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Chapter 1

Groups

1.1 Sets

Naively a set S is collection of object such that for each object x either x is contained in S
or z is not contained in S. We use the symbol €’ to express containment. So x € S means
that z is contained in S and x ¢ S means that x is not contained in S. Thus we have

For all objects x: z €S or x¢S.

You might think that every collection of objects is a set. But we will now see that this
cannot be true. For this let A be the collection of all sets. Suppose that A is a set. Then A
is contained in A. This already seems like a contradiction But maybe a set can be contained
in itself. So we need to refine our argument. We say that a set S is nice if S is not contained
in S. Now let B be the collection of all nice set. Suppose that B is a set. Then either B is
contained in B or B is not contained in B.

Suppose that B is contained in B. Since B is the collection of all nice sets we conclude
that B is nice. The definition of nice now implies that that B is not contained in B, a
contradiction.

Suppose that B is not contained in B. Then by definition of ’nice’, B is a nice set. But
B is the collection of all nice sets and so B is contained in B, again a contradiction.

This shows that B cannot be a set. Therefore B is a collection of objects, but is not set.

What kind of collections of objects are sets is studied in Set Theory.

The easiest of all sets is the empty set denote by {} or (). The empty set is defined by

For all objects z: x & 0.

So the empty set has no members.
Given an object s we can form the singleton {s}, the set whose only members is s:

For all objects z: € {s} if and only if x = s
If A and B is a set then also its union AU B is a set. AU B is defined by

5
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For all objects x : x € AU B if and only if x € A or x € B.

The natural numbers are defined as follows:

0 := 0

1 = ou{o} = {0} = {0}

2 = 1U{1} = {0,1} = {0,{0}}

3 = 20{2} = {0,1,2} = {0,{0}, {0, {0}}}

4 = 4u{4} = {0,1,2,3} = {0,{0},{0,{0}},{0,{0}, {0, {0}}}}
n+1 = nu{n} = {0,1,2,3,...n}

One of the axioms of set theory says that the collection of all the natural numbers

{0,1,2,3,4,...}

is set. We denote this set by N.
Addition on N is defined as follows: n+0:=n, n+1:=nU{n} and inductively

n+(m+1):=(n+m)+ 1.
Multiplication on N is defined as follows: n -0 :=mn, n-1:=n and inductively

n-(m+1):=(n-m)+n.

1.2 Functions and Relations

We now introduce two important notations which we will use frequently to construct new
sets from old ones. Let Iy, Io,...I, be sets and let ® be some formula which for given
elements iy € I,is € Ia,... i, € I, allows to compute a new object ®(i1,i9,...,i,). Then

{(I)(il,ig,...,in) |Zl EIl,...,in GIn}

is the set defined by

T € {(I)(il,ig,...,in) ‘ i1 € Il,...,in € In}
if and only

there exist objects 1,142, ...,i, with i} € I1,is € Ia,... iy € I, and = ®(i1,i9,...,1y) .
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In Set Theory it is shown that {®(iy,d2,...,4) | i1 € I1,...,i, € I,} is indeed a set.
Let P be a statement involving a variable t. Let I be set. Then

{iel|P(i)}
is the set defined by

xe{iel|P@)} ifandonlyif =z &I and P is true fort = z.

Under appropriate condition it is shown in Set Theory that {i € I | P(i)} is a set.

Let a and b be objects. Then the ordered pair (a,b) is defined as (a,b) := {{a}, {a,b}}.
We will prove that
(a,b) = (c,d) if and only if a = ¢ and b = d.

For this we first establish a simple lemma:
Lemma 1.2.1. Let u,a,b be objects with {u,a} = {u,b}. Then a =b.

Proof. We consider the two cases a = u and a # u.

Suppose first that @ = w. Then b € {u,b} = {u,a} = {a} and so a = b.

Suppose next that a # u. Since a € {u,a} = {u,b}, a = uw or a = b. But a # u and so
a=b. O

Proposition 1.2.2. Let a,b, c,d be objects. Then
(a,b) = (¢,d) if and only if a = ¢ and b = d.

Proof. Suppose (a,b) = (¢,d). We need to show that a = c.
We will first show that a = b. Since

{a} € {{a},{a,b}} = (a,b) = (¢,d) = {{c}, {c,d}},

we have
{a} ={c} or A{a}={cd}.

In the first case a = ¢ and in the second ¢ = d and again a = c.

From a = ¢ we get {{{a}, {a,b}} = {{c}, {c.d} = {{a},{a,d}. Soby[L.2.1]{a,b} = {a, d}
and applying 1 again, b = d.

If I and J are sets we define I x J :={(i,5) i€ 1,5 € J}.

A relation on I and J is triple r = (I, J, R) where R is asubset [ x J. If i € [ and j € J
we write irj if (i,7) € R.

For example let R := {(n,m) | n,m € N,n € m} and let < be the triple (N,N, R). Let
n,m € N. Then n < m if and only if n € m. Since m = {0,1,2,...,m — 1} we see that
n < m if and only if n is one of 0,1,2,3,...,m — 1.
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A function from I to J is a relation f = (I, J,R) on I and J such that for each i € T
there exists a unique j € J with (¢,7) € R. We denote this unique j by f(i). So for i € I
and j € J the following three statements are equivalent:

ifj <= (,j))eR <= j=f@9).
We denote the function f = (I, J, R) by
f:I—=J,  i— fi).

So R={(i, (i) | i € I}.
For example
f:N=N, m-—om?

denotes the function (N, N, {(m,m?) | n € N})

Informally, a function f from I to J is a rule which assigns to each element ¢ of I a
unique element f(7) in J.

A function f : I — J is called 1-1if i = k whenever i,k € I with f(i) = f(k).

f is called onto if for each j € I there exists i € I with f(i) = j. Observe that f is 1-1
and onto if and only if for each j € J there exists a unique i € I with f(i) = j.

If f:I— Jandg:J— K are functions, then the composition go f of g and f is the
function from I to K defined by (go f)(i) = g(f(i)) for all i € I.

1.3 Definition and Examples

Definition 1.3.1. Let S be a set. A binary operation is a function x : S x S — S. We
denote the image of (s,t) under * by s *t.

Let I be a set. Given a formula ¢ which assigns to each pair of element a,b € I some
object ¢(a,b). Then ¢ determines a binary operation x : I xI — I, (a,b) — ¢(a,b) provided
for all a,b € I:

(i) ¢(a,b) can be evaluated and ¢(a,b) only depends on a and b; and
(ii) ¢(a,b) is an element of I.

If (ij) holds we say that x is well-defined. And if holds we say that I is closed under
*.

Example 1.3.2.
(1) +:Z x Z,(n,m) = n+m is a binary operation.
(2) -:Z x Z,(n,m) — nm is a binary operation.

(3) -: QxQ,(n,m) — nm is a binary operation.
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(4) Let I ={a,b,c,d} and define * : I x I — I by

bla b ¢ d
cld b a a
dla d a b

Here for z,y € I, x % y is the entree in row x, column y. For example b * ¢ = ¢ and
cxb=0.

Then * is a binary operation.

()

[ is a binary operation on 1.

(6)

cld b a a

dla d a b

is not a binary operation. Indeed, according to the table, b x b = e, but e is not an
element of I. Hence [ is not closed under * and so * is not a binary operation on I.

(7) Let I be a set . A 1-1 and onto function f : I — I is called a permutation of I.

Sym(I) denotes the set of all permutations of I. If f and g are permutations of I then
by also the composition f o g is a permutation of I. Hence the map

o: Sym(I) x Sym(I), (f,g9) = fog

is a binary operation on Sym([).
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(8) ©: Zs x Zs, (a]s, [b]3) — [a?*T1]3, where [a]s denotes the congruence class of a modulo
3, is not a binary operation. Indeed we have [0]3 = [3]3 but

(1) g = [(=1)1s = [~1s # [1]s = [(~1)"%]s = [(=1)**]3
and so ¢ is not well-defined.

(9) ®:QxQ — Q,(a,b) = ¢ is not a binary operation. Since % is not defined, @ is not

well-defined.

Definition 1.3.3. Let % be a binary operation on a set I. Then x is called associative if
(axb)xc=ax(bxc) for all a,b,c € I
Example 1.3.4.
We investigate which of the binary operations in [1.3.2] are associative.

1) Addition on Z is associative.

3

(1)

(2) Multiplication on Z is associative.
(3) Multiplication on Q is associative.
(4)

4) *in is not associative. For example

a*x(dxc)=axa=band (axd)*xc=axc=c.

(5) O in is associative since x % (y*x z) = a = (x *xy) * 2z for any z,y, z € {a,b, ¢, d}.

(7) Composition of functions is associative: Let f: I — J, g:J — K and h: K — L be
functions. Then for all i € I,

((fog)oh)(i) = (fog)(h(i)) = f(g(h()))
and

(fo(gon)(i) = f(goh)@) = flg(h(i)))-
Thus fo(goh)=(fog)oh.

Definition 1.3.5. Let I be a set and x a binary operation on I. An identity of * in I is a
elemente € I withexi=1 andi=1ixe for alli € I.

Example 1.3.6.
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(1)
(2)
3)
(4)

We investigate which of the binary operations in have an identity:

0 is an identity of 4 in Z.
1 is an identity of - in Z.
1 is an identity for - in Q.

Suppose that x is an identity of * in . From z xy =y for all y € I we conclude
that row = of the multiplication table must be equal to the header row of the table.
This shows that « = b. Thus y * b = y for all y € I and we conclude that the column b
must be equal to the header column. But this is not the case. Hence * does not have
an identity.

No row of the multiplication table in is equal to the header row. Thus O does
not have an identity.

Let I be set. Define idj: I — I, i — 4. id is called the identity function on I. Let
f € Sym([I). Then for any ¢ € I,

(foidr)(i) = f(ids (i) = f(9)
and so foid; = f.

(idl o f)(i) = idr(f(i)) = f(i)
and so idj o f = f.
Thus id; is an identity of o in Sym([).

Lemma 1.3.7. Let % be a binary operation on the set I, then x has at most one identity in

I.

Proof. Let e and f be identities of *. Then e x f = f since e is an identity and e*x f = ¢
since f is an identity. Hence e = f. So any two identities of * are equal. O

Definition 1.3.8. Let x be a binary operation on the set I with identity e. The a € I is
called invertible if there exists b € I with axb = e and bxa = e. Any such b is called an
inverse of a with respect to *.

Example 1.3.9.

(1)
(2)
3)

—n is an inverse of n € Z with respect to addition.

2 does not have an inverse in Z with respect to multiplication.

% is an inverse of 2 with respect to multiplication in Q.
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(4) If I is a set and f € Sym([) we define g : I — I by g(i) = j where j is the unique
element of I with f(j) =i. So

flg(@)) = F(5) =i =id;(d).
Moreover, if g(f(i)) = k, then by definition of g, f(k) = f(i). Since f is 1-1 this implies
k =1i. Thus g(f(i)) =4 =1id;(i). Thus fog =1id; and go f = id;. Hence f is invertible
with inverse g.

Lemma 1.3.10. Let * be an associative binary operation on the set I with identity e. Then
each a € I has at most one inverse in I with respect to *.

Proof. Let b and ¢ be inverses of a in I with respect to *. Then
b=bxe=bx(axc)=(bxa)xc=exc=c.
and so the inverse of a is unique. ]

Consider the binary operation

*x|10 1 2
7012
111 0

212 0 0.

0 is an identity of x. We have 1x1 =0 and so 1 is an inverse of 1. Also 1%2=0=2x1
and so also is an inverse of 1. Hence inverses do not have to be unique if * is not associative.

Definition 1.3.11. A group is tuple (G, *) such that G is a set and
(i) *x: G x G — G is a binary operation.
(ii) * is associative.
(iii) * has an identity e in G.
(iv) Each a € G is invertible in G with respect to *.
Example 1.3.12.
(1) (Z,+) is a group.
(2) (Z,-) is not a group since 2 is not invertible with respect to multiplication.

(3) (Q\{0},-) is a group.
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(4) (I,*) in is not a group since its * is not associative.
(5) (I, 0) in|1.3.2)(5) is not a group since it has no identity.
(6) (I,¢) in[L.3.2)(6]) is not a group since ¢ is not a binary operation.

(7) Let I be aset. By o is binary operation on Sym([); by [1.3.4{(7), o is associative;
by [1.3.6|(7) id; is an identity for o; and by every f € Sym(I) is invertible. Thus
(Sym(I),o) is a group. Sym([]) is called the symmetric group on I.

Sets of permutations will be our primary source for groups. We therefore introduce
some notation which allows us to easily compute with permutations. [1...n]| denotes the
set{ieN|1<i<n}={1,2,3,...,n}. Sym(n) stands for Sym([1...n]). Let 7 € Sym(n).
Then we denote m by

1 2 3 n—1 n
m(1) w(2) w(3) m(n—1) m(n)
For example
1 2 3 4 5
21 4 5 3

denotes the permutation of 7 of [1...5] with n(1) = 2,7(2) = 1,7(3) = 4,7(4) = 5 and
m(5) = 3.

Almost always we will use the more convenient cycle notation:

(a11,a271,0a31, ... .0k, 1)(01,2,022 ... Aky2) ... (a17,02) ... Gk, 1)

denotes the permutation m with 7(a; ;) = a;y1,; and 7(ay; ;) = a1; for all 1 <i < k; and
1<j<l

So (1,3,4)(2,6)(5) denotes the permutation of [1...6] with 7(1) =3, 7(3) =4, 7(4) =
1,m(2) =6, 7(6) = 2 and 7w (5) = 5.

Each (a1, a2, - - ak, ;) is called a cycle of m. We usually will omit cycles of length 1 in
the cycle notation of .

As an example we compute (1,3)(2,4) o (1,4)(2,5,6).

We have
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W == O ot N
= W e O Ot N

and so
(1,3)(2,4) o (1,4)(2,5,6) = (1,2,5,6,4,3).

It is very easy to compute the inverse of a permutation in cycle notation. One just needs
to write each of the cycles in reversed order. For example the inverse of (1,4,5,6,8)(2,3,7)
is (8,6,5,4,1)(7,3,2).

Example 1.3.13.
In cycle notation the elements of Sym(3) are

(1),(1,2,3),(1,3,2),(1,2),(1,3),(2,3).

Keep here in mind that (1) = (1)(2)(3), (1,2) = (1,2)(3) and so on. The multiplication
table of Sym(3) is as follows:

o (1) (1,2,3) (1,3,2) (1,2) (1,3) (2,3)
(1) (1) (1,2,3) (1,3,2) (1,2) (1,3) (2,3)
(1,2,3) | (1,2,3) (1,3,2) (1) (1,3) (2,3) (1,2)
(1,3,2) | (1,3,2) (1) (1,2,3) (2,3) (1,2) (1,3)
(1,2) (1,2) (2,3) (1,3) (1) (1,3,2) (1,2,3)
(1,3) (1,3) (1,2) (2,3) (1,2,3) (1) (1,3,2)
(2,3) (2,3) (1,3) (1,2) (1,3,2) (1,2,3) (1)
Example 1.3.14.
4 3

Consider the square

1 2
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Let D4 be the set of all permutations of {1,2, 3,4} which map the edges (of the square)
to edges.

For example (1,3)(2,4) maps the edge {1,2} to {3,4}, {2,3} to {4,1}, {3,4} to {1,2}
and {4,1} to {2,3}. So (1,3)(2,4) € Dy.

But (1,2) maps {2,3} to {1,3}, which is not an edge. So (1,2) ¢ Djy.

Which permutations are in D47 We have counterclockwise rotations by 0°,90°, 180° and

270°:

(1),(1,2,3,4),(1,3)(2,4),(1,4,3,2),

and reflections at y = 0,2 =0, x =y and x = —y:

(1,4)(2,3),(1,2)(3,4),(2,4),(1,3)

Are these all the elements of D47 Let’s count the number of elements. Let # € D4. Then
(1) can be 1,2, 3,0or 4. So there are 4 choices for 7(1), 7(2) can be any of the two neighbors
of m(1). So there are two choice for m(2). 7(3) must be the neighbor of n(2) different
from m(1). So there is only one choice for 7w(3). m(4) is the point different from (1), 7(2)
and 7(3). So there is also only one choice for 7(4). All together there are 4-2-1-1 =8
possibilities for 7. Thus |Dy4| = 8 and

Dy ={(1),(1,2,3,4,),(1,3)(2,4),(1,4,3,2),(1,4)(2,3), (1,2)(3,4),(2,4),(1,3) }.

If a, 8 € Sym(4) maps edges to edges, then also oo § and the inverse of a map edges
to edges. Thus o is an associative binary operation on Dy, (1) is an identity and each « in
Dy is invertible. Hence (Dy,0) is a group. Dy is called the dihedral group of degree 4.

1.4 Basic Properties of Groups

Notation 1.4.1. Let (G,*) be a group and g € G. Then g~' denotes the inverse of g in
G. The identity element is denote by eg or e. We will often just write ab for a xb. And
abusing notation we will call G itself a group.

Lemma 1.4.2. Let G be a group and a,b € G.
(a) (@) =a.
(b) a=t(ab) =b, (ba)a™' =b, (ba~')a = b and a(a'b) = b.

Proof. @) By definition of ™!, aa™' = e and a~'a = e. So a is an inverse of a~!, that is
—T\—1
a=(a"")""
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a~'(ab)
= (a"ta)b — xis associative
= eb —  definition of a~!
= b — definition of identity
The remaining assertion are proved similarly. O

Lemma 1.4.3. Let G be a group and a,b,c € G. Then

ab = ac
~— b=c

<— ba=ca .

Proof. Suppose first that ab = ac. Multiplication with a~! from the right gives a=!(ab) =

a~!(ac) and so by a=bh.
If b = ¢, the clearly ab = ac. So the first two statement are equivalent. Similarly the
last two statements are equivalent. O

Lemma 1.4.4. Let G be a group and a,b € G.

(a) The equation ax = b has a unique solution in G, namely x = a~1b.

(b) The equation ya = b has a unique solution in G, namely y = ba~".

(c) b=a"' if and only if ab = e and if and only if ba = e.

(d) (ab)~' =b"ta"t.

Proof. @ By ax = b if and only if a=!(az) = a~'b and so (by ) if and only if

r =a"'bh.

(b)) is proved similarly.

By @ ab = e if and only if b = a~'e. Since e is an identity, this is the case if and
only if b = a~!. Similarly using (]ED, ba = e if and only if b = a™.

@

(ab)(b~ta™1)

= a(b(b~ta7!)) — xis associative
= aail — [1.4.2 EI)
= e —  definition of a1

So by , b~la=! = (ab)~ 1. O
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Definition 1.4.5. Let G be a group, a € G andn € N. Then
(a) a® =

(b) Inductively a™™! := a"a.

(c) a™™ := (a=1)".

(d) We say that a has finite order if there exists a positive integer n with a™ = e. The
smallest such positive integer is called the order of a and is denoted by |a|.

We have a! = a%a = ea = a, a? = a'a = aa, a® = a®a = (aa)a, a* = aa = ((aa)a)a and

a" = ((...(((aa)a)a)...a)a)a

n-times

Example 1.4.6.

(1,2,3,4,5)2 = (1,2,3,4,5) 0 (1,2,3,4,5) = (1,3,5,2,4).

(1,2,3,4,5)3 = (1,2,3,4,5)% 0 (1,2,3,4,5) = (1,3,5,2,4) 0 (1,2,3,4,5) = (1,4,2,5,3).
(1,2,3,4,5)* = (12345)3 0(1,2,3,4,5) = (1,4,2,5,3)) 0 (1,2,3,4,5) = (1,5,4,3,2).
(1,2,3,4,5)° = (1,2,3 4,5)%0(1,2,3,4,5) = (1,5,4,3,2))0(1,2,3,4,5) = (1)(2)(3)(4)(5).
So (1,2,3,4,5) has order 5.

Lemma 1.4.7. Let G be a group, a € G and n,m € Z. Then
(a) a"a™ = a"t™.

(b) a"™ = (a™)™.
Before we start the formal proof here is an informal argument:
a"a™ = (gaa...a)(gaa...q) = gaa...q = a"t™
S— N—— SN——

n-times m-times n+m-times

(@)™ = (aaa...a)(gaa...a)...(gaa...qa) =gaa...q=a"™
N N — ——— N——

n-times n-times n-times nm-times

Vv
m-times

This informal proof has a couple of problems:
1. It only treats the case where n, m are positive.
2. The associative law is used implicitly and its not clear how.

Proof. @ We first use induction on m to treat the case where m > 0. If m = 0, then
a"a’ = a"e = a" = a"*" and (@) is true.

If m =1 and n > 0, then a"a' = a"a = a"*! by definition of a"*!. If m =1 and n < 0,
then
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a"at = (ail)(*”)a = (ail)(*"*l)afl)a =a'=(n4+1)=a"",

and so @ holds for m = 1.
Suppose inductively that @ is true for m. Then

(1) a"a™ = a"t",

and so

—
~

atamtl = an<ama) — (anam)a = gntm a(n+m)+1 _ an+(m+1).

So @ holds for m+ 1 and so by The Principal of Mathematical Induction for all m € N.
Let m be an arbitrary positive integer. From (a) applied with n = —m we conclude
that a=™a™ = a° = a and so for all m € N,

(2) a” ™ = (a™)"h

n—m ., ,m

From @ applied with n —m in place of n, a a™ = a™. Multiplication from left with
a~™ and using (2) gives a"~ " = aa~"™. Since m is an arbitrary positive integer, —m is an
arbitrary negative integer. So @ also holds for negative integers.

(]E[) Again we first use induction on m to prove (b) in the case that m € N. For m =0
both sides in (]E[) equal e. Suppose now that (]l__)[) holds for m € N. Then

n(m+1) _ ghmtn — gnmen (an)m(an)l — (am)erl.

a

So (]ED holds also for m + 1 and so by induction for all m € N.
We compute

an(—m) _ a—(nm) _ (anm)—l _ ((an)m)—l _ (an)—m7

and so @ also holds for negative integers. O

1.5 Subgroups

Definition 1.5.1. Let (G, x) and (H,A) be groups. Then (H,/) is called a subgroup of
(G, %) provided that

(a) HCG.
(b) al\b=axb for all a,b € H.

If often just say that H is a subgroup of G and write H < G if (H, ) is a subgroup of
(G, %).
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Example 1.5.2.

1) (Z,+) is a subgroup of (Q,+).
(Q\ {0},-) is a subgroup of (R\ {0}, ).

(Dy,0) is a subgroup of (Sym(4),0).

2

(1)
(2)
3)
(4)

4) Sym(4) is not a subgroup of Sym(5), since Sym(4) is not subset of Sym(5).

Proposition 1.5.3 (Subgroup Proposition). (a) Let (G,*) be a group and H a subset of
G. Suppose that

(i) H is closed under x, that is axb € H for all a,b € H.
(ii) eq € H.
(i4i) H is closed under inverses, that isa~' € H for all a € H.(where a™" is the inverse
of a in G with respect to *.

Define N : Hx H — H,(a,b) — axb. Then A is a well-defined binary operation on H
and (H, ) is a subgroup of (G, ).

(b) Suppose (H, ) is a subgroup of (G,*). Then

(a) (a:d), (a:id) and hold.

(b) eq = eq.

(c) Let a € H. Then the inverse of a in H with respect to A\ is the same as the inverse
of a in G with respect to *.

Proof. (a]) We will first verify that (H, A) is a group.

By , A really is a function from H x H to H and so A is a well-defined binary
operation on H.

Let a,b,c € H. Then since H C G, a,b,c are in H. Thus since * is associative,

(aAb)Ac = (axb)*c=ax* (bxc)=al(bAc)

and so A is associative.

By , eqc € H. Let h € H. Then e Ah =eg*h =h and hlAeqg = hxeg = h for all
h € h. So eq is an identity of A in H.

Let h € H. Then by (aiil), h~! € H. Thus hAh™' = hxh™! = ¢ and h™'Ah =
h™'xh =e. So h! is an inverse of h with respect to A.

So (H,A) is a group. By assumption H is a subset of G and by definition of A,
alAb=axbfor all a,b € H. So (H,A) is a subgroup of (G, *).
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Let a,b € H. Then by definition of a subgroup a * b = a/Ab. Since A is a binary
operation on H, aAb € H andsoaxbe H. holds. Since (H,A) is a group it has an
identity ey. In particular, ey = egAey = eg*ey. Since ey € G we also have ey = egxeq
and the Cancellation Law gives eq = ey. Thus ey = eg € H and holds. Since
(H,A) is a group, a has an inverse b € H with respect to A. Thus axb=aAb=eg =e
and so b =a~!. Thus ¢! = b € H and (a:ii) holds. O

Lemma 1.5.4. Let G be a group.
(a) Let A and B be subgroups of G. Then AN B is a subgroup of G.

(b) Let (Gi,i € I) a family of subgroups of G, i.e. I is a set and for each i € I,G; is a
subgroup of G. Then
e

i€l

is a subgroup of G.

Proof. Note that (@) follow from (b) if we set I = {1,2}, G; = A and G2 = B. So it suffices

to prove .
Let H = (;c; Gi. Then for g € G.

(%) g € Hif and only if g € G; for all 1 € I

To show that H is a subgroup of G we use|[1.5.3
Let a,b € H. We need to show

(i) ab € H. (i) e€ H (iii) a=! € H.

Since a,b € H (*) implies a,b € G; for all ¢ € I. Since G; is a subgroup of G, ab € G,
for all i € I and so by (*), ab € H. So (i) holds.

Since G; is a subgroup of G, e € G; and so by (*), e € H and holds.

Since G; is a subgroup of G and a € G;, a~! € G; and so by (*), a=! € H. Thus
holds. O

Lemma 1.5.5. Let I be a subset of the group G.

o Put H| := ﬂ H. In words, Hy is the intersection of all the subgroups of G
ICH<G
containing 1.

e Let Hy be a subgroup of G such that I C H and whenever K is a subgroup of G with
I C K, then Hy C K.
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o Let J be subset of G. We say that e is product of length 0 of J. Inductively, we say
that g € G is a product of length k + 1 of J if g = hj where h is a product of length
kofJandje J. SetI ' ={i"t|iec I} and let H3 be the set of all products of
arbitrary length of I UI~1.

Then H1 = H2 = H3.

Proof. 1t suffices to proof that Hy C Hs, Ho C Hs and Hs C Hj.

Since Hs is a subgroup of G containing I and H is the intersection of all such subgroups,
H, C H,.

We will show that Hs is a subgroup of GG. For this we show:

1°. Let J C G, k,l €N, g a product of length k and h a product of length I of J. Then
gh is a product of length k +1 of J.

The proof is by induction on [. If [ = 0, then A = e and so gh = ¢ is a product of length
k=k+0. So holds for [ = 0. Suppose holds for [ = ¢ and let h be product of
length ¢ + 1. Then by definition h = fj where f is a product of length ¢ and j € J. We
have gh = g(fj) = (¢f)j. By induction gf is a product of length k + ¢ and so by definition
gh = (gf)j is a product of length (k+1¢)+1=Fk+ (t+1). So also holds for k =t + 1.
Hence by the Principal of Mathematical Induction, holds for all k.

Next we show:

2°. Let J C G with J = J7 Y, let n € N and let g be a product of length n of J. Then
g~ ' is also a product of length n of J.

Again the proof is by induction on n. If n = 0, then g = e = ¢~ and holds. So
suppose holds for n = k and let g be a product of length k + 1. Then g = hj with
h a product of length k¥ and j € J. By induction, h~! is a product of length k. Now
gt =(hj)~' = 'h~!. By assumption j~! € J and so j7! = ej~! is a product of length
1. So by , g ' = j 'k is a product of length k+ 1. So holds for n = k+ 1. Thus
follows from the Principal of Mathematical Induction.

Note that implies that Hj is is closed under multiplication. e is the product of
length 0 of U I~! and so e € Hs. By , Hy is closed under inverses. Hence by 1
is a subgroup of H. Clearly I C Hs ( products of length 1) and so by the assumptions on
Hy, Hy C Hj.

Let K be a subgroup of G with I C K. Since K is closed under inverses (1.5.3), 7! C K.
Since K is closed under multiplication an easy induction proof shows that any product of
elements of 7 UI~! is in K. Thus H3 C K. Since this holds for all such K, H3 C H;. O

Definition 1.5.6. Let I be a subset of the group G. Then

m- N "

ICH<G

(I) is called the subgroup of G generated by I
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By (I) as the smallest subgroup of G containing /.
Example 1.5.7.

(1) We compute ((1,2),(2,3)} in Sym(4). Let I ={(1,2),(2,3)}. Then

IH={ittfie Iy ={1,27523) 7 ={(1,2),2.3)} =1

and so
Turt'=1=1{(1,2),(2,3)}

So we have to compute all possible products of {(1,2),(2,3)}. In the following we say
that ¢ is a new product of length k, if g is a product of length k of {(1,2),(2,3)}, but
not a product of {(1,2), (2,3)} of any length less than k. Observe that any new product
of length k is of the form hj there h is a new product of length k£ — 1 and j is one of
(1,2) and (2, 3).
Products of length 0: (1)
Products of length 1: (1,2), (2,3).

Products of length 2:
(1,2)0 (1,2) = (1)

(1,2)0(2,3) = (1,2,3)
(2,3)0(1,2) = (1,3,2)
(2,3)0(2,3) = (1)

New Products of length 2: (1,2,3),(1,3,2)

New Products of length 3: Note that a new product of length three is of the form hj
with h a new product of length two ( and so h = (1,2,3) or (1,3,2)) and j = (1,2) or
(2,3).

(1,2,3) 0 (1,2) = (1,3)
(1,2,3)0(2,3) = (1,2)
(1,3,2) 0 (1,2) = (2,3)
(1,3,2)0(2,3) = (1,3)

Only new product of length 3: (1, 3)
Possible new products of length 4:
(1,3) 0 (1,2) = (1,2,3)

(1,3)0(2,3) =(1,3,2)

There is no new product of length 4 and so also no new product of length larger then
4. Thus

((1,2),(2,3)) = {(1,(1,2),(2,3),(1,2,3),(1,3,2),(2,3)}-
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(2)

Let G be any group and a € G. Put H = {a" | n € Z}. We claim that H = (a).
We first show that H is a subgroup of G. Indeed, a"a™ = a™*™, so H is closed under
multiplication. e = a’ € H and (a™)~! = @™, so H is closed under inverses. Thus by

the Subgroup Proposition, H is a subgroup. Clearly any subgroup of G containing a
must contain H and so by H = (a).

