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Introduction

The proposed book is devoted to a phenomenon of fractal sets, or simply
fractals. It is known more than a century and was observed in different
branches of science. But only recently (approximately, last 30 years) it
became a subject of mathematical study.

The pioneer of the theory of fractals was B. Mandelbrot. His book
[Man82] appeared first at 1977 and the second enlarged edition was pub-
lished at 1982. After that the serious articles, surveys, popular papers and
books about fractals are counted by dozens (if not hundreds); since 1993 a
special journal “Fractals” is published by World Scientific. So, what is a
reason to write one more book?

First, it turns out that in spite of the vast literature, many people, in-
cluding graduate students and even professional mathematicians, have only
a vague idea about fractals.

Second, in many popular books the reader finds a lot of colorful pictures
and amazing examples but no accurate definitions and rigorous results. On
the contrary, the articles written by professionals are, as a rule, too difficult
for beginners and often discuss very special questions without motivation.

Last and may be the most important reason is my belief that the en-
deavor of independent study of the Geometry, Analysis and Arithmetic on
fractals is one of the best ways for a young mathematician to acquire an
active and stable knowledge of basic mathematical tools.

This subject also seems to me an excellent opportunity to test his/her
ability to creative work in mathematics. I mean here not only the solution
of well-posed problems, but recognition a hidden pattern and formulating
new fruitful problems.

My personal interest in fractals originates from the lecture course I gave
in the University of Pennsylvania in 1995 according to the request of our
undergraduate students. I repeated this course in 1999, 2003 and 2005.
In 2004 I had an opportunity to expose the material in four lectures dur-
ing the Summer School near Moscow organized for high school seniors and
first year university students who were winners of the Russian Mathemat-
ical Olympiad. I was surprised by the activity of the audience and by the
quickness of assimilating all necessary information.

In this book we deliberately restrict ourselves by only two examples of
fractals: Sierpiński and Apollonian gaskets. We describe and rigorously
formulate several problems coming from the study of these fractals. Most
of them can be formulated and solved independently but only the whole
collection gives an understanding of the world of fractals.

Some of these problems are more or less simple exercises, some are rel-
atively new results and a few are unsolved problems of unknown difficulty.
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The solution (and even formulating and understanding) of all problems re-
quires some preliminary background. It contains, in particular, the follow-
ing:

• Elements of Analysis: functions of one variable, differential and
integral calculus, series.

• Elements of Linear Algebra: real and complex vector spaces, di-
mension, linear operators, quadratic forms, eigenvalues and eigen-
vectors. Coordinates and inner products.

• Elements of Geometry: lines, planes, circles, discs and spheres in
R3. Basic trigonometric formulae. Elements of spherical and hy-
perbolic geometry.

• Elements of Arithmetic: primes, relatively prime numbers, gcd
(greatest common divisor), rational numbers, algebraic numbers.

• Elements of Group Theory: subgroups, homogeneous spaces, cosets,
matrix groups.

All this is normally contained in the first two or three years of mathematical
curriculum. I consider the diversity of necessary tools and their intercon-
nection as a great advantage of the whole problem and as a characteristic
feature of modern mathematics.

Several words about the style of exposition. I tried to avoid two main
dangers: to be dull explaining too much details in most elementary form
and to be incomprehensible using very effective but sometimes too abstract
modern technique. It is to the reader to judge how successful is this en-
deavor.

I also tried to communicate a non-formal knowledge of mathematical
tools which distinguishes (almost all) professionals from most of beginners.
Sometimes one phrase explains more than a long article1

So, from time to time, I use intentionally some “high-altitude” notions,
explaining each time what they mean in simplest situations.

Additional information is included in the text in the form of short
“Info’s”. The end of an Info is marked by the sign ♦.

I use also “Remarks” as another form of additional information. The
end of a Remark is marked by the sign ♥.

The end of a proof (or the absence of proof) is marked by the sign �.

1In my personal experience it happened when I tried to understand induced repre-
sentations, spectral sequences, intersection homology, etc...
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CHAPTER 1

Definition and general properties

1.1. First appearance and naive definition

I will not describe early manifestation of fractals in Natural Science (such
as investigations of seashore length, cauliflower and snowflake forms etc);
there are enough examples in popular expositions (see e.g. the pioneering
book [?M] or the nice recent book [LGRE00]).

For mathematicians, the most simple and most known example of frac-
tals is the famous Cantor set. The acquaintance with the Cantor set is
a good test to see a difference between those who really understand Real
Analysis and those who have formally passed a Calculus exam. We do not
go now into details of this example here, but in Section 1.2 we come back
to it and show that it is a part of the general theory of self-similar fractals.

Much more interesting examples of fractals exist on the plane R2. Here
we shall consider in detail one special example.

Many people know so-called Pascal triangle whose entries are binomial
coefficients

(
n
k

)
. It looks as follows

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

It is very easy to continue this triangle since every entry is a sum of two
entries above it.

Now, let us replace these numbers by their residues mod 2. In other
words, we put 0 instead of every even number and 1 instead of every odd

9
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number. We get the following picture

1
1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

How one can describe this picture? Observe that this triangle of size 8
contains 3 identical triangles of size 4 (left, upper and right); each of these
triangles contains 3 identical triangles of size 2 which consist of 3 one’s. The
remaining place is occupied by zeros.

Let us try to imagine what happens if we continue our triangle up to
2N lines for some big number N . If we contract the triangle to the size of
a book page and replace 1’s by black dots and 0’s by white dots, we get a
picture like this:

Figure 1.1. Pascal triangle mod 2

Here the whole triangle contains 3 triangles of half-size, which look sim-
ilar to the whole thing. The space bounded by these triangles is filled by
white dots.

It is rather clear that when N is going to infinity, our picture approaches
a certain limit.1 This limit is so-called Sierpiński gasket discovered in 1916
by Polish mathematician Waclaw Sierpiński.

Another appearance of the same set is related to the following problem
of linear algebra. Let EN be a N ×N matrix with entries from the simplest
finite field F2 = Z/2Z given by

(EN )i,j =

{
1 if i < j

0 otherwise.

1See Info A below for the rigorous definition of a limit in this situation.
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According to the general theory, this matrix is similar to a Jordan normal

block JN with (JN )i,j =

{
1 if j = i+ 1
0 otherwise.

Let us try to find the matrix AN

which establish the similarity: ENAN = ANJN . It turns out that AN can
be chosen so that it looks as follows:

Figure 1.2. Pascal triangular matrix

We leave to a reader to explain this phenomenon and find the connection
of AN to Pascal triangle.

To go further we need to generalize the notion of a limit, the main
notion in Analysis, so that it can be applied not only to numbers but to the
objects of arbitrary nature. In particular, we want to give a meaning to the
expression: “the sequence of sets {Xn} converges to some limit set X”.

The corresponding domain of mathematics is called the theory of metric
spaces. Using this theory, we can define fractals (which are rather compli-
cated sets) as limits of some sequences of more simple sets.

Info A. Metric spaces

We start with some general definitions which later will be specialized and
explained on many examples. For some readers the text below will look too
abstract and difficult for remembering and understanding. But you will see
that the notions introduced here are very useful in many situations. They
allow to treat uniformly the problems which seem completely different.
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A.1.

Definition A.1. A metric space is a pair (M, d) where M is a set and
d : M ×M −→ R is a function which for any two points x and y defines the
distance d(x, y) between x and y so that the following axioms are satisfied:

1. Positivity: For all x, y ∈ M the quantity d(x, y) is a non-negative
real number which vanishes iff2 x = y.

2. Symmetry: d(x, y) = d(y, x) for all x, y ∈M .

3. Triangle inequality: d(x, y) ≤ d(x, z)+d(z, y) for all x, y, z ∈M .

The original examples of metric spaces are: the real line (R, d) where
the distance is defined by

(A.1) d(x, y) = |x− y|
the plane (R2, d) with the usual distance between x = (x1, x2) and y =
(y1, y2):

(A.2) d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2,

the 3-dimensional space (R3, d) with the usual distance

(A.3) d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

Definition A.2. We say that a sequence {xn} in M is convergent, or
has a limit, if there exist a ∈M such that d(xn, a) → 0 when n→∞.

Definition A.3. A sequence {xn} is called fundamental, or Cauchy
sequence, if it has the property:

(A.4) lim
m,n→∞

d(xm, xn) = 0.

For example, any convergent sequence is a Cauchy sequence. The con-
verse is not always true. For instance, in the ray R>0 of all positive numbers
with usual distance (A.1.1) the sequence xn = 1

n is fundamental but has no
limit.

Definition A.4. A metric space (M, d) is called complete if every
fundamental sequence in M has a limit.

In our book we shall consider mostly complete metric spaces. In partic-
ular, the examples (A.1.1-3) above are complete metric spaces according to
well-known theorem of Real Analysis.

Definition A.5. A subspaceX of a metric space (M, d) is called closed
in M if it contains all its limit points, i.e. the limits of sequences {xn} ⊂ X.

2A standard mathematical abbreviation for the expression “if and only if”.
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Exercise 1. Let (M, d) be a complete metric space and X be a subset
of M . Than (X, d) is itself a metric space.

Show that (X, d) is complete if and only if the set X is closed in M .

Hint. This is simply a test on knowing and understanding the defini-
tions. Formulate accurately what is done and what we have to prove and
you will obtain a proof.

Warning. If this exercise does not seem easy for you, try again or
discuss it with your instructor.

A.2.

Definition A.6. A map f from a metric space (M, d) to itself is called
contracting if there is a real number λ ∈ (0, 1) such that

(A.5) d
(
f(x), f(y)

)
≤ λ · d(x, y) for all x, y ∈M.

We shall use the following

Theorem (Theorem on contracting maps). Assume that M is a com-
plete metric space and f is a contracting map from M to itself. Then there
exists a unique fixed point for f in M , i.e. the point x satisfying f(x) = x.

The proof of this theorem is rather short and very instructive. Moreover,
it gives a simple method to construct the fixed point. So, we give this proof
here

Proof. Let x0 be an arbitrary point of M . Consider the sequence
{xn}n≥0 defined inductively by xn = f(xn−1) for n ≥ 1.

We claim that this sequence is convergent. For this end we show that
{xn} is a Cauchy sequence. Indeed, let d(x0, x1) = d. Then, from A.5 we
get

d(x1, x2) ≤ λ · d, d(x2, x3) ≤ λ2 · d, . . . d(xn, xn+1) ≤ λn · d.

Therefore, for any m < n we have d(xm, xn) ≤
∑n−1

k=m λ
k ·d ≤ λm

1−λ ·d. Hence

lim
m,n→∞

d(xm, xn) → 0

and we are done.
Since M is complete, our Cauchy sequence has a limit which we denote

x∞.
Now, the function f , being contracting, is continuous. Therefore, f(x∞) =

limn→∞ f(xn) = limn→∞ xn+1 = x∞, i.e. x∞ is a fixed point.
Finally, if we had two fixed points x and y, then d(x, y) = d

(
f(x), f(y)

)
≤

λ · d(x, y). It is possible only if d(x, y) = 0, hence x = y. �

This theorem, in particular, solves the following toy problem, given on
some mathematical Olympiad for middle school students.
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Problem 1. A boy came out of his house and went to school. At a
half-way he changed his mind and turned to a playground. But, passing
half a way, he turned to a cinema. On the half-way to a cinema he decided
again to go to school etc.

Where will he come continuing moving this way?

Home

School
Cinema

Playground

Figure A.3. Lazy boy

A.3.

Definition A.7. A metric space (M, d) is called compact if every
sequence {xn} of points in M has a convergent subsequence.

Definition A.8. A subset S ∈ M is called a ε-net in M if for any
m ∈M there is a point s ∈ S such that d(m, s) < ε.

Theorem (Theorem on ε-net). A metric space (M, d) is compact iff it
is complete and for any ε > 0 there is a finite ε-net in M .

Exercise 2. Show that a subset X in R, R2 or R3 is compact iff it is
closed and bounded.

Hint. If a subset X is not closed or unbounded, then you can construct
a sequence of points in X without converging subsequences.

If X is bounded, then it is contained in a segment, or in a square, or in
a cube of size R for R big enough. Using the theorem on ε-net, show that a
segment, a square and a cube are compact. Then show that a closed subset
of a compact set is itself a compact set.

♦
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1.2. Definition of self-similar fractals

Now we introduce the main technical tool to deal with a wide class of
fractals.

Let M be a metric space. We denote by K(M) the collection of all non-
empty compact subsets of M . We want to define a distance between two
compact sets so that K(M) were itself a metric space. For this we define
first the distance d(x, Y ) between a point x and a compact set Y :3

(1.2.1) d(x, Y ) := min
y∈Y

d(x, y).

Now, the distance between two sets X and Y is defined by

(1.2.2) d(X, Y ) := max
x∈X

d(x, Y ) + max
y∈Y

d(y, X).

More detailed expression for the same distance is

(1.2.3) d(X, Y ) := max
x∈X

min
y∈Y

d(x, y) + max
y∈Y

min
x∈X

d(x, y)

This definition looks rather cumbersome but if you think a bit, how to
define the distance between two sets, so that axioms 1 – 3 were satisfied,
you find that (1.2.2) or (1.2.3) is a simplest possible definition.

On figure 1.4 the first and second terms in 1.2.3 are the lengths of seg-
ments AB and CD respectively.

Figure 1.4. Hausdorff distance

Exercise 3. Prove that the minimum in (1.2.1) and maximum in (1.2.2)
always exist.

3The sign “:=” used below denotes that the right hand side of the equation is a
definition of the left hand side.
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Hint. Use the compactness of sets X and Y .

Exercise 4. Compute the distance a) between the boundary of a
square with side 1 and its diagonal; b) between a unit circle and the disc
bounded by this circle.

Answer. a) 1+
√

2
2 b) 1.

Theorem 1.1. If the metric space M is complete (resp. compact), then
the space K(M) is complete (resp. compact) as well.

Hint. Let {Xn} be a sequence of compact subsets in M which forms
a Cauchy sequence of points in K(M). Consider the set X of those points
x ∈ M for which there exists a sequence {xn} such that xn ∈ Xn and
lim
n→∞

xn = x. Show thatX is the limit of {Xn} in K(M). (And, in particular,

show that X is compact and non-empty.)
For the second statement use the theorem on ε-net.

Assume now that a family of contracting maps {f1, f2, . . . , fk} in M is
given. Define the transformation F : K(M) −→ K(M) by

(1.2.4) F (X) = f1(X) ∪ f2(X) ∪ · · · ∪ fk(X)

Theorem 1.2. The map F is contracting. Therefore, there is a unique
non-empty compact subset X ⊂M satisfying F (X) = X.

Definition 1.9. The set X from theorem 2 is called a homogeneous
self-similar fractal set. The system of functions f1, . . . , fk is usually
called an iterated function system (i.f.s. for short), defining the fractal
set X.

Sometimes, a more general definition is used. Namely, instead of (1.2.4)
let us define the map F by the formula

(1.2.5) F (X) = f1(X)
⋃
f2(X)

⋃
· · ·
⋃
fk(X)

⋃
Y

where Y is a fixed compact subset of M . This generalized map F is also
contracting because of the following fact.

Exercise 5. Show that the “constant” map fY which sends any X ∈
K(M) to Y ∈ K(M) is contracting.

Hence, the sequence {Xn := Fn(X) := F (F (· · ·F (X0) · · · )} is conver-
gent and its limit X is a fixed point for F in K(M).

Definition 1.10. The set X which is a fixed point for a map 1.2.5 is
called a non-homogeneous self-similar fractal.
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Examples.
(1) Cantor set C ⊂ [0, 1]. Here M = [0, 1], f1(x) = 1

3x, f2(x) =
x+2

3 . It is instructive to look how C, the fixed point for F , is
approximated by a sequence of sets {Cn} defined by the recurrence
Cn+1 = F (Cn).

Choose first C1 = [0, 1]; then

C2 = [0, 1/3]∪ [2/3, 1], C3 = [0, 1/9]∪ [2/9, 1/3]∪ [2/3, 7/9]∪ [8/9, 1]...

The sequence {Cn} is decreasing: Cn+1 ⊂ Cn and the limit set is
C =

⋂
n≥1Cn.

Now put C ′1 = {0, 1}. Then

C ′2 = {0, 1/3, 2/3, 1}, C ′3 = {0, 1/9, 2/9, 1/3, 2/3, 7/9, 8/9, 1}, . . .
The sequence {C ′n} is increasing: C ′n+1 ⊃ C ′n and the limit set C
is the closure of C ′∞ :=

⋃
n≥1C

′
n. Note, that C ′∞ is not compact,

therefore it is not a point of K(M).

The main feature of self-similar fractals is easily seen on this
example: if we consider a piece of Cantor set under a microscope
which increase all the sizes in 3n times, we shall see exactly the
same picture as by a naked eye.

(2) Iα-fractal. Let Y be the subset of R2 given by x = 0, −1 ≤ y ≤ 1.
Fix a real number α ∈ (0, 1√

2
) and define the maps

(1.2.6) f1(x, y) = (−αy, αx+ 1); f2(x, y) = (−αy, αx− 1).

The corresponding non-homogeneous self-similar fractal is shown
on the Figure 1.5 where for typographic convenience the y-axis is
horizontal.

Figure 1.5. Iα-fractal for α = 0.5

The first approximation Y
⋃
f1(Y )

⋃
f2(Y ) for small α looks

like the capital letter I. It explains the name.
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Exercise 6. Compute
a) The diameter D of Iα (as a subset of R2).

b) The length L of a maximal non-self-intersecting path on Iα.

Answer. a) D = 2
√

1+α2

1−α2 ; b) L = 2
1−α .

(3) Sierpiński gasket S. Here M = C, the complex plane.
Let ω = e

πi
3 be a sixth root of 1. Define

f1(z) =
z

2
, f2(z) =

z + ω

2
, f3(z) =

z + 1
2

.

Definition 1.11. The fractal defined by the i.f.s. {f1, f2, f3}
is called a Sierpiński gasket.

In this case there are three most natural choices for the initial
set S0.

First, take as S′′0 the solid triangle with vertices 0, ω, 1. Then
the sequence S′′n = Fn(S0) is decreasing and S = limn→∞ S′′n =⋃
S′′n, see Figure 1.6.

Figure 1.6. Approximation S′′n

Second, we put S′0 to be the hollow triangle with vertices in
cubic roots of 1. Then the sequence S′n = Fn(S′0) is increasing and
S is the closure of S′∞ =

⋂
n≥0 S

′
n.

Exercise 7. How many vertices, edges and hollow triangles
are in S′n?
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Finally, let S0 be the set of cubic roots of 1. Then Sn = Fn(S0)
is a finite set. Here again Sn ⊂ Sn+1 and S is the closure of
S∞ =

⋂
n≥0 Sn.

We shall call the approximations {S′′n}, {S′n} and {Sn} the 2-
dimensional, the 1-dimensional and the 0-dimensional respectively.
The first is an approximation from above and the other two are
approximations from below.

Figure 1.7. Approximation S′n

Figure 1.8. Approximation Sn
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Sometimes it is more convenient to arrange Sierpiński gasket so
that one side of it is horizontal. E.g., we can choose as initial 3 ver-
tices the numbers 0, 1, i

√
3

2 . Then the standard segment [0, 1] will
be a subset of S. Later on we mainly use this variant of Sierpiński
gasket.

Info B. Hausdorff measure and Hausdorff dimension

We estimate the size of a curve by its length, the size of a surface by its
area, the size of a solid body by its volume, etc. But how to measure the
size of a fractal set?

A solution to this problem was proposed by F. Hausdorff in 1915. He
defined for any real number p > 0 a measure µp of dimension p as follows.

Let X be a compact subset of Rn. Then for any ε > 0 it admits a finite
covering by balls of radius ε. (The centers of these balls form a ε-net for X).
Let N(ε) denote the minimal number of balls which cover X.

It is evident that N(ε) grows when ε decreases. Assume that it grows as
some power of ε, namely, that the limit

(B.1) µp(X) := lim
ε→0

N(ε) · εp

exists. Then this limit is called the Hausdorff p-measure of X. We do
not discuss here the general notion of a measure. For our goals it is enough
the following

Proposition B.1. The Hausdorff p-measure has the following proper-
ties:

1. Monotonicity: if X ⊂ Y , then µp(X) ≤ µp(Y ).

2. Subadditivity: if X ⊂
⋃∞
k=1 Yk, then

(B.2) µp(X) ≤
∞∑
k=1

µp(Yi).

3. Additivity: if Xi, 1 ≤ i ≤ n, are compact and µp (Xi
⋂
Xj) = 0 for i 6= j,

then

(B.3) µp
( n⋃
i=1

Xi

)
=

n∑
i=1

µp(Xi).

Actually, the first property formally follows from the second one, but we
formulated it separately, because of its transparency and usefulness.

If the p-measure of X is different from 0 and ∞, then the number p is
called the Hausdorff dimension of X.

Exercise 8. Show that if X has Hausdorff dimension d, then the limit
(B.1) is equal to ∞ for p < d and equal to 0 for p > d.
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Remark 1. There are several variants of this definition. Namely, instead
of balls of radius ε one can use arbitrary sets of diameter ε, or, whenM = Rn,
the cubes with a side ε.

Another variant: consider the covering of X by subsets Xk of different
diameters εk ≤ ε and instead of N(ε) investigate the quantity

∑
k ε

p
k.

All these variants can lead to a different value of p-measure, but for
“nice” examples, including self-similar fractals, define the same notion of
dimension.

♥
In many cases it is not easy to prove that the limit (B.1) exists for a

given set X, and still more difficult to compute it.
But often a weaker condition is satisfied and can be more easily checked:

N(ε) · εp = O∗(1),

i.e. 0 < c ≤N(ε) · εp ≤ C <∞ for ε small enough
(B.4)

In this case we also say that X has the Hausdorff dimension p. The
constants c and C give the lower and upper estimates for the Hausdorff
p-measure of X when this measure is defined.

Exercise 9. Show that the Hausdorff dimension of X, when it exists,
can be given by the formula

(B.5) dH(X) = − lim
ε↘0

log N(ε)
log ε

.

Examples. Let us find the Hausdorff dimensions of self-similar fractals
defined above. In all cases we assume that not only the Hausdorff dimension
but also the Hausdorff measure exists. It is not evident, but a persisting
reader can try to prove it by him/herself.

Then we use a following simple arguments to compute it.
1. Cantor set C. Suppose, for some real number d the set C has finite

non-zero Hausdorff measure µd(C). Now, C consists of two pieces which are
similar to C with the coefficient 1

3 .
It is evident from the definition of d-measure that each of these two

pieces of C have the measure
(

1
3

)d · µd(C). Therefore, we get the equation

2 ·
(

1
3

)d = 1 which implies 3d = 2, or

d = log3 2 =
log 2
log 3

≈ 0.63093....

2. I-fractal Iα. To compute the Hausdorff dimension of Iα we use the
same scheme. Assume that 0 < µd(Iα) <∞ and recall the decomposition

Iα = f1(Iα)
⋃
f2(Iα)

⋃
Y.

Since both f1(Iα) and f2(Iα) are similar to Iα with the coefficient α, we
come to the equation µd(Iα) = 2αdµd(Iα) + µd(Y ).
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Note, that 1 ≤ d ≤ 2, because Iα contains the segment Y of Hausdorff
dimension 1 and is contained in a square of Hausdorff dimension 2.

Suppose d > 1. Then we have µd(Y ) = 0 according to Exercise 8;
therefore 2 · αd = 1 and

(B.6) d = logα
1
2

= − log 2
logα

The right hand side of (B.3) satisfies the inequality 1 ≤ d ≤ 2 for α ∈ [12 ,
1√
2
].

Exercise 10. Prove that (B.6) gives the correct value for the Hausdorff
dimension of Iα when α ∈ (1

2 ,
1√
2
).

We leave to the reader to investigate the cases α = 1
2 , α = 1√

2
and

α /∈ [12 ,
1√
2
].

♦



CHAPTER 2

Laplace operator on Sierpiński gasket

A powerful mathematical method to study a certain set X is to con-
sider different spaces of functions on X. For example, if X is a topological
space, one can consider the space C(X) of continuous functions; if X is a
smooth manifold, the space C∞ of smooth functions is of interest; for an
homogeneous manifolds with a given group action, the invariant (and, more
generally, covariant1) functions are considered and so on...

If M is a smooth manifold with additional structure(s), there are some
naturally defined differential operators on M . The eigenfunctions of these
operators are intensively studied and used in applications.

In the last century the vast domain of modern mathematics had arisen:
the so-called spectral geometry. The main subject of it is to study spectra
of naturally (i.e. geometrically) defined linear operators.

During the last two decades the spectral geometry included the analysis
on fractal sets. We refer to the nice surveys [Str99,TAV00] and the original
papers [Str00,MT95,Ram84,?NS] for more details.

In this book we only briefly describe this theory and mainly restrict
ourselves to the consideration of harmonic functions, i.e. eigenfunctions
corresponding to the zero eigenvalue of the Laplacian.

Info C. Laplace operator and harmonic functions

C.1. Here we assume the acquaintance with elements of differential ge-
ometry on Riemannian manifolds. This section is not necessary for under-
standing the main text but gives the motivation for our study of Laplace
operator and harmonic functions on fractal sets.

One of most famous differential operators on Rn is the Laplace oper-
ator ∆ defined by

∆ f =
n∑
k=1

(
∂

∂ xk

)2

f.

The characteristic property of this operator is its invariance under the
group En of rigid motions of Rn. It is known that any differential operator
on Rn which is invariant under En is a polynomial in ∆.

1I.e., functions which are transforming in a prescribed way under the action of the
group. Details are explained in textbooks on Representation theory.

23
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Actually, an analogue of this operator is defined for any Riemannian
manifold M . Let g = gi,j(x) be the metric tensor on M defining the length
of a tangent vector v = {vk} at a point x0 by the formula

|v|2 =
∑
i,j

gi,j(x0)vivj .

Traditionally, the inverse matrix to ||gi,j || is denoted by ||gi,j ||. Its geometric
meaning is a quadratic form on the cotangent space, or a symmetric operator
from cotangent to tangent space.

In particular, the differential of a function f at a point x0 is a covector
df(x0) =

∑
k ∂kfdx

k where ∂k = ∂
∂xk . Using the tensor gi,j we can “lift

the index” and make from a covector df a vector v with coordinates vk =∑n
j=1 g

k,j∂jf(x0). This vector is called the gradient of f and is denoted by
grad f . So,

grad f =
n∑
k=1

(grad f)k∂k =
n∑
j=1

gk,j∂jf∂k.

On the other hand, on the space of vector fields on M there is a natural
operation divergence which associate with a vector field v a function div v.
If we choose any local coordinate system x1, . . . , xn such that det ||gi,j || = 1
(such a system is called unimodular), then the divergence is given by a
simple formula:

div v =
∑
k

∂kv
k.

Definition C.1. The Laplace-Beltrami operator ∆ on M is defined
by the formula

∆ f = div grad f.

In appropriate local coordinates at given point x0 the Laplace-Beltrami
operator can be always written as a sum of second partial derivatives: ∆ =∑

k ∂
2
k . But in general this expression can not hold in a whole neighborhood

of x0. The obstacle is the curvature of the metric on M .

There is another, more geometric, definition of the Laplace-Beltrami
operator. Take an ε-neighborhood Uε(x0) of a point x0. Then the integral
of f over Uε(x0) has the following asymptotic behavior when ε→ 0:∫

Uε(x0)
f(x)dnx = anε

n · f(x0) + bnε
n+2 · (∆ f)(x0) + o(εn+2)

where an = πn/2

Γ(1+n
2
) is the volume of a unit ball in Rn and bn = n

n+2an.
Thus, we can define the value (∆ f)(x0) as the limit

(C.1) (∆ f)(x0) = lim
ε→0

1
bnεn+2

∫
Uε(x0)

(
f(x)− f(x0)

)
dnx
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which certainly exists for all functions with continuous second partial
derivatives.

Definition C.2. A function satisfying the equation ∆ f = 0 is called
harmonic.

It is known that on every manifold of constant curvature (e.g. on the
Euclidean space Rn, on the sphere Sn or on hyperbolic space Hn) harmonic
functions are characterized by the property

1
vol(Uε(x0))

∫
Uε(x0)

f(x)dnx = f(x0),

i.e. the average over any spherical neighborhood is equal to the value in the
center. This property has an important corollary.

Theorem C.1 (Maximum principle). Assume that M is a connected
manifold with boundary. Then any non-constant real harmonic function on
M attains its maximal value only on the boundary ∂M .

