunctions.

12.5.5. Determine the transform S
[
x−

1

2

]
after observing that it must

have the form cξ−
1

2 with c > 0. Similarly for C
[
x−

1

2

]
.

12.5.6. Determine S [x−1], where x−1 is interpreted as the odd distribu-
tion pv (1/x). Also determine C[(sin λx)/x] where λ > 0.

12.5.7. Obtain the solution of the following boundary value problem in
the form of a sine transform:

uxx + uyy = 0, 0 < x < 1, y > 0;

u(0, y) = 0, u(1, y) = f(y), y > 0;

u(x, 0) = 0, 0 < x < 1; u(x, y) bounded.
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12.5.8. (Heat conduction in semi-infinite medium; cf. Exercise 12.4.11)
Use sine transformation to solve the boundary value problem

uxx = ut, x > 0, t > 0;

u(x, 0) = 0, x > 0; u(x, t) bounded;

u(0, t) = f(t), t > 0.

[The solution may be written in the final form

u(x, t) =
1

2
√
π

∫ t

0

f(t− τ)xτ−3/2e−x2/(4τ)dτ

=
2√
π

∫ ∞

x/(2
√

t)

f

(
t− x2

4w2

)
e−w2

dw. ]

What happens to the temperature u(x, t) as t → ∞ in the special case
u(0, t) = f(t) = 1 ?

12.5.9. How would one solve the following boundary value problem:

uxx + uyy = 0, 0 < x < 1, y > 0;

u(0, y) = u(1, y) = 0, y > 0;

u(x, 0) = f(x), 0 < x < 1; u(x, y) bounded.

Determine the solution explicitly in the special case u(x, 0) = f(x) = 1.
Show that u(x, y) tends to zero exponentially as y → ∞.

12.6. The wave equation in R
n

The emphasis will be on the cases n = 1, 2, 3, and for those it is not
really necessary to use the general Inversion Theorem 11.7.5 for spherically
symmetric functions. However, the case of arbitrary n is interesting because
it brings out the difference between odd and even dimensions. We therefore
begin by determining the fundamental solution E = E(x, t) for the wave
operator in arbitrary Rn. It satisfies the equation

�E = �nE
def
=

(
−∆x

n +
1

c2
D2

t

)
E(x, t) = δ(x, t)

= δn(x)δ1(t) on R
n × R.(12.6.1)

[The wave operator �, pronounced ‘box’, is also called the d’Alembertian
(after d’Alembert); cf. [4].] The physical question is as follows. For dis-
placements or disturbances governed by the wave equation, one wishes to
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determine the displacement E(x, t) at the point x and time t, due to an
“impulsive force” or “thrust” 1 at the point x = 0 and time t = 0.

Carrying out Fourier transformation relative to x: FxE(x, t) = Ê(ξ, t),
one obtains the equation

(12.6.2)

(
1

c2
D2

t + ρ2

)
Ê(ξ, t) = δ1(t), ρ = |ξ|.

It is reasonable to look for a solution which vanishes for t < 0. [When
t < 0, “nothing has happened yet”.] Problem (12.6.2) may then be solved by
Laplace transformation, provided one thinks of δ1(t) as a limit of functions
on R+. Let us take

δ1(t) = lim
εց0

1

ε
χ(0,ε)(t),

where χJ denotes the characteristic function of the interval J . Thus

(Lδ1)(t) = lim

∫ ε

0

1

ε
e−stdt = lim

1 − e−εs

εs
= 1.

One now finds LtÊ = c2/(s2 + c2ρ2), so that

(12.6.3) Ê(ξ, t) = c
sin cρt

ρ
U(t), ρ = |ξ|.

Note that the answer for Ê is independent of the dimension!
We finally apply Fourier inversion, making use of Theorem 11.7.5 with

the roles of x and ξ interchanged. The result is

Theorem 12.6.1. The wave operator in Rn has the following fundamen-
tal solution which vanishes for t < 0:

E(x, t) = (2π)−ncF ξ
R

[
sin ctρ

ρ

]
(x)U(t)

= (2π)−n/2cU(t) S ′ lim
A→∞

r1−n/2

∫ A

0

(sin ctρ)ρ(n/2)−1J(n/2)−1(rρ)dρ,

(12.6.4)

where ρ = |ξ| and r = |x|.
We will look closely at the cases n = 1, 2, 3.

The case n = 1. Here we may replace ρ by ξ because the resulting function
is even in ξ:

Ê(ξ, t) = c
sin ctξ

ξ
U(t).
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O
X

x

t

T

t = x_ct = - x_c

Figure 12.4

Inversion will give, cf. Exercise 9.1.2,

E(x, t) =

{
0 for t < |x|/c,
c/2 for t > |x|/c.

Thus E(x, t) is constant, equal to c/2, throughout the “forward light cone”
{|x| < ct, t > 0} with vertex at the point (0, 0); cf. Figure 12.4. At a
given point x 6= 0, a disturbance arrives at time t = |x|/c; the displacement
remains constant forever after. A succession of impulsive forces at the origin
leads to a superposition of displacements at the point x.

What will be observed at the point x > 0 if the signal at the origin
is a vibration or “tone” of short duration with circular frequency ω ? For
example, we might consider the signal

(12.6.5) Φ(x, t) = δ(x)(sinωt)χ(0,ε)(t) = “δ(x)

∫ ε

0

(sinωτ)δ1(t− τ)dτ”.