We will show that Dy = ((1,3),(1,2)(3,4)). For this it suffices to write every element in
Dy as a product of elements from (1,3) and (1,2)(3,4). Straightforward computation
show that

(1) = empty product (1,2,3,4) = (1,3)0(1,2)(3,4)
(1,3)(2,4) = ((1,3)0(1,2)(3,4))? (1,4,3,2) = (1,2)(3,4) o (1,3)
(1,4)(2,3) = (1,3)0(1,2)(3,4)2(1,3) (1,2)(3,4) = (1,2)(3,4)

(2,4) = (1,2)(3,4) 0 (1,3) 0 (1,2)(3,4) (1,3) = (1,3)

Let G be a group and g € G with |g| = n for some n € Z*. By ,
G={¢"|meZ}.
Let m € Z. By the Division Algorithm, [Hung, Theorem 1.1] m = gn + r with ¢,r € Z
and 0 < r < n. Then g™ = g9"*" = (¢g")9g" = eg" = g". Thus
(9) ={g" [0 <r <n}

Suppose that 0 < r < s < n. Then 0 < s —r < n and so by the definition of |g|,
~" # e. Multiplication with ¢" gives ¢° # ¢". So the elements ¢",0 < r < n are
pairwise distinct and therefore

(g)] =n=|gl.

1.6 Homomorphisms

Definition 1.6.1. Let f : A — B be a function. Then Im f:= {f(a) | a € A}. Im f is
called the image of f.

Lemma 1.6.2. Let f: A — B be a function and define g : A — Im f,a — f(a).

(a) g is onto.

(b) f is 1-1 if and only if g is 1-1.
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Proof. (@) Let b € Im f. Then by definition of Im f, b = f(a) for some a € A. Thus
g(a) = f(a) = b and so g is onto.
(]E[) Suppose f is 1-1 and let a,d € A with g(a) = g(d). Then by definition of g,
g(a) = f(a) and g(d) = f(d). Thus f(a) = f(d). Since f is 1-1, a = d. Hence g is 1-1.
Similarly if g is 1-1, then also f is 1-1. O

Definition 1.6.3. Let (G,*) and (H, ) be groups.
(a) A homomorphism from (G, ) from to (H, O) is a function f : G — H such that
flaxb) = f(a)Of(b)
for all a,b € G.
(b) An isomorphism from G to H is a 1-1 and onto homomorphism from G to H.

(c¢) If there exists an isomorphism from G to H we say that G is isomorphic to H and write
G=H.

Example 1.6.4.

(1) Let (H,x) be any group, h € H and define f : Z — H,m — h™. By [L4.7(),
f(n+m) =h"" = k"« h™ = f(n)* f(m). So f is a homomorphism from (Z, +) to
(H,%).

(2) Let I and J be sets with I C J. For f € Sym([) define ¢y : I — I by
~{rG) el
or() = 19" e
J ifjélrl

Let f,g € Sym(I) we will show that

(*) ¢f o (Z)g = ¢fog'

Note that this is the case if and only if (¢ 0 ¢g)(j) = ¢roq(j) for all j € J. We consider
the two cases j € I and j ¢ I separately.

If j € I, then since g is a permutation of I, also g(j) € I. So
(Pf 0 dg)(7) = p(dg(5)) = d5(9(4)) = f(9(h)) = (f o 9)(j) = (f 0 9)(5)-

If j ¢ I then
¢g(7) = 05(89(7)) = ¢7(3)) = 7 = ®(f 2 9)(5)-

So in both cases (¢f 0 ¢f)(j) = ®(f 0 g)(j). So (*) holds.
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For (*) applied with g = f~1,

Gpodr-1= Q-1 = dia; = PJ-

It follows that ¢ is a bijection. Hence ¢y € Sym(.J) and so we can can define

® : Sym(I) — Sym(J), f — ¢y.

We claim that ® is a 1-1 homomorphism.

To show that ® is 1-1 let f, g € Sym(I) with ¢y = ¢4. Then for all i € I, f(i) = ¢f(i) =
¢¢(i) = g(i) and so f = g. Hence ® is 1-1.

By (*)

P(foyg)= Gfog = Gf 0 @y = ®(f) o ®(g)

and so ® is a homomorphism.

Lemma 1.6.5. Let f: G — H be a homomorphism of groups.
(a) flec) = en-

(b) f(a™t) = f(a)~! for alla € G.

(c) Im f is a subgroup of H.

(d) If f is 1-1, then G = Im f.

Proof. (@) fleg)f(eq) Fhom flegea) deLea fleq) deLen e f(ea). So the Cancellation

Law [L.4.3|implies f(eq) = en.

b @)@ 2 faa) L fleq) D en andsoby[Ladld) ) = ri) .

@ We apply E Let z,y € Im f. Then by definition of Im f, x = f(a) and y = f(b)
for some a,b € G.

Thus y = £(a)f(5) =
By , eyg = ( ) €
By (b), 27" = f(a)™"

so Im f is a subgroup of H.
@ Define g : G — Im f,a — f(a). Since f is 1-1, implies that ¢ is 1-1 and onto.

Since f is homomorphism, g(ab) = f(ab) = f(a)f(b) = g(a)g(b) for all a,b € G and so also
g is a 1-1 homomorphism. Hence ¢ is an isomorphism and so G = Im f. O
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Definition 1.6.6. Let G be a group. Then G is called a group of permutations or a
permutation group if G < Sym([I) for some set I.

Theorem 1.6.7 (Cayley’s Theorem). Every group is isomorphic to group of permutations.

Proof. We will show that G is isomorphic to a subgroup of Sym(G). For g € G define
¢g:G— G,z — gu.

We claim that ¢, € Sym(G), that is ¢4 is 1-1 and onto.
To show that ¢, is 1-1, let ,y € G with ¢4(x) = ¢4(y) for some z,y € G, then gz = gy
and so by the Cancellation Law T =Y. S0 ¢4 is 1-1.
To show that ¢y is onto, let € G. Then ¢4(97'2) = g(g7'z) = z and ¢, is onto.
Define
f:G— Sym(G),g — ¢g.
To show that f is a homomorphism let a,b € G. Then for all x € G

fab)(z) = dap(x) = (ab)x = a(bx)
and
(f(a) o f(0)(x) = (da © Pp)(2) = Pa(Pp(z) = da(br) = a(br)
So f(ab) = f(a) o f(b) and f is a homomorphism.
Finally to show that f is 1-1, let a,b € G with f(a) = f(b). Then ¢, = ¢, and so
0 = a6 = ga(e) = dy(e) = be = b

Hence a = b and f is 1-1. Hence by [L.6.5((d), G is isomorphic to the subgroup Im f of
Sym(G). O

Example 1.6.8.
Let G = Zy x Zs. Put
a=(0,0),b=(1,0),c=(0,1) and d = (1,1).

Then G = {a,b, c,d}. For each g € G we will compute ¢g.
For z € G we have ¢4(z) = (0,0) + z = z. So

dp(a) =b+a=(1,0)+(0,0) = (1,0) =b
¢p(b) =b+b=(1,0) + (1,0) = (0,0) = a
dp(c) =b+c=(1,0)+ (0,1) = (1,1) =

¢b(d):b+d:(1a0)+(1vl):( 71)_C
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¢c(a) =c+a=(0,1)+(0,0) =(0,1) =¢
de(c) =c+c¢=1(0,1)+(0,1) = (0,0) = a
Cbc(b):C+b:(0a1)+(170):(171):d
¢c(d)zc+d:(0’1)+(1a1)_(17 ):b
Thus
¢ = (a,c)(b,d)

¢a(a) =c+a=(1,1)+(0,0) = (1,1) = d.
pg(d)=d+d=(1,1)+(1,1) = (0,0) = a.
pq(b) =d+b=(1,1)+ (1,0) = (0,1) = c.
¢pa(c) =d+c=(1,1)+(0,1) = (1,0) = b.
Thus

¢a = (a,d)(b, c).

(We could also have computed ¢4 as follows: Since d = a+¢, ¢ = ¢pq0¢p = (a,b)(c,d)o

(av C)(b, d) = (a’7 d)(bv C))
Hence

(Z2 x Z2,+) = ({(a), (a,b)(c, d), (a, c)(b,d), (a,d) (b, c) }, 0).
Using 1,2, 3,4 in place of a, b, ¢, d we conclude (see Homework 3#7 for the details)

(Zg x Zg,+) = ({(1),(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}, 0)

In general we see that a finite group of order n is isomorphic to a subgroup of Sym(n).

1.7 Lagrange’s Theorem

Definition 1.7.1. Let K be a subgroup of the group G and a,b € G. Then we say that a
is congruent to b modulo K and write a =b (mod K) if a='b € K.

Notice the the definition of " = (mod K)’ given here is different than in Hungerford.
In Hungerford the above relation is called “left congruent” and denoted by '& (mod K)'.

Example 1.7.2.

Let G = Sym(3), K = ((1,2)) = {(1),(1,2)}, a = (2,3), b = (1,2,3) and ¢ = (1,3,2).
Then
a'h=(2,3)0(1,2,3)=(1,3) ¢ K

and
ate=(2,3)0(1,3,2) = (1,2) € K.
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Hence
and
(2,3)=(1,3,2) (mod K).

Proposition 1.7.3. Let K be a subgroup of the group G. Then ' = (mod K)' is an
equivalence relation on G.
Proof. We need to show that © = (mod K)' is reflexive, symmetric and transitive. Let
a,b,ce (.

Since a~'a =e € K, we have a = a (mod K) and so’ = (mod K)' is reflexive.

Suppose that @ = b (mod K). Then a~!'b € K. Since K is closed under inverses,
(a='h)"! € K and so b~'a € K. Hence b=a (mod K) and ' = (mod K)' is symmetric.

Suppose that a = b (mod K) and b = ¢ (mod K). Then a='b € K and b~'c € K.
Since K is closed under multiplication, (a=!b)(b~'c) € K and thus a~!c € K. Hence a = ¢
(mod K) and ' = (mod K)' is transitive. O
Definition 1.7.4. Let (G, *) be a group and g € G
(a) Let A, B be subsets of G and g € G. Then

AxB:={axb|ac A be B},
gxA={g*al|acA}

and
Axg:={axg|ac A}

We often just write AB,gA and Ag for A* B,g+* A and A % g.

(b) Let K be a subgroup of the group (G,*) . Then g+ K called the left coset of g in G with
respect to K. Put

G/K :={gK | g € G}.
So G/K is the set of left cosets of K in G.
Example 1.7.5.
Let G = Sym(3), K ={(1),(1,2)}, a = (2,3). Then
aoK ={(1,2) ok | ke K} ={(2,3)0(1),(2,3)0(1,2)} ={(23),(1,3,2).

Proposition 1.7.6. Let K be a subgroup of the group G and a,b € G. Then aK is the
equivalence class of ' = (mod K)' containing a. Moreover, the following statements are
equivalent
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(a) b= ak for some k € K. (9) aK = bK.

(b) a='b =k for some k € K. (h) a € bK.

(c) a'be K. (i) b=a (mod K).

(d) a=b (mod K). () b lac K.

(e) becakK. (k) b=la = j for some j € K.
(f) aK NbK # 0. (1) a=bj for some j € K.

Proof. @ —= : Multiply with ="' from the left and use the Cancellation Law m

) = ¢ Obvious.

<= (d) : Follows from the definition of ' = (mod K)".

(@) <= () : Note that b = ak for some k € K if and only if b € {ak | k € K}, that
is if and only if b € a K.

So (a)-(e) are equivalent statements. Let [a] be the equivalence class of ' = (mod K)’
containing a. So [a] = {b € G | a = b (mod K)}. Since (d) and (¢ are equivalent, we
conclude that [a] ={be€ G |b € aK} =aK. Thus [a] = aK

Therefore Theorem implies that @— are equivalent. In particular, is equiv-
alent to @—. Since the statement @ is symmetric in ¢ and b we conclude that is
also equivalent to (ED—. ]

Proposition 1.7.7. Let K be a subgroup of the group G.

(a) Let T € G/K anda € G. Then a € T if and only if T = aK.

(b) G is the disjoint union of its cosets, that is every element of G lies in a unique coset of
K.

(¢) LetT € G/K anda € T. Then the map § : K — T,k — ak is a bijection. In particular,
T = |K].

Proof. @ Since T' € G/K, T = bK for some b € G. Since a = ae, a € aK. Conversely if
a €T thena€aKNT and aK NbK # (. Thus by@,, aK =bK =T.

(]E[) Let a € G. Then by @, aK is the unique coset of K containing a.

() Let t e T . By (o) T = aK = {ak | k € K} and so t = bk for some k € K. Thus
d(k) =t and ¢ is onto.

Let k,l € K with §(k) = (). Then gk = gl and the Cancellation Law implies
that £ = [. Thus 0 is 1-1. So ¢ is a bijection and hence |K| = |T|. O

Example 1.7.8.
Let G = Sym(3) and K = {(1),(1,2)}. We have

(MoK ={1)ok|keK}={(1)ec(1),(1)0(1,2)}={(1)(1,2)}.
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So K is a coset of K containing (1,2) and thus by [1.7.7(a) (1,2) o K = K. Just for fun
we will verify this directly:
(1,2) o K = {(1,2) 0 (1),(1,2) o (1,2)} = {(1,2), (1)} = K.
Next we compute the coset of K with respect to (2, 3):

(2,3) 0o K ={(2,3)0(1),(2,3) 0 (1,2)} ={(2,3),(1,3,2)}.
and so by Proposition [.7.7) also (1,3,2) o K = {{(2,3),(1,3,2)}. Again we do a direct
verification:
(1,3,2) o K ={(1,3,2) 0 (1),(1,3,2) 0 (1,2)} = {(1,3,2),(2,3)}.
The coset of K with respect to (1,3) is

(1,3) o K ={(1,3) 0 (1),(1,3) o (1,2)} = {(1,3),(1,2,3)}
and so by Proposition [L.7.7(a) also (1,2,3) o K = {(1,3), (1,2,3)}. We verify

(1,2,3) o K ={(1,2,3) 0 (1),(1,2,3) o (1,2)} = {(1,2,3),(1,3)}

Thus G/ K consists of the three cosets {(1,2), (1)}, {(2,3),(1,3,2)} and {(1,2,3),(1,3)}.
So indeed each of the cosets has size | K| = 2 and each element of Sym(3) lies in exactly one
of the three cosets.

Theorem 1.7.9 (Lagrange). Let G be a finite group and K a subgroup of G. Then
G| = |K]-|G/K|.
In particular, |K| divides |G|.
Proof. By [L.7.7|{b), G is the disjoint union of the cosets of K in G. Hence

Gl= > ITI.

TeG/K

By [L.7.7(d). |T| = |K]| for all T € G/K and so
Gl= Y ITI= ) |K|=|K||G/K|.
TeG/K TeG/K
Example 1.7.10.

(1) |D4| = 8 and | Sym(4)| = 4! = 24. Hence |Sym(4)/D4| = 24/8 = 3. So D4 has three
cosets in Sym(4).
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(2) Let H = ((1,2)) < Sym(3). Since Sym(3) has order 6 and H has order 2, | Sym(3)/H| =
3.

(3) Since 5 does not divide 24, Sym(4) does not have subgroup of order 5.

Corollary 1.7.11. Let G be a finite group.
(a) If a € G, then the order of a divides the order of G.
(b) If |G| = n, then a™ = e for all a € G.

Proof. (&) By Example [L.5.7][4)), |a| = |(a)| and by Lagrange’s Theorem, |(a)| divides |G]|.
@)Letm lal. By ( E) n—mkforsomekeZandsoa":a F=(amk=ck=c. O

Example 1.7.12.

Let g € Sym(4). We compute the order of g depending on the cycle type of g. Let
{a,b,c,d} ={1,2,3,4}

(1) 9= @(@®)(c)(d). Then |g| = 1.

(2) 9= (a,b)(c)(d). Then g* = (a)(b)(c)(d) and so |g| = 2.

(3) g = (a,b,c)(d). Then g?> = (a,c,b)(d) and ¢g> = (a)(b)(c)(d). Thus |g| = 3.
(4)

4 ‘g‘— (a,b,c,d). Then ¢g?> = (a,c)(b,d), ¢° = (a,d,c,b) and g* = (a)(b)(c)(d). Thus
gl=14

(5) g = (a,b)(c,d). Then g* = (a)(b)(c)(d) and so |g| = 2

So the elements in Sym(4) have orders 1,2, 3 or 4. Note that each of these number is a
divisor of Sym(4). Of course we already knew that this to be true by 1.7.11@.

For each of the five cycle types in — we now compute how many elements in Sym(4)
have that cycle type.

(1) There is one element of the form (a)(b)(c)(d). ( Any of the 24 choices for the tuple
(a,b,c,d) give the same element of Sym(4), namely the identity.)

(2) There are four ways to express the element (a,b)(c)(d), namely
(a7 b)(¢e)(d) = (b,a)(c)(d) = (a,b)(d)(c) = (b, a)(d)(c).
So there are %¢ = 6 elements in Sym(4) of the form (a, b)(c)(d).
(3) There are 3 ways to express the element (a,b, c)(d), namely

(a,b,c)(d) = (b,c,a)(d) = (¢, a,b)(d).

So there are 2! = 8 elements in Sym(4) of the form (a, b, c)(d).
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(4) There are 4 ways to express the element (a,b, ¢, d), namely
(a/’ b7 C7 d) = (b’ C’ d7 a/) = (C7 d7 a7 b) = (d’ a’ b’ C)'

So there are %' = 6 elements in Sym(4) of the form (a,b, ¢, d).

(5) There are 8 ways to express the element (a,b)(c,d), namely

So there are 2! = 3 elements in Sym(4) of the form (a, b)(c, d).

All together there are 146+ 8+ 6+ 3 = 24 elements in Sym(4), just the way it should be.

Definition 1.7.13. A group G is called cyclic if G = (g) for some g € G.
Lemma 1.7.14. Let G be a group of finite order n.

(a) Let g € G. Then G = (g) if and only if |g| = n.

(b) G is cyclic if and only if G contains an element of order n.

Proof. (@) Let g € G. Recall that by Example , [{g)| = |g|. Since G is finite,
G = (g) if and only if |G| = |(g)|. And so if and only if n = |g|.

() From (&) we conclude that there exists ¢ € G with |G| = (g) if and only if there
exists g € G with |g| = n. O

Corollary 1.7.15. Any group of prime order is cyclic.

Proof. Let G be group of order p, p a prime. Let e # g € G. Then by 1.7.11@ lg| divides

p. Since g # e, |g| # 1. Since p is a prime this implies |g| = p. So by |[1.7.14{(b), G = (g)
and so g is cyclic. O

Example 1.7.16.

Let G = GL2(Q), the group of invertible 2 x 2 matrices with coefficients in Q and let

10
g:
11
1 0 1 0
Then g" = for all n € Z and so (g) = n € Z
n 1 n 1

Thus |g| = |Z] = |Q| = |G| ( See section [A.3|for a primer on cardinalities). Also G # (g).
So we see that [[.7.14] is not true for infinite groups.
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1.8 Normal Subgroups

Lemma 1.8.1. Let G be a group, A, B,C subsets of G and g,h € G. Then
(a) A(BC)={abc|a€c Ajbe B,ce C} = (AB)C.

(b) A(gh) = (Ag)h, (¢B)h = g(Bh) and (gh)C = g(hC).

(¢) Ae= A= Ae = (Ag)g™ = g~ (gA).

(d) A= B if and only if Ag = Bg and if and only if gA = ¢B.

(e) AC B if and only if Ag C Bg and if and only if gA C gB.

(f) If A is subgroup of G, then AA= A and A~ = A.

(¢) (AB)™ = 1AL,

(h) (9B) ' =B"'g" and (Ag)~" =g 1A

Proof. @

A(BC) = {ad|a € A,d € BC} {a(bc) |a € A,be B,ce C}
= {(ab)c|la€ A,be B,ce C} = {fc| fe€eAB,ce C}

(AB)C .
(]E[) Observe first that

Afg} ={ab|lac A,be {g}} ={ag|ac A} = Ag,

and {g}{h} = {gh}. So the first statement in (b] follows from (&) applied with B = {g}
and C' = {h}. The other two statements are proved similarly.

Ae = {ae | a € A} = {a | a € A} = A. Similarly Ae = A. By (]EI) (Ag)g™! =
A(gg™') = Ae = A. Similarly g(g~tA) = A.

@ Clearly A = B implies that Ag = Bg. If Ag = Bg, then by (]E[)

A= (Ag)g~' = (Bg)g~' = B.

So A = B if and only if Ag = Bg and (similarly) if and only if gA = gB.

@ Suppose that A C B and let a € A. Then a € B and so ag € Bg. Hence Ag C Bg.
If Ag C Bg we conclude that (Ag)g~! C (Bg)g~! and by , A C B. Hence A C B if and
only if Ag C Bg. Similarly, A C B if and only if gA C ¢B

@ Since a subgroup is closed under multiplication, ab € A for all a,b € A. So AA C A.
Alsoe e Aand so A =eA C AA. Thus AA = A.

Since A is closed under inverses, A™' = {a™! |a € A} C A. Let a € A, then a™! € A
anda= (a"1)"'. Soa€ At and A C A~!. Thus A= A"L.
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(AB)™! = {d~'|de AB} = {(ab)~!'|a€ A bc B}
() = {b'a'|lacAbeBY = {cd|lceBde A"}
— B*lA*1

By applies with A = {g}:
(9B) ' = ({9)B) ' =B Mgy =B gy =By
Similarly, (Ag)~! =g 1AL O

Definition 1.8.2. Let N be a subgroup of the group G. N is called a normal subgroup of
G and we write N I G provided that

gN = Nyg
forall g € G.

Example 1.8.3.

(1) (t i)’>) {(1),(1,2)} = {(1,3),(1,2,3)} and {1,(1,2)} o (1,3) = {(1,3),(1,3,2)}. So

{(1),(1,2)} is not a normal subgroup of Sym(3).
(2) Let H = ((1,2,3)) < Sym(3). Then H = {(1),(1,2,3),(1,3,2)}. If g € H then
gH = H = Hg. Now

(1,2) o H ={(1,2),(2,3),(1,3)} =Sym(3) \ H

and

Ho(1,2) = {(1,2),(1,3), (2,3)} = Sym(3) \ H.

Indeed, gH = Sym(3) \ H = Hg for all h € Sym(3) \ H and so H is a normal subgroup
of Sym(3).

Definition 1.8.4. A binary operation x on I is called commutative if a x b = bx a for all
a,b € 1. A group is called abelian of its binary operation is commutative.

Lemma 1.8.5. Let G be an abelian group. Then AB = BA for all subsets A, B of G. In
particular, every subgroup of G is normal in G.
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Proof.

AB={ab|lac A,be B} ={ba|ac A, be B} = BA
If N is a subgroup of G and g € G, then gN = Ng and so N is normal in G. O

Lemma 1.8.6. Let N be a subgroup of the group G. Then the following statements are
equivalent:

(a) N is normal in G.

(b) aNa=' = N for all a € G.

(¢c) aNa=* C N fora €.

(d) ana=' € N for alla € G andn € N.

(e) Every right coset of N is a left coset of N.
Proof. @ = :

NG
= aN = Na for alla € G — definition of normal
— (aN)a' = (NaJo ' forallae G — [L8.f{d]
= aNa '=N foralla € G — 1.8.1,(@

@ — : Clearly (]E[) implies . Suppose holds and let a € G. From
applied with a=! in place of a, a ' Na C N. We compute

a'NaCN

—  a(a'Na)CaN - [1.8.1 ;

= (a(a™'N))aCaN — [1.8.1 :L

— Na C aN — [1.8.1 ;

= (Na)a='C (aN)a=! — [1.8.1 :l

— N CaNag™! — [1.8.1 Z @)
Thus R

N CaNa!

for all a € G. Together with this gives aNa~! = N and so implies (]EI)

= @ . Since aNa~! = {ana™! | a € N}, aNa~! C N if and only if ana=t € N
for all m € N.
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@ — @ : Suppose @ holds. Then alN = Na and so every left coset is a right
coset. Thus implies @

Suppose (ED holds and let @ € G. Then aN is a left coset and so also a right coset. Since
a = ae € aN we conclude that both Na and alN are right cosets containing a. So by
Na =aN. Thus N is normal in G and so @ implies @ 0

Proposition 1.8.7 (Normal Subgroup Proposition). Let N be a subset of the group G.
Then N is a normal subgroup of G if and only if

(i) N is closed under multiplication, that is ab € N for all a,b € N.
(ii) eq € N.
(i4i) N is closed under inverses, that is a=t € N for alla € N.

(iv) N is invariant under conjugation, that is gng=' € N for all g € G andn € N.

Proof. By the Subgroup Proposition N is a subgroup of G if and only if (i),(i) and

hold. By |1.8.6{|d), N is normal in G if and only if N is a subgroup of G and holds.
So N is normal subgroup if and only if — hold. O

The phrase ’invariant under conjugation’ comes from the fact for a € G, then map
inn, : G — G,g — aga™*

is called conjugation by a. Note that by Homework 3#2, inn, is an isomorphism of G.

Corollary 1.8.8. Let N be a normal subgroup of the group G, a,b € G and T € G/N.

(a) (aN)(bN) = abN.

(b) (aN)"' =a"'N.

(¢c) NT =T.

(d) T € G/N, TT* =N and T"'T = N.

Proof. (@) Since N < G, bN = Nb. By NN = N and multiplication of subsets is
associative, thus

(aN)(bN) = a(Nb)N = a(bN)N = ab(NN) = abN.
() By[1.8.1] (aN)"' = N~'a™' = Na~' =a"'N.

We may assume 7' = aN. Then
NT = N(aN) = (Na)N = (aN)N =a(NN) =aN =T.
@ By , T!'=(aN)"!'=a"'N and so T~ € G/N. Moreover,
TT ! = (aN)(a"'N) = (aNa )N NN N

and similarly 7717 = N. O
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Definition 1.8.9. Let G be a group and N I G. Then xg/y denotes the binary operation
*q/N : G/N xG/N = G/N, (S,T)—=S*T

Note here that by @, ST is a coset of N, whenever S and T are cosets of N. G/N

is called the quotient group of G with respect to N.

Theorem 1.8.10. Let G be a group and N IG. Then (G/N,*q/N) is group. The identity
of G/N is
eq/n =N =eN,

and the inverse of T = gN € G /N with respect to xq/n is
(gN)t=T"'={t""|teT}=g"'N.

Proof By definition *g/x is a binary operation on G /N. By -@ *q/N 18 associative;

, N is an identity for g /N, and by -@) T~ is an inverse of T'. Finally by

,1fT—gNthenT L=g~IN. O
Example 1.8.11.

(1) Let n be an integer. Then nZ = {nm | m € Z} is subgroup of Z, with respect to
addition. Since Z is abelian, nZ is a normal subgroup of Z. So we obtain the quotient
group Z/nZ. Of course this is nothing else as Z,, the integers modulo n, views as a
group under addition.

(2) By -. (1,2,3)) is a normal subgroup of Sym(3). By Lagrange’s Theorem | Sym(3)/((1, 2, 3))]
has order $ = 2 and so Sym(3)/((1,2,3)) is a group of order 2.

Sym(3)/((1,2,3)) = {{(1),(1,2,3),(1,3,2)}, {(1,2),(1,3),(2,3)} }

The Multiplication Table is
. {().(1.2,9), (13,2} {(1,2),(1,3).(2.3)}
[(0,(1.2,3), (13,2} | {(1.(1.2,9).(1.3,2)}  {(1,2),(1,3),(2,3)
[(1L2),(13),23) | {(1.2,(1,3).23)  {(1).(1,2,3).(1,3,2))

Let N = ((1,2,3)). Then Sym(3)/N = {(1) o N,(1,2) o N} and we can rewrite the
multiplication table as

(
(
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(3) Let N ={(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}. For example by Example Nisa
subgroup of Sym(4). We will show that N is a normal subgroup. For this we first learn
how to compute fgf~! for f,g € Sym(I). Let (ay,a2,as,...,a,) be cycle of g. Then

Thus
(f(a1)7 f(a2)7 f(a?))’ R f(an))

is a cycle of fgf~!. This allows as to compute fgf~'. Suppose

g = (a1,a2,...a,)(b1,b2,bs,...bn)...

Then
fgfil = (f(a1)7 f(QQ)a s f(an)) (f(b1)7 f(b2)7 f(b3)7 s f(bm)) <.
For example, if g = (1,3)(2,4) and f = (1,4,3,2). Then

faf=t = (F(1), F3)(£(2). f(4) = (4,2)(1,3),

and
(1,3,4)0(2,4,3) 0 (1,3,4)7! = (2,1,4).

In particular we see that if g has cycles of length Ai, Aa,..., A\, then also fgf~' has
cycles of length Ai, Ao, ..., Ag.

We are now able to show that N < Sym(4). For this let ¢ € N and f € Sym(4). By
@ we need to show that fgf~! € N. If g = (1), then also fgf~! = (1) € N.
Otherwise ¢ has two cycles of length two and so also fgf~! has two cycles of length
2. But any element with two cycles of length 2 is contained in N. So fgf~' € N and
N <Sym(4). Since |[N| =4 and | Sym(4)| = 24, Sym(4)/N is a group of order 6.
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1.9 The Isomorphism Theorems

Definition 1.9.1. Let ¢ : G — H be a homomorphism of groups. Then

ker¢p:={g€ G| d(9) =en}.
ker ¢ is called the kernel of ¢.

Lemma 1.9.2. Let ¢ : G — H be a homomorphism of groups. Then ker ¢ is a normal
subgroup of G.

Proof. We will verify the four conditions (i)-(iv) in the Normal Subgroup Proposition m
Let a,b € ker ¢. Then

b(a) = e and B(b) = exr.

(i) ¢(ab) = ¢p(a)p(b) = emen = ey and so ab € ker ¢.

(i) By [1.6.5|(a)), (eg) = eH and so e € ker ¢.

(iii) By 1 6 @) dla™t) = ¢la)"! = eH1 = ey and so a~ ! € ker ¢.
(

H

iv) Let d € G. Then

6(dad™) = p(d)o(@)o(d) ! = 6(d)end(d)” = HdF(d) " = en
and so dad~! € ker ¢.
By (i)-(iv) and ker ¢ is a normal subgroup of G. O

Lemma 1.9.3. Let N be a normal subgroup of G and define
¢:G— G/N,g— gN.

