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Chapter 1

Groups

1.1 Sets

Naively a set S is collection of object such that for each object x either x is contained in S
or x is not contained in S. We use the symbol ’∈’ to express containment. So x ∈ S means
that x is contained in S and x /∈ S means that x is not contained in S. Thus we have

For all objects x : x ∈ S or x /∈ S.

You might think that every collection of objects is a set. But we will now see that this
cannot be true. For this let A be the collection of all sets. Suppose that A is a set. Then A
is contained in A. This already seems like a contradiction But maybe a set can be contained
in itself. So we need to refine our argument. We say that a set S is nice if S is not contained
in S. Now let B be the collection of all nice set. Suppose that B is a set. Then either B is
contained in B or B is not contained in B.

Suppose that B is contained in B. Since B is the collection of all nice sets we conclude
that B is nice. The definition of nice now implies that that B is not contained in B, a
contradiction.

Suppose that B is not contained in B. Then by definition of ’nice’, B is a nice set. But
B is the collection of all nice sets and so B is contained in B, again a contradiction.

This shows that B cannot be a set. Therefore B is a collection of objects, but is not set.
What kind of collections of objects are sets is studied in Set Theory.
The easiest of all sets is the empty set denote by {} or ∅. The empty set is defined by

For all objects x : x 6∈ ∅.

So the empty set has no members.
Given an object s we can form the singleton {s}, the set whose only members is s:

For all objects x : x ∈ {s} if and only if x = s

If A and B is a set then also its union A ∪B is a set. A ∪B is defined by
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6 CHAPTER 1. GROUPS

For all objects x : x ∈ A ∪B if and only if x ∈ A or x ∈ B.

The natural numbers are defined as follows:

0 := ∅

1 := 0 ∪ {0} = {0} = {∅}

2 := 1 ∪ {1} = {0, 1} = {∅, {∅}}

3 := 2 ∪ {2} = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}

4 := 4 ∪ {4} = {0, 1, 2, 3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}
...

...
...

...
...

...
...

n+ 1 := n ∪ {n} = {0, 1, 2, 3, . . . n}

One of the axioms of set theory says that the collection of all the natural numbers

{0, 1, 2, 3, 4, . . .}

is set. We denote this set by N.

Addition on N is defined as follows: n+ 0 := n, n+ 1 := n ∪ {n} and inductively

n+ (m+ 1) := (n+m) + 1.

Multiplication on N is defined as follows: n · 0 := n, n · 1 := n and inductively

n · (m+ 1) := (n ·m) + n.

1.2 Functions and Relations

We now introduce two important notations which we will use frequently to construct new
sets from old ones. Let I1, I2, . . . In be sets and let Φ be some formula which for given
elements i1 ∈ I1, i2 ∈ I2, . . . , in ∈ In allows to compute a new object Φ(i1, i2, . . . , in). Then

{Φ(i1, i2, . . . , in) | i1 ∈ I1, . . . , in ∈ In}

is the set defined by

x ∈ {Φ(i1, i2, . . . , in) | i1 ∈ I1, . . . , in ∈ In}

if and only

there exist objects i1, i2, . . . , in with i1 ∈ I1, i2 ∈ I2, . . . , in ∈ In and x = Φ(i1, i2, . . . , in) .
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In Set Theory it is shown that {Φ(i1, i2, . . . , in) | i1 ∈ I1, . . . , in ∈ In} is indeed a set.

Let P be a statement involving a variable t. Let I be set. Then

{i ∈ I | P (i)}

is the set defined by

x ∈ {i ∈ I | P (i)} if and only if x ∈ I and P is true for t = x.

Under appropriate condition it is shown in Set Theory that {i ∈ I | P (i)} is a set.

Let a and b be objects. Then the ordered pair (a, b) is defined as (a, b) := {{a}, {a, b}}.
We will prove that

(a, b) = (c, d) if and only if a = c and b = d.

For this we first establish a simple lemma:

Lemma 1.2.1. Let u, a, b be objects with {u, a} = {u, b}. Then a = b.

Proof. We consider the two cases a = u and a 6= u.

Suppose first that a = u. Then b ∈ {u, b} = {u, a} = {a} and so a = b.

Suppose next that a 6= u. Since a ∈ {u, a} = {u, b}, a = u or a = b. But a 6= u and so
a = b.

Proposition 1.2.2. Let a, b, c, d be objects. Then

(a, b) = (c, d) if and only if a = c and b = d.

Proof. Suppose (a, b) = (c, d). We need to show that a = c.

We will first show that a = b. Since

{a} ∈ {{a}, {a, b}} = (a, b) = (c, d) = {{c}, {c, d}},

we have

{a} = {c} or {a} = {c, d}.

In the first case a = c and in the second c = d and again a = c.

From a = c we get {{{a}, {a, b}} = {{c}, {c, d} = {{a}, {a, d}. So by 1.2.1 {a, b} = {a, d}
and applying 1.2.1 again, b = d.

If I and J are sets we define I × J := {(i, j) | i ∈ I, j ∈ J}.
A relation on I and J is triple r = (I, J,R) where R is a subset I×J . If i ∈ I and j ∈ J

we write irj if (i, j) ∈ R.

For example let R := {(n,m) | n,m ∈ N, n ∈ m} and let < be the triple (N,N, R). Let
n,m ∈ N. Then n < m if and only if n ∈ m. Since m = {0, 1, 2, . . . ,m − 1} we see that
n < m if and only if n is one of 0, 1, 2, 3, . . . ,m− 1.
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A function from I to J is a relation f = (I, J,R) on I and J such that for each i ∈ I
there exists a unique j ∈ J with (i, j) ∈ R. We denote this unique j by f(i). So for i ∈ I
and j ∈ J the following three statements are equivalent:

ifj ⇐⇒ (i, j) ∈ R ⇐⇒ j = f(i).

We denote the function f = (I, J,R) by

f : I → J, i→ f(i).

So R = {(i, f(i)) | i ∈ I}.
For example

f : N→ N, m→ m2

denotes the function (N,N, {(m,m2) | n ∈ N})
Informally, a function f from I to J is a rule which assigns to each element i of I a

unique element f(i) in J .
A function f : I → J is called 1-1 if i = k whenever i, k ∈ I with f(i) = f(k).
f is called onto if for each j ∈ I there exists i ∈ I with f(i) = j. Observe that f is 1-1

and onto if and only if for each j ∈ J there exists a unique i ∈ I with f(i) = j.
If f : I → J and g : J → K are functions, then the composition g ◦ f of g and f is the

function from I to K defined by (g ◦ f)(i) = g(f(i)) for all i ∈ I.

1.3 Definition and Examples

Definition 1.3.1. Let S be a set. A binary operation is a function ∗ : S × S → S. We
denote the image of (s, t) under ∗ by s ∗ t.

Let I be a set. Given a formula φ which assigns to each pair of element a, b ∈ I some
object φ(a, b). Then φ determines a binary operation ∗ : I×I → I, (a, b)→ φ(a, b) provided
for all a, b ∈ I:

(i) φ(a, b) can be evaluated and φ(a, b) only depends on a and b; and

(ii) φ(a, b) is an element of I.

If (i) holds we say that ∗ is well-defined. And if (ii) holds we say that I is closed under
∗.

Example 1.3.2.

(1) + : Z× Z, (n,m)→ n+m is a binary operation.

(2) · : Z× Z, (n,m)→ nm is a binary operation.

(3) · : Q×Q, (n,m)→ nm is a binary operation.
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(4) Let I = {a, b, c, d} and define ∗ : I × I → I by

∗ a b c d

a b a c a

b a b c d

c d b a a

d a d a b

Here for x, y ∈ I, x ∗ y is the entree in row x, column y. For example b ∗ c = c and
c ∗ b = b.

Then ∗ is a binary operation.

(5)

� a b c d

a a a a a

b a a a a

c a a a a

d a a a a

� is a binary operation on I.

(6)

∗ a b c d

a b a c a

b a e c d

c d b a a

d a d a b

is not a binary operation. Indeed, according to the table, b ∗ b = e, but e is not an
element of I. Hence I is not closed under ∗ and so ∗ is not a binary operation on I.

(7) Let I be a set . A 1-1 and onto function f : I → I is called a permutation of I.

Sym(I) denotes the set of all permutations of I. If f and g are permutations of I then
by A.2.3(c) also the composition f ◦ g is a permutation of I. Hence the map

◦ : Sym(I)× Sym(I), (f, g)→ f ◦ g
is a binary operation on Sym(I).
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(8) � : Z3 × Z3, ([a]3, [b]3)→ [ab
2+1]3, where [a]3 denotes the congruence class of a modulo

3, is not a binary operation. Indeed we have [0]3 = [3]3 but

[(−1)02+1]3 = [(−1)1]3 = [−1]3 6= [1]3 = [(−1)10]3 = [(−1)32+1]3

and so � is not well-defined.

(9) ⊕ : Q × Q → Q, (a, b) → a
b is not a binary operation. Since 1

0 is not defined, ⊕ is not
well-defined.

Definition 1.3.3. Let ∗ be a binary operation on a set I. Then ∗ is called associative if

(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ I

Example 1.3.4.

We investigate which of the binary operations in 1.3.2 are associative.

(1) Addition on Z is associative.

(2) Multiplication on Z is associative.

(3) Multiplication on Q is associative.

(4) ∗ in 1.3.2(4) is not associative. For example

a ∗ (d ∗ c) = a ∗ a = b and (a ∗ d) ∗ c = a ∗ c = c.

(5) � in 1.3.2(5) is associative since x ∗ (y ∗ z) = a = (x ∗ y) ∗ z for any x, y, z ∈ {a, b, c, d}.

(7) Composition of functions is associative: Let f : I → J , g : J → K and h : K → L be
functions. Then for all i ∈ I,

((f ◦ g) ◦ h)(i) = (f ◦ g)(h(i)) = f(g(h(i)))

and
(f ◦ (g ◦ h))(i) = f((g ◦ h)(i)) = f(g(h(i))).

Thus f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Definition 1.3.5. Let I be a set and ∗ a binary operation on I. An identity of ∗ in I is a
element e ∈ I with e ∗ i = i and i = i ∗ e for all i ∈ I.

Example 1.3.6.
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We investigate which of the binary operations in 1.3.2 have an identity:

(1) 0 is an identity of + in Z.

(2) 1 is an identity of · in Z.

(3) 1 is an identity for · in Q.

(4) Suppose that x is an identity of ∗ in 1.3.2(4). From x ∗ y = y for all y ∈ I we conclude
that row x of the multiplication table must be equal to the header row of the table.
This shows that x = b. Thus y ∗ b = y for all y ∈ I and we conclude that the column b
must be equal to the header column. But this is not the case. Hence ∗ does not have
an identity.

(5) No row of the multiplication table in 1.3.2(5) is equal to the header row. Thus � does
not have an identity.

(7) Let I be set. Define idI : I → I, i → i. idI is called the identity function on I. Let
f ∈ Sym(I). Then for any i ∈ I,

(f ◦ idI)(i) = f(idI(i)) = f(i)

and so f ◦ idi = f .

(idI ◦ f)(i) = idI(f(i)) = f(i)

and so idI ◦ f = f .

Thus idI is an identity of ◦ in Sym(I).

Lemma 1.3.7. Let ∗ be a binary operation on the set I, then ∗ has at most one identity in
I.

Proof. Let e and f be identities of ∗. Then e ∗ f = f since e is an identity and e ∗ f = e
since f is an identity. Hence e = f . So any two identities of ∗ are equal.

Definition 1.3.8. Let ∗ be a binary operation on the set I with identity e. The a ∈ I is
called invertible if there exists b ∈ I with a ∗ b = e and b ∗ a = e. Any such b is called an
inverse of a with respect to ∗.

Example 1.3.9.

(1) −n is an inverse of n ∈ Z with respect to addition.

(2) 2 does not have an inverse in Z with respect to multiplication.

(3) 1
2 is an inverse of 2 with respect to multiplication in Q.
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(4) If I is a set and f ∈ Sym(I) we define g : I → I by g(i) = j where j is the unique
element of I with f(j) = i. So

f(g(i)) = f(j) = i = idI(i).

Moreover, if g(f(i)) = k, then by definition of g, f(k) = f(i). Since f is 1-1 this implies
k = i. Thus g(f(i)) = i = idI(i). Thus f ◦g = idI and g ◦f = idI . Hence f is invertible
with inverse g.

Lemma 1.3.10. Let ∗ be an associative binary operation on the set I with identity e. Then
each a ∈ I has at most one inverse in I with respect to ∗.

Proof. Let b and c be inverses of a in I with respect to ∗. Then

b = b ∗ e = b ∗ (a ∗ c) = (b ∗ a) ∗ c = e ∗ c = c.

and so the inverse of a is unique.

Consider the binary operation

∗ 0 1 2

0 0 1 2

1 1 0 0

2 2 0 0 .

0 is an identity of ∗. We have 1 ∗ 1 = 0 and so 1 is an inverse of 1. Also 1 ∗ 2 = 0 = 2 ∗ 1
and so also is an inverse of 1. Hence inverses do not have to be unique if ∗ is not associative.

Definition 1.3.11. A group is tuple (G, ∗) such that G is a set and

(i) ∗ : G×G→ G is a binary operation.

(ii) ∗ is associative.

(iii) ∗ has an identity e in G.

(iv) Each a ∈ G is invertible in G with respect to ∗.

Example 1.3.12.

(1) (Z,+) is a group.

(2) (Z, ·) is not a group since 2 is not invertible with respect to multiplication.

(3) (Q \ {0}, ·) is a group.
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(4) (I, ∗) in 1.3.2(4) is not a group since its ∗ is not associative.

(5) (I, � ) in 1.3.2(5) is not a group since it has no identity.

(6) (I, �) in 1.3.2(6) is not a group since � is not a binary operation.

(7) Let I be a set. By 1.3.2(7) ◦ is binary operation on Sym(I); by 1.3.4(7), ◦ is associative;
by 1.3.6(7) idI is an identity for ◦; and by 1.3.9(4) every f ∈ Sym(I) is invertible. Thus
(Sym(I), ◦) is a group. Sym(I) is called the symmetric group on I.

Sets of permutations will be our primary source for groups. We therefore introduce
some notation which allows us to easily compute with permutations. [1 . . . n] denotes the
set {i ∈ N | 1 ≤ i ≤ n} = {1, 2, 3, . . . , n}. Sym(n) stands for Sym([1 . . . n]). Let π ∈ Sym(n).
Then we denote π by


1 2 3 . . . n− 1 n

π(1) π(2) π(3) . . . π(n− 1) π(n)

 .

For example  1 2 3 4 5

2 1 4 5 3


denotes the permutation of π of [1 . . . 5] with π(1) = 2, π(2) = 1, π(3) = 4, π(4) = 5 and
π(5) = 3.

Almost always we will use the more convenient cycle notation:

(a1,1, a2,1, a3,1, . . . ak1,1)(a1,2, a2,2 . . . ak2,2) . . . (a1,l, a2,l . . . akl,l)

denotes the permutation π with π(ai,j) = ai+1,j and π(akj ,j) = a1,j for all 1 ≤ i < kj and
1 ≤ j ≤ l.

So (1, 3, 4)(2, 6)(5) denotes the permutation of [1 . . . 6] with π(1) = 3, π(3) = 4, π(4) =
1,π(2) = 6, π(6) = 2 and π(5) = 5.

Each (a1,j , a2,j , . . . akj ,j) is called a cycle of π. We usually will omit cycles of length 1 in
the cycle notation of π.

As an example we compute (1, 3)(2, 4) ◦ (1, 4)(2, 5, 6).

We have
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(1, 4)(2, 5, 6) (1, 3)(2, 4)

1 → 4 → 2

2 → 5 → 5

5 → 6 → 6

6 → 2 → 4

4 → 1 → 3

3 → 3 → 1

and so
(1, 3)(2, 4) ◦ (1, 4)(2, 5, 6) = (1, 2, 5, 6, 4, 3).

It is very easy to compute the inverse of a permutation in cycle notation. One just needs
to write each of the cycles in reversed order. For example the inverse of (1, 4, 5, 6, 8)(2, 3, 7)
is (8, 6, 5, 4, 1)(7, 3, 2).

Example 1.3.13.

In cycle notation the elements of Sym(3) are

(1), (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3).

Keep here in mind that (1) = (1)(2)(3), (1, 2) = (1, 2)(3) and so on. The multiplication
table of Sym(3) is as follows:

◦ (1) (1, 2, 3) (1, 3, 2) (1, 2) (1, 3) (2, 3)

(1) (1) (1, 2, 3) (1, 3, 2) (1, 2) (1, 3) (2, 3)

(1, 2, 3) (1, 2, 3) (1, 3, 2) (1) (1, 3) (2, 3) (1, 2)

(1, 3, 2) (1, 3, 2) (1) (1, 2, 3) (2, 3) (1, 2) (1, 3)

(1, 2) (1, 2) (2, 3) (1, 3) (1) (1, 3, 2) (1, 2, 3)

(1, 3) (1, 3) (1, 2) (2, 3) (1, 2, 3) (1) (1, 3, 2)

(2, 3) (2, 3) (1, 3) (1, 2) (1, 3, 2) (1, 2, 3) (1)

Example 1.3.14.

Consider the square

1 s 2s
3s4 s
.
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Let D4 be the set of all permutations of {1, 2, 3, 4} which map the edges (of the square)
to edges.

For example (1, 3)(2, 4) maps the edge {1, 2} to {3, 4}, {2, 3} to {4, 1}, {3, 4} to {1, 2}
and {4, 1} to {2, 3}. So (1, 3)(2, 4) ∈ D4.

But (1, 2) maps {2, 3} to {1, 3}, which is not an edge. So (1, 2) /∈ D4.

Which permutations are in D4? We have counterclockwise rotations by 0◦, 90◦, 180◦ and

270◦:

(1), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2),

and reflections at y = 0, x = 0, x = y and x = −y:

(1, 4)(2, 3), (1, 2)(3, 4), (2, 4), (1, 3)

Are these all the elements of D4? Let’s count the number of elements. Let π ∈ D4. Then
π(1) can be 1, 2, 3,or 4. So there are 4 choices for π(1), π(2) can be any of the two neighbors
of π(1). So there are two choice for π(2). π(3) must be the neighbor of π(2) different
from π(1). So there is only one choice for π(3). π(4) is the point different from π(1), π(2)
and π(3). So there is also only one choice for π(4). All together there are 4 · 2 · 1 · 1 = 8
possibilities for π. Thus |D4| = 8 and

D4 = {(1), (1, 2, 3, 4, ), (1, 3)(2, 4), (1, 4, 3, 2), (1, 4)(2, 3), (1, 2)(3, 4), (2, 4), (1, 3)}.

If α, β ∈ Sym(4) maps edges to edges, then also α ◦ β and the inverse of α map edges
to edges. Thus ◦ is an associative binary operation on D4, (1) is an identity and each α in
D4 is invertible. Hence (D4, ◦) is a group. D4 is called the dihedral group of degree 4.

1.4 Basic Properties of Groups

Notation 1.4.1. Let (G, ∗) be a group and g ∈ G. Then g−1 denotes the inverse of g in
G. The identity element is denote by eG or e. We will often just write ab for a ∗ b. And
abusing notation we will call G itself a group.

Lemma 1.4.2. Let G be a group and a, b ∈ G.

(a) (a−1)−1 = a.

(b) a−1(ab) = b, (ba)a−1 = b, (ba−1)a = b and a(a−1b) = b.

Proof. (a) By definition of a−1, aa−1 = e and a−1a = e. So a is an inverse of a−1, that is
a = (a−1)−1.
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(b)

a−1(ab)

= (a−1a)b − ∗ is associative

= eb − definition of a−1

= b − definition of identity

The remaining assertion are proved similarly.

Lemma 1.4.3. Let G be a group and a, b, c ∈ G. Then

ab = ac

⇐⇒ b = c

⇐⇒ ba = ca .

Proof. Suppose first that ab = ac. Multiplication with a−1 from the right gives a−1(ab) =
a−1(ac) and so by 1.4.2 a = b.

If b = c, the clearly ab = ac. So the first two statement are equivalent. Similarly the
last two statements are equivalent.

Lemma 1.4.4. Let G be a group and a, b ∈ G.

(a) The equation ax = b has a unique solution in G, namely x = a−1b.

(b) The equation ya = b has a unique solution in G, namely y = ba−1.

(c) b = a−1 if and only if ab = e and if and only if ba = e.

(d) (ab)−1 = b−1a−1.

Proof. (a) By 1.4.3 ax = b if and only if a−1(ax) = a−1b and so (by 1.4.2 ) if and only if
x = a−1b.

(b) is proved similarly.
(c) By (a) ab = e if and only if b = a−1e. Since e is an identity, this is the case if and

only if b = a−1. Similarly using (b), ba = e if and only if b = a−1.
(d)

(ab)(b−1a−1)

= a(b(b−1a−1)) − ∗ is associative

= aa−1 − 1.4.2(b)

= e − definition of a−1

So by (c), b−1a−1 = (ab)−1.
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Definition 1.4.5. Let G be a group, a ∈ G and n ∈ N. Then

(a) a0 := e,

(b) Inductively an+1 := ana.

(c) a−n := (a−1)n.

(d) We say that a has finite order if there exists a positive integer n with an = e. The
smallest such positive integer is called the order of a and is denoted by |a|.

We have a1 = a0a = ea = a, a2 = a1a = aa, a3 = a2a = (aa)a, a4 = a3a = ((aa)a)a and

an = ((. . . (((aa)a)a) . . . a)a)a︸ ︷︷ ︸
n-times

Example 1.4.6.

(1, 2, 3, 4, 5)2 = (1, 2, 3, 4, 5) ◦ (1, 2, 3, 4, 5) = (1, 3, 5, 2, 4).
(1, 2, 3, 4, 5)3 = (1, 2, 3, 4, 5)2 ◦ (1, 2, 3, 4, 5) = (1, 3, 5, 2, 4) ◦ (1, 2, 3, 4, 5) = (1, 4, 2, 5, 3).
(1, 2, 3, 4, 5)4 = (1, 2, 3, 4, 5)3 ◦ (1, 2, 3, 4, 5) = (1, 4, 2, 5, 3)) ◦ (1, 2, 3, 4, 5) = (1, 5, 4, 3, 2).
(1, 2, 3, 4, 5)5 = (1, 2, 3, 4, 5)5◦(1, 2, 3, 4, 5) = (1, 5, 4, 3, 2))◦(1, 2, 3, 4, 5) = (1)(2)(3)(4)(5).
So (1, 2, 3, 4, 5) has order 5.

Lemma 1.4.7. Let G be a group, a ∈ G and n,m ∈ Z. Then

(a) anam = an+m.

(b) anm = (an)m.

Before we start the formal proof here is an informal argument:

anam = (aaa . . . a︸ ︷︷ ︸
n-times

)(aaa . . . a︸ ︷︷ ︸
m-times

) = aaa . . . a︸ ︷︷ ︸
n+m-times

= an+m

(an)m = (aaa . . . a︸ ︷︷ ︸
n-times

)(aaa . . . a︸ ︷︷ ︸
n-times

) . . . (aaa . . . a︸ ︷︷ ︸
n-times

)︸ ︷︷ ︸
m-times

= aaa . . . a︸ ︷︷ ︸
nm-times

= anm

This informal proof has a couple of problems:
1. It only treats the case where n,m are positive.
2. The associative law is used implicitly and its not clear how.

Proof. (a) We first use induction on m to treat the case where m ≥ 0. If m = 0, then
ana0 = ane = an = an+0 and (a) is true.

If m = 1 and n ≥ 0, then ana1 = ana = an+1 by definition of an+1. If m = 1 and n < 0,
then
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ana1 = (a−1)(−n)a = (a−1)(−n−1)a−1)a = a−1−(n+ 1) = an+1,

and so (a) holds for m = 1.
Suppose inductively that (a) is true for m. Then

(1) anam = an+m,

and so

anam+1 = an(ama) = (anam)a
(1)
= an+ma = a(n+m)+1 = an+(m+1).

So (a) holds for m+1 and so by The Principal of Mathematical Induction for all m ∈ N.
Let m be an arbitrary positive integer. From (a) applied with n = −m we conclude

that a−mam = a0 = a and so for all m ∈ N,

(2) a−m = (am)−1.

From (a) applied with n−m in place of n, an−mam = an. Multiplication from left with
a−m and using (2) gives an−m = ana−m. Since m is an arbitrary positive integer, −m is an
arbitrary negative integer. So (a) also holds for negative integers.

(b) Again we first use induction on m to prove (b) in the case that m ∈ N. For m = 0
both sides in (b) equal e. Suppose now that (b) holds for m ∈ N. Then

an(m+1) = anm+n = anman = (an)m(an)1 = (am)m+1.

So (b) holds also for m+ 1 and so by induction for all m ∈ N.
We compute

an(−m) = a−(nm) = (anm)−1 = ((an)m)−1 = (an)−m,

and so (b) also holds for negative integers.

1.5 Subgroups

Definition 1.5.1. Let (G, ∗) and (H,4) be groups. Then (H,4) is called a subgroup of
(G, ∗) provided that

(a) H ⊆ G.

(b) a4b = a ∗ b for all a, b ∈ H.

If often just say that H is a subgroup of G and write H ≤ G if (H,4) is a subgroup of
(G, ∗).
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Example 1.5.2.

(1) (Z,+) is a subgroup of (Q,+).

(2) (Q \ {0}, ·) is a subgroup of (R \ {0}, ·).

(3) (D4, ◦) is a subgroup of (Sym(4), ◦).

(4) Sym(4) is not a subgroup of Sym(5), since Sym(4) is not subset of Sym(5).

Proposition 1.5.3 (Subgroup Proposition). (a) Let (G, ∗) be a group and H a subset of
G. Suppose that

(i) H is closed under ∗, that is a ∗ b ∈ H for all a, b ∈ H.

(ii) eG ∈ H.

(iii) H is closed under inverses, that is a−1 ∈ H for all a ∈ H.(where a−1 is the inverse
of a in G with respect to ∗.

Define 4 : H ×H → H, (a, b)→ a ∗ b. Then 4 is a well-defined binary operation on H
and (H,4) is a subgroup of (G, ∗).

(b) Suppose (H,4) is a subgroup of (G, ∗). Then

(a) (a:i),(a:ii) and (a:iii) hold.

(b) eH = eG.

(c) Let a ∈ H. Then the inverse of a in H with respect to 4 is the same as the inverse
of a in G with respect to ∗.

Proof. (a) We will first verify that (H,4) is a group.

By (a:i), 4 really is a function from H × H to H and so 4 is a well-defined binary
operation on H.

Let a, b, c ∈ H. Then since H ⊆ G, a, b, c are in H. Thus since ∗ is associative,

(a4b)4c = (a ∗ b) ∗ c = a ∗ (b ∗ c) = a4(b4c)

and so 4 is associative.

By (a:ii), eG ∈ H. Let h ∈ H. Then eG4h = eG ∗ h = h and h4eG = h ∗ eG = h for all
h ∈ h. So eG is an identity of 4 in H.

Let h ∈ H. Then by (a:iii), h−1 ∈ H. Thus h4h−1 = h ∗ h−1 = e and h−14h =
h−1 ∗ h = e. So h−1 is an inverse of h with respect to 4.

So (H,4) is a group. By assumption H is a subset of G and by definition of 4,
a4b = a ∗ b for all a, b ∈ H. So (H,4) is a subgroup of (G, ∗).
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(b) Let a, b ∈ H. Then by definition of a subgroup a ∗ b = a4b. Since 4 is a binary
operation on H, a4b ∈ H and so a ∗ b ∈ H. (a:i) holds. Since (H,4) is a group it has an
identity eH . In particular, eH = eH4eH = eH ∗eH . Since eH ∈ G we also have eH = eH ∗eG
and the Cancellation Law 1.4.3 gives eG = eH . Thus eH = eG ∈ H and (a:iii) holds. Since
(H,4) is a group, a has an inverse b ∈ H with respect to 4. Thus a ∗ b = a4b = eH = e
and so b = a−1. Thus a−1 = b ∈ H and (a:ii) holds.

Lemma 1.5.4. Let G be a group.

(a) Let A and B be subgroups of G. Then A ∩B is a subgroup of G.

(b) Let (Gi, i ∈ I) a family of subgroups of G, i.e. I is a set and for each i ∈ I,Gi is a
subgroup of G. Then ⋂

i∈I
Gi

is a subgroup of G.

Proof. Note that (a) follow from (b) if we set I = {1, 2}, G1 = A and G2 = B. So it suffices
to prove (b).

Let H =
⋂
i∈I Gi. Then for g ∈ G.

(∗) g ∈ H if and only if g ∈ Gi for all i ∈ I

To show that H is a subgroup of G we use 1.5.3

Let a, b ∈ H. We need to show

(i) ab ∈ H. (ii) e ∈ H (iii) a−1 ∈ H.

Since a, b ∈ H (*) implies a, b ∈ Gi for all i ∈ I. Since Gi is a subgroup of G, ab ∈ Gi
for all i ∈ I and so by (*), ab ∈ H. So (i) holds.

Since Gi is a subgroup of G, e ∈ Gi and so by (*), e ∈ H and (ii) holds.

Since Gi is a subgroup of G and a ∈ Gi, a−1 ∈ Gi and so by (*), a−1 ∈ H. Thus (iii)
holds.

Lemma 1.5.5. Let I be a subset of the group G.

• Put H1 :=
⋂

I⊆H≤G
H. In words, H1 is the intersection of all the subgroups of G

containing I.

• Let H2 be a subgroup of G such that I ⊆ H and whenever K is a subgroup of G with
I ⊆ K, then H2 ⊆ K.
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• Let J be subset of G. We say that e is product of length 0 of J . Inductively, we say
that g ∈ G is a product of length k + 1 of J if g = hj where h is a product of length
k of J and j ∈ J . Set I−1 = {i−1 | i ∈ I} and let H3 be the set of all products of
arbitrary length of I ∪ I−1.

Then H1 = H2 = H3.

Proof. It suffices to proof that H1 ⊆ H2, H2 ⊆ H2 and H3 ⊆ H1.
Since H2 is a subgroup of G containing I and H1 is the intersection of all such subgroups,

H1 ⊆ H2.
We will show that H3 is a subgroup of G. For this we show:

1◦. Let J ⊆ G, k, l ∈ N, g a product of length k and h a product of length l of J . Then
gh is a product of length k + l of J .

The proof is by induction on l. If l = 0, then h = e and so gh = g is a product of length
k = k + 0. So (1◦) holds for l = 0. Suppose (1◦) holds for l = t and let h be product of
length t + 1. Then by definition h = fj where f is a product of length t and j ∈ J . We
have gh = g(fj) = (gf)j. By induction gf is a product of length k+ t and so by definition
gh = (gf)j is a product of length (k+ t) + 1 = k+ (t+ 1). So (1◦) also holds for k = t+ 1.
Hence by the Principal of Mathematical Induction, (1◦) holds for all k.

Next we show:

2◦. Let J ⊆ G with J = J−1, let n ∈ N and let g be a product of length n of J . Then
g−1 is also a product of length n of J .

Again the proof is by induction on n. If n = 0, then g = e = g−1 and (2◦) holds. So
suppose (2◦) holds for n = k and let g be a product of length k + 1. Then g = hj with
h a product of length k and j ∈ J . By induction, h−1 is a product of length k. Now
g−1 = (hj)−1 = j−1h−1. By assumption j−1 ∈ J and so j−1 = ej−1 is a product of length
1. So by (1◦), g−1 = j−1k−1 is a product of length k+ 1. So (2◦) holds for n = k+ 1. Thus
(2◦) follows from the Principal of Mathematical Induction.

Note that (1◦) implies that H3 is is closed under multiplication. e is the product of
length 0 of I ∪ I−1 and so e ∈ H3. By (2◦), H2 is closed under inverses. Hence by 1.5.3 I
is a subgroup of H. Clearly I ⊆ H3 ( products of length 1) and so by the assumptions on
H2, H2 ⊆ H3.

Let K be a subgroup of G with I ⊆ K. Since K is closed under inverses (1.5.3), I−1 ⊆ K.
Since K is closed under multiplication an easy induction proof shows that any product of
elements of I ∪ I−1 is in K. Thus H3 ⊆ K. Since this holds for all such K, H3 ⊆ H1.

Definition 1.5.6. Let I be a subset of the group G. Then

〈I〉 =
⋂

I⊆H≤G
H

〈I〉 is called the subgroup of G generated by I
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By 1.5.5 〈I〉 as the smallest subgroup of G containing I.

Example 1.5.7.

(1) We compute 〈(1, 2), (2, 3)} in Sym(4). Let I = {(1, 2), (2, 3)}. Then

I−1 = {i−1 | i ∈ I} = {(1, 2)−1, (2, 3)−1} = {(1, 2), (2, 3)} = I

and so
I ∪ I−1 = I = {(1, 2), (2, 3)}

So we have to compute all possible products of {(1, 2), (2, 3)}. In the following we say
that g is a new product of length k, if g is a product of length k of {(1, 2), (2, 3)}, but
not a product of {(1, 2), (2, 3)} of any length less than k. Observe that any new product
of length k is of the form hj there h is a new product of length k − 1 and j is one of
(1, 2) and (2, 3).

Products of length 0: (1)

Products of length 1: (1,2), (2,3).

Products of length 2:

(1, 2) ◦ (1, 2) = (1)

(1, 2) ◦ (2, 3) = (1, 2, 3)

(2, 3) ◦ (1, 2) = (1, 3, 2)

(2, 3) ◦ (2, 3) = (1)

New Products of length 2: (1, 2, 3), (1, 3, 2)

New Products of length 3: Note that a new product of length three is of the form hj
with h a new product of length two ( and so h = (1, 2, 3) or (1, 3, 2)) and j = (1, 2) or
(2, 3).

(1, 2, 3) ◦ (1, 2) = (1, 3)

(1, 2, 3) ◦ (2, 3) = (1, 2)

(1, 3, 2) ◦ (1, 2) = (2, 3)

(1, 3, 2) ◦ (2, 3) = (1, 3)

Only new product of length 3: (1, 3)

Possible new products of length 4:

(1, 3) ◦ (1, 2) = (1, 2, 3)

(1, 3) ◦ (2, 3) = (1, 3, 2)

There is no new product of length 4 and so also no new product of length larger then
4. Thus

〈(1, 2), (2, 3)〉 = {(1, (1, 2), (2, 3), (1, 2, 3), (1, 3, 2), (2, 3)}.
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(2) Let G be any group and a ∈ G. Put H = {an | n ∈ Z}. We claim that H = 〈a〉.
We first show that H is a subgroup of G. Indeed, anam = an+m, so H is closed under
multiplication. e = a0 ∈ H and (an)−1 = a−n, so H is closed under inverses. Thus by
the Subgroup Proposition, H is a subgroup. Clearly any subgroup of G containing a
must contain H and so by 1.5.5, H = 〈a〉.

