Fourier Transform

Reference

- Chapter 2.2 – 2.5, Carlson, Communication Systems

Using the <u>Fourier series</u>, a signal over a <u>finite interval</u> can be represented in terms of a complex exponential series. If the function is <u>periodic</u>, this representation can be extended over the entire interval $(-\infty,\infty)$.

$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_o t}$$

$$F_n = \frac{1}{T} \int_0^T f(t) e^{-jn\omega_0 t} dt$$

Fourier transforms.1

Fourier Transform

On the other hand, <u>Fourier transform</u> provides the link between the <u>time-domain</u> and <u>frequency domain</u> descriptions of a signal. Fourier transform can be used for both <u>periodic</u> and <u>non-periodic</u> signals.

$$f(t) = \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega \qquad F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

Example

The the last example of the previous lecture shows that if the period (*T*) of a periodic signal increases, the fundamental frequency ($\omega_0 = 2\pi/T$) becomes smaller and the frequency spectrum becomes more dense while the amplitude of each frequency component decreases. The shape of the spectrum, however, remains unchanged with varying *T*. Now, we will consider a signal with period approaching infinity.

Suppose we are given a non-periodic signal f(t). In order to applying Fourier series to the signal f(t), we construct a new periodic signal $f_T(t)$ with period T.

The periodic function $f_T(t)$ can be represented by an exponential Fourier series.

$$f_T(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_o t} \text{ where}$$
$$F_n = \frac{1}{T} \int_{-T/2}^{T/2} f_T(t) e^{-jn\omega_o t} dt \text{ and } \omega_0 = 2\pi/T$$

As the magnitude of the Fourier coefficients go to zero when the period is increased, we define

$$\omega_n \equiv n\omega_o$$
 and $F(\omega_n) \equiv TF_n$

The Fourier series pair become

$$f_T(t) = \sum_{n=-\infty}^{\infty} \frac{1}{T} F(\omega_n) e^{j\omega_n t} \quad \text{where} \quad F(\omega_n) = \int_{-T/2}^{T/2} f_T(t) e^{-j\omega_n t} dt$$
Fourier transforms.5

The spacing between adjacent lines ($\Delta \omega$) in the line spectrum of $f_T(t)$ is

$$\Delta \omega = 2\pi / T$$

Therefore, we have

$$f_T(t) = \sum_{n=-\infty}^{\infty} F(\omega_n) e^{j\omega_n t} \frac{\Delta\omega}{2\pi}$$
(1)

Now as *T* becomes very large, $\Delta \omega$ becomes smaller and the spectrum becomes denser. In the limit, the discrete lines in the spectrum of $f_T(t)$ merge and the frequency spectrum becomes continuous.

Mathematically, the infinite sum (1) becomes an integral

$$\lim_{T \to \infty} f_T(t) = \lim_{T \to \infty} \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} F(\omega_n) e^{j\omega_n t} \Delta \omega$$

$$\Rightarrow f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$
Inverse Fourier transform of $F(\omega)$
Similarly,

$$F_n = \frac{1}{T} \int_{-T/2}^{T/2} f_T(t) e^{-jn\omega_0 t} dt$$

$$\Rightarrow F(\omega_n) = \int_{-T/2}^{T/2} f_T(t) e^{-j\omega_n t} dt \qquad \because \omega_n \equiv n\omega_0 \text{ and } F(\omega_n) \equiv TF_n$$

$$\Rightarrow \lim_{T \to \infty} F(\omega_n) = \lim_{T \to \infty} \int_{-T/2}^{T/2} f_T(t) e^{-jn\omega_0 t} dt$$

$$\Rightarrow F(\omega) = \int_{-T/2}^{T/2} f_T(t) e^{-jn\omega_0 t} dt$$
Fourier transform of $f(t)$
Fourier transforms.7

Operators are often used to denote the transform pair. $\Im\{f(t)\}$ Fourier transform of f(t) $\Im^{-1}\{F(\omega)\}$ Inverse Fourier transform of $F(\omega)$ $f(t) = \Im^{-1}[\Im\{f(t)\}]$

Singularity functions

Properties of the impulse function

Amplitude

All values of $\delta(t)$ for $t \neq t_a$ are zero.

The amplitude at the point $t = t_0$ is undefined.

Area (strength)

If f(t) = 1, (2) becomes

$$\int_{a}^{b} \delta(t - t_{o}) dt = 1 \qquad a < t_{o} < b$$

Therefore $\delta(t)$ has unit area. Similarly, $A\delta(t)$ has an area of A units.

Fourier transforms.11

Graphic representation To display the impulse function at $t = t_o$, an arrow is used to avoid to display the amplitude. The area of the impulse is designated by a quantity in parentheses beside the arrow or by the height of the arrow. An arrow pointing down indicates negative area. **Relation to the unit step function** The unit step function is defined by $u(t-t_o) = \begin{cases} 1 & t > t_o \\ 0 & t < t_o \end{cases}$ Fourier transforms.12

Using (2) and letting

$$a = -\infty, b = t, \text{ and } f(t) = 1$$

$$\int_{a}^{b} f(t)\delta(t-t_{o})dt$$

$$\Rightarrow \int_{-\infty}^{t} \delta(\tau-t_{o})d\tau = \begin{cases} 1 & t > t_{o} \\ 0 & t < t_{o} \end{cases} \Rightarrow \int_{-\infty}^{t} \delta(\tau-t_{o})d\tau = u(t-t_{o})$$
Therefore the integral of the unit impulse function is the unit step function. The converse can also be shown by differentiating both sides of the above equation.