It is known also that for any continuous function ϕ on the boundary
∂M there exists a unique harmonic function f on M such that f |∂M = ϕ.
Moreover, for any point m ∈ M there exists a probabilistic measure µm on
∂M such that f(m) =

∫
∂M ϕ(x)dµ(x). It is called Poisson measure and

in case of smooth boundary is given by a density ρm(x) which is a smooth
function of m ∈M and x ∈ ∂M .

There is a simple physical interpretation of a harmonic function (as a
stable heat distribution) and probabilistic interpretation of Poisson measure
µm(A) (as a probability to reach boundary in a set A starting from m and
moving randomly along M).

C.2. There exists a pure algebraic approach to the definition of the
Laplace operator.

Suppose, in a real vector space V two quadratic forms Q0 and Q1 are
given. Assume also that Q0 is positive: Q0(v) > 0 for all v 6= 0. Then we
can introduce in V a scalar product

(C.2) (v1, v2) :=
Q0(v1 + v2)−Q0(v1)−Q0(v2)

2
If V is infinite-dimensional, we assume in addition that it is complete with
respect to the norm ||v||2 := (v, v) = Q0(v). Thus, V is a real Hilbert space.

The completeness condition is easy to satisfy: we simply replace V , if
necessary, by its completion V with respect to the given norm.

The other quadratic form Q1 will be defined on the dense subspace
V ⊂ V . From the theory of operators in Hilbert spaces we know the
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Proposition C.1. There exists a symmetric densely defined operator A
in V such that

Q1(v) = (Av, v) for all v ∈ Dom(A) ⊃ V1.

Remark 2. Sometimes, A is called a quotient of two forms Q1 and
Q0. Indeed, any quadratic form Q defines the symmetric bilinear form
Q̃ : V × V → V by the formula

Q̃(v1, v2) :=
Q(v1 + v2)−Q(v1)−Q(v2)

2

The bilinear form Q̃ in its turn can be interpreted as a linear map Q̃ :
V → V ∗. Namely, we define the functional f = Q̃(v1) on V as f(v2) =
Q̃(v1, v2).

The operator A can be written as A = Q̃−1
0 ◦ Q̃1.

♥
The standard theorem about conditional extremum leads to the

Corollary. The eigenvalues and unit eigenvectors of A are exactly
the critical values and critical points of the function Q1(v) on the sphere2

Q0(v) = 1.

C.3. We apply the general algebraic scheme described in C.2 to the
following situation. Let M be a smooth Riemannian manifold, possibly
with boundary. Denote by V the space of smooth functions on M with
compact support restricted by some boundary conditions – see below.

There are two natural quadratic forms on V :

(C.3) Q0(v) =
∫
M
v2(m) dm and Q1(v) =

∫
M
|grad v|2dm

where the measure m on M and the scalar square |grad v|2 are determined
by the metric.

According to the general scheme there is an operatorA on V = L2(M, dm)
such that

(C.4)
∫
M

(grad v1, grad v2)dm =
∫
M
Av1(m) · v2(m) dm.

On the other hand, an explicit computation using the Stokes formula
gives for the left hand side the expression

(C.5)
∫
∂M

v1∂νv2 dn−
∫
M

∆ v1(m) · v2(m) dm

where ∂ν is the normal derivative and dn is a measure on ∂M as on a
Riemannian manifold with a metric inherited from M .

2Another formulation: The eigenvalues and eigenvectors of A are the critical values

and critical points of the function Q(v) := Q1(v)
Q0(v)

on V \{0}.
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Suppose, we restrict v by an appropriate boundary condition which
forces the boundary integral in C.3.3 vanish. Then the operator −∆ will be
exactly the ratio of Q1 and Q0.

Two special examples are widely known: the Dirichlet problem when
the condition

(C.6) v
∣∣
∂M

= 0

is imposed, and Neumann problem when the boundary condition is

(C.7) ∂νv
∣∣
∂M

= 0

In both cases−∆ is a non-negative self-adjoint operator in L2(M, dm) whose
domain of definition consists of C1-functions v on M satisfying boundary
conditions and such that ∆v ∈ L2(M, dm) in the sense of generalized func-
tions.

The connection of the operator ∆ with variational problems gives the
remarkable physical interpretation of eigenvalues and eigenfunctions of the
Laplace-Beltrami operator. Namely, the eigenvalues describe the frequencies
and eigenfunctions determine the forms of small oscillations of the manifold
M considered as an elastic membrane.

The question: “what can be the spectrum of a Laplace operator on a
smooth compact manifold?” has given raise to the whole new domain in
mathematics: the spectral geometry.

Since the fractal sets are playing essential role in some modern math-
ematical models of physical problems, the study of analogues of Laplace-
Beltrami operators on fractals became very popular. We refer the interested
reader to the surveys [TAV00,Str99] and papers cited there.

♦

2.1. Laplace operator on SN

In the first version of the book I wanted to describe in full detail the
definition and computation of the spectrum of Laplace operator on SN and
on S. After that I learned that this program was already realized by sev-
eral physicists and mathematicians, see e.g. [?R, FS92, ?La]. Therefore, I
decided not to repeat the result one more time but instead concentrate on
some different and less known problems. So here I restrict myself to a short
description of the rather interesting technique used in the study of the spec-
trum.

To define the analogue of a Laplace operator on Sierpiński gasket S, we
consider first the finite approximation SN of S.

First, let us try to follow the scheme used above. Let Sn be the n-th
finite approximation to the Sierpiński gasket S. Denote by Vn the set of real
functions on Sn. Since Sn consists of 3n+3

2 points, Vn is a real vector space
of dimension dn = 3n+3

2 .
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Let us define two quadratic forms on Vn:

(2.1.1) Q0(v) =
∑
s∈Sn

v(s)2; Q1(v) =
∑
s′↔s′′

(
(v(s′)− v(s′′)

)2
where the first sum is over all points of Sn, and the second is over all pairs
of neighbor points.

Clearly, these quadratic forms are discrete analogues of the quadratic
forms defined by (C2) in Info C.

As in the case of ordinary Laplace operator we use Q0 to define a scalar
product in Vn:

(f1, f2) =
∑
s∈Sn

f1(s)f2(s).

Then the second form can be written as

(2.1.2) Q1(f) = (∆nf, f) where
(
∆nf

)
(s) = k(s)f(s)−

∑
s′↔s

f(s′)

Here k(s) denotes the number of points which are neighbors to s, i.e. k(s) =
4 for inner points and k(s) = 2 for boundary points.

We introduce two sorts of boundary conditions.

The Dirichlet boundary condition is the equation f(s) = 0 for s ∈ ∂Sn.
The space V (D)

n of functions satisfying this condition has dimension dn−3 =
3n−3

2 . The operator ∆(D)
n in this space is given by 2.2.2 in all inner points s.

The Neumann boundary condition is the equation 2f(s) = f(s′)+ f(s′′)
where s ∈ ∂Sn and s′, s′′ are two neighbor points to s. The space V (N)

n of
functions satisfying this condition again has dimension dn − 3 = 3n−3

2 . The
operator ∆(N)

n in this space is given by 2.1.2 in inner points.
Both ∆(D)

n and ∆(N)
n are self-adjoint operators and their spectra are

known explicitly (see, e.g. [FS92]).

To make things clear, we consider in detail the case n = 2.

Let first V = V
(D)
2 . It is a 3-dimensional space of functions on S2 whose

values are shown in Figure 2.1

The operator ∆(D)
2 sends the triple of values (x, y, z) into the new

triple (4x− y− z, 4y− x− z, 4z− x− y). In the natural basis this operator

is given by the matrix
(

4 −1 −1
−1 4 −1
−1 −1 4

)
. The eigenvalues can be easily computed

using

Lemma 2.1. Let n× n matrix A have elements

aij =

{
a if i = j

b if i 6= j.

Then A has the eigenvalue a − b with multiplicity n − 1 and one more
eigenvalue a = (n− 1)b.
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0

0

0

x

z

y

Figure 2.1. Functions on S2 with Dirichlet condition

In our case we have a double eigenvalue 5 and simple eigenvalue 2. The
corresponding eigenspaces consist of triples (x, y, z) with x+ y+ z = 0 and
of triples (x, y, z) with x = y = z.

It means that corresponding membrane (with fixed boundary) has two

frequencies of oscillations such that their ratio is
√

5
2 ≈ 1.581.

Let now V = V
(N)
2 . The values of functions from this space are shown

in figure 2.2

x+z
2

x+y
2

y+z
2

x

z

y

Figure 2.2. Functions on S2 with Neumann condition

I leave you to check that the operator ∆(N)
2 sends the triple (x, y, z)

into the triple
(
3x − 3

2(y + z), 3y − 3
2(y + z), 3z − 3

2(y + z)
)
. Therefore its

matrix is

(
3 − 3

2
− 3

2

− 3
2

3 − 3
2

− 3
2
− 3

2
3

)
. The spectrum of this matrix contains the double

eigenvalue 41
2 and the single eigenvalue 0.
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It means that corresponding membrane (with a free boundary) has one
frequency of oscillations (slightly lower than the highest frequency in the
first case) and one equilibrium state x = y = z.

2.2. Comparing spectra of ∆n and of ∆n−1

The computations we make in this section are rather dull and cumber-
some, but they are necessary to get deep and beautiful results about the
spectrum of the Laplace operator.

Let us denote by V λ
n the space of functions satisfying

(2.2.1) (4− λ)f(s) =
∑
s↔s′

f(s′)

for all inner points s ∈ Sn.
Let us choose a function f ∈ V

(λ)
n . Assume that the restriction of f on

Sn−1 is not identically zero. Consider in details a piece of Sn around the
point where f 6= 0. We write the values of f on the corresponding points
(values which do not matter marked by question marks):

?
? ?

y ? z
u q r v

b p x s c

According to our hypothesis, x 6= 0. Moreover, since f ∈ V λ
n , we have a

family of equations:

(2.2.2)

(4− λ)x = p+ q + r + s;

(4− λ)u = b+ y + p+ q; (4− λ)v = c+ z + r + s;

(4− λ)p = b+ u+ q + x; (4− λ)q = y + u+ p+ x;

(4− λ)r = z + v + s+ x; (4− λ)s = c+ v + r + x

Adding last four equations, we get

(2.2.3) (4−λ)(p+q+r+s) = (p+q+r+s)+(b+y+z+c)+2(u+v)+4x

and adding two previous ones, we obtain

(2.2.4) (4− λ)(u+ v) = (p+ q + r + s) + (b+ y + z + c).

From (2.2.3), (2.2.4) we can express (p+ q + r + s) and (u+ v) in terms of
(b+ y + z + c) and x. Then the first equation of (2.2.2) gives

(2.2.5) (λ− 6)(b+ y + z + c) = (λ− 6)(4− λ)(1− λ)x.

We come to the alternative: either λ = 6, or the function f (more
precisely, its restriction to Sn−1) belongs to V µ

n−1 where

(2.2.6) 4− µ = (4− λ)(1− λ), or µ = λ(5− λ).

The first important consequence of this alternative is
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Theorem 2.2. The restriction of any harmonic function on Sn to Sn−1

is also harmonic.

Indeed, for harmonic functions λ = 0 and µ = λ(5− λ) is also zero.

This fact leads to a natural definition of harmonic functions on S∞.

Definition 2.3. A function on S∞ is called harmonic if its restriction
on every Sn is harmonic.

2.3. Eigenfunctions of Laplace operator on SN

Here we consider briefly the spectrum of the operators ∆(D)
n with a goal

to construct a Laplace operator ∆(D) on S.

First we have to study the so-called dynamics of the polynomial P (λ) =
λ(5−λ). Namely, for any number µ we call a µ-string any sequence µk, k =
0, 1, 2... such that µ0 = µ and P (µk) = µk−1 for k ≥ 1.

We want to extend a function f ∈ V µn
n so that extended function belong

to f ∈ V µn+1

n+1 . From (2.2.6) we know that it is possible only if µn and µn+1

are in the same µ-string.
Conversely, for any µ-string {µk} we can construct a function f on S∞

such that its restriction to Sn (which can be zero!) belongs to V µn
n for all n.

So, the problem is: is such function f on S∞ uniformly continuous,
hence can be extended by continuity to S? When this is the case, we can
consider the extended function f̃ as an eigenfunction for the Laplacian on the
whole gasket and define the corresponding eigenvalue as a limit of suitably
renormalized sequence {µn}.

In this book we consider in detail only the case µn = 0 where the function
f is harmonic on S∞.





CHAPTER 3

Harmonic functions on Sierpiński gasket

In this chapter we consider in more details the harmonic functions on
Sierpiński gasket S. Note, that a harmonic function satisfying Dirichlet
boundary condition must be zero, and a harmonic function satisfying Neu-
mann boundary condition must be a constant. So, we consider here har-
monic functions whose restrictions on the boundary are subjected to no
conditions.

Recall that the boundary points of S are 0, 1, ω = 1+i
√

3
2 . So the segment

[0, 1] of real line is a part of S and we can consider the restrictions of
harmonic functions on this segment as ordinary real-valued functions on
[0, 1]. It turns out that these functions have a very non-trivial analytic and
number-theoretic behavior.

3.1. First properties of harmonic functions

We start with the following fact.

Lemma 3.1. The vector space H(S∞) of all harmonic functions on S∞
has dimension 3. The natural coordinates of a function f ∈ H(S∞) are the
values of this function at three boundary points.

Proof. From linear algebra we know that if an homogeneous system
of linear equations has only the trivial solution, then the corresponding
inhomogeneous system has the unique solution for any right hand part. It
follows that dim H(Sn) = 3 for all n ≥ 1. Hence, any harmonic function on
Sn has a unique harmonic extension to Sn+1, hence, to S∞. �

We need also the following simple observation

Figure 3.1. The ratio 1:2:2

Lemma 3.2. Let x, y, z be three neighbor points of Sm which form a
regular triangle. Put α = y+z

2 , β = x+z
2 , γ = x+y

2 . Then α, β, γ also form
a regular triangle and are neighbor points in Sm+1 (see Fig. 3.1). For any
harmonic function f on Sm+1 we have

33



34 3. HARMONIC FUNCTIONS ON SIERPIŃSKI GASKET

f(α) =
f(x) + 2f(y) + 2f(z)

5
, f(β) =

2f(x) + f(y) + 2f(z)
5

,

f(γ) =
2f(z) + 2f(y) + f(x)

5
.

(3.1.1)

The informal meaning of this result is: the neighbor points have twice
bigger impact than the opposite one.

Now we can prove the important result:

Theorem 3.1. Any harmonic function on S∞ is uniformly continuous,
hence has a unique continuous extension to S.

Proof. Let f cab be the harmonic function on S∞ with the boundary
values

f(0) = a, f(1) = b, f(ω) = c.

Let us call the variation of a function f on a set X the quantity

varX f = sup
x,y∈X

|f(x)− f(y)|.

From the Maximum principle we conclude that

varS f cab = max {|a− b|, |b− c|, |c− a|}.
From Lemma 3.2 and by induction on n we derive easily that for any

two neighbor points x, y in Sn we have

|f cab(x)− f cab(y)| ≤ var f ·
(

3
5

)n
≤ const · d(x, y)β, β = log2

5
3
.

Hence, the function f cab belongs to some Hölder class. Therefore, it is
uniformly continuous and can be extended by continuity to S. We keep the
same notation f cab for the extended function. �

3.2. The functions χ, φ, ψ, ξ

Denote by ucab the restriction of the harmonic function f cab on the segment
[0, 1] which is the horizontal side of S.

The following relations are rather obvious and follow from the natural
action of the permutation group S3 on S and on H(S):

(3.2.1) ucab(t) = ucba(1− t); ucab(t) + uabc(t) + ubca(t) ≡ a+ b+ c.

It follows that the values of any harmonic function at any point of Sn
can be expressed in terms of a single function φ := u0

01.

Exercise 11. Derive from 3.2.1 that

(3.2.2) ucab(t) = c+ (b− c)φ(t) + (a− c)φ(1− t).
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Therefore, it is interesting to obtain as many information as possible
about the nature of the function φ. Technically, it is convenient to introduce
three other functions:

χ(t) := u−1
01 (t) = −1 + 2φ(t) + φ(1− t),

ψ(t) := u1
01(t) = 1− φ(1− t),

ξ(t) := u2
01(t) = 2− φ(t)− 2φ(1− t).

(3.2.3)

The reason to introduce these four functions is the following. Let H
denote the space of real-valued functions on [0, 1] spanned by restrictions
of harmonic functions on S. (It is worth to mention, that H is spanned by
any two of the above functions χ, φ, ψ, ξ and a constant function.)

Consider two transformations of the segment [0, 1] : α0(t) = t
2 and

α2(t) = 1+t
2 . They induce the linear operators of functions:(
A0f

)
(t) = f

(
t

2

)
and

(
A1f

)
(t) = f

(
1 + t

2

)
.

It turns out that both linear operators A0 and A1 preserve the 3-dimensional
subspace H. Moreover, both operators have in H three different eigenvalues
1, 3

5 ,
1
5 .

The corresponding eigenfunctions are 1, ψ, χ for A0 and 1, 1− ξ, 1− φ
for A1.

In other words, if we introduce vector-functions

(3.2.4) ~f(x) =

ψ(x)
χ(x)

1

 and ~g(x) =

φ(x)
ξ(x)

1

 ,

then the following relations hold

(3.2.5) ~f

(
t

2

)
= A0

~f(t), ~g

(
1 + t

2

)
= A1~g(t), ~f(1− t) = T~g(t)

where
(3.2.6)

A0 =

3/5 0 0
0 1/5 0
0 0 1

 , A1 =

3/5 0 2/5
0 1/5 4/5
0 0 1

 , T =

−1 0 1
0 −1 1
0 0 1

 .

Exercise 12. Using relations 3.2.5, 3.2.6, compile the table of values of
functions χ, φ, ψ, ξ at the points k/8, k = 0, 1, . . . , 7, 8.

From 3.2.5 we derive several remarkable properties of the functions intro-
duced above. For example, we can describe the behavior of these functions
near all dyadic points r of the form r = k

2n .

Lemma 3.3. All four functions χ, φ, ψ and ξ increase strictly monoton-
ically from 0 to 1 on [0, 1].
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Proof. Since φ(t) = ξ(t)+2χ(t)
3 and ψ(t) = 2ξ(t)+χ(t)

3 , it is enough to
prove that ξ(t) and χ(t) are strictly increasing. Let 0 ≤ t < s ≤ 1. We
have to show that ξ(t) < ξ(s) and χ(t) < χ(s). Let us introduce the vector-

function ~h(t) :=

ξ(t)χ(t)
1

.

From 3.2.5 we derive the following transformation rules for ~h:

(3.2.7) ~h

(
t

2

)
= B0

~h(t); ~h

(
1 + t

2

)
= B1

~h(t)

where

(3.2.8) B0 =

3/5 1/5 0
0 1/5 0
0 0 1

 ; B1 =

1/5 0 4/5
1/5 3/5 1/5
0 0 1

 .

Consider now the binary presentations of t and s:

t = 0.t1t2 . . . tk . . . , s = 0.s1s2 . . . sk . . . .

We can assume that ti = si for i < m, tm = 0, sm = 1.
Applying 3.2.7 several times, we get

~h(t) = Bt1 · · ·Btk−1
A0

~f(z), ~h(s) = Bt1 · · ·Btk−1
B1

~f(w)

for some z ∈ [0, 1), w ∈ (0, 1]. Since Bi have nonnegative coefficients, it is
enough to verify that B1

~h(w) > B0
~f(z). (Here we write ~a > ~b if the first

two coordinates of ~a are bigger than the corresponding coordinates of ~b.)
But

B1
~h(w) =

1/5 0 4/5
1/5 3/5 1/5
0 0 1

ξ(t)χ(t)
1

 >

0.8
0.2
1


while

B0
~f(z) =

3/5 1/5 0
0 1/5 0
0 0 1

ξ(z)χ(z)
1

 <

0.8
0.2
1

 .

�

Theorem 3.2. For all x ∈ [0, 1] we have the relations

A−1xα ≤ ψ(x) ≤ Axα, B−1xβ ≤ χ(x) ≤ Bxβ

with A =
5
3
, α = log2

5
3
, B = 5, β = log2 5.

(3.2.9)

Proof. Since 3
5 ≤ ψ(x) ≤ 1 for 1

2 ≤ x ≤ 1 , we conclude from the first
relation that(

3
5

)n+1

≤ ψ(x) ≤
(

3
5

)n
for

1
2n+1

≤ x ≤ 1
2n
.
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But for the given value of α we have also(
3
5

)n+1

≤ xα ≤
(

3
5

)n
for

1
2n+1

≤ x ≤ 1
2n
.

This implies the first statement of the theorem. The second can be proved
in the same way. �

As a corollary of Theorem 3, we obtain

(3.2.10) u′(r) = +∞.

where u is any one from the functions χ, φ, ψ, ξ and r = k
2n is any dyadic

number with only two exceptions: χ′(0) = ξ′(1) = 0 (see Fig.3.2).

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

χ

ψ

Figure 3.2. Functions χ, φ, ψ, ξ.

On the other hand, the functions χ, φ, ψ, ξ, being strictly monotone,
have a finite derivative at almost all points of the interval [0, 1].

Problem 2. Compute explicitly the derivative u′(t) whenever it is pos-
sible (e.g. at all rational points).

The next interesting feature of u(t) is that one can compute explicitly
the integral of this function over any interval with dyadic ends. For instance,
we have

Lemma 3.4.

(3.2.11)
∫ 1

0
uca,b(t)dt =

3a+ 3b+ c

7
.
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On the other side, the Corollary above suggests that t is, maybe, not a
good parameter for functions ucab. A more natural choice for the independent
parameter x and a function y(x) is

(3.2.12) x = φ+ ψ − 1 = χ+ ξ − 1; y = ξ − ψ = ψ − φ = φ− χ.

When t runs from 0 to 1, x increases from −1 to 1, while y grows from 0 to
1
5 and then decays again to 0. The alternative definition is: x = u0

−1,1, y =
u1

0,0.

Theorem 3.3. The quantity y is a differentiable function of x.

A more precise statement is

Theorem 3.4. The derivative y′ = dy
dx is a continuous strictly decreasing

function of x.

Exercise 13. Show that the derivative y′(x) satisfies the equations

y′
(
x

(
t

2

))
=

3y′(x(t)) + 1
3y′(x(t)) + 5

, y′
(
x

(
1 + t

2

))
=

3y′(x(t))− 1
5− 3y′(x(t))

.

Hint. Prove and use the relations

x

(
t

2

)
=

1
2
x(t) +

3
10
y(t)− 1

2
; y

(
t

2

)
=

1
10
x(t) +

3
10
y(t) +

1
10

x

(
1 + t

2

)
=

1
2
x(t)− 3

10
y(t) +

1
2
; y

(
1 + t

2

)
= − 1

10
x(t) +

3
10
y(t)− 1

10
.

(3.2.13)

We come back to this in Part II.
The next two problems are open.

Problem 3. Compute the moments

(3.2.14) mn : =
∫ 1

−1
xnydx.

Problem 4. Compute the Fourier coefficients

(3.2.15) cn : =
∫ 1

−1
e−πinxydx.

3.3. Extension and computation of χ(t) and ψ(t)

There is a method of quick computing the values of χ(t) at binary frac-
tions. Namely, we know that χ(t) satisfies relations1

(3.3.1) χ(2t) = 5χ(t), χ

(
1 + t

2

)
+ χ

(
1− t

2

)
=

2 + 3χ(t)
5

.

1The simplest way to derive these equation is to compare the boundary values of both
sides, taking into account that they are harmonic functions.
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We can use the first relation 3.3.1 to extend χ to the whole real line, putting
(3.3.2)

χ(t) := 5Nχ(2−N |t|) where N is big enough for 0 ≤ 2−N |t| ≤ 1.

Then the second equation for t = k
2n can be rewritten in the form

(3.3.3) χ(2n + k) + χ(2n − k)− 2χ(2n) = 3χ(k) for 0 ≤ k ≤ 2n.

Let us introduce the operator of second difference(
∆2
kf
)
(t) =

f(t+ k)− 2f(t) + f(t− k)
2

.

Then we can write

(3.3.4)
(
∆2
kχ
)
(2n) = 3χ(k) for 0 ≤ k ≤ 2n.

It is easy to derive from (3.3.4) the following statement.

Theorem 3.5. For any integer k the value χ(k) is also an integer and
χ(k) ≡ k mod 3.

The relation (3.3.4) allows not only compute the values χ(k) for integer
k but also formulate the following

Conjecture 1. Let β = log2 5 = 2.3219281... The ratio χ(t)
tβ

attains a
maximal value 1.044... at the point tmax ≈ 8

15 and a minimal value 0.912...
at the point tmin ≈ 93

127 .

A similar approach allows to compute the values of extended function ψ
at integral points. The key formula is the following analog of (3.3.4):

(3.3.5)
(
∆2
kψ
)
(2n) = −1

3
χ(k) for 0 ≤ k ≤ 2n.

In the table below we give the values of χ(k) and values of ψ(k) (multi-
plied by 36 = 729 to make them integral). We also show the first differences
∆ψ(k) := ψ(k)− ψ(k − 1) for the function ψ(k) and the second differences
∆2

1χ(k) for the function χ(k).
Note that the first differences ∆ψ(k) manifest a symmetry in the inter-

vals [2l, 2l+1]. This symmetry is due to the relation

(3.3.6) ψ(3 + t) + ψ(3− t) = 2ψ(3) =
40
3

for |t| ≤ 1

In particular, putting t = k
16 , 0 ≤ k ≤ 16, we get

ψ(48 + k) + ψ(48− k) =
25000
729

.

The same symmetry is observed for ϕ:

(3.3.7) ϕ
(

1
4 + t

)
+ ϕ

(
1
4 + t

)
= 2ϕ

(
1
4

)
for |t| ≤ 1

4 .

All this suggest the search of minimal “wavelets” such that graphs of all
basic functions can be built from affine images of these wavelets.

The candidates are the graphs of χ on [12 , 1] and of ψ on [34 , 1].
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Table 3.1. Table of values of χ(k), 26ψ(k) and their second differences

k χ(k) 1
3∆2χ 36ψ(k) 36∆ψ k χ(k) 1

3∆2χ 36ψ(k) 36 ·∆ψ
1 1 1 729 729 34 3745 -11 9985 245
2 5 1 1215 486 35 3965 5 10191 206
3 12 2 1620 405 36 4200 -2 10400 209
4 25 1 2025 405 37 4429 -11 10597 197
5 41 1 2403 378 38 4625 5 10755 158
6 60 2 2700 297 39 4836 26 10916 161
7 85 5 2997 297 40 5125 1 11125 209
8 125 1 3375 378 41 5417 -23 11331 206
9 168 -2 3744 369 42 5640 -2 11480 149
10 205 1 74005 261 43 5857 17 11617 137
11 245 5 4239 234 44 6125 5 11775 158
12 300 2 4500 261 45 6408 -2 11936 161
13 361 1 4761 261 46 6685 17 12085 149
14 425 5 4995 234 47 7013 53 12255 170
15 504 14 5256 261 48 7500 2 12500 245
16 625 1 5625 369 49 7993 -47 12745 245
17 749 -11 5991 366 50 8345 -11 12915 170
18 840 -2 6240 249 51 8664 14 13064 149
19 925 5 6453 213 52 9025 1 13225 161
20 1025 1 6675 222 53 9389 -11 13383 158
21 1128 -2 6888 213 54 9720 14 13520 137
22 1225 5 7065 177 55 10093 53 13669 149
23 1337 17 7251 186 56 10625 5 13875 206
24 1500 2 7500 249 57 11172 -33 14084 209
25 1669 -11 7749 249 58 11605 1 14245 161
26 1805 1 7935 186 59 12041 41 14403 158
27 1944 14 8112 177 60 12600 14 14600 197
28 2125 5 8325 213 61 13201 1 14809 209
29 2321 1 8547 222 62 13805 41 15015 206
30 2520 14 8760 213 63 14532 122 15260 245
31 2761 41 9009 249 64 15625 1 15625 365
32 3125 1 9375 366 65 16721 -119 159892

3 3642
3

33 3492 -38 9740 365 66 17460 -38 162331
3 2432

3
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We leave to the reader to observe other patterns in this table and prove
corresponding statements. For example, look at the values of ∆ψ at the
points 2n, 2n ± 1, 2n + 2n−1 and 2n + 2n−1 + 1.

It is also interesting to study p-adic behavior of χ(t) and the possible
extension of χ(t) to a function from Q2 to Q5.

Finally, we recommend to draw a graph of the function k → ∆ψ(k) on
the interval [2n + 1, 2n+1] and think about its limit when n goes to ∞.

Info D. Fractional derivatives and fractional integrals

The derivative of order n is defined as the n-th iteration of ordinary
derivative. Sometime the indefinite integral

∫ x
0 f(t)dt is called the anti-

derivative of f , or the derivative of order −1. One can also define the
derivative of order −n as the n-th iteration of the anti-derivative. The
explicit form of this operation is

f (−n)(x) =
∫ x

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
f(tn)dtn.

