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Preface

This is the companion article to Teaching Geometry According to the Common

Core Standards.

The Common Core State Standards for Mathematics (CCSSM) have reorganized

the geometry curriculum in grade 8 and high school. Because there are at present

very few (if any) ready references for such a reorganization, this document is being

offered as a stopgap measure.

In terms of the topics covered, there is hardly any difference between what is

called for by the CCSSM and by the other curricula. The change occurs mainly in

the internal (mathematical) reorganization and the change of (mathematical) focus.

For example, transformations are usually taught as rote skills in middle school with no

mathematical applications or relevance, and the concepts of congruence and similarity

are talked about but never defined except in the case of polygons. By contrast, the

CCSSM develop all these topics on the foundation of transformations, thereby giving

them coherence and purposefulness. The “coherence” of the CCSSM has been much

bandied about in recent discussions, but it is time to realize that the coherence of

the CCSSM is not an educational slogan but a mathematical fact, and one of its

manifestations is the coherence of the geometry curriculum embedded in the CCSSM.

For the benefit of students’ learning, this change is a welcome development. However,

it is unfortunately the case that while these basic topics are routinely discussed in the

mathematics literature, not much of this information can be found in the education

literature except perhaps H. Wu, Pre-Algebra. The intentions of the CCSSM have

thus become hidden for the time being. If the detailed account given in this document

is at all successful, it will furnish a bridge across this mathematical chasm for the

time being.

My specific targets are middle and high school mathematics teachers as well as

the publishers of textbooks. I hope that teachers will find this account helpful in their

preparations for the implementation of CCSSM by year 2014. If, in addition, their

school district can offer professional development, then maybe they can make use of

this document to articulate the kind of professional development they want. We are

entering an era when teachers must take an active role in their own professional life.

The CCSSM are charting a new course, and district administrators and professional

developers have to work together with teachers to find their new bearings in the
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transitional period.

As for the publishers, my contact with them in the past fifteen years has made me

aware that their claim of not having the needed resources to improve their books is in-

deed entirely legitimate. Our educational system has been broken for a long time and

we have to find ways to forge a new beginning. At a time when the CCSSM are initi-

ating a significant change in the teaching of geometry, it would be unconscionable—as

in the days of the New Math—to once again ask for change without providing the

necessary support for this change. It is hoped that this document will provide some

temporary relief in the present absence of this support.

This document is essentially a compendium of selected topics from the lecture

notes for the annual summer professional development institutes (MPDI) and upper

division courses (Math 151–153) at Berkeley that I have given since 2006. I have been

advocating this transformations-based approach to the teaching of middle school and

high school geometry because, in terms of student learning, it is a more reasonable

alternative to the existing ones (see the discussions on page 79 ff. and page 125 ff. for

part of the reason). By a happy coincidence, the CCSSM agreed with this judgment.

(The reference, Wu, H., Lecture Notes for the 2009 Pre-Algebra Institute, September

15, 2009. on page 92 of the CCSSM is the same as H. Wu, Pre-Algebra.) In any case,

the detailed development of this approach to middle school and high school geometry,

together with exercises, will be found in the following textbooks by the author: From

Pre-Algebra to Algebra (for middle school teachers, to appear in late 2014), and

Mathematics of the Secondary School Curriculum (a two volume set for high

school teachers, to appear probably in late 2015).

It may also be mentioned that I expect to post detailed student lessons for grade

8 according to the CCSSM by the fall of 2014.

Acknowledgements. I wish to thank Wolfgang Buettner for his interesting con-

tributions, Mark Saul for his willingness to read through the grade 8 portion and

make suggestions, and Larry Francis for his usual excellent editorial assistance. To

Angelo Segalla and Clinton Rempel, I owe an immense debt for numerous corrections.
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Conventions

A turquoise box around a phrase or a sentence (such as H. Wu, Pre-Algebra)

indicates an active link to an article online.

The standards on geometry are listed at the beginning of each grade in sans serif

fonts.
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GRADE 8

Geometry 8.G

Understand congruence and similarity using physical models, transparencies,

or geometry software.

1. Verify experimentally the properties of rotations, reflections, and translations:

a. Lines are taken to lines, and line segments to line segments of the same length.

b. Angles are taken to angles of the same measure.

c. Parallel lines are taken to parallel lines.

2. Understand that a two-dimensional figure is congruent to another if the second can

be obtained from the first by a sequence of rotations, reflections, and translations; given

two congruent figures, describe a sequence that exhibits the congruence between them.

3. Describe the effect of dilations, translations, rotations, and reflections on two-

dimensional figures using coordinates.

4. Understand that a two-dimensional figure is similar to another if the second can be

obtained from the first by a sequence of rotations, reflections, translations, and dilations;

given two similar two-dimensional figures, describe a sequence that exhibits the similarity

between them.

5. Use informal arguments to establish facts about the angle sum and exterior angle

of triangles, about the angles created when parallel lines are cut by a transversal, and the

angle-angle criterion for similarity of triangles. For example, arrange three copies of the

same triangle so that the sum of the three angles appears to form a line, and give an

argument in terms of transversals why this is so.

Understand and apply the Pythagorean Theorem.

6. Explain a proof of the Pythagorean Theorem and its converse.

6



7. Apply the Pythagorean Theorem to determine unknown side lengths in right trian-

gles in real-world and mathematical problems in two and three dimensions.

8. Apply the Pythagorean Theorem to find the distance between two points in a coor-

dinate system. Solve real-world and mathematical problems involving volume of cylinders,

cones, and spheres.

9. Know the formulas for the volumes of cones, cylinders, and spheres and use them

to solve real-world and mathematical problems.

u
Goals of eighth grade geometry

1. An intuitive introduction of the concept of congruence using rotations, transla-

tions, and reflections, and their compositions (page 8)

2. An intuitive introduction of the concepts of dilation and similarity (page 42)

3. An informal argument for the angle-angle criterion (AA) of similar triangles

(page 57)

4. Use of AA for similarity to prove the Pythagorean Theorem (page 61)

5. An informal argument that the angle sum of a triangle is 180 degrees (page

66)

6. Introduction of some basic volume formulas (page 68)

These six goals are intended to be achieved with an emphasis on the intuitive

geometric content through the ample use of hands-on activities. They will prepare

eighth graders to learn about the geometry of linear equations in beginning algebra.

They are also needed to furnish eighth graders with a firm foundation for the more

formal development of high school geometry.
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1. Basic rigid motions and congruence

Overview (page 8)

Preliminary definitions of basic rigid motions (page 10)

Motions of entire geometric figures (page 18)

Assumptions on basic rigid motions (page 23)

Compositions of basic rigid motions (page 25)

The concept of congruence (page 38)

Overview

The main new ideas are the concepts of translations, reflections, rotations, and

dilations in the plane. The first three—translations, reflections, rotations—are collec-

tively referred to as the basic rigid motions, and they will be the subject of inquiry

in this section. Dilation will be explained in the next.

Before proceeding further, we note that the basic rigid motions are quite subtle

concepts whose precise definitions require a bit of preparation about more advanced

topics such as transformations of the plane, the concept of transformations that are

one-to-one and “onto”, separation properties of lines in the plane, distance in the

plane, and other concepts that are necessary for a more formal development. Such

precision is neither necessary nor desirable in an introductory treatment in eighth

grade. Rather,

it is the intuitive geometric content of the basic rigid motions that needs

to be emphasized.

In the high school course on geometry, more of this precision will be supplied in order

to carry out the detailed mathematical reasoning for the proofs of theorems. For

eighth grade, however, we should minimize the formalism and emphasize the geomet-

ric intuition instead. Fortunately, the availability of abundant teaching tools makes

it easy to convey this intuitive content. In this document, we will rely exclusively on

the use of transparencies as an aid to the explanation of basic rigid motions. This

expository decision should be complemented by two remarks, however.

8



The first is to caution against the premature use of computer software for learning

about basic rigid motions. While computer software will eventually be employed for

the purpose of geometric explorations, it is strongly recommended, on the basis of

professional judgment and available experience, that students begin the study of basic

rigid motions with transparencies but not with computer software. Primitive objects

such as transparencies have the advantage that students can easily achieve complete

control over them without unforeseen software-related subtleties interfering with the

learning process. Let students first be given an extended opportunity to gain the req-

uisite geometric intuition through direct, tactile experiences before they approach the

computer. A second remark is that if you believe some other manipulatives are more

suitable for your own classroom needs and you are certain that these manipulatives

manage to convey the same message, then feel free to use them.

In the following, a basic rigid motion will mean a translation, a reflection, or a

rotation in the plane, with the precise definition to follow. In general, a basic rigid

motion is a rule F so that, for each point P of the plane, F assigns a point F (P ) to

P .1 Before describing this rule separately for translations, reflections, and rotations,

we first introduce a piece of terminology that will minimize the possible confusion

with the language of “assigning F (P ) to P”. We will sometimes say that

a basic rigid motion F is a rule that moves each point of the plane P to

a point F (P ) in the plane.

This terminology expresses the intuitive content of a rigid motion better than the

original language of a “rule of assignment”, and is in fact the reason behind the term

“rigid motion”.

Now all basic rigid motions share certain desirable properties, but rather than

listing these properties right at the beginning, we first define these basic rigid motions,

namely, reflection across a given line, translation along a vector, and rotation of a fixed

degree around a point. Then we examine their effect on simple geometric figures in

the plane. Through these examples, the properties in question will appear naturally.

Before proceeding further, it may be worthwhile to pursue the analogy of basic

rigid motions with functions of one variable a bit further. If f is a function of the

1This should remind you of the definition of a function of one variable.
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variable x, then f(x) is a real number for each real number x. So f assigns to each

point x on the number line the point f(x) on the number line, just as a basic rigid

motion F assigns to each point P in the plane the point F (P ) in the plane. Now,

on the number line, one clearly cannot “rotate”, but the analogs of translation and

reflection do make sense. The function g so that g(x) = x + 2 for each x “moves”

each point x of the number line to a point which is the same number of units, namely,

2 to the right of x regardless of what x may be. This will be seen to be the analog

of a translation in the plane. Next, let the function h assign to each point x on the

number line point its opposite −x on the number line. Thus h “flips” x to the other

side of 0, and this will be seen to the analog of a reflection across a line.

In general, if a rigid motion F is given, then its rule of assignment is usually

not simple, and the effort needed to decode this description will likely distract a

beginner’s attention from the geometric content of F itself. Fortunately, the rule

associated with each of the three basic rigid motions can be given visually with the

help of transparencies. This is what we will describe next. The additional advantage

of giving the definition in terms of transparencies is that it will effortlessly reveal

the above-mentioned desirable properties that these three basic rigid motions have in

common.

We proceed to describe how to move a transparency over a piece of paper to illus-

trate the three basic rigid motions, but it is well to note that, in the classroom, a

face-to-face demonstration of the the manipulation of a transparency is

far easier to understand than the clumsy verbal and graphical descrip-

tion given below. Please keep this fact in mind as you read.

Preliminary definitions of basic rigid motions

We begin with the reflection R across a given line L. The line L will be called

the line of reflection of R. For definiteness, let us say L is a vertical line and let us

say two arbitrary points in the plane are given. We now describe how R moves these

points. Let the line L and the dots be drawn on a piece of paper in black, as in the

picture below.2 The black rectangle indicates the border of the paper.

2If a teacher wants to do a demonstration for the whole class on an overhead projector, then on
some overhead projectors, it may be necessary to do the drawing on a transparency to begin with.
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Note that this pictorial representation of the plane has severe limitations: We are

using a finite rectangle to represent the plane which is infinite in all directions, and

a finite segment to represent a line which is infinite in both directions. With this

understood, trace the line and the points exactly on a transparency (of exactly the

same size as the paper, of course) using a different color, say red. In all subsequent

discussions of demonstrations with a transparency, the piece of paper

containing the original drawing is understood to stay fixed and only the

transparency is moved around. With this understood, now pick up the trans-

parency and set it down again in alignment with the vertical line, interchanging left

and right, while keeping every point on the red vertical line on top of the same point

on the black vertical line. Clearly, the latter is achieved if the upper (respectively,

lower) endpoint of the red vertical line is kept on top of the upper (respectively, lower)

endpoint of the black vertical line. The position of the red figure of two dots and the

red line on the transparency now represents how the original figure has been reflected.
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Because we want to see the new position of the reflected figure relative to the

original, we are going to show the red figure together with the black figure, and this

calls for some explanation. In the classroom, the black figure will be just black, of

course, but for the purpose of the verbal explanation in this article, we are going

to replace the black lines by dashed black lines to suggest the correct psychological

response, namely, that we are leaving the original figure behind in order to concentrate

on the red figure on the transparency. Thus the dashed black figure represents where

the red figure used to be, and is therefore just background information. (The red

rectangle indicates the border of the transparency.)

In other words, if we now look at the plane itself, then the rule of assignment of the

reflection R is to move the points in the plane represented by the black dots to the

corresponding points in the plane represented by the red dots, but leave every point

on the vertical line unchanged. The dashed arrows below are meant to suggest the

assignment:

In partial symbolic notation:

R(upper black dot) = upper red dot, R(lower black dot) = lower red dot
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The following animation by Sunil Koswatta is meant to go with this definition of

a reflection:

http://www.harpercollege.edu/˜skoswatt/RigidMotions/reflection.html

It goes without saying that R moves every point in the plane not lying on L to

the “opposite side” of L, and the two points above are meant to merely suggest what

happens in general. There is a reason why we used two points (dots) instead of one

in this discussion of the reflection R. Of course, one point already suffices for the

definition itself. However, the use of two points highlights an obvious property of

R: the distance between the original two points (black dots) is equal to the distance

between the two reflected points (red dots). This is because the transparency is rigid

and cannot be distorted, so the distance between the red dots cannot differ from that

between the black dots. We may formulate this fact in more precise language, as

follows. If we take two points A and B in the plane and

if R moves the points A and B to R(A) and R(B), respectively, then the

distance between A and B is equal to the distance between R(A) and R(B).

We refer to this property of R as the distance-preserving property.

Next, we define translation along a given vector −→v . Let us continue with the

same picture of a vertical line with two dots on a piece of paper, and we will describe

how to translate this figure. A vector is just a segment together with the designation

of one of its two endpoints as a starting point; the other endpoint will be referred

to simply as the endpoint of the vector and will be pictorially distinguished by an

arrowhead, as shown in the blue vector below.

−→v
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We are going to define the translation T along the given blue vector −→v . We copy the

line and the dots and the vector on a transparency in red; in particular, the copy of
−→v on the transparency will be referred to as the red vector. Let the line containing

the blue vector be denoted by ` (this is the slant dashed line in the picture below).

We now slide the transparency along −→v , in the sense that the red vector on the

transparency glides along ` in the direction of −→v until the starting point of the red

vector rests on the endpoint of the blue arrow, as shown.

The whole red figure is seen to move “in the direction of −→v by the same distance”.

Then by definition, T moves the black dots to the red dots. Precisely, the rule of

assignment of T moves the point in the plane represented by the upper (respectively,

lower) black dot to the point in the plane represented by the upper (respectively,

lower) red dot.

The following animation of essentially this translation by Sunil Koswatta would

be helpful to a beginner:

http://www.harpercollege.edu/˜skoswatt/RigidMotions/translation.html

If we draw the translated figure (of the above vertical line and two black dots)

by itself without reference to the original, it would be visually indistinguishable from

the original:
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So we put in the black figure as background information to show where the red

figure used to be. Then T moves the points represented by the black dots to the

corresponding points represented by the red dots, and moves each point in the black

vertical line to a point in the red vertical line. The dashed arrows are meant to

suggest the assignment.

For exactly the same reason as in the case of a reflection, a translation is distance-

preserving: if A and B are any two points in the plane and if T assigns the points

T (A) and T (B) to A and B, respectively, then the distance between A and B is equal

to the distance between T (A) and T (B).

Intuitively, if T is the translation along −→v , then no matter what the point A is,

the vector with starting point A and endpoint T (A) will have the same length and the

same direction as −→v . This fact will be proved in the high school course on geometry

as it follows from one of the standard characterizations of a parallelogram. In the

eighth grade, it suffices to verify such phenomena experimentally by measurements.

Thus if each A and T (A) are represented by a black dot and a red dot, respectively,

then we have the following pictorial representation of the translation of three points.
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Q
Q

Qk
−→vr r rr r r

(Question: If a segment joins two of the black dots, what will happen to all the points

on the segment?)

We make an observation about translations: If
−→
0 is the zero vector, i.e., the

vector with 0 length, which is a point, the translation along
−→
0 then leaves every

point unchanged. This is the identity basic rigid motion, usually denoted by I.

Thus I(P ) = P for every point P .

Finally, we define a rotation Ro around a given point O of a fixed degree.

The point O is called the center of rotation of Ro. For definiteness, let the center O

of this rotation be the lower endpoint of the vertical line segment we have been using,

and let the rotation be 30 degrees counterclockwise around this point (one could also

do a clockwise rotation, see below). Again, we trace the vertical line segment and

the two dots on a transparency in red. Then we pin the transparency down at the

lower endpoint of the segment and (keeping the paper fixed, of course) rotate the

transparency counterclockwise 30 degrees, i.e., so that the angle between the black

segment and the red segment is 30 degrees. In the picture below, the rotated figure

is superimposed on the original figure and, as usual, the red rectangle represents the

border of the transparency. By definition, the rotation moves the upper black dot to

the upper red dot, and the lower black dot to the lower red dot.

30

30
o

o

O

Observe that the angle formed by the ray from the center of rotation to a black dot
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and the ray from the center of rotation to the corresponding red dot is also 30 degrees.

We now draw the rotated figure as a geometric figure in the plane with the dashed

black figure provided as background information to show where the red figure used to

be. The dashed arcs indicate the rule of assignment by Ro. (Note that by the nature

of a rotation around a given center, the farther a point is away from the center of

rotation, the farther it gets rotated. This is why the dashed arc that is farther away

from the center of rotation is longer.)

O

So far we have discussed rotations of positive degrees, and they are, by definition,

the counter-clockwise rotations. A rotation of negative degree is defined exactly as

above, except that the transparency is now rotated clockwise.

The following two animations by Sunil Koswatta show how a rotation of 35 degrees

(respectively, −35 degree) rotates a geometric figure consisting of three points and

an angle whose vertex is the center of the rotation:

http://www.harpercollege.edu/˜skoswatt/RigidMotions/rotateccw.html

http://www.harpercollege.edu/˜skoswatt/RigidMotions/rotatecw.html

For the usual reasons, a rotation is distance-preserving. Note that a rotation of 0

degrees is also the identity basic rigid motion I.
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Motions of entire geometric figures

We now introduce some terminology to facilitate the ensuing discussion. Given a

basic rigid motion F , it assigns a point—to be denoted by F (P )—to a given point P

in the plane. We say F (P ) is the image of P under F , or that F maps P to F (P ).

If you wonder about why we use the word “map” in this context, think about the

drawing of the street map of a city, for example. Are we not mapping points in the

streets one by one on a piece of paper?

We have given a description of how a reflection, a translation, or a rotation moves

each point, but such information is not particularly illuminating because it does not

reveal in a distinctive way what a reflection, translation, or rotation does, or how

a reflection is different from a rotation. What we do next is to examine a bit how

a basic rigid motion moves, not just a point, but a whole geometric figure, in the

following sense. Given a geometric figure S in the plane, then a given point P in S is

mapped by F to another point F (P ). Now focus entirely on S and observe what the

total collection of all the points F (P ) looks like when P is restricted to be a point of

S. For understandable reasons, we denote such a collection by the symbol F (S) and

call it the image of S by F . (We also say F maps S to F (S).) For example,

in the preceding picture of the 30-degree counterclockwise rotation Ro around the

lower endpoint of the vertical segment, let the lower endpoint be denoted by B and

let S denote this vertical segment.3 Then Ro(S) is the red segment AB, as shown.

It makes a 30-degree angle with S.

3Notice that in this instance, we are taking the picture literally and regard the segment for what
it really is: a segment. By contrast, we have, up to this point, used this segment to represent the
whole vertical line.
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A

P

Ro(P)

B

Now, let T be the translation along the blue vector that we encountered earlier on

page 14, and if S continues to denote the same vertical segment, then T (S) becomes

the red segment which is now parallel to S rather than making a 30-degree angle with

S at its lower endpoint.

P

T(P)

We see that by looking at the image of a segment, we obtain at a glance a fairly

comprehensive understanding of the basic difference between a rotation and a trans-

lation, something that is not possible if we just look at the cut-and-dried descriptions

of how these basic rigid motions move the points, one point at a time.

We proceed to create a geometric figure slightly more complex than a mere seg-

ment, one that will better reveal the effects of the three basic rigid motions. We add

a non-vertical, solid arrow and a circle, as shown.
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Make the drawing on the paper in black, as shown, and trace the whole figure on a

transparency in red, as usual. Consider first the reflection across the vertical line.

Then flipping the transparency across the vertical line exactly as before, we obtain

the following reflected image of the figure all by itself.

We now superimpose it on the original black figure in order to get a sense of

how the figure has been moved by the reflection. The black figure, drawn with dots,

represents where the red figure used to be.

Observe that, under the reflection, the images of the two black dots are the two
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red dots, respectively. The image of the black arrow is the red arrow and the image

of the black circle is the red circle. The image of the vertical line of reflection is of

course the vertical line itself, and the image of every point on this line is the point

itself. While the black arrow is on the right of the vertical line and points to the

upper right, the red arrow to the left of the line of reflection points to the upper left.

The latter is because the distance of the tip of the black arrow is further from the

vertical line of reflection than the lower end of the black arrow. Since the flipping

preserves the distance, the tip of the red arrow is likewise further from the vertical

line than the lower end of the red arrow. But the red arrow being to the left of the

vertical line, we see that the red arrow is now pointing to the upper left. Similarly,

the black circle, being slightly to the right of the black arrow, is reflected to the red

circle which is slightly to the left of the red arrow. The fact that a reflection across

a vertical line switches left and right can be easily verified by looking at yourself in a

mirror.

The reflection of a more complex figure allows us to make additional observa-

tions about reflections. A reflection preserves lines, rays, and segments in the

sense that the image of a line (respectively, a ray, a segment) by a reflection is a

line (respectively, a ray, a segment). After all, a line or a ray or a segment on the

transparency, no matter where it is placed on a piece of paper, remains a line, a ray,

or a segment after the reflection. For exactly the same reason, a reflection is not only

distance-preserving, as we already know by now, but is also degree-preserving in

the sense that the image of an angle is an angle of the same degree. For example,

the angle at the tip of the black arrow is reflected to the angle at the tip of the red

arrow, and the two angles must have the same degree because the red arrow is an

exact copy of the black arrow.

By experimenting with reflections of different figures across different lines, stu-

dents can obtain a robust intuitive understanding of what a reflection does to points

in the plane.

Next, we look at the effect that a translation has on the same figure. Let us trans-

late along the same blue vector −→v as before. We trace the figure on a transparency

in red, and we slide the transparency along −→v (see page 14 for the definition). Then

the red figure, which is the translated image of the original, now looks like this:
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By itself, the translated image sits in the plane in such a way that it “looks exactly

like the original”. It makes more sense to show it against the background of where it

used to be, so we place it alongside the original black figure, now drawn with dots.

Keep in mind, however, that the black figure is merely background information.

Naturally, a translation preserves lines, rays, and segments, and is both distance-

and degree-preserving.

Finally, we rotate the same figure around the lower endpoint of the vertical seg-

ment, 90 degrees counterclockwise. This is realized by pinning the transparency at

the lower endpoint of the vertical line segment and then rotating the transparency 90

degrees counterclockwise. Here is the rotated image:

Here is the superimposed image of the transparency on the paper; it gives a better

sense of what this 90-degree rotation does to the plane:
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Note that although we have used only rotations of 30 and 90 degrees for illustra-

tion, direct manipulations of a transparency make it easy to do rotations of any degree

around any point. In a classroom, students should be encouraged to experiment with

rotations of arbitrary degrees to deepen their intuitive grasp of what rotations are

like.

As before, we observe that rotations map lines, rays, and segments to lines, rays,

and segments, and are distance- and degree- preserving for exactly the same reason.

Assumptions on basic rigid motions

Let us summarize our findings thus far. Hands-on experiences, such as those above,

predispose us to accept as true that the basic rigid motions (reflections, translations,

and rotations) share three common “rigidity” properties:

1. They map lines to lines, rays to rays, and segments to segments.

2. They are distance-preserving, meaning that the distance between the images

of two points is always equal to the distance between the original two points.

3. They are degree-preserving, meaning that the degree of the image of an angle

is always equal to the degree of the original angle.

Notice that property 1 implies that a basic rigid motion maps angles to angles, and

this is why in property 3 we can speak about “the degree of the image of an angle”.

These are our assumptions about basic rigid motions, i.e., we will henceforth

agree that every basic rigid motion has these properties.
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We will also accept as true the fact that there are “plenty of” basic rigid motions,

in the following sense:

R Given any line, there is always a reflection across that line.

T Given any vector, there is always a translation along that vector.

Ro Given a point and a degree, there is always a rotation (clockwise or counterclock-

wise) of that degree around the point.

These too are part of our assumptions about basic rigid motions.

We now give a few more details, for the teachers, about the definitions of the basic

rigid motions. Whether or not such details should be presented in an eighth grade

classroom is the kind of decision only a teacher can make on a case-by-case basis.

The reflection across the line of reflection assigns to each point on the line of

reflection the point itself, and to any point not on the line of reflection it assigns the

point which is symmetric to it with respect to the line of reflection, in the

sense that the line of reflection becomes the perpendicular bisector of the line segment

joining the point to its reflected image.

r r
r r

the reflection of P P

Q the reflection of Q

For a translation along a given vector −→v , we describe the point D that is assigned

to a given point C. First, assume that C does not lie on line LAB. Let the starting

point and endpoint of −→v be A and B, respectively. Then:

(1) Draw the line passing through C and parallel to line LAB.

(2) Draw the line passing through B and parallel to the line LAC .

(3) Let the point of intersection of the lines in (1) and (2) be D. By

definition, the translation assigns the point D to C.
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B
B
B
B
B
BBM

−→v

B
B
B
B
B
BBM

B
B
B
B
B
B
B
B
B
B

B

A C

D

If C lies on the same line as A and B, then D is obtained by going along this line

from C in the same direction as A to B until the length of CD is equal to the length

of AB.

Because we will be discussing the length of a segment AB often, we will agree

to use the symbol |AB| to denote this length. Be aware that there is no universal

agreement on this particular notation. In any case, with this notation understood, we

see that if the translation along a given vector
−→
AB moves C to D, then |CD| = |AB|.

Finally, we define the rotation Ro of t degrees around a given point O, where

−180 ≤ t ≤ 180. The rotation could be counterclockwise or clockwise, depending on

whether the degree of rotation is positive or negative, but for definiteness, we will

deal with the counterclockwise case, i.e., t > 0. Let a point P be given. If P = O,

then by definition, Ro(O) = O. If P is distinct from O, draw the circle with center O

and radius |OP | (see picture below). On this circle, go from P in a counterclockwise

direction until we reach the point Q so that |∠QOP | = t◦. Then by definition, Ro

assigns Q to P .

Q

P

O

t

Compositions of basic rigid motions

Having explained the meaning of the basic rigid motions, it is time to go to the

next level and explain the concept of a composition of basic rigid motions, which
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means moving the points of the plane by use of two or more basic rigid motions in

succession, one after the other. The need for composition is easily seen by considering

an example. Suppose the following two identical H’s are paced in the plane as shown.

Is there a single basic rigid motion so that it maps one of these H’s to the other?

Nothing obvious immediately comes to mind, so it would seem reasonable to do it in

more than one step4: we will try to use two or more basic rigid motions applied in

succession to map one H to the other.

There are many ways to accomplish this, but a key observation is that the upper

right corner of the vertical H matches the upper left corner of the horizontal H.

Therefore it makes sense to first bring these two corners together by a translation

and then use an additional rotation to bring the vertical H to the horizontal H. So we

translate along the blue vector (see picture below) going from the upper right corner

of the left H to the upper left corner of the right H, and follow by rotating 90 degrees

4Actually there is a rotation that gets it done, but that is not obvious.
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counterclockwise around the endpoint of the vector (designated by a black dot).

Figure 1

To visualize this translation, we use a transparency. Let the preceding figure of

the two H’s be drawn on a piece of paper in black. Trace the figure in red on a

transparency and, while keeping the paper fixed, slide the transparency along the

blue vector (see page 14 for the definition of “slide”); the translated figure in red

is now shown together with the original figure in dashed lines. (Again, we use the

dashed figure to remind ourselves of the original position of the figure.) Our focus

is on the fact that the vertical black H has now been moved to the position of the

vertical red H. In the process, of course the horizontal black H is also moved and the

black dot is likewise moved, as shown below. But the key point is that, while a basic

rigid motion necessarily moves every point in the plane, we have to remember why we

use this particular basic rigid motion in the first place and maintain our concentration

on the object of interest. In this case, it is the vertical black H and we will follow

this particular figure assiduously.
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Figure 2

In order to move the (points in the) vertical red H to the position of the horizontal

black H (indicated by the dashed lines), we will now apply the second basic rigid

motion to the plane by rotating the plane 90 degrees counterclockwise around the

black dot. This rotation maps every point in the plane to a different point (with the

exception of the black dot, which remains fixed), but we are only interested in what

this rotation does to (the points in) the vertical red H. We can find out by rotating

the transparency around the black dot 90 degrees counterclockwise, as shown:

Figure 3

Now observe that the red vertical H coincides with the black dashed horizontal H,

as shown in Figure 3. This is what we want.

Several additional comments may be helpful. The first is that we are only inter-

ested in what the rotation does to the points in the red vertical H in Figure 2. The
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fact that the rotation also moves the red horizontal H in Figure 2 to the red vertical

H in Figure 3 was consequently ignored in the discussion because this fact was irrel-

evant to our concern. In addition, the situation may be better understood with the

use of symbols. Let T denote the translation along the blue vector and Ro denote

the 90-degree counterclockwise rotation of the plane around the black dot. Given a

point P , then T moves it to another point T (P ) in the plane. (For this notation, see

page 18.) Similarly, the point assigned by Ro to a given point Q will be denoted by

Ro(Q). The picture below shows how a typical point P of the vertical H in Figure 1

is moved to T (P ) by the translation, and then to Ro(T (P )) by the rotation.

P

T(P)

Ro(T(P))

Let us show the same points superimposed on Figure 2: If we follow the points

P → T (P )→ Ro(T (P )), then we get a new perspective on the way the transparency

was moved twice to get from Figure 1 to Figure 2 and finally to Figure 3.

P

T(P)

Ro(T(P))

Finally, the rotation Ro is by definition around the black dot of Figure 1, which

is also the black dot of Figure 2. This is why when we rotated the transparency in
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Figure 2, we did so around that black dot, but not around the red dot regardless of

the fact that the translation had moved the black dot to the red dot.

To summarize: (1) We apply the above translation to the plane, and (2) follow it

with the preceding rotation. Then (3) the two basic rigid motions together move the

left vertical black H of Figure 1 to coincide exactly with the right horizontal black H

(in Figure 1).

We give another example of composition of rigid motions. Suppose two identical

H’s have been placed in the plane as shown. What basic rigid motions can we use in

succession to move the H on the left to coincide with the H on the right?

Before we describe a sequence of basic rigid motions to achieve this goal, we point

out that Larry Francis has created an animation to accompany this description:

Composition of Rigid Motions (translation, rotation, and reflection)

First, we map the lower right corner of the left vertical H to the upper left corner

of the right horizontal H. So we translate the plane along the blue vector, as shown:

Again we will demonstrate the effect of the translation with the help of a transparency,

but this time we will do something a little different. We have made the point above

that when we apply a basic rigid motion to the plane for a specific purpose, this
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motion will move all the points in the plane, including those that we may not be

interested in. Assuming that this point has been well made, the succeeding figures

will focus completely on the figure of interest and ignore everything else. Therefore

this time around, we only trace the vertical H onto a transparency in red, and then we

slide the transparency along the blue vector (see page 14 for the definition of slide).

Then the black vertical H is shown to be moved to the position indicated by the red

H of the transparency. The black dashed H’s in the picture below serve to remind us

where the original figure used to be. In particular, they remind us that our goal is to

move the vertical red H to where the dashed horizontal H is.

We have to move the plane (i.e., the transparency) again by using basic rigid

motions until the (points of the plane indicated by the) vertical red H on the trans-

parency coincides with the black dashed horizontal H. If we rotate the plane (i.e., the

transparency) around the endpoint of the blue vector (indicated by the red dot) 90

degrees clockwise, the red figure will assume the following position:

Figure 4

Let us be clear about what the red figure means: this is the position of the black

H moved first by the translation along the blue vector, and then followed by the
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clockwise rotation of 90 degrees around the endpoint of the blue vector. Specifically,

under the consecutive actions of these two rigid motions, the vertical black H is moved

to the position of the horizontal red H in Figure 4. But even after applying these two

rigid motions to the plane, we have not yet achieved the goal we set for ourselves,

namely, to move the vertical black H to the black dashed horizontal H. We have only

moved the vertical black H to the horizontal red H. At this point, it is clear that

our goal will be achieved if can move the horizontal red H in Figure 4 to the dashed

horizontal black H (of Figure 4). This can be done by reflecting the plane along the

horizontal line that passes through the red dot (not drawn in Figure 4). What does

this reflection do to the red figure? We can find out as follows. Trace this horizontal

line on the transparency. Then lift the transparency, rotate it in space to interchange

“above” and “below” with respect to the horizontal line that passes through the red

dot, and then put it down on the paper so that the horizontal line on the transparency

coincides with the horizontal line on the paper containing the red dot—and so that

the red dot on the transparency coincides with the red dot on the paper. When we

do that, the new position of the red H is now the following:

Thus the horizontal red H is now exactly where the horizontal black H used to be.

