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1 What if...

.. we could span areas, volumes, etcetera using vectors so that the
notation has a computational meaning?

aAbAc

aAb b

What computation laws should these obey? How should (aAb)Ac
and a A (b Ac)and a Ab A c compare? Could aAb and b A a
represent directed areas of opposite orientation?

What could we do if we had such a ‘product’ for vectors? Would it
lead to new insights in geometry, giving new algorithms?



2 Then we might be able to...

... determine the component x, of a vector x perpendicular to a
plane A, by just ...

.. constructing the volume x A A spanned by x and A, and (after
reshaping it, preserving the content), dividing that by A, so that

x A\ A
XL =—x
To do so, we need to be able to construct re-shape-able volumes,
and to divide by areas segments.

A similar construction would also work for perpendicularity to vec-
tors:

and maybe even in n-dimensional space?
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3 Also, we might be able to...

. characterize the points on a line by the fact that they all span
the same re-shape-able area U:

xAu=U.

Thus u and U (a direction vector and an area) determine a line.
The area element also defines the plane of the line, so this works
for lines in n-D; and a similar construction can be used for planes,
hyperplanes, etc.

The perpendicular support vector d of the line is then simply:



4 And, who knows ...7

Another anti-symmetrical geometrical operation between two points
(vectors?) x and y is the directed line from x to y. Could we design
a ‘join’-operator A such that z Ay is a computable representation
of the line through z and v, and z A y A z would represent the plane
through x, y and z, etcetera? Feels similar to A (anti-symmetry) —
1 there a common algebra, and hence implementation, under-
neath?

We also want a ‘meet’-operator so that (a; Aas) V (b; Aby) is the
intersection of the two lines a; A ay and by A bs.

This should be an immediately computable representation, combin-
ing well with the previous ideas. For instance, in 2-D, the sketch:

should give the formula/algorithm:

v

V +
vAu uAv

p={Vm= u.
which should also follow from the computation with the V operator.
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5 And wouldn’t it be nice if...

.. we could make a new vector x’ that is to a known vector x as a
known vector b to a known vector a:

/

X
X
< b
a
and if we could write this in a formula as:
x/ B b
X a

which could be solved to give:

, b
X = —X.
a

This would implement rotation/scaling for arbitrary vectors, and
characterize those operations by the ratio of two known vectors
a and b (which probably depends only on their plane, angle and
relative magnitude).



6 Welcome to the world of Geometric Algebra!

These constructions are all examples of things you can do in geo-
metric algebra. (This is actually something mathematicians know
as Clifford algebra, but extended with suitably defined ‘geometric
macros and techniques’.)

It makes our geometric intuition almost directly computable ( “a
sketch is an algorithm”). Tt does so in a coordinate-free manner,
and in n dimensions.

It has been dormant for about 100 years (from 1878 to 1984); it
was recently used to unify geometry in theoretical physics (e.g. by
Riesz and Hestenes); and it could now revolutionalize the compu-
tational treatment of geometry in the real-world-related computer
sciences of vision, robotics and simulation.

This presentation conveys the basics of Clifford algebra, and presents
some ‘geometric macros’ to show that it is indeed a ‘geometric alge-
bra’. It is too short to convey the full richness of geometric algebra
— but I hope it gets you interested in learning more!



7 Vector spaces V" ‘over scalars’ such as IR

We start with a vector space over the real numbers IR. In V?,
elements of the form:

{a1e1 -+ Q€9 | o, 0 € IR.}

The linear mappings on this vector space form a (linear) algebra:
the product of mappings is again a mapping, etcetera.

But this is a bit indirect. We would like to have an algebra di-
rectly on vectors, in which the product of two vectors is again in
the algebra.

Grassmann (1862) and Clifford(1878) found a way to do this — but
they needed to include elements other than vectors to get a useful
algebra. As we will see, these are precisely the ‘areas’, “volumes’,
etcetera which we desired. Also, scalars will not be subservient to
vectors, but full elements of the algebra.