(3) We will show that D4 = 〈(1, 3), (1, 2)(3, 4)〉. For this it suffices to write every element in
D4 as a product of elements from (1, 3) and (1, 2)(3, 4). Straightforward computation
show that

(1) = empty product (1, 2, 3, 4) = (1, 3) ◦ (1, 2)(3, 4)

(1, 3)(2, 4) = ((1, 3) ◦ (1, 2)(3, 4))2 (1, 4, 3, 2) = (1, 2)(3, 4) ◦ (1, 3)

(1, 4)(2, 3) = (1, 3) ◦ (1, 2)(3, 4) ◦ (1, 3) (1, 2)(3, 4) = (1, 2)(3, 4)

(2, 4) = (1, 2)(3, 4) ◦ (1, 3) ◦ (1, 2)(3, 4) (1, 3) = (1, 3) .

(4) Let G be a group and g ∈ G with |g| = n for some n ∈ Z+. By (2),

G = {gm | m ∈ Z}.

Let m ∈ Z. By the Division Algorithm, [Hung, Theorem 1.1] m = qn+ r with q, r ∈ Z
and 0 ≤ r < n. Then gm = gqn+r = (gn)qgr = eqgr = gr. Thus

〈g〉 = {gr | 0 ≤ r < n}.

Suppose that 0 ≤ r < s < n. Then 0 < s − r < n and so by the definition of |g|,
gs−r 6= e. Multiplication with gr gives gs 6= gr. So the elements gr, 0 ≤ r < n are
pairwise distinct and therefore

|〈g〉| = n = |g|.

1.6 Homomorphisms

Definition 1.6.1. Let f : A → B be a function. Then Im f := {f(a) | a ∈ A}. Im f is
called the image of f .

Lemma 1.6.2. Let f : A→ B be a function and define g : A→ Im f, a→ f(a).

(a) g is onto.

(b) f is 1-1 if and only if g is 1-1.
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Proof. (a) Let b ∈ Im f . Then by definition of Im f , b = f(a) for some a ∈ A. Thus
g(a) = f(a) = b and so g is onto.

(b) Suppose f is 1-1 and let a, d ∈ A with g(a) = g(d). Then by definition of g,
g(a) = f(a) and g(d) = f(d). Thus f(a) = f(d). Since f is 1-1, a = d. Hence g is 1-1.

Similarly if g is 1-1, then also f is 1-1.

Definition 1.6.3. Let (G, ∗) and (H, � ) be groups.

(a) A homomorphism from (G, ∗) from to (H, � ) is a function f : G→ H such that

f(a ∗ b) = f(a)� f(b)

for all a, b ∈ G.

(b) An isomorphism from G to H is a 1-1 and onto homomorphism from G to H.

(c) If there exists an isomorphism from G to H we say that G is isomorphic to H and write
G ∼= H.

Example 1.6.4.

(1) Let (H, ∗) be any group, h ∈ H and define f : Z → H,m → hm. By 1.4.7(a),
f(n + m) = hn+m = hn ∗ hm = f(n) ∗ f(m). So f is a homomorphism from (Z,+) to
(H, ∗).

(2) Let I and J be sets with I ⊆ J . For f ∈ Sym(I) define φf : I → I by

φf (j) =

{
f(j) if j ∈ I
j if j /∈ I

.

Let f, g ∈ Sym(I) we will show that

(∗) φf ◦ φg = φf◦g.

Note that this is the case if and only if (φf ◦φg)(j) = φf◦g(j) for all j ∈ J . We consider
the two cases j ∈ I and j /∈ I separately.

If j ∈ I, then since g is a permutation of I, also g(j) ∈ I. So

(φf ◦ φg)(j) = φf (φg(j)) = φf (g(j)) = f(g(j)) = (f ◦ g)(j) = Φ(f ◦ g)(j).

If j /∈ I then
φg(j) = φf (φg(j)) = φf (j)) = j = Φ(f ◦ g)(j).

So in both cases (φf ◦ φf )(j) = Φ(f ◦ g)(j). So (*) holds.
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For (*) applied with g = f−1,

φf ◦ φf−1 = φf◦f−1 = φidI = φJ .

It follows that φf is a bijection. Hence φf ∈ Sym(J) and so we can can define

Φ : Sym(I)→ Sym(J), f → φf .

We claim that Φ is a 1-1 homomorphism.

To show that Φ is 1-1 let f, g ∈ Sym(I) with φf = φg. Then for all i ∈ I, f(i) = φf (i) =
φg(i) = g(i) and so f = g. Hence Φ is 1-1.

By (*)

Φ(f ◦ g) = φf◦g = φf ◦ φg = Φ(f) ◦ Φ(g)

and so Φ is a homomorphism.

Lemma 1.6.5. Let f : G→ H be a homomorphism of groups.

(a) f(eG) = eH .

(b) f(a−1) = f(a)−1 for all a ∈ G.

(c) Im f is a subgroup of H.

(d) If f is 1-1, then G ∼= Im f .

Proof. (a) f(eG)f(eG)
f hom

= f(eGeG)
def eG= f(eG)

def eH= eHf(eG). So the Cancellation
Law 1.4.3 implies f(eG) = eH .

(b) f(a)f(a−1)
f hom

= f(aa−1)
def a−1

= f(eG)
(a)
= eH and so by 1.4.4(c) , f(a−1) = f(a)−1.

(c) We apply 1.5.3. Let x, y ∈ Im f . Then by definition of Im f , x = f(a) and y = f(b)
for some a, b ∈ G.

Thus xy = f(a)f(b) = f(ab) ∈ Im f .

By (a), eH = f(eG) ∈ Im f .

By (b), x−1 = f(a)−1 = f(a−1) ∈ ImF . So Im f fulfills all three conditions in 1.5.3 and
so Im f is a subgroup of H.

(d) Define g : G → Im f, a → f(a). Since f is 1-1, 1.6.2 implies that g is 1-1 and onto.
Since f is homomorphism, g(ab) = f(ab) = f(a)f(b) = g(a)g(b) for all a, b ∈ G and so also
g is a 1-1 homomorphism. Hence g is an isomorphism and so G ∼= Im f .
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Definition 1.6.6. Let G be a group. Then G is called a group of permutations or a
permutation group if G ≤ Sym(I) for some set I.

Theorem 1.6.7 (Cayley’s Theorem). Every group is isomorphic to group of permutations.

Proof. We will show that G is isomorphic to a subgroup of Sym(G). For g ∈ G define

φg : G→ G, x→ gx.

We claim that φg ∈ Sym(G), that is φg is 1-1 and onto.
To show that φg is 1-1, let x, y ∈ G with φg(x) = φg(y) for some x, y ∈ G, then gx = gy

and so by the Cancellation Law 1.4.3 x = y. So φg is 1-1.
To show that φg is onto, let x ∈ G. Then φg(g

−1x) = g(g−1x) = x and φg is onto.
Define

f : G→ Sym(G), g → φg.

To show that f is a homomorphism let a, b ∈ G. Then for all x ∈ G

f(ab)(x) = φab(x) = (ab)x = a(bx)

and
(f(a) ◦ f(b)(x) = (φa ◦ φb)(x) = φa(φb(x) = φa(bx) = a(bx)

So f(ab) = f(a) ◦ f(b) and f is a homomorphism.
Finally to show that f is 1-1, let a, b ∈ G with f(a) = f(b). Then φa = φb and so

a = ae = φa(e) = φb(e) = be = b

Hence a = b and f is 1-1. Hence by 1.6.5(d), G is isomorphic to the subgroup Im f of
Sym(G).

Example 1.6.8.

Let G = Z2 × Z2. Put

a = (0, 0), b = (1, 0), c = (0, 1) and d = (1, 1).

Then G = {a, b, c, d}. For each g ∈ G we will compute φg.
For x ∈ G we have φa(x) = (0, 0) + x = x. So

φa = idG = (a)(b)(c)(d).

φb(a) = b+ a = (1, 0) + (0, 0) = (1, 0) = b.
φb(b) = b+ b = (1, 0) + (1, 0) = (0, 0) = a.
φb(c) = b+ c = (1, 0) + (0, 1) = (1, 1) = d.
φb(d) = b+ d = (1, 0) + (1, 1) = (0, 1) = c.
Thus
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φb = (a, b)(c, d).

φc(a) = c+ a = (0, 1) + (0, 0) = (0, 1) = c.
φc(c) = c+ c = (0, 1) + (0, 1) = (0, 0) = a.
φc(b) = c+ b = (0, 1) + (1, 0) = (1, 1) = d.
φc(d) = c+ d = (0, 1) + (1, 1) = (1, 0) = b.
Thus

φc = (a, c)(b, d).

φd(a) = c+ a = (1, 1) + (0, 0) = (1, 1) = d.
φd(d) = d+ d = (1, 1) + (1, 1) = (0, 0) = a.
φd(b) = d+ b = (1, 1) + (1, 0) = (0, 1) = c.
φd(c) = d+ c = (1, 1) + (0, 1) = (1, 0) = b.
Thus

φd = (a, d)(b, c).

(We could also have computed φd as follows: Since d = a+ c, φc = φa ◦φb = (a, b)(c, d)◦
(a, c)(b, d) = (a, d)(b, c))

Hence

(Z2 × Z2,+) ∼= ({(a), (a, b)(c, d), (a, c)(b, d), (a, d)(b, c)}, ◦).

Using 1, 2, 3, 4 in place of a, b, c, d we conclude (see Homework 3#7 for the details)

(Z2 × Z2,+) ∼= ({(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}, ◦)

In general we see that a finite group of order n is isomorphic to a subgroup of Sym(n).

1.7 Lagrange’s Theorem

Definition 1.7.1. Let K be a subgroup of the group G and a, b ∈ G. Then we say that a
is congruent to b modulo K and write a ≡ b (mod K) if a−1b ∈ K.

Notice the the definition of ′ ≡ (mod K)′ given here is different than in Hungerford.
In Hungerford the above relation is called “left congruent” and denoted by ′∼∼∼ (mod K)′.

Example 1.7.2.

Let G = Sym(3), K = 〈(1, 2)〉 = {(1), (1, 2)}, a = (2, 3), b = (1, 2, 3) and c = (1, 3, 2).
Then

a−1b = (2, 3) ◦ (1, 2, 3) = (1, 3) /∈ K

and

a−1c = (2, 3) ◦ (1, 3, 2) = (1, 2) ∈ K.



28 CHAPTER 1. GROUPS

Hence
(2, 3) 6≡ (1, 2, 3) (mod K)

and
(2, 3) ≡ (1, 3, 2) (mod K).

Proposition 1.7.3. Let K be a subgroup of the group G. Then ′ ≡ (mod K)′ is an
equivalence relation on G.

Proof. We need to show that ′ ≡ (mod K)′ is reflexive, symmetric and transitive. Let
a, b, c ∈ G.

Since a−1a = e ∈ K, we have a ≡ a (mod K) and so ′ ≡ (mod K)′ is reflexive.
Suppose that a ≡ b (mod K). Then a−1b ∈ K. Since K is closed under inverses,

(a−1b)−1 ∈ K and so b−1a ∈ K. Hence b ≡ a (mod K) and ′ ≡ (mod K)′ is symmetric.
Suppose that a ≡ b (mod K) and b ≡ c (mod K). Then a−1b ∈ K and b−1c ∈ K.

Since K is closed under multiplication, (a−1b)(b−1c) ∈ K and thus a−1c ∈ K. Hence a ≡ c
(mod K) and ′ ≡ (mod K)′ is transitive.

Definition 1.7.4. Let (G, ∗) be a group and g ∈ G

(a) Let A,B be subsets of G and g ∈ G. Then

A ∗B := {a ∗ b | a ∈ A, b ∈ B},

g ∗A = {g ∗ a | a ∈ A}
and

A ∗ g := {a ∗ g | a ∈ A}.
We often just write AB, gA and Ag for A ∗B, g ∗A and A ∗ g.

(b) Let K be a subgroup of the group (G, ∗) . Then g ∗K called the left coset of g in G with
respect to K. Put

G/K := {gK | g ∈ G}.
So G/K is the set of left cosets of K in G.

Example 1.7.5.

Let G = Sym(3), K = {(1), (1, 2)}, a = (2, 3). Then

a ◦K = {(1, 2) ◦ k | k ∈ K} = {(2, 3) ◦ (1), (2, 3) ◦ (1, 2)} = {(2, 3), (1, 3, 2)}.

Proposition 1.7.6. Let K be a subgroup of the group G and a, b ∈ G. Then aK is the
equivalence class of ′ ≡ (mod K)′ containing a. Moreover, the following statements are
equivalent
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(a) b = ak for some k ∈ K.

(b) a−1b = k for some k ∈ K.

(c) a−1b ∈ K.

(d) a ≡ b (mod K).

(e) b ∈ aK.

(f) aK ∩ bK 6= ∅.

(g) aK = bK.

(h) a ∈ bK.

(i) b ≡ a (mod K).

(j) b−1a ∈ K.

(k) b−1a = j for some j ∈ K.

(l) a = bj for some j ∈ K.

Proof. (a) ⇐⇒ (b) : Multiply with a−1 from the left and use the Cancellation Law 1.4.3.
(b) ⇐⇒ (c) : Obvious.
(c) ⇐⇒ (d) : Follows from the definition of ′ ≡ (mod K)′.
(a) ⇐⇒ (e) : Note that b = ak for some k ∈ K if and only if b ∈ {ak | k ∈ K}, that

is if and only if b ∈ aK.
So (a)-(e) are equivalent statements. Let [a] be the equivalence class of ′ ≡ (mod K)′

containing a. So [a] = {b ∈ G | a ≡ b (mod K)}. Since (d) and (e) are equivalent, we
conclude that [a] = {b ∈ G | b ∈ aK} = aK. Thus [a] = aK

Therefore Theorem A.1.3 implies that (d)-(k) are equivalent. In particular, (g) is equiv-
alent to (a)-(c). Since the statement (g) is symmetric in a and b we conclude that (g) is
also equivalent to (j)-(l).

Proposition 1.7.7. Let K be a subgroup of the group G.

(a) Let T ∈ G/K and a ∈ G. Then a ∈ T if and only if T = aK.

(b) G is the disjoint union of its cosets, that is every element of G lies in a unique coset of
K.

(c) Let T ∈ G/K and a ∈ T . Then the map δ : K → T, k → ak is a bijection. In particular,
|T | = |K|.

Proof. (a) Since T ∈ G/K, T = bK for some b ∈ G. Since a = ae, a ∈ aK. Conversely if
a ∈ T then a ∈ aK ∩ T and aK ∩ bK 6= ∅. Thus by 1.7.6(f),(g), aK = bK = T .

(b) Let a ∈ G. Then by (a), aK is the unique coset of K containing a.
(c) Let t ∈ T . By (a) T = aK = {ak | k ∈ K} and so t = bk for some k ∈ K. Thus

δ(k) = t and δ is onto.
Let k, l ∈ K with δ(k) = δ(l). Then gk = gl and the Cancellation Law 1.4.3 implies

that k = l. Thus δ is 1-1. So δ is a bijection and hence |K| = |T |.

Example 1.7.8.

Let G = Sym(3) and K = {(1), (1, 2)}. We have

(1) ◦K = {(1) ◦ k | k ∈ K} = {(1) ◦ (1), (1) ◦ (1, 2)} = {(1), (1, 2)}.
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So K is a coset of K containing (1, 2) and thus by 1.7.7(a) (1, 2) ◦K = K. Just for fun
we will verify this directly:

(1, 2) ◦K = {(1, 2) ◦ (1), (1, 2) ◦ (1, 2)} = {(1, 2), (1)} = K.

Next we compute the coset of K with respect to (2, 3):

(2, 3) ◦K = {(2, 3) ◦ (1), (2, 3) ◦ (1, 2)} = {(2, 3), (1, 3, 2)}.

and so by Proposition 1.7.7(a) also (1, 3, 2) ◦K = {{(2, 3), (1, 3, 2)}. Again we do a direct
verification:

(1, 3, 2) ◦K = {(1, 3, 2) ◦ (1), (1, 3, 2) ◦ (1, 2)} = {(1, 3, 2), (2, 3)}.

The coset of K with respect to (1, 3) is

(1, 3) ◦K = {(1, 3) ◦ (1), (1, 3) ◦ (1, 2)} = {(1, 3), (1, 2, 3)}

and so by Proposition 1.7.7(a) also (1, 2, 3) ◦K = {(1, 3), (1, 2, 3)}. We verify

(1, 2, 3) ◦K = {(1, 2, 3) ◦ (1), (1, 2, 3) ◦ (1, 2)} = {(1, 2, 3), (1, 3)}

Thus G/K consists of the three cosets {(1, 2), (1)}, {(2, 3), (1, 3, 2)} and {(1, 2, 3), (1, 3)}.
So indeed each of the cosets has size |K| = 2 and each element of Sym(3) lies in exactly one
of the three cosets.

Theorem 1.7.9 (Lagrange). Let G be a finite group and K a subgroup of G. Then

|G| = |K| · |G/K|.

In particular, |K| divides |G|.

Proof. By 1.7.7(b), G is the disjoint union of the cosets of K in G. Hence

|G| =
∑

T∈G/K

|T |.

By 1.7.7(c), |T | = |K| for all T ∈ G/K and so

|G| =
∑

T∈G/K

|T | =
∑

T∈G/K

|K| = |K| · |G/K|.

Example 1.7.10.

(1) |D4| = 8 and | Sym(4)| = 4! = 24. Hence | Sym(4)/D4| = 24/8 = 3. So D4 has three
cosets in Sym(4).
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(2) Let H = 〈(1, 2)〉 ≤ Sym(3). Since Sym(3) has order 6 and H has order 2, | Sym(3)/H| =
3.

(3) Since 5 does not divide 24, Sym(4) does not have subgroup of order 5.

Corollary 1.7.11. Let G be a finite group.

(a) If a ∈ G, then the order of a divides the order of G.

(b) If |G| = n, then an = e for all a ∈ G.

Proof. (a) By Example 1.5.7(4), |a| = |〈a〉| and by Lagrange’s Theorem, |〈a〉| divides |G|.
(b) Let m = |a|. By (a) n = mk for some k ∈ Z and so an = amk = (am)k = ek = e.

Example 1.7.12.

Let g ∈ Sym(4). We compute the order of g depending on the cycle type of g. Let
{a, b, c, d} = {1, 2, 3, 4}

(1) g = (a)(b)(c)(d). Then |g| = 1.

(2) g = (a, b)(c)(d). Then g2 = (a)(b)(c)(d) and so |g| = 2.

(3) g = (a, b, c)(d). Then g2 = (a, c, b)(d) and g3 = (a)(b)(c)(d). Thus |g| = 3.

(4) g = (a, b, c, d). Then g2 = (a, c)(b, d), g3 = (a, d, c, b) and g4 = (a)(b)(c)(d). Thus
|g| = 4

(5) g = (a, b)(c, d). Then g2 = (a)(b)(c)(d) and so |g| = 2

So the elements in Sym(4) have orders 1, 2, 3 or 4. Note that each of these number is a
divisor of Sym(4). Of course we already knew that this to be true by 1.7.11(a).

For each of the five cycle types in (1)-(5) we now compute how many elements in Sym(4)
have that cycle type.

(1) There is one element of the form (a)(b)(c)(d). ( Any of the 24 choices for the tuple
(a, b, c, d) give the same element of Sym(4), namely the identity.)

(2) There are four ways to express the element (a, b)(c)(d), namely

(a, b)(c)(d) = (b, a)(c)(d) = (a, b)(d)(c) = (b, a)(d)(c).

So there are 24
4 = 6 elements in Sym(4) of the form (a, b)(c)(d).

(3) There are 3 ways to express the element (a, b, c)(d), namely

(a, b, c)(d) = (b, c, a)(d) = (c, a, b)(d).

So there are 24
3 = 8 elements in Sym(4) of the form (a, b, c)(d).



32 CHAPTER 1. GROUPS

(4) There are 4 ways to express the element (a, b, c, d), namely

(a, b, c, d) = (b, c, d, a) = (c, d, a, b) = (d, a, b, c).

So there are 24
4 = 6 elements in Sym(4) of the form (a, b, c, d).

(5) There are 8 ways to express the element (a, b)(c, d), namely

(a, b)(c, d) = (b, a)(c, d) = (a, b)(d, c) = (b, a)(d, c)

= (c, d)(a, b) = (c, d)(b, a) = (d, c)(a, b) = (d, c)(b, a) .

So there are 24
8 = 3 elements in Sym(4) of the form (a, b)(c, d).

All together there are 1 + 6 + 8 + 6 + 3 = 24 elements in Sym(4), just the way it should be.

Definition 1.7.13. A group G is called cyclic if G = 〈g〉 for some g ∈ G.

Lemma 1.7.14. Let G be a group of finite order n.

(a) Let g ∈ G. Then G = 〈g〉 if and only if |g| = n.

(b) G is cyclic if and only if G contains an element of order n.

Proof. (a) Let g ∈ G. Recall that by Example 1.5.7(4) , |〈g〉| = |g|. Since G is finite,
G = 〈g〉 if and only if |G| = |〈g〉|. And so if and only if n = |g|.

(b) From (a) we conclude that there exists g ∈ G with |G| = 〈g〉 if and only if there
exists g ∈ G with |g| = n.

Corollary 1.7.15. Any group of prime order is cyclic.

Proof. Let G be group of order p, p a prime. Let e 6= g ∈ G. Then by 1.7.11(b) |g| divides
p. Since g 6= e, |g| 6= 1. Since p is a prime this implies |g| = p. So by 1.7.14(b), G = 〈g〉
and so g is cyclic.

Example 1.7.16.

Let G = GL2(Q), the group of invertible 2 × 2 matrices with coefficients in Q and let

g =

1 0

1 1

.

Then gn =

1 0

n 1

 for all n ∈ Z and so 〈g〉 =


1 0

n 1

∣∣∣∣∣∣n ∈ Z

.

Thus |g| = |Z| = |Q| = |G| ( See section A.3 for a primer on cardinalities). Also G 6= 〈g〉.
So we see that 1.7.14 is not true for infinite groups.
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1.8 Normal Subgroups

Lemma 1.8.1. Let G be a group, A,B,C subsets of G and g, h ∈ G. Then

(a) A(BC) = {abc | a ∈ A, b ∈ B, c ∈ C} = (AB)C.

(b) A(gh) = (Ag)h, (gB)h = g(Bh) and (gh)C = g(hC).

(c) Ae = A = Ae = (Ag)g−1 = g−1(gA).

(d) A = B if and only if Ag = Bg and if and only if gA = gB.

(e) A ⊆ B if and only if Ag ⊆ Bg and if and only if gA ⊆ gB.

(f) If A is subgroup of G, then AA = A and A−1 = A.

(g) (AB)−1 = B−1A−1.

(h) (gB)−1 = B−1g−1 and (Ag)−1 = g−1A−1.

Proof. (a)

A(BC) = {ad | a ∈ A, d ∈ BC} = {a(bc) | a ∈ A, b ∈ B, c ∈ C}

= {(ab)c | a ∈ A, b ∈ B, c ∈ C} = {fc | f ∈ AB, c ∈ C} = (AB)C .

(b) Observe first that

A{g} =
{
ab | a ∈ A, b ∈ {g}

}
=
{
ag | a ∈ A

}
= Ag,

and {g}{h} = {gh}. So the first statement in (b) follows from (a) applied with B = {g}
and C = {h}. The other two statements are proved similarly.

(c) Ae = {ae | a ∈ A} = {a | a ∈ A} = A. Similarly Ae = A. By (b) (Ag)g−1 =
A(gg−1) = Ae = A. Similarly g(g−1A) = A.

(d) Clearly A = B implies that Ag = Bg. If Ag = Bg, then by (b)

A = (Ag)g−1 = (Bg)g−1 = B.

So A = B if and only if Ag = Bg and (similarly) if and only if gA = gB.

(e) Suppose that A ⊆ B and let a ∈ A. Then a ∈ B and so ag ∈ Bg. Hence Ag ⊆ Bg.
If Ag ⊆ Bg we conclude that (Ag)g−1 ⊆ (Bg)g−1 and by (c), A ⊆ B. Hence A ⊆ B if and
only if Ag ⊆ Bg. Similarly, A ⊆ B if and only if gA ⊆ gB

(f) Since a subgroup is closed under multiplication, ab ∈ A for all a, b ∈ A. So AA ⊆ A.
Also e ∈ A and so A = eA ⊆ AA. Thus AA = A.

Since A is closed under inverses, A−1 = {a−1 | a ∈ A} ⊆ A. Let a ∈ A, then a−1 ∈ A
and a = (a−1)−1. So a ∈ A−1 and A ⊆ A−1. Thus A = A−1.
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(g)

(AB)−1 = {d−1 | d ∈ AB} = {(ab)−1 | a ∈ A, b ∈ B}

= {b−1a−1 | a ∈ A, b ∈ B} = {cd | c ∈ B−1, d ∈ A−1}

= B−1A−1

(h) By (g) applies with A = {g}:

(gB)−1 =
(
{g}B

)−1
= B−1{g}−1 = B−1{g−1} = B−1g−1

Similarly, (Ag)−1 = g−1A−1.

Definition 1.8.2. Let N be a subgroup of the group G. N is called a normal subgroup of
G and we write N EG provided that

gN = Ng

for all g ∈ G.

Example 1.8.3.

(1) (1, 3) ◦ {(1), (1, 2)} = {(1, 3), (1, 2, 3)} and {1, (1, 2)} ◦ (1, 3) = {(1, 3), (1, 3, 2)}. So
{(1), (1, 2)} is not a normal subgroup of Sym(3).

(2) Let H = 〈(1, 2, 3)〉 ≤ Sym(3). Then H = {(1), (1, 2, 3), (1, 3, 2)}. If g ∈ H then
gH = H = Hg. Now

(1, 2) ◦H = {(1, 2), (2, 3), (1, 3)} = Sym(3) \H

and

H ◦ (1, 2) = {(1, 2), (1, 3), (2, 3)} = Sym(3) \H.

Indeed, gH = Sym(3) \H = Hg for all h ∈ Sym(3) \H and so H is a normal subgroup
of Sym(3).

Definition 1.8.4. A binary operation ∗ on I is called commutative if a ∗ b = b ∗ a for all
a, b ∈ I. A group is called abelian of its binary operation is commutative.

Lemma 1.8.5. Let G be an abelian group. Then AB = BA for all subsets A,B of G. In
particular, every subgroup of G is normal in G.
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Proof.
AB = {ab | a ∈ A, b ∈ B} = {ba | a ∈ A, b ∈ B} = BA

If N is a subgroup of G and g ∈ G, then gN = Ng and so N is normal in G.

Lemma 1.8.6. Let N be a subgroup of the group G. Then the following statements are
equivalent:

(a) N is normal in G.

(b) aNa−1 = N for all a ∈ G.

(c) aNa−1 ⊆ N for a ∈ G.

(d) ana−1 ∈ N for all a ∈ G and n ∈ N .

(e) Every right coset of N is a left coset of N .

Proof. (a) ⇐⇒ (b) :

N EG

⇐⇒ aN = Na for all a ∈ G − definition of normal

⇐⇒ (aN)a−1 = (Na)a−1 for all a ∈ G − 1.8.1(d)

⇐⇒ aNa−1 = N for all a ∈ G − 1.8.1(a), (c)

(b) ⇐⇒ (c) : Clearly (b) implies (c). Suppose (c) holds and let a ∈ G. From (c)
applied with a−1 in place of a, a−1Na ⊆ N . We compute

a−1Na ⊆ N

=⇒ a(a−1Na) ⊆ aN − 1.8.1(e)

=⇒ (a(a−1N))a ⊆ aN − 1.8.1(a)

=⇒ Na ⊆ aN − 1.8.1(c)

=⇒ (Na)a−1 ⊆ (aN)a−1 − 1.8.1(d)

=⇒ N ⊆ aNa−1 − 1.8.1(a), (c)

Thus
N ⊆ aNa−1

for all a ∈ G. Together with (c) this gives aNa−1 = N and so (c) implies (b).

(c) ⇐⇒ (d) : Since aNa−1 = {ana−1 | a ∈ N}, aNa−1 ⊆ N if and only if ana−1 ∈ N
for all m ∈ N .
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(a) ⇐⇒ (e) : Suppose (a) holds. Then aN = Na and so every left coset is a right
coset. Thus (a) implies (e).

Suppose (e) holds and let a ∈ G. Then aN is a left coset and so also a right coset. Since
a = ae ∈ aN we conclude that both Na and aN are right cosets containing a. So by 1.7.6
Na = aN . Thus N is normal in G and so (e) implies (a).

Proposition 1.8.7 (Normal Subgroup Proposition). Let N be a subset of the group G.
Then N is a normal subgroup of G if and only if

(i) N is closed under multiplication, that is ab ∈ N for all a, b ∈ N .

(ii) eG ∈ N .

(iii) N is closed under inverses, that is a−1 ∈ N for all a ∈ N .

(iv) N is invariant under conjugation, that is gng−1 ∈ N for all g ∈ G and n ∈ N .

Proof. By the Subgroup Proposition 1.5.3 N is a subgroup of G if and only if (i),(ii) and
(iii) hold. By 1.8.6(d), N is normal in G if and only if N is a subgroup of G and (iv) holds.
So N is normal subgroup if and only if (i)-(iv) hold.

The phrase ’invariant under conjugation’ comes from the fact for a ∈ G, then map

inna : G→ G, g → aga−1

is called conjugation by a. Note that by Homework 3#2, inng is an isomorphism of G.

Corollary 1.8.8. Let N be a normal subgroup of the group G, a, b ∈ G and T ∈ G/N .

(a) (aN)(bN) = abN .

(b) (aN)−1 = a−1N .

(c) NT = T .

(d) T−1 ∈ G/N , TT−1 = N and T−1T = N .

Proof. (a) Since N E G, bN = Nb. By 1.8.1 NN = N and multiplication of subsets is
associative, thus

(aN)(bN) = a(Nb)N = a(bN)N = ab(NN) = abN.

(b) By 1.8.1 (aN)−1 = N−1a−1 = Na−1 = a−1N .
(c) We may assume T = aN . Then

NT = N(aN) = (Na)N = (aN)N = a(NN) = aN = T.

(d) By (c), T−1 = (aN)−1 = a−1N and so T−1 ∈ G/N . Moreover,

TT−1 = (aN)(a−1N) = (aNa−1)N
1.8.6(b)

= NN
1.8.1(f)

= N

and similarly T−1T = N .



1.8. NORMAL SUBGROUPS 37

Definition 1.8.9. Let G be a group and N EG. Then ∗G/N denotes the binary operation

∗G/N : G/N ×G/N → G/N, (S, T )→ S ∗ T

Note here that by 1.8.8(a), S ∗ T is a coset of N , whenever S and T are cosets of N . G/N
is called the quotient group of G with respect to N .

Theorem 1.8.10. Let G be a group and N EG. Then (G/N, ∗G/N ) is group. The identity
of G/N is

eG/N = N = eN,

and the inverse of T = gN ∈ G/N with respect to ∗G/N is

(gN)−1 = T−1 = {t−1 | t ∈ T} = g−1N.

Proof. By definition ∗G/N is a binary operation on G/N . By 1.8.1(a), ∗G/N is associative;
by 1.8.8(c), N is an identity for ∗G/N ; and by 1.8.8(d), T−1 is an inverse of T . Finally by
1.8.8(b), if T = gN then T−1 = g−1N .

Example 1.8.11.

(1) Let n be an integer. Then nZ = {nm | m ∈ Z} is subgroup of Z, with respect to
addition. Since Z is abelian, nZ is a normal subgroup of Z. So we obtain the quotient
group Z/nZ. Of course this is nothing else as Zn, the integers modulo n, views as a
group under addition.

(2) By 1.8.3(2) 〈(1, 2, 3)〉 is a normal subgroup of Sym(3). By Lagrange’s Theorem |Sym(3)/〈(1, 2, 3)〉|
has order 6

3 = 2 and so Sym(3)/〈(1, 2, 3)〉 is a group of order 2.

Sym(3)/〈(1, 2, 3)〉 =
{
{(1), (1, 2, 3), (1, 3, 2)}, {(1, 2), (1, 3), (2, 3)}

}
The Multiplication Table is

∗ {(1), (1, 2, 3), (1, 3, 2)} {(1, 2), (1, 3), (2, 3)}

{(1), (1, 2, 3), (1, 3, 2)} {(1), (1, 2, 3), (1, 3, 2)} {(1, 2), (1, 3), (2, 3)

{(1, 2), (1, 3), (2, 3)} {(1, 2), (1, 3), (2, 3)} {(1), (1, 2, 3), (1, 3, 2)}

Let N = 〈(1, 2, 3)〉. Then Sym(3)/N = {(1) ◦ N, (1, 2) ◦ N} and we can rewrite the
multiplication table as

∗ (1) ◦N (1, 2) ◦N

(1) ◦N (1) ◦N (1, 2) ◦N

(1, 2) ◦N (1, 2) ◦N (1) ◦N
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(3) Let N = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. For example by Example 1.6.8 N is a
subgroup of Sym(4). We will show that N is a normal subgroup. For this we first learn
how to compute fgf−1 for f, g ∈ Sym(I). Let (a1, a2, a3, . . . , an) be cycle of g. Then

(fgf−1)(f(a1)) = f(g(a1)) = f(a2)

(fgf−1)(f(a2)) = f(g(a2)) = f(a3)
...

(fgf−1)(f(an−1)) = f(g(an−1)) = f(an)

(fgf−1)(f(an)) = f(g(an)) = f(a1) .

Thus (
f(a1), f(a2), f(a3), . . . , f(an)

)
is a cycle of fgf−1. This allows as to compute fgf−1. Suppose

g = (a1, a2, . . . an)(b1, b2, b3, . . . bm) . . .

Then

fgf−1 =
(
f(a1), f(a2), . . . f(an)

)(
f(b1), f(b2), f(b3), . . . f(bm)

)
. . .

For example, if g = (1, 3)(2, 4) and f = (1, 4, 3, 2). Then

fgf−1 =
(
f(1), f(3)

)(
f(2), f(4)

)
= (4, 2)(1, 3),

and

(1, 3, 4) ◦ (2, 4, 3) ◦ (1, 3, 4)−1 = (2, 1, 4).

In particular we see that if g has cycles of length λ1, λ2, . . . , λk then also fgf−1 has
cycles of length λ1, λ2, . . . , λk.

