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Chapter 1

Introduction

This thesis is an investigation into the properties and applications of Clifford’s
geometric algebra. That there is much new to say on the subject of Clifford
algebra may be a surprise to some. After all, mathematicians have known how to
associate a Clifford algebra with a given quadratic form for many years [11] and,
by the end of the sixties, their algebraic properties had been thoroughly explored.
The result of this work was the classification of all Clifford algebras as matrix
algebras over one of the three associative division algebras (the real, complex
and quaternion algebras) [12]–[16]. But there is much more to geometric algebra
than merely Clifford algebra. To paraphrase from the introduction to “Clifford
Algebra to Geometric Calculus” [24], Clifford algebra provides the grammar from
which geometric algebra is constructed, but it is only when this grammar is
augmented with a number of secondary definitions and concepts that one arrives
at a true geometric algebra. In fact, the algebraic properties of a geometric algebra
are very simple to understand, they are those of Euclidean vectors, planes and
higher-dimensional (hyper)surfaces. It is the computational power brought to
the manipulation of these objects that makes geometric algebra interesting and
worthy of study. This computational power does not rest on the construction of
explicit matrix representations, and very little attention is given to the matrix
representations of the algebras used. Hence there is little common ground between
the work in this thesis and earlier work on the classification and study of Clifford
algebras.

There are two themes running through this thesis: that geometric algebra is
the natural language in which to formulate a wide range of subjects in modern
mathematical physics, and that the reformulation of known mathematics and physics
in terms of geometric algebra leads to new ideas and possibilities. The development
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of new mathematical formulations has played an important role in the progress
of physics. One need only consider the benefits of Lagrange’s and Hamilton’s
reformulations of classical mechanics, or Feynman’s path integral (re)formulation
of quantum mechanics, to see how important the process of reformulation can be.
Reformulations are often interesting simply for the novel and unusual insights they
can provide. In other cases, a new mathematical approach can lead to significant
computational advantages, as with the use of quaternions for combining rotations
in three dimensions. At the back of any programme of reformulation, however, lies
the hope that it will lead to new mathematics or physics. If this turns out to be the
case, then the new formalism will usually be adopted and employed by the wider
community. The new results and ideas contained in this thesis should support
the claim that geometric algebra offers distinct advantages over more conventional
techniques, and so deserves to be taught and used widely.

The work in this thesis falls broadly into the categories of formalism, refor-
mulation and results. Whilst the foundations of geometric algebra were laid over
a hundred years ago, gaps in the formalism still remain. To fill some of these
gaps, a number of new algebraic techniques are developed within the framework of
geometric algebra. The process of reformulation concentrates on the subjects of
Grassmann calculus, Lie algebra theory, spinor algebra and Lagrangian field theory.
In each case it is argued that the geometric algebra formulation is computationally
more efficient than standard approaches, and that it provides many novel insights.
The new results obtained include a real approach to relativistic multiparticle quan-
tum mechanics, a new classical model for quantum spin-1/2 and an approach to
gravity based on gauge fields acting in a flat spacetime. Throughout, consistent
use of geometric algebra is maintained and the benefits arising from this approach
are emphasised.

This thesis begins with a brief history of the development of geometric algebra
and a review of its present state. This leads, inevitably, to a discussion of the
work of David Hestenes [17]–[34], who has done much to shape the modern form
of the subject. A number of the central themes running through his research are
described, with particular emphasis given to his ideas on mathematical design.
Geometric algebra is then introduced, closely following Hestenes’ own approach to
the subject. The central axioms and definitions are presented, and a notation is
introduced which is employed consistently throughout this work. In order to avoid
introducing too much formalism at once, the material in this thesis has been split
into two halves. The first half, Chapters 1 to 4, deals solely with applications to
various algebras employed in mathematical physics. Accordingly, only the required
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algebraic concepts are introduced in Chapter 1. The second half of the thesis deals
with applications of geometric algebra to problems in mechanics and field theory.
The essential new concept required here is that of the differential with respect to
variables defined in a geometric algebra. This topic is known as geometric calculus,
and is introduced in Chapter 5.

Chapters 2, 3 and 4 demonstrate how geometric algebra embraces a number
of algebraic structures essential to modern mathematical physics. The first of
these is Grassmann algebra, and particular attention is given to the Grassmann
“calculus” introduced by Berezin [35]. This is shown to have a simple formulation
in terms of the properties of non-orthonormal frames and examples are given of the
algebraic advantages offered by this new approach. Lie algebras and Lie groups
are considered in Chapter 3. Lie groups underpin many structures at the heart of
modern particle physics, so it is important to develop a framework for the study of
their properties within geometric algebra. It is shown that all (finite dimensional)
Lie algebras can be realised as bivector algebras and it follows that all matrix Lie
groups can be realised as spin groups. This has the interesting consequence that
every linear transformation can be represented as a monomial of (Clifford) vectors.
General methods for constructing bivector representations of Lie algebras are given,
and explicit constructions are found for a number of interesting cases.

The final algebraic structures studied are spinors. These are studied using the
spacetime algebra — the (real) geometric algebra of Minkowski spacetime. Explicit
maps are constructed between Pauli and Dirac column spinors and spacetime
multivectors, and it is shown that the role of the scalar unit imaginary of quantum
mechanics is played by a fixed spacetime bivector. Changes of representation are
discussed, and the Dirac equation is presented in a form in which it can be analysed
and solved without requiring the construction of an explicit matrix representation.
The concept of the multiparticle spacetime algebra is then introduced and is used to
construct both non-relativistic and relativistic two-particle states. Some relativistic
two-particle wave equations are considered and a new equation, based solely in the
multiparticle spacetime algebra, is proposed. In a final application, the multiparticle
spacetime algebra is used to reformulate aspects of the 2-spinor calculus developed
by Penrose & Rindler [36, 37].

The second half of this thesis deals with applications of geometric calculus. The
essential techniques are described in Chapter 5, which introduces the concept of the
multivector derivative [18, 24]. The multivector derivative is the natural extension of
calculus for functions mapping between geometric algebra elements (multivectors).
Geometric calculus is shown to be ideal for studying Lagrangian mechanics and two
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new ideas are developed — multivector Lagrangians and multivector-parameterised
transformations. These ideas are illustrated by detailed application to two models
for spinning point particles. The first, due to Barut & Zanghi [38], models an
electron by a classical spinor equation. This model suffers from a number of defects,
including an incorrect prediction for the precession of the spin axis in a magnetic
field. An alternative model is proposed which removes many of these defects and
hints strongly that, at the classical level, spinors are the generators of rotations. The
second model is taken from pseudoclassical mechanics [39], and has the interesting
property that the Lagrangian is no longer a scalar but a bivector-valued function.
The equations of motion are solved exactly and a number of conserved quantities
are derived.

Lagrangian field theory is considered in Chapter 6. A unifying framework for
vectors, tensors and spinors is developed and applied to problems in Maxwell and
Dirac theory. Of particular interest here is the construction of new conjugate
currents in the Dirac theory, based on continuous transformations of multivector
spinors which have no simple counterpart in the column spinor formalism. The
chapter concludes with the development of an extension of multivector calculus
appropriate for multivector-valued linear functions.

The various techniques developed throughout this thesis are brought together
in Chapter 7, where a theory of gravity based on gauge transformations in a
flat spacetime is presented. The motivation behind this approach is threefold:
(1) to introduce gravity through a similar route to the other interactions, (2)
to eliminate passive transformations and base physics solely in terms of active
transformations and (3) to develop a theory within the framework of the spacetime
algebra. A number of consequences of this theory are explored and are compared
with the predictions of general relativity and spin-torsion theories. One significant
consequence is the appearance of time-reversal asymmetry in radially-symmetric
(point source) solutions. Geometric algebra offers numerous advantages over
conventional tensor calculus, as is demonstrated by some remarkably compact
formulae for the Riemann tensor for various field configurations. Finally, it is
suggested that the consistent employment of geometric algebra opens up possibilities
for a genuine multiparticle theory of gravity.

1.1 Some History and Recent Developments
There can be few pieces of mathematics that have been re-discovered more often
than Clifford algebras [26]. The earliest steps towards what we now recognise as
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a geometric algebra were taken by the pioneers of the use of complex numbers in
physics. Wessel, Argand and Gauss all realised the utility of complex numbers
when studying 2-dimensional problems and, in particular, they were aware that
the exponential of an imaginary number is a useful means of representing rotations.
This is simply a special case of the more general method for performing rotations
in geometric algebra.

The next step was taken by Hamilton, whose attempts to generalise the complex
numbers to three dimensions led him to his famous quaternion algebra (see [40] for
a detailed history of this subject). The quaternion algebra is the Clifford algebra
of 2-dimensional anti-Euclidean space, though the quaternions are better viewed
as a subalgebra of the Clifford algebra of 3-dimensional space. Hamilton’s ideas
exerted a strong influence on his contemporaries, as can be seen form the work of
the two people whose names are most closely associated with modern geometric
algebra — Clifford and Grassmann.

Grassmann is best known for his algebra of extension. He defined hypernumbers
ei, which he identified with unit directed line segments. An arbitrary vector was
then written as aiei, where the ai are scalar coefficients. Two products were assigned
to these hypernumbers, an inner product

ei ·ej = ej ·ei = δij (1.1)

and an outer product
ei∧ej = −ej∧ei. (1.2)

The result of the outer product was identified as a directed plane segment and
Grassmann extended this concept to include higher-dimensional objects in arbitrary
dimensions. A fact overlooked by many historians of mathematics is that, in his
later years, Grassmann combined his interior and exterior products into a single,
central product [41]. Thus he wrote

ab = a·b+ a∧b, (1.3)

though he employed a different notation. The central product is precisely Clifford’s
product of vectors, which Grassmann arrived at independently from (and slightly
prior to) Clifford. Grassmann’s motivation for introducing this new product
was to show that Hamilton’s quaternion algebra could be embedded within his
own extension algebra. It was through attempting to unify the quaternions and
Grassmann’s algebra into a single mathematical system that Clifford was also led
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to his algebra. Indeed, the paper in which Clifford introduced his algebra is entitled
“Applications of Grassmann’s extensive algebra” [42].

Despite the efforts of these mathematicians to find a simple unified geometric
algebra (Clifford’s name for his algebra), physicists ultimately adopted a hybrid
system, due largely to Gibbs. Gibbs also introduced two products for vectors. His
scalar (inner) product was essentially that of Grassmann, and his vector (cross)
product was abstracted from the quaternions. The vector product of two vectors
was a third, so his algebra was closed and required no additional elements. Gibbs’
algebra proved to be well suited to problems in electromagnetism, and quickly
became popular. This was despite the clear deficiencies of the vector product — it
is not associative and cannot be generalised to higher dimensions. Though special
relativity was only a few years off, this lack of generalisability did not appear to
deter physicists and within a few years Gibbs’ vector algebra had become practically
the exclusive language of vector analysis.

The end result of these events was that Clifford’s algebra was lost amongst the
wealth of new algebras being created in the late 19th century [40]. Few realised
its great promise and, along with the quaternion algebra, it was relegated to the
pages of pure algebra texts. Twenty more years passed before Clifford algebras
were re-discovered by Dirac in his theory of the electron. Dirac arrived at a Clifford
algebra through a very different route to the mathematicians before him. He was
attempting to find an operator whose square was the Laplacian and he hit upon
the matrix operator γµ∂µ, where the γ-matrices satisfy

γµγν + γνγµ = 2Iηµν . (1.4)

Sadly, the connection with vector geometry had been lost by this point, and ever
since the γ-matrices have been thought of as operating on an internal electron spin
space.

There the subject remained, essentially, for a further 30 years. During the interim
period physicists adopted a wide number of new algebraic systems (coordinate
geometry, matrix algebra, tensor algebra, differential forms, spinor calculus), whilst
Clifford algebras were thought to be solely the preserve of electron theory. Then,
during the sixties, two crucial developments dramatically altered the perspective.
The first was made by Atiyah and Singer [43], who realised the importance of
Dirac’s operator in studying manifolds which admitted a global spin structure.
This led them to their famous index theorems, and opened new avenues in the
subjects of geometry and topology. Ever since, Clifford algebras have taken on
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an increasingly more fundamental role and a recent text proclaimed that Clifford
algebras “emerge repeatedly at the very core of an astonishing variety of problems
in geometry and topology” [15].

Whilst the impact of Atiyah’s work was immediate, the second major step taken
in the sixties has been slower in coming to fruition. David Hestenes had an unusual
training as a physicist, having taken his bachelor’s degree in philosophy. He has
often stated that this gave him a different perspective on the role of language in
understanding [27]. Like many theoretical physicists in the sixties, Hestenes worked
on ways to incorporate larger multiplets of particles into the known structures of
field theory. During the course of these investigations he was struck by the idea
that the Dirac matrices could be interpreted as vectors, and this led him to a
number of new insights into the structure and meaning of the Dirac equation and
quantum mechanics in general [27].

The success of this idea led Hestenes to reconsider the wider applicability of
Clifford algebras. He realised that a Clifford algebra is no less than a system
of directed numbers and, as such, is the natural language in which to express a
number of theorems and results from algebra and geometry. Hestenes has spent
many years developing Clifford algebra into a complete language for physics, which
he calls geometric algebra. The reason for preferring this name is not only that it
was Clifford’s original choice, but also that it serves to distinguish Hestenes’ work
from the strictly algebraic studies of many contemporary texts.

During the course of this development, Hestenes identified an issue which
has been paid little attention — that of mathematical design. Mathematics has
grown into an enormous group undertaking, but few people concern themselves
with how the results of this effort should best be organised. Instead, we have a
situation in which a vast range of disparate algebraic systems and techniques are
employed. Consider, for example, the list of algebras employed in theoretical (and
especially particle) physics contained in Table 1.1. Each of these has their own
conventions and their own methods for proving similar results. These algebras were
introduced to tackle specific classes of problem, and each is limited in its overall
scope. Furthermore, there is only a limited degree of integrability between these
systems. The situation is analogous to that in the early years of software design.
Mathematics has, in essence, been designed “bottom-up”. What is required is a
“top-down” approach — a familiar concept in systems design. Such an approach
involves identifying a single algebraic system of maximal scope, coherence and
simplicity which encompasses all of the narrower systems of Table 1.1. This
algebraic system, or language, must be sufficiently general to enable it to formulate
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coordinate geometry spinor calculus
complex analysis Grassmann algebra
vector analysis Berezin calculus
tensor analysis differential forms
Lie algebras twistors
Clifford algebra

Table 1.1: Some algebraic systems employed in modern physics

any result in any of the sub-systems it contains. But it must also be efficient,
so that the interrelations between the subsystems can be clearly seen. Hestenes’
contention is that geometric algebra is precisely the required system. He has shown
how it incorporates many of the systems in Table 1.1, and part of the aim of this
thesis is to fill in some of the remaining gaps.

This “top-down” approach is contrary to the development of much of modern
mathematics, which attempts to tackle each problem with a system which has
the minimum number of axioms. Additional structure is then handled by the
addition of further axioms. For example, employing geometric algebra for problems
in topology is often criticised on the grounds that geometric algebra contains
redundant structure for the problem (in this case a metric derived from the inner
product). But there is considerable merit to seeing mathematics the other way round.
This way, the relationships between fields become clearer, and generalisations are
suggested which could not be seen form the perspective of a more restricted system.
For the case of topology, the subject would be seen in the manner that it was
originally envisaged — as the study of properties of manifolds that are unchanged
under deformations. It is often suggested that the geniuses of mathematics are those
who can see beyond the symbols on the page to their deeper significance. Atiyah, for
example, said that a good mathematician sees analogies between proofs, but a great
mathematician sees analogies between analogies1. Hestenes takes this as evidence
that these people understood the issues of design and saw mathematics “top-down”,
even if it was not formulated as such. By adopting good design principles in the
development of mathematics, the benefits of these insights would be available to
all. Some issues of what constitutes good design are debated at various points in
this introduction, though this subject is only in its infancy.

In conclusion, the subject of geometric algebra is in a curious state. On the
one hand, the algebraic structures keeps reappearing in central ideas in physics,

1I am grateful to Margaret James for this quote.
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geometry and topology, and most mathematicians are now aware of the importance
of Clifford algebras. On the other, there is far less support for Hestenes’ contention
that geometric algebra, built on the framework of Clifford algebra, provides a
unified language for much of modern mathematics. The work in this thesis is
intended to offer support for Hestenes’ ideas.

1.2 Axioms and Definitions
The remaining sections of this chapter form an introduction to geometric algebra
and to the conventions adopted in this thesis. Further details can be found
in “Clifford algebra to geometric calculus” [24], which is the most detailed and
comprehensive text on geometric algebra. More pedagogical introductions are
provided by Hestenes [25, 26] and Vold [44, 45], and [30] contains useful additional
material. The conference report on the second workshop on “Clifford algebras and
their applications in mathematical physics” [46] contains a review of the subject
and ends with a list of recommended texts, though not all of these are relevant to
the material in this thesis.

In deciding how best to define geometric algebra we arrive at our first issue of
mathematical design. Modern mathematics texts (see “Spin Geometry” by H.B
Lawson and M.-L. Michelsohn [15], for example) favour the following definition of a
Clifford algebra. One starts with a vector space V over a commutative field k, and
supposes that q is a quadratic form on V . The tensor algebra of V is defined as

T (V ) =
∞∑
r=0
⊗rV, (1.5)

where ⊗ is the tensor product. One next defines an ideal Iq(V ) in T (V ) generated
by all elements of the form v ⊗ v + q(v)1 for v ∈ V . The Clifford algebra is then
defined as the quotient

Cl(V, q) ≡ T (V )/Iq(V ). (1.6)

This definition is mathematically correct, but has a number of drawbacks:

1. The definition involves the tensor product, ⊗, which has to be defined initially.

2. The definition uses two concepts, tensor algebras and ideals, which are
irrelevant to the properties of the resultant geometric algebra.

3. Deriving the essential properties of the Clifford algebra from (1.6) requires
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further work, and none of these properties are intuitively obvious from the
axioms.

4. The definition is completely useless for introducing geometric algebra to a
physicist or an engineer. It contains too many concepts that are the preserve
of pure mathematics.

Clearly, it is desirable to find an alternative axiomatic basis for geometric algebra
which does not share these deficiencies. The axioms should be consistent with our
ideas of what constitutes good design. The above considerations lead us propose
the following principle:

The axioms of an algebraic system should deal directly with the objects
of interest.

That is to say, the axioms should offer some intuitive feel of the properties of the
system they are defining.

The central properties of a geometric algebra are the grading, which separates
objects into different types, and the associative product between the elements of the
algebra. With these in mind, we adopt the following definition. A geometric algebra
G is a graded linear space, the elements of which are called multivectors. The
grade-0 elements are called scalars and are identified with the field of real numbers
(we will have no cause to consider a geometric algebra over the complex field). The
grade-1 elements are called vectors, and can be thought of as directed line segments.
The elements of G are defined to have an addition, and each graded subspace is
closed under this. A product is also defined which is associative and distributive,
though non-commutative (except for multiplication by a scalar). The final axiom
(which distinguishes a geometric algebra from other associative algebras) is that
the square of any vector is a scalar.

Given two vectors, a and b, we find that

(a+ b)2 = (a+ b)(a+ b)
= a2 + (ab+ ba) + b2. (1.7)

It follows that
ab+ ba = (a+ b)2 − a2 − b2 (1.8)

and hence that (ab+ ba) is also a scalar. The geometric product of 2 vectors a, b
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can therefore be decomposed as

ab = a·b+ a∧b, (1.9)

where
a·b ≡ 1

2(ab+ ba) (1.10)

is the standard scalar, or inner, product (a real scalar), and

a∧b ≡ 1
2(ab− ba) (1.11)

is the antisymmetric outer product of two vectors, originally introduced by Grass-
mann. The outer product of a and b anticommutes with both a and b,

a(a∧b) = 1
2(a2b− aba)

= 1
2(ba2 − aba)

= −1
2(ab− ba)a

= −(a∧b)a, (1.12)

so a∧b cannot contain a scalar component. The axioms are also sufficient to show
that a∧b cannot contain a vector part. If we supposed that a∧b contained a vector
part c, then the symmetrised product of a ∧ b with c would necessarily contain
a scalar part. But c(a ∧ b) + (a ∧ b)c anticommutes with any vector d satisfying
d·a = d·b = d·c = 0, and so cannot contain a scalar component. The result of
the outer product of two vectors is therefore a new object, which is defined to be
grade-2 and is called a bivector. It can be thought of as representing a directed
plane segment containing the vectors a and b. The bivectors form a linear space,
though not all bivectors can be written as the exterior product of two vectors.

The definition of the outer product is extended to give an inductive definition of
the grading for the entire algebra. The procedure is illustrated as follows. Introduce
a third vector c and write

c(a∧b) = 1
2c(ab− ba)

= (a·c)b− (b·c)a− 1
2(acb− bca)

= 2(a·c)b− 2(b·c)a+ 1
2(ab− ba)c, (1.13)

so that
c(a∧b)− (a∧b)c = 2(a·c)b− 2(b·c)a. (1.14)
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The right-hand side of (1.14) is a vector, so one decomposes c(a∧b) into

c(a∧b) = c·(a∧b) + c∧(a∧b) (1.15)

where
c·(a∧b) ≡ 1

2 [c(a∧b)− (a∧b)c] (1.16)

and
c∧(a∧b) ≡ 1

2 [c(a∧b) + (a∧b)c] . (1.17)

The definitions (1.16) and (1.17) extend the definitions of the inner and outer
products to the case where a vector is multiplying a bivector. Again, (1.17) results
in a new object, which is assigned grade-3 and is called a trivector. The axioms are
sufficient to prove that the outer product of a vector with a bivector is associative:

c∧(a∧b) = 1
2 [c(a∧b) + (a∧b)c]

= 1
4 [cab− cba+ abc− bac]

= 1
4 [2(c∧a)b+ acb+ abc+ 2b(c∧a)− bca− cba]

= 1
2 [(c∧a)b+ b(c∧a) + a(b·c)− (b·c)a]

= (c∧a)∧b. (1.18)

The definitions of the inner and outer products are extended to the geometric
product of a vector with a grade-r multivector Ar as,

aAr = a·Ar + a∧Ar (1.19)

where the inner product

a·Ar ≡ 〈aAr〉r−1 = 1
2(aAr − (−1)rAra) (1.20)

lowers the grade of Ar by one and the outer (exterior) product

a∧Ar ≡ 〈aAr〉r+1 = 1
2(aAr + (−1)rAra) (1.21)

raises the grade by one. We have used the notation 〈A〉r to denote the result of
the operation of taking the grade-r part of A (this is a projection operation). As a
further abbreviation we write the scalar (grade 0) part of A simply as 〈A〉.

The entire multivector algebra can be built up by repeated multiplication
of vectors. Multivectors which contain elements of only one grade are termed
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homogeneous, and will usually be written as Ar to show that A contains only a
grade-r component. Homogeneous multivectors which can be expressed purely as
the outer product of a set of (independent) vectors are termed blades.

The geometric product of two multivectors is (by definition) associative, and for
two homogeneous multivectors of grade r and s this product can be decomposed
as follows:

ArBs = 〈AB〉r+s + 〈AB〉r+s−2 . . .+ 〈AB〉|r−s|. (1.22)

The “·” and “∧” symbols are retained for the lowest-grade and highest-grade terms
of this series, so that

Ar ·Bs ≡ 〈AB〉|s−r| (1.23)
Ar∧Bs ≡ 〈AB〉s+r, (1.24)

which we call the interior and exterior products respectively. The exterior product
is associative, and satisfies the symmetry property

Ar∧Bs = (−1)rsBs∧Ar. (1.25)

An important operation which can be performed on multivectors is reversion,
which reverses the order of vectors in any multivector. The result of reversing the
multivector A is written Ã, and is called the reverse of A. The reverse of a vector
is the vector itself, and for a product of multivectors we have that

(AB)̃ = B̃Ã. (1.26)

It can be checked that for homogeneous multivectors

Ãr = (−1)r(r−1)/2Ar. (1.27)

It is useful to define two further products from the geometric product. The first
is the scalar product

A∗B ≡ 〈AB〉. (1.28)

This is commutative, and satisfies the useful cyclic-reordering property

〈A . . . BC〉 = 〈CA . . . B〉. (1.29)
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In positive definite spaces the scalar product defines the modulus function

|A| ≡ (A∗A)1/2. (1.30)

The second new product is the commutator product, defined by

A×B ≡ 1
2(AB −BA). (1.31)

The associativity of the geometric product ensures that the commutator product
satisfies the Jacobi identity

A×(B×C) +B×(C×A) + C×(A×B) = 0. (1.32)

Finally, we introduce an operator ordering convention. In the absence of brackets,
inner, outer and scalar products take precedence over geometric products. Thus a·bc
means (a·b)c and not a·(bc). This convention helps to eliminate unruly numbers of
brackets. Summation convention is also used throughout this thesis.

One can now derive a vast number of properties of multivectors, as is done
in Chapter 1 of [24]. But before proceeding, it is worthwhile stepping back and
looking at the system we have defined. In particular, we need to see that the
axioms have produced a system with sensible properties that match our intuitions
about physical space and geometry in general.

1.2.1 The Geometric Product
Our axioms have led us to an associative product for vectors, ab = a·b+ a∧b. We
call this the geometric product. It has the following two properties:

• Parallel vectors (e.g. a and αa) commute, and the the geometric product of
parallel vectors is a scalar. Such a product is used, for example, when finding
the length of a vector.

• Perpendicular vectors (a, b where a·b = 0) anticommute, and the geometric
product of perpendicular vectors is a bivector. This is a directed plane
segment, or directed area, containing the vectors a and b.

Independently, these two features of the algebra are quite sensible. It is therefore
reasonable to suppose that the product of vectors that are neither parallel nor
perpendicular should contain both scalar and bivector parts.
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But what does it mean to add a scalar to a bivector?

This is the point which regularly causes the most confusion (see [47], for
example). Adding together a scalar and a bivector doesn’t seem right — they are
different types of quantities. But this is exactly what you do want addition to do.
The result of adding a scalar to a bivector is an object that has both scalar and
bivector parts, in exactly the same way that the addition of real and imaginary
numbers yields an object with both real and imaginary parts. We call this latter
object a “complex number” and, in the same way, we refer to a (scalar+bivector)
as a “multivector”, accepting throughout that we are combining objects of different
types. The addition of scalar and bivector does not result in a single new quantity
in the same way as 2 + 3 = 5; we are simply keeping track of separate components
in the symbol ab = a·b+ a∧b or z = x+ iy. This type of addition, of objects from
separate linear spaces, could be given the symbol ⊕, but it should be evident from
our experience of complex numbers that it is harmless, and more convenient, to
extend the definition of addition and use the ordinary + sign.

Further insights are gained by the construction of explicit algebras for finite
dimensional spaces. This is achieved most simply through the introduction of an
orthonormal frame of vectors {σi} satisfying

σi ·σj = δij (1.33)

or
σiσj + σjσi = 2δij. (1.34)

This is the conventional starting point for the matrix representation theory of finite
Clifford algebras [13, 48]. It is also the usual route by which Clifford algebras
enter particle physics, though there the {σi} are thought of as operators, and
not as orthonormal vectors. The geometric algebra we have defined is associative
and any associative algebra can be represented as a matrix algebra, so why not
define a geometric algebra as a matrix algebra? There are a number of flaws
with this approach, which Hestenes has frequently drawn attention to [26]. The
approach fails, in particular, when geometric algebra is used to study projectively
and conformally related geometries [31]. There, one needs to be able to move
freely between different dimensional spaces. Matrix representations are too rigid to
achieve this satisfactorily. An example of this will be encountered shortly.

There is a further reason for preferring not to introduce Clifford algebras via
their matrix representations. It is related to our second principle of good design,
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which is that

the axioms af an algebraic system should not introduce redundant struc-
ture.

The introduction of matrices is redundant because all geometrically meaningful
results exist independently of any matrix representations. Quite simply, matrices
are irrelevant for the development of geometric algebra.

The introduction of a basis set of n independent, orthonormal vectors {σi}
defines a basis for the entire algebra generated by these vectors:

1, {σi}, {σi∧σj}, {σi∧σj∧σk}, . . . , σ1∧σ2 . . .∧σn ≡ I. (1.35)

Any multivector can now be expanded in this basis, though one of the strengths of
geometric algebra is that it possible to carry out many calculations in a basis-free
way. Many examples of this will be presented in this thesis,

The highest-grade blade in the algebra (1.35) is given the name “pseudoscalar”
(or directed volume element) and is of special significance in geometric algebra. Its
unit is given the special symbol I (or i in three or four dimensions). It is a pure
blade, and a knowledge of I is sufficient to specify the vector space over which the
algebra is defined (see [24, Chapter 1]). The pseudoscalar also defines the duality
operation for the algebra, since multiplication of a grade-r multivector by I results
in a grade-(n− r) multivector.

1.2.2 The Geometric Algebra of the Plane
A 1-dimensional space has insufficient geometric structure to be interesting, so we
start in two dimensions, taking two orthonormal basis vectors σ1 and σ2. These
satisfy the relations

(σ1)2 = 1 (1.36)
(σ2)2 = 1 (1.37)

and
σ1 ·σ2 = 0. (1.38)

The outer product σ1 ∧ σ2 represents the directed area element of the plane and
we assume that σ1, σ2 are chosen such that this has the conventional right-handed
orientation. This completes the geometrically meaningful quantities that we can
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make from these basis vectors:

1,
scalar

{σ1, σ2},
vectors

σ1∧σ2.

bivector (1.39)

Any multivector can be expanded in terms of these four basis elements. Addition
of multivectors simply adds the coefficients of each component. The interesting
expressions are those involving products of the bivector σ1∧σ2 = σ1σ2. We find
that

(σ1σ2)σ1 = −σ2σ1σ1 = −σ2,

(σ1σ2)σ2 = σ1
(1.40)

and
σ1(σ1σ2) = σ2

σ2(σ1σ2) = −σ1.
(1.41)

The only other product to consider is the square of σ1∧σ2,

(σ1∧σ2)2 = σ1σ2σ1σ2 = −σ1σ1σ2σ2 = −1. (1.42)

These results complete the list of the products in the algebra. In order to be
completely explicit, consider how two arbitrary multivectors are multiplied. Let

A = a0 + a1σ1 + a2σ2 + a3σ1∧σ2 (1.43)
B = b0 + b1σ1 + b2σ2 + b3σ1∧σ2, (1.44)

then we find that
AB = p0 + p1σ1 + p2σ2 + p3σ1∧σ2, (1.45)

where
p0 = a0b0 + a1b1 + a2b2 − a3b3,

p1 = a0b1 + a1b0 + a3b2 − a2b3,

p2 = a0b2 + a2b0 + a1b3 − a3b1,

p3 = a0b3 + a3b0 + a1b2 − a2b1.

(1.46)

Calculations rarely have to be performed in this detail, but this exercise does serve
to illustrate how geometric algebras can be made intrinsic to a computer language.
One can even think of (1.46) as generalising Hamilton’s concept of complex numbers
as ordered pairs of real numbers.

The square of the bivector σ1∧σ2 is −1, so the even-grade elements z = x+yσ1σ2
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form a natural subalgebra, equivalent to the complex numbers. Furthermore, σ1∧σ2

has the geometric effect of rotating the vectors {σ1, σ2} in their own plane by
90◦ clockwise when multiplying them on their left. It rotates vectors by 90◦
anticlockwise when multiplying on their right. (This can be used to define the
orientation of σ1 and σ2).

The equivalence between the even subalgebra and complex numbers reveals
a new interpretation of the structure of the Argand diagram. From any vector
r = xσ1 + yσ2 we can form an even multivector z by

z ≡ σ1r = x+ Iy, (1.47)

where
I ≡ σ1σ2. (1.48)

There is therefore a one-to-one correspondence between points in the Argand
diagram and vectors in two dimensions,

r = σ1z, (1.49)

where the vector σ1 defines the real axis. Complex conjugation,

z∗ ≡ z̃ = rσ1 = x− Iy, (1.50)

now appears as the natural operation of reversion for the even multivector z. Taking
the complex conjugate of z results in a new vector r∗ given by

r∗ = σ1z̃

= (zσ1)̃
= (σ1rσ1)̃
= σ1rσ1

= −σ2rσ2. (1.51)

We will shortly see that equation (1.51) is the geometric algebra representation of a
reflection in the σ1 axis. This is precisely what one expects for complex conjugation.

This identification of points on the Argand diagram with (Clifford) vectors gives
additional operational significance to complex numbers of the form exp(iθ). The
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even multivector equivalent of this is exp(Iθ), and applied to z gives

eIθz = eIθσ1r

= σ1e
−Iθr. (1.52)

But we can now remove the σ1, and work entirely in the (real) Euclidean plane.
Thus

r′ = e−Iθr (1.53)

rotates the vector r anticlockwise through an angle θ. This can be verified from
the fact that

e−Iθσ1 = (cos θ − sin θI)σ1 = cos θ σ1 + sin θσ2 (1.54)

and
e−Iθσ2 = cos θ σ2 − sin θσ1. (1.55)

Viewed as even elements in the 2-dimensional geometric algebra, exponentials of
“imaginaries” generate rotations of real vectors. Thinking of the unit imaginary as
being a directed plane segment removes much of the mystery behind the usage of
complex numbers. Furthermore, exponentials of bivectors provide a very general
method for handling rotations in geometric algebra, as is shown in Chapter 3.

1.2.3 The Geometric Algebra of Space
If we now add a third orthonormal vector σ3 to our basis set, we generate the
following geometric objects:

1,
scalar

{σ1, σ2, σ3},
3 vectors

{σ1σ2, σ2σ3, σ3σ1},
3 bivectors

area elements

σ1σ2σ3.

trivector
volume element

(1.56)

From these objects we form a linear space of (1 + 3 + 3 + 1) = 8 = 23 dimensions.
Many of the properties of this algebra are shared with the 2-dimensional case since
the subsets {σ1, σ2}, {σ2, σ3} and {σ3, σ1} generate 2-dimensional subalgebras. The
new geometric products to consider are

(σ1σ2)σ3 = σ1σ2σ3,

(σ1σ2σ3)σk = σk(σ1σ2σ3) (1.57)
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and
(σ1σ2σ3)2 = σ1σ2σ3σ1σ2σ3 = σ1σ2σ1σ2σ

2
3 = −1. (1.58)

These relations lead to new geometric insights:

• A simple bivector rotates vectors in its own plane by 90◦, but forms trivectors
(volumes) with vectors perpendicular to it.

• The trivector σ1∧σ2∧σ3 commutes with all vectors, and hence with all
multivectors.

The trivector (pseudoscalar) σ1σ2σ3 also has the algebraic property of squaring
to −1. In fact, of the eight geometrical objects, four have negative square, {σ1σ2,
σ2σ3, σ3σ1} and σ1σ2σ3. Of these, the pseudoscalar σ1σ2σ3 is distinguished by
its commutation properties and in view of these properties we give it the special
symbol i,

i ≡ σ1σ2σ3. (1.59)

It should be quite clear, however, that the symbol i is used to stand for a pseu-
doscalar and therefore cannot be used for the commutative scalar imaginary used,
for example, in quantum mechanics. Instead, the symbol j is used for this unin-
terpreted imaginary, consistent with existing usage in engineering. The definition
(1.59) will be consistent with our later extension to 4-dimensional spacetime.

The algebra of 3-dimensional space is the Pauli algebra familiar from quantum
mechanics. This can be seen by multiplying the pseudoscalar in turn by σ3, σ1 and
σ2 to find

(σ1σ2σ3)σ3 = σ1σ2 = iσ3,

σ2σ3 = iσ1,

σ3σ1 = iσ2,

(1.60)

which is immediately identifiable as the algebra of Pauli spin matrices. But we
have arrived at this algebra from a totally different route, and the various elements
in it have very different meanings to those assigned in quantum mechanics. Since
3-dimensional space is closest to our perception of the world, it is worth emphasising
the geometry of this algebra in greater detail. A general multivector M consists of
the components

M = α

scalar
+ a

vector
+ ib

bivector
+ iβ

pseudoscalar
(1.61)
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Figure 1.1: Pictorial representation of the elements of the Pauli algebra.

where a ≡ akσk and b ≡ bkσk. The reason for writing spatial vectors in bold type
is to maintain a visible difference between spatial vectors and spacetime 4-vectors.
This distinction will become clearer when we consider relativistic physics. The
meaning of the {σk} is always unambiguous, so these are not written in bold type.

Each of the terms in (1.61) has a separate geometric significance:

1. scalars are physical quantities with magnitude but no spatial extent. Examples
are mass, charge and the number of words in this thesis.

2. vectors have both a magnitude and a direction. Examples include relative
positions, displacements and velocities.

3. bivectors have a magnitude and an orientation. They do not have a shape. In
Figure 1.2.3 the bivector a∧b is represented as a parallelogram, but any other
shape could have been chosen. In many ways a circle is more appropriate,
since it suggests the idea of sweeping round from the a direction to the b

direction. Examples of bivectors include angular momentum and any other
object that is usually represented as an “axial” vector.

4. trivectors have simply a handedness and a magnitude. The handedness tells
whether the vectors in the product a∧b∧c form a left-handed or right-
handed set. Examples include the scalar triple product and, more generally,
alternating tensors.

These four objects are represented pictorially in Figure 1.2.3. Further details and
discussions are contained in [25] and [44].

The space of even-grade elements of the Pauli algebra,

ψ = α + ib, (1.62)

21



is closed under multiplication and forms a representation of the quarternion algebra.
Explicitly, identifying i, j, k with iσ1, −iσ2, iσ3 respectively, the usual quarternion
relations are recovered, including the famous formula

i2 = j2 = k2 = ijk = −1. (1.63)

The quaternion algebra sits neatly inside the geometric algebra of space and, seen
in this way, the i, j and k do indeed generate 90◦ rotations in three orthogonal
directions. Unsurprisingly, this algebra proves to be ideal for representing arbitrary
rotations in three dimensions.

Finally, for this section, we recover Gibbs’ cross product. Since the × and ∧
symbols have already been assigned meanings, we will use the ⊥ symbol for the
Gibbs’ product. This notation will not be needed anywhere else in this thesis. The
Gibbs’ product is given by an outer product together with a duality operation
(multiplication by the pseudoscalar),

a ⊥ b ≡ −ia∧b. (1.64)

The duality operation in three dimensions interchanges a plane with a vector
orthogonal to it (in a right-handed sense). In the mathematical literature this
operation goes under the name of the Hodge dual. Quantities like a or b would
conventionally be called “polar vectors”, while the “axial vectors” which result from
cross-products can now be seen to be disguised versions of bivectors. The vector
triple product a ⊥ (b ⊥ c) becomes −a·(b∧c), which is the 3-dimensional form of
an expression which is now legitimate in arbitrary dimensions. We therefore drop
the restriction of being in 3-dimensional space and write

a·(b∧c) = 1
2(ab∧c− b∧ca) (1.65)

= a·bc− a·cb (1.66)

where we have recalled equation (1.14).

1.2.4 Reflections and Rotations
One of the clearest illustrations of the power of geometric algebra is the way in
which it deals with reflections and rotations. The key to this approach is that,
given any unit vector n (n2 = 1), an arbitrary vector a can be resolved into parts
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parallel and perpendicular to n,

a = n2a

= n(n·a+ n∧a)
= a‖ + a⊥, (1.67)

where

a‖ = a·nn (1.68)
a⊥ = nn∧a. (1.69)

The result of reflecting a in the hyperplane orthogonal to n is the vector a⊥ − a‖,
which can be written as

a⊥ − a‖ = nn∧a− a·nn
= −n·an− n∧an
= −nan. (1.70)

This formula for a reflection extends to arbitrary multivectors. For example, if
the vectors a and b are both reflected in the hyperplane orthogonal to n, then the
bivector a∧b is reflected to

(−nan)∧(−nbn) = 1
2(nannbn− nbnnan)

= na∧bn. (1.71)

In three dimensions, the sign difference between the formulae for vectors and
bivectors accounts for the different behaviour of “polar” and “axial” vectors under
reflections.

Rotations are built from pairs of reflections. Taking a reflection first in the
hyperplane orthogonal to n, and then in the hyperplane orthogonal to m, leads to
the new vector

−m(−nan)m = mnanm

= RaR̃ (1.72)

where
R ≡ mn. (1.73)
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Figure 1.2: A rotation composed of two reflections.

The multivector R is called a rotor. It contains only even-grade elements and
satisfies the identity

RR̃ = R̃R = 1. (1.74)

Equation (1.74) ensures that the scalar product of two vectors is invariant under
rotations,

(RaR̃)·(RbR̃) = 〈RaR̃RbR̃〉
= 〈aR̃RbR̃R〉
= 〈ab〉
= a·b. (1.75)

As an example, consider rotating the unit vector a into another unit vector
b, leaving all vectors perpendicular to a and b unchanged. This is accomplished
by a reflection perpendicular to the unit vector half-way between a and b (see
Figure 1.2.4)

n ≡ (a+ b)/|a+ b|. (1.76)

This reflects a into −b. A second reflection is needed to then bring this to b, which
must take place in the hyperplane perpendicular to b. Together, these give the
rotor

R = bn = 1 + ba

|a+ b|
= 1 + ba√

2(1 + b·a)
, (1.77)
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which represents a simple rotation in the a∧b plane. The rotation is written

b = RaR̃, (1.78)

and the inverse transformation is given by

a = R̃bR. (1.79)

The transformation a 7→ RaR̃ is a very general way of handling rotations. In
deriving this transformation the dimensionality of the space of vectors was at no
point specified. As a result, the transformation law works for all spaces, whatever
dimension. Furthermore, it works for all types of geometric object, whatever grade.
We can see this by considering the image of the product ab when the vectors a and
b are both rotated. In this case, ab is rotated to

RaR̃RbR̃ = RabR̃. (1.80)

In dimensions higher than 5, an arbitrary even element satisfying (1.74) does
not necessarily map vectors to vectors and will not always represent a rotation.
The name “rotor” is then retained only for the even elements that do give rise to
rotations. It can be shown that all (simply connected) rotors can be written in the
form

R = ±eB/2, (1.81)

where B is a bivector representing the plane in which the rotation is taking place.
(This representation for a rotor is discussed more fully in Chapter 3.) The quantity

b = eαB/2ae−αB/2 (1.82)

is seen to be a pure vector by Taylor expanding in α,

b = a+ αB ·a+ α2

2! B ·(B ·a) + · · · . (1.83)

The right-hand side of (1.83) is a vector since the inner product of a vector with a
bivector is always a vector (1.14). This method of representing rotations directly
in terms of the plane in which they take place is very powerful. Equations (1.54)
and (1.55) illustrated this in two dimensions, where the quantity exp(−Iθ) was
seen to rotate vectors anticlockwise through an angle θ. This works because in two
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dimensions we can always write

e−Iθ/2reIθ/2 = e−Iθr. (1.84)

In higher dimensions the double-sided (bilinear) transformation law (1.78) is
required. This is much easier to use than a one-sided rotation matrix, because
the latter becomes more complicated as the number of dimensions increases. This
becomes clearer in three dimensions. The rotor

R ≡ exp(−ia/2) = cos(|a|/2)− i a

|a|
sin(|a|/2) (1.85)

represents a rotation of |a| = (a2)1/2 radians about the axis along the direction of a.
This is already simpler to work with than 3×3 matrices. In fact, the representation
of a rotation by (1.85) is precisely how rotations are represented in the quaternion
algebra, which is well-known to be advantageous in three dimensions. In higher
dimensions the improvements are even more dramatic.

Having seen how individual rotors are used to represent rotations, we must look
at their composition law. Let the rotor R transform the unit vector a into a vector
b,

b = RaR̃. (1.86)

Now rotate b into another vector b′, using a rotor R′. This requires

b′ = R′bR̃′ = (R′R)a(R′R)̃ (1.87)

so that the transformation is characterised by

R 7→ R′R, (1.88)

which is the (left-sided) group combination rule for rotors. It is immediately clear
that the product of two rotors is a third rotor,

R′R(R′R)̃ = R′RR̃R̃′ = R′R̃′ = 1, (1.89)

so that the rotors do indeed form a (Lie) group.
The usefulness of rotors provides ample justification for adding up terms of

different grades. The rotor R on its own has no geometric significance, which is to
say that no meaning should be attached to the individual scalar, bivector, 4-vector
. . . parts of R. When R is written in the form R = ±eB/2, however, the bivector
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B has clear geometric significance, as does the vector formed from RaR̃. This
illustrates a central feature of geometric algebra, which is that both geometrically
meaningful objects (vectors, planes . . . ) and the elements that act on them (rotors,
spinors . . . ) are represented in the same algebra.

1.2.5 The Geometric Algebra of Spacetime
As a final example, we consider the geometric algebra of spacetime. This algebra is
sufficiently important to deserve its own name — spacetime algebra — which we will
usually abbreviate to STA. The square of a vector is no longer positive definite, and
we say that a vector x is timelike, lightlike or spacelike according to whether x2 > 0,
x2 = 0 or x2 < 0 respectively. Spacetime consists of a single independent timelike
direction, and three independent spacelike directions. The spacetime algebra is
then generated by a set of orthonormal vectors {γµ}, µ = 0 . . . 3, satisfying

γµ ·γν = ηµν = diag(+ − − −). (1.90)

(The significance of the choice of metric signature will be discussed in Chapter 4.)
The full STA is 16-dimensional, and is spanned by the basis

1, {γµ} {σk, iσk}, {iγµ}, i. (1.91)

The spacetime bivectors {σk}, k = 1 . . . 3 are defined by

σk ≡ γkγ0. (1.92)

They form an orthonormal frame of vectors in the space relative to the γ0 direction.
The spacetime pseudoscalar i is defined by

i ≡ γ0γ1γ2γ3 (1.93)

and, since we are in a space of even dimension, i anticommutes with all odd-grade
elements and commutes with all even-grade elements. It follows from (1.92) that

σ1σ2σ3 = γ1γ0γ2γ0γ3γ0 = γ0γ1γ2γ3 = i. (1.94)

The following geometric significance is attached to these relations. An inertial
system is completely characterised by a future-pointing timelike (unit) vector. We
take this to be the γ0 direction. This vector/observer determines a map between
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spacetime vectors a = aµγµ and the even subalgebra of the full STA via

aγ0 = a0 + a (1.95)

where

a0 = a·γ0 (1.96)
a = a∧γ0. (1.97)

The even subalgebra of the STA is isomorphic to the Pauli algebra of space defined
in Section 1.2.3. This is seen from the fact that the σk = γkγ0 all square to +1,

σk
2 = γkγ0γkγ0 = −γkγkγ0γ0 = +1, (1.98)

and anticommute,

σjσk = γjγ0γkγ0 = γkγjγ0γ0 = −γkγ0γjγ0 = −σkσj (j 6= k). (1.99)

There is more to this equivalence than simply a mathematical isomorphism. The
way we think of a vector is as a line segment existing for a period of time. It is
therefore sensible that what we perceive as a vector should be represented by a
spacetime bivector. In this way the algebraic properties of space are determined by
those of spacetime.

As an example, if x is the spacetime (four)-vector specifying the position of
some point or event, then the “spacetime split” into the γ0-frame gives

xγ0 = t+ x, (1.100)

which defines an observer time
t = x·γ0 (1.101)

and a relative position vector
x = x∧γ0. (1.102)

One useful feature of this approach is the way in which it handles Lorentz-scalar
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quantities. The scalar x2 can be decomposed into

x2 = xγ0γ0x

= (t+ x)(t− x)
= t2 − x2, (1.103)

which must also be a scalar. The quantity t2 − x2 is now seen to be automatically
Lorentz-invariant, without needing to consider a Lorentz transformation.