So: we are going to make an algebra with products between scalars,
vectors, areas, volumes etcetera. Such an algebra is called a Grass-
mann algebra (or exterior algebra) if we do not use a metric; but
if we do — and this is much more useful — we get a Clifford algebra.



8 The Clifford geometric product

We introduce a product ab between elements a and b by the prop-
erties:

1. it is linear in each of the arguments
it is associative: (ab)c = a(bc)
it is not necessarily commutative: ab may differ from ba

demand closure, i.e. applicability between all elements

A

. for scalars set it equal to the usual commutative scalar product
in a vector space

6. for any vector a, aa must equal a scalar (denoted Q(a))

That is all — this product contains all we need for geometry (plus
a notion of differentiation, i.e. limits). Everything we want to do
must be expressed in it (augmented by calculus if desired).

You can choose only two things: the dimensionality n and the
scalar-valued vector-function (). And there the only essential choice
(up to scaling) turns out to be the sign of @ for a given a.

The set of elements after closure is called a Clifford algebra, and
we write

Cgpaq

if it has a basis of p positive vectors, and ¢ negative vectors (p+q =



9 Inner and outer product

Consider vectors a and b.

e No commutation for ab; consider the symmetric expression:
ab+ba = (a+b)(a+b)—aa—bb = Q(a+b)—Q(a)—Q(b),

so this is a scalar product of vectors. Choose () such that this
corresponds to the classical inner product:

a-b = ;(ab + ba).
Thus the familiar inner product is still usable. (Phew!)

e What is left is the anti-symmetric part of ab. This defines the
outer product:
aAb = ;(ab — ba).

This is new; and a A b is a new ‘geometric object’ which we
need to understand.

(It is somewhat strange: in a real Euclidean space with orthonormal
basis {e;} (so that e; - e; = ;;) we compute:

(ei N ej)2 = (eiej —€; - ej)2 = (eiej)2 = eiejez-ej = ei(ejei)ej
= ei(ej N ei)ej = —ei(ei N ej)ej = —eieiejej
= —e?e? = —1.

So in this space, e; A ey is an object of which the square is negative
— therefore it cannot be a real scalar or a vector, it is something new.

We call it a bivector. )
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10 Bivectors in the standard model

The anti-symmetric outer product aAb produces a bivector. Bivec-
tors can be used to represent several geometrical objects, depending
on our mapping between reality and Clifford algebra.

e In the standard model, a vector a represents a direction
from the origin to a point in our space.

If we have a space with basis unit vectors {e, e} in the (a, b)-
plane, then:

aAb=
= (aie; + azez) A (Brer + [rey)
= afe1 A\ e+ asfhes N\ ey + ajfhe; N ey+ asfies N e
= 04+ 0+ (@102 — anff1)e; A es.

The factor (a182 — as3y) is the scalar value of the directed
area between a and b. Apparently e; A ey indicates the plane,
1.e. the ‘two-dimensional direction’ in which this scalar measure
resides.

aAb

Thus in the standard model, a A b is a directed area segment
in n-dimensional space.
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11 Bivectors in the homogeneous model

e In the homogeneous model of real Euclidean n-space, we
consider quantities called points as represented as a vector a =
ep+a, with a a vector in n-space, and ey a vector in an (n+1)-
dimensional space containing the n-space. Thus an n-D point
is represented as an (n + 1)-D vector pointing to it.

aAb

b b
a
€0 origin

The outer product between vectors in (n + 1)-space gives:
aANb=(eg+a)A(eg+b)=e A(b—a)+ (aAb).

We recognize (b — a) as the direction vector (or tangent) of
the line segment from a to b, and a A b as its moment.

Thus aAb, in the homogeneous model ((n+1)-space), represents
the line segment from the point a to the point b in n-space.
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12 Extended outer products

We extend the outer product by linearity and associativity to a

totally anti-symmetric product on (¥, ,:
aN(bAc)=(aAb)Ac=aAbAc.