After applying three basic rigid motions in succession, we finally achieve our goal.

To summarize: In order to move the left vertical H of the following picture to

coincide with the right horizontal H, we compose three basic rigid motions. We first

translate along the blue vector (whose endpoint we now call P ), then follow the

translation by a 90-degree clockwise rotation around P , and then follow the rotation

by a reflection of the plane across the horizontal line that contains P , as shown below.
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P

We now give a more formal definition of composition. Let F and G be two basic

rigid motions. Then the composition F ◦ G, or G followed by F 5 is defined to

be the rule that assigns to a given point P the following point: first G assigns the

point G(P ) to P , and then F assigns the point F (G(P ) to G(P ), so by definition,

the rule F ◦G assigns this point F (G(P )) to P . As a shorthand, we abbreviated the

long-winded description by writing symbolically:

(F ◦G)(P )
def
= F (G(P ))

where the symbol “
def
= ” indicates that this is a definition.

Let us make sure that this definition makes sense. First of all, G moves P to the

point G(P ) of the plane, so it makes sense for the rigid motion F to move the given

point G(P ) to the point F (G(P ) ). Thus the rule that assigns the point F (G(P ))

to the point P does make sense.

Notice that F ◦G so defined also satisfies properties 1–3 on page 23 shared by the

basic rigid motions. Indeed, if we think back on our use of transparencies to define

basic rigid motions, then it is clear that the image of a figure under F ◦ G is just a

relocation of the same figure on the transparency to a different part of the plane, and

therefore if the figure is a line, or a ray, or a segment, the image remains a line, or a

ray, or a segment. For the same reason, distances and degrees are preserved by F ◦G.

Of course one can also show this without reference to transparencies. Take a line `,

for example, and we will show that F ◦G maps ` to a line (first property on page 23).

Because G is a basic rigid motion, the image (see page 18) G(`) of ` by G is a line.

Now since G(`) is a line, the image F (G(`) ) of G(`) by F is also a line (F is after

all a basic rigid motion). But by the definition of F ◦ G, the image (F ◦ G)(`) of `

by F ◦G is exactly F (G(`)). Hence F ◦G maps the line ` to a line F (G(`)). In the

5G comes before F , as the following definition makes clear. It is unfortunate that the writing of
F ◦G gives the opposite impression when read from left to right.
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same way, because a ray or a segment is part of a line, we see that F ◦G maps rays to

rays and segments to segments; it also preserves distance and degrees of angles. The

conclusion: the composition F ◦G enjoys the same properties 1–3 on page 23 shared

by the basic rigid motions..

Let us analyze F ◦G a little bit more. The understanding of the composite F ◦G
begins with an understanding of what it assigns to a single point P . Schematically,

this assignment comes in two stages:

P - G(P ) - F (G(P )) = (F ◦G)(P )
G F

Thus G moves the point P , and then F moves the point G(P ). Of course F , being a

basic rigid motion of the plane, moves every point of the plane, but for the purpose

of finding out what (F ◦ G)(P ) is, what matters is not what F does to P or any

other point but what it does to the specific point G(P ). For example, let the plane

be represented by the rectangle below, and let a point P and a line L be given. Let

G be the translation along the blue vector and F be the reflection across L. We want

(F ◦G)(P ).

P

L

First we apply G to the plane, and G moves P and L to new positions, indicated in

red, while the original positions of P and L are indicated by dashed lines.
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G(L)P

G(P)
G

L

Now F (G(P )) is the point assigned to G(P ) by F . Here we must be careful about

what F is: it is by the definition the reflection across L. Although G has moved L to

the red vertical line in the middle rectangle (see the picture below), we must reflect

G(P ) across L itself, not across the red line G(L). In other words, if we reflect the

red dot G(P ) across the dashed vertical line, we would get F (G(P )). (Notice that

we make no mention of what F (P ) is or what the reflection of G(P ) across G(L) is,

because neither is relevant. Notice also that F moves the red line G(L) in the middle

rectangle to the dashed red line in the right rectangle, but this fact is also irrelevant

in the determination of what F (G(P )) is.)

F

P

G

L

G(L)

G(P)
F(G(P))

If we have a good idea of what F ◦ G does individually to a few points, then we

can begin to look at what it does to a figure S. Perhaps reviewing the two preceding

examples at this point would be a good idea.
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In summary: To find out which point F ◦ G assigns to a given point P , first we

obtain G(P ) and then we focus on what F does to G(P ). In terms of transparencies,

this observation corresponds to our insistence that, once we have moved the trans-

parency according to the first basic rigid motion G, we are no longer concerned with

applying the second rigid motion to the plane (i.e., the paper) itself but only to the

points of the transparency.

We give a final illustration of the composition of basic rigid motions. Let us go

back to our first example of the line-dots-arrow-circle figure in the plane.

Suppose we want to see the combined effect on this geometric figure of the composition

of the reflection across the vertical line followed by the translation along the blue

vector as shown.
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Trace the figure (note: the blue vector is not part of the figure) and the vertical line

on a transparency in red. Recall that the reflection across the vertical line has been

shown before: the figure is moved by flipping the transparency across the vertical line

to the position in the plane indicated by the red figure.

To follow the reflection by the translation, we now have to slide the (flipped) trans-

parency along the blue vector. The red figure now looks like this:

The composition of these two basic rigid motions therefore moves the black figure to

the red figure.

It is convenient to assess students’ understanding of the circle of ideas surrounding

the basic rigid motions by making use of coordinates. Consider for example the
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following figure, where O is the origin, the line is the “diagonal” that makes a 45-

degree angle with the x-axis, the triangle is isosceles, the point C = (−5, 0) is directly

below the left vertex of the triangle, the horizontal line through B passes through the

top vertex of the triangle, and A = (0, 5).

�
�
�
�

C
C
C
C

C D

B

�
�
�
�
�
�
�
�
�
�
�
�
�
�

O

A

Let R be the reflection across the “diagonal” line and let T be the translation along

the vector
−→
OA. Consider the two compositions ϕ = T ◦ R, and ψ = R ◦ T . If S

denotes the isosceles triangle shown above, what is ϕ(S) and what is ψ(S)? The two

sets turn out to be not equal, and this is a good illustration of some of the subtleties

of composition.

It is easy to make up many other problems of this genre. For example, if Ro is the

clockwise rotation of 90 degrees around the origin O, how does (T ◦Ro)(S) compare

with (Ro ◦ T )(S)? Again, they are different.

A more substantial application of the concept of composition is given in the next

subsection.

The concept of congruence

There are good reasons why one should devote a generous amount of class time

to the composition of basic rigid motions. We have seen that when we are given two

identical figures placed in different parts of the plane, it sometimes takes more than

one basic rigid motion to map one to the other. It takes a composition of several

such motions. (You may paraphrase this by saying that mathematics has very few

one-step problems.) A more fundamental reason is the fact that if a rule assigns a

point to each point of the plane in a way that preserves distance, then it is equal to
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a composition of basic rigid motions. We will not need to use this fact and therefore

will not prove it here, but it is a good idea to keep it in mind. Incidentally, this is

why the basic rigid motions are “basic”.

In general, we say two geometric figures are congruent if a composition of a finite

number of basic rigid motions maps one to the other. We also call the composition

of a finite number of basic rigid motions a congruence. From the definition, we see

that a composition of congruences is also a congruence.

Our hands-on experience using transparencies shows that a basic rigid motion

maps a geometric figure to a figure that is, intuitively, “the same size and the same

shape.” For this reason, two congruent figures are intuitively “the same size and

same shape”. However, this well-known phrase cannot be used as a definition of

congruence because the concepts of “same size” and “same shape” are too imprecise

to furnish a basis for logical reasoning. We repeat: the only correct definition of

congruence between two-dimensional figures is that one can be obtained from the

other by a composition of a finite number of rotations, reflections, and translations

(see Standard 8.G 2).

Because basic rigid motions preserve lines, rays, segments, lengths and degrees,

two congruent triangles necessarily have three pairs of equal sides and three pairs of

equal angles. The converse is also true: two triangles with three pairs of equal sides

and three pairs of equal angles are congruent. However, much stronger versions of

the converse exist, and they are as useful as they are important. The overriding idea

is that triangles are special, so instead of requiring six sets of conditions to guarantee

triangle congruence (three for sides and three for angles), a judicious choice of three

sets of conditions is sufficient. The following three theorems along this line are the

best known. Their proofs can be given right now, but since there are more urgent

things to do in eighth grade, they will be put off until the high school course on

geometry.

SAS criterion for congruence. If two triangles have a pair of equal

angles (i.e., same degree) and corresponding sides of these angles in the

triangles are pairwise equal (in length), then the two triangles are congru-

ent.

ASA criterion for congruence. If two triangles have two pairs of equal

angles and the common side of the angles in one triangle is equal to the
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corresponding side in the other triangle, then the triangles are congruent.

SSS criterion for congruence. If two triangles have three pairs of

equal sides, then they are congruent.

At this stage, it suffices for students to verify these theorems experimentally by draw-

ing pictures or by using a geometric software that allows for the precise drawing of

triangles and the ability to move a geometric figure undistorted across the computer

screen so that the congruence of triangles can be checked visually. Here we will offer

an informal proof of ASA (“informal” means that, while the overall idea is correct,

some details are missing) together with a link to an animation of the proof created

by Larry Francis:

Angle-Side-Angle Congruence by Basic Rigid Motions

Thus we have two triangles ABC and A0B0C0 so that |∠A| = |∠A0|, |AB| =

|A0B0|, and |∠B| = |∠B0|. We have to produce a congruence (see page 39) F so that

F (4ABC) = 4A0B0C0, where the notation means:

F (A) = A0, F (B) = B0, F (C) = C0

B

C

A

A

C

B

0

0 0

Step 1: Bring vertices A and A0 together. If A = A0 already, do nothing. If not,

let T be the translation along the vector
−−→
AA0. Then T (4ABC) is a triangle with

one vertex in common with 4A0B0C0. Visually this translation can be realized by

the use of transparency, as follows. On a transparency, trace out 4ABC in red and

then slide 4ABC along the vector
−−→
AA0 (see picture below). Notice that we leave

out 4A0B0C0 from the transparency because what T does to it is not our concern at

the moment. We also draw the original positions of 4ABC and 4A0B0C0 in dashed

lines as a reminder of where things used to be.
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A

C

B

A B

C0

0 0

T(B)

T(C)

T(A)=

Step 2: Bring the sides AB and A0B0 together. If the translated AB, T (AB),

already coincides with A0B0, do nothing. Otherwise, since A = A0, a rotation Ro of

a suitable degree around A0 would bring the ray from A0 to T (B) to coincide with

the ray from A0 to B0. Then because of the assumption that |AB| = |A0B0|, the

same rotation would bring T (B) to B0.

B

C

A

C

B

A

0

0 0

Ro(T(C))

Step 3: Bring vertices C and C0 together. If the point Ro(T (C)) and the point

C0 are on opposite sides of the line joining A0 to B0, then the reflection R across

this line would bring the point Ro(T (C)) to the same side of C0. We may therefore

assume that, after (possibly) a translation and a rotation and a reflection, the point

C is brought to a point C ′ which lies on the same side as the point C0 with respect

to the line joining A0 to B0. See the following picture.
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A

B

C

A

C

B
0 0

0

C

Now, we claim that, appearance to the contrary (as in the above picture), the ray

from A0 to C ′ must coincide with the ray from A0 to C0. This is because the basic

rigid motions preserve degrees of angles (see page 23) and therefore ∠C ′A0B0 is equal

to ∠A, which is assumed to be equal to ∠C0A0B0. Thus |∠C ′A0B0| = |∠C0A0B0|,
and since C ′ and C0 are on the same side of the line joining A0 to B0, the two sides

A0C0 and A0C
′ coincide as rays. Similarly, the ray from B0 to C0 coincides with the

ray from B0 to C ′. But C ′ is the intersection of the ray from A0 to C ′ and the ray

from B0 to C ′, while C0 is the intersection of the ray from A0 to C0 and the ray from

A0 to C0. Thus C ′ = C0, which means after (possibly) a translation and a rotation

and a reflection, A, B, and C are brought respectively to A0, B0, and C0. We have

proved the ASA criterion.

It remains to point out that Larry Francis has also created an animation for the

proof of SAS:

Side-Angle-Side Congruence by basic rigid motions

2. Dilation and similarity

Dilations and the Fundamental Theorem of Similarity (page 43)

Basic properties of dilations (page 47)

The dilated image of a figure (page 53)

Simlarity (page 56)
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Dilations and the Fundamental Theorem of Similarity

So far we have dealt with rules of assignment in the plane that move points in

a distance-preserving manner (see page 23 for the definition). Now we will confront

an important class of such rules that definitely are not distance-preserving. Consider

this question: Given a wiggly curve such as the following, how can we “double its

size”?

One of the purposes of this section is to show how this can be done and, in the process,

clarify what it means to “double the size” of a geometric figure.

The heart of the matter is how to devise a rule D that moves points of the plane in

such a way that the distance between every two points is changed by a “scale factor”

of r, where r is a positive number,i.e., r > 0. Let us make sure the the meaning of this

statement is clear. Suppose we start with two points P and Q, and suppose D moves

them to P ′ and Q′, respectively. Then to say D changes distance by a scale factor of

5 means that the distance between P ′ and Q′, which is taken to be the length |P ′Q′|
of the segment P ′Q′, is 5 times the distance |PQ| between P and Q, no matter what

P and Q may be. (We introduced the notation of |PQ| on page 25.) In symbolic

shorthand, this information is succinctly expressed as

|P ′Q′| = 5 |PQ| for all P and for all Q.

Similarly, to say D changes distance by a scale factor of 1
3

means that the distance

|P ′Q′| between P ′ and Q′ is 1
3

times the distance |PQ| between P and Q, no matter

what P and Q may be, i.e.,

|P ′Q′| =
1

3
|PQ| for all P and for all Q.

Thus such a D either magnifies or contracts, depending on whether the scale factor

r is bigger than 1 (i.e., r > 1) or smaller than 1 (i.e., r < 1). Now we return to the
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initial question: how to get such a D? It would seem that this is impossible because

we are asking for too much, in the following sense. Let us fix the scale factor to be

2 (let us say) and let us look at a point P and a circle C of radius 1 around P . As

before, let P ′ = D(P ). If A is a point of C and A′ = D(P ), then |P ′A′| = 2 |PA| = 2

so that A′ lies on the circle of radius 2 around P ′. Thus we would expect the image

C ′ = D(C), to be the circle of radius 2 around P ′. Now take any two points A and B

on C, so that |PA| = |PB| = 1. Let A′ = D(A) and B′ = D(B). If D does magnify

distance by a factor of 2, then we would expect |A′B′| = 2 |AB|, no matter what A

and B may be. Now this does not seem likely because A′ and B′ are where they are

in order to satisfy the requirement that |P ′A′| = 2 |PA| and |P ′B′| = 2 |PB|, and

there is no reason to expect that they would satisfy this additional requirement of

|A′B′| = 2 |AB|. To make matters worse, if Q is another point and Q′ = D(Q), then

A′, B′ must also satisfy

|A′Q′| = 2 |AQ| and |B′Q′| = 2 |BQ|,

while at the same time |P ′Q′| = 2 |PQ|. How is this possible?

Q

P

A

B
P

A

B
.Q

.

The answer to this question turns out to be both surprising and simple. Fix a

point O and a scale factor r (r > 0), and we now describe D: D does not move O,

i.e., D(O) = O, but moves any other point P in such a way that, if r > 1, D pushes

P away from O along the ray ROP by a factor of r (i.e., if P ′ = D(P ), we require

|OP ′| = r |OP |,) but if r < 1, D pulls P toward O along the ray ROP by the same

factor r.
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The surprising part is that such a simple definition of D actually meets all the re-

quirements (see (i) on page 47).

We now make the formal definition.

Definition. A dilation D with center O and scale factor r (r > 0) is a

rule that assigns to each point P of the plane a point D(P ) so that

(1) D(O) = O.

(2) If P 6= O, the point D(P ), to be denoted more simply by P ′, is the

point on the ray ROP so that |OP ′| = r|OP |.

q q q︸ ︷︷ ︸
r |OP |

O P P ′

Here we restrict the scale factor to be a positive number. This is just a pedagogical

decision. One could allow it to be negative too, but it is neither necessary nor (in our

opinion) desirable.

Note that unless the scale factor r is equal to 1, a dilation is not a congruence.

The easiest way to see this is to consider two points P and Q in the same radial

direction of O, meaning that P and Q lie on the same ray issuing from O. Thus let

P and Q be any two points on such a ray so that |OQ| > |OP | and let P ′ = D(P )

and Q′ = D(Q).

q q qq qO P P ′Q Q′

We claim: |P ′Q′| = r |PQ|. This is because

|P ′Q′| = |OQ′| − |OP ′| = r |OQ| − r |OP | = r (|OQ| − |OP |) = r |PQ|
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This shows that the distances between points in the same radial direction are changed

by the dilation D by a factor of r. Consequently, D is not distance-preserving (see

page 23) if r 6= 1.

Now if points P and Q are not in the same radial direction of O, does the equality

|P ′Q′| = r |PQ| continue to hold? The answer is affirmative. We first dispose of the

special case where the segment PQ contains O.

qrq q q qP ′ P O Q Q′

Then by the above, we have |OP ′| = r |OP | and |OQ′| = r |OQ|, so that

|P ′Q′| = |P ′O|+ |OQ′| = r (|PO|+ |OQ|) = r |PQ|,

as desired.

If PQ does not contain O, then the fact that the same result continues to hold

is not obvious anymore. This is, in fact, the content of the following Fundamental

Theorem of Similarity, usually abbreviated to FTS. In the statement of the the-

orem, we adopt a common abuse of notation: Let LPQ (respectively, LP ′Q′) denote

the line joining P and Q (resp., P ′ and Q′). Then instead of writing LP ′Q′ ‖ LPQ, we

usually write:

P ′Q′ ‖ PQ

when there is no danger of confusion.

Theorem (FTS). Let D be a dilation with center O and scale factor r > 0. Let P

and Q be two points so that LPQ does not contain O. If D(P ) = P ′ and D(Q) = Q′,

then

P ′Q′ ‖ PQ and |P ′Q′| = r |PQ|
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The case r < 1
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The eighth grade is not the right place to prove this theorem; a high school course

will be able to handle such a proof better. What one can do in an eighth grade class is

to verify simple cases of FTS by direct measurement to gain confidence in its validity.

For example, one can start with r = 2, 3, 4, and then verify that (within the bounds

of measurement errors), indeed, |P ′Q′| = 2|PQ|, |P ′Q′| = 3|PQ|, |P ′Q′| = 4|PQ|,
respectively. Then do the same with r = 1

2 , r = 2
3 , r = 3

4 , etc.

What we can do with FTS is to learn how to apply it to deduce the most basic

properties of a dilation. This is what we do next.

Basic properties of dilations

There are four of them. First of all, notice that insofar as a dilation is a rule

of assignment in the plane, we will simply take over the terminology associated with

basic rigid notions such as maps, image, composition, etc. We will also fix the notation

as in FTS, i.e., we have a dilation D with center at O and scale factor r. Then the

discussion leading up to FTS about |P ′Q′| may now be summarized as follows:

(i) Let D be a dilation with scale factor r. Then the distance between the

images P ′ = D(P ), Q′ = D(Q) of any two points P and Q is r times the

distance between P and Q, i.e.,

|P ′Q′| = r |PQ|.

We paraphrase (i) by saying that a dilation with scale factor r changes distance by a

factor of r. A second property is this:

(ii) A dilation maps lines to lines, rays to rays, and segments to seg-

ments.

We will consider only the case of lines; the other two assertions about rays and

segments are similar. So given a line LPQ, we have to show that D(LPQ) is a line.

If LPQ contains the center of dilation O, it is easy to see that D(LPQ) = LPQ. We

will therefore assume that LPQ does not contain O so that FTS becomes applicable.

With D(P ) = P ′ and D(Q) = Q′ as usual, (ii) asserts that D(LPQ) = LP ′Q′ . In

greater detail, this means
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(1) if R is a point on the line LPQ, then D(R) lies on LP ′Q′ , and

(2) conversely, every point R′ on line LP ′Q′ is the image of some point R

on LPQ, i.e., D(R) = R′.

For eighth grade students, we suggest that it suffices for them to know the meaning

of both statements and verify, by direct measurements, various special cases where

the scale factor is a whole number or a simple fraction such as 3
2 or 4

5 . For teachers,

however, knowing the following simple argument would be essential.

Let us show that for a point R on the line LPQ, the point R′ = D(R) lies on LP ′Q′ .
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(The case r > 1.)

To show that R′ lies on LP ′Q′ , it suffices to show that the line LP ′R′ and the line LP ′Q′

coincide. Now,

D(P ) = P ′ and D(Q) = Q′ imply P ′Q′ ‖ PQ, by FTS.

D(P ) = P ′ and D(R) = R′ imply P ′R′ ‖ PR, by FTS.

Thus we have P ′Q′ ‖ PQ, and P ′R′ ‖ PQ. So it seems that we have two different

lines LP ′Q′ and LP ′R′ and both go through P ′ and both are parallel to LPQ. We

would like to say this is impossible unless the two lines coincide. To reach this con-

clusion, we have to bring to the fore the following basic assumption of plane geometry.

Parallel Postulate. Through a point A not lying on a line L passes one and

only one line which is parallel to L.

According to the Parallel Postulate, since the two lines P ′R′ and P ′Q′ both pass

through P ′ and are both parallel to PQ, they must be one and the same line. This

is exactly what we want to prove.
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The reasoning for the converse (i.e., every point R′ on line LP ′Q′ is the image of

some point R on LPQ, i.e., D(R) = R′) is entirely similar if we look at the dilation D1

with center O but with scale factor 1
r and observe that P = D1(P

′) and Q = D1(Q
′).

So the same argument shows that D1(R
′) is a point of LPQ. If we denote D1(R

′) by

R, then this implies D(R) = R′. This shows D(LPQ) = LP ′Q′ .

Now that we know a dilation D maps a line PQ to the line P ′Q′, where P ′, Q′

are the images of P , Q under D, FTS now implies:

(iii) A dilation maps a line not containing the center of dilation to a

parallel line.

A fourth basic property of dilation is the following.

(iv) A dilation preserves degrees of angles.

We note first of all that (iv) makes sense because by (ii) above, a dilation maps rays

to rays and therefore angles to angles. So it makes sense to ask for the degree of the

image angle by a dilation. For eighth grade students, the following informal argument

for (iv) would be enough and a rigorous proof can be postponed until a high school

course. We begin with a fact about parallel lines. Let L1 and L2 be two distinct lines

and let ` be a transversal of L1 and L2 in the sense that ` intersects both. Suppose

` meets L1 and L2 at P1 and P2, respectively. Then the angles ∠SP2R2 and ∠P2P1Q1

in the picture below, with vertices at P1 and P2 and lying on the same side of the

line `, are called a pair of corresponding angles of the transversal ` with respect to

L1 and L2. Similarly, ∠R2P2P1 and ∠Q1P1T are also corresponding angles of ` with

respect to L1 and L2.
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Then we have the following theorem.

Theorem 1. (a) Corresponding angles of a transversal with respect to parallel lines

are equal. (b) Conversely, if a pair of corresponding angles of a transversal with

respect to two lines are equal, then the two lines are parallel.

We suggest that eighth graders simply verify special cases of this theorem by direct

measurement. In fact, it would be very instructive to teach them about part (b) of

this theorem by showing them the following efficient method of drawing a pair of

parallel lines using plastic triangles.

There are two kinds of plastic triangles on the market, the 90-45-45 one and the

90-60-30 one, as shown.
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Given a point P and a line L not containing P , we will show how to draw a line

passing through P parallel to L.
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We can use either triangle for this purpose, but for definiteness, we will use the

90-45-45 triangle in the following discussion. The procedure is given in steps (1)–(5),

and the simple explanation of the procedure as it is related to Theorem 1 will be

given after step (5).

(1) Place a ruler along the line L. See the pictures below; the red vertical line is

an imaginary line that will be explained later.

(2) Holding the ruler in place with one hand, put one leg of the triangle flush

against the ruler as shown in the left picture below.

(3) Now hold the triangle firmly in place and put the ruler flush against the

vertical side of the triangle, as shown in the right picture below.
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(4) Hold the ruler firmly in place and slide the triangle along the ruler until the

horizontal side passes though the point P , as shown in the picture on the left below.

(5) Gently remove the ruler and draw the parallel line through P as in the fol-

lowing picture on the left, or place the ruler flush against the horizontal side of the

triangle before drawing the line, as shown in the following picture on the right.
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Now the explanation. We will use the red vertical line as the transversal of L and

the line through P that was drawn in step (5). By the very nature of the drawing,

any pair of corresponding angles of the red line with respect to these two lines will

both be 90 degrees and therefore equal. By (b) of Theorem 1, the line drawn in step

(5) is parallel to L.

We can now return to the original problem which inspired this detour into paral-

lelism: How to prove that a dilation preserves degrees of angles (page 49). Let D be

a dilation and let ∠PQS be given. Let D(QP ) = Q′P ′ and if R is the intersection

of LQS and LQ′P ′ , let D(R) = R′, so that D(∠PQS) = ∠P ′Q′R′. We have to prove

that

|∠PQS| = |∠P ′Q′R′|
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Let the angle formed by LQ′P ′ and LQR at R, as indicated in the picture, be denoted

by ∠T . Since D(QR) = Q′R′, (iii) implies that QR ‖ Q′R′ (page 49), so that, by
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Theorem 1(a),

|∠P ′Q′R′| = |∠T

Since also D(QP ) = Q′P ′ by assumption, we have QP ‖ Q′P”. So once more

Theorem 1(a) implies that

|∠T | = |∠PQS|

Hence |∠PQS| = |∠P ′Q′R′|, as desired.

We have just given the essential idea of why a dilation preserves degrees of angles.

The dilated image of a figure

Property (ii) of a dilation makes it very easy to draw the dilated image of a

rectilinear geometric figure, i.e., one that is the union of segments. Consider a

segment PQ and a dilation D, then the image D(PQ) by D is simply the segment

P ′Q′, where P ′, Q′ are the images of P and Q by D, respectively. This is because

(iii) says the image D(PQ) is a segment joining D(P ) = P ′ and D(Q) = Q′; since

P ′Q′ is also a segment joining P ′ and Q′, we must have D(PQ) = P ′Q′ (there is only

one line joining two distinct points).

For example, if we have to get the dilated image of a given quadrilateral ABCD

with a scale factor of 2.1, we take a point O as the center of dilation, draw rays from

O to the vertices. On each of these rays, say the ray from O to A, mark down A′

so that |OA′| = (2.1)|OA|. We thus obtain a quadrilateral A′B′C”D′. By assertion

(iii), D(ABCD) = A′B′C ′D′.
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This D(ABCD) is by definition the magnification of ABCD to (2.1) times its

size. If the scale factor r < 1, then we’d speak of the reduction to r times its

size. So for rectilinear figures, how to magnify or reduce them is straightforward.

Notice that, in an intuitive sense, ABCD and D(ABCD) do “look alike”, i.e.,

they have “the same shape”.

We can now return to the curve at the beginning of this section:

How to “double its size”? We choose an arbitrary point O outside the curve as center

of a dilation and dilate the curve with a scale factor of 2. Now by definition, dilating

the curve means dilating it point by point, and since the curve contains an infinite

number of points, we must compromise by dilating only a finite number of points on

the curve. We start simply: take a point P on the curve and on the ray OP , we mark

off a point P ′ so that |OP ′| = 2|OP |. Now repeat this for a small number of such

P ’s and get something like the following. The contour of a curve that is bigger than,

but “looks like” the original is unmistakable.

O
P

P

If we take more points on the original curve and dilate each of them, we get a better

approximation to the curve.
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Now if we choose, let us say 1500 points that are evenly spread out on the original

curve,6 and dilate them one-by-one, we get the usual curves that appear on the

computer screen. (The visual perception of humans is so crude that it does not even

“see” the missing points.) We have omitted the radial lines but retained the center

of the dilation; on a normal computer screen, of course even the center is omitted.

O

By definition, the above dilated image of the curve with a scale factor of 2 is

what is meant by a curve double the size of the original. Observe that it

“has the same shape” as the original curve, but does look as if “it is twice as big”.

In general, the dilated image of a geometric figure by a dilation (with some chosen

center) with scale factor r > 0 is called an r-fold magnification of the original

figure if r > 1, and is called an r-fold reduction of the original figure if r < 1.

What we have described here is the underlying principle of digital photography; this

is how an image is magnified or reduced in the digital world.

In a classroom, getting students to do the magnification or reduction of a curvy

figure by dilation (with a reasonable number of points chosen and strategically placed

6This is an estimate of how many points the graphing software uses.
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on the original figure) would be a very worthwhile learning experience. It reinforces

their understanding of the definition of dilation, and it is also a “fun” activity because

it is not at all obvious beforehand how a figure can be magnified or reduced.

We will not prove it here, but it is true that the dilated images of a given figure

by dilations with a fixed scale factor r from different chosen centers are all congruent

to each other, i.e., they are all, intuitively, of the “same size and same shape”. This

is why the preceding discussion made no reference to a particular choice of the center

of dilation.

Similarity

Because we have just brought the concept of congruence into the discussion of

dilation, this is the right place to take up the concept of similarity. What is a correct

and useful definition of two figures being “similar”? We have seen that the dilated

image of a figure “has the same shape” as the original, but can we say that two figures

are “similar” only if one is the dilated image of the other? Consider, for example,

the dilated image of a triangle ABC to a triangle A0B0C0 by a dilation D centered

at O as shown, with a scale factor r < 1. Of course these two triangles “have the

same shape”. Now let a congruence F move 4A0B0C0 to 4A′B′C ′, as shown (more

precisely, F is the composition of a 90 degree clockwise rotation around B0 followed

by a translation).

A

A

A C

C B

B

0 C0

Because 4A0B0C0 and 4A′B′C ′ “have the same size and the same shape”, we

have to agree that 4ABC and 4A′B′C ′ also have the same shape. Yet we can show

that there is no dilation D′ that maps4ABC to4A′B′C ′ because if there were, we’d
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have

D(A) = A′ and D(B) = B′

so that by property (iii) of a dilation (page 49), we’d have AB ‖ A′B′, which is

not the case. Therefore similarity between geometric figures cannot be limited to

those so that one is obtained from the other by a dilation. At the same time, the

preceding example also suggests how to define similarity correctly: we should include

the composition with a congruence in the definition.

We define a figure S in the plane to be similar to another figure S ′ if there is a

dilation D and a congruence F so that (F ◦D)(S) = S ′. According to this definition,

we now see that 4ABC is similar to 4A′B′C ′ because if D is the dilation that maps

4ABC to 4A0B0C0 and F is the congruence that maps 4A0B0C0 to 4A′B′C ′, then

(F ◦D)(4ABC) = F (D(4ABC)) = F (4A0B0C0) = 4A′B′C ′

According to this definition, it is also the case that if a dilation D maps a figure

S to another figure S ′, then S is similar to S ′ because we can let the congruence F

be the identity basic rigid motion I (page 16) so that (I ◦D)(S) = S ′.
The composition F ◦D of a dilation followed by a congruence is called a similarity.

We remark that the definition of similarity could equally well be formulated as a

congruence followed by a similarity, D ◦ F . It can be shown that the two definitions

are equivalent, in the sense that for any two figures S and S ′, there is a dilation D

followed by a congruence F so that (F ◦D)(S) = S ′, if and only if there is a congru-

ence F1 followed by a dilation D1 so that (D1 ◦ F1)(S) = S ′. In addition, it can be

proved that if a figure S is similar to another figure S ′, then S ′ is also similar to S. To

understand this statement, we have to unravel the definition of similarity, and what it

says is this: if there is a dilation D and a congruence F so that (F ◦D)(S) = S ′, then

there is a dilation D′ and a congruence F ′ so that (F ′ ◦ D′)(S ′) = S. These proofs

are not suitable for eighth grade, but both statements are conceptually important,

and they should be invoked when necessary.

3. The angle-angle criterion (AA) for similarity

Let 4ABC be similar to 4A′B′C ′.
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Thus there is a dilation D and a congruence F so that (F ◦D)(4ABC) = 4A′B′C ′.
It is convenient to denote the similarity F ◦ D by a single letter, say ϕ = F ◦ D.

Recalling the convention regarding the notation of congruent triangles, we explicitly

point out that the notation ϕ(4ABC) = 4A′B′C ′ carries the convention that

ϕ(A) = A′, ϕ(B) = B′, and ϕ(C) = C ′

Let the scale factor of the dilation D be r. Then this r will also be called the scale

factor of the similarity ϕ. Let

D(A) = A∗, D(B) = B∗, and D(C) = C∗

By properties (i) and (iv) of dilations (pages 47 and 49), we get

|∠A| = |∠A∗|, |∠B| = |∠B∗|, |∠C| = |∠C∗|

and
|AB|
|A∗B∗|

=
|BC|
|B∗C∗|

=
|AC|
|A∗C∗|

(= r)

Now F is a congruence which preserves lengths and degrees. Therefore all this infor-

mation about 4A∗B∗C∗ will be transferred to 4A′B′C ′. We summarize this discus-

sion in the following theorem.

Theorem 2. Let 4ABC be similar to 4A′B′C ′. Then

|∠A| = |∠A′|, |∠B| = |∠B′|, |∠C| = |∠C ′|

and
|AB|
|A′B′|

=
|BC|
|B′C ′|

=
|AC|
|A′C ′|
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It is worth remarking that whereas the content of this theorem is usually taken

to be the definition of similar triangles, for us this theorem is a logical consequence

of the precise definition of similarity that confirms our intuition about what it means

for two figures to have “the same shape”.

The converse of Theorem 2 is also true. However, as in the case of congruence

(page 39), much more is true. The following are the counterparts in similarity of the

SAS, ASA and SSS criteria for congruence, respectively.