We are now able to show that N E Sym(4). For this let g ∈ N and f ∈ Sym(4). By
1.8.6(d) we need to show that fgf−1 ∈ N . If g = (1), then also fgf−1 = (1) ∈ N .
Otherwise g has two cycles of length two and so also fgf−1 has two cycles of length
2. But any element with two cycles of length 2 is contained in N . So fgf−1 ∈ N and
N E Sym(4). Since |N | = 4 and | Sym(4)| = 24, Sym(4)/N is a group of order 6.
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1.9 The Isomorphism Theorems

Definition 1.9.1. Let φ : G→ H be a homomorphism of groups. Then

kerφ := {g ∈ G | φ(g) = eH}.

kerφ is called the kernel of φ.

Lemma 1.9.2. Let φ : G → H be a homomorphism of groups. Then kerφ is a normal
subgroup of G.

Proof. We will verify the four conditions (i)-(iv) in the Normal Subgroup Proposition 1.8.7
Let a, b ∈ kerφ. Then

φ(a) = eH and φ(b) = eH .

(i) φ(ab) = φ(a)φ(b) = eHeH = eH and so ab ∈ kerφ.
(i) By 1.6.5(a), φ(eG) = eH and so eG ∈ kerφ.
(iii) By 1.6.5(b), φ(a−1) = φ(a)−1 = e−1

H = eH and so a−1 ∈ kerφ.
(iv) Let d ∈ G. Then

φ(dad−1) = φ(d)φ(a)φ(d)−1 = φ(d)eHφ(d)−1 = φ(d)φ(d)−1 = eH

and so dad−1 ∈ kerφ.
By (i)-(iv) and 1.8.7 kerφ is a normal subgroup of G.

Lemma 1.9.3. Let N be a normal subgroup of G and define

φ : G→ G/N, g → gN.

Then φ is an onto group homomorphism with kerφ = N . φ is called the natural homomor-
phism from G to G/N .

Proof. Let a, b ∈ G. Then

φ(ab) = abN
1.8.8(a)

= (aN)(bN) = φ(a)φ(b),

and so φ is a homomorphism.
If T ∈ G/N , then T = gN for some g ∈ G. Thus φ(g) = gN = T and φ is onto. Since

eG/N = N the following statements are equivalent for g ∈ G

g ∈ kerφ

⇐⇒ φ(g) = eG/N − definition of kerφ

⇐⇒ gN = N − definition of φ, 1.8.10

⇐⇒ g ∈ N − 1.7.7(a)

So kerφ = N .
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Corollary 1.9.4. Let N be a subset of the group G. Then N is a normal subgroup of G if
and only if N is the kernel of a homomorphism.

Proof. By 1.9.2 the kernel of a homomorphism is a normal subgroup; and by 1.9.3 any
normal subgroup is the kernel of a homomorphism.

Theorem 1.9.5 (First Isomorphism Theorem). Let φ : G → H be a homomorphism of
groups. Then

φ : G/ kerφ→ Imφ, g kerφ→ φ(g)

is well-defined isomorphism of groups. In particular

G/ kerφ ∼= Imφ.

Proof. Put N = kerφ and Let a, b ∈ G. Then

gN = hN

⇐⇒ g−1h ∈ N − 1.7.6

⇐⇒ φ(g−1h) = eH − Definition of N = kerφ

⇐⇒ φ(g)−1φ(h) = eH − φ is a homomorphism, 1.6.5(b)

⇐⇒ φ(h) = φ(g) − Multiplication with φ(g) from the left,

Cancellation law

So

(∗) gN = hN ⇐⇒ φ(g) = φ(h).

Since gN = hN implies φ(g) = φ(h) we conclude that φ is well-defined.
Let S, T ∈ G/N . Then there exists g, h ∈ N with S = gN and T = hN .
Suppose that φ(T ) = φ(S). Then

φ(g) = φ(gN) = φ(S) = φ(T ) = φ(hN) = φ(h),

and so by (*) gN = hN . Thus S = T and φ is 1-1.
Let b ∈ Imφ. Then there exists a ∈ G with b = φ(a) and so φ(aN) = φ(a) = b.

Therefore φ is onto.
Finally

φ(ST ) = φ(gNhN)
1.8.8(a)

= φ(ghN) = φ(gh) = φ(g)φ(h) = φ(gN)φ(hN) = φ(S)φ(T )

and so φ is a homomorphism. We proved that φ is a well-defined, 1-1 and onto homomor-
phism, that is a well-defined isomorphism.

The First Isomorphism Theorem can be summarized in the following diagram:



1.9. THE ISOMORPHISM THEOREMS 41

G

g

Imφ

φ(g)

G/ kerφ

g kerφ

φ π

φ

∼=

�
�

��	

@
@
@@R

�

�
�
�

�
�
��	

@
@
@
@
@
@@R

�

Example 1.9.6.

Let G be a group and g ∈ G. Define

φ : Z→ G,m→ gm.

By 1.6.4(1) φ is an homomorphism from (Z,+) to G. We have

(1) Imφ = {φ(m) | m ∈ Z} = {gm | m ∈ Z} 1.5.7(2)
= 〈g〉,

and

(2) kerφ = {m ∈ Z | φ(m) = e} = {m ∈ Z | gm = e}.

If g has finite order, put n = |g|. Otherwise put n = 0. We claim that

(3) kerφ = nZ.

Suppose first that n = 0. Then |g| = ∞ and gm 6= e for all m ∈ Z+. Hence also
g−m = (gm)−1 6= e and so kerφ = {0} = 0Z = nZ. So (3) holds in this case.

Suppose next that n is positive integer and let m ∈ Z. By the Division Algorithm [Hung,
Theorem 1.1], m = qn+ r for some q, r ∈ Z with 0 ≤ r < m. Thus

gm = gqn+r = (gn)qgr = eqgr = gr.

By definition of n, gs 6= e for all 0 < s < n and so gr = e if and only if r = 0. So gm = e if
and only if n | m and if and only if m ∈ nZ. Hence (3) holds also in this case.

By the First Isomorphism Theorem

Z/ kerφ ∼= Imφ

and so by (1) and (3).

Zn = Z/nZ ∼= 〈g〉.

In particular, if G = 〈g〉 is cyclic then G ∼= Zn. So every cyclic group is isomorphic to
(Z,+) (in the n = 0 case ) or (Zn,+), n > 0.
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Definition 1.9.7. Let ∗ be a binary operation on the set A and � a binary operation on
the set B. Then ∗×� is the binary operation on A×B defined by

∗×� : (A×B)× (A×B)→ A×B, ((a, b), (c, d))→ (a ∗ c, b� d)

(A×B, ∗×� ) is called the direct product of (A, ∗) and (B, � ).

Lemma 1.9.8. Let (A, ∗) and (B, � ) be groups. Then

(a) (A×B, ∗×� ) is a group.

(b) eA×B = (eA, eB).

(c) (a, b)−1 = (a−1, b−1).

(d) If A and B are abelian, so is A×B.

Proof. Let x, y, z ∈ A × B. Then x = (a, b), y = (c, d) and z = (f, g) for some a, c, f ∈ A
and b, d, g in B. To improve readability we write 4 for ∗×� . We compute

x4(y4z) = (a, b)4
(
(c, d)4(f, g)

)
= (a, b)4

(
(c ∗ f, d� g)

)
= (a ∗ (c ∗ f), b� (d� g)) = ((a ∗ c) ∗ f, (b� d)� g) = (a ∗ c, b� g)4(f, g)

=
(
(a, b)4(c, d)

)
4(f, g) = (x4y)4z.

So 4 is associative.

x4(eA, eB) = (a, b)4(eA, eB) = (a ∗ eA, b� eB) = (a, b) = x,

and similarly (eA, eB)4x = x. So (eA, eB) is an identity for 4 in A×B.

x4(a−1, b−1) = (a, b)4(a−1, b−1) = (a ∗ a−1, b� b−1) = (eA, eB),

and similarly (a−1, b−1)�x = (eA, eB). So (a−1, b−1) is an inverse of x.

Hence (G,4) is a group and (a), (b) and (c) hold.

(d) Suppose ∗ and � are commutative. Then

x4y = (a, b)4(c, d) = (a ∗ c, b� d) = (c ∗ a, d� c) = (c, d)4(a, b) = y4x.

Hence 4 is commutative and A×B is a group.

Example 1.9.9.

Let A and B be groups and define

π : A×B → B, (a, b)→ b.
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Then

π
(
(a, b)(c, d)

)
= π(ac, bd) = bd = π(a, b)π(c, d)

and so π is an homomorphism. Let b ∈ B. Then π(eA, b) = b and so π is onto. Let
(a, b) ∈ A × B. Then π(a, b) = eB if and only b = eB and so kerπ = A × {eB}. In
particular, A×{eB} is a normal subgroup of A×B and by the First Isomorphism Theorem
1.9.5

A×B/A× {eB} ∼= B.

Lemma 1.9.10. Let G be a group, H a subgroup of G and T ⊆ H.

(a) T is a subgroup of G if and only if T is a subgroup of H.

(b) If T EG, then T EH.

(c) If α : G → F is a homomorphism of groups, then αH : H → F, h → α(h) is also a
homomorphism of groups. Moreover, kerαH = H ∩ kerα and if α is 1-1 so is αH .

Proof. (a) This follows easily from the Subgroup Proposition 1.5.3.

(b) Thus follows easily from the Normal Subgroup Proposition 1.8.7.

(c) Let a, b ∈ H. Then αH(ab) = α(ab) = α(a)α(b) = αH(a)αH(b) and so αH is a
homomorphism. Let g ∈ G then

g ∈ kerαH

⇐⇒ g ∈ H and αH(h) = eF

⇐⇒ g ∈ H and α(h) = eF

⇐⇒ g ∈ H and g ∈ kerα

⇐⇒ g ∈ H ∩ kerα

So kerαH = H ∩ kerα.

Suppose α is 1-1. If αH(a) = αH(b), then α(a) = α(b) and so a = b. Thus α is 1-1.

Theorem 1.9.11 (Second Isomorphism Theorem). Let G be a group, N a normal subgroup
of G and A a subgroup of G. Then A∩N is a normal subgroups of A, AN is a subgroup of
G, N is a normal subgroup of AN and the map

A/A ∩N → AN/N, a(A ∩N)→ aN

is a well-defined isomorphism. In particular,

A/A ∩N ∼= AN/N.
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Proof. Let a ∈ A, then aN = Na ⊆ NA and so AN ⊆ NA. So by Homework 4#4 AN
is a subgroup of G. Since N E G 1.9.10(b) implies that N E AN . By 1.9.3 π : G →
G/N, g → gN is a homomorphism with kerπ = N . Hence by 1.9.10(c) also the restriction
πA : A→ G/N, a→ aN of π to A is a homomorphism with

(1) kerπA = A ∩ kerπ = A ∩N

Hence by 1.9.2 A ∩N is a normal subgroup of G. We have

(2)
ImπA = {πA(a) | a ∈ A} = {aN | a ∈ H}

= {anN | a ∈ A,n ∈ N} = {dN | d ∈ AN} = AN/N

By the First Isomorphism Theorem 1.9.5 we now conclude that

πA : A/ kerπA → ImπA, a kerπA → πA(a)

is a well-defined isomorphism. Thus by (1) and (2)

πA : A/A ∩N → AN/N, a(A ∩N)→ aN

is a well-defined isomorphism.

The Second Isomorphism Theorem can be summarized in the following diagram.
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Example 1.9.12.

Let H = Sym(3) and view H has a subgroup of G = Sym(4). So H = {f ∈ Sym(4) |
f(4) = 4}. Put

N = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

By 1.8.11(3) N is a normal subgroup of G and G/N is a group of order six. Observe that
the only element in N which fixes 4 is (1). Thus H ∩N = 1. So the Second Isomorphism
Theorem 1.9.11 implies that

H ∼= H/{(1)} = H/H ∩N ∼= HN/N.

In particular |HN/N | = |H| = 6. Since HN/N is a subset of G/N and |G/N | = 6 we
conclude that G/N = HN/N . Thus H ∼= G/N and so

Sym(3) ∼= Sym(4)/{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.
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Lemma 1.9.13. Let φ : G→ H be a homomorphism of groups.

(a) If A ≤ G then φ(A) is a subgroup of H, where φ(A) = {φ(a) | a ∈ A}.

(b) If AEG and φ is onto, φ(A)EH.

(c) If B ≤ H, then φ−1(B) is a subgroup of G, where φ−1(B) := {a ∈ A | φ(a) ∈ A}

(d) If B EH, then φ−1(B)EG.

Proof. (a) φ(A) = {φ(a) | a ∈ A} = {φA(a) | a ∈ A} = ImφA. By 1.9.10(c) φA is a
homomorphism and so by 1.6.5(c), Imφ ≤ H. Hence φ(A) ≤ H.

(b) By (a) φ(A) ≤ H. Hence by 1.8.6(d) it suffices to show that φ(A) is invariant under
conjugation. Let b ∈ φ(A) and h ∈ H. Then b = φ(a) for some a ∈ A and since φ is onto,
h = φ(g) for some g ∈ G. Thus

(1) hbh−1 = φ(g)φ(a)φ(g)−1 = φ(aga−1).

Since A E G, 1.8.6(d) implies aga−1 ∈ A. So by (1), hbh−1 ∈ φ(A). Thus φ(A) is
invariant under conjugation and φ(A)EG.

(c) We will use the Subgroup Proposition. Let x, y ∈ φ−1(B). Then

(2) φ(x) ∈ B and φ(y) ∈ B.

Since φ(xy) = φ(x)φ(y) and B is closed under multiplication we conclude from (2) that
φ(xy) ∈ B. Hence xy ∈ φ−1(B) and φ−1(B) is closed under multiplication.

By 1.6.5(a) φ(eG) = eH and by the Subgroup Proposition, eH ∈ H. Thus φ(eG) ∈ H
and eG ∈ φ−1(B).

By 1.6.5(b) φ(x−1) = φ(x)−1. Since B is closed under inverses, (2) implies φ(x)−1 ∈ B.
Thus φ(x−1) ∈ B and x−1 ∈ φ−1(B). Hence φ−1(B) is closed under inverses.

We verified the three conditions of the Subgroup Proposition and so φ−1(B) ≤ G.
(d) By (c), φ−1(B) ≤ G. Let x ∈ φ−1(B) and g ∈ G. Then

(3) φ(gxg−1) = φ(g)φ(x)φ(g)−1.

Since φ(x) ∈ B and B is invariant under conjugation we have φ(g)φ(x)φ(g)−1 ∈ B.
Hence by (3) gxg−1 ∈ φ−1(B) and by 1.8.6(d), φ−1(B)EG.

Theorem 1.9.14 (Correspondence Theorem). Let N be a normal subgroup of the group G.
Put

S(G,N) = {H | N ≤ H ≤ G} and S(G/N) = {F | F ≤ G/N}.
Let

π : G→ G/N, g → gN

be the natural homomorphism.
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(a) Let N ≤ K ≤ G. Then π(K) = K/N .

(b) Let F ≤ G/N . Then π−1(F ) =
⋃
T∈F T .

(c) Let N ≤ K ≤ G and g ∈ G. Then g ∈ K if and only if gN ∈ K/N .

(d) The map

β : S(G,N)→ S(G/N), K → K/N

is a well-defined bijection with inverse

α : S(G/N)→ S(G,N), F → π−1(F ).

In other words:

(a) If N ≤ K ≤ G, then K/N is a subgroup of G/N .

(b) For each subgroup F of G/N there exists a unique subgroup K of G with N ≤ K
and F = K/N . Moreover, K = π−1(F ).

(e) Let N ≤ K ≤ G. Then K EG if and only if K/N EG/N .

(f) Let N ≤ H ≤ G and N ≤ K ≤ G. Then H ⊆ K if and only if H/N ⊆ K/N .

(g) (Third Isomorphism Theorem) Let N ≤ H EG. Then the map

ρ : G/H → (G/N)
/

(H/N), gH → (gN) ∗ (H/N)

is a well-defined isomorphism.

Proof. (a) π(K) = {π(k) | k ∈ K} = {kN | k ∈ N} = K/N .

(b) Let g ∈ G. Then

g ∈ π−1(F )

⇐⇒ π(g) ∈ F − definition of π−1(F )

⇐⇒ gN ∈ F − definition of π

⇐⇒ gN = T for some T ∈ F

⇐⇒ g ∈ T for some T ∈ F − T ∈ G/N, 1.7.7(a)

⇐⇒ g ∈
⋃
T∈F T − definition of union

(c) If g ∈ K then clearly gN ∈ K/N . If gN ∈ K/N then gN = kN for some k ∈ K and
so g ∈ gN = kN ⊆ K. So g ∈ K if and only if gN ∈ K/N .

(d) Let N ≤ H ≤ G and F ≤ G/N . By (a) H/N = π(H) and so by 1.9.13(a)
H/N is a subgroup of N . Hence β is well-defined. By 1.9.13(a) π−1(F ) ≤ G. Also if
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n ∈ N , then π(n) = nN = N = eG/N ∈ F and so n ∈ π−1(N). Thus N ≤ π−1(N) and
π−1(N) ∈ S(G,N). This shows that α is well defined. We compute

α(β(H)) = π−1(H/N) = {g ∈ G | π(g) ∈ H/N}

= {g ∈ G | gN ∈ H/N} (e)
= {g ∈ G | g ∈ H} = H

Since π onto, A.2.5 implies π(π−1(F )) = F and so β(α(F )) = F . Hence α is an inverse
of β and by A.2.6(c), β is a bijection.

(e) Suppose that K E N . Then since π is onto, 1.9.13(b) implies K/N = π(K) E N .
Suppose that K/N EG/N . By (f) π−1(K/N) = K and so by 1.9.13(d) K EN .

(f) Let h ∈ H. By (c) h ∈ K if and only if hN ∈ K/N and so H ⊆ K if and only if
H/N ⊆ K/N .

(g) Let
η : G/N → G/N

/
H/N, T → T ∗ (H/N)

be the natural homomorphism. Consider the composition:

η ◦ π : G→ G/N
/
H/N, g → (gN) ∗ (H/N).

Since η and π are homomorphism, also η ◦ π is homomorphism (see Homework 3#7).
Since both η and π are onto, η ◦ π is onto (see A.2.3 b). So

(1) Im η ◦ π = G/N
/
H/N.

We now compute ker(η ◦ π):

g ∈ ker(η ◦ π)

⇐⇒ (η ◦ π)(g) = e
(G/N)

/
(H/N)

− Definition of ker(η ◦ π)

⇐⇒ η(π(g)) = e
(G/N)

/
(H/N)

− Definition of ◦

⇐⇒ π(g) ∈ ker η − Definition of ker η

⇐⇒ π(g) ∈ H/N − 1.9.3

⇐⇒ gN ∈ H/N − Definition of π

⇐⇒ g ∈ H − (c)

Thus

(2) ker(η ◦ π) = H.
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By the First Isomorphism Theorem 1.9.5

ρ : G/ ker(η ◦ π)→ Im(η ◦ π), g ker(η ◦ π)→ (η ◦ π)(g)

is a well defined isomorphism. Thus by (1) and (2)

ρ : G/H → (G/N)
/

(H/N), gH → (gN) ∗ (H/N).

is a well-defined isomorphism.

Example 1.9.15.

In this example we compute the subgroups of (Z,+) and then use 1.9.14 to compute the
subgroups of Zn.

Let H be an additive subgroup of Z. We claim that

(1) H = mZ for some m ∈ N.

Observe that 0 ∈ H. If H = {0}, then H = 0Z. So suppose that H 6= {0}. Then there
exists 0 6= i ∈ H. Since H is closed under inverse, −i ∈ H and so H contains a positive
integer. Let m be the smallest positive integer contained in H. Then mZ = 〈m〉 ≤ H.
Let h ∈ H. Then h = qm + r for some q, r ∈ Z with 0 ≤ r < n. Then r = h − qn ∈ H.
Since m is the smallest positive integer contained in H, r is not positive. Thus r = 0 and
h = qm ∈ mZ. So H = mZ. Thus (1) is proved.

Let n be a positive integer. We will now use 1.9.14 to determine the subgroups of Z/nZ.
Let F be a subgroup of Z/nZ. Then by 1.9.14(d), F = H/nZ for some subgroup H of Z
with nZ ≤ H. From (1), H = mZ for some m ∈ N. Since n ∈ nZ ≤ H = mZ we get m 6= 0
and m | n. Thus

(2) F = mZ/nZ for some m ∈ Z+ with m | n.

For example the subgroups of Z/12Z are

(3) 1Z/12Z, 2Z/12Z, 3Z/12Z, 4Z/12Z, 6Z/12Z, 12Z/12Z.

By the Third Isomorphism Theorem

(4) Z/nZ
/
mZ/nZ ∼= Z/mZ = Zm,

and so
∣∣Z/nZ/mZ/nZ

∣∣ =
∣∣Z/mZ

∣∣ = m. Also |Z/nZ| = n. By Lagrange Theorem applied

to the subgroup mZ/nZ of Z/nZ,
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∣∣Z/nZ∣∣ =
∣∣Z/nZ/mZ/nZ

∣∣ · ∣∣mZ/nZ
∣∣

and so
n = m · |mZ/nZ|.

Thus
|mZ/nZ| = n

m
.

Observe that mZ/nZ is generated by m+ nZ. So mZ/nZ is cyclic and so by 1.9.6

(5) mZ/nZ ∼= Z n
m
.

So the groups in (3) are isomorphic to

(6) Z12, Z6, Z4, Z3, Z2, Z1,

and by (4) their quotient groups are isomorphic to

(7) Z1, Z2, Z3, Z4, Z6, Z12.

Example 1.9.16.

In this example we compute the subgroups of Sym(3) and then use 1.9.14 to compute
some subgroups of Sym(4).

Let K ≤ Sym(3). Then by Lagrange theorem |K|
∣∣|Sym(3)| = 6 and so |K| = 1, 2, 3 or

6. If |K| = 1 them K = {(1)}.
If |K| = 2, then by 1.7.15 K is cyclic and so by 1.7.14(a), K = 〈g〉 for some g ∈ K. The

elements of order 2 in Sym(3) are (1, 2), (1, 3) and (2, 3) . So K is one 〈(1, 2)〉, 〈(1, 3)〉 and
〈(2, 3)〉.

Similarly if |K| = 3 we see K = 〈g〉 for some g ∈ K with |g| = 3. The elements of order
three in Sym(3) are (1, 2, 3) and (1, 3, 2). Also 〈(1, 2, 3)〉 = {1, (1, 2, 3), (1, 3, 2)} = 〈(1, 3, 2)〉
and so K = 〈(1, 2, 3)〉.

If |K| = 6 then K = Sym(3). So the subgroups of Sym(3) are

(1) {1}, 〈(1, 2)〉, 〈(1, 3)〉, 〈(2, 3)〉, 〈(1, 2, 3)〉, Sym(3).

Let N = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 and H = {f ∈ Sym(4) | f(4) = 4} ∼= Sym(3). By
Example 1.9.12 N E Sym(3) and the map φ : H → Sym(4)/N, h→ hN is an isomorphism.
We can obtain the subgroups of G/N by computing φ(K) for each subgroups K of H:
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φ({1)}) = {(1)N}

=
{
{(1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

}
φ(〈(1, 2)〉) = {(1)N, (1, 2)N}

=
{
{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)},

{(1, 2), (3, 4), (1, 3, 2, 4), (1, 4, 2, 3)}
}

φ(〈(1, 3)〉) = {(1)N, (1, 3)N}

=
{
{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)},

{(1, 3), (1, 2, 3, 4), (2, 4), (1, 4, 3, 2)}
}

φ(〈(2, 3)〉) = {(1)N, (2, 3)N}

=
{
{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)},

{(2, 3), (1, 3, 4, 2), (1, 2, 4, 3)), (1, 4))}
}

φ(〈(1, 2, 3)〉) = {(1)N, (1, 2, 3), (1, 3, 2)N}

=
{
{(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)},

{(1, 2, 3), (1, 3, 4), (2, 4, 3), (1, 4, 2)},

{(1, 3, 2), (2, 3, 4), (1, 2, 4), (1, 4, 3)}
}

φ(H) = Sym(4)/N

By 1.9.14 taking the unions over the sets of cosets in (7) gives us the subgroups of
Sym(4) containing N :

(3)

N = {(1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

X1 = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2), (3, 4), (1, 3, 2, 4), (1, 4, 2, 3)}

D4 = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 3), (1, 2, 3, 4), (2, 4), (1, 4, 3, 2)}

X2 = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (2, 3), (1, 3, 4, 2), (1, 2, 4, 3)), (1, 4))

Alt(4) := {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2, 3), (1, 3, 4),

(2, 4, 3), (1, 4, 2)(1, 3, 2), (2, 3, 4), (1, 2, 4), (1, 4, 3)}

Sym(4)

By Example 1.8.3, 〈(1, 2)〉 is not normal in Sym(3), while 〈(1, 2, 3)〉 is normal. Similarly
neither 〈(1, 3)〉 nor 〈(2, 3)〉 is normal in Sym(3). Thus the normal subgroups of Sym(3) are
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(10) {(1)}, Alt(3) := 〈(1, 2, 3)〉, Sym(3).

So by 1.9.14 the normal subgroups of Sym(4) containing N are

(11) N, Alt(4), Sym(4).



Chapter 2

Group Actions and Sylow’s
Theorem

2.1 Group Action

Definition 2.1.1. Let G be group and I a set. An action of G on I is a function

� : G× I → I (g, i)→ (g � i)

such that

(act:i) e � i = i for all i ∈ I.

(act:ii) g � (h � i) = (g ∗ h) � i for all g, h ∈ G, i ∈ I.

The pair (I, �) is called a G-set. We also say that G acts on I via �. Abusing notations we
often just say that I is a G-set. Also we often just write gi for g � i.

Example 2.1.2.

(1) Let (G, ∗) be a group. We claim that ∗ is an action of G on G. Indeed since e is an
identity for ∗, we have e∗ g = g for all g ∈ G and so (act:i) holds. Since ∗ is associative,
a ∗ (b ∗ g) = (a ∗ b) ∗ g for all a, b, g ∈ G. So also (act ii) holds. This action is called the
action of G on G by left-multiplication.

(2) Sym(I) acts on I via f �i = f(i) for all f ∈ Sym(I) and i ∈ I. Indeed, idI �i = idI(i) = i
and so (act:i) holds. Moreover, f � (g � i) = f(g(i)) = (f ◦ g)(i).

(3) Let F be a field. Recall that GL2(F) is the group of invertible 2 × 2 matrices with
coefficients in F. Define

53
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� : GL2(F)× F2 → F2

(A, v)→ Ava b

c d

,
x
y

→
ax+ by

cx+ dy


We claim that � is an action of GL2(F) on F2. Recall that the identity element in

GL2(F) is the identity matrix

1F 0F

0F 1F

. Since

1F 0F

0F 1F

x
y

 =

1Fx+ 0Fy

0Fx+ 1Fy

 =

x+ 0F

0F + y

 =

x
y

 ,

we conclude that (act:i) holds. Since matrix multiplication is associative, A(Bv) =
(AB)v for all A,B ∈ GL2(F) and v ∈ F2. Hence (act:ii) holds.

The next lemma shows that an action of G on I is basically the same as an homomor-
phism from G to Sym(I).

Lemma 2.1.3. Let G be a group and I a set.

(a) Suppose � is an action of G on I. For a ∈ G define

fa : I → I, i→ a � i.

Then fa ∈ Sym(I) and the map

Φ� : G→ Sym(I), a→ fa

is a homomorphism. Φ� is called the homomorphism associated to the action of G on
I.

(b) Let Φ : G→ Sym(I) be homomorphisms of groups. Define

� : G× I → I, (g, i)→ Φ(g)(i).

Then � is an action of G on I.

Proof. (a) Observe first that fe(i) = ei = i for all i ∈ I and so

(1) fe = idI
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Let a, b ∈ I then

fab(i) = (ab)i = a(bi) = fa(fb(i)) = (fa ◦ fb)(i)

and so

(2) fab = fa ◦ fb.

From (2) applied to b = a−1 we have

fa ◦ fa−1
(2)
= faa−1 = fe

(1)
= idI .

and similarly fa−1 ◦ fa = idI . So by A.2.6(c), fa is a bijection. Thus fa ∈ Sym(I). Now

Φ�(ab) = fab
(2)
= fa ◦ fb = Φ�(a) ◦ Φ�(b)

and so Φ� is a homomorphism.

(b) By 1.6.5(a), Φ(e) = eSym(I) = idI . Thus

e � i = Φ(e)(i) = idI(i) = i

for all i ∈ I. So (act:i) holds.
Let a, b ∈ G. Then

(ab) � i = Φ(ab)(i)
Φ hom

= (Φ(a) ◦ Φ(b)(i) = Φ(a)(Φ(b)(i)) = a � (b � i).
Thus (act:ii) holds and � is an action for G on I.

Example 2.1.4.

(1) We will compute the homomorphism Φ associated the action of a group G on itself by
left-multiplication (see Example 2.1.2(1)). For this let a ∈ G. Then for each g ∈ G,
fa(g) = ag and Φ(a) = fa. So Φ is the homomorphism used in the proof of Cayley’s
Theorem 1.6.7.

(2) We will compute the homomorphism Φ associated to the action of a Sym(I) on I (see
Example 2.1.2(2)). Let a ∈ Sym(i). Then for all i ∈ I,

fa(i) = a � i = a(i).

So fa = a and thus Φ(a) = a. Hence Φ = idSym(I).

Lemma 2.1.5. Let G be a group and H a subgroups of G. Define

�G/H : G×G/H → G/H, (g, T )→ gT

Then �G/H is well-defined action of G on G/H. This action is called the action of G on
G/H by left multiplication.
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Proof. Let a ∈ G and T ∈ G/H. Then T = tH for some t ∈ G. We have

aT = atH = (at)H ∈ G/H,

and so �G/H is well defined. By 1.8.1(c) eT = T and hence (act:i) holds.
Let a, b ∈ G. Then (ab)T = a(bT ) by 1.8.1(a) and so also (act:ii) holds.

Example 2.1.6.

Let G = Sym(4) and H = D4. We will investigate the action of G on G/D4 by left
multiplication. Put

a = D4, b = (1, 2)D4, and c = (1, 4)D4.

Since (1, 2) /∈ D4, a 6= b. Since (1, 4) /∈ D4, a 6= c and since (1, 2)−1 ◦ (1, 4) = (1, 2) ◦
(1, 4) = (1, 4, 2) /∈ D4, b 6= c. By Lagrange’s Theorem |G/H| = |G|

|H| = 24
3 = 3. Hence

G/H = {a, b, c}.

We now compute how (1, 2), (1, 3) and (1, 4) act on G/H. We start with (1, 2):

(1.1) (1, 2)a = (1, 2)D4 = b,

(1.2) (1, 2)b = (1, 2)(1, 2)D4 = D4 = b,

and
(1, 2)c = (1, 2)(1, 4)D4 = (1, 4, 2)D4.

Is (1, 4, 2)D4 equal to a, b or c? Since the map f(1,2) : G/H → G/H, T → (1, 2)T is a
bijection we must have

(1.3) (1, 2)c = c.

So (1, 4, 2)D4 = (1, 4)D4. Thus can also be verified directly: (1, 4, 2)−1(1, 4) = (1, 2, 4)(1, 4) =
(2, 4) ∈ D4 and so (1, 4)D4 = (1, 4, 2)D4.

Let Φ be the homomorphism from G to Sym(G/H) associated to the action of G on
G/H = {a, b, c}. From (1.1),(1.2) and (1.3):

(1) Φ((1, 2)) = f(1,2) = (a, b).

Next we consider (1, 3):

(2.1) (1, 3)a = (1, 3)D4 = D4 = a.
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From

(1, 3)b = (1, 3)(1, 2)D4 = (1, 2, 3)D4,

and

(1, 2, 3)−1(1, 4) = (1, 3, 2)(1, 4) = (1, 4, 3, 2) ∈ D4

we have

(2.2) (1, 3)b = c.

(2.3) (1, 3)c = (1, 3)(1, 3)b = (1)b = b.

From (2.1),(2.2) and (2,3)

(2) Φ((1, 3)) = f(1,3) = (b, c).

(3.1) (1, 4)a = (1, 4)D4 = c,

(3.2) (1, 4)c = (1, 4)(1, 4)D4 = (1)D4 = D4 = a,

and so since f(1,4) is a bijection

(3.3) (1, 4)b = b.

From (3.1),(3.2) and (3.3):

(3) Φ((1, 4)) = f(1,4) = (a, c).

Since (1, 2)(1, 3) = (1, 3, 2) and Φ is a homomorphism, we conclude that

(4) Φ((1, 3, 2)) = Φ((1, 2))Φ((1, 3)) = (a, b)(b, c) = (a, b, c),

and

(5) Φ((1, 2, 3)) = Φ((1, 3, 2)−1) = Φ((1, 3, 2))−1 = (a, b, c)−1 = (a, c, b).

Clearly
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(6) Φ((1)) = (a).

From (1)-(6), Φ is onto and so G/ ker Φ ∼= Sym(3).
What is kerφ ?
Recall that in example 1.8.11(3) we learned how to compute f ◦g ◦f−1 for permutations

f and g. We have
(1, 3)−1 ◦ (1, 2) ◦ (1, 3) = (3, 2) = (2, 3).

Since Φ is a homomorphism this implies

Φ((2, 3)) = Φ
(
(1, 3)−1 ◦ (1, 2) ◦ (1, 3)

)
= Φ((1, 3))−1 ◦ Φ((1, 2)) ◦ Φ((1, 3))

= (b, c)−1 ◦ (a, b) ◦ (b, c)−1 = (a, c) = Φ((1, 4))

Thus

Φ((1, 4)(2, 3)) = Φ((1, 4))Φ((2, 3)) = (a, c)(a, c) = (a)

and so (1, 4)(2, 3) ∈ ker Φ. Since ker Φ is a normal subgroup of G, this implies that also
(1, 2)−1 ◦ (1, 4)(2, 3) ◦ (1, 2) ∈ ker Φ and (1, 3)−1 ◦ (1, 4)(2, 3) ◦ (1, 3) ∈ ker Φ.

So

N := {(1), (1, 4)(2, 3), (2, 4)(1, 3), (3, 4)(2, 1)} ⊆ ker Φ.

By Lagrange’s | ker Φ| = |G|
| Sym(3)| = 24

6 = 4 and so ker Φ = N . Thus Sym(4)/N ∼=
Sym(3). Of course we already proved this once before in Example 1.9.12.