Then ¢ is an onto group homomorphism with ker ¢ = N. ¢ is called the natural homomor-
phism from G to G/N.

Proof. Let a,b € G. Then

6(ab) = abN (aN)(bN) = $(a) (D),

and so ¢ is a homomorphism.
If T € G/N, then T = gN for some g € G. Thus ¢(9) = gN =T and ¢ is onto. Since
eq/n = N the following statements are equivalent for g € G

g € ker ¢
= ¢(9) =eqn — definition of ker ¢
— gN =N —  definition of ¢{1.8.10
= geN - 1.7.7@

So ker¢p = N. O
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Corollary 1.9.4. Let N be a subset of the group G. Then N is a normal subgroup of G if
and only if N is the kernel of a homomorphism.

Proof. By the kernel of a homomorphism is a normal subgroup; and by any
normal subgroup is the kernel of a homomorphism. ]

Theorem 1.9.5 (First Isomorphism Theorem). Let ¢ : G — H be a homomorphism of
groups. Then

¢:G/kerp —Ime¢p, gkerp — é(g)

1s well-defined isomorphism of groups. In particular
G/ ker ¢ = Im ¢.

Proof. Put N = ker ¢ and Let a,b € G. Then

gN = hN
= g 'heN — |1.7.6
< ¢(g7'h)=eyg — Definition of N = ker ¢
< ¢(g9)t¢(h) =ey — ¢ is a homomorphism 1.6.5(@)
= o(h) = ¢(g) — Multiplication with ¢(g) from the left,
Cancellation law
So
(%) gN = hN = ¢(g) = ¢(h).

Since gN = hN implies ¢(g) = ¢(h) we conclude that ¢ is well-defined.
Let S,T € G/N. Then there exists g,h € N with S = gN and T'= hN.
Suppose that ¢(T) = ¢(S). Then

¢(9) = ¢(gN) = ¢(5) = ¢(T) = ¢(hN) = ¢(h),

and so by (*) gN = hN. Thus S =T and ¢ is 1-1.

Let b € Im¢. Then there exists a € G with b = ¢(a) and so ¢(aN) = ¢(a) = b.
Therefore ¢ is onto.

Finally

3(ST) = B(gNhN) B(ghN) = 6(gh) = 6(9)(h) = H(gN)B(hN) = B(S)B(T)

and so ¢ is a homomorphism. We proved that ¢ is a well-defined, 1-1 and onto homomor-
phism, that is a well-defined isomorphism. O

The First Isomorphism Theorem can be summarized in the following diagram:
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g
¢/ \ -
¢(g) ~———— gkero
Im¢ = G/ ker ¢

SR

Example 1.9.6.

Let G be a group and g € G. Define
¢:7—Gm— g™

By ¢ is an homomorphism from (Z, +) to G. We have

& ¢ = {6(m) |m € 2} = {g" | m e 2} B0 ()
and
(2) kerop={meZ|p(m)=e}={meZ|g" =e}.

If g has finite order, put n = |g|. Otherwise put n = 0. We claim that
(3) ker ¢ = nZ.

Suppose first that n = 0. Then |g| = oo and g™ # e for all m € Z*. Hence also
g ™ = (g™)"! # e and so ker ¢ = {0} = 0Z = nZ. So (3) holds in this case.

Suppose next that n is positive integer and let m € Z. By the Division Algorithm [Hung),
Theorem 1.1], m = gn + r for some ¢q,r € Z with 0 <r < m. Thus

m qn-—+r

g" =y =(9")1g" =elg" =¢".

By definition of n, g% # e for all 0 < s < n and so g" = e if and only if r = 0. So ¢™ = e if
and only if n | m and if and only if m € nZ. Hence (3) holds also in this case.
By the First Isomorphism Theorem
Z]ker ¢ = Im ¢
and so by (1) and (3).

L, = ZL/NZ = (g).

In particular, if G = (g) is cyclic then G = Z,,. So every cyclic group is isomorphic to
(Z,+) (in the n = 0 case ) or (Zy,+),n > 0.
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Definition 1.9.7. Let x be a binary operation on the set A and [0 a binary operation on
the set B. Then xx0 is the binary operation on A X B defined by

xx0:(AxB)x (Ax B)— Ax B, ((a,b),(¢c,d)) — (axc,b0d)
(A x B, *x[) is called the direct product of (A4,x*) and (B, O).
Lemma 1.9.8. Let (A,*) and (B, O) be groups. Then
(a) (A x B, xx[0) is a group.
(b) eaxnp = (ea,en).
(c) (a,b)"' = (a™1,b71).
(d) If A and B are abelian, so is A X B.

Proof. Let x,y,z € A x B. Then = = (a,b), y = (¢,d) and z = (f,g) for some a,c, f € A
and b,d, g in B. To improve readability we write A for *x[. We compute

A (yAz) = (a,b)A((c, d)A(f, g)) = (a, b)A((c* f,dDg))
= (ax(c f),bD(dDg)) = ((@axc)= f,(bOd)Ug) = (axc,b0g)A(f,g)
- ((a b)Ale, d)) = (zAY) Az,

So A is associative.

z(ea,ep) = (a,b)A(ea,ep) = (axeas,b0ep) = (a,b) =
and similarly (es,ep)Az = z. So (ea,ep) is an identity for A in A x B.

mA(a_l,b_l) = (a, b)A(a_l,b_l) = (ax* a_l,bDb_l) = (e, eB),

and similarly (a=',b~") 0z = (e4,ep). So (a~!,b7!) is an inverse of z.
Hence (G, A) is a group and (@), and hold.
@ Suppose * and [ are commutative. Then

Ay = (a,b)A(e,d) = (a*xc,b0d) = (cxa,d0c) = (¢,d)A(a,b) = yAz.
Hence A is commutative and A x B is a group. O
Example 1.9.9.

Let A and B be groups and define

m:Ax B — B,(a,b) —b.
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Then
7((a,b)(c,d)) = n(ac,bd) = bd = 7(a, b)w(c, d)

and so 7 is an homomorphism. Let b € B. Then mw(eq,b) = b and so 7 is onto. Let
(a,b) € A x B. Then 7(a,b) = ep if and only b = ep and so kerm = A x {eg}. In
particular, A x {eg} is a normal subgroup of A x B and by the First Isomorphism Theorem
1.9.0l

Ax BJ/A x{ep} = B.

Lemma 1.9.10. Let G be a group, H a subgroup of G and T C H.
(a) T is a subgroup of G if and only if T is a subgroup of H.
(b) If TQG, then T < H.

(¢c) If « : G — F is a homomorphism of groups, then ay : H — F,h — «a(h) is also a
homomorphism of groups. Moreover, ker agy = H Nkera and if o is 1-1 so is ayy.

Proof. @ This follows easily from the Subgroup Proposition m

Thus follows easily from the Normal Subgroup Proposition m

Let a,b € H. Then ag(ab) = a(ab) = a(a)a(b) = ag(a)ag(b) and so ay is a
homomorphism. Let g € G then

g € keray
g € H and ag(h) =ep
g € H and a(h) = ep
g€ H and g € kera

1117

g € HNkera

So kerayg = H Nkera.
Suppose « is 1-1. If ag(a) = ag(b), then a(a) = a(b) and so a =b. Thus a is 1-1. O

Theorem 1.9.11 (Second Isomorphism Theorem). Let G be a group, N a normal subgroup
of G and A a subgroup of G. Then AN N is a normal subgroups of A, AN is a subgroup of
G, N is a normal subgroup of AN and the map

A/JANN — AN/N, a(ANN)—aN
is a well-defined isomorphism. In particular,

AJANN = AN/N.
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Proof. Let a € A, then aN = Na C NA and so AN C NA. So by Homework 4#4 AN

is a subgroup of G. Since N < G 1.9.10@ implies that N < AN. By T™: G —
G/N,g — gN is a homomorphism with ker m = N. Hence by [1.9.10||c) also the restriction

ma:A— G/N,a— aN of m to A is a homomorphism with

(1) kermqg =ANkerr=ANN

Hence by AN N is a normal subgroup of G. We have

Immy = {ma(a) | ae€ A} = {aN |a€ H}
= {anN |a€ Ane N} = {dN|de AN} = AN/N

By the First Isomorphism Theorem we now conclude that

Ta: A/kermq —Immys, akermq — ma(a)

is a well-defined isomorphism. Thus by (1) and (2)

ma: A/ANN — AN/N, a(ANN)—aN

is a well-defined isomorphism. O

The Second Isomorphism Theorem can be summarized in the following diagram.
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HN

/ hN
H
MW\U

HNN

I

{e}
Example 1.9.12.
Let H = Sym(3) and view H has a subgroup of G = Sym(4). So H = {f € Sym(4) |
f(4) =4}. Put
N ={(1),(1,2)(3,4),(1,3)(2,4), (1,4)(2,3)}.

By 1.8.11 N is a normal subgroup of G and G/N is a group of order six. Observe that
the only element in N which fixes 4 is (1). Thus H N N = 1. So the Second Isomorphism

Theorem [1.9.11| implies that

H=H/{(1)} = H/HNN = HN/N.

In particular |[HN/N| = |H| = 6. Since HN/N is a subset of G/N and |G/N| = 6 we
conclude that G/N = HN/N. Thus H = G/N and so

Sym(3) = Sym(4)/{(1), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}.
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Lemma 1.9.13. Let ¢ : G — H be a homomorphism of groups.

(a) If A < G then ¢(A) is a subgroup of H, where p(A) = {¢p(a) | a € A}.

(b) If A G and ¢ is onto, p(A) < H

(¢c) If B < H, then ¢—(B) is a subgroup of G, where ¢~ 1(B) :={a € A| ¢(a) € A}
(d) If B< H, then ¢~ 1(B) 4 G.

Proof. (&) ¢(A) = {¢(a) | a € A} = {¢a(a) | a € A} = Im¢ps. By b4 is a
homomorphism and so by , Im¢ < H. Hence ¢(A) < H.

[®) By (a) #(A) < H. Hence by [L.8.6{{d) it suffices to show that ¢(A) is invariant under
conjugation. Let b € ¢(A) and h € H. Then b = ¢(a) for some a € A and since ¢ is onto,
h = ¢(g) for some g € G. Thus

(1) hbh™! = ¢(g)d(a)p(g) ™" = d(aga™).

Since A < G, @ implies aga=! € A. So by (1), hbh=! € ¢(A). Thus ¢(A) is
invariant under conjugation and ¢(A4) < G.
We will use the Subgroup Proposition. Let z,y € ¢~1(B). Then

(2) ¢(z) € B and ¢(y) € B

Since ¢(zy) = ¢(x)¢(y) and B is closed under multiplication we conclude from (2) that
¢(xy) € B. Hence xy € ¢~ 1(B) and ¢~ !(B) is closed under multiplication.

By [1.6.5] -@ ¢(eq) = e and by the Subgroup Proposition, ey € H. Thus ¢(eq) € H
and eg € ¢~ 1(B).

By -(]EI) oz~ h) (z)~L. Since B is closed under inverses, (2) implies ¢(z)~! € B.
Thus ¢(z~1) € B and x_l G #~Y(B). Hence ¢—!(B) is closed under inverses.

We verified the three conditions of the Subgroup Proposition and so ¢~1(B) < G.

@ By , ¢~ 1 (B) <G. Let € ¢~%(B) and g € G. Then

(3) $lgrg™") = P(g)d(x)d(9) "
Since ¢(x) € B and B is invariant under conJugatlon we have ¢(g)o(x)p(g9)~! € B.
Hence by (3) grg~! € ¢~ !(B) and by -@) ot O

Theorem 1.9.14 (Correspondence Theorem). Let N be a normal subgroup of the group G.
Put
S(G,N)={H|N<H<G} and S(G/N)={F | F <G/N}.

Let
m:G—G/N, g—gN

be the natural homomorphism.



1.9. THE ISOMORPHISM THEOREMS 47

(a) Let N < K <G. Then n(K)= K/N.
(b) Let F < G/N. Then n=Y(F) = UpepT.
(¢) Let N < K <G and g € G. Then g € K if and only if gN € K/N.

(d) The map
g: SG,N)—SG/N), K— K/N

is a well-defined bijection with inverse

a: S(G/N)— S(G,N), F—r YF).

In other words:

(a) If N < K <@, then K/N is a subgroup of G/N.

(b) For each subgroup F' of G/N there exists a unique subgroup K of G with N < K
and F = K/N. Moreover, K = n71(F).

(e) Let N < K <G. Then K <G if and only if K/N IG/N.
(f) Let N< H <G and N <K <G. Then H C K if and only if H/N C K/N.

(9) (Third Isomorphism Theorem) Let N < H I G. Then the map

p: G/H — (G/N)/(H/N), gH — (gN) x (H/N)
s a well-defined isomorphism.

Proof. (d) n(K)={r(k) |k€e K} ={kN | k€ N} = K/N.
(]E[) Let g € G. Then

gen \(F)
= m(g) € F — definition of 771(F)
— gN e F — definition of 7
< g¢gN =T for some T € F
< geTforsomeT € F — TeG/N,LT7{)
= g€ UperT — definition of union

If g € K then clearly gN € K/N. If gN € K/N then gN = kN for some k € K and
sog€gN =kN CK. So g € K if and only if gN € K/N.

(d) Let N < H < Gand F < G/N. By (p) H/N = n(H) and so by [1.9.13|(al)
H/N is a subgroup of N. Hence [ is well-defined. By 1.9.13@ 7 1(F) < G. Also if
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n € N, then m(n) =nN = N = eg/y € F andson € 7*(N). Thus N < 7*(N) and
77 1(N) € S(G, N). This shows that « is well defined. We compute

a(B(H)) = 7' (H/N)
= {9€G|gN € H/N}

{9€G|n(g) € H/N}
{9eGlge H} = H

—
)
~

Since 7 onto, @ implies (7 ~1(F)) = F and so B(a(F)) = F. Hence « is an inverse
of 8 and by @l, [ is a bijection.

@ Suppose that K << N. Then since 7 is onto, lmk]E[) implies K/N = 7n(K) < N.
Suppose that K/N <G/N. By @ 7 1 (K/N) = K and so by 1.9.13@ K <JN.

@LethEH. ByhEKifandonlyitheK/NandsngKifandonlyif
H/N C K/N.

Let

n: G/N—G/N/H/N, T —Tx(H/N)

be the natural homomorphism. Consider the composition:

nom: G—>G/N/H/N, g— (gN)* (H/N).

Since 1 and 7 are homomorphism, also 1 o 7 is homomorphism (see Homework 3#7).
Since both n and 7 are onto, n o 7 is onto (see b). So

(1) Imnow:G/N/H/N.
We now compute ker(n o ):

g € ker(nom)

< (nom)(g) = e(G/N)/(H/N) — Definition of ker(n o)
— n(r(g) = e(G/N)/(H/N) — Definition of o

= 7(g) € kern — Definition of kern
= m(g) € H/N - [1.9.3

= gN € H/N — Definition of 7

= ge H — @)

Thus

(2) ker(nom) = H.
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By the First Isomorphism Theorem [1.9.5
p: G/ker(nom) — Im(nomw), gker(nom)— (nom)(g)
is a well defined isomorphism. Thus by (1) and (2)
p:G/H = (G/N)/(H/N), gH — (gN)+ (H/N).

is a well-defined isomorphism.

Example 1.9.15.

In this example we compute the subgroups of (Z, +) and then use|1.9.14|to compute the
subgroups of Z,.

Let H be an additive subgroup of Z. We claim that

(1) H = mZ for some m € N.

Observe that 0 € H. If H = {0}, then H = 0Z. So suppose that H # {0}. Then there
exists 0 # i € H. Since H is closed under inverse, —i € H and so H contains a positive
integer. Let m be the smallest positive integer contained in H. Then mZ = (m) < H.
Let h € H. Then h = gm + r for some ¢, € Z with 0 < r <n. Thenr = h —qn € H.
Since m is the smallest positive integer contained in H, r is not positive. Thus r = 0 and
h=gqgm € mZ. So H=mZ. Thus (1) is proved.

Let n be a positive integer. We will now use [1.9.14{to determine the subgroups of Z/nZ.
Let F be a subgroup of Z/nZ. Then by @@, F = H/nZ for some subgroup H of Z
with nZ < H. From (1), H = mZ for some m € N. Since n € nZ < H = mZ we get m # 0
and m | n. Thus

(2) F =mZ/nZ for some m € Z* with m | n.

For example the subgroups of Z/127Z are

(3) 1Z/127Z, 27/127Z, 3ZJ/127Z, 4AZ/127Z, 6Z/12Z, 127Z/12Z.
By the Third Isomorphism Theorem

(4) Z/nZ/mZ/nZ > 7/)mZ = Lom,

and so ‘Z/nZ/mZ/nZ} = |Z/mZ| = m. Also |Z/nZ| = n. By Lagrange Theorem applied
to the subgroup mZ/nZ of Z/nZ,
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2/nZ| = |Z/nZ [mZ/nZ| - |mZ/nZ|
and so
n=m-|mZ/nZ|.
Thus n
|mZ/nZ| = —.
m

Observe that mZ/nZ is generated by m + nZ. So mZ/nZ is cyclic and so by

(5) MZ/nL = L.

So the groups in (3) are isomorphic to

(6) Zaa, Zg, Za, 73, ZLa, 7y,

and by (4) their quotient groups are isomorphic to

(7) Ly, Lz, Z3, Za, L, Zia.

Example 1.9.16.

In this example we compute the subgroups of Sym(3) and then use to compute
some subgroups of Sym(4).

Let K < Sym(3). Then by Lagrange theorem |K|||Sym(3)| = 6 and so |K| =1,2,3 or
6. If | K| = 1 them K = {(1)}.

If |K| = 2, then byK is cyclic and so by @, K = (g) for some g € K. The
elements of order 2 in Sym(3) are (1,2),(1,3) and (2,3) . So K is one ((1,2)), ((1,3)) and
(2,3)).

Similarly if |K| = 3 we see K = (g) for some g € K with |¢g| = 3. The elements of order
three in Sym(3) are (1,2,3) and (1,3,2). Also ((1,2,3)) = {1,(1,2,3),(1,3,2)} = ((1,3,2))
and so K = ((1,2,3)).

If |[K| =6 then K = Sym(3). So the subgroups of Sym(3) are

(1) {1}, ((1,2)), ((1,3), ((2,3)), ((1,2,3)), Sym(3).

Let N = ((1,2)(3,4), (1,3)(2,4)) and H = {f € Sym(4) | f(4) = 4} = Sym(3). By
Example [1.9.12| N < Sym(3) and the map ¢ : H — Sym(4)/N,h — hN is an isomorphism.
We can obtain the subgroups of G/N by computing ¢(K) for each subgroups K of H:
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o({)}) = {()N}

= {10.12)3,9,(1,3)2,9), (1,92,3)}}
)N

¢(((1,2))) = {(MN.(1, ) }
- {tw.a 3)(2,4). (1,4)(2,3)),
{(1 2) (3 ) (1 3,2,4),(1,4,2,3)}}

¢(((1,3))) = {(D)N,(1,3)N}

{
= {{(1),(1,2)(3,4)7(1,3)(2,4),(1,4)(2,3)},
{(1,3),(1,2,3,4),(2,4), (1,4,3,2)} |
¢({(2,3))) = {(D)N,(2,3)N}
= {{(1)7(1, 2)(3,4), (1,3)(2,4), (1,4)(2,3) },
{(2,3),(1,3,4,2),(1,2,4,3)), (1,49))} }
¢(((1,2,3))) = {(VN,(1,2,3),(1,3,2)N}
= {{(1) (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) },
{(1,2,3),(1,3,4),(2,4,3),(1,4,2)},
{(1,3,2),(2,3,4), (1,2,4), (1,4,3)} }

¢(H) = Sym(4)/N
By [1.9.14] taking the unions over the sets of cosets in (7) gives us the subgroups of
Sym(4) containing N:

(3)
N = {(1,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}
X1= {(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3), (1,2), (3,4), (1,3,2,4), (1,4,2,3)}
Dy= {(1),(1,2)(3,4),(1,3)(2,4), (1,4)(2,3), (1,3), (1,2,3,4), (2,4), (1,4,3,2)}
Xo = {(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3),(2,3), (1,3,4,2), (1,2,4,3)), (1,4))
Alb(4) = {(1),(1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (1,2,3), (1,3, 4),
(2,4,3), (1,4,2)(1,3,2),(2,3,4), (1,2,4), (1,4,3)}
Sym(4)

By Example ((1,2)) is not normal in Sym(3), while ((1, 2, 3)) is normal. Similarly
neither ((1,3)) nor ((2,3)) is normal in Sym(3). Thus the normal subgroups of Sym(3) are
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(10) {(D)}, Alt(3) :=((1,2,3)), Sym(3).

So by [1.9.14] the normal subgroups of Sym(4) containing N are

(11) N, Alt(4), Sym(4).

GROUPS



Chapter 2

Group Actions and Sylow’s
Theorem

2.1 Group Action
Definition 2.1.1. Let G be group and I a set. An action of G on I is a function
o GxI—=1 (g,i)— (goi)
such that
(act:i) eoi =1 foralli € I.
(act:ii) go (hoi)=(g*h)oi forallg,he G, i€ l.

The pair (I1,¢) is called a G-set. We also say that G acts on I via ©. Abusing notations we
often just say that I is a G-set. Also we often just write gi for g <.

Example 2.1.2.

(1) Let (G,*) be a group. We claim that * is an action of G on G. Indeed since e is an
identity for x, we have exg = ¢ for all g € G and so (act:i) holds. Since * is associative,
ax(bxg) = (axb)x*g forall a,b,g € G. So also (act ii) holds. This action is called the
action of G on G by left-multiplication.

(2) Sym(I) acts on I via foi = f(i) for all f € Sym(I) and ¢ € I. Indeed, idjoi =id;(i) =i
and so (act:i) holds. Moreover, fo (goi) = f(g(i)) = (f o 9)(7).

(3) Let F be a field. Recall that GLo(F) is the group of invertible 2 x 2 matrices with
coefficients in F. Define

93
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o GLy(F) x F? — F?
(A,v) — Av
a b T azx + by
) —
c d Y cr + dy

We claim that o is an action of GLy(F) on F2. Recall that the identity element in

: - N S
GLy(F) is the identity matrix . Since
O 1r
g Op x lpx 4 Opy x + Op T
Or 1r) \¥ Opz + 1ry OF +y Y

we conclude that (act:i) holds. Since matrix multiplication is associative, A(Bv) =
(AB)v for all A, B € GLy(F) and v € F2. Hence (act:ii) holds.

The next lemma shows that an action of GG on I is basically the same as an homomor-
phism from G to Sym(I).

Lemma 2.1.3. Let G be a group and I a set.
(a) Suppose ¢ is an action of G on I. For a € G define
fao: I —1, i—aoi.

Then f, € Sym(I) and the map

o,: G—Sym(I), a—f,

is a homomorphism. @, is called the homomorphism associated to the action of G on
1.

(b) Let ® : G — Sym(I) be homomorphisms of groups. Define
o:GxI—1I,(g,1)— P(g)9).

Then ¢ is an action of G on I.

Proof. (]) Observe first that f(i) = et =i for all ¢ € I and so

(1) fe =idy



2.1. GROUP ACTION 95

Let a,b € I then
Jap(i) = (ab)i = a(bi) = fa(fo(i)) = (fa o f5)(9)
and so
(2) fab = fa © fp.
From (2) applied to b = a~! we have

2 1) .
foo furt @ fugr = fo Ziar,
and similarly f,-1 o f, =id;. So by [A.2.6((c), fo is a bijection. Thus f, € Sym(/). Now

Bo(ab) = fup 2 fao fy = Bola) o Bo(b)

and so @, is a homomorphism.
@ By @, ®(e) = egym(r) = id;. Thus
eoi=®(e)(i) =ids(z7) =i

for all ¢ € I. So (act:i) holds.
Let a,b € G. Then

(ab) oi = ®(ab)(i) * 2™ (D(a) 0 B(b)(i) = D(a)(®(b)(i)) = ao (boi).
Thus (act:ii) holds and ¢ is an action for G on I. O
Example 2.1.4.

(1) We will compute the homomorphism & associated the action of a group G on itself by
left-multiplication (see Example 2.1.2|[1))). For this let a € G. Then for each g € G,
fa(g) = ag and ®(a) = f,. So @ is the homomorphism used in the proof of Cayley’s

Theorem [[.6.71

(2) We will compute the homomorphism ® associated to the action of a Sym(I) on I (see
Example [2.1.2[2))). Let a € Sym(¢). Then for all i € I,

fa(i) =aci=a(i).
So fo = a and thus ®(a) = a. Hence ® = idgyuy(r)-

Lemma 2.1.5. Let G be a group and H a subgroups of G. Define
oq/p: GxG/H—G/H, (9,T)—gT

Then oq g is well-defined action of G on G/H. This action is called the action of G on
G/H by left multiplication.
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Proof. Let a € G and T € G/H. Then T = tH for some t € G. We have
aT = atH = (at)H € G/H,

and so oG, is well defined. By eT =T and hence (act:i) holds.
Let a,b € G. Then (ab)T = a(bT) by [1.8.1f(a) and so also (act:ii) holds. O

Example 2.1.6.
Let G = Sym(4) and H = Dy. We will investigate the action of G on G/Dy by left

multiplication. Put
a=Dy, b=(1,2)Dy, and c=(1,4)Dy.
Since (1,2) ¢ Dy, a # b. Since (1,4) ¢ Dy, a # ¢ and since (1,2)7 1o (1,4) = (1,2) o

(1,4) = (1,4,2) ¢ D4, b # c. By Lagrange’s Theorem |G/H| = % = 21 = 3. Hence

G/H ={a,b,c}.
We now compute how (1,2),(1,3) and (1,4) act on G/H. We start with (1, 2):

(1.1) (1,2)a = (1,2)Dy = b,
(1.2) (1,2)b = (1,2)(1,2)Dy = Dy = 1,
and

(1,2)c = (1,2)(1,4)Dy = (1,4,2)Dy.

Is (1,4,2)Dy4 equal to a,b or ¢? Since the map f0) : G/H — G/H,T — (1,2)T is a
bijection we must have

(1.3) (1,2)c =c.
So (1,4,2)Dy = (1,4)D,. Thus can also be verified directly: (1,4,2)71(1,4) = (1,2,4)(1,4) =
(2,4) € Dy and so (1,4)D4 = (1,4,2)Dy.

Let ® be the homomorphism from G to Sym(G/H) associated to the action of G on
G/H = {a,b,c}. From (1.1),(1.2) and (1.3):

(1) @((1,2)) = f(1,2) = (a7 b)

Next we consider (1, 3):

(2.1) (1,3)a = (1,3)Dy = Dy = a.
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From (1,3)b = (1,3)(1,2)Ds = (1,2,3) D,

e (1:2:3)71(14) = (1,3,2)(1,4) = (1,4,3,2) € D
we have

(2.2) L3p=c

(2.3) (1.3)e = (1,3)(1,3)b = (L =b.

From (2.1),(2.2) and (2,3)

(2) 2((1,3)) = fa.3 = (b,c).
(3.1) (1,4)a = (1,4)Dy = c,
(3.2) (1,4)c = (1,4)(1,4)Dy = (1)Dy = Dy = a,

and so since f(14) is a bijection

(3.3) (1,4)b = b.

From (3.1),(3.2) and (3.3):

(3) (I)((1>4)) = f(1,4) = (a,c).

Since (1,2)(1,3) = (1,3,2) and ® is a homomorphism, we conclude that

(4) ®((1,3,2)) = @((1,2))2((1, 3)) = (a,b) (b, ¢) = (a, b, ¢),

(5) ®((1,2,3)) = ((1,3,2)" 1) = ®((1,3,2)) " = (a,b,¢) " = (a,c,b).

Clearly
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(6) o((1)) = (a).
From (1)-(6), ® is onto and so G/ ker ® = Sym(3).
What is ker ¢ ?
Recall that in example we learned how to compute fogo f~! for permutations
f and g. We have
(1,3)7 10 (1,2) 0 (1,3) = (3,2)

Since ® is a homomorphism this implies

Il
—~
\_[\D

w
~

®((2,3) = ®((1,3)7"o(1,2)0(1,3)) = &((1,3))7" 0 @((1,2)) 0 2((1,3))

= (b to(ab)o(be)t = (a,¢) = ©((1,4))
Thus
D((1,4)(2,3)) = ©((1,4))2((2,3)) = (a,¢)(a,¢) = (a)
and so (1,4)(2,3) € ker®. Since ker ® is a normal subgroup of G, this implies that also

(1,2) Lo (1,4)(2.3) o (1,2) € ker @ and (1,3)~L o (1,4)(2.3) o (1,3) € ker ®.
So

N = {(1),(1,4)(2,3), (2,4)(1,3), (3,4)(2,1)} C ker .

By Lagrange’s |ker ®| = % = % = 4 and so ker® = N. Thus Sym(4)/N =

Sym(3). Of course we already proved this once before in Example [1.9.12

Lemma 2.1.7 (Cancellation Law for Action). Let G be a group acting on the set I, a € G
and i,57 € H. Then

(a) a=(ai) =i.
(b)) i=j <= ai=aj.

(c) j=ai <= i=alj.
y _ .
Proof. (Q) a~!(ai) act i (ata)i Defa™ ,jacti
(]EI) Clearly if i = j, then ai = aj. Suppose ai = aj. Then then a~'(ai) = a~'(aj) and
so by @, 1=7.
(S
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Definition 2.1.8. Let G be a group and (I,0) a G-set.

(a) The relation =, (mod G) on I is defined byi =, j (mod G) if there exists g € G with gi =
7

(b) Goi:={goi|ge G}. Goiis called the orbit of G on I (with respect to ©) containing
1. We often write Gi for G o 1.

Example 2.1.9.

(1) Let G be a group and H a subgroup of G. Then H acts on G by left multiplication.
Let g € G. Then

Hog={hog|heH}y={hg|he H} =Hg
So the orbits of H on G with respect to left multiplication are the right cosets of H.