This iterated integral can be written as n-dimensional integral∫
∆x

f(tn)dt1dt2 · · · dtn

where ∆x is the simplex in Rn with coordinates t1, t2, . . . tn given by the
inequalities

0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ x.

If we change the order of integration, we can rewrite this integral in the form

(D.1)
∫

∆x

f(tn)dt1dt2 · · · dtn =
∫ x

0
vol∆x(t)f(t)dt =

∫ x

0

(x− t)n−1

(n− 1)!
f(t)dt.

Here ∆x(t) is the (n− 1)-dimensional simplex which is obtained as the
intersection of ∆x and the hyperplane tn = t.

Now we observe that the factor (x−t)n−1

(n−1)! make sense not only for n ∈ N
but for any real n. So, we replace n by α and define an anti-derivative of
order α, or a derivative of order −α by the formula

(D.2) f (−α)(x) =
∫ x

0

(x− t)α−1

Γ(α)
f(t)dt.

Of course, we have to precise, what kind of functions we allow to consider
and how to understand this integral when the integrand has singularity at 0.
For the beginning it is enough to assume that our functions are defined and
smooth on (0, ∞) and also vanish at zero together with several derivatives.

Exercise 14. 19. Denote by Φβ(x) the function xβ−1

Γ(β) . Show that

(D.3) Φ(−α)
β (x) = Φβ−α(x).
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Hint. Use the B-function of Euler given by

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt

and the identity

B(α, β) =
Γ(α)Γ(β)
Γ(α+ β)

.

Note also the connection of fractional derivatives with the convolution
operation on R+:

(f1 ∗ f2)(x) =
∫ x

0
f1(t)f2(x− t)dt.

Namely, the derivative of order α is just a convolution with Φ−α while
integral of order α is a convolution with Φα.

♦

3.4. Some arithmetic properties of basic functions

As was shown in 3.3, the function χ(t) takes integer values in integer
points. Such functions often have interesting arithmetic properties. For
convenience we extend this function to the whole line R by the rules:

(3.4.1) χ(2t) = 5χ(t), χ(−t) = χ(t)

The extended function still takes integer values in integer points.

We also extend the functions ψ, φ, ξ to the positive half-line R+ by the
rules

(3.4.2) ψ(2t) =
5
3
ψ(t), φ(t) =

χ(t) + ψ(t)
2

, ξ(t) =
3ψ(t)− χ(t)

2
We can consider these functions as boundary values of harmonic functions
defined on the infinite Sierpiński gasket bounded by the rays x ≥ 0, y = 0
and x ≥ 0, y = x

√
3

2 .

We want to study the local behavior of χ in a vicinity of some dyadic
number r = k

2n . In view of 3.4.1, it is sufficient to consider only odd positive
integers k = 2m+ 1.

Theorem 3.6. For any odd k and any τ ∈ [0, 1] we have

(3.4.3) χ(k ± τ) = χ(k) + ∆2 · χ(τ)±∆1 ·
(
2χ(τ) + 3ψ(τ)

)
where ∆2 = χ(k−1)+χ(k+1)−2χ(k)

2 , ∆1 = χ( k+1
2

)−χ( k−1
2

)

2 .

Corollary. For any n and any odd k and odd l < 2n we have2

2Note that the number 3n+1ψ(l) is an integer when l < 2n.
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Figure 3.3. Infinite Sierpiński gasket.

(3.4.4) χ(2nk + l) ≡ χ(2nk − l) mod
(
2χ(l) + 3n+1ψ(l)

)
and

(3.4.5) χ(2nk + l) + χ(2nk − l)− 2χ(2nk) ≡ 0 mod χ(l)

Some particular cases:

a) n = 1, k = 2m+ 1, l = 1 : χ(4m+ 3) ≡ χ(4m+ 1) mod 11

b) n = 2, k = 2m+ 1, l = 3 : χ(8m+ 7) ≡ χ(8m+ 1) mod 84

c) k = 1 : χ(2n+ l) ≡ χ(2n− l) mod
(
2χ(l)+3n+1ψ(l)

)
(actually,

it is not only congruence but even equality since in this case 2∆1 = 1.)

Proof of the theorem. Consider the triangular piece of the infinite
gasket which is based on the segment [k − 1, k + 1]. It is shown on Figure
3.4.

a−

c

a+

b−

a0

b+

k − 1 k k + 1

Figure 3.4. A fragment of infinite Sierpiński gasket.
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We denote the values of χ at the points k − 1, k, k + 1 by a−, a, a+

respectively. Then the values b+, b−, c in remaining vertices, shown on
Figure 3.3, can be uniquely determined from the equations:

5a = 2a− + 2a+ + c, 5b± = 2a± + 2c+ a∓.

The result is

c = 5a− 2a− − 2a+, b+ = 2a− 3a− + 2a+

5
, b− = 2a− 2a+ + 3a−

5
.

Consider now the functions g± : τ → χ(k ± τ). Knowing the boundary
values of corresponding harmonic functions on pieces of S, we can write:

g±(τ) = a+
a± + b± − 2a

2
· ψ(τ) +

a± − b±
2

· χ(τ).

To prove the theorem it remains to note that
a± + b± − 2a

2
= ± 3

10
(a+ − a−) = ±3 ·∆1

and
a± − b±

2
=
a− + a+ − 2a

2
± 1

5
(a+ − a−) = ∆2 ± 2∆1.

�

Proof of the corollary. Put τ = l
2n in (3.4.1). Then we get

χ(2nk + l)− χ(2nk − l) = 5n
(
χ(k + l

2n )− χ(k − l
2n )
)

=

2 · 5n∆1

(
2χ( l

2n ) + 3ψ( l
2n )
)

= 2 ·∆1 ·
(
2χ(l) + 3n+1ψ(l)

)
.

Since 2∆1 ∈ Z, we have proved (3.4.4) The congruence (3.4.5) can be proved
in a similar way. �

3.5. Functions x(t), y(t) and y(x)

Theorem 3.6 suggests that apparently t is not a good parameter for basic
functions. A more natural choice for the independent parameter x and a
function y(x) is:

(3.5.1) x = φ+ ψ − 1 = χ+ ξ − 1; y = ξ − ψ = ψ − φ = φ− χ

The alternative definition: x = u 0
−1,1, y = u 1

0,0.

When t runs from 0 to 1, the value of x increases from −1 to 1, while
the value of y grows from 0 at 0 to 1

5 at 1
2 and then decays again to 0 at 1.

All basic functions are easily expressed in terms of x and y:
(3.5.2)

χ =
x+ 1− 3y

2
, φ =

x+ 1− y

2
, ψ =

x+ 1 + y

2
, ξ =

x+ 1 + 3y
2

The another advantage of this choice is the nice behavior of x and y with
respect to operator T : Tx = −x, Ty = y.
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The disadvantage is the more complicated behavior with respect to A1

and A2. Namely, if we introduce the vector function ~h(t) = (x(t), y(t), 1)t,
then we get the following transformation rules:

(3.5.3) ~h

(
t

2

)
= C0

~h(t), ~h

(
1 + t

2

)
= C1

~h(t)

where

(3.5.4) C0 =
1
10

5 3 −5
1 3 1
0 0 10

 , C1 =
1
10

 5 −3 5
−1 3 1
0 0 10


Both quantities x and y are originally functions of t ∈ [0, 1]. Since x defines
a bijection [0, 1] → [−1, 1], we can consider the map

ỹ := y ◦ x−1 : [−1, 1] → [0, 1].

Often we will not distinguish between y and ỹ and write simply y(x).
The claim that x is a better parameter is supported by the following fact

Theorem 3.7. The derivative y′ = dy
dx exists and is a continuous strictly

decreasing function of x.

We leave the proof to the reader as a rather non-trivial exercise. In my
opinion, the best way to prove the theorem is to show that y is a concave
function in x, i.e.

(3.5.5) y

(
x1 + x2

2

)
>

y(x1) + y(x2)
2

Exercise 15. Show that the derivative y′(x) satisfies the equations

(3.5.6) y ′(x( t2)) =
3y′(x(t)) + 1
3y′(x(t)) + 5

, y ′(x(1+t
2 )) =

3y′(x(t))− 1
5− 3y′(x(t))

Hint. Use the relations (3.5.4).

The relations (3.5.4) allow to compute the derivative y ′(x) explicitly in
some points (knowing that the derivative exists).

E.g., if we put t = 0 in the first relation, we get the equation y ′(0) =
3y ′(0)+1
3y ′(0)+5 , or 3y ′(0)2 + 2y ′(0)− 1 = 0.

This quadratic equation has two roots: 1
3 and −1. But since y(−1) = 0

and y(−1 + ε) > 0, only the first root is suitable. So, we get y ′(−1) = 1
3 .

In the same way, putting t = 1 in the second relation, we get y ′(1) = −1
3 .

The graphs of the functions y(x) and y ′(x) are shown on Figure 3.5
The method used above can be applied to compute y ′(x) for any x of the

form x(t) with a rational t. Indeed, any rational number r can be written
as an eventually periodic dyadic fraction. It follows that r has the form
r = k

2m(2n−1) where n is the length of the period and m is the number of
digits before the period starts.



46 3. HARMONIC FUNCTIONS ON SIERPIŃSKI GASKET

x

y

1−1

−1
3

1
3

1
5

y(x)

y′(x)

Figure 3.5. The graphs of the functions y(x) and y ′(x)

E.g., 5
6 = 0.11010101... = 0.1(10) = 5

2(22−1)
.

The number r′ = k
2n−1 is a fixed point of some transformation of the

form α := αi1αi2 · · ·αin (see section 3.2). And the number r is the image of
r′ under some transformation of the form α′ := αj1αj2 · · ·αjm .

Geometrically the transformation α is the contraction with center at r′

and ratio 2−n. It follows that under this contraction the functions x− x(r′)
and y − y(r′) are transformed linearly by some 2 × 2 matrix with rational
coefficients. It gives a quadratic equation for the derivative y ′(x) at the
point x(r′). The value of y ′(x(r)) can be computed using (3.5.6).

Exercise 16. Find x
(

5
6

)
, y
(

5
6

)
and the value of y ′(x) at x

(
5
6

)
.

The next problem is open.

Problem 5. Let Γ ⊂ R2 be the graph of the function y(x). It contains
a big subset X of points with rational coefficients. E.g., all the points which
correspond to the rational values of the parameter t belong to X.

It is very interesting to study the closure Xp in the p-adic topology (see
Info G below).

3.6. Harmonic image of S

In conclusion of the first part of the book we show how Sierpińsky gasket
is related to the Apollonian gasket – the main subject of the second part.

Let us introduce a complex harmonic function z = f i
√

3
−1 , 1 on S. The

boundary values of this function form an equilateral triangle. The whole
image of S is shown on figure 3.6.

We see that the image of S under the harmonic map to C looks as a part
of the another famous fractal, the so-called Apollonian gasket. The second
part of the book is devoted to the detailed study of Apollonian gaskets from
different points of view.
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Figure 3.6. Harmonic image of S.

The ultimate problem, however, is to explore the similarity of these two
sorts of fractals to better understand each of them.

3.7. Multidimensional analogs of S

Sierpiński gasket has natural analogs in higher dimensions. They are
self-similar fractal sets in Rn defined by the system of contractions
(3.7.1)

fi(x) =
x+ pi

2
where pi ∈ Rn, 1 ≤ i ≤ n+1 are not in one hyperplane.

Figure 3.7. 3-dimensional Sierpiński gasket
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It is not difficult to show that n-dimensional Sierpiński gasket has the
Hausdorff dimension log2(n+ 1).

Exercise 17. Define a projection of (2n − 1)-dimensional Sierpiński
gasket to a n-dimensional plane in such a way that almost all points of the
image have a unique preimage.

The theory of harmonic functions on many-dimensional gasket is com-
pletely parallel to the theory described above. We mention some facts from
this theory. We choose one edge of the initial n-simplex {p1, p2, . . . , pn+1},
say, p1p2, identify it with the standard segment [0, 1] and restrict all har-
monic functions to this edge.

Lemma 3.5. The restriction of a harmonic function f to the edge p1p2

depends only on the values f(p1), f(p2) and on the sum
∑n+1

k=3 f(pk).

Hint. Use the symmetry of the restriction with respect to permutations
of points p3, . . . , pn+1.

Corollary. The restrictions of harmonic functions on S to any edge
pipj form a 3-dimensional space.

Let f ca,b denote any harmonic function on S satisfying f(p1) = a, f(p2) =
b and

∑n+1
k=3 f(pk) = c. The restriction of this function to the segment [p1, p2]

is a uniquely defined function of the parameter t ∈ [0, 1]. We denote it by
uca,b(t).

We define basic functions by

(3.7.2) χ(t) = u−1
0,1(t), φ(t) = u0

0,1(t), ψ(t) = un−1
0,1 (t), ξ(t) = un0,1(t)

and the functions x, y by

(3.7.3) x(t) = u0
−1,1(t), y(t) = u1

0,0(t).

Then

x = χ+ ξ − 1 = φ+ ψ − 1, y = φ− χ = ξ − ψ =
ψ − φ

n− 1
.

Note also, that un−1
1,1 (t) ≡ 1.

Main relations:

(3.7.4) χ(2t) = (n+ 3) · χ(t), ψ(2t) =
n+ 3
n+ 1

· ψ(t);

(3.7.5)
χ(1 + τ) + χ(1− τ) = 2 + (n+ 1)χ(τ)

χ(1 + τ)− χ(1− τ) = 2
n+ 1
n

ψ(τ) +
(n− 1)(n+ 2)

n
χ(τ);
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(3.7.6)
ψ(1 + τ) + ψ(1− τ) = 2− n− 1

n+ 1
χ(τ)

ψ(1 + τ)− ψ(1− τ) =
2
n
ψ(τ) +

(n− 1)(n+ 2)
n(n+ 1)

χ(τ).

These relations allow to develop the arithmetic theory of basic functions
for any3 integer n parallel to the case n = 2.

In particular, the function χ(t) always takes integer values at integer
points.

Some values of n are of special interest.

When n = 1, we get χ(t) = t2, φ(t) = ψ(t) = t, ξ(t) = 2t− t2.

When n = 0, we obtain y = 0, hence, χ(t) = φ(t) = ψ(t) = ξ(t) and this
function satisfies the relations

(3.7.7) χ(2t) = 3χ(t), χ(2m + k) + χ(2m − k) = 2 · 3m + χ(k).

To analyze the structure of χ it is useful to introduce the function

(3.7.8) f(k) := χ(k + 1)− 2χ(k) + χ(k − 1) for any integer k > 0.

Theorem 3.8. The function f(k) possesses the properties:

(3.7.9) f(2k) = f(k), f(2n+k)+f(2n−k) = f(k) for 0 < k < 2n.

The detailed investigation of this function is very interesting and I would
highly recommend it for an independent study.

For n = −1 we have χ(t) = t and it is not clear how to define other basic
functions.

Finally, for n = −2, we obtain χ(k) =

{
1 if k 6≡ 0 mod 3
0 if k ≡ 0 mod 3.

Similar formulas hold for other basic functions in this case.

We leave to readers to consider other negative values for n and find
interesting facts.

Info E. Numerical systems

E.1. Most of real numbers are irrational, so they can not be written as
a ratio of two integers. Moreover, real numbers form an uncountable set,
therefore, we can not label them by any “words” or “strings” which contain
only finite number of digits.

On the other hand there are many numerical systems which allow to
write all real numbers using infinite words containing only finite or count-
able set of digits. The well-known examples are usual decimal and binary
systems.

3I do not know geometric interpretation of these functions for n ≤ 0 as harmonic
functions of some kind.
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Recall that a digital numerical system S contains the following data:
• A real or complex base b, |b| > 1,
• A set of real or complex digits D = {d1, d2, . . . } which usually contains

the number 0.
To any semi-infinite sequence of the form

a = anan−1 · · · a1a0.a−1a−2 · · · a−n · · · , ak ∈ Z+,

the system S associates the number
(E.1.1) val(a) =

∑n
−∞ dak

· bk.
In a standard numerical system b is a positive integer m and digits are

dj = j ∈ Xm = {0, 1, . . . , m − 1}. It is well-known that any non-negative
real number x can be written in the form

(E.1.2) x = val(a) =
∑n

−∞ aj · bj .
More precisely, every non-negative integer N can be uniquely written as

val(a) with the additional condition ak = 0 for k < 0.
And any real number from the interval [0, 1] can be almost uniquely

written as val(a) with the condition ak = 0 for k ≥ 0. The non-uniqueness
arises from the identity

(E.1.3)
∑

k≥1(m− 1) ·m−k = 1.
The usual way to avoid this ambiguity is to never use the infinite se-

quence of the digit m− 1.

Motivated by this example, we call for any numerical system S the
whole numbers those which can be written in the form (E.1.2) with ak = 0
for k < 0 and fractional number those which can be written in the same
form with ak = 0 for k ≥ 0. The set of whole numbers is denoted by W (S),
while the set of fractional numbers – by F (S).

For a standard system S we have W (S) = Z+, F (S) = [0, 1].

E.2. The non-standard systems are more interesting.

Exercise 18. Consider the system S with the base b = −2 and digits
{0, 1}. Check that for this system W (S) = Z and F (S) = [−2

3 ,
1
3 ]. Show

that any real number can be almost uniquely written in the form (E.1.2).

Exercise 19. Introduce a system S with the base b = 1 + i and digits
{0, 1}. Check that here W (S) = Z[i], the set of so-called Gaussian inte-
gers of the form a+ ib, a, b ∈ Z. As for F (S), it is a fractal compact set of
dimension 2, determined by the property

(E.2.1) F =
1− i

2

(
F
⋃

(1 + F )
)
.

Here, as always, when an arithmetic operation is applied to a set, it
means that it is applied to each element of the set. The picture of this set is
shown on the figure E.8 (taken from the cover-sheet of the book [Edg90]).
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Figure E.8. The set F

Exercise 20. Let ω = e
2πi
3 be the cubic root of 1. Does there exist a

system S with a base and digits from Z[ω] for which W (S) = Z[ω]? What
is F (S) for such a system?

E.3. There is one more interesting numerical system related to the no-
tion of continuous fraction. Let k = {k1, k2, . . . } be a finite or infinite
system of positive integers. We associate to k the number

(E.1) val(k) =
1

k1 +
1

k2 +
1

k3 + · · ·+
1
kn

if the sequence k is finite,

or the limit of the expression (E.1) where n→∞ if the sequence k is infinite.
It is well-known that the limit in question always exists. Moreover,

every irrational number from (0, 1) is the value of the unique infinite con-
tinuous fraction. As for rational numbers from (0, 1), they can be val-
ues of two different finite continuous fractions: k = {k1, . . . , kn−1, 1} and
k′ = {k1, . . . , kn−1 + 1}.

There is a simple algorithm to reconstruct a sequence k with a given
val(k). Namely, denote by [x] the so-called whole part of a real number
x. By definition, it is a maximal integer n ≤ x. By {x} we denote the
fractional part of x which is x− [x].

Now, for any x ∈ (0, 1) we define consecutively:

x1 =
1
x
, k1 = [x1]; x2 =

1
{x1}

, k2 = [x2], . . . , xn =
1

{xn−1}
, kn = [xn], ...

For a rational x this process stops when for some n we have {xn+1} = 0.
Then the continuous fraction k = {k1, . . . , kn} has value x.

For an irrational x the process never stops and we get an infinite con-
tinuous fraction k with value x.

Example. Let kn = 2 for all n. Then x = val(k) evidently satisfies
the equation 1

x = 2 + x, hence x2 + 2x − 1 = 0 and x = −1 ±
√

2. Since
x ∈ (0, 1) we conclude x =

√
2− 1. So, the square root of 2 is given by an

infinite continuous fraction:
√

2 = 1 +
1

2 + 1
2+ 1

2+ 1
2+...

,

hence is not a rational number.
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This result4 was known to Pythagoras and kept in secret because it
undermined the faith in the power of (rational) numbers.

There are a few cases when the value of an infinite continuous fraction
can be expressed in terms of known functions. I know of two such cases.

First, if the fraction in question is pure periodic, i.e. when the number
kn depends only of a residue n mod m for some m, or mixed periodic,
when this property holds starting with some number n0.

In this case the number val(k) satisfies a quadratic equation with ratio-
nal coefficients and can be written explicitly. The converse is also true: any
real root of a quadratic equation with rational coefficients (which has the
form a+

√
b

c , a, b, c ∈ Z), can be written in the form of a periodic continuous
fraction.

In the second case the sequence {kn} is an arithmetic progression or
some modification of it. We only cite three examples

tanh 1 =
e2 − 1
e2 + 1

=
1

1 + 1
3+ 1

5+ 1

7+ 1
9+...

; tanh
1
2

=
e− 1
e+ 1

=
1

2 + 1
6+ 1

10+ 1

14+ 1
18+...

;

e = 2 +
1

1 + 1
2+ 1

1+ 1

1+ 1

4+ 1

1+ 1

1+ 1
6+...

E.4. It turns out that all numerical systems described above are partic-
ular cases of the following general scheme. Fix a set D ⊂ Z of “digits”. To
any digit d ∈ D we associate a real or complex n × n matrix Ad. Choose
also a row n-vector f and a column n-vector v.

Then to any semi-infinite sequence of digits a = {a1, a2 . . . } we associate
the number

val(a) = f · (Aa1Aa2 · · · ) · v
in the case when the infinite product make sense.

Let us explain the relation to previously described numerical systems.

Let Aa =
(
m 0
a 1

)
, 0 ≤ a ≤ m− 1. Then

Aan · · ·Aa1Aa0 =

 mn+1 0∑n
j=0 ajm

j 1

 .

So, if we put f = (0, 1), v =
(

1
0

)
, we get

E.4.1 val(a0, a1 . . . , an) = a0 + a1m+ · · ·+ anm
n = f ·Aa0Aa1 · · ·Aan · v.

4More precisely, its geometric interpretation, showing that the diagonal of a square
is not commensurable with its side.
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Let now Ak =
(
k 1
1 0

)
. Consider the matrices:

Ak =
(
k 1
1 0

)
, AkAl =

(
kl + 1 k
l 1

)
, AkAlAm =

(
klm+m+ k kl + 1

lm+ 1 l

)
and compare them with continuous fractions:

1
k

;
1

k + 1
l

=
l

kl + 1
;

1
k + 1

1+ 1
m

=
lm+ 1

klm+m+ k
.

This comparison suggests the general identity:

Lemma E.6. The value of a continuous fraction can be computed by the
formula:

(E.2) val(k) =
1

k1 +
1

k2 +
1

k3 + · · ·+
1
kn

=
(Ak1 ·Ak2 · · ·Akn)21
(Ak1 ·Ak2 · · ·Akn)11

.





CHAPTER 4

Applications of generalized numerical systems

4.1. Application to the Sierpiński gasket

First, let us try to label the points of S. Consider the alphabet with
3 digits: −1, 0, 1. To any finite word a = a1a2 . . . an in this alphabet we
associate the complex number

val(a) =
εa1

2
+
εa2

4
+ · · ·+ εan

2n
where ε = e2πi/3.

We also associate the number 0 to the empty sequence.
It is easy to understand that the numbers val(a) for all 3n sequences of

length n situated in the centers of the 3n triangles of rank n − 1, comple-
mentary to S.

Exercise 21. For any infinite sequence a let us denote a(n) the sequence
of first n digits of a. Show that

a) the sequence val(a(n)) has a limit when n→∞. We denote this limit
as val(a);

b) the point val(a) belongs to S;

c) val(a) = val(b) iff one sequence can be obtained from another by
substituting the tail of the form xyyyy . . . by the tail yxxxx . . . .

Exercise 22. Which infinite sequences correspond

a) to boundary points? b) to points of segments joining the boundary
points?

c) to vertices of Sn? d) to segments, joining the vertices of Sn?

4.2. Application to the question mark function

The so-called question mark function is a function defined by Minkowski
in 1904 for the purpose of mapping the quadratic irrational numbers in the
open interval (0, 1) into rational numbers of (0, 1) in a continuous, order-
preserving manner. Later, in 1938, this function was introduced by A. Den-
joy for arbitrary real numbers.

55
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By definition,1 the function ?(·) takes a number a represented by a
continued fraction

a =
1

a1 +
1

a2 +
1

a3 + · · ·+
1
ak

+ . . .

to the number

?(a) :=
∑
k

(−1)k−1

2a1+···+ak−1
=

a1︷ ︸︸ ︷
0.0 . . . 0

a2︷ ︸︸ ︷
1 . . . 1

a3︷ ︸︸ ︷
0 . . . 0 ...

For example, ?
(√

2
2

)
= 0.11001100... = 4

5 , ?
(
e2−1
e2+1

)
=
∑

k≥0 2−k
2
.

We shall say more about this function in the second part of the book.
Here we only observe that this is one more example of a function which is
naturally defined using generalized numerical systems.

1Better to say: By one of possible definitions (see below).
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Apollonian Gasket



Introduction

In this part of the book we consider another remarkable fractal: a so-
called Apollonian gasket A. It seems rather different from the Sierpiński
gasket S. For example, it is not a self-similar fractal, though for any k ≥ 0
it can be represented as a union of 3k + 2 subsets homeomorphic to S.

Nevertheless, there are deep and beautiful relations between both frac-
tals and our goal, only partly achieved here, is to reveal these relations.

Many of facts discussed below are of elementary geometric nature. How-
ever, in modern educational programs the Euclidean geometry occupies a
very small place and we can not rely on the information acquired at school.
Therefore, sometimes we use more sophisticated tools to get the desired
results.

As in the first part, we study our gasket from different points of view:
geometric, group-theoretic and number theoretic. The interplay of all three
approaches makes the subject very interesting and promising.



CHAPTER 5

Apollonian gasket

5.1. Descartes’ theorem

We start with a simply looking geometric problem:

Describe all configurations of four pairwise tangent circles on a plane

Examples of such configurations are shown below on Fig. 5.1. We include
the cases when one of the circles degenerates to a straight line (a circle with
an infinite radius) and the case when one of the circles is tangent to others
from inside (we shall interpret it later as a circle with a negative radius).

Figure 5.1. Quadruples of tangent circles

There exist some other configurations which we want to exclude. They
are shown on Fig. 5.2. Here all four circles have a common tangency point,
finite or infinite. The reason why these configurations are excluded will be
clear when we make the formulation more precise and pass from circles to
discs.

Figure 5.2. “Wrong quadruples”

59
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It turns out that the complete and clear solution of this problem uses
tools from several different domains in mathematics. Moreover, the prob-
lem has natural many-dimensional analogues and requires a more precise
and slightly modified formulation. Here we outline an elementary approach
which already show us the necessity of refinements and modifications.

To approach our problem, make one step back and consider a triple of
pairwise tangent circles. There are three kinds of such triples – see Fig.??.

Note, that the triangle formed by the points of tangency is acute in the
case a), right in the case b) and obtuse in the case c).

In the case a) it is rather obvious that our three circles can have arbitrary
positive radii r1, r2, r3. Indeed, let O1, O2, O3 be the centers of circles in
question. We can always construct the triangle O1O2O3 since its sides are
known: |OiOj | = ri + rj and satisfy the triangle inequality:

(5.1.1) |OiOj |+ |OjOk| = (ri + rj) + (rj + rk) ≥ ri + rk = |OiOk|.

In the case c) we have |O1O2| = r1+r2, |O2O3| = r3−r2, |O3O1| = r3−r1
and r1 + r2 ≤ r3. There is a way to unite a) and c) in a general formula

(5.1.2) |OiOj | = |ri + rj |.

For this we have only to replace r3 by −r3. Then (5.1.2) will be satisfied
if r1 + r2 ≤ |r3|, or r1 + r2 + r3 ≤ 0.

In the case b) the center O3 is situated at infinity. We put r3 = ∞ and
(5.1.2), suitably interpreted, is still satisfied.

r1

r1

r2

r2

r3
r3

Figure 5.3. Triples of tangent circles a)

If four circles are pairwise tangent, their radii r1, r2, r3, r4 are not ar-
bitrary but must satisfy some equation. This equation and/or some of its
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r1

r1

r2

r2

Figure 5.4. Triples of tangent circles b)

consequences were apparently known in Ancient Greece more than two thou-
sand years ago.

More recently, the condition was explicitly written by René Descartes,
the famous French mathematician and philosopher of the first half of 17-th
century.

The Descartes equation looks simpler if we replace the radii ri by the
inverse quantities

ci := r−1
i , 1 ≤ i ≤ 4.

The geometric meaning of the quantity ci is the curvature of the circle with
the radius ri.1

The equation in question looks as follows:

(5.1.3) (c1 + c2 + c3 + c4)2 − 2(c21 + c22 + c23 + c24) = 0.