Lemma 2.1.7 (Cancellation Law for Action). Let G be a group acting on the set I, a ∈ G
and i, j ∈ H. Then

(a) a−1(ai) = i.

(b) i = j ⇐⇒ ai = aj.

(c) j = ai ⇐⇒ i = a−1j.

Proof. (a) a−1(ai)
act ii
= (a−1a)i

Def a−1

= ei
act i
= i.

(b) Clearly if i = j, then ai = aj. Suppose ai = aj. Then then a−1(ai) = a−1(aj) and
so by (a), i = j.

(c)

j = ai

⇐⇒ a−1j = a−1(ai) − (b)

⇐⇒ a−1j = i − (a)
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Definition 2.1.8. Let G be a group and (I, �) a G-set.

(a) The relation ≡� (mod G) on I is defined by i ≡� j (mod G) if there exists g ∈ G with gi =
j.

(b) G � i:= {g � i | g ∈ G}. G � i is called the orbit of G on I (with respect to �) containing
i. We often write Gi for G � i.

Example 2.1.9.

(1) Let G be a group and H a subgroup of G. Then H acts on G by left multiplication.
Let g ∈ G. Then

H � g = {h � g | h ∈ H} = {hg | h ∈ H} = Hg

So the orbits of H on G with respect to left multiplication are the right cosets of H.

(2) Let I be a set and let � be the natural action of Sym(I) on I, see Example 2.1.2(2).
Let i ∈ I

Sym(I) � i = {f � i | f ∈ Sym(I)} = {f(i) | f ∈ Sym(I)}.

Let j ∈ I, then there exists f ∈ Sym(I) with f(i) = j, for example f = (i, j). So
j ∈ Sym(I) � i and thus Sym(I) � i = I. Hence I is the only orbit of Sym(I) on I.

(3) Let N = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. By Example 1.8.11(3), N is a normal
subgroup of G. Hence by Homework 6#3

� : Sym(4)×N → N, (g, n)→ gng−1

is an action of Sym(4) on N . Let n ∈ N , then

Sym(4) � n = {g � n | g ∈ Sym(4)} = {gng−1 | Sym(4)}.

Consider n = e. Then geg−1 = e and so

Sym(4) � e = {e}.

Consider n = (1, 2)(3, 4). Then gng−1 6= e and gng−1 ∈ N . We compute

(1) ◦ (1, 2)(3, 4) ◦ (1)−1 = (1, 2)(3, 4),

(1, 3) ◦ (1, 2)(3, 4) ◦ (1, 3)−1 = (1, 4)(2, 3),

(1, 4) ◦ (1, 2)(3, 4) ◦ (1, 4)−1 = (1, 3)(2, 4).

Thus

Sym(4) � (1, 2)(3, 4) = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.
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Lemma 2.1.10. Let G be a group acting in the set I. Then ′ ≡ (mod G)′ is an equivalence
relation on I. The equivalence class of ′ ≡ (mod G)′ containing i ∈ I is Gi.

Proof. Let i, j, k ∈ I. From ei = i we conclude that i ≡ i (mod G) and ′ ≡ (mod G)′ is
reflexive.

If i ≡ j (mod G) then j = gi for some g ∈ G and so

g−1j = g−1(gi) = (g−ig)i = ei = i.

Thus j ≡ i (mod G) and ′ ≡ (mod G)′ is symmetric.
If i ≡ j (mod G) and j ≡ k (mod G), then j = gi and k = hj for some g, h ∈ G. Thus

(hg)i = h(gi) = hj = k,

and so i ≡ k (mod G). Thus ′ ≡ (mod G)′ is transitive . It follows that ′ ≡ (mod G)′ is
an equivalence relation.

Let [i] be the equivalence class of ′ ≡ (mod G)′ containing i. Then

[i] = {j ∈ J | i ≡ j (mod G)} = {j ∈ G | j = gi for some g ∈ G} = {gi | g ∈ G} = Gi

Proposition 2.1.11. Let G be a group acting on the set I and i, j ∈ G. Then following
are equivalent.

(a) j = gi for some g ∈ G.

(b) i ≡ j (mod G)

(c) j ∈ Gi.

(d) Gi ∩Gj 6= ∅

(e) Gi = Gj

(f) i ∈ Gj.

(g) j ≡ i (mod G).

(h) i = hj for some h ∈ G

In particular, I is the disjoint union of the orbits for G on I.

Proof. By definition of i ≡ j (mod G), (a) and (b) are equivalent, and also (g) and (h)
are equivalent. By 2.1.10, Gi is the equivalence class containing i. So by A.1.3 (b)-(h) are
equivalent.

Definition 2.1.12. Let G be a group acting on the set I. We say that G acts transitively
on I if for all i, j ∈ G there exists g ∈ G with gi = j.

Corollary 2.1.13. Let G be group acting on the non-empty set I. Then the following are
equivalent

(a) G acts transitively on I.



2.1. GROUP ACTION 61

(b) I = Gi for all i ∈ I.

(c) I = Gi for some i ∈ I.

(d) I is an orbit for G on I.

(e) G has exactly one orbit on I.

(f) Gi = Gj for all i, j ∈ G.

(g) i ≡ j (mod G) for all i, j ∈ G.

Proof. (a) =⇒ (b): Let i, j ∈ I. Since G is transitive j = gi for some g ∈ G. Thus j ∈ Gi
and so Gi = I.

(b) =⇒ (c): Since I is not empty, there exists i ∈ I. So by (b), G = Gi.

(c) =⇒ (d): By definition, Gi is an orbit. So (c) implies (d).

(d) =⇒ (e): Let O be any orbit for G on I. So O and I both are orbits for G on I
and O ∩ I = O 6= ∅. Thus O = I and I is the only orbit for G on I.

(e) =⇒ (f): Both Gi and Gj are orbits for G on I and so equal by assumption.

(f) =⇒ (g): Let i, j ∈ I. By assumption Gi = Gj and so by 2.1.11 i ≡ j (mod G).

(g) =⇒ (a): Let i, j ∈ I. Then i ≡ j (mod G), that is j = gi for some g ∈ G. So G
is transitive on I.

Definition 2.1.14. (a) Let G be a group and (I, �) and (J, � ) be G-sets. A function
f : I → J is called G-homomorphism if

f(a � i) = a� f(i)

for all a ∈ G and i. A G-isomorphism is bijective G-homomorphism. We say that I
and H are G-isomorphic and write

I ∼=G J

if there exists an G-isomorphism from I to J .

(b) Let I be a G set and J ⊆ I. Then

Stab�G(J) = {g ∈ G | gj = j for all j ∈ J}

and for i ∈ I
Stab�G(i) = {g ∈ G | gi = i}

Stab�G(i) is called the stabilizer of i in G with respect to �.

Example 2.1.15.
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Recall that by 2.1.2(2), Sym(n) acts on {1, 2, 3, . . . , n} via f � i = f(i). We have

Stab�Sym(3)(1)} = {f ∈ Sym(3) | f(1) = 1} = {(1), (2, 3)}

and

Stab�Sym(5)({2, 3}) = {f ∈ Sym(5) | f(2) = 2 and f(3) = 3} ∼= Sym({1, 4, 5}) ∼= Sym(3).

Theorem 2.1.16 (Isomorphism Theorem for G-sets). Let G be a group and (I, �) a G-set.
Let i ∈ I and put H = StabG(i). Then

φ : G/H → Gi, aH → ai

is a well-defined G-isomorphism.
In particular

G/H ∼=G Gi, |Gi| = |G/ StabG(i)| and |Gi| divides |G|

Proof. Let a, b in G. Then

ai = bi

⇐⇒ a−1(ai) = a−1(bi) − 2.1.7(c)

⇐⇒ i = (a−1b)i − 2.1.7(a), (act ii)

⇐⇒ a−1b ∈ H − H = Stab(i), Definition of Stab

⇐⇒ aH = bH − 1.7.6(c), (g)

So ai = bi if and only if aH = bH. The backward direction of this statement means
that φ is well defined, and the forward direction that φ is 1-1. Let j ∈ Gi. Then j = gi for
some g ∈ G and so φ(gH) = gi = j. Thus φ is onto. Since

φ(a(bH) = φ((ab)H) = (ab)i = a(bi) = aφ(bH)

φ is a G-homomorphism.

Example 2.1.17.

By 2.1.9(2), Sym(n) acts transitively on {1, 2, . . . , n}. Thus Sym(n) � n = {1, 2, . . . n}.
Set H := Stab�Sym(n)(n). Then

H = {f ∈ Sym(n) | f(n) = n} ∼= Sym(n− 1).
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Then by 2.1.16

Sym(n)/H ∼= {1, 2, 3 . . . , n} as Sym(n)-sets

Note here that |Sym(n)/H| = n!
(n−1)! = n = |{1, 2, 3, . . . , n}|.

Theorem 2.1.18 (Orbit Equation). Let G be a group acting on a finite set I. Let Ik, 1 ≤
k ≤ n be the distinct orbits for G on I. For each 1 ≤ k ≤ n let ik be an element of Ik.
Then

|I| =
n∑
i=1

|Ik| =
n∑
i=1

|G/ StabG(ik)|.

Proof. By 2.1.11 I is the disjoint union of the Ik’s. Hence

(1) |I| =
n∑
k=1

|Ik|.

By 2.1.11 Ik = Gik and so 2.1.16 implies

(2) |Ik| = |G/ StabG(ik)| for all 1 ≤ k ≤ n.

Substituting (2) into (1) gives the theorem.

Example 2.1.19.

Define

H :=
{
f ∈ Sym(5)

∣∣f({1, 2}) = {1, 2}
}
.

So an elements of H can permute the two elements of {1, 2} and the three elements of
{3, 4, 5}. Thus

H ∼= Sym({1, 2})× Sym({3, 4, 5}).

For example (1, 2), (3, 4), and (1, 2)(3, 5, 4) are elements of H, but (1, 3)(2, 5) is not.
What are the orbits of H on {1, 2, 3, 4, 5}? If f ∈ H, then f(1) is 1 or 2. So H�1 = {1, 2}.

f(3) can be 3, 4 or 5 and so H � 3 = {3, 4, 5}. So the orbits are

{1, 2} and {3, 4, 5}.

Next we compute the stabilizers of 1 and 3 in H.
Let f ∈ H. Then f ∈ StabH(1) if and only if f(1) = 1. Since f permutes {1, 2} we also

must have f(2) = 2, but f can permute {3, 4, 5} arbitrarily. It follows that
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StabH(1) ∼= Sym({3, 4, 5}).

f ∈ StabH(3) if and only if f(3) = 3. f can permute {1, 2} and {4, 5} arbitrarily. Thus

StabH(3) ∼= Sym({1, 2})× Sym({4, 5}).

The Orbit Equation 2.1.18 now implies that

|H/StabH(1)|+ |H/StabH(3)| = |{1, 2, 3, 4, 5}|.

Observe that |H| = 2! · 3! = 12, |StabH(1)| = 3! = 6 and | StabH(3)| = 2! · 2! = 4. So

12

6
+

12

4
= 5

and

2 + 3 = 5.

2.2 Sylow’s Theorem

Definition 2.2.1. Let p be a prime and G a group. Then G is a p-group if |G| = pk for
some k ∈ N.

Example 2.2.2.

|Z1| = 1 = p0. So Z1 is a p-group for every prime p.
|Z2| = 2. So Z2 is a 2-group.
Z3 is a 3-group.
Z4 is a 2-group.
Z5 is a 5-group.
Z6 is not a p-group for any prime p.
Z7 is a 7-group.
Z8 is a 2-group.
Z9 is a 3-group.
Z10 is a not a p-group for any prime p.

Definition 2.2.3. Let G be a finite group and p a prime. A p-subgroup of G is a subgroup
of G which is a p-group. A Sylow p-subgroup of G is a maximal p-subgroup of G, that is S
is a Sylow p-subgroup of G provided that

(i) S is a p-subgroup of G.
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(ii) If P is a p-subgroup of G with S ≤ P , then S = P .

Sylp(G) denotes the set of Sylow p-subgroups of G.

Lemma 2.2.4. Let G be a finite group, p a prime and let |G| = pkl with k ∈ N, l ∈ Z+

and p - l.

(a) If P is a p-subgroup of G, then |P | ≤ pk.

(b) If S ≤ G with |S| = pk, then S is a Sylow p-subgroup of G.

Proof. (a) Since P is a p-group, |P | = pn for some n ∈ N. By Lagrange’s Theorem, |P |
divides |G| and so pn divides pkl. Since p - l we conclude that n ≤ k and so |P | = pn ≤ pk.

(b) Since |S| = pk and S ≤ G, S is a p-subgroup of G. Suppose that S ≤ P for some
p-subgroup P of G. By (a) |P | ≤ pk = |S|. Since P ⊆ S this implies P = S and so S is a
Sylow p-subgroup of G.

Example 2.2.5.

(a) |Sym(3)| = 3! = 6 = 2 · 3. 〈(1, 2)〉 has order 2 and so by 2.2.4(b), 〈(1, 2)〉is a Sylow
2-subgroup of Sym(3).

〈(1, 2, 3)〉 has order 3 and so is a Sylow 3-subgroup of Sym(3).

(b) |Sym(4)| = 4! = 24 = 23 · 3. D4 is a subgroup of order eight of Sym(4) and so D4 is a
Sylow 2-subgroup of Sym(4).

〈(1, 2, 3)〉 is a Sylow 3-subgroup of Sym(4).

(c) |Sym(5)| = 5! = 5 · 24 = 23 · 3 · 5. So D4 is a Sylow 2-subgroup of Sym(5), 〈(1, 2, 3)〉 is
a Sylow 3-subgroup of Sym(5) and 〈(1, 2, 3, 4, 5)〉 is a Sylow 5-subgroup of Sym(5).

(d) |Sym(6)| = 6! = 6 · 5! = 24 · 32 · 5. D4×〈(5, 6)〉 is a subgroup of order 16 of Sym(6) and
so is a Sylow 2-subgroup of Sym(6).

〈(1, 2, 3)〉 × 〈(4, 5, 6)〉 is a group of order 9, and so is a Sylow 3-subgroup of Sym(6).

〈(1, 2, 3, 4, 5)〉 is a Sylow 5-subgroup of Sym(6).

Definition 2.2.6. Let G be a group acting on a set I. Let i ∈ I. Then i is called a fixed-
point of G on I provided that gi = i for all g ∈ G. FixI(G) is the set of all fixed-points for
G on I. So

FixI(G) = {i ∈ I | gi = i for all g ∈ G}.

Lemma 2.2.7 (Fixed-Point Formula). Let p be a prime and P a p-group acting on finite
set I. Then

|I| ≡ |FixI(P )| (mod p).

In particular, if p - |I|, then P has a fixed-point on I.
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Proof. Let I1, I2, . . . , In be the orbits of P on I and choose notation such that

(1) |Il| = 1 for 1 ≤ l ≤ m and |Il| > 1 for m < l ≤ n.

Let i ∈ I and pick 1 ≤ l ≤ n with i ∈ Il. By 2.1.11

(2) Il = Gi.

We have

(3)

i ∈ FixI(P )

⇐⇒ gi = i for all g ∈ G − Definition of FixI(P )

⇐⇒ Gi = {i} − Definition of Gi

⇐⇒ |Gi| = 1 − since i ∈ Gi

⇐⇒ |Il| = 1 − (2)

⇐⇒ l ≤ m − (1)

Thus

(4) FixI(P ) =
m⋃
l=1

Il.

Let m < l ≤ n. By 2.1.16 |Il| divides |P |. Since |P | is a power of p, we conclude that
|Il| is a power of p. Since |Il| 6= 1 we get p

∣∣|Il| and so

(5) |Il| ≡ 0 (mod p)for all m < l ≤ n.

We compute

|I| 2.1.18
=

n∑
l=1

|Il| =
m∑
l=1

|Il|+
n∑

l=m+1

|Il|
(4)
= |FixI(P )|+

n∑
l=m+1

|Il|,

and so by (5)

|I| ≡ |FixI(P )| (mod p).
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Example 2.2.8.

Let P = 〈(1, 2, 3), (4, 5, 6)〉 viewed as subgroup of Sym(8). Then P has order 9 and
so P is a 3-group. The orbits of P on I := {1, 2, 3, . . . , 8} are {1, 2, 3}, {4, 5, 6}, {7}, {8}.
The fixed-points of P on I are 7 and 8. So |FixI(P )| = 2, |I| = 8 and 8 ≡ 2 (mod 3), as
predicted by 2.2.7.

Definition 2.2.9. Let G be a group and (I, �) a G-set.

(a) P(I) is the sets of all subsets of I. P(I) is called the power set of I.

(b) For a ∈ G and J ⊆ I put a � J = {a � j | j ∈ J}.

(c) �P denotes the function

�P : G× P(I)→ P(I), (a, J)→ a � J

(d) Let J be a subset of I and H ≤ G. Then J is called H-invariant if

hj ∈ J

for all h ∈ H, j ∈ J .

(e) Let H ≤ G and J be a H-invariant. Then �H,J denotes the function

�H,J : H × J → J, (h, j)→ h � j

Lemma 2.2.10. Let G be a group and (I, �) a G-set.

(a) �P is an action of G on P(I).

(b) Let H ≤ G and J be a H-invariant subset of I. Then �H,J is an action of H on J .

Proof. (a) Let a, b ∈ J and J a subset I.

eJ = {ej | j ∈ J} = {j | j ∈ J} = J

and
a(bJ) = a{bj | j ∈ J} = {a(bj) | j ∈ J} = {(ab)j | j ∈ J} = (ab)J.

Thus �P fulfills both axioms of an action.
(b) By 1.5.3 eH = eG and so eHj = eGj = j for all j ∈ J . Clearly (ab)j = a(bj) for all

a, b ∈ H and j ∈ J and so (b) holds.

Definition 2.2.11. Let A and B be subsets of the group G. We say that A is conjugate to
B in G if there exists g ∈ G with A = gBg−1.

Lemma 2.2.12. Let G be a group, H a subgroup of G and a ∈ G.
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(a) aHa−1 is a subgroup of G isomorphic to H. So conjugate subgroups of G are isomorphic.

(b) If H is a p-subgroup of G for some prime p, so is aHa−1.

Proof. (a) By Homework 3#2 φ : G→ G, g → aga−1 is an isomorphism. Thus by 1.9.10(c)
the restriction φH : H → G, h → aha−1 is homomorphism. Since φ is 1-1, so is φH . Thus
by 1.6.5(d), H ∼= ImφH . Since

ImφH = {φH(h) | h ∈ H} = {aha−1 | h ∈ H} = aHa−1

we get H ∼= aHa−1.
(b) By (a) |H| = |aHa−1|. So if |H| is a power of p also |aHa−1| is a power of p.

Lemma 2.2.13. Let G be a finite group and p a prime. Then

� : G× Sylp(G)→ Sylp(G), (g, P )→ gPg−1

is a well-defined action of G on Sylp(G). This action is called the action of G on Sylp(G)
by conjugation.

Proof. By Homework 6#3 G acts on G by conjugation. So by 2.2.10(a), G acts on P(G)
by conjugation. Hence by 2.2.10(b) it suffices to show that Sylp(G) invariant under G with
respect to conjugation. That is we need to show that if S is a Sylow p-subgroup of G and
g ∈ G, then also gSg−1 is a Sylow p-subgroup of G. By 2.2.12(b) gSg−1 is a p-subgroup of
G.

Let P be a p-subgroup of G with gSg−1 ≤ P . Then by 1.8.1(e) S ≤ g−1Pg. By 2.2.12(b)
g−1Pg is a p-subgroup of G and since S is a Sylow p-subgroup we conclude S = g−1Pg.
Thus by 1.8.1(d) also gSg−1 = P . Hence gSg−1 is a Sylow p-subgroup of G.

Lemma 2.2.14 (Order Formula). Let A and B be subgroups of the group G.

(a) Put AB/B = {gB | g ∈ AB}. The map

φ : A/A ∩B → AB/B, a(A ∩B)→ aB

is a well-defined bijection.

(b) If A and B are finite, then

|AB| = |A| · |B|
|A ∩B|

.

Proof. (a) Let a, d ∈ A. Then by 1.5.3 a−1d ∈ A. We have

aB = dB

⇐⇒ a−1d ∈ B − 1.7.6

⇐⇒ a−1d ∈ A ∩B − since a−1d ∈ A

⇐⇒ a(A ∩B) = d(A ∩B) − 1.7.6
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This shows that φ is well-defined and 1-1. Let T ∈ AB/B. Then T = gB for some
g ∈ AB. By definition of AB, g = ab for some a ∈ A, b ∈ B. Since bB = B we have

(1) T = abB = aB

So φ(a(A ∩B)) = aB and φ is onto.

(b) Let T ∈ AB/B. By (1) T = aB ⊆ AB. So
⋃
T∈AB/B T ⊆ AB. If g ∈ AB, then

g ∈ gB ⊆T∈AB/B T . Hence

(2)
⋃

T∈AB/B

T = AB.

By 1.7.6

(3) distinct cosets are disjoint,

and by 1.7.7(c)

(4) |T | = |B| for all B ∈ AB/B.

Thus

|AB| (2),(3)
=

∑
T∈AB/B

|T | (4)
=

∑
T∈AB/B

|B| = |AB/B| · |B| (a)
= |A/A ∩B| · |B|.

Lagrange’s Theorem gives |A/A ∩B| = |A|
|A∩B| and so

|AB| = |A|
|A ∩B|

· |B| = |A| · |B|
|A ∩B|

.

Theorem 2.2.15. Let G be a finite group and p a prime.

(a) (Second Sylow Theorem) G acts transitively on Sylp(G) by conjugation, that is any two
Sylow p-subgroups of G are conjugate in G and so if S and T are Sylow p-subgroups of
G, then S = gTg−1 for some g ∈ G.

(b) (Third Sylow Theorem) The number of Sylow p-subgroups of G divides |G| and is con-
gruent to 1 modulo p.
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Proof. By 2.2.13 G acts on Sylp(G) by conjugation. Let I be an orbit for G on Sylp(G) and
P ∈ I. Then P is a Sylow p-subgroup of G. We will first show that

(1) P has a unique fixed-point on Sylp(G), namely P.

Let Q ∈ Sylp(G). Then P fixes Q ( with respect to the action by conjugation) if and
only if aQa−1 = Q for all a ∈ P . Clearly aPa−1 = P for all a ∈ P and so P is a fixed-point
for P on Sylp(G). Now let Q be any fixed-point for P on Sylp(G). Then aQa−1 = Q for all
a ∈ P and so by 1.8.1 aQ = Qa. Thus

PQ = {ab | a ∈ P, b ∈ Q} =
⋃
{a ∈ P}{ab | b ∈ Q} =

⋃
a∈P

aQ =
⋃
a∈P

Qa = QP.

Thus by Homework 4#4 PQ is a subgroup of G. By 2.2.14(b),

|PQ| = |P | · |Q|
|P ∩Q|

.

Since P and Q are p-groups, we conclude that |P | and |Q| are powers of p. Hence also
|PQ| is a power of p. Thus PQ is a p-subgroup of G. Since P ≤ PQ and P is a maximal
p-subgroup of G, P = PQ. Similarly, since Q ≤ PQ and Q is a maximal p-subgroup of G,
Q = PQ. Thus P = Q and (1) is proved.

(2) |I| ≡ 1 (mod p).

By (1) FixI(P ) = {P}. Hence |FixI(P )| = 1. By 2.2.7 |I| ≡ |FixI(P )| (mod p) and so
(2) holds.

(3) I is the unique orbit for G on Sylp(G).

Suppose this is false and let J be an orbit for G on Sylp(G) distinct from I. Then by
(2) applied to J ,

(∗) |J | ≡ 1 (mod p).

On the other hand, P /∈ J and so by (1), FixJ(P ) = ∅. Hence |FixJ(P ) = 0 and by
2.2.7 |J | ≡ 0 (mod p), a contradiction to (*).

Thus (3) holds.

By (3) and 2.1.13(e),(a) G acts transitively on Sylp(G). Hence the Second Sylow Theo-
rem holds. Moreover, Sylp(G) = I and so by 2.1.16 |I| divides |G| and by (2) | Sylp(G)| ≡ 1
(mod p).
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Lemma 2.2.16. Let I be a set. Then Sym(n) acts on In via

f � (i1, i2, . . . in) = (if−1(1), if−1(2), . . . , if−1(n)).

So if i = (i1, i2, . . . , in) ∈ In and j = f � i = (j1, j2, . . . , jn) then jf(l) = il.

Proof. Before we start we the proof a couple of examples: (1, 2, 3) � (x, y, z) = (z, x, t) and
(1, 3)(2, 5) � (a, b, c, d, e) = (c, e, a, d, b).

Clearly (1) � i = i for all i ∈ In. So (act i) holds.
Let a, b ∈ Sym(n) and i ∈ I. Put j = b � i and k = a � (b � i) = a � j. Then ka(l) = jl

and so also ka(b(l)) = jb(l) = il. Hence k(ab)(l) = il and so k = (ab) ◦ i. Thus (act ii) holds
and � is an action of Sym(n) on In.

Theorem 2.2.17 (Cauchy’s Theorem). Let G be a finite group and p a prime dividing the
order of G. Then G has an element of order p.

Proof. Let � be the action of Sym(p) on Gp given in 2.2.16. Let h = (1, 2, 3, . . . , p) ∈ Sym(p)
and H = 〈h〉. Then H is a subgroup of order p of Sym(p). Observe that

h � (g1, g2, . . . , gp) = (g2, g3, . . . , gp, g1)

and inductively,

(1) hi � (g1, g2, . . . , gp) = (gi+1, gi+2, . . . , gp, g1, . . . , gi) for all 0 ≤ i < p

Hence h fixes (g1, g2, . . . , gp) if and only if g1 = g2, . . . , gp−1 = gp, gp = g1 and so

(2) FixGp(h) = {(g, g, . . . , g) | g ∈ G}.

Put
J := {(g1, g2, . . . gp) ∈ Gp | g1g2 . . . gp = e}.

If g1 = g2 = . . . = gp, then g1g2 . . . gp = gp1 and so by (2):

(3) FixJ(H) = {(g, g, . . . , g) | g ∈ G, gp = e}

In particular (e, . . . , e) ∈ FixJ(H) and so

(4) |FixJ(H)| ≥ 1.

In view of (3) our is now to show that FixJ(H) > 1. For this we will use the Fixed-
Point-Formula 2.2.7 for H on acting on J . But we first must make sure that H acts on J .
By 2.2.10(b), we need to verify that J is H-invariant. Let (g1, g2, . . . gp) ∈ J . Then
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g1g2 . . . gp = e.

Multiplying with g−1
1 from the left and g1 from the right gives

g2g3 . . . gpg1 = e,

and so

(g2, g3, . . . , gp, g1) ∈ J.

An easy induction proof shows that

(gi+1, gi+2, . . . , gp, g1, . . . , gi) ∈ J for all 1 ≤ i < p.

Hence by (1) hi � (g1, . . . gp) ∈ J for all 1 ≤ i < p. Since H = {hi | 0 ≤ i < p} we
conclude that J is an H-invariant subset of Gn. Thus by 2.2.10(b), H acts on J and so by
2.2.7

(5) |J | ≡ |FixJ(H)| (mod p).

Note that |J | = |G|p−1. Indeed we can choose g1, g2, . . . , gp−1 freely and then gp is
uniquely determined as gp = (g1 . . . gp)

−1. Since p divides |G| we conclude that p | |J | and
so by (5)

(6) p
∣∣|FixJ(H)|.

From (4) and (6) |FixJ(H)| ≥ p. So by (3) there exists g ∈ G with g 6= e and gp = e.
Thus |g|

∣∣p. Since g 6= e and p is a prime, |g| = p and so Cauchy’s Theorem holds.

Proposition 2.2.18. Let G be a finite group and p a prime. Then any p-subgroup of G is
contained in a Sylow p-subgroup of G. In particular, G has a Sylow p-subgroup.

Proof. Let P be a p-subgroup and choose a p-subgroup S of G of maximal order with respect
to P ≤ S. If Q is a p-subgroup of G with S ≤ Q, then also P ≤ Q and so by maximality of
|S|, |Q| ≤ |S|. Since S ≤ Q we get |S| = |Q| and S = Q. So S is a Sylow p-subgroup of G.

In particular, the p-subgroup {e} of G is contained in a Sylow p-subgroup of G and so
G has Sylow p-subgroup.

Comment:This should have been proved right after Example 2.2.5, since the
existence of Sylow subgroups has been used various times
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Theorem 2.2.19 (First Sylow Theorem). Let G be a finite group, p a prime and S ∈
Sylp(G). Let |G| = pkl with k ∈ N, l ∈ Z+ and p - l (pk is called the p-part of |G|). Then

|S| = pk. In particular,
Sylp(G) = {P ≤ G

∣∣|P | = pk}

and G has a subgroup of order pk.

Proof. The proof that |S| = pk is by complete induction on k. If k = 0, then by 2.2.4
|S| ≤ pk = 1 and so |S| = 1. Assume now k > 0 and that the theorem is true for all finite
groups whose order has p-part smaller than pk.

Since k > 0, p
∣∣|G|. So by Cauchy’s Theorem G has a subgroup P of order p. By 2.2.18

P is contained in a Sylow p-subgroup T of G. Then |T | > 1. By the Second Sylow Theorem,
S is conjugate to T and so by 2.2.12 S ∼= T and |S| = |T |. Thus

(1) |S| > 1.

Let N be the stabilizer of S with respect to the action of G on Sylp(G) by conjugation.
So

N = {g ∈ G | gSg−1 = S}.

Clearly S ≤ N and by 1.8.6(c), S E N . By the Second Sylow Theorem, Sylp(G) =
{gSg−1 | g ∈ G} and so by 2.1.16

|G/N | = |Sylp(G)|.

The Third Sylow Theorem implies

|G/N | ≡ 1 (mod p).

Thus p - |G/N |. By Lagrange’s theorem, pkl = |G| = |G/N | · |N |. We conclude that

|N | = pkm

for some m ∈ Z+ with p - m. Let |S| = pn. Then by Lagrange’s theorem

|N/S| = |N |
|S|

= pk−nm.

Let R be a Sylow p-subgroup of N/S. By (1) n 6= 0. So k − n < k and by the induction
assumption

|R| = pk−n.

By 1.9.14(g), there exists a subgroup U of N with S ≤ U and U/S = R. By Lagrange’s
Theorem

|U | = |U/S| · |S| = |R| · |S| = pk−npn = pk.
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So U is a p-group and since S ≤ U and S is a maximal p-subgroup, S = U . Thus |S| = pk.

We proved that any p-Sylow subgroup of G has order pk. Conversely by 2.2.4 any
subgroups of order pk is a Sylow p-subgroup and so

Sylp(G) = {P ≤ G
∣∣|P | = pk.}

Example 2.2.20.

(1) The subgroups of order 2 in Syl2(Sym(3)) are 〈(1, 2)〉, 〈(1, 3)〉 and 〈(2, 3)〉 and so by the
First Sylow Theorem

Syl2(Sym(3)) = {〈(1, 2)〉, 〈(1, 3)〉〈(2, 3)〉}.

(2) Let S be a Sylow 5-subgroup of Sym(5). Since |Sym(5)| = 5! = 23 · 3 · 5, |H| has order
5. Let 1 6= h ∈ H. Then h is a five cycle and so h = (v, w, x, y, z). There are 120
choices for the tuple (v, w, x, y, x). But any of the five cyclic permutations:

(v, w, x, y, x), (w, x, y, z, v), (x, y, z, v, w), (y, z, v, w, x), (z, v, w, x, y)

is also equal to h. Hence there are 120
5 = 24 elements of order five in Sym(5). Since

H = 〈h〉 any of the four elements of order five in H uniquely determine H. Thus there
are 24

4 = 6 Sylow 5-subgroups in G. Note here that 6 ≡ 1 (mod 5) in accordance with
the Third Sylow Theorems.

(3) Let G be any group of order 120 and s5 the number of 5-Sylow subgroups of G. The
Third Sylow Theorem says that s5 | 120 and s5 ≡ 1 (mod 5). So 5 - s5 and since
120 = 5 · 24 we conclude that s5 | 24. The number less or equal to 24 and congruent to
1 modulo 5 are 1, 6, 11, 16 and 21. Of these only 1 and 6 divide 24. So s5 = 1 or 6.

Lemma 2.2.21. Let G be a finite group and p a prime. Let S be a Sylow p-subgroup of G.
Then S is normal in G if and only if S is the only Sylow p-subgroup of G.

Proof. By the Second Sylow Theorem

Sylp(G) = {gSg−1 | g ∈ G}.

So Sylp(G) = {S} if and only if S = gSg−1 for all g in G and so by 1.8.6(b) if and only
if S is normal in G.

Lemma 2.2.22. Let φ : A→ B be a homomorphism of groups. Then φ is 1-1 if and only
of kerφ = {eA}.
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Proof. Let a, b ∈ A. Then

φ(a) = φ(b)

⇐⇒ φ(a)−1φ(b) = eB

⇐⇒ φ(a−1b) = eB − 1.6.5

⇐⇒ a−1b ∈ kerφ − definition of kerφ

⇐⇒ b = ak for some k ∈ kerφ − 1.7.6(c)(a)

So φ(a) = φ(b) implies a = b if and only if eA is the only element in kerφ.

Example 2.2.23.

(1) 〈(1, 2, 3)〉 is the only Sylow 3-subgroup of Sym(3) and so by 2.2.21 〈(1, 2, 3)〉E Sym(3).

(2) Sym(3) has three Sylow 2-subgroups, and by 2.2.21 〈(1, 2)〉 5 Sym(3).

(3) A group G is called simple if {e} and G are the only normal subgroups of G. Let G be a
simple group of order 168. We will show that G is isomorphic to a subgroup of Sym(8).
Let s7 be the number of Sylow 7-subgroups of G and let S be a Sylow 7-subgroup of
G. By the First Sylow Theorem, |S| = 7 and so S 6= {e} and S 6= G. Since G is simple,
S 5 G and so by 2.2.21 s7 6= 1. Since |G| = 168 = 7 · 24, the Third Sylow Theorem
implies that s7 ≡ 1 (mod 7) and s7 | 24. The numbers which are less or equal to 24
and are 1 modulo 7 are 1, 8, 15 and 22. Of these only 1 and 8 divide 24. As s7 6= 1 we
have s7 = 8.

Let φ : G → Sym(Syl7(G)) be the homomorphism associated to the action of G on
Syl7(G) by conjugation (see 2.1.3(a)). So for g in G we have φ(g)(S) = gSg−1.

Suppose that kerφ = G. Then φ(g) = idSym7(G) for all g ∈ G and so

S = φ(g)(S) = gSg−1

for all g ∈ G. Thus by 1.8.6(b), S EG, a contradiction since G is simple.