The split of the six spacetime bivectors into relative vectors and relative bivectors
is a frame/observer-dependent operation. This can be illustrated with the Faraday
bivector F = 1

2F
µνγµ∧γν , which is a full, 6-component spacetime bivector. The

spacetime split of F into the γ0-system is achieved by separating F into parts
which anticommute and commute with γ0. Thus

F = E + iB, (1.104)

where

E = 1
2(F − γ0Fγ0) (1.105)

iB = 1
2(F + γ0Fγ0). (1.106)

Here, both E and B are spatial vectors, and iB is a spatial bivector. This
decomposes F into separate electric and magnetic fields, and the explicit appearance
of γ0 in the formulae for E and B shows that this split is observer-dependent. In
fact, the identification of spatial vectors with spacetime bivectors has always been
implicit in the physics of electromagnetism through formulae like Ek = Fk0.

The decomposition (1.104) is useful for constructing relativistic invariants from
the E and B fields. Since F 2 contains only scalar and pseudoscalar parts, the
quantity

F 2 = (E + iB)(E + iB)
= E2 −B2 + 2iE ·B (1.107)

is Lorentz-invariant. It follows that both E2 −B2 and E ·B are observer-invariant
quantities.

Equation (1.94) is an important geometric identity, which shows that relative
space and spacetime share the same pseudoscalar i. It also exposes the weakness
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of the matrix-based approach to Clifford algebras. The relation

σ1σ2σ3 = i = γ0γ1γ2γ3 (1.108)

cannot be formulated in conventional matrix terms, since it would need to relate
the 2× 2 Pauli matrices to 4× 4 Dirac matrices. Whilst we borrow the symbols
for the Dirac and Pauli matrices, it must be kept in mind that the symbols are
being used in a quite different context — they represent a frame of orthonormal
vectors rather than representing individual components of a single isospace vector.

The identification of relative space with the even subalgebra of the STA ne-
cessitates developing a set of conventions which articulate smoothly between the
two algebras. This problem will be dealt with in more detail in Chapter 4, though
one convention has already been introduced. Relative (or spatial) vectors in the
γ0-system are written in bold type to record the fact that in the STA they are
actually bivectors. This distinguishes them from spacetime vectors, which are left
in normal type. No problems can arise for the {σk}, which are unambiguously
spacetime bivectors, so these are also left in normal type. The STA will be returned
to in Chapter 4 and will then be used throughout the remainder of this thesis. We
will encounter many further examples of its utility and power.

1.3 Linear Algebra
We have illustrated a number of the properties of geometric algebra, and have given
explicit constructions in two, three and four dimensions. This introduction to the
properties of geometric algebra is now concluded by developing an approach to the
study of linear functions and non-orthonormal frames.

1.3.1 Linear Functions and the Outermorphism
Geometric algebra offers many advantages when used for developing the theory of
linear functions. This subject is discussed in some detail in Chapter 3 of “Clifford
algebra to geometric calculus” [24], and also in [2] and [30]. The approach is
illustrated by taking a linear function f(a) mapping vectors to vectors in the same
space. This function in extended via outermorphism to act linearly on multivectors
as follows,

f(a∧b∧. . .∧c) ≡ f(a)∧f(b) . . .∧f(c). (1.109)
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The underbar on f shows that f has been constructed from the linear function f .
The definition (1.109) ensures that f is a grade-preserving linear function mapping
multivectors to multivectors.

An example of an outermorphism was encountered in Section 1.2.4, where we
considered how multivectors behave under rotations. The action of a rotation on a
vector a was written as

R(a) = eB/2ae−B/2, (1.110)

where B is the plane(s) of rotation. The outermorphism extension of this is simply

R(A) = eB/2Ae−B/2. (1.111)

An important property of the outermorphism is that the outermorphism of the
product of two functions in the product of the outermorphisms,

f [g(a)]∧f [g(b)] . . .∧f [g(c)] = f [g(a)∧g(b) . . .∧g(c)]
= f [g(a∧b∧. . .∧c)]. (1.112)

To ease notation, the product of two functions will be written simply as f g(A), so
that (1.112) becomes

fg(a)∧fg(b) . . .∧fg(c) = f g(a∧b∧. . .∧c). (1.113)

The pseudoscalar of an algebra is unique up to a scale factor, and this is used
to define the determinant of a linear function via

det(f) ≡ f(I)I−1, (1.114)

so that
f(I) = det(f)I. (1.115)

This definition clearly illustrates the role of the determinant as the volume scale
factor. The definition also serves to give a very quick proof of one of the most
important properties of determinants. It follows from (1.113) that

f g(I) = f(det(g)I)
= det(g)f(I)
= det(f) det(g)I (1.116)
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and hence that
det(fg) = det(f) det(g). (1.117)

This proof of the product rule for determinants illustrates our third (and final)
principle of good design:

Definitions should be chosen so that the most important theorems can
be proven most economically.

The definition of the determinant clearly satisfies this criteria. Indeed, it is not
hard to see that all of the main properties of determinants follow quickly from
(1.115).

The adjoint to f , written as f , is defined by

f(a) ≡ ei〈f(ei)a〉 (1.118)

where {ei} is an arbitrary frame of vectors, with reciprocal frame {ei}. A frame-
invariant definition of the adjoint can be given using the vector derivative, but we
have chosen not to introduce multivector calculus until Chapter 5. The definition
(1.118) ensures that

b·f(a) = a·(b·eif(ei))
= a·f(b). (1.119)

A symmetric function is one for which f = f .
The adjoint also extends via outermorphism and we find that, for example,

f(a∧b) = f(a)∧f(b)
= ei∧eja·f(ei)b·f(ej)
= 1

2e
i∧ej

(
a·f(ei)b·f(ej)− a·f(ej)b·f(ei)

)
= 1

2e
i∧ej(a∧b)·f(ej∧ei). (1.120)

By using the same argument as in equation (1.119), it follows that

〈f(A)B〉 = 〈Af(B)〉 (1.121)
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for all multivectors A and B. An immediate consequence is that

det f = 〈I−1f(I)〉
= 〈f(I−1)I〉
= det f. (1.122)

Equation (1.121) turns out to be a special case of the more general formulae,

Ar ·f(Bs) = f [f(Ar)·Bs] r ≤ s

f(Ar)·Bs = f [Ar ·f(Bs)] r ≥ s,
(1.123)

which are derived in [24, Chapter 3].
As an example of the use of (1.123) we find that

f(f(AI)I−1) = AIf(I−1) = A det f, (1.124)

which is used to construct the inverse functions,

f−1(A) = det(f)−1f(AI)I−1

f
−1(A) = det(f)−1I−1f(IA).

(1.125)

These equations show how the inverse function is constructed from a double-
duality operation. They are also considerably more compact and efficient than any
matrix-based formula for the inverse.

Finally, the concept of an eigenvector is generalized to that of an eigenblade
Ar, which is an r-grade blade satisfying

f(Ar) = αAr, (1.126)

where α is a real eigenvalue. Complex eigenvalues are in general not considered,
since these usually loose some important aspect of the geometry of the function f .
As an example, consider a function f satisfying

f(a) = b

f(b) = −a, (1.127)

for some pair of vectors a and b. Conventionally, one might write

f(a+ jb) = −j(a+ jb) (1.128)
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and say that a+ bj is an eigenvector with eigenvalue −j. But in geometric algebra
one can instead write

f(a∧b) = b∧(−a) = a∧b, (1.129)

which shows that a∧b is an eigenblade with eigenvalue +1. This is a geometrically
more useful result, since it shows that the a∧b plane is an invariant plane of f .
The unit blade in this plane generates its own complex structure, which is the more
appropriate object for considering the properties of f .

1.3.2 Non-Orthonormal Frames
At various points in this thesis we will make use of non-orthonormal frames, so a
number of their properties are summarised here. From a set of n vectors {ei}, we
define the pseudoscalar

En = e1∧e2∧. . .∧en. (1.130)

The set {ei} constitute a (non-orthonormal) frame provided En 6= 0. The reciprocal
frame {ei} satisfies

ei ·ej = δij, (1.131)

and is constructed via [24, Chapter 1]

ei = (−1)i−1e1∧. . . ěi . . .∧enEn, (1.132)

where the check symbol on ěi signifies that this vector is missing from the product.
En is the pseudoscalar for the reciprocal frame, and is defined by

En = en∧en−1∧. . .∧e1. (1.133)

The two pseudoscalars En and En satisfy

EnE
n = 1, (1.134)

and hence
En = En/(En)2. (1.135)

The components of the vector a in the ei frame are given by a·ei, so that

a = (a·ei)ei, (1.136)
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from which we find that

2a = 2a·eiei

= eiae
i + aeie

i

= eiae
i + na. (1.137)

The fact that eiei = n follows from (1.131) and (1.132). From (1.137) we find that

eiae
i = (2− n)a, (1.138)

which extends for a multivector of grade r to give the useful results:

eiAre
i = (−1)r(n− 2r)Ar,

ei(ei ·Ar) = rAr, (1.139)
ei(ei∧Ar) = (n− r)Ar.

For convenience, we now specialise to positive definite spaces. The results
below are easily extended to arbitrary spaces through the introduction of a metric
indicator function [28]. A symmetric metric tensor g can be defined by

g(ei) = ei, (1.140)

so that, as a matrix, it has components

gij = ei ·ej. (1.141)

Since
g(En) = Ẽn, (1.142)

it follows from (1.115) that

det(g) = EnẼn = |En|2. (1.143)

It is often convenient to work with the fiducial frame {σk}, which is the
orthonormal frame determined by the {ei} via

ek = h(σk) (1.144)

where h is the unique, symmetric fiducial tensor. The requirement that h be
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symmetric means that the {σk} frame must satisfy

σk ·ej = σj ·ek, (1.145)

which, together with orthonormality, defines a set of n2 equations that determine
the σk (and hence h) uniquely, up to permutation. These permutations only alter
the labels for the frame vectors, and do not re-define the frame itself. From (1.144)
it follows that

ej ·ek = h(ej)·σk = δjk (1.146)

so that
h(ej) = σj = σj. (1.147)

(We are working in a positive definite space, so σj = σj for the orthonormal frame
{σj}.) It can now be seen that h is the “square-root” of g,

g(ej) = ej = h(σj) = h2(ej). (1.148)

It follows that
det(h) = |En|. (1.149)

The fiducial tensor, together with other non-symmetric square-roots of the metric
tensor, find many applications in the geometric calculus approach to differential
geometry [28]. We will also encounter a similar object in Chapter 7.

We have now seen that geometric algebra does indeed offer a natural language
for encoding many of our geometric perceptions. Furthermore, the formulae for
reflections and rotations have given ample justification to the view that the Clifford
product is a fundamental aspect of geometry. Explicit construction in two, three
and four dimensions has shown how geometric algebra naturally encompasses the
more restricted algebraic systems of complex and quaternionic numbers. It should
also be clear from the preceding section that geometric algebra encompasses both
matrix and tensor algebra. The following three chapters are investigations into
how geometric algebra encompasses a number of further algebraic systems.
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Chapter 2

Grassmann Algebra and Berezin
Calculus

This chapter outlines the basis of a translation between Grassmann calculus and
geometric algebra. It is shown that geometric algebra is sufficient to formulate all
of the required concepts, thus integrating them into a single unifying framework.
The translation is illustrated with two examples, the “Grauss integral” and the
“Grassmann Fourier transform”. The latter demonstrates the full potential of the
geometric algebra approach. The chapter concludes with a discussion of some
further developments and applications. Some of the results presented in this chapter
first appeared in the paper “Grassmann calculus, pseudoclassical mechanics and
geometric algebra” [1].

2.1 Grassmann Algebra versus Clifford Algebra
The modern development of mathematics has led to the popularly held view that
Grassmann algebra is more fundamental than Clifford algebra. This view is based
on the idea (recall Section 1.2) that a Clifford algebra is the algebra of a quadratic
form. But, whilst it is true that every (symmetric) quadratic form defines a Clifford
algebra, it is certainly not true that the usefulness of geometric algebra is restricted
to metric spaces. Like all mathematical systems, geometric algebra is subject to
many different interpretations, and the inner product need not be related to the
concepts of metric geometry. This is best illustrated by a brief summary of how
geometric algebra is used in the study of projective geometry.

In projective geometry [31], points are labeled by vectors, a, the magnitude
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of which is unimportant. That is, points in a projective space of dimension n− 1
are identified with rays in a space of dimension n which are solutions of the
equation x ∧ a = 0. Similarly, lines are represented by bivector blades, planes by
trivectors, and so on. Two products (originally defined by Grassmann) are needed
to algebraically encode the principle concepts of projective geometry. These are
the progressive and regressive products, which encode the concepts of the join and
the meet respectively. The progressive product of two blades is simply the outer
product. Thus, for two points a and b, the line joining them together is represented
projectively by the bivector a∧b. If the grades of Ar and Bs sum to more than n
and the vectors comprising Ar and Bs span n-dimensional space, then the join is
the pseudoscalar of the space. The regressive product, denoted ∨, is built from
the progressive product and duality. Duality is defined as (right)-multiplication by
the pseudoscalar, and is denoted A∗r. For two blades Ar and Bs, the meet is then
defined by

(Ar ∨Bs)∗ = A∗r∧B∗s (2.1)

⇒ Ar ∨Bs = A∗r ·Bs. (2.2)

It is implicit here that the dual is taken with respect to the join of Ar and Bs. As
an example, in two-dimensional projective geometry (performed in the geometric
algebra of space) the point of intersection of the lines given by A and B, where

A = ai (2.3)
B = bi, (2.4)

is given by the point
A ∨B = −a·B = −ia∧b. (2.5)

The definition of the meet shows clearly that it is most simply formulated in
terms of the inner product, yet no metric geometry is involved. It is probably
unsurprising to learn that geometric algebra is ideally suited to the study of
projective geometry [31]. It is also well suited to the study of determinants and
invariant theory [24], which are also usually thought to be the preserve of Grassmann
algebra [49, 50]. For these reasons there seems little point in maintaining a rigid
division between Grassmann and geometric algebra. The more fruitful approach is
to formulate the known theorems from Grassmann algebra in the wider language of
geometric algebra. There they can be compared with, and enriched by, developments
from other subjects. This program has been largely completed by Hestenes, Sobczyk
and Ziegler [24, 31]. This chapter addresses one of the remaining subjects — the
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“calculus” of Grassmann variables introduced by Berezin [35].
Before reaching the main content of this chapter, it is necessary to make a few

comments about the use of complex numbers in applications of Grassmann variables
(particularly in particle physics). We saw in Sections 1.2.2 and 1.2.3 that within the
2-dimensional and 3-dimensional real Clifford algebras there exist multivectors that
naturally play the rôle of a unit imaginary. Similarly, functions of several complex
variables can be studied in a real 2n-dimensional algebra. Furthermore, in Chapter 4
we will see how the Schrödinger, Pauli and Dirac equations can all be given real
formulations in the algebras of space and spacetime. This leads to the speculation
that a scalar unit imaginary may be unnecessary for fundamental physics. Often,
the use of a scalar imaginary disguises some more interesting geometry, as is the
case for imaginary eigenvalues of linear transformations. However, there are cases in
modern mathematics where the use of a scalar imaginary is entirely superfluous to
calculations. Grassmann calculus is one of these. Accordingly, the unit imaginary
is dropped in what follows, and an entirely real formulation is given.

2.2 The Geometrisation of Berezin Calculus
The basis of Grassmann/Berezin calculus is described in many sources. Berezin’s
“The method of second quantisation” [35] is one of the earliest and most cited
texts, and a useful summary of the main results from this is contained in the
Appendices to [39]. More recently, Grassmann calculus has been extended to the
field of superanalysis [51, 52], as well as in other directions [53, 54].

The basis of the approach adopted here is to utilise the natural embedding of
Grassmann algebra within geometric algebra, thus reversing the usual progression
from Grassmann to Clifford algebra via quantization. We start with a set of n
Grassmann variables {ζi}, satisfying the anticommutation relations

{ζi, ζj} = 0. (2.6)

The Grassmann variables {ζi} are mapped into geometric algebra by introducing a
set of n independent Euclidean vectors {ei}, and replacing the product of Grassmann
variables by the exterior product,

ζiζj ↔ ei ∧ ej. (2.7)
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Equation (2.6) is now satisfied by virtue of the antisymmetry of the exterior product,

ei∧ej + ej∧ei = 0. (2.8)

In this way any combination of Grassmann variables can be replaced by a multivec-
tor. Nothing is said about the interior product of the ei vectors, so the {ei} frame
is completely arbitrary.

In order for the above scheme to have computational power, we need a translation
for for the calculus introduced by Berezin [35]. In this calculus, differentiation is
defined by the rules

∂ζj
∂ζi

= δij, (2.9)

ζj

←−
∂

∂ζi
= δij, (2.10)

together with the “graded Leibnitz rule”,

∂

∂ζi
(f1f2) = ∂f1

∂ζi
f2 + (−1)[f1]f1

∂f2

∂ζi
, (2.11)

where [f1] is the parity of f1. The parity of a Grassmann variable is determined
by whether it contains an even or odd number of vectors. Berezin differentiation
is handled within the algebra generated by the {ei} frame by introducing the
reciprocal frame {ei}, and replacing

∂

∂ζi
( ↔ ei ·( (2.12)

so that
∂ζj
∂ζi

↔ ei ·ej = δij. (2.13)

It should be remembered that upper and lower indices are used to distinguish a
frame from its reciprocal frame, whereas Grassmann algebra only uses these indices
to distinguish metric signature.

The graded Leibnitz rule follows simply from the axioms of geometric algebra.
For example, if f1 and f2 are grade-1 and so translate to vectors a and b, then the
rule (2.11) becomes

ei ·(a∧b) = ei ·ab− aei ·b, (2.14)
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which is simply equation (1.14) again.
Right differentiation translates in a similar manner,

)
←−
∂

∂ζi
↔ )·ei, (2.15)

and the standard results for Berezin second derivatives [35] can also be verified
simply. For example, given that F is the multivector equivalent of the Grassmann
variable f(ζ),

∂

∂ζi

∂

∂ζj
f(ζ) ↔ ei ·(ej ·F ) = (ei∧ej)·F

= −ej ·(ei ·F ) (2.16)

shows that second derivatives anticommute, and
(
∂f

∂ζi

) ←−
∂

∂ζj
↔ (ei ·F )·ej = ei ·(F ·ej) (2.17)

shows that left and right derivatives commute.
The final concept needed is that of integration over a Grassmann algebra. In

Berezin calculus, this is defined to be the same as right differentiation (apart
perhaps from some unimportant extra factors of j and 2π [52]), so that

∫
f(ζ)dζndζn−1 . . . dζ1 ≡ f(ζ)

←−
∂

∂ζn

←−
∂

∂ζn−1
. . .

←−
∂

∂ζ1
. (2.18)

These translate in exactly the same way as the right derivative (2.12). The only
important formula is that for the total integral∫

f(ζ)dζndζn−1 . . . dζ1 ↔ (. . . ((F ·en)·en−1) . . .)·e1 = 〈FEn〉, (2.19)

where again F is the multivector equivalent of f(ζ), as defined by (2.6). Equation
(2.19) picks out the coefficient of the pseudoscalar part of F since, if 〈F 〉n is given
by αEn, then

〈FEn〉 = α. (2.20)

Thus the Grassman integral simply returns the coefficient α.
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A change of variables is performed by a linear transformation f , say, with

e′i = f(ei) (2.21)

⇒ E ′n = f(En) = det(f)En. (2.22)

But the {ei} must transform under f−1 to preserve orthonormality, so

ei
′ = f

−1(ei) (2.23)

⇒ En′ = det(f)−1En, (2.24)

which recovers the usual result for a change of variables in a Grassmann multiple
integral. That E ′nEn′ = 1 follows from the definitions above.

In the above manner all the basic formulae of Grassmann calculus can be
derived in geometric algebra, and often these derivations are simpler. Moreover,
they allow for the results of Grassmann algebra to be incorporated into a wider
scheme, where they may find applications in other fields. As a further comment,
this translation also makes it clear why no measure is associated with Grassmann
integrals: nothing is being added up!

2.2.1 Example I. The “Grauss” Integral
The Grassmann analogue of the Gaussian integral [35],∫

exp{1
2a

jkζjζk} dζn . . . dζ1 = det(a)1/2, (2.25)

where ajk is an antisymmetric matrix, is one of the most important results in
applications of Grassmann algebra. This result is used repeatedly in fermionic
path integration, for example. It is instructive to see how (2.25) is formulated and
proved in geometric algebra. First, we translate

1
2a

jkζjζk ↔ 1
2a

jkej∧ek = A, say, (2.26)

where A is a general bivector. The integral now becomes
∫

exp{1
2a

jkζjζk} dζn . . . dζ1 ↔ 〈(1 + A+ A∧A
2! + . . .)En〉. (2.27)
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It is immediately clear that (2.27) is only non-zero for even n (= 2m say), in which
case (2.27) becomes

〈(1 + A+ A∧A
2! + . . .)En〉 = 1

m!〈(A)mEn〉. (2.28)

This type of expression is considered in Chapter 3 of [24] in the context of the
eigenvalue problem for antisymmetric functions. This provides a good illustration of
how the systematic use of a unified language leads to analogies between previously
separate results.

In order to prove that (2.28) equals det(a)1/2 we need the result that, in spaces
with Euclidean or Lorentzian signature, any bivector can be written, not necessarily
uniquely, as a sum of orthogonal commuting blades. This is proved in [24, Chapter
3]. Using this result, we can write A as

A = α1A1 + α2A2 + . . . αmAm, (2.29)

where

Ai ·Aj = −δij (2.30)
[Ai, Aj] = 0 (2.31)

A1A2 . . . Am = I. (2.32)

Equation (2.28) now becomes,

〈(α1α2 . . . αm)IEn〉 = det(g)−1/2α1α2 . . . αm, (2.33)

where g is the metric tensor associated with the {ei} frame (1.140).
If we now introduce the function

f(a) = a·A, (2.34)

we find that [24, Chapter 3]

f(a∧b) = (a·A)∧(b·A)
= 1

2(a∧b)·(A∧A)− (a∧b)·AA. (2.35)
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It follows that the Ai blades are the eigenblades of f , with

f(Ai) = α2
iAi, (2.36)

and hence
f(I) = f(A1∧A2∧. . . Am) = (α1α2 . . . αm)2I (2.37)

⇒ det(f) = (α1α2 . . . αm)2. (2.38)

In terms of components, however,

fkj = ej ·f(ek)
= gjla

lk, (2.39)

⇒ det(f) = det(g) det(a). (2.40)

Inserting (2.40) into (2.33), we have

1
m!〈(A)mEn〉 = det(a)1/2, (2.41)

as required.
This result can be derived more succinctly using the fiducial frame σi = h−1(ei)

to write (2.27) as
1
m!〈(A

′)mI〉, (2.42)

where A′ = 1
2a

jkσjσk. This automatically takes care of the factors of det(g)1/2,
though it is instructive to note how these appear naturally otherwise.

2.2.2 Example II. The Grassmann Fourier Transform
Whilst the previous example did not add much new algebraically, it did serve
to demonstrate that notions of Grassmann calculus were completely unnecessary
for the problem. In many other applications, however, the geometric algebra
formulation does provide for important algebraic simplifications, as is demonstrated
by considering the Grassmann Fourier transform.

In Grassmann algebra one defines Fourier integral transformations between
anticommuting spaces {ζk} and {ρk} by [39]

G(ζ) =
∫

exp{j∑ ζkρ
k}H(ρ)dρn . . . dρ1

H(ρ) = εn
∫

exp{−j∑ ζkρ
k}G(ζ)dζn . . . dζ1,

(2.43)
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where εn = 1 for n even and j for n odd. The factors of j are irrelevant and can be
dropped, so that (2.43) becomes

G(ζ) =
∫

exp{∑ ζkρ
k}H(ρ)dρn . . . dρ1

H(ρ) = (−1)n
∫

exp{−∑ ζkρ
k}G(ζ)dζn . . . dζ1.

(2.44)

These expressions are translated into geometric algebra by introducing a pair of
anticommuting copies of the same frame, {ek}, {fk}, which satisfy

ej ·ek = fj ·fk (2.45)
ej ·fk = 0. (2.46)

The full set {ek, fk} generate a 2n-dimensional Clifford algebra. The translation
now proceeds by replacing

ζk ↔ ek,

ρk ↔ fk,
(2.47)

where the {ρk} have been replaced by elements of the reciprocal frame {fk}. From
(2.45), the reciprocal frames must also satisfy

ej ·ek = f j ·fk. (2.48)

We next define the bivector (summation convention implied)

J = ej∧f j = ej∧fj. (2.49)

The equality of the two expressions for J follows from (2.45),

ej∧f j = (ej ·ek)ek∧f j

= (fj ·fk)ek∧f j

= ek∧fk. (2.50)

The bivector J satisfies

ej ·J = fj fj ·J = −ej,
ej ·J = f j f j ·J = −ej, (2.51)

and it follows that
(a·J)·J = −a, (2.52)
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for any vector a in the 2n-dimensional algebra. Thus J generates a complex
structure, which on its own is sufficient reason for ignoring the scalar j. Equation
(2.52) can be extended to give

e−Jθ/2aeJθ/2 = cos θ a+ sin θ a·J, (2.53)

from which it follows that exp{Jπ/2} anticommutes with all vectors. Consequently,
this quantity can only be a multiple of the pseudoscalar and, since exp{Jπ/2} has
unit magnitude, we can define the orientation such that

eJπ/2 = I. (2.54)

This definition ensures that

EnF
n = EnFn = I. (2.55)

Finally, we introduce the notation

Ck = 1
k!〈J

k〉2k. (2.56)

The formulae (2.44) now translate to

G(e) =
n∑
j=0

(Cj∧H(f))·Fn

H(f) = (−1)n
n∑
j=0

(C̃j∧G(e))·En, (2.57)

where the convention is adopted that terms where Cj∧H or C̃j∧G have grade less
than n do not contribute. Since G and H only contain terms purely constructed
from the {ek} and {fk} respectively, (2.57) can be written as

G(e) =
n∑
j=0

(Cn−j∧〈H(f)〉j)·Fn

H(f) =
n∑
j=0

(−1)j(〈G(e)〉j∧Cn−j)·En. (2.58)

So far we have only derived a formula analogous to (2.44), but we can now go
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much further. By using

eJθ = cosn θ + cosn−1 θ sin θ C1 + . . .+ sinn θ I (2.59)

to decompose eJ(θ+π/2) = eJθI in two ways, it can be seen that

Cn−r = (−1)rCrI = (−1)rICr, (2.60)

and hence (using some simple duality relations) (2.58) become

G(e) =
n∑
j=0

Cj ·HjEn

H(f) = (−1)n
n∑
j=0

Gj ·CjF n. (2.61)

Finally, since G and H are pure in the {ek} and {fk} respectively, the effect of
dotting with Ck is simply to interchange each ek for an −fk and each fk for an ek.
For vectors this is achieved by dotting with J . But, from (2.53), the same result is
achieved by a rotation through π/2 in the planes of J . Rotations extend simply
via outermorphism, so we can now write

Cj ·Hj = eJπ/4Hje
−Jπ/4

Gj ·Cj = e−Jπ/4Gje
Jπ/4. (2.62)

We thus arrive at the following equivalent expressions for (2.57):

G(e) = eJπ/4H(f)e−Jπ/4En
H(f) = (−1)ne−Jπ/4G(e)eJπ/4F n. (2.63)

The Grassmann Fourier transformation has now been reduced to a rotation through
π/2 in the planes specified by J , followed by a duality transformation. Proving the
“inversion” theorem (i.e. that the above expressions are consistent) amounts to no
more than carrying out a rotation, followed by its inverse,

G(e) = eJπ/4
(
(−1)ne−Jπ/4G(e)eJπ/4F n

)
e−Jπ/4En

= G(e)EnEn = G(e). (2.64)

This proof is considerably simpler than any that can be carried out in the more
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restrictive system of Grassmann algebra.

2.3 Some Further Developments
We conclude this chapter with some further observations. We have seen how most
aspects of Grassmann algebra and Berezin calculus can be formulated in terms of
geometric algebra. It is natural to expect that other fields involving Grassmann
variables can also be reformulated (and improved) in this manner. For example,
many of the structures studied by de Witt [52] (super-Lie algebras, super-Hilbert
spaces) have natural multivector expressions, and the cyclic cohomology groups of
Grassmann algebras described by Coquereaux, Jadczyk and Kastler [53] can be
formulated in terms of the multilinear function theory developed by Hestenes &
Sobczyk [24, Chapter 3]. In Chapter 5 the formulation of this chapter is applied
Grassmann mechanics and the geometric algebra approach is again seen to offer
considerable benefits. Further applications of Grassmann algebra are considered in
Chapter 3, in which a novel approach to the theory of linear functions is discussed.
A clear goal for future research in this subject is to find a satisfactory geometric
algebra formulation of supersymmetric quantum mechanics and field theory. Some
preliminary observations on how such a formulation might be achieved are made in
Chapter 5, but a more complete picture requires further research.

As a final comment, it is instructive to see how a Clifford algebra is traditionally
built from the elements of Berezin calculus. It is well known [35] that the operators

Q̂k = ζk + ∂

∂ζk
, (2.65)

satisfy the Clifford algebra generating relations

{Q̂j, Q̂k} = 2δjk, (2.66)

and this has been used by Sherry to provide an alternative approach to quantizing a
Grassmann system [55, 56]. The geometric algebra formalism offers a novel insight
into these relations. By utilising the fiducial tensor, we can write

Q̂ka(ζ) ↔ ek∧A+ ek ·A = h(σk)∧A+ h−1(σk)·A
= h(σk∧h−1(A)) + h(sk ·h−1(A))
= h[σkh−1(A)], (2.67)
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where A is the multivector equivalent of a(ζ) and we have used (1.123). The
operator Q̂k thus becomes an orthogonal Clifford vector (now Clifford multiplied),
sandwiched between a symmetric distortion and its inverse. It is now simple to see
that

{Q̂j, Q̂k}a(ζ) ↔ h(2σj ·σkh−1(A)) = 2δjkA. (2.68)

The above is an example of the ubiquity of the fiducial tensor in applications
involving non-orthonormal frames. In this regard it is quite surprising that the
fiducial tensor is not more prominent in standard expositions of linear algebra.

Berezin [35] defines dual operators to the Q̂k by

P̂k = −j(ζk −
∂

∂ζk
), (2.69)

though a more useful structure is derived by dropping the j, and defining

P̂k = ζk −
∂

∂ζk
. (2.70)

These satisfy
{P̂j, P̂k} = −2δjk (2.71)

and
{P̂j, Q̂k} = 0, (2.72)

so that the P̂k, Q̂k span a 2n-dimensional balanced algebra (signature n, n). The P̂k
can be translated in the same manner as the Q̂k, this time giving (for a homogeneous
multivector)

P̂ka(ζ) ↔ ek∧Ar − ek ·Ar = (−1)rh[h−1(Ar)σk]. (2.73)

The {σk} frame now sits to the right of the multivector on which it operates. The
factor of (−1)r accounts for the minus sign in (2.71) and for the fact that the left
and right multiples anticommute in (2.72). The Q̂k and P̂k can both be given right
analogues if desired, though this does not add anything new. The {Q̂k} and {P̂k}
operators are discussed more fully in Chapter 4, where they are related to the
theory of the general linear group.
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Chapter 3

Lie Groups and Spin Groups

This chapter demonstrates how geometric algebra provides a natural arena for the
study of Lie algebras and Lie groups. In particular, it is shown that every matrix
Lie group can be realised as a spin group. Spin groups consist of even products of
unit magnitude vectors, and arise naturally from the geometric algebra treatment
of reflections and rotations (introduced in Section 1.2.4). The generators of a spin
group are bivectors, and it is shown that every Lie algebra can be represented by
a bivector algebra. This brings the computational power of geometric algebra to
applications involving Lie groups and Lie algebras. An advantage of this approach
is that, since the rotors and bivectors are all elements of the same algebra, the
discussion can move freely between the group and its algebra. The spin version of
the general linear group is studied in detail, revealing some novel links with the
structures of Grassmann algebra studied in Chapter 2. An interesting result that
emerges from this work is that every linear transformation can be represented as a
(geometric) product of vectors. Some applications of this result are discussed. A
number of the ideas developed in this chapter appeared in the paper “Lie groups
as spin groups” [2].

Throughout this chapter, the geometric algebra generated by p independent
vectors of positive norm and q of negative norm is denoted as <p,q. The grade-
k subspace of this algebra is written as <kp,q and the space of vectors, <1

p,q, is
abbreviated to <p,q. The Euclidean algebra <n,0 is abbreviated to <n, and the
vector space <1

n is written as <n. Lie groups and their algebras are labeled according
to the conventions of J.F. Cornwell’s “Group Theory in Physics”, Vol. 2 [57]. (A
useful table of these conventions is found on page 392).
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3.1 Spin Groups and their Generators
In this chapter we are interested in spin groups. These arise from the geometric
algebra representation of orthogonal transformations — linear functions on <p,q
which preserve inner products. We start by considering the case of the Euclidean
algebra <n. The simplest orthogonal transformation of <n is a reflection in the
hyperplane perpendicular to some unit vector n,

n(a) = −nan, (3.1)

where we have recalled equation (1.70). (A convenient feature of the under-
bar/overbar notation for linear functions is that a function can be written in terms
of the multivector that determines it.) The function n satisfies

n(a)·n(b) = 〈nannbn〉 = a·b, (3.2)

and so preserves the inner product. On combining n with a second reflection m,
where

m(a) = −mam, (3.3)

the function
mn(a) = mnanm (3.4)

is obtained. This function also preserves inner products, and in Section 1.2.4 was
identified as a rotation in the m∧n plane. The group of even products of unit
vectors is denoted spin(n). It consists of all even multivectors (rotors) satisfying

RR̃ = 1 (3.5)

and such that the quantity RaR̃ is a vector for all vectors a. The double-sided
action of a rotor R on a vector a is written as

R(a) = RaR̃ (3.6)

and the R form the group of rotations on <n, denoted SO(n). The rotors afford a
spin-1/2 description of rotations, hence rotor groups are referred to as spin groups.

In spaces with mixed signature the situation is slightly more complicated. In
order to take care of the fact that a unit vector can now have n2 = ±1, equation (3.1)
must be modified to

n(a) = −nan−1. (3.7)
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Taking even combinations of reflections now leads to functions of the type

M(a) = MaM−1, (3.8)

as opposed to MaM̃ . Again, the spin group spin(p, q) is defined as the group of
even products of unit vectors, but its elements now satisfy MM̃ = ±1. The term
“rotor” is retained for elements of spin(p, q) satisfying RR̃ = 1. The subgroup of
spin(p, q) containing just the rotors is called the rotor group (this is sometimes
written as spin+(p, q) in the literature). The action of a rotor on a vector a is
always defined by (3.6). Spin groups and rotor groups are both Lie groups and, in
a space with mixed signature, the spin group differs from the rotor group only by
a direct product with an additional subgroup of discrete transformations.

The generators of a spin group are found by adapting the techniques found in
any of the standard texts of Lie group theory (see [57], for example). We are only
interested in the subgroup of elements connected to the identity, so only need to
consider the rotor group. We introduce a one-parameter set of rotors R(t), so that

R(t)aR̃(t) = 〈R(t)aR̃(t)〉1 (3.9)

for all vectors a and for all values of the parameter t. On differentiating with
respect to t, we find that the quantity

R′aR̃ +RaR̃′ = R′R̃(RaR̃) + (RaR̃)RR̃′

= R′R̃(RaR̃)− (RaR̃)R′R̃ (3.10)

must be a vector, where we have used RR̃ = 1 to deduce that

R′R̃ = −RR̃′. (3.11)

The commutator of R′R̃ with an arbitrary vector therefore results in a vector, so
R′R̃ can only contain a bivector part. (R′R̃ cannot contain a scalar part, since
(R′R̃)̃ = −R′R̃.) The generators of a rotor group are therefore a set of bivectors in
the algebra containing the rotors.

A simple application of the Jacobi identity gives, for vectors a, b, c, and d,

(a∧b)×(c∧d) = [(a∧b)·c]∧d− [(a∧b)·d]∧c, (3.12)

so the commutator product of two bivector blades results in a third bivector. It
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follows that the space of bivectors is closed under the commutator product, and
hence that the bivectors (together with the commutator product) form the Lie
algebra of a spin group. It should be noted that the commutator product, ×,
in equation (3.12) differs from the commutator bracket by a factor of 1/2. The
commutator product is simpler to use, since it is the bivector part of the full
geometric product of two bivectors A and B:

AB = A·B + A×B + A∧B (3.13)

where

A·B + A∧B = 1
2(AB +BA), (3.14)

A×B = 1
2(AB −BA). (3.15)

For this reason the commutator product will be used throughout this chapter.
Since the Lie algebra of a spin group is generated by the bivectors, it follows

that all rotors simply connected to the identity can be written in the form

R = eB/2, (3.16)

which ensures that
R̃ = e−B/2 = R−1. (3.17)

The form of a rotor given by equation (3.16) was found in Section 1.2.4, where
rotations in a single Euclidean plane were considered. The factor of 1/2 is included
because rotors provide a half-angle description of rotations. In terms of the Lie
algebra, the factor of 1/2 is absorbed into our use of the commutator product, as
opposed to the commutator bracket.

It can be shown that, in positive definite spaces, all rotors can be written in
the form of (3.16). The bivector B is not necessarily unique, however, as can be
seen by considering the power series definition of the logarithm,

lnX = 2[H + H3

3 + H5

5 + · · · ] (3.18)

where
H = X − 1

X + 1 . (3.19)

It is implicit in this formula that 1 +X is invertible, and the logarithm will not
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be well-defined if this is not the case. For example, the pseudoscalar I in <4,0 is a
rotor (IĨ = 1), the geometric effect of which is to reverse the sign of all vectors.
But 1 + I is not invertible, since (1 + I)2 = 2(1 + I). This manifests itself as
a non-uniqueness in the logarithm of I — given any bivector blade B satisfying
B2 = −1, I can be written as

I = exp{B(1− I)π2 }. (3.20)

Further problems can arise in spaces with mixed signature. In the spacetime
algebra, for example, whilst the rotor

R = (γ0 + γ1 − γ2)γ2 = 1 + (γ0 + γ1)γ2 (3.21)

can be written as
R = exp{(γ0 + γ1)γ2}, (3.22)

the rotor
−R = exp{γ1γ2

π

2 }R = −1− (γ0 + γ1)γ2 (3.23)

cannot be written as the exponential of a bivector. The problem here is that the
series for ln(−X) is found by replacing H by H−1 in equation (3.18) and, whilst
1 + R = 2 + (γ0 + γ1)γ2 is invertible, 1− R = −(γ0 + γ1)γ2 is null and therefore
not invertible.

Further examples of rotors with no logarithm can be constructed in spaces
with other signatures. Near the identity, however, the Baker-Campbell-Hausdorff
formula ensures that, for suitably small bivectors, one can always write

eA/2eB/2 = eC/2. (3.24)

So, as is usual in Lie group theory, the bulk of the properties of the rotor (and
spin) groups are transferred to the properties of their bivector generators.

In the study of Lie groups and their algebras, the adjoint representation plays
a particularly important role. The adjoint representation of a spin group is formed
from functions mapping the Lie algebra to itself,

AdM(B) ≡MBM−1 = M(B). (3.25)

The adjoint representation is therefore formed by the outermorphism action of the
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linear functions M(a) = MaM−1. For the rotor subgroup, we have

AdR(B) = R(B) = RBR̃. (3.26)

It is immediately seen that the adjoint representation satisfies

AdM1 [AdM2(B)] = AdM1M2(B). (3.27)

The adjoint representation of the Lie group induces a representation of the Lie
algebra as

adA/2(B) = A×B, (3.28)

or
adA(B) = 2A×B. (3.29)

The Jacobi identity ensures that

1
2(adAadB − adBadA)(C) = 2[A×(B×C)−B×(A×C)]

= 2(A×B)×C
= adA×B(C). (3.30)

The Killing form is constructed by considering adA as a linear operator on the
space of bivectors, and defining

K(A,B) = Tr(adAadB). (3.31)

For the case where the Lie algebra is the set of all bivectors, we can define a basis
set of bivectors as BK = ei∧ej (i < j) with reciprocal basis BK = ej∧ei. Here, the
index K is a simplicial index running from 1 to n(n− 1)/2 over all combinations
of i and j with i < j. A matrix form of the adjoint representation is now given by

(adA)KJ = 2(A×BJ)·BK (3.32)

so that the Killing form becomes

K(A,B) = 4
n(n−1)/2∑
J,K=1

(A×BJ)·BK(B×BK)·BJ

= 2[A×(B×(ei∧ej))]·(ej∧ei)
= 〈ABei∧ejej∧ei − Aei∧ejBej∧ei〉 (3.33)
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Now,

ei∧ejej∧ei = eieje
j∧ei

= n(n− 1) (3.34)

and

ei∧ejBej∧ei = eiejBe
j∧ei

= eiejBe
jei − eiejei ·ejB

= [(n− 4)2 − n]B (3.35)

where we have used equations (1.139). On recombining (3.34) and (3.35), the
Killing form on a bivector algebra becomes

K(A,B) = 8(n− 2)〈AB〉 (3.36)

and so is given by the scalar part of the geometric product of two bivectors. The
constant is irrelevant, and will be ignored. The same form will be inherited by all
sub-algebras of the bivector algebra, so we can write

K(A,B) ≡ A·B (3.37)

as the Killing form for any bivector (Lie) algebra. This product is clearly symmetric,
and is invariant under the adjoint action of any of the group elements. The fact
that both the scalar and bivector parts of the geometric product of bivectors now
have roles in the study of Lie algebras is a useful unification — rather than calculate
separate commutators and inner products, one simply calculates a geometric product
and reads off the parts of interest.

As an example, the simplest of the spin groups is the full rotor group spin(p, q) in
some <p,q. The Lie algebra of spin(p, q) is the set of bivectors <2

p,q. By introducing
a basis set of p positive norm vectors {ei} and q negative norm vectors {fi}, a
basis set for the full Lie algebra is given by the generators in Table 3.1. These
generators provide a bivector realisation of the Lie algebra so(p,q). When the {ei}
and {fi} are chosen to be orthonormal, it is immediately seen that the Killing form
has (p(p − 1) + q(q − 1))/2 bivectors of negative norm and pq of positive norm.
The sum of these is n(n − 1)/2, where n = p + q. The algebra is unaffected by
interchanging the signature of the space from <p,q to <q,p. Compact Killing metrics
arise from bivectors in positive (or negative) definite vector spaces.
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Eij = ei∧ej (i < j i, j = 1 . . . p)
Fij = fi∧fj (i < j i, j = 1 . . . q)
Gij = ei∧fj (i = 1 . . . p, j = 1 . . . q).

Table 3.1: Bivector Basis for so(p,q)

We now turn to a systematic study of the remaining spin groups and their
bivector generators. These are classified according to their invariants which, for
the classical groups, are non-degenerate bilinear forms. In the geometric algebra
treatment, bilinear forms are determined by certain multivectors, and the groups
are studied in terms of these invariant multivectors.

3.2 The Unitary Group as a Spin Group
It has already been stressed that the use of a unit scalar imaginary frequently
hides useful geometric information. This remains true for the study of the unitary
groups. The basic idea needed to discuss the unitary groups was introduced in
Section 2.2.2. One starts in an n-dimensional space of arbitrary signature, and
introduces a second (anticommuting) copy of this space. Thus, if the set {ei} form
a frame for the first space, the second space is generated by a frame {fi} satisfying
equations (2.45) and (2.46). The spaces are related by the “doubling” bivector J ,
defined as (2.49)

J = ej∧f j = ej∧fj. (3.38)

We recall from Section 2.2.2 that J satisfies

(a·J)·J = −a (3.39)

for all vectors a in the 2n-dimensional space. From J the linear function J is
defined as

J(a) ≡ a·J = e−Jπ/4aeJπ/4. (3.40)

The function J satisfies
J2(a) = −a (3.41)

and provides the required complex structure — the action of J being equivalent to
multiplication of a complex vector by j.

An important property of J is that it is independent of the frame from which it
was constructed. To see this, consider a transformation h taking the {ei} to a new
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frame

e′i = h(ei) (3.42)
⇒ ei

′ = h
−1(ei) (3.43)

so that the transformed J is

J ′ = h(ej)∧h
−1(f j)

= (ekek ·h(ej))∧h
−1(f j). (3.44)

But h(ej) remains in the space spanned by the {ei}, so

ek ·h(ej) = fk ·h(fj)
= fj ·h(fk), (3.45)

and now

J ′ = ek∧
(
fj ·h(fk)h−1(f j)

)
= ek∧h

−1
h(fk)

= J. (3.46)

We now turn to a study of the properties of the outermorphism of J . A simple
application of the Jacobi identity yields

(a∧b)×J = (a·J)∧b+ a∧(b·J)
= J(a)∧b+ a∧J(b) (3.47)

and, using this result again, we derive

[(a∧b)×J ]×J = J2(a)∧b+ J(a)∧J(b) + J(a)∧J(b) + a∧J2(b)
= 2(J(a∧b)− a∧b). (3.48)

It follows that
J(B) = B + 1

2(B×J)×J, (3.49)

for all bivectors B. If the bivector B commutes with J , then we see that

J(B) = B, (3.50)
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so that B is an eigenbivector of J with eigenvalue +1. The converse is also true —
all eigenbivectors of J with eigenvalue +1 commute with J . This result follows by
using

J(B) = B (3.51)

to write the eigenbivector B as

B = 1
2(B + J(B)). (3.52)

But, for a blade a∧b,

[a∧b+ J(a∧b)]×J = J(a)∧b+ a∧J(b) + J2(a)∧J(b) + J(a)∧J2(b)
= 0, (3.53)

and the same must be true for all sums of blades. All bivectors of the form B+J(B)
therefore commute with J , from which it follows that all eigenbivectors of J also
commute with J . In fact, since the action of J on bivectors satisfies

J2(a∧b) = J2(a)∧J2(b) = (−a)∧(−b) = a∧b, (3.54)

any bivector of the form B + J(B) is an eigenbivector of J .
The next step in the study of the unitary group is to find a representation of

the Hermitian inner product. If we consider a pair of complex vectors u and v with
components {uk} and {vk}, where

uk = xk + jyk
vk = rk + jsk,

(3.55)

then
ε(u, v) = u†kvk = xkrk + yksk + j(xksk − ykrk). (3.56)

Viewed as a pair of real products, (3.56) contains a symmetric and a skew-symmetric
term. The symmetric part is the inner product in our 2n-dimensional vector space.
Any skew-symmetric inner product can be written in the form (a∧b)·B, where B
is some bivector. For the Hermitian inner product this bivector is J , which follows
immediately from considering the real part of the inner product of ε(ja, b). The
form of the Hermitian inner product in our 2n-dimensional vector space is therefore

ε(a, b) = a·b+ (a∧b)·Jj. (3.57)
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This satisfies
ε(b, a) = a·b− (a∧b)·Jj = ε(a, b)∗, (3.58)

as required. The introduction of the j disguises the fact that the Hermitian product
contains two separate bilinear forms, both of which are invariant under the action
of the unitary group. All orthogonal transformations leave a·b invariant, but only
a subset will leave (a∧b)·J invariant as well. These transformations must satisfy(

f(a)∧f(b)
)
·J = (a∧b)·f(J) = (a∧b)·J (3.59)

for all vectors a and b. The invariance group therefore consists of all orthogonal
transformations whose outermorphism satisfies

f(J) = J. (3.60)

This requirement excludes all discrete transformations, since a vector n will only
generate a symmetry if

n(J) = nJn−1 = J

⇒ n·J = 0, (3.61)

and no such vector n exists. It follows that the symmetry group is constructed
entirely from the double sided action of the elements of the spin group which satisfy

MJ = JM. (3.62)

These elements afford a spin group representation of the unitary group.
Equation (3.62) requires that, for a rotor R simply connected to the identity,

the bivector generator of R commutes with J . The Lie algebra of a unitary group
is therefore realised by the set of bivectors commuting with J , which we have seen
are also eigenbivectors of J . Given an arbitrary bivector B, therefore, the bivector

BJ = B + J(B) (3.63)

is contained in the bivector algebra of u(p,q). This provides a quick method for
writing down a basis set of generators. It is convenient at this point to introduce
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Eij = eiej + fifj (i < j = 1 . . . n)
Fij = eifj − fiej ′′

Ji = eifi (i = 1 . . . n).