SAS criterion for similarity. Given two triangles ABC and A′B′C ′,

suppose

|∠A| = |∠A′| and
|AB|
|A′B′|

=
|AC|
|A′C ′|

.

Then they are similar.

AA criterion for similarity. Given two triangles ABC and A′B′C ′,

suppose two pairs of corresponding angles are equal. Then they are simi-

lar.

SSS criterion for similarity. Given two triangles ABC and A′B′C ′,

suppose the ratios of the (lengths) of three pairs of corresponding sides

are equal. Then they are similar.

The proofs of these theorems are more suitable for a high school course than

an eighth grade class, but we are going to give a proof of the AA criterion because

it is so central to the discussion of the slope of a line. Fortunately, it is relatively short.

Proof of AA for similarity. So suppose we are given triangles ABC and A′B′C ′

such that |∠A| = |∠A′| and |∠B| = |∠B′|. We have to show that the triangles are

similar.
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If |AB| = |A′B′|, then triangles ABC and A′B′C ′ are congruent because of the

ASA criterion for congruence (pages 39 and 40); there would be nothing to prove.

Thus we may assume that they are not equal, let us say, A′B′ is shorter than AB.

On the segment AB, let B∗ be the point so that AB∗ is the same length as A′B′, i.e.,

|AB∗| = |A′B′|. Also let r = |AB∗|/|AB|. Denote the dilation with center A and

scale factor r by D, and let C∗ be the point in the segment AC so that C∗ = D(C).

By FTS (page 46), B∗C∗ ‖ BC and therefore |∠AB∗C∗| = |∠B|, by Theorem 1 (page

50). But by hypothesis, |∠B| = |∠B′|, so

|∠AB∗C∗| = |∠B′| .

The triangles AB∗C∗ and A′B′C ′ now satisfy the conditions of ASA and are congru-

ent. Hence there is a congruence F so that F (4AB∗C∗) = 4A′B′C ′. But by the

definition of D, we already have D(4ABC) = 4AB∗C∗. Thus (F ◦D)(4ABC) =

4A′B′C ′ because

(F ◦D)(4ABC) = F (D(4ABC)) (by the definition of F ◦D)

= F (4AB∗C∗) (because D(4ABC) = 4AB∗C∗)
= 4A′B′C ′. (because F (4AB∗C∗) = 4A′B′C ′)

The two triangles ABC and A′B′C ′ are therefore similar and the proof is complete.

We remark that this proof, while correct as is, depends on the validity of the ASA

criterion for congruence, FTS, and Theorem 1.
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4. The Pythagorean Theorem

Definition of slope ( page 61)

Proof of the Pythagorean Theorem (page 63)

Definition of slope

For eighth grade, the significance of the above three criteria for similarity lies not

so much in getting students to know how to prove them as in their ability to put

them to use. In this section, we give two examples of such applications: the first is

to correct a longstanding misconception of the slope of a line, and the second one is

a proof of the Pythagorean theorem and its converse.

A typical example arising from algebra is the following. Given a line L in the

coordinate plane, take two points P = (p1, p2) and Q = (q1, q2) on L and let lines

parallel to the coordinate axes be drawn so that they meet at R, as shown.
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For this line, the slope of L is defined as the ratio

|PR|
|QR|

Now we come to a serious issue that is overlooked in almost all school textbooks: Is

this definition of slope well-defined, in the sense that, if two other points P ′, Q′ on

L are chosen and we get a point of intersection R′ in like manner (see picture), is it

true that the corresponding ratio remains the same? Because this issue is important,

we give it greater exposure: if by taking a different pair P ′, Q′, we get a different

61



number |P ′R′|/|Q′R′| , then the ratio |PR|/|QR| cannot be called the slope of the

line L but rather

the slope of the two points P and Q that happen to be chosen on L.

Fortunately, we are going to prove that

|PR|
|QR|

=
|P ′R′|
|Q′R′|

,

so this ratio is a property of the line L after all and not of the pair of points chosen.

Knowing the independence of the ratio from the choice of the pair of points gives

a completely different perspective on the concept of slope; it suggests a different

pedagogy on teaching the graph of linear equations of two variables. But that is a

different story.

To prove the preceding equality, we are going to use the AA criterion for similarity

(page 59) to prove that triangles PQR and P ′Q′R′ are similar. Indeed, the lines QR

and Q′R′, being both parallel to the x-axis. are parallel to each other. Theorem 1

(page 50) implies that |∠PQR| = |∠P ′Q′R′|. Since ∠PRQ and ∠P ′R′Q′ are right

angles, they are also equal. So the triangles PQR and P ′Q′R′ have two pairs of equal

angles and are therefore similar. By Theorem 2 (page 58), we get

|PR|
|P ′R′|

=
|QR|
|Q′R′|

This implies
|PR|
|QR|

=
|P ′R′|
|Q′R′|

by the cross-multiplication algorithm. We are done.

We should make contact with the usual definition of slope for P = (p1, p2) and

Q = (q1, q2) on a line L as the ratio

p2 − q2
p1 − q1

In case (p2 − q2)(p1 − q1) > 0, which is the case of the above graph, then either both

q2 − p2 and q1 − p1 are positive or both are negative. So (p2 − q2) = ±|PR| and

(p1 − q1) = ±|QR|, so that
p2 − q2
p1 − q1

=
|PR|
|QR|

.
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This why the preceding argument is a valid one about the slope of a line. Of course,

it could happen that (p2− q2)(p1− q1) < 0, which is the case for the following line L:
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The same argument now shows that

p2 − q2
p1 − q1

= − |PR|
|QR|

.

Therefore except for the matter of strategically placing negative signs in the appro-

priate places, the same reasoning shows that the definition of slope is independent of

the pair of points chosen.

Proof of the Pythagorean Theorem

As our second application of the AA criterion for similarity, we prove the Pythagorean

Theorem. This is one among many proofs of this theorem. Let us fix the terminology.

Given a right triangle ABC with C being the vertex of the right angle. Then the

sides AC and BC are called the legs of 4ABC, and AB is called the hypotenuse

of 4ABC.
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Theorem 3 (Pythagorean Theorem). If the lengths of the legs of a right triangle

are a and b, and the length of the hypotenuse is c, then a2 + b2 = c2.

The basic idea of the proof is very simple. Referring to the same picture, we draw

a perpendicular CD from C to side AB, as shown:
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We draw this perpendicular because it creates, from the point of view of the AA

criterion for similarity, three similar triangles. For example, right triangles CBD and

ABC are similar because they share ∠B in addition to having equal right angles.

Likewise, right triangles ACD and ABC are similar because they share ∠A. All this

is clearly laid out in an animation of the proof created by Larry Francis:

Pythagorean Theorem proof from similar right triangles

Specifically, for the similar triangles 4ABC and 4ACD, in order to set up the

correct proportionality of sides, Theorem 2 (page 58) tells us that we need the cor-

rect correspondences of the vertices. The vertices of the two right angles obviously

correspond, so C of 4ABC corresponds to D of 4CDB. The two triangles share

∠B, so B of 4ABC corresponds to B of 4CDB. Now there is no choice but that A

of 4ABC corresponds to C of 4CDB. Thus we have:

C ↔ D, B ↔ B, A↔ C

Hence
|BA|
|BC| = |BC|

|BD| , so that by the cross-multiplication algorithm,

|BC|2 = |AB| · |BD|

By considering the similar right triangles ABC and ACD, we conclude likewise that
|AC|
|AB| = |AD|

|AC| and

|AC|2 = |AB| · |AD|

64

http://youtu.be/QCyvxYLFSfU


Adding, we obtain

|BC|2 + |AC|2 = |AB| · |BD|+ |AB| · |AD| = |AB| ( |BD|+ |DA| ) = |AB|2

This is the same as a2 + b2 = c2. The proof is complete.

We note that the converse of the Pythagorean Theorem is also correct, and

its proof—surprisingly—depends on the Pythagorean Theorem itself. So suppose, in

the notation and the picture above, c2 = a2 + b2. We have to prove AC ⊥ CB.

Let E be the point on LBC so that AE ⊥ CB. A priori, we have no idea if E is

equal to C or not, and the goal is to show that it is. E could be on either side of C,

and it makes no difference as far as the proof is concerned. So let us say E is between

C and B.
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We are given c2 = a2 + b2, while the Pythagorean Theorem applied to 4AEB gives

c2 = |AE|2 + |EB|2, which then becomes c2 = |AE|2 + (a − |CE|)2. Applying the

Pythagorean Theorem to 4ACE (remember AE ⊥ CB) gives |AE|2 = b2 − |CE|2.
Therefore

c2 = |AE|2 + (a− |CE|)2 = (b2 − |CE|2) + (a− |CE|)2 = (a2 + b2)− 2a |CE|

Comparing with c2 = a2+b2, we get −2a |CE| = 0. Since a > 0, necessarily |CE| = 0.

Thus C = E, and the converse of the Pythagorean Theorem is proved.

One should give many exercises on the applications of the Pythagorean Theorem

and its converse, including the distance formula in a coordinate system.
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5. The angle sum of a triangle

We bring closure to the discussion of the AA criterion for similarity. If you look at

all six theorems for congruence or similarity (page 39 and 59), you would notice that

the hypothesis of each of them consists of three equalities except for the AA criterion,

which has two equalities for angles. It is time to point out that the apparent difference

is an illusion because we will prove the Angle Sum Theorem: The angle sum of a

triangle (i.e., the sum of the degrees of the angles in a triangle) is always 180 degrees.

Thus if two pairs of angles in the triangles are equal, then all three pairs of angles are

equal.

To this end, recall that we made use of the concept of corresponding angles of a

transversal relative to a pair of lines in Theorem 1 (page 50) . We now introduce a

related concept of alternate interior angles. For eighth grade, it is best to dispense

with the rather cumbersome precise definition and simply draw a picture and point

to a pair of angles as examples of alternate interior angles, such as the angles that

are marked down in each picture below:

Note that, given a pair of alternate interior angles, the opposite angle (or vertical

angle) of either of the pair together with the other angle form a pair of corresponding

angles. We illustrate with the preceding alternate interior angles by marking down

the resulting corresponding angles in each case:
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In view of Theorem 1 (page 50) and the fact that opposite angles are equal, we

have:

(a) Alternate interior angles of a transversal with respect to parallel lines

are equal. (b) Conversely, if a pair of alternate interior angles of a

transversal with respect to two lines are equal, then the two lines are par-

allel.

We are now in a position to prove that the angle sum of a triangle is always equal

to 180 degrees. Let triangle ABC be given. On the ray from B to C, take a point D

so that the segment BD contains C. Through the point C, draw a line CE parallel

to AB, as shown.
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q q
Now |∠A| = |∠ACE| as they are alternate interior angles of AC relative to the par-

allel lines AB and CE. In addition, |∠B| = |∠ECD| because they are corresponding

angles of BD. Therefore the angle sum of triangle ABC is equal to the sum of the

angles that make up the straight angle ∠BCD, and we are done.7

7Without going into details, there are subtle issues inherent in this proof that we have intention-
ally neglected.
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6. Volume formulas

In grade 7, we explained why if a (right) rectangular prism has dimensions a, b, c,

its volume is abc cubic units (i.e., if the linear unit is inches, the unit of the volume

measure is inches3, if the linear unit is cm., then the volume measure is in terms of

cm.3), etc. In grade 8, we expand the inventory of volume formulas to include those

of a (generalized) right cylinder, a cone, and a sphere.

First we recall an interpretation of the volume formula for a rectangular prism. If

we have such a prism, as shown,

C

b
aA B

c

D

and if we call the rectangle ABCD the base of the prism and c its height, then

(A) volume of rectangular prism = (area of base) × height

In this form, this formula can be generalized, as follows. Let R be a region in the

plane, then the right cylinder over R of height h is the solid which is the union

of all the line segments of length h lying above the plane, so that each segment is

perpendicular to the plane and its lower endpoint lies in R. When a right cylinder is

understood, we usually say “cylinder” rather than “right cylinder”. The region R is

called the base of the cylinder. Notice that the top of a right cylinder (i.e., the points

in the cylinder of maximum distance from the base) over R is also a planar region

which is congruent to R, but we will not spend time to explain what “congruent”

means in three dimensions and will use the term in a naive sense.

R

Then we have:

(B) volume of right cylinder over R of height h = (area of R) × h

So if R is a rectangle, this yields volume formula (A) for a rectangular prism, but if

R is a circle of radius r, then the right cylinder over a circle of radius r is called a

right circular cylinder. The preceding formula then implies
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h

(C) volume of right circular cylinder of radius r and height h = π r2h

The case of a right circular cylinder is the most important example of a “cylin-

der” in school mathematics, but the reason we introduce the more general concept

of a cylinder over an arbitrary planar region is that the explanations of the volume

formulas (B) and (C) are the same. It is also important to recognize that there is

only one general volume formula for cylinders, i.e., (B).

Let P be a point in the plane that contains the top of a cylinder of height h. Then

the union of all the segments joining P to a point of the base R is a solid called a

cone with base R and height h. The point P is the top vertex of the cone.

Here are two examples of such cones.

h

P

P

h

One has to be careful with this use of the word “cone” here. If the base R is a

circle, then this cone is called a circular cone (see left figure below). If the vertex
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of a circular cone happens to lie on the line perpendicular to the circular base at its

center, then the cone is called a right circular cone (see the figure second from left

below). In everyday life, a “cone” is implicitly a right circular cone, and in many

textbook, this is how the word “cone” is used. If the base is a square, then the cone

is called a pyramid (see middle figure below). If the vertex of a pyramid lies on the

line perpendicular to the base at the center of the square (the intersection of the

diagonals), the pyramid is called a right pyramid (see the figure second from right

below). If the base is a triangle, the cone is called a tetrahedron (see right picture

below).

The fundamental formula here is

(D) volume of cone with base R and height h

= 1
3 volume of cylinder with same base and same height

Of great interest here is the factor 1
3 , which is independent of the shape of the base.

How this factor comes about is most easily seen through the actual computations

using calculus. However, one can see the geometric reason for the 1
3 in an elementary

way, as follows. Consider the unit cube, i.e., the rectangular prism whose sides all

have length 1. The unit cube has a center O, and the simplest definition of O may

be through the use of the mid-section, which is the square that is halfway between

the top and bottom faces (see the dashed square in the following picture), and let O

be the intersection of the diagonals of the mid-section. It is easy to convince oneself

that O is equidistant from all the vertices and also from all six faces.

Then the cone obtained by joining O to all the points of one face is congruent8 to

the cone obtained by joining O to all the points of any other face. There are six such

cones.
8Again we leave undefined the meaning of “congruent” in this context and allow it to be under-

stood in a naive sense.
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O

Let C be the cone joining O to the base of the unit cube; it is the red cone above.

Of course congruent geometric figures have the same volume, and since six cones

congruent to C make up the unit cube, and the unit cube has volume 1 by definition,

we obtain:

volume of C = 1
6

The right way to interpret this formula is to consider the rectangular prism which

is the lower half of the unit cube, i.e., the part of the unit cube that is below the

mid-section:

O

This particular rectangular prism has volume 1
2 , and since 1

6 is equal to 1
3 ×

1
2 , we

have

volume of cone C = 1
3 (volume of cylinder with same base, same height)

Here we see the emergence of the factor of 1
3 , and this is no accident because, using

ideas from calculus, one can show that if the preceding formula is true for one cone

C, then it is true for all cones.

Finally, we come to the volume formula of a sphere of radius r:
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(E) volume of sphere of radius r = 4
3 π r

3

The derivation of this formula is sophisticated and will have to be left to a high

school course. The discovery of this formula was a major event in the mathematics of

antiquity, and this honor goes to Archimedes (287–212 B.C.). However, this formula

was also independently discovered in China by Zu Chongzhi (429–501 AD) and his

son Zu Geng (circa 450–520 AD), by essentially the same method.9 Archimedes’

formulation of his result — one that he was proudest of — is the following:

Let a sphere of radius r be given, then it has a circumscribing right

circular cylinder, i.e., a right circular cylinder so that its radius is r and

its height is 2r. Then:

r

2r

volume of sphere = 2
3 (volume of circumscribing right cylinder)

surface area of sphere = 2
3 (surface area of circumscribing right cylinder)

It would make a good exercise for an eighth grader to verify the first assertion.

9This method has come to be known as Cavalieri’s Principle. Bonaventura Cavalieri, 1598–1647,
was eleven centuries behind the Zus.
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HIGH SCHOOL

Congruence G-Co

Experiment with transformations in the plane

1. Know precise definitions of angle, circle, perpendicular line, parallel line, and line

segment, based on the undefined notions of point, line, distance along a line, and distance

around a circular arc.

2. Represent transformations in the plane using, e.g., transparencies and geometry

software; describe transformations as functions that take points in the plane as inputs and

give other points as outputs. Compare transformations that preserve distance and angle

to those that do not (e.g., translation versus horizontal stretch).

3. Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rota-

tions and reflections that carry it onto itself.

4. Develop definitions of rotations, reflections, and translations in terms of angles,

circles, perpendicular lines, parallel lines, and line segments.

5. Given a geometric figure and a rotation, reflection, or translation, draw the trans-

formed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a

sequence of transformations that will carry a given figure onto another.

Understand congruence in terms of rigid motions

6. Use geometric descriptions of rigid motions to transform figures and to predict the

effect of a given rigid motion on a given figure; given two figures, use the definition of

congruence in terms of rigid motions to decide if they are congruent.

7. Use the definition of congruence in terms of rigid motions to show that two trian-

gles are congruent if and only if corresponding pairs of sides and corresponding pairs of
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angles are congruent.

8. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from

the definition of congruence in terms of rigid motions.

Prove geometric theorems

9. Prove theorems about lines and angles. Theorems include: vertical angles are

congruent; when a transversal crosses parallel lines, alternate interior angles are congru-

ent and corresponding angles are congruent; points on a perpendicular bisector of a line

segment are exactly those equidistant from the segment’s endpoints.

10. Prove theorems about triangles. Theorems include: measures of interior angles

of a triangle sum to 180; base angles of isosceles triangles are congruent; the segment

joining midpoints of two sides of a triangle is parallel to the third side and half the length;

the medians of a triangle meet at a point.

11. Prove theorems about parallelograms. Theorems include: opposite sides are con-

gruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other,

and conversely, rectangles are parallelograms with congruent diagonals.

Make geometric constructions

12. Make formal geometric constructions with a variety of tools and methods (com-

pass and straightedge, string, reflective devices, paper folding, dynamic geometric soft-

ware, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle;

constructing perpendicular lines, including the perpendicular bisector of a line segment;

and constructing a line parallel to a given line through a point not on the line.

13. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a

circle.
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Similarity, right triangles, and trigonometry G-Srt

Understand similarity in terms of similarity transformations

1. Verify experimentally the properties of dilations given by a center and a scale factor:

a. A dilation takes a line not passing through the center of the dilation to a parallel

line, and leaves a line passing through the center unchanged.

b. The dilation of a line segment is longer or shorter in the ratio given by the scale

factor.

2. Given two figures, use the definition of similarity in terms of similarity transforma-

tions to decide if they are similar; explain using similarity transformations the meaning of

similarity for triangles as the equality of all corresponding pairs of angles and the propor-

tionality of all corresponding pairs of sides.

3. Use the properties of similarity transformations to establish the AA criterion for

two triangles to be similar. Prove theorems involving similarity.

4. Prove theorems about triangles. Theorems include: a line parallel to one side of

a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem

proved using triangle similarity.

5. Use congruence and similarity criteria for triangles to solve problems and to prove

relationships in geometric figures.

Define trigonometric ratios and solve problems involving right triangles

6. Understand that by similarity, side ratios in right triangles are properties of the

angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

7. Explain and use the relationship between the sine and cosine of complementary

angles.
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8. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in

applied problems.

Apply trigonometry to general triangles

9. (+) Derive the formula A = 1
2
ab sin(C) for the area of a triangle by drawing an

auxiliary line from a vertex perpendicular to the opposite side.

10. (+) Prove the Laws of Sines and Cosines and use them to solve problems.

11. (+) Understand and apply the Law of Sines and the Law of Cosines to find un-

known measurements in right and non-right triangles (e.g., surveying problems, resultant

forces).

Circles G-C

Understand and apply theorems about circles

1. Prove that all circles are similar.

2. Identify and describe relationships among inscribed angles, radii, and chords. In-

clude the relationship between central, inscribed, and circumscribed angles; inscribed

angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent

where the radius intersects the circle.

3. Construct the inscribed and circumscribed circles of a triangle, and prove properties

of angles for a quadrilateral inscribed in a circle.

4. (+) Construct a tangent line from a point outside a given circle to the circle.

Find arc lengths and areas of sectors of circles

5. Derive using similarity the fact that the length of the arc intercepted by an angle
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is proportional to the radius, and define the radian measure of the angle as the constant

of proportionality; derive the formula for the area of a sector.

Expressing Geometric Properties with equations G-GPe

Translate between the geometric description and the equation for a conic

section

1. Derive the equation of a circle of given center and radius using the Pythagorean

Theorem; complete the square to find the center and radius of a circle given by an equation.

2. Derive the equation of a parabola given a focus and directrix.

3. (+) Derive the equations of ellipses and hyperbolas given the foci, using the fact

that the sum or difference of distances from the foci is constant.

Use coordinates to prove simple geometric theorems algebraically

4. Use coordinates to prove simple geometric theorems algebraically. For example,

prove or disprove that a figure defined by four given points in the coordinate plane is a

rectangle; prove or disprove that the point (1,
√

3) lies on the circle centered at the origin

and containing the point (0, 2).

5. Prove the slope criteria for parallel and perpendicular lines and use them to solve

geometric problems (e.g., find the equation of a line parallel or perpendicular to a given

line that passes through a given point).

6. Find the point on a directed line segment between two given points that partitions

the segment in a given ratio.

7. Use coordinates to compute perimeters of polygons and areas of triangles and

rectangles, e.g., using the distance formula.
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Geometric measurement and dimension G-Gmd

Explain volume formulas and use them to solve problems

1. Give an informal argument for the formulas for the circumference of a circle, area

of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri’s

principle, and informal limit arguments.

2. (+) Give an informal argument using Cavalieri’s principle for the formulas for the

volume of a sphere and other solid figures.

3. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.

Visualize relationships between two-dimensional and three-dimensional ob-

jects

4. Identify the shapes of two-dimensional cross-sections of three-dimensional objects,

and identify three-dimensional objects generated by rotations of two-dimensional objects.

Modeling with Geometry G-mG

Apply geometric concepts in modeling situations

1. Use geometric shapes, their measures, and their properties to describe objects (e.g.,

modeling a tree trunk or a human torso as a cylinder).

2. Apply concepts of density based on area and volume in modeling situations (e.g.,

persons per square mile, BTUs per cubic foot).

3. Apply geometric methods to solve design problems (e.g., designing an object or

structure to satisfy physical constraints or minimize cost; working with typographic grid

systems based on ratios). u
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Goals of high school geometry

There are many standards here, and we will not be able to discuss all of them.

Instead, we will concentrate only on the development of the theorems on congruence,

similarity, and circles, i.e., the standards in G-Co, G-Srt, and G-C.

The initial part of the following discussion would appear to be just a review

of topics that we have already gone over in grade 8, but there will be a different

emphasis. Whereas concepts like rotation, reflection, and translation were treated

in grade 8 mostly in the context of hands-on activities and with an emphasis on

geometric intuition, the high school course will put equal weight on the precision of

their definitions. In addition, it will be more explicit and more systematic in clarifying

the starting point of the geometric discussion by clearly stating the assumptions.

Nevertheless, it is not the goal of the Common Core Standards to treat plane geometry

axiomatically. Standard G-Co 8 makes this perfectly clear:

Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow

from the definition of congruence in terms of rigid motions.

In a sense, the real starting point of the geometric discussion is the collection of basic

rigid motions: rotations, reflections, and translations. The purpose of such a starting

point is to bring out the true mathematical significance of these concepts. They

will be shown to lie at the foundation of the proofs of standard theorems in plane

geometry, including the common length and area formulas. Such an approach has the

added pedagogical advantage of avoiding the doldrums of axiomatic treatments that

devote more than a hundred pages to proving theorems of the following type:

• Any two right angles are congruent.

• Every angle has exactly one bisector.

• If M is a point between points A and C on a line L, then M and A are on the

same side of any other line that contains C.

q q q����
����

A M C
L
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There is something to be said about the value of being able to prove these geometri-

cally obvious facts, but for most students, it is hardly inspiring to spend two months of

the school year to learn about such proofs. The goal of the Common Core Standards

is to steer clear of such an approach to geometry by putting geometry on an equal

footing with any other part of school mathematics: there should be reasoning and and

there should be proofs, but there should also be a minimum of formalism. Geometry

can be learned the same way fractions or algebra is learned. It will be seen below that,

by building on the geometric foundation in grade 8, we can achieve this goal with ease.

It is perhaps worth noting that the ensuing discussion of high school geometry is

entirely self-contained, in the sense that every step of the reasoning depends only on

what comes before. The sections are as follows.

1. Basic assumptions and definitions (page 80)

2. Definitions of basic rigid motions and assumptions (page 95)

3. Congruence criteria for triangles (page 110)

4. Some typical theorems (page 126)

5. Constructions with ruler and compass (page 144)

6. Definitions of dilations and similarity (page 149)

7. Some theorems on circles (page 175)

1. Basic assumptions and definitions

We are going to start from the beginning and go through, one by one, all the

geometric concepts we are going to use so that we can come to a common agreement.

By a line, we mean a straight line. A line will be assumed to be infinite in both

directions. We will begin with a precise enunciation of what we assume to be

known about the plane . The eight assumptions are listed as (A1), . . . , (A8). The

first six are to be found in section 1, (A7) is in section 2 (page 110), and (A8) is in
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section 3 (page 119). Every single one of them is intuitively obvious, and the only

reason we enunciate them is to make sure that we all have a clearly defined common

starting point.

(A1) Through two distinct points passes a unique line.

Two lines are said to be distinct if there is at least one point that belongs to

one but not the other; otherwise we say the lines are the same. Lines that have no

point in common are said to be parallel. In symbols, L1 parallel to L2 is denoted by

L1 ‖ L2. The following lemma is a simple consequence of (A1):

Lemma 1. Given two distinct lines, either they are parallel, or they have exactly one

point in common.

An equivalent way of stating the lemma is that two distinct lines either do not

intersect, or intersect at exactly one point. Naturally one needs to know when two

lines intersect and when they don’t. It turns out that this issue cannot be settled

except by an explicit assumption.

(A2) (Parallel Postulate) Given a line L and a point P not on L but lying

in the same plane, there is exactly one line in the plane passing through P which is

parallel to L.

In other words, we assume as obvious that in the plane that we normally work

with, for a point P not on a line L, every line that contains P intersects L except

for one line. This postulate assumes explicitly that there is a line passing through P

and parallel to L. However, we shall see in the Corollary to Theorem 1 on page 103

that the existence of such a parallel line can in fact be proved once we know there

are enough rotations in the plane. So the main weight of the Parallel Postulate is the

assertion that there is no more than one such parallel line.

We know intuitively that if three lines L1, L2, and L3 are given so that L1 ‖ L2

and L2 ‖ L3, then L1 ‖ L3. It is less known that this intuitive fact has to be justified

by the Parallel Postulate. More formally, we state:
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Lemma 2. If three lines L1, L2, and L3 have the property that L1 ‖ L2 and L2 ‖ L3,

then L1 ‖ L3.

Proof. We will give two proofs. The first proof is a direct proof. Take a point P on

L3. Suppose we can prove that any line ` passing through P distinct from L3 must

intersect L1. Then any line passing through P that is not L3 is not parallel to L1.

But since the Parallel Postulate implies that there is a line passing through P that

is parallel to L1, L3 must be that line. This then proves L3 ‖ L1.

So let ` be a line passing through P and distinct from L3.

L2

L1

L3
P ��
�
�
�
�
��

P ′′

P ′

`

By the Parallel Postulate, through P passes only one line parallel to L2. Since by

hypothesis, L3 is that line, ` is not parallel to L2. Let ` intersect L2 at some point

P ′′. Now by the Parallel Postulate again, through P ′′ passes only one line parallel

to L1, and since by hypothesis L2 is that line, ` is not parallel to L1. Thus ` must

intersect L1 at some point P ′. By the remark above, this proves the lemma.

This lemma can be more simply proved by a contradiction argument, as follows.

If L1 is not parallel to L3, they intersect at a point P .

hhhhhhhhhh

L2

L1

L3 P

The point P does not lie on L2 because P lies on L3 and L3 has no point in common

with L2 because L2 ‖ L3. Thus through P now pass two distinct lines L3 and L1,

both parallel to L2, a contradiction. Again the theorem is proved.

If A and B are two distinct points, then by (A1), there is a unique line containing

A and B. We denote this line by LAB and call it the line joining A and B. On
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LAB, denote by AB the collection of all the points between A and B together with

the points A and B themselves. We call AB the line segment, or more simply the

segment joining A and B, and the points A and B are called the endpoints of

the segment AB. The term segment will be used in general to refer to the segment

joining a pair of points.

Note that there is no universal agreement on the notation used to denote lines,

segments, and later on, rays. For example, some books use AB to denote the line

passing through A and B, AB to denote the segment between A and B, and
−→
AB to

denote the ray from A to B. It can be confusing. Note also that it makes sense to

talk about points on LAB between A and B, because LAB may be regarded as a

number line and A and B then become numbers. For example, if A = 0 and B > 0,

then the points between A and B would be all the numbers x so that 0 < x < B.

xA B

AB

We are now in a position to define a polygon. (In the classroom, one would start

with the definition of a triangle and a quadrilateral before tackling the general case,

and care should be given to motivating the use of subscripts.) Let n be any positive

integer ≥ 3. An n-sided polygon (or more simply an n-gon) is by definition a

geometric figure consisting of n distinct points A1, A2, . . . , An in the plane, together

with the n segments A1A2, A2A3, . . . , An−1An, AnA1 so that none of these segments

intersects any other except at the endpoints as indicated, i.e., A1A2 intersects A2A3

at A2, A2A3 intersects A3A4 at A3, etc. In symbols: the polygon will be denoted

by A1A2 · · ·An. If n = 3, the polygon is called a triangle; n = 4, a quadrilateral;

n = 5, a pentagon; and if n = 6, a hexagon. If this definition of a polygon seems

too complicated, remember that we are trying to rule out the following as polygons

and we have to do so precisely:

r r

r
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Given polygon A1A2 · · ·An, the Ai’s are called the vertices and the segments A1A2,

A2A3, etc. the edges or sometimes the sides. For each Ai, both Ai−1 and Ai+1 are

called its adjacent vertices (except that in the case of A1, its adjacent vertices are

An and A2, and in the case of An, its adjacent vertices are A1 and An−1). Thus the

sides of a polygon are exactly the segments joining adjacent vertices. Any segment

joining two nonadjacent vertices is called a diagonal.

The best way to remember the notation associated with a polygon is to think of

the points A1, A2, . . . , An as being placed consecutively on a circle (note that we

are only using the concept of a “circle” in an informal way here), for example, in

clockwise (or counterclockwise) direction:

3

A

A

A

A

A
2

1
n

.

.

.

.

A
n−1

4

Then it is quite clear from this arrangement whether or not two vertices are adjacent.

In order to define angles, we need to know a little bit more about lines. We want

to say that a point on a line separates the line into “two halves”, just as 0 on the

number line separate all numbers into positive and negative numbers. It would not

be practical to do so by invoking the number line each time because we should allow

geometry to speak for itself. Then the proper way to say this is by making an explicit

assumption. To this end, we first introduce a definition.

A subset R in a plane is called convex if given any two points A, B in R, the

segment AB lies completely in R. The definition has the obvious advantage of being

simple to use, so the concern with this definition is whether or not it captures the

intuitive feeling of “convexity”. Through applications and lots of drawings, you will

see that it does. For example, the shaded figures below are not convex.
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Every line and the plane itself are of course convex. Many common figures, such

as the interior of a triangle or a rectangle or a circle, once they have been properly

defined, will also be seen to be convex. It is also a simple exercise to show that the

intersection of two convex sets is convex. If we have a number line L, then “the

positive half-line” L+ consisting of all the positive numbers is convex: indeed if a

and b are in L+, then the segment joining a to b is the interval [a, b] consisting of all

the numbers x satisfying a < x < b. Since a is positive, x has to be positive and

therefore every point in this segment also lies in L+. For analogous reasons, “the

negative half-line” L− consisting of all the negative numbers is convex. Observe also

that the number line L is now broken up into three parts: L−, L+, and the set {0}
consisting of the number 0 alone, so that every point of L is in one, and only one, of

these parts. Furthermore, the line segment joining a positive number B to a negative

number A must contain 0.

L
A

0

B

This example of L serves as a model of what we expect to be true in general of

every line in the plane. Since we are starting from scratch, the only way we can

guarantee this to be true is to make an assumption.

(A3) (Line separation) A point P on a line L separates L into two non-empty

convex subsets L+ and L−, called half-lines, so that:

(i) Every point of L is in one and only one of the sets L+, L−, and the

set {P} consisting of the point P alone.

(ii) If two points A and B belong to different half-lines, then the line

segment AB contains P .

PPA B
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It follows from (i) that any two of the sets L+, L−, and {P} are disjoint, i.e., do

not share a point in common. It also follows from the convexity of L+ and L− that

if two points A, B belong to the same half-line, then the line segment AB does not

contain P :

PP A B

The set consisting of the point P and the points from a half-line, L+ or L−, is

called a ray. We also say these are rays issuing from P . If we want to specifically

refer to the ray containing A, we use the symbol RPA. We will also refer to RPA as

the ray from P to A. Similarly, the ray containing B issuing from P is denoted by

RPB. The point P is the vertex of RPB. If P is between A and B, then the two

rays RPA and RPB have only the vertex P in common, and each ray is, intuitively,

infinite in only one direction.