(2) Let I be a set and let o be the natural action of Sym(I) on I, see Example [2.1.2|2).
Letiel

Sym(I)oi={foilfeSym(I)}={f(i)|f€Sym(I)}.
Let j € I, then there exists f € Sym([) with f(i) = j, for example f = (7,75). So
j € Sym(I) ¢4 and thus Sym([) ¢ ¢ = I. Hence I is the only orbit of Sym(I) on I.
(3) Let N ={(1),(1,2)(3,4),(1,3)(2,4), (1,4)(2,3)}. By Example [L.8.113), N is a normal
subgroup of G. Hence by Homework 6#3

o: Sym(4) x N = N,(g,n) — gng_1

is an action of Sym(4) on N. Let n € N, then

Sym(4) on = {gon|g € Sym(4)} = {gng~" | Sym(4)}.

1

Consider n = e. Then geg™" = e and so

Sym(4) o e = {e}.

Consider n = (1,2)(3,4). Then gng~! # e and gng~! € N. We compute

(1)o(1,2)3,4)0 ()7 = (1,2)(3,4),
(1,3) 0 (1,2)(3,4) o (1,3)"' = (1,4)(2,3),
(1,4) 0 (1,2)(3,4) o (1,4)1 = (1,3)(2,4).

Thus

Sym(4) ¢ (1,2)(3,4) = {(1,2)(3,4),(1,3)(2,4), (1,4)(2,3)}.
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Lemma 2.1.10. Let G be a group acting in the set I. Then' = (mod G) is an equivalence
relation on I. The equivalence class of ' = (mod G)' containing i € I is Gi.

Proof. Let i,j,k € I. From ei = i we conclude that ¢ =4 (mod G) and ' = (mod G)' is
reflexive.
If i = j (mod G) then j = gi for some g € G and so

g =9 gi)= (g "g)i=¢ei=1i.

Thus j =4 (mod G) and ' = (mod G)’ is symmetric.
Ifi=7 (mod G) and j =k (mod G), then j = gi and k = hj for some g,h € G. Thus
(hg)i = h(gi) = hj =k,

and so i = k (mod G). Thus ' = (mod G)’ is transitive . It follows that ' = (mod G)’ is
an equivalence relation.
Let [i] be the equivalence class of ' = (mod G) containing i. Then

[i]={jeJ|i=j (modG)}={jeG|j=giforsomegecG}={gi|geG}=Gi
O

Proposition 2.1.11. Let G be a group acting on the set I and i,j € G. Then following
are equivalent.

(a) j = gi for some g € G. (e) Gi=Gj

(b) i=j (mod G) (f) i €Gj.

(c) j € Gi. (9) j =i (mod G).

(d) GinGj #0 (h) i = hj for some h € G

In particular, I is the disjoint union of the orbits for G on I.

Proof. By definition of i = j (mod G), @ and (]ED are equivalent, and also @ and
are equivalent. By [2.1.10, G% is the equivalence class containing i. So by (b)-(m) are

equivalent. O

Definition 2.1.12. Let G be a group acting on the set I. We say that G acts transitively
on I if for alli,j € G there exists g € G with gi = j.

Corollary 2.1.13. Let G be group acting on the non-empty set I. Then the following are
equivalent

(a) G acts transitively on I.
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(b) I =Gi forallicl.

(¢) I =Gi for some i€ 1.

(d) I is an orbit for G on I.

(e) G has exactly one orbit on I.
(f) Gi=Gj foralli,je€Q@G.

(g) i=j (mod G) for alli,j € G.

Proof. @ = @: Let 4,7 € I. Since G is transitive j = gi for some g € G. Thus j € Gi
and so Gi = I.

(]E[) = : Since I is not empty, there exists ¢ € I. So by (]ED, G = Gi.

= @: By definition, Gi is an orbit. So implies @

@ — @: Let O be any orbit for G on I. So O and I both are orbits for G on [
and ONIT =0 # (. Thus O = I and I is the only orbit for G on I.

@ — (@: Both Gi and Gj are orbits for G on I and so equal by assumption.

@ = : Let i,7 € I. By assumption Gi = Gj and so by [2.1.11]¢ = j (mod G).
== @: Let 4,5 € I. Then i = j (mod G), that is j = gi for some g € G. So G
is transitive on I. O

Definition 2.1.14. (a) Let G be a group and (I,¢) and (J,O) be G-sets. A function
f 1 —J is called G-homomorphism if

flaoi) = a0 f(i)

for all a € G and i. A G-isomorphism is bijective G-homomorphism. We say that I
and H are G-isomorphic and write

I=gJ
if there exists an G-isomorphism from I to J.
(b) Let I be a G set and J C I. Then
Stabg(J) ={g€ G| gj=j forallje J}

and fori e I
Stabg (i) = {g € G | gi = i}

Stabg (i) is called the stabilizer of i in G with respect to ©.

Example 2.1.15.
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Recall that by R.1.2[2), Sym(n) acts on {1,2,3,...,n} via f oi = f(i). We have

Stabgyms) (1)} = {f € Sym(3) | f(1) =1} ={(1),(2,3)}

and

Stabgym(S)({Qv 3}) = {f S Sym<5) ‘ f(2) =2 and f(3) = 3} = Sym({1747 5}) = Sym(3)'

Theorem 2.1.16 (Isomorphism Theorem for G-sets). Let G' be a group and (I,o) a G-set.
Let i € I and put H = Stabg(i). Then

¢: G/H — Gi, aH — ai

is a well-defined G-isomorphism.
In particular

G/H =g Gi, |Gi| =|G/Stabg(i)] and |Gi| divides |G|

Proof. Let a,b in G. Then

ai = bi
— a Yai)=al(bi) — 2.1.7(H)
— i = (a"'b)i - 2.1.7@), (act ii)
= albe H — H = Stab(i), Definition of Stab
= aH = bH - 1.7.6(@), @)

So ai = bi if and only if aH = bH. The backward direction of this statement means
that ¢ is well defined, and the forward direction that ¢ is 1-1. Let j € Gi. Then j = gi for
some g € G and so ¢p(gH) = gi = j. Thus ¢ is onto. Since

¢(a(bH) = ¢((ab)H) = (ab)i = a(bi) = ap(bH)

¢ is a G-homomorphism. O

Example 2.1.17.

By 2.1.9/[2), Sym(n) acts transitively on {1,2,...,n}. Thus Sym(n)on = {1,2,...n}.

Set H := Stabg,,,(,(n). Then

H = {f € Sym(n) | f(n) = n} = Sym(n - 1).



2.1. GROUP ACTION 63

Then by [2.1.16

Sym(n)/H ={1,2,3...,n} as Sym(n)-sets
Note here that | Sym(n)/H| = (n%'l), =n=|{1,2,3,...,n}.

Theorem 2.1.18 (Orbit Equation). Let G be a group acting on a finite set I. Let Iy, 1 <
k < mn be the distinct orbits for G on I. For each 1 < k < n let i, be an element of Ij.
Then

11| = [Tl =D |G/ Stabg(ix)].
i—1

i=1
Proof. By [2.1.11] I is the disjoint union of the I}’s. Hence

1) 11 =3" 1.
k=1

By [2.1.11] I, = Gij and so [2.1.16| implies

(2) |I| = |G/ Stabg(ig)| for all 1 < k < n.

Substituting (2) into (1) gives the theorem. O
Example 2.1.19.

Define

H :={f €Sym(5)|f({1,2}) = {1,2}}.

So an elements of H can permute the two elements of {1,2} and the three elements of
{3,4,5}. Thus

H = Sym({1,2}) x Sym({3,4,5}).

For example (1,2), (3,4), and (1,2)(3,5,4) are elements of H, but (1,3)(2,5) is not.
What are the orbits of H on {1,2,3,4,5}? If f € H, then f(1)is 1 or 2. So Hol = {1,2}.
f(3) can be 3,4 or 5 and so H ©3 = {3,4,5}. So the orbits are

(1,2} and {3,4,5}.

Next we compute the stabilizers of 1 and 3 in H.
Let f € H. Then f € Stabg(1) if and only if f(1) = 1. Since f permutes {1, 2} we also
must have f(2) =2, but f can permute {3,4,5} arbitrarily. It follows that
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Stabg (1) = Sym({3,4,5}).
f € Staby(3) if and only if f(3) = 3. f can permute {1,2} and {4,5} arbitrarily. Thus

Staby(3) = Sym({1,2}) x Sym({4,5}).
The Orbit Equation [2.1.18| now implies that

|H/Staby (1)] + [H/ Stabp (3)] = [{1,2,3,4,5}.
Observe that |[H| = 2!-3! =12, |Staby(1)| = 3! =6 and |Stabgy(3)] =2!-2! =4. So
2 12 _

6 a0

and

2+3=5.

2.2 Sylow’s Theorem

Definition 2.2.1. Let p be a prime and G a group. Then G is a p-group if |G| = p* for
some k € N.

Example 2.2.2.

|Z1| =1 =p°. So Z is a p-group for every prime p.
|Zo| = 2. So Zs is a 2-group.

Zs is a 3-group.

Z4 is a 2-group.

Zs is a b-group.

Zg is not a p-group for any prime p.

Z7 is a T-group.

Zg is a 2-group.

Zg is a 3-group.

Z1p is a not a p-group for any prime p.

Definition 2.2.3. Let G be a finite group and p a prime. A p-subgroup of G is a subgroup
of G which is a p-group. A Sylow p-subgroup of G is a mazimal p-subgroup of G, that is S
is a Sylow p-subgroup of G provided that

(i) S is a p-subgroup of G.
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(ii) If P is a p-subgroup of G with S < P, then S = P.
Syl,(G) denotes the set of Sylow p-subgroups of G.

Lemma 2.2.4. Let G be a finite group, p a prime and let |G| = p*l with k € N, | € Z7
and ptl.

(a) If P is a p-subgroup of G, then |P| < pF.
(b) If S < G with |S| = p*, then S is a Sylow p-subgroup of G.

Proof. (a]) Since P is a p-group, |P| = p" for some n € N. By Lagrange’s Theorem, |P|
divides |G| and so p" divides p¥l. Since p {1 we conclude that n < k and so |P| = p" < p*.

(@ Since |S| = p* and S < G, S is a p-subgroup of G. Suppose that S < P for some
p-subgroup P of G. By @ |P| < p* =|S|. Since P C S this implies P = S and so S is a
Sylow p-subgroup of G. O

Example 2.2.5.

(a) |Sym(3)] = 3! =6 = 2-3. ((1,2)) has order 2 and so by R.2.4|(b), ((1,2))is a Sylow
2-subgroup of Sym(3).

((1,2,3)) has order 3 and so is a Sylow 3-subgroup of Sym(3).
(b) |Sym(4)| = 4! =24 = 23.3. Dy is a subgroup of order eight of Sym(4) and so Dy is a
Sylow 2-subgroup of Sym(4).
((1,2,3)) is a Sylow 3-subgroup of Sym(4).
(c) |Sym(5)| =5! =5-24=23-3-5. So Dy is a Sylow 2-subgroup of Sym(5), ((1,2,3)) is
a Sylow 3-subgroup of Sym(5) and ((1,2,3,4,5)) is a Sylow 5-subgroup of Sym(5).
(d) |Sym(6)| = 6! =6-5! =2%.32.5. Dy x ((5,6)) is a subgroup of order 16 of Sym(6) and
so is a Sylow 2-subgroup of Sym(6).
((1,2,3)) x ((4,5,6)) is a group of order 9, and so is a Sylow 3-subgroup of Sym(6).
((1,2,3,4,5)) is a Sylow 5-subgroup of Sym(6).

Definition 2.2.6. Let G be a group acting on a set I. Leti € I. Then i is called a fixed-
point of G on I provided that gi =i for all g € G. Fix;(G) is the set of all fized-points for
G onl. So

Fix;(G)={i el |gi=1 for all g € G}.

Lemma 2.2.7 (Fixed-Point Formula). Let p be a prime and P a p-group acting on finite
set I. Then
|I| = |Fix;(P)| (mod p).

In particular, if pt |I|, then P has a fized-point on I.
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Proof. Let I, o, ..., I, be the orbits of P on I and choose notation such that

(1) |;| =1for 1 <l<mand |[}| >1form<<n.

Let ¢ € I and pick 1 <1 <n with ¢ € I;. By[2.1.11

(2) I = Gi.
We have
i € Fix;(P)
<= gi=iforallge G — Definition of Fix;(P)
3) = Gi = {i} — Definition of Gi
= |Gi| =1 — since i € Gi
= || =1 - (2)
= I<m - (1)
Thus
(4) Fix;(P) = | J L.
=1

Let m < | < n. By[2.1.16||[;| divides |P|. Since |P| is a power of p, we conclude that
|I;] is a power of p. Since |I;| # 1 we get p||];| and so

(5) ;] =0 (mod p)for all m <1 <n.

We compute

ELE | < - @ | -
I5=23 00 = 10+ Y 0l = [Fia(P) + Y |4l
=1 =1 l=m+1 I=m+1

and so by (5)

|I| = | Fix;(P)| (mod p).



2.2. SYLOW’S THEOREM 67

Example 2.2.8.

Let P = ((1,2,3),(4,5,6)) viewed as subgroup of Sym(8). Then P has order 9 and
so P is a 3-group. The orbits of P on I := {1,2,3,...,8} are {1,2,3}, {4,5,6}, {7}, {8}.
The fixed-points of P on I are 7 and 8. So |Fix;(P)| =2, |[I| = 8 and 8 = 2 (mod 3), as
predicted by

Definition 2.2.9. Let G be a group and (I,¢) a G-set.

(a) P(I) is the sets of all subsets of Z. P(I) is called the power set of I.
(b) Forae G and JC I putaoJ ={acj|je J}.

(c) op denotes the function

op: GxPU)—PU), (a,J)—aol

(d) Let J be a subset of I and H < G. Then J is called H-invariant if
hjeJ
forallhe Hyj e J.
(e) Let H < G and J be a H-invariant. Then op ; denotes the function

CH,J HxJ—J, (h,])—)h@j

Lemma 2.2.10. Let G be a group and (I,¢) a G-set.

(a) op is an action of G on P(I).

(b) Let H < G and J be a H-invariant subset of I. Then op j is an action of H on J.
Proof. @) Let a,b € J and J a subset I.

eJ={ejliey={jljelt=1J
and
a(bJ) =a{bj | j € J} ={a(bj) | j € J} ={(ab)j | j € J} = (ab)J.

Thus op fulfills both axioms of an action.

[) By eg = eq and so efyj = egj = j for all j € J. Clearly (ab)j = a(bj) for all
a,be H and j € J and so@holds. O

Definition 2.2.11. Let A and B be subsets of the group G. We say that A is conjugate to
B in G if there exists g € G with A = gBg™!.

Lemma 2.2.12. Let G be a group, H a subgroup of G and a € G.
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(a) aHa™' is a subgroup of G isomorphic to H. So conjugate subgroups of G are isomorphic.
(b) If H is a p-subgroup of G for some prime p, so is aHa™!.

Proof. @ By Homework 3#2 ¢ : G — G, g — aga™' is an isomorphism. Thus by 1.9.10
the restriction ¢z : H — G,h — aha™' is homomorphism. Since ¢ is 1-1, so is ¢z. Thus

by @, H = Im ¢pg. Since

Im ¢y = {¢g(h) | h € H} = {aha™ |h € H} = aHa™"
we get H =2 aHa !,
(@ By |H| = |aHa™!|. So if |H| is a power of p also [aHa™!| is a power of p. O
Lemma 2.2.13. Let G be a finite group and p a prime. Then
o: G xSyl(G) = SylL(G), (g9,P)—gPg"
is a well-defined action of G on Syl,(G). This action is called the action of G on Syl,(G)
by conjugation.

Proof. By Homework 6#3 G acts on G by conjugation. So by [2.2.10|@a), G acts on P(G)
by conjugation. Hence by 2.2.10@ it suffices to show that Syl ,(G) invariant under G with
respect to conjugation. That is we need to show that if S is a Sylow p-subgroup of G and

g € G, then also gSg~! is a Sylow p-subgroup of G. By [2.2.12|[b) gSg~! is a p-subgroup of
G

Let P be a p-subgroup of G with gS¢g~! < P. Then by S < g 'Pg. By 2.2.12@
g 'Pg is a p-subgroup of G and since S is a Sylow p-subgroup we conclude S = ¢g~'Pg.

Thus by @ also gSg~!' = P. Hence gSg~! is a Sylow p-subgroup of G. 0
Lemma 2.2.14 (Order Formula). Let A and B be subgroups of the group G.
(a) Put AB/B ={gB | g€ AB}. The map
¢p: A/ANB— AB/B, a(ANB)—aB
is a well-defined bijection.

(b) If A and B are finite, then
Al - |B]
|[ANB|

Proof. @) Let a,d € A. Then by a~ld € A. We have

|AB| =

aB =dB
= a'deB — [1.7.6
= a~lde ANB — sincea 'd € A
< a(ANB)=d(ANB) — [L.7.6
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This shows that ¢ is well-defined and 1-1. Let T' € AB/B. Then T = gB for some
g € AB. By definition of AB, g = ab for some a € A,b € B. Since bB = B we have

(1) T =abB = aB
So ¢(a(AN B)) =aB and ¢ is onto.

@ Let T € AB/B. By (1) T = aB C AB. So UTGAB/BT C AB. If g € AB, then
g € 9B Crcap/p T. Hence

(2) |J T7=4B
T€AB/B
By [L.7.
(3) distinct cosets are disjoint,
and by (7.7
(4) |T'| = |B| for all B € AB/B.
Thus
(2),(3) ©
[AB] "=7 Y T = ) |B|=|AB/B|-|B] B a/anBl- 8.
TEAB/B TEAB/B
Lagrange’s Theorem gives |A/AN B| = % and so
4 4] B
| ||Amm 1] |AN B

Theorem 2.2.15. Let G be a finite group and p a prime.

(a) (Second Sylow Theorem) G' acts transitively on Syl ,(G) by conjugation, that is any two
Sylow p-subgroups of G are conjugate in G and so if S and T are Sylow p-subgroups of
G, then S = gTg~" for some g € G.

(b) (Third Sylow Theorem) The number of Sylow p-subgroups of G divides |G| and is con-
gruent to 1 modulo p.
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Proof. By[2.2.13|G acts on Syl,(G) by conjugation. Let I be an orbit for G on Syl ,(G) and
P 1. Then P is a Sylow p-subgroup of G. We will first show that

(1) P has a unique fixed-point on Syl,(G), namely P.

Let @ € Syl,(G). Then P fixes @ ( with respect to the action by conjugation) if and
only if aQa~' = @ for all a € P. Clearly aPa~' = P for all a € P and so P is a fixed-point
for P on Syl (G). Now let Q be any fixed-point for P on Syl,(G). Then aQa~' = Q for all
a € P and so by [1.8.1] a@Q = Qa. Thus

PQ={ablacPbeQ}=|J{acPHab|beQ}=|]aQ =] Qa=QP.

acP acP
Thus by Homework 4#4 P(Q is a subgroup of G. By 2.2.14@,
1P[- Q|
PQ| = .
o= 1pAg)

Since P and @) are p-groups, we conclude that |P| and |Q| are powers of p. Hence also
|PQ)| is a power of p. Thus PQ is a p-subgroup of G. Since P < PQ and P is a maximal
p-subgroup of G, P = P(Q. Similarly, since () < P@Q and @ is a maximal p-subgroup of G,
@ = PQ. Thus P = Q and (1) is proved.

(2) Il =1 (mod p).

By (1) Fix;(P) = {P}. Hence |Fix;(P)| = 1. By 2.2.7] |I| = | Fix;(P)| (mod p) and so
(2) holds.
(3) I is the unique orbit for G on Syl (G).

Suppose this is false and let J be an orbit for G on Syl,(G) distinct from I. Then by
(2) applied to J,

(%) |J|=1 (mod p).

On the other hand, P ¢ J and so by (1), Fix;(P) = (). Hence |Fix;(P) = 0 and by

|J] =0 (mod p), a contradiction to (*).
Thus (3) holds.

) and [2.1.13] m@ @ G acts transitively on Syl,(G). Hence the Second Sylow Theo-
rem holds Moreover, Syl,(G) = I and so bym ]I| divides |G| and by (2) | Syl,(G)| =1
(mod p). O
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Lemma 2.2.16. Let I be a set. Then Sym(n) acts on I™ via

f<> (il,ig, .. Zn) = (if—1(1),if—1(2), .. .,if—l(n)).
So if i = (i1,i2,...,in) celandj=foi= (jl,jz,...,jn) then jf(l) =1.

Proof. Before we start we the proof a couple of examples: (1,2,3) ¢ (z,y,2) = (2,,t) and
(17 3)(27 5) © (CL, b, ¢, d, 6) = (Ca e, a,d, b)

Clearly (1) oi =1 for all i € I"™. So (act i) holds.

Let a,b € Sym(n) and i € I. Put j =boiand k =ao(boi) =aoj. Then k,y = ji
and so also kq(p1)) = Jsq) = 4. Hence k(qp)) = 4 and so k = (ab) o i. Thus (act ii) holds
and ¢ is an action of Sym(n) on I™. O

Theorem 2.2.17 (Cauchy’s Theorem). Let G be a finite group and p a prime dividing the
order of G. Then G has an element of order p.

Proof. Let ¢ be the action of Sym(p) on GP given in[2.2.16| Let h = (1,2,3,...,p) € Sym(p)
and H = (h). Then H is a subgroup of order p of Sym(p). Observe that

ho(glag%"'agp) = (92ag37"'7gp7gl)

and inductively,

(1) h o (91,921 9p) = (Git15Git2s- 1 Gps Gis---,9;) forall 0 < i< p

Hence h fixes (91,92, .. .,9p) if and only if g1 = g2,...,9p—1 = gp, gp = g1 and so

(2) Fixge(h) = {(9,9,---,9) | g € G}.
Put
J:={(91,92,---9p) €G’ | g192...9p = €}.
If g1 =g2=...=gp, then g1g2...g, = ¢} and so by (2):
(3) Fix;(H) = {(9,9,.--,9) | g€ G, ¢* = ¢}

In particular (e,...,e) € Fix;(H) and so

(4) | Fixy(H)| > 1.

In view of (3) our is now to show that Fix;(H) > 1. For this we will use the Fixed-
Point-Formula for H on acting on J. But we first must make sure that H acts on J.
By [2.2.10|(b)), we need to verify that J is H-invariant. Let (g1, g2,...gp) € J. Then
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9192.--9p = €.

Multiplying with g; ! from the left and g; from the right gives

9293 - - - gpg1 = €,

and so

(927937 cee 7gp,gl) e J

An easy induction proof shows that

(gi+1,gl‘+2,...,gp,g1,...,gi)GJfOI‘ all 1 <17 < p.

Hence by (1) h' o (g1,...gp) € J for all 1 < i < p. Since H = {h' | 0 < i < p} we
conclude that .J is an H-invariant subset of G". Thus by 2.2.10, H acts on J and so by
2.2.7

() |/ = |Fix;(H)| (mod p).

Note that |J| = |G|P~!. Indeed we can choose g1,92,...,gp—1 freely and then g, is
uniquely determined as g, = (g1 ...gp) "' Since p divides |G| we conclude that p | |.J| and
so by (5)

(6) p|| Fixs (H)].

From (4) and (6) |Fix;(H)| > p. So by (3) there exists g € G with g # e and ¢? = e.
Thus |g| ‘p. Since g # e and p is a prime, |g| = p and so Cauchy’s Theorem holds. O

Proposition 2.2.18. Let G be a finite group and p a prime. Then any p-subgroup of G is
contained in a Sylow p-subgroup of G. In particular, G has a Sylow p-subgroup.

Proof. Let P be a p-subgroup and choose a p-subgroup S of G of maximal order with respect
to P < S. If @ is a p-subgroup of G with S < @, then also P < ) and so by maximality of
IS], @] < |S]. Since S < Q we get |S| = |Q| and S = Q. So S is a Sylow p-subgroup of G.

In particular, the p-subgroup {e} of G is contained in a Sylow p-subgroup of G and so
G has Sylow p-subgroup.

Comment:This should have been proved right after Example since the
existence of Sylow subgroups has been used various times O
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Theorem 2.2.19 (First Sylow Theorem). Let G be a finite group, p a prime and S €
SyL,(G). Let |G| = p*l with k € N, L € Z% and pt 1 (p* is called the p-part of |G|). Then
|S| = p*. In particular,

Syl,(G) = {P < G||P| = p*}

and G has a subgroup of order p*.

Proof. The proof that |S| = p* is by complete induction on k. If k& = 0, then by
|S| < p* =1 and so |S| = 1. Assume now k > 0 and that the theorem is true for all finite
groups whose order has p-part smaller than pF.

Since k > 0, p‘ |G|. So by Cauchy’s Theorem G has a subgroup P of order p. By
P is contained in a Sylow p-subgroup 7" of G. Then |T| > 1. By the Second Sylow Theorem,
S is conjugate to T and so by 2.2.12)S = T and |S| = |T'|. Thus

(1) |S] > 1.

Let N be the stabilizer of S with respect to the action of G on Syl,(G) by conjugation.
So

N={g9eG|gSg~" =5}

Clearly S < N and by , S Q4 N. By the Second Sylow Theorem, Syl,(G) =

{9Sg-1|g € G} and so by [2.1.16
|G/N| = [Syl,(G)].
The Third Sylow Theorem implies

|G/N| =1 (mod p).
Thus p { |G/N|. By Lagrange’s theorem, p*l = |G| = |G/N| - |N|. We conclude that

IN| =p"m
for some m € Z* with p{m. Let |S| = p". Then by Lagrange’s theorem
N _

N/S|=-— =p"""m
IN/S| = T

Let R be a Sylow p-subgroup of N/S. By (1) n # 0. So k —n < k and by the induction
assumption
‘R’ _ pk—n.

By [1.9.14lg), there exists a subgroup U of N with S < U and U/S = R. By Lagrange’s
Theorem
U = [U/S|-|S| = |R| -|S| = p*"p" = p*.
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So U is a p-group and since S < U and S is a maximal p-subgroup, S = U. Thus |S| = pF.
We proved that any p-Sylow subgroup of G has order pF. Conversely by any
subgroups of order p¥ is a Sylow p-subgroup and so

Syl,(G) = {P < G||P| = p*}

Example 2.2.20.

(1) The subgroups of order 2 in Syl,(Sym(3)) are ((1,2)), ((1,3)) and ((2,3)) and so by the
First Sylow Theorem

Syl (Sym(3)) = {((1,2)), {(1,3)){(2,3))}-

(2) Let S be a Sylow 5-subgroup of Sym(5). Since | Sym(5)| = 5! = 23 .3 -5, |H| has order
5. Let 1 # h € H. Then h is a five cycle and so h = (v,w,x,y,z). There are 120
choices for the tuple (v, w,z,y,z). But any of the five cyclic permutations:

(”77073573/737)7 (U}, z,Y, Za”)? (xa Y, Z,’U,'IU), (y7 Z,0,w, .’E), (Z, v,w,x, y)

is also equal to h. Hence there are % = 24 elements of order five in Sym(5). Since

H = (h) any of the four elements of order five in H uniquely determine H. Thus there
are % = 6 Sylow 5-subgroups in G. Note here that 6 = 1 (mod 5) in accordance with
the Third Sylow Theorems.

(3) Let G be any group of order 120 and s; the number of 5-Sylow subgroups of G. The
Third Sylow Theorem says that s5 | 120 and s5 = 1 (mod 5). So 5 { s5 and since
120 = 5 - 24 we conclude that s5 | 24. The number less or equal to 24 and congruent to
1 modulo 5 are 1,6,11,16 and 21. Of these only 1 and 6 divide 24. So s5 = 1 or 6.

Lemma 2.2.21. Let G be a finite group and p a prime. Let S be a Sylow p-subgroup of G.
Then S is normal in G if and only if S is the only Sylow p-subgroup of G.

Proof. By the Second Sylow Theorem

Syl,(G) = {gSg™" | g € G}.
So Syl,(G) = {S} if and only if S = gSg~! for all g in G and so by (]E[) if and only
]

if S is normal in G.

Lemma 2.2.22. Let ¢ : A — B be a homomorphism of groups. Then ¢ is 1-1 if and only
of kerp = {e}.



2.2. SYLOW’S THEOREM 75

Proof. Let a,b € A. Then

¢(a) = ¢(b)
= d(a)"1o(b) = ep
— #(a=tb) = ep — |1.6.5
= a~'b € ker ¢ — definition of ker ¢
<= b= ak for some k € ker¢p — 1.7.6@)
So ¢(a) = ¢(b) implies a = b if and only if e4 is the only element in ker ¢. O

Example 2.2.23.

(1) ((1,2,3)) is the only Sylow 3-subgroup of Sym(3) and so by ((1,2,3)) <Sym(3).
(2) Sym(3) has three Sylow 2-subgroups, and by ((1,2)) £ Sym(3).

(3) A group G is called simple if {e} and G are the only normal subgroups of G. Let G be a
simple group of order 168. We will show that G is isomorphic to a subgroup of Sym(8).
Let s7 be the number of Sylow 7-subgroups of G and let S be a Sylow 7-subgroup of
G. By the First Sylow Theorem, |S| = 7 and so S # {e} and S # G. Since G is simple,
S ¢ G and so by s7 # 1. Since |G| = 168 = 7 - 24, the Third Sylow Theorem
implies that s; = 1 (mod 7) and s7 | 24. The numbers which are less or equal to 24
and are 1 modulo 7 are 1, 8,15 and 22. Of these only 1 and 8 divide 24. As sy # 1 we
have s7 = 8.

Let ¢ : G — Sym(Syl;(G)) be the homomorphism associated to the action of G on
Syl;(G) by conjugation (see @) So for g in G we have ¢(g)(S) = gSg~*.
Suppose that ker ¢ = G. Then ¢(g) = idgym,(q) for all g € G and so

S=0(9)(S) =9S¢~
for all g € G. Thus by (]E[), S <G, a contradiction since G is simple.
Hence ker ¢ # G. Since G is simple, ker ¢ = {e}. Thus by ¢ is 1-1 and so by

530,
(1) G =Im¢

and Im ¢ is a subgroup of Sym(Syl;(G)). Since | Syl;(G)| = n7 = 8 we conclude from
Homework 3#5 that there exists an isomorphism,

a : Sym(Syl;(G)) — Sym(8).
By @ |m ¢ is 1-1 and so by @
(2) Im ¢ = a(Im ¢)
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and a(Im ¢) is a subgroup of Sym(8). From (1),(2) and Homework 6#5,

> o(Im ¢)

and so G is isomorphic to a subgroup of Sym(8).