Hence kerφ 6= G. Since G is simple, kerφ = {e}. Thus by 2.2.22 φ is 1-1 and so by
1.6.5(d),

(1) G ∼= Imφ

and Imφ is a subgroup of Sym(Syl7(G)). Since | Syl7(G)| = n7 = 8 we conclude from
Homework 3#5 that there exists an isomorphism,

α : Sym(Syl7(G))→ Sym(8).

By 1.9.10(c) α |Imφ is 1-1 and so by 1.6.5(d)

(2) Imφ ∼= α(Imφ)
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and α(Imφ) is a subgroup of Sym(8). From (1),(2) and Homework 6#5,

G ∼= α(Imφ)

and so G is isomorphic to a subgroup of Sym(8).

Lemma 2.2.24. Let G be a group and A,B normal subgroups of G with A ∩ B = {e}.
Then AB is a subgroup of G, ab = ba for all a ∈ A, b ∈ B and the map

φ : A×B → AB, (a, b)→ ab

is an isomorphism of groups. In particular,

AB ∼= A×B.

Proof. Let a ∈ A and b ∈ B. Since B E G, aba−1 ∈ B and since B is closed under
multiplication,

(1) aba−1b−1 ∈ B.

Similarly ba−1b−1 ∈ A and

(2) aba−1b−1 ∈ A.

By assumption A ∩ B = {e} and so by (1) and (2), aba−1b−1 = e. Multiplication with
ba from the right gives

(3) ab = ba.

From (3) we get AB = BA and thus by Homework 4#4 AB is a subgroup of G.

Let x ∈ AB. Then x = ab for some a ∈ A, b ∈ B. Hence x = φ
(
(a, b)

)
and so φ is onto.

Let c ∈ A and d ∈ B
Suppose that φ

(
(a, b)

)
= φ

(
(c, d)

)
. Then ab = cd and so c−1a = db−1. Since c−1a ∈ A

and db−1 ∈ B we get c−1a = db−1 ∈ A. So A ∩ B = {e} implies ca−1 = e = db−1. Thus
a = c, b = d and (a, b) = (c, d). Therefore φ is 1-1.

φ
(
(a, b)(c, d)

)
= φ

(
(ac, bd)

)
= (ac)(bd) = a(cb)d

(3)
= a(bc)d = (ab)(bd) = φ

(
(a, b)

)
φ
(
(c, d)

)
.

So φ is a homomorphism and the lemma is proved.
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Lemma 2.2.25. Let A be finite abelian groups. Let p1, p2, . . . pn be the distinct prime
divisor of |A| (and so |A| = pm1

1 φ2m2 . . . p
mk
n for some positive integers mi). Then for each

1 ≤ i ≤ n, G has a unique Sylow pi-subgroup Ai and

A ∼= A1 ×A2 × . . .×An.

Proof. Let Ai be a Sylow pi-subgroup of G. By 1.8.5 subgroups of abelian groups are
normal. So Ai E G. So by 2.2.21 Ai is the unique Sylow pi-subgroup of G. By the First
Sylow Theorem we have

(1) |Ai| = pmii .

Put D1 = A1 and inductively Dk+1 := DkAk+1. We will show by induction on k that

(2) Dk is a subgroup of A of order pm1
1 pm2

2 . . . pmkk ,

and

(3) Dk
∼= A1 ×A2 × . . .×Ak.

By (1) D1 = A1 has order pm1
1 . Also D1 = A1

∼= A1 and so (2) and (3) hold for k = 1.
So suppose that (2) and (3) hold for k. We will show that (2) and (3) also holds for k + 1.

By (2) Dk has order pm1
1 pm2

2 . . . pmkk . By (1) Ak+1 has order p
mk1
k+1 . Thus |Dk| and |Ak+1|

are relatively prime. Hence by Homework 4#3 Dk∩Ak+1 = {e}. Since A is abelian, Dk and
Ak+1 are normal subgroups of A (see 1.8.5) and so by 2.2.24 Dk+1 = DkAk+1 is a subgroup
of A and

(4) Dk+1
∼= Dk ×Ak+1.

Thus

|Dk+1 | = |Dk| · |Ak+1|
(1),(2)

= pm1
1 pm2

2 . . . pmkk · p
mk+1

k+1 .

and

Dk+1

(4)∼= Dk ×Ak+1

(3)∼= (A1 . . . A2 × . . . Ak)×Ak+1.

So (2) and (3) holds for k + 1. Thus (2) and (3) hold for all 1 ≤ i ≤ n.
By (2) applied to k = n we get |Dn| = pm1

1 pm2
2 . . . pmnn = |A|. Hence A = Dn. Thus (3)

applied with n = k gives

A = Dn
∼= A1 ×A2 × . . .×An.
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Example 2.2.26.

Let n be positive integer and let

(1) n = pm1
1 pm2

2 . . . pmkk

where the p1, . . . , pk are distinct positive primes and m1, . . . ,mk are positive integers. Put
qi = n

p
mi
i

and Ai = qiZ/nZ. Then Ai is a subgroup of Zn and by Example 1.9.14(5)

(2) Ai ∼= Z n
qi

= Zpmii

Thus by (1) and 2.2.4 Ai is a Sylow pi-subgroup of Zn. So by 2.2.25

Zn ∼= A1 ×A2 × . . .×Ak.

Hence (2) implies

(3) Zn ∼= Zm1
p1 × Zm2

p2 × . . .× Zmkpk .

For example

Z6
∼= Z2 × Z3,

Z15
∼= Z3 × Z5,

and
Z168

∼= Z8 × Z3 × Z7.



Chapter 3

Field Extensions

3.1 Vector Spaces

Definition 3.1.1. Let K be a field. A vector space over K (or a K-space ) is a tuple
(V,+, �) such that

(i) (V,+) is an abelian group.

(ii) � : K× V → V is a function called scalar multiplication .

(iii) a � (v + w) = (a � v) + (a � w) for all a ∈ K, v, w ∈ V .

(iv) (a+ b) � v = (a � v) + (b � v) for all a, b ∈ K, v ∈ V .

(v) (ab) � v = a � (b � v) for all a, b ∈ K, v ∈ V .

(vi) 1K � v = v for all v ∈ V

The elements of a vector space are called vectors. The usually just write kv for k � v.

Example 3.1.2.

Let K be a field.

(1) Z1 = {0} is a K-space via f � 0 = 0 for all k ∈ K.

(2) Let n ∈ N. Then Kn is an K-space via k � (a1, . . . , an) = (ka1, . . . , kan) for all
k, a1, . . . , an ∈ K.

(3) The ring K[x] of polynomials with coefficients in K is a K-space via

k � (a0 + a1x+ . . . anx
n) = (ka0) + (ka1)x+ . . . (kanx

n)

for all k, a0, . . . , an ∈ K.

79
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Definition 3.1.3. Let K be a field and V and K-space. Let L = (v1, . . . , vn) ∈ V n be a list
of vectors in V .

(a) L is called K-linearly independent if

a1v1 + av2 + . . . avn = 0V

for some a1, a2, . . . , an ∈ K implies a1 = a2 = . . . = an = 0K.

(b) Let (a1, a2 . . . , an) ∈ Kn. Then a1v1 +a2v2 + . . .+anvn is called a K-linear combination
of L.

SpanK(L) = {a1v1 + a2v2 + . . . anvn | (a1, . . . , an) ∈ Kn}
is called the K-span of L. So SpanK(L) consists of all the K-linear combination of L.
We consider 0V to be a linear combination of the empty list () and so SpanK

(
()
)

= {0V }.

(c) We say that L spans V , if V = SpanK(L), that is if every vector in V is a linear
combination of L.

(d) We say that L is a basis of V if L is linearly independent and spans V .

(e) We say that L is a linearly dependent if it’s not linearly independent, that is, if there
exist k1, . . . , kn ∈ K, not all zero such that

k1v1 + kv2 + . . . kvn = 0V .

Example 3.1.4. (1) Put ei = (0K, . . . , 0K, 1K, 0K, . . . , 0K) ∈ Kn where the 1K is in the
i-position. Then (e1, e2, . . . , en) is a basis for Kn, called the standard basis of Kn.

(2) (1K, x, x
2, . . . xn) is a basis for Kn[x], where Kn[x] is set of all polynomials with coeffi-

cients in K and degree at most n.

(3) The empty list () is basis for Z1.

Lemma 3.1.5. Let K be a field, V a K-space and L = (v1, . . . , vn) a list of vectors in V .
Then L is a basis for V if and only if for each v ∈ V there exists uniquely determined
k1, . . . , kn ∈ K with

v =
m∑
i=1

kivi.

Proof. =⇒ Suppose that L is a basis. Then L spans v and so for each v ∈ V there exist
k1, . . . , kn with

v =
m∑
i=1

kivi.

Suppose that also l1, . . . , ln ∈ K with

v =

m∑
i=1

livi.
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Then
m∑
i=1

(ki − li)vi =
m∑
i=1

kivi −
m∑
i=1

livi = 0V .

Since L is linearly independent we conclude that ki− li = 0K and so ki = li for all 1 ≤ i ≤ n.
So the ki’s are unique.

⇐=: Suppose each v in V is a unique linear combination of L. Then clearly L spans V .
Let k1, . . . , kn ∈ K with

m∑
i=1

kivi = 0V

Since also
m∑
i=1

0Kvi = 0V

the uniqueness assumption gives k1 = k2 = . . . = kn = 0K. Hence L is linearly independent
and thus a basis for V .

Lemma 3.1.6. Let K be field and V a K-space. Let L = (v1, . . . , vn) be a list of vectors in V .
Suppose the exists 1 ≤ i ≤ n such that vi is linear combination of (v1, . . . , vi−1, vi+1, . . . , vn).
Then L is linearly dependent.

Proof. By assumption,

vi = k1v1 + . . .+ ki−1vi−1 + ki+1vi+1 + . . .+ knvn

for some kj ∈ K. Thus

k1v1 + . . .+ ki−1vi−1 + (−1K)vi + ki+1vi+1 + . . .+ knvn = 0V

and L is linearly dependent.

Lemma 3.1.7. Let K be field, V an K-space and L = (v1, v2, . . . vn) a finite list of vectors
in V . Then the following three statements are equivalent:

(a) L is basis for V .

(b) L is a minimal spanning list, that is L spans V but for all 1 ≤ i ≤ n,

(v1, . . . , vi−1, vi+1, . . . , vn)

does not span V .

(c) L is maximal linearly independent list, that is L is linearly independent, but for all
v ∈ V , (v1, v2, . . . , vn, v) is linearly dependent.
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Proof. (a) =⇒ (b): Since L is basis, it spans V . Since L is linearly independent 3.1.6 im-
plies that vi is not in the span of (v1, . . . , vi−1, vi+1, . . . , vn) and so (v1, . . . , vi−1, vi+1, . . . , vn)
does not span V .

(a) =⇒ (c): Let v ∈ V . Since L spans V , v is a linear combination of L and so by
3.1.6 (v1, v2, . . . , vn, v) is linearly dependent.

(b) =⇒ (a): By assumption, L spans V so we only need to show that L is linearly
independent. Suppose not. Then

∑n
i=1 kivi = 0V for some k1, k2, . . . , kn ∈ K, not all 0K.

Relabeling we may assume k1 6= 0K. Thus

v1 = −k−1
1 (

n∑
i=2

kivi).

Let v ∈ V . Then v =
∑n

i=1 aivi for some ai ∈ K and so

v = a1

(
−k−1

1 (

n∑
i=2

aivi)

)
+

n∑
i=2

aivi =

n∑
i=2

(ai − k−1
1 ai)vi.

Thus (v2, . . . , vn) spans V , contrary to the assumptions.

(c) =⇒ (a): By assumption L is linear independent, so we only need to show that L
spans V . Let v ∈ V . By assumption (v1, . . . , vn, v) is linearly dependent and so(

n∑
i=1

aivi

)
+ av = 0V

for some a1, a2, . . . , an, a in K not all 0K. If a = 0K, then since L is linearly independent,
ai = 0K for all 1 ≤ i ≤ n, contrary to the assumption. Thus a 6= 0 and

v =
n∑
i=1

(−a−1ai)vi.

So L spans V .

Definition 3.1.8. Let K be a field and V and W K-spaces. A K-linear map from V to W
is function

f : V →W

such that

(a) f(u+ v) = f(u) + f(v) for all u, v ∈W

(b) f(kv) = kf(v) for all k ∈ K and v ∈ V .

A K-linear map is called a K-isomorphism if it’s 1-1 and onto.

We say that V and W are K-isomorphic and write V ∼=K W if there exists a K-
isomorphism from V to W .
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Example 3.1.9.

(1) The map K2 → K, (a, b)→ a is K-linear.

(2) The map K3 → K2, (a, b, c)→ (a+ 2b, b− c) is K-linear.

(3) We claim that the map f : K→ K, k → k2 is K-linear if and only if K = {0K, 1K}.
Indeed, if K = {0K, 1K}, then k = k2 for all k ∈ K and so f is K-linear.

Conversely, suppose f is K-linear. Then for all k ∈ K,

k2 = f(k) = f(k · 1K) = kf(1K) = k12
K = k

So 0K = k2−k = k(k−1K). Since K is a field and hence an integral domain we conclude
that k = 0K or k = 1K. Hence K = {0K, 1κ}.

(4) For f =
∑n

i=0 fix
i ∈ K[x] define

f ′ =
n∑
i=1

ifix
i−1.

Then
D : K[x]→ K[x], f → f ′

is a K-linear map.

Lemma 3.1.10. Let K be a field and V and W be K-spaces. Suppose that (v1, v2, . . . , vn)
is basis of V and let w1, w2, . . . wn ∈W . Then

(a) There exists a unique K-linear map f : V →W with f(vi) = wi for each 1 ≤ i ≤ n.

(b) f(
∑n

i=1 kivi) =
∑n

i=1 kiwi. for all k1, . . . , kn ∈ K.

(c) f is 1-1 if and only if (w1, w2, . . . , wn) is linearly independent.

(d) f is onto if and only if (w1, w2, . . . , wn) spans W .

(e) f is an isomorphism if and only if (w1, w2, . . . , wn) is a basis for W .

Proof. (a) and (b): If f : V →W is K-linear with f(vi) = wi, then

(1) f

(
n∑
i=1

aivi

)
=

n∑
i=1

aif(vi) =
n∑
i=1

aiwi.

So (b) holds. Moreover, since (v1, . . . vn) spans V , each v in V is of the form
∑

i=1 aivi
and so by (1), f(v) is uniquely determined. So f is unique.
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It remains to show the existence of f . Since (v1, . . . , vn) is a basis for V , any v ∈ V can
by uniquely written as v =

∑
i=1 aivi. So we obtain a well-defined function

f : V →W,
n∑
i=1

aivi →
n∑
i=1

aiwi.

It is now readily verified that f is K-linear and f(vi) = wi. So f exists.
(c) From (b)

(2) ker f = {v ∈ V | f(v) = 0W } =

{
n∑
i=1

kivi

∣∣∣∣∣
n∑
i=1

kiwi = 0W

}
.

Hence

f is 1-1

⇐⇒ ker f = {0V } − 2.2.22

⇐⇒ {
∑n

i=1 kivi |
∑n

i=1 kiwi = 0W } = {0V } − (2)

⇐⇒ {(k1, k2, . . . , kn) ∈ Kn |
∑n

i=1 kiwi = 0W } = {(0K, . . . , 0K)} − (v1, . . . , vn) is linearly indep.

⇐⇒ (w1, . . . , wn) is linearly indep. − definition of linearly indep.

So (c) holds.
(d)

Im f = {f(v) | v ∈ V } =

{
n∑
i=1

aiwi

∣∣∣∣∣a1, . . . an ∈ K

}
= Span(w1, w2, . . . , wn).

f is onto if and only if Im f = W and so if and only if (w1, . . . , wn) spans W .
(e) follows from (c) and (d).

Corollary 3.1.11. Let K be a field and W a K-space with basis (w1, w2 . . . , wn). Then the
map

f : Kn →W, (a1, . . . an)→
n∑
i=1

aiwi

is a K-isomorphism. In particular,
W ∼=K Kn.

Proof. By Example 3.1.4(1), (e1, e2, . . . , en) is basis for Kn. Also f(ei) = wi and so by
3.1.10(e), f is an isomorphism.

Definition 3.1.12. Let K be a field, V a K-space and W ⊆ V . Then W is called a
K-subspace of V provided that
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(i) 0V ∈W .

(ii) v + w ∈W for all v, w ∈W .

(iii) kw ∈W for all k ∈ K, w ∈W .

Proposition 3.1.13 (Subspace Proposition). Let K be a field, V a K-space and W an
K-subspace of V .

(a) Let v ∈ V and k ∈ K. Then 0Kv = v, (−1K)v = −v and k0V = 0V .

(b) W is a subgroup of V with respect to addition.

(c) W together with the restriction of the addition and scalar multiplication to W is a
well-defined K-space.

Proof. (a) I will just write 1 for 1K and 0 for 0K. Then

0 � v + 0V = 0 � v = (0 + 0) � v = (0 � v) + (0 � v).

So by the Cancellation Law 1.4.3, 0 � v = 0V .
Hence

0V = 0 � v = (1 + (−1)) � v = (1 � v) + (−1) � v = v + (−1) � v.

So by 1.4.4(c), (−1) � v = −v.

0V + k � 0V = k � 0V = k � (0V + 0V ) = k � 0V + k � 0V

and so by the Cancellation Law 1.4.3, k � 0V = 0V .
(b) By definition of a K-subspace, W is closed under addition and 0V ∈W . Let w ∈W .

Since W is closed under scalar multiplication, (−1) � v ∈W . So by (a), −v ∈W . Hence W
is closed under additive inverses. So by the Subgroup Proposition 1.5.3, W is a subgroup
of V with respect to addition.

(c) Using (b) this is readily verified and the details are left to the reader.

Proposition 3.1.14 (Quotient Space Proposition). Let K be field, V a K-space and W a
K-subspace of V .

(a) V/W := {v +W | v ∈ V } together with the addition

+V/W : V/W × V/W → V/W, (u+ V, v +W )→ (u+ v) +W

and scalar multiplication

�V/W : K× V/W → V/W, (k, v +W )→ kv +W

is a well-defined vector space.
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(b) The map φ : V → V/W, v +W is an onto and K-linear. Moreover, kerφ = W .

Proof. (a) By Theorem 1.8.10 (V/W,+V/W ) is a well defined group. We have

(u+W ) + (v +W ) = (u+ v) +W = (v + u) +W = (v +W ) + (v +W )

and so (V/W,+V/W ) is an abelian group. Thus Axiom (i) of a vector space holds.
Let k ∈ V and u, v ∈ V with u + W = v + W . Then u − v ∈ W and since W is a

subspace, k(u−v) ∈W . Thus ku−kv ∈W and ku+W = kv+W . So �V/W is well-defined
and Axiom (ii) of a vector space holds. The remaining four axioms (iii)-(vi) are readily
verified.

(b) By 1.9.3 φ is an homomorphism of abelian groups and kerφ = W . Let k ∈ K and
v ∈ V . Then

φ(kv) = kv +W = k(v +W ),

and so φ is a K-linear map.

Lemma 3.1.15. Let K be field, V a K-space, W a subspace of V . Suppose that (w1, . . . , wl)
be a basis for W and let (v1, . . . , vl) be a list of vectors in V . Then the following are
equivalent

(a) (w1, w2, . . . , wk, v1, v2, . . . vl) is a basis for V .

(b) (v1 +W, v2 +W, . . . , vl +W ) is a basis for V/W .

Proof. Put B = (w1, w2, . . . , wk, v1, v2, . . . vl).
(a) =⇒ (b): Suppose that B is a basis for V . Let T ∈ V/W . Then T = v + W for

some v ∈ V . Since B is spanning list for V there exist a1, . . . , ak, b1, . . . bk ∈ K with

v =

k∑
i=1

aiwi +

l∑
j=1

bjvj .

Since
∑k

i=1 aiwi ∈W we conclude that

T = v +W =

(
k∑
i=1

bivi

)
+W =

k∑
i=1

bi(vi +W ).

Therefore (v1 +W, v2 +W, . . . , vl +W ) is a spanning set for V/W .
Now suppose that b1, . . . bl ∈ K with

l∑
j=1

bi(vi +W ) = 0V/W .

Then (
∑l

j=1 bivi) +W = W and
∑l

j=1 bivi ∈ W . Since (w1, w2, . . . , wk) spans W there
exist a1, a2 . . . , ak ∈ K with
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l∑
j=1

bivi =

k∑
i=1

aiwi,

and so
k∑
i=1

(−ai)wi +
l∑

j=1

bjvj = 0V .

Since B is linearly independent, we conclude that −a1 = −a2 = . . . = −ak = b1 = b2 =
. . . = bl = 0K. Thus (v1 +W, v2 +W, . . . , vl +W ) is linearly independent and so a basis for
V/W .

(b) =⇒ (a): Suppose (v1 +W, v2 +W, . . . , vl +W ) is a basis for W . Let v ∈ V . Then
v +W =

∑l
j=1 bi(vi +W ) for some b1, . . . bl ∈ K. Thus

v −
l∑

i=1

bivi ∈W,

and so

v −
l∑

i=1

bivi =
k∑
i=1

aiwi

for some a1, . . . , ak ∈ K. Thus

v =
k∑
i=1

aiwi +
l∑

j=1

bjvj ,

and B is a spanning list.
Now let a1, . . . , ak, b1, . . . bk ∈ K with

(∗)
k∑
i=1

aiwi +

l∑
j=1

bjvj = 0V .

Since
∑k

i=1 aiwi ∈W , this implies

l∑
j=1

bj(vj +W ) = 0V/W .

Since (v1 +W, v2 +W, . . . , vl +W ) is linearly independent, b1 = b2 = . . . = bl = 0. Thus
by (*)

k∑
i=1

aiwi = 0V ,
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and since (w1, . . . , wk) is linearly independent, a1 = . . . = ak = 0K.
Hence B is linearly independent and so a basis.

Lemma 3.1.16. Let K be field, V a K-space and (v1, . . . , vn) and (w1, . . . wm) be bases for
V . Then n = m.

Proof. The proof is by induction on min(n,m). If n = 0 or m = 0, then V = {0V }. So V
contains no non-zero vectors and n = m = 0.

Suppose now that 1 ≤ n ≤ m. Put W = Span(w1). Clearly (v1 + W, . . . , vn + W ) is a
spanning list for V/W . Relabeling the v′is we may assume that (v1 + W, . . . , vk + W ) is a
minimal spanning sublist of (v1 +W, . . . , vn +W ). So by 3.1.7(a), (v1 +W, . . . , vk +W ) is
a basis for V/W .

By 3.1.7(b), (w1, v1, . . . , vn) is linearly dependent and so not a basis for V . w1 is basis
for W and so by 3.1.15 (v1 + W, . . . , vn + W ) is not basis for V/W . Hence k 6= n and
so k < n. So by induction any basis for V/W has size k. Since w1 is a basis for W and
(w1, . . . , wn) is a basis for V , 3.1.15 implies that (w2 +W, . . . , wm +W ) is a basis for V/W .
Hence k = m− 1 and so m = k + 1 ≤ n ≤ m. Thus n = m.

Definition 3.1.17. A vector space V over the field K is called finite dimensional if V has
a finite basis (v1, . . . , vn). n is called the dimension of K and is denoted by dimK V . (Note
that this is well-defined by 3.1.16).

Lemma 3.1.18. Let K be a field and V an K-space with a finite spanning list L =
(v1, v2, . . . , vn). Then some sublist of L is a basis for V . In particular, V is finite di-
mensional and dimK V ≤ n.

Proof. Let B be spanning sublist of L of minimal length. Then by 3.1.7(b) B is basis for
V .

The next lemma is the analogue of Lagrange’s Theorem for vector spaces:

Theorem 3.1.19 (Dimension Formula). Let V be a vector space over the field K. Let W
be an K-subspace of V . Then V is finite dimensional if and only if both W and V/W are
finite dimensional. Moreover, if this is the case, then

dimK V = dimKW + dimK V/W.

Proof. Suppose first that V and V/W are finite dimensional. Let (w1, w2 . . . wk) be basis
for W and (v1 +W, . . . vl +W ) a basis for V/W .

Then by 3.1.15 (w1, . . . , wl, v1, . . . , vl) is basis for V . Thus

(∗) V is finite dimensional and dimK V = k + l = dimKW + dimK V/W.

Suppose next that V is finite dimensional and let (z1, . . . , zn) be a basis for V . Then
(z1 +W, z2 +W, . . . , zn +W ) is a spanning list for V/W . So by 3.1.18
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(∗∗) V/W is finite dimensional.

It remains to show that W is finite dimensional. This will be done by induction on
dimK V . If dimK V = 0, then W = {0V } and so finite dimensional. Inductively assume
that all subspaces of vector spaces of dimension n − 1 are finite dimensional. We may
assume that W 6= {0V } and so there exists 0V 6= w ∈ W . Put Z = Span(w). Then
dimK Z = 1 and by (**) (applied to Z in place of W ) V/Z is finite dimensional. Thus by
(*),applied to Z in place of W , dimV/Z = dimV − 1. Since W/Z is a subspace of V/Z,
we conclude from the induction assumption that W/Z is finite dimensional. Since also Z is
finite dimensional we conclude from (*) (applied with W and Z in place of V and W ) that
W is finite dimensional.

Corollary 3.1.20. Let V be a finite dimensional vector space over the field K and L a
linearly independent list of vectors in V . Then L is contained in a basis of V and so

|L| ≤ dimK V.

Proof. Let W = Span(L). Then L is a basis for W . By 3.1.19 V/W is finite dimensional
and so has a basis (v1, v2, . . . vl). Hence by 3.1.15 (w1, . . . , wk, v1, . . . vl) is a basis for V ,
where (w1, . . . wk) = L.

3.2 Simple Field Extensions

Definition 3.2.1. Let K be a field and F a subset of K. F is a called a subfield of K
provided that

(i) a+ b ∈ F for all a, b ∈ F.

(ii) 0K ∈ F.

(iii) −a ∈ F for all a ∈ F.

(iv) ab ∈ F for all a, b ∈ F.

(v) 1K ∈ F.

(vi) a−1 ∈ F for all a ∈ F with a 6= 0K.

If F is a subfield of K we also say that K is an extension field of F and that K : F is a
field extension.

Note that (i), (ii) and (iii) just say that F is subgroup of K with respect to addition and
(iv),(v),(vi) say that F \ {0K} is a subgroup of K \ {0K} with respect to multiplication.

Example 3.2.2.

R : Q and C : R are field extensions.
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Lemma 3.2.3. Let K : F be a field extension. Then K is vector space over F, where the
scalar multiplication is given by

F×K→ K, (f, k)→ fk

Proof. Using the axioms of a field it is easy to verify the axioms of a vector space.

Definition 3.2.4. A field extension K : F is called finite if K is a finite dimensional F-
space.. dimFK is called the degree of the extension K : F.

Example 3.2.5.

(1, i) is an R-basis for C and so C : R is a finite field extension of degree 2. R : Q is not
finite. Indeed, by 3.1.11 every finite dimensional vector space over Q is isomorphic to Qn

for some n ∈ N and so by A.3.9 is countable. Since by A.3.8, R is not countable, R is not
finite dimensional over Q.

Lemma 3.2.6. Let K : F be a field extension and V a K-space. Then with respect to the
restriction of the scalar multiplication to F, V is an F-space. If V is finite dimensional over
K and K : F is finite, then V is finite dimensional over F and

dimF V = dimFK · dimK V.

Proof. It is readily verified that V is indeed on F-space. Suppose now that V is finite
dimensional over K and that K : F is finite. Then there exist a K-basis (v1, . . . , vn) for V
and an F-basis (k1, . . . , km) for K. We will show that

B := (kivj | 1 ≤ i ≤ m, 1 ≤ j ≤ n)

is an F-basis for V .

To show that B spans V over F, let v ∈ V . Then since (v1, . . . , vn) spans V over K there
exists l1, . . . , ln ∈ K with

(1) v =
n∑
j=1

ljvj .

Let 1 ≤ j ≤ n. Since (k1, . . . , km) spans K over F there exists a1j , . . . amj ∈ F with

(2) li =
m∑
i=1

aijki.

Substituting (2) into (1) gives
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v =

m∑
j=1

(
n∑
i=1

aijki

)
vj =

m∑
j=1

n∑
i=1

aijkivj .

Thus B spans V .
To show that B is linearly independent over F, let aij ∈ F for 1 ≤ i ≤ m and i ≤ j ≤ n

with
m∑
j=1

n∑
i=1

aijkivj = 0V .

Then also

m∑
j=1

(
n∑
i=1

aijki

)
vj = 0V .

Since
∑m

i=1 aijki ∈ K and (v1, . . . , vn) is linearly independent over K we conclude that
for all 1 ≤ j ≤ n:

m∑
i=1

aijki = 0K.

Since (k1, k2, . . . , km) is linearly independent over F this implies aij = 0F for all 1 ≤ i ≤
m and all 1 ≤ j ≤ m. Thus B is a basis for V over F, V is finite dimensional over F and

dimF V = mn = dimFK · dimK V.

Corollary 3.2.7. Let E : K and K : F be finite field extensions. Then also E : F is a finite
field extension and

dimF E = dimFK · dimK E.

Proof. By 3.2.3 E is a K-space. So the corollary follows from 3.2.6 applied with V = E.

Before proceeding we recall some definitions from ring theory. Let R be a ring and I a
subset of R. Then I is an ideal in R if I is an additive subgroup of R and ri ∈ I and ir ∈ I
for all r ∈ R and i ∈ I. Let a ∈ R. Then (a) denotes ideal in R generated by R, that the
intersection of all ideals of R containing a. If R is a commutative ring with identity, then
(a) = Ra = {ra | r ∈ R}.

Lemma 3.2.8. Let F be a field and I a non-zero ideal in F[x].

(a) There exists a unique monic polynomial p ∈ F[x] with I = F[x]p = (p).

(b) F [x]/I is an integral domain if and only if p is irreducible and if and only if F [x]/I is
field.
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Proof. (a) We will first show the existence of p. Since I 6= {0F} there exists q ∈ I with
q 6= 0F. Choose such a q with deg q minimal. Let p := lead(q)−1 · q. Then p is monic,
deg p = deg q and since I is an ideal p ∈ I. Let g ∈ F[x]. By the Remainder Theorem
[Hung, Theorem 4.4], g = tp + r where t, r ∈ F[x] with deg r < deg p. Since I is an
ideal, tp ∈ I and so g ∈ I if and only if g − tp ∈ I and so if and only if r ∈ I. Since
deg r < deg p = deg q, the minimal choice of deg q shows that r ∈ I if and only if r = 0F.
So g ∈ I if and only if r = 0F and if and only if q ∈ (p) = F[x]p. Therefore I = (p).

Suppose that also p̃ ∈ F[x] is monic with I = (p̃). Then p̃ ∈ (p̃) = (p) = F[x]p and so
p | p̃. Similarly p | p̃. Since p and p̃ are monic, [Hung, Exercise 4.2 4(b)] gives p = p̃. So p
is unique.

(b) This is [Hung, Theorem 5.10].

Definition 3.2.9. Let K : F be a field extension and a ∈ K.

(a) F[a] = {f(a) | f ∈ F[x]}.

(b) If there exists a non-zero f ∈ F [x] with f(a) = 0F then a is called algebraic over F.
Otherwise a is called transcendental over F.

Example 3.2.10.√
(2) is the a root of x2 − 2 and so

√
(2) is algebraic over Q.

i is a root of x2 + 1 so i is algebraic over Q
π is not the root of any non-zero polynomial with rational coefficients. So π is tran-

scendental. The proof of this fact is highly non-trivial and beyond the scope of this lecture
notes. For a proof see Appendix 1 in [Lang].

Lemma 3.2.11. Let K : F be a field extension and a ∈ K.

(a) The map φa : F[x]→ K, f → f(a) is a ring homomorphism.

(b) Imφa = F[a] is a subring of K.

(c) φa is 1-1 if and only if kerφa = {0F} and if and only if a is transcendental.

Proof. (a) This is readily verified. See for example Theorem 4.131
2 in my Lecture notes for

MTH 310, Fall 05 [310].
(b) Imφa = {φa(f) | f ∈ F[x]} = {f(a) | f ∈ F[x]} = F[a]. By Corollary 3.13 in

Hungerford [Hung] the image of a homomorphism is a subring and so F[a] is a subring of
K.

(c) By 2.2.22 φa is 1-1 if and only if kerφa = {0F}. Now

kerφa = {f ∈ F[x] | φa(f) = 0K} = {f ∈ F[x] | f(a) = 0K},

and so kerφa = {0F} if and only if there does not exist a non-zero polynomial f with
f(a) = 0K, that is if and only if a is transcendental.
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Theorem 3.2.12. Let K : F be a field extension and a ∈ K. Suppose that a is transcendental
over F. Then

(a) φ̃a : F[x]→ F[a], f → f(a) is an isomorphism of rings.

(b) For all n ∈ N, (1, a, a2, . . . , an) is linearly independent over F.

(c) F[a] is not finite dimensional over F and K : F is not finite.

(d) a−1 /∈ F[a] and F[a] is not a subfield of K.

Proof. (a) Since a is transcendental, f(a) 6= 0F for all non-zero f ∈ F[x]. So kerφa = {0F}
and by 2.2.22 φa is 1-1. So F[x] ∼= Imφa as a ring. But Imφa = F[a] and so F [x] ∼= F[a].

(b) Let b0, b1, . . . , bn ∈ F with
∑n

i=0 bia
i = 0F. Then f(a) = 0F where f =

∑n
i=0 bix

i.
Since a is transcendental f = 0F and so b0 = b1 = . . . = bn = 0F. Thus (1F, a, . . . , a

n) is
linearly independent over F.

(c) Suppose F[a] is finite dimensional over F and put n = dimF F[a]. Then by (b)
(1, a, a2, . . . , an) is linearly independent over F. This list has length n+ 1 and so by 3.1.20

n+ 1 ≤ dimF F[a] = n,

a contradiction.

So F[a] is not finite dimensional over F. Suppose K : F is finite, then by 3.1.19 also F[a]
is finite dimensional over F, a contradiction.

(d) Suppose a−1 ∈ F[x]. Then a−1 = f(a) for some f ∈ F[x]. Thus af(a)−1F = 0|F and
so a is root of the non-zero polynomial xf − 1|F . But then a is algebraic, a contradiction.

Theorem 3.2.13. Let K : F be a field extension and a ∈ K. Suppose that a is algebraic
over F. Then

(a) There exists a unique monic polynomial pa ∈ F[x] with kerφa = (pa).