The equation �u = Φ(x, t), with the condition u = 0 for t < 0, will [for
n = 1] have the solution

u(x, t) =

∫ ε

0

(sinωτ)E(x, t− τ)dτ

=






0 for t < x/c,∫ t−x/c

0
(c/2) sinωτ dτ for (x/c) < t < (x/c) + ε,

(c/2)
1 − cosωε

ω
, a constant, for t > (x/c) + ε.
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Here the answer on the time-interval (x/c) < t < (x/c) + ε works out to

(c/2)
1 − cosω(t− x/c)

ω
.

One will be able to recognize the frequency ω in this ‘middle’ time-interval,
provided its length ε is a good deal larger than the period 2π/ω of the
vibration.

The case n = 2. We now find, either from Theorems 12.6.1 and 11.7.5, or
by referring to Theorem 11.6.1, that

E(x, t) =
1

2π
cU(t) S ′ lim

A→∞

∫ A

0

(sin ctρ)J0(rρ)dρ

=
1

2π
cU(t) S ′ lim

εց0

∫ ∞

0

e−ερ(sin ctρ)J0(rρ)dρ.

Thus we need the sine transform of J0. It may be looked up under Examples
12.5.3, or one may use the second formula above in conjunction with the
Laplace transform of J0. The result is

E(x, t) =






0 for t < r/c,
1

2π

c

(c2t2 − r2)1/2
for t > r/c.

The support of E(x, t) is again the (closed) solid forward light cone; cf.
Figure 12.5. At a fixed point x different from the origin, a disturbance
arrives at time t = r/c. Afterwards, the displacement tends to zero, but
this happens rather slowly. A time-limited signal emanating from the origin
is not received as such at the point x.

The case n = 3. Either from Theorem 12.6.1 together with the form of
Jν(t) for ν = 1/2 [formula (11.7.7)], or by using Exercise 11.4.6 with x and
ξ interchanged, one obtains

E(x, t) =
c U(t)

2π2
S ′ lim

A→∞

1

r

∫ A

0

(sin ctρ) sin rρ dρ

=
c U(t)

4π2
S ′ lim

A→∞

1

r

{
sinA(ct− r)

ct− r
− sinA(ct+ r)

ct+ r

}

=
c U(t)

4πr

{
δ1(ct− r) − δ1(ct+ r)

}
;
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O

x

t = r_
c

Figure 12.5

cf. Examples 10.4.6 (ii). Now for t > 0 one has δ1(ct + r) = 0. Also using
the fact that δ1(λy) = (1/λ)δ1(y) for λ > 0, we obtain the simple answer

(12.6.6) E(x, t) =
1

4πr
δ1

(
t− r

c

)
.

This time the support of E(x, t) is just the boundary of the forward light
cone, the set {(x, t) ∈ R3 × R : r = ct, t ≥ 0}. At a given point x different
from the origin, a sharply time-limited signal is received at the instant
t = r/c. This signal has precisely the same shape as the original one at the
origin at time t = 0 ! A time-limited signal of the form (12.6.5), emanating
from the origin, will be received at the point x as

u(x, t) = “

∫ ε

0

(sinωτ)E(x, t− τ)dτ” =
1

4πr
sinω(t− r/c),

(r/c) < t < (r/c)+ε. Observe that the signal is received without distortion!
There is only attenuation because of the distance: the amplitude at the
point x is inversely proportional to the distance r from the origin.

Remarks 12.6.2. In dimensions n ≥ 4, the disturbance E(x, t) =
En(x, t) also reaches the point x at time t = r/c. When n = 4, 6, · · · ,
the resulting displacement E(x, t) tends to zero relatively slowly as t→ ∞.
When n = 5, 7, · · · , the displacement E(x, t) is sharply limited in time, but
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there is a great deal of distortion from the original. Indeed, the fundamental
solution will now contain derivatives of δ1(t− r/c) !

One has the symbolic relation

(12.6.7) En+2(x, t) = − 1

2πr

∂

∂r
En(x, t);

cf. Exercise 12.6.3. Here E(x, t) is considered as a function Ẽ(r, t) of r = |x|.

Exercises. 12.6.1. Compute

S ′ lim
εց0

∫ ∞

0

e−ερ(sin ctρ)J0(rρ)dρ

= Im S ′ lim

∫ ∞

0

e−(ε−ict)ρJ0(rρ)dρ.

12.6.2. Compute

S ′ lim
εց0

1

r

∫ ∞

0

e−ερ(sin ctρ) sin rρ dρ.

12.6.3. Use the recurrence relation
1

z

d

dz

{
z−νJν(z)

}
= −z−ν−1Jν+1(z)

of Exercise 11.7.3 to verify the important recursion formula (12.6.7) for the
fundamental solution of the wave equation in different dimensions.



CHAPTER 13

General distributions and Laplace transforms

Tempered distributions on Rn correspond to functions of at most poly-
nomial growth. However, in practice one also encounters functions of much
more rapid growth at infinity. In order to embed such functions in a sys-
tem of distributions, it is necessary to restrict the test functions φ to C∞

functions which vanish outside some bounded set K = Kφ.
For a subclass of the corresponding general distributions one can intro-

duce two-sided Laplace transformation.

13.1. General distributions on R and Rn

We begin by defining suitable test functions.