Two rays are distinct if there is a point in one that does not lie in the other. An

angle is the union of two distinct rays with a common vertex. The angle formed by

the two rays ROA and ROB will be denoted by ∠AOB.
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O B

A

If A, O, B are collinear (i.e., lie on a line so that O is between A and B), we say

the angle is a straight angle. If ROA and ROB coincide, then we do not have an

angle according to the definition above, but we make an exception and call it the

zero angle. Now we have to face up to the fact that the intuitive concept of an

angle is not just “two rays with a common vertex” but “the space between these two

rays”. In other words, if ∠AOB is neither the zero nor the straight angle, which of

the following two subsets of the plane do we have in mind when we say ∠AOB, the

space indicated by s or the one indicated by t?

To resolve this difficulty, we need a precise way to differentiate between the two. We

want to be able to say that a line separate the plane into “two halves”. If we already

have coordinates axes in the plane, then this would be easily said. For example, the

x-axis separates the plane into the upper half and lower half. But we are developing

geometry from the beginning, so we won’t get to set up coordinate axes until much
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later. For now, here is our next assumption about the plane that makes possible the

discussion of “half-planes”.

(A4) (Plane Separation) A line L separates the plane into two non-empty

convex subsets, L and R, called half-planes, so that:

(i) Every point in the plane is in one and only one of the sets L, R, and

L.

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
��

��
��

��q q

L

A

B

(ii) If two points A and B in the plane belong to different half-planes, then

the line segment AB must intersect the line L.
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Two points that lie in the same half-plane of L are said to be on the same side

of L, and two points that lie in different half-planes are said to be on opposite

sides of L. The net effect of (i) and (ii) is to provide a recipe for testing whether

two points, that are not on L, lie on the same side or opposite sides of the line L, in

the following sense: if the segment AB does not intersect L, then by (ii), they are on

the same side, but if AB intersects L, then A and B do not lie on the same side (a

half-plane is convex and disjoint from L) and therefore must lie on opposite sides.
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The union of either L or R with L is called a closed half-plane.

Now we return to an angle ∠AOB which is neither the zero angle nor a straight

angle. The rays ROA, ROB determine two subsets of the plane, one of them is the

intersection of the following two closed half-planes:

the closed half-plane of the line LOA containing B, and

the closed half-plane of the line LOB containing A.

By the observation above, this is a convex set, and is suggested by the shaded set

in the following figure (note that the shading only covers a finite portion of a set

extending infinitely to the right).

O

A

B

We will refer to this set as the convex part of ∠AOB, and this is the set that

corresponds to our intuitive notion of what ∠AOB is. When we refer to the convex

part of an angle, we sometimes denote it be a single letter, e.g., ∠O, if there is no

danger of confusion. See the part indicated by s in the following:

t

A

BOO

A

B

s

On the other hand, there will be occasions to use the other subset of the plane

determined by the rays ROA, ROB. This would be the nonconvex part of ∠AOB

as indicated by t above. Precisely, this is all the points that do not lie in the convex

part of ∠AOB, together with all the point on both of the rays, ROA and ROB.

Unless stated otherwise, a (nonzero and non-straight) angle will refer to the convex

part of the angle.
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Our next goal is to introduce the measurement of angles in terms of degree. For

a better understanding of degree, it is best to first introduce the concept of distance

in the plane. Another reason we should be interested in the concept of distance is to

make sense of the the concept of the length of a segment in the plane. Recall that for

a segment on a given line, which is regarded as a number line, “length” on that line

depends on the choice of a unit segment. Thus far, we have only measured the length

of a segment on each line, one line at a time. Now there are many lines in the plane,

and if the unit segment on each line is chosen at random—so that the length of a

segment also varies randomly—there would be chaos. By introducing the concept of

distance, we can define the length of a segment in the plane in a uniform way. This

will be done after the next asssumption (A5).

(A5) To each pair of points A and B of the plane, we can assign a number

dist(A,B) ≥ 0 so that

(i) dist(A,B) = dist(B,A).

(ii) dist(A,B) ≥ 0, and dist(A,B) = 0 ⇐⇒ A and B coincide.

(iii) If A, B, C are collinear points, and C is between A and B, then

dist(A,B) = dist(A,C) + dist(C,B)

Of course, condition (iii) is what prevents the assignment of a nonnegative number

dist(A,B) to each pair of points A and B from being random or arbitrary. On each

line of the plane, the length of a segment AB, denoted by the symbol |AB|,
will henceforth be defined to be dist(A,B). Thus “length of a segment” retains the

intuitive meaning of “the distance between the endpoints”. We say two segments

are equal if they have the same length.

Observe that, in the presence of the distance function, to make a line into a number

line once a point has been chosen to be 0, the choice of the unit 1 will now be limited

to only one of two points. In other words, what we claim is that there are exactly

two points on the given line that are of distance 1 from O. Intuitively, these are the

points A and A′ in the following picture so that |AO| = |OA′| = 1.

A O A′
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In the classroom, drawing the picture should be sufficient to convince students of this

fact because its proof is hardly exciting. Nevertheless, here is the proof. Fix a ray

with vertex O on the given line L (see (A3) on page 85), and suppose points A and

B on this half-line are of distance 1 from O.

A BO

The segment [A,B] does not contain O because A, B are in the same half-line (see

(ii) of (L3)). Thus O is not between A and B, and the only possibility is that A is

between O and B, or B is between O and A. Suppose the former holds. Then by

(iii) of (A5), |OA|+ |AB| = |OB|. But we are assuming |OA| = |OB| = 1, so we

get 1 + |AB| = 1, which implies |AB| = 0. Now by (ii) of (A5), A = B. Thus on

each half-line there is only one point of distance 1 from O. Since there are exactly

two half-lines issuing from O, the claim is proved.

Thus once a point has been chosen to be 0 on a line, there are only two ways to

make the line into a number line corresponding to the two choices of the number 1

on this line.

Having introduced the concept of the length of a segment in the plane, we can now

introduce the concept of the degree of an angle to measure its magnitude. Intuitively,

every angle has a degree, a straight angle should be 180 degrees, and the “full” angle is

360 degrees. In order to say this precisely, some preparation is necessary. For entirely

technical reasons, it is simpler if we only deal with the convex part of every angle

under discussion, so intuitively, we avoid dealing with angles with degree > 180. Let

it be understood, therefore, that in the succeeding discussion, we only take the convex

part of an angle (page 88). We define two angles ∠AOC and ∠COB to be adjacent

if they have a side in common and if C lies in the convex part of ∠AOB, e.g., ∠AOC

and ∠COB in the left figure below are adjacent but the same angles in the right

figure below are not adjacent.
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Adjacent angles ∠AOC and ∠COB are the analogs, among angles, of segments

AC, CB so that A, B, C are collinear and C is between A and B; they will allow

us to formulate the analog of condition (iii) in assumption (A5) above. (This is one

reason why we introduce distance before degree.) Our assumption about the degree

of an angle now takes the following form (reminder: we only deal with the convex

part of an angle in this discussion):

(A6) To each angle ∠AOB, we can assign a number |∠AOB|, called its degree,

so that

(i) 0 < |∠AOB| < 360◦, where the small circle ◦ is the abbreviation of

degree. Moreover, if one side of the line LOB is given and a number x

is given so that 0 < x < 360 but x 6= 180, then there is a unique angle

AOB so that |∠AOB| = x◦ and the ray ROA lies on that side of LOB.

(ii) |∠AOB| = 0◦ ⇐⇒ ∠AOB is the zero angle, and |∠AOB| = 180◦

⇐⇒ ∠AOB is a straight angle.

(iii) If ∠AOC and ∠COB are adjacent angles then

|∠AOC|+ |∠COB| = |∠AOB|

We note that by themselves, assumptions (A5) on distance and (A6) on degree do

not have much substance. Their significance will be revealed only when we make the

additional assumption that the basic rigid motions (in the next section) are distance-

preserving and degree-preserving (see Lemma 8, page 110), and prove that there are

“plenty of” basic rigid motions in the plane (see Lemmas 4, 5, and 7 on page 106,

page 106, page 110, respectively).
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We now give a more intuitive discussion of the degree of an angle. The distance

function allows us to introduce the concept of a circle. Fix a point O. Then the set of

all the points A in the plane so that dist(O,A) is a fixed positive constant r is called

the circle of radius r about O. The point O is called the center of the circle. A

line passing through the center O will intersect the circle at two points, say P and Q.

The segment PQ is called a diameter of the circle, and the segment OP (or OQ) is

also called a radius of the circle.

A circle whose radius is of length 1 is called a unit circle. Using a unit circle, we

now describe how to assign to each angle a degree. Given ∠AOB, let C be the unit

circle centered at O and we may as well assume that both A and B lie on C. Let
_

AB

denote the intersection of C with an angle, say, ∠AOB. Here, we have to use both

the convex part and nonconvex part of the angle, depending on the situation.
_

AB is

called an arc on C; if it is the intersection of C with the convex part (respectively,

the nonconvex part) of an angle, it is called a minor arc (respectively, major arc).

It is possible, using the distance function in the plane, to define the length of any

arc. An arc whose length is 1
360

of the length of C is called one degree. Then we

can subdivide a degree into n equal parts (where n is any whole number), thereby

obtaining 1
n

of a degree, etc. It is exactly the same as the division of the chosen unit

on a number line into unit fractions, except that in this case, we have a “circular

number line” so that, once a point has been chosen to be 0, the number 360 coincides

with 0 again. If A is chosen as the 0 of this circular number line, the value of B on

this circular number line is exactly the the degree of ∠AOB, which is of course the

length of
_

AB. Thus in the following picture, if the length of this arc
_

AB is x, then

|∠AOB| = x◦. (But remember that all this takes place on the unit circle around O.)
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With the measurements of angles available, we can introduce some standard ter-

minology for angles and polygons. Two angles are defined to be equal if they have
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the same degree. An angle of 90◦ is called a right angle. An angle is acute if it

is less than 90◦, and is obtuse if it is greater than 90◦. There are analogs of these

names for triangles, namely, a triangle is called a right triangle if one of its angles is

a right angle, an acute triangle if all of its angles are acute, and an obtuse triangle

if (at least) one of its angles is obtuse. (In view of the Angle Sum Theorem in grade

8, page 66, at most one angle of a triangle can be obtuse.)

Let two lines meet at O, and suppose one of the four angles, say ∠AOB as shown,

is a right angle.

B′

A′

B

A

O
q

Then we claim that all the remaining angles are also right angles, i.e., |∠BOA′| =

|∠A′OB′| = |∠B′OA| = 90◦. This is because by (ii) of (A6), |∠AOA′| = 180◦, so

that by (iii) of (A6),

|∠BOA′| = |∠AOA′| − |∠AOB| = 180◦ − 90◦ = 90◦.

Similarly, the remaining two angles are also 90◦. It follows that when two lines meet

and if any one of the four angles so produced is a right angle, then all four angles

at the point of intersection are right angles. It is therefore unambiguous to define

the two lines to be perpendicular if an angle formed by the two lines at the point

of intersection is a right angle. In symbols: LAO ⊥ LOB in the notation of the

preceding figure, although it is equally common to write instead, AO ⊥ OB. A

ray ROC in the convex part of an angle AOB is called an angle bisector of ∠AOB

if |∠AOC| = |∠COB|. Sometimes we also say less precisely that the line LOC

(rather than the ray ROC) bisects the angle AOB.
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It is clear that an angle has one and only one angle bisector (by (i) of assumption

(A6)). Therefore if CO ⊥ AB where O is a point of AB, as shown below, then CO

is the unique angle bisector of the straight angle ∠AOB.

OA B

C

For a later reference, we make a separate statement of this observation:

Let L be a line and O a point on L. Then there is one and only one line

passing through O and perpendicular to L.

We can now complete the list of standard definitions about lines and segments. If

AB is a segment, then the point C in AB so that |AC| = |CB| is called the midpoint

of AB. Analogous to the angle bisector, the perpendicular bisector of a segment

AB is the line perpendicular to LAB and passing through the midpoint of AB. It

follows from the uniqueness of the line perpendicular to a line passing through a given

point that there is one and only one perpendicular bisector of a segment.

We now introduce some common names for certain triangles and quadrilaterals.

An equilateral triangle is a triangle with three sides of the same length, and an

isosceles triangle is one with at least two sides of the same length. (Thus by our

definition, an equilateral triangle is isosceles.) A quadrilateral all of whose angles are

right angles is called a rectangle. A rectangle all of whose sides are of the same

length is called a square. Be aware that at this point, we do not know whether there

is a square or not, or worse, whether there is a rectangle or not. (If it is the case

that the sum of (the degrees) of the four angles of quadrilateral is 361◦, then clearly

no rectangle can exist, much less a square.) A quadrilateral with at least one pair

of opposite sides that are parallel is called a trapezoid. A trapezoid with two pairs

of parallel opposite sides is called a parallelogram. A quadrilateral with four sides

of equal length is called a rhombus. It can be proved (using the SSS criterion for

triangle congruence on page 123) that rhombi are parallelograms.
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We conclude by making a general observations about angles. Consider two angles

∠MAB and ∠NAB with a side, the ray RAB, in common. Let us assume that M

and N are on the same side of LAB (see page 87).
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Then it is believable that the rays RAM and RAN coincide if and only if the angles are

equal. In a school classroom, the proof of something this boring should be skipped,

but here is the proof. If M and N are on the same side of LAB, then either M is in

the convex part of ∠NAB or N is in the convex part of ∠MAB (this is a routine

argument using (A4)). Let us say it is the latter, as shown. Then, by definition, RAM

and RAN coincide if and only if ∠MAN is the zero angle, and the latter happens if

and only if |∠MAN | = 0 by (ii) of (A6). Now using (iii) of (A6), we have,

|∠MAN | = |∠MAB| − |∠NAB|

Thus |∠MAN | = 0 if and only if |∠MAB| = |∠NAB|, i.e., the angles ∠MAB and

∠NAB are equal. We state this formally:

Lemma 3. Given two angles ∠MAB and ∠NAB, suppose they have one side RAB

in common and M and N are on the same side of the line LAB. Then the other sides

RAM and RAN coincide if and only if the angles are equal.

2. Definitions of basic rigid motions and assumptions

The concept of transformation (page 96)

Definitions of basic rigid motions (page 97)

Critical look at the definitions (page 100)
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The concept of transformation

In eighth grade, we introduced the basic rigid motions (i.e., rotations, reflec-

tions, and translations) mostly through the use of transparencies. Now we are going

to define them precisely, and in so doing, we will be more careful with the order of

the definitions because we have to make sure that each is well-defined in a sense

that to be explained later. This particular presentation begins with rotations, then

reflections, and then translations.10 We first give the definitions, and then look back

to decide what theorems need to be proved in order to ensure that each definition is

logically sound.

We formally introduce the concept of a transformation F of the plane as a rule

that assigns to each point P of the plane a point F (P ) of the plane. We note for

a future reference that, according to this definition, to each point, a transformation

can only assign one unambiguous point; thus, by definition, it cannot happen that

for a given transformation F and a given point P , the assigned point F (P ) could be

one of several possibilities. As in grade 8, F (P ) is called the image of P by F and

often we speak of F mapping P to F (P ). If S is a geometric figure in the plane

(i.e., a subset of the plane), then the collection of all the points F (Q) where Q is a

point of S is called the image of S by F , which is usually denoted by F (S). We

likewise say F maps S to F (S).

In a classroom, we suggest the use of a coordinate system to give students drills

on the concept of a transformation. For example, the identity transformation

I, which is the transformation that maps each point to itself, can be described as

I(x, y) = (x, y) for any numbers x and y. To make students better appreciate the

basic rigid motions, some standard distance-distorting transformations can be intro-

duced, e.g., the transformation G so that G(x, y) = (x+ 3, y) or G(x, y) = (x+ y, y),

and students can check that, in general, the distance between two points is not pre-

served and the degree of an angle is also not preserved. In particular, the image of a

rectangle is in general not a rectangle. At the same time, it must be pointed out that,

insofar as we are trying to build up geometry from the beginning, such drills should

be used only for illustrations. Students should be aware that these drills are not part

10There are other ways to do this, such as starting with reflections.
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of the logical development because, at this point, there is as yet no coordinate system

in the plane.

Definitions of basic rigid motions

We now give in succession the definitions of the basic rigid motions: rotation,

reflection, and translation. Before we give the definition of rotation, we mention

explicitly that we will freely avail ourselves of the concepts of clockwise direction

and counterclockwise direction on a circle. We will also take as self-evident that if

a point B is fixed on a circle with center O, then all the points A so that A is in the

counterclockwise (respectively, clockwise) direction of B and so that 0 < |AOB| <
180◦ will lie in a half-plane of the line LOB. In the following picture, this would be

the upper half-plane.

OB

A

O

A

B

The whole discussion can be made precise by going through some elaborate defi-

nitions and proofs, but by common consent, it is better to skip them.

1. The rotation Ro of t degrees (−180 ≤ t ≤ 180) around a given point O,

called the center of the rotation, is a transformation of the plane defined as follows.

Given a point P , we have to define what Ro(P ) is. The rotation is counterclockwise

or clockwise depending on whether the degree is positive or negative, respectively.

For definiteness, we first deal with the case where 0 ≤ t ≤ 180. If P = O, then by

definition, Ro(O) = O. If P is distinct from O, then by definition, Ro(P ) is the point

Q on the circle with center O and radius |OP | so that |∠QOP | = t◦ and so that Q

is in the counterclockwise direction of the point P . We claim that this assignment

is unambiguous, i.e., there cannot be more than one such Q. Indeed, if t = 180◦,

then Q is the point on the circle so that PQ is a diameter of the circle. If t = 0,

then Q = P . Now if 0 < t < 180◦, then all the Q’s with the stated properties (i.e.,
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0 < |∠QOP | < 180◦ and Q is in the counterclockwise direction of the point P ) lie in

a fixed half-plane of the line LOP . By Lemma 3 (page 95), there is only one such Q.

Thus Ro is well-defined, in the sense that the rule of assignment is unambiguous.

Notice that if t = 0, then Ro is the identity transformation of the plane I.

Q

P

O

t

Now suppose t < 0. Then by definition, we rotate the given point P clockwise

on the circle that is centered at O with radius |OP |. Everything remains the same

except that the point Q is now the point on the circle so that |∠QOP | = |t|◦ and Q

is in the clockwise direction of P (see picture below). We define Ro(P ) = Q.

t
O

Q

P

| |

2. The reflection R across a given line L, where L is called the line of

reflection, assigns to each point on L the point itself, and to any point P not on L,

R assigns the point R(P ) which is symmetric to it with respect to L, in the sense

that L is the perpendicular bisector (page 94) of the segment joining P to R(P ).

r r
r r
R(P ) P

Q R(Q)

3. The translation T along a given vector −→v assigns the point D to a given
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point C in the following way. First, a vector is defined as in Grade 8, page 13. Let

the starting point and endpoint of −→v be A and B, respectively. First assume C does

not lie on line LAB. Draw the line ` parallel to line LAB passing through C; the

Parallel Postulate guarantees that there is such an `. The line L passing through B

and parallel to the line LAC then intersects line ` at a point D (L and ` must intersect

because the Parallel Postulate says that there is only one line passing through C and

parallel to L, which is LAC , so ` is not parallel to L). By definition, T assigns the

point D to C, i.e., T (C) = D.

B
B
B
B
B
BBM

−→v

B
B
B
B
B
BBM

L

B
B
B
B
B
B
B
B
B
B

B

A C

D

`

Next, suppose C lies on the line LAB, then the image D is by definition the point on

the line LAB so that the direction from C to D and the direction from A to B are

the same, i.e., both of them point either to the positive direction or to the negative

direction, and so that |CD| = |AB|. Or, if we regard LAB as a number line so that all

the points are now numbers, then we want D to be the number so that D−C = B−A.

B
B
B
B
B
BBM

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BB

B

A

C

D

`

B
B
B
B
B
BBM

q

q

Observe that if
−→
0 is the zero vector, i.e., the vector with 0 length, then the transla-

tion along
−→
0 is the identity transformation I.
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A critical look at the definitions

We now take a critical look at the preceding definitions and expose the logical

interconnections behind the formal statements by proving a few theorems. It will be

noticed that the fourth theorem is already one of immense interest: the opposite sides

of a parallelogram are equal (page 107).

The definitions of rotation and translation are straightforward, but the definition

of a reflection raises a question. Let a line L be given and let P be a point not lying on

L. Let the reflection across L be denoted by R. The definition of the point R(P ), to

be denoted more simply by P ′, is that L is the perpendicular bisector of the segment

PP ′. Implicit in this definition is the fact that

(a) there is such a point P ′ so that L is the perpendicular bisector of the

segment PP ′, and

(b) there is only one such point P ′.

Neither is obvious at the moment. The need of (a) is obvious, but the need of (b)

maybe less so. The fact is, if there is another point Q distinct from P ′ so that L is

the perpendicular bisector of PQ, then the definition of a reflection implies that we

can also define R(P ) = Q. This raises the question: which point does R assign to P ,

P ′ or Q?

If we cannot verify that both (a) and (b) are valid, then the concept of a reflection

is not well-defined on two levels. Given a line L and a point P in the plane, either

the putative reflection R across L cannot assign a point to P (this would be the case

if (a) fails), or there is more than one candidate of such a P ′ so that the assignment

of R to P becomes ambiguous (this would be the case if (b) fails).

We will resolve this difficulty by proving the following theorem.

Theorem. Given a line L and a point P , there is one and only one line passing

through P and perpendicular to L.

Assuming this theorem, (a) is easily seen to be true because if there is such a line,

we simply let P ′ be the point on this line on the other side of L, so that |PO| = |P ′O|,
where O is the intersection of this line with L. Moreover, (b) is also true because, if

100



L

PP
.

Q

O
.

there is another point Q so that L is also the perpendicular bisector of PQ, then in

particular PQ ⊥ L. But we know there is only one such line, so the two lines LPP ′ and

LPQ coincide and the point Q falls on LPP ′ . It follows that Q and P ′ are two points

on the same half-line of the line LPP ′ with respect to O and |QO| = |P ′O|(= |PO|).
Hence Q = P ′ and (b) is also true.

Thus, in order to show that the concept of reflection is well-defined, it remains to

prove the Theorem. In addition, because we want to define reflection right after the

definition of rotation, we have to prove the Theorem by making use of only properties

of rotations. To this end, and for the development of plane geometry as a whole, we

have to rely on some new assumptions about rotations that are, on the basis of the

experience with basic rigid motions in grade 8, completely unexceptional. Precisely,

we assume that:

Ro1. Rotations map lines to lines, rays to rays, and segments to segments.

Ro2. Rotations are distance-preserving, meaning that the distance between the

images of two points is always equal to the distance between the original two

points.

Ro3. Rotations are degree-preserving, meaning that the degree of the image of an

angle is always equal to the degree of the original angle.

Note that, as in grade 8, assumption Ro1 guarantees that a rotation maps an angle

to an angle (see page 23), so that assumption Ro3 makes sense.

We will leave assumptions Ro1 to Ro3 in this informal status for now but will

summarize them in a comprehensive assumption (A7) below (page 110). Our im-

mediate goal is to demonstrate how to make use of Ro1–Ro3 to prove the Theorem
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above. The next theorem is a critical first step toward this goal.

Theorem 1. Let L be a line and O be a point not lying on L. Let R be the 180-degree

rotation around O. Then R maps L to a line parallel to L itself.

The truth of Theorem 1 depends on Lemma 1 on page 81, to the effect that two

distinct lines either do not intersect, or intersect at exactly one point. Let us consider

the situation of Theorem 1 where a line L and a point O are given and O does not

lie on L. Let a line ` pass through O and intersect L at a point Q, as shown.

q q
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L

O

Q

P

`

Now we make an observation: if P is any point on the line ` not equal to Q, then

P does not lie on L. This is because L and `, being distinct lines, already have one

point Q in common and so Lemma 1 says no other point can be common to both

lines. In particular, P does not lie on L, and the observation is proved.

With this observation in place, we can now prove Theorem 1.

Proof. First of all, we know that rotations map a line to another line (assumption

Ro1 on page 101), so with assumptions and notation as in Theorem 1, R maps the

line L to a line to be denoted by R(L). We have to show that R(L) and L have no

point in common. Thus, if P is any point on R(L), we must show that P does not lie

on L. By definition of R(L), there is a point Q of L so that P is the rotated image

of Q by R.

q
q
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`
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By the definition of Q, the segment OP is the 180-degree rotated image of the segment

OQ; this means |∠POQ| = 180◦ and therefore P , O, and Q are collinear (see (ii) of

Assumption (A6) on page 91). Let the line which contains P , O, Q be denote by `.

The preceding observation then tells us that P does not lie on L. This then proves

Theorem 1.

We also give a proof by contradiction. Suppose R(L) and L have a point Q in

common. Because Q is in R(L), there is a point P in L, so that R(P ) = Q. Because

R is a 180-degree rotation around O, the three points P , Q, and O lie in a line `. But

Q is by assumption also a point in L, so ` and L have two distinct points in common:

P and Q. But L and ` are distinct because O is in ` but not in L. This contradicts

Lemma 1 (page 81) and Theorem 1 is proved.

Theorem 1 has an unexpected consequence. The Parallel Postulate assures us

that if P is a point which does not lie on a given line L, then there is one and only

one line passing through P and parallel to L. With Theorem 1 at our disposal, we

now see that there is in fact no need to assume the existence of such a line because

the said existence already follows from Theorem 1 (see the remark on page 81):

Corollary. Given a line L and point P not on L, there is a line parallel to L and

passing through P .

Proof. Indeed, referring to the preceding picture, we take a point Q on L and let O

be the midpoint of the segment PQ. If R is the 180-degree rotation around O, then

Theorem 1 says the rotated image R(L) of L is parallel to L. But since a rotation

preserves length (assumption Ro1, page 101)), R maps Q to P , so that R(L) in fact

passes through P . The Corollary is proved.

Theorem 1 is deceptive because it is not obvious how it can be put to use. We

will see that it is in fact a central theorem with numerous interesting consequences,

including the very fact we are after, namely, that from a point outside a given line L,

there cannot be two distinct lines passing through P and both perpendicular to L.

Theorem 2. Two lines perpendicular to the same line are either identical or parallel
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to each other.

Proof. Let L1 and L2 be two lines perpendicular to a line ` at A1 and A2, respectively.

We have noted in an observation on page 94 that the the line passing through a given

point of a line and perpendicular to that line is unique. Thus if A1 = A2, L1 and L2

are identical. So suppose A1 6= A2. We need to prove that L1 ‖ L2. Let R be the

rotation of 180 degrees around the midpoint M of A1A2. If we can show that the

image of L1 by R is L2, then we know L2 ‖ L1 by virtue of Theorem 1.

�
�
�
�
�
��

�
�

L1 L2 R(L1)

A1 A2

Mq`

To this end, note that R(L1) contains A2 because R(A1) = A2. We are given that

L1 ⊥ `. Since R(A1) = A2 and R(A2) = A1, we see that R(`) = ` (because of

assumption (A1)). By assumption Ro3 on page 101, rotations map perpendicular

lines to perpendicular lines. Thus we have R(L1) ⊥ `. It follows that each of R(L1)

and L2 is a line that passes through A2 and perpendicular to `. By the preceding

observation about the uniqueness of the line perpendicular to a line ` at a given point

of `, we see that, indeed, R(L1) = L2 and therefore L1 ‖ L2. Theorem 2 is proved.

Corollary 1. Through a point P not lying on a line ` passes at most one line L

perpendicular to `.

Proof. Suppose in addition to L, there is another line L′ passing through P and

also perpendicular to `. Since these lines are not parallel (they already have P in

common), they have to be identical, by Theorem 2. Thus L = L′. Corollary 1 is

proved.

We will make a digression. Recall that earlier we introduced the concept of a

rectangle as a quadrilateral whose adjacent sides are all perpendicular to each other.
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As a result of Theorem 2, we now have:

Corollary 2. A rectangle is a parallelogram.

Corollary 1 addresses one half of the concern about a reflection being well-defined

by proving half of the Theorem on page 100. Now we prove the other half as well .

Theorem 3. Given a point not lying on a line L, there is a line that passes through

the point and perpendicular to L.

Proof. Take any point A ∈ ` and let L′ be the line passing through A and perpen-

dicular to ` (see the observation on page 94). If L contains P , we are done, so we

may assume that P does not lie on L′. By the Corollary to Theorem 1, there exists

a line L passing through P and parallel to L′. Let L intersect ` at B.

L′ L

BA

qP
`

The line passing through B and perpendicular to ` is parallel to L′ by Theorem 2,

and must therefore coincide with L, by the Parallel Postulate. Thus L ⊥ `. This

proves Theorem 3.

Theorem 3 and Corollary 1 to Theorem 2 together prove completely the Theorem

on page 100. As we pointed out above, this shows that the concept of reflection is

well-defined.

We make some general remarks about rotations and reflections. First of all, we ex-

pect reflections to behave like rotations with respect to distance and degree. Precisely,

we assume the following about reflections.

R1. Reflections map lines to lines, rays to rays, and segments to segments.
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R2. Reflections are distance-preserving.

R3. Reflections are degree-preserving.

Now we point out a feature common to both rotations and reflections. We note

that, as a result of assumption (A6), part (i), and the definition of a rotation, there

are “plenty of” rotations, in the following sense:

Lemma 4. Given a point and a number t so that −180 ≤ t ≤ 180, there is a rotation

of degree t around the point.

Analogously, the same can be said of reflections as a result of Theorem 3 and the

definition of a reflection:

Lemma 5. Given a line in the plane, there is a reflection across that line.

Finally, we analyze the concept of a translation T along a given vector −→v . Recall

the definition: suppose the vector −→v has starting point A and endpoint B, then if C

does not lie on LAB, the image D = T (C) is by definition the intersection of the line

` that is parallel to LAB and the line passing through B parallel to LAC .

B
B
B
B
B
BBM

−→v

B
B
B
B
B
BBM

B
B
B
B
B
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B
B
B

B

A C

D

`

An immediate question is, how do we know the line ` intersects the line passing

through B and parallel to LAC? Call the latter line `′. Now according to the Parallel

Postulate, there can be only one line passing through the point C that is parallel to

`′. By construction, LAC is that line, so ` is not parallel to `′. This is why we get the

point of intersection D.

We have to know more about the vector
−−→
CD (i.e., the vector with starting point

C and endpoint D = T (C)). We claim that |CD| = |AB|. Granting this for the

106



moment, we now have an intuitive understanding of the translation TAB along the

vector
−→
AB: it moves every point “in the same direction” as

−→
AB, and moves it the

same distance as that from A to B.

The fact that |CD| = |AB| is a consequence of a theorem of great intuitive appeal:

Theorem 4. Opposite sides of a parallelogram are equal.

Theorem 4 implies |CD| = |AB| because the opposite sides of the above quadri-

lateral BACD are parallel by construction: indeed LBA ‖ LCD and LBD ‖ LAC by

construction. Therefore BACD is a parallelogram and Theorem 4 is aplicable to give

|CD| = |AB|. It remains therefore to prove Theorem 4.

The idea of the proof of Theorem 4 is to exploit Theorem 1, for the most practical

of reasons: at this point, what else are we going to use? Of course, the presence

of parallel lines in a parallelogram already suggests that something like Theorem 1

should be relevant. It will be obvious from the proof of Theorem 4 below why the

following lemma is needed.

Lemma 6. Let F be a transformation of the plane that maps lines to lines. Suppose

two distinct lines L1 and L2 intersect at P and the image lines F (L1) and F (L2)

intersect at a single point Q, then F (P ) = Q.
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L2 F (L2)

F (L1)

P Qr r

Proof of Lemma 6. Since P is a point in L1, we see that F (P ) is a point on F (L1),

by the definition of the image of L1 by F . Similarly, F (P ) lies on the line F (L2).

Therefore F (P ) lies in the intersection of F (L1) and F (L2). But by hypothesis, the

latter intersection is exactly the point Q. So F (P ) = Q.

Proof of Theorem 4. Given parallelogram ABCD, we have to prove that |AD| =
|BC| and |AB| = |CD|. It suffices to prove the former as the proof of the latter is
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similar. Let M be the midpoint of the diagonal AC and we will use Theorem 1 to

explore the implications of the 180-degree rotation R around M .
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B
B
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B C

A D
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q

Because |MA| = |MC| and rotations preserve distance (assumption Ro1 on page 101),

we haveR(C) = A so thatR(LBC) is a line passing through A and parallel to LBC (by

Theorem 1). Since the line LAD has exactly the same two properties by assumption,

the Parallel Postulate implies that R(LBC) = LAD. Similarly, R(LAB) = LCD. Thus,

using the usual symbol ∩ to denote intersection, we have:

R(LBC) ∩R(LAB) = LAD ∩ LCD = {D}

On the other hand, LBC ∩ LAB = {B}. By Lemma 6, we have

R(B) = D

Recall we also have R(C) = A. Therefore R maps the segment BC to the segment

joining D (which is the image of B) to A (which is the image of C), by the property

that a rotation maps segments to segments (see assumption Ro1 on page 101). The

latter segment has to be the segment DA, by (A1) (page 81). Thus R(BC) = DA,

so that by assumption Ro2 that rotations preserve distance (page 101), we have

|BC| = |AD|, as desired. The proof of Theorem 4 is complete.

Corollary. The angles of a parallelogram at opposite vertices are equal.

The proof is implicit in the proof of Theorem 4: we already have R(∠ABC) =

∠CDA, so simply use assumption Ro3 on page 101 to conclude the proof. The proof

of ∠BAD = ∠DCB is similar.

Theorem 4 together with the Corollary 2 to Theorem 2 (page 105) also imply

that the opposite sides of a rectangle are equal. This reconciles the usual definition in
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school mathematics of a rectangle (a quadrilateral with four right angles and equal op-

posite sides) with our definition of a rectangle (a quadrilateral with four right angles).