Table 3.2: Bivector Basis for u(p,q)

Eij = eiej + fifj (i < j = 1 . . . n)
Fij = eifj − fiej ′′

Hi = eif
i − ei+1f

i+1 (i = 1 . . . n− 1).

Table 3.3: Bivector Basis for su(p,q)

an orthonormal frame of vectors {ei, fi} satisfying

ei ·ej = fi ·fj = ηij (3.64)
ei ·fj = 0, (3.65)

where ηij = ηiδjk (no sum) and ηi is the metric indicator (= 1 or −1). This frame
is used to write down a basis set of generators which are orthogonal with respect
to the Killing form. Such a basis for u(p,q) is contained in Table 3.2. This basis
has dimension

1
2n(n− 1) + 1

2n(n− 1) + n = n2. (3.66)

Of these, p2 + q2 bivectors have negative norm, and 2pq have positive norm.
The algebra of Table 3.2 contains the bivector J , which commutes with all

other elements of the algebra and generates a U(1) subgroup. This is factored out
to give the basis for su(p,q) contained in Table 3.3. The Hi are written in the form
given to take care of the metric signature of the vector space. When working in
<2n one can simply write

Hi = Ji − Ji+1. (3.67)

The use of Hermitian forms hides the properties of J in the imaginary j, which
makes it difficult to relate the unitary groups to other groups. In particular, the
group of linear transformations on <2n whose outermorphism leaves J invariant
form the symplectic group Sp(n,R). Since U(n) leaves a·b invariant as well as J ,
we obtain the group relation

U(n) ∼= O(2n) ∩ Sp(n,R). (3.68)
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More generally, we find that

U(p, q) ∼= O(2p, 2q) ∩ Sp(p, q,R), (3.69)

where Sp(p, q,R) is group of linear transformations leaving J invariant in the
mixed-signature space <2p,2q. The geometric algebra approach to Lie group theory
makes relations such as (3.69) quite transparent. Furthermore, the doubling
bivector J appears in many other applications of geometric algebra — we saw one
occurrence in Section 2.2.2 in the discussion of the Grassmann-Fourier transform.
Other applications include multiparticle quantum mechanics and Hamiltonian
mechanics [32]. Consistent use of geometric algebra can reveal these (often hidden)
similarities between otherwise disparate fields.

3.3 The General Linear Group as a Spin Group
The development of the general linear group as a spin group parallels that of the
unitary groups. Again, the dimension of the space is doubled by introducing a
second space, but this time the second space has opposite signature. This leads
to the development of a Grassmann structure, as opposed to a complex structure.
Vectors in <p,q are then replaced by null vectors in <n,n, where n = p+ q. Since a
(positive) dilation of a null vector can also be given a rotor description, it becomes
possible to build up a rotor description of the entire general linear group from
combinations of dilations and orthogonal transformations.

The required construction is obtained by starting with a basis set of vectors
{ei} in <p,q, and introducing a second space of opposite signature. The second
space is generated by a set of vectors {fi} satisfying

ei ·ej = −fi ·fj (3.70)
ei ·fj = 0, (3.71)

and the full set {ei, fi} form a basis set for <n,n. The vector space <n,n is split into
two null spaces by introducing the bivector K defined by

K = ej∧fj = −ej∧f j. (3.72)

Again, K is independent of the initial choice of the {ei} frame. The bivector K
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determines the linear function K by

K(a) ≡ a·K. (3.73)

The function K satisfies

K(ei) = fi K(fi) = ei
K(ei) = −f i K(f i) = −ei, (3.74)

and
K2(a) = (a·K)·K = a, (3.75)

for all vectors a.
Proceeding as for the complexification bivector J we find that, for an arbitrary

bivector B,
K(B) = −B + 1

2(B×K)×K. (3.76)

Any bivector commuting with K is therefore an eigenbivector of K, but now with
eigenvalue −1.

An arbitrary vector a in <n,n can be decomposed into a pair of null vectors,

a = a+ + a−, (3.77)

where

a+ = 1
2(a+K(a)), (3.78)

a− = 1
2(a−K(a)). (3.79)

That a+ is null follows from

(a+)2 = 1
4

(
a2 + 2a·(a·K) + (a·K)·(a·K)

)
= 1

4(a2 − [(a·K)·K]·a)
= 1

4(a2 − a2)
= 0, (3.80)

and the same holds for a−. The scalar product between a+ and a− is, of course,
non-zero:

a+ ·a− = 1
4(a2 − (a·K)2) = 1

2a
2. (3.81)

This construction decomposes <n,n into two separate null spaces, Vn and Vn∗,
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defined by
K(a) = a ∀a ∈ Vn
K(a) = −a ∀a ∈ Vn∗, (3.82)

so that
<n,n = Vn ⊕ Vn∗. (3.83)

A basis is defined for each of Vn and Vn∗ by

wi = 1
2(ei +K(ei)) (3.84)

w∗i = 1
2(ei −K(ei)), (3.85)

respectively. These basis vectors satisfy

wi ·wj = w∗i ·w∗j = 0 (3.86)

and
w∗i ·wj = 1

2δ
i
j. (3.87)

In conventional accounts, the space Vn would be recognised as a Grassmann
algebra (all vector generators anticommute), with Vn∗ identified as the dual space
of functions acting on Vn. In Chapter 2 we saw how both Vn and Vn∗ can
be represented in terms of functions in a single n-dimensional algebra. Here, a
different construction is adopted in which the Vn and Vn∗ spaces are kept maximally
distinct, so that they generate a 2n-dimensional vector space. This is the more
useful approach for the study of the Lie algebra of the general linear group. We
shall shortly see how these two separate approaches are reconciled by setting up an
isomorphism between operations in the two algebras.

We are interested in the group of orthogonal transformations which keep the
Vn and Vn∗ spaces separate. For a vector a in Vn, the orthogonal transformation
f must then satisfy

f(a) = f(a)·K. (3.88)

But, since a = a·K and f−1 = f , equation (3.88) leads to

a·K = f [f(a)·K]
= a·f(K), (3.89)
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Eij = eiej − êiêj (i < j = 1 . . . n)
Fij = eiêj − êiej ′′

Ji = eiêi (i = 1 . . . n).

Table 3.4: Bivector Basis for gl(n,R)

which must hold for all a. It follows that

f(K) = K (3.90)

and we will show that the f satisfying this requirement form the general linear
group GL(n,R). The orthogonal transformations satisfying (3.90) can each be given
a spin description, which enables the general linear group to be represented by a
spin group. The elements of this spin group must satisfy

MK = KM. (3.91)

The generators of the rotor part of the spin group are therefore the set of bivectors
which commute with K, which are eigenbivectors of K with eigenvalue −1.

Before writing down an orthogonal basis for the Lie algebra, it is useful to
introduce some further notation. We now take {ei} to be an orthonormal basis
for the Euclidean algebra <n, and {êi} to be the corresponding basis for the
anti-Euclidean algebra <0,n. These basis vectors satisfy

ei ·ej = δij = −êi ·êj
ei ·êj = 0. (3.92)

The hat also serves as a convenient abbreviation for the action of K on a vector a,

â ≡ K(a). (3.93)

Since all bivectors in the Lie algebra of GL(n,R) are of the form B −K(B), an
orthogonal basis for the Lie algebra can now be written down easily. Such a basis
is contained in Table 3.4. The algebra in Table 3.4 includes K, which generates an
abelian subgroup. This is factored out to leave the Lie algebra sl(n,R) contained
in Table 3.5.

The form of the Lie algebra for the group GL(n,R) is clearly very close to that
for U(n) contained in Table 3.2. The reason can be seen by considering the bilinear

65



Eij = eiej − êiêj (i < j = 1 . . . n)
Fij = eiêj − êiej ′′

Hi = eiêi − ei+1êi+1 (i = 1 . . . n− 1).

Table 3.5: Bivector Basis for sl(n,R)

form generated by the bivector K,

ε(a, b) = a·K(b). (3.94)

If we decompose a and b in the orthonormal basis of (3.92),

a = xiei + yiêi (3.95)
b = riei + siêi, (3.96)

we find that
ε(a, b) = xisi − yiri, (3.97)

which is the component form of the symplectic norm in <2n. We thus have the
group relation

GL(n,R) ∼= O(n,n) ∩ Sp(n,R), (3.98)

which is to be compared with (3.68) and (3.69). The differences between the
Lie algebras of GL(n,R) and U(n) are due solely to the metric signature of the
underlying vector space which generates the bivector algebra. It follows that both
Lie algebras have the same complexification, since complexification removes all
dependence on signature. In the theory of the classification of the semi-simple Lie
algebras, the complexification of the su(n) and sl(n,R) algebras is denoted An−1.

An alternative basis for sl(n,R) can be given in terms of the {wi} and {w∗i }
null frames, which are now defined as

wi = 1
2(ei + êi)

w∗i = 1
2(ei − êi).

(3.99)

The {wi} and {w∗i } frames satisfy

wi ·wj = w∗i ·w∗j = 0 (3.100)
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and
wiw

∗
j + w∗jwi = δij, (3.101)

which are identifiable as the relations of the algebra of fermionic creation and
annihilation operators. The pseudoscalars for the the Vn and Vn∗ spaces are
defined by

Wn = w1w2 . . . wn
W ∗
n = w∗1w

∗
2 . . . w

∗
n

(3.102)

respectively. If we now define

I+
ij = 1

2(Eij + Fij)
= 1

2(ei − êi)(ej + êj)
= 2w∗iwj (3.103)

and

I−ij = 1
2(Eij − Fij)

= 1
2(ei + êi)(ej − êj)

= −2w∗jwi, (3.104)

we see that a complete basis for sl(n,R) is defined by the set {I+
ij , I

−
ij , Hi}. This

corresponds to the Chevalley basis for An−1. Furthermore, a complete basis set of
generators for GL(n,R) is given by the set {w∗i ∧wj}, defined over all i, j. This is
perhaps the simplest of the possible basis sets for the Lie algebra, though it has
the disadvantage that it is not orthogonal with respect to the Killing form.

We now turn to a proof that the subgroup of the spin group which leaves K
invariant does indeed form a representation of GL(n,R). With a vector a in <n
represented by the null vector a+ = (a+ â) in <n,n, we must prove that an arbitrary
linear transformation of a, a 7→ f(a), can be written in <n,n as

a+ 7→Ma+M
−1, (3.105)

where M is a member of the spin group spin(n, n) which commutes with K. We
start by considering the polar decomposition of an arbitrary matrix M . Assuming
that det M 6= 0, the matrix MM̄ can be written (not necessarliy uniquely) as

MM̄ = SΛS̄ (3.106)

67



where S is an orthogonal transformation (which can be arranged to be a rotation
matrix), and Λ is a diagonal matrix with positive entries. One can now write

M = SΛ1/2R (3.107)

where Λ1/2 is the diagonal matrix of positive square roots of the entries of Λ and
R is a matrix defined by

R = Λ−1/2S̄M . (3.108)

The matrix R satisfies

RR̄ = Λ−1/2S̄MM̄SΛ−1/2

= Λ−1/2ΛΛ−1/2

= I (3.109)

and so is also orthogonal. It follows from (3.107) that an arbitrary non-singular
matrix can be written as a diagonal matrix with positive entries sandwiched between
a pair of orthogonal matrices. As a check, this gives n2 degrees of freedom. To
prove the desired result, we need only show that orthogonal transformations and
positive dilations can be written in the form of equation (3.105).

We first consider rotations. The Eij generators in Table 3.4 produce rotors of
the form

R = exp{(E − Ê)/2}, (3.110)

where
E = αijEij (3.111)

and the αij are a set of scalar coefficients. The effect of the rotor R on a+ generates

R(a+) = R(a+ â)R̃
= RaR̃ + (RaR̃)·K
= eE/2ae−E/2 + (eE/2ae−E/2)·K (3.112)

and so accounts for all rotations of the vector a in <n. To complete the set of
orthogonal transformations, a representation for reflections must be found as well.
A reflection in the hyperplane orthogonal to the vector n in <n is represented by
the element nn̂ in <n,n. Since nn̂n̂n = −1, nn̂ is not a rotor and belongs to the
disconnected part of spin(n, n). That nn̂ commutes with K, and so is contained in
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spin(n, n), is verified as follows,

nn̂K = 2nn̂·K + nKn̂

= 2n2 + 2n·Kn̂+Knn̂

= 2(n2 + n̂2) +Knn̂

= Knn̂. (3.113)

The action of nn̂ on a vector is determined by (3.8), and gives

nn̂a+nn̂ = −nn̂an̂n− (nn̂an̂n)·K
= −nan− (nan)·K, (3.114)

as required.
Finally, we need to see how positive dilations are given a rotor description. A

dilation in the n direction by an amount eλ is generated by the rotor

R = e−λnn̂/2, (3.115)

where the generator −λnn̂/2 is built from the Ki in Table 3.4. Acting on the null
vector n+ = n+ n̂, the rotor (3.115) gives

Rn+R̃ = e−λnn̂/2n+e
+λnn̂/2

= e−λnn̂(n+ n̂)
= (cosh λ− nn̂ sinh λ)(n+ n̂)
= (cosh λ+ sinh λ)(n+ n̂)
= eλn+. (3.116)

In addition, for vectors perpendicular to n in <n, the action of R on their null
vector equivalents has no effect. These are precisely the required properties for a
dilation in the n direction. This concludes the proof that the general linear group
is represented by the subgroup of spin(n, n) consisting of elements commuting
with K. As an aside, this construction has led us to the Eij and Ki generators
in Table (3.4). Commutators of the Eij and Ki give the remaining Fij generators,
which are sufficient to close the algebra.

The determinant of a linear function on <n is easily represented in <n,n since

f(e1)∧f(e2)∧. . .∧f(en) = det f En (3.117)
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becomes
MWnM

−1 = det fWn, (3.118)

in the null space of Vn. Here M is the spin group element representing the linear
function f . From the definitions of Wn and W ∗

n (3.102), we can write

det f = 2n〈W̃ ∗
nMWnM

−1〉, (3.119)

from which many of the standard properties of determinants can be derived.

3.3.1 Endomorphisms of <n
We now turn to a second feature of <n,n, which is its effectiveness in discussing
endomorphisms of <n. These are maps of <n onto itself, and the set of all such maps
is denoted end(<n). Since the algebra <n is 2n-dimensional, the endomorphism
algebra is isomorphic to the algebra of real 2n × 2n matrices,

end(<n) ∼= R(2n). (3.120)

But the Clifford algebra <n,n is also isomorphic to the algebra of 2n × 2n matrices,
so every endomorphism of <n can be represented by a multivector in <n,n1. Our
first task is therefore to find how to construct each multivector equivalent of a
given endomorphism.

Within <n, endomorphisms are built up from the the primitive operations of
the inner and outer products with the {ei}. It is more useful, however, to adopt
the following basis set of functions,

ei(A) ≡ ei ·A+ ei∧A = eiA (3.121)
êi(A) ≡ −ei ·A+ ei∧A = Âei, (3.122)

where the hat (parity) operation in <n is defined by

Âr ≡ (−1)rAr (3.123)

and serves to distinguish even-grade and odd-grade multivectors. The reason for
the use of the hat in both <n and <n,n will become apparent shortly. The {ei} and
{êi} operations are precisely those found in Section 2.3 in the context of Berezin

1I am grateful to Frank Sommen and Nadine Van Acker for pointing out the potential usefulness
of this result.
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calculus, though with the fiducial tensor h now set to the identity. They satisfy
the relations

eiej + ejei = 2δij
êiêj + êj êi = −2δij (3.124)
eiêj + êjei = 0, (3.125)

which are the defining relations for a vector basis in <n,n. This establishes the
isomorphism between elements of end(<n) and multivectors in <n,n. Any element of
end(<n) can be decomposed into sums and products of the {ei} and {êi} functions,
and so immediately specifies a multivector in <n,n built from the same combinations
of the {ei} and {êi} basis vectors.

To complete the construction, we must find a 2n-dimensional subspace of <n,n
on which endomorphisms of <n are faithfully represented by (left) multiplication
by elements of <n,n. The required subspace is a minimal left ideal of <n,n and is
denoted In. It is constructed as follows. We define a set of bivector blades by

Ki ≡ eiêi. (3.126)

Here, and in the remainder of this section, we have dropped the summation
convention. The Ki satisfy

Ki ·Kj = δij (3.127)
Ki×Kj = 0 (3.128)

and the bivector K is can be written as

K =
∑
i

Ki. (3.129)

A family of commuting idempotents are now defined by

Ii ≡ 1
2(1 +Ki) = w∗iwi, (3.130)
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and have the following properties:

I2
i = Ii (3.131)

IiIj = IjIi (3.132)
eiIi = wi = êiIi (3.133)
Iiei = w∗i = −Iiêi (3.134)

KiIi = Ii. (3.135)

From the Ii the idempotent I is defined by

I ≡
n∏
i=1

Ii = I1I2 . . . In = w∗1w1w
∗
2w2 . . . w

∗
nwn = W ∗

nW̃n. (3.136)

I has the following properties:

I2 = I (3.137)
eiI = êiI (3.138)

and
EnI = ÊnI = WnI = Wn, (3.139)

where En is the pseudoscalar for the Euclidean algebra <n and Ên is the pseudoscalar
for the anti-Euclidean algebra <0,n. The relationships in (3.139) establish an
equivalence between the <n, <0,n and Vn vector spaces.

Whilst the construction of I has made use of an orthonormal frame, the form of
I is actually independent of this choice. This can be seen by writing I in the form

I = 1
2n
(

1 +K + K∧K
2! + . . .+ K∧K∧. . .∧K

n!

)
(3.140)

and recalling that K is frame-independent. It is interesting to note that the
bracketed term in (3.140) is of the same form as the Grassmann exponential
considered in Section 2.2.1.

The full 2n-dimensional space In is generated by left multiplication of I by the
entire algebra <n,n,

In = <n,nI. (3.141)

Since multiplication of I by ei and êi are equivalent, every occurrence of an êi in
a multivector in <n,n can be replaced by an ei, so that there is a simple 1 ↔ 1
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equivalence between elements of <n and In. The action of an element of end(<n)
can now be represented in <n,n by left multiplication of In by the appropriate
multivector. For a multivector Ar in <n the equivalence between the basic operators
(3.122) is seen from

eiArI ↔ eiAr (3.142)

and
êiArI ↔ Ârei. (3.143)

The parity operation on the right-hand side of (3.143) arises because the êi vector
must be anticommuted through each of the vectors making up the Ar multivector.
This is the reason for the different uses of the overhat notation for the <n and <n,n
algebras. Symbolically, we can now write

eiIn ↔ ei<n (3.144)
êiIn ↔ <̂nei. (3.145)

Also, from the definitions of wi and w∗i (3.99), we find the equivalences

wiIn ↔ ei∧<n (3.146)
w∗i In ↔ ei ·<n, (3.147)

which establishes contact with the formalism of Grassmann/Berezin calculus given
in Chapter 2. We can now move easily between the formalism with dot and wedge
products used in Chapter 2 and the null-vector formalism adopted here. The chosen
application should dictate which is the more useful.

We next consider the quantity nn̂, where n is a unit vector. The action of this
on In gives

nn̂In ↔ n<̂nn. (3.148)

The operation on the right-hand side is the outermorphism action of a reflection in
the hyperplane perpendicular to n. In the previous section we used a double-sided
application of nn̂ on null vectors to represent reflections in <n. We now see that the
same object can be applied single-sidedly in conjunction with the idempotent I to
also produce reflections. The same is true of products of reflections. For example,
the rotor (3.110) gives

e(E−Ê)/2MI = eE/2Me−Ê/2I ↔ eE/2Me−E/2, (3.149)
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demonstrating how the two-bladed structure of the Eij generators is used to
represent concurrent left and right multiplication in <n.

The operation <n 7→ <̂n is performed by successive reflections in each of the ei
directions. We therefore find the equivalence

e1ê1e2ê2 . . . enênIn ↔ <̂n. (3.150)

But
e1ê1e2ê2 . . . enên = en . . . e2e1ê1ê2 . . . ên = ẼnÊn = En,n (3.151)

is the unit pseudoscalar in <n,n, so multiplication of an element of In by En,n
corresponds to the parity operation in <n. As a check, (En,n)2 is always +1, so the
result of two parity operations is always the identity.

The correspondence between the single-sided and double-sided forms for a
dilation are not quite so simple. If we consider the rotor exp{−λnn̂/2} again, we
find that, for the vector n,

e−λnn̂/2nI = eλ/2nI ↔ eλ/2n (3.152)

For vectors perpendicular to n, however, we find that

e−λnn̂/2n⊥I = n⊥e
−λ/2nn̂I ↔ e−λ/2n⊥, (3.153)

so the single-sided formulation gives a stretch along the n direction of exp{λ}, but
now combined with an overall dilation of exp{−λ/2}. This overall factor can be
removed by an additional boost with the exponential of a suitable multiple of K.
It is clear, however, that both single-sided and double-sided application of elements
of the spin group which commute with K can be used to give representations of
the general linear group.

Finally, we consider even products of the null vectors wi and w∗i . These generate
the operations

wiw
∗
i In ↔ ei ·(ei∧<n)

w∗iwiIn ↔ ei∧(ei ·<n) (3.154)

which are rejection and projection operations in <n respectively. For a vector a in
<n, the operation of projecting a onto the ei direction is performed by

Pi(a) = eiei ·a, (3.155)
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and for a general multivector,

Pi(A) = ei∧(ei ·A). (3.156)

This projects out the components of A which contain a vector in the ei direction.
The projection onto the orthogonal complement of ei (the rejection) is given by

P⊥i (A) = ei ·(ei∧A). (3.157)

Projection operations correspond to singular transformations, and we now see that
these are represented by products of null multivectors in <n,n. This is sufficient to
ensure that singular transformations can also be represented by an even product of
vectors, some of which may now be null.

Two results follow from these considerations. Firstly, every matrix Lie group
can be represented by a spin group — every matrix Lie group can be defined as a
subgroup of GL(n,R) and we have shown how GL(n,R) can be represented as a spin
group. It follows that every Lie algebra can be represented by a bivector algebra,
since all Lie algebras have a matrix representation via the adjoint representation.
The discussion of the unitary group has shown, however, that subgroups of GL(n,R)
are not, in general, the best way to construct spin-group representations. Other,
more useful, constructions are given in the following Sections. Secondly, every
linear transformation on <n can be represented in <n,n as an even product of
vectors, the result of which commutes with K. It is well known that quaternions
are better suited to rotations in three dimensions than 3× 3 matrices. It should
now be possible to extend these advantages to arbitrary linear functions. A number
of other applications for these results can be envisaged. For example, consider the
equation

u′(s) = M (s)u(s), (3.158)

where u(s) and M (s) are vector and matrix functions of the parameter s and the
prime denotes the derivative with respect to s. By replacing the vector u by the
null vector u in <n,n, equation (3.158) can be written in the form

u′ = B(s)·u, (3.159)

where B(s) is a bivector. If we now write u = Ru0R̃, where u0 is a constant vector,
then equation (3.158) reduces to the rotor equation

R′ = 1
2BR, (3.160)
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which may well be easier to analyse (a similar rotor reformulation of the Lorentz
force law is discussed in [20]).

3.4 The Remaining Classical Groups
We now turn attention to some of the remaining matrix Lie groups. Again, all
groups are realised as subgroups of the orthogonal group and so inherit a spin-
group representation. The various multivectors and linear functions which remain
invariant under the group action are discussed, and simple methods are given for
writing down the Bivector generators which form the Lie algebra. The results from
this chapter are summarised in Section 3.5.

3.4.1 Complexification — so(n,C)
Complexification of the Orthogonal groups O(p, q) leads to a single, non-compact,
Lie group in which all reference to the underlying metric is lost. With the uk and
vk defined as in Equation (3.55), the invariant bilinear form is

ε(u, v) = ukvk = xkrk − yksk + j(xksk + ykrk). (3.161)

This is symmetric, and the real part contains equal numbers of positive and negative
norm terms. The Lie group O(n,C) will therefore be realised in the “balanced”
algebra <n,n. To construct the imaginary part of (3.161), however, we need to find
a symmetric function which squares to give minus the identity. This is in contrast
to the K function, which is antisymmetric, and squares to +1. The solution is to
introduce the “star” function

a∗ ≡ (−1)n+1EnaE
−1
n , (3.162)

so that
e∗i = ei
ê∗i = −êi.

(3.163)

The use of the ∗ notation is consistent with the definitions of {wi} and {w∗i } bases
(3.99). The star operator is used to define projections into the Euclidean and
anti-Euclidean subspaces of <n,n:

En(a) = 1
2(a+ a∗) = a·EnE−1

n

Ên(a) = 1
2(a− a∗) = a∧EnE−1

n .
(3.164)
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Eij = eiej − êiêj (i < j = 1 . . . n)
Fij = eiêj + êiej.

′′

Table 3.6: Bivector Basis for so(n,C)

The Euclidean pseudoscalar En anticommutes with K, so the star operator anti-
commutes with the K function. It follows that the combined function

K∗(a) ≡ K(a∗) (3.165)

satisfies

K∗2(a) = K[K(a∗)∗]
= −K[K(a∗∗)]
= −a (3.166)

and

K∗(a) = −[K(a)]∗

= K∗(a), (3.167)

and so has the required properties. The complex symmetric norm can now be
written on <n,n as

ε(a, b) = a·b+ ja·K∗(b), (3.168)

which can verified by expanding in the {ei, êi} basis of (3.92).
An orthogonal transformation f will leave ε(a, b) invariant provided that

K∗f(a) = f K∗(a), (3.169)

which defines the group O(n,C). Each function f in O(n,C) can be constructed
from the corresponding elements of spin(n, n), which defines the spin-group repre-
sentation. The bivector generators must satisfy

K∗[eλB/2ae−λB/2] = eλB/2K∗(a)e−λB/2, (3.170)
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which reduces to the requirement

K∗(B ·a) = B ·K∗(a) (3.171)
⇒ B ·a = −K∗[B ·K∗(a)] = −K∗(B)·a (3.172)
⇒ K∗(B) = −B. (3.173)

Since K∗2(B) = B for all bivectors B, the generators which form the Lie algebra
so(n,C) are all of the form B−K∗(B). This is used to write down the bivector basis
in Table 3.6. Under the commutator product, the Eij form a closed sub-algebra
which is isomorphic to so(n). The Fij fulfil the role of “jEij”. The Killing metric
has n(n− 1)/2 entries of positive and signature and the same number of negative
signature.

3.4.2 Quaternionic Structures — sp(n) and so∗(2n)
The quaternionic unitary group (usually denoted Sp(n) or HU(n)) is the invariance
group of the Hermitian-symmetric inner product of quaternion-valued vectors. By
analogy with the unitary group, the quaternionic structure is introduced by now
quadrupling the real space <n or <p,q to <4n or <4p,4q. We deal with the Euclidean
case first and take {ei} to be an orthonormal basis set for <n. Three further copies
of <n are introduced, so that {ei, e1

i , e
2
i , e

3
i } form an orthonormal basis for <4n.

Three “doubling” bivectors are now defined as

J1 = eie
1
i + e2

i e
3
i

J2 = eie
2
i + e3

i e
1
i

J3 = eie
3
i + e1

i e
2
i ,

(3.174)

which define the three functions

J i(a) = a·Ji. (3.175)

(The introduction of an orthonormal frame is not essential since each of the Ji
are independent of the intial choice of frame. Orthonormal frames do ease the
discussion of the properties of the Ji, however, so will be used frequently in this
and the following sections).
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Eij = eiej + e1
i e

1
j + e2

i e
2
j + e3

i e
3
j (i < j = 1 . . . n)

Fij = eie
1
j − e1

i ej − e2
i e

3
j + e3

i e
2
j

′′

Gij = eie
2
j − e2

i ej − e3
i e

1
j + e1

i e
3
j

′′

Hij = eie
3
j − e3

i ej − e1
i e

2
j + e2

i e
1
j

′′

Fi = eie
1
i − e2

i e
3
i (i = 1 . . . n)

Gi = eie
2
i − e3

i e
1
i

′′

Hi = eie
3
i − e1

i e
2
i

′′

Table 3.7: Bivector Basis for sp(n)

The combined effect of J1 and J2 on a vector a produces

J1J2(a) = J1(a·eie2
i − a·e2

i ei + a·e3
i e

1
i − a·e1

i e
3
i )

= a·eie3
i − a·e2

i e
1
i − a·e3

i ei + a·e1
i e

2
i

= J3(a). (3.176)

The J i functions therefore generate the quaternionic structure

J2
1 = J2

2 = J2
3 = J1J2J3 = −1. (3.177)

The Hermitian-symmetric quaternion inner product can be realised in <4n by

ε(a, b) = a·b+ a·J1(b)i + a·J2(b)j + a·J3(b)j, (3.178)

where {i, j,k} are a basis set of quaterions (see Section 1.2.3). The inner product
(3.178) contains four separate terms, each of which must be preserved by the
invariance group. This group therefore consists of orthogonal transformations
satisfying

f(Ji) = Ji i = 1 . . . 3 (3.179)

and the spin group representation consists of the elements of spin(4n) which
commute with all of the Ji. The bivector generators of the invariance group
therefore also commute with the Ji. The results established in Section 3.2 apply
for each of the Ji in turn, so an arbitrary bivector in the Lie algebra of Sp(n) must
be of the form

BHU = B + J1(B) + J2(B) + J3(B). (3.180)

This result is used to write down the orthogonal basis set in Table 3.7. The algebra
has dimension 2n2 + n and rank n.

79



The above extends easily to the case of sp(p, q) by working in the algebra <4p,4q.
With {ei} now a basis for <p,q, the doubling bivectors are defined by

J1 = eie
1i + e2

i e
3i etc (3.181)

and the quaternion relations (3.177) are still satisfied. The Lie algebra is then
generated in exactly the same may. The resultant algebra has a Killing metric with
2(p2 + q2) + p+ q negative entries and 4pq positive entries.

The properties of the K∗ function found in Section 3.4.1 suggests that an
alternative quaternionic structure could be found in <2n,2n by introducing anti-
commuting K∗ and J functions. This is indeed the case. With {ei} and {fi} a
pair of anticommuting orthonormal bases for <n, a basis for <2n,2n is defined by
{ei, fi, êi, f̂i}. The hat operation is now defined by

â = K(a) = a·K (3.182)

with
K = eiêi + fif̂i. (3.183)

A complexification bivector is defined by

J = eif
i + êif̂

i = eifi − êif̂i (3.184)

and additional doubling bivectors are defined by

K1 = eiêi − fif̂i
K1 = eif̂i + fiêi.

(3.185)

The set {J,K1, K2} form a set of three bivectors, no two of which commute.
With pseudoscalars En and Fn defined by

En = e1e2 . . . en
Fn = f1f2 . . . fn,

(3.186)

the star operation is defined by

a∗ = −EnFnaF̃nẼn. (3.187)
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K∗i operations are now defined by

K∗i (a) = Ki(a∗) = a∗ ·Ki. (3.188)

These satisfy
K∗i

2(a) = −a (3.189)

and

K∗1K
∗
2(a) = K1[K2(a∗)∗]

= −K1K2(a)
= J(a). (3.190)

The J and K∗i therefore form a quaternionic set of linear functions satisfying

K∗1
2 = K∗2

2 = J2 = K∗1K
∗
2J = −1. (3.191)

Orthogonal functions commuting with each of the J and K∗i functions will therefore
leave a quaternionic inner product invariant. This inner product can be written as

ε(a, b) = a·J(b) + ia·b+ ja·K∗1(b) + ka·K∗2(b), (3.192)

which expansion in the {ei, fi, êi, f̂i} frame shows to be equivalent to the skew-
Hermitian quaternionic inner product

ε(u, v) = u†kivk. (3.193)

The invariance group of (3.193) is denoted SO∗(2n) (or Sk(n,H)). The bivector
generators of the invariance group must satisfy J(B) = B and K∗i (B) = −B and
so are of the form

BH∗ = B + J(B)−K∗1(B)−K∗2(B). (3.194)

This leads to the orthogonal set of basis generators in Table 3.8.
The bivector algebra so∗(n) has dimension n(2n− 1) and a Killing metric with

n2 negative entries and n2 − n positive entries. This algebra is one of the possible
real forms of the complexified algebra Dn. Some of the properties of so∗(2n),
including its representation theory, have been discussed by Barut & Bracken [58].
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Eij = eiej + fifj − êiêj − f̂if̂j (i < j = 1 . . . n)
Fij = eifj − fiej + êif̂j − f̂iêj ′′

Gij = eiêj + êiej + fif̂j + f̂ifj
′′

Hij = eif̂j + f̂iej − fiêj − êifj ′′

Hi = eifi + êif̂i (i = 1 . . . n)

Table 3.8: Bivector Basis for so∗(n)

3.4.3 The Complex and Quaternionic General Linear
Groups

The general linear group over the complex field, GL(n,C), is constructed from
linear functions in the 2n-dimensional space <2n which leave the complex structure
intact,

h(a)·J = h(a·J). (3.195)

These linear functions can be represented by orthogonal functions in <2n,2n using the
techniques introduced in Section 3.3. Thus, using the conventions of Section 3.4.2,
a vector a in <2n is represented in <2n,2n by the null vector a+ = a + â, and the
complex structure is defined by the bivector J of equation (3.184). These definitions
ensure that the J function keeps null vectors in the same null space,

K J(a) = J K(a) (3.196)

⇒ (a·J)·K − (a·K)·J = a·(J×K) = 0, (3.197)

which is satisfied since J×K = 0. The spin group representation of GL(n,C)
consists of all elements of spin(2n, 2n) which commute with both J and K and
hence preserve both the null and complex structures. The bivector generators of
the Lie algebra gl(n,C) are therefore of the form

BC = B + J(B)−K(B)−K J(B) (3.198)

which yields the set of generators in Table 3.9. This algebra has 2n2 generators, as
is to be expected. The two abelian subgroups are removed in the usual manner
to yield the Lie algebra for sl(n,C) given in Table 3.10. The Killing metric gives
n2 − 1 terms of both positive and negative norm.

The general linear group with quaternionic entries (denoted U∗(2n) or GL(n,H))
is constructed in the same manner as the above, except that now the group is
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Eij = eiej + fifj − êiêj − f̂if̂j (i < j = 1 . . . n)
Fij = eifj − fiej − êif̂j + f̂iêj

′′

Gij = eiêj − êiej + fif̂j − f̂ifj ′′

Hij = eif̂j + f̂iej − fiêj − êifj ′′

Ji = eifi − êif̂i (i = 1 . . . n)
Ki = eiêi + fif̂i

′′

Table 3.9: Bivector Basis for gl(n,C)

Eij = eiej + fifj − êiêj − f̂if̂j (i < j = 1 . . . n)
Fij = eifj − fiej − êif̂j + f̂iêj

′′

Gij = eiêj − êiej + fif̂j − f̂ifj ′′

Hij = eif̂j + f̂iej − fiêj − êifj ′′

Gi = Ji − Ji+1 (i = 1 . . . n− 1)
Hi = Ki −Ki+1

′′

Table 3.10: Bivector Basis for sl(n,C)

contained in the algebra <4n,4n. Thus we start in the algebra <4n and introduce
a quaternionic structure through the Ji bivectors of equations (3.174). The <4n

algebra is then doubled to a <4n,4n algebra with the introduction of a suitable K
bivector, and the Ji are extended to new bivectors

J ′i = Ji − Ĵi. (3.199)

The spin-group representation of U∗(2n) then consists of elements of spin(4n, 4n)
which commute with all of the J ′i and with K. The bivectors generators are all of
the form

BH = B + J ′1(B) + J ′2(B) + J ′3(B)−K[B + J ′1(B) + J ′2(B) + J ′3(B)]. (3.200)

The result is a (4n2)-dimensional algebra containing the single abelian factor K.
This is factored out in the usual way to yield the bivector Lie algebra su∗(2n).

3.4.4 The symplectic Groups Sp(n,R) and Sp(n,C)
The symplectic group Sp(n,R) consists of all linear functions h acting on <2n

satisfying h(J) = J , where J is the doubling bivector from the <n algebra to the

83



Eij = eiej + fifj − êiêj − f̂if̂j (i < j = 1 . . . n)
Fij = eifj − fiej − êif̂j + f̂iêj

′′

Gij = eiêj − êiej − fif̂j + f̂ifj
′′

Hij = eif̂j − f̂iej + fiêj − êifj ′′

Fi = eifi − êif̂i (i = 1 . . . n)
Gi = eiêi − fif̂i ′′

Hi = eif̂i + fiêi
′′

Table 3.11: Bivector Basis for sp(n,R)

<2n algebra. A spin-group representation is achieved by doubling to <2n,2n and
constructing Sp(n,R) as a subgroup of GL(2n,R). In <2n, the symplectic inner
product is given by (a ∧ b)·J . In <2n,2n, with K defined as in Equation (3.183),
the vectors a and b are replaced by the null vectors a+ and b+. Their symplectic
inner product is given by

(a+∧b+)·JS = [K(a+)∧K(b+)]·JS = (a+∧b+)·K(JS). (3.201)

The symplectic bivector in <2n,2n satisfies

K(JS) = JS (3.202)

and so is defined by
JS = J + Ĵ = eifi + êif̂i. (3.203)

(This differs from the J defined in equation (3.184), so generates an alternative com-
plex structure). The group Sp(n,R) is the subgroup of orthogonal transformations
on <2n,2n which leave both JS and K invariant. The spin-group representation con-
sists of all elements which commute with both JS and K. The bivector generators
of Sp(n,R) are all of the form

BSp = B + JS(B)−K(B)−K JS(B). (3.204)

An orthogonal basis for the algebra sp(n,R) is contained in Table 3.11. This has
dimension n(2n + 1) and a Killing metric with n2 negative entries and n2 + n

positive entries. The same construction can be used to obtain the algebras for
sp(p, q,R) by starting from <p,q and doubling this to <2p,2q.

The group Sp(n,C) consists of functions on <4n satisfying h(J1) = J1 and which
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also preserve the complex structure,

h(a·J3) = h(a)·J3. (3.205)

The complex and symplectic structures satisfy J3(J1) = −J1, so J3 and J1 do
not commute. Instead they are two-thirds of the quaternionic set of bivectors
introduced in Section 3.4.2. The C-skew inner product on <4n is written

ε(a, b) = a·J1(b)− ja·J1J3(b) = a·J1(b) + ja·J2(b). (3.206)

By analogy with Sp(n,R), a spin-group representation of Sp(n,C) is constructed
as a subgroup of GL(2n,C)in <4n,4n. With the null structure defined by K, the
symplectic structure is now determined by

JS = J1 +K(J1) (3.207)

and the complex structure by

J = J2 −K(J). (3.208)

The Lie algebra sp(n,C) is formed from the set of bivectors in <2
4n,4n which commute

with all of the K, J and JS bivectors. With this information, it is a simple matter
to write down a basis set of generators.

3.5 Summary
In the preceding sections we have seen how many matrix Lie groups can be
represented as spin groups, and how all (finite dimensional) Lie algebras can be
realised as bivector algebras. These results are summarised in Tables 3.12 and 3.13.
Table 3.12 lists the classical bilinear forms, their invariance groups, the base space
in which the spin group representation is constructed and the general form of the
bivector generators. The remaining general linear groups are listed in Table 3.13.
Again, their invariant bivectors and the general form of the generators are listed.
For both tables, the conventions for the various functions and bivectors used are
those of the section where the group was discussed.

A number of extensions to this work can be considered. It is well known, for
example, that the Lie group G2 can be constructed in <0,7 as the invariance group
of a particular trivector (which is given in [46]). This suggests that the techniques
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Base Form of Bivector
Type Form of ε(a, b) Group Space Generators

R-symmetric a·b SO(p, q) <p,q B
R-skew a·J(b) Sp(n,R) <2n,2n B + JS(B)−K(B + JS(B))
C-symmetric a·b+ ja·K∗(b) SO(n,C) <n,n B −K∗(B)
C-skew a·J1(b) + ja·J2(b) Sp(n,C) <4n,4n B + J(B) + JS(B) + J JS(B)

−K( ′′ )
C-Hermitian a·b+ ja·J(b) U(p, q) <2p,2q B + J(B)
H-Hermitian a·b+ a·J1(b)i + Sp(n) <4n B + J1(B) + J2(B) + J3(B)

a·J2(b)j + a·J3(b)j
H-Skew a·J(b) + a·K∗1(b)+ SO∗(2n) <2n,2n B + J(B)−K∗1(B)−K∗2(B)

a·bi + a·K∗2(b)k

Table 3.12: The Classical Bilinear Forms and their Invariance Groups

explored in this chapter can be applied to the exceptional groups. A geometric
algebra is a graded space and in Chapter 5 we will see how this can be used
to define a multivector bracket which satisfies the super-Jacobi identities. This
opens up the possibility of further extending the work of this chapter to include
super-Lie algebras. Furthermore, we shall see in Chapter 4 that the techniques
developed for doubling spaces are ideally suited to the study of multiparticle
quantum theory. Whether some practical benefits await the idea that all general
linear transformations can be represented as even products of vectors remains to
be seen.

Base Form of Bivector
Group Space Invariants Generators

GL(n,R) <n,n K B −K(B)
GL(n,C) <2n,2n K, J B + J(B)−K(B + J(B))
GL(n,H) / SU∗(n) <4n,4n K, J ′1, J

′
2, J

′
3 B + J ′1(B) + J ′2(B) + J ′3(B)

−K( ′′ )

Table 3.13: The General Linear Groups
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Chapter 4

Spinor Algebra

This chapter describes a translation between conventional matrix-based spinor
algebra in three and four dimensions [59, 60], and an approach based entirely in
the (real) geometric algebra of spacetime. The geometric algebra of Minkowski
spacetime is called the spacetime algebra or, more simply, the STA. The STA was
introduced in Section 1.2.5 as the geometric algebra generated by a set of four
orthonormal vectors {γµ}, µ = 0 . . . 3, satisfying

γµ ·γν = ηµν = diag(+ − − −). (4.1)

Whilst the {γµ} satisfy the Dirac algebra generating relations, they are to be
thought of as an orthonormal frame of independent vectors and not as components
of a single “isospace” vector. The full STA is spanned by the basis

1, {γµ} {σk, iσk}, {iγµ}, i, (4.2)

where
i ≡ γ0γ1γ2γ3 (4.3)

and
σk ≡ γkγ0. (4.4)

The meaning of these equation was discussed in Section 1.2.5.
The aim of this chapter is to express both spinors and matrix operators within

the real STA. This results in a very powerful language in which all algebraic
manipulations can be performed without ever introducing a matrix representation.
The Pauli matrix algebra is studied first, and an extension to multiparticle systems
is introduced. The Dirac algebra and Dirac spinors are then considered. The
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translation into the STA quickly yields the Dirac equation in the form first found
by Hestenes [17, 19, 21, 27]. The concept of the multiparticle STA is introduced,
and is used to formulate a number of two-particle relativistic wave equations. Some
problems with these are discussed and a new equation, which has no spinorial
counterpart, is proposed. The chapter concludes with a discussion of the 2-spinor
calculus of Penrose & Rindler [36]. Again, it is shown how a scalar unit imaginary
is eliminated by the use of the real multiparticle STA. Some sections of this chapter
appeared in the papers “States and operators in the spacetime algebra” [6] and
“2-Spinors, twistors and supersymmetry in the spacetime algebra [4].

4.1 Pauli Spinors
This section establishes a framework for the study of the Pauli operator algebra and
Pauli spinors within the geometric algebra of 3-dimensional space. The geometric
algebra of space was introduced in Section 1.2.3 and is spanned by

1, {σk}, {iσk}, i. (4.5)

Here the {σk} are a set of three relative vectors (spacetime bivectors) in the
γ0-system. Vectors in this system are written in bold type to distinguish them
from spacetime vectors. There is no possible confusion with the {σk} symbols, so
these are left in normal type. When working non-relativistically within the even
subalgebra of the full STA some notational modifications are necessary. Relative
vectors {σk} and relative bivectors {iσk} are both bivectors in the full STA, so
spatial reversion and spacetime reversion have different effects. To distinguish
these, we define the operation

A† = γ0Ãγ0, (4.6)

which defines reversion in the Pauli algebra. The presence of the γ0 vector in the
definition of Pauli reversion shows that this operation is dependent on the choice
of spacetime frame. The dot and wedge symbols also carry different meanings
dependent on whether their arguments are treated as spatial vectors or spacetime
bivectors. The convention adopted here is that the meaning is determined by
whether their arguments are written in bold type or not. Bold-type objects are
treated as three-dimensional multivectors, whereas normal-type objects are treated
as belonging to the full STA. This is the one potentially confusing aspect of
our conventions, though in practice the meaning of all the symbols used is quite
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unambiguous.
The Pauli operator algebra [59] is generated by the 2× 2 matrices

σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 −j
j 0

)
, σ̂3 =

(
1 0
0 −1

)
. (4.7)

These operators act on 2-component complex spinors

|ψ〉 =
(
ψ1

ψ2

)
, (4.8)

where ψ1 and ψ2 are complex numbers. We have adopted a convention by which
standard quantum operators appear with carets, and quantum states are written
as kets and bras. We continue to write the unit scalar imaginary of conventional
quantum mechanics as j, which distinguishes it from the geometric pseudoscalar i.

To realise the Pauli operator algebra within the algebra of space, the column
Pauli spinor |ψ〉 is placed in one-to-one correspondence with the even multivector
ψ (which satisfies ψ = γ0ψγ0) through the identification1

|ψ〉 =
(

a0 + ja3

−a2 + ja1

)
↔ ψ = a0 + akiσk. (4.9)

In particular, the basis spin-up and spin-down states become(
1
0

)
↔ 1 (4.10)

and (
0
1

)
↔ −iσ2. (4.11)

The action of the four quantum operators {σ̂k, j} can now be replaced by the
operations

σ̂k |ψ〉 ↔ σkψσ3 (k = 1, 2, 3) (4.12)

and
j |ψ〉 ↔ ψiσ3. (4.13)

1This mapping was first found by Anthony Lasenby.
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Verifying these relations is a matter of routine computation, for example

σ̂1 |ψ〉 =
(
−a2 + ja1

a0 + ja3

)
↔ −a2 + a1iσ3

−a0iσ2 + a3iσ1
= σ1

(
a0 + akiσk

)
σ3. (4.14)

With these definitions, the action of complex conjugation of a Pauli spinor translates
to

|ψ〉∗ ↔ σ2ψσ2. (4.15)

The presence of a fixed spatial vector on the left-hand side of ψ shows that complex
conjugation is a frame-dependent concept.