Lemma 2.2.24. Let G be a group and A, B normal subgroups of G with AN B = {e}.
Then AB is a subgroup of G, ab = ba for all a € A,b € B and the map

¢:Ax B — AB,(a,b) — ab
is an isomorphism of groups. In particular,
AB = A x B.

Proof. Let a € A and b € B. Since B 4G, aba~! € B and since B is closed under
multiplication,

(1) aba"'b~! € B.
Similarly ba='b~1 € A and
(2) aba b1 € A.

By assumption AN B = {e} and so by (1) and (2), aba='b~! = e. Multiplication with
ba from the right gives

(3) ab = ba.

From (3) we get AB = BA and thus by Homework 4#4 AB is a subgroup of G.

Let x € AB. Then x = ab for some a € A,b € B. Hence v = qS((a, b)) and so ¢ is onto.
Letce Aandd e B

Suppose that ¢((a, b)) = d)((c, d)) Then ab = ¢d and so ¢ 'a = db~'. Since ¢ la € A
and db=! € B we get ¢ la =db™! € A. So AN B = {e} implies ca~! = e = db~!. Thus
a=c,b=dand (a,b) = (¢,d). Therefore ¢ is 1-1.

3)

gb((a,b)(c, d)) = ¢((ac, bd)) = (ac)(bd) = a(cb)d ©) a(be)d = (ab)(bd) = <Z>((a, b))(b((c, d))

So ¢ is a homomorphism and the lemma is proved. ]
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Lemma 2.2.25. Let A be finite abelian groups. Let pi,pa,...pn be the distinct prime
divisor of |A| (and so |A| = p{" pamy ... pM* for some positive integers m;). Then for each
1 <i<n, G has a unique Sylow p;-subgroup A; and

A%AleQX...XAn.

Proof. Let A; be a Sylow p;-subgroup of G. By subgroups of abelian groups are
normal. So A; < G. So by [2.2.21] A; is the unique Sylow p;-subgroup of G. By the First
Sylow Theorem we have

(1) Al = p™

Put D; = A; and inductively Dy1q := DiAk41. We will show by induction on k that

(2) Dy, is a subgroup of A of order pi"'py™? ... p."*,
and
(3) Dkg/hXAQX...XAk.

By (1) Dy = A; has order pi™. Also D; = A; = A; and so (2) and (3) hold for k = 1.
So suppose that (2) and (3) hold for k. We will show that (2) and (3) also holds for k + 1.
By (2) Dy, has order py"'py? ... p;"*. By (1) Agqq has order p;nfi Thus |Dy| and |Ag41]
are relatively prime. Hence by Homework 4#3 DN Ax+1 = {e}. Since A is abelian, Dy, and

Aj.41 are normal subgroups of A (see|1.8.5)) and so by [2.2.24| D11 = Dy Ag41 is a subgroup
of A and

(4) Dyy1 = Dy, X Apy1.
Thus

(1).(2)
| Digr | = Del - [Apgal =7 plps o - prty

and

(4) 3
Dk+1 = Dk X Ak+1 = (A1A2 X Ak) X Ak+1.
So (2) and (3) holds for k£ + 1. Thus (2) and (3) hold for all 1 <i < n.
By (2) applied to k = n we get |D,| = p]"'py?...pJ'" = |A|. Hence A = D,,. Thus (3)
applied with n = k gives

—
=

A=D, =2 A; x Ay x ... X A,,.
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Example 2.2.26.
Let n be positive integer and let
(1) n=p"py* . pp"

where the p1,...,p, are distinct positive primes and my, ..., m; are positive integers. Put
g = ﬁ and A; = ¢;Z/nZ. Then A; is a subgroup of Z,, and by Example |1.9.14(5)

(2) A

12

Zn =17

n m;
q; p;

Thus by (1) and A; is a Sylow p;-subgroup of Z,. So by [2.2.25

anAIXAQX...XAk.

Hence (2) implies

(3) L 2 Lyt X L2 X ... X L.
For example
Zﬁ = ZQ X Zg,

L5 = 13 X Ls,

and
Zlﬁg = Zg X Zg X Z7.



Chapter 3

Field Extensions

3.1 Vector Spaces

Definition 3.1.1. Let K be a field. A vector space over K (or a K-space ) is a tuple
(V,+, ) such that

(i) (V,+) is an abelian group.
(ii) o : KxV — V is a function called scalar multiplication .
(i1i) ao (v+w) = (aov)+ (aow) foralla € Kjv,w e V.
() (a+b)ov=(aov)+ (bov) foralla,b e K,ve V.
(v) (ab)ov=ao(bov) for alla,be K,v e V.
(vi) Ixgov=wv for allv eV
The elements of a vector space are called vectors. The usually just write kv for ko v.
Example 3.1.2.
Let K be a field.
(1) Z1 = {0} is a K-space via fo0 =0 for all k € K.

(2) Let n € N. Then K" is an K-space via k ¢ (a1,...,a,) = (kai,...,ka,) for all
k,ai,...,a, € K.

(3) The ring K[z] of polynomials with coefficients in K is a K-space via
ko (ap+arz+...apz") = (kag) + (kar)x + ... (kapz™)

for all k, ag,...,a, € K.

79
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Definition 3.1.3. Let K be a field and V' and K-space. Let L = (v1,...,v,) € V™ be a list
of vectors in V.

(a) L is called K-linearly independent if

ai1v1 + ave + ... av, = Oy

for some ay1,a9,...,a, € K implies a1 =as = ... = a, = Ok.
(b) Let (ai,ay...,a,) € K". Then ajvi+agva+ ...+ apv, is called a K-linear combination
of L.

Spang (£) = {a1v1 + agvy + ... apvy, | (a1,...,a,) € K}

is called the K-span of L. So Spang (L) consists of all the K-linear combination of L.
We consider Oy to be a linear combination of the empty list () and so Spang (()) = {0y }.

(c) We say that L spans V', if V. = Spang (L), that is if every vector in V is a linear
combination of L.

(d) We say that L is a basis of V if L is linearly independent and spans V.

(e) We say that L is a linearly dependent if it’s not linearly independent, that is, if there
exist ki,...,k, € K, not all zero such that

kivy + kvs + ... kv, = Oy.

Example 3.1.4. (1) Put ¢, = (Og,...,0k, 1,0k, ...,0x) € K" where the 1x is in the
i-position. Then (e1,ea,...,e,) is a basis for K", called the standard basis of K™.

(2) (1g,z,22,...2") is a basis for K,[z], where K,[z] is set of all polynomials with coeffi-
cients in K and degree at most n.

(3) The empty list () is basis for 7.

Lemma 3.1.5. Let K be a field, V' a K-space and L = (v1,...,vy,) a list of vectors in V.
Then L is a basis for V if and only if for each v € V there exists uniquely determined

ki,... k, € K with
m
v = Zklvz
=1

Proof. = Suppose that L is a basis. Then £ spans v and so for each v € V there exist

k1,..., ky, with
v = kaz
=1

Suppose that also l1,...,1, € K with

m
v = E l@’Ul
=1
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Then . . .
Z(k‘l - li)vi = Z k‘iUz‘ — Zlivi = 0v.
i=1 i=1 =1

Since L is linearly independent we conclude that k; —I; = Og and so k; = [; forall 1 < i < mn.
So the k;’s are unique.

<=: Suppose each v in V is a unique linear combination of £. Then clearly £ spans V.

Let ki1, ..., k, € K with
m
Zkivi = OV
=1

Since also

m

> Ogv; = 0y

i=1
the uniqueness assumption gives k1 = ko = ... = k, = Og. Hence L is linearly independent
and thus a basis for V. ]

Lemma 3.1.6. Let K be field and V' a K-space. Let L = (v1,...,vy,) be a list of vectors in V.
Suppose the exists 1 < i < n such that v; is linear combination of (vi,...,Vi—1,Vit1,...,Vp).
Then L is linearly dependent.

Proof. By assumption,
vi =kiv1 + ...+ ki—1vi—1 + kip1vie1 + .o 4 kpon
for some k; € K. Thus
kivi + ...+ ki—q1v;—1 + (_1K)7}i + kiv1vig1 + ...+ kpup = Oy
and L is linearly dependent. O

Lemma 3.1.7. Let K be field, V' an K-space and L = (v1,v2,...v,) a finite list of vectors
in V. Then the following three statements are equivalent:

(a) L is basis for V.
(b) L is a minimal spanning list, that is £ spans V but for all 1 <i <mn,
(U1, + s Vi1, Vit 1y -« -5 Un)
does not span V.

(c) L is mazximal linearly independent list, that is L is linearly independent, but for all
veV, (v,va,...,0,,0) is linearly dependent.
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Proof. @) = (]ED: Since L is basis, it spans V. Since L is linearly independent im-
plies that v; is not in the span of (v1,...,Vi—1,Vit1,...,Up) and 80 (U1, ..., Vim1, Vit1,- -, Upn)
does not span V.

@ = (): Let v € V. Since L spans V, v is a linear combination of £ and so by
3.1.61 (v1,v2,...,0p,v) is linearly dependent.
@ = @: By assumption, £ spans V so we only need to show that L is linearly
independent. Suppose not. Then > | kjv; = Oy for some ky, ko, ..., k, € K, not all Ok.
Relabeling we may assume ky # Og. Thus

v = —kl_l(z kzvz)
1=2

Let ve V. Then v = 2?21 a;v; for some a; € K and so

n

v=a] (—k‘ll(zn: aivi)> + zn:awi = Z(ai — kflai)vi.
i=2 i=2

i=2
Thus (vg,...,v,) spans V, contrary to the assumptions.
= @: By assumption £ is linear independent, so we only need to show that £
spans V. Let v € V. By assumption (v1,...,v,,v) is linearly dependent and so
n
(Z aivi> +av = OV
i=1
for some ai,as,...,a,,a in K not all Og. If a = Ok, then since £ is linearly independent,

a; = Ok for all 1 <i < n, contrary to the assumption. Thus a # 0 and

n

v= Z(—ailai)vi.

i=1
So L spans V. ]

Definition 3.1.8. Let K be a field and V' and W K-spaces. A K-linear map from V to W
is function

f:Vv—-w
such that
(a) flutv)= f(u)+ f(v) for all u,v € W
(b) f(kv) =kf(v) forall k € K and v € V.

A K-linear map is called a K-isomorphism if it’s 1-1 and onto.
We say that V and W are K-isomorphic and write V =g W if there exists a K-
isomorphism from V to W.
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Example 3.1.9.
(1) The map K? — K, (a,b) — a is K-linear.
(2) The map K? — K2, (a,b,c) — (a + 2b,b — c) is K-linear.

(3) We claim that the map f: K — K,k — k2 is K-linear if and only if K = {0k, 1k }.
Indeed, if K = {0k, 1k}, then k = k? for all k € K and so f is K-linear.
Conversely, suppose f is K-linear. Then for all £ € K,

K= f(k) = f(k-1x) = kf(1) = k1§ = k

So O = k% —k = k(k—1k). Since K is a field and hence an integral domain we conclude
that k = Og or k = 1x. Hence K = {0k, 1,}.

(4) For f =31 fiz' € K[z] define
f/ — Zlfzxz—l
i=1

Then
D :Kx] = K], f — f

is a K-linear map.

Lemma 3.1.10. Let K be a field and V' and W be K-spaces. Suppose that (vi,ve, ..., vy)
is basis of V' and let wy,wa, ... w, € W. Then

(a) There exists a unique K-linear map f:V — W with f(v;) = w; for each 1 <i < mn.
(b) FOo7 kivi) =D 0 kiw;. for all ky, ...k, € K.

(¢) f is 1-1 if and only if (w1, wa, ..., wy) is linearly independent.

(d) f is onto if and only if (w1, ws, ..., wy,) spans W.

(e) f is an isomorphism if and only if (w1, wa,...,wy) is a basis for W.

Proof. (b)) and (b): If f: V — W is K-linear with f(v;) = w;, then

(1) f (Z ai”i) = Zazf(’l)z) = Zazwl

So (]ED holds. Moreover, since (v1,...vy,) spans V, each v in V' is of the form ), , a;v;
and so by (1), f(v) is uniquely determined. So f is unique.
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It remains to show the existence of f. Since (v1,...,v,) is a basis for V, any v € V' can
by uniquely written as v =) _,_; a;v;. So we obtain a well-defined function

n n
f: V-w, Zaivi — Zaiwi.

It is now readily verified that f is K-linear and f(v;) = w;. So f exists.

From (]ED
(2) kerf:{UGV]f(v):()W}:{Zkivi
i=1

i k‘iwi = Ow} .
=1

Hence
fis1-1
= ker f = {0y} - [2.2.22
= {220 kavi | 20520 kiws = Ow } = {Ov} - (2)
= {(ki,ko,... k) e K" | >0 kijw; = 0w} ={(0k,...,0g)} — (v1,...,vy) is linearly indep.
= (w1, ...,wy) is linearly indep. — definition of linearly indep.

So holds.

Imf={f(v)|veV}= {Zaiwi
i=1

ai,...ap € K} = Span(wi, wa, ..., wy).

f is onto if and only if Im f = W and so if and only if (wy,...,w,) spans W.

@ follows from (lc)) and @ O

Corollary 3.1.11. Let K be a field and W a K-space with basis (wy,ws ..., wy). Then the
map

K= W, (a,...a %Zazwl
15 a K-isomorphism. In particular,
W =g K™,

Proof. By Example 3.14(1), (e1,ez,...,e,) is basis for K. Also f(e;) = w; and so by
3.1.10, f is an isomorphism. ]

Definition 3.1.12. Let K be a field, V a K-space and W C V. Then W is called a
K-subspace of V' provided that
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(i) Oy € W.
(i) v+weW for allvyw e W.
(i1i) kw e W forallk e K, we W.

Proposition 3.1.13 (Subspace Proposition). Let K be a field, V a K-space and W an
K-subspace of V.

(a) Let v € V and k € K. Then Ogv = v, (—1g)v = —v and kOy = Oy.
(b) W is a subgroup of V' with respect to addition.

(c) W together with the restriction of the addition and scalar multiplication to W is a
well-defined K-space.

Proof. @ I will just write 1 for 1x and 0 for Og. Then

Oov+0y=00v=(0+0)ov=(00v)+ (00v).
So by the Cancellation Law [1.4.3] 0o v = Oy.
Hence
Oy =00v=(14+(-1)ov=(1ov)+(-1)ov=v+ (1) 0.
So by [L.4.4(d), (1) ov = —v.

Oy +koOy =koOy =ko(0y +0y) =ko0y +koOy

and so by the Cancellation Law ko 0y = 0y.

@ By definition of a K-subspace, W is closed under addition and 0y € W. Let w € W.
Since W is closed under scalar multiplication, (—1)ov € W. So by @), —v € W. Hence W
is closed under additive inverses. So by the Subgroup Proposition W is a subgroup
of V' with respect to addition.

Using (]ED this is readily verified and the details are left to the reader. O

Proposition 3.1.14 (Quotient Space Proposition). Let K be field, V a K-space and W a
K-subspace of V.

(a) V/W :={v+W |v eV} together with the addition

+tvw s VIWXVIW = V/W (u+V,io+ W) = (ut+v)+ W

and scalar multiplication

oyyw i KxV/W = V/W,(k,o+W) = kv+ W

is a well-defined vector space.
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(b) The map ¢ :V — V/W,v+ W is an onto and K-linear. Moreover, ker p = W.
Proof. @ By Theorem [1.8.10| (V/W, +y/y) is a well defined group. We have

(u+W)+@w+W)=(ut+v)+W=@w+u)+W=(w+W)+ (v+W)
and so (V/W, +y ) is an abelian group. Thus Axiom (i) of a vector space holds.

Let k € V and u,v € V with u+W = v+ W. Then u —v € W and since W is a
subspace, k(u—wv) € W. Thus ku—kv € W and ku+W = kv+W. So oy is well-defined
and Axiom (ii) of a vector space holds. The remaining four axioms (iii)-(vi) are readily
verified.

(]E[) By ¢ is an homomorphism of abelian groups and ker ¢ = W. Let k € K and
v € V. Then

o(kv) =kv+W =k(v+ W),
and so ¢ is a K-linear map. O

Lemma 3.1.15. Let K be field, V' a K-space, W a subspace of V.. Suppose that (wy, ..., w;)

be a basis for W and let (v1,...,v;) be a list of vectors in V. Then the following are
equivalent
(a) (wi,ws,..., wg,v1,02,...11) is a basis for V.

(b) (v1 +W,vg+W,...;0p+ W) is a basis for V/W.

Proof. Put B = (wy,wa, ..., Wk, v1,v2,...0]).
@ S @: Suppose that B is a basis for V. Let T'€ V/W. Then T' = v + W for
some v € V. Since B is spanning list for V' there exist aq,...,ag, b1,...br € K with

k !
v = Zaiwi + ijvj.
i=1 j=1
Since Zle a;w; € W we conclude that

k k
T=v+W = (me-) + W = Zbi(vi+w)-
i=1 i=1

Therefore (v1 + W,ve + W, ..., vy + W) is a spanning set for V/W.
Now suppose that b1,...b € K with

l
sz (% +W = OV/W
7j=1

Then (Zé‘:1 bjv;) + W =W and 22:1 bjv; € W. Since (wy,ws, ..., wy) spans W there
exist a,as...,a; € K with
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l k
> bivi =Y aw;,
j=1 i=1
and so
k l
Z(—ai)wi + Z ijj =0y
=1 j=1
Since B is linearly independent, we conclude that —a; = —as = ... = —ap = by = by =

... =b; = 0g. Thus (v] + W,ve + W, ..., vy + W) is linearly independent and so a basis for
V/W.

(]E[) = @: Suppose (v1 +W,vg+ W, ... v+ W) is a basis for W. Let v € V. Then
v+ W = Zé’:l bi(v; + W) for some by,...b € K. Thus

l
v — Z bv; € W,
i=1
and so

l k
v — E bZ"Ui = E a;W;
=1 =1

for some aq,...,a; € K. Thus

k l
v = E a;w; + E bj?)j,
1=1 J=1

and B is a spanning list.
Now let a1,...,a, b1,...b, € K with

k l
(*) Z a;w; + Z bj’l)j = Oy
i=1 j=1

Since Zle a;w; € W, this implies

l
ij(vj + W)= 0V/W~
j=1

Since (v1 + W,vo + W, ... vy + W) is linearly independent, by = by = ... =b; = 0. Thus
by (*)

k
Z a;w; = Oy,
i=1



88 CHAPTER 3. FIELD EXTENSIONS

and since (w1, ..., wy) is linearly independent, a; = ... = a; = Ok.
Hence B is linearly independent and so a basis. O

Lemma 3.1.16. Let K be field, V' a K-space and (v1,...,v,) and (wi,...wy,) be bases for
V. Then n=m.

Proof. The proof is by induction on min(n,m). If n =0 or m = 0, then V = {Oy}. So V
contains no non-zero vectors and n = m = 0.

Suppose now that 1 < n < m. Put W = Span(w;). Clearly (vi + W,...,v, + W) is a
spanning list for V/W. Relabeling the v}s we may assume that (v; +W,...,v + W) is a
minimal spanning sublist of (v1 + W, ..., v, + W). So by B.L7|f]), (v1 + W o + W) is
a basis for V/W.

By (]ED, (wy,v1,...,vy) is linearly dependent and so not a basis for V. w; is basis
for W and so by (vi + W,...,v, + W) is not basis for V/W. Hence k # n and
so k < n. So by induction any basis for V/W has size k. Since w; is a basis for W and
(wi,...,wy) is a basis for V, implies that (w2 + W, ..., wy + W) is a basis for V/W.
Hence k=m—1landsom=k+1<n <m. Thus n = m. O

Definition 3.1.17. A vector space V' over the field K is called finite dimensional if V' has
a finite basis (v1,...,v,). n is called the dimension of K and is denoted by dimg V. (Note
that this is well-defined by .

Lemma 3.1.18. Let K be a field and V an K-space with a finite spanning list L =
(v1,v2,...,v,). Then some sublist of L is a basis for V. In particular, V is finite di-
mensional and dimg V' < n.

Proof. Let B be spanning sublist of £ of minimal length. Then by (]ED B is basis for
V. O

The next lemma is the analogue of Lagrange’s Theorem for vector spaces:

Theorem 3.1.19 (Dimension Formula). Let V' be a vector space over the field K. Let W
be an K-subspace of V.. Then V is finite dimensional if and only if both W and V/W are
finite dimensional. Moreover, if this is the case, then

dimg V = dimg W + dimg V/W

Proof. Suppose first that V and V/W are finite dimensional. Let (w1, ws...wy) be basis
for W and (v1 + W,...vy + W) a basis for V/W.
Then by [3.1.15( (w1, ..., wy,v1,...,v;) is basis for V. Thus

(%) Vis finite dimensional and dimg V' =k + [ = dimg W + dimg V/W.

Suppose next that V is finite dimensional and let (z1,...,2,) be a basis for V. Then
(21 + W,zo+ W, ... 2z, + W) is a spanning list for V/W. So by [3.1.18
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(x%) V/W is finite dimensional.

It remains to show that W is finite dimensional. This will be done by induction on
dimg V. If dimg V = 0, then W = {0y} and so finite dimensional. Inductively assume
that all subspaces of vector spaces of dimension n — 1 are finite dimensional. We may
assume that W # {0y} and so there exists Oy # w € W. Put Z = Span(w). Then
dimg Z = 1 and by (**) (applied to Z in place of W) V/Z is finite dimensional. Thus by
(*),applied to Z in place of W, dimV/Z = dimV — 1. Since W/Z is a subspace of V/Z,
we conclude from the induction assumption that W/Z is finite dimensional. Since also Z is
finite dimensional we conclude from (*) (applied with W and Z in place of V' and W) that
W is finite dimensional. O

Corollary 3.1.20. Let V be a finite dimensional vector space over the field K and L a
linearly independent list of vectors in V. Then L is contained in a basis of V and so

|£] < dimg V.

Proof. Let W = Span(L). Then L is a basis for W. By [3.1.19| V/W is finite dimensional
and so has a basis (vi,ve,...v;). Hence by [3.1.15 (w1, ..., wg,v1,...v;) is a basis for V,
where (wy,...wg) = L. O

3.2 Simple Field Extensions

Definition 3.2.1. Let K be a field and F a subset of K. F is a called a subfield of K
provided that

(i) a+beF foralla,beF. (iv) ab € F for all a,b € F.
(’l"i) Ok € F. (U) g € IF.
(iii)) —a € F for alla € F. (vi) a=t € F for all a € F with a # Ok.

If F is a subfield of K we also say that K is an extension field of F and that K : F is a
field extension.

Note that , and just say that F is subgroup of K with respect to addition and
(iv).(). (1) say that F\ {Ox} is a subgroup of K\ {0k} with respect to multiplication.

Example 3.2.2.

R:Q and C : R are field extensions.
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Lemma 3.2.3. Let K : F be a field extension. Then K is vector space over IF, where the
scalar multiplication is given by

FxK—=K,(f,k)— fk
Proof. Using the axioms of a field it is easy to verify the axioms of a vector space. O

Definition 3.2.4. A field extension K : F is called finite if K is a finite dimensional F-
space.. dimp K is called the degree of the extension K : IF.

Example 3.2.5.

(1,4) is an R-basis for C and so C : R is a finite field extension of degree 2. R : Q is not
finite. Indeed, by every finite dimensional vector space over Q is isomorphic to Q™
for some n € N and so by is countable. Since by R is not countable, R is not
finite dimensional over Q.

Lemma 3.2.6. Let K : F be a field extension and V a K-space. Then with respect to the
restriction of the scalar multiplication to ¥, V is an F-space. If V is finite dimensional over
K and K : F is finite, then V is finite dimensional over F and

dim]F V= dim]y K- dimK V.

Proof. 1t is readily verified that V is indeed on F-space. Suppose now that V is finite
dimensional over K and that K : F is finite. Then there exist a K-basis (v1,...,v,) for V
and an F-basis (ki, ..., ky) for K. We will show that

B:=(kvj|1<i<m,1<j<n)
is an [F-basis for V.

To show that B spans V over F, let v € V. Then since (v1,...,v,) spans V over K there
exists lq,...,l, € K with

(1) v = levj.
7j=1

Let 1 < j <n. Since (ki,...,kp) spans K over F there exists ayj,...am; € F with

=1

Substituting (2) into (1) gives
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m n m n
j=1 \i=1 j=1i=1
Thus B spans V.
To show that B is linearly independent over IF, let a;; € Ffor 1 <i<mandi<j<n

with
m n
Z Z aijkivj = Ov.
j=1i=1
Then also
m n
Z (Z aijk:i> Uj = Ov.
j=1 \i=1
Since > a;jk; € K and (v1,...,v,) is linearly independent over K we conclude that

forall 1 <j<n:

m
Z aijki = OK.
i=1
Since (k1, k2, ..., ky) is linearly independent over F this implies a;; = O for all 1 < ¢ <
m and all 1 < j <m. Thus B is a basis for V over [F, V is finite dimensional over F and
dimp V = mn = dimp K - dimg V.
O
Corollary 3.2.7. Let E : K and K : F be finite field extensions. Then also E : F is a finite

field extension and
dimF E = dim]F K- dimK E.
Proof. By E is a K-space. So the corollary follows from applied with V =E. O

Before proceeding we recall some definitions from ring theory. Let R be a ring and [ a
subset of R. Then [ is an ideal in R if I is an additive subgroup of R and i € [ and ir € [
for all r € R and i € I. Let a € R. Then (a) denotes ideal in R generated by R, that the
intersection of all ideals of R containing a. If R is a commutative ring with identity, then
(a) = Ra={ra|r e R}.

Lemma 3.2.8. Let F be a field and I a non-zero ideal in F[z].
(a) There exists a unique monic polynomial p € F[z] with I = Flz|p = (p).

(b) Flx]/I is an integral domain if and only if p is irreducible and if and only if Fx]/I is
field.
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Proof. (@) We will first show the existence of p. Since I # {Op} there exists ¢ € I with
q # Op. Choose such a ¢ with degq minimal. Let p := lead(q)~! - ¢q. Then p is monic,
degp = degq and since I is an ideal p € I. Let g € F[z]. By the Remainder Theorem
[Hung, Theorem 4.4], g = tp + r where t,r € Flz| with degr < degp. Since I is an
ideal, tp € I and so g € I if and only if g — tp € I and so if and only if » € I. Since
degr < degp = degq, the minimal choice of degq shows that r € I if and only if » = Op.
So g € I if and only if r = O and if and only if ¢ € (p) = F[z]p. Therefore I = (p).

Suppose that also p € Flz] is monic with I = (p). Then p € (p) = (p) = F[z]p and so
p | p. Similarly p | p. Since p and p are monic, [Hung, Exercise 4.2 4(b)] gives p = p. So p
is unique.

(o) This is [Hung, Theorem 5.10]. O

Definition 3.2.9. Let K : F be a field extension and a € K.

(a) Fla] = {f(a) | f € Flz]}.

(b) If there exists a non-zero f € Flx] with f(a) = Op then a is called algebraic over F.
Otherwise a is called transcendental over F.

Example 3.2.10.

V/(2) is the a root of 22 — 2 and so /(2) is algebraic over Q.

i is a root of 22 + 1 so i is algebraic over Q

7 is not the root of any non-zero polynomial with rational coefficients. So 7 is tran-
scendental. The proof of this fact is highly non-trivial and beyond the scope of this lecture
notes. For a proof see Appendix 1 in [Lang].

Lemma 3.2.11. Let K: F be a field extension and a € K.

(a) The map ¢, : Flz] — K, f — f(a) is a ring homomorphism.

(b) Im ¢, = Fla] is a subring of K.

(¢) ¢q is 1-1 if and only if ker ¢, = {Or} and if and only if a is transcendental.

Proof. @ This is readily verified. See for example Theorem 4.13% in my Lecture notes for
MTH 310, Fall 05 [310].

@) Impe = {da(f) | f € Flz]} = {f(a) | f € Flz]} = Fla]. By Corollary 3.13 in
Hungerford [Hung] the image of a homomorphism is a subring and so F[a] is a subring of
K.

By ¢q is 1-1 if and only if ker ¢, = {Op}. Now
ker po = {f € Flz] | ¢a(f) = Ok} = {f € Flz] | f(a) = Ok},

and so ker ¢, = {Op} if and only if there does not exist a non-zero polynomial f with
f(a) = Ok, that is if and only if a is transcendental. O



3.2. SIMPLE FIELD EXTENSIONS 93

Theorem 3.2.12. Let K : F be a field extension and a € K. Suppose that a is transcendental
over IF. Then

(a) bo:Flx] = Fla], f — f(a) is an isomorphism of rings.
(b) For alln € N, (1,a,a?,...,a") is linearly independent over F.
(c) Fla] is not finite dimensional over F and K : F is not finite.

(d) a=! ¢ Fla] and Fla] is not a subfield of K.

Proof. (gl Since a is transcendental, f(a) # O for all non-zero f € F[z]. So ker ¢ = {Or}
and by ¢q 1s 1-1. So F[z] =2 Im ¢, as a ring. But Im ¢, = F[a] and so F[z] = Fla].

(]EI) Let bo,b1,...,b, € F with X7 bia' = Op. Then f(a) = O where f = Yoo bzt
Since a is transcendental f = Op and so by = by = ... = b, = Op. Thus (1p,a,...,a") is
linearly independent over F.

Suppose F[a] is finite dimensional over F and put n = dimpF[a]. Then by (b))
(1,a,a?,...,a") is linearly independent over F. This list has length n + 1 and so by [3.1.20

n+ 1 < dimgFla] = n,

a contradiction.
So F[a] is not finite dimensional over F. Suppose K : F is finite, then by also F[a)
is finite dimensional over F, a contradiction.
@ Suppose a~ ' € Flz]. Then a™! = f(a) for some f € Flz]. Thus af(a)—1p = 0|F and
so a is root of the non-zero polynomial xf — 1;F. But then a is algebraic, a contradiction.
O

Theorem 3.2.13. Let K : I be a field extension and a € K. Suppose that a is algebraic
over F. Then

(a) There exists a unique monic polynomial p, € F[x] with ker ¢, = (pa)-

(b) ¢,: TFlx]/(pa) = Fla], [+ (pa) — f(a) is a well-defined isomorphism of rings.
(¢) pq is irreducible.

