
The Fourier Transform
The Fourier transform is crucial to any discussion of time series analysis, and this chapter discusses the definition of the trans-
form and begins introducing some of the ways it is useful.

We will use a Mathematica-esque notation. This includes using the symbol I for the square root of minus one. Also, what is

conventionally written as sin(t) in Mathematica is Sin[t]; similarly the cosine is Cos[t]. Finally, the irrational number 2.71828...

is represented by the symbol E.

The contents of this chapter are:

Fourier Series

Fourier Transform

Example and Interpretation

Oddness and Evenness
The Convolution Theorem

Discrete Fourier Transforms
Definitions
Example
Implementation

Author

Fourier Series

Recall the Fourier series, in which a function f[t] is written as a sum of sine and cosine terms:

ft 
a0

2


n1



an Cosnt  
n1



bn Sinnt

or equivalently:

ft  
n



cn EInt  
n



cn Cosnt  I Sinnt

The coefficients are found from the fact that the sine and cosine terms are orthogonal, from which:

an 
1




t  0

2 

ft Cosnt t

bn 
1




t  0

2 

ft Sinnt t

Fourier series are used, for example, to discuss the harmonic structure of the tonic and overtones of a vibrating string.

Note that the series represents either f[t] over a limited range of 0 < t < 2p, or we assume that the function is periodic with a
period equal to 2p.

Also note that, as opposed to the Taylor series, the Fourier series can represent a discontinuous function:

  2 3
t

0.2

0.4

0.6

0.8

1
ft

ft 
1

2


2



Sint
1


Sin3 t

3


Sin5 t
5

 ...

Fourier Transform
In the previous section we defined the series over the interval (0, 2p). Say instead we are interested in the interval (-L, L). Then
the coefficients in the Fourier series are:

an 
1

L

L

L

ft Cos nt

L
 t

bn 
1

L

L

L

ft Sin nt

L
 t

Thus we write the series of f as a function of a dummy variable x as:

fx 
1

2 L

L

L

ft t 

1

L

n1



Cos nx

L
 

L

L

ft Cos nt

L
 t 

1

L

n1



Sin nx

L
 

L

L

ft Sin nt

L
 t

The trigonometry relation:

Cos1  2  Cos2  1  Cos1 Cos2  Sin1 Sin2
allows us to rewrite the expansion as:

fx 
1

2 L

L

L

ft t 
1

L

n1




L

L

ft Cos n

L
t  x t

Let L Ø¶, ie. let the interval (-L, L) go to (-¶, ¶). We write:

 
n

L

 


L

The meaning of Dw is that it is the amount that w changes for each time in the sum that n goes to n + 1. The first term in the

series is the DC component of f[t]. In the limit as L Ø ¶, the integral must be either infinity or zero; the latter is the only reason-
able choice. So we now can write the expansion as:

2 fourier_new.nb

fx 
1



n1



 




ft Cos t  x t

Recall the notation, useful for multiple integrals that:

  fx, y x y   y  x fx, y

In the expression for f[x], we replace the sum with an integral:

fx 
1




0



 




t ft Cos t  x 
1

2 





 




t ft Cos t  x

Since the sine is odd:

Sin  Sin
we can write:

0  I
1

2 





 




t ft Sin t  x

Adding this to the expression for f[x] gives:

fx 
1

2 





 eIx 




t ft eIt

The Fourier transform F1[w] of f[t] is:

F1  




ft eIt t

Note that it is a function of w. If we interpret t as the time, then w is the angular frequency. Thus we have replaced a function of
time with a spectrum in frequency.

The inverse Fourier transform takes F[w] and, as we have just proved, reproduces f[t]:

ft 
1

2 





F1 eIt 

You should be aware that there are other common conventions for the Fourier transform (which is why we labelled the above
transforms with a subscript). For example, some texts use a different normalisation:

F2 
1

2 





ft eIt t

ft 
1

2 





F2 eIt t

Still others reverse the transform and its inverse:

F3 
1

2 





ft eIt t

fourier_new.nb 3

ft 
1

2 





F3 eIt t

The only difference between the "type-2" definition and the "type-3" one is the relative signs of the real and imaginary parts of
the transforms.

By default, Mathematica uses this "type-3" definition of the Fourier transform. In this class we will almost always be using the
"type-1" convention.