Remark. We wish to make explicit something that is already contained in the

above proof of Theorem 4:

If ABCD is a parallelogram, then the vertices B, D lie on opposite sides

of the diagonal line LAC.

This is because, ifR is the 180-degree rotation around the midpoint M of the diagonal

AC, we have just seen that R(B) = D. Since it is easy to see that R maps each

half-plane of LAC to the other half-plane (see (A4) on page 87), we have the desired

conclusion that B and D lie in opposite half-planes of LAC .

The significance of such an observation lies in the fact that many quadrilaterals

do not share this property, e.g.,
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At this point, we pause to note that with Theorems 2 and 4 at our disposal, we

at in a position to set up a coordinate system in the plane. Recall again: we are

talking about a systematic and logical development of geometry ab initio, so the idea

of setting up a coordinate system at this point simply means that only now do we

have all the tools to define all the concepts correctly and have the necessary theorems

(such as Theorems 2 and 4) to make sense of the coordinates (a, b) of a point P , e.g.,

a is the number on the x-axis which is the intersection of the x-axis and the line

passing through P and parallel to the y-axis, but |a| is also the distance of P from

the y-axis. Because all this information is standard—except perhaps for the global

perspective—we will not tarry on this topic here.

We note, as in the case of rotations and reflections, that:

T1. Translations map lines to lines, rays to rays, and segments to segments.
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T2. Translations are distance-preserving.

T3. Translations are degree-preserving.

Because we know that given a line L and a point not on L, there is always a line

passing through that point and parallel to L (Corollary to Theorem 1, page 103), the

definition of the translation along any vector is well-defined. Therefore:

Lemma 7. Given any vector, there is a translation along that vector.

In summary, Lemmas 4, 5, and 7 (respectively, page 106, page 106, page 110)

guarantee that there are “plenty of” basic rigid motion for any occasion. They will

be the main tools for proving theorems, as one can see by the next section.

It is also time for us to summarize our assumptions about rotations Ro1–Ro3

(page 101), reflections R1–R3 (page 105), and translations T1–T3 (page 109) into

one comprehensive assumption. Here it is:

(A7) All basic rigid motions (rotations, reflections, and translations)

(i) map lines to lines, rays to rays, and segments to segments,

(ii) are distance-preserving,

(iii) are degree-preserving.

3. Congruence criteria for triangles

The concept of congruence (page 111)

SAS and ASA (page 113)

The perpendicular bisector and the HL criterion11 (page 117)

The SSS criterion (page 123)

Pedagogical implications (page 125)

11“HL” referes to hypotenuse-leg”.
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The concept of congruence

The main concern of this section is the proof of the three basic criteria for triangle

congruence: SAS, ASA, and SSS. We begin by elucidating the concept of congruence.

We need the concept of composing transformations. Let F and G be transforma-

tions of the plane. We define a new transformation F ◦ G, called the composition

of G and F , to be the rule which assigns to each point P of the plane the point

F (G(P )). Schematically, we have;

P −→ G(P ) −→ F (G(P ))

i.e., we first let G send P to G(P ), and then let F send the point G(P ) to F (G(P )).

Notice the peculiar feature of the notation: the symbol F ◦G suggests that F comes

before G, but in fact the definition itself, which assigns to P the point F (G(P )),

requires that G act first. As far as the terminology is concerned, there is unfortunately

no uniformity in how to indicate that G comes before F . So each time you come across

the phrase “composing F and G”, you have to find out precisely which is meant, is

it F ◦G or is it G ◦F? There is indeed a need to be careful, for the following reason.

First, we say two transformations F1 and F2 are equal, in symbols F1 = F2, if

for every point P , it is true that F1(P ) = F2(P ). Now define two transformations T

and R as follows. Let L1 and L2 be perpendicular lines and let
−→
AB be a vector in L1,

as shown.

r r-

r

L1

L2

A B

P r(T ◦R)(P )r(R ◦ T )(P )

Define T to be the translation along the vector
−→
AB, and R to be the reflection across

L2. It is now easily seen that for a point P on L2, (T ◦ R)(P ) and (R ◦ T )(P ) are

distinct points, as shown. Therefore T ◦R 6= R ◦ T .

It would be instructive to give students many such examples to work on to let

them experience firsthand the phenomenon of “noncommutativity”.
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The composition of more than two transformation is defined similarly. For exam-

ple, if F , G, H, K are transformations, then the composition F ◦ G ◦H ◦K is

defined to be the rule which assigns to each point P the point F (G(H(K(P )))).

Definition. A congruence in the plane is a transformation of the plane which

is equal to the composition of a finite number of basic rigid motions.

The definition of congruence immediately implies that a composition of congru-

ences is still a congruence. One can also verify, with a bit more effort, that if S is

congruent to S ′, then also S ′ is congruent to S.

Because each basic rigid motion is assumed to satisfy the three properties of (A7)

(page 110), we would expect that so does a congruence. This is the content of the

next lemma.

Lemma 8. A congruence

(i) maps lines to lines, rays to rays, and segments to segments,

(ii) is distance-preserving,

(iii) is degree-preserving.

In a classroom, a valid alternative to a proof of this lemma by an abstract argument

given on the basis of (A7) and the definition of a composition of transformations would

be a few concrete verifications of the behavior of the composition of two basic rigid

motions on many points. If we want students to learn to prove geometric facts, it is

probably more effective to make them prove interesting ones (such as Theorem 4 and

its Corollary, or Theorems 5–7 below) rather than boring ones.

Lemma 8 explains why this precise definition of a congruence is the correct math-

ematical concept that captures our intuition of “same size, same shape”. We will

further discuss the pedagogical implications of this definition of congruence at the

end of this section (page 125).

If S is congruent to S ′, we write S ∼= S′.
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At this point, many simple facts about basic rigid motions can be given as exer-

cises. For example,

• If R is the reflection across a line L, then R ◦ R = I, where I is the identity

transformation.

• If T1 and T2 are translations (along certain vectors), then there is a translation

T3 so that T1 ◦ T2 = T3.

• If T is the translation along a vector
−→
AB and if T ′ is the translation along the

“opposite” vector
−→
BA, then T ◦ T ′ = T ′ ◦ T = I.

• If R and R′ are rotations around the same point O, of s and −s degrees,

respectively, then R ◦R′ = R′ ◦ R = I.

• If R and R′ are rotations around the same point O, of s and s′ degrees, re-

spectively, then R ◦ R′ = R′ ◦ R. Moreover, if −180 ≤ s + s′ ≤ 180, then

R ◦R′ = R′ ◦ R = R0, where R0 is the rotation around O of s+ s′ degrees.

• If R1 and R2 are two rotations with different centers, is R1 ◦ R2 always a

rotation (around some point of a certain degree)?

• Can a translation be expressed as a composition of two reflections?

• [Hard] Can a rotation be expressed as a composition of two reflections?

SAS and ASA

To demonstrate the power of this definition of congruence, we now prove the fol-

lowing two theorems.

Theorem 5 (SAS). Given two triangles ABC and A0B0C0 so that |∠A| = |∠A0|,
|AB| = |A0B0|, and |AC| = |A0C0|. Then the triangles are congruent.

Theorem 6 (ASA). Given two triangles ABC and A0B0C0 so that |AB| = |A0B0|,
|∠A| = |∠A0|, and |∠B| = |∠B0|. Then the triangles are congruent.
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The proofs of these two theorems are very similar. Because we have already given

an informal proof of ASA back in grade 8 (page 40), we will only give the proof of

Theorem 5 (SAS) here.12

We begin with two simple observations on the behavior of angles under a reflec-

tion. They are nothing more than variations on the theme of Lemma 3 (page 95). As

we shall we, they will be useful for other purposes as well.

Lemma 9. Given two equal angles ∠MAB and ∠NAB, suppose they have one side

AB in common and M and N are on opposite sides of the line LAB. Then the reflec-

tion across the line LAB maps ∠NAB to ∠MAB (and also maps ∠MAB to ∠NAB).
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Lemma 10. Suppose two angles ∠MAB and ∠NAB are equal, and they have one

side AB in common. Assume further that the segments AM and AN are equal. Then

either M = N (if M and N are on the same side of LAB) or the reflection across

LAB maps N to M (if M and N are on opposite sides of LAB).
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q

q
For the proof of Lemma 9, observe that the reflection R across LAB maps ∠NAB

to ∠N0AB, where N0 = R(N), so that ∠N0AB and ∠MAB are now equal angles

with one side RAB in common. So ∠N0AB = ∠MAB, by Lemma 3 (page 95). This

12It should be mentioned that using SAS, one can also prove ASA.
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proves Lemma 9. As for Lemma 10, suppose M and N are on the same side of LAB.

By the same Lemma 3, we know that the rays AM and AN coincide. But since

|AM | = |AN |, necessarily M = N . Now if M and N are on opposite sides of LAB,

then Lemma 9 shows that the reflection across LAB maps the ray RAN to the ray

RAM . Since a reflection preserves distance, the reflection maps the segment AN to

a segment of length equal to |AM |, and therefore maps N to M by the preceding

argument. This proves Lemma 10.

We are now in a position to begin the proof of SAS. An animation of this proof,

due to Larry Francis, is given in

Side-Angle-Side Congruence by basic rigid motions

Now, suppose we are given triangles ABC and A0B0C0 in the plane so that ∠A and

∠A0 are equal, and furthermore, |AB| = |A0B0| and |AC| = |A0C0| (see below). We

have to explain why the triangles are congruent.

Co

Ao

Bo

A B

C

By our definition of congruence, this means we must exhibit a sequence of basic rigid

motions so that their composition brings (let us say) 4ABC to coincide exactly with

4A0B0C0. For ease of comprehension, we will first prove the theorem for the pair of

triangles in the above picture. At the end we will address other possible variations.

We will first move vertex A to A0 by a translation. Let T be the translation along

the vector
−−→
AA0 (from A to A0, shown by the blue vector). We show the image of

4ABC by T in red and use dashed lines to indicate the original positions of 4ABC
and 4A0B0C0.

Next, we will use a rotation to bring the horizontal side of the red triangle (which is

the translated image of AB by T ) to A0B0. If the angle between the horizontal red

side and A0B0 is t degrees (in the picture above, t = 90), then a rotation of t degrees
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Bo
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around A0 will map the horizontal ray issuing from A0 to the ray RA0B0 . Call this

rotation R. Now it is given that |AB| = |A0B0|, and we know a translation preserves

lengths (Lemma 8, page 112). So the horizontal side of the red triangle has the same

length as A0B0 and therefore R will map the horizontal side of the red triangle to

the side A0B0 of 4A0B0C0, as shown.

o

BA

Bo

Ao

C CC

Two of the vertices of the red triangle already coincide with A0 and B0 of 4A0B0C0.

We claim that after a reflection across line LA0B0 the third vertex of the red triangle

will be equal to C0. Indeed, the two marked angles with vertex A0 are equal since basic

rigid motions preserve degrees of angles (Lemma 8) and, by hypothesis, ∠CAB and

∠C0A0B0 are equal. Moreover, the left side of the red triangle with A0 as endpoint

has the same length as A0C0 because basic rigid motions preserve length (Lemma 8

again), and by hypothesis |AC| = |A0C0|. Therefore our claim follows from Lemma

10. Thus after a reflection across LA0B0 , the red triangle coincides with 4A0B0C0, as

shown:
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Thus the desired congruence for the two triangles ABC and A0B0C0 in this particular

picture is the composition of a translation, a rotation, and a reflection.

It remains to address the other possibilities and how they affect the above argu-

ment. If A = A0 to begin with, then the initial translation would be unnecessary. It

can also happen that after the translation T , the image T (AB) (which corresponds

to the horizontal side of the red triangle above) already coincides with A0B0. In that

case, the rotation R would be unnecessary. Finally, if after the rotation the image of

C is already on the same side of LA0B0 as C0, then Lemma 3 (page 95) implies that

the image of C and C0 already coincide and the reflection would not be needed. In

any case, Theorem 5 is proved.

The perpendicular bisector and the HL criterion

Before taking up the third major criterion for triangle congruence, SSS, we pause

to observe a sometimes useful congruence criterion for right triangles. Note that the

SAS criterion has a special requirement about the pair of equal angles: each of these

two equal angles must be the angle “included” between the two sides in question.

Otherwise the theorem fails as the following example shows. Let 4ABB′ be an

isosceles triangle so that |AB| = |AB′|. On the line LBB′ , let C be a point outside

the segment BB′. Now consider triangles ABC and AB′C.

These triangles are clearly not congruent, yet they have two pairs of equal sides

(|AB| = |AB′| and |AC| = |AC|) and one pair of equal angles (|∠ACB| = |∠ACB′|).
We are going to show that for right triangles, essentially the equality of two pairs of

sides in addition to the given pairs of right angles are enough to guarantee congruence.
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To this end we prove the following theorem, which is interesting in its own right. If

4ABC is an isosceles triangle so that |AB| = |AC|, then it is common to refer to

∠B and ∠C as its base angles, ∠A as its top angle, and BC as its base.

A

B CD

We will also refer to the line joining the midpoint of a side of a triangle to the oppo-

site vertex as a median of the side, and the line passing through the opposite vertex

and perpendicular to this side as the altitude on this side. Note that sometimes

the segment from the vertex to the point of intersection of this line with the (line

containing the) side is called the median and the altitude, respectively.

Theorem 7. (a) An isosceles triangle has equal base angles. (b) In an isosceles

triangle, the perpendicular bisector of the base, the angle bisector of the top angle, the

median from the top vertex, and the altitude on the base all coincide.

Proof. Referring to the preceding picture, let |AB| = |AC| in 4ABC, and let the

angle bisector of the top angle ∠A intersect the base BC at D.13 Let R be the

reflection across the line LAD. Since |∠BAD| = |∠CAD|, and since |AB| = |AC|, we

have R(B) = C by Lemma 10. Now it is also true that R(D) = D and R(A) = A

becauseD and A lie on the line of reflection ofR, so R(BD) = CD and R(BA) = CA

13The fact that the angle bisector of ∠A intersects BC is implied by assumption (A8) to be made
explicit presently.
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because a reflection maps a segment to a segment (by assumption (A7), page 110).

Consequently, R(∠B) = ∠C. Since a reflection preserves the degree of angles (again

by assumption (A7), page 110), we have |∠B| = |∠C|. This proves part (a). For part

(b), observe that since LAD is the line of reflection and R(B) = C,

R(∠ADB) = ∠ADC and R(BD) = (CD)

Therefore |∠ADB| = |∠ADC| = 90◦, and |BD| = |CD|, so that LAD is the perpen-

dicular bisector of BC. Since LAD is, by construction, also the angle bisector of ∠A,

every statement in (b) follows. The proof is complete.

As an immediate corollary, we have the following useful characterization of the

perpendicular bisector of a segment:

Corollary. A point is on the perpendicular bisector of a segment if and only if it is

equidistant from the endpoints of the segment.

Proof. Let the segment be BC and let the point be A. If A is on the perpendicular

bisector ` of BC, then by the definition of the reflection R across ` ((A7), page 98),

R(B) = C and R(A) = A. Thus R(AB) = AC, and since reflection is distance

preserving (page 110), |AB| = |AC| and A is equidistant from the endpoints B and

C. Conversely, suppose |AB| = |AC|. Thus triangle ABC is isosceles and the angle

bisector of ∠A is the perpendicular bisector of BC, by Theorem 7. But the angle

bisector of ∠A passes through A, so the perpendicular bisector of BC passes through

A. The proof is complete.

We now backtrack a bit and deal with the assertion in the proof that the angle

bisector of ∠A must intersect side BC. While this fact is intuitively obvious, we also

realize that there is no way we can explain why this must be true except to point to

a picture. If we want to take this for granted, the way to do so is to add another

assumption. This will be our last assumption.

(A8) (Crossbar axiom). Given angle AOB, then for any point C in (the convex

part of) ∠AOB, the ray ROC intersects the segment AB (at the point D in the
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following figure).
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It is now clearly that (A8) implies that the angle bisector of an angle in a triangle

must intersect the opposite side.

We are now ready for the congruence criterion for right triangles.

Theorem 8 (HL). If two right triangles have equal hypotenuses and one pair of equal

legs, then they are congruent.

Proof. We give two proofs. The first uses basic rigid motions and it has the virtue of

directly producing the congruence. The second one is the traditional argument using

SAS.

Suppose that the right triangles ABC and A′B′C ′ satisfy |∠C| = |∠C ′| = 90◦ and

|B′C ′| = |BC| in addition to |AB| = |A′B′|, and we will produce a sequence of basic

rigid motions so that their composition maps 4A′B′C ′ to 4ABC.

Case 1. We begin by proving the theorem under the special assumption that

B = B′ and C = C ′. Now A and A′ are either on opposite sides of LBC or on the

same side. Let us begin by tackling the former case, A and A′ being on opposite sides

of LBC , as shown.

=B

A A
C =C

B

Observe that A, C, and A′ are collinear because |∠C| = |∠C ′| = 90◦, so that

|∠ACA′| = |∠C| + |∠C ′| = 90◦ + 90◦ = 180◦, by (iii) of assumption (A6) (page

91). Furthermore, because BC ⊥ AA′ and |BA| = |B′A′| = |BA′|, the Corollary to

Theorem 7 implies that B lies on the perpendicular bisector of AA′. By the definition

of a reflection (page 98), the reflection R across the line LBC maps A′ to A, B′ to B

and C ′ to C so that it maps 4A′B′C ′ to 4ABC. The theorem is proved in this case.
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Now suppose A, A′ are on the same side of LBC . Still with R as the reflection across

LBC , let R(A′) = A0, R(B′) = B0, and R(C ′) = C0. Then R(4A′B′C ′) = 4A0B0C0.

Now look at the two triangles ABC and A0B0C0: the latter has the property that

B = B0, C = C0, while A and A0 are on opposite sides of LBC .

0

A A
C =C

B=B

0
0

Furthermore, |AB| = |A0B0|, |∠C| = |∠C0| = 90◦ (because a reflection preserves

distance and degree, by assumption (A7) on page 110). The preceding argument

then shows that

4ABC = R(4A0B0C0)

In view of 4A0B0C0 = R(4A′B′C ′) and the fact that R ◦R is the identity transfor-

mation, we have

4ABC = R(4A0B0C0) = R(R(4A′B′C ′)) = 4A′B′C ′

Thus 4A′B′C ′ coincides with 4ABC in the first place. Therefore the theorem is

true if B = B′ and C = C ′.

In general, we have a situation such as the following:

A

B

C B

CA

Let T be the translation so that T (C ′) = C (note that T would be the identity

transformation if C and C ′ already coincide). Then we have:

Because |BC| = |B′C ′| and because a translation preserves distance (assumption

(A7), page 110), we see that BC and the segment T (B′C ′) have the same length.

Therefore a suitable rotation Ro will bring T (B′C ′) to coincide with BC, as shown.
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C=T(C )

B

A T(B )

T(A

(Again, if BC already coincide with T (B′C ′), then Ro would be the rotation of 0

degrees and would therefore be the identity transformation.)

=Ro(T(C ))

B

C
A

=Ro(T(B ))

Ro(T(A ))

We now have two right triangles, 4ABC and Ro(T (4A′B′C ′)) with the prop-

erty that they share a leg—BC and Ro(T (B′C ′))—and the hypotenuses AB and

Ro(T (A′B′)) are equal. By Case 1, we see that there is a basic rigid motion F (which

is either the identity transformation or the reflection across LAB), so that F maps

the triangle Ro(T (A′B′C ′)) to 4ABC. Thus

(F ◦Ro ◦ T )(4A′B′C ′) = 4ABC

Since F ◦Ro ◦ T is a congruence, the proof of Theorem 8 is complete.

Next, we give the traditional proof of Theorem 8. Again, we have right triangles

ABC and A′B′C ′ so that |∠C| = |∠C ′| = 90◦ and |B′C ′| = |BC|, |AB| = |A′B′|. On

the line LAC , take a point D so that |CD| = |C ′A′| and D and A are on the opposite

half-planes of LBC , as shown.

122



C

A

B

C
D

B

A

We claim that 4BCD ∼= 4B′C ′A′. This is because BC ⊥ AD by hypothesis and

therefore ∠BCD and ∠C ′ are equal as both are right angles. By hypothesis, |BC| =
|B′C ′|, and by construction, |CD| = |C ′A′|. Thus SAS implies the desired congruence.

We next claim that 4BCA ∼= 4BCD. We will use SAS again. The triangles

have side BC in common. Moreover, we also have |BA| = |BD|; this is because

the congruence 4BCD ∼= 4B′C ′A′ implies |BD| = |B′A′| and |B′A′| = |BA| by

hypothesis. Finally we have to check that |∠DBC| = |∠ABC|, and this is so because

4BAD being isosceles and BC being the altitude on AD, BC has to be also the

angle bisector of ∠ABD (Theorem 7(b)). All the conditions of SAS have been met

and the sought-after congruence follows.

Putting the congruences 4BCA ∼= 4BCD and 4BCD ∼= 4B′C ′A′ together, we

obtain 4BCA ∼= 4B′C ′A′ after all. The proof is complete.

The second (traditional) proof is so much shorter than the first proof using basic

rigid motions that one may wonder why one should bother with the latter. We will

discuss this issue at the end of the section.

We now turn to the last major congruence criterion for triangles.

The SSS criterion

Theorem 9 (SSS). Two triangles with three pairs of equal sides are congruent.

Proof. In broad outline, this proof is very similar to the proof of Theorem 8. Suppose

triangles ABC and A′B′C ′ are given so that |AB| = |A′B′|, |AC| = |A′C ′|, and

|BC| = |B′C ′|.
Case 1. We begin by assuming that the triangles satisfy an additional restrictive

assumption: B = B′ and C = C ′, and we will prove that there is a basic rigid motion
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that maps 4A′B′C ′ to 4ABC. Either A and A′ are on the same side of the line

LBC or on opposite sides; first assume they are on opposite sides. Here are two of the

possibilities, but our proof will be valid in all cases.
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By hypothesis, |AB| = |A′B′|, so B is equidistant from A and A′; by the Corollary

to Theorem 7 (page 119), B lies on the perpendicular bisector of AA′. For the same

reason, C lies on the perpendicular bisector of AA′. Because two points determine a

line ((A1), page 81), LBC is the perpendicular bisector of AA′. Thus the reflection R

across LBC maps A′ to A, B to B and C to C (see the definition of reflection on page

98). Thus R(4A′B′C ′) = 4ABC. This then proves the theorem under the stated

restrictions that B = B′ and C = C ′ and A, A′ being on opposite sides of LBC . Now

suppose A, A′ are on the same side of LBC . Still with R as the reflection across LBC ,

let R(A′) = A0, R(B′) = B0, and R(C ′) = C0. Then R(4A′B′C ′) = 4A0B0C0, and

the latter has the property that B = B0, C = C0, A, A0 are on opposite sides of

LBC , and |AB| = |A0B|, |AC| = |A0C| (because a reflection preserves distance, by

assumption (A7) on page 110). The preceding argument then shows that

4ABC = R(4A0B0C0)

In view of 4A0B0C0 = R(4A′B′C ′) and the fact that R ◦R is the identity transfor-

mation, we have

4ABC = R(4A0B0C0) = R(R(4A′B′C ′)) = 4A′B′C ′

Thus 4A′B′C ′ coincides with 4ABC in the first place. Therefore the theorem is

true if, in addition to the equality of three pairs of sides, B = B′ and C = C ′.

Case 2. Suppose we assume only that B = B′ but C 6= C ′. Because |BC| =

|B′C ′|, a suitable rotation Ro around B will bring B′C ′ to BC. Then the triangle
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Ro(4A′B′C ′) and 4ABC share a side BC, so that by Case 1, there is a basic rigid

motion F (which is either a reflection or the identity) so that F (Ro(4A′B′C ′)) =

4ABC.

A

A

BB = C

C

Case 3. Finally, we treat the general case. In view of Case 2, we may assume

that triangles ABC and A′B′C ′ do not even share a vertex. Let T be the translation

along the vector
−−→
B′B. Then T (B′) = B, so that T (4A′B′C ′) and 4ABC share a

vertex B. Depending on whether T (C ′) is equal to C or not, we are in either Case 1

or Case 2. Thus there is some basic rigid motion F and some rotation Ro (Ro would

be the rotation of 0 degrees if T (C ′) = C), we have F (Ro(T (4A′B′C ′))) = 4ABC.

This proves Theorem 9.

Pedagogical implications

We will briefly address the pedagogical implications of using basic rigid motions to

define congruence and using them to prove the congruence of geometric figures. One

of the problems encountered by beginners in geometry is the formalism inherent in

the prevailing presentations of the subject. The two basic concepts of congruence and

similarity come across as either formal and abstract, or pleasant but irrelevant. In the

axiomatic presentations, congruence and similarity are defined only for polygons, and

as such they are divorced from the way these terms are used in the intuitive context. In

the other extreme, congruence is “same size and same shape”, and similarity is “same

shape but not necessarily the same size”. What they have to do with mathematics

is a question almost never addressed. These phrases are nothing but empty rhetoric,

and students cannot relate them to the techniques of proving theorems using the

procedures of SAS for both congruence and similarity, SSS for both congruence and

similarity, etc. Ultimately, these concepts become synonymous with rote procedures.
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The potential benefit of defining congruence using reflections, rotations, and trans-

lations is that they transform an abstract concept into one that is concrete and tactile.

This is the whole point of the eighth grade geometry standards, which ask for the

use of manipulatives, especially transparencies, to model reflections, rotations, and

translations, i.e., to model congruence. It is for this reason that we used reflections,

rotations, and translations to prove all three criteria of triangle congruence—SAS,

ASA, and SSS—even when there was an option to use SAS to prove ASA and SSS.

In the next section, we will give a few more examples of using reflections, rotations,

and translations to prove theorems. In this way, theorem-proving in geometry will no

longer be an exercise in formalism and abstraction. Congruence is something students

can relate to in a tactile manner just by moving a transparency over a piece of paper.

Later on, we will also ground the learning of similarity in similar tactile experiences.

The professional judgment of the practitioners in geometry is that geometric in-

tuition is built on such tactile experiences rather than on abstract formalism. The

goal of these standards is therefore to provide a sound foundation for the learning of

geometry.

4. Some typical theorems

Overview (page 126)

Parallel lines and angles (page 127)

Circumcenter, orthocenter, and incenter (page 132)

The centroid of a triangle (page 137)

The triangle inequality (page 142)

Overview

Having learned what it means for two geometric figures to be congruent, students

now get to see some immediate applications. Since we are already in possession of

all the general criteria for triangle congruence, we are free to develop the high school

course on geometry at this point as in the classical treatment handed down to us by
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Euclid if we so wish. However, in the spirit of the hands-on approach to geometry

started in grade 8, we will continue to provide proofs, when it is appropriate, using

basic rigid motions. Teachers can decide for themselves which kind of proofs are most

appropriate for their students.

In addition to basic theorems about angles associated with a transversal with re-

spect to a pair of parallel lines, section 4 proves the concurrence of angle bisectors,

perpendicular bisectors, altitudes, and medians in a triangle (i.e., they all meet at a

point). Along the way, various theorems of independent interest are proved, including

some standard characterizations of a parallelogram and the fact that the angle sum

of a triangle is 180 degrees. In the final subsection, we prove the triangle inequality.

Parallel lines and angles

First, we show that two intersecting lines L and ` give rise to some congruent

angles. Suppose they meet at a point O. Let A, B be two points on L that lie on

opposite sides of ` and, similarly, let C, D be two points on ` that lie on opposite

sides of L.
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Then ∠AOC and ∠BOD are called opposite angles at O (sometimes called verti-

cal angles). The following is standard.

Lemma 11. Opposite angles are equal.

Proof. The reason is that if R denotes the 180-degree rotation of the plane around

O, then R moves the ray OA to the ray OB and the ray OC to the ray OD. Thus

R moves the ∠AOC to ∠BOD. Because basic rigid motions are assumed to preserve

degree (page 110), the opposite angles ∠AOC and ∠BOD are equal. This proves

Lemma 11.
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We next use this lemma to shed light on some basic properties of parallel lines. The

whole discussion hinges on the deceptively simple Theorem 1 (page 102). First, we

give more formal definitions of corresponding angles and alternate interior angles of a

transversal with respect to a given pair of lines (they have been informally introduced

earlier in grade 8 on page 49 and page 66). Let lines L1 and L2 be given and let `

be a line that intersects L1 and L2 at P1 and P2, respectively. The line ` is called a

transversal of the lines L1 and L2. Let C1, D2 be points on L1 and L2, respectively,

so that they lie on opposite sides of `.
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Then ∠C1P1P2 and ∠P1P2D2 are said to be alternate interior angles of the

transversal ` with respect to L1 and L2. If E, D1 are points on ` and L1, respectively,

so that ∠EP1D1 and ∠C1P1P2 are opposite angles, then ∠EP1D1 and ∠EP2D2 are

said to be corresponding angles of the transversal ` with respect to L1 and L2. We

now come to one of the characteristic properties of the plane.

Theorem 10. Alternate interior angles and corresponding angles of a transversal

with respect to a pair of parallel lines are equal.

Proof. Let the parallel lines be L1 and L2 and let a transversal ` intersect L1 and

L2 at P1 and P2, respectively. Let the alternate interior angles be ∠C1P1P2 and

∠P1P2D2, as shown. It suffices to prove that these angles are equal because Lemma

11 then takes care of the statement about the corresponding angles ∠EP1D1 and

∠EP2D2.
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Let O be the midpoint of the segment P1P2 and let R be the 180-degree rotation

around O. Furthermore, let R map the line L2 to R(L2). Now consider the two lines

R(L2) and L1. We have R(L2) ‖ L2 by Theorem 1, and also L1 ‖ L2 by hypothe-

sis. Of course L1 passes through the point P1, but so does R(L2) because a rotation

preserves distance ((A7), page 110) and therefore R maps P2 to P1, so that R(L2)

contains P1. By the Parallel Postulate, R(L2) = L1. Because R is a 180-degree

rotation, it maps the ray P2D2 to the ray P1C1. Therefore R maps ∠P1P2D2 to

∠P2P1C1. Since a rotation preserves degree ((A7) again), we see that ∠P1P2D2 is

equal to to ∠P2P1C1. Theorem 10 is proved.

There is a noteworthy consequence of Theorem 10. By a common abuse of lan-

guage, we abbreviate “the sum of the degrees of angles” to the sum of angles, and

“the sum of the degrees of all three angles of a triangle” to the angle sum of a

triangle.

Theorem 11 (Angle Sum Theorem). The angle sum of a triangle is 180 degrees.

Proof. This is the same proof as the one given in eighth grade, page 67, but rephrased

in slightly more formal language. Let 4ABC be given. On the ray BC, let a point

D be chosen so that B and D lie on opposite sides of line LAC . Then ∠ACD is called

an exterior angle of 4ABC. Let CE be the line parallel to line AB and passing

through C (for the fact that there is such a line, see Corollary of Theorem 1, page

103).
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By Theorem 10, ∠A is equal to ∠ACE, and ∠B is equal to ∠ECD. Hence the angle

sum of 4ABC is

|∠A|+ |∠B|+ |∠C| = |∠ACE|+ |∠ECD|+ |∠C| = 180◦.

Theorem 11 is proved.

The reasoning in the preceding proof also proves the following Corollary. In the

notation above, ∠A and ∠B are called the remote interior angles of the exterior

angle ∠ACD. We have:

Corollary. An exterior angle is equal to the sum of its remote interior angles.

Theorem 10 has a converse, which is useful for deciding if two lines are parallel.

Thoerem 12. If a pair of alternate interior angles or a pair of corresponding angles

of a transversal with respect to two lines are equal, then the lines are parallel.

Proof. Since equality of corresponding angles implies the equality of a pair of alter-

nate interior angles by virtue of Lemma 11, it suffices to prove the theorem assuming

the equality of a pair of alternate interior angles.
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Thus let ∠C1P1P2 and ∠P1P2D2 be equal alternate interior angles of the transver-

sal ` with respect to the lines L1 and L2, and we have to prove that L1 ‖ L2. As

before, let O be the midpoint of the segment P1P2 and let R be the 180-degree ro-

tation around O. If the rotated image of L2 is denoted by R(L2) and the rotated

image of D1 is denoted by C ′, then R(L2) passes through P1 and ∠C ′P1P2 is equal

to ∠P1P2D2 (rotation preserves degree by (A7), page 110). By hypothesis, ∠C1P1P2

is also equal to ∠P1P2D2. Hence ∠C ′P1P2 and ∠C1P1P2 are equal angles with a

common side P1P2. Moreover, since both C1 and C ′ are on the opposite side of line

LP1P2 = ` relative to D2, we see that C1 and C ′ are on the same side of `. Therefore

the rays P1C1 and P1C
′ coincide (by Lemma 3, page 95), or what is the same thing,

the lines L1 and R(L2) coincide. But R(L2) ‖ L2, by Theorem 1, so L1 ‖ L2 after all.

This proves Theorem 12.

Notice that Theorem 12 generalizes Theorem 2 on page 103.

Remark. At this point, we should make some comments that belong strictly

to a Handbook for Teachers. For an introductory course in geometry, the proof of

Theorem 11 on the angle sum of a triangle given above, or one similar to it, is an

appropriate one. A teacher should be aware, however, that while this proof is not

wrong, it is nevertheless incomplete in a subtle way, namely,

how do we know that |∠ACD| is always bigger than |∠A| so that the ray

RCE lies in the convex part (page 88) of ∠ACD?
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Because the picture is so seductive, questions about the validity of this fact is proba-

bly never going to be raised in a beginning class on geometry. One can give a rigorous

proof, of course, but it turns out to be quite subtle, and the details would not be in-

structive for beginners. Moreover, in order to present such a proof, we would have to

reformulate, with greater precision, assumptions (A1) to (A8), and we would also be
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forced to first establish some results of a purely technical nature that are devoid of

geometric interest. From a mathematical standpoint, such foundational issues should

not be taken lightly; setting a correct axiomatic system for the geometry that Eu-

clid left with us took mankind all of 22 centuries (the decisive, finishing touch was

supplied by David Hilbert in 1899). But what is good for mathematics may not be

good for school education. A geometry course for school students should not worry

about these technical details, anymore than students in elementary school should

worry about the logical structure of whole numbers in the form of the Peano axioms.