[ts semantics depends again on the model:

e standard model: directed hypervolumes

= N
(aAnb)Ac aA(bAc)

¢ homogeneous model: directed faces of simplexes

wg‘e

origin

a A\ b A c represents a simplex face; a A b represents a simplex edge;

a represents a simplex vertex.
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13 Blades are subspaces

If x A (aAb) =0, then x spans no volume with (a A b); so x is in
the (a, b)-plane.

b

a

Generalize:
xA(ajANagA---Nag) =0 <= xin (aj,ay, --ag) — space

Thus elements which can be written as an outer product of vectors
represent linear subspaces. We call them blades.

The proper definition of the (anti-symmetric) outer product of vec-
tor and a k-blade can be shown to be:

aAA=l(aA +(—1)"Aa),
and therefore for the inner product (what is left of aA):
a-A=1aA - (—1)"Aa).

(For completeness, we need to specify more to complete the defi-
nition of the inner product for arbitrary elements, but we will not
need that in this talk.) So:

x €A = xA=—-(-1)Ax
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14 Perpendicularity

We can now split any vector x into a part x| contained in A and
a part x| perpendicularto A (so x; - A =0). We desire:

X||/\A:0 and x; - A =0.
Using this, we find:
XIA=x A+x; NA=x; NA=x, NA+XxANA=XNA

So that:
x; =(xAA)A™!

and similarly:

X|| = (X . A.)A._l
(with A~! defined by AA™! =1))

x, =(xANA)A™!

This thus confirms our hope in the introduction, and gives a pro-
jection operator and a rejection operator.
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15 Reflection through commutation

Note that for the components of x relative to a 1-dimensional sub-
space characterized by a vector u we have:

u'xu=u"(x; +x)u=ulu(—x; +x)) =x —x,.

1

Therefore u™'xu is a reflection of x in u.

Ixu cleverly uses commutation relative to the

The expression u™
geometric product to construct reflection. We'll see that this is an

extendable technique!
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16 Closure produces Clifford algebra of IR?

Pick an orthonormal basis (e, e;) in I]R? such that:
€1€] = €9€9 = 1 and (e1 . 62) =0
It follows that
e \Ney =ejeg = —eqe;.
Then evaluate the product xy of two vectors in IR*:
Xy = X' Y+XAY
= (T1y1 + Tay2) + (T1Y2 — Tay1) €1 A €
= a+ e Ney
Do this again (we want closure!):
z(xy) = (z1€1 + 29€9)(x + G e; A ey)
= (z1€1 + 29€9)( + fejes)
= azi e + Pzeeey + axne;+ frneree

= (az; — Bz) €1 + (aze + [21) €

This is a vector. Closure! We have found scalars, vectors and
bivectors, and that’s it for IR?. (This result is independent of the
basis used for IR?.)

17



17 The full Clifford algebra

So IR? gives only only terms made up of scalar multiples of:

1 ,e, e, egNey
~~~ N—— S—

scalars directions directed area

In IR?, we get objects on the ‘basis’:

\1/ ,€1, €, €3, €;/\ey, e/\e3 ez/\e;, e Ney/\ey

scalars directions directed areas directed volume

For V" we denote such a ‘basis’ by AV", and each of the m-
dimensional subspaces by A™ V™. Note that there are in general
n!

2" elements, each of the A" V™ contributing o

pa— independent,

terms to the basis.

Such a set, endowed with the geometric (Clifford) product between
terms, forms a Clifford algebra of V", which is denoted G(V") or
Cl,. If we desire to denote an algebra with p vectors with positive
square and ¢ with negative square, we write C/, ,.

e; Ney A --- A e, the n-dimensional directed volume, is often
called a pseudoscalar of V" and denoted I,, or even 1.
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18 Some important algebraic stuff: inverses

An inverse of an element a of the Clifford algebra is defined by
aa™! = 1 (right inverse) or a~'a = 1 (left inverse). Not all el-
ements have inverses; and even if they do, they may be hard to

compute.

However, an important class of objects which have an inverse are
the versors. A wversor is an element which can be written as a
geometric product of vectors: @ = ajas - - - a;. The inverse is:

aa

1
a=a---aa; = (—1)2
Proof: aa = ap---azajajas---a; = a;---axQ(aj)az---a; = --- = Q(a;)Q(az) - - - Q(ar) which
is a scalar, commuting with everything, so (@a)a™ = d@(aa™!) = @ gives the result. O

1 v v

For a vector v, we get v+ = o) = W for a unit vector e
1

we get e = e.

For a product of two vectors, which we may express as a+ (3 e; Aes,

we get:
(a—BerNey)
a? + (52

(a+PegNey) ' =

19



19 Division

Division in the algebra is (obviously!) done through multiplication
by the inverse, if it exists. So, for instance:

arx=b <= x=a'b. (1)

Division is mnon-commutative: a b # ba™!, so do not use the
b

notation -, except for scalars!
Now the earlier constructions like (x A A)A~! make sense (we only

missed the non-commutative essentials that make it work).
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20 Duality

The highest order subspace in a space is the pseudoscalar:
I=e NeyAN---ANe,.
Dividing by the pseudoscalar gives the dual of an element:
A= AT

There is provable duality between inner and outer product (i.e.
between ‘spanning’ and ‘orthogonal complement’):

(x- AT '=xA(AT™") and (xAA) ' =x-(AT)).

Therefore we do not need normal vectors anymore to denote a hy-
perplane. In 3-D just use bivectors, it is equivalent:

O:x/\i:(x-(iI_l))I:(x-n)I

where we define n = iI~!.

Using i is better than using n:

21



21 Subspace representations: avoid the normal vec-
tor!

subspace containment is affine invariant, and it was always a bad
custom to use perpendicularity (non-affine) to encode it! Outer
products transform very simply under a linear transformation f :

Vr— V™
flag ANag A---Nag) = fla)) A flag) A--- A flag).

Very important: linear transformations preserve the outer prod-
uct, therefore the outer product is very important in characterizing
linear algebra! They are much more specific than determinants and
minors (which are merely the magnitudes of outer products). We
call the extension of f to blades an outermorphism.

Linear transformations do not preserve the inner product: f(a -
b) = F '(a) - f(b) (where f is the adjoint of f; see elsewhere.)

Therefore, encode subspaces by blades rather than normal vectors!
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22 The meet operation

The outer product ‘spans’ spaces, it is like taking a union of direc-
tion vectors. It is sometimes called the join operation.

There is also an ntersection of spaces — but it depends on the
smallest common subspace 1. It is the meet operation, defined
through:

aVib=(al™)-b

or, easier to remember, with duality in I:
(aVbd) =a*AD".

It is a quantitative intersection, giving an intersection set and an
intersection strength (useful for numerically stable computations).

23



23 The semantics of the meet operation

[ts meaning depends on the model:

e standard model:
The meet is the sine of the smallest angle between subspaces,
a familiar distance measure from numerical analysis denoting
the ‘parallelism’ of spaces.

¢ homogeneous model:
The meet indeed gives the intersection point of spaces:

pzf\/m:(V/\u)*<60+U(u/\v)_1v+V(V/\u)_1u>,

which is basically what we expected on slide 4, weighted by a