Definitions 13.1.1. The test class C∞
0 on Rn consists of the C∞ func-

tions φ that have compact support.
This class is made into the Schwartz space D of test functions by the

following definition of convergence for sequences. One says that

φj → φ in D if

(i) the supports of the functions φj and φ belong to a fixed compact set K,
and
(ii)

Dαφj =
∂α1+···+αn

∂xα1

1 · · ·∂xαn
n

φj → Dαφ =
∂α1+···+αn

∂xα1

1 · · ·∂xαn
n

φ

uniformly on K (and hence uniformly on Rn) for every multi-index α =
(α1, · · · , αn) ≥ 0.

There is a corresponding definition of convergence Tλ → T for distribu-
tions Tλ depending on a real parameter λ tending to λ0.

Examples 13.1.2. An important test function on Rn is

(13.1.1) θ(x)
def
=






1

c
exp

(
− 1

1 − |x|2
)

for x ∈ Rn with |x| < 1,

0 for |x| ≥ 1,

309
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where

c =

∫

B(0,1)

exp

(
− 1

1 − |y|2
)
dy.

Cf. Examples 4.1.9 for the one-dimensional case [with different notations].
A very useful family of related test functions is given by

(13.1.2) θε(x) =
1

εn
θ

(
x

ε

)
, x ∈ R

n, ε > 0.

For these functions∫

Rn

θε(x)dx =

∫

Rn

θ(y)dy = 1, supp θε(x) = B(0, ε).

For arbitrary compact sets K ∈ Rn there are test functions ωε that are
equal to 1 on K and equal to 0 outside K2ε, the 2ε-neighborhood of K. One
may obtain such a function by setting

ωε(x) =
{
χ(Kε) ∗ θε

}
(x) =

∫

Rn

χKε
(y)θε(x− y)dy

=

∫

Kε

θε(x− y)dy.(13.1.3)

Definitions 13.1.3. A distribution T on Rn is a continuous linear func-
tional on the test space D: whenever φλ → φ in D, it is required that the
numbers < T, φλ > tend to < T, φ >.

The class of distributions is made into the distribution space D′ by the
following definition of (weak) convergence when λ→ λ0:

(13.1.4) Tλ → T if < Tλ, φ >→< T, φ >, ∀φ ∈ D.
One could also define the space D′ by completion of the space of locally

integrable functions, provided with the definition of convergence relative to
test functions corresponding to (13.1.4); cf. [68].

Every locally integrable function f on Rn defines a distribution Tf by
the formula

< Tf , φ >=

∫

Rn

fφ, ∀φ ∈ D.

These special distributions are in 1 − 1 correspondence with the defining
functions f :

Tf = 0 if and only if f = 0,

provided we identify functions that are equal almost everywhere. One iden-
tifies Tf with f and writes < Tf , φ >=< f, φ >.
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The delta distribution on Rn has its usual definition < δ, φ >= φ(0),
∀φ ∈ D. The tempered distributions on Rn are distributions in the present
sense; cf. Exercise 13.1.2.

One says that T1 = T2 on an open set Ω ⊂ Rn if < T1, φ >=< T2, φ >
for all test functions φ with support in Ω. The support of T is defined
as usual; cf. Definition 10.4.3. All distributions T may be multiplied by
arbitrary C∞ functions ω:

< ωT, φ >=< Tω, φ >
def
= < T, ωφ >, ∀φ ∈ D.

Definition 13.1.4. (Derivatives) For a distribution T on Rn, the (par-
tial) derivative DkT = ∂T/∂xk is the distribution on Rn given by

< DkT, φ >= −
〈
T,

∂φ

∂xk

〉
, ∀φ ∈ D.

In the case n = 1 one simply writes DT . In Rn one uses the notation

DαT = Dα1

1 · · ·Dαn

n T =
∂α1+···+αn

∂xα1

1 · · ·∂xαn
n

T,

where α stands for the multi-index (α1, · · · , αn) ≥ 0. Thus

< DαT, φ >= (−1)α1+···+αn < T,Dαφ > .

Since the order of differentiation is immaterial for test functions, the same
is true for distributional derivatives Dα. Furthermore, one readily proves

Proposition 13.1.5. Distributional differentiation is continuous: if dis-
tributions Tλ converge to T in D′, then DαTλ converges to DαT in D′.

Examples 13.1.6. For n = 1 one has δ = DU , where U = 1+ is the unit
step function. If g is an indefinite integral on R then Dg = g′; cf. Section
10.5. If a function f on R is equal to an indefinite integral both on (−∞, 0)
and on (0,∞), while f ′ is integrable over all finite intervals (−A, 0) and
(0, A), then

Df = f ′ + sδ,

where s is the jump f(0+) − f(0−). [Indeed, f − sU will be equal to an
indefinite integral g on R.]

The Laplacian ∆T of a distribution T on Rn is given by the formula

< ∆T, φ >=< T,∆φ >, ∀φ ∈ D.
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Example 13.1.7. (Distributional Laplacian of u(x) = 1/r = 1/|x| in
R3) The function u(x) = 1/r is locally integrable on R3 and it satisfies
Laplace’s equation in the classical sense on R3 \ {0}, but ∆u does not
vanish throughout R3 !

Since 1/r = lim {1/(r + ε)} in D′ as ε ց 0, one will have ∆(1/r) =
lim ∆{1/(r+ε)}. However, it is easier to compute ∆(1/r) from the relation

1

r
= lim uε(x) with uε(x) = (r2 + ε)−

1

2 .