1The reason, why curvatures are better than radii, will be explained later, when we
develop a group-theoretic approach to the problem.

O3

O2

O1

r1

r2

r3

r3

Figure 5.5. Triples of tangent circles c)
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We leave to geometry fans the challenge to recover the proof of the
Descartes theorem using the high school geometry. The following exercise
and the Fig. 5.6 can help.

Exercise 23. Find the common formula for the area of the triangle
O1O2O3 above which is true for cases a) and c).

Hint. Use the Heron formula.

Answer. S =
√
r1r2r3(r1 + r2 + r3). Not, that the expression under

the root sign is always positive.

O1 O2

O3

O4

Figure 5.6. Towards the proof of Descartes theorem

There is a special case of the Descartes theorem which is much easier
to prove. Namely, assume that one of the four circles degenerates to a

rR

ρ

2
√

Rρ 2
√

rρ{

2
√

Rr

Figure 5.7. Degenerate Descartes equation
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d

r1

r1

r2

r2-r1

Figure 5.8. Degenerated triple with d = 2
√
r1r2

straight line. Let, for example, c4 = 0 so that the relation between remaining
curvatures is:

(5.1.4) (c1 + c2 + c3)2 − 2(c21 + c22 + c23) = 0.

Fortunately, the left hand side of (5.1.4) can be decomposed into simple
factors. For this end we rewrite it in the form of quadratic polynomial in c1:

−c21 + 2c1(c2 + c3)− c22 + 2c2c3 − c23

This quadratic polynomial has the roots c2+c3±2
√
c2c3 = (

√
c2±

√
c3)2.

Therefore, it can be written as

−
(
c1 − (

√
c2 +

√
c3)2

)(
c1 − (

√
c2 −

√
c3)2

)
=

(
√
c1 +

√
c2 +

√
c3)(−

√
c1 +

√
c2 +

√
c3)(

√
c1 −

√
c2 +

√
c3)(

√
c1 +

√
c2 −

√
c3).

It follows that (5.1.4) is true iff at least one of the following equations
are satisfied:

(5.1.5)
√
c1 ±

√
c2 ±

√
c3 = 0, or

√
r2r3 ±

√
r1r2 ±

√
r1r3 = 0.

Actually, the signs depend on the relative sizes of radii. E.g., when
r1 ≥ r2 ≥ r3, we have

√
r1r2 =

√
r2r3 +

√
r3r1. You can easily verify this

relation using figures 5.7 and 5.8.

In the next section we give the proof of more general result, using the
matrix algebra and the geometry of Minkowski space. But before doing it
we have to correct one inaccuracy in the previous exposition.
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Namely, we did not take into account the sign of the curvature which
may make the formula (5.1.3) incorrect. Indeed, let us check the equality
(5.1.3) in the case shown on Fig. 5.9 below.

r1=1

r
2
= 1

2
r

2
= 1

2

r3 = 1
3

Figure 5.9. “Violation” of Descartes equation

If we take c1 = 1, c2 = c3 = 2, c4 = 3, we get the wrong equality

64 = (1 + 2 + 2 + 3)2 = 2(1 + 4 + 4 + 9) = 36.

But if we put the value of c1 equal to −1, then we get the correct equality

36 = (−1 + 2 + 2 + 3)2 = 2(1 + 4 + 4 + 9) = 36.

Looking on the picture, we see that the circle of radius 1 is in a special
position: the other circles touch it from inside. We have already seen, that
in this case it is convenient to interpret it as a circle with negative radius
−1.

To make the exposition rigorous, we need either introduce an orientation
on our circles, or consider instead of circles the solid discs bounded by them.

The both possibilities are in fact equivalent. Indeed, any disc inherits
an orientation from the ambient plane or sphere. And the boundary of an
oriented disc has a canonical orientation. In our case it can be defined by a
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simple “left hand rule”: when we go along the circle in the positive direction,
the surrounded domain must remain on the left.

In particular, the outer circle on Fig.6.3 bounds the domain which is
complementary to the unit disc. So, we are forced to include the domains
of this sort in the consideration.

Also, it seems natural to complete the plane R2 by an infinite point ∞.
The new set R2 can be identified with two-dimensional sphere S2 using the
stereographic projection (see Info F). Under this identification the “general-
ized discs” go the ordinary discs on S2 which contain the North pole inside.
Those discs which contain the North pole as a boundary point, correspond
to half-planes in R2.

So, we have determined our main object of study. It is the set D of discs
on two-dimensional sphere S2. To each disc D ∈ D there corresponds an
oriented circle C = ∂D.

We can also identify S2 ' R2 with the extended complex plane C and
consider our discs and circles as subsets of C.

Let us say that two discs are tangent if they have exactly one common
point. In terms of oriented circles it means a negative tangency, because the
orientations of the two circles at the common point are opposite.

Now it is clear, why we excluded the configurations shown on Fig. 5.2:
they do not correspond to a configuration of four pairwise tangent discs.

Let now C be an oriented circle of (ordinary) radius r on C. We say that
C has the curvature c = r−1 if C bounds an ordinary disc, the curvature
c = −r−1 if it is the boundary of a complement to a disc, and the curvature
0 if our circle is actually a straight line.

In particular, the outer circle on Fig. 6.3 corresponds to the complement
to the open unit disc. Therefore, the curvature of the boundary is −1.

Remark 3. Let us look in more details on the signs of numbers {ci}1≤i≤4

which satisfy equation (5.1.3). Note first, that if the quadruple (c1, c2, c3, c4)
is a solution to (5.1.3), then so is (−c1, −c2, −c3, −c4). But these two so-
lutions are never realized simultaneously as quadruples of curvatures for
tangent discs.

Further, the equation (5.1.3) can be written in the form

(5.1.6) 2(c1 + c2)(c3 + c4) = (c1 − c2)2 + (c3 − c4)2.

We see that either c1 +c2 ≥ 0 and c3 +c4 ≥ 0, or c1 +c2 ≤ 0 and c3 +c4 ≤ 0.
Suppose that numeration is chosen so that c1 ≥ c2 ≥ c3 ≥ c4. Then in the
first case we have |c4| ≤ c3 ≤ c2 ≤ c1; in the second one c4 ≤ c3 ≤ c2 ≤ −|c1|.

Only in the first case our solution can be interpreted as a set of curvatures
of four pairwise tangent discs. So, only this case will be considered below.
Because of the note above, we do not loose any information about solutions
to (5.1.3).
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Thus, from now on we can assume that either

a) all numbers ci are positive, or

b) three numbers are positive, the forth is negative and by absolute value
smaller that others, or

c) three numbers are positive and the forth one is 0, or, finally,

d) two of ci are positive and equal each other while other two are zeros.

It reflects the evident geometric fact: among four pairwise tangent discs
at most two are unbounded.

♥

Info F. Conformal group and stereographic projection

F.1. In our exposition we consider the general n-dimensional case. But
all arguments and computations are practically the same in all dimensions.
So, the reader, not acquainted with the subject, can start with the case
n = 1.

Let Rn denote the set which arises from Rn by adding an infinite point
∞. There is a remarkable 1-1 correspondence between n-dimensional sphere
Sn and Rn. This correspondence is called stereographic projection. Here
we give its definition and list the main properties.

Let Rn+1 be an Euclidean space with coordinates (α0, α1, . . . , αn). The
unit sphere Sn ⊂ Rn+1 is given by the equation α2

0 + α2
1 + . . . α2

n = 1. The
point P = (1, 0, 0, . . . , 0) ∈ Sn we call the North pole.

Let Rn be another Euclidean space with coordinates (x1, x2, . . . , xn). It
is convenient to think of Rn as of subspace in Rn+1 consisting of points with
coordinates (0, x1, . . . , xn).

Define a map s from Sn\P to Rn by the formula:

(F.1) s(α) =
(

0,
α1

1− α0
,

α2

1− α0
, . . . ,

αn
1− α0

)
.

The inverse map has the form

(F.2) s−1(x) =
(
|x|2 − 1
|x|2 + 1

,
2x1

1 + |x|2
,

2x2

1 + |x|2
, . . . ,

2xn
1 + |x|2

)
where |x|2 = x2

1 + x2
2 + · · ·+ x2

n.

Exercise 24. Check that three points P, α = (α0, α1, . . . , αn) and
s(α) =

(
0, x1(α), x2(α), . . . , xn(α)

)
belong to one line in Rn+1.

So, our map s geometrically is a projection of Sn\P from the point P
to the coordinate plane Rn ∈ Rn+1 given by the equation α0 = 0.
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Both algebraic and geometric definition of s do not make sense at the
point P . We assume additionally that s(P ) = ∞ ∈ Rn. The so defined map
s is a bijection between Sn and Rn+1.

In conclusion of this Section we show that the stereographic projection
indeed sends discs to discs. In general, a disc D ∈ S2 is defined as an
intersection of S2 with a half-space given in coordinates α0, α1, . . . , αn by
the linear inequality

(F.3) p0α0 + p1α1 + · · ·+ pnαn + pn+1 ≤ 0.

Note, that the hyperplane p0α0 + p1α1 + · · ·+ pnαn+ pn+1 = 0 intersect
the sphere S2 along a non-trivial circle if and only if

(F.4) p2
n+1 − p2

0 − p2
1 − · · · − p2

n < 0.

Therefore, it is natural to consider vector p as an element of R1,n+1 and
denote the left hand side of F.4 by |p|2.

Since the multiplication of p by a positive constant does not change
the meaning of the inequality F.3, we can normalize p by the condition2

|p|2 = −1.
Expressing {αi} in terms of the coordinates {xj} of the point s(α), we

get the inequality defining s(D) in the form

p0(|x|2 − 1) + 2p1x1 + · · ·+ 2pnxn + pn+1(|x|2 + 1) ≤ 0.

It can be rewritten in the form

(F.5) a+ (~p, ~x) + c|~x|2 ≤ 0.

where a = pn+1−p0, c = pn+1+p0, ~p = (p1, . . . , pn) and ~x = (x1, . . . , xn).
Now we can use the equation |p|2 = ac − |~p|2 and the normalization

|p|2 = −1 to write our inequality as follows: It can be rewritten in the form

(F.6) c ·
∣∣x+

~p

c

∣∣2 ≤ c−1.

The last inequality for c > 0 describes a disc on Rn with the center − ~p
c and

the curvature c.
If c < 0, then F.6 describe the complement to a disc with the center − ~p

c

and radius −1
c . We agree to associate to this generalized disc the negative

curvature c.
Finally, if c = 0, then F.6 does not make sense and F.5 defines a half-

space (the initial disc D in this case contains the north pole as a boundary
point).

2Do not confuse p ∈ R1,n+1 with ~p ∈ Rn introduced below.
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F.2. There is a big group Confn (or Cn for short) of conformal maps
which acts on Sn and on R

n so that stereographic projection is a so-called
Cn-covariant map, i.e. the following diagram is commutative:3

(F.7)

Sn
s−−−−→ R

n

g·
y yg·
Sn −−−−→

s
R
n

where g· means the action of g ∈ Cn and s is the stereographic projection.
The group Cn can be defined in several ways. We give here three equiv-

alent definitions.

Geometric definition (for n > 1). We recall that a smooth map
g : Rn → Rn has at any point x ∈ Rn a derivative g′(x) which is a linear
operator g′(x) : Rn → Rn. We say that g is conformal if its derivative g′(x)
at any point x is a composition of rotation and dilation.

So, infinitesimally, conformal transformations preserve the form of fig-
ures. This explains the name “conformal”.

For n = 1 the group of conformal maps in this sense is too big (infinite
dimensional). Namely, it is the group of all smooth transformations of S1.

Note, that for n = 2 the group of all holomorphic (or, complex-analytic)
transformations of C is also infinite-dimensional. But for C the situation
is different: every conformal transformation of C is fractional-linear (see
below).

We now give another, group-theoretic, definition which for n > 1 is
equivalent to the geometric one, but defines a finite dimensional Lie group
in all dimensions.

Let En(R) be the group of all rigid motions of Rn, extended naturally
on R n so that the infinite point is fixed.

Let us call inversion, or else, reflection in the unit sphere, the map
Inv : R n → R n given by the formula

(F.8) Inv(x) =


x
|x|2 , if x 6= 0, ∞
∞, if x = 0
0, if x = ∞.

Group-theoretic definition. We define first the extended confor-
mal group Confn as the group generated by En(R) and Inv.

3We say that a diagram consisting of sets and maps is commutative, if for any path
composed from the arrows of the diagram the composition of corresponding maps depends
only on the start and the end points of the path. In the case in question it means that
s ◦ g = g ◦ s.



INFO F. CONFORMAL GROUP AND STEREOGRAPHIC PROJECTION 69

The group Confn consists of two connected components. The transfor-
mations from one component preserve the orientation of Rn. This compo-
nent contains En(R) and all products of type g1◦Inv◦g2◦Inv◦· · ·◦g2n◦Inv
with even number of involutions. It is itself a group and this is our confor-
mal group Confn

The other component contains Inv and all products of the form g1 ◦
Inv ◦ g2 ◦ Inv ◦ · · · ◦ g2n+1 ◦ Inv with odd number of involutions. These
transformations reverse the orientation of Rn. They are called sometimes
conformal transformations of the second kind.

Finally, the most working definition is the following, which we shall call
matrix definition.

Let R1,n+1 denote the real vector space with coordinates (x0, x1, . . . , xn+1)
endowed with the symmetric bilinear form B(x, y) = x0y0 − x1y1 − . . . −
xn+1yn+1. The group of linear transformations which preserve this form is
called pseudo-orthogonal group and is denoted by O(1, n+ 1; R). In the
chosen basis the elements of the group are given by block-matrices of the

form
(
a ~b t

~c D

)
where a is a real number, ~b t is a row (n + 1)-vector, ~c is a

column (n + 1)-vector and D is a (n + 1) × (n + 1) matrix, satisfying the
relations

(F.9) a2 = 1 + |~c |2, DtD = 1n+1 +~b~b t, Dt~c = ~ba

where 1n+1 is the unit matrix of order n+ 1.
From F.9 we see that a and D are invertible (check that D−1 = 1n+1 −

~b~b t

1+|b|2 ). So, the group O(1, n+ 1; R) splits into four parts according to the
signs of a and det D. Actually, these parts are connected components of the
group. More precisely, our group as a smooth manifold is diffeomorphic to
the product O(n, R)× Sn × R× Z2: to each quadruple (A, ~v, τ, ±1) there
correspond the element

(F.10) g = ±
( cosh τ ~vt · sinh τ
sinh τ ·A~v cosh τ ·A

)
∈ O(1, n+ 1; R)

and, conversely, any matrix from O(1, n+ 1; R) has this form.

Our group acts on the space R1,n+1, preserving the cone

C : x2
0 = x2

1 + · · ·+ x2
n+1.

It acts also on the projective space associated with R1,n+1. Since scalar
matrices act trivially, we have actually the action of the corresponding pro-
jective group PO(1, n+ 1; R) = O(1, n+ 1; R)/{±1} which is the quotient
of O(1, n + 1; R) over its center {±1n+2}. This group has two connected
components PO±(1, n+ 1; R) distinguished by the sign of det (a−1D).

The projectivization of the cone C (with the origin deleted) can be
identified with Sn via the coordinates αi = xi

x0
, 1 ≤ i ≤ n+ 1 and with R n

via coordinates wj = xj

x0−xn+1
, 1 ≤ j ≤ n.
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Conversely, the coordinate on the cone C can be restored up to propor-
tionality by equations:
(F.11)

x0 =

∑
j w

2
j + 1
2

, xj = wj for 1 ≤ j ≤ n, xn+1 =

∑
j w

2
j − 1
2

.

The following fact is well-known and we use it for the matrix definition of
conformal group.

Theorem F.1. The group PO(1, n+1; R) acting on Sn (or on Rn) co-
incides with Confn while its connected subgroup PO+(1, n+1; R) coincides
with Confn.

Exercise 25. The inversion Inv ∈ Confn in the last realization cor-
responds to some element of PO(1, n + 1; R), i.e. to a pair of matrices
±g ∈ O(1, n+ 1; R). Find these matrices.

Hint. Use F.11.

Answer.
g = diag (1, 1, . . . , 1, −1).

F.3. In the main text we shall consider in more details the case n = 2
and also the cases n = 3, n = 4. In all these cases the conformal group
Confn has additional properties which we discuss here.

Case n = 2. The group Conf2 is isomorphic to PO+(1, 3; R) and
also to the Möbius group PSL(2, C). The group Conf2 is isomorphic to
PO(1, 3; R) and also to the extended Möbius group. Recall that the Möbius
group acts on C by so-called fraction-linear (or Möbius) transformations

(F.12) w → αw + β

γ w + δ
where

(
α β
γ δ

)
∈ SL(2, C).

The extended Möbius group besides these transformations contains also
the complex conjugation, hence all transformation of the form

(F.13) w → αw + β

γ w + δ
where

(
α β
γ δ

)
∈ SL(2, C).

Among these transformations there are the so-called reflections s which
satisfy the equation s2 = 1 and for which the set of fixed points is a circle
or a straight line. We denote the set of fixed points by Ms and call it a
mirror. Conversely, there is a unique reflection with given mirror M ; we
denote it by sM .

If the circle M degenerates to a straight line l, the transformation sM is
an ordinary reflection in l. For a unit circle M0, centered at the origin, the
reflection sM0 coincides with the inversion Inv defined by (F.2.2). In general,
sM can be defined as g ◦ Inv ◦ g−1 where g ∈ Conf2 is any transformation
which sends C to M .
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Exercise 26. Show that all reflections form a single conjugacy class in
Conf2.

Hint. Show that Conf2 acts transitively on D.

Exercise 27. Show that the group Conf2 is generated by reflections.

Hint. Use the well-known fact that SL(2, C) is generated by elements

(F.14) g(t) =
(

1 t
0 1

)
, t ∈ C, and s =

(
0 1
−1 0

)
.

Exercise 28. Show that the conjugacy classes in Conf2 are precisely
the level sets I(g) = const for the function

(F.15) I(g) :=
(tr g)2

det g
− 4

with one exception: the set I(g) = 0 is the union of two classes: {e} and
the class of a Jordan block.

Exercise 29. Show that all involutions in Conf2 form two conjugacy
classes: the unit class and the class which contains a rotation of S2 on 180◦

around z-axis.

Exercise 30. Show that all involutions in PO−(1, 3; R) which are not
reflections, form a single conjugacy class with a representative acting as the
antipodal map on S2.

We quote two main properties of the group G = Conf2.

Proposition F.1. For every two triples of different points (z1, z2, z3)
and (w1, w2, w3) on C there exists a unique transformation g ∈ G such that
g(zi) = wi, i = 1, 2, 3.

Proof. First check it when w1 = 0, w2 = 1, w3 = ∞. The correspond-
ing transformation gz1,z2,z3 can be written explicitly:

(F.16) gz1,z2,z3(z) =
z − z1
z − z3

:
z2 − z1
z2 − z3

The transformation g which we want is g = g−1
w1,w2,w3

◦ gz1,z2,z3 . �

Proposition F.2. Any circle or a straight line goes under transforma-
tions g ∈ G to a circle or a straight line. (Or else: any disc goes to a
disc).

To prove this statement we use the following

Lemma F.1. Let a, c be two real numbers and b be a complex number
such that ac− |b|2 < 0. Then the inequality

(F.17) a+ b̄w + bw̄ + cww̄ ≤ 0

describes a disc D ∈ D. More precisely, it is
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a) a closed disc with the radius r = c−1 and the center − b
c , when c > 0;

b) a complement of an open disc with the radius r = −c−1 and the center
− b
c , when c < 0;

c) a closed half-plane when c = 0.
Moreover, any disc D ∈ D can be given by an inequality of the form

(F.17).

Proof. It is just a particular case of (F.15). �

The Proposition F.1 follows from Lemma F.1 because the inequality
(F.17) goes to the inequality of the same kind under transformations (F.14),
hence, under any fractional-linear transformation.

Remark 4. Note that the set Conf2\Conf2 of conformal transforma-
tions of the second kind does not form a group. It is a two-sided coset
in Conf2 with respect to Conf2. It is worth to know that it possesses both
properties listed in Propositions 2 and 3: it acts simply transitively on triples
of distinct points in C and preserve circles and discs.

♥
Case n = 3. The group Conf3 = PSO0(1, 4; R) is isomorphic to the

group PU(1, 1; H) which is the quotient of U(1, 1; H) over its center {±12}.

The group U(1, 1; H) consists of quaternionic matrices g =
(
a b
c d

)
satisfy-

ing
|a|2 = |d|2 = 1 + |b|2 = 1 + |c|2, āb = c̄d.

Put a = u cosh t, d = v cosh t, where t ∈ R and u, v are quaternions of unit
norm. Then there exists a quaternion of unit norm w such that b = w sinh t
and c = w̄uv̄ sinh t.

If g is not diagonal, the parameters u, v, w and t are defined uniquely.
For diagonal matrices we have t = 0 and the value of w does not matter.
So, our group is a union of S3 × S3 × S3 × (R\{0}) and S3 × S3.

The group PU(1, 1; H) acts on the unit sphere S3 by the formula: u 7→
(au+ b)(cu+ d)−1

Case n = 4. The group Conf4 = PO+(1, 5; R) is isomorphic to an-
other quaternionic group PGL(2, H) = GL(2, H)/R× · 12 which acts on a
quaternionic projective space P1(H) ' H ' R4 ' S4. The explicit formula
is again: q 7→ (aq + b)(cq + d)−1.

Elaborate!



CHAPTER 6

Definition of Apollonian gasket

6.1. Basic facts

Consider three pairwise tangent discs D1, D2, D3 on S2. If we delete
the interior of these discs from S2, there remain two curvilinear triangles.
Let us inscribe a disc of maximal possible size in each triangle and delete the
interior of it. The remaining set consists of 6 triangles. Again, we inscribe a
maximal possible disc in each triangle and delete the interior of these discs.
We get 18 triangles.

Continuing this procedure, we delete from S2 the countable set of open
discs. The remaining closed set A is of fractal nature and is called Apol-
lonian gasket in honor of the ancient Greek mathematician Apollonius of
Perga lived in III-II century BC. Of course, we can replace S2 by R2 or C
and consider the corresponding picture on the extended plane.

According to general practice, we use the term “Apollonian gasket” also
for the collection of (open, or closed) discs and the collection of circles which
are involved into the construction.

Let us discuss different forms of Apollonian gasket. At first sight, the
picture in question looks different for different choices of initial three discs.
Nevertheless, all these pictures are in a sense equivalent.

To explain it, consider the group Conf2 of conformal transformations of
C given by the formula (F.3.1).

Exercise 31. Show that any two triples of pairwise tangent circles can
be transformed one into another by a conformal transformation.

Hint. Show that a triple of pairwise tangent circles is uniquely defined
by the triple of tangent points. Then apply the proposition F.1.

So, up to conformal transformation, there is only one class of Apollonian
gaskets

Theorem 6.1. An Apollonian gasket A is determined by any triple of
pairwise tangent discs in it. (In other words, if two Apollonian gaskets have
a common triple of pairwise tangent discs, then they coincide).

The statement looks rather evident and I encourage reader’s endeavors to
find their own proof. The proof given below based on the special numeration
of all discs in a given gasket.

73
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The numeration in question is suggested by the construction of a gasket.
Namely, call the initial three discs D1, D2, D3 discs of level −1. If we
delete from S2 the union of their interiors, the remaining set is a union of
two closed curvilinear triangles. Call it triangles of level 0 and denote by
T±. Next, we inscribe in each of these triangles a maximal possible disc, call
it disc of zero level and denote by D±.

After deleting from T± the interior of D±, it becomes a union of three
triangles. We call it triangles of first level and denote by T±i1 , i1 =
1, 2, 3. In each of them we inscribe a maximal possible disc, denoted by
D±i1 , call it a disc of first level and continue this procedure.

On the n-th step we consider a triangle T±i1i2...in−1 , inscribe a maximal
possible disc D±i1i2...in−1 and delete its interior. The remaining set is a union
of three triangles which we label by T±i1i2...in−1in , in = 1, 2, 3.

We observe, that two different disks of the same level n ≥ 0 are never
tangent to each other.

Thus, we have labelled all triangles (or discs) of level n ≥ 0 by sequences
of the form ±i1i2 . . . in where ik take values 1, 2, 3 (see Fig 6.1).

Actually, our numeration scheme is not yet completely determined. We
have not precised how we numerate three triangles of n-th level which are
contained in a given triangle of n − 1-st level. There are 3 triangles and 3
possible values of in, so there are 6 possible numerations and so far any of
them can be used for our purposes.

Lemma 6.1. Let D, D′, D′′, D′′′ are four pairwise tangent discs on S2.
Then, if three of them belong to some gasket A, so does the fourth.

Proof. Assume that D, D′, D′′ belong to A and have levels l, m, n
respectively. We can assume that l ≤ m ≤ n. To simplify the arguments
and make notations uniform, we consider first the case 0 < l < m < n.

In this case we can suppose that D = D±i1i2...il , D
′ = D±j1j2...jm , and

D′′ = D±k1k2...kn . By the construction, D′′ is a disc inscribed in a tri-
angle T±k1k2...kn which is bounded by arcs of three discs. One of them
is D±k1k2...kn−1 and two other discs have levels, say l′ and m′, such that
l′ ≤ m′ < n. (Equality is possible only if l′ = m′ = 0. )

From the construction of A it is also clear that all discs tangent to
D′′ except three mentioned above, have level > n. But we know that D
and D′ are tangent to D′′. It follows that l′ = l, m′ = m and our three
discs are exactly D, D′ and Dk1k2...kn−1 . Therefore, the disc Dk1k2...kn−1 is
tangent to D, D′, D′′. Another disc, which is also tangent to D, D′, D′′,
is Dk1k2...knkn+1 for an appropriate choice of kn+1. We see, that both discs
tangent to D, D′, D′′ belong to A.

In the cases 0 = l < m < n or 0 = l = m < n the proof is completely
analogous. For example, the disc, tangent to D2D3 and D+1, must be either
D+ or D+11. Hence, it belongs to A.
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D(2) D(3)

D+

D−

D+3 D+2

D−3 D−2

Figure 6.1. Numeration of discs in the rectangular gasket

Finally, if l = m = n = 0, then D, D′, D′′ are the three initial discs
D1, D2, D3 and D′′′ coincides with D+ or D−, hence, belongs to A. �

Proof of the theorem. Let two gaskets A and Ã have a common
triple of pairwise tangent discs D, D′, D′′. Assume that these disks have
level l ≤ m ≤ n in A. We want to show that A ⊂ Ã using the induction on
n.

For n = 0 our three discs are just the initial discs D1, D2, D3 for A.
According to lemma 2, the discs D± belong to Ã because so do D1, D2, D3.

Use again the induction and suppose that we already know that all discs
of level ≤ n − 1 in A belong also to Ã. Then any disc of level n, being
tangent to three discs of level ≤ n− 1, also belongs to Ã.

Return to the first induction. Assume that we have proved that if the
common discs have level < n in A, then A ⊂ Ã.
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Figure 6.2. Band gasket

Let D, D′, D′′ are common discs of levels k ≤ l < n respectively. From
the proof of Lemma 6.1 we know that among discs, tangent to D, D′, D′′,
there is one which has level n−1. Call it D′′′. Then D, D′, D′′′ is a common
triple of level ≤ n− 1 and we are done.

Thus, A ⊂ Ã. But in the initial data A and Ã play symmetric roles.
Therefore, Ã ⊂ A and Ã = A. �

Lemma 6.2. The triangle T±i1i2...in is contained in T±j1j2...jm iff m < n,
the signs coincide and ik = jk for 1 ≤ k ≤ m.

Proof. Note, that triangles of the same level can have not more than
3 common points. So, our first triangle is contained only in one of triangles
of level m. But it is contained in T±i1i2...im and in T±j1j2...jm . So, we come
to the statement of the lemma.

�

There are three most symmetric choices for an initial triple of pairwise
tangent circles. The corresponding Apollonian gaskets are shown on Fig.
7, 8 a), 8 b). For future use, we write inside each circle its curvature.

All three gaskets are stereographic projections of a most symmetric gas-
ket on S2 generated by four pairwise tangent discs of the same size. See Fig.
6.5.

There are some other interesting realizations of Apollonian gasket from
which we want to mention two. Their study uses some facts about so-called
Fibonacci numbers.