(d) Fla] is a subfield of K.

(e) Let Putn = degp,. Then (1,a,...,a" ') is an F-basis for F[a]

(f) dimp Fla] = degpq.

(9) Let g € F[z]. Then g(a) = Ok if and only if pg | g in Flz].
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Proof. @ By 3.2.11, ker ¢, # {Or}. By 3.2.11@ is a ring homomorphism and so by
Theorem 6.10 in Hungerford [Hung], ker ¢, is an ideal in F[z]. Thus by ker ¢ = (pa)

for a unique monic polynomial p, € F[z].

@: By definition of pg, ker ¢, = (p,). By @ ¢q is a ring homomorphism and so
@ follows from the First Isomorphism Theorem of Rings, [Hung, Theorem 6.13].

and (d): Since K is an integral domain, Fla] is an integral domain. So by (D)),
Flz]/(pa) is an integral domain. Hence by [3.2.8|(b)), pq is irreducible and F[z]/(pq) is a field.
By (b) also F[a] is a field. So (d) and (d) hold.

(d) Let T € F[z]/(po). By Corollary 5.5 in Hungerford there exists a unique polynomial
f € Flz] of degree less than n with T'= f + (p,). Let f = Z?:_ol ;' with f; € F. Then the
fi are unique in F with

n—1 n—1
T= <Z fixi> + (pa) = Z fi(@" + (pa))-
i=0 i=0
Thus by [3.1.5]

1+ (pa)a r+ (pa)a ce. 7xn71 + (pa)
is a basis for F[z]/(pa). Since ¢, (2" + (pa)) = a' we conclude from @) that

(1,a,a%,...,a" Y

is a basis for F[a].

@ Follows from @

g(a) = Ok if and only if ¢,(a) = Ok if and only if g € ker ¢, if and only if g € (p,)
and if and only if p, | g in F[z]. O

Definition 3.2.14. Let K : F be a field extension and let a € F be algebraic over F. The
unique monic polynomial p, € F[x] with ker ¢, = (pg) is called the minimal polynomial of
a over IF.

Lemma 3.2.15. Let K : F be a field extension and a € K be algebraic over F. Let p € Flx].
Then p = p, if and only of p is monic, and irreducible and p(a) = Op.

Proof. <=: Suppose p = p,. We have p, € (p,) = ker ¢, and so p,(a) = 0. By definition
Pa 18 monic and by [3.2.13((c]), p, is irreducible.

—: Suppose p is monic and irreducible and p(a) = 0. Then p € ker ¢, =)p,) and so
Pa | p- Since p, is not constant (since it has a as a root) and p is irreducible, p = bp, for
some b € F. Since both p and p, are monic we get b = 1 and so p = p,. O

Example 3.2.16.

(1) It is easy to see that 3 — 2 has no root in Q. Since 2® — 2 has degree 3, [Hung]
Corollary 4.18] implies that 23 — 2 is irreducible in Q[z]. So[3.2.15|implies that x3 — 2
is the minimal polynomial of ¥/2 over Q. Hence by 3.2.13@
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(1, 3, (%)2) - (1, ¥2), ﬂ)
is a basis for Q[v/2]. Thus
Q[V2] = {a+bV2+cV4]|a,b,ceQ}.

(2) Let & = e%i= cos(&) +isin(%) = -1 + @z

Then ¢3 = 1 and € is a root of 23 — 1. 3 — 1 is not irreducible, since (z® — 1) =
(x —1)(2%2 + 2 +1). So £ is a root of 22 + x + 1. 22 + z + 1 does not have a root in Q
and so is irreducible in Q[z]. Hence the minimal polynomial of ¢ is 2% + 2 + 1. Thus

Q¢ = {a+b¢ | a,b e Q}.

Lemma 3.2.17. (a) Let «: R — S and §: S — T be ring isomorphisms. Then

Boa:R—T,r— B(a(r))
and
a8 =R, s—al(s)

are ring isomorphism.

(b) Let R and S be rings, I an ideal in R and o : R — S a ring isomorphism. Put J = a(I).
Then

(a) J is an ideal in S.
(b) B:1—J, i— «i)isaring isomorphism.
(¢c) v:R/I—S/J, r+1—a(i)+J is a well-defined ring isomorphism.

(d) a((a)) = (a(a)) for all a € R. That is o maps to ideal in R generated by a to the
ideal in S generated in o(a).

(c) Let R and S be commutative rings with identities and o : R — S a ring isomorphism.
Then

Rlz] = Sa], > fir' =) o(i)a’
=1 =1

s a ring isomorphism. In the following, we will denote this Ting isomorphism also by

o. Soif f =" fixt € Fla], then o(f) = > yo(fi)a'.
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Proof. Readily verified. O

Corollary 3.2.18. Let 0 : Ky — Ky be a field isomorphism. For i = 1,2 let E; : K;
be a field extension and suppose a; € K; is algebraic over K; with minimal polynomial p;.
Suppose that o(p1) = p2. Then there exists a field isomorphism

g Kl [al] — KQ[CLQ]

with
plar) = as and p |x,= o

Proof. By o : Kifz] = Kalz], f — o(f) is a ring isomorphism. By [3.2.17|(b:al)
a((p1)) = (o(p1)) = (p2) and so by 3.2.17(b:d)

(1) Kil2]/(p1) = Kalz]/(p2)

By [3.2.13|[b)

(2) Kilai] = Kifz]/(p1) and Kiai] = Ko[z]/ (p2)

Composing the three isomorphism in (1) and (2) we obtain the isomorphism

p: Kifz] — Kifz]/(pm1) — Kaofz]/(p2) —  Kala]
fla) —  f4+(@1) — o(f)+ @) — o(f)(a2)

For f = k € K; (a constant polynomial) we have o(f) = o(k), f(a1) = k and o(f)(a2) =
o(k). So p(k) = o(k).
For f =z we have o(z) = z, f(a1) = a1 and o(z)(a2) = az. So p(a1) = as. O

3.3 Splitting Fields

Definition 3.3.1. A field extension K : F is called algebraic if each k € K is algebraic over
F.

Example 3.3.2.

C : R is algebraic but C : Q is not.

Lemma 3.3.3. Any finite field extension is algebraic.

Proof. Let K : F be a finite field extension. Let a € K. Suppose that a is transcendental
over F. Then by 3.2.12, K : F is not finite, a contradiction. O



3.3. SPLITTING FIELDS 97

Definition 3.3.4. Let K : F be a field extension and aq,as...,a, € K. Inductively, define
F[al, a9, ... ,ak] = F[al, as, ... ,ak,l][ak].

Definition 3.3.5. Let K : F be field extensions and f € F[x]. We say that f splits in K if
there exists ay . ..a, € K with

(i) f=lead(f)(z —a1)(x —az)...(x — ay).
We say that K is a splitting field for f over F if f splits in K and
(’l"i) K= F[al, ag, ..., an].

Proposition 3.3.6. Let F be a field and f € Flx|. Then there exists a splitting field K for
f over F. Moreover, K : F is finite of degree at most n!.

Proof. The proof is by induction on deg f. If deg f < 0, then f = lead(f) and so F is a
splitting field for f over F. Now suppose that deg f = k 4+ 1 and that the proposition holds
for all fields and all polynomials of degree k. Let p be an irreducible divisor of f and put
E = F[z]/(p). By E is a field. We identify a € F with a + (p) in E. So F is a subfield
of E. Put b:=xz + (p) € F. Then E = F[b]. Since p | f, f € (p) and so f + (p) = (p) = Og.
Hence

f) = flz+ () = f(x)+ () = f+(p)=(p) = O,

and so b is a root of f in E. By the Factor Theorem [Hung| 4.15] f = (x — b) - g for some
g € E[z] with deg g = k. So by the induction assumption there exists a splitting field K for
g over E with dimg K < k!. Hence exist aq,...,a; € K with

(i) g =lead(g)(z — a1)(x — az) ... (x — az);
(i) K = Elay, as, ..., ay); and
(i) dimgE < k!
Since lead f = lead g, f = (z — b) - g and E = K[b] we conclude that
(iv) g = lead(f)(z — b)(x — a1)(z — az) ... (z — az,), and
(v) K = F[blla, az, . .., ap] = F[b, a1, .. ., an)-

Thus K is a splitting field for f over F.
Note that dimgE = degp < deg f = k + 1 and so by and
dimpK = dimg E - dimg K < (k+ 1) - k! = (K + 1)!

So the theorem also holds for polynomials of degree k£ + 1 and, by the Principal of
Mathematical Induction, for all polynomials. ]
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Theorem 3.3.7. Suppose that
(i) o :F1 — Fy is an isomorphism of fields;
(i) Fori=1 and 2, f; € F[x] and K; a splitting field for f; over F;; and
(iii) o(f1) = f2
Then there exists a field isomorphism
7 : Ky — Ky with ¢ |p,= 0.
Suppose in addition that

(iv) Fori =1 and 2, p; is an irreducible factor of f; in Flz| and a; is a root of p; in K;;
and

(v) a(p1) = o(p2)-
Then & can be chosen such that
O'(CLl) = as.

Proof. The proof is by induction on deg f. If deg f < 0, then K; = F; and Ks = F9 and so
the theorem holds with o = 4.

So suppose that deg f = k41 and that the lemma holds for all fields and all polynomials
of degree k. If and hold let p; and a; as there.

Otherwise let p; be any irreducible factor of fi. Put ps = o(p1). By H o
Ki[z] — Ka[z] is a ring isomorphism. Thus ps is a irreducible factor of o(f1) = f2. Since
fi splits over K, there exists a root a; for p; in K.

Put E; = K;[a;]. By there exists a field isomorphism p : By — Eg with p(a1) = as
and p |p,= 0. By the factor theorem f; = (x — a;) - g; for some g¢; € E;[z]. Since p |p,= 0
and f1 has coefficients in Fq, p(f1) = o(f1) = f2. Thus

(x—a2) - g2 = fo = p(f1) = p((x —a1) - q1) = big(x — p(az)) - p(g1) = (& — a2) - p(g1),

and so by the Cancellation Law g2 = p(g1). Since K; is a splitting field for f; over K;, K;
is also a splitting field for g; over E;. So by the induction assumption there exists a field
isomorphism & : K; — Ky with ¢ |g,= p. We have 5(a1) = p(a1) = az and ¢ |p,= p |p,= 0.

Thus the Theorem holds for polynomials of degree k£ + 1 and so by induction for all
polynomials. O

Example 3.3.8.
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Note that 22 + 1 = (z —i)(z — (—i)) and R[i] = C. So C is a splitting field for x? + 1
over R. We now apply with

Fi=F;=R, Ki=Ky=C, o=idg, fi=pi=fo=pr=2a"+1l, a1=i, ag=—i.
We conclude that there exists a field isomorphism & : C — C with
G |g= o =idgr

and
5’(1) = 5(&1) = ag = —1.

Let a,b € R. Then
gla+bi) =0d(a)+a(b)s(—i) =a+b(—i) =a — bi

This shows ¢ is complex conjugation.

3.4 Separable Extension
Definition 3.4.1. Let K : F be a field extension.

(a) Let f € Flz|. If f is irreducible, then f is called separable over F provided that f does
not have a double root in its splitting field over F. In general, f is called separable over
F provided that all irreducible factors of f in Flx] are separable over F.

(b) a € K is called separable over K if a is algebraic over F and the minimal polynomial of
a over IF is separable over F.

(c) K: T is called separable over F if each a € K is separable over F.
Example 3.4.2.
Let E : Zs be a field extension and let ¢t € E be transcendental over Zy. Put

K = Zo(t) = {ab™" | a,b € Zs[t],b # 0z,}

and
F = Zy(t?).

By Homework 11#2 F and K are subfields of E. It is easy to see that t ¢ F. Since
_122 = 1227

2~ =(x—t)(z+1t)= (v —t)%
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So t is a double root of 22 — t2. Since t ¢ F, 22 — ¢? has no root in F and so by [Hung],
Corollary 4.18] is irreducible in F[z]. Hence by 2?2 —t2 is the minimal polynomial of ¢
over FF. Since t is a double root of 22 — 2, 22 — 2 is not separable. So also ¢ is not separable
over F and K is not separable over F.

Lemma 3.4.3. Let K:E and E : F be a field extensions.

(a) Let a € K be algebraic over F. Then a is algebraic over E. Moreover, if p is the
minimal polynomial of a over E, and p® is the minimal polynomial of a over F, then p®
divides p. in E[x].

(b) If f € Flz] is separable over I, then f is separable over E.
(¢) If a € K is separable over F, then a is separable over E.
(d) If K: T is separable, then also K:E and E : K are separable.

rooj. ince p,(a) = Ur and p, € T« I|, a 1S algebralC over L. oreover,
P Si A Op and pZ € F[z] CE is algebrai E. M

pg € ker qﬁg = E[m]pg

and so p divides pf in E[z].

(]E[) Let f € F[z] be separable over F. Then f = pips ... px for some irreducible p; € F[z].
Moreover, p; = ¢;1¢i2 - - - ¢, for some irreducible ¢;; € E[x]. Since f is separable, p; has no
double roots. Since ¢;; divides p; also ¢;; has no double roots. Hence ¢;; is separable over
E and so also f is separable over E.

Since a is separable over E, pIg has no double roots. By @) pIE divides pg and so also
p~ has no double roots. Hence a is separable over E.

@ Let a € K. Since K : F is separable, a is separable over F. So by , a is separable
over E. Thus K : E is separable. Let a € E. Then a € K and so a is separable over F.
Hence E : FF is separable. O

3.5 Galois Theory

Definition 3.5.1. Let K : F be field extension. Auty(K) is the set of all field isomorphism
a: K — K with o |p= idp.

Lemma 3.5.2. Let K: F be a field extension. Then Autp(K) is a subgroup of Sym(K).

Proof. Clearly idg € Autp(K). Let o, 8 € Autp(K). Then by 3.2.17() a o 8 is a field
isomorphism. If a € F, then a(f(a)) = a(a) = a and so (o) |p= idp. So aof € Autp(K).
By @ a~!is a field isomorphism. Since a |p= idr also a~! |p= idg and so a™! €
Autp(K). So by the Subgroup Proposition Autp(K) is a subgroup of Sym(K). O

Example 3.5.3.
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What is Autg(C)?
Let 0 € Autg(C) and a,b € R. Since og = idg we have o(a) = a and o(b) = b. Thus

(%) o(a+bi) =o(a) =o(b)o(i) = a+ bo(i).

2

So we need to determine (7). Since i* = —1, we get

o(i)? =o(i®) =o(~1) = —1.

Thus o(i) = i or —i. If o(i) = i, then (*) shows that ¢ = id¢ and if o(i) = —i, (*)
shows that ¢ is complex conjugation. By Example [3.3.8] complex conjugation is indeed an
automorphism of C and thus

Autr(C) = {id¢, complex conjugation.}

Definition 3.5.4. Let K : F be a field extension and H C Autg(F). Then

Fixg(H) :={k € K| o(k) =k for alloc € H}.
Fixg(H) is called the fixed-field of H in K.

Lemma 3.5.5. Let K : F be a field extension and H a subset of Autp(K). Then Fixg(H)
1s subfield of K containing F.

Proof. By definition of Autp(K), o(a) = a for all a € F, 0 € H. Thus F C Fixg(H). In
particular, O, 1p € Fixg(H).
Let a,b € Fixg(H) and 0 € H. Then
ola+b)=o0(a)+0o(b) =a+b,

and so a + b € Fixg(H).

o(—a) = —o(a) = —a,
and so —a € Fixg(H).

o(ab) = o(a)o(b) = ab,
and so ab € Fixg(H). Finally if a # O, then

o(a™t)=o(@)t =a,

and so a~! € Fixg(H).
Hence Fixg(H) is a subfield of K. O



102 CHAPTER 3. FIELD EXTENSIONS

Example 3.5.6.

What is Fixc(Autg(C))?

By Example Autr(C) = {idc, 0}, where o is complex conjugation. Let a,b € R.
Then

idc(a+bi) = a+ bi and o(a + bi) = a — bi.
So a+ bi is fixed by id¢ and o if and only if b = 0, that is if and only if a + bi € R. Thus

Fixc (AutR((C)) =R.

Proposition 3.5.7. Let K: F be a field extension and O # f € F[z].

(a) Let a € K and o € Autp(K). Then o(f(a)) = f(o(a)).

(b) The set of roots of f in K is invariant under Auty(K). That is if a is a root of f in K
and o € Autg(K), then o(a) is also a root of f in K.

(c) Let a € K. Then Stab g, k)(a) = Autg(q)(K).

(d) Let a be root of f in K. Then

| Autp(K)/ Autpy, (K)| = [{o(a) | 0 € Autp(K)}|.

Proof. @ Let f =1, fiz'. Then

n n

o(f(a)) =0 (Z fia’) =Y a(fiala) =) fio(a)' = f(o(a)).
=0

i=0 i=0
(o) Let a be a root of f in K then f(a) = Ox and so by (@)

flo(a)) = o(f(a)) = o(0k) = Ok.

Put H = Staby,x)(a) = {0 € Autp(K) | o(a) = a}. Then clearly Autgy,(K) C H.
Note that a € Fixg(H) and by Fixg(H) is a subfield of K containing F. So by
Homework 112, F(a) C Fixg(H) and thus H C Autp(,)(K). Therefore H = Autp(q)(K).

@ ByELT

| Autp(K)/ Stab Aty (k) (a)] = {o(a) | o € Autp(K)}|,
and so @ follows from . O
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Theorem 3.5.8. Let F be a field and K the splitting field of a separable polynomial over F.
Then
| Autp(K)| = dimp K.

Proof. The proof is by induction on dimp K. If dimpK = 1, then K = F and Autp(K) =
{idr}. So the theorem holds in this case. Suppose now that theorem holds for all finite
field extensions of degree less than dimp K. Let f € F[x] be separable polynomial with K
as splitting field and let a be a root of f with a ¢ F. Let R be the set of roots of f in K.

Since p, has no double roots, |R| = degp, and so by 3.2.13@,

(1) |R| = dimy Fla].
Put
S ={o(a) | o € Autp(K)}.
We will show that S = R. Let b € R. Then by [3.3.7 applied with F; =Fy = F, K; = Ky =
K, o =idyp, f1 = fo = f, p1 = p2 = pa, a1 = a and ag = b, there exists a field isomorphism
0 : K — K with
¢ |p= o =idp and &(a) = .

Then & € Autp(K) and so b = 5(a) € S. Hence

RCS.
By 3.5.7(0]), o(a) is a root of f for each o € Autp(K). Thus S C R and

(2) R=S.
By B5T@)

| Autr(K)/ Autpg (K)| = [{o(a) [ 0 € Autp(K)}| = [S],
and so by (1) and (2)

(3) | Autp(K)/ Autﬂq‘[a} (K)| = dimg F[a).

Observe that K is a splitting field for f over Fla] and that by [.4.3|(b)), f is separable
over Fla]. Moreover, by

dimyp K

—— < dimp K
dimpy, (K) =

dim]F[a] K=
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and so by induction
(4) | Autpyy (K)| = dimp(q) K.

Multiplying (3) with (4) gives

(5) | Autr(K)/ Autpiq (K)| - | Autpyq (K)| = dimg Fa] - dimg,) K.
So by Lagrange’s Theorem and Corollary

| Autp(K)| = dimg K.

Example 3.5.9.

By Example|3.2.16{23 — 2 is the minimal polynomial of ¥/2 over Q and dimg Q [v/2] = 3.

The other roots of 23 — 2 are £3/2 and £2+/2, where ¢ = e, Also by Example |3.2.16| € is
aroot of 22+ + 1. Since E ¢ R, £ ¢ Q [3/@ Thus 22 + = + 1 is the minimal polynomial

of £ over Q [é/ﬂ Put K=Q [\3/5, {] Then dimQ[%] K =2 and so
dimg K = dimg @ [¥/2] - dimgy g5 K =33 =6
Note that
K=Q|V2,62,6¥2],

and so K is the splitting field of 3 — 2 over Q. Let R = {/2,£+/2, 52\375}, the set of roots
of 23 — 2. By R is Autg(K)-invariant and so by 2.2.10@, Autg(K) acts on R. The
homomorphism associated to this action is

a : Autp(K) — Sym(R),0c — o |g -

Let o0 € kera. Then R C Fixg(o). Since Fixg(o) is a subfield of K containing Q, this

implies Fixg(c) = K and so 0 = kera. Thus by [2.2.22| « is 1-1. By | Autp(K)| =
dimg K = 6. Since also | Sym(R)| = 6 we conclude that « is a bijection and so

Autp(K) = Sym(R) = Sym(3).

Lemma 3.5.10. Let K : F be a field extension and G a finite subgroup of Auty(K) with
Fixg(G) =F. Then dimpK < |G|.
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Proof. Put m = |G| and let G = {01, 09,...,0,} with o1 = idk.
Let F-linear independent list (k1, k2, ..., k) in K and let Cq,Co, ..., C), be the columns
of the matrix

ky ko kn
(03(k;)) = oo(k1) oo(ke) ... oa2(ky)
oi\kj)) = . . . .
om(k1) om(ka) ... om(ky)

Claim: (Cy,Cy,...,C,) is linearly independent over K.

Before we prove the Claim we will show that Lemma follows from the Claim. Since K™
has dimension m over K, [3.1.20| implies that any K-linear independent list in K™ has length
at most m. So if (C1,Co,...,C,) is linearly independent, then n < m and dimp K < |G]|.

We now proof the Claim via a proof by contradiction. So suppose the Claim is false
and under all the T linear independent list (k1, ..., k;,) for which (Cy,Cs ..., C),) is linearly
dependent over K choose one with n as small as possible. Then there exist I1,l5...1l, € K
not all zero with

(1) > Gy =0
j=1

If I; = Ok, then Zj:Q L;C; = 0 and so also (ka,...,kp) is a counterexample. This
contradicts the minimal choice of n.

Hence l; # Og. Note that also ijl ll_llej =0. So we may assume that [y = 1p.

Suppose that [; € F for all 1 < j < n. Considering the first coordinates in the equation
(1) we conclude

szkj = O,
j=1

a contradiction since (ki,...,ky,) is linearly independent over F. So there exists 1 < k <mn
with I ¢ F. Note that Iy = 1y € F and so k > 1. Without loss k = 2. So Iz ¢ F. Since
Fixg(G) = F, Iy ¢ Fixg(G) and so there exists p € G with p(l2) # l2. Note that (1) is
equivalent to the system of equation

lea(k:j) = O for all o € G.
j=1

Applying p to each of these equation we conclude
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n

> pll)(po o) (k) = Op for all o € G.
j=1

1

Since 0 = po (p~! o o) these equations with p~! o o in place of o give

Zp(lj)a(kj) = O for all 0 € G,
j=1

and so

(2) S oll)C; =0

Subtracting (1) from (2) gives

Since 1 = 1y = p(1r), p(l1) — 1 = O and so

n

(3) > (o) = 1;)C; = 0.

Jj=2

Since p(l2) # la, p(l2) — Iz # Op. So not all the coefficient in (3) are zero, a contradiction
to the minimal choice of n. O]

Proposition 3.5.11. Let K : F be a field extension and G a finite subgroup of Autp(K)
with Fixg (G) =F. Let a € K. Then a is algebraic over F. Let a1, as,...ay be the distinct
elements of Ga = {o(a) | 0 € G}. Then

Po=(x—a1)(z—ag)...(x—ay).

In particular, p, splits over K and K is separable over FF.

Proof. Put ¢ = (x — a1)(x — a2) ... (z — a,). Then g € K[z]. We will show that ¢ € F[z].
Let 0 € G. Then
(1) olg)=0c((z—a)(@—a2)...(x—an)) = (z — o(a)) (z — o(az)) ... (z — o(an)).
By [2.1.11] o(b) € Ga for all b € Ga. So
{o(a1)),0(az),...,0(an)} ={a1,...,an},
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and hence

(z—o(am))(z—0o(az) ... (z —o(an)) = (x —a1)(z — a2) ... (x — an) = q.
Thus by (1)

(2) o(q) = q.

Let ¢ = Y o kixz® with k; € K. Then

Y kiwt=q = o(g)=0 (Z kifﬁz) =) o(ki),
i=0 j i
and so

ki = o(k;) for all 0 <i <n,o € G.

It follows that for all 0 < i < n,

ki € FiXK(G) =TF.

Hence ¢ € Fx].

Since a = idg(a) is one of the a;’s we have g(a) = Op. Thus 3.2.13 implies that p, | g.
By each a; is a root of p, and so ¢ divides p, in K[z]|. Since p, and ¢ both are monic
we conclude that p, = ¢. So

Po = (x—a1)(z —ag)...(x—ap).

Since each a; € K, p, splits over K. Since the a;’s are pairwise distinct, p, is separable.
So a is separable over K. Since a € K was arbitrary, K : [F is separable. ]

Definition 3.5.12. Let K : F be algebraic field extension. Then K : F is called normal if
for each a € K, p, splits over K.

Theorem 3.5.13. Let K : F be a field extension. Then the following statements are equiv-
alent.

(a) K is the splitting field of a separable polynomial over F.
(b) Autp(K) is finite and F = Fixg (Autp(K)).
(c) F =Fixg(G) for some finite subgroup G of Autp(K).

(d) K :TF is finite, separable and normal.
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Proof. (@) = (b): By Autp(K) is finite of order dimp K. Let E = Fixg (Auty(K)).
Then Autp(K) C Autg(K) C Autp(K) and so

(1) Allt]F(K) = Autg (K)

Since K is the splitting field of a separable polynomial f over I, K is also the splitting
field of f over E. By f is separable over E and so we can apply to K : E and
K : F. Hence

dimg K < dimg E - dimg K 222 dimg K "= | Autp(K)| 2 | Aute(K)| =2 dimg K.

Hence equality must hold everywhere in the above inequalities. Thus dimg K = dimp K
and so dimpE =1 and E = F.

@) = (J): Just put G = Autp(K).

—> (d): By[.5.10/K: F is finite and by [3.5.11] K : F is normal and separable.
(d) = (d): Since K : F is finite there exists a basis (k1,k2,...,ky) for K over F.

Then K C Flaj,as...,a,] € K and

(2) K =Fla1,az...,a,)].

Let p; be the minimal polynomial of a; over F. Since K : F is separable, p; is separable over
F. Since K : F is normal, p; splits over F. Put f = pips...p,. Then f is separable and splits
over K. Let aj, a9, ...,ay,...,a, be the roots of f in K then by (1), K C Flaj,as...,an] C
K and so

K =TFlaj,az...,an).
Thus K is a splitting field of f over F. O

Lemma 3.5.14. Let K: F be a field extension. Let o € Autyp(K) and let E be subfield field
of K containing F. Then
o Autg(K)o ™! = Auty ) (K)

Proof. Let p € Autp(K). Then

pe AUto(E) (K)

<= p(k)=kforallk€o(E) — Definition of Aut,g)(K)
<~ p(o(e))=o(e) foralle e E  — Definition of o(E)

<= o lp(oe)) =eforalle e E — o is a bijection

= (c71po)(e) for all e € E — Definition of 0~ po

= o lpo € Autg(K) — Definition of Autg(K)
= p € o Autg (K)o ! - 1.8.1(@)
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O
Definition 3.5.15. (a) A Galois extension is a finite, separable and normal field extension.

(b) Let K : F be a field extension. An intermediate field of K : F is a subfield E of K with
FCE.

Lemma 3.5.16. Let K : F be a Galois extension and E an intermediate field of K : F. The
following are equivalent:

(a) E :F is normal.
(b) E:TF is Galois.
(c) E is invariant under Autp(K), that is o(E) = E for all o € Autp(K).

Proof. @) = (]E[): Suppose E : F is normal. Since K : F is separable, @ implies
that E : F is separable. Since K : F is finite, [3.1.19] implies that E : F is finite. Thus E: F
is Galois.

) = (): Suppose E : F is Galois. Let a € E and o € Autg(K). By[3.5.7 0(a) is a
root of p,. Since E : F is normal, p, splits over E and so o(a) € E.

= @: Suppose that E is invariant under Autp(K) and let a € E. By
F = Fixg(G) for some finite subgroup G of Autp(K). So by Do splits over K and
if b is a root of p,, then b = o(a) for some o € G. Since E is invariant under Autp(K),
b=o(a) € E. So p, splits over E and E : F is normal. O

Theorem 3.5.17 (Fundamental Theorem of Galois Theory). Let K : F be a Galois Exten-
sion. Let E be an intermediate field of K : F and G < Autp(K).

(a) The map
E — Autg (K)

is a bijection between to intermediate fields of K : F and the subgroups of Autp(K). The
inverse of this map is given by

G — FiXK(G).
(b) ‘G‘ = dimFixK(G) K and dimg K = ‘ Aut]E(K)\.
(¢) E :F is normal if and only if Autg(K) is normal in Autp(K).

(d) If E: F is normal, then the map

Autp(K)/ Autg(K) — Autp(E), 0 Autg(K) — o |g

is a well-defined isomorphism of groups.
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Proof. @) We will show that the two maps are inverses to each other. Since K is the
splitting field of a separable polynomial f over IF, K is also the splitting field of f over E.

So by
(1) Fixg (Autg(K)) = E.

Put L = Fixg(G).

B5I1a
2) | Auty,(K)| Z28 dim K <[] < | Auty (K)),
where the last equality holds since G < Auty,(K). It follows that equality holds everywhere
n (2). In particular, |G| = Autr,(K) and G = Auty,(K), that is
3) Autpixc)(K) = G.

By (1) and (3) the two maps in (a) are inverse to each other and so (@) holds.
follows since equality holds everywhere in (2).

We have
E : F is normal
= o(E) =E for all o € Autg(K) — 13.5.16
< Autyg)(K) = Autg(K) for all o € Autp(K) — (q
< o Autg(K)o~! = Autg(K) for all o0 € Autp(K) — [3.5.14
= Autg(K) < Autp(K) - 1.8.6(i[_7i)

(d) By [3.5.16| E is Autp(K)-invariant. So by 2.2.10|b) Autr(K) acts on E. The homo-
morphism associated to this action is

a : Autp(K) — Sym(E),0c — o |g .