As an illustration, the Pauli equation (in natural units),

j∂t |ψ〉 = 1
2m

(
(−j∇− eA)2 − eσ̂kBk

)
|ψ〉+ eV |ψ〉 , (4.16)

can be written (in the Coulomb gauge) as [22]

∂tψiσ3 = 1
2m(−∇2ψ + 2eA·∇ψiσ3 + e2A2ψ)− e

2mBψσ3 + eV ψ, (4.17)

where B is the magnetic field vector Bkσk. This translation achieves two important
goals. The scalar unit imaginary is eliminated in favour of right-multiplication
by iσ3, and all terms (both operators and states) are now real-space multivectors.
Removal of the distinction between states and operators is an important conceptual
simplification.

We next need to find a geometric algebra equivalent of the spinor inner product
〈ψ |φ〉. In order to see how to handle this, we need only consider its real part. This
is given by

<〈ψ |φ〉 ↔ 〈ψ†φ〉, (4.18)

so that, for example,

〈ψ |ψ〉 ↔ 〈ψ†ψ〉 = 〈(a0 − iajσj)(a0 + iakσk)〉
= (a0)2 + akak. (4.19)

Since
〈ψ|φ〉 = <〈ψ|φ〉 − j<〈ψ|jφ〉, (4.20)
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the full inner product becomes

〈ψ |φ〉 ↔ (ψ, φ)S ≡ 〈ψ†φ〉 − 〈ψ†φiσ3〉iσ3. (4.21)

The right hand side projects out the {1, iσ3} components from the geometric
product ψ†φ. The result of this projection on a multivector A is written 〈A〉S. For
Pauli-even multivectors this projection has the simple form

〈A〉S = 1
2(A− iσ3Aiσ3). (4.22)

As an example of (4.21), consider the expectation value

〈ψ|σ̂k |ψ〉 ↔ 〈ψ†σkψσ3〉 − 〈ψ†σkψi〉iσ3 = σk ·〈ψσ3ψ
†〉1, (4.23)

which gives the mean value of spin measurements in the k direction. The STA
form indicates that this is the component of the spin vector s = ψσ3ψ

† in the σk
direction, so that s is the coordinate-free form of this vector. Since ψσ3ψ

† is both
Pauli-odd and Hermitian-symmetric (reverse-symmetric in the Pauli algebra), s

contains only a vector part. (In fact, both spin and angular momentum are better
viewed as bivector quantities, so it is usually more convenient to work with is

instead of s.)
Under an active rotation, the spinor ψ transforms as

ψ 7→ ψ′ = R0ψ, (4.24)

where R0 is a constant rotor. The quantity ψ′ is even, and so is a second spinor.
(The term “spinor” is used in this chapter to denote any member of a linear
space which is closed under left-multiplication by a rotor R0.) The corresponding
transformation law for s is

s 7→ s′ = R0sR
†
0, (4.25)

which is the standard double-sided rotor description for a rotation, introduced in
Section 1.2.4.

The definitions (4.9), (4.12) and (4.13) have established a simple translation
from the language of Pauli operators and spinors into the geometric algebra of
space. But the STA formulation can be taken further to afford new insights into
the role of spinors in the Pauli theory. By defining

ρ = ψψ† (4.26)
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the spinor ψ can be written
ψ = ρ1/2R, (4.27)

where R is defined as
R = ρ−1/2ψ. (4.28)

R satisfies
RR† = 1 (4.29)

and is therefore a spatial rotor. The spin vector can now be written

s = ρRσ3R
†, (4.30)

which demonstrates that the double-sided construction of the expectation value
(4.23) contains an instruction to rotate and dilate the fixed σ3 axis into the spin
direction. The original states of quantum mechanics have now become operators in
the STA, acting on vectors. The decomposition of the spinor ψ into a density term ρ

and a rotor R suggests that a deeper substructure underlies the Pauli theory. This
is a subject which has been frequently discussed by David Hestenes [19, 22, 23, 27].
As an example of the insights afforded by this decomposition, it is now clear
“why” spinors transform single-sidedly under active rotations of fields in space.
If the vector s is to be rotated to a new vector R0sR

†
0 then, according to the

rotor group combination law, R must transform to R0R. This produces the spinor
transformation law (4.24).

We should now consider the status of the fixed {σk} frame. The form of the
Pauli equation (4.17) illustrates the fact that, when forming covariant expressions,
the {σk} only appear explicitly on the right-hand side of ψ. In an expression like

Akσ̂k|ψ〉 ↔ Aψσ3, (4.31)

for example, the quantity A is a spatial vector and transforms as

A 7→ A′ = R0AR†0. (4.32)

The entire quantity therefore transforms as

Aψσ3 7→ R0AR†0R0ψσ3 = R0Aψσ3, (4.33)

so that Aψσ3 is another spinor, as required. Throughout this derivation, the σ3

sits on the right-hand side of ψ and does not transform — it is part of a fixed
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frame in space. A useful analogy is provided by rigid-body dynamics, in which a
rotating frame {ek}, aligned with the principal axes of the body, can be related to
a fixed laboratory frame {σk} by

ek = RσkR
†. (4.34)

The dynamics is now completely contained in the rotor R. The rotating frame {ek}
is unaffected by the choice of laboratory frame. A different fixed laboratory frame,

σ′k = R1σkR
†
1, (4.35)

simply requires the new rotor
R′ = RR†1 (4.36)

to produce the same rotating frame. Under an active rotation, the rigid body
is rotated about its centre of mass, whilst the laboratory frame is fixed. Such a
rotation takes

ek 7→ e′k = R0ekR
†
0 (4.37)

which is enforced by the rotor transformation R 7→ R0R. The fixed frame is
shielded from this rotation, and so is unaffected by the active transformation. This
is precisely what happens in the Pauli theory. The spinor ψ contains a rotor, which
shields vectors on the right-hand side of the spinor from active rotations of spatial
vectors.

Since multiplication of a column spinor by j is performed in the STA by
right-sided multiplication by iσ3, a U(1) gauge transformation is performed by

ψ 7→ ψ′ = ψeφiσ3 . (4.38)

This right-sided multiplication by the rotor R = exp{φiσ3} is equivalent to a
rotation of the initial (fixed) frame to the new frame {RσkR†}. Gauge invariance
can therefore now be interpreted as the requirement that physics is unaffected by
the position of the σ1 and σ2 axes in the iσ3 plane. In terms of rigid-body dynamics,
this means that the body behaves as a symmetric top. These analogies between
rigid-body dynamics and the STA form of the Pauli theory are quite suggestive.
We shall shortly see how these analogies extend to the Dirac theory.
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4.1.1 Pauli Operators
In our geometric algebra formalism, an arbitrary operator M̂ |ψ〉 is replaced by
a linear function M(ψ) acting on even multivectors in the algebra of space. The
functionM(ψ) is an example of the natural extension of linear algebra to encompass
linear operators acting on multivectors. The study of such functions is termed
“multilinear function theory” and some preliminary results in this field, including a
new approach to the Petrov classification of the Riemann tensor, have been given
by Hestenes & Sobczyk [24]. Since ψ is a 4-component multivector, the space of
functions M(ψ) is 16-dimensional, which is the dimension of the group GL(4,R).
This is twice as large as the 8-dimensional Pauli operator algebra (which forms
the group GL(2,C)). The subset of multilinear functions which represent Pauli
operators is defined by the requirement that M(ψ) respects the complex structure,

jM̂(j |ψ〉) = −M̂ |ψ〉
⇒M(ψiσ3)iσ3 = −M(ψ). (4.39)

The set of M(ψ) satisfying (4.39) is 8-dimensional, as required.
The Hermitian operator adjoint is defined by

〈ψ
∣∣∣M̂φ

〉
= 〈M̂ †ψ |φ〉 . (4.40)

In terms of the function M(ψ), this separates into two equations

〈ψ†M(φ)〉 = 〈M †
HA(ψ)φ〉 (4.41)

and
〈ψ†M(φ)iσ3〉 = 〈M †

HA(ψ)φiσ3〉 (4.42)

where the subscript on MHA labels the STA representation of the Pauli operator
adjoint. The imaginary equation (4.42) is automatically satisfied by virtue of (4.41)
and (4.39). The adjoint of a multilinear function is defined in the same way as that
of a linear function (Section 1.3), so that

〈M̄(ψ)φ〉 = 〈ψM(φ)〉. (4.43)

The Pauli operator adjoint is therefore given by the combination of a reversion,
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the geometric adjoint, and a second reversion,

MHA(ψ) = M̄ †(ψ†). (4.44)

For example, if M(ψ) = AψB, then

M̄(ψ) = BψA (4.45)

and

MHA(ψ) = (Bψ†A)†

= A†ψB† (4.46)

Since the STA action of the σ̂k operators takes ψ into σkψσ3, it follows that these
operators are, properly, Hermitian. Through this approach, the Pauli operator
algebra can now be fully integrated into the wider subject of multilinear function
theory.

4.2 Multiparticle Pauli States
In quantum theory, 2-particle states are assembled from direct products of single-
particle states. For example, a basis for the outer-product space of two spin-1/2
states is given by the set(

1
0

)
⊗
(

1
0

)
,

(
0
1

)
⊗
(

1
0

)
,

(
1
0

)
⊗
(

0
1

)
,

(
0
1

)
⊗
(

0
1

)
.

(4.47)
To represent these states in the STA, we must consider forming copies of the STA
itself. We shall see shortly that, for relativistic states, multiparticle systems are
constructed by working in a 4n-dimensional configuration space. Thus, to form
two-particle relativistic states, we work in the geometric algebra generated by
the basis set {γ1

µ, γ
2
µ}, where the basis vectors from different particle spacetimes

anticommute. (The superscripts label the particle space.) If we wanted to adopt
the same procedure when working non-relativistically, we would set up a space
spanned by {σ1

i , σ
2
i }, where the basis vectors from different particle spaces also

anticommute. This construction would indeed suffice for an entirely non-relativistic
discussion. The view adopted throughout this thesis, however, is that the algebra of
space is derived from the more fundamental relativistic algebra of spacetime. The

95



construction of multiparticle Pauli states should therefore be consistent with the
construction of relativistic multiparticle states. It follows that the spatial vectors
from two separate copies of spacetime are given by

σ1
i = γ1

i γ
1
0 (4.48)

σ2
i = γ2

i γ
2
0 (4.49)

and so satisfy

σ1
i σ

2
j = γ1

i γ
1
0γ

2
j γ

2
0 = γ1

i γ
2
j γ

2
0γ

1
0 = γ2

j γ
2
0γ

1
i γ

1
0 = σ2

jσ
1
i . (4.50)

In constructing multiparticle Pauli states, we must therefore take the basis vectors
from different particle spaces as commuting. In fact, for the non-relativistic
discussion of this section, it does not matter whether these vectors are taken as
commuting or anticommuting. It is only when we come to consider relativistic states,
and in particular the 2-spinor calculus, that the difference becomes important.

Since multiparticle states are ultimately constructed in a subalgebra of the
geometric algebra of relativistic configuration space, the elements used all inherit a
well-defined Clifford multiplication. There is therefore no need for the tensor product
symbol ⊗, which is replaced by simply juxtaposing the elements. Superscripts
are used to label the single-particle algebra from which any particular element is
derived. As a further abbreviation i1σ1

1 is written, wherever possible, as iσ1
1 etc.

This helps to remove some of the superscripts. The unit element of either space is
written simply as 1.

The full 2-particle algebra generated by commuting basis vectors is 8× 8 = 64
dimensional. The spinor subalgebra is 4 × 4 = 16 dimensional, which is twice
the dimension of the direct product of two 2-component complex spinors. The
dimensionality has doubled because we have not yet taken the complex structure
of the spinors into account. While the role of j is played in the two single-particle
spaces by right multiplication by iσ1

3 and iσ2
3 respectively, standard quantum

mechanics does not distinguish between these operations. A projection operator
must therefore be included to ensure that right multiplication by iσ1

3 or iσ2
3 reduces

to the same operation. If a two-particle spin state is represented by the multivector
ψ, then ψ must satisfy

ψiσ1
3 = ψiσ2

3 (4.51)
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from which we find that

ψ = −ψiσ1
3iσ

2
3 (4.52)

⇒ ψ = ψ 1
2(1− iσ1

3iσ
2
3). (4.53)

On defining
E = 1

2(1− iσ1
3iσ

2
3), (4.54)

it is seen that
E2 = E (4.55)

so right multiplication by E is a projection operation. It follows that the two-
particle state ψ must contain a factor of E on its right-hand side. We can further
define

J = Eiσ1
3 = Eiσ2

3 = 1
2(iσ1

3 + iσ2
3) (4.56)

so that
J2 = −E. (4.57)

Right-sided multiplication by J takes over the role of j for multiparticle states.
The STA representation of a 2-particle Pauli spinor is now given by ψ1φ2E,

where ψ1 and φ2 are spinors (even multivectors) in their own spaces. A complete
basis for 2-particle spin states is provided by(

1
0

)
⊗
(

1
0

)
↔ E(

0
1

)
⊗
(

1
0

)
↔ −iσ1

2E(
1
0

)
⊗
(

0
1

)
↔ −iσ2

2E(
0
1

)
⊗
(

0
1

)
↔ iσ1

2iσ
2
2E.

(4.58)

This procedure extends simply to higher multiplicities. All that is required is
to find the “quantum correlator” En satisfying

Eniσ
j
3 = Eniσ

k
3 = Jn for all j, k. (4.59)

En can be constructed by picking out the j = 1 space, say, and correlating all the
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other spaces to this, so that

En =
n∏
j=2

1
2(1− iσ1

3iσ
j
3). (4.60)

The form of En is independent of which of the n spaces is singled out and correlated
to. The complex structure is defined by

Jn = Eniσ
j
3, (4.61)

where iσj3 can be chosen from any of the n spaces. To illustrate this consider the
case of n = 3, where

E3 = 1
4(1− iσ1

3iσ
2
3)(1− iσ1

3iσ
3
3) (4.62)

= 1
4(1− iσ1

3iσ
2
3 − iσ1

3iσ
3
3 − iσ2

3iσ
3
3) (4.63)

and
J3 = 1

4(iσ1
3 + iσ2

3 + iσ3
3 − iσ1

3iσ
2
3iσ

3
3). (4.64)

Both E3 and J3 are symmetric under permutations of their indices.
A significant feature of this approach is that all the operations defined for the

single-particle STA extend naturally to the multiparticle algebra. The reversion
operation, for example, still has precisely the same definition — it simply reverses
the order of vectors in any given multivector. The spinor inner product (4.21) also
generalises immediately, to

(ψ, φ)S = 〈En〉−1[〈ψ†φEn〉En − 〈ψ†φJn〉Jn]. (4.65)

The factor of 〈En〉−1 is included so that the operation

P (M) = 〈En〉−1[〈MEn〉En − 〈MJn〉Jn] (4.66)

is a projection operation (i.e. P (M) satisfies P 2(M) = P (M)). The fact that
P (M) is a projection operation follows from the results

P (En) = 〈En〉−1[〈EnEn〉En − 〈EnJn〉Jn]
= 〈En〉−1[〈En〉En − 〈Eniσj3〉Jn]
= En (4.67)
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and

P (Jn) = 〈En〉−1[〈JnEn〉En − 〈JnJn〉Jn]
= Jn. (4.68)

4.2.1 The Non-Relativistic Singlet State
As an application of the formalism outlined above, consider the 2-particle singlet
state |ε〉, defined by

|ε〉 = 1√
2

{(
1
0

)
⊗
(

0
1

)
−
(

0
1

)
⊗
(

1
0

)}
. (4.69)

This is represented in the two-particle STA by the multivector

ε = 1√
2(iσ1

2 − iσ2
2)1

2(1− iσ1
3iσ

2
3). (4.70)

The properties of ε are more easily seen by writing

ε = 1
2(1 + iσ1

2iσ
2
2)1

2(1 + iσ1
3iσ

2
3)
√

2iσ1
2, (4.71)

which shows how ε contains the commuting idempotents 1
2(1 + iσ1

2iσ
2
2) and 1

2(1 +
iσ1

3iσ
2
3). The normalisation ensures that

(ε, ε)S = 2〈ε†ε〉E2

= 4〈12(1 + iσ1
2iσ

2
2)1

2(1 + iσ1
3iσ

2
3)〉E2

= E2. (4.72)

The identification of the idempotents in ε leads immediately to the results that

iσ1
2ε = 1

2(iσ1
2 − iσ2

2)1
2(1 + iσ1

3iσ
2
3)
√

2iσ1
2 = −iσ2

2ε (4.73)

and
iσ1

3ε = −iσ2
3ε, (4.74)

and hence that

iσ1
1ε = iσ1

3iσ
1
2ε = −iσ2

2iσ
1
3ε = iσ2

2iσ
2
3ε = −iσ2

1ε. (4.75)

If M1 is an arbitrary even element in the Pauli algebra (M = M0 +Mkiσ1
k), then
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it follows that ε satisfies
M1ε = M2†ε. (4.76)

This provides a novel demonstration of the rotational invariance of ε. Under a joint
rotation in 2-particle space, a spinor ψ transforms to R1R2ψ, where R1 and R2

are copies of the same rotor but acting in the two different spaces. The combined
quantity R1R2 is a rotor acting in 6-dimensional space, and its generator is of the
form of the Eij generators for SU(n) (Table 3.3). From equation (4.76) it follows
that, under such a rotation, ε transforms as

ε 7→ R1R2ε = R1R1†ε = ε, (4.77)

so that ε is a genuine 2-particle scalar.

4.2.2 Non-Relativistic Multiparticle Observables
Multiparticle observables are formed in the same way as for single-particle states.
Some combination of elements from the fixed {σjk} frames is sandwiched between
a multiparticle wavefunction ψ and its spatial reverse ψ†. An important example
of this construction is provided by the multiparticle spin current. The relevant
operator is

Sk(ψ) = σ1
kψσ

1
3 + σ2

kψσ
2
3 + · · ·+ σnkψσ

n
3

= −[iσ1
kψiσ

1
3 + iσ2

kψiσ
2
3 + · · ·+ iσnkψiσ

n
3 ] (4.78)

and the corresponding observable is

(ψ, Sk(ψ))S = −〈En〉−1〈ψ†(iσ1
kψiσ

1
3 + · · ·+ iσnkψiσ

n
3 )En〉En

+〈En〉−1〈ψ†(iσ1
kψiσ

1
3 + · · ·+ iσnkψiσ

n
3 )Jn〉Jn

= −2n−1[〈(iσ1
k + · · ·+ iσnk )ψJψ†〉En + 〈(iσ1

k + · · ·+ iσnk )ψψ†〉Jn]
= −2n−1(iσ1

k + · · ·+ iσnk )∗(ψJψ†)En. (4.79)

The multiparticle spin current is therefore defined by the bivector

S = 2n−1〈ψJψ†〉2 (4.80)

where the right-hand side projects out from the full multivector ψJψ† the com-
ponents which are pure bivectors in each of the particle spaces. The result of
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Pauli Multivector Spin
State Form Current

| ↑↑〉 E2 iσ1
3 + iσ2

3
| ↑↓〉 −iσ2

2E2 iσ1
3 − iσ2

3
| ↓↑〉 −iσ1

2E2 −iσ1
3 + iσ2

3
| ↓↓〉 iσ1

2iσ
2
2E2 −iσ1

3 − iσ2
3

Table 4.1: Spin Currents for 2-Particle Pauli States

projecting out from the multivector M the components contained entirely in the
ith-particle space will be denoted 〈M〉i, so we can write

Si = 2n−1〈ψJψ†〉i2. (4.81)

Under a joint rotation in n-particle space, ψ transforms to R1 . . . Rnψ and S

therefore transforms to

R1 . . . RnSRn† . . . R1† = R1S1R1† + · · ·+RnSnRn†. (4.82)

Each of the single-particle spin currents is therefore rotated by the same amount in
its own space. That the definition (4.80) is sensible can be checked with the four
basis states (4.58). The form of S for each of these is contained in Table 4.1.

Other observables can be formed using different fixed multivectors. For example,
a two-particle invariant is generated by sandwiching a constant multivector Σ
between the singlet state ε,

M = εΣε†. (4.83)

Taking Σ = 1 yields

M = εε† = 21
2(1 + iσ1

2iσ
2
2)1

2(1 + iσ1
3iσ

2
3) = 1

2(1 + iσ1
1iσ

2
1 + iσ1

2iσ
2
2 + iσ1

3iσ
2
3) (4.84)

and Σ = i1i2 gives

M = εi1i2ε† = 1
2(i1i2 + σ1

1σ
2
1 + σ1

2σ
2
2 + σ1

3σ
2
3). (4.85)

This shows that both iσ1
kiσ

2
k and σ1

kσ
2
k are invariants under two-particle rotations.

In standard quantum mechanics these invariants would be thought of as arising
from the “inner product” of the spin vectors σ̂1

i and σ̂2
i . Here, we have seen that
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the invariants arise in a completely different way by looking at the full multivector
εε†. It is interesting to note that the quantities iσ1

kiσ
2
k and σ1

kσ
2
k are similar in form

to the symplectic (doubling) bivector J introduced in Section 3.2.
The contents of this section should have demonstrated that the multiparticle

STA approach is capable of reproducing most (if not all) of standard multiparticle
quantum mechanics. One important result that follows is that the unit scalar
imaginary j can be completely eliminated from quantum mechanics and replaced
by geometrically meaningful quantities. This should have significant implications
for the interpretation of quantum mechanics. The main motivation for this work
comes, however, from the extension to relativistic quantum mechanics. There we
will part company with operator techniques altogether, and the multiparticle STA
will suggest an entirely new approach to relativistic quantum theory.

4.3 Dirac Spinors
We now extend the procedures developed for Pauli spinors to show how Dirac
spinors can be understood in terms of the geometry of real spacetime. This reveals
a geometrical role for spinors in the Dirac theory (a role which was first identified by
Hestenes [19, 21]). Furthermore, this formulation is representation-free, highlighting
the intrinsic content of the Dirac theory.

We begin with the γ-matrices in the standard Dirac-Pauli representation [59],

γ̂0 =
(
I 0
0 −I

)
and γ̂k =

(
0 −σ̂k
σ̂k 0

)
. (4.86)

A Dirac column spinor |ψ〉 is placed in one-to-one correspondence with an 8-
component even element of the STA via [4, 61]

|ψ〉 =


a0 + ja3

−a2 + ja1

−b3 + jb0

−b1 − jb2

 ↔ ψ = a0 + akiσk + i(b0 + bkiσk). (4.87)

With the spinor |ψ〉 now replaced by an even multivector, the action of the operators
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{γ̂µ, γ̂5, j} (where γ̂5 = γ̂5 = −jγ̂0γ̂1γ̂2γ̂3) becomes

γ̂µ |ψ〉 ↔ γµψγ0 (µ = 0, . . . , 3)
j |ψ〉 ↔ ψ iσ3

γ̂5 |ψ〉 ↔ ψσ3,

(4.88)

which are verified by simple computation; for example

γ̂5 |ψ〉 =


−b3 + jb0

−b1 − jb2

a0 + ja3

−a2 + ja1

 ↔ −b3 + b0σ3 + b1iσ2 − b2iσ1

+a0σ3 + a3i− a2σ1 + a1σ2
= ψσ3. (4.89)

Complex conjugation in this representation becomes

|ψ〉∗ ↔ −γ2ψγ2, (4.90)

which picks out a preferred direction on the left-hand side of ψ and so is not a
Lorentz-invariant operation.

As a simple application of (4.87) and (4.88), the Dirac equation

γ̂µ(j∂µ − eAµ) |ψ〉 = m |ψ〉 (4.91)

becomes, upon postmultiplying by γ0,

∇ψiσ3 − eAψ = mψγ0 (4.92)

which is the form first discovered by Hestenes [17]. Here ∇ = γµ∂µ is the vector
derivative in spacetime. The properties of ∇ will be discussed more fully in
Chapter 6. This translation is direct and unambiguous, leading to an equation
which is not only coordinate-free (since the vectors ∇ = γµ∂µ and A = γµAµ
no longer refer to any frame) but is also representation-free. In manipulating
(4.92) one needs only the algebraic rules for multiplying spacetime multivectors,
and the equation can be solved completely without ever having to introduce a
matrix representation. Stripped of the dependence on a matrix representation,
equation (4.92) expresses the intrinsic geometric content of the Dirac equation.

To discuss the spinor inner product, it is necessary to distinguish between the
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Hermitian and Dirac adjoint. These are written as

〈ψ̄| − Dirac adjoint
〈ψ| − Hermitian adjoint, (4.93)

which translate as follows,

〈ψ̄| ↔ ψ̃

〈ψ| ↔ ψ† = γ0ψ̃γ0.
(4.94)

This makes it clear that the Dirac adjoint is the natural frame-invariant choice.
The inner product is handled in the same manner as in equation (4.21), so that

〈ψ̄ |φ〉 ↔ 〈ψ̃φ〉 − 〈ψ̃φiσ3〉iσ3 = 〈ψ̃φ〉S, (4.95)

which is also easily verified by direct calculation. In Chapters 6 and 7 we will be
interested in the STA form of the Lagrangian for the Dirac equation so, as an
illustration of (4.95), this is given here:

L = 〈ψ̄|(γ̂µ(j∂µ − eAµ)−m)|ψ〉 ↔ 〈∇ψiγ3ψ̃ − eAψγ0ψ̃ −mψψ̃〉. (4.96)

By utilising (4.95) the STA forms of the Dirac spinor bilinear covariants [60]
are readily found. For example,

〈ψ̄|γ̂µ |ψ〉 ↔ 〈ψ̃γµψγ0〉 − 〈ψ̃γµψiγ3〉iσ3 = γµ ·〈ψγ0ψ̃〉1 (4.97)

identifies the vector ψγ0ψ̃ as the coordinate-free representation of the Dirac current.
Since ψψ̃ is even and reverses to give itself, it contains only scalar and pseudoscalar
terms. We can therefore define

ρeiβ ≡ ψψ̃. (4.98)

Assuming ρ 6= 0, ψ can now be written as

ψ = ρ1/2eiβ/2R (4.99)

where
R = (ρeiβ)−1/2ψ. (4.100)

The even multivector R satisfies RR̃ = 1 and is therefore a spacetime rotor. Double-
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sided application of R on a vector a produces a Lorentz transformation. The STA
equivalents of the full set of bilinear covariants [33] can now be written as

Scalar 〈ψ̄ |ψ〉 ↔ 〈ψψ̃〉 = ρ cos β
Vector 〈ψ̄|γ̂µ |ψ〉 ↔ ψγ0ψ̃ = ρv

Bivector 〈ψ̄|jγ̂µν |ψ〉 ↔ ψiσ3ψ̃ = ρeiβS

Pseudovector 〈ψ̄|γ̂µγ̂5 |ψ〉 ↔ ψγ3ψ̃ = ρs

Pseudoscalar 〈ψ̄|jγ̂5 |ψ〉 ↔ 〈ψψ̃i〉 = −ρ sin β,

(4.101)

where
v = Rγ0R̃

s = Rγ3R̃
(4.102)

and
S = isv. (4.103)

These are summarised neatly by the equation

ψ(1 + γ0)(1 + iγ3)ψ̃ = ρ cosβ + ρv + ρeiβS + iρs+ iρ sinβ. (4.104)

The full Dirac spinor ψ contains (in the rotor R) an instruction to carry out a
rotation of the fixed {γµ} frame into the frame of observables. The analogy with
rigid-body dynamics discussed in Section 4.1 therefore extends immediately to the
relativistic theory. The single-sided transformation law for the spinor ψ is also
“understood” in the same way that it was for Pauli spinors.

Once the spinor bilinear covariants are written in STA form (4.101) they can
be manipulated far more easily than in conventional treatments. For example
the Fierz identities, which relate the various observables (4.101), are simple to
derive [33]. Furthermore, reconstituting ψ from the observables (up to a gauge
transformation) is now a routine exercise, carried out by writing

〈ψ〉S = 1
4 (ψ + γ0ψγ0 − iσ3(ψ + γ0ψγ0)iσ3)

= 1
4(ψ + γ0ψγ0 + σ3ψσ3 + γ3ψγ3), (4.105)

so that
ψ〈ψ̃〉S = 1

4ρ(eiβ + vγ0 − eiβSiσ3 + sγ3). (4.106)

The right-hand side of (4.106) can be found directly from the observables, and the
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left-hand side gives ψ to within a complex multiple. On defining

Z = 1
4ρ(eiβ + vγ0 − eiβSiσ3 + sγ3) (4.107)

we find that, up to an arbitrary phase factor,

ψ = (ρeiβ)1/2Z(ZZ̃)−1/2. (4.108)

An arbitrary Dirac operator M̂ |ψ〉 is replaced in the STA by a multilinear
functionM(ψ), which acts linearly on the entire even subalgebra of the STA. The 64
real dimensions of this space of linear operators are reduced to 32 by the constraint
(4.39)

M(ψiσ3) = M(ψ)iσ3. (4.109)

Proceeding as at (4.44), the formula for the Dirac adjoint is

MDA(ψ) = ˜̄M(ψ̃). (4.110)

Self-adjoint Dirac operators satisfy M̃(ψ) = M̄(ψ̃) and include the γ̂µ. The
Hermitian adjoint, MHA, is derived in the same way:

MHA(ψ) = M̄ †(ψ†), (4.111)

in agreement with the non-relativistic equation (4.44).
Two important operator classes of linear operators on ψ are projection and

symmetry operators. The particle/antiparticle projection operators are replaced by

1
2m(m∓ γ̂µpµ)|ψ〉 ↔ 1

2m(mψ ∓ pψγ0), (4.112)

and the spin-projection operators become

1
2(1± γ̂µsµγ̂5)|ψ〉 ↔ 1

2(ψ ± sψγ3). (4.113)

Provided that p·s = 0, the spin and particle projection operators commute.
The three discrete symmetries C, P and T translate equally simply (following
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the convention of Bjorken & Drell [59]):

P̂ |ψ〉 ↔ γ0ψ(x̄)γ0

Ĉ |ψ〉 ↔ ψσ1

T̂ |ψ〉 ↔ iγ0ψ(−x̄)γ1,

(4.114)

where x̄ = γ0xγ0 is (minus) a reflection of x in the time-like γ0 axis.
The STA representation of the Dirac matrix algebra will be used frequently

throughout the remainder of this thesis. In particular, it underlies much of the
gauge-theory treatment of gravity discussed in Chapter 7.

4.3.1 Changes of Representation — Weyl Spinors
In the matrix theory, a change of representation is performed with a 4× 4 complex
matrix Ŝ. This defines new matrices

γ̂′µ = Ŝγ̂µŜ
−1, (4.115)

with a corresponding spinor transformation |ψ〉 7→ Ŝ |ψ〉. For the Dirac equa-
tion, it is also required that the transformed Hamiltonian be Hermitian, which
restricts (4.115) to a unitary transformation

γ̂′µ = Ŝγ̂µŜ
†, ŜŜ† = 1. (4.116)

The STA approach to handling alternative matrix representations is to find a
suitable analogue of the Dirac-Pauli map (4.87) which ensures that the effect of
the matrix operators is still given by (4.88). The relevant map is easy to construct
once the Ŝ is known which relates the new representation to the Dirac-Pauli
representation. One starts with a column spinor |ψ〉′ in the new representation,
constructs the equivalent Dirac-Pauli spinor Ŝ†|ψ〉′, then maps this into its STA
equivalent using (4.87). This technique ensures that the action of j and the {γ̂µ, γ̂5}
matrices is still given by (4.88), and the Ĉ, P̂ and T̂ operators are still represented
by (4.114). The STA form of the Dirac equation is always given by (4.92) and so is
a truly representation-free expression.

The STA from of the Dirac and Hermitian adjoints is always given by the
formulae (4.110) and (4.111) respectively. But the separate transpose and complex
conjugation operations retain some dependence on representation. For example,
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complex conjugation in the Dirac-Pauli representation is given by (4.90)

|ψ〉∗ ↔ −γ2ψγ2. (4.117)

In the Majorana representation, however, we find that the action of complex conju-
gation on the Majorana spinor produces a different effect on its STA counterpart,

|ψ〉∗Maj ↔ ψσ2. (4.118)

In the operator/matrix theory complex conjugation is a representation-dependent
concept. This limits its usefulness for our representation-free approach. Instead, we
think of ψ 7→ −γ2ψγ2 and ψ 7→ ψσ2 as distinct operations that can be performed
on the multivector ψ. (Incidentally, equation 4.118 shows that complex conjugation
in the Majorana representation does indeed coincide with our STA form of the
charge conjugation operator (4.114), up to a conventional phase factor.)

To illustrate these techniques consider the Weyl representation, which is defined
by the matrices [60]

γ̂′0 =
(

0 −I
−I 0

)
and γ̂′k =

(
0 −σ̂k
σ̂k 0

)
. (4.119)

The Weyl representation is obtained from the Dirac-Pauli representation by the
unitary matrix

û = 1√
2

(
I I

−I I

)
. (4.120)

A spinor in the Weyl representation is written as

|ψ〉′ =
(
|χ〉
|η̄〉

)
, (4.121)

where |χ〉 and |η̄〉 are 2-component spinors. Acting on |ψ〉′ with û† gives

û†|ψ〉′ = 1√
2

(
|χ〉 − |η̄〉
|χ〉+ |η̄〉.

)
(4.122)

Using equation (4.87), this is mapped onto the even element

û†|ψ〉′ = 1√
2

(
|χ〉 − |η̄〉
|χ〉+ |η̄〉

)
↔ ψ = χ 1√

2(1 + σ3)− η̄ 1√
2(1− σ3), (4.123)
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where χ and η̄ are the Pauli-even equivalents of the 2-component complex spinors
|χ〉 and |η̄〉, as defined by equation (4.9). The even multivector

ψ = χ 1√
2(1 + σ3)− η̄ 1√

2(1− σ3) (4.124)

is therefore our STA version of the column spinor

|ψ〉′ =
(
|χ〉
|η̄〉

)
, (4.125)

where |ψ〉′ is acted on by matrices in the Weyl representation. As a check, we
observe that

γ̂′0|ψ〉′ =
(
−|η̄〉
−|χ〉

)
↔ −η̄ 1√

2(1 + σ3) + χ 1√
2(1− σ3) = γ0ψγ0 (4.126)

and

γ̂k |ψ〉 =
(
−σ̂k|η̄〉
σ̂k|χ〉

)
↔ −σkη̄σ3

1√
2(1 + σ3)− σkχσ3

1√
2(1− σ3) = γkψγ0.

(4.127)
(We have used equation (4.12) and the fact that γ0 commutes with all Pauli-even
elements.) The map (4.123) does indeed have the required properties.

4.4 The Multiparticle Spacetime Algebra
We now turn to the construction of the relativistic multiparticle STA. The principle
is simple. We introduce a set of four (anticommuting) basis vectors {γiµ}, µ = 0 . . . 3,
i = 1 . . . n where n is the number of particles. These vectors satisfy

γiµ ·γjν = δijηµν (4.128)

and so span a 4n-dimensional space. We interpret this as n-particle configuration
space. The construction of such a space is a standard concept in classical mechanics
and non-relativistic quantum theory, but the construction is rarely extended to
relativistic systems. This is due largely to the complications introduced by a
construction involving multiple times. In particular, Hamiltonian techniques appear
to break down completely if a strict single-time ordering of events is lost. But
we shall see that the multiparticle STA is ideally suited to the construction of
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relativistic states. Furthermore, the two-particle current no longer has a positive-
definite timelike component, so can describe antiparticles without the formal
requirement for field quantisation.

We will deal mainly with the two-particle STA. A two-particle quantum state
is represented in this algebra by the multivector ψ = ΨE, where E = E2 is the
two-particle correlator (4.54) and Ψ is an element of the 64-dimensional direct
product space of the two even sub-algebras of the one-dimensional algebras. This
construction ensures that ψ is 32-dimensional, as is required for a real equivalent
of a 16-component complex column vector. Even elements from separate algebras
automatically commute (recall (4.50)) so a direct product state has ψ = ψ1ψ2E =
ψ2ψ1E. The STA equivalent of the action of the two-particle Dirac matrices γ̂iµ is
defined by the operators

βiµ(ψ) = γiµψγ
i
0. (4.129)

These operators satisfy

β1
µβ

2
µ(ψ) = γ1

µγ
2
µψγ

2
0γ

1
0 = γ2

µγ
1
µψγ

1
0γ

2
0 = β2

µβ
1
µ(ψ) (4.130)

and so, despite introducing a set of anticommuting vectors, the βiµ from different
particle spaces commute. In terms of the matrix theory, we have the equivalences

γ̂µ ⊗ I|ψ〉 ↔ β1
µ(ψ), (4.131)

I ⊗ γ̂µ|ψ〉 ↔ β2
µ(ψ). (4.132)

Conventional treatments (e.g. Corson [62]) usually define the operators

βµ(ψ) = 1
2 [β1

µ(ψ) + β2
µ(ψ)], (4.133)

which generate the well-known Duffin-Kemmer ring

βµβνβρ + βρβνβµ = ηνρβµ + ηνµβρ. (4.134)

This relation is verified by first writing

βνβρ(ψ) = 1
4 [(γνγρ)1ψ + (γνγρ)2ψ + γ1

νγ
2
ρψγ

2
0γ

1
0 + γ2

νγ
1
ρψγ

1
0γ

2
0 ](4.135)

⇒ βµβνβρ(ψ) = 1
8 [γ1

µνρψγ
1
0 + γ2

µνρψγ
2
0 + γ1

νργ
2
µψγ

2
0 + γ2

νργ
1
µψγ

1
0 +

γ1
µνγ

2
ρψγ

2
0 + γ2

µνγ
1
ρψγ

1
0 + γ1

µργ
2
νψγ

2
0 + γ2

µργ
1
νψγ

1
0 ] (4.136)

where γµν = γµγν etc. In forming βµβνβρ + βρβνβµ we are adding a quantity to its
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reverse, which simply picks up the vector part of the products of vectors sitting on
the left-hand side of ψ in (4.136). We therefore find that

(βµβµβρ + βρβνβµ)ψ = 1
4 [〈γ1

µνρ + γ2
νργ

1
µ + γ2

µνγ
1
ρ + γ2

µργ
1
ν〉1ψγ1

0 +
〈γ2
µνρ + γ1

νργ
2
µ + γ1

µνγ
2
ρ + γ1

µργ
2
ν〉1ψγ2

0 ]
= 1

2 [ηµνγ1
ρ + ηνργ

1
µ]ψγ1

0 + 1
2 [ηµνγ2

ρ + ηνργ
2
µ]ψγ2

0

= ηµνβρ(ψ) + ηνρβµ(ψ). (4.137)

The realisation of the Duffin-Kemmer algebra demonstrates that the multiparticle
STA contains the necessary ingredients to formulate the relativistic two-particle
equations that have been studied in the literature.

The simplest relativistic two-particle wave equation is the Duffin-Kemmer
equation (see Chapter 6 of [62]), which takes the form

∂µβµ(ψ)J = mψ. (4.138)

Here, ψ is a function of a single set of spacetime coordinates xµ, and ∂µ =
∂xµ . Equation (4.138) describes a non-interacting field of spin 0 ⊕ 1. Since the
wavefunction is a function of one spacetime position only, (4.138) is not a genuine
two-body equation. Indeed, equation (4.138) has a simple one-body reduction,
which is achieved by replacing ψ by a 4× 4 complex matrix [62, 63].

The first two-particle equation to consider in which ψ is a genuine function of
position in configuration space is the famous Bethe-Salpeter equation [64]

(j∇̂1 −m1)(j∇̂2 −m2)|ψ(x1, x2)〉 = jI|ψ(x1, x2)〉 (4.139)

where ∇̂1 = γ̂1
µ∂xµ1 etc. and I is an integral operator describing the inter-particle

interaction (Bethe & Salpeter [64] considered a relativistic generalisation of the
Yukawa potential). The STA version of (4.139) is

∇1∇2ψγ2
0γ

1
0 + [m1∇2ψγ2

0 +m2∇1ψγ1
0 − I(ψ)]J = m1m2ψ, (4.140)

where ∇1 and ∇2 are vector derivatives in the particle 1 and particle 2 spaces
respectively.

An alternative approach to relativistic two-body wave equations was initiated by
Breit [65] in 1929. Breit wrote down an approximate two-body equation based on
an equal-time approximation and applied this approximation to the fine structure
of orthohelium. Breit’s approach was developed by Kemmer [66] and Fermi &
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Yang [67], who introduced more complicated interactions to give phenomenological
descriptions of the deuteron and pions respectively. More recently, this work
has been extended by a number of authors (see Koide [68] and Galeõa & Leal
Ferriara [63] and references therein). These approaches all make use of an equation
of the type (in STA form)

Eψ + (γ1
0∧∇1 + γ2

0∧∇2)ψJ −m1γ0ψγ
1
0 −m2γ2

0ψγ
2
0 − I(ψ) = 0, (4.141)

where ψ = ψ(x1, x2) is a function of position in configuration space and I(ψ) again
describes the inter-particle interaction. Equation (4.141) can be seen to arise from
an equal-time approximation to the STA equation

γ1
0(∇1ψJ +m1ψγ1

0) + γ2
0(∇2ψJ +m1ψγ2

0)− I(ψ) = 0. (4.142)

In the case where the interaction is turned off and ψ is a direct-product state,

ψ = ψ1(x1)ψ2(x2)E, (4.143)

equation (4.142) recovers the single-particle Dirac equations for the two separate
particles. (This is also the case for the Bethe-Salpeter equation (4.139).) The
presence of the γ1

0 and γ2
0 on the left-hand side mean that equation (4.142) is not

Lorentz covariant, however, so can at best only be an approximate equation. From
the STA form (4.139), one can immediately see how to proceed to a fully covariant
equation. One simply removes the γ0’s from the left. The resultant equation is

(∇1ψγ1
0 +∇2ψγ2

0)J − I(ψ) = (m1 +m2)ψ, (4.144)

and indeed such an equation has recently been proposed by Krolikowski [69, 70]
(who did not use the STA).

These considerations should make it clear that the multiparticle STA is entirely
sufficient for the study of relativistic multiparticle wave equations. Furthermore,
it removes the need for either matrices or an (uninterpreted) scalar imaginary.
But, in writing down (4.144), we have lost the ability to recover the single-particle
equations. If we set I(ψ) to zero and use (4.143) for ψ, we find that(

ψ2(∇ψiγ3)1 + ψ1(∇ψiγ3)2 − (m1 +m2)ψ1ψ2
)
E = 0. (4.145)
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On dividing through by ψ1ψ2 we arrive at the equation

(ψ1)−1(∇ψiγ3)1 + (ψ2)−1(∇ψiγ3)2 −m1 −m2 = 0, (4.146)

and there is now no way to ensure that the correct mass is assigned to the appropriate
particle.

There is a further problem with the equations discussed above. A multiparticle
action integral will involve integration over the entire 4n-dimensional configuration
space. In order that boundary terms can be dealt with properly (see Chapter 6)
such an integral should make use of the configuration space vector derivative
∇ = ∇1 +∇2. This is not the case for the above equations, in which the ∇1 and
∇2 operators act separately. We require a relativistic two-particle wave equation
for particles of different masses which is derivable from an action integral and
recovers the individual one-particle equations in the absence of interactions. In
searching for such an equation we are led to an interesting proposal — one that
necessitates parting company with conventional approaches to relativistic quantum
theory. To construct a space on which the full ∇ can act, the 32-dimensional
spinor space considered so far is insufficient. We will therefore extend our spinor
space to the the entire 128-dimensional even subalgebra of the two-particle STA.
Right multiplication by the correlator E then reduces this to a 64-dimensional
space, which is now sufficient for our purposes. With ψ now a member of this
64-dimensional space, a suitable wave equation is

(∇
1

m1 + ∇
2

m2 )ψJ − ψ(γ1
0 + γ2

0)− I(ψ) = 0. (4.147)

The operator (∇1/m1 +∇2/m2) is formed from a dilation of ∇, so can be easily in-
corporated into an action integral (this is demonstrated in Chapter 6). Furthermore,
equation (4.147) is manifestly Lorentz covariant. In the absence of interactions,
and with ψ taking the form of (4.143), equation (4.147) successfully recovers the
two single-particle Dirac equations. This is seen by dividing through by ψ1ψ2 to
arrive at (

1
ψ1
∇1

m1ψ
1iσ1

3 + 1
ψ2
∇2

m2ψ
2iσ2

3 − γ1
0 − γ2

0

)
E = 0. (4.148)

The bracketed term contains the sum of elements from the two separate spaces, so
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both terms must vanish identically. This ensures that

1
ψ1
∇1

m1ψ
1iσ1

3 = γ1
0

⇒ ∇1ψ1iσ1
3 = m1ψ1γ1

0 , (4.149)

with the same result holding in the space of particle two. The fact that the particle
masses are naturally attached to their respective vector derivatives is interesting,
and will be mentioned again in the context of the STA gauge theory of gravity
(Chapter 7).

No attempt at solving the full equation (4.147) for interacting particles will
be made here (that would probably require a thesis on its own). But it is worth
drawing attention to a further property of the equation. The current conjugate to
gauge transformations is given by

j = j1

m1 + j2

m2 (4.150)

where j1 and j2 are the projections of 〈ψ(γ1
0 + γ2

0)ψ̃〉1 into the individual particle
spaces. The current j satisfies the conservation equation

∇·j = 0 (4.151)

or
(∇

1

m1 + ∇
2

m2 )·〈ψ(γ1
0 + γ2

0)ψ̃〉1 = 0. (4.152)

For the direct-product state (4.143) the projections of j into the single-particle
spaces take the form

j1 = 〈ψ2ψ̃2〉(ψ1γ1
0 ψ̃

1)
j2 = 〈ψ1ψ̃1〉(ψ2γ2

0 ψ̃
2). (4.153)

But the quantity 〈ψψ̃〉 is not positive definite, so the individual particle currents
are no longer necessarily future-pointing. These currents can therefore describe
antiparticles. (It is somewhat ironic that most of the problems associated with
the single-particle Dirac equation can be traced back to the fact that the timelike
component of the current is positive definite. After all, producing a positive-
definite density was part of Dirac’s initial triumph.) Furthermore, the conservation
law (4.151) only relates to the total current in configuration space, so the projections
onto individual particle spaces have the potential for very strange behaviour. For
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example, the particle 1 current can turn round in spacetime, which would be
interpreted as an annihilation event. The interparticle correlations induced by
the configuration-space current j also afford insights into the non-local aspects of
quantum theory. Equation (4.147) should provide a fruitful source of future research,
as well as being a useful testing ground for our ideas of quantum behaviour.