In a school classroom, it would be justified to mention in passing this subtle gap in

the proof of Theorem 11, and let students know that an explanation can be found in

upper division college mathematics courses.

Circumcenter, orthocenter, and incenter

We now turn to the standard concurrence theorems related to a triangle. We need

a definition: three or more lines lines are concurrent if they meet at one point.

Theorem 13. (i) The perpendicular bisectors of the three sides of a triangle meet at

a point, called the circumcenter of the triangle. (ii) There is a unique circle that

passes through the vertices of a triangle, and the center of this circle (the circumcir-

cle of the triangle) is the circumcenter.

Proof. Let the triangle be ABC, as shown, and let M , N be the midpoints of BC

and AC, respectively. Also let the perpendicular bisectors of BC, AC be `1 and `2,

respectively. Let `1 and `2 meet at O.
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Since O lies on the perpendicular bisector of BC, |OB| = |OC| (Corollary to Theorem

7 on page 119). Similarly, |OC| = |OA|. Together, we have |OB| = |OA| = |OC|,
i.e., O is equidistant from A, B and C. In particular, O is equidistant from A and

B. By the Corollary to Theorem 7 again, O lies on the perpendicular bisector of AB.

As O already lies on the perpendicular bisectors of BC and AC, this proves the first

part of the theorem.

To prove the second part, we have to first prove that there is a circle with center

at O that passes through the vertices A, B, and C, and that any such circle must

coincide with this circle. Consider the circle K with center O and radius |OA|. K
must pass through B and C, on account of |OB| = |OA| = |OC|, so we have proved

the existence of such a circle. Next,we have to show that any other circle K′ passing

through A, B and C must coincide with K. Let the center of K′ be O′. Since O′ is

by definition equidistant from B and C, O′ lies on the perpendicular bisector of BC

(Corollary to Theorem 7), and therefore lies on `1 . For exactly the same reason, O′

must also lie on `2, the perpendicular bisector of AC. Therefore O′ is the point of

intersection of `1 and `2, which is O. This shows O = O′. Since K′ passes through A,

the radius of K′ is also |OA|. Hence K′ = K because they have the same center and

the same radius. The proof of the theorem is complete.

Remark. In a school classroom, the assertion in the preceding proof, to the effect

that `1 and `2 must intersect, will likely be taken for granted and draw no attention

whatsoever. A teacher may wish to use this as a teachable moment, however, and

show students that the assertion can be proved. The reasoning is as follows. If `1 and

`2 do not intersect, then `1 ‖ `2. By the Parallel Postulate, no line passing through M

other than `1 can be parallel to `2. In particular, LBC is not parallel to `2. Thus both

`1 and `2 intersect LBC , and Theorem 10 implies that LBC ⊥ `2. Since also LAC ⊥ `2,

Theorem 12 implies that LBC ‖ LAC . But this is impossible because LBC and LAC

are distinct lines with a point C in common. Therefore `1 and `2 must intersect.

We will now use Theorem 13 to prove the concurrency of the altitudes of a trian-

gle. Such a proof is not likely one that students can “discover” by themselves, but

they can learn from it.

Theorem 14. The three altitudes of a triangle meet at a point, called the orthocen-
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ter of the triangle.

Proof. Let the altitudes of 4ABC be AD, BE and CF . Through each vertex,

draw a line parallel to the opposite side, resulting in a triangle which we denote by

4A′B′C ′. If the triangle is acute, it is illustrated on the left below. However if (let

us say) ∠A is obtuse, then we have a situation illustrated on the right below.
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By construction, the quadrilaterals AC ′BC, ABCB′ are parallelograms. There-

fore, by Theorem 4 (page 107), |C ′A| = |BC| = |AB′|. Thus A is the midpoint of

C ′B′. Moreover, since AD ⊥ BC and BC ‖ C ′B′, we also know that AD ⊥ C ′B′

(Theorem 10 on page 128). It follows that LAD is the perpendicular bisector of C ′B′.

Similarly, LFC and LBE are perpendicular bisectors of A′B′ and C ′A′, respectively.

By Theorem 13, LAD, LFC and LBE meet at the circumcenter of 4A′B′C ′. The proof

is complete.

In approaching our next topic, the concurrence of the angle bisectors of a triangle,

we should keep in mind the analogy between the angle bisector of an angle and the

perpendicular bisector of a segment. To push the analogy further, we now prove the

following lemma, which is the counterpart of the Corollary to Theorem 7 (page 119).

We first need a definition. Let a line L and a point P not on L be given. From

Theorem 3 (page 105) and Theorem 2 (page 103), we know there is a unique line

passing through P and perpendicular to L; let this line intersect L at Q. The length

|PQ| is called the distance of P from L and the point Q is called the foot of the
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perpendicular from P to L.

Lemma 12. The angle bisector of (the convex part of ) an angle is the collection of

all the points equidistant from the two sides of the angle.

Proof. First, we prove that the points on the angle bisector of the convex part of an

angle (see page 88) are equidistant from its sides. So let the ray ROP be the angle

bisector of ∠AOB, and we may as well assume that the feet of the perpendicular

from P to both sides of the angle are A and B, as shown. We have to prove that

|PA| = |PB|.

P

A

B
O

Let R be the reflection across LOP . Since |∠POA| = |∠POB|, Lemma 9 on page

114 implies that R maps the ray OB to the ray OA. Using the degree-preserving

property of R once more, we see that R(PB) must be perpendicular to OA. Since

there is only one perpendicular from P to the the line LOA according to Theorem 2

(page 103), we conclude that R(PB) = PA. Because reflections preserve distance

too, we get |PA| = |PB|, as desired.

Conversely, if a point P in the convex part of ∠AOB is equidistant from the rays

OA and OB, we must show OP bisects ∠AOB. Let PA ⊥ OA and PB ⊥ OB

as before, then the hypothesis means |PA| = |PB|. The right triangles POA and

POB, having the hypotenuse PO in common, are therefore congruent because of HL

(Theorem 8, page 120). Consequently, ∠POB and ∠POA are equal. The proof of

Lemma 12 is complete.

We now come to the concurrence theorem for angle bisectors. It has been noted

that the term median or altitude could mean a ray, a line, or a segment (see page

118). The same is true for angle bisector. It was defined to be a ray (see page 93)

or a line, but in the next theorem, the term angle bisector should be interpreted to

mean the segment between the vertex of the given angle and the point of intersection
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with the opposite side. (The fact that the angle bisector of a triangle must intersect

the opposite side is a consequence of the crossbar axiom; see page 119.) Or, referring

to the picture below, the angle bisector of ∠A in the statement of Theorem 15 will

mean the segment AE.

Theorem 15. The three angle bisectors of a triangle meet at a point, called the

incenter of the triangle. The incenter is the unique point equidistant from the three

sides.

Proof. Let the angle bisectors AE and BD of ∠A and ∠B in 4ABC, respectively,

intersect at I.

E

A B
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D

By Lemma 12, since I lies on the angle bisector of ∠A, it is equidistant from AC

and AB. Because I also lies on the angle bisector of ∠B, it is equidistant from BA

and BC. Together, these two facts imply that I is equidistant from CA and CB.

By Lemma 12 again, I must also lie on the angle bisector of ∠C. So all three angle

bisectors are concurrent. The fact that it is equidistant from all three sides is already

contained in the preceding proof. Now suppose there is another point I ′ equidistant

from all three sides. Because I ′ is equidistant from AB and AC, Lemma 12 implies

that I ′ lies on the angle bisector of ∠A. The same reasoning then shows that I ′ lies

on all the angle bisectors, i.e., I ′ = I. Theorem 15 is proved.

Remark. Theorem 15 asserts that not just the rays of the angle bisectors are

concurrent, but that the segments themselves are already concurrent. This is signif-

icant because it implies that the incenter is always inside the triangle, as one would

expect by looking at a drawing of angle bisectors of a triangle. Consider then the

assertion at the beginning of the preceding proof, that the segments AE and BD

meet at I. Pictorially, there is no room for doubt, but is there a reason behind it?
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This is what assumption (A8) (page 119), the crossbar axiom, is for: By (A8), the

angle bisector of ∠A must intersect BC at a point E; then in ∠B, we see that the

angle bisector from B must intersect segment AE, again because of (A8). This kind

of information can be given out judiciously, but probably not as a point of emphasis,

in school classroom instruction.

The centroid of a triangle

Finally we come to the concurrence of the medians in a triangle. For the proof,

we need three theorems, all of which are of independent interest. The following two

theorems are different characterizations of a parallelogram. The first one says that

parallelograms are the quadrilaterals whose diagonals bisect each other.

Theorem 16. Let L and L′ be two lines meeting at a point O. P , Q (resp., P ′,

Q′) are points lying on opposite half-lines of L (resp., L′) determined by O. Then

|PO| = |OQ| and |P ′O| = |OQ′| ⇐⇒ PP ′QQ′ is a parallelogram.
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Proof. We begin by proving that if |PO| = |OQ| and |P ′O| = |OQ′|, then PP ′QQ′

is a parallelogram. Let R be the rotation of 180◦ around O. Then R clearly maps

P to Q and P ′ to Q′, and therefore R(PP ′) = QQ′. By Theorem 1 (page 102),

PP ′ ‖ QQ′. In the same way, we can prove PQ′ ‖ P ′Q. This proves that PP ′QQ′

is a parallelogram. Conversely, suppose PP ′QQ′ is a parallelogram. Then we have

to prove that its diagonals bisect each other. This would follow if we can prove that

4OPQ′ ∼= 4OQP ′. We appeal to ASA: By Theorem 4 (page 107), |PQ′| = |QP ′|.
By Theorem 10 (page 128), |∠PQ′O| = |∠QP ′O| and |∠Q′PO| = |∠P ′QO|. The

conditions of ASA are thus satisfied and we have the desired congruence. The theo-
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rem is proved.

Theorem 17. A quadrilateral is a parallelogram ⇐⇒ it has one pair of sides which

are equal and parallel.

Proof. The fact that a parallelogram has a pair of sides which are equal and parallel

is implied by Theorem 4 (page 107). We prove the converse. Let ABCD be a

quadrilateral so that |AD| = |BC| and AD ‖ BC. We have to prove that ABCD is

a parallelogram. It suffices to prove that AB ‖ CD.
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Observe that 4ACD ∼= 4CAB by virtue of SAS. Indeed, the triangles share a side

AC, |AD| = |BC| by hypothesis, and finally |∠CAD| = |∠ACB| because of Theorem

10 (page 128) and the hypothesis that AD ‖ BC. This proves the congruence. Con-

sequently, |∠BAC| = |∠DCA|. By Theorem 12 (page 130), AB ‖ CD. The proof is

complete.

Remark. We have by now gotten used to the fact that a seemingly simple

geometric proof can hide some unpleasant subtleties. In the case of the preceding

proof, the fact that B and D lie in opposite half-planes of the diagonal line LAC plays

a critical role. Without that, the angles ∠DAC and ∠ACB would not be alternate

interior angles of the transversal LAC with respect to the parallel lines AD and BC

and Theorem 10 would not be applicable to guarantee their equality. In fact, it is

for occasions like this that we took the trouble to define alternate interior angles so

carefully on page 128. Again, the usual pictures such as the preceding one make us

believe that B and D would automatically on opposite sides of LAC , but we know

from the Remark after the proof of Theorem 4 (page 109) that, while this is true for

all parallelograms, it is not true for general quadrilaterals. Thus, here is an “obvious”

fact that calls for a proof.
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The following proof that B and D lie on opposite sides of LAC under the hypothesis

of Theorem 17 is not recommended for general use in the school classroom but,

as usual, it is being offered for teachers’ information. We are going to argue by

contradiction. Suppose B and D lie on the same side of LAC . Then we have the

following picture, where LAD ‖ LCB.
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We claim that B lies in the convex part (page 88) of the angle ∠CAD. Thus

we need to prove that (1) B lies in the closed half-plane of LAD containing C, and

(2) B lies in the closed half-plane of LAC containing D. The reason for (1) is that

the segment CB does not intersect LAD, because even the whole line LCB does not

intersect LAD (LCB ‖ LAD by hypothesis). So C and B belong to the same half-plane

of LAD (see the definition of half-planes in (A4), page 87). The reason for (2) is our

assumption that B and D lie on the same side of LAC . Therefore we know B lies

in the convex part of ∠CAD. By the crossbar axiom ((A8) on page 119), the ray

RAB intersects the segment CD at a point X. We now show that, in fact, X lies on

the segment AB so that the segments AB and CD intersect. To show this, we use

another contradiction argument. If AB does not intersection the segment CD, then

we have a situation shown by the following picture:

D

X

B

A

C
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Now the line LAB, having intersected line LCD at X, cannot intersect LCD else-

where. Therefore the segment AB does not contain any point of the line LCD. This

means B lies in the half-plane of LCD containing A. But we also have B lying in the

half-pane of LAC containing D because our hypothesis at the moment is that B and D

lie on the same side of LAC . Thus B lies in the convex part of the angle ∠ACD. The

crossbar axiom (page 119) implies that the ray RCB intersects AD. This contradicts

the hypothesis of Theorem 17 that LAD ‖ LCB. Therefore it must be the case that the

segments AB and CD intersect at a point X. However, the definition of a polygon

does not allow the sides AB and CD of the quadrilateral ABCD to intersect (see

page 83). This contradiction shows that B and D must lie in opposite half-planes of

LAC after all.

Our proof of Theorem 17 is now complete in every respect.

We are now in a position to prove one of the central theorems of triangle geometry.

Theorem 18. Let 4ABC be given, and let D and E be midpoints of AB and AC,

respectively. Then DE ‖ BC and |BC| = 2|DE|.
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Remark. This theorem calls for a proof of |BC| = 2|DE|, i.e., that the length of

one segment is twice that of another. We have no tools to prove something like this,

so we must change this equality to something we can handle. For example, construct

a segment twice as long as DE and then try to prove that this segment and BC have

the same length. This explains the proof to follow.

Proof. On the ray RDE, we take a point F so that |DF | = 2|DE|. Now E is

the midpoint of DF (by construction), and also the midpoint of AC (by hypothe-

sis), so Theorem 16 implies that ADCF is a parallelogram. By Theorem 4 (page

140



107, |CF | = |AD|. Since |AD| = |DB| by hypothesis, we have |CF | = |BD|. On

the other hand, CF ‖ AD because ADCF is a parallelogram; this is of course the

same as CF ‖ BD. The quadrilateral DBCF therefore has a pair of sides which

are equal and parallel. By Theorem 17, DBCF is a parallelogram. Thus DF ‖ BC,

which is the same as DE ‖ BC. Furthermore, |DF | = |BC| (Theorem 4), and since

|DE| = |EF |, we have |BC| = 2|DE|. The proof is complete.

Theorem 18 has a surprising consequence: if ABCD is any quadrilateral, then the

quadrilateral obtained by joining midpoints of the adjacent sides of ABCD is always

a parallelogram. It should be pointed out that Theorem 18 is important not only for

proving that the medians are concurrent, but it is also central to the understanding

of similarity. See Section 6 below (page 149).

Theorem 19. The three medians of a triangle meet at a point G, called the centroid

of the triangle. On each median, the distance of G to the vertex is twice the distance

of G to the midpoint of the opposite side.

A

C B

M N
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Proof. We focus attention on the median issuing from B, to be called BB′. We

claim that either of the two medians issuing from A and C will meet BB′ at a point

G so that |BG| = 2|GB′|. Once this is done, then we know that all three medians

meet at the point G as described and the theorem will be proved.

Let us consider the case of the median CC ′ issuing from C. We will prove some-

thing that is equivalent to the preceding assertion, namely, we let G be the point

of intersection of CC ′ and BB′ and then prove that |BG| = 2|GB′|. By Theorem

18, C ′B′ ‖ BC and |C ′B′| = 1
2
|BC|. Now let M , N be midpoints of BG and CG,
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respectively. Then by Theorem 18 again, MN ‖ BC and |MN | = 1
2
|BC|. There-

fore, C ′B′ ‖ MN and |C ′B′| = |MN |. By Theorem 17, MNB′C ′ is a parallelogram

and therefore the diagonals MB′ and NC ′ bisect each other (Theorem 16). Thus,

|GB′| = |MG|, but since M is the midpoint of BG, we have |BM | = |MG| = |GB′|,
which is equivalent to |BG| = 2|GB′|. The proof is complete.

The triangle inequality

The goal of this subsection is to prove that the sum of (the lengths of) two sides of

a triangle exceeds (the length of) the third, the so-called triangle inequality. This

basic fact in Euclidean geometry is what gives rise to the common perception that

“the shortest distance between two points is a straight line”.

The proof of the triangle inequality requires a preliminary result. Given 4ABC,

we say BC is the side facing ∠A, and AB is the side facing ∠C. The result in

question is that, of the two sides facing two given angles in a triangle, the side facing

the larger angle is longer. One can prove this by a contradiction argument, but it is

far simpler to first prove its converse.

Theorem 20. In a triangle, the angle facing the longer side is larger. More precisely,

if in triangle ABC, |AC| > |AB|, then |∠B| > |∠C|.

�
�
�

�
�

@
@
@
@
@
@
@

hhhhhhhhhhhh

A

B

C

Proof. We are given that 4ABC satisfies |AC| > |AB|, and we have to prove

|∠ABC| > |∠C|. Since |AC| > |AB|, there is a point D between A and C so that

|AB| = |AD|. Clearly, D is in the convex part of ∠ABC. Let ∠ABD be denoted by

∠α and ∠ADB be denoted by ∠β, as shown below.
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Since 4ABD is isosceles, by Theorem 7, |∠α| = |∠β|. By the Corollary to

Theorem 11 (page 130), |∠β| > |∠C|. Thus,

|∠ABC| > |∠α| = |∠β| > |∠C|

Therefore |∠ABC| > |∠C|, as desired.

Corollary 1. In a triangle, the side facing the larger angle is longer. That is, if in

4ABC, |∠B| > |∠C|, then |AC| > |AB|.

Proof of Corollary 1. Between |AC| and |AB|, there are three possibilities:

|AC| > |AB|, |AC| = |AB| and |AC| < |AB|. We will eliminate the second and

the third. If |AC| = |AB|, then |∠B| = |∠C| by Theorem 7 and this contradicts the

hypothesis that |∠B| > |∠C|. If on the other hand |AC| < |AB|, then Theorem 20

implies |∠B| < |∠C| and this too contradicts the hypothesis that |∠B| > |∠C|. So

the only possible choice is |AC| > |AB|. The Corollary is proved.

The next corollary of Theorem 20 is the converse of Theorem 7(a).

Corollary 2. In a triangle, equal angles face equal sides.

Proof of Corollary 2. Suppose in 4ABC, |∠B| = |∠C|. Then we have to prove

|AB| = |AC|. If not, then either |AB| < |AC| or |AB| > |AC|. But according to

Theorem 20, we would have |∠C| < |∠B| or |∠B| < |∠C|, respectively, and both

contradict the hypothesis that |∠B| = |∠C|. Therefore |AB| = |AC| and the corol-

lary is proved.

Here then is the theorem we are after.
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Theorem 21 (Triangle inequality). The sum of the lengths of two sides of a tri-

angle exceeds the length of the third.

Proof. Let us prove that in 4ABC, |AB|+ |BC| > |AC|. Now if |AC| ≤ |AB|,
there would be nothing to prove. Therefore, let |AB| < |AC|. Then there is a point

D between A and C so that |AD| = |AB|. We observe that D lies in the convex part

of ∠ABC. Let us denote ∠ABD by ∠α, ∠ADB by ∠β, ∠BDC by ∠γ, and

∠DBC by ∠δ, as shown.
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Now |AB| + |BC| > |AC| is equivalent to |AD| + |BC| > |AD| + |DC|.
Therefore, it suffices to prove |BC| > |CD|. By the preceding Corollary, it suffices

in turn to prove |∠γ| > |∠δ|. Note that because |AB| = |AD|, Theorem 7 implies

that |∠α| = |∠β|. Using this fact, and by repeated use of the the Corollary to

Theorem 11 (page 130), we have:

|∠γ| > |∠α| = |∠β| > |∠δ|

That is, |∠γ| > |∠δ|, as claimed.

A slightly different proof is the following. As before, we have |∠α| = |∠β|.
Looking at the angle sum of 4ABD, we see that ∠β is an acute angle, because

|∠α| + |∠β| + |∠A| = 180◦ implies 2|∠β| + |∠A| = 180◦, which in turn implies

2|∠β| < 180◦. So |∠β| < 90◦. Therefore ∠γ is an obtuse angle. But in any triangle,

there can only be one obtuse angle. Therefore, looking at 4BCD, we see that ∠δ is

acute, and |∠γ| > |∠δ|.

5. Constructions with ruler and compass
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The game of seeing what geometric figures can be constructed using only a compass

(for drawing circles of a given radius) and a ruler (for drawing lines without making

use of the marked lengths on the ruler) was started by the Greeks perhaps before

500 B.C. It would have been forgotten long ago except for the fact that it led to

some unsolved problems that spurred significant mathematical breakthroughs. For

students, these construction problems are important for at least two reasons: they

promote the learning of geometry through tactile experiences, and they provide a

splendid opportunity for making proofs relevant by demanding verification that the

constructions are correct. Both facts are very relevant in the teaching of constructions

in the school classroom, especially in view of the fact that too often the verification

of the correctness of the constructions is ignored.

The following are some basic constructions that all students of geometry should

know, but one should be aware that there is an endless list of intricate construction

problems in the literature.

1. Reproduce a line segment on a ray with a specified endpoint.

2. Construct an equilateral triangle on a given side.

3. Reproduce an angle with one side specified.

4. Construct a line perpendicular to a given line L from a given point.

5. Construct the perpendicular bisector of a line segment.

6. Construct the angle bisector of an angle.

7. Construct a line parallel to a given line through a given point.

8. Divide a given line segment into any number of equal segments.

9. Construct a regular hexagon inscribed in a circle

10. Draw tangents to a circle from a point outside the circle.

11. Construct the sum, difference, product and quotient of two given positive num-

bers.

12. Construct the square root of a positive number.
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Items 9–12 are on topics we will take up in the next two sections (see page 165 and

page 199 ff.). In this section, we give the constructions for items 4 and 8. First item 4.

Construct a line perpendicular to a given line L from a given point.

Let the given point be P . There are two cases to consider: P lies on L, and P

does not lie on L. It will be seen that the following construction takes care of both

cases at the same time.

P

L

A B

Q

The construction:

(a). Draw a circle with P as center so that it intersects L at two points A and B.

(b). Draw two circles with the same (sufficiently large) radius, and with centers at

A and B, so that they intersect; let one of the points of intersection be Q, and

make sure that Q 6= P .

(c). The line LPQ is the line we seek.

Proof that LPQ ⊥ L. By step (a), |PA| = |PB|, and by step (b), |QA| = |QB|.
Therefore the Corollary to Theorem 7 (page 119) implies that LPQ is the perpendic-

ular bisector of AB. In particular, LPQ ⊥ L.

Divide a given line segment into any number of equal segments.

Let segment AB be given. We show how to trisect AB. The construction can

obviously be generalized to equal division into any number of parts.
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The construction:

(a). Let RAK be any ray issuing from A which is different from RAB. Let AC be

any segment on RAK .

(b). Reproduce AC successively on AK so that AC is equal to CD and is equal to

DE (see Construction 1 above).

(c). Join EB. From D and C, construct lines parallel to LEB (see Construction 7

above, and also the discussion on page 50 ff.), and let these lines intersect AB

at G and F , respectively.

(d). AF , FG, and GB have the same length.

Proof that |AF | = |FG| = |GB|. Let the lines passing through C and D and

parallel to LAB intersect DG and EB at M and N , respectively. Then LAB ‖ LCM ‖
LDN (Lemma 2, page 82). For the same reason, we also have LCF ‖ LDG ‖ LEB (by

step (c) above).

E

A
F G B

K

M

ND

C

Therefore CFGM and DGBN are parallelograms, and we see that |CM | = |FG|
and |DN | = |GB| because opposite sides of a parallelogram are equal (Theorem 4 on

page 107). It now suffices to prove

|AF | = |CM | = |DN |.
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We will do so by using ASA to prove that

4ACF ∼= 4CDM ∼= 4DEN.

By step (b), |AC| = |CD| = |DE|. Because LFC ‖ LGD ‖ LBE by step (c),

|∠ACF | = |∠CDM | = |∠DEN | (Theorem 10 on page 128). For exactly the same

reason, we have LAB ‖ LCM ‖ LDN by construction, so |∠CAF | = |∠DCM | =

|∠EDN |. Therefore 4ACF ∼= 4CDM ∼= 4DEN because of ASA. It follows that

|AF | = |CM | = |DN |. This completes the proof.
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6. Definitions of dilations and similarity

Dilations and FTS (page 149)

FTS, another view (page 158)

Similarity and basic criteria for similarity (page 161)

Applications of similarity (page 165)

Dilations and FTS

In the study of geometry, there is also a need for transformations that are less

rigid than congruences. These are the dilations. With the preparation on dilations in

eighth grade in place, we will come straight to the definition of these transformations.

Definition. A dilation D with center O and scale factor r (r > 0) is a

transformation of the plane that assigns to each point P a point D(P ) so that

(1) D(O) = O.

(2) If P 6= O, the point D(P ), to be denoted more simply by P ′, is the

point on the ray ROP so that |OP ′| = r|OP |.

q q q︸ ︷︷ ︸
r |OP |

O P P ′

A dilation is intuitively some kind of “projection from the point O”. Each ray

issuing from O is mapped to the same ray (caution: all this says is that the ray is

mapped to itself, but each point on the ray will in general be mapped to another

point on the same ray). Here is an example of how a dilation with r = 2 maps four

different points (for any point P , we let the corresponding letter with a prime, P ′,

denote the image D(P ) of P ):
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Anything substantial we have to say about dilations will have to come from the

following fundamental theorem (FTS).

Theorem 22. (Fundamental Theorem of Similarity (FTS)) Let D be a dilation

with center O and scale factor r > 0. Let P and Q be two points so that LPQ does

not contain O. If D(P ) = P ′ and D(Q) = Q′, then

P ′Q′ ‖ PQ and |P ′Q′| = r |PQ|
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The case r < 1

FTS sheds new light on Theorem 18: we now understand that Theorem 18 is the

special case of FTS when r = 2. The crux of the proof of FTS is in fact the proof

of the special case of FTS when the scale factor r is a positive integer. Let us isolate

this special case.

Lemma 13. FTS is valid when the scale factor r is a positive integer.
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We will not be able to give a complete proof of Lemma 13, but we already have

a proof when r = 2 and we will presently give a proof when r = 3. After that, we

will make some comments about the proof of the general case when r is any positive

integer.

Our immediate goal is to show that, if we assume the truth of Lemma 13, then

we can give a proof of FTS for all fractions r. This is as far as we can go in school

mathematics. The complete proof of FTS in general will depend on the so-called

Fundamental Assumption of School Mathematics (FASM), which guarantees

that knowing the validity of FTS for all fractions r is enough to ensure the validity of

FTS for all positive real numbers r. The proof of FASM is however beyond the scope

of school mathematics. Let us therefore concentrate on proving FTS for all fractions

r. To this end, we prove (always assuming Lemma 13):

Lemma 14. FTS is valid for all unit fractions 1
n

, where n is a positive integer.

Proof. Let D is a dilation with center O and scale factor 1
n
, and let P , Q be two

points not collinear with O. Let D(P ) = P ′ and D(Q) = Q′, so that |OP ′| = 1
n
|OP |

and |OQ′| = 1
n
|OQ|. Then we have to prove that

P ′Q′ ‖ PQ and |P ′Q′| =
1

n
|PQ|.
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Observe that if we let D0 be the dilation with center O and scale factor n, then we

have

D0(P
′) = P and D0(Q

′) = Q.

By Lemma 13, we have

PQ ‖ P ′Q′ and |PQ| = n|P ′Q′|.
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But this is the same as the desired result that P ′Q′ ‖ PQ and |P ′Q′| = 1
n
|PQ|. The

proof of Lemma 14 is complete.

Assuming Lemma 13, we are now in a position to prove FTS for all fractions

r = m
n

, where m and n are positive integers. Thus let D be a dilation with center O

and scale factor m
n

. Let P and Q be two points so that LPQ does not contain O. If

D(P ) = P ′ and D(Q) = Q′, then we have to prove that

P ′Q′ ‖ PQ and |P ′Q′| =
m

n
|PQ|

On the ray ROP , let P1 be the point so that |OP1| = 1
n
|OP | and, similarly, let Q1

be the point on the ray ROQ so that |OQ1| = 1
n
|OQ|.
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Because it is given that |OP ′| = m
n
|OP |, we see that |OP ′| = m|OP1|. Similarly,

|OQ′| = m|OQ1|. Now let D1 be the dilation with center O and scale factor m. Then

we have D1(P1) = P ′ and D1(Q1) = Q′. By Lemma 13, we get

P ′Q′ ‖ P1Q1 and |P ′Q′| = m |P1Q1|.

Now let D2 be the dilation with center O and scale factor 1
n
. Then because |OP1| =

1
n
|OP | and |OQ1| = 1

n
|OQ|, we get D2(P ) = P1 and D2(Q) = Q1. By Lemma 14, we

get

P1Q1 ‖ PQ and |P1Q1| =
1

n
|PQ|.

Putting these two sets of conclusions together, we therefore have

P ′Q′ ‖ PQ and |P ′Q′| =
m

n
|PQ|.

This then completes the proof of FTS for scale factors that are fractions.
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Now we return to the proof of Lemma 13 for the case of r = 3. Thus we

assume that |OP ′| = 3|OP | and |OQ′| = 3|OQ| and want to prove

P ′Q′ ‖ PQ and |P ′Q′| = 3|PQ|.
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The main idea is that we already have Theorem 18 (page 140) at our disposal and

we should use it. Moreover, we should imitate the proof of Theorem 18 if possible.

To this end, we do as we did in the proof of that theorem, namely, extend PQ along

the ray RPQ until |PW | = 3|PQ|. Join Q′W . Now if we can prove PP ′Q′W is a

parallelogram, then we certainly get P ′Q′ ‖ PQ and |P ′Q′| = |PW |. The latter then

implies |P ′Q′| = 3|PQ| in view of |PW | = 3|PQ|.
To prove DBCF is a parallelogram, if we take the midpoints U and V of QQ′ and

QW , respectively, then Theorem 18 implies UV ‖ Q′W and |Q′W | = 2|UV |. Since

|OQ′| = 3|OQ| implies |QQ′| = 2|OQ|, and |PW | = 3|PQ| implies |QW | = 2|PQ|,
we see that |PQ| = |QV | and |OQ| = |QU |. Thus by Theorem 16 (page 137), OPUV

is a parallelogram and UV ‖ OP . Opposite sides of a parallelogram being equal

(Theorem 4 on page 107), we have |UV | = |OP |. But we already know UV ‖ Q′W ,

we have OP ‖ Q′W . In other words, PP ′ ‖ Q′W . From |OP ′| = 3|OP |, we get

|PP ′| = 2|OP |. But we also have |Q′W | = 2|UV | = 2|OP |, thus |PP ′| = |Q′W |.
Therefore PP ′Q′W is a quadrilateral with a pair of sides (PP ′ and Q′W ) which are

parallel and equal. By Theorem 17 on page 138, PP ′Q′W is a parallelogram. By a

remark above, the proof of Lemma 13 for r = 3 is complete.

This proof strongly suggests that the same idea could be pushed one step further

to prove Lemma 13 for r = 4, that is, if |OP ′| = 4|OP |, |OQ′| = 4|OQ|, then

P ′Q′ ‖ PQ, and |P ′Q′| = 4|PQ|. The next step is r = 5, and so on. If students are

153



comfortable with mathematical induction, it would make a wonderful extra assign-

ment to ask them to finish the proof of the general case of Lemma 13, when r is any

positive integer n, by mathematical induction on n.

In any case, we will freely make use of FTS from now on.

We now make more explicit a remarkable feature of FTS.

Lemma 15. Let D be a dilation with scale factor r > 0. Then D changes distance

by a factor of r in the sense that, for any two points P and Q in the plane, if we

denote D(P ) by P ′ and D(Q) by Q′, then |P ′Q′| = r|PQ|.

Proof. First assume P and Q are collinear with O. If P and Q lie on the same ray

issuing from O, let |OQ| > |OP |. Then let P ′ = D(P ) and Q′ = D(Q) as in the

theorem.

q q qq qO P P ′Q Q′

We claim: |P ′Q′| = r |PQ| in this case because

|P ′Q′| = |OQ′| − |OP ′| = r |OQ| − r |OP | = r (|OQ| − |OP |) = r |PQ|

This proves the claim. Now suppose P and Q do not both lie in a ray issuing from

O. Then the segment PQ contains O.

qrq q q qP ′ P O Q Q′

From the above argument, we have |OP ′| = r |OP | and |OQ′| = r |OQ|, so that

|P ′Q′| = |P ′O|+ |OQ′| = r (|PO|+ |OQ|) = r |PQ|,

as desired.

Finally, if LPQ does not contain O, then the result is contained in FTS. The proof

of Lemma 15 is complete.

The reason Lemma 15 is remarkable is that, by definition, we know that a dilation

with scale factor r > 0 expands or contracts by a factor of r along each ray issuing
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from O, and only along such rays. Yet Lemma 15 tells us that the same phenomenon

persists along any direction. It is this fact that makes dilation a “shape preserving”

transformation. In a school classroom, students should be given the opportunity to

do many drawings by hand (without a computer) magnifying or shrinking a given

figure, as suggested back on page 55.