In particular, o |g is a bijection from E to E. Clearly o |g is a homomorphism. Thus
o |g is a field isomorphism. Moreover, (o |g) |[r= o |p= idrp and so o |[g€ Autp(K).
Thus Ima < Autg(K). Let p € Autg(K). Then by applied with F; = Fy = E,
Ki =Ko =K, fi = fo = f and 0 = p there exists a field isomorphism p : K — K with
p |[g= p. Since p |p= p |g= idp, p € Autp(K). Then p = a(p) and so p € Ima and
Im o = Autp(E).
Note that o € kera if and only if a [g= idg. So kera = Autg(K). Hence (d)) follows
from the First Isomorphism Theorem.
O
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Example 3.5.18.

Let K be the splitting field of 3 — 2 over Q in C. Let

5262?”, a=+V2, b=¢&V2, andce=E3V2.
By Example [3.5.9]

K =QJa,&], dimgK =6 and Autg(K) = Sym(R) = Sym(3),

where R = {a, b, c} is the set of roots of 23 —2. For (1,...1,) a cycle in Sym(R) let 04, 4,
be the corresponding element in Autg(K). So for example o4 is the unique element of

Autg(K) with ogy(a) = b, 04(b) = a and ogp(c) = ¢. Then by Example [1.9.15|the subgroup
of Autg(K) are

{idK}v <Uab>7 (Tac)s <ch>a <Uac>, (Cabe), Ath(K)

We now compute the corresponding intermediate fields:
Observe that

Fixg ({idg}) = K.

(04p) has order 2. Hence by the FTGT[3.5.17|(b), dimpiy, ((,,)) K = 2. Since dimg K = 6,
implies that dimg Fixk((oa)) = 3. Since c is fixed by o4, and dimg Q[c] = degp. =

deg(fvg _ 2) = 3 we have
Fixg ((0a)) = Q[c] = Q [€2€f2} '
Similarly,
FiX]K(<Uac>) = @[b] =Q [5\5/5}
and

Fixg ((o3c)) = Qla] = Q [\3/5] ‘

Note that dimg Q[¢] = 2 and so dimg K = 3. Hence | Autgg K| = 3. Since Autg(K)
has a unique subgroup of order 3 we get Autg(K) = (0ap.) and so

Fixg ((oape)) = Q[].

Let us verify that o4 indeed fixes €. From b = a¢ we have £ = a~'b and so

O-abc(g) = Uabc(a_lb) = (O'abc(a))_la'abc(b) = b_IC = 5

Finally by [3.5.13
Fixg (Autg(K)) = Q.
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Note that the roots of z2+z+1 are € and £€2. So Q[¢] is the splitting field of 22 +x+1 and
Q[¢] : Q is a normal extension, corresponding to the fact that (o) is normal in Autp(K).

Since p, = 23 — 2 and neither b or ¢ are in Q[a], p, does not split over Q[a]. Hence
Ql[a] : Q is not normal, corresponding to the fact that (op.) is not normal in Autp(K).



Appendix A

Sets

A.1 Equivalence Relations

Definition A.1.1. Let ~ be a relation on a set A. Then

(a) ~ is called reflexive if a ~ a for all a € A.

(b) ~ is called symmetric if b ~ a for all a,b € A with a ~ b.

(c) ~ is called transitive if a ~ ¢ for all a,b,c € A with a ~b and b ~ c.

(d) ~ is called an equivalence relation if ~ is reflexive, symmetric and transitive.

(e) For a € A we define [a]~ :={b € R|a~ b}. We often just write [a] for [a]~. If ~ is
an equivalence relation then [a]~ is called the equivalence class of ~ containing a.

Remark A.1.2.

Suppose P(a,b) is a statement involving the variables a and b. Then we say that P(a,b)
is a symmetric in a and b if P(a,b) is equivalent to P(b,a). For example the statement
a+ b =1 is symmetric in a and b. Suppose that P(a,b) is a symmetric in a and b, Q(a,b)
is some statement and that

(%) For all a,b P(a,b) = Q(a,b).
Then we also have
() For all a,b P(a,b) = Q(b,a).

Indeed, since (*) holds for all a,b we can use (*) with b in place of a and a in place of
b. Thus

For all a,b P(b,a) = Q(b,a).
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Since P(b,a) is equivalent to P(a,b) we see that (**) holds. For example we can add
—b to both sides of a + b =1 to conclude that a =1 —b. Hence also b =1 —a ( we do not
have to repeat the argument.)

Theorem A.1.3. Let ~ be an equivalence relation on the set A and a,b € A. Then the
following statements are equivalent:

(a) a~b. (c) [a] N[b] # 0. (e) a € [b]
(b) b€ [al. (d) la] = [b]. (f) b~ a.
Proof. () = (D):  Just recall that [a] = {b € A | a ~ b}.

@) = (J: Since ~ is reflexive, b ~ b and so b € [b]. From (b), b € [a] and so
b € [a] N [b]. Therefore [a] N [b] # 0.

= (d): By () there exists ¢ € [a] N [b]. We will first show that [a] C [b]. So let
d € [a]. Then a ~ d. Since ¢ € [a], a ~ ¢ and since ~ is symmetric, ¢ ~ a. Since a ~ d and
~ is transitive, ¢ ~ d. Since ¢ € [b], b ~ ¢. Since ¢ ~ d and ~ is transitive, b ~ d and so
d € [b]. Thus [a] C [b]. Since statement () is symmetric in a and b, we conclude that also
[b] C [a] and so [a] = [b].

= (g):  Since a is reflexive a € [a]. So [a] = [b] implies a € [b].
() = ({@: From a € [b] and the definition of [b], b ~ a.
@ = @: Since b ~ a and ~ is symmetric, a ~ b. O

A.2 Bijections
Definition A.2.1. Let f: A — B be a function.
(a) f is called 1-1 or injective if a = ¢ for all a,c € A with f(a) = f(c).

(b) f is called onto or surjective if for all b € B there exists a € A with f(a) = b.

(c) f is called a 1-1 correspondence or bijective if for all b € B there exists a unique a € A
with f(a) =b.

(d) Im f:={f(a) | a € A}. Im f is called the image of f.
O

Observe that f is 1-1 if and only if for each b in B there exists at most one a € A with
f(a) =b. So f is 1-1 correspondence if and only f is 1-1 and onto.
Also f is onto if and only if Im f = B.

Definition A.2.2. (a) Let A be a set. The identity function id4 on A is the function

idg:A— A, a—a.
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(b) Let f: A— B and g: B — C be function. Then go f is the function

gof:A=C, a— g(f(a).
go f is called the composition of g and f.

Lemma A.2.3. Let f: A— B and B — C be functions.

(a) If f and g are 1-1, so is go f.

(b) If f and g are onto, so is go f.

(c) If f and g is a bijection, so is go f.

Proof. (b)) Let z,y € A with (go f)(z) = (9o f)(y). Then g(f(x)) = g(f(y)) Since g is 1-1,
this implies f(x) = f(y) and since f is 1-1, x = y. Hence go f is 1 — 1.

@ Let ¢ € C. Since g is onto, there exists b € B with g(b) = ¢. Since f is onto there
exists a € A with f(a) =b. Thus

(9o f)a) = g(f(a)) = g(b) = ¢,
and so g o f is onto.

Suppose f and g are bijections. By @ , go fis 1-1 and by (]ED go f is onto. So also
g o f is a bijection. O

Definition A.2.4. Let f: A — B be a function.
(a) If C C A, then f(C):={f(c)|ce C}. f(C) is called the image of C' under f.

(b) If D C B, then f~1(D):={ce C | f(c) € D}. f~Y(D) is called the inverse image of D
under f.

Lemma A.2.5. Let f: A — B be a function.

(a) Let C C A. Then C C f~1(f(C)).

(b) Let C C A. If f is 1-1 then f~1(f(C)) = C.
(c) Let D C B. Then f(f~Y(D)) C D.

(d) Let D C B. If f is onto then f(f~1(D)) = D.

Proof. @ Let ¢ € C, then f(c) € f(C) and so ¢ € f~1(f(C)). Thus @) holds.

Let z € f~1(f(C)). Then f(x) € f(C) and so f(z) = f(c) for some ¢ € C. Since f
is 1-1, = c and so f~1(f(C)) C C. By @ C C f71(f(C)) and so (]EI) holds.

Let z € f~}(C). Then f(z) € C and so (d) holds.

(d) Let d € D. Since f is onto, d = f(a) for some a € D. Then f(a ) € D and
so a € f71(D). Tt follows that d = f(a) € f(f~Y(D)). Thus D C f(f~%(D)). By
f(f~Y(D)) € D and so (d) holds. O
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Lemma A.2.6. Let f : A — B be a function and suppose A # .
(a) f is 1-1 if and only if there exists a function g : B — A with go f =id4.
(b) f is onto if and only of there exists a function g : B — A with f o g =idp.

(c) f is a bijection if and only if there exists a function g : B — A with fog = idp and
go A=idp.

Proof. =>: We first prove the forward’ direction of @, (]ED and . Since A is not empty,
we can fix an element ag € A. Let b € B. If b € Im f choose a, € A with f(ap) = b. If
b ¢ Im f, put a, = ag. Define

g:B—>A, b—a

@ Suppose f is 1-1. Let a € A and put b = f(a). Then b € Im f and so f(ap) = b =
f(a). Since f is 1-1, ay = a and so g(f(a)) = g(b) = ap = a. Thus go f =ida.

(]E[) Suppose f is onto. Then B = Im f and so f(ap) = b for all b € B. Thus f(g(b)) =
flap) =b and fog=1idp.

Suppose f is a 1-1 correspondence. Then f is 1-1 and onto and so by @ and (]ED,
fog=idp and go f = id4.

<=: Now we establish the backward directions.

() Suppose there exists g : B — A with go f =ida. Let a,c € A with f(a) = f(c).

fla) = [flo)
= g(f(a)) = g(f(c))
= (goflla) = (gof)(a)
= ida(a) = ida(c)
= a = c

Thus f(a) = f(c) implies a = ¢ and f is 1-1.

(]E[) Suppose there exists g : B — A with fog =idp. Let b € B and put a = g(b). Then
fla) = f(g(b)) = (f o g)(b) =idp(b) = b and so f is onto.
Suppose there exists g : B — A with go f =id4 and f o g = idg. Then by @ and

(]ED, fis 1-1 and onto. So f is a 1-1 correspondence. O
A.3 Cardinalities

Definition A.3.1. Let A and B be sets. We write A = B if there exists a bijection from
A to B. We write A < B if there exists injection from A to B.

Lemma A.3.2. (a) =~ is an equivalence relation.
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(b) If A and B are sets with A ~ B, then A < B.
(c) < is reflexive and transitive.
(d) Let A and B be sets. Then A < B if and only if there exists C C B with A~ C.

Proof. @) Let A be a set. Then idy4 is a bijection and so A ~ B. Hence = is reflexive. Let
fiA—>B

be a bijection. Then by there exists a bijection g : B — A. So = is symmetric.
Let f: A— B and g : B — C be bijections. Then by g o f is a bijection and so
A~ C and =~ is transitive.

Obvious since any bijection is an injection.

By @ A =~ A and so by (]ED A=< A @ shows that < is transitive.

Suppose f: A — B is an injection. Then A ~ Im f and Im f C B.

Suppose that A ~ C for some C' C B. By (]ED A < C. The inclusion map from C to B
shows that C' < B. Since < is transitive we get A < B. O

Definition A.3.3. Let A be a set. Then |A| denotes the equivalence class of ~ containing.
An cardinal is a class of the form |A|, A a set. If a,b are cardinals then we write a < b if
there exist sets A and B with a = |A|, b= |B| and A < B.

Lemma A.3.4. Let A and B be sets.
(a) |A| = |B| if and only if A~ B.
(b) |A| < |B| if and only if A < B.

Proof. () follows directly from the definition of |A].

If A < B, then by definition of ’ <’, |A| < |B|. Suppose that |A| < |B|. Then there
exist sets A’ and B’ with |A| = |A/|, |B| = |B’| and A’ < B’. Then also A ~ A’ and B ~ B’
and so by [A:3.2] A < B. O

Theorem A.3.5 (Cantor-Bernstein). Let A and B be sets. Then A ~ B if and only if
A< B and B< A.

Proof. If A~ B, then by [A.3.2|fa) B ~ C and by [A.3.2b), A < B and B < C.
Suppose now that A < B and B < A. Since B < A, [A.3.2|(d) implies B ~ B* for some

B* C A. Then by B* < A and A < B*. So replacing B by B* we may assume that
B C A. Since A < B, A~ C for some C C B. Let f: A— C be a bijection. Define

E:={a€ A|i= f"(d) for some n € N;d € A\ B},
and

fla) ifaeFE

g:A— A a— .
a ifa¢ E
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We will show that g is 1-1 and Im g = B.
Let z,y € A with g(x) = g(y). We need to show that x = y.

Casel: x ¢ Fandy ¢ E.

Then 2 = g(z) = g(y) = y-

Case2: x€ Eand y ¢ E.

Then x = f"(d) for some d € A\ B and y = g(y) = g(z) = f(z) = f**(d). But then
y € E, a contradiction.

Case3: v ¢ Fandy € E.
This leads to the same contradiction as in the previous case.

Case 4: x € Fandy € E.
Then f(z) = g(z) = g(y) = f(y). Since f is 1-1 we conclude that x = y.

So in all four cases x = y and g is 1-1.

We will now show that Im g C B. For this let a € A.

If a € E, then g(a) = f(a) € C C B.

If a ¢ E, then a € B since otherwise a € A\ B and a = f%(a) € E. Hence g(a) = a € B.
Thus Img C B.

Next we show that B C Im g. For this let b € B.

Ifb¢ E, the b= g(b) € Img.

If be E, pickne Nand d € A\ B with b = f™(a). Since b € B, b # d and so n > 0.
Observer that f"~!(d) € E and so b= f(f"1(d)) = g(f* *(d)) € Img. Thus B C Img.

It follows that B = Im g. Therefore g is a bijection from A to B and so A =~ B. O

Corollary A.3.6. Let ¢ and d be cardinals. Then ¢ = d if and only if c < d and d < c.

Proof. Follows immediately from [A-3.5] and [A.34] O
Definition A.3.7. Let I be a set. Then I is called finite if the exists n € N and a bijection
f:I—={1,2,....,n}. I is called countable if either I is finite or there exists a bijections
f:I—=7Z".

Example A.3.8.

We will show that
27| < IR,
where < means < but not equal. In particular R is not countable Since [[0,1)] < |R] it
suffices to show that |Z*| < |[0,1)|. Since the map Z* — [0,1, n — Lis1-1,|Z*| < |0,1)].
So it suffices to show that |ZT] # ][0, 1)].
Let f : ZT — [1,0) be function. We will show that f is not onto. Note that any r € [0, 1)
can be unique written as

r=y o

=1
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where r; is an integer with 0 < r; < 9, and not almost all r; are equal to 9. (almost all
means all but finitely many). For i € Z" define

5(i) = 0 if f(i); #0
o1 iffE)i=0

This definition is made so that s(i) # f(i); for all i € ZT.

Put s := ) 2, 51(0? Then for any i € Z*, s; = s(i) # f(i); and so s # f(i). Thus
s ¢ Im f and f is not onto.

We proved that there does not exist an onto function from Z* to [1,0). In particular,

there does not exist a bijection from Z* to [1,0) and |ZT]| # [[1,0)].

Lemma A.3.9. (a) Let A and B be countable sets. Then A x B is countable.
(b) Let A be a countable set. Then B™ is countable for all positive integers n.

Proof. () It suffices to show that Z* x ZT is countable. Let (a,b), (c,d) € Z*. We define
the relation < on Z* x Z* by (a,b) < (¢, d) if one of the following holds:

max(a,b) < max(c, d);
max(a, b) = max(c,d), and a < ¢ or
max(a, b) = max(c, d), a=c and b < d

So (1,1) < (1,2) < (2,1) < (2,2) < (1,3) < (2,3) < (3,1) < (3,2)) < (3,3) < (1,4) <
(2,4) < (3,4) < (4,1) < (4,2) < (4,3) < (4,4) < (1,5) < ...

Let a; = (1,1) and inductively let a,t1 smallest element (with respect to ’ <’) which is
larger than a, in ZT x Z*. So as = (1,2), az = (2,1), as = (2,2), a5 = (1,3) and so on.
We claim that

f:Zt 72" <7, n—ay

is a bijection. Indeed if n < m, then a, < a, and so f is 1-1. Let (¢,d) € ZT x Z*. Then
max(a,b) < max(c,d) for all (a,b) with (a,b) < (c¢,d). Hence there exist only finitely many
(a,b)'s with (a,b) < (¢,d). Let (z,y) be the largest of these. Then by induction (z,y) = a,
for some n and so (¢,d) = an41. Thus f is onto.

(]E[) The proof is by induction on n. If n =1, clearly holds. So suppose that (]E[) holds
for n = k. So A* is countable. Since A*T! = A x AF, @) implies that A**1 is countable.
So by the Principal of Mathematical Induction, (]ED holds for all positive integers n. O
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Appendix B

List of Theorems, Definitions, etc

B.1 List of Theorems, Propositions and Lemmas
Lemma Let u,a,b be objects with {u,a} = {u,b}. Then a =b.
Proposition Let a,b,c,d be objects. Then

(a,b) = (¢,d) if and only if a = ¢ and b = d.

Lemma Let x be a binary operation on the set I, then * has at most one identity in
I.

Proof. Let e and f be identities of *. Then e x f = f since e is an identity and e*x f = ¢
since f is an identity. Hence e = f. So any two identities of * are equal. O

Lemma [1.3.10} Let x be an associative binary operation on the set I with identity e. Then
each a € I has at most one inverse in I with respect to *.

Lemma Let G be a group and a,b € G.
(a) (1) = a.
(b) a=1(ab) = b, (ba)a=! =b, (ba=)a = b and a(a'b) = b.
Lemma Let G be a group and a,b,c € G. Then
ab = ac

—= b=c

< ba=ca .
Lemma Let G be a group and a,b € GG.

(a) The equation ax = b has a unique solution in G, namely x = a~1b.

121
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(b) The equation ya = b has a unique solution in G, namely y = ba~'.

(c) b=a"' if and only if ab = e and if and only if ba = e.
(d) (ab)~t=b"ta"t.

Lemma Let G be a group, a € G and n,m € Z. Then
(a) a™a™ = a"™"t™,

(b) a™ = (a™)™.

Proposition (Subgroup Proposition). (a) Let (G,*) be a group and H a subset of
G. Suppose that

(i) H is closed under %, that is axb € H for all a,b € H.
(ii) eq € H.

(i4i) H is closed under inverses, that isa~! € H for all a € H.(where a™" is the inverse
of a in G with respect to *.

Define A : Hx H — H,(a,b) — axb. Then A is a well-defined binary operation on H
and (H, ) is a subgroup of (G, ).

(b) Suppose (H, ) is a subgroup of (G,*). Then
(a) (a:d), (a:id) and hold.
(b) eq = eq.

(¢) Let a € H. Then the inverse of a in H with respect to /\ is the same as the inverse
of a in G with respect to *.

Lemma Let G be a group.
(a) Let A and B be subgroups of G. Then AN B is a subgroup of G.

(b) Let (Gi,i € I) a family of subgroups of G, i.e. I is a set and for each i € I,G; is a
subgroup of G. Then
Ne:

i€l
is a subgroup of G.
Lemma Let I be a subset of the group G.

o Put H| := ﬂ H. In words, Hy is the intersection of all the subgroups of G
ICH<G
containing I.

o Let Hy be a subgroup of G such that I C H and whenever K is a subgroup of G with
I C K, then Hy C K.
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o Let J be subset of G. We say that e is product of length 0 of J. Inductively, we say
that g € G is a product of length k+ 1 of J if g = hj where h is a product of length
kofJandje J. SetI ' ={i"'|ie I} and let H3 be the set of all products of
arbitrary length of I UI~1.

Then Hi = Hy = Hs.

Lemma Let f: A — B be a function and define g: A — Im f,a — f(a).

(a) g is onto.

(b) fis 1-1 if and only if g is 1-1.

Lemma Let f : G — H be a homomorphism of groups.

(a) flec) = en.

(b) f(a™t) = f(a)~! for alla € G.

(c) Im f is a subgroup of H.

(d) If f is 1-1, then G = Tm f.

Theorem (Cayley’s Theorem). Every group is isomorphic to group of permutations.

Proposition Let K be a subgroup of the group G. Then ' = (mod K)' is an
equivalence relation on G.

Proposition Let K be a subgroup of the group G and a,b € G. Then aK is the

equivalence class of ' = (mod K)' containing a. Moreover, the following statements are
equivalent

(a) b= ak for some k € K. (9) aK = bK.

(b) a='b =k for some k € K. (h) a € bK.

(c) a~tbe K. (i) b=a (mod K).

(d) a=b (mod K). (G) b la e K.

(e) beaK. (k) b=la = j for some j € K.

(f) aK NbK # 0. (1) a ="bj for some j € K.

Proposition Let K be a subgroup of the group G.

(a) Let T € G/K anda € G. Then a € T if and only if T = aK.

(b) G is the disjoint union of its cosets, that is every element of G lies in a unique coset of

K.
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(¢) LetT € G/K anda € T. Then the map § : K — T,k — ak is a bijection. In particular,
T = |K].
Theorem m (Lagrange). Let G be a finite group and K a subgroup of G. Then
Gl = K| 1G/K].
In particular, |K| divides |G|.
Corollary Let G be a finite group.
(a) If a € G, then the order of a divides the order of G.
(b) If |G| = n, then a™ = e for all a € G.
Lemma Let G be a group of finite order n.
(a) Let g € G. Then G = (g) if and only if |g| = n.
(b) G is cyclic if and only if G contains an element of order n.
Corollary Any group of prime order is cyclic.
Lemma Let G be a group, A, B,C subsets of G and g,h € G. Then
(a) A(BC)={abc|aec A,be B,ce C} =(AB)C.
(b) A(gh) = (Ag)h, (¢B)h = g(Bh) and (gh)C' = g(hC).
(c) Ae = A= Ae = (Ag)g™ = g~ (gA).
(d) A= B if and only if Ag = Bg and if and only if gA = gB.
(e) A C B if and only if Ag C Bg and if and only if gA C gB.
(f) If A is subgroup of G, then AA= A and A~ = A.
(9) (AB) ' = B4,
(h) (9B)~' =B~ 'g7" and (Ag)~" =g~ 1A
Lemma Let G be an abelian group. Then AB = BA for all subsets A, B of G. In

particular, every subgroup of G is normal in G.

Lemma Let N be a subgroup of the group G. Then the following statements are
equivalent:

(a) N is normal in G.

(b) aNa=' = N for all a € G.
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(c) aNa=' C N fora € G.
(d) ana=' € N for alla € G andn € N.
(e) Every right coset of N is a left coset of N.

Proposition m (Normal Subgroup Proposition). Let N be a subset of the group G.
Then N is a normal subgroup of G if and only if

(i) N is closed under multiplication, that is ab € N for all a,b € N.

(ii) e € N.

(iii) N is closed under inverses, that is a=* € N for all a € N.

(iv) N is invariant under conjugation, that is gng=' € N for all g € G and n € N.
Corollary Let N be a normal subgroup of the group G, a,b € G and T € G/N.
(a) (aN)(bN) = abN.

(b) (aN)"' =a"'N.

(¢c) NT =T.

(d) T € G/N, TT* =N and T"'T = N.

Theorem [1.8.10, Let G be a group and N IG. Then (G/N,*qn) is group. The identity
of G/N is
eq/Nn =N =eN,

and the inverse of T = gN € G /N with respect to xq/n is
GN) =T ={t""[teT}=g'N.

Lemma Let ¢ : G — H be a homomorphism of groups. Then ker ¢ is a normal
subgroup of G.

Lemma Let N be a normal subgroup of G and define
¢»:G— G/N,g— gN.

Then ¢ is an onto group homomorphism with ker ¢ = N. ¢ is called the natural homomor-
phism from G to G/N.

Corollary Let N be a subset of the group G. Then N is a normal subgroup of G if
and only if N is the kernel of a homomorphism.
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Theorem m (First Isomorphism Theorem). Let ¢ : G — H be a homomorphism of
groups. Then

¢:G/kerp —Ime¢p, gkerp — ¢(g)

is well-defined isomorphism of groups. In particular
G/ker ¢ = Im ¢.

Proof. Put N = ker ¢ and Let a,b € G. Then

gN = hN
= g 'the N — |1.7.6
< ¢(g7'h) =ey — Definition of N = ker ¢
<~ ¢(g)"'¢(h) =ey — ¢ is a homomorphism 1.6.5(@)
= o(h) = ¢(g) — Multiplication with ¢(g) from the left,
Cancellation law
So
() 9N =N = o(g) = 6(h).

Since gN = hN implies ¢(g) = ¢(h) we conclude that ¢ is well-defined.
Let S,T € G/N. Then there exists g,h € N with S = gN and T'= hN.
Suppose that ¢(T) = ¢(S). Then

¢(9) = d(gN) = ¢(5) = &(T) = ¢(hN) = é(h),

and so by (*) gN = hN. Thus S =T and ¢ is 1-1.

Let b € Im¢. Then there exists a € G with b = ¢(a) and so ¢(aN) = ¢(a) = b.
Therefore ¢ is onto.

Finally

3(ST) = B(gNhN) B(ghN) = 6(gh) = 6(9)(h) = H(gN)B(hN) = B(S)B(T)

and so ¢ is a homomorphism. We proved that ¢ is a well-defined, 1-1 and onto homomor-
phism, that is a well-defined isomorphism. O

Lemma Let (A, %) and (B, O) be groups. Then
(a) (A x B, xx[) is a group.
(b) eaxp = (ea,eB).

(C) (a7 b)il = (ailabil)'
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(d) If A and B are abelian, so is A X B.

Lemma Let G be a group, H a subgroup of G and T C H.
(a) T is a subgroup of G if and only if T is a subgroup of H.

(b) If TQG, then T < H.

(c) If a : G — F is a homomorphism of groups, then gy : H — F,h — «(h) is also a
homomorphism of groups. Moreover, keragy = H Nkera and if a is 1-1 so is ayy.

Theorem (1.9.11] (Second Isomorphism Theorem). Let G be a group, N a normal subgroup
of G and A a subgroup of G. Then ANN is a normal subgroups of A, AN is a subgroup of
G, N is a normal subgroup of AN and the map

AJANN = AN/N, a(ANN) = aN

s a well-defined isomorphism. In particular,
A/ANN = AN/N.

Lemma Let ¢ : G — H be a homomorphism of groups.
(a) If A < G then ¢(A) is a subgroup of H, where p(A) = {¢p(a) | a € A}.
(b) If A< G and ¢ is onto, p(A) < H.
(c) If B< H, then ¢~ (B) is a subgroup of G, where ¢~ 1(B) :={a € A| ¢(a) € A}
(d) If B< H, then ¢~ 1(B) 4 G.

Theorem (Correspondence Theorem). Let N be a normal subgroup of the group G.
Put
S(G,N)={H|N<H<G} and S(G/N)={F | F <G/N}.

Let
m:G—G/N, g—gN

be the natural homomorphism.

(a) Let N < K <G. Then n(K)=K/N.

(b) Let F < G/N. Then 7' (F) = Upep T-

(¢) Let N < K <G and g € G. Then g € K if and only if gN € K/N.

(d) The map
g: S(G,N)—SG/N), K—K/N

is a well-defined bijection with inverse

a: S(G/N)— S(G,N), F - '(F).

In other words:
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(o) If N < K <G, then K/N is a subgroup of G/N.
(b) For each subgroup F of G/N there exists a unique subgroup K of G with N < K
and F = K/N. Moreover, K = 7w~ (F).

(e) Let N < K <G. Then K <G if and only if K/N IG/N.
(f) Let N < H <G and N < K <G. Then H C K if and only if H/N C K/N.
(9) (Third Isomorphism Theorem) Let N < H I G. Then the map

p: GJH = (G/N)/(H/N), gH - (gN)+ (H/N)
is a well-defined isomorphism.
Lemma Let G be a group and I a set.
(a) Suppose ¢ is an action of G on I. For a € G define
fo: I—1, i—aoi.

Then f, € Sym(I) and the map

d,: G—Sym(I), a-—f,

is a homomorphism. ® is called the homomorphism associated to the action of G on
1.

(b) Let ® : G — Sym(I) be homomorphisms of groups. Define
o:GxI—1,(g,7) — ®(g9)(4).
Then ¢ is an action of G on I.
Lemma Let G be a group and H a subgroups of G. Define
oq/u: GxG/H—G/H, (9,T)—gT

Then oq g is well-defined action of G on G/H. This action is called the action of G on
G/H by left multiplication.

Lemma (Cancellation Law for Action). Let G be a group acting on the set I, a € G
and i,5 € H. Then

(a) a='(ai) =i.
(b)i=j <= «ai=aj.
(c) j=ai <= i=a'j.

Lemma [2.1.10L Let G be a group acting in the set I. Then' = (mod G)’ is an equivalence
relation on I. The equivalence class of ' = (mod G)" containing i € I is Gi.

Proposition [2.1.11} Let G be a group acting on the set I and i,j € G. Then following
are equivalent.
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(a) j = gi for some g € G. (e) Gi=Gj

(b) i=j (mod G) (f) i €Gj.

(c) j € Gi. (9) j=1i (mod G).

(d) GinGj#0 (h) i = hj for some h € G

Corollary [2.1.13| Let G be group acting on the non-empty set I. Then the following are
equivalent

(a) G acts transitively on I.

(b) I =Gi foralliel.

(¢c) I =Gi for somei€l.

(d) T is an orbit for G on I.

(e) G has exactly one orbit on I.
(f) Gi=Gj foralli,je€QG.

(9) i =7 (mod G) for alli,j € G.

Theorem [2.1.16| (Isomorphism Theorem for G-sets). Let G be a group and (I,o) a G-set.
Let i € I and put H = Stabg(i). Then

¢: G/H —Gi, aH —ai

is a well-defined G-isomorphism.
In particular

G/H =g Gi, |Gi|=|G/Stabg(i)] and |Gi| divides |G|

Theorem [2.1.18| (Orbit Equation). Let G be a group acting on a finite set I. Let I, 1 <
k < n be the distinct orbits for G on I. For each 1 < k < n let i;, be an element of Ij.
Then

i=1 i=1
Lemma Let G be a finite group, p a prime and let |G| = p*l with k € N, | € Z7
and ptl.
(a) If P is a p-subgroup of G, then |P| < p*.