factor giving the numerical significance of the meet.
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24 The meet in the homogeneous model (continued)

If the objects meet in a scalar, this is precisely the Fuclidean
distance between the objects:

§=fVvm=BAaAA-BAraAnAIl"

A coordinate-free pictorial algorithm!

Again: just one operation in Clifford algebra — but with many
meanings in geometrical worlds.
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25 Modeling geometries by Clifford algebra

We have seen how a bivector from the appropriate Clifford alge-
bra could be used to represent different objects in an application;
the algebraic essence which it captures is that it is anti-symmetric.
Both areas and lines are, so it can represent them.

Similarly, we saw how a single operation such as the meet im-
plements many different operations — they turned out to be al-
gebraically identical, in the proper model.

We claim that any two-term geometric object which is anti-symmetric
in its arguments can be represented as a A b in some properly chosen
Clifford algebra; and that any ‘incidence relationship’ is a meet in
disguise. And we claim that similar truths hold for other geometric
objects and operators.

If this is true, then all we need to implement and study are those

Clifford algebras, and the ‘interfaces’ to them. This is the hope and
essence of geometric algebra.
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26 So far, so good

Sofar, then, Clifford algebra has given us a richer set of tools to do
geometry:

e subspaces as basic elements, replacing normal vectors etc.,
e a full algebra: we can divide, span, project, intersect, etc.

e by selecting the proper Clifford algebra we can represent dif-
ferent geometric objects and get their algebraic (and therefore
algorithmic) properties for free.

This is already quite something. But there is more, and it concerns
ease and computational efficiency in the representation of transfor-
mations using versors. It is a somewhat advanced subject.
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27 Rotations and scalings in Euclidean space

Consider a vector u in £", relative to some ‘standard’ unit vector
e in £". We can see u as ‘produced from e by a Clifford product
with an unknown object a’ from the Clifford algebra of E™. So
set:

u=-eaq

We get (using e ! = e since e is a unit vector):

a=elu= eu,

so the unknown object a is the Clifford product of two vectors.

Develop u on an orthonormal basis in the (e, u)-plane. Take as ba-
sis: {ej=e, e}, s0u = u; e;+uz ey (with u?+u3 = Q(u) = |ul?,
so we can set u; = |u| cos ¢ and us = |u|sin ¢ — just a parametriza-
tion.) Then:

a = el(u1e1+u2e2) = U +use; N ey
= |u|(cos¢ +singe; Aey) = |u| ele1ne2) d

The last step above can be seen as a notational shorthand which
follows naturally by remembering that (e; A ez)? = —1, so symbol-
ically (setting i = e; A ey for convenience):

3 2 . 3 . 4
e = 1+(i¢)+(1§> +<1;? +<lf,) +--
2 1 A '
= 1—¢—igb—§—?—|—]+---:cos¢+isinqz5.

(Looks familiar? It is just real geometric algebra, so you must be

wrong: no complex numbers anywhere... See slide 36.)
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28 Angles

So any desired vector u can be made from a unit vector e as:
u=-elule?

with i a unit bivector spanning the (e, u)-plane, ¢ the angle be-
tween e and u in that plane. This works in n-dimensional space!

We may as well take i¢ as the definition of the angle between e
and u. This angle is constructive: we can use it to make u from e
by its exponential.

Bivectors are like angles. The exponent of a bivector is an ob-
ject of the Clifford algebra with a scalar and a bivector part. It acts
like a rotation operation under the Clifford product. It is called a
SpInor.

An arbitrary vector is determined by a standard unit vector e, a
scalar norm |u|, and a bivector angle i¢. These are precise polar
coordinates, in n-D specifying the plane they work in.

(Factoid: for ¢ = m/2 we get €!¥ = i. Turning e twice over m/2 produces

2:

—e, in a ‘U-turn’; so eii = —e, and therefore i —1, as we know.)

as:
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29 Rotations in space (IR®)

Attempt to denote a rotation of a vector x over the angle i¢ (note
how this denotes the plane of rotation!). What we want is:

Riqu

1

Essential is ‘lying in the i-plane’; so (anti-)commutativity. Split
X = X|| +x_ and form (a great trick!):

e ¥xe? = (cos¢ —ising)(xy + X|)(cos ¢ + isin ¢)