(b) φa : F[x]/(pa)→ F[a], f + (pa)→ f(a) is a well-defined isomorphism of rings.

(c) pa is irreducible.

(d) F[a] is a subfield of K.

(e) Let Put n = deg pa. Then (1, a, . . . , an−1) is an F-basis for F[a]

(f) dimF F[a] = deg pa.

(g) Let g ∈ F[x]. Then g(a) = 0K if and only if pa | g in F[x].
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Proof. (a) By 3.2.11(c), kerφa 6= {0F}. By 3.2.11(a) is a ring homomorphism and so by
Theorem 6.10 in Hungerford [Hung], kerφa is an ideal in F[x]. Thus by 3.2.8, kerφa = (pa)
for a unique monic polynomial pa ∈ F[x].

(b): By definition of pa, kerφa = (pa). By 3.2.11(a) φa is a ring homomorphism and so
(b) follows from the First Isomorphism Theorem of Rings, [Hung, Theorem 6.13].

(c) and (d): Since K is an integral domain, F[a] is an integral domain. So by (b),
F[x]/(pa) is an integral domain. Hence by 3.2.8(b), pa is irreducible and F[x]/(pa) is a field.
By (b) also F[a] is a field. So (c) and (d) hold.

(d) Let T ∈ F[x]/(pa). By Corollary 5.5 in Hungerford there exists a unique polynomial
f ∈ F[x] of degree less than n with T = f + (pa). Let f =

∑n−1
i=0 fix

i with fi ∈ F. Then the
fi are unique in F with

T =

(
n−1∑
i=0

fix
i

)
+ (pa) =

n−1∑
i=0

fi(x
i + (pa)).

Thus by 3.1.5

1 + (pa), x+ (pa), . . . , x
n−1 + (pa)

is a basis for F[x]/(pa). Since φa
(
xi + (pa)

)
= ai we conclude from 3.1.10(e) that

(1, a, a2, . . . , an−1)

is a basis for F[a].
(f) Follows from (e).
(g) g(a) = 0K if and only if φa(a) = 0K if and only if g ∈ kerφa if and only if g ∈ (pa)

and if and only if pa | g in F[x].

Definition 3.2.14. Let K : F be a field extension and let a ∈ F be algebraic over F. The
unique monic polynomial pa ∈ F[x] with kerφa = (pa) is called the minimal polynomial of
a over F.

Lemma 3.2.15. Let K : F be a field extension and a ∈ K be algebraic over F. Let p ∈ F[x].
Then p = pa if and only of p is monic, and irreducible and p(a) = 0F.

Proof. ⇐=: Suppose p = pa. We have pa ∈ (pa) = kerφa and so pa(a) = 0. By definition
pa is monic and by 3.2.13(c), pa is irreducible.

=⇒: Suppose p is monic and irreducible and p(a) = 0. Then p ∈ kerφa =)pa) and so
pa | p. Since pa is not constant (since it has a as a root) and p is irreducible, p = bpa for
some b ∈ F. Since both p and pa are monic we get b = 1 and so p = pa.

Example 3.2.16.

(1) It is easy to see that x3 − 2 has no root in Q. Since x3 − 2 has degree 3, [Hung,
Corollary 4.18] implies that x3 − 2 is irreducible in Q[x]. So 3.2.15 implies that x3 − 2
is the minimal polynomial of 3

√
2 over Q. Hence by 3.2.13(e)



3.2. SIMPLE FIELD EXTENSIONS 95

(
1,

3
√

2, (
3
√

2)2
)

=
(

1,
3
√

2),
3
√

4
)

is a basis for Q[ 3
√

2]. Thus

Q[
3
√

2] = {a+ b
3
√

2 + c
3
√

4 | a, b, c ∈ Q}.

(2) Let ξ = e
2π
3
i = cos(2π

3 ) + i sin(2π
3 ) = −1

2 +
√

3
2 i. &%

'$
T
T

rr r1
iξ

Then ξ3 = 1 and ξ is a root of x3 − 1. x3 − 1 is not irreducible, since (x3 − 1) =
(x− 1)(x2 + x+ 1). So ξ is a root of x2 + x+ 1. x2 + x+ 1 does not have a root in Q
and so is irreducible in Q[x]. Hence the minimal polynomial of ξ is x2 + x+ 1. Thus

Q[ξ] = {a+ bξ | a, b ∈ Q}.

Lemma 3.2.17. (a) Let α : R→ S and β : S → T be ring isomorphisms. Then

β ◦ α : R→ T, r → β(α(r))

and
α−1 : S → R, s→ α−1(s)

are ring isomorphism.

(b) Let R and S be rings, I an ideal in R and α : R→ S a ring isomorphism. Put J = α(I).
Then

(a) J is an ideal in S.

(b) β : I → J, i→ α(i) is a ring isomorphism.

(c) γ : R/I → S/J, r + I → α(i) + J is a well-defined ring isomorphism.

(d) α
(
(a)
)

=
(
α(a)

)
for all a ∈ R. That is α maps to ideal in R generated by a to the

ideal in S generated in α(a).

(c) Let R and S be commutative rings with identities and σ : R → S a ring isomorphism.
Then

R[x]→ S[x],

n∑
i=1

fix
i →

n∑
i=1

σ(i)xi

is a ring isomorphism. In the following, we will denote this ring isomorphism also by
σ. So if f =

∑n
i=0 fix

i ∈ F[x], then σ(f) =
∑n

i=0 σ(fi)x
i.
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Proof. Readily verified.

Corollary 3.2.18. Let σ : K1 → K2 be a field isomorphism. For i = 1, 2 let Ei : Ki

be a field extension and suppose ai ∈ Ki is algebraic over Ki with minimal polynomial pi.
Suppose that σ(p1) = p2. Then there exists a field isomorphism

σ̌ : K1[a1]→ K2[a2]

with

ρ(a1) = a2 and ρ |K1= σ

Proof. By 3.2.17(c) σ : K1[x] → K2[x], f → σ(f) is a ring isomorphism. By 3.2.17(b:a)
σ((p1)) = (σ(p1)) = (p2) and so by 3.2.17(b:c)

(1) K1[x]/(p1) ∼= K2[x]/(p2)

By 3.2.13(b)

(2) K1[a1] ∼= K1[x]/(p1) and K1[a1] ∼= K2[x]/(p2)

Composing the three isomorphism in (1) and (2) we obtain the isomorphism

ρ : K1[x] → K1[x]/(p1) → K2[x]/(p2) → K2[x]

f(a1) → f + (p1) → σ(f) + (p2) → σ(f)(a2)

For f = k ∈ K1 (a constant polynomial) we have σ(f) = σ(k), f(a1) = k and σ(f)(a2) =
σ(k). So ρ(k) = σ(k).

For f = x we have σ(x) = x, f(a1) = a1 and σ(x)(a2) = a2. So ρ(a1) = a2.

3.3 Splitting Fields

Definition 3.3.1. A field extension K : F is called algebraic if each k ∈ K is algebraic over
F.

Example 3.3.2.

C : R is algebraic but C : Q is not.

Lemma 3.3.3. Any finite field extension is algebraic.

Proof. Let K : F be a finite field extension. Let a ∈ K. Suppose that a is transcendental
over F. Then by 3.2.12(c), K : F is not finite, a contradiction.
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Definition 3.3.4. Let K : F be a field extension and a1, a2 . . . , an ∈ K. Inductively, define
F[a1, α2, . . . , ak] := F[a1, a2, . . . , ak−1][ak].

Definition 3.3.5. Let K : F be field extensions and f ∈ F[x]. We say that f splits in K if
there exists a1 . . . an ∈ K with

(i) f = lead(f)(x− a1)(x− a2) . . . (x− an).

We say that K is a splitting field for f over F if f splits in K and

(ii) K = F[a1, a2, . . . , an].

Proposition 3.3.6. Let F be a field and f ∈ F[x]. Then there exists a splitting field K for
f over F. Moreover, K : F is finite of degree at most n!.

Proof. The proof is by induction on deg f . If deg f ≤ 0, then f = lead(f) and so F is a
splitting field for f over F. Now suppose that deg f = k+ 1 and that the proposition holds
for all fields and all polynomials of degree k. Let p be an irreducible divisor of f and put
E = F[x]/(p). By 3.2.8 E is a field. We identify a ∈ F with a+ (p) in E. So F is a subfield
of E. Put b := x+ (p) ∈ F. Then E = F[b]. Since p | f , f ∈ (p) and so f + (p) = (p) = 0E.
Hence

f(b) = f(x+ (p)) = f(x) + (p) = f + (p) = (p) = 0E,

and so b is a root of f in E. By the Factor Theorem [Hung, 4.15] f = (x − b) · g for some
g ∈ E[x] with deg g = k. So by the induction assumption there exists a splitting field K for
g over E with dimEK ≤ k!. Hence exist a1, . . . , ak ∈ K with

(i) g = lead(g)(x− a1)(x− a2) . . . (x− ak);

(ii) K = E[a1, a2, . . . , ak]; and

(iii) dimK E ≤ k!

Since lead f = lead g, f = (x− b) · g and E = K[b] we conclude that

(iv) g = lead(f)(x− b)(x− a1)(x− a2) . . . (x− ak), and

(v) K = F[b][a1, a2, . . . , ab] = F[b, a1, . . . , an].

Thus K is a splitting field for f over F.
Note that dimK E = deg p ≤ deg f = k + 1 and so by 3.2.7 and (iii)

dimFK = dimK E · dimEK ≤ (k + 1) · k! = (k + 1)!

So the theorem also holds for polynomials of degree k + 1 and, by the Principal of
Mathematical Induction, for all polynomials.
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Theorem 3.3.7. Suppose that

(i) σ : F1 → F2 is an isomorphism of fields;

(ii) For i = 1 and 2, fi ∈ F[x] and Ki a splitting field for fi over Fi; and

(iii) σ(f1) = f2

Then there exists a field isomorphism

σ̌ : K1 → K2 with σ̌ |F1= σ.

Suppose in addition that

(iv) For i = 1 and 2, pi is an irreducible factor of fi in F[x] and ai is a root of pi in Ki;
and

(v) σ(p1) = σ(p2).

Then σ̌ can be chosen such that

σ(a1) = a2.

Proof. The proof is by induction on deg f . If deg f ≤ 0, then K1 = F1 and K2 = F2 and so
the theorem holds with σ = σ̌.

So suppose that deg f = k+1 and that the lemma holds for all fields and all polynomials
of degree k. If (iv) and (v) hold let pi and ai as there.

Otherwise let p1 be any irreducible factor of f1. Put p2 = σ(p1). By 3.2.17(c), σ :
K1[x] → K2[x] is a ring isomorphism. Thus p2 is a irreducible factor of σ(f1) = f2. Since
fi splits over K, there exists a root ai for pi in Ki.

Put Ei = Ki[ai]. By 3.2.18 there exists a field isomorphism ρ : E1 → E2 with ρ(a1) = a2

and ρ |F1= σ. By the factor theorem fi = (x − ai) · gi for some gi ∈ Ei[x]. Since ρ |F1= σ
and f1 has coefficients in F1, ρ(f1) = σ(f1) = f2. Thus

(x− a2) · g2 = f2 = ρ(f1) = ρ
(
(x− a1) · g1

)
= big(x− ρ(a2)

)
· ρ(g1) = (x− a2) · ρ(g1),

and so by the Cancellation Law g2 = ρ(g1). Since Ki is a splitting field for fi over Ki, Ki

is also a splitting field for gi over Ei. So by the induction assumption there exists a field
isomorphism σ̌ : K1 → K2 with σ̌ |Ei= ρ. We have σ̌(a1) = ρ(a1) = a2 and σ̌ |F1= ρ |F1= σ.

Thus the Theorem holds for polynomials of degree k + 1 and so by induction for all
polynomials.

Example 3.3.8.
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Note that x2 + 1 = (x − i)(x − (−i)) and R[i] = C. So C is a splitting field for x2 + 1
over R. We now apply 3.3.7 with

F1 = F2 = R, K1 = K2 = C, σ = idR, f1 = p1 = f2 = p2 = x2+1, a1 = i, a2 = −i.

We conclude that there exists a field isomorphism σ̌ : C→ C with

σ̌ |R= σ = idR

and

σ̌(i) = σ̌(a1) = a2 = −i.

Let a, b ∈ R. Then

σ̌(a+ bi) = σ̌(a) + σ̌(b)σ̌(−i) = a+ b(−i) = a− bi

This shows σ̌ is complex conjugation.

3.4 Separable Extension

Definition 3.4.1. Let K : F be a field extension.

(a) Let f ∈ F[x]. If f is irreducible, then f is called separable over F provided that f does
not have a double root in its splitting field over F. In general, f is called separable over
F provided that all irreducible factors of f in F[x] are separable over F.

(b) a ∈ K is called separable over K if a is algebraic over F and the minimal polynomial of
a over F is separable over F.

(c) K : F is called separable over F if each a ∈ K is separable over F.

Example 3.4.2.

Let E : Z2 be a field extension and let t ∈ E be transcendental over Z2. Put

K = Z2(t) = {ab−1 | a, b ∈ Z2[t], b 6= 0Z2}

and

F = Z2(t2).

By Homework 11#2 F and K are subfields of E. It is easy to see that t /∈ F. Since
−1Z2 = 1Z2 ,

x2 − t2 = (x− t)(x+ t) = (x− t)2.
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So t is a double root of x2 − t2. Since t /∈ F, x2 − t2 has no root in F and so by [Hung,
Corollary 4.18] is irreducible in F[x]. Hence by 3.2.15 x2− t2 is the minimal polynomial of t
over F. Since t is a double root of x2− t2, x2− t2 is not separable. So also t is not separable
over F and K is not separable over F.

Lemma 3.4.3. Let K : E and E : F be a field extensions.

(a) Let a ∈ K be algebraic over F. Then a is algebraic over E. Moreover, if pEa is the
minimal polynomial of a over E, and pFa is the minimal polynomial of a over F, then pEa
divides pFa in E[x].

(b) If f ∈ F[x] is separable over F, then f is separable over E.

(c) If a ∈ K is separable over F, then a is separable over E.

(d) If K : F is separable, then also K : E and E : K are separable.

Proof. (a) Since pFa(a) = 0F and pEa ∈ F[x] ⊆ E[x], a is algebraic over E. Moreover,

pFa ∈ kerφEa = E[x]pEα

and so pEa divides pFa in E[x].
(b) Let f ∈ F[x] be separable over F. Then f = p1p2 . . . pk for some irreducible pi ∈ F[x].

Moreover, pi = qi1qi2 . . . qili for some irreducible qij ∈ E[x]. Since f is separable, pi has no
double roots. Since qij divides pi also qij has no double roots. Hence qij is separable over
E and so also f is separable over E.

(c) Since a is separable over E, pFa has no double roots. By (a) pEa divides pFa and so also
pEa has no double roots. Hence a is separable over E.

(d) Let a ∈ K. Since K : F is separable, a is separable over F. So by (c), a is separable
over E. Thus K : E is separable. Let a ∈ E. Then a ∈ K and so a is separable over F.
Hence E : F is separable.

3.5 Galois Theory

Definition 3.5.1. Let K : F be field extension. AutF(K) is the set of all field isomorphism
α : K→ K with α |F= idF.

Lemma 3.5.2. Let K : F be a field extension. Then AutF(K) is a subgroup of Sym(K).

Proof. Clearly idK ∈ AutF(K). Let α, β ∈ AutF(K). Then by 3.2.17(a) α ◦ β is a field
isomorphism. If a ∈ F, then α(β(a)) = α(a) = a and so (α◦β) |F= idF. So α◦β ∈ AutF(K).
By 3.2.17(a) α−1 is a field isomorphism. Since α |F= idF also α−1 |F= idF and so α−1 ∈
AutF(K). So by the Subgroup Proposition 1.5.3, AutF(K) is a subgroup of Sym(K).

Example 3.5.3.
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What is AutR(C)?
Let σ ∈ AutR(C) and a, b ∈ R. Since σR = idR we have σ(a) = a and σ(b) = b. Thus

(∗) σ(a+ bi) = σ(a) = σ(b)σ(i) = a+ bσ(i).

So we need to determine σ(i). Since i2 = −1, we get

σ(i)2 = σ(i2) = σ(−1) = −1.

Thus σ(i) = i or −i. If σ(i) = i, then (*) shows that σ = idC and if σ(i) = −i, (*)
shows that σ is complex conjugation. By Example 3.3.8, complex conjugation is indeed an
automorphism of C and thus

AutR(C) = {idC , complex conjugation.}

Definition 3.5.4. Let K : F be a field extension and H ⊆ AutK(F). Then

FixK(H) := {k ∈ K | σ(k) = k for all σ ∈ H}.

FixK(H) is called the fixed-field of H in K.

Lemma 3.5.5. Let K : F be a field extension and H a subset of AutF(K). Then FixK(H)
is subfield of K containing F.

Proof. By definition of AutF(K), σ(a) = a for all a ∈ F, σ ∈ H. Thus F ⊆ FixK(H). In
particular, 0F, 1F ∈ FixK(H).

Let a, b ∈ FixK(H) and σ ∈ H. Then

σ(a+ b) = σ(a) + σ(b) = a+ b,

and so a+ b ∈ FixK(H).

σ(−a) = −σ(a) = −a,

and so −a ∈ FixK(H).

σ(ab) = σ(a)σ(b) = ab,

and so ab ∈ FixK(H). Finally if a 6= 0F, then

σ(a−1) = σ(a)−1 = a−1,

and so a−1 ∈ FixK(H).
Hence FixK(H) is a subfield of K.
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Example 3.5.6.

What is FixC(AutR(C))?

By Example 3.5.3, AutR(C) = {idC, σ}, where σ is complex conjugation. Let a, b ∈ R.
Then

idC(a+ bi) = a+ bi and σ(a+ bi) = a− bi.

So a+ bi is fixed by idC and σ if and only if b = 0, that is if and only if a+ bi ∈ R. Thus

FixC(AutR(C)) = R.

Proposition 3.5.7. Let K : F be a field extension and 0F 6= f ∈ F[x].

(a) Let a ∈ K and σ ∈ AutF(K). Then σ(f(a)) = f(σ(a)).

(b) The set of roots of f in K is invariant under AutF(K). That is if a is a root of f in K
and σ ∈ AutK(K), then σ(a) is also a root of f in K.

(c) Let a ∈ K. Then StabAutF(K)(a) = AutF(a)(K).

(d) Let a be root of f in K. Then

|AutF(K)/AutF[a](K)| = |{σ(a) | σ ∈ AutF(K)}|.

Proof. (a) Let f =
∑n

i=0 fix
i. Then

σ(f(a)) = σ

(
n∑
i=0

fia
i

)
=

n∑
i=0

σ(fi)σ(a)i =
n∑
i=0

fiσ(a)i = f(σ(a)).

(b) Let a be a root of f in K then f(a) = 0K and so by (a)

f(σ(a)) = σ(f(a)) = σ(0K) = 0K.

(c) Put H = StabAutF(K)(a) = {σ ∈ AutF(K) | σ(a) = a}. Then clearly AutF[a](K) ⊆ H.
Note that a ∈ FixK(H) and by 3.5.5 FixK(H) is a subfield of K containing F. So by
Homework 11#2, F(a) ⊆ FixK(H) and thus H ⊆ AutF(a)(K). Therefore H = AutF(a)(K).

(d) By 2.1.16,

|AutF(K)/ StabAutF(K)(a)| = |{σ(a) | σ ∈ AutF(K)}|,

and so (d) follows from (c).
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Theorem 3.5.8. Let F be a field and K the splitting field of a separable polynomial over F.
Then

|AutF(K)| = dimFK.

Proof. The proof is by induction on dimFK. If dimFK = 1, then K = F and AutF(K) =
{idF}. So the theorem holds in this case. Suppose now that theorem holds for all finite
field extensions of degree less than dimFK. Let f ∈ F[x] be separable polynomial with K
as splitting field and let a be a root of f with a /∈ F. Let R be the set of roots of f in K.
Since pa has no double roots, |R| = deg pa and so by 3.2.13(f),

(1) |R| = dimF F[a].

Put

S = {σ(a) | σ ∈ AutF(K)}.

We will show that S = R. Let b ∈ R. Then by 3.3.7 applied with F1 = F2 = F,K1 = K2 =
K, σ = idF, f1 = f2 = f , p1 = p2 = pa, a1 = a and a2 = b, there exists a field isomorphism
σ̌ : K→ K with

σ̌ |F= σ = idF and σ̌(a) = b.

Then σ̌ ∈ AutF(K) and so b = σ̌(a) ∈ S. Hence

R ⊆ S.

By 3.5.7(b), σ(a) is a root of f for each σ ∈ AutF(K). Thus S ⊆ R and

(2) R = S.

By 3.5.7(d)

|AutF(K)/AutF[a](K)| = |{σ(a) | σ ∈ AutF(K)}| = |S|,

and so by (1) and (2)

(3) |AutF(K)/AutF[a](K)| = dimF F[a].

Observe that K is a splitting field for f over F[a] and that by 3.4.3(b), f is separable
over F[a]. Moreover, by 3.2.7

dimF[a] K =
dimFK

dimF[a](K)
< dimFK,
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and so by induction

(4) |AutF[a](K)| = dimF[a] K.

Multiplying (3) with (4) gives

(5) |AutF(K)/AutF[a](K)| · |AutF[a](K)| = dimF F[a] · dimF[a] K.

So by Lagrange’s Theorem and Corollary 3.2.7,

|AutF(K)| = dimFK.

Example 3.5.9.

By Example 3.2.16 x3−2 is the minimal polynomial of 3
√

2 over Q and dimQQ
[

3
√

2
]

= 3.

The other roots of x3 − 2 are ξ 3
√

2 and ξ2 3
√

2, where ξ = e
2π
3
i. Also by Example 3.2.16 ξ is

a root of x2 + x+ 1. Since ξ /∈ R, ξ /∈ Q
[

2
√

2
]
. Thus x2 + x+ 1 is the minimal polynomial

of ξ over Q
[

3
√

2
]
. Put K = Q

[
3
√

2, ξ
]
. Then dimQ[ 3√2] K = 2 and so

dimQK = dimQQ
[

3
√

2
]
· dimQ[ 3√2] K = 3 · 3 = 6

Note that

K = Q
[

3
√

2, ξ
3
√

2, ξ2 3
√

2
]
,

and so K is the splitting field of x3 − 2 over Q. Let R =
{

3
√

2, ξ 3
√

2, ξ2 3
√

2
}

, the set of roots
of x3 − 2. By 3.5.7, R is AutQ(K)-invariant and so by 2.2.10(b), AutQ(K) acts on R. The
homomorphism associated to this action is

α : AutF(K)→ Sym(R), σ → σ |R .

Let σ ∈ kerα. Then R ⊆ FixK(σ). Since FixK(σ) is a subfield of K containing Q, this
implies FixK(σ) = K and so σ = kerα. Thus by 2.2.22 α is 1-1. By 3.5.8 |AutF(K)| =
dimQK = 6. Since also | Sym(R)| = 6 we conclude that α is a bijection and so

AutF(K) ∼= Sym(R) ∼= Sym(3).

Lemma 3.5.10. Let K : F be a field extension and G a finite subgroup of AutF(K) with
FixK(G) = F. Then dimFK ≤ |G|.
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Proof. Put m = |G| and let G = {σ1, σ2, . . . , σm} with σ1 = idK.

Let F-linear independent list (k1, k2, . . . , kn) in K and let C1, C2, . . . , Cn be the columns
of the matrix

(σi(kj)) =


k1 k2 . . . kn

σ2(k1) σ2(k2) . . . σ2(kn)
...

...
...

...

σm(k1) σm(k2) . . . σm(kn)

 .

Claim: (C1, C2, . . . , Cn) is linearly independent over K.

Before we prove the Claim we will show that Lemma follows from the Claim. Since Km

has dimension m over K, 3.1.20 implies that any K-linear independent list in Km has length
at most m. So if (C1, C2, . . . , Cn) is linearly independent, then n ≤ m and dimFK ≤ |G|.

We now proof the Claim via a proof by contradiction. So suppose the Claim is false
and under all the F linear independent list (k1, . . . , kn) for which (C1, C2 . . . , Cn) is linearly
dependent over K choose one with n as small as possible. Then there exist l1, l2 . . . ln ∈ K
not all zero with

(1)

n∑
j=1

lkCj = ~0.

If l1 = 0K, then
∑

j=2 ljCj = ~0 and so also (k2, . . . , kn) is a counterexample. This
contradicts the minimal choice of n.

Hence l1 6= 0K. Note that also
∑

j=1 l
−1
1 ljCj = ~0. So we may assume that l1 = 1F.

Suppose that lj ∈ F for all 1 ≤ j ≤ n. Considering the first coordinates in the equation
(1) we conclude

n∑
j=1

ljkj = 0F,

a contradiction since (k1, . . . , kn) is linearly independent over F. So there exists 1 ≤ k ≤ n
with lk /∈ F. Note that l1 = 1F ∈ F and so k > 1. Without loss k = 2. So l2 /∈ F. Since
FixK(G) = F, l2 /∈ FixK(G) and so there exists ρ ∈ G with ρ(l2) 6= l2. Note that (1) is
equivalent to the system of equation

n∑
j=1

ljσ(kj) = 0F for all σ ∈ G.

Applying ρ to each of these equation we conclude
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n∑
j=1

ρ(lk)(ρ ◦ σ)(kj) = 0F for all σ ∈ G.

Since σ = ρ ◦ (ρ−1 ◦ σ) these equations with ρ−1 ◦ σ in place of σ give

n∑
j=1

ρ(lj)σ(kj) = 0F for all σ ∈ G,

and so

(2)
n∑
j=1

ρ(lj)Cj = ~0.

Subtracting (1) from (2) gives

n∑
j=1

(ρ(lj)− lj)Cj = ~0.

Since l1 = 1F = ρ(1F), ρ(l1)− l1 = 0F and so

(3)

n∑
j=2

(ρ(lj)− lj)Cj = ~0.

Since ρ(l2) 6= l2, ρ(l2)− l2 6= 0F. So not all the coefficient in (3) are zero, a contradiction
to the minimal choice of n.

Proposition 3.5.11. Let K : F be a field extension and G a finite subgroup of AutF(K)
with FixK(G) = F. Let a ∈ K. Then a is algebraic over F. Let a1, a2, . . . an be the distinct
elements of Ga = {σ(a) | σ ∈ G}. Then

pa = (x− a1)(x− a2) . . . (x− an).

In particular, pa splits over K and K is separable over F.

Proof. Put q = (x− a1)(x− a2) . . . (x− an). Then q ∈ K[x]. We will show that q ∈ F[x].
Let σ ∈ G. Then

(1) σ(q) = σ
(
(x− a1)(x− a2) . . . (x− an)

)
=
(
x− σ(a1)

)(
x− σ(a2)

)
. . .
(
x− σ(an)

)
.

By 2.1.11 σ(b) ∈ Ga for all b ∈ Ga. So

{σ(a1)), σ(a2), . . . , σ(an)} = {a1, . . . , an},
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and hence(
x− σ(a1)

)(
x− σ(a2)

)
. . .
(
x− σ(an)

)
= (x− a1)(x− a2) . . . (x− an) = q.

Thus by (1)

(2) σ(q) = q.

Let q =
∑n

i=0 kix
i with ki ∈ K. Then

n∑
i=0

kix
i = q

(2)
= σ(q) = σ

(
n∑
i=0

kix
i

)
=

n∑
i=0

σ(ki),

and so

ki = σ(ki) for all 0 ≤ i ≤ n, σ ∈ G.

It follows that for all 0 ≤ i ≤ n,

ki ∈ FixK(G) = F.

Hence q ∈ F[x].

Since a = idK(a) is one of the ai’s we have q(a) = 0F. Thus 3.2.13(g) implies that pa | q.
By 3.5.7 each ai is a root of pa and so q divides pa in K[x]. Since pa and q both are monic
we conclude that pa = q. So

pa = (x− a1)(x− a2) . . . (x− an).

Since each ai ∈ K, pa splits over K. Since the ai’s are pairwise distinct, pa is separable.
So a is separable over K. Since a ∈ K was arbitrary, K : F is separable.

Definition 3.5.12. Let K : F be algebraic field extension. Then K : F is called normal if
for each a ∈ K, pa splits over K.

Theorem 3.5.13. Let K : F be a field extension. Then the following statements are equiv-
alent.

(a) K is the splitting field of a separable polynomial over F.

(b) AutF(K) is finite and F = FixK(AutF(K)).

(c) F = FixK(G) for some finite subgroup G of AutF(K).

(d) K : F is finite, separable and normal.
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Proof. (a) =⇒ (b): By 3.5.8 AutF(K) is finite of order dimFK. Let E = FixK(AutF(K)).
Then AutF(K) ⊆ AutE(K) ⊆ AutF(K) and so

(1) AutF(K) = AutE(K).

Since K is the splitting field of a separable polynomial f over F, K is also the splitting
field of f over E. By 3.4.3 f is separable over E and so we can apply 3.5.8 to K : E and
K : F. Hence

dimEK ≤ dimF E · dimEK
3.2.7
= dimFK

3.5.8
= |AutF(K)| (1)

= |AutE(K)| 3.5.8
= dimEK.

Hence equality must hold everywhere in the above inequalities. Thus dimEK = dimFK
and so dimF E = 1 and E = F.

(b) =⇒ (c): Just put G = AutF(K).
(c) =⇒ (d): By 3.5.10 K : F is finite and by 3.5.11, K : F is normal and separable.
(d) =⇒ (a): Since K : F is finite there exists a basis (k1, k2, . . . , kn) for K over F.

Then K ⊆ F[a1, a2 . . . , an] ⊆ K and

(2) K = F[a1, a2 . . . , an].

Let pi be the minimal polynomial of ai over F. Since K : F is separable, pi is separable over
F. Since K : F is normal, pi splits over F. Put f = p1p2 . . . pn. Then f is separable and splits
over K. Let a1, a2, . . . , an, . . . , am be the roots of f in K then by (1), K ⊆ F[a1, a2 . . . , am] ⊆
K and so

K = F[a1, a2 . . . , am].

Thus K is a splitting field of f over F.

Lemma 3.5.14. Let K : F be a field extension. Let σ ∈ AutF(K) and let E be subfield field
of K containing F. Then

σAutE(K)σ−1 = Autσ(E)(K)

Proof. Let ρ ∈ AutF(K). Then

ρ ∈ Autσ(E)(K)

⇐⇒ ρ(k) = k for all k ∈ σ(E) − Definition of Autσ(E)(K)

⇐⇒ ρ(σ(e)) = σ(e) for all e ∈ E − Definition of σ(E)

⇐⇒ σ−1(ρ(σ(e)) = e for all e ∈ E − σ is a bijection

⇐⇒ (σ−1ρσ)(e) for all e ∈ E − Definition of σ−1ρσ

⇐⇒ σ−1ρσ ∈ AutE(K) − Definition of AutE(K)

⇐⇒ ρ ∈ σAutE(K)σ−1 − 1.8.1(c)
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Definition 3.5.15. (a) A Galois extension is a finite, separable and normal field extension.

(b) Let K : F be a field extension. An intermediate field of K : F is a subfield E of K with
F ⊆ E.

Lemma 3.5.16. Let K : F be a Galois extension and E an intermediate field of K : F. The
following are equivalent:

(a) E : F is normal.

(b) E : F is Galois.

(c) E is invariant under AutF(K), that is σ(E) = E for all σ ∈ AutF(K).

Proof. (a) =⇒ (b): Suppose E : F is normal. Since K : F is separable, 3.4.3(d) implies
that E : F is separable. Since K : F is finite, 3.1.19 implies that E : F is finite. Thus E : F
is Galois.

(b) =⇒ (c): Suppose E : F is Galois. Let a ∈ E and σ ∈ AutF(K). By 3.5.7 σ(a) is a
root of pa. Since E : F is normal, pa splits over E and so σ(a) ∈ E.

(c) =⇒ (a): Suppose that E is invariant under AutF(K) and let a ∈ E. By 3.5.13
F = FixK(G) for some finite subgroup G of AutF(K). So by 3.5.11 pa splits over K and
if b is a root of pa, then b = σ(a) for some σ ∈ G. Since E is invariant under AutF(K),
b = σ(a) ∈ E. So pa splits over E and E : F is normal.

Theorem 3.5.17 (Fundamental Theorem of Galois Theory). Let K : F be a Galois Exten-
sion. Let E be an intermediate field of K : F and G ≤ AutF(K).

(a) The map

E→ AutE(K)

is a bijection between to intermediate fields of K : F and the subgroups of AutF(K). The
inverse of this map is given by

G→ FixK(G).

(b) |G| = dimFixK(G) K and dimEK = |AutE(K)|.

(c) E : F is normal if and only if AutE(K) is normal in AutF(K).

(d) If E : F is normal, then the map

AutF(K)/AutE(K)→ AutF(E), σAutE(K)→ σ |E
is a well-defined isomorphism of groups.
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Proof. (a) We will show that the two maps are inverses to each other. Since K is the
splitting field of a separable polynomial f over F, K is also the splitting field of f over E.
So by 3.5.13

(1) FixK(AutE(K)) = E.

Put L = FixK(G).

(2) |AutL(K)| 3.5.8
= dimLK

3.5.10
≤ |G| ≤ |AutL(K)|,

where the last equality holds since G ≤ AutL(K). It follows that equality holds everywhere
in (2). In particular, |G| = AutL(K) and G = AutL(K), that is

(3) AutFixK(G)(K) = G.

By (1) and (3) the two maps in (a) are inverse to each other and so (a) holds.

(b) follows since equality holds everywhere in (2).

(c) We have

E : F is normal

⇐⇒ σ(E) = E for all σ ∈ AutF(K) − 3.5.16

⇐⇒ Autσ(E)(K) = AutE(K) for all σ ∈ AutF(K) − (a)

⇐⇒ σAutE(K)σ−1 = AutE(K) for all σ ∈ AutF(K) − 3.5.14

⇐⇒ AutE(K)EAutF(K) − 1.8.6(b)

(d) By 3.5.16 E is AutF(K)-invariant. So by 2.2.10(b) AutF(K) acts on E. The homo-
morphism associated to this action is

α : AutF(K)→ Sym(E), σ → σ |E .

In particular, σ |E is a bijection from E to E. Clearly σ |E is a homomorphism. Thus
σ |E is a field isomorphism. Moreover, (σ |E) |F= σ |F= idF and so σ |E∈ AutF(K).
Thus Imα ≤ AutE(K). Let ρ ∈ AutE(K). Then by 3.3.7, applied with F1 = F2 = E,
K1 = K2 = K, f1 = f2 = f and σ = ρ there exists a field isomorphism ρ̂ : K → K with
ρ̌ |E= ρ. Since ρ̌ |F= ρ |E= idF, ρ̌ ∈ AutF(K). Then ρ = α(ρ̌) and so ρ ∈ Imα and
Imα = AutF(E).