The following theorem summarizes the basic properties of dilations; it is the coun-

terpart of Lemma 8 for congruences (page 112).

Theorem 23. A dilation has the following properties:

(i) it maps lines to lines, rays to rays, and segments to segments,

(ii) it changes distance by a factor of r, where r is the scale factor of the

dilation,

(iii) it maps every line passing through the center of dilation to itself, and

maps every line not passing through the center of the dilation to a parallel

line,

(iv) it is degree-preserving.

Proof. Let D be a dilation with center O and scale factor r.

The main point of (i) is that a dilation maps lines to lines; the proof of the rest of

(i) is routine. The following proof that a dilation maps a line to a line is essentially

the same as the one given in eighth grade on page 47. Given a line LPQ, we have to

show that D(LPQ) is a line. If LPQ contains the center of dilation O, it follows from

the definition of a dilation that D(LPQ) = LPQ. We will therefore assume that LPQ

does not contain O so that FTS becomes applicable. We claim:

D(LPQ) = LP ′Q′ , where D(P ) = P ′ and D(Q) = Q′.

In greater detail, this means (1) if R is a point on the line LPQ, then the point

R′ = D(R) lies on LP ′Q′ , and (2) conversely, every point R′ on line LP ′Q′ is the image

of some point R on LPQ, i.e., D(R) = R′. We begin with the proof of (1). To show

that R′ lies on LP ′Q′ , it suffices to show that the line LP ′R′ and the line LP ′Q′ coincide.
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(The case r > 1.)

Now,

D(P ) = P ′ and D(Q) = Q′ imply P ′Q′ ‖ PQ, by FTS.

D(P ) = P ′ and D(R) = R′ imply P ′R′ ‖ PR, by FTS.

Thus we have two lines, P ′Q′ and P ′R′, both parallel to PQ and both passing through

P ′. According to the Parallel Postulate, they must be one and the same line. This is

exactly what we want to prove.

The reasoning for the converse (2) (i.e., every point R′ on line LP ′Q′ is equal to

D(R) for a point R on LPQ), is entirely similar if we look at the dilation D1 with

center O but with scale factor 1
r

and observe that P = D1(P
′) and Q = D1(Q

′). So

the same argument shows that D1(R
′) is a point of LPQ. If we denote D1(R

′) by R,

then this implies D(R) = R′. Thus D(LPQ) = LP ′Q′ , as desired.

Part (ii) is exactly the content of Lemma 15. The assertion about lines passing

through the center of dilation in part (iii) follows from the definition, and the assertion

about lines not passing through the center of dilation is implied by FTS.

For part (iv), we note first of all that it makes sense because, by (i) above, a

dilation maps rays to rays and therefore angles to angles. The question is therefore

whether the degrees of angles are preserved. Let a nonzero angle ∠PQR be given.

Let D(P ) = P ′, D(Q) = Q′, and D(R) = R′. We will prove that

|∠PQR| = |∠P ′Q′R′|

The case of O being collinear with Q and P or with Q and R is simpler, so we will

henceforth assume that O does not lie in LQP or LQR. By part (iii), LQ′P ′ ‖ LQP .

The Parallel Postulate therefore implies that LQR is not parallel to LQ′P ′ (because

LQR is the only line passing through Q parallel to LQ′P ′). Without loss of generality,

we may assume R is the intersection of LQR and LQ′P ′ , as shown.
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Let the angle formed by the ray RQ′P ′ and the ray RQR at R be denoted by ∠Ω, as

indicated in the picture. Since D(QR) = Q′R′, (iii) implies that QR ‖ Q′R′, so that

by Theorem 10 (page 128),

|∠P ′Q′R′| = |∠Ω|

Since also D(QP ) = Q′P ′, the same reasoning implies that

|∠Ω| = |∠PQR|

Hence |∠PQR| = |∠P ′Q′R′|, as desired. The proof of Theorem 23 is complete.

As a consequence of part (i) of Theorem 23, we see that the dilated image of a

polygon is completely determined by the dilated images of the vertices of the polygon.

In other words, if (for example) PQRS is a quadrilateral and if D is a dilation so

that D(P ) = P ′, D(Q) = Q′, D(R) = R′, and D(S) = S ′, then we claim that

D(PQRS) = P ′Q′R′S ′

Let us understand what this means: D(PQRS) is the image by D of the quadrilateral

PQRS, while P ′Q′R′S ′ is the quadrilateral whose vertices are the images by D of

P , Q, R, and S. Thus a priori, D(PQRS) is related to P ′Q′R′S ′ only by their

vertices but the sides of P ′Q′R′S ′ may have nothing to do with D(PQRS). What

we are asserting is, however, that each side of P ′Q′R′S ′ is exactly the image of the

corresponding side of PQRS. The reason is of course the fact proved in part (i) of

Theorem 23, to the effect that

D(LPQ) = LP ′Q′ , D(LQR) = LQ′R′ , etc.
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FTS, another view

In applications, the following reformulation of FTS is often more useful.

Theorem 24. Let 4OPQ be given, and let P ′ be a point on the ray ROP not equal to

O. Suppose a line parallel to PQ and passing through P ′ intersects OQ at Q′. Then

|OP ′|
|OP |

=
|OQ′|
|OQ|

=
|P ′Q′|
|PQ|
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Proof. The point P ′ could be on the segment OP or could be outside OP ; the proof

is the same in either case. We have drawn the picture with P ′ in OP and will prove

the theorem accordingly. Let r = |OP ′|
|OP | . We are assuming that r < 1. Therefore there

is a point Q0 on the segment OQ so that |OQ0| = r|OQ|. Since also |OP ′| = r|OP |,
it follows that if we let D be the dilation with center O and scale factor r, then

D(Q) = Q0 and D(P ) = P ′. By FTS,

LP ′Q0 ‖ LPQ and |P ′Q0| = r|PQ|.

Thus LP ′Q0 is a line passing through P ′ and parallel to LPQ. By hypothesis, LP ′Q′ is

also a line passing through P ′ and parallel to LPQ. The Parallel Postulate therefore

implies that the two lines LP ′Q0 and LP ′Q′ coincide; in particular, Q0 = Q′. Then the

equalities

|OQ0| = r|OQ|, |OP ′| = r|OP |, |P ′Q0| = r|PQ|

now become

|OQ′| = r|OQ|, |OP ′| = r|OP |, |P ′Q′| = r|PQ|.
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This can be expressed equivalently as

|OQ′|
|OQ|

=
|OP ′|
|OP |

=
|P ′Q′|
|PQ|

= r.

Theorem 24 is proved.

Theorem 24 provides another way to think about a dilation D with a given center

O and a given scale factor r. Take any ray issuing from O and fix a point P on this

ray. Let P ′ be the point on this ray so that |OP ′| = r|OP |. Then by definition,

D(P ) = P ′. We now show, once P and P ′ are known, how to determine the image

D(Q) of any point Q so long as P , O, Q are not collinear. So given such a point Q,

we claim that D(Q) is the point Q′ that is the intersection of the ray ROQ and the

line passing through P ′ and parallel to LPQ.
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This is because by Theorem 24, we have

|OP ′|
|OP |

=
|OQ′|
|OQ|

Therefore,

|OQ′| =
|OP ′|
|OP |

|OQ| = r |OQ|,

and hence Q′ = D(Q).

Theorem 24 also gives rise to a meaningful hands-on activity with notebook pa-

pers. We begin with a general observation about the ruling on these papers. The lines

are supposed to be mutually parallel (see Lemma 2 on page 82) and equidistant, i.e.,

if you draw a line LAB perpendicular to one line, then it is perpendicular to every line
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(Theorem 10 on page 128) and the segments intercepted by the lines on LAD are theo-

retically all of the same length. Thus |AB| = |BC| = |CD| = . . . in the picture below.

Now let LMQ be a transversal of all the parallel lines. Then observe that the latter

intercept equal segments on LMQ in the sense that |MN | = |NP | = |PQ| = . . .;

this is proved by the reasoning on page 147 which proves the validity of the equidivi-

sion of a segment .
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Now, the activity. Referring to the picture below, pick a point A on one of the

lines and let two transversals through A intersect the fifth line below A at B and C,

respectively. Let the intersections of the rays RAB and RAC with the seventh line

below A be B′ and C ′, respectively (see picture below). Then because the parallel

lines intercept equal segments on the rays RAB and RAC , we have

|AB′|
|AB|

=
|AC ′|
|AC|

=
7

5
,

according to Theorem 24. Thus if D∗ is the dilation with center A and scale factor
7
5 , then D∗(B) = B′ and D∗(C) = C ′. Now check by direct measurements that

|B′C ′| = 7
5 |BC|. Repeat this activity by varying the numbers 5 and 7.
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Here is a slight variation on this activity. Pick any point P on LBC , and let the

line joining A and P intersect LP ′Q′ at P ′. Now measure |AP | and |AP ′|; is it true

that |AP ′| = 7
5 |AP | ? Pick another point Q on LPQ and get Q′ on LP ′Q′ as shown.

Again, is it true that |AQ′| = 7
5 |AQ| ? Try other choices P and Q.
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Similarity and basic criteria for similarity

Let S and S ′ be two figures (i.e., sets) in the plane. The following is the precise

way to say “they have the same shape.”

Definition. We say S is similar to S ′, in symbols, S ∼ S′, if there is a dilation

D so that

D(S) ∼= S ′

In greater detail, S ∼ S ′ means there is a congruence F and a dilation D so that

F ◦D maps S to S ′, i.e., F (D(S)) = S ′. A composition F ◦D of a congruence F and

a dilation D is called a similarity. The scale factor of the similarity ϕ ◦D is by

definition the scale factor of the dilation D.

We could have just as well defined a similarity by composing D and F in

the reverse order, i.e., D ◦ F . But of course, once so defined, one must

be consistent throughout. The two definitions are equivalent, in the sense

that for any two sets S and S ′, F (D(S)) = S ′ for a congruence F and a

dilation D if and only if there is a congruence F ′ so that D(F ′(S)) = S ′.

This situation is similar to defining 3× 5 as either 5 + 5 + 5, or 3 + 3 +

3 + 3 + 3 + 3, but once a choice has been made, we have to be consistent

about it.

161



Why must congruence enter into the discussion of similarity? First of all, two

congruent figures clearly “have the same shape”, but if we define “have the same

shape” to mean “related by a dilation”, then congruent figures such as these,

would not “have the same shape” and that would be absurd (neither right triangle

can be the dilation of the other because if it were, the hypotenuses would have to be

parallel, by FTS. An even better example is the following two sets S and S∗:

S
S∗

Now S∗ clearly has “the same shape” as S, but it is not a dilation of S, because if

it were, then the horizontal segment of S∗ would have to be parallel to the vertical

segment of S according to FTS. In this case, a dilation of S by a scale factor of 1
2 ,

followed by a clockwise rotation of 90-degree around some point in S and a suitable

translation would map S to S∗.
What these simple examples show is that it is too restrictive to define “similarity”

in terms of dilations alone. One must allow for a composition with a congruence as

well. The above definition of similarity now appears to be more reasonable.

Because of Lemma 8 (page 112) and Theorem 23 (page 155), the following theo-

rem holds for similar triangles.
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Theorem 25. Suppose 4ABC ∼ 4A′B′C ′. Then:

|∠A| = |∠A′|, |∠B| = |∠B′|, |∠C| = |∠C ′|

and
|AB|
|A′B′|

=
|AC|
|A′C ′|

=
|BC|
|B′C ′|

It is the various converses of Theorem 25 that are more interesting. The following

are the similarity analogs of the SAS, ASA, and SSS criteria for congruence.

Theorem 26. (SAS for similarity) Given two triangles ABC and A′B′C ′, if

|∠A| = |∠A′|, and
|AB|
|A′B′|

=
|AC|
|A′C ′|

then 4ABC ∼ 4A′B′C ′.

Theorem 27. (AA for similarity) Two triangles with two pairs of equal angles

are similar.

Theorem 28. (SSS for similarity) If the corresponding sides of two triangles are

proportional, the triangles are similar. More precisely, if in 4ABC and 4A′B′C ′,

|AB|
|A′B′|

=
|AC|
|A′C ′|

=
|BC|
|B′C ′|

then the triangles are similar.

We have already given a proof of AA for similarity in grade 8 (page 59). The

proofs of the other two criteria are similar in spirit, so we will try to be brief.

Proof of Theorem 26. If |AB| = |A′B′|, then the hypothesis would imply |AC| =
|A′C ′| and we are reduced to the SAS criterion for congruence. Thus we may assume

that |AB| and |A′B′| are not equal. Suppose |AB| < |A′B′|. Then the hypothesis that

|AB|/|A′B′| = |AC|/|A′C ′| implies |AC| < |A′C ′|. On A′B′, let B0 be the point so

that |A′B0| = |AB|. Similarly, on A′C ′, let C0 be the point satisfying |A′C0| = |AC|.
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Because |∠A| = |∠A′| by hypothesis, the SAS criterion for congruence (page 113)

implies that 4A′B0C0
∼= 4ABC. Let F be the congruence that maps 4A′B0C0 to

4ABC. Moreover, if r denotes the common value of |AB|/|A′B′| and |AC|/|A′C ′|,
then we have |A′B0| = |AB| = r |A′B′|. Similarly, |A′C0| = r |A′C ′|. This means that

the dilation D with center A′ and scale factor r maps A′ to A′, and also B′ to B0 and

C ′ to C0, by the definition of dilation. Thus D maps 4A′B′C ′ to 4A′B0C0, so that

(F ◦ D)(4A′B′C ′) = F (D(4A′B′C ′)) = F (4A′B0C0) = 4ABC

This shows that 4A′B′C ′ ∼ 4ABC and Theorem 26 is proved.

Proof of Theorem 28. Let |AB|/|A′B′| be denoted by r. Then by hypothesis,

|AB|
|A′B′|

=
|AC|
|A′C ′|

=
|BC|
|B′C ′|

= r (1)

Referring to the preceding picture, we may assume that |AB| < |A′B′|, so that

r < 1. Thus also |AC| < |A′C ′|. On the segments A′B′ and A′C ′, we may therefore

choose B0 and C0 so that |A′B0| = |AB| and |A′C0| = |AC|. We want to prove

that 4A′B0C0
∼= 4ABC by using the SSS criterion, and for this, we have to prove

|B0C0| = |BC|. To this end, let D be the dilation with center A′ and scale factor r.

Then because |A′B0| = |AB| and |A′C0| = |AC|, equation (1) implies

|A′B0|
|A′B′|

=
|A′C0|
|A′C ′|

= r,

so that |A′B0| = r|A′B′| and |A′C0| = r|A′C ′|. It follows that D(B′) = B0 and

D(C ′) = C0. By FTS, we have |B0C0| = r|B′C ′|, so that using equation (1) again,
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we have

|B0C0| = r |B′C ′|

= r

(
1

r
|BC|

)
(equation (1))

= |BC|.

Thus SSS implies that 4A′B0C0
∼= 4ABC, and there is a congruence F so that

F (4A′B0C0) = 4ABC. So finally,

(F ◦ D)(4A′B′C ′) = F (D(4A′B′C ′)) = F (4A′B0C0) = 4ABC

This shows that 4A′B′C ′ ∼ 4ABC. The proof of Theorem 28 is complete.

Applications of similarity

The first thing we want to do is to give a solution to the construction problem 11

in section 5 (page 145), namely,

Construct the sum, difference, product and quotient of two given

positive numbers.

First, we make the problem more precise. It is always understood that a segment

of length 1 is given. Now let two segments of length r and s be also given, both r

and s assumed to be positive. The problem asks for the construction of a segment

with length equal to r + s, r − s (assuming r > s), rs, and r
s , respectively.

The constructions of segments of lengths r ± s are routine (though keep in mind

FASM). We will concentrate on constructing segments of length rs and r
s . First rs.

The construction:

1. On a ray RAC , let B and C be chosen so that |AB| = 1 and |AC| = r. (See

Construction 1 on page 145).
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2. On another ray RAE, let |AE| = s and let the line passing through C and

parallel to LBE intersect RAE at F (see Construction 7 on page 145).

3. Then |AF | = rs.

Proof that |AF | = rs. By Theorem 24 (page 158),

|AC|
|AB|

=
|AF |
|AE|

,

which then becomes r/1 = |AF |/s (Steps 1 and 2), so that |AF | = rs, as desired.

We next construct a segment of length r
s using the same idea.

The construction:

1. On a ray RAC , let B and C be chosen so that |AB| = s and |AC| = 1. (See

Construction 1 on page 145).
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2. On another ray RAE, let |AE| = r and let the line passing through C and

parallel to LBE intersect RAE at F (see Construction 7 on page 145).
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3. Then |AF | = r
s .

Proof that |AF | = r
s
. By Theorem 24 (page 158),

|AC|
|AB|

=
|AF |
|AE|

,

which then becomes 1/s = |AF |/r (Steps 1 and 2), so that |AF | = r
s , as desired.

The next application is to a seemingly restrictive situation, the case of a right

triangle ABC with an altitude CD on its hypotenuse AB:

D
A B

C

However, one cannot fail to notice the abundance of triangles that look similar, ABC,

ACD, and CBD, and one would expect good things to come out of it. Indeed this

is the configuration that leads to a proof of the Pythagorean Theorem (see page 64).

Let us first prove something basic and elementary.

Theorem 29. Let 4ABC be a triangle with a right angle at C, and let CD be the

altitude on the hypotenuse AB. Then |CD|2 = |AD| · |DB|.

Proof. We claim that 4ACD ∼ CBD by the AA criterion. This is so because

the Angle Sum Theorem implies that in the right triangle ACD, we have |∠CAD|+
|∠ACD| = 90◦. But ∠ACD and ∠DCB are adjacent angles (see page 88), so also

|∠ACD| + |∠DCB| = 90◦ (assumption (A6)(iii), page ??). Therefore |∠CAD| =

|∠DCB|. For the same reason, we also get |∠CBD| = |∠ACD|. So we have the

desired similarity. By Theorem 25, we obtain from these similar triangles the propor-

tion
|CD|
|DB|

=
|AD|
|CD|

167



The theorem is now a consequence of the cross-multiplication algorithm.

As mentioned above, by pushing this reasoning with the same picture a step fur-

ther, we would arrive at a proof of the Pythagorean Theorem. Because the proof

given in grade 8 (page 64) is valid verbatim, we can simply restate the theorem here.

Theorem 30 (Pythagorean Theorem). If the lengths of the legs of a right triangle

are a and b, and the length of the hypotenuse is c, then a2 + b2 = c2.

The converse of the Pythagorean Theorem can also be proved in exactly

the same way as in grade 8 (see page 65), but in the more formal setting of a high

school course, it would be a good thing to point out to students that the deduction of

C = E from |CE| = 0 in that proof depends explicitly on assumption (A5)(ii) (page

89). This may increase their understanding of the role of assumptions (A1)–(A8),

which is to make more explicit each step of the reasoning process.

We want to prove a generalization of the Pythagorean Theorem, which will also

include the converse of the Pythagorean Theorem as a special case. To this end,

we now use similar triangles to give a preliminary definition of the trigonometric

functions.

Given a nonzero acute angle ∠ABC, we will assign to it a number, to be denoted

by sin∠ABC, called the sine of ∠ABC. Sometimes sin∠ABC is also denoted by

sinABC or even sinB. Here is the definition of sin∠ABC: take a point on one

side of ∠ABC—which may as well be A—then

sin∠ABC =
the distance of A from the other side of ∠ABC

|AB|

(Recall that the distance of a point from a line is defined on page 134.) Thus in the

following picture, if AD ⊥ BC, then sin∠ABC = |AD|/|AB|.

Of course, we have to make sure that the definition is well-defined, in the sense that,

if we take another point A′ on a side of the angle (which need not be the same side

as the one containing the point A above) and A′D′ ⊥ the other side, the following

proportion holds:
|A′D′|
|A′B|

=
|AD|
|AB|

.
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This is so because the right triangles 4ABC and 4A′BC ′ have ∠B in common

so that the AA criterion for similarity implies 4ABD ∼ 4A′BD′, and the above

proportion follows from Theorem 25 (page 163).

We remark that in a school classroom, care should be taken to check that the

definition of sine (and that of cosine below) is well-defined. We have to promote the

good habit among students of always making sure that what they do makes sense.

The fundamental fact is that similarity lies at the heart of the definition of sine and

cosine; there may be clever ways to camouflage this fact, but ultimately all students

should be made aware of this simple truth.

In a similar vein, we define another number cos∠ABC, called the cosine of

∠ABC. Let A be a point on a side of ∠ABC, then if the foot of the perpendicular

from A to the other side of ∠ABC is D, then the definition of cosine is

cos∠ABC =
|DB|
|AB|

Again, if A′ is another point on a side of ∠ABC and if the foot of the perpendicular

from A′ to the other side of ∠ABC is D′, then we must prove

|D′B|
|A′B|

=
|DB|
|AB|

.

This also follows from the fact that 4ABD ∼ 4A′BD′ as above.

As in the case of sine, the other symbols for cos∠ABC are cosABC and cosB.

It is also common to assign a third number to ∠ABC, called the tangent of the

angle. By definition: tan∠ABC = sin∠ABC/ cos∠ABC. Referring to the above

picture, we have

tan∠ABC =
|AD|
|BD|

=
|A′D′|
|BD′|

We also write tanABC and tanB.
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Thus in a right triangle ABC, we would have

sinB =
|AC|
|AB|

, cosB =
|CB|
|AB|

, tanB =
|AC|
|CB|

H
HH

H
HH

H
HH

H
HH

C

A

B

For the zero angle, we agree to define

sin 0 = 0, cos 0 = 1, tan 0 = 0.

These definitions are of course influenced by the behavior of |AC| and |BC| when

∠ABC is close to the zero angle: in an intuitive sense, |AC| → 0 and |BC| → |AB|
as |∠ABC| → 0◦. If ∠ABC is a right angle, which we will denote by “90” on this

occasion for the sake of clarity, we will define

sin 90 = 1, cos 90 = 0.

Again, these definitions are influenced by the behavior of |AC| and |BC| when ∠ABC

is acute but almost 90 degrees: intuitively, |BC| → 0 and |AC| → |AB| as ∠ABC →
90◦.

Now suppose ∠ABC is obtuse and is not a straight angle (but we are still using

the convex part of the angle; see page 88). We will define sinB and cosB in the same

formal way, but with a mild twist. We drop a perpendicular from a point A on one

side of ∠ABC to the line containing the other side. (Recall: a side of an angle is a

ray.) Let the foot of this perpendicular be D as before.

D B C

A
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Then if we strictly follow the preceding discussion, we would define sinB as |AD|/|AB|
and cosB as |DB|/|AB|. However, if we think of B as the origin of a coordinate

system in the plane, then the difference between the point D in the case ∠ABC is

acute and the point D in the case ∠ABC is obtuse stands out: D lies on the positive

x-axis in the former case, and lies in the negative x-axis in the latter case. It is then

easy to understand why we now define sine and cosine of an obtuse angle as follows:

sinABC =
|AD|
|AB|

, cosABC = − |DB|
|AB|

.

In short, if ∠ABC is obtuse, then referring to the preceding picture, the sine and

cosine of ∠ABC is related to the sine and cosine of the acute angle ∠ABD by

sinABC = sinABD, cosABC = − cosABD.

Consequently, for an obtuse ∠ABC,

tanABC = − |AD|
|DB|

= − tanABD.

It remains to point out that tan 90 has no definition, or in the terminology of

functions, “the right angle is not in the domain of definition of the tangent function”.

But to complete our definitions of these three so-called trigonometric functions,

we define for a straight angle, to be denoted by “180” on this occasion,

sin 180 = 0, cos 180 = −1, tan 180 = 0.

There is a noteworthy interpretation of tangent. Let L be a nonvertical line in a

coordinate system. If L is also not horizontal, let L intersect the x-axis at B. Let s

be the angle made by L and the x-axis in the way shown by the following pictures:

the cases of L slanting to the right like this / is on the left, and the case of L slanting

to the left like this \ is on the right:

By the definition of the tangent of angle s, we see that

tan s = slope of L

We can now prove the generalization of the Pythagorean Theorem.
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Theorem 31 (Law of Cosines). Given a triangle ABC, let the length of the side

opposite vertex A be denoted by a, that opposite vertex B be denoted by b, and that

opposite vertex C be denoted by c. Then

c2 = a2 + b2 − 2ab cosC

where cosC refers to the cosine of ∠ACB.

D

A

CD

A

C B
a

cb

B

h b
c

h

a

Observe that if ∠C is a right angle, then cosC = 0 and Theorem 31 becomes the

Pythagorean Theorem. Conversely, if c2 = a2 + b2, then by Theorem 31, cosC = 0.

It follows from the definition of cosine that this is possible only if |∠C| = 90◦. We

have therefore proved that in a 4ABC, if c2 = a2 + b2, then ∠C is a right angle.

Thus Theorem 31 implies the converse of the Pythagorean Theorem.

Proof of Theorem 31. When ∠C is acute (see the above picture on the left), the

proof is entirely standard and we will be brief. Let AD be the altitude on base BC,

so that AD ⊥ BC. Let the length of AD be h, Then the Pythagorean Theorem

implies that

c2 = h2 + |DB|2 (2)

b2 = h2 + |CD|2 (3)
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Since ∠C is acute, |DB| = (a − |CD|). A simple computation using this fact and

equations (2) and (3) yields the desired conclusion. What is usually neglected, how-

ever, is the fact that the case of an obtuse ∠C must also be considered. In that case,

|DB| = (a+ |CD|) (see the above picture on the right), so that

c2 = h2 + |DB|2 (equation (2))

= h2 + (a+ |CD|)2

= a2 + (h2 + |CD|2) + 2a |CD|
= a2 + b2 + 2a |CD| (equation (3))

Therefore c2 = a2 + b2 + 2a |CD|. But by definition, cosC = − |CD|/b when ∠C is

obtuse, so |CD| = − b cosC. Substituting this into the preceding equation immedi-

ately gives the conclusion of Theorem 31.

Theorem 31 has a related theorem. We will explain presently how they are related.

Theorem 32. (Law of Sines) Let 4ABC be given. Notation as in Theorem 31,

we have
sinA

a
=

sinB

b
=

sinC

c

aBC

A

B
CD

A

c

h

D

b

a

c h b

Proof. It suffices to prove
sinB

b
=

sinC

c
.

There are two cases: both ∠B and ∠C are acute (see the above picture on the left),

and one of them is obtuse (the above picture on the right). As in the case of Theorem

31, it is necessary to prove both cases of the theorem. Fortunately, the following proof
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is valid for either situation. Let AD ⊥ BC as before and let |AD| = h. We have:

sinB

b
=

h

c
· 1

b
(definition of sine)

=
h

b
· 1

c

= (sinC) · 1

c
(definition of sine for acute or obtuse angle)

=
sinC

c

The proof is complete.

The subject of trigonometry was designed to solve triangles, in the sense of

computing the lengths of all the sides and the degrees of all the angles of a given

triangle if only partial information is given about the sides and the angles. The

need for solving triangles arose in Greek astronomy; ancient astronomers compiled

elaborate tables of the trigonometric functions so that knowing the degree of an angle

would be (essentially) equivalent to knowing the sine, or cosine, or tangent of this

angle. Theorems 31 and 32 are two of the main tools for solving a triangle, and they

complement each other. For example, suppose |∠A|, |∠B|, and c are given; this is

the situation of SAS and we know that 4ABC is completely determined (Theorem

5, page 113) so that all that remains is to get the explicit values of the other lengths

and degrees. Theorem 31 is not immediately applicable for this purpose as a little

reflection would reveal, but Theorem 32 is because we also know |∠C| on account

of the Angle Sum Theorem (page 129). Therefore we know (sinC)/c. Since we also

know sinB, from
sinB

b
=

sinC

c
,

we can compute b. Similarly, from

sinA

a
=

sinC

c
,

we can compute a. Thus 4ABC is solved.

For another example, suppose a, b, and |∠C| are given instead (this is therefore

the SAS situation). Theorem 32 will be of no help, but from Theorem 31, we can

compute c right away. Then knowing a, b, and c, Theorem 31 allows us to compute

cosA, and therefore |∠A|. We now get |∠B| from the Angle Sum Theorem.
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Many other applications can be given as exercises on the basis of Theorems 31

and 32.

7. Some theorems on circles

Basic properties of the circle (page 175)

Tangents (page 179)

Angles subtended by chords and arcs (page 183)

Concyclic points (page 188)

Construction problems (page 199)

Basic properties of the circle

Recall from page 92 that the circle C of radius r and center O is the set of all

the points P in the plane so that |OP | = r (it will always be understood that r ≥ 0).

Still with C, we also defined the closed disk C of a given circle C to be all the points

Q so that |CQ| ≤ r. This definition has to be understood in the context of school

mathematics, in which the word “circle” is used for both a closed disk and its circular

boundary. There will come a time, e.g., in the discussion of area in the next section,

when we won’t be able to afford the presence of this confusion.

In the context of rotation (page 97), a circle has maximum rotational sym-

metry, in the sense that if Ro is any rotation around the center of a given circle C,
then Ro maps C onto itself, i.e., Ro(C) = C. This is clear. The next property about

the intrinsic symmetry of a circle may be just as intuitive, but we had better prove

it because we will have to use it later (see the proofs of Theorem 36 and 38 below).

Theorem 33. A circle is symmetric with respect to any line passing through its

center, i.e., the reflection R across any line ` passing through the center of a circle C
maps C onto itself: R(C) = C.

Proof Proving the equality of two sets, R(C) and C, means we have to prove

two things: (i) R(C) ⊂ C and (ii) C ⊂ R(C). Let O be the center of C and ` be

a line containing O, as shown.
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To prove (i), we have to show that if P is a point on C, then R(P ) is also a point

on C. Let us denote R(P ) by P ′. Since R preserves distance and R(O) = O,

|OP | = |R(OP )| = |OP ′|. Therefore P and P ′ lie on the same circle centered at

O, i.e., R(P )(= P ′) lies on C. Next, we prove (ii). If P is on C, we must prove

P = R(Q) for some Q on C. With P ′ = R(P ) as above, the fact that R ◦ R is the

identity transformation implies that P = R(P ′). We have just seen that both P and

P ′ lie on C, so letting Q = P ′ gets the job done. The proof is complete.

Next, we will verify that all circles “look alike”. The precise theorem below il-

lustrates the virtue of having a precise concept of “looking alike” in the form of a

general definition of similarity.

Theorem 34. Any two circles are similar.

Proof. We break up the proof into three steps.

Step 1. Given two circles with the same center, there is a dilation mapping one to

the other.

Step 2. The image of a circle by a translation is a circle with the same radius.

Step 3. The theorem is true in general.

Both Step 1 and Step 2 are very intuitive. In an average classroom, it would be

defensible to accept both on faith and concentrate on proving Step 3 on the basis of

the first two steps. This goes as follows. Let C1 and C2 be two circles with centers

O1 and O2, respectively. Let T be the translation along the vector
−−−→
O1O2. Then

T (O1) = O2, and Step 2 implies T (C1) and C2 are circles with the same center O2. By

Step 1, there is a dilation D so that D(C2) = T (C1). We pause to observe that if T ′

is the translation along the “opposite” vector
−−−→
O2O1, then T ′ ◦ T = I, where I is the
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identity transformation (see page 113). In particular, T ′(T (C1)) = C1. Consequently,

(T ′ ◦D)(C2) = T ′(D(C2)) = T ′(T (C1) = C1

Therefore the dilation D followed by the translation T ′ map C2 to C1, i.e., the two

circles are similar (see definition on page 161). The proof of Theorem 34 is complete.

If students are truly curious, the following proofs of Steps 1 and 2 may be given.

They are a bit tedious, but there is also value in teaching beginners to argue carefully

and methodically as in the following proofs.

Let us first prove Step 1. Let C and C ′ be two circles with the same center O and

with radii r and r′, respectively. If r = r′, then C = C ′ and the identity transformation

(which is a dilation with scale factor 1) maps one to the other. We may therefore

assume that C and C ′ have unequal radii and are therefore distinct circles. Let us

prove that there is a dilation that maps C to C ′. Let s = r′/r, and let D be the

dilation with center at O and scale factor s. We claim D(C) = C ′. As usual, we must

prove D(C) ⊂ C ′ and C ′ ⊂ D(C). To show the former, let P be a point of C and we

have to prove that D(P ) belongs to C ′.

r
O

P

P

C ′ C

Let P ′ = D(P ), then we have to show |OP ′| = r′. By the definition of D, P ′ is the

point on the ray ROP so that |OP ′| = s |OP |. Therefore,

|OP ′| = s |OP | =

(
r′

r

)
r = r′,

as desired.

We prove next that C ′ ⊂ D(C), let P ′ be a point of C ′. We have to show that for

some P on C, P ′ = D(P ). On the ray ROP ′ , let P be the point so that |OP | = r.
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Then by the definition of C, P is on C. Moreover, by the definition of D, D(P ) is

the point P0 on the ray ROP so that |OP0| = s |OP |. But s |OP | = (r′/r)r = r′,

so |OP0| = r′. Since also |OP ′| = r′ (because P ′ is a point of C ′), and since P0 and

P ′ are both points on the same ray ROP , we conclude that P ′ = P0 and therefore

D(P ) = P0 = P ′. Step 1 is proved.

Next, Step 2. This appears to be obvious but is actually subtle. So let C be a

circle with center O and radius r. Let T be the translation along the vector AB. We

claim that T (C) is a circle of radius r and center O′, where O′ = T (O).