Info G. Fibonacci numbers

The famous Italian mathematician Leonardo from Pisa, often called by
a nickname Fibonacci, lived long ago, in 13th century. Among other things
he considered the sequence of integers {Φk} satisfying the recurrence

(G.1) Φk+1 = Φk + Φk−1

and the initial condition Φ1 = Φ2 = 1. It looks as follows:
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Figure 6.3. Rectangular gasket

Figure 6.4. Triangular gasket

n: -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Φn: 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13

Later these numbers appeared in many algebraic and combinatorial
problems and got the name Fibonacci numbers. We briefly describe the
main facts related to this and similar sequences.
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Figure 6.5. Spherical gasket

Consider the set V of all two-sided real sequences {vn}n∈Z satisfying the
recurrent relation of type (G.1), i.e. vn+1 = vn + vn−1. It is a real vector
space where the operations of addition and multiplication by a real number
are defined termwise.

The dimension of this space is 2, because any sequence in question is
completely determined by two terms v0, v1 and these terms can be chosen
arbitrarily. We can consider (v0, v1) as coordinates in V . So, the series of
Fibonacci numbers is a vector in V with coordinates (0, 1). Another known
sequence of Lucas numbers has coordinates (2, 1).

Let T denote the transformation sending the sequence {vn} to the se-
quence {vn+1} (which also satisfies the same recurrent relation!). It is a
linear operator in V . The spectrum of this operator consists of numbers λ,
satisfying λ2 = λ+ 1. There are two such numbers: φ = 1+

√
5

2 ≈ 1.618 and
−φ−1 = 1−

√
5

2 = 1 − φ. The first of it has a special name golden ratio
because the rectangle with sides proportional to φ : 1 considered as the most
pleasant for human eyes.

For the future use we introduce also the quantities c = φ2 = 3+
√

5
2 = φ+1

and θ =
√
φ =

√
1+
√

5
2 .

The corresponding eigenvectors of T are geometric progressions v′n = φn

and v′′n = (−φ)−n. Since they are linearly independent, any element of V is
a linear combination of these eigenvectors.

In particular, the n-th Fibonacci number can be written as

Φn = α · φn + β · (−φ−1)n for appropriate α and β.

Using the normalization Φ1 = Φ2 = 1, we get α = −β = 1
φ+φ−1 = 1√

5
.

Thus,
(G.2)

Φ2k =
φ2k − φ−2k

√
5

=
ck − c−k√

5
; Φ2k+1 =

φ2k+1 + φ−2k−1

√
5

=
ck+

1
2 + c−k−

1
2

√
5

.
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Figure 6.6. Quadruples q1 and c · q1

Conversely,
(G.3)

φn = (−1)n
Φn+1 + Φn−1 − Φn

√
5

2
; cn =

Φ2n+1 + Φ2n−1 + Φ2n

√
5

2
.

Note also that Φ−2n = −Φ2n; Φ−2n−1 = Φ2n+1.
It follows that

(G.4) Φn ≈
φn√

5
and lim

n→∞

Φn+1

Φn
= φ.

The Lucas number are given by a more simple expression: Ln = φn+(−φ)−n.
They look as follows

n: -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Ln: 29 18 -11 7 -4 3 -1 2 1 3 4 7 11 18 29 .

♦

6.2. Examples of non-bounded Apollonian tiling

Consider a quadruple q1 of pairwise tangent discs, one of which is a
lower half-plane and other three have the boundary curvatures which form
a geometric progression. Then the four curvatures can be written as 0 <
x−1 < 1 < x. The number x must satisfy the equation

(6.2.1) (x+ 1 + x−1)2 = 2(x2 + 1 + x−2), or x2− 2(x+ x−1) + x−2 = 1.

Putting y := x + x−1, we obtain y2 − 2y − 3 = 0. So, y is 1 or 3. Only
the second value of y gives the real value of x. We have x = 3+

√
5

2 = 2
3−
√

5
which is the number c which had been introduced in Info G.

The gasket A1 generated by q1 has the following property. If we dilate
it in ratio c, it goes to its mirror reflection in a vertical line. And if we
dilate it in ratio c2, it goes to one of its horizontal translation. Choosing an
appropriate position of A1, we can arrange, that the mirror in question is an
imaginary axis and the translation is an identity – see Fig 11. It means that
A1 is invariant under transformation w 7→ −cw̄. Indeed, A1 and −c · A1

have a common triple of discs.

The gasket A1 contains, in particular, a series of discs Dk with boundary
curvatures ck, k ∈ Z. These discs can be given by inequalities

(6.2.2)
∣∣ckw + (−1)k 2√

5
+ i
∣∣ ≤ 1
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c−2

c−1

1
c

c2

Figure 6.7. The gasket A1

and the corresponding normalized Hermitian matrices are

Mk =

(
4
5c
−k (−1)k 2√

5
− i

(−1)k 2√
5

+ i ck

)
=

(
(−φ)−k 0

0 φk

)
·

(
4
5

2√
5
− i(−1)k

2√
5

+ i(−1)k 1

)
·
(

(−φ)k 0
0 φk

)(6.2.3)

where φ :=
√
c ≈ 1.618034.. is the famous “golden ratio”.

Each of the relations 6.2.2 and 6.2.3 implies that the dilation w → −c · w̄
send the disc Dn to Dn−1, hence, preserve the gasket A1.

Exercise 32. Find a matrix g ∈ SL(2, C) which transforms the gasket
A1 into the band gasket.

Hint. Find the transformation g which preserves real line and sends the
disc D0 to the parallel line. Show that the images g ·Dk will be situated as
on Fig. ??.

Another interesting gasketA2 with unbounded curvatures can be defined
as follows.

Consider a quadruple q2 whose disks have boundary curvatures forming
a geometric progression (1, ρ, ρ2, ρ3) where ρ > 1. Then the Descartes
equation is:

(6.2.4) (1 + ρ+ ρ2 + ρ3)2 = 2(1 + ρ2 + ρ4 + ρ6).



6.2. EXAMPLES OF NON-BOUNDED APOLLONIAN TILING 81
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Figure 6.8. Gaskets A1 and c · A1

Simplifying this equation, write it in the form

0 = 1−2ρ−ρ2−4ρ3−ρ4−2ρ5+ρ6, or 4+(ρ+ρ−1)+2(ρ2+ρ−2) = (ρ3+ρ−3).

Introducing u = ρ+ ρ−1, we get

4 + u+ 2(u2 − 2) = (u3 − 3u), or u3 − 2u2 − 4u = 0.

This equation has three solutions: u = 0, 1 −
√

5, 1 +
√

5. Only the last
solution give the real value for ρ and we get
(6.2.5)
ρ = φ+

√
φ = θ2 + θ ≈ 2.890054...; ρ−1 = φ−

√
φ = θ2 − θ ≈ 0.346014....

The corresponding discs Dk form a spiral, convergent to certain point a
when k → −∞. If we take a for the origin, our spiral will be invariant under
multiplication by a complex number λ with |λ| = ρ. Denote the argument
of λ by 2α. Then the corresponding matrices Mk must have the form

(6.2.6) Mk =
(

aρk be2ikα

b̄e−2ikα cρ−k

)
, ac− |b|2 = −1.

The condition that discs Dk and Dk+m are tangent is det(Mk+Mk+m) = 0.
This condition actually does not depend on k and leads to the equation

|b|2

ac
=

ρm + ρ−m + 2
eimα + e−imα + 2

.

Put s = 1
2 log ρ. Then the right hand side of the equation takes the form

1 + cosh 2ms
1 + cos 2mα

=
(

cosh ms
cos mα

)2

.

We know that D0 is tangent to Dm for m = 1, 2, 3. So, we have

(6.2.7)
|b|√
ac

=
cosh s
| cos α|

=
cosh 2s
| cos 2α|

=
cosh 3s
| cos 3α|

.
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Since cosh 3s = cosh s (2 cosh 2s − 1) and cos 3α = cosα (2 cos 2α − 1),
we conclude, comparing the second and last terms in (6.2.7), that 2 cosh 2s−
1 = |2 cos 2α − 1|.

This can happen only if 2 cos 2α−1 < 0. Therefore, we get 2 cosh 2s−1 =
1− 2 cos 2α, or cosh 2s = 1− cos 2α, which is possible only if cos 2α ≤ 0.

Using the relation cosh 2s = 1 − cos 2α, we get, comparing the second
and third terms,

cosh s = ±cosα · (1− cos 2α)
cos 2α

.

Now, the relation 2 cosh2 s = cosh 2s+ 1 gives us the equation:

2
(

cosα · (1− cos 2α)
cos 2α

)2

= 2− cos 2α.

Denote cos 2α by x and write the equation in an algebraic form:

(x+ 1)(1− x)2

x2
= 2−x, or (x+1)(1−x)2 = 2x2−x3, or 2x3−3x2−x+1 = 0.

It has a solution x = 1/2 and this allows us to rewrite it in the simple form
(2x−1)(x2−x−1) = 0. So, the other two solutions are φ and −φ−1 = 1−φ.
Only one of these three solutions is negative: x = −φ−1.

We conclude that cos 2α = −φ−1, cosh 2s = φ. Hence, ρ + ρ−1 = 2φ
and ρ = φ+

√
φ2 − 1 = θ2 + θ. Also, we get |b|√

ac
= φ2, therefore

(6.2.8) |b|2 =
φ2

√
5
, ac =

φ−2

√
5
.

It follows that we know matrices Mk up to complex conjugation and
conjugation by a diagonal matrix. Geometrically, it means that we know
the gasket A2 up to rotation, dilation and reflection in a straight line. In
particular, we can put

(6.2.9) Mk =
1
4
√

5

(
φ−1 · ρk φ · e2ikα
φ · e2ikα φ−1 · ρ−k

)
so that

(6.2.10) D0 =
{
w

∣∣∣∣ ∣∣ w + 1 +
1√
5

∣∣≤
√

1 + 2
√

5
5

}
.

Further, let us compute the number λ which is determined up to complex
conjugation. We have

2 sin2 α = 1− cos 2α = φ and 2 cos2 α = 1 + cos 2α = 1− φ−1 = φ−2.

Therefore, sin2 α = φ−1 and sin 2α = ±θ−1. So, we have e2iα = cos 2α +
i sin 2α = −φ−1 ± iθ−1. Finally,

(6.2.11) λ = ρe2iα = −(1 + θ−1)(1∓ iθ).

The corresponding picture is shown on Fig. 6.9.
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λ−1

1 λ

λ2

Figure 6.9. The gasket A2

6.3. Two interpretations of the set D

Let R1,3 be the four-dimensional real vector space with coordinates
t, x, y, z and with the indefinite scalar product

(6.3.1) (p1, p2) = t1t2 − x1x2 − y1y2 − z1z2

The space R1,3 is called the Minkowski space and is the basic object in
the Special Relativity Theory. The scalar square |p|2 = (p, p) of a vector
p ∈ R1,3 can be positive, zero or negative. Correspondingly, the vector p
is called time-like, light-like and space-like respectively. The time-like
vectors are of two kind: the future vectors with t > 0 and past vectors with
t < 0.

The physical meaning of p is an event which take place at the moment
t of time in the point (x, y, z) ∈ R3.

Physicists call the whole Lorentz group L the group of all linear
transformations of R1,3 which preserve the scalar product (1.4.1). It splits
into four connected components and the component containing the unit is
called proper Lorentz group L0. In mathematical papers these groups
are denoted by O(1, 3) and SO+(1, 3) respectively.

The Relativity Principle claims that all physical laws are invariant
under the proper Lorentz group.

Algebraically, elements g ∈ O(1, 3) are given by 4× 4 real matrices |gi,j |
whose rows (columns) are pairwise orthogonal vectors from R1,3, such that
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the first row (first column) has the scalar square 1, while all other rows
(columns) have the scalar square −1. 1

We recall in slightly different notations some facts explained in Info F.
An element g ∈ O(1, 3) belongs to the proper Lorentz group, if two

additional conditions are satisfied: det g = 1 and g0,0 > 0.

Now we show how to use Minkowski space to label the discs on a unit 2-
sphere. A disc on S2 can be defined as an intersection of S2 with a half-space
Hu,τ given by
(6.3.2)
Hu,τ = {v ∈ R3

∣∣ (u, v) + τ ≤ 0} where u ∈ S2 and τ ∈ (−1, 1).

Instead of the pair (u, τ) ∈ S2 × (−1, 1) we can use the one space-like
vector p = (t, x, y, z) ∈ R1,3 given by

p =
1√

1 + τ2
· (τ, u).

Then the half-space in question takes the form

(6.3.3) Hp = {v ∈ R3
∣∣ xv1 + yv2 + zv3 + t ≤ 0}.

It is clear that Hp1 = Hp2 iff p1 = c · p2 with c > 0. Therefore, we can and
will normalize p by the condition |p|2 = −1.

So, the space D of discs on S2 is identified with the set P−1 of all
space-like vectors p ∈ R1,3 with |p|2 = −1. It is well-known that P−1 is a
one-sheeted hyperboloid in R4 and that the group L0 ' SO+(1, 3; R) acts
transitively on it. The stabilizer of the point (0, 0, 0, 1) is isomorphic to the
group SO+(1, 2; R) which is naturally embedded in L0.

We get the first interpretation of D as an homogeneous manifold.

Exercise 33. Show that the 3-dimensional hyperboloid in R1,3 defined
by the equation |p|2 = −1, is diffeomorphic to S2 × R.

Hint. Use the parameters u, τ introduced above.

Our next interpretation of the space D uses the complex matrix theory.
We start with inequality (3.7.61.2.5) and collect the coefficients in the left

hand side into a 2×2 matrixM =
(
a b
b̄ c

)
. Recall that we imposed on a, b, c

the condition ac− |b|2 < 0. So, M is an Hermitian matrix with det M < 0.
Here again we can and will normalize M by the condition det M = −1.

Thus, the set D is identified with the collection H−1 of all Hermitian
2× 2 matrices M with det M = −1.

1Compare with the properties of the usual orthogonal matrices: all rows (columns)
have length 1 and are orthogonal to each other.
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Exercise 34. Show that the relation between two last interpretations
is as follows: to a vector p = (t, x, y, z) ∈ R1,3 there corresponds the matrix

M =
(
a b
b̄ c

)
with

(6.3.4) a = t− z, b = x+ iy, c = t+ z.

Hint. Compare (F.5) and (F.17).

Now we want to describe D in the second interpretation as an homoge-
neous space.

We have already seen the action of the group G = PSL(2, C) on C by
fractional-linear transformations. Moreover, by Proposition 3, G2 acts on
the set D of all discs on C.

On the other hand, the group SL(2,C) acts on the set H of Hermitian
2× 2 matrices by the rule:

(6.3.5) g : M 7→ gMg∗

and this action preserves the set H−1 of matrices with determinant −1.
(Actually, this is a G-action, since the center C of SL(2,C) acts trivially.)

Theorem 6.2. There exists a homomorphism π : SL(2, C) → L0 '
SO0(1, 3; R), such that the following diagram is commutative:

G × D −−−−→ D

p

x x‖ x‖
SL(2, C) × H−1 −−−−→ H−1

π

y y‖ y‖
L0 × P−1 −−−−→ P−1

Where p is the natural projection of SL(2, C) to PSL(2, C) ' G and hori-
zontal arrows denote the actions.

We leave the verification to the reader but give here the explicit formula
for the homomorphism π.

Exercise 35. Show that the homomorphism π has the form

π

(
a b
c d

)
=


|a|2+|b|2+|c|2+|d|2

2 Re(ab̄+ cd̄) Im(āb+ c̄d) |b|2−|a|2−|c|2+|d|2
2

Re(ac̄+ bd̄) Re(ad̄+ bc̄) Im(ād− b̄c) Re(bd̄− ac̄)
Im(ac̄+ bd̄) Im(ad̄+ bc̄) Re(ād− b̄c) Im(bd̄− ac̄)

|c|2−|a|2−|b|2+|d|2
2 Re(c̄d− āb) Im(c̄d− āb) |a|2−|b|2−|c|2+|d|2

2

 .

Remark 5. The inverse map of SO+(1, 3; R) → PSL(2, C) is well-
defined but its lifting to SL(2, C) is defined only up to sign. It is the
so-called spinor representation of SO+(1, 3; R).
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In particular, all products of the form 2aā, 2ab̄, ... etc are well-defined
and given in the table:

ā b̄ c̄ d̄
2a g00−g03−g30+g33 g01−g31+i(g32−g02) g10−g13+i(g20−g23) g11+g22+i(g21−g12)
2b g01−g31+i(g02−g32) g00+g03−g30−g33 g11−g22+i(g12+g21) g10+g13+i(g20+g23)
2c g10−g13+i(g23−g20) g11−g22−i(g12+g21) g00−g03+g30−g33 g01+g31−i(g02+g32)
2d g11+g22+i(g12−g21) g10+g13−i(g20+g23) g01+g31+i(g02+g32) g00+g03+g30+g33

♥

Exercise 36. Describe the image under π of the following subgroups of
G:

a) PGL(2, R); b) PSU(2, C); c) PSU(1, 1; C).

Hint: Use the fact that the subgroup in question are stabilizers of some
geometric objects.

Answers: a) π
(
PGL(2, R)

)
= Stab (0, 0, 1, 0) ' SO+(1, 2; R);

b) π
(
PSU(2, C)

)
= Stab (1, 0, 0, 0) ' SO(3, R);

c) π
(
PSU(1, 1; C)

)
= Stab (0, 0, 0, 1) ' SO+(1, 2; R).

An interesting problem is to compare the image under π of the subgroup
SL(2, Z + iZ) with the subgroup SO+(1, 3; Z).

6.4. Generalized Descartes theorem

Let Di, 1 ≤ i ≤ 4, be four pairwise tangent discs. Denote by pi, (resp.
Mi) the corresponding space-like vectors with |pi|2 = −1 (resp. the Hermit-
ian matrices with det Mi = −1).

Lemma 6.3. The discs D1 and D2 are tangent iff the following equivalent
conditions are satisfied:

a) p1+p2 is a future light vector; b) (p1, p2) = 1 and p1+p2 has
positive t-coordinate; c) det (M1 +M2) = 0 and tr (M1 +M2) > 0.

Proof. First, we show that the oriented circles Ci = ∂Di, i = 1, 2,
are negatively (resp. positively) tangent iff |p1 ± p2|2 = 0, or, equivalently,
det(M1 ±M2) = 0.

Using the appropriate Möbius transformation, we can assume that the
first circle is the real line with a standard orientation. The corresponding

vector and matrix are p1 = (0, 0, −1, 0) and M1 =
(

0 −i
i 0

)
.

Let C2 be an oriented circle tangent to C1. Denote the tangent point
by a. Then the transformation w 7→ c

a−w for a real c preserves C1. For an
appropriate c it sends C2 to a horizontal line 2i+R with certain orientation.
The corresponding vector and matrix are p2 = ±(1, 0, −1, 1) and M2 =

±
(

2 −i
i 0

)
where the plus sign corresponds to the standard orientation and

the minus sign to the opposite one. We see, that the conditions above are
satisfied. Conversely, if these conditions are satisfied, we can make a Möbius
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transformation, such that vectors p1 and p2 take the form above. Then the
corresponding circles are tangent.

The proof of the Lemma follows the same scheme. Note only that for
light vectors the sign of the t-coordinates is preserved by G and so is the
sign of the trace of M when det M = 0.

�

Come back to the theorem. Consider the the Gram matrix of scalar
products for pi. According to Lemma 6.3, it looks as follows:

(6.4.1) Gij := (pi, pj) = 1− 2δij .

It is well-known that the determinant of the Gram matrix of a system of
n vectors in Rn equals to the square of the determinant composed from
coordinates of these vectors. The same is true for pseudo-Euclidean spaces,
e.g. for R1,3.

Since G2 = 4 · 1, we have det G = 16. It follows that vectors pi are
linearly independent, hence, form a basis in R1,3.

For any vector v ∈ R1,3 we define its covariant coordinates vi and con-
travariant coordinates vj with respect to the basis {pi} as follows:

(6.4.2) vi = (v, pi); v =
4∑
j=1

vj · pj .

Let us find the relation between these coordinates. From (6.4.1) and (6.4.2)
we have

(6.4.3) vi =

 4∑
j=1

vj · pj , pi

 =
4∑
j=1

Gijv
j =

4∑
j=1

vj − 2vi.

Taking the sum over i we get
∑4

j=1 vi = 4
∑4

j=1 v
j − 2

∑4
j=1 v

j = 2
∑4

j=1 v
j

and, finally

(6.4.4) vj =
1
2

4∑
j=1

vi −
1
2
vj .

From (6.4.3) we also derive the expression for |v|2 in term of coordinates:

(6.4.5) |v|2 =

∑
j

vj

2

− 2
∑
j

(vj)2 =
1
4

(∑
i

vi

)2

− 1
2

∑
i

v2
i .

It follows that for any light vector v we have

(6.4.6)

(∑
i

vi

)2

− 2
∑
i

v2
i = 0.

Put, in particular, v = (1, 0, 0, −1). Then vi = (v, pi) = ti + zi = ci and
(6.4.6) gives exactly the statement of Descartes theorem.
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Actually the same approach allows to prove more.

Theorem 6.3. (Generalized Descartes Theorem) The matrices Mi sat-
isfy the relation

(6.4.7)

(∑
i

Mi

)2

− 2
∑
i

M2
i = −8 · 1.

Proof. Introduce an inner product in the space of 2 × 2 Hermitian
matrices, which correspond to the quadratic form Q(M) = det M . The
explicit formula is

(6.4.8) (M1, M2) =
det (M1 +M2)− det M1 − det M2

2
.

In particular, we have (M, 1) = 1
2trM .

Recall also the Cayley identity which for 2× 2 matrices has the form

(6.4.9) M2 = M · trM − det M · 1.
Let now M1, M2, M3, M4 be four Hermitian matrices, corresponding to

four pairwise tangent discs and normalized by the condition det Mi = −1.
Then (6.4.9) takes the form

(6.4.10) M2
i = Mi · trMi + 1.

Introduce the notations

Σ1 :=
i=4∑
i=1

Mi, Σ2 :=
i=4∑
i=1

M2
i .

We have seen above that in this case (Mi, Mj) = 1 − 2δij . In particular,
it implies that (Σ1, Mi) = 2 and (Σ1, Σ1) = 8. Further, taking the inner
product of both sides of (1.5.10) with Mj and making a summation over i,
we obtain

(6.4.11) (Σ2, Mj) = trΣ1.

On the other hand, we have Σ2
1 = Σ1 · trΣ1 − 8 · 1. Taking inner product

with Mj , we get

(6.4.12) (Σ2
1, Mj) = 2trΣ14trMj .

Subtracting from (6.4.12) twice (6.4.11), we obtain finally

(Σ2
1 − 2Σ2, Mj) = −8(1, Mj), or (Σ2

1 − 2Σ2 + 8 · 1, Mj) = 0.

Since Mi form a basis in the space of Hermitian matrices, we get the desired
relation (6.4.7). �

The relation (6.4.7) can be considered as the matrix form of the Descartes
theorem. It gives us the information not only about radii of tangent discs
but also about their configuration.

We mention the following corollary which is useful in computations.



6.5. INTEGRAL SOLUTIONS TO DESCARTES EQUATION 89
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Figure 6.10. Quadratic sequences of curvatures

Theorem 6.4. Let D+ and D− be two tangent discs and let M+, M−
be corresponding matrices. Suppose, the sequence of discs {Dk}, k ∈ Z, has
the following property: any Dk is tangent to D± and to Dk±1.

Then the corresponding sequence of matrices {Mk}, k ∈ Z, is quadratic
in the parameter k:
(6.4.13)

Mk = A ·k2 +B ·k+C where A = M+ +M−, B =
M1 −M−1

2
, C = M0.

The illustration of this theorem you can see in pictures on Fig. 6.10 and
7.4.

6.5. Integral solutions to Descartes equation

Here we consider the arithmetic properties of the set of solutions to
Descartes equation (5.1.3). Make the following change of variables:

t =
c0 + c1 + c2 + c3

2
, x =

c0 + c1 − c2 − c3
2

,

y =
c0 − c1 + c2 − c3

2
, z =

c0 − c1 − c2 + c3
2

.
(6.5.1)

Then we have

t2 − x2 − y2 − z2 =
(c0 + c1 + c2 + c3)2

2
− (c20 + c21 + c22 + c23)

and the equation (5.1.3) becomes

(6.5.2) t2 − x2 − y2 − z2 = 0.

In other words, the solutions to (5.1.3) correspond to light vectors in Minsk
space.

Lemma 6.4. The integral solutions to (5.1.3) correspond to integral light
vectors in R1,3 (i.e. light vectors with integral coordinates).
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Proof. From (5.1.3) it is clear that the sums c0±c1±c2±c3 are always
even. So, to any integral solution to (5.1.3) corresponds to a light vector p
with integral coordinates. Conversely, from (6.5.2) it follows that the sum
t± x± y ± z is always even. Therefore, from the equations

c0 =
t+ x+ y + z

2
, c1 =

t+ x− y − z

2
,

c2 =
t− x+ y − z

2
, c3 =

t− x− y + z

2
we deduce that any integral light vector corresponds to an integral solution
to (5.1.3). �

Thus, we come to the

Problem 6. Describe the set of integral points on the light cone in R1,3.

The solution for the analogous problem for rational points is well-known.
To any rational point (t, x, y, z) of the light cone there corresponds a ra-
tional point

(
x
t ,

y
t ,

z
t

)
of S2. The stereographic projection sends the point

(xt ,
y
t ,

z
t ) ∈ S

2 to a point x+iy
t−z ∈ P 1(Q[i]).

Conversely, any (r + is) ∈ P 1(Q[i]) comes from a rational point(
2r

r2 + s2 + 1
,

2s
r2 + s2 + 1

,
r2 + s2 − 1
r2 + s2 + 1

)
∈ S2.

Putting r = k
n , s = m

n , we see that any integral vector on the light cone in
R1,3 is proportional (but not necessarily equal) to the vector

(6.5.3) t = k2 +m2 + n2, x = 2kn, y = 2mn, z = k2 +m2 − n2

with integer k, m, n.
Note, that for any integral light vector p all its multiples np, n ∈ Z,

are also integral light vectors. So, we can restrict ourselves to the study of
primitive vectors, for which the greatest common divisor of coordinates is
equal to 1.

Lemma 6.5. Any primitive integral light vector p must have an odd co-
ordinate t and exactly one odd coordinate among x, y, z.

Proof. If t is even, then x2 +y2 + z2 is divisible by 4. Since any square
has residue 0 or 1 mod 4, it follows that all x, y, z must be even. But then
p is not primitive.

If t is odd, then x2 + y2 + z2 ≡ 1 mod 4. It follows that exactly one of
the numbers x, y, z is odd. �

Problem 7. Find a convenient parametrization of all primitive integral
light vectors.

For instance, assume that t, z are odd and x, y are even. Is it true that
(1.6.3) holds for some relatively prime k, l, m?
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Now, consider the subgroup Γ of the Lorentz group G which preserves
the set of integral light vectors.

Exercise 37. Show that Γ coincides with the group SO+(1, 3; Z) of
matrices with integral entries in SO+(1, 3; R).

Hint. Let g ∈ Γ. Show that a sum and a difference of any two columns
of g is an integer vector and the same property holds for row vectors. Check
that coordinates of an integer light vector can not be all odd.

The group Γ acts on the set of all integral light vectors and preserves
the subset P of primitive vectors.

Exercise 38. a) Find the index of PSL(2, Z[i]) in PGL(2, Z[i]).
b)∗ What are the images of these subgroups in O+(1, 3; R)?

Exercise 39. Show that the homomorphism π : PGL(2, C) → SO+(1, 3; R)
can be extended to a homomorphism π : G→ O+(1, 3; R).

Hint. Show that one can take the diagonal matrix diag (1, 1, −1, 1) as
the image under π of the element s ∈ G acting as complex conjugation.

Problem 8. Describe the Γ-orbits in P .

Info H. Structure of some groups generated by reflections

The theory of groups generated by reflections is a big and very interesting
domain in modern mathematics. We consider here only some facts we needed
in relation to the Apollonian gaskets.

First, we describe the structure of the so-called free group Fn with n
generators x1, x2, . . . , xn. This group may be characterized by the following
universal property.

For any group G with n generators y1, y2, . . . , yn there exists a unique
homomorphism α of Fn onto G such that α(xi) = yi, 1 ≤ i ≤ n.

Let us show that such group exists and is unique up to isomorphism.
Indeed, if there are two such groups, Fn with generators x1, x2, . . . , xn
and F ′n with generators x′1, x

′
2, . . . , x

′
n, then from the universal property we

deduce that there are homomorphisms α : Fn → F ′n and α′ : F ′n → Fn such
that α(xi) = x′i and α′(x′i) = xi. Consider the composition α′ ◦ α. It is a
homomorphism of Fn onto itself, preserving the generators. The universal
property implies that this homomorphism is identity. The same is true for
the composition α ◦ α′. Hence, Fn and F ′n are isomorphic.