4.4.1 The Lorentz Singlet State
Returning to the 32-dimensional spinor space of standard two-particle quantum
theory, our next task is to find a relativistic analogue of the Pauli singlet state
discussed in Section 4.2.1. Recalling the definition of ε (4.70), the property that
ensured that ε was a singlet state was that

iσ1
kε = −iσ2

kε, k = 1 . . . 3. (4.154)

In addition to (4.154), a relativistic singlet state, which we will denote as η, must
satisfy

σ1
kη = −σ2

kη, k = 1 . . . 3. (4.155)

It follows that η satisfies

i1η = σ1
1σ

1
2σ

1
3η = −σ2

3σ
2
2σ

2
1η = i2η (4.156)

so that

η = −i1i2η (4.157)
⇒ η = 1

2(1− i1i2)η. (4.158)

Such a state can be formed by multiplying ε by the idempotent (1− i1i2)/2. We
therefore define

η ≡ ε1
2(1− i1i2) = 1√

2(iσ1
2 − iσ2

2)1
2(1− iσ1

3iσ
2
3)1

2(1− i1i2). (4.159)

This satisfies
iσ1
kη = iσ1

kε
1
2(1− i1i2) = −iσ2

kη k = 1 . . . 3 (4.160)

and
σ1
kη = −σ1

ki
1i2η = i2iσ2

kη = −σ2
kη k = 1 . . . 3. (4.161)
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These results are summarised by

M1η = M̃2η, (4.162)

where M is an even multivector in either the particle 1 or particle 2 STA. The
proof that η is a relativistic invariant now reduces to the simple identity

R1R2η = R1R̃1η = η, (4.163)

where R is a relativistic rotor acting in either particle-one or particle-two space.
Equation (4.162) can be seen as arising from a more primitive relation between

vectors in the separate spaces. Using the result that γ1
0γ

2
0 commutes with η, we

can derive

γ1
µηγ

1
0 = γ1

µγ
1
0γ

2
0ηγ

2
0γ

1
0γ

1
0

= γ2
0(γµγ0)1ηγ2

0

= γ2
0γ

2
0γ

2
µηγ

2
0

= γ2
µηγ

2
0 , (4.164)

and hence we find that, for an arbitrary vector a,

a1ηγ1
0 = a2ηγ2

0 . (4.165)

Equation (4.162) follows immediately from (4.165) by writing

(ab)1η = a1b1ηγ1
0γ

1
0

= a1b2ηγ2
0γ

1
0

= b2a1ηγ1
0γ

2
0

= b2a2ηγ2
0γ

2
0

= (ba)2η. (4.166)

Equation (4.165) can therefore be viewed as the fundamental property of the
relativistic invariant η.

From η a number of Lorentz-invariant two-particle multivectors can be con-
structed by sandwiching arbitrary multivectors between η and η̃. The simplest
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such object is

ηη̃ = ε1
2(1− i1i2)ε̃

= 1
2(1 + iσ1

1iσ
2
1 + iσ1

2iσ
2
2 + iσ1

3iσ
2
3)1

2(1− i1i2)
= 1

4(1− i1i2)− 1
4(σ1

kσ
2
k − iσ1

kiσ
2
k). (4.167)

This contains a scalar + pseudoscalar term, which is obviously invariant, together
with the invariant grade-4 multivector (σ1

kσ
2
k − iσ1

kiσ
2
k). The next simplest object is

ηγ1
0γ

2
0 η̃ = 1

2(1 + iσ1
1iσ

2
1 + iσ1

2iσ
2
2 + iσ1

3iσ
2
3)1

2(1− i1i2)γ1
0γ

2
0

= 1
4(γ1

0γ
2
0 + i1i2γ1

kγ
2
k − i1i2γ1

0γ
2
0 − γ1

kγ
2
k)

= 1
4(γ1

0γ
2
0 − γ1

kγ
2
k)(1− i1i2). (4.168)

On defining the symplectic (doubling) bivector

J ≡ γ1
µγ

µ2 (4.169)

and the two-particle pseudoscalar

I ≡ i1i2 = i2i1 (4.170)

the invariants from (4.168) are simply J and IJ . As was disussed in Section (3.2),
the bivector J is independent of the choice of spacetime frame, so is unchanged by
the two-sided application of the rotor R = R1R2. It follows immediately that the
6-vector IJ is also invariant.

From the definition of J (4.169), we find that

J∧J = −2γ1
0γ

2
0γ

1
kγ

2
k + (γ1

kγ
2
k)∧(γ1

j γ
2
j )

= 2(σ1
kσ

2
k − iσ1

kiσ
2
k), (4.171)

which recovers the 4-vector invariant from (4.167). The complete set of two-particle
invariants can therefore be constructed from J alone, and these are summarised
in Table 4.2. These invariants are well-known and have been used in constructing
phenomenological models of interacting particles [63, 68]. The STA derivation of
the invariants is quite new, however, and the role of the doubling bivector J has
not been previously noted.
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Type of
Invariant Interaction Grade

1 Scalar 0
J Vector 2

J∧J Bivector 4
IJ Pseudovector 6
I Pseudoscalar 8

Table 4.2: Two-Particle Relativistic Invariants

4.5 2-Spinor Calculus
We saw in Section 4.3.1 how spinors in the Weyl representation are handled within
the (single-particle) STA. We now turn to a discussion of how the 2-spinor calculus
developed by Penrose & Rindler [36, 37] is formulated in the multiparticle STA.
From equation (4.87), the chiral projection operators 1

2(1± γ̂′5) result in the STA
multivectors

1
2(1 + γ̂′5)|ψ〉′ ↔ ψ 1

2(1 + σ3) = χ 1√
2(1 + σ3)

1
2(1− γ̂′5)|ψ〉′ ↔ ψ 1

2(1− σ3) = −η̄ 1√
2(1− σ3). (4.172)

The 2-spinors |χ〉 and |η̄〉 can therefore be given the STA equivalents

|χ〉 ↔ χ 1√
2(1 + σ3)

|η̄〉 ↔ −η̄ 1√
2(1− σ3). (4.173)

These differ from the representation of Pauli spinors, and are closer to the “minimal
left ideal” definition of a spinor given by some authors (see Chapter 2 of [13], for
example). Algebraically, the (1 ± σ3) projectors ensure that the 4-dimensional
spaces spanned by elements of the type χ 1√

2(1 + σ3) and η̄ 1√
2(1− σ3) are closed

under left multiplication by a relativistic rotor. The significance of the (1 ± σ3)
projectors lies not so much in their algebraic properties, however, but in the fact
that they are the γ0-space projections of the null vectors γ0± γ3 . This will become
apparent when we construct some 2-spinor “observables”.

Under a Lorentz transformation the spinor ψ transforms to Rψ, where R is a

118



relativistic rotor. If we separate the rotor R into Pauli-even and Pauli-odd terms,

R = R+ +R− (4.174)

where

R+ = 1
2(R + γ0Rγ0) (4.175)

R− = 1
2(R− γ0Rγ0), (4.176)

then we can write

Rχ 1√
2(1 + σ3) = R+χ

1√
2(1 + σ3) +R−χσ3

1√
2(1 + σ3)

Rη̄ 1√
2(1− σ3) = R+η̄

1√
2(1− σ3)−R−η̄σ3

1√
2(1− σ3). (4.177)

The transformation laws for the Pauli-even elements χ and η̄ are therefore

χ 7→ R+χ+R−χσ3 (4.178)
η̄ 7→ R+η̄ −R−η̄σ3, (4.179)

which confirms that |χ〉 transforms under the operator equivalent of R, but that
|η̄〉 transforms under the equivalent of

R+ −R− = γ0Rγ0 = (γ0R̃γ0)̃ = (R−1)†. (4.180)

This split of a Lorentz transformations into two distinct operations is an unattractive
feature of the 2-spinor formalism, but it is an unavoidable consequence of attempting
to perform relativistic calculations within the Pauli algebra of 2× 2 matrices. The
problem is that the natural anti-involution operation is Hermitian conjugation.
This operation is dependent on the choice of a relativistic timelike vector, which
breaks up expressions in a way that disguises their frame-independent meaning.

The 2-spinor calculus attempts to circumvent the above problem by augmenting
the basic 2-component spinor with a number of auxilliary concepts. The result is a
language which has proved to be well-suited to the study of spinors in a wide class of
problems and it is instructive to see how some features of the 2-spinor are absorbed
into the STA formalism. The central idea behind the 2-spinor calculus is that a
two-component complex spinor |κ〉, derived form the Weyl representation (4.121),
is replaced by the complex “vector” κA. Here the A is an abstract index labeling
the fact that κA is a single spinor belonging to some complex, two-dimensional
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linear space. We represent this object in the STA as

κA ↔ κ1
2(1 + σ3). (4.181)

(The factor of 1/2 replaces 1/
√

2 simply for convenience in some of the manipulations
that follow.) The only difference now is that, until a frame is chosen in spin-space,
we have no direct mapping between the components of κA and κ. Secifying a frame
in spin space also picks out a frame in spacetime (determined by the null tetrad).
If this spacetime frame is identified with the {γµ} frame, then the components κA

of κA specify the Pauli-even multivector κ via the identification of equation (4.9).
A second frame in spin-space produces different components κA, and will require a
different identification to equation (4.9), but will still lead to the same multivector
κ1

2(1 + σ3). 2-Spinors are equipped with a Lorentz-invariant inner product derived
from a metric tensor εAB. This is used to lower indices so, for every 2-spinor
κA, there is a corresponding κA. Both of these must have the same multivector
equivalent, however, in the same way that aµ and aµ both have the STA equivalent
a.

To account for the second type of relativistic 2-spinor, |η̄〉 (4.121), a second
linear space (or module) is introduced and elements of this space are labeled with
bars and primed indices. Thus an abstract element of this space is written as ω̄A′ .
In a given basis, the components of ω̄A′ are related to those of ωA by complex
conjugation,

ω̄0′ = ω0, ω̄1′ = ω1. (4.182)

To construct the STA equivalent of ω̄A′ we need a suitable equivalent for this
operation. Our equivalent operation should satisfy the following criteria:

1. The operation can only affect the right-hand side ω(1+σ3)/2, so that Lorentz
invariance is not compromised;

2. From equation (4.173), the STA equivalent of ω̄A′ must be a multivector
projected by the (1− σ3)/2 idempotent, so the conjugation operation must
switch idempotents;

3. The operation must square to give the identity;

4. The operation must anticommute with right-multiplication by iσ3.

The only operation satisfying all of these criteria is right-multiplication by some
combination of σ1 and σ2. Choosing between these is again a matter of convention,
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so we will represent 2-spinor complex conjugation by right-multiplication by −σ1.
It follows that our representation for the abstract 2-spinor ω̄A′ is

ω̄A
′ ↔ −ω 1

2(1 + σ3)σ1 = −ωiσ2
1
2(1− σ3). (4.183)

Again, once a basis is chosen, ω is constructed using the identification of equa-
tion (4.9) with the components ω0 = ω̄0′ and ω1 = ω̄1′ .

4.5.1 2-Spinor Observables
Our next step in the STA formulation of 2-spinor calculus is to understand how to
represent quantities constructed from pairs of 2-spinors. The solution is remarkably
simple. One introduces a copy of the STA for each spinor, and then simply
multiplies the STA elements together, incorporating suitable correlators as one
proceeds. For example, the quantity κAκ̄A′ becomes

κAκ̄A
′ ↔ −κ1 1

2(1 + σ1
3)κ2iσ2

2
1
2(1− σ2

3)1
2(1− iσ1

3iσ
2
3). (4.184)

To see how to manipulate the right-hand side of (4.184) we return to the relativistic
two-particle singlet η (4.159). The essential property of η under multiplication
by even elements was equation (4.162). This relation is unaffected by further
multiplication of η on the right-hand side by an element that commutes with E.
We can therefore form the object

ε = η 1
2(1 + σ1

3) (4.185)

(not to be confused with the non-relativistic Pauli singlet state) which will still
satisfy

M1ε = M̃2ε (4.186)

for all even multivectors M . The 2-particle state ε is still a relativistic singlet in
the sense of equation (4.163). From (4.185) we see that ε contains

1
2(1− i1i2)1

2(1 + σ1
3)1

2(1− iσ1
3iσ

2
3) = 1

2(1− iσ1
3i

2)1
2(1 + σ1

3)E
= 1

2(1− iσ2
3i

2)1
2(1 + σ1

3)E
= 1

2(1 + σ2
3)1

2(1 + σ1
3)E, (4.187)

so we can write
ε = 1√

2(iσ1
2 − iσ2

2)1
2(1 + σ2

3)1
2(1 + σ1

3)E. (4.188)
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A second invariant is formed by right-sided multiplication by (1− σ1
3)/2, and we

define
ε̄ = η 1

2(1− σ1
3). (4.189)

Proceeding as above, we find that

ε̄ = 1√
2(iσ1

2 − iσ2
2)1

2(1− σ2
3)1

2(1− σ1
3)E. (4.190)

This split of the full relativistic invariant η into ε and ε̄ lies at the heart of much of
the 2-spinor calculus. To see why, we return to equation (4.184) and from this we
extract the quantity 1

2(1 + σ1
3)1

2(1− σ2
3)1

2(1− iσ1
3iσ

2
3). This can be manipulated as

follows:

1
2(1 + σ1

3)1
2(1− σ2

3)E = γ1
0

1
2(1− σ1

3)1
2(1− σ1

3)1
2(1− σ2

3)Eγ1
0

= γ1
0iσ

2
2

1
2(1− σ1

3)(−iσ2
2)1

2(1− σ1
3)1

2(1− σ2
3)Eγ1

0

= γ1
0iσ

2
2

1
2(1− σ1

3)(iσ1
2 − iσ2

2)1
2(1− σ1

3)1
2(1− σ2

3)Eγ1
0

= γ1
0iσ

2
2

1√
2(1− σ1

3)ε̄γ1
0

= − 1√
2(γ1

0 + γ1
3)iσ1

2 ε̄γ
1
0 , (4.191)

which shows how an ε̄ arises naturally in the 2-spinor product. This ε̄ is then
used to project everything to its left back down to a single-particle space. We
continue to refer to each space as a “particle space” partly to stress the analogy
with relativistic quantum states, but also simply as a matter of convenience. In
2-spinor calculus there is no actual notion of a particle associated with each copy
of spacetime.

Returning to the example of κAκ̄A′ (4.184), we can now write

−κ1 1
2(1 + σ1

3)κ2iσ2
2

1
2(1− σ2

3)E = −κ1κ2iσ2
2

1
2(1 + σ1

3)1
2(1− σ2

3)E
= κ1κ2 1√

2(γ1
0 + γ1

3)ε̄γ1
0

= [κ 1√
2(γ0 + γ3)κ̃]1ε̄γ1

0 . (4.192)

The key part of this expression is the null vector κ(γ0 +γ3)κ̃/
√

2, which is formed in
the usual STA manner by a rotation/dilation of the fixed null vector (γ0 + γ3)/

√
2

by the even multivector κ. The appearance of the null vector (γ0 + γ3)/
√

2 can be
traced back directly to the (1 + σ3)/2 idempotent, justifying the earlier comment
that these idempotents have a clear geometric origin.

There are three further manipulations of the type performed in equation (4.191)
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1
2(1 + σ1

3)1
2(1− σ2

3)E = − 1√
2(γ1

0 + γ1
3)iσ1

2 ε̄γ
1
0

1
2(1− σ1

3)1
2(1 + σ2

3)E = − 1√
2(γ1

0 − γ1
3)iσ1

2εγ
1
0

1
2(1 + σ1

3)1
2(1 + σ2

3)E = − 1√
2(σ1

1 + iσ1
2)ε

1
2(1− σ1

3)1
2(1− σ2

3)E = − 1√
2(−σ1

1 + iσ1
2)ε̄

Table 4.3: 2-Spinor Manipulations

and the results of these are summarised in Table 4.3. These results can be used to
find a single-particle equivalent of any expression involving a pair of 2-spinors. We
will see shortly how these reductions are used to construct a null tetrad, but first
we need to find an STA formulation of the 2-spinor inner product.

4.5.2 The 2-spinor Inner Product
.

Spin-space is equipped with an anti-symmetric inner product, written as either
κAωA or κAωBεAB. In a chosen basis, the inner product is calculated as

κAωA = κAωA = κ0ω1 − κ1ω0, (4.193)

which yields a Lorentz-invariant complex scalar. The antisymmetry of the inner
product suggests forming the STA expression

1
2(κAωB − ωAκB) ↔ 1

2(κ1ω2 − κ2ω1)1
2(1 + σ1

3)1
2(1 + σ2

3)E

= −1
2

(
κ 1√

2(σ1 + iσ2)ω̃ − 1√
2ω(σ1 + iσ2)κ̃

)1
ε

= − 1√
2〈κ(σ1 + iσ2)ω̃〉10,4ε. (4.194)

The antisymmetric product therefore picks out the scalar and pseudoscalar parts
of the quantity κ(σ1

1 + iσ1
2)ω̃. This is sensible, as these are the two parts that are

invariant under Lorentz transformations. Fixing up the factor suitably, our STA
representation of the 2-spinor inner product will therefore be

κAωA ↔ −〈κ(σ1 + iσ2)ω̃〉0,4 = −〈κiσ2ω̃〉+ i〈κiσ1ω̃〉. (4.195)

That this agrees with the 2-spinor form in a given basis can be checked simply by
expanding out the right-hand side of (4.195).

A further insight into the role of the 2-spinor inner product is gained by
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assembling the full even multivector (an STA spinor)

ψ = κ1
2(1 + σ3) + ωiσ2

1
2(1− σ3). (4.196)

The 2-spinor inner product can now be written as

ψψ̃ = [κ1
2(1 + σ3) + ωiσ2

1
2(1− σ3)][−1

2(1 + σ3)iσ2ω̃ + 1
2(1− σ3)κ̃]

= −κ1
2(1 + σ3)iσ2ω̃ + ωiσ2

1
2(1− σ3)κ̃

= −〈κ(σ1 + iσ2)ω̃〉0,4 (4.197)

which recovers (4.195). The 2-spinor inner product is therefore seen to pick up both
the scalar and pseudoscalar parts of a full Dirac spinor product ψψ̃. Interchanging
κ and ω in ψ (4.196) is achieved by right-multiplication by σ1, which immediately
reverses the sign of ψψ̃. An important feature of the 2-spinor calculus has now
emerged, which is that the unit scalar imaginary is playing the role of the spacetime
pseudoscalar. This is a point in favour of 2-spinors over Dirac spinors, but it is
only through consistent employment of the STA that this point has become clear.

The general role of the εAB tensor when forming contractions is also now clear.
In the STA treatment, εAB serves to antisymmetrise on the two particle indices
carried by its STA equivalent. (It also introduces a factor of

√
2, which is a result

of the conventions we have adopted.) This antisymmetrisation always results
in a scalar + pseudoscalar quantity, and the pseudoscalar part can always be
pulled down to an earlier copy of spacetime. In this manner, antisymmetrisation
always removes two copies of spacetime, as we should expect from the contraction
operation.

4.5.3 The Null Tetrad
An important concept in the 2-spinor calculus is that of a spin-frame. This consists
of a pair of 2-spinors, κA and ωA say, normalised such that κAωA = 1. In terms of
the full spinor ψ (4.196), this normalisation condition becomes ψψ̃ = 1. But this is
simply the condition which ensures that ψ is a spacetime rotor! Thus the role of a
“normalised spin-frame” in 2-spinor calculus is played by a spacetime rotor in the
STA approach. This is a considerable conceptual simplification. Furthermore, it
demonstrates how elements of abstract 2-spinor space can be represented in terms
of geometrically meaningful objects — a rotor, for example, being simply a product
of an even number of unit vectors.
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Attached to the concept of a spin-frame is that of a null tetrad. Using κA and
ωA as the generators of the spin frame, the null tetrad is defined as follows:

la = κAκ̄A
′ ↔ −κ1κ2 1

2(1 + σ1
3)iσ2

2
1
2(1− σ2

3)E
= 1√

2 [κ(γ0 + γ3)κ̃]1ε̄γ1
0

= [ψ 1√
2(γ0 + γ3)ψ̃]1ε̄γ1

0 , (4.198)

na = ωAω̄A
′ ↔ −ω1ω2 1

2(1 + σ1
3)iσ2

1
2(1− σ2

3)E
= 1√

2 [ω(γ0 + γ3)ω̃]1ε̄γ1
0

= [ψ 1√
2(γ0 − γ3)ψ̃]1ε̄γ1

0 , (4.199)

ma = κAω̄A
′ ↔ −κ1ω2 1

2(1 + σ1
3)iσ2

1
2(1− σ2

3)E
= 1√

2 [κ(γ0 + γ3)ω̃]1ε̄γ1
0

= [ψ 1√
2(γ1 + iγ2)ψ̃]1ε̄γ1

0 , (4.200)

and

m̄a = ωAκ̄A
′ ↔ −ω1κ2 1

2(1 + σ1
3)iσ2

1
2(1− σ2

3)E
= 1√

2 [ω(γ0 + γ3)κ̃]1ε̄γ1
0

= [ψ 1√
2(γ1 − iγ2)ψ̃]1ε̄γ1

0 . (4.201)

The key identity used to arrive at the final two expression is

ψ(γ1 + iγ2)ψ̃ = ψ(1 + σ3)γ1ψ̃

= κ(1 + σ3)γ1ψ̃

= −κγ1(1 + σ3)iσ2ω̃

= −κγ1(1 + σ3)σ1ω̃

= κ(γ0 + γ3)ω̃. (4.202)

The simplest spin frame is formed when ψ = 1. In this case we arrive at the
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following comparison with page 120 of Penrose & Rindler [36];

la = 1√
2(ta + za) ↔ 1√

2(γ0 + γ3)
na = 1√

2(ta − za) ↔ 1√
2(γ0 − γ3)

ma = 1√
2(xa − jya) ↔ 1√

2(γ1 + iγ2)
m̄a = 1√

2(xa + jya) ↔ 1√
2(γ1 − iγ2).

(4.203)

The significant feature of this translation is that the “complex vectors” ma and
m̄a have been replaced by vector + trivector combinations. This agrees with
the observation that the imaginary scalar in the 2-spinor calculus plays the role
of the spacetime pseudoscalar. We can solve (4.203) for the Minkowski frame
{ta, xa, ya, za} (note how the abstract indices here simply record the fact that the
t . . . z are vectors). The only subtlety is that, in recovering the vector ya from our
expression for jya, we must post-multiply our 2-particle expression by iσ1

3. The
factor of (1 + σ1

3) means that at the one-particle level this operation reduces to
right-multiplication by i. We therefore find that

ta ↔ γ0 ya ↔ −γ2

xa ↔ γ1 za ↔ γ3.
(4.204)

The only surprise here is the sign of the y-vector γ2. This sign can be traced back to
the fact that Penrose & Rindler adopt an usual convention for the σ2 Pauli matrix
(page 16). This is also reflected in the fact that they identify the quaternions
with vectors (page 22), and we saw in Section 1.2.3 that the quaternion algebra is
generated by the spatial bivectors {iσ1,−iσ2, iσ3}.

An arbitrary spin-frame, encoded in the rotor R, produces a new null tetrad
simply by Lorentz rotating the vectors in (4.203), yielding

l = R 1√
2(γ0 + γ3)R̃, m = R 1√

2(γ1 + iγ2)R̃,
n = R 1√

2(γ0 − γ3)R̃, m̄ = R 1√
2(γ1 − iγ2)R̃. (4.205)

In this manner, the (abstract) null tetrad becomes a set of four arbitrary vec-
tor/trivector combinations in (4.205), satisfying the anticommutation relations [4]

1
2{l, n} = 1, 1

2{m, m̄} = 1, all others = 0. (4.206)
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4.5.4 The ∇A′A Operator
The final 2-spinor object that we need a translation of is the differential operator
∇A′A. The translation of ∇A′A will clearly involve the vector derivative ∇ = γµ∂xµ

and this must appear in such a way that it picks up the correct transformation law
under a rotation in two-particle space. These observations lead us to the object

∇A′A ↔ ∇1εγ1
0 , (4.207)

so that, under a rotation,

∇1εγ1
0 7→ R1R2∇1εγ1

0 = R1∇R2εγ1
0

= (R∇R̃)1εγ1
0 , (4.208)

and the ∇ does indeed inherit the correct vector transformation law. In this
chapter we are only concerned with the “flat-space” vector derivative ∇; a suitable
formulation for “curved-space” derivatives will emerge in Chapter 7. A feature of
the way that the multiparticle STA is employed here is that each spinor κ(1 +σ3)/2
is a function of position in its own spacetime,

κj 1
2(1 + σj3) = κj(xj)1

2(1 + σj3). (4.209)

When such an object is projected into a different copy of spacetime, the position
dependence must be projected as well. In this manner, spinors can be “pulled back”
into the same spacetime as the differential operator ∇.

We are now in a position to form the contraction ∇A′AκBεAB. We know that
the role of the εAB is to antisymmetrise on the relevant particle spaces (in this case
the 2 and 3 spaces), together with introducing a factor of

√
2. Borrowing from the

2-spinor notation, we denote this operation as ε2,3. We can now write

∇A′AκA = ∇A′AκBεAB ↔ ∇1ε12γ1
0κ

3 1
2(1 + σ3

3)E3ε2,3, (4.210)

where we have introduced the notation εij for the ε invariant (singlet state) un-
der joint rotations in the ith and jth copies of spacetime. Equation (4.210) is
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manipulated to give

∇1ε12γ1
0κ

3 1
2(1 + σ3

3)E3ε2,3

= ∇1 1√
2(iσ1

2 − iσ2
2)κ3 1

2(1 + σ1
3)1

2(1 + σ2
3)1

2(1 + σ3
3)E3ε2,3γ

1
0

= ∇1 1√
2

(
−iσ1

2〈(σ1 + iσ2)κ̃〉20,4 + 〈iσ2(σ1 + iσ2)κ̃〉20,4
)

1
2(1 + σ1

3)ε23γ1
0E3(4.211)

and projecting down into particle-one space, the quantity that remains is

∇A′AκA ↔ ∇ 1√
2 [iσ2〈κ(σ1 + iσ2)〉0,4 + 〈κ(σ1 + iσ2)iσ2〉0,4]1

2(1 + σ3)γ0. (4.212)

We now require the following rearrangement:

[iσ2〈κ(σ1 + iσ2)〉0,4 + 〈κ(σ1 + iσ2)iσ2〉0,4]1
2(1 + σ3)

= [iσ2(〈κiσ2〉 − i〈κiσ1〉)− 〈κ〉+ i〈κiσ3〉]1
2(1 + σ3)

= [−〈κ〉+ iσk〈κiσk〉]1
2(1 + σ3)

= −κ1
2(1 + σ3). (4.213)

Using this, we find that

∇A′AκA ↔ − 1√
2∇κ

1
2(1 + σ3)γ0 = − 1√

2∇γ0κ
1
2(1− σ3), (4.214)

where pulling the γ0 across to the left-hand side demonstrates how the ∇A′A

switches between idempotents (modules). Equation (4.214) essentially justifies
the procedure described in this section, since the translation (4.214) is “obvious”
from the Weyl representation of the Dirac algebra (4.119). The factor of 1/

√
2

in (4.214) is no longer a product of our conventions, but is an unavoidable aspect
of the 2-spinor calculus. It remains to find the equivalent to the above for the
expression ∇AA′ω̄A′ . The translation for ∇AA′ is obtained from that for ∇A′A by
switching the “particle” indices, so that

∇AA′ ↔ −∇2εγ2
0 = −∇1ε̄γ1

0 . (4.215)

Then, proceeding as above, we find that

∇AA′ω̄A′ ↔ − 1√
2∇ωiσ2

1
2(1 + σ3)γ0. (4.216)
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4.5.5 Applications
The above constitutes the necessary ingredients for a complete translation of the
2-spinor calculus into the STA. We close this chapter by considering two important
applications. It should be clear from both that, whilst the steps to achieve the STA
form are often quite complicated, the end result is nearly always more compact
and easier to understand than the original 2-spinor form. An objective of future
research in this subject is to extract from 2-spinor calculus the techniques which
are genuinely powerful and useful. These can then be imported into the STA,
which will suitably enriched by so doing. The intuitive geometric nature of the
STA should then make these techniques available to a wider audience of physicists
than currently employ the 2-spinor calculus.

The Dirac Equation

The Dirac equation in 2-spinor form is given by the pair of equations [36, page 222]

∇A′AκA = µω̄A
′

∇AA′ω̄A′ = µκA.
(4.217)

The quantity µ is defined to be m/
√

2, where m is the electron mass. The factor
of 1/

√
2 demonstrates that such factors are intrinsic to the way that the ∇A′A

symbol encodes the vector derivative. The equations (4.217) translate to the pair
of equations

∇κ1
2(1 + σ3)γ0 = mωiσ2

1
2(1− σ3)

−∇ωiσ2
1
2(1− σ3)γ0 = mκ1

2(1 + σ3). (4.218)

If we now define the full spinor ψ by

ψ = κ1
2(1 + σ3) + ωσ2

1
2(1− σ3) (4.219)

we find that

∇ψγ0 = m[ωσ2
1
2(1− σ3)−mκ1

2(1 + σ3)]i
= −mψiσ3. (4.220)

We thus recover the STA version of the Dirac equation (4.92)

∇ψiσ3 = mψγ0. (4.221)
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Of the pair of equations (4.217), Penrose & Rindler write “an advantage of the
2-spinor description is that the γ-matrices disappear completely – and complicated
γ-matrix identities simply evaporate!” [36, page 221]. Whilst this is true, the
comment applies even more strongly to the STA form of the Dirac equation (4.221),
in which complicated 2-spinor identities are also eliminated!

Maxwell’s Equations

In the 2-spinor calculus the real, antisymmetric tensor F ab is written as

F ab = ψABεA
′B′ + εABψA

′B′ , (4.222)

where ψAB is symmetric on its two indices. We first need the STA equivalent of
ψAB. Assuming initially that ψAB is arbitrary, we can write

ψAB ↔ ψ 1
2(1 + σ1

3)1
2(1 + σ2

3)E = ψ 1
2(1 + σ1

3)σ1
1ε, (4.223)

where ψ is an arbitrary element of the product space of the two single-particle
Pauli-even algebras. A complete basis for ψ is formed by all combinations of the 7
elements {1, iσ1

k, iσ
2
k}. The presence of the singlet ε allows all elements of second

space to be projected down into the first space, and it is not hard to see that this
accounts for all possible even elements in the one-particle STA. We can therefore
write

ψ 1
2(1 + σ1

3)σ1
1ε = M1ε, (4.224)

where M is an arbitrary even element. The condition that ψAB is symmetric on
its two indices now becomes (recalling that ε is antisymmetric on its two particle
indices)

M1ε = −M2ε = −M̃1ε (4.225)

⇒M = −M̃. (4.226)

This condition projects out from M the components that are bivectors in particle-
one space, so we can write

ψAB ↔ F 1ε (4.227)

where F is now a bivector. For the case of electromagnetism, F is the Faraday
bivector, introduced in Section (1.2.5). The complete translation of F ab is therefore

F ab ↔ F 1ε+ F 1εσ1
1σ

2
1 = F 1η (4.228)
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where η is the full relativistic invariant.
The 2-spinor form of the Maxwell equations an be written

∇A′BψACεBC = −JAA′ (4.229)

where JAA′ is a “real” vector (i.e. it has no trivector components). Recalling
the convention that εij denotes the singlet state in coupled {i, j}-space, the STA
version of equation (4.229) is

∇1ε12γ1
0F

3ε34ε2,4 = −J1ε13γ1
0 . (4.230)

This is simplified by the identity

ε12ε34ε2,4 = ε13, (4.231)

which is proved by expanding the left-hand side and then performing the antisym-
metrisation. The resultant equation is

∇1F 3ε13 = −J1ε13, (4.232)

which has a one-particle reduction to

∇F = J. (4.233)

This recovers the STA form of the Maxwell equations [17]. The STA form is
remarkably compact, makes use solely of spacetime quantities and has a number
of computational advantages over second-order wave equations [8]. The 2-spinor
calculus also achieves a first-order formulation of Maxwell’s equations, but at the
expense of some considerable abstractions. We will return to equation (4.233) in
Chapters 6 and 7.
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Chapter 5

Point-particle Lagrangians

In this chapter we develop a multivector calculus as the natural extension of the
calculus of functions of a single parameter. The essential new tool required for such
a calculus is the multivector derivative, and this is described first. It is shown how
the multivector derivative provides a coordinate-free language for manipulating
linear functions (forming contractions etc.). This supersedes the approach used in
earlier chapters, where such manipulations were performed by introducing a frame.

The remainder of this chapter then applies the techniques of multivector calculus
to the analysis of point-particle Lagrangians. These provide a useful introduction
to the techniques that will be employed in the study of field Lagrangians in
the final two chapters. A novel idea discussed here is that of a multivector-
valued Lagrangian. Such objects are motivated by the pseudoclassical mechanics
of Berezin & Marinov [39], but can only be fully developed within geometric
algebra. Forms of Noether’s theorem are given for both scalar and multivector-
valued Lagrangians, and for transformations parameterised by both scalars and
multivectors. This work is applied to the study of two semi-classical models of
electron spin. Some aspects of the work presented in this chapter appeared in the
papers “Grassmann mechanics, multivector derivatives and geometric algebra” [3]
and “Grassmann calculus, pseudoclassical mechanics and geometric algebra” [1].

5.1 The Multivector Derivative
The idea of a vector derivative was partially introduced in Chapter 4, where it
was seen that the STA form of the Dirac equation (4.92) required the operator
∇ = γµ∂xµ , where xµ = γµ ·x. The same operator was later seen to appear in the
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STA form of the Maxwell equations (4.233), ∇F = J . We now present a more
formal introduction to the properties of the vector and multivector derivatives.
Further details of these properties are contained in [18] and [24, Chapter 2], the
latter of which is particularly detailed in its treatment.

Let X be a mixed-grade multivector

X =
∑
r

Xr, (5.1)

and let F (X) be a general multivector-valued function of X. The grades of
F (X) need not be the same as those of its argument X. For example, the STA
representation of a Dirac spinor as ψ(x) is a map from the vector x onto an arbitrary
even element of the STA. The derivative of F (X) in the A direction, where A has
the same grades as X, is defined by

A∗∂XF (X) ≡ lim
τ→0

F (X + τA)− F (X)
τ

. (5.2)

(It is taken as implicit in this definition that the limit exists.) The operator A ∗ ∂X
satisfies all the usual properties for partial derivatives. To define the multivector
derivative ∂X , we introduce an arbitrary frame {ej} and extend this to define a
basis for the entire algebra {eJ}, where J is a general (simplicial) index. The
multivector derivative is now defined by

∂X =
∑
J

eJeJ ∗∂X . (5.3)

The directional derivative eJ ∗∂X is only non-zero when eJ is of the same grade(s)
as X, so ∂X inherits the multivector properties of its argument X. The contraction
in (5.3) ensures that the quantity ∂X is independent of the choice of frame, and
the basic properties of ∂X can be formulated without any reference to a frame.

The properties of ∂X are best understood with the aid of some simple examples.
The most useful result for the multivector derivative is

∂X〈XA〉 = PX(A), (5.4)

where PX(A) is the projection of A on to the grades contained in X. From (5.4) it
follows that

∂X〈X̃A〉 = PX(Ã)
∂X̃〈X̃A〉 = PX(A). (5.5)
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Leibniz’ rule can now be used in conjunction with (5.4) to build up results for the
action of ∂X on more complicated functions. For example,

∂X〈XX̃〉k/2 = k〈XX̃〉(k−2)/2X̃. (5.6)

The multivector derivative acts on objects to its immediate right unless brackets
are present, in which case ∂X acts on the entire bracketed quantity. If ∂X acts on a
multivector that is not to its immediate right, we denote this with an overdot on
the ∂X and its argument. Thus ∂̇XAḂ denotes the action of ∂X on B,

∂̇XAḂ = eJAeJ ∗∂XB. (5.7)

The overdot notation is an invaluable aid to expressing the properties of the
multivector derivative. In particular, it neatly encodes the fact that, since ∂X is
a multivector, it does not necessarily commute with other multivectors and often
acts on functions to which it is not adjacent. As an illustration, Leibniz’ rule can
now be given in the form

∂X(AB) = ∂̇XȦB + ∂̇XAḂ. (5.8)

The only drawback with the overdot notation comes in expressions which involve
time derivatives. It is usually convenient to represent these with overdots as well,
and in such instances the overdots on multivector derivatives will be replaced by
overstars.

The most useful form of the multivector derivative is the derivative with respect
to a vector argument, ∂a or ∂x. Of these, the derivative with respect to position x
is particularly important. This is called the vector derivative, and is given special
the symbol

∂x = ∇ = ∇x. (5.9)

The operator ∇ sometimes goes under the name of the Dirac operator, though
this name is somewhat misleading since ∂x is well-defined in all dimensions and is
in no way tied to quantum-mechanical notions. In three dimensions, for example,
∂x = ∇ contains all the usual properties of the div, grad and curl operators. There
are a number of useful formulae for derivatives with respect to vectors, a selection
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of which is as follows:

∂aa·b = b

∂aa
2 = 2a

∂a ·a = n

∂a∧a = 0
∂aa·Ar = rAr
∂aa∧Ar = (n− r)Ar
∂aAra = (−1)r(n− 2r)Ar,

(5.10)

where n is the dimension of the space. The final three equations in (5.10) are the
frame-free forms of formulae given in Section (1.3.2).

Vector derivatives are very helpful for developing the theory of linear functions,
as introduced in Section (1.3). For example, the adjoint to the linear function f
can be defined as

f(a) ≡ ∂b〈af(b)〉. (5.11)

It follows immediately that

b·f(a) = b·∂c〈af(c)〉 = 〈f(b·∂cc)a〉 = f(b)·a. (5.12)

Invariants can be constructed equally simply. For example, the trace of f(a) is
defined by

Trf ≡ ∂a ·f(a) (5.13)

and the “characteristic bivector” of f(a) is defined by

B = 1
2∂a∧f(a). (5.14)

An anti-symmetric function f = −f can always be written in the form

f(a) = a·B (5.15)

and it follows from equation (5.10) that B is the characteristic bivector.
Many other aspects of linear algebra, including a coordinate-free proof of the

Cayley-Hamilton theorem, can be developed similarly using combinations of vector
derivatives [24, Chapter 3].
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5.2 Scalar and Multivector Lagrangians
As an application of the multivector derivative formalism just outlined, we consider
Lagrangian mechanics. We start with a scalar-valued Lagrangian L = L(Xi, Ẋi),
where the Xi are general multivectors, and Ẋi denotes differentiation with respect
to time. We wish to find the Xi(t) which extremise the action

S =
∫ t2

t1
dt L(Xi, Ẋi). (5.16)

The solution to this problem can be found in many texts (see e.g. [71]). We write

Xi(t) = X0
i (t) + εYi(t), (5.17)

where Yi is a multivector containing the same grades as Xi and which vanishes
at the endpoints, ε is a scalar and X0

i represents the extremal path. The action
must now satisfy ∂εS = 0 when ε = 0, since ε = 0 corresponds to Xi(t) taking the
extremal values. By applying the chain rule and integrating by parts, we find that

∂εS =
∫ t2

t1
dt
(
(∂εXi)∗∂XiL+ (∂εẊi)∗∂ẊiL

)
=

∫ t2

t1
dt
(
Yi∗∂XiL+ Ẏi∗∂ẊiL

)
=

∫ t2

t1
dt Yi∗

(
∂XiL− ∂t(∂ẊiL)

)
. (5.18)

Setting ε to zero now just says that Xi is the extremal path, so the extremal path
is defined by the solutions to the Euler-Lagrange equations

∂XiL− ∂t(∂ẊiL) = 0. (5.19)

The essential advantage of this derivation is that it employs genuine derivatives in
place of the less clear concept of an infinitessimal. This will be exemplified when
we study Lagrangians containing spinor variables.

We now wish to extend the above argument to a multivector-valued Lagrangian
L. Taking the scalar product of L with an arbitrary constant multivector A produces
a scalar Lagrangian 〈LA〉. This generates its own Euler-Lagrange equations,

∂Xi〈LA〉 − ∂t(∂Ẋi〈LA〉) = 0. (5.20)
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A “permitted” multivector Lagrangian is one for which the equations from each
A are mutually consistent, so that each component of the full L is capable of
simultaneous extremisation.

By contracting equation (5.20) on the right-hand side by ∂A, we find that a
necessary condition on the dynamical variables is

∂XiL− ∂t(∂ẊiL) = 0. (5.21)

For a permitted multivector Lagrangian, equation (5.21) is also sufficient to ensure
that equation (5.20) is satisfied for all A. This is taken as part of the definition of
a multivector Lagrangian. We will see an example of how these criteria can be met
in Section 5.3.

5.2.1 Noether’s Theorem
An important technique for deriving consequences of the equations of motion
resulting from a given Lagrangian is the study of the symmetry properties of the
Lagrangian itself. The general result needed for this study is Noether’s theorem.
We seek a form of this theorem which is applicable to both scalar-valued and
multivector-valued Lagrangians. There are two types of symmetry to consider,
depending on whether the transformation of variables is governed by a scalar or by
a multivector parameter. We will look at these separately.

It is important to recall at this point that all the results obtained here are
derived in the coordinate-free language of geometric algebra. Hence all the symmetry
transformations considered are active. Passive transformations have no place in this
scheme, as the introduction of an arbitrary coordinate system is an unnecessary
distraction.

5.2.2 Scalar Parameterised Transformations
Given a Lagrangian L = L(Xi, Ẋi), which can be either scalar-valued or multivector-
valued, we wish to consider variations of the variables Xi controlled by a single
scalar parameter, α. We write this as

X ′i = X ′i(Xi, α), (5.22)
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and assume that X ′i(α = 0) = Xi. We now define the new Lagrangian

L′(Xi, Ẋi) = L(X ′i, Ẋ ′i), (5.23)

which has been obtained from L by an active transformation of the dynamical
variables. Employing the identity L′ = 〈L′A〉∂A, we proceed as follows:

∂αL
′ = (∂αX ′i)∗∂X′i〈L

′A〉∂A + (∂aẊ ′i)∗∂Ẋ′i〈L
′A〉∂A

= (∂aX ′i)∗
(
∂X′i〈L

′A〉 − ∂t(∂Ẋ′i〈L
′A〉)

)
∂A + ∂t

(
(∂aX ′i)∗∂Ẋ′iL

′
)
.(5.24)

The definition of L′ ensures that it has the same functional form of L, so the
quantity

∂X′i〈L
′A〉 − ∂t(∂Ẋ′i〈L

′A〉)L′ (5.25)

is obtained by taking the Euler-Lagrange equations in the form (5.20) and replacing
the Xi by X ′i. If we now assume that the X ′i satisfy the same equations of motion
(which must be checked for any given case), we find that

∂αL
′ = ∂t

(
(∂aX ′i)∗∂Ẋ′iL

′
)

(5.26)

and, if L′ is independent of α, the corresponding quantity (∂aX ′i)∗∂Ẋ′iL
′ is conserved.

Alternatively, we can set α to zero so that (5.25) becomes

[∂X′i〈L
′A〉 − ∂t(∂Ẋ′i〈L

′A〉)L′]
∣∣∣
α=0

= ∂Xi〈LA〉 − ∂t(∂Ẋi〈LA〉) (5.27)

which vanishes as a consequence of the equations of motion for Xi. We therefore
find that

∂aL
′|α=0 = ∂t

(
(∂aX ′i)∗∂Ẋ′iL

′
)∣∣∣
α=0

, (5.28)

which is probably the most useful form of Noether’s theorem, in that interesting
consequences follow from (5.28) regardless of whether or not L′ is independent of
α. A crucial step in the derivation of (5.28) is that the Euler-Lagrange equations
for a multivector-valued Lagrangian are satisfied in the form (5.20). Hence the
consistency of the equations (5.20) for different A is central to the development of
the theory of multivector Lagrangians.

To illustrate equation (5.28), consider time translation

X ′i(t, α) = Xi(t+ α) (5.29)
⇒ ∂aX

′
i|α=0 = Ẋi. (5.30)
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Assuming there is no explicit time-dependence in L, equation (5.28) gives

∂tL = ∂t(Ẋi∗∂ẊiL), (5.31)

from which we define the conserved Hamiltonian by

H = Ẋi∗∂ẊiL− L. (5.32)

If L is multivector-valued, then H will be a multivector of the same grade(s).

5.2.3 Multivector Parameterised Transformations
The most general single transformation for the variables Xi governed by a multi-
vector M can be written as

X ′i = f(Xi,M), (5.33)

where f and M are time-independent functions and multivectors respectively. In
general f need not be grade-preserving, which provides a route to deriving analogues
for supersymmetric transformations.

To follow the derivation of (5.26), it is useful to employ the differential notation
[24],

f
M

(Xi, A) ≡ A∗∂Mf(Xi,M). (5.34)

The function f
M

(Xi, A) is a linear function of A and an arbitrary function of M
and Xi. With L′ defined as in equation (5.23), we derive

A∗∂ML′ = f
M

(Xi, A)∗∂X′iL
′ + f

M
(Ẋi,M)∗∂Ẋ′iL

′

= f
M

(Xi, A)∗
(
∂X′i〈L

′B〉 − ∂t(∂Ẋ′i〈L
′B〉)

)
∂B + ∂t

(
f
M

(Xi, A)∗∂Ẋ′iL
′
)

= ∂t
(
f
M

(Xi, A)∗∂Ẋ′iL
′
)
, (5.35)

where again it is necessary to assume that the equations of motion are satisfied
for the transformed variables. We can remove the A-dependence by differentiating,
which yields

∂ML
′ = ∂t

(
∂AfM(Xi, A)∗∂Ẋ′iL

′
)

(5.36)

and, if L′ is independent of M , the corresponding conserved quantity is

∂AfM(Xi, A)∗∂Ẋ′iL
′ =
∗
∂M f(Xi,

∗
M)∗∂Ẋ′iL

′, (5.37)
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where the overstar on
∗
M denote the argument of

∗
∂M .

It is not usually possible to set M to zero in (5.35), but it is interesting to
see that conserved quantities can be found regardless. This shows that standard
treatments of Lagrangian symmetries [71] are unnecessarily restrictive in only
considering infinitesimal transformations. The subject is richer than this suggests,
though without multivector calculus the necessary formulae are hard to find.

In order to illustrate (5.37), consider reflection symmetry applied to the harmonic
oscillator Lagrangian

L(x, ẋ) = 1
2(ẋ2 − ω2x2). (5.38)

The equations of motion are
ẍ = −ω2x (5.39)

and it is immediately seen that, if x is a solution, then so to is x′, where

x′ = −nxn−1. (5.40)

Here n is an arbitrary vector, so x′ is obtained from x by a reflection in the hyper-
plance orthogonal to n. Under the reflection (5.40) the Lagrangian is unchanged,
so we can find a conserved quantity from equation (5.37). With f(x, n) defined by

f(x, n) = −nxn−1 (5.41)

we find that
f
n
(x, a) = −axn−1 + nxn−1an−1. (5.42)

Equation (5.37) now yields the conserved quantity

∂a(−axn−1 + nxn−1an−1)∗(−nẋn−1) = ∂a〈axẋn−1 − aẋxn−1〉
= 〈xẋn−1 − ẋxn−1〉1
= 2(x∧ẋ)·n−1. (5.43)

This is conserved for all n, from which it follows that the angular momentum x∧ ẋ
is conserved. This is not a surprise, since rotations can be built out of reflections
and different reflections are related by rotations. It is therefore natural to expect
the same conserved quantity from both rotations and reflections. But the derivation
does show that the multivector derivative technique works and, to my knowledge,
this is the first time that a classical conserved quantity has been derived conjugate
to transformations that are not simply connected to the identity.
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5.3 Applications — Models for Spinning Point
Particles

There have been numerous attempts to construct classical models for spin-half
particles (see van Holten [72] for a recent review) and two such models are considered
in this section. The first involves a scalar point-particle Lagrangian in which the
dynamical variables include spinor variables. The STA formalism of Chapter 4 is
applied to this Lagrangian and used to analyse the equations of motion. Some
problems with the model are discussed, and a more promising model is proposed.
The second example is drawn from pseudoclassical mechanics. There the dynamical
variables are Grassmann-valued entities, and the formalism of Chapter 2 is used
to represent these by geometric vectors. The resulting Lagrangian is multivector-
valued, and is studied using the techniques just developed. The equations of motion
are found and solved, and again it is argued that the model fails to provide an
acceptable picture of a classical spin-half particle.