Say we have a function of the position x: g[x]. Then the type-1 Fourier transform and inverse transform are:

G1k  




gx eIkx x

and:

gx 
1

2 





G1k eIkx k

In this case the transform is a function of the wavenumber k = 2p/l.

Example and Interpretation
Say we have a function:

ft_ : Sin0 t ; Abst 
n

0

ft_ : 0 ; Abst 
n

0

where Abs is Mathematica's function for an absolute value. Also, the t_ means any variable, and := is the form of equal sign used

in function definitions. The /; imposes the conditions under which the definition applies.

For n = 5 and w0 = 100, this looks like:

-0.4 -0.2 0.2 0.4
t

-1

-0.5

0.5

1
ft

Increasing n to 10 increases the number of cycles:

4 fourier_new.nb

-0.4 -0.2 0.2 0.4
t

-1

-0.5

0.5

1
ft

The Fourier transform is:

F  




ft eIt t  
n0

n0

Sin 0 t eIt t

This evaluates to:

I
2


Sin0   n  0

2 0   
Sin0   n  0

2 0   

where of course I used Mathematica to actually do the integration.

For w º w0 and w0 large:

F 
1

2 

Sin0   n  0
2 0  

For n = 5 and w0 = 100, the right hand side of the above looks like:

60 80 100 120 140 160

0.01

0.02

0.03

The zeroes in the above occur at:

0  

0

n 


0

n  1, 2, 3, ...

Since the contributions outside the central maximum are small, we may take:

 
0

n

to be a measure of the width of the peak.

For n = 10 and the same value of w0 the plot looks like:

fourier_new.nb 5

60 80 100 120 140 160

0.02

0.04

0.06

Clearly, the width of the curve is now decreased.

Curves such as the above will occur sufficiently often that we will give the function that generates them a name: the sinc:

Sincx 
Sinx

x

One interpretation of the above Fourier transform is that F[w] is the frequency spectrum of a sine wave signal f[t] which is

varying in time; thus w is the angular frequency. The main frequency component occurs at the frequency of the sine wave, w0,

but there are other frequency components that cancel out the signal for values of the time whose absolute value is greater than

np/w0. If we think about letting n go to infinity, then the sine wave is non-zero for all values of the time from -¶ to ¶; in this

case the width of the Fourier transform goes to zero and become a Dirac delta function centered at w0.

Thus if we have an infinite sine wave but only measure it for a finite period of time, the measurement will introduce "sidebands"
in the frequency spectrum.

Another interpretation of the transform is that the symbol t is the finite width of a slit; the Fourier transform of f[t] is then the
amplitude of the diffraction pattern of the slit. The fact that a wider slit produces a narrower transform means that to get, say,
good dispersion of the high tones from a loudspeaker requires that the speaker be small.

Yet another interpretation is that f[t] is the amplitude of an electromagnetic wave that is passing by us. The period of the sine
wave itself is

T 
2 

0

and there are n cycles of the sine wave in f[t], so it takes a time:

t  n
2 

0

for the wave to pass us.

The width in the peak of the Fourier transform is a way of saying there is an uncertainty in the "true" value of the frequency. But

we know from Planck that the frequency is related to the energy E according to:

E 
h

2 


Thus, the uncertainty in the frequency corresponds to an uncertainty in the energy:

E 
h

2 


Above we estimated dw to be w0/n so:

6 fourier_new.nb

E 
h 0

2  n

Thus:

E t 
—h 0

2  n
2

n

0

 h

This is just a form of the Heisenberg uncertainty principle!

Oddness and Evenness
Symmetry arguments in Fourier theory often allows us to show directly that certain integrals vanish without needing to evaluate
them. Also, often symmetry considerations allows us the reduce the limits of integration, which again can symplify calculations.

An even function e[t] is one such that e[-t] = e[t]; an example is the cosine. An odd function o[t] is one such that o[-t] = -o[t]; an

example is the sine. Given an arbitrary function f[t], we can extract the even and odd parts of it:

et  1  2 ft  ft
ot  1  2 ft  ft

and:

ft  et  ot
In general e and o are complex.

The Fourier transform of f[t] is:

F 






ft eIt t  




et  ot  Cost  I Sint t  




et Cost t 

I 




ot Sint t  2 
0



et Cost t  2 I 
0



ot Sint t

Thus, for example, if f[t] has an even part that is real and an odd part that is imaginary, its Fourier transform is real.