Now, prove the existence. For this end we consider the collection Wn of
all words in the alphabet x1, x

−1
1 , . . . , xn, x

−1
n satisfying the condition:

(∗) the letters xi and x−1
i can not be neighbors
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We denote the length of a word w by l(w). Let W (k)
n be the set of all

words of the length k in Wn. It is clear that W0 contains only the empty
word, and W1 contains 2n one-letter words.

Exercise 40. Show that #(W (k)
n ) = 2n(2n− 1)k−1 for k ≥ 1.

We want to introduce a group structure on Wn. We define the product
w1w2 of two words w1, w2 by induction on the length l(w1) of the first factor.
Namely, if l(w1) = 0, i.e. if w1 is an empty word, we put w1w2 := w2.

Now assume that the product is defined for l(w1) < k and consider the
case l(w1) = k ≥ 1. Let the last letter of w1 be xε1i , 1 ≤ i ≤ n, ε1 = ±1,
and the first letter of w2 be xε2j , 1 ≤ j ≤ n, ε2 = ±1.

If i 6= j or i = j, ε1 + ε2 6= 0, we define the product w1w2 just as
a juxtaposition (concatenation) of w1 and w2. This new word has length
l(w1) + l(w2) and satisfy the condition (∗).

If i = j and ε1 + ε2 = 0, we denote by w̃1 (resp. w̃2) the word obtained
from w1 (resp. w2) by removing the last (resp. first) letter. Then we put
w1w2 := w̃1w̃2. For example, if w1 = x1, w2 = x−1

1 x2, we have w̃1 = ∅, w̃2 =
x2 and w1w2 = x2.

From this definition it easily follows, that always l(w1w2) ≤ l(w1)+l(w2)
and l(w1w2) ≡ l(w1) + l(w2) mod 2

To check that Wn is a group with respect to the product defined above,
it remains to prove that the operation defined above is associative (induc-
tion on the length of the middle factor), admits a unit (empty word) and
an inverse element (the same word written back to front with opposite ex-
ponents). Traditionally, it is left to a reader.

Let us check that the group Wn has the universal property. Indeed, if G
is any group generated by x1, x2, . . . , xn, there is a unique homomorphism
α : Wn → G such that α({xi}) = xi. (Here {xi} denotes a one letter word).
Namely, for a word w = xε1i1x

ε2
i2
. . . xεkik we must put α(w) = xε1i1 · x

ε2
i2
· · · · · xεkik

where the sign “·′′ denotes the multiplication in G. On the other hand, it is
easy to check that the so-defined map α is indeed a homomorphism of Wn

onto G. We showed the existence of a free group Fn and at the same time
proved

Proposition H.1. Any element of Fn can be uniquely written in the
form

(H.1) g = xε1i1x
ε2
i2
. . . xεkik

where the condition (*) is satisfied.

We need also another family of groups Γn, n ≥ 1, which are freely gen-
erated by n involutions s1, . . . , sn. By definition, the group Γn possesses
another universal property.
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For any group G generated by n involutions t1, . . . , tn there exists a
unique homomorphism α of Γn onto G such that α(si) = ti, 1 ≤ i ≤ n.

The existence and uniqueness (up to isomorphism) of the group Γn can
be proved in the same way as for Fn. The only difference is that the set Wn

now consists of all words in the alphabet s1, . . . , sn without repetition of
letters.

Proposition H.2. Any element of Γn can be uniquely written in the
form

(H.2) g = si1si2 · · · sik , k ≥ 0, where ia 6= ia+1 for 1 ≤ a ≤ k − 1.

Exercise 41. a) Show that in this case #(W (k)
n ) =

{
1 for k = 0

n(n− 1)k−1 for k ≥ 1.

b) Show that Γn is isomorphic to Fn/J where Fn is a free group with
generators s1, . . . , sn and J is the minimal normal subgroup in Fn which
contains s21, . . . , s

2
n.

Theorem H.5. Any non-trivial (i.e., different from e) involution in Γn
is conjugate to exactly one of generators s1, . . . , sn.

Proof. Let g ∈ Γn be an involution. According to Proposition 5, it can
be written in the form g = si1si2 . . . sin . Then g−1 = sinsin−1 . . . si1 . But
g−1 = g, hence sin−k

= sik+1
for k = 0, 1, . . . , n− 1.

For n = 2k even, it follows that k = 0 and g is an empty word.
For n = 2k−1 odd we have g = wsikw

−1 where w = si1 . . . sik−1
. Hence,

g is conjugate to sik .
Finally, show that si is not conjugate to sj for i 6= j. Assume the

contrary. Then there is a word w such that wsi = sjw. Let w0 be a
shortest of such words. From the equation w0si = sjw0 we conclude that
the first letter of w0 is sj and the last letter of w0 is si. Hence, w0 = sjw

′si
for some word w′. Then we get sjw′ = w′si, which is impossible since
l(w′) = l(w0)− 2 < l(w0). �

For small values of n the group Γn admits a simpler description. E.g.,
for n = 1 the group Γ1 is simply a group Z2 = Z/2Z of order 2.

For n = 2 the group Γ2 is isomorphic to the group Aff (1, Z) of affine
transformations of the integer lattice. It has a matrix realization by matrices

of the form
(
a b
0 1

)
where a = ±1, b ∈ Z. We leave to a reader to check that

the matrices
(
−1 0
0 1

)
and

(
−1 1
0 1

)
can be taken as generating involutions

s1, s2.
For n = 3 the group Γ3 can be realized as a discrete group of trans-

formation acting on the Lobachevsky (=hyperbolic) plane L. Consider e.g.
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Figure H.11. The action of Γ3 on L

the Poincaré model of L as the upper half-plane y > 0 (see Info J below).
The three generators of Γ3 are reflections in three pairwise tangent mirrors.
For example, we can take the unit circle M0 as one of the mirrors and two
vertical lines M±1 : x = ±1 as two others. These mirrors bound a triangle
T of finite area with 3 infinite vertices. For any word w without repetitions
let us denote by Tw the image of T under an element γ ∈ Γ3 corresponding
to the word w.

It can be proved by induction on l(w) that the triangles Tw are all
different, have no common inner points and cover the whole plane.

The case n = 4 is more difficult and exactly this case occurs in our
study. Moreover, the group Γ4 arises in two different ways which we discuss
in Section 6.1.



CHAPTER 7

Arithmetic properties of Apollonian gaskets

Here we study some arithmetic questions arising when we consider cur-
vatures of discs which constitute an Apollonian gasket.

7.1. The structure of Q

We want here to investigate the set P 1(Q) = Q of rational numbers
including the infinite point ∞. It can be called a rational circle.

First, think about how to parametrize Q. Any number r ∈ Q can be writ-
ten in the form p

q , where p, q ∈ Z. But the map α : Z×Z −→ Q, α(p, q) =
p
q is surjective but by no means injective.

We can impose the condition gcd (p, q) = 1, that is p and q are relatively
prime, or else the fraction p

q is in lowest terms. Note, however, that the set
X of relatively prime pairs (p, q) is itself a rather complicated object. The
map α, restricted to X, will be “two to one”: α−1(r) = ±(p, q). And
there is no natural way to choose exactly one representative from every pair
{(p, q), (−p, −q)}. Though, for all r = p

q ∈ Q we can assume q > 0. But
for q = 0 there is no preference between p = ±1.

Remark 6. For analytically minded reader, we can say that the situ-
ation here is similar to the Riemann surface of the function f(w) =

√
w.

The map z 7→ w = z2 has two preimages for any w ∈ C×, but this double-
valued function do not admit any analytic (or even continuous) single-valued
branch.

♥

Remark 7. A remarkable way to label all positive rational numbers
was discovered recently by Neil Calkin and Herbert Wilf (“Recounting the
rationals”, The American Mathematical Monthly, 107 (2000),pp.360-363.)
Let b(n) be the number of partition of an integer n ≥ 0 into powers of 2, no
power of 2 being used more than twice. Than the ratio rn = b(n)

b(n+1) takes
any positive rational value exactly once! The initial piece of this numeration
is:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
b(n) 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5
rn 1 1

2 2 1
3

3
2

2
3 3 1

4
4
3

3
5

5
2

2
5

5
3

3
4 4 1

5
5
4

95
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n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
b(n) 7 3 8 5 7 2 7 5 8 3 7 4 5 1 6 5 4
rn

4
7

7
3

3
8

8
5

5
7

7
2

2
7

7
5

5
8

8
3

3
7

7
4

4
5 5 1

6
6
5

5
9

It is interesting to compare this numeration with the one giving by Farey
series (see below).

♥
Our next step in the study of Q is the introduction of a natural distance

between points. In the following we tacitly assume that all rational numbers
are written in lowest terms.

Let us call two numbers ri = pi

qi
, i = 1, 2, from Q friendly if the following

equivalent conditions are satisfied:

(7.1.1) a) |p1q2 − p2q1| = 1, b) |r1 − r2| =
1

|q1q2|
.

It is worth to mention that the friendship relation is not an equivalence
relation1: every integer k is friendly to ∞ but only neighbor integers are
friendly to each other.

Note, that the group PGL(2, Z) acts on Q by fraction-linear transfor-
mations and this action preserves the friendship relation. We can often use
this fact in our study.

Lemma 7.1. The group PSL(2, Z) acts simply transitively on the set of
all ordered pairs of friendly numbers from Q. The group PGL(2, Z) acts
transitively but with a non-trivial stabilizer isomorphic to Z2.

Proof. Let ri = pi

qi
, i = 1, 2, be a pair of friendly numbers. Assume for

definiteness that p1q2 − p2q1 = 1. We have to show that there is a unique
element γ of PSL(2, Z) which sends the standard friendly pair (∞, 0) to the

given pair (r1, r2). Let g =
(
a b
c d

)
be a representative of γ in SL(2, Z).

Then we have γ(0) = b
d , γ(∞) = a

c .
The conditions γ(∞) = r1, γ(0) = r2 imply (a, c) = k1·(p1, q1), (b, d) =

k2 · (p2, q2). Therefore, 1 = det g = ad− bc = k1k2 · (p1q2 − p2q1)−1 = k1k2

and k1 = k2 = ±1. Hence, g = ±
(
p1 p2

q1 q2

)
is determined up to sign and

defines the unique element of PSL(2, Z).

The stabilizer of the pair (0, ∞) in PGL(2, Z) consists of classes of

matrices
(

1 0
0 ±1

)
. �

Exercise 42. Describe all numbers which are friendly

a) to 0; b) to ∞; c) to 1.

1As well as in the real life.
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We define a distance in the set Q by the following way. Given two
numbers r′ and r′′, denote by d(r′, r′′) the minimal n ∈ Z+ for which there
exists a chain r′ = r0, r1, . . . , rn−1, rn = r′′ such that for all k the number
rk is friendly to rk±1 for 1 ≤ k ≤ n− 1.

Exercise 43. a) Show that (Q, d) is a discrete metric space where the
group PGL(2, Z) acts by isometries.

b) Find the stabilizer of the point ∞.

Answer. b) The group Aff(1, Z) of transformations r 7→ ar + b, a =
±1, b ∈ Z.

Exercise 44. Compute the distances
a) d(∞, n); b) d(0, n); c) d(0, 5

8).

Answer. a) 1; b) 0 for n = 0, 1 for n = ±1, 2 for |n| > 1; c) 4.

Exercise 45. . a) Show that for any r′, r′′ ∈ Q the distance d(r′, r′′) is
finite.

b) Is the metric space Q bounded?

Answer. a) Cf. theorem 6 below; c) No.

Rather interesting and non-trivial problems arise when we consider the
geometry of balls and spheres in Q. As usual, we define a ball with the
center a and radius r as the set Br(a) = {b ∈ Q

∣∣ d(a, b) ≤ r}. Analogously,
a sphere is the set Sr(a) = {b ∈ Q

∣∣ d(a, b) = r}.

Theorem 7.1. The ball Bn(∞) consists of all rational numbers which
can be written as a continuous fraction of length n, i.e. as

(7.1.2) r = k1 +
1

k2 +
1

k3 +
1

. . . kn−1 +
1
kn

· · ·

where ki are arbitrary integers (positive or negative).

Proof. First of all, let us show, that for any r of the form (7.1.2) the
distance d(∞, r) does not exceed n. We do it by induction on n.

For n = 1 it follows from the exercise 44. Assume that the theorem is
true for all continuous fractions of length ≤ n− 1 and consider a fraction of
length n given by (7.1.2). Denote by r′ the number 1

r−k1 . It is clear that r′ is
represented by a continuous fraction of length n−1, hence, d(∞, r′) ≤ n−1.
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Now, from the invariance of the distance with respect to shifts r 7→ r+k, k ∈
Z, and with respect to the inversion r 7→ r−1, we have

d(∞, r) = d(∞, r − k1) = d(0, r′) ≤ d(0, ∞) + d(∞, r′) ≤ 1 + (n− 1) = n.

The first sign ≤ is just the triangle inequality and the second follows from
Exercise 44 a) and from induction hypothesis. �

The structure of spheres is a more delicate question. The “complexity”
of a sphere is growing with its radius.

For instance, S1(∞) = Z. It is an homogeneous space with respect to
the group Aff (1, Z) which plays the role of the “group of rotations” around
the infinite point – see Exercise 44 a).

The sphere S2(∞) consist of points k1 + 1
k2

where k1, k2 ∈ Z and k2 6=
0, ±1. Under the action of Aff (1, Z) it splits into infinitely many orbits Ωm,
numerated by number m = |k2| ≥ 2. The stabilizer of the point k+ 1

m ∈ Ωm

is trivial for m > 2 and contains one non-unit element r 7→ 2k + 1 − r for
m = 2.

Problem 9. Describe the orbits of Aff (1, Z) on the sphere Sk(∞) for
k > 2.

7.2. Rational parametrization of circles

It is well-known that a circle as a real algebraic manifold is rationally
equivalent to a real projective line. It means that one can establish a bi-
jection between a circle and a line, using rational functions with rational
coefficients.

E.g. the circle x2 + y2 = 1 can be identified with a projective line with
the parameter t as follows:

(7.2.1) x =
t2 − 1
t2 + 1

, y =
2t

t2 + 1
; t =

y

1− x
=

1 + x

y
.

In particular, when t runs through all rational numbers (including ∞),
the corresponding points (x, y) run through all rational points2 of the circle.

From this one can derive the well-known description of primitive integral
solutions to the equation x2 + y2 = z2. Namely, in every primitive solution
exactly one of numbers x, y is even. Assume, it is y; then there are relatively
prime numbers a, b such that

(7.2.2) x = a2 − b2, y = 2ab, ±z = a2 + b2

Analogously, the projectivization of the future light cone in R1,3 is noth-
ing but 2-dimensional sphere which is rationally equivalent to a completed

2I.e., points with rational coordinates.
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2-dimensional plane. Therefore, all future light vectors (t, x, y, z) with in-
tegral non-negative coefficients can be written up to positive proportionality
in the form

(7.2.3) t = k2 + l2 +m2, x = 2km, y = 2lm, z = |k2 + l2 −m2|.

I do not know, if any integral solution can be written exactly in the form
(7.2.3) for some integers k, l, m with gcd(k, l, m) = 1.

Next, we take into account that on the real projective line R there is a
natural orientation. For our goals it is convenient to define the orientation as
a cyclic order for every three distinct points x1, x2, x3 ∈ R. Geometrically,
this order means that going from x1 to x3 in the positive direction, we pass
x2 on our way. We shall also use the expression “x2 is between x1 and x3”.
Note, that in this case x2 is not between x3 and x1.

Exercise 46. a) Show that in case when all x1, x2, x3 are finite (i.e.
6= ∞) the statement “x2 is between x1 and x3” is equivalent to the inequality

(x1 − x2)(x2 − x3)(x3 − x1) > 0.

b) Which of the following are true?
i) 1 is between 0 and ∞;
ii) ∞ is between 0 and 1;
iii) −1 is between 0 and ∞.

Now, we introduce a new operation3 of “inserting” on R. It associates
to a ordered pair of rational numbers (r1, r2) a third number denoted by
r1 ↓ r2 so that

(7.2.4) r1 ↓ r2 :=
p1 + p2

q1 + q2
, if r1 =

p1

q1
, r2 =

p2

q2

where the signs of pi and qi are chosen so that r1 ↓ r2 is between r1 and r2.

Exercise 47. Compute the following expressions:
a) 0 ↓ ∞; b) ∞ ↓ 0; c) ∞ ↓ −2; d) 1 ↓ 2; e) 2 ↓ 1; f) 1

2 ↓ −
1
3 .

Answer. a) 1; b) −1; c) −3; d) 3
2 ; e) ∞; f) −2.

The operation ↓ has especially nice properties when r1 and r2 are friendly
numbers. In this case the number r1 ↓ r2 is evidently friendly to both r1
and r2.

Exercise 48. . Show that for friendly numbers r1, r2 the number r1 ↓ r2
is a unique rational number between r1 and r2 (in the sense of the cyclic
order described above) which is friendly to both of them.

3I learned from R. Borcherds, that this operation is known to mathematicians in
England as “English major addition”. It is also a subject of one of the standard jokes
quoted on Gelfand Seminar.



100 7. ARITHMETIC PROPERTIES OF APOLLONIAN GASKETS

These consideration lead to a notion of so-called Farey series. The
standard Farey series Fn of rank n by definition consists of all rational
numbers 0 < p

q < 1 with 1 ≤ q ≤ n written in increasing order. The number
of terms in Fn is equal to

∑n
k=2 ϕ(k) where ϕ(k) is the Euler totient function

which counts the number of integers between 1 and k and prime to k. It is
given by the formula

ϕ(n) = n ·
∏
p|n

(1− p−1) where p runs through all prime divisors of n.

E.g., the Farey series F 5 contains ϕ(2)+ϕ(3)+ϕ(4)+ϕ(5) = 1+2+2+4 =
9 terms:

1
5
,

1
4
,

1
3
,

2
5
,

1
2
,

3
5
,

2
3
,

3
4
,

4
5
.

We refer to [Nev49] for many known facts about standard Farey series,
mentioning only some of them here.

Exercise 49. Show that neighbor terms of Farey series are friendly
numbers.

For our goals we introduce a slightly different definition. Namely, the
modified Farey series F (n) ⊂ R is defined as follows.

The series F (0) consists of three numbers: 0, 1 and ∞ with given cyclic
order. The series F (n+1), n ≥ 1, is obtained from F (n) by inserting between
any consecutive numbers a, b the number a ↓ b. So, the modified Farey series
F (n) consists of 3 · 2n cyclic ordered numbers. We denote by f (n)

k , 1− 2n ≤
k ≤ 2n+1 the k-th member of F (n). So, for any n, we have f (n)

0 = 0, f
(n)
2n =

1, f
(n)
2n+1 = ∞.

The modified Farey series of rank ≤ 4 are shown below
k: 0 1 2

f
(0)
k : 0

1
1
1

1
0

k: −1 0 1 2 3 4

f
(1)
k : − 1

1
0
1

1
2

1
1

2
1

1
0

k: −3 −2 −1 0 1 2 3 4 5 6 7 8

f
(2)
k : − 2

1
− 1

1
− 1

2
0
1

1
3

1
2

2
3

1
1

3
2

2
1

3
1

1
0

k: −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f
(3)
k : − 3

1
− 2

1
− 3

2
− 1

1
− 2

3
− 1

2
− 1

3
0
1

1
4

1
3

2
5

1
2

3
5

2
3

3
4

1
1

4
3

3
2

5
3

2
1

5
2

3
1

4
1

1
0

To find an explicit formula for numbers f (n)
k is a non-trivial problem.

We shall discuss it below.

Exercise 50. Show that f (n)
k = f

(n+1)
2k , so that f (n)

k actually depends
only on a dyadic number r = k

2n . Sometimes we shall write fr instead of
f

(n)
k .
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Figure 7.1. Graph of the function ?

To simplify the exposition, let us consider the part of F (n) between 0
and 1, i.e. members fr with r between 0 and 1.

Note, that if we change the procedure and insert between any two num-
bers a, b not a ↓ b, but the arithmetic mean value a+b

2 , we obtain on the
n-th step the arithmetic progression with 2n + 1 terms, starting with 0 and
ending by 1. The k-th member of this progression is a(n)

k = k
2n . Or, in the

same notations as above, ar = r.
Now we are prepared to define a remarkable function first introduced by

Hermann Minkowski. He called it a “question mark function” and denoted
it by ?(x), see Info E in Part I.

Theorem (Minkowski Theorem). There exists a unique continuous and
strictly increasing function ?: [0, 1] → [0, 1] such that
(7.2.5)

? (a ↓ b) =
?(a) + ?(b)

2
for all friendly rational numbers a, b ∈ [0, 1].

Sketch of the proof. The formula 7.2.5 and induction over n imply
that if the desired function exists, it must have the property ?

(
f

(n)
k

)
= a

(n)
k .

It follows that ?
(
fr
)

= r for all r ∈ Z[12 ]
⋂

[0, 1].
On the other hand, we can define ? on Z[12 ] by the formula ?(fr) = r.

Since both sets {f (n)
k } and {a(n)

k } are dense in [0, 1], the function can be
extended uniquely as a monotone function from [0, 1] to [0, 1]. E.g., we can
put

(7.2.6) ?(x) = lim
n→∞

?(xn)

where {xn} is a monotone sequence of rational numbers converging to x.
�

The inverse function p to the question mark function solves the problem
of computing f

(n)
k posed above, since for any dyadic r ∈ [0, 1] we have

fr = p(r).
On the set Z[12 ]

⋂
[0, 1] of binary fractions the function p(x) can be com-

puted step by step using the property

(7.2.7) p

(
2k + 1
2n+1

)
= p

(
k

2n

)
↓ p

(
k + 1
2n

)
which follows immediately from 7.2.5 and repeat the construction of the
modified Farey series.

Theorem 7.2. The function p := ?−1 has the following properties.
1. a) p(1− x) = 1− p(x); b) p(x2 ) = p(x)

1+p(x) ; c) p(1+x
2 ) = 1

2−p(x) .
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2. (p)′( k2n ) = ∞ for any n and 0 ≤ k ≤ 2n.

3. For any rational non-dyadic number r ∈ [0, 1] the value p(r) is a
quadratic irrationality, i.e. has a form r1 +

√
r2 for some rational r1, r2.

4. The following remarkable formula takes place:
(7.2.8)

p

0.0 . . . 00︸ ︷︷ ︸
k1

11 . . . 11︸ ︷︷ ︸
l1

. . . 00 . . . 00︸ ︷︷ ︸
kn

11 . . . 11︸ ︷︷ ︸
ln

. . .

 =
1

k1 +
1

l1 +
1

. . . kn +
1

ln +
1
. . .

. . .

where in the left hand side the binary system is used while in the right hand
side we use so-called continuous fraction. The formula 7.2.8 works also for
finite binary fractions.4

Proof. (Sketch of) The relations 1 a) - c) can be derived from the
following useful fact

Lemma 7.2. Let g =
(
a b
c d

)
∈ GL(2, Z). Then the transformation of

Q given by

r 7→ g · r :=
ar + b

cr + d
commutes with the insertion operation ↓, i.e.

(7.2.9) (g · r1) ↓ (g · r2) = g · (r1 ↓ r2).

We leave the proof of this claim to the readers and make only two useful
remarks, each of which can be a base for a proof.

1. The transformations in question send friendly pairs to friendly pairs.
2. The group GL(2, Z) is generated by 2 elements:

g1 =
(

1 1
0 1

)
, g2 =

(
0 1
1 0

)
.

Now we prove the relation 1 a). Consider the following diagram

(7.2.10)

[0, 1] x 7→1−x−−−−−→ [0, 1]

p

y yp
[0, 1] x 7→1−x−−−−−→ [0, 1]

The relation 1a) claims that it is commutative. To check it choose a point
x ∈ [0, 1] which is a dyadic fraction r = k

2n = ar.

4Guess about the form of the right hand side of the formula in this case.
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Then the vertical arrow sends it to p(ar) = fr and the horizontal arrow
sends this number fr to f1−r (check it, looking on a table above!)

On the other hand, the horizontal arrow sends r to 1 − r = a1−r and
then the vertical arrow sens a1−r to f1−r. Thus, for any number of the form
k
2n the relation 1a) holds. By continuity, it holds everywhere.

Consider the relation 1b). It is equivalent to the commutativity of the
diagram

(7.2.11)

[0, 1]
x 7→ x/2−−−−−→ [0, 1

2 ]

p

y yp
[0, 1]

x 7→ x
1+x−−−−−→ [0, 1

2 ]

Here again we start with an element r = ar ∈ [0, 1]. The horizontal arrow
sends it to ar/2 and then the vertical arrow transforms it to fr/2.

On the other hand, the vertical arrow sends ar to fr and we have to show
that the horizontal arrow transforms it to fr/2. I.e., we want to check the
equality fr

1+fr
= fr/2. For this we observe that the transformation x 7→ x

1+x

maps the segment [0, 1] to the segment [0, 1
2 ]. Since it belongs to PGL(2, Z),

it transforms the Farey series into its part, sending f0 and f1 to f0 and f 1
2

respectively. Then, by induction on n, we check that it sends f 2k
2n

to f k
2n

.
The relation 1c) can be proved in the same way using the diagram

(7.2.12)

[0, 1]
x 7→ 1+x

2−−−−−→ [12 , 1]

p

y yp
[0, 1]

x 7→ 1
2−x−−−−−→ [12 , 1]

The point is that affine transformations respect halfsums while the trans-
formations from PGL(2, Z) respect insert operation. I recommend to the
reader to formulate and prove some other properties of ? and p using other
diagrams.

It is also useful to extend the definition of ? and p to the whole set R
by the formulae:

(7.2.13) p

(
1
x

)
=

1
p(x)

; p(−x) = −p(x).

The property 2 we verify only at the point x = 0. The general case
x = k

2n can be done similarly, or reduces to the case x = 0 by 1 a) – 1 c).
We have p(0) = 0, p( 1

2n ) = 1
n+1 . So, if 1

2n ≤ ∆x ≤ 1
2n−1 , we have

1
n+1 ≤ ∆p ≤ 1

n .
Therefore, 2n−1

n+1 ≤
∆p
∆x ≤

2n

n for 1
2n ≤ ∆x ≤ 1

2n−1 and p′(0) = +∞.

The statement 3 follows from the formula (2.2.8). As for this formula,
it can be proved for finite fractions by induction, using the Farey series.
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Note, that in the last section of Part I we used (2.2.8) as a definition of the
question mark function. �

Remark 8. Let us interpret the function p := ?−1 as a distribution
function for a probability measure µ on [0, 1]: the measure of an interval
[a, b] is equal to p(b) − p(a). This measure is a weak limit of the sequence
of discrete measures µn, n ≥ 1, concentrated on the subset F (n) so that the
point f (n)

k has the mass 1
2n for 1 ≤ k ≤ 2n.

It is clear that the support of µ is the whole segment [0, 1] (i.e. measure
of any interval (a, b) ⊂ [0, 1] is positive). While for an ordinary Farey series
the measure defined in a similar way is uniform, in our case it is far from
it. The detailed study of this measure is a very promising subject (see, e.g.
[de Rha59]).

♥

Exercise 51. 28. Find the values of ?(x) and ?′(x) at the point x = 1
3 .

Hint. Using the relation 1
2 −

1
4 + 1

8 −
1
16 + 1

32 −
1
64 + · · · = 1

3 , show
that

?
(

1
3
− 1

3 · 4n

)
=

Φ2n−1

Φ2n+1
, ?

(
1
3

+
2

3 · 4n

)
=

Φ2n

Φ2n+2

where Φn is the n-th Fibonacci number given by the formula

Φn =
φn − (−φ)−n

φ+ φ−1

where φ =
√

5+1
2 ≈ 1.618... is so-called “golden ratio”.5

Answer. ?
(

1
3

)
= 3−

√
5

2 ; ?′
(

1
3

)
= 0.

Problem 10. Is it true that ?′(x) = 0 for all rational numbers except
a

(n)
k ?

We can sum up the content of this section: there is a monotone parametriza-
tion of all rational numbers in [0, 1] by more simple set of all binary fractions
in the same interval.

If we remove the restriction r ∈ [0, 1], we get a parametrization of Q by
Z[12 ] which preserves the cyclic order on the circle introduced above.

Remark 9. There is a interesting geometric interpretation of Farey se-
ries and of Minkowski question function. It was discovered by George de
Rahm [Rh].

Consider a square [−1, 1]×[−1, 1] ⊂ R2. Let us split every side in 3 equal
parts and join the neighbor splitting points. We get an octagon with equal
angles but different sides. Repeat this procedure: split every side of the
octagon into 3 equal parts and join the neighbor splitting points. The result
will be a convex polygon with 16 sides which is contained in the octagon.