From the form of the Laplacian in polar coordinates one finds

∆uε(x) =
1

r2

∂

∂r

(
r2 ∂uε

∂r

)
=

1

r2

d

dr

{
−r3(r2 + ε)−

3

2

}

= −3ε
(
r2 + ε

)− 5

2 .

Thus for a test function φ, taking R so large that suppφ belongs to the ball
B(0, R),

< ∆uε, φ > =

∫

B(0,R)

∆uε(x)φ(x)dx =

∫

B(0,R)

∆uε(x)φ(0)dx

− 3ε

∫

B(0,R)

{φ(x) − φ(0)}(r2 + ε)−
5

2 dx.(13.1.5)

We first compute the integral of ∆uε(x) itself:
∫

B(0,R)

∆uε(x)dx =

∫ R

0

1

r2

d

dr

{
−r3(r2 + ε)−

3

2

}
· 4πr2dr

= −4π
[
r3(r2 + ε)−

3

2

]R
0

= −4π + O(ε).

For the test function φ one has φ(x) − φ(0) = O(r). With this inequality,
the final term in (13.1.5) can be estimated as O(ε). Combining results, one
finds that〈

∆
1

r
, φ

〉
= lim

εց0
< ∆uε, φ >= −4πφ(0) =< −4πδ, φ >

for all φ. Hence

(13.1.6) ∆
1

r
= ∆

1

|x| = −4πδ(x) in R
3.

We end with a fundamental result on the structure of general distribu-
tions.
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Theorem 13.1.8. When restricted to a bounded open set Ω, a distri-
bution T on Rn is equal to a distributional derivative Dα of some order
α = (α1, · · · , αn) of a locally integrable function.

We sketch a proof for n = 1. Let ω be a test function on R which is
equal to 1 on (−A,A). Then the distribution ωT has compact support, and
hence may be considered as a tempered distribution. Indeed, the formula

< ωT, ψ >=< T, ωψ >, ψ ∈ S,
defines ωT as a continuous linear functional on S. Thus by the Structure
Theorem 10.6.2 for tempered distributions, one has ωT = Dsf = DsfA with
fA ∈ P. It follows that

T = ωT = DsfA on (−A,A).

Globally a distribution on Rn need not be a derivative of a locally inte-
grable function; cf. Exercise 13.1.6.

Exercises. 13.1.1. Verify that formula (13.1.3) defines a test function ωε

on R
n which is equal to 1 on K and equal to 0 outside K2ε.

13.1.2. Show that convergence φλ → φ in D implies convergence φλ → φ
in S [Section 10.4]. Deduce that every tempered distribution on Rn is equal
to a distribution in D′(Rn).

13.1.3. Prove that distributional differentiation is continuous.
13.1.4. Use the approach of Example 13.1.7 to derive that in Rn (with

n 6= 2)

∆
1

|x|n−2
= −(n− 2)σnδ(x), where σn = area ofS1 in R

n.

13.1.5. Show that in R2, one has δ(x) = δ(x1, x2) = D1D2{U(x1)U(x2)}.
13.1.6. Verify that the series

δ(x) +Dδ(x− 1) + · · ·+Dkδ(x− k) + · · ·
converges to a distribution T on R. Prove also that T cannot be represented
in the form DmF on R, with m ≥ 0 and F locally integrable.

13.2. Two-sided Laplace transformation

Here we restrict ourselves to the case of one independent variable. For
suitable functions f on R one may define

(13.2.1) g(s) = (Lf)(s) = (LIIf)(s)
def
=

∫

R

f(t)e−stdt, s = σ + iτ.
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ba

s-plane

Figure 13.1

The two-sided transform is a continuous analog of a Laurent series
∞∑

n=−∞
anz

n =

∞∑

−∞
ane

−ns.

The typical domain of convergence for such a series is an annulus

ρ < |z| =
∣∣e−s

∣∣ = e−σ < R.

In terms of s this becomes a vertical strip [Figure 13.1]:

− logR = a < σ = Re s < b = − log ρ.

The sum of the series is analytic throughout the strip.

Proposition 13.2.1. Let f be a function on R such that the product
f(t)e−σt is integrable over R for a < σ < b. [An equivalent condition would
be that f(t)e−σtU(t) is in L1(R+) for all σ > a, while f(t)e−σtU(−t) is
in L1(R−) for all σ < b.] Then the (two-sided) Laplace transform g(s) =
(Lf)(s) exists for all complex s in the strip {a < σ = Re s < b}. The
transform is an analytic function which is bounded on every ‘interior strip’
α ≤ σ ≤ β [that is, a < α < β < b], and one has

(13.2.2) g′(s) = −
∫

R

tf(t)e−stdt.
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The proof follows readily from Theorem 12.1.2 since
(13.2.3)

g(s) =

(∫ ∞

0

+

∫ 0

−∞

)
f(t)e−stdt =

∫ ∞

0

f(t)e−stdt+

∫ ∞

0

f(−t)estdt.

The first integral on the right represents a bounded analytic function on
every right half-plane Re s ≥ α > a, and the final integral, a bounded
analytic function on every left half-plane Re s ≤ β < b.

The two-sided Laplace transform is closely related to a Fourier trans-
form:

(13.2.4) g(σ + iτ) =

∫

R

f(t)e−σte−iτtdt = F
[
f(t)e−σt

]
(τ).