The Convolution Theorem
I hope that after going through some of the interpretations of the Fourier transform above, you are already convinced that it is one
of the "keys to the universe." Here we present one of the most important keys in the context of time series analysis.

Imagine we have a function f[t] whose Fourier transform is F[w], and another function g[t] whose transform is G[w]. Then the
convolution is:

ft  gt  




fu gt  u u

We write g[t - u] in terms of the inverse Fourier transform:

gt  u  
1

2 





G EI t  u 

fourier_new.nb 7

Thus:

ft  gt  




fu 1

2 





G EI t  u  u 
1

2 





G EIt 




fu EIu u 

But the right hand integral above is just the Fourier transform of f[u], so:

ft  gt 
1

2 





F G EIt 

In words:

The inverse Fourier transform of a product of Fourier transforms is the convolution of the original functions.

Here is an example. The Fourier transform of a Sinc function is just the rectangle function that in the Convolution chapter we
gave the symbol :

t

f t   Sin 0t   0t 

0 0


F  

Thus F[w] only passes frequencies with an absolute value less than w0. So if we convolve a Sinc function with some signal g[t],
the Sinc is performing as an ideal "low pass filter."

The example shows that we can consider the design of a filter in two separate domains:

1. In the frequency domain we can just multiply the Fourier transform of the original time series by some desired filter, a low
pass filter in the above example.

2. In the time domain, we can convolve the time series with the inverse Fourier transform of the desired filter.

The fact that the amplitude of the Sinc function approaches zero asymptotically as t Ø ±¶ means that doing the full convolution

would require measuring f[t] from t = -¶ to t = +¶. Since this is physically impossible, we have proved that the ideal low pass
filter can not be built.

Discrete Fourier Transforms

So far in this chapter we have only considered continuous functions f[t]. Here we extend to a time series that is a sample of f[t].

This section is divided into three subsections: Definitions, Examples, and Implementation.

ü Definitions

If f[t] is a times series of length n, then we replace the continous Fourier transform:

F  




ft eIt t

with a sum:

8 fourier_new.nb

Fj  
k0

n  1

ftk EI j tk 

Note that time series analysis often uses a sort of strange notation where D is the sampling interval. We wish to evaluate tk in the
above

tk  k 

Imagine that f[t] is periodic and we have sampled over one complete period T so f0 = fn. Then:

T  n 

In order to evaluate w j we will think for a moment about Fourier series. The term w0 is zero and is the DC component, correspond-

ing to the a0 term in the series. The next term:

 
2 

T

corresponds to the first allowed vibration, which for a vibrating string is the tonic and determines the note that is being played:

The next term is:

  2
2 

T

and represents the first harmonic of a vibrating string:

So in general the frequencies are:

j  j
2 

T

So now we can write the discrete Fourier transform as:

Fj  
k0

n  1

fk EI j  2 

T
 k

  
k0

n  1

fk EI 2  j k  n 

fourier_new.nb 9

To get the inverse Fourier transform:

ftk 
1

2 





F EIt w 
1

2 

j0

n  1

Fj EI j tk 

The value of dw is just how much w j changes with each change from j to j + 1. We just saw that it is:

 
2 

T


2 

n

So the discrete inverse Fourier transform is:

ftk 
1

n

j

n  1

Fj EI 2  j k n
1



Note that in both the transform and its inverse, by making the usual choice that the sampling interval D is one simplifies the
definition. We shall make that choice for the remainder of this chapter. Thus:

Fj  
k0

n  1

fk EI 2  j k  n

fk 
1

n

j0

n  1

Fj EI 2  j k n

We recall that Fj is a shorthand for F[w j], where:

j  j
2 

n
 j

2 

n

and that fk is a shorthand for f[tk], where:

tk  k  k

ü Example

As already mentioned, the built in discrete Fourier transform routines in Mathematica use a different convention than we use by
default in these notes. Earlier, we called Mathematica's choice a "type-3" definition, so we write:

F3j 
1

n

k1

n

fk EI 2  j1  k1  n

Here the sign of the exponential is different than the type-1 definition. Also note that k goes from 1 through n, because that is the
way the Mathematica accesses members of a list. Recall that we usually write the elements of a time series as:

timeSeries  f0, f1, f2, ... , fn1
Then Mathematica's access of elements of the list is:

10 fourier_new.nb

timeSeriesk  fk1

The Mathematica function implementing this definition is called Fourier.