Note that σ ∈ kerα if and only if α |E= idE. So kerα = AutE(K). Hence (d) follows
from the First Isomorphism Theorem.
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Example 3.5.18.

Let K be the splitting field of x3 − 2 over Q in C. Let

ξ = e
2π
3
i, a =

3
√

2, b = ξ
3
√

2, and c = ξ2 3
√

2.

By Example 3.5.9

K = Q[a, ξ], dimQK = 6 and AutQ(K) ∼= Sym(R) ∼= Sym(3),

where R = {a, b, c} is the set of roots of x3−2. For (x1, . . . xn) a cycle in Sym(R) let σx1...xn
be the corresponding element in AutQ(K). So for example σab is the unique element of
AutQ(K) with σab(a) = b, σab(b) = a and σab(c) = c. Then by Example 1.9.15 the subgroup
of AutQ(K) are

{idK}, 〈σab〉, 〈σac〉, 〈σbc〉, 〈σac〉, 〈σabc〉,AutQ(K)

We now compute the corresponding intermediate fields:

Observe that

FixK({idK}) = K.

〈σab〉 has order 2. Hence by the FTGT 3.5.17(b), dimFixK(〈σab)〉K = 2. Since dimQK = 6,
3.2.7 implies that dimQ FixK(〈σab〉) = 3. Since c is fixed by σab and dimQQ[c] = deg pc =
deg(x3 − 2) = 3 we have

FixK(〈σab〉) = Q[c] = Q
[
ξ2 3
√

2
]
.

Similarly,

FixK(〈σac〉) = Q[b] = Q
[
ξ

3
√

2
]

and

FixK(〈σbc〉) = Q[a] = Q
[

3
√

2
]
.

Note that dimQQ[ξ] = 2 and so dimQ[ξ] K = 3. Hence |AutQ[ξ] K| = 3. Since AutQ(K)
has a unique subgroup of order 3 we get AutQ(K) = 〈σabc〉 and so

FixK(〈σabc〉) = Q[ξ].

Let us verify that σabc indeed fixes ξ. From b = aξ we have ξ = a−1b and so

σabc(ξ) = σabc(a
−1b) = (σabc(a))−1σabc(b) = b−1c = ξ.

Finally by 3.5.13

FixK(AutQ(K)) = Q.
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Note that the roots of x2+x+1 are ξ and ξ2. So Q[ξ] is the splitting field of x2+x+1 and
Q[ξ] : Q is a normal extension, corresponding to the fact that 〈σabc〉 is normal in AutF(K).

Since pa = x3 − 2 and neither b or c are in Q[a], pa does not split over Q[a]. Hence
Q[a] : Q is not normal, corresponding to the fact that 〈σbc〉 is not normal in AutF(K).



Appendix A

Sets

A.1 Equivalence Relations

Definition A.1.1. Let ∼ be a relation on a set A. Then

(a) ∼ is called reflexive if a ∼ a for all a ∈ A.

(b) ∼ is called symmetric if b ∼ a for all a, b ∈ A with a ∼ b.

(c) ∼ is called transitive if a ∼ c for all a, b, c ∈ A with a ∼ b and b ∼ c.

(d) ∼ is called an equivalence relation if ∼ is reflexive, symmetric and transitive.

(e) For a ∈ A we define [a]∼ := {b ∈ R | a ∼ b}. We often just write [a] for [a]∼. If ∼ is
an equivalence relation then [a]∼ is called the equivalence class of ∼ containing a.

Remark A.1.2.

Suppose P (a, b) is a statement involving the variables a and b. Then we say that P (a, b)
is a symmetric in a and b if P (a, b) is equivalent to P (b, a). For example the statement
a+ b = 1 is symmetric in a and b. Suppose that P (a, b) is a symmetric in a and b, Q(a, b)
is some statement and that

(∗) For all a,b P (a, b) =⇒ Q(a, b).

Then we also have

(∗∗) For all a,b P (a, b) =⇒ Q(b, a).

Indeed, since (*) holds for all a, b we can use (*) with b in place of a and a in place of
b. Thus

For all a,b P (b, a) =⇒ Q(b, a).

113
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Since P (b, a) is equivalent to P (a, b) we see that (**) holds. For example we can add
−b to both sides of a+ b = 1 to conclude that a = 1− b. Hence also b = 1− a ( we do not
have to repeat the argument.)

Theorem A.1.3. Let ∼ be an equivalence relation on the set A and a, b ∈ A. Then the
following statements are equivalent:

(a) a ∼ b.

(b) b ∈ [a].

(c) [a] ∩ [b] 6= ∅.

(d) [a] = [b].

(e) a ∈ [b]

(f) b ∼ a.

Proof. (a) =⇒ (b): Just recall that [a] = {b ∈ A | a ∼ b}.
(b) =⇒ (c): Since ∼ is reflexive, b ∼ b and so b ∈ [b]. From (b), b ∈ [a] and so

b ∈ [a] ∩ [b]. Therefore [a] ∩ [b] 6= ∅.
(c) =⇒ (d): By (c) there exists c ∈ [a] ∩ [b]. We will first show that [a] ⊆ [b]. So let

d ∈ [a]. Then a ∼ d. Since c ∈ [a], a ∼ c and since ∼ is symmetric, c ∼ a. Since a ∼ d and
∼ is transitive, c ∼ d. Since c ∈ [b], b ∼ c. Since c ∼ d and ∼ is transitive, b ∼ d and so
d ∈ [b]. Thus [a] ⊆ [b]. Since statement (c) is symmetric in a and b, we conclude that also
[b] ⊆ [a] and so [a] = [b].

(d) =⇒ (e): Since a is reflexive a ∈ [a]. So [a] = [b] implies a ∈ [b].

(e) =⇒ (f): From a ∈ [b] and the definition of [b], b ∼ a.

(f) =⇒ (a): Since b ∼ a and ∼ is symmetric, a ∼ b.

A.2 Bijections

Definition A.2.1. Let f : A→ B be a function.

(a) f is called 1-1 or injective if a = c for all a, c ∈ A with f(a) = f(c).

(b) f is called onto or surjective if for all b ∈ B there exists a ∈ A with f(a) = b.

(c) f is called a 1-1 correspondence or bijective if for all b ∈ B there exists a unique a ∈ A
with f(a) = b.

(d) Im f := {f(a) | a ∈ A}. Im f is called the image of f .

Observe that f is 1-1 if and only if for each b in B there exists at most one a ∈ A with
f(a) = b. So f is 1-1 correspondence if and only f is 1-1 and onto.

Also f is onto if and only if Im f = B.

Definition A.2.2. (a) Let A be a set. The identity function idA on A is the function

idA : A→ A, a→ a.



A.2. BIJECTIONS 115

(b) Let f : A→ B and g : B → C be function. Then g ◦ f is the function

g ◦ f : A→ C, a→ g(f(a)).

g ◦ f is called the composition of g and f .

Lemma A.2.3. Let f : A→ B and B → C be functions.

(a) If f and g are 1-1, so is g ◦ f .

(b) If f and g are onto, so is g ◦ f .

(c) If f and g is a bijection, so is g ◦ f .

Proof. (a) Let x, y ∈ A with (g ◦ f)(x) = (g ◦ f)(y). Then g(f(x)) = g(f(y)) Since g is 1-1,
this implies f(x) = f(y) and since f is 1-1, x = y. Hence g ◦ f is 1− 1.

(b) Let c ∈ C. Since g is onto, there exists b ∈ B with g(b) = c. Since f is onto there
exists a ∈ A with f(a) = b. Thus

(g ◦ f)(a) = g(f(a)) = g(b) = c,

and so g ◦ f is onto.
(c) Suppose f and g are bijections. By (a) , g ◦ f is 1-1 and by (b) g ◦ f is onto. So also

g ◦ f is a bijection.

Definition A.2.4. Let f : A→ B be a function.

(a) If C ⊆ A, then f(C):= {f(c) | c ∈ C}. f(C) is called the image of C under f .

(b) If D ⊆ B, then f−1(D):= {c ∈ C | f(c) ∈ D}. f−1(D) is called the inverse image of D
under f .

Lemma A.2.5. Let f : A→ B be a function.

(a) Let C ⊆ A. Then C ⊆ f−1(f(C)).

(b) Let C ⊆ A. If f is 1-1 then f−1(f(C)) = C.

(c) Let D ⊆ B. Then f(f−1(D)) ⊆ D.

(d) Let D ⊆ B. If f is onto then f(f−1(D)) = D.

Proof. (a) Let c ∈ C, then f(c) ∈ f(C) and so c ∈ f−1(f(C)). Thus (a) holds.
(b) Let x ∈ f−1(f(C)). Then f(x) ∈ f(C) and so f(x) = f(c) for some c ∈ C. Since f

is 1-1, x = c and so f−1(f(C)) ⊆ C. By (a) C ⊆ f−1(f(C)) and so (b) holds.
(c) Let x ∈ f−1(C). Then f(x) ∈ C and so (d) holds.
(d) Let d ∈ D. Since f is onto, d = f(a) for some a ∈ D. Then f(a) ∈ D and

so a ∈ f−1(D). It follows that d = f(a) ∈ f(f−1(D)). Thus D ⊆ f(f−1(D)). By
f(f−1(D)) ⊆ D and so (d) holds.
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Lemma A.2.6. Let f : A→ B be a function and suppose A 6= ∅.

(a) f is 1-1 if and only if there exists a function g : B → A with g ◦ f = idA.

(b) f is onto if and only of there exists a function g : B → A with f ◦ g = idB.

(c) f is a bijection if and only if there exists a function g : B → A with f ◦ g = idB and
g ◦A = idB.

Proof. =⇒: We first prove the ’forward’ direction of (a), (b) and (c). Since A is not empty,
we can fix an element a0 ∈ A. Let b ∈ B. If b ∈ Im f choose ab ∈ A with f(ab) = b. If
b /∈ Im f , put ab = a0. Define

g : B → A, b→ ab

(a) Suppose f is 1-1. Let a ∈ A and put b = f(a). Then b ∈ Im f and so f(ab) = b =
f(a). Since f is 1-1, ab = a and so g(f(a)) = g(b) = ab = a. Thus g ◦ f = idA.

(b) Suppose f is onto. Then B = Im f and so f(ab) = b for all b ∈ B. Thus f(g(b)) =
f(ab) = b and f ◦ g = idB.

(c) Suppose f is a 1-1 correspondence. Then f is 1-1 and onto and so by (a) and (b),
f ◦ g = idB and g ◦ f = idA.
⇐=: Now we establish the backward directions.
(a) Suppose there exists g : B → A with g ◦ f = idA. Let a, c ∈ A with f(a) = f(c).

f(a) = f(c)

=⇒ g(f(a)) = g(f(c))

=⇒ (g ◦ f)(a) = (g ◦ f)(a)

=⇒ idA(a) = idA(c)

=⇒ a = c .

Thus f(a) = f(c) implies a = c and f is 1-1.

(b) Suppose there exists g : B → A with f ◦ g = idB. Let b ∈ B and put a = g(b). Then
f(a) = f(g(b)) = (f ◦ g)(b) = idB(b) = b and so f is onto.

(c) Suppose there exists g : B → A with g ◦ f = idA and f ◦ g = idB. Then by (a) and
(b), f is 1-1 and onto. So f is a 1-1 correspondence.

A.3 Cardinalities

Definition A.3.1. Let A and B be sets. We write A ≈ B if there exists a bijection from
A to B. We write A ≺ B if there exists injection from A to B.

Lemma A.3.2. (a) ≈ is an equivalence relation.
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(b) If A and B are sets with A ≈ B, then A ≺ B.

(c) ≺ is reflexive and transitive.

(d) Let A and B be sets. Then A ≺ B if and only if there exists C ⊆ B with A ≈ C.

Proof. (a) Let A be a set. Then idA is a bijection and so A ≈ B. Hence ≈ is reflexive. Let

f : A→ B

be a bijection. Then by A.2.6(c) there exists a bijection g : B → A. So ≈ is symmetric.
Let f : A → B and g : B → C be bijections. Then by A.2.3(c) g ◦ f is a bijection and so
A ≈ C and ≈ is transitive.

(b) Obvious since any bijection is an injection.
(c) By (a) A ≈ A and so by (b) A ≺ A. A.2.3(a) shows that ≺ is transitive.
(c) Suppose f : A→ B is an injection. Then A ≈ Im f and Im f ⊆ B.
Suppose that A ≈ C for some C ⊆ B. By (b) A ≺ C. The inclusion map from C to B

shows that C ≺ B. Since ≺ is transitive we get A ≺ B.

Definition A.3.3. Let A be a set. Then |A| denotes the equivalence class of ≈ containing.
An cardinal is a class of the form |A|, A a set. If a, b are cardinals then we write a ≤ b if
there exist sets A and B with a = |A|, b = |B| and A ≺ B.

Lemma A.3.4. Let A and B be sets.

(a) |A| = |B| if and only if A ≈ B.

(b) |A| ≤ |B| if and only if A ≺ B.

Proof. (a) follows directly from the definition of |A|.
(b) If A ≺ B, then by definition of ′ ≤′, |A| ≤ |B|. Suppose that |A| ≤ |B|. Then there

exist sets A′ and B′ with |A| = |A′|, |B| = |B′| and A′ ≺ B′. Then also A ≈ A′ and B ≈ B′
and so by A.3.2, A ≺ B.

Theorem A.3.5 (Cantor-Bernstein). Let A and B be sets. Then A ≈ B if and only if
A ≺ B and B ≺ A.

Proof. If A ≈ B, then by A.3.2(a) B ≈ C and by A.3.2(b), A ≺ B and B ≺ C.
Suppose now that A ≺ B and B ≺ A. Since B ≺ A, A.3.2(d) implies B ≈ B∗ for some

B∗ ⊆ A. Then by A.3.2 B∗ ≺ A and A ≺ B∗. So replacing B by B∗ we may assume that
B ⊆ A. Since A ≺ B, A ≈ C for some C ⊆ B. Let f : A→ C be a bijection. Define

E := {a ∈ A | i = fn(d) for some n ∈ N, d ∈ A \B},

and

g : A→ A, a→

{
f(a) if a ∈ E
a if a /∈ E

.
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We will show that g is 1-1 and Im g = B.
Let x, y ∈ A with g(x) = g(y). We need to show that x = y.

Case 1: x /∈ E and y /∈ E.
Then x = g(x) = g(y) = y.

Case 2’: x ∈ E and y /∈ E.
Then x = fn(d) for some d ∈ A \ B and y = g(y) = g(x) = f(x) = fn+1(d). But then

y ∈ E, a contradiction.

Case 3: x /∈ E and y ∈ E.
This leads to the same contradiction as in the previous case.

Case 4: x ∈ E and y ∈ E.
Then f(x) = g(x) = g(y) = f(y). Since f is 1-1 we conclude that x = y.

So in all four cases x = y and g is 1-1.

We will now show that Im g ⊆ B. For this let a ∈ A.
If a ∈ E, then g(a) = f(a) ∈ C ⊆ B.
If a /∈ E, then a ∈ B since otherwise a ∈ A\B and a = f0(a) ∈ E. Hence g(a) = a ∈ B.

Thus Im g ⊆ B.
Next we show that B ⊆ Im g. For this let b ∈ B.
If b /∈ E, the b = g(b) ∈ Im g.
If b ∈ E, pick n ∈ N and d ∈ A \ B with b = fn(a). Since b ∈ B, b 6= d and so n > 0.

Observer that fn−1(d) ∈ E and so b = f(fn−1(d)) = g(fn−1(d)) ∈ Im g. Thus B ⊆ Im g.
It follows that B = Im g. Therefore g is a bijection from A to B and so A ≈ B.

Corollary A.3.6. Let c and d be cardinals. Then c = d if and only if c ≤ d and d ≤ c.

Proof. Follows immediately from A.3.5 and A.3.4.

Definition A.3.7. Let I be a set. Then I is called finite if the exists n ∈ N and a bijection
f : I → {1, 2, . . . , n}. I is called countable if either I is finite or there exists a bijections
f : I → Z+.

Example A.3.8.

We will show that
|Z+| < |R|,

where < means ≤ but not equal. In particular R is not countable Since |[0, 1)| ≤ |R| it
suffices to show that |Z+| < |[0, 1)|. Since the map Z+ → [0, 1, n→ 1

n is 1-1, |Z+| ≤ |[0, 1)|.
So it suffices to show that |Z+| 6= |[0, 1)|.

Let f : Z+ → [1, 0) be function. We will show that f is not onto. Note that any r ∈ [0, 1)
can be unique written as

r =

∞∑
i=1

ri
10i

,
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where ri is an integer with 0 ≤ ri ≤ 9, and not almost all ri are equal to 9. (almost all
means all but finitely many). For i ∈ Z+ define

s(i) :=

{
0 if f(i)i 6= 0

1 if f(i)i = 0
.

This definition is made so that s(i) 6= f(i)i for all i ∈ Z+.

Put s :=
∑∞

i=1
s(i)
10i

. Then for any i ∈ Z+, si = s(i) 6= f(i)i and so s 6= f(i). Thus
s /∈ Im f and f is not onto.

We proved that there does not exist an onto function from Z+ to [1, 0). In particular,
there does not exist a bijection from Z+ to [1, 0) and |Z+| 6= |[1, 0)|.

Lemma A.3.9. (a) Let A and B be countable sets. Then A×B is countable.

(b) Let A be a countable set. Then Bn is countable for all positive integers n.

Proof. (a) It suffices to show that Z+ × Z+ is countable. Let (a, b), (c, d) ∈ Z+. We define
the relation < on Z+ × Z+ by (a, b) < (c, d) if one of the following holds:

max(a, b) < max(c, d);

max(a, b) = max(c, d), and a < c; or

max(a, b) = max(c, d), a = c and b < d

So (1, 1) < (1, 2) < (2, 1) < (2, 2) < (1, 3) < (2, 3) < (3, 1) < (3, 2)) < (3, 3) < (1, 4) <
(2, 4) < (3, 4) < (4, 1) < (4, 2) < (4, 3) < (4, 4) < (1, 5) < . . .

Let a1 = (1, 1) and inductively let an+1 smallest element (with respect to ′ <′) which is
larger than an in Z+ × Z+. So a2 = (1, 2), a3 = (2, 1), a4 = (2, 2), a5 = (1, 3) and so on.
We claim that

f : Z+ → Z+ × Z+, n→ an

is a bijection. Indeed if n < m, then an < am and so f is 1-1. Let (c, d) ∈ Z+ × Z+. Then
max(a, b) < max(c, d) for all (a, b) with (a, b) < (c, d). Hence there exist only finitely many
(a, b)′s with (a, b) < (c, d). Let (x, y) be the largest of these. Then by induction (x, y) = an
for some n and so (c, d) = an+1. Thus f is onto.

(b) The proof is by induction on n. If n = 1, (b) clearly holds. So suppose that (b) holds
for n = k. So Ak is countable. Since Ak+1 = A × Ak, (a) implies that Ak+1 is countable.
So by the Principal of Mathematical Induction, (b) holds for all positive integers n.
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Appendix B

List of Theorems, Definitions, etc

B.1 List of Theorems, Propositions and Lemmas

Lemma 1.2.1. Let u, a, b be objects with {u, a} = {u, b}. Then a = b.

Proposition 1.2.2. Let a, b, c, d be objects. Then

(a, b) = (c, d) if and only if a = c and b = d.

Lemma 1.3.7. Let ∗ be a binary operation on the set I, then ∗ has at most one identity in
I.

Proof. Let e and f be identities of ∗. Then e ∗ f = f since e is an identity and e ∗ f = e
since f is an identity. Hence e = f . So any two identities of ∗ are equal.

Lemma 1.3.10. Let ∗ be an associative binary operation on the set I with identity e. Then
each a ∈ I has at most one inverse in I with respect to ∗.

Lemma 1.4.2. Let G be a group and a, b ∈ G.

(a) (a−1)−1 = a.

(b) a−1(ab) = b, (ba)a−1 = b, (ba−1)a = b and a(a−1b) = b.

Lemma 1.4.3. Let G be a group and a, b, c ∈ G. Then

ab = ac

⇐⇒ b = c

⇐⇒ ba = ca .

Lemma 1.4.4. Let G be a group and a, b ∈ G.

(a) The equation ax = b has a unique solution in G, namely x = a−1b.

121
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(b) The equation ya = b has a unique solution in G, namely y = ba−1.

(c) b = a−1 if and only if ab = e and if and only if ba = e.

(d) (ab)−1 = b−1a−1.

Lemma 1.4.7. Let G be a group, a ∈ G and n,m ∈ Z. Then

(a) anam = an+m.

(b) anm = (an)m.

Proposition 1.5.3 (Subgroup Proposition). (a) Let (G, ∗) be a group and H a subset of
G. Suppose that

(i) H is closed under ∗, that is a ∗ b ∈ H for all a, b ∈ H.

(ii) eG ∈ H.

(iii) H is closed under inverses, that is a−1 ∈ H for all a ∈ H.(where a−1 is the inverse
of a in G with respect to ∗.

Define 4 : H ×H → H, (a, b)→ a ∗ b. Then 4 is a well-defined binary operation on H
and (H,4) is a subgroup of (G, ∗).

(b) Suppose (H,4) is a subgroup of (G, ∗). Then

(a) (a:i),(a:ii) and (a:iii) hold.

(b) eH = eG.

(c) Let a ∈ H. Then the inverse of a in H with respect to 4 is the same as the inverse
of a in G with respect to ∗.

Lemma 1.5.4. Let G be a group.

(a) Let A and B be subgroups of G. Then A ∩B is a subgroup of G.

(b) Let (Gi, i ∈ I) a family of subgroups of G, i.e. I is a set and for each i ∈ I,Gi is a
subgroup of G. Then ⋂

i∈I
Gi

is a subgroup of G.

Lemma 1.5.5. Let I be a subset of the group G.

• Put H1 :=
⋂

I⊆H≤G
H. In words, H1 is the intersection of all the subgroups of G

containing I.

• Let H2 be a subgroup of G such that I ⊆ H and whenever K is a subgroup of G with
I ⊆ K, then H2 ⊆ K.
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• Let J be subset of G. We say that e is product of length 0 of J . Inductively, we say
that g ∈ G is a product of length k + 1 of J if g = hj where h is a product of length
k of J and j ∈ J . Set I−1 = {i−1 | i ∈ I} and let H3 be the set of all products of
arbitrary length of I ∪ I−1.

Then H1 = H2 = H3.

Lemma 1.6.2. Let f : A→ B be a function and define g : A→ Im f, a→ f(a).

(a) g is onto.

(b) f is 1-1 if and only if g is 1-1.

Lemma 1.6.5. Let f : G→ H be a homomorphism of groups.

(a) f(eG) = eH .

(b) f(a−1) = f(a)−1 for all a ∈ G.

(c) Im f is a subgroup of H.

(d) If f is 1-1, then G ∼= Im f .

Theorem 1.6.7 (Cayley’s Theorem). Every group is isomorphic to group of permutations.

Proposition 1.7.3. Let K be a subgroup of the group G. Then ′ ≡ (mod K)′ is an
equivalence relation on G.

Proposition 1.7.6. Let K be a subgroup of the group G and a, b ∈ G. Then aK is the
equivalence class of ′ ≡ (mod K)′ containing a. Moreover, the following statements are
equivalent

(a) b = ak for some k ∈ K.

(b) a−1b = k for some k ∈ K.

(c) a−1b ∈ K.

(d) a ≡ b (mod K).

(e) b ∈ aK.

(f) aK ∩ bK 6= ∅.

(g) aK = bK.

(h) a ∈ bK.

(i) b ≡ a (mod K).

(j) b−1a ∈ K.

(k) b−1a = j for some j ∈ K.

(l) a = bj for some j ∈ K.

Proposition 1.7.7. Let K be a subgroup of the group G.

(a) Let T ∈ G/K and a ∈ G. Then a ∈ T if and only if T = aK.

(b) G is the disjoint union of its cosets, that is every element of G lies in a unique coset of
K.
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(c) Let T ∈ G/K and a ∈ T . Then the map δ : K → T, k → ak is a bijection. In particular,
|T | = |K|.

Theorem 1.7.9 (Lagrange). Let G be a finite group and K a subgroup of G. Then

|G| = |K| · |G/K|.

In particular, |K| divides |G|.

Corollary 1.7.11. Let G be a finite group.

(a) If a ∈ G, then the order of a divides the order of G.

(b) If |G| = n, then an = e for all a ∈ G.

Lemma 1.7.14. Let G be a group of finite order n.

(a) Let g ∈ G. Then G = 〈g〉 if and only if |g| = n.

(b) G is cyclic if and only if G contains an element of order n.

Corollary 1.7.15. Any group of prime order is cyclic.

Lemma 1.8.1. Let G be a group, A,B,C subsets of G and g, h ∈ G. Then

(a) A(BC) = {abc | a ∈ A, b ∈ B, c ∈ C} = (AB)C.

(b) A(gh) = (Ag)h, (gB)h = g(Bh) and (gh)C = g(hC).

(c) Ae = A = Ae = (Ag)g−1 = g−1(gA).

(d) A = B if and only if Ag = Bg and if and only if gA = gB.

(e) A ⊆ B if and only if Ag ⊆ Bg and if and only if gA ⊆ gB.

(f) If A is subgroup of G, then AA = A and A−1 = A.

(g) (AB)−1 = B−1A−1.

(h) (gB)−1 = B−1g−1 and (Ag)−1 = g−1A−1.

Lemma 1.8.5. Let G be an abelian group. Then AB = BA for all subsets A,B of G. In
particular, every subgroup of G is normal in G.

Lemma 1.8.6. Let N be a subgroup of the group G. Then the following statements are
equivalent:

(a) N is normal in G.

(b) aNa−1 = N for all a ∈ G.
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(c) aNa−1 ⊆ N for a ∈ G.

(d) ana−1 ∈ N for all a ∈ G and n ∈ N .

(e) Every right coset of N is a left coset of N .

Proposition 1.8.7 (Normal Subgroup Proposition). Let N be a subset of the group G.
Then N is a normal subgroup of G if and only if

(i) N is closed under multiplication, that is ab ∈ N for all a, b ∈ N .

(ii) eG ∈ N .

(iii) N is closed under inverses, that is a−1 ∈ N for all a ∈ N .

(iv) N is invariant under conjugation, that is gng−1 ∈ N for all g ∈ G and n ∈ N .

Corollary 1.8.8. Let N be a normal subgroup of the group G, a, b ∈ G and T ∈ G/N .

(a) (aN)(bN) = abN .

(b) (aN)−1 = a−1N .

(c) NT = T .

(d) T−1 ∈ G/N , TT−1 = N and T−1T = N .

Theorem 1.8.10. Let G be a group and N EG. Then (G/N, ∗G/N ) is group. The identity
of G/N is

eG/N = N = eN,

and the inverse of T = gN ∈ G/N with respect to ∗G/N is

(gN)−1 = T−1 = {t−1 | t ∈ T} = g−1N.

Lemma 1.9.2. Let φ : G → H be a homomorphism of groups. Then kerφ is a normal
subgroup of G.

Lemma 1.9.3. Let N be a normal subgroup of G and define

φ : G→ G/N, g → gN.

Then φ is an onto group homomorphism with kerφ = N . φ is called the natural homomor-
phism from G to G/N .

Corollary 1.9.4. Let N be a subset of the group G. Then N is a normal subgroup of G if
and only if N is the kernel of a homomorphism.



126 APPENDIX B. LIST OF THEOREMS, DEFINITIONS, ETC

Theorem 1.9.5 (First Isomorphism Theorem). Let φ : G → H be a homomorphism of
groups. Then

φ : G/ kerφ→ Imφ, g kerφ→ φ(g)

is well-defined isomorphism of groups. In particular

G/ kerφ ∼= Imφ.

Proof. Put N = kerφ and Let a, b ∈ G. Then

gN = hN

⇐⇒ g−1h ∈ N − 1.7.6

⇐⇒ φ(g−1h) = eH − Definition of N = kerφ

⇐⇒ φ(g)−1φ(h) = eH − φ is a homomorphism, 1.6.5(b)

⇐⇒ φ(h) = φ(g) − Multiplication with φ(g) from the left,

Cancellation law

So

(∗) gN = hN ⇐⇒ φ(g) = φ(h).

Since gN = hN implies φ(g) = φ(h) we conclude that φ is well-defined.
Let S, T ∈ G/N . Then there exists g, h ∈ N with S = gN and T = hN .
Suppose that φ(T ) = φ(S). Then

φ(g) = φ(gN) = φ(S) = φ(T ) = φ(hN) = φ(h),

and so by (*) gN = hN . Thus S = T and φ is 1-1.
Let b ∈ Imφ. Then there exists a ∈ G with b = φ(a) and so φ(aN) = φ(a) = b.

Therefore φ is onto.
Finally

φ(ST ) = φ(gNhN)
1.8.8(a)

= φ(ghN) = φ(gh) = φ(g)φ(h) = φ(gN)φ(hN) = φ(S)φ(T )

and so φ is a homomorphism. We proved that φ is a well-defined, 1-1 and onto homomor-
phism, that is a well-defined isomorphism.

Lemma 1.9.8. Let (A, ∗) and (B, � ) be groups. Then

(a) (A×B, ∗×� ) is a group.

(b) eA×B = (eA, eB).

(c) (a, b)−1 = (a−1, b−1).
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(d) If A and B are abelian, so is A×B.

Lemma 1.9.10. Let G be a group, H a subgroup of G and T ⊆ H.

(a) T is a subgroup of G if and only if T is a subgroup of H.

(b) If T EG, then T EH.

(c) If α : G → F is a homomorphism of groups, then αH : H → F, h → α(h) is also a
homomorphism of groups. Moreover, kerαH = H ∩ kerα and if α is 1-1 so is αH .

Theorem 1.9.11 (Second Isomorphism Theorem). Let G be a group, N a normal subgroup
of G and A a subgroup of G. Then A∩N is a normal subgroups of A, AN is a subgroup of
G, N is a normal subgroup of AN and the map

A/A ∩N → AN/N, a(A ∩N)→ aN

is a well-defined isomorphism. In particular,

A/A ∩N ∼= AN/N.

Lemma 1.9.13. Let φ : G→ H be a homomorphism of groups.

(a) If A ≤ G then φ(A) is a subgroup of H, where φ(A) = {φ(a) | a ∈ A}.

(b) If AEG and φ is onto, φ(A)EH.

(c) If B ≤ H, then φ−1(B) is a subgroup of G, where φ−1(B) := {a ∈ A | φ(a) ∈ A}

(d) If B EH, then φ−1(B)EG.

Theorem 1.9.14 (Correspondence Theorem). Let N be a normal subgroup of the group G.
Put

S(G,N) = {H | N ≤ H ≤ G} and S(G/N) = {F | F ≤ G/N}.
Let

π : G→ G/N, g → gN

be the natural homomorphism.

(a) Let N ≤ K ≤ G. Then π(K) = K/N .

(b) Let F ≤ G/N . Then π−1(F ) =
⋃
T∈F T .

(c) Let N ≤ K ≤ G and g ∈ G. Then g ∈ K if and only if gN ∈ K/N .

(d) The map
β : S(G,N)→ S(G/N), K → K/N

is a well-defined bijection with inverse

α : S(G/N)→ S(G,N), F → π−1(F ).

In other words:
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(a) If N ≤ K ≤ G, then K/N is a subgroup of G/N .

(b) For each subgroup F of G/N there exists a unique subgroup K of G with N ≤ K
and F = K/N . Moreover, K = π−1(F ).

(e) Let N ≤ K ≤ G. Then K EG if and only if K/N EG/N .

(f) Let N ≤ H ≤ G and N ≤ K ≤ G. Then H ⊆ K if and only if H/N ⊆ K/N .

(g) (Third Isomorphism Theorem) Let N ≤ H EG. Then the map

ρ : G/H → (G/N)
/

(H/N), gH → (gN) ∗ (H/N)

is a well-defined isomorphism.

Lemma 2.1.3. Let G be a group and I a set.

(a) Suppose � is an action of G on I. For a ∈ G define

fa : I → I, i→ a � i.

Then fa ∈ Sym(I) and the map

Φ� : G→ Sym(I), a→ fa

is a homomorphism. Φ� is called the homomorphism associated to the action of G on
I.

(b) Let Φ : G→ Sym(I) be homomorphisms of groups. Define

� : G× I → I, (g, i)→ Φ(g)(i).

Then � is an action of G on I.

Lemma 2.1.5. Let G be a group and H a subgroups of G. Define

�G/H : G×G/H → G/H, (g, T )→ gT

Then �G/H is well-defined action of G on G/H. This action is called the action of G on
G/H by left multiplication.

Lemma 2.1.7 (Cancellation Law for Action). Let G be a group acting on the set I, a ∈ G
and i, j ∈ H. Then

(a) a−1(ai) = i.

(b) i = j ⇐⇒ ai = aj.

(c) j = ai ⇐⇒ i = a−1j.

Lemma 2.1.10. Let G be a group acting in the set I. Then ′ ≡ (mod G)′ is an equivalence
relation on I. The equivalence class of ′ ≡ (mod G)′ containing i ∈ I is Gi.

Proposition 2.1.11. Let G be a group acting on the set I and i, j ∈ G. Then following
are equivalent.
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(a) j = gi for some g ∈ G.

(b) i ≡ j (mod G)

(c) j ∈ Gi.

(d) Gi ∩Gj 6= ∅

(e) Gi = Gj

(f) i ∈ Gj.

(g) j ≡ i (mod G).

(h) i = hj for some h ∈ G

Corollary 2.1.13. Let G be group acting on the non-empty set I. Then the following are
equivalent

(a) G acts transitively on I.

(b) I = Gi for all i ∈ I.

(c) I = Gi for some i ∈ I.

(d) I is an orbit for G on I.

(e) G has exactly one orbit on I.

(f) Gi = Gj for all i, j ∈ G.

(g) i ≡ j (mod G) for all i, j ∈ G.

Theorem 2.1.16 (Isomorphism Theorem for G-sets). Let G be a group and (I, �) a G-set.
Let i ∈ I and put H = StabG(i). Then

φ : G/H → Gi, aH → ai

is a well-defined G-isomorphism.
In particular

G/H ∼=G Gi, |Gi| = |G/ StabG(i)| and |Gi| divides |G|

Theorem 2.1.18 (Orbit Equation). Let G be a group acting on a finite set I. Let Ik, 1 ≤
k ≤ n be the distinct orbits for G on I. For each 1 ≤ k ≤ n let ik be an element of Ik.
Then

|I| =
n∑
i=1

|Ik| =
n∑
i=1

|G/ StabG(ik)|.