Definition 13.2.2. (Extended Laplace transformation) Let T be a dis-
tribution on R such that the product T (t)e−st is a tempered distribution
on R for a < σ = Re s < b. Then the (two-sided) Laplace transform Lf is
given by

(13.2.5) g(s) = (LT )(s) = (LT )(σ + iτ)
def
= F

[
T (t)e−σt

]
(τ), a < σ < b.

Thinking of an integral, one sometimes writes symbolically

(13.2.6) g(s) = (LT )(s) =< T (t), e−st > .

For distributions T as in Definition 13.2.2, it is indeed possible to extend
the class of test functions in such a way that it includes the functions e−st

for a < Re s < b.

Proposition 13.2.3. Under the conditions of Definition 13.2.2, the
Laplace transform g(s) = (LT )(s) is analytic in the strip a < σ = Re s < b.
On ‘interior strips’, the transform is bounded by (the absolute value of) a
polynomial in s. One has the complex inversion formula

(13.2.7) T (t) = lim
A→∞

1

2πi

∫ σ+iA

σ−iA

g(s)etsds, ∀σ ∈ (a, b).

Here the limit is in the sense of general distributions.

For a proof of the first two parts one would like to go back to one-
sided transforms, but a decomposition as in (13.2.3) is not always possible.
Indeed, the product T (t)U(t) need not be well-defined. However, in terms
of a C∞ function ω(t) that is equal to 0 for t ≤ −1 and equal to 1 for t ≥ +1,
one may write

g(s) = L(ωT )(s) + L{(1 − ω)T}(s).
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Original f(t) Laplace trf g(s) Remark

(i) f(λt)
1

|λ| g
( s
λ

)
λ ∈ R \ {0}, σ/λ ∈ (a, b)

(ii) f(t+ λ) eλsg(s) λ ∈ R

(iii) eλtf(t) g(s− λ) λ ∈ C, σ − Reλ ∈ (a, b)

(iv) Df(t) sg(s)

(v) tf(t) −g′(s)

(vi) (f1 ∗ f2)(t) g1(s)g2(s) validity limited

This decomposition essentially gives g(s) as the sum of two one-sided Laplace
transforms. The proof of the first two parts of the theorem may now be
completed with the aid of Exercise 13.2.6.

Fourier inversion of (13.2.5) as in Chapter 11 [see Theorems 11.1.2 and
11.2.4] finally shows that for a < σ < b,

T (t)e−σt =
1

2π
F τ

R[g(σ + iτ)](t) = lim
A→∞

1

2π

∫ A

−A

g(σ + iτ)eitτdτ.

Here the limit is to be taken in the sense of tempered distributions. Multi-
plication by eσt gives (13.2.7) in the sense of general distributions on R.

Examples 13.2.4. By (13.2.5) or (13.2.6), Lδ = 1. The function

g(s) =
1

s2 + 1
, Re s > 0

is the Laplace transform of (sin t)U(t); cf. Examples 12.1.1 and 12.3.3. How-
ever, the function

g̃(s) =
1

s2 + 1
, Re s < 0

is the Laplace transform of −(sin t)U(−t) !

Rules for the (two-sided) Laplace transformation; see the table. Here it has
been assumed that f is a function or distribution on R such that f(t)e−σt

is an integrable function on R for a < σ < b, or at least a tempered distri-
bution.
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Discussion. For well-behaved functions, rules (i)-(v) follow directly from
the transformation rules for integrals. For distributions, the formal equation
(13.2.6) is very suggestive. For example,

LDT =< DT, e−st >= − < T,Dte
−st >= s < T, e−st >= sLT.

For genuine proofs one may appeal to (13.2.5) and the rules for Fourier
transformation.

For the convolution rule (vi) we start with a classical case. Suppose that
f1 and f2 are locally integrable functions on R with support on the half-
line {t ≥ c}, and such that the products fj(t)e

−σt are integrable over R for
σ = Re s > a. Then by Fubini’s theorem, the product (f1 ∗ f2)(t)e

−σt will
also be integrable over R for σ > a; cf. Proposition 12.2.1. Furthermore,

L(f1 ∗ f2)(s) =

∫

R

{∫

R

f1(v)f2(t− v)dv

}
e−stdt

=

∫

R

f1(v)e
−svdv

∫

R

f2(t− v)e−s(t−v)dt = Lf1(s)Lf2(s),

provided σ > a.
The rule is also valid for distributions fj on R with support on the

half-line {t ≥ c}, and such that the products fj(t)e
−σt are tempered for

σ > a.

Exercises. 13.2.1. Prove that Laplace transformation according to Defini-
tion 13.2.2 is one to one.

13.2.2. Compute L[U(t)] and L[−U(−t)], and compare the answers.
Explain why the result does not contradict the previous exercise.

13.2.3. Verify the results stated in Examples 13.2.4.
13.2.4. Prove rules (iv) and (v) in the table of Laplace transforms.
13.2.5. Deduce rule (iv) in the table of Section 12.2 for the one-sided

Laplace transform of a derivative from rule (iv) in the new table.
Hint. Assuming that f(t) can be written as an indefinite integral c +∫ t

0
f ′(v)dv on R, one has

D{f(t)U(t)} = f ′(t)U(t) + f(0)δ(t) (cf. Examples 13.1.6).