(b) If S < G with |S| = p*, then S is a Sylow p-subgroup of G.
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Lemma (Fixed-Point Formula). Let p be a prime and P a p-group acting on finite
set I. Then
|I| = | Fix;(P)| (mod p).

In particular, if p1|I|, then P has a fized-point on I.
Lemma Let G be a group and (1,0) a G-set.
(a) op is an action of G on P(I).
(b) Let H < G and J be a H-invariant subset of I. Then og j is an action of H on J.
Lemma Let G be a group, H a subgroup of G and a € G.
(a) aHa™ ! is a subgroup of G isomorphic to H. So conjugate subgroups of G are isomorphic.
(b) If H is a p-subgroup of G for some prime p, so is aHa™'.
Lemma Let G be a finite group and p a prime. Then
o: G xSyl,(G) = Syl,(G), (g9,P)— gPg~!

is a well-defined action of G on Syl,(G). This action is called the action of G on Syl,(G)
by conjugation.

Lemma (Order Formula). Let A and B be subgroups of the group G.
(a) Put AB/B ={¢gB|g € AB}. The map
¢: A/JANB— AB/B, a(ANB)—aB
is a well-defined bijection.

(b) If A and B are finite, then
Al - |B]

AB| = .
4B |AN B|

Theorem [2.2.15 Let G be a finite group and p a prime.

(a) (Second Sylow Theorem) G' acts transitively on Syl,(G) by conjugation, that is any two
Sylow p-subgroups of G are conjugate in G and so if S and T are Sylow p-subgroups of
G, then S = gTg~" for some g € G.

(b) (Third Sylow Theorem) The number of Sylow p-subgroups of G divides |G| and is con-
gruent to 1 modulo p.

Lemma [2.2.16| Let I be a set. Then Sym(n) acts on I™ via
f <& (il, ig, . Zn) = (if—1(1),if—1(2), ey if—l(n)).

Soifi = (il,ig,...,in) elandj=foi= (jl,jg,...,jn) thenjf(l) = 1.
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Theorem [2.2.17| (Cauchy’s Theorem). Let G be a finite group and p a prime dividing the
order of G. Then G has an element of order p.

Proposition [2.2.18] Let G be a finite group and p a prime. Then any p-subgroup of G is
contained in a Sylow p-subgroup of G. In particular, G has a Sylow p-subgroup.

Theorem (First Sylow Theorem). Let G be a finite group, p a prime and S €
Syl,(G). Let |G| = PPl with k € N, 1 € Zt and p {1 (p* is called the p-part of |G|). Then
|S| = p*. In particular,

Syl,(G) = {P < G||P| = p*}

and G has a subgroup of order p*.

Lemma 2.2.21] Let G be a finite group and p a prime. Let S be a Sylow p-subgroup of G.
Then S is normal in G if and only if S is the only Sylow p-subgroup of G.

Lemma [2.2.22 Let ¢ : A — B be a homomorphism of groups. Then ¢ is 1-1 if and only
of ker p = {ea}.

Lemma Let G be a group and A, B normal subgroups of G with AN B = {e}.
Then AB is a subgroup of G, ab = ba for all a € A,b € B and the map

¢:Ax B — AB,(a,b) — ab

18 an isomorphism of groups. In particular,
AB >~ A x B.

Lemma [2.2.25 Let A be finite abelian groups. Let pi,ps,...pn be the distinct prime
dwisor of |A| (and so |A| = p{" pama ... pi* for some positive integers m;). Then for each
1 <i<n, G has a unique Sylow p;-subgroup A; and

AgA]_XAQX...XAn.

Lemma Let K be a field, V' a K-space and L = (v1,...,v,) a list of vectors in V.
Then L is a basis for V if and only if for each v € V there exists uniquely determined

ki,... ky, € K with
m
v = Zklvl
=1

Lemma Let K be field and V' a K-space. Let L = (v1,...,vy) be a list of vectors in' V.
Suppose the exists 1 < i < n such that v; is linear combination of (V1,...,Vi—1,Vit1,---,Vn)-
Then L is linearly dependent.

Lemma Let K be field, V' an K-space and L = (vi,v2,...vy) a finite list of vectors
in V. Then the following three statements are equivalent:
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(a) L is basis for V.
(b) L is a minimal spanning list, that is £ spans V but for all 1 <i <mn,
(U1 ey Vi1, Vi 1y -+ 5 Un)
does not span V.

(¢) L is mazximal linearly independent list, that is L is linearly independent, but for all
veV, (v,va,...,v,,v) is linearly dependent.

Lemma [3.1.10, Let K be a field and V' and W be K-spaces. Suppose that (vi,va,...,vp)
1s basis of V' and let wi,wa,...w, € W. Then

(a) There exists a unique K-linear map f :V — W with f(v;) = w; for each 1 <i < n.
(b) FOo7 kivi) =D 0 kiw;. for all ky, ... Kk, € K.

(c) f is 1-1 if and only if (w1, wa, ..., wy) is linearly independent.

(d) f is onto if and only if (w1, wa, ..., wy,) spans W.

(e) f is an isomorphism if and only if (w1, ws,...,wy) is a basis for W.

Corollary [3.1.11} Let K be a field and W a K-space with basis (wi,ws ..., w,). Then the

map

n
K" =W, (ay,...ay) %Zaiwi
i=1

18 a K-isomorphism. In particular,
W = K™

Proposition (3.1.13| (Subspace Proposition). Let K be a field, V a K-space and W an
K-subspace of V.

(a) Let v eV and k € K. Then Ogv = v, (—1g)v = —v and kOy = Oy .
(b) W is a subgroup of V with respect to addition.

(c) W together with the restriction of the addition and scalar multiplication to W is a
well-defined K-space.

Proposition [3.1.14] (Quotient Space Proposition). Let K be field, V a K-space and W a
K-subspace of V.
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(a) V/W :={v+ W | v eV} together with the addition

+vw s VIWXVIW = V/W (u+Vio+ W) = (ut+v)+ W

and scalar multiplication

OV/W: KXV/W*)V/VV,(IC,'U+W)*>IC’U+W
is a well-defined vector space.
(b) The map ¢:V — V/W, v+ W is an onto and K-linear. Moreover, ker ¢ = W.

Lemma (3.1.15| Let K be field, V a K-space, W a subspace of V. Suppose that (w1, ..., wy)
be a basis for W and let (vy,...,v;) be a list of vectors in V. Then the following are
equivalent

(a) (wy,wa,..., Wk, v1,02,...0;) is a basis for V.
(b) (vi +W,va+W,...,u+ W) is a basis for V/W.

Lemma [3.1.16 Let K be field, V' a K-space and (vi,...,v,) and (wi,...wy,) be bases for
V. Then n =m.

Lemma [3.1.18, Let K be a field and V an K-space with a finite spanning list L =
(v1,v2,...,v,). Then some sublist of L is a basis for V. In particular, V is finite di-
mensional and dimg V < n.

Theorem [3.1.19| (Dimension Formula). Let V' be a vector space over the field K. Let W
be an K-subspace of V. Then V is finite dimensional if and only if both W and V/W are
finite dimensional. Moreover, if this is the case, then

dimg V' = dimg W + dimg V/W.

Corollary [3.1.20\. Let V' be a finite dimensional vector space over the field K and L a
linearly independent list of vectors in V. Then L is contained in a basis of V' and so

|£] < dimg V.

Lemma Let K : F be a field extension. Then K is vector space over F, where the
scalar multiplication is given by

Fx K — K, (f,k) — fk

Lemma Let K : F be a field extension and V a K-space. Then with respect to the
restriction of the scalar multiplication to F, V is an F-space. If V is finite dimensional over
K and K : F is finite, then V is finite dimensional over F and

dimp V = dimp K - dimg V.
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Corollary Let E: K and K : F be finite field extensions. Then also E : F is a finite
field extension and

Lemma Let F be a field and I a non-zero ideal in Flz].
(a) There exists a unique monic polynomial p € Fz] with I = Flz]p = (p).

(b) Flx]/I is an integral domain if and only if p is irreducible and if and only if Fx]/I is
field.

Lemma Let K : F be a field extension and a € K.

(a) The map ¢q : Flz] = K, f — f(a) is a ring homomorphism.

(b) Im ¢, = Fla] is a subring of K.

(¢) ¢q is 1-1 if and only if ker ¢, = {Or} and if and only if a is transcendental.

Theorem|3.2.12, Let K : F be a field extension and a € K. Suppose that a is transcendental
over F. Then

(a) bo:Flx] = Fla], f — f(a) is an isomorphism of rings.

(b) For alln €N, (1,a,a?,...,a") is linearly independent over F.
(c) Fla] is not finite dimensional over F and K : F is not finite.
(d) a=' ¢ Fla] and F[a] is not a subfield of K.

Theorem [3.2.13| Let K : F be a field extension and a € K. Suppose that a is algebraic
over F. Then

(a) There exists a unique monic polynomial p, € Fz] with ker ¢ = (pa).

(b) ¢,: TFlx]/(ps) — Fla], f+ (pa) — f(a) is a well-defined isomorphism of rings.
(¢) pq is irreducible.

(d) Fla] is a subfield of K.

(e) Let Putn = degp,. Then (1,a,...,a" ') is an F-basis for F[a]

(#) dims Fla] = deg po.

(9) Let g € F[z]. Then g(a) = Ok if and only if p, | g in Flz].

Lemma [3.2.15, Let K : F be a field extension and a € K be algebraic over F. Let p € Flx].
Then p = p, if and only of p is monic, and irreducible and p(a) = Op.
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Lemma [3.2.17| (a) Let a: R — S and 5 : S — T be ring isomorphisms. Then

Boa:R—T,r— B(ar))
and
a8 =R, s—al(s)

are ring isomorphism.

(b) Let R and S be rings, I an ideal in R and o : R — S a ring isomorphism. Put J = a(I).
Then

(a) J is an ideal in S.

(b) B:1—J, i— «ai)isaring isomorphism.

(¢c) v:R/IT = S/J, r+1—= a(i)+J is a well-defined ring isomorphism.

(d) a((a)) = (a(a)) for all a € R. That is o maps to ideal in R generated by a to the

ideal in S generated in o(a).

(c) Let R and S be commutative rings with identities and o : R — S a ring isomorphism.
Then

n n
Rlz] = Sla], > fir' =) o(i)a’
i=1 i=1
s a ring isomorphism. In the following, we will denote this ring isomorphism also by
o. Soif f=>37", fix" € Flz], then o(f) =D 1 oo(fi)z"
Corollary (3.2.18, Let 0 : Ky — Ky be a field isomorphism. For i = 1,2 let E; : K;

be a field extension and suppose a; € K; is algebraic over K; with minimal polynomial p;.
Suppose that o(p1) = p2. Then there exists a field isomorphism

o Kl [al] — Kg[ag]

with
pla1) = as and p |x,= o

Lemma Any finite field extension is algebraic.

Proposition Let F be a field and f € F[x]. Then there exists a splitting field K for
f over F. Moreover, K : F is finite of degree at most n!.

Theorem Suppose that

(i) o :F1 — Fy is an isomorphism of fields;

(i) Fori=1 and 2, f; € Flz] and K; a splitting field for f; over F;; and
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(iii) o(f1) = f2
Then there exists a field isomorphism

7 : Ky — Ky with ¢ |p,= 0.
Suppose in addition that

(iv) Fori =1 and 2, p; is an irreducible factor of f; in Flz| and a; is a root of p; in K;;
and

(v) o(p1) = o(p2).
Then & can be chosen such that
o(a1) = as.
Lemma Let K:E and E : T be a field extensions.

(a) Let a € K be algebraic over F. Then a is algebraic over E. Moreover, if p is the
minimal polynomial of a over E, and p® is the minimal polynomial of a over F, then p®
divides p" in E[x].

(b) If f € Flz] is separable over F, then f is separable over E.

(c) If a € K is separable over F, then a is separable over E.

(d) If K : T is separable, then also K : E and E : K are separable.

Lemma Let K : F be a field extension. Then Autp(K) is a subgroup of Sym(K).

Lemma Let K : F be a field extension and H a subset of Autp(K). Then Fixg(H)
1s subfield of K containing F.

Proposition Let K : F be a field extension and O # f € Flz].
(a) Let a € K and o € Autp(K). Then o(f(a)) = f(o(a)).

(b) The set of roots of f in K is invariant under Auty(K). That is if a is a root of f in K
and o € Autg(K), then o(a) is also a root of f in K.

(c) Let a € K. Then Stab g, k)(a) = Autg(q)(K).
(d) Let a be root of f in K. Then
| Autp(K)/ Autgg (K)| = [{o(a) | o0 € Autp(K)}|.

Theorem Let IF be a field and K the splitting field of a separable polynomial over F.
Then
| AutF(K)| = dimp K.
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Lemma [3.5.10, Let K : F be a field extension and G a finite subgroup of Autp(K) with
Fixg(G) =F. Then dimpK < |G].

Proposition [3.5.11 Let K : F be a field extension and G a finite subgroup of Autp(K)
with Fixg(G) =F. Let a € K. Then a is algebraic over F. Let ay,aq,...a, be the distinct
elements of Ga = {o(a) | 0 € G}. Then

Po = (x—a1)(x —ag)...(x—ay).
In particular, p, splits over K and K is separable over F.

Theorem [3.5.13 Let K : F be a field extension. Then the following statements are equiv-
alent.

(a) K is the splitting field of a separable polynomial over F.
(b) Autp(K) is finite and F = Fixg (Autp(K)).

(c) F = Fixg(G) for some finite subgroup G of Autp(K).
(d) K :F is finite, separable and normal.

Lemma [3.5.14, Let K: F be a field extension. Let o € Autyp(K) and let E be subfield field
of K containing F. Then

o Autg(K)o ™! = Aut, k) (K)

Lemma [3.5.16| Let K : F be a Galois extension and E an intermediate field of K : F. The
following are equivalent:

(a) E: T is normal.
(b) E:F is Galois.
(c) E is invariant under Autp(K), that is o(E) = E for all o € Autp(K).

Theorem (Fundamental Theorem of Galois Theory). Let K : F be a Galois Exten-
sion. Let E be an intermediate field of K : F and G < Autp(K).

(a) The map
E— Aut]E (K)

is a bijection between to intermediate fields of K : F and the subgroups of Autp(K). The
inverse of this map is given by

G — FiXK(G).

(b) ‘G‘ = dimFixK(G) K and dimg K = ‘ Aut]E(K)\.
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(c) E:F is normal if and only if Autg(K) is normal in Auty(K).

(d) If E : F is normal, then the map

Aut[g(K)/ Aut]E(K) — Aut]F(E), aAutE(K) — 0 ‘IE

is a well-defined isomorphism of groups.

Theorem Let ~ be an equivalence relation on the set A and a,b € A. Then the
following statements are equivalent:

(a) a~b. (c) [a] N [b] # 0. (e) a € [b]

(b) b€ la]. (d) la] = [b]. (f) b~ a.
Lemma Let f: A— B and B — C be functions.

(a) If f and g are 1-1, so is go f.

(b) If f and g are onto, so is go f.

(¢) If f and g is a bijection, so is go f.

Lemma Let f: A — B be a function.

(a) Let C C A. Then C C f~1(f(C)).

(b) Let C C A. If f is 1-1 then f~1(f(C)) = C.

(¢c) Let D C B. Then f(f~Y(D)) C D.

(d) Let D C B. If f is onto then f(f~1(D)) = D.

Lemma Let f: A — B be a function and suppose A # ().

(a) f is 1-1 if and only if there exists a function g: B — A with go f =id4.
(b) f is onto if and only of there exists a function g : B — A with f o g =idp.

(c) f is a bijection if and only if there exists a function g : B — A with fog = idp and
go A=idp.

Lemma (a) = is an equivalence relation.
(b) If A and B are sets with A ~ B, then A < B.
(c) < is reflexive and transitive.

(d) Let A and B be sets. Then A < B if and only if there exists C C B with A ~ C.
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Lemma [A. 3.4l Let A and B be sets.
(a) |Al = |B| if and only if A~ B.
(b) |A| < |B| if and only if A < B.

Theorem (Cantor-Bernstein). Let A and B be sets. Then A ~ B if and only if
A< Band B < A.

Corollary Let ¢ and d be cardinals. Then ¢ = d if and only if c < d and d < c.
Lemma (a) Let A and B be countable sets. Then A x B is countable.

(b) Let A be a countable set. Then B™ is countable for all positive integers n.

B.2 Definitions from the Lecture Notes

Definition Let S be a set. A binary operation is a function x : S x S — S. We
denote the image of (s,t) under x by s *t.

Definition Let x be a binary operation on a set I. Then x is called associative if
(axb)*xc=ax(bxc) for all a,b,c € I

Definition Let I be a set and x a binary operation on I. An identity of x in I is a
elemente € I withexi=1 andi=1ixe for alli € I.

Definition Let % be a binary operation on the set I with identity e. The a € I is
called invertible if there exists b € I with axb =e and bxa = e. Any such b is called an
inverse of a with respect to *.

Definition A group is tuple (G, *) such that G is a set and
(i) *x: G x G — G is a binary operation.

(ii) * is associative.

(iii) * has an identity e in G.

(iv) Each a € G is invertible in G with respect to *.

Definition Let G be a group, a € G and n € N. Then

(a) a® :=e,

(b) Inductively a™*! := a"a.

(c) a=™ := (a=1)".
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(d) We say that a has finite order if there exists a positive integer n with a™ = e. The
smallest such positive integer is called the order of a and is denoted by |a|.

Definition Let (G,*) and (H,A) be groups. Then (H,A\) is called a subgroup of
(G, %) provided that

(a) HCG.
(b) a\b=axb for all a,b € H.
Definition Let I be a subset of the group G. Then

= H

ICH<G
(I) is called the subgroup of G generated by I

Definition Let f : A — B be a function. Then Im f:= {f(a) | a € A}. Im f is
called the image of f.

Definition Let (G, %) and (H, O) be groups.
(a) A homomorphism from (G, *) from to (H, ) is a function f: G — H such that
flaxb) = f(a) T f(b)
for all a,b € G.
(b) An isomorphism from G to H is a 1-1 and onto homomorphism from G to H.

(c¢) If there exists an isomorphism from G to H we say that G is isomorphic to H and write
G=H.

Definition Let G be a group. Then G is called a group of permutations or a
permutation group if G < Sym(I) for some set I.

Definition Let K be a subgroup of the group G and a,b € G. Then we say that a
is congruent to b modulo K and write a =b (mod K) ifa~'b € K.

Definition Let (G, ) be a group and g € G
(a) Let A, B be subsets of G and g € G. Then
AxB:={axb|ac A bec B},

gxA={g*alac A}

and
Axg:={axg|ac A}

We often just write AB,gA and Ag for Ax B,gx A and A * g.
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(b) Let K be a subgroup of the group (G,*) . Then g* K called the left coset of g in G with
respect to K. Put
G/K :={gK | g € G}.
So G/K is the set of left cosets of K in G.
Definition A group G is called cyclic if G = (g) for some g € G.

Definition Let N be a subgroup of the group G. N is called a normal subgroup of
G and we write N < G provided that

gN = Ng
forall g € G.

Definition A binary operation * on I is called commutative if a x b = b* a for all
a,b e 1. A group is called abelian of its binary operation is commutative.

Definition Let G be a group and N I G. Then xg/n denotes the binary operation

Note here that by (@, ST is a coset of N, whenever S and T are cosets of N. G/N
is called the quotient group of G with respect to N.

Definition Let ¢ : G — H be a homomorphism of groups. Then
ker¢:={g€ G|od(g) =en}.
ker ¢ is called the kernel of ¢.

Definition Let % be a binary operation on the set A and O a binary operation on
the set B. Then xx0 is the binary operation on A X B defined by

xx0:(AxB)x (Ax B)— Ax B, ((a,b),(c,d)) — (a*c,b0d)
(A x B, *x[) is called the direct product of (A,x*) and (B, O).
Definition Let G be group and I a set. An action of G on I is a function
o: GxI—=1T1 (g,0)— (goi)
such that
(act:i) evi =1 foralli € 1.

(act:ii) go (hot) = (g*h)oi forallgh € G, 1€ 1.
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The pair (I,0) is called a G-set. We also say that G acts on I via o. Abusing notations we
often just say that I is a G-set. Also we often just write gi for g <.

Definition Let G be a group and (1,0) a G-set.

(a) The relation =, (mod G) on I is defined byi =, j (mod G) if there exists g € G with gi =
7

(b) Goiz={goi| g€ G}. Goi is called the orbit of G on I (with respect to ©) containing
1. We often write Gi for G o 1.

Definition [2.1.12} Let G be a group acting on the set I. We say that G acts transitively
on I if for alli,j € G there exists g € G with gi = j.

Definition 2.1.14} (a) Let G be a group and (I,0) and (J,0) be G-sets. A function
f I — J is called G-homomorphism if

flaoi) = aO f(i)

for all a € G and i. A G-isomorphism is bijective G-homomorphism. We say that I
and H are G-isomorphic and write

I1=2¢J
if there exists an G-isomorphism from I to J.

(b) Let I be a G set and J C I. Then
Stabg(J) ={g€ G |gj=j forallje J}

and fori € I
Stab (i) ={g € G | gi =i}

Stabg (i) is called the stabilizer of i in G with respect to ©.

Definition Let p be a prime and G a group. Then G is a p-group if |G| = p* for
some k € N.

Definition Let G be a finite group and p a prime. A p-subgroup of G is a subgroup
of G which is a p-group. A Sylow p-subgroup of G is a maximal p-subgroup of G, that is S
is a Sylow p-subgroup of G provided that

(i) S is a p-subgroup of G.

(ii) If P is a p-subgroup of G with S < P, then S = P.

Syl,(G) denotes the set of Sylow p-subgroups of G.
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Definition Let G be a group acting on a set I. Leti € I. Then i is called a fixed-
point of G on I provided that gi =i for all g € G. Fix;(G) is the set of all fized-points for
G onl. So

Fix;(G) ={i€I|gi=1i for all g € G}.

Definition Let G be a group and (1,0) a G-set.

(a) P(I) is the sets of all subsets of Z. P(I) is called the power set of I.
(b) Forae G and J C I putaoJ ={acj|jeJ}.

(c) op denotes the function

op: GxPU)—PI), (a,J)—aol

(d) Let J be a subset of I and H < G. Then J is called H-invariant if
hjeJ
forallhe H,je J.

(e) Let H < G and J be a H-invariant. Then o ; denotes the function

CH,J ! HxJ—J, (h,])—)h@j

Definition [2.2.11] Let A and B be subsets of the group G. We say that A is conjugate to
B in G if there exists g € G with A = gBg™'.

Definition Let K be a field. A vector space over K (or a K-space ) is a tuple
(V,+,0) such that

(i) (V,+) is an abelian group.
(i) o : KxV — V is a function called scalar multiplication .
(iii) ao (v+w) = (aov)+ (aow) for alla € K,v,w e V.
() (a+b)ov=_(aov)+ (bov) foralla,b e K,ve V.
(v) (ab)ov=ao(bov) for alla,be K,v e V.
(vi) Ixov=w for allv eV
The elements of a vector space are called vectors. The usually just write kv for ko v.

Definition Let K be a field and V' and K-space. Let L = (v1,...,v,) € V" be a list
of vectors in V.
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(a) L is called K-linearly independent if

aivy + avs + ... av, = Oy

for some ay,aq,...,a, € K implies ay = a2 = ... = a, = Ok.
(b) Let (ar,as...,an) € K". Then ajvy +agva+. ..+ ayv, is called a K-linear combination
of L.

Spang (£) = {a1v1 + agva + ... apv, | (a1,...,a,) € K"}

is called the K-span of L. So Spang (L) consists of all the K-linear combination of L.
We consider Oy to be a linear combination of the empty list () and so Spang (()) = {0y }.

(¢) We say that L spans V, if V. = Spang (L), that is if every vector in V is a linear
combination of L.

(d) We say that L is a basis of V if L is linearly independent and spans V.

(e) We say that L is a linearly dependent if it’s not linearly independent, that is, if there
exist ki,...,k, € K, not all zero such that

kivi + kve + ... kv, = Oy.

Definition Let K be a field and V' and W K-spaces. A K-linear map from V to W
is function
f:V-w
such that
(a) flu+v)= f(u)+ f(v) for all u,v € W
(b) f(kv) =kf(v) forall k e Kand v € V.

A K-linear map is called a K-isomorphism if it’s 1-1 and onto.
We say that V and W are K-isomorphic and write V' =g W if there exists a K-
isomorphism from V to W.

Definition (3.1.12] Let K be a field, V a K-space and W C V. Then W is called a
K-subspace of V' provided that

(i) Oy € W.
(i) v+weW for allv,w e W.
(11i) kw € W for allk €e K, w e W.

Definition A wvector space V' over the field K is called finite dimensional if V' has
a finite basis (v1,...,v,). n is called the dimension of K and is denoted by dimg V. (Note

that this is well-defined by .

Definition Let K be a field and F a subset of K. F is a called a subfield of K
provided that
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(i) a+beF foralla,beF. (iv) ab € F for all a,b € F.
(ii) Og € F. (v) 1g € F.
(iii) —a € F for all a € F. (vi) a=t € F for all a € F with a # Ox.

If F is a subfield of K we also say that K is an extension field of F and that K : F is a
field extension.

Definition A field extension K : F is called finite if K is a finite dimensional F-
space.. dimp K is called the degree of the extension K : .

Definition Let K : TF be a field extension and a € K.
(¢) Fla] = {f(a) | | € Flz]}.

(b) If there exists a non-zero f € Fx] with f(a) = Op then a is called algebraic over F.
Otherwise a is called transcendental over F.

Definition [3.2.14L Let K : F be a field extension and let a € F be algebraic over F. The
unique monic polynomial p, € F[x] with ker ¢4 = (pg) is called the minimal polynomial of
a over IF.

Definition A field extension K : F is called algebraic if each k € K is algebraic over
F.

Definition Let K : F be a field extension and aq,as...,a, € K. Inductively, define
F[al, a9, ... ,ak] = F[al, ag, ... ,ak,l][ak].

Definition Let K : F be field extensions and f € F[z]. We say that f splits in K if

there exists ay . ..a, € K with
(i) f=lead(f)(z —a1)(x —az)...(x — ay).

We say that K is a splitting field for f over F if f splits in K and
(i) K =TFlai,ag,...,an].

Definition Let K : F be a field extension.

(a) Let f € Flx]. If f is irreducible, then f is called separable over F provided that f does
not have a double root in its splitting field over F. In general, f is called separable over
F provided that all irreducible factors of f in Flz]| are separable over F.

(b) a € K is called separable over K if a is algebraic over F and the minimal polynomial of
a over IF is separable over F.

(¢) K:F is called separable over F if each a € K is separable over F.
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Definition Let K : F be field extension. Auty(K) is the set of all field isomorphism
a: K — K with « [p= idy.
Definition Let K : TF be a field extension and H C Autg(F). Then

Fixg(H) :={k € K| o(k) =k for alloc € H}.
Fixg(H) is called the fixed-field of H in K.

Definition [3.5.12, Let K : F be algebraic field extension. Then K : F is called normal if
for each a € K, pq splits over K.

Definition [3.5.15, (a) A Galois extension is a finite, separable and normal field extension.

(b) Let K : F be a field extension. An intermediate field of K : F is a subfield E of K with
FCE.

Definition [A 1.1l Let ~ be a relation on a set A. Then

(a) ~ is called reflexive if a ~ a for all a € A.

(b) ~ is called symmetric if b ~ a for all a,b € A with a ~ b.

(¢) ~ is called transitive if a ~ ¢ for all a,b,c € A with a ~b and b ~ c.

(d) ~ is called an equivalence relation if ~ is reflexive, symmetric and transitive.

(e) For a € A we define [a]~ :={b € R|a~ b}. We often just write [a] for [a]~. If ~ is
an equivalence relation then [a]~ is called the equivalence class of ~ containing a.

Definition Let f : A — B be a function.
(a) f is called 1-1 or injective if a = ¢ for all a,c € A with f(a) = f(c).
(b) f is called onto or surjective if for all b € B there exists a € A with f(a) = b.

(c) f is called a 1-1 correspondence or bijective if for all b € B there exists a unique a € A
with f(a) =b.

(d) Im f:={f(a) | a € A}. Im f is called the image of f.

Definition [A.2.2| (a) Let A be a set. The identity function idg on A is the function

idg:A— A, a—a.

(b) Let f: A— B and g: B — C be function. Then go f is the function

gof:A—=C, a— g(f(a)).
go f is called the composition of g and f.
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Definition Let f: A — B be a function.
(a) If C C A, then f(C):={f(c) | ce C}. f(C) is called the image of C' under f.

(b) If D C B, then f~Y(D):={ce€ C | f(c) € D}. f~1(D) is called the inverse image of D
under f.

Definition Let A and B be sets. We write A ~ B if there exists a bijection from
A to B. We write A < B if there exists injection from A to B.

Definition Let A be a set. Then |A| denotes the equivalence class of ~ containing.
An cardinal is a class of the form |A|, A a set. If a,b are cardinals then we write a < b if
there exist sets A and B with a = |A|, b= |B| and A < B.

Definition Let I be a set. Then I is called finite if the exists n € N and a bijection
f:I—{1,2,...,n}. I is called countable if either I is finite or there exists a bijections
f:I—=7Z".

B.3 Definitions from the Homework

Definition H1.8. Let I be a set.
(a) For a € Sym(I) define
Supp(a) := {i € I | a(i) # i}
Supp(a) is called the support of a.
(b) FSym(I) := {a € Sym(I) | Supp(a) is finite }.
FSym([I) is called the finitary symmetric group on I.
Definition H2.4. Let G be a group and a € G. Put
Cqg(a) :={g € G| ga = ag}
Cc(a) is called the centralizer of a in G.

Definition HPMT.3. A group G is called perfect if G = H for any H < G with G/H
abelian.

Definition HRMT.4. A group G is called simple if {e} and G are the only normal sub-
groups of G.

Definition H8.6. Let G be a group. Put

Z(G)={a€G|ab=ba forallbe G
Z(@G) is called the center of G.
Definition H11.2. Let K : F be a field extension and a € K. Then

F(a) = {zy " | 2,y € Fla],y # Ox}
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