Lemma 2.2.4. Let G be a finite group, p a prime and let |G| = pkl with k ∈ N, l ∈ Z+

and p - l.

(a) If P is a p-subgroup of G, then |P | ≤ pk.

(b) If S ≤ G with |S| = pk, then S is a Sylow p-subgroup of G.
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Lemma 2.2.7 (Fixed-Point Formula). Let p be a prime and P a p-group acting on finite
set I. Then

|I| ≡ |FixI(P )| (mod p).

In particular, if p - |I|, then P has a fixed-point on I.

Lemma 2.2.10. Let G be a group and (I, �) a G-set.

(a) �P is an action of G on P(I).

(b) Let H ≤ G and J be a H-invariant subset of I. Then �H,J is an action of H on J .

Lemma 2.2.12. Let G be a group, H a subgroup of G and a ∈ G.

(a) aHa−1 is a subgroup of G isomorphic to H. So conjugate subgroups of G are isomorphic.

(b) If H is a p-subgroup of G for some prime p, so is aHa−1.

Lemma 2.2.13. Let G be a finite group and p a prime. Then

� : G× Sylp(G)→ Sylp(G), (g, P )→ gPg−1

is a well-defined action of G on Sylp(G). This action is called the action of G on Sylp(G)
by conjugation.

Lemma 2.2.14 (Order Formula). Let A and B be subgroups of the group G.

(a) Put AB/B = {gB | g ∈ AB}. The map

φ : A/A ∩B → AB/B, a(A ∩B)→ aB

is a well-defined bijection.

(b) If A and B are finite, then

|AB| = |A| · |B|
|A ∩B|

.

Theorem 2.2.15. Let G be a finite group and p a prime.

(a) (Second Sylow Theorem) G acts transitively on Sylp(G) by conjugation, that is any two
Sylow p-subgroups of G are conjugate in G and so if S and T are Sylow p-subgroups of
G, then S = gTg−1 for some g ∈ G.

(b) (Third Sylow Theorem) The number of Sylow p-subgroups of G divides |G| and is con-
gruent to 1 modulo p.

Lemma 2.2.16. Let I be a set. Then Sym(n) acts on In via

f � (i1, i2, . . . in) = (if−1(1), if−1(2), . . . , if−1(n)).

So if i = (i1, i2, . . . , in) ∈ In and j = f � i = (j1, j2, . . . , jn) then jf(l) = il.
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Theorem 2.2.17 (Cauchy’s Theorem). Let G be a finite group and p a prime dividing the
order of G. Then G has an element of order p.

Proposition 2.2.18. Let G be a finite group and p a prime. Then any p-subgroup of G is
contained in a Sylow p-subgroup of G. In particular, G has a Sylow p-subgroup.

Theorem 2.2.19 (First Sylow Theorem). Let G be a finite group, p a prime and S ∈
Sylp(G). Let |G| = pkl with k ∈ N, l ∈ Z+ and p - l (pk is called the p-part of |G|). Then

|S| = pk. In particular,

Sylp(G) = {P ≤ G
∣∣|P | = pk}

and G has a subgroup of order pk.

Lemma 2.2.21. Let G be a finite group and p a prime. Let S be a Sylow p-subgroup of G.
Then S is normal in G if and only if S is the only Sylow p-subgroup of G.

Lemma 2.2.22. Let φ : A→ B be a homomorphism of groups. Then φ is 1-1 if and only
of kerφ = {eA}.

Lemma 2.2.24. Let G be a group and A,B normal subgroups of G with A ∩ B = {e}.
Then AB is a subgroup of G, ab = ba for all a ∈ A, b ∈ B and the map

φ : A×B → AB, (a, b)→ ab

is an isomorphism of groups. In particular,

AB ∼= A×B.

Lemma 2.2.25. Let A be finite abelian groups. Let p1, p2, . . . pn be the distinct prime
divisor of |A| (and so |A| = pm1

1 φ2m2 . . . p
mk
n for some positive integers mi). Then for each

1 ≤ i ≤ n, G has a unique Sylow pi-subgroup Ai and

A ∼= A1 ×A2 × . . .×An.

Lemma 3.1.5. Let K be a field, V a K-space and L = (v1, . . . , vn) a list of vectors in V .
Then L is a basis for V if and only if for each v ∈ V there exists uniquely determined
k1, . . . , kn ∈ K with

v =
m∑
i=1

kivi.

Lemma 3.1.6. Let K be field and V a K-space. Let L = (v1, . . . , vn) be a list of vectors in V .
Suppose the exists 1 ≤ i ≤ n such that vi is linear combination of (v1, . . . , vi−1, vi+1, . . . , vn).
Then L is linearly dependent.

Lemma 3.1.7. Let K be field, V an K-space and L = (v1, v2, . . . vn) a finite list of vectors
in V . Then the following three statements are equivalent:
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(a) L is basis for V .

(b) L is a minimal spanning list, that is L spans V but for all 1 ≤ i ≤ n,

(v1, . . . , vi−1, vi+1, . . . , vn)

does not span V .

(c) L is maximal linearly independent list, that is L is linearly independent, but for all
v ∈ V , (v1, v2, . . . , vn, v) is linearly dependent.

Lemma 3.1.10. Let K be a field and V and W be K-spaces. Suppose that (v1, v2, . . . , vn)
is basis of V and let w1, w2, . . . wn ∈W . Then

(a) There exists a unique K-linear map f : V →W with f(vi) = wi for each 1 ≤ i ≤ n.

(b) f(
∑n

i=1 kivi) =
∑n

i=1 kiwi. for all k1, . . . , kn ∈ K.

(c) f is 1-1 if and only if (w1, w2, . . . , wn) is linearly independent.

(d) f is onto if and only if (w1, w2, . . . , wn) spans W .

(e) f is an isomorphism if and only if (w1, w2, . . . , wn) is a basis for W .

Corollary 3.1.11. Let K be a field and W a K-space with basis (w1, w2 . . . , wn). Then the
map

f : Kn →W, (a1, . . . an)→
n∑
i=1

aiwi

is a K-isomorphism. In particular,

W ∼=K Kn.

Proposition 3.1.13 (Subspace Proposition). Let K be a field, V a K-space and W an
K-subspace of V .

(a) Let v ∈ V and k ∈ K. Then 0Kv = v, (−1K)v = −v and k0V = 0V .

(b) W is a subgroup of V with respect to addition.

(c) W together with the restriction of the addition and scalar multiplication to W is a
well-defined K-space.

Proposition 3.1.14 (Quotient Space Proposition). Let K be field, V a K-space and W a
K-subspace of V .
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(a) V/W := {v +W | v ∈ V } together with the addition

+V/W : V/W × V/W → V/W, (u+ V, v +W )→ (u+ v) +W

and scalar multiplication

�V/W : K× V/W → V/W, (k, v +W )→ kv +W

is a well-defined vector space.

(b) The map φ : V → V/W, v +W is an onto and K-linear. Moreover, kerφ = W .

Lemma 3.1.15. Let K be field, V a K-space, W a subspace of V . Suppose that (w1, . . . , wl)
be a basis for W and let (v1, . . . , vl) be a list of vectors in V . Then the following are
equivalent

(a) (w1, w2, . . . , wk, v1, v2, . . . vl) is a basis for V .

(b) (v1 +W, v2 +W, . . . , vl +W ) is a basis for V/W .

Lemma 3.1.16. Let K be field, V a K-space and (v1, . . . , vn) and (w1, . . . wm) be bases for
V . Then n = m.

Lemma 3.1.18. Let K be a field and V an K-space with a finite spanning list L =
(v1, v2, . . . , vn). Then some sublist of L is a basis for V . In particular, V is finite di-
mensional and dimK V ≤ n.

Theorem 3.1.19 (Dimension Formula). Let V be a vector space over the field K. Let W
be an K-subspace of V . Then V is finite dimensional if and only if both W and V/W are
finite dimensional. Moreover, if this is the case, then

dimK V = dimKW + dimK V/W.

Corollary 3.1.20. Let V be a finite dimensional vector space over the field K and L a
linearly independent list of vectors in V . Then L is contained in a basis of V and so

|L| ≤ dimK V.

Lemma 3.2.3. Let K : F be a field extension. Then K is vector space over F, where the
scalar multiplication is given by

F×K→ K, (f, k)→ fk

Lemma 3.2.6. Let K : F be a field extension and V a K-space. Then with respect to the
restriction of the scalar multiplication to F, V is an F-space. If V is finite dimensional over
K and K : F is finite, then V is finite dimensional over F and

dimF V = dimFK · dimK V.
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Corollary 3.2.7. Let E : K and K : F be finite field extensions. Then also E : F is a finite
field extension and

dimF E = dimFK · dimK E.

Lemma 3.2.8. Let F be a field and I a non-zero ideal in F[x].

(a) There exists a unique monic polynomial p ∈ F[x] with I = F[x]p = (p).

(b) F [x]/I is an integral domain if and only if p is irreducible and if and only if F [x]/I is
field.

Lemma 3.2.11. Let K : F be a field extension and a ∈ K.

(a) The map φa : F[x]→ K, f → f(a) is a ring homomorphism.

(b) Imφa = F[a] is a subring of K.

(c) φa is 1-1 if and only if kerφa = {0F} and if and only if a is transcendental.

Theorem 3.2.12. Let K : F be a field extension and a ∈ K. Suppose that a is transcendental
over F. Then

(a) φ̃a : F[x]→ F[a], f → f(a) is an isomorphism of rings.

(b) For all n ∈ N, (1, a, a2, . . . , an) is linearly independent over F.

(c) F[a] is not finite dimensional over F and K : F is not finite.

(d) a−1 /∈ F[a] and F[a] is not a subfield of K.

Theorem 3.2.13. Let K : F be a field extension and a ∈ K. Suppose that a is algebraic
over F. Then

(a) There exists a unique monic polynomial pa ∈ F[x] with kerφa = (pa).

(b) φa : F[x]/(pa)→ F[a], f + (pa)→ f(a) is a well-defined isomorphism of rings.

(c) pa is irreducible.

(d) F[a] is a subfield of K.

(e) Let Put n = deg pa. Then (1, a, . . . , an−1) is an F-basis for F[a]

(f) dimF F[a] = deg pa.

(g) Let g ∈ F[x]. Then g(a) = 0K if and only if pa | g in F[x].

Lemma 3.2.15. Let K : F be a field extension and a ∈ K be algebraic over F. Let p ∈ F[x].
Then p = pa if and only of p is monic, and irreducible and p(a) = 0F.
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Lemma 3.2.17. (a) Let α : R→ S and β : S → T be ring isomorphisms. Then

β ◦ α : R→ T, r → β(α(r))

and
α−1 : S → R, s→ α−1(s)

are ring isomorphism.

(b) Let R and S be rings, I an ideal in R and α : R→ S a ring isomorphism. Put J = α(I).
Then

(a) J is an ideal in S.

(b) β : I → J, i→ α(i) is a ring isomorphism.

(c) γ : R/I → S/J, r + I → α(i) + J is a well-defined ring isomorphism.

(d) α
(
(a)
)

=
(
α(a)

)
for all a ∈ R. That is α maps to ideal in R generated by a to the

ideal in S generated in α(a).

(c) Let R and S be commutative rings with identities and σ : R → S a ring isomorphism.
Then

R[x]→ S[x],
n∑
i=1

fix
i →

n∑
i=1

σ(i)xi

is a ring isomorphism. In the following, we will denote this ring isomorphism also by
σ. So if f =

∑n
i=0 fix

i ∈ F[x], then σ(f) =
∑n

i=0 σ(fi)x
i.

Corollary 3.2.18. Let σ : K1 → K2 be a field isomorphism. For i = 1, 2 let Ei : Ki

be a field extension and suppose ai ∈ Ki is algebraic over Ki with minimal polynomial pi.
Suppose that σ(p1) = p2. Then there exists a field isomorphism

σ̌ : K1[a1]→ K2[a2]

with
ρ(a1) = a2 and ρ |K1= σ

Lemma 3.3.3. Any finite field extension is algebraic.

Proposition 3.3.6. Let F be a field and f ∈ F[x]. Then there exists a splitting field K for
f over F. Moreover, K : F is finite of degree at most n!.

Theorem 3.3.7. Suppose that

(i) σ : F1 → F2 is an isomorphism of fields;

(ii) For i = 1 and 2, fi ∈ F[x] and Ki a splitting field for fi over Fi; and
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(iii) σ(f1) = f2

Then there exists a field isomorphism

σ̌ : K1 → K2 with σ̌ |F1= σ.

Suppose in addition that

(iv) For i = 1 and 2, pi is an irreducible factor of fi in F[x] and ai is a root of pi in Ki;
and

(v) σ(p1) = σ(p2).

Then σ̌ can be chosen such that

σ(a1) = a2.

Lemma 3.4.3. Let K : E and E : F be a field extensions.

(a) Let a ∈ K be algebraic over F. Then a is algebraic over E. Moreover, if pEa is the
minimal polynomial of a over E, and pFa is the minimal polynomial of a over F, then pEa
divides pFa in E[x].

(b) If f ∈ F[x] is separable over F, then f is separable over E.

(c) If a ∈ K is separable over F, then a is separable over E.

(d) If K : F is separable, then also K : E and E : K are separable.

Lemma 3.5.2. Let K : F be a field extension. Then AutF(K) is a subgroup of Sym(K).

Lemma 3.5.5. Let K : F be a field extension and H a subset of AutF(K). Then FixK(H)
is subfield of K containing F.

Proposition 3.5.7. Let K : F be a field extension and 0F 6= f ∈ F[x].

(a) Let a ∈ K and σ ∈ AutF(K). Then σ(f(a)) = f(σ(a)).

(b) The set of roots of f in K is invariant under AutF(K). That is if a is a root of f in K
and σ ∈ AutK(K), then σ(a) is also a root of f in K.

(c) Let a ∈ K. Then StabAutF(K)(a) = AutF(a)(K).

(d) Let a be root of f in K. Then

|AutF(K)/AutF[a](K)| = |{σ(a) | σ ∈ AutF(K)}|.

Theorem 3.5.8. Let F be a field and K the splitting field of a separable polynomial over F.
Then

|AutF(K)| = dimFK.
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Lemma 3.5.10. Let K : F be a field extension and G a finite subgroup of AutF(K) with
FixK(G) = F. Then dimFK ≤ |G|.

Proposition 3.5.11. Let K : F be a field extension and G a finite subgroup of AutF(K)
with FixK(G) = F. Let a ∈ K. Then a is algebraic over F. Let a1, a2, . . . an be the distinct
elements of Ga = {σ(a) | σ ∈ G}. Then

pa = (x− a1)(x− a2) . . . (x− an).

In particular, pa splits over K and K is separable over F.

Theorem 3.5.13. Let K : F be a field extension. Then the following statements are equiv-
alent.

(a) K is the splitting field of a separable polynomial over F.

(b) AutF(K) is finite and F = FixK(AutF(K)).

(c) F = FixK(G) for some finite subgroup G of AutF(K).

(d) K : F is finite, separable and normal.

Lemma 3.5.14. Let K : F be a field extension. Let σ ∈ AutF(K) and let E be subfield field
of K containing F. Then

σAutE(K)σ−1 = Autσ(E)(K)

Lemma 3.5.16. Let K : F be a Galois extension and E an intermediate field of K : F. The
following are equivalent:

(a) E : F is normal.

(b) E : F is Galois.

(c) E is invariant under AutF(K), that is σ(E) = E for all σ ∈ AutF(K).

Theorem 3.5.17 (Fundamental Theorem of Galois Theory). Let K : F be a Galois Exten-
sion. Let E be an intermediate field of K : F and G ≤ AutF(K).

(a) The map

E→ AutE(K)

is a bijection between to intermediate fields of K : F and the subgroups of AutF(K). The
inverse of this map is given by

G→ FixK(G).

(b) |G| = dimFixK(G) K and dimEK = |AutE(K)|.
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(c) E : F is normal if and only if AutE(K) is normal in AutF(K).

(d) If E : F is normal, then the map

AutF(K)/AutE(K)→ AutF(E), σAutE(K)→ σ |E
is a well-defined isomorphism of groups.

Theorem A.1.3. Let ∼ be an equivalence relation on the set A and a, b ∈ A. Then the
following statements are equivalent:

(a) a ∼ b.

(b) b ∈ [a].

(c) [a] ∩ [b] 6= ∅.

(d) [a] = [b].

(e) a ∈ [b]

(f) b ∼ a.

Lemma A.2.3. Let f : A→ B and B → C be functions.

(a) If f and g are 1-1, so is g ◦ f .

(b) If f and g are onto, so is g ◦ f .

(c) If f and g is a bijection, so is g ◦ f .

Lemma A.2.5. Let f : A→ B be a function.

(a) Let C ⊆ A. Then C ⊆ f−1(f(C)).

(b) Let C ⊆ A. If f is 1-1 then f−1(f(C)) = C.

(c) Let D ⊆ B. Then f(f−1(D)) ⊆ D.

(d) Let D ⊆ B. If f is onto then f(f−1(D)) = D.

Lemma A.2.6. Let f : A→ B be a function and suppose A 6= ∅.

(a) f is 1-1 if and only if there exists a function g : B → A with g ◦ f = idA.

(b) f is onto if and only of there exists a function g : B → A with f ◦ g = idB.

(c) f is a bijection if and only if there exists a function g : B → A with f ◦ g = idB and
g ◦A = idB.

Lemma A.3.2. (a) ≈ is an equivalence relation.

(b) If A and B are sets with A ≈ B, then A ≺ B.

(c) ≺ is reflexive and transitive.

(d) Let A and B be sets. Then A ≺ B if and only if there exists C ⊆ B with A ≈ C.
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Lemma A.3.4. Let A and B be sets.

(a) |A| = |B| if and only if A ≈ B.

(b) |A| ≤ |B| if and only if A ≺ B.

Theorem A.3.5 (Cantor-Bernstein). Let A and B be sets. Then A ≈ B if and only if
A ≺ B and B ≺ A.

Corollary A.3.6. Let c and d be cardinals. Then c = d if and only if c ≤ d and d ≤ c.

Lemma A.3.9. (a) Let A and B be countable sets. Then A×B is countable.

(b) Let A be a countable set. Then Bn is countable for all positive integers n.

B.2 Definitions from the Lecture Notes

Definition 1.3.1. Let S be a set. A binary operation is a function ∗ : S × S → S. We
denote the image of (s, t) under ∗ by s ∗ t.

Definition 1.3.3. Let ∗ be a binary operation on a set I. Then ∗ is called associative if

(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ I

Definition 1.3.5. Let I be a set and ∗ a binary operation on I. An identity of ∗ in I is a
element e ∈ I with e ∗ i = i and i = i ∗ e for all i ∈ I.

Definition 1.3.8. Let ∗ be a binary operation on the set I with identity e. The a ∈ I is
called invertible if there exists b ∈ I with a ∗ b = e and b ∗ a = e. Any such b is called an
inverse of a with respect to ∗.

Definition 1.3.11. A group is tuple (G, ∗) such that G is a set and

(i) ∗ : G×G→ G is a binary operation.

(ii) ∗ is associative.

(iii) ∗ has an identity e in G.

(iv) Each a ∈ G is invertible in G with respect to ∗.

Definition 1.4.5. Let G be a group, a ∈ G and n ∈ N. Then

(a) a0 := e,

(b) Inductively an+1 := ana.

(c) a−n := (a−1)n.
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(d) We say that a has finite order if there exists a positive integer n with an = e. The
smallest such positive integer is called the order of a and is denoted by |a|.

Definition 1.5.1. Let (G, ∗) and (H,4) be groups. Then (H,4) is called a subgroup of
(G, ∗) provided that

(a) H ⊆ G.

(b) a4b = a ∗ b for all a, b ∈ H.

Definition 1.5.6. Let I be a subset of the group G. Then

〈I〉 =
⋂

I⊆H≤G
H

〈I〉 is called the subgroup of G generated by I

Definition 1.6.1. Let f : A → B be a function. Then Im f := {f(a) | a ∈ A}. Im f is
called the image of f .

Definition 1.6.3. Let (G, ∗) and (H, � ) be groups.

(a) A homomorphism from (G, ∗) from to (H, � ) is a function f : G→ H such that

f(a ∗ b) = f(a)� f(b)

for all a, b ∈ G.

(b) An isomorphism from G to H is a 1-1 and onto homomorphism from G to H.

(c) If there exists an isomorphism from G to H we say that G is isomorphic to H and write
G ∼= H.

Definition 1.6.6. Let G be a group. Then G is called a group of permutations or a
permutation group if G ≤ Sym(I) for some set I.

Definition 1.7.1. Let K be a subgroup of the group G and a, b ∈ G. Then we say that a
is congruent to b modulo K and write a ≡ b (mod K) if a−1b ∈ K.

Definition 1.7.4. Let (G, ∗) be a group and g ∈ G

(a) Let A,B be subsets of G and g ∈ G. Then

A ∗B := {a ∗ b | a ∈ A, b ∈ B},

g ∗A = {g ∗ a | a ∈ A}

and
A ∗ g := {a ∗ g | a ∈ A}.

We often just write AB, gA and Ag for A ∗B, g ∗A and A ∗ g.
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(b) Let K be a subgroup of the group (G, ∗) . Then g ∗K called the left coset of g in G with
respect to K. Put

G/K := {gK | g ∈ G}.

So G/K is the set of left cosets of K in G.

Definition 1.7.13. A group G is called cyclic if G = 〈g〉 for some g ∈ G.

Definition 1.8.2. Let N be a subgroup of the group G. N is called a normal subgroup of
G and we write N EG provided that

gN = Ng

for all g ∈ G.

Definition 1.8.4. A binary operation ∗ on I is called commutative if a ∗ b = b ∗ a for all
a, b ∈ I. A group is called abelian of its binary operation is commutative.

Definition 1.8.9. Let G be a group and N EG. Then ∗G/N denotes the binary operation

∗G/N : G/N ×G/N → G/N, (S, T )→ S ∗ T

Note here that by 1.8.8(a), S ∗ T is a coset of N , whenever S and T are cosets of N . G/N
is called the quotient group of G with respect to N .

Definition 1.9.1. Let φ : G→ H be a homomorphism of groups. Then

kerφ := {g ∈ G | φ(g) = eH}.

kerφ is called the kernel of φ.

Definition 1.9.7. Let ∗ be a binary operation on the set A and � a binary operation on
the set B. Then ∗×� is the binary operation on A×B defined by

∗×� : (A×B)× (A×B)→ A×B, ((a, b), (c, d))→ (a ∗ c, b� d)

(A×B, ∗×� ) is called the direct product of (A, ∗) and (B, � ).

Definition 2.1.1. Let G be group and I a set. An action of G on I is a function

� : G× I → I (g, i)→ (g � i)

such that

(act:i) e � i = i for all i ∈ I.

(act:ii) g � (h � i) = (g ∗ h) � i for all g, h ∈ G, i ∈ I.
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The pair (I, �) is called a G-set. We also say that G acts on I via �. Abusing notations we
often just say that I is a G-set. Also we often just write gi for g � i.

Definition 2.1.8. Let G be a group and (I, �) a G-set.

(a) The relation ≡� (mod G) on I is defined by i ≡� j (mod G) if there exists g ∈ G with gi =
j.

(b) G � i:= {g � i | g ∈ G}. G � i is called the orbit of G on I (with respect to �) containing
i. We often write Gi for G � i.

Definition 2.1.12. Let G be a group acting on the set I. We say that G acts transitively
on I if for all i, j ∈ G there exists g ∈ G with gi = j.

Definition 2.1.14. (a) Let G be a group and (I, �) and (J, � ) be G-sets. A function
f : I → J is called G-homomorphism if

f(a � i) = a� f(i)

for all a ∈ G and i. A G-isomorphism is bijective G-homomorphism. We say that I
and H are G-isomorphic and write

I ∼=G J

if there exists an G-isomorphism from I to J .

(b) Let I be a G set and J ⊆ I. Then

Stab�G(J) = {g ∈ G | gj = j for all j ∈ J}

and for i ∈ I
Stab�G(i) = {g ∈ G | gi = i}

Stab�G(i) is called the stabilizer of i in G with respect to �.

Definition 2.2.1. Let p be a prime and G a group. Then G is a p-group if |G| = pk for
some k ∈ N.

Definition 2.2.3. Let G be a finite group and p a prime. A p-subgroup of G is a subgroup
of G which is a p-group. A Sylow p-subgroup of G is a maximal p-subgroup of G, that is S
is a Sylow p-subgroup of G provided that

(i) S is a p-subgroup of G.

(ii) If P is a p-subgroup of G with S ≤ P , then S = P .

Sylp(G) denotes the set of Sylow p-subgroups of G.
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Definition 2.2.6. Let G be a group acting on a set I. Let i ∈ I. Then i is called a fixed-
point of G on I provided that gi = i for all g ∈ G. FixI(G) is the set of all fixed-points for
G on I. So

FixI(G) = {i ∈ I | gi = i for all g ∈ G}.

Definition 2.2.9. Let G be a group and (I, �) a G-set.

(a) P(I) is the sets of all subsets of I. P(I) is called the power set of I.

(b) For a ∈ G and J ⊆ I put a � J = {a � j | j ∈ J}.

(c) �P denotes the function

�P : G× P(I)→ P(I), (a, J)→ a � J

(d) Let J be a subset of I and H ≤ G. Then J is called H-invariant if

hj ∈ J

for all h ∈ H, j ∈ J .

(e) Let H ≤ G and J be a H-invariant. Then �H,J denotes the function

�H,J : H × J → J, (h, j)→ h � j

Definition 2.2.11. Let A and B be subsets of the group G. We say that A is conjugate to
B in G if there exists g ∈ G with A = gBg−1.

Definition 3.1.1. Let K be a field. A vector space over K (or a K-space ) is a tuple
(V,+, �) such that

(i) (V,+) is an abelian group.

(ii) � : K× V → V is a function called scalar multiplication .

(iii) a � (v + w) = (a � v) + (a � w) for all a ∈ K, v, w ∈ V .

(iv) (a+ b) � v = (a � v) + (b � v) for all a, b ∈ K, v ∈ V .

(v) (ab) � v = a � (b � v) for all a, b ∈ K, v ∈ V .

(vi) 1K � v = v for all v ∈ V

The elements of a vector space are called vectors. The usually just write kv for k � v.

Definition 3.1.3. Let K be a field and V and K-space. Let L = (v1, . . . , vn) ∈ V n be a list
of vectors in V .
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(a) L is called K-linearly independent if

a1v1 + av2 + . . . avn = 0V

for some a1, a2, . . . , an ∈ K implies a1 = a2 = . . . = an = 0K.

(b) Let (a1, a2 . . . , an) ∈ Kn. Then a1v1 +a2v2 + . . .+anvn is called a K-linear combination
of L.

SpanK(L) = {a1v1 + a2v2 + . . . anvn | (a1, . . . , an) ∈ Kn}
is called the K-span of L. So SpanK(L) consists of all the K-linear combination of L.
We consider 0V to be a linear combination of the empty list () and so SpanK

(
()
)

= {0V }.

(c) We say that L spans V , if V = SpanK(L), that is if every vector in V is a linear
combination of L.

(d) We say that L is a basis of V if L is linearly independent and spans V .

(e) We say that L is a linearly dependent if it’s not linearly independent, that is, if there
exist k1, . . . , kn ∈ K, not all zero such that

k1v1 + kv2 + . . . kvn = 0V .

Definition 3.1.8. Let K be a field and V and W K-spaces. A K-linear map from V to W
is function

f : V →W

such that

(a) f(u+ v) = f(u) + f(v) for all u, v ∈W

(b) f(kv) = kf(v) for all k ∈ K and v ∈ V .

A K-linear map is called a K-isomorphism if it’s 1-1 and onto.
We say that V and W are K-isomorphic and write V ∼=K W if there exists a K-

isomorphism from V to W .

Definition 3.1.12. Let K be a field, V a K-space and W ⊆ V . Then W is called a
K-subspace of V provided that

(i) 0V ∈W .

(ii) v + w ∈W for all v, w ∈W .

(iii) kw ∈W for all k ∈ K, w ∈W .

Definition 3.1.17. A vector space V over the field K is called finite dimensional if V has
a finite basis (v1, . . . , vn). n is called the dimension of K and is denoted by dimK V . (Note
that this is well-defined by 3.1.16).

Definition 3.2.1. Let K be a field and F a subset of K. F is a called a subfield of K
provided that
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(i) a+ b ∈ F for all a, b ∈ F.

(ii) 0K ∈ F.

(iii) −a ∈ F for all a ∈ F.

(iv) ab ∈ F for all a, b ∈ F.

(v) 1K ∈ F.

(vi) a−1 ∈ F for all a ∈ F with a 6= 0K.

If F is a subfield of K we also say that K is an extension field of F and that K : F is a
field extension.

Definition 3.2.4. A field extension K : F is called finite if K is a finite dimensional F-
space.. dimFK is called the degree of the extension K : F.

Definition 3.2.9. Let K : F be a field extension and a ∈ K.

(a) F[a] = {f(a) | f ∈ F[x]}.

(b) If there exists a non-zero f ∈ F [x] with f(a) = 0F then a is called algebraic over F.
Otherwise a is called transcendental over F.

Definition 3.2.14. Let K : F be a field extension and let a ∈ F be algebraic over F. The
unique monic polynomial pa ∈ F[x] with kerφa = (pa) is called the minimal polynomial of
a over F.

Definition 3.3.1. A field extension K : F is called algebraic if each k ∈ K is algebraic over
F.

Definition 3.3.4. Let K : F be a field extension and a1, a2 . . . , an ∈ K. Inductively, define
F[a1, α2, . . . , ak] := F[a1, a2, . . . , ak−1][ak].

Definition 3.3.5. Let K : F be field extensions and f ∈ F[x]. We say that f splits in K if
there exists a1 . . . an ∈ K with

(i) f = lead(f)(x− a1)(x− a2) . . . (x− an).

We say that K is a splitting field for f over F if f splits in K and

(ii) K = F[a1, a2, . . . , an].

Definition 3.4.1. Let K : F be a field extension.

(a) Let f ∈ F[x]. If f is irreducible, then f is called separable over F provided that f does
not have a double root in its splitting field over F. In general, f is called separable over
F provided that all irreducible factors of f in F[x] are separable over F.

(b) a ∈ K is called separable over K if a is algebraic over F and the minimal polynomial of
a over F is separable over F.

(c) K : F is called separable over F if each a ∈ K is separable over F.
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Definition 3.5.1. Let K : F be field extension. AutF(K) is the set of all field isomorphism
α : K→ K with α |F= idF.

Definition 3.5.4. Let K : F be a field extension and H ⊆ AutK(F). Then

FixK(H) := {k ∈ K | σ(k) = k for all σ ∈ H}.

FixK(H) is called the fixed-field of H in K.

Definition 3.5.12. Let K : F be algebraic field extension. Then K : F is called normal if
for each a ∈ K, pa splits over K.

Definition 3.5.15. (a) A Galois extension is a finite, separable and normal field extension.

(b) Let K : F be a field extension. An intermediate field of K : F is a subfield E of K with
F ⊆ E.

Definition A.1.1. Let ∼ be a relation on a set A. Then

(a) ∼ is called reflexive if a ∼ a for all a ∈ A.

(b) ∼ is called symmetric if b ∼ a for all a, b ∈ A with a ∼ b.

(c) ∼ is called transitive if a ∼ c for all a, b, c ∈ A with a ∼ b and b ∼ c.

(d) ∼ is called an equivalence relation if ∼ is reflexive, symmetric and transitive.

(e) For a ∈ A we define [a]∼ := {b ∈ R | a ∼ b}. We often just write [a] for [a]∼. If ∼ is
an equivalence relation then [a]∼ is called the equivalence class of ∼ containing a.

Definition A.2.1. Let f : A→ B be a function.

(a) f is called 1-1 or injective if a = c for all a, c ∈ A with f(a) = f(c).

(b) f is called onto or surjective if for all b ∈ B there exists a ∈ A with f(a) = b.

(c) f is called a 1-1 correspondence or bijective if for all b ∈ B there exists a unique a ∈ A
with f(a) = b.

(d) Im f := {f(a) | a ∈ A}. Im f is called the image of f .

Definition A.2.2. (a) Let A be a set. The identity function idA on A is the function

idA : A→ A, a→ a.

(b) Let f : A→ B and g : B → C be function. Then g ◦ f is the function

g ◦ f : A→ C, a→ g(f(a)).

g ◦ f is called the composition of g and f .
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Definition A.2.4. Let f : A→ B be a function.

(a) If C ⊆ A, then f(C):= {f(c) | c ∈ C}. f(C) is called the image of C under f .

(b) If D ⊆ B, then f−1(D):= {c ∈ C | f(c) ∈ D}. f−1(D) is called the inverse image of D
under f .

Definition A.3.1. Let A and B be sets. We write A ≈ B if there exists a bijection from
A to B. We write A ≺ B if there exists injection from A to B.

Definition A.3.3. Let A be a set. Then |A| denotes the equivalence class of ≈ containing.
An cardinal is a class of the form |A|, A a set. If a, b are cardinals then we write a ≤ b if
there exist sets A and B with a = |A|, b = |B| and A ≺ B.

Definition A.3.7. Let I be a set. Then I is called finite if the exists n ∈ N and a bijection
f : I → {1, 2, . . . , n}. I is called countable if either I is finite or there exists a bijections
f : I → Z+.

B.3 Definitions from the Homework

Definition H1.8. Let I be a set.

(a) For a ∈ Sym(I) define
Supp(a) := {i ∈ I | a(i) 6= i}

Supp(a) is called the support of a.

(b) FSym(I) := {a ∈ Sym(I) | Supp(a) is finite }.
FSym(I) is called the finitary symmetric group on I.

Definition H2.4. Let G be a group and a ∈ G. Put

CG(a) := {g ∈ G | ga = ag}

CG(a) is called the centralizer of a in G.

Definition HPMT.3. A group G is called perfect if G = H for any H E G with G/H
abelian.

Definition HRMT.4. A group G is called simple if {e} and G are the only normal sub-
groups of G.

Definition H8.6. Let G be a group. Put

Z(G) = {a ∈ G | ab = ba for all b ∈ G

Z(G) is called the center of G.

Definition H11.2. Let K : F be a field extension and a ∈ K. Then

F(a) = {xy−1 | x, y ∈ F[a], y 6= 0K}
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