= x| (cos” ¢ + sin® @) + x| (cos ¢ + isin ¢)°
= x| + X||(cos 2¢ + isin 2¢)

= X | + X||621qs
So x is unchanged, and x rotates over an angle 2i¢. Therefore:
Ri¢ X = 6_i¢/2 X 6i¢/2

Looks complicated — but just commutation, really.
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30 Concatenation of rotations

A rotation of a vector is fully characterized by the spinor el¢/?:
Ri¢ X = €_i¢/2 X 6i¢/2

We can consider the spinor e'%/? as ‘representing the rotation’, in-
dependent of whether we want to use it on a vector or not.

Multiplication of rotations on vectors, first over i¢, then j:
Ry, (Rigx) = e 3/2 (e7i#/2x ¢i0/2) i¥/2
_ <€i¢/2e.iw/2)—1 x (/26 V/2)

so characterized by the spinor:

(iP/2 o 3/2

Warning: this is not in general equal to el9/2+3%/2) _ although it is
when i and j commute.

(Footnote: in linear algebra, a rotation matrix contains not only
the rotation, but also the consequences of wanting to make it act
in a location representation: so it also depends on the coordinate
system. A spinor does not! In spinors, no need for an eigenvector-
analysis to see what it actually does.)
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31 Axis of rotation; duality

We have now characterized rotations by their angles, which are
bivectors. The rotation azxes are simply dual to these.

Remember: Duality is very simple in geometric algebra: divide
by the (unit) pseudoscalar I of the algebra.

In E?, a vector can be used to denote a rotation axis (in E", not!).
In E3, the bivector (es A e3)¢ gives the rotation axis e, since:
_ -1
(e2 Aes)pl ' = (eres)g(ereses)” = esesesere;dp = e

etcetera and vice versa:

(82 N\ e3)gb = 61¢I = Ielg/).

In Euclidean 3-space, we can therefore represent the rotation over
¢ around the axis v by the spinor:

er¢/2.

which is a very direct way of specifying a rotation, in just the way
we always wanted to: axis-and-angle in an oriented 3-dimensional
space I (making the convention ‘left /right-handed positive” explicit
in the formula!). And we can compute with it directly (see slide
33).
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32 Sense of rotation
There is also a sense of rotation: minus a spinor
_plb/2 _ mimig/2 _ —i(2m—9)/2

is an opposite rotation over the complementary angle (2 — ¢)i.

The minus leaves result on a vector unchanged:

(—0)'x(—0) = 0 'x0.

Since the rotation matrices of linear algebra are only based on the
final result on vectors, a rotation matrix can not indicate the sense
of turning! Spinors are superior, in this sense :-).

; &@@O

0

Tlustration: as a function of ¢, the spinor €'%/? encodes different rotations

in the i-plane.

33



33 Example of rotations

Ri7r/2X

Rotation over 7/2 around e; followed by rotation over 7/2 around
e,. What is the total rotation?

eIe17r/4 eIe27r/4 _

+
DO | —
P
-
/N
)
—_
_l_
®
DN
|
)
w
SN———

with v = w\/%—e:a This represents a rotation over v over 27/3. A

lot more work with rotation matrices!
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34 Rotation as reflections

Ixo, with o a spinor e'?/2,

A rotation of a vector x is o~
The unit spinor €'%/2 is the Clifford product of two vectors u and
v making an angle ¢/2 in the i-plane. So:

e 2% e?? = (uv) 'x(uv) = v (ulxu)v.

This is the concatenation of two mappings of the form x — u™'xu,

which is a reflection of x in u (see slide 14).

So a rotation can be viewed as two reflections:

Rigx = v !(u 'xu)v

(Footnote: this representation is independent of the choice of the
particular u and v in i — as long as they have an angle of ip/2
between them.)
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35 Linear transformations and versors

Any extension (as outermorphism) of a linear transformation (linear
map from V" to V") F in ¥, , can be represented by a versor F
through the versor equation:

Fx = FxF 1

where the versor F' is the geometric product of vectors. We have
seen a reflection (F'is a vector) and a rotation (F' is a geometric
product of two vectors, the exponent of a bivector). There is more,
of course.

The beauty is that this applies to any blade; if the rotation of a

vector X 1s:

Rx = RxR L.
then the roration of a bivector A is:

RA = RAR™ !,

etcetera. In geometric algebra, operators can be represented in-
dependently of the ‘objects’ they operate on. In the matrix repre-
sentation of linear algebra, vectors are implicit in the representation
— no wonder bivectors are not common there!