1. The Barut-Zanghi Model
The Lagrangian of interest here was introduced by Barut & Zanghi [38] (see
also [7, 61]) and is given by

L = 1
2j(

˙̄ΨΨ− Ψ̄Ψ̇) + pµ(ẋµ − Ψ̄γµΨ) + qAµ(x)Ψ̄γµΨ (5.44)

where Ψ is a Dirac spinor. Using the mapping described in Section (4.3), the
Lagrangian (5.45) can be written as

L = 〈ψ̇iσ3ψ̃ + p(ẋ− ψγ0ψ̃) + qA(x)ψγ0ψ̃〉. (5.45)

The dynamical variables are x, p and ψ, where ψ is an even multivector, and the
dot denotes differentiation with respect to some arbitrary parameter τ .

The Euler-Lagrange equation for ψ is

∂ψL = ∂τ (∂ψ̇L)

⇒ ∂τ (iσ3ψ̃) = −iσ3
˙̃ψ − 2γ0ψ̃p+ 2qγ0ψ̃A

⇒ ψ̇iσ3 = Pψγ0, (5.46)
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where
P ≡ p− qA. (5.47)

In deriving (5.46) there is no pretence that ψ and ψ̃ are independent variables.
Instead they represent two occurrences of the same variable ψ and all aspects of
the variational principle are taken care of by the multivector derivative.

The p equation is
ẋ = ψγ0ψ̃ (5.48)

but, since ẋ2 = ρ2 is not, in general, equal to 1, τ cannot necessarily be viewed as
the proper time for the particle. The x equation is

ṗ = q∇A(x)·(ψγ0ψ̃)
= q(∇∧A)·ẋ+ qẋ·∇A

⇒ Ṗ = qF ·ẋ. (5.49)

We now use (5.28) to derive some consequences for this model. The Hamiltonian
is given by

H = ẋ∗∂ẋL+ ψ̇∗∂ψ̇L− L
= P ·ẋ, (5.50)

and is conserved absolutely. The 4-momentum and angular momentum are only
conserved if A = 0, in which case (5.45) reduces to the free-particle Lagrangian

L0 = 〈ψ̇iσ3ψ̃ + p(ẋ− ψγ0ψ̃)〉. (5.51)

The 4-momentum is found from translation invariance,

x′ = x+ αa, (5.52)

and is simply p. The component of p in the ẋ direction gives the energy (5.50).
The angular momentum is found from rotational invariance, for which we set

x′ = eαB/2xe−αB/2

p′ = eαB/2pe−αB/2

ψ′ = eαB/2ψ.

(5.53)
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It is immediately apparent that L′0 is independent of α, so the quantity

(B ·x)∗∂ẋL0 + 1
2(Bψ)∗∂ψ̇L0 = B ·(x∧p+ 1

2ψiσ3ψ̃) (5.54)

is conserved for arbitrary B. The angular momentum is therefore defined by

J = p∧x− 1
2ψiσ3ψ̃, (5.55)

which identifies −ψiσ3ψ̃/2 as the internal spin. The factor of 1/2 clearly originates
from the transformation law (5.53). The free-particle model defined by (5.51)
therefore does have some of the expected properties of a classical model for spin,
though there is a potential problem with the definition of J (5.55) in that the spin
contribution enters with the opposite sign to that expected from field theory (see
Chapter 6).

Returning to the interacting model (5.45), further useful properties can be
derived from transformations in which the spinor is acted on from the right. These
correspond to gauge transformations, though a wider class is now available than
for the standard column-spinor formulation. From the transformation

ψ′ = ψeαiσ3 (5.56)

we find that
∂τ 〈ψψ̃〉 = 0, (5.57)

and the transformation
ψ′ = ψeασ3 (5.58)

yields
∂τ 〈iψψ̃〉 = −2P ·(ψγ3ψ̃). (5.59)

Equations (5.57) and (5.59) combine to give

∂τ (ψψ̃) = 2iP ·(ψγ3ψ̃). (5.60)

Finally, the duality transformation

ψ′ = ψeαi (5.61)

yields
2〈ψ̇σ3ψ̃〉 = 0. (5.62)
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A number of features of the Lagrangian (5.45) make it an unsatisfactory model
a classical electron. We have already mentioned that the parameter τ cannot
be identified with the proper time of the particle. This is due to the lack of
reparameterisation invariance in (5.45). More seriously, the model predicts a zero
gyromagnetic moment [61]. Furthermore, the Ṗ equation (5.49) cannot be correct,
since here one expects to see ṗ rather than Ṗ coupling to F·x. Indeed, the definition
of P (5.47) shows that equation (5.49) is not gauge invariant, which suggests that
it is a lack of gauge invariance which lies behind some of the unacceptable features
of the model.

2. Further Spin-half Models
We will now see how to modify the Lagrangian (5.45) to achieve a suitable set
of classical equations for a particle with spin. The first step is to consider gauge
invariance. Under the local gauge transformation

ψ 7→ ψ exp{−iσ3φ(τ)} (5.63)

the “kinetic” spinor term 〈ψ̇iσ3ψ̃〉 transforms as

〈ψ̇iσ3ψ̃〉 7→ 〈ψ̇iσ3ψ̃〉+ 〈ψψ̃φ̇〉. (5.64)

The final term can be written as

〈ψψ̃φ̇〉 = 〈ψψ̃ẋ·(∇φ)〉, (5.65)

and, when ∇φ is generalised to an arbitrary gauge field qA, (5.64) produces the
interaction term

LI = q〈ψψ̃ẋ·A〉. (5.66)

This derivation shows clearly that the A field must couple to ẋ and not to ψγ0ψ̃,
as it is not until after the equations of motion are found that ψγ0ψ̃ is set equal to
ẋ. That there should be an ẋ·A term in the Lagrangian is natural since this is the
interaction term for a classical point particle, and a requirement on any action that
we construct is that it should reproduce classical mechanics in the limit where spin
effects are ignored (i.e. as h̄ 7→ 0). But a problem still remains with (5.66) in that
the factor of ψψ̃ is unnatural and produces an unwanted term in the ψ equation..
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To remove this, we must replace the 〈ψ̇iσ3ψ̃〉 term by

L0 = 〈ψ̇iσ3ψ
−1〉, (5.67)

where, for a spinor ψ = (ρeiβ)1/2R,

ψ−1 = (ρeiβ)−1/2R̃. (5.68)

In being led the term (5.67), we are forced to break with conventional usage
of column spinors. The term (5.67) now suggests what is needed for a suitable
classical model. The quantity 〈ψ̇iσ3ψ

−1〉 is unchanged by both dilations and duality
transformations of ψ and so is only dependent on the rotor part of ψ. It has been
suggested that the rotor part of ψ encodes the dynamics of the electron field and
that the factor of (ρ exp{iβ})1/2 is a quantum-mechanical statistical term [29].
Accepting this, we should expect that our classical model should involve only the
rotor part of ψ and that the density terms should have no effect. Such a model
requires that the Lagrangian be invariant under local changes of ρ exp{iβ}, as we
have seen is the case for L0 (5.67). The remaining spinorial term is the current
term ψγ0ψ̃ which is already independent of the duality factor β. It can be made
independent of the density ρ as well by dividing by ρ. From these observations we
are led to the Lagrangian

L = 〈ψ̇iσ3ψ
−1 + p(ẋ− ψγ0ψ̃/ρ)− qẋ·A〉. (5.69)

The p equation from (5.69) recovers

ẋ = ψγ0ψ̃/ρ = Rγ0R̃, (5.70)

so that ẋ2 = 1 and τ is automatically the affine parameter. This removes one of
the defects with the Barut-Zanghi model. The x equation gives, using standard
techniques,

ṗ = qF ·ẋ, (5.71)

which is now manifestly gauge invariant and reduces to the Lorentz force law when
the spin is ignored and the velocity and momentum are collinear, p = mẋ. Finally,
the ψ equation is found by making use of the results

∂ψ〈ψMψ−1〉 = Mψ−1 + ∂̇ψ〈ψMψ̇−1〉 = 0 (5.72)
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⇒ ∂ψ〈Mψ−1〉 = −ψ−1Mψ−1 (5.73)

and

∂ψρ = 1
2ρ∂ψ(ψγ0ψ̃ψγ0ψ̃)

= 2
ρ
γ0ρe

iβγ0ψ̃

= 2ρψ−1 (5.74)

to obtain

−ψ−1ψ̇iσ3ψ
−1 − 1

ρ
(2γ0ψ̃p− 2ψ−1〈pψγ0ψ̃〉) = ∂τ (iσ3ψ

−1). (5.75)

By multiplying equation (5.75) with ψ, one obtains

1
2 Ṡ = p∧ẋ, (5.76)

where
S ≡ ψiσ3ψ

−1 = Riσ3R̃. (5.77)

Thus the ψ variation now leads directly to the precession equation for the spin.
The complete set of equations is now

Ṡ = 2p∧ẋ (5.78)
ẋ = Rγ0R̃ (5.79)
ṗ = qF ·ẋ (5.80)

which are manifestly Lorentz covariant and gauge invariant. The Hamiltonian
is now p · ẋ and the free-particle angular momentum is still defined by J (5.55),
though now the spin bivector S is always of unit magnitude.

A final problem remains, however, which is that we have still not succeeded in
constructing a model which predicts the correct gyromagnetic moment. In order
to achieve the correct coupling between the spin and the Faraday bivector, the
Lagrangian (5.69) must be modified to

L = 〈ψ̇iσ3ψ
−1 + p(ẋ− ψγ0ψ̃/ρ) + qẋ·A− q

2mFψiσ3ψ
−1〉. (5.81)
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The equations of motion are now

Ṡ = 2p∧ẋ+ q

m
F×S

ẋ = Rγ0R̃ (5.82)
ṗ = qF ·ẋ− q

2m∇F (x)·S,

which recover the correct precession formulae in a constant magnetic field. When
p is set equal to mẋ, the equations (5.82) reduce to the pair of equations studied
in [72].

3. A Multivector Model — Pseudoclassical Mechanics Re-
considered
Pseudoclassical mechanics [39, 73, 74] was originally introduced as the classical
analogue of quantum spin one-half (i.e. for particles obeying Fermi statistics).
The central idea is that the “classical analogue” of the Pauli or Dirac algebras
is an algebra where all inner products vanish, so that the dynamical variables
are Grassmann variables. From the point of view of this thesis, such an idea
appears fundamentally flawed. Furthermore, we have already seen how to construct
sensible semi-classical approximations to Dirac theory. But once the Grassmann
variables have been replaced by vectors through the procedure outlined in Chapter 2,
pseudoclassical Lagrangians do become interesting, in that they provide examples
of acceptable multivector Lagrangians. Such a Lagrangian is studied here, from a
number of different perspectives. An interesting aside to this work is a new method
of generating super-Lie algebras, which could form the basis for an alternative
approach to their representation theory.

The Lagrangian we will study is derived from a pseudoclassical Lagrangian
introduced by Berezin & Marinov [39]. This has become a standard example in
non-relativistic pseudoclassical mechanics [73, Chapter 11]. With a slight change of
notation, and dropping an irrelevant factors of j, the Lagrangian can be written as

L = 1
2ζiζ̇i −

1
2εijkωiζjζk, (5.83)

where the {ζi} are formally Grassmann variable and the {ωi} are a set of three
scalar constants. Here, i runs from 1 to 3 and, as always, the summation convention
is implied. Replacing the set of Grassmann variables {ζi} with a set of three
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(Clifford) vectors {ei}, the Lagrangian (5.83) becomes [1]

L = 1
2ei∧ėi − ω, (5.84)

where
ω = 1

2εijkωiejek = ω1(e2∧e3) + ω2(e3∧e1) + ω3(e1∧e2). (5.85)

The equations of motion from (5.84) are found by applying equation (5.21)

∂ei
1
2(ej∧ėj − ω) = ∂t[∂ėi 1

2(ej∧ėj − ω)]
⇒ ėi + 2εijkωjek = −∂tei

⇒ ėi = −εijkωjek. (5.86)

We have used the 3-dimensional result

∂aa∧b = 2b, (5.87)

and we stress again that this derivation uses a genuine calculus, so that each step
is well-defined.

We are now in a position to see how the Lagrangian (5.84) satisfies the criteria
to be a “permitted” multivector Lagrangian. If B is an arbitrary bivector, then
the scalar Lagrangian 〈LB〉 produces the equations of motion

∂ei〈LB〉 − ∂t(∂ėi〈LB〉) = 0
⇒ (ėi + εijkωjek)·B = 0. (5.88)

For this to be satisfied for all B, we simply require that the bracketed term vanishes.
Hence equation (5.86) is indeed sufficient to ensure that each scalar component of L
is capable of simultaneous extremisation. This example illustrates a further point.
For a fixed B, equation (5.88) does not lead to the full equations of motion (5.86).
It is only by allowing B to vary that we arrive at (5.86). It is therefore an essential
feature of the formalism that L is a multivector, and that (5.88) holds for all B.

The equations of motion (5.86) can be written out in full to give

ė1 = −ω2e3 + ω3e2

ė2 = −ω3e1 + ω1e3

ė3 = −ω1e2 + ω2e1,

(5.89)

which are a set of three coupled first-order vector equations. In terms of components,
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this gives nine scalar equations for nine unknowns, which illustrates how multivector
Lagrangians have the potential to package up large numbers of equations into a
single, highly compact entity. The equations (5.89) can be neatly combined into a
single equation by introducing the reciprocal frame {ei} (1.132),

e1 = e2∧e3E
−1
n etc. (5.90)

where
En ≡ e1∧e2∧e3. (5.91)

With this, the equations (5.89) become

ėi = ei ·ω, (5.92)

which shows that potentially interesting geometry underlies this system, relating
the equations of motion of a frame to its reciprocal.

We now proceed to solve equation (5.92). On feeding (5.92) into (5.85), we find
that

ω̇ = 0, (5.93)

so that the ω plane is constant. We next observe that (5.89) also imply

Ėn = 0, (5.94)

which is important as it shows that, if the {ei} frame initially spans 3-dimensional
space, then it will do so for all time. The constancy of En means that the reciprocal
frame (5.90) satisfies

ė1 = −ω2e
3 + ω3e

2 etc. (5.95)

We now introduce the symmetric metric tensor g, defined by

g(ei) = ei. (5.96)

This defines the reciprocal bivector

ω∗ ≡ g−1(ω)
= ω1(e2∧e3) + ω2(e3∧e1) + ω3(e1∧e2), (5.97)
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so that the reciprocal frame satisfies the equations

ėi = ei ·ω∗. (5.98)

But, from (1.123), we have that

ei ·ω∗ = ei ·g−1(ω) = g−1(ei ·ω). (5.99)

Now, using (5.92), (5.98) and (5.99), we find that

g(ėi) = ei ·ω = ėi = ∂tg(ei) (5.100)

⇒ ġ = 0. (5.101)

Hence the metric tensor is constant, even though its matrix coefficients are varying.
The variation of the coefficients of the metric tensor is therefore purely the result
of the time variation of the frame, and is not a property of the frame-independent
tensor. It follows that the fiducial tensor (1.144) is also constant, and suggests that
we should look at the equations of motion for the fiducial frame σi = h−1(ei). For
the {σi} frame we find that

σ̇i = h−1(ėi)
= h−1(h−1(σi)·ω)
= σi ·h−1(ω). (5.102)

If we define the bivector

Ω = h−1(ω) = ω1σ2σ3 + ω2σ3σ1 + ω3σ1σ2 (5.103)

(which must be constant, since both h and ω are), we see that the fiducial frame
satisfies the equation

σ̇i = σi ·Ω. (5.104)

The underlying fiducial frame simply rotates at a constant frequency in the Ω plane.
If σi(0) denotes the fiducial frame specified by the initial setup of the {ei} frame,
then the solution to (5.104) is

σi(t) = e−Ωt/2σi(0)eΩt/2, (5.105)
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and the solution for the {ei} frame is

ei(t) = h(e−Ωt/2σi(0)eΩt/2)
ei(t) = h−1(e−Ωt/2σi(0)eΩt/2). (5.106)

Ultimately, the motion is that of an orthonormal frame viewed through a constant
(symmetric) distortion. The {ei} frame and its reciprocal representing the same
thing viewed through the distortion and its inverse. The system is perhaps not
quite as interesting as one might have hoped, and it has not proved possible to
identify the motion of (5.106) with any physical system, except in the simple case
where h = I. On the other hand, we did start with a very simple Lagrangian and
it is reassuring to recover a rotating frame from an action that was motivated by
the pseudoclassical mechanics of spin.

Some simple consequences follow immediately from the solution (5.106). Firstly,
there is only one frequency in the system, ν say, which is found via

ν2 = −Ω2

= ω1
2 + ω2

2 + ω3
2. (5.107)

Secondly, since
Ω = i(ω1σ1 + ω2σ2 + ω3σ3), (5.108)

the vectors
u ≡ ω1e1 + ω2e2 + ω3e3, (5.109)

and
u∗ = g−1(u), (5.110)

are conserved. This also follows from

u = −Enω∗ (5.111)
u∗ = Enω. (5.112)

Furthermore,

eiei = h(σi)h(σi)
= σig(σi)
= Tr(g) (5.113)
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must also be time-independent (as can be verified directly from the equations of
motion). The reciprocal quantity eiei = Tr(g−1) is also conserved. We thus have
the set of four standard rotational invariants, σiσi, the axis, the plane of rotation
and the volume scale-factor, each viewed through the pair of distortions h, h−1.
This gives the following set of 8 related conserved quantities:

{eiei, eiei, u, u∗, ω, ω∗, En, En}. (5.114)

Lagrangian Symmetries and Conserved Quantities

We now turn to a discussion of the symmetries of (5.84). Although we have
solved the equations of motion exactly, it is instructive to derive some of their
consequences directly from the Lagrangian. We only consider continuous symmetries
parameterised by a single scalar, so the appropriate form of Noether’s theorem is
equation (5.28), which takes the form

∂aL
′|α=0 = ∂t

(
1
2ei∧(∂ae′i)

)∣∣∣
α=0

. (5.115)

In writing this we are explicitly making use of the equations of motion and so are
finding “on-shell” symmetries. The Lagrangian could be modified to extend these
symmetries off-shell, but this will not be considered here.

We start with time translation. From (5.32), the Hamiltonian is

H = 1
2ei∧ėi − L = ω, (5.116)

which is a constant bivector, as expected. The next symmetry to consider is a
dilation,

e′i = eαei. (5.117)

For this transformation, equation (5.115) gives

2L = ∂t
(

1
2ei∧ei

)
= 0, (5.118)

so dilation symmetry shows that the Lagrangian vanishes along the classical
path. This is quite common for first-order systems (the same is true of the Dirac
Lagrangian), and is important in deriving other conserved quantities.

The final “classical” symmetry to consider is a rotation,

e′i = eαB/2eie
−αB/2. (5.119)
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Equation (5.115) now gives

B×L = ∂t
(

1
2ei∧(B ·ei)

)
(5.120)

but, since L = 0 when the equations of motion are satisfied, the left hand side of
(5.120) vanishes, and we find that the bivector ei∧(B ·ei) in conserved. Had our
Lagrangian been a scalar, we would have derived a scalar-valued function of B at
this point, from which a single conserved bivector — the angular momentum —
could be found. Here our Lagrangian is a bivector, so we find a conserved bivector-
valued function of a bivector — a set of 3×3 = 9 conserved scalars. The quantity
ei∧(B ·ei) is a symmetric function of B, however, so this reduces to 6 independent
conserved scalars. To see what these are we introduce the dual vector b = iB and
replace the conserved bivector ei∧(B ·ei) by the equivalent vector-valued function,

f(b) = ei ·(b∧ei) = ei ·bei − beiei = g(b)− bTr(g). (5.121)

This is conserved for all b, so we can contract with ∂b and observe that −2Tr(g) is
constant. It follows that g(b) is constant for all b, so rotational symmetry implies
conservation of the metric tensor — a total of 6 quantities, as expected.

Now that we have derived conservation of g and ω, the remaining conserved
quantities can be found. For example, En = det(g)1/2i shows that En is constant.
One interesting scalar-controlled symmetry remains, however, namely

e′i = ei + αωia, (5.122)

where a is an arbitrary constant vector. For this symmetry (5.115) gives

1
2a∧u̇ = ∂t

(
1
2ei∧(ωia)

)
(5.123)

⇒ a∧u̇ = 0, (5.124)

which holds for all a. Conservation of u therefore follows directly from the symmetry
transformation (5.122). This symmetry transformation bears a striking resemblance
to the transformation law for the fermionic sector of a supersymmetric theory [75].
Although the geometry behind (5.122) is not clear, it is interesting to note that
the pseudoscalar transforms as

E ′n = En + αa∧ω, (5.125)
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and is therefore not invariant.

Poisson Brackets and the Hamiltonian Formalism

Many of the preceding results can also be derived from a Hamiltonian approach. As
a by-product, this reveals a new and remarkably compact formula for a super-Lie
bracket. We have already seen that the Hamiltonian for (5.84) is ω, so we start
by looking at how the Poisson bracket is defined in pseudoclassical mechanics [39].
Dropping the j and adjusting a sign, the Poisson bracket is defined by

{a(ζ), b(ζ)}PB = a

←−
∂

∂ζk

∂

∂ζk
b. (5.126)

The geometric algebra form of this is

{A,B}PB = (A·ek)∧(ek ·B), (5.127)

where A and B are arbitrary multivectors. We will consider the consequences of this
definition in arbitrary dimensions initially, before returning to the Lagrangian (5.84).
Equation (5.127) can be simplified by utilising the fiducial tensor,

(A·h−1(σk))∧(h−1(σk)·B) = h[h−1(A)·σk]∧h[σk ·h−1(B)]
= h[(h−1(A)·σk)∧(σk ·h−1(B))]. (5.128)

If we now assume that A and B are homogeneous, we can employ the rearrangement

(Ar ·σk)∧(σk ·Bs) = 1
4〈(Arσk − (−1)rσkAr)(σkBs − (−1)sBsσk)〉r+s−2

= 1
4〈nArBs − (n− 2r)ArBs − (n− 2s)ArBs

+[n− 2(r + s− 2)]ArBs〉r+s−2

= 〈ArBs〉r+s−2 (5.129)

to write the Poisson bracket as

{Ar, Bs}PB = h〈h−1(Ar)h−1(Bs)〉r+s−2. (5.130)

This is a very neat representation of the super-Poisson bracket. The combination
rule is simple, since the h always sits outside everything:

{Ar, {Bs, Ct}PB}PB = h
〈
h−1(Ar)〈h−1(Bs)h−1(Ct)〉s+t−2

〉
r+s+t−4

. (5.131)
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Clifford multiplication is associative and

〈ArBs〉r+s−2 = −(−1)rs〈BsAr〉r+s−2, (5.132)

so the bracket (5.130) generates a super-Lie algebra. This follows from the well-
known result [76] that a graded associative algebra satisfying the graded commutator
relation (5.132) automatically satisfies the super-Jacobi identity. The bracket (5.130)
therefore provides a wonderfully compact realisation of a super-Lie algebra. We
saw in Chapter 3 that any Lie algebra can be represented by a bivector algebra
under the commutator product. We now see that this is a special case of the more
general class of algebras closed under the product (5.130). A subject for future
research will be to use (5.130) to extend the techniques of Chapter 3 to include
super-Lie algebras.

Returning to the system defined by the Lagrangian (5.84), we can now derive
the equations of motion from the Poisson bracket as follows,

ėi = {ei, H}PB
= h(σi ·Ω)
= ei ·ω. (5.133)

It is intersting to note that, in the case where h = I, time derivatives are determined
by (one-half) the commutator with the (bivector) Hamiltonian. This suggests an
interesting comparison with quantum mechanics, which has been developed in more
detail elsewhere [1].

Similarly, some conservation laws can be derived, for example

{En, H}PB = h〈iΩ〉3 = 0 (5.134)

and
{ω,H}PB = h〈ΩΩ〉2 = 0 (5.135)

show that En and ω are conserved respectively. The bracket (5.130) gives zero for
any scalar-valued functions, however, so is no help in deriving conservation of eiei.
Furthermore, the bracket only gives the correct equations of motion for the {ei}
frame, since these are the genuine dynamical variables.

This concludes our discussion of pseudoclassical mechanics and multivector
Lagrangians in general. Multivector Lagrangians have been shown to possess the
capability to package up large numbers of variables in a single action principle,
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and it is to be hoped that further, more interesting applications can be found.
Elsewhere [1], the concept of a bivector-valued action has been used to give a new
formulation of the path integral for pseudoclassical mechanics. The path integrals
considered involved genuine Riemann integrals in parameter space, though it has
not yet proved possible to extend these integrals beyond two dimensions.
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Chapter 6

Field Theory

We now extend the multivector derivative formalism of Chapter 5 to encompass
field theory. The multivector derivative is seen to provide great formal clarity by
allowing spinors and tensors to be treated in a unified way. The relevant form of
Noether’s theorem is derived and is used to find new conjugate currents in Dirac
theory. The computational advantages of the multivector derivative formalism
are further exemplified by derivations of the stress-energy and angular-momentum
tensors for Maxwell and coupled Maxwell-Dirac theory. This approach provides a
clear understanding of the role of antisymmetric terms in the stress-energy tensor,
and the relation of these terms to spin. This chapter concludes with a discussion of
how the formalism of multivector calculus is extended to incorporate differentiation
with respect to a multilinear function. The results derived in this section are crucial
to the development of an STA-based theory of gravity, given in Chapter 7. Many of
the results obtained in this chapter appeared in the paper “A multivector derivative
approach to Lagrangian field theory” [7].

Some additional notation is useful for expressions involving the vector derivative
∇. The left equivalent of ∇ is written as

←
∇ and acts on multivectors to its

immediate left. (It is not always necessary to use
←
∇, as the overdot notation can

be used to write A
←
∇ as Ȧ∇̇.) The operator

↔
∇ acts both to its left and right, and

is taken as acting on everything within a given expression, for example

A
↔
∇ B = Ȧ∇̇B + A∇̇Ḃ. (6.1)

Transformations of spacetime position are written as

x′ = f(x). (6.2)
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The differential of this is the linear function

f(a) = a·∇f(x) = f
x
(a), (6.3)

where the subscript labels the position dependence. A useful result for vector
derivatives is that

∇x = ∂aa·∇x

= ∂a(a·∇xx
′)·∇x′

= ∂af(a)·∇x′

= fx(∇x′). (6.4)

6.1 The Field Equations and Noether’s Theorem
In what follows, we restrict attention to the application of multivector calculus
to relativistic field theory. The results are easily extended to include the non-
relativistic case. Furthermore, we are only concerned with scalar-valued Lagrangian
densities. It has not yet proved possible to construct a multivector-valued field
Lagrangian with interesting properties.

We start with a scalar-valued Lagrangian density

L = L(ψi, a·∇ψi), (6.5)

where {ψi} are a set of multivector fields. The Lagrangian (6.5) is a functional
of ψi and the directional derivatives of ψi. In many cases it is possible to write
L as a functional of ψ and ∇ψ, and this approach was adopted in [7]. Our main
application will be to gravity, however, and there we need the more general form
of (6.5).

The action is defined as
S =

∫
|d4x| L, (6.6)

where |d4x| is the invariant measure. Proceeding as in Chapter 5, we write

ψi(x) = ψ0
i (x) + εφi(x), (6.7)

where φi contains the same grades as ψi, and ψ0
i is the extremal path. Differentiating,
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and using the chain rule, we find that

∂εS =
∫
|d4x| [(∂εψi)∗∂ψiL+ (∂εψi,µ)∗∂ψi,µL]

=
∫
|d4x| [φi∗∂ψiL+ (φi,µ)∗∂ψi,µL]. (6.8)

Here, a fixed frame {γµ} has been introduced, determining a set of coordinates
xµ ≡ γµ ·x. The derivative of ψi with respect to xµ is denoted as ψi,µ. The
multivector derivative ∂ψi,µ is defined in the same way as ∂ψi . The frame can be
eliminated in favour of the multivector derivative by defining

∂ψi,a ≡ aµ∂ψi,µ , (6.9)

where aµ = γµ ·a, and writing

∂εS =
∫
|d4x| [φi∗∂ψiL+ (∂a ·∇φi)∗∂ψi,aL]. (6.10)

It is now possible to perform all manipulations without introducing a frame. This
ensures that Lorentz invariance is manifest throughout the derivation of the field
equations.

Assuming that the boundary term vanishes, we obtain

∂εS =
∫
|d4x|φi∗[∂ψiL − ∂a ·∇(∂ψi,aL)]. (6.11)

Setting ε = 0, so that the ψi takes their extremal values, we find that the extremal
path is defined by the solutions of the Euler-Lagrange equations

∂ψiL − ∂a ·∇(∂ψi,aL) = 0. (6.12)

The multivector derivative allows for vectors, tensors and spinor variables to be
handled in a single equation — a useful and powerful unification.

Noether’s theorem for field Lagrangians is also be derived in the same manner
as in Chapter 5. We begin by considering a general multivector-parameterised
transformation,

ψ′i = f(ψi,M), (6.13)

where f and M are position-independent functions and multivectors respectively.
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With L′ ≡ L(ψ′i, a·∇ψ′i), we find that

A∗∂ML′ = f
M

(ψi, A)∗∂ψ′iL
′ + f

M
(∂a ·∇ψi, A)∗∂ψ′i,aL

′

= ∇·[∂afM(ψi, A)∗∂ψ′i,aL
′] + f

M
(ψi, A)∗[∂ψ′iL

′ − ∂a ·∇(∂ψ′i,aL
′)].(6.14)

If we now assume that the ψ′i satisfy the same field equations as the ψi (which must
again be verified) then we find that

∂ML′ = ∂A∇·[∂afM(ψi, A)∗∂ψ′i,aL
′]. (6.15)

This is a very general result, applying even when ψ′i is evaluated at a different
spacetime point from ψi,

ψ′i(x) = f [ψi(h(x)),M ]. (6.16)

By restricting attention to a scalar-parameterised transformation, we can write

∂αL′|α=0 = ∇·[∂b(∂αψ′i)∗∂ψi,bL]
∣∣∣
α=0

, (6.17)

which holds provided that the ψi satisfy the field equations (6.12) and the transfor-
mation is such that ψ′i(α = 0) = ψi. Equation (6.17) turns out, in practice, to be
the most useful form of Noether’s theorem.

From (6.17) we define the conjugate current

j = ∂b (∂αψ′i|α=0)∗∂ψi,bL. (6.18)

If L′ is independent of α, j satisfies the conservation equation

∇·j = 0. (6.19)

An inertial frame relative to the constant time-like velocity γ0 then sees the charge

Q =
∫
|d3x|j ·γ0 (6.20)

as conserved with respect to its local time.
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6.2 Spacetime Transformations and their Conju-
gate Tensors

In this section we use Noether’s theorem in the form (6.17) to analyse the con-
sequences of Poincaré and conformal invariance. These symmetries lead to the
identification of stress-energy and angular-momentum tensors, which are used in
the applications to follow.

1. Translations
A translation of the spacetime fields ψi is achieved by defining new spacetime fields
ψ′i by

ψ′i(x) = ψi(x′), (6.21)

where
x′ = x+ αn. (6.22)

Assuming that L′ is only x-dependent through the fields ψi(x), equation (6.17)
gives

n·∇L = ∇·[∂a(n·∇ψi)∗∂ψi,aL] (6.23)

and from this we define the canonical stress-energy tensor by

T (n) = ∂a(n·∇ψi)∗∂ψi,aL − nL. (6.24)

The function T (n) is linear on n and, from (6.23), T (n) satisfies

∇·T (n) = 0. (6.25)

To write down a conserved quantity from T (n) it is useful to first construct the
adjoint function

T (n) = ∂b〈nT (b)〉
= ∂b〈n·∂a(b·∇ψi)∗∂ψi,aL − n·bL〉
= ∇̇〈ψ̇i∂ψi,nL〉 − nL. (6.26)

This satisfies the conservation equation

Ṫ (∇̇) = 0, (6.27)
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which is the adjoint to (6.25). In the γ0 frame the field momentum is defined by

p =
∫
|d3x|T (γ0) (6.28)

and, provided that the fields all fall off suitably at large distances, the momentum
p is conserved with respect to local time. This follows from

γ0 ·∇p =
∫
|d3x| Ṫ (γ0γ0 ·∇̇)

= −
∫
|d3x| Ṫ (γ0γ0∧∇̇)

= 0. (6.29)

The total field energy, as seen in the γ0 frame, is

E =
∫
|d3x|γ0 ·T (γ0). (6.30)

2. Rotations
If we assume initially that all fields ψi transform as spacetime vectors, then a
rotation of these fields from one spacetime point to another is performed by

ψ′i(x) = eαB/2ψi(x′)e−αB/2, (6.31)

where
x′ = e−αB/2xeαB/2. (6.32)

This differs from the point-particle transformation law (5.53) in the relative di-
rections of the rotations for the position vector x and the fields ψi. The result of
this difference is a change in the relative sign of the spin contribution to the total
angular momentum. In order to apply Noether’s theorem (6.17), we use

∂αψ
′
i|α=0 = B×ψi − (B ·x)·∇ψi (6.33)

and
∂αL′|α=0 = −(B ·x)·∇L = ∇·(x·BL). (6.34)

Together, these yield the conjugate vector

J(B) = ∂a[B×ψi − (B ·x)·∇ψi]∗∂ψi,aL+B ·xL, (6.35)
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which satisfies
∇·J(B) = 0. (6.36)

The adjoint to the conservation equation (6.36) is

J̇(∇̇)·B = 0 for all B
⇒ J̇(∇̇) = 0. (6.37)

The adjoint function J(n) is a position-dependent bivector-valued linear function
of the vector n. We identify this as the canonical angular-momentum tensor. A
conserved bivector in the γ0-system is constructed in the same manner as for
T (n) (6.28). The calculation of the adjoint function J(n) is performed as follows:

J(n) = ∂B〈J(B)n〉
= ∂B〈(B×ψi −B ·(x∧∇)ψi)∗∂ψi,nL+B ·xLn〉
= −x∧[∇̇ψ̇i∗∂ψi,nL − nL] + 〈ψi×∂ψi,nL〉2
= T (n)∧x+ 〈ψi×∂ψi,nL〉2. (6.38)

If one of the fields ψ, say, transforms single-sidedly (as a spinor), then J(n) contains
the term 〈12ψ∂ψ,nL〉2.

The first term in J(n) (6.38) is the routine p∧x component, and the second
term is due to the spin of the field. The general form of J(n) is therefore

J(n) = T (n)∧x+ S(n). (6.39)

By applying (6.37) to (6.39) and using (6.27), we find that

T (∇̇)∧ẋ+ Ṡ(∇̇) = 0. (6.40)

The first term in (6.40) returns (twice) the characteristic bivector of T (n). Since the
antisymmetric part of T (n) can be written in terms of the characteristic bivector
B as

T−(a) = 1
2B ·a, (6.41)

equation (6.40) becomes
B = −Ṡ(∇̇). (6.42)

It follows that, in any Poincaré-invariant theory, the antisymmetric part of the
stress-energy tensor is a total divergence. But, whilst T−(n) is a total divergence,
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x∧T−(n) certainly is not. So, in order for (6.37) to hold, the antisymmetric part of
T (n) must be retained since it cancels the divergence of the spin term.

3. Dilations
While all fundamental theories should be Poincaré-invariant, an interesting class
go beyond this and are invariant under conformal transformations. The conformal
group contains two further symmetry transformations, dilations and special con-
formal transformations. Dilations are considered here, and the results below are
appropriate to any scale-invariant theory.

A dilation of the spacetime fields is achieved by defining

ψ′i(x) = ediαψi(x′) (6.43)

where
x′ = eαx (6.44)

⇒ ∇ψ′i(x) = e(di+1)α∇x′ψi(x′). (6.45)

If the theory is scale-invariant, it is possible to assign the “conformal weights” di
in such a way that the left-hand side of (6.17) becomes

∂αL′|α=0 = ∇·(xL). (6.46)

In this case, equation (6.17) takes the form

∇·(xL) = ∇·[∂a(diψi + x·∇ψi)∗∂ψi,aL], (6.47)

from which the conserved current

j = di∂aψi∗∂ψi,aL+ T (x) (6.48)

is read off. Conservation of j (6.48) implies that

∇·T (x) = ∂aT (a) = −∇·(di∂aψi∗∂ψi,aL) (6.49)

so, in a scale-invariant theory, the trace of the canonical stress-energy tensor is a
total divergence. By using the equations of motion, equation (6.49) can be written,
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in four dimensions, as

di〈ψi∂ψiL〉+ (di + 1)(∂a ·∇ψi)∗∂ψi,aL = 4L, (6.50)

which can be taken as an alternative definition for a scale-invariant theory.

4. Inversions
The remaining generator of the conformal group is inversion,

x′ = x−1. (6.51)

As it stands, this is not parameterised by a scalar and so cannot be applied
to (6.17). In order to derive a conserved tensor, the inversion (6.51) is combined
with a translation to define the special conformal transformation [77]

x′ = h(x) ≡ (x−1 + αn)−1 = x(1 + αnx)−1. (6.52)

From this definition, the differential of h(x) is given by

h(a) = a·∇h(x) = (1 + αxn)−1a(1 + αnx)−1 (6.53)

so that h defines a spacetime-dependent rotation/dilation. It follows that h satisfies

h(a)·h(b) = λ(x)a·b (6.54)

where
λ(x) = (1 + 2αn·x+ α2x2n2)−2. (6.55)

That the function h(a) satisfies equation (6.54) demonstrates that it belongs to
the conformal group.

The form of h(a) (6.53) is used to postulate transformation laws for all fields
(including spinors, which transform single-sidedly) such that

L′ = (deth)L(ψi(x′), h(a)·∇x′ψi(x′)), (6.56)

which implies that

∂αL′|α=0 = ∂α deth|α=0 L+ (∂αx′|α=0)·∇L. (6.57)
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Since
deth = (1 + 2αn·x+ α2x2n2)−4, (6.58)

it follows that
∂α deth|α=0 = −8x·n. (6.59)

We also find that
∂αx

′|α=0 = −(xnx), (6.60)

and these results combine to give

∂αL′|α=0 = −8x·nL − (xnx)·∇L = −∇·(xnxL). (6.61)

Special conformal transformations therefore lead to a conserved tensor of the form

T SC(n) = ∂a〈(−(xnx)·∇ψi + ∂αψ
′
i(x))∗∂ψi,aL+ xnxL〉α=0

= −T (xnx) + ∂a〈(∂αψ′i(x))∗∂ψi,aL〉α=0. (6.62)

The essential quantity here is the vector −xnx, which is obtained by taking the
constant vector n and reflecting it in the hyperplane perpendicular to the chord
joining the point where n is evaluated to the origin. The resultant vector is then
scaled by a factor of x2.

In a conformally-invariant theory, both the antisymmetric part of T (n) and its
trace are total divergences. These can therefore be removed to leave a new tensor
T ′(n) which is symmetric and traceless. The complete set of divergenceless tensors
is then given by

{T ′(x), T ′(n), xT ′(n)x, J ′(n) ≡ T ′(n)∧x} (6.63)

This yields a set of 1 + 4 + 4 + 6 = 15 conserved quantities — the dimension of
the conformal group. All this is well known, of course, but it is the first time that
geometric algebra has been systematically applied to this problem. It is therefore
instructive to see how geometric algebra is able to simplify many of the derivations,
and to generate a clearer understanding of the results.

6.3 Applications
We now look at a number of applications of the formalism established in the
preceding sections. We start by illustrating the techniques with the example of
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electromagnetism. This does not produce any new results, but does lead directly
to the STA forms of the Maxwell equations and the electromagnetic stress-energy
tensor. We next consider Dirac theory, and a number of new conjugate currents
will be identified. A study of coupled Maxwell-Dirac theory then provides a useful
analogue for the discussion of certain aspects of a gauge theory of gravity, as
described in Chapter 7. The final application is to a two-particle action which
recovers the field equations discussed in Section 4.4.

The essential result needed for what follows is

∂ψ,a〈b·∇ψM〉 = aµ∂ψ,µ〈(bνψ,νM〉
= a·bPψ(M) (6.64)

where Pψ(M) is the projection of M onto the grades contained in ψ. It is the
result (6.64) that enables all calculations to be performed without the introduction
of a frame. It is often the case that the Lagrangian can be written in the form
L(ψi,∇ψi), when the following result is useful:

∂ψ,a〈∇ψM〉 = ∂ψ,a〈b·∇ψM∂b〉
= a·bPψ(M∂b)
= Pψ(Ma). (6.65)

1. Electromagnetism
The electromagnetic Lagrangian density is given by

L = −A·J + 1
2F ·F, (6.66)

where A is the vector potential, F = ∇∧A, and A couples to an external current
J which is not varied. To find the equations of motion we first write F ·F as a
function of ∇A,

F ·F = 1
4〈(∇A− (∇A)̃ )2〉

= 1
2〈∇A∇A−∇A(∇A)̃ 〉. (6.67)
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The field equations therefore take the form

−J − ∂b ·∇1
2〈∇Ab− (∇A)̃ b〉1 = 0
⇒ −J − ∂b ·∇F ·b = 0

⇒ ∇·F = J. (6.68)

This is combined with the identity ∇∧F = 0 to yield the full set of Maxwell’s
equations, ∇F = J .

To calculate the free-field stress-energy tensor, we set J = 0 in (6.66) and work
with

L0 = 1
2〈F

2〉. (6.69)

Equation (6.26) now gives the stress-energy tensor in the form

T (n) = ∇̇〈ȦF ·n〉 − 1
2n〈F

2〉. (6.70)

This expression is physically unsatisfactory as is stands, because it is not gauge-
invariant. In order to find a gauge-invariant form of (6.70), we write [60]

∇̇〈ȦF ·n〉 = (∇∧A)·(F ·n) + (F ·n)·∇A
= F ·(F ·n)− (F ·∇̇)·nȦ (6.71)

and observe that, since ∇·F = 0, the second term is a total divergence and can
therefore be ignored. What remains is

T em(n) = F ·(F ·n)− 1
2nF ·F

= 1
2FnF̃ , (6.72)

which is the form of the electromagnetic stress-energy tensor obtained by Hestenes
[17]. The tensor (6.72) is gauge-invariant, traceless and symmetric. The latter two
properties follow simultaneously from the identity

∂aT em(a) = ∂a
1
2FaF̃ = 0. (6.73)

The angular momentum is obtained from (6.38), which yields

J(n) = (∇̇〈ȦFn〉 − 1
2n〈F

2〉)∧x+ A∧(F ·n), (6.74)

where we have used the stress-energy tensor in the form (6.70). This expression
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suffers from the same lack of gauge invariance, and is fixed up in the same way,
using (6.71) and

−(F ·n)∧A+ x∧[(F ·∇̇)·nȦ] = x∧[(F·
↔
∇)·nA], (6.75)

which is a total divergence. This leaves simply

J(n) = T em(n)∧x. (6.76)

By redefining the stress-energy tensor to be symmetric, the spin contribution to
the angular momentum is absorbed into (6.72). For the case of electromagnetism
this has the advantage that gauge invariance is manifest, but it also suppresses the
spin-1 nature of the field. Suppressing the spin term in this manner is not always
desirable, as we shall see with the Dirac equation.

The free-field Lagrangian (6.69) is not only Poincaré-invariant; it is invariant
under the full conformal group of spacetime [7, 77]. The full set of divergenceless
tensors for free-field electromagnetism is therefore T em(x), T em(n), xT em(n)x, and
T em(n) ∧ x. It is a simple matter to calculate the modified conservation equations
when a current is present.

2. Dirac Theory1

The multivector derivative is particularly powerful when applied to the STA form
of the Dirac Lagrangian. We recall from Chapter 5 that the Lagrangian for the
Dirac equation can be written as (4.96)

L = 〈∇ψiγ3ψ̃ − eAψγ0ψ̃ −mψψ̃〉, (6.77)

where ψ is an even multivector and A is an external gauge field (which is not
varied). To verify that (6.77) does give the Dirac equation we use the Euler-Lagrange
equations in the form

∂ψL = ∂a ·∇(∂ψ,aL) (6.78)

to obtain

(∇ψiγ3)̃ − 2eγ0ψ̃A− 2mψ̃ = ∂a ·∇(iγ3ψ̃a)
= iγ3ψ̃

←
∇ . (6.79)

1The basic idea developed in this section was provided by Anthony Lasenby.
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Reversing this equation, and postmultiplying by γ0, we obtain

∇ψiσ3 − eAψ = mψγ0, (6.80)

as found in Chapter 4 (4.92). Again, it is worth stressing that this derivation
employs a genuine calculus, and does not resort to treating ψ and ψ̃ as independent
variables.

We now analyse the Dirac equation from the viewpoint of the Lagrangian (6.77).
In this Section we only consider position-independent transformations of the spinor
ψ. Spacetime transformations are studied in the following section. The transforma-
tions we are interested in are of the type

ψ′ = ψeαM , (6.81)

where M is a general multivector and α and M are independent of position.
Operations on the right of ψ arise naturally in the STA formulation of Dirac
theory, and can be thought of as generalised gauge transformations. They have no
such simple analogue in the standard column-spinor treatment. Applying (6.17)
to (6.81), we obtain

∇·〈ψMiγ3ψ̃〉1 = ∂αL′|α=0 , (6.82)

which is a result that we shall exploit by substituting various quantities for M . If
M is odd both sides vanish identically, so useful information is only obtained when
M is even. The first even M to consider is a scalar, λ, so that 〈ψMiγ3ψ̃〉1 is zero.
It follows that

∂α
(
e2αλL

)∣∣∣
α=0

= 0
⇒ L = 0, (6.83)

and hence that, when the equations of motion are satisfied, the Dirac Lagrangian
vanishes.

Next, setting M = i, equation (6.82) gives

−∇·(ρs) = −m∂α〈e2iαρeiβ〉
∣∣∣
α=0

,

⇒ ∇·(ρs) = −2mρ sin β, (6.84)

where ρs = ψγ3ψ̃ is the spin current. This equation is well-known [33], though it
is not usually observed that the spin current is the current conjugate to duality
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rotations. In conventional versions, these would be called “axial rotations”, with the
role of i taken by γ5. In the STA approach, however, these rotations are identical to
duality transformations for the electromagnetic field. The duality transformation
generated by eiα is also the continuous analogue of the discrete symmetry of mass
conjugation, since ψ 7→ ψi changes the sign of the mass term in L. It is no surprise,
therefore, that the conjugate current, ρs, is conserved for massless particles.