13.2.6. Let T be a distribution on R with support in [c,+∞] such that
T (t)e−αt is tempered. Prove:

(i) There exist a function F ∈ P with support in [c,∞] and an integer
m ≥ 0 such that T = eαtDmF .
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Hint. Part (iii) of Structure Theorem 10.6.2 gives a representation of
the form Te−αt = Dmf . In the present case, Dmf = 0 on (−∞, c), hence
on that interval, f is equal to a polynomial P of degree < m.

(ii) (LT )(s) is analytic for Re s > α, and on every half-plane {Re s > α′}
with α′ > α, |LT (s)| is bounded by the absolute value of a polynomial in s.

Hint. By part (i) LT (s) = (s− α)mG(s− α), where G = LF .
13.2.7. Discuss the Mellin transformation [named after the Finnish

mathematician Hjalmar Mellin (1854–1933; [85]), cf. [86]]:

(13.2.8) g(s)
def
=

∫ ∞

0

f(x)xs−1dx,

under the hypothesis that f(x)xσ−1 is a function that is integrable over
(0,∞) for every σ ∈ (a, b). Formulate a complex inversion formula.
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[52] Hörmander, L., The analysis of linear partial differential operators, vol I-IV [I:

Distribution theory and Fourier analysis.] Springer, Berlin, 1983–85.
[53] Hull, T.E., Internet, www.linkedin.com/pub/tom-hull/10/A68/355
[54] Ince, E.L., Ordinary Differential Equations. Dover Publications, 1958.
[55] Infeld, L., Internet, en.wikipedia.org/wiki/Leopold_Infeld



BIBLIOGRAPHY 321

[56] Infeld, L. and Hull, T.E., The factorization method. Rev. Modern Physics 23

(1951), 21–68.
[57] Isoperimetric inequality, Internet, http://en.wikipedia.org/wiki/

Isoperimetric_inequality

[58] Jacobi, C.G.J., Internet, en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
[59] Jordan, P., Internet, http://en.wikipedia.org/wiki/Pascual_Jordan
[60] Jordan, P. and von Neumann, J., On inner products in metric spaces. Ann. of

Math. 36 (1935), 719–723.
[61] Kellogg, O.D., Foundations of potential theory. Grundl. math. Wiss. vol 31,

Springer, Berlin, 1967. (Reprint of 1929 edition; also reprinted by Dover Publi-
cations, 1953.)

[62] Kelvin, 1st Baron –: William Thomson, Internet, en.wikipedia.org/wiki/

William_Thomson,_1st_Baron_Kelvin

[63] Kelvin transform, Internet, en.wikipedia.org/wiki/Kelvin_transform
[64] Kloosterman, H.D., Internet, en.wikipedia.org/wiki/Hendrik_Kloosterman
[65] Kolmogorov, A., Internet, http://en.wikipedia.org/wiki/Andrey_Kolmogorov
[66] Korevaar, J., Distributions defined by fundamental sequences, I-V. Indag. Math.

17 (1955), 369–389, 483–503, 663–674.
[67] Korevaar, J., Pansions (formal Hermite expansions) and the theory of Fourier

transforms. Trans. Amer. Math. Soc. 91 (1959), 53–101.
[68] Korevaar, J., Mathematical methods, vol 1, Linear algebra, normed spaces, distri-

butions, integration. Academic Press, New York, 1968. (Reprinted by Dover Publ.,
Mineola, N.Y., 2008.)

[69] Korevaar, J., Tauberian theory. A century of developments. Grundl. Math. Wiss.,
Springer, 2004.

[70] Körner, T.W., Fourier analysis. Second edition. Cambridge Univ. Press, 1989.
[71] Laguerre, E., Internet, http://en.wikipedia.org/wiki/Edmond_Laguerre
[72] Laguerre polynomials, Internet, http://en.wikipedia.org/wiki/Laguerre_

polynomials

[73] Laplace, P.-S., Internet, http://en.wikipedia.org/wiki/Pierre-Simon_

Laplace

[74] Laplace’s equation, Internet, http://en.wikipedia.org/wiki/Laplace27s_

equation

[75] Laplace operator, Internet, http://en.wikipedia.org/wiki/Laplace_operator
[76] Lebesgue, H., Internet, \http://en.wikipedia.org/wiki/Henri_Lebesgue
[77] Lebesgue integration, Internet, http://en.wikipedia.org/wiki/Lebesgue_

integration

[78] Legendre, A.-M., Internet, http://en.wikipedia.org/wiki/Adrien-Marie_

Legendre

[79] Legendre polynomials, Internet, http://en.wikipedia.org/wiki/Legendre_

polynomials

[80] Levi, B., Internet, http://en.wikipedia.org/wiki/Beppo_Levi
[81] Lighthill, M.J., Introduction to Fourier analysis and generalised functions. Cam-

bridge Univ. Press, 1960.
[82] Liouville, J., Internet, http://en.wikipedia.org/wiki/Joseph_Liouville



322 BIBLIOGRAPHY

[83] Lipschitz, R.O.S., Internet, http://en.wikipedia.org/wiki/Rudolf_Lipschitz
[84] Littlewood, J.E., Internet, en.wikipedia.org/wiki/John_Edensor_Littlewood
[85] Mellin, H., Internet, http://en.wikipedia.org/wiki/Hjalmar_Mellin
[86] Mellin transform, Internet, en.wikipedia.org/wiki/Mellin_transform
[87] Neumann, J. von, Internet, en.wikipedia.org/wiki/John_von_Neumann
[88] Paley, R.E.A.C. and Wiener, N., Fourier transforms in the complex dpmain. Amer.