$$\int_{-\infty}^{t} \delta(\tau-t_{o})d\tau = u(t-t_{o})$$

$$\Rightarrow \frac{d}{dt} \int_{-\infty}^{t} \delta(\tau-t_{o})d\tau = \frac{d}{dt}u(t-t_{o})$$

$$\Rightarrow \delta(t-t_{o}) = \frac{d}{dt}u(t-t_{o})$$
Fourier transforms.13

Parseval's theorem for energy signals

Using the Parseval's theorem, we can find the <u>energy</u> of a signal in either the time domain or the frequency domain.

$$E = \int_{-\infty}^{\infty} \left| f(t) \right|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| F(\omega) \right|^2 d\omega$$

Example

Energy contained in the frequency band $\omega_1 < \omega < \omega_2$ of a real-valued signal is

$$\frac{1}{2\pi} \left[\int_{-\omega_2}^{-\omega_1} \left| F(\omega) \right|^2 d\omega + \int_{\omega_1}^{\omega_2} \left| F(\omega) \right|^2 d\omega \right]$$
$$= \frac{1}{\pi} \int_{\omega_1}^{\omega_2} \left| F(\omega) \right|^2 d\omega$$

Fourier transforms.17

Fourier transforms of some signals

Impulse function $\delta(t)$

The Fourier transform of a unit impulse $\delta(t)$ is $\Im\{\delta(t)\} = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t}dt = e^{j0} = 1$ $\therefore \int_{-\infty}^{\infty} \delta(t)f(t)dt = f(0)$

It shows that an impulse function has a uniform spectral density over the entire frequency spectrum. In practice, a <u>narrow</u> pulse in <u>time domain</u> has a very <u>wide</u> bandwidth in <u>frequency domain</u>.

Example

If we increase the transmission rate of digital signal, a wider frequency bandwidth is needed.

Fourier transforms of some signals

Complex exponential function

The Fourier transform of a complex exponential function is

$$\mathfrak{I}\left\{e^{\pm j\omega_{o}t}\right\} = \int_{-\infty}^{\infty} e^{\pm j\omega_{o}t} e^{-j\omega t} dt = ?$$

On the other hand, the inverse Fourier transform of $\delta(\omega \pm \omega_o)$ is

$$\mathfrak{I}^{-1}\left\{\delta(\omega\pm\omega_{o})\right\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega\pm\omega_{o}) e^{j\omega t} dt = \frac{1}{2\pi} e^{\pm j\omega_{o} t}$$
$$\therefore \mathfrak{I}\left\{e^{\pm j\omega_{o} t}\right\} = \mathfrak{I}\left\{\mathfrak{I}^{-1}\left\{\delta(\omega\pm\omega_{o})\right\}\right\} = 2\pi\delta(\omega\pm\omega_{o})$$

Fourier transforms.19

Sinusoidal signals

The sinusoidal signals can be written as

The Fourier transform of these signals are

$$\Im\{\cos\omega_{o}t\} = \Im\{\frac{e^{j\omega_{o}t} + e^{-j\omega_{o}t}}{2}\} = \pi\delta(\omega - \omega_{o}) + \pi\delta(\omega + \omega_{o})$$
$$\Im\{\cos\omega_{o}t\} = \Im\{\frac{e^{j\omega_{o}t} - e^{-j\omega_{o}t}}{2j}\} = \frac{\pi}{j}\delta(\omega - \omega_{o}) - \frac{\pi}{j}\delta(\omega + \omega_{o})$$

Periodic signal A periodic signal f(t) can be represented by its exponential Fourier series. $f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_0 t}$ where $\omega_o = 2\pi/T$ The Fourier transform is $\Im\{f(t)\} = \Im\{\sum_{n=-\infty}^{\infty} F_n e^{jn\omega_0 t}\}$ $= \sum_{n=-\infty}^{\infty} F_n \Im\{e^{jn\omega_0 t}\}$ $= 2\pi \sum_{n=-\infty}^{\infty} F_n \Im(\omega - n\omega_0)$ Thus the spectral density of a periodic signal consists of a set of impulses located at the harmonic frequencies of the signal. The area of each impulse is 2π times the values of its corresponding coefficient in the exponential Fourier series.

Some properties of the Fourier transform

Linearity (superposition)

The Fourier transform is a linear operation based on the properties of integration and therefore superposition applies.

 $\Im{af(t)+bg(t)} = aF(\omega)+bG(\omega)$

Coordinate scaling

The expansion or compression of a time waveform affects the spectral density of the waveform. For a real-valued scaling constant α and any signal f(t)

Time shifting (delay)

 $\Im \{ f(t-t_o) \} = F(\omega) e^{-j\omega t_o}$

If a signal is delayed in time by t_0 , its magnitude spectral density remains unchanged and a negative phase $-\omega t_0$ is added to each frequency component.

Differentiation $\Im\left\{\frac{d}{dt}f(t)\right\} = j\omega F(\omega)$ Time differentiation <u>enhances the high frequency</u> components of a signal. **Integration** $\Im\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{1}{j\omega}F(\omega) + \pi F(0)\delta(\omega) \quad \text{where } F(0) = \int_{-\infty}^{\infty} f(t)dt$ Integration in time suppresses the high-frequency

Integration in time suppresses the high-frequency components of a signal.