Finally, taking M to be an arbitrary bivector B yields

∇·(ψB ·(iγ3)ψ̃) = 2〈∇ψiB ·γ3ψ̃ − eAψB ·γ0ψ̃〉
=

〈
eAψ(σ3Bσ3 −B)γ0ψ̃

〉
, (6.85)

where the Dirac equation (6.80) has beed used. Both sides of(6.85) vanish for
B = iσ1, iσ2 and σ3, with useful equations arising on taking B = σ1, σ2 and iσ3.
The last of these, B = iσ3, corresponds to the usual U(1) gauge transformation of
the spinor field, and gives

∇·J = 0, (6.86)

where J = ψγ0ψ̃ is the current conjugate to phase transformations, and is strictly
conserved. The remaining transformations generated by eασ1 and eασ2 give

∇·(ρe1) = 2eρA·e2

∇·(ρe2) = −2eρA·e1,
(6.87)

where ρeµ = ψγµψ̃. Although these equations have been found before [33], the role
of ρe1 and ρe2 as currents conjugate to right-sided eασ2 and eασ1 transformations
has not been noted. Right multiplication by σ1 and σ2 generates charge conjugation,
since the transformation ψ 7→ ψ′ ≡ ψσ1 takes (6.80) into

∇ψ′iσ3 + eAψ′ = mψ′γ0. (6.88)

It follows that the conjugate currents are conserved exactly if the external potential
vanishes, or the particle has zero charge.

3. Spacetime Transformations in Maxwell-Dirac Theory
The canonical stress-energy and angular-momentum tensors are derived from
spacetime symmetries. In considering these it is useful to work with the full coupled
Maxwell-Dirac Lagrangian, in which the free-field term for the electromagnetic
field is also included. This ensures that the Lagrangian is Poincaré-invariant. The
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full Lagrangian is therefore

L = 〈∇ψiγ3ψ̃ − eAψγ0ψ̃ −mψψ̃ + 1
2F

2〉, (6.89)

in which both ψ and A are dynamical variables.
From the definition of the stress-energy tensor (6.26) and the fact that the

Dirac part of the Lagrangian vanishes when the field equations are satisfied (6.83),
T (n) is given by

T (n) = ∇̇〈ψ̇iγ3ψ̃n〉+ ∇̇〈ȦFn〉 − 1
2nF ·F. (6.90)

Again, this is not gauge-invariant and a total divergence must be removed to recover
a gauge-invariant tensor. The manipulations are as at (6.71), and now yield

Tmd(n) = ∇̇〈ψ̇iγ3ψ̃n〉 − n·JA+ 1
2 F̃ nF, (6.91)

where J = ψγ0ψ̃. The tensor (6.91) is now gauge-invariant, and conservation can be
checked simply from the field equations. The first and last terms are the free-field
stress-energy tensors and the middle term, −n·JA, arises from the coupling. The
stress-energy tensor for the Dirac theory in the presence of an external field A is
conventionally defined by the first two terms of (6.91), since the combination of
these is gauge-invariant.

Only the free-field electromagnetic contribution to Tmd (6.91) is symmetric;
the other terms each contain antisymmetric parts. The overall antisymmetric
contribution is

T−(n) = 1
2 [Tmd(n)− Tmd(n)]

= 1
2n·[A∧J − ∇̇∧〈ψ̇iγ3ψ̃〉1]

= 1
2n·〈AJ −∇ψiγ3ψ̃ + ∇̇〈ψ̇iγ3ψ̃〉3〉2

= n·(∇·(1
4iρs))

= n·(−i∇∧(1
4ρs)), (6.92)

and is therefore completely determined by the exterior derivative of the spin
current [78].

The angular momentum is found from (6.39) and, once the total divergence is
removed, the gauge-invariant form is

J(n) = Tmd(n)∧x+ 1
2iρs∧n. (6.93)
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The ease of derivation of J(n) (6.93) compares favourably with traditional operator-
based approaches [60]. It is crucial to the identification of the spin contribution to
the angular momentum that the antisymmetric component of Tmd(n) is retained.
In (6.93) the spin term is determined by the trivector is, and the fact that this
trivector can be dualised to the vector s is a unique property of four-dimensional
spacetime.

The sole term breaking conformal invariance in (6.89) is the mass term 〈mψψ̃〉,
and it is useful to consider the currents conjugate to dilations and special conformal
transformations, and to see how their non-conservation arises from this term. For
dilations, the conformal weight of a spinor field is 3

2 , and equation (6.48) yields the
current

jd = Tmd(x) (6.94)

(after subtracting out a total divergence). The conservation equation is

∇·jd = ∂a ·Tmd(a)
= 〈mψψ̃〉. (6.95)

Under a spacetime transformation the A field transforms as

A(x) 7→ A′(x) ≡ f [A(x′)], (6.96)

where x′ = f(x). For a special conformal transformation, therefore, we have that

A′(x) = (1 + αnx)−1A(x′)(1 + αxn)−1. (6.97)

Since this is a rotation/dilation, we postulate for ψ the single-sided transformation

ψ′(x) = (1 + αnx)−2(1 + αxn)−1ψ(x′). (6.98)

In order to verify that the condition (6.56) can be satisfied, we need the neat result
that

∇
(
(1 + αnx)−2(1 + αxn)−1

)
= 0. (6.99)

This holds for all vectors n, and the bracketed term is immediately a solution of
the massless Dirac equation (it is a monogenic function on spacetime). It follows
from (6.56) that the conserved tensor is

T SC(n) = −Tmd(xnx)− n·(ix∧(ρs)). (6.100)
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and the conservation equation is

∇·T SC(xnx) = −2〈mψψ̃〉n·x. (6.101)

In both (6.95) and (6.101) the conjugate tensors are conserved as the mass goes to
zero, as expected.

4. The Two-Particle Dirac Action
Our final application is to see how the two-particle equation (4.147) can be obtained
from an action integral. The Lagrangian is

L = 〈(∇
1

m1 + ∇
2

m2 )ψJ(γ1
0 + γ2

0)ψ̃ − 2ψψ̃〉, (6.102)

where ψ is a function of position in the 8-dimensional configuration space, and ∇1

and ∇2 are the vector derivatives in their respective spaces. The action is

S =
∫
|d8x| L. (6.103)

If we define the function h by

h(a) = i1
a·i1

m1 + i2
a·i2

m2 , (6.104)

where i1 and i2 are the pseudoscalars for particle-one and particle-two spaces
respectively, then we can write the action as

S =
∫
|d8x| 〈h(∂b)b·∇ψJ(γ1

0 + γ2
0)ψ̃ − 2ψψ̃〉. (6.105)

Here ∇ = ∇1 +∇2 is the vector derivative in 8-dimensional configuration space.
The field equation is

∂ψL = ∂a ·∇(∂ψ,aL), (6.106)

which leads to

[h(∂a)a·∇ψJ(γ1
0 + γ2

0)]̃ − 4ψ̃ = ∂a ·∇[J(γ1
0 + γ2

0)ψ̃h(a)]. (6.107)

174



The reverse of this equation is

h(∂a)a·∇ψJ(γ1
0 + γ2

0) = 2ψ (6.108)

and post-multiplying by (γ1
0 + γ2

0) obtains

(∇
1

m1 + ∇
2

m2 )ψJ = ψ(γ1
0 + γ2

0), (6.109)

as used in Section 4.4.
The action (6.102) is invariant under phase rotations in two-particle space,

ψ 7→ ψ′ ≡ ψe−αJ , (6.110)

and the conserved current conjugate to this symmetry is

j = ∂a(−ψJ)∗∂ψ,aL
= ∂a〈ψE(γ1

0 + γ2
0)ψ̃h(a)〉

= h〈ψE(γ1
0 + γ2

0)ψ̃〉1. (6.111)

This current satisfies the conservation equation

∇·j = 0 (6.112)

or, absorbing the factor of E into ψ,

(∇
1

m1 + ∇
2

m2 )·〈ψ(γ1
0 + γ2

0)ψ̃〉1 = 0. (6.113)

Some properties of this current were discussed briefly in Section 4.4.

6.4 Multivector Techniques for Functional Dif-
ferentiation

We have seen how the multivector derivative provides a natural and powerful
extension to the calculus of single-variable functions. We now wish to extend these
techniques to encompass the derivative with respect to a linear function h(a). We
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start by introducing a fixed frame {ei}, and define the scalar coefficients

hij ≡ h(ei)·ej. (6.114)

Each of the scalars hij can be differentiated with respect to, and we seek a method
of combining these into a single multivector operator. If we consider the derivative
with respect to hij on the scalar h(b)·c, we find that

∂hijh(b)·c = ∂hij(bkclhkl)
= bicj. (6.115)

If we now multiply both sides of this expression by a·eiej we obtain

a·eiej∂hijh(b)·c = a·bc. (6.116)

This successfully assembles a frame-independent vector on the right-hand side, so
the operator a·eiej∂hij must also be frame-independent. We therefore define the
vector functional derivative ∂h(a) by

∂h(a) ≡ a·eiej∂hij , (6.117)

where all indices are summed over and hij is given by (6.114).
The essential property of ∂h(a) is, from (6.116),

∂h(a)h(b)·c = a·bc (6.118)

and this result, together with Leibniz’ rule, is sufficient to derive all the required
properties of the ∂h(a) operator. The procedure is as follows. With B a fixed
bivector, we write

∂h(a)〈h(b∧c)B〉 = ∂̇h(a)〈ḣ(b)h(c)B〉 − ∂̇h(a)〈ḣ(c)h(b)B〉
= a·bh(c)·B − a·ch(b)·B
= h[a·(b∧c)]·B (6.119)

which extends, by linearity, to give

∂h(a)〈h(A)B〉 = h(a·A)·B, (6.120)

where A and B are both bivectors. Proceeding in this manner, we find the general
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formula
∂h(a)〈h(A)B〉 =

∑
r

〈h(a·Ar)Br〉1. (6.121)

For a fixed grade-r multivector Ar, we can now write

∂h(a)h(Ar) = ∂h(a)〈h(Ar)Xr〉∂Xr
= 〈h(a·Ar)Xr〉1∂Xr
= (n− r + 1)h(a·Ar), (6.122)

where n is the dimension of the space and a result from page 58 of [24] has been
used.

Equation (6.121) can be used to derive formulae for the functional derivative of
the adjoint. The general result is

∂h(a)h(Ar) = ∂h(a)〈h(Xr)Ar〉∂Xr
= 〈h(a·Ẋr)Ar〉1∂̇Xr . (6.123)

When A is a vector, this admits the simpler form

∂h(a)h(b) = ba. (6.124)

If h is a symmetric function then h = h, but this cannot be exploited for functional
differentiation, since h and h are independent for the purposes of calculus.

As two final applications, we derive results for the functional derivative of the
determinant (1.115) and the inverse function (1.125). For the determinant, we find
that

∂h(a)h(I) = h(a·I)
⇒ ∂h(a) det(h) = h(a·I)I−1

= det(h)h−1(a), (6.125)

where we have recalled the definition of the inverse (1.125). This coincides with
standard formulae for the functional derivative of the determinant by its corre-
sponding tensor. The proof given here, which follows directly from the definitions
of the determinant and the inverse, is considerably more concise than any available
to conventional matrix/tensor methods. The result for the inverse function is found
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from

∂h(a)〈h(Br)h
−1(Ar)〉 = 〈h(a·Br)h

−1(Ar)〉1 + ∂̇h(a)〈ḣ
−1

(Ar)h(Br)〉 = 0 (6.126)

from which it follows that

∂h(a)〈h
−1(Ar)Br〉 = −〈h[a·h−1(Br)]h

−1(Ar)〉1
= −〈h−1(a)·Brh

−1(Ar)〉1, (6.127)

where use has been made of results for the adjoint (1.123).
We have now assembled most of the necessary formalism and results for the

application of geometric calculus to field theory. In the final chapter we apply this
formalism to develop a gauge theory of gravity.
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Chapter 7

Gravity as a Gauge Theory

In this chapter the formalism described throughout the earlier chapters of this
thesis is employed to develop a gauge theory of gravity. Our starting point is
the Dirac action, and we begin by recalling how electromagnetic interactions
arise through right-sided transformations of the spinor field ψ. We then turn
to a discussion of Poincaré invariance, and attempt to introduce gravitational
interactions in a way that closely mirrors the introduction of the electromagnetic
sector. The new dynamical fields are identified, and an action is constructed for
these. The field equations are then found and the derivation of these is shown
to introduce an important consistency requirement. In order that the correct
minimally-coupled Dirac equation is obtained, one is forced to use the simplest
action for the gravitational fields — the Ricci scalar. Some free-field solutions are
obtained and are compared with those of general relativity. Aspects of the manner
in which the theory employs only active transformations are then illustrated with
a discussion of extended-matter distributions.

By treating gravity as a gauge theory of active transformations in the (flat)
spacetime algebra, some important differences from general relativity emerge.
Firstly, coordinates are unnecessary and play an entirely secondary role. Points are
represented by vectors, and all formulae given are coordinate-free. The result is a
theory in which spacetime does not play an active role, and it is meaningless to
assign physical properties to spacetime. The theory is one of forces, not geometry.
Secondly, the gauge-theory approach leads to a first-order set of equations. Despite
the fact that the introduction of a set of coordinates reproduces the matter-free field
equations of general relativity, the requirement that the first-order variables should
exist globally has important consequences. These are illustrated by a discussion of
point-source solutions.
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There has, of course, been a considerable discussion of whether and how gravity
can be formulated as a gauge theory. The earliest attempt was by Utiyama [79],
and his ideas were later refined by Kibble [80]. This led to the development of what
is now known as the Einstein-Cartan-Kibble-Sciama (ECKS) theory of gravity.
A detailed review of this subject was given in 1976 by Hehl et al. [81]. More
recently, the fibre-bundle approach to gauge theories has been used to study general
relativity [82]. All these developments share the idea that, at its most fundamental
level, gravity is the result of spacetime curvature (and, more generally, of torsion).
Furthermore, many of these treatments rely on an uncomfortable mixture of passive
coordinate transformations and active tetrad transformations. Even when active
transformations are emphasised, as by Hehl et al., the transformations are still
viewed as taking place on an initially curved spacetime manifold. Such ideas are
rejected here, as is inevitable if one only discusses the properties of spacetime fields,
and the interactions between them.

7.1 Gauge Theories and Gravity
We prepare for a discussion of gravity by first studying how electromagnetism is
introduced into the Dirac equation. We start with the Dirac action in the form

SD =
∫
|d4x|〈∇ψiγ3ψ̃ −mψψ̃〉, (7.1)

and recall that, on defining the transformation

ψ 7→ ψ′ ≡ ψe−iσ3φ, (7.2)

the action is the same whether viewed as a function of ψ or ψ′. This is global
phase invariance. The transformation (7.2) is a special case of the more general
transformation

ψ′ = ψR̃0, (7.3)

where R0 is a constant rotor. We saw in Chapter 4 that a Dirac spinor encodes an
instruction to rotate the {γµ} frame onto a frame of observables {eµ}. ψ′ is then
the spinor that generates the same observables from the rotated initial frame

γ′µ = R0γµR̃0. (7.4)

180



It is easily seen that (7.3) and (7.4) together form a symmetry of the action, since

〈∇ψ′iγ′3ψ̃′ −mψ′ψ̃′〉 = 〈∇ψR̃0iR0γ3R̃0R0ψ̃ −mψR̃0R0ψ̃〉
= 〈∇ψiγ3ψ̃ −mψψ̃〉. (7.5)

The phase rotation (7.2) is singled out by the property that it leaves both the
time-like γ0-axis and space-like γ3-axis unchanged.

There is a considerable advantage in introducing electromagnetic interactions
through transformations such as (7.3). When we come to consider spacetime
rotations, we will find that the only difference is that the rotor R0 multiplies ψ
from the left instead of from the right. We can therefore use an identical formalism
for introducing both electromagnetic and gravitational interactions.

Following the standard ideas about gauge symmetries, we now ask what happens
if the phase φ in (7.2) becomes a function of position. To make the comparison
with gravity as clear as possible, we write the transformation as (7.3) and only
restrict R̃0 to be of the form of (7.2) once the gauging has been carried out. To
study the effect of the transformation (7.3) we first write the vector derivative of ψ
as

∇ψ = ∂a(a·∇ψ) (7.6)

which contains a coordinate-free contraction of the directional derivatives of ψ with
their vector directions. Under the transformation (7.3) the directional derivative
becomes

a·∇ψ′ = a·∇(ψR̃0)
= a·∇ψR̃0 + ψa·∇R̃0

= a·∇ψR̃0 − 1
2ψR̃0χ(a), (7.7)

where
χ(a) ≡ −2R0a·∇R̃0. (7.8)

From the discussion of Lie groups in Section (3.1), it follows that χ(a) belongs to
the Lie algebra of the rotor group, and so is a (position-dependent) bivector-valued
linear function of the vector a.

It is now clear that, to maintain local invariance, we must replace the directional
derivatives a·∇ by covariant derivatives Da, where

Daψ ≡ a·∇ψ + 1
2ψΩ(a). (7.9)
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We are thus forced to introduce a new set of dynamical variables — the bivector
field Ω(a). The transformation properties of Ω(a) must be the same as those of
χ(a). To find these, replace ψ′ by ψ and consider the new transformation

ψ 7→ ψ′ = ψR̃, (7.10)

so that the rotor R̃0 is transformed to R̃0R̃ = (RR0)̃ . The bivector χ(a) then
transforms to

χ′(a) = −2(RR0)a·∇(RR0)̃
= Rχ(a)R̃− 2Ra·∇R̃. (7.11)

It follows that the transformation law for Ω(a) is

Ω(a) 7→ Ω′(a) ≡ RΩ(a)R̃− 2Ra·∇R̃, (7.12)

which ensures that

Da
′(ψ′) = a·∇(ψR̃) + 1

2ψR̃Ω′(a)
= a·∇(ψR̃) + 1

2ψR̃(RΩ(a)R̃− 2Ra·∇R̃)
= a·∇ψR̃ + 1

2ψΩ(a)R̃
= Da(ψ)R̃. (7.13)

The action integral (7.1) is now modified to

S ′ =
∫
|d4x|〈∂aDaψiγ3ψ̃ −mψψ̃〉, (7.14)

from which the field equations are

∇ψiγ3 + 1
2∂aψΩ(a)·(iγ3) = mψ. (7.15)

For the case of electromagnetism, the rotor R is restricted to the form of (7.2), so
the most general form that Ω(a) can take is

Ω(a) = 2a·(eA)iσ3. (7.16)
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The “minimally-coupled” equation is now

∇ψiγ3 − eAψγ0 = mψ, (7.17)

recovering the correct form of the Dirac equation in the presence of an external A
field.

7.1.1 Local Poincaré Invariance
Our starting point for the introduction of gravity as a gauge theory is the Dirac
action (7.1), for which we study the effect of local Poincaré transformations of the
spacetime fields. We first consider translations

ψ(x) 7→ ψ′(x) ≡ ψ(x′), (7.18)

where
x′ = x+ a (7.19)

and a is a constant vector. To make these translations local, the vector a must
become a function of position. This is achieved by replacing (7.19) with

x′ = f(x), (7.20)

where f(x) is now an arbitrary mapping between spacetime positions. We continue
to refer to (7.20) as a translation, as this avoids overuse of the word “transformation”.
It is implicit in what follows that all translations are local and are therefore
determined by completely arbitrary mappings. The translation (7.20) has the
interpretation that the field ψ has been physically moved from the old position
x′ to the new position x. The same holds for the observables formed from ψ, for
example the current J(x) = ψγ0ψ̃ is transformed to J ′(x) = J(x′).

As it stands, the translation defined by (7.20) is not a symmetry of the action,
since

∇ψ′(x) = ∇ψ(f(x))
= f(∇x′)ψ(x′), (7.21)

and the action becomes

S ′ =
∫
|d4x′| (det f)−1〈f(∇x′)ψ′iγ3ψ̃

′ −mψ′ψ̃′〉. (7.22)
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To recover a symmetry from (7.20), one must introduce an arbitrary, position-
dependent linear function h. The new action is then written as

Sh =
∫
|d4x|(deth)−1 〈h(∇)ψiγ3ψ̃ −mψψ̃〉. (7.23)

Under the translation
ψ(x) 7→ ψ′(x) ≡ ψ(f(x)), (7.24)

the action Sh transforms to

S ′h =
∫
|d4x′|(det f)−1(deth′)−1〈h′ f(∇x′)ψ′iγ3ψ̃

′ −mψ′ψ̃′〉 (7.25)

and the original action is recovered provided that h has the transformation law

hx 7→ h
′
x ≡ hx′f

−1
x where x′ = f(x). (7.26)

This is usually the most useful form for explicit calculations, though alternatively
we can write

hx 7→ h
′
x ≡ hx′fx′ where x = f(x′), (7.27)

which is sometimes more convenient to work with.
In arriving at (7.23) we have only taken local translations into account — the

currents are being moved from one spacetime position to another. To arrive at a
gauge theory of the full Poincaré group we must consider rotations as well. (As
always, the term “rotation” is meant in the sense of Lorentz transformation.) In
Chapter 6, rotational invariance of the Dirac action (7.1) was seen by considering
transformations of the type ψ(x) 7→ R0ψ(R̃0xR0), where R0 is a constant rotor.
By writing the action in the form of (7.23), however, we have already allowed for
the most general type of transformation of position dependence. We can therefore
translate back to x, so that the rotation takes place at a point. In doing so, we
completely decouple rotations and translations. This is illustrated by thinking in
terms of the frame of observables {eµ}. Given this frame at a point x, there are
two transformations that we can perform on it. We can either move it somewhere
else (keeping it in the same orientation with respect to the {γµ} frame), or we can
rotate it at a point. These two operations correspond to different symmetries. A
suitable physical picture might be to think of “experiments” in place of frames.
We expect that the physics of the experiment will be unaffected by moving the
experiment to another point, or by changing its orientation in space.

Active rotations of the spinor observables are driven by rotations of the spinor
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field,
ψ 7→ ψ′ ≡ R0ψ. (7.28)

Since h(a) is a spacetime vector field, the corresponding law for h must be

h(a) 7→ h
′(a) ≡ R0h(a)R̃0. (7.29)

By writing the action (7.23) in the form

Sh =
∫
|d4x|(deth)−1 〈h(∂a)a·∇ψiγ3ψ̃ −mψψ̃〉, (7.30)

we observe that it is now invariant under the rotations defined by (7.28) and (7.29).
All rotations now take place at a point, and the presence of the h field ensures that
a rotation at a point has become a global symmetry. To make this symmetry local,
we need only replace the directional derivative of ψ by a covariant derivative, with
the property that

D′a(Rψ) = RDaψ, (7.31)

where R is a position-dependent rotor. But this is precisely the problem that was
tackled at the start of this section, the only difference being that the rotor R now
sits to the left of ψ. Following the same arguments, we immediately arrive at the
definition:

Daψ ≡ (a·∇+ 1
2Ω(a))ψ, (7.32)

where Ω(a) is a (position-dependent) bivector-valued linear function of the vector
a. Under local rotations ψ 7→ Rψ, Ω(a) transforms to

Ω(a) 7→ Ω(a)′ ≡ RΩ(a)R̃− 2a·∇RR̃. (7.33)

Under local translations, Ω(a) must transform in the same manner as the a · ∇RR̃
term, so

Ωx(a) 7→ Ωx′fx(a) if x′ = f(x),
Ωx(a) 7→ Ωx′f

−1
x′

(a) if x = f(x′). (7.34)

(The subscript x on Ωx(a) labels the position dependence.)
The action integral

S =
∫
|d4x|(deth)−1 〈h(∂a)Daψiγ3ψ̃ −mψψ̃〉, (7.35)

is now invariant under both local translations and rotations. The field equations
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derived from S will have the property that, if {ψ, h,Ω} form a solution, then so
too will any new fields obtained from these by local Poincaré transformations. This
local Poincaré symmetry has been achieved by the introduction of two gauge fields,
h and Ω, with a total of (4×4) + (4×6) = 40 degrees of freedom. This is precisely
the number expected from gauging the 10-dimensional Poincaré group.

Before turning to the construction of an action integral for the gauge fields, we
look at how the covariant derivative of (7.32) must extend to act on the physical
observables derived from ψ. These observables are all formed by the double-sided
action of the spinor field ψ on a constant multivector Γ (formed from the {γµ}) so
that

A ≡ ψΓψ̃. (7.36)

The multivector A therefore transforms under rotations as

A 7→ RAR̃, (7.37)

and under translations as

A(x) 7→ A(f(x)). (7.38)

We refer to objects with the same transformation laws as A as being covariant (an
example is the current, J = ψγ0ψ̃). If we now consider directional derivatives of A,
we see that these can be written as

a·∇A = (a·∇ψ)Γψ̃ + ψΓ(a·∇ψ)̃ , (7.39)

which immediately tells us how to turn these into covariant derivatives. Rotations
of A are driven by single-sided rotations of the spinor field ψ, so to arrive at a
covariant derivative of A we simply replace the spinor directional derivatives by
covariant derivatives, yielding

(Daψ)Γψ̃ + ψΓ(Daψ)̃
= (a·∇ψ)Γψ̃ + ψΓ(a·∇ψ)̃ + 1

2Ω(a)ψΓψ̃ − 1
2ψΓψ̃Ω(a)

= a·∇(ψΓψ̃) + Ω(a)×(ψΓψ̃). (7.40)

We therefore define the covariant derivative for “observables” by

DaA ≡ a·∇A+ Ω(a)×A. (7.41)
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This is applicable to all multivector fields which transform double-sidedly under
rotations. The operator Da has the important property of satisfying Leibniz’ rule,

Da(AB) = (DaA)B + A(DaB), (7.42)

so that Da is a derivation. This follows from the identity

Ω(a)×(AB) = (Ω(a)×A)B + A(Ω(a)×B). (7.43)

For notational convenience we define the further operators

Dψ ≡ h(∂a)Daψ (7.44)
DA ≡ h(∂a)DaA, (7.45)

and for the latter we write

DA = D·A+D∧A, (7.46)

where

D·Ar ≡ 〈DA〉r−1 (7.47)
D∧Ar ≡ 〈DA〉r+1. (7.48)

The operator D can be thought of as a covariant vector derivative. D and D have
the further properties that

a·D = Dh(a) (7.49)
a·D = Dh(a). (7.50)

7.1.2 Gravitational Action and the Field Equations
Constructing a form of the Dirac action that is invariant under local Poincaré
transformations has required the introduction of h and Ω fields, with the transfor-
mation properties (7.26), (7.29), (7.33) and (7.34). We now look for invariant scalar
quantities that can be formed from these. We start by defining the field-strength
R(a∧b) by

1
2R(a∧b)ψ ≡ [Da, Db]ψ, (7.51)
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so that
R(a∧b) = a·∇Ω(b)− b·∇Ω(a) + Ω(a)×Ω(b). (7.52)

R(a∧b) is a bivector-valued function of its bivector argument a∧b. For an arbitrary
bivector argument we define

R(a∧c+ c∧d) = R(a∧b) +R(c∧d) (7.53)

so that R(B) is now a bivector-valued linear function of its bivector argument B.
The space of bivectors is 6-dimensional so R(B) has, at most, 36 degrees of freedom.
(The counting of degrees of freedom is somewhat easier than in conventional tensor
calculus, since two of the symmetries of Rαβγδ are automatically incorporated.)
R(B) transforms under local translations as

Rx(B) 7→ Rx′fx(B) where x′ = f(x), (7.54)

and under local rotations as

R(B) 7→ R0R(B)R̃0. (7.55)

The field-strength is contracted once to form the linear function

R(b) = h(∂a)·R(a∧b), (7.56)

which has the same transformation properties as R(B). We use the same symbol
for both functions and distinguish between them through their argument, which is
either a bivector (B or a∧b) or a vector (a).

Contracting once more, we arrive at the (“Ricci”) scalar

R = h(∂b)·R(b) = h(∂b∧∂a)·R(a∧b). (7.57)

R transforms as a scalar function under both rotations and translations. As an aside,
it is interesting to construct the analogous quantity to R for the electromagnetic
gauge sector. For this we find that

[Dem
a , Dem

b ]ψ = e(b∧a)·Fψiσ3 (7.58)

⇒ h(∂b∧∂a)[Dem
a , Dem

b ]ψ = −2eh(F )ψiσ3. (7.59)

Interestingly, this suggests that the bivector h(F ) has a similar status to the Ricci
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scalar, and not to the field-strength tensor.
Since the Ricci scalar R is a covariant scalar, the action integral

SG =
∫
|d4x|(deth)−1R/2 (7.60)

is invariant under all local Poincaré transformations. The choice of action integral
(7.60) is the same as that of the Hilbert-Palatini principle in general relativity, and
we investigate the consequences of this choice now. Once we have derived both the
gravitational and matter equations, we will return to the subject of whether this
choice is unique.

From (7.60) we write the Lagrangian density as

LG = 1
2R deth−1 = LG(h(a),Ω(a), b·∇Ω(a)). (7.61)

The action integral (7.60) is over a region of flat spacetime, so all the variational
principle techniques developed in Chapter 6 hold without modification. The only
elaboration needed is to define a calculus for Ω(a). Such a calculus can be defined
in precisely the same way as the derivative ∂h(a) was defined (6.117). The essential
results are:

∂Ω(a)〈Ω(b)B〉 = a·bB (7.62)
∂Ω(b),a〈c·∇Ω(d)B〉 = a·cb·dB, (7.63)

where B is an arbitrary bivector.
We assume that the overall action is of the form

L = LG − κLM , (7.64)

where LM describes the matter content and κ = 8πG. The first of the field
equations is found by varying with respect to h, producing

κ∂h(a)LM = 1
2∂h(a)(〈h(∂b∧∂c)R(c∧b)〉 deth−1)

= (R(a)− 1
2h
−1(a)R) deth−1. (7.65)

The functional derivative with respect to h(a) of the matter Lagrangian is taken to
define the stress-energy tensor of the matter field through

T h−1(a) deth−1 ≡ ∂h(a)LM , (7.66)
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so that we arrive at the field equations in the form

R(a)− 1
2h
−1(a)R = κT h−1(a). (7.67)

It is now appropriate to define the functions

R(a∧b) ≡ Rh(a∧b) (7.68)
R(a) ≡ Rh(a) = ∂a ·R(a∧b) (7.69)
G ≡ R(a)− 1

2aR. (7.70)

These are covariant under translations (they simply change their position depen-
dence), and under rotations they transform as e.g.

R(B) 7→ R0R(R̃0BR0)R̃0. (7.71)

Equation (7.71) is the defining rule for the transformation properties of a tensor,
and we hereafter refer to (7.68) through to (7.70) as the Riemann, Ricci and
Einstein tensors respectively. We can now write (7.67) in the form

G(a) = κT (a), (7.72)

which is the (flat-space) gauge-theory equivalent of Einstein’s field equations.
In the limit of vanishing gravitational fields (h(a) 7→ a and Ω(a) 7→ 0) the stress-

energy tensor defined by (7.66) agrees with the canonical stress-energy tensor (6.24),
up to a total divergence. When Ω(a) vanishes, the matter action is obtained from
the free-field L(ψi, a·∇ψi) through the introduction of the transformation defined
by x′ = h(x). Denoting the transformed fields by ψ′i, we find that

∂h(a)[(deth)−1L′]
∣∣∣
h=I

= ∂h(a)L(ψ′i, h(a)·∇ψ′i)
∣∣∣
h=I
− aL (7.73)

and

∂h(a)L(ψ′i, h(b)·∇ψ′i)
∣∣∣
h=I

= ∂h(a)[ψ′i∗∂ψiL+ (∂b ·h(∇)ψ′i)∗∂ψi,bL]h=I

= ∂b(a·∇ψi)∗∂ψi,bL+ ∂h(a)ψ̇
′
i∗[∂ψiL+ h(∂b)·∇̇∂ψi,bL]h=I . (7.74)

When the field equations are satisifed, the final term in (7.74) is a total divergence,
and we recover the stress-energy tensor in the form (6.24). This is unsurprising,
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since the derivations of the functional and canonical stress-energy tensors are both
concerned with the effects of moving fields from one spacetime position to another.

The definition (7.66) differs from that used in general relativity, where the
functional derivative is taken with respect to the metric tensor [83]. The functional
derivative with respect to the metric ensures that the resultant stress-energy tensor
is symmetric. This is not necessarily the case when the functional derivative is
taken with respect to h(a). This is potentially important, since we saw in Chapter 6
that the antisymmetric contribution to the stress-energy tensor is crucial for the
correct treatment of the spin of the fields.

We next derive the field equations for the Ω(a) field. We write these in the form

∂Ω(a)LG − ∂b ·∇(∂Ω(a),bLG)
= κ

{
∂Ω(a)LM − ∂b ·∇(∂Ω(a),bLM)

}
≡ κS(a) deth−1, (7.75)

where the right-hand side defines the function S(a). Performing the derivatives on
the left-hand side of the equation gives

deth−1Ω(b)×
(
h(∂b)∧h(a)

)
+ ∂b ·∇

(
h(b)∧h(a) deth−1

)
= κS(a) deth−1. (7.76)

On contracting (7.76) with h−1(∂a), we find that

κh−1(∂a)·S(a) deth−1

= ∂a ·[Ω(b)×(h(∂b)∧a)] deth−1 + h−1(∂a)·
{
∂b ·∇

(
h(b)∧h(a) deth−1

)}
= 2h(∂a)·Ω(a) deth−1 − 3h(

↔
∇ deth−1)− h(∇̇)h−1(∂a)·ḣ(a) deth−1

+ḣ(∇̇) deth−1. (7.77)

If we now make use of the result that

〈a·∇h(b)h−1(∂b) deth−1〉 = −(a·∇h(∂b))∗∂h(b) deth−1

= −a·∇ deth−1 (chain rule), (7.78)

from which it follows that

h(∇̇)〈ḣ(a)h−1(∂a) deth−1〉 = −h(∇ deth−1), (7.79)
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we find that

κh−1(∂a)·S(a) deth−1 = 2h(∂a)·Ω(a) deth−1 − 2h(
↔
∇ deth−1)

= −2Dah(∂a deth−1). (7.80)

We will see shortly that it is crucial to the derivation of the correct matter field
equations that

Dah(∂a deth−1) = 0. (7.81)

This places a strong restriction on the form of LM , which must satisfy

h−1(∂a)·
(
∂Ω(a)LM − ∂b ·∇(∂Ω(a),bLM)

)
= 0. (7.82)

This condition is satisfied for our gauge theory based on the Dirac equation, since
the bracketed term in equation (7.82) is

(∂Ω(a) − ∂b·
→
∇ ∂Ω(a),b)〈Dψiγ3ψ̃ −mψψ̃〉 = 1

2h(a)·(ψiγ3ψ̃)
= −1

2ih(a)∧s. (7.83)

It follows immediately that the contraction in (7.82) vanishes, since

h−1(∂a)·(ih(a)∧s) = −i∂a∧a∧s = 0. (7.84)

We define S by
S ≡ 1

2ψiγ3ψ̃, (7.85)

so that we can now write
S(a) = h(a)·S. (7.86)

Given that (7.81) does hold, we can now write (7.76) in the form

κS(a) = ḣ(∇)∧ḣ(a) + Ω(b)×
(
h(∂b)∧h(a)

)
−
(
Ω(b)·h(∂b)

)
∧h(a)

= h(∂b)∧
(
b·∇h(a) + Ω(b)·h(a)

)
= D∧h(a). (7.87)

The right-hand side of this equation could be viewed as the torsion though, since
we are working in a flat spacetime, it is preferable to avoid terminology borrowed
from Riemann-Cartan geometry. When the left-hand side of (7.87) vanishes, we
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arrive at the simple equation
D∧h(a) = 0, (7.88)

valid for all constant vectors a. All differential functions f(a) = a·∇f(x) satisfy
∇∧f(a) = 0, and (7.88) can be seen as the covariant generalisation of this result.
Our gravitational field equations are summarised as

G(a) = κT (a) (7.89)
D∧h(a) = κS(a), (7.90)

which hold for all constant vectors a.

7.1.3 The Matter-Field Equations
We now turn to the derivation of the matter-field equations. We start with the
Dirac equation, and consider the electromagnetic field equations second.

The Dirac Equation

We have seen how the demand for invariance under local Poincaré transformations
has led to the action

S =
∫
|d4x|(deth)−1 〈h(∂a)Daψiγ3ψ̃ −mψψ̃〉. (7.91)

Applying the Euler-Lagrange equations (6.12) to this, and reversing the result, we
find that

deth−1
(
h(∂a)a·∇ψiγ3 + h(∂a)∧Ω(a)ψiγ3 − 2mψ

)
= −∂a ·∇(h(a)ψiγ3 deth−1),

(7.92)
which can be written as

Dψiγ3 = mψ − 1
2Dah(∂a deth−1)ψiγ3. (7.93)

We now see why it is so important that Dah(∂a deth−1) vanishes. Our point of
view throughout has been to start from the Dirac equation, and to introduce gauge
fields to ensure local Poincaré invariance. We argued initially from the point of
view of the Dirac action, but we could equally well have worked entirely at the
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level of the equation. By starting from the Dirac equation

∇ψiγ3 = mψ, (7.94)

and introducing the h and Ω(a) fields in the same manner as in Section 2.1, we
find that the correct minimally coupled equation is

Dψiγ3 = mψ. (7.95)

If we now make the further restriction that our field equations are derivable from an
action principle, we must demand that (7.93) reduces to (7.95). We are therefore led
to the constraint that Dah(∂a deth−1) vanishes. To be consistent, this constraint
must be derivable from the gravitational field equations. We have seen that the usual
Hilbert-Palatini action satisfies this requirement, but higher-order contributions to
the action would not. This rules out, for example, the type of “R+R2” Lagrangian
often considered in the context of Poincaré gauge theory [84, 85, 86]. Satisfyingly,
this forces us to a theory which is first-order in the derivatives of the fields. The
only freedom that remains is the possible inclusion of a cosmological constant,
though such a term would obviously violate our intention that gravitational forces
should result directly from interactions between particles.

The full set of equations for Dirac matter coupled to gravity is obtained from
the action

S =
∫
|d4x|(deth)−1 (1

2R− κ〈h(∂a)Daψiγ3ψ̃ −mψψ̃〉), (7.96)

and the field equations are

G(a) = κ〈a·Dψiγ3ψ̃〉1 (7.97)
D∧h(a) = κh(a)·(1

2ψiγ3ψ̃) = κh(a)·(1
2is) (7.98)

Dψiσ3 = mψγ0. (7.99)

It is not clear that self-consistent solutions to these equations could correspond
to any physical situation, as such a solution would describe a self-gravitating
Dirac fluid. Self-consistent solutions have been found in the context of cosmology,
however, and the solutions have the interesting property of forcing the universe to
be at critical density [10].
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The Electromagnetic Field Equations

We now return to the introduction of the electromagnetic field. From the ac-
tion (7.91), and following the procedure of the start of this chapter, we arrive at
the action

SD+EM =
∫
|d4x|(deth)−1 〈h(∂a)(Daψiγ3ψ̃ − ea·Aψγ0ψ̃)−mψψ̃〉. (7.100)

The field equation from this action is

Dψiσ3 − eAψ = mψγ0, (7.101)

where we have introduced the notation

A = h(A). (7.102)

It is to be expected that A should appear in the final equation, rather than A.
The vector potential A originated as the generalisation of the quantity ∇φ. If we
examine what happens to this under the translation φ(x) 7→ φ(x′), with x′ = f(x),
we find that

∇φ 7→ f(∇x′φ(x′)). (7.103)

It follows that A must also pick up a factor of f as it is moved from x′ to x,

A(x) 7→ f(A(x′)), (7.104)

so it is the quantity A that is Poincaré-covariant, as are all the other quantities in
equation (7.101). However, A is not invariant under local U(1) transformations.
Instead, we must construct the Faraday bivector

F = ∇∧A. (7.105)

It could be considered a weakness of conventional spin-torsion theory that, in order
to construct the gauge-invariant quantity F , one has to resort to the use of the
flat-space vector derivative. Of course, in our theory background spacetime has
never gone away, and we are free to exploit the vector derivative to the full.

The conventional approach to gauge theories of gravity (as discussed in [81],
for example) attempts to define a minimal coupling procedure for all matter fields,
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preparing the way for a true curved-space theory. The approach here has been
rather different, in that everything is derived from the Dirac equation, and we are
attempting to put electromagnetic and gravitational interactions on as similar a
footing as possible. Consequently, there is no reason to expect that the gravitational
field should “minimally couple” into the electromagnetic field. Instead, we must
look at how F behaves under local translations. We find that

F (x) 7→ ∇∧fA(x′) = f(∇x′∧A(x′)) (7.106)
= fF (x′), (7.107)

so the covariant form of F is
F ≡ h(F ). (7.108)

F is covariant under local Poincaré transformations, and invariant under U(1)
transformations. The appropriate action for the electromagnetic field is therefore

SEM =
∫
|d4x|(deth)−1 〈12FF − A·J〉, (7.109)

which reduces to the standard electromagnetic action integral in the limit where h
is the identity. To find the electromagnetic field equations, we write

LEM = deth−1〈12FF − A·J〉 = L(A, a·∇A), (7.110)

and treat the h and J fields as external sources. There is no Ω-dependence in
(7.109), so LEM satisfies the criteria of equation (7.82).

Variation of LEM with respect to A leads to the equation

∂a ·∇(a·h(F) deth−1) = ∇·
(
hh(∇∧A) deth−1

)
= deth−1J, (7.111)

which combines with the identity

∇∧F = 0 (7.112)

to form the Maxwell equations in a gravitational background. Equation (7.111)
corresponds to the standard second-order wave equation for the vector potential A
used in general relativity. It contains only the functions hh ≡ g−1 and deth−1 =
(det g)1/2, where g is the symmetric “metric” tensor. The fact that equation (7.111)
only involves h through the metric tensor is usually taken as evidence that the
electromagnetic field does not couple to torsion.
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So far, we only have the Maxwell equations as two separate equations (7.111)
and (7.112). It would be very disappointing if our STA approach did not enable us
to do better since one of the many advantages of the STA is that, in the absence of
a gravitational field, Maxwell’s equations

∇·F = J ∇∧F = 0 (7.113)

can be combined into a single equation

∇F = J. (7.114)

This is more than a mere notational convenience. The ∇ operator is invertible,
and can be used to develop a first-order propagator theory for the F -field [8]. This
has the advantages of working directly with the physical field, and of correctly
predicting the obliquity factors that have to be put in by hand in the second-order
approach (based on a wave equation for A). It would undermine much of the
motivation for pursuing first-order theories if this approach cannot be generalised
to include gravitational effects. Furthermore, if we construct the stress-energy
tensor, we find that

TEMh−1(a) deth−1 = 1
2∂h(a)〈h(F )h(F ) deth−1〉

=
(
h(a·F )·F − 1

2h
−1(a)F ·F

)
deth−1, (7.115)

which yields

TEM(a) = −(F ·a)·F − 1
2aF ·F

= −1
2FaF . (7.116)

This is the covariant form of the tensor found in Section (6.2). It is intersting to
see how the definition of TEM as the functional derivative of L with respect to
∂h(a) automatically preserves gauge invariance. For electromagnetism this has the
effect of forcing TEM to be symmetric. The form of TEM (7.116) makes it clear
that it is F which is the genuine physical field, so we should seek to express the
field equations in terms of this object. To achieve this, we first write the second of
the field equations (7.90) in the form

D∧h(a) = h(∇∧a) + κh(a)·S, (7.117)
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which holds for all a. If we now define the bivector B = a∧b, we find that

D∧h(B) = [D∧h(a)]∧h(b)− h(a)∧D∧h(b)
= h(∇∧a)∧h(b)− h(a)∧h(∇∧b) + κ(h(a)·S)∧h(b)
−κh(a)∧(h(b)·S)

= h(∇∧B)− κh(B)×S, (7.118)

which is used to write equation (7.112) in the form

D∧F − κS×F = h(∇∧F ) = 0. (7.119)

Next, we use a double-duality transformation on (7.111) to write the left-hand side
as

∇·(h(F) deth−1) = i∇∧(ih(F) deth−1)
= i∇∧(h−1(iF))
= ih

−1 (D∧(iF) + κ(iF)×S) , (7.120)

so that (7.111) becomes

D·F − κS·F = ih(Ji) deth−1 = h−1(J). (7.121)

Writing
J = h−1(J) (7.122)

we can now combine (7.119) and (7.121) into the single equation

DF − κSF = J , (7.123)

which achieves our objective. The gravitational background has led to the vector
derivative ∇ being generalised to D − κS. Equation (7.123) surely deserves
considerable study. In particular, there is a clear need for a detailed study of the
Green’s functions of the D − κS operator. Furthermore, (7.123) makes it clear
that, even if the A equation does not contain any torsion term, the F equation
certainly does. This may be of importance in studying how F propagates from the
surface of an object with a large spin current.
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7.1.4 Comparison with Other Approaches
We should now compare our theory with general relativity and the ECKS theory.
In Sections 7.2 and 7.3 a number of physical differences are illustrated, so here we
concentrate on the how the mathematics compares. To simplify the comparison,
we will suppose initially that spin effects are neglible. In this case equation (7.90)
simplifies to D∧h(a) = 0. This equation can be solved to give Ω(a) as a function
of h(a). This is achieved by first “protracting” with h−1(∂a):

h−1(∂a)∧(D∧h(a)) = h−1(∂a)∧
[
h(∇)∧h(a) + h(∂b)∧(Ω(b)·h(a))

]
= h−1(∂b)∧h(∇)∧h(b) + 2h(∂b)∧Ω(b) = 0. (7.124)

Contracting this expression with the vector h−1(a) and rearranging yields

2Ω(a) = −2h(∂b)∧(Ω(b)·h−1(a))− h−1(a)·h−1(∂b)h(∇)∧h(b)
+h−1(∂b)∧(a·∇h(b))− h−1(∂b)∧h(∇̇)ḣ(b)·h−1(a)

= −2h(∇∧g(a)) + h(∇)∧h−1(a)− h(∇̇)∧ḣg(a)
+h−1(∂b)∧(a·∇h(b))

= −h(∇∧g(a)) + h−1(∂b)∧(a·∇h(b)), (7.125)

where
g(a) ≡ h

−1
h−1(a). (7.126)

The quantity g(a) is the gauge-theory analogue of the metric tensor. It is symmetric,
and arises naturally when forming inner products,

h−1(a)·h−1(b) = a·g(b) = g(a)·b. (7.127)

Under translations g(a) transforms as

gx(a) 7→ fxgx′fx(a), where x′ = f(x), (7.128)

and under an active rotation g(a) is unchanged. The fact that g(a) is unaffected
by active rotations limits its usefulness, and this is a strong reason for not using
the metric tensor as the foundation of our theory.

The comparison with general relativity is clarified by the introduction of a set
of 4 coordinate functions over spacetime, xµ = xµ(x). From these a coordinate
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frame is defined by
eµ = ∂µx, (7.129)

where ∂µ = ∂xµ . The reciprocal frame is defined as

eµ = ∇xµ (7.130)

and satisfies
eν ·eµ = (∂µx)·∇xν = ∂xµx

ν = δνµ. (7.131)

From these we define a frame of “contravariant” vectors

gµ = h−1(eµ) (7.132)

and a dual frame of “covariant” vectors

gµ = h(eµ). (7.133)

These satisfy (no torsion)

gµ ·gν = δνµ, (7.134)
D∧gµ = 0 (7.135)

and
gµ ·Dgν − gν ·Dgµ = 0. (7.136)

The third of these identities is the flat-space equivalent of the vanishing of the Lie
bracket for a coordinate frame in Riemannian geometry.