Math. Soc. Publ. vol 19. Amer. Math. Soc. Providence, RI, 1934.
[89] Parseval, M.-A., Internet, http://en.wikipedia.org/wiki/Marc-Antoine_

Parseval

[90] Parseval’s theorem, Internet, http://en.wikipedia.org/wiki/Parseval’s_

theorem

[91] Plancherel, M., Internet, http://en.wikipedia.org/wiki/Michel_Plancherel
[92] Plancherel’s theorem, Internet, http://en.wikipedia.org/wiki/Plancherel_

theorem

[93] Poisson, S.D., Internet, http://en.wikipedia.org/wiki/SimC3A9on_Denis_

Poisson

[94] Poisson kernel, Internet, http://en.wikipedia.org/wiki/Poisson_kernel
[95] Poisson’s sum formula, Internet, en.wikipedia.org/wiki/Poisson_summation_

formula

[96] Prime number theorem, Internet, http//:en.wikipedia.org/wiki/Prime_

number_theorem

[97] Quantum harmonic oscillator, Internet, http://en.wikipedia.org/wiki/

Quantum_harmonic_oscillator.
[98] Riemann, B., Internet, en.wikipedia.org/wiki/Bernhard_Riemann
[99] Riemann integral, Internet, http://en.wikipedia.org/wiki/Riemann_integral

[100] Riesz, F., Internet, http://encyclopedia.thefreedictionary.com/Frederic+

Riesz

[101] Riesz representation theorem, Internet, http://en.wikipedia.org/wiki/Riesz_
representation_theorem

[102] Riesz-Fischer theorem, Internet, en.wikipedia.org/wiki/RieszFischer_

theorem

[103] Rodrigues, B.O., Internet, http://en.wikipedia.org/wiki/Olinde_Rodrigues
[104] Rodrigues’ formula, Internet, http://en.wikipedia.org/wiki/Rodrigues_

formula

[105] Schauder, J.P., Internet, en.wikipedia.org/wiki/Juliusz_Schauder
[106] Schauder basis, Internet, en.wikipedia.org/wiki/Schauder_basis
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diffusion equation, 12
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delta function, 77, 254
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order, 93
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translate, 78, 254
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distributions
convergence, 80, 93, 255, 261
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product, 78, 97, 254
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space D′(Γ), 81
space S′, 255
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eigenvalue problem
factorization method, 236
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Hermite, 196
Legendre, 199
Sturm–Liouville, 191
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Euler, 1, 4, 6, 11

Fejér, 1
kernel, 53
theorems, 56

Fischer, 108
Fourier, 1, 11

Fourier coefficients, 17
Fourier integrals, 22

Fourier series, 11, 14
as orthogonal series, 19
complex series, 17
cosine series, 17
divergence, 41
partial sum formula, 33
sine series, 17

Fourier transformation, 23
case of circular symmetry, 277
case of spherical symmetry, 279
continuity, 234, 264, 266, 274, 282
eigendistributions, 268
eigenfunctions, 215, 225, 268
in S, 233, 273
in S′, 263, 273
in L2 = L2(R), 246
inversion, 23, 213, 219, 221, 245, 246,

264
of Bessel function, 268
of convolution, 270
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of derivative, 213, 216
of Hermite functions, 225
on P , 244
on L1(R), 213
on L1(Rn), 272
operational definition, 225, 243
Parseval formula, 234, 248
Plancherel formulas, 248, 250
reflected transform, 214
rules, 222, 273

Fubini, 57
theorem, 99, 220, 227

function
integrable, 28
of class P , 244
of class S, 233
piecewise continuous, 27
smooth, 27
step function, 27
with circular symmetry, 277
with spherical symmetry, 280

fundamental solution
for differential operator, 274
for heat operator, 277
for Laplace operator, 276, 277, 284
for wave operator in Rn, 303

Gauss, Gauss quadrature, 162
generating function, 175

see under Legendre and other
polynomials, 176

Gibbs, Gibbs phenomenon, 44
Gram, 145

Gram matrix, 148

Hölder, 36
Hölder continuity, 40

Hölder–Lipschitz condition, 36, 219
Hadamard, Hadamard inequality, 148
Hardy, 53
harmonic function, 64, 197

series representation, 65, 202
harmonic oscillator, 196, 235
heat equation, 12, 238, 271, 299, 303

Hermite, 170
Hermite functions, 171

basis property, 231
differential equation, 172
Fourier transform, 225
in Rn, 274
recurrence relations, 171

Hermite polynomials, 170
differential equation, 171
generating function, 177
modified (in Statistics), 173
recurrence relations, 171
Rodrigues formula, 170

Hermite series
for function in S, 251
for tempered distribution, 256

Hilbert, 21, 194
Hilbert space, 21, 124

orthogonal expansion, 142

indicial equation, 184
inner product function, 123
inner product space, 124

structure, 154
integral

indefinite, 31, 69
principal value, 77
principal value at ∞, 218
Riemann integral, 27

integral sine function, 44
inversion

in sphere, 203
of cosine, sine transformation, 300
of Fourier transformation, 23, 213,