5See Info G.
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Figure 7.2. The de Rham curve

Proceeding in this way, we get a nested series of convex polygons Πn, n ≥ 1
with 2n+1 sides. The intersection of all these polygons is a convex domain D
bounded by a C2-smooth curve C (see Fig. 7.2). Note the following facts:

a) The centers of sides of every Πn belong to C. Let us numerate those of
them which belong to the upper half of C by numbers rk = k

2n , −2n ≤ k ≤ 2n

b) Let the upper half of C is given by the equation y = f(x), |x| ≤ 1.
Let xk be the x-coordinate of rk. Then f ′(xk) = frk , the member of the
n-th Farey series.

♥

7.3. Nice parametrizations of discs tangent to a given disc

Let A be an Apollonian gasket. Choose a disc D ∈ A corresponding to
an Hermitian matrix M and consider those discs in A which are tangent to
D.

The tangent points form a countable subset T ⊂ ∂D. We show later
that one can parametrize points of T by rational numbers (including ∞) so
that the natural cyclic order on T , as a part of ∂D, corresponds to the cyclic
order on Q, as a part of R.

Let Dr be the disc tangent to D at the point tr ∈ T and let Mr be the
corresponding Hermitian matrix.

We say that a parametrization r → tr of T by Q is nice if it has the
following properties:

1. If r = p
q in simple terms, then

Mr = Ap2+2Bpq+Cq2−M where A, B, C are fixed Hermitian matrices.

2. The disc Dr is tangent to Dr′ iff r = p
q and r′ = p′

q′ are friendly, i.e.
iff |pq′ − p′q| = 1.

Of course, the condition 1. and 2. are very strong and contain all
the information about tangent discs. Therefore the next result is rather
important.

Theorem 7.3. Nice parametrizations exist and have an additional prop-
erty:
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Let v0, v1, v2, v3 be vectors in R1,3 corresponding to matrices A+C, B, A−
C, M . Then the Gram matrix of their scalar products has the form

(7.3.1) G = ||(vi, vj)|| =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

First Main Example: Band gasket. Let D = {w ∈ C
∣∣ Im w ≤

0}, D∞ = {w ∈ C
∣∣ Im w ≥ 1}. Let D0, D1 be the discs of unit diameter,

tangent to D at points 0, 1 and to D∞ at points i, i+ 1.
Then ∂D = R, T = Q. The tautological parametrization of T is nice

with

M =
(

0 i
−i 0

)
, M p

q
=
(

2p2 −2pq − i
−2pq + i 2q2

)
, D p

q
:
∣∣∣∣ w−2pq + i

2q2

∣∣∣∣≤ 1
2q2

.

0−1 11
2−1

2
1
3

2
3−1

3−2
3

Figure 7.3. Nice parametrization of a line in the Band gasket

Second Main Example: Rectangular gasket. Let D = {w ∈ C
∣∣

|w| ≥ 1} be a complement to the open unit disc, D0 is given by the condition
|w − 1

2 | ≤
1
2 , D∞ by the condition |w + 1

2 | ≤
1
2 and D1 by the condition

|w − 2i
3 | ≤

1
3 .

Here ∂D is the unit circle and a nice parametrization is tr = p+iq
p−iq so

that

M =
(
−1 0
0 1

)
, Mr =

(
p2 + q2 − 1 −(p+ iq)2

−(p− iq)2 p2 + q2 + 1

)
,

D p
q
:
∣∣∣∣ w − (p+ iq)2

p2 + q2 + 1

∣∣∣∣ ≤ 1
p2 + q2 + 1

.

Proof of the Theorem 7.3. LetD0, D1, D∞ be any three discs from
A which are tangent to D and to each other. We associate the labels 0, 1
and ∞ to the corresponding tangent points in ∂D.
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22

3

3

6

6

6

6

11

11

11

11

14

14

14

14

cp/q = 1 + p2 + q2

tp/q = p+iq
p−iq

(1, 0)(−1, 0)

(0, 1)

(0,−1)

(3
5 , 4

5) = 2+i
2−i

Figure 7.4. Nice parametrization of the outer circle in the
Rectangular gasket

Then, assuming that theorem is true and parametrization is nice, we can
compute A, B, C from the equations

M∞ = A−M, M0 = C −M, M1 = A+ 2B + C −M.

We get

A = M +M∞, C = M +M0, B =
1
2
(M1 −M −M0 −M∞).

Then, using the property of matrices M0, M1, M∞ and M , we can check
the relation (2.3.1). From there, the statement 2 of the theorem easy follows
if we define Mr using statement 1. �

Practically, the nice parametrization can be defined step by step. As-
sume that the discs Dr1 and Dr2 corresponding to friendly rational numbers
r1 and r2 are already defined and are tangent to D and to each other. Then
we associate to r = r1 ↓ r2 the disc tangent to Dr1 , Dr2 and D.

Actually, there are two such discs and two possible values of r = r1 ↓ r2;
the right choice is uniquely determined by the cyclic order.

Corollary. The boundary curvature of the disc tangent to D at the
point r = p

q (in the simplest form) is given by a quadratic polynomial in
p, q:

(7.3.2) c(p, q) =
(
c∞ + c

)
· p2 +

(
c1 − c0 − c∞ − c

)
· pq +

(
c0 + c

)
· q2 − c

where ci is the boundary curvature of the disc Di.
In particular, if four pairwise tangent discs in an Apollonian gasket A

have integral boundary curvatures, then all discs from A have this property.

Exercise 52. 29. For the triangular Apollonian gasket find the curva-
tures of discs tangent to the outer disc.
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Answer: c(p, q) = 2(p2−pq+q2)√
3

+ 1.

Exercise 53. 30. Describe the canonical parametrization for the outer
circle of the triangular gasket.

Hint. Label by 0, 1, ∞ the tangent points corresponding to three max-
imal inner discs.

7.4. Integral Apollonian gaskets

There are many models of Apollonian gasket for which the curvatures of
all circles are integers. We call them integral gaskets. For each such gasket
we can choose the quadruple of discs such that corresponding boundary
curvatures form an integral quadruple (c1 ≥ c2 ≥ c3 ≥ c4) with minimal c1.
Call it basic quadruple.

Lemma 7.3. For a basic quadruple we have

c4 ≤ 0, |c4| < c3 <

(
1 +

2√
3

)
|c4| ≈ 2.1547... · |c4|.

Proof. Let Di, 1 ≤ i ≤ 4, be a quadruple of pairwise tangent discs
with curvatures ci, 1 ≤ i ≤ 4,. The first inequality was already proved (see
Remark in the end of 5.1).

Consider now the Descartes equation (5.1.3) as a quadratic equation in
c1 with given c2, c3, c4. Then we get

(7.4.1) c1 = c2 + c3 + c4 ± 2
√
c2c3 + c3c4 + c4c2.

Since the initial quadruple is basic, we have to choose minus sign in (7.4.1)
(otherwise we could replace c1 by smaller quantity).

The inequality c1 ≥ c2 together with (2.4.1) gives c3+c4 ≥ 2
√
c2c3 + c3c4 + c4c2,

or (c3 − c4)2 ≥ 4c2(c3 + c4) ≥ (c3 + c4)2. It can be true only when c4 ≤ 0.
Finally, for non-positive c4 we have (c3 − c4)2 ≥ 4c2(c3 + c4) ≥ 4c3(c3 +

c4), or 3c23 + 6c3c4 + c24 ≤ 4c24. It gives
√

3(c3 + c4) ≤ −2c4, hence c3 ≤
2+
√

3√
3
|c4|. �

Here is the list of basic quadruples of small sizes, generating non-isomorphic
gaskets in the order of increasing |c4| :

c4 = 0 (1, 1, 0, 0);
c4 = −1 (3, 2, 2, −1);
c4 = −2 (7, 6, 3, −2);
c4 = −3 (13, 12, 4, −3), (8, 8, 5, −3);
c4 = −4 (21, 20, 5, −4), (9, 9, 8, −4);
c4 = −5 (31, 30, 6, −5), (18, 18, 7, −5);
c4 = −6 (43, 42, 7, −6), (15, 14, 11, −6), (19, 15, 10, −6);
c4 = −7 (57, 56, 8, −7), (20, 17, 12, −7), (32, 32, 9, −7);
c4 = −8 (73, 72, 9, −8), (24, 21, 13, −8), (25, 25, 12, −8);
c4 = −9 (91, 90, 10, −9), (50, 50, 11, −9), (22, 19, 18, −9), (27, 26, 14, −9);
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c4 = −10
(111, 110, 11, −10), (62, 60, 12, −10), (39, 35, 14, −10), (27, 23, 18, −10);
c4 = −11
(133, 132, 12, −11), (72, 72, 13, −11), (37, 36, 16, −11), (28, 24, 21, −11).
Three general formulae:
c4 = −km (k2 + km+m2, k(k +m), m(k +m), −km)
c4 = 1− 2k (2k2, 2k2, 2k + 1, 1− 2k)
c4 = −4k

(
(2k + 1)2, (2k + 1)2, 4(k + 1), −4k

)
Many other interesting facts about integral gaskets the reader can find

in [G].

Info I. Möbius inversion formula

In number-theoretic computations the so-called Möbius inversion for-
mula is frequently used. We explain here how it works.

Suppose, we have a partially ordered set X with the property: for any
element x ∈ X there are only finitely many elements which are less than
x. Let now f be any real or complex-valued function on X. Define a new
function F by the formula

(I.1) F (x) =
∑
y≤x

f(y).

Proposition I.1. There exists a unique function µ̃ on X ×X with the
properties:

1. µ̃(x, y) = 0 unless x < y and µ(x, x) = 1
2. µ̃(x, x) = 1
3. If the functions f and F are related by (I.1), then

(I.2) F (x) =
∑
y≤x

µ̃(x, y)F (y).

In many applications the set X is a semi-group of non-negative ele-
ments in some partially ordered abelian group G and the order relation is
translation-invariant: x < y is equivalent to a + x < a + y for any a ∈ G.
In this case µ is also translation-invariant: µ̃(a+ x, a+ y) = µ̃(x, y), hence,
can be written in the form µ(y−x) where µ is a function on G which is zero
outside X. The inversion formula takes the form

(I.3) F (x) =
∑
y≤x

µ(x− y)F (y) (Möbius inversion formula).

We leave the proofs for the interested reader and consider only some
examples which we need in our book.

Example 1. Let G = Z with the standard order. Then the formula
(I.1) takes the form F (n) =

∑
m≤n f(m) and the inversion formula is f(n) =
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F (n)− F (n− 1). We see that in this case the proposition 5 is true and the
function µ is given by

µ(n) =


1 if n = 0
−1 if n = 1
0 otherwise

Example 2. G = G1 ×G2 and the order on G is the product of orders
on G1 and on G2, i.e.

(g1, g2) > (0, 0) ⇔ g1 > 0 & g2 > 0.

Here the µ-function for G is simply the product of µ-functions for G1 and
G2.

Note, that if G1 and G2 are ordered groups, G = G1×G2 is only partially
ordered.

Example 3. G = Q× is the multiplicative group of non-zero rational
numbers. The partial order is defined as follows: r1 ≤ r2 iff the number r2

r1
is an integer. So, in this case X = Z+ with the order relation m < n iff m|n
(m is a divisor of n).

It is easy to see that this partially ordered group is the direct sum of the
countable number of copies of Z with a usual order. Indeed, any element
of G can be uniquely written in the form r =

∏
k≥1 p

nk
k where pk is the

k-th prime number, nk ∈ Z and only finite number of nk are non-zero. The
number r is an integer iff all nk are non-negative.

Therefore, the function µ is the product of infinitely many functions
from example 1. The exact definition is:

Definition I.1. µ(n) =


1 if n = 1
(−1)k if n is a product of k distinct primes
0 otherwise

The equation (I.3) in this case is the classical Möbius inversion formula

(I.4) F (n) =
∑
d|n

µ(d)F
(n
d

)
.

As an application, we derive here the formula for the Euler ϕ-function.
Let us classify the numbers k ≤ n according to the value of d = gcd(k, n).

It is clear that gcd(kd ,
n
d ) = 1. It follows that the number of those k for which

gcd(k, n) = d is equal to ϕ(nd ). We have obtained the identity

n =
∑
d|n

ϕ
(n
d

)
.

Applying the Möbius inversion formula, we get

(I.5) ϕ(n) =
∑
d|n

µ(d) · n
d
, or

ϕ(n)
n

=
∑
d|n

µ(d)
d

.



INFO I. MÖBIUS INVERSION FORMULA 111

♦

7.4.1. Some computations. The well-known unsolved problem is to
compute the Hausdorff dimension of the Apollonian gasket and the Haus-
dorff measure of its different modifications (e.g. spherical or triangular gas-
kets). Though we know the answer for the first question with high degree
of accuracy: in [?M]) it is shown that the Hausdorff dimension of the Apol-
lonian gasket is d = 1.308535???..., we have no idea of the nature of this
number. For example, is it irrational? Can it be expressed in terms of some
logarithms as for the Cantor set or Sierpiński gasket? Has it any interesting
arithmetic properties?

Another interesting problem is to compute the total area of the discs in
some Apollonian gasket, which are tangent to a given disk D, e.g., to the
outer disc in rectangular or triangular gasket.

We start, however, with a slightly easier problem. Consider the First
Main Example of the band gasket above. We want to compute the total
area of the discs in the Band gasket, which are tangent to the real axis at
the points of the segment [0, 1]. More natural question, which has a simpler
answer is to compute the area of the part of the unit square with vertices
0, 1, 1 + i, i, covered by the discs, tangent to the lower side of the square.

We know that the diameter of the disc with tangent point m
n ∈ [0, 1] is

1
2n2 . Hence, its area is π

4n4 . There are ϕ(n) of discs of this size. So, for the
area in question we have an expression

(7.4.6) A =
π

4
·
∑
n≥1

ϕ(n)
n4

.

This number can be expressed through the values of the Riemann ζ-function
at points 3 and 4.

Let us use the formula for ϕ(n) obtained in Info I. The formula (I.5)
takes the form

A =
π

4
·
∑
n≥1

∑
d|n

µ(d)
d

n3
.

We denote n
d by m and make the summation on d and m. We get

A =
π

4
·
∑
d≥1

∑
m≥1

µ(d)
m3d4

=
π

4
·
∑
m≥1

1
m3

·
∑
d≥1

µ(d)
d4

.

The sum
∑

m≥1
1
m3 is, by definition, the value ζ(3). On the other hand,

the sum
∑

d≥1
µ(d)
d4

can be written as∑
k≥0

(−1)k·
∑

1≤i1<i2<···<ik

(pi1pi2 · · · pik)−4 =
∏
i≥1

(
1− 1

p4
i

)
=

1∑
n≥1

1
n4

=
1
ζ(4)

.

Finally, we get

A =
π

4
· ζ(3)
ζ(4)

=
45ζ(3)
2π3

≈ 0.76.
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The total area of discs tangent to the outer disc of the rectangular gasket
is equal

π

2
·

∑
gcd(p,q)=1

1
(p2 + q2 + 1)2

It can be expressed in terms of the ζ-function related to the Gauss field Q[i].

Exercise 54. Let Σm denote the sum
∑

Z2\{(0,0)}
1

(k2+l2)m . Show that

(7.4.7)
∑

gcd (p,q)=1

1
(p2 + q2)m

=
Σm

ζ(2m)
.

and

(7.4.8)
∑

gcd (p,q)=1

1
(p2 + q2 + 1)2

=
∞∑
m=1

(−1)m−1 m · Σm+1

ζ(2m+ 2)
.



CHAPTER 8

Geometric and group-theoretic approach

Info J. Hyperbolic (Lobachevsky) plane L

A hyperbolic space satisfies all axioms of Euclidean space except the
famous 5-th postulate about uniqueness of parallel lines. Such a space ex-
ists in all dimensions, but here we consider only the case n = 2. We col-
lect here some information about the 2-dimensional hyperbolic space, a.k.a.
Lobachevsky plane L.

There are three most convenient models of L.
J.1. The first Poincaré model
Let C be the complex plane with a complex coordinate z = x + iy.

Denote by H the upper half-plane of C given by the condition Im z > 0.
The first Poincaré model identifies L, as a set, with H. The group G of
conformal transformations of both kinds (see Info F) acts on H and is, by
definition, the full group of symmetries of L. So, according to F. Klein
philosophy, So, by definition, geometric properties of L are those which are
invariant under the group G.

In particular, the distance d(z1, z2) between two points z1, z2 ∈ H must
be G-invariant. It turns out that this condition defines the distance uniquely
up to scale.

To find the explicit formula for the distance, we can procede as fol-
lows. To any pair p = (z1, z2) there corresponds a quadruple q(p) =
(z1, z2, z̄1, z̄2). The correspondence p → q(p) is clearly invariant under
the action of PSL(2, R).

On the other hand, it is well-known that for any quadruple q = (z1, z2, z3, z4)
of points in C the so-called cross-ratio λ(q) := z2−z3

z1−z3 : z2−z4z1−z4 does not change
under fractional-linear transformations from PSL(2, C).

Introduce the quantity

(J.1) ∆(p) := λ
(
q(p)

)
=
z2 − z̄1
z1 − z̄1

:
z2 − z̄2
z1 − z̄2

=
|z1 − z̄2|2

4 Im z1 Im z2
.

This function on the set of pairs of points in H is positive, symmetric
and invariant with respect to full group G. Let us clarify how it is related
to the desired distance. For this end we restrict our consideration to the
subset T of H consisting of points ieτ , τ ∈ R. This subset is invariant
under dilations z 7→ etz and admits a natural dilation-invariant distance
d(τ1, τ2) = |τ1 − τ2|.

113
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Compare this distance with the restriction of ∆ to T × T .

∆(ieτ1 , ieτ2) =
(eτ1 + eτ2)2

4eτ1+τ2
=

1
4
(
eτ1−τ2 + 2 + eτ2−τ1

)
= cosh2

(
τ1 − τ2

2

)
.

We come to the relation

(J.2) ∆(z1, z2) = cosh2

(
d(z1, z2)

2

)
=

cosh
(
d(z1, z2)

)
+ 1

2
.

It holds on T × T and both sides are G-invariant.

Exercise 55. 31. Show that G · (T × T ) = H ×H. More precisely any
pair of points (z1, z2) can be obtained by a transformation g ∈ G from a
pair (i, ieτ ) for an appropriate τ ∈ R.

It follows from the exercise that the relation (J.3) holds everywhere. The
simple computation leads to the final formula

(J.3) cosh d(z1, z2) = 2∆ (z1, z2)− 1 =
(x1 − x2)2 + y2

1 + y2
2

2y1y2

It is well-known that the area of a domain Ω ⊂ L and the length of a
curve C ⊂ L are given by integrals1

(J.4) area (Ω) =
∫

Ω

dx ∧ dy
y2

, length (C) =
∫
C

√
(dx)2 + (dy)2

y
.

Exercise 56. 32. Show that the geodesics, i.e. the shortest curves, are
half-circles orthogonal to the real axis (including vertical rays).

Hint. Use the fact that any two points p, q on L define a unique geo-
desic. So, this geodesic must be invariant under any transformation g ∈ G
which preserves or permutes these two points. Apply this to the the points
p = ir, q = ir−1 and transformations s : z 7→ −z̄, t : z 7→ −z−1.

There is a remarkable relation between the area of a triangle with geo-
desic sides and its angles:

(J.5) area (ABC) = π −A−B − C.

Exercise 57. 33. Check the formula (J.4) for a triangle with 3 zero
angles given by inequalities −a ≤ x ≤ a, x2 + y2 ≥ a2.

Exercise 58. 34. Show that the set of points Br(a) = {z ∈ L
∣∣

d(z, a) ≤ r} (Lobachevsky disc) in the first Poincaré model is just an ordi-
nary disc with the center a′ and the radius r′. Express a′ and r′ in terms of
a and r.

Answer. a′ = Re a+ i cosh r · Im a, r′ = sinh r · Im a .

1Actually, the first integrand here is the unique (up to a scalar factor) differential

2-form which is invariant under the action of G. It is covariant under G: a conformal
transformation of second kind changes the sign of the form. The second integrand is the
square root of the unique (also up to a scalar factor) G-invariant quadratic differential
form (i.e. metric) on L.
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Exercise 59. 35. Consider an Euclidean disc D : (x−a)2+(y−b)2 ≤ r2

on H. Find its diameter d and the area A in the sense of the hyperbolic
geometry.

Answer. d = log b+r
b−r ; A = 2π

(
b√

b2−r2 − 1
)

= 4π sinh2
(
d
4

)
.

J.2. The second Poincaré model.
Sometimes another variant of the Poincaré model is more convenient.

Namely, a Möbius transformation h : w 7→ w−i
w+i , sends the real line to the

unit circle and the upper half-plane H to the interior D0 of the unit disc
D : x2 + y2 ≤ 1. All we said above about H can be repeated for D0 mutatis
mutandis.

Thus, the group G, acting on the upper half-plane, is replaced by the
group G

′ = h · G · h−1 acting on D0. The connected component of unit in
G is the group h · PSL(2, R) · h−1 = PSU(1, 1; C).

To a pair p′ = (w1, w2) ∈ D0 × D0 we associate in a G′-invariant way
the quadruple q′(p′) = (w1, w2, w̄

−1
1 , w̄−1

2 ). Introduce the function

(J.6) ∆′(p) := λ
(
q′(p′)

)
=

|1− w1w̄2|2

(1− |w1|2)(1− |w2|2)

The subgroup of dilation of H given by matrices gτ =
(
eτ/2 0
0 e−τ/2

)
comes to the subgroup of matrices g′τ = h ·gτ ·h−1 =

(
cosh τ/2 sinh τ/2
sinh τ/2 cosh τ/2

)
.

This subgroup preserves the interval h · T = T ′ = (−1, 1) ⊂ D0. Introduce
the local parameter t on T ′ so that x = tanh t

2 . Then the transformation
g′τ takes a simple form t 7→ t+ τ . Therefore, the invariant distance on T is
d(t1, t2) = |t1 − t2|. On the other hand,

∆′( tanh
t1
2
, tanh

t2
2
)

=
(1− tanh t1

2 tanh t2
2 )2

(1− tanh2 t1
2 )(1− tanh2 t2

2 )
= cosh2

(
t1 − t2

2

)
.

Then (J.2) and (J.3) take the form

(J.7) ∆′(w1, w2) = cosh2

(
d′(w1, w2)

2

)
=

cosh
(
d′(w1, w2)

)
+ 1

2

(J.8) cosh d(w1, w2) =
|1− w1w̄2|2 + |w1 − w2|2

(1− |w1|2)(1− |w2|2)
.

The formula (J.4) is replaced by
(J.9)

area (Ω) =
∫

Ω

4 dx ∧ dy
(1− x2 − y2)2

, length (C) =
∫
C

2
√

(dx)2 + (dy)2

1− x2 − y2
.

The geodesics are arcs of circles orthogonal to ∂D (including the diameters
of the disc). The formula (??J.1.5) remains to be true.
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Exercise 60. 36. Show that the set of points {z ∈ L
∣∣ d(z, a) ≤

r} (Lobachevsky disc) in the second variant of the Poincaré model is an
ordinary disc with the center a′ and radius r′. Express a′ and r′ in terms of
a and r.

Answer. a′ = a√
a2+1 cosh r

, r′ = (a+a−1)
a tanh r+a−1 coth r

.

Exercise 61. 37. Find the diameter d and the area A of a discDr(a, b) :
(x− a)2 + (y − b)2 ≤ r2 in D.

Answer. d = log b+r
b−r ; A = 2π

(
b√

b2−r2 − 1
)

= 4π sinh2
(
d
4

)
.

J.2. The Klein model. .
The extended Möbius groupG is isomorphic to PO(2, 1, R) ⊂ PGL(3, R)

(see Info F). Therefore, there is one more realization of the hyperbolic plane
L. It is the so-called Klein model which we describe now.

The group O(2, 1, R) acts on the real vector space R2,1 with coordinates
X, Y, Z preserving the cone X2 + Y 2 = Z2. Consider the real projective
plane P := P 2(R) with homogeneous coordinates (X : Y : Z) and local coor-
dinates x = X

Z , y = Y
Z . The corresponding projective action of PO(2, 1, R)

on P preserves the circle x2 + y2 = 1 and the open disk D0 : x2 + y2 < 1.
It is the Klein model of L.

The explicit formula of the group action is
(J.10)

x 7→ a′x+ b′y + c′

ax+ by + c
, y 7→ a′′x+ b′′y + c′′

ax+ by + c
where g =

a′ b′ c′

a′′ b′′ c′′

a b c


belongs to O(2, 1, R) ⊂ GL(3, R).

We know that g ∈ O(2, 1, R) iff gtIg = I where I = diag (1, 1,−1), or,
in full details:

(a′)2 + (a′′)2 = a2 + 1, (b′)2 + (b′′)2 = b2 + 1, (c′)2 + (c′′)2 = c2 − 1,

a′b′ + a′′b′′ = ab, b′c′ + b′′c′′ = bc, c′a′ + c′′a′′ = ca.

(J.11)

Exercise 62. 38. a) Show that the group O(2, 1, R) has four connected
components characterized by the signs of det g and c.

b) Show that PO(2, 1, R) has two connected components: PSO+(2, 1, R)
and PSO−(2, 1, R) distinguished by the sign of a′b′′ − a′′b′.

Note, that the Klein model uses the same set D0 and the same abstract
groupG ' PO(2, 1; R), as the second Poincaré model, but the group actions
are different.

More precisely, there exist a smooth map f : D0 → D0 and a homomor-
phism α : G→ PO(2, 1, R) such that the following diagram is commutative:
To describe the homomorphism α, consider first the connected component



INFO J. HYPERBOLIC (LOBACHEVSKY) PLANE L 117

of unit G ⊂ G which we identify with the group PSU(1, 1; C). The restric-
tion of α to this subgroup induces the homomorphism α̃ : SU(1, 1; C) →
SO+(2, 1; R) which has the form:

(J.12)

g =
(
a b

b a

)
→ α̃(g) =

Re(a2 + b2) −Im(a2 + b2) 2 Re (ab)
Im(a2 + b2) Re(a2 − b2) −2 Im (ab)
2 Re (ab) −2 Im (ab) |a|2 + |b|2

 .

The second connected component of G is a two-sided G-coset c ·G = G ·c
where c acts as the complex conjugation on D0. From the relation c ·g ·c = g
we derive that α(c) = diag(−1, 1, −1) ∈ SO−(2, 1; R), i.e. α(c) acts on D0

by the rule: x 7→ x, y 7→ −y.
Therefore, the horizontal diameter of D0 is the set of fixed point of an

involution α(c), hence, is a geodesic in the Klein model. Of course, the same
is true for all other diameters.

The remarkable property of Klein model is that all geodesics are the
ordinary straight lines. Indeed, the projective transformations send lines
to lines (in contrast with conformal transformations which sends circles to
circles).

To compute the map f we use the following particular cases of (J.3.3):

α̃ :
(
eiθ 0
0 e−iθ

)
→

cos 2θ − sin 2θ 0
sin 2θ cos 2θ 0

0 0 1


and

α̃ :
(

cosh t sinh t
sinh t cosh t

)
→

cosh 2t 0 sinh 2t
0 1 0

sinh 2t 0 cosh 2t

 .

We see, that rotation to the angle 2θ in the Poincaré model corresponds to
the same rotation in the Klein model.

On the contrary, the motion along the diameter

x 7→ x cosh t+ sinh t
x sinh t+ cosh t

, or, if x = tanh τ, τ → τ + t

goes to the motion

x 7→ x cosh 2t+ sinh 2t
x sinh 2t+ cosh 2t

, or τ → τ + 2t

with doubled speed.
We conclude, that in polar coordinates (r, α) in the Poincaré model and

(ρ, θ) in the Klein model, the diffeomorphism f take the form

(J.13) f(r, α) = (ρ, θ) where θ = α, ρ = tanh
(
2 tanh−1(r)

)
.
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(0, 0)

r

ρ ρ = f(r)

Figure J.1. Diffeomorphism f

Exercise 63. 39. Show that the relation (??J.3.4) between r and ρ can
be written also in the following forms:

(J.14) a)
1 + ρ

1− ρ
=
(

1 + r

1− r

)2

; b) ρ =
2

r + r−1
.

Another interesting geometric fact is that the diffeomorphism f “straight-
ens” arcs of circles orthogonal to the boundary, sendig them into correspond-
ing chords (see Fig. 21).

The Klein model has two disadvantages: more complicated formula for
the distance between two points and non-conformness (the angles between
curves are not equal to euclidean angles on the model).