Combining versors with choosing the proper model gives an enormous scope for descrip-
tion. For instance, I found that wave propagation in E™ (which equals collision detection)
can be represented as a versor product on tangent blades in (4,1, a Minkowski space
of two dimensions higher. This space enables versor representation of wave propagation
viewed as direction-dependent translation, through a rotation around infinity of tangent

blades of wave fronts.
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36 Intermezzo: complex numbers and quaternions

In E? (with orthonormal basis), we have seen that the product eu
of a unit vector e = e; and a vector u = u; €; 4+ us €y is a spinor:

U1 + use; N\ es

where (e; A e3)? = —1. Algebraically, spinors in E* are thus iso-
morphic to the complex numbers when we set e; A ey = 1.

Similar in E? (with orthonormal basis). Introduce i} = e; A e
and iy, i3 cyclically. So spinors in E?® are quantities of the form:

Ql+qi+qgil+gsis

with ¢; € IR and the i; satisfying: (ijisi3)* = 1,i} =15 = i3 = —1,

i; = i3iy and cyclic. Thus isomorphic to quaternions, with their
‘new’ product actually just the geometric product.

This absorbs the ‘tricks’ of quaternions and complex numbers
in a consistent geometrical framework. In any problem, we can
now hope to invent our own tailored techniques!

The geometrical view of finding these structures is general, and
extendible to IR" (the algebraic way was not). Each directed plane
naturally has its own ‘complex number’ (its pseudoscalar), and the
product relationships are simply due to the Clifford product.

So you can forget about them now, at least as anything special
worth remembering...
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37 High hopes

Geometric algebra gives us a wonderful set of tools to do geometry:
e subspaces as basic elements, replacing normal vectors etc.,
e a full algebra: we can divide, span, project, intersect, etc.

e by selecting the proper Clifford algebra we can represent dif-
ferent geometric objects and get their algebraic (and therefore
algorithmic) properties for free.

e many common transformations (isometries, conformal map-
pings, wave propagation) permit an efficient versor represen-
tation in a properly selected algebra

All we need to study and implement are the Clifford algebras;
they will fulfill all our geometrical needs.

For completeness: there is also a powerful geometric calculus; that is for

another talk.
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The Pedigree of Geometric Algebra

Pauli, Dirac 1928

Synthetic Geometry
Euclid 300 BC

Syncopated Algebra
Diophantes 250

Y
Analytic Geometry
Descartes 1637

Y
Complex Algebra
Wessel, Gauss 1798

Quaternions
Hamilton 1843

Y '

Matrix Algebra
Vector Algebra
Cayley 1854 _
] Gibbs 1881
Determinants
Sylvester 1878
Y /
Tensor Algebra
Ricci 1890

Y

Spin Algebra

Geometric Algebra

39

(after Hestenes)

Exterior Algebra
Grassmann 1862

l

Clifford Algebra
Clifford 1878

i

Differential Forms
Cartan 1923




38 Notes on history

Intended by Clifford (1878) as a “grammar of space”.

Why not used before?
e Vectors in V" (by Gibbs 1881) worked well enough in 3D.
e Got absorbed into algebra, geometrical aspects neglected.
Why used now?
e Theoretical physics rediscovered parts (such as spinors).
e Hestenes 1968 re-emphasized geometrical interpretation.
e Computationally more efficient than linear algebra.

e Algorithmically constructive geometry requires unification of
disparate classical analytic branches: linear algebra, differential
geometry, Lie algebra, algebraic geometry.

Use for computer science?

e All computations can be done in single Clifford toolbox with
unique and universal operators and clear data structures.

e Larger suite of operations, such as division by multivectors.
e No if-then-else and special cases, and n-D programs.
e Faster software (by 20% says NASA for 3D rotations).

e More natural, object-oriented teaching of geometry.
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39 The internal structure of geometric algebra

applications

A
‘split algebras
projective split, kinematic split, etc.
f f
‘algebraof directions geometric calculus
A,V s,
A

[\

‘projection aJIf_:]ebra’
Pi(+), Py (),

[\

‘interior/exterior algebra’

A, - or |

Clifford algebra
(Clifford product)

[\

I>

geometric algebra

vector spaces

_|_
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