219, 221, 233, 264
of Laplace transformation, 291, 295
order of integration, 57, 99, 227

isometry, 104
isomorphic spaces, 153
isoperimetric theorem, 142

Jacobi, Jacobi polynomials, 164
Jordan–von Neumann theorem, 130

Kelvin, Kelvin transform, 203
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Kolmogorov, 43
Korevaar, 53, 243

Laguerre, 167
Laguerre polynomials, 167

differential equation, 168
generating function, 177
integral formula, 176
Rodrigues formula, 168

Laplace, 18
Laplace equation

axial symmetry, 197
in R2, 18, 64
in R3, 197
polar coordinates, 197
spherical symmetry, 198

Laplace method for differential
equations, 299

Laplace operator, 203
fundamental solution, 276, 312

Laplace series, 207
Abel summability, 209

Laplace transform, 169, 285
analyticity, 286
derivative, 286
domain of convergence, 286
inversion, 291, 295, 315
of Bessel function, 289, 290
of derivative, 288
of half-line convolution, 289
rules, 289
two-sided, 314

Laurent series, 16
Lebesgue, Lebesgue integral, 28
Legendre, 146
Legendre polynomials, 146, 157

asymptotics, 188
basis property, 147, 161
differential equation, 162
generating function, 176, 178
graph, 160
Laplace’s integral, 174
recurrence relation, 161
Rodrigues formula, 159

Schläfli’s integral, 174
Levi, Levi theorem, 119
linearly independent, 110
Liouville, 195
Lipschitz, 36
Littlewood, 53
localization principle, 44

map
continuous, 104
isometry, 104

mean square convergence, 123
measure

Borel measure, 77
Lebesgue measure, 28
measure zero, 28

Mellin, Mellin transform, 318
metric, 101
metric space, 102

completion, 107
separable, 104

moment theorem, 58, 60, 229

Neumann problem, 67
Neumann, von, 124, 130
norm

L1 norm, 113
L2 norm, 122
supremum norm, 112

normed linear space, 111
finite dimensional, 115

operator
positive, 190
Sturm–Liouville, 192
symmetric, 192

optimal approximation, 105, 117, 128
order of integration, 57, 99
orthogonal

basis, 136, 138, 149
complement, 124
expansion, 134
expansion in Hilbert space, 142
projection, 136
series, 134
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Chebyshev, 164
Hermite, 170
Jacobi, 164
Laguerre, 167
Legendre, 146, 157
spherical, 164

orthogonal projection, 128
onto Hn, 209

orthogonal series, 20, 126
orthogonal system, 19, 133

expansion coefficients, 21
maximal, 150
orthonormal, 133

orthogonality, 121, 122, 124
orthogonalization, 144

parallelogram identity, 130
Parseval, 140
Parseval formula, 139

for Fourier series, 141
for Fourier transform, 234, 248

partial summation, 2
Plancherel, Plancherel formulas, 248,

250
Poisson, 61

equation, 276
kernel, 61
sum formula, 266

Poisson integral, 63
for a disc, 66, 67
for half-plane, 240
for half-space, 279
for unit ball, 209

polynomial approximation: Weierstrass
theorem, 58

prime number theorem, 148
principal value

distribution, 78, 253
integral, 77, 218
of logarithm, 1

Pythagorean theorem, 125

Riemann, Riemann integral, 27
Riemann–Lebesgue Lemma, 29

Riesz, Riesz representation, 77
Riesz–Fischer theorem, 107, 123
Rodrigues, 159
Rodrigues formula, 159, 168, 170

scalar or inner product, 121
Schauder, Schauder basis, 119
Schmidt, 145, 194
Schwartz, 1, 69, 233
Schwarz, 126

inequality, 128
separable space, 104, 149
signum function, 7
singular point for differential equation,

183
span, 110

closed span, 135
spanning set, 135
sphere S(a, r), 104

in R
k, area, 280

spherical harmonics, 197, 205
addition theorem, 211
boundary value problem, 210

spherical polynomials, 164
step function, 27
strong convergence, 259
Sturm, 195
Sturm–Liouville operator, 192
Sturm–Liouville problem, 190

associated Legendre problem, 195,
201

characteristic pairs, eigenpairs, 191
Legendre problem, 193
regular problem, 191
singular problem, 192
standard form, 190

subset
closed, 104
closure, 104
dense, 104
distance to, 105
limit point, 104
linearly independent, 110
open, 104

subspace
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linear, 110
of inner product space, 124
of metric space, 102
of normed space, 112

summability
Abel, 52
Cesàro, 51, 221
Fejér’s theorems, 56

support, 72, 80
supremum norm, 112

Tauber, 52
Tauberian theorems, 52
tempered distribution, 253

Hermite series, 256
termwise

differentiation, 30, 88, 259
integration, 4, 20, 28, 119

test functions, 71
D(Γ), 75
space D, 309
space S, 233

triangle function, 218
triangle inequality, 102, 111, 127

unit step function
derivative, 87, 258
on R, 258
on the circle, 87

unitary space, 103

Vallée Poussin, de la, 148
vibrating string

fundamental mode, 9
overtone, 10

Volterra, 182
volume of ball in Rk, 283

wave equation, 7, 239, 271, 299
communication, 285, 307
fundamental solution, 303
in Rn, 303

Weierstrass, 49
approximation theorem, 58
test for uniform convergence, 118

Wiener, 243

Zorn, Zorn’s Lemma, 150