The inverse Fourier transform in Mathematica, InverseFourier, is:

f3k 
1

n

j1

n

F3j EI 2  j1  k1  n

It is fairly simple to use Mathematica's functions to implement the "type-1" conventions that we have been using, but in this
subsection we will not bother. The only real difference between the two conventions is the signs of the real and imaginary parts
and the normalisation.

Say we have a n = 200 element time series of five cycles of a sine wave:

50 100 150 200

-1

-0.5

0.5

1
A sampled sine wave

The period is 40, so the angular frequency is 2p/40.

Then using Fourier on the time series gives us the transform, whose absolute values are:

50 100 150 200

1

2

3

4

5

6

7
Fourier transform

Almost all the values are close to with zero. The sixth element has a value of 7.07. In the previous sub-section we showed that the
frequency values in the Fourier transform are:

j  j
2 

T
 j

2 

n

which here is:

j  j


100

The maximum in the transform occurs at the sixth element, which corresponds to j = 5. Thus:

j  5


100




20

fourier_new.nb 11

This is precisely the frequency of the original sine wave.

Note that element 196 of the Fourier transform also has a value of 7.07. This is called an "alias" of the peak occuring in the sixth
element. If you go through the Fourier transform definitions above you can convince yourself that the frequency can just as well
be a negative number as a positive one. The alias is a representation of the negative frequency component of the Fourier
transform. Ideally we would like it to look something like:



Ideal plot of the Fourier transform

But since the Fourier transform is just a list of numbers, not {frequency, number} pairs, Mathematica couldn't do that. Instead it
joined the negative frequency values to the end of the positive frequency ones.

We will have a lot more to say about aliasing in the next chapter.

ü Implementation

One "brute force" way of calculating the sums of a Fourier transform is to define:

W  EI2n

Then:

Fj  
k0

n  1

fk EI 2  j k  n  
k0

n  1

fk Wjk

We can think of f as a vector of length n, and W as a matrix of dimension n â k. This multiplication requires n2 calculations, and

evaluating the sum requires a smaller number of operations to generate the powers of W. Thus calculating the Fourier transform
this way is a O(n2) process. Doubling the number of points in a time sample quadruples the time necessary to calculate the
transform; tripling the number of points requires nine times as much time.

However, there is a Fast Fourier Transform algorithm that can give an immense improvement. The basic idea is that we split the
sum into two parts:

Fj  
k0

n2  1

f2 k EI 2  j 2 k  n  
k0

n2  1

f2 k  1 EI 2  j 2 k  1 n

The first sum involves the even terms in f, and the second sum the odd ones.

Using the same W as before, we can write:

Fj  
k0

n2  1

f2 k EI 2  j k  n2  Wk 
k0

n2  1

f2 k  1 EI 2  j k  n2  Fk
e  Wk Fk

o

12 fourier_new.nb

We can apply the same procedure recursively to the sums represented by Fk
e and Fk

o. Eventually, if n is a power of two, we end

up with no summations at all, just a product of terms.

It turns out that this procedure is O(n log2n). So, doubling the number of points in the time series only doubles the time necessary

to calculate the transform using this algorithm, and tripling the number of points increases the time by about 4.75.

Many people treat this Fast Fourier Transform as "magic", and it is does seem magical in its properties. But notice that it all

hinges on n being a power of two. For example, if one constructs a time series:

timeSeries  
t1

32 700

Et32 7006

the values range from 0.999817 to 0.00247. Mathematica's Fourier in one computing environment took 13.12 seconds to
transform this series. Since the last terms in the series are so close to zero, it is quite reasonable to add zeroes to the end of the

time series. We added 68 zeroes, so the total length of the series becomes 32,768 = 215. Now it took Fourier only 5.16 seconds to
do the transform.

The lesson, then, is that if one is taking data in the lab and later the data will be Fourier transformed, if there is a lot of data the
total number of data points should always be a factor of two.

Author
This document is Copyright © David M. Harrison, 1999. This is version 1.9 of the document, date (m/d/y) 01/28/99.

fourier_new.nb 13