From the {gµ} frame the metric coefficients are defined by

gµν = gµ ·gν , (7.137)

which enables us to now make contact with Riemannian geometry. Writing Ωµ for
Ω(eµ), we find from (7.125) that

2Ωµ = gα∧(∂µgα) + gα∧gβ∂βgαµ. (7.138)

The connection is defined by

Γµνλ = gµ ·(Dνgλ) (7.139)
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so that, with aλ ≡ a·gλ,

∂νaλ − Γµνλaµ = ∂ν(a·gλ)− a·(Dνgλ)
= gλ ·(Dνa) (7.140)

as required — the connection records the fact that, by writing aλ = a·gλ, additional
x-dependence is introduced through the gλ.

By using (7.138) in (7.139), Γµνλ is given by

Γµνλ = 1
2g

µα(∂νgαλ + ∂λgαν − ∂αgνλ), (7.141)

which is the conventional expression for the Christoffel connection. In the absence
of spin, the introduction of a coordinate frame unpackages our equations to the
set of scalar equations used in general relativity. The essential difference is that
in GR the quantity gµν is fundamental, and can only be defined locally, whereas
in our theory the fundamental variables are the h and Ω fields, which are defined
globally throughout spacetime. One might expect that the only differences that
could show up from this shift would be due to global, topological considerations.
In fact, this is not the case, as is shown in the following sections. The reasons for
these differences can be either physical, due to the different understanding attached
to the variables in the theory, or mathematical, due often to the constraint that
the metric must be generated from a suitable h function. It is not always the case
that such an h function can be found, as is demonstrated in Section 7.2.1.

The ability to develop a coordinate-free theory of gravity offers a number of
advantages over approaches using tensor calculus. In particular, the physical
content of the theory is separated from the artefacts of the chosen frame. Thus the
h and Ω fields only differ from the identity and zero in the presence of matter. This
clarifies much of the physics involved, as well as making many equations easier to
manipulate.

Many of the standard results of classical Riemannian geometry have particularly
simple expressions in this STA-based theory. Similar expressions can be found in
Chapter 5 of Hestenes & Sobczyk [24], who have developed Riemannian geometry
from the viewpoint of geometric calculus. All the symmetries of the Riemann
tensor are summarised in the single equation

∂a∧R(a∧b) = 0. (7.142)

This says that the trivector ∂a∧R(a∧b) vanishes for all values of the vector b, and
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so represents a set of 16 scalar equations. These reduce the 36-component tensor
R(B) to a function with only 20 degrees of freedom — the correct number for
Riemannian geometry. Equation (7.142) can be contracted with ∂b to yield

∂a∧R(a) = 0, (7.143)

which says that the Ricci tensor is symmetric. The Bianchi identity is also compactly
written:

Ḋ∧Ṙ(B) = 0, (7.144)

where the overdot notation is defined via

ḊṪ (M) ≡ DT (M)− ∂aT (a·DM). (7.145)

Equation (7.144) can be contracted with ∂b∧∂a to yield

(∂b∧∂a)·
(
Ḋ∧Ṙ(a∧b)

)
= ∂b ·

(
Ṙ(Ḋ∧b)− Ḋ∧Ṙ(b)

)
= −2Ṙ(Ḋ) +DR = 0. (7.146)

It follows that
Ġ(Ḋ) = 0 (7.147)

which, in conventional terms, represents conservation of the Einstein tensor. Many
other results can be written equally compactly.

The inclusion of torsion leads us to a comparison with the ECKS theory, which
is certainly closest to the approach adopted here. The ECKS theory arose from
attempts to develop gravity as a gauge theory, and modern treatments do indeed
emphasise active transformations [81]. However, the spin-torsion theories ultimately
arrived at all involve a curved-space picture of gravitational interactions, even if they
started out as a gauge theory in flat space. Furthermore, the separation into local
translations and rotations is considerably cleaner in the theory developed here, as all
transformations considered are finite, rather than infinitessimal. The introduction
of a coordinate frame can be used to reproduce the equations of a particular type of
spin-torsion theory (one where the torsion is generated by Dirac matter) but again
differences result from our use of a flat background spacetime. The inclusion of
torsion alters equations (7.142) to (7.147). For example, equation (7.142) becomes

∂a∧R(a∧b) = −κb·DS + 1
2κD∧S b, (7.148)
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equation (7.143) becomes
∂a∧R(a) = −κD·S (7.149)

and equation (7.144) becomes

Ḋ∧Ṙ(B) + κS×R(B) = 0. (7.150)

The presence of torsion destroys many of the beautiful results of Riemannian
geometry and, once the connection between the gauge theory quantities and their
counterparts in Riemannian geometry is lost, so too is much of the motivation for
adopting a curved-space viewpoint.

Finally, it is important to stress that there is a difference between the present
gauge theory of gravity and Yang-Mills gauge theories. Unlike Yang-Mills theories,
the Poincaré gauge transformations do not take place in an internal space, but in
real spacetime — they transform between physically distinct situations. The point
is not that all physical observables should be gauge invariant, but that the fields
should satisfy the same equations, regardless of their state. Thus an accelerating
body is subject to the same physical laws as a static one, even though it may be
behaving quite differently (it could be radiating away electromagnetic energy, for
example).

7.2 Point Source Solutions
In this section we seek solutions to the field equations in the absence of matter. In
this case, the stress-energy equation (7.67) is

R(a)− 1
2aR = 0, (7.151)

which contracts to give
R = 0. (7.152)

Our field equations are therefore

D∧h(a) = h(∇∧a)
R(a) = 0. (7.153)

As was discussed in the previous section, if we expand in a basis then the equations
for the coordinates are the same as those of general relativity. It follows that any
solution to (7.153) will generate a metric which solves the Einstein equations. But
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the converse does not hold — the additional physical constraints at work in our
theory rule out certain solutions that are admitted by general relativity. This is
illustrated by a comparison of the Schwarzschild metric used in general relativity
with the class of radially-symmetric static solutions admitted in the present theory.
Throughout the following sections we use units with G = 1.

7.2.1 Radially-Symmetric Static Solutions
In looking for radially-symmetric solutions to (7.153), it should be clear that we
are actually finding possible field configurations around a δ-function source (a
point of matter). That is, we are studying the analog of the Coulomb problem
in electrostatics. In general, specifying the matter and spin densities specifies the
h and Ω fields completely via the field equations (7.89) and (7.90). Applying an
active transformation takes us to a different matter configuration and solves a
different (albeit related) problem. This is not the case when symmetries are present,
in which case a class of gauge transformations exists which do not alter the matter
and field configurations. For the case of point-source solutions, practically all gauge
transformations lead to new solutions. In this case the problem is simplified by
imposing certain symmetry requirements at the outset. By this means, solutions
can be classified into equivalence classes. This is very natural from the point of
view of a gauge theory, though it should be borne in mind that in our theory gauge
transformations can have physical consequences.

Here we are interested in the class of radially-symmetric static solutions. This
means that, if we place the source at the origin in space, we demand that the h and
Ω fields only show dependence on x through the spatial radial vector (spacetime
bivector)

x = x∧γ0. (7.154)

Here γ0 is a fixed time-like direction. We are free to choose this as we please, so that
a global symmetry remains. This rigid symmetry can only be removed with further
physical assumptions; for example that the matter is comoving with respect to the
Hubble flow of galaxies (i.e. it sees zero dipole moment in the cosmic microwave
background anisotropy).

To facilitate the discussion of radially-symmetric solutions, it is useful to
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introduce a set of polar coordinates

t = γ0 ·x −∞ < t <∞
r = |x∧γ0| 0 ≤ r <∞

cos θ = −γ3 ·x/r 0 ≤ θ ≤ π

tanφ = γ2 ·x/(γ1 ·x) 0 ≤ φ < 2π,

(7.155)

where the {γ1, γ2, γ3} frame is a fixed, arbitrary spatial frame. From these coordi-
nates, we define the coordinate frame

et = ∂tx = γ0

er = ∂rx = sinθ cosφγ1 + sinθ sinφγ2 + cosθγ3

eθ = ∂θx = r(cosθ cosφγ1 + cosθ sinφγ2 − sinθγ3)
eφ = ∂φx = r sinθ(− sinφγ1 + cosφγ2).

(7.156)

The best-known radially-symmetric solution to the Einstein equations is given
by the Schwarzschild metric,

ds2 = (1− 2M/r)dt2 − (1− 2M/r)−1dr2 − r2(dθ2 + sin2θ dφ2), (7.157)

from which the components of gµν = gµ ·gν can be read straight off. Since gµ =
h−1(eν), we need to “square root” gµν to find a suitable h−1 (and hence h) that
generates it. This h−1 is only unique up to rotations. If we look for such a function
we immediately run into a problem — the square roots on either side of the horizon
(at r = 2M) have completely different forms. For example, the simplest forms have

gt = (1− 2M/r)1/2et gθ = eθ
gr = (1− 2M/r)−1/2er gφ = eφ

}
for r > 2M (7.158)

and
gt = (2M/r − 1)1/2er gθ = eθ
gr = (2M/r − 1)−1/2et gφ = eφ

}
for r < 2M. (7.159)

These do not match at r = 2M , and there is no rotation which gets round this
problem. As we have set out to find the fields around a δ-function source, it is
highly undesirable that these fields should be discontinuous at some finite distance
from the source. Rather than resort to coordinate transformations to try and patch
up this problem, we will postulate a suitably general form for h and Ω, and solve
the field equations for these. Once this is done, we will return to the subject of the
problems that the Schwarzschild metric presents.
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We postulate the following form for h(a)

h(et) = f1et + f2er h(eθ) = eθ
h(er) = g1er + g2et h(eφ) = eφ,

(7.160)

where fi and gi are functions of r only. We can write h in the more compact form

h(a) = a+ a·et ((f1 − 1)et + f2er)− a·er ((g1 − 1)er + g2et) , (7.161)

and we could go further and replace er and r by the appropriate functions of x.
This would show explicitly how h(a) is a linear function of a and a non-linear
function of x∧γ0. We also postulate a suitable form for Ω(a), writing Ωµ for Ω(eµ),

Ωt = αeret Ωθ = (β1er + β2et)eθ/r
Ωr = 0 Ωφ = (β1er + β2et)eφ/r,

(7.162)

with α and βi functions of r only. More compactly, we can write

Ω(a) = αa·eteret − a∧(eret)(β1et + β2er)/r. (7.163)

We could have used (7.138) to solve for Ω(a) in terms of the fi and gi, but this vastly
complicates the problem. The second-order form of the equations immediately
introduces unpleasant non-linearities, and the equations are far less easy to solve.
The better aspproach is to use (7.138) to see what a suitable form for Ω(a) looks
like, but to then leave the functions unspecified. Equations (7.160) and (7.162) do
not account for the most general type of radially-symmetric static solution. The
trial form is chosen to enable us to find a single solution. The complete class of
solutions can then be obtained by gauge transformations, which will be considered
presently.

The first of the field equations (7.153) can be written as

D∧gµ = h(∇)∧gµ + gν∧(Ων ·gν) = 0, (7.164)
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which quickly yields the four equations

g1f
′
1 − g2f

′
2 + α(f1

2 − f2
2) = 0 (7.165)

g1g
′
2 − g′1g2 + α(f1g2 − f2g1) = 0 (7.166)

g1 = β1 + 1 (7.167)
g2 = β2, (7.168)

where the primes denote differentiation with respect to r. We immediately eliminate
β1 and β2 using (7.167) and (7.168). Next, we calculate the field strength tensor.
Writing Rµν for R(eµ∧eν), we find that

Rtr = −α′eret
Rtθ = α(g1et + g2er)eθ/r
Rtφ = α(g1et + g2er)eφ/r
Rrθ = (g′1er + g′2et)eθ/r
Rrφ = (g′1er + g′2et)eφ/r
Rθφ = (g1

2 − g2
2 − 1)eθeφ/r2.

(7.169)

Contracting with gµ and setting the result equal to zero gives the final four equations

2α + α′r = 0 (7.170)
2g′1 + f1α

′r = 0 (7.171)
2g′2 + f2α

′r = 0 (7.172)
αr(f1g1 − f2g2) + r(g1g

′
1 − g2g

′
2) + g1

2 − g2
2 − 1 = 0. (7.173)

The first of these (7.170) can be solved for α immediately,

α = M

r2 , (7.174)

where M is the (positive) constant of integration and represents the mass of the
source. Equations (7.171) and (7.172) now define the fi in terms of the gi

αf1 = g′1 (7.175)
αf2 = g′2. (7.176)
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These are consistent with (7.166), and substituted into (7.165) yield

(f1g1 − f2g2)′ = 0. (7.177)

But the quantity f1g1 − f2g2 is simply the determinant of h, so we see that

deth = f1g1 − f2g2 = constant. (7.178)

We expect the effect of the source to fall away to zero at large distances, so h
should tend asymptotically to the identity function. It follows that the constant
deth should be set to 1. All that remains is the single differential equation (7.173)

1
2r∂r(g1

2 − g2
2) + g1

2 − g2
2 = 1−M/r, (7.179)

to which the solution is
g1

2 − g2
2 = 1− 2M/r, (7.180)

ensuring consistency with deth = 1.
We now have a set of solutions defined by

α = M/r2

g1
2 − g2

2 = 1− 2M/r

Mf1 = r2g′1
Mf2 = r2g′2.

(7.181)

The ease of derivation of this solution set compares very favourably with the second-
order metric-based approach. A particularly pleasing feature of this derivation is
the direct manner in which α is found. This is the coefficient of the Ωt bivector,
which accounts for the radial acceleration of a test particle. We see that it is
determined simply by the Newtonian formula!

The solutions (7.181) are a one-parameter set. We have a free choice of the g2

function, say, up to the constraints that

g2
2(r) ≥ 2M/r − 1, (7.182)

and
f1, g1 → 1
f2, g2 → 0

}
as r →∞. (7.183)

As an example, which will be useful shortly, one compact form that the solution
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can take is

g1 = cosh(M/r)− eM/rM/r f1 = cosh(M/r) + eM/rM/r

g2 = − sinh(M/r) + eM/rM/r f2 = − sinh(M/r)− eM/rM/r.
(7.184)

The solution (7.181) can be substituted back into (7.169) and the covariant
field strength tensor (Riemann tensor) is found to be

R(B) = −2M
r3 B + 3M

r3 B×(eret)eret

= −M2r3 (B + 3eretBeret). (7.185)

It can now be confirmed that ∂a·R(a∧b) = 0. Indeed, one can simultaneously check
both the field equations and the symmetry properties of R(B), since R(a) = 0 and
∂a∧R(a∧b) = 0 combine into the single equation

∂aR(a∧b) = 0. (7.186)

This equation greatly facilitates the study of the Petrov classification of vacuum
solutions to the Einstein equations, as is demonstrated in Chapter 3 of Hestenes
& Sobczyk [24]. There the authors refer to ∂a ·R(a∧b) as the contraction and
∂a∧R(a∧b) as the protraction. The combined quantity ∂aR(a∧b) is called simply the
traction. These names have much to recommend them, and are adopted wherever
necessary.

Verifying that (7.185) satisfies (7.186) is a simple matter, depending solely on
the result that, for an arbitrary bivector B,

∂a(a∧b+ 3Ba∧bB−1) = ∂a(a∧b+ 3BabB−1 − 3Ba·bB−1)
= ∂a(a∧b− 3a·b)
= ∂a(ab− 4a·b)
= 0. (7.187)

The compact form of the Riemann tensor (7.185), and the ease with which the field
equations are verified, should serve to demonstrate the power of the STA approach
to relativistic physics.
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Radially-Symmetric Gauge Transformations

From a given solution in the set (7.181) we can generate further solutions via
radially-symmetric gauge transformations. We consider Lorentz rotations first. All
rotations leave the metric terms gµν = gµ · gµ unchanged, since these are defined
by invariant inner products, so g1

2 − g2
2, f1

2 − f2
2, f1g2 − f2g1 and deth are all

invariant. Since the fields are a function of x∧et only, the only Lorentz rotations
that preserve symmetry are those that leave x∧et unchanged. It is easily seen that
these leave the Riemann tensor (7.185) unchanged as well. There are two such
transformations to consider; a rotation in the eθ∧eφ plane and a boost along the
radial axis. The rotors that determine these are as follows:

Rotation: R = exp(χ(r)ieret/2); (7.188)
Radial Boost: R = exp(χ(r)eret/2). (7.189)

Both rotations leave Ωt untransformed, but introduce an Ωr and transform the Ωθ

and Ωφ terms.
If we take the solution in the form (7.184) and apply a radial boost determined

by the rotor
R = exp

(
M

2r eret
)
, (7.190)

we arrive at the following, highly compact solution

h(a) = a+ M

r
a·e−e−

Ω(a) = M

r2 (e−∧a+ 2e− ·aeret) (7.191)

where
e− = et − er. (7.192)

Both the forms (7.191) and (7.184) give a metric which, in GR, is known as the
(advanced-time) Eddington-Finkelstein form of the Schwarzschild solution,

ds2 = (1−2M/r)dt2−(4M/r)dr dt−(1+2M/r)dr2−r2(dθ2 +sin2θ dφ2). (7.193)

There are also two types of transformation of position dependence to consider.
The first is a (radially-dependent) translation up and down the et-axis,

x† = f(x) = x+ u(r)et. (7.194)
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(We use the dagger to denote the transformed position, since we have already used
a prime to denote the derivative with respect to r.) From (7.194) we find that

f(a) = a− u′a·eret (7.195)
f
−1(a) = a+ u′a·eter, (7.196)

and that
x†∧et = x∧et. (7.197)

Since all x-dependence enters h through x∧et it follows that hx† = hx and Ωx† = Ωx.
The transformed functions therefore have

h
†(et) = (f1 + u′g2)et + (f2 + u′g1)er (7.198)

h
†(er) = h(er) (7.199)

Ω†(et) = Ω(et) (7.200)
Ω†(er) = (Mu′/r2)eret, (7.201)

with all other terms unchanged. The fi’s transform, but the gi’s are fixed. A time
translation can be followed by a radial boost to replace the Ω†(er) term by Ω(er),
and so move between solutions in the one-parameter set of (7.181).

The final transformation preserving radial symmetry is a radial translation,
where the fields are stretched out along the radial vector. We define

x† = f(x) = x·etet + u(r)er (7.202)

so that

r† = |x†∧et| = u(r) (7.203)

e†r = x†∧et
|x†∧et|

et = er. (7.204)

The differential of this transformation gives

f(a) = a·etet − u′a·erer + u

r
a∧(eret)eret (7.205)

f
−1(a) = a·etet −

1
u′
a·erer + r

u
a∧(eret)eret (7.206)

and
det f = u′(u/r)2. (7.207)
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The new function h† = hx†f
−1 has an additional dilation in the eθeφ plane, and

the behaviour in the eret plane is defined by

f †i (r) = fi(r†) (7.208)

g†i (r) = 1
u′
gi(r†). (7.209)

The horizon has now moved from r = 2M to r† = 2M , as is to be expected for an
active radial dilation. The physical requirements of our theory restrict the form
that the transformation (7.202) can take. The functions r and u(r) both measure
the radial distance from a given origin, and since we do not want to start moving
the source around (which would change the problem) we must have u(0) = 0.
The function u(r) must therefore be monotomic-increasing to ensure that the map
between r and r′ is 1-to-1. Furthermore, u(r) must tend to r at large r to ensure
that the field dies away suitably. It follows that

u′(r) > 0, (7.210)

so the transformation does not change the sign of deth.
We have now found a 4-parameter solution set, in which the elements are

related via the rotations (7.188) and (7.189) and the transformations (7.194) and
(7.202). The fields are well-defined everywhere except at the origin, where a point
mass is present. A second set of solutions is obtained by the discrete operation of
time-reversal, defined by

f(x) = −etxet (7.211)
⇒ f(x)∧et = −(etxet)∧et = x∧et. (7.212)

This translation on its own just changes the signs of the fi functions, and so reverses
the sign of deth. The translation therefore defines fields whose effects do not vanish
at large distances. To correct this, the h and Ω fields must also be time-reversed,
so that the new solution has

h
T (a) = −ethf(x)(−etaet)et

= eth(etaet)et (7.213)
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and

ΩT (a) = etΩf(x)(−etaet)et
= −etΩ(etaet)et. (7.214)

For example, the result of time-reversal on the solution defined by (7.191) is the
new solution

h
T (a) = et[etaet + M

r
(etaet)·e−e−]et

= a+ M

r
a·e+e+ (7.215)

and

ΩT (a) = −M
r2 et (e−∧(etaet) + 2e− ·(etaet)eret) et

= M

r2 (2a·e+eret − e+∧a) , (7.216)

where e+ = et + er. This new solution reproduces the metric of the retarded-
time Eddington-Finkelstein form of the Schwarzschild solution. Time reversal has
therefore switched us from a solution where particles can cross the horizon on an
inward journey, but cannot escape, to a solution where particles can leave, but
cannot enter. Covariant quantities, such as the field strength (7.169), are, of course,
unchanged by time reversal. From the gauge-theory viewpoint, it is natural that
the solutions of the field equations should fall into sets which are related by discrete
transformations that are not simply connected to the identity. The solutions are
simply reproducing the structure of the Poincaré group on which the theory is
constructed.

Behaviour near the Horizon

For the remainder of this section we restrict the discussion to solutions for which
deth = 1. For these the line element takes the form

ds2 = (1− 2M/r)dt2 − (f1g2 − f2g1)2dr dt− (f1
2 − f2

2)dr2

−r2(dθ2 + sin2 θ dφ2). (7.217)
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The horizon is at r = 2M , and at this distance we must have

g1 = ±g2. (7.218)

But, since deth = f1g1 − f2g2 = 1, we must also have

f1g2 − f2g1 = ±1 at r = 2M, (7.219)

so an off-diagonal term must be present in the metric at the horizon. The assumption
that this term can be transformed away everywhere does not hold in our theory.
This resolves the problem of the Schwarzschild discontinuity discussed at the start
of this section. The Schwarzschild metric does not give a solution that is well-
defined everywhere, so lies outside the set of metrics that are derivable from (7.181).
Outside the horizon, however, it is always possible to transform to a solution
that reproduces the Schwarzschild line element, and the same is true inside. But
the transformations required to do this do not mesh at the boundary, and their
derivatives introduce δ-functions there. Because the Schwarzschild line element is
valid on either side of the horizon, it reproduces the correct Riemann tensor (7.185)
on either side. Careful analysis shows, however, that the discontinuities in the
Ωθ and Ωφ fields required to reproduce the Schwarzschild line element lead to
δ-functions at the horizon in R(a∧b).

The fact that the f1g2 − f2g1 term must take a value of ±1 at the horizon
is interesting, since this term changes sign under time-reversal (7.213). Once a
horizon has formed, it is therefore no longer possible to find an h such that the line
element derived from it is invariant under time reversal. This suggests that the
f1g2−f2g1 term retains information about the process by which the horizon formed
— recording the fact that at some earlier time matter was falling in radially. Matter
infall certainly picks out a time direction, and knowledge of this is maintained
after the horizon has formed. This irreversibility is apparent from the study of test
particle geodesics [9]. These can cross the horizon to the inside in a finite external
coordinate time, but can never get back out again, as one expects of a black hole.

The above conclusions differ strongly from those of GR, in which the ultimate
form of the Schwarzschild solution is the Kruskal metric. This form is arrived
at by a series of coordinate transformations, and is motivated by the concept
of “maximal extension” — that all geodesics should either exist for all values of
their affine parameter, or should terminate at a singularity. None of the solutions
presented here have this property. The solution (7.191), for example, has a pole in
the proper-time integral for outgoing radial geodesics. This suggests that particles
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following these geodesics would spend an infinite coordinate time hovering just
inside the horizon. In fact, in a more physical situation this will not be the case —
the effects of other particles will tend to sweep all matter back to the centre. The
solutions presented here are extreme simplifications, and there is no compelling
physical reason why we should look for “maximal” solutions. This is important, as
the Kruskal metric is time-reverse symmetric and so must fail to give a globally
valid solution in our theory. There are a number of ways to see why this happens.
For example, the Kruskal metric defines a spacetime with a different global topology
to flat spacetime. We can reach a similar conclusion by studying how the Kruskal
metric is derived from the Schwarzschild metric. We assume, for the time being,
that we are outside the horizon so that a solution giving the Schwarzschild line
element is

g1 = ∆1/2 g2 = 0
f1 = ∆−1/2 f2 = 0 (7.220)

where
∆ = 1− 2M/r. (7.221)

The first step is to re-interpret the coordinate transformations used in general
relativity as active local translations. For example, the advanced Eddington-
Finkelstein metric is reached by defining

t† − r† = t− (r + 2M ln(r − 2M)) (7.222)
r† = r (7.223)

or
x† = x− 2M ln(r − 2M)et, (7.224)

which is now recognisable as a translation of the type of equation (7.194). The
result of this translation is the introduction of an f †2 function

f †2 = −2M
r

∆−1/2, (7.225)

which now ensures that f †1g†2 − f †2g†1 = 1 at the horizon. The translation (7.224),
which is only defined outside the horizon, has produced a form of solution which
at least has a chance of being extended across the horizon. In fact, an additional
boost is still required to remove some remaining discontinuities. A suitable boost
is defined by

R = exp(eretχ/2), (7.226)
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where
sinhχ = 1

2(∆−1/2 −∆1/2) (7.227)

and so is also only defined outside the horizon. The result of this pair of transfor-
mations is the solution (7.191), which now extends smoothly down to the origin.

In a similar manner, it is possible to reach the retarted-time Eddington-
Finkelstein metric by starting with the translation defined by

t† + r† = t+ (r + 2M ln(r − 2M)) (7.228)
r† = r. (7.229)

The Kruskal metric, on the other hand, is reached by combining the advance and
retarded coordinates and writing

t† − r† = t− (r + 2M ln(r − 2M)) (7.230)
t† + r† = t+ (r + 2M ln(r − 2M)), (7.231)

which defines the translation

x† = x·etet + (r + 2M ln(r − 2M))er. (7.232)

This translation is now of the type of equation (7.202), and results in a completely
different form of solution. The transformed solution is still only valid for r > 2M ,
and the transformation (7.232) has not introduced the required f1g2 − f2g1 term.
No additional boost or rotation manufactures a form which can then be extended
to the origin. The problem can still be seen when the Kruskal metric is written in
the form

ds2 = 32M3

r
e−r/2M(dw2 − dz2)− r2(dθ2 + sin2θ dφ2), (7.233)

where

z2 − w2 = 1
2M (r − 2M)e−r/2M (7.234)

w

z
= tanh

(
t

4M

)
, (7.235)

which is clearly only defined for r > 2M . The loss of the region with r < 2M does
not present a problem in GR, since the r-coordinate has no special significance.
But it is a problem if r is viewed as the distance from the source of the fields, as
it is in the present theory, since then the fields must be defined for all r. Even in
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the absence of torsion, the flat-space gauge-theory approach to gravity produces
physical consequences that clearly differ from general relativity, despite the formal
mathematical similarities between the two theories.

7.2.2 Kerr-Type Solutions
We now briefly discuss how the Kerr class of solutions fit into the present theory.
The detailed comparisons of the previous section will not be reproduced, and we
will simply illustrate a few novel features. Our starting point is the Kerr line
element in Boyer-Lindquist form [87]

ds2 = dt2− ρ2(dr
2

∆ + dθ2)− (r2 +L2) sin2 θ dφ2− 2Mr

ρ2 (L sin2 θ dφ− dt)2, (7.236)

where

ρ2 = r2 + L2 cos2 θ (7.237)
∆ = r2 − 2Mr + L2. (7.238)

The coordinates all have the same meaning (as functions of spacetime position x)
as defined in the preceding section (7.155), and we have differed from standard
notation in labelling the new constant by L as opposed to the more popular a.
This avoids any confusion with our use of a as a vector variable and has the added
advantage that the two constants, L and M , are given similar symbols. It is
assumed that |L| < M , as is expected to be the case in any physically realistic
situation.

The solution (7.236) has two horizons (at ∆ = 0) where the line element is
singular and, as with the Schwarzschild line element, no continuous function h

exists which generates (7.236). However, we can find an h which is well-behaved
outside the outer horizon, and a suitable form is defined by

h(et) = r2 + L2

ρ∆1/2 et −
L

rρ
eφ

h(er) = ∆1/2

ρ
er

h(eθ) = r

ρ
eθ

h(eφ) = r

ρ
eφ −

Lr2 sin2 θ

ρ∆1/2 et. (7.239)
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The Riemann tensor obtained from (7.236) has the remarkably compact form

R(B) = − M

2(r − iL cos θ)3 (B + 3eretBeret). (7.240)

(This form for R(B) was obtained with the aid of the symbolic algebra package
Maple.) To my knowledge, this is the first time that the Riemann tensor for the
Kerr solution has been cast in such a simple form.

Equation (7.240) shows that the Riemann tensor for the Kerr solution is
algebraically very similar to that of the Schwarzschild solution, differing only
in that the factor of (r − iL cos θ)3 replaces r3. The quantity r − iL cos θ is a
scalar + pseudoscalar object and so commutes with the rest of R(B). It follows
that the field equations can be verified in precisely the same manner as for the
Schwarzschild solution (7.187). It has been known for many years that the Kerr
metric can be obtained from the Schwarzschild metric via a complex coordinate
transformation [88, 89]. This “trick” works by taking the Schwarzschild metric in a
null tetrad formalism and carrying out the coordinate transformation

r 7→ r − jL cos θ. (7.241)

Equation (7.240) shows that there is more to this trick than is usually supposed.
In particular, it demonstrates that the unit imaginary in (7.241) is better thought
of as a spacetime pseudoscalar. This is not a surprise, since we saw in Chapter 4
that the role of the unit imaginary in a null tetrad is played by the spacetime
pseudoscalar in the STA formalism.

The Riemann tensor (7.240) is clearly defined for all values of r (except r = 0).
We therefore expect to find an alternative form of h which reproduces (7.240) and
is also defined globally. One such form is defined by

h(et) = et + 1
2ρ2 (2Mr + L2 sin2 θ)e− −

L

rρ
eφ

h(er) = er + 1
2ρ2 (2Mr − L2 sin2 θ)e−

h(eθ) = r

ρ
eθ

h(eφ) = r

ρ
eφ −

Lr2 sin2 θ

ρ2 e−, (7.242)
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Figure 7.1: Incoming light paths for the Kerr solution I — view from above. The
paths terminate over a central disk in the z = 0 plane.

with
e− = (et − er). (7.243)

This solution can be shown to lead to the Riemann tensor in the form (7.240).
The solution (7.242) reproduces the line element of the advanced-time Eddington-
Finkelstein form of the Kerr solution. Alternatives to (7.242) can be obtained by
rotations, though at the cost of complicating the form of R(B). One particular
rotation is defined by the rotor

R = exp
{
L

2rρeθ∧(et − er)
}
, (7.244)

which leads to the compact solution

h(a) = a+ Mr

ρ2 a·e−e− −
L

rρ
a·ereφ + (r

ρ
− 1)a∧(eret)eret. (7.245)

None of these solutions correspond to the original form found by Kerr [90].
Kerr’s solution is most simply expressed as

h(a) = a− αa·nn (7.246)
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Figure 7.2: Incoming null geodesics for the Kerr solution II — view from side on.

where α is a scalar-valued function and n2 = 0. The vector n can be written in the
form

n = (et − net) (7.247)

where n is a spatial vector. The explicit forms of n and α can be found in
Schiffer et al. [89] and in Chapter 6 of “The mathematical theory of black holes”
by S. Chandrasekhar [91]. These forms will not be repeated here. From the field
equations it turns out that n satisfies the equation [89]

n·∇n = 0. (7.248)

The integral curves of n are therefore straight lines, and these represent the
possible paths for incoming light rays. These paths are illustrated in figures (7.2.2)
and (7.2.2). The paths terminate over a central disk, where the matter must be
present. The fact that the solution (7.246) must represent a disk of matter was
originally pointed out by Kerr in a footnote to the paper of Newman and Janis [88].
This is the paper that first gave the derivation of the Kerr metric via a complex
coordinate transformation. Kerr’s observation is ignored in most modern texts
(see [91] or the popular account [92]) where it is claimed that the solution (7.246)
represents not a disk but a ring of matter — the ring singularity, where the Riemann
tensor is infinite.
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The transformations taking us from the solution (7.246) to solutions with a
point singularity involve the translation

f(x) = x′ ≡ x− L

r
x·(iσ3), (7.249)

which implies that
(r′)2 = r2 + L2 cos2 θ. (7.250)

Only the points for which r satisfies

r ≥ |L cos θ| (7.251)

are mapped onto points in the transformed solution, and this has the effect of cutting
out the central disk and mapping it down to a point. Curiously, the translation
achieves this whilst keeping the total mass fixed (i.e. the mass parameter M is
unchanged). The two types of solution (7.242) and (7.246) represent very different
matter configurations, and it is not clear that they can really be thought of as
equivalent in anything but an abstract mathematical sense.

7.3 Extended Matter Distributions
As a final application of our flat-space gauge theory of gravity, we study how
extended matter distributions are handled. We do so by concentrating on gravita-
tional effects in and around stars. This is a problem that is treated very successfully
by general relativity (see [93, Chapter 23] for example) and, reassuringly, much of
the mathematics goes through unchanged in the theory considered here. This is
unsurprising, since we will assume that all effects due spin are neglible and we have
already seen that, when this is the case, the introduction of a coordinate frame will
reproduce the field equations of GR. It will be clear, however, that the physics of
the situation is quite different and the central purpose of this section is to highlight
the differences. Later in this section we discuss some aspects of rotating stars,
which remains an active source of research in general relativity. Again, we work in
units where G = 1.

We start by assuming the simplest distribution of matter — that of an ideal
fluid. The matter stress-energy tensor then takes the form

T (a) = (ρ+ p)a·uu− pa, (7.252)
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where ρ is the energy density, p is the pressure and u is the 4-velocity field of the
fluid. We now impose a number of physical restrictions on T (a). We first assume
that the matter distribution is radially symmetric so that ρ and p are functions of
r only, where r is the (flat-space!) radial distance from the centre of the star, as
defined by (7.155). (We use translational invariance to choose the centre of the star
to coincide with the spatial point that we have labelled as the origin). Furthermore,
we will assume that the star is non-accelerating and can be taken as being at rest
with respect to the cosmic frame (we can easily boost our final answer to take care
of the case where the star is moving at a constant velocity through the cosmic
microwave background). It follows that the velocity field u is simply et, and T now
takes the form

T (a) = (ρ(r) + p(r))a·etet − p(r)a. (7.253)

This must equal the gravitational stress-energy tensor (the Eintein tensor), which
is generated by the h and Ω gauge fields. Radial symmetry means that h will have
the general form of (7.160). Furthermore, the form of G(a) derived from (7.160)
shows that f2 and g2 must be zero, and hence that h is diagonal. This conclusion
could also have been reached by considering the motions of the underlying particles
making up the star. If these follow worldlines x(τ), where τ is the affine parameter,
then u is defined by

u = h−1(ẋ), (7.254)
⇒ ẋ = h(et). (7.255)

A diagonal h ensures that ẋ is also in the et direction, so that the consituent
particles are also at rest in the 3-space relative to et. That this should be so
could have been introduced as an additional physical requirement. Either way, by
specifying the details of the matter distribution we have restricted h to be of the
form

h(a) = (f(r)− 1)a·etet − (g(r)− 1)a·erer + a. (7.256)

The ansätz for the gravitational fields is completed by writing

Ωt = α(r)eret Ωθ = (g(r)− 1)ereθ/r
Ωr = 0 Ωφ = (g(r)− 1)ereφ/r,

(7.257)

where again it is convenient to keep α(r) as a free variable, rather than solving
for it in terms of f and g. The problem can now be solved by using the field
equations on their own, but it is more convenient to supplement the equations with
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the additional condition
Ṫ (Ḋ) = 0, (7.258)

which reduces to the single equation

p′(r) = αf

g
(ρ+ p). (7.259)

Solving the field equations is now routine. One can either follow the method of
Section 3.1, or can simply look up the answer in any one of a number of texts. The
solution is that

g(r) = (1− 2m(r)/r)1/2 (7.260)

where
m(r) =

∫ r

0
4πr′2ρ(r′) dr′. (7.261)

The pressure is found by solving the Oppenheimer-Volkov equation

p′ = −(ρ+ p)(m(r) + 4πr3p)
r(r − 2m(r)) , (7.262)

subject to the condition that p(R) = 0, where R is the radius of the star. The
remaining term in h is then found by solving the differential equation

f ′(r)
f(r) = −m(r) + 4πr3p

r(r − 2m(r)) (7.263)

subject to the constraint that

f(R) = (1− 2m(R)/R)−1/2. (7.264)

Finally, α(r) is given by

α(r) = (fg)−1(m(r)/r2 + 4πrp). (7.265)

The complete solution leads to a Riemann tensor of the form

R(B) = 4π [(ρ+ p)B ·etet − ρB×(eret)eret]

−m(r)
2r3 (B + 3eretBeret) (7.266)

which displays a neat split into a surface term, due to the local density and pressure,
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and a (tractionless) volume term, due to the matter contained inside the shell of
radius r.

The remarkable feature of thie solution is that (7.261) is quite clearly a flat-space
integral! The importance of this integral is usually downplayed in GR, but in the
context of a flat-space theory it is entirely natural — it shows that the field outside
a sphere of radius r is determined completely by the energy density within the shell.
It follows that the field outside the star is associated with a “mass” M given by

M =
∫ R

0
4πr′2ρ(r′) dr′. (7.267)

We can understand the meaning of the definition of m(r) by considering the
covariant integral of the energy density

E0 = eti
∫
h−1(d3x)ρ

=
∫ R

0
4πr′2(1− 2m(r′)/r′)−1/2ρ(r′) dr′. (7.268)

This integral is invariant under active spatial translations of the energy density.
That is to say, E0 is independent of where that matter actually is. In particular,
E0 could be evaluated with the matter removed to a sufficiently great distance that
each particle making up the star can be treated in isolation. It follows that E0

must be the sum of the individual mass-energies of the component particles of the
star — E0 contains no contribution from the interaction between the particles. If
we now expand (7.268) we find that

E0 ≈
∫ R

0
4πr′2(ρ(r′) + ρ(r′)m(r′)/r′) dr′

= M − Potential Energy. (7.269)

The external mass M is therefore the sum of the mass-energy E0 (which ignored
interactions) and a potential energy term. This is entirely what one expects. Gravity
is due to the presence of energy, and not just (rest) mass. The effective mass seen
outside a star is therefore a combination of the mass-energies of the constituent
particles, together with the energy due to their interaction with the remaining
particles that make up the star. This is a very appealing physical picture, which
makes complete sense within the context of a flat-space gauge theory. Furthermore,
it is now clear why the definition of M is not invariant under radial translations.
Interpreted actively, a radial translation changes the matter distribution within
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the star, so the component particles are in a new configuration. It follows that the
potential energy will have changed, and so too will the total energy. An external
observer sees this as a change in the strength of the gravitational attraction of the
star.

An important point that the above illustrates is that, given a matter distribution
in the form of T (a) and (more generally) S(a), the field equations are sufficient to
tie down the gauge fields uniquely. Then, given any solution of the field equation
G(a) = 8πT (a), a new solution can always be reached by an active transformation.
But doing so alters T (a), and the new solution is appropriate to a different matter
distribution. It is meaningless to continue talking about covariance of the equations
once the matter distribution is specified.

Whilst a non-vanishing T (a) does tie down the gauge fields, the vacuum raises
a problem. When T (a) = 0 any gauge transformation can be applied, and we seem
to have no way of specifying the field outside a star, say. The resolution of this
problem is that matter (energy) must always be present in some form, whether it
be the sun’s thermal radiation, the solar wind or, ultimately, the cosmic microwave
background. At some level, matter is always available to tell us what the h and
Ω fields are doing. This fits in with the view that spacetime itself does not play
an active role in physics and it is the presence of matter, not spacetime curvature,
that generates gravitational interactions.

Since our theory is based on active transformations in a flat spacetime, we can
now use local invariance to gain some insights into what the fields inside a rotating
star might be like. To do this we rotate a static solution with a boost in the eφ
direction. The rotor that achieves this is

R = exp{ω(r, θ)φ̂et} (7.270)

where
φ̂ ≡ eφ/(r sinθ). (7.271)

The new matter stress-energy tensor is

T (a) = (ρ+ p)a·(coshω et + sinhω φ̂)(coshωet + sinhω φ̂)− pa, (7.272)

and the Einstein tensor is similarly transformed. The stress-energy tensor (7.272)
can only properly be associated with a rotating star if it carries angular momentum.
The definitions of momentum and angular momentum are, in fact, quite straight-
forward. The flux of momentum through the 3-space defined by a time-like vector
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a is T (a) and the angular momentum bivector is defined by

J (a) = x∧T (a). (7.273)

Once gravitational interactions are turned on, these tensors are no longer conserved
with respect to the vector derivative,

Ṫ (∇̇) 6= 0, (7.274)

and instead the correct law is (7.258). This situation is analogous to that of coupled
Dirac-Maxwell theory (see Section 6.3). Once the fields are coupled, the individual
(free-field) stress-energy tensors are no longer conserved. To recover a conservation
law, one must either replace directional derivatives by covariant derivatives, or
realise that it is only the total stress-energy tensor that is conserved. The same is
true for gravity. Once gravitational effects are turned on, the only quantity that
one expects to be conserved is the sum of the individual matter and gravitational
stress-energy tensors. But the field equations ensure that this sum is always zero,
so conservation of total energy-momentum ceases to be an issue.

If, however, a global time-like symmetry is present, one can still sensibly separate
the total (zero) energy into gravitational and matter terms. Each term is then
separately conserved with respect to this global time. For the case of the star, the
total 4-momentum is the sum of the individual fluxes of 4-momentum in the et
direction. We therefore define the conserved momentum P by

P =
∫
d3x T (et) (7.275)

and the total angular momentum J by

J =
∫
d3x x∧T (et). (7.276)

Concentrating on P first, we find that

P = Mrotet (7.277)

where

Mrot = 2π
∫ R

0
dr
∫ π

0
dθ r2 sin θ

[
ρ(r) cosh2 ω(r, θ) + p(r) sinh2 ω(r, θ)

]
. (7.278)
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The effective mass Mrot reduces to M when the rotation vanishes, and rises with
the magnitude of ω, showing that the internal energy of the star is rising. The
total 4-momentum is entirely in the et direction, as it should be. Performing the J
integral next, we obtain

J = −iσ3 2π
∫ R

0
dr
∫ π

0
dθ r3 sin2 θ (ρ(r) + p(r)) sinhω(r, θ) coshω(r, θ), (7.279)

so the angular momentum is contained in the spatial plane defined by the φ̂et
direction. Performing an active radial boost has generated a field configuration
with suitable momentum and angular momentum properties for a rotating star.

Unfortunately, this model cannot be physical, since it does not tie down the
shape of the star — an active transformation can always be used to alter the shape
to any desired configuration. The missing ingredient is that the particles making
up the star must satisfy their own geodesic equation for motion in the fields due to
the rest of the star. The simple rotation (7.270) does not achieve this.

Attention is drawn to these points for the following reason. The boost (7.270)
produces a Riemann tensor at the surface of the star of

R(B) = −Mrot

2r3

(
B + 3er(coshω et + sinhω φ̂)Ber(coshω et + sinhω φ̂)

)
,

(7.280)
which is that for a rotated Schwarzschild-type solution, with a suitably modified
mass. This form is very different to the Riemann tensor for the Kerr solution
(7.240), which contains a complicated duality rotation. Whilst a physical model
will undoubtedly require additional modifications to the Riemann tensor (7.280), it
is not at all clear that these modifications will force the Riemann tensor to be of
Kerr type. Indeed, the differences between the respective Riemann tensors would
appear to make this quite unlikely. The suggestion that a rotating star does not
couple onto a Kerr-type solution is strengthened by the fact that, in the 30 or so
years since the discovery of the Kerr solution [90], no-one has yet found a solution
for a rotating star that matches onto the Kerr geometry at its boundary.

7.4 Conclusions
The gauge theory of gravity developed from the Dirac equation has a number of
interesting and surprising features. The requirement that the gravitational action
should be consistent with the Dirac equation leads to a unique choice for the action
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integral (up to the possible inclusion of a cosmological constant). The result is
a set of equations which are first-order in the derivatives of the fields. This is in
contrast to general relativity, which is a theory based on a set of second-order
partial differential equations for the metric tensor. Despite the formal similarities
between the theories, the study of point-source solutions reveals clear differences.
In particular, the first-order theory does not admit solutions which are invariant
under time-reversal.

The fact that the gauge group consists of active Poincaré transformations
of spacetime fields means that gauge transformations relate physically distinct
situations. It follows that observations can determine the nature of the h and Ω
fields. This contrasts with Yang-Mills theories based on internal gauge groups,
where one expects that all observables should be gauge-invariant. In this context, an
important open problem is to ascertain how the details of radial collapse determine
the precise nature of the h and Ω fields around a black hole.

A strong point in favour of the approach developed here is the great formal clarity
that geometric algebra brings to the study of the equations. This is illustrated most
clearly in the compact formulae for the Riemann tensor for the Schwarzschild and
Kerr solutions and for radially-symmetric stars. No rival method (tensor calculus,
differential forms, Newman-Penrose formalism) can offer such concise expressions.

For 80 years, general relativity has provided a successful framework for the study
of gravitational interactions. Any departure from it must be well-motivated by
sound physical and mathematical reasons. The mathematical arguments in favour
of the present approach include the simple manner in which transformations are
handled, the algebraic compactness of many formulae and the fact that torsion is
perhaps better viewed as a spacetime field than as a geometric effect. Elsewhere, a
number of authors have questioned whether the view that gravitational interactions
are the result of spacetime geometry is correct (see [94], for example). The physical
motivation behind the present theory is provided by the identification of the h and
Ω fields as the dynamical variables. The physical structure of general relativity
is very much that of a classical field theory. Every particle contributes to the
curvature of spacetime, and every particle moves on the resultant curved manifold.
The picture is analogous to that of electromagnetism, in which all charged particles
contribute to an electromagnetic field (a kind of global ledger). Yet an apparently
crucial step in the development of Q.E.D. was Feynman’s realisation (together with
Wheeler [95, 96]) that the electromagnetic field can be eliminated from classical
electrodynamics altogether. A similar process may be required before a quantum
multiparticle theory of gravity can be constructed. In the words of Einstein [97]
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. . . the energy tensor can be regarded only as a provisional means of
representing matter. In reality, matter consists of electrically charged
particles . . .

The status of the h and Ω fields can be regarded as equally provisional. They may
simply represent the aggregate behaviour of a large number of particles, and as
such would not be of fundamental significance. In this case it would be wrong to
attach too strong a physical interpretation to these fields (i.e. that they are the
result of spacetime curvature and torsion).

An idea of how the h field could arise from direct interparticle forces is provided
by the two-particle Dirac action constructed in Section 6.3. There the action
integral involved the differential operator ∇1/m1 + ∇2/m2, so that the vector
derivatives in each particle space are weighted by the mass of the particle. This
begins to suggest a mechanism by which, at the one-particle level, the operator
h(∇) encodes an inertial drag due to the other particle in the universe. This
is plausible, as the h field was originally motivated by considering the effect of
translating a field. The theory presented here does appear to contain the correct
ingredients for a generalisation to a multiparticle quantum theory, though only
time will tell if this possibility can be realised.
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