B

P

P

O

O

A

Let C ′ be the circle of radius r around O′, and we must prove T (C) = C ′. This means

we have to prove T (C) ⊂ C ′ and C ′ ⊂ T (C). To prove the former, take a point P on C
and let P ′ = T (P ). Because a translation preserves segments and distance, we have

|O′P ′| = |T (OP )| = |OP | = r. Thus by the definition of C ′, P ′ is a point on C ′. This

proves T (C) ⊂ C ′. Conversely, let P ′ be a point on C ′, and we must show that for

some P on C, we have T (P ) = P ′. Let the line passing through P ′ and parallel to

LAB meet the line passing through O and parallel to LO′P ′ at a point P . We claim

that T (P ) = P ′. Now observe that because O′ = T (O), LOO′ is parallel to LAB by

the definition of a translation. Thus both LPP ′ and LOO′ are parallel to LAB. By

Lemma 2 (page 82), LPP ′ ‖ LOO′ . It follows that OO′P ′O is a parallelogram so that

by Theorem 4 (page 107), |OP | = |O′P ′| = r. Therefore P is a point on the circle C.
In addition, the definition of T (P ) is that it is the intersection of

the line L1 passing through P and parallel to LAB, and

the line L2 passing through O′ and parallel to LOP .

Since we already have LPP ′ ‖ LAB and LO′P ′ ‖ LOP , the Parallel Postulate implies

that L1 = LPP ′ and L2 = LO′P ′ . Hence T (P ) is the intersection of LPP ′ and LO′P ′ ,
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which is of course P ′. The proof of Step 2, and therewith the proof of Theorem 34 is

complete.

Next, we prove another rather obvious property of the circle. This proof is very

instructive because it makes use of substantive theorems.

Theorem 35. A circle and a line meet at no more than 2 points.

Proof. Let the given circle be C with center O, and the given line be L. Suppose

there are at least three points A, B, C in the intersection of C with L. Since these

three points lie on the line L, we may assume without loss of generality that B is

between A and C.
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Since all three points are also on C, we have |OA| = |OB| = |OC|. However,

we know that an exterior angle is greater than either remote interior angle (see

Corollary on page 130), we have |∠OBA| > |∠OCA|. Since 4OAC is isosce-

les, |∠OCA| = |∠OAC| (Theorem 7(a), page 118). Thus in 4OAB, we have

|∠OBA| > |∠OAB|, and therefore |OA| > |OB|. Contradiction. Theorem 35 is

proved.

Tangents

Notice that Theorem 35 does not guarantee that there is a line that meets a given

circle at 0, 1, or 2 points. All it says is that these are the only possibilities. Now if a

circle is given, it is clear that there is a line meeting it at 0 points, i.e., not meeting

it at all (proving this will be a good exercise). It is also easy to see that there is a

line meeting it at exactly 2 points: take two points on the given circle and the line

joining them will have the requisite property because Theorem 35 says the line and
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the circle cannot meet at another point. Showing that there is a line meeting the

circle at exactly 1 point, however, takes a bit of work. This will be the content of

the next theorem. A line that meets a given circle C at exactly one point is called a

tangent line of C at that point. We are going to construct a tangent line to a given

circle at a pre-assigned point of the circle, and the next theorem tells us how. Recall

the standard terminology: the segment joining the center of a circle to a point P on

the circle is called the radius of the circle at P .

Theorem 36. Let P be a point on a circle C. A line containing P is a tangent line

to C at P ⇐⇒ it is perpendicular to the radius of C at P .

If we assume this theorem for a minute, then because through a point on a line

there is only one line perpendicular to the given line, we see that the tangent line to

a circle at a given point is unique. This allows us to speak of the tangent line at a

point of a circle. The proof of Theorem 36 can be given as another straightforward

application of the Corollary to Theorem 20 (page 142), but for a change of pace, we

will invoke the Pythagorean Theorem instead.

Proof. First assume a line L is tangent to the circle C at a point P . If the center

of C is O, we have to prove that L ⊥ OP . Suppose not, let the perpendicular from O

to L meet L at Q, where Q 6= P .

Q
P L

O

Let R be the reflection across LOQ. Because L ⊥ LOQ, R(L) = L (see definition of

reflection on page 98). Since LOQ passes through the center O of C, also R(C) = C
(Theorem 33, page 175). Therefore, since P is the intersection of C and L, the point

P ′ = R(P ), being the intersection of R(C) and R(L), is also the intersection of C and

L. Moreover, since P lies in a half-plane of LOQ, P ′ lies in the other half-plane of LOQ

and in particular, P ′ 6= P . Thus L intersects C at two distinct points. Contradiction.
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Conversely, if a radius of C is perpendicular to a line L at a point P on C. Take any

point Q on the line L so that Q 6= P . By the Pythagorean Theorem, the hypotenuse

|OQ| is greater than the radius |OP | of C and therefore Q does not lie on the circle C.
This means that C and L intersect only at P . Hence L is tangent to C, and Theorem

36 is proved.

In Theorem 15, we proved that the incenter of a triangle is equidistant from the

three sides. It then follows from Theorem 36 that we have the following corollary.

Corollary. There is a unique circle tangent to all three sides of a given triangle.

Given a point outside a circle, a natural question is whether there is a line passing

through P that is also tangent to the circle. We will answer this affirmatively, but

quite surprisingly, we have to first find out a property of the diameters of a circle.

Theorem 37. Let PQ be a chord on a circle C and let A ∈ C be distinct from P and

Q. Then |∠PAQ| = 90◦ ⇐⇒ PQ is a diameter.
A

P QO

M

Proof. We first prove that if PQ is a diameter of C, then ∠PAQ is a right angle.

As usual, let O be the center of C, then because OA, OP , and OQ are all radii,

|OA| = |OP | = |OQ|. From the isosceles triangles OPA and OQA, we get (Theorem

7, page 118)

|∠OPA| = |∠OAP |, |∠OAQ| = |OQA| .

On the other hand, the angle sum of 4PAQ is 180◦ (Theorem 11, 129), so

|∠APO|+ (|∠PAO|+ |∠OAQ|) + |∠OQA| = 180◦.
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Thus,

2 (|∠PAO|+ |∠OAQ|) = 180◦ ,

which is the same as saying |∠PAQ| = 90◦..

Conversely, suppose PQ is a chord on C so that ∠PAQ is a right angle. We must

prove that PQ is a diameter of C. Let O be the midpoint of PQ and let M be the

midpoint of AP . By Theorem 18, OM ‖ AQ, and (as QA ⊥ AP ) consequently also

OM ⊥ AP . Thus OM is the perpendicular bisector of AP . In like manner, O also

lies on the perpendicular bisector of AQ. Thus the midpoint O of PQ is in fact the

circumcenter of 4APQ (Theorem 13, page 132). In particular PQ is a diameter of

C. This completes the proof.

As an application of Theorem 37, we prove the following definitive result about

tangent lines to a circle. For its statement, we follow the time-honored tradition on

geometry of using ambiguous terminology in order to achieve brevity: if a tangent

line from a point P outside a circle C intersects C at the point B, then the tangent

from P to C will refer to the segment PB.

Theorem 38. From a point P outside a given circle C, there are exactly two lines

tangent to C. Moreover, these two tangents from P to C have the same length.

Proof. Let the center of C be O. We first prove that there is at least one tangent

line to C from P . Let the circle having OP as diameter intersects C at some point B.

By Theorem 37, OB ⊥ PB. By Theorem 36, LPB is tangent to C at B.

B

O

B

C

P
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Next, we prove that there are at least two tangent lines from P to C. We know

that C is symmetric with respect to LOP (Theorem 33, page 175). So the reflection

of B across LOP is a point B′ lying on C, and also OB′ ⊥ PB′ because OB ⊥ PB

and reflection is a congruence. Thus LPB′ is a second tangent from P to C (Theorem

36 again). We also observe that because reflection is a congruence, |PB| = |PB′|.
Finally we prove that there are no more than two tangent lines from P to C. Sup-

pose C is another point on C so that LPC is a third tangent line from P to C. Then

by Theorem 36 once more, OC ⊥ PC. There is no loss of generality in assuming that

C is in the same half-plane of LOP as B. Then we have |OB| = |OC| and of course

|OP | = |OP |. Hence the right triangles OPB and OPC are congruent (Theorem

8 (HL), page 120), and this implies |∠POB| = |∠POC| and |OB| = |OC|. Conse-

quently, B = C on account of Lemma 10 (page 114). This proves that there are no

more than two tangents from P to C. The proof is complete.

Remark. In the preceding proof, we made use of the intuitively obvious fact that

because the circle with OP as diameter contains a point O inside circle C and a point

P outside C, the circle must intersect C. While this is intuitively obvious, its validity

can only be affirmed by invoking a theorem in advanced mathematics. Because this

is a high school course, the only way out is to make an explicit assumption to this

effect. However, to do so would create a digression with little geometric content. For

pedagogical reasons, it will therefore be more prudent to let such things slide and

concentrate instead on the geometry.

Angles subtended by chords and arcs

We now take a closer look at circles by investigating the chords and arcs on a

circle and their associated angles. By a chord on a circle C, we mean a segment

joining two points on C.
Theorem 37 makes the study of chords very easy in case the chord is a diameter.

It must also be said that diameters are usually the annoying exceptions to general

theorems about chords, and we are happy to dispose of them once and for all. From

now on, we shall ignore diameters in the consideration of chords. Note that each

chord AB of a circle C with center O gives rise to the central angle ∠AOB sub-

tended by AB, and the intersections of C with the convex (respectively, nonconvex)
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part of ∠AOB is called a minor arc (respectively, major arc) subtending ∠AOB

on C. (See page 92 for the definition of major and minor arcs.). The following lemma

gives a different characterization of minor and major arcs; in a school classroom, one

might consider skipping the proof of part (ii) of the lemma because the reasoning is

technical and intricate.

Lemma 16. (i) Let
_

AB be a minor arc on a circle C. Then
_

AB and the center O of

C lie in opposite closed half-planes of the line LAB. (ii) Let
_

AB be a major arc on

a circle C. Then
_

AB and the center O of C lie in the same closed half-planes of the

line LAB.

Proof. We first prove (i). Let
_

AB be a minor arc on C. If P is a point on
_

AB not

equal to A or B, then P lies in the convex part of ∠AOB. By the crossbar axiom

(page 119), the ray ROP intersects the segment AB at a point Q, Q 6= A,B.

B

P

Q

O

A

Now 4OAB is isosceles and Q is on the segment AB not equal to the endpoints.

The reasoning in the proof of Theorem 35 (page 179) shows that |OQ| < |OA|, which

implies |OQ| < |OP |. Therefore the segment OP intersects the line LAB at Q, and by

assumption (A4) (page 87), O and P lie in opposite half-planes of LAB. This being

true of every point P on
_

AB not equal to A and B), (i) follows.

We will prove (ii) by a contradiction argument. Suppose P is now a point on the

major arc
_

AB but lies on the opposite side of O relative to the line LAB. Then the

segment OP contains a point Q of the line LAB. We claim that Q is in fact a point

of the segment AB. If not, Q lies outside AB, let us say, A is between Q and B. We

claim that |OQ| > |OA|.
By the Corollary to Theorem 20 (page 142), it suffices to prove that |∠OAQ| >
|∠OQA|. According to the Angle Sum Theorem (page 129), no triangle can have

184



A BQ

O

two angles ≥ 90◦. Since the base angles ∠OAB and ∠OBA of the isosceles triangle

4OAB are equal (Theorem 7, page 118), we therefore see that both ∠OAB and

∠OBA are acute. It follows that ∠OAQ is obtuse. In the triangle OQA, the Angle

Sum Theorem again implies that ∠OQA is acute. Thus |∠OAQ| > |∠OQA|, and we

have |OQ| > |OA| as claimed.

Now Q is between O and P and therefore |OP | > |OQ| > |OA| = |OP |, a

contradiction. It follows that Q lies in the segment AB.

B

P

Q

O

A

We are going to show that this implies P is in the convex part of ∠AOB, which then

contradicts the assumption that P is in the major arc
_

AB and finishes the proof of

the lemma. To this end, we recall the definition of the convex part of ∠AOB (see

page 88). To show that P belongs to the convex part of ∠AOB, we must show that

P and A belong to the same side of LOB, and

P and B belong to the same side of LOA.

The proof of both are similar, so we will only prove the first. Observe that the seg-

ment AQ cannot contain any point on the line LOB: suppose it contains a point X on

LOB, then X would have to be different from B because B is a point on LAQ outside

AQ. Then the two lines LAQ and LOB would contain two distinct points B and X

and are therefore identical, by Lemma 1 (page 81). A contradiction. It follows that
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AQ does not intersect LOB; this means A and Q lie on the same side of LOB (see

assumption (A4), page 87). But we can reason in exactly the same way to conclude

that the segment PQ does not contain any point of LOB and therefore P and Q lie

on the same side of LOB. Putting these two conclusions together, we see that P and

A lie on the same side of LOB. As mentioned above, P and B belong to the same side

of LOA for similar reasons. Thus P belongs to the convex part of ∠AOB, contrary

to the hypothesis. Lemma 16 is proved.

It follows from Lemma 16 that given a chord AB on a circle C with center O,

the minor arc determined by A and B can be characterized as the intersection of C
with the half-plane of LAB which does not contain the center O. Similarly the major

arc determined by A and B can be characterized as the intersection of C with the

half-plane of LAB which contains the center O.

Given a chord PQ on a circle C with center O, we assume as always that PQ is

not a diameter. Then PQ determines a minor arc and a major arc. We will refer

to these arcs as opposite arcs. We can remove the ambiguity by adding a letter to

each arc, as in the picture below, so that, e.g.,
_

PDQ denote the minor arc. Let A

be a point on the opposite (major) arc which is distinct from either P or Q. Then

∠PAQ is said to be an angle subtended by arc
_

PDQ on the circle C. The angle

∠PAQ is also called the inscribed angle intercepting the arc
_

PDQ.

D

A

P Q

O

We note that the angle subtended by arc
_

PDQ could be equivalently defined as

the angle subtended by the chord PQ provided the arc
_

PDQ rather than its

opposite is understood. In the same spirit, ∠PAQ could be equivalently defined as

the inscribed angle intercepting the the chord PQ. We also note that in the

case of a major arc
_

PAQ, then the central angle subtended by this arc as well as an

inscribed angle ∠PDQ subtended by it would look like this:
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In this case, the central angle subtended by
_

PQ (indicated by the small arc around

O) is greater than 180◦.

The following theorem is among the theorems in geometry that are at once sur-

prising and elementary.

Theorem 39. Fix an arc on a circle C. Then all angles subtended by this arc are

equal to half of the central angle subtended by the arc.

This proof is well known, so only a few brief comments are needed. Fix an arc
_

PQ on a circle C with center O, and let ∠PAQ be an angle subtended by
_

PQ. Then

we want to prove that |∠PAQ| = 1
2
|∠POQ|, for any A in the opposite arc of

_

PQ,

A 6= P,Q. Let us take up the case where
_

PAQ is a major arc; the case of
_

PAQ being

a minor arc is entirely similar.

If
_

PAQ is the major arc, then by definition, A and the center O are in the same

half-plane of the line LPQ. There are three possibilities: (a) the ray RAO coincides

with one side of ∠PAQ (see figure below on the left), (b) the ray RAO lies in the

convex part of ∠PAQ (see figure below in the middle), and (c) the ray RAO lies in

the nonconvex part of ∠PAQ (see figure below on the right).
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A
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The proof then proceeds by making repeated use of the Corollary of Theorem 11 on

exterior angles (page 130) and Theorem 7 on the base angles of isosceles triangles

(page 118).

Concyclic points

In applications, we often have to decide whether a collection of points is con-

cyclic, i.e., whether they lie on the same circle. Recall that any three noncollinear

points lie on a unique circle (Theorem 13 on page 132). We should therefore begin

with four points and ask if the circle passing through three of these points also passes

through the fourth one. The following is the basic theorem in this direction.

Theorem 40. Let four points A, B, C, D be given. (i) If A and C lie on the same

side of the line LBD, then the four points are concyclic ⇐⇒ |∠BAD| = |∠BCD|
(see left picture below). (ii) If A and C lie on opposite sides of the line LBD, then the

four points are concyclic ⇐⇒ |∠BAD|+ |∠BCD| = 180◦ (see right picture below).

C

B

D

A

C

A

B D

Proof. (i) If A, B, C, D are concyclic, then the hypothesis on A and C implies that

they lie on the same (major or minor) arc determined by B and D. Theorem 39 then

shows that |∠BAD| = |∠BCD|. Conversely, suppose A and C lie on the same side

of the line LBD and |∠BAD| = |∠BCD|. Then we have to prove that A, B, C, D

are concyclic. Suppose not, and we shall deduce a contradiction. Let C be the circle

passing through A, B, and D (Theorem 13, page 132), and suppose C does not lie

on C. There are two possibilities, as depicted by the pictures below: either C lies

outside C or C lies inside C.14
14A point lies outside (resp., inside) a circle with center O and radius r if its distance from O

exceeds (resp., is less than) r.
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The proofs for both situations are essentially the same, so we will take the case on

the left, i.e., C is outside C. Then BC intersects C at a point E. Clearly A and E

also lie on the same side of LBD and Theorem 39 implies that |∠BAD| = |∠BED|.
By definition, E is between B and C so that ∠BED is an exterior angle of 4DEC
(see page 129). But then |∠BED| is bigger than its remote interior angle ∠BCD

(Corollary on page 130). Together, we have |∠BAD| > |∠BCD|, and this contradicts

the hypothesis that they are equal. Thus part (i) is proved.

(ii) First suppose A, B, C, D are concyclic and A and C lie on opposite sides of

LBD, and we will show |∠BAD|+ |∠BCD| = 180◦.

D

C

B

A

We have |∠BAC| = |∠BAC|+ |∠CAD|. Therefore,

|∠BAD|+ |∠BCD| = (|∠BAC|+ |∠CAD|) + |∠BCD|
= |∠BDC|+ |∠CBD|+ |∠BCD| (Theorem 39)

= 180◦, (angle sum of 4BCD)

as desired. Next we prove the converse. Suppose A and C are on opposite sides of

LBD and |∠BAD|+ |∠BCD| = 180◦. We will show that C lies on the circle C passing

through A, B, D. Suppose not, then there are two cases: C lies outside C and C lies

inside C.
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Again, the proofs of both cases are entirely similar, and we therefore only prove one

of the two cases, let us say, the latter. So let C be inside C. Let the ray RBC meet C
at E. Clearly A and E lie on opposite sides of LBD and A, B, E, D are concyclic.

Therefore we have

|∠BAD|+ |∠BED| = 180◦

Now C is by assumption between B and E so that ∠BCD is an exterior angle of the

remote interior angle ∠CED in 4CED. Therefore |∠BCD| > |∠BED| (Corollary

on page 130). Thus

180◦ = |∠BAD|+ |∠BED| < |∠BAD|+ |∠BCD| = 180◦,

where the last step is from the hypothesis. This contradiction then completes the

proof of Theorem 40.

Remarks. (1) Call a quadrilateral cyclic if its vertices are concyclic. Then part

(ii) of Theorem 40 is usually presented to students as: “A quadrilateral is cyclic if and

only if the sum of opposite angles is 180 degrees”. The problem with this statement

can be illustrated by the following quadrilateral ABCD which is obtained from the

cyclic quadrilateral ABC ′D by reflecting C ′ to C across the line LBD.

C

C

A

B D

190



Consider then the statement,

(\) |∠BAD|+ |∠BCD| = 180◦ implies ABCD is a cyclic quadrilateral.

Because we automatically take the convex part of an angle, the hypothesis in (\),

namely, |∠BAD| + |∠BCD| = 180◦, is still correct because ∠BCD is equal to

∠BC ′D so long as we are taking only the convex part of an angle into account.

Such being the case, (\) is a false statement and therewith the theorem that the

sum of opposite angles of a quadrilateral being 180◦ guarantees concyclicity is also

false. However, the convention is that, in the statement (\), the “interior angle

∠BCD”—the angle facing the “interior” of the quadrilateral ABCD, and therefore

the nonconvex part of ∠BCD in this case—must be used in the equation “|∠BAD|+
|∠BCD| = 180◦”. Under this convention, |∠BCD| refers to the nonconvex part of

the angle and is thus bigger than 180◦; this quadrilateral ABCD no longer satisfies

the hypothesis of (\) and is therefore no longer a counterexample to (\).

In a school course in geometry, taking every angle of a quadrilateral to mean

the “interior angle” is the better choice pedagogically, although mathematically it is

somewhat difficult to precisely define “interior”.

(2) A minor problem arose twice in the proof of Theorem 40: for instance, how do

we know that in proving the converse of part (i), the ray RBC will always intersect

C at a point E? This is a problem we have run into already on page 183; we know it

can be fixed but we will ignore it now.

(3) Another problem in the preceding proof is more serious. In the proof of

part (ii), we claimed on page 189 that |∠BAD| = |∠BAC|+ |∠CAD|. This tacitly

assumes that C lies in the convex part of ∠BAD, and this is of course false in general:

C

D

A

B

Fortunately, such counterexamples do not arise in the case of cyclic quadrilaterals,

which is of course our present situation. The cruz of the matter is this:

If a quadrilateral is cyclic, then each vertex lies in the convex part of the
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opposite angle.

In a school classroom, it would be defensible to take this on faith or assign it as an

exercise rather than spend instructional time on it.

There is an equivalent formulation of part (ii) of Theorem 40 that is often used.

Given a quadrilateral ABCD, we will henceforth agree that an angle of the quadri-

lateral will mean the interior angle of ABCD; see (1) of the preceding Remarks.

If the interior angle at A is < 180◦, then its exterior angle is by definition the

angle ∠BAE where E is a point on LDA so that A is between D and E. See the

picture below, where the interior angle at A is the angle indicated by an arc. The

same discussion of course applies to every vertex of the quadrilateral.

E

B

C

D A

Corollary. Let the interior angle at A of a quadrilateral ABCD be < 180◦. Then the

exterior angle at A is equal to the opposite interior angle at C ⇐⇒ ABCD is cyclic.

We now explore a little bit the vast ramifications of Theorem 39.

Take a point P and let a circle C be given in the plane. Let a line passing through

P intersect C at two points A and C (compare Theorem 35 on page 179). Without

looking at any pictures, we may ask if the product |PA| · |PC| is always the same

independent of the line (naturally, you are not likely to ask this question until after

much experimentation that suggests that the product seems not to depend on the line

used). Now there are two cases: P is inside C and P is outside C, as shown.

P
.

.

A

A

P

D

D
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It turns out that the answer is always yes, and we can even give the exact value

of the product in both cases.

Theorem 41. (i) Let P be a point inside a circle C with center O and radius r, and

let a line passing through P intersect C at A and C. Then |PA| · |PC| = r2 − |OP |2.
(ii) Let P be a point outside a circle C with center O and radius r, and let a line

passing through P intersect C at A and C. Then |PA| · |PC| = |OP |2 − r2.

Proof. (i) Let P be inside C, and let the diameter passing through P intersect the

circle at B and D.

D

B

C

AO.

.
P

By Theorem 39, |∠D| = |∠A| and |∠C| = |∠B|. Therefore 4PCD ∼ 4PBA by the

AA criterion for similarity. Therefore, by Theorem 25 (page 163),

|PA|
|PD|

=
|PB|
|PC|

.

By the cross-multiplication algorithm, we have |PA| · |PC| = |PB| · |PD|. Now

because DB is a diameter of C,

|PB| = |BO|+ |OP | = r + |OP |
|PD| = |OD| − |OP | = r − |OP |.

Thus,

|PA| · |PC| = |PB| · |PD| = (r + |OP |)(r − |OP |) = r2 − |OP |2
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D
P.

C

A

O
.

B

and (i) is proved.

(ii) Now suppose P is outside a circle C with center O and radius r. and let a line

passing through P meet C at A and C.

We have |∠C| = |∠D| because of Theorem 39, so that 4PCD ∼ 4PBA because of

the AA criterion for similarity (the triangles share ∠P .) By Theorem 25 again,

|PA|
|PD|

=
|PB|
|PC|

.

By the cross-multiplication algorithm, we have |PA| · |PC| = |PB| · |PD|. Now

because BD is a diameter of C,

|PB| = |OP |+ |OB| = |OP |+ r

|PD| = |OP | − |OD| = |OP | − r.

Thus,

|PA| · |PC| = |PB| · |PD| = (|OP |+ r)(|OP | − r) = |OP |2 − r2

and (ii) is proved, and therewith Theorem 41.

Each of the two parts in Theorem 41 has a converse. Let us take up part (i) first.

Let P be a point inside a circle with center O and radius r. If two chords BPD and

APC pass through P , then we know that |PA| · |PC| = |PB| · |PD| because they are

both equal to r2 − |OP |2.
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B

A

P

D

We now prove the converse.

Theorem 42. Let two lines intersect at P and let A, C be points on one line

separated by P and let B, D be points on another line also separated by P . If

|PA| · |PC| = |PB| · |PD|, then the four points A, B, C, D are concyclic.

Proof. Join B and C. Then the hypothesis easily implies that A and D lie on the

same side of line LBC . Now ∠APB and ∠DPC are equal because they are opposite

angles. Moreover, we have
|PA|
|PD|

=
|PB|
|PC|

,

which is an immediate consequence of |PA| · |PC| = |PB| · |PD| by the cross-

multiplication algorithm. Therefore 4PAB ∼ 4PDC on account of SAS for simi-

larity (Theorem 26 on page 163). By Theorem 25 (page 163), |∠PAB| = |∠PDC|. It

follows from part (i) of Theorem 40 that A, B, C, D are concyclic, and the theorem

is proved.

Sometimes Theorem 42 is stated in terms of a quadrilateral. Given a quadrilateral

ABCD. Suppose we know that the diagonals AC, CD, as segments, intersect at a

point P . Then Theorem 42 and part (i) of Theorem 41 are seen to be equivalent to

the following statement:

Let ABCD be a quadrilateral whose diagonals AC, BD intersect at a point

P . Then ABCD is a cyclic quadrilateral if and only if |PA| · |PC| =

|PB| · |PD|.

Next, let P be a point outside of a circle C with center O and radius r. Let

two lines through P intersect C at A, C and B, D, respectively. Without loss of
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generality, we may assume that A is between C and P , and that D is between B and

P , as shown:

O

C

A

.

P.

D

B

Then |PA| · |PC| = |PB| · |PD| because by Theorem 41(ii), both are equal to

|OP |2 − r2. The converse then states:

Theorem 43. Suppose two lines intersect at a point P . Let A be between C and P

on one line, and let D be between B and P on another. If |PA| · |PC| = |PB| · |PD|,
then the four points A, B, C, D are concyclic.

Proof. From |PA| · |PC| = |PB| · |PD| and the cross-multiplication algorithm, we

get
|PA|
|PD|

=
|PB|
|PC|

.

The triangles PAB and PDC also share an angle, namely, ∠P . Therefore triangles

PAB and PDC are similar because of SAS for similarity (Theorem 26 on page 163),

and Theorem 25 (page 163) implies |∠C| = |∠B|. From the hypothesis that A is

between C and P and D is between B and P , it is easy to see that B and C lie on the

same side of line LAD. Therefore Theorem 39 implies that A, B, C, D are concyclic.

The proof is complete.

One can pursue the discussion of Theorem 43 in the following way. Hold the line

PAC fixed, but now allow the line PDB to turn counterclockwise around P until it

becomes tangent to the circle C and B = D, as suggested below.

196



B=D

C

A

.

P.

O

B
D

.

Intuitively, the conclusion of Theorem 43, that |PA| · |PC| = |PB| · |PD|, “should”

become |PA| · |PC| = |PB|2. Our next goal is to prove this assertion precisely. We

first need a preliminary result which is interesting in its own right.

Theorem 44. Let ` be a line tangent to a circle C at P . Let PQ be a chord of C
and, furthermore, let A be a point on `, B be a point on C so that A and B lie on

opposite half-planes of the line LPQ. Then

|∠APQ| = |∠PBQ|

O

B

Q

P A

Proof. We first tackle the case that B lies on the major arc of PQ. By Theorem

39, |∠PBQ| doesn’t depend on the location of B on the circle so long as it lies in the

half-plane of LPQ opposite to A. We may therefore assume that PB is a diameter of

C.
By Theorem 37 (page 181), ∠Q is a right angle, so that

|∠PBQ|+ |∠BPQ| = 90◦

But by Theorem 36 (page 180), ∠BPA is also a right angle so that

|∠APQ|+ |∠BPQ| = 90◦
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Hence |∠APQ| = |∠PBQ|.
In case B lies on the minor arc of PQ, let U be any point on the major arc of

PQ. Also let D be any point on ` on the opposite ray of RPA.

O
.

A D
P

B

Q

U

Then the preceding argument shows that

|∠DPQ| = |∠PUQ|

By Theorem 40(ii), |∠PBQ| = 180◦ − |∠PUQ|, and obviously, |∠APQ| =

180◦ − |∠DPQ|. Hence also |∠APQ| = |∠PBQ|. The proof is complete.

The following theorem is the main goal we are after.

Theorem 45. Let P be a point outside a circle C and let line PB be tangent to C at

B. If another line through P intersects C at A and C, then

|PB|2 = |PA| · |PC|

Conversely, if a line through a point P outside a circle C meets C at two points A and

C, and if a point B ∈ C satisfies |PB|2 = |PA| · |PC|, then line PB is tangent to

the circle C at B.

Proof. Let PB be tangent to C at B and line LPA intersects C at C, as shown.

B

C

A

P
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Observe that 4PBC ∼ 4PAB because |∠PBA| = |∠PCB| (Theorem 44) and

|∠P | = |∠P |. Thus
|PB|
|PA|

=
|PC|
|PB|

which is equivalent to |PB|2 = |PA| · |PC|.
Conversely, suppose |PB|2 = |PA| · |PC| where LPB and LPA are lines which

intersects the circle C at B and at A, C, respectively. We have to prove that LPB is

tangent to C at B.

B

C

A

PO

By part (ii) of Theorem 41 (page 193), |PA| · |PC| = |OP |2 − r2, and |OB| = r.

Therefore, by the hypothesis that |PB|2 = |PA| · |PC|, we get

|OP |2 = |PB|2 + |OB|2.

The converse of the Pythagorean Theorem now implies that OB ⊥ PB. By Theorem

36, PB is tangent to C. The proof of Theorem 45 is complete.

Construction problems

We are now in a position to return to construction problems 9, 10, and 12 on page

145. First:

Construct a regular hexagon inscribed in a circle.

We begin by defining a regular polygon. A polygon (see page 83) is said to be

regular if its vertices lie on a circle and all its sides are equal;15 we then say that the

regular polygon is inscribed in that circle.

15This is not the standard definition of a regular polygon, but is equivalent to it.
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Since every triangle is inscribed in its circumcircle, a regular 3-gon is therefore an

equilateral triangle. A regular 4-gon is a square; this is a straightforward consequence

of Theorem 39 on page 187. The same theorem also leads to the fact that the degree

of an angle in a regular n-gon is (n−2
n )180◦. If n = 6, we therefore see that the angle

of a regular hexagon is 120 degrees.

Now we can state the construction problem more precisely.

Given a circle C with center O, we have to locate six points on circle O so that

they form the vertices of a regular hexagon.

E

O

B

D

A

CF

The construction:

1. Take a point A on C whose radius will be denoted by r. With A as center and

with r as radius, draw a circle which intersects C at B and F .

2. With B as center and r as radius, draw a circle which intersects circle O at an

additional point C.

3. Repeat the drawing of circles with center C and then D, as shown, so that we

obtain two more points D and E.

4. Connect the successive points A, B, . . . , F and A to get the desired hexagon.

Proof that ABCDEF is a regular hexagon. By construction, every triangle

in the picture—except 4OEF— is an equilateral triangle whose sides are all equal to

r (see steps 1–3). We claim that 4OEF is also equilateral. To this end, notice that,
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because every triangle (except 4OEF ) is equilateral, each angle of these triangles

is 60 degrees. Thus |∠FOA| = |∠AOB| = |∠BOC| = |∠COD| = |∠DOE| = 60◦.

Since there are 360 degrees around O, we conclude that |∠EOF | = 60◦. But 4EOF
is isosceles (|OE| = |OF |), so by Theorem 7(a) (page 118),

|∠OEF | = |∠OFE| =
1

2
(180◦ − 60◦) = 60◦

The angles of4OEF are therefore all equal to 60◦ and therefore4OEF is equilateral

as well (Corollary 2 of Theorem 20, page 143). Thus all the angles and all the sides

of the hexagon ABCDEF are equal. This then proves that ABCDEF is regular.

It remains to discuss the construction problems 10 and 12 from page 145.

Draw tangents to a circle from a point outside the circle.

More precisely, let P be a point outside a circle C. The problem is to construct a

line passing through P and tangent to circle C.

.

PO M

A

The construction:

1. Let O be the center of C. Join P to O to obtain segment OP .

2. Locate the midpoint M of OP (see Construction 4 on page 145).

3. With M as center and MP as radius, draw a circle that intersects circle O at

two points.

4. If A is a point of intersection in Step 3, then the line LPA is tangent to circle C.
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Proof that LPA is tangent to C. By Step 3 of the construction, OP is a

diameter of the constructed circle and therefore ∠PAO is a right angle (Theorem 37

on page 181). By Theorem 36 (page 180), LPA is tangent to circle C.

Construct the square root of a positive number.

Precisely, let a segment of length 1 be given. Also let a segment of length r be

given. Then we have to construct a segment of length
√
r.

The construction:

1. Construct a segment AB of length 1 + r.

B
1 r

C

A
D

2. Draw a circle with AB as diameter (see Construction 4 on page 145 for locating

the center of this circle).

3. If D is the point in AB so that |AD| = 1 and |DB| = r, let D be one of

the points of intersection of the line perpendicular to AB and the circle C (see

Construction 3 on page 145).

4. Then |CD| =
√
r.

Proof that |CD| =
√
r. By Step 2 of the construction, AB is the diam-

eter of the circle and therefore ∠ACB is a right angle (Theorem 37 on page 181).

By Theorem 29 on page 167, we therefore have |CD|2 = 1 ·r = r. Hence |CD| =
√
r.
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