The area form and the length element for the Klein model in polar
coordinates (ρ, θ) look like
(J.15)

area (Ω) =
∫

Ω

ρ2dρ ∧ dθ
(1− ρ2)

√
1 + ρ2

, length (C) =
1
2

∫
C

√
(dρ)2 + ρ2(1− ρ2)(dθ)2

1− ρ2
.

Exercise 64. 40. Prove that the Klein and the second Poincaré models
are related geometrically as follows.

Let s be the restriction of the stereographic projection to the open south-
ern hemisphere S2

−. It sends S2
− onto the open horizontal disc D bounded

by the equator. Let p be the vertical projection of S2
− to D.

Then the map s ◦ p−1 : D → D is the isomorphism between Klein and
Poincaré models.

♦

8.1. Action of the group G and Apollonian gaskets

Here we consider in more details the action of the Möbius group G and
extended Möbius group G in connection with Apollonian gaskets.

If we apply a (extended) Möbius transformation to a given Apollonian
gasket A, we obtain another gasket A′. Moreover, we know that any Apol-
lonian gasket can be obtained in this way from one fixed gasket. So, the set
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of all possible Apollonian gaskets form an homogeneous space with G (or
G) as a group of motions.

Let Aut (A) (resp. Aut (A)) denote the subgroup of G (resp. of G)
consisting of transformations which preserve the gasket A.

Theorem 8.1. The subgroups AutA ⊂ G and Aut (A) ⊂ G are discrete.

Proof. Let D1, D2, D3 are three pairwise tangent discs in A. Choose
three interior points w1 ∈ D1, w2 ∈ D2, w3 ∈ D3. Afterwards, choose a
neighborhood of unit U ⊂ G which is small enough so that for any g ∈ U we
have: g ·w1 ∈ D1, g ·w2 ∈ D2, g ·w3 ∈ D3. On the other hand, if g ∈ AutA,
then it must send discs D1, D2, D3 to some other discs of A. Hence, an
element g ∈ U

⋂
Aut(A) preserves D1, D2, D3, hence, their tangent points,

and so must be identity. This proves discreteness of Aut (A) in G.
The other statement can be proved in the same way considering four

pairwise tangent discs. �

We want to describe the algebraic structure of the groups Aut(A) and
Aut(A). Fix one special gasket, e.g. the strip gasket shown on Fig. 6. We
denote it by A0. Besides, we denote by D1, D2, D3, D4 correspondingly the
half-plane Imw ≥ 1, the half-plane Imw ≤ −1, the disc |w − 1| ≤ 1 and
the disc |w + 1| ≤ 1. We call it a original quadruple in A0 and denote it
q0.

First of all we want to describe the subgroup of G which preserves the
basic quadruple.

Theorem 8.2. The group G acts simply transitively on the set of all
ordered quadruples. The stabilizer in G of the original unordered quadruple
is contained in Aut(A0) and is isomorphic to S4: all permutations of discs
in the quadruple are possible.

Proof. Let Q′ = (D′
1, D

′
2, D

′
3, D

′
4) be any ordered quadruple. There

exists a unique element g ∈ G which transforms the ordered triple T0 =
(D1, D2, D3) into the triple T ′ = (D′

1, D
′
2, D

′
3) (since an ordered triple is

completely characterized by the ordered triple of tangent points).
The disc g(D4) is one of the two discs which are tangent to D′

1, D
′
2, D

′
3.

These two discs are intertwined by a unique element ofG preservingD′
1, D

′
2, D

′
3.

Namely, by the reflection s in the mirror orthogonal to D′
1, D

′
2, D

′
3. (It is ev-

ident for the initial triple (D1, D2, D3), hence is true for any triple.) Thus,
exactly one of elements g and s ◦ g transforms q0 into q′.

It remains to check that the stabilizer of q0 in G is isomorphic to S4.
We already know that any permutation s of discs in q0 can be achieved by
an element g ∈ G0, since there is a g ∈ G which sends (D1, D2, D3, D4) to
(Ds(1), Ds(2), Ds(3), Ds(4)). Assume that g 6= e belongs to the stabilizer of
the ordered quadruple q0 in G. Then g can not be in G (it has at least six
fixed points).

Recall that the set G\G of antiholomorphic transformations, being not
a group, still acts simply transitively on the set of ordered triples of distinct
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Figure 8.2. Basic reflections

points. The stabilizer of an ordered triple is the reflection in the mirror
passing through 3 points in question. (It is an easy exercise). Therefore, it
can not have 6 fixed points which are not all on the same circle. (For the
original quadruple these points are 0, ∞ and ±1± i.) �

There are four quadruples qi, 1 ≤ i ≤ 4, which have with q0 a common
triple Ti = Q0\{Di}. Denote by D′

i the disc in qi which is not in q0 and by
si a reflection which sends Di to D′

i and preserves all other discs from q0.
See Fig.8.1

Theorem 8.3. The group generated by reflections si, 1 ≤ i ≤ 4, is
isomorphic to the group Γ4 introduced in Info H.

Scheme of the Proof. First of all we recall (see Info H) that we have
labelled elements of the group Γ4 by words in the alphabet {1, 2, 3, 4} which
do not contain any digit twice in a row. We call such words reduced.

Recall also that l(w) denotes the length of a word w and W (k) denotes
the set of all reduced words of length k. Thus, the set W (0) contains only
an empty word ∅, the set W (1) contains four words {i}, where i = 1, 2, 3, 4,
the set W2 contains six words {ij}, i 6= j, etc.

Evidently, we have an action of Γ4 on the gasket A0: the generators act
as reflections {si}. Let Di(γ) denote the image of the disc Di under the
action of the element γ ∈ Γ4. The idea of the proof is to show that all discs
Di(γ) are different.

First, we observe that Di(γ1) 6= dj(γ2) for i 6= j. It follows from the fact
that we can color all discs from A0 in four colors so that in any quadruple
of pairwise tangent discs all four colors occur. Indeed, the set S2\q0 consists
of four triangles bounded by three discs of different color. So, we can for a
new disc, inscribed in each triangle, use the complementary color. In this
new picture again all quadruples contains four discs of different color and
we can continue the coloring.

The action of Γ4 preserves the coloring, since the generators have this
property.

Now, we can define a new numeration of discs in A0. Namely, let us
consider all finite non-empty words in the alphabet {1, 2, 3, 4} without re-
peating digits. To a one-digit word {i} we associate the disc D′

i = siDi ∈ q0.
In general, we associate to a word {i1i2 . . . ik} the disc si1si2 · · · sikDi1 .

It is enough to check that Di(γ) 6= Di for γ 6= e.
We leave it as a (non-trivial) exercise. One way is to compare the numer-

ation of discs in Section 1.2 with labelling of elements of Γ4 above. Another
way is to see, how the numeration changes when we replace the quadruple
q0 by qi := si · q0. �

We continue to study the action of G on discs.
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Figure 8.3. Stabilizer of a pair of discs

Exercise 65. 41. a) Find all transformations g ∈ G which preserve the
unordered triple D1, D2, D3.

b) Same question about unordered quadruple D1, D2, D3, D4.
Hint: a) Consider the triple of tangent points: 1± i and ∞.
b) Find which solutions to a) preserve the disc D4.

From the Exercise 41 we derive

Theorem 8.4. a) The stabilizer S ⊂ G of any unordered triple of pair-
wise tangent discs in A is contained in Aut(A) and is isomorphic to S3: all
permutations of the triple are possible.

b) The stabilizer S ⊂ G of any unordered triple in A is contained in
Aut(A) and is isomorphic to S3 × S2; the central element, generating S2 is
the reflection in the mirror, orthogonal to ∂D1, ∂D2, ∂D3.

c) The stabilizer in G of any unordered quadruple of pairwise tangent
discs in A is contained in Aut(A) and is isomorphic to A4: all even permu-
tations of the quadruple are possible;

d) The stabilizer in G of any unordered quadruple in A is contained
in Aut(A) and is isomorphic to S4: all permutations of the quadruple are
possible.

e) The group Aut(A) acts simply transitively on the set of ordered quadru-
ples in A. With respect to Aut(A) the ordered quadruples form two orbits.

For an ordered triple T̃ the stabilizer in G is trivial, so an element g ∈ G
is completely determined by the ordered triple g · T̃ . By the same reason,
an element g ∈ G is completely determined by the ordered quadruple g · q̃.

Now consider all pairs of tangent discs inA0. They form an homogeneous
set with respect to the group Aut(A). The stabilizer of {D1, D2} coincides
with the group Aff(1, Z) which is isomorphic to Z2∗Z2. Indeed the stabilizer
in question consists of transformations w → ±w + k, k ∈ Z and is freely
generated by reflections s1(w) = −w, s2(w) = 1− w.

Finally, consider the stabilizer in Aut(A) of the disc D1 ∈ A0. It is
convenient to replace the gasket A0 by 1

2(A0 + 1 − i), so that D1 becomes
the upper half-plane and the tangent points of D1 with D3 and D4 will be
0 and 1 – see Fig. 8.3

Then the stabilizer of this new D1 in G is a subgroup of PSL(2, R)
which stabilizes the upper half plane. We leave to the reader to check that
it coincides with PSL(2, Z) ⊂ G. The stabilizer in G is obtained by adding
the reflection s0(w) = −w̄.
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Figure 8.4. Orbits of Γ4

8.2. Action of the group Γ4 on a Apollonian gasket

Let q0 be the original quadruple (see the text before Theorem 10). De-
note by si, 1 ≤ i ≤ 4, the reflection, preserving three discs from q0, excepting
Di.

Theorem 8.5. a) The group, generated by s1, s2, s3, s4 is isomorphic to
Γ4. The action of this group on discs has four orbits, each of which contains
one of the initial discs D1, D2, D3, D4.

b) The stabilizer of D1 is generated by reflections s2, s3, s4 and is iso-
morphic to Γ3. The action of this group on discs, tangent to D1 has three
orbits, each of which contains one of the discs D2, D3, D4.

c) The stabilizer of D1, D2 is generated by reflections s3, s4 and is iso-
morphic to Γ2. The action of this group on discs, tangent to both D1, D2

has two orbits, each of which contains one of the discs D3, D4.

We omit the proof based on the results of previous sections but give here
the illustration where discs of four different Γ4-orbits have different colors

There is another group generated by reflection which acts on an Apol-
lonian gasket. Namely, let hij be the reflection in the mirror which passes
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through the tangent point tij of Di and Dj and is orthogonal to two other
initial discs. It is clear, that this reflection interchanges Di and Dj and
preserves two other initial discs. Let H be the group generated by six re-
flections hij We leave to the reader to check that H is finite and isomorphic
to the permutation group S4.

Theorem 8.6. The full group Aut (A) of fractional-linear transforma-
tion of an Apollonian gasket A is a semidirect product HnΓ4 of the subgroup
H and the normal subgroup Γ4.

Scheme of Proof. By definition, H permutes the initial discs, hence,
conjugation with h ∈ H make the corresponding permutation of generators
si. It follows, that action of H normalizes the action of Γ4.

Further, from Theorem 13 we conclude that Γ4 can transform any un-
ordered quadruple q to the initial quadruple q0 (also considered as un-
ordered). Since H permutes the four discs of q0, using the group HnΓ4, we
can transform any ordered quadruple q in A to the ordered quadruple q0.

Let now γ ∈ G be any transformation of A. It sends the initial ordered
quadruple q0 to some ordered quadruple q. There exists an element γ′ ∈
HnΓ4 which sends q back to q0. The composition γ′ ◦γ preserves q0, hence
is an identity. Therefore γ = (γ′)−1 belongs to H nΓ4 and we are done. �

Exercise 66. 45. Let M be the collection of all mirrors for A0. Is it
an homogeneous space for Γ4, for Aut(A) and for Aut(A)?

Here we construct a group of transformations of quite a different kind.
Let si, i = 0, 1, 2, 3, denote linear transformations of R4 which send a point
c = (c0, c1, c2, c3) to the point c′ = (c′0, c

′
1, c

′
2, c

′
3) where

(8.2.1) c′k =

{
ck if k 6= i

2
∑

j 6=i cj − ci if k = i.
.

Lemma 8.1. The transformations si preserve the quadratic form

Q(c) =
(c0 + c1 + c2 + c3)2

2
− (c20 + c21 + c22 + c23),

hence, send a solution to the Descartes equation to a solution.

Proof. The hyperplaneMi given by the equation ci =
∑

j 6=i cj is invari-
ant under si, since for the points of this hyperplane we have c′i = 2ci−ci = ci.
Hence, si is a reflection in Mi in the direction of the i-th coordinate axis.

From (5.1.3) we see, first, that the Descartes equation has the form
Q(c) = 0 and, second, that the coordinate ci of a solution c satisfies to a
quadratic equation c2i + pci + q = 0 where p = −2

∑
j 6=i cj . Therefore, the

second solution c′i to this equation satisfies c′i + ci = −p (Vieta theorem).
Thus, we get another solution to the Descartes equation if we replace ci by
c′i leaving all other coordinates unchanged. �
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Recall that we have defined above the change of coordinates (6.5.1) which
sends integral solutions to Descartes equation to integral light vectors in the
Minkowski space R1,3 with the coordinates t, x, y, z. So, we can consider
the transformations si acting in R1,3. Lemma 8.2 implies that they belong
to the pseudo-orthogonal group O(1, 3; R). Actually, one can prove a more
precise statement.

Exercise 67. 46. Show that si acts in R1,3 as a reflection:

(8.2.2) si(v) = v − 2(v, ξi)
(ξi, ξi)

ξi

where ξi, 0 ≤ i ≤ 3, are the column vectors of the matrix


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


which reduces Q(c) to the diagonal form.

Hint. Check that the transformations (6.5.1) in the space R4 with co-
ordinates (c0, c1, c2, c3) are reflections.

Let Γ4 be the free product of four copies of the group Z2 = Z/2Z.

Lemma 8.2. The group Γ4 is isomorphic to the semi-direct product Z2 n
F3 where F3 is a free group with 3 generators and the non-trivial element of
Z2 acts on F3 by the outer automorphism inverting all generators.

Proof. Indeed, let

Γ4 = 〈s0, s1, s2, s3
∣∣ s2i = 1〉.

Introduce the new generators: s := s0 and τi := s0si, i = 1, 2, 3. Then
s2 = 1, sτis = τ−1

i and we have only show that τi are free generators. The
proof can be obtained from the explicit realization of Γ4 given above. . �

We define the homomorphism Φ : g∗4 → O(1, 3; R) by Φ(si) = si, i =
0, 1, 2, 3.

Theorem 8.7. Φ is an isomorphism of Γ4 to some discrete subgroup Γ̃4

in O+(1, 3; R).

The generators of Γ̃4 are

Φ(τ1) =


5 −4 2 2
4 −3 2 2
2 −2 1 0
2 −2 0 1

 , Φ(τ2) =


5 2 −4 2
2 1 −2 0
4 2 −3 2
2 0 −2 1

 ,

Φ(τ3) =


5 2 2 −4
2 1 0 −2
2 0 1 −2
4 2 2 −3

 ; Φ(s) =


2 −1 −1 −1
1 0 −1 −1
1 −1 0 −1
1 −1 −1 0

.
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The first three matrices are unipotent with Jordan block structure (3, 1).
It would be interesting to give a direct geometric proof of the discreteness
of the group Γ̃4 (see e.g. [CH65]).





CHAPTER 9

Many-dimensional Apollonian gaskets

9.1. General approach

Consider the analogue of the Descartes disc problem: find the relation
between curvatures of n+ 2 pairwise tangent balls in Rn.

Here again, it is better to extend Rn, adding one infinite point ∞. The
resulting space Rn is topologically equivalent to the unit sphere Sn in the
vector space Rn+1 with coordinates α1, . . . , αn+1 given by the equation∑n+1

k=1 α
2
k = 1.

Let Bn be the set of all balls in Rn. We introduce several parametriza-
tions of Bn. It is instructive to compare this general result with the case
n = 2 studied in the previous sections.

First parametrization. Let R1,n+1 be (n+ 2)-dimensional real vector
space with coordinates (p0, . . . , pn+1), endowed with the quadratic form

(9.1.1) |p|2 :=
(
p0
)2 − (p1

)2 − (p2

)2 − · · · − (pn+1

)2
.

To any vector p ∈ R1,n+1 with |p|2 < 0 we associate a half-space Hp ⊂ Rn+1

defined by the condition

(9.1.2) Hp :=

{
α ∈ Rn+1

∣∣∣∣ p0 +
n+1∑
k=1

pkαk ≤ 0

}
.

Exercise 68. 47. Show that the intersection Sn
⋂
Hp is:

• for |p|2 > 0 – empty;
• for |p|2 = 0 – either the whole sphere, or a single point (which

one?);
• for |p|2 < 0 – a closed ball which we denote by Bp.

Hint. Consider in Rn+1 the projection on a line, orthogonal to Hp.

It is clear that for c > 0 the half-spaces Hp and Hcp coincide, hence,
Bp = Bcp. So, we can and will normalize p by the condition |p|2 = −1.
Thus, the set Bn of all balls in Sn is parametrized by the points of the
hyperboloid |p|2 = −1 in R1,n+1.

Second parametrization. Define the stereographic projection s :
Sn → Rn as in Info F. This map gives a bijection of Sn onto Rn and
sends balls to balls.

The inequality from (9.1.2) goes to the inequality

(9.1.3) a+ (b, x) + c(x, x) < 0

127
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where x = (x1, . . . , xn), b = (p1, . . . , pn), a = p0 − pn+1, c = p0 + pn+1

and the condition ac − |b|2 < is satisfied. We normalize, as we did before,
the vector (p0, . . . , pn+1), or the triple (a, b, c), by the condition |p|2 =
ac− |b|2 = −1.

We live to a reader to find a proof of the following

Lemma 9.1. Two balls Bp1 and Bp2 are tangent iff |p1 + p2|2 = 0.

Exercise 69. 48. Assume that ∂Bp1 and ∂Bp2 contain a common point
x. Find the angle between the radii of Bp1 and Bp2 at x.

Hint. Use the fact that the answer practically does not depend on the
dimension n: only the intersection of the whole picture with the plane pass-
ing through the centers of balls and the tangent point matters.

Answer.

(9.1.4) cosα = −(p1, p2).

Let now Bpk
, k = 1, 2, . . . , n+2, be pairwise tangent balls in Rn. Then,

exactly as in section 1.4, we see that1(
pi, pj

)
= 1− 2δi,j .

So, the eigenvalues of the Gram matrix Gi,j =
(
pi, pj

)
are 2 with mul-

tiplicity n + 1 and −n with multiplicity 1. Therefore, the Gram matrix is
non-singular and the vectors pk, 1 ≤ k ≤ n+ 2, form a basis in R1,n+1.

Further, we introduce for any vector v ∈ R1,n+1 two kind of coordinates:
the covariant coordinates vk = (v, pk) and contravariant coordinates vk by
the condition v =

∑
vkpk.

The relations between two kind of coordinates are derived exactly as we
did in section 1.4 for 2-dimensional case. They are:

vj =
∑
i

vi − 2vj , vi =
1
2n

∑
j

vj −
1
2
vi.

The quadratic form in these coordinates is expressed like

|v|2 =
(∑

i

vi
)2 − 2

∑
i

(vi)2 =
1
2n

((∑
i

vi
)2 − n

∑
i

(vi)2
)
.

Put now v = (1, −1, 0, . . . , 0, 0); then vk =
(
v, pk

)
= pn+1

k + p0
k = ck.

Recall that ck is the curvature of the ball Bpk
. Since |v|2 = 0, we get

(9.1.5)
(∑

k

ck
)2 = n ·

∑
k

c2k,

which is the n-dimensional analogue of the Descartes equation.

1It follows also from (9.1.4) since for externally tangent balls cosα = cosπ = −1.
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Exercise 70. 49.∗ Prove the n-dimensional analogue of the generalized
Descartes equation:

(9.1.6) Σ2
1 = n · Σ2 − 2n2 · 1

where

(9.1.7) Σ1 =
n+1∑
i=0

Mi, Σ2 =
n+1∑
i=0

M2
i

and Mi, 0 ≤ i ≤ n+1, are matrices corresponding to n+2 pairwise tangent
balls in Rn.

Let {B0
k}1≤k≤n be a set of pairwise tangent balls in Rn. We want to

describe all sequences {Bj}j∈Z of balls in Rn which have the property: Bj
is tangent to Bj±1 and to all {B0

k}1≤k≤n. Let dk be the curvature of B0
k and

cj be the curvature of Bj .
From (5) we have two equations:

(cj + cj±1 + d1 + · · ·+ dn)2 = n ·
(
c2j + c2j±1 + d2

1 + · · ·+ d2
n

)
.

Subtracting one from another, we get

2cj + cj+1 + cj−1 + 2d1 + · · ·+ 2dn = n(cj+1 + cj−1),

or
(n− 1)(cj+1 + cj−1)− 2cj = 2(d1 + · · ·+ dn).

It is a inhomogeneous recurrent equation for the sequence {cj}. Sub-
tracting two such equation for consequent j’s, we get an homogeneous re-
current equation:

(9.1.8) (n− 1)cj+1 − (n+ 1)cj + (n+ 1)cj−1 − (n− 1)cj−2 = 0.

The corresponding characteristic equation is

(9.1.9) (n− 1)λ3 − (n+ 1)λ2 + (n+ 1)λ− (n− 1) = 0

with roots λ0 = 1, λ±1 = 1±
√
n(2−n)

n−1 . Note the different structure of these
roots and, consequently, different behavior of the series {cj} in cases n =
2, n = 3 and n > 3.

When n = 2, the characteristic equation has a triple root λ = 1. It
follows that the corresponding sequence {cj} is quadratic in j. Indeed, the
left hand side of (4.1.9) is for n = 2 exactly the third difference of the
sequence {cj}.

For n = 3, the characteristic equation has roots λk = −e
2kπi

3 , k =
−1, 0, 1, i.e. three 6-th roots from unit which are not cubic roots. There-
fore, the sequence {cj} is 6-periodic. Moreover, not only curvatures but the
balls themselves form a 6-periodic sequence. This fact was known already
in ancient Greece (see [Sod36] for the details).

There is one more circumstance. Since only 3 from 6 possible sixth roots
are used, the sequence {cj} is not only 6-periodic, but has an additional
property: cj + cj+3 is independent on j.
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We leave to the reader to formulate the corresponding geometric prop-
erty of the ball sequence.

Exercise 71. 50. Let B1, B2, B3 be three unit balls in R3 which are
pairwise tangent. Find 6 balls which are tangent to all Bk, k = 1, 2, 3.

Hint. The corresponding curvatures are 0, 0, 3, 6, 6, 3.

For n > 3 the situation is quite different. The characteristic equation
has one real root λ0 = 1 and two complex roots λ±1 = 1±i

√
n2−2n

n−1 of absolute
value 1. Write them in the form λ±1 = e±iα. Then cosα = 1

n−1 .

Proposition 9.1. All integral solutions to the equation cos 2π
m = 1

n have
the form: m = n = 1, m = 2, n = −1, m = 3, n = −2, m = 6, n = 2.

It follows that the sequence of balls {Bj}j∈Z in R3 has a quasiperiodic
character and self-intersects infinitely many times.

From the recurrent relation

(9.1.10) cj+1 =
2

n− 1
cj − cj−1

we conclude also that for n > 3 the curvatures cannot be integers for all j.

9.2. 3-dimensional Apollonian gasket

As we saw above, the case n = 3 is exceptional. From any integral
solution (c1, . . . , c5) to Descartes equation we can made five new solutions;
namely, i-th transformation si replace ci by

∑
j 6=i cj − ci and preserves all

other cj . The transformations si satisfy as before the relations s2i = Id, but
moreover, they satisfy the relations (sisj)3 = Id for i 6= j. Hence, any pair
(si, sj), i 6= j, generates a group isomorphic to S3, the Weyl group for A2.

Still more interesting is that any three reflections (si, sj , sk) generate
the affine Weyl group for A2 which is a semi-direct product S3 n Z2.

Proposition 9.2. For any three pairwise tangent balls the set of balls
tangent to all three can be parametrized by a circle T = R/2πZ, so that the
balls Bα and Bβ are tangent iff |α− β| = π

3 mod Z.

Proposition 9.3. For any two pairwise tangent balls the set of balls
tangent to both of them can be parametrized by a sphere S2, or, better by R2

so that the balls Bα and Bβ are tangent iff |α− β| = 1.

We leave to the reader to prove the propositions and relate their state-
ments to the structure of subgroups 〈si, sj〉 and 〈si, sj , sk〉.

Problem 11. Determine the structures of the group Γ = 〈s1, s2, s3, s4, s5〉
and its subgroup 〈si, sj , sk, sl〉.

A lot of useful information about this problem can be found in the
book [EGM]. See also [C] as a very interesting introduction to the theory of
quadratic forms.
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The notion of a nice parametrization can be generalized to the 3-dimensional
case. Consider the algebraic number field K = Q[ε] where ε = e

2πi
3 is a cu-

bic root of unit. A general element of K has the form k = αε + βε̄ where
α, β ∈ Q and bar means the complex conjugation. Note that

(9.2.1) ||k||2K = |k|2 = kk̄ = α2 − αβ + β2.

Denote by E the set of all complex numbers of the form aε + bε̄ where
a, b ∈ Z. It is the set of integers in the algebraic number field K. There are
six invertible integers with norm 1: ±1, ±ε, ±ε̄. They are called units of
the field K. It is well-known that any element of E can be uniquely (modulo
units) written as a product of prime numbers. As for prime numbers, they
include all rational (i.e. ordinary) primes of the form p = 3m − 1 and also
the numbers k = aε + bε̄ for which |k|2 = a2 − ab + b2 is equal to 3 or to a
rational prime of the form 3m+ 1.

It follows that any element k ∈ K can be uniquely (modulo units) written
as a fraction p

q where p, q ∈ E have no common factors (except units). It
can be also written as k = lε+mε̄

n where l, m, n are ordinary integers with
gcd (l, m, n) = 1.

Definition 9.1. Let D be a 3-ball in an integral 3-dimensional Apollo-
nian gasket A. A parametrization of ∂D by the points of R2 is called nice if
the tangent points for D and other balls in A correspond exactly to elements
of K ⊂ R2.

Let Dk ∈ A be the ball tangent to D which corresponds to the point
k = p

q ∈ K.

Theorem 9.1. Nice parametrizations exist and have the properties:
a) Let K 3 k = p

q . The curvature ck of the ball Dk has the form

(9.2.2) ck = α|p|2 + βpq̄ + β̄p̄q + γ|q|2 + δ

where α, γ ∈ R, β ∈ C.
b) There is a coordinate system (x1, x2, x3) in the ambient space R3

such that

(9.2.3) xi =
αi|p|2 + βipq̄ + β̄ip̄q + γi|q|2 + δi
α|p|2 + βpq̄ + β̄p̄q + γ|q|2 + δ

.

c) Let ki = pi

q1
, i = 1, 2. The balls Dk1 and Dk2 are tangent iff

(9.2.4) |k1 − k2| =
1

|q1q2|
.

We leave to the reader the proof of the theorem and developing of the
matrix variant of the theory.

In conclusion, we illustrate theorem 16 by two examples of nice parametriza-
tions in a 3-dimensional Apollonian gasket.
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We associate with a ball in R3 with a center x + iy + jz and radius r

the Hermitian matrix
(
a b
b̄ c

)
where c = 1

r , b = x+iy+jz
r , b̄ = x−iy−jz

r , a =

x2+y2+z2−r2
r .

Our gasket A is the analog of the band plane gasket. It contains two

half-spaces: z ≥ 1 and −z ≥ 1 corresponding to matrices M± =
(

2 ∓j
±j 0

)
;

further, it contains infinitely many unit balls corresponding to matrices(
|v|2 − 1 v
−v̄ 1

)
where v runs through the lattice V ⊂ C generated by 2ε

and 2ε̄.
The first example is the parametrization of all balls tangent to the plane

z = 1 by the elements of K̄. Namely, to k = p
q ∈ K̄ we associate the matrix

(9.2.5) Mk =
(

4|p|2 + |q|2 − 2 2pq̄ + (1− |q|2)j
2p̄q − (1− |q|2)j |q|2

)
.

The corresponding ball is tangent to the plane at the point tk = −2pq +(1−
1
|q|2 )j and has the radius r = 1

|q|2 .
The second example is the parametrization of all balls tangent to the

unit ball corresponding to the matrix M =
(−1 0

0 1

)
. Here we have

(9.2.6) Mk =
(

|p|2 + |q|2 + 1 2pq̄ + (|p|2 − |q|2)j
2p̄q + (|q|2 − |p|2)j |p|2 + |q|2 − 1

)
.

The corresponding ball is tangent to the unit ball at the point tk = −2pq̄+(|q|2−|p|2)j
|p|2+|q|2

and has the radius r = 1
|p|2+|q|2